๐ŸŒ Update translations via Co-op Translator

pull/859/head
leestott 3 months ago committed by GitHub
parent 9de76bbfbb
commit 349386faa1

@ -0,0 +1,159 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "69389392fa6346e0dfa30f664b7b6fec",
"translation_date": "2025-09-05T19:38:13+00:00",
"source_file": "1-Introduction/1-intro-to-ML/README.md",
"language_code": "he"
}
-->
# ืžื‘ื•ื ืœืœืžื™ื“ืช ืžื›ื•ื ื”
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
---
[![ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ืžื‘ื•ื ืœืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื](https://img.youtube.com/vi/6mSx_KJxcHI/0.jpg)](https://youtu.be/6mSx_KJxcHI "ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ืžื‘ื•ื ืœืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืฉืžืกื‘ื™ืจ ืืช ื”ืฉื™ืขื•ืจ.
ื‘ืจื•ื›ื™ื ื”ื‘ืื™ื ืœืงื•ืจืก ื–ื” ืขืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช ืœืžืชื—ื™ืœื™ื! ื‘ื™ืŸ ืื ืืชื ื—ื“ืฉื™ื ืœื—ืœื•ื˜ื™ืŸ ืœื ื•ืฉื ื”ื–ื”, ืื• ืžื•ืžื—ื™ื ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ืฉืžื—ืคืฉื™ื ืœืจืขื ืŸ ืืช ื”ื™ื“ืข, ืื ื—ื ื• ืฉืžื—ื™ื ืฉื”ืฆื˜ืจืคืชื ืืœื™ื ื•! ืื ื• ืฉื•ืืคื™ื ืœื™ืฆื•ืจ ื ืงื•ื“ืช ื”ืชื—ืœื” ื™ื“ื™ื“ื•ืชื™ืช ืœืœื™ืžื•ื“ื™ ืœืžื™ื“ืช ืžื›ื•ื ื” ื•ื ืฉืžื— ืœื”ืขืจื™ืš, ืœื”ื’ื™ื‘ ื•ืœืฉืœื‘ ืืช [ื”ืžืฉื•ื‘ ืฉืœื›ื](https://github.com/microsoft/ML-For-Beginners/discussions).
[![ืžื‘ื•ื ืœืœืžื™ื“ืช ืžื›ื•ื ื”](https://img.youtube.com/vi/h0e2HAPTGF4/0.jpg)](https://youtu.be/h0e2HAPTGF4 "ืžื‘ื•ื ืœืœืžื™ื“ืช ืžื›ื•ื ื”")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ื’'ื•ืŸ ื’ื•ื˜ืื’ ืž-MIT ืžืฆื™ื’ ืืช ืœืžื™ื“ืช ื”ืžื›ื•ื ื”
---
## ื”ืชื—ืœืช ื”ืขื‘ื•ื“ื” ืขื ืœืžื™ื“ืช ืžื›ื•ื ื”
ืœืคื ื™ ืฉืžืชื—ื™ืœื™ื ืขื ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ื–ื•, ื™ืฉ ืœื•ื•ื“ื ืฉื”ืžื—ืฉื‘ ืฉืœื›ื ืžื•ื›ืŸ ืœื”ืจื™ืฅ ืžื—ื‘ืจื•ืช ื‘ืื•ืคืŸ ืžืงื•ืžื™.
- **ื”ื’ื“ื™ืจื• ืืช ื”ืžื—ืฉื‘ ืฉืœื›ื ื‘ืืžืฆืขื•ืช ื”ืกืจื˜ื•ื ื™ื ื”ืืœื”**. ื”ืฉืชืžืฉื• ื‘ืงื™ืฉื•ืจื™ื ื”ื‘ืื™ื ื›ื“ื™ ืœืœืžื•ื“ [ืื™ืš ืœื”ืชืงื™ืŸ ืืช Python](https://youtu.be/CXZYvNRIAKM) ื‘ืžืขืจื›ืช ืฉืœื›ื ื•-[ืœื”ื’ื“ื™ืจ ืขื•ืจืš ื˜ืงืกื˜](https://youtu.be/EU8eayHWoZg) ืœืคื™ืชื•ื—.
- **ืœืžื“ื• Python**. ืžื•ืžืœืฅ ื’ื ืœื”ื‘ื™ืŸ ืืช ื”ื‘ืกื™ืก ืฉืœ [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), ืฉืคืช ืชื›ื ื•ืช ืฉื™ืžื•ืฉื™ืช ืœืžื“ืขื ื™ ื ืชื•ื ื™ื ืฉื‘ื” ื ืฉืชืžืฉ ื‘ืงื•ืจืก ื”ื–ื”.
- **ืœืžื“ื• Node.js ื•-JavaScript**. ื ืฉืชืžืฉ ื’ื ื‘-JavaScript ืžืกืคืจ ืคืขืžื™ื ื‘ืงื•ืจืก ื”ื–ื” ื›ืฉื ื‘ื ื” ืืคืœื™ืงืฆื™ื•ืช ื•ื•ื‘, ื•ืœื›ืŸ ืชืฆื˜ืจื›ื• ืœื”ืชืงื™ืŸ [node](https://nodejs.org) ื•-[npm](https://www.npmjs.com/), ื•ื›ืŸ [Visual Studio Code](https://code.visualstudio.com/) ืฉื™ื”ื™ื” ื–ืžื™ืŸ ืœืคื™ืชื•ื— ื‘-Python ื•ื‘-JavaScript.
- **ืฆืจื• ื—ืฉื‘ื•ืŸ GitHub**. ืžื›ื™ื•ื•ืŸ ืฉืžืฆืืชื ืื•ืชื ื• ื›ืืŸ ื‘-[GitHub](https://github.com), ื™ื™ืชื›ืŸ ืฉื›ื‘ืจ ื™ืฉ ืœื›ื ื—ืฉื‘ื•ืŸ, ืื‘ืœ ืื ืœื, ืฆืจื• ืื—ื“ ื•ืื– ืขืฉื• fork ืœืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ื–ื• ื›ื“ื™ ืœื”ืฉืชืžืฉ ื‘ื” ื‘ืขืฆืžื›ื. (ืืชื ืžื•ื–ืžื ื™ื ื’ื ืœืชืช ืœื ื• ื›ื•ื›ื‘ ๐Ÿ˜Š)
- **ื—ืงื•ืจ ืืช Scikit-learn**. ื”ื›ื™ืจื• ืืช [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), ืกื˜ ืกืคืจื™ื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ืฉื ืฉืชืžืฉ ื‘ื”ืŸ ื‘ืฉื™ืขื•ืจื™ื ื”ืืœื”.
---
## ืžื”ื™ ืœืžื™ื“ืช ืžื›ื•ื ื”?
ื”ืžื•ื ื— 'ืœืžื™ื“ืช ืžื›ื•ื ื”' ื”ื•ื ืื—ื“ ื”ืžื•ื ื—ื™ื ื”ืคื•ืคื•ืœืจื™ื™ื ื•ื”ืฉื›ื™ื—ื™ื ื‘ื™ื•ืชืจ ื›ื™ื•ื. ื™ืฉ ืกื™ื›ื•ื™ ืœื ืžื‘ื•ื˜ืœ ืฉืฉืžืขืชื ืืช ื”ืžื•ื ื— ื”ื–ื” ืœืคื—ื•ืช ืคืขื ืื—ืช ืื ื™ืฉ ืœื›ื ื”ื™ื›ืจื•ืช ื›ืœืฉื”ื™ ืขื ื˜ื›ื ื•ืœื•ื’ื™ื”, ืœื ืžืฉื ื” ื‘ืื™ื–ื” ืชื—ื•ื ืืชื ืขื•ื‘ื“ื™ื. ืขื ื–ืืช, ื”ืžื›ื ื™ืงื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื”ื™ื ืชืขืœื•ืžื” ืขื‘ื•ืจ ืจื•ื‘ ื”ืื ืฉื™ื. ืขื‘ื•ืจ ืžืชื—ื™ืœื™ื ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”, ื”ื ื•ืฉื ื™ื›ื•ืœ ืœืขื™ืชื™ื ืœื”ืจื’ื™ืฉ ืžืจืชื™ืข. ืœื›ืŸ, ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ืžื”ื™ ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืืžืช, ื•ืœืœืžื•ื“ ืขืœื™ื” ืฆืขื“ ืื—ืจ ืฆืขื“, ื“ืจืš ื“ื•ื’ืžืื•ืช ืžืขืฉื™ื•ืช.
---
## ืขืงื•ืžืช ื”ื”ื™ื™ืค
![ืขืงื•ืžืช ื”ื”ื™ื™ืค ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”](../../../../1-Introduction/1-intro-to-ML/images/hype.png)
> Google Trends ืžืฆื™ื’ ืืช ืขืงื•ืžืช ื”ื”ื™ื™ืค ื”ืื—ืจื•ื ื” ืฉืœ ื”ืžื•ื ื— 'ืœืžื™ื“ืช ืžื›ื•ื ื”'
---
## ื™ืงื•ื ืžืกืชื•ืจื™
ืื ื—ื ื• ื—ื™ื™ื ื‘ื™ืงื•ื ืžืœื ื‘ืชืขืœื•ืžื•ืช ืžืจืชืงื•ืช. ืžื“ืขื ื™ื ื’ื“ื•ืœื™ื ื›ืžื• ืกื˜ื™ื‘ืŸ ื”ื•ืงื™ื ื’, ืืœื‘ืจื˜ ืื™ื™ื ืฉื˜ื™ื™ืŸ ื•ืขื•ื“ ืจื‘ื™ื ื”ืงื“ื™ืฉื• ืืช ื—ื™ื™ื”ื ืœื—ื™ืคื•ืฉ ืžื™ื“ืข ืžืฉืžืขื•ืชื™ ืฉื—ื•ืฉืฃ ืืช ื”ืชืขืœื•ืžื•ืช ืฉืœ ื”ืขื•ืœื ืกื‘ื™ื‘ื ื•. ื–ื”ื• ืžืฆื‘ ื”ืœืžื™ื“ื” ื”ืื ื•ืฉื™: ื™ืœื“ ืœื•ืžื“ ื“ื‘ืจื™ื ื—ื“ืฉื™ื ื•ืžื’ืœื” ืืช ืžื‘ื ื” ืขื•ืœืžื• ืฉื ื” ืื—ืจ ืฉื ื” ื›ืฉื”ื•ื ื’ื“ืœ ืœื‘ื’ืจื•ืช.
---
## ืžื•ื—ื• ืฉืœ ื”ื™ืœื“
ื”ืžื•ื— ื•ื”ื—ื•ืฉื™ื ืฉืœ ื”ื™ืœื“ ืชื•ืคืกื™ื ืืช ื”ืขื•ื‘ื“ื•ืช ืฉืœ ืกื‘ื™ื‘ืชื• ื•ืœื•ืžื“ื™ื ื‘ื”ื“ืจื’ื” ืืช ื”ื“ืคื•ืกื™ื ื”ื ืกืชืจื™ื ืฉืœ ื”ื—ื™ื™ื, ืฉืžืกื™ื™ืขื™ื ืœื™ืœื“ ืœื™ืฆื•ืจ ื›ืœืœื™ื ืœื•ื’ื™ื™ื ืœื–ื™ื”ื•ื™ ื“ืคื•ืกื™ื ื ืœืžื“ื™ื. ืชื”ืœื™ืš ื”ืœืžื™ื“ื” ืฉืœ ื”ืžื•ื— ื”ืื ื•ืฉื™ ื”ื•ืคืš ืืช ื‘ื ื™ ื”ืื“ื ืœื™ืฆื•ืจื™ื ื”ื—ื™ื™ื ื”ืžืชื•ื—ื›ืžื™ื ื‘ื™ื•ืชืจ ื‘ืขื•ืœื ื”ื–ื”. ื”ืœืžื™ื“ื” ื”ืžืชืžืฉื›ืช ืขืœ ื™ื“ื™ ื’ื™ืœื•ื™ ื“ืคื•ืกื™ื ื ืกืชืจื™ื ื•ืื– ื—ื“ืฉื ื•ืช ืขืœ ื‘ืกื™ืกื ืžืืคืฉืจืช ืœื ื• ืœื”ืฉืชืคืจ ื•ืœื”ืชืคืชื— ืœืื•ืจืš ื›ืœ ื—ื™ื™ื ื•. ื™ื›ื•ืœืช ื”ืœืžื™ื“ื” ื•ื”ื”ืชืคืชื—ื•ืช ื”ื–ื• ืงืฉื•ืจื” ืœืžื•ืฉื’ ืฉื ืงืจื [ืคืœืกื˜ื™ื•ืช ืžื•ื—ื™ืช](https://www.simplypsychology.org/brain-plasticity.html). ื‘ืื•ืคืŸ ืฉื˜ื—ื™, ื ื™ืชืŸ ืœืžืฆื•ื ื›ืžื” ื“ืžื™ื•ืŸ ืžื•ื˜ื™ื‘ืฆื™ื•ื ื™ ื‘ื™ืŸ ืชื”ืœื™ืš ื”ืœืžื™ื“ื” ืฉืœ ื”ืžื•ื— ื”ืื ื•ืฉื™ ืœื‘ื™ืŸ ืžื•ืฉื’ื™ ืœืžื™ื“ืช ืžื›ื•ื ื”.
---
## ื”ืžื•ื— ื”ืื ื•ืฉื™
ื”ืžื•ื— [ื”ืื ื•ืฉื™](https://www.livescience.com/29365-human-brain.html) ืชื•ืคืก ื“ื‘ืจื™ื ืžื”ืขื•ืœื ื”ืืžื™ืชื™, ืžืขื‘ื“ ืืช ื”ืžื™ื“ืข ื”ื ืชืคืก, ืžืงื‘ืœ ื”ื—ืœื˜ื•ืช ืจืฆื™ื•ื ืœื™ื•ืช ื•ืžื‘ืฆืข ืคืขื•ืœื•ืช ืžืกื•ื™ืžื•ืช ื‘ื”ืชืื ืœื ืกื™ื‘ื•ืช. ื–ื” ืžื” ืฉืื ื—ื ื• ืžื›ื ื™ื ื”ืชื ื”ื’ื•ืช ืื™ื ื˜ืœื™ื’ื ื˜ื™ืช. ื›ืืฉืจ ืื ื• ืžืชื›ื ืชื™ื ื—ื™ืงื•ื™ ืฉืœ ืชื”ืœื™ืš ื”ื”ืชื ื”ื’ื•ืช ื”ืื™ื ื˜ืœื™ื’ื ื˜ื™ืช ืœืžื›ื•ื ื”, ื–ื” ื ืงืจื ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช (AI).
---
## ื›ืžื” ืžื•ื ื—ื™ื
ืœืžืจื•ืช ืฉื”ืžื•ื ื—ื™ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืžื‘ืœื‘ืœื™ื, ืœืžื™ื“ืช ืžื›ื•ื ื” (ML) ื”ื™ื ืชืช-ืชื—ื•ื ื—ืฉื•ื‘ ืฉืœ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช. **ML ืขื•ืกืงืช ื‘ืฉื™ืžื•ืฉ ื‘ืืœื’ื•ืจื™ืชืžื™ื ืžื™ื•ื—ื“ื™ื ื›ื“ื™ ืœื—ืฉื•ืฃ ืžื™ื“ืข ืžืฉืžืขื•ืชื™ ื•ืœืžืฆื•ื ื“ืคื•ืกื™ื ื ืกืชืจื™ื ืžื ืชื•ื ื™ื ื ืชืคืกื™ื ื›ื“ื™ ืœืชืžื•ืš ื‘ืชื”ืœื™ืš ืงื‘ืœืช ื”ื—ืœื˜ื•ืช ืจืฆื™ื•ื ืœื™**.
---
## AI, ML, ืœืžื™ื“ื” ืขืžื•ืงื”
![AI, ML, ืœืžื™ื“ื” ืขืžื•ืงื”, ืžื“ืขื™ ื”ื ืชื•ื ื™ื](../../../../1-Introduction/1-intro-to-ML/images/ai-ml-ds.png)
> ื“ื™ืื’ืจืžื” ืฉืžืฆื™ื’ื” ืืช ื”ืงืฉืจื™ื ื‘ื™ืŸ AI, ML, ืœืžื™ื“ื” ืขืžื•ืงื” ื•ืžื“ืขื™ ื”ื ืชื•ื ื™ื. ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Jen Looper](https://twitter.com/jenlooper) ื‘ื”ืฉืจืืช [ื”ื’ืจืคื™ืงื” ื”ื–ื•](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)
---
## ืžื•ืฉื’ื™ื ืฉื ื›ืกื”
ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ื–ื•, ื ื›ืกื” ืจืง ืืช ืžื•ืฉื’ื™ ื”ื™ืกื•ื“ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืฉืžืชื—ื™ืœ ื—ื™ื™ื‘ ืœื“ืขืช. ื ื›ืกื” ืืช ืžื” ืฉืื ื—ื ื• ืžื›ื ื™ื 'ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช' ื‘ืขื™ืงืจ ื‘ืืžืฆืขื•ืช Scikit-learn, ืกืคืจื™ื™ื” ืžืฆื•ื™ื ืช ืฉืจื‘ื™ื ืžื”ืกื˜ื•ื“ื ื˜ื™ื ืžืฉืชืžืฉื™ื ื‘ื” ื›ื“ื™ ืœืœืžื•ื“ ืืช ื”ื‘ืกื™ืก. ื›ื“ื™ ืœื”ื‘ื™ืŸ ืžื•ืฉื’ื™ื ืจื—ื‘ื™ื ื™ื•ืชืจ ืฉืœ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืื• ืœืžื™ื“ื” ืขืžื•ืงื”, ื™ื“ืข ื™ืกื•ื“ื™ ื—ื–ืง ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื”ื•ื ื”ื›ืจื—ื™, ื•ืœื›ืŸ ืื ื• ืžืฆื™ืขื™ื ืื•ืชื• ื›ืืŸ.
---
## ื‘ืงื•ืจืก ื”ื–ื” ืชืœืžื“ื•:
- ืžื•ืฉื’ื™ ื™ืกื•ื“ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”
- ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ML
- ML ื•ื”ื•ื’ื ื•ืช
- ื˜ื›ื ื™ืงื•ืช ืจื’ืจืกื™ื” ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”
- ื˜ื›ื ื™ืงื•ืช ืกื™ื•ื•ื’ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”
- ื˜ื›ื ื™ืงื•ืช ืืฉื›ื•ืœื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”
- ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”
- ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”
- ืœืžื™ื“ื” ืžื—ื–ืงืช
- ื™ื™ืฉื•ืžื™ื ื‘ืขื•ืœื ื”ืืžื™ืชื™ ืฉืœ ML
---
## ืžื” ืœื ื ื›ืกื”
- ืœืžื™ื“ื” ืขืžื•ืงื”
- ืจืฉืชื•ืช ื ื•ื™ืจื•ื ื™ื
- AI
ื›ื“ื™ ืœื™ืฆื•ืจ ื—ื•ื•ื™ื™ืช ืœืžื™ื“ื” ื˜ื•ื‘ื” ื™ื•ืชืจ, ื ืžื ืข ืžื”ืžื•ืจื›ื‘ื•ื™ื•ืช ืฉืœ ืจืฉืชื•ืช ื ื•ื™ืจื•ื ื™ื, 'ืœืžื™ื“ื” ืขืžื•ืงื”' - ื‘ื ื™ื™ืช ืžื•ื“ืœื™ื ืžืจื•ื‘ื™ ืฉื›ื‘ื•ืช ื‘ืืžืฆืขื•ืช ืจืฉืชื•ืช ื ื•ื™ืจื•ื ื™ื - ื•-AI, ืฉืื•ืชื ื ื“ื•ืŸ ื‘ืชื•ื›ื ื™ืช ืœื™ืžื•ื“ื™ื ืื—ืจืช. ื‘ื ื•ืกืฃ, ื ืฆื™ืข ืชื•ื›ื ื™ืช ืœื™ืžื•ื“ื™ื ืขืชื™ื“ื™ืช ื‘ืžื“ืขื™ ื”ื ืชื•ื ื™ื ืฉืชืชืžืงื“ ื‘ื”ื™ื‘ื˜ ื”ื–ื” ืฉืœ ื”ืชื—ื•ื ื”ืจื—ื‘ ื™ื•ืชืจ.
---
## ืœืžื” ืœืœืžื•ื“ ืœืžื™ื“ืช ืžื›ื•ื ื”?
ืœืžื™ื“ืช ืžื›ื•ื ื”, ืžื ืงื•ื“ืช ืžื‘ื˜ ืžืขืจื›ืชื™ืช, ืžื•ื’ื“ืจืช ื›ื™ืฆื™ืจืช ืžืขืจื›ื•ืช ืื•ื˜ื•ืžื˜ื™ื•ืช ืฉื™ื›ื•ืœื•ืช ืœืœืžื•ื“ ื“ืคื•ืกื™ื ื ืกืชืจื™ื ืžื ืชื•ื ื™ื ื›ื“ื™ ืœืกื™ื™ืข ื‘ืงื‘ืœืช ื”ื—ืœื˜ื•ืช ืื™ื ื˜ืœื™ื’ื ื˜ื™ื•ืช.
ื”ืžื•ื˜ื™ื‘ืฆื™ื” ื”ื–ื• ืžื•ืฉืคืขืช ื‘ืื•ืคืŸ ืจื•ืคืฃ ืžืื•ืคืŸ ืฉื‘ื• ื”ืžื•ื— ื”ืื ื•ืฉื™ ืœื•ืžื“ ื“ื‘ืจื™ื ืžืกื•ื™ืžื™ื ืขืœ ื‘ืกื™ืก ื”ื ืชื•ื ื™ื ืฉื”ื•ื ืชื•ืคืก ืžื”ืขื•ืœื ื”ื—ื™ืฆื•ื ื™.
โœ… ื—ืฉื‘ื• ืœืจื’ืข ืžื“ื•ืข ืขืกืง ื™ืจืฆื” ืœื”ืฉืชืžืฉ ื‘ืืกื˜ืจื˜ื’ื™ื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืžืงื•ื ืœื™ืฆื•ืจ ืžื ื•ืข ืžื‘ื•ืกืก ื›ืœืœื™ื ืงืฉื™ื—ื™ื.
---
## ื™ื™ืฉื•ืžื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”
ื™ื™ืฉื•ืžื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื ืžืฆืื™ื ื›ื™ื•ื ื›ืžืขื˜ ื‘ื›ืœ ืžืงื•ื, ื•ื”ื ื ืคื•ืฆื™ื ื›ืžื• ื”ื ืชื•ื ื™ื ืฉื–ื•ืจืžื™ื ืกื‘ื™ื‘ ื”ื—ื‘ืจื” ืฉืœื ื•, ืฉื ื•ืฆืจื™ื ืขืœ ื™ื“ื™ ื”ื˜ืœืคื•ื ื™ื ื”ื—ื›ืžื™ื ืฉืœื ื•, ืžื›ืฉื™ืจื™ื ืžื—ื•ื‘ืจื™ื ื•ืžืขืจื›ื•ืช ืื—ืจื•ืช. ื‘ื”ืชื—ืฉื‘ ื‘ืคื•ื˜ื ืฆื™ืืœ ื”ืขืฆื•ื ืฉืœ ืืœื’ื•ืจื™ืชืžื™ื ืžืชืงื“ืžื™ื ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”, ื—ื•ืงืจื™ื ื‘ื•ื—ื ื™ื ืืช ื™ื›ื•ืœืชื ืœืคืชื•ืจ ื‘ืขื™ื•ืช ืจื‘-ืžืžื“ื™ื•ืช ื•ืจื‘-ืชื—ื•ืžื™ื•ืช ื‘ื—ื™ื™ื ื”ืืžื™ืชื™ื™ื ืขื ืชื•ืฆืื•ืช ื—ื™ื•ื‘ื™ื•ืช ืจื‘ื•ืช.
---
## ื“ื•ื’ืžืื•ืช ืœื™ื™ืฉื•ื ML
**ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ื“ืจื›ื™ื ืจื‘ื•ืช**:
- ืœื—ื–ื•ืช ืืช ื”ืกื‘ื™ืจื•ืช ืœืžื—ืœื” ืขืœ ืกืžืš ื”ื”ื™ืกื˜ื•ืจื™ื” ื”ืจืคื•ืื™ืช ืื• ื”ื“ื•ื—ื•ืช ืฉืœ ืžื˜ื•ืคืœ.
- ืœื”ืฉืชืžืฉ ื‘ื ืชื•ื ื™ ืžื–ื’ ืื•ื•ื™ืจ ื›ื“ื™ ืœื—ื–ื•ืช ืื™ืจื•ืขื™ ืžื–ื’ ืื•ื•ื™ืจ.
- ืœื”ื‘ื™ืŸ ืืช ื”ืชื—ื•ืฉื” ืฉืœ ื˜ืงืกื˜.
- ืœื–ื”ื•ืช ื—ื“ืฉื•ืช ืžื–ื•ื™ืคื•ืช ื›ื“ื™ ืœืขืฆื•ืจ ืืช ื”ืคืฆืช ื”ืชืขืžื•ืœื”.
ืชื—ื•ืžื™ื ื›ืžื• ืคื™ื ื ืกื™ื, ื›ืœื›ืœื”, ืžื“ืขื™ ื›ื“ื•ืจ ื”ืืจืฅ, ื—ืงืจ ื”ื—ืœืœ, ื”ื ื“ืกื” ื‘ื™ื•-ืจืคื•ืื™ืช, ืžื“ืขื™ ื”ืงื•ื’ื ื™ืฆื™ื” ื•ืืคื™ืœื• ืชื—ื•ืžื™ื ื‘ืžื“ืขื™ ื”ืจื•ื— ืื™ืžืฆื• ืืช ืœืžื™ื“ืช ื”ืžื›ื•ื ื” ื›ื“ื™ ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื•ืช ื”ื›ื‘ื“ื•ืช ื‘ืขื™ื‘ื•ื“ ื ืชื•ื ื™ื ืฉืœ ื”ืชื—ื•ื ืฉืœื”ื.
---
## ืกื™ื›ื•ื
ืœืžื™ื“ืช ืžื›ื•ื ื” ืžืื•ื˜ื•ืžื˜ืช ืืช ืชื”ืœื™ืš ื’ื™ืœื•ื™ ื”ื“ืคื•ืกื™ื ืขืœ ื™ื“ื™ ืžืฆื™ืืช ืชื•ื‘ื ื•ืช ืžืฉืžืขื•ืชื™ื•ืช ืžื ืชื•ื ื™ื ืืžื™ืชื™ื™ื ืื• ื ืชื•ื ื™ื ืฉื ื•ืฆืจื•. ื”ื™ื ื”ื•ื›ื™ื—ื” ืืช ืขืฆืžื” ื›ื‘ืขืœืช ืขืจืš ืจื‘ ื‘ืขืกืงื™ื, ื‘ืจื™ืื•ืช ื•ื™ื™ืฉื•ืžื™ื ืคื™ื ื ืกื™ื™ื, ื‘ื™ืŸ ื”ื™ืชืจ.
ื‘ืขืชื™ื“ ื”ืงืจื•ื‘, ื”ื‘ื ืช ื”ื™ืกื•ื“ื•ืช ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืชื”ื™ื” ื”ื›ืจื—ื™ืช ืขื‘ื•ืจ ืื ืฉื™ื ืžื›ืœ ืชื—ื•ื ื‘ืฉืœ ื”ืื™ืžื•ืฅ ื”ื ืจื—ื‘ ืฉืœื”.
---
# ๐Ÿš€ ืืชื’ืจ
ืฉืจื˜ื˜ื•, ืขืœ ื ื™ื™ืจ ืื• ื‘ืืžืฆืขื•ืช ืืคืœื™ืงืฆื™ื” ืžืงื•ื•ื ืช ื›ืžื• [Excalidraw](https://excalidraw.com/), ืืช ื”ื”ื‘ื ื” ืฉืœื›ื ืœื’ื‘ื™ ื”ื”ื‘ื“ืœื™ื ื‘ื™ืŸ AI, ML, ืœืžื™ื“ื” ืขืžื•ืงื” ื•ืžื“ืขื™ ื”ื ืชื•ื ื™ื. ื”ื•ืกื™ืคื• ืจืขื™ื•ื ื•ืช ืœื‘ืขื™ื•ืช ืฉื›ืœ ืื—ืช ืžื”ื˜ื›ื ื™ืงื•ืช ื”ืœืœื• ื˜ื•ื‘ื” ื‘ืคืชืจื•ื ืŸ.
# [ืฉืืœื•ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
---
# ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื›ื“ื™ ืœืœืžื•ื“ ืขื•ื“ ืขืœ ืื™ืš ืœืขื‘ื•ื“ ืขื ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ ML ื‘ืขื ืŸ, ืขืงื‘ื• ืื—ืจื™ [ืžืกืœื•ืœ ื”ืœืžื™ื“ื” ื”ื–ื”](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott).
ืงื—ื• [ืžืกืœื•ืœ ืœืžื™ื“ื”](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) ืขืœ ื™ืกื•ื“ื•ืช ML.
---
# ืžืฉื™ืžื”
[ื”ืชื—ื™ืœื• ืœืขื‘ื•ื“](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,23 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "4c4698044bb8af52cfb6388a4ee0e53b",
"translation_date": "2025-09-05T19:40:29+00:00",
"source_file": "1-Introduction/1-intro-to-ML/assignment.md",
"language_code": "he"
}
-->
# ืœื”ืชื—ื™ืœ ืœืคืขื•ืœ
## ื”ื•ืจืื•ืช
ื‘ืžืฉื™ืžื” ื–ื• ืฉืื™ื ื” ืžื“ื•ืจื’ืช, ืขืœื™ื›ื ืœืจืขื ืŸ ืืช ื”ื™ื“ืข ืฉืœื›ื ื‘-Python ื•ืœื”ื›ื™ืŸ ืืช ื”ืกื‘ื™ื‘ื” ืฉืœื›ื ื›ืš ืฉืชื•ื›ืœ ืœื”ืจื™ืฅ ืžื—ื‘ืจื•ืช.
ืงื—ื• ืืช [ืžืกืœื•ืœ ื”ืœืžื™ื“ื” ืฉืœ Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), ื•ืœืื—ืจ ืžื›ืŸ ื”ื›ื™ื ื• ืืช ื”ืžืขืจื›ื•ืช ืฉืœื›ื ืขืœ ื™ื“ื™ ืฆืคื™ื™ื” ื‘ืกืจื˜ื•ื ื™ ื”ื”ื™ื›ืจื•ืช ื”ื‘ืื™ื:
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,164 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "6a05fec147e734c3e6bfa54505648e2b",
"translation_date": "2025-09-05T19:41:23+00:00",
"source_file": "1-Introduction/2-history-of-ML/README.md",
"language_code": "he"
}
-->
# ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”
![ืกื™ื›ื•ื ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืกืงืฆ'ื ื•ื˜](../../../../sketchnotes/ml-history.png)
> ืกืงืฆ'ื ื•ื˜ ืžืืช [Tomomi Imura](https://www.twitter.com/girlie_mac)
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
---
[![ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”](https://img.youtube.com/vi/N6wxM4wZ7V0/0.jpg)](https://youtu.be/N6wxM4wZ7V0 "ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืขืœ ื”ืฉื™ืขื•ืจ ื”ื–ื”.
ื‘ืฉื™ืขื•ืจ ื–ื” ื ืขื‘ื•ืจ ืขืœ ืื‘ื ื™ ื”ื“ืจืš ื”ืžืจื›ื–ื™ื•ืช ื‘ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื•ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช.
ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช (AI) ื›ืชื—ื•ื ืงืฉื•ืจื” ืงืฉืจ ื”ื“ื•ืง ืœื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”, ืฉื›ืŸ ื”ืืœื’ื•ืจื™ืชืžื™ื ื•ื”ื”ืชืงื“ืžื•ืช ื”ื—ื™ืฉื•ื‘ื™ืช ืฉืžื ื™ืขื™ื ืืช ืœืžื™ื“ืช ื”ืžื›ื•ื ื” ืชืจืžื• ืœื”ืชืคืชื—ื•ืช ื”ื‘ื™ื ื” ื”ืžืœืื›ื•ืชื™ืช. ื—ืฉื•ื‘ ืœื–ื›ื•ืจ ื›ื™ ืœืžืจื•ืช ืฉื”ืชื—ื•ืžื™ื ื”ืœืœื• ื”ื—ืœื• ืœื”ืชื’ื‘ืฉ ื›ืชื—ื•ืžื™ ืžื—ืงืจ ื ืคืจื“ื™ื ื‘ืฉื ื•ืช ื”-50, [ื’ื™ืœื•ื™ื™ื ืืœื’ื•ืจื™ืชืžื™ื™ื, ืกื˜ื˜ื™ืกื˜ื™ื™ื, ืžืชืžื˜ื™ื™ื, ื—ื™ืฉื•ื‘ื™ื™ื ื•ื˜ื›ื ื™ื™ื ื—ืฉื•ื‘ื™ื](https://wikipedia.org/wiki/Timeline_of_machine_learning) ืงื“ืžื• ืœืชืงื•ืคื” ื–ื• ื•ืืฃ ื—ืคืคื• ืœื”. ืœืžืขืฉื”, ืื ืฉื™ื ื—ืฉื‘ื• ืขืœ ืฉืืœื•ืช ืืœื• ื‘ืžืฉืš [ืžืื•ืช ืฉื ื™ื](https://wikipedia.org/wiki/History_of_artificial_intelligence): ืžืืžืจ ื–ื” ื“ืŸ ื‘ื‘ืกื™ืก ื”ืื™ื ื˜ืœืงื˜ื•ืืœื™ ื”ื”ื™ืกื˜ื•ืจื™ ืฉืœ ื”ืจืขื™ื•ืŸ ืฉืœ "ืžื›ื•ื ื” ื—ื•ืฉื‘ืช".
---
## ื’ื™ืœื•ื™ื™ื ื—ืฉื•ื‘ื™ื
- 1763, 1812 [ืžืฉืคื˜ ื‘ื™ื™ืก](https://wikipedia.org/wiki/Bayes%27_theorem) ื•ื”ืงื“ืžื™ื•. ืžืฉืคื˜ ื–ื” ื•ื™ื™ืฉื•ืžื™ื• ืžื”ื•ื•ื™ื ื‘ืกื™ืก ืœื”ืกืงื”, ื•ืžืชืืจื™ื ืืช ื”ื”ืกืชื‘ืจื•ืช ืœื”ืชืจื—ืฉื•ืช ืื™ืจื•ืข ื‘ื”ืชื‘ืกืก ืขืœ ื™ื“ืข ืงื•ื“ื.
- 1805 [ืชื•ืจืช ื”ืจื™ื‘ื•ืขื™ื ื”ืคื—ื•ืชื™ื](https://wikipedia.org/wiki/Least_squares) ืžืืช ื”ืžืชืžื˜ื™ืงืื™ ื”ืฆืจืคืชื™ ืื“ืจื™ืืŸ-ืžืืจื™ ืœื–'ื ื“ืจ. ืชื™ืื•ืจื™ื” ื–ื•, ืฉืชืœืžื“ื• ืขืœื™ื” ื‘ื™ื—ื™ื“ืช ื”ืจื’ืจืกื™ื” ืฉืœื ื•, ืžืกื™ื™ืขืช ื‘ื”ืชืืžืช ื ืชื•ื ื™ื.
- 1913 [ืฉืจืฉืจืื•ืช ืžืจืงื•ื‘](https://wikipedia.org/wiki/Markov_chain), ืขืœ ืฉื ื”ืžืชืžื˜ื™ืงืื™ ื”ืจื•ืกื™ ืื ื“ืจื™ื™ ืžืจืงื•ื‘, ืžืฉืžืฉื•ืช ืœืชื™ืื•ืจ ืจืฆืฃ ืฉืœ ืื™ืจื•ืขื™ื ืืคืฉืจื™ื™ื ื‘ื”ืชื‘ืกืก ืขืœ ืžืฆื‘ ืงื•ื“ื.
- 1957 [ืคืจืกืคื˜ืจื•ืŸ](https://wikipedia.org/wiki/Perceptron) ื”ื•ื ืกื•ื’ ืฉืœ ืžืกื•ื•ื’ ืœื™ื ื™ืืจื™ ืฉื”ื•ืžืฆื ืขืœ ื™ื“ื™ ื”ืคืกื™ื›ื•ืœื•ื’ ื”ืืžืจื™ืงืื™ ืคืจื ืง ืจื•ื–ื ื‘ืœื˜ ื•ืžื”ื•ื•ื” ื‘ืกื™ืก ืœื”ืชืงื“ืžื•ืช ื‘ืœืžื™ื“ื” ืขืžื•ืงื”.
---
- 1967 [ื”ืฉื›ืŸ ื”ืงืจื•ื‘](https://wikipedia.org/wiki/Nearest_neighbor) ื”ื•ื ืืœื’ื•ืจื™ืชื ืฉืชื•ื›ื ืŸ ื‘ืžืงื•ืจ ืœืžื™ืคื•ื™ ืžืกืœื•ืœื™ื. ื‘ื”ืงืฉืจ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื”ื•ื ืžืฉืžืฉ ืœื–ื™ื”ื•ื™ ื“ืคื•ืกื™ื.
- 1970 [Backpropagation](https://wikipedia.org/wiki/Backpropagation) ืžืฉืžืฉ ืœืื™ืžื•ืŸ [ืจืฉืชื•ืช ืขืฆื‘ื™ื•ืช ืงื“ืžื™ื•ืช](https://wikipedia.org/wiki/Feedforward_neural_network).
- 1982 [ืจืฉืชื•ืช ืขืฆื‘ื™ื•ืช ื—ื•ื–ืจื•ืช](https://wikipedia.org/wiki/Recurrent_neural_network) ื”ืŸ ืจืฉืชื•ืช ืขืฆื‘ื™ื•ืช ืžืœืื›ื•ืชื™ื•ืช ืฉืžืงื•ืจืŸ ื‘ืจืฉืชื•ืช ืขืฆื‘ื™ื•ืช ืงื“ืžื™ื•ืช ื•ื™ื•ืฆืจื•ืช ื’ืจืคื™ื ื–ืžื ื™ื™ื.
โœ… ื‘ืฆืขื• ืžื—ืงืจ ืงื˜ืŸ. ืื™ืœื• ืชืืจื™ื›ื™ื ื ื•ืกืคื™ื ื‘ื•ืœื˜ื™ื ื‘ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื•ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช?
---
## 1950: ืžื›ื•ื ื•ืช ืฉื—ื•ืฉื‘ื•ืช
ืืœืŸ ื˜ื™ื•ืจื™ื ื’, ืื“ื ื™ื•ืฆื ื“ื•ืคืŸ ืฉื‘-2019 ื ื‘ื—ืจ [ืขืœ ื™ื“ื™ ื”ืฆื™ื‘ื•ืจ](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) ื›ืžื“ืขืŸ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ืฉืœ ื”ืžืื” ื”-20, ื ื—ืฉื‘ ื›ืžื™ ืฉืกื™ื™ืข ืœื”ื ื™ื— ืืช ื”ื™ืกื•ื“ื•ืช ืœืจืขื™ื•ืŸ ืฉืœ "ืžื›ื•ื ื” ืฉื™ื›ื•ืœื” ืœื—ืฉื•ื‘". ื”ื•ื ื”ืชืžื•ื“ื“ ืขื ืกืคืงื ื™ื ื•ืขื ื”ืฆื•ืจืš ืฉืœื• ืขืฆืžื• ื‘ืจืื™ื•ืช ืืžืคื™ืจื™ื•ืช ืœืจืขื™ื•ืŸ ื–ื”, ื‘ื™ืŸ ื”ื™ืชืจ ืขืœ ื™ื“ื™ ื™ืฆื™ืจืช [ืžื‘ื—ืŸ ื˜ื™ื•ืจื™ื ื’](https://www.bbc.com/news/technology-18475646), ืื•ืชื• ืชื—ืงื•ืจ ื‘ืฉื™ืขื•ืจื™ ืขื™ื‘ื•ื“ ื”ืฉืคื” ื”ื˜ื‘ืขื™ืช ืฉืœื ื•.
---
## 1956: ืคืจื•ื™ืงื˜ ื”ืžื—ืงืจ ื”ืงื™ืฅ ื‘ื“ืืจื˜ืžื•ืช'
"ืคืจื•ื™ืงื˜ ื”ืžื—ืงืจ ื”ืงื™ืฅ ื‘ื“ืืจื˜ืžื•ืช' ืขืœ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื”ื™ื” ืื™ืจื•ืข ืžื›ื•ื ืŸ ืขื‘ื•ืจ ืชื—ื•ื ื”ื‘ื™ื ื” ื”ืžืœืื›ื•ืชื™ืช," ื•ื‘ื• ื ื˜ื‘ืข ื”ืžื•ื ื— 'ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช' ([ืžืงื•ืจ](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)).
> ื›ืœ ื”ื™ื‘ื˜ ืฉืœ ืœืžื™ื“ื” ืื• ื›ืœ ืชื›ื•ื ื” ืื—ืจืช ืฉืœ ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ื ื™ืชืŸ ืœืชื™ืื•ืจ ืžื“ื•ื™ืง ืžืกืคื™ืง ื›ืš ืฉื ื™ืชืŸ ื™ื”ื™ื” ืœื™ืฆื•ืจ ืžื›ื•ื ื” ืฉืชื“ืžื” ืื•ืชื•.
---
ื”ื—ื•ืงืจ ื”ืจืืฉื™, ืคืจื•ืคืกื•ืจ ืœืžืชืžื˜ื™ืงื” ื’'ื•ืŸ ืžืงืืจืชื™, ืงื™ื•ื•ื” "ืœื”ืชืงื“ื ืขืœ ื‘ืกื™ืก ื”ื”ืฉืขืจื” ืฉื›ืœ ื”ื™ื‘ื˜ ืฉืœ ืœืžื™ื“ื” ืื• ื›ืœ ืชื›ื•ื ื” ืื—ืจืช ืฉืœ ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ื ื™ืชืŸ ืœืชื™ืื•ืจ ืžื“ื•ื™ืง ืžืกืคื™ืง ื›ืš ืฉื ื™ืชืŸ ื™ื”ื™ื” ืœื™ืฆื•ืจ ืžื›ื•ื ื” ืฉืชื“ืžื” ืื•ืชื•." ื‘ื™ืŸ ื”ืžืฉืชืชืคื™ื ื”ื™ื” ื’ื ืžืจื•ื•ื™ืŸ ืžื™ื ืกืงื™, ื“ืžื•ืช ื‘ื•ืœื˜ืช ื‘ืชื—ื•ื.
ื”ืกื“ื ื” ื ื—ืฉื‘ืช ื›ืžื™ ืฉื™ื–ืžื” ื•ืขื•ื“ื“ื” ื“ื™ื•ื ื™ื ืจื‘ื™ื, ื›ื•ืœืœ "ืขืœื™ื™ืช ื”ืฉื™ื˜ื•ืช ื”ืกืžืœื™ื•ืช, ืžืขืจื›ื•ืช ืฉื”ืชืžืงื“ื• ื‘ืชื—ื•ืžื™ื ืžื•ื’ื‘ืœื™ื (ืžืขืจื›ื•ืช ืžื•ืžื—ื” ืžื•ืงื“ืžื•ืช), ื•ืžืขืจื›ื•ืช ื“ื“ื•ืงื˜ื™ื‘ื™ื•ืช ืžื•ืœ ืžืขืจื›ื•ืช ืื™ื ื“ื•ืงื˜ื™ื‘ื™ื•ืช." ([ืžืงื•ืจ](https://wikipedia.org/wiki/Dartmouth_workshop)).
---
## 1956 - 1974: "ืฉื ื•ืช ื”ื–ื”ื‘"
ืžืฉื ื•ืช ื”-50 ื•ืขื“ ืืžืฆืข ืฉื ื•ืช ื”-70, ืฉืจืจื” ืื•ืคื˜ื™ืžื™ื•ืช ืจื‘ื” ืœื’ื‘ื™ ื”ื™ื›ื•ืœืช ืฉืœ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืœืคืชื•ืจ ื‘ืขื™ื•ืช ืจื‘ื•ืช. ื‘-1967, ืžืจื•ื•ื™ืŸ ืžื™ื ืกืงื™ ื”ืฆื”ื™ืจ ื‘ื‘ื™ื˜ื—ื•ืŸ ืฉ"ื‘ืชื•ืš ื“ื•ืจ ... ื”ื‘ืขื™ื” ืฉืœ ื™ืฆื™ืจืช 'ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช' ืชื™ืคืชืจ ื‘ืื•ืคืŸ ืžืฉืžืขื•ืชื™." (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)
ืžื—ืงืจ ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช ืคืจื—, ื—ื™ืคื•ืฉ ืฉื•ื›ืœืœ ื•ื”ืคืš ืœืขื•ืฆืžืชื™ ื™ื•ืชืจ, ื•ื ื•ืฆืจ ื”ืจืขื™ื•ืŸ ืฉืœ 'ืขื•ืœืžื•ืช ืžื™ืงืจื•', ืฉื‘ื”ื ืžืฉื™ืžื•ืช ืคืฉื•ื˜ื•ืช ื”ื•ืฉืœืžื• ื‘ืืžืฆืขื•ืช ื”ื•ืจืื•ืช ื‘ืฉืคื” ืคืฉื•ื˜ื”.
---
ื”ืžื—ืงืจ ืžื•ืžืŸ ื”ื™ื˜ื‘ ืขืœ ื™ื“ื™ ืกื•ื›ื ื•ื™ื•ืช ืžืžืฉืœืชื™ื•ืช, ื”ืชืงื“ืžื•ืช ื ืขืฉืชื” ื‘ื—ื™ืฉื•ื‘ ื•ื‘ืืœื’ื•ืจื™ืชืžื™ื, ื•ื ื‘ื ื• ืื‘-ื˜ื™ืคื•ืก ืฉืœ ืžื›ื•ื ื•ืช ื—ื›ืžื•ืช. ื›ืžื” ืžื”ืžื›ื•ื ื•ืช ื”ืœืœื• ื›ื•ืœืœื•ืช:
* [ืฉื™ื™ืงื™ ื”ืจื•ื‘ื•ื˜](https://wikipedia.org/wiki/Shakey_the_robot), ืฉื™ื›ื•ืœ ื”ื™ื” ืœืชืžืจืŸ ื•ืœื”ื—ืœื™ื˜ ื›ื™ืฆื“ ืœื‘ืฆืข ืžืฉื™ืžื•ืช ื‘ืฆื•ืจื” 'ื—ื›ืžื”'.
![ืฉื™ื™ืงื™, ืจื•ื‘ื•ื˜ ื—ื›ื](../../../../1-Introduction/2-history-of-ML/images/shakey.jpg)
> ืฉื™ื™ืงื™ ื‘-1972
---
* ืืœื™ื™ื–ื”, 'ืฆ'ื˜ืจื‘ื•ื˜' ืžื•ืงื“ื, ื™ื›ืœื” ืœืฉื•ื—ื— ืขื ืื ืฉื™ื ื•ืœืฉืžืฉ ื›'ืžื˜ืคืœืช' ืคืจื™ืžื™ื˜ื™ื‘ื™ืช. ืชืœืžื“ื• ืขื•ื“ ืขืœ ืืœื™ื™ื–ื” ื‘ืฉื™ืขื•ืจื™ ืขื™ื‘ื•ื“ ื”ืฉืคื” ื”ื˜ื‘ืขื™ืช.
![ืืœื™ื™ื–ื”, ื‘ื•ื˜](../../../../1-Introduction/2-history-of-ML/images/eliza.png)
> ื’ืจืกื” ืฉืœ ืืœื™ื™ื–ื”, ืฆ'ื˜ื‘ื•ื˜
---
* "ืขื•ืœื ื”ืงื•ื‘ื™ื•ืช" ื”ื™ื” ื“ื•ื’ืžื” ืœืขื•ืœื ืžื™ืงืจื• ืฉื‘ื• ื ื™ืชืŸ ื”ื™ื” ืœืขืจื•ื ื•ืœืžื™ื™ืŸ ืงื•ื‘ื™ื•ืช, ื•ื ืขืจื›ื• ื ื™ืกื•ื™ื™ื ื‘ืœื™ืžื•ื“ ืžื›ื•ื ื•ืช ืœืงื‘ืœ ื”ื—ืœื˜ื•ืช. ื”ืชืงื“ืžื•ืช ืฉื ืขืฉืชื” ืขื ืกืคืจื™ื•ืช ื›ืžื• [SHRDLU](https://wikipedia.org/wiki/SHRDLU) ืกื™ื™ืขื” ืœืงื“ื ืืช ืขื™ื‘ื•ื“ ื”ืฉืคื”.
[![ืขื•ืœื ื”ืงื•ื‘ื™ื•ืช ืขื SHRDLU](https://img.youtube.com/vi/QAJz4YKUwqw/0.jpg)](https://www.youtube.com/watch?v=QAJz4YKUwqw "ืขื•ืœื ื”ืงื•ื‘ื™ื•ืช ืขื SHRDLU")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ืขื•ืœื ื”ืงื•ื‘ื™ื•ืช ืขื SHRDLU
---
## 1974 - 1980: "ื—ื•ืจืฃ ื”ื‘ื™ื ื” ื”ืžืœืื›ื•ืชื™ืช"
ืขื“ ืืžืฆืข ืฉื ื•ืช ื”-70, ื”ืชื‘ืจืจ ื›ื™ ื”ืžื•ืจื›ื‘ื•ืช ืฉืœ ื™ืฆื™ืจืช 'ืžื›ื•ื ื•ืช ื—ื›ืžื•ืช' ื”ื•ืขืจื›ื” ื‘ื—ืกืจ ื•ื›ื™ ื”ื”ื‘ื˜ื—ื” ืฉืœื”, ื‘ื”ืชื—ืฉื‘ ื‘ื›ื•ื— ื”ื—ื™ืฉื•ื‘ ื”ื–ืžื™ืŸ, ื”ื•ืขืจื›ื” ื™ืชืจ ืขืœ ื”ืžื™ื“ื”. ื”ืžื™ืžื•ืŸ ื”ืชื™ื™ื‘ืฉ ื•ื”ืืžื•ืŸ ื‘ืชื—ื•ื ืคื—ืช. ื›ืžื” ื‘ืขื™ื•ืช ืฉื”ืฉืคื™ืขื• ืขืœ ื”ืืžื•ืŸ ื›ื•ืœืœื•ืช:
---
- **ืžื’ื‘ืœื•ืช**. ื›ื•ื— ื”ื—ื™ืฉื•ื‘ ื”ื™ื” ืžื•ื’ื‘ืœ ืžื“ื™.
- **ื”ืชืคื•ืฆืฆื•ืช ืงื•ืžื‘ื™ื ื˜ื•ืจื™ืช**. ื›ืžื•ืช ื”ืคืจืžื˜ืจื™ื ืฉืฆืจื™ืš ืœืืžืŸ ื’ื“ืœื” ื‘ืื•ืคืŸ ืžืขืจื™ื›ื™ ื›ื›ืœ ืฉื ื“ืจืฉื• ื™ื•ืชืจ ืžื”ืžื—ืฉื‘ื™ื, ืœืœื ื”ืชืคืชื—ื•ืช ืžืงื‘ื™ืœื” ืฉืœ ื›ื•ื— ื—ื™ืฉื•ื‘ ื•ื™ื›ื•ืœืช.
- **ืžื—ืกื•ืจ ื‘ื ืชื•ื ื™ื**. ื”ื™ื” ืžื—ืกื•ืจ ื‘ื ืชื•ื ื™ื ืฉื”ืงืฉื” ืขืœ ืชื”ืœื™ืš ื”ื‘ื“ื™ืงื”, ื”ืคื™ืชื•ื— ื•ื”ืขื™ื“ื•ืŸ ืฉืœ ืืœื’ื•ืจื™ืชืžื™ื.
- **ื”ืื ืื ื• ืฉื•ืืœื™ื ืืช ื”ืฉืืœื•ืช ื”ื ื›ื•ื ื•ืช?**. ืขืฆื ื”ืฉืืœื•ืช ืฉื ืฉืืœื• ื”ื—ืœื• ืœื”ื™ืฉืืœ ืžื—ื“ืฉ. ื—ื•ืงืจื™ื ื”ื—ืœื• ืœื”ืชืžื•ื“ื“ ืขื ื‘ื™ืงื•ืจืช ืขืœ ื”ื’ื™ืฉื•ืช ืฉืœื”ื:
- ืžื‘ื—ื ื™ ื˜ื™ื•ืจื™ื ื’ ื”ื•ืขืžื“ื• ื‘ืกื™ืžืŸ ืฉืืœื”, ื‘ื™ืŸ ื”ื™ืชืจ, ืขืœ ื™ื“ื™ ืชื™ืื•ืจื™ื™ืช "ื”ื—ื“ืจ ื”ืกื™ื ื™" ืฉื˜ืขื ื” ื›ื™ "ืชื›ื ื•ืช ืžื—ืฉื‘ ื“ื™ื’ื™ื˜ืœื™ ืขืฉื•ื™ ืœื’ืจื•ื ืœื• ืœื”ื™ืจืื•ืช ื›ืื™ืœื• ื”ื•ื ืžื‘ื™ืŸ ืฉืคื” ืืš ืœื ื™ื›ื•ืœ ืœื™ื™ืฆืจ ื”ื‘ื ื” ืืžื™ืชื™ืช." ([ืžืงื•ืจ](https://plato.stanford.edu/entries/chinese-room/))
- ื”ืืชื™ืงื” ืฉืœ ื”ื›ื ืกืช ืื™ื ื˜ืœื™ื’ื ืฆื™ื•ืช ืžืœืื›ื•ืชื™ื•ืช ื›ืžื• "ื”ืžื˜ืคืœืช" ืืœื™ื™ื–ื” ืœื—ื‘ืจื” ื”ื•ืขืžื“ื” ื‘ืกื™ืžืŸ ืฉืืœื”.
---
ื‘ืžืงื‘ื™ืœ, ื”ื—ืœื• ืœื”ื™ื•ื•ืฆืจ ืืกื›ื•ืœื•ืช ืฉื•ื ื•ืช ื‘ืชื—ื•ื ื”ื‘ื™ื ื” ื”ืžืœืื›ื•ืชื™ืช. ื ื•ืฆืจื” ื“ื™ื›ื•ื˜ื•ืžื™ื” ื‘ื™ืŸ ["ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช 'ืžื‘ื•ืœื’ื ืช' ืœืขื•ืžืช 'ืžืกื•ื“ืจืช'"](https://wikipedia.org/wiki/Neats_and_scruffies). ืžืขื‘ื“ื•ืช 'ืžื‘ื•ืœื’ื ื•ืช' ืฉื™ืคืฆื• ืชื•ื›ื ื™ื•ืช ื‘ืžืฉืš ืฉืขื•ืช ืขื“ ืฉื”ืฉื™ื’ื• ืืช ื”ืชื•ืฆืื•ืช ื”ืจืฆื•ื™ื•ืช. ืžืขื‘ื“ื•ืช 'ืžืกื•ื“ืจื•ืช' "ื”ืชืžืงื“ื• ื‘ืœื•ื’ื™ืงื” ื•ื‘ืคืชืจื•ืŸ ื‘ืขื™ื•ืช ืคื•ืจืžืœื™". ืืœื™ื™ื–ื” ื•-SHRDLU ื”ื™ื• ืžืขืจื›ื•ืช 'ืžื‘ื•ืœื’ื ื•ืช' ื™ื“ื•ืขื•ืช. ื‘ืฉื ื•ืช ื”-80, ืขื ื”ื“ืจื™ืฉื” ืœื”ืคื™ืง ืžืขืจื›ื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ืฉื ื™ืชืŸ ืœืฉื—ื–ืจ, ื”ื’ื™ืฉื” ื”'ืžืกื•ื“ืจืช' ืชืคืกื” ื‘ื”ื“ืจื’ื” ืืช ื”ื‘ื›ื•ืจื” ืฉื›ืŸ ืชื•ืฆืื•ืชื™ื” ื ื™ืชื ื•ืช ืœื”ืกื‘ืจ ื˜ื•ื‘ ื™ื•ืชืจ.
---
## ืฉื ื•ืช ื”-80: ืžืขืจื›ื•ืช ืžื•ืžื—ื”
ื›ื›ืœ ืฉื”ืชื—ื•ื ื’ื“ืœ, ื”ื™ืชืจื•ืŸ ืฉืœื• ืœืขืกืงื™ื ื”ืคืš ื‘ืจื•ืจ ื™ื•ืชืจ, ื•ื‘ืฉื ื•ืช ื”-80 ื›ืš ื’ื ื”ืชืคืฉื˜ื•ืชืŸ ืฉืœ 'ืžืขืจื›ื•ืช ืžื•ืžื—ื”'. "ืžืขืจื›ื•ืช ืžื•ืžื—ื” ื”ื™ื• ื‘ื™ืŸ ื”ืฆื•ืจื•ืช ื”ืจืืฉื•ื ื•ืช ืฉืœ ืชื•ื›ื ื•ืช ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช (AI) ืฉื”ืฆืœื™ื—ื• ื‘ืืžืช." ([ืžืงื•ืจ](https://wikipedia.org/wiki/Expert_system)).
ืกื•ื’ ื–ื” ืฉืœ ืžืขืจื›ืช ื”ื•ื ืœืžืขืฉื” _ื”ื™ื‘ืจื™ื“ื™_, ื”ืžื•ืจื›ื‘ ื‘ื—ืœืงื• ืžืžื ื•ืข ื—ื•ืงื™ื ืฉืžื’ื“ื™ืจ ื“ืจื™ืฉื•ืช ืขืกืงื™ื•ืช, ื•ื‘ื—ืœืงื• ืžืžื ื•ืข ื”ืกืงื” ืฉืžื ืฆืœ ืืช ืžืขืจื›ืช ื”ื—ื•ืงื™ื ื›ื“ื™ ืœื”ืกื™ืง ืขื•ื‘ื“ื•ืช ื—ื“ืฉื•ืช.
ื”ืชืงื•ืคื” ื”ื–ื• ื’ื ืจืืชื” ืชืฉื•ืžืช ืœื‘ ื’ื•ื‘ืจืช ืœืจืฉืชื•ืช ืขืฆื‘ื™ื•ืช.
---
## 1987 - 1993: "ื”ืงื™ืคืื•ืŸ ืฉืœ ื”ื‘ื™ื ื” ื”ืžืœืื›ื•ืชื™ืช"
ื”ืชืคืฉื˜ื•ืช ื”ื—ื•ืžืจื” ื”ืžื™ื•ื—ื“ืช ืฉืœ ืžืขืจื›ื•ืช ืžื•ืžื—ื” ื’ืจืžื”, ืœืžืจื‘ื” ื”ืฆืขืจ, ืœื”ืชืžื—ื•ืช ื™ืชืจ. ืขืœื™ื™ืชื ืฉืœ ืžื—ืฉื‘ื™ื ืื™ืฉื™ื™ื ื’ื ื”ืชื—ืจืชื” ื‘ืžืขืจื›ื•ืช ื’ื“ื•ืœื•ืช, ืžื™ื•ื—ื“ื•ืช ื•ืžืจื›ื–ื™ื•ืช ืืœื•. ื”ื“ืžื•ืงืจื˜ื™ื–ืฆื™ื” ืฉืœ ื”ืžื—ืฉื•ื‘ ื”ื—ืœื”, ื•ื”ื™ื ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ืกืœืœื” ืืช ื”ื“ืจืš ืœื”ืชืคื•ืฆืฆื•ืช ื”ืžื•ื“ืจื ื™ืช ืฉืœ ื ืชื•ื ื™ื ื’ื“ื•ืœื™ื.
---
## 1993 - 2011
ืชืงื•ืคื” ื–ื• ืจืืชื” ืขื™ื“ืŸ ื—ื“ืฉ ืฉื‘ื• ืœืžื™ื“ืช ืžื›ื•ื ื” ื•ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื™ื›ืœื• ืœืคืชื•ืจ ื—ืœืง ืžื”ื‘ืขื™ื•ืช ืฉื ื’ืจืžื• ืงื•ื“ื ืœื›ืŸ ื‘ืฉืœ ืžื—ืกื•ืจ ื‘ื ืชื•ื ื™ื ื•ื‘ื›ื•ื— ื—ื™ืฉื•ื‘. ื›ืžื•ืช ื”ื ืชื•ื ื™ื ื”ื—ืœื” ืœื’ื“ื•ืœ ื‘ืžื”ื™ืจื•ืช ื•ืœื”ื™ื•ืช ื–ืžื™ื ื” ื™ื•ืชืจ, ืœื˜ื•ื‘ ื•ืœืจืข, ื‘ืžื™ื•ื—ื“ ืขื ื”ื•ืคืขืช ื”ืกืžืืจื˜ืคื•ืŸ ืกื‘ื™ื‘ 2007. ื›ื•ื— ื”ื—ื™ืฉื•ื‘ ื”ืชืจื—ื‘ ื‘ืื•ืคืŸ ืžืขืจื™ื›ื™, ื•ื”ืืœื’ื•ืจื™ืชืžื™ื ื”ืชืคืชื—ื• ื‘ืžืงื‘ื™ืœ. ื”ืชื—ื•ื ื”ื—ืœ ืœื”ืชื‘ื’ืจ ื›ืืฉืจ ื”ื™ืžื™ื ื”ื—ื•ืคืฉื™ื™ื ืฉืœ ื”ืขื‘ืจ ื”ื—ืœื• ืœื”ืชื’ื‘ืฉ ืœื›ื“ื™ ื“ื™ืกืฆื™ืคืœื™ื ื” ืืžื™ืชื™ืช.
---
## ื”ื™ื•ื
ื›ื™ื•ื ืœืžื™ื“ืช ืžื›ื•ื ื” ื•ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื ื•ื’ืขื•ืช ื›ืžืขื˜ ื‘ื›ืœ ื—ืœืง ื‘ื—ื™ื™ื ื•. ืชืงื•ืคื” ื–ื• ื“ื•ืจืฉืช ื”ื‘ื ื” ื–ื”ื™ืจื” ืฉืœ ื”ืกื™ื›ื•ื ื™ื ื•ื”ื”ืฉืคืขื•ืช ื”ืคื•ื˜ื ืฆื™ืืœื™ื•ืช ืฉืœ ืืœื’ื•ืจื™ืชืžื™ื ืืœื• ืขืœ ื—ื™ื™ ืื“ื. ื›ืคื™ ืฉื‘ืจืื“ ืกืžื™ืช' ืžืžื™ืงืจื•ืกื•ืคื˜ ืืžืจ, "ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ื”ืžื™ื“ืข ืžืขืœื” ืกื•ื’ื™ื•ืช ืฉื ื•ื’ืขื•ืช ืœืœื‘ ื”ื”ื’ื ื•ืช ื”ื‘ืกื™ืกื™ื•ืช ืฉืœ ื–ื›ื•ื™ื•ืช ื”ืื“ื ื›ืžื• ืคืจื˜ื™ื•ืช ื•ื—ื•ืคืฉ ื”ื‘ื™ื˜ื•ื™. ืกื•ื’ื™ื•ืช ืืœื• ืžื’ื‘ื™ืจื•ืช ืืช ื”ืื—ืจื™ื•ืช ืฉืœ ื—ื‘ืจื•ืช ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉื™ื•ืฆืจื•ืช ืืช ื”ืžื•ืฆืจื™ื ื”ืœืœื•. ืœื“ืขืชื ื•, ื”ืŸ ื’ื ื“ื•ืจืฉื•ืช ืจื’ื•ืœืฆื™ื” ืžืžืฉืœืชื™ืช ืžื—ื•ืฉื‘ืช ื•ืคื™ืชื•ื— ื ื•ืจืžื•ืช ืกื‘ื™ื‘ ืฉื™ืžื•ืฉื™ื ืžืงื•ื‘ืœื™ื" ([ืžืงื•ืจ](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)).
---
ื ื•ืชืจ ืœืจืื•ืช ืžื” ืฆื•ืคืŸ ื”ืขืชื™ื“, ืืš ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ืืช ืžืขืจื›ื•ืช ื”ืžื—ืฉื•ื‘ ื”ืœืœื• ื•ืืช ื”ืชื•ื›ื ื” ื•ื”ืืœื’ื•ืจื™ืชืžื™ื ืฉื”ื ืžืคืขื™ืœื™ื. ืื ื• ืžืงื•ื•ื™ื ืฉืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ื–ื• ืชืกื™ื™ืข ืœื›ื ืœื”ื‘ื™ืŸ ื˜ื•ื‘ ื™ื•ืชืจ ื›ืš ืฉืชื•ื›ืœื• ืœื”ื—ืœื™ื˜ ื‘ืขืฆืžื›ื.
[![ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ื” ืขืžื•ืงื”](https://img.youtube.com/vi/mTtDfKgLm54/0.jpg)](https://www.youtube.com/watch?v=mTtDfKgLm54 "ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ื” ืขืžื•ืงื”")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ื™ืืŸ ืœืงื•ืŸ ืžื“ื‘ืจ ืขืœ ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ื” ืขืžื•ืงื” ื‘ื”ืจืฆืื” ื–ื•
---
## ๐Ÿš€ืืชื’ืจ
ื”ืชืขืžืงื• ื‘ืื—ื“ ืžื”ืจื’ืขื™ื ื”ื”ื™ืกื˜ื•ืจื™ื™ื ื”ืœืœื• ื•ืœืžื“ื• ืขื•ื“ ืขืœ ื”ืื ืฉื™ื ืฉืžืื—ื•ืจื™ื”ื. ื™ืฉื ื ื“ืžื•ื™ื•ืช ืžืจืชืงื•ืช, ื•ืืฃ ื’ื™ืœื•ื™ ืžื“ืขื™ ืžืขื•ืœื ืœื ื ื•ืฆืจ ื‘ื•ื•ืืงื•ื ืชืจื‘ื•ืชื™. ืžื” ืชื’ืœื•?
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
---
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื”ื ื” ืคืจื™ื˜ื™ื ืœืฆืคื™ื™ื” ื•ื”ืื–ื ื”:
[ืคื•ื“ืงืืกื˜ ื–ื” ืฉื‘ื• ืื™ื™ืžื™ ื‘ื•ื™ื“ ื“ื ื” ื‘ื”ืชืคืชื—ื•ืช ื”ื‘ื™ื ื” ื”ืžืœืื›ื•ืชื™ืช](http://runasradio.com/Shows/Show/739)
[![ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืžืืช ืื™ื™ืžื™ ื‘ื•ื™ื“](https://img.youtube.com/vi/EJt3_bFYKss/0.jpg)](https://www.youtube.com/watch?v=EJt3_bFYKss "ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืžืืช ืื™ื™ืžื™ ื‘ื•ื™ื“")
---
## ืžืฉื™ืžื”
[ืฆืจื• ืฆื™ืจ ื–ืžืŸ](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "eb6e4d5afd1b21a57d2b9e6d0aac3969",
"translation_date": "2025-09-05T19:43:42+00:00",
"source_file": "1-Introduction/2-history-of-ML/assignment.md",
"language_code": "he"
}
-->
# ื™ืฆื™ืจืช ืฆื™ืจ ื–ืžืŸ
## ื”ื•ืจืื•ืช
ื‘ืืžืฆืขื•ืช [ื”ืจื™ืคื• ื”ื–ื”](https://github.com/Digital-Humanities-Toolkit/timeline-builder), ืฆืจื• ืฆื™ืจ ื–ืžืŸ ืฉืœ ื”ื™ื‘ื˜ ื›ืœืฉื”ื• ื‘ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืืœื’ื•ืจื™ืชืžื™ื, ืžืชืžื˜ื™ืงื”, ืกื˜ื˜ื™ืกื˜ื™ืงื”, ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืื• ืœืžื™ื“ืช ืžื›ื•ื ื”, ืื• ืฉื™ืœื•ื‘ ืฉืœ ืืœื”. ืชื•ื›ืœื• ืœื”ืชืžืงื“ ื‘ืื“ื ืื—ื“, ืจืขื™ื•ืŸ ืื—ื“, ืื• ืชืงื•ืคืช ื–ืžืŸ ืืจื•ื›ื” ืฉืœ ืžื—ืฉื‘ื”. ื”ืงืคื™ื“ื• ืœื”ื•ืกื™ืฃ ืืœืžื ื˜ื™ื ืžื•ืœื˜ื™ืžื“ื™ื”.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ----------------------------------------------- | ------------------------------------- | ------------------------------------------------------------- |
| | ืฆื™ืจ ื–ืžืŸ ืคืจื•ืก ืžื•ืฆื’ ื›ืขืžื•ื“ GitHub | ื”ืงื•ื“ ืื™ื ื• ืฉืœื ื•ืœื ืคืจื•ืก | ืฆื™ืจ ื”ื–ืžืŸ ืื™ื ื• ืฉืœื, ืื™ื ื• ืžื‘ื•ืกืก ื”ื™ื˜ื‘ ื•ืื™ื ื• ืคืจื•ืก |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,170 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "9a6b702d1437c0467e3c5c28d763dac2",
"translation_date": "2025-09-05T19:31:10+00:00",
"source_file": "1-Introduction/3-fairness/README.md",
"language_code": "he"
}
-->
# ื‘ื ื™ื™ืช ืคืชืจื•ื ื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ืขื AI ืื—ืจืื™
![ืกื™ื›ื•ื ืฉืœ AI ืื—ืจืื™ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืกืงื™ืฆื”](../../../../sketchnotes/ml-fairness.png)
> ืกืงื™ืฆื” ืžืืช [Tomomi Imura](https://www.twitter.com/girlie_mac)
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
## ืžื‘ื•ื
ื‘ืชื•ื›ื ื™ืช ืœื™ืžื•ื“ื™ื ื–ื•, ืชืชื—ื™ืœื• ืœื’ืœื•ืช ื›ื™ืฆื“ ืœืžื™ื“ืช ืžื›ื•ื ื” ืžืฉืคื™ืขื” ืขืœ ื—ื™ื™ ื”ื™ื•ืžื™ื•ื ืฉืœื ื•. ื›ื‘ืจ ืขื›ืฉื™ื•, ืžืขืจื›ื•ืช ื•ืžื•ื“ืœื™ื ืžืขื•ืจื‘ื™ื ื‘ืžืฉื™ืžื•ืช ืงื‘ืœืช ื”ื—ืœื˜ื•ืช ื™ื•ืžื™ื•ืžื™ื•ืช, ื›ืžื• ืื‘ื—ื ื•ืช ืจืคื•ืื™ื•ืช, ืื™ืฉื•ืจื™ ื”ืœื•ื•ืื•ืช ืื• ื–ื™ื”ื•ื™ ื”ื•ื ืื•ืช. ืœื›ืŸ, ื—ืฉื•ื‘ ืฉื”ืžื•ื“ืœื™ื ื”ืœืœื• ื™ืคืขืœื• ื‘ืฆื•ืจื” ื˜ื•ื‘ื” ื•ื™ืกืคืงื• ืชื•ืฆืื•ืช ืืžื™ื ื•ืช. ื›ืžื• ื›ืœ ื™ื™ืฉื•ื ืชื•ื›ื ื”, ืžืขืจื›ื•ืช AI ืขืฉื•ื™ื•ืช ืœืื›ื–ื‘ ืื• ืœื”ื•ื‘ื™ืœ ืœืชื•ืฆืื” ืœื ืจืฆื•ื™ื”. ื–ื• ื”ืกื™ื‘ื” ืฉื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ื•ืœื”ืกื‘ื™ืจ ืืช ื”ื”ืชื ื”ื’ื•ืช ืฉืœ ืžื•ื“ืœ AI.
ื“ืžื™ื™ื ื• ืžื” ื™ื›ื•ืœ ืœืงืจื•ืช ื›ืืฉืจ ื”ื ืชื•ื ื™ื ืฉื‘ื”ื ืืชื ืžืฉืชืžืฉื™ื ืœื‘ื ื™ื™ืช ื”ืžื•ื“ืœื™ื ื—ืกืจื™ื ื™ื™ืฆื•ื’ ืฉืœ ืงื‘ื•ืฆื•ืช ื“ืžื•ื’ืจืคื™ื•ืช ืžืกื•ื™ืžื•ืช, ื›ืžื• ื’ื–ืข, ืžื’ื“ืจ, ื”ืฉืงืคื” ืคื•ืœื™ื˜ื™ืช, ื“ืช, ืื• ืžื™ื™ืฆื’ื™ื ืื•ืชืŸ ื‘ืื•ืคืŸ ืœื ืคืจื•ืคื•ืจืฆื™ื•ื ืœื™. ื•ืžื” ืœื’ื‘ื™ ืžืฆื‘ ืฉื‘ื• ืชื•ืฆืื•ืช ื”ืžื•ื“ืœ ืžืคื•ืจืฉื•ืช ื›ืš ืฉื”ืŸ ืžืขื“ื™ืคื•ืช ืงื‘ื•ืฆื” ื“ืžื•ื’ืจืคื™ืช ืžืกื•ื™ืžืช? ืžื” ื”ื”ืฉืœื›ื•ืช ืขื‘ื•ืจ ื”ื™ื™ืฉื•ื? ื‘ื ื•ืกืฃ, ืžื” ืงื•ืจื” ื›ืืฉืจ ืœืžื•ื“ืœ ื™ืฉ ืชื•ืฆืื” ืฉืœื™ืœื™ืช ืฉืคื•ื’ืขืช ื‘ืื ืฉื™ื? ืžื™ ืื—ืจืื™ ืœื”ืชื ื”ื’ื•ืช ืฉืœ ืžืขืจื›ื•ืช AI? ืืœื• ืฉืืœื•ืช ืฉื ื—ืงื•ืจ ื‘ืชื•ื›ื ื™ืช ืœื™ืžื•ื“ื™ื ื–ื•.
ื‘ืฉื™ืขื•ืจ ื–ื” ืชืœืžื“ื•:
- ืœื”ืขืœื•ืช ืืช ื”ืžื•ื“ืขื•ืช ืœื—ืฉื™ื‘ื•ืช ื”ื”ื•ื’ื ื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื•ืœื ื–ืงื™ื ื”ืงืฉื•ืจื™ื ืœื”ื•ื’ื ื•ืช.
- ืœื”ื›ื™ืจ ืืช ื”ืคืจืงื˜ื™ืงื” ืฉืœ ื—ืงืจ ื—ืจื™ื’ื™ื ื•ืชืกืจื™ื˜ื™ื ืœื ืฉื’ืจืชื™ื™ื ื›ื“ื™ ืœื”ื‘ื˜ื™ื— ืืžื™ื ื•ืช ื•ื‘ื˜ื™ื—ื•ืช.
- ืœื”ื‘ื™ืŸ ืืช ื”ืฆื•ืจืš ืœื”ืขืฆื™ื ืืช ื›ื•ืœื ืขืœ ื™ื“ื™ ืขื™ืฆื•ื‘ ืžืขืจื›ื•ืช ืžื›ื™ืœื•ืช.
- ืœื—ืงื•ืจ ืืช ื”ื—ืฉื™ื‘ื•ืช ืฉืœ ื”ื’ื ื” ืขืœ ืคืจื˜ื™ื•ืช ื•ืื‘ื˜ื—ืช ื ืชื•ื ื™ื ื•ืื ืฉื™ื.
- ืœืจืื•ืช ืืช ื”ื—ืฉื™ื‘ื•ืช ืฉืœ ื’ื™ืฉื” ืฉืงื•ืคื” ืœื”ืกื‘ืจ ื”ืชื ื”ื’ื•ืช ืžื•ื“ืœื™ื ืฉืœ AI.
- ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืื—ืจื™ื•ืช ื”ื™ื ื—ื™ื•ื ื™ืช ืœื‘ื ื™ื™ืช ืืžื•ืŸ ื‘ืžืขืจื›ื•ืช AI.
## ื“ืจื™ืฉื•ืช ืžืงื“ื™ืžื•ืช
ื›ื“ืจื™ืฉื” ืžืงื“ื™ืžื”, ืื ื ืขื‘ืจื• ืขืœ ืžืกืœื•ืœ ื”ืœืžื™ื“ื” "ืขืงืจื•ื ื•ืช AI ืื—ืจืื™" ื•ืฆืคื• ื‘ืกืจื˜ื•ืŸ ื”ื‘ื ื‘ื ื•ืฉื:
ืœืžื“ื• ืขื•ื“ ืขืœ AI ืื—ืจืื™ ืขืœ ื™ื“ื™ ืžืขืงื‘ ืื—ืจ [ืžืกืœื•ืœ ื”ืœืžื™ื“ื”](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott)
[![ื”ื’ื™ืฉื” ืฉืœ Microsoft ืœ-AI ืื—ืจืื™](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "ื”ื’ื™ืฉื” ืฉืœ Microsoft ืœ-AI ืื—ืจืื™")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ื”ื’ื™ืฉื” ืฉืœ Microsoft ืœ-AI ืื—ืจืื™
## ื”ื•ื’ื ื•ืช
ืžืขืจื›ื•ืช AI ืฆืจื™ื›ื•ืช ืœื”ืชื™ื™ื—ืก ืœื›ื•ืœื ื‘ืื•ืคืŸ ื”ื•ื’ืŸ ื•ืœื”ื™ืžื ืข ืžื”ืฉืคืขื” ืฉื•ื ื” ืขืœ ืงื‘ื•ืฆื•ืช ื“ื•ืžื•ืช ืฉืœ ืื ืฉื™ื. ืœื“ื•ื’ืžื”, ื›ืืฉืจ ืžืขืจื›ื•ืช AI ืžืกืคืงื•ืช ื”ืžืœืฆื•ืช ืœื˜ื™ืคื•ืœ ืจืคื•ืื™, ื‘ืงืฉื•ืช ืœื”ืœื•ื•ืื•ืช ืื• ืชืขืกื•ืงื”, ืขืœื™ื”ืŸ ืœื”ืฆื™ืข ืืช ืื•ืชืŸ ื”ืžืœืฆื•ืช ืœื›ืœ ืžื™ ืฉื™ืฉ ืœื• ืกื™ืžืคื˜ื•ืžื™ื, ื ืกื™ื‘ื•ืช ืคื™ื ื ืกื™ื•ืช ืื• ื›ื™ืฉื•ืจื™ื ืžืงืฆื•ืขื™ื™ื ื“ื•ืžื™ื. ื›ืœ ืื—ื“ ืžืื™ืชื ื• ื ื•ืฉื ืขืžื• ื”ื˜ื™ื•ืช ืžื•ื‘ื ื•ืช ืฉืžืฉืคื™ืขื•ืช ืขืœ ื”ื”ื—ืœื˜ื•ืช ื•ื”ืคืขื•ืœื•ืช ืฉืœื ื•. ื”ื˜ื™ื•ืช ืืœื• ื™ื›ื•ืœื•ืช ืœื”ื™ื•ืช ื ื™ื›ืจื•ืช ื‘ื ืชื•ื ื™ื ืฉื‘ื”ื ืื ื• ืžืฉืชืžืฉื™ื ืœืื™ืžื•ืŸ ืžืขืจื›ื•ืช AI. ืœืขื™ืชื™ื, ืžื ื™ืคื•ืœืฆื™ื” ื›ื–ื• ืžืชืจื—ืฉืช ื‘ืื•ืคืŸ ืœื ืžื›ื•ื•ืŸ. ืงืฉื” ืœืขื™ืชื™ื ืœื“ืขืช ื‘ืื•ืคืŸ ืžื•ื“ืข ืžืชื™ ืื ื• ืžื›ื ื™ืกื™ื ื”ื˜ื™ื” ืœื ืชื•ื ื™ื.
**"ื—ื•ืกืจ ื”ื•ื’ื ื•ืช"** ื›ื•ืœืœ ื”ืฉืคืขื•ืช ืฉืœื™ืœื™ื•ืช, ืื• "ื ื–ืงื™ื", ืœืงื‘ื•ืฆื” ืฉืœ ืื ืฉื™ื, ื›ืžื• ืืœื• ื”ืžื•ื’ื“ืจื™ื ืœืคื™ ื’ื–ืข, ืžื’ื“ืจ, ื’ื™ืœ ืื• ืžืฆื‘ ื ื›ื•ืช. ื”ื ื–ืงื™ื ื”ืขื™ืงืจื™ื™ื ื”ืงืฉื•ืจื™ื ืœื”ื•ื’ื ื•ืช ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืžืกื•ื•ื’ื™ื ื›:
- **ื”ืงืฆืื”**, ืื ืžื’ื“ืจ ืื• ืืชื ื™ื•ืช, ืœื“ื•ื’ืžื”, ืžื•ืขื“ืคื™ื ืขืœ ืคื ื™ ืื—ืจื™ื.
- **ืื™ื›ื•ืช ื”ืฉื™ืจื•ืช**. ืื ืžืืžื ื™ื ืืช ื”ื ืชื•ื ื™ื ืœืชืจื—ื™ืฉ ืกืคืฆื™ืคื™ ืืš ื”ืžืฆื™ืื•ืช ืžื•ืจื›ื‘ืช ื™ื•ืชืจ, ื–ื” ืžื•ื‘ื™ืœ ืœืฉื™ืจื•ืช ื‘ืขืœ ื‘ื™ืฆื•ืขื™ื ื™ืจื•ื“ื™ื. ืœื“ื•ื’ืžื”, ืžืชืงืŸ ืกื‘ื•ืŸ ื™ื“ื™ื™ื ืฉืœื ื”ืฆืœื™ื— ืœื–ื”ื•ืช ืื ืฉื™ื ืขื ืขื•ืจ ื›ื”ื”. [ืžืงื•ืจ](https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773)
- **ื”ืฉืžืฆื”**. ื‘ื™ืงื•ืจืช ืœื ื”ื•ื’ื ืช ื•ืชื™ื•ื’ ืฉืœ ืžืฉื”ื• ืื• ืžื™ืฉื”ื•. ืœื“ื•ื’ืžื”, ื˜ื›ื ื•ืœื•ื’ื™ื™ืช ืชื™ื•ื’ ืชืžื•ื ื•ืช ืฉื’ืชื” ื‘ืชื™ื•ื’ ืชืžื•ื ื•ืช ืฉืœ ืื ืฉื™ื ื›ื”ื™ ืขื•ืจ ื›ื’ื•ืจื™ืœื•ืช.
- **ื™ื™ืฆื•ื’ ื™ืชืจ ืื• ื—ืกืจ**. ื”ืจืขื™ื•ืŸ ื”ื•ื ืฉืงื‘ื•ืฆื” ืžืกื•ื™ืžืช ืื™ื ื” ื ืจืื™ืช ื‘ืžืงืฆื•ืข ืžืกื•ื™ื, ื•ื›ืœ ืฉื™ืจื•ืช ืื• ืคื•ื ืงืฆื™ื” ืฉืžืžืฉื™ื›ื™ื ืœืงื“ื ื–ืืช ืชื•ืจืžื™ื ืœื ื–ืง.
- **ืกื˜ืจืื•ื˜ื™ืคื™ื**. ืฉื™ื•ืš ืงื‘ื•ืฆื” ืžืกื•ื™ืžืช ืœืชื›ื•ื ื•ืช ืฉื”ื•ืงืฆื• ืžืจืืฉ. ืœื“ื•ื’ืžื”, ืžืขืจื›ืช ืชืจื’ื•ื ื‘ื™ืŸ ืื ื’ืœื™ืช ืœื˜ื•ืจืงื™ืช ืขืฉื•ื™ื” ืœื›ืœื•ืœ ืื™ ื“ื™ื•ืงื™ื ื‘ืฉืœ ืžื™ืœื™ื ืขื ืฉื™ื•ืš ืกื˜ืจืื•ื˜ื™ืคื™ ืœืžื’ื“ืจ.
![ืชืจื’ื•ื ืœื˜ื•ืจืงื™ืช](../../../../1-Introduction/3-fairness/images/gender-bias-translate-en-tr.png)
> ืชืจื’ื•ื ืœื˜ื•ืจืงื™ืช
![ืชืจื’ื•ื ื—ื–ืจื” ืœืื ื’ืœื™ืช](../../../../1-Introduction/3-fairness/images/gender-bias-translate-tr-en.png)
> ืชืจื’ื•ื ื—ื–ืจื” ืœืื ื’ืœื™ืช
ื‘ืขืช ืขื™ืฆื•ื‘ ื•ื‘ื“ื™ืงืช ืžืขืจื›ื•ืช AI, ืขืœื™ื ื• ืœื”ื‘ื˜ื™ื— ืฉื”-AI ื™ื”ื™ื” ื”ื•ื’ืŸ ื•ืœื ื™ืชื•ื›ื ืช ืœืงื‘ืœ ื”ื—ืœื˜ื•ืช ืžื•ื˜ื•ืช ืื• ืžืคืœื•ืช, ืฉืืกื•ืจื•ืช ื’ื ืขืœ ื‘ื ื™ ืื“ื. ื”ื‘ื˜ื—ืช ื”ื•ื’ื ื•ืช ื‘-AI ื•ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื ื•ืชืจืช ืืชื’ืจ ืกื•ืฆื™ื•ื˜ื›ื ื™ ืžื•ืจื›ื‘.
### ืืžื™ื ื•ืช ื•ื‘ื˜ื™ื—ื•ืช
ื›ื“ื™ ืœื‘ื ื•ืช ืืžื•ืŸ, ืžืขืจื›ื•ืช AI ืฆืจื™ื›ื•ืช ืœื”ื™ื•ืช ืืžื™ื ื•ืช, ื‘ื˜ื•ื—ื•ืช ื•ืขืงื‘ื™ื•ืช ื‘ืชื ืื™ื ืจื’ื™ืœื™ื ื•ืœื ืฆืคื•ื™ื™ื. ื—ืฉื•ื‘ ืœื“ืขืช ื›ื™ืฆื“ ืžืขืจื›ื•ืช AI ื™ืชื ื”ื’ื• ื‘ืžื’ื•ื•ืŸ ืžืฆื‘ื™ื, ื‘ืžื™ื•ื—ื“ ื›ืืฉืจ ืžื“ื•ื‘ืจ ื‘ื—ืจื™ื’ื™ื. ื‘ืขืช ื‘ื ื™ื™ืช ืคืชืจื•ื ื•ืช AI, ื™ืฉ ืœื”ืชืžืงื“ ื‘ืื•ืคืŸ ืžืฉืžืขื•ืชื™ ื‘ื˜ื™ืคื•ืœ ื‘ืžื’ื•ื•ืŸ ืจื—ื‘ ืฉืœ ื ืกื™ื‘ื•ืช ืฉื”ืคืชืจื•ื ื•ืช ืขืฉื•ื™ื™ื ืœื”ื™ืชืงืœ ื‘ื”ืŸ. ืœื“ื•ื’ืžื”, ืจื›ื‘ ืื•ื˜ื•ื ื•ืžื™ ืฆืจื™ืš ืœืฉื™ื ืืช ื‘ื˜ื™ื—ื•ืช ื”ืื ืฉื™ื ื‘ืจืืฉ ืกื“ืจ ื”ืขื“ื™ืคื•ื™ื•ืช. ื›ืชื•ืฆืื” ืžื›ืš, ื”-AI ืฉืžืคืขื™ืœ ืืช ื”ืจื›ื‘ ืฆืจื™ืš ืœืฉืงื•ืœ ืืช ื›ืœ ื”ืชืจื—ื™ืฉื™ื ื”ืืคืฉืจื™ื™ื ืฉื”ืจื›ื‘ ืขืฉื•ื™ ืœื”ื™ืชืงืœ ื‘ื”ื, ื›ืžื• ืœื™ืœื”, ืกื•ืคื•ืช ืจืขืžื™ื ืื• ืฉืœื’ื™ื, ื™ืœื“ื™ื ืฉืจืฆื™ื ื‘ืจื—ื•ื‘, ื—ื™ื•ืช ืžื—ืžื“, ืขื‘ื•ื“ื•ืช ื‘ื›ื‘ื™ืฉ ื•ื›ื•'. ืขื“ ื›ืžื” ืžืขืจื›ืช AI ื™ื›ื•ืœื” ืœื”ืชืžื•ื“ื“ ืขื ืžื’ื•ื•ืŸ ืจื—ื‘ ืฉืœ ืชื ืื™ื ื‘ืฆื•ืจื” ืืžื™ื ื” ื•ื‘ื˜ื•ื—ื” ืžืฉืงืฃ ืืช ืจืžืช ื”ืฆื™ืคื™ื™ื” ืฉื”ืžื“ืขืŸ ื ืชื•ื ื™ื ืื• ืžืคืชื— ื”-AI ืœืงื—ื• ื‘ื—ืฉื‘ื•ืŸ ื‘ืžื”ืœืš ื”ืขื™ืฆื•ื‘ ืื• ื”ื‘ื“ื™ืงื” ืฉืœ ื”ืžืขืจื›ืช.
> [๐ŸŽฅ ืœื—ืฆื• ื›ืืŸ ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ](https://www.microsoft.com/videoplayer/embed/RE4vvIl)
### ื”ื›ืœื”
ืžืขืจื›ื•ืช AI ืฆืจื™ื›ื•ืช ืœื”ื™ื•ืช ืžืขื•ืฆื‘ื•ืช ื›ืš ืฉื™ืชืงืฉืจื• ื•ื™ืขืฆื™ืžื• ืืช ื›ื•ืœื. ื‘ืขืช ืขื™ืฆื•ื‘ ื•ื™ื™ืฉื•ื ืžืขืจื›ื•ืช AI, ืžื“ืขื ื™ ื ืชื•ื ื™ื ื•ืžืคืชื—ื™ AI ืžื–ื”ื™ื ื•ืžื˜ืคืœื™ื ื‘ืžื—ืกื•ืžื™ื ืคื•ื˜ื ืฆื™ืืœื™ื™ื ื‘ืžืขืจื›ืช ืฉื™ื›ื•ืœื™ื ืœื”ื•ืฆื™ื ืื ืฉื™ื ื‘ืื•ืคืŸ ืœื ืžื›ื•ื•ืŸ. ืœื“ื•ื’ืžื”, ื™ืฉื ื ืžื™ืœื™ืืจื“ ืื ืฉื™ื ืขื ืžื•ื’ื‘ืœื•ื™ื•ืช ื‘ืจื—ื‘ื™ ื”ืขื•ืœื. ืขื ื”ืชืงื“ืžื•ืช ื”-AI, ื”ื ื™ื›ื•ืœื™ื ืœื’ืฉืช ืœืžื’ื•ื•ืŸ ืจื—ื‘ ืฉืœ ืžื™ื“ืข ื•ื”ื–ื“ืžื ื•ื™ื•ืช ื‘ืงืœื•ืช ืจื‘ื” ื™ื•ืชืจ ื‘ื—ื™ื™ ื”ื™ื•ืžื™ื•ื ืฉืœื”ื. ืขืœ ื™ื“ื™ ื˜ื™ืคื•ืœ ื‘ืžื—ืกื•ืžื™ื, ื ื•ืฆืจืช ื”ื–ื“ืžื ื•ืช ืœื—ื“ืฉ ื•ืœืคืชื— ืžื•ืฆืจื™ื AI ืขื ื—ื•ื•ื™ื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ ืฉืžื•ืขื™ืœื•ืช ืœื›ื•ืœื.
> [๐ŸŽฅ ืœื—ืฆื• ื›ืืŸ ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ื”ื›ืœื” ื‘-AI](https://www.microsoft.com/videoplayer/embed/RE4vl9v)
### ืื‘ื˜ื—ื” ื•ืคืจื˜ื™ื•ืช
ืžืขืจื›ื•ืช AI ืฆืจื™ื›ื•ืช ืœื”ื™ื•ืช ื‘ื˜ื•ื—ื•ืช ื•ืœื›ื‘ื“ ืืช ืคืจื˜ื™ื•ืช ื”ืื ืฉื™ื. ืื ืฉื™ื ื ื•ืชื ื™ื ืคื—ื•ืช ืืžื•ืŸ ื‘ืžืขืจื›ื•ืช ืฉืžืกื›ื ื•ืช ืืช ืคืจื˜ื™ื•ืชื, ื”ืžื™ื“ืข ืฉืœื”ื ืื• ื—ื™ื™ื”ื. ื‘ืขืช ืื™ืžื•ืŸ ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”, ืื ื• ืžืกืชืžื›ื™ื ืขืœ ื ืชื•ื ื™ื ื›ื“ื™ ืœื”ืคื™ืง ืืช ื”ืชื•ืฆืื•ืช ื”ื˜ื•ื‘ื•ืช ื‘ื™ื•ืชืจ. ืชื•ืš ื›ื“ื™ ื›ืš, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืืช ืžืงื•ืจ ื”ื ืชื•ื ื™ื ื•ืืช ืฉืœืžื•ืชื. ืœื“ื•ื’ืžื”, ื”ืื ื”ื ืชื•ื ื™ื ื”ื•ื’ืฉื• ืขืœ ื™ื“ื™ ืžืฉืชืžืฉื™ื ืื• ื”ื™ื• ื–ืžื™ื ื™ื ืœืฆื™ื‘ื•ืจ? ืœืื—ืจ ืžื›ืŸ, ื‘ืขืช ืขื‘ื•ื“ื” ืขื ื”ื ืชื•ื ื™ื, ื—ืฉื•ื‘ ืœืคืชื— ืžืขืจื›ื•ืช AI ืฉื™ื›ื•ืœื•ืช ืœื”ื’ืŸ ืขืœ ืžื™ื“ืข ื—ืกื•ื™ ื•ืœื”ืชื ื’ื“ ืœื”ืชืงืคื•ืช. ื›ื›ืœ ืฉื”-AI ื”ื•ืคืš ืœื ืคื•ืฅ ื™ื•ืชืจ, ื”ื’ื ื” ืขืœ ืคืจื˜ื™ื•ืช ื•ืื‘ื˜ื—ืช ืžื™ื“ืข ืื™ืฉื™ ื•ืขืกืงื™ ื—ืฉื•ื‘ื™ื ื”ื•ืคื›ืช ืœืงืจื™ื˜ื™ืช ื•ืžื•ืจื›ื‘ืช ื™ื•ืชืจ. ืกื•ื’ื™ื•ืช ืคืจื˜ื™ื•ืช ื•ืื‘ื˜ื—ืช ื ืชื•ื ื™ื ื“ื•ืจืฉื•ืช ืชืฉื•ืžืช ืœื‘ ืžื™ื•ื—ื“ืช ืขื‘ื•ืจ AI ืžื›ื™ื•ื•ืŸ ืฉื’ื™ืฉื” ืœื ืชื•ื ื™ื ื—ื™ื•ื ื™ืช ืœืžืขืจื›ื•ืช AI ื›ื“ื™ ืœื‘ืฆืข ืชื—ื–ื™ื•ืช ื•ื”ื—ืœื˜ื•ืช ืžื“ื•ื™ืงื•ืช ื•ืžื•ืฉื›ืœื•ืช ืขืœ ืื ืฉื™ื.
> [๐ŸŽฅ ืœื—ืฆื• ื›ืืŸ ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ืื‘ื˜ื—ื” ื‘-AI](https://www.microsoft.com/videoplayer/embed/RE4voJF)
- ื‘ืชืขืฉื™ื™ื” ืขืฉื™ื ื• ื”ืชืงื“ืžื•ืช ืžืฉืžืขื•ืชื™ืช ื‘ืคืจื˜ื™ื•ืช ื•ืื‘ื˜ื—ื”, ืžื•ื ืขืช ื‘ืื•ืคืŸ ืžืฉืžืขื•ืชื™ ืขืœ ื™ื“ื™ ืจื’ื•ืœืฆื™ื•ืช ื›ืžื• ื”-GDPR (General Data Protection Regulation).
- ืขื ื–ืืช, ื‘ืžืขืจื›ื•ืช AI ืขืœื™ื ื• ืœื”ื›ื™ืจ ื‘ืžืชื— ื‘ื™ืŸ ื”ืฆื•ืจืš ื‘ื™ื•ืชืจ ื ืชื•ื ื™ื ืื™ืฉื™ื™ื ื›ื“ื™ ืœื”ืคื•ืš ืืช ื”ืžืขืจื›ื•ืช ืœื™ื•ืชืจ ืื™ืฉื™ื•ืช ื•ื™ืขื™ืœื•ืช โ€“ ืœื‘ื™ืŸ ืคืจื˜ื™ื•ืช.
- ื›ืžื• ืขื ืœื™ื“ืช ื”ืžื—ืฉื‘ื™ื ื”ืžื—ื•ื‘ืจื™ื ืœืื™ื ื˜ืจื ื˜, ืื ื• ื’ื ืจื•ืื™ื ืขืœื™ื™ื” ืžืฉืžืขื•ืชื™ืช ื‘ืžืกืคืจ ืกื•ื’ื™ื•ืช ื”ืื‘ื˜ื—ื” ื”ืงืฉื•ืจื•ืช ืœ-AI.
- ื‘ืื•ืชื• ื”ื–ืžืŸ, ืจืื™ื ื• ืฉื™ืžื•ืฉ ื‘-AI ืœืฉื™ืคื•ืจ ื”ืื‘ื˜ื—ื”. ืœื“ื•ื’ืžื”, ืจื•ื‘ ืกื•ืจืงื™ ื”ืื ื˜ื™-ื•ื™ืจื•ืก ื”ืžื•ื“ืจื ื™ื™ื ืžื•ื ืขื™ื ืขืœ ื™ื“ื™ AI ื”ื™ื•ื.
- ืขืœื™ื ื• ืœื”ื‘ื˜ื™ื— ืฉืชื”ืœื™ื›ื™ ืžื“ืข ื”ื ืชื•ื ื™ื ืฉืœื ื• ื™ืฉืชืœื‘ื• ื‘ื”ืจืžื•ื ื™ื” ืขื ืฉื™ื˜ื•ืช ื”ืคืจื˜ื™ื•ืช ื•ื”ืื‘ื˜ื—ื” ื”ืขื“ื›ื ื™ื•ืช ื‘ื™ื•ืชืจ.
### ืฉืงื™ืคื•ืช
ืžืขืจื›ื•ืช AI ืฆืจื™ื›ื•ืช ืœื”ื™ื•ืช ืžื•ื‘ื ื•ืช. ื—ืœืง ืงืจื™ื˜ื™ ื‘ืฉืงื™ืคื•ืช ื”ื•ื ื”ืกื‘ืจ ื”ื”ืชื ื”ื’ื•ืช ืฉืœ ืžืขืจื›ื•ืช AI ื•ืฉืœ ืจื›ื™ื‘ื™ื”ืŸ. ืฉื™ืคื•ืจ ื”ื”ื‘ื ื” ืฉืœ ืžืขืจื›ื•ืช AI ื“ื•ืจืฉ ืฉื”ื’ื•ืจืžื™ื ื”ืžืขื•ืจื‘ื™ื ื™ื‘ื™ื ื• ื›ื™ืฆื“ ื•ืœืžื” ื”ืŸ ืคื•ืขืœื•ืช, ื›ืš ืฉื™ื•ื›ืœื• ืœื–ื”ื•ืช ื‘ืขื™ื•ืช ื‘ื™ืฆื•ืขื™ื ืคื•ื˜ื ืฆื™ืืœื™ื•ืช, ื—ืฉืฉื•ืช ื‘ื˜ื™ื—ื•ืช ื•ืคืจื˜ื™ื•ืช, ื”ื˜ื™ื•ืช, ืคืจืงื˜ื™ืงื•ืช ืžืคืœื•ืช ืื• ืชื•ืฆืื•ืช ืœื ืžื›ื•ื•ื ื•ืช. ืื ื• ื’ื ืžืืžื™ื ื™ื ืฉืžื™ ืฉืžืฉืชืžืฉ ื‘ืžืขืจื›ื•ืช AI ืฆืจื™ืš ืœื”ื™ื•ืช ื›ื ื” ื•ื’ืœื•ื™ ืœื’ื‘ื™ ืžืชื™, ืœืžื” ื•ืื™ืš ื”ื•ื ื‘ื•ื—ืจ ืœื”ืคืขื™ืœ ืื•ืชืŸ, ื›ืžื• ื’ื ืœื’ื‘ื™ ื”ืžื’ื‘ืœื•ืช ืฉืœ ื”ืžืขืจื›ื•ืช ืฉื”ื•ื ืžืฉืชืžืฉ ื‘ื”ืŸ. ืœื“ื•ื’ืžื”, ืื ื‘ื ืง ืžืฉืชืžืฉ ื‘ืžืขืจื›ืช AI ื›ื“ื™ ืœืชืžื•ืš ื‘ื”ื—ืœื˜ื•ืช ื”ืœื•ื•ืื” ืœืฆืจื›ื ื™ื, ื—ืฉื•ื‘ ืœื‘ื—ื•ืŸ ืืช ื”ืชื•ืฆืื•ืช ื•ืœื”ื‘ื™ืŸ ืื™ืœื• ื ืชื•ื ื™ื ืžืฉืคื™ืขื™ื ืขืœ ื”ื”ืžืœืฆื•ืช ืฉืœ ื”ืžืขืจื›ืช. ืžืžืฉืœื•ืช ืžืชื—ื™ืœื•ืช ืœื”ืกื“ื™ืจ ืืช ื”-AI ื‘ืชืขืฉื™ื•ืช ืฉื•ื ื•ืช, ื•ืœื›ืŸ ืžื“ืขื ื™ ื ืชื•ื ื™ื ื•ืืจื’ื•ื ื™ื ื—ื™ื™ื‘ื™ื ืœื”ืกื‘ื™ืจ ืื ืžืขืจื›ืช AI ืขื•ืžื“ืช ื‘ื“ืจื™ืฉื•ืช ื”ืจื’ื•ืœืฆื™ื”, ื‘ืžื™ื•ื—ื“ ื›ืืฉืจ ื™ืฉ ืชื•ืฆืื” ืœื ืจืฆื•ื™ื”.
> [๐ŸŽฅ ืœื—ืฆื• ื›ืืŸ ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ืฉืงื™ืคื•ืช ื‘-AI](https://www.microsoft.com/videoplayer/embed/RE4voJF)
- ืžื›ื™ื•ื•ืŸ ืฉืžืขืจื›ื•ืช AI ื›ืœ ื›ืš ืžื•ืจื›ื‘ื•ืช, ืงืฉื” ืœื”ื‘ื™ืŸ ื›ื™ืฆื“ ื”ืŸ ืคื•ืขืœื•ืช ื•ืœืคืจืฉ ืืช ื”ืชื•ืฆืื•ืช.
- ื—ื•ืกืจ ื”ื‘ื ื” ื–ื” ืžืฉืคื™ืข ืขืœ ื”ืื•ืคืŸ ืฉื‘ื• ืžืขืจื›ื•ืช ืืœื• ืžื ื•ื”ืœื•ืช, ืžื•ืคืขืœื•ืช ื•ืžืชื•ืขื“ื•ืช.
- ื—ื•ืกืจ ื”ื‘ื ื” ื–ื” ืžืฉืคื™ืข ื™ื•ืชืจ ืžื›ืœ ืขืœ ื”ื”ื—ืœื˜ื•ืช ืฉืžืชืงื‘ืœื•ืช ื‘ืืžืฆืขื•ืช ื”ืชื•ืฆืื•ืช ืฉืžืขืจื›ื•ืช ืืœื• ืžืคื™ืงื•ืช.
### ืื—ืจื™ื•ืช
ื”ืื ืฉื™ื ืฉืžืขืฆื‘ื™ื ื•ืžืคืขื™ืœื™ื ืžืขืจื›ื•ืช AI ื—ื™ื™ื‘ื™ื ืœื”ื™ื•ืช ืื—ืจืื™ื ืœืื•ืคืŸ ืฉื‘ื• ื”ืžืขืจื›ื•ืช ืฉืœื”ื ืคื•ืขืœื•ืช. ื”ืฆื•ืจืš ื‘ืื—ืจื™ื•ืช ื”ื•ื ืงืจื™ื˜ื™ ื‘ืžื™ื•ื—ื“ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืจื’ื™ืฉื•ืช ื›ืžื• ื–ื™ื”ื•ื™ ืคื ื™ื. ืœืื—ืจื•ื ื”, ื™ืฉื ื” ื“ืจื™ืฉื” ื’ื•ื‘ืจืช ืœื˜ื›ื ื•ืœื•ื’ื™ื™ืช ื–ื™ื”ื•ื™ ืคื ื™ื, ื‘ืžื™ื•ื—ื“ ืžืืจื’ื•ื ื™ ืื›ื™ืคืช ื—ื•ืง ืฉืจื•ืื™ื ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ืฉืœ ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื‘ืฉื™ืžื•ืฉื™ื ื›ืžื• ืžืฆื™ืืช ื™ืœื“ื™ื ื ืขื“ืจื™ื. ืขื ื–ืืช, ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืืœื• ืขืฉื•ื™ื•ืช ืœืฉืžืฉ ืžืžืฉืœื•ืช ื›ื“ื™ ืœืกื›ืŸ ืืช ื—ื™ืจื•ื™ื•ืช ื”ื™ืกื•ื“ ืฉืœ ืื–ืจื—ื™ื”ืŸ, ืœืžืฉืœ, ืขืœ ื™ื“ื™ ื”ืคืขืœืช ืžืขืงื‘ ืžืชืžืฉืš ืขืœ ืื ืฉื™ื ืžืกื•ื™ืžื™ื. ืœื›ืŸ, ืžื“ืขื ื™ ื ืชื•ื ื™ื ื•ืืจื’ื•ื ื™ื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ืื—ืจืื™ื ืœืื•ืคืŸ ืฉื‘ื• ืžืขืจื›ืช ื”-AI ืฉืœื”ื ืžืฉืคื™ืขื” ืขืœ ืื ืฉื™ื ืื• ืขืœ ื”ื—ื‘ืจื”.
[![ื—ื•ืงืจ AI ืžื•ื‘ื™ืœ ืžื–ื”ื™ืจ ืžืคื ื™ ืžืขืงื‘ ื”ืžื•ื ื™ ื‘ืืžืฆืขื•ืช ื–ื™ื”ื•ื™ ืคื ื™ื](../../../../1-Introduction/3-fairness/images/accountability.png)](https://www.youtube.com/watch?v=Wldt8P5V6D0 "ื”ื’ื™ืฉื” ืฉืœ Microsoft ืœ-AI ืื—ืจืื™")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ืื–ื”ืจื•ืช ืžืคื ื™ ืžืขืงื‘ ื”ืžื•ื ื™ ื‘ืืžืฆืขื•ืช ื–ื™ื”ื•ื™ ืคื ื™ื
ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ, ืื—ืช ื”ืฉืืœื•ืช ื”ื’ื“ื•ืœื•ืช ื‘ื™ื•ืชืจ ืœื“ื•ืจ ืฉืœื ื•, ื›ืจืืฉื•ืŸ ืฉืžื‘ื™ื ืืช ื”-AI ืœื—ื‘ืจื”, ื”ื™ื ื›ื™ืฆื“ ืœื”ื‘ื˜ื™ื— ืฉืžื—ืฉื‘ื™ื ื™ื™ืฉืืจื• ืื—ืจืื™ื ืœืื ืฉื™ื ื•ื›ื™ืฆื“ ืœื”ื‘ื˜ื™ื— ืฉื”ืื ืฉื™ื ืฉืžืขืฆื‘ื™ื ืžื—ืฉื‘ื™ื ื™ื™ืฉืืจื• ืื—ืจืื™ื ืœื›ืœ ื”ืฉืืจ.
## ื”ืขืจื›ืช ื”ืฉืคืขื”
ืœืคื ื™ ืื™ืžื•ืŸ ืžื•ื“ืœ ืœืžื™ื“ืช ืžื›ื•ื ื”, ื—ืฉื•ื‘ ืœื‘ืฆืข ื”ืขืจื›ืช ื”ืฉืคืขื” ื›ื“ื™ ืœื”ื‘ื™ืŸ ืืช ืžื˜ืจืช ืžืขืจื›ืช ื”-AI; ืžื” ื”ืฉื™ืžื•ืฉ ื”ืžื™ื•ืขื“; ื”ื™ื›ืŸ ื”ื™ื ืชื•ืคืขืœ; ื•ืžื™ ื™ืชืงืฉืจ ืขื ื”ืžืขืจื›ืช. ืืœื• ืžื•ืขื™ืœื™ื ืœื‘ื•ื—ื ื™ื ืื• ืœืžื‘ืงืจื™ื ืฉืžืขืจื™ื›ื™ื ืืช ื”ืžืขืจื›ืช ืœื“ืขืช ืื™ืœื• ื’ื•ืจืžื™ื ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ื‘ืขืช ื–ื™ื”ื•ื™ ืกื™ื›ื•ื ื™ื ืคื•ื˜ื ืฆื™ืืœื™ื™ื ื•ืชื•ืฆืื•ืช ืฆืคื•ื™ื•ืช.
ื”ืชื—ื•ืžื™ื ื”ื‘ืื™ื ื”ื ืžื•ืงื“ื™ ืชืฉื•ืžืช ืœื‘ ื‘ืขืช ื‘ื™ืฆื•ืข ื”ืขืจื›ืช ื”ืฉืคืขื”:
* **ื”ืฉืคืขื” ืฉืœื™ืœื™ืช ืขืœ ืื ืฉื™ื**. ืžื•ื“ืขื•ืช ืœื›ืœ ืžื’ื‘ืœื” ืื• ื“ืจื™ืฉื”, ืฉื™ืžื•ืฉ ืœื ื ืชืžืš ืื• ื›ืœ ืžื’ื‘ืœื” ื™ื“ื•ืขื” ืฉืžืคืจื™ืขื” ืœื‘ื™ืฆื•ืขื™ ื”ืžืขืจื›ืช ื”ื™ื ื—ื™ื•ื ื™ืช ื›ื“ื™ ืœื”ื‘ื˜ื™ื— ืฉื”ืžืขืจื›ืช ืœื ืชื•ืคืขืœ ื‘ืื•ืคืŸ ืฉืขืœื•ืœ ืœื’ืจื•ื ื ื–ืง ืœืื ืฉื™ื.
* **ื“ืจื™ืฉื•ืช ื ืชื•ื ื™ื**. ื”ื‘ื ืช ื”ืื•ืคืŸ ื•ื”ื™ื›ืŸ ื”ืžืขืจื›ืช ืชืฉืชืžืฉ ื‘ื ืชื•ื ื™ื ืžืืคืฉืจืช ืœืžื‘ืงืจื™ื ืœื—ืงื•ืจ ื›ืœ ื“ืจื™ืฉื•ืช ื ืชื•ื ื™ื ืฉื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ (ืœืžืฉืœ, ืชืงื ื•ืช GDPR ืื• HIPPA). ื‘ื ื•ืกืฃ, ื™ืฉ ืœื‘ื—ื•ืŸ ื”ืื ืžืงื•ืจ ืื• ื›ืžื•ืช ื”ื ืชื•ื ื™ื ืžืกืคืงื™ื ืœืื™ืžื•ืŸ.
* **ืกื™ื›ื•ื ื”ืฉืคืขื”**. ืื™ืกื•ืฃ ืจืฉื™ืžื” ืฉืœ ื ื–ืงื™ื ืคื•ื˜ื ืฆื™ืืœื™ื™ื ืฉืขืœื•ืœื™ื ืœื”ืชืขื•ืจืจ ืžืฉื™ืžื•ืฉ ื‘ืžืขืจื›ืช. ืœืื•ืจืš ืžื—ื–ื•ืจ ื”ื—ื™ื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”, ื™ืฉ ืœื‘ื“ื•ืง ืื ื”ื‘ืขื™ื•ืช ืฉื–ื•ื”ื• ื˜ื•ืคืœื• ืื• ื ืคืชืจื•.
* **ืžื˜ืจื•ืช ื™ืฉื™ืžื•ืช** ืœื›ืœ ืื—ื“ ืžืฉืฉืช ื”ืขืงืจื•ื ื•ืช ื”ืžืจื›ื–ื™ื™ื. ื™ืฉ ืœื”ืขืจื™ืš ืื ื”ืžื˜ืจื•ืช ืžื›ืœ ืื—ื“ ืžื”ืขืงืจื•ื ื•ืช ื”ื•ืฉื’ื• ื•ืื ื™ืฉ ืคืขืจื™ื.
## ืื™ืชื•ืจ ื‘ืื’ื™ื ืขื AI ืื—ืจืื™
ื‘ื“ื•ืžื” ืœืื™ืชื•ืจ ื‘ืื’ื™ื ื‘ื™ื™ืฉื•ื ืชื•ื›ื ื”, ืื™ืชื•ืจ ื‘ืื’ื™ื ื‘ืžืขืจื›ืช AI ื”ื•ื ืชื”ืœื™ืš ื”ื›ืจื—ื™ ืœื–ื™ื”ื•ื™ ื•ืคืชืจื•ืŸ ื‘ืขื™ื•ืช ื‘ืžืขืจื›ืช. ื™ืฉื ื ื’ื•ืจืžื™ื ืจื‘ื™ื ืฉื™ื›ื•ืœื™ื ืœื”ืฉืคื™ืข ืขืœ ื›ืš ืฉืžื•ื“ืœ ืœื ื™ืคืขืœ ื›ืžืฆื•ืคื” ืื• ื‘ืื•ืคืŸ ืื—ืจืื™. ืจื•ื‘ ืžื“ื“ื™ ื”ื‘ื™ืฆื•ืขื™ื ื”ืžืกื•ืจืชื™ื™ื ืฉืœ ืžื•ื“ืœื™ื ื”ื ืื’ืจื’ื˜ื™ื ื›ืžื•ืชื™ื™ื ืฉืœ ื‘ื™ืฆื•ืขื™ ื”ืžื•ื“ืœ, ืฉืื™ื ื ืžืกืคื™ืงื™ื ืœื ื™ืชื•ื— ื›ื™ืฆื“ ืžื•ื“ืœ ืžืคืจ ืืช ืขืงืจื•ื ื•ืช ื”-AI ื”ืื—ืจืื™. ื™ืชืจื” ืžื›ืš, ืžื•ื“ืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื”ื•ื "ืงื•ืคืกื” ืฉื—ื•ืจื”" ืฉืžืงืฉื” ืœื”ื‘ื™ืŸ ืžื” ืžื ื™ืข ืืช ืชื•ืฆืื•ืชื™ื• ืื• ืœืกืคืง ื”ืกื‘ืจ ื›ืืฉืจ ื”ื•ื ื˜ื•ืขื”. ื‘ื”ืžืฉืš ื”ืงื•ืจืก, ื ืœืžื“ ื›ื™ืฆื“ ืœื”ืฉืชืžืฉ ื‘ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ AI ืื—ืจืื™ ื›ื“ื™ ืœืขื–ื•ืจ ื‘ืื™ืชื•ืจ ื‘ืื’ื™ื ื‘ืžืขืจื›ื•ืช AI. ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืžืกืคืง ื›ืœื™ ื”ื•ืœื™ืกื˜ื™ ืœืžื“ืขื ื™ ื ืชื•ื ื™ื ื•ืžืคืชื—ื™ AI ืœื‘ืฆืข:
* **ื ื™ืชื•ื— ืฉื’ื™ืื•ืช**. ืœื–ื”ื•ืช ืืช ื”ืชืคืœื’ื•ืช ื”ืฉื’ื™ืื•ืช ืฉืœ ื”ืžื•ื“ืœ ืฉื™ื›ื•ืœื” ืœื”ืฉืคื™ืข ืขืœ ื”ื”ื•ื’ื ื•ืช ืื• ื”ืืžื™ื ื•ืช ืฉืœ ื”ืžืขืจื›ืช.
* **ืกืงื™ืจืช ืžื•ื“ืœ**. ืœื’ืœื•ืช ื”ื™ื›ืŸ ื™ืฉ ืคืขืจื™ื ื‘ื‘ื™ืฆื•ืขื™ ื”ืžื•ื“ืœ ื‘ื™ืŸ ืงื‘ื•ืฆื•ืช ื ืชื•ื ื™ื ืฉื•ื ื•ืช.
* **ื ื™ืชื•ื— ื ืชื•ื ื™ื**. ืœื”ื‘ื™ืŸ ืืช ื”ืชืคืœื’ื•ืช ื”ื ืชื•ื ื™ื ื•ืœื–ื”ื•ืช ื›ืœ ื”ื˜ื™ื” ืคื•ื˜ื ืฆื™ืืœื™ืช ื‘ื ืชื•ื ื™ื ืฉืขืœื•ืœื” ืœื”ื•ื‘ื™ืœ ืœื‘ืขื™ื•ืช ื”ื•ื’ื ื•ืช, ื”ื›ืœื” ื•ืืžื™ื ื•ืช.
* **ื”ื‘ื ืช ืžื•ื“ืœ**. ืœื”ื‘ื™ืŸ ืžื” ืžืฉืคื™ืข ืื• ืžืฉืคื™ืข ืขืœ ืชื—ื–ื™ื•ืช ื”ืžื•ื“ืœ. ื–ื” ืขื•ื–ืจ ืœื”ืกื‘ื™ืจ ืืช ื”ืชื ื”ื’ื•ืช ื”ืžื•ื“ืœ, ืฉื—ืฉื•ื‘ื” ืœืฉืงื™ืคื•ืช ื•ืื—ืจื™ื•ืช.
## ๐Ÿš€ ืืชื’ืจ
ื›ื“ื™ ืœืžื ื•ืข ื ื–ืงื™ื ืžืœื”ื™ื•ืช ืžื•ื›ื ืกื™ื ืžืœื›ืชื—ื™ืœื”, ืขืœื™ื ื•:
- ืœื›ืœื•ืœ ืžื’ื•ื•ืŸ ืฉืœ ืจืงืขื™ื ื•ืคืจืกืคืงื˜ื™ื‘ื•ืช ื‘ืงืจื‘ ื”ืื ืฉื™ื ืฉืขื•ื‘ื“ื™ื ืขืœ ืžืขืจื›ื•ืช
- ืœื”ืฉืงื™ืข ื‘ืžืื’ืจื™ ื ืชื•ื ื™ื ืฉืžื™ื™ืฆื’ื™ื ืืช ื”ืžื’ื•ื•ืŸ ืฉืœ ื”ื—ื‘ืจื” ืฉืœื ื•
- ืœืคืชื— ืฉื™ื˜ื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ ืœืื•ืจืš ืžื—ื–ื•ืจ ื”ื—ื™ื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืœื–ื™ื”ื•ื™ ื•ืชื™ืงื•ืŸ AI ืื—ืจืื™ ื›ืืฉืจ ื”ื•ื ืžืชืจื—ืฉ
ื—ืฉื‘ื• ืขืœ ืชืจื—ื™ืฉื™ื ืืžื™ืชื™ื™ื ืฉื‘ื”ื ื—ื•ืกืจ ืืžื™ื ื•ืช ืฉืœ ืžื•ื“ืœ ื ื™ื›ืจ ื‘ื‘ื ื™ื™ื” ื•ื‘ืฉื™ืžื•ืฉ ื‘ืžื•ื“ืœ. ืžื” ืขื•ื“ ื›ื“ืื™ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ?
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื‘ืฉื™ืขื•ืจ ื–ื”, ืœืžื“ืชื ื›ืžื” ื™ืกื•ื“ื•ืช ืฉืœ ืžื•ืฉื’ื™ ื”ื•ื’ื ื•ืช ื•ื—ื•ืกืจ ื”ื•ื’ื ื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”.
ืฆืคื• ื‘ืกื“ื ื” ื–ื• ื›ื“ื™ ืœื”ืขืžื™ืง ื‘ื ื•ืฉืื™ื:
- ื‘ืžืจื“ืฃ ืื—ืจ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืื—ืจืื™ืช: ื™ื™ืฉื•ื ืขืงืจื•ื ื•ืช ื‘ืคื•ืขืœ ืžืืช ื‘ืกืžื™ืจื” ื ื•ืฉื™, ืžื”ืจื ื•ืฉ ืกืžืงื™ ื•ืืžื™ื˜ ืฉืืจืžื”
[![Responsible AI Toolbox: ืžืกื’ืจืช ืงื•ื“ ืคืชื•ื— ืœื‘ื ื™ื™ืช ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืื—ืจืื™ืช](https://img.youtube.com/vi/tGgJCrA-MZU/0.jpg)](https://www.youtube.com/watch?v=tGgJCrA-MZU "RAI Toolbox: ืžืกื’ืจืช ืงื•ื“ ืคืชื•ื— ืœื‘ื ื™ื™ืช ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืื—ืจืื™ืช")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: RAI Toolbox: ืžืกื’ืจืช ืงื•ื“ ืคืชื•ื— ืœื‘ื ื™ื™ืช ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืื—ืจืื™ืช ืžืืช ื‘ืกืžื™ืจื” ื ื•ืฉื™, ืžื”ืจื ื•ืฉ ืกืžืงื™ ื•ืืžื™ื˜ ืฉืืจืžื”
ื‘ื ื•ืกืฃ, ืงืจืื•:
- ืžืจื›ื– ื”ืžืฉืื‘ื™ื ืฉืœ Microsoft ื‘ื ื•ืฉื ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ืื—ืจืื™ืช: [Responsible AI Resources โ€“ Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4)
- ืงื‘ื•ืฆืช ื”ืžื—ืงืจ FATE ืฉืœ Microsoft: [FATE: Fairness, Accountability, Transparency, and Ethics in AI - Microsoft Research](https://www.microsoft.com/research/theme/fate/)
RAI Toolbox:
- [ืžืื’ืจ GitHub ืฉืœ Responsible AI Toolbox](https://github.com/microsoft/responsible-ai-toolbox)
ืงืจืื• ืขืœ ื”ื›ืœื™ื ืฉืœ Azure Machine Learning ืœื”ื‘ื˜ื—ืช ื”ื•ื’ื ื•ืช:
- [Azure Machine Learning](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott)
## ืžืฉื™ืžื”
[ื—ืงื•ืจ ืืช RAI Toolbox](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "dbda60e7b1fe5f18974e7858eff0004e",
"translation_date": "2025-09-05T19:34:13+00:00",
"source_file": "1-Introduction/3-fairness/assignment.md",
"language_code": "he"
}
-->
# ื—ืงื•ืจ ืืช ืขืจื›ืช ื”ื›ืœื™ื ืฉืœ AI ืื—ืจืื™
## ื”ื•ืจืื•ืช
ื‘ืฉื™ืขื•ืจ ื–ื” ืœืžื“ืชื ืขืœ ืขืจื›ืช ื”ื›ืœื™ื ืฉืœ AI ืื—ืจืื™, ืคืจื•ื™ืงื˜ "ืงื•ื“ ืคืชื•ื—, ืžื•ื ืข ืขืœ ื™ื“ื™ ื”ืงื”ื™ืœื”, ืฉื ื•ืขื“ ืœืขื–ื•ืจ ืœืžื“ืขื ื™ ื ืชื•ื ื™ื ืœื ืชื— ื•ืœืฉืคืจ ืžืขืจื›ื•ืช AI." ืœืžืฉื™ืžื” ื–ื•, ื—ืงืจื• ืื—ื“ ืžื”ืžื—ื‘ืจื•ืช ืฉืœ RAI Toolbox [notebooks](https://github.com/microsoft/responsible-ai-toolbox/blob/main/notebooks/responsibleaidashboard/getting-started.ipynb) ื•ื“ื•ื•ื—ื• ืขืœ ื”ืžืžืฆืื™ื ืฉืœื›ื ื‘ืžืืžืจ ืื• ืžืฆื’ืช.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ื ื™ื | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| ----------- | ------- | ----- | ----------- |
| | ืžืืžืจ ืื• ืžืฆื’ืช ืคืื•ื•ืจืคื•ื™ื ื˜ ืžื•ืฆื’ื™ื, ื“ื ื™ื ื‘ืžืขืจื›ื•ืช ืฉืœ Fairlearn, ื”ืžื—ื‘ืจืช ืฉื”ื•ืจืฆื” ื•ื”ืžืกืงื ื•ืช ืฉื”ื•ืกืงื• ืžื”ืจืฆืชื” | ืžืืžืจ ืžื•ืฆื’ ืœืœื ืžืกืงื ื•ืช | ืœื ืžื•ืฆื’ ืžืืžืจ |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก AI [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,132 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "9d91f3af3758fdd4569fb410575995ef",
"translation_date": "2025-09-05T19:35:07+00:00",
"source_file": "1-Introduction/4-techniques-of-ML/README.md",
"language_code": "he"
}
-->
# ื˜ื›ื ื™ืงื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”
ืชื”ืœื™ืš ื”ื‘ื ื™ื™ื”, ื”ืฉื™ืžื•ืฉ ื•ื”ืชื—ื–ื•ืงื” ืฉืœ ืžื•ื“ืœื™ื ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื•ื”ื ืชื•ื ื™ื ืฉื”ื ืžืฉืชืžืฉื™ื ื‘ื”ื ืฉื•ื ื” ืžืื•ื“ ืžืชื”ืœื™ื›ื™ ืคื™ืชื•ื— ืื—ืจื™ื. ื‘ืฉื™ืขื•ืจ ื–ื”, ื ื‘ืืจ ืืช ื”ืชื”ืœื™ืš ื•ื ืคืจื˜ ืืช ื”ื˜ื›ื ื™ืงื•ืช ื”ืžืจื›ื–ื™ื•ืช ืฉืขืœื™ื›ื ืœื”ื›ื™ืจ. ืืชื ืชืœืžื“ื•:
- ืœื”ื‘ื™ืŸ ืืช ื”ืชื”ืœื™ื›ื™ื ืฉืžื ื™ืขื™ื ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืจืžื” ื’ื‘ื•ื”ื”.
- ืœื—ืงื•ืจ ืžื•ืฉื’ื™ื ื‘ืกื™ืกื™ื™ื ื›ืžื• 'ืžื•ื“ืœื™ื', 'ืชื—ื–ื™ื•ืช' ื•'ื ืชื•ื ื™ ืื™ืžื•ืŸ'.
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
[![ML ืœืžืชื—ื™ืœื™ื - ื˜ื›ื ื™ืงื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”](https://img.youtube.com/vi/4NGM0U2ZSHU/0.jpg)](https://youtu.be/4NGM0U2ZSHU "ML ืœืžืชื—ื™ืœื™ื - ื˜ื›ื ื™ืงื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืฉืžืกื‘ื™ืจ ืืช ื”ืฉื™ืขื•ืจ.
## ืžื‘ื•ื
ื‘ืจืžื” ื’ื‘ื•ื”ื”, ืžืœืื›ืช ื™ืฆื™ืจืช ืชื”ืœื™ื›ื™ ืœืžื™ื“ืช ืžื›ื•ื ื” (ML) ืžื•ืจื›ื‘ืช ืžืžืกืคืจ ืฉืœื‘ื™ื:
1. **ื”ื’ื“ืจืช ื”ืฉืืœื”**. ืจื•ื‘ ืชื”ืœื™ื›ื™ ML ืžืชื—ื™ืœื™ื ื‘ืฉืืœื” ืฉืœื ื ื™ืชืŸ ืœืขื ื•ืช ืขืœื™ื” ื‘ืืžืฆืขื•ืช ืชื•ื›ื ื™ืช ืžื•ืชื ื™ืช ืคืฉื•ื˜ื” ืื• ืžื ื•ืข ืžื‘ื•ืกืก ื—ื•ืงื™ื. ืฉืืœื•ืช ืืœื• ืœืจื•ื‘ ืขื•ืกืงื•ืช ื‘ืชื—ื–ื™ื•ืช ื”ืžื‘ื•ืกืกื•ืช ืขืœ ืื•ืกืฃ ื ืชื•ื ื™ื.
2. **ืื™ืกื•ืฃ ื•ื”ื›ื ืช ื ืชื•ื ื™ื**. ื›ื“ื™ ืœืขื ื•ืช ืขืœ ื”ืฉืืœื” ืฉืœื›ื, ืืชื ื–ืงื•ืงื™ื ืœื ืชื•ื ื™ื. ืื™ื›ื•ืช ื•ืœืขื™ืชื™ื ื’ื ื›ืžื•ืช ื”ื ืชื•ื ื™ื ืฉืœื›ื ื™ืงื‘ืขื• ืขื“ ื›ืžื” ืชื•ื›ืœื• ืœืขื ื•ืช ืขืœ ื”ืฉืืœื” ื”ืจืืฉื•ื ื™ืช ืฉืœื›ื. ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื ืชื•ื ื™ื ื”ื™ื ื—ืœืง ื—ืฉื•ื‘ ื‘ืฉืœื‘ ื–ื”. ืฉืœื‘ ื–ื” ื›ื•ืœืœ ื’ื ื—ืœื•ืงืช ื”ื ืชื•ื ื™ื ืœืงื‘ื•ืฆืช ืื™ืžื•ืŸ ื•ื‘ื“ื™ืงื” ืœืฆื•ืจืš ื‘ื ื™ื™ืช ืžื•ื“ืœ.
3. **ื‘ื—ื™ืจืช ืฉื™ื˜ืช ืื™ืžื•ืŸ**. ื‘ื”ืชืื ืœืฉืืœื” ืฉืœื›ื ื•ืœืื•ืคื™ ื”ื ืชื•ื ื™ื, ืขืœื™ื›ื ืœื‘ื—ื•ืจ ื›ื™ืฆื“ ืœืืžืŸ ืžื•ื“ืœ ืฉื™ื™ืฆื’ ื‘ืฆื•ืจื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืืช ื”ื ืชื•ื ื™ื ื•ื™ื‘ืฆืข ืชื—ื–ื™ื•ืช ืžื“ื•ื™ืงื•ืช. ื–ื”ื• ื”ื—ืœืง ื‘ืชื”ืœื™ืš ML ืฉื“ื•ืจืฉ ืžื•ืžื—ื™ื•ืช ืกืคืฆื™ืคื™ืช ื•ืœืขื™ืชื™ื ื ื™ืกื•ื™ ืจื‘.
4. **ืื™ืžื•ืŸ ื”ืžื•ื“ืœ**. ื‘ืืžืฆืขื•ืช ื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ืฉืœื›ื, ืชืฉืชืžืฉื• ื‘ืืœื’ื•ืจื™ืชืžื™ื ืฉื•ื ื™ื ื›ื“ื™ ืœืืžืŸ ืžื•ื“ืœ ืฉื™ื–ื”ื” ื“ืคื•ืกื™ื ื‘ื ืชื•ื ื™ื. ื”ืžื•ื“ืœ ืขืฉื•ื™ ืœื”ืฉืชืžืฉ ื‘ืžืฉืงืœื™ื ืคื ื™ืžื™ื™ื ืฉื ื™ืชืŸ ืœื”ืชืื™ื ื›ื“ื™ ืœื”ืขื“ื™ืฃ ื—ืœืงื™ื ืžืกื•ื™ืžื™ื ืฉืœ ื”ื ืชื•ื ื™ื ืขืœ ืคื ื™ ืื—ืจื™ื ืœืฆื•ืจืš ื‘ื ื™ื™ืช ืžื•ื“ืœ ื˜ื•ื‘ ื™ื•ืชืจ.
5. **ื”ืขืจื›ืช ื”ืžื•ื“ืœ**. ืชืฉืชืžืฉื• ื‘ื ืชื•ื ื™ื ืฉืœื ื ืจืื• ื‘ืขื‘ืจ (ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื” ืฉืœื›ื) ืžืชื•ืš ื”ืกื˜ ืฉื ืืกืฃ ื›ื“ื™ ืœืจืื•ืช ื›ื™ืฆื“ ื”ืžื•ื“ืœ ืžืชืคืงื“.
6. **ื›ื™ื•ื•ื ื•ืŸ ืคืจืžื˜ืจื™ื**. ื‘ื”ืชื‘ืกืก ืขืœ ื‘ื™ืฆื•ืขื™ ื”ืžื•ื“ืœ ืฉืœื›ื, ืชื•ื›ืœื• ืœื—ื–ื•ืจ ืขืœ ื”ืชื”ืœื™ืš ืขื ืคืจืžื˜ืจื™ื ืื• ืžืฉืชื ื™ื ืฉื•ื ื™ื ืฉืžื›ื•ื•ื ื™ื ืืช ื”ืชื ื”ื’ื•ืช ื”ืืœื’ื•ืจื™ืชืžื™ื ืฉืฉื™ืžืฉื• ืœืื™ืžื•ืŸ ื”ืžื•ื“ืœ.
7. **ืชื—ื–ื™ืช**. ื”ืฉืชืžืฉื• ื‘ืงืœื˜ ื—ื“ืฉ ื›ื“ื™ ืœื‘ื“ื•ืง ืืช ื“ื™ื•ืง ื”ืžื•ื“ืœ ืฉืœื›ื.
## ืื™ื–ื• ืฉืืœื” ืœืฉืื•ืœ
ืžื—ืฉื‘ื™ื ืžืฆื˜ื™ื™ื ื™ื ื‘ืžื™ื•ื—ื“ ื‘ื’ื™ืœื•ื™ ื“ืคื•ืกื™ื ื ืกืชืจื™ื ื‘ื ืชื•ื ื™ื. ื™ื›ื•ืœืช ื–ื• ืžื•ืขื™ืœื” ืžืื•ื“ ืœื—ื•ืงืจื™ื ืฉื™ืฉ ืœื”ื ืฉืืœื•ืช ื‘ืชื—ื•ื ืžืกื•ื™ื ืฉืœื ื ื™ืชืŸ ืœืขื ื•ืช ืขืœื™ื”ืŸ ื‘ืงืœื•ืช ื‘ืืžืฆืขื•ืช ื™ืฆื™ืจืช ืžื ื•ืข ื—ื•ืงื™ื ืžื•ืชื ื”. ืœื“ื•ื’ืžื”, ื‘ืžืฉื™ืžื” ืืงื˜ื•ืืจื™ืช, ืžื“ืขืŸ ื ืชื•ื ื™ื ืขืฉื•ื™ ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœื‘ื ื•ืช ื—ื•ืงื™ื ืžื•ืชืืžื™ื ืื™ืฉื™ืช ืกื‘ื™ื‘ ืชืžื•ืชืช ืžืขืฉื ื™ื ืœืขื•ืžืช ืœื ืžืขืฉื ื™ื.
ื›ืืฉืจ ืžืฉืชื ื™ื ืจื‘ื™ื ื ื•ืกืคื™ื ืœืžืฉื•ื•ืื”, ืžื•ื“ืœ ML ืขืฉื•ื™ ืœื”ื™ื•ืช ื™ืขื™ืœ ื™ื•ืชืจ ื‘ืชื—ื–ื™ืช ืฉื™ืขื•ืจื™ ืชืžื•ืชื” ืขืชื™ื“ื™ื™ื ื‘ื”ืชื‘ืกืก ืขืœ ื”ื™ืกื˜ื•ืจื™ื™ืช ื‘ืจื™ืื•ืช ืงื•ื“ืžืช. ื“ื•ื’ืžื” ืžืฉืžื—ืช ื™ื•ืชืจ ืขืฉื•ื™ื” ืœื”ื™ื•ืช ืชื—ื–ื™ื•ืช ืžื–ื’ ืื•ื•ื™ืจ ืœื—ื•ื“ืฉ ืืคืจื™ืœ ื‘ืžื™ืงื•ื ืžืกื•ื™ื ื‘ื”ืชื‘ืกืก ืขืœ ื ืชื•ื ื™ื ื”ื›ื•ืœืœื™ื ืงื• ืจื•ื—ื‘, ืงื• ืื•ืจืš, ืฉื™ื ื•ื™ื™ ืืงืœื™ื, ืงืจื‘ื” ืœื™ื, ื“ืคื•ืกื™ ื–ืจื ืกื™ืœื•ืŸ ื•ืขื•ื“.
โœ… ืžืฆื’ืช ื–ื• [ืžืฆื’ืช](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf) ืขืœ ืžื•ื“ืœื™ื ืฉืœ ืžื–ื’ ืื•ื•ื™ืจ ืžืฆื™ืขื” ืคืจืกืคืงื˜ื™ื‘ื” ื”ื™ืกื˜ื•ืจื™ืช ืœืฉื™ืžื•ืฉ ื‘-ML ื‘ื ื™ืชื•ื— ืžื–ื’ ืื•ื•ื™ืจ.
## ืžืฉื™ืžื•ืช ืœืคื ื™ ื‘ื ื™ื™ื”
ืœืคื ื™ ืฉืชืชื—ื™ืœื• ืœื‘ื ื•ืช ืืช ื”ืžื•ื“ืœ ืฉืœื›ื, ื™ืฉื ื ืžืกืคืจ ืžืฉื™ืžื•ืช ืฉืขืœื™ื›ื ืœื”ืฉืœื™ื. ื›ื“ื™ ืœื‘ื“ื•ืง ืืช ื”ืฉืืœื” ืฉืœื›ื ื•ืœื’ื‘ืฉ ื”ืฉืขืจื” ื”ืžื‘ื•ืกืกืช ืขืœ ืชื—ื–ื™ื•ืช ื”ืžื•ื“ืœ, ืขืœื™ื›ื ืœื–ื”ื•ืช ื•ืœื”ื’ื“ื™ืจ ืžืกืคืจ ืืœืžื ื˜ื™ื.
### ื ืชื•ื ื™ื
ื›ื“ื™ ืœืขื ื•ืช ืขืœ ื”ืฉืืœื” ืฉืœื›ื ื‘ื•ื•ื“ืื•ืช ื›ืœืฉื”ื™, ืืชื ื–ืงื•ืงื™ื ืœื›ืžื•ืช ืžืกืคืงืช ืฉืœ ื ืชื•ื ื™ื ืžื”ืกื•ื’ ื”ื ื›ื•ืŸ. ื™ืฉื ื ืฉื ื™ ื“ื‘ืจื™ื ืฉืขืœื™ื›ื ืœืขืฉื•ืช ื‘ืฉืœื‘ ื–ื”:
- **ืื™ืกื•ืฃ ื ืชื•ื ื™ื**. ืชื•ืš ืฉืžื™ืจื” ืขืœ ื”ืฉื™ืขื•ืจ ื”ืงื•ื“ื ื‘ื ื•ืฉื ื”ื•ื’ื ื•ืช ื‘ื ื™ืชื•ื— ื ืชื•ื ื™ื, ืืกืคื• ืืช ื”ื ืชื•ื ื™ื ืฉืœื›ื ื‘ื–ื”ื™ืจื•ืช. ื”ื™ื• ืžื•ื“ืขื™ื ืœืžืงื•ืจื•ืช ื”ื ืชื•ื ื™ื, ืœื”ื˜ื™ื•ืช ืžื•ื‘ื ื•ืช ืฉื”ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ, ื•ืชืขื“ื• ืืช ืžืงื•ืจื.
- **ื”ื›ื ืช ื ืชื•ื ื™ื**. ื™ืฉื ื ืžืกืคืจ ืฉืœื‘ื™ื ื‘ืชื”ืœื™ืš ื”ื›ื ืช ื”ื ืชื•ื ื™ื. ื™ื™ืชื›ืŸ ืฉืชืฆื˜ืจื›ื• ืœืื—ื“ ื ืชื•ื ื™ื ื•ืœื ืจืžืœ ืื•ืชื ืื ื”ื ืžื’ื™ืขื™ื ืžืžืงื•ืจื•ืช ืžื’ื•ื•ื ื™ื. ืชื•ื›ืœื• ืœืฉืคืจ ืืช ืื™ื›ื•ืช ื•ื›ืžื•ืช ื”ื ืชื•ื ื™ื ื‘ืืžืฆืขื•ืช ืฉื™ื˜ื•ืช ืฉื•ื ื•ืช ื›ืžื• ื”ืžืจืช ืžื—ืจื•ื–ื•ืช ืœืžืกืคืจื™ื (ื›ืคื™ ืฉืขืฉื™ื ื• ื‘[Clustering](../../5-Clustering/1-Visualize/README.md)). ื™ื™ืชื›ืŸ ืฉืชื™ื™ืฆืจื• ื ืชื•ื ื™ื ื—ื“ืฉื™ื ื‘ื”ืชื‘ืกืก ืขืœ ื”ืžืงื•ืจ (ื›ืคื™ ืฉืขืฉื™ื ื• ื‘[Classification](../../4-Classification/1-Introduction/README.md)). ืชื•ื›ืœื• ืœื ืงื•ืช ื•ืœืขืจื•ืš ืืช ื”ื ืชื•ื ื™ื (ื›ืคื™ ืฉื ืขืฉื” ืœืคื ื™ ื”ืฉื™ืขื•ืจ ืขืœ [ืืคืœื™ืงืฆื™ื•ืช ืื™ื ื˜ืจื ื˜](../../3-Web-App/README.md)). ืœื‘ืกื•ืฃ, ื™ื™ืชื›ืŸ ืฉืชืฆื˜ืจื›ื• ื’ื ืœืขืจื‘ื‘ ื•ืœืฉื ื•ืช ืืช ืกื“ืจ ื”ื ืชื•ื ื™ื, ื‘ื”ืชืื ืœื˜ื›ื ื™ืงื•ืช ื”ืื™ืžื•ืŸ ืฉืœื›ื.
โœ… ืœืื—ืจ ืื™ืกื•ืฃ ื•ืขื™ื‘ื•ื“ ื”ื ืชื•ื ื™ื, ื”ืงื“ื™ืฉื• ืจื’ืข ืœื‘ื“ื•ืง ืื ื”ืฆื•ืจื” ืฉืœื”ื ืชืืคืฉืจ ืœื›ื ืœื”ืชืžื•ื“ื“ ืขื ื”ืฉืืœื” ื”ืžื™ื•ืขื“ืช. ื™ื™ืชื›ืŸ ืฉื”ื ืชื•ื ื™ื ืœื ื™ืชืคืงื“ื• ื”ื™ื˜ื‘ ื‘ืžืฉื™ืžื” ืฉืœื›ื, ื›ืคื™ ืฉื’ื™ืœื™ื ื• ื‘ืฉื™ืขื•ืจื™ [Clustering](../../5-Clustering/1-Visualize/README.md)!
### ืžืืคื™ื™ื ื™ื ื•ืžื˜ืจื”
[ืžืืคื™ื™ืŸ](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection) ื”ื•ื ืชื›ื•ื ื” ืžื“ื™ื“ื” ืฉืœ ื”ื ืชื•ื ื™ื ืฉืœื›ื. ื‘ื”ืจื‘ื” ืžืขืจื›ื™ ื ืชื•ื ื™ื ื”ื•ื ืžืชื‘ื˜ื ื›ื›ื•ืชืจืช ืขืžื•ื“ื” ื›ืžื• 'ืชืืจื™ืš', 'ื’ื•ื“ืœ' ืื• 'ืฆื‘ืข'. ืžืฉืชื ื” ื”ืžืืคื™ื™ืŸ ืฉืœื›ื, ืฉืžื™ื•ืฆื’ ื‘ื“ืจืš ื›ืœืœ ื›-`X` ื‘ืงื•ื“, ืžื™ื™ืฆื’ ืืช ืžืฉืชื ื” ื”ืงืœื˜ ืฉื™ืฉืžืฉ ืœืื™ืžื•ืŸ ื”ืžื•ื“ืœ.
ืžื˜ืจื” ื”ื™ื ื”ื“ื‘ืจ ืฉืืชื ืžื ืกื™ื ืœื—ื–ื•ืช. ื”ืžื˜ืจื”, ืฉืžื™ื•ืฆื’ืช ื‘ื“ืจืš ื›ืœืœ ื›-`y` ื‘ืงื•ื“, ืžื™ื™ืฆื’ืช ืืช ื”ืชืฉื•ื‘ื” ืœืฉืืœื” ืฉืืชื ืžื ืกื™ื ืœืฉืื•ืœ ืžื”ื ืชื•ื ื™ื ืฉืœื›ื: ื‘ื—ื•ื“ืฉ ื“ืฆืžื‘ืจ, ืื™ื–ื” **ืฆื‘ืข** ื“ืœืขื•ืช ื™ื”ื™ื” ื”ื–ื•ืœ ื‘ื™ื•ืชืจ? ื‘ืกืŸ ืคืจื ืกื™ืกืงื•, ืื™ืœื• ืฉื›ื•ื ื•ืช ื™ื”ื™ื• ื‘ืขืœื•ืช **ืžื—ื™ืจ** ื”ื ื“ืœ"ืŸ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ? ืœืขื™ืชื™ื ื”ืžื˜ืจื” ืžื›ื•ื ื” ื’ื ืชื›ื•ื ืช ืชื•ื•ื™ืช.
### ื‘ื—ื™ืจืช ืžืฉืชื ื” ื”ืžืืคื™ื™ืŸ ืฉืœื›ื
๐ŸŽ“ **ื‘ื—ื™ืจืช ืžืืคื™ื™ื ื™ื ื•ื”ืคืงืช ืžืืคื™ื™ื ื™ื** ืื™ืš ืชื“ืขื• ืื™ื–ื” ืžืฉืชื ื” ืœื‘ื—ื•ืจ ื‘ืขืช ื‘ื ื™ื™ืช ืžื•ื“ืœ? ืกื‘ื™ืจ ืœื”ื ื™ื— ืฉืชืขื‘ืจื• ืชื”ืœื™ืš ืฉืœ ื‘ื—ื™ืจืช ืžืืคื™ื™ื ื™ื ืื• ื”ืคืงืช ืžืืคื™ื™ื ื™ื ื›ื“ื™ ืœื‘ื—ื•ืจ ืืช ื”ืžืฉืชื ื™ื ื”ื ื›ื•ื ื™ื ืœืžื•ื“ืœ ื”ื‘ื™ืฆื•ืขื™ ื‘ื™ื•ืชืจ. ืขื ื–ืืช, ื”ื ืื™ื ื ืื•ืชื• ื”ื“ื‘ืจ: "ื”ืคืงืช ืžืืคื™ื™ื ื™ื ื™ื•ืฆืจืช ืžืืคื™ื™ื ื™ื ื—ื“ืฉื™ื ืžืคื•ื ืงืฆื™ื•ืช ืฉืœ ื”ืžืืคื™ื™ื ื™ื ื”ืžืงื•ืจื™ื™ื, ื‘ืขื•ื“ ืฉื‘ื—ื™ืจืช ืžืืคื™ื™ื ื™ื ืžื—ื–ื™ืจื” ืชืช-ืงื‘ื•ืฆื” ืฉืœ ื”ืžืืคื™ื™ื ื™ื." ([ืžืงื•ืจ](https://wikipedia.org/wiki/Feature_selection))
### ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื”ื ืชื•ื ื™ื ืฉืœื›ื
ื”ื™ื‘ื˜ ื—ืฉื•ื‘ ื‘ืืจื’ื– ื”ื›ืœื™ื ืฉืœ ืžื“ืขืŸ ื”ื ืชื•ื ื™ื ื”ื•ื ื”ื™ื›ื•ืœืช ืœื™ื™ืฆื’ ื ืชื•ื ื™ื ื‘ืื•ืคืŸ ื—ื–ื•ืชื™ ื‘ืืžืฆืขื•ืช ืกืคืจื™ื•ืช ืžืฆื•ื™ื ื•ืช ื›ืžื• Seaborn ืื• MatPlotLib. ื™ื™ืฆื•ื’ ื”ื ืชื•ื ื™ื ืฉืœื›ื ื‘ืื•ืคืŸ ื—ื–ื•ืชื™ ืขืฉื•ื™ ืœืืคืฉืจ ืœื›ื ืœื—ืฉื•ืฃ ืงืฉืจื™ื ื ืกืชืจื™ื ืฉืชื•ื›ืœื• ืœื ืฆืœ. ื”ื•ื•ื™ื–ื•ืืœื™ื–ืฆื™ื•ืช ืฉืœื›ื ืขืฉื•ื™ื•ืช ื’ื ืœืขื–ื•ืจ ืœื›ื ืœื—ืฉื•ืฃ ื”ื˜ื™ื•ืช ืื• ื ืชื•ื ื™ื ืœื ืžืื•ื–ื ื™ื (ื›ืคื™ ืฉื’ื™ืœื™ื ื• ื‘[Classification](../../4-Classification/2-Classifiers-1/README.md)).
### ื—ืœื•ืงืช ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืœื›ื
ืœืคื ื™ ื”ืื™ืžื•ืŸ, ืขืœื™ื›ื ืœื—ืœืง ืืช ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืœื›ื ืœืฉื ื™ ื—ืœืงื™ื ืื• ื™ื•ืชืจ ื‘ื’ื•ื“ืœ ืœื ืฉื•ื•ื” ืฉืขื“ื™ื™ืŸ ืžื™ื™ืฆื’ื™ื ืืช ื”ื ืชื•ื ื™ื ื”ื™ื˜ื‘.
- **ืื™ืžื•ืŸ**. ื—ืœืง ื–ื” ืฉืœ ืžืขืจืš ื”ื ืชื•ื ื™ื ืžื•ืชืื ืœืžื•ื“ืœ ืฉืœื›ื ื›ื“ื™ ืœืืžืŸ ืื•ืชื•. ืกื˜ ื–ื” ืžื”ื•ื•ื” ืืช ืจื•ื‘ ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ืžืงื•ืจื™.
- **ื‘ื“ื™ืงื”**. ืžืขืจืš ื‘ื“ื™ืงื” ื”ื•ื ืงื‘ื•ืฆื” ืขืฆืžืื™ืช ืฉืœ ื ืชื•ื ื™ื, ืœืขื™ืชื™ื ื ืืกืคืช ืžื”ื ืชื•ื ื™ื ื”ืžืงื•ืจื™ื™ื, ืฉื‘ื” ืืชื ืžืฉืชืžืฉื™ื ื›ื“ื™ ืœืืฉืจ ืืช ื‘ื™ืฆื•ืขื™ ื”ืžื•ื“ืœ ืฉื ื‘ื ื”.
- **ืื™ืžื•ืช**. ืกื˜ ืื™ืžื•ืช ื”ื•ื ืงื‘ื•ืฆื” ืขืฆืžืื™ืช ืงื˜ื ื” ื™ื•ืชืจ ืฉืœ ื“ื•ื’ืžืื•ืช ืฉื‘ื” ืืชื ืžืฉืชืžืฉื™ื ืœื›ื•ื•ื ื•ืŸ ื”ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื ืฉืœ ื”ืžื•ื“ืœ ืื• ื”ืืจื›ื™ื˜ืงื˜ื•ืจื” ืฉืœื• ื›ื“ื™ ืœืฉืคืจ ืืช ื”ืžื•ื“ืœ. ื‘ื”ืชืื ืœื’ื•ื“ืœ ื”ื ืชื•ื ื™ื ืฉืœื›ื ื•ืœืฉืืœื” ืฉืืชื ืฉื•ืืœื™ื, ื™ื™ืชื›ืŸ ืฉืœื ืชืฆื˜ืจื›ื• ืœื‘ื ื•ืช ืืช ื”ืกื˜ ื”ืฉืœื™ืฉื™ ื”ื–ื” (ื›ืคื™ ืฉืื ื• ืžืฆื™ื™ื ื™ื ื‘[ืชื—ื–ื™ื•ืช ืกื“ืจื•ืช ื–ืžืŸ](../../7-TimeSeries/1-Introduction/README.md)).
## ื‘ื ื™ื™ืช ืžื•ื“ืœ
ื‘ืืžืฆืขื•ืช ื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ืฉืœื›ื, ื”ืžื˜ืจื” ืฉืœื›ื ื”ื™ื ืœื‘ื ื•ืช ืžื•ื“ืœ, ืื• ื™ื™ืฆื•ื’ ืกื˜ื˜ื™ืกื˜ื™ ืฉืœ ื”ื ืชื•ื ื™ื ืฉืœื›ื, ื‘ืืžืฆืขื•ืช ืืœื’ื•ืจื™ืชืžื™ื ืฉื•ื ื™ื ื›ื“ื™ **ืœืืžืŸ** ืื•ืชื•. ืื™ืžื•ืŸ ืžื•ื“ืœ ื—ื•ืฉืฃ ืื•ืชื• ืœื ืชื•ื ื™ื ื•ืžืืคืฉืจ ืœื• ืœื‘ืฆืข ื”ื ื—ื•ืช ืœื’ื‘ื™ ื“ืคื•ืกื™ื ืฉื”ื•ื ืžื’ืœื”, ืžืืžืช ื•ืžืงื‘ืœ ืื• ื“ื•ื—ื”.
### ื”ื—ืœื˜ื” ืขืœ ืฉื™ื˜ืช ืื™ืžื•ืŸ
ื‘ื”ืชืื ืœืฉืืœื” ืฉืœื›ื ื•ืœืื•ืคื™ ื”ื ืชื•ื ื™ื, ืชื‘ื—ืจื• ืฉื™ื˜ื” ืœืืžืŸ ืื•ืชื. ืžืขื‘ืจ ืขืœ [ื”ืชื™ืขื•ื“ ืฉืœ Scikit-learn](https://scikit-learn.org/stable/user_guide.html) - ืฉื‘ื• ืื ื• ืžืฉืชืžืฉื™ื ื‘ืงื•ืจืก ื–ื” - ืชื•ื›ืœื• ืœื—ืงื•ืจ ื“ืจื›ื™ื ืจื‘ื•ืช ืœืืžืŸ ืžื•ื“ืœ. ื‘ื”ืชืื ืœื ื™ืกื™ื•ื ื›ื, ื™ื™ืชื›ืŸ ืฉืชืฆื˜ืจื›ื• ืœื ืกื•ืช ืžืกืคืจ ืฉื™ื˜ื•ืช ืฉื•ื ื•ืช ื›ื“ื™ ืœื‘ื ื•ืช ืืช ื”ืžื•ื“ืœ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ. ืกื‘ื™ืจ ืœื”ื ื™ื— ืฉืชืขื‘ืจื• ืชื”ืœื™ืš ืฉื‘ื• ืžื“ืขื ื™ ื ืชื•ื ื™ื ืžืขืจื™ื›ื™ื ืืช ื‘ื™ืฆื•ืขื™ ื”ืžื•ื“ืœ ืขืœ ื™ื“ื™ ื”ื–ื ืช ื ืชื•ื ื™ื ืฉืœื ื ืจืื• ื‘ืขื‘ืจ, ื‘ื“ื™ืงืช ื“ื™ื•ืง, ื”ื˜ื™ื” ื•ื ื•ืฉืื™ื ืื—ืจื™ื ืฉืžืคื—ื™ืชื™ื ืืช ื”ืื™ื›ื•ืช, ื•ื‘ื—ื™ืจืช ืฉื™ื˜ืช ื”ืื™ืžื•ืŸ ื”ืžืชืื™ืžื” ื‘ื™ื•ืชืจ ืœืžืฉื™ืžื”.
### ืื™ืžื•ืŸ ืžื•ื“ืœ
ืžืฆื•ื™ื“ื™ื ื‘ื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ืฉืœื›ื, ืืชื ืžื•ื›ื ื™ื 'ืœื”ืชืื™ื' ืื•ืชื ื›ื“ื™ ืœื™ืฆื•ืจ ืžื•ื“ืœ. ืชื‘ื—ื™ื ื• ืฉื‘ืกืคืจื™ื•ืช ML ืจื‘ื•ืช ืชืžืฆืื• ืืช ื”ืงื•ื“ 'model.fit' - ื–ื”ื• ื”ื–ืžืŸ ืฉื‘ื• ืืชื ืฉื•ืœื—ื™ื ืืช ืžืฉืชื ื” ื”ืžืืคื™ื™ืŸ ืฉืœื›ื ื›ืžืขืจืš ืขืจื›ื™ื (ื‘ื“ืจืš ื›ืœืœ 'X') ื•ืžืฉืชื ื” ืžื˜ืจื” (ื‘ื“ืจืš ื›ืœืœ 'y').
### ื”ืขืจื›ืช ื”ืžื•ื“ืœ
ืœืื—ืจ ืฉืชื”ืœื™ืš ื”ืื™ืžื•ืŸ ื”ื•ืฉืœื (ื–ื” ื™ื›ื•ืœ ืœืงื—ืช ืžืกืคืจ ืื™ื˜ืจืฆื™ื•ืช, ืื• 'epochs', ื›ื“ื™ ืœืืžืŸ ืžื•ื“ืœ ื’ื“ื•ืœ), ืชื•ื›ืœื• ืœื”ืขืจื™ืš ืืช ืื™ื›ื•ืช ื”ืžื•ื“ืœ ื‘ืืžืฆืขื•ืช ื ืชื•ื ื™ ื‘ื“ื™ืงื” ื›ื“ื™ ืœืžื“ื•ื“ ืืช ื‘ื™ืฆื•ืขื™ื•. ื ืชื•ื ื™ื ืืœื• ื”ื ืชืช-ืงื‘ื•ืฆื” ืฉืœ ื”ื ืชื•ื ื™ื ื”ืžืงื•ืจื™ื™ื ืฉื”ืžื•ื“ืœ ืœื ื ื™ืชื— ื‘ืขื‘ืจ. ืชื•ื›ืœื• ืœื”ื“ืคื™ืก ื˜ื‘ืœื” ืฉืœ ืžื“ื“ื™ื ืขืœ ืื™ื›ื•ืช ื”ืžื•ื“ืœ ืฉืœื›ื.
๐ŸŽ“ **ื”ืชืืžืช ืžื•ื“ืœ**
ื‘ื”ืงืฉืจ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”, ื”ืชืืžืช ืžื•ื“ืœ ืžืชื™ื™ื—ืกืช ืœื“ื™ื•ืง ื”ืคื•ื ืงืฆื™ื” ื”ื‘ืกื™ืกื™ืช ืฉืœ ื”ืžื•ื“ืœ ื›ืฉื”ื•ื ืžื ืกื” ืœื ืชื— ื ืชื•ื ื™ื ืฉืื™ื ื ืžื•ื›ืจื™ื ืœื•.
๐ŸŽ“ **ื”ืชืืžื” ื—ืกืจื”** ื•**ื”ืชืืžื” ื™ืชืจื”** ื”ืŸ ื‘ืขื™ื•ืช ื ืคื•ืฆื•ืช ืฉืžืคื—ื™ืชื•ืช ืืช ืื™ื›ื•ืช ื”ืžื•ื“ืœ, ื›ืืฉืจ ื”ืžื•ื“ืœ ืžืชืื™ื ืื• ืœื ืžืกืคื™ืง ื˜ื•ื‘ ืื• ื™ื•ืชืจ ืžื“ื™ ื˜ื•ื‘. ื–ื” ื’ื•ืจื ืœืžื•ื“ืœ ืœื‘ืฆืข ืชื—ื–ื™ื•ืช ืฉืžื•ืชืืžื•ืช ืื• ืงืจื•ื‘ื•ืช ืžื“ื™ ืื• ืจื—ื•ืงื•ืช ืžื“ื™ ืœื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ืฉืœื•. ืžื•ื“ืœ ืžื•ืชืื ื™ืชืจ ืขืœ ื”ืžื™ื“ื” ื—ื•ื–ื” ื ืชื•ื ื™ ืื™ืžื•ืŸ ื˜ื•ื‘ ืžื“ื™ ืžื›ื™ื•ื•ืŸ ืฉื”ื•ื ืœืžื“ ืืช ื”ืคืจื˜ื™ื ื•ื”ืจืขืฉ ืฉืœ ื”ื ืชื•ื ื™ื ื˜ื•ื‘ ืžื“ื™. ืžื•ื“ืœ ืžื•ืชืื ื—ืกืจ ืื™ื ื• ืžื“ื•ื™ืง ืžื›ื™ื•ื•ืŸ ืฉื”ื•ื ืœื ื™ื›ื•ืœ ืœื ืชื— ื‘ืฆื•ืจื” ืžื“ื•ื™ืงืช ืืช ื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ืฉืœื• ืื• ื ืชื•ื ื™ื ืฉื”ื•ื ืขื“ื™ื™ืŸ ืœื 'ืจืื”'.
![ืžื•ื“ืœ ืžื•ืชืื ื™ืชืจ](../../../../1-Introduction/4-techniques-of-ML/images/overfitting.png)
> ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
## ื›ื™ื•ื•ื ื•ืŸ ืคืจืžื˜ืจื™ื
ืœืื—ืจ ืฉื”ืื™ืžื•ืŸ ื”ืจืืฉื•ื ื™ ืฉืœื›ื ื”ื•ืฉืœื, ื”ืชื‘ื•ื ื ื• ื‘ืื™ื›ื•ืช ื”ืžื•ื“ืœ ื•ืฉืงืœื• ืœืฉืคืจ ืื•ืชื• ืขืœ ื™ื“ื™ ื›ื™ื•ื•ื ื•ืŸ 'ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื' ืฉืœื•. ืงืจืื• ืขื•ื“ ืขืœ ื”ืชื”ืœื™ืš [ื‘ืชื™ืขื•ื“](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott).
## ืชื—ื–ื™ืช
ื–ื”ื• ื”ืจื’ืข ืฉื‘ื• ืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ื ืชื•ื ื™ื ื—ื“ืฉื™ื ืœื—ืœื•ื˜ื™ืŸ ื›ื“ื™ ืœื‘ื“ื•ืง ืืช ื“ื™ื•ืง ื”ืžื•ื“ืœ ืฉืœื›ื. ื‘ื”ืงืฉืจ ืฉืœ ML 'ืžื•ืคืขืœ', ืฉื‘ื• ืืชื ื‘ื•ื ื™ื ื ื›ืกื™ ืื™ื ื˜ืจื ื˜ ืœืฉื™ืžื•ืฉ ื”ืžื•ื“ืœ ื‘ื™ื™ืฆื•ืจ, ืชื”ืœื™ืš ื–ื” ืขืฉื•ื™ ืœื›ืœื•ืœ ืื™ืกื•ืฃ ืงืœื˜ ืžืฉืชืžืฉ (ืœื—ื™ืฆื” ืขืœ ื›ืคืชื•ืจ, ืœืžืฉืœ) ื›ื“ื™ ืœื”ื’ื“ื™ืจ ืžืฉืชื ื” ื•ืœืฉืœื•ื— ืื•ืชื• ืœืžื•ื“ืœ ืœืฆื•ืจืš ื”ืกืงื” ืื• ื”ืขืจื›ื”.
ื‘ืฉื™ืขื•ืจื™ื ืืœื•, ืชื’ืœื• ื›ื™ืฆื“ ืœื”ืฉืชืžืฉ ื‘ืฉืœื‘ื™ื ืืœื• ื›ื“ื™ ืœื”ื›ื™ืŸ, ืœื‘ื ื•ืช, ืœื‘ื“ื•ืง, ืœื”ืขืจื™ืš ื•ืœื—ื–ื•ืช - ื›ืœ ื”ืžื—ื•ื•ืช ืฉืœ ืžื“ืขืŸ ื ืชื•ื ื™ื ื•ืขื•ื“, ื›ื›ืœ ืฉืชืชืงื“ืžื• ื‘ืžืกืข ืฉืœื›ื ืœื”ืคื•ืš ืœ'ืžื”ื ื“ืก ML ืžืœื'.
---
## ๐Ÿš€ืืชื’ืจ
ืฆื™ื™ืจื• ืชืจืฉื™ื ื–ืจื™ืžื” ืฉืžื™ื™ืฆื’ ืืช ืฉืœื‘ื™ ื”ืขื‘ื•ื“ื” ืฉืœ ืžื•ืžื—ื” ML. ื”ื™ื›ืŸ ืืชื ืจื•ืื™ื ืืช ืขืฆืžื›ื ื›ืจื’ืข ื‘ืชื”ืœื™ืš? ื”ื™ื›ืŸ ืืชื ืฆื•ืคื™ื ืฉืชืชืงืœื• ื‘ืงืฉื™ื™ื? ืžื” ื ืจืื” ืœื›ื ืงืœ?
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื—ืคืฉื• ื‘ืื™ื ื˜ืจื ื˜ ืจืื™ื•ื ื•ืช ืขื ืžื“ืขื ื™ ื ืชื•ื ื™ื ืฉืžื“ื‘ืจื™ื ืขืœ ืขื‘ื•ื“ืชื ื”ื™ื•ืžื™ื•ืžื™ืช. ื”ื ื” [ืื—ื“](https://www.youtube.com/watch?v=Z3IjgbbCEfs).
## ืžืฉื™ืžื”
[ืจืื™ื™ื ื• ืžื“ืขืŸ ื ืชื•ื ื™ื](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "70d65aeddc06170bc1aed5b27805f930",
"translation_date": "2025-09-05T19:37:26+00:00",
"source_file": "1-Introduction/4-techniques-of-ML/assignment.md",
"language_code": "he"
}
-->
# ืจืื™ื•ืŸ ืขื ืžื“ืขืŸ ื ืชื•ื ื™ื
## ื”ื•ืจืื•ืช
ื‘ื—ื‘ืจื” ืฉืœื›ื, ื‘ืงื‘ื•ืฆืช ืžืฉืชืžืฉื™ื, ืื• ื‘ื™ืŸ ื—ื‘ืจื™ื ืื• ืขืžื™ืชื™ื ืœืœื™ืžื•ื“ื™ื, ืฉื•ื—ื—ื• ืขื ืžื™ืฉื”ื• ืฉืขื•ื‘ื“ ื‘ืื•ืคืŸ ืžืงืฆื•ืขื™ ื›ืžื“ืขืŸ ื ืชื•ื ื™ื. ื›ืชื‘ื• ืžืืžืจ ืงืฆืจ (500 ืžื™ืœื™ื) ืขืœ ื”ืขื™ืกื•ืงื™ื ื”ื™ื•ืžื™ื•ืžื™ื™ื ืฉืœื”ื. ื”ืื ื”ื ืžืชืžื—ื™ื ื‘ืชื—ื•ื ืžืกื•ื™ื, ืื• ืฉื”ื ืขื•ื‘ื“ื™ื ื‘ื’ื™ืฉื” ืฉืœ 'ืžืœื ืขืจื™ืžื”'?
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| --------- | -------------------------------------------------------------------------------------- | -------------------------------------------------------------- | --------------------- |
| | ืžืืžืจ ื‘ืื•ืจืš ื”ื ื“ืจืฉ, ืขื ืžืงื•ืจื•ืช ืžืฆื•ื™ื ื™ื, ืžื•ื’ืฉ ื›ืงื•ื‘ืฅ .doc | ื”ืžืืžืจ ืขื ื™ื™ื—ื•ืก ืœืงื•ื™ ืื• ืงืฆืจ ืžื”ืื•ืจืš ื”ื ื“ืจืฉ | ืœื ื”ื•ื’ืฉ ืžืืžืจ |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,37 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "cf8ecc83f28e5b98051d2179eca08e08",
"translation_date": "2025-09-05T19:29:56+00:00",
"source_file": "1-Introduction/README.md",
"language_code": "he"
}
-->
# ืžื‘ื•ื ืœืœืžื™ื“ืช ืžื›ื•ื ื”
ื‘ื—ืœืง ื–ื” ืฉืœ ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื, ืชื›ื™ืจื• ืืช ื”ืžื•ืฉื’ื™ื ื”ื‘ืกื™ืกื™ื™ื ืฉืžืื—ื•ืจื™ ืชื—ื•ื ื”ืœืžื™ื“ืช ื”ืžื›ื•ื ื”, ืžื” ื–ื” ื‘ืขืฆื, ื•ืชืœืžื“ื• ืขืœ ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœื• ื•ืขืœ ื”ื˜ื›ื ื™ืงื•ืช ืฉื”ื—ื•ืงืจื™ื ืžืฉืชืžืฉื™ื ื‘ื”ืŸ ื›ื“ื™ ืœืขื‘ื•ื“ ืื™ืชื•. ื‘ื•ืื• ื ื—ืงื•ืจ ื™ื—ื“ ืืช ื”ืขื•ืœื ื”ื—ื“ืฉ ื”ื–ื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”!
![globe](../../../1-Introduction/images/globe.jpg)
> ืฆื™ืœื•ื ืขืœ ื™ื“ื™ <a href="https://unsplash.com/@bill_oxford?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Bill Oxford</a> ื‘-<a href="https://unsplash.com/s/photos/globe?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
### ืฉื™ืขื•ืจื™ื
1. [ืžื‘ื•ื ืœืœืžื™ื“ืช ืžื›ื•ื ื”](1-intro-to-ML/README.md)
1. [ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื•ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช](2-history-of-ML/README.md)
1. [ื”ื•ื’ื ื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”](3-fairness/README.md)
1. [ื˜ื›ื ื™ืงื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”](4-techniques-of-ML/README.md)
### ืงืจื“ื™ื˜ื™ื
"ืžื‘ื•ื ืœืœืžื™ื“ืช ืžื›ื•ื ื”" ื ื›ืชื‘ ื‘ืื”ื‘ื” ืขืœ ื™ื“ื™ ืฆื•ื•ืช ืื ืฉื™ื ื›ื•ืœืœ [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan), [Ornella Altunyan](https://twitter.com/ornelladotcom) ื•-[Jen Looper](https://twitter.com/jenlooper)
"ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”" ื ื›ืชื‘ ื‘ืื”ื‘ื” ืขืœ ื™ื“ื™ [Jen Looper](https://twitter.com/jenlooper) ื•-[Amy Boyd](https://twitter.com/AmyKateNicho)
"ื”ื•ื’ื ื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”" ื ื›ืชื‘ ื‘ืื”ื‘ื” ืขืœ ื™ื“ื™ [Tomomi Imura](https://twitter.com/girliemac)
"ื˜ื›ื ื™ืงื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”" ื ื›ืชื‘ ื‘ืื”ื‘ื” ืขืœ ื™ื“ื™ [Jen Looper](https://twitter.com/jenlooper) ื•-[Chris Noring](https://twitter.com/softchris)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,239 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "fa81d226c71d5af7a2cade31c1c92b88",
"translation_date": "2025-09-05T18:50:40+00:00",
"source_file": "2-Regression/1-Tools/README.md",
"language_code": "he"
}
-->
# ื”ืชื—ื™ืœื• ืขื Python ื•-Scikit-learn ืขื‘ื•ืจ ืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื”
![ืกื™ื›ื•ื ืฉืœ ืจื’ืจืกื™ื•ืช ื‘ืกืงืฆ'ื ื•ื˜](../../../../sketchnotes/ml-regression.png)
> ืกืงืฆ'ื ื•ื˜ ืžืืช [Tomomi Imura](https://www.twitter.com/girlie_mac)
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
> ### [ื”ืฉื™ืขื•ืจ ื”ื–ื” ื–ืžื™ืŸ ื’ื ื‘-R!](../../../../2-Regression/1-Tools/solution/R/lesson_1.html)
## ืžื‘ื•ื
ื‘ืืจื‘ืขืช ื”ืฉื™ืขื•ืจื™ื ื”ืœืœื•, ืชืœืžื“ื• ื›ื™ืฆื“ ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื”. ื ื“ื•ืŸ ื‘ืžื” ื”ื ืžืฉืžืฉื™ื ื‘ืงืจื•ื‘. ืื‘ืœ ืœืคื ื™ ืฉืชืชื—ื™ืœื•, ื•ื“ืื• ืฉื™ืฉ ืœื›ื ืืช ื”ื›ืœื™ื ื”ื ื›ื•ื ื™ื ื›ื“ื™ ืœื”ืชื—ื™ืœ ืืช ื”ืชื”ืœื™ืš!
ื‘ืฉื™ืขื•ืจ ื”ื–ื” ืชืœืžื“ื•:
- ืœื”ื’ื“ื™ืจ ืืช ื”ืžื—ืฉื‘ ืฉืœื›ื ืœืžืฉื™ืžื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ืžืงื•ืžื™ื•ืช.
- ืœืขื‘ื•ื“ ืขื ืžื—ื‘ืจื•ืช Jupyter.
- ืœื”ืฉืชืžืฉ ื‘-Scikit-learn, ื›ื•ืœืœ ื”ืชืงื ื”.
- ืœื—ืงื•ืจ ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช ื‘ืืžืฆืขื•ืช ืชืจื’ื™ืœ ืžืขืฉื™.
## ื”ืชืงื ื•ืช ื•ื”ื’ื“ืจื•ืช
[![ML ืœืžืชื—ื™ืœื™ื - ื”ื’ื“ืจืช ื”ื›ืœื™ื ืฉืœื›ื ืœื‘ื ื™ื™ืช ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”](https://img.youtube.com/vi/-DfeD2k2Kj0/0.jpg)](https://youtu.be/-DfeD2k2Kj0 "ML ืœืžืชื—ื™ืœื™ื - ื”ื’ื“ืจืช ื”ื›ืœื™ื ืฉืœื›ื ืœื‘ื ื™ื™ืช ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืขืœ ื”ื’ื“ืจืช ื”ืžื—ืฉื‘ ืฉืœื›ื ืœืœืžื™ื“ืช ืžื›ื•ื ื”.
1. **ื”ืชืงื™ื ื• Python**. ื•ื“ืื• ืฉ-[Python](https://www.python.org/downloads/) ืžื•ืชืงืŸ ื‘ืžื—ืฉื‘ ืฉืœื›ื. ืชืฉืชืžืฉื• ื‘-Python ืขื‘ื•ืจ ืžืฉื™ืžื•ืช ืจื‘ื•ืช ื‘ืžื“ืขื™ ื”ื ืชื•ื ื™ื ื•ืœืžื™ื“ืช ืžื›ื•ื ื”. ืจื•ื‘ ืžืขืจื›ื•ืช ื”ืžื—ืฉื‘ ื›ื‘ืจ ื›ื•ืœืœื•ืช ื”ืชืงื ื” ืฉืœ Python. ื™ืฉื ื [ื—ื‘ื™ืœื•ืช ืงื•ื“ Python](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott) ืฉื™ืžื•ืฉื™ื•ืช ืฉื™ื›ื•ืœื•ืช ืœื”ืงืœ ืขืœ ื”ื”ื’ื“ืจื” ืขื‘ื•ืจ ื—ืœืง ืžื”ืžืฉืชืžืฉื™ื.
ืขื ื–ืืช, ืฉื™ืžื•ืฉื™ื ืžืกื•ื™ืžื™ื ื‘-Python ื“ื•ืจืฉื™ื ื’ืจืกื” ืื—ืช ืฉืœ ื”ืชื•ื›ื ื”, ื‘ืขื•ื“ ืื—ืจื™ื ื“ื•ืจืฉื™ื ื’ืจืกื” ืฉื•ื ื”. ืœื›ืŸ, ื›ื“ืื™ ืœืขื‘ื•ื“ ื‘ืชื•ืš [ืกื‘ื™ื‘ื” ื•ื™ืจื˜ื•ืืœื™ืช](https://docs.python.org/3/library/venv.html).
2. **ื”ืชืงื™ื ื• Visual Studio Code**. ื•ื“ืื• ืฉ-Visual Studio Code ืžื•ืชืงืŸ ื‘ืžื—ืฉื‘ ืฉืœื›ื. ืขืงื‘ื• ืื—ืจ ื”ื”ื•ืจืื•ืช ื”ืœืœื• ืœ-[ื”ืชืงื ืช Visual Studio Code](https://code.visualstudio.com/) ืขื‘ื•ืจ ื”ืชืงื ื” ื‘ืกื™ืกื™ืช. ืืชื ื”ื•ืœื›ื™ื ืœื”ืฉืชืžืฉ ื‘-Python ื‘ืชื•ืš Visual Studio Code ื‘ืงื•ืจืก ื”ื–ื”, ืื– ืื•ืœื™ ืชืจืฆื• ืœืœืžื•ื“ ื›ื™ืฆื“ [ืœื”ื’ื“ื™ืจ ืืช Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) ืœืคื™ืชื•ื— ื‘-Python.
> ืชืจื’ื™ืฉื• ื‘ื ื•ื— ืขื Python ืขืœ ื™ื“ื™ ืขื‘ื•ื“ื” ืขื ืื•ืกืฃ ื–ื” ืฉืœ [ืžื•ื“ื•ืœื™ ืœืžื™ื“ื”](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott)
>
> [![ื”ื’ื“ืจืช Python ืขื Visual Studio Code](https://img.youtube.com/vi/yyQM70vi7V8/0.jpg)](https://youtu.be/yyQM70vi7V8 "ื”ื’ื“ืจืช Python ืขื Visual Studio Code")
>
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ืฉื™ืžื•ืฉ ื‘-Python ื‘ืชื•ืš VS Code.
3. **ื”ืชืงื™ื ื• Scikit-learn**, ืขืœ ื™ื“ื™ ืžืขืงื‘ ืื—ืจ [ื”ื”ื•ืจืื•ืช ื”ืœืœื•](https://scikit-learn.org/stable/install.html). ืžื›ื™ื•ื•ืŸ ืฉืืชื ืฆืจื™ื›ื™ื ืœื•ื•ื“ื ืฉืืชื ืžืฉืชืžืฉื™ื ื‘-Python 3, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืกื‘ื™ื‘ื” ื•ื™ืจื˜ื•ืืœื™ืช. ืฉื™ืžื• ืœื‘, ืื ืืชื ืžืชืงื™ื ื™ื ืืช ื”ืกืคืจื™ื™ื” ื”ื–ื• ืขืœ Mac ืขื M1, ื™ืฉ ื”ื•ืจืื•ืช ืžื™ื•ื—ื“ื•ืช ื‘ืขืžื•ื“ ื”ืžืงื•ืฉืจ ืœืžืขืœื”.
4. **ื”ืชืงื™ื ื• Jupyter Notebook**. ืชืฆื˜ืจื›ื• [ืœื”ืชืงื™ืŸ ืืช ื—ื‘ื™ืœืช Jupyter](https://pypi.org/project/jupyter/).
## ืกื‘ื™ื‘ืช ื”ืขื‘ื•ื“ื” ืฉืœื›ื ืœืœืžื™ื“ืช ืžื›ื•ื ื”
ืืชื ื”ื•ืœื›ื™ื ืœื”ืฉืชืžืฉ ื‘-**ืžื—ื‘ืจื•ืช** ื›ื“ื™ ืœืคืชื— ืืช ืงื•ื“ ื”-Python ืฉืœื›ื ื•ืœื™ืฆื•ืจ ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”. ืกื•ื’ ืงื•ื‘ืฅ ื–ื” ื”ื•ื ื›ืœื™ ื ืคื•ืฅ ืขื‘ื•ืจ ืžื“ืขื ื™ ื ืชื•ื ื™ื, ื•ื ื™ืชืŸ ืœื–ื”ื•ืช ืื•ืชื• ืœืคื™ ื”ืกื™ื•ืžืช `.ipynb`.
ืžื—ื‘ืจื•ืช ื”ืŸ ืกื‘ื™ื‘ื” ืื™ื ื˜ืจืืงื˜ื™ื‘ื™ืช ืฉืžืืคืฉืจืช ืœืžืคืชื— ื’ื ืœืงื•ื“ื“ ื•ื’ื ืœื”ื•ืกื™ืฃ ื”ืขืจื•ืช ื•ืœื›ืชื•ื‘ ืชื™ืขื•ื“ ืกื‘ื™ื‘ ื”ืงื•ื“, ืžื” ืฉืžืื•ื“ ืžื•ืขื™ืœ ืขื‘ื•ืจ ืคืจื•ื™ืงื˜ื™ื ื ื™ืกื™ื•ื ื™ื™ื ืื• ืžื—ืงืจื™ื™ื.
[![ML ืœืžืชื—ื™ืœื™ื - ื”ื’ื“ืจืช ืžื—ื‘ืจื•ืช Jupyter ื›ื“ื™ ืœื”ืชื—ื™ืœ ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื”](https://img.youtube.com/vi/7E-jC8FLA2E/0.jpg)](https://youtu.be/7E-jC8FLA2E "ML ืœืžืชื—ื™ืœื™ื - ื”ื’ื“ืจืช ืžื—ื‘ืจื•ืช Jupyter ื›ื“ื™ ืœื”ืชื—ื™ืœ ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื”")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืขืœ ื‘ื™ืฆื•ืข ื”ืชืจื’ื™ืœ ื”ื–ื”.
### ืชืจื’ื™ืœ - ืขื‘ื•ื“ื” ืขื ืžื—ื‘ืจืช
ื‘ืชื™ืงื™ื™ื” ื”ื–ื•, ืชืžืฆืื• ืืช ื”ืงื•ื‘ืฅ _notebook.ipynb_.
1. ืคืชื—ื• ืืช _notebook.ipynb_ ื‘-Visual Studio Code.
ืฉืจืช Jupyter ื™ืชื—ื™ืœ ืขื Python 3+. ืชืžืฆืื• ืื–ื•ืจื™ื ื‘ืžื—ื‘ืจืช ืฉื ื™ืชืŸ `ืœื”ืจื™ืฅ`, ื—ืœืงื™ ืงื•ื“. ืชื•ื›ืœื• ืœื”ืจื™ืฅ ื‘ืœื•ืง ืงื•ื“ ืขืœ ื™ื“ื™ ื‘ื—ื™ืจืช ื”ืื™ื™ืงื•ืŸ ืฉื ืจืื” ื›ืžื• ื›ืคืชื•ืจ ื”ืคืขืœื”.
2. ื‘ื—ืจื• ืืช ื”ืื™ื™ืงื•ืŸ `md` ื•ื”ื•ืกื™ืคื• ืงืฆืช Markdown, ื•ืืช ื”ื˜ืงืกื˜ ื”ื‘ื **# ื‘ืจื•ื›ื™ื ื”ื‘ืื™ื ืœืžื—ื‘ืจืช ืฉืœื›ื**.
ืœืื—ืจ ืžื›ืŸ, ื”ื•ืกื™ืคื• ืงืฆืช ืงื•ื“ Python.
3. ื”ืงืœื™ื“ื• **print('hello notebook')** ื‘ื‘ืœื•ืง ื”ืงื•ื“.
4. ื‘ื—ืจื• ืืช ื”ื—ืฅ ื›ื“ื™ ืœื”ืจื™ืฅ ืืช ื”ืงื•ื“.
ืืชื ืืžื•ืจื™ื ืœืจืื•ืช ืืช ื”ื”ืฆื”ืจื” ื”ืžื•ื“ืคืกืช:
```output
hello notebook
```
![VS Code ืขื ืžื—ื‘ืจืช ืคืชื•ื—ื”](../../../../2-Regression/1-Tools/images/notebook.jpg)
ืืชื ื™ื›ื•ืœื™ื ืœืฉืœื‘ ืืช ื”ืงื•ื“ ืฉืœื›ื ืขื ื”ืขืจื•ืช ื›ื“ื™ ืœืชืขื“ ืืช ื”ืžื—ื‘ืจืช ื‘ืขืฆืžื›ื.
โœ… ื—ืฉื‘ื• ืœืจื’ืข ื›ืžื” ืฉื•ื ื” ืกื‘ื™ื‘ืช ื”ืขื‘ื•ื“ื” ืฉืœ ืžืคืชื—ื™ ืืชืจื™ื ืžื–ื• ืฉืœ ืžื“ืขื ื™ ื ืชื•ื ื™ื.
## ื”ืชื—ืœื” ืขื Scikit-learn
ืขื›ืฉื™ื• ืฉ-Python ืžื•ื’ื“ืจ ื‘ืกื‘ื™ื‘ื” ื”ืžืงื•ืžื™ืช ืฉืœื›ื, ื•ืืชื ืžืจื’ื™ืฉื™ื ื‘ื ื•ื— ืขื ืžื—ื‘ืจื•ืช Jupyter, ื‘ื•ืื• ื ืจื’ื™ืฉ ื‘ื ื•ื— ื’ื ืขื Scikit-learn (ื™ืฉ ืœื”ื’ื•ืช `sci` ื›ืžื• `science`). Scikit-learn ืžืกืคืงืช [API ื ืจื—ื‘](https://scikit-learn.org/stable/modules/classes.html#api-ref) ืฉื™ืขื–ื•ืจ ืœื›ื ืœื‘ืฆืข ืžืฉื™ืžื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื”.
ืœืคื™ [ื”ืืชืจ ืฉืœื”ื](https://scikit-learn.org/stable/getting_started.html), "Scikit-learn ื”ื™ื ืกืคืจื™ื™ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืงื•ื“ ืคืชื•ื— ืฉืชื•ืžื›ืช ื‘ืœืžื™ื“ื” ืžื•ื ื—ื™ืช ื•ืœืžื™ื“ื” ืœื ืžื•ื ื—ื™ืช. ื”ื™ื ื’ื ืžืกืคืงืช ื›ืœื™ื ืฉื•ื ื™ื ืœื”ืชืืžืช ืžื•ื“ืœื™ื, ืขื™ื‘ื•ื“ ื ืชื•ื ื™ื, ื‘ื—ื™ืจืช ืžื•ื“ืœื™ื ื•ื”ืขืจื›ื”, ื•ืขื•ื“ ื”ืจื‘ื” ื›ืœื™ ืขื–ืจ."
ื‘ืงื•ืจืก ื”ื–ื”, ืชืฉืชืžืฉื• ื‘-Scikit-learn ื•ื‘ื›ืœื™ื ื ื•ืกืคื™ื ื›ื“ื™ ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืœื‘ื™ืฆื•ืข ืžื” ืฉืื ื—ื ื• ืžื›ื ื™ื 'ืœืžื™ื“ืช ืžื›ื•ื ื” ืžืกื•ืจืชื™ืช'. ื ืžื ืขื ื• ื‘ื›ื•ื•ื ื” ืžืจืฉืชื•ืช ื ื•ื™ืจื•ื ื™ื ื•ืœืžื™ื“ื” ืขืžื•ืงื”, ืฉื›ืŸ ื”ื ืžื›ื•ืกื™ื ื˜ื•ื‘ ื™ื•ืชืจ ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ืฉืœื ื• 'AI ืœืžืชื—ื™ืœื™ื' ืฉืชืฆื ื‘ืงืจื•ื‘.
Scikit-learn ื”ื•ืคื›ืช ืืช ื‘ื ื™ื™ืช ื”ืžื•ื“ืœื™ื ื•ื”ืขืจื›ืชื ืœืฉื™ืžื•ืฉ ืœืคืฉื•ื˜ื”. ื”ื™ื ืžืชืžืงื“ืช ื‘ืขื™ืงืจ ื‘ืฉื™ืžื•ืฉ ื‘ื ืชื•ื ื™ื ืžืกืคืจื™ื™ื ื•ื›ื•ืœืœืช ื›ืžื” ืžืขืจื›ื™ ื ืชื•ื ื™ื ืžื•ื›ื ื™ื ืœืฉื™ืžื•ืฉ ื›ื›ืœื™ ืœืžื™ื“ื”. ื”ื™ื ื’ื ื›ื•ืœืœืช ืžื•ื“ืœื™ื ืžื•ื›ื ื™ื ืœืกื˜ื•ื“ื ื˜ื™ื ืœื ืกื•ืช. ื‘ื•ืื• ื ื—ืงื•ืจ ืืช ืชื”ืœื™ืš ื˜ืขื™ื ืช ื”ื ืชื•ื ื™ื ื”ืžื•ื‘ื ื™ื ืžืจืืฉ ื•ืฉื™ืžื•ืฉ ื‘ืื•ืžื“ืŸ ืžื•ื‘ื ื” ืœืžื•ื“ืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื”ืจืืฉื•ืŸ ืขื Scikit-learn ื‘ืืžืฆืขื•ืช ื ืชื•ื ื™ื ื‘ืกื™ืกื™ื™ื.
## ืชืจื’ื™ืœ - ื”ืžื—ื‘ืจืช ื”ืจืืฉื•ื ื” ืฉืœื›ื ืขื Scikit-learn
> ืžื“ืจื™ืš ื–ื” ื ื•ืฆืจ ื‘ื”ืฉืจืืช [ื“ื•ื’ืžืช ื”ืจื’ืจืกื™ื” ื”ืœื™ื ื™ืืจื™ืช](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py) ื‘ืืชืจ ืฉืœ Scikit-learn.
[![ML ืœืžืชื—ื™ืœื™ื - ืคืจื•ื™ืงื˜ ื”ืจื’ืจืกื™ื” ื”ืœื™ื ื™ืืจื™ืช ื”ืจืืฉื•ืŸ ืฉืœื›ื ื‘-Python](https://img.youtube.com/vi/2xkXL5EUpS0/0.jpg)](https://youtu.be/2xkXL5EUpS0 "ML ืœืžืชื—ื™ืœื™ื - ืคืจื•ื™ืงื˜ ื”ืจื’ืจืกื™ื” ื”ืœื™ื ื™ืืจื™ืช ื”ืจืืฉื•ืŸ ืฉืœื›ื ื‘-Python")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืขืœ ื‘ื™ืฆื•ืข ื”ืชืจื’ื™ืœ ื”ื–ื”.
ื‘ืงื•ื‘ืฅ _notebook.ipynb_ ื”ืžืฉื•ื™ืš ืœืฉื™ืขื•ืจ ื”ื–ื”, ื ืงื• ืืช ื›ืœ ื”ืชืื™ื ืขืœ ื™ื“ื™ ืœื—ื™ืฆื” ืขืœ ืื™ื™ืงื•ืŸ 'ืคื— ื”ืืฉืคื”'.
ื‘ืงื˜ืข ื”ื–ื”, ืชืขื‘ื“ื• ืขื ืžืขืจืš ื ืชื•ื ื™ื ืงื˜ืŸ ืขืœ ืกื•ื›ืจืช ืฉืžื•ื‘ื ื” ื‘-Scikit-learn ืœืฆื•ืจื›ื™ ืœืžื™ื“ื”. ื“ืžื™ื™ื ื• ืฉืืชื ืจื•ืฆื™ื ืœื‘ื“ื•ืง ื˜ื™ืคื•ืœ ืขื‘ื•ืจ ื—ื•ืœื™ ืกื•ื›ืจืช. ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืขืฉื•ื™ื™ื ืœืขื–ื•ืจ ืœื›ื ืœืงื‘ื•ืข ืื™ืœื• ื—ื•ืœื™ื ื™ื’ื™ื‘ื• ื˜ื•ื‘ ื™ื•ืชืจ ืœื˜ื™ืคื•ืœ, ื‘ื”ืชื‘ืกืก ืขืœ ืฉื™ืœื•ื‘ื™ื ืฉืœ ืžืฉืชื ื™ื. ืืคื™ืœื• ืžื•ื“ืœ ืจื’ืจืกื™ื” ื‘ืกื™ืกื™ ืžืื•ื“, ื›ืืฉืจ ื”ื•ื ืžื•ืฆื’ ื‘ืฆื•ืจื” ื—ื–ื•ืชื™ืช, ืขืฉื•ื™ ืœื”ืจืื•ืช ืžื™ื“ืข ืขืœ ืžืฉืชื ื™ื ืฉื™ืขื–ืจื• ืœื›ื ืœืืจื’ืŸ ืืช ื”ื ื™ืกื•ื™ื™ื ื”ืงืœื™ื ื™ื™ื ื”ืชื™ืื•ืจื˜ื™ื™ื ืฉืœื›ื.
โœ… ื™ืฉื ื ืกื•ื’ื™ื ืจื‘ื™ื ืฉืœ ืฉื™ื˜ื•ืช ืจื’ืจืกื™ื”, ื•ื”ื‘ื—ื™ืจื” ืชืœื•ื™ื” ื‘ืฉืืœื” ืฉืืชื ืžื—ืคืฉื™ื ืชืฉื•ื‘ื” ืขืœื™ื”. ืื ืืชื ืจื•ืฆื™ื ืœื—ื–ื•ืช ืืช ื”ื’ื•ื‘ื” ื”ืกื‘ื™ืจ ืฉืœ ืื“ื ื‘ื’ื™ืœ ืžืกื•ื™ื, ืชืฉืชืžืฉื• ื‘ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช, ืฉื›ืŸ ืืชื ืžื—ืคืฉื™ื **ืขืจืš ืžืกืคืจื™**. ืื ืืชื ืžืขื•ื ื™ื™ื ื™ื ืœื’ืœื•ืช ื”ืื ืกื•ื’ ืžืกื•ื™ื ืฉืœ ืžื˜ื‘ื— ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื˜ื‘ืขื•ื ื™ ืื• ืœื, ืืชื ืžื—ืคืฉื™ื **ืฉื™ื•ืš ืงื˜ื’ื•ืจื™ื”**, ื•ืœื›ืŸ ืชืฉืชืžืฉื• ื‘ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช. ืชืœืžื“ื• ื™ื•ืชืจ ืขืœ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ื‘ื”ืžืฉืš. ื—ืฉื‘ื• ืงืฆืช ืขืœ ืฉืืœื•ืช ืฉืชื•ื›ืœื• ืœืฉืื•ืœ ืืช ื”ื ืชื•ื ื™ื, ื•ืื™ื–ื• ืžืฉื™ื˜ื” ื–ื• ืชื”ื™ื” ื”ืžืชืื™ืžื” ื™ื•ืชืจ.
ื‘ื•ืื• ื ืชื—ื™ืœ ื‘ืžืฉื™ืžื” ื”ื–ื•.
### ื™ื™ื‘ื•ื ืกืคืจื™ื•ืช
ืœืžืฉื™ืžื” ื”ื–ื• ื ื™ื™ื‘ื ื›ืžื” ืกืคืจื™ื•ืช:
- **matplotlib**. ื–ื”ื• [ื›ืœื™ ื’ืจืคื™](https://matplotlib.org/) ืฉื™ืžื•ืฉื™, ื•ื ืฉืชืžืฉ ื‘ื• ืœื™ืฆื™ืจืช ื’ืจืฃ ืงื•.
- **numpy**. [numpy](https://numpy.org/doc/stable/user/whatisnumpy.html) ื”ื™ื ืกืคืจื™ื™ื” ืฉื™ืžื•ืฉื™ืช ืœื˜ื™ืคื•ืœ ื‘ื ืชื•ื ื™ื ืžืกืคืจื™ื™ื ื‘-Python.
- **sklearn**. ื–ื• ื”ืกืคืจื™ื™ื” [Scikit-learn](https://scikit-learn.org/stable/user_guide.html).
ื™ื™ื‘ืื• ื›ืžื” ืกืคืจื™ื•ืช ืฉื™ืขื–ืจื• ืœื›ื ื‘ืžืฉื™ืžื•ืช.
1. ื”ื•ืกื™ืคื• ื™ื™ื‘ื•ื ืขืœ ื™ื“ื™ ื”ืงืœื“ืช ื”ืงื•ื“ ื”ื‘ื:
```python
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model, model_selection
```
ืœืžืขืœื” ืืชื ืžื™ื™ื‘ืื™ื `matplotlib`, `numpy`, ื•ืืชื ืžื™ื™ื‘ืื™ื `datasets`, `linear_model` ื•-`model_selection` ืž-`sklearn`. `model_selection` ืžืฉืžืฉ ืœืคื™ืฆื•ืœ ื ืชื•ื ื™ื ืœืกื˜ื™ ืื™ืžื•ืŸ ื•ื‘ื“ื™ืงื”.
### ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืœ ืกื•ื›ืจืช
ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ืžื•ื‘ื ื” [diabetes dataset](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) ื›ื•ืœืœ 442 ื“ื’ื™ืžื•ืช ื ืชื•ื ื™ื ืขืœ ืกื•ื›ืจืช, ืขื 10 ืžืฉืชื ื™ื ืชื›ื•ื ื”, ืฉื—ืœืงื ื›ื•ืœืœื™ื:
- ื’ื™ืœ: ื’ื™ืœ ื‘ืฉื ื™ื
- BMI: ืžื“ื“ ืžืกืช ื’ื•ืฃ
- BP: ืœื—ืฅ ื“ื ืžืžื•ืฆืข
- S1 TC: ืชืื™ T (ืกื•ื’ ืฉืœ ืชืื™ ื“ื ืœื‘ื ื™ื)
โœ… ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ื” ื›ื•ืœืœ ืืช ืžื•ืฉื’ 'ืžื™ืŸ' ื›ืžืฉืชื ื” ืชื›ื•ื ื” ื—ืฉื•ื‘ ืœืžื—ืงืจ ืขืœ ืกื•ื›ืจืช. ืžืขืจื›ื™ ื ืชื•ื ื™ื ืจืคื•ืื™ื™ื ืจื‘ื™ื ื›ื•ืœืœื™ื ืกื•ื’ ื–ื” ืฉืœ ืกื™ื•ื•ื’ ื‘ื™ื ืืจื™. ื—ืฉื‘ื• ืงืฆืช ืขืœ ืื™ืš ืกื™ื•ื•ื’ื™ื ื›ืืœื” ืขืฉื•ื™ื™ื ืœื”ื•ืฆื™ื ื—ืœืงื™ื ืžืกื•ื™ืžื™ื ืžื”ืื•ื›ืœื•ืกื™ื™ื” ืžื˜ื™ืคื•ืœื™ื.
ืขื›ืฉื™ื•, ื˜ืขื ื• ืืช ื ืชื•ื ื™ X ื•-y.
> ๐ŸŽ“ ื–ื›ืจื•, ื–ื• ืœืžื™ื“ื” ืžื•ื ื—ื™ืช, ื•ืื ื—ื ื• ืฆืจื™ื›ื™ื ืžื˜ืจื” ื‘ืฉื 'y'.
ื‘ืชื ืงื•ื“ ื—ื“ืฉ, ื˜ืขื ื• ืืช ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืœ ืกื•ื›ืจืช ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`load_diabetes()`. ื”ืงืœื˜ `return_X_y=True` ืžืกืžืŸ ืฉ-`X` ื™ื”ื™ื” ืžื˜ืจื™ืฆืช ื ืชื•ื ื™ื, ื•-`y` ื™ื”ื™ื” ื™ืขื“ ื”ืจื’ืจืกื™ื”.
1. ื”ื•ืกื™ืคื• ื›ืžื” ืคืงื•ื“ื•ืช ื”ื“ืคืกื” ื›ื“ื™ ืœื”ืฆื™ื’ ืืช ื”ืฆื•ืจื” ืฉืœ ืžื˜ืจื™ืฆืช ื”ื ืชื•ื ื™ื ื•ื”ืืœืžื ื˜ ื”ืจืืฉื•ืŸ ืฉืœื”:
```python
X, y = datasets.load_diabetes(return_X_y=True)
print(X.shape)
print(X[0])
```
ืžื” ืฉืืชื ืžืงื‘ืœื™ื ื‘ืชื’ื•ื‘ื” ื”ื•ื ื˜ื•ืคืœ. ืžื” ืฉืืชื ืขื•ืฉื™ื ื”ื•ื ืœื”ืงืฆื•ืช ืืช ืฉื ื™ ื”ืขืจื›ื™ื ื”ืจืืฉื•ื ื™ื ืฉืœ ื”ื˜ื•ืคืœ ืœ-`X` ื•-`y` ื‘ื”ืชืืžื”. ืœืžื“ื• ื™ื•ืชืจ [ืขืœ ื˜ื•ืคืœื™ื](https://wikipedia.org/wiki/Tuple).
ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืฉืœื ืชื•ื ื™ื ื”ืืœื” ื™ืฉ 442 ืคืจื™ื˜ื™ื ื‘ืฆื•ืจืช ืžืขืจื›ื™ื ืฉืœ 10 ืืœืžื ื˜ื™ื:
```text
(442, 10)
[ 0.03807591 0.05068012 0.06169621 0.02187235 -0.0442235 -0.03482076
-0.04340085 -0.00259226 0.01990842 -0.01764613]
```
โœ… ื—ืฉื‘ื• ืงืฆืช ืขืœ ื”ืงืฉืจ ื‘ื™ืŸ ื”ื ืชื•ื ื™ื ืœื™ืขื“ ื”ืจื’ืจืกื™ื”. ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช ื—ื•ื–ื” ืงืฉืจื™ื ื‘ื™ืŸ ืชื›ื•ื ื” X ืœืžืฉืชื ื” ื™ืขื“ y. ื”ืื ืชื•ื›ืœื• ืœืžืฆื•ื ืืช [ื”ื™ืขื“](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) ืขื‘ื•ืจ ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืœ ืกื•ื›ืจืช ื‘ืชื™ืขื•ื“? ืžื” ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ื” ืžื“ื’ื™ื, ื‘ื”ืชื—ืฉื‘ ื‘ื™ืขื“?
2. ืœืื—ืจ ืžื›ืŸ, ื‘ื—ืจื• ื—ืœืง ืžืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ื” ื›ื“ื™ ืœืฉืจื˜ื˜ ืขืœ ื™ื“ื™ ื‘ื—ื™ืจืช ื”ืขืžื•ื“ื” ื”ืฉืœื™ืฉื™ืช ืฉืœ ืžืขืจืš ื”ื ืชื•ื ื™ื. ืชื•ื›ืœื• ืœืขืฉื•ืช ื–ืืช ืขืœ ื™ื“ื™ ืฉื™ืžื•ืฉ ื‘ืื•ืคืจื˜ื•ืจ `:` ื›ื“ื™ ืœื‘ื—ื•ืจ ืืช ื›ืœ ื”ืฉื•ืจื•ืช, ื•ืื– ืœื‘ื—ื•ืจ ืืช ื”ืขืžื•ื“ื” ื”ืฉืœื™ืฉื™ืช ื‘ืืžืฆืขื•ืช ื”ืื™ื ื“ืงืก (2). ืชื•ื›ืœื• ื’ื ืœืฉื ื•ืช ืืช ืฆื•ืจืช ื”ื ืชื•ื ื™ื ืœื”ื™ื•ืช ืžืขืจืš ื“ื•-ืžืžื“ื™ - ื›ืคื™ ืฉื ื“ืจืฉ ืœืฉืจื˜ื•ื˜ - ืขืœ ื™ื“ื™ ืฉื™ืžื•ืฉ ื‘-`reshape(n_rows, n_columns)`. ืื ืื—ื“ ื”ืคืจืžื˜ืจื™ื ื”ื•ื -1, ื”ืžืžื“ ื”ืžืชืื™ื ืžื—ื•ืฉื‘ ืื•ื˜ื•ืžื˜ื™ืช.
```python
X = X[:, 2]
X = X.reshape((-1,1))
```
โœ… ื‘ื›ืœ ื–ืžืŸ, ื”ื“ืคื™ืกื• ืืช ื”ื ืชื•ื ื™ื ื›ื“ื™ ืœื‘ื“ื•ืง ืืช ืฆื•ืจืชื.
3. ืขื›ืฉื™ื• ื›ืฉื™ืฉ ืœื›ื ื ืชื•ื ื™ื ืžื•ื›ื ื™ื ืœืฉืจื˜ื•ื˜, ืชื•ื›ืœื• ืœืจืื•ืช ืื ืžื›ื•ื ื” ื™ื›ื•ืœื” ืœืขื–ื•ืจ ืœืงื‘ื•ืข ื—ืœื•ืงื” ื”ื’ื™ื•ื ื™ืช ื‘ื™ืŸ ื”ืžืกืคืจื™ื ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ื”. ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช, ืขืœื™ื›ื ืœืคืฆืœ ื’ื ืืช ื”ื ืชื•ื ื™ื (X) ื•ื’ื ืืช ื”ื™ืขื“ (y) ืœืกื˜ื™ ื‘ื“ื™ืงื” ื•ืื™ืžื•ืŸ. ืœ-Scikit-learn ื™ืฉ ื“ืจืš ืคืฉื•ื˜ื” ืœืขืฉื•ืช ื–ืืช; ืชื•ื›ืœื• ืœืคืฆืœ ืืช ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื” ืฉืœื›ื ื‘ื ืงื•ื“ื” ื ืชื•ื ื”.
```python
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)
```
4. ืขื›ืฉื™ื• ืืชื ืžื•ื›ื ื™ื ืœืืžืŸ ืืช ื”ืžื•ื“ืœ ืฉืœื›ื! ื˜ืขื ื• ืืช ืžื•ื“ืœ ื”ืจื’ืจืกื™ื” ื”ืœื™ื ื™ืืจื™ืช ื•ืืžื ื• ืื•ืชื• ืขื ืกื˜ื™ ื”ืื™ืžื•ืŸ ืฉืœ X ื•-y ื‘ืืžืฆืขื•ืช `model.fit()`:
```python
model = linear_model.LinearRegression()
model.fit(X_train, y_train)
```
โœ… `model.fit()` ื”ื™ื ืคื•ื ืงืฆื™ื” ืฉืชืจืื• ื‘ื”ืจื‘ื” ืกืคืจื™ื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ื›ืžื• TensorFlow.
5. ืœืื—ืจ ืžื›ืŸ, ืฆืจื• ืชื—ื–ื™ืช ื‘ืืžืฆืขื•ืช ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื”, ื‘ืืžืฆืขื•ืช ื”ืคื•ื ืงืฆื™ื” `predict()`. ื–ื” ื™ืฉืžืฉ ืœืฆื™ื•ืจ ื”ืงื• ื‘ื™ืŸ ืงื‘ื•ืฆื•ืช ื”ื ืชื•ื ื™ื ืฉืœ ื”ืžื•ื“ืœ.
```python
y_pred = model.predict(X_test)
```
6. ืขื›ืฉื™ื• ื”ื’ื™ืข ื”ื–ืžืŸ ืœื”ืฆื™ื’ ืืช ื”ื ืชื•ื ื™ื ื‘ื’ืจืฃ. Matplotlib ื”ื•ื ื›ืœื™ ืžืื•ื“ ืฉื™ืžื•ืฉื™ ืœืžืฉื™ืžื” ื”ื–ื•. ืฆืจื• ื’ืจืฃ ืคื™ื–ื•ืจ ืฉืœ ื›ืœ ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื” ืฉืœ X ื•-y, ื•ื”ืฉืชืžืฉื• ื‘ืชื—ื–ื™ืช ื›ื“ื™ ืœืฆื™ื™ืจ ืงื• ื‘ืžืงื•ื ื”ืžืชืื™ื ื‘ื™ื•ืชืจ, ื‘ื™ืŸ ืงื‘ื•ืฆื•ืช ื”ื ืชื•ื ื™ื ืฉืœ ื”ืžื•ื“ืœ.
```python
plt.scatter(X_test, y_test, color='black')
plt.plot(X_test, y_pred, color='blue', linewidth=3)
plt.xlabel('Scaled BMIs')
plt.ylabel('Disease Progression')
plt.title('A Graph Plot Showing Diabetes Progression Against BMI')
plt.show()
```
![ื’ืจืฃ ืคื™ื–ื•ืจ ืฉืžืฆื™ื’ ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ืกื‘ื™ื‘ ืกื•ื›ืจืช](../../../../2-Regression/1-Tools/images/scatterplot.png)
โœ… ืชื—ืฉื‘ื• ืงืฆืช ืขืœ ืžื” ืฉืงื•ืจื” ื›ืืŸ. ืงื• ื™ืฉืจ ืขื•ื‘ืจ ื“ืจืš ื”ืจื‘ื” ื ืงื•ื“ื•ืช ืงื˜ื ื•ืช ืฉืœ ื ืชื•ื ื™ื, ืื‘ืœ ืžื” ื”ื•ื ืขื•ืฉื” ื‘ื“ื™ื•ืง? ื”ืื ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ืื™ืš ืืคืฉืจ ืœื”ืฉืชืžืฉ ื‘ืงื• ื”ื–ื” ื›ื“ื™ ืœื—ื–ื•ืช ืื™ืคื” ื ืงื•ื“ืช ื ืชื•ื ื™ื ื—ื“ืฉื” ื•ืœื ืžื•ื›ืจืช ืฆืจื™ื›ื” ืœื”ืชืื™ื ื‘ื™ื—ืก ืœืฆื™ืจ ื”-y ืฉืœ ื”ื’ืจืฃ? ื ืกื• ืœื ืกื— ื‘ืžื™ืœื™ื ืืช ื”ืฉื™ืžื•ืฉ ื”ืžืขืฉื™ ืฉืœ ื”ืžื•ื“ืœ ื”ื–ื”.
ืžื–ืœ ื˜ื•ื‘, ื™ืฆืจืชื ืืช ืžื•ื“ืœ ื”ืจื’ืจืกื™ื” ื”ืœื™ื ื™ืืจื™ืช ื”ืจืืฉื•ืŸ ืฉืœื›ื, ื‘ื™ืฆืขืชื ืชื—ื–ื™ืช ื‘ืืžืฆืขื•ืชื•, ื•ื”ืฆื’ืชื ืื•ืชื” ื‘ื’ืจืฃ!
---
## ๐Ÿš€ืืชื’ืจ
ืฆืจื• ื’ืจืฃ ืขื‘ื•ืจ ืžืฉืชื ื” ืื—ืจ ืžืชื•ืš ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ื”. ืจืžื–: ืขืจื›ื• ืืช ื”ืฉื•ืจื” ื”ื–ื•: `X = X[:,2]`. ื‘ื”ืชื—ืฉื‘ ื‘ืžื˜ืจืช ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ื”, ืžื” ืืชื ื™ื›ื•ืœื™ื ืœื’ืœื•ืช ืขืœ ื”ืชืงื“ืžื•ืช ืžื—ืœืช ื”ืกื•ื›ืจืช?
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื‘ืžื“ืจื™ืš ื”ื–ื” ืขื‘ื“ืชื ืขื ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช ืคืฉื•ื˜ื”, ื•ืœื ืขื ืจื’ืจืกื™ื” ื—ื“-ืžืฉืชื ื™ืช ืื• ืจื’ืจืกื™ื” ืžืจื•ื‘ืช ืžืฉืชื ื™ื. ืงืจืื• ืžืขื˜ ืขืœ ื”ื”ื‘ื“ืœื™ื ื‘ื™ืŸ ื”ืฉื™ื˜ื•ืช ื”ืœืœื•, ืื• ืฆืคื• ื‘-[ืกืจื˜ื•ืŸ ื”ื–ื”](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef).
ืงืจืื• ืขื•ื“ ืขืœ ืžื•ืฉื’ ื”ืจื’ืจืกื™ื” ื•ื—ืฉื‘ื• ืื™ืœื• ืกื•ื’ื™ ืฉืืœื•ืช ื ื™ืชืŸ ืœืขื ื•ืช ื‘ืืžืฆืขื•ืช ื”ื˜ื›ื ื™ืงื” ื”ื–ื•. ืงื—ื• ืืช [ื”ืžื“ืจื™ืš ื”ื–ื”](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott) ื›ื“ื™ ืœื”ืขืžื™ืง ืืช ื”ื”ื‘ื ื” ืฉืœื›ื.
## ืžืฉื™ืžื”
[ืžืขืจืš ื ืชื•ื ื™ื ืื—ืจ](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,27 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "74a5cf83e4ebc302afbcbc4f418afd0a",
"translation_date": "2025-09-05T18:53:28+00:00",
"source_file": "2-Regression/1-Tools/assignment.md",
"language_code": "he"
}
-->
# ืจื’ืจืกื™ื” ืขื Scikit-learn
## ื”ื•ืจืื•ืช
ืขื™ื™ื ื• ื‘-[ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืœ Linnerud](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html#sklearn.datasets.load_linnerud) ื‘-Scikit-learn. ืžืขืจืš ื ืชื•ื ื™ื ื–ื” ื›ื•ืœืœ ืžืกืคืจ [ื™ืขื“ื™ื](https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset): 'ื”ื•ื ืžื•ืจื›ื‘ ืžืฉืœื•ืฉื” ืžืฉืชื ื™ื ืฉืœ ืคืขื™ืœื•ืช ื’ื•ืคื ื™ืช (ื ืชื•ื ื™ื) ื•ืฉืœื•ืฉื” ืžืฉืชื ื™ื ืคื™ื–ื™ื•ืœื•ื’ื™ื™ื (ื™ืขื“ื™ื) ืฉื ืืกืคื• ืžืขืฉืจื™ื ื’ื‘ืจื™ื ื‘ื’ื™ืœ ื”ืขืžื™ื“ื” ื‘ืžื•ืขื“ื•ืŸ ื›ื•ืฉืจ'.
ื‘ืžื™ืœื™ื ืฉืœื›ื, ืชืืจื• ื›ื™ืฆื“ ืœื™ืฆื•ืจ ืžื•ื“ืœ ืจื’ืจืกื™ื” ืฉื™ืžืคื” ืืช ื”ืงืฉืจ ื‘ื™ืŸ ื”ื™ืงืฃ ื”ืžื•ืชื ื™ื™ื ืœื‘ื™ืŸ ืžืกืคืจ ื›ืคื™ืคื•ืช ื”ื‘ื˜ืŸ ืฉื‘ื•ืฆืขื•. ืขืฉื• ืืช ืื•ืชื• ื”ื“ื‘ืจ ืขื‘ื•ืจ ื ืงื•ื“ื•ืช ื”ื ืชื•ื ื™ื ื”ืื—ืจื•ืช ื‘ืžืขืจืš ื ืชื•ื ื™ื ื–ื”.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| ----------------------------- | --------------------------------- | --------------------------- | ------------------------- |
| ื”ื’ืฉืช ืคืกืงื” ืชื™ืื•ืจื™ืช | ืคืกืงื” ื›ืชื•ื‘ื” ื”ื™ื˜ื‘ ืžื•ื’ืฉืช | ื›ืžื” ืžืฉืคื˜ื™ื ืžื•ื’ืฉื™ื | ืœื ื ืžืกืจื” ืชื™ืื•ืจ ื›ืœืฉื”ื• |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T18:53:56+00:00",
"source_file": "2-Regression/1-Tools/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,226 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "7c077988328ebfe33b24d07945f16eca",
"translation_date": "2025-09-05T18:54:41+00:00",
"source_file": "2-Regression/2-Data/README.md",
"language_code": "he"
}
-->
# ื‘ื ื™ื™ืช ืžื•ื“ืœ ืจื’ืจืกื™ื” ื‘ืืžืฆืขื•ืช Scikit-learn: ื”ื›ื ืช ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื ืชื•ื ื™ื
![ืื™ื ืคื•ื’ืจืคื™ืงื” ืฉืœ ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื ืชื•ื ื™ื](../../../../2-Regression/2-Data/images/data-visualization.png)
ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Dasani Madipalli](https://twitter.com/dasani_decoded)
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
> ### [ื”ืฉื™ืขื•ืจ ื”ื–ื” ื–ืžื™ืŸ ื’ื ื‘-R!](../../../../2-Regression/2-Data/solution/R/lesson_2.html)
## ืžื‘ื•ื
ืขื›ืฉื™ื•, ื›ืฉื™ืฉ ืœืš ืืช ื”ื›ืœื™ื ื”ื“ืจื•ืฉื™ื ื›ื“ื™ ืœื”ืชื—ื™ืœ ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืืžืฆืขื•ืช Scikit-learn, ืืชื” ืžื•ื›ืŸ ืœื”ืชื—ื™ืœ ืœืฉืื•ืœ ืฉืืœื•ืช ืขืœ ื”ื ืชื•ื ื™ื ืฉืœืš. ื›ืฉืืชื” ืขื•ื‘ื“ ืขื ื ืชื•ื ื™ื ื•ืžื™ื™ืฉื ืคืชืจื•ื ื•ืช ML, ื—ืฉื•ื‘ ืžืื•ื“ ืœื”ื‘ื™ืŸ ืื™ืš ืœืฉืื•ืœ ืืช ื”ืฉืืœื” ื”ื ื›ื•ื ื” ื›ื“ื™ ืœืžืฆื•ืช ืืช ื”ืคื•ื˜ื ืฆื™ืืœ ืฉืœ ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืœืš.
ื‘ืฉื™ืขื•ืจ ื–ื” ืชืœืžื“:
- ืื™ืš ืœื”ื›ื™ืŸ ืืช ื”ื ืชื•ื ื™ื ืฉืœืš ืœื‘ื ื™ื™ืช ืžื•ื“ืœื™ื.
- ืื™ืš ืœื”ืฉืชืžืฉ ื‘-Matplotlib ืœื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื ืชื•ื ื™ื.
## ืœืฉืื•ืœ ืืช ื”ืฉืืœื” ื”ื ื›ื•ื ื” ืขืœ ื”ื ืชื•ื ื™ื ืฉืœืš
ื”ืฉืืœื” ืฉืืชื” ืจื•ืฆื” ืœืขื ื•ืช ืขืœื™ื” ืชืงื‘ืข ืื™ื–ื” ืกื•ื’ ืฉืœ ืืœื’ื•ืจื™ืชืžื™ื ML ืชืฉืชืžืฉ. ืื™ื›ื•ืช ื”ืชืฉื•ื‘ื” ืฉืชืงื‘ืœ ืชื”ื™ื” ืชืœื•ื™ื” ืžืื•ื“ ื‘ืื•ืคื™ ื”ื ืชื•ื ื™ื ืฉืœืš.
ืชืกืชื›ืœ ืขืœ [ื”ื ืชื•ื ื™ื](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) ืฉืกื•ืคืงื• ืœืฉื™ืขื•ืจ ื”ื–ื”. ืืชื” ื™ื›ื•ืœ ืœืคืชื•ื— ืืช ืงื•ื‘ืฅ ื”-.csv ื”ื–ื” ื‘-VS Code. ืžื‘ื˜ ืžื”ื™ืจ ืžืจืื” ืžื™ื“ ืฉื™ืฉ ื‘ื• ืขืจื›ื™ื ื—ืกืจื™ื ื•ืชืขืจื•ื‘ืช ืฉืœ ื ืชื•ื ื™ื ื˜ืงืกื˜ื•ืืœื™ื™ื ื•ืžืกืคืจื™ื™ื. ื™ืฉ ื’ื ืขืžื•ื“ื” ืžื•ื–ืจื” ื‘ืฉื 'Package' ืฉื‘ื” ื”ื ืชื•ื ื™ื ื”ื ืชืขืจื•ื‘ืช ืฉืœ 'sacks', 'bins' ื•ืขืจื›ื™ื ืื—ืจื™ื. ืœืžืขืฉื”, ื”ื ืชื•ื ื™ื ื“ื™ ืžื‘ื•ืœื’ื ื™ื.
[![ML ืœืžืชื—ื™ืœื™ื - ืื™ืš ืœื ืชื— ื•ืœื ืงื•ืช ืžืขืจืš ื ืชื•ื ื™ื](https://img.youtube.com/vi/5qGjczWTrDQ/0.jpg)](https://youtu.be/5qGjczWTrDQ "ML ืœืžืชื—ื™ืœื™ื - ืื™ืš ืœื ืชื— ื•ืœื ืงื•ืช ืžืขืจืš ื ืชื•ื ื™ื")
> ๐ŸŽฅ ืœื—ืฅ ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืฉืžืกื‘ื™ืจ ืื™ืš ืœื”ื›ื™ืŸ ืืช ื”ื ืชื•ื ื™ื ืœืฉื™ืขื•ืจ ื”ื–ื”.
ืœืžืขืฉื”, ื–ื” ืœื ืžืื•ื“ ื ืคื•ืฅ ืœืงื‘ืœ ืžืขืจืš ื ืชื•ื ื™ื ืฉืžื•ื›ืŸ ืœื—ืœื•ื˜ื™ืŸ ืœืฉื™ืžื•ืฉ ืœื™ืฆื™ืจืช ืžื•ื“ืœ ML ื™ืฉืจ ืžื”ืงื•ืคืกื”. ื‘ืฉื™ืขื•ืจ ื”ื–ื” ืชืœืžื“ ืื™ืš ืœื”ื›ื™ืŸ ืžืขืจืš ื ืชื•ื ื™ื ื’ื•ืœืžื™ ื‘ืืžืฆืขื•ืช ืกืคืจื™ื•ืช Python ืกื˜ื ื“ืจื˜ื™ื•ืช. ืชืœืžื“ ื’ื ื˜ื›ื ื™ืงื•ืช ืฉื•ื ื•ืช ืœื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื”ื ืชื•ื ื™ื.
## ืžื—ืงืจ ืžืงืจื”: 'ืฉื•ืง ื”ื“ืœืขื•ืช'
ื‘ืชื™ืงื™ื™ื” ื–ื• ืชืžืฆื ืงื•ื‘ืฅ .csv ื‘ืชื™ืงื™ื™ืช ื”ืฉื•ืจืฉ `data` ื‘ืฉื [US-pumpkins.csv](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) ืฉืžื›ื™ืœ 1757 ืฉื•ืจื•ืช ืฉืœ ื ืชื•ื ื™ื ืขืœ ืฉื•ืง ื”ื“ืœืขื•ืช, ืžืกื•ื“ืจื•ืช ืœืคื™ ืขืจื™ื. ืืœื• ื ืชื•ื ื™ื ื’ื•ืœืžื™ื™ื ืฉื ืœืงื—ื• ืžืชื•ืš [ื“ื•ื—ื•ืช ืฉื•ืงื™ ื”ื™ื‘ื•ืœื™ื ื”ืžื™ื•ื—ื“ื™ื](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice) ืฉืžื•ืคืฆื™ื ืขืœ ื™ื“ื™ ืžืฉืจื“ ื”ื—ืงืœืื•ืช ืฉืœ ืืจืฆื•ืช ื”ื‘ืจื™ืช.
### ื”ื›ื ืช ื ืชื•ื ื™ื
ื”ื ืชื•ื ื™ื ื”ืืœื” ื”ื ื ื—ืœืช ื”ื›ืœืœ. ื ื™ืชืŸ ืœื”ื•ืจื™ื“ ืื•ืชื ื‘ืงื‘ืฆื™ื ื ืคืจื“ื™ื ืจื‘ื™ื, ืœืคื™ ืขื™ืจ, ืžืืชืจ ื”-USDA. ื›ื“ื™ ืœื”ื™ืžื ืข ืžืžืกืคืจ ืจื‘ ืฉืœ ืงื‘ืฆื™ื ื ืคืจื“ื™ื, ืื™ื—ื“ื ื• ืืช ื›ืœ ื ืชื•ื ื™ ื”ืขืจื™ื ืœื’ื™ืœื™ื•ืŸ ืืœืงื˜ืจื•ื ื™ ืื—ื“, ื›ืš ืฉื›ื‘ืจ _ื”ื›ื ื•_ ืืช ื”ื ืชื•ื ื™ื ืžืขื˜. ืขื›ืฉื™ื•, ื‘ื•ืื• ื ืกืชื›ืœ ืžืงืจื•ื‘ ืขืœ ื”ื ืชื•ื ื™ื.
### ื ืชื•ื ื™ ื”ื“ืœืขื•ืช - ืžืกืงื ื•ืช ืจืืฉื•ื ื™ื•ืช
ืžื” ืืชื” ืฉื ืœื‘ ืœื’ื‘ื™ ื”ื ืชื•ื ื™ื ื”ืืœื”? ื›ื‘ืจ ืจืื™ืช ืฉื™ืฉ ืชืขืจื•ื‘ืช ืฉืœ ื˜ืงืกื˜ื™ื, ืžืกืคืจื™ื, ืขืจื›ื™ื ื—ืกืจื™ื ื•ืขืจื›ื™ื ืžื•ื–ืจื™ื ืฉืฆืจื™ืš ืœื”ื‘ื™ืŸ.
ืื™ื–ื• ืฉืืœื” ืืคืฉืจ ืœืฉืื•ืœ ืขืœ ื”ื ืชื•ื ื™ื ื”ืืœื”, ื‘ืืžืฆืขื•ืช ื˜ื›ื ื™ืงืช ืจื’ืจืกื™ื”? ืžื” ื“ืขืชืš ืขืœ "ืœื—ื–ื•ืช ืืช ื”ืžื—ื™ืจ ืฉืœ ื“ืœืขืช ืœืžื›ื™ืจื” ื‘ืžื”ืœืš ื—ื•ื“ืฉ ื ืชื•ืŸ". ืžื‘ื˜ ื ื•ืกืฃ ืขืœ ื”ื ืชื•ื ื™ื ืžืจืื” ืฉื™ืฉ ื›ืžื” ืฉื™ื ื•ื™ื™ื ืฉืฆืจื™ืš ืœืขืฉื•ืช ื›ื“ื™ ืœื™ืฆื•ืจ ืืช ืžื‘ื ื” ื”ื ืชื•ื ื™ื ื”ื“ืจื•ืฉ ืœืžืฉื™ืžื”.
## ืชืจื’ื™ืœ - ื ื™ืชื•ื— ื ืชื•ื ื™ ื”ื“ืœืขื•ืช
ื‘ื•ืื• ื ืฉืชืžืฉ ื‘-[Pandas](https://pandas.pydata.org/) (ื”ืฉื ื”ื•ื ืงื™ืฆื•ืจ ืฉืœ `Python Data Analysis`), ื›ืœื™ ืžืื•ื“ ืฉื™ืžื•ืฉื™ ืœืขื™ืฆื•ื‘ ื ืชื•ื ื™ื, ื›ื“ื™ ืœื ืชื— ื•ืœื”ื›ื™ืŸ ืืช ื ืชื•ื ื™ ื”ื“ืœืขื•ืช.
### ืงื•ื“ื ื›ืœ, ื‘ื“ื•ืง ืื ื™ืฉ ืชืืจื™ื›ื™ื ื—ืกืจื™ื
ืงื•ื“ื ื›ืœ ืชืฆื˜ืจืš ืœื ืงื•ื˜ ืฆืขื“ื™ื ื›ื“ื™ ืœื‘ื“ื•ืง ืื ื™ืฉ ืชืืจื™ื›ื™ื ื—ืกืจื™ื:
1. ื”ืžืจื” ืฉืœ ื”ืชืืจื™ื›ื™ื ืœืคื•ืจืžื˜ ื—ื•ื“ืฉื™ (ืืœื• ืชืืจื™ื›ื™ื ืืžืจื™ืงืื™ื, ื›ืš ืฉื”ืคื•ืจืžื˜ ื”ื•ื `MM/DD/YYYY`).
2. ื—ื™ืœื•ืฅ ื”ื—ื•ื“ืฉ ืœืขืžื•ื“ื” ื—ื“ืฉื”.
ืคืชื— ืืช ื”ืงื•ื‘ืฅ _notebook.ipynb_ ื‘-Visual Studio Code ื•ื™ื™ื‘ื ืืช ื”ื’ื™ืœื™ื•ืŸ ื”ืืœืงื˜ืจื•ื ื™ ืœ-DataFrame ื—ื“ืฉ ืฉืœ Pandas.
1. ื”ืฉืชืžืฉ ื‘ืคื•ื ืงืฆื™ื” `head()` ื›ื“ื™ ืœืฆืคื•ืช ื‘ื—ืžืฉ ื”ืฉื•ืจื•ืช ื”ืจืืฉื•ื ื•ืช.
```python
import pandas as pd
pumpkins = pd.read_csv('../data/US-pumpkins.csv')
pumpkins.head()
```
โœ… ื‘ืื™ื–ื• ืคื•ื ืงืฆื™ื” ื”ื™ื™ืช ืžืฉืชืžืฉ ื›ื“ื™ ืœืฆืคื•ืช ื‘ื—ืžืฉ ื”ืฉื•ืจื•ืช ื”ืื—ืจื•ื ื•ืช?
1. ื‘ื“ื•ืง ืื ื™ืฉ ื ืชื•ื ื™ื ื—ืกืจื™ื ื‘-DataFrame ื”ื ื•ื›ื—ื™:
```python
pumpkins.isnull().sum()
```
ื™ืฉ ื ืชื•ื ื™ื ื—ืกืจื™ื, ืื‘ืœ ืื•ืœื™ ื–ื” ืœื ืžืฉื ื” ืœืžืฉื™ืžื” ื”ื ื•ื›ื—ื™ืช.
1. ื›ื“ื™ ืœื”ืคื•ืš ืืช ื”-DataFrame ืฉืœืš ืœืงืœ ื™ื•ืชืจ ืœืขื‘ื•ื“ื”, ื‘ื—ืจ ืจืง ืืช ื”ืขืžื•ื“ื•ืช ืฉืืชื” ืฆืจื™ืš, ื‘ืืžืฆืขื•ืช ืคื•ื ืงืฆื™ื™ืช `loc` ืฉืžื—ืœืฆืช ืžื”-DataFrame ื”ืžืงื•ืจื™ ืงื‘ื•ืฆืช ืฉื•ืจื•ืช (ืฉื ืžืกืจื•ืช ื›ืคืจืžื˜ืจ ืจืืฉื•ืŸ) ื•ืขืžื•ื“ื•ืช (ืฉื ืžืกืจื•ืช ื›ืคืจืžื˜ืจ ืฉื ื™). ื”ื‘ื™ื˜ื•ื™ `:` ื‘ืžืงืจื” ื”ื–ื” ืื•ืžืจ "ื›ืœ ื”ืฉื•ืจื•ืช".
```python
columns_to_select = ['Package', 'Low Price', 'High Price', 'Date']
pumpkins = pumpkins.loc[:, columns_to_select]
```
### ืฉื ื™ืช, ืงื‘ืข ืืช ื”ืžื—ื™ืจ ื”ืžืžื•ืฆืข ืฉืœ ื“ืœืขืช
ื—ืฉื•ื‘ ืื™ืš ืœืงื‘ื•ืข ืืช ื”ืžื—ื™ืจ ื”ืžืžื•ืฆืข ืฉืœ ื“ืœืขืช ื‘ื—ื•ื“ืฉ ื ืชื•ืŸ. ืื™ืœื• ืขืžื•ื“ื•ืช ื”ื™ื™ืช ื‘ื•ื—ืจ ืœืžืฉื™ืžื” ื”ื–ื•? ืจืžื–: ืชืฆื˜ืจืš 3 ืขืžื•ื“ื•ืช.
ืคืชืจื•ืŸ: ืงื— ืืช ื”ืžืžื•ืฆืข ืฉืœ ื”ืขืžื•ื“ื•ืช `Low Price` ื•-`High Price` ื›ื“ื™ ืœืžืœื ืืช ืขืžื•ื“ืช ื”ืžื—ื™ืจ ื”ื—ื“ืฉื”, ื•ื”ืžืจ ืืช ืขืžื•ื“ืช ื”ืชืืจื™ืš ื›ืš ืฉืชืฆื™ื’ ืจืง ืืช ื”ื—ื•ื“ืฉ. ืœืžืจื‘ื” ื”ืžื–ืœ, ืœืคื™ ื”ื‘ื“ื™ืงื” ืœืขื™ืœ, ืื™ืŸ ื ืชื•ื ื™ื ื—ืกืจื™ื ืขื‘ื•ืจ ืชืืจื™ื›ื™ื ืื• ืžื—ื™ืจื™ื.
1. ื›ื“ื™ ืœื—ืฉื‘ ืืช ื”ืžืžื•ืฆืข, ื”ื•ืกืฃ ืืช ื”ืงื•ื“ ื”ื‘ื:
```python
price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2
month = pd.DatetimeIndex(pumpkins['Date']).month
```
โœ… ืืชื” ืžื•ื–ืžืŸ ืœื”ื“ืคื™ืก ื›ืœ ื ืชื•ืŸ ืฉืชืจืฆื” ืœื‘ื“ื•ืง ื‘ืืžืฆืขื•ืช `print(month)`.
2. ืขื›ืฉื™ื•, ื”ืขืชืง ืืช ื”ื ืชื•ื ื™ื ืฉื”ื•ืžืจื• ืœ-DataFrame ื—ื“ืฉ ืฉืœ Pandas:
```python
new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})
```
ื”ื“ืคืกืช ื”-DataFrame ืฉืœืš ืชืจืื” ืœืš ืžืขืจืš ื ืชื•ื ื™ื ื ืงื™ ื•ืžืกื•ื“ืจ ืฉืขืœื™ื• ืชื•ื›ืœ ืœื‘ื ื•ืช ืืช ืžื•ื“ืœ ื”ืจื’ืจืกื™ื” ื”ื—ื“ืฉ ืฉืœืš.
### ืื‘ืœ ืจื’ืข! ื™ืฉ ื›ืืŸ ืžืฉื”ื• ืžื•ื–ืจ
ืื ืชืกืชื›ืœ ืขืœ ืขืžื•ื“ืช `Package`, ื“ืœืขื•ืช ื ืžื›ืจื•ืช ื‘ื”ืจื‘ื” ืชืฆื•ืจื•ืช ืฉื•ื ื•ืช. ื—ืœืงืŸ ื ืžื›ืจื•ืช ื‘ืžื™ื“ื•ืช ืฉืœ '1 1/9 bushel', ื—ืœืงืŸ ื‘-'1/2 bushel', ื—ืœืงืŸ ืœืคื™ ื“ืœืขืช, ื—ืœืงืŸ ืœืคื™ ืคืื•ื ื“, ื•ื—ืœืงืŸ ื‘ืงื•ืคืกืื•ืช ื’ื“ื•ืœื•ืช ืขื ืจื•ื—ื‘ื™ื ืžืฉืชื ื™ื.
> ื ืจืื” ืฉื“ืœืขื•ืช ืžืื•ื“ ืงืฉื” ืœืฉืงื•ืœ ื‘ืื•ืคืŸ ืขืงื‘ื™
ื›ืฉื—ื•ืงืจื™ื ืืช ื”ื ืชื•ื ื™ื ื”ืžืงื•ืจื™ื™ื, ืžืขื ื™ื™ืŸ ืฉื›ืœ ื“ื‘ืจ ืขื `Unit of Sale` ื”ืฉื•ื•ื” ืœ-'EACH' ืื• 'PER BIN' ื’ื ื™ืฉ ืœื• ืกื•ื’ `Package` ืœืคื™ ืื™ื ืฅ', ืœืคื™ bin, ืื• 'each'. ื ืจืื” ืฉื“ืœืขื•ืช ืžืื•ื“ ืงืฉื” ืœืฉืงื•ืœ ื‘ืื•ืคืŸ ืขืงื‘ื™, ืื– ื‘ื•ืื• ื ืกื ืŸ ืื•ืชืŸ ืขืœ ื™ื“ื™ ื‘ื—ื™ืจืช ื“ืœืขื•ืช ื‘ืœื‘ื“ ืขื ื”ืžื—ืจื•ื–ืช 'bushel' ื‘ืขืžื•ื“ืช `Package`.
1. ื”ื•ืกืฃ ืžืกื ืŸ ื‘ืจืืฉ ื”ืงื•ื‘ืฅ, ืžืชื—ืช ืœื™ื™ื‘ื•ื ื”ืจืืฉื•ื ื™ ืฉืœ ื”-.csv:
```python
pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]
```
ืื ืชื“ืคื™ืก ืืช ื”ื ืชื•ื ื™ื ืขื›ืฉื™ื•, ืชื•ื›ืœ ืœืจืื•ืช ืฉืืชื” ืžืงื‘ืœ ืจืง ืืช 415 ื”ืฉื•ืจื•ืช ื‘ืขืจืš ืฉืžื›ื™ืœื•ืช ื“ืœืขื•ืช ืœืคื™ bushel.
### ืื‘ืœ ืจื’ืข! ื™ืฉ ืขื•ื“ ืžืฉื”ื• ืฉืฆืจื™ืš ืœืขืฉื•ืช
ืฉืžืช ืœื‘ ืฉื”ื›ืžื•ืช ืฉืœ bushel ืžืฉืชื ื” ืœืคื™ ืฉื•ืจื”? ืืชื” ืฆืจื™ืš ืœื ืจืžืœ ืืช ื”ืชืžื—ื•ืจ ื›ืš ืฉืชืจืื” ืืช ื”ืชืžื—ื•ืจ ืœืคื™ bushel, ืื– ืชืขืฉื” ืงืฆืช ื—ื™ืฉื•ื‘ื™ื ื›ื“ื™ ืœืกื˜ื ื“ืจื˜ ืื•ืชื•.
1. ื”ื•ืกืฃ ืืช ื”ืฉื•ืจื•ืช ื”ืืœื” ืื—ืจื™ ื”ื‘ืœื•ืง ืฉื™ื•ืฆืจ ืืช ื”-DataFrame ื”ื—ื“ืฉ ืฉืœ ื”ื“ืœืขื•ืช:
```python
new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9)
new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2)
```
โœ… ืœืคื™ [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308), ื”ืžืฉืงืœ ืฉืœ bushel ืชืœื•ื™ ื‘ืกื•ื’ ื”ืชื•ืฆืจืช, ืžื›ื™ื•ื•ืŸ ืฉืžื“ื•ื‘ืจ ื‘ืžื“ื™ื“ืช ื ืคื—. "bushel ืฉืœ ืขื’ื‘ื ื™ื•ืช, ืœืžืฉืœ, ืืžื•ืจ ืœืฉืงื•ืœ 56 ืคืื•ื ื“... ืขืœื™ื ื•ื™ืจื•ืงื™ื ืชื•ืคืกื™ื ื™ื•ืชืจ ืžืงื•ื ืขื ืคื—ื•ืช ืžืฉืงืœ, ื›ืš ืฉ-bushel ืฉืœ ืชืจื“ ืฉื•ืงืœ ืจืง 20 ืคืื•ื ื“." ื–ื” ื“ื™ ืžืกื•ื‘ืš! ื‘ื•ืื• ืœื ื ื˜ืจื— ืขื ื”ืžืจื” ืฉืœ bushel ืœืคืื•ื ื“, ื•ื‘ืžืงื•ื ื–ืืช ื ืชืžื—ืจ ืœืคื™ bushel. ื›ืœ ื”ืžื—ืงืจ ื”ื–ื” ืขืœ bushels ืฉืœ ื“ืœืขื•ืช, ืขื ื–ืืช, ืžืจืื” ื›ืžื” ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ืืช ืื•ืคื™ ื”ื ืชื•ื ื™ื ืฉืœืš!
ืขื›ืฉื™ื•, ืืชื” ื™ื›ื•ืœ ืœื ืชื— ืืช ื”ืชืžื—ื•ืจ ืœื™ื—ื™ื“ื” ื‘ื”ืชื‘ืกืก ืขืœ ืžื“ื™ื“ืช ื”-bushel ืฉืœื”ื. ืื ืชื“ืคื™ืก ืืช ื”ื ืชื•ื ื™ื ืคืขื ื ื•ืกืคืช, ืชื•ื›ืœ ืœืจืื•ืช ืื™ืš ื”ื ืกื˜ื ื“ืจื˜ื™ื™ื.
โœ… ืฉืžืช ืœื‘ ืฉื“ืœืขื•ืช ืฉื ืžื›ืจื•ืช ืœืคื™ ื—ืฆื™ bushel ื”ืŸ ืžืื•ื“ ื™ืงืจื•ืช? ื”ืื ืชื•ื›ืœ ืœื”ื‘ื™ืŸ ืœืžื”? ืจืžื–: ื“ืœืขื•ืช ืงื˜ื ื•ืช ื™ืงืจื•ืช ื”ืจื‘ื” ื™ื•ืชืจ ืžื“ืœืขื•ืช ื’ื“ื•ืœื•ืช, ื›ื ืจืื” ื‘ื’ืœืœ ืฉื™ืฉ ื”ืจื‘ื” ื™ื•ืชืจ ืžื”ืŸ ื‘ื›ืœ bushel, ื‘ื”ืชื—ืฉื‘ ื‘ืžืงื•ื ื”ืœื ืžื ื•ืฆืœ ืฉื ืœืงื— ืขืœ ื™ื“ื™ ื“ืœืขืช ืคืื™ ื’ื“ื•ืœื” ื•ื—ืœื•ืœื” ืื—ืช.
## ืืกื˜ืจื˜ื’ื™ื•ืช ื•ื™ื–ื•ืืœื™ื–ืฆื™ื”
ื—ืœืง ืžืชืคืงื™ื“ื• ืฉืœ ืžื“ืขืŸ ื”ื ืชื•ื ื™ื ื”ื•ื ืœื”ืฆื™ื’ ืืช ื”ืื™ื›ื•ืช ื•ื”ืื•ืคื™ ืฉืœ ื”ื ืชื•ื ื™ื ืฉื”ื•ื ืขื•ื‘ื“ ืื™ืชื. ืœืฉื ื›ืš, ื”ื ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ื™ื•ืฆืจื™ื ื•ื™ื–ื•ืืœื™ื–ืฆื™ื•ืช ืžืขื ื™ื™ื ื•ืช, ื›ืžื• ื’ืจืคื™ื, ืชืจืฉื™ืžื™ื ื•ืžืคื•ืช, ืฉืžืฆื™ื’ื™ื ื”ื™ื‘ื˜ื™ื ืฉื•ื ื™ื ืฉืœ ื”ื ืชื•ื ื™ื. ื‘ื“ืจืš ื–ื•, ื”ื ื™ื›ื•ืœื™ื ืœื”ืจืื•ืช ื‘ืื•ืคืŸ ื—ื–ื•ืชื™ ืงืฉืจื™ื ื•ืคืขืจื™ื ืฉืงืฉื” ืœื—ืฉื•ืฃ ื‘ื“ืจืš ืื—ืจืช.
[![ML ืœืžืชื—ื™ืœื™ื - ืื™ืš ืœื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื ืชื•ื ื™ื ืขื Matplotlib](https://img.youtube.com/vi/SbUkxH6IJo0/0.jpg)](https://youtu.be/SbUkxH6IJo0 "ML ืœืžืชื—ื™ืœื™ื - ืื™ืš ืœื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื ืชื•ื ื™ื ืขื Matplotlib")
> ๐ŸŽฅ ืœื—ืฅ ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืฉืžืกื‘ื™ืจ ืื™ืš ืœื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื”ื ืชื•ื ื™ื ืœืฉื™ืขื•ืจ ื”ื–ื”.
ื•ื™ื–ื•ืืœื™ื–ืฆื™ื•ืช ื™ื›ื•ืœื•ืช ื’ื ืœืขื–ื•ืจ ืœืงื‘ื•ืข ืืช ื˜ื›ื ื™ืงืช ื”ืœืžื™ื“ืช ืžื›ื•ื ื” ื”ืžืชืื™ืžื” ื‘ื™ื•ืชืจ ืœื ืชื•ื ื™ื. ืœืžืฉืœ, ืชืจืฉื™ื ืคื™ื–ื•ืจ ืฉื ืจืื” ื›ืžื• ืงื• ื™ื›ื•ืœ ืœื”ืฆื‘ื™ืข ืขืœ ื›ืš ืฉื”ื ืชื•ื ื™ื ืžืชืื™ืžื™ื ืœืชืจื’ื™ืœ ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช.
ืื—ืช ืžืกืคืจื™ื•ืช ื”ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืขื•ื‘ื“ื•ืช ื”ื™ื˜ื‘ ื‘ืžื—ื‘ืจื•ืช Jupyter ื”ื™ื [Matplotlib](https://matplotlib.org/) (ืฉื’ื ืจืื™ืช ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื).
> ืงื‘ืœ ืขื•ื“ ื ื™ืกื™ื•ืŸ ืขื ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื ืชื•ื ื™ื ื‘-[ื”ืžื“ืจื™ื›ื™ื ื”ืืœื”](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott).
## ืชืจื’ื™ืœ - ืœื”ืชื ืกื•ืช ืขื Matplotlib
ื ืกื” ืœื™ืฆื•ืจ ื›ืžื” ื’ืจืคื™ื ื‘ืกื™ืกื™ื™ื ื›ื“ื™ ืœื”ืฆื™ื’ ืืช ื”-DataFrame ื”ื—ื“ืฉ ืฉื™ืฆืจืช. ืžื” ื™ืจืื” ื’ืจืฃ ืงื• ื‘ืกื™ืกื™?
1. ื™ื™ื‘ื ืืช Matplotlib ื‘ืจืืฉ ื”ืงื•ื‘ืฅ, ืžืชื—ืช ืœื™ื™ื‘ื•ื ืฉืœ Pandas:
```python
import matplotlib.pyplot as plt
```
1. ื”ืจืฅ ืžื—ื“ืฉ ืืช ื›ืœ ื”ืžื—ื‘ืจืช ื›ื“ื™ ืœืจืขื ืŸ.
1. ื‘ืชื—ืชื™ืช ื”ืžื—ื‘ืจืช, ื”ื•ืกืฃ ืชื ื›ื“ื™ ืœืฉืจื˜ื˜ ืืช ื”ื ืชื•ื ื™ื ื›ืงื•ืคืกื”:
```python
price = new_pumpkins.Price
month = new_pumpkins.Month
plt.scatter(price, month)
plt.show()
```
![ืชืจืฉื™ื ืคื™ื–ื•ืจ ืฉืžืจืื” ืืช ื”ืงืฉืจ ื‘ื™ืŸ ืžื—ื™ืจ ืœื—ื•ื“ืฉ](../../../../2-Regression/2-Data/images/scatterplot.png)
ื”ืื ื–ื” ื’ืจืฃ ืฉื™ืžื•ืฉื™? ื”ืื ืžืฉื”ื• ื‘ื• ืžืคืชื™ืข ืื•ืชืš?
ื–ื” ืœื ืžืื•ื“ ืฉื™ืžื•ืฉื™ ืžื›ื™ื•ื•ืŸ ืฉื›ืœ ืžื” ืฉื”ื•ื ืขื•ืฉื” ื–ื” ืœื”ืฆื™ื’ ืืช ื”ื ืชื•ื ื™ื ืฉืœืš ื›ืคืจื™ืกื” ืฉืœ ื ืงื•ื“ื•ืช ื‘ื—ื•ื“ืฉ ื ืชื•ืŸ.
### ืœื”ืคื•ืš ืืช ื–ื” ืœืฉื™ืžื•ืฉื™
ื›ื“ื™ ืœืงื‘ืœ ื’ืจืคื™ื ืฉืžืฆื™ื’ื™ื ื ืชื•ื ื™ื ืฉื™ืžื•ืฉื™ื™ื, ื‘ื“ืจืš ื›ืœืœ ืฆืจื™ืš ืœืงื‘ืฅ ืืช ื”ื ืชื•ื ื™ื ื‘ืฆื•ืจื” ื›ืœืฉื”ื™. ื‘ื•ืื• ื ื ืกื” ืœื™ืฆื•ืจ ื’ืจืฃ ืฉื‘ื• ืฆื™ืจ ื”-y ืžืฆื™ื’ ืืช ื”ื—ื•ื“ืฉื™ื ื•ื”ื ืชื•ื ื™ื ืžื“ื’ื™ืžื™ื ืืช ื”ืชืคืœื’ื•ืช ื”ื ืชื•ื ื™ื.
1. ื”ื•ืกืฃ ืชื ืœื™ืฆื™ืจืช ืชืจืฉื™ื ืขืžื•ื“ื•ืช ืžืงื•ื‘ืฅ:
```python
new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')
plt.ylabel("Pumpkin Price")
```
![ืชืจืฉื™ื ืขืžื•ื“ื•ืช ืฉืžืจืื” ืืช ื”ืงืฉืจ ื‘ื™ืŸ ืžื—ื™ืจ ืœื—ื•ื“ืฉ](../../../../2-Regression/2-Data/images/barchart.png)
ื–ื”ื• ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ื ืชื•ื ื™ื ืฉื™ืžื•ืฉื™ืช ื™ื•ืชืจ! ื ืจืื” ืฉื”ื™ื ืžืฆื‘ื™ืขื” ืขืœ ื›ืš ืฉื”ืžื—ื™ืจ ื”ื’ื‘ื•ื” ื‘ื™ื•ืชืจ ืœื“ืœืขื•ืช ืžืชืจื—ืฉ ื‘ืกืคื˜ืžื‘ืจ ื•ื‘ืื•ืงื˜ื•ื‘ืจ. ื”ืื ื–ื” ืชื•ืื ืืช ื”ืฆื™ืคื™ื•ืช ืฉืœืš? ืœืžื” ืื• ืœืžื” ืœื?
---
## ๐Ÿš€ืืชื’ืจ
ื—ืงื•ืจ ืืช ืกื•ื’ื™ ื”ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ื”ืฉื•ื ื™ื ืฉ-Matplotlib ืžืฆื™ืขื”. ืื™ืœื• ืกื•ื’ื™ื ื”ื ื”ืžืชืื™ืžื™ื ื‘ื™ื•ืชืจ ืœื‘ืขื™ื•ืช ืจื’ืจืกื™ื”?
## [ืฉืืœื•ืŸ ืื—ืจื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ืชืกืชื›ืœ ืขืœ ื”ื“ืจื›ื™ื ื”ืจื‘ื•ืช ืœื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื ืชื•ื ื™ื. ืฆื•ืจ ืจืฉื™ืžื” ืฉืœ ื”ืกืคืจื™ื•ืช ื”ืฉื•ื ื•ืช ื”ื–ืžื™ื ื•ืช ื•ืฆื™ื™ืŸ ืื™ืœื• ืžื”ืŸ ืžืชืื™ืžื•ืช ืœืกื•ื’ื™ ืžืฉื™ืžื•ืช ืžืกื•ื™ืžื™ื, ืœืžืฉืœ ื•ื™ื–ื•ืืœื™ื–ืฆื™ื•ืช ื“ื•-ืžืžื“ื™ื•ืช ืœืขื•ืžืช ืชืœืช-ืžืžื“ื™ื•ืช. ืžื” ืืชื” ืžื’ืœื”?
## ืžืฉื™ืžื”
[ื—ืงื™ืจืช ื•ื™ื–ื•ืืœื™ื–ืฆื™ื”](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,23 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "4485a1ed4dd1b5647365e3d87456515d",
"translation_date": "2025-09-05T18:56:57+00:00",
"source_file": "2-Regression/2-Data/assignment.md",
"language_code": "he"
}
-->
# ื—ืงืจ ื•ื™ื–ื•ืืœื™ื–ืฆื™ื•ืช
ื™ืฉื ืŸ ืžืกืคืจ ืกืคืจื™ื•ืช ืฉื•ื ื•ืช ื–ืžื™ื ื•ืช ืœื™ืฆื™ืจืช ื•ื™ื–ื•ืืœื™ื–ืฆื™ื•ืช ืฉืœ ื ืชื•ื ื™ื. ืฆืจื• ื›ืžื” ื•ื™ื–ื•ืืœื™ื–ืฆื™ื•ืช ื‘ืืžืฆืขื•ืช ื ืชื•ื ื™ ื”ื“ืœืขืช ื‘ืฉื™ืขื•ืจ ื–ื” ืขื matplotlib ื•-seaborn ื‘ืžื—ื‘ืจืช ืœื“ื•ื’ืžื”. ืื™ืœื• ืกืคืจื™ื•ืช ืงืœื•ืช ื™ื•ืชืจ ืœืฉื™ืžื•ืฉ?
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | --------- | -------- | ----------------- |
| | ืžื—ื‘ืจืช ืžื•ื’ืฉืช ืขื ืฉืชื™ ื—ืงื™ืจื•ืช/ื•ื™ื–ื•ืืœื™ื–ืฆื™ื•ืช | ืžื—ื‘ืจืช ืžื•ื’ืฉืช ืขื ื—ืงื™ืจื”/ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืื—ืช | ืžื—ื‘ืจืช ืœื ืžื•ื’ืฉืช |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T18:57:21+00:00",
"source_file": "2-Regression/2-Data/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,380 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "40e64f004f3cb50aa1d8661672d3cd92",
"translation_date": "2025-09-05T18:39:01+00:00",
"source_file": "2-Regression/3-Linear/README.md",
"language_code": "he"
}
-->
# ื‘ื ื™ื™ืช ืžื•ื“ืœ ืจื’ืจืกื™ื” ื‘ืืžืฆืขื•ืช Scikit-learn: ืจื’ืจืกื™ื” ื‘ืืจื‘ืข ื“ืจื›ื™ื
![ืื™ื ืคื•ื’ืจืคื™ืงื” ืฉืœ ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ืžื•ืœ ืคื•ืœื™ื ื•ืžื™ืช](../../../../2-Regression/3-Linear/images/linear-polynomial.png)
> ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Dasani Madipalli](https://twitter.com/dasani_decoded)
## [ืžื‘ื—ืŸ ืžืงื“ื™ื ืœื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
> ### [ื”ืฉื™ืขื•ืจ ื”ื–ื” ื–ืžื™ืŸ ื’ื ื‘-R!](../../../../2-Regression/3-Linear/solution/R/lesson_3.html)
### ื”ืงื“ืžื”
ืขื“ ื›ื” ื—ืงืจืชื ืžื”ื™ ืจื’ืจืกื™ื” ืขื ื ืชื•ื ื™ ื“ื•ื’ืžื” ืฉื ืืกืคื• ืžืžืื’ืจ ื ืชื•ื ื™ ืžื—ื™ืจื™ ื“ืœืขืช, ืื•ืชื• ื ืฉืชืžืฉ ืœืื•ืจืš ื”ืฉื™ืขื•ืจ ื”ื–ื”. ื›ืžื• ื›ืŸ, ื‘ื™ืฆืขืชื ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื”ื ืชื•ื ื™ื ื‘ืืžืฆืขื•ืช Matplotlib.
ืขื›ืฉื™ื• ืืชื ืžื•ื›ื ื™ื ืœืฆืœื•ืœ ืœืขื•ืžืง ื”ืจื’ืจืกื™ื” ืขื‘ื•ืจ ืœืžื™ื“ืช ืžื›ื•ื ื”. ื‘ืขื•ื“ ืฉื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืžืืคืฉืจืช ืœื”ื‘ื™ืŸ ืืช ื”ื ืชื•ื ื™ื, ื”ื›ื•ื— ื”ืืžื™ืชื™ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืžื’ื™ืข ืž_ืื™ืžื•ืŸ ืžื•ื“ืœื™ื_. ืžื•ื“ืœื™ื ืžืื•ืžื ื™ื ืขืœ ื ืชื•ื ื™ื ื”ื™ืกื˜ื•ืจื™ื™ื ื›ื“ื™ ืœืœื›ื•ื“ ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™ ืชืœื•ืช ื‘ื™ืŸ ื ืชื•ื ื™ื, ื•ืžืืคืฉืจื™ื ืœื›ื ืœื—ื–ื•ืช ืชื•ืฆืื•ืช ืขื‘ื•ืจ ื ืชื•ื ื™ื ื—ื“ืฉื™ื ืฉื”ืžื•ื“ืœ ืœื ืจืื” ืงื•ื“ื.
ื‘ืฉื™ืขื•ืจ ื”ื–ื” ืชืœืžื“ื• ื™ื•ืชืจ ืขืœ ืฉื ื™ ืกื•ื’ื™ ืจื’ืจืกื™ื”: _ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ื‘ืกื™ืกื™ืช_ ื•_ืจื’ืจืกื™ื” ืคื•ืœื™ื ื•ืžื™ืช_, ื™ื—ื“ ืขื ืžืขื˜ ืžืชืžื˜ื™ืงื” ืฉืžืื—ื•ืจื™ ื”ื˜ื›ื ื™ืงื•ืช ื”ืœืœื•. ืžื•ื“ืœื™ื ืืœื• ื™ืืคืฉืจื• ืœื ื• ืœื—ื–ื•ืช ืžื—ื™ืจื™ ื“ืœืขืช ื‘ื”ืชืื ืœื ืชื•ื ื™ ืงืœื˜ ืฉื•ื ื™ื.
[![ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ื”ื‘ื ืช ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช](https://img.youtube.com/vi/CRxFT8oTDMg/0.jpg)](https://youtu.be/CRxFT8oTDMg "ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ื”ื‘ื ืช ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืขืœ ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช.
> ืœืื•ืจืš ื”ืงื•ืจืก ื”ื–ื”, ืื ื• ืžื ื™ื—ื™ื ื™ื“ืข ืžืชืžื˜ื™ ืžื™ื ื™ืžืœื™, ื•ืฉื•ืืคื™ื ืœื”ืคื•ืš ืื•ืชื• ืœื ื’ื™ืฉ ืœืกื˜ื•ื“ื ื˜ื™ื ืฉืžื’ื™ืขื™ื ืžืชื—ื•ืžื™ื ืื—ืจื™ื. ืฉื™ืžื• ืœื‘ ืœื”ืขืจื•ืช, ๐Ÿงฎ ืงืจื™ืื•ืช, ื“ื™ืื’ืจืžื•ืช ื•ื›ืœื™ื ืื—ืจื™ื ืฉื™ืขื–ืจื• ื‘ื”ื‘ื ื”.
### ื“ืจื™ืฉื•ืช ืžืงื“ื™ืžื•ืช
ื›ืขืช ืืชื ืืžื•ืจื™ื ืœื”ื™ื•ืช ืžื•ื›ื ื™ื ืขื ืžื‘ื ื” ื ืชื•ื ื™ ื”ื“ืœืขืช ืฉืื ื• ื‘ื•ื—ื ื™ื. ืชื•ื›ืœื• ืœืžืฆื•ื ืื•ืชื• ื˜ืขื•ืŸ ืžืจืืฉ ื•ืžื ื•ืงื” ื‘ืงื•ื‘ืฅ _notebook.ipynb_ ืฉืœ ื”ืฉื™ืขื•ืจ ื”ื–ื”. ื‘ืงื•ื‘ืฅ, ืžื—ื™ืจ ื”ื“ืœืขืช ืžื•ืฆื’ ืœืคื™ ื™ื—ื™ื“ืช bushel ื‘ืžืกื’ืจืช ื ืชื•ื ื™ื ื—ื“ืฉื”. ื•ื“ืื• ืฉืืชื ื™ื›ื•ืœื™ื ืœื”ืจื™ืฅ ืืช ื”ืžื—ื‘ืจื•ืช ื”ืœืœื• ื‘-kernels ื‘-Visual Studio Code.
### ื”ื›ื ื”
ื›ืชื–ื›ื•ืจืช, ืืชื ื˜ื•ืขื ื™ื ืืช ื”ื ืชื•ื ื™ื ื”ืœืœื• ื›ื“ื™ ืœืฉืื•ืœ ืฉืืœื•ืช ืœื’ื‘ื™ื”ื.
- ืžืชื™ ื”ื–ืžืŸ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืœืงื ื•ืช ื“ืœืขื•ืช?
- ืื™ื–ื” ืžื—ื™ืจ ืื ื™ ื™ื›ื•ืœ ืœืฆืคื•ืช ืขื‘ื•ืจ ืžืืจื– ืฉืœ ื“ืœืขื•ืช ืžื™ื ื™ืื˜ื•ืจื™ื•ืช?
- ื”ืื ื›ื“ืื™ ืœื™ ืœืงื ื•ืช ืื•ืชืŸ ื‘ืกืœื™ื ืฉืœ ื—ืฆื™ bushel ืื• ื‘ืงื•ืคืกืื•ืช ืฉืœ 1 1/9 bushel?
ื‘ื•ืื• ื ืžืฉื™ืš ืœื—ืงื•ืจ ืืช ื”ื ืชื•ื ื™ื ื”ืœืœื•.
ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื ื™ืฆืจืชื ืžืกื’ืจืช ื ืชื•ื ื™ื ืฉืœ Pandas ื•ืžื™ืœืืชื ืื•ืชื” ืขื ื—ืœืง ืžืžืื’ืจ ื”ื ืชื•ื ื™ื ื”ืžืงื•ืจื™, ืชื•ืš ืกื˜ื ื“ืจื˜ื™ื–ืฆื™ื” ืฉืœ ื”ืžื—ื™ืจื™ื ืœืคื™ bushel. ืขื ื–ืืช, ืขืœ ื™ื“ื™ ื›ืš ื”ืฆืœื—ืชื ืœืืกื•ืฃ ืจืง ื›-400 ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ื•ืจืง ืขื‘ื•ืจ ื—ื•ื“ืฉื™ ื”ืกืชื™ื•.
ื”ืกืชื›ืœื• ืขืœ ื”ื ืชื•ื ื™ื ืฉื˜ืขื•ื ื™ื ืžืจืืฉ ื‘ืžื—ื‘ืจืช ื”ืžืฆื•ืจืคืช ืœืฉื™ืขื•ืจ ื”ื–ื”. ื”ื ืชื•ื ื™ื ื˜ืขื•ื ื™ื ืžืจืืฉ ื•ื’ืจืฃ ืคื™ื–ื•ืจ ืจืืฉื•ื ื™ ืžื•ืฆื’ ื›ื“ื™ ืœื”ืจืื•ืช ื ืชื•ื ื™ ื—ื•ื“ืฉื™ื. ืื•ืœื™ ื ื•ื›ืœ ืœืงื‘ืœ ืžืขื˜ ื™ื•ืชืจ ืคืจื˜ื™ื ืขืœ ื˜ื™ื‘ ื”ื ืชื•ื ื™ื ืขืœ ื™ื“ื™ ื ื™ืงื•ื™ ื ื•ืกืฃ ืฉืœื”ื.
## ืงื• ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช
ื›ืคื™ ืฉืœืžื“ืชื ื‘ืฉื™ืขื•ืจ ื”ืจืืฉื•ืŸ, ื”ืžื˜ืจื” ืฉืœ ืชืจื’ื™ืœ ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ื”ื™ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืฉืจื˜ื˜ ืงื• ื›ื“ื™:
- **ืœื”ืจืื•ืช ืงืฉืจื™ื ื‘ื™ืŸ ืžืฉืชื ื™ื**. ืœื”ืจืื•ืช ืืช ื”ืงืฉืจ ื‘ื™ืŸ ืžืฉืชื ื™ื
- **ืœื‘ืฆืข ืชื—ื–ื™ื•ืช**. ืœื‘ืฆืข ืชื—ื–ื™ื•ืช ืžื“ื•ื™ืงื•ืช ืขืœ ืžื™ืงื•ื ื ืงื•ื“ืช ื ืชื•ื ื™ื ื—ื“ืฉื” ื‘ื™ื—ืก ืœืงื• ื”ื–ื”.
ื–ื” ืื•ืคื™ื™ื ื™ ืœ**ืจื’ืจืกื™ื™ืช ืจื™ื‘ื•ืขื™ื ืงื˜ื ื™ื** ืœืฉืจื˜ื˜ ืกื•ื’ ื›ื–ื” ืฉืœ ืงื•. ื”ืžื•ื ื— 'ืจื™ื‘ื•ืขื™ื ืงื˜ื ื™ื' ืžืชื™ื™ื—ืก ืœื›ืš ืฉื›ืœ ื ืงื•ื“ื•ืช ื”ื ืชื•ื ื™ื ืฉืžืกื‘ื™ื‘ ืœืงื• ื”ืจื’ืจืกื™ื” ืžืจื•ื‘ืขื•ืช ื•ืื– ืžืกื•ื›ืžื•ืช. ื‘ืื•ืคืŸ ืื™ื“ื™ืืœื™, ื”ืกื›ื•ื ื”ืกื•ืคื™ ื”ื–ื” ื”ื•ื ืงื˜ืŸ ื›ื›ืœ ื”ืืคืฉืจ, ืžื›ื™ื•ื•ืŸ ืฉืื ื• ืจื•ืฆื™ื ืžืกืคืจ ื ืžื•ืš ืฉืœ ืฉื’ื™ืื•ืช, ืื• `ืจื™ื‘ื•ืขื™ื ืงื˜ื ื™ื`.
ืื ื• ืขื•ืฉื™ื ื–ืืช ืžื›ื™ื•ื•ืŸ ืฉืื ื• ืจื•ืฆื™ื ืœื“ื’ื ืงื• ืฉื™ืฉ ืœื• ืืช ื”ืžืจื—ืง ื”ืžืฆื˜ื‘ืจ ื”ืงื˜ืŸ ื‘ื™ื•ืชืจ ืžื›ืœ ื ืงื•ื“ื•ืช ื”ื ืชื•ื ื™ื ืฉืœื ื•. ืื ื• ื’ื ืžืจื‘ืขื™ื ืืช ื”ืžื•ื ื—ื™ื ืœืคื ื™ ื”ืกื›ื™ืžื” ืžื›ื™ื•ื•ืŸ ืฉืื ื• ืžืชืžืงื“ื™ื ื‘ื’ื•ื“ืœ ืฉืœื”ื ื•ืœื ื‘ื›ื™ื•ื•ื ื.
> **๐Ÿงฎ ืชืจืื• ืœื™ ืืช ื”ืžืชืžื˜ื™ืงื”**
>
> ื”ืงื• ื”ื–ื”, ืฉื ืงืจื _ืงื• ื”ื”ืชืืžื” ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ_, ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžื‘ื•ื˜ื ืขืœ ื™ื“ื™ [ืžืฉื•ื•ืื”](https://en.wikipedia.org/wiki/Simple_linear_regression):
>
> ```
> Y = a + bX
> ```
>
> `X` ื”ื•ื ื”ืžืฉืชื ื” ื”ืžืกื‘ื™ืจ. `Y` ื”ื•ื ื”ืžืฉืชื ื” ื”ืชืœื•ื™. ื”ืฉื™ืคื•ืข ืฉืœ ื”ืงื• ื”ื•ื `b` ื•-`a` ื”ื•ื ื ืงื•ื“ืช ื”ื—ื™ืชื•ืš ืขื ืฆื™ืจ ื”-Y, ืฉืžืชื™ื™ื—ืกืช ืœืขืจืš ืฉืœ `Y` ื›ืืฉืจ `X = 0`.
>
>![ื—ื™ืฉื•ื‘ ื”ืฉื™ืคื•ืข](../../../../2-Regression/3-Linear/images/slope.png)
>
> ืจืืฉื™ืช, ื—ืฉื‘ื• ืืช ื”ืฉื™ืคื•ืข `b`. ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
>
> ื‘ืžื™ืœื™ื ืื—ืจื•ืช, ื‘ื”ืชื™ื™ื—ืก ืœืฉืืœืช ื”ื ืชื•ื ื™ื ื”ืžืงื•ืจื™ืช ืฉืœื ื• ืขืœ ื“ืœืขื•ืช: "ื—ื™ื–ื•ื™ ืžื—ื™ืจ ื“ืœืขืช ืœืคื™ bushel ืœืคื™ ื—ื•ื“ืฉ", `X` ื™ืชื™ื™ื—ืก ืœืžื—ื™ืจ ื•-`Y` ื™ืชื™ื™ื—ืก ืœื—ื•ื“ืฉ ื”ืžื›ื™ืจื”.
>
>![ื”ืฉืœืžืช ื”ืžืฉื•ื•ืื”](../../../../2-Regression/3-Linear/images/calculation.png)
>
> ื—ืฉื‘ื• ืืช ื”ืขืจืš ืฉืœ Y. ืื ืืชื ืžืฉืœืžื™ื ื‘ืกื‘ื™ื‘ื•ืช $4, ื–ื” ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืืคืจื™ืœ! ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
>
> ื”ืžืชืžื˜ื™ืงื” ืฉืžื—ืฉื‘ืช ืืช ื”ืงื• ื—ื™ื™ื‘ืช ืœื”ืจืื•ืช ืืช ื”ืฉื™ืคื•ืข ืฉืœ ื”ืงื•, ืฉืชืœื•ื™ ื’ื ื‘ื ืงื•ื“ืช ื”ื—ื™ืชื•ืš, ืื• ื”ื™ื›ืŸ ืฉ-`Y` ืžืžื•ืงื ื›ืืฉืจ `X = 0`.
>
> ืชื•ื›ืœื• ืœืฆืคื•ืช ื‘ืฉื™ื˜ืช ื”ื—ื™ืฉื•ื‘ ืœืขืจื›ื™ื ื”ืœืœื• ื‘ืืชืจ [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html). ื›ืžื• ื›ืŸ, ื‘ืงืจื• ื‘[ืžื—ืฉื‘ื•ืŸ ืจื™ื‘ื•ืขื™ื ืงื˜ื ื™ื](https://www.mathsisfun.com/data/least-squares-calculator.html) ื›ื“ื™ ืœืจืื•ืช ื›ื™ืฆื“ ืขืจื›ื™ ื”ืžืกืคืจื™ื ืžืฉืคื™ืขื™ื ืขืœ ื”ืงื•.
## ืžืชืื
ืžื•ื ื— ื ื•ืกืฃ ืฉื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ื”ื•ื **ืžืงื“ื ื”ืžืชืื** ื‘ื™ืŸ ืžืฉืชื ื™ X ื•-Y ื ืชื•ื ื™ื. ื‘ืืžืฆืขื•ืช ื’ืจืฃ ืคื™ื–ื•ืจ, ืชื•ื›ืœื• ืœืจืื•ืช ื‘ืžื”ื™ืจื•ืช ืืช ืžืงื“ื ื”ืžืชืื. ื’ืจืฃ ืขื ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ืžืคื•ื–ืจื•ืช ื‘ืงื• ืžืกื•ื“ืจ ื™ืฉ ืœื• ืžืชืื ื’ื‘ื•ื”, ืื‘ืœ ื’ืจืฃ ืขื ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ืžืคื•ื–ืจื•ืช ื‘ื›ืœ ืžืงื•ื ื‘ื™ืŸ X ืœ-Y ื™ืฉ ืœื• ืžืชืื ื ืžื•ืš.
ืžื•ื“ืœ ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ื˜ื•ื‘ ื™ื”ื™ื” ื›ื–ื” ืฉื™ืฉ ืœื• ืžืงื“ื ืžืชืื ื’ื‘ื•ื” (ืงืจื•ื‘ ื™ื•ืชืจ ืœ-1 ืžืืฉืจ ืœ-0) ื‘ืืžืฆืขื•ืช ืฉื™ื˜ืช ืจื’ืจืกื™ื™ืช ืจื™ื‘ื•ืขื™ื ืงื˜ื ื™ื ืขื ืงื• ืจื’ืจืกื™ื”.
โœ… ื”ืจื™ืฆื• ืืช ื”ืžื—ื‘ืจืช ื”ืžืฆื•ืจืคืช ืœืฉื™ืขื•ืจ ื”ื–ื” ื•ื”ืกืชื›ืœื• ืขืœ ื’ืจืฃ ื”ืคื™ื–ื•ืจ ืฉืœ ื—ื•ื“ืฉ ืžื•ืœ ืžื—ื™ืจ. ื”ืื ื”ื ืชื•ื ื™ื ืฉืžืงืฉืจื™ื ื‘ื™ืŸ ื—ื•ื“ืฉ ืœืžื—ื™ืจ ืขื‘ื•ืจ ืžื›ื™ืจื•ืช ื“ืœืขืช ื ืจืื™ื ื‘ืขืœื™ ืžืชืื ื’ื‘ื•ื” ืื• ื ืžื•ืš, ืœืคื™ ื”ืคืจืฉื ื•ืช ื”ื•ื•ื™ื–ื•ืืœื™ืช ืฉืœื›ื ืœื’ืจืฃ ื”ืคื™ื–ื•ืจ? ื”ืื ื–ื” ืžืฉืชื ื” ืื ืืชื ืžืฉืชืžืฉื™ื ื‘ืžื“ื“ ืžื“ื•ื™ืง ื™ื•ืชืจ ื‘ืžืงื•ื `ื—ื•ื“ืฉ`, ืœืžืฉืœ *ื™ื•ื ื‘ืฉื ื”* (ื›ืœื•ืžืจ ืžืกืคืจ ื”ื™ืžื™ื ืžืชื—ื™ืœืช ื”ืฉื ื”)?
ื‘ืงื•ื“ ืœืžื˜ื”, ื ื ื™ื— ืฉื ื™ืงื™ื ื• ืืช ื”ื ืชื•ื ื™ื ื•ืงื™ื‘ืœื ื• ืžืกื’ืจืช ื ืชื•ื ื™ื ื‘ืฉื `new_pumpkins`, ื“ื•ืžื” ืœื–ื• ื”ื‘ืื”:
ID | Month | DayOfYear | Variety | City | Package | Low Price | High Price | Price
---|-------|-----------|---------|------|---------|-----------|------------|-------
70 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364
71 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636
72 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636
73 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 17.0 | 17.0 | 15.454545
74 | 10 | 281 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364
> ื”ืงื•ื“ ืœื ื™ืงื•ื™ ื”ื ืชื•ื ื™ื ื–ืžื™ืŸ ื‘-[`notebook.ipynb`](../../../../2-Regression/3-Linear/notebook.ipynb). ื‘ื™ืฆืขื ื• ืืช ืื•ืชื ืฉืœื‘ื™ ื ื™ืงื•ื™ ื›ืžื• ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื, ื•ื—ื™ืฉื‘ื ื• ืืช ืขืžื•ื“ืช `DayOfYear` ื‘ืืžืฆืขื•ืช ื”ื‘ื™ื˜ื•ื™ ื”ื‘ื:
```python
day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)
```
ืขื›ืฉื™ื• ื›ืฉื™ืฉ ืœื›ื ื”ื‘ื ื” ืฉืœ ื”ืžืชืžื˜ื™ืงื” ืฉืžืื—ื•ืจื™ ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช, ื‘ื•ืื• ื ื™ืฆื•ืจ ืžื•ื“ืœ ืจื’ืจืกื™ื” ื›ื“ื™ ืœืจืื•ืช ืื ื ื•ื›ืœ ืœื—ื–ื•ืช ืื™ื–ื” ืžืืจื– ื“ืœืขื•ืช ื™ืฆื™ืข ืืช ื”ืžื—ื™ืจื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ. ืžื™ืฉื”ื• ืฉืงื•ื ื” ื“ืœืขื•ืช ืขื‘ื•ืจ ื—ื•ื•ืช ื“ืœืขื•ืช ืœื—ื’ ืขืฉื•ื™ ืœืจืฆื•ืช ืืช ื”ืžื™ื“ืข ื”ื–ื” ื›ื“ื™ ืœื™ื™ืขืœ ืืช ืจื›ื™ืฉื•ืชื™ื• ืฉืœ ืžืืจื–ื™ ื“ืœืขื•ืช ืœื—ื•ื•ื”.
## ื—ื™ืคื•ืฉ ืžืชืื
[![ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ื—ื™ืคื•ืฉ ืžืชืื: ื”ืžืคืชื— ืœืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช](https://img.youtube.com/vi/uoRq-lW2eQo/0.jpg)](https://youtu.be/uoRq-lW2eQo "ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ื—ื™ืคื•ืฉ ืžืชืื: ื”ืžืคืชื— ืœืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืขืœ ืžืชืื.
ืžื”ืฉื™ืขื•ืจ ื”ืงื•ื“ื ื›ื ืจืื” ืจืื™ืชื ืฉื”ืžื—ื™ืจ ื”ืžืžื•ืฆืข ืขื‘ื•ืจ ื—ื•ื“ืฉื™ื ืฉื•ื ื™ื ื ืจืื” ื›ืš:
<img alt="ืžื—ื™ืจ ืžืžื•ืฆืข ืœืคื™ ื—ื•ื“ืฉ" src="../2-Data/images/barchart.png" width="50%"/>
ื–ื” ืžืฆื™ืข ืฉื™ื›ื•ืœ ืœื”ื™ื•ืช ืžืชืื, ื•ืื ื• ื™ื›ื•ืœื™ื ืœื ืกื•ืช ืœืืžืŸ ืžื•ื“ืœ ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ื›ื“ื™ ืœื—ื–ื•ืช ืืช ื”ืงืฉืจ ื‘ื™ืŸ `Month` ืœ-`Price`, ืื• ื‘ื™ืŸ `DayOfYear` ืœ-`Price`. ื”ื ื” ื’ืจืฃ ื”ืคื™ื–ื•ืจ ืฉืžืจืื” ืืช ื”ืงืฉืจ ื”ืื—ืจื•ืŸ:
<img alt="ื’ืจืฃ ืคื™ื–ื•ืจ ืฉืœ ืžื—ื™ืจ ืžื•ืœ ื™ื•ื ื‘ืฉื ื”" src="images/scatter-dayofyear.png" width="50%" />
ื‘ื•ืื• ื ืจืื” ืื ื™ืฉ ืžืชืื ื‘ืืžืฆืขื•ืช ืคื•ื ืงืฆื™ื™ืช `corr`:
```python
print(new_pumpkins['Month'].corr(new_pumpkins['Price']))
print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price']))
```
ื ืจืื” ืฉื”ืžืชืื ื“ื™ ืงื˜ืŸ, -0.15 ืœืคื™ `Month` ื•- -0.17 ืœืคื™ `DayOfMonth`, ืื‘ืœ ื™ื›ื•ืœ ืœื”ื™ื•ืช ืงืฉืจ ื—ืฉื•ื‘ ืื—ืจ. ื ืจืื” ืฉื™ืฉ ืงื‘ื•ืฆื•ืช ืฉื•ื ื•ืช ืฉืœ ืžื—ื™ืจื™ื ืฉืžืงื‘ื™ืœื•ืช ืœื–ื ื™ ื“ืœืขื•ืช ืฉื•ื ื™ื. ื›ื“ื™ ืœืืฉืจ ืืช ื”ื”ืฉืขืจื” ื”ื–ื•, ื‘ื•ืื• ื ืฉืจื˜ื˜ ื›ืœ ืงื˜ื’ื•ืจื™ื™ืช ื“ืœืขื•ืช ื‘ืฆื‘ืข ืฉื•ื ื”. ืขืœ ื™ื“ื™ ื”ืขื‘ืจืช ืคืจืžื˜ืจ `ax` ืœืคื•ื ืงืฆื™ื™ืช ื’ืจืฃ ื”ืคื™ื–ื•ืจ, ื ื•ื›ืœ ืœืฉืจื˜ื˜ ืืช ื›ืœ ื”ื ืงื•ื“ื•ืช ืขืœ ืื•ืชื• ื’ืจืฃ:
```python
ax=None
colors = ['red','blue','green','yellow']
for i,var in enumerate(new_pumpkins['Variety'].unique()):
df = new_pumpkins[new_pumpkins['Variety']==var]
ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)
```
<img alt="ื’ืจืฃ ืคื™ื–ื•ืจ ืฉืœ ืžื—ื™ืจ ืžื•ืœ ื™ื•ื ื‘ืฉื ื”" src="images/scatter-dayofyear-color.png" width="50%" />
ื”ื—ืงื™ืจื” ืฉืœื ื• ืžืฆื™ืขื” ืฉืœื–ืŸ ื™ืฉ ื”ืฉืคืขื” ื’ื“ื•ืœื” ื™ื•ืชืจ ืขืœ ื”ืžื—ื™ืจ ื”ื›ื•ืœืœ ืžืืฉืจ ืชืืจื™ืš ื”ืžื›ื™ืจื” ื‘ืคื•ืขืœ. ืื ื• ื™ื›ื•ืœื™ื ืœืจืื•ืช ื–ืืช ืขื ื’ืจืฃ ืขืžื•ื“ื•ืช:
```python
new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')
```
<img alt="ื’ืจืฃ ืขืžื•ื“ื•ืช ืฉืœ ืžื—ื™ืจ ืžื•ืœ ื–ืŸ" src="images/price-by-variety.png" width="50%" />
ื‘ื•ืื• ื ืชืžืงื“ ืœืจื’ืข ืจืง ื‘ื–ืŸ ืื—ื“ ืฉืœ ื“ืœืขื•ืช, 'ืกื•ื’ ืคืื™', ื•ื ืจืื” ืžื” ื”ื”ืฉืคืขื” ืฉืœ ื”ืชืืจื™ืš ืขืœ ื”ืžื—ื™ืจ:
```python
pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']
pie_pumpkins.plot.scatter('DayOfYear','Price')
```
<img alt="ื’ืจืฃ ืคื™ื–ื•ืจ ืฉืœ ืžื—ื™ืจ ืžื•ืœ ื™ื•ื ื‘ืฉื ื”" src="images/pie-pumpkins-scatter.png" width="50%" />
ืื ืขื›ืฉื™ื• ื ื—ืฉื‘ ืืช ื”ืžืชืื ื‘ื™ืŸ `Price` ืœ-`DayOfYear` ื‘ืืžืฆืขื•ืช ืคื•ื ืงืฆื™ื™ืช `corr`, ื ืงื‘ืœ ืžืฉื”ื• ื›ืžื• `-0.27` - ืžื” ืฉืื•ืžืจ ืฉืื™ืžื•ืŸ ืžื•ื“ืœ ื—ื™ื–ื•ื™ ื”ื’ื™ื•ื ื™.
> ืœืคื ื™ ืื™ืžื•ืŸ ืžื•ื“ืœ ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช, ื—ืฉื•ื‘ ืœื•ื•ื“ื ืฉื”ื ืชื•ื ื™ื ืฉืœื ื• ื ืงื™ื™ื. ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ืœื ืขื•ื‘ื“ืช ื˜ื•ื‘ ืขื ืขืจื›ื™ื ื—ืกืจื™ื, ื•ืœื›ืŸ ื”ื’ื™ื•ื ื™ ืœื”ื™ืคื˜ืจ ืžื›ืœ ื”ืชืื™ื ื”ืจื™ืงื™ื:
```python
pie_pumpkins.dropna(inplace=True)
pie_pumpkins.info()
```
ื’ื™ืฉื” ื ื•ืกืคืช ืชื”ื™ื” ืœืžืœื ืืช ื”ืขืจื›ื™ื ื”ืจื™ืงื™ื ื‘ืขืจื›ื™ื ืžืžื•ืฆืขื™ื ืžื”ืขืžื•ื“ื” ื”ืžืชืื™ืžื”.
## ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ืคืฉื•ื˜ื”
[![ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ื•ืคื•ืœื™ื ื•ืžื™ืช ื‘ืืžืฆืขื•ืช Scikit-learn](https://img.youtube.com/vi/e4c_UP2fSjg/0.jpg)](https://youtu.be/e4c_UP2fSjg "ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ื•ืคื•ืœื™ื ื•ืžื™ืช ื‘ืืžืฆืขื•ืช Scikit-learn")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืขืœ ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ื•ืคื•ืœื™ื ื•ืžื™ืช.
ื›ื“ื™ ืœืืžืŸ ืืช ืžื•ื“ืœ ื”ืจื’ืจืกื™ื” ื”ืœื™ื ืืจื™ืช ืฉืœื ื•, ื ืฉืชืžืฉ ื‘ืกืคืจื™ื™ืช **Scikit-learn**.
```python
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
```
ื ืชื—ื™ืœ ื‘ื”ืคืจื“ืช ืขืจื›ื™ ื”ืงืœื˜ (ืชื›ื•ื ื•ืช) ื•ื”ืชื•ืฆืื” ื”ืฆืคื•ื™ื” (ืชื•ื•ื™ืช) ืœืžืขืจื›ื™ื ื ืคืจื“ื™ื ืฉืœ numpy:
```python
X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1)
y = pie_pumpkins['Price']
```
> ืฉื™ืžื• ืœื‘ ืฉื”ื™ื™ื ื• ืฆืจื™ื›ื™ื ืœื‘ืฆืข `reshape` ืขืœ ื ืชื•ื ื™ ื”ืงืœื˜ ื›ื“ื™ ืฉื—ื‘ื™ืœืช ื”ืจื’ืจืกื™ื” ื”ืœื™ื ืืจื™ืช ืชื‘ื™ืŸ ืื•ืชื ื ื›ื•ืŸ. ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ืžืฆืคื” ืœืžืขืจืš ื“ื•-ืžืžื“ื™ ื›ืงืœื˜, ืฉื‘ื• ื›ืœ ืฉื•ืจื” ื‘ืžืขืจืš ืžืชืื™ืžื” ืœื•ื•ืงื˜ื•ืจ ืฉืœ ืชื›ื•ื ื•ืช ืงืœื˜. ื‘ืžืงืจื” ืฉืœื ื•, ืžื›ื™ื•ื•ืŸ ืฉื™ืฉ ืœื ื• ืจืง ืงืœื˜ ืื—ื“ - ืื ื• ืฆืจื™ื›ื™ื ืžืขืจืš ืขื ืฆื•ืจื” Nร—1, ื›ืืฉืจ N ื”ื•ื ื’ื•ื“ืœ ืžืื’ืจ ื”ื ืชื•ื ื™ื.
ืœืื—ืจ ืžื›ืŸ, ืื ื• ืฆืจื™ื›ื™ื ืœื—ืœืง ืืช ื”ื ืชื•ื ื™ื ืœืžืื’ืจื™ ืื™ืžื•ืŸ ื•ื‘ื“ื™ืงื”, ื›ืš ืฉื ื•ื›ืœ ืœืืžืช ืืช ื”ืžื•ื“ืœ ืฉืœื ื• ืœืื—ืจ ื”ืื™ืžื•ืŸ:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```
ืœื‘ืกื•ืฃ, ืื™ืžื•ืŸ ืžื•ื“ืœ ื”ืจื’ืจืกื™ื” ื”ืœื™ื ืืจื™ืช ืขืฆืžื• ืœื•ืงื— ืจืง ืฉืชื™ ืฉื•ืจื•ืช ืงื•ื“. ืื ื• ืžื’ื“ื™ืจื™ื ืืช ืื•ื‘ื™ื™ืงื˜ `LinearRegression`, ื•ืžืชืื™ืžื™ื ืื•ืชื• ืœื ืชื•ื ื™ื ืฉืœื ื• ื‘ืืžืฆืขื•ืช ืฉื™ื˜ืช `fit`:
```python
lin_reg = LinearRegression()
lin_reg.fit(X_train,y_train)
```
ืื•ื‘ื™ื™ืงื˜ `LinearRegression` ืœืื—ืจ ื”ืชืืžื” (`fit`) ืžื›ื™ืœ ืืช ื›ืœ ื”ืžืงื“ืžื™ื ืฉืœ ื”ืจื’ืจืกื™ื”, ืฉื ื™ืชืŸ ืœื’ืฉืช ืืœื™ื”ื ื‘ืืžืฆืขื•ืช ืชื›ื•ื ืช `.coef_`. ื‘ืžืงืจื” ืฉืœื ื•, ื™ืฉ ืจืง ืžืงื“ื ืื—ื“, ืฉืืžื•ืจ ืœื”ื™ื•ืช ื‘ืกื‘ื™ื‘ื•ืช `-0.017`. ื–ื” ืื•ืžืจ ืฉื”ืžื—ื™ืจื™ื ื ืจืื™ื ื›ืื™ืœื• ื”ื ื™ื•ืจื“ื™ื ืžืขื˜ ืขื ื”ื–ืžืŸ, ืื‘ืœ ืœื ื™ื•ืชืจ ืžื“ื™, ื‘ืกื‘ื™ื‘ื•ืช 2 ืกื ื˜ ืœื™ื•ื. ืื ื• ื™ื›ื•ืœื™ื ื’ื ืœื’ืฉืช ืœื ืงื•ื“ืช ื”ื—ื™ืชื•ืš ืฉืœ ื”ืจื’ืจืกื™ื” ืขื ืฆื™ืจ ื”-Y ื‘ืืžืฆืขื•ืช `lin_reg.intercept_` - ื–ื” ื™ื”ื™ื” ื‘ืกื‘ื™ื‘ื•ืช `21` ื‘ืžืงืจื” ืฉืœื ื•, ืžื” ืฉืžืขื™ื“ ืขืœ ื”ืžื—ื™ืจ ื‘ืชื—ื™ืœืช ื”ืฉื ื”.
ื›ื“ื™ ืœืจืื•ืช ืขื“ ื›ืžื” ื”ืžื•ื“ืœ ืฉืœื ื• ืžื“ื•ื™ืง, ืื ื• ื™ื›ื•ืœื™ื ืœื—ื–ื•ืช ืžื—ื™ืจื™ื ืขืœ ืžืื’ืจ ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื”, ื•ืื– ืœืžื“ื•ื“ ืขื“ ื›ืžื” ื”ืชื—ื–ื™ื•ืช ืฉืœื ื• ืงืจื•ื‘ื•ืช ืœืขืจื›ื™ื ื”ืฆืคื•ื™ื™ื. ื ื™ืชืŸ ืœืขืฉื•ืช ื–ืืช ื‘ืืžืฆืขื•ืช ืžื“ื“ ืฉื’ื™ืื” ืžืžื•ืฆืขืช ืจื™ื‘ื•ืขื™ืช (MSE), ืฉื”ื•ื ื”ืžืžื•ืฆืข ืฉืœ ื›ืœ ื”ื”ื‘ื“ืœื™ื ื”ืจื™ื‘ื•ืขื™ื™ื ื‘ื™ืŸ ื”ืขืจืš ื”ืฆืคื•ื™ ืœืขืจืš ื”ื—ื–ื•ื™.
```python
pred = lin_reg.predict(X_test)
mse = np.sqrt(mean_squared_error(y_test,pred))
print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')
```
ื ืจืื” ืฉื”ืฉื’ื™ืื” ืฉืœื ื• ืžืชืจื›ื–ืช ืกื‘ื™ื‘ 2 ื ืงื•ื“ื•ืช, ืฉื–ื” ื‘ืขืจืš 17%. ืœื ื›ืœ ื›ืš ื˜ื•ื‘. ืื™ื ื“ื™ืงื˜ื•ืจ ื ื•ืกืฃ ืœืื™ื›ื•ืช ื”ืžื•ื“ืœ ื”ื•ื **ืžืงื“ื ื”ื”ื—ืœื˜ื™ื•ืช**, ืฉื ื™ืชืŸ ืœื—ืฉื‘ ื›ืš:
```python
score = lin_reg.score(X_train,y_train)
print('Model determination: ', score)
```
ืื ื”ืขืจืš ื”ื•ื 0, ื–ื” ืื•ืžืจ ืฉื”ืžื•ื“ืœ ืœื ืžืชื—ืฉื‘ ื‘ื ืชื•ื ื™ ื”ืงืœื˜ ื•ืคื•ืขืœ ื›*ืžื ื‘ื ื”ืœื™ื ื™ืืจื™ ื”ื’ืจื•ืข ื‘ื™ื•ืชืจ*, ืฉื”ื•ื ืคืฉื•ื˜ ืžืžื•ืฆืข ืฉืœ ื”ืชื•ืฆืื”. ืขืจืš ืฉืœ 1 ืื•ืžืจ ืฉืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื ื‘ื ื‘ืื•ืคืŸ ืžื•ืฉืœื ืืช ื›ืœ ื”ืชื•ืฆืื•ืช ื”ืฆืคื•ื™ื•ืช. ื‘ืžืงืจื” ืฉืœื ื•, ื”ืžืงื“ื ื”ื•ื ื‘ืขืจืš 0.06, ืฉื–ื” ื“ื™ ื ืžื•ืš.
ื ื™ืชืŸ ื’ื ืœืฉืจื˜ื˜ ืืช ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื” ื™ื—ื“ ืขื ืงื• ื”ืจื’ืจืกื™ื” ื›ื“ื™ ืœืจืื•ืช ื˜ื•ื‘ ื™ื•ืชืจ ืื™ืš ื”ืจื’ืจืกื™ื” ืคื•ืขืœืช ื‘ืžืงืจื” ืฉืœื ื•:
```python
plt.scatter(X_test,y_test)
plt.plot(X_test,pred)
```
<img alt="ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช" src="images/linear-results.png" width="50%" />
## ืจื’ืจืกื™ื” ืคื•ืœื™ื ื•ืžื™ืช
ืกื•ื’ ื ื•ืกืฃ ืฉืœ ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช ื”ื•ื ืจื’ืจืกื™ื” ืคื•ืœื™ื ื•ืžื™ืช. ื‘ืขื•ื“ ืฉืœืคืขืžื™ื ื™ืฉ ืงืฉืจ ืœื™ื ื™ืืจื™ ื‘ื™ืŸ ืžืฉืชื ื™ื - ื›ื›ืœ ืฉื ืคื— ื”ื“ืœืขืช ื’ื“ื•ืœ ื™ื•ืชืจ, ื›ืš ื”ืžื—ื™ืจ ื’ื‘ื•ื” ื™ื•ืชืจ - ืœืคืขืžื™ื ืงืฉืจื™ื ืืœื• ืœื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืžื™ื•ืฆื’ื™ื ื›ืžื™ืฉื•ืจ ืื• ื›ืงื• ื™ืฉืจ.
โœ… ื”ื ื” [ื›ืžื” ื“ื•ื’ืžืื•ืช ื ื•ืกืคื•ืช](https://online.stat.psu.edu/stat501/lesson/9/9.8) ืœื ืชื•ื ื™ื ืฉื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ืจื’ืจืกื™ื” ืคื•ืœื™ื ื•ืžื™ืช.
ืชืกืชื›ืœื• ืฉื•ื‘ ืขืœ ื”ืงืฉืจ ื‘ื™ืŸ ืชืืจื™ืš ืœืžื—ื™ืจ. ื”ืื ืคื™ื–ื•ืจ ื”ื ืชื•ื ื™ื ื ืจืื” ื›ืื™ืœื• ื”ื•ื ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืžื ื•ืชื— ื‘ืืžืฆืขื•ืช ืงื• ื™ืฉืจ? ื”ืื ืžื—ื™ืจื™ื ืœื ื™ื›ื•ืœื™ื ืœื”ืฉืชื ื•ืช? ื‘ืžืงืจื” ื›ื–ื”, ื ื™ืชืŸ ืœื ืกื•ืช ืจื’ืจืกื™ื” ืคื•ืœื™ื ื•ืžื™ืช.
โœ… ืคื•ืœื™ื ื•ืžื™ื ื”ื ื‘ื™ื˜ื•ื™ื™ื ืžืชืžื˜ื™ื™ื ืฉื™ื›ื•ืœื™ื ืœื›ืœื•ืœ ืžืฉืชื ื” ืื—ื“ ืื• ื™ื•ืชืจ ื•ืžืงื“ืžื™ื.
ืจื’ืจืกื™ื” ืคื•ืœื™ื ื•ืžื™ืช ื™ื•ืฆืจืช ืงื• ืžืขื•ืงืœ ืฉืžืชืื™ื ื˜ื•ื‘ ื™ื•ืชืจ ืœื ืชื•ื ื™ื ืœื ืœื™ื ื™ืืจื™ื™ื. ื‘ืžืงืจื” ืฉืœื ื•, ืื ื ื›ืœื•ืœ ืžืฉืชื ื” `DayOfYear` ื‘ืจื™ื‘ื•ืข ื‘ื ืชื•ื ื™ ื”ืงืœื˜, ื ื•ื›ืœ ืœื”ืชืื™ื ืืช ื”ื ืชื•ื ื™ื ืฉืœื ื• ืœืขืงื•ืžื” ืคืจื‘ื•ืœื™ืช, ืฉืชื”ื™ื” ืœื” ืžื™ื ื™ืžื•ื ื‘ื ืงื•ื“ื” ืžืกื•ื™ืžืช ื‘ืžื”ืœืš ื”ืฉื ื”.
ืกืคืจื™ื™ืช Scikit-learn ื›ื•ืœืœืช [API ืฉืœ ืฆื™ื ื•ืจ](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline) ืฉืžืืคืฉืจ ืœืฉืœื‘ ืฉืœื‘ื™ื ืฉื•ื ื™ื ืฉืœ ืขื™ื‘ื•ื“ ื ืชื•ื ื™ื ื™ื—ื“. **ืฆื™ื ื•ืจ** ื”ื•ื ืฉืจืฉืจืช ืฉืœ **ืื•ืžื“ื ื™ื**. ื‘ืžืงืจื” ืฉืœื ื•, ื ื™ืฆื•ืจ ืฆื™ื ื•ืจ ืฉืžื•ืกื™ืฃ ืชื—ื™ืœื” ืชื›ื•ื ื•ืช ืคื•ืœื™ื ื•ืžื™ื•ืช ืœืžื•ื“ืœ ืฉืœื ื•, ื•ืื– ืžืืžืŸ ืืช ื”ืจื’ืจืกื™ื”:
```python
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())
pipeline.fit(X_train,y_train)
```
ืฉื™ืžื•ืฉ ื‘-`PolynomialFeatures(2)` ืื•ืžืจ ืฉื ื›ืœื•ืœ ืืช ื›ืœ ื”ืคื•ืœื™ื ื•ืžื™ื ืžื“ืจื’ื” ืฉื ื™ื™ื” ืžื ืชื•ื ื™ ื”ืงืœื˜. ื‘ืžืงืจื” ืฉืœื ื• ื–ื” ืคืฉื•ื˜ ืื•ืžืจ `DayOfYear`<sup>2</sup>, ืื‘ืœ ืื ื™ืฉื ื ืฉื ื™ ืžืฉืชื ื™ ืงืœื˜ X ื•-Y, ื–ื” ื™ื•ืกื™ืฃ X<sup>2</sup>, XY ื•-Y<sup>2</sup>. ื ื™ืชืŸ ื’ื ืœื”ืฉืชืžืฉ ื‘ืคื•ืœื™ื ื•ืžื™ื ืžื“ืจื’ื” ื’ื‘ื•ื”ื” ื™ื•ืชืจ ืื ืจื•ืฆื™ื.
ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืฆื™ื ื•ืจื•ืช ื‘ืื•ืชื• ืื•ืคืŸ ื›ืžื• ื‘ืื•ื‘ื™ื™ืงื˜ `LinearRegression` ื”ืžืงื•ืจื™, ื›ืœื•ืžืจ ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘-`fit` ื‘ืฆื™ื ื•ืจ ื•ืื– ื‘-`predict` ื›ื“ื™ ืœืงื‘ืœ ืืช ืชื•ืฆืื•ืช ื”ื ื™ื‘ื•ื™. ื”ื ื” ื”ื’ืจืฃ ืฉืžืจืื” ืืช ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื” ื•ืืช ืขืงื•ืžืช ื”ืงื™ืจื•ื‘:
<img alt="ืจื’ืจืกื™ื” ืคื•ืœื™ื ื•ืžื™ืช" src="images/poly-results.png" width="50%" />
ืฉื™ืžื•ืฉ ื‘ืจื’ืจืกื™ื” ืคื•ืœื™ื ื•ืžื™ืช ืžืืคืฉืจ ืœื ื• ืœืงื‘ืœ MSE ืžืขื˜ ื ืžื•ืš ื™ื•ืชืจ ื•ืžืงื“ื ื”ื—ืœื˜ื™ื•ืช ื’ื‘ื•ื” ื™ื•ืชืจ, ืืš ืœื ื‘ืื•ืคืŸ ืžืฉืžืขื•ืชื™. ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืชื›ื•ื ื•ืช ื ื•ืกืคื•ืช!
> ื ื™ืชืŸ ืœืจืื•ืช ืฉื”ืžื—ื™ืจื™ื ื”ืžื™ื ื™ืžืœื™ื™ื ืฉืœ ื“ืœืขื•ืช ื ืฆืคื™ื ืื™ืคืฉื”ื• ืกื‘ื™ื‘ ืœื™ืœ ื›ืœ ื”ืงื“ื•ืฉื™ื. ืื™ืš ืืคืฉืจ ืœื”ืกื‘ื™ืจ ืืช ื–ื”?
๐ŸŽƒ ื›ืœ ื”ื›ื‘ื•ื“, ื™ืฆืจืชื ืžื•ื“ืœ ืฉื™ื›ื•ืœ ืœืขื–ื•ืจ ืœื ื‘ื ืืช ืžื—ื™ืจ ื“ืœืขื•ืช ื”ืคืื™. ื›ื ืจืื” ืฉืชื•ื›ืœื• ืœื—ื–ื•ืจ ืขืœ ืื•ืชื• ืชื”ืœื™ืš ืขื‘ื•ืจ ื›ืœ ืกื•ื’ื™ ื”ื“ืœืขื•ืช, ืื‘ืœ ื–ื” ื™ื”ื™ื” ืžื™ื™ื’ืข. ืขื›ืฉื™ื• ื ืœืžื“ ืื™ืš ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืืช ืกื•ื’ ื”ื“ืœืขืช ื‘ืžื•ื“ืœ ืฉืœื ื•!
## ืชื›ื•ื ื•ืช ืงื˜ื’ื•ืจื™ื•ืช
ื‘ืขื•ืœื ื”ืื™ื“ื™ืืœื™, ื ืจืฆื” ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื ื‘ื ืžื—ื™ืจื™ื ืขื‘ื•ืจ ืกื•ื’ื™ ื“ืœืขื•ืช ืฉื•ื ื™ื ื‘ืืžืฆืขื•ืช ืื•ืชื• ืžื•ื“ืœ. ืขื ื–ืืช, ื”ืขืžื•ื“ื” `Variety` ืฉื•ื ื” ื‘ืžืงืฆืช ืžืขืžื•ื“ื•ืช ื›ืžื• `Month`, ืžื›ื™ื•ื•ืŸ ืฉื”ื™ื ืžื›ื™ืœื” ืขืจื›ื™ื ืœื ืžืกืคืจื™ื™ื. ืขืžื•ื“ื•ืช ื›ืืœื” ื ืงืจืื•ืช **ืงื˜ื’ื•ืจื™ื•ืช**.
[![ML ืœืžืชื—ื™ืœื™ื - ื ื™ื‘ื•ื™ ืชื›ื•ื ื•ืช ืงื˜ื’ื•ืจื™ื•ืช ืขื ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช](https://img.youtube.com/vi/DYGliioIAE0/0.jpg)](https://youtu.be/DYGliioIAE0 "ML ืœืžืชื—ื™ืœื™ื - ื ื™ื‘ื•ื™ ืชื›ื•ื ื•ืช ืงื˜ื’ื•ืจื™ื•ืช ืขื ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืกืจื˜ื•ืŸ ืงืฆืจ ืขืœ ืฉื™ืžื•ืฉ ื‘ืชื›ื•ื ื•ืช ืงื˜ื’ื•ืจื™ื•ืช.
ื›ืืŸ ื ื™ืชืŸ ืœืจืื•ืช ืื™ืš ื”ืžื—ื™ืจ ื”ืžืžื•ืฆืข ืชืœื•ื™ ื‘ืกื•ื’ ื”ื“ืœืขืช:
<img alt="ืžื—ื™ืจ ืžืžื•ืฆืข ืœืคื™ ืกื•ื’" src="images/price-by-variety.png" width="50%" />
ื›ื“ื™ ืœืงื—ืช ืืช ืกื•ื’ ื”ื“ืœืขืช ื‘ื—ืฉื‘ื•ืŸ, ืชื—ื™ืœื” ืขืœื™ื ื• ืœื”ืžื™ืจ ืื•ืชื• ืœืฆื•ืจื” ืžืกืคืจื™ืช, ืื• **ืœืงื•ื“ื“** ืื•ืชื•. ื™ืฉื ืŸ ืžืกืคืจ ื“ืจื›ื™ื ืœืขืฉื•ืช ื–ืืช:
* **ืงื™ื“ื•ื“ ืžืกืคืจื™ ืคืฉื•ื˜** ื™ื‘ื ื” ื˜ื‘ืœื” ืฉืœ ืกื•ื’ื™ ื“ืœืขื•ืช ืฉื•ื ื™ื, ื•ืื– ื™ื—ืœื™ืฃ ืืช ืฉื ื”ืกื•ื’ ื‘ืžืกืคืจ ืื™ื ื“ืงืก ื‘ื˜ื‘ืœื”. ื–ื• ืœื ื”ื‘ื—ื™ืจื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืขื‘ื•ืจ ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช, ืžื›ื™ื•ื•ืŸ ืฉืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช ืžืชื—ืฉื‘ืช ื‘ืขืจืš ื”ืžืกืคืจื™ ืฉืœ ื”ืื™ื ื“ืงืก ื•ืžื•ืกื™ืคื” ืื•ืชื• ืœืชื•ืฆืื”, ืชื•ืš ื”ื›ืคืœื” ื‘ืžืงื“ื ืžืกื•ื™ื. ื‘ืžืงืจื” ืฉืœื ื•, ื”ืงืฉืจ ื‘ื™ืŸ ืžืกืคืจ ื”ืื™ื ื“ืงืก ืœืžื—ื™ืจ ื”ื•ื ื‘ื‘ื™ืจื•ืจ ืœื ืœื™ื ื™ืืจื™, ื’ื ืื ื ื•ื•ื“ื ืฉื”ืื™ื ื“ืงืกื™ื ืžืกื•ื“ืจื™ื ื‘ืฆื•ืจื” ืžืกื•ื™ืžืช.
* **ืงื™ื“ื•ื“ One-hot** ื™ื—ืœื™ืฃ ืืช ื”ืขืžื•ื“ื” `Variety` ื‘ืืจื‘ืข ืขืžื•ื“ื•ืช ืฉื•ื ื•ืช, ืื—ืช ืœื›ืœ ืกื•ื’. ื›ืœ ืขืžื•ื“ื” ืชื›ื™ืœ `1` ืื ื”ืฉื•ืจื” ื”ืžืชืื™ืžื” ื”ื™ื ืžืกื•ื’ ืžืกื•ื™ื, ื•-`0` ืื—ืจืช. ื–ื” ืื•ืžืจ ืฉื™ื”ื™ื• ืืจื‘ืขื” ืžืงื“ืžื™ื ื‘ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช, ืื—ื“ ืœื›ืœ ืกื•ื’ ื“ืœืขืช, ืฉืื—ืจืื™ ืขืœ "ืžื—ื™ืจ ื”ืชื—ืœืชื™" (ืื• ืœื™ืชืจ ื“ื™ื•ืง "ืžื—ื™ืจ ื ื•ืกืฃ") ืขื‘ื•ืจ ืื•ืชื• ืกื•ื’ ืžืกื•ื™ื.
ื”ืงื•ื“ ื”ื‘ื ืžืจืื” ืื™ืš ื ื™ืชืŸ ืœืงื•ื“ื“ ืกื•ื’ ื“ืœืขืช ื‘ืฉื™ื˜ืช One-hot:
```python
pd.get_dummies(new_pumpkins['Variety'])
```
ID | FAIRYTALE | MINIATURE | MIXED HEIRLOOM VARIETIES | PIE TYPE
----|-----------|-----------|--------------------------|----------
70 | 0 | 0 | 0 | 1
71 | 0 | 0 | 0 | 1
... | ... | ... | ... | ...
1738 | 0 | 1 | 0 | 0
1739 | 0 | 1 | 0 | 0
1740 | 0 | 1 | 0 | 0
1741 | 0 | 1 | 0 | 0
1742 | 0 | 1 | 0 | 0
ื›ื“ื™ ืœืืžืŸ ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช ื‘ืืžืฆืขื•ืช ืกื•ื’ ื“ืœืขืช ืžืงื•ื“ื“ ื‘ืฉื™ื˜ืช One-hot ื›ืงืœื˜, ืคืฉื•ื˜ ืฆืจื™ืš ืœืืชื—ืœ ืืช ื ืชื•ื ื™ `X` ื•-`y` ื‘ืฆื•ืจื” ื ื›ื•ื ื”:
```python
X = pd.get_dummies(new_pumpkins['Variety'])
y = new_pumpkins['Price']
```
ืฉืืจ ื”ืงื•ื“ ื–ื”ื” ืœืžื” ืฉื”ืฉืชืžืฉื ื• ื‘ื• ืงื•ื“ื ื›ื“ื™ ืœืืžืŸ ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช. ืื ืชื ืกื• ื–ืืช, ืชืจืื• ืฉ-Mean Squared Error ื ืฉืืจ ื‘ืขืจืš ืื•ืชื• ื“ื‘ืจ, ืื‘ืœ ืžืงื“ื ื”ื”ื—ืœื˜ื™ื•ืช ืขื•ืœื” ืžืฉืžืขื•ืชื™ืช (~77%). ื›ื“ื™ ืœืงื‘ืœ ื ื™ื‘ื•ื™ื™ื ืžื“ื•ื™ืงื™ื ื™ื•ืชืจ, ื ื™ืชืŸ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืชื›ื•ื ื•ืช ืงื˜ื’ื•ืจื™ื•ืช ื ื•ืกืคื•ืช, ื›ืžื• ื’ื ืชื›ื•ื ื•ืช ืžืกืคืจื™ื•ืช, ื›ื’ื•ืŸ `Month` ืื• `DayOfYear`. ื›ื“ื™ ืœืงื‘ืœ ืžืขืจืš ื’ื“ื•ืœ ืฉืœ ืชื›ื•ื ื•ืช, ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘-`join`:
```python
X = pd.get_dummies(new_pumpkins['Variety']) \
.join(new_pumpkins['Month']) \
.join(pd.get_dummies(new_pumpkins['City'])) \
.join(pd.get_dummies(new_pumpkins['Package']))
y = new_pumpkins['Price']
```
ื›ืืŸ ืื ื• ืœื•ืงื—ื™ื ื‘ื—ืฉื‘ื•ืŸ ื’ื ืืช `City` ื•ืืช ืกื•ื’ ื”ืืจื™ื–ื”, ืžื” ืฉืžื‘ื™ื ืื•ืชื ื• ืœ-MSE ืฉืœ 2.84 (10%) ื•ืœืžืงื“ื ื”ื—ืœื˜ื™ื•ืช ืฉืœ 0.94!
## ืœืฉืœื‘ ื”ื›ืœ ื™ื—ื“
ื›ื“ื™ ืœื™ืฆื•ืจ ืืช ื”ืžื•ื“ืœ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ, ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื ืชื•ื ื™ื ืžืฉื•ืœื‘ื™ื (ืงื˜ื’ื•ืจื™ื•ืช ืžืงื•ื“ื“ื•ืช ื‘ืฉื™ื˜ืช One-hot + ื ืชื•ื ื™ื ืžืกืคืจื™ื™ื) ืžื”ื“ื•ื’ืžื” ืœืขื™ืœ ื™ื—ื“ ืขื ืจื’ืจืกื™ื” ืคื•ืœื™ื ื•ืžื™ืช. ื”ื ื” ื”ืงื•ื“ ื”ืžืœื ืœื ื•ื—ื™ื•ืชื›ื:
```python
# set up training data
X = pd.get_dummies(new_pumpkins['Variety']) \
.join(new_pumpkins['Month']) \
.join(pd.get_dummies(new_pumpkins['City'])) \
.join(pd.get_dummies(new_pumpkins['Package']))
y = new_pumpkins['Price']
# make train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# setup and train the pipeline
pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())
pipeline.fit(X_train,y_train)
# predict results for test data
pred = pipeline.predict(X_test)
# calculate MSE and determination
mse = np.sqrt(mean_squared_error(y_test,pred))
print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')
score = pipeline.score(X_train,y_train)
print('Model determination: ', score)
```
ื–ื” ืืžื•ืจ ืœืชืช ืœื ื• ืืช ืžืงื“ื ื”ื”ื—ืœื˜ื™ื•ืช ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืฉืœ ื›ืžืขื˜ 97%, ื•-MSE=2.23 (~8% ืฉื’ื™ืืช ื ื™ื‘ื•ื™).
| ืžื•ื“ืœ | MSE | ืžืงื“ื ื”ื—ืœื˜ื™ื•ืช |
|-------|-----|---------------|
| `DayOfYear` ืœื™ื ื™ืืจื™ | 2.77 (17.2%) | 0.07 |
| `DayOfYear` ืคื•ืœื™ื ื•ืžื™ | 2.73 (17.0%) | 0.08 |
| `Variety` ืœื™ื ื™ืืจื™ | 5.24 (19.7%) | 0.77 |
| ื›ืœ ื”ืชื›ื•ื ื•ืช ืœื™ื ื™ืืจื™ | 2.84 (10.5%) | 0.94 |
| ื›ืœ ื”ืชื›ื•ื ื•ืช ืคื•ืœื™ื ื•ืžื™ | 2.23 (8.25%) | 0.97 |
๐Ÿ† ื›ืœ ื”ื›ื‘ื•ื“! ื™ืฆืจืชื ืืจื‘ืขื” ืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื” ื‘ืฉื™ืขื•ืจ ืื—ื“ ื•ืฉื™ืคืจืชื ืืช ืื™ื›ื•ืช ื”ืžื•ื“ืœ ืœ-97%. ื‘ื—ืœืง ื”ืื—ืจื•ืŸ ืขืœ ืจื’ืจืกื™ื” ืชืœืžื“ื• ืขืœ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ื›ื“ื™ ืœืงื‘ื•ืข ืงื˜ื’ื•ืจื™ื•ืช.
---
## ๐Ÿš€ืืชื’ืจ
ื‘ื“ืงื• ืžืฉืชื ื™ื ืฉื•ื ื™ื ื‘ืžื—ื‘ืจืช ื–ื• ื›ื“ื™ ืœืจืื•ืช ืื™ืš ื”ืงื•ืจืœืฆื™ื” ืžืฉืคื™ืขื” ืขืœ ื“ื™ื•ืง ื”ืžื•ื“ืœ.
## [ืžื‘ื—ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื‘ืฉื™ืขื•ืจ ื–ื” ืœืžื“ื ื• ืขืœ ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช. ื™ืฉื ื ืกื•ื’ื™ื ื—ืฉื•ื‘ื™ื ื ื•ืกืคื™ื ืฉืœ ืจื’ืจืกื™ื”. ืงืจืื• ืขืœ ื˜ื›ื ื™ืงื•ืช Stepwise, Ridge, Lasso ื•-Elasticnet. ืงื•ืจืก ื˜ื•ื‘ ืœืœืžื•ื“ ื›ื“ื™ ืœื”ืขืžื™ืง ื”ื•ื [ืงื•ืจืก ื”ืœืžื™ื“ื” ื”ืกื˜ื˜ื™ืกื˜ื™ืช ืฉืœ ืกื˜ื ืคื•ืจื“](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning).
## ืžืฉื™ืžื”
[ื‘ื ื• ืžื•ื“ืœ](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "cc471fa89c293bc735dd3a9a0fb79b1b",
"translation_date": "2025-09-05T18:42:57+00:00",
"source_file": "2-Regression/3-Linear/assignment.md",
"language_code": "he"
}
-->
# ื™ืฆื™ืจืช ืžื•ื“ืœ ืจื’ืจืกื™ื”
## ื”ื•ืจืื•ืช
ื‘ืฉื™ืขื•ืจ ื–ื” ื”ื•ืฆื’ ื›ื™ืฆื“ ืœื‘ื ื•ืช ืžื•ื“ืœ ื‘ืืžืฆืขื•ืช ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ื•ืจื’ืจืกื™ื” ืคื•ืœื™ื ื•ืžื™ืช. ื‘ืขื–ืจืช ื”ื™ื“ืข ื”ื–ื”, ืžืฆืื• ืžืขืจืš ื ืชื•ื ื™ื ืื• ื”ืฉืชืžืฉื• ื‘ืื—ื“ ืžืžืขืจื›ื™ ื”ื ืชื•ื ื™ื ื”ืžื•ื‘ื ื™ื ืฉืœ Scikit-learn ื›ื“ื™ ืœื‘ื ื•ืช ืžื•ื“ืœ ื—ื“ืฉ. ื”ืกื‘ื™ืจื• ื‘ืžื—ื‘ืจืช ืฉืœื›ื ืžื“ื•ืข ื‘ื—ืจืชื ื‘ื˜ื›ื ื™ืงื” ืฉื‘ื—ืจืชื, ื•ื”ืฆื™ื’ื• ืืช ื“ื™ื•ืง ื”ืžื•ื“ืœ ืฉืœื›ื. ืื ื”ืžื•ื“ืœ ืื™ื ื• ืžื“ื•ื™ืง, ื”ืกื‘ื™ืจื• ืžื“ื•ืข.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ---------------------------------------------------------- | ------------------------- | --------------------------- |
| | ืžืฆื™ื’ ืžื—ื‘ืจืช ืžืœืื” ืขื ืคืชืจื•ืŸ ืžืชื•ืขื“ ื”ื™ื˜ื‘ | ื”ืคืชืจื•ืŸ ืื™ื ื• ืฉืœื | ื”ืคืชืจื•ืŸ ืคื’ื•ื ืื• ืžื›ื™ืœ ื‘ืื’ื™ื |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T18:43:25+00:00",
"source_file": "2-Regression/3-Linear/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,412 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "abf86d845c84330bce205a46b382ec88",
"translation_date": "2025-09-05T18:46:04+00:00",
"source_file": "2-Regression/4-Logistic/README.md",
"language_code": "he"
}
-->
# ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืœื—ื™ื–ื•ื™ ืงื˜ื’ื•ืจื™ื•ืช
![ืื™ื ืคื•ื’ืจืคื™ืงื” ืฉืœ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืžื•ืœ ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช](../../../../2-Regression/4-Logistic/images/linear-vs-logistic.png)
## [ืžื‘ื—ืŸ ืžืงื“ื™ื ืœื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
> ### [ื”ืฉื™ืขื•ืจ ื”ื–ื” ื–ืžื™ืŸ ื’ื ื‘-R!](../../../../2-Regression/4-Logistic/solution/R/lesson_4.html)
## ืžื‘ื•ื
ื‘ืฉื™ืขื•ืจ ื”ืื—ืจื•ืŸ ืขืœ ืจื’ืจืกื™ื”, ืื—ืช ืžื˜ื›ื ื™ืงื•ืช ื”-ML ื”ืงืœืืกื™ื•ืช ื”ื‘ืกื™ืกื™ื•ืช, ื ื‘ื—ืŸ ืืช ื”ืจื’ืจืกื™ื” ื”ืœื•ื’ื™ืกื˜ื™ืช. ืชืฉืชืžืฉื• ื‘ื˜ื›ื ื™ืงื” ื–ื• ื›ื“ื™ ืœื’ืœื•ืช ื“ืคื•ืกื™ื ืœื—ื™ื–ื•ื™ ืงื˜ื’ื•ืจื™ื•ืช ื‘ื™ื ืืจื™ื•ืช. ื”ืื ื”ืžืžืชืง ื”ื–ื” ื”ื•ื ืฉื•ืงื•ืœื“ ืื• ืœื? ื”ืื ื”ืžื—ืœื” ื”ื–ื• ืžื“ื‘ืงืช ืื• ืœื? ื”ืื ื”ืœืงื•ื— ื”ื–ื” ื™ื‘ื—ืจ ื‘ืžื•ืฆืจ ื”ื–ื” ืื• ืœื?
ื‘ืฉื™ืขื•ืจ ื”ื–ื” ืชืœืžื“ื•:
- ืกืคืจื™ื™ื” ื—ื“ืฉื” ืœื”ื“ืžื™ื™ืช ื ืชื•ื ื™ื
- ื˜ื›ื ื™ืงื•ืช ืœืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช
โœ… ื”ืขืžื™ืงื• ืืช ื”ื”ื‘ื ื” ืฉืœื›ื ื‘ืขื‘ื•ื“ื” ืขื ืกื•ื’ ื–ื” ืฉืœ ืจื’ืจืกื™ื” ื‘ืžื•ื“ื•ืœ [Learn](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott)
## ื“ืจื™ืฉื•ืช ืžืงื“ื™ืžื•ืช
ืœืื—ืจ ืฉืขื‘ื“ื ื• ืขื ื ืชื•ื ื™ ื”ื“ืœืขืช, ืื ื—ื ื• ื›ื‘ืจ ืžืกืคื™ืง ืžื›ื™ืจื™ื ืื•ืชื ื›ื“ื™ ืœื”ื‘ื™ืŸ ืฉื™ืฉ ืงื˜ื’ื•ืจื™ื” ื‘ื™ื ืืจื™ืช ืื—ืช ืฉืืคืฉืจ ืœืขื‘ื•ื“ ืื™ืชื”: `Color`.
ื‘ื•ืื• ื ื‘ื ื” ืžื•ื“ืœ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ื›ื“ื™ ืœื—ื–ื•ืช, ื‘ื”ืชื‘ืกืก ืขืœ ืžืฉืชื ื™ื ืžืกื•ื™ืžื™ื, _ืื™ื–ื” ืฆื‘ืข ืฆืคื•ื™ ืœื”ื™ื•ืช ืœื“ืœืขืช ืžืกื•ื™ืžืช_ (ื›ืชื•ื ๐ŸŽƒ ืื• ืœื‘ืŸ ๐Ÿ‘ป).
> ืœืžื” ืื ื—ื ื• ืžื“ื‘ืจื™ื ืขืœ ืกื™ื•ื•ื’ ื‘ื™ื ืืจื™ ื‘ืฉื™ืขื•ืจ ืฉืžืงื•ืฉืจ ืœืจื’ืจืกื™ื”? ืจืง ืžื˜ืขืžื™ ื ื•ื—ื•ืช ืœืฉื•ื ื™ืช, ืฉื›ืŸ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ื”ื™ื [ื‘ืขืฆื ืฉื™ื˜ืช ืกื™ื•ื•ื’](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression), ืื ื›ื™ ืžื‘ื•ืกืกืช ืขืœ ืœื™ื ื™ืืจื™ื•ืช. ืœืžื“ื• ืขืœ ื“ืจื›ื™ื ืื—ืจื•ืช ืœืกื•ื•ื’ ื ืชื•ื ื™ื ื‘ืงื‘ื•ืฆืช ื”ืฉื™ืขื•ืจื™ื ื”ื‘ืื”.
## ื”ื’ื“ืจืช ื”ืฉืืœื”
ืœืžื˜ืจื•ืชื™ื ื•, ื ื‘ื˜ื ื–ืืช ื›ื‘ื™ื ืืจื™: 'ืœื‘ืŸ' ืื• 'ืœื ืœื‘ืŸ'. ื™ืฉ ื’ื ืงื˜ื’ื•ืจื™ื” 'ืžืคื•ืกืคืกืช' ื‘ืžืื’ืจ ื”ื ืชื•ื ื™ื ืฉืœื ื•, ืื‘ืœ ื™ืฉ ืžืขื˜ ืžืงืจื™ื ืฉืœื”, ื•ืœื›ืŸ ืœื ื ืฉืชืžืฉ ื‘ื”. ื”ื™ื ื ืขืœืžืช ื‘ื›ืœ ืžืงืจื” ื‘ืจื’ืข ืฉืžืกื™ืจื™ื ืขืจื›ื™ื ื—ืกืจื™ื ืžื”ืžืื’ืจ.
> ๐ŸŽƒ ืขื•ื‘ื“ื” ืžืขื ื™ื™ื ืช: ืœืคืขืžื™ื ืื ื—ื ื• ืงื•ืจืื™ื ืœื“ืœืขื•ืช ืœื‘ื ื•ืช 'ื“ืœืขื•ืช ืจืคืื™ื'. ื”ืŸ ืœื ืงืœื•ืช ืœื’ื™ืœื•ืฃ, ื•ืœื›ืŸ ื”ืŸ ืคื—ื•ืช ืคื•ืคื•ืœืจื™ื•ืช ืžื”ื›ืชื•ืžื•ืช, ืื‘ืœ ื”ืŸ ื ืจืื•ืช ืžื’ื ื™ื‘ื•ืช! ืื– ืืคืฉืจ ื’ื ืœื ืกื— ืžื—ื“ืฉ ืืช ื”ืฉืืœื” ืฉืœื ื• ื›: 'ืจืคืื™ื' ืื• 'ืœื ืจืคืื™ื'. ๐Ÿ‘ป
## ืขืœ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช
ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืฉื•ื ื” ืžืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช, ืฉืœืžื“ืชื ืขืœื™ื” ืงื•ื“ื, ื‘ื›ืžื” ื“ืจื›ื™ื ื—ืฉื•ื‘ื•ืช.
[![ML ืœืžืชื—ื™ืœื™ื - ื”ื‘ื ืช ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืœืกื™ื•ื•ื’ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”](https://img.youtube.com/vi/KpeCT6nEpBY/0.jpg)](https://youtu.be/KpeCT6nEpBY "ML ืœืžืชื—ื™ืœื™ื - ื”ื‘ื ืช ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืœืกื™ื•ื•ื’ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืกืจื˜ื•ืŸ ืงืฆืจ ืขืœ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช.
### ืกื™ื•ื•ื’ ื‘ื™ื ืืจื™
ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืœื ืžืฆื™ืขื” ืืช ืื•ืชืŸ ืชื›ื•ื ื•ืช ื›ืžื• ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช. ื”ืจืืฉื•ื ื” ืžืฆื™ืขื” ื—ื™ื–ื•ื™ ืฉืœ ืงื˜ื’ื•ืจื™ื” ื‘ื™ื ืืจื™ืช ("ืœื‘ืŸ ืื• ืœื ืœื‘ืŸ"), ื‘ืขื•ื“ ืฉื”ืื—ืจื•ื ื” ืžืกื•ื’ืœืช ืœื—ื–ื•ืช ืขืจื›ื™ื ืจืฆื™ืคื™ื, ืœืžืฉืœ ื‘ื”ืชื‘ืกืก ืขืœ ืžืงื•ืจ ื”ื“ืœืขืช ื•ื–ืžืŸ ื”ืงื˜ื™ืฃ, _ื›ืžื” ื”ืžื—ื™ืจ ืฉืœื” ื™ืขืœื”_.
![ืžื•ื“ืœ ืกื™ื•ื•ื’ ื“ืœืขื•ืช](../../../../2-Regression/4-Logistic/images/pumpkin-classifier.png)
> ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Dasani Madipalli](https://twitter.com/dasani_decoded)
### ืกื™ื•ื•ื’ื™ื ืื—ืจื™ื
ื™ืฉื ื ืกื•ื’ื™ื ืื—ืจื™ื ืฉืœ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช, ื›ื•ืœืœ ืžื•ืœื˜ื™ื ื•ืžื™ืืœื™ืช ื•ืื•ืจื“ื™ื ืœื™ืช:
- **ืžื•ืœื˜ื™ื ื•ืžื™ืืœื™ืช**, ืฉื›ื•ืœืœืช ื™ื•ืชืจ ืžืงื˜ื’ื•ืจื™ื” ืื—ืช - "ื›ืชื•ื, ืœื‘ืŸ ื•ืžืคื•ืกืคืก".
- **ืื•ืจื“ื™ื ืœื™ืช**, ืฉื›ื•ืœืœืช ืงื˜ื’ื•ืจื™ื•ืช ืžืกื•ื“ืจื•ืช, ืฉื™ืžื•ืฉื™ืช ืื ื ืจืฆื” ืœืกื“ืจ ืืช ื”ืชื•ืฆืื•ืช ืฉืœื ื• ื‘ืื•ืคืŸ ืœื•ื’ื™, ื›ืžื• ื”ื“ืœืขื•ืช ืฉืœื ื• ืฉืžืกื•ื“ืจื•ืช ืœืคื™ ืžืกืคืจ ืกื•ืคื™ ืฉืœ ื’ื“ืœื™ื (ืžื™ื ื™, ืงื˜ืŸ, ื‘ื™ื ื•ื ื™, ื’ื“ื•ืœ, XL, XXL).
![ืจื’ืจืกื™ื” ืžื•ืœื˜ื™ื ื•ืžื™ืืœื™ืช ืžื•ืœ ืื•ืจื“ื™ื ืœื™ืช](../../../../2-Regression/4-Logistic/images/multinomial-vs-ordinal.png)
### ื”ืžืฉืชื ื™ื ืœื ื—ื™ื™ื‘ื™ื ืœื”ื™ื•ืช ืžืชื•ืืžื™ื
ื–ื•ื›ืจื™ื ืื™ืš ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช ืขื‘ื“ื” ื˜ื•ื‘ ื™ื•ืชืจ ืขื ืžืฉืชื ื™ื ืžืชื•ืืžื™ื? ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ื”ื™ื ื”ื”ืคืš - ื”ืžืฉืชื ื™ื ืœื ื—ื™ื™ื‘ื™ื ืœื”ื™ื•ืช ืžืชื•ืืžื™ื. ื–ื” ืขื•ื‘ื“ ืขื‘ื•ืจ ื”ื ืชื•ื ื™ื ื”ืืœื” ืฉื™ืฉ ืœื”ื ืžืชืืžื™ื ื—ืœืฉื™ื ื™ื—ืกื™ืช.
### ืฆืจื™ืš ื”ืจื‘ื” ื ืชื•ื ื™ื ื ืงื™ื™ื
ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืชื™ืชืŸ ืชื•ืฆืื•ืช ืžื“ื•ื™ืงื•ืช ื™ื•ืชืจ ืื ืชืฉืชืžืฉื• ื‘ื™ื•ืชืจ ื ืชื•ื ื™ื; ืžืื’ืจ ื”ื ืชื•ื ื™ื ื”ืงื˜ืŸ ืฉืœื ื• ืื™ื ื• ืื•ืคื˜ื™ืžืœื™ ืœืžืฉื™ืžื” ื–ื•, ืื– ืงื—ื• ื–ืืช ื‘ื—ืฉื‘ื•ืŸ.
[![ML ืœืžืชื—ื™ืœื™ื - ื ื™ืชื•ื— ื•ื”ื›ื ืช ื ืชื•ื ื™ื ืœืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช](https://img.youtube.com/vi/B2X4H9vcXTs/0.jpg)](https://youtu.be/B2X4H9vcXTs "ML ืœืžืชื—ื™ืœื™ื - ื ื™ืชื•ื— ื•ื”ื›ื ืช ื ืชื•ื ื™ื ืœืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืกืจื˜ื•ืŸ ืงืฆืจ ืขืœ ื”ื›ื ืช ื ืชื•ื ื™ื ืœืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช.
โœ… ื—ืฉื‘ื• ืขืœ ืกื•ื’ื™ ื”ื ืชื•ื ื™ื ืฉื™ืชืื™ืžื• ืœืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช.
## ืชืจื’ื™ืœ - ื ื™ืงื•ื™ ื”ื ืชื•ื ื™ื
ืจืืฉื™ืช, ื ื ืงื” ืืช ื”ื ืชื•ื ื™ื ืžืขื˜, ื ืกื™ืจ ืขืจื›ื™ื ื—ืกืจื™ื ื•ื ื‘ื—ืจ ืจืง ื—ืœืง ืžื”ืขืžื•ื“ื•ืช:
1. ื”ื•ืกื™ืคื• ืืช ื”ืงื•ื“ ื”ื‘ื:
```python
columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color']
pumpkins = full_pumpkins.loc[:, columns_to_select]
pumpkins.dropna(inplace=True)
```
ืชืžื™ื“ ืืคืฉืจ ืœื”ืฆื™ืฅ ื‘ืžืื’ืจ ื”ื ืชื•ื ื™ื ื”ื—ื“ืฉ ืฉืœื›ื:
```python
pumpkins.info
```
### ื”ื“ืžื™ื” - ืชืจืฉื™ื ืงื˜ื’ื•ืจื™ืืœื™
ืขื“ ืขื›ืฉื™ื• ื˜ืขื ืชื ืืช [ืžื—ื‘ืจืช ื”ื”ืชื—ืœื”](../../../../2-Regression/4-Logistic/notebook.ipynb) ืขื ื ืชื•ื ื™ ื”ื“ืœืขื•ืช ืฉื•ื‘ ื•ื ื™ืงื™ืชื ืื•ืชื” ื›ืš ืฉืชืฉืžืจ ืžืื’ืจ ื ืชื•ื ื™ื ื”ืžื›ื™ืœ ื›ืžื” ืžืฉืชื ื™ื, ื›ื•ืœืœ `Color`. ื‘ื•ืื• ื ื“ืžื™ื™ืŸ ืืช ืžืื’ืจ ื”ื ืชื•ื ื™ื ื‘ืžื—ื‘ืจืช ื‘ืืžืฆืขื•ืช ืกืคืจื™ื™ื” ืื—ืจืช: [Seaborn](https://seaborn.pydata.org/index.html), ืฉื ื‘ื ืชื” ืขืœ Matplotlib ืฉื‘ื” ื”ืฉืชืžืฉื ื• ืงื•ื“ื.
Seaborn ืžืฆื™ืขื” ื“ืจื›ื™ื ืžืขื ื™ื™ื ื•ืช ืœื”ื“ืžื™ื™ืช ื”ื ืชื•ื ื™ื ืฉืœื›ื. ืœื“ื•ื’ืžื”, ืืคืฉืจ ืœื”ืฉื•ื•ืช ืืช ื”ืชืคืœื’ื•ืช ื”ื ืชื•ื ื™ื ืขื‘ื•ืจ ื›ืœ `Variety` ื•-`Color` ื‘ืชืจืฉื™ื ืงื˜ื’ื•ืจื™ืืœื™.
1. ืฆืจื• ืชืจืฉื™ื ื›ื–ื” ื‘ืืžืฆืขื•ืช ื”ืคื•ื ืงืฆื™ื” `catplot`, ืชื•ืš ืฉื™ืžื•ืฉ ื‘ื ืชื•ื ื™ ื”ื“ืœืขื•ืช ืฉืœื ื• `pumpkins`, ื•ื”ื’ื“ื™ืจื• ืžื™ืคื•ื™ ืฆื‘ืขื™ื ืœื›ืœ ืงื˜ื’ื•ืจื™ื™ืช ื“ืœืขืช (ื›ืชื•ื ืื• ืœื‘ืŸ):
```python
import seaborn as sns
palette = {
'ORANGE': 'orange',
'WHITE': 'wheat',
}
sns.catplot(
data=pumpkins, y="Variety", hue="Color", kind="count",
palette=palette,
)
```
![ืจืฉืช ืฉืœ ื ืชื•ื ื™ื ืžื“ื•ืžื™ื™ื ื™ื](../../../../2-Regression/4-Logistic/images/pumpkins_catplot_1.png)
ื‘ื”ืชื‘ื•ื ื ื•ืช ื‘ื ืชื•ื ื™ื, ืืคืฉืจ ืœืจืื•ืช ื›ื™ืฆื“ ื ืชื•ื ื™ ื”ืฆื‘ืข ืงืฉื•ืจื™ื ืœื–ืŸ.
โœ… ื‘ื”ืชื‘ืกืก ืขืœ ื”ืชืจืฉื™ื ื”ืงื˜ื’ื•ืจื™ืืœื™ ื”ื–ื”, ืื™ืœื• ื—ืงื™ืจื•ืช ืžืขื ื™ื™ื ื•ืช ืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ?
### ืขื™ื‘ื•ื“ ื ืชื•ื ื™ื: ืงื™ื“ื•ื“ ืชื›ื•ื ื•ืช ื•ืชื•ื•ื™ื•ืช
ืžืื’ืจ ื”ื ืชื•ื ื™ื ืฉืœ ื”ื“ืœืขื•ืช ืฉืœื ื• ืžื›ื™ืœ ืขืจื›ื™ ืžื—ืจื•ื–ืช ืขื‘ื•ืจ ื›ืœ ื”ืขืžื•ื“ื•ืช ืฉืœื•. ืขื‘ื•ื“ื” ืขื ื ืชื•ื ื™ื ืงื˜ื’ื•ืจื™ืืœื™ื™ื ื”ื™ื ืื™ื ื˜ื•ืื™ื˜ื™ื‘ื™ืช ืขื‘ื•ืจ ื‘ื ื™ ืื“ื ืืš ืœื ืขื‘ื•ืจ ืžื›ื•ื ื•ืช. ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืขื•ื‘ื“ื™ื ื˜ื•ื‘ ืขื ืžืกืคืจื™ื. ืœื›ืŸ ืงื™ื“ื•ื“ ื”ื•ื ืฉืœื‘ ื—ืฉื•ื‘ ืžืื•ื“ ื‘ืฉืœื‘ ืขื™ื‘ื•ื“ ื”ื ืชื•ื ื™ื, ืžื›ื™ื•ื•ืŸ ืฉื”ื•ื ืžืืคืฉืจ ืœื ื• ืœื”ืคื•ืš ื ืชื•ื ื™ื ืงื˜ื’ื•ืจื™ืืœื™ื™ื ืœื ืชื•ื ื™ื ืžืกืคืจื™ื™ื, ืžื‘ืœื™ ืœืื‘ื“ ืžื™ื“ืข. ืงื™ื“ื•ื“ ื˜ื•ื‘ ืžื•ื‘ื™ืœ ืœื‘ื ื™ื™ืช ืžื•ื“ืœ ื˜ื•ื‘.
ืœืงื™ื“ื•ื“ ืชื›ื•ื ื•ืช ื™ืฉ ืฉื ื™ ืกื•ื’ื™ื ืขื™ืงืจื™ื™ื ืฉืœ ืžืงื•ื“ื“ื™ื:
1. ืžืงื•ื“ื“ ืื•ืจื“ื™ื ืœื™: ืžืชืื™ื ื”ื™ื˜ื‘ ืœืžืฉืชื ื™ื ืื•ืจื“ื™ื ืœื™ื™ื, ืฉื”ื ืžืฉืชื ื™ื ืงื˜ื’ื•ืจื™ืืœื™ื™ื ืฉื‘ื”ื ื”ื ืชื•ื ื™ื ืฉืœื”ื ืขื•ืงื‘ื™ื ืื—ืจ ืกื“ืจ ืœื•ื’ื™, ื›ืžื• ืขืžื•ื“ืช `Item Size` ื‘ืžืื’ืจ ื”ื ืชื•ื ื™ื ืฉืœื ื•. ื”ื•ื ื™ื•ืฆืจ ืžื™ืคื•ื™ ื›ืš ืฉื›ืœ ืงื˜ื’ื•ืจื™ื” ืžื™ื•ืฆื’ืช ืขืœ ื™ื“ื™ ืžืกืคืจ, ืฉื”ื•ื ื”ืกื“ืจ ืฉืœ ื”ืงื˜ื’ื•ืจื™ื” ื‘ืขืžื•ื“ื”.
```python
from sklearn.preprocessing import OrdinalEncoder
item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']]
ordinal_features = ['Item Size']
ordinal_encoder = OrdinalEncoder(categories=item_size_categories)
```
2. ืžืงื•ื“ื“ ืงื˜ื’ื•ืจื™ืืœื™: ืžืชืื™ื ื”ื™ื˜ื‘ ืœืžืฉืชื ื™ื ื ื•ืžื™ื ืœื™ื™ื, ืฉื”ื ืžืฉืชื ื™ื ืงื˜ื’ื•ืจื™ืืœื™ื™ื ืฉื‘ื”ื ื”ื ืชื•ื ื™ื ืฉืœื”ื ืื™ื ื ืขื•ืงื‘ื™ื ืื—ืจ ืกื“ืจ ืœื•ื’ื™, ื›ืžื• ื›ืœ ื”ืชื›ื•ื ื•ืช ื”ืฉื•ื ื•ืช ืž-`Item Size` ื‘ืžืื’ืจ ื”ื ืชื•ื ื™ื ืฉืœื ื•. ื–ื”ื• ืงื™ื“ื•ื“ one-hot, ื›ืœื•ืžืจ ื›ืœ ืงื˜ื’ื•ืจื™ื” ืžื™ื•ืฆื’ืช ืขืœ ื™ื“ื™ ืขืžื•ื“ื” ื‘ื™ื ืืจื™ืช: ื”ืžืฉืชื ื” ื”ืžืงื•ื“ื“ ืฉื•ื•ื” ืœ-1 ืื ื”ื“ืœืขืช ืฉื™ื™ื›ืช ืœื–ืŸ ื”ื–ื” ื•ืœ-0 ืื—ืจืช.
```python
from sklearn.preprocessing import OneHotEncoder
categorical_features = ['City Name', 'Package', 'Variety', 'Origin']
categorical_encoder = OneHotEncoder(sparse_output=False)
```
ืœืื—ืจ ืžื›ืŸ, ืžืฉืชืžืฉื™ื ื‘-`ColumnTransformer` ื›ื“ื™ ืœืฉืœื‘ ืžืกืคืจ ืžืงื•ื“ื“ื™ื ืœืฉืœื‘ ืื—ื“ ื•ืœื™ื™ืฉื ืื•ืชื ืขืœ ื”ืขืžื•ื“ื•ืช ื”ืžืชืื™ืžื•ืช.
```python
from sklearn.compose import ColumnTransformer
ct = ColumnTransformer(transformers=[
('ord', ordinal_encoder, ordinal_features),
('cat', categorical_encoder, categorical_features)
])
ct.set_output(transform='pandas')
encoded_features = ct.fit_transform(pumpkins)
```
ืžืฆื“ ืฉื ื™, ืœืงื™ื“ื•ื“ ื”ืชื•ื•ื™ืช, ืžืฉืชืžืฉื™ื ื‘ืžื—ืœืงืช `LabelEncoder` ืฉืœ scikit-learn, ืฉื”ื™ื ืžื—ืœืงืช ืขื–ืจ ืœื ืจืžืœ ืชื•ื•ื™ื•ืช ื›ืš ืฉื™ื›ื™ืœื• ืจืง ืขืจื›ื™ื ื‘ื™ืŸ 0 ืœ-n_classes-1 (ื›ืืŸ, 0 ื•-1).
```python
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
encoded_label = label_encoder.fit_transform(pumpkins['Color'])
```
ืœืื—ืจ ืฉืงื™ื“ื“ื ื• ืืช ื”ืชื›ื•ื ื•ืช ื•ื”ืชื•ื•ื™ืช, ืืคืฉืจ ืœืžื–ื’ ืื•ืชืŸ ืœืžืื’ืจ ื ืชื•ื ื™ื ื—ื“ืฉ `encoded_pumpkins`.
```python
encoded_pumpkins = encoded_features.assign(Color=encoded_label)
```
โœ… ืžื” ื”ื™ืชืจื•ื ื•ืช ืฉืœ ืฉื™ืžื•ืฉ ื‘ืžืงื•ื“ื“ ืื•ืจื“ื™ื ืœื™ ืขื‘ื•ืจ ืขืžื•ื“ืช `Item Size`?
### ื ื™ืชื•ื— ืงืฉืจื™ื ื‘ื™ืŸ ืžืฉืชื ื™ื
ืขื›ืฉื™ื•, ืœืื—ืจ ืฉืขื™ื‘ื“ื ื• ืืช ื”ื ืชื•ื ื™ื ืฉืœื ื•, ืืคืฉืจ ืœื ืชื— ืืช ื”ืงืฉืจื™ื ื‘ื™ืŸ ื”ืชื›ื•ื ื•ืช ืœืชื•ื•ื™ืช ื›ื“ื™ ืœื”ื‘ื™ืŸ ืขื“ ื›ืžื” ื”ืžื•ื“ืœ ื™ื•ื›ืœ ืœื—ื–ื•ืช ืืช ื”ืชื•ื•ื™ืช ื‘ื”ืชื‘ืกืก ืขืœ ื”ืชื›ื•ื ื•ืช. ื”ื“ืจืš ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœื‘ืฆืข ื ื™ืชื•ื— ื›ื–ื” ื”ื™ื ื‘ืืžืฆืขื•ืช ื”ื“ืžื™ื™ืช ื”ื ืชื•ื ื™ื. ื ืฉืชืžืฉ ืฉื•ื‘ ื‘ืคื•ื ืงืฆื™ื” `catplot` ืฉืœ Seaborn, ื›ื“ื™ ืœื”ืžื—ื™ืฉ ืืช ื”ืงืฉืจื™ื ื‘ื™ืŸ `Item Size`, `Variety` ื•-`Color` ื‘ืชืจืฉื™ื ืงื˜ื’ื•ืจื™ืืœื™. ื›ื“ื™ ืœื”ืžื—ื™ืฉ ืืช ื”ื ืชื•ื ื™ื ื˜ื•ื‘ ื™ื•ืชืจ ื ืฉืชืžืฉ ื‘ืขืžื•ื“ืช `Item Size` ื”ืžืงื•ื“ื“ืช ื•ื‘ืขืžื•ื“ืช `Variety` ื”ืœื ืžืงื•ื“ื“ืช.
```python
palette = {
'ORANGE': 'orange',
'WHITE': 'wheat',
}
pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size']
g = sns.catplot(
data=pumpkins,
x="Item Size", y="Color", row='Variety',
kind="box", orient="h",
sharex=False, margin_titles=True,
height=1.8, aspect=4, palette=palette,
)
g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6))
g.set_titles(row_template="{row_name}")
```
![ืชืจืฉื™ื ืงื˜ื’ื•ืจื™ืืœื™ ืฉืœ ื ืชื•ื ื™ื ืžื“ื•ืžื™ื™ื ื™ื](../../../../2-Regression/4-Logistic/images/pumpkins_catplot_2.png)
### ืฉื™ืžื•ืฉ ื‘ืชืจืฉื™ื swarm
ืžื›ื™ื•ื•ืŸ ืฉ-Color ื”ื•ื ืงื˜ื’ื•ืจื™ื” ื‘ื™ื ืืจื™ืช (ืœื‘ืŸ ืื• ืœื), ื”ื•ื ื“ื•ืจืฉ '[ื’ื™ืฉื” ืžื™ื•ื—ื“ืช](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar) ืœื”ื“ืžื™ื”'. ื™ืฉ ื“ืจื›ื™ื ืื—ืจื•ืช ืœื”ืžื—ื™ืฉ ืืช ื”ืงืฉืจ ืฉืœ ืงื˜ื’ื•ืจื™ื” ื–ื• ืขื ืžืฉืชื ื™ื ืื—ืจื™ื.
ืืคืฉืจ ืœื”ืžื—ื™ืฉ ืžืฉืชื ื™ื ื–ื” ืœืฆื“ ื–ื” ืขื ืชืจืฉื™ืžื™ Seaborn.
1. ื ืกื• ืชืจืฉื™ื 'swarm' ื›ื“ื™ ืœื”ืจืื•ืช ืืช ื”ืชืคืœื’ื•ืช ื”ืขืจื›ื™ื:
```python
palette = {
0: 'orange',
1: 'wheat'
}
sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette)
```
![swarm ืฉืœ ื ืชื•ื ื™ื ืžื“ื•ืžื™ื™ื ื™ื](../../../../2-Regression/4-Logistic/images/swarm_2.png)
**ืฉื™ืžื• ืœื‘**: ื”ืงื•ื“ ืœืžืขืœื” ืขืฉื•ื™ ืœื™ืฆื•ืจ ืื–ื”ืจื”, ืžื›ื™ื•ื•ืŸ ืฉ-Seaborn ืžืชืงืฉื” ืœื™ื™ืฆื’ ื›ืžื•ืช ื›ื–ื• ืฉืœ ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ื‘ืชืจืฉื™ื swarm. ืคืชืจื•ืŸ ืืคืฉืจื™ ื”ื•ื ืœื”ืงื˜ื™ืŸ ืืช ื’ื•ื“ืœ ื”ืกืžืŸ, ื‘ืืžืฆืขื•ืช ื”ืคืจืžื˜ืจ 'size'. ืขื ื–ืืช, ืฉื™ืžื• ืœื‘ ืฉื–ื” ืžืฉืคื™ืข ืขืœ ืงืจื™ืื•ืช ื”ืชืจืฉื™ื.
> **๐Ÿงฎ ืชืจืื• ืœื™ ืืช ื”ืžืชืžื˜ื™ืงื”**
>
> ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืžืชื‘ืกืกืช ืขืœ ื”ืจืขื™ื•ืŸ ืฉืœ 'ืกื‘ื™ืจื•ืช ืžืจื‘ื™ืช' ื‘ืืžืฆืขื•ืช [ืคื•ื ืงืฆื™ื•ืช ืกื™ื’ืžื•ืื™ื“](https://wikipedia.org/wiki/Sigmoid_function). ืคื•ื ืงืฆื™ื™ืช ืกื™ื’ืžื•ืื™ื“ ืขืœ ืชืจืฉื™ื ื ืจืื™ืช ื›ืžื• ืฆื•ืจืช 'S'. ื”ื™ื ืœื•ืงื—ืช ืขืจืš ื•ืžืžืคื” ืื•ืชื• ืœืžืงื•ื ื‘ื™ืŸ 0 ืœ-1. ื”ืขืงื•ืžื” ืฉืœื” ื ืงืจืืช ื’ื 'ืขืงื•ืžื” ืœื•ื’ื™ืกื˜ื™ืช'. ื”ื ื•ืกื—ื” ืฉืœื” ื ืจืื™ืช ื›ืš:
>
> ![ืคื•ื ืงืฆื™ื” ืœื•ื’ื™ืกื˜ื™ืช](../../../../2-Regression/4-Logistic/images/sigmoid.png)
>
> ื›ืืฉืจ ื ืงื•ื“ืช ื”ืืžืฆืข ืฉืœ ื”ืกื™ื’ืžื•ืื™ื“ ื ืžืฆืืช ื‘ื ืงื•ื“ืช ื”-0 ืฉืœ x, L ื”ื•ื ื”ืขืจืš ื”ืžืจื‘ื™ ืฉืœ ื”ืขืงื•ืžื”, ื•-k ื”ื•ื ืชืœื™ืœื•ืช ื”ืขืงื•ืžื”. ืื ืชื•ืฆืืช ื”ืคื•ื ืงืฆื™ื” ื”ื™ื ื™ื•ืชืจ ืž-0.5, ื”ืชื•ื•ื™ืช ื”ืžื“ื•ื‘ืจืช ืชื™ื ืชืŸ ืœืžืขืžื“ '1' ืฉืœ ื”ื‘ื—ื™ืจื” ื”ื‘ื™ื ืืจื™ืช. ืื ืœื, ื”ื™ื ืชืกื•ื•ื’ ื›-'0'.
## ื‘ื ื™ื™ืช ื”ืžื•ื“ืœ ืฉืœื›ื
ื‘ื ื™ื™ืช ืžื•ื“ืœ ืœืžืฆื™ืืช ืกื™ื•ื•ื’ื™ื ื‘ื™ื ืืจื™ื™ื ื”ื™ื ืคืฉื•ื˜ื” ื‘ืื•ืคืŸ ืžืคืชื™ืข ื‘-Scikit-learn.
[![ML ืœืžืชื—ื™ืœื™ื - ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืœืกื™ื•ื•ื’ ื ืชื•ื ื™ื](https://img.youtube.com/vi/MmZS2otPrQ8/0.jpg)](https://youtu.be/MmZS2otPrQ8 "ML ืœืžืชื—ื™ืœื™ื - ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืœืกื™ื•ื•ื’ ื ืชื•ื ื™ื")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืกืจื˜ื•ืŸ ืงืฆืจ ืขืœ ื‘ื ื™ื™ืช ืžื•ื“ืœ ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช.
1. ื‘ื—ืจื• ืืช ื”ืžืฉืชื ื™ื ืฉืชืจืฆื• ืœื”ืฉืชืžืฉ ื‘ื”ื ื‘ืžื•ื“ืœ ื”ืกื™ื•ื•ื’ ืฉืœื›ื ื•ื—ืœืงื• ืืช ืงื‘ื•ืฆื•ืช ื”ืื™ืžื•ืŸ ื•ื”ื‘ื“ื™ืงื” ื‘ืืžืฆืขื•ืช ืงืจื™ืื” ืœ-`train_test_split()`:
```python
from sklearn.model_selection import train_test_split
X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])]
y = encoded_pumpkins['Color']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```
2. ืขื›ืฉื™ื• ืืคืฉืจ ืœืืžืŸ ืืช ื”ืžื•ื“ืœ, ื‘ืืžืฆืขื•ืช ืงืจื™ืื” ืœ-`fit()` ืขื ื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ืฉืœื›ื, ื•ืœื”ื“ืคื™ืก ืืช ื”ืชื•ืฆืื” ืฉืœื•:
```python
from sklearn.metrics import f1_score, classification_report
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print(classification_report(y_test, predictions))
print('Predicted labels: ', predictions)
print('F1-score: ', f1_score(y_test, predictions))
```
ื”ืกืชื›ืœื• ืขืœ ืœื•ื— ื”ืชื•ืฆืื•ืช ืฉืœ ื”ืžื•ื“ืœ ืฉืœื›ื. ื”ื•ื ืœื ืจืข, ื‘ื”ืชื—ืฉื‘ ื‘ื›ืš ืฉื™ืฉ ืœื›ื ืจืง ื›-1000 ืฉื•ืจื•ืช ื ืชื•ื ื™ื:
```output
precision recall f1-score support
0 0.94 0.98 0.96 166
1 0.85 0.67 0.75 33
accuracy 0.92 199
macro avg 0.89 0.82 0.85 199
weighted avg 0.92 0.92 0.92 199
Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1]
F1-score: 0.7457627118644068
```
## ื”ื‘ื ื” ื˜ื•ื‘ื” ื™ื•ืชืจ ื‘ืืžืฆืขื•ืช ืžื˜ืจื™ืฆืช ื‘ืœื‘ื•ืœ
ื‘ืขื•ื“ ืฉืืคืฉืจ ืœืงื‘ืœ ื“ื•ื— ืชื•ืฆืื•ืช [ืžื•ื ื—ื™ื](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report) ืขืœ ื™ื“ื™ ื”ื“ืคืกืช ื”ืคืจื™ื˜ื™ื ืœืžืขืœื”, ื™ื™ืชื›ืŸ ืฉืชื•ื›ืœื• ืœื”ื‘ื™ืŸ ืืช ื”ืžื•ื“ืœ ืฉืœื›ื ื‘ื™ืชืจ ืงืœื•ืช ื‘ืืžืฆืขื•ืช [ืžื˜ืจื™ืฆืช ื‘ืœื‘ื•ืœ](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix) ืฉืชืขื–ื•ืจ ืœื ื• ืœื”ื‘ื™ืŸ ื›ื™ืฆื“ ื”ืžื•ื“ืœ ืžืชืคืงื“.
> ๐ŸŽ“ '[ืžื˜ืจื™ืฆืช ื‘ืœื‘ื•ืœ](https://wikipedia.org/wiki/Confusion_matrix)' (ืื• 'ืžื˜ืจื™ืฆืช ืฉื’ื™ืื•ืช') ื”ื™ื ื˜ื‘ืœื” ืฉืžื‘ื˜ืืช ืืช ื”ื—ื™ื•ื‘ื™ื™ื ื•ื”ืฉืœื™ืœื™ื™ื ื”ืืžื™ืชื™ื™ื ืžื•ืœ ื”ืฉื’ื•ื™ื™ื ืฉืœ ื”ืžื•ื“ืœ ืฉืœื›ื, ื•ื‘ื›ืš ืžืขืจื™ื›ื” ืืช ื“ื™ื•ืง ื”ืชื—ื–ื™ื•ืช.
1. ื›ื“ื™ ืœื”ืฉืชืžืฉ ื‘ืžื˜ืจื™ืฆืช ื‘ืœื‘ื•ืœ, ืงืจืื• ืœ-`confusion_matrix()`:
```python
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, predictions)
```
ื”ืกืชื›ืœื• ืขืœ ืžื˜ืจื™ืฆืช ื”ื‘ืœื‘ื•ืœ ืฉืœ ื”ืžื•ื“ืœ ืฉืœื›ื:
```output
array([[162, 4],
[ 11, 22]])
```
ื‘-Scikit-learn, ืฉื•ืจื•ืช (axis 0) ื”ืŸ ืชื•ื•ื™ื•ืช ืืžื™ืชื™ื•ืช ื•ืขืžื•ื“ื•ืช (axis 1) ื”ืŸ ืชื•ื•ื™ื•ืช ื—ื–ื•ื™ื•ืช.
| | 0 | 1 |
| :---: | :---: | :---: |
| 0 | TN | FP |
| 1 | FN | TP |
ืžื” ืงื•ืจื” ื›ืืŸ? ื ื ื™ื— ืฉื”ืžื•ื“ืœ ืฉืœื ื• ืžืชื‘ืงืฉ ืœืกื•ื•ื’ ื“ืœืขื•ืช ื‘ื™ืŸ ืฉืชื™ ืงื˜ื’ื•ืจื™ื•ืช ื‘ื™ื ืืจื™ื•ืช, ืงื˜ื’ื•ืจื™ื” 'ืœื‘ืŸ' ื•ืงื˜ื’ื•ืจื™ื” 'ืœื-ืœื‘ืŸ'.
- ืื ื”ืžื•ื“ืœ ืฉืœื›ื ื—ื•ื–ื” ื“ืœืขืช ื›ืœื ืœื‘ื ื” ื•ื”ื™ื ืฉื™ื™ื›ืช ืœืงื˜ื’ื•ืจื™ื” 'ืœื-ืœื‘ืŸ' ื‘ืžืฆื™ืื•ืช, ืื ื—ื ื• ืงื•ืจืื™ื ืœื–ื” ืฉืœื™ืœื™ ืืžื™ืชื™ (True Negative), ืฉืžื•ืฆื’ ืขืœ ื™ื“ื™ ื”ืžืกืคืจ ื‘ืคื™ื ื” ื”ืฉืžืืœื™ืช ื”ืขืœื™ื•ื ื”.
- ืื ื”ืžื•ื“ืœ ืฉืœื›ื ื—ื•ื–ื” ื“ืœืขืช ื›ืœื‘ื ื” ื•ื”ื™ื ืฉื™ื™ื›ืช ืœืงื˜ื’ื•ืจื™ื” 'ืœื-ืœื‘ืŸ' ื‘ืžืฆื™ืื•ืช, ืื ื—ื ื• ืงื•ืจืื™ื ืœื–ื” ืฉืœื™ืœื™ ืฉื’ื•ื™ (False Negative), ืฉืžื•ืฆื’ ืขืœ ื™ื“ื™ ื”ืžืกืคืจ ื‘ืคื™ื ื” ื”ืฉืžืืœื™ืช ื”ืชื—ืชื•ื ื”.
- ืื ื”ืžื•ื“ืœ ืฉืœื›ื ื—ื•ื–ื” ื“ืœืขืช ื›ืœื ืœื‘ื ื” ื•ื”ื™ื ืฉื™ื™ื›ืช ืœืงื˜ื’ื•ืจื™ื” 'ืœื‘ืŸ' ื‘ืžืฆื™ืื•ืช, ืื ื—ื ื• ืงื•ืจืื™ื ืœื–ื” ื—ื™ื•ื‘ื™ ืฉื’ื•ื™ (False Positive), ืฉืžื•ืฆื’ ืขืœ ื™ื“ื™ ื”ืžืกืคืจ ื‘ืคื™ื ื” ื”ื™ืžื ื™ืช ื”ืขืœื™ื•ื ื”.
- ืื ื”ืžื•ื“ืœ ืฉืœื›ื ื—ื•ื–ื” ื“ืœืขืช ื›ืœื‘ื ื” ื•ื”ื™ื ืฉื™ื™ื›ืช ืœืงื˜ื’ื•ืจื™ื” 'ืœื‘ืŸ' ื‘ืžืฆื™ืื•ืช, ืื ื—ื ื• ืงื•ืจืื™ื ืœื–ื” ื—ื™ื•ื‘ื™ ืืžื™ืชื™ (True Positive), ืฉืžื•ืฆื’ ืขืœ ื™ื“ื™ ื”ืžืกืคืจ ื‘ืคื™ื ื” ื”ื™ืžื ื™ืช ื”ืชื—ืชื•ื ื”.
ื›ืคื™ ืฉื›ื ืจืื” ื ื™ื—ืฉืชื, ืขื“ื™ืฃ ืฉื™ื”ื™ื• ื™ื•ืชืจ ื—ื™ื•ื‘ื™ื™ื ืืžื™ืชื™ื™ื ื•ืฉืœื™ืœื™ื™ื ืืžื™ืชื™ื™ื ื•ืžืกืคืจ ื ืžื•ืš ื™ื•ืชืจ ืฉืœ ื—ื™ื•ื‘ื™ื™ื ืฉื’ื•ื™ื™ื ื•ืฉืœื™ืœื™ื™ื ืฉื’ื•ื™ื™ื, ืžื” ืฉืžืขื™ื“ ืขืœ ื›ืš ืฉื”ืžื•ื“ืœ ืžืชืคืงื“ ื˜ื•ื‘ ื™ื•ืชืจ.
ื›ื™ืฆื“ ืžื˜ืจื™ืฆืช ื”ื‘ืœื‘ื•ืœ ืงืฉื•ืจื” ืœื“ื™ื•ืง ื•ืœืฉืœื™ืคื”? ื–ื›ืจื•, ื“ื•ื— ื”ืกื™ื•ื•ื’ ืฉื”ื•ื“ืคืก ืœืžืขืœื” ื”ืฆื™ื’ ื“ื™ื•ืง (0.85) ื•ืฉืœื™ืคื” (0.67).
ื“ื™ื•ืง = tp / (tp + fp) = 22 / (22 + 4) = 0.8461538461538461
ืฉืœื™ืคื” = tp / (tp + fn) = 22 / (22 + 11) = 0.6666666666666666
โœ… ืฉ: ืœืคื™ ืžื˜ืจื™ืฆืช ื”ื‘ืœื‘ื•ืœ, ืื™ืš ื”ืžื•ื“ืœ ื‘ื™ืฆืข? ืช: ืœื ืจืข; ื™ืฉ ืžืกืคืจ ื˜ื•ื‘ ืฉืœ ืฉืœื™ืœื™ื™ื ืืžื™ืชื™ื™ื ืื‘ืœ ื’ื ื›ืžื” ืฉืœื™ืœื™ื™ื ืฉื’ื•ื™ื™ื.
ื‘ื•ืื• ื ื—ื–ื•ืจ ืœืžื•ื ื—ื™ื ืฉืจืื™ื ื• ืงื•ื“ื ื‘ืขื–ืจืช ื”ืžื™ืคื•ื™ ืฉืœ TP/TN ื•-FP/FN ื‘ืžื˜ืจื™ืฆืช ื”ื‘ืœื‘ื•ืœ:
๐ŸŽ“ ื“ื™ื•ืง: TP/(TP + FP) ื”ื—ืœืง ืฉืœ ื”ืžืงืจื™ื ื”ืจืœื•ื•ื ื˜ื™ื™ื ืžืชื•ืš ื”ืžืงืจื™ื ืฉื ืžืฆืื• (ืœื“ื•ื’ืžื”, ืื™ืœื• ืชื•ื•ื™ื•ืช ืกื•ื•ื’ื• ื”ื™ื˜ื‘).
๐ŸŽ“ ืฉืœื™ืคื”: TP/(TP + FN) ื”ื—ืœืง ืฉืœ ื”ืžืงืจื™ื ื”ืจืœื•ื•ื ื˜ื™ื™ื ืฉื ืžืฆืื•, ื‘ื™ืŸ ืื ืกื•ื•ื’ื• ื”ื™ื˜ื‘ ืื• ืœื.
๐ŸŽ“ ืฆื™ื•ืŸ f1: (2 * ื“ื™ื•ืง * ืฉืœื™ืคื”)/(ื“ื™ื•ืง + ืฉืœื™ืคื”) ืžืžื•ืฆืข ืžืฉื•ืงืœืœ ืฉืœ ื“ื™ื•ืง ื•ืฉืœื™ืคื”, ื›ืืฉืจ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ื”ื•ื 1 ื•ื”ื’ืจื•ืข ื‘ื™ื•ืชืจ ื”ื•ื 0.
๐ŸŽ“ ืชืžื™ื›ื”: ืžืกืคืจ ื”ืžื•ืคืขื™ื ืฉืœ ื›ืœ ืชื•ื•ื™ืช ืฉื ืžืฆืื”.
๐ŸŽ“ ื“ื™ื•ืง ื›ืœืœื™: (TP + TN)/(TP + TN + FP + FN) ืื—ื•ื– ื”ืชื•ื•ื™ื•ืช ืฉืกื•ื•ื’ื• ื‘ืฆื•ืจื” ืžื“ื•ื™ืงืช ืขื‘ื•ืจ ื“ื’ื™ืžื”.
๐ŸŽ“ ืžืžื•ืฆืข ืžืืงืจื•: ื—ื™ืฉื•ื‘ ื”ืžืžื•ืฆืข ื”ืœื ืžืฉื•ืงืœืœ ืฉืœ ื”ืžื“ื“ื™ื ืขื‘ื•ืจ ื›ืœ ืชื•ื•ื™ืช, ืžื‘ืœื™ ืœื”ืชื—ืฉื‘ ื‘ืื™-ืื™ื–ื•ืŸ ื‘ื™ืŸ ื”ืชื•ื•ื™ื•ืช.
๐ŸŽ“ ืžืžื•ืฆืข ืžืฉื•ืงืœืœ: ื—ื™ืฉื•ื‘ ื”ืžืžื•ืฆืข ืฉืœ ื”ืžื“ื“ื™ื ืขื‘ื•ืจ ื›ืœ ืชื•ื•ื™ืช, ืชื•ืš ื”ืชื—ืฉื‘ื•ืช ื‘ืื™-ืื™ื–ื•ืŸ ื‘ื™ืŸ ื”ืชื•ื•ื™ื•ืช ืขืœ ื™ื“ื™ ืฉืงื™ืœืชืŸ ืœืคื™ ื”ืชืžื™ื›ื” (ืžืกืคืจ ื”ืžืงืจื™ื ื”ืืžื™ืชื™ื™ื ืขื‘ื•ืจ ื›ืœ ืชื•ื•ื™ืช).
โœ… ื”ืื ืืชื ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ืขืœ ืื™ื–ื” ืžื“ื“ ื›ื“ืื™ ืœื”ืชืžืงื“ ืื ืืชื ืจื•ืฆื™ื ืฉื”ืžื•ื“ืœ ื™ืคื—ื™ืช ืืช ืžืกืคืจ ื”ืฉืœื™ืœื™ื™ื ื”ืฉื’ื•ื™ื™ื?
## ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ืขืงื•ืžืช ROC ืฉืœ ื”ืžื•ื“ืœ ื”ื–ื”
[![ML ืœืžืชื—ื™ืœื™ื - ื ื™ืชื•ื— ื‘ื™ืฆื•ืขื™ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืขื ืขืงื•ืžื•ืช ROC](https://img.youtube.com/vi/GApO575jTA0/0.jpg)](https://youtu.be/GApO575jTA0 "ML ืœืžืชื—ื™ืœื™ื - ื ื™ืชื•ื— ื‘ื™ืฆื•ืขื™ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืขื ืขืงื•ืžื•ืช ROC")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืขืœ ืขืงื•ืžื•ืช ROC
ื‘ื•ืื• ื ืขืฉื” ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ื ื•ืกืคืช ื›ื“ื™ ืœืจืื•ืช ืืช ืžื” ืฉื ืงืจื 'ืขืงื•ืžืช ROC':
```python
from sklearn.metrics import roc_curve, roc_auc_score
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
y_scores = model.predict_proba(X_test)
fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])
fig = plt.figure(figsize=(6, 6))
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr, tpr)
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
plt.show()
```
ื‘ืืžืฆืขื•ืช Matplotlib, ืฉืจื˜ื˜ื• ืืช [Receiving Operating Characteristic](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc) ืื• ROC ืฉืœ ื”ืžื•ื“ืœ. ืขืงื•ืžื•ืช ROC ืžืฉืžืฉื•ืช ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ื›ื“ื™ ืœืงื‘ืœ ืžื‘ื˜ ืขืœ ืชื•ืฆืื•ืช ืžืกื•ื•ื’ ื‘ืžื•ื ื—ื™ื ืฉืœ ื—ื™ื•ื‘ื™ื™ื ืืžื™ืชื™ื™ื ืžื•ืœ ื—ื™ื•ื‘ื™ื™ื ืฉื’ื•ื™ื™ื. "ืขืงื•ืžื•ืช ROC ืžืฆื™ื’ื•ืช ื‘ื“ืจืš ื›ืœืœ ืืช ืฉื™ืขื•ืจ ื”ื—ื™ื•ื‘ื™ื™ื ื”ืืžื™ืชื™ื™ื ืขืœ ืฆื™ืจ ื”-Y, ื•ืืช ืฉื™ืขื•ืจ ื”ื—ื™ื•ื‘ื™ื™ื ื”ืฉื’ื•ื™ื™ื ืขืœ ืฆื™ืจ ื”-X." ืœื›ืŸ, ืชืœื™ืœื•ืช ื”ืขืงื•ืžื” ื•ื”ืžืจื—ืง ื‘ื™ืŸ ืงื• ื”ืืžืฆืข ืœืขืงื•ืžื” ื—ืฉื•ื‘ื™ื: ืืชื ืจื•ืฆื™ื ืขืงื•ืžื” ืฉืžืชืงื“ืžืช ื‘ืžื”ื™ืจื•ืช ืœืžืขืœื” ื•ืžืขืœ ื”ืงื•. ื‘ืžืงืจื” ืฉืœื ื•, ื™ืฉ ื—ื™ื•ื‘ื™ื™ื ืฉื’ื•ื™ื™ื ื‘ื”ืชื—ืœื”, ื•ืื– ื”ืงื• ืžืชืงื“ื ืœืžืขืœื” ื•ืžืขืœ ื‘ืฆื•ืจื” ื ื›ื•ื ื”:
![ROC](../../../../2-Regression/4-Logistic/images/ROC_2.png)
ืœื‘ืกื•ืฃ, ื”ืฉืชืžืฉื• ื‘-API ืฉืœ [`roc_auc_score`](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score) ืฉืœ Scikit-learn ื›ื“ื™ ืœื—ืฉื‘ ืืช 'ืฉื˜ื— ืžืชื—ืช ืœืขืงื•ืžื”' (AUC):
```python
auc = roc_auc_score(y_test,y_scores[:,1])
print(auc)
```
ื”ืชื•ืฆืื” ื”ื™ื `0.9749908725812341`. ืžื›ื™ื•ื•ืŸ ืฉ-AUC ื ืข ื‘ื™ืŸ 0 ืœ-1, ืืชื ืจื•ืฆื™ื ืฆื™ื•ืŸ ื’ื‘ื•ื”, ืฉื›ืŸ ืžื•ื“ืœ ืฉืžื ื‘ื ื‘ืฆื•ืจื” ื ื›ื•ื ื” ื‘-100% ื™ืงื‘ืœ AUC ืฉืœ 1; ื‘ืžืงืจื” ื”ื–ื”, ื”ืžื•ื“ืœ _ื“ื™ ื˜ื•ื‘_.
ื‘ืฉื™ืขื•ืจื™ื ืขืชื™ื“ื™ื™ื ืขืœ ืกื™ื•ื•ื’ื™ื, ืชืœืžื“ื• ื›ื™ืฆื“ ืœืฉืคืจ ืืช ืฆื™ื•ื ื™ ื”ืžื•ื“ืœ ืฉืœื›ื. ืื‘ืœ ืœืขืช ืขืชื”, ื‘ืจื›ื•ืช! ืกื™ื™ืžืชื ืืช ืฉื™ืขื•ืจื™ ื”ืจื’ืจืกื™ื” ื”ืืœื”!
---
## ๐Ÿš€ืืชื’ืจ
ื™ืฉ ืขื•ื“ ื”ืจื‘ื” ืœืœืžื•ื“ ืขืœ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช! ืื‘ืœ ื”ื“ืจืš ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœืœืžื•ื“ ื”ื™ื ืœื”ืชื ืกื•ืช. ืžืฆืื• ืžืขืจืš ื ืชื•ื ื™ื ืฉืžืชืื™ื ืœืกื•ื’ ื–ื” ืฉืœ ื ื™ืชื•ื— ื•ื‘ื ื• ืžื•ื“ืœ ืื™ืชื•. ืžื” ืืชื ืœื•ืžื“ื™ื? ื˜ื™ืค: ื ืกื• [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) ืขื‘ื•ืจ ืžืขืจื›ื™ ื ืชื•ื ื™ื ืžืขื ื™ื™ื ื™ื.
## [ืžื‘ื—ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ืงืจืื• ืืช ื”ืขืžื•ื“ื™ื ื”ืจืืฉื•ื ื™ื ืฉืœ [ื”ืžืืžืจ ื”ื–ื” ืžืกื˜ื ืคื•ืจื“](https://web.stanford.edu/~jurafsky/slp3/5.pdf) ืขืœ ืฉื™ืžื•ืฉื™ื ืžืขืฉื™ื™ื ืœืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช. ื—ืฉื‘ื• ืขืœ ืžืฉื™ืžื•ืช ืฉืžืชืื™ืžื•ืช ื™ื•ืชืจ ืœืื—ื“ ืžืกื•ื’ื™ ื”ืจื’ืจืกื™ื” ืฉืœืžื“ื ื• ืขื“ ื›ื”. ืžื” ื™ืขื‘ื•ื“ ื”ื›ื™ ื˜ื•ื‘?
## ืžืฉื™ืžื”
[ื ืกื• ืฉื•ื‘ ืืช ื”ืจื’ืจืกื™ื” ื”ื–ื•](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "8af40209a41494068c1f42b14c0b450d",
"translation_date": "2025-09-05T18:49:27+00:00",
"source_file": "2-Regression/4-Logistic/assignment.md",
"language_code": "he"
}
-->
# ื ื™ืกื™ื•ืŸ ื—ื•ื–ืจ ืขื ืจื’ืจืกื™ื”
## ื”ื•ืจืื•ืช
ื‘ืฉื™ืขื•ืจ ื”ืฉืชืžืฉืช ื‘ืชืช-ืงื‘ื•ืฆื” ืฉืœ ื ืชื•ื ื™ ื”ื“ืœืขืช. ืขื›ืฉื™ื•, ื—ื–ื•ืจ ืœื ืชื•ื ื™ื ื”ืžืงื•ืจื™ื™ื ื•ื ืกื” ืœื”ืฉืชืžืฉ ื‘ื›ื•ืœื, ืœืื—ืจ ื ื™ืงื•ื™ ื•ืกื˜ื ื“ืจื˜ื™ื–ืฆื™ื”, ื›ื“ื™ ืœื‘ื ื•ืช ืžื•ื“ืœ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ----------------------------------------------------------------------- | --------------------------------------------------------- | -------------------------------------------------------- |
| | ืžื•ืฆื’ ืžื—ื‘ืจืช ืขื ืžื•ื“ืœ ืžื•ืกื‘ืจ ื”ื™ื˜ื‘ ื•ื‘ืขืœ ื‘ื™ืฆื•ืขื™ื ื˜ื•ื‘ื™ื | ืžื•ืฆื’ ืžื—ื‘ืจืช ืขื ืžื•ื“ืœ ื‘ืขืœ ื‘ื™ืฆื•ืขื™ื ืžื™ื ื™ืžืœื™ื™ื | ืžื•ืฆื’ ืžื—ื‘ืจืช ืขื ืžื•ื“ืœ ื‘ืขืœ ื‘ื™ืฆื•ืขื™ื ื ืžื•ื›ื™ื ืื• ืœืœื ืžื•ื“ืœ ื›ืœืœ |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T18:49:49+00:00",
"source_file": "2-Regression/4-Logistic/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,54 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "508582278dbb8edd2a8a80ac96ef416c",
"translation_date": "2025-09-05T18:37:21+00:00",
"source_file": "2-Regression/README.md",
"language_code": "he"
}
-->
# ืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื” ืœืœืžื™ื“ืช ืžื›ื•ื ื”
## ื ื•ืฉื ืื–ื•ืจื™: ืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื” ืœืžื—ื™ืจื™ ื“ืœืขืช ื‘ืฆืคื•ืŸ ืืžืจื™ืงื” ๐ŸŽƒ
ื‘ืฆืคื•ืŸ ืืžืจื™ืงื”, ื“ืœืขื•ืช ืžืฉืžืฉื•ืช ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ืœื™ืฆื™ืจืช ืคืจืฆื•ืคื™ื ืžืคื—ื™ื“ื™ื ืœื›ื‘ื•ื“ ืœื™ืœ ื›ืœ ื”ืงื“ื•ืฉื™ื. ื‘ื•ืื• ื ื’ืœื” ืขื•ื“ ืขืœ ื”ื™ืจืงื•ืช ื”ืžืจืชืงื™ื ื”ืืœื”!
![jack-o-lanterns](../../../2-Regression/images/jack-o-lanterns.jpg)
> ืฆื™ืœื•ื ืขืœ ื™ื“ื™ <a href="https://unsplash.com/@teutschmann?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Beth Teutschmann</a> ื‘-<a href="https://unsplash.com/s/photos/jack-o-lanterns?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
## ืžื” ืชืœืžื“ื•
[![ืžื‘ื•ื ืœืจื’ืจืกื™ื”](https://img.youtube.com/vi/5QnJtDad4iQ/0.jpg)](https://youtu.be/5QnJtDad4iQ "ืกืจื˜ื•ืŸ ืžื‘ื•ื ืœืจื’ืจืกื™ื” - ืœื—ืฆื• ืœืฆืคื™ื™ื”!")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืžื‘ื•ื ืงืฆืจ ืœืฉื™ืขื•ืจ ื–ื”
ื”ืฉื™ืขื•ืจื™ื ื‘ืกืขื™ืฃ ื–ื” ืขื•ืกืงื™ื ื‘ืกื•ื’ื™ ืจื’ืจืกื™ื” ื‘ื”ืงืฉืจ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”. ืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื” ื™ื›ื•ืœื™ื ืœืขื–ื•ืจ ืœืงื‘ื•ืข ืืช _ื”ืงืฉืจ_ ื‘ื™ืŸ ืžืฉืชื ื™ื. ืกื•ื’ ื–ื” ืฉืœ ืžื•ื“ืœ ื™ื›ื•ืœ ืœื—ื–ื•ืช ืขืจื›ื™ื ื›ืžื• ืื•ืจืš, ื˜ืžืคืจื˜ื•ืจื” ืื• ื’ื™ืœ, ื•ื‘ื›ืš ืœื—ืฉื•ืฃ ืงืฉืจื™ื ื‘ื™ืŸ ืžืฉืชื ื™ื ืชื•ืš ื ื™ืชื•ื— ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื.
ื‘ืกื“ืจืช ื”ืฉื™ืขื•ืจื™ื ื”ื–ื•, ืชื’ืœื• ืืช ื”ื”ื‘ื“ืœื™ื ื‘ื™ืŸ ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ืœืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช, ื•ืžืชื™ ื›ื“ืื™ ืœื”ืขื“ื™ืฃ ืื—ืช ืขืœ ืคื ื™ ื”ืฉื ื™ื™ื”.
[![ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ืžื‘ื•ื ืœืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื” ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”](https://img.youtube.com/vi/XA3OaoW86R8/0.jpg)](https://youtu.be/XA3OaoW86R8 "ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ืžื‘ื•ื ืœืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื” ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืงืฆืจ ืฉืžืฆื™ื’ ืืช ืžื•ื“ืœื™ ื”ืจื’ืจืกื™ื”.
ื‘ืงื‘ื•ืฆืช ื”ืฉื™ืขื•ืจื™ื ื”ื–ื•, ืชืชืืจื’ื ื• ืœื”ืชื—ื™ืœ ืžืฉื™ืžื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื”, ื›ื•ืœืœ ื”ื’ื“ืจืช Visual Studio Code ืœื ื™ื”ื•ืœ ืžื—ื‘ืจื•ืช, ื”ืกื‘ื™ื‘ื” ื”ื ืคื•ืฆื” ืœืžื“ืขื ื™ ื ืชื•ื ื™ื. ืชื’ืœื• ืืช Scikit-learn, ืกืคืจื™ื™ื” ืœืœืžื™ื“ืช ืžื›ื•ื ื”, ื•ืชื‘ื ื• ืืช ื”ืžื•ื“ืœื™ื ื”ืจืืฉื•ื ื™ื ืฉืœื›ื, ืขื ื“ื’ืฉ ืขืœ ืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื” ื‘ืคืจืง ื–ื”.
> ื™ืฉื ื ื›ืœื™ื ืฉื™ืžื•ืฉื™ื™ื ืขื ืžืขื˜ ืงื•ื“ ืฉื™ื›ื•ืœื™ื ืœืขื–ื•ืจ ืœื›ื ืœืœืžื•ื“ ืขืœ ืขื‘ื•ื“ื” ืขื ืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื”. ื ืกื• [Azure ML ืœืžืฉื™ืžื” ื–ื•](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
### ืฉื™ืขื•ืจื™ื
1. [ื›ืœื™ื ืžืงืฆื•ืขื™ื™ื](1-Tools/README.md)
2. [ื ื™ื”ื•ืœ ื ืชื•ื ื™ื](2-Data/README.md)
3. [ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ื•ืคื•ืœื™ื ื•ืžื™ืช](3-Linear/README.md)
4. [ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช](4-Logistic/README.md)
---
### ืงืจื“ื™ื˜ื™ื
"ืœืžื™ื“ืช ืžื›ื•ื ื” ืขื ืจื’ืจืกื™ื”" ื ื›ืชื‘ ื‘ืื”ื‘ื” ืขืœ ื™ื“ื™ [Jen Looper](https://twitter.com/jenlooper)
โ™ฅ๏ธ ืชื•ืจืžื™ ื—ื™ื“ื•ื ื™ื ื›ื•ืœืœื™ื: [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan) ื•-[Ornella Altunyan](https://twitter.com/ornelladotcom)
ืžืื’ืจ ื”ื ืชื•ื ื™ื ืฉืœ ื“ืœืขื•ืช ื”ื•ืฆืข ืขืœ ื™ื“ื™ [ื”ืคืจื•ื™ืงื˜ ื”ื–ื” ื‘-Kaggle](https://www.kaggle.com/usda/a-year-of-pumpkin-prices) ื•ื”ื ืชื•ื ื™ื ืฉืœื• ื ืœืงื—ื• ืž-[ื“ื•ื—ื•ืช ืกื˜ื ื“ืจื˜ื™ื™ื ืฉืœ ืฉื•ื•ืงื™ ื˜ืจืžื™ื ืœ ืœื’ื™ื“ื•ืœื™ื ืžื™ื•ื—ื“ื™ื](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice) ืฉืžื•ืคืฆื™ื ืขืœ ื™ื“ื™ ืžืฉืจื“ ื”ื—ืงืœืื•ืช ืฉืœ ืืจืฆื•ืช ื”ื‘ืจื™ืช. ื”ื•ืกืคื ื• ื›ืžื” ื ืงื•ื“ื•ืช ืกื‘ื™ื‘ ืฆื‘ืข ื‘ื”ืชื‘ืกืก ืขืœ ืžื’ื•ื•ืŸ ื›ื“ื™ ืœื ืจืžืœ ืืช ื”ื”ืชืคืœื’ื•ืช. ื ืชื•ื ื™ื ืืœื” ื ืžืฆืื™ื ื‘ืชื—ื•ื ื”ืฆื™ื‘ื•ืจื™.
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,359 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "e0b75f73e4a90d45181dc5581fe2ef5c",
"translation_date": "2025-09-05T19:45:06+00:00",
"source_file": "3-Web-App/1-Web-App/README.md",
"language_code": "he"
}
-->
# ื‘ื ื™ื™ืช ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืœืฉื™ืžื•ืฉ ื‘ืžื•ื“ืœ ืœืžื™ื“ืช ืžื›ื•ื ื”
ื‘ืฉื™ืขื•ืจ ื”ื–ื”, ืชืืžื ื• ืžื•ื“ืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืขืœ ืกื˜ ื ืชื•ื ื™ื ื™ื•ืฆื ื“ื•ืคืŸ: _ืชืฆืคื™ื•ืช ืขื‘"ืžื™ื ื‘ืžืื” ื”ืื—ืจื•ื ื”_, ืฉื ืืกืคื• ืžืžืื’ืจ ื”ื ืชื•ื ื™ื ืฉืœ NUFORC.
ืชืœืžื“ื•:
- ืื™ืš 'ืœืฉืžืจ' ืžื•ื“ืœ ืžืื•ืžืŸ
- ืื™ืš ืœื”ืฉืชืžืฉ ื‘ืžื•ื“ืœ ื”ื–ื” ื‘ืืคืœื™ืงืฆื™ื™ืช Flask
ื ืžืฉื™ืš ืœื”ืฉืชืžืฉ ื‘ืžื—ื‘ืจื•ืช ืœื ื™ืงื•ื™ ื ืชื•ื ื™ื ื•ืœืื™ืžื•ืŸ ื”ืžื•ื“ืœ ืฉืœื ื•, ืื‘ืœ ืชื•ื›ืœื• ืœืงื—ืช ืืช ื”ืชื”ืœื™ืš ืฆืขื“ ืื—ื“ ืงื“ื™ืžื” ืขืœ ื™ื“ื™ ื—ืงืจ ื”ืฉื™ืžื•ืฉ ื‘ืžื•ื“ืœ "ื‘ืฉื“ื”", ื›ืœื•ืžืจ: ื‘ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜.
ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช, ืชืฆื˜ืจื›ื• ืœื‘ื ื•ืช ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ื‘ืืžืฆืขื•ืช Flask.
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ื‘ื ื™ื™ืช ืืคืœื™ืงืฆื™ื”
ื™ืฉื ืŸ ืžืกืคืจ ื“ืจื›ื™ื ืœื‘ื ื•ืช ืืคืœื™ืงืฆื™ื•ืช ืื™ื ื˜ืจื ื˜ ืœืฆืจื™ื›ืช ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”. ื”ืืจื›ื™ื˜ืงื˜ื•ืจื” ืฉืœ ื”ืื™ื ื˜ืจื ื˜ ืฉืœื›ื ืขืฉื•ื™ื” ืœื”ืฉืคื™ืข ืขืœ ื”ื“ืจืš ืฉื‘ื” ื”ืžื•ื“ืœ ืฉืœื›ื ืžืื•ืžืŸ. ื“ืžื™ื™ื ื• ืฉืืชื ืขื•ื‘ื“ื™ื ื‘ืขืกืง ืฉื‘ื• ืงื‘ื•ืฆืช ืžื“ืขื ื™ ื”ื ืชื•ื ื™ื ืื™ืžื ื” ืžื•ื“ืœ ืฉื”ื ืจื•ืฆื™ื ืฉืชืฉืชืžืฉื• ื‘ื• ื‘ืืคืœื™ืงืฆื™ื”.
### ืฉื™ืงื•ืœื™ื
ื™ืฉื ืŸ ืฉืืœื•ืช ืจื‘ื•ืช ืฉืขืœื™ื›ื ืœืฉืื•ืœ:
- **ื”ืื ื–ื• ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืื• ืืคืœื™ืงืฆื™ื” ืœื ื™ื™ื“?** ืื ืืชื ื‘ื•ื ื™ื ืืคืœื™ืงืฆื™ื” ืœื ื™ื™ื“ ืื• ืฆืจื™ื›ื™ื ืœื”ืฉืชืžืฉ ื‘ืžื•ื“ืœ ื‘ื”ืงืฉืจ ืฉืœ IoT, ืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘-[TensorFlow Lite](https://www.tensorflow.org/lite/) ื•ืœื”ืฉืชืžืฉ ื‘ืžื•ื“ืœ ื‘ืืคืœื™ืงืฆื™ื•ืช ืื ื“ืจื•ืื™ื“ ืื• iOS.
- **ื”ื™ื›ืŸ ื”ืžื•ื“ืœ ื™ื™ืžืฆื?** ื‘ืขื ืŸ ืื• ืžืงื•ืžื™ืช?
- **ืชืžื™ื›ื” ืœื ืžืงื•ื•ื ืช.** ื”ืื ื”ืืคืœื™ืงืฆื™ื” ืฆืจื™ื›ื” ืœืขื‘ื•ื“ ื‘ืžืฆื‘ ืœื ืžืงื•ื•ืŸ?
- **ืื™ื–ื• ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉื™ืžืฉื” ืœืื™ืžื•ืŸ ื”ืžื•ื“ืœ?** ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืฉื ื‘ื—ืจื” ืขืฉื•ื™ื” ืœื”ืฉืคื™ืข ืขืœ ื”ื›ืœื™ื ืฉืชืฆื˜ืจื›ื• ืœื”ืฉืชืžืฉ ื‘ื”ื.
- **ืฉื™ืžื•ืฉ ื‘-TensorFlow.** ืื ืืชื ืžืืžื ื™ื ืžื•ื“ืœ ื‘ืืžืฆืขื•ืช TensorFlow, ืœืžืฉืœ, ื”ืืงื•ืกื™ืกื˜ื ื”ื–ื” ืžืกืคืง ืืช ื”ื™ื›ื•ืœืช ืœื”ืžื™ืจ ืžื•ื“ืœ TensorFlow ืœืฉื™ืžื•ืฉ ื‘ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ื‘ืืžืฆืขื•ืช [TensorFlow.js](https://www.tensorflow.org/js/).
- **ืฉื™ืžื•ืฉ ื‘-PyTorch.** ืื ืืชื ื‘ื•ื ื™ื ืžื•ื“ืœ ื‘ืืžืฆืขื•ืช ืกืคืจื™ื™ื” ื›ืžื• [PyTorch](https://pytorch.org/), ื™ืฉ ืœื›ื ืืคืฉืจื•ืช ืœื™ื™ืฆื ืื•ืชื• ื‘ืคื•ืจืžื˜ [ONNX](https://onnx.ai/) (Open Neural Network Exchange) ืœืฉื™ืžื•ืฉ ื‘ืืคืœื™ืงืฆื™ื•ืช ืื™ื ื˜ืจื ื˜ JavaScript ืฉื™ื›ื•ืœื•ืช ืœื”ืฉืชืžืฉ ื‘-[Onnx Runtime](https://www.onnxruntime.ai/). ืืคืฉืจื•ืช ื–ื• ืชื™ื—ืงืจ ื‘ืฉื™ืขื•ืจ ืขืชื™ื“ื™ ืขื‘ื•ืจ ืžื•ื“ืœ ืฉืื•ืžืŸ ื‘ืืžืฆืขื•ืช Scikit-learn.
- **ืฉื™ืžื•ืฉ ื‘-Lobe.ai ืื• Azure Custom Vision.** ืื ืืชื ืžืฉืชืžืฉื™ื ื‘ืžืขืจื›ืช SaaS (ืชื•ื›ื ื” ื›ืฉื™ืจื•ืช) ืœืœืžื™ื“ืช ืžื›ื•ื ื” ื›ืžื• [Lobe.ai](https://lobe.ai/) ืื• [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) ืœืื™ืžื•ืŸ ืžื•ื“ืœ, ืกื•ื’ ื–ื” ืฉืœ ืชื•ื›ื ื” ืžืกืคืง ื“ืจื›ื™ื ืœื™ื™ืฆื ืืช ื”ืžื•ื“ืœ ืœืคืœื˜ืคื•ืจืžื•ืช ืจื‘ื•ืช, ื›ื•ืœืœ ื‘ื ื™ื™ืช API ืžื•ืชืื ืื™ืฉื™ืช ืฉื ื™ืชืŸ ืœืฉืื•ืœ ื‘ืขื ืŸ ืขืœ ื™ื“ื™ ื”ืืคืœื™ืงืฆื™ื” ื”ืžืงื•ื•ื ืช ืฉืœื›ื.
ื™ืฉ ืœื›ื ื’ื ืืช ื”ืืคืฉืจื•ืช ืœื‘ื ื•ืช ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืฉืœืžื” ื‘-Flask ืฉืชื•ื›ืœ ืœืืžืŸ ืืช ื”ืžื•ื“ืœ ื‘ืขืฆืžื” ื‘ื“ืคื“ืคืŸ ืื™ื ื˜ืจื ื˜. ื ื™ืชืŸ ืœืขืฉื•ืช ื–ืืช ื’ื ื‘ืืžืฆืขื•ืช TensorFlow.js ื‘ื”ืงืฉืจ ืฉืœ JavaScript.
ืœืžื˜ืจื•ืชื™ื ื•, ืžื›ื™ื•ื•ืŸ ืฉืขื‘ื“ื ื• ืขื ืžื—ื‘ืจื•ืช ืžื‘ื•ืกืกื•ืช Python, ื‘ื•ืื• ื ื—ืงื•ืจ ืืช ื”ืฉืœื‘ื™ื ืฉืขืœื™ื›ื ืœื‘ืฆืข ื›ื“ื™ ืœื™ื™ืฆื ืžื•ื“ืœ ืžืื•ืžืŸ ืžืžื—ื‘ืจืช ื›ื–ื• ืœืคื•ืจืžื˜ ืฉื ื™ืชืŸ ืœืงืจื™ืื” ืขืœ ื™ื“ื™ ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืฉื ื‘ื ืชื” ื‘-Python.
## ื›ืœื™
ืœืžืฉื™ืžื” ื–ื•, ืชืฆื˜ืจื›ื• ืฉื ื™ ื›ืœื™ื: Flask ื•-Pickle, ืฉื ื™ื”ื ืคื•ืขืœื™ื ืขืœ Python.
โœ… ืžื”ื• [Flask](https://palletsprojects.com/p/flask/)? ืžื•ื’ื“ืจ ื›'ืžื™ืงืจื•-ืคืจื™ื™ืžื•ื•ืจืง' ืขืœ ื™ื“ื™ ื™ื•ืฆืจื™ื•, Flask ืžืกืคืง ืืช ื”ืชื›ื•ื ื•ืช ื”ื‘ืกื™ืกื™ื•ืช ืฉืœ ืคืจื™ื™ืžื•ื•ืจืงื™ื ืœืื™ื ื˜ืจื ื˜ ื‘ืืžืฆืขื•ืช Python ื•ืžื ื•ืข ืชื‘ื ื™ื•ืช ืœื‘ื ื™ื™ืช ื“ืคื™ ืื™ื ื˜ืจื ื˜. ืขื™ื™ื ื• ื‘-[ืžื•ื“ื•ืœ ื”ืœืžื™ื“ื” ื”ื–ื”](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) ื›ื“ื™ ืœืชืจื’ืœ ื‘ื ื™ื™ื” ืขื Flask.
โœ… ืžื”ื• [Pickle](https://docs.python.org/3/library/pickle.html)? Pickle ๐Ÿฅ’ ื”ื•ื ืžื•ื“ื•ืœ Python ืฉืžื‘ืฆืข ืกืจื™ืืœื™ื–ืฆื™ื” ื•ื“ืก-ืกืจื™ืืœื™ื–ืฆื™ื” ืฉืœ ืžื‘ื ื” ืื•ื‘ื™ื™ืงื˜ ื‘-Python. ื›ืฉืืชื 'ืžืฉืžืจื™ื' ืžื•ื“ืœ, ืืชื ืžื‘ืฆืขื™ื ืกืจื™ืืœื™ื–ืฆื™ื” ืื• ืžืฉื˜ื—ื™ื ืืช ื”ืžื‘ื ื” ืฉืœื• ืœืฉื™ืžื•ืฉ ื‘ืื™ื ื˜ืจื ื˜. ืฉื™ืžื• ืœื‘: Pickle ืื™ื ื• ื‘ื˜ื•ื— ื‘ืื•ืคืŸ ืื™ื ื”ืจื ื˜ื™, ืื– ื”ื™ื• ื–ื”ื™ืจื™ื ืื ืชืชื‘ืงืฉื• 'ืœืคืจื•ืง' ืงื•ื‘ืฅ. ืงื•ื‘ืฅ ืžืฉื•ืžืจ ืžืกื•ืžืŸ ื‘ืกื™ื•ืžืช `.pkl`.
## ืชืจื’ื™ืœ - ื ื™ืงื•ื™ ื”ื ืชื•ื ื™ื ืฉืœื›ื
ื‘ืฉื™ืขื•ืจ ื”ื–ื” ืชืฉืชืžืฉื• ื‘ื ืชื•ื ื™ื ืž-80,000 ืชืฆืคื™ื•ืช ืขื‘"ืžื™ื, ืฉื ืืกืคื• ืขืœ ื™ื“ื™ [NUFORC](https://nuforc.org) (ื”ืžืจื›ื– ื”ืœืื•ืžื™ ืœื“ื™ื•ื•ื— ืขืœ ืขื‘"ืžื™ื). ืœื ืชื•ื ื™ื ื”ืืœื” ื™ืฉ ืชื™ืื•ืจื™ื ืžืขื ื™ื™ื ื™ื ืฉืœ ืชืฆืคื™ื•ืช ืขื‘"ืžื™ื, ืœื“ื•ื’ืžื”:
- **ืชื™ืื•ืจ ืืจื•ืš ืœื“ื•ื’ืžื”.** "ืื“ื ื™ื•ืฆื ืžืงืจืŸ ืื•ืจ ืฉืžืื™ืจื” ืขืœ ืฉื“ื” ื“ืฉื ื‘ืœื™ืœื” ื•ืจืฅ ืœื›ื™ื•ื•ืŸ ืžื’ืจืฉ ื”ื—ื ื™ื” ืฉืœ Texas Instruments".
- **ืชื™ืื•ืจ ืงืฆืจ ืœื“ื•ื’ืžื”.** "ื”ืื•ืจื•ืช ืจื“ืคื• ืื—ืจื™ื ื•".
ื’ื™ืœื™ื•ืŸ ื”ื ืชื•ื ื™ื [ufos.csv](../../../../3-Web-App/1-Web-App/data/ufos.csv) ื›ื•ืœืœ ืขืžื•ื“ื•ืช ืขืœ `ืขื™ืจ`, `ืžื“ื™ื ื”` ื•`ืืจืฅ` ืฉื‘ื”ืŸ ื”ืชืฆืคื™ืช ื”ืชืจื—ืฉื”, `ืฆื•ืจื”` ืฉืœ ื”ืื•ื‘ื™ื™ืงื˜ ื•`ืงื• ืจื•ื—ื‘` ื•`ืงื• ืื•ืจืš`.
ื‘-[ืžื—ื‘ืจืช](../../../../3-Web-App/1-Web-App/notebook.ipynb) ื”ืจื™ืงื” ืฉืžืฆื•ืจืคืช ืœืฉื™ืขื•ืจ ื”ื–ื”:
1. ื™ื™ื‘ืื• ืืช `pandas`, `matplotlib`, ื•-`numpy` ื›ืคื™ ืฉืขืฉื™ืชื ื‘ืฉื™ืขื•ืจื™ื ืงื•ื“ืžื™ื ื•ื™ื™ื‘ืื• ืืช ื’ื™ืœื™ื•ืŸ ื”ื ืชื•ื ื™ื ืฉืœ ืขื‘"ืžื™ื. ืชื•ื›ืœื• ืœื”ืกืชื›ืœ ืขืœ ื“ื•ื’ืžืช ืกื˜ ื ืชื•ื ื™ื:
```python
import pandas as pd
import numpy as np
ufos = pd.read_csv('./data/ufos.csv')
ufos.head()
```
1. ื”ืžื™ืจื• ืืช ื ืชื•ื ื™ ื”ืขื‘"ืžื™ื ืœืžืกื’ืจืช ื ืชื•ื ื™ื ืงื˜ื ื” ืขื ื›ื•ืชืจื•ืช ื—ื“ืฉื•ืช. ื‘ื“ืงื• ืืช ื”ืขืจื›ื™ื ื”ื™ื™ื—ื•ื“ื™ื™ื ื‘ืฉื“ื” `Country`.
```python
ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})
ufos.Country.unique()
```
1. ืขื›ืฉื™ื•, ืชื•ื›ืœื• ืœืฆืžืฆื ืืช ื›ืžื•ืช ื”ื ืชื•ื ื™ื ืฉืขืœื™ื ื• ืœื”ืชืžื•ื“ื“ ืื™ืชื ืขืœ ื™ื“ื™ ื”ืกืจืช ืขืจื›ื™ื ืจื™ืงื™ื ื•ื™ื™ื‘ื•ื ืชืฆืคื™ื•ืช ื‘ื™ืŸ 1-60 ืฉื ื™ื•ืช ื‘ืœื‘ื“:
```python
ufos.dropna(inplace=True)
ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]
ufos.info()
```
1. ื™ื™ื‘ืื• ืืช ืกืคืจื™ื™ืช `LabelEncoder` ืฉืœ Scikit-learn ื›ื“ื™ ืœื”ืžื™ืจ ืืช ืขืจื›ื™ ื”ื˜ืงืกื˜ ืฉืœ ืžื“ื™ื ื•ืช ืœืžืกืคืจ:
โœ… LabelEncoder ืžืงื•ื“ื“ ื ืชื•ื ื™ื ืœืคื™ ืกื“ืจ ืืœืคื‘ื™ืชื™
```python
from sklearn.preprocessing import LabelEncoder
ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])
ufos.head()
```
ื”ื ืชื•ื ื™ื ืฉืœื›ื ืฆืจื™ื›ื™ื ืœื”ื™ืจืื•ืช ื›ืš:
```output
Seconds Country Latitude Longitude
2 20.0 3 53.200000 -2.916667
3 20.0 4 28.978333 -96.645833
14 30.0 4 35.823889 -80.253611
23 60.0 4 45.582778 -122.352222
24 3.0 3 51.783333 -0.783333
```
## ืชืจื’ื™ืœ - ื‘ื ื™ื™ืช ื”ืžื•ื“ืœ ืฉืœื›ื
ืขื›ืฉื™ื• ืชื•ื›ืœื• ืœื”ืชื›ื•ื ืŸ ืœืืžืŸ ืžื•ื“ืœ ืขืœ ื™ื“ื™ ื—ืœื•ืงืช ื”ื ืชื•ื ื™ื ืœืงื‘ื•ืฆืช ืื™ืžื•ืŸ ื•ื‘ื“ื™ืงื”.
1. ื‘ื—ืจื• ืืช ืฉืœื•ืฉืช ื”ืžืืคื™ื™ื ื™ื ืฉืชืจืฆื• ืœืืžืŸ ืขืœื™ื”ื ื›ื•ืงื˜ื•ืจ X ืฉืœื›ื, ื•ื”ื•ืงื˜ื•ืจ y ื™ื”ื™ื” `Country`. ืืชื ืจื•ืฆื™ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื”ื–ื™ืŸ `Seconds`, `Latitude` ื•-`Longitude` ื•ืœืงื‘ืœ ืžื–ื”ื” ืžื“ื™ื ื” ืœื”ื—ื–ืจื”.
```python
from sklearn.model_selection import train_test_split
Selected_features = ['Seconds','Latitude','Longitude']
X = ufos[Selected_features]
y = ufos['Country']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
```
1. ืื™ืžื ื• ืืช ื”ืžื•ื“ืœ ืฉืœื›ื ื‘ืืžืฆืขื•ืช ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช:
```python
from sklearn.metrics import accuracy_score, classification_report
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
predictions = model.predict(X_test)
print(classification_report(y_test, predictions))
print('Predicted labels: ', predictions)
print('Accuracy: ', accuracy_score(y_test, predictions))
```
ื”ื“ื™ื•ืง ืœื ืจืข **(ื›-95%)**, ื•ืœื ืžืคืชื™ืข, ืžื›ื™ื•ื•ืŸ ืฉ-`Country` ื•-`Latitude/Longitude` ืžืชื•ืืžื™ื.
ื”ืžื•ื“ืœ ืฉื™ืฆืจืชื ืื™ื ื• ืžืื•ื“ ืžื”ืคื›ื ื™ ืžื›ื™ื•ื•ืŸ ืฉืืชื ืืžื•ืจื™ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื”ืกื™ืง `Country` ืž-`Latitude` ื•-`Longitude`, ืื‘ืœ ื–ื”ื• ืชืจื’ื™ืœ ื˜ื•ื‘ ืœื ืกื•ืช ืœืืžืŸ ืžื ืชื•ื ื™ื ื’ื•ืœืžื™ื™ื ืฉื ื™ืงื™ืชื, ื™ื™ืฆืืชื, ื•ืื– ืœื”ืฉืชืžืฉ ื‘ืžื•ื“ืœ ื”ื–ื” ื‘ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜.
## ืชืจื’ื™ืœ - 'ืฉื™ืžื•ืจ' ื”ืžื•ื“ืœ ืฉืœื›ื
ืขื›ืฉื™ื•, ื”ื’ื™ืข ื”ื–ืžืŸ _ืœืฉืžืจ_ ืืช ื”ืžื•ื“ืœ ืฉืœื›ื! ืชื•ื›ืœื• ืœืขืฉื•ืช ื–ืืช ื‘ื›ืžื” ืฉื•ืจื•ืช ืงื•ื“. ืœืื—ืจ ืฉื”ื•ื _ืžืฉื•ืžืจ_, ื˜ืขื ื• ืืช ื”ืžื•ื“ืœ ื”ืžืฉื•ืžืจ ื•ื‘ื“ืงื• ืื•ืชื• ืžื•ืœ ืžืขืจืš ื ืชื•ื ื™ื ืœื“ื•ื’ืžื” ืฉืžื›ื™ืœ ืขืจื›ื™ื ืขื‘ื•ืจ ืฉื ื™ื•ืช, ืงื• ืจื•ื—ื‘ ื•ืงื• ืื•ืจืš.
```python
import pickle
model_filename = 'ufo-model.pkl'
pickle.dump(model, open(model_filename,'wb'))
model = pickle.load(open('ufo-model.pkl','rb'))
print(model.predict([[50,44,-12]]))
```
ื”ืžื•ื“ืœ ืžื—ื–ื™ืจ **'3'**, ืฉื–ื”ื• ืงื•ื“ ื”ืžื“ื™ื ื” ืขื‘ื•ืจ ื‘ืจื™ื˜ื ื™ื”. ืžื“ื”ื™ื! ๐Ÿ‘ฝ
## ืชืจื’ื™ืœ - ื‘ื ื™ื™ืช ืืคืœื™ืงืฆื™ื™ืช Flask
ืขื›ืฉื™ื• ืชื•ื›ืœื• ืœื‘ื ื•ืช ืืคืœื™ืงืฆื™ื™ืช Flask ืฉืชื•ื›ืœ ืœืงืจื•ื ืืช ื”ืžื•ื“ืœ ืฉืœื›ื ื•ืœื”ื—ื–ื™ืจ ืชื•ืฆืื•ืช ื“ื•ืžื•ืช, ืื‘ืœ ื‘ืฆื•ืจื” ื™ื•ืชืจ ื ืขื™ืžื” ืœืขื™ืŸ.
1. ื”ืชื—ื™ืœื• ื‘ื™ืฆื™ืจืช ืชื™ืงื™ื™ื” ื‘ืฉื **web-app** ืœื™ื“ ืงื•ื‘ืฅ _notebook.ipynb_ ืฉื‘ื• ื ืžืฆื ืงื•ื‘ืฅ _ufo-model.pkl_ ืฉืœื›ื.
1. ื‘ืชื™ืงื™ื™ื” ื”ื–ื• ืฆืจื• ืขื•ื“ ืฉืœื•ืฉ ืชื™ืงื™ื•ืช: **static**, ืขื ืชื™ืงื™ื™ื” **css** ื‘ืชื•ื›ื”, ื•-**templates**. ืขื›ืฉื™ื• ืืžื•ืจื™ื ืœื”ื™ื•ืช ืœื›ื ื”ืงื‘ืฆื™ื ื•ื”ืชื™ืงื™ื•ืช ื”ื‘ืื™ื:
```output
web-app/
static/
css/
templates/
notebook.ipynb
ufo-model.pkl
```
โœ… ืขื™ื™ื ื• ื‘ืชื™ืงื™ื™ืช ื”ืคืชืจื•ืŸ ื›ื“ื™ ืœืจืื•ืช ืืช ื”ืืคืœื™ืงืฆื™ื” ื”ืžื•ื’ืžืจืช
1. ื”ืงื•ื‘ืฅ ื”ืจืืฉื•ืŸ ืฉื™ืฉ ืœื™ืฆื•ืจ ื‘ืชื™ืงื™ื™ืช _web-app_ ื”ื•ื ืงื•ื‘ืฅ **requirements.txt**. ื›ืžื• _package.json_ ื‘ืืคืœื™ืงืฆื™ื™ืช JavaScript, ืงื•ื‘ืฅ ื–ื” ืžืคืจื˜ ืืช ื”ืชืœื•ื™ื•ืช ื”ื ื“ืจืฉื•ืช ืขืœ ื™ื“ื™ ื”ืืคืœื™ืงืฆื™ื”. ื‘-**requirements.txt** ื”ื•ืกื™ืคื• ืืช ื”ืฉื•ืจื•ืช:
```text
scikit-learn
pandas
numpy
flask
```
1. ืขื›ืฉื™ื•, ื”ืจื™ืฆื• ืืช ื”ืงื•ื‘ืฅ ื”ื–ื” ืขืœ ื™ื“ื™ ื ื™ื•ื•ื˜ ืœ-_web-app_:
```bash
cd web-app
```
1. ื‘ื˜ืจืžื™ื ืœ ืฉืœื›ื ื”ืงืœื™ื“ื• `pip install`, ื›ื“ื™ ืœื”ืชืงื™ืŸ ืืช ื”ืกืคืจื™ื•ืช ื”ืžืคื•ืจื˜ื•ืช ื‘-_requirements.txt_:
```bash
pip install -r requirements.txt
```
1. ืขื›ืฉื™ื•, ืืชื ืžื•ื›ื ื™ื ืœื™ืฆื•ืจ ืขื•ื“ ืฉืœื•ืฉื” ืงื‘ืฆื™ื ื›ื“ื™ ืœืกื™ื™ื ืืช ื”ืืคืœื™ืงืฆื™ื”:
1. ืฆืจื• **app.py** ื‘ืฉื•ืจืฉ.
2. ืฆืจื• **index.html** ื‘ืชื™ืงื™ื™ืช _templates_.
3. ืฆืจื• **styles.css** ื‘ืชื™ืงื™ื™ืช _static/css_.
1. ื‘ื ื• ืืช ืงื•ื‘ืฅ _styles.css_ ืขื ื›ืžื” ืกื’ื ื•ื ื•ืช:
```css
body {
width: 100%;
height: 100%;
font-family: 'Helvetica';
background: black;
color: #fff;
text-align: center;
letter-spacing: 1.4px;
font-size: 30px;
}
input {
min-width: 150px;
}
.grid {
width: 300px;
border: 1px solid #2d2d2d;
display: grid;
justify-content: center;
margin: 20px auto;
}
.box {
color: #fff;
background: #2d2d2d;
padding: 12px;
display: inline-block;
}
```
1. ืœืื—ืจ ืžื›ืŸ, ื‘ื ื• ืืช ืงื•ื‘ืฅ _index.html_:
```html
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>๐Ÿ›ธ UFO Appearance Prediction! ๐Ÿ‘ฝ</title>
<link rel="stylesheet" href="{{ url_for('static', filename='css/styles.css') }}">
</head>
<body>
<div class="grid">
<div class="box">
<p>According to the number of seconds, latitude and longitude, which country is likely to have reported seeing a UFO?</p>
<form action="{{ url_for('predict')}}" method="post">
<input type="number" name="seconds" placeholder="Seconds" required="required" min="0" max="60" />
<input type="text" name="latitude" placeholder="Latitude" required="required" />
<input type="text" name="longitude" placeholder="Longitude" required="required" />
<button type="submit" class="btn">Predict country where the UFO is seen</button>
</form>
<p>{{ prediction_text }}</p>
</div>
</div>
</body>
</html>
```
ืฉื™ืžื• ืœื‘ ืœืชื‘ื ื™ื•ืช ื‘ืงื•ื‘ืฅ ื”ื–ื”. ืฉื™ืžื• ืœื‘ ืœืกื™ื ื˜ืงืก 'mustache' ืกื‘ื™ื‘ ืžืฉืชื ื™ื ืฉื™ืกื•ืคืงื• ืขืœ ื™ื“ื™ ื”ืืคืœื™ืงืฆื™ื”, ื›ืžื• ื˜ืงืกื˜ ื”ืชื—ื–ื™ืช: `{{}}`. ื™ืฉ ื’ื ื˜ื•ืคืก ืฉืฉื•ืœื— ืชื—ื–ื™ืช ืœื ืชื™ื‘ `/predict`.
ืœื‘ืกื•ืฃ, ืืชื ืžื•ื›ื ื™ื ืœื‘ื ื•ืช ืืช ืงื•ื‘ืฅ ื”-Python ืฉืžื ื™ืข ืืช ืฆืจื™ื›ืช ื”ืžื•ื“ืœ ื•ื”ืฆื’ืช ื”ืชื—ื–ื™ื•ืช:
1. ื‘-`app.py` ื”ื•ืกื™ืคื•:
```python
import numpy as np
from flask import Flask, request, render_template
import pickle
app = Flask(__name__)
model = pickle.load(open("./ufo-model.pkl", "rb"))
@app.route("/")
def home():
return render_template("index.html")
@app.route("/predict", methods=["POST"])
def predict():
int_features = [int(x) for x in request.form.values()]
final_features = [np.array(int_features)]
prediction = model.predict(final_features)
output = prediction[0]
countries = ["Australia", "Canada", "Germany", "UK", "US"]
return render_template(
"index.html", prediction_text="Likely country: {}".format(countries[output])
)
if __name__ == "__main__":
app.run(debug=True)
```
> ๐Ÿ’ก ื˜ื™ืค: ื›ืฉืืชื ืžื•ืกื™ืคื™ื [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode) ื‘ื–ืžืŸ ื”ืจืฆืช ืืคืœื™ืงืฆื™ื™ืช ื”ืื™ื ื˜ืจื ื˜ ื‘ืืžืฆืขื•ืช Flask, ื›ืœ ืฉื™ื ื•ื™ ืฉืชืขืฉื• ื‘ืืคืœื™ืงืฆื™ื” ืฉืœื›ื ื™ืฉืชืงืฃ ืžื™ื“ ืœืœื ืฆื•ืจืš ืœื”ืคืขื™ืœ ืžื—ื“ืฉ ืืช ื”ืฉืจืช. ืฉื™ืžื• ืœื‘! ืืœ ืชืคืขื™ืœื• ืžืฆื‘ ื–ื” ื‘ืืคืœื™ืงืฆื™ื” ื‘ืกื‘ื™ื‘ืช ื™ื™ืฆื•ืจ.
ืื ืชืจื™ืฆื• `python app.py` ืื• `python3 app.py` - ืฉืจืช ื”ืื™ื ื˜ืจื ื˜ ืฉืœื›ื ื™ืชื—ื™ืœ ืœืคืขื•ืœ, ืžืงื•ืžื™ืช, ื•ืชื•ื›ืœื• ืœืžืœื ื˜ื•ืคืก ืงืฆืจ ื›ื“ื™ ืœืงื‘ืœ ืชืฉื•ื‘ื” ืœืฉืืœื” ื”ื‘ื•ืขืจืช ืฉืœื›ื ืขืœ ื”ื™ื›ืŸ ื ืฆืคื• ืขื‘"ืžื™ื!
ืœืคื ื™ ืฉืชืขืฉื• ื–ืืช, ื”ืกืชื›ืœื• ืขืœ ื”ื—ืœืงื™ื ืฉืœ `app.py`:
1. ืงื•ื“ื ื›ืœ, ื”ืชืœื•ื™ื•ืช ื ื˜ืขื ื•ืช ื•ื”ืืคืœื™ืงืฆื™ื” ืžืชื—ื™ืœื”.
1. ืœืื—ืจ ืžื›ืŸ, ื”ืžื•ื“ืœ ืžื™ื•ื‘ื.
1. ืœืื—ืจ ืžื›ืŸ, index.html ืžื•ืฆื’ ื‘ื ืชื™ื‘ ื”ื‘ื™ืช.
ื‘ื ืชื™ื‘ `/predict`, ืžืกืคืจ ื“ื‘ืจื™ื ืงื•ืจื™ื ื›ืฉื”ื˜ื•ืคืก ื ืฉืœื—:
1. ืžืฉืชื ื™ ื”ื˜ื•ืคืก ื ืืกืคื™ื ื•ืžื•ืžืจื™ื ืœืžืขืจืš numpy. ื”ื ื ืฉืœื—ื™ื ืœืžื•ื“ืœ ื•ืชื—ื–ื™ืช ืžื•ื—ื–ืจืช.
2. ื”ืžื“ื™ื ื•ืช ืฉืื ื—ื ื• ืจื•ืฆื™ื ืœื”ืฆื™ื’ ืžื•ืฆื’ื•ืช ืžื—ื“ืฉ ื›ื˜ืงืกื˜ ืงืจื™ื ืžืงื•ื“ ื”ืžื“ื™ื ื” ื”ื—ื–ื•ื™ ืฉืœื”ืŸ, ื•ื”ืขืจืš ื”ื–ื” ื ืฉืœื— ื—ื–ืจื” ืœ-index.html ื›ื“ื™ ืœื”ื™ื•ืช ืžื•ืฆื’ ื‘ืชื‘ื ื™ืช.
ืฉื™ืžื•ืฉ ื‘ืžื•ื“ืœ ื‘ื“ืจืš ื–ื•, ืขื Flask ื•ืžื•ื“ืœ ืžืฉื•ืžืจ, ื”ื•ื ื™ื—ืกื™ืช ืคืฉื•ื˜. ื”ื“ื‘ืจ ื”ืงืฉื” ื‘ื™ื•ืชืจ ื”ื•ื ืœื”ื‘ื™ืŸ ื‘ืื™ื–ื• ืฆื•ืจื” ื”ื ืชื•ื ื™ื ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ื›ื“ื™ ืœื”ื™ืฉืœื— ืœืžื•ื“ืœ ื•ืœืงื‘ืœ ืชื—ื–ื™ืช. ื–ื” ืชืœื•ื™ ืœื—ืœื•ื˜ื™ืŸ ื‘ืื™ืš ื”ืžื•ื“ืœ ืื•ืžืŸ. ืœืžื•ื“ืœ ื”ื–ื” ื™ืฉ ืฉืœื•ืฉ ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ืฉืฆืจื™ืš ืœื”ื–ื™ืŸ ื›ื“ื™ ืœืงื‘ืœ ืชื—ื–ื™ืช.
ื‘ืกื‘ื™ื‘ื” ืžืงืฆื•ืขื™ืช, ืชื•ื›ืœื• ืœืจืื•ืช ืขื“ ื›ืžื” ืชืงืฉื•ืจืช ื˜ื•ื‘ื” ื”ื™ื ื”ื›ืจื—ื™ืช ื‘ื™ืŸ ื”ืื ืฉื™ื ืฉืžืืžื ื™ื ืืช ื”ืžื•ื“ืœ ืœื‘ื™ืŸ ืืœื” ืฉืฆื•ืจื›ื™ื ืื•ืชื• ื‘ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืื• ื ื™ื™ื“. ื‘ืžืงืจื” ืฉืœื ื•, ื–ื” ืจืง ืื“ื ืื—ื“, ืืชื!
---
## ๐Ÿš€ ืืชื’ืจ
ื‘ืžืงื•ื ืœืขื‘ื•ื“ ื‘ืžื—ื‘ืจืช ื•ืœื™ื™ื‘ื ืืช ื”ืžื•ื“ืœ ืœืืคืœื™ืงืฆื™ื™ืช Flask, ืชื•ื›ืœื• ืœืืžืŸ ืืช ื”ืžื•ื“ืœ ืžืžืฉ ื‘ืชื•ืš ืืคืœื™ืงืฆื™ื™ืช Flask! ื ืกื• ืœื”ืžื™ืจ ืืช ืงื•ื“ ื”-Python ื‘ืžื—ื‘ืจืช, ืื•ืœื™ ืœืื—ืจ ื ื™ืงื•ื™ ื”ื ืชื•ื ื™ื ืฉืœื›ื, ื›ื“ื™ ืœืืžืŸ ืืช ื”ืžื•ื“ืœ ืžืชื•ืš ื”ืืคืœื™ืงืฆื™ื” ื‘ื ืชื™ื‘ ืฉื ืงืจื `train`. ืžื” ื”ื™ืชืจื•ื ื•ืช ื•ื”ื—ืกืจื•ื ื•ืช ืฉืœ ืฉื™ื˜ื” ื–ื•?
## [ืฉืืœื•ืŸ ืื—ืจื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื™ืฉื ืŸ ื“ืจื›ื™ื ืจื‘ื•ืช ืœื‘ื ื•ืช ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืœืฆืจื™ื›ืช ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”. ื”ื›ื™ื ื• ืจืฉื™ืžื” ืฉืœ ื”ื“ืจื›ื™ื ืฉื‘ื”ืŸ ืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘-JavaScript ืื• Python ื›ื“ื™ ืœื‘ื ื•ืช ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืฉืชื ืฆืœ ืœืžื™ื“ืช ืžื›ื•ื ื”. ืฉืงืœื• ืืจื›ื™ื˜ืงื˜ื•ืจื”: ื”ืื ื”ืžื•ื“ืœ ืฆืจื™ืš ืœื”ื™ืฉืืจ ื‘ืืคืœื™ืงืฆื™ื” ืื• ืœื—ื™ื•ืช ื‘ืขื ืŸ? ืื ื”ืืคืฉืจื•ืช ื”ืฉื ื™ื™ื”, ืื™ืš ื”ื™ื™ืชื ื ื™ื’ืฉื™ื ืืœื™ื•? ืฆื™ื™ืจื• ืžื•ื“ืœ ืืจื›ื™ื˜ืงื˜ื•ื ื™ ืœืคืชืจื•ืŸ ืื™ื ื˜ืจื ื˜ื™ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”.
## ืžืฉื™ืžื”
[ื ืกื• ืžื•ื“ืœ ืื—ืจ](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a8e8ae10be335cbc745b75ee552317ff",
"translation_date": "2025-09-05T19:46:55+00:00",
"source_file": "3-Web-App/1-Web-App/assignment.md",
"language_code": "he"
}
-->
# ื ืกื” ืžื•ื“ืœ ืื—ืจ
## ื”ื•ืจืื•ืช
ืขื›ืฉื™ื•, ืœืื—ืจ ืฉื‘ื ื™ืช ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืื—ืช ื‘ืืžืฆืขื•ืช ืžื•ื“ืœ ืจื’ืจืกื™ื” ืžืื•ืžืŸ, ื”ืฉืชืžืฉ ื‘ืื—ื“ ืžื”ืžื•ื“ืœื™ื ืžืฉื™ืขื•ืจ ื”ืจื’ืจืกื™ื” ื”ืงื•ื“ื ื›ื“ื™ ืœื‘ื ื•ืช ืžื—ื“ืฉ ืืช ืืคืœื™ืงืฆื™ื™ืช ื”ืื™ื ื˜ืจื ื˜ ื”ื–ื•. ืชื•ื›ืœ ืœืฉืžื•ืจ ืขืœ ื”ืกื’ื ื•ืŸ ืื• ืœืขืฆื‘ ืื•ืชื” ื‘ืื•ืคืŸ ืฉื•ื ื” ื›ืš ืฉืชืฉืงืฃ ืืช ื ืชื•ื ื™ ื”ื“ืœืขืช. ืฉื™ื ืœื‘ ืœืฉื ื•ืช ืืช ื”ืงืœื˜ื™ื ื›ืš ืฉื™ืชืื™ืžื• ืœืฉื™ื˜ืช ื”ืื™ืžื•ืŸ ืฉืœ ื”ืžื•ื“ืœ ืฉืœืš.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ื ื™ื | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| ------------------------- | ------------------------------------------------------ | ------------------------------------------------------ | ----------------------------------- |
| | ืืคืœื™ืงืฆื™ื™ืช ื”ืื™ื ื˜ืจื ื˜ ืคื•ืขืœืช ื›ืžืฆื•ืคื” ื•ืžื•ืชืงื ืช ื‘ืขื ืŸ | ืืคืœื™ืงืฆื™ื™ืช ื”ืื™ื ื˜ืจื ื˜ ืžื›ื™ืœื” ืคื’ืžื™ื ืื• ืžืฆื™ื’ื” ืชื•ืฆืื•ืช ื‘ืœืชื™ ืฆืคื•ื™ื•ืช | ืืคืœื™ืงืฆื™ื™ืช ื”ืื™ื ื˜ืจื ื˜ ืื™ื ื” ืคื•ืขืœืช ื›ืจืื•ื™ |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,35 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "9836ff53cfef716ddfd70e06c5f43436",
"translation_date": "2025-09-05T19:44:12+00:00",
"source_file": "3-Web-App/README.md",
"language_code": "he"
}
-->
# ื‘ื ื” ืืคืœื™ืงืฆื™ื™ืช ื•ื•ื‘ ืœืฉื™ืžื•ืฉ ื‘ืžื•ื“ืœ ML ืฉืœืš
ื‘ื—ืœืง ื–ื” ืฉืœ ื”ืงื•ืจืก, ืชื™ื—ืฉืฃ ืœื ื•ืฉื ื™ื™ืฉื•ืžื™ ื‘ืชื—ื•ื ืœืžื™ื“ืช ืžื›ื•ื ื”: ื›ื™ืฆื“ ืœืฉืžื•ืจ ืืช ื”ืžื•ื“ืœ ืฉืœืš ืฉื ื‘ื ื” ื‘-Scikit-learn ื›ืงื•ื‘ืฅ ืฉื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื• ื›ื“ื™ ืœื‘ืฆืข ืชื—ื–ื™ื•ืช ื‘ืชื•ืš ืืคืœื™ืงืฆื™ื™ืช ื•ื•ื‘. ืœืื—ืจ ืฉื”ืžื•ื“ืœ ื ืฉืžืจ, ืชืœืžื“ ื›ื™ืฆื“ ืœื”ืฉืชืžืฉ ื‘ื• ื‘ืืคืœื™ืงืฆื™ื™ืช ื•ื•ื‘ ืฉื ื‘ื ืชื” ื‘-Flask. ืชื—ื™ืœื” ืชื™ืฆื•ืจ ืžื•ื“ืœ ื‘ืืžืฆืขื•ืช ื ืชื•ื ื™ื ื”ืขื•ืกืงื™ื ื‘ืชืฆืคื™ื•ืช ืขืœ ืขื‘"ืžื™ื! ืœืื—ืจ ืžื›ืŸ, ืชื‘ื ื” ืืคืœื™ืงืฆื™ื™ืช ื•ื•ื‘ ืฉืชืืคืฉืจ ืœืš ืœื”ื–ื™ืŸ ืžืกืคืจ ืฉื ื™ื•ืช ื™ื—ื“ ืขื ืขืจื›ื™ ืงื• ืจื•ื—ื‘ ื•ืงื• ืื•ืจืš ื›ื“ื™ ืœื—ื–ื•ืช ื‘ืื™ื–ื• ืžื“ื™ื ื” ื“ื•ื•ื— ืขืœ ืขื‘"ื.
![ื—ื ื™ื™ืช ืขื‘"ืžื™ื](../../../3-Web-App/images/ufo.jpg)
ืฆื™ืœื•ื ืขืœ ื™ื“ื™ <a href="https://unsplash.com/@mdherren?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Michael Herren</a> ื‘-<a href="https://unsplash.com/s/photos/ufo?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
## ืฉื™ืขื•ืจื™ื
1. [ื‘ื ื” ืืคืœื™ืงืฆื™ื™ืช ื•ื•ื‘](1-Web-App/README.md)
## ืงืจื“ื™ื˜ื™ื
"ื‘ื ื” ืืคืœื™ืงืฆื™ื™ืช ื•ื•ื‘" ื ื›ืชื‘ ื‘ืื”ื‘ื” ืขืœ ื™ื“ื™ [Jen Looper](https://twitter.com/jenlooper).
โ™ฅ๏ธ ื”ื—ื™ื“ื•ื ื™ื ื ื›ืชื‘ื• ืขืœ ื™ื“ื™ Rohan Raj.
ื”ืžืื’ืจ ื ืœืงื— ืž-[Kaggle](https://www.kaggle.com/NUFORC/ufo-sightings).
ืืจื›ื™ื˜ืงื˜ื•ืจืช ืืคืœื™ืงืฆื™ื™ืช ื”ื•ื•ื‘ ื”ื•ืฆืขื” ื‘ื—ืœืงื” ืขืœ ื™ื“ื™ [ื”ืžืืžืจ ื”ื–ื”](https://towardsdatascience.com/how-to-easily-deploy-machine-learning-models-using-flask-b95af8fe34d4) ื•-[ื”ืจื™ืคื• ื”ื–ื”](https://github.com/abhinavsagar/machine-learning-deployment) ืžืืช Abhinav Sagar.
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื ื• ืœื ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,313 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "aaf391d922bd6de5efba871d514c6d47",
"translation_date": "2025-09-05T19:58:31+00:00",
"source_file": "4-Classification/1-Introduction/README.md",
"language_code": "he"
}
-->
# ืžื‘ื•ื ืœืกื™ื•ื•ื’
ื‘ืืจื‘ืขืช ื”ืฉื™ืขื•ืจื™ื ื”ืœืœื•, ืชื—ืงื•ืจ ืืช ืื—ื“ ื”ื ื•ืฉืื™ื ื”ืžืจื›ื–ื™ื™ื ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช - _ืกื™ื•ื•ื’_. ื ืขื‘ื•ืจ ื™ื—ื“ ืขืœ ืฉื™ืžื•ืฉ ื‘ืืœื’ื•ืจื™ืชืžื™ื ืฉื•ื ื™ื ืœืกื™ื•ื•ื’ ืขื ืžืขืจืš ื ืชื•ื ื™ื ืขืœ ื›ืœ ื”ืžื˜ื‘ื—ื™ื ื”ืžื“ื”ื™ืžื™ื ืฉืœ ืืกื™ื” ื•ื”ื•ื“ื•. ืžืงื•ื•ื™ื ืฉืืชื” ืจืขื‘!
![ืจืง ืงื•ืจื˜ื•ื‘!](../../../../4-Classification/1-Introduction/images/pinch.png)
> ื—ื•ื’ื’ื™ื ืืช ื”ืžื˜ื‘ื—ื™ื ื”ืคืืŸ-ืืกื™ื™ืชื™ื™ื ื‘ืฉื™ืขื•ืจื™ื ื”ืืœื”! ืชืžื•ื ื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
ืกื™ื•ื•ื’ ื”ื•ื ืกื•ื’ ืฉืœ [ืœืžื™ื“ื” ืžื•ื ื—ื™ืช](https://wikipedia.org/wiki/Supervised_learning) ืฉื™ืฉ ืœื” ื”ืจื‘ื” ืžืŸ ื”ืžืฉื•ืชืฃ ืขื ื˜ื›ื ื™ืงื•ืช ืจื’ืจืกื™ื”. ืื ืœืžื™ื“ืช ืžื›ื•ื ื” ืขื•ืกืงืช ื‘ื ื™ื‘ื•ื™ ืขืจื›ื™ื ืื• ืฉืžื•ืช ืœื“ื‘ืจื™ื ื‘ืืžืฆืขื•ืช ืžืขืจื›ื™ ื ืชื•ื ื™ื, ืื– ืกื™ื•ื•ื’ ื‘ื“ืจืš ื›ืœืœ ืžืชื—ืœืง ืœืฉืชื™ ืงื‘ื•ืฆื•ืช: _ืกื™ื•ื•ื’ ื‘ื™ื ืืจื™_ ื•_ืกื™ื•ื•ื’ ืจื‘-ืงื˜ื’ื•ืจื™_.
[![ืžื‘ื•ื ืœืกื™ื•ื•ื’](https://img.youtube.com/vi/eg8DJYwdMyg/0.jpg)](https://youtu.be/eg8DJYwdMyg "ืžื‘ื•ื ืœืกื™ื•ื•ื’")
> ๐ŸŽฅ ืœื—ืฅ ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ื’'ื•ืŸ ื’ื•ื˜ืื’ ืž-MIT ืžืฆื™ื’ ืืช ื ื•ืฉื ื”ืกื™ื•ื•ื’
ื–ื›ื•ืจ:
- **ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช** ืขื–ืจื” ืœืš ืœื ื‘ื ืงืฉืจื™ื ื‘ื™ืŸ ืžืฉืชื ื™ื ื•ืœื‘ืฆืข ืชื—ื–ื™ื•ืช ืžื“ื•ื™ืงื•ืช ืขืœ ืžื™ืงื•ื ื ืงื•ื“ืช ื ืชื•ื ื™ื ื—ื“ืฉื” ื‘ื™ื—ืก ืœืงื•. ืœื“ื•ื’ืžื”, ื™ื›ื•ืœืช ืœื ื‘ื _ืžื” ื™ื”ื™ื” ืžื—ื™ืจ ื“ืœืขืช ื‘ืกืคื˜ืžื‘ืจ ืœืขื•ืžืช ื“ืฆืžื‘ืจ_.
- **ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช** ืขื–ืจื” ืœืš ืœื’ืœื•ืช "ืงื˜ื’ื•ืจื™ื•ืช ื‘ื™ื ืืจื™ื•ืช": ื‘ื ืงื•ื“ืช ืžื—ื™ืจ ื–ื•, _ื”ืื ื”ื“ืœืขืช ื›ืชื•ืžื” ืื• ืœื ื›ืชื•ืžื”_?
ืกื™ื•ื•ื’ ืžืฉืชืžืฉ ื‘ืืœื’ื•ืจื™ืชืžื™ื ืฉื•ื ื™ื ื›ื“ื™ ืœืงื‘ื•ืข ื“ืจื›ื™ื ืื—ืจื•ืช ืœื”ื’ื“ื™ืจ ืืช ื”ืชื•ื•ื™ืช ืื• ื”ืงื˜ื’ื•ืจื™ื” ืฉืœ ื ืงื•ื“ืช ื ืชื•ื ื™ื. ื‘ื•ืื• ื ืขื‘ื•ื“ ืขื ื ืชื•ื ื™ ื”ืžื˜ื‘ื—ื™ื ื”ืืœื” ื›ื“ื™ ืœืจืื•ืช ื”ืื, ืขืœ ื™ื“ื™ ื”ืชื‘ื•ื ื ื•ืช ื‘ืงื‘ื•ืฆืช ืžืจื›ื™ื‘ื™ื, ื ื•ื›ืœ ืœืงื‘ื•ืข ืืช ืžืงื•ืจ ื”ืžื˜ื‘ื—.
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
> ### [ื”ืฉื™ืขื•ืจ ื”ื–ื” ื–ืžื™ืŸ ื‘-R!](../../../../4-Classification/1-Introduction/solution/R/lesson_10.html)
### ืžื‘ื•ื
ืกื™ื•ื•ื’ ื”ื•ื ืื—ืช ื”ืคืขื™ืœื•ื™ื•ืช ื”ืžืจื›ื–ื™ื•ืช ืฉืœ ื—ื•ืงืจื™ ืœืžื™ื“ืช ืžื›ื•ื ื” ื•ืžื“ืขื ื™ ื ืชื•ื ื™ื. ื”ื—ืœ ืžืกื™ื•ื•ื’ ื‘ืกื™ืกื™ ืฉืœ ืขืจืš ื‘ื™ื ืืจื™ ("ื”ืื ื”ืื™ืžื™ื™ืœ ื”ื–ื” ื”ื•ื ืกืคืื ืื• ืœื?"), ื•ืขื“ ืœืกื™ื•ื•ื’ ืชืžื•ื ื•ืช ืžื•ืจื›ื‘ ื•ื—ืœื•ืงื” ื‘ืืžืฆืขื•ืช ืจืื™ื™ื” ืžืžื•ื—ืฉื‘ืช, ืชืžื™ื“ ืžื•ืขื™ืœ ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœืžื™ื™ืŸ ื ืชื•ื ื™ื ืœืงื˜ื’ื•ืจื™ื•ืช ื•ืœืฉืื•ืœ ืฉืืœื•ืช ืขืœื™ื”ื.
ื‘ืžื•ื ื—ื™ื ืžื“ืขื™ื™ื ื™ื•ืชืจ, ืฉื™ื˜ืช ื”ืกื™ื•ื•ื’ ืฉืœืš ื™ื•ืฆืจืช ืžื•ื“ืœ ื—ื™ื–ื•ื™ ืฉืžืืคืฉืจ ืœืš ืœืžืคื•ืช ืืช ื”ืงืฉืจ ื‘ื™ืŸ ืžืฉืชื ื™ ืงืœื˜ ืœืžืฉืชื ื™ ืคืœื˜.
![ืกื™ื•ื•ื’ ื‘ื™ื ืืจื™ ืœืขื•ืžืช ืจื‘-ืงื˜ื’ื•ืจื™](../../../../4-Classification/1-Introduction/images/binary-multiclass.png)
> ื‘ืขื™ื•ืช ื‘ื™ื ืืจื™ื•ืช ืœืขื•ืžืช ืจื‘-ืงื˜ื’ื•ืจื™ื•ืช ืขื‘ื•ืจ ืืœื’ื•ืจื™ืชืžื™ ืกื™ื•ื•ื’. ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
ืœืคื ื™ ืฉื ืชื—ื™ืœ ื‘ืชื”ืœื™ืš ื ื™ืงื•ื™ ื”ื ืชื•ื ื™ื, ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœื”ื ื•ื”ื›ื ืชื ืœืžืฉื™ืžื•ืช ืœืžื™ื“ืช ื”ืžื›ื•ื ื” ืฉืœื ื•, ื‘ื•ืื• ื ืœืžื“ ืžืขื˜ ืขืœ ื”ื“ืจื›ื™ื ื”ืฉื•ื ื•ืช ืฉื‘ื”ืŸ ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื›ื“ื™ ืœืกื•ื•ื’ ื ืชื•ื ื™ื.
ื‘ื”ืฉืจืืช [ืกื˜ื˜ื™ืกื˜ื™ืงื”](https://wikipedia.org/wiki/Statistical_classification), ืกื™ื•ื•ื’ ื‘ืืžืฆืขื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช ืžืฉืชืžืฉ ื‘ืชื›ื•ื ื•ืช ื›ืžื• `smoker`, `weight`, ื•-`age` ื›ื“ื™ ืœืงื‘ื•ืข _ืกื‘ื™ืจื•ืช ืœืคืชื— ืžื—ืœื” X_. ื›ื˜ื›ื ื™ืงืช ืœืžื™ื“ื” ืžื•ื ื—ื™ืช ื”ื“ื•ืžื” ืœืชืจื’ื™ืœื™ ื”ืจื’ืจืกื™ื” ืฉื‘ื™ืฆืขืชื ืงื•ื“ื ืœื›ืŸ, ื”ื ืชื•ื ื™ื ืฉืœื›ื ืžืชื•ื™ื’ื™ื ื•ื”ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ ืœืžื™ื“ืช ื”ืžื›ื•ื ื” ืžืฉืชืžืฉื™ื ื‘ืชื•ื•ื™ื•ืช ืืœื• ื›ื“ื™ ืœืกื•ื•ื’ ื•ืœื—ื–ื•ืช ืงื˜ื’ื•ืจื™ื•ืช (ืื• 'ืชื›ื•ื ื•ืช') ืฉืœ ืžืขืจืš ื ืชื•ื ื™ื ื•ืœื”ืงืฆื•ืช ืื•ืชื ืœืงื‘ื•ืฆื” ืื• ืœืชื•ืฆืื”.
โœ… ื”ืงื“ืฉ ืจื’ืข ืœื“ืžื™ื™ืŸ ืžืขืจืš ื ืชื•ื ื™ื ืขืœ ืžื˜ื‘ื—ื™ื. ืžื” ืžื•ื“ืœ ืจื‘-ืงื˜ื’ื•ืจื™ ื™ื•ื›ืœ ืœืขื ื•ืช ืขืœื™ื•? ืžื” ืžื•ื“ืœ ื‘ื™ื ืืจื™ ื™ื•ื›ืœ ืœืขื ื•ืช ืขืœื™ื•? ืžื” ืื ื”ื™ื™ืช ืจื•ืฆื” ืœืงื‘ื•ืข ื”ืื ืžื˜ื‘ื— ืžืกื•ื™ื ื ื•ื˜ื” ืœื”ืฉืชืžืฉ ื‘ื—ื™ืœื‘ื”? ืžื” ืื ื”ื™ื™ืช ืจื•ืฆื” ืœืจืื•ืช ืื, ื‘ื”ืชื—ืฉื‘ ื‘ืฉืงื™ืช ืžืฆืจื›ื™ื ืžืœืื” ื‘ื›ื•ื›ื‘ ืื ื™ืก, ืืจื˜ื™ืฉื•ืง, ื›ืจื•ื‘ื™ืช ื•ื—ื–ืจืช, ืชื•ื›ืœ ืœื™ืฆื•ืจ ืžื ื” ื”ื•ื“ื™ืช ื˜ื™ืคื•ืกื™ืช?
[![ืกืœื™ื ืžืกืชื•ืจื™ื™ื ืžืฉื•ื’ืขื™ื](https://img.youtube.com/vi/GuTeDbaNoEU/0.jpg)](https://youtu.be/GuTeDbaNoEU "ืกืœื™ื ืžืกืชื•ืจื™ื™ื ืžืฉื•ื’ืขื™ื")
> ๐ŸŽฅ ืœื—ืฅ ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ. ื›ืœ ื”ืจืขื™ื•ืŸ ืฉืœ ื”ืชื•ื›ื ื™ืช 'Chopped' ื”ื•ื 'ืกืœ ืžืกืชื•ืจื™ืŸ' ืฉื‘ื• ืฉืคื™ื ืฆืจื™ื›ื™ื ืœื”ื›ื™ืŸ ืžื ื” ืžืชื•ืš ื‘ื—ื™ืจื” ืืงืจืื™ืช ืฉืœ ืžืจื›ื™ื‘ื™ื. ื‘ื˜ื•ื— ืฉืžื•ื“ืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื”ื™ื” ืขื•ื–ืจ!
## ืฉืœื•ื 'ืžืกื•ื•ื’'
ื”ืฉืืœื” ืฉืื ื—ื ื• ืจื•ืฆื™ื ืœืฉืื•ืœ ืขืœ ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืœ ื”ืžื˜ื‘ื—ื™ื ื”ื™ื ืœืžืขืฉื” ืฉืืœื” **ืจื‘-ืงื˜ื’ื•ืจื™ืช**, ืžื›ื™ื•ื•ืŸ ืฉื™ืฉ ืœื ื• ื›ืžื” ืžื˜ื‘ื—ื™ื ืœืื•ืžื™ื™ื ืคื•ื˜ื ืฆื™ืืœื™ื™ื ืœืขื‘ื•ื“ ืื™ืชื. ื‘ื”ืชื—ืฉื‘ ื‘ืงื‘ื•ืฆืช ืžืจื›ื™ื‘ื™ื, ืœืื™ื–ื• ืžื”ืงื˜ื’ื•ืจื™ื•ืช ื”ืจื‘ื•ืช ื”ื ืชื•ื ื™ื ื™ืชืื™ืžื•?
Scikit-learn ืžืฆื™ืขื” ืžืกืคืจ ืืœื’ื•ืจื™ืชืžื™ื ืฉื•ื ื™ื ืœืฉื™ืžื•ืฉ ื‘ืกื™ื•ื•ื’ ื ืชื•ื ื™ื, ื‘ื”ืชืื ืœืกื•ื’ ื”ื‘ืขื™ื” ืฉื‘ืจืฆื•ื ืš ืœืคืชื•ืจ. ื‘ืฉื ื™ ื”ืฉื™ืขื•ืจื™ื ื”ื‘ืื™ื ืชืœืžื“ ืขืœ ื›ืžื” ืžื”ืืœื’ื•ืจื™ืชืžื™ื ื”ืœืœื•.
## ืชืจื’ื™ืœ - ื ื™ืงื•ื™ ื•ืื™ื–ื•ืŸ ื”ื ืชื•ื ื™ื ืฉืœืš
ื”ืžืฉื™ืžื” ื”ืจืืฉื•ื ื”, ืœืคื ื™ ืชื—ื™ืœืช ื”ืคืจื•ื™ืงื˜, ื”ื™ื ืœื ืงื•ืช ื•ืœ**ืื–ืŸ** ืืช ื”ื ืชื•ื ื™ื ืฉืœืš ื›ื“ื™ ืœืงื‘ืœ ืชื•ืฆืื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ. ื”ืชื—ืœ ืขื ื”ืงื•ื‘ืฅ ื”ืจื™ืง _notebook.ipynb_ ื‘ืชื™ืงื™ื™ืช ื”ืฉื•ืจืฉ ืฉืœ ืชื™ืงื™ื™ื” ื–ื•.
ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืœื”ืชืงื™ืŸ ื”ื•ื [imblearn](https://imbalanced-learn.org/stable/). ื–ื”ื• ื—ื‘ื™ืœืช Scikit-learn ืฉืชืืคืฉืจ ืœืš ืœืื–ืŸ ืืช ื”ื ืชื•ื ื™ื ื‘ืฆื•ืจื” ื˜ื•ื‘ื” ื™ื•ืชืจ (ืชืœืžื“ ื™ื•ืชืจ ืขืœ ืžืฉื™ืžื” ื–ื• ื‘ืขื•ื“ ืจื’ืข).
1. ื›ื“ื™ ืœื”ืชืงื™ืŸ `imblearn`, ื”ืจืฅ `pip install`, ื›ืš:
```python
pip install imblearn
```
1. ื™ื™ื‘ื ืืช ื”ื—ื‘ื™ืœื•ืช ืฉืืชื” ืฆืจื™ืš ื›ื“ื™ ืœื™ื™ื‘ื ืืช ื”ื ืชื•ื ื™ื ืฉืœืš ื•ืœื‘ืฆืข ื•ื™ื–ื•ืืœื™ื–ืฆื™ื”, ื•ื’ื ื™ื™ื‘ื `SMOTE` ืž-`imblearn`.
```python
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
from imblearn.over_sampling import SMOTE
```
ืขื›ืฉื™ื• ืืชื” ืžื•ื›ืŸ ืœื™ื™ื‘ื ืืช ื”ื ืชื•ื ื™ื.
1. ื”ืžืฉื™ืžื” ื”ื‘ืื” ืชื”ื™ื” ืœื™ื™ื‘ื ืืช ื”ื ืชื•ื ื™ื:
```python
df = pd.read_csv('../data/cuisines.csv')
```
ืฉื™ืžื•ืฉ ื‘-`read_csv()` ื™ืงืจื ืืช ืชื•ื›ืŸ ืงื•ื‘ืฅ ื”-csv _cusines.csv_ ื•ื™ืžืงื ืื•ืชื• ื‘ืžืฉืชื ื” `df`.
1. ื‘ื“ื•ืง ืืช ืฆื•ืจืช ื”ื ืชื•ื ื™ื:
```python
df.head()
```
ื—ืžืฉ ื”ืฉื•ืจื•ืช ื”ืจืืฉื•ื ื•ืช ื ืจืื•ืช ื›ืš:
```output
| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini |
| --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- |
| 0 | 65 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 66 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 67 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 68 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 69 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
```
1. ืงื‘ืœ ืžื™ื“ืข ืขืœ ื”ื ืชื•ื ื™ื ื”ืืœื” ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`info()`:
```python
df.info()
```
ื”ืคืœื˜ ืฉืœืš ื ืจืื” ื›ืš:
```output
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2448 entries, 0 to 2447
Columns: 385 entries, Unnamed: 0 to zucchini
dtypes: int64(384), object(1)
memory usage: 7.2+ MB
```
## ืชืจื’ื™ืœ - ืœืœืžื•ื“ ืขืœ ืžื˜ื‘ื—ื™ื
ืขื›ืฉื™ื• ื”ืขื‘ื•ื“ื” ืžืชื—ื™ืœื” ืœื”ื™ื•ืช ืžืขื ื™ื™ื ืช ื™ื•ืชืจ. ื‘ื•ืื• ื ื’ืœื” ืืช ื”ืชืคืœื’ื•ืช ื”ื ืชื•ื ื™ื, ืœืคื™ ืžื˜ื‘ื—.
1. ื”ืฆื’ ืืช ื”ื ืชื•ื ื™ื ื›ืขืžื•ื“ื•ืช ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`barh()`:
```python
df.cuisine.value_counts().plot.barh()
```
![ื”ืชืคืœื’ื•ืช ื ืชื•ื ื™ ืžื˜ื‘ื—ื™ื](../../../../4-Classification/1-Introduction/images/cuisine-dist.png)
ื™ืฉ ืžืกืคืจ ืกื•ืคื™ ืฉืœ ืžื˜ื‘ื—ื™ื, ืื‘ืœ ื”ืชืคืœื’ื•ืช ื”ื ืชื•ื ื™ื ืื™ื ื” ืื—ื™ื“ื”. ืืชื” ื™ื›ื•ืœ ืœืชืงืŸ ืืช ื–ื”! ืœืคื ื™ ื›ืŸ, ื—ืงื•ืจ ืงืฆืช ื™ื•ืชืจ.
1. ื’ืœื” ื›ืžื” ื ืชื•ื ื™ื ื–ืžื™ื ื™ื ืœื›ืœ ืžื˜ื‘ื— ื•ื”ื“ืคืก ืื•ืชื:
```python
thai_df = df[(df.cuisine == "thai")]
japanese_df = df[(df.cuisine == "japanese")]
chinese_df = df[(df.cuisine == "chinese")]
indian_df = df[(df.cuisine == "indian")]
korean_df = df[(df.cuisine == "korean")]
print(f'thai df: {thai_df.shape}')
print(f'japanese df: {japanese_df.shape}')
print(f'chinese df: {chinese_df.shape}')
print(f'indian df: {indian_df.shape}')
print(f'korean df: {korean_df.shape}')
```
ื”ืคืœื˜ ื ืจืื” ื›ืš:
```output
thai df: (289, 385)
japanese df: (320, 385)
chinese df: (442, 385)
indian df: (598, 385)
korean df: (799, 385)
```
## ื’ื™ืœื•ื™ ืžืจื›ื™ื‘ื™ื
ืขื›ืฉื™ื• ืืชื” ื™ื›ื•ืœ ืœื”ืขืžื™ืง ื‘ื ืชื•ื ื™ื ื•ืœืœืžื•ื“ ืžื”ื ื”ืžืจื›ื™ื‘ื™ื ื”ื˜ื™ืคื•ืกื™ื™ื ืœื›ืœ ืžื˜ื‘ื—. ื›ื“ืื™ ืœื ืงื•ืช ื ืชื•ื ื™ื ื—ื•ื–ืจื™ื ืฉื™ื•ืฆืจื™ื ื‘ืœื‘ื•ืœ ื‘ื™ืŸ ืžื˜ื‘ื—ื™ื, ืื– ื‘ื•ืื• ื ืœืžื“ ืขืœ ื”ื‘ืขื™ื” ื”ื–ื•.
1. ืฆื•ืจ ืคื•ื ืงืฆื™ื” `create_ingredient()` ื‘-Python ื›ื“ื™ ืœื™ืฆื•ืจ ืžืกื’ืจืช ื ืชื•ื ื™ื ืฉืœ ืžืจื›ื™ื‘ื™ื. ืคื•ื ืงืฆื™ื” ื–ื• ืชืชื—ื™ืœ ื‘ื”ืฉืžื˜ืช ืขืžื•ื“ื” ืœื ืžื•ืขื™ืœื” ื•ืชืžื™ื™ืŸ ืžืจื›ื™ื‘ื™ื ืœืคื™ ื”ืกืคื™ืจื” ืฉืœื”ื:
```python
def create_ingredient_df(df):
ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value')
ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]
ingredient_df = ingredient_df.sort_values(by='value', ascending=False,
inplace=False)
return ingredient_df
```
ืขื›ืฉื™ื• ืชื•ื›ืœ ืœื”ืฉืชืžืฉ ื‘ืคื•ื ืงืฆื™ื” ื”ื–ื• ื›ื“ื™ ืœืงื‘ืœ ืžื•ืฉื’ ืขืœ ืขืฉืจืช ื”ืžืจื›ื™ื‘ื™ื ื”ืคื•ืคื•ืœืจื™ื™ื ื‘ื™ื•ืชืจ ืœืคื™ ืžื˜ื‘ื—.
1. ืงืจื ืœ-`create_ingredient()` ื•ื”ืฆื’ ืืช ื”ื ืชื•ื ื™ื ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`barh()`:
```python
thai_ingredient_df = create_ingredient_df(thai_df)
thai_ingredient_df.head(10).plot.barh()
```
![ืชืื™ืœื ื“ื™](../../../../4-Classification/1-Introduction/images/thai.png)
1. ืขืฉื” ืืช ืื•ืชื• ื”ื“ื‘ืจ ืขื‘ื•ืจ ื”ื ืชื•ื ื™ื ื”ื™ืคื ื™ื™ื:
```python
japanese_ingredient_df = create_ingredient_df(japanese_df)
japanese_ingredient_df.head(10).plot.barh()
```
![ื™ืคื ื™](../../../../4-Classification/1-Introduction/images/japanese.png)
1. ืขื›ืฉื™ื• ืขื‘ื•ืจ ื”ืžืจื›ื™ื‘ื™ื ื”ืกื™ื ื™ื™ื:
```python
chinese_ingredient_df = create_ingredient_df(chinese_df)
chinese_ingredient_df.head(10).plot.barh()
```
![ืกื™ื ื™](../../../../4-Classification/1-Introduction/images/chinese.png)
1. ื”ืฆื’ ืืช ื”ืžืจื›ื™ื‘ื™ื ื”ื”ื•ื“ื™ื™ื:
```python
indian_ingredient_df = create_ingredient_df(indian_df)
indian_ingredient_df.head(10).plot.barh()
```
![ื”ื•ื“ื™](../../../../4-Classification/1-Introduction/images/indian.png)
1. ืœื‘ืกื•ืฃ, ื”ืฆื’ ืืช ื”ืžืจื›ื™ื‘ื™ื ื”ืงื•ืจื™ืื ื™ื™ื:
```python
korean_ingredient_df = create_ingredient_df(korean_df)
korean_ingredient_df.head(10).plot.barh()
```
![ืงื•ืจื™ืื ื™](../../../../4-Classification/1-Introduction/images/korean.png)
1. ืขื›ืฉื™ื•, ื”ืฉืžื˜ ืืช ื”ืžืจื›ื™ื‘ื™ื ื”ื ืคื•ืฆื™ื ื‘ื™ื•ืชืจ ืฉื™ื•ืฆืจื™ื ื‘ืœื‘ื•ืœ ื‘ื™ืŸ ืžื˜ื‘ื—ื™ื ืฉื•ื ื™ื, ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`drop()`:
ื›ื•ืœื ืื•ื”ื‘ื™ื ืื•ืจื–, ืฉื•ื ื•ื’'ื™ื ื’'ืจ!
```python
feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1)
labels_df = df.cuisine #.unique()
feature_df.head()
```
## ืื™ื–ื•ืŸ ืžืขืจืš ื”ื ืชื•ื ื™ื
ืขื›ืฉื™ื•, ืœืื—ืจ ืฉื ื™ืงื™ืช ืืช ื”ื ืชื•ื ื™ื, ื”ืฉืชืžืฉ ื‘-[SMOTE](https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html) - "ื˜ื›ื ื™ืงืช ื“ื’ื™ืžื” ื™ืชืจ ืกื™ื ืชื˜ื™ืช" - ื›ื“ื™ ืœืื–ืŸ ืื•ืชื.
1. ืงืจื ืœ-`fit_resample()`, ืืกื˜ืจื˜ื’ื™ื” ื–ื• ื™ื•ืฆืจืช ื“ื’ื™ืžื•ืช ื—ื“ืฉื•ืช ื‘ืืžืฆืขื•ืช ืื™ื ื˜ืจืคื•ืœืฆื™ื”.
```python
oversample = SMOTE()
transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df)
```
ืขืœ ื™ื“ื™ ืื™ื–ื•ืŸ ื”ื ืชื•ื ื™ื ืฉืœืš, ืชืงื‘ืœ ืชื•ืฆืื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ ื‘ืขืช ืกื™ื•ื•ื’ื. ื—ืฉื‘ ืขืœ ืกื™ื•ื•ื’ ื‘ื™ื ืืจื™. ืื ืจื•ื‘ ื”ื ืชื•ื ื™ื ืฉืœืš ื”ื ืžืงื˜ื’ื•ืจื™ื” ืื—ืช, ืžื•ื“ืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื”ื•ืœืš ืœื ื‘ื ืืช ื”ืงื˜ื’ื•ืจื™ื” ื”ื–ื• ื‘ืชื“ื™ืจื•ืช ื’ื‘ื•ื”ื” ื™ื•ืชืจ, ืคืฉื•ื˜ ื›ื™ ื™ืฉ ื™ื•ืชืจ ื ืชื•ื ื™ื ืขื‘ื•ืจื”. ืื™ื–ื•ืŸ ื”ื ืชื•ื ื™ื ืœื•ืงื— ื ืชื•ื ื™ื ืžื•ื˜ื™ื ื•ืขื•ื–ืจ ืœื”ืกื™ืจ ืืช ื—ื•ืกืจ ื”ืื™ื–ื•ืŸ ื”ื–ื”.
1. ืขื›ืฉื™ื• ืชื•ื›ืœ ืœื‘ื“ื•ืง ืืช ืžืกืคืจื™ ื”ืชื•ื•ื™ื•ืช ืœืคื™ ืžืจื›ื™ื‘:
```python
print(f'new label count: {transformed_label_df.value_counts()}')
print(f'old label count: {df.cuisine.value_counts()}')
```
ื”ืคืœื˜ ืฉืœืš ื ืจืื” ื›ืš:
```output
new label count: korean 799
chinese 799
indian 799
japanese 799
thai 799
Name: cuisine, dtype: int64
old label count: korean 799
indian 598
chinese 442
japanese 320
thai 289
Name: cuisine, dtype: int64
```
ื”ื ืชื•ื ื™ื ื ืงื™ื™ื, ืžืื•ื–ื ื™ื, ื•ืžืื•ื“ ื˜ืขื™ืžื™ื!
1. ื”ืฉืœื‘ ื”ืื—ืจื•ืŸ ื”ื•ื ืœืฉืžื•ืจ ืืช ื”ื ืชื•ื ื™ื ื”ืžืื•ื–ื ื™ื ืฉืœืš, ื›ื•ืœืœ ืชื•ื•ื™ื•ืช ื•ืชื›ื•ื ื•ืช, ืœืžืกื’ืจืช ื ืชื•ื ื™ื ื—ื“ืฉื” ืฉื ื™ืชืŸ ืœื™ื™ืฆื ืœืงื•ื‘ืฅ:
```python
transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer')
```
1. ืชื•ื›ืœ ืœื”ืฆื™ืฅ ืฉื•ื‘ ื‘ื ืชื•ื ื™ื ื‘ืืžืฆืขื•ืช `transformed_df.head()` ื•-`transformed_df.info()`. ืฉืžื•ืจ ืขื•ืชืง ืฉืœ ื”ื ืชื•ื ื™ื ื”ืืœื” ืœืฉื™ืžื•ืฉ ื‘ืฉื™ืขื•ืจื™ื ืขืชื™ื“ื™ื™ื:
```python
transformed_df.head()
transformed_df.info()
transformed_df.to_csv("../data/cleaned_cuisines.csv")
```
ืงื•ื‘ืฅ ื”-CSV ื”ื—ื“ืฉ ื”ื–ื” ื ืžืฆื ืขื›ืฉื™ื• ื‘ืชื™ืงื™ื™ืช ื”ื ืชื•ื ื™ื ื”ืจืืฉื™ืช.
---
## ๐Ÿš€ืืชื’ืจ
ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ื–ื• ืžื›ื™ืœื” ื›ืžื” ืžืขืจื›ื™ ื ืชื•ื ื™ื ืžืขื ื™ื™ื ื™ื. ื—ืคืฉ ื‘ืชื™ืงื™ื•ืช `data` ื•ืจืื” ืื ื™ืฉ ืžืขืจื›ื™ ื ืชื•ื ื™ื ืฉืžืชืื™ืžื™ื ืœืกื™ื•ื•ื’ ื‘ื™ื ืืจื™ ืื• ืจื‘-ืงื˜ื’ื•ืจื™? ืื™ืœื• ืฉืืœื•ืช ื”ื™ื™ืช ืฉื•ืืœ ืขืœ ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ื”?
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื—ืงื•ืจ ืืช ื”-API ืฉืœ SMOTE. ืœืื™ืœื• ืžืงืจื™ ืฉื™ืžื•ืฉ ื”ื•ื ืžืชืื™ื ื‘ื™ื•ืชืจ? ืื™ืœื• ื‘ืขื™ื•ืช ื”ื•ื ืคื•ืชืจ?
## ืžืฉื™ืžื”
[ื—ืงื•ืจ ืฉื™ื˜ื•ืช ืกื™ื•ื•ื’](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "b2a01912beb24cfb0007f83594dba801",
"translation_date": "2025-09-05T20:00:27+00:00",
"source_file": "4-Classification/1-Introduction/assignment.md",
"language_code": "he"
}
-->
# ื—ืงื•ืจ ืฉื™ื˜ื•ืช ืกื™ื•ื•ื’
## ื”ื•ืจืื•ืช
ื‘[ืชื™ืขื•ื“ ืฉืœ Scikit-learn](https://scikit-learn.org/stable/supervised_learning.html) ืชืžืฆื ืจืฉื™ืžื” ื’ื“ื•ืœื” ืฉืœ ื“ืจื›ื™ื ืœืกื•ื•ื’ ื ืชื•ื ื™ื. ืขืจื•ืš ื—ื™ืคื•ืฉ ืงืฆืจ ื‘ืชื™ืขื•ื“ ื”ื–ื”: ื”ืžื˜ืจื” ืฉืœืš ื”ื™ื ืœื—ืคืฉ ืฉื™ื˜ื•ืช ืกื™ื•ื•ื’ ื•ืœืฉื™ื™ืš ืื•ืชืŸ ืœืžืขืจืš ื ืชื•ื ื™ื ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื, ืฉืืœื” ืฉื ื™ืชืŸ ืœืฉืื•ืœ ืœื’ื‘ื™ื•, ื•ื˜ื›ื ื™ืงืช ืกื™ื•ื•ื’. ืฆื•ืจ ื’ื™ืœื™ื•ืŸ ืืœืงื˜ืจื•ื ื™ ืื• ื˜ื‘ืœื” ื‘ืงื•ื‘ืฅ .doc ื•ื”ืกื‘ืจ ื›ื™ืฆื“ ืžืขืจืš ื”ื ืชื•ื ื™ื ื™ืขื‘ื•ื“ ืขื ื”ืืœื’ื•ืจื™ืชื ืฉืœ ื”ืกื™ื•ื•ื’.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ----------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| | ืžื•ืฆื’ ืžืกืžืš ืฉืžืกื‘ื™ืจ 5 ืืœื’ื•ืจื™ืชืžื™ื ืœืฆื“ ื˜ื›ื ื™ืงืช ืกื™ื•ื•ื’. ื”ื”ืกื‘ืจ ืžืคื•ืจื˜ ื•ื‘ืจื•ืจ. | ืžื•ืฆื’ ืžืกืžืš ืฉืžืกื‘ื™ืจ 3 ืืœื’ื•ืจื™ืชืžื™ื ืœืฆื“ ื˜ื›ื ื™ืงืช ืกื™ื•ื•ื’. ื”ื”ืกื‘ืจ ืžืคื•ืจื˜ ื•ื‘ืจื•ืจ. | ืžื•ืฆื’ ืžืกืžืš ืฉืžืกื‘ื™ืจ ืคื—ื•ืช ืžืฉืœื•ืฉื” ืืœื’ื•ืจื™ืชืžื™ื ืœืฆื“ ื˜ื›ื ื™ืงืช ืกื™ื•ื•ื’, ื•ื”ื”ืกื‘ืจ ืื™ื ื• ืžืคื•ืจื˜ ืื• ื‘ืจื•ืจ. |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T20:00:56+00:00",
"source_file": "4-Classification/1-Introduction/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,253 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "1a6e9e46b34a2e559fbbfc1f95397c7b",
"translation_date": "2025-09-05T19:49:37+00:00",
"source_file": "4-Classification/2-Classifiers-1/README.md",
"language_code": "he"
}
-->
# ืžืกื•ื•ื’ื™ ืžื˜ื‘ื—ื™ื 1
ื‘ืฉื™ืขื•ืจ ื”ื–ื”, ืชืฉืชืžืฉื• ื‘ืžืื’ืจ ื”ื ืชื•ื ื™ื ืฉืฉืžืจืชื ืžื”ืฉื™ืขื•ืจ ื”ืงื•ื“ื, ืฉืžืœื ื‘ื ืชื•ื ื™ื ืžืื•ื–ื ื™ื ื•ื ืงื™ื™ื ืขืœ ืžื˜ื‘ื—ื™ื.
ืชืฉืชืžืฉื• ื‘ืžืื’ืจ ื”ื ืชื•ื ื™ื ื”ื–ื” ืขื ืžื’ื•ื•ืŸ ืžืกื•ื•ื’ื™ื ื›ื“ื™ _ืœื—ื–ื•ืช ืžื˜ื‘ื— ืœืื•ืžื™ ืžืกื•ื™ื ื‘ื”ืชื‘ืกืก ืขืœ ืงื‘ื•ืฆืช ืžืจื›ื™ื‘ื™ื_. ืชื•ืš ื›ื“ื™ ื›ืš, ืชืœืžื“ื• ื™ื•ืชืจ ืขืœ ื›ืžื” ืžื”ื“ืจื›ื™ื ืฉื‘ื”ืŸ ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืืœื’ื•ืจื™ืชืžื™ื ืœืžืฉื™ืžื•ืช ืกื™ื•ื•ื’.
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
# ื”ื›ื ื”
ื‘ื”ื ื—ื” ืฉืกื™ื™ืžืชื ืืช [ืฉื™ืขื•ืจ 1](../1-Introduction/README.md), ื•ื“ืื• ืฉืงื•ื‘ืฅ _cleaned_cuisines.csv_ ื ืžืฆื ื‘ืชื™ืงื™ื™ืช ื”ืฉื•ืจืฉ `/data` ืขื‘ื•ืจ ืืจื‘ืขืช ื”ืฉื™ืขื•ืจื™ื ื”ืœืœื•.
## ืชืจื’ื™ืœ - ื—ื™ื–ื•ื™ ืžื˜ื‘ื— ืœืื•ืžื™
1. ื‘ืขื‘ื•ื“ื” ื‘ืชื™ืงื™ื™ืช _notebook.ipynb_ ืฉืœ ื”ืฉื™ืขื•ืจ ื”ื–ื”, ื™ื™ื‘ืื• ืืช ื”ืงื•ื‘ืฅ ื™ื—ื“ ืขื ืกืคืจื™ื™ืช Pandas:
```python
import pandas as pd
cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv")
cuisines_df.head()
```
ื”ื ืชื•ื ื™ื ื ืจืื™ื ื›ืš:
| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini |
| --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- |
| 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1. ืขื›ืฉื™ื•, ื™ื™ื‘ืื• ืขื•ื“ ื›ืžื” ืกืคืจื™ื•ืช:
```python
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve
from sklearn.svm import SVC
import numpy as np
```
1. ื—ืœืงื• ืืช ื”ืงื•ืื•ืจื“ื™ื ื˜ื•ืช X ื•-y ืœืฉื ื™ ืžืกื’ืจื•ืช ื ืชื•ื ื™ื ืขื‘ื•ืจ ืื™ืžื•ืŸ. `cuisine` ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืžืกื’ืจืช ื”ื ืชื•ื ื™ื ืฉืœ ื”ืชื•ื•ื™ื•ืช:
```python
cuisines_label_df = cuisines_df['cuisine']
cuisines_label_df.head()
```
ื–ื” ื™ื™ืจืื” ื›ืš:
```output
0 indian
1 indian
2 indian
3 indian
4 indian
Name: cuisine, dtype: object
```
1. ื”ืกื™ืจื• ืืช ื”ืขืžื•ื“ื” `Unnamed: 0` ื•ืืช ื”ืขืžื•ื“ื” `cuisine` ื‘ืืžืฆืขื•ืช `drop()`. ืฉืžืจื• ืืช ืฉืืจ ื”ื ืชื•ื ื™ื ื›ืžืืคื™ื™ื ื™ื ืœืื™ืžื•ืŸ:
```python
cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)
cuisines_feature_df.head()
```
ื”ืžืืคื™ื™ื ื™ื ืฉืœื›ื ื™ื™ืจืื• ื›ืš:
| | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini |
| ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
ืขื›ืฉื™ื• ืืชื ืžื•ื›ื ื™ื ืœืืžืŸ ืืช ื”ืžื•ื“ืœ ืฉืœื›ื!
## ื‘ื—ื™ืจืช ื”ืžืกื•ื•ื’
ืขื›ืฉื™ื• ื›ืฉื”ื ืชื•ื ื™ื ืฉืœื›ื ื ืงื™ื™ื ื•ืžื•ื›ื ื™ื ืœืื™ืžื•ืŸ, ืขืœื™ื›ื ืœื”ื—ืœื™ื˜ ืื™ื–ื” ืืœื’ื•ืจื™ืชื ืœื”ืฉืชืžืฉ ื‘ื• ืœืžืฉื™ืžื”.
Scikit-learn ืžืงื˜ืœื’ืช ืกื™ื•ื•ื’ ืชื—ืช ืœืžื™ื“ื” ืžื•ื ื—ื™ืช, ื•ื‘ืงื˜ื’ื•ืจื™ื” ื”ื–ื• ืชืžืฆืื• ื“ืจื›ื™ื ืจื‘ื•ืช ืœืกื•ื•ื’. [ื”ืžื’ื•ื•ืŸ](https://scikit-learn.org/stable/supervised_learning.html) ืขืฉื•ื™ ืœื”ื™ื•ืช ืžื‘ืœื‘ืœ ื‘ืžื‘ื˜ ืจืืฉื•ืŸ. ื”ืฉื™ื˜ื•ืช ื”ื‘ืื•ืช ื›ื•ืœืŸ ื›ื•ืœืœื•ืช ื˜ื›ื ื™ืงื•ืช ืกื™ื•ื•ื’:
- ืžื•ื“ืœื™ื ืœื™ื ื™ืืจื™ื™ื
- ืžื›ื•ื ื•ืช ื•ืงื˜ื•ืจ ืชืžื™ื›ื”
- ื™ืจื™ื“ื” ื’ืจื“ื™ืื ื˜ื™ืช ืกื˜ื•ื›ืกื˜ื™ืช
- ืฉื›ื ื™ื ืงืจื•ื‘ื™ื
- ืชื”ืœื™ื›ื™ื ื’ืื•ืกื™ืื ื™ื™ื
- ืขืฆื™ ื”ื—ืœื˜ื”
- ืฉื™ื˜ื•ืช ืื ืกืžื‘ืœ (ืžืกื•ื•ื’ ื”ืฆื‘ืขื”)
- ืืœื’ื•ืจื™ืชืžื™ื ืจื‘-ืžื—ืœืงืชื™ื™ื ื•ืจื‘-ืชื•ืฆืื•ืช (ืกื™ื•ื•ื’ ืจื‘-ืžื—ืœืงืชื™ ื•ืจื‘-ืชื•ื•ื™ืชื™, ืกื™ื•ื•ื’ ืจื‘-ืžื—ืœืงืชื™-ืจื‘-ืชื•ืฆืื•ืช)
> ื ื™ืชืŸ ื’ื ืœื”ืฉืชืžืฉ [ื‘ืจืฉืชื•ืช ื ื•ื™ืจื•ื ื™ื ืœืกื™ื•ื•ื’ ื ืชื•ื ื™ื](https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification), ืื‘ืœ ื–ื” ืžื—ื•ืฅ ืœืชื—ื•ื ื”ืฉื™ืขื•ืจ ื”ื–ื”.
### ืื™ื–ื” ืžืกื•ื•ื’ ืœื‘ื—ื•ืจ?
ืื–, ืื™ื–ื” ืžืกื•ื•ื’ ื›ื“ืื™ ืœื‘ื—ื•ืจ? ืœืขื™ืชื™ื, ืžืขื‘ืจ ืขืœ ื›ืžื” ืžื”ื ื•ื—ื™ืคื•ืฉ ืื—ืจ ืชื•ืฆืื” ื˜ื•ื‘ื” ื”ื™ื ื“ืจืš ืœื‘ื“ื•ืง. Scikit-learn ืžืฆื™ืขื” [ื”ืฉื•ื•ืื” ืฆื“-ืœืฆื“](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html) ืขืœ ืžืื’ืจ ื ืชื•ื ื™ื ืฉื ื•ืฆืจ, ื”ืžืฉื•ื•ื” ื‘ื™ืŸ KNeighbors, SVC ื‘ืฉืชื™ ื“ืจื›ื™ื, GaussianProcessClassifier, DecisionTreeClassifier, RandomForestClassifier, MLPClassifier, AdaBoostClassifier, GaussianNB ื•-QuadraticDiscrinationAnalysis, ื•ืžืฆื™ื’ื” ืืช ื”ืชื•ืฆืื•ืช ื‘ืฆื•ืจื” ื—ื–ื•ืชื™ืช:
![ื”ืฉื•ื•ืืช ืžืกื•ื•ื’ื™ื](../../../../4-Classification/2-Classifiers-1/images/comparison.png)
> ื’ืจืคื™ื ืฉื ื•ืฆืจื• ื‘ืชื™ืขื•ื“ ืฉืœ Scikit-learn
> AutoML ืคื•ืชืจ ืืช ื”ื‘ืขื™ื” ื”ื–ื• ื‘ืฆื•ืจื” ืžืกื•ื“ืจืช ืขืœ ื™ื“ื™ ื”ืจืฆืช ื”ื”ืฉื•ื•ืื•ืช ื”ืœืœื• ื‘ืขื ืŸ, ื•ืžืืคืฉืจ ืœื›ื ืœื‘ื—ื•ืจ ืืช ื”ืืœื’ื•ืจื™ืชื ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืขื‘ื•ืจ ื”ื ืชื•ื ื™ื ืฉืœื›ื. ื ืกื• ื–ืืช [ื›ืืŸ](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)
### ื’ื™ืฉื” ื˜ื•ื‘ื” ื™ื•ืชืจ
ื’ื™ืฉื” ื˜ื•ื‘ื” ื™ื•ืชืจ ืžืืฉืจ ืœื ื—ืฉ ื‘ืื•ืคืŸ ืืงืจืื™ ื”ื™ื ืœืขืงื•ื‘ ืื—ืจ ื”ืจืขื™ื•ื ื•ืช ื‘ื“ืฃ ื”ืขื–ืจ ืœื”ื•ืจื“ื” [ML Cheat sheet](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott). ื›ืืŸ, ืื ื• ืžื’ืœื™ื ืฉื‘ืฉื‘ื™ืœ ื”ื‘ืขื™ื” ื”ืจื‘-ืžื—ืœืงืชื™ืช ืฉืœื ื•, ื™ืฉ ืœื ื• ื›ืžื” ืืคืฉืจื•ื™ื•ืช:
![ื“ืฃ ืขื–ืจ ืœื‘ืขื™ื•ืช ืจื‘-ืžื—ืœืงืชื™ื•ืช](../../../../4-Classification/2-Classifiers-1/images/cheatsheet.png)
> ื—ืœืง ืžื“ืฃ ื”ืขื–ืจ ืฉืœ Microsoft ืœืืœื’ื•ืจื™ืชืžื™ื, ื”ืžืชืืจ ืืคืฉืจื•ื™ื•ืช ืกื™ื•ื•ื’ ืจื‘-ืžื—ืœืงืชื™ื•ืช
โœ… ื”ื•ืจื™ื“ื• ืืช ื“ืฃ ื”ืขื–ืจ ื”ื–ื”, ื”ื“ืคื™ืกื• ืื•ืชื• ื•ืชืœื• ืื•ืชื• ืขืœ ื”ืงื™ืจ ืฉืœื›ื!
### ื ื™ืžื•ืงื™ื
ื‘ื•ืื• ื ืจืื” ืื ื ื•ื›ืœ ืœื ืžืง ืืช ื“ืจื›ื ื• ื“ืจืš ื’ื™ืฉื•ืช ืฉื•ื ื•ืช ื‘ื”ืชื—ืฉื‘ ื‘ืžื’ื‘ืœื•ืช ืฉื™ืฉ ืœื ื•:
- **ืจืฉืชื•ืช ื ื•ื™ืจื•ื ื™ื ื›ื‘ื“ื•ืช ืžื“ื™**. ื‘ื”ืชื—ืฉื‘ ื‘ืžืื’ืจ ื”ื ืชื•ื ื™ื ื”ื ืงื™ ืืš ื”ืžื™ื ื™ืžืœื™ ืฉืœื ื•, ื•ื‘ืขื•ื‘ื“ื” ืฉืื ื—ื ื• ืžืจื™ืฆื™ื ืืช ื”ืื™ืžื•ืŸ ื‘ืื•ืคืŸ ืžืงื•ืžื™ ื“ืจืš ืžื—ื‘ืจื•ืช, ืจืฉืชื•ืช ื ื•ื™ืจื•ื ื™ื ื›ื‘ื“ื•ืช ืžื“ื™ ืœืžืฉื™ืžื” ื”ื–ื•.
- **ืื™ืŸ ืžืกื•ื•ื’ ื“ื•-ืžื—ืœืงืชื™**. ืื ื—ื ื• ืœื ืžืฉืชืžืฉื™ื ื‘ืžืกื•ื•ื’ ื“ื•-ืžื—ืœืงืชื™, ื›ืš ืฉื–ื” ืฉื•ืœืœ ืืช ื”ืืคืฉืจื•ืช ืฉืœ one-vs-all.
- **ืขืฅ ื”ื—ืœื˜ื” ืื• ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ื™ื›ื•ืœื™ื ืœืขื‘ื•ื“**. ืขืฅ ื”ื—ืœื˜ื” ืขืฉื•ื™ ืœืขื‘ื•ื“, ืื• ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืขื‘ื•ืจ ื ืชื•ื ื™ื ืจื‘-ืžื—ืœืงืชื™ื™ื.
- **ืขืฆื™ื ื”ื—ืœื˜ื” ืžื—ื•ื–ืงื™ื ืจื‘-ืžื—ืœืงืชื™ื™ื ืคื•ืชืจื™ื ื‘ืขื™ื” ืื—ืจืช**. ืขืฅ ื”ื—ืœื˜ื” ืžื—ื•ื–ืง ืจื‘-ืžื—ืœืงืชื™ ืžืชืื™ื ื‘ื™ื•ืชืจ ืœืžืฉื™ืžื•ืช ืœื ืคืจืžื˜ืจื™ื•ืช, ืœืžืฉืœ ืžืฉื™ืžื•ืช ืฉื ื•ืขื“ื• ืœื‘ื ื•ืช ื“ื™ืจื•ื’ื™ื, ื•ืœื›ืŸ ื”ื•ื ืœื ืฉื™ืžื•ืฉื™ ืขื‘ื•ืจื ื•.
### ืฉื™ืžื•ืฉ ื‘-Scikit-learn
ื ืฉืชืžืฉ ื‘-Scikit-learn ื›ื“ื™ ืœื ืชื— ืืช ื”ื ืชื•ื ื™ื ืฉืœื ื•. ืขื ื–ืืช, ื™ืฉื ืŸ ื“ืจื›ื™ื ืจื‘ื•ืช ืœื”ืฉืชืžืฉ ื‘ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ื‘-Scikit-learn. ื”ืกืชื›ืœื• ืขืœ [ื”ืคืจืžื˜ืจื™ื ืœื”ืขื‘ืจื”](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression).
ื‘ืขื™ืงืจื•ืŸ, ื™ืฉื ื ืฉื ื™ ืคืจืžื˜ืจื™ื ื—ืฉื•ื‘ื™ื - `multi_class` ื•-`solver` - ืฉืขืœื™ื ื• ืœืฆื™ื™ืŸ, ื›ืืฉืจ ืื ื• ืžื‘ืงืฉื™ื ืž-Scikit-learn ืœื‘ืฆืข ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช. ื”ืขืจืš ืฉืœ `multi_class` ืžื™ื™ืฉื ื”ืชื ื”ื’ื•ืช ืžืกื•ื™ืžืช. ื”ืขืจืš ืฉืœ `solver` ื”ื•ื ื”ืืœื’ื•ืจื™ืชื ืœืฉื™ืžื•ืฉ. ืœื ื›ืœ ื”ืคื•ืชืจื™ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืžืฉื•ืœื‘ื™ื ืขื ื›ืœ ืขืจื›ื™ `multi_class`.
ืœืคื™ ื”ืชื™ืขื•ื“, ื‘ืžืงืจื” ื”ืจื‘-ืžื—ืœืงืชื™, ืืœื’ื•ืจื™ืชื ื”ืื™ืžื•ืŸ:
- **ืžืฉืชืžืฉ ื‘ืชื•ื›ื ื™ืช one-vs-rest (OvR)**, ืื ืืคืฉืจื•ืช `multi_class` ืžื•ื’ื“ืจืช ื›-`ovr`
- **ืžืฉืชืžืฉ ื‘ืื•ื‘ื“ืŸ ืงืจื•ืก-ืื ื˜ืจื•ืคื™**, ืื ืืคืฉืจื•ืช `multi_class` ืžื•ื’ื“ืจืช ื›-`multinomial`. (ื›ืจื’ืข ืืคืฉืจื•ืช `multinomial` ื ืชืžื›ืช ืจืง ืขืœ ื™ื“ื™ ื”ืคื•ืชืจื™ื โ€˜lbfgsโ€™, โ€˜sagโ€™, โ€˜sagaโ€™ ื•-โ€˜newton-cgโ€™.)"
> ๐ŸŽ“ ื”'ืชื•ื›ื ื™ืช' ื›ืืŸ ื™ื›ื•ืœื” ืœื”ื™ื•ืช 'ovr' (one-vs-rest) ืื• 'multinomial'. ืžื›ื™ื•ื•ืŸ ืฉืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ื ื•ืขื“ื” ืœืžืขืฉื” ืœืชืžื•ืš ื‘ืกื™ื•ื•ื’ ื‘ื™ื ืืจื™, ืชื•ื›ื ื™ื•ืช ืืœื• ืžืืคืฉืจื•ืช ืœื” ืœื”ืชืžื•ื“ื“ ื˜ื•ื‘ ื™ื•ืชืจ ืขื ืžืฉื™ืžื•ืช ืกื™ื•ื•ื’ ืจื‘-ืžื—ืœืงืชื™ื•ืช. [ืžืงื•ืจ](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/)
> ๐ŸŽ“ ื”'ืคื•ืชืจ' ืžื•ื’ื“ืจ ื›"ื”ืืœื’ื•ืจื™ืชื ืœืฉื™ืžื•ืฉ ื‘ื‘ืขื™ื” ื”ืื•ืคื˜ื™ืžื™ื–ืฆื™ื”". [ืžืงื•ืจ](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression).
Scikit-learn ืžืฆื™ืขื” ืืช ื”ื˜ื‘ืœื” ื”ื–ื• ื›ื“ื™ ืœื”ืกื‘ื™ืจ ื›ื™ืฆื“ ืคื•ืชืจื™ื ืžืชืžื•ื“ื“ื™ื ืขื ืืชื’ืจื™ื ืฉื•ื ื™ื ืฉืžื•ืฆื’ื™ื ืขืœ ื™ื“ื™ ืžื‘ื ื™ ื ืชื•ื ื™ื ืฉื•ื ื™ื:
![ืคื•ืชืจื™ื](../../../../4-Classification/2-Classifiers-1/images/solvers.png)
## ืชืจื’ื™ืœ - ืคื™ืฆื•ืœ ื”ื ืชื•ื ื™ื
ื ื•ื›ืœ ืœื”ืชืžืงื“ ื‘ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืœื ื™ืกื•ื™ ื”ืื™ืžื•ืŸ ื”ืจืืฉื•ืŸ ืฉืœื ื• ืžื›ื™ื•ื•ืŸ ืฉืœืžื“ืชื ืขืœื™ื” ืœืื—ืจื•ื ื” ื‘ืฉื™ืขื•ืจ ืงื•ื“ื.
ืคืฆืœื• ืืช ื”ื ืชื•ื ื™ื ืฉืœื›ื ืœืงื‘ื•ืฆื•ืช ืื™ืžื•ืŸ ื•ื‘ื“ื™ืงื” ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`train_test_split()`:
```python
X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)
```
## ืชืจื’ื™ืœ - ื™ื™ืฉื•ื ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช
ืžื›ื™ื•ื•ืŸ ืฉืืชื ืžืฉืชืžืฉื™ื ื‘ืžืงืจื” ื”ืจื‘-ืžื—ืœืงืชื™, ืขืœื™ื›ื ืœื‘ื—ื•ืจ ืื™ื–ื• _ืชื•ื›ื ื™ืช_ ืœื”ืฉืชืžืฉ ื•ืื™ื–ื” _ืคื•ืชืจ_ ืœื”ื’ื“ื™ืจ. ื”ืฉืชืžืฉื• ื‘-LogisticRegression ืขื ื”ื’ื“ืจื” ืจื‘-ืžื—ืœืงืชื™ืช ื•ื”ืคื•ืชืจ **liblinear** ืœืื™ืžื•ืŸ.
1. ืฆืจื• ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ืขื multi_class ืžื•ื’ื“ืจ ื›-`ovr` ื•ื”ืคื•ืชืจ ืžื•ื’ื“ืจ ื›-`liblinear`:
```python
lr = LogisticRegression(multi_class='ovr',solver='liblinear')
model = lr.fit(X_train, np.ravel(y_train))
accuracy = model.score(X_test, y_test)
print ("Accuracy is {}".format(accuracy))
```
โœ… ื ืกื• ืคื•ืชืจ ืื—ืจ ื›ืžื• `lbfgs`, ืฉืœืจื•ื‘ ืžื•ื’ื“ืจ ื›ื‘ืจื™ืจืช ืžื—ื“ืœ
> ืฉื™ื ืœื‘, ื”ืฉืชืžืฉ ื‘ืคื•ื ืงืฆื™ื” [`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) ืฉืœ Pandas ื›ื“ื™ ืœืฉื˜ื— ืืช ื”ื ืชื•ื ื™ื ืฉืœืš ื‘ืขืช ื”ืฆื•ืจืš.
ื”ื“ื™ื•ืง ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืž-**80%**!
1. ื ื™ืชืŸ ืœืจืื•ืช ืืช ื”ืžื•ื“ืœ ื‘ืคืขื•ืœื” ืขืœ ื™ื“ื™ ื‘ื“ื™ืงืช ืฉื•ืจื” ืื—ืช ืฉืœ ื ืชื•ื ื™ื (#50):
```python
print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')
print(f'cuisine: {y_test.iloc[50]}')
```
ื”ืชื•ืฆืื” ืžื•ื“ืคืกืช:
```output
ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object')
cuisine: indian
```
โœ… ื ืกื• ืžืกืคืจ ืฉื•ืจื” ืฉื•ื ื” ื•ื‘ื“ืงื• ืืช ื”ืชื•ืฆืื•ืช
1. ืื ื ืขืžื™ืง, ื ื™ืชืŸ ืœื‘ื“ื•ืง ืืช ื“ื™ื•ืง ื”ืชื—ื–ื™ืช ื”ื–ื•:
```python
test= X_test.iloc[50].values.reshape(-1, 1).T
proba = model.predict_proba(test)
classes = model.classes_
resultdf = pd.DataFrame(data=proba, columns=classes)
topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])
topPrediction.head()
```
ื”ืชื•ืฆืื” ืžื•ื“ืคืกืช - ื”ืžื˜ื‘ื— ื”ื”ื•ื“ื™ ื”ื•ื ื”ื ื™ื—ื•ืฉ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ, ืขื ื”ืกืชื‘ืจื•ืช ื’ื‘ื•ื”ื”:
| | 0 |
| -------: | -------: |
| indian | 0.715851 |
| chinese | 0.229475 |
| japanese | 0.029763 |
| korean | 0.017277 |
| thai | 0.007634 |
โœ… ื”ืื ืชื•ื›ืœื• ืœื”ืกื‘ื™ืจ ืžื“ื•ืข ื”ืžื•ื“ืœ ื“ื™ ื‘ื˜ื•ื— ืฉื–ื”ื• ืžื˜ื‘ื— ื”ื•ื“ื™?
1. ืงื‘ืœื• ืคืจื˜ื™ื ื ื•ืกืคื™ื ืขืœ ื™ื“ื™ ื”ื“ืคืกืช ื“ื•ื— ืกื™ื•ื•ื’, ื›ืคื™ ืฉืขืฉื™ืชื ื‘ืฉื™ืขื•ืจื™ ื”ืจื’ืจืกื™ื”:
```python
y_pred = model.predict(X_test)
print(classification_report(y_test,y_pred))
```
| | precision | recall | f1-score | support |
| ------------ | --------- | ------ | -------- | ------- |
| chinese | 0.73 | 0.71 | 0.72 | 229 |
| indian | 0.91 | 0.93 | 0.92 | 254 |
| japanese | 0.70 | 0.75 | 0.72 | 220 |
| korean | 0.86 | 0.76 | 0.81 | 242 |
| thai | 0.79 | 0.85 | 0.82 | 254 |
| accuracy | 0.80 | 1199 | | |
| macro avg | 0.80 | 0.80 | 0.80 | 1199 |
| weighted avg | 0.80 | 0.80 | 0.80 | 1199 |
## ๐Ÿš€ืืชื’ืจ
ื‘ืฉื™ืขื•ืจ ื–ื” ื”ืฉืชืžืฉืชื ื‘ื ืชื•ื ื™ื ื”ื ืงื™ื™ื ืฉืœื›ื ื›ื“ื™ ืœื‘ื ื•ืช ืžื•ื“ืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืฉื™ื›ื•ืœ ืœื—ื–ื•ืช ืžื˜ื‘ื— ืœืื•ืžื™ ื‘ื”ืชื‘ืกืก ืขืœ ืกื“ืจืช ืžืจื›ื™ื‘ื™ื. ื”ืงื“ื™ืฉื• ื–ืžืŸ ืœืงืจื•ื ืขืœ ื”ืืคืฉืจื•ื™ื•ืช ื”ืจื‘ื•ืช ืฉ-Scikit-learn ืžืฆื™ืขื” ืœืกื™ื•ื•ื’ ื ืชื•ื ื™ื. ื”ืขืžื™ืงื• ื‘ืžื•ืฉื’ 'solver' ื›ื“ื™ ืœื”ื‘ื™ืŸ ืžื” ืžืชืจื—ืฉ ืžืื—ื•ืจื™ ื”ืงืœืขื™ื.
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื”ืขืžื™ืงื• ืžืขื˜ ื‘ืžืชืžื˜ื™ืงื” ืฉืžืื—ื•ืจื™ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช ื‘[ืฉื™ืขื•ืจ ื”ื–ื”](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf)
## ืžืฉื™ืžื”
[ืœื™ืžื“ื• ืขืœ ื”-solvers](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,24 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "de6025f96841498b0577e9d1aee18d1f",
"translation_date": "2025-09-05T19:52:34+00:00",
"source_file": "4-Classification/2-Classifiers-1/assignment.md",
"language_code": "he"
}
-->
# ืœืžื“ ืืช ื”ืคื•ืชืจื™ื
## ื”ื•ืจืื•ืช
ื‘ืฉื™ืขื•ืจ ื–ื” ืœืžื“ืช ืขืœ ื”ืคื•ืชืจื™ื ื”ืฉื•ื ื™ื ืฉืžืฉืœื‘ื™ื ืืœื’ื•ืจื™ืชืžื™ื ืขื ืชื”ืœื™ืš ืœืžื™ื“ืช ืžื›ื•ื ื” ื›ื“ื™ ืœื™ืฆื•ืจ ืžื•ื“ืœ ืžื“ื•ื™ืง. ืขื‘ื•ืจ ืขืœ ื”ืคื•ืชืจื™ื ืฉื”ื•ื–ื›ืจื• ื‘ืฉื™ืขื•ืจ ื•ื‘ื—ืจ ืฉื ื™ื™ื. ื‘ืžื™ืœื™ื ืฉืœืš, ื”ืฉื•ื•ื” ื•ื”ื ื’ื™ื“ ื‘ื™ืŸ ืฉื ื™ ื”ืคื•ืชืจื™ื ื”ืœืœื•. ืื™ื–ื” ืกื•ื’ ืฉืœ ื‘ืขื™ื” ื”ื ืคื•ืชืจื™ื? ื›ื™ืฆื“ ื”ื ืขื•ื‘ื“ื™ื ืขื ืžื‘ื ื™ ื ืชื•ื ื™ื ืฉื•ื ื™ื? ืžื“ื•ืข ื”ื™ื™ืช ื‘ื•ื—ืจ ื‘ืื—ื“ ืขืœ ืคื ื™ ื”ืฉื ื™?
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | -------------------------------------------------------------------------------------------- | -------------------------------------------- | ---------------------- |
| | ืงื•ื‘ืฅ .doc ืžื•ืฆื’ ืขื ืฉื ื™ ืคืกืงืื•ืช, ืื—ืช ืขืœ ื›ืœ ืคื•ืชืจ, ื”ืžืฉื•ื•ืช ื‘ื™ื ื™ื”ื ื‘ืื•ืคืŸ ืžืขืžื™ืง. | ืงื•ื‘ืฅ .doc ืžื•ืฆื’ ืขื ืคืกืงื” ืื—ืช ื‘ืœื‘ื“ | ื”ืžืฉื™ืžื” ืื™ื ื” ืžืœืื” |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T19:53:03+00:00",
"source_file": "4-Classification/2-Classifiers-1/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,249 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "49047911108adc49d605cddfb455749c",
"translation_date": "2025-09-05T19:56:10+00:00",
"source_file": "4-Classification/3-Classifiers-2/README.md",
"language_code": "he"
}
-->
# ืžืกื•ื•ื’ื™ ืžื˜ื‘ื—ื™ื 2
ื‘ืฉื™ืขื•ืจ ื”ืกื™ื•ื•ื’ ื”ืฉื ื™ ื”ื–ื”, ืชื—ืงื•ืจ ื“ืจื›ื™ื ื ื•ืกืคื•ืช ืœืกื•ื•ื’ ื ืชื•ื ื™ื ืžืกืคืจื™ื™ื. ื‘ื ื•ืกืฃ, ืชืœืžื“ ืขืœ ื”ื”ืฉืœื›ื•ืช ืฉืœ ื‘ื—ื™ืจืช ืžืกื•ื•ื’ ืื—ื“ ืขืœ ืคื ื™ ืื—ืจ.
## [ืžื‘ื—ืŸ ืžืงื“ื™ื ืœื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
### ื“ืจื™ืฉื•ืช ืžื•ืงื“ืžื•ืช
ืื ื• ืžื ื™ื—ื™ื ืฉืกื™ื™ืžืช ืืช ื”ืฉื™ืขื•ืจื™ื ื”ืงื•ื“ืžื™ื ื•ื™ืฉ ืœืš ืžืขืจืš ื ืชื•ื ื™ื ืžื ื•ืงื” ื‘ืชื™ืงื™ื™ืช `data` ื‘ืฉื _cleaned_cuisines.csv_ ืฉื ืžืฆื ื‘ืฉื•ืจืฉ ืชื™ืงื™ื™ืช ืืจื‘ืขืช ื”ืฉื™ืขื•ืจื™ื.
### ื”ื›ื ื”
ื˜ืขื ื• ืืช ืงื•ื‘ืฅ _notebook.ipynb_ ืฉืœืš ืขื ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ืžื ื•ืงื” ื•ื—ื™ืœืงื ื• ืื•ืชื• ืœืžืกื’ืจื•ืช ื ืชื•ื ื™ื X ื•-y, ืžื•ื›ื ื•ืช ืœืชื”ืœื™ืš ื‘ื ื™ื™ืช ื”ืžื•ื“ืœ.
## ืžืคืช ืกื™ื•ื•ื’
ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื, ืœืžื“ืช ืขืœ ื”ืืคืฉืจื•ื™ื•ืช ื”ืฉื•ื ื•ืช ืฉื™ืฉ ืœืš ื‘ืขืช ืกื™ื•ื•ื’ ื ืชื•ื ื™ื ื‘ืืžืฆืขื•ืช ื“ืฃ ื”ืขื–ืจ ืฉืœ Microsoft. Scikit-learn ืžืฆื™ืขื” ื“ืฃ ืขื–ืจ ื“ื•ืžื” ืืš ืžืคื•ืจื˜ ื™ื•ืชืจ ืฉื™ื›ื•ืœ ืœืขื–ื•ืจ ืœืฆืžืฆื ืืช ื”ื‘ื—ื™ืจื” ื‘ืžืขืจื™ื›ื™ื (ืžื•ื ื— ื ื•ืกืฃ ืœืžืกื•ื•ื’ื™ื):
![ืžืคืช ML ืž-Scikit-learn](../../../../4-Classification/3-Classifiers-2/images/map.png)
> ื˜ื™ืค: [ื‘ืงืจ ื‘ืžืคื” ื”ื–ื• ืื•ื ืœื™ื™ืŸ](https://scikit-learn.org/stable/tutorial/machine_learning_map/) ื•ืœื—ืฅ ืœืื•ืจืš ื”ืžืกืœื•ืœ ื›ื“ื™ ืœืงืจื•ื ืืช ื”ืชื™ืขื•ื“.
### ื”ืชื•ื›ื ื™ืช
ื”ืžืคื” ื”ื–ื• ืžืื•ื“ ืžื•ืขื™ืœื” ื‘ืจื’ืข ืฉื™ืฉ ืœืš ื”ื‘ื ื” ื‘ืจื•ืจื” ืฉืœ ื”ื ืชื•ื ื™ื ืฉืœืš, ืฉื›ืŸ ื ื™ืชืŸ 'ืœืœื›ืช' ืœืื•ืจืš ื”ืžืกืœื•ืœื™ื ืฉืœื” ื›ื“ื™ ืœื”ื’ื™ืข ืœื”ื—ืœื˜ื”:
- ื™ืฉ ืœื ื• >50 ื“ื’ื™ืžื•ืช
- ืื ื—ื ื• ืจื•ืฆื™ื ืœื—ื–ื•ืช ืงื˜ื’ื•ืจื™ื”
- ื™ืฉ ืœื ื• ื ืชื•ื ื™ื ืžืชื•ื™ื’ื™ื
- ื™ืฉ ืœื ื• ืคื—ื•ืช ืž-100K ื“ื’ื™ืžื•ืช
- โœจ ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื‘ื—ื•ืจ ื‘-Linear SVC
- ืื ื–ื” ืœื ืขื•ื‘ื“, ืžื›ื™ื•ื•ืŸ ืฉื™ืฉ ืœื ื• ื ืชื•ื ื™ื ืžืกืคืจื™ื™ื
- ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื ืกื•ืช โœจ KNeighbors Classifier
- ืื ื–ื” ืœื ืขื•ื‘ื“, ืœื ืกื•ืช โœจ SVC ื•-โœจ Ensemble Classifiers
ื–ื”ื• ืžืกืœื•ืœ ืžืื•ื“ ืžื•ืขื™ืœ ืœืขืงื•ื‘ ืื—ืจื™ื•.
## ืชืจื’ื™ืœ - ื—ืœื•ืงืช ื”ื ืชื•ื ื™ื
ื‘ื”ืชืื ืœืžืกืœื•ืœ ื”ื–ื”, ื›ื“ืื™ ืœื”ืชื—ื™ืœ ื‘ื™ื™ื‘ื•ื ื›ืžื” ืกืคืจื™ื•ืช ืœืฉื™ืžื•ืฉ.
1. ื™ื™ื‘ื ืืช ื”ืกืคืจื™ื•ืช ื”ื ื“ืจืฉื•ืช:
```python
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve
import numpy as np
```
1. ื—ืœืง ืืช ื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ื•ื”ื‘ื“ื™ืงื” ืฉืœืš:
```python
X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)
```
## ืžืกื•ื•ื’ Linear SVC
ืกื™ื•ื•ื’ ื‘ืืžืฆืขื•ืช Support-Vector (SVC) ื”ื•ื ื—ืœืง ืžืžืฉืคื—ืช ื˜ื›ื ื™ืงื•ืช ื”-ML ืฉืœ Support-Vector Machines (ืœืžื™ื“ืข ื ื•ืกืฃ ืขืœ ืืœื• ืœืžื˜ื”). ื‘ืฉื™ื˜ื” ื–ื•, ื ื™ืชืŸ ืœื‘ื—ื•ืจ 'ื’ืจืขื™ืŸ' ื›ื“ื™ ืœื”ื—ืœื™ื˜ ื›ื™ืฆื“ ืœืงื‘ืฅ ืืช ื”ืชื•ื•ื™ื•ืช. ื”ืคืจืžื˜ืจ 'C' ืžืชื™ื™ื—ืก ืœ'ืจื’ื•ืœืจื™ื–ืฆื™ื”' ืฉืžื•ื•ืกืชืช ืืช ื”ืฉืคืขืช ื”ืคืจืžื˜ืจื™ื. ื”ื’ืจืขื™ืŸ ื™ื›ื•ืœ ืœื”ื™ื•ืช ืื—ื“ ืž-[ื›ืžื”](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC); ื›ืืŸ ืื ื• ืžื’ื“ื™ืจื™ื ืื•ืชื• ื›'ืœื™ื ืืจื™' ื›ื“ื™ ืœื”ื‘ื˜ื™ื— ืฉื ืฉืชืžืฉ ื‘-Linear SVC. ื‘ืจื™ืจืช ื”ืžื—ื“ืœ ืฉืœ ื”ืกืชื‘ืจื•ืช ื”ื™ื 'false'; ื›ืืŸ ืื ื• ืžื’ื“ื™ืจื™ื ืื•ืชื” ื›'true' ื›ื“ื™ ืœืงื‘ืœ ื”ืขืจื›ื•ืช ื”ืกืชื‘ืจื•ืช. ืื ื• ืžื’ื“ื™ืจื™ื ืืช ืžืฆื‘ ื”ืืงืจืื™ื•ืช ื›-'0' ื›ื“ื™ ืœืขืจื‘ื‘ ืืช ื”ื ืชื•ื ื™ื ื•ืœืงื‘ืœ ื”ืกืชื‘ืจื•ื™ื•ืช.
### ืชืจื’ื™ืœ - ื™ื™ืฉื•ื Linear SVC
ื”ืชื—ืœ ื‘ื™ืฆื™ืจืช ืžืขืจืš ืžืกื•ื•ื’ื™ื. ืชื•ืกื™ืฃ ื‘ื”ื“ืจื’ื” ืœืžืขืจืš ื”ื–ื” ื›ื›ืœ ืฉื ื‘ื“ื•ืง.
1. ื”ืชื—ืœ ืขื Linear SVC:
```python
C = 10
# Create different classifiers.
classifiers = {
'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0)
}
```
2. ืืžืŸ ืืช ื”ืžื•ื“ืœ ืฉืœืš ื‘ืืžืฆืขื•ืช Linear SVC ื•ื”ื“ืคืก ื“ื•ื—:
```python
n_classifiers = len(classifiers)
for index, (name, classifier) in enumerate(classifiers.items()):
classifier.fit(X_train, np.ravel(y_train))
y_pred = classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100))
print(classification_report(y_test,y_pred))
```
ื”ืชื•ืฆืื” ื“ื™ ื˜ื•ื‘ื”:
```output
Accuracy (train) for Linear SVC: 78.6%
precision recall f1-score support
chinese 0.71 0.67 0.69 242
indian 0.88 0.86 0.87 234
japanese 0.79 0.74 0.76 254
korean 0.85 0.81 0.83 242
thai 0.71 0.86 0.78 227
accuracy 0.79 1199
macro avg 0.79 0.79 0.79 1199
weighted avg 0.79 0.79 0.79 1199
```
## ืžืกื•ื•ื’ K-Neighbors
K-Neighbors ื”ื•ื ื—ืœืง ืžืžืฉืคื—ืช ืฉื™ื˜ื•ืช ื”-ML ืฉืœ "ืฉื›ื ื™ื", ืฉื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื”ืŸ ืœืœืžื™ื“ื” ืžื•ื ื—ื™ืช ื•ืœื ืžื•ื ื—ื™ืช. ื‘ืฉื™ื˜ื” ื–ื•, ื ื•ืฆืจ ืžืกืคืจ ืžื•ื’ื“ืจ ืžืจืืฉ ืฉืœ ื ืงื•ื“ื•ืช, ื•ื”ื ืชื•ื ื™ื ื ืืกืคื™ื ืกื‘ื™ื‘ ื ืงื•ื“ื•ืช ืืœื• ื›ืš ืฉื ื™ืชืŸ ืœื—ื–ื•ืช ืชื•ื•ื™ื•ืช ื›ืœืœื™ื•ืช ืขื‘ื•ืจ ื”ื ืชื•ื ื™ื.
### ืชืจื’ื™ืœ - ื™ื™ืฉื•ื ืžืกื•ื•ื’ K-Neighbors
ื”ืžืกื•ื•ื’ ื”ืงื•ื“ื ื”ื™ื” ื˜ื•ื‘ ื•ืขื‘ื“ ื”ื™ื˜ื‘ ืขื ื”ื ืชื•ื ื™ื, ืื‘ืœ ืื•ืœื™ ื ื•ื›ืœ ืœื”ืฉื™ื’ ื“ื™ื•ืง ื˜ื•ื‘ ื™ื•ืชืจ. ื ืกื” ืžืกื•ื•ื’ K-Neighbors.
1. ื”ื•ืกืฃ ืฉื•ืจื” ืœืžืขืจืš ื”ืžืกื•ื•ื’ื™ื ืฉืœืš (ื”ื•ืกืฃ ืคืกื™ืง ืื—ืจื™ ื”ืคืจื™ื˜ ืฉืœ Linear SVC):
```python
'KNN classifier': KNeighborsClassifier(C),
```
ื”ืชื•ืฆืื” ืงืฆืช ืคื—ื•ืช ื˜ื•ื‘ื”:
```output
Accuracy (train) for KNN classifier: 73.8%
precision recall f1-score support
chinese 0.64 0.67 0.66 242
indian 0.86 0.78 0.82 234
japanese 0.66 0.83 0.74 254
korean 0.94 0.58 0.72 242
thai 0.71 0.82 0.76 227
accuracy 0.74 1199
macro avg 0.76 0.74 0.74 1199
weighted avg 0.76 0.74 0.74 1199
```
โœ… ืœืžื“ ืขืœ [K-Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#neighbors)
## ืžืกื•ื•ื’ Support Vector
ืžืกื•ื•ื’ื™ Support-Vector ื”ื ื—ืœืง ืžืžืฉืคื—ืช [Support-Vector Machine](https://wikipedia.org/wiki/Support-vector_machine) ืฉืœ ืฉื™ื˜ื•ืช ML ื”ืžืฉืžืฉื•ืช ืœืžืฉื™ืžื•ืช ืกื™ื•ื•ื’ ื•ืจื’ืจืกื™ื”. SVMs "ืžืžืคื™ื ื“ื•ื’ืžืื•ืช ืื™ืžื•ืŸ ืœื ืงื•ื“ื•ืช ื‘ืžืจื—ื‘" ื›ื“ื™ ืœืžืงืกื ืืช ื”ืžืจื—ืง ื‘ื™ืŸ ืฉืชื™ ืงื˜ื’ื•ืจื™ื•ืช. ื ืชื•ื ื™ื ืขื•ืงื‘ื™ื ืžืžื•ืคื™ื ืœืžืจื—ื‘ ื”ื–ื” ื›ืš ืฉื ื™ืชืŸ ืœื—ื–ื•ืช ืืช ื”ืงื˜ื’ื•ืจื™ื” ืฉืœื”ื.
### ืชืจื’ื™ืœ - ื™ื™ืฉื•ื ืžืกื•ื•ื’ Support Vector
ื‘ื•ืื• ื ื ืกื” ืœื”ืฉื™ื’ ื“ื™ื•ืง ืงืฆืช ื™ื•ืชืจ ื˜ื•ื‘ ืขื ืžืกื•ื•ื’ Support Vector.
1. ื”ื•ืกืฃ ืคืกื™ืง ืื—ืจื™ ื”ืคืจื™ื˜ ืฉืœ K-Neighbors, ื•ืื– ื”ื•ืกืฃ ืืช ื”ืฉื•ืจื” ื”ื–ื•:
```python
'SVC': SVC(),
```
ื”ืชื•ืฆืื” ื“ื™ ื˜ื•ื‘ื”!
```output
Accuracy (train) for SVC: 83.2%
precision recall f1-score support
chinese 0.79 0.74 0.76 242
indian 0.88 0.90 0.89 234
japanese 0.87 0.81 0.84 254
korean 0.91 0.82 0.86 242
thai 0.74 0.90 0.81 227
accuracy 0.83 1199
macro avg 0.84 0.83 0.83 1199
weighted avg 0.84 0.83 0.83 1199
```
โœ… ืœืžื“ ืขืœ [Support-Vectors](https://scikit-learn.org/stable/modules/svm.html#svm)
## ืžืกื•ื•ื’ื™ Ensemble
ื‘ื•ืื• ื ืขืงื•ื‘ ืื—ืจื™ ื”ืžืกืœื•ืœ ืขื“ ื”ืกื•ืฃ, ืœืžืจื•ืช ืฉื”ื‘ื“ื™ืงื” ื”ืงื•ื“ืžืช ื”ื™ื™ืชื” ื“ื™ ื˜ื•ื‘ื”. ื ื ืกื” ื›ืžื” ืžืกื•ื•ื’ื™ 'Ensemble', ื‘ืžื™ื•ื—ื“ Random Forest ื•-AdaBoost:
```python
'RFST': RandomForestClassifier(n_estimators=100),
'ADA': AdaBoostClassifier(n_estimators=100)
```
ื”ืชื•ืฆืื” ืžืื•ื“ ื˜ื•ื‘ื”, ื‘ืžื™ื•ื—ื“ ืขื‘ื•ืจ Random Forest:
```output
Accuracy (train) for RFST: 84.5%
precision recall f1-score support
chinese 0.80 0.77 0.78 242
indian 0.89 0.92 0.90 234
japanese 0.86 0.84 0.85 254
korean 0.88 0.83 0.85 242
thai 0.80 0.87 0.83 227
accuracy 0.84 1199
macro avg 0.85 0.85 0.84 1199
weighted avg 0.85 0.84 0.84 1199
Accuracy (train) for ADA: 72.4%
precision recall f1-score support
chinese 0.64 0.49 0.56 242
indian 0.91 0.83 0.87 234
japanese 0.68 0.69 0.69 254
korean 0.73 0.79 0.76 242
thai 0.67 0.83 0.74 227
accuracy 0.72 1199
macro avg 0.73 0.73 0.72 1199
weighted avg 0.73 0.72 0.72 1199
```
โœ… ืœืžื“ ืขืœ [ืžืกื•ื•ื’ื™ Ensemble](https://scikit-learn.org/stable/modules/ensemble.html)
ืฉื™ื˜ื” ื–ื• ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” "ืžืฉืœื‘ืช ืืช ื”ืชื—ื–ื™ื•ืช ืฉืœ ื›ืžื” ืžืขืจื™ื›ื™ื ื‘ืกื™ืกื™ื™ื" ื›ื“ื™ ืœืฉืคืจ ืืช ืื™ื›ื•ืช ื”ืžื•ื“ืœ. ื‘ื“ื•ื’ืžื” ืฉืœื ื•, ื”ืฉืชืžืฉื ื• ื‘-Random Trees ื•-AdaBoost.
- [Random Forest](https://scikit-learn.org/stable/modules/ensemble.html#forest), ืฉื™ื˜ื” ืžืžื•ืฆืขืช, ื‘ื•ื ื” 'ื™ืขืจ' ืฉืœ 'ืขืฆื™ื ื”ื—ืœื˜ื”' ืขื ืืงืจืื™ื•ืช ื›ื“ื™ ืœื”ื™ืžื ืข ืžื”ืชืืžืช ื™ืชืจ. ื”ืคืจืžื˜ืจ n_estimators ืžื•ื’ื“ืจ ืœืžืกืคืจ ื”ืขืฆื™ื.
- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) ืžืชืื™ื ืžืกื•ื•ื’ ืœืžืขืจืš ื ืชื•ื ื™ื ื•ืื– ืžืชืื™ื ืขื•ืชืงื™ื ืฉืœ ืื•ืชื• ืžืกื•ื•ื’ ืœืื•ืชื• ืžืขืจืš ื ืชื•ื ื™ื. ื”ื•ื ืžืชืžืงื“ ื‘ืžืฉืงืœ ืฉืœ ืคืจื™ื˜ื™ื ืฉืกื•ื•ื’ื• ื‘ืื•ืคืŸ ืฉื’ื•ื™ ื•ืžื›ื•ื•ื ืŸ ืืช ื”ื”ืชืืžื” ืœืžืกื•ื•ื’ ื”ื‘ื ื›ื“ื™ ืœืชืงืŸ.
---
## ๐Ÿš€ืืชื’ืจ
ืœื›ืœ ืื—ืช ืžื”ื˜ื›ื ื™ืงื•ืช ื”ืœืœื• ื™ืฉ ืžืกืคืจ ืจื‘ ืฉืœ ืคืจืžื˜ืจื™ื ืฉื ื™ืชืŸ ืœื›ื•ื•ื ืŸ. ื—ืงื•ืจ ืืช ืคืจืžื˜ืจื™ ื‘ืจื™ืจืช ื”ืžื—ื“ืœ ืฉืœ ื›ืœ ืื—ืช ืžื”ืŸ ื•ื—ืฉื•ื‘ ืขืœ ืžื” ืžืฉืžืขื•ืช ื›ื•ื•ื ื•ืŸ ื”ืคืจืžื˜ืจื™ื ื”ืœืœื• ืขื‘ื•ืจ ืื™ื›ื•ืช ื”ืžื•ื“ืœ.
## [ืžื‘ื—ืŸ ืœืื—ืจ ื”ื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื™ืฉ ื”ืจื‘ื” ืžื•ื ื—ื™ื ืžืงืฆื•ืขื™ื™ื ื‘ืฉื™ืขื•ืจื™ื ื”ืืœื”, ืื– ืงื— ืจื’ืข ืœืขื™ื™ืŸ [ื‘ืจืฉื™ืžื” ื”ื–ื•](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott) ืฉืœ ืžื•ื ื—ื™ื ืฉื™ืžื•ืฉื™ื™ื!
## ืžืฉื™ืžื”
[ืžืฉื—ืง ืคืจืžื˜ืจื™ื](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "58dfdaf79fb73f7d34b22bdbacf57329",
"translation_date": "2025-09-05T19:57:28+00:00",
"source_file": "4-Classification/3-Classifiers-2/assignment.md",
"language_code": "he"
}
-->
# ืžืฉื—ืง ืขื ืคืจืžื˜ืจื™ื
## ื”ื•ืจืื•ืช
ื™ืฉื ื ื”ืจื‘ื” ืคืจืžื˜ืจื™ื ืฉืžื•ื’ื“ืจื™ื ื›ื‘ืจื™ืจืช ืžื—ื“ืœ ื›ืืฉืจ ืขื•ื‘ื“ื™ื ืขื ืžืกื•ื•ื’ื™ื ืืœื•. Intellisense ื‘-VS Code ื™ื›ื•ืœ ืœืขื–ื•ืจ ืœื›ื ืœื—ืงื•ืจ ืื•ืชื. ื‘ื—ืจื• ืื—ืช ืžื˜ื›ื ื™ืงื•ืช ื”ืกื™ื•ื•ื’ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืฉื™ืขื•ืจ ื–ื” ื•ืืžื ื• ืžื—ื“ืฉ ืžื•ื“ืœื™ื ืชื•ืš ืฉื™ื ื•ื™ ืขืจื›ื™ ืคืจืžื˜ืจื™ื ืฉื•ื ื™ื. ืฆืจื• ืžื—ื‘ืจืช ืฉืžืกื‘ื™ืจื” ืžื“ื•ืข ืฉื™ื ื•ื™ื™ื ืžืกื•ื™ืžื™ื ืžืฉืคืจื™ื ืืช ืื™ื›ื•ืช ื”ืžื•ื“ืœ ื‘ืขื•ื“ ืฉืื—ืจื™ื ืคื•ื’ืขื™ื ื‘ื”. ื”ื™ื• ืžืคื•ืจื˜ื™ื ื‘ืชืฉื•ื‘ืชื›ื.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ---------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------- | ---------------------------- |
| | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ืขื ืžืกื•ื•ื’ ืฉื‘ื ื•ื™ ื‘ืžืœื•ืื•, ืคืจืžื˜ืจื™ื ืฉื•ื ื• ื•ื”ืกื‘ืจื™ื ื ื™ืชื ื• ื‘ืชื™ื‘ื•ืช ื˜ืงืกื˜ | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ื—ืœืงื™ืช ืื• ืขื ื”ืกื‘ืจื™ื ืœืงื•ื™ื™ื | ืžื—ื‘ืจืช ืขื ื‘ืื’ื™ื ืื• ืคื’ืžื™ื |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T19:57:54+00:00",
"source_file": "4-Classification/3-Classifiers-2/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,329 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "61bdec27ed2da8b098cd9065405d9bb0",
"translation_date": "2025-09-05T19:53:40+00:00",
"source_file": "4-Classification/4-Applied/README.md",
"language_code": "he"
}
-->
# ื‘ื ื™ื™ืช ืืคืœื™ืงืฆื™ื™ืช ื”ืžืœืฆื•ืช ืœืžื˜ื‘ื—
ื‘ืฉื™ืขื•ืจ ื–ื” ืชื‘ื ื• ืžื•ื“ืœ ืกื™ื•ื•ื’ ื‘ืืžืฆืขื•ืช ื›ืžื” ืžื”ื˜ื›ื ื™ืงื•ืช ืฉืœืžื“ืชื ื‘ืฉื™ืขื•ืจื™ื ืงื•ื“ืžื™ื, ื•ืชืฉืชืžืฉื• ื‘ืžืื’ืจ ื”ื ืชื•ื ื™ื ื”ื˜ืขื™ื ืฉืœ ืžื˜ื‘ื—ื™ื ืฉื”ืฉืชืžืฉื ื• ื‘ื• ืœืื•ืจืš ื”ืกื“ืจื”. ื‘ื ื•ืกืฃ, ืชื‘ื ื• ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืงื˜ื ื” ืฉืชืฉืชืžืฉ ื‘ืžื•ื“ืœ ืฉืžื•ืจ, ืชื•ืš ืฉื™ืžื•ืฉ ื‘-Onnx Web Runtime.
ืื—ืช ื”ืฉื™ืžื•ืฉื™ื ื”ืคืจืงื˜ื™ื™ื ื”ืžื•ืขื™ืœื™ื ื‘ื™ื•ืชืจ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื”ื™ื ื‘ื ื™ื™ืช ืžืขืจื›ื•ืช ื”ืžืœืฆื”, ื•ืืชื ื™ื›ื•ืœื™ื ืœืขืฉื•ืช ืืช ื”ืฆืขื“ ื”ืจืืฉื•ืŸ ื‘ื›ื™ื•ื•ืŸ ื”ื–ื” ื›ื‘ืจ ื”ื™ื•ื!
[![ืžืฆื’ืช ืขืœ ืืคืœื™ืงืฆื™ื™ืช ื”ืื™ื ื˜ืจื ื˜ ื”ื–ื•](https://img.youtube.com/vi/17wdM9AHMfg/0.jpg)](https://youtu.be/17wdM9AHMfg "Applied ML")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ื’'ืŸ ืœื•ืคืจ ื‘ื•ื ื” ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ื‘ืืžืฆืขื•ืช ื ืชื•ื ื™ ืžื˜ื‘ื—ื™ื ืžืกื•ื•ื’ื™ื
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
ื‘ืฉื™ืขื•ืจ ื–ื” ืชืœืžื“ื•:
- ื›ื™ืฆื“ ืœื‘ื ื•ืช ืžื•ื“ืœ ื•ืœืฉืžื•ืจ ืื•ืชื• ื›ืžื•ื“ืœ Onnx
- ื›ื™ืฆื“ ืœื”ืฉืชืžืฉ ื‘-Netron ื›ื“ื™ ืœื‘ื“ื•ืง ืืช ื”ืžื•ื“ืœ
- ื›ื™ืฆื“ ืœื”ืฉืชืžืฉ ื‘ืžื•ื“ืœ ืฉืœื›ื ื‘ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืœืฆื•ืจืš ื”ืกืงื”
## ื‘ื ื™ื™ืช ื”ืžื•ื“ืœ ืฉืœื›ื
ื‘ื ื™ื™ืช ืžืขืจื›ื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ื™ื™ืฉื•ืžื™ื•ืช ื”ื™ื ื—ืœืง ื—ืฉื•ื‘ ื‘ืฉื™ืžื•ืฉ ื‘ื˜ื›ื ื•ืœื•ื’ื™ื•ืช ืืœื• ืขื‘ื•ืจ ืžืขืจื›ื•ืช ืขืกืงื™ื•ืช. ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืžื•ื“ืœื™ื ื‘ืชื•ืš ืืคืœื™ืงืฆื™ื•ืช ืื™ื ื˜ืจื ื˜ (ื•ื›ืš ื’ื ืœื”ืฉืชืžืฉ ื‘ื”ื ื‘ืžืฆื‘ ืœื ืžืงื•ื•ืŸ ืื ื™ืฉ ืฆื•ืจืš) ื‘ืืžืฆืขื•ืช Onnx.
ื‘ืฉื™ืขื•ืจ [ืงื•ื“ื](../../3-Web-App/1-Web-App/README.md), ื‘ื ื™ืชื ืžื•ื“ืœ ืจื’ืจืกื™ื” ืขืœ ืชืฆืคื™ื•ืช ืขื‘"ืžื™ื, "ื›ื‘ืฉืชื" ืื•ืชื•, ื•ื”ืฉืชืžืฉืชื ื‘ื• ื‘ืืคืœื™ืงืฆื™ื™ืช Flask. ื‘ืขื•ื“ ืฉื”ืืจื›ื™ื˜ืงื˜ื•ืจื” ื”ื–ื• ืžืื•ื“ ืฉื™ืžื•ืฉื™ืช, ื”ื™ื ืืคืœื™ืงืฆื™ื™ืช Python ืžืœืื”, ื•ื™ื™ืชื›ืŸ ืฉื”ื“ืจื™ืฉื•ืช ืฉืœื›ื ื›ื•ืœืœื•ืช ืฉื™ืžื•ืฉ ื‘ืืคืœื™ืงืฆื™ื™ืช JavaScript.
ื‘ืฉื™ืขื•ืจ ื–ื”, ืชื•ื›ืœื• ืœื‘ื ื•ืช ืžืขืจื›ืช ื‘ืกื™ืกื™ืช ืžื‘ื•ืกืกืช JavaScript ืœืฆื•ืจืš ื”ืกืงื”. ืืš ืงื•ื“ื ืœื›ืŸ, ืขืœื™ื›ื ืœืืžืŸ ืžื•ื“ืœ ื•ืœื”ืžื™ืจ ืื•ืชื• ืœืฉื™ืžื•ืฉ ืขื Onnx.
## ืชืจื’ื™ืœ - ืื™ืžื•ืŸ ืžื•ื“ืœ ืกื™ื•ื•ื’
ืจืืฉื™ืช, ืื™ืžื ื• ืžื•ื“ืœ ืกื™ื•ื•ื’ ื‘ืืžืฆืขื•ืช ืžืื’ืจ ื”ื ืชื•ื ื™ื ื”ื ืงื™ ืฉืœ ืžื˜ื‘ื—ื™ื ืฉื”ืฉืชืžืฉื ื• ื‘ื•.
1. ื”ืชื—ื™ืœื• ื‘ื™ื™ื‘ื•ื ืกืคืจื™ื•ืช ืฉื™ืžื•ืฉื™ื•ืช:
```python
!pip install skl2onnx
import pandas as pd
```
ืชื–ื“ืงืงื• ืœ-[skl2onnx](https://onnx.ai/sklearn-onnx/) ื›ื“ื™ ืœืขื–ื•ืจ ืœื”ืžื™ืจ ืืช ืžื•ื“ืœ Scikit-learn ืฉืœื›ื ืœืคื•ืจืžื˜ Onnx.
1. ืœืื—ืจ ืžื›ืŸ, ืขื‘ื“ื• ืขื ื”ื ืชื•ื ื™ื ืฉืœื›ื ื‘ืื•ืชื• ืื•ืคืŸ ืฉืขืฉื™ืชื ื‘ืฉื™ืขื•ืจื™ื ืงื•ื“ืžื™ื, ืขืœ ื™ื“ื™ ืงืจื™ืืช ืงื•ื‘ืฅ CSV ื‘ืืžืฆืขื•ืช `read_csv()`:
```python
data = pd.read_csv('../data/cleaned_cuisines.csv')
data.head()
```
1. ื”ืกื™ืจื• ืืช ืฉื ื™ ื”ืขืžื•ื“ื•ืช ื”ืจืืฉื•ื ื•ืช ืฉืื™ื ืŸ ื ื—ื•ืฆื•ืช ื•ืฉืžืจื• ืืช ื”ื ืชื•ื ื™ื ื”ื ื•ืชืจื™ื ื›-'X':
```python
X = data.iloc[:,2:]
X.head()
```
1. ืฉืžืจื• ืืช ื”ืชื•ื•ื™ื•ืช ื›-'y':
```python
y = data[['cuisine']]
y.head()
```
### ื”ืชื—ืœืช ืฉื’ืจืช ื”ืื™ืžื•ืŸ
ื ืฉืชืžืฉ ื‘ืกืคืจื™ื™ืช 'SVC' ืฉืžืกืคืงืช ื“ื™ื•ืง ื˜ื•ื‘.
1. ื™ื™ื‘ืื• ืืช ื”ืกืคืจื™ื•ืช ื”ืžืชืื™ืžื•ืช ืž-Scikit-learn:
```python
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report
```
1. ื”ืคืจื™ื“ื• ื‘ื™ืŸ ืงื‘ื•ืฆื•ืช ื”ืื™ืžื•ืŸ ื•ื”ื‘ื“ื™ืงื”:
```python
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)
```
1. ื‘ื ื• ืžื•ื“ืœ ืกื™ื•ื•ื’ SVC ื›ืคื™ ืฉืขืฉื™ืชื ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื:
```python
model = SVC(kernel='linear', C=10, probability=True,random_state=0)
model.fit(X_train,y_train.values.ravel())
```
1. ื›ืขืช, ื‘ื“ืงื• ืืช ื”ืžื•ื“ืœ ืฉืœื›ื ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`predict()`:
```python
y_pred = model.predict(X_test)
```
1. ื”ื“ืคื™ืกื• ื“ื•ื— ืกื™ื•ื•ื’ ื›ื“ื™ ืœื‘ื“ื•ืง ืืช ืื™ื›ื•ืช ื”ืžื•ื“ืœ:
```python
print(classification_report(y_test,y_pred))
```
ื›ืคื™ ืฉืจืื™ื ื• ืงื•ื“ื, ื”ื“ื™ื•ืง ื˜ื•ื‘:
```output
precision recall f1-score support
chinese 0.72 0.69 0.70 257
indian 0.91 0.87 0.89 243
japanese 0.79 0.77 0.78 239
korean 0.83 0.79 0.81 236
thai 0.72 0.84 0.78 224
accuracy 0.79 1199
macro avg 0.79 0.79 0.79 1199
weighted avg 0.79 0.79 0.79 1199
```
### ื”ืžืจืช ื”ืžื•ื“ืœ ืฉืœื›ื ืœ-Onnx
ื•ื•ื“ืื• ืฉื”ื”ืžืจื” ืžืชื‘ืฆืขืช ืขื ืžืกืคืจ ื”ื˜ื ื–ื•ืจ ื”ืžืชืื™ื. ืžืื’ืจ ื”ื ืชื•ื ื™ื ื”ื–ื” ื›ื•ืœืœ 380 ืžืจื›ื™ื‘ื™ื, ื•ืœื›ืŸ ืขืœื™ื›ื ืœืฆื™ื™ืŸ ืืช ื”ืžืกืคืจ ื”ื–ื” ื‘-`FloatTensorType`:
1. ื”ืžื™ืจื• ื‘ืืžืฆืขื•ืช ืžืกืคืจ ื˜ื ื–ื•ืจ ืฉืœ 380.
```python
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
initial_type = [('float_input', FloatTensorType([None, 380]))]
options = {id(model): {'nocl': True, 'zipmap': False}}
```
1. ืฆืจื• ืืช ื”ืงื•ื‘ืฅ onx ื•ืฉืžืจื• ืื•ืชื• ื›ืงื•ื‘ืฅ **model.onnx**:
```python
onx = convert_sklearn(model, initial_types=initial_type, options=options)
with open("./model.onnx", "wb") as f:
f.write(onx.SerializeToString())
```
> ืฉื™ืžื• ืœื‘, ื ื™ืชืŸ ืœื”ืขื‘ื™ืจ [ืืคืฉืจื•ื™ื•ืช](https://onnx.ai/sklearn-onnx/parameterized.html) ื‘ืชืกืจื™ื˜ ื”ื”ืžืจื” ืฉืœื›ื. ื‘ืžืงืจื” ื–ื”, ื”ืขื‘ืจื ื• 'nocl' ื›-True ื•-'zipmap' ื›-False. ืžื›ื™ื•ื•ืŸ ืฉืžื“ื•ื‘ืจ ื‘ืžื•ื“ืœ ืกื™ื•ื•ื’, ื™ืฉ ืœื›ื ืืคืฉืจื•ืช ืœื”ืกื™ืจ ืืช ZipMap ืฉืžื™ื™ืฆืจ ืจืฉื™ืžืช ืžื™ืœื•ื ื™ื (ืœื ื ื—ื•ืฅ). `nocl` ืžืชื™ื™ื—ืก ืœืžื™ื“ืข ืขืœ ืžื—ืœืงื•ืช ืฉื ื›ืœืœ ื‘ืžื•ื“ืœ. ื ื™ืชืŸ ืœื”ืงื˜ื™ืŸ ืืช ื’ื•ื“ืœ ื”ืžื•ื“ืœ ืฉืœื›ื ืขืœ ื™ื“ื™ ื”ื’ื“ืจืช `nocl` ื›-'True'.
ื”ืจืฆืช ื”ืžื—ื‘ืจืช ื›ื•ืœื” ืชื‘ื ื” ื›ืขืช ืžื•ื“ืœ Onnx ื•ืชืฉืžื•ืจ ืื•ืชื• ื‘ืชื™ืงื™ื™ื” ื–ื•.
## ืฆืคื™ื™ื” ื‘ืžื•ื“ืœ ืฉืœื›ื
ืžื•ื“ืœื™ื ืฉืœ Onnx ืื™ื ื ื ืจืื™ื ื”ื™ื˜ื‘ ื‘-Visual Studio Code, ืืš ื™ืฉ ืชื•ื›ื ื” ื—ื™ื ืžื™ืช ื˜ื•ื‘ื” ืžืื•ื“ ืฉืจื‘ื™ื ืžื”ื—ื•ืงืจื™ื ืžืฉืชืžืฉื™ื ื‘ื” ื›ื“ื™ ืœื”ืฆื™ื’ ืืช ื”ืžื•ื“ืœ ื•ืœื•ื•ื“ื ืฉื”ื•ื ื ื‘ื ื” ื›ืจืื•ื™. ื”ื•ืจื™ื“ื• ืืช [Netron](https://github.com/lutzroeder/Netron) ื•ืคืชื—ื• ืืช ืงื•ื‘ืฅ model.onnx ืฉืœื›ื. ืชื•ื›ืœื• ืœืจืื•ืช ืืช ื”ืžื•ื“ืœ ื”ืคืฉื•ื˜ ืฉืœื›ื ืžื•ืฆื’, ืขื 380 ื”ืงืœื˜ื™ื ื•ื”ืžืกื•ื•ื’ ื”ืžื•ืคื™ืขื™ื:
![ืชืฆื•ื’ืช Netron](../../../../4-Classification/4-Applied/images/netron.png)
Netron ื”ื•ื ื›ืœื™ ืžื•ืขื™ืœ ืœืฆืคื™ื™ื” ื‘ืžื•ื“ืœื™ื ืฉืœื›ื.
ื›ืขืช ืืชื ืžื•ื›ื ื™ื ืœื”ืฉืชืžืฉ ื‘ืžื•ื“ืœ ื”ืžื’ื ื™ื‘ ื”ื–ื” ื‘ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜. ื‘ื•ืื• ื ื‘ื ื” ืืคืœื™ืงืฆื™ื” ืฉืชื”ื™ื” ืฉื™ืžื•ืฉื™ืช ื›ืืฉืจ ืชื‘ื™ื˜ื• ื‘ืžืงืจืจ ืฉืœื›ื ื•ืชื ืกื• ืœื”ื‘ื™ืŸ ืื™ืœื• ืฉื™ืœื•ื‘ื™ ืžืจื›ื™ื‘ื™ื ืฉื ื•ืชืจื• ืœื›ื ื™ื›ื•ืœื™ื ืœืฉืžืฉ ืœื”ื›ื ืช ืžื˜ื‘ื— ืžืกื•ื™ื, ื›ืคื™ ืฉื ืงื‘ืข ืขืœ ื™ื“ื™ ื”ืžื•ื“ืœ ืฉืœื›ื.
## ื‘ื ื™ื™ืช ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืœื”ืžืœืฆื•ืช
ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืžื•ื“ืœ ืฉืœื›ื ื™ืฉื™ืจื•ืช ื‘ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜. ืืจื›ื™ื˜ืงื˜ื•ืจื” ื–ื• ื’ื ืžืืคืฉืจืช ืœื›ื ืœื”ืจื™ืฅ ืื•ืชื” ื‘ืื•ืคืŸ ืžืงื•ืžื™ ื•ืืคื™ืœื• ืœื ืžืงื•ื•ืŸ ืื ื™ืฉ ืฆื•ืจืš. ื”ืชื—ื™ืœื• ื‘ื™ืฆื™ืจืช ืงื•ื‘ืฅ `index.html` ื‘ืื•ืชื” ืชื™ืงื™ื™ื” ืฉื‘ื” ืฉืžืจืชื ืืช ืงื•ื‘ืฅ `model.onnx`.
1. ื‘ืงื•ื‘ืฅ ื–ื” _index.html_, ื”ื•ืกื™ืคื• ืืช ื”ืกื™ืžื•ืŸ ื”ื‘ื:
```html
<!DOCTYPE html>
<html>
<header>
<title>Cuisine Matcher</title>
</header>
<body>
...
</body>
</html>
```
1. ื›ืขืช, ื‘ืชื•ืš ืชื’ื™ `body`, ื”ื•ืกื™ืคื• ืžืขื˜ ืกื™ืžื•ืŸ ื›ื“ื™ ืœื”ืฆื™ื’ ืจืฉื™ืžืช ืชื™ื‘ื•ืช ืกื™ืžื•ืŸ ื”ืžืฉืงืคื•ืช ื›ืžื” ืžืจื›ื™ื‘ื™ื:
```html
<h1>Check your refrigerator. What can you create?</h1>
<div id="wrapper">
<div class="boxCont">
<input type="checkbox" value="4" class="checkbox">
<label>apple</label>
</div>
<div class="boxCont">
<input type="checkbox" value="247" class="checkbox">
<label>pear</label>
</div>
<div class="boxCont">
<input type="checkbox" value="77" class="checkbox">
<label>cherry</label>
</div>
<div class="boxCont">
<input type="checkbox" value="126" class="checkbox">
<label>fenugreek</label>
</div>
<div class="boxCont">
<input type="checkbox" value="302" class="checkbox">
<label>sake</label>
</div>
<div class="boxCont">
<input type="checkbox" value="327" class="checkbox">
<label>soy sauce</label>
</div>
<div class="boxCont">
<input type="checkbox" value="112" class="checkbox">
<label>cumin</label>
</div>
</div>
<div style="padding-top:10px">
<button onClick="startInference()">What kind of cuisine can you make?</button>
</div>
```
ืฉื™ืžื• ืœื‘ ืฉื›ืœ ืชื™ื‘ืช ืกื™ืžื•ืŸ ืžืงื‘ืœืช ืขืจืš. ืขืจืš ื–ื” ืžืฉืงืฃ ืืช ื”ืื™ื ื“ืงืก ืฉื‘ื• ื”ืžืจื›ื™ื‘ ื ืžืฆื ืœืคื™ ืžืื’ืจ ื”ื ืชื•ื ื™ื. ืชืคื•ื—, ืœืžืฉืœ, ื‘ืจืฉื™ืžื” ื”ืืœืคื‘ื™ืชื™ืช ื”ื–ื•, ืชื•ืคืก ืืช ื”ืขืžื•ื“ื” ื”ื—ืžื™ืฉื™ืช, ื•ืœื›ืŸ ื”ืขืจืš ืฉืœื• ื”ื•ื '4' ืžื›ื™ื•ื•ืŸ ืฉืื ื—ื ื• ืžืชื—ื™ืœื™ื ืœืกืคื•ืจ ืž-0. ืชื•ื›ืœื• ืœื”ืชื™ื™ืขืฅ ืขื [ื’ื™ืœื™ื•ืŸ ื”ืžืจื›ื™ื‘ื™ื](../../../../4-Classification/data/ingredient_indexes.csv) ื›ื“ื™ ืœื’ืœื•ืช ืืช ื”ืื™ื ื“ืงืก ืฉืœ ืžืจื›ื™ื‘ ืžืกื•ื™ื.
ื”ืžืฉื™ื›ื• ืœืขื‘ื•ื“ ื‘ืงื•ื‘ืฅ index.html, ื•ื”ื•ืกื™ืคื• ื‘ืœื•ืง ืกืงืจื™ืคื˜ ืฉื‘ื• ื”ืžื•ื“ืœ ื ืงืจื ืœืื—ืจ ืกื’ื™ืจืช `</div>` ื”ืกื•ืคื™ืช.
1. ืจืืฉื™ืช, ื™ื™ื‘ืื• ืืช [Onnx Runtime](https://www.onnxruntime.ai/):
```html
<script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@1.9.0/dist/ort.min.js"></script>
```
> Onnx Runtime ืžืฉืžืฉ ื›ื“ื™ ืœืืคืฉืจ ื”ืจืฆืช ืžื•ื“ืœื™ื ืฉืœ Onnx ืขืœ ืคื ื™ ืžื’ื•ื•ืŸ ืจื—ื‘ ืฉืœ ืคืœื˜ืคื•ืจืžื•ืช ื—ื•ืžืจื”, ื›ื•ืœืœ ืื•ืคื˜ื™ืžื™ื–ืฆื™ื•ืช ื•-API ืœืฉื™ืžื•ืฉ.
1. ืœืื—ืจ ืฉื”-runtime ื‘ืžืงื•ื, ืชื•ื›ืœื• ืœืงืจื•ื ืœื•:
```html
<script>
const ingredients = Array(380).fill(0);
const checks = [...document.querySelectorAll('.checkbox')];
checks.forEach(check => {
check.addEventListener('change', function() {
// toggle the state of the ingredient
// based on the checkbox's value (1 or 0)
ingredients[check.value] = check.checked ? 1 : 0;
});
});
function testCheckboxes() {
// validate if at least one checkbox is checked
return checks.some(check => check.checked);
}
async function startInference() {
let atLeastOneChecked = testCheckboxes()
if (!atLeastOneChecked) {
alert('Please select at least one ingredient.');
return;
}
try {
// create a new session and load the model.
const session = await ort.InferenceSession.create('./model.onnx');
const input = new ort.Tensor(new Float32Array(ingredients), [1, 380]);
const feeds = { float_input: input };
// feed inputs and run
const results = await session.run(feeds);
// read from results
alert('You can enjoy ' + results.label.data[0] + ' cuisine today!')
} catch (e) {
console.log(`failed to inference ONNX model`);
console.error(e);
}
}
</script>
```
ื‘ืงื•ื“ ื–ื”, ืžืชืจื—ืฉื™ื ื›ืžื” ื“ื‘ืจื™ื:
1. ื™ืฆืจืชื ืžืขืจืš ืฉืœ 380 ืขืจื›ื™ื ืืคืฉืจื™ื™ื (1 ืื• 0) ืฉื™ื•ื’ื“ืจื• ื•ื™ืฉืœื—ื• ืœืžื•ื“ืœ ืœืฆื•ืจืš ื”ืกืงื”, ื‘ื”ืชืื ืœืฉืืœื” ื”ืื ืชื™ื‘ืช ืกื™ืžื•ืŸ ืžืกื•ืžื ืช.
2. ื™ืฆืจืชื ืžืขืจืš ืฉืœ ืชื™ื‘ื•ืช ืกื™ืžื•ืŸ ื•ื“ืจืš ืœืงื‘ื•ืข ื”ืื ื”ืŸ ืกื•ืžื ื• ื‘ืคื•ื ืงืฆื™ื™ืช `init` ืฉื ืงืจืืช ื›ืืฉืจ ื”ืืคืœื™ืงืฆื™ื” ืžืชื—ื™ืœื”. ื›ืืฉืจ ืชื™ื‘ืช ืกื™ืžื•ืŸ ืžืกื•ืžื ืช, ืžืขืจืš `ingredients` ืžืฉืชื ื” ื›ื“ื™ ืœืฉืงืฃ ืืช ื”ืžืจื›ื™ื‘ ืฉื ื‘ื—ืจ.
3. ื™ืฆืจืชื ืคื•ื ืงืฆื™ื™ืช `testCheckboxes` ืฉื‘ื•ื“ืงืช ื”ืื ืชื™ื‘ืช ืกื™ืžื•ืŸ ื›ืœืฉื”ื™ ืกื•ืžื ื”.
4. ืืชื ืžืฉืชืžืฉื™ื ื‘ืคื•ื ืงืฆื™ื™ืช `startInference` ื›ืืฉืจ ื”ื›ืคืชื•ืจ ื ืœื—ืฅ, ื•ืื ืชื™ื‘ืช ืกื™ืžื•ืŸ ื›ืœืฉื”ื™ ืกื•ืžื ื”, ืืชื ืžืชื—ื™ืœื™ื ื”ืกืงื”.
5. ืฉื’ืจืช ื”ื”ืกืงื” ื›ื•ืœืœืช:
1. ื”ื’ื“ืจืช ื˜ืขื™ื ื” ืืกื™ื ื›ืจื•ื ื™ืช ืฉืœ ื”ืžื•ื“ืœ
2. ื™ืฆื™ืจืช ืžื‘ื ื” ื˜ื ื–ื•ืจ ืœืฉืœื™ื—ื” ืœืžื•ื“ืœ
3. ื™ืฆื™ืจืช 'feeds' ืฉืžืฉืงืคื™ื ืืช ื”ืงืœื˜ `float_input` ืฉื™ืฆืจืชื ื›ืืฉืจ ืื™ืžื ืชื ืืช ื”ืžื•ื“ืœ ืฉืœื›ื (ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘-Netron ื›ื“ื™ ืœืืžืช ืืช ื”ืฉื)
4. ืฉืœื™ื—ืช 'feeds' ืืœื• ืœืžื•ื“ืœ ื•ื”ืžืชื ื” ืœืชื’ื•ื‘ื”
## ื‘ื“ื™ืงืช ื”ืืคืœื™ืงืฆื™ื” ืฉืœื›ื
ืคืชื—ื• ืกืฉืŸ ื˜ืจืžื™ื ืœ ื‘-Visual Studio Code ื‘ืชื™ืงื™ื™ื” ืฉื‘ื” ื ืžืฆื ืงื•ื‘ืฅ index.html ืฉืœื›ื. ื•ื“ืื• ืฉื™ืฉ ืœื›ื [http-server](https://www.npmjs.com/package/http-server) ืžื•ืชืงืŸ ื’ืœื•ื‘ืœื™ืช, ื•ื”ืงืœื™ื“ื• `http-server` ื‘ืฉื•ืจืช ื”ืคืงื•ื“ื”. localhost ืืžื•ืจ ืœื”ื™ืคืชื— ื•ืชื•ื›ืœื• ืœืฆืคื•ืช ื‘ืืคืœื™ืงืฆื™ื™ืช ื”ืื™ื ื˜ืจื ื˜ ืฉืœื›ื. ื‘ื“ืงื• ืื™ื–ื” ืžื˜ื‘ื— ืžื•ืžืœืฅ ื‘ื”ืชื‘ืกืก ืขืœ ืžืจื›ื™ื‘ื™ื ืฉื•ื ื™ื:
![ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืœืžืจื›ื™ื‘ื™ื](../../../../4-Classification/4-Applied/images/web-app.png)
ืžื–ืœ ื˜ื•ื‘, ื™ืฆืจืชื ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืœื”ืžืœืฆื•ืช ืขื ื›ืžื” ืฉื“ื•ืช. ื”ืงื“ื™ืฉื• ื–ืžืŸ ืœื‘ื ื™ื™ืช ื”ืžืขืจื›ืช ื”ื–ื•!
## ๐Ÿš€ืืชื’ืจ
ืืคืœื™ืงืฆื™ื™ืช ื”ืื™ื ื˜ืจื ื˜ ืฉืœื›ื ืžืื•ื“ ืžื™ื ื™ืžืœื™ืช, ืื– ื”ืžืฉื™ื›ื• ืœื‘ื ื•ืช ืื•ืชื” ื‘ืืžืฆืขื•ืช ืžืจื›ื™ื‘ื™ื ื•ื”ืื™ื ื“ืงืกื™ื ืฉืœื”ื ืžืชื•ืš ื ืชื•ื ื™ [ingredient_indexes](../../../../4-Classification/data/ingredient_indexes.csv). ืื™ืœื• ืฉื™ืœื•ื‘ื™ ื˜ืขืžื™ื ืขื•ื‘ื“ื™ื ื›ื“ื™ ืœื™ืฆื•ืจ ืžื ื” ืœืื•ืžื™ืช ืžืกื•ื™ืžืช?
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื‘ืขื•ื“ ืฉื”ืฉื™ืขื•ืจ ื”ื–ื” ืจืง ื ื’ืข ื‘ืฉื™ืžื•ืฉื™ื•ืช ืฉืœ ื™ืฆื™ืจืช ืžืขืจื›ืช ื”ืžืœืฆื•ืช ืœืžืจื›ื™ื‘ื™ ืžื–ื•ืŸ, ืชื—ื•ื ื™ื™ืฉื•ืžื™ ืœืžื™ื“ืช ืžื›ื•ื ื” ื–ื” ืขืฉื™ืจ ื‘ื“ื•ื’ืžืื•ืช. ืงืจืื• ืขื•ื“ ืขืœ ืื™ืš ืžืขืจื›ื•ืช ืืœื• ื ื‘ื ื•ืช:
- https://www.sciencedirect.com/topics/computer-science/recommendation-engine
- https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-recommendation-engines/
- https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/
## ืžืฉื™ืžื”
[ื‘ื ื• ืžืขืจื›ืช ื”ืžืœืฆื•ืช ื—ื“ืฉื”](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "799ed651e2af0a7cad17c6268db11578",
"translation_date": "2025-09-05T19:55:28+00:00",
"source_file": "4-Classification/4-Applied/assignment.md",
"language_code": "he"
}
-->
# ื‘ื ื” ืžืขืจื›ืช ื”ืžืœืฆื•ืช
## ื”ื•ืจืื•ืช
ื‘ื”ืชื‘ืกืก ืขืœ ื”ืชืจื’ื™ืœื™ื ืฉืœืš ื‘ืฉื™ืขื•ืจ ื”ื–ื”, ืืชื” ื›ื‘ืจ ื™ื•ื“ืข ืื™ืš ืœื‘ื ื•ืช ืืคืœื™ืงืฆื™ื™ืช ื•ื•ื‘ ืžื‘ื•ืกืกืช JavaScript ื‘ืืžืฆืขื•ืช Onnx Runtime ื•ืžื•ื“ืœ Onnx ืฉื”ื•ืžืจ. ื ืกื” ืœื‘ื ื•ืช ืžืขืจื›ืช ื”ืžืœืฆื•ืช ื—ื“ืฉื” ืชื•ืš ืฉื™ืžื•ืฉ ื‘ื ืชื•ื ื™ื ืžื”ืฉื™ืขื•ืจื™ื ื”ืืœื” ืื• ืžืžืงื•ืจื•ืช ืื—ืจื™ื (ื ื ืœืชืช ืงืจื“ื™ื˜). ืœื“ื•ื’ืžื”, ืชื•ื›ืœ ืœื™ืฆื•ืจ ืžืขืจื›ืช ื”ืžืœืฆื•ืช ืœื—ื™ื•ืช ืžื—ืžื“ ื‘ื”ืชื‘ืกืก ืขืœ ืชื›ื•ื ื•ืช ืื™ืฉื™ื•ืช ืฉื•ื ื•ืช, ืื• ืžืขืจื›ืช ื”ืžืœืฆื•ืช ืœื–'ืื ืจื™ื ืžื•ื–ื™ืงืœื™ื™ื ื‘ื”ืชืื ืœืžืฆื‘ ื”ืจื•ื— ืฉืœ ื”ืื“ื. ืชื”ื™ื” ื™ืฆื™ืจืชื™!
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | -------------------------------------------------------------------- | ----------------------------------- | ------------------------------- |
| | ืžื•ืฆื’ืช ืืคืœื™ืงืฆื™ื™ืช ื•ื•ื‘ ื•ืžื—ื‘ืจืช, ืฉืชื™ื”ืŸ ืžืชื•ืขื“ื•ืช ื”ื™ื˜ื‘ ื•ืคื•ืขืœื•ืช | ืื—ืช ืžื”ืฉืชื™ื™ื ื—ืกืจื” ืื• ืคื’ื•ืžื” | ืฉืชื™ื”ืŸ ื—ืกืจื•ืช ืื• ืคื’ื•ืžื•ืช |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœื›ืœ ืื™ ื”ื‘ื ื•ืช ืื• ืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,41 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "74e809ffd1e613a1058bbc3e9600859e",
"translation_date": "2025-09-05T19:48:23+00:00",
"source_file": "4-Classification/README.md",
"language_code": "he"
}
-->
# ื”ืชื—ืœืช ืขื‘ื•ื“ื” ืขื ืกื™ื•ื•ื’
## ื ื•ืฉื ืื–ื•ืจื™: ืžื˜ื‘ื—ื™ื ืืกื™ื™ืชื™ื™ื ื•ื”ื•ื“ื™ื™ื ื˜ืขื™ืžื™ื ๐Ÿœ
ื‘ืืกื™ื” ื•ื‘ื”ื•ื“ื•, ืžืกื•ืจื•ืช ื”ืื•ื›ืœ ืžื’ื•ื•ื ื•ืช ืžืื•ื“ ื•ื˜ืขื™ืžื•ืช ื‘ืžื™ื•ื—ื“! ื‘ื•ืื• ื ื‘ื—ืŸ ื ืชื•ื ื™ื ืขืœ ืžื˜ื‘ื—ื™ื ืื–ื•ืจื™ื™ื ื›ื“ื™ ืœื ืกื•ืช ืœื”ื‘ื™ืŸ ืืช ื”ืžืจื›ื™ื‘ื™ื ืฉืœื”ื.
![ืžื•ื›ืจ ืื•ื›ืœ ืชืื™ืœื ื“ื™](../../../4-Classification/images/thai-food.jpg)
> ืฆื™ืœื•ื ืขืœ ื™ื“ื™ <a href="https://unsplash.com/@changlisheng?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Lisheng Chang</a> ื‘-<a href="https://unsplash.com/s/photos/asian-food?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
## ืžื” ืชืœืžื“ื•
ื‘ืคืจืง ื–ื”, ืชื‘ื ื• ืขืœ ื‘ืกื™ืก ื”ืœื™ืžื•ื“ ื”ืงื•ื“ื ืฉืœื›ื ื‘ื ื•ืฉื ืจื’ืจืกื™ื” ื•ืชืœืžื“ื• ืขืœ ืžืกื•ื•ื’ื™ื ื ื•ืกืคื™ื ืฉืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ื”ื ื›ื“ื™ ืœื”ื‘ื™ืŸ ื˜ื•ื‘ ื™ื•ืชืจ ืืช ื”ื ืชื•ื ื™ื.
> ื™ืฉื ื ื›ืœื™ื ืฉื™ืžื•ืฉื™ื™ื ืขื ืžืขื˜ ืงื•ื“ ืฉื™ื›ื•ืœื™ื ืœืขื–ื•ืจ ืœื›ื ืœืœืžื•ื“ ืขืœ ืขื‘ื•ื“ื” ืขื ืžื•ื“ืœื™ื ืฉืœ ืกื™ื•ื•ื’. ื ืกื• [Azure ML ืœืžืฉื™ืžื” ื–ื•](https://docs.microsoft.com/learn/modules/create-classification-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
## ืฉื™ืขื•ืจื™ื
1. [ืžื‘ื•ื ืœืกื™ื•ื•ื’](1-Introduction/README.md)
2. [ืžืกื•ื•ื’ื™ื ื ื•ืกืคื™ื](2-Classifiers-1/README.md)
3. [ืขื•ื“ ืžืกื•ื•ื’ื™ื](3-Classifiers-2/README.md)
4. [ืœืžื™ื“ืช ืžื›ื•ื ื” ื™ื™ืฉื•ืžื™ืช: ื‘ื ื™ื™ืช ืืคืœื™ืงืฆื™ื™ืช ื•ื•ื‘](4-Applied/README.md)
## ืงืจื“ื™ื˜ื™ื
"ื”ืชื—ืœืช ืขื‘ื•ื“ื” ืขื ืกื™ื•ื•ื’" ื ื›ืชื‘ ื‘ืื”ื‘ื” โ™ฅ๏ธ ืขืœ ื™ื“ื™ [Cassie Breviu](https://www.twitter.com/cassiebreviu) ื•-[Jen Looper](https://www.twitter.com/jenlooper)
ืžืื’ืจ ื”ื ืชื•ื ื™ื ืฉืœ ื”ืžื˜ื‘ื—ื™ื ื”ื˜ืขื™ืžื™ื ื ืœืงื— ืž-[Kaggle](https://www.kaggle.com/hoandan/asian-and-indian-cuisines).
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,347 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "730225ea274c9174fe688b21d421539d",
"translation_date": "2025-09-05T19:11:55+00:00",
"source_file": "5-Clustering/1-Visualize/README.md",
"language_code": "he"
}
-->
# ืžื‘ื•ื ืœืงื™ื‘ื•ืฅ
ืงื™ื‘ื•ืฅ ื”ื•ื ืกื•ื’ ืฉืœ [ืœืžื™ื“ื” ืœืœื ืคื™ืงื•ื—](https://wikipedia.org/wiki/Unsupervised_learning) ืฉืžื ื™ื— ื›ื™ ืžืขืจืš ื”ื ืชื•ื ื™ื ืื™ื ื• ืžืชื•ื™ื’ ืื• ืฉื”ืงืœื˜ื™ื ืฉืœื• ืื™ื ื ืžื•ืชืืžื™ื ืœืคืœื˜ื™ื ืžื•ื’ื“ืจื™ื ืžืจืืฉ. ื”ื•ื ืžืฉืชืžืฉ ื‘ืืœื’ื•ืจื™ืชืžื™ื ืฉื•ื ื™ื ื›ื“ื™ ืœืžื™ื™ืŸ ื ืชื•ื ื™ื ืœื ืžืชื•ื™ื’ื™ื ื•ืœืกืคืง ืงื‘ื•ืฆื•ืช ื‘ื”ืชืื ืœื“ืคื•ืกื™ื ืฉื”ื•ื ืžื–ื”ื” ื‘ื ืชื•ื ื™ื.
[![No One Like You by PSquare](https://img.youtube.com/vi/ty2advRiWJM/0.jpg)](https://youtu.be/ty2advRiWJM "No One Like You by PSquare")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ. ื‘ื–ืžืŸ ืฉืืชื ืœื•ืžื“ื™ื ืขืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืขื ืงื™ื‘ื•ืฅ, ืชื”ื ื• ืžืžื•ื–ื™ืงืช ื“ืื ืก ื”ื•ืœ ื ื™ื’ืจื™ืช - ื–ื”ื• ืฉื™ืจ ืžื“ื•ืจื’ ืžืื•ื“ ืžืฉื ืช 2014 ืฉืœ PSquare.
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
### ืžื‘ื•ื
[ืงื™ื‘ื•ืฅ](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124) ื”ื•ื ื›ืœื™ ืฉื™ืžื•ืฉื™ ืžืื•ื“ ืœื—ืงืจ ื ืชื•ื ื™ื. ื‘ื•ืื• ื ืจืื” ืื ื”ื•ื ื™ื›ื•ืœ ืœืขื–ื•ืจ ืœื’ืœื•ืช ืžื’ืžื•ืช ื•ื“ืคื•ืกื™ื ื‘ืื•ืคืŸ ืฉื‘ื• ืงื”ืœ ื ื™ื’ืจื™ ืฆื•ืจืš ืžื•ื–ื™ืงื”.
โœ… ื”ืงื“ื™ืฉื• ืจื’ืข ืœื—ืฉื•ื‘ ืขืœ ื”ืฉื™ืžื•ืฉื™ื ื‘ืงื™ื‘ื•ืฅ. ื‘ื—ื™ื™ื ื”ืืžื™ืชื™ื™ื, ืงื™ื‘ื•ืฅ ืžืชืจื—ืฉ ื‘ื›ืœ ืคืขื ืฉื™ืฉ ืœื›ื ืขืจื™ืžืช ื›ื‘ื™ืกื” ื•ืืชื ืฆืจื™ื›ื™ื ืœืžื™ื™ืŸ ืืช ื”ื‘ื’ื“ื™ื ืฉืœ ื‘ื ื™ ื”ืžืฉืคื—ื” ๐Ÿงฆ๐Ÿ‘•๐Ÿ‘–๐Ÿฉฒ. ื‘ืžื“ืขื™ ื”ื ืชื•ื ื™ื, ืงื™ื‘ื•ืฅ ืžืชืจื—ืฉ ื›ืฉืžื ืกื™ื ืœื ืชื— ืืช ื”ืขื“ืคื•ืช ื”ืžืฉืชืžืฉ ืื• ืœืงื‘ื•ืข ืืช ื”ืžืืคื™ื™ื ื™ื ืฉืœ ื›ืœ ืžืขืจืš ื ืชื•ื ื™ื ืœื ืžืชื•ื™ื’. ืงื™ื‘ื•ืฅ, ื‘ืžื•ื‘ืŸ ืžืกื•ื™ื, ืขื•ื–ืจ ืœืขืฉื•ืช ืกื“ืจ ื‘ื›ืื•ืก, ื›ืžื• ืžื’ื™ืจืช ื’ืจื‘ื™ื™ื.
[![Introduction to ML](https://img.youtube.com/vi/esmzYhuFnds/0.jpg)](https://youtu.be/esmzYhuFnds "Introduction to Clustering")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ื’'ื•ืŸ ื’ื•ื˜ืื’ ืž-MIT ืžืฆื™ื’ ืืช ื ื•ืฉื ื”ืงื™ื‘ื•ืฅ
ื‘ืกื‘ื™ื‘ื” ืžืงืฆื•ืขื™ืช, ืงื™ื‘ื•ืฅ ื™ื›ื•ืœ ืœืฉืžืฉ ืœืงื‘ื™ืขืช ื“ื‘ืจื™ื ื›ืžื• ืคื™ืœื•ื— ืฉื•ืง, ืœืžืฉืœ, ืœืงื‘ื•ืข ืื™ืœื• ืงื‘ื•ืฆื•ืช ื’ื™ืœ ืงื•ื ื•ืช ืื™ืœื• ืคืจื™ื˜ื™ื. ืฉื™ืžื•ืฉ ื ื•ืกืฃ ื™ื›ื•ืœ ืœื”ื™ื•ืช ื–ื™ื”ื•ื™ ื—ืจื™ื’ื•ืช, ืื•ืœื™ ื›ื“ื™ ืœื–ื”ื•ืช ื”ื•ื ืื” ืžืชื•ืš ืžืขืจืš ื ืชื•ื ื™ื ืฉืœ ืขืกืงืื•ืช ื‘ื›ืจื˜ื™ืกื™ ืืฉืจืื™. ืื• ืฉืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ืงื™ื‘ื•ืฅ ื›ื“ื™ ืœื–ื”ื•ืช ื’ื™ื“ื•ืœื™ื ื‘ืกืจื™ืงื•ืช ืจืคื•ืื™ื•ืช.
โœ… ื”ืงื“ื™ืฉื• ืจื’ืข ืœื—ืฉื•ื‘ ื›ื™ืฆื“ ื ืชืงืœืชื ื‘ืงื™ื‘ื•ืฅ 'ื‘ืขื•ืœื ื”ืืžื™ืชื™', ื‘ืกื‘ื™ื‘ื” ื‘ื ืงืื™ืช, ืžืกื—ืจ ืืœืงื˜ืจื•ื ื™ ืื• ืขืกืงื™ืช.
> ๐ŸŽ“ ืžืขื ื™ื™ืŸ, ื ื™ืชื•ื— ืงื™ื‘ื•ืฅ ืžืงื•ืจื• ื‘ืชื—ื•ืžื™ ื”ืื ืชืจื•ืคื•ืœื•ื’ื™ื” ื•ื”ืคืกื™ื›ื•ืœื•ื’ื™ื” ื‘ืฉื ื•ืช ื”-30. ื”ืื ืืชื ื™ื›ื•ืœื™ื ืœื“ืžื™ื™ืŸ ื›ื™ืฆื“ ื”ื•ื ืฉื™ืžืฉ ืื–?
ืœื—ื™ืœื•ืคื™ืŸ, ืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ื• ืœืงื™ื‘ื•ืฅ ืชื•ืฆืื•ืช ื—ื™ืคื•ืฉ - ืœืคื™ ืงื™ืฉื•ืจื™ ืงื ื™ื•ืช, ืชืžื•ื ื•ืช ืื• ื‘ื™ืงื•ืจื•ืช, ืœืžืฉืœ. ืงื™ื‘ื•ืฅ ืฉื™ืžื•ืฉื™ ื›ืฉื™ืฉ ืœื›ื ืžืขืจืš ื ืชื•ื ื™ื ื’ื“ื•ืœ ืฉื‘ืจืฆื•ื ื›ื ืœืฆืžืฆื ื•ืขืœื™ื• ืœื‘ืฆืข ื ื™ืชื•ื— ืžืขืžื™ืง ื™ื•ืชืจ, ื›ืš ืฉื”ื˜ื›ื ื™ืงื” ื™ื›ื•ืœื” ืœืฉืžืฉ ืœืœืžื™ื“ื” ืขืœ ื ืชื•ื ื™ื ืœืคื ื™ ื‘ื ื™ื™ืช ืžื•ื“ืœื™ื ืื—ืจื™ื.
โœ… ืœืื—ืจ ืฉืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืœื›ื ืžืื•ืจื’ืŸ ื‘ืงื‘ื•ืฆื•ืช, ืืชื ืžืงืฆื™ื ืœื• ืžื–ื”ื” ืงื‘ื•ืฆื”, ื•ื˜ื›ื ื™ืงื” ื–ื• ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืฉื™ืžื•ืฉื™ืช ืœืฉืžื™ืจื” ืขืœ ืคืจื˜ื™ื•ืช ืžืขืจืš ื”ื ืชื•ื ื™ื; ืชื•ื›ืœื• ืœื”ืชื™ื™ื—ืก ืœื ืงื•ื“ืช ื ืชื•ื ื™ื ืœืคื™ ืžื–ื”ื” ื”ืงื‘ื•ืฆื” ืฉืœื”, ื‘ืžืงื•ื ืœืคื™ ื ืชื•ื ื™ื ืžื–ื”ื™ื ื™ื•ืชืจ. ื”ืื ืืชื ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ืขืœ ืกื™ื‘ื•ืช ื ื•ืกืคื•ืช ืžื“ื•ืข ืชืขื“ื™ืคื• ืœื”ืชื™ื™ื—ืก ืœืžื–ื”ื” ืงื‘ื•ืฆื” ื‘ืžืงื•ื ืœืืœืžื ื˜ื™ื ืื—ืจื™ื ืฉืœ ื”ืงื‘ื•ืฆื” ื›ื“ื™ ืœื–ื”ื•ืช ืื•ืชื”?
ื”ืขืžื™ืงื• ืืช ื”ื‘ื ืชื›ื ื‘ื˜ื›ื ื™ืงื•ืช ืงื™ื‘ื•ืฅ ื‘ืžื•ื“ื•ืœ [ืœื™ืžื•ื“ ื–ื”](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott)
## ื”ืชื—ืœืช ืขื‘ื•ื“ื” ืขื ืงื™ื‘ื•ืฅ
[Scikit-learn ืžืฆื™ืขื” ืžื’ื•ื•ืŸ ืจื—ื‘](https://scikit-learn.org/stable/modules/clustering.html) ืฉืœ ืฉื™ื˜ื•ืช ืœื‘ื™ืฆื•ืข ืงื™ื‘ื•ืฅ. ื”ืกื•ื’ ืฉืชื‘ื—ืจื• ืชืœื•ื™ ื‘ืžืงืจื” ื”ืฉื™ืžื•ืฉ ืฉืœื›ื. ืœืคื™ ื”ืชื™ืขื•ื“, ืœื›ืœ ืฉื™ื˜ื” ื™ืฉ ื™ืชืจื•ื ื•ืช ืฉื•ื ื™ื. ื”ื ื” ื˜ื‘ืœื” ืคืฉื•ื˜ื” ืฉืœ ื”ืฉื™ื˜ื•ืช ื”ื ืชืžื›ื•ืช ืขืœ ื™ื“ื™ Scikit-learn ื•ืžืงืจื™ ื”ืฉื™ืžื•ืฉ ื”ืžืชืื™ืžื™ื ืœื”ืŸ:
| ืฉื ื”ืฉื™ื˜ื” | ืžืงืจื” ืฉื™ืžื•ืฉ |
| :------------------------ | :--------------------------------------------------------------------- |
| K-Means | ืฉื™ืžื•ืฉ ื›ืœืœื™, ืื™ื ื“ื•ืงื˜ื™ื‘ื™ |
| Affinity propagation | ืงื‘ื•ืฆื•ืช ืจื‘ื•ืช ื•ืœื ืื—ื™ื“ื•ืช, ืื™ื ื“ื•ืงื˜ื™ื‘ื™ |
| Mean-shift | ืงื‘ื•ืฆื•ืช ืจื‘ื•ืช ื•ืœื ืื—ื™ื“ื•ืช, ืื™ื ื“ื•ืงื˜ื™ื‘ื™ |
| Spectral clustering | ืงื‘ื•ืฆื•ืช ืžืขื˜ื•ืช ื•ืื—ื™ื“ื•ืช, ื˜ืจื ืกื“ื•ืงื˜ื™ื‘ื™ |
| Ward hierarchical clustering | ืงื‘ื•ืฆื•ืช ืจื‘ื•ืช ื•ืžื•ื’ื‘ืœื•ืช, ื˜ืจื ืกื“ื•ืงื˜ื™ื‘ื™ |
| Agglomerative clustering | ืงื‘ื•ืฆื•ืช ืจื‘ื•ืช ื•ืžื•ื’ื‘ืœื•ืช, ืžืจื—ืงื™ื ืœื ืื•ืงืœื™ื“ื™ื™ื, ื˜ืจื ืกื“ื•ืงื˜ื™ื‘ื™ |
| DBSCAN | ื’ื™ืื•ืžื˜ืจื™ื” ืœื ืฉื˜ื•ื—ื”, ืงื‘ื•ืฆื•ืช ืœื ืื—ื™ื“ื•ืช, ื˜ืจื ืกื“ื•ืงื˜ื™ื‘ื™ |
| OPTICS | ื’ื™ืื•ืžื˜ืจื™ื” ืœื ืฉื˜ื•ื—ื”, ืงื‘ื•ืฆื•ืช ืœื ืื—ื™ื“ื•ืช ืขื ืฆืคื™ืคื•ืช ืžืฉืชื ื”, ื˜ืจื ืกื“ื•ืงื˜ื™ื‘ื™ |
| Gaussian mixtures | ื’ื™ืื•ืžื˜ืจื™ื” ืฉื˜ื•ื—ื”, ืื™ื ื“ื•ืงื˜ื™ื‘ื™ |
| BIRCH | ืžืขืจืš ื ืชื•ื ื™ื ื’ื“ื•ืœ ืขื ื—ืจื™ื’ื•ืช, ืื™ื ื“ื•ืงื˜ื™ื‘ื™ |
> ๐ŸŽ“ ืื™ืš ืื ื—ื ื• ื™ื•ืฆืจื™ื ืงื‘ื•ืฆื•ืช ืงืฉื•ืจ ืžืื•ื“ ืœืื•ืคืŸ ืฉื‘ื• ืื ื—ื ื• ืื•ืกืคื™ื ืืช ื ืงื•ื“ื•ืช ื”ื ืชื•ื ื™ื ืœืงื‘ื•ืฆื•ืช. ื‘ื•ืื• ื ืคืจืง ืงืฆืช ืืช ื”ืžื•ื ื—ื™ื:
>
> ๐ŸŽ“ ['ื˜ืจื ืกื“ื•ืงื˜ื™ื‘ื™' ืžื•ืœ 'ืื™ื ื“ื•ืงื˜ื™ื‘ื™'](https://wikipedia.org/wiki/Transduction_(machine_learning))
>
> ื”ืกืงื” ื˜ืจื ืกื“ื•ืงื˜ื™ื‘ื™ืช ื ื’ื–ืจืช ืžืžืงืจื™ื ืฉื ืฆืคื• ื‘ืื™ืžื•ืŸ ืฉืžืžื•ืคื™ื ืœืžืงืจื™ื ืกืคืฆื™ืคื™ื™ื ื‘ื‘ื“ื™ืงื”. ื”ืกืงื” ืื™ื ื“ื•ืงื˜ื™ื‘ื™ืช ื ื’ื–ืจืช ืžืžืงืจื™ื ื‘ืื™ืžื•ืŸ ืฉืžืžื•ืคื™ื ืœื›ืœืœื™ื ื›ืœืœื™ื™ื ืฉืžื™ื•ืฉืžื™ื ืจืง ืœืื—ืจ ืžื›ืŸ ืขืœ ืžืงืจื™ื ื‘ื‘ื“ื™ืงื”.
>
> ื“ื•ื’ืžื”: ื“ืžื™ื™ื ื• ืฉื™ืฉ ืœื›ื ืžืขืจืš ื ืชื•ื ื™ื ืฉืžืกื•ืžืŸ ืจืง ื‘ืื•ืคืŸ ื—ืœืงื™. ื—ืœืง ืžื”ืคืจื™ื˜ื™ื ื”ื 'ืชืงืœื™ื˜ื™ื', ื—ืœืง 'ื“ื™ืกืงื™ื', ื•ื—ืœืง ืจื™ืงื™ื. ื”ืžืฉื™ืžื” ืฉืœื›ื ื”ื™ื ืœืกืคืง ืชื•ื•ื™ื•ืช ืœืจื™ืงื™ื. ืื ืชื‘ื—ืจื• ื‘ื’ื™ืฉื” ืื™ื ื“ื•ืงื˜ื™ื‘ื™ืช, ืชืืžื ื• ืžื•ื“ืœ ืฉืžื—ืคืฉ 'ืชืงืœื™ื˜ื™ื' ื•'ื“ื™ืกืงื™ื', ื•ืชื™ื™ืฉืžื• ืืช ื”ืชื•ื•ื™ื•ืช ื”ืœืœื• ืขืœ ื”ื ืชื•ื ื™ื ื”ืœื ืžืชื•ื™ื’ื™ื. ื’ื™ืฉื” ื–ื• ืชืชืงืฉื” ืœืกื•ื•ื’ ืคืจื™ื˜ื™ื ืฉื”ื ืœืžืขืฉื” 'ืงืœื˜ื•ืช'. ื’ื™ืฉื” ื˜ืจื ืกื“ื•ืงื˜ื™ื‘ื™ืช, ืœืขื•ืžืช ื–ืืช, ืžืชืžื•ื“ื“ืช ืขื ื ืชื•ื ื™ื ืœื ื™ื“ื•ืขื™ื ื‘ืฆื•ืจื” ื™ืขื™ืœื” ื™ื•ืชืจ ื›ืฉื”ื™ื ืขื•ื‘ื“ืช ืขืœ ืงื™ื‘ื•ืฅ ืคืจื™ื˜ื™ื ื“ื•ืžื™ื ื™ื—ื“ ื•ืื– ืžื™ื™ืฉืžืช ืชื•ื•ื™ืช ืœืงื‘ื•ืฆื”. ื‘ืžืงืจื” ื–ื”, ื”ืงื‘ื•ืฆื•ืช ืขืฉื•ื™ื•ืช ืœืฉืงืฃ 'ื“ื‘ืจื™ื ืžื•ื–ื™ืงืœื™ื™ื ืขื’ื•ืœื™ื' ื•'ื“ื‘ืจื™ื ืžื•ื–ื™ืงืœื™ื™ื ืžืจื•ื‘ืขื™ื'.
>
> ๐ŸŽ“ ['ื’ื™ืื•ืžื˜ืจื™ื” ืœื ืฉื˜ื•ื—ื”' ืžื•ืœ 'ืฉื˜ื•ื—ื”'](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering)
>
> ื ื’ื–ืจ ืžื”ืžื•ื ื—ื™ื ื”ืžืชืžื˜ื™ื™ื, ื’ื™ืื•ืžื˜ืจื™ื” ืœื ืฉื˜ื•ื—ื” ืžื•ืœ ืฉื˜ื•ื—ื” ืžืชื™ื™ื—ืกืช ืœืžื“ื™ื“ืช ื”ืžืจื—ืงื™ื ื‘ื™ืŸ ื ืงื•ื“ื•ืช ืขืœ ื™ื“ื™ ืฉื™ื˜ื•ืช ื’ื™ืื•ืžื˜ืจื™ื•ืช 'ืฉื˜ื•ื—ื•ืช' ([ืื•ืงืœื™ื“ื™ื•ืช](https://wikipedia.org/wiki/Euclidean_geometry)) ืื• 'ืœื ืฉื˜ื•ื—ื•ืช' (ืœื ืื•ืงืœื™ื“ื™ื•ืช).
>
>'ืฉื˜ื•ื—ื”' ื‘ื”ืงืฉืจ ื–ื” ืžืชื™ื™ื—ืกืช ืœื’ื™ืื•ืžื˜ืจื™ื” ืื•ืงืœื™ื“ื™ืช (ื—ืœืงื™ื ืžืžื ื” ื ืœืžื“ื™ื ื›ื’ื™ืื•ืžื˜ืจื™ื” 'ืžื™ืฉื•ืจื™ืช'), ื•'ืœื ืฉื˜ื•ื—ื”' ืžืชื™ื™ื—ืกืช ืœื’ื™ืื•ืžื˜ืจื™ื” ืœื ืื•ืงืœื™ื“ื™ืช. ืžื” ื”ืงืฉืจ ื‘ื™ืŸ ื’ื™ืื•ืžื˜ืจื™ื” ืœืœืžื™ื“ืช ืžื›ื•ื ื”? ื•ื‘ื›ืŸ, ื›ืฉื ื™ ืชื—ื•ืžื™ื ืฉืžื‘ื•ืกืกื™ื ืขืœ ืžืชืžื˜ื™ืงื”, ื—ื™ื™ื‘ืช ืœื”ื™ื•ืช ื“ืจืš ืžืฉื•ืชืคืช ืœืžื“ื•ื“ ืžืจื—ืงื™ื ื‘ื™ืŸ ื ืงื•ื“ื•ืช ื‘ืงื‘ื•ืฆื•ืช, ื•ื–ื” ื™ื›ื•ืœ ืœื”ื™ืขืฉื•ืช ื‘ืฆื•ืจื” 'ืฉื˜ื•ื—ื”' ืื• 'ืœื ืฉื˜ื•ื—ื”', ืชืœื•ื™ ื‘ื˜ื‘ืข ื”ื ืชื•ื ื™ื. [ืžืจื—ืงื™ื ืื•ืงืœื™ื“ื™ื™ื](https://wikipedia.org/wiki/Euclidean_distance) ื ืžื“ื“ื™ื ื›ืื•ืจืš ืฉืœ ืงื˜ืข ืงื• ื‘ื™ืŸ ืฉืชื™ ื ืงื•ื“ื•ืช. [ืžืจื—ืงื™ื ืœื ืื•ืงืœื™ื“ื™ื™ื](https://wikipedia.org/wiki/Non-Euclidean_geometry) ื ืžื“ื“ื™ื ืœืื•ืจืš ืขืงื•ืžื”. ืื ื”ื ืชื•ื ื™ื ืฉืœื›ื, ื›ืฉื”ื ืžื•ืฆื’ื™ื, ื ืจืื™ื ื›ืื™ืœื• ืื™ื ื ืงื™ื™ืžื™ื ืขืœ ืžื™ืฉื•ืจ, ื™ื™ืชื›ืŸ ืฉืชืฆื˜ืจื›ื• ืœื”ืฉืชืžืฉ ื‘ืืœื’ื•ืจื™ืชื ืžื™ื•ื—ื“ ื›ื“ื™ ืœื”ืชืžื•ื“ื“ ืื™ืชื.
>
![Flat vs Nonflat Geometry Infographic](../../../../5-Clustering/1-Visualize/images/flat-nonflat.png)
> ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Dasani Madipalli](https://twitter.com/dasani_decoded)
>
> ๐ŸŽ“ ['ืžืจื—ืงื™ื'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf)
>
> ืงื‘ื•ืฆื•ืช ืžื•ื’ื“ืจื•ืช ืขืœ ื™ื“ื™ ืžื˜ืจื™ืฆืช ื”ืžืจื—ืงื™ื ืฉืœื”ืŸ, ื›ืœื•ืžืจ ื”ืžืจื—ืงื™ื ื‘ื™ืŸ ื ืงื•ื“ื•ืช. ืžืจื—ืง ื–ื” ื™ื›ื•ืœ ืœื”ื™ืžื“ื“ ื‘ื›ืžื” ื“ืจื›ื™ื. ืงื‘ื•ืฆื•ืช ืื•ืงืœื™ื“ื™ื•ืช ืžื•ื’ื“ืจื•ืช ืขืœ ื™ื“ื™ ืžืžื•ืฆืข ืขืจื›ื™ ื”ื ืงื•ื“ื•ืช, ื•ืžื›ื™ืœื•ืช 'centroid' ืื• ื ืงื•ื“ืช ืžืจื›ื–. ื”ืžืจื—ืงื™ื ื ืžื“ื“ื™ื ื›ืš ืœืคื™ ื”ืžืจื—ืง ืœ-centroid. ืžืจื—ืงื™ื ืœื ืื•ืงืœื™ื“ื™ื™ื ืžืชื™ื™ื—ืกื™ื ืœ'clustroids', ื”ื ืงื•ื“ื” ื”ืงืจื•ื‘ื” ื‘ื™ื•ืชืจ ืœื ืงื•ื“ื•ืช ืื—ืจื•ืช. Clustroids ื‘ืชื•ืจื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืžื•ื’ื“ืจื™ื ื‘ื“ืจื›ื™ื ืฉื•ื ื•ืช.
>
> ๐ŸŽ“ ['ืžื•ื’ื‘ืœ'](https://wikipedia.org/wiki/Constrained_clustering)
>
> [ืงื™ื‘ื•ืฅ ืžื•ื’ื‘ืœ](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf) ืžื›ื ื™ืก 'ืœืžื™ื“ื” ื—ืฆื™ ืžืคื•ืงื—ืช' ืœืฉื™ื˜ื” ืœืœื ืคื™ืงื•ื— ื–ื•. ื”ื™ื—ืกื™ื ื‘ื™ืŸ ื ืงื•ื“ื•ืช ืžืกื•ืžื ื™ื ื›'ืœื ื ื™ืชืŸ ืœืงืฉืจ' ืื• 'ื—ื™ื™ื‘ ืœืงืฉืจ' ื›ืš ืฉื›ืžื” ื›ืœืœื™ื ื ื›ืคื™ื ืขืœ ืžืขืจืš ื”ื ืชื•ื ื™ื.
>
>ื“ื•ื’ืžื”: ืื ืืœื’ื•ืจื™ืชื ืžืฉื•ื—ืจืจ ืขืœ ืืฆื•ื•ื” ืฉืœ ื ืชื•ื ื™ื ืœื ืžืชื•ื™ื’ื™ื ืื• ื—ืฆื™ ืžืชื•ื™ื’ื™ื, ื”ืงื‘ื•ืฆื•ืช ืฉื”ื•ื ื™ื•ืฆืจ ืขืฉื•ื™ื•ืช ืœื”ื™ื•ืช ื‘ืื™ื›ื•ืช ื™ืจื•ื“ื”. ื‘ื“ื•ื’ืžื” ืœืขื™ืœ, ื”ืงื‘ื•ืฆื•ืช ืขืฉื•ื™ื•ืช ืœืงื‘ืฅ 'ื“ื‘ืจื™ื ืžื•ื–ื™ืงืœื™ื™ื ืขื’ื•ืœื™ื', 'ื“ื‘ืจื™ื ืžื•ื–ื™ืงืœื™ื™ื ืžืจื•ื‘ืขื™ื', 'ื“ื‘ืจื™ื ืžืฉื•ืœืฉื™ื' ื•'ืขื•ื’ื™ื•ืช'. ืื ื ื™ืชื ื™ื ื›ืžื” ืžื’ื‘ืœื•ืช, ืื• ื›ืœืœื™ื ืœืขืงื•ื‘ ืื—ืจื™ื”ื ("ื”ืคืจื™ื˜ ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืขืฉื•ื™ ืžืคืœืกื˜ื™ืง", "ื”ืคืจื™ื˜ ืฆืจื™ืš ืœื”ื™ื•ืช ืžืกื•ื’ืœ ืœื”ืคื™ืง ืžื•ื–ื™ืงื”") ื–ื” ื™ื›ื•ืœ ืœืขื–ื•ืจ 'ืœื”ื’ื‘ื™ืœ' ืืช ื”ืืœื’ื•ืจื™ืชื ืœืงื‘ืœ ื”ื—ืœื˜ื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ.
>
> ๐ŸŽ“ 'ืฆืคื™ืคื•ืช'
>
> ื ืชื•ื ื™ื ืฉื”ื 'ืจื•ืขืฉื™ื' ื ื—ืฉื‘ื™ื ืœ'ืฆืคื•ืคื™ื'. ื”ืžืจื—ืงื™ื ื‘ื™ืŸ ื ืงื•ื“ื•ืช ื‘ื›ืœ ืื—ืช ืžื”ืงื‘ื•ืฆื•ืช ืฉืœื”ื ืขืฉื•ื™ื™ื ืœื”ื•ื›ื™ื—, ื‘ื‘ื“ื™ืงื”, ืฉื”ื ืฆืคื•ืคื™ื ื™ื•ืชืจ ืื• ืคื—ื•ืช, ืื• 'ืขืžื•ืกื™ื' ื•ืœื›ืŸ ื ืชื•ื ื™ื ืืœื” ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ืžื ื•ืชื—ื™ื ืขื ืฉื™ื˜ืช ื”ืงื™ื‘ื•ืฅ ื”ืžืชืื™ืžื”. [ืžืืžืจ ื–ื”](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html) ืžื“ื’ื™ื ืืช ื”ื”ื‘ื“ืœ ื‘ื™ืŸ ืฉื™ืžื•ืฉ ื‘ืงื™ื‘ื•ืฅ K-Means ืœื‘ื™ืŸ ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ HDBSCAN ืœื—ืงืจ ืžืขืจืš ื ืชื•ื ื™ื ืจื•ืขืฉ ืขื ืฆืคื™ืคื•ืช ืงื‘ื•ืฆื•ืช ืœื ืื—ื™ื“ื”.
## ืืœื’ื•ืจื™ืชืžื™ ืงื™ื‘ื•ืฅ
ื™ืฉื ื ืžืขืœ 100 ืืœื’ื•ืจื™ืชืžื™ ืงื™ื‘ื•ืฅ, ื•ื”ืฉื™ืžื•ืฉ ื‘ื”ื ืชืœื•ื™ ื‘ื˜ื‘ืข ื”ื ืชื•ื ื™ื ืฉื‘ื™ื“ื›ื. ื‘ื•ืื• ื ื“ื•ืŸ ื‘ื›ืžื” ืžื”ืขื™ืงืจื™ื™ื:
- **ืงื™ื‘ื•ืฅ ื”ื™ืจืจื›ื™**. ืื ืื•ื‘ื™ื™ืงื˜ ืžืกื•ื•ื’ ืœืคื™ ืงืจื‘ืชื• ืœืื•ื‘ื™ื™ืงื˜ ืกืžื•ืš, ื•ืœื ืœืื—ื“ ืจื—ื•ืง ื™ื•ืชืจ, ืงื‘ื•ืฆื•ืช ื ื•ืฆืจื•ืช ืขืœ ื‘ืกื™ืก ื”ืžืจื—ืง ืฉืœ ื—ื‘ืจื™ื”ืŸ ืืœ ื•ืžืื•ื‘ื™ื™ืงื˜ื™ื ืื—ืจื™ื. ื”ืงื™ื‘ื•ืฅ ื”ืื’ืจื•ืžืจื˜ื™ื‘ื™ ืฉืœ Scikit-learn ื”ื•ื ื”ื™ืจืจื›ื™.
![Hierarchical clustering Infographic](../../../../5-Clustering/1-Visualize/images/hierarchical.png)
> ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Dasani Madipalli](https://twitter.com/dasani_decoded)
- **ืงื™ื‘ื•ืฅ ืœืคื™ ืžืจื›ื–**. ืืœื’ื•ืจื™ืชื ืคื•ืคื•ืœืจื™ ื–ื” ื“ื•ืจืฉ ื‘ื—ื™ืจื” ืฉืœ 'k', ืื• ืžืกืคืจ ื”ืงื‘ื•ืฆื•ืช ืฉื™ืฉ ืœื™ืฆื•ืจ, ื•ืœืื—ืจ ืžื›ืŸ ื”ืืœื’ื•ืจื™ืชื ืงื•ื‘ืข ืืช ื ืงื•ื“ืช ื”ืžืจื›ื– ืฉืœ ืงื‘ื•ืฆื” ื•ืื•ืกืฃ ื ืชื•ื ื™ื ืกื‘ื™ื‘ ืื•ืชื” ื ืงื•ื“ื”. [ืงื™ื‘ื•ืฅ K-means](https://wikipedia.org/wiki/K-means_clustering) ื”ื•ื ื’ืจืกื” ืคื•ืคื•ืœืจื™ืช ืฉืœ ืงื™ื‘ื•ืฅ ืœืคื™ ืžืจื›ื–. ื”ืžืจื›ื– ื ืงื‘ืข ืœืคื™ ื”ืžืžื•ืฆืข ื”ืงืจื•ื‘ ื‘ื™ื•ืชืจ, ื•ืžื›ืืŸ ื”ืฉื. ื”ืžืจื—ืง ื”ืžืจื•ื‘ืข ืžื”ืงื‘ื•ืฆื” ืžืžื•ื–ืขืจ.
![Centroid clustering Infographic](../../../../5-Clustering/1-Visualize/images/centroid.png)
> ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Dasani Madipalli](https://twitter.com/dasani_decoded)
- **ืงื™ื‘ื•ืฅ ืžื‘ื•ืกืก ื”ืชืคืœื’ื•ืช**. ืžื‘ื•ืกืก ืขืœ ืžื•ื“ืœื™ื ืกื˜ื˜ื™ืกื˜ื™ื™ื, ืงื™ื‘ื•ืฅ ืžื‘ื•ืกืก ื”ืชืคืœื’ื•ืช ืžืชืžืงื“ ื‘ืงื‘ื™ืขืช ื”ื”ืกืชื‘ืจื•ืช ืฉื ืงื•ื“ืช ื ืชื•ื ื™ื ืฉื™ื™ื›ืช ืœืงื‘ื•ืฆื”, ื•ืžืงืฆื” ืื•ืชื” ื‘ื”ืชืื. ืฉื™ื˜ื•ืช ืชืขืจื•ื‘ืช ื’ืื•ืกื™ืื ื™ืช ืฉื™ื™ื›ื•ืช ืœืกื•ื’ ื–ื”.
- **ืงื™ื‘ื•ืฅ ืžื‘ื•ืกืก ืฆืคื™ืคื•ืช**. ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ืžื•ืงืฆื•ืช ืœืงื‘ื•ืฆื•ืช ืขืœ ื‘ืกื™ืก ืฆืคื™ืคื•ืชืŸ, ืื• ื”ืชืื’ื“ื•ืชืŸ ื–ื• ืกื‘ื™ื‘ ื–ื•. ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ืจื—ื•ืงื•ืช ืžื”ืงื‘ื•ืฆื” ื ื—ืฉื‘ื•ืช ืœื—ืจื™ื’ื•ืช ืื• ืจืขืฉ. DBSCAN, Mean-shift ื•-OPTICS ืฉื™ื™ื›ื•ืช ืœืกื•ื’ ื–ื” ืฉืœ ืงื™ื‘ื•ืฅ.
- **ืงื™ื‘ื•ืฅ ืžื‘ื•ืกืก ืจืฉืช**. ืขื‘ื•ืจ ืžืขืจื›ื™ ื ืชื•ื ื™ื ืจื‘-ืžืžื“ื™ื™ื, ื ื•ืฆืจืช ืจืฉืช ื•ื”ื ืชื•ื ื™ื ืžื—ื•ืœืงื™ื ื‘ื™ืŸ ืชืื™ ื”ืจืฉืช, ื•ื‘ื›ืš ื ื•ืฆืจื™ื ืงื‘ื•ืฆื•ืช.
## ืชืจื’ื™ืœ - ืงื‘ืฆื• ืืช ื”ื ืชื•ื ื™ื ืฉืœื›ื
ืงื™ื‘ื•ืฅ ื›ื˜ื›ื ื™ืงื” ื ืขื–ืจ ืžืื•ื“ ื‘ื”ื“ืžื™ื” ื ื›ื•ื ื”, ืื– ื‘ื•ืื• ื ืชื—ื™ืœ ื‘ื”ื“ืžื™ื” ืฉืœ ื ืชื•ื ื™ ื”ืžื•ื–ื™ืงื” ืฉืœื ื•. ืชืจื’ื™ืœ ื–ื” ื™ืขื–ื•ืจ ืœื ื• ืœื”ื—ืœื™ื˜ ืื™ืœื• ืžืฉื™ื˜ื•ืช ื”ืงื™ื‘ื•ืฅ ื ื•ื›ืœ ืœื”ืฉืชืžืฉ ื‘ืฆื•ืจื” ื”ื™ืขื™ืœื” ื‘ื™ื•ืชืจ ืขื‘ื•ืจ ื˜ื‘ืข ื”ื ืชื•ื ื™ื ื”ืœืœื•.
1. ืคืชื—ื• ืืช ื”ืงื•ื‘ืฅ [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/notebook.ipynb) ื‘ืชื™ืงื™ื™ื” ื–ื•.
1. ื™ื™ื‘ืื• ืืช ื—ื‘ื™ืœืช `Seaborn` ืœื”ื“ืžื™ื” ื˜ื•ื‘ื” ืฉืœ ื ืชื•ื ื™ื.
```python
!pip install seaborn
```
1. ื”ื•ืกื™ืคื• ืืช ื ืชื•ื ื™ ื”ืฉื™ืจื™ื ืžืชื•ืš [_nigerian-songs.csv_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/data/nigerian-songs.csv). ื˜ืขื ื• ืžืกื’ืจืช ื ืชื•ื ื™ื ืขื ืžื™ื“ืข ืขืœ ื”ืฉื™ืจื™ื. ื”ืชื›ื•ื ื ื• ืœื—ืงื•ืจ ืืช ื”ื ืชื•ื ื™ื ื”ืœืœื• ืขืœ ื™ื“ื™ ื™ื™ื‘ื•ื ื”ืกืคืจื™ื•ืช ื•ื”ืฆื’ืช ื”ื ืชื•ื ื™ื:
```python
import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv("../data/nigerian-songs.csv")
df.head()
```
ื‘ื“ืงื• ืืช ื”ืฉื•ืจื•ืช ื”ืจืืฉื•ื ื•ืช ืฉืœ ื”ื ืชื•ื ื™ื:
| | ืฉื | ืืœื‘ื•ื | ืืžืŸ | ื–'ืื ืจ ืžื•ื‘ื™ืœ ืฉืœ ื”ืืžืŸ | ืชืืจื™ืš ื™ืฆื™ืื” | ืื•ืจืš | ืคื•ืคื•ืœืจื™ื•ืช | ืจื™ืงื•ื“ื™ื•ืช | ืืงื•ืกื˜ื™ื•ืช | ืื ืจื’ื™ื” | ืื™ื ืกื˜ืจื•ืžื ื˜ืœื™ื•ืช | ื—ื™ื•ืช | ืขื•ืฆืžื” | ื“ื™ื‘ื•ืจื™ื•ืช | ื˜ืžืคื• | ื—ืชื™ืžืช ื–ืžืŸ |
| --- | ---------------------- | ---------------------------- | ------------------ | ------------------- | ------------ | ----- | ---------- | --------- | --------- | ------ | ---------------- | ------ | ------- | ---------- | ------- | ---------- |
| 0 | Sparky | Mandy & The Jungle | Cruel Santino | alternative r&b | 2019 | 144000 | 48 | 0.666 | 0.851 | 0.42 | 0.534 | 0.11 | -6.699 | 0.0829 | 133.015 | 5 |
| 1 | shuga rush | EVERYTHING YOU HEARD IS TRUE | Odunsi (The Engine)| afropop | 2020 | 89488 | 30 | 0.71 | 0.0822 | 0.683 | 0.000169 | 0.101 | -5.64 | 0.36 | 129.993 | 3 |
| 2 | LITT! | LITT! | AYLร˜ | indie r&b | 2018 | 207758 | 40 | 0.836 | 0.272 | 0.564 | 0.000537 | 0.11 | -7.127 | 0.0424 | 130.005 | 4 |
| 3 | Confident / Feeling Cool | Enjoy Your Life | Lady Donli | nigerian pop | 2019 | 175135 | 14 | 0.894 | 0.798 | 0.611 | 0.000187 | 0.0964 | -4.961 | 0.113 | 111.087 | 4 |
| 4 | wanted you | rare. | Odunsi (The Engine) | afropop | 2018 | 152049 | 25 | 0.702 | 0.116 | 0.833 | 0.91 | 0.348 | -6.044 | 0.0447 | 105.115 | 4 |
1. ืงื‘ืœ ืžื™ื“ืข ืขืœ ืžืกื’ืจืช ื”ื ืชื•ื ื™ื ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`info()`:
```python
df.info()
```
ื”ืคืœื˜ ื ืจืื” ื›ืš:
```output
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 530 entries, 0 to 529
Data columns (total 16 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 name 530 non-null object
1 album 530 non-null object
2 artist 530 non-null object
3 artist_top_genre 530 non-null object
4 release_date 530 non-null int64
5 length 530 non-null int64
6 popularity 530 non-null int64
7 danceability 530 non-null float64
8 acousticness 530 non-null float64
9 energy 530 non-null float64
10 instrumentalness 530 non-null float64
11 liveness 530 non-null float64
12 loudness 530 non-null float64
13 speechiness 530 non-null float64
14 tempo 530 non-null float64
15 time_signature 530 non-null int64
dtypes: float64(8), int64(4), object(4)
memory usage: 66.4+ KB
```
1. ื‘ื“ื•ืง ืฉื•ื‘ ืื ื™ืฉ ืขืจื›ื™ื ื—ืกืจื™ื ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`isnull()` ื•ืื™ืžื•ืช ืฉื”ืกื›ื•ื ื”ื•ื 0:
```python
df.isnull().sum()
```
ื ืจืื” ื˜ื•ื‘:
```output
name 0
album 0
artist 0
artist_top_genre 0
release_date 0
length 0
popularity 0
danceability 0
acousticness 0
energy 0
instrumentalness 0
liveness 0
loudness 0
speechiness 0
tempo 0
time_signature 0
dtype: int64
```
1. ืชืืจ ืืช ื”ื ืชื•ื ื™ื:
```python
df.describe()
```
| | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature |
| ----- | ------------ | ----------- | ---------- | ------------ | ------------ | -------- | ---------------- | -------- | --------- | ----------- | ---------- | -------------- |
| count | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 |
| mean | 2015.390566 | 222298.1698 | 17.507547 | 0.741619 | 0.265412 | 0.760623 | 0.016305 | 0.147308 | -4.953011 | 0.130748 | 116.487864 | 3.986792 |
| std | 3.131688 | 39696.82226 | 18.992212 | 0.117522 | 0.208342 | 0.148533 | 0.090321 | 0.123588 | 2.464186 | 0.092939 | 23.518601 | 0.333701 |
| min | 1998 | 89488 | 0 | 0.255 | 0.000665 | 0.111 | 0 | 0.0283 | -19.362 | 0.0278 | 61.695 | 3 |
| 25% | 2014 | 199305 | 0 | 0.681 | 0.089525 | 0.669 | 0 | 0.07565 | -6.29875 | 0.0591 | 102.96125 | 4 |
| 50% | 2016 | 218509 | 13 | 0.761 | 0.2205 | 0.7845 | 0.000004 | 0.1035 | -4.5585 | 0.09795 | 112.7145 | 4 |
| 75% | 2017 | 242098.5 | 31 | 0.8295 | 0.403 | 0.87575 | 0.000234 | 0.164 | -3.331 | 0.177 | 125.03925 | 4 |
| max | 2020 | 511738 | 73 | 0.966 | 0.954 | 0.995 | 0.91 | 0.811 | 0.582 | 0.514 | 206.007 | 5 |
> ๐Ÿค” ืื ืื ื—ื ื• ืขื•ื‘ื“ื™ื ืขื ืงื™ื‘ื•ืฅ, ืฉื™ื˜ื” ืœื ืžืคื•ืงื—ืช ืฉืื™ื ื” ื“ื•ืจืฉืช ื ืชื•ื ื™ื ืžืชื•ื™ื’ื™ื, ืžื“ื•ืข ืื ื—ื ื• ืžืฆื™ื’ื™ื ืืช ื”ื ืชื•ื ื™ื ืขื ืชื•ื•ื™ื•ืช? ื‘ืฉืœื‘ ื—ืงืจ ื”ื ืชื•ื ื™ื, ื”ื ืฉื™ืžื•ืฉื™ื™ื, ืืš ื”ื ืื™ื ื ื”ื›ืจื—ื™ื™ื ืœืคืขื•ืœืช ื”ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ ื”ืงื™ื‘ื•ืฅ. ืืคืฉืจ ืคืฉื•ื˜ ืœื”ืกื™ืจ ืืช ื›ื•ืชืจื•ืช ื”ืขืžื•ื“ื•ืช ื•ืœื”ืชื™ื™ื—ืก ืœื ืชื•ื ื™ื ืœืคื™ ืžืกืคืจื™ ืขืžื•ื“ื•ืช.
ื”ืกืชื›ืœ ืขืœ ื”ืขืจื›ื™ื ื”ื›ืœืœื™ื™ื ืฉืœ ื”ื ืชื•ื ื™ื. ืฉื™ื ืœื‘ ืฉื”ืคื•ืคื•ืœืจื™ื•ืช ื™ื›ื•ืœื” ืœื”ื™ื•ืช '0', ืžื” ืฉืžืจืื” ืฉื™ืจื™ื ืฉืื™ืŸ ืœื”ื ื“ื™ืจื•ื’. ื‘ื•ืื• ื ืกื™ืจ ืื•ืชื ื‘ืงืจื•ื‘.
1. ื”ืฉืชืžืฉ ื‘ื’ืจืฃ ืขืžื•ื“ื•ืช ื›ื“ื™ ืœื’ืœื•ืช ืืช ื”ื–'ืื ืจื™ื ื”ืคื•ืคื•ืœืจื™ื™ื ื‘ื™ื•ืชืจ:
```python
import seaborn as sns
top = df['artist_top_genre'].value_counts()
plt.figure(figsize=(10,7))
sns.barplot(x=top[:5].index,y=top[:5].values)
plt.xticks(rotation=45)
plt.title('Top genres',color = 'blue')
```
![most popular](../../../../5-Clustering/1-Visualize/images/popular.png)
โœ… ืื ืชืจืฆื” ืœืจืื•ืช ื™ื•ืชืจ ืขืจื›ื™ื ืžื•ื‘ื™ืœื™ื, ืฉื ื” ืืช `[:5]` ืœืขืจืš ื’ื“ื•ืœ ื™ื•ืชืจ, ืื• ื”ืกืจ ืื•ืชื• ื›ื“ื™ ืœืจืื•ืช ื”ื›ืœ.
ืฉื™ื ืœื‘, ื›ืืฉืจ ื”ื–'ืื ืจ ื”ืžื•ื‘ื™ืœ ืžืชื•ืืจ ื›'ื—ืกืจ', ื–ื” ืื•ืžืจ ืฉ-Spotify ืœื ืกื™ื•ื•ื’ ืื•ืชื•, ืื– ื‘ื•ืื• ื ืกื™ืจ ืื•ืชื•.
1. ื”ืกืจ ื ืชื•ื ื™ื ื—ืกืจื™ื ืขืœ ื™ื“ื™ ืกื™ื ื•ื ื ื”ื—ื•ืฆื”
```python
df = df[df['artist_top_genre'] != 'Missing']
top = df['artist_top_genre'].value_counts()
plt.figure(figsize=(10,7))
sns.barplot(x=top.index,y=top.values)
plt.xticks(rotation=45)
plt.title('Top genres',color = 'blue')
```
ืขื›ืฉื™ื• ื‘ื“ื•ืง ืฉื•ื‘ ืืช ื”ื–'ืื ืจื™ื:
![most popular](../../../../5-Clustering/1-Visualize/images/all-genres.png)
1. ืฉืœื•ืฉืช ื”ื–'ืื ืจื™ื ื”ืžื•ื‘ื™ืœื™ื ืฉื•ืœื˜ื™ื ื‘ื‘ื™ืจื•ืจ ื‘ืžืื’ืจ ื”ื ืชื•ื ื™ื ื”ื–ื”. ื‘ื•ืื• ื ืชืžืงื“ ื‘-`afro dancehall`, `afropop`, ื•-`nigerian pop`, ื‘ื ื•ืกืฃ ื ืกื ืŸ ืืช ืžืื’ืจ ื”ื ืชื•ื ื™ื ื›ื“ื™ ืœื”ืกื™ืจ ื›ืœ ื“ื‘ืจ ืขื ืขืจืš ืคื•ืคื•ืœืจื™ื•ืช ืฉืœ 0 (ื›ืœื•ืžืจ ื”ื•ื ืœื ืกื•ื•ื’ ืขื ืคื•ืคื•ืœืจื™ื•ืช ื‘ืžืื’ืจ ื”ื ืชื•ื ื™ื ื•ื ื™ืชืŸ ืœื”ืชื™ื™ื—ืก ืืœื™ื• ื›ืจืขืฉ ืœืžื˜ืจื•ืชื™ื ื•):
```python
df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]
df = df[(df['popularity'] > 0)]
top = df['artist_top_genre'].value_counts()
plt.figure(figsize=(10,7))
sns.barplot(x=top.index,y=top.values)
plt.xticks(rotation=45)
plt.title('Top genres',color = 'blue')
```
1. ื‘ืฆืข ื‘ื“ื™ืงื” ืžื”ื™ืจื” ื›ื“ื™ ืœืจืื•ืช ืื ื”ื ืชื•ื ื™ื ืžืชื•ืืžื™ื ื‘ืฆื•ืจื” ื—ื–ืงื” ื‘ืžื™ื•ื—ื“:
```python
corrmat = df.corr(numeric_only=True)
f, ax = plt.subplots(figsize=(12, 9))
sns.heatmap(corrmat, vmax=.8, square=True)
```
![correlations](../../../../5-Clustering/1-Visualize/images/correlation.png)
ื”ื”ืชืืžื” ื”ื—ื–ืงื” ื”ื™ื—ื™ื“ื” ื”ื™ื ื‘ื™ืŸ `energy` ืœ-`loudness`, ืžื” ืฉืœื ืžืคืชื™ืข ื‘ืžื™ื•ื—ื“, ื‘ื”ืชื—ืฉื‘ ื‘ื›ืš ืฉืžื•ื–ื™ืงื” ืจื•ืขืฉืช ื”ื™ื ื‘ื“ืจืš ื›ืœืœ ื“ื™ ืื ืจื’ื˜ื™ืช. ืžืœื‘ื“ ื–ืืช, ื”ื”ืชืืžื•ืช ื™ื—ืกื™ืช ื—ืœืฉื•ืช. ื™ื”ื™ื” ืžืขื ื™ื™ืŸ ืœืจืื•ืช ืžื” ืืœื’ื•ืจื™ืชื ืงื™ื‘ื•ืฅ ื™ื›ื•ืœ ืœืขืฉื•ืช ืขื ื”ื ืชื•ื ื™ื ื”ืืœื”.
> ๐ŸŽ“ ืฉื™ื ืœื‘ ืฉื”ืชืืžื” ืื™ื ื” ืžืขื™ื“ื” ืขืœ ืกื™ื‘ืชื™ื•ืช! ื™ืฉ ืœื ื• ื”ื•ื›ื—ื” ืœื”ืชืืžื” ืืš ืื™ืŸ ื”ื•ื›ื—ื” ืœืกื™ื‘ืชื™ื•ืช. [ืืชืจ ืžืฉืขืฉืข](https://tylervigen.com/spurious-correlations) ืžืฆื™ื’ ื›ืžื” ื—ื–ื•ืชื™ื•ืช ืฉืžื“ื’ื™ืฉื•ืช ืืช ื”ื ืงื•ื“ื” ื”ื–ื•.
ื”ืื ื™ืฉ ื”ืชื›ื ืกื•ืช ื‘ืžืื’ืจ ื”ื ืชื•ื ื™ื ื”ื–ื” ืกื‘ื™ื‘ ื”ืคื•ืคื•ืœืจื™ื•ืช ื”ื ืชืคืกืช ืฉืœ ืฉื™ืจ ื•ืจืžืช ื”ืจื™ืงื•ื“ื™ื•ืช ืฉืœื•? ื’ืจื™ื“ ืคื™ื™ืกื˜ ืžืจืื” ืฉื™ืฉ ืžืขื’ืœื™ื ืงื•ื ืฆื ื˜ืจื™ื™ื ืฉืžืชื™ื™ืฉืจื™ื, ืœืœื ืงืฉืจ ืœื–'ืื ืจ. ื”ืื ื™ื™ืชื›ืŸ ืฉื”ื˜ืขื ื”ื ื™ื’ืจื™ ืžืชื›ื ืก ื‘ืจืžืช ืจื™ืงื•ื“ื™ื•ืช ืžืกื•ื™ืžืช ืขื‘ื•ืจ ื”ื–'ืื ืจ ื”ื–ื”?
โœ… ื ืกื” ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ืฉื•ื ื•ืช (ืื ืจื’ื™ื”, ืขื•ืฆืžื”, ื“ื™ื‘ื•ืจื™ื•ืช) ื•ืขื•ื“ ืื• ื–'ืื ืจื™ื ืžื•ื–ื™ืงืœื™ื™ื ืฉื•ื ื™ื. ืžื” ืชื•ื›ืœ ืœื’ืœื•ืช? ื”ืกืชื›ืœ ื‘ื˜ื‘ืœืช `df.describe()` ื›ื“ื™ ืœืจืื•ืช ืืช ื”ื”ืชืคืœื’ื•ืช ื”ื›ืœืœื™ืช ืฉืœ ื ืงื•ื“ื•ืช ื”ื ืชื•ื ื™ื.
### ืชืจื’ื™ืœ - ื”ืชืคืœื’ื•ืช ื ืชื•ื ื™ื
ื”ืื ืฉืœื•ืฉืช ื”ื–'ืื ืจื™ื ื”ืืœื” ืฉื•ื ื™ื ื‘ืื•ืคืŸ ืžืฉืžืขื•ืชื™ ื‘ืชืคื™ืกืช ื”ืจื™ืงื•ื“ื™ื•ืช ืฉืœื”ื, ื‘ื”ืชื‘ืกืก ืขืœ ื”ืคื•ืคื•ืœืจื™ื•ืช ืฉืœื”ื?
1. ื‘ื“ื•ืง ืืช ื”ืชืคืœื’ื•ืช ื”ื ืชื•ื ื™ื ืฉืœ ืฉืœื•ืฉืช ื”ื–'ืื ืจื™ื ื”ืžื•ื‘ื™ืœื™ื ืฉืœื ื• ืขื‘ื•ืจ ืคื•ืคื•ืœืจื™ื•ืช ื•ืจื™ืงื•ื“ื™ื•ืช ืœืื•ืจืš ืฆื™ืจ x ื•-y ื ืชื•ืŸ.
```python
sns.set_theme(style="ticks")
g = sns.jointplot(
data=df,
x="popularity", y="danceability", hue="artist_top_genre",
kind="kde",
)
```
ืชื•ื›ืœ ืœื’ืœื•ืช ืžืขื’ืœื™ื ืงื•ื ืฆื ื˜ืจื™ื™ื ืกื‘ื™ื‘ ื ืงื•ื“ืช ื”ืชื›ื ืกื•ืช ื›ืœืœื™ืช, ืฉืžืจืื™ื ืืช ื”ืชืคืœื’ื•ืช ื”ื ืงื•ื“ื•ืช.
> ๐ŸŽ“ ืฉื™ื ืœื‘ ืฉื”ื“ื•ื’ืžื” ื”ื–ื• ืžืฉืชืžืฉืช ื‘ื’ืจืฃ KDE (Kernel Density Estimate) ืฉืžื™ื™ืฆื’ ืืช ื”ื ืชื•ื ื™ื ื‘ืืžืฆืขื•ืช ืขืงื•ืžืช ืฆืคื™ืคื•ืช ื”ืกืชื‘ืจื•ืช ืจืฆื™ืคื”. ื–ื” ืžืืคืฉืจ ืœื ื• ืœืคืจืฉ ื ืชื•ื ื™ื ื›ืฉืขื•ื‘ื“ื™ื ืขื ื”ืชืคืœื’ื•ื™ื•ืช ืžืจื•ื‘ื•ืช.
ื‘ืื•ืคืŸ ื›ืœืœื™, ืฉืœื•ืฉืช ื”ื–'ืื ืจื™ื ืžืชื™ื™ืฉืจื™ื ื‘ืื•ืคืŸ ืจื•ืคืฃ ืžื‘ื—ื™ื ืช ื”ืคื•ืคื•ืœืจื™ื•ืช ื•ื”ืจื™ืงื•ื“ื™ื•ืช ืฉืœื”ื. ืงื‘ื™ืขืช ืงื‘ื•ืฆื•ืช ื‘ื ืชื•ื ื™ื ืฉืžืชื™ื™ืฉืจื™ื ื‘ืื•ืคืŸ ืจื•ืคืฃ ืชื”ื™ื” ืืชื’ืจ:
![distribution](../../../../5-Clustering/1-Visualize/images/distribution.png)
1. ืฆื•ืจ ื’ืจืฃ ืคื™ื–ื•ืจ:
```python
sns.FacetGrid(df, hue="artist_top_genre", height=5) \
.map(plt.scatter, "popularity", "danceability") \
.add_legend()
```
ื’ืจืฃ ืคื™ื–ื•ืจ ืฉืœ ืื•ืชื ืฆื™ืจื™ื ืžืจืื” ื“ืคื•ืก ื“ื•ืžื” ืฉืœ ื”ืชื›ื ืกื•ืช
![Facetgrid](../../../../5-Clustering/1-Visualize/images/facetgrid.png)
ื‘ืื•ืคืŸ ื›ืœืœื™, ืขื‘ื•ืจ ืงื™ื‘ื•ืฅ, ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื’ืจืคื™ ืคื™ื–ื•ืจ ื›ื“ื™ ืœื”ืจืื•ืช ืงื‘ื•ืฆื•ืช ืฉืœ ื ืชื•ื ื™ื, ื›ืš ืฉืœืฉืœื•ื˜ ื‘ืกื•ื’ ื–ื” ืฉืœ ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ื–ื” ืžืื•ื“ ืฉื™ืžื•ืฉื™. ื‘ืฉื™ืขื•ืจ ื”ื‘ื, ื ื™ืงื— ืืช ื”ื ืชื•ื ื™ื ื”ืžืกื•ื ื ื™ื ื”ืืœื” ื•ื ืฉืชืžืฉ ื‘ืงื™ื‘ื•ืฅ k-means ื›ื“ื™ ืœื’ืœื•ืช ืงื‘ื•ืฆื•ืช ื‘ื ืชื•ื ื™ื ื”ืืœื” ืฉื ืจืื” ื›ื™ ื—ื•ืคืคื•ืช ื‘ื“ืจื›ื™ื ืžืขื ื™ื™ื ื•ืช.
---
## ๐Ÿš€ืืชื’ืจ
ื‘ื”ื›ื ื” ืœืฉื™ืขื•ืจ ื”ื‘ื, ืฆื•ืจ ืชืจืฉื™ื ืขืœ ืืœื’ื•ืจื™ืชืžื™ ื”ืงื™ื‘ื•ืฅ ื”ืฉื•ื ื™ื ืฉืชื•ื›ืœ ืœื’ืœื•ืช ื•ืœื”ืฉืชืžืฉ ื‘ื”ื ื‘ืกื‘ื™ื‘ืช ื™ื™ืฆื•ืจ. ืื™ืœื• ืกื•ื’ื™ ื‘ืขื™ื•ืช ื”ืงื™ื‘ื•ืฅ ืžื ืกื” ืœืคืชื•ืจ?
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ืœืคื ื™ ืฉืชื™ื™ืฉื ืืœื’ื•ืจื™ืชืžื™ ืงื™ื‘ื•ืฅ, ื›ืคื™ ืฉืœืžื“ื ื•, ื–ื” ืจืขื™ื•ืŸ ื˜ื•ื‘ ืœื”ื‘ื™ืŸ ืืช ื˜ื‘ืข ืžืื’ืจ ื”ื ืชื•ื ื™ื ืฉืœืš. ืงืจื ืขื•ื“ ืขืœ ื”ื ื•ืฉื [ื›ืืŸ](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html)
[ืžืืžืจ ืžื•ืขื™ืœ ื–ื”](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/) ืขื•ื‘ืจ ืขืœ ื”ื“ืจื›ื™ื ื”ืฉื•ื ื•ืช ืฉื‘ื”ืŸ ืืœื’ื•ืจื™ืชืžื™ ืงื™ื‘ื•ืฅ ืฉื•ื ื™ื ืžืชื ื”ื’ื™ื, ื‘ื”ืชื—ืฉื‘ ื‘ืฆื•ืจื•ืช ื ืชื•ื ื™ื ืฉื•ื ื•ืช.
## ืžืฉื™ืžื”
[ื—ืงืจ ื•ื™ื–ื•ืืœื™ื–ืฆื™ื•ืช ืื—ืจื•ืช ืขื‘ื•ืจ ืงื™ื‘ื•ืฅ](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "589fa015a5e7d9e67bd629f7d47b53de",
"translation_date": "2025-09-05T19:15:59+00:00",
"source_file": "5-Clustering/1-Visualize/assignment.md",
"language_code": "he"
}
-->
# ื—ืงืจ ื•ื™ื–ื•ืืœื™ื–ืฆื™ื•ืช ืื—ืจื•ืช ืขื‘ื•ืจ ืืฉื›ื•ืœื•ืช
## ื”ื•ืจืื•ืช
ื‘ืฉื™ืขื•ืจ ื–ื”, ืขื‘ื“ืช ืขื ื›ืžื” ื˜ื›ื ื™ืงื•ืช ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ื›ื“ื™ ืœื”ื‘ื™ืŸ ื›ื™ืฆื“ ืœืฉืจื˜ื˜ ืืช ื”ื ืชื•ื ื™ื ืฉืœืš ื›ื”ื›ื ื” ืœืืฉื›ื•ืœื•ืช. ื’ืจืคื™ื ืคื™ื–ื•ืจื™ื™ื (Scatterplots), ื‘ืžื™ื•ื—ื“, ืฉื™ืžื•ืฉื™ื™ื ืœืžืฆื™ืืช ืงื‘ื•ืฆื•ืช ืฉืœ ืื•ื‘ื™ื™ืงื˜ื™ื. ื—ืงื•ืจ ื“ืจื›ื™ื ืฉื•ื ื•ืช ื•ืกืคืจื™ื•ืช ืฉื•ื ื•ืช ืœื™ืฆื™ืจืช ื’ืจืคื™ื ืคื™ื–ื•ืจื™ื™ื ื•ืชืขื“ ืืช ืขื‘ื•ื“ืชืš ื‘ืžื—ื‘ืจืช. ืชื•ื›ืœ ืœื”ืฉืชืžืฉ ื‘ื ืชื•ื ื™ื ืžื”ืฉื™ืขื•ืจ ื”ื–ื”, ืฉื™ืขื•ืจื™ื ืื—ืจื™ื, ืื• ื ืชื•ื ื™ื ืฉืชืžืฆื ื‘ืขืฆืžืš (ืขื ื–ืืช, ืื ื ืฆื™ื™ืŸ ืืช ืžืงื•ืจื ื‘ืžื—ื‘ืจืช ืฉืœืš). ืฉืจื˜ื˜ ื ืชื•ื ื™ื ื‘ืืžืฆืขื•ืช ื’ืจืคื™ื ืคื™ื–ื•ืจื™ื™ื ื•ื”ืกื‘ืจ ืžื” ื’ื™ืœื™ืช.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ------------------------------------------------------------ | ------------------------------------------------------------------------------------ | ---------------------------- |
| | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ืขื ื—ืžื™ืฉื” ื’ืจืคื™ื ืคื™ื–ื•ืจื™ื™ื ืžืชื•ืขื“ื™ื ื”ื™ื˜ื‘ | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ืขื ืคื—ื•ืช ืžื—ืžื™ืฉื” ื’ืจืคื™ื ืคื™ื–ื•ืจื™ื™ื ื•ื”ื™ื ืคื—ื•ืช ืžืชื•ืขื“ืช ื”ื™ื˜ื‘ | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ืœื ืฉืœืžื” |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T19:16:28+00:00",
"source_file": "5-Clustering/1-Visualize/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,261 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "7cdd17338d9bbd7e2171c2cd462eb081",
"translation_date": "2025-09-05T19:17:05+00:00",
"source_file": "5-Clustering/2-K-Means/README.md",
"language_code": "he"
}
-->
# ืืฉื›ื•ืœื•ืช K-Means
## [ืžื‘ื—ืŸ ืžืงื“ื™ื](https://ff-quizzes.netlify.app/en/ml/)
ื‘ืฉื™ืขื•ืจ ื”ื–ื” ืชืœืžื“ื• ื›ื™ืฆื“ ืœื™ืฆื•ืจ ืืฉื›ื•ืœื•ืช ื‘ืืžืฆืขื•ืช Scikit-learn ื•ืกื˜ ื”ื ืชื•ื ื™ื ืฉืœ ืžื•ื–ื™ืงื” ื ื™ื’ืจื™ืช ืฉื™ื™ื‘ืืชื ืงื•ื“ื ืœื›ืŸ. ื ื›ืกื” ืืช ื”ื™ืกื•ื“ื•ืช ืฉืœ K-Means ืœืฆื•ืจืš ืืฉื›ื•ืœื•ืช. ื–ื›ืจื•, ื›ืคื™ ืฉืœืžื“ืชื ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื, ื™ืฉื ืŸ ื“ืจื›ื™ื ืจื‘ื•ืช ืœืขื‘ื•ื“ ืขื ืืฉื›ื•ืœื•ืช, ื•ื”ืฉื™ื˜ื” ืฉืชื‘ื—ืจื• ืชืœื•ื™ื” ื‘ื ืชื•ื ื™ื ืฉืœื›ื. ื ื ืกื” ืืช K-Means ืžื›ื™ื•ื•ืŸ ืฉื–ื• ื˜ื›ื ื™ืงืช ื”ืืฉื›ื•ืœื•ืช ื”ื ืคื•ืฆื” ื‘ื™ื•ืชืจ. ื‘ื•ืื• ื ืชื—ื™ืœ!
ืžื•ื ื—ื™ื ืฉืชืœืžื“ื• ืขืœื™ื”ื:
- ืฆื™ื•ืŸ ืกื™ืœื•ืื˜
- ืฉื™ื˜ืช ื”ืžืจืคืง
- ืื™ื ืจืฆื™ื”
- ืฉื•ื ื•ืช
## ืžื‘ื•ื
[K-Means Clustering](https://wikipedia.org/wiki/K-means_clustering) ื”ื™ื ืฉื™ื˜ื” ืฉืžืงื•ืจื” ื‘ืชื—ื•ื ืขื™ื‘ื•ื“ ื”ืื•ืชื•ืช. ื”ื™ื ืžืฉืžืฉืช ืœื—ืœื•ืงื” ื•ืงื™ื‘ื•ืฅ ืงื‘ื•ืฆื•ืช ื ืชื•ื ื™ื ืœ-'k' ืืฉื›ื•ืœื•ืช ื‘ืืžืฆืขื•ืช ืกื“ืจืช ืชืฆืคื™ื•ืช. ื›ืœ ืชืฆืคื™ืช ืคื•ืขืœืช ืœืงื™ื‘ื•ืฅ ื ืงื•ื“ืช ื ืชื•ื ื™ื ื ืชื•ื ื” ื”ืงืจื•ื‘ื” ื‘ื™ื•ืชืจ ืœ-'ืžืžื•ืฆืข' ืฉืœื”, ืื• ืœื ืงื•ื“ืช ื”ืžืจื›ื– ืฉืœ ื”ืืฉื›ื•ืœ.
ื ื™ืชืŸ ืœื”ืžื—ื™ืฉ ืืช ื”ืืฉื›ื•ืœื•ืช ื›-[ื“ื™ืื’ืจืžื•ืช ื•ื•ืจื•ื ื•ื™](https://wikipedia.org/wiki/Voronoi_diagram), ื”ื›ื•ืœืœื•ืช ื ืงื•ื“ื” (ืื• 'ื–ืจืข') ื•ื”ืื–ื•ืจ ื”ืžืชืื™ื ืœื”.
![ื“ื™ืื’ืจืžืช ื•ื•ืจื•ื ื•ื™](../../../../5-Clustering/2-K-Means/images/voronoi.png)
> ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
ืชื”ืœื™ืš ื”ืืฉื›ื•ืœื•ืช ืฉืœ K-Means [ืžืชื‘ืฆืข ื‘ืฉืœื•ืฉื” ืฉืœื‘ื™ื](https://scikit-learn.org/stable/modules/clustering.html#k-means):
1. ื”ืืœื’ื•ืจื™ืชื ื‘ื•ื—ืจ ืžืกืคืจ ื ืงื•ื“ื•ืช ืžืจื›ื–ื™ื•ืช (k) ืขืœ ื™ื“ื™ ื“ื’ื™ืžื” ืžืชื•ืš ืกื˜ ื”ื ืชื•ื ื™ื. ืœืื—ืจ ืžื›ืŸ ื”ื•ื ืžื‘ืฆืข ืœื•ืœืื”:
1. ื”ื•ื ืžืงืฆื” ื›ืœ ื“ื’ื™ืžื” ืœื ืงื•ื“ืช ื”ืžืจื›ื– ื”ืงืจื•ื‘ื” ื‘ื™ื•ืชืจ.
2. ื”ื•ื ื™ื•ืฆืจ ื ืงื•ื“ื•ืช ืžืจื›ื–ื™ื•ืช ื—ื“ืฉื•ืช ืขืœ ื™ื“ื™ ื—ื™ืฉื•ื‘ ื”ืžืžื•ืฆืข ืฉืœ ื›ืœ ื”ื“ื’ื™ืžื•ืช ืฉื”ื•ืงืฆื• ืœื ืงื•ื“ื•ืช ื”ืžืจื›ื–ื™ื•ืช ื”ืงื•ื“ืžื•ืช.
3. ืœืื—ืจ ืžื›ืŸ, ื”ื•ื ืžื—ืฉื‘ ืืช ื”ื”ื‘ื“ืœ ื‘ื™ืŸ ื”ื ืงื•ื“ื•ืช ื”ืžืจื›ื–ื™ื•ืช ื”ื—ื“ืฉื•ืช ื•ื”ื™ืฉื ื•ืช ื•ื—ื•ื–ืจ ืขืœ ื”ืชื”ืœื™ืš ืขื“ ืฉื”ื ืงื•ื“ื•ืช ื”ืžืจื›ื–ื™ื•ืช ืžืชื™ื™ืฆื‘ื•ืช.
ื—ื™ืกืจื•ืŸ ืื—ื“ ื‘ืฉื™ืžื•ืฉ ื‘-K-Means ื”ื•ื ื”ืฆื•ืจืš ืœืงื‘ื•ืข ืืช 'k', ื›ืœื•ืžืจ ืืช ืžืกืคืจ ื”ื ืงื•ื“ื•ืช ื”ืžืจื›ื–ื™ื•ืช. ืœืžืจื‘ื” ื”ืžื–ืœ, ืฉื™ื˜ืช ื”'ืžืจืคืง' ืขื•ื–ืจืช ืœื”ืขืจื™ืš ืขืจืš ื”ืชื—ืœืชื™ ื˜ื•ื‘ ืขื‘ื•ืจ 'k'. ืชื ืกื• ืืช ื–ื” ืขื•ื“ ืžืขื˜.
## ื“ืจื™ืฉื•ืช ืžืงื“ื™ืžื•ืช
ืชืขื‘ื“ื• ื‘ืงื•ื‘ืฅ [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/notebook.ipynb) ืฉืœ ื”ืฉื™ืขื•ืจ ื”ื–ื”, ื”ื›ื•ืœืœ ืืช ื™ื™ื‘ื•ื ื”ื ืชื•ื ื™ื ื•ื”ื ื™ืงื•ื™ ื”ืจืืฉื•ื ื™ ืฉื‘ื™ืฆืขืชื ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื.
## ืชืจื’ื™ืœ - ื”ื›ื ื”
ื ืชื—ื™ืœ ื‘ื”ืกืชื›ืœื•ืช ื ื•ืกืคืช ืขืœ ื ืชื•ื ื™ ื”ืฉื™ืจื™ื.
1. ืฆืจื• ืชืจืฉื™ื ืงื•ืคืกื” (boxplot) ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`boxplot()` ืขื‘ื•ืจ ื›ืœ ืขืžื•ื“ื”:
```python
plt.figure(figsize=(20,20), dpi=200)
plt.subplot(4,3,1)
sns.boxplot(x = 'popularity', data = df)
plt.subplot(4,3,2)
sns.boxplot(x = 'acousticness', data = df)
plt.subplot(4,3,3)
sns.boxplot(x = 'energy', data = df)
plt.subplot(4,3,4)
sns.boxplot(x = 'instrumentalness', data = df)
plt.subplot(4,3,5)
sns.boxplot(x = 'liveness', data = df)
plt.subplot(4,3,6)
sns.boxplot(x = 'loudness', data = df)
plt.subplot(4,3,7)
sns.boxplot(x = 'speechiness', data = df)
plt.subplot(4,3,8)
sns.boxplot(x = 'tempo', data = df)
plt.subplot(4,3,9)
sns.boxplot(x = 'time_signature', data = df)
plt.subplot(4,3,10)
sns.boxplot(x = 'danceability', data = df)
plt.subplot(4,3,11)
sns.boxplot(x = 'length', data = df)
plt.subplot(4,3,12)
sns.boxplot(x = 'release_date', data = df)
```
ื”ื ืชื•ื ื™ื ื”ืืœื” ืžืขื˜ ืจื•ืขืฉื™ื: ืขืœ ื™ื“ื™ ื”ืชื‘ื•ื ื ื•ืช ื‘ื›ืœ ืขืžื•ื“ื” ื›ืชืจืฉื™ื ืงื•ืคืกื”, ืชื•ื›ืœื• ืœืจืื•ืช ื—ืจื™ื’ื•ืช.
![ื—ืจื™ื’ื•ืช](../../../../5-Clustering/2-K-Means/images/boxplots.png)
ืชื•ื›ืœื• ืœืขื‘ื•ืจ ืขืœ ืกื˜ ื”ื ืชื•ื ื™ื ื•ืœื”ืกื™ืจ ืืช ื”ื—ืจื™ื’ื•ืช ื”ืœืœื•, ืืš ื–ื” ื™ื”ืคื•ืš ืืช ื”ื ืชื•ื ื™ื ืœืžื™ื ื™ืžืœื™ื™ื ืœืžื“ื™.
1. ืœืขืช ืขืชื”, ื‘ื—ืจื• ืื™ืœื• ืขืžื•ื“ื•ืช ืชืฉืชืžืฉื• ื‘ื”ืŸ ืœืชืจื’ื™ืœ ื”ืืฉื›ื•ืœื•ืช ืฉืœื›ื. ื‘ื—ืจื• ืขืžื•ื“ื•ืช ืขื ื˜ื•ื•ื—ื™ื ื“ื•ืžื™ื ื•ืงื•ื“ื“ื• ืืช ื”ืขืžื•ื“ื” `artist_top_genre` ื›ื ืชื•ื ื™ื ืžืกืคืจื™ื™ื:
```python
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')]
y = df['artist_top_genre']
X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])
y = le.transform(y)
```
1. ืขื›ืฉื™ื• ืขืœื™ื›ื ืœื‘ื—ื•ืจ ื›ืžื” ืืฉื›ื•ืœื•ืช ืœืžืงื“. ืืชื ื™ื•ื“ืขื™ื ืฉื™ืฉ 3 ื–'ืื ืจื™ื ืฉืœ ืฉื™ืจื™ื ืฉื–ื™ื”ื™ื ื• ืžืชื•ืš ืกื˜ ื”ื ืชื•ื ื™ื, ืื– ื‘ื•ืื• ื ื ืกื” 3:
```python
from sklearn.cluster import KMeans
nclusters = 3
seed = 0
km = KMeans(n_clusters=nclusters, random_state=seed)
km.fit(X)
# Predict the cluster for each data point
y_cluster_kmeans = km.predict(X)
y_cluster_kmeans
```
ืืชื ืจื•ืื™ื ืžืขืจืš ืžื•ื“ืคืก ืขื ืืฉื›ื•ืœื•ืช ื—ื–ื•ื™ื™ื (0, 1 ืื• 2) ืขื‘ื•ืจ ื›ืœ ืฉื•ืจื” ืฉืœ ืžืกื’ืจืช ื”ื ืชื•ื ื™ื.
1. ื”ืฉืชืžืฉื• ื‘ืžืขืจืš ื”ื–ื” ื›ื“ื™ ืœื—ืฉื‘ 'ืฆื™ื•ืŸ ืกื™ืœื•ืื˜':
```python
from sklearn import metrics
score = metrics.silhouette_score(X, y_cluster_kmeans)
score
```
## ืฆื™ื•ืŸ ืกื™ืœื•ืื˜
ื—ืคืฉื• ืฆื™ื•ืŸ ืกื™ืœื•ืื˜ ืงืจื•ื‘ ืœ-1. ื”ืฆื™ื•ืŸ ื”ื–ื” ื ืข ื‘ื™ืŸ -1 ืœ-1, ื•ืื ื”ืฆื™ื•ืŸ ื”ื•ื 1, ื”ืืฉื›ื•ืœ ืฆืคื•ืฃ ื•ืžื•ืคืจื“ ื”ื™ื˜ื‘ ืžืืฉื›ื•ืœื•ืช ืื—ืจื™ื. ืขืจืš ืงืจื•ื‘ ืœ-0 ืžื™ื™ืฆื’ ืืฉื›ื•ืœื•ืช ื—ื•ืคืคื™ื ืขื ื“ื’ื™ืžื•ืช ืงืจื•ื‘ื•ืช ืžืื•ื“ ืœื’ื‘ื•ืœ ื”ื”ื—ืœื˜ื” ืฉืœ ื”ืืฉื›ื•ืœื•ืช ื”ืฉื›ื ื™ื. [(ืžืงื•ืจ)](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam)
ื”ืฆื™ื•ืŸ ืฉืœื ื• ื”ื•ื **0.53**, ื›ืœื•ืžืจ ื‘ืืžืฆืข. ื–ื” ืžืฆื‘ื™ืข ืขืœ ื›ืš ืฉื”ื ืชื•ื ื™ื ืฉืœื ื• ืœื ืžืชืื™ืžื™ื ื‘ืžื™ื•ื—ื“ ืœืกื•ื’ ื–ื” ืฉืœ ืืฉื›ื•ืœื•ืช, ืื‘ืœ ื‘ื•ืื• ื ืžืฉื™ืš.
### ืชืจื’ื™ืœ - ื‘ื ื™ื™ืช ืžื•ื“ืœ
1. ื™ื™ื‘ืื• ืืช `KMeans` ื•ื”ืชื—ื™ืœื• ืืช ืชื”ืœื™ืš ื”ืืฉื›ื•ืœื•ืช.
```python
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
kmeans.fit(X)
wcss.append(kmeans.inertia_)
```
ื™ืฉ ื›ืืŸ ื›ืžื” ื—ืœืงื™ื ืฉืžืฆื“ื™ืงื™ื ื”ืกื‘ืจ.
> ๐ŸŽ“ ื˜ื•ื•ื—: ืืœื• ื”ืŸ ื”ืื™ื˜ืจืฆื™ื•ืช ืฉืœ ืชื”ืœื™ืš ื”ืืฉื›ื•ืœื•ืช.
> ๐ŸŽ“ random_state: "ืงื•ื‘ืข ืืช ื™ืฆื™ืจืช ื”ืžืกืคืจื™ื ื”ืืงืจืื™ื™ื ืขื‘ื•ืจ ืืชื—ื•ืœ ื”ื ืงื•ื“ื•ืช ื”ืžืจื›ื–ื™ื•ืช." [ืžืงื•ืจ](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans)
> ๐ŸŽ“ WCSS: "ืกื›ื•ื ื”ืจื™ื‘ื•ืขื™ื ื‘ืชื•ืš ื”ืืฉื›ื•ืœื•ืช" ืžื•ื“ื“ ืืช ื”ืžืจื—ืง ื”ืžืžื•ืฆืข ื‘ืจื™ื‘ื•ืข ืฉืœ ื›ืœ ื”ื ืงื•ื“ื•ืช ื‘ืชื•ืš ืืฉื›ื•ืœ ืœื ืงื•ื“ืช ื”ืžืจื›ื– ืฉืœ ื”ืืฉื›ื•ืœ. [ืžืงื•ืจ](https://medium.com/@ODSC/unsupervised-learning-evaluating-clusters-bd47eed175ce).
> ๐ŸŽ“ ืื™ื ืจืฆื™ื”: ืืœื’ื•ืจื™ืชืžื™ K-Means ืžื ืกื™ื ืœื‘ื—ื•ืจ ื ืงื•ื“ื•ืช ืžืจื›ื–ื™ื•ืช ื›ื“ื™ ืœืžื–ืขืจ ืืช 'ื”ืื™ื ืจืฆื™ื”', "ืžื“ื“ ืœื›ืžื” ื”ืืฉื›ื•ืœื•ืช ืงื•ื”ืจื ื˜ื™ื™ื ืคื ื™ืžื™ืช." [ืžืงื•ืจ](https://scikit-learn.org/stable/modules/clustering.html). ื”ืขืจืš ื ื•ืกืฃ ืœืžืฉืชื ื” wcss ื‘ื›ืœ ืื™ื˜ืจืฆื™ื”.
> ๐ŸŽ“ k-means++: ื‘-[Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html#k-means) ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืื•ืคื˜ื™ืžื™ื–ืฆื™ื” 'k-means++', ืฉืžืืชื—ืœืช ืืช ื”ื ืงื•ื“ื•ืช ื”ืžืจื›ื–ื™ื•ืช ื›ืš ืฉื™ื”ื™ื• (ื‘ื“ืจืš ื›ืœืœ) ืจื—ื•ืงื•ืช ื–ื• ืžื–ื•, ืžื” ืฉืžื•ื‘ื™ืœ ืœืชื•ืฆืื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ ืžืืชื—ื•ืœ ืืงืจืื™.
### ืฉื™ื˜ืช ื”ืžืจืคืง
ืงื•ื“ื ืœื›ืŸ ื”ืกืงืชื, ืžื›ื™ื•ื•ืŸ ืฉืžื™ืงื“ืชื 3 ื–'ืื ืจื™ื ืฉืœ ืฉื™ืจื™ื, ืฉืขืœื™ื›ื ืœื‘ื—ื•ืจ 3 ืืฉื›ื•ืœื•ืช. ืื‘ืœ ื”ืื ื–ื” ื‘ืืžืช ื”ืžืงืจื”?
1. ื”ืฉืชืžืฉื• ื‘ืฉื™ื˜ืช ื”'ืžืจืคืง' ื›ื“ื™ ืœื•ื•ื“ื.
```python
plt.figure(figsize=(10,5))
sns.lineplot(x=range(1, 11), y=wcss, marker='o', color='red')
plt.title('Elbow')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```
ื”ืฉืชืžืฉื• ื‘ืžืฉืชื ื” `wcss` ืฉื‘ื ื™ืชื ื‘ืฉืœื‘ ื”ืงื•ื“ื ื›ื“ื™ ืœื™ืฆื•ืจ ืชืจืฉื™ื ืฉืžืจืื” ื”ื™ื›ืŸ ื”'ื›ื™ืคื•ืฃ' ื‘ืžืจืคืง, ืฉืžืฆื‘ื™ืข ืขืœ ืžืกืคืจ ื”ืืฉื›ื•ืœื•ืช ื”ืื•ืคื˜ื™ืžืœื™. ืื•ืœื™ ื–ื” **ื‘ืืžืช** 3!
![ืฉื™ื˜ืช ื”ืžืจืคืง](../../../../5-Clustering/2-K-Means/images/elbow.png)
## ืชืจื’ื™ืœ - ื”ืฆื’ืช ื”ืืฉื›ื•ืœื•ืช
1. ื ืกื• ืืช ื”ืชื”ืœื™ืš ืฉื•ื‘, ื”ืคืขื ืขื ืฉืœื•ืฉื” ืืฉื›ื•ืœื•ืช, ื•ื”ืฆื™ื’ื• ืืช ื”ืืฉื›ื•ืœื•ืช ื›ืชืจืฉื™ื ืคื™ื–ื•ืจ:
```python
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters = 3)
kmeans.fit(X)
labels = kmeans.predict(X)
plt.scatter(df['popularity'],df['danceability'],c = labels)
plt.xlabel('popularity')
plt.ylabel('danceability')
plt.show()
```
1. ื‘ื“ืงื• ืืช ื“ื™ื•ืง ื”ืžื•ื“ืœ:
```python
labels = kmeans.labels_
correct_labels = sum(y == labels)
print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size))
print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))
```
ื“ื™ื•ืง ื”ืžื•ื“ืœ ื”ื–ื” ืœื ื˜ื•ื‘ ื‘ืžื™ื•ื—ื“, ื•ืฆื•ืจืช ื”ืืฉื›ื•ืœื•ืช ื ื•ืชื ืช ืœื›ื ืจืžื– ืžื“ื•ืข.
![ืืฉื›ื•ืœื•ืช](../../../../5-Clustering/2-K-Means/images/clusters.png)
ื”ื ืชื•ื ื™ื ื”ืืœื” ืœื ืžืื•ื–ื ื™ื ืžืกืคื™ืง, ืœื ืžืชื•ืืžื™ื ืžืกืคื™ืง ื•ื™ืฉ ื™ื•ืชืจ ืžื“ื™ ืฉื•ื ื•ืช ื‘ื™ืŸ ืขืจื›ื™ ื”ืขืžื•ื“ื•ืช ื›ื“ื™ ืœื™ืฆื•ืจ ืืฉื›ื•ืœื•ืช ื˜ื•ื‘ื™ื. ืœืžืขืฉื”, ื”ืืฉื›ื•ืœื•ืช ืฉื ื•ืฆืจื™ื ื›ื ืจืื” ืžื•ืฉืคืขื™ื ืื• ืžื•ื˜ื™ื ืžืื•ื“ ืขืœ ื™ื“ื™ ืฉืœื•ืฉ ืงื˜ื’ื•ืจื™ื•ืช ื”ื–'ืื ืจื™ื ืฉื”ื’ื“ืจื ื• ืงื•ื“ื. ื–ื” ื”ื™ื” ืชื”ืœื™ืš ืœืžื™ื“ื”!
ื‘ืชื™ืขื•ื“ ืฉืœ Scikit-learn, ืชื•ื›ืœื• ืœืจืื•ืช ืฉืžื•ื“ืœ ื›ืžื• ื–ื”, ืขื ืืฉื›ื•ืœื•ืช ืฉืื™ื ื ืžื•ื’ื“ืจื™ื ื”ื™ื˜ื‘, ืกื•ื‘ืœ ืžื‘ืขื™ื” ืฉืœ 'ืฉื•ื ื•ืช':
![ืžื•ื“ืœื™ื ื‘ืขื™ื™ืชื™ื™ื](../../../../5-Clustering/2-K-Means/images/problems.png)
> ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืชื•ืš Scikit-learn
## ืฉื•ื ื•ืช
ืฉื•ื ื•ืช ืžื•ื’ื“ืจืช ื›-"ื”ืžืžื•ืฆืข ืฉืœ ื”ืจื™ื‘ื•ืขื™ื ืฉืœ ื”ื”ื‘ื“ืœื™ื ืžื”ืžืžื•ืฆืข" [(ืžืงื•ืจ)](https://www.mathsisfun.com/data/standard-deviation.html). ื‘ื”ืงืฉืจ ืฉืœ ื‘ืขื™ื™ืช ื”ืืฉื›ื•ืœื•ืช ื”ื–ื•, ื”ื™ื ืžืชื™ื™ื—ืกืช ืœื ืชื•ื ื™ื ืฉื‘ื”ื ื”ืžืกืคืจื™ื ื‘ืกื˜ ื”ื ืชื•ื ื™ื ื ื•ื˜ื™ื ืœืกื˜ื•ืช ื™ื•ืชืจ ืžื“ื™ ืžื”ืžืžื•ืฆืข.
โœ… ื–ื”ื• ืจื’ืข ืžืฆื•ื™ืŸ ืœื—ืฉื•ื‘ ืขืœ ื›ืœ ื”ื“ืจื›ื™ื ืฉื‘ื”ืŸ ืชื•ื›ืœื• ืœืชืงืŸ ืืช ื”ื‘ืขื™ื” ื”ื–ื•. ืœืฉืคืจ ืืช ื”ื ืชื•ื ื™ื ืขื•ื“ ืงืฆืช? ืœื”ืฉืชืžืฉ ื‘ืขืžื•ื“ื•ืช ืื—ืจื•ืช? ืœื”ืฉืชืžืฉ ื‘ืืœื’ื•ืจื™ืชื ืื—ืจ? ืจืžื–: ื ืกื• [ืœืฉื ื•ืช ืืช ืงื ื” ื”ืžื™ื“ื” ืฉืœ ื”ื ืชื•ื ื™ื ืฉืœื›ื](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/) ื›ื“ื™ ืœื ืจืžืœ ืื•ืชื ื•ืœื‘ื“ื•ืง ืขืžื•ื“ื•ืช ืื—ืจื•ืช.
> ื ืกื• ืืช '[ืžื—ืฉื‘ื•ืŸ ื”ืฉื•ื ื•ืช](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)' ื›ื“ื™ ืœื”ื‘ื™ืŸ ืืช ื”ืžื•ืฉื’ ืงืฆืช ื™ื•ืชืจ.
---
## ๐Ÿš€ืืชื’ืจ
ื‘ืœื• ื–ืžืŸ ืขื ื”ืžื—ื‘ืจืช ื”ื–ื•, ืฉื ื• ืคืจืžื˜ืจื™ื. ื”ืื ืชื•ื›ืœื• ืœืฉืคืจ ืืช ื“ื™ื•ืง ื”ืžื•ื“ืœ ืขืœ ื™ื“ื™ ื ื™ืงื•ื™ ื”ื ืชื•ื ื™ื ื™ื•ืชืจ (ืœืžืฉืœ ื”ืกืจืช ื—ืจื™ื’ื•ืช)? ืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ืžืฉืงืœื™ื ื›ื“ื™ ืœืชืช ืžืฉืงืœ ืจื‘ ื™ื•ืชืจ ืœื“ื’ื™ืžื•ืช ื ืชื•ื ื™ื ืžืกื•ื™ืžื•ืช. ืžื” ืขื•ื“ ืชื•ื›ืœื• ืœืขืฉื•ืช ื›ื“ื™ ืœื™ืฆื•ืจ ืืฉื›ื•ืœื•ืช ื˜ื•ื‘ื™ื ื™ื•ืชืจ?
ืจืžื–: ื ืกื• ืœืฉื ื•ืช ืืช ืงื ื” ื”ืžื™ื“ื” ืฉืœ ื”ื ืชื•ื ื™ื ืฉืœื›ื. ื™ืฉ ืงื•ื“ ืขื ื”ืขืจื•ืช ื‘ืžื—ื‘ืจืช ืฉืžื•ืกื™ืฃ ืฉื™ื ื•ื™ ืงื ื” ืžื™ื“ื” ืกื˜ื ื“ืจื˜ื™ ื›ื“ื™ ืœื’ืจื•ื ืœืขืžื•ื“ื•ืช ื”ื ืชื•ื ื™ื ืœื”ื™ืจืื•ืช ื“ื•ืžื•ืช ื™ื•ืชืจ ื–ื• ืœื–ื• ืžื‘ื—ื™ื ืช ื˜ื•ื•ื—. ืชื’ืœื• ืฉื‘ืขื•ื“ ืฉืฆื™ื•ืŸ ื”ืกื™ืœื•ืื˜ ื™ื•ืจื“, ื”'ื›ื™ืคื•ืฃ' ื‘ืชืจืฉื™ื ื”ืžืจืคืง ืžืชืžืชืŸ. ื–ืืช ืžื›ื™ื•ื•ืŸ ืฉื”ืฉืืจืช ื”ื ืชื•ื ื™ื ืœืœื ืฉื™ื ื•ื™ ืงื ื” ืžื™ื“ื” ืžืืคืฉืจืช ืœื ืชื•ื ื™ื ืขื ืคื—ื•ืช ืฉื•ื ื•ืช ืœืฉืืช ืžืฉืงืœ ืจื‘ ื™ื•ืชืจ. ืงืจืื• ืขื•ื“ ืขืœ ื”ื‘ืขื™ื” ื”ื–ื• [ื›ืืŸ](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226).
## [ืžื‘ื—ืŸ ืžืกื›ื](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื”ืกืชื›ืœื• ืขืœ ืกื™ืžื•ืœื˜ื•ืจ K-Means [ื›ืžื• ื–ื”](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/). ืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ื›ืœื™ ื”ื–ื” ื›ื“ื™ ืœื”ืžื—ื™ืฉ ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ืœื“ื•ื’ืžื” ื•ืœืงื‘ื•ืข ืืช ื”ื ืงื•ื“ื•ืช ื”ืžืจื›ื–ื™ื•ืช ืฉืœื”ืŸ. ืชื•ื›ืœื• ืœืขืจื•ืš ืืช ืืงืจืื™ื•ืช ื”ื ืชื•ื ื™ื, ืžืกืคืจื™ ื”ืืฉื›ื•ืœื•ืช ื•ืžืกืคืจื™ ื”ื ืงื•ื“ื•ืช ื”ืžืจื›ื–ื™ื•ืช. ื”ืื ื–ื” ืขื•ื–ืจ ืœื›ื ืœืงื‘ืœ ืžื•ืฉื’ ื›ื™ืฆื“ ื ื™ืชืŸ ืœืงื‘ืฅ ืืช ื”ื ืชื•ื ื™ื?
ื‘ื ื•ืกืฃ, ื”ืกืชื›ืœื• ืขืœ [ื”ืžืกืžืš ื”ื–ื” ืขืœ K-Means](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html) ืžืกื˜ื ืคื•ืจื“.
## ืžืฉื™ืžื”
[ื ืกื• ืฉื™ื˜ื•ืช ืืฉื›ื•ืœื•ืช ืฉื•ื ื•ืช](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "b8e17eff34ad1680eba2a5d3cf9ffc41",
"translation_date": "2025-09-05T19:19:06+00:00",
"source_file": "5-Clustering/2-K-Means/assignment.md",
"language_code": "he"
}
-->
# ื ืกื• ืฉื™ื˜ื•ืช ืืฉื›ื•ืœื•ืช ืฉื•ื ื•ืช
## ื”ื•ืจืื•ืช
ื‘ืฉื™ืขื•ืจ ื–ื” ืœืžื“ืชื ืขืœ ืืฉื›ื•ืœื•ืช K-Means. ืœืคืขืžื™ื K-Means ืื™ื ื• ืžืชืื™ื ืœื ืชื•ื ื™ื ืฉืœื›ื. ืฆืจื• ืžื—ื‘ืจืช ืชื•ืš ืฉื™ืžื•ืฉ ื‘ื ืชื•ื ื™ื ืžื”ืฉื™ืขื•ืจื™ื ื”ืœืœื• ืื• ืžืžืงื•ืจ ืื—ืจ (ืชื ื• ืงืจื“ื™ื˜ ืœืžืงื•ืจ) ื•ื”ืฆื™ื’ื• ืฉื™ื˜ืช ืืฉื›ื•ืœื•ืช ืฉื•ื ื” ืฉืื™ื ื” ืžืฉืชืžืฉืช ื‘-K-Means. ืžื” ืœืžื“ืชื?
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ------------------------------------------------------------- | ----------------------------------------------------------------- | --------------------------- |
| | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ืขื ืžื•ื“ืœ ืืฉื›ื•ืœื•ืช ืžืชื•ืขื“ ื”ื™ื˜ื‘ | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ืœืœื ืชื™ืขื•ื“ ืžืกืคืง ื•/ืื• ืขื‘ื•ื“ื” ืœื ืžืœืื” | ืžื•ื’ืฉืช ืขื‘ื•ื“ื” ืœื ืžืœืื” |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T19:19:31+00:00",
"source_file": "5-Clustering/2-K-Means/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,42 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "b28a3a4911584062772c537b653ebbc7",
"translation_date": "2025-09-05T19:10:12+00:00",
"source_file": "5-Clustering/README.md",
"language_code": "he"
}
-->
# ืžื•ื“ืœื™ื ืฉืœ ืืฉื›ื•ืœื•ืช ืœืœืžื™ื“ืช ืžื›ื•ื ื”
ืืฉื›ื•ืœื•ืช ื”ื ืžืฉื™ืžื” ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ืฉื‘ื” ืžื—ืคืฉื™ื ืœืžืฆื•ื ืื•ื‘ื™ื™ืงื˜ื™ื ื”ื“ื•ืžื™ื ื–ื” ืœื–ื” ื•ืœื—ื‘ืจ ืื•ืชื ืœืงื‘ื•ืฆื•ืช ื”ื ืงืจืื•ืช ืืฉื›ื•ืœื•ืช. ืžื” ืฉืžื‘ื“ื™ืœ ืืฉื›ื•ืœื•ืช ืžื’ื™ืฉื•ืช ืื—ืจื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื”ื•ื ืฉื”ื“ื‘ืจื™ื ืžืชืจื—ืฉื™ื ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™, ืœืžืขืฉื”, ืืคืฉืจ ืœื•ืžืจ ืฉื–ื” ื”ื”ืคืš ืžืœืžื™ื“ื” ืžื•ื ื—ื™ืช.
## ื ื•ืฉื ืื–ื•ืจื™: ืžื•ื“ืœื™ื ืฉืœ ืืฉื›ื•ืœื•ืช ืœื˜ืขืžื™ ืžื•ื–ื™ืงื” ืฉืœ ืงื”ืœ ื ื™ื’ืจื™ ๐ŸŽง
ื”ืงื”ืœ ื”ืžื’ื•ื•ืŸ ื‘ื ื™ื’ืจื™ื” ืžืชืืคื™ื™ืŸ ื‘ื˜ืขืžื™ ืžื•ื–ื™ืงื” ืžื’ื•ื•ื ื™ื. ื‘ืืžืฆืขื•ืช ื ืชื•ื ื™ื ืฉื ืืกืคื• ืž-Spotify (ื‘ื”ืฉืจืืช [ื”ืžืืžืจ ื”ื–ื”](https://towardsdatascience.com/country-wise-visual-analysis-of-music-taste-using-spotify-api-seaborn-in-python-77f5b749b421)), ื ื‘ื—ืŸ ื›ืžื” ืžื”ืžื•ื–ื™ืงื” ื”ืคื•ืคื•ืœืจื™ืช ื‘ื ื™ื’ืจื™ื”. ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ื” ื›ื•ืœืœ ืžื™ื“ืข ืขืœ ืฆื™ื•ื ื™ 'ืจื™ืงื•ื“ื™ื•ืช', 'ืืงื•ืกื˜ื™ื•ืช', ืขื•ืฆืžืช ืงื•ืœ, 'ื“ื™ื‘ื•ืจื™ื•ืช', ืคื•ืคื•ืœืจื™ื•ืช ื•ืื ืจื’ื™ื” ืฉืœ ืฉื™ืจื™ื ืฉื•ื ื™ื. ื™ื”ื™ื” ืžืขื ื™ื™ืŸ ืœื’ืœื•ืช ื“ืคื•ืกื™ื ื‘ื ืชื•ื ื™ื ื”ืืœื”!
![ืคืœื˜ืช ืชืงืœื™ื˜ื™ื](../../../5-Clustering/images/turntable.jpg)
> ืฆื™ืœื•ื ืžืืช <a href="https://unsplash.com/@marcelalaskoski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Marcela Laskoski</a> ื‘-<a href="https://unsplash.com/s/photos/nigerian-music?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
ื‘ืกื“ืจืช ื”ืฉื™ืขื•ืจื™ื ื”ื–ื•, ืชื’ืœื• ื“ืจื›ื™ื ื—ื“ืฉื•ืช ืœื ืชื— ื ืชื•ื ื™ื ื‘ืืžืฆืขื•ืช ื˜ื›ื ื™ืงื•ืช ืืฉื›ื•ืœื•ืช. ืืฉื›ื•ืœื•ืช ืฉื™ืžื•ืฉื™ื™ื ื‘ืžื™ื•ื—ื“ ื›ืืฉืจ ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืœื›ื ื—ืกืจ ืชื•ื•ื™ื•ืช. ืื ื™ืฉ ืœื• ืชื•ื•ื™ื•ืช, ืื– ื˜ื›ื ื™ืงื•ืช ืกื™ื•ื•ื’ ื›ืžื• ืืœื• ืฉืœืžื“ืชื ื‘ืฉื™ืขื•ืจื™ื ืงื•ื“ืžื™ื ืขืฉื•ื™ื•ืช ืœื”ื™ื•ืช ืžื•ืขื™ืœื•ืช ื™ื•ืชืจ. ืื‘ืœ ื‘ืžืงืจื™ื ืฉื‘ื”ื ืืชื ืžื—ืคืฉื™ื ืœืงื‘ืฅ ื ืชื•ื ื™ื ืœืœื ืชื•ื•ื™ื•ืช, ืืฉื›ื•ืœื•ืช ื”ื ื“ืจืš ืžืฆื•ื™ื ืช ืœื’ืœื•ืช ื“ืคื•ืกื™ื.
> ื™ืฉื ื ื›ืœื™ื ืฉื™ืžื•ืฉื™ื™ื ื‘ืขืœื™ ืงื•ื“ ื ืžื•ืš ืฉื™ื›ื•ืœื™ื ืœืขื–ื•ืจ ืœื›ื ืœืœืžื•ื“ ืœืขื‘ื•ื“ ืขื ืžื•ื“ืœื™ื ืฉืœ ืืฉื›ื•ืœื•ืช. ื ืกื• [Azure ML ืœืžืฉื™ืžื” ื–ื•](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott)
## ืฉื™ืขื•ืจื™ื
1. [ืžื‘ื•ื ืœืืฉื›ื•ืœื•ืช](1-Visualize/README.md)
2. [ืืฉื›ื•ืœื•ืช K-Means](2-K-Means/README.md)
## ืงืจื“ื™ื˜ื™ื
ื”ืฉื™ืขื•ืจื™ื ื”ืœืœื• ื ื›ืชื‘ื• ืขื ๐ŸŽถ ืขืœ ื™ื“ื™ [Jen Looper](https://www.twitter.com/jenlooper) ืขื ื‘ื™ืงื•ืจื•ืช ืžื•ืขื™ืœื•ืช ืžืืช [Rishit Dagli](https://rishit_dagli) ื•-[Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan).
ืžืขืจืš ื”ื ืชื•ื ื™ื [ืฉื™ืจื™ื ื ื™ื’ืจื™ื™ื](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) ื ืœืงื— ืž-Kaggle ื•ื ืืกืฃ ืž-Spotify.
ื“ื•ื’ืžืื•ืช ืฉื™ืžื•ืฉื™ื•ืช ืฉืœ K-Means ืฉืกื™ื™ืขื• ื‘ื™ืฆื™ืจืช ื”ืฉื™ืขื•ืจ ื›ื•ืœืœื•ืช ืืช [ื—ืงื™ืจืช ื”ืื™ืจื™ืก ื”ื–ื•](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering), [ืžื—ื‘ืจืช ืžื‘ื•ื ื–ื•](https://www.kaggle.com/prashant111/k-means-clustering-with-python), ื•ืืช [ื“ื•ื’ืžืช ื”-NGO ื”ื”ื™ืคื•ืชื˜ื™ืช ื”ื–ื•](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering).
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,179 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "1c2ec40cf55c98a028a359c27ef7e45a",
"translation_date": "2025-09-05T20:35:49+00:00",
"source_file": "6-NLP/1-Introduction-to-NLP/README.md",
"language_code": "he"
}
-->
# ืžื‘ื•ื ืœืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช
ื”ืฉื™ืขื•ืจ ื”ื–ื” ืžื›ืกื” ื”ื™ืกื˜ื•ืจื™ื” ืงืฆืจื” ื•ืžื•ืฉื’ื™ื ื—ืฉื•ื‘ื™ื ืฉืœ *ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช*, ืชื—ื•ื ืžืฉื ื” ืฉืœ *ื‘ืœืฉื ื•ืช ื—ื™ืฉื•ื‘ื™ืช*.
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืžื‘ื•ื
NLP, ื›ืคื™ ืฉื”ื•ื ืžื•ื›ืจ ื‘ื“ืจืš ื›ืœืœ, ื”ื•ื ืื—ื“ ื”ืชื—ื•ืžื™ื ื”ื™ื“ื•ืขื™ื ื‘ื™ื•ืชืจ ืฉื‘ื”ื ื ืขืฉื” ืฉื™ืžื•ืฉ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืชื•ื›ื ื•ืช ื™ื™ืฆื•ืจ.
โœ… ื”ืื ืืชื ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ืขืœ ืชื•ื›ื ื” ืฉืืชื ืžืฉืชืžืฉื™ื ื‘ื” ืžื“ื™ ื™ื•ื ื•ืฉื›ื ืจืื” ื™ืฉ ื‘ื” ืฉื™ืœื•ื‘ ืฉืœ NLP? ืžื” ืœื’ื‘ื™ ืชื•ื›ื ื•ืช ืขื™ื‘ื•ื“ ืชืžืœื™ืœื™ื ืื• ืืคืœื™ืงืฆื™ื•ืช ื ื™ื™ื“ื•ืช ืฉืืชื ืžืฉืชืžืฉื™ื ื‘ื”ืŸ ื‘ืื•ืคืŸ ืงื‘ื•ืข?
ืืชื ืชืœืžื“ื• ืขืœ:
- **ื”ืจืขื™ื•ืŸ ืฉืœ ืฉืคื•ืช**. ืื™ืš ืฉืคื•ืช ื”ืชืคืชื—ื• ื•ืžื” ื”ื™ื• ื”ืชื—ื•ืžื™ื ื”ืžืจื›ื–ื™ื™ื ืฉืœ ื”ืžื—ืงืจ.
- **ื”ื’ื“ืจื•ืช ื•ืžื•ืฉื’ื™ื**. ืชืœืžื“ื• ื’ื ื”ื’ื“ืจื•ืช ื•ืžื•ืฉื’ื™ื ืขืœ ืื™ืš ืžื—ืฉื‘ื™ื ืžืขื‘ื“ื™ื ื˜ืงืกื˜, ื›ื•ืœืœ ื ื™ืชื•ื— ืชื—ื‘ื™ืจื™, ื“ืงื“ื•ืง ื•ื–ื™ื”ื•ื™ ืฉืžื•ืช ืขืฆื ื•ืคืขืœื™ื. ื™ืฉื ื ืžืฉื™ืžื•ืช ืงื™ื“ื•ื“ ื‘ืฉื™ืขื•ืจ ื”ื–ื”, ื•ืžื•ืฆื’ื™ื ืžืกืคืจ ืžื•ืฉื’ื™ื ื—ืฉื•ื‘ื™ื ืฉืชืœืžื“ื• ืœืงื•ื“ื“ ื‘ืฉื™ืขื•ืจื™ื ื”ื‘ืื™ื.
## ื‘ืœืฉื ื•ืช ื—ื™ืฉื•ื‘ื™ืช
ื‘ืœืฉื ื•ืช ื—ื™ืฉื•ื‘ื™ืช ื”ื™ื ืชื—ื•ื ืžื—ืงืจ ื•ืคื™ืชื•ื— ืฉื ืžืฉืš ืขืฉืจื•ืช ืฉื ื™ื, ื”ืขื•ืกืง ื‘ืฉืืœื” ื›ื™ืฆื“ ืžื—ืฉื‘ื™ื ื™ื›ื•ืœื™ื ืœืขื‘ื•ื“ ืขื ืฉืคื•ืช, ื•ืืคื™ืœื• ืœื”ื‘ื™ืŸ, ืœืชืจื’ื ื•ืœืชืงืฉืจ ื‘ืืžืฆืขื•ืชืŸ. ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช (NLP) ื”ื•ื ืชื—ื•ื ืงืฉื•ืจ ืฉืžืชืžืงื“ ื‘ืื™ืš ืžื—ืฉื‘ื™ื ื™ื›ื•ืœื™ื ืœืขื‘ื“ ืฉืคื•ืช 'ื˜ื‘ืขื™ื•ืช', ื›ืœื•ืžืจ ืฉืคื•ืช ืื ื•ืฉื™ื•ืช.
### ื“ื•ื’ืžื” - ืชื›ืชื™ื‘ ื‘ื˜ืœืคื•ืŸ
ืื ืื™ ืคืขื ื”ื›ืชื‘ืชื ืœื˜ืœืคื•ืŸ ื‘ืžืงื•ื ืœื”ืงืœื™ื“ ืื• ืฉืืœืชื ืขื•ื–ืจ ื•ื™ืจื˜ื•ืืœื™ ืฉืืœื”, ื”ื“ื™ื‘ื•ืจ ืฉืœื›ื ื”ื•ืžืจ ืœืฆื•ืจืช ื˜ืงืกื˜ ื•ืื– ืขื•ื‘ื“ ืื• *ื ื•ืชื—* ืžื”ืฉืคื” ืฉื‘ื” ื“ื™ื‘ืจืชื. ืžื™ืœื•ืช ื”ืžืคืชื— ืฉื–ื•ื”ื• ืขื•ื‘ื“ื• ืœืคื•ืจืžื˜ ืฉื”ื˜ืœืคื•ืŸ ืื• ื”ืขื•ื–ืจ ื”ื•ื•ื™ืจื˜ื•ืืœื™ ื™ื›ืœื• ืœื”ื‘ื™ืŸ ื•ืœืคืขื•ืœ ืœืคื™ื•.
![ื”ื‘ื ื”](../../../../6-NLP/1-Introduction-to-NLP/images/comprehension.png)
> ื”ื‘ื ื” ื‘ืœืฉื ื™ืช ืืžื™ืชื™ืช ื”ื™ื ืงืฉื”! ืชืžื•ื ื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
### ืื™ืš ื”ื˜ื›ื ื•ืœื•ื’ื™ื” ื”ื–ื• ืžืชืืคืฉืจืช?
ื”ื“ื‘ืจ ืžืชืืคืฉืจ ื›ื™ ืžื™ืฉื”ื• ื›ืชื‘ ืชื•ื›ื ื™ืช ืžื—ืฉื‘ ืœืขืฉื•ืช ื–ืืช. ืœืคื ื™ ื›ืžื” ืขืฉื•ืจื™ื, ื›ืžื” ืกื•ืคืจื™ ืžื“ืข ื‘ื“ื™ื•ื ื™ ื—ื–ื• ืฉืื ืฉื™ื ื™ื“ื‘ืจื• ื‘ืขื™ืงืจ ืขื ื”ืžื—ืฉื‘ื™ื ืฉืœื”ื, ื•ื”ืžื—ืฉื‘ื™ื ืชืžื™ื“ ื™ื‘ื™ื ื• ื‘ื“ื™ื•ืง ืœืžื” ื”ื ืžืชื›ื•ื•ื ื™ื. ืœืžืจื‘ื” ื”ืฆืขืจ, ื”ืชื‘ืจืจ ืฉื–ื”ื• ืืชื’ืจ ืงืฉื” ื™ื•ืชืจ ืžืžื” ืฉืจื‘ื™ื ื“ืžื™ื™ื ื•, ื•ืœืžืจื•ืช ืฉื”ื‘ืขื™ื” ืžื•ื‘ื ืช ื”ืจื‘ื” ื™ื•ืชืจ ื›ื™ื•ื, ื™ืฉื ื ืืชื’ืจื™ื ืžืฉืžืขื•ืชื™ื™ื ื‘ื”ืฉื’ืช ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช 'ืžื•ืฉืœื' ื‘ื›ืœ ื”ื ื•ื’ืข ืœื”ื‘ื ืช ื”ืžืฉืžืขื•ืช ืฉืœ ืžืฉืคื˜. ื–ื• ื‘ืขื™ื” ืงืฉื” ื‘ืžื™ื•ื—ื“ ื›ืฉืžื“ื•ื‘ืจ ื‘ื”ื‘ื ืช ื”ื•ืžื•ืจ ืื• ื–ื™ื”ื•ื™ ืจื’ืฉื•ืช ื›ืžื• ืกืจืงื–ื ื‘ืžืฉืคื˜.
ื‘ืฉืœื‘ ื”ื–ื”, ื™ื™ืชื›ืŸ ืฉืืชื ื ื–ื›ืจื™ื ื‘ืฉื™ืขื•ืจื™ ื‘ื™ืช ื”ืกืคืจ ืฉื‘ื”ื ื”ืžื•ืจื” ืœื™ืžื“ ืืช ื—ืœืงื™ ื”ื“ืงื“ื•ืง ื‘ืžืฉืคื˜. ื‘ืžื“ื™ื ื•ืช ืžืกื•ื™ืžื•ืช, ืชืœืžื™ื“ื™ื ืœื•ืžื“ื™ื ื“ืงื“ื•ืง ื•ื‘ืœืฉื ื•ืช ื›ืชื—ื•ื ืœื™ืžื•ื“ ื™ื™ืขื•ื“ื™, ืืš ื‘ืจื‘ื•ืช ืžื”ืžื“ื™ื ื•ืช, ื ื•ืฉืื™ื ืืœื• ื ื›ืœืœื™ื ื›ื—ืœืง ืžืœื™ืžื•ื“ ืฉืคื”: ื‘ื™ืŸ ืื ื–ื• ื”ืฉืคื” ื”ืจืืฉื•ื ื” ืฉืœื›ื ื‘ื‘ื™ืช ื”ืกืคืจ ื”ื™ืกื•ื“ื™ (ืœื™ืžื•ื“ ืงืจื™ืื” ื•ื›ืชื™ื‘ื”) ื•ืื•ืœื™ ืฉืคื” ืฉื ื™ื™ื” ื‘ื‘ื™ืช ื”ืกืคืจ ื”ืขืœ-ื™ืกื•ื“ื™ ืื• ื”ืชื™ื›ื•ืŸ. ืืœ ืชื“ืื’ื• ืื ืื™ื ื›ื ืžื•ืžื—ื™ื ื‘ื”ื‘ื—ื ื” ื‘ื™ืŸ ืฉืžื•ืช ืขืฆื ืœืคืขืœื™ื ืื• ื‘ื™ืŸ ืชืืจื™ื ืœืชืืจื™ ืคื•ืขืœ!
ืื ืืชื ืžืชืงืฉื™ื ืœื”ื‘ื“ื™ืœ ื‘ื™ืŸ *ื”ื•ื•ื” ืคืฉื•ื˜* ืœ-*ื”ื•ื•ื” ืžืชืžืฉืš*, ืืชื ืœื ืœื‘ื“. ื–ื”ื• ืืชื’ืจ ืขื‘ื•ืจ ืื ืฉื™ื ืจื‘ื™ื, ืืคื™ืœื• ื“ื•ื‘ืจื™ ืฉืคืช ืื. ื”ื—ื“ืฉื•ืช ื”ื˜ื•ื‘ื•ืช ื”ืŸ ืฉืžื—ืฉื‘ื™ื ื˜ื•ื‘ื™ื ืžืื•ื“ ื‘ื™ื™ืฉื•ื ื›ืœืœื™ื ืคื•ืจืžืœื™ื™ื, ื•ืชืœืžื“ื• ืœื›ืชื•ื‘ ืงื•ื“ ืฉื™ื›ื•ืœ *ืœื ืชื—* ืžืฉืคื˜ ื›ืžื• ื‘ืŸ ืื“ื. ื”ืืชื’ืจ ื”ื’ื“ื•ืœ ื™ื•ืชืจ ืฉืชื‘ื“ืงื• ื‘ื”ืžืฉืš ื”ื•ื ื”ื‘ื ืช *ื”ืžืฉืžืขื•ืช* ื•-*ื”ืจื’ืฉ* ืฉืœ ืžืฉืคื˜.
## ื“ืจื™ืฉื•ืช ืžื•ืงื“ืžื•ืช
ืœืฉื™ืขื•ืจ ื”ื–ื”, ื”ื“ืจื™ืฉื” ื”ืขื™ืงืจื™ืช ื”ื™ื ื”ื™ื›ื•ืœืช ืœืงืจื•ื ื•ืœื”ื‘ื™ืŸ ืืช ื”ืฉืคื” ืฉืœ ื”ืฉื™ืขื•ืจ. ืื™ืŸ ื‘ืขื™ื•ืช ืžืชืžื˜ื™ื•ืช ืื• ืžืฉื•ื•ืื•ืช ืœืคืชื•ืจ. ื‘ืขื•ื“ ืฉื”ืžื—ื‘ืจ ื”ืžืงื•ืจื™ ื›ืชื‘ ืืช ื”ืฉื™ืขื•ืจ ื‘ืื ื’ืœื™ืช, ื”ื•ื ืžืชื•ืจื’ื ื’ื ืœืฉืคื•ืช ืื—ืจื•ืช, ื›ืš ืฉืืชื ืขืฉื•ื™ื™ื ืœืงืจื•ื ืชืจื’ื•ื. ื™ืฉื ื ื“ื•ื’ืžืื•ืช ืฉื‘ื”ืŸ ื ืขืฉื” ืฉื™ืžื•ืฉ ื‘ืžืกืคืจ ืฉืคื•ืช ืฉื•ื ื•ืช (ื›ื“ื™ ืœื”ืฉื•ื•ืช ืืช ื›ืœืœื™ ื”ื“ืงื“ื•ืง ืฉืœ ืฉืคื•ืช ืฉื•ื ื•ืช). ืืœื• *ืœื* ืžืชื•ืจื’ืžื•ืช, ืืš ื”ื˜ืงืกื˜ ื”ืžืกื‘ื™ืจ ื›ืŸ, ื›ืš ืฉื”ืžืฉืžืขื•ืช ืฆืจื™ื›ื” ืœื”ื™ื•ืช ื‘ืจื•ืจื”.
ืœืžืฉื™ืžื•ืช ื”ืงื™ื“ื•ื“, ืชืฉืชืžืฉื• ื‘-Python ื•ื”ื“ื•ื’ืžืื•ืช ืžืฉืชืžืฉื•ืช ื‘-Python 3.8.
ื‘ืงื˜ืข ื”ื–ื”, ืชืฆื˜ืจื›ื• ื•ืชืฉืชืžืฉื• ื‘:
- **ื”ื‘ื ื” ืฉืœ Python 3**. ื”ื‘ื ืช ืฉืคืช ืชื›ื ื•ืช ื‘-Python 3, ื”ืฉื™ืขื•ืจ ื”ื–ื” ืžืฉืชืžืฉ ื‘ืงืœื˜, ืœื•ืœืื•ืช, ืงืจื™ืืช ืงื‘ืฆื™ื, ืžืขืจื›ื™ื.
- **Visual Studio Code + ื”ืจื—ื‘ื”**. ื ืฉืชืžืฉ ื‘-Visual Studio Code ื•ื‘ื”ืจื—ื‘ืช Python ืฉืœื•. ืชื•ื›ืœื• ื’ื ืœื”ืฉืชืžืฉ ื‘-IDE ืฉืœ Python ืœื‘ื—ื™ืจืชื›ื.
- **TextBlob**. [TextBlob](https://github.com/sloria/TextBlob) ื”ื™ื ืกืคืจื™ื™ืช ืขื™ื‘ื•ื“ ื˜ืงืกื˜ ืคืฉื•ื˜ื” ืขื‘ื•ืจ Python. ืขืงื‘ื• ืื—ืจ ื”ื”ื•ืจืื•ืช ื‘ืืชืจ TextBlob ื›ื“ื™ ืœื”ืชืงื™ืŸ ืื•ืชื” ื‘ืžืขืจื›ืช ืฉืœื›ื (ื”ืชืงื™ื ื• ื’ื ืืช ื”-corpora, ื›ืคื™ ืฉืžื•ืฆื’ ืœืžื˜ื”):
```bash
pip install -U textblob
python -m textblob.download_corpora
```
> ๐Ÿ’ก ื˜ื™ืค: ื ื™ืชืŸ ืœื”ืจื™ืฅ Python ื™ืฉื™ืจื•ืช ื‘ืกื‘ื™ื‘ื•ืช VS Code. ื‘ื“ืงื• ืืช [ื”ืชื™ืขื•ื“](https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-77952-leestott) ืœืžื™ื“ืข ื ื•ืกืฃ.
## ืœื“ื‘ืจ ืขื ืžื›ื•ื ื•ืช
ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ื”ื ื™ืกื™ื•ืŸ ืœื’ืจื•ื ืœืžื—ืฉื‘ื™ื ืœื”ื‘ื™ืŸ ืฉืคื” ืื ื•ืฉื™ืช ื ืžืฉื›ืช ืขืฉืจื•ืช ืฉื ื™ื, ื•ืื—ื“ ื”ืžื“ืขื ื™ื ื”ืจืืฉื•ื ื™ื ืฉืขืกืงื• ื‘ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช ื”ื™ื” *ืืœืŸ ื˜ื™ื•ืจื™ื ื’*.
### ืžื‘ื—ืŸ ื˜ื™ื•ืจื™ื ื’
ื›ืฉื˜ื™ื•ืจื™ื ื’ ื—ืงืจ *ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช* ื‘ืฉื ื•ืช ื”-50, ื”ื•ื ืฉืงืœ ืื ื ื™ืชืŸ ืœืขืจื•ืš ืžื‘ื—ืŸ ืฉื™ื—ื” ื‘ื™ืŸ ืื“ื ืœืžื—ืฉื‘ (ื‘ืืžืฆืขื•ืช ืชืงืฉื•ืจืช ื›ืชื•ื‘ื”) ืฉื‘ื• ื”ืื“ื ื‘ืฉื™ื—ื” ืื™ื ื• ื‘ื˜ื•ื— ืื ื”ื•ื ืžืฉื•ื—ื— ืขื ืื“ื ืื—ืจ ืื• ืขื ืžื—ืฉื‘.
ืื, ืœืื—ืจ ืคืจืง ื–ืžืŸ ืžืกื•ื™ื ืฉืœ ืฉื™ื—ื”, ื”ืื“ื ืœื ื™ื›ื•ืœ ืœืงื‘ื•ืข ืื ื”ืชืฉื•ื‘ื•ืช ื”ื’ื™ืขื• ืžืžื—ืฉื‘ ืื• ืœื, ื”ืื ื ื™ืชืŸ ืœื•ืžืจ ืฉื”ืžื—ืฉื‘ *ื—ื•ืฉื‘*?
### ื”ื”ืฉืจืื” - 'ืžืฉื—ืง ื”ื—ื™ืงื•ื™'
ื”ืจืขื™ื•ืŸ ืœื›ืš ื”ื’ื™ืข ืžืžืฉื—ืง ืžืกื™ื‘ื•ืช ืฉื ืงืจื *ืžืฉื—ืง ื”ื—ื™ืงื•ื™*, ืฉื‘ื• ื—ื•ืงืจ ื ืžืฆื ืœื‘ื“ ื‘ื—ื“ืจ ื•ืžื•ื˜ืœืช ืขืœื™ื• ื”ืžืฉื™ืžื” ืœืงื‘ื•ืข ืžื™ ืžื‘ื™ืŸ ืฉื ื™ ืื ืฉื™ื (ื‘ื—ื“ืจ ืื—ืจ) ื”ื ื’ื‘ืจ ื•ืื™ืฉื” ื‘ื”ืชืืžื”. ื”ื—ื•ืงืจ ื™ื›ื•ืœ ืœืฉืœื•ื— ืคืชืงื™ื, ื•ืขืœื™ื• ืœื ืกื•ืช ืœื—ืฉื•ื‘ ืขืœ ืฉืืœื•ืช ืฉื‘ื”ืŸ ื”ืชืฉื•ื‘ื•ืช ื”ื›ืชื•ื‘ื•ืช ื™ื—ืฉืคื• ืืช ื”ืžื’ื“ืจ ืฉืœ ื”ืื“ื ื”ืžืกืชื•ืจื™. ื›ืžื•ื‘ืŸ, ื”ืฉื—ืงื ื™ื ื‘ื—ื“ืจ ื”ืฉื ื™ ืžื ืกื™ื ืœื”ื˜ืขื•ืช ืืช ื”ื—ื•ืงืจ ืขืœ ื™ื“ื™ ืžืชืŸ ืชืฉื•ื‘ื•ืช ื‘ืื•ืคืŸ ืฉืžื˜ืขื” ืื• ืžื‘ืœื‘ืœ ืืช ื”ื—ื•ืงืจ, ืชื•ืš ื›ื“ื™ ืžืชืŸ ืจื•ืฉื ืฉืœ ืชืฉื•ื‘ื” ื›ื ื”.
### ืคื™ืชื•ื— ืืœื™ื–ื”
ื‘ืฉื ื•ืช ื”-60, ืžื“ืขืŸ ืž-MIT ื‘ืฉื *ื’'ื•ื–ืฃ ื•ื™ื™ื–ื ื‘ืื•ื* ืคื™ืชื— [*ืืœื™ื–ื”*](https://wikipedia.org/wiki/ELIZA), 'ืžื˜ืคืœืช' ืžืžื•ื—ืฉื‘ืช ืฉืฉื•ืืœืช ืืช ื”ืื“ื ืฉืืœื•ืช ื•ื ื•ืชื ืช ืจื•ืฉื ืฉืœ ื”ื‘ื ืช ืชืฉื•ื‘ื•ืชื™ื•. ืขื ื–ืืช, ื‘ืขื•ื“ ืฉืืœื™ื–ื” ื™ื›ืœื” ืœื ืชื— ืžืฉืคื˜ ื•ืœื–ื”ื•ืช ืžื‘ื ื™ื ื“ืงื“ื•ืงื™ื™ื ืžืกื•ื™ืžื™ื ื•ืžื™ืœื•ืช ืžืคืชื— ื›ื“ื™ ืœืชืช ืชืฉื•ื‘ื” ืกื‘ื™ืจื”, ืœื ื ื™ืชืŸ ื”ื™ื” ืœื•ืžืจ ืฉื”ื™ื *ืžื‘ื™ื ื”* ืืช ื”ืžืฉืคื˜. ืื ืืœื™ื–ื” ื”ื•ืฆื’ื” ืขื ืžืฉืคื˜ ื‘ืคื•ืจืžื˜ "**ืื ื™** <u>ืขืฆื•ื‘</u>", ื”ื™ื ืขืฉื•ื™ื” ืœืฉื ื•ืช ื•ืœืกื“ืจ ืžื—ื“ืฉ ืžื™ืœื™ื ื‘ืžืฉืคื˜ ื›ื“ื™ ืœื™ืฆื•ืจ ืืช ื”ืชืฉื•ื‘ื” "ื›ืžื” ื–ืžืŸ **ืืชื”** <u>ืขืฆื•ื‘</u>".
ื–ื” ื ืชืŸ ืืช ื”ืจื•ืฉื ืฉืืœื™ื–ื” ื”ื‘ื™ื ื” ืืช ื”ื”ืฆื”ืจื” ื•ืฉืืœื” ืฉืืœื” ื”ืžืฉืš, ื‘ืขื•ื“ ืฉื‘ืžืฆื™ืื•ืช, ื”ื™ื ืฉื™ื ืชื” ืืช ื”ื–ืžืŸ ื•ื”ื•ืกื™ืคื” ื›ืžื” ืžื™ืœื™ื. ืื ืืœื™ื–ื” ืœื ื™ื›ืœื” ืœื–ื”ื•ืช ืžื™ืœืช ืžืคืชื— ืฉื™ืฉ ืœื” ืชืฉื•ื‘ื” ืขื‘ื•ืจื”, ื”ื™ื ื”ื™ื™ืชื” ื ื•ืชื ืช ืชืฉื•ื‘ื” ืืงืจืื™ืช ืฉื™ื›ื•ืœื” ืœื”ื™ื•ืช ืจืœื•ื•ื ื˜ื™ืช ืœื”ืจื‘ื” ื”ืฆื”ืจื•ืช ืฉื•ื ื•ืช. ื ื™ืชืŸ ื”ื™ื” ืœื”ื˜ืขื•ืช ืืช ืืœื™ื–ื” ื‘ืงืœื•ืช, ืœืžืฉืœ ืื ืžืฉืชืžืฉ ื›ืชื‘ "**ืืชื”** <u>ืื•ืคื ื™ื™ื</u>", ื”ื™ื ืขืฉื•ื™ื” ืœื”ื’ื™ื‘ ืขื "ื›ืžื” ื–ืžืŸ **ืื ื™** <u>ืื•ืคื ื™ื™ื</u>?", ื‘ืžืงื•ื ืชืฉื•ื‘ื” ืกื‘ื™ืจื” ื™ื•ืชืจ.
[![ืฉื™ื—ื” ืขื ืืœื™ื–ื”](https://img.youtube.com/vi/RMK9AphfLco/0.jpg)](https://youtu.be/RMK9AphfLco "ืฉื™ื—ื” ืขื ืืœื™ื–ื”")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืขืœ ืชื•ื›ื ื™ืช ืืœื™ื–ื” ื”ืžืงื•ืจื™ืช
> ื”ืขืจื”: ื ื™ืชืŸ ืœืงืจื•ื ืืช ื”ืชื™ืื•ืจ ื”ืžืงื•ืจื™ ืฉืœ [ืืœื™ื–ื”](https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract) ืฉืคื•ืจืกื ื‘-1966 ืื ื™ืฉ ืœื›ื ื—ืฉื‘ื•ืŸ ACM. ืœื—ืœื•ืคื™ืŸ, ืงืจืื• ืขืœ ืืœื™ื–ื” ื‘-[ื•ื™ืงื™ืคื“ื™ื”](https://wikipedia.org/wiki/ELIZA).
## ืชืจื’ื™ืœ - ืงื™ื“ื•ื“ ื‘ื•ื˜ ืฉื™ื—ื” ื‘ืกื™ืกื™
ื‘ื•ื˜ ืฉื™ื—ื”, ื›ืžื• ืืœื™ื–ื”, ื”ื•ื ืชื•ื›ื ื™ืช ืฉืžืงื‘ืœืช ืงืœื˜ ืžืžืฉืชืžืฉ ื•ื ื•ืชื ืช ืจื•ืฉื ืฉืœ ื”ื‘ื ื” ื•ืชื’ื•ื‘ื” ืื™ื ื˜ืœื™ื’ื ื˜ื™ืช. ื‘ื ื™ื’ื•ื“ ืœืืœื™ื–ื”, ื”ื‘ื•ื˜ ืฉืœื ื• ืœื ื™ื›ืœื•ืœ ืžืกืคืจ ื›ืœืœื™ื ืฉื™ืชื ื• ืœื• ืืช ื”ืจื•ืฉื ืฉืœ ืฉื™ื—ื” ืื™ื ื˜ืœื™ื’ื ื˜ื™ืช. ื‘ืžืงื•ื ื–ืืช, ื”ื‘ื•ื˜ ืฉืœื ื• ื™ื•ื›ืœ ืจืง ืœืฉืžื•ืจ ืขืœ ื”ืฉื™ื—ื” ื‘ืืžืฆืขื•ืช ืชื’ื•ื‘ื•ืช ืืงืจืื™ื•ืช ืฉืขืฉื•ื™ื•ืช ืœื”ืชืื™ื ื›ืžืขื˜ ืœื›ืœ ืฉื™ื—ื” ื˜ืจื™ื•ื•ื™ืืœื™ืช.
### ื”ืชื•ื›ื ื™ืช
ื”ืฉืœื‘ื™ื ืฉืœื›ื ื‘ื‘ื ื™ื™ืช ื‘ื•ื˜ ืฉื™ื—ื”:
1. ื”ื“ืคื™ืกื• ื”ื•ืจืื•ืช ืฉืžื™ื™ืขืฆื•ืช ืœืžืฉืชืžืฉ ืื™ืš ืœืชืงืฉืจ ืขื ื”ื‘ื•ื˜
2. ื”ืชื—ื™ืœื• ืœื•ืœืื”
1. ืงื‘ืœื• ืงืœื˜ ืžืžืฉืชืžืฉ
2. ืื ื”ืžืฉืชืžืฉ ื‘ื™ืงืฉ ืœืฆืืช, ืฆืื•
3. ืขื‘ื“ื• ืืช ื”ืงืœื˜ ืฉืœ ื”ืžืฉืชืžืฉ ื•ืงื‘ืขื• ืชื’ื•ื‘ื” (ื‘ืžืงืจื” ื”ื–ื”, ื”ืชื’ื•ื‘ื” ื”ื™ื ื‘ื—ื™ืจื” ืืงืจืื™ืช ืžืชื•ืš ืจืฉื™ืžืช ืชื’ื•ื‘ื•ืช ื›ืœืœื™ื•ืช ืืคืฉืจื™ื•ืช)
4. ื”ื“ืคื™ืกื• ืืช ื”ืชื’ื•ื‘ื”
3. ื—ื–ืจื• ืœืฉืœื‘ 2
### ื‘ื ื™ื™ืช ื”ื‘ื•ื˜
ื‘ื•ืื• ื ื™ืฆื•ืจ ืืช ื”ื‘ื•ื˜ ืขื›ืฉื™ื•. ื ืชื—ื™ืœ ื‘ื”ื’ื“ืจืช ื›ืžื” ืžืฉืคื˜ื™ื.
1. ืฆืจื• ืืช ื”ื‘ื•ื˜ ื”ื–ื” ื‘ืขืฆืžื›ื ื‘-Python ืขื ื”ืชื’ื•ื‘ื•ืช ื”ืืงืจืื™ื•ืช ื”ื‘ืื•ืช:
```python
random_responses = ["That is quite interesting, please tell me more.",
"I see. Do go on.",
"Why do you say that?",
"Funny weather we've been having, isn't it?",
"Let's change the subject.",
"Did you catch the game last night?"]
```
ื”ื ื” ื“ื•ื’ืžืช ืคืœื˜ ืฉืชื ื—ื” ืืชื›ื (ืงืœื˜ ื”ืžืฉืชืžืฉ ืžื•ืคื™ืข ื‘ืฉื•ืจื•ืช ืฉืžืชื—ื™ืœื•ืช ื‘-`>`):
```output
Hello, I am Marvin, the simple robot.
You can end this conversation at any time by typing 'bye'
After typing each answer, press 'enter'
How are you today?
> I am good thanks
That is quite interesting, please tell me more.
> today I went for a walk
Did you catch the game last night?
> I did, but my team lost
Funny weather we've been having, isn't it?
> yes but I hope next week is better
Let's change the subject.
> ok, lets talk about music
Why do you say that?
> because I like music!
Why do you say that?
> bye
It was nice talking to you, goodbye!
```
ืคืชืจื•ืŸ ืืคืฉืจื™ ืœืžืฉื™ืžื” ื ืžืฆื [ื›ืืŸ](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/1-Introduction-to-NLP/solution/bot.py)
โœ… ืขืฆืจื• ื•ื—ืฉื‘ื•
1. ื”ืื ืืชื ื—ื•ืฉื‘ื™ื ืฉื”ืชื’ื•ื‘ื•ืช ื”ืืงืจืื™ื•ืช ื™ื•ื›ืœื• 'ืœื”ื˜ืขื•ืช' ืžื™ืฉื”ื• ืœื—ืฉื•ื‘ ืฉื”ื‘ื•ื˜ ื‘ืืžืช ื”ื‘ื™ืŸ ืื•ืชื?
2. ืื™ืœื• ืชื›ื•ื ื•ืช ื”ื‘ื•ื˜ ื™ืฆื˜ืจืš ื›ื“ื™ ืœื”ื™ื•ืช ื™ืขื™ืœ ื™ื•ืชืจ?
3. ืื ื‘ื•ื˜ ื‘ืืžืช ื™ื›ื•ืœ 'ืœื”ื‘ื™ืŸ' ืืช ื”ืžืฉืžืขื•ืช ืฉืœ ืžืฉืคื˜, ื”ืื ื”ื•ื ื™ืฆื˜ืจืš 'ืœื–ื›ื•ืจ' ืืช ื”ืžืฉืžืขื•ืช ืฉืœ ืžืฉืคื˜ื™ื ืงื•ื“ืžื™ื ื‘ืฉื™ื—ื” ื’ื ื›ืŸ?
---
## ๐Ÿš€ืืชื’ืจ
ื‘ื—ืจื• ืื—ื“ ืžื”ืืœืžื ื˜ื™ื ืฉืœ "ืขืฆืจื• ื•ื—ืฉื‘ื•" ืœืžืขืœื” ื•ื ืกื• ืœื™ื™ืฉื ืื•ืชื• ื‘ืงื•ื“ ืื• ื›ืชื‘ื• ืคืชืจื•ืŸ ืขืœ ื ื™ื™ืจ ื‘ืืžืฆืขื•ืช ืคืกืื•ื“ื•-ืงื•ื“.
ื‘ืฉื™ืขื•ืจ ื”ื‘ื, ืชืœืžื“ื• ืขืœ ืžืกืคืจ ื’ื™ืฉื•ืช ื ื•ืกืคื•ืช ืœื ื™ืชื•ื— ืฉืคื” ื˜ื‘ืขื™ืช ื•ืœืžื™ื“ืช ืžื›ื•ื ื”.
## [ืฉืืœื•ืŸ ืื—ืจื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ืขื™ื™ื ื• ื‘ืžืงื•ืจื•ืช ืœืžื˜ื” ื›ื”ื–ื“ืžื ื•ื™ื•ืช ืœืงืจื™ืื” ื ื•ืกืคืช.
### ืžืงื•ืจื•ืช
1. ืฉื•ื‘ืจ, ืœื ืืจื˜, "ื‘ืœืฉื ื•ืช ื—ื™ืฉื•ื‘ื™ืช", *The Stanford Encyclopedia of Philosophy* (ืžื”ื“ื•ืจืช ืื‘ื™ื‘ 2020), ืื“ื•ืืจื“ ื . ื–ืœื˜ื” (ืขื•ืจืš), URL = <https://plato.stanford.edu/archives/spr2020/entries/computational-linguistics/>.
2. ืื•ื ื™ื‘ืจืกื™ื˜ืช ืคืจื™ื ืกื˜ื•ืŸ "ืื•ื“ื•ืช WordNet." [WordNet](https://wordnet.princeton.edu/). ืื•ื ื™ื‘ืจืกื™ื˜ืช ืคืจื™ื ืกื˜ื•ืŸ. 2010.
## ืžืฉื™ืžื”
[ื—ืคืฉื• ื‘ื•ื˜](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "1d7583e8046dacbb0c056d5ba0a71b16",
"translation_date": "2025-09-05T20:37:57+00:00",
"source_file": "6-NLP/1-Introduction-to-NLP/assignment.md",
"language_code": "he"
}
-->
# ื—ื™ืคื•ืฉ ืื—ืจ ื‘ื•ื˜
## ื”ื•ืจืื•ืช
ื‘ื•ื˜ื™ื ื ืžืฆืื™ื ื‘ื›ืœ ืžืงื•ื. ื”ืžืฉื™ืžื” ืฉืœืš: ืœืžืฆื•ื ืื—ื“ ื•ืœืืžืฅ ืื•ืชื•! ื ื™ืชืŸ ืœืžืฆื•ื ืื•ืชื ื‘ืืชืจื™ ืื™ื ื˜ืจื ื˜, ื‘ืืคืœื™ืงืฆื™ื•ืช ื‘ื ืงืื™ื•ืช ื•ื‘ื˜ืœืคื•ืŸ, ืœืžืฉืœ ื›ืืฉืจ ืืชื” ืžืชืงืฉืจ ืœื—ื‘ืจื•ืช ืฉื™ืจื•ืชื™ื ืคื™ื ื ืกื™ื™ื ืœืงื‘ืœืช ื™ื™ืขื•ืฅ ืื• ืžื™ื“ืข ืขืœ ื—ืฉื‘ื•ืŸ. ื ืชื— ืืช ื”ื‘ื•ื˜ ื•ื ืกื” ืœื‘ืœื‘ืœ ืื•ืชื•. ืื ื”ืฆืœื—ืช ืœื‘ืœื‘ืœ ืืช ื”ื‘ื•ื˜, ืžื“ื•ืข ืœื“ืขืชืš ื–ื” ืงืจื”? ื›ืชื•ื‘ ืžืืžืจ ืงืฆืจ ืขืœ ื”ื—ื•ื•ื™ื” ืฉืœืš.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ------------------------------------------------------------------------------------------------------------- | -------------------------------------------- | --------------------- |
| | ื ื›ืชื‘ ืžืืžืจ ืžืœื ื‘ืŸ ืขืžื•ื“ ืื—ื“, ื”ืžืกื‘ื™ืจ ืืช ื”ืืจื›ื™ื˜ืงื˜ื•ืจื” ื”ืžืฉื•ืขืจืช ืฉืœ ื”ื‘ื•ื˜ ื•ืžืชืืจ ืืช ื”ื—ื•ื•ื™ื” ืฉืœืš ืื™ืชื• | ื”ืžืืžืจ ืื™ื ื• ืฉืœื ืื• ืื™ื ื• ืžื‘ื•ืกืก ื”ื™ื˜ื‘ | ืœื ื”ื•ื’ืฉ ืžืืžืจ |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,224 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "5f3cb462e3122e1afe7ab0050ccf2bd3",
"translation_date": "2025-09-05T20:25:32+00:00",
"source_file": "6-NLP/2-Tasks/README.md",
"language_code": "he"
}
-->
# ืžืฉื™ืžื•ืช ื•ื˜ื›ื ื™ืงื•ืช ื ืคื•ืฆื•ืช ื‘ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช
ื‘ืจื•ื‘ ื”ืžืฉื™ืžื•ืช ืฉืœ *ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช*, ื”ื˜ืงืกื˜ ืฉื™ืฉ ืœืขื‘ื“ ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืžืคื•ืจืง, ื ื‘ื“ืง, ื•ื”ืชื•ืฆืื•ืช ื ืฉืžืจื•ืช ืื• ืžื•ืฉื•ื•ืช ืขื ื—ื•ืงื™ื ื•ืžืื’ืจื™ ื ืชื•ื ื™ื. ืžืฉื™ืžื•ืช ืืœื• ืžืืคืฉืจื•ืช ืœืžืชื›ื ืช ืœื”ืกื™ืง ืืช _ื”ืžืฉืžืขื•ืช_ ืื• _ื”ื›ื•ื•ื ื”_ ืื• ืจืง ืืช _ืชื“ื™ืจื•ืช_ ื”ืžื•ื ื—ื™ื ื•ื”ืžื™ืœื™ื ื‘ื˜ืงืกื˜.
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
ื‘ื•ืื• ื ื’ืœื” ื˜ื›ื ื™ืงื•ืช ื ืคื•ืฆื•ืช ื”ืžืฉืžืฉื•ืช ืœืขื™ื‘ื•ื“ ื˜ืงืกื˜. ื‘ืฉื™ืœื•ื‘ ืขื ืœืžื™ื“ืช ืžื›ื•ื ื”, ื˜ื›ื ื™ืงื•ืช ืืœื• ืขื•ื–ืจื•ืช ืœื ืชื— ื›ืžื•ื™ื•ืช ื’ื“ื•ืœื•ืช ืฉืœ ื˜ืงืกื˜ ื‘ืฆื•ืจื” ื™ืขื™ืœื”. ืœืคื ื™ ืฉืžื™ื™ืฉืžื™ื ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืฉื™ืžื•ืช ืืœื•, ืขื ื–ืืช, ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ืืช ื”ื‘ืขื™ื•ืช ืฉื‘ื”ืŸ ื ืชืงืœ ืžื•ืžื—ื” NLP.
## ืžืฉื™ืžื•ืช ื ืคื•ืฆื•ืช ื‘ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช
ื™ืฉื ืŸ ื“ืจื›ื™ื ืฉื•ื ื•ืช ืœื ืชื— ื˜ืงืกื˜ ืฉื‘ื• ืืชื ืขื•ื‘ื“ื™ื. ื™ืฉื ืŸ ืžืฉื™ืžื•ืช ืฉื ื™ืชืŸ ืœื‘ืฆืข, ื•ื“ืจืš ืžืฉื™ืžื•ืช ืืœื• ื ื™ืชืŸ ืœื”ื‘ื™ืŸ ืืช ื”ื˜ืงืกื˜ ื•ืœื”ืกื™ืง ืžืกืงื ื•ืช. ื‘ื“ืจืš ื›ืœืœ ืžื‘ืฆืขื™ื ืืช ื”ืžืฉื™ืžื•ืช ื”ืœืœื• ื‘ืจืฆืฃ.
### ื˜ื•ืงื ื™ื–ืฆื™ื”
ื›ื ืจืื” ื”ื“ื‘ืจ ื”ืจืืฉื•ืŸ ืฉืจื•ื‘ ื”ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ NLP ืฆืจื™ื›ื™ื ืœืขืฉื•ืช ื”ื•ื ืœืคืฆืœ ืืช ื”ื˜ืงืกื˜ ืœื˜ื•ืงื ื™ื, ืื• ืžื™ืœื™ื. ืœืžืจื•ืช ืฉื–ื” ื ืฉืžืข ืคืฉื•ื˜, ื”ืชื—ืฉื‘ื•ืช ื‘ืกื™ืžื ื™ ืคื™ืกื•ืง ื•ื‘ืžืคืจื™ื“ื™ ืžื™ืœื™ื ื•ืžืฉืคื˜ื™ื ื‘ืฉืคื•ืช ืฉื•ื ื•ืช ื™ื›ื•ืœื” ืœื”ืคื•ืš ืืช ื”ืžืฉื™ืžื” ืœืžื•ืจื›ื‘ืช. ื™ื™ืชื›ืŸ ืฉืชืฆื˜ืจื›ื• ืœื”ืฉืชืžืฉ ื‘ืฉื™ื˜ื•ืช ืฉื•ื ื•ืช ื›ื“ื™ ืœืงื‘ื•ืข ืืช ื”ื’ื‘ื•ืœื•ืช.
![ื˜ื•ืงื ื™ื–ืฆื™ื”](../../../../6-NLP/2-Tasks/images/tokenization.png)
> ื˜ื•ืงื ื™ื–ืฆื™ื” ืฉืœ ืžืฉืคื˜ ืžืชื•ืš **ื’ืื•ื•ื” ื•ื“ืขื” ืงื“ื•ืžื”**. ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
### ืืžื‘ื“ื™ื ื’ื™ื
[ืืžื‘ื“ื™ื ื’ื™ื ืฉืœ ืžื™ืœื™ื](https://wikipedia.org/wiki/Word_embedding) ื”ื ื“ืจืš ืœื”ืžื™ืจ ืืช ื ืชื•ื ื™ ื”ื˜ืงืกื˜ ืฉืœื›ื ืœืžืกืคืจื™ื. ืืžื‘ื“ื™ื ื’ื™ื ื ืขืฉื™ื ื‘ืฆื•ืจื” ื›ื–ื• ืฉืžื™ืœื™ื ืขื ืžืฉืžืขื•ืช ื“ื•ืžื” ืื• ืžื™ืœื™ื ืฉืžืฉืชืžืฉื™ื ื‘ื”ืŸ ื™ื—ื“ ืžืชืจื›ื–ื•ืช ื™ื—ื“.
![ืืžื‘ื“ื™ื ื’ื™ื ืฉืœ ืžื™ืœื™ื](../../../../6-NLP/2-Tasks/images/embedding.png)
> "ื™ืฉ ืœื™ ืืช ื”ื›ื‘ื•ื“ ื”ืจื‘ ื‘ื™ื•ืชืจ ืœืขืฆื‘ื™ื ืฉืœืš, ื”ื ื—ื‘ืจื™ื ื•ืชื™ืงื™ื ืฉืœื™." - ืืžื‘ื“ื™ื ื’ื™ื ืฉืœ ืžื™ืœื™ื ืœืžืฉืคื˜ ืžืชื•ืš **ื’ืื•ื•ื” ื•ื“ืขื” ืงื“ื•ืžื”**. ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
โœ… ื ืกื• [ืืช ื”ื›ืœื™ ื”ืžืขื ื™ื™ืŸ ื”ื–ื”](https://projector.tensorflow.org/) ืœื”ืชื ืกื•ืช ื‘ืืžื‘ื“ื™ื ื’ื™ื ืฉืœ ืžื™ืœื™ื. ืœื—ื™ืฆื” ืขืœ ืžื™ืœื” ืื—ืช ืžืฆื™ื’ื” ืงื‘ื•ืฆื•ืช ืฉืœ ืžื™ืœื™ื ื“ื•ืžื•ืช: 'toy' ืžืชืจื›ื– ืขื 'disney', 'lego', 'playstation', ื•-'console'.
### ื ื™ืชื•ื— ืชื—ื‘ื™ืจื™ ื•ืชื™ื•ื’ ื—ืœืงื™ ื“ื™ื‘ืจ
ื›ืœ ืžื™ืœื” ืฉืขื‘ืจื” ื˜ื•ืงื ื™ื–ืฆื™ื” ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืžืชื•ื™ื’ืช ื›ื—ืœืง ื“ื™ื‘ืจ - ืฉื ืขืฆื, ืคื•ืขืœ ืื• ืชื•ืืจ. ื”ืžืฉืคื˜ `ื”ืฉื•ืขืœ ื”ืื“ื•ื ื”ืžื”ื™ืจ ืงืคืฅ ืžืขืœ ื”ื›ืœื‘ ื”ื—ื•ื ื”ืขืฆืœืŸ` ืขืฉื•ื™ ืœื”ื™ื•ืช ืžืชื•ื™ื’ ื›ืš: ืฉื•ืขืœ = ืฉื ืขืฆื, ืงืคืฅ = ืคื•ืขืœ.
![ื ื™ืชื•ื— ืชื—ื‘ื™ืจื™](../../../../6-NLP/2-Tasks/images/parse.png)
> ื ื™ืชื•ื— ืชื—ื‘ื™ืจื™ ืฉืœ ืžืฉืคื˜ ืžืชื•ืš **ื’ืื•ื•ื” ื•ื“ืขื” ืงื“ื•ืžื”**. ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
ื ื™ืชื•ื— ืชื—ื‘ื™ืจื™ ื”ื•ื ื–ื™ื”ื•ื™ ืื™ืœื• ืžื™ืœื™ื ืงืฉื•ืจื•ืช ื–ื• ืœื–ื• ื‘ืžืฉืคื˜ - ืœืžืฉืœ `ื”ืฉื•ืขืœ ื”ืื“ื•ื ื”ืžื”ื™ืจ ืงืคืฅ` ื”ื•ื ืจืฆืฃ ืฉืœ ืชื•ืืจ-ืฉื ืขืฆื-ืคื•ืขืœ ืฉื ืคืจื“ ืžื”ืจืฆืฃ `ื”ื›ืœื‘ ื”ื—ื•ื ื”ืขืฆืœืŸ`.
### ืชื“ื™ืจื•ืช ืžื™ืœื™ื ื•ื‘ื™ื˜ื•ื™ื™ื
ื”ืœื™ืš ืฉื™ืžื•ืฉื™ ื‘ืขืช ื ื™ืชื•ื— ื’ื•ืฃ ื˜ืงืกื˜ ื’ื“ื•ืœ ื”ื•ื ืœื‘ื ื•ืช ืžื™ืœื•ืŸ ืฉืœ ื›ืœ ืžื™ืœื” ืื• ื‘ื™ื˜ื•ื™ ืžืขื ื™ื™ืŸ ื•ื›ืžื” ืคืขืžื™ื ื”ื ืžื•ืคื™ืขื™ื. ื”ืžืฉืคื˜ `ื”ืฉื•ืขืœ ื”ืื“ื•ื ื”ืžื”ื™ืจ ืงืคืฅ ืžืขืœ ื”ื›ืœื‘ ื”ื—ื•ื ื”ืขืฆืœืŸ` ืžื›ื™ืœ ืชื“ื™ืจื•ืช ืฉืœ 2 ืขื‘ื•ืจ ื”ืžื™ืœื” "ื”".
ื‘ื•ืื• ื ืกืชื›ืœ ืขืœ ื˜ืงืกื˜ ืœื“ื•ื’ืžื” ืฉื‘ื• ื ืกืคื•ืจ ืืช ืชื“ื™ืจื•ืช ื”ืžื™ืœื™ื. ื”ืฉื™ืจ "The Winners" ืฉืœ ืจื•ื“ื™ืืจื“ ืงื™ืคืœื™ื ื’ ืžื›ื™ืœ ืืช ื”ื‘ื™ืช ื”ื‘ื:
```output
What the moral? Who rides may read.
When the night is thick and the tracks are blind
A friend at a pinch is a friend, indeed,
But a fool to wait for the laggard behind.
Down to Gehenna or up to the Throne,
He travels the fastest who travels alone.
```
ืžื›ื™ื•ื•ืŸ ืฉืชื“ื™ืจื•ืช ื‘ื™ื˜ื•ื™ื™ื ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืจื’ื™ืฉื” ืื• ืœื ืจื’ื™ืฉื” ืœืื•ืชื™ื•ืช ื’ื“ื•ืœื•ืช, ื”ื‘ื™ื˜ื•ื™ `a friend` ืžื•ืคื™ืข ื‘ืชื“ื™ืจื•ืช ืฉืœ 2, `the` ืžื•ืคื™ืข ื‘ืชื“ื™ืจื•ืช ืฉืœ 6, ื•-`travels` ืžื•ืคื™ืข ื‘ืชื“ื™ืจื•ืช ืฉืœ 2.
### N-grams
ื ื™ืชืŸ ืœืคืฆืœ ื˜ืงืกื˜ ืœืจืฆืคื™ื ืฉืœ ืžื™ืœื™ื ื‘ืื•ืจืš ืงื‘ื•ืข, ืžื™ืœื” ืื—ืช (unigram), ืฉืชื™ ืžื™ืœื™ื (bigram), ืฉืœื•ืฉ ืžื™ืœื™ื (trigram) ืื• ื›ืœ ืžืกืคืจ ืžื™ืœื™ื (n-grams).
ืœื“ื•ื’ืžื”, ื”ืžืฉืคื˜ `ื”ืฉื•ืขืœ ื”ืื“ื•ื ื”ืžื”ื™ืจ ืงืคืฅ ืžืขืœ ื”ื›ืœื‘ ื”ื—ื•ื ื”ืขืฆืœืŸ` ืขื ืขืจืš n-gram ืฉืœ 2 ื™ืคื™ืง ืืช ื”-n-grams ื”ื‘ืื™ื:
1. ื”ืฉื•ืขืœ ื”ืื“ื•ื
2. ื”ืื“ื•ื ื”ืžื”ื™ืจ
3. ื”ืžื”ื™ืจ ืงืคืฅ
4. ืงืคืฅ ืžืขืœ
5. ืžืขืœ ื”ื›ืœื‘
6. ื”ื›ืœื‘ ื”ื—ื•ื
7. ื”ื—ื•ื ื”ืขืฆืœืŸ
ื ื™ืชืŸ ืœื“ืžื™ื™ืŸ ื–ืืช ื›ืงื•ืคืกื” ืžื—ืœื™ืงื” ืขืœ ืคื ื™ ื”ืžืฉืคื˜. ื”ื ื” ื–ื” ืขื‘ื•ืจ n-grams ืฉืœ 3 ืžื™ืœื™ื, ื”-n-gram ืžื•ื“ื’ืฉ ื‘ื›ืœ ืžืฉืคื˜:
1. <u>**ื”ืฉื•ืขืœ ื”ืื“ื•ื ื”ืžื”ื™ืจ**</u> ืงืคืฅ ืžืขืœ ื”ื›ืœื‘ ื”ื—ื•ื ื”ืขืฆืœืŸ
2. ื”ืฉื•ืขืœ **<u>ื”ืื“ื•ื ื”ืžื”ื™ืจ ืงืคืฅ</u>** ืžืขืœ ื”ื›ืœื‘ ื”ื—ื•ื ื”ืขืฆืœืŸ
3. ื”ืฉื•ืขืœ ื”ืื“ื•ื **<u>ื”ืžื”ื™ืจ ืงืคืฅ ืžืขืœ</u>** ื”ื›ืœื‘ ื”ื—ื•ื ื”ืขืฆืœืŸ
4. ื”ืฉื•ืขืœ ื”ืื“ื•ื ื”ืžื”ื™ืจ **<u>ืงืคืฅ ืžืขืœ ื”ื›ืœื‘</u>** ื”ื—ื•ื ื”ืขืฆืœืŸ
5. ื”ืฉื•ืขืœ ื”ืื“ื•ื ื”ืžื”ื™ืจ ืงืคืฅ **<u>ืžืขืœ ื”ื›ืœื‘ ื”ื—ื•ื</u>** ื”ืขืฆืœืŸ
6. ื”ืฉื•ืขืœ ื”ืื“ื•ื ื”ืžื”ื™ืจ ืงืคืฅ ืžืขืœ <u>**ื”ื›ืœื‘ ื”ื—ื•ื ื”ืขืฆืœืŸ**</u>
![ื—ืœื•ืŸ ืžื—ืœื™ืง ืฉืœ n-grams](../../../../6-NLP/2-Tasks/images/n-grams.gif)
> ืขืจืš n-gram ืฉืœ 3: ืื™ื ืคื•ื’ืจืคื™ืงื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
### ื—ื™ืœื•ืฅ ื‘ื™ื˜ื•ื™ื™ ืฉื ืขืฆื
ื‘ืจื•ื‘ ื”ืžืฉืคื˜ื™ื ื™ืฉ ืฉื ืขืฆื ืฉื”ื•ื ื”ื ื•ืฉื ืื• ื”ืžื•ืฉื ืฉืœ ื”ืžืฉืคื˜. ื‘ืื ื’ืœื™ืช, ื ื™ืชืŸ ืœื–ื”ื•ืช ืื•ืชื• ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ื›ื›ื–ื” ืฉืžืงื“ื™ื ืื•ืชื• 'a', 'an' ืื• 'the'. ื–ื™ื”ื•ื™ ื”ื ื•ืฉื ืื• ื”ืžื•ืฉื ืฉืœ ืžืฉืคื˜ ืขืœ ื™ื“ื™ 'ื—ื™ืœื•ืฅ ื‘ื™ื˜ื•ื™ ืฉื ืขืฆื' ื”ื•ื ืžืฉื™ืžื” ื ืคื•ืฆื” ื‘-NLP ื›ืืฉืจ ืžื ืกื™ื ืœื”ื‘ื™ืŸ ืืช ืžืฉืžืขื•ืช ื”ืžืฉืคื˜.
โœ… ื‘ืžืฉืคื˜ "I cannot fix on the hour, or the spot, or the look or the words, which laid the foundation. It is too long ago. I was in the middle before I knew that I had begun.", ื”ืื ืชื•ื›ืœื• ืœื–ื”ื•ืช ืืช ื‘ื™ื˜ื•ื™ื™ ืฉื ื”ืขืฆื?
ื‘ืžืฉืคื˜ `ื”ืฉื•ืขืœ ื”ืื“ื•ื ื”ืžื”ื™ืจ ืงืคืฅ ืžืขืœ ื”ื›ืœื‘ ื”ื—ื•ื ื”ืขืฆืœืŸ` ื™ืฉื ื 2 ื‘ื™ื˜ื•ื™ื™ ืฉื ืขืฆื: **ื”ืฉื•ืขืœ ื”ืื“ื•ื ื”ืžื”ื™ืจ** ื•-**ื”ื›ืœื‘ ื”ื—ื•ื ื”ืขืฆืœืŸ**.
### ื ื™ืชื•ื— ืจื’ืฉื•ืช
ื ื™ืชืŸ ืœื ืชื— ืžืฉืคื˜ ืื• ื˜ืงืกื˜ ื›ื“ื™ ืœืงื‘ื•ืข ืืช ื”ืจื’ืฉ ืฉื‘ื•, ืื• ืขื“ ื›ืžื” ื”ื•ื *ื—ื™ื•ื‘ื™* ืื• *ืฉืœื™ืœื™*. ืจื’ืฉ ื ืžื“ื“ ื‘-*ืงื•ื˜ื‘ื™ื•ืช* ื•ื‘-*ืื•ื‘ื™ื™ืงื˜ื™ื‘ื™ื•ืช/ืกื•ื‘ื™ื™ืงื˜ื™ื‘ื™ื•ืช*. ืงื•ื˜ื‘ื™ื•ืช ื ืžื“ื“ืช ืž-1.0- ืขื“ 1.0 (ืฉืœื™ืœื™ ืขื“ ื—ื™ื•ื‘ื™) ื•-0.0 ืขื“ 1.0 (ื”ื›ื™ ืื•ื‘ื™ื™ืงื˜ื™ื‘ื™ ืขื“ ื”ื›ื™ ืกื•ื‘ื™ื™ืงื˜ื™ื‘ื™).
โœ… ื‘ื”ืžืฉืš ืชืœืžื“ื• ืฉื™ืฉ ื“ืจื›ื™ื ืฉื•ื ื•ืช ืœืงื‘ื•ืข ืจื’ืฉ ื‘ืืžืฆืขื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื”, ืืš ื“ืจืš ืื—ืช ื”ื™ื ืœื”ื—ื–ื™ืง ืจืฉื™ืžื” ืฉืœ ืžื™ืœื™ื ื•ื‘ื™ื˜ื•ื™ื™ื ืฉืžืกื•ื•ื’ื™ื ื›ื—ื™ื•ื‘ื™ื™ื ืื• ืฉืœื™ืœื™ื™ื ืขืœ ื™ื“ื™ ืžื•ืžื—ื” ืื ื•ืฉื™ ื•ืœื™ื™ืฉื ืืช ื”ืžื•ื“ืœ ื”ื–ื” ืขืœ ื˜ืงืกื˜ ื›ื“ื™ ืœื—ืฉื‘ ืฆื™ื•ืŸ ืงื•ื˜ื‘ื™ื•ืช. ื”ืื ืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช ื›ื™ืฆื“ ื–ื” ื™ืขื‘ื•ื“ ื‘ื ืกื™ื‘ื•ืช ืžืกื•ื™ืžื•ืช ื•ืคื—ื•ืช ื˜ื•ื‘ ื‘ืื—ืจื•ืช?
### ื ื˜ื™ื™ื”
ื ื˜ื™ื™ื” ืžืืคืฉืจืช ืœื›ื ืœืงื—ืช ืžื™ืœื” ื•ืœืงื‘ืœ ืืช ื”ืฆื•ืจื” ื”ื™ื—ื™ื“ื™ืช ืื• ื”ืจื‘ื™ื ืฉืœื”.
### ืœืžืžื˜ื™ื–ืฆื™ื”
*ืœืžื”* ื”ื™ื ื”ืฉื•ืจืฉ ืื• ื”ืžื™ืœื” ื”ืจืืฉื™ืช ืขื‘ื•ืจ ืงื‘ื•ืฆืช ืžื™ืœื™ื, ืœืžืฉืœ *flew*, *flies*, *flying* ื™ืฉ ืœื”ืŸ ืœืžื” ืฉืœ ื”ืคื•ืขืœ *fly*.
ื™ืฉื ื ื’ื ืžืื’ืจื™ ื ืชื•ื ื™ื ืฉื™ืžื•ืฉื™ื™ื ื–ืžื™ื ื™ื ืœื—ื•ืงืจ NLP, ื‘ืžื™ื•ื—ื“:
### WordNet
[WordNet](https://wordnet.princeton.edu/) ื”ื•ื ืžืื’ืจ ื ืชื•ื ื™ื ืฉืœ ืžื™ืœื™ื, ืžื™ืœื™ื ื ืจื“ืคื•ืช, ืžื™ืœื™ื ืžื ื•ื’ื“ื•ืช ื•ืขื•ื“ ืคืจื˜ื™ื ืจื‘ื™ื ืขื‘ื•ืจ ื›ืœ ืžื™ืœื” ื‘ืฉืคื•ืช ืจื‘ื•ืช ื•ืฉื•ื ื•ืช. ื”ื•ื ืฉื™ืžื•ืฉื™ ืžืื•ื“ ื›ืืฉืจ ืžื ืกื™ื ืœื‘ื ื•ืช ืชืจื’ื•ืžื™ื, ื‘ื•ื“ืงื™ ืื™ื•ืช ืื• ื›ืœื™ื ืœืฉืคื” ืžื›ืœ ืกื•ื’.
## ืกืคืจื™ื•ืช NLP
ืœืžื–ืœื›ื, ืื™ืŸ ืฆื•ืจืš ืœื‘ื ื•ืช ืืช ื›ืœ ื”ื˜ื›ื ื™ืงื•ืช ื”ืœืœื• ื‘ืขืฆืžื›ื, ืฉื›ืŸ ื™ืฉื ืŸ ืกืคืจื™ื•ืช Python ืžืฆื•ื™ื ื•ืช ืฉืžืงืœื•ืช ืžืื•ื“ ืขืœ ืžืคืชื—ื™ื ืฉืื™ื ื ืžืชืžื—ื™ื ื‘ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช ืื• ืœืžื™ื“ืช ืžื›ื•ื ื”. ื”ืฉื™ืขื•ืจื™ื ื”ื‘ืื™ื ื›ื•ืœืœื™ื ื“ื•ื’ืžืื•ืช ื ื•ืกืคื•ืช ืœื›ืš, ืืš ื›ืืŸ ืชืœืžื“ื• ื›ืžื” ื“ื•ื’ืžืื•ืช ืฉื™ืžื•ืฉื™ื•ืช ืฉื™ืขื–ืจื• ืœื›ื ื‘ืžืฉื™ืžื” ื”ื‘ืื”.
### ืชืจื’ื™ืœ - ืฉื™ืžื•ืฉ ื‘ืกืคืจื™ื™ืช `TextBlob`
ื‘ื•ืื• ื ืฉืชืžืฉ ื‘ืกืคืจื™ื™ื” ื‘ืฉื TextBlob ืฉื›ืŸ ื”ื™ื ืžื›ื™ืœื” APIs ืžื•ืขื™ืœื™ื ืœื”ืชืžื•ื“ื“ื•ืช ืขื ืกื•ื’ื™ ืžืฉื™ืžื•ืช ืืœื•. TextBlob "ืขื•ืžื“ืช ืขืœ ื›ืชืคื™ื”ื ืฉืœ ืขื ืงื™ื ื›ืžื• [NLTK](https://nltk.org) ื•-[pattern](https://github.com/clips/pattern), ื•ืžืฉืชืœื‘ืช ื”ื™ื˜ื‘ ืขื ืฉื ื™ื”ื." ื™ืฉ ืœื” ื›ืžื•ืช ืžืฉืžืขื•ืชื™ืช ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืžื•ื‘ื ื™ืช ื‘-API ืฉืœื”.
> ื”ืขืจื”: ืžื“ืจื™ืš [Quick Start](https://textblob.readthedocs.io/en/dev/quickstart.html#quickstart) ืฉื™ืžื•ืฉื™ ื–ืžื™ืŸ ืขื‘ื•ืจ TextBlob ื•ืžื•ืžืœืฅ ืœืžืคืชื—ื™ Python ืžื ื•ืกื™ื.
ื‘ืขืช ื ื™ืกื™ื•ืŸ ืœื–ื”ื•ืช *ื‘ื™ื˜ื•ื™ื™ ืฉื ืขืฆื*, TextBlob ืžืฆื™ืขื” ืžืกืคืจ ืืคืฉืจื•ื™ื•ืช ืฉืœ ืžื—ืœืฆื™ื ืœืžืฆื™ืืช ื‘ื™ื˜ื•ื™ื™ ืฉื ืขืฆื.
1. ื”ืกืชื›ืœื• ืขืœ `ConllExtractor`.
```python
from textblob import TextBlob
from textblob.np_extractors import ConllExtractor
# import and create a Conll extractor to use later
extractor = ConllExtractor()
# later when you need a noun phrase extractor:
user_input = input("> ")
user_input_blob = TextBlob(user_input, np_extractor=extractor) # note non-default extractor specified
np = user_input_blob.noun_phrases
```
> ืžื” ืงื•ืจื” ื›ืืŸ? [ConllExtractor](https://textblob.readthedocs.io/en/dev/api_reference.html?highlight=Conll#textblob.en.np_extractors.ConllExtractor) ื”ื•ื "ืžื—ืœืฅ ื‘ื™ื˜ื•ื™ื™ ืฉื ืขืฆื ืฉืžืฉืชืžืฉ ื‘ื ื™ืชื•ื— ืชื—ื‘ื™ืจื™ ืžื‘ื•ืกืก ืขืœ ืงื•ืจืคื•ืก ื”ืื™ืžื•ืŸ ConLL-2000." ConLL-2000 ืžืชื™ื™ื—ืก ืœื•ื•ืขื™ื“ืช Computational Natural Language Learning ื‘ืฉื ืช 2000. ื‘ื›ืœ ืฉื ื” ื”ื•ื•ืขื™ื“ื” ืื™ืจื—ื” ืกื“ื ื” ืœื”ืชืžื•ื“ื“ ืขื ื‘ืขื™ื™ืช NLP ืžื•ืจื›ื‘ืช, ื•ื‘ืฉื ืช 2000 ื–ื• ื”ื™ื™ืชื” ื—ืœื•ืงืช ืฉืžื•ืช ืขืฆื. ืžื•ื“ืœ ืื•ืžืŸ ืขืœ ืขื™ืชื•ืŸ Wall Street Journal, ืขื "ืกืขื™ืคื™ื 15-18 ื›ื ืชื•ื ื™ ืื™ืžื•ืŸ (211727 ื˜ื•ืงื ื™ื) ื•ืกืขื™ืฃ 20 ื›ื ืชื•ื ื™ ื‘ื“ื™ืงื” (47377 ื˜ื•ืงื ื™ื)". ืชื•ื›ืœื• ืœืจืื•ืช ืืช ื”ื”ืœื™ื›ื™ื ืฉืฉื™ืžืฉื• [ื›ืืŸ](https://www.clips.uantwerpen.be/conll2000/chunking/) ื•ืืช [ื”ืชื•ืฆืื•ืช](https://ifarm.nl/erikt/research/np-chunking.html).
### ืืชื’ืจ - ืฉื™ืคื•ืจ ื”ื‘ื•ื˜ ืฉืœื›ื ืขื NLP
ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื ื‘ื ื™ืชื ื‘ื•ื˜ ืฉืืœื•ืช ื•ืชืฉื•ื‘ื•ืช ืคืฉื•ื˜ ืžืื•ื“. ืขื›ืฉื™ื•, ืชืฉืคืจื• ืืช ืžืจื•ื•ื™ืŸ ื•ืชื’ืจืžื• ืœื• ืœื”ื™ื•ืช ืงืฆืช ื™ื•ืชืจ ืืžืคืชื™ ืขืœ ื™ื“ื™ ื ื™ืชื•ื— ื”ืงืœื˜ ืฉืœื›ื ืœืจื’ืฉ ื•ื”ื“ืคืกืช ืชื’ื•ื‘ื” ืฉืชืชืื™ื ืœืจื’ืฉ. ืชืฆื˜ืจื›ื• ื’ื ืœื–ื”ื•ืช `noun_phrase` ื•ืœืฉืื•ืœ ืขืœื™ื•.
ื”ืฉืœื‘ื™ื ืฉืœื›ื ื‘ื‘ื ื™ื™ืช ื‘ื•ื˜ ืฉื™ื—ื” ื˜ื•ื‘ ื™ื•ืชืจ:
1. ื”ื“ืคื™ืกื• ื”ื•ืจืื•ืช ืฉืžื™ื™ืขืฆื•ืช ืœืžืฉืชืžืฉ ื›ื™ืฆื“ ืœืชืงืฉืจ ืขื ื”ื‘ื•ื˜
2. ื”ืชื—ื™ืœื• ืœื•ืœืื”
1. ืงื‘ืœื• ืงืœื˜ ืžื”ืžืฉืชืžืฉ
2. ืื ื”ืžืฉืชืžืฉ ื‘ื™ืงืฉ ืœืฆืืช, ืฆืื•
3. ืขื‘ื“ื• ืืช ืงืœื˜ ื”ืžืฉืชืžืฉ ื•ืงื‘ืขื• ืชื’ื•ื‘ืช ืจื’ืฉ ืžืชืื™ืžื”
4. ืื ื–ื•ื”ื” ื‘ื™ื˜ื•ื™ ืฉื ืขืฆื ื‘ืจื’ืฉ, ื”ืคื›ื• ืื•ืชื• ืœืจื‘ื™ื ื•ืฉืืœื• ืขืœ ื”ื ื•ืฉื
5. ื”ื“ืคื™ืกื• ืชื’ื•ื‘ื”
3. ื—ื–ืจื• ืœืฉืœื‘ 2
ื”ื ื” ืงื˜ืข ืงื•ื“ ืœืงื‘ื™ืขืช ืจื’ืฉ ื‘ืืžืฆืขื•ืช TextBlob. ืฉื™ืžื• ืœื‘ ืฉื™ืฉ ืจืง ืืจื‘ืข *ื“ืจื’ื•ืช* ืฉืœ ืชื’ื•ื‘ืช ืจื’ืฉ (ืืชื ื™ื›ื•ืœื™ื ืœื”ื•ืกื™ืฃ ื™ื•ืชืจ ืื ืชืจืฆื•):
```python
if user_input_blob.polarity <= -0.5:
response = "Oh dear, that sounds bad. "
elif user_input_blob.polarity <= 0:
response = "Hmm, that's not great. "
elif user_input_blob.polarity <= 0.5:
response = "Well, that sounds positive. "
elif user_input_blob.polarity <= 1:
response = "Wow, that sounds great. "
```
ื”ื ื” ื“ื•ื’ืžืช ืคืœื˜ ืฉืชื ื—ื” ืืชื›ื (ืงืœื˜ ื”ืžืฉืชืžืฉ ืžื•ืคื™ืข ื‘ืฉื•ืจื•ืช ืฉืžืชื—ื™ืœื•ืช ื‘->):
```output
Hello, I am Marvin, the friendly robot.
You can end this conversation at any time by typing 'bye'
After typing each answer, press 'enter'
How are you today?
> I am ok
Well, that sounds positive. Can you tell me more?
> I went for a walk and saw a lovely cat
Well, that sounds positive. Can you tell me more about lovely cats?
> cats are the best. But I also have a cool dog
Wow, that sounds great. Can you tell me more about cool dogs?
> I have an old hounddog but he is sick
Hmm, that's not great. Can you tell me more about old hounddogs?
> bye
It was nice talking to you, goodbye!
```
ืคืชืจื•ืŸ ืืคืฉืจื™ ืœืžืฉื™ืžื” ื ืžืฆื [ื›ืืŸ](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/2-Tasks/solution/bot.py)
โœ… ื‘ื“ื™ืงืช ื™ื“ืข
1. ื”ืื ืืชื ื—ื•ืฉื‘ื™ื ืฉื”ืชื’ื•ื‘ื•ืช ื”ืืžืคืชื™ื•ืช ื™ื’ืจืžื• ืœืžื™ืฉื”ื• ืœื—ืฉื•ื‘ ืฉื”ื‘ื•ื˜ ื‘ืืžืช ืžื‘ื™ืŸ ืื•ืชื•?
2. ื”ืื ื–ื™ื”ื•ื™ ื‘ื™ื˜ื•ื™ ืฉื ืขืฆื ื”ื•ืคืš ืืช ื”ื‘ื•ื˜ ืœื™ื•ืชืจ 'ืืžื™ืŸ'?
3. ืžื“ื•ืข ื—ื™ืœื•ืฅ 'ื‘ื™ื˜ื•ื™ ืฉื ืขืฆื' ืžืžืฉืคื˜ ื”ื•ื ื“ื‘ืจ ืฉื™ืžื•ืฉื™ ืœืขืฉื•ืช?
---
ืžืžืฉื• ืืช ื”ื‘ื•ื˜ ื‘ื‘ื“ื™ืงืช ื”ื™ื“ืข ื”ืงื•ื“ืžืช ื•ื ืกื• ืื•ืชื• ืขืœ ื—ื‘ืจ. ื”ืื ื”ื•ื ื™ื›ื•ืœ ืœื”ื˜ืขื•ืช ืื•ืชื? ื”ืื ืชื•ื›ืœื• ืœื”ืคื•ืš ืืช ื”ื‘ื•ื˜ ืฉืœื›ื ืœื™ื•ืชืจ 'ืืžื™ืŸ'?
## ๐Ÿš€ืืชื’ืจ
ืงื—ื• ืžืฉื™ืžื” ื‘ื‘ื“ื™ืงืช ื”ื™ื“ืข ื”ืงื•ื“ืžืช ื•ื ืกื• ืœืžืžืฉ ืื•ืชื”. ื ืกื• ืืช ื”ื‘ื•ื˜ ืขืœ ื—ื‘ืจ. ื”ืื ื”ื•ื ื™ื›ื•ืœ ืœื”ื˜ืขื•ืช ืื•ืชื? ื”ืื ืชื•ื›ืœื• ืœื”ืคื•ืš ืืช ื”ื‘ื•ื˜ ืฉืœื›ื ืœื™ื•ืชืจ 'ืืžื™ืŸ'?
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื‘ืฉื™ืขื•ืจื™ื ื”ื‘ืื™ื ืชืœืžื“ื• ื™ื•ืชืจ ืขืœ ื ื™ืชื•ื— ืจื’ืฉื•ืช. ื—ืงืจื• ืืช ื”ื˜ื›ื ื™ืงื” ื”ืžืขื ื™ื™ื ืช ื”ื–ื• ื‘ืžืืžืจื™ื ื›ืžื• ืืœื• ื‘-[KDNuggets](https://www.kdnuggets.com/tag/nlp)
## ืžืฉื™ืžื”
[ื’ืจืžื• ืœื‘ื•ื˜ ืœื“ื‘ืจ ื‘ื—ื–ืจื”](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "2efc4c2aba5ed06c780c05539c492ae3",
"translation_date": "2025-09-05T20:27:59+00:00",
"source_file": "6-NLP/2-Tasks/assignment.md",
"language_code": "he"
}
-->
# ืœื’ืจื•ื ืœื‘ื•ื˜ ืœื”ื’ื™ื‘
## ื”ื•ืจืื•ืช
ื‘ืฉื™ืขื•ืจื™ื ื”ืงื•ื“ืžื™ื, ืชื›ื ืชืช ื‘ื•ื˜ ื‘ืกื™ืกื™ ืฉืืคืฉืจ ืœืฉื•ื—ื— ืื™ืชื•. ื”ื‘ื•ื˜ ื”ื–ื” ื ื•ืชืŸ ืชืฉื•ื‘ื•ืช ืืงืจืื™ื•ืช ืขื“ ืฉืชื’ื™ื“ 'bye'. ื”ืื ืชื•ื›ืœ ืœื’ืจื•ื ืœืชืฉื•ื‘ื•ืช ืœื”ื™ื•ืช ืงืฆืช ืคื—ื•ืช ืืงืจืื™ื•ืช, ื•ืœื”ืคืขื™ืœ ืชื’ื•ื‘ื•ืช ืื ืชื’ื™ื“ ื“ื‘ืจื™ื ืกืคืฆื™ืคื™ื™ื, ื›ืžื• 'ืœืžื”' ืื• 'ืื™ืš'? ื—ืฉื•ื‘ ืงืฆืช ืื™ืš ืœืžื™ื“ืช ืžื›ื•ื ื” ื™ื›ื•ืœื” ืœื”ืคื•ืš ืืช ื”ืขื‘ื•ื“ื” ื”ื–ื• ืœืคื—ื•ืช ื™ื“ื ื™ืช ื‘ื–ืžืŸ ืฉืืชื” ืžืจื—ื™ื‘ ืืช ื”ื‘ื•ื˜ ืฉืœืš. ืืชื” ื™ื›ื•ืœ ืœื”ืฉืชืžืฉ ื‘ืกืคืจื™ื•ืช NLTK ืื• TextBlob ื›ื“ื™ ืœื”ืงืœ ืขืœ ื”ืžืฉื™ืžื•ืช ืฉืœืš.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ------------------------------------------- | ---------------------------------------------- | ----------------------- |
| | ืงื•ื‘ืฅ bot.py ื—ื“ืฉ ืžื•ืฆื’ ื•ืžืชื•ืขื“ | ืงื•ื‘ืฅ ื‘ื•ื˜ ื—ื“ืฉ ืžื•ืฆื’ ืืš ืžื›ื™ืœ ื‘ืื’ื™ื | ืงื•ื‘ืฅ ืœื ืžื•ืฆื’ |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื ื• ืœื ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,200 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "be03c8182982b87ced155e4e9d1438e8",
"translation_date": "2025-09-05T20:38:56+00:00",
"source_file": "6-NLP/3-Translation-Sentiment/README.md",
"language_code": "he"
}
-->
# ืชืจื’ื•ื ื•ื ื™ืชื•ื— ืจื’ืฉื•ืช ืขื ืœืžื™ื“ืช ืžื›ื•ื ื”
ื‘ืฉื™ืขื•ืจื™ื ื”ืงื•ื“ืžื™ื ืœืžื“ืชื ื›ื™ืฆื“ ืœื‘ื ื•ืช ื‘ื•ื˜ ื‘ืกื™ืกื™ ื‘ืืžืฆืขื•ืช `TextBlob`, ืกืคืจื™ื™ื” ืฉืžืฉืชืžืฉืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ืžืื—ื•ืจื™ ื”ืงืœืขื™ื ื›ื“ื™ ืœื‘ืฆืข ืžืฉื™ืžื•ืช ื‘ืกื™ืกื™ื•ืช ืฉืœ ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช ื›ืžื• ื—ื™ืœื•ืฅ ื‘ื™ื˜ื•ื™ื™ ืฉื ืขืฆื. ืืชื’ืจ ื—ืฉื•ื‘ ื ื•ืกืฃ ื‘ื‘ืœืฉื ื•ืช ื—ื™ืฉื•ื‘ื™ืช ื”ื•ื ืชืจื’ื•ื ืžื“ื•ื™ืง ืฉืœ ืžืฉืคื˜ ืžืฉืคื” ืžื“ื•ื‘ืจืช ืื• ื›ืชื•ื‘ื” ืื—ืช ืœืฉืคื” ืื—ืจืช.
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
ืชืจื’ื•ื ื”ื•ื ื‘ืขื™ื” ืงืฉื” ืžืื•ื“, ื‘ืžื™ื•ื—ื“ ืœืื•ืจ ื”ืขื•ื‘ื“ื” ืฉื™ืฉ ืืœืคื™ ืฉืคื•ืช ืฉืœื›ืœ ืื—ืช ืžื”ืŸ ื›ืœืœื™ ื“ืงื“ื•ืง ืฉื•ื ื™ื ืžืื•ื“. ื’ื™ืฉื” ืื—ืช ื”ื™ื ืœื”ืžื™ืจ ืืช ื›ืœืœื™ ื”ื“ืงื“ื•ืง ื”ืคื•ืจืžืœื™ื™ื ืฉืœ ืฉืคื” ืื—ืช, ื›ืžื• ืื ื’ืœื™ืช, ืœืžื‘ื ื” ืฉืื™ื ื• ืชืœื•ื™ ื‘ืฉืคื”, ื•ืื– ืœืชืจื’ื ืื•ืชื• ืขืœ ื™ื“ื™ ื”ืžืจื” ื—ื–ืจื” ืœืฉืคื” ืื—ืจืช. ื’ื™ืฉื” ื–ื• ื›ื•ืœืœืช ืืช ื”ืฉืœื‘ื™ื ื”ื‘ืื™ื:
1. **ื–ื™ื”ื•ื™**. ื–ื™ื”ื•ื™ ืื• ืชื™ื•ื’ ืฉืœ ื”ืžื™ืœื™ื ื‘ืฉืคืช ื”ืžืงื•ืจ ื›ืขืฆื, ืคื•ืขืœ ื•ื›ื•'.
2. **ื™ืฆื™ืจืช ืชืจื’ื•ื**. ื”ืคืงืช ืชืจื’ื•ื ื™ืฉื™ืจ ืฉืœ ื›ืœ ืžื™ืœื” ื‘ืคื•ืจืžื˜ ืฉืœ ืฉืคืช ื”ื™ืขื“.
### ืžืฉืคื˜ ืœื“ื•ื’ืžื”, ืžืื ื’ืœื™ืช ืœืื™ืจื™ืช
ื‘'ืื ื’ืœื™ืช', ื”ืžืฉืคื˜ _I feel happy_ ืžื•ืจื›ื‘ ืžืฉืœื•ืฉ ืžื™ืœื™ื ื‘ืกื“ืจ ื”ื‘ื:
- **ื ื•ืฉื** (I)
- **ืคื•ืขืœ** (feel)
- **ืชื•ืืจ** (happy)
ืขื ื–ืืช, ื‘ืฉืคื” 'ืื™ืจื™ืช', ืœืื•ืชื• ืžืฉืคื˜ ื™ืฉ ืžื‘ื ื” ื“ืงื“ื•ืงื™ ืฉื•ื ื” ืžืื•ื“ - ืจื’ืฉื•ืช ื›ืžื• "*ืฉืžื—*" ืื• "*ืขืฆื•ื‘*" ืžืชื•ืืจื™ื ื›ืžืฉื”ื• *ืฉืขืœื™ืš*.
ื”ื‘ื™ื˜ื•ื™ ื”ืื ื’ืœื™ `I feel happy` ื‘ืื™ืจื™ืช ื™ื”ื™ื” `Tรก athas orm`. ืชืจื’ื•ื *ืžื™ืœื•ืœื™* ื™ื”ื™ื” `ืฉืžื— ืขืœื™ื™`.
ื“ื•ื‘ืจ ืื™ืจื™ืช ืฉืžืชืจื’ื ืœืื ื’ืœื™ืช ื™ืืžืจ `I feel happy`, ื•ืœื `Happy is upon me`, ื›ื™ ื”ื•ื ืžื‘ื™ืŸ ืืช ืžืฉืžืขื•ืช ื”ืžืฉืคื˜, ื’ื ืื ื”ืžื™ืœื™ื ื•ืžื‘ื ื” ื”ืžืฉืคื˜ ืฉื•ื ื™ื.
ื”ืกื“ืจ ื”ืคื•ืจืžืœื™ ืฉืœ ื”ืžืฉืคื˜ ื‘ืื™ืจื™ืช ื”ื•ื:
- **ืคื•ืขืœ** (Tรก ืื• is)
- **ืชื•ืืจ** (athas, ืื• happy)
- **ื ื•ืฉื** (orm, ืื• ืขืœื™ื™)
## ืชืจื’ื•ื
ืชื•ื›ื ื™ืช ืชืจื’ื•ื ื ืื™ื‘ื™ืช ืขืฉื•ื™ื” ืœืชืจื’ื ืžื™ืœื™ื ื‘ืœื‘ื“, ืชื•ืš ื”ืชืขืœืžื•ืช ืžืžื‘ื ื” ื”ืžืฉืคื˜.
โœ… ืื ืœืžื“ืชื ืฉืคื” ืฉื ื™ื™ื” (ืื• ืฉืœื™ืฉื™ืช ืื• ื™ื•ืชืจ) ื›ืžื‘ื•ื’ืจื™ื, ื™ื™ืชื›ืŸ ืฉื”ืชื—ืœืชื ืœื—ืฉื•ื‘ ื‘ืฉืคืช ื”ืื ืฉืœื›ื, ืœืชืจื’ื ืžื•ืฉื’ื™ื ืžื™ืœื” ื‘ืžื™ืœื” ื‘ืจืืฉื›ื ืœืฉืคื” ื”ืฉื ื™ื™ื”, ื•ืื– ืœื•ืžืจ ืืช ื”ืชืจื’ื•ื ืฉืœื›ื. ื–ื” ื“ื•ืžื” ืœืžื” ืฉืชื•ื›ื ื™ื•ืช ืชืจื’ื•ื ื ืื™ื‘ื™ื•ืช ืขื•ืฉื•ืช. ื—ืฉื•ื‘ ืœื”ืชืงื“ื ืžืขื‘ืจ ืœืฉืœื‘ ื”ื–ื” ื›ื“ื™ ืœื”ื’ื™ืข ืœืฉื˜ืฃ!
ืชืจื’ื•ื ื ืื™ื‘ื™ ืžื•ื‘ื™ืœ ืœืชืจื’ื•ืžื™ื ื’ืจื•ืขื™ื (ื•ืœืคืขืžื™ื ืžืฆื—ื™ืงื™ื): `I feel happy` ืžืชื•ืจื’ื ื‘ืื•ืคืŸ ืžื™ืœื•ืœื™ ืœ-`Mise bhraitheann athas` ื‘ืื™ืจื™ืช. ื–ื” ืื•ืžืจ (ืžื™ืœื•ืœื™ืช) `ืื ื™ ืžืจื’ื™ืฉ ืฉืžื—` ื•ืื™ื ื• ืžืฉืคื˜ ืื™ืจื™ ืชืงื ื™. ืœืžืจื•ืช ืฉืื ื’ืœื™ืช ื•ืื™ืจื™ืช ื”ืŸ ืฉืคื•ืช ื”ืžื“ื•ื‘ืจื•ืช ื‘ืฉื ื™ ืื™ื™ื ืฉื›ื ื™ื, ื”ืŸ ืฉืคื•ืช ืฉื•ื ื•ืช ืžืื•ื“ ืขื ืžื‘ื ื™ ื“ืงื“ื•ืง ืฉื•ื ื™ื.
> ืชื•ื›ืœื• ืœืฆืคื•ืช ื‘ื›ืžื” ืกืจื˜ื•ื ื™ื ืขืœ ืžืกื•ืจื•ืช ืœืฉื•ื ื™ื•ืช ืื™ืจื™ื•ืช ื›ืžื• [ื–ื”](https://www.youtube.com/watch?v=mRIaLSdRMMs)
### ื’ื™ืฉื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื”
ืขื“ ื›ื”, ืœืžื“ืชื ืขืœ ื”ื’ื™ืฉื” ืฉืœ ื›ืœืœื™ื ืคื•ืจืžืœื™ื™ื ืœืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช. ื’ื™ืฉื” ื ื•ืกืคืช ื”ื™ื ืœื”ืชืขืœื ืžืžืฉืžืขื•ืช ื”ืžื™ืœื™ื, ื•_ื‘ืžืงื•ื ื–ืืช ืœื”ืฉืชืžืฉ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื›ื“ื™ ืœื–ื”ื•ืช ื“ืคื•ืกื™ื_. ื–ื” ื™ื›ื•ืœ ืœืขื‘ื•ื“ ื‘ืชืจื’ื•ื ืื ื™ืฉ ืœื›ื ื”ืจื‘ื” ื˜ืงืกื˜ื™ื (*corpus*) ืื• ื˜ืงืกื˜ื™ื (*corpora*) ื‘ืฉืคืช ื”ืžืงื•ืจ ื•ื‘ืฉืคืช ื”ื™ืขื“.
ืœื“ื•ื’ืžื”, ืฉืงืœื• ืืช ื”ืžืงืจื” ืฉืœ *ื’ืื•ื•ื” ื•ื“ืขื” ืงื“ื•ืžื”*, ืจื•ืžืŸ ืื ื’ืœื™ ื™ื“ื•ืข ืฉื ื›ืชื‘ ืขืœ ื™ื“ื™ ื’'ื™ื™ืŸ ืื•ืกื˜ืŸ ื‘ืฉื ืช 1813. ืื ืชืขื™ื™ื ื• ื‘ืกืคืจ ื‘ืื ื’ืœื™ืช ื•ื‘ืชืจื’ื•ื ืื ื•ืฉื™ ืฉืœ ื”ืกืคืจ ืœ*ืฆืจืคืชื™ืช*, ืชื•ื›ืœื• ืœื–ื”ื•ืช ื‘ื™ื˜ื•ื™ื™ื ื‘ืื—ื“ ืฉืžืชื•ืจื’ืžื™ื ื‘ืื•ืคืŸ _ืื™ื“ื™ื•ืžื˜ื™_ ืœืฉื ื™. ืชืขืฉื• ื–ืืช ื‘ืขื•ื“ ืจื’ืข.
ืœื“ื•ื’ืžื”, ื›ืืฉืจ ื‘ื™ื˜ื•ื™ ื‘ืื ื’ืœื™ืช ื›ืžื• `I have no money` ืžืชื•ืจื’ื ื‘ืื•ืคืŸ ืžื™ืœื•ืœื™ ืœืฆืจืคืชื™ืช, ื”ื•ื ืขืฉื•ื™ ืœื”ืคื•ืš ืœ-`Je n'ai pas de monnaie`. "Monnaie" ื”ื•ื 'ื“ืžื™ื•ืŸ ืฉื•ื•ื' ืฆืจืคืชื™ ืžืกื•ื‘ืš, ืฉื›ืŸ 'money' ื•-'monnaie' ืื™ื ื ืžื™ืœื™ื ื ืจื“ืคื•ืช. ืชืจื’ื•ื ื˜ื•ื‘ ื™ื•ืชืจ ืฉื“ื•ื‘ืจ ืื ื•ืฉื™ ืขืฉื•ื™ ืœืขืฉื•ืช ื™ื”ื™ื” `Je n'ai pas d'argent`, ื›ื™ ื”ื•ื ืžืขื‘ื™ืจ ื˜ื•ื‘ ื™ื•ืชืจ ืืช ื”ืžืฉืžืขื•ืช ืฉืื™ืŸ ืœืš ื›ืกืฃ (ื•ืœื 'ื›ืกืฃ ืงื˜ืŸ' ืฉื”ื•ื ื”ืžืฉืžืขื•ืช ืฉืœ 'monnaie').
![monnaie](../../../../6-NLP/3-Translation-Sentiment/images/monnaie.png)
> ืชืžื•ื ื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
ืื ืœืžื•ื“ืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื™ืฉ ืžืกืคื™ืง ืชืจื’ื•ืžื™ื ืื ื•ืฉื™ื™ื ืœื‘ื ื™ื™ืช ืžื•ื“ืœ, ื”ื•ื ื™ื›ื•ืœ ืœืฉืคืจ ืืช ื“ื™ื•ืง ื”ืชืจื’ื•ืžื™ื ืขืœ ื™ื“ื™ ื–ื™ื”ื•ื™ ื“ืคื•ืกื™ื ื ืคื•ืฆื™ื ื‘ื˜ืงืกื˜ื™ื ืฉืชื•ืจื’ืžื• ื‘ืขื‘ืจ ืขืœ ื™ื“ื™ ื“ื•ื‘ืจื™ื ืื ื•ืฉื™ื™ื ืžื•ืžื—ื™ื ืฉืœ ืฉืชื™ ื”ืฉืคื•ืช.
### ืชืจื’ื™ืœ - ืชืจื’ื•ื
ืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘-`TextBlob` ื›ื“ื™ ืœืชืจื’ื ืžืฉืคื˜ื™ื. ื ืกื• ืืช ื”ืฉื•ืจื” ื”ืจืืฉื•ื ื” ื”ืžืคื•ืจืกืžืช ืฉืœ **ื’ืื•ื•ื” ื•ื“ืขื” ืงื“ื•ืžื”**:
```python
from textblob import TextBlob
blob = TextBlob(
"It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife!"
)
print(blob.translate(to="fr"))
```
`TextBlob` ืขื•ืฉื” ืขื‘ื•ื“ื” ื“ื™ ื˜ื•ื‘ื” ื‘ืชืจื’ื•ื: "C'est une vรฉritรฉ universellement reconnue, qu'un homme cรฉlibataire en possession d'une bonne fortune doit avoir besoin d'une femme!".
ืืคืฉืจ ืœื˜ืขื•ืŸ ืฉื”ืชืจื’ื•ื ืฉืœ TextBlob ืžื“ื•ื™ืง ื”ืจื‘ื” ื™ื•ืชืจ, ืœืžืขืฉื”, ืžื”ืชืจื’ื•ื ื”ืฆืจืคืชื™ ืฉืœ ื”ืกืคืจ ืžืฉื ืช 1932 ืขืœ ื™ื“ื™ V. Leconte ื•-Ch. Pressoir:
"C'est une vรฉritรฉ universelle qu'un cรฉlibataire pourvu d'une belle fortune doit avoir envie de se marier, et, si peu que l'on sache de son sentiment ร  cet egard, lorsqu'il arrive dans une nouvelle rรฉsidence, cette idรฉe est si bien fixรฉe dans l'esprit de ses voisins qu'ils le considรจrent sur-le-champ comme la propriรฉtรฉ lรฉgitime de l'une ou l'autre de leurs filles."
ื‘ืžืงืจื” ื–ื”, ื”ืชืจื’ื•ื ื”ืžื‘ื•ืกืก ืขืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืขื•ืฉื” ืขื‘ื•ื“ื” ื˜ื•ื‘ื” ื™ื•ืชืจ ืžื”ืžืชืจื’ื ื”ืื ื•ืฉื™ ืฉื”ื•ืกื™ืฃ ืžื™ืœื™ื ืžื™ื•ืชืจื•ืช ืœืคื™ื• ืฉืœ ื”ืžื—ื‘ืจ ื”ืžืงื•ืจื™ ืœืฆื•ืจืš 'ื‘ื”ื™ืจื•ืช'.
> ืžื” ืงื•ืจื” ื›ืืŸ? ื•ืœืžื” TextBlob ื›ืœ ื›ืš ื˜ื•ื‘ ื‘ืชืจื’ื•ื? ื•ื‘ื›ืŸ, ืžืื—ื•ืจื™ ื”ืงืœืขื™ื, ื”ื•ื ืžืฉืชืžืฉ ื‘-Google Translate, AI ืžืชื•ื—ื›ื ืฉืžืกื•ื’ืœ ืœื ืชื— ืžื™ืœื™ื•ื ื™ ื‘ื™ื˜ื•ื™ื™ื ื›ื“ื™ ืœื—ื–ื•ืช ืืช ื”ืžื—ืจื•ื–ื•ืช ื”ื˜ื•ื‘ื•ืช ื‘ื™ื•ืชืจ ืœืžืฉื™ืžื”. ืื™ืŸ ื›ืืŸ ืฉื•ื ื“ื‘ืจ ื™ื“ื ื™ ื•ืืชื ืฆืจื™ื›ื™ื ื—ื™ื‘ื•ืจ ืœืื™ื ื˜ืจื ื˜ ื›ื“ื™ ืœื”ืฉืชืžืฉ ื‘-`blob.translate`.
โœ… ื ืกื• ืขื•ื“ ืžืฉืคื˜ื™ื. ืžื” ืขื“ื™ืฃ, ืชืจื’ื•ื ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ืื• ืชืจื’ื•ื ืื ื•ืฉื™? ื‘ืื™ืœื• ืžืงืจื™ื?
## ื ื™ืชื•ื— ืจื’ืฉื•ืช
ืชื—ื•ื ื ื•ืกืฃ ืฉื‘ื• ืœืžื™ื“ืช ืžื›ื•ื ื” ื™ื›ื•ืœื” ืœืขื‘ื•ื“ ื”ื™ื˜ื‘ ื”ื•ื ื ื™ืชื•ื— ืจื’ืฉื•ืช. ื’ื™ืฉื” ืฉืื™ื ื” ืžื‘ื•ืกืกืช ืœืžื™ื“ืช ืžื›ื•ื ื” ืœื ื™ืชื•ื— ืจื’ืฉื•ืช ื”ื™ื ืœื–ื”ื•ืช ืžื™ืœื™ื ื•ื‘ื™ื˜ื•ื™ื™ื ืฉื”ื 'ื—ื™ื•ื‘ื™ื™ื' ื•'ืฉืœื™ืœื™ื™ื'. ืœืื—ืจ ืžื›ืŸ, ื‘ื”ืชื—ืฉื‘ ื‘ื˜ืงืกื˜ ื—ื“ืฉ, ืœื—ืฉื‘ ืืช ื”ืขืจืš ื”ื›ื•ืœืœ ืฉืœ ื”ืžื™ืœื™ื ื”ื—ื™ื•ื‘ื™ื•ืช, ื”ืฉืœื™ืœื™ื•ืช ื•ื”ื ื™ื™ื˜ืจืœื™ื•ืช ื›ื“ื™ ืœื–ื”ื•ืช ืืช ื”ืจื’ืฉ ื”ื›ืœืœื™.
ื’ื™ืฉื” ื–ื• ื ื™ืชื ืช ืœื”ื˜ืขื™ื” ื‘ืงืœื•ืช ื›ืคื™ ืฉืจืื™ืชื ื‘ืžืฉื™ืžืช ืžืจื•ื•ื™ืŸ - ื”ืžืฉืคื˜ `Great, that was a wonderful waste of time, I'm glad we are lost on this dark road` ื”ื•ื ืžืฉืคื˜ ืกืจืงืกื˜ื™ ืขื ืจื’ืฉ ืฉืœื™ืœื™, ืืš ื”ืืœื’ื•ืจื™ืชื ื”ืคืฉื•ื˜ ืžื–ื”ื” 'great', 'wonderful', 'glad' ื›ื—ื™ื•ื‘ื™ื™ื ื•-'waste', 'lost' ื•-'dark' ื›ืฉืœื™ืœื™ื™ื. ื”ืจื’ืฉ ื”ื›ืœืœื™ ืžื•ืฉืคืข ืžื”ืžื™ืœื™ื ื”ืกื•ืชืจื•ืช ื”ืœืœื•.
โœ… ืขืฆืจื• ืจื’ืข ื•ื—ืฉื‘ื• ื›ื™ืฆื“ ืื ื• ืžืขื‘ื™ืจื™ื ืกืจืงื–ื ื›ื“ื•ื‘ืจื™ื ืื ื•ืฉื™ื™ื. ืื™ื ื˜ื•ื ืฆื™ื” ืžืฉื—ืงืช ืชืคืงื™ื“ ื’ื“ื•ืœ. ื ืกื• ืœื•ืžืจ ืืช ื”ืžืฉืคื˜ "Well, that film was awesome" ื‘ื“ืจื›ื™ื ืฉื•ื ื•ืช ื›ื“ื™ ืœื’ืœื•ืช ื›ื™ืฆื“ ื”ืงื•ืœ ืฉืœื›ื ืžืขื‘ื™ืจ ืžืฉืžืขื•ืช.
### ื’ื™ืฉื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื”
ื”ื’ื™ืฉื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืชื”ื™ื” ืœืืกื•ืฃ ื‘ืื•ืคืŸ ื™ื“ื ื™ ื’ื•ืคื™ ื˜ืงืกื˜ ืฉืœื™ืœื™ื™ื ื•ื—ื™ื•ื‘ื™ื™ื - ืฆื™ื•ืฆื™ื, ืื• ื‘ื™ืงื•ืจื•ืช ืกืจื˜ื™ื, ืื• ื›ืœ ื“ื‘ืจ ืฉื‘ื• ื”ืื“ื ื ืชืŸ ืฆื™ื•ืŸ *ื•ื’ื* ื“ืขื” ื›ืชื•ื‘ื”. ืœืื—ืจ ืžื›ืŸ ื ื™ืชืŸ ืœื™ื™ืฉื ื˜ื›ื ื™ืงื•ืช ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช ืขืœ ื“ืขื•ืช ื•ืฆื™ื•ื ื™ื, ื›ืš ืฉื“ืคื•ืกื™ื ื™ื•ืคื™ืขื• (ืœื“ื•ื’ืžื”, ื‘ื™ืงื•ืจื•ืช ืกืจื˜ื™ื ื—ื™ื•ื‘ื™ื•ืช ื ื•ื˜ื•ืช ืœื›ืœื•ืœ ืืช ื”ื‘ื™ื˜ื•ื™ 'Oscar worthy' ื™ื•ืชืจ ืžืืฉืจ ื‘ื™ืงื•ืจื•ืช ืฉืœื™ืœื™ื•ืช, ืื• ื‘ื™ืงื•ืจื•ืช ืžืกืขื“ื•ืช ื—ื™ื•ื‘ื™ื•ืช ืื•ืžืจื•ืช 'gourmet' ื”ืจื‘ื” ื™ื•ืชืจ ืžืืฉืจ 'disgusting').
> โš–๏ธ **ื“ื•ื’ืžื”**: ืื ืขื‘ื“ืชื ื‘ืžืฉืจื“ ืฉืœ ืคื•ืœื™ื˜ื™ืงืื™ ื•ื™ืฉ ื—ื•ืง ื—ื“ืฉ ืฉื ื“ื•ืŸ, ื™ื™ืชื›ืŸ ืฉืชื•ืฉื‘ื™ื ื™ื›ืชื‘ื• ืœืžืฉืจื“ ืขื ืžื™ื™ืœื™ื ืฉืชื•ืžื›ื™ื ืื• ืžืชื ื’ื“ื™ื ืœื—ื•ืง ื”ื—ื“ืฉ. ื ื ื™ื— ืฉืืชื ืžืชื‘ืงืฉื™ื ืœืงืจื•ื ืืช ื”ืžื™ื™ืœื™ื ื•ืœืžื™ื™ืŸ ืื•ืชื ืœืฉืชื™ ืขืจื™ืžื•ืช, *ื‘ืขื“* ื•-*ื ื’ื“*. ืื ื”ื™ื• ื”ืจื‘ื” ืžื™ื™ืœื™ื, ื™ื™ืชื›ืŸ ืฉืชื”ื™ื• ืžื•ืฆืคื™ื ื‘ื ื™ืกื™ื•ืŸ ืœืงืจื•ื ืืช ื›ื•ืœื. ืœื ื™ื”ื™ื” ื ื—ืžื“ ืื ื‘ื•ื˜ ื™ื•ื›ืœ ืœืงืจื•ื ืืช ื›ื•ืœื ืขื‘ื•ืจื›ื, ืœื”ื‘ื™ืŸ ืื•ืชื ื•ืœื•ืžืจ ืœื›ื ืœืื™ื–ื• ืขืจื™ืžื” ื›ืœ ืžื™ื™ืœ ืฉื™ื™ืš?
>
> ื“ืจืš ืื—ืช ืœื”ืฉื™ื’ ื–ืืช ื”ื™ื ืœื”ืฉืชืžืฉ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”. ื”ื™ื™ืชื ืžืืžื ื™ื ืืช ื”ืžื•ื“ืœ ืขื ื—ืœืง ืžื”ืžื™ื™ืœื™ื ื”*ื ื’ื“* ื•ื—ืœืง ืžื”ืžื™ื™ืœื™ื ื”*ื‘ืขื“*. ื”ืžื•ื“ืœ ื”ื™ื” ื ื•ื˜ื” ืœืฉื™ื™ืš ื‘ื™ื˜ื•ื™ื™ื ื•ืžื™ืœื™ื ืœืฆื“ ื”ื ื’ื“ ื•ืœืฆื“ ื”ื‘ืขื“, *ืืš ื”ื•ื ืœื ื”ื™ื” ืžื‘ื™ืŸ ืฉื•ื ืชื•ื›ืŸ*, ืจืง ืฉืžื™ืœื™ื ื•ื“ืคื•ืกื™ื ืžืกื•ื™ืžื™ื ื ื•ื˜ื™ื ืœื”ื•ืคื™ืข ื™ื•ืชืจ ื‘ืžื™ื™ืœื™ื ื ื’ื“ ืื• ื‘ืขื“. ื”ื™ื™ืชื ื‘ื•ื“ืงื™ื ืื•ืชื• ืขื ื›ืžื” ืžื™ื™ืœื™ื ืฉืœื ื”ืฉืชืžืฉืชื ื‘ื”ื ื›ื“ื™ ืœืืžืŸ ืืช ื”ืžื•ื“ืœ, ื•ืจื•ืื™ื ืื ื”ื•ื ื”ื’ื™ืข ืœืื•ืชื” ืžืกืงื ื” ื›ืžื•ื›ื. ืœืื—ืจ ืžื›ืŸ, ื‘ืจื’ืข ืฉื”ื™ื™ืชื ืžืจื•ืฆื™ื ืžื”ื“ื™ื•ืง ืฉืœ ื”ืžื•ื“ืœ, ื”ื™ื™ืชื ื™ื›ื•ืœื™ื ืœืขื‘ื“ ืžื™ื™ืœื™ื ืขืชื™ื“ื™ื™ื ืžื‘ืœื™ ืœืงืจื•ื ื›ืœ ืื—ื“ ืžื”ื.
โœ… ื”ืื ื”ืชื”ืœื™ืš ื”ื–ื” ื ืฉืžืข ื›ืžื• ืชื”ืœื™ื›ื™ื ืฉื”ืฉืชืžืฉืชื ื‘ื”ื ื‘ืฉื™ืขื•ืจื™ื ืงื•ื“ืžื™ื?
## ืชืจื’ื™ืœ - ืžืฉืคื˜ื™ื ืจื’ืฉื™ื™ื
ืจื’ืฉ ื ืžื“ื“ ืขื *ืงื•ื˜ื‘ื™ื•ืช* ืฉืœ -1 ืขื“ 1, ื›ืœื•ืžืจ -1 ื”ื•ื ื”ืจื’ืฉ ื”ืฉืœื™ืœื™ ื‘ื™ื•ืชืจ, ื•-1 ื”ื•ื ื”ืจื’ืฉ ื”ื—ื™ื•ื‘ื™ ื‘ื™ื•ืชืจ. ืจื’ืฉ ื ืžื“ื“ ื’ื ืขื ืฆื™ื•ืŸ ืฉืœ 0 - 1 ืขื‘ื•ืจ ืื•ื‘ื™ื™ืงื˜ื™ื‘ื™ื•ืช (0) ื•ืกื•ื‘ื™ื™ืงื˜ื™ื‘ื™ื•ืช (1).
ื”ืกืชื›ืœื• ืฉื•ื‘ ืขืœ *ื’ืื•ื•ื” ื•ื“ืขื” ืงื“ื•ืžื”* ืฉืœ ื’'ื™ื™ืŸ ืื•ืกื˜ืŸ. ื”ื˜ืงืกื˜ ื–ืžื™ืŸ ื›ืืŸ ื‘-[Project Gutenberg](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm). ื”ื“ื•ื’ืžื” ืœืžื˜ื” ืžืฆื™ื’ื” ืชื•ื›ื ื™ืช ืงืฆืจื” ืฉืžื ืชื—ืช ืืช ื”ืจื’ืฉ ืฉืœ ื”ืžืฉืคื˜ื™ื ื”ืจืืฉื•ื ื™ื ื•ื”ืื—ืจื•ื ื™ื ืžื”ืกืคืจ ื•ืžืฆื™ื’ื” ืืช ืงื•ื˜ื‘ื™ื•ืช ื”ืจื’ืฉ ื•ืืช ืฆื™ื•ืŸ ื”ืกื•ื‘ื™ื™ืงื˜ื™ื‘ื™ื•ืช/ืื•ื‘ื™ื™ืงื˜ื™ื‘ื™ื•ืช.
ืขืœื™ื›ื ืœื”ืฉืชืžืฉ ื‘ืกืคืจื™ื™ืช `TextBlob` (ืฉืชื•ืืจื” ืœืขื™ืœ) ื›ื“ื™ ืœืงื‘ื•ืข `sentiment` (ืื™ืŸ ืฆื•ืจืš ืœื›ืชื•ื‘ ืžื—ืฉื‘ื•ืŸ ืจื’ืฉื•ืช ืžืฉืœื›ื) ื‘ืžืฉื™ืžื” ื”ื‘ืื”.
```python
from textblob import TextBlob
quote1 = """It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife."""
quote2 = """Darcy, as well as Elizabeth, really loved them; and they were both ever sensible of the warmest gratitude towards the persons who, by bringing her into Derbyshire, had been the means of uniting them."""
sentiment1 = TextBlob(quote1).sentiment
sentiment2 = TextBlob(quote2).sentiment
print(quote1 + " has a sentiment of " + str(sentiment1))
print(quote2 + " has a sentiment of " + str(sentiment2))
```
ืืชื ืจื•ืื™ื ืืช ื”ืคืœื˜ ื”ื‘ื:
```output
It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want # of a wife. has a sentiment of Sentiment(polarity=0.20952380952380953, subjectivity=0.27142857142857146)
Darcy, as well as Elizabeth, really loved them; and they were
both ever sensible of the warmest gratitude towards the persons
who, by bringing her into Derbyshire, had been the means of
uniting them. has a sentiment of Sentiment(polarity=0.7, subjectivity=0.8)
```
## ืืชื’ืจ - ื‘ื“ื™ืงืช ืงื•ื˜ื‘ื™ื•ืช ืจื’ืฉื™ืช
ื”ืžืฉื™ืžื” ืฉืœื›ื ื”ื™ื ืœืงื‘ื•ืข, ื‘ืืžืฆืขื•ืช ืงื•ื˜ื‘ื™ื•ืช ืจื’ืฉื™ืช, ื”ืื ืœ-*ื’ืื•ื•ื” ื•ื“ืขื” ืงื“ื•ืžื”* ื™ืฉ ื™ื•ืชืจ ืžืฉืคื˜ื™ื ื—ื™ื•ื‘ื™ื™ื ืœื—ืœื•ื˜ื™ืŸ ืžืืฉืจ ืฉืœื™ืœื™ื™ื ืœื—ืœื•ื˜ื™ืŸ. ืœืฆื•ืจืš ืžืฉื™ืžื” ื–ื•, ืชื•ื›ืœื• ืœื”ื ื™ื— ืฉืงื•ื˜ื‘ื™ื•ืช ืฉืœ 1 ืื• -1 ื”ื™ื ื—ื™ื•ื‘ื™ืช ืœื—ืœื•ื˜ื™ืŸ ืื• ืฉืœื™ืœื™ืช ืœื—ืœื•ื˜ื™ืŸ ื‘ื”ืชืืžื”.
**ืฉืœื‘ื™ื:**
1. ื”ื•ืจื™ื“ื• [ืขื•ืชืง ืฉืœ ื’ืื•ื•ื” ื•ื“ืขื” ืงื“ื•ืžื”](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) ืž-Project Gutenberg ื›ืงื•ื‘ืฅ .txt. ื”ืกื™ืจื• ืืช ื”ืžื˜ื-ื“ืื˜ื” ื‘ืชื—ื™ืœืช ื•ื‘ืกื•ืฃ ื”ืงื•ื‘ืฅ, ื•ื”ืฉืื™ืจื• ืจืง ืืช ื”ื˜ืงืกื˜ ื”ืžืงื•ืจื™
2. ืคืชื—ื• ืืช ื”ืงื•ื‘ืฅ ื‘-Python ื•ื”ื•ืฆื™ืื• ืืช ื”ืชื•ื›ืŸ ื›ืžื—ืจื•ื–ืช
3. ืฆืจื• TextBlob ื‘ืืžืฆืขื•ืช ืžื—ืจื•ื–ืช ื”ืกืคืจ
4. ื ืชื—ื• ื›ืœ ืžืฉืคื˜ ื‘ืกืคืจ ื‘ืœื•ืœืื”
1. ืื ื”ืงื•ื˜ื‘ื™ื•ืช ื”ื™ื 1 ืื• -1, ืื—ืกื ื• ืืช ื”ืžืฉืคื˜ ื‘ืžืขืจืš ืื• ืจืฉื™ืžื” ืฉืœ ื”ื•ื“ืขื•ืช ื—ื™ื•ื‘ื™ื•ืช ืื• ืฉืœื™ืœื™ื•ืช
5. ื‘ืกื•ืฃ, ื”ื“ืคื™ืกื• ืืช ื›ืœ ื”ืžืฉืคื˜ื™ื ื”ื—ื™ื•ื‘ื™ื™ื ื•ื”ืฉืœื™ืœื™ื™ื (ื‘ื ืคืจื“) ื•ืืช ื”ืžืกืคืจ ืฉืœ ื›ืœ ืื—ื“.
ื”ื ื” [ืคืชืจื•ืŸ ืœื“ื•ื’ืžื”](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb).
โœ… ื‘ื“ื™ืงืช ื™ื“ืข
1. ื”ืจื’ืฉ ืžื‘ื•ืกืก ืขืœ ืžื™ืœื™ื ืฉื ืžืฆืื•ืช ื‘ืžืฉืคื˜, ืื‘ืœ ื”ืื ื”ืงื•ื“ *ืžื‘ื™ืŸ* ืืช ื”ืžื™ืœื™ื?
2. ื”ืื ืœื“ืขืชื›ื ืงื•ื˜ื‘ื™ื•ืช ื”ืจื’ืฉ ืžื“ื•ื™ืงืช, ืื• ื‘ืžื™ืœื™ื ืื—ืจื•ืช, ื”ืื ืืชื *ืžืกื›ื™ืžื™ื* ืขื ื”ืฆื™ื•ื ื™ื?
1. ื‘ืžื™ื•ื—ื“, ื”ืื ืืชื ืžืกื›ื™ืžื™ื ืื• ืœื ืžืกื›ื™ืžื™ื ืขื ื”ืงื•ื˜ื‘ื™ื•ืช ื”ื—ื™ื•ื‘ื™ืช **ื”ืžื•ื—ืœื˜ืช** ืฉืœ ื”ืžืฉืคื˜ื™ื ื”ื‘ืื™ื?
* โ€œWhat an excellent father you have, girls!โ€ said she, when the door was shut.
* โ€œYour examination of Mr. Darcy is over, I presume,โ€ said Miss Bingley; โ€œand pray what is the result?โ€ โ€œI am perfectly convinced by it that Mr. Darcy has no defect.
* How wonderfully these sort of things occur!
* I have the greatest dislike in the world to that sort of thing.
* Charlotte is an excellent manager, I dare say.
* โ€œThis is delightful indeed!
* I am so happy!
* Your idea of the ponies is delightful.
2. ืฉืœื•ืฉืช ื”ืžืฉืคื˜ื™ื ื”ื‘ืื™ื ื“ื•ืจื’ื• ืขื ืงื•ื˜ื‘ื™ื•ืช ื—ื™ื•ื‘ื™ืช ืžื•ื—ืœื˜ืช, ืื‘ืœ ื‘ืงืจื™ืื” ืžืขืžื™ืงื”, ื”ื ืื™ื ื ืžืฉืคื˜ื™ื ื—ื™ื•ื‘ื™ื™ื. ืžื“ื•ืข ื ื™ืชื•ื— ื”ืจื’ืฉ ื—ืฉื‘ ืฉื”ื ืžืฉืคื˜ื™ื ื—ื™ื•ื‘ื™ื™ื?
* Happy shall I be, when his stay at Netherfield is over!โ€ โ€œI wish I could say anything to comfort you,โ€ replied Elizabeth; โ€œbut it is wholly out of my power.
* If I could but see you as happy!
* Our distress, my dear Lizzy, is very great.
3. ื”ืื ืืชื ืžืกื›ื™ืžื™ื ืื• ืœื ืžืกื›ื™ืžื™ื ืขื ื”ืงื•ื˜ื‘ื™ื•ืช ื”ืฉืœื™ืœื™ืช **ื”ืžื•ื—ืœื˜ืช** ืฉืœ ื”ืžืฉืคื˜ื™ื ื”ื‘ืื™ื?
- Everybody is disgusted with his pride.
- โ€œI should like to know how he behaves among strangers.โ€ โ€œYou shall hear thenโ€”but prepare yourself for something very dreadful.
- The pause was to Elizabethโ€™s feelings dreadful.
- It would be dreadful!
โœ… ื›ืœ ื—ื•ื‘ื‘ ืฉืœ ื’'ื™ื™ืŸ ืื•ืกื˜ืŸ ื™ื‘ื™ืŸ ืฉื”ื™ื ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ืžืฉืชืžืฉืช ื‘ืกืคืจื™ื” ื›ื“ื™ ืœื‘ืงืจ ืืช ื”ื”ื™ื‘ื˜ื™ื ื”ืžื’ื•ื—ื›ื™ื ื™ื•ืชืจ ืฉืœ ื”ื—ื‘ืจื” ื”ืื ื’ืœื™ืช ื‘ืชืงื•ืคืช ื”ืจื™ื’'ื ืกื™. ืืœื™ื–ื‘ืช ื‘ื ื˜, ื”ื“ืžื•ืช ื”ืจืืฉื™ืช ื‘-*ื’ืื•ื•ื” ื•ื“ืขื” ืงื“ื•ืžื”*, ื”ื™ื ืฆื•ืคื” ื—ื‘ืจืชื™ืช ื—ื“ื” (ื›ืžื• ื”ืžื—ื‘ืจืช) ื•ื”ืฉืคื” ืฉืœื” ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ืžืื•ื“ ืžืขื•ื“ื ืช. ืืคื™ืœื• ืžืจ ื“ืืจืกื™ (ืžื•ืฉื ื”ืื”ื‘ื” ื‘ืกื™ืคื•ืจ) ืžืฆื™ื™ืŸ ืืช ื”ืฉื™ืžื•ืฉ ื”ืžืฉื—ืงื™ ื•ื”ืžืชื’ืจื” ืฉืœ ืืœื™ื–ื‘ืช ื‘ืฉืคื”: "ื”ื™ื” ืœื™ ื”ืขื•ื ื’ ืœื”ื›ื™ืจ ืื•ืชืš ืžืกืคื™ืง ื–ืžืŸ ื›ื“ื™ ืœื“ืขืช ืฉืืช ื ื”ื ื™ืช ืžืื•ื“ ืžื“ื™ ืคืขื ืœื”ื‘ื™ืข ื“ืขื•ืช ืฉืื™ื ืŸ ื‘ืืžืช ืฉืœืš."
---
## ๐Ÿš€ืืชื’ืจ
ื”ืื ืชื•ื›ืœื• ืœืฉืคืจ ืืช ืžืจื•ื•ื™ืŸ ืขืœ ื™ื“ื™ ื—ื™ืœื•ืฅ ืชื›ื•ื ื•ืช ื ื•ืกืคื•ืช ืžื”ืงืœื˜ ืฉืœ ื”ืžืฉืชืžืฉ?
## [ืฉืืœื•ืŸ ืื—ืจื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื™ืฉื ืŸ ื“ืจื›ื™ื ืจื‘ื•ืช ืœื”ืคื™ืง ืจื’ืฉื•ืช ืžื˜ืงืกื˜. ื—ืฉื‘ื• ืขืœ ื™ื™ืฉื•ืžื™ื ืขืกืงื™ื™ื ืฉื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื˜ื›ื ื™ืงื” ื–ื•. ื—ืฉื‘ื• ืขืœ ืื™ืš ื–ื” ื™ื›ื•ืœ ืœื”ืฉืชื‘ืฉ. ืงืจืื• ืขื•ื“ ืขืœ ืžืขืจื›ื•ืช ืžืชืงื“ืžื•ืช ื”ืžื•ื›ื ื•ืช ืœืฉื™ืžื•ืฉ ืืจื’ื•ื ื™ ืฉืžื ืชื—ื•ืช ืจื’ืฉื•ืช, ื›ืžื• [Azure Text Analysis](https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-sentiment-analysis?tabs=version-3-1?WT.mc_id=academic-77952-leestott). ื‘ื“ืงื• ื›ืžื” ืžื”ืžืฉืคื˜ื™ื ืžืชื•ืš "ื’ืื•ื•ื” ื•ื“ืขื” ืงื“ื•ืžื”" ืœืžืขืœื” ื•ืจืื• ืื ื ื™ืชืŸ ืœื–ื”ื•ืช ื‘ื”ื ื ื™ื•ืื ืกื™ื.
## ืžืฉื™ืžื”
[ืจื™ืฉื™ื•ืŸ ืคื•ืื˜ื™](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "9d2a734deb904caff310d1a999c6bd7a",
"translation_date": "2025-09-05T20:42:17+00:00",
"source_file": "6-NLP/3-Translation-Sentiment/assignment.md",
"language_code": "he"
}
-->
# ืจื™ืฉื™ื•ืŸ ืคื•ืื˜ื™
## ื”ื•ืจืื•ืช
ื‘[ืžื—ื‘ืจืช ื–ื•](https://www.kaggle.com/jenlooper/emily-dickinson-word-frequency) ืชื•ื›ืœื• ืœืžืฆื•ื ืžืขืœ 500 ืฉื™ืจื™ื ืฉืœ ืืžื™ืœื™ ื“ื™ืงื™ื ืกื•ืŸ, ืฉื›ื‘ืจ ื ื•ืชื—ื• ื‘ืขื‘ืจ ืžื‘ื—ื™ื ืช ืจื’ืฉื•ืช ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ื ื™ืชื•ื— ื˜ืงืกื˜ ืฉืœ Azure. ื‘ืืžืฆืขื•ืช ืžืขืจืš ื ืชื•ื ื™ื ื–ื”, ื ืชื—ื• ืื•ืชื• ื‘ืืžืฆืขื•ืช ื”ื˜ื›ื ื™ืงื•ืช ืฉืชื•ืืจื• ื‘ืฉื™ืขื•ืจ. ื”ืื ื”ืจื’ืฉ ื”ืžื•ืฆืข ืฉืœ ืฉื™ืจ ืชื•ืื ืืช ื”ื”ื—ืœื˜ื” ืฉืœ ืฉื™ืจื•ืช Azure ื”ืžืชืงื“ื ื™ื•ืชืจ? ืžื“ื•ืข ื›ืŸ ืื• ืœื, ืœื“ืขืชื›ื? ื”ืื ืžืฉื”ื• ื”ืคืชื™ืข ืืชื›ื?
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ------------------------------------------------------------------------ | ----------------------------------------------------- | ----------------------- |
| | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ืขื ื ื™ืชื•ื— ืžืขืžื™ืง ืฉืœ ื“ื•ื’ืžืช ื”ืคืœื˜ ืฉืœ ื”ืžื—ื‘ืจ | ื”ืžื—ื‘ืจืช ืื™ื ื” ืžืœืื” ืื• ืื™ื ื” ืžื‘ืฆืขืช ื ื™ืชื•ื— | ืœื ืžื•ืฆื’ืช ืžื—ื‘ืจืช |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T20:43:00+00:00",
"source_file": "6-NLP/3-Translation-Sentiment/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
"translation_date": "2025-09-05T20:42:43+00:00",
"source_file": "6-NLP/3-Translation-Sentiment/solution/R/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,417 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "8d32dadeda93c6fb5c43619854882ab1",
"translation_date": "2025-09-05T20:29:24+00:00",
"source_file": "6-NLP/4-Hotel-Reviews-1/README.md",
"language_code": "he"
}
-->
# ื ื™ืชื•ื— ืจื’ืฉื•ืช ืขื ื‘ื™ืงื•ืจื•ืช ืขืœ ืžืœื•ื ื•ืช - ืขื™ื‘ื•ื“ ื”ื ืชื•ื ื™ื
ื‘ืคืจืง ื–ื” ืชืฉืชืžืฉื• ื‘ื˜ื›ื ื™ืงื•ืช ืฉืœืžื“ืชื ื‘ืฉื™ืขื•ืจื™ื ื”ืงื•ื“ืžื™ื ื›ื“ื™ ืœื‘ืฆืข ื ื™ืชื•ื— ื ืชื•ื ื™ื ื—ืงืจื ื™ ืขืœ ืžืขืจืš ื ืชื•ื ื™ื ื’ื“ื•ืœ. ืœืื—ืจ ืฉืชื‘ื™ื ื• ื”ื™ื˜ื‘ ืืช ื”ืฉื™ืžื•ืฉื™ื•ืช ืฉืœ ื”ืขืžื•ื“ื•ืช ื”ืฉื•ื ื•ืช, ืชืœืžื“ื•:
- ื›ื™ืฆื“ ืœื”ืกื™ืจ ืขืžื•ื“ื•ืช ืฉืื™ื ืŸ ื ื—ื•ืฆื•ืช
- ื›ื™ืฆื“ ืœื—ืฉื‘ ื ืชื•ื ื™ื ื—ื“ืฉื™ื ื‘ื”ืชื‘ืกืก ืขืœ ืขืžื•ื“ื•ืช ืงื™ื™ืžื•ืช
- ื›ื™ืฆื“ ืœืฉืžื•ืจ ืืช ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ืžืชืงื‘ืœ ืœืฉื™ืžื•ืฉ ื‘ืืชื’ืจ ื”ืกื•ืคื™
## [ืžื‘ื—ืŸ ืžืงื“ื™ื ืœื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
### ืžื‘ื•ื
ืขื“ ื›ื” ืœืžื“ืชื ื›ื™ืฆื“ ื ืชื•ื ื™ ื˜ืงืกื˜ ืฉื•ื ื™ื ืžืื•ื“ ืžืกื•ื’ื™ ื ืชื•ื ื™ื ืžืกืคืจื™ื™ื. ืื ืžื“ื•ื‘ืจ ื‘ื˜ืงืกื˜ ืฉื ื›ืชื‘ ืื• ื ืืžืจ ืขืœ ื™ื“ื™ ืื“ื, ื ื™ืชืŸ ืœื ืชื— ืื•ืชื• ื›ื“ื™ ืœืžืฆื•ื ื“ืคื•ืกื™ื ื•ืชื“ื™ืจื•ื™ื•ืช, ืจื’ืฉื•ืช ื•ืžืฉืžืขื•ื™ื•ืช. ื”ืฉื™ืขื•ืจ ื”ื–ื” ืœื•ืงื— ืืชื›ื ืœืžืขืจืš ื ืชื•ื ื™ื ืืžื™ืชื™ ืขื ืืชื’ืจ ืืžื™ืชื™: **[515K Hotel Reviews Data in Europe](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)** ื”ื›ื•ืœืœ [ืจื™ืฉื™ื•ืŸ CC0: Public Domain](https://creativecommons.org/publicdomain/zero/1.0/). ื”ื ืชื•ื ื™ื ื ื’ืจื“ื• ืž-Booking.com ืžืžืงื•ืจื•ืช ืฆื™ื‘ื•ืจื™ื™ื. ื™ื•ืฆืจ ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื•ื Jiashen Liu.
### ื”ื›ื ื”
ืชืฆื˜ืจื›ื•:
* ื™ื›ื•ืœืช ืœื”ืจื™ืฅ ืžื—ื‘ืจื•ืช .ipynb ื‘ืืžืฆืขื•ืช Python 3
* pandas
* NLTK, [ืฉืื•ืชื• ื™ืฉ ืœื”ืชืงื™ืŸ ื‘ืื•ืคืŸ ืžืงื•ืžื™](https://www.nltk.org/install.html)
* ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ืžื™ืŸ ื‘-Kaggle [515K Hotel Reviews Data in Europe](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe). ื’ื•ื“ืœื• ื›-230 MB ืœืื—ืจ ื—ื™ืœื•ืฅ. ื”ื•ืจื™ื“ื• ืื•ืชื• ืœืชื™ืงื™ื™ืช ื”ืฉื•ืจืฉ `/data` ื”ืžืฉื•ื™ื›ืช ืœืฉื™ืขื•ืจื™ NLP ืืœื•.
## ื ื™ืชื•ื— ื ืชื•ื ื™ื ื—ืงืจื ื™
ื”ืืชื’ืจ ื”ื–ื” ืžื ื™ื— ืฉืืชื ื‘ื•ื ื™ื ื‘ื•ื˜ ื”ืžืœืฆื•ืช ืœืžืœื•ื ื•ืช ื‘ืืžืฆืขื•ืช ื ื™ืชื•ื— ืจื’ืฉื•ืช ื•ื“ื™ืจื•ื’ื™ ืื•ืจื—ื™ื. ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉื‘ื• ืชืฉืชืžืฉื• ื›ื•ืœืœ ื‘ื™ืงื•ืจื•ืช ืขืœ 1493 ืžืœื•ื ื•ืช ืฉื•ื ื™ื ื‘-6 ืขืจื™ื.
ื‘ืืžืฆืขื•ืช Python, ืžืขืจืš ื ืชื•ื ื™ื ืฉืœ ื‘ื™ืงื•ืจื•ืช ืขืœ ืžืœื•ื ื•ืช, ื•ื ื™ืชื•ื— ืจื’ืฉื•ืช ืฉืœ NLTK ืชื•ื›ืœื• ืœื’ืœื•ืช:
* ืžื”ื ื”ืžื™ืœื™ื ื•ื”ื‘ื™ื˜ื•ื™ื™ื ื”ื ืคื•ืฆื™ื ื‘ื™ื•ืชืจ ื‘ื‘ื™ืงื•ืจื•ืช?
* ื”ืื *ืชื’ื™ื•ืช* ืจืฉืžื™ื•ืช ื”ืžืชืืจื•ืช ืžืœื•ืŸ ืžืชื•ืืžื•ืช ืขื ื“ื™ืจื•ื’ื™ ื‘ื™ืงื•ืจื•ืช (ืœื“ื•ื’ืžื”, ื”ืื ื™ืฉ ื™ื•ืชืจ ื‘ื™ืงื•ืจื•ืช ืฉืœื™ืœื™ื•ืช ืขื‘ื•ืจ ืžืœื•ืŸ ืžืกื•ื™ื ืž-*ืžืฉืคื—ื” ืขื ื™ืœื“ื™ื ืงื˜ื ื™ื* ืžืืฉืจ ืž-*ืžื˜ื™ื™ืœ ื™ื—ื™ื“*, ืื•ืœื™ ืžืฆื‘ื™ืข ืขืœ ื›ืš ืฉื”ื•ื ืžืชืื™ื ื™ื•ืชืจ ืœ-*ืžื˜ื™ื™ืœื™ื ื™ื—ื™ื“ื™ื*)?
* ื”ืื ื“ื™ืจื•ื’ื™ ื”ืจื’ืฉื•ืช ืฉืœ NLTK 'ืžืกื›ื™ืžื™ื' ืขื ื”ื“ื™ืจื•ื’ ื”ืžืกืคืจื™ ืฉืœ ื”ืžื‘ืงืจ?
#### ืžืขืจืš ื”ื ืชื•ื ื™ื
ื‘ื•ืื• ื ื—ืงื•ืจ ืืช ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉื”ื•ืจื“ืชื ื•ืฉืžืจืชื ื‘ืื•ืคืŸ ืžืงื•ืžื™. ืคืชื—ื• ืืช ื”ืงื•ื‘ืฅ ื‘ืขื•ืจืš ื›ืžื• VS Code ืื• ืืคื™ืœื• Excel.
ื”ื›ื•ืชืจื•ืช ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ืŸ ื›ื“ืœืงืžืŸ:
*Hotel_Address, Additional_Number_of_Scoring, Review_Date, Average_Score, Hotel_Name, Reviewer_Nationality, Negative_Review, Review_Total_Negative_Word_Counts, Total_Number_of_Reviews, Positive_Review, Review_Total_Positive_Word_Counts, Total_Number_of_Reviews_Reviewer_Has_Given, Reviewer_Score, Tags, days_since_review, lat, lng*
ื”ื ื” ื”ืŸ ืžืงื•ื‘ืฆื•ืช ื‘ืฆื•ืจื” ืฉืขืฉื•ื™ื” ืœื”ื™ื•ืช ืงืœื” ื™ื•ืชืจ ืœื‘ื“ื™ืงื”:
##### ืขืžื•ื“ื•ืช ืžืœื•ืŸ
* `Hotel_Name`, `Hotel_Address`, `lat` (ืงื• ืจื•ื—ื‘), `lng` (ืงื• ืื•ืจืš)
* ื‘ืืžืฆืขื•ืช *lat* ื•-*lng* ืชื•ื›ืœื• ืœืžืคื•ืช ืžื™ืงื•ื ื”ืžืœื•ื ื•ืช ืขื Python (ืื•ืœื™ ื‘ืฆื‘ืขื™ื ืฉื•ื ื™ื ืขื‘ื•ืจ ื‘ื™ืงื•ืจื•ืช ื—ื™ื•ื‘ื™ื•ืช ื•ืฉืœื™ืœื™ื•ืช)
* Hotel_Address ืื™ื ื• ืฉื™ืžื•ืฉื™ ื‘ืžื™ื•ื—ื“ ืขื‘ื•ืจื ื•, ื•ื›ื ืจืื” ื ื—ืœื™ืฃ ืื•ืชื• ื‘ืžื“ื™ื ื” ืœืฆื•ืจืš ืžื™ื•ืŸ ื•ื—ื™ืคื•ืฉ ืงืœื™ื ื™ื•ืชืจ
**ืขืžื•ื“ื•ืช ืžื˜ื-ื‘ื™ืงื•ืจืช ืฉืœ ืžืœื•ืŸ**
* `Average_Score`
* ืœืคื™ ื™ื•ืฆืจ ืžืขืจืš ื”ื ืชื•ื ื™ื, ืขืžื•ื“ื” ื–ื• ื”ื™ื *ื”ืฆื™ื•ืŸ ื”ืžืžื•ืฆืข ืฉืœ ื”ืžืœื•ืŸ, ืžื—ื•ืฉื‘ ืขืœ ืกืžืš ื”ืชื’ื•ื‘ื” ื”ืื—ืจื•ื ื” ื‘ืฉื ื” ื”ืื—ืจื•ื ื”*. ื–ื• ื ืจืื™ืช ื“ืจืš ืœื ืฉื’ืจืชื™ืช ืœื—ืฉื‘ ืืช ื”ืฆื™ื•ืŸ, ืืš ืืœื• ื”ื ืชื•ื ื™ื ืฉื ื’ืจื“ื• ื•ืœื›ืŸ ื ื•ื›ืœ ืœืงื‘ืœื ื›ืคื™ ืฉื”ื ืœืขืช ืขืชื”.
โœ… ื‘ื”ืชื‘ืกืก ืขืœ ื”ืขืžื•ื“ื•ืช ื”ืื—ืจื•ืช ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื, ื”ืื ืชื•ื›ืœื• ืœื—ืฉื•ื‘ ืขืœ ื“ืจืš ืื—ืจืช ืœื—ืฉื‘ ืืช ื”ืฆื™ื•ืŸ ื”ืžืžื•ืฆืข?
* `Total_Number_of_Reviews`
* ื”ืžืกืคืจ ื”ื›ื•ืœืœ ืฉืœ ื”ื‘ื™ืงื•ืจื•ืช ืฉื”ืžืœื•ืŸ ืงื™ื‘ืœ - ืœื ื‘ืจื•ืจ (ืœืœื ื›ืชื™ื‘ืช ืงื•ื“) ืื ื–ื” ืžืชื™ื™ื—ืก ืœื‘ื™ืงื•ืจื•ืช ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื.
* `Additional_Number_of_Scoring`
* ืคื™ืจื•ืฉื• ืฉื ื™ืชืŸ ืฆื™ื•ืŸ ื‘ื™ืงื•ืจืช ืืš ืœื ื ื›ืชื‘ื” ื‘ื™ืงื•ืจืช ื—ื™ื•ื‘ื™ืช ืื• ืฉืœื™ืœื™ืช ืขืœ ื™ื“ื™ ื”ืžื‘ืงืจ
**ืขืžื•ื“ื•ืช ื‘ื™ืงื•ืจืช**
- `Reviewer_Score`
- ื–ื”ื• ืขืจืš ืžืกืคืจื™ ืขื ืžืงืกื™ืžื•ื ืกืคืจื” ืขืฉืจื•ื ื™ืช ืื—ืช ื‘ื™ืŸ ื”ืขืจื›ื™ื ื”ืžื™ื ื™ืžืœื™ื™ื ื•ื”ืžืงืกื™ืžืœื™ื™ื 2.5 ื•-10
- ืœื ืžื•ืกื‘ืจ ืžื“ื•ืข 2.5 ื”ื•ื ื”ืฆื™ื•ืŸ ื”ื ืžื•ืš ื‘ื™ื•ืชืจ ื”ืืคืฉืจื™
- `Negative_Review`
- ืื ืžื‘ืงืจ ืœื ื›ืชื‘ ื“ื‘ืจ, ืฉื“ื” ื–ื” ื™ื›ื™ืœ "**No Negative**"
- ืฉื™ืžื• ืœื‘ ืฉืžื‘ืงืจ ืขืฉื•ื™ ืœื›ืชื•ื‘ ื‘ื™ืงื•ืจืช ื—ื™ื•ื‘ื™ืช ื‘ืขืžื•ื“ืช ื”ื‘ื™ืงื•ืจืช ื”ืฉืœื™ืœื™ืช (ืœื“ื•ื’ืžื”, "ืื™ืŸ ืฉื•ื ื“ื‘ืจ ืจืข ื‘ืžืœื•ืŸ ื”ื–ื”")
- `Review_Total_Negative_Word_Counts`
- ืกืคื™ืจืช ืžื™ืœื™ื ืฉืœื™ืœื™ื•ืช ื’ื‘ื•ื”ื” ื™ื•ืชืจ ืžืฆื‘ื™ืขื” ืขืœ ืฆื™ื•ืŸ ื ืžื•ืš ื™ื•ืชืจ (ืœืœื ื‘ื“ื™ืงืช ื”ืจื’ืฉ)
- `Positive_Review`
- ืื ืžื‘ืงืจ ืœื ื›ืชื‘ ื“ื‘ืจ, ืฉื“ื” ื–ื” ื™ื›ื™ืœ "**No Positive**"
- ืฉื™ืžื• ืœื‘ ืฉืžื‘ืงืจ ืขืฉื•ื™ ืœื›ืชื•ื‘ ื‘ื™ืงื•ืจืช ืฉืœื™ืœื™ืช ื‘ืขืžื•ื“ืช ื”ื‘ื™ืงื•ืจืช ื”ื—ื™ื•ื‘ื™ืช (ืœื“ื•ื’ืžื”, "ืื™ืŸ ืฉื•ื ื“ื‘ืจ ื˜ื•ื‘ ื‘ืžืœื•ืŸ ื”ื–ื” ื‘ื›ืœืœ")
- `Review_Total_Positive_Word_Counts`
- ืกืคื™ืจืช ืžื™ืœื™ื ื—ื™ื•ื‘ื™ื•ืช ื’ื‘ื•ื”ื” ื™ื•ืชืจ ืžืฆื‘ื™ืขื” ืขืœ ืฆื™ื•ืŸ ื’ื‘ื•ื” ื™ื•ืชืจ (ืœืœื ื‘ื“ื™ืงืช ื”ืจื’ืฉ)
- `Review_Date` ื•-`days_since_review`
- ื ื™ืชืŸ ืœื™ื™ืฉื ืžื“ื“ ืฉืœ ื˜ืจื™ื•ืช ืื• ื”ืชื™ื™ืฉื ื•ืช ืขืœ ื‘ื™ืงื•ืจืช (ื‘ื™ืงื•ืจื•ืช ื™ืฉื ื•ืช ืขืฉื•ื™ื•ืช ืœื”ื™ื•ืช ืคื—ื•ืช ืžื“ื•ื™ืงื•ืช ืžื‘ื™ืงื•ืจื•ืช ื—ื“ืฉื•ืช ืžื›ื™ื•ื•ืŸ ืฉื”ื ื™ื”ื•ืœ ื”ืฉืชื ื”, ืื• ืฉื™ืคื•ืฆื™ื ื‘ื•ืฆืขื•, ืื• ื ื•ืกืคื” ื‘ืจื™ื›ื” ื•ื›ื•')
- `Tags`
- ืืœื• ืชื™ืื•ืจื™ื ืงืฆืจื™ื ืฉืžื‘ืงืจ ืขืฉื•ื™ ืœื‘ื—ื•ืจ ื›ื“ื™ ืœืชืืจ ืืช ืกื•ื’ ื”ืื•ืจื— ืฉื”ื•ื ื”ื™ื” (ืœื“ื•ื’ืžื”, ื™ื—ื™ื“ ืื• ืžืฉืคื—ื”), ืกื•ื’ ื”ื—ื“ืจ ืฉื”ื™ื” ืœื•, ืžืฉืš ื”ืฉื”ื•ืช ื•ืื•ืคืŸ ื”ื’ืฉืช ื”ื‘ื™ืงื•ืจืช.
- ืœืžืจื‘ื” ื”ืฆืขืจ, ื”ืฉื™ืžื•ืฉ ื‘ืชื’ื™ื•ืช ืืœื• ื‘ืขื™ื™ืชื™, ื‘ื“ืงื• ืืช ื”ืกืขื™ืฃ ืœืžื˜ื” ืฉืžื“ื‘ืจ ืขืœ ื”ืฉื™ืžื•ืฉื™ื•ืช ืฉืœื”ืŸ
**ืขืžื•ื“ื•ืช ืžื‘ืงืจ**
- `Total_Number_of_Reviews_Reviewer_Has_Given`
- ื–ื” ืขืฉื•ื™ ืœื”ื™ื•ืช ื’ื•ืจื ื‘ืžื•ื“ืœ ื”ืžืœืฆื•ืช, ืœืžืฉืœ, ืื ืชื•ื›ืœื• ืœืงื‘ื•ืข ืฉืžื‘ืงืจื™ื ืคื•ืจื™ื ื™ื•ืชืจ ืขื ืžืื•ืช ื‘ื™ืงื•ืจื•ืช ื”ื™ื• ื ื•ื˜ื™ื ื™ื•ืชืจ ืœื”ื™ื•ืช ืฉืœื™ืœื™ื™ื ืžืืฉืจ ื—ื™ื•ื‘ื™ื™ื. ืขื ื–ืืช, ื”ืžื‘ืงืจ ืฉืœ ื›ืœ ื‘ื™ืงื•ืจืช ืžืกื•ื™ืžืช ืื™ื ื• ืžื–ื•ื”ื” ืขื ืงื•ื“ ื™ื™ื—ื•ื“ื™, ื•ืœื›ืŸ ืœื ื ื™ืชืŸ ืœืงืฉืจ ืื•ืชื• ืœืžืขืจืš ื‘ื™ืงื•ืจื•ืช. ื™ืฉื ื 30 ืžื‘ืงืจื™ื ืขื 100 ืื• ื™ื•ืชืจ ื‘ื™ืงื•ืจื•ืช, ืืš ืงืฉื” ืœืจืื•ืช ื›ื™ืฆื“ ื–ื” ื™ื›ื•ืœ ืœืกื™ื™ืข ื‘ืžื•ื“ืœ ื”ื”ืžืœืฆื•ืช.
- `Reviewer_Nationality`
- ื™ืฉ ืื ืฉื™ื ืฉืขืฉื•ื™ื™ื ืœื—ืฉื•ื‘ ืฉืœืื•ืžื™ื ืžืกื•ื™ืžื™ื ื ื•ื˜ื™ื ื™ื•ืชืจ ืœืชืช ื‘ื™ืงื•ืจืช ื—ื™ื•ื‘ื™ืช ืื• ืฉืœื™ืœื™ืช ื‘ื’ืœืœ ื ื˜ื™ื™ื” ืœืื•ืžื™ืช. ื”ื™ื• ื–ื”ื™ืจื™ื ื‘ื‘ื ื™ื™ืช ื”ืฉืงืคื•ืช ืื ืงื“ื•ื˜ืœื™ื•ืช ื›ืืœื” ืœืชื•ืš ื”ืžื•ื“ืœื™ื ืฉืœื›ื. ืืœื• ืกื˜ืจื™ืื•ื˜ื™ืคื™ื ืœืื•ืžื™ื™ื (ื•ืœืคืขืžื™ื ื’ื–ืขื™ื™ื), ื•ื›ืœ ืžื‘ืงืจ ื”ื™ื” ืื“ื ืฉื›ืชื‘ ื‘ื™ืงื•ืจืช ืขืœ ืกืžืš ื—ื•ื•ื™ื™ืชื•. ื™ื™ืชื›ืŸ ืฉื”ื™ื ืกื•ื ื ื” ื“ืจืš ืขื“ืฉื•ืช ืจื‘ื•ืช ื›ืžื• ืฉื”ื™ื•ืชื™ื• ื”ืงื•ื“ืžื•ืช ื‘ืžืœื•ื ื•ืช, ื”ืžืจื—ืง ืฉื ืกืข, ื•ื”ื˜ืžืคืจืžื ื˜ ื”ืื™ืฉื™ ืฉืœื•. ืงืฉื” ืœื”ืฆื“ื™ืง ืืช ื”ืžื—ืฉื‘ื” ืฉื”ืœืื•ื ื”ื™ื” ื”ืกื™ื‘ื” ืœืฆื™ื•ืŸ ื”ื‘ื™ืงื•ืจืช.
##### ื“ื•ื’ืžืื•ืช
| ืฆื™ื•ืŸ ืžืžื•ืฆืข | ืžืกืคืจ ื›ื•ืœืœ ืฉืœ ื‘ื™ืงื•ืจื•ืช | ืฆื™ื•ืŸ ืžื‘ืงืจ | ื‘ื™ืงื•ืจืช ืฉืœื™ืœื™ืช | ื‘ื™ืงื•ืจืช ื—ื™ื•ื‘ื™ืช | ืชื’ื™ื•ืช |
| ----------- | ---------------------- | --------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------- | ----------------------------------------------------------------------------------------- |
| 7.8 | 1945 | 2.5 | ื–ื” ื›ืจื’ืข ืœื ืžืœื•ืŸ ืืœื ืืชืจ ื‘ื ื™ื™ื”. ื”ื˜ืจื™ื“ื• ืื•ืชื™ ืžื”ื‘ื•ืงืจ ื”ืžื•ืงื“ื ื•ืขื“ ื›ืœ ื”ื™ื•ื ืขื ืจืขืฉ ื‘ื ื™ื™ื” ื‘ืœืชื™ ื ืกื‘ืœ ื‘ื–ืžืŸ ืžื ื•ื—ื” ืœืื—ืจ ื ืกื™ืขื” ืืจื•ื›ื” ื•ืขื‘ื•ื“ื” ื‘ื—ื“ืจ. ืื ืฉื™ื ืขื‘ื“ื• ื›ืœ ื”ื™ื•ื ืขื ืคื˜ื™ืฉื™ ืื•ื•ื™ืจ ื‘ื—ื“ืจื™ื ืกืžื•ื›ื™ื. ื‘ื™ืงืฉืชื™ ืœื”ื—ืœื™ืฃ ื—ื“ืจ ืืš ืœื ื”ื™ื” ื—ื“ืจ ืฉืงื˜ ื–ืžื™ืŸ. ื›ื“ื™ ืœื”ื—ืžื™ืจ ืืช ื”ืžืฆื‘, ื—ื•ื™ื‘ืชื™ ื™ืชืจ ืขืœ ื”ืžื™ื“ื”. ื™ืฆืืชื™ ื‘ืขืจื‘ ืžื›ื™ื•ื•ืŸ ืฉื”ื™ื™ืชื™ ืฆืจื™ืš ืœืขื–ื•ื‘ ื˜ื™ืกื” ืžื•ืงื“ืžืช ืžืื•ื“ ื•ืงื™ื‘ืœืชื™ ื—ืฉื‘ื•ืŸ ืžืชืื™ื. ื™ื•ื ืœืื—ืจ ืžื›ืŸ ื”ืžืœื•ืŸ ื‘ื™ืฆืข ื—ื™ื•ื‘ ื ื•ืกืฃ ืœืœื ื”ืกื›ืžืชื™ ืžืขื‘ืจ ืœืžื—ื™ืจ ืฉื”ื•ื–ืžืŸ. ื–ื” ืžืงื•ื ื ื•ืจื. ืืœ ืชืขื ื™ืฉื• ืืช ืขืฆืžื›ื ืขืœ ื™ื“ื™ ื”ื–ืžื ื” ื›ืืŸ. | ืฉื•ื ื“ื‘ืจ. ืžืงื•ื ื ื•ืจื. ื”ืชืจื—ืงื•. | ื ืกื™ืขืช ืขืกืงื™ื. ื–ื•ื’. ื—ื“ืจ ื–ื•ื’ื™ ืกื˜ื ื“ืจื˜ื™. ืฉื”ื™ื™ื” ืฉืœ 2 ืœื™ืœื•ืช. |
ื›ืคื™ ืฉืืชื ื™ื›ื•ืœื™ื ืœืจืื•ืช, ื”ืื•ืจื— ื”ื–ื” ืœื ื ื”ื ื” ืžื”ืฉื”ื•ืช ืฉืœื• ื‘ืžืœื•ืŸ. ืœืžืœื•ืŸ ื™ืฉ ืฆื™ื•ืŸ ืžืžื•ืฆืข ื˜ื•ื‘ ืฉืœ 7.8 ื•-1945 ื‘ื™ืงื•ืจื•ืช, ืืš ื”ืžื‘ืงืจ ื”ื–ื” ื ืชืŸ ืœื• 2.5 ื•ื›ืชื‘ 115 ืžื™ืœื™ื ืขืœ ื›ืžื” ืฉื”ืฉื”ื•ืช ืฉืœื• ื”ื™ื™ืชื” ืฉืœื™ืœื™ืช. ืื ื”ื•ื ืœื ื›ืชื‘ ื“ื‘ืจ ื‘ืขืžื•ื“ืช ื”ื‘ื™ืงื•ืจืช ื”ื—ื™ื•ื‘ื™ืช, ืืคืฉืจ ืœื”ืกื™ืง ืฉืœื ื”ื™ื” ืฉื•ื ื“ื‘ืจ ื—ื™ื•ื‘ื™, ืืš ื”ื•ื ื›ืชื‘ 7 ืžื™ืœื™ื ืฉืœ ืื–ื”ืจื”. ืื ืจืง ื ืกืคื•ืจ ืžื™ืœื™ื ื‘ืžืงื•ื ืืช ื”ืžืฉืžืขื•ืช ืื• ื”ืจื’ืฉ ืฉืœ ื”ืžื™ืœื™ื, ื™ื™ืชื›ืŸ ืฉืชื”ื™ื” ืœื ื• ืชืžื•ื ื” ืžืขื•ื•ืชืช ืฉืœ ื›ื•ื•ื ืช ื”ืžื‘ืงืจ. ื‘ืื•ืคืŸ ืžื•ื–ืจ, ื”ืฆื™ื•ืŸ ืฉืœื• ืฉืœ 2.5 ืžื‘ืœื‘ืœ, ื›ื™ ืื ื”ืฉื”ื•ืช ื‘ืžืœื•ืŸ ื”ื™ื™ืชื” ื›ืœ ื›ืš ื’ืจื•ืขื”, ืžื“ื•ืข ืœืชืช ืœื• ื ืงื•ื“ื•ืช ื‘ื›ืœืœ? ื‘ื—ืงื™ืจืช ืžืขืจืš ื”ื ืชื•ื ื™ื ืžืงืจื•ื‘, ืชืจืื• ืฉื”ืฆื™ื•ืŸ ื”ื ืžื•ืš ื‘ื™ื•ืชืจ ื”ืืคืฉืจื™ ื”ื•ื 2.5, ืœื 0. ื”ืฆื™ื•ืŸ ื”ื’ื‘ื•ื” ื‘ื™ื•ืชืจ ื”ืืคืฉืจื™ ื”ื•ื 10.
##### ืชื’ื™ื•ืช
ื›ืคื™ ืฉืฆื•ื™ืŸ ืœืขื™ืœ, ื‘ืžื‘ื˜ ืจืืฉื•ืŸ, ื”ืจืขื™ื•ืŸ ืœื”ืฉืชืžืฉ ื‘-`Tags` ื›ื“ื™ ืœืงื˜ืœื’ ืืช ื”ื ืชื•ื ื™ื ื ืจืื” ื”ื’ื™ื•ื ื™. ืœืžืจื‘ื” ื”ืฆืขืจ, ืชื’ื™ื•ืช ืืœื• ืื™ื ืŸ ืกื˜ื ื“ืจื˜ื™ื•ืช, ืžื” ืฉืื•ืžืจ ืฉื‘ืžืœื•ืŸ ืžืกื•ื™ื, ื”ืืคืฉืจื•ื™ื•ืช ืขืฉื•ื™ื•ืช ืœื”ื™ื•ืช *Single room*, *Twin room*, ื•-*Double room*, ืืš ื‘ืžืœื•ืŸ ื”ื‘ื, ื”ืŸ ื™ื”ื™ื• *Deluxe Single Room*, *Classic Queen Room*, ื•-*Executive King Room*. ืืœื• ืขืฉื•ื™ื™ื ืœื”ื™ื•ืช ืื•ืชื ื“ื‘ืจื™ื, ืืš ื™ืฉ ื›ืœ ื›ืš ื”ืจื‘ื” ื•ืจื™ืืฆื™ื•ืช ืฉื”ื‘ื—ื™ืจื” ื”ื•ืคื›ืช ืœ:
1. ื ื™ืกื™ื•ืŸ ืœืฉื ื•ืช ืืช ื›ืœ ื”ืžื•ื ื—ื™ื ืœืกื˜ื ื“ืจื˜ ื™ื—ื™ื“, ืžื” ืฉืงืฉื” ืžืื•ื“, ืžื›ื™ื•ื•ืŸ ืฉืœื ื‘ืจื•ืจ ืžื” ืชื”ื™ื” ื“ืจืš ื”ื”ืžืจื” ื‘ื›ืœ ืžืงืจื” (ืœื“ื•ื’ืžื”, *Classic single room* ืžืžื•ืคื” ืœ-*Single room* ืืš *Superior Queen Room with Courtyard Garden or City View* ืงืฉื” ื™ื•ืชืจ ืœืžืคื•ืช)
1. ื ื•ื›ืœ ืœืงื—ืช ื’ื™ืฉื” ืฉืœ NLP ื•ืœืžื“ื•ื“ ืืช ื”ืชื“ื™ืจื•ืช ืฉืœ ืžื•ื ื—ื™ื ืžืกื•ื™ืžื™ื ื›ืžื• *Solo*, *Business Traveller*, ืื• *Family with young kids* ื›ืคื™ ืฉื”ื ื—ืœื™ื ืขืœ ื›ืœ ืžืœื•ืŸ, ื•ืœืฉืœื‘ ื–ืืช ื‘ืžื•ื“ืœ ื”ื”ืžืœืฆื•ืช
ืชื’ื™ื•ืช ื”ืŸ ื‘ื“ืจืš ื›ืœืœ (ืืš ืœื ืชืžื™ื“) ืฉื“ื” ื™ื—ื™ื“ ื”ืžื›ื™ืœ ืจืฉื™ืžื” ืฉืœ 5 ืขื“ 6 ืขืจื›ื™ื ืžื•ืคืจื“ื™ื ื‘ืคืกื™ืงื™ื ื”ืžืชืื™ืžื™ื ืœ-*ืกื•ื’ ื”ื˜ื™ื•ืœ*, *ืกื•ื’ ื”ืื•ืจื—ื™ื*, *ืกื•ื’ ื”ื—ื“ืจ*, *ืžืกืคืจ ื”ืœื™ืœื•ืช*, ื•-*ืกื•ื’ ื”ืžื›ืฉื™ืจ ืฉื‘ื• ื”ื•ื’ืฉื” ื”ื‘ื™ืงื•ืจืช*. ืขื ื–ืืช, ืžื›ื™ื•ื•ืŸ ืฉื—ืœืง ืžื”ืžื‘ืงืจื™ื ืœื ืžืžืœืื™ื ื›ืœ ืฉื“ื” (ื™ื™ืชื›ืŸ ืฉื”ื ืžืฉืื™ืจื™ื ืื—ื“ ืจื™ืง), ื”ืขืจื›ื™ื ืื™ื ื ืชืžื™ื“ ื‘ืื•ืชื• ืกื“ืจ.
ืœื“ื•ื’ืžื”, ืงื—ื• ืืช *ืกื•ื’ ื”ืงื‘ื•ืฆื”*. ื™ืฉื ื 1025 ืืคืฉืจื•ื™ื•ืช ื™ื™ื—ื•ื“ื™ื•ืช ื‘ืฉื“ื” ื–ื” ื‘ืขืžื•ื“ืช `Tags`, ื•ืœืžืจื‘ื” ื”ืฆืขืจ ืจืง ื—ืœืงืŸ ืžืชื™ื™ื—ืกื•ืช ืœืงื‘ื•ืฆื” (ื—ืœืงืŸ ื”ืŸ ืกื•ื’ ื”ื—ื“ืจ ื•ื›ื•'). ืื ืชืกื ื ื• ืจืง ืืช ืืœื• ืฉืžื–ื›ื™ืจื™ื ืžืฉืคื—ื”, ื”ืชื•ืฆืื•ืช ืžื›ื™ืœื•ืช ื”ืจื‘ื” ืชื•ืฆืื•ืช ืžืกื•ื’ *Family room*. ืื ืชื›ืœืœื• ืืช ื”ืžื•ื ื— *with*, ื›ืœื•ืžืจ ืชืกืคืจื• ืืช ื”ืขืจื›ื™ื *Family with*, ื”ืชื•ืฆืื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ, ืขื ืžืขืœ 80,000 ืžืชื•ืš 515,000 ื”ืชื•ืฆืื•ืช ื”ืžื›ื™ืœื•ืช ืืช ื”ื‘ื™ื˜ื•ื™ "Family with young children" ืื• "Family with older children".
ื–ื” ืื•ืžืจ ืฉืขืžื•ื“ืช ื”ืชื’ื™ื•ืช ืื™ื ื” ื—ืกืจืช ืชื•ืขืœืช ืœื—ืœื•ื˜ื™ืŸ ืขื‘ื•ืจื ื•, ืืš ื™ื™ื“ืจืฉ ืžืขื˜ ืขื‘ื•ื“ื” ื›ื“ื™ ืœื”ืคื•ืš ืื•ืชื” ืœืฉื™ืžื•ืฉื™ืช.
##### ืฆื™ื•ืŸ ืžืžื•ืฆืข ืฉืœ ืžืœื•ืŸ
ื™ืฉื ื ืžืกืคืจ ืžื•ื–ืจื•ื™ื•ืช ืื• ืื™ ื”ืชืืžื•ืช ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืื ื™ ืœื ืžืฆืœื™ื— ืœื”ื‘ื™ืŸ, ืืš ื”ืŸ ืžื•ืฆื’ื•ืช ื›ืืŸ ื›ื“ื™ ืฉืชื”ื™ื• ืžื•ื“ืขื™ื ืœื”ืŸ ื‘ืขืช ื‘ื ื™ื™ืช ื”ืžื•ื“ืœื™ื ืฉืœื›ื. ืื ืชืฆืœื™ื—ื• ืœื”ื‘ื™ืŸ, ืื ื ื”ื•ื“ื™ืขื• ืœื ื• ื‘ืžื“ื•ืจ ื”ื“ื™ื•ื ื™ื!
ืžืขืจืš ื”ื ืชื•ื ื™ื ื›ื•ืœืœ ืืช ื”ืขืžื•ื“ื•ืช ื”ื‘ืื•ืช ื”ืงืฉื•ืจื•ืช ืœืฆื™ื•ืŸ ื”ืžืžื•ืฆืข ื•ืœืžืกืคืจ ื”ื‘ื™ืงื•ืจื•ืช:
1. Hotel_Name
2. Additional_Number_of_Scoring
3. Average_Score
4. Total_Number_of_Reviews
5. Reviewer_Score
ื”ืžืœื•ืŸ ื”ื™ื—ื™ื“ ืขื ืžืกืคืจ ื”ื‘ื™ืงื•ืจื•ืช ื”ื’ื‘ื•ื” ื‘ื™ื•ืชืจ ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ื” ื”ื•ื *Britannia International Hotel Canary Wharf* ืขื 4789 ื‘ื™ืงื•ืจื•ืช ืžืชื•ืš 515,000. ืืš ืื ื ืกืชื›ืœ ืขืœ ื”ืขืจืš `Total_Number_of_Reviews` ืขื‘ื•ืจ ืžืœื•ืŸ ื–ื”, ื”ื•ื 9086. ื ื™ืชืŸ ืœื”ืกื™ืง ืฉื™ืฉ ื”ืจื‘ื” ื™ื•ืชืจ ืฆื™ื•ื ื™ื ืœืœื ื‘ื™ืงื•ืจื•ืช, ื•ืœื›ืŸ ืื•ืœื™ ื›ื“ืื™ ืœื”ื•ืกื™ืฃ ืืช ืขืจืš ื”ืขืžื•ื“ื” `Additional_Number_of_Scoring`. ื”ืขืจืš ื”ื–ื” ื”ื•ื 2682, ื•ื”ื•ืกืคืชื• ืœ-4789 ืžื‘ื™ืื” ืื•ืชื ื• ืœ-7471, ืฉืขื“ื™ื™ืŸ ื—ืกืจื™ื 1615 ื›ื“ื™ ืœื”ื’ื™ืข ืœ-`Total_Number_of_Reviews`.
ืื ื ื™ืงื— ืืช ืขืžื•ื“ืช `Average_Score`, ื ื™ืชืŸ ืœื”ืกื™ืง ืฉื–ื”ื• ื”ืžืžื•ืฆืข ืฉืœ ื”ื‘ื™ืงื•ืจื•ืช ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื, ืืš ื”ืชื™ืื•ืจ ืž-Kaggle ื”ื•ื "*Average Score of the hotel, calculated based on the latest comment in the last year*". ื–ื” ืœื ื ืจืื” ืฉื™ืžื•ืฉื™ ื‘ืžื™ื•ื—ื“, ืืš ื ื•ื›ืœ ืœื—ืฉื‘ ืžืžื•ืฆืข ืžืฉืœื ื• ื‘ื”ืชื‘ืกืก ืขืœ ืฆื™ื•ื ื™ ื”ื‘ื™ืงื•ืจื•ืช ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื. ื‘ืืžืฆืขื•ืช ืื•ืชื• ืžืœื•ืŸ ื›ื“ื•ื’ืžื”, ื”ืฆื™ื•ืŸ ื”ืžืžื•ืฆืข ืฉืœ ื”ืžืœื•ืŸ ื ื™ืชืŸ ื›-7.1 ืืš ื”ืฆื™ื•ืŸ ื”ืžื—ื•ืฉื‘ (ืžืžื•ืฆืข ืฆื™ื•ื ื™ ื”ืžื‘ืงืจื™ื *ื‘*ืžืขืจืš ื”ื ืชื•ื ื™ื) ื”ื•ื 6.8. ื–ื” ืงืจื•ื‘, ืืš ืœื ืื•ืชื• ืขืจืš, ื•ืื ื• ื™ื›ื•ืœื™ื ืจืง ืœื ื—ืฉ ืฉื”ืฆื™ื•ื ื™ื ืฉื ื™ืชื ื• ื‘ื‘ื™ืงื•ืจื•ืช `Additional_Number_of_Scoring` ื”ืขืœื• ืืช ื”ืžืžื•ืฆืข ืœ-7.1. ืœืžืจื‘ื” ื”ืฆืขืจ, ืœืœื ื“ืจืš ืœื‘ื“ื•ืง ืื• ืœื”ื•ื›ื™ื— ืืช ื”ื”ื ื—ื” ื”ื–ื•, ืงืฉื” ืœื”ืฉืชืžืฉ ืื• ืœืกืžื•ืš ืขืœ `Average_Score`, `Additional_Number_of_Scoring` ื•-`Total_Number_of_Reviews` ื›ืืฉืจ ื”ื ืžื‘ื•ืกืกื™ื ืขืœ, ืื• ืžืชื™ื™ื—ืกื™ื ืœื ืชื•ื ื™ื ืฉืื™ืŸ ืœื ื•.
ื›ื“ื™ ืœืกื‘ืš ืืช ื”ืขื ื™ื™ื ื™ื ืขื•ื“ ื™ื•ืชืจ, ื”ืžืœื•ืŸ ืขื ืžืกืคืจ ื”ื‘ื™ืงื•ืจื•ืช ื”ืฉื ื™ ื”ื’ื‘ื•ื” ื‘ื™ื•ืชืจ ื™ืฉ ืœื• ืฆื™ื•ืŸ ืžืžื•ืฆืข ืžื—ื•ืฉื‘ ืฉืœ 8.12 ื•ื”ืฆื™ื•ืŸ ื”ืžืžื•ืฆืข ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื•ื 8.1. ื”ืื ื”ืฆื™ื•ืŸ ื”ื ื›ื•ืŸ ื”ื•ื ืฆื™ืจื•ืฃ ืžืงืจื™ื ืื• ืฉื”ืžืœื•ืŸ ื”ืจืืฉื•ืŸ ื”ื•ื ืื™ ื”ืชืืžื”?
ื‘ื”ื ื—ื” ืฉื”ืžืœื•ืŸ ื”ื–ื” ืขืฉื•ื™ ืœื”ื™ื•ืช ื—ืจื™ื’, ื•ืฉืื•ืœื™ ืจื•ื‘ ื”ืขืจื›ื™ื ืžืชืื™ืžื™ื (ืืš ื—ืœืงื ืœื ืžืกื™ื‘ื” ื›ืœืฉื”ื™) ื ื›ืชื•ื‘ ืชื•ื›ื ื™ืช ืงืฆืจื” ื‘ื”ืžืฉืš ื›ื“ื™ ืœื—ืงื•ืจ ืืช ื”ืขืจื›ื™ื ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื ื•ืœืงื‘ื•ืข ืืช ื”ืฉื™ืžื•ืฉ ื”ื ื›ื•ืŸ (ืื• ืื™ ื”ืฉื™ืžื•ืฉ) ื‘ืขืจื›ื™ื.
> ๐Ÿšจ ื”ืขืจื” ืฉืœ ื–ื”ื™ืจื•ืช
>
> ื›ืืฉืจ ืขื•ื‘ื“ื™ื ืขื ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ื”, ืชื›ืชื‘ื• ืงื•ื“ ืฉืžื—ืฉื‘ ืžืฉื”ื• ืžืชื•ืš ื”ื˜ืงืกื˜ ืžื‘ืœื™ ืฉืชืฆื˜ืจื›ื• ืœืงืจื•ื ืื• ืœื ืชื— ืืช ื”ื˜ืงืกื˜ ื‘ืขืฆืžื›ื. ื–ื• ื”ืžื”ื•ืช ืฉืœ ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช (NLP), ืœืคืจืฉ ืžืฉืžืขื•ืช ืื• ืชื—ื•ืฉื” ืžื‘ืœื™ ืฉืื“ื ื™ืฆื˜ืจืš ืœืขืฉื•ืช ื–ืืช. ืขื ื–ืืช, ื™ื™ืชื›ืŸ ืฉืชืชืงืœื• ื‘ื›ืžื” ื‘ื™ืงื•ืจื•ืช ืฉืœื™ืœื™ื•ืช. ืื ื™ ืžืžืœื™ืฅ ืœื›ื ืœื ืœืงืจื•ื ืื•ืชืŸ, ื›ื™ ืื™ืŸ ืฆื•ืจืš ื‘ื›ืš. ื—ืœืงืŸ ื˜ื™ืคืฉื™ื•ืช ืื• ืœื ืจืœื•ื•ื ื˜ื™ื•ืช, ื›ืžื• ื‘ื™ืงื•ืจื•ืช ืฉืœื™ืœื™ื•ืช ืขืœ ืžืœื•ืŸ ื‘ืกื’ื ื•ืŸ "ืžื–ื’ ื”ืื•ื•ื™ืจ ืœื ื”ื™ื” ื˜ื•ื‘", ื“ื‘ืจ ืฉืื™ื ื• ื‘ืฉืœื™ื˜ืช ื”ืžืœื•ืŸ, ืื• ืœืžืขืฉื”, ืืฃ ืื—ื“. ืื‘ืœ ื™ืฉ ื’ื ืฆื“ ืืคืœ ืœื—ืœืง ืžื”ื‘ื™ืงื•ืจื•ืช. ืœืคืขืžื™ื ื”ื‘ื™ืงื•ืจื•ืช ื”ืฉืœื™ืœื™ื•ืช ื”ืŸ ื’ื–ืขื ื™ื•ืช, ืกืงืกื™ืกื˜ื™ื•ืช, ืื• ืžืคืœื•ืช ืขืœ ื‘ืกื™ืก ื’ื™ืœ. ื–ื” ืžืฆืขืจ ืืš ืฆืคื•ื™ ื‘ืžืขืจืš ื ืชื•ื ื™ื ืฉื ืืกืฃ ืžืืชืจ ืฆื™ื‘ื•ืจื™. ื™ืฉื ื ืžื‘ืงืจื™ื ืฉืžืฉืื™ืจื™ื ื‘ื™ืงื•ืจื•ืช ืฉืชืžืฆืื• ืื•ืชืŸ ื“ื•ื—ื•ืช, ืœื ื ื•ื—ื•ืช, ืื• ืžื˜ืจื™ื“ื•ืช. ืขื“ื™ืฃ ืœืชืช ืœืงื•ื“ ืœืžื“ื•ื“ ืืช ื”ืชื—ื•ืฉื” ืžืืฉืจ ืœืงืจื•ื ืื•ืชืŸ ื‘ืขืฆืžื›ื ื•ืœื”ืชืขืฆื‘. ืขื ื–ืืช, ืžื“ื•ื‘ืจ ื‘ืžื™ืขื•ื˜ ืฉื›ื•ืชื‘ ื“ื‘ืจื™ื ื›ืืœื”, ืื‘ืœ ื”ื ืงื™ื™ืžื™ื ื‘ื›ืœ ื–ืืช.
## ืชืจื’ื™ืœ - ื—ืงืจ ื ืชื•ื ื™ื
### ื˜ืขื™ื ืช ื”ื ืชื•ื ื™ื
ื–ื” ืžืกืคื™ืง ืœื‘ื—ื•ืŸ ืืช ื”ื ืชื•ื ื™ื ื‘ืื•ืคืŸ ื—ื–ื•ืชื™, ืขื›ืฉื™ื• ืชื›ืชื‘ื• ืงืฆืช ืงื•ื“ ื•ืชืงื‘ืœื• ืชืฉื•ื‘ื•ืช! ื”ื—ืœืง ื”ื–ื” ืžืฉืชืžืฉ ื‘ืกืคืจื™ื™ืช pandas. ื”ืžืฉื™ืžื” ื”ืจืืฉื•ื ื” ืฉืœื›ื ื”ื™ื ืœื•ื•ื“ื ืฉืืชื ื™ื›ื•ืœื™ื ืœื˜ืขื•ืŸ ื•ืœืงืจื•ื ืืช ื ืชื•ื ื™ ื”-CSV. ืœืกืคืจื™ื™ืช pandas ื™ืฉ ื˜ื•ืขืŸ CSV ืžื”ื™ืจ, ื•ื”ืชื•ืฆืื” ื ืฉืžืจืช ื‘-DataFrame, ื›ืคื™ ืฉืจืื™ืชื ื‘ืฉื™ืขื•ืจื™ื ื”ืงื•ื“ืžื™ื. ื”-CSV ืฉืื ื—ื ื• ื˜ื•ืขื ื™ื ืžื›ื™ืœ ื™ื•ืชืจ ืžื—ืฆื™ ืžื™ืœื™ื•ืŸ ืฉื•ืจื•ืช, ืื‘ืœ ืจืง 17 ืขืžื•ื“ื•ืช. pandas ืžืกืคืงืช ื“ืจื›ื™ื ืจื‘ื•ืช ื•ื—ื–ืงื•ืช ืœืขื‘ื•ื“ ืขื DataFrame, ื›ื•ืœืœ ื”ื™ื›ื•ืœืช ืœื‘ืฆืข ืคืขื•ืœื•ืช ืขืœ ื›ืœ ืฉื•ืจื”.
ืžื›ืืŸ ื•ื”ืœืื” ื‘ืฉื™ืขื•ืจ ื”ื–ื”, ื™ื”ื™ื• ืงื˜ืขื™ ืงื•ื“ ื•ื”ืกื‘ืจื™ื ืขืœ ื”ืงื•ื“ ื•ื’ื ื“ื™ื•ืŸ ืขืœ ืžื” ื”ืžืฉืžืขื•ืช ืฉืœ ื”ืชื•ืฆืื•ืช. ื”ืฉืชืžืฉื• ื‘ืงื•ื‘ืฅ _notebook.ipynb_ ื”ืžืฆื•ืจืฃ ืขื‘ื•ืจ ื”ืงื•ื“ ืฉืœื›ื.
ื‘ื•ืื• ื ืชื—ื™ืœ ื‘ื˜ืขื™ื ืช ืงื•ื‘ืฅ ื”ื ืชื•ื ื™ื ืฉื‘ื• ืชืฉืชืžืฉื•:
```python
# Load the hotel reviews from CSV
import pandas as pd
import time
# importing time so the start and end time can be used to calculate file loading time
print("Loading data file now, this could take a while depending on file size")
start = time.time()
# df is 'DataFrame' - make sure you downloaded the file to the data folder
df = pd.read_csv('../../data/Hotel_Reviews.csv')
end = time.time()
print("Loading took " + str(round(end - start, 2)) + " seconds")
```
ืขื›ืฉื™ื• ื›ืฉื”ื ืชื•ื ื™ื ื ื˜ืขื ื•, ืื ื—ื ื• ื™ื›ื•ืœื™ื ืœื‘ืฆืข ืขืœื™ื”ื ืคืขื•ืœื•ืช. ืฉืžืจื• ืืช ื”ืงื•ื“ ื”ื–ื” ื‘ืจืืฉ ื”ืชื•ื›ื ื™ืช ืฉืœื›ื ืขื‘ื•ืจ ื”ื—ืœืง ื”ื‘ื.
## ื—ืงืจ ื”ื ืชื•ื ื™ื
ื‘ืžืงืจื” ื”ื–ื”, ื”ื ืชื•ื ื™ื ื›ื‘ืจ *ื ืงื™ื™ื*, ื›ืœื•ืžืจ ื”ื ืžื•ื›ื ื™ื ืœืขื‘ื•ื“ื”, ื•ืื™ืŸ ื‘ื”ื ืชื•ื•ื™ื ื‘ืฉืคื•ืช ืื—ืจื•ืช ืฉืขืœื•ืœื™ื ืœื”ืคืจื™ืข ืœืืœื’ื•ืจื™ืชืžื™ื ืฉืžืฆืคื™ื ืœืชื•ื•ื™ื ื‘ืื ื’ืœื™ืช ื‘ืœื‘ื“.
โœ… ื™ื™ืชื›ืŸ ืฉืชืฆื˜ืจื›ื• ืœืขื‘ื•ื“ ืขื ื ืชื•ื ื™ื ืฉื“ื•ืจืฉื™ื ืขื™ื‘ื•ื“ ืจืืฉื•ื ื™ ื›ื“ื™ ืœืขืฆื‘ ืื•ืชื ืœืคื ื™ ื™ื™ืฉื•ื ื˜ื›ื ื™ืงื•ืช NLP, ืื‘ืœ ืœื ื”ืคืขื. ืื ื”ื™ื™ืชื ืฆืจื™ื›ื™ื, ืื™ืš ื”ื™ื™ืชื ืžืชืžื•ื“ื“ื™ื ืขื ืชื•ื•ื™ื ืฉืื™ื ื ื‘ืื ื’ืœื™ืช?
ืงื—ื• ืจื’ืข ืœื•ื•ื“ื ืฉื‘ืจื’ืข ืฉื”ื ืชื•ื ื™ื ื ื˜ืขื ื•, ืืชื ื™ื›ื•ืœื™ื ืœื—ืงื•ืจ ืื•ืชื ื‘ืืžืฆืขื•ืช ืงื•ื“. ืงืœ ืžืื•ื“ ืœื”ืชืžืงื“ ื‘ืขืžื•ื“ื•ืช `Negative_Review` ื•-`Positive_Review`. ื”ืŸ ืžืœืื•ืช ื‘ื˜ืงืกื˜ ื˜ื‘ืขื™ ืขื‘ื•ืจ ืืœื’ื•ืจื™ืชืžื™ ื”-NLP ืฉืœื›ื ืœืขื™ื‘ื•ื“. ืื‘ืœ ื—ื›ื•! ืœืคื ื™ ืฉืืชื ืงื•ืคืฆื™ื ืœ-NLP ื•ืœื ื™ืชื•ื— ืจื’ืฉื•ืช, ื›ื“ืื™ ืฉืชืขืงื‘ื• ืื—ืจื™ ื”ืงื•ื“ ืœืžื˜ื” ื›ื“ื™ ืœื•ื•ื“ื ืฉื”ืขืจื›ื™ื ืฉื ื™ืชื ื• ื‘ื ืชื•ื ื™ื ืชื•ืืžื™ื ืœืขืจื›ื™ื ืฉืืชื ืžื—ืฉื‘ื™ื ืขื pandas.
## ืคืขื•ืœื•ืช ืขืœ DataFrame
ื”ืžืฉื™ืžื” ื”ืจืืฉื•ื ื” ื‘ืฉื™ืขื•ืจ ื”ื–ื” ื”ื™ื ืœื‘ื“ื•ืง ืื ื”ื”ื ื—ื•ืช ื”ื‘ืื•ืช ื ื›ื•ื ื•ืช ืขืœ ื™ื“ื™ ื›ืชื™ื‘ืช ืงื•ื“ ืฉื‘ื•ื—ืŸ ืืช ื”-DataFrame (ืžื‘ืœื™ ืœืฉื ื•ืช ืื•ืชื•).
> ื›ืžื• ื‘ื”ืจื‘ื” ืžืฉื™ืžื•ืช ืชื›ื ื•ืช, ื™ืฉ ื›ืžื” ื“ืจื›ื™ื ืœื”ืฉืœื™ื ืืช ื–ื”, ืื‘ืœ ืขืฆื” ื˜ื•ื‘ื” ื”ื™ื ืœืขืฉื•ืช ื–ืืช ื‘ื“ืจืš ื”ืคืฉื•ื˜ื” ื•ื”ืงืœื” ื‘ื™ื•ืชืจ, ื‘ืžื™ื•ื—ื“ ืื ื–ื” ื™ื”ื™ื” ืงืœ ื™ื•ืชืจ ืœื”ื‘ื ื” ื›ืฉืชื—ื–ืจื• ืœืงื•ื“ ื”ื–ื” ื‘ืขืชื™ื“. ืขื DataFrames, ื™ืฉ API ืžืงื™ืฃ ืฉืœืจื•ื‘ ื™ืฆื™ืข ื“ืจืš ืœืขืฉื•ืช ืืช ืžื” ืฉืืชื ืจื•ืฆื™ื ื‘ืฆื•ืจื” ื™ืขื™ืœื”.
ื”ืชื™ื™ื—ืกื• ืœืฉืืœื•ืช ื”ื‘ืื•ืช ื›ืžืฉื™ืžื•ืช ืงื•ื“ ื•ื ืกื• ืœืขื ื•ืช ืขืœื™ื”ืŸ ืžื‘ืœื™ ืœื”ืกืชื›ืœ ืขืœ ื”ืคืชืจื•ืŸ.
1. ื”ื“ืคื™ืกื• ืืช *ื”ืฆื•ืจื”* ืฉืœ ื”-DataFrame ืฉื–ื” ืขืชื” ื˜ืขื ืชื (ื”ืฆื•ืจื” ื”ื™ื ืžืกืคืจ ื”ืฉื•ืจื•ืช ื•ื”ืขืžื•ื“ื•ืช).
2. ื—ืฉื‘ื• ืืช ืชื“ื™ืจื•ืช ื”ืœืื•ืžื™ื ืฉืœ ื”ืกื•ืงืจื™ื:
1. ื›ืžื” ืขืจื›ื™ื ื™ื™ื—ื•ื“ื™ื™ื ื™ืฉ ืœืขืžื•ื“ื” `Reviewer_Nationality` ื•ืžื” ื”ื?
2. ืื™ื–ื” ืœืื•ื ืฉืœ ืกื•ืงืจื™ื ื”ื•ื ื”ื ืคื•ืฅ ื‘ื™ื•ืชืจ ื‘ื ืชื•ื ื™ื (ื”ื“ืคื™ืกื• ืืช ื”ืžื“ื™ื ื” ื•ืžืกืคืจ ื”ื‘ื™ืงื•ืจื•ืช)?
3. ืžื”ื 10 ื”ืœืื•ืžื™ื ื”ื ืคื•ืฆื™ื ื‘ื™ื•ืชืจ ื”ื‘ืื™ื ื•ืชื“ื™ืจื•ืชื?
3. ืื™ื–ื” ืžืœื•ืŸ ืงื™ื‘ืœ ืืช ืžืกืคืจ ื”ื‘ื™ืงื•ืจื•ืช ื”ื’ื‘ื•ื” ื‘ื™ื•ืชืจ ืขื‘ื•ืจ ื›ืœ ืื—ื“ ืž-10 ื”ืœืื•ืžื™ื ื”ื ืคื•ืฆื™ื ื‘ื™ื•ืชืจ?
4. ื›ืžื” ื‘ื™ืงื•ืจื•ืช ื™ืฉ ืœื›ืœ ืžืœื•ืŸ (ืชื“ื™ืจื•ืช ื”ื‘ื™ืงื•ืจื•ืช ืœื›ืœ ืžืœื•ืŸ) ื‘ื ืชื•ื ื™ื?
5. ืœืžืจื•ืช ืฉื™ืฉ ืขืžื•ื“ื” `Average_Score` ืœื›ืœ ืžืœื•ืŸ ื‘ื ืชื•ื ื™ื, ืืชื ื™ื›ื•ืœื™ื ื’ื ืœื—ืฉื‘ ืฆื™ื•ืŸ ืžืžื•ืฆืข (ืœืงื—ืช ืืช ื”ืžืžื•ืฆืข ืฉืœ ื›ืœ ืฆื™ื•ื ื™ ื”ืกื•ืงืจื™ื ื‘ื ืชื•ื ื™ื ืขื‘ื•ืจ ื›ืœ ืžืœื•ืŸ). ื”ื•ืกื™ืคื• ืขืžื•ื“ื” ื—ื“ืฉื” ืœ-DataFrame ืฉืœื›ื ืขื ื”ื›ื•ืชืจืช `Calc_Average_Score` ืฉืžื›ื™ืœื” ืืช ื”ืžืžื•ืฆืข ื”ืžื—ื•ืฉื‘.
6. ื”ืื ื™ืฉ ืžืœื•ื ื•ืช ืขื ืื•ืชื• ืฆื™ื•ืŸ (ืžืขื•ื’ืœ ืœืžืงื•ื ื”ืขืฉืจื•ื ื™ ื”ืจืืฉื•ืŸ) ื‘-`Average_Score` ื•ื‘-`Calc_Average_Score`?
1. ื ืกื• ืœื›ืชื•ื‘ ืคื•ื ืงืฆื™ื” ื‘-Python ืฉืžืงื‘ืœืช Series (ืฉื•ืจื”) ื›ืืจื’ื•ืžื ื˜ ื•ืžืฉื•ื•ื” ืืช ื”ืขืจื›ื™ื, ื•ืžื“ืคื™ืกื” ื”ื•ื“ืขื” ื›ืฉื”ืขืจื›ื™ื ืื™ื ื ืฉื•ื•ื™ื. ืœืื—ืจ ืžื›ืŸ ื”ืฉืชืžืฉื• ื‘ืฉื™ื˜ื” `.apply()` ื›ื“ื™ ืœืขื‘ื“ ื›ืœ ืฉื•ืจื” ืขื ื”ืคื•ื ืงืฆื™ื”.
7. ื—ืฉื‘ื• ื•ื”ื“ืคื™ืกื• ื›ืžื” ืฉื•ืจื•ืช ื™ืฉ ืขื ืขืจื›ื™ื ืฉืœ "No Negative" ื‘ืขืžื•ื“ื” `Negative_Review`.
8. ื—ืฉื‘ื• ื•ื”ื“ืคื™ืกื• ื›ืžื” ืฉื•ืจื•ืช ื™ืฉ ืขื ืขืจื›ื™ื ืฉืœ "No Positive" ื‘ืขืžื•ื“ื” `Positive_Review`.
9. ื—ืฉื‘ื• ื•ื”ื“ืคื™ืกื• ื›ืžื” ืฉื•ืจื•ืช ื™ืฉ ืขื ืขืจื›ื™ื ืฉืœ "No Positive" ื‘ืขืžื•ื“ื” `Positive_Review` **ื•ื’ื** ืขืจื›ื™ื ืฉืœ "No Negative" ื‘ืขืžื•ื“ื” `Negative_Review`.
### ืชืฉื•ื‘ื•ืช ื‘ืงื•ื“
1. ื”ื“ืคื™ืกื• ืืช *ื”ืฆื•ืจื”* ืฉืœ ื”-DataFrame ืฉื–ื” ืขืชื” ื˜ืขื ืชื (ื”ืฆื•ืจื” ื”ื™ื ืžืกืคืจ ื”ืฉื•ืจื•ืช ื•ื”ืขืžื•ื“ื•ืช).
```python
print("The shape of the data (rows, cols) is " + str(df.shape))
> The shape of the data (rows, cols) is (515738, 17)
```
2. ื—ืฉื‘ื• ืืช ืชื“ื™ืจื•ืช ื”ืœืื•ืžื™ื ืฉืœ ื”ืกื•ืงืจื™ื:
1. ื›ืžื” ืขืจื›ื™ื ื™ื™ื—ื•ื“ื™ื™ื ื™ืฉ ืœืขืžื•ื“ื” `Reviewer_Nationality` ื•ืžื” ื”ื?
2. ืื™ื–ื” ืœืื•ื ืฉืœ ืกื•ืงืจื™ื ื”ื•ื ื”ื ืคื•ืฅ ื‘ื™ื•ืชืจ ื‘ื ืชื•ื ื™ื (ื”ื“ืคื™ืกื• ืืช ื”ืžื“ื™ื ื” ื•ืžืกืคืจ ื”ื‘ื™ืงื•ืจื•ืช)?
```python
# value_counts() creates a Series object that has index and values in this case, the country and the frequency they occur in reviewer nationality
nationality_freq = df["Reviewer_Nationality"].value_counts()
print("There are " + str(nationality_freq.size) + " different nationalities")
# print first and last rows of the Series. Change to nationality_freq.to_string() to print all of the data
print(nationality_freq)
There are 227 different nationalities
United Kingdom 245246
United States of America 35437
Australia 21686
Ireland 14827
United Arab Emirates 10235
...
Comoros 1
Palau 1
Northern Mariana Islands 1
Cape Verde 1
Guinea 1
Name: Reviewer_Nationality, Length: 227, dtype: int64
```
3. ืžื”ื 10 ื”ืœืื•ืžื™ื ื”ื ืคื•ืฆื™ื ื‘ื™ื•ืชืจ ื”ื‘ืื™ื ื•ืชื“ื™ืจื•ืชื?
```python
print("The highest frequency reviewer nationality is " + str(nationality_freq.index[0]).strip() + " with " + str(nationality_freq[0]) + " reviews.")
# Notice there is a leading space on the values, strip() removes that for printing
# What is the top 10 most common nationalities and their frequencies?
print("The next 10 highest frequency reviewer nationalities are:")
print(nationality_freq[1:11].to_string())
The highest frequency reviewer nationality is United Kingdom with 245246 reviews.
The next 10 highest frequency reviewer nationalities are:
United States of America 35437
Australia 21686
Ireland 14827
United Arab Emirates 10235
Saudi Arabia 8951
Netherlands 8772
Switzerland 8678
Germany 7941
Canada 7894
France 7296
```
3. ืื™ื–ื” ืžืœื•ืŸ ืงื™ื‘ืœ ืืช ืžืกืคืจ ื”ื‘ื™ืงื•ืจื•ืช ื”ื’ื‘ื•ื” ื‘ื™ื•ืชืจ ืขื‘ื•ืจ ื›ืœ ืื—ื“ ืž-10 ื”ืœืื•ืžื™ื ื”ื ืคื•ืฆื™ื ื‘ื™ื•ืชืจ?
```python
# What was the most frequently reviewed hotel for the top 10 nationalities
# Normally with pandas you will avoid an explicit loop, but wanted to show creating a new dataframe using criteria (don't do this with large amounts of data because it could be very slow)
for nat in nationality_freq[:10].index:
# First, extract all the rows that match the criteria into a new dataframe
nat_df = df[df["Reviewer_Nationality"] == nat]
# Now get the hotel freq
freq = nat_df["Hotel_Name"].value_counts()
print("The most reviewed hotel for " + str(nat).strip() + " was " + str(freq.index[0]) + " with " + str(freq[0]) + " reviews.")
The most reviewed hotel for United Kingdom was Britannia International Hotel Canary Wharf with 3833 reviews.
The most reviewed hotel for United States of America was Hotel Esther a with 423 reviews.
The most reviewed hotel for Australia was Park Plaza Westminster Bridge London with 167 reviews.
The most reviewed hotel for Ireland was Copthorne Tara Hotel London Kensington with 239 reviews.
The most reviewed hotel for United Arab Emirates was Millennium Hotel London Knightsbridge with 129 reviews.
The most reviewed hotel for Saudi Arabia was The Cumberland A Guoman Hotel with 142 reviews.
The most reviewed hotel for Netherlands was Jaz Amsterdam with 97 reviews.
The most reviewed hotel for Switzerland was Hotel Da Vinci with 97 reviews.
The most reviewed hotel for Germany was Hotel Da Vinci with 86 reviews.
The most reviewed hotel for Canada was St James Court A Taj Hotel London with 61 reviews.
```
4. ื›ืžื” ื‘ื™ืงื•ืจื•ืช ื™ืฉ ืœื›ืœ ืžืœื•ืŸ (ืชื“ื™ืจื•ืช ื”ื‘ื™ืงื•ืจื•ืช ืœื›ืœ ืžืœื•ืŸ) ื‘ื ืชื•ื ื™ื?
```python
# First create a new dataframe based on the old one, removing the uneeded columns
hotel_freq_df = df.drop(["Hotel_Address", "Additional_Number_of_Scoring", "Review_Date", "Average_Score", "Reviewer_Nationality", "Negative_Review", "Review_Total_Negative_Word_Counts", "Positive_Review", "Review_Total_Positive_Word_Counts", "Total_Number_of_Reviews_Reviewer_Has_Given", "Reviewer_Score", "Tags", "days_since_review", "lat", "lng"], axis = 1)
# Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found
hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count')
# Get rid of all the duplicated rows
hotel_freq_df = hotel_freq_df.drop_duplicates(subset = ["Hotel_Name"])
display(hotel_freq_df)
```
| Hotel_Name | Total_Number_of_Reviews | Total_Reviews_Found |
| :----------------------------------------: | :---------------------: | :-----------------: |
| Britannia International Hotel Canary Wharf | 9086 | 4789 |
| Park Plaza Westminster Bridge London | 12158 | 4169 |
| Copthorne Tara Hotel London Kensington | 7105 | 3578 |
| ... | ... | ... |
| Mercure Paris Porte d Orleans | 110 | 10 |
| Hotel Wagner | 135 | 10 |
| Hotel Gallitzinberg | 173 | 8 |
ื™ื™ืชื›ืŸ ืฉืชืฉื™ืžื• ืœื‘ ืฉื”ืชื•ืฆืื•ืช *ืฉื ืกืคืจื• ื‘ื ืชื•ื ื™ื* ืื™ื ืŸ ืชื•ืืžื•ืช ืืช ื”ืขืจืš ื‘-`Total_Number_of_Reviews`. ืœื ื‘ืจื•ืจ ืื ื”ืขืจืš ื”ื–ื” ื‘ื ืชื•ื ื™ื ืžื™ื™ืฆื’ ืืช ืžืกืคืจ ื”ื‘ื™ืงื•ืจื•ืช ื”ื›ื•ืœืœ ืฉื”ืžืœื•ืŸ ืงื™ื‘ืœ, ืื‘ืœ ืœื ื›ื•ืœืŸ ื ื’ืจืคื•, ืื• ื—ื™ืฉื•ื‘ ืื—ืจ. `Total_Number_of_Reviews` ืื™ื ื• ืžืฉืžืฉ ื‘ืžื•ื“ืœ ื‘ื’ืœืœ ื—ื•ืกืจ ื”ื‘ื”ื™ืจื•ืช ื”ื–ื”.
5. ืœืžืจื•ืช ืฉื™ืฉ ืขืžื•ื“ื” `Average_Score` ืœื›ืœ ืžืœื•ืŸ ื‘ื ืชื•ื ื™ื, ืืชื ื™ื›ื•ืœื™ื ื’ื ืœื—ืฉื‘ ืฆื™ื•ืŸ ืžืžื•ืฆืข (ืœืงื—ืช ืืช ื”ืžืžื•ืฆืข ืฉืœ ื›ืœ ืฆื™ื•ื ื™ ื”ืกื•ืงืจื™ื ื‘ื ืชื•ื ื™ื ืขื‘ื•ืจ ื›ืœ ืžืœื•ืŸ). ื”ื•ืกื™ืคื• ืขืžื•ื“ื” ื—ื“ืฉื” ืœ-DataFrame ืฉืœื›ื ืขื ื”ื›ื•ืชืจืช `Calc_Average_Score` ืฉืžื›ื™ืœื” ืืช ื”ืžืžื•ืฆืข ื”ืžื—ื•ืฉื‘. ื”ื“ืคื™ืกื• ืืช ื”ืขืžื•ื“ื•ืช `Hotel_Name`, `Average_Score`, ื•-`Calc_Average_Score`.
```python
# define a function that takes a row and performs some calculation with it
def get_difference_review_avg(row):
return row["Average_Score"] - row["Calc_Average_Score"]
# 'mean' is mathematical word for 'average'
df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)
# Add a new column with the difference between the two average scores
df["Average_Score_Difference"] = df.apply(get_difference_review_avg, axis = 1)
# Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel)
review_scores_df = df.drop_duplicates(subset = ["Hotel_Name"])
# Sort the dataframe to find the lowest and highest average score difference
review_scores_df = review_scores_df.sort_values(by=["Average_Score_Difference"])
display(review_scores_df[["Average_Score_Difference", "Average_Score", "Calc_Average_Score", "Hotel_Name"]])
```
ื™ื™ืชื›ืŸ ืฉืชื”ื™ืชื ืœื’ื‘ื™ ื”ืขืจืš `Average_Score` ื•ืœืžื” ื”ื•ื ืœืคืขืžื™ื ืฉื•ื ื” ืžื”ืžืžื•ืฆืข ื”ืžื—ื•ืฉื‘. ืžื›ื™ื•ื•ืŸ ืฉืื ื—ื ื• ืœื ื™ื›ื•ืœื™ื ืœื“ืขืช ืœืžื” ื—ืœืง ืžื”ืขืจื›ื™ื ืชื•ืืžื™ื, ืื‘ืœ ืื—ืจื™ื ื™ืฉ ืœื”ื ื”ื‘ื“ืœ, ื”ื›ื™ ื‘ื˜ื•ื— ื‘ืžืงืจื” ื”ื–ื” ืœื”ืฉืชืžืฉ ื‘ืฆื™ื•ื ื™ ื”ื‘ื™ืงื•ืจื•ืช ืฉื™ืฉ ืœื ื• ื›ื“ื™ ืœื—ืฉื‘ ืืช ื”ืžืžื•ืฆืข ื‘ืขืฆืžื ื•. ืขื ื–ืืช, ื”ื”ื‘ื“ืœื™ื ื‘ื“ืจืš ื›ืœืœ ืžืื•ื“ ืงื˜ื ื™ื, ื”ื ื” ื”ืžืœื•ื ื•ืช ืขื ื”ื”ื‘ื“ืœ ื”ื’ื“ื•ืœ ื‘ื™ื•ืชืจ ื‘ื™ืŸ ื”ืžืžื•ืฆืข ื‘ื ืชื•ื ื™ื ืœื‘ื™ืŸ ื”ืžืžื•ืฆืข ื”ืžื—ื•ืฉื‘:
| Average_Score_Difference | Average_Score | Calc_Average_Score | Hotel_Name |
| :----------------------: | :-----------: | :----------------: | ------------------------------------------: |
| -0.8 | 7.7 | 8.5 | Best Western Hotel Astoria |
| -0.7 | 8.8 | 9.5 | Hotel Stendhal Place Vend me Paris MGallery |
| -0.7 | 7.5 | 8.2 | Mercure Paris Porte d Orleans |
| -0.7 | 7.9 | 8.6 | Renaissance Paris Vendome Hotel |
| -0.5 | 7.0 | 7.5 | Hotel Royal Elys es |
| ... | ... | ... | ... |
| 0.7 | 7.5 | 6.8 | Mercure Paris Op ra Faubourg Montmartre |
| 0.8 | 7.1 | 6.3 | Holiday Inn Paris Montparnasse Pasteur |
| 0.9 | 6.8 | 5.9 | Villa Eugenie |
| 0.9 | 8.6 | 7.7 | MARQUIS Faubourg St Honor Relais Ch teaux |
| 1.3 | 7.2 | 5.9 | Kube Hotel Ice Bar |
ืขื ืจืง ืžืœื•ืŸ ืื—ื“ ืฉื™ืฉ ืœื• ื”ื‘ื“ืœ ื‘ืฆื™ื•ืŸ ื’ื“ื•ืœ ืž-1, ื–ื” ืื•ืžืจ ืฉืื ื—ื ื• ื›ื ืจืื” ื™ื›ื•ืœื™ื ืœื”ืชืขืœื ืžื”ื”ื‘ื“ืœ ื•ืœื”ืฉืชืžืฉ ื‘ืžืžื•ืฆืข ื”ืžื—ื•ืฉื‘.
6. ื—ืฉื‘ื• ื•ื”ื“ืคื™ืกื• ื›ืžื” ืฉื•ืจื•ืช ื™ืฉ ืขื ืขืจื›ื™ื ืฉืœ "No Negative" ื‘ืขืžื•ื“ื” `Negative_Review`.
7. ื—ืฉื‘ื• ื•ื”ื“ืคื™ืกื• ื›ืžื” ืฉื•ืจื•ืช ื™ืฉ ืขื ืขืจื›ื™ื ืฉืœ "No Positive" ื‘ืขืžื•ื“ื” `Positive_Review`.
8. ื—ืฉื‘ื• ื•ื”ื“ืคื™ืกื• ื›ืžื” ืฉื•ืจื•ืช ื™ืฉ ืขื ืขืจื›ื™ื ืฉืœ "No Positive" ื‘ืขืžื•ื“ื” `Positive_Review` **ื•ื’ื** ืขืจื›ื™ื ืฉืœ "No Negative" ื‘ืขืžื•ื“ื” `Negative_Review`.
```python
# with lambdas:
start = time.time()
no_negative_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" else False , axis=1)
print("Number of No Negative reviews: " + str(len(no_negative_reviews[no_negative_reviews == True].index)))
no_positive_reviews = df.apply(lambda x: True if x['Positive_Review'] == "No Positive" else False , axis=1)
print("Number of No Positive reviews: " + str(len(no_positive_reviews[no_positive_reviews == True].index)))
both_no_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" and x['Positive_Review'] == "No Positive" else False , axis=1)
print("Number of both No Negative and No Positive reviews: " + str(len(both_no_reviews[both_no_reviews == True].index)))
end = time.time()
print("Lambdas took " + str(round(end - start, 2)) + " seconds")
Number of No Negative reviews: 127890
Number of No Positive reviews: 35946
Number of both No Negative and No Positive reviews: 127
Lambdas took 9.64 seconds
```
## ื“ืจืš ื ื•ืกืคืช
ื“ืจืš ื ื•ืกืคืช ืœืกืคื•ืจ ืคืจื™ื˜ื™ื ืœืœื Lambdas, ื•ืœื”ืฉืชืžืฉ ื‘-sum ื›ื“ื™ ืœืกืคื•ืจ ืืช ื”ืฉื•ืจื•ืช:
```python
# without lambdas (using a mixture of notations to show you can use both)
start = time.time()
no_negative_reviews = sum(df.Negative_Review == "No Negative")
print("Number of No Negative reviews: " + str(no_negative_reviews))
no_positive_reviews = sum(df["Positive_Review"] == "No Positive")
print("Number of No Positive reviews: " + str(no_positive_reviews))
both_no_reviews = sum((df.Negative_Review == "No Negative") & (df.Positive_Review == "No Positive"))
print("Number of both No Negative and No Positive reviews: " + str(both_no_reviews))
end = time.time()
print("Sum took " + str(round(end - start, 2)) + " seconds")
Number of No Negative reviews: 127890
Number of No Positive reviews: 35946
Number of both No Negative and No Positive reviews: 127
Sum took 0.19 seconds
```
ื™ื™ืชื›ืŸ ืฉืฉืžืชื ืœื‘ ืฉื™ืฉ 127 ืฉื•ืจื•ืช ืฉื™ืฉ ืœื”ืŸ ื’ื "No Negative" ื•ื’ื "No Positive" ื›ืขืจื›ื™ื ื‘ืขืžื•ื“ื•ืช `Negative_Review` ื•-`Positive_Review` ื‘ื”ืชืืžื”. ื–ื” ืื•ืžืจ ืฉื”ืกื•ืงืจ ื ืชืŸ ืœืžืœื•ืŸ ืฆื™ื•ืŸ ืžืกืคืจื™, ืื‘ืœ ื ืžื ืข ืžืœื›ืชื•ื‘ ื‘ื™ืงื•ืจืช ื—ื™ื•ื‘ื™ืช ืื• ืฉืœื™ืœื™ืช. ืœืžืจื‘ื” ื”ืžื–ืœ ืžื“ื•ื‘ืจ ื‘ื›ืžื•ืช ืงื˜ื ื” ืฉืœ ืฉื•ืจื•ืช (127 ืžืชื•ืš 515738, ืื• 0.02%), ื›ืš ืฉื–ื” ื›ื ืจืื” ืœื ื™ื˜ื” ืืช ื”ืžื•ื“ืœ ืื• ื”ืชื•ืฆืื•ืช ืœื›ื™ื•ื•ืŸ ืžืกื•ื™ื, ืื‘ืœ ื™ื™ืชื›ืŸ ืฉืœื ืฆื™ืคื™ืชื ืฉืžืื’ืจ ื ืชื•ื ื™ื ืฉืœ ื‘ื™ืงื•ืจื•ืช ื™ื›ื™ืœ ืฉื•ืจื•ืช ืœืœื ื‘ื™ืงื•ืจื•ืช, ื•ืœื›ืŸ ื›ื“ืื™ ืœื—ืงื•ืจ ืืช ื”ื ืชื•ื ื™ื ื›ื“ื™ ืœื’ืœื•ืช ืฉื•ืจื•ืช ื›ืืœื”.
ืขื›ืฉื™ื• ื›ืฉื—ืงืจืชื ืืช ืžืื’ืจ ื”ื ืชื•ื ื™ื, ื‘ืฉื™ืขื•ืจ ื”ื‘ื ืชืกื ื ื• ืืช ื”ื ืชื•ื ื™ื ื•ืชื•ืกื™ืคื• ื ื™ืชื•ื— ืจื’ืฉื•ืช.
---
## ๐Ÿš€ืืชื’ืจ
ื”ืฉื™ืขื•ืจ ื”ื–ื” ืžื“ื’ื™ื, ื›ืคื™ ืฉืจืื™ื ื• ื‘ืฉื™ืขื•ืจื™ื ืงื•ื“ืžื™ื, ื›ืžื” ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ืืช ื”ื ืชื•ื ื™ื ื•ืืช ื”ืžื•ื–ืจื•ื™ื•ืช ืฉืœื”ื ืœืคื ื™ ื‘ื™ืฆื•ืข ืคืขื•ืœื•ืช ืขืœื™ื”ื. ื ืชื•ื ื™ื ืžื‘ื•ืกืกื™ ื˜ืงืกื˜, ื‘ืžื™ื•ื—ื“, ื“ื•ืจืฉื™ื ื‘ื“ื™ืงื” ืžื“ื•ืงื“ืงืช. ื—ืคืจื• ื‘ืžืื’ืจื™ ื ืชื•ื ื™ื ืฉื•ื ื™ื ืฉืžื‘ื•ืกืกื™ื ืขืœ ื˜ืงืกื˜ ื•ื ืกื• ืœื’ืœื•ืช ืื–ื•ืจื™ื ืฉื™ื›ื•ืœื™ื ืœื”ื›ื ื™ืก ื”ื˜ื™ื” ืื• ืจื’ืฉื•ืช ืžื•ื˜ื™ื ืœืžื•ื“ืœ.
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ืงื—ื• [ืืช ืžืกืœื•ืœ ื”ืœืžื™ื“ื” ื”ื–ื” ืขืœ NLP](https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-77952-leestott) ื›ื“ื™ ืœื’ืœื•ืช ื›ืœื™ื ืœื ืกื•ืช ื›ืฉื‘ื•ื ื™ื ืžื•ื“ืœื™ื ืžื‘ื•ืกืกื™ ื“ื™ื‘ื•ืจ ื•ื˜ืงืกื˜.
## ืžืฉื™ืžื”
[NLTK](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,19 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "bf39bceb833cd628f224941dca8041df",
"translation_date": "2025-09-05T20:34:07+00:00",
"source_file": "6-NLP/4-Hotel-Reviews-1/assignment.md",
"language_code": "he"
}
-->
# NLTK
## ื”ื•ืจืื•ืช
NLTK ื”ื™ื ืกืคืจื™ื™ื” ื™ื“ื•ืขื” ืœืฉื™ืžื•ืฉ ื‘ื‘ืœืฉื ื•ืช ื—ื™ืฉื•ื‘ื™ืช ื•ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช (NLP). ื ืฆืœื• ืืช ื”ื”ื–ื“ืžื ื•ืช ืœืงืจื•ื ืืช '[ืกืคืจ NLTK](https://www.nltk.org/book/)' ื•ืœื ืกื•ืช ืืช ื”ืชืจื’ื™ืœื™ื ืฉื‘ื•. ื‘ืžืฉื™ืžื” ื–ื•, ืฉืื™ื ื” ืžื“ื•ืจื’ืช, ืชื›ื™ืจื• ืืช ื”ืกืคืจื™ื™ื” ื”ื–ื• ืœืขื•ืžืง.
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T20:34:47+00:00",
"source_file": "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
"translation_date": "2025-09-05T20:34:29+00:00",
"source_file": "6-NLP/4-Hotel-Reviews-1/solution/R/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,389 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "2c742993fe95d5bcbb2846eda3d442a1",
"translation_date": "2025-09-05T20:43:53+00:00",
"source_file": "6-NLP/5-Hotel-Reviews-2/README.md",
"language_code": "he"
}
-->
# ื ื™ืชื•ื— ืจื’ืฉื•ืช ืขื ื‘ื™ืงื•ืจื•ืช ืขืœ ืžืœื•ื ื•ืช
ืขื›ืฉื™ื•, ืœืื—ืจ ืฉื—ืงืจืช ืืช ืžืขืจืš ื”ื ืชื•ื ื™ื ืœืขื•ืžืง, ื”ื’ื™ืข ื”ื–ืžืŸ ืœืกื ืŸ ืืช ื”ืขืžื•ื“ื•ืช ื•ืœื”ืฉืชืžืฉ ื‘ื˜ื›ื ื™ืงื•ืช ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช (NLP) ืขืœ ืžืขืจืš ื”ื ืชื•ื ื™ื ื›ื“ื™ ืœืงื‘ืœ ืชื•ื‘ื ื•ืช ื—ื“ืฉื•ืช ืขืœ ื”ืžืœื•ื ื•ืช.
## [ืžื‘ื—ืŸ ืžืงื“ื™ื ืœื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
### ืคืขื•ืœื•ืช ืกื™ื ื•ืŸ ื•ื ื™ืชื•ื— ืจื’ืฉื•ืช
ื›ืคื™ ืฉื›ื ืจืื” ืฉืžืช ืœื‘, ื™ืฉ ื›ืžื” ื‘ืขื™ื•ืช ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื. ื—ืœืง ืžื”ืขืžื•ื“ื•ืช ืžืœืื•ืช ื‘ืžื™ื“ืข ื—ืกืจ ืชื•ืขืœืช, ืื—ืจื•ืช ื ืจืื•ืช ืœื ื ื›ื•ื ื•ืช. ื’ื ืื ื”ืŸ ื ื›ื•ื ื•ืช, ืœื ื‘ืจื•ืจ ื›ื™ืฆื“ ื—ื•ืฉื‘ื•, ื•ืื™ืŸ ืืคืฉืจื•ืช ืœืืžืช ืืช ื”ืชืฉื•ื‘ื•ืช ื‘ืื•ืคืŸ ืขืฆืžืื™ ื‘ืืžืฆืขื•ืช ื—ื™ืฉื•ื‘ื™ื ืžืฉืœืš.
## ืชืจื’ื™ืœ: ืขื•ื“ ืงืฆืช ืขื™ื‘ื•ื“ ื ืชื•ื ื™ื
ื ืงื” ืืช ื”ื ืชื•ื ื™ื ืขื•ื“ ืงืฆืช. ื”ื•ืกืฃ ืขืžื•ื“ื•ืช ืฉื™ื”ื™ื• ืฉื™ืžื•ืฉื™ื•ืช ื‘ื”ืžืฉืš, ืฉื ื” ืืช ื”ืขืจื›ื™ื ื‘ืขืžื•ื“ื•ืช ืื—ืจื•ืช, ื•ื”ืกืจ ืขืžื•ื“ื•ืช ืžืกื•ื™ืžื•ืช ืœื—ืœื•ื˜ื™ืŸ.
1. ืขื™ื‘ื•ื“ ืจืืฉื•ื ื™ ืฉืœ ืขืžื•ื“ื•ืช
1. ื”ืกืจ ืืช `lat` ื•-`lng`
2. ื”ื—ืœืฃ ืืช ื”ืขืจื›ื™ื ื‘-`Hotel_Address` ื‘ืขืจื›ื™ื ื”ื‘ืื™ื (ืื ื”ื›ืชื•ื‘ืช ืžื›ื™ืœื” ืืช ืฉื ื”ืขื™ืจ ื•ื”ืžื“ื™ื ื”, ืฉื ื” ืื•ืชื” ืจืง ืœืขื™ืจ ื•ืœืžื“ื™ื ื”).
ืืœื• ื”ืขืจื™ื ื•ื”ืžื“ื™ื ื•ืช ื”ื™ื—ื™ื“ื•ืช ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื:
ืืžืกื˜ืจื“ื, ื”ื•ืœื ื“
ื‘ืจืฆืœื•ื ื”, ืกืคืจื“
ืœื•ื ื“ื•ืŸ, ื‘ืจื™ื˜ื ื™ื”
ืžื™ืœืื ื•, ืื™ื˜ืœื™ื”
ืคืจื™ื–, ืฆืจืคืช
ื•ื™ื ื”, ืื•ืกื˜ืจื™ื”
```python
def replace_address(row):
if "Netherlands" in row["Hotel_Address"]:
return "Amsterdam, Netherlands"
elif "Barcelona" in row["Hotel_Address"]:
return "Barcelona, Spain"
elif "United Kingdom" in row["Hotel_Address"]:
return "London, United Kingdom"
elif "Milan" in row["Hotel_Address"]:
return "Milan, Italy"
elif "France" in row["Hotel_Address"]:
return "Paris, France"
elif "Vienna" in row["Hotel_Address"]:
return "Vienna, Austria"
# Replace all the addresses with a shortened, more useful form
df["Hotel_Address"] = df.apply(replace_address, axis = 1)
# The sum of the value_counts() should add up to the total number of reviews
print(df["Hotel_Address"].value_counts())
```
ืขื›ืฉื™ื• ืชื•ื›ืœ ืœืฉืื•ืœ ื ืชื•ื ื™ื ื‘ืจืžืช ืžื“ื™ื ื”:
```python
display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"}))
```
| Hotel_Address | Hotel_Name |
| :--------------------- | :--------: |
| Amsterdam, Netherlands | 105 |
| Barcelona, Spain | 211 |
| London, United Kingdom | 400 |
| Milan, Italy | 162 |
| Paris, France | 458 |
| Vienna, Austria | 158 |
2. ืขื™ื‘ื•ื“ ืขืžื•ื“ื•ืช ืžื˜ื-ื‘ื™ืงื•ืจืช ืฉืœ ืžืœื•ื ื•ืช
1. ื”ืกืจ ืืช `Additional_Number_of_Scoring`
1. ื”ื—ืœืฃ ืืช `Total_Number_of_Reviews` ื‘ืžืกืคืจ ื”ื›ื•ืœืœ ืฉืœ ื”ื‘ื™ืงื•ืจื•ืช ืขืœ ื”ืžืœื•ืŸ ืฉื‘ืคื•ืขืœ ื ืžืฆืื•ืช ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื
1. ื”ื—ืœืฃ ืืช `Average_Score` ื‘ืฆื™ื•ืŸ ืฉื—ื•ืฉื‘ ืขืœ ื™ื“ื™ื ื•
```python
# Drop `Additional_Number_of_Scoring`
df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True)
# Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values
df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')
df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)
```
3. ืขื™ื‘ื•ื“ ืขืžื•ื“ื•ืช ื‘ื™ืงื•ืจืช
1. ื”ืกืจ ืืช `Review_Total_Negative_Word_Counts`, `Review_Total_Positive_Word_Counts`, `Review_Date` ื•-`days_since_review`
2. ืฉืžื•ืจ ืืช `Reviewer_Score`, `Negative_Review` ื•-`Positive_Review` ื›ืคื™ ืฉื”ื,
3. ืฉืžื•ืจ ืืช `Tags` ืœืขืช ืขืชื”
- ื ื‘ืฆืข ืคืขื•ืœื•ืช ืกื™ื ื•ืŸ ื ื•ืกืคื•ืช ืขืœ ื”ืชื’ื™ื ื‘ื—ืœืง ื”ื‘ื ื•ืื– ื ืกื™ืจ ืืช ื”ืชื’ื™ื
4. ืขื™ื‘ื•ื“ ืขืžื•ื“ื•ืช ืžื‘ืงืจ
1. ื”ืกืจ ืืช `Total_Number_of_Reviews_Reviewer_Has_Given`
2. ืฉืžื•ืจ ืืช `Reviewer_Nationality`
### ืขืžื•ื“ื•ืช ืชื’
ืขืžื•ื“ืช ื”-`Tag` ื‘ืขื™ื™ืชื™ืช ืžื›ื™ื•ื•ืŸ ืฉื”ื™ื ืจืฉื™ืžื” (ื‘ืฆื•ืจืช ื˜ืงืกื˜) ื”ืžืื•ื—ืกื ืช ื‘ืขืžื•ื“ื”. ืœืžืจื‘ื” ื”ืฆืขืจ, ื”ืกื“ืจ ื•ืžืกืคืจ ืชืชื™-ื”ืงื˜ืขื™ื ื‘ืขืžื•ื“ื” ื–ื• ืื™ื ื ืชืžื™ื“ ื–ื”ื™ื. ืงืฉื” ืœืื“ื ืœื–ื”ื•ืช ืืช ื”ื‘ื™ื˜ื•ื™ื™ื ื”ื ื›ื•ื ื™ื ืฉื™ืฉ ืœื”ืชืขื ื™ื™ืŸ ื‘ื”ื, ืžื›ื™ื•ื•ืŸ ืฉื™ืฉ 515,000 ืฉื•ืจื•ืช ื•-1427 ืžืœื•ื ื•ืช, ื•ืœื›ืœ ืื—ื“ ื™ืฉ ืืคืฉืจื•ื™ื•ืช ืžืขื˜ ืฉื•ื ื•ืช ืฉื”ืžื‘ืงืจ ื™ื›ื•ืœ ืœื‘ื—ื•ืจ. ื›ืืŸ ื ื›ื ืก ืœืชืžื•ื ื” NLP. ื ื™ืชืŸ ืœืกืจื•ืง ืืช ื”ื˜ืงืกื˜ ื•ืœืžืฆื•ื ืืช ื”ื‘ื™ื˜ื•ื™ื™ื ื”ื ืคื•ืฆื™ื ื‘ื™ื•ืชืจ ื•ืœืกืคื•ืจ ืื•ืชื.
ืœืžืจื‘ื” ื”ืฆืขืจ, ืื ื—ื ื• ืœื ืžืขื•ื ื™ื™ื ื™ื ื‘ืžื™ืœื™ื ื‘ื•ื“ื“ื•ืช, ืืœื ื‘ื‘ื™ื˜ื•ื™ื™ื ืžืจื•ื‘ื™ ืžื™ืœื™ื (ืœื“ื•ื’ืžื”, *ื ืกื™ืขืช ืขืกืงื™ื*). ื”ืคืขืœืช ืืœื’ื•ืจื™ืชื ื—ืœื•ืงืช ืชื“ื™ืจื•ืช ื‘ื™ื˜ื•ื™ื™ื ืžืจื•ื‘ื™ ืžื™ืœื™ื ืขืœ ื›ืžื•ืช ื ืชื•ื ื™ื ื›ื–ื• (6762646 ืžื™ืœื™ื) ืขืฉื•ื™ื” ืœืงื—ืช ื–ืžืŸ ืจื‘ ื‘ืžื™ื•ื—ื“, ืืš ืžื‘ืœื™ ืœื”ืกืชื›ืœ ืขืœ ื”ื ืชื•ื ื™ื, ื ืจืื” ืฉื–ื”ื• ืžื—ื™ืจ ื”ื›ืจื—ื™. ื›ืืŸ ื ื™ืชื•ื— ื ืชื•ื ื™ื ื—ืงืจื ื™ ืžื•ืขื™ืœ, ืžื›ื™ื•ื•ืŸ ืฉืจืื™ืช ื“ื•ื’ืžื” ืฉืœ ื”ืชื’ื™ื ื›ืžื• `[' ื ืกื™ืขืช ืขืกืงื™ื ', ' ืžื˜ื™ื™ืœ ื™ื—ื™ื“ ', ' ื—ื“ืจ ื™ื—ื™ื“ ', ' ืฉื”ื” 5 ืœื™ืœื•ืช ', ' ื ืฉืœื— ืžืžื›ืฉื™ืจ ื ื™ื™ื“ ']`, ืชื•ื›ืœ ืœื”ืชื—ื™ืœ ืœืฉืื•ืœ ืื ื ื™ืชืŸ ืœืฆืžืฆื ืžืฉืžืขื•ืชื™ืช ืืช ื”ืขื™ื‘ื•ื“ ืฉืขืœื™ืš ืœื‘ืฆืข. ืœืžืจื‘ื” ื”ืžื–ืœ, ื–ื” ืืคืฉืจื™ - ืื‘ืœ ืงื•ื“ื ืขืœื™ืš ืœื‘ืฆืข ื›ืžื” ืฆืขื“ื™ื ื›ื“ื™ ืœื•ื•ื“ื ืžื”ื ื”ืชื’ื™ื ื”ืจืœื•ื•ื ื˜ื™ื™ื.
### ืกื™ื ื•ืŸ ืชื’ื™ื
ื–ื›ื•ืจ ืฉื”ืžื˜ืจื” ืฉืœ ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื™ื ืœื”ื•ืกื™ืฃ ืจื’ืฉื•ืช ื•ืขืžื•ื“ื•ืช ืฉื™ืขื–ืจื• ืœืš ืœื‘ื—ื•ืจ ืืช ื”ืžืœื•ืŸ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ (ืขื‘ื•ืจ ืขืฆืžืš ืื• ืื•ืœื™ ืขื‘ื•ืจ ืœืงื•ื— ืฉืžื‘ืงืฉ ืžืžืš ืœื™ืฆื•ืจ ื‘ื•ื˜ ื”ืžืœืฆื•ืช ืขืœ ืžืœื•ื ื•ืช). ืขืœื™ืš ืœืฉืื•ืœ ืืช ืขืฆืžืš ืื ื”ืชื’ื™ื ืฉื™ืžื•ืฉื™ื™ื ืื• ืœื ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ืกื•ืคื™. ื”ื ื” ืคืจืฉื ื•ืช ืื—ืช (ืื ื”ื™ื™ืช ื–ืงื•ืง ืœืžืขืจืš ื”ื ืชื•ื ื™ื ืžืกื™ื‘ื•ืช ืื—ืจื•ืช, ื™ื™ืชื›ืŸ ืฉืชื’ื™ื ืฉื•ื ื™ื ื™ื™ืฉืืจื•/ื™ื•ืกืจื• ืžื”ื‘ื—ื™ืจื”):
1. ืกื•ื’ ื”ื ืกื™ืขื” ืจืœื•ื•ื ื˜ื™, ื•ื”ื•ื ืฆืจื™ืš ืœื”ื™ืฉืืจ
2. ืกื•ื’ ืงื‘ื•ืฆืช ื”ืื•ืจื—ื™ื ื—ืฉื•ื‘, ื•ื”ื•ื ืฆืจื™ืš ืœื”ื™ืฉืืจ
3. ืกื•ื’ ื”ื—ื“ืจ, ื”ืกื•ื•ื™ื˜ื” ืื• ื”ืกื˜ื•ื“ื™ื• ืฉื‘ื• ื”ืื•ืจื— ืฉื”ื” ืื™ื ื• ืจืœื•ื•ื ื˜ื™ (ืœื›ืœ ื”ืžืœื•ื ื•ืช ื™ืฉ ื‘ืขืฆื ืื•ืชื ื—ื“ืจื™ื)
4. ื”ืžื›ืฉื™ืจ ืฉืขืœื™ื• ื ืฉืœื—ื” ื”ื‘ื™ืงื•ืจืช ืื™ื ื• ืจืœื•ื•ื ื˜ื™
5. ืžืกืคืจ ื”ืœื™ืœื•ืช ืฉื”ืžื‘ืงืจ ืฉื”ื” *ื™ื›ื•ืœ* ืœื”ื™ื•ืช ืจืœื•ื•ื ื˜ื™ ืื ืชื™ื™ื—ืก ืฉื”ื™ื•ืช ืืจื•ื›ื•ืช ื™ื•ืชืจ ืœื›ืš ืฉื”ื ืื”ื‘ื• ืืช ื”ืžืœื•ืŸ ื™ื•ืชืจ, ืื‘ืœ ื–ื” ื’ื‘ื•ืœื™, ื•ืกื‘ื™ืจ ืœื”ื ื™ื— ืฉืื™ื ื• ืจืœื•ื•ื ื˜ื™
ืœืกื™ื›ื•ื, **ืฉืžื•ืจ 2 ืกื•ื’ื™ ืชื’ื™ื ื•ื”ืกืจ ืืช ื”ืื—ืจื™ื**.
ืจืืฉื™ืช, ืื™ื ืš ืจื•ืฆื” ืœืกืคื•ืจ ืืช ื”ืชื’ื™ื ืขื“ ืฉื”ื ื™ื”ื™ื• ื‘ืคื•ืจืžื˜ ื˜ื•ื‘ ื™ื•ืชืจ, ื›ืœื•ืžืจ ื™ืฉ ืœื”ืกื™ืจ ืืช ื”ืกื•ื’ืจื™ื™ื ื”ืžืจื•ื‘ืขื™ื ื•ื”ืžืจื›ืื•ืช. ื ื™ืชืŸ ืœืขืฉื•ืช ื–ืืช ื‘ื›ืžื” ื“ืจื›ื™ื, ืืš ื›ื“ืื™ ืœื‘ื—ื•ืจ ืืช ื”ืžื”ื™ืจื” ื‘ื™ื•ืชืจ ืžื›ื™ื•ื•ืŸ ืฉื–ื” ืขืฉื•ื™ ืœืงื—ืช ื–ืžืŸ ืจื‘ ืœืขื‘ื“ ื”ืจื‘ื” ื ืชื•ื ื™ื. ืœืžืจื‘ื” ื”ืžื–ืœ, ืœ-pandas ื™ืฉ ื“ืจืš ืงืœื” ืœื‘ืฆืข ื›ืœ ืื—ื“ ืžื”ืฉืœื‘ื™ื ื”ืœืœื•.
```Python
# Remove opening and closing brackets
df.Tags = df.Tags.str.strip("[']")
# remove all quotes too
df.Tags = df.Tags.str.replace(" ', '", ",", regex = False)
```
ื›ืœ ืชื’ ื”ื•ืคืš ืœืžืฉื”ื• ื›ืžื•: `ื ืกื™ืขืช ืขืกืงื™ื, ืžื˜ื™ื™ืœ ื™ื—ื™ื“, ื—ื“ืจ ื™ื—ื™ื“, ืฉื”ื” 5 ืœื™ืœื•ืช, ื ืฉืœื— ืžืžื›ืฉื™ืจ ื ื™ื™ื“`.
ืœืื—ืจ ืžื›ืŸ ืื ื• ืžื•ืฆืื™ื ื‘ืขื™ื”. ื—ืœืง ืžื”ื‘ื™ืงื•ืจื•ืช, ืื• ื”ืฉื•ืจื•ืช, ืžื›ื™ืœื•ืช 5 ืขืžื•ื“ื•ืช, ื—ืœืง 3, ื—ืœืง 6. ื–ื”ื• ืชื•ืฆืื” ืฉืœ ืื•ืคืŸ ื™ืฆื™ืจืช ืžืขืจืš ื”ื ืชื•ื ื™ื, ื•ืงืฉื” ืœืชืงืŸ. ืืชื” ืจื•ืฆื” ืœืงื‘ืœ ืกืคื™ืจืช ืชื“ื™ืจื•ืช ืฉืœ ื›ืœ ื‘ื™ื˜ื•ื™, ืืš ื”ื ื‘ืกื“ืจ ืฉื•ื ื” ื‘ื›ืœ ื‘ื™ืงื•ืจืช, ื›ืš ืฉื”ืกืคื™ืจื” ืขืฉื•ื™ื” ืœื”ื™ื•ืช ืฉื’ื•ื™ื”, ื•ืžืœื•ืŸ ืขืฉื•ื™ ืœื ืœืงื‘ืœ ืชื’ ืฉื”ื’ื™ืข ืœื•.
ื‘ืžืงื•ื ื–ืืช ืชืฉืชืžืฉ ื‘ืกื“ืจ ื”ืฉื•ื ื” ืœื˜ื•ื‘ืชื ื•, ืžื›ื™ื•ื•ืŸ ืฉื›ืœ ืชื’ ื”ื•ื ืžืจื•ื‘ื” ืžื™ืœื™ื ืืš ื’ื ืžื•ืคืจื“ ื‘ืืžืฆืขื•ืช ืคืกื™ืง! ื”ื“ืจืš ื”ืคืฉื•ื˜ื” ื‘ื™ื•ืชืจ ืœืขืฉื•ืช ื–ืืช ื”ื™ื ืœื™ืฆื•ืจ 6 ืขืžื•ื“ื•ืช ื–ืžื ื™ื•ืช ืขื ื›ืœ ืชื’ ืžื•ื›ื ืก ืœืขืžื•ื“ื” ื”ืžืชืื™ืžื” ืœืกื“ืจ ืฉืœื• ื‘ืชื’. ืœืื—ืจ ืžื›ืŸ ืชื•ื›ืœ ืœืžื–ื’ ืืช 6 ื”ืขืžื•ื“ื•ืช ืœืขืžื•ื“ื” ื’ื“ื•ืœื” ืื—ืช ื•ืœื”ืคืขื™ืœ ืืช ื”ืฉื™ื˜ื” `value_counts()` ืขืœ ื”ืขืžื•ื“ื” ื”ืžืชืงื‘ืœืช. ื‘ื”ื“ืคืกื” ืชืจืื” ืฉื”ื™ื• 2428 ืชื’ื™ื ื™ื™ื—ื•ื“ื™ื™ื. ื”ื ื” ื“ื•ื’ืžื” ืงื˜ื ื”:
| Tag | Count |
| ------------------------------ | ------ |
| ื ืกื™ืขืช ืคื ืื™ | 417778 |
| ื ืฉืœื— ืžืžื›ืฉื™ืจ ื ื™ื™ื“ | 307640 |
| ื–ื•ื’ | 252294 |
| ืฉื”ื” ืœื™ืœื” ืื—ื“ | 193645 |
| ืฉื”ื” 2 ืœื™ืœื•ืช | 133937 |
| ืžื˜ื™ื™ืœ ื™ื—ื™ื“ | 108545 |
| ืฉื”ื” 3 ืœื™ืœื•ืช | 95821 |
| ื ืกื™ืขืช ืขืกืงื™ื | 82939 |
| ืงื‘ื•ืฆื” | 65392 |
| ืžืฉืคื—ื” ืขื ื™ืœื“ื™ื ืงื˜ื ื™ื | 61015 |
| ืฉื”ื” 4 ืœื™ืœื•ืช | 47817 |
| ื—ื“ืจ ื–ื•ื’ื™ | 35207 |
| ื—ื“ืจ ื–ื•ื’ื™ ืกื˜ื ื“ืจื˜ื™ | 32248 |
| ื—ื“ืจ ื–ื•ื’ื™ ืžืฉื•ืคืจ | 31393 |
| ืžืฉืคื—ื” ืขื ื™ืœื“ื™ื ื’ื“ื•ืœื™ื | 26349 |
| ื—ื“ืจ ื–ื•ื’ื™ ื“ืœื•ืงืก | 24823 |
| ื—ื“ืจ ื–ื•ื’ื™ ืื• ืชืื•ืžื™ื | 22393 |
| ืฉื”ื” 5 ืœื™ืœื•ืช | 20845 |
| ื—ื“ืจ ื–ื•ื’ื™ ืื• ืชืื•ืžื™ื ืกื˜ื ื“ืจื˜ื™ | 17483 |
| ื—ื“ืจ ื–ื•ื’ื™ ืงืœืืกื™ | 16989 |
| ื—ื“ืจ ื–ื•ื’ื™ ืื• ืชืื•ืžื™ื ืžืฉื•ืคืจ | 13570 |
| 2 ื—ื“ืจื™ื | 12393 |
ื—ืœืง ืžื”ืชื’ื™ื ื”ื ืคื•ืฆื™ื ื›ืžื• `ื ืฉืœื— ืžืžื›ืฉื™ืจ ื ื™ื™ื“` ืื™ื ื ืžื•ืขื™ืœื™ื ืœื ื•, ื•ืœื›ืŸ ื™ื™ืชื›ืŸ ืฉื–ื” ืจืขื™ื•ืŸ ื—ื›ื ืœื”ืกื™ืจ ืื•ืชื ืœืคื ื™ ืกืคื™ืจืช ื”ื•ืคืขืช ื”ื‘ื™ื˜ื•ื™ื™ื, ืืš ื–ื• ืคืขื•ืœื” ื›ื” ืžื”ื™ืจื” ืฉื ื™ืชืŸ ืœื”ืฉืื™ืจ ืื•ืชื ื•ืœื”ืชืขืœื ืžื”ื.
### ื”ืกืจืช ืชื’ื™ื ืฉืœ ืื•ืจืš ืฉื”ื™ื™ื”
ื”ืกืจืช ืชื’ื™ื ืืœื• ื”ื™ื ืฉืœื‘ 1, ื”ื™ื ืžืคื—ื™ืชื” ืžืขื˜ ืืช ืžืกืคืจ ื”ืชื’ื™ื ืฉื™ืฉ ืœืฉืงื•ืœ. ืฉื™ื ืœื‘ ืฉืื™ื ืš ืžืกื™ืจ ืื•ืชื ืžืžืขืจืš ื”ื ืชื•ื ื™ื, ืืœื ืคืฉื•ื˜ ื‘ื•ื—ืจ ืœื”ืกื™ืจ ืื•ืชื ืžืฉื™ืงื•ืœ ื›ืขืจื›ื™ื ืœืกืคื™ืจื”/ืฉืžื™ืจื” ื‘ืžืขืจืš ื”ื‘ื™ืงื•ืจื•ืช.
| ืื•ืจืš ืฉื”ื™ื™ื” | Count |
| ---------------- | ------ |
| ืฉื”ื” ืœื™ืœื” ืื—ื“ | 193645 |
| ืฉื”ื” 2 ืœื™ืœื•ืช | 133937 |
| ืฉื”ื” 3 ืœื™ืœื•ืช | 95821 |
| ืฉื”ื” 4 ืœื™ืœื•ืช | 47817 |
| ืฉื”ื” 5 ืœื™ืœื•ืช | 20845 |
| ืฉื”ื” 6 ืœื™ืœื•ืช | 9776 |
| ืฉื”ื” 7 ืœื™ืœื•ืช | 7399 |
| ืฉื”ื” 8 ืœื™ืœื•ืช | 2502 |
| ืฉื”ื” 9 ืœื™ืœื•ืช | 1293 |
| ... | ... |
ื™ืฉ ืžื’ื•ื•ืŸ ืขืฆื•ื ืฉืœ ื—ื“ืจื™ื, ืกื•ื•ื™ื˜ื•ืช, ืกื˜ื•ื“ื™ื•, ื“ื™ืจื•ืช ื•ื›ื“ื•ืžื”. ื›ื•ืœื ืคื—ื•ืช ืื• ื™ื•ืชืจ ืื•ืชื• ื“ื‘ืจ ื•ืื™ื ื ืจืœื•ื•ื ื˜ื™ื™ื ืขื‘ื•ืจืš, ืœื›ืŸ ื”ืกืจ ืื•ืชื ืžืฉื™ืงื•ืœ.
| ืกื•ื’ ื—ื“ืจ | Count |
| ----------------------------- | ----- |
| ื—ื“ืจ ื–ื•ื’ื™ | 35207 |
| ื—ื“ืจ ื–ื•ื’ื™ ืกื˜ื ื“ืจื˜ื™ | 32248 |
| ื—ื“ืจ ื–ื•ื’ื™ ืžืฉื•ืคืจ | 31393 |
| ื—ื“ืจ ื–ื•ื’ื™ ื“ืœื•ืงืก | 24823 |
| ื—ื“ืจ ื–ื•ื’ื™ ืื• ืชืื•ืžื™ื | 22393 |
| ื—ื“ืจ ื–ื•ื’ื™ ืื• ืชืื•ืžื™ื ืกื˜ื ื“ืจื˜ื™ | 17483 |
| ื—ื“ืจ ื–ื•ื’ื™ ืงืœืืกื™ | 16989 |
| ื—ื“ืจ ื–ื•ื’ื™ ืื• ืชืื•ืžื™ื ืžืฉื•ืคืจ | 13570 |
ืœื‘ืกื•ืฃ, ื•ื–ื” ืžืฉืžื— (ื›ื™ ื–ื” ืœื ื“ืจืฉ ื”ืจื‘ื” ืขื™ื‘ื•ื“ ื‘ื›ืœืœ), ืชื™ืฉืืจ ืขื ื”ืชื’ื™ื ื”ื‘ืื™ื *ืฉื™ืžื•ืฉื™ื™ื*:
| Tag | Count |
| --------------------------------------------- | ------ |
| ื ืกื™ืขืช ืคื ืื™ | 417778 |
| ื–ื•ื’ | 252294 |
| ืžื˜ื™ื™ืœ ื™ื—ื™ื“ | 108545 |
| ื ืกื™ืขืช ืขืกืงื™ื | 82939 |
| ืงื‘ื•ืฆื” (ืžืฉื•ืœื‘ ืขื ืžื˜ื™ื™ืœื™ื ืขื ื—ื‘ืจื™ื) | 67535 |
| ืžืฉืคื—ื” ืขื ื™ืœื“ื™ื ืงื˜ื ื™ื | 61015 |
| ืžืฉืคื—ื” ืขื ื™ืœื“ื™ื ื’ื“ื•ืœื™ื | 26349 |
| ืขื ื—ื™ื™ืช ืžื—ืžื“ | 1405 |
ืืคืฉืจ ืœื˜ืขื•ืŸ ืฉ`ืžื˜ื™ื™ืœื™ื ืขื ื—ื‘ืจื™ื` ื–ื”ื” ืคื—ื•ืช ืื• ื™ื•ืชืจ ืœ`ืงื‘ื•ืฆื”`, ื•ื–ื” ื™ื”ื™ื” ื”ื•ื’ืŸ ืœืฉืœื‘ ืืช ื”ืฉื ื™ื™ื ื›ืคื™ ืฉืžื•ืฆื’ ืœืขื™ืœ. ื”ืงื•ื“ ืœื–ื™ื”ื•ื™ ื”ืชื’ื™ื ื”ื ื›ื•ื ื™ื ื ืžืฆื ื‘-[ืžื—ื‘ืจืช ื”ืชื’ื™ื](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb).
ื”ืฉืœื‘ ื”ืื—ืจื•ืŸ ื”ื•ื ืœื™ืฆื•ืจ ืขืžื•ื“ื•ืช ื—ื“ืฉื•ืช ืขื‘ื•ืจ ื›ืœ ืื—ื“ ืžื”ืชื’ื™ื ื”ืœืœื•. ืœืื—ืจ ืžื›ืŸ, ืขื‘ื•ืจ ื›ืœ ืฉื•ืจืช ื‘ื™ืงื•ืจืช, ืื ืขืžื•ื“ืช ื”-`Tag` ืชื•ืืžืช ืœืื—ืช ืžื”ืขืžื•ื“ื•ืช ื”ื—ื“ืฉื•ืช, ื”ื•ืกืฃ 1, ืื ืœื, ื”ื•ืกืฃ 0. ื”ืชื•ืฆืื” ื”ืกื•ืคื™ืช ืชื”ื™ื” ืกืคื™ืจื” ืฉืœ ื›ืžื” ืžื‘ืงืจื™ื ื‘ื—ืจื• ื‘ืžืœื•ืŸ ื–ื” (ื‘ืžืฆื˜ื‘ืจ) ืขื‘ื•ืจ, ืœืžืฉืœ, ืขืกืงื™ื ืžื•ืœ ืคื ืื™, ืื• ืœื”ื‘ื™ื ื—ื™ื™ืช ืžื—ืžื“, ื•ื–ื” ืžื™ื“ืข ืฉื™ืžื•ืฉื™ ื‘ืขืช ื”ืžืœืฆื” ืขืœ ืžืœื•ืŸ.
```python
# Process the Tags into new columns
# The file Hotel_Reviews_Tags.py, identifies the most important tags
# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends,
# Family with young children, Family with older children, With a pet
df["Leisure_trip"] = df.Tags.apply(lambda tag: 1 if "Leisure trip" in tag else 0)
df["Couple"] = df.Tags.apply(lambda tag: 1 if "Couple" in tag else 0)
df["Solo_traveler"] = df.Tags.apply(lambda tag: 1 if "Solo traveler" in tag else 0)
df["Business_trip"] = df.Tags.apply(lambda tag: 1 if "Business trip" in tag else 0)
df["Group"] = df.Tags.apply(lambda tag: 1 if "Group" in tag or "Travelers with friends" in tag else 0)
df["Family_with_young_children"] = df.Tags.apply(lambda tag: 1 if "Family with young children" in tag else 0)
df["Family_with_older_children"] = df.Tags.apply(lambda tag: 1 if "Family with older children" in tag else 0)
df["With_a_pet"] = df.Tags.apply(lambda tag: 1 if "With a pet" in tag else 0)
```
### ืฉืžื•ืจ ืืช ื”ืงื•ื‘ืฅ ืฉืœืš
ืœื‘ืกื•ืฃ, ืฉืžื•ืจ ืืช ืžืขืจืš ื”ื ืชื•ื ื™ื ื›ืคื™ ืฉื”ื•ื ืขื›ืฉื™ื• ืขื ืฉื ื—ื“ืฉ.
```python
df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_Counts", "days_since_review", "Total_Number_of_Reviews_Reviewer_Has_Given"], axis = 1, inplace=True)
# Saving new data file with calculated columns
print("Saving results to Hotel_Reviews_Filtered.csv")
df.to_csv(r'../data/Hotel_Reviews_Filtered.csv', index = False)
```
## ืคืขื•ืœื•ืช ื ื™ืชื•ื— ืจื’ืฉื•ืช
ื‘ื—ืœืง ื”ืื—ืจื•ืŸ ื”ื–ื”, ืชื™ื™ืฉื ื ื™ืชื•ื— ืจื’ืฉื•ืช ืขืœ ืขืžื•ื“ื•ืช ื”ื‘ื™ืงื•ืจื•ืช ื•ืชืฉืžื•ืจ ืืช ื”ืชื•ืฆืื•ืช ื‘ืžืขืจืš ื ืชื•ื ื™ื.
## ืชืจื’ื™ืœ: ื˜ืขืŸ ื•ืฉืžื•ืจ ืืช ื”ื ืชื•ื ื™ื ื”ืžืกื•ื ื ื™ื
ืฉื™ื ืœื‘ ืฉืขื›ืฉื™ื• ืืชื” ื˜ื•ืขืŸ ืืช ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ืžืกื•ื ืŸ ืฉื ืฉืžืจ ื‘ื—ืœืง ื”ืงื•ื“ื, **ืœื** ืืช ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ืžืงื•ืจื™.
```python
import time
import pandas as pd
import nltk as nltk
from nltk.corpus import stopwords
from nltk.sentiment.vader import SentimentIntensityAnalyzer
nltk.download('vader_lexicon')
# Load the filtered hotel reviews from CSV
df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv')
# You code will be added here
# Finally remember to save the hotel reviews with new NLP data added
print("Saving results to Hotel_Reviews_NLP.csv")
df.to_csv(r'../data/Hotel_Reviews_NLP.csv', index = False)
```
### ื”ืกืจืช ืžื™ืœื™ื ื ืคื•ืฆื•ืช
ืื ื”ื™ื™ืช ืžืคืขื™ืœ ื ื™ืชื•ื— ืจื’ืฉื•ืช ืขืœ ืขืžื•ื“ื•ืช ื”ื‘ื™ืงื•ืจื•ืช ื”ืฉืœื™ืœื™ื•ืช ื•ื”ื—ื™ื•ื‘ื™ื•ืช, ื–ื” ื™ื›ื•ืœ ืœืงื—ืช ื–ืžืŸ ืจื‘. ื ื‘ื“ืง ืขืœ ืžื—ืฉื‘ ื ื™ื™ื“ ื—ื–ืง ืขื ืžืขื‘ื“ ืžื”ื™ืจ, ื–ื” ืœืงื— 12 - 14 ื“ืงื•ืช ืชืœื•ื™ ื‘ืื™ื–ื• ืกืคืจื™ื™ืช ื ื™ืชื•ื— ืจื’ืฉื•ืช ื ืขืฉื” ืฉื™ืžื•ืฉ. ื–ื” ื–ืžืŸ (ื™ื—ืกื™ืช) ืืจื•ืš, ื•ืœื›ืŸ ื›ื“ืื™ ืœื‘ื“ื•ืง ืื ื ื™ืชืŸ ืœื”ืื™ืฅ ืืช ื”ืชื”ืœื™ืš.
ื”ืกืจืช ืžื™ืœื™ื ื ืคื•ืฆื•ืช, ืื• ืžื™ืœื™ื ื‘ืื ื’ืœื™ืช ืฉืื™ื ืŸ ืžืฉื ื•ืช ืืช ื”ืจื’ืฉ ืฉืœ ืžืฉืคื˜, ื”ื™ื ื”ืฆืขื“ ื”ืจืืฉื•ืŸ. ืขืœ ื™ื“ื™ ื”ืกืจืชืŸ, ื ื™ืชื•ื— ื”ืจื’ืฉื•ืช ืืžื•ืจ ืœืจื•ืฅ ืžื”ืจ ื™ื•ืชืจ, ืืš ืœื ืœื”ื™ื•ืช ืคื—ื•ืช ืžื“ื•ื™ืง (ืžื›ื™ื•ื•ืŸ ืฉื”ืžื™ืœื™ื ื”ื ืคื•ืฆื•ืช ืื™ื ืŸ ืžืฉืคื™ืขื•ืช ืขืœ ื”ืจื’ืฉ, ืืš ื”ืŸ ืžืื˜ื•ืช ืืช ื”ื ื™ืชื•ื—).
ื”ื‘ื™ืงื•ืจืช ื”ืฉืœื™ืœื™ืช ื”ืืจื•ื›ื” ื‘ื™ื•ืชืจ ื”ื™ื™ืชื” 395 ืžื™ืœื™ื, ืืš ืœืื—ืจ ื”ืกืจืช ื”ืžื™ืœื™ื ื”ื ืคื•ืฆื•ืช, ื”ื™ื ืžื›ื™ืœื” 195 ืžื™ืœื™ื.
ื”ืกืจืช ื”ืžื™ืœื™ื ื”ื ืคื•ืฆื•ืช ื”ื™ื ื’ื ืคืขื•ืœื” ืžื”ื™ืจื”, ื”ืกืจืช ื”ืžื™ืœื™ื ื”ื ืคื•ืฆื•ืช ืž-2 ืขืžื•ื“ื•ืช ื‘ื™ืงื•ืจื•ืช ืขืœ ืคื ื™ 515,000 ืฉื•ืจื•ืช ืœืงื—ื” 3.3 ืฉื ื™ื•ืช ื‘ืžื›ืฉื™ืจ ื”ื‘ื“ื™ืงื”. ื–ื” ื™ื›ื•ืœ ืœืงื—ืช ืžืขื˜ ื™ื•ืชืจ ืื• ืคื—ื•ืช ื–ืžืŸ ืขื‘ื•ืจืš ืชืœื•ื™ ื‘ืžื”ื™ืจื•ืช ื”ืžืขื‘ื“ ืฉืœ ื”ืžื›ืฉื™ืจ ืฉืœืš, ื–ื™ื›ืจื•ืŸ RAM, ื”ืื ื™ืฉ ืœืš SSD ืื• ืœื, ื•ื›ืžื” ื’ื•ืจืžื™ื ื ื•ืกืคื™ื. ื”ืงื™ืฆื•ืจ ื”ื™ื—ืกื™ ืฉืœ ื”ืคืขื•ืœื” ืื•ืžืจ ืฉืื ื–ื” ืžืฉืคืจ ืืช ื–ืžืŸ ื ื™ืชื•ื— ื”ืจื’ืฉื•ืช, ืื– ื–ื” ืฉื•ื•ื” ืœืขืฉื•ืช.
```python
from nltk.corpus import stopwords
# Load the hotel reviews from CSV
df = pd.read_csv("../../data/Hotel_Reviews_Filtered.csv")
# Remove stop words - can be slow for a lot of text!
# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches
# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends
start = time.time()
cache = set(stopwords.words("english"))
def remove_stopwords(review):
text = " ".join([word for word in review.split() if word not in cache])
return text
# Remove the stop words from both columns
df.Negative_Review = df.Negative_Review.apply(remove_stopwords)
df.Positive_Review = df.Positive_Review.apply(remove_stopwords)
```
### ื‘ื™ืฆื•ืข ื ื™ืชื•ื— ืจื’ืฉื•ืช
ืขื›ืฉื™ื• ืขืœื™ืš ืœื—ืฉื‘ ืืช ื ื™ืชื•ื— ื”ืจื’ืฉื•ืช ืขื‘ื•ืจ ืขืžื•ื“ื•ืช ื”ื‘ื™ืงื•ืจื•ืช ื”ืฉืœื™ืœื™ื•ืช ื•ื”ื—ื™ื•ื‘ื™ื•ืช, ื•ืœืฉืžื•ืจ ืืช ื”ืชื•ืฆืื” ื‘-2 ืขืžื•ื“ื•ืช ื—ื“ืฉื•ืช. ื”ืžื‘ื—ืŸ ืฉืœ ื”ืจื’ืฉ ื™ื”ื™ื” ืœื”ืฉื•ื•ืช ืื•ืชื• ืœืฆื™ื•ืŸ ืฉืœ ื”ืžื‘ืงืจ ืขื‘ื•ืจ ืื•ืชื” ื‘ื™ืงื•ืจืช. ืœื“ื•ื’ืžื”, ืื ื”ืจื’ืฉ ื—ื•ืฉื‘ ืฉืœื‘ื™ืงื•ืจืช ื”ืฉืœื™ืœื™ืช ื”ื™ื” ืจื’ืฉ ืฉืœ 1 (ืจื’ืฉ ื—ื™ื•ื‘ื™ ืžืื•ื“) ื•ืœื‘ื™ืงื•ืจืช ื”ื—ื™ื•ื‘ื™ืช ืจื’ืฉ ืฉืœ 1, ืืš ื”ืžื‘ืงืจ ื ืชืŸ ืœืžืœื•ืŸ ืืช ื”ืฆื™ื•ืŸ ื”ื ืžื•ืš ื‘ื™ื•ืชืจ ื”ืืคืฉืจื™, ืื– ืื• ืฉื”ื˜ืงืกื˜ ืฉืœ ื”ื‘ื™ืงื•ืจืช ืื™ื ื• ืชื•ืื ืœืฆื™ื•ืŸ, ืื• ืฉืžื ืชื— ื”ืจื’ืฉื•ืช ืœื ื”ืฆืœื™ื— ืœื–ื”ื•ืช ืืช ื”ืจื’ืฉ ื‘ืฆื•ืจื” ื ื›ื•ื ื”. ืขืœื™ืš ืœืฆืคื•ืช ืฉื—ืœืง ืžืฆื™ื•ื ื™ ื”ืจื’ืฉื•ืช ื™ื”ื™ื• ืฉื’ื•ื™ื™ื ืœื—ืœื•ื˜ื™ืŸ, ื•ืœืขื™ืชื™ื ื–ื” ื™ื”ื™ื” ื ื™ืชืŸ ืœื”ืกื‘ืจ, ืœืžืฉืœ ื”ื‘ื™ืงื•ืจืช ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืžืื•ื“ ืกืจืงืกื˜ื™ืช "ื›ืžื•ื‘ืŸ ืฉ-ืž-ื-ื•-ื“ ืื”ื‘ืชื™ ืœื™ืฉื•ืŸ ื‘ื—ื“ืจ ื‘ืœื™ ื—ื™ืžื•ื" ื•ืžื ืชื— ื”ืจื’ืฉื•ืช ื—ื•ืฉื‘ ืฉื–ื” ืจื’ืฉ ื—ื™ื•ื‘ื™, ืœืžืจื•ืช ืฉืื“ื ืฉืงื•ืจื ืืช ื–ื” ื”ื™ื” ื™ื•ื“ืข ืฉื–ื” ืกืจืงื–ื.
NLTK ืžืกืคืงืช ืžื ืชื—ื™ ืจื’ืฉื•ืช ืฉื•ื ื™ื ืœืœืžื™ื“ื”, ื•ืืชื ื™ื›ื•ืœื™ื ืœื”ื—ืœื™ืฃ ื‘ื™ื ื™ื”ื ื•ืœื‘ื“ื•ืง ืื ื”ื ื™ืชื•ื— ื”ืจื’ืฉื™ ืžื“ื•ื™ืง ื™ื•ืชืจ ืื• ืคื—ื•ืช. ื ื™ืชื•ื— ื”ืจื’ืฉื•ืช ืฉืœ VADER ืžืฉืžืฉ ื›ืืŸ.
> Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
```python
from nltk.sentiment.vader import SentimentIntensityAnalyzer
# Create the vader sentiment analyser (there are others in NLTK you can try too)
vader_sentiment = SentimentIntensityAnalyzer()
# Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
# There are 3 possibilities of input for a review:
# It could be "No Negative", in which case, return 0
# It could be "No Positive", in which case, return 0
# It could be a review, in which case calculate the sentiment
def calc_sentiment(review):
if review == "No Negative" or review == "No Positive":
return 0
return vader_sentiment.polarity_scores(review)["compound"]
```
ืžืื•ื—ืจ ื™ื•ืชืจ ื‘ืชื•ื›ื ื™ืช ืฉืœื›ื, ื›ืืฉืจ ืชื”ื™ื• ืžื•ื›ื ื™ื ืœื—ืฉื‘ ืจื’ืฉื•ืช, ืชื•ื›ืœื• ืœื™ื™ืฉื ื–ืืช ืขืœ ื›ืœ ื‘ื™ืงื•ืจืช ื‘ืื•ืคืŸ ื”ื‘ื:
```python
# Add a negative sentiment and positive sentiment column
print("Calculating sentiment columns for both positive and negative reviews")
start = time.time()
df["Negative_Sentiment"] = df.Negative_Review.apply(calc_sentiment)
df["Positive_Sentiment"] = df.Positive_Review.apply(calc_sentiment)
end = time.time()
print("Calculating sentiment took " + str(round(end - start, 2)) + " seconds")
```
ื–ื” ืœื•ืงื— ื‘ืขืจืš 120 ืฉื ื™ื•ืช ื‘ืžื—ืฉื‘ ืฉืœื™, ืื‘ืœ ื–ื” ื™ืฉืชื ื” ืžืžื—ืฉื‘ ืœืžื—ืฉื‘. ืื ืืชื ืจื•ืฆื™ื ืœื”ื“ืคื™ืก ืืช ื”ืชื•ืฆืื•ืช ื•ืœื‘ื“ื•ืง ืื ื”ืจื’ืฉ ืชื•ืื ืืช ื”ื‘ื™ืงื•ืจืช:
```python
df = df.sort_values(by=["Negative_Sentiment"], ascending=True)
print(df[["Negative_Review", "Negative_Sentiment"]])
df = df.sort_values(by=["Positive_Sentiment"], ascending=True)
print(df[["Positive_Review", "Positive_Sentiment"]])
```
ื”ื“ื‘ืจ ื”ืื—ืจื•ืŸ ืฉื™ืฉ ืœืขืฉื•ืช ืขื ื”ืงื•ื‘ืฅ ืœืคื ื™ ื”ืฉื™ืžื•ืฉ ื‘ื• ื‘ืืชื’ืจ ื”ื•ื ืœืฉืžื•ืจ ืื•ืชื•! ื›ื“ืื™ ื’ื ืœืฉืงื•ืœ ืœืกื“ืจ ืžื—ื“ืฉ ืืช ื›ืœ ื”ืขืžื•ื“ื•ืช ื”ื—ื“ืฉื•ืช ืฉืœื›ื ื›ืš ืฉื™ื”ื™ื” ืงืœ ืœืขื‘ื•ื“ ืื™ืชืŸ (ืขื‘ื•ืจ ื‘ื ื™ ืื“ื, ื–ื” ืฉื™ื ื•ื™ ืงื•ืกืžื˜ื™).
```python
# Reorder the columns (This is cosmetic, but to make it easier to explore the data later)
df = df.reindex(["Hotel_Name", "Hotel_Address", "Total_Number_of_Reviews", "Average_Score", "Reviewer_Score", "Negative_Sentiment", "Positive_Sentiment", "Reviewer_Nationality", "Leisure_trip", "Couple", "Solo_traveler", "Business_trip", "Group", "Family_with_young_children", "Family_with_older_children", "With_a_pet", "Negative_Review", "Positive_Review"], axis=1)
print("Saving results to Hotel_Reviews_NLP.csv")
df.to_csv(r"../data/Hotel_Reviews_NLP.csv", index = False)
```
ืขืœื™ื›ื ืœื”ืจื™ืฅ ืืช ื›ืœ ื”ืงื•ื“ ืขื‘ื•ืจ [ืžื—ื‘ืจืช ื”ื ื™ืชื•ื—](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb) (ืœืื—ืจ ืฉื”ืจืฆืชื [ืืช ืžื—ื‘ืจืช ื”ืกื™ื ื•ืŸ](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) ื›ื“ื™ ืœื™ืฆื•ืจ ืืช ืงื•ื‘ืฅ Hotel_Reviews_Filtered.csv).
ืœืกื™ื›ื•ื, ื”ืฉืœื‘ื™ื ื”ื:
1. ืงื•ื‘ืฅ ื”ื ืชื•ื ื™ื ื”ืžืงื•ืจื™ **Hotel_Reviews.csv** ื ื—ืงืจ ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื ืขื [ืžื—ื‘ืจืช ื”ื—ืงื™ืจื”](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb)
2. Hotel_Reviews.csv ืžืกื•ื ืŸ ืขืœ ื™ื“ื™ [ืžื—ื‘ืจืช ื”ืกื™ื ื•ืŸ](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) ื•ืžืชืงื‘ืœ **Hotel_Reviews_Filtered.csv**
3. Hotel_Reviews_Filtered.csv ืžืขื•ื‘ื“ ืขืœ ื™ื“ื™ [ืžื—ื‘ืจืช ื ื™ืชื•ื— ื”ืจื’ืฉื•ืช](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb) ื•ืžืชืงื‘ืœ **Hotel_Reviews_NLP.csv**
4. ื”ืฉืชืžืฉื• ื‘-Hotel_Reviews_NLP.csv ื‘ืืชื’ืจ ื”-NLP ืœืžื˜ื”
### ืžืกืงื ื”
ื›ืฉืืชื ื”ืชื—ืœืชื, ื”ื™ื” ืœื›ื ืงื•ื‘ืฅ ื ืชื•ื ื™ื ืขื ืขืžื•ื“ื•ืช ื•ื ืชื•ื ื™ื, ืื‘ืœ ืœื ื”ื›ืœ ื”ื™ื” ื ื™ืชืŸ ืœืื™ืžื•ืช ืื• ืœืฉื™ืžื•ืฉ. ื—ืงืจืชื ืืช ื”ื ืชื•ื ื™ื, ืกื™ื ื ืชื ืืช ืžื” ืฉืœื ื”ื™ื” ื ื—ื•ืฅ, ื”ืžืจืชื ืชื’ื™ื•ืช ืœืžืฉื”ื• ืฉื™ืžื•ืฉื™, ื—ื™ืฉื‘ืชื ืžืžื•ืฆืขื™ื ืžืฉืœื›ื, ื”ื•ืกืคืชื ืขืžื•ื“ื•ืช ืจื’ืฉื•ืช, ื•ื›ื ืจืื” ืœืžื“ืชื ื“ื‘ืจื™ื ืžืขื ื™ื™ื ื™ื ืขืœ ืขื™ื‘ื•ื“ ื˜ืงืกื˜ ื˜ื‘ืขื™.
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
## ืืชื’ืจ
ืขื›ืฉื™ื•, ื›ืฉื ื™ืชื—ืชื ืืช ื”ืจื’ืฉื•ืช ื‘ืงื•ื‘ืฅ ื”ื ืชื•ื ื™ื ืฉืœื›ื, ื ืกื• ืœื”ืฉืชืžืฉ ื‘ืืกื˜ืจื˜ื’ื™ื•ืช ืฉืœืžื“ืชื ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ื–ื• (ืื•ืœื™ clustering?) ื›ื“ื™ ืœื–ื”ื•ืช ื“ืคื•ืกื™ื ืกื‘ื™ื‘ ืจื’ืฉื•ืช.
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ืงื—ื• [ืืช ื”ืžื•ื“ื•ืœ ื”ื–ื”](https://docs.microsoft.com/en-us/learn/modules/classify-user-feedback-with-the-text-analytics-api/?WT.mc_id=academic-77952-leestott) ื›ื“ื™ ืœืœืžื•ื“ ืขื•ื“ ื•ืœื”ืฉืชืžืฉ ื‘ื›ืœื™ื ืฉื•ื ื™ื ืœื—ืงืจ ืจื’ืฉื•ืช ื‘ื˜ืงืกื˜.
## ืžืฉื™ืžื”
[ื ืกื• ืงื•ื‘ืฅ ื ืชื•ื ื™ื ืื—ืจ](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "daf144daa552da6a7d442aff6f3e77d8",
"translation_date": "2025-09-05T20:46:52+00:00",
"source_file": "6-NLP/5-Hotel-Reviews-2/assignment.md",
"language_code": "he"
}
-->
# ื ืกื” ืžืขืจืš ื ืชื•ื ื™ื ืื—ืจ
## ื”ื•ืจืื•ืช
ืขื›ืฉื™ื•, ืœืื—ืจ ืฉืœืžื“ืช ืœื”ืฉืชืžืฉ ื‘-NLTK ื›ื“ื™ ืœื”ืงืฆื•ืช ืจื’ืฉื•ืช ืœื˜ืงืกื˜, ื ืกื” ืžืขืจืš ื ืชื•ื ื™ื ืื—ืจ. ืกื‘ื™ืจ ืœื”ื ื™ื— ืฉืชืฆื˜ืจืš ืœื‘ืฆืข ืขื™ื‘ื•ื“ ื ืชื•ื ื™ื ืกื‘ื™ื‘ื•, ืื– ืฆื•ืจ ืžื—ื‘ืจืช ื•ืชืขื“ ืืช ืชื”ืœื™ืš ื”ื—ืฉื™ื‘ื” ืฉืœืš. ืžื” ืืชื” ืžื’ืœื”?
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ----------------------------------------------------------------------------------------------------------------- | ----------------------------------------- | ---------------------- |
| | ืžื—ื‘ืจืช ืžืœืื” ื•ืžืขืจืš ื ืชื•ื ื™ื ืžื•ืฆื’ื™ื ืขื ืชืื™ื ืžืชื•ืขื“ื™ื ื”ื™ื˜ื‘ ื”ืžืกื‘ื™ืจื™ื ื›ื™ืฆื“ ืžื•ืงืฆื™ื ื”ืจื’ืฉื•ืช | ื”ืžื—ื‘ืจืช ื—ืกืจื” ื”ืกื‘ืจื™ื ื˜ื•ื‘ื™ื | ื”ืžื—ื‘ืจืช ืคื’ื•ืžื” |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T20:47:34+00:00",
"source_file": "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
"translation_date": "2025-09-05T20:47:16+00:00",
"source_file": "6-NLP/5-Hotel-Reviews-2/solution/R/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,38 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "1eb379dc2d0c9940b320732d16083778",
"translation_date": "2025-09-05T20:24:24+00:00",
"source_file": "6-NLP/README.md",
"language_code": "he"
}
-->
# ื”ืชื—ืœืช ืขื‘ื•ื“ื” ืขื ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช
ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช (NLP) ื”ื•ื ื”ื™ื›ื•ืœืช ืฉืœ ืชื•ื›ื ืช ืžื—ืฉื‘ ืœื”ื‘ื™ืŸ ืฉืคื” ืื ื•ืฉื™ืช ื›ืคื™ ืฉื”ื™ื ืžื“ื•ื‘ืจืช ื•ื ื›ืชื‘ืช - ืžื” ืฉืžื›ื•ื ื” ืฉืคื” ื˜ื‘ืขื™ืช. ื–ื”ื• ืžืจื›ื™ื‘ ืฉืœ ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช (AI). ืชื—ื•ื ื”-NLP ืงื™ื™ื ื›ื‘ืจ ื™ื•ืชืจ ืž-50 ืฉื ื” ื•ื™ืฉ ืœื• ืฉื•ืจืฉื™ื ื‘ืชื—ื•ื ื”ื‘ืœืฉื ื•ืช. ื›ืœ ื”ืชื—ื•ื ืžื›ื•ื•ืŸ ืœืขื–ื•ืจ ืœืžื›ื•ื ื•ืช ืœื”ื‘ื™ืŸ ื•ืœืขื‘ื“ ืืช ื”ืฉืคื” ื”ืื ื•ืฉื™ืช. ืœืื—ืจ ืžื›ืŸ ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื–ื” ืœื‘ื™ืฆื•ืข ืžืฉื™ืžื•ืช ื›ืžื• ื‘ื“ื™ืงืช ืื™ื•ืช ืื• ืชืจื’ื•ื ืžื›ื•ื ื”. ื™ืฉ ืœื• ืžื’ื•ื•ืŸ ื™ื™ืฉื•ืžื™ื ื‘ืขื•ืœื ื”ืืžื™ืชื™ ื‘ืชื—ื•ืžื™ื ืจื‘ื™ื, ื›ื•ืœืœ ืžื—ืงืจ ืจืคื•ืื™, ืžื ื•ืขื™ ื—ื™ืคื•ืฉ ื•ืžื•ื“ื™ืขื™ืŸ ืขืกืงื™.
## ื ื•ืฉื ืื–ื•ืจื™: ืฉืคื•ืช ื•ืกืคืจื•ืช ืื™ืจื•ืคื™ื•ืช ื•ืžืœื•ื ื•ืช ืจื•ืžื ื˜ื™ื™ื ื‘ืื™ืจื•ืคื” โค๏ธ
ื‘ืคืจืง ื–ื” ืฉืœ ื”ืชื•ื›ื ื™ืช, ืชื™ื—ืฉืคื• ืœืื—ื“ ื”ืฉื™ืžื•ืฉื™ื ื”ื ืคื•ืฆื™ื ื‘ื™ื•ืชืจ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”: ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช (NLP). ืชื—ื•ื ื–ื”, ืฉืžืงื•ืจื• ื‘ื‘ืœืฉื ื•ืช ื—ื™ืฉื•ื‘ื™ืช, ืžื”ื•ื•ื” ื’ืฉืจ ื‘ื™ืŸ ื‘ื ื™ ืื“ื ืœืžื›ื•ื ื•ืช ื‘ืืžืฆืขื•ืช ืชืงืฉื•ืจืช ืงื•ืœื™ืช ืื• ื˜ืงืกื˜ื•ืืœื™ืช.
ื‘ืฉื™ืขื•ืจื™ื ืืœื• ื ืœืžื“ ืืช ื™ืกื•ื“ื•ืช ื”-NLP ืขืœ ื™ื“ื™ ื‘ื ื™ื™ืช ื‘ื•ื˜ื™ื ืฉื™ื—ืชื™ื™ื ืงื˜ื ื™ื ื›ื“ื™ ืœื”ื‘ื™ืŸ ื›ื™ืฆื“ ืœืžื™ื“ืช ืžื›ื•ื ื” ืžืกื™ื™ืขืช ืœื”ืคื•ืš ืืช ื”ืฉื™ื—ื•ืช ื”ืœืœื• ืœื™ื•ืชืจ ื•ื™ื•ืชืจ 'ื—ื›ืžื•ืช'. ืชืฆืื• ืœืžืกืข ื‘ื–ืžืŸ, ื•ืชืฉื•ื—ื—ื• ืขื ืืœื™ื–ื‘ืช ื‘ื ื˜ ื•ืžืจ ื“ืืจืกื™ ืžืชื•ืš ื”ืจื•ืžืŸ ื”ืงืœืืกื™ ืฉืœ ื’'ื™ื™ืŸ ืื•ืกื˜ืŸ, **ื’ืื•ื•ื” ื•ื“ืขื” ืงื“ื•ืžื”**, ืฉืคื•ืจืกื ื‘ืฉื ืช 1813. ืœืื—ืจ ืžื›ืŸ, ืชืขืžื™ืงื• ืืช ื”ื™ื“ืข ืฉืœื›ื ืขืœ ื™ื“ื™ ืœื™ืžื•ื“ ื ื™ืชื•ื— ืจื’ืฉื•ืช ื“ืจืš ื‘ื™ืงื•ืจื•ืช ืขืœ ืžืœื•ื ื•ืช ื‘ืื™ืจื•ืคื”.
![ืกืคืจ ื’ืื•ื•ื” ื•ื“ืขื” ืงื“ื•ืžื” ื•ืชื”](../../../6-NLP/images/p&p.jpg)
> ืฆื™ืœื•ื ืขืœ ื™ื“ื™ <a href="https://unsplash.com/@elaineh?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Elaine Howlin</a> ื‘-<a href="https://unsplash.com/s/photos/pride-and-prejudice?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
## ืฉื™ืขื•ืจื™ื
1. [ืžื‘ื•ื ืœืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช](1-Introduction-to-NLP/README.md)
2. [ืžืฉื™ืžื•ืช ื•ื˜ื›ื ื™ืงื•ืช ื ืคื•ืฆื•ืช ื‘-NLP](2-Tasks/README.md)
3. [ืชืจื’ื•ื ื•ื ื™ืชื•ื— ืจื’ืฉื•ืช ื‘ืืžืฆืขื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื”](3-Translation-Sentiment/README.md)
4. [ื”ื›ื ืช ื”ื ืชื•ื ื™ื ืฉืœื›ื](4-Hotel-Reviews-1/README.md)
5. [NLTK ืœื ื™ืชื•ื— ืจื’ืฉื•ืช](5-Hotel-Reviews-2/README.md)
## ืงืจื“ื™ื˜ื™ื
ืฉื™ืขื•ืจื™ ืขื™ื‘ื•ื“ ื”ืฉืคื” ื”ื˜ื‘ืขื™ืช ื”ืœืœื• ื ื›ืชื‘ื• ืขื โ˜• ืขืœ ื™ื“ื™ [Stephen Howell](https://twitter.com/Howell_MSFT)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "ee0670655c89e4719319764afb113624",
"translation_date": "2025-09-05T20:35:05+00:00",
"source_file": "6-NLP/data/README.md",
"language_code": "he"
}
-->
ื”ื•ืจื“ ืืช ื ืชื•ื ื™ ื‘ื™ืงื•ืจืช ื”ืžืœื•ืŸ ืœืชื™ืงื™ื™ื” ื–ื•.
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก AI [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,199 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "662b509c39eee205687726636d0a8455",
"translation_date": "2025-09-05T19:03:40+00:00",
"source_file": "7-TimeSeries/1-Introduction/README.md",
"language_code": "he"
}
-->
# ืžื‘ื•ื ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ
![ืกื™ื›ื•ื ืกื“ืจื•ืช ื–ืžืŸ ื‘ืกืงืฆ'ื ื•ื˜](../../../../sketchnotes/ml-timeseries.png)
> ืกืงืฆ'ื ื•ื˜ ืžืืช [Tomomi Imura](https://www.twitter.com/girlie_mac)
ื‘ืฉื™ืขื•ืจ ื”ื–ื” ื•ื‘ืฉื™ืขื•ืจ ื”ื‘ื, ืชืœืžื“ื• ืžืขื˜ ืขืœ ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ, ืชื—ื•ื ืžืขื ื™ื™ืŸ ื•ื—ืฉื•ื‘ ื‘ืืจื’ื– ื”ื›ืœื™ื ืฉืœ ืžื“ืขืŸ ML, ืืฉืจ ืคื—ื•ืช ืžื•ื›ืจ ื‘ื”ืฉื•ื•ืื” ืœื ื•ืฉืื™ื ืื—ืจื™ื. ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ื”ื•ื ืžืขื™ืŸ 'ื›ื“ื•ืจ ื‘ื“ื•ืœื—': ื‘ื”ืชื‘ืกืก ืขืœ ื‘ื™ืฆื•ืขื™ื ืงื•ื“ืžื™ื ืฉืœ ืžืฉืชื ื” ื›ืžื• ืžื—ื™ืจ, ื ื™ืชืŸ ืœื—ื–ื•ืช ืืช ื”ืขืจืš ื”ืคื•ื˜ื ืฆื™ืืœื™ ื”ืขืชื™ื“ื™ ืฉืœื•.
[![ืžื‘ื•ื ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ](https://img.youtube.com/vi/cBojo1hsHiI/0.jpg)](https://youtu.be/cBojo1hsHiI "ืžื‘ื•ื ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืขืœ ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
ื–ื”ื• ืชื—ื•ื ืฉื™ืžื•ืฉื™ ื•ืžืขื ื™ื™ืŸ ื‘ืขืœ ืขืจืš ืžืžืฉื™ ืœืขืกืงื™ื, ื‘ืฉืœ ื™ื™ืฉื•ืžื• ื”ื™ืฉื™ืจ ืœื‘ืขื™ื•ืช ืฉืœ ืชืžื—ื•ืจ, ืžืœืื™ ื•ื ื™ื”ื•ืœ ืฉืจืฉืจืช ืืกืคืงื”. ื‘ืขื•ื“ ืฉื˜ื›ื ื™ืงื•ืช ืœืžื™ื“ื” ืขืžื•ืงื” ื”ื—ืœื• ืœืฉืžืฉ ื›ื“ื™ ืœื”ืคื™ืง ืชื•ื‘ื ื•ืช ื ื•ืกืคื•ืช ื•ืœื—ื–ื•ืช ื‘ื™ืฆื•ืขื™ื ืขืชื™ื“ื™ื™ื ื‘ืฆื•ืจื” ื˜ื•ื‘ื” ื™ื•ืชืจ, ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ื ื•ืชืจ ืชื—ื•ื ืฉืžื‘ื•ืกืก ืจื‘ื•ืช ืขืœ ื˜ื›ื ื™ืงื•ืช ML ืงืœืืกื™ื•ืช.
> ื ื™ืชืŸ ืœืžืฆื•ื ืืช ืชื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ืฉื™ืžื•ืฉื™ืช ืฉืœ Penn State ื‘ื ื•ืฉื ืกื“ืจื•ืช ื–ืžืŸ [ื›ืืŸ](https://online.stat.psu.edu/stat510/lesson/1)
## ืžื‘ื•ื
ื ื ื™ื— ืฉืืชื ืžื ื”ืœื™ื ืžืขืจืš ืฉืœ ืžื“ื—ื ื™ ื—ื ื™ื” ื—ื›ืžื™ื ื”ืžืกืคืงื™ื ื ืชื•ื ื™ื ืขืœ ืชื“ื™ืจื•ืช ื”ืฉื™ืžื•ืฉ ื‘ื”ื ื•ืขืœ ืžืฉืš ื”ื–ืžืŸ ืœืื•ืจืš ื–ืžืŸ.
> ืžื” ืื ื”ื™ื™ืชื ื™ื›ื•ืœื™ื ืœื—ื–ื•ืช, ื‘ื”ืชื‘ืกืก ืขืœ ื‘ื™ืฆื•ืขื™ ื”ืขื‘ืจ ืฉืœ ื”ืžื“ื—ืŸ, ืืช ืขืจื›ื• ื”ืขืชื™ื“ื™ ื‘ื”ืชืื ืœื—ื•ืงื™ ื”ื”ื™ืฆืข ื•ื”ื‘ื™ืงื•ืฉ?
ื—ื™ื–ื•ื™ ืžื“ื•ื™ืง ืฉืœ ื”ื–ืžืŸ ืœืคืขื•ืœ ื›ื“ื™ ืœื”ืฉื™ื’ ืืช ื”ืžื˜ืจื” ืฉืœื›ื ื”ื•ื ืืชื’ืจ ืฉื ื™ืชืŸ ืœื”ืชืžื•ื“ื“ ืื™ืชื• ื‘ืืžืฆืขื•ืช ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ. ื–ื” ืื•ืœื™ ืœื ื™ืฉืžื— ืื ืฉื™ื ืฉื™ื—ื•ื™ื‘ื• ื™ื•ืชืจ ื‘ื–ืžื ื™ ืขื•ืžืก ื›ืฉื”ื ืžื—ืคืฉื™ื ืžืงื•ื ื—ื ื™ื”, ืื‘ืœ ื–ื• ื“ืจืš ื‘ื˜ื•ื—ื” ืœื™ื™ืฆืจ ื”ื›ื ืกื” ืœื ื™ืงื•ื™ ื”ืจื—ื•ื‘ื•ืช!
ื‘ื•ืื• ื ื—ืงื•ืจ ื›ืžื” ืžืกื•ื’ื™ ื”ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ ืกื“ืจื•ืช ื–ืžืŸ ื•ื ืชื—ื™ืœ ื‘ืžื—ื‘ืจืช ื›ื“ื™ ืœื ืงื•ืช ื•ืœื”ื›ื™ืŸ ื ืชื•ื ื™ื. ื”ื ืชื•ื ื™ื ืฉืชื ืชื—ื• ื ืœืงื—ื• ืžืชื—ืจื•ืช ื”ื—ื™ื–ื•ื™ GEFCom2014. ื”ื ื›ื•ืœืœื™ื 3 ืฉื ื™ื ืฉืœ ื ืชื•ื ื™ ืขื•ืžืก ื—ืฉืžืœ ื•ื˜ืžืคืจื˜ื•ืจื” ืœืคื™ ืฉืขื” ื‘ื™ืŸ ื”ืฉื ื™ื 2012 ืœ-2014. ื‘ื”ืชื‘ืกืก ืขืœ ื“ืคื•ืกื™ื ื”ื™ืกื˜ื•ืจื™ื™ื ืฉืœ ืขื•ืžืก ื—ืฉืžืœ ื•ื˜ืžืคืจื˜ื•ืจื”, ืชื•ื›ืœื• ืœื—ื–ื•ืช ืขืจื›ื™ื ืขืชื™ื“ื™ื™ื ืฉืœ ืขื•ืžืก ื—ืฉืžืœ.
ื‘ื“ื•ื’ืžื” ื–ื•, ืชืœืžื“ื• ื›ื™ืฆื“ ืœื—ื–ื•ืช ืฆืขื“ ื–ืžืŸ ืื—ื“ ืงื“ื™ืžื”, ืชื•ืš ืฉื™ืžื•ืฉ ื‘ื ืชื•ื ื™ ืขื•ืžืก ื”ื™ืกื˜ื•ืจื™ื™ื ื‘ืœื‘ื“. ืขื ื–ืืช, ืœืคื ื™ ืฉืžืชื—ื™ืœื™ื, ื›ื“ืื™ ืœื”ื‘ื™ืŸ ืžื” ืงื•ืจื” ืžืื—ื•ืจื™ ื”ืงืœืขื™ื.
## ื›ืžื” ื”ื’ื“ืจื•ืช
ื›ืฉื ืชืงืœื™ื ื‘ืžื•ื ื— 'ืกื“ืจื•ืช ื–ืžืŸ', ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ืืช ื”ืฉื™ืžื•ืฉ ื‘ื• ื‘ื”ืงืฉืจื™ื ืฉื•ื ื™ื.
๐ŸŽ“ **ืกื“ืจื•ืช ื–ืžืŸ**
ื‘ืžืชืžื˜ื™ืงื”, "ืกื“ืจื•ืช ื–ืžืŸ ื”ืŸ ืกื“ืจื” ืฉืœ ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ืฉืžืื•ื ื“ืงืกื•ืช (ืื• ืจืฉื•ืžื•ืช ืื• ืžื•ืฆื’ื•ืช ื‘ื’ืจืฃ) ืœืคื™ ืกื“ืจ ื–ืžืŸ. ืœืจื•ื‘, ืกื“ืจื•ืช ื–ืžืŸ ื”ืŸ ืจืฆืฃ ืฉื ืœืงื— ื‘ื ืงื•ื“ื•ืช ื–ืžืŸ ืขื•ืงื‘ื•ืช ื‘ืžืจื•ื•ื—ื™ื ืฉื•ื•ื™ื." ื“ื•ื’ืžื” ืœืกื“ืจื•ืช ื–ืžืŸ ื”ื™ื ืขืจืš ื”ืกื’ื™ืจื” ื”ื™ื•ืžื™ ืฉืœ [ืžื“ื“ ื“ืื• ื’'ื•ื ืก](https://wikipedia.org/wiki/Time_series). ื”ืฉื™ืžื•ืฉ ื‘ื’ืจืคื™ื ืฉืœ ืกื“ืจื•ืช ื–ืžืŸ ื•ื‘ืžื•ื“ืœื™ื ืกื˜ื˜ื™ืกื˜ื™ื™ื ื ืคื•ืฅ ื‘ืขื™ื‘ื•ื“ ืื•ืชื•ืช, ื—ื™ื–ื•ื™ ืžื–ื’ ืื•ื•ื™ืจ, ื—ื™ื–ื•ื™ ืจืขื™ื“ื•ืช ืื“ืžื” ื•ื‘ืชื—ื•ืžื™ื ื ื•ืกืคื™ื ืฉื‘ื”ื ืื™ืจื•ืขื™ื ืžืชืจื—ืฉื™ื ื•ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ื™ื›ื•ืœื•ืช ืœื”ื™ื•ืช ืžื•ืฆื’ื•ืช ืœืื•ืจืš ื–ืžืŸ.
๐ŸŽ“ **ื ื™ืชื•ื— ืกื“ืจื•ืช ื–ืžืŸ**
ื ื™ืชื•ื— ืกื“ืจื•ืช ื–ืžืŸ ื”ื•ื ื ื™ืชื•ื— ืฉืœ ื ืชื•ื ื™ ืกื“ืจื•ืช ื”ื–ืžืŸ ืฉื”ื•ื–ื›ืจื• ืœืขื™ืœ. ื ืชื•ื ื™ ืกื“ืจื•ืช ื–ืžืŸ ื™ื›ื•ืœื™ื ืœื”ื•ืคื™ืข ื‘ืฆื•ืจื•ืช ืฉื•ื ื•ืช, ื›ื•ืœืœ 'ืกื“ืจื•ืช ื–ืžืŸ ืžื•ืคืจืขื•ืช' ืฉืžื–ื”ื•ืช ื“ืคื•ืกื™ื ื‘ื”ืชืคืชื—ื•ืช ืกื“ืจื•ืช ื–ืžืŸ ืœืคื ื™ ื•ืื—ืจื™ ืื™ืจื•ืข ืžืคืจื™ืข. ืกื•ื’ ื”ื ื™ืชื•ื— ื”ื ื“ืจืฉ ืขื‘ื•ืจ ืกื“ืจื•ืช ื”ื–ืžืŸ ืชืœื•ื™ ื‘ืื•ืคื™ ื”ื ืชื•ื ื™ื. ื ืชื•ื ื™ ืกื“ืจื•ืช ื–ืžืŸ ืขืฆืžื ื™ื›ื•ืœื™ื ืœื”ื•ืคื™ืข ื›ืจืฆืฃ ืฉืœ ืžืกืคืจื™ื ืื• ืชื•ื•ื™ื.
ื”ื ื™ืชื•ื— ืฉืžืชื‘ืฆืข ืžืฉืชืžืฉ ื‘ืžื’ื•ื•ืŸ ืฉื™ื˜ื•ืช, ื›ื•ืœืœ ืชื—ื•ื ื”ืชื“ืจ ื•ืชื—ื•ื ื”ื–ืžืŸ, ืœื™ื ื™ืืจื™ ื•ืœื ืœื™ื ื™ืืจื™, ื•ืขื•ื“. [ืœืžื“ื• ืขื•ื“](https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm) ืขืœ ื”ื“ืจื›ื™ื ื”ืจื‘ื•ืช ืœื ืชื— ืกื•ื’ ื–ื” ืฉืœ ื ืชื•ื ื™ื.
๐ŸŽ“ **ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ**
ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ื”ื•ื ื”ืฉื™ืžื•ืฉ ื‘ืžื•ื“ืœ ื›ื“ื™ ืœื—ื–ื•ืช ืขืจื›ื™ื ืขืชื™ื“ื™ื™ื ื‘ื”ืชื‘ืกืก ืขืœ ื“ืคื•ืกื™ื ืฉื”ื•ืฆื’ื• ืขืœ ื™ื“ื™ ื ืชื•ื ื™ื ืฉื ืืกืคื• ื‘ืขื‘ืจ. ื‘ืขื•ื“ ืฉื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืžื•ื“ืœื™ื ืจื’ืจืกื™ื‘ื™ื™ื ื›ื“ื™ ืœื—ืงื•ืจ ื ืชื•ื ื™ ืกื“ืจื•ืช ื–ืžืŸ, ืขื ืื™ื ื“ืงืกื™ ื–ืžืŸ ื›ืžืฉืชื ื™ x ื‘ื’ืจืฃ, ื ืชื•ื ื™ื ื›ืืœื” ืขื“ื™ืฃ ืœื ืชื— ื‘ืืžืฆืขื•ืช ืกื•ื’ื™ื ืžื™ื•ื—ื“ื™ื ืฉืœ ืžื•ื“ืœื™ื.
ื ืชื•ื ื™ ืกื“ืจื•ืช ื–ืžืŸ ื”ื ืจืฉื™ืžื” ืฉืœ ืชืฆืคื™ื•ืช ืžืกื•ื“ืจื•ืช, ื‘ื ื™ื’ื•ื“ ืœื ืชื•ื ื™ื ืฉื ื™ืชืŸ ืœื ืชื— ื‘ืืžืฆืขื•ืช ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช. ื”ืžื•ื“ืœ ื”ื ืคื•ืฅ ื‘ื™ื•ืชืจ ื”ื•ื ARIMA, ืจืืฉื™ ืชื™ื‘ื•ืช ืฉืœ "Autoregressive Integrated Moving Average".
[ืžื•ื“ืœื™ ARIMA](https://online.stat.psu.edu/stat510/lesson/1/1.1) "ืžืงืฉืจื™ื ืืช ื”ืขืจืš ื”ื ื•ื›ื—ื™ ืฉืœ ืกื“ืจื” ืœืขืจื›ื™ื ืงื•ื“ืžื™ื ื•ืœืฉื’ื™ืื•ืช ื—ื™ื–ื•ื™ ืงื•ื“ืžื•ืช." ื”ื ืžืชืื™ืžื™ื ื‘ื™ื•ืชืจ ืœื ื™ืชื•ื— ื ืชื•ื ื™ื ื‘ืชื—ื•ื ื”ื–ืžืŸ, ืฉื‘ื• ื”ื ืชื•ื ื™ื ืžืกื•ื“ืจื™ื ืœืื•ืจืš ื–ืžืŸ.
> ื™ืฉื ื ื›ืžื” ืกื•ื’ื™ื ืฉืœ ืžื•ื“ืœื™ ARIMA, ืขืœื™ื”ื ืชื•ื›ืœื• ืœืœืžื•ื“ [ื›ืืŸ](https://people.duke.edu/~rnau/411arim.htm) ื•ืชื’ืขื• ื‘ื”ื ื‘ืฉื™ืขื•ืจ ื”ื‘ื.
ื‘ืฉื™ืขื•ืจ ื”ื‘ื, ืชื‘ื ื• ืžื•ื“ืœ ARIMA ื‘ืืžืฆืขื•ืช [ืกื“ืจื•ืช ื–ืžืŸ ื—ื“-ืžืฉืชื ื™ื•ืช](https://itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm), ืฉืžืชืžืงื“ื•ืช ื‘ืžืฉืชื ื” ืื—ื“ ืฉืžืฉื ื” ืืช ืขืจื›ื• ืœืื•ืจืš ื–ืžืŸ. ื“ื•ื’ืžื” ืœืกื•ื’ ื–ื” ืฉืœ ื ืชื•ื ื™ื ื”ื™ื [ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ื”](https://itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm) ืฉืžืงืœื™ื˜ ืืช ืจื™ื›ื•ื– ื”-CO2 ื”ื—ื•ื“ืฉื™ ื‘ืžืฆืคื” ืžืื•ื ื” ืœื•ืื”:
| CO2 | YearMonth | Year | Month |
| :----: | :-------: | :---: | :---: |
| 330.62 | 1975.04 | 1975 | 1 |
| 331.40 | 1975.13 | 1975 | 2 |
| 331.87 | 1975.21 | 1975 | 3 |
| 333.18 | 1975.29 | 1975 | 4 |
| 333.92 | 1975.38 | 1975 | 5 |
| 333.43 | 1975.46 | 1975 | 6 |
| 331.85 | 1975.54 | 1975 | 7 |
| 330.01 | 1975.63 | 1975 | 8 |
| 328.51 | 1975.71 | 1975 | 9 |
| 328.41 | 1975.79 | 1975 | 10 |
| 329.25 | 1975.88 | 1975 | 11 |
| 330.97 | 1975.96 | 1975 | 12 |
โœ… ื–ื™ื”ื• ืืช ื”ืžืฉืชื ื” ืฉืžืฉืชื ื” ืœืื•ืจืš ื–ืžืŸ ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ื–ื”
## ืžืืคื™ื™ื ื™ื ืฉืœ ื ืชื•ื ื™ ืกื“ืจื•ืช ื–ืžืŸ ืฉื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ
ื›ืฉืžืกืชื›ืœื™ื ืขืœ ื ืชื•ื ื™ ืกื“ืจื•ืช ื–ืžืŸ, ื™ื™ืชื›ืŸ ืฉืชื‘ื—ื™ื ื• ืฉื™ืฉ ืœื”ื [ืžืืคื™ื™ื ื™ื ืžืกื•ื™ืžื™ื](https://online.stat.psu.edu/stat510/lesson/1/1.1) ืฉืฆืจื™ืš ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ื•ืœื”ืคื—ื™ืช ื›ื“ื™ ืœื”ื‘ื™ืŸ ื˜ื•ื‘ ื™ื•ืชืจ ืืช ื”ื“ืคื•ืกื™ื ืฉืœื”ื. ืื ืชื—ืฉื‘ื• ืขืœ ื ืชื•ื ื™ ืกื“ืจื•ืช ื–ืžืŸ ื›ืขืœ 'ืื•ืช' ืคื•ื˜ื ืฆื™ืืœื™ ืฉื‘ืจืฆื•ื ื›ื ืœื ืชื—, ื ื™ืชืŸ ืœื—ืฉื•ื‘ ืขืœ ื”ืžืืคื™ื™ื ื™ื ื”ืœืœื• ื›ืขืœ 'ืจืขืฉ'. ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ืชืฆื˜ืจื›ื• ืœื”ืคื—ื™ืช ืืช ื”'ืจืขืฉ' ื”ื–ื” ืขืœ ื™ื“ื™ ืงื™ื–ื•ื– ื—ืœืง ืžื”ืžืืคื™ื™ื ื™ื ื”ืœืœื• ื‘ืืžืฆืขื•ืช ื˜ื›ื ื™ืงื•ืช ืกื˜ื˜ื™ืกื˜ื™ื•ืช.
ื”ื ื” ื›ืžื” ืžื•ืฉื’ื™ื ืฉื›ื“ืื™ ืœื”ื›ื™ืจ ื›ื“ื™ ืœืขื‘ื•ื“ ืขื ืกื“ืจื•ืช ื–ืžืŸ:
๐ŸŽ“ **ืžื’ืžื•ืช**
ืžื’ืžื•ืช ืžื•ื’ื“ืจื•ืช ื›ืขืœื™ื•ืช ื•ื™ืจื™ื“ื•ืช ืžื“ื™ื“ื•ืช ืœืื•ืจืš ื–ืžืŸ. [ืงืจืื• ืขื•ื“](https://machinelearningmastery.com/time-series-trends-in-python). ื‘ื”ืงืฉืจ ืฉืœ ืกื“ืจื•ืช ื–ืžืŸ, ืžื“ื•ื‘ืจ ืขืœ ืื™ืš ืœื”ืฉืชืžืฉ ื•ืื ื™ืฉ ืฆื•ืจืš, ืœื”ืกื™ืจ ืžื’ืžื•ืช ืžืกื“ืจื•ืช ื”ื–ืžืŸ ืฉืœื›ื.
๐ŸŽ“ **[ืขื•ื ืชื™ื•ืช](https://machinelearningmastery.com/time-series-seasonality-with-python/)**
ืขื•ื ืชื™ื•ืช ืžื•ื’ื“ืจืช ื›ืชื ื•ื“ื•ืช ืžื—ื–ื•ืจื™ื•ืช, ื›ืžื• ืœืžืฉืœ ืขื•ืžืก ื‘ืชืงื•ืคืช ื”ื—ื’ื™ื ืฉืขืฉื•ื™ ืœื”ืฉืคื™ืข ืขืœ ืžื›ื™ืจื•ืช. [ื”ืกืชื›ืœื•](https://itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm) ืขืœ ืื™ืš ืกื•ื’ื™ื ืฉื•ื ื™ื ืฉืœ ื’ืจืคื™ื ืžืฆื™ื’ื™ื ืขื•ื ืชื™ื•ืช ื‘ื ืชื•ื ื™ื.
๐ŸŽ“ **ื—ืจื™ื’ื•ืช**
ื—ืจื™ื’ื•ืช ื”ืŸ ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื ืจื—ื•ืงื•ืช ืžื”ืฉื•ื ื•ืช ื”ืกื˜ื ื“ืจื˜ื™ืช ืฉืœ ื”ื ืชื•ื ื™ื.
๐ŸŽ“ **ืžื—ื–ื•ืจ ืืจื•ืš ื˜ื•ื•ื—**
ื‘ื ืคืจื“ ืžืขื•ื ืชื™ื•ืช, ื ืชื•ื ื™ื ืขืฉื•ื™ื™ื ืœื”ืฆื™ื’ ืžื—ื–ื•ืจ ืืจื•ืš ื˜ื•ื•ื— ื›ืžื• ืžื™ืชื•ืŸ ื›ืœื›ืœื™ ืฉื ืžืฉืš ื™ื•ืชืจ ืžืฉื ื”.
๐ŸŽ“ **ืฉื•ื ื•ืช ืงื‘ื•ืขื”**
ืœืื•ืจืš ื–ืžืŸ, ื—ืœืง ืžื”ื ืชื•ื ื™ื ืžืฆื™ื’ื™ื ืชื ื•ื“ื•ืช ืงื‘ื•ืขื•ืช, ื›ืžื• ืฉื™ืžื•ืฉ ื‘ืื ืจื’ื™ื” ื‘ื™ื•ื ื•ื‘ืœื™ืœื”.
๐ŸŽ“ **ืฉื™ื ื•ื™ื™ื ืคืชืื•ืžื™ื™ื**
ื”ื ืชื•ื ื™ื ืขืฉื•ื™ื™ื ืœื”ืฆื™ื’ ืฉื™ื ื•ื™ ืคืชืื•ืžื™ ืฉื“ื•ืจืฉ ื ื™ืชื•ื— ื ื•ืกืฃ. ืœื“ื•ื’ืžื”, ืกื’ื™ืจื” ืคืชืื•ืžื™ืช ืฉืœ ืขืกืงื™ื ื‘ืขืงื‘ื•ืช COVID ื’ืจืžื” ืœืฉื™ื ื•ื™ื™ื ื‘ื ืชื•ื ื™ื.
โœ… ื”ื ื” [ื’ืจืฃ ืกื“ืจื•ืช ื–ืžืŸ ืœื“ื•ื’ืžื”](https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python) ืฉืžืฆื™ื’ ื”ื•ืฆืื” ื™ื•ืžื™ืช ืขืœ ืžื˜ื‘ืข ื‘ืžืฉื—ืง ืœืื•ืจืš ื›ืžื” ืฉื ื™ื. ื”ืื ืชื•ื›ืœื• ืœื–ื”ื•ืช ืžืืคื™ื™ื ื™ื ื›ืœืฉื”ื ืžื”ืจืฉื™ืžื” ืœืขื™ืœ ื‘ื ืชื•ื ื™ื ื”ืœืœื•?
![ื”ื•ืฆืื” ืขืœ ืžื˜ื‘ืข ื‘ืžืฉื—ืง](../../../../7-TimeSeries/1-Introduction/images/currency.png)
## ืชืจื’ื™ืœ - ื”ืชื—ืœื” ืขื ื ืชื•ื ื™ ืฉื™ืžื•ืฉ ื‘ืื ืจื’ื™ื”
ื‘ื•ืื• ื ืชื—ื™ืœ ื‘ื™ืฆื™ืจืช ืžื•ื“ืœ ืกื“ืจื•ืช ื–ืžืŸ ืœื—ื™ื–ื•ื™ ืฉื™ืžื•ืฉ ืขืชื™ื“ื™ ื‘ืื ืจื’ื™ื” ื‘ื”ืชื‘ืกืก ืขืœ ืฉื™ืžื•ืฉ ื‘ืขื‘ืจ.
> ื”ื ืชื•ื ื™ื ื‘ื“ื•ื’ืžื” ื–ื• ื ืœืงื—ื• ืžืชื—ืจื•ืช ื”ื—ื™ื–ื•ื™ GEFCom2014. ื”ื ื›ื•ืœืœื™ื 3 ืฉื ื™ื ืฉืœ ื ืชื•ื ื™ ืขื•ืžืก ื—ืฉืžืœ ื•ื˜ืžืคืจื˜ื•ืจื” ืœืคื™ ืฉืขื” ื‘ื™ืŸ ื”ืฉื ื™ื 2012 ืœ-2014.
>
> Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016.
1. ื‘ืชื™ืงื™ื™ืช `working` ืฉืœ ื”ืฉื™ืขื•ืจ ื”ื–ื”, ืคืชื—ื• ืืช ื”ืงื•ื‘ืฅ _notebook.ipynb_. ื”ืชื—ื™ืœื• ื‘ื”ื•ืกืคืช ืกืคืจื™ื•ืช ืฉื™ืขื–ืจื• ืœื›ื ืœื˜ืขื•ืŸ ื•ืœื”ืฆื™ื’ ื ืชื•ื ื™ื
```python
import os
import matplotlib.pyplot as plt
from common.utils import load_data
%matplotlib inline
```
ืฉื™ืžื• ืœื‘, ืืชื ืžืฉืชืžืฉื™ื ื‘ืงื‘ืฆื™ื ืžื”ืชื™ืงื™ื™ื” `common` ื”ื›ืœื•ืœื” ืฉืžื’ื“ื™ืจื” ืืช ื”ืกื‘ื™ื‘ื” ืฉืœื›ื ื•ืžื˜ืคืœืช ื‘ื”ื•ืจื“ืช ื”ื ืชื•ื ื™ื.
2. ืœืื—ืจ ืžื›ืŸ, ื‘ื“ืงื• ืืช ื”ื ืชื•ื ื™ื ื›-DataFrame ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`load_data()` ื•-`head()`:
```python
data_dir = './data'
energy = load_data(data_dir)[['load']]
energy.head()
```
ืชื•ื›ืœื• ืœืจืื•ืช ืฉื™ืฉื ื ืฉื ื™ ืขืžื•ื“ื•ืช ืฉืžื™ื™ืฆื’ื•ืช ืชืืจื™ืš ื•ืขื•ืžืก:
| | load |
| :-----------------: | :----: |
| 2012-01-01 00:00:00 | 2698.0 |
| 2012-01-01 01:00:00 | 2558.0 |
| 2012-01-01 02:00:00 | 2444.0 |
| 2012-01-01 03:00:00 | 2402.0 |
| 2012-01-01 04:00:00 | 2403.0 |
3. ืขื›ืฉื™ื•, ื”ืฆื™ื’ื• ืืช ื”ื ืชื•ื ื™ื ื‘ื’ืจืฃ ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`plot()`:
```python
energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()
```
![ื’ืจืฃ ืื ืจื’ื™ื”](../../../../7-TimeSeries/1-Introduction/images/energy-plot.png)
4. ืขื›ืฉื™ื•, ื”ืฆื™ื’ื• ืืช ื”ืฉื‘ื•ืข ื”ืจืืฉื•ืŸ ืฉืœ ื™ื•ืœื™ 2014, ืขืœ ื™ื“ื™ ืžืชืŸ ืงืœื˜ ืœ-`energy` ื‘ืชื‘ื ื™ืช `[ืžืชืืจื™ืš]: [ืขื“ ืชืืจื™ืš]`:
```python
energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()
```
![ื™ื•ืœื™](../../../../7-TimeSeries/1-Introduction/images/july-2014.png)
ื’ืจืฃ ื™ืคื”ืคื”! ื”ืกืชื›ืœื• ืขืœ ื”ื’ืจืคื™ื ื”ืœืœื• ื•ื ืกื• ืœืงื‘ื•ืข ืื ืชื•ื›ืœื• ืœื–ื”ื•ืช ืžืืคื™ื™ื ื™ื ื›ืœืฉื”ื ืžื”ืจืฉื™ืžื” ืœืขื™ืœ. ืžื” ื ื™ืชืŸ ืœื”ืกื™ืง ืขืœ ื™ื“ื™ ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื”ื ืชื•ื ื™ื?
ื‘ืฉื™ืขื•ืจ ื”ื‘ื, ืชื™ืฆืจื• ืžื•ื“ืœ ARIMA ื›ื“ื™ ืœื™ืฆื•ืจ ืชื—ื–ื™ื•ืช.
---
## ๐Ÿš€ืืชื’ืจ
ืฆืจื• ืจืฉื™ืžื” ืฉืœ ื›ืœ ื”ืชืขืฉื™ื•ืช ื•ืชื—ื•ืžื™ ื”ืžื—ืงืจ ืฉืืชื ื™ื›ื•ืœื™ื ืœื—ืฉื•ื‘ ืขืœื™ื”ื ืฉื™ื›ื•ืœื™ื ืœื”ืจื•ื•ื™ื— ืžื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ. ื”ืื ืชื•ื›ืœื• ืœื—ืฉื•ื‘ ืขืœ ื™ื™ืฉื•ื ืฉืœ ื˜ื›ื ื™ืงื•ืช ืืœื• ื‘ืืžื ื•ื™ื•ืช? ื‘ื›ืœื›ืœื”? ื‘ืืงื•ืœื•ื’ื™ื”? ื‘ืงืžืขื•ื ืื•ืช? ื‘ืชืขืฉื™ื™ื”? ื‘ืคื™ื ื ืกื™ื? ืื™ืคื” ืขื•ื“?
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ืœืžืจื•ืช ืฉืœื ื ื›ืกื” ืื•ืชื ื›ืืŸ, ืจืฉืชื•ืช ื ื•ื™ืจื•ื ื™ื ืžืฉืžืฉื•ืช ืœืขื™ืชื™ื ืœืฉื™ืคื•ืจ ืฉื™ื˜ื•ืช ืงืœืืกื™ื•ืช ืฉืœ ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ. ืงืจืื• ืขื•ื“ ืขืœ ื›ืš [ื‘ืžืืžืจ ื”ื–ื”](https://medium.com/microsoftazure/neural-networks-for-forecasting-financial-and-economic-time-series-6aca370ff412)
## ืžืฉื™ืžื”
[ื”ืฆื™ื’ื• ืขื•ื“ ืกื“ืจื•ืช ื–ืžืŸ](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "d1781b0b92568ea1d119d0a198b576b4",
"translation_date": "2025-09-05T19:05:59+00:00",
"source_file": "7-TimeSeries/1-Introduction/assignment.md",
"language_code": "he"
}
-->
# ื”ืฆื’ืช ืกื“ืจื•ืช ื–ืžืŸ ื ื•ืกืคื•ืช
## ื”ื•ืจืื•ืช
ื”ืชื—ืœืช ืœืœืžื•ื“ ืขืœ ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ืขืœ ื™ื“ื™ ื”ืชื‘ื•ื ื ื•ืช ื‘ืกื•ื’ ื”ื ืชื•ื ื™ื ืฉื“ื•ืจืฉื™ื ืžื•ื“ืœื™ื ืžื™ื•ื—ื“ื™ื ืืœื•. ื›ื‘ืจ ื”ืฆื’ืช ื ืชื•ื ื™ื ื”ืงืฉื•ืจื™ื ืœืื ืจื’ื™ื”. ืขื›ืฉื™ื•, ื—ืคืฉ ื ืชื•ื ื™ื ื ื•ืกืคื™ื ืฉื™ื›ื•ืœื™ื ืœื”ืคื™ืง ืชื•ืขืœืช ืžื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ. ืžืฆื ืฉืœื•ืฉ ื“ื•ื’ืžืื•ืช (ื ืกื” [Kaggle](https://kaggle.com) ื•-[Azure Open Datasets](https://azure.microsoft.com/en-us/services/open-datasets/catalog/?WT.mc_id=academic-77952-leestott)) ื•ื™ืฆื•ืจ ืžื—ื‘ืจืช ืœื”ืฆื’ืช ื”ื ืชื•ื ื™ื. ืฆื™ื™ืŸ ื‘ืžื—ื‘ืจืช ื›ืœ ืžืืคื™ื™ืŸ ืžื™ื•ื—ื“ ืฉื™ืฉ ืœื ืชื•ื ื™ื (ืขื•ื ืชื™ื•ืช, ืฉื™ื ื•ื™ื™ื ืคืชืื•ืžื™ื™ื ืื• ืžื’ืžื•ืช ืื—ืจื•ืช).
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ----------------------------------------------------- | -------------------------------------------------- | ------------------------------------------------------------------------------------------ |
| | ืฉืœื•ืฉื” ืžืขืจื›ื™ ื ืชื•ื ื™ื ืžื•ืฆื’ื™ื ื•ืžื•ืกื‘ืจื™ื ื‘ืžื—ื‘ืจืช | ืฉื ื™ ืžืขืจื›ื™ ื ืชื•ื ื™ื ืžื•ืฆื’ื™ื ื•ืžื•ืกื‘ืจื™ื ื‘ืžื—ื‘ืจืช | ืžืขื˜ ืžืขืจื›ื™ ื ืชื•ื ื™ื ืžื•ืฆื’ื™ื ืื• ืžื•ืกื‘ืจื™ื ื‘ืžื—ื‘ืจืช ืื• ืฉื”ื ืชื•ื ื™ื ืฉื”ื•ืฆื’ื• ืื™ื ื ืžืกืคืงื™ื |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T19:06:47+00:00",
"source_file": "7-TimeSeries/1-Introduction/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื ื• ืœื ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
"translation_date": "2025-09-05T19:06:29+00:00",
"source_file": "7-TimeSeries/1-Introduction/solution/R/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,404 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "917dbf890db71a322f306050cb284749",
"translation_date": "2025-09-05T18:59:03+00:00",
"source_file": "7-TimeSeries/2-ARIMA/README.md",
"language_code": "he"
}
-->
# ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ืขื ARIMA
ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื, ืœืžื“ืชื ืžืขื˜ ืขืœ ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ื•ื˜ืขื™ื ืช ืžืขืจืš ื ืชื•ื ื™ื ืฉืžืฆื™ื’ ืืช ื”ืชื ื•ื“ื•ืช ื‘ืขื•ืžืก ื”ื—ืฉืžืœื™ ืœืื•ืจืš ืชืงื•ืคืช ื–ืžืŸ.
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ืžื‘ื•ื ืงืฆืจ ืœืžื•ื“ืœื™ื ืฉืœ ARIMA. ื”ื“ื•ื’ืžื” ื ืขืฉืชื” ื‘-R, ืืš ื”ืจืขื™ื•ื ื•ืช ื”ื ืื•ื ื™ื‘ืจืกืœื™ื™ื.
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืžื‘ื•ื
ื‘ืฉื™ืขื•ืจ ื–ื”, ืชื’ืœื• ื“ืจืš ืกืคืฆื™ืคื™ืช ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืขื [ARIMA: *A*uto*R*egressive *I*ntegrated *M*oving *A*verage](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average). ืžื•ื“ืœื™ื ืฉืœ ARIMA ืžืชืื™ืžื™ื ื‘ืžื™ื•ื—ื“ ืœื ืชื•ื ื™ื ืฉืžืฆื™ื’ื™ื [ืื™-ืกื˜ืฆื™ื•ื ืจื™ื•ืช](https://wikipedia.org/wiki/Stationary_process).
## ืžื•ืฉื’ื™ื ื›ืœืœื™ื™ื
ื›ื“ื™ ืœืขื‘ื•ื“ ืขื ARIMA, ื™ืฉื ื ื›ืžื” ืžื•ืฉื’ื™ื ืฉื—ืฉื•ื‘ ืœื”ื›ื™ืจ:
- ๐ŸŽ“ **ืกื˜ืฆื™ื•ื ืจื™ื•ืช**. ื‘ื”ืงืฉืจ ืกื˜ื˜ื™ืกื˜ื™, ืกื˜ืฆื™ื•ื ืจื™ื•ืช ืžืชื™ื™ื—ืกืช ืœื ืชื•ื ื™ื ืฉื”ื”ืชืคืœื’ื•ืช ืฉืœื”ื ืื™ื ื” ืžืฉืชื ื” ื›ืืฉืจ ื”ื ืžื•ื–ื–ื™ื ื‘ื–ืžืŸ. ื ืชื•ื ื™ื ืฉืื™ื ื ืกื˜ืฆื™ื•ื ืจื™ื™ื ืžืฆื™ื’ื™ื ืชื ื•ื“ื•ืช ืขืงื‘ ืžื’ืžื•ืช ืฉื™ืฉ ืœื”ืคื•ืš ืื•ืชืŸ ื›ื“ื™ ืœื ืชื—. ืขื•ื ืชื™ื•ืช, ืœืžืฉืœ, ื™ื›ื•ืœื” ืœื”ื›ื ื™ืก ืชื ื•ื“ื•ืช ืœื ืชื•ื ื™ื ื•ื ื™ืชืŸ ืœื”ืกื™ืจ ืื•ืชื” ื‘ืืžืฆืขื•ืช ืชื”ืœื™ืš ืฉืœ 'ื”ื‘ื“ืœ ืขื•ื ืชื™'.
- ๐ŸŽ“ **[ื”ื‘ื“ืœื”](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing)**. ื”ื‘ื“ืœื” ืฉืœ ื ืชื•ื ื™ื, ืฉื•ื‘ ื‘ื”ืงืฉืจ ืกื˜ื˜ื™ืกื˜ื™, ืžืชื™ื™ื—ืกืช ืœืชื”ืœื™ืš ืฉืœ ื”ืคื™ื›ืช ื ืชื•ื ื™ื ืฉืื™ื ื ืกื˜ืฆื™ื•ื ืจื™ื™ื ืœืกื˜ืฆื™ื•ื ืจื™ื™ื ืขืœ ื™ื“ื™ ื”ืกืจืช ื”ืžื’ืžื” ื”ืœื-ืงื‘ื•ืขื” ืฉืœื”ื. "ื”ื‘ื“ืœื” ืžืกื™ืจื” ืืช ื”ืฉื™ื ื•ื™ื™ื ื‘ืจืžืช ืกื“ืจืช ื”ื–ืžืŸ, ืžื‘ื˜ืœืช ืžื’ืžื•ืช ื•ืขื•ื ืชื™ื•ืช ื•ื‘ื›ืš ืžื™ื™ืฆื‘ืช ืืช ื”ืžืžื•ืฆืข ืฉืœ ืกื“ืจืช ื”ื–ืžืŸ." [ืžืืžืจ ืžืืช Shixiong et al](https://arxiv.org/abs/1904.07632)
## ARIMA ื‘ื”ืงืฉืจ ืฉืœ ืกื“ืจื•ืช ื–ืžืŸ
ื‘ื•ืื• ื ืคืจืง ืืช ื”ื—ืœืงื™ื ืฉืœ ARIMA ื›ื“ื™ ืœื”ื‘ื™ืŸ ื˜ื•ื‘ ื™ื•ืชืจ ื›ื™ืฆื“ ื”ื•ื ืขื•ื–ืจ ืœื ื• ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืฉืœ ืกื“ืจื•ืช ื–ืžืŸ ื•ืœื‘ืฆืข ืชื—ื–ื™ื•ืช.
- **AR - ืขื‘ื•ืจ AutoRegressive**. ืžื•ื“ืœื™ื ืื•ื˜ื•ืจื’ืจืกื™ื‘ื™ื™ื, ื›ืคื™ ืฉื”ืฉื ืžืจืžื–, ืžืกืชื›ืœื™ื 'ืื—ื•ืจื”' ื‘ื–ืžืŸ ื›ื“ื™ ืœื ืชื— ืขืจื›ื™ื ืงื•ื“ืžื™ื ื‘ื ืชื•ื ื™ื ืฉืœื›ื ื•ืœื‘ืฆืข ื”ื ื—ื•ืช ืœื’ื‘ื™ื”ื. ืขืจื›ื™ื ืงื•ื“ืžื™ื ืืœื• ื ืงืจืื™ื 'ืคื™ื’ื•ืจื™ื'. ื“ื•ื’ืžื” ืœื›ืš ืชื”ื™ื” ื ืชื•ื ื™ื ืฉืžืฆื™ื’ื™ื ืžื›ื™ืจื•ืช ื—ื•ื“ืฉื™ื•ืช ืฉืœ ืขืคืจื•ื ื•ืช. ืกืš ื”ืžื›ื™ืจื•ืช ืฉืœ ื›ืœ ื—ื•ื“ืฉ ื™ื™ื—ืฉื‘ ื›'ืžืฉืชื ื” ืžืชืคืชื—' ื‘ืžืขืจืš ื”ื ืชื•ื ื™ื. ืžื•ื“ืœ ื–ื” ื ื‘ื ื” ื›ืืฉืจ "ื”ืžืฉืชื ื” ื”ืžืชืคืชื— ืฉืœ ื”ืขื ื™ื™ืŸ ืžื•ืขืจืš ืขืœ ืขืจื›ื™ื• ื”ืžืคื’ืจื™ื (ื›ืœื•ืžืจ, ื”ืงื•ื“ืžื™ื)." [ื•ื™ืงื™ืคื“ื™ื”](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average)
- **I - ืขื‘ื•ืจ Integrated**. ื‘ื ื™ื’ื•ื“ ืœืžื•ื“ืœื™ื ื“ื•ืžื™ื ื›ืžื• 'ARMA', ื”-'I' ื‘-ARIMA ืžืชื™ื™ื—ืก ืœื”ื™ื‘ื˜ ื”*[ืžืฉื•ืœื‘](https://wikipedia.org/wiki/Order_of_integration)* ืฉืœื•. ื”ื ืชื•ื ื™ื 'ืžืฉื•ืœื‘ื™ื' ื›ืืฉืจ ืžื™ื•ืฉืžื™ื ืฉืœื‘ื™ ื”ื‘ื“ืœื” ื›ื“ื™ ืœื‘ื˜ืœ ืื™-ืกื˜ืฆื™ื•ื ืจื™ื•ืช.
- **MA - ืขื‘ื•ืจ Moving Average**. ื”ื”ื™ื‘ื˜ ืฉืœ [ืžืžื•ืฆืข ื ืข](https://wikipedia.org/wiki/Moving-average_model) ื‘ืžื•ื“ืœ ื–ื” ืžืชื™ื™ื—ืก ืœืžืฉืชื ื” ื”ืคืœื˜ ืฉื ืงื‘ืข ืขืœ ื™ื“ื™ ื”ืชื‘ื•ื ื ื•ืช ื‘ืขืจื›ื™ื ื”ื ื•ื›ื—ื™ื™ื ื•ื”ืขื‘ืจื™ื™ื ืฉืœ ืคื™ื’ื•ืจื™ื.
ืฉื•ืจื” ืชื—ืชื•ื ื”: ARIMA ืžืฉืžืฉ ื›ื“ื™ ืœื”ืชืื™ื ืžื•ื“ืœ ื‘ืฆื•ืจื” ื”ืงืจื•ื‘ื” ื‘ื™ื•ืชืจ ืœื ืชื•ื ื™ื ื”ืžื™ื•ื—ื“ื™ื ืฉืœ ืกื“ืจื•ืช ื–ืžืŸ.
## ืชืจื’ื™ืœ - ื‘ื ื™ื™ืช ืžื•ื“ืœ ARIMA
ืคืชื—ื• ืืช ืชื™ืงื™ื™ืช [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/working) ื‘ืฉื™ืขื•ืจ ื–ื” ื•ืžืฆืื• ืืช ื”ืงื•ื‘ืฅ [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/2-ARIMA/working/notebook.ipynb).
1. ื”ืจื™ืฆื• ืืช ื”ืžื—ื‘ืจืช ื›ื“ื™ ืœื˜ืขื•ืŸ ืืช ืกืคืจื™ื™ืช Python `statsmodels`; ืชื–ื“ืงืงื• ืœื” ืขื‘ื•ืจ ืžื•ื“ืœื™ื ืฉืœ ARIMA.
1. ื˜ืขื ื• ืกืคืจื™ื•ืช ื ื—ื•ืฆื•ืช.
1. ื›ืขืช, ื˜ืขื ื• ืžืกืคืจ ืกืคืจื™ื•ืช ื ื•ืกืคื•ืช ืฉื™ืžื•ืฉื™ื•ืช ืœืฉืจื˜ื•ื˜ ื ืชื•ื ื™ื:
```python
import os
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import datetime as dt
import math
from pandas.plotting import autocorrelation_plot
from statsmodels.tsa.statespace.sarimax import SARIMAX
from sklearn.preprocessing import MinMaxScaler
from common.utils import load_data, mape
from IPython.display import Image
%matplotlib inline
pd.options.display.float_format = '{:,.2f}'.format
np.set_printoptions(precision=2)
warnings.filterwarnings("ignore") # specify to ignore warning messages
```
1. ื˜ืขื ื• ืืช ื”ื ืชื•ื ื™ื ืžืงื•ื‘ืฅ `/data/energy.csv` ืœืชื•ืš DataFrame ืฉืœ Pandas ื•ื”ืกืชื›ืœื• ืขืœื™ื”ื:
```python
energy = load_data('./data')[['load']]
energy.head(10)
```
1. ืฉืจื˜ื˜ื• ืืช ื›ืœ ื ืชื•ื ื™ ื”ืื ืจื’ื™ื” ื”ื–ืžื™ื ื™ื ืžื™ื ื•ืืจ 2012 ืขื“ ื“ืฆืžื‘ืจ 2014. ืœื ืืžื•ืจื•ืช ืœื”ื™ื•ืช ื”ืคืชืขื•ืช, ื›ืคื™ ืฉืจืื™ื ื• ืืช ื”ื ืชื•ื ื™ื ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื:
```python
energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()
```
ื›ืขืช, ื‘ื•ืื• ื ื‘ื ื” ืžื•ื“ืœ!
### ื™ืฆื™ืจืช ืžืขืจื›ื™ ื ืชื•ื ื™ื ืœืื™ืžื•ืŸ ื•ื‘ื“ื™ืงื”
ื›ืขืช ื”ื ืชื•ื ื™ื ืฉืœื›ื ื˜ืขื•ื ื™ื, ื›ืš ืฉืชื•ื›ืœื• ืœื”ืคืจื™ื“ ืื•ืชื ืœืžืขืจื›ื™ ืื™ืžื•ืŸ ื•ื‘ื“ื™ืงื”. ืชืืžื ื• ืืช ื”ืžื•ื“ืœ ืฉืœื›ื ืขืœ ืžืขืจืš ื”ืื™ืžื•ืŸ. ื›ืจื’ื™ืœ, ืœืื—ืจ ืฉื”ืžื•ื“ืœ ืกื™ื™ื ืืช ื”ืื™ืžื•ืŸ, ืชืขืจื™ื›ื• ืืช ื“ื™ื•ืงื• ื‘ืืžืฆืขื•ืช ืžืขืจืš ื”ื‘ื“ื™ืงื”. ืขืœื™ื›ื ืœื•ื•ื“ื ืฉืžืขืจืš ื”ื‘ื“ื™ืงื” ืžื›ืกื” ืชืงื•ืคื” ืžืื•ื—ืจืช ื™ื•ืชืจ ื‘ื–ืžืŸ ืžืžืขืจืš ื”ืื™ืžื•ืŸ ื›ื“ื™ ืœื”ื‘ื˜ื™ื— ืฉื”ืžื•ื“ืœ ืœื ื™ืงื‘ืœ ืžื™ื“ืข ืžืชืงื•ืคื•ืช ื–ืžืŸ ืขืชื™ื“ื™ื•ืช.
1. ื”ืงืฆื• ืชืงื•ืคื” ืฉืœ ื—ื•ื“ืฉื™ื™ื ืžื”-1 ื‘ืกืคื˜ืžื‘ืจ ืขื“ ื”-31 ื‘ืื•ืงื˜ื•ื‘ืจ 2014 ืœืžืขืจืš ื”ืื™ืžื•ืŸ. ืžืขืจืš ื”ื‘ื“ื™ืงื” ื™ื›ืœื•ืœ ืืช ื”ืชืงื•ืคื” ืฉืœ ื—ื•ื“ืฉื™ื™ื ืžื”-1 ื‘ื ื•ื‘ืžื‘ืจ ืขื“ ื”-31 ื‘ื“ืฆืžื‘ืจ 2014:
```python
train_start_dt = '2014-11-01 00:00:00'
test_start_dt = '2014-12-30 00:00:00'
```
ืžื›ื™ื•ื•ืŸ ืฉื ืชื•ื ื™ื ืืœื• ืžืฉืงืคื™ื ืืช ืฆืจื™ื›ืช ื”ืื ืจื’ื™ื” ื”ื™ื•ืžื™ืช, ื™ืฉื ื• ื“ืคื•ืก ืขื•ื ืชื™ ื—ื–ืง, ืืš ื”ืฆืจื™ื›ื” ื“ื•ืžื” ื‘ื™ื•ืชืจ ืœืฆืจื™ื›ื” ื‘ื™ืžื™ื ื”ืื—ืจื•ื ื™ื.
1. ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื”ื”ื‘ื“ืœื™ื:
```python
energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \
.join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \
.plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()
```
![ื ืชื•ื ื™ ืื™ืžื•ืŸ ื•ื‘ื“ื™ืงื”](../../../../7-TimeSeries/2-ARIMA/images/train-test.png)
ืœื›ืŸ, ืฉื™ืžื•ืฉ ื‘ื—ืœื•ืŸ ื–ืžืŸ ืงื˜ืŸ ื™ื—ืกื™ืช ืœืื™ืžื•ืŸ ื”ื ืชื•ื ื™ื ืืžื•ืจ ืœื”ื™ื•ืช ืžืกืคื™ืง.
> ื”ืขืจื”: ืžื›ื™ื•ื•ืŸ ืฉื”ืคื•ื ืงืฆื™ื” ืฉื‘ื” ืื ื• ืžืฉืชืžืฉื™ื ืœื”ืชืืžืช ืžื•ื“ืœ ARIMA ืžืฉืชืžืฉืช ื‘ืื™ืžื•ืช ื‘ืชื•ืš ื”ื“ื’ื™ืžื” ื‘ืžื”ืœืš ื”ื”ืชืืžื”, ื ื•ื•ืชืจ ืขืœ ื ืชื•ื ื™ ืื™ืžื•ืช.
### ื”ื›ื ืช ื”ื ืชื•ื ื™ื ืœืื™ืžื•ืŸ
ื›ืขืช, ืขืœื™ื›ื ืœื”ื›ื™ืŸ ืืช ื”ื ืชื•ื ื™ื ืœืื™ืžื•ืŸ ืขืœ ื™ื“ื™ ื‘ื™ืฆื•ืข ืกื™ื ื•ืŸ ื•ืกืงื™ื™ืœื™ื ื’ ืฉืœ ื”ื ืชื•ื ื™ื ืฉืœื›ื. ืกื ื ื• ืืช ืžืขืจืš ื”ื ืชื•ื ื™ื ืฉืœื›ื ื›ืš ืฉื™ื›ืœื•ืœ ืจืง ืืช ื”ืชืงื•ืคื•ืช ื•ื”ืขืžื•ื“ื•ืช ื”ื ื“ืจืฉื•ืช, ื•ืกืงื™ื™ืœื™ื ื’ ื›ื“ื™ ืœื”ื‘ื˜ื™ื— ืฉื”ื ืชื•ื ื™ื ื™ื•ืงืจื ื• ื‘ื˜ื•ื•ื— 0,1.
1. ืกื ื ื• ืืช ืžืขืจืš ื”ื ืชื•ื ื™ื ื”ืžืงื•ืจื™ ื›ืš ืฉื™ื›ืœื•ืœ ืจืง ืืช ื”ืชืงื•ืคื•ืช ืฉื”ื•ื–ื›ืจื• ืœื›ืœ ืžืขืจืš ื•ืจืง ืืช ื”ืขืžื•ื“ื” ื”ื ื“ืจืฉืช 'load' ื‘ื ื•ืกืฃ ืœืชืืจื™ืš:
```python
train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]
test = energy.copy()[energy.index >= test_start_dt][['load']]
print('Training data shape: ', train.shape)
print('Test data shape: ', test.shape)
```
ืชื•ื›ืœื• ืœืจืื•ืช ืืช ื”ืฆื•ืจื” ืฉืœ ื”ื ืชื•ื ื™ื:
```output
Training data shape: (1416, 1)
Test data shape: (48, 1)
```
1. ื‘ืฆืขื• ืกืงื™ื™ืœื™ื ื’ ืœื ืชื•ื ื™ื ื›ืš ืฉื™ื”ื™ื• ื‘ื˜ื•ื•ื— (0, 1).
```python
scaler = MinMaxScaler()
train['load'] = scaler.fit_transform(train)
train.head(10)
```
1. ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื”ื ืชื•ื ื™ื ื”ืžืงื•ืจื™ื™ื ืžื•ืœ ื”ื ืชื•ื ื™ื ื”ืžื•ืงื ื™ื:
```python
energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)
train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)
plt.show()
```
![ืžืงื•ืจื™](../../../../7-TimeSeries/2-ARIMA/images/original.png)
> ื”ื ืชื•ื ื™ื ื”ืžืงื•ืจื™ื™ื
![ืžื•ืงื ื”](../../../../7-TimeSeries/2-ARIMA/images/scaled.png)
> ื”ื ืชื•ื ื™ื ื”ืžื•ืงื ื™ื
1. ื›ืขืช, ืœืื—ืจ ืฉื›ื™ื™ืœืชื ืืช ื”ื ืชื•ื ื™ื ื”ืžื•ืงื ื™ื, ืชื•ื›ืœื• ืœื›ื™ื™ืœ ืืช ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื”:
```python
test['load'] = scaler.transform(test)
test.head()
```
### ื™ื™ืฉื•ื ARIMA
ื”ื’ื™ืข ื”ื–ืžืŸ ืœื™ื™ืฉื ARIMA! ื›ืขืช ืชืฉืชืžืฉื• ื‘ืกืคืจื™ื™ืช `statsmodels` ืฉื”ืชืงื ืชื ืงื•ื“ื.
ื›ืขืช ืขืœื™ื›ื ืœื‘ืฆืข ืžืกืคืจ ืฉืœื‘ื™ื:
1. ื”ื’ื“ื™ืจื• ืืช ื”ืžื•ื“ืœ ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`SARIMAX()` ื•ื”ืขื‘ืจืช ืคืจืžื˜ืจื™ ื”ืžื•ื“ืœ: ืคืจืžื˜ืจื™ื p, d, ื•-q, ื•ืคืจืžื˜ืจื™ื P, D, ื•-Q.
2. ื”ื›ื™ื ื• ืืช ื”ืžื•ื“ืœ ืœื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœืคื•ื ืงืฆื™ื” fit().
3. ื‘ืฆืขื• ืชื—ื–ื™ื•ืช ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœืคื•ื ืงืฆื™ื” `forecast()` ื•ืฆื™ื•ืŸ ืžืกืคืจ ื”ืฆืขื“ื™ื (ื”'ืื•ืคืง') ืœืชื—ื–ื™ืช.
> ๐ŸŽ“ ืžื” ืžืฉืžืขื•ืช ื›ืœ ื”ืคืจืžื˜ืจื™ื ื”ืœืœื•? ื‘ืžื•ื“ืœ ARIMA ื™ืฉื ื 3 ืคืจืžื˜ืจื™ื ื”ืžืฉืžืฉื™ื ืœืกื™ื™ืข ื‘ืžื™ื“ื•ืœ ื”ื”ื™ื‘ื˜ื™ื ื”ืžืจื›ื–ื™ื™ื ืฉืœ ืกื“ืจืช ื–ืžืŸ: ืขื•ื ืชื™ื•ืช, ืžื’ืžื” ื•ืจืขืฉ. ื”ืคืจืžื˜ืจื™ื ื”ื:
`p`: ื”ืคืจืžื˜ืจ ื”ืงืฉื•ืจ ืœื”ื™ื‘ื˜ ื”ืื•ื˜ื•ืจื’ืจืกื™ื‘ื™ ืฉืœ ื”ืžื•ื“ืœ, ืฉืžืฉืœื‘ ืขืจื›ื™ื *ืขื‘ืจื™ื™ื*.
`d`: ื”ืคืจืžื˜ืจ ื”ืงืฉื•ืจ ืœื—ืœืง ื”ืžืฉื•ืœื‘ ืฉืœ ื”ืžื•ื“ืœ, ืฉืžืฉืคื™ืข ืขืœ ื›ืžื•ืช ื”-*ื”ื‘ื“ืœื”* (๐ŸŽ“ ื–ื•ื›ืจื™ื ื”ื‘ื“ืœื” ๐Ÿ‘†?) ืฉื™ืฉ ืœื™ื™ืฉื ืขืœ ืกื“ืจืช ื–ืžืŸ.
`q`: ื”ืคืจืžื˜ืจ ื”ืงืฉื•ืจ ืœื—ืœืง ื”ืžืžื•ืฆืข ื”ื ืข ืฉืœ ื”ืžื•ื“ืœ.
> ื”ืขืจื”: ืื ืœื ืชื•ื ื™ื ืฉืœื›ื ื™ืฉ ื”ื™ื‘ื˜ ืขื•ื ืชื™ - ื›ืžื• ื‘ืžืงืจื” ื–ื” - , ืื ื• ืžืฉืชืžืฉื™ื ื‘ืžื•ื“ืœ ARIMA ืขื•ื ืชื™ (SARIMA). ื‘ืžืงืจื” ื–ื” ืขืœื™ื›ื ืœื”ืฉืชืžืฉ ื‘ืงื‘ื•ืฆืช ืคืจืžื˜ืจื™ื ื ื•ืกืคืช: `P`, `D`, ื•-`Q` ืฉืžืชืืจื™ื ืืช ืื•ืชื ืงืฉืจื™ื ื›ืžื• `p`, `d`, ื•-`q`, ืืš ืžืชื™ื™ื—ืกื™ื ืœืจื›ื™ื‘ื™ื ื”ืขื•ื ืชื™ื™ื ืฉืœ ื”ืžื•ื“ืœ.
1. ื”ืชื—ื™ืœื• ื‘ื”ื’ื“ืจืช ืขืจืš ื”ืื•ืคืง ื”ืžื•ืขื“ืฃ ืขืœื™ื›ื. ื‘ื•ืื• ื ื ืกื” 3 ืฉืขื•ืช:
```python
# Specify the number of steps to forecast ahead
HORIZON = 3
print('Forecasting horizon:', HORIZON, 'hours')
```
ื‘ื—ื™ืจืช ื”ืขืจื›ื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ืขื‘ื•ืจ ืคืจืžื˜ืจื™ ืžื•ื“ืœ ARIMA ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืžืืชื’ืจืช ืžื›ื™ื•ื•ืŸ ืฉื”ื™ื ืžืขื˜ ืกื•ื‘ื™ื™ืงื˜ื™ื‘ื™ืช ื•ื’ื•ื–ืœืช ื–ืžืŸ. ื™ื™ืชื›ืŸ ืฉืชืจืฆื• ืœืฉืงื•ืœ ืฉื™ืžื•ืฉ ื‘ืคื•ื ืงืฆื™ื” `auto_arima()` ืžืชื•ืš ืกืคืจื™ื™ืช [`pyramid`](https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html).
1. ืœืขืช ืขืชื” ื ืกื• ื›ืžื” ื‘ื—ื™ืจื•ืช ื™ื“ื ื™ื•ืช ื›ื“ื™ ืœืžืฆื•ื ืžื•ื“ืœ ื˜ื•ื‘.
```python
order = (4, 1, 0)
seasonal_order = (1, 1, 0, 24)
model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)
results = model.fit()
print(results.summary())
```
ื˜ื‘ืœื” ืฉืœ ืชื•ืฆืื•ืช ืžื•ื“ืคืกืช.
ื‘ื ื™ืชื ืืช ื”ืžื•ื“ืœ ื”ืจืืฉื•ืŸ ืฉืœื›ื! ื›ืขืช ืขืœื™ื ื• ืœืžืฆื•ื ื“ืจืš ืœื”ืขืจื™ืš ืื•ืชื•.
### ื”ืขืจื›ืช ื”ืžื•ื“ืœ ืฉืœื›ื
ื›ื“ื™ ืœื”ืขืจื™ืš ืืช ื”ืžื•ื“ืœ ืฉืœื›ื, ืชื•ื›ืœื• ืœื‘ืฆืข ืืช ืžื” ืฉื ืงืจื `walk forward` validation. ื‘ืคื•ืขืœ, ืžื•ื“ืœื™ื ืฉืœ ืกื“ืจื•ืช ื–ืžืŸ ืžืื•ืžื ื™ื ืžื—ื“ืฉ ื‘ื›ืœ ืคืขื ืฉื ืชื•ื ื™ื ื—ื“ืฉื™ื ื”ื•ืคื›ื™ื ื–ืžื™ื ื™ื. ื–ื” ืžืืคืฉืจ ืœืžื•ื“ืœ ืœื‘ืฆืข ืืช ื”ืชื—ื–ื™ืช ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ื‘ื›ืœ ืฉืœื‘ ื–ืžืŸ.
ืžืชื—ื™ืœื™ื ื‘ืชื—ื™ืœืช ืกื“ืจืช ื”ื–ืžืŸ ื‘ืืžืฆืขื•ืช ื˜ื›ื ื™ืงื” ื–ื•, ืžืืžื ื™ื ืืช ื”ืžื•ื“ืœ ืขืœ ืžืขืจืš ื ืชื•ื ื™ ื”ืื™ืžื•ืŸ. ืœืื—ืจ ืžื›ืŸ ืžื‘ืฆืขื™ื ืชื—ื–ื™ืช ืขืœ ืฉืœื‘ ื”ื–ืžืŸ ื”ื‘ื. ื”ืชื—ื–ื™ืช ืžื•ืขืจื›ืช ืžื•ืœ ื”ืขืจืš ื”ื™ื“ื•ืข. ืžืขืจืš ื”ืื™ืžื•ืŸ ืžื•ืจื—ื‘ ื›ืš ืฉื™ื›ืœื•ืœ ืืช ื”ืขืจืš ื”ื™ื“ื•ืข ื•ื”ืชื”ืœื™ืš ื—ื•ื–ืจ ืขืœ ืขืฆืžื•.
> ื”ืขืจื”: ืขืœื™ื›ื ืœืฉืžื•ืจ ืขืœ ื—ืœื•ืŸ ืžืขืจืš ื”ืื™ืžื•ืŸ ืงื‘ื•ืข ืœืฆื•ืจืš ืื™ืžื•ืŸ ื™ืขื™ืœ ื™ื•ืชืจ ื›ืš ืฉื‘ื›ืœ ืคืขื ืฉืืชื ืžื•ืกื™ืคื™ื ืชืฆืคื™ืช ื—ื“ืฉื” ืœืžืขืจืš ื”ืื™ืžื•ืŸ, ืืชื ืžืกื™ืจื™ื ืืช ื”ืชืฆืคื™ืช ืžืชื—ื™ืœืช ื”ืžืขืจืš.
ืชื”ืœื™ืš ื–ื” ืžืกืคืง ื”ืขืจื›ื” ื—ื–ืงื” ื™ื•ืชืจ ืฉืœ ืื™ืš ื”ืžื•ื“ืœ ื™ืคืขืœ ื‘ืคื•ืขืœ. ืขื ื–ืืช, ื”ื•ื ืžื’ื™ืข ื‘ืขืœื•ืช ื—ื™ืฉื•ื‘ื™ืช ืฉืœ ื™ืฆื™ืจืช ื›ืœ ื›ืš ื”ืจื‘ื” ืžื•ื“ืœื™ื. ื–ื” ืžืงื•ื‘ืœ ืื ื”ื ืชื•ื ื™ื ืงื˜ื ื™ื ืื• ืื ื”ืžื•ื“ืœ ืคืฉื•ื˜, ืืš ื™ื›ื•ืœ ืœื”ื™ื•ืช ื‘ืขื™ื™ืชื™ ื‘ืงื ื” ืžื™ื“ื” ื’ื“ื•ืœ.
Walk-forward validation ื”ื•ื ืชืงืŸ ื”ื–ื”ื‘ ืœื”ืขืจื›ืช ืžื•ื“ืœื™ื ืฉืœ ืกื“ืจื•ืช ื–ืžืŸ ื•ืžื•ืžืœืฅ ืœืคืจื•ื™ืงื˜ื™ื ืฉืœื›ื.
1. ืจืืฉื™ืช, ืฆืจื• ื ืงื•ื“ืช ื ืชื•ื ื™ ื‘ื“ื™ืงื” ืขื‘ื•ืจ ื›ืœ ืฉืœื‘ ืื•ืคืง.
```python
test_shifted = test.copy()
for t in range(1, HORIZON+1):
test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')
test_shifted = test_shifted.dropna(how='any')
test_shifted.head(5)
```
| | | load | load+1 | load+2 |
| ---------- | -------- | ---- | ------ | ------ |
| 2014-12-30 | 00:00:00 | 0.33 | 0.29 | 0.27 |
| 2014-12-30 | 01:00:00 | 0.29 | 0.27 | 0.27 |
| 2014-12-30 | 02:00:00 | 0.27 | 0.27 | 0.30 |
| 2014-12-30 | 03:00:00 | 0.27 | 0.30 | 0.41 |
| 2014-12-30 | 04:00:00 | 0.30 | 0.41 | 0.57 |
ื”ื ืชื•ื ื™ื ืžื•ื–ื–ื™ื ืื•ืคืงื™ืช ื‘ื”ืชืื ืœื ืงื•ื“ืช ื”ืื•ืคืง ืฉืœื”ื.
1. ื‘ืฆืขื• ืชื—ื–ื™ื•ืช ืขืœ ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื” ืฉืœื›ื ื‘ืืžืฆืขื•ืช ื’ื™ืฉื” ื–ื• ืฉืœ ื—ืœื•ืŸ ื”ื–ื–ื” ื‘ืœื•ืœืื” ื‘ื’ื•ื“ืœ ืื•ืจืš ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื”:
```python
%%time
training_window = 720 # dedicate 30 days (720 hours) for training
train_ts = train['load']
test_ts = test_shifted
history = [x for x in train_ts]
history = history[(-training_window):]
predictions = list()
order = (2, 1, 0)
seasonal_order = (1, 1, 0, 24)
for t in range(test_ts.shape[0]):
model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)
model_fit = model.fit()
yhat = model_fit.forecast(steps = HORIZON)
predictions.append(yhat)
obs = list(test_ts.iloc[t])
# move the training window
history.append(obs[0])
history.pop(0)
print(test_ts.index[t])
print(t+1, ': predicted =', yhat, 'expected =', obs)
```
ืชื•ื›ืœื• ืœืฆืคื•ืช ื‘ืื™ืžื•ืŸ ืžืชืจื—ืฉ:
```output
2014-12-30 00:00:00
1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323]
2014-12-30 01:00:00
2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126]
2014-12-30 02:00:00
3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795]
```
1. ื”ืฉื•ื• ืืช ื”ืชื—ื–ื™ื•ืช ืœืขื•ืžืก ื‘ืคื•ืขืœ:
```python
eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])
eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]
eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')
eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()
eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])
eval_df.head()
```
ืคืœื˜
| | | timestamp | h | prediction | actual |
| --- | ---------- | --------- | --- | ---------- | -------- |
| 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 |
| 1 | 2014-12-30 | 01:00:00 | t+1 | 2,955.53 | 2,935.00 |
| 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 |
| 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 |
| 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 |
ื”ืชื‘ื•ื ื ื• ื‘ืชื—ื–ื™ืช ื”ื ืชื•ื ื™ื ื”ืฉืขืชื™ืช, ื‘ื”ืฉื•ื•ืื” ืœืขื•ืžืก ื‘ืคื•ืขืœ. ืขื“ ื›ืžื” ื–ื” ืžื“ื•ื™ืง?
### ื‘ื“ื™ืงืช ื“ื™ื•ืง ื”ืžื•ื“ืœ
ื‘ื“ืงื• ืืช ื“ื™ื•ืง ื”ืžื•ื“ืœ ืฉืœื›ื ืขืœ ื™ื“ื™ ื‘ื“ื™ืงืช ืฉื’ื™ืืช ื”ืื—ื•ื– ื”ืžืžื•ืฆืขืช ื”ืžื•ื—ืœื˜ืช (MAPE) ืฉืœื• ืขืœ ื›ืœ ื”ืชื—ื–ื™ื•ืช.
> **๐Ÿงฎ ื”ืฆื’ ืœื™ ืืช ื”ืžืชืžื˜ื™ืงื”**
>
> ![MAPE](../../../../7-TimeSeries/2-ARIMA/images/mape.png)
>
> [MAPE](https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/) ืžืฉืžืฉ ืœื”ืฆื™ื’ ืืช ื“ื™ื•ืง ื”ืชื—ื–ื™ืช ื›ื™ื—ืก ืฉืžื•ื’ื“ืจ ืขืœ ื™ื“ื™ ื”ื ื•ืกื—ื” ืœืขื™ืœ. ื”ื”ืคืจืฉ ื‘ื™ืŸ ื”ืขืจืš ื”ืืžื™ืชื™ ืœืขืจืš ื”ื—ื–ื•ื™ ืžื—ื•ืœืง ื‘ืขืจืš ื”ืืžื™ืชื™.
> "ื”ืขืจืš ื”ืžื•ื—ืœื˜ ื‘ื—ื™ืฉื•ื‘ ื–ื” ืžืกื•ื›ื ืขื‘ื•ืจ ื›ืœ ื ืงื•ื“ืช ืชื—ื–ื™ืช ื‘ื–ืžืŸ ื•ืžื—ื•ืœืง ื‘ืžืกืคืจ ื”ื ืงื•ื“ื•ืช ื”ืžื•ืชืืžื•ืช n." [ื•ื™ืงื™ืคื“ื™ื”](https://wikipedia.org/wiki/Mean_absolute_percentage_error)
1. ื›ืชื™ื‘ืช ืžืฉื•ื•ืื” ื‘ืงื•ื“:
```python
if(HORIZON > 1):
eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']
print(eval_df.groupby('h')['APE'].mean())
```
1. ื—ื™ืฉื•ื‘ MAPE ืฉืœ ืฆืขื“ ืื—ื“:
```python
print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%')
```
MAPE ืฉืœ ืชื—ื–ื™ืช ืฆืขื“ ืื—ื“: 0.5570581332313952 %
1. ื”ื“ืคืกืช MAPE ืฉืœ ืชื—ื–ื™ืช ืจื‘-ืฉืœื‘ื™ืช:
```python
print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%')
```
```output
Multi-step forecast MAPE: 1.1460048657704118 %
```
ืžืกืคืจ ื ืžื•ืš ื”ื•ื ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ: ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชื—ื–ื™ืช ืขื MAPE ืฉืœ 10 ื”ื™ื ืชื—ื–ื™ืช ืขื ืกื˜ื™ื™ื” ืฉืœ 10%.
1. ืื‘ืœ ื›ืžื• ืชืžื™ื“, ืงืœ ื™ื•ืชืจ ืœืจืื•ืช ืžื“ื™ื“ื” ื›ื–ื• ืฉืœ ื“ื™ื•ืง ื‘ืื•ืคืŸ ื—ื–ื•ืชื™, ืื– ื‘ื•ืื• ื ืฉืจื˜ื˜ ืืช ื–ื”:
```python
if(HORIZON == 1):
## Plotting single step forecast
eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8))
else:
## Plotting multi step forecast
plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]
for t in range(1, HORIZON+1):
plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values
fig = plt.figure(figsize=(15, 8))
ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)
ax = fig.add_subplot(111)
for t in range(1, HORIZON+1):
x = plot_df['timestamp'][(t-1):]
y = plot_df['t+'+str(t)][0:len(x)]
ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t))
ax.legend(loc='best')
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()
```
![ืžื•ื“ืœ ืกื“ืจืช ื–ืžืŸ](../../../../7-TimeSeries/2-ARIMA/images/accuracy.png)
๐Ÿ† ื’ืจืฃ ื™ืคื” ืžืื•ื“, ืฉืžืฆื™ื’ ืžื•ื“ืœ ืขื ื“ื™ื•ืง ื˜ื•ื‘. ืขื‘ื•ื“ื” ืžืฆื•ื™ื ืช!
---
## ๐Ÿš€ืืชื’ืจ
ื—ืงืจื• ืืช ื”ื“ืจื›ื™ื ืœื‘ื—ื•ืŸ ืืช ื“ื™ื•ืงื• ืฉืœ ืžื•ื“ืœ ืกื“ืจืช ื–ืžืŸ. ื‘ืฉื™ืขื•ืจ ื–ื” ื ื’ืขื ื• ื‘-MAPE, ืื‘ืœ ื”ืื ื™ืฉ ืฉื™ื˜ื•ืช ื ื•ืกืคื•ืช ืฉืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ื”ืŸ? ื—ืงืจื• ืื•ืชืŸ ื•ื”ื•ืกื™ืคื• ื”ืขืจื•ืช. ืžืกืžืš ืžื•ืขื™ืœ ื ื™ืชืŸ ืœืžืฆื•ื [ื›ืืŸ](https://otexts.com/fpp2/accuracy.html)
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ืฉื™ืขื•ืจ ื–ื” ื ื•ื’ืข ืจืง ื‘ื™ืกื•ื“ื•ืช ืฉืœ ืชื—ื–ื™ื•ืช ืกื“ืจืช ื–ืžืŸ ืขื ARIMA. ื”ืงื“ื™ืฉื• ื–ืžืŸ ืœื”ืขืžื™ืง ืืช ื”ื™ื“ืข ืฉืœื›ื ืขืœ ื™ื“ื™ ื—ืงืจ [ืžืื’ืจ ื–ื”](https://microsoft.github.io/forecasting/) ื•ืกื•ื’ื™ ื”ืžื•ื“ืœื™ื ื”ืฉื•ื ื™ื ืฉื‘ื• ื›ื“ื™ ืœืœืžื•ื“ ื“ืจื›ื™ื ื ื•ืกืคื•ืช ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืฉืœ ืกื“ืจื•ืช ื–ืžืŸ.
## ืžืฉื™ืžื”
[ืžื•ื“ืœ ARIMA ื—ื“ืฉ](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "1c814013e10866dfd92cdb32caaae3ac",
"translation_date": "2025-09-05T19:02:05+00:00",
"source_file": "7-TimeSeries/2-ARIMA/assignment.md",
"language_code": "he"
}
-->
# ืžื•ื“ืœ ARIMA ื—ื“ืฉ
## ื”ื•ืจืื•ืช
ืขื›ืฉื™ื•, ืœืื—ืจ ืฉื‘ื ื™ืชื ืžื•ื“ืœ ARIMA, ื‘ื ื• ืžื•ื“ืœ ื—ื“ืฉ ืขื ื ืชื•ื ื™ื ื—ื“ืฉื™ื (ื ืกื• ืื—ื“ ืž[ืžืื’ืจื™ ื”ื ืชื•ื ื™ื ื”ืืœื” ืฉืœ Duke](http://www2.stat.duke.edu/~mw/ts_data_sets.html)). ืชืขื“ื• ืืช ื”ืขื‘ื•ื“ื” ืฉืœื›ื ื‘ืžื—ื‘ืจืช, ื‘ืฆืขื• ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืœื ืชื•ื ื™ื ื•ืœืžื•ื“ืœ ืฉืœื›ื, ื•ื‘ื“ืงื• ืืช ื“ื™ื•ืงื• ื‘ืืžืฆืขื•ืช MAPE.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------ | ---------------------------------- |
| | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ืขื ืžื•ื“ืœ ARIMA ื—ื“ืฉ ืฉื ื‘ื ื”, ื ื‘ื“ืง ื•ื”ื•ืกื‘ืจ ืขื ื•ื™ื–ื•ืืœื™ื–ืฆื™ื•ืช ื•ื“ื™ื•ืง ืฉืฆื•ื™ืŸ. | ื”ืžื—ื‘ืจืช ื”ืžื•ืฆื’ืช ืื™ื ื” ืžืชื•ืขื“ืช ืื• ืžื›ื™ืœื” ืฉื’ื™ืื•ืช | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ืœื ืžืœืื” |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T19:02:50+00:00",
"source_file": "7-TimeSeries/2-ARIMA/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
"translation_date": "2025-09-05T19:02:32+00:00",
"source_file": "7-TimeSeries/2-ARIMA/solution/R/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,400 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "482bccabe1df958496ea71a3667995cd",
"translation_date": "2025-09-05T19:07:29+00:00",
"source_file": "7-TimeSeries/3-SVR/README.md",
"language_code": "he"
}
-->
# ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ืขื Support Vector Regressor
ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื, ืœืžื“ืช ื›ื™ืฆื“ ืœื”ืฉืชืžืฉ ื‘ืžื•ื“ืœ ARIMA ื›ื“ื™ ืœื‘ืฆืข ืชื—ื–ื™ื•ืช ืฉืœ ืกื“ืจื•ืช ื–ืžืŸ. ืขื›ืฉื™ื• ืชื›ื™ืจ ืืช ืžื•ื“ืœ Support Vector Regressor, ืฉื”ื•ื ืžื•ื“ืœ ืจื’ืจืกื™ื” ื”ืžืฉืžืฉ ืœื—ื™ื–ื•ื™ ื ืชื•ื ื™ื ืจืฆื™ืคื™ื.
## [ืžื‘ื—ืŸ ืžืงื“ื™ื](https://ff-quizzes.netlify.app/en/ml/)
## ืžื‘ื•ื
ื‘ืฉื™ืขื•ืจ ื–ื”, ืชื’ืœื• ื“ืจืš ืกืคืฆื™ืคื™ืช ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืขื [**SVM**: **S**upport **V**ector **M**achine](https://en.wikipedia.org/wiki/Support-vector_machine) ืขื‘ื•ืจ ืจื’ืจืกื™ื”, ืื• **SVR: Support Vector Regressor**.
### SVR ื‘ื”ืงืฉืจ ืฉืœ ืกื“ืจื•ืช ื–ืžืŸ [^1]
ืœืคื ื™ ืฉื ื‘ื™ืŸ ืืช ื”ื—ืฉื™ื‘ื•ืช ืฉืœ SVR ื‘ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ, ื”ื ื” ื›ืžื” ืžื•ืฉื’ื™ื ื—ืฉื•ื‘ื™ื ืฉืขืœื™ื›ื ืœื”ื›ื™ืจ:
- **ืจื’ืจืกื™ื”:** ื˜ื›ื ื™ืงืช ืœืžื™ื“ื” ืžื•ื ื—ื™ืช ืœื—ื™ื–ื•ื™ ืขืจื›ื™ื ืจืฆื™ืคื™ื ืžืชื•ืš ืงื‘ื•ืฆืช ื ืชื•ื ื™ื ื ืชื•ื ื”. ื”ืจืขื™ื•ืŸ ื”ื•ื ืœื”ืชืื™ื ืขืงื•ืžื” (ืื• ืงื•) ื‘ืžืจื—ื‘ ื”ืชื›ื•ื ื•ืช ืฉื™ืฉ ืœื” ืืช ื”ืžืกืคืจ ื”ืžืจื‘ื™ ืฉืœ ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื. [ืœื—ืฆื• ื›ืืŸ](https://en.wikipedia.org/wiki/Regression_analysis) ืœืžื™ื“ืข ื ื•ืกืฃ.
- **Support Vector Machine (SVM):** ืกื•ื’ ืฉืœ ืžื•ื“ืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืžื•ื ื—ื™ืช ื”ืžืฉืžืฉ ืœืกื™ื•ื•ื’, ืจื’ืจืกื™ื” ื•ื–ื™ื”ื•ื™ ื—ืจื™ื’ื•ืช. ื”ืžื•ื“ืœ ื”ื•ื ื”ื™ืคืจ-ืžื™ืฉื•ืจ ื‘ืžืจื—ื‘ ื”ืชื›ื•ื ื•ืช, ืฉื‘ืžืงืจื” ืฉืœ ืกื™ื•ื•ื’ ืžืฉืžืฉ ื›ื’ื‘ื•ืœ, ื•ื‘ืžืงืจื” ืฉืœ ืจื’ืจืกื™ื” ืžืฉืžืฉ ื›ืงื• ื”ื”ืชืืžื” ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ. ื‘-SVM, ืคื•ื ืงืฆื™ื™ืช Kernel ืžืฉืžืฉืช ื‘ื“ืจืš ื›ืœืœ ื›ื“ื™ ืœื”ืคื•ืš ืืช ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื ืœืžืจื—ื‘ ื‘ืขืœ ืžืกืคืจ ืžืžื“ื™ื ื’ื‘ื•ื” ื™ื•ืชืจ, ื›ืš ืฉื ื™ืชืŸ ืœื”ืคืจื™ื“ ืื•ืชื ื‘ืงืœื•ืช. [ืœื—ืฆื• ื›ืืŸ](https://en.wikipedia.org/wiki/Support-vector_machine) ืœืžื™ื“ืข ื ื•ืกืฃ ืขืœ SVMs.
- **Support Vector Regressor (SVR):** ืกื•ื’ ืฉืœ SVM, ืฉืžื˜ืจืชื• ืœืžืฆื•ื ืืช ืงื• ื”ื”ืชืืžื” ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ (ืฉื‘ืžืงืจื” ืฉืœ SVM ื”ื•ื ื”ื™ืคืจ-ืžื™ืฉื•ืจ) ืฉื™ืฉ ืœื• ืืช ื”ืžืกืคืจ ื”ืžืจื‘ื™ ืฉืœ ื ืงื•ื“ื•ืช ื ืชื•ื ื™ื.
### ืœืžื” SVR? [^1]
ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื ืœืžื“ืชื ืขืœ ARIMA, ืฉื”ื•ื ืฉื™ื˜ื” ืกื˜ื˜ื™ืกื˜ื™ืช ืœื™ื ื™ืืจื™ืช ืžื•ืฆืœื—ืช ืœื—ื™ื–ื•ื™ ื ืชื•ื ื™ ืกื“ืจื•ืช ื–ืžืŸ. ืขื ื–ืืช, ื‘ืžืงืจื™ื ืจื‘ื™ื, ื ืชื•ื ื™ ืกื“ืจื•ืช ื–ืžืŸ ืžื›ื™ืœื™ื *ืื™-ืœื™ื ื™ืืจื™ื•ืช*, ืฉืœื ื ื™ืชืŸ ืœืžืคื•ืช ื‘ืืžืฆืขื•ืช ืžื•ื“ืœื™ื ืœื™ื ื™ืืจื™ื™ื. ื‘ืžืงืจื™ื ื›ืืœื”, ื”ื™ื›ื•ืœืช ืฉืœ SVM ืœื”ืชื—ืฉื‘ ื‘ืื™-ืœื™ื ื™ืืจื™ื•ืช ื‘ื ืชื•ื ื™ื ืขื‘ื•ืจ ืžืฉื™ืžื•ืช ืจื’ืจืกื™ื” ื”ื•ืคื›ืช ืืช SVR ืœืžื•ืฆืœื— ื‘ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ.
## ืชืจื’ื™ืœ - ื‘ื ื™ื™ืช ืžื•ื“ืœ SVR
ื”ืฉืœื‘ื™ื ื”ืจืืฉื•ื ื™ื ืœื”ื›ื ืช ื”ื ืชื•ื ื™ื ื–ื”ื™ื ืœืืœื” ืฉืœ ื”ืฉื™ืขื•ืจ ื”ืงื•ื“ื ืขืœ [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA).
ืคืชื—ื• ืืช [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/3-SVR/working) ื‘ืชื™ืงื™ื™ื” ืฉืœ ืฉื™ืขื•ืจ ื–ื” ื•ืžืฆืื• ืืช ื”ืงื•ื‘ืฅ [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/3-SVR/working/notebook.ipynb).[^2]
1. ื”ืจื™ืฆื• ืืช ื”ืžื—ื‘ืจืช ื•ื™ื™ื‘ืื• ืืช ื”ืกืคืจื™ื•ืช ื”ื ื“ืจืฉื•ืช: [^2]
```python
import sys
sys.path.append('../../')
```
```python
import os
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import datetime as dt
import math
from sklearn.svm import SVR
from sklearn.preprocessing import MinMaxScaler
from common.utils import load_data, mape
```
2. ื˜ืขื ื• ืืช ื”ื ืชื•ื ื™ื ืžืชื•ืš ื”ืงื•ื‘ืฅ `/data/energy.csv` ืœืชื•ืš DataFrame ืฉืœ Pandas ื•ื”ืกืชื›ืœื• ืขืœื™ื”ื: [^2]
```python
energy = load_data('../../data')[['load']]
```
3. ืฆืจื• ื’ืจืฃ ืฉืœ ื›ืœ ื ืชื•ื ื™ ื”ืื ืจื’ื™ื” ื”ื–ืžื™ื ื™ื ืžื™ื ื•ืืจ 2012 ืขื“ ื“ืฆืžื‘ืจ 2014: [^2]
```python
energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()
```
![ื ืชื•ื ื™ื ืžืœืื™ื](../../../../7-TimeSeries/3-SVR/images/full-data.png)
ืขื›ืฉื™ื•, ื‘ื•ืื• ื ื‘ื ื” ืืช ืžื•ื“ืœ ื”-SVR ืฉืœื ื•.
### ื™ืฆื™ืจืช ืงื‘ื•ืฆื•ืช ืื™ืžื•ืŸ ื•ื‘ื“ื™ืงื”
ืขื›ืฉื™ื• ื”ื ืชื•ื ื™ื ืฉืœื›ื ื˜ืขื•ื ื™ื, ื›ืš ืฉืชื•ื›ืœื• ืœื”ืคืจื™ื“ ืื•ืชื ืœืงื‘ื•ืฆื•ืช ืื™ืžื•ืŸ ื•ื‘ื“ื™ืงื”. ืœืื—ืจ ืžื›ืŸ ืชืขืฆื‘ื• ืžื—ื“ืฉ ืืช ื”ื ืชื•ื ื™ื ื›ื“ื™ ืœื™ืฆื•ืจ ืงื‘ื•ืฆืช ื ืชื•ื ื™ื ืžื‘ื•ืกืกืช ืฆืขื“ื™ ื–ืžืŸ, ืฉืชื™ื“ืจืฉ ืขื‘ื•ืจ SVR. ืชืืžื ื• ืืช ื”ืžื•ื“ืœ ืฉืœื›ื ืขืœ ืงื‘ื•ืฆืช ื”ืื™ืžื•ืŸ. ืœืื—ืจ ืฉื”ืžื•ื“ืœ ืกื™ื™ื ืืช ื”ืื™ืžื•ืŸ, ืชืขืจื™ื›ื• ืืช ื“ื™ื•ืงื• ืขืœ ืงื‘ื•ืฆืช ื”ืื™ืžื•ืŸ, ืงื‘ื•ืฆืช ื”ื‘ื“ื™ืงื” ื•ืœืื—ืจ ืžื›ืŸ ืขืœ ื›ืœ ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื ื›ื“ื™ ืœืจืื•ืช ืืช ื”ื‘ื™ืฆื•ืขื™ื ื”ื›ื•ืœืœื™ื. ืขืœื™ื›ื ืœื•ื•ื“ื ืฉืงื‘ื•ืฆืช ื”ื‘ื“ื™ืงื” ืžื›ืกื” ืชืงื•ืคื” ืžืื•ื—ืจืช ื™ื•ืชืจ ื‘ื–ืžืŸ ืžืงื‘ื•ืฆืช ื”ืื™ืžื•ืŸ ื›ื“ื™ ืœื”ื‘ื˜ื™ื— ืฉื”ืžื•ื“ืœ ืœื ื™ืงื‘ืœ ืžื™ื“ืข ืžืชืงื•ืคื•ืช ื–ืžืŸ ืขืชื™ื“ื™ื•ืช [^2] (ืžืฆื‘ ื”ืžื›ื•ื ื” *Overfitting*).
1. ื”ืงืฆื• ืชืงื•ืคื” ืฉืœ ื—ื•ื“ืฉื™ื™ื ืžื”-1 ื‘ืกืคื˜ืžื‘ืจ ืขื“ ื”-31 ื‘ืื•ืงื˜ื•ื‘ืจ 2014 ืœืงื‘ื•ืฆืช ื”ืื™ืžื•ืŸ. ืงื‘ื•ืฆืช ื”ื‘ื“ื™ืงื” ืชื›ืœื•ืœ ืืช ื”ืชืงื•ืคื” ืฉืœ ื—ื•ื“ืฉื™ื™ื ืžื”-1 ื‘ื ื•ื‘ืžื‘ืจ ืขื“ ื”-31 ื‘ื“ืฆืžื‘ืจ 2014: [^2]
```python
train_start_dt = '2014-11-01 00:00:00'
test_start_dt = '2014-12-30 00:00:00'
```
2. ื”ืฆื™ื’ื• ืืช ื”ื”ื‘ื“ืœื™ื: [^2]
```python
energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \
.join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \
.plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)
plt.xlabel('timestamp', fontsize=12)
plt.ylabel('load', fontsize=12)
plt.show()
```
![ื ืชื•ื ื™ ืื™ืžื•ืŸ ื•ื‘ื“ื™ืงื”](../../../../7-TimeSeries/3-SVR/images/train-test.png)
### ื”ื›ื ืช ื”ื ืชื•ื ื™ื ืœืื™ืžื•ืŸ
ืขื›ืฉื™ื•, ืขืœื™ื›ื ืœื”ื›ื™ืŸ ืืช ื”ื ืชื•ื ื™ื ืœืื™ืžื•ืŸ ืขืœ ื™ื“ื™ ื‘ื™ืฆื•ืข ืกื™ื ื•ืŸ ื•ืกืงื™ื™ืœื™ื ื’ ืฉืœ ื”ื ืชื•ื ื™ื ืฉืœื›ื. ืกื ื ื• ืืช ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื ื›ืš ืฉืชื›ืœื•ืœ ืจืง ืืช ื”ืชืงื•ืคื•ืช ื•ื”ืขืžื•ื“ื•ืช ื”ื“ืจื•ืฉื•ืช, ื•ืกืงื™ื™ืœื™ื ื’ ื›ื“ื™ ืœื”ื‘ื˜ื™ื— ืฉื”ื ืชื•ื ื™ื ื™ื•ืงืจื ื• ื‘ื˜ื•ื•ื— 0,1.
1. ืกื ื ื• ืืช ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื ื”ืžืงื•ืจื™ืช ื›ืš ืฉืชื›ืœื•ืœ ืจืง ืืช ื”ืชืงื•ืคื•ืช ืฉื”ื•ื–ื›ืจื• ืœื›ืœ ืงื‘ื•ืฆื” ื•ืชื›ืœื•ืœ ืจืง ืืช ื”ืขืžื•ื“ื” ื”ื“ืจื•ืฉื” 'load' ื‘ื ื•ืกืฃ ืœืชืืจื™ืš: [^2]
```python
train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]
test = energy.copy()[energy.index >= test_start_dt][['load']]
print('Training data shape: ', train.shape)
print('Test data shape: ', test.shape)
```
```output
Training data shape: (1416, 1)
Test data shape: (48, 1)
```
2. ื‘ืฆืขื• ืกืงื™ื™ืœื™ื ื’ ืœื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ื›ืš ืฉื™ื”ื™ื• ื‘ื˜ื•ื•ื— (0, 1): [^2]
```python
scaler = MinMaxScaler()
train['load'] = scaler.fit_transform(train)
```
4. ืขื›ืฉื™ื•, ื‘ืฆืขื• ืกืงื™ื™ืœื™ื ื’ ืœื ืชื•ื ื™ ื”ื‘ื“ื™ืงื”: [^2]
```python
test['load'] = scaler.transform(test)
```
### ื™ืฆื™ืจืช ื ืชื•ื ื™ื ืขื ืฆืขื“ื™ ื–ืžืŸ [^1]
ืขื‘ื•ืจ SVR, ืืชื ืžืžื™ืจื™ื ืืช ื ืชื•ื ื™ ื”ืงืœื˜ ืœืฆื•ืจื” `[batch, timesteps]`. ืœื›ืŸ, ืชืขืฆื‘ื• ืžื—ื“ืฉ ืืช `train_data` ื•-`test_data` ื›ืš ืฉืชื”ื™ื” ืžืžื“ ื—ื“ืฉ ืฉืžืชื™ื™ื—ืก ืœืฆืขื“ื™ ื”ื–ืžืŸ.
```python
# Converting to numpy arrays
train_data = train.values
test_data = test.values
```
ืœื“ื•ื’ืžื” ื–ื•, ื ื™ืงื— `timesteps = 5`. ื›ืš ืฉื”ืงืœื˜ื™ื ืœืžื•ื“ืœ ื”ื ื”ื ืชื•ื ื™ื ืขื‘ื•ืจ 4 ืฆืขื“ื™ ื”ื–ืžืŸ ื”ืจืืฉื•ื ื™ื, ื•ื”ืคืœื˜ ื™ื”ื™ื” ื”ื ืชื•ื ื™ื ืขื‘ื•ืจ ืฆืขื“ ื”ื–ืžืŸ ื”ื—ืžื™ืฉื™.
```python
timesteps=5
```
ื”ืžืจืช ื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ืœื˜ื ืกื•ืจ ื“ื•-ืžืžื“ื™ ื‘ืืžืฆืขื•ืช list comprehension ืžืงื•ื ืŸ:
```python
train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0]
train_data_timesteps.shape
```
```output
(1412, 5)
```
ื”ืžืจืช ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื” ืœื˜ื ืกื•ืจ ื“ื•-ืžืžื“ื™:
```python
test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0]
test_data_timesteps.shape
```
```output
(44, 5)
```
ื‘ื—ื™ืจืช ืงืœื˜ื™ื ื•ืคืœื˜ื™ื ืžื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ื•ื”ื‘ื“ื™ืงื”:
```python
x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]]
x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]]
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
```
```output
(1412, 4) (1412, 1)
(44, 4) (44, 1)
```
### ื™ื™ืฉื•ื SVR [^1]
ืขื›ืฉื™ื•, ื”ื’ื™ืข ื”ื–ืžืŸ ืœื™ื™ืฉื SVR. ืœืงืจื™ืื” ื ื•ืกืคืช ืขืœ ื™ื™ืฉื•ื ื–ื”, ืชื•ื›ืœื• ืœืขื™ื™ืŸ ื‘-[ืชื™ืขื•ื“ ื”ื–ื”](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html). ืขื‘ื•ืจ ื”ื™ื™ืฉื•ื ืฉืœื ื•, ื ื‘ืฆืข ืืช ื”ืฉืœื‘ื™ื ื”ื‘ืื™ื:
1. ื”ื’ื“ื™ืจื• ืืช ื”ืžื•ื“ืœ ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœ-`SVR()` ื•ื”ืขื‘ืจืช ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื ืฉืœ ื”ืžื•ื“ืœ: kernel, gamma, c ื•-epsilon
2. ื”ื›ื™ื ื• ืืช ื”ืžื•ื“ืœ ืœื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœืคื•ื ืงืฆื™ื” `fit()`
3. ื‘ืฆืขื• ืชื—ื–ื™ื•ืช ืขืœ ื™ื“ื™ ืงืจื™ืื” ืœืคื•ื ืงืฆื™ื” `predict()`
ืขื›ืฉื™ื• ื ื™ืฆื•ืจ ืžื•ื“ืœ SVR. ื›ืืŸ ื ืฉืชืžืฉ ื‘-[RBF kernel](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel), ื•ื ื’ื“ื™ืจ ืืช ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื gamma, C ื•-epsilon ื›-0.5, 10 ื•-0.05 ื‘ื”ืชืืžื”.
```python
model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05)
```
#### ื”ืชืืžืช ื”ืžื•ื“ืœ ืœื ืชื•ื ื™ ื”ืื™ืžื•ืŸ [^1]
```python
model.fit(x_train, y_train[:,0])
```
```output
SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5,
kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
```
#### ื‘ื™ืฆื•ืข ืชื—ื–ื™ื•ืช ืขื ื”ืžื•ื“ืœ [^1]
```python
y_train_pred = model.predict(x_train).reshape(-1,1)
y_test_pred = model.predict(x_test).reshape(-1,1)
print(y_train_pred.shape, y_test_pred.shape)
```
```output
(1412, 1) (44, 1)
```
ื™ืฆืจืชื ืืช ื”-SVR ืฉืœื›ื! ืขื›ืฉื™ื• ื ืฆื˜ืจืš ืœื”ืขืจื™ืš ืื•ืชื•.
### ื”ืขืจื›ืช ื”ืžื•ื“ืœ ืฉืœื›ื [^1]
ืœื”ืขืจื›ื”, ืงื•ื“ื ื›ืœ ื ื—ื–ื™ืจ ืืช ื”ื ืชื•ื ื™ื ืœืกืงื™ื™ืœ ื”ืžืงื•ืจื™ ืฉืœื ื•. ืœืื—ืจ ืžื›ืŸ, ื›ื“ื™ ืœื‘ื“ื•ืง ืืช ื”ื‘ื™ืฆื•ืขื™ื, ื ื™ืฆื•ืจ ื’ืจืฃ ืฉืœ ืกื“ืจืช ื”ื–ืžืŸ ื”ืžืงื•ืจื™ืช ื•ื”ืชื—ื–ื™ืช, ื•ื ื“ืคื™ืก ื’ื ืืช ืชื•ืฆืืช ื”-MAPE.
ื”ื—ื–ื™ืจื• ืืช ื”ืคืœื˜ื™ื ื”ืžื ื•ื‘ืื™ื ื•ื”ืžืงื•ืจื™ื™ื ืœืกืงื™ื™ืœ ื”ืžืงื•ืจื™:
```python
# Scaling the predictions
y_train_pred = scaler.inverse_transform(y_train_pred)
y_test_pred = scaler.inverse_transform(y_test_pred)
print(len(y_train_pred), len(y_test_pred))
```
```python
# Scaling the original values
y_train = scaler.inverse_transform(y_train)
y_test = scaler.inverse_transform(y_test)
print(len(y_train), len(y_test))
```
#### ื‘ื“ื™ืงืช ื‘ื™ืฆื•ืขื™ ื”ืžื•ื“ืœ ืขืœ ื ืชื•ื ื™ ื”ืื™ืžื•ืŸ ื•ื”ื‘ื“ื™ืงื” [^1]
ื ื—ืœืฅ ืืช ื—ื•ืชืžื•ืช ื”ื–ืžืŸ ืžืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื ื›ื“ื™ ืœื”ืฆื™ื’ ื‘ืฆื™ืจ ื”-x ืฉืœ ื”ื’ืจืฃ ืฉืœื ื•. ืฉื™ืžื• ืœื‘ ืฉืื ื—ื ื• ืžืฉืชืžืฉื™ื ื‘-```timesteps-1``` ื”ืขืจื›ื™ื ื”ืจืืฉื•ื ื™ื ื›ืงืœื˜ ืขื‘ื•ืจ ื”ืคืœื˜ ื”ืจืืฉื•ืŸ, ื›ืš ืฉื—ื•ืชืžื•ืช ื”ื–ืžืŸ ืขื‘ื•ืจ ื”ืคืœื˜ ื™ืชื—ื™ืœื• ืœืื—ืจ ืžื›ืŸ.
```python
train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:]
test_timestamps = energy[test_start_dt:].index[timesteps-1:]
print(len(train_timestamps), len(test_timestamps))
```
```output
1412 44
```
ืฆืจื• ื’ืจืฃ ืฉืœ ื”ืชื—ื–ื™ื•ืช ืขื‘ื•ืจ ื ืชื•ื ื™ ื”ืื™ืžื•ืŸ:
```python
plt.figure(figsize=(25,6))
plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6)
plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8)
plt.legend(['Actual','Predicted'])
plt.xlabel('Timestamp')
plt.title("Training data prediction")
plt.show()
```
![ืชื—ื–ื™ืช ื ืชื•ื ื™ ืื™ืžื•ืŸ](../../../../7-TimeSeries/3-SVR/images/train-data-predict.png)
ื”ื“ืคื™ืกื• ืืช MAPE ืขื‘ื•ืจ ื ืชื•ื ื™ ื”ืื™ืžื•ืŸ
```python
print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')
```
```output
MAPE for training data: 1.7195710200875551 %
```
ืฆืจื• ื’ืจืฃ ืฉืœ ื”ืชื—ื–ื™ื•ืช ืขื‘ื•ืจ ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื”
```python
plt.figure(figsize=(10,3))
plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6)
plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8)
plt.legend(['Actual','Predicted'])
plt.xlabel('Timestamp')
plt.show()
```
![ืชื—ื–ื™ืช ื ืชื•ื ื™ ื‘ื“ื™ืงื”](../../../../7-TimeSeries/3-SVR/images/test-data-predict.png)
ื”ื“ืคื™ืกื• ืืช MAPE ืขื‘ื•ืจ ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื”
```python
print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')
```
```output
MAPE for testing data: 1.2623790187854018 %
```
๐Ÿ† ืงื™ื‘ืœืชื ืชื•ืฆืื” ื˜ื•ื‘ื” ืžืื•ื“ ืขืœ ืงื‘ื•ืฆืช ื”ื‘ื“ื™ืงื”!
### ื‘ื“ื™ืงืช ื‘ื™ืฆื•ืขื™ ื”ืžื•ื“ืœ ืขืœ ื›ืœ ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื [^1]
```python
# Extracting load values as numpy array
data = energy.copy().values
# Scaling
data = scaler.transform(data)
# Transforming to 2D tensor as per model input requirement
data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0]
print("Tensor shape: ", data_timesteps.shape)
# Selecting inputs and outputs from data
X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]]
print("X shape: ", X.shape,"\nY shape: ", Y.shape)
```
```output
Tensor shape: (26300, 5)
X shape: (26300, 4)
Y shape: (26300, 1)
```
```python
# Make model predictions
Y_pred = model.predict(X).reshape(-1,1)
# Inverse scale and reshape
Y_pred = scaler.inverse_transform(Y_pred)
Y = scaler.inverse_transform(Y)
```
```python
plt.figure(figsize=(30,8))
plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6)
plt.plot(Y_pred, color = 'blue', linewidth=0.8)
plt.legend(['Actual','Predicted'])
plt.xlabel('Timestamp')
plt.show()
```
![ืชื—ื–ื™ืช ื ืชื•ื ื™ื ืžืœืื™ื](../../../../7-TimeSeries/3-SVR/images/full-data-predict.png)
```python
print('MAPE: ', mape(Y_pred, Y)*100, '%')
```
```output
MAPE: 2.0572089029888656 %
```
๐Ÿ† ื’ืจืคื™ื ืžืจืฉื™ืžื™ื ืžืื•ื“, ืฉืžืจืื™ื ืžื•ื“ืœ ืขื ื“ื™ื•ืง ื˜ื•ื‘. ื›ืœ ื”ื›ื‘ื•ื“!
---
## ๐Ÿš€ืืชื’ืจ
- ื ืกื• ืœืฉื ื•ืช ืืช ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื (gamma, C, epsilon) ื‘ื–ืžืŸ ื™ืฆื™ืจืช ื”ืžื•ื“ืœ ื•ื”ืขืจื™ื›ื• ืืช ื”ื ืชื•ื ื™ื ื›ื“ื™ ืœืจืื•ืช ืื™ื–ื” ืกื˜ ืฉืœ ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื ื ื•ืชืŸ ืืช ื”ืชื•ืฆืื•ืช ื”ื˜ื•ื‘ื•ืช ื‘ื™ื•ืชืจ ืขืœ ื ืชื•ื ื™ ื”ื‘ื“ื™ืงื”. ืœืžื™ื“ืข ื ื•ืกืฃ ืขืœ ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื ืืœื”, ืชื•ื›ืœื• ืœืขื™ื™ืŸ ื‘ืชื™ืขื•ื“ [ื›ืืŸ](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel).
- ื ืกื• ืœื”ืฉืชืžืฉ ื‘ืคื•ื ืงืฆื™ื•ืช kernel ืฉื•ื ื•ืช ืขื‘ื•ืจ ื”ืžื•ื“ืœ ื•ื ืชื—ื• ืืช ื‘ื™ืฆื•ืขื™ื”ืŸ ืขืœ ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื. ืžืกืžืš ืžื•ืขื™ืœ ื ื™ืชืŸ ืœืžืฆื•ื [ื›ืืŸ](https://scikit-learn.org/stable/modules/svm.html#kernel-functions).
- ื ืกื• ืœื”ืฉืชืžืฉ ื‘ืขืจื›ื™ื ืฉื•ื ื™ื ืขื‘ื•ืจ `timesteps` ื›ื“ื™ ืฉื”ืžื•ื“ืœ ื™ื•ื›ืœ ืœื”ืกืชื›ืœ ืื—ื•ืจื” ื•ืœื‘ืฆืข ืชื—ื–ื™ืช.
## [ืžื‘ื—ืŸ ืžืกื›ื](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ืฉื™ืขื•ืจ ื–ื” ื ื•ืขื“ ืœื”ืฆื™ื’ ืืช ื”ืฉื™ืžื•ืฉ ื‘-SVR ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ. ืœืงืจื™ืื” ื ื•ืกืคืช ืขืœ SVR, ืชื•ื›ืœื• ืœืขื™ื™ืŸ ื‘-[ื‘ืœื•ื’ ื”ื–ื”](https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/). ืชื™ืขื•ื“ ื–ื” ื‘-[scikit-learn](https://scikit-learn.org/stable/modules/svm.html) ืžืกืคืง ื”ืกื‘ืจ ืžืงื™ืฃ ื™ื•ืชืจ ืขืœ SVMs ื‘ืื•ืคืŸ ื›ืœืœื™, [SVRs](https://scikit-learn.org/stable/modules/svm.html#regression) ื•ื’ื ืคืจื˜ื™ ื™ื™ืฉื•ื ืื—ืจื™ื ื›ืžื• [ืคื•ื ืงืฆื™ื•ืช kernel](https://scikit-learn.org/stable/modules/svm.html#kernel-functions) ืฉื•ื ื•ืช ืฉื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื”ืŸ, ื•ื”ืคืจืžื˜ืจื™ื ืฉืœื”ืŸ.
## ืžืฉื™ืžื”
[ืžื•ื“ืœ SVR ื—ื“ืฉ](assignment.md)
## ืงืจื“ื™ื˜ื™ื
[^1]: ื”ื˜ืงืกื˜, ื”ืงื•ื“ ื•ื”ืชื•ืฆืื•ืช ื‘ืกืขื™ืฃ ื–ื” ื ืชืจืžื• ืขืœ ื™ื“ื™ [@AnirbanMukherjeeXD](https://github.com/AnirbanMukherjeeXD)
[^2]: ื”ื˜ืงืกื˜, ื”ืงื•ื“ ื•ื”ืชื•ืฆืื•ืช ื‘ืกืขื™ืฃ ื–ื” ื ืœืงื—ื• ืž-[ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,29 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "94aa2fc6154252ae30a3f3740299707a",
"translation_date": "2025-09-05T19:09:36+00:00",
"source_file": "7-TimeSeries/3-SVR/assignment.md",
"language_code": "he"
}
-->
# ืžื•ื“ืœ SVR ื—ื“ืฉ
## ื”ื•ืจืื•ืช [^1]
ืขื›ืฉื™ื• ื›ืฉื™ืฆืจืชื ืžื•ื“ืœ SVR, ืฆืจื• ืžื•ื“ืœ ื—ื“ืฉ ืขื ื ืชื•ื ื™ื ื—ื“ืฉื™ื (ื ืกื• ืื—ื“ ืž[ืžืื’ืจื™ ื”ื ืชื•ื ื™ื ื”ืืœื” ืžื“ื•ืง](http://www2.stat.duke.edu/~mw/ts_data_sets.html)). ืชืขื“ื• ืืช ื”ืขื‘ื•ื“ื” ืฉืœื›ื ื‘ืžื—ื‘ืจืช, ื•ื™ื–ื•ืืœื™ื–ื• ืืช ื”ื ืชื•ื ื™ื ื•ืืช ื”ืžื•ื“ืœ ืฉืœื›ื, ื•ื‘ื“ืงื• ืืช ื“ื™ื•ืงื• ื‘ืืžืฆืขื•ืช ื’ืจืคื™ื ืžืชืื™ืžื™ื ื•-MAPE. ื‘ื ื•ืกืฃ, ื ืกื• ืœืฉื ื•ืช ืืช ื”ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื ื”ืฉื•ื ื™ื ื•ื’ื ืœื”ืฉืชืžืฉ ื‘ืขืจื›ื™ื ืฉื•ื ื™ื ืขื‘ื•ืจ ืฉืœื‘ื™ ื”ื–ืžืŸ.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื” [^1]
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ---------------------------------------------------------- | ----------------------------------------------------- | ---------------------------- |
| | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ืขื ืžื•ื“ืœ SVR ืฉื ื‘ื ื”, ื ื‘ื“ืง ื•ื”ื•ืกื‘ืจ ืขื ื•ื™ื–ื•ืืœื™ื–ืฆื™ื•ืช ื•ื“ื™ื•ืง ืžืฆื•ื™ืŸ. | ื”ืžื—ื‘ืจืช ื”ืžื•ืฆื’ืช ืื™ื ื” ืžืชื•ืขื“ืช ืื• ืžื›ื™ืœื” ืฉื’ื™ืื•ืช. | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ืœื ืžืœืื” |
[^1]: ื”ื˜ืงืกื˜ ื‘ืกืขื™ืฃ ื–ื” ืžื‘ื•ืกืก ืขืœ [ื”ืžืฉื™ืžื” ืž-ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,37 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "61342603bad8acadbc6b2e4e3aab3f66",
"translation_date": "2025-09-05T18:57:42+00:00",
"source_file": "7-TimeSeries/README.md",
"language_code": "he"
}
-->
# ืžื‘ื•ื ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ
ืžื”ื• ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ? ืžื“ื•ื‘ืจ ื‘ื ื™ื‘ื•ื™ ืื™ืจื•ืขื™ื ืขืชื™ื“ื™ื™ื ืขืœ ื™ื“ื™ ื ื™ืชื•ื— ืžื’ืžื•ืช ืžื”ืขื‘ืจ.
## ื ื•ืฉื ืื–ื•ืจื™: ืฉื™ืžื•ืฉ ืขื•ืœืžื™ ื‘ื—ืฉืžืœ โœจ
ื‘ืฉื ื™ ื”ืฉื™ืขื•ืจื™ื ื”ืœืœื•, ืชื™ื—ืฉืคื• ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ, ืชื—ื•ื ืคื—ื•ืช ืžื•ื›ืจ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”, ืืš ื‘ืขืœ ืขืจืš ืจื‘ ืœื™ื™ืฉื•ืžื™ื ื‘ืชืขืฉื™ื™ื” ื•ื‘ืขืกืงื™ื, ื‘ื™ืŸ ื”ื™ืชืจ. ืœืžืจื•ืช ืฉื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืจืฉืชื•ืช ืขืฆื‘ื™ื•ืช ื›ื“ื™ ืœืฉืคืจ ืืช ื™ืขื™ืœื•ืช ื”ืžื•ื“ืœื™ื ื”ืœืœื•, ื ืœืžื“ ืื•ืชื ื‘ื”ืงืฉืจ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช, ื›ืืฉืจ ื”ืžื•ื“ืœื™ื ืžืกื™ื™ืขื™ื ืœื ื‘ื ื‘ื™ืฆื•ืขื™ื ืขืชื™ื“ื™ื™ื ื‘ื”ืชื‘ืกืก ืขืœ ื”ืขื‘ืจ.
ื”ืžื™ืงื•ื“ ื”ืื–ื•ืจื™ ืฉืœื ื• ื”ื•ื ืฉื™ืžื•ืฉ ื‘ื—ืฉืžืœ ื‘ืขื•ืœื, ืžืขืจืš ื ืชื•ื ื™ื ืžืขื ื™ื™ืŸ ืœืœืžื™ื“ื” ืขืœ ื—ื™ื–ื•ื™ ืฆืจื™ื›ืช ื—ืฉืžืœ ืขืชื™ื“ื™ืช ื‘ื”ืชื‘ืกืก ืขืœ ื“ืคื•ืกื™ ืขื•ืžืก ืžื”ืขื‘ืจ. ื ื™ืชืŸ ืœืจืื•ืช ื›ื™ืฆื“ ืกื•ื’ ื›ื–ื” ืฉืœ ื—ื™ื–ื•ื™ ื™ื›ื•ืœ ืœื”ื™ื•ืช ืžื•ืขื™ืœ ืžืื•ื“ ื‘ืกื‘ื™ื‘ื” ืขืกืงื™ืช.
![ืจืฉืช ื—ืฉืžืœ](../../../7-TimeSeries/images/electric-grid.jpg)
ืชืžื•ื ื” ืžืืช [Peddi Sai hrithik](https://unsplash.com/@shutter_log?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) ืฉืœ ืขืžื•ื“ื™ ื—ืฉืžืœ ืขืœ ื›ื‘ื™ืฉ ื‘ืจื’'ืกื˜ืืŸ ื‘-[Unsplash](https://unsplash.com/s/photos/electric-india?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText)
## ืฉื™ืขื•ืจื™ื
1. [ืžื‘ื•ื ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ](1-Introduction/README.md)
2. [ื‘ื ื™ื™ืช ืžื•ื“ืœื™ื ARIMA ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ](2-ARIMA/README.md)
3. [ื‘ื ื™ื™ืช Support Vector Regressor ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ](3-SVR/README.md)
## ืงืจื“ื™ื˜ื™ื
"ืžื‘ื•ื ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ" ื ื›ืชื‘ ืขื โšก๏ธ ืขืœ ื™ื“ื™ [Francesca Lazzeri](https://twitter.com/frlazzeri) ื•-[Jen Looper](https://twitter.com/jenlooper). ื”ืžื—ื‘ืจื•ืช ื”ื•ืคื™ืขื• ืœืจืืฉื•ื ื” ื‘ืื•ืคืŸ ืžืงื•ื•ืŸ ื‘-[ืžืื’ืจ Azure "Deep Learning For Time Series"](https://github.com/Azure/DeepLearningForTimeSeriesForecasting) ืฉื ื›ืชื‘ ื‘ืžืงื•ืจ ืขืœ ื™ื“ื™ Francesca Lazzeri. ื”ืฉื™ืขื•ืจ ืขืœ SVR ื ื›ืชื‘ ืขืœ ื™ื“ื™ [Anirban Mukherjee](https://github.com/AnirbanMukherjeeXD)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,256 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "911efd5e595089000cb3c16fce1beab8",
"translation_date": "2025-09-05T20:12:27+00:00",
"source_file": "8-Reinforcement/1-QLearning/README.md",
"language_code": "he"
}
-->
# ืžื‘ื•ื ืœืœืžื™ื“ืช ื—ื™ื–ื•ืง ื•ืœืžื™ื“ืช Q
![ืกื™ื›ื•ื ืœืžื™ื“ืช ื—ื™ื–ื•ืง ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืกืงืฆ'ื ื•ื˜](../../../../sketchnotes/ml-reinforcement.png)
> ืกืงืฆ'ื ื•ื˜ ืžืืช [Tomomi Imura](https://www.twitter.com/girlie_mac)
ืœืžื™ื“ืช ื—ื™ื–ื•ืง ื›ื•ืœืœืช ืฉืœื•ืฉื” ืžื•ืฉื’ื™ื ื—ืฉื•ื‘ื™ื: ื”ืกื•ื›ืŸ, ืžืฆื‘ื™ื ืžืกื•ื™ืžื™ื, ื•ืžืขืจืš ืคืขื•ืœื•ืช ืœื›ืœ ืžืฆื‘. ืขืœ ื™ื“ื™ ื‘ื™ืฆื•ืข ืคืขื•ืœื” ื‘ืžืฆื‘ ืžืกื•ื™ื, ื”ืกื•ื›ืŸ ืžืงื‘ืœ ืชื’ืžื•ืœ. ื“ืžื™ื™ื ื• ืฉื•ื‘ ืืช ืžืฉื—ืง ื”ืžื—ืฉื‘ ืกื•ืคืจ ืžืจื™ื•. ืืชื ืžืจื™ื•, ื ืžืฆืื™ื ื‘ืจืžืช ืžืฉื—ืง, ืขื•ืžื“ื™ื ืœื™ื“ ืงืฆื” ืฆื•ืง. ืžืขืœื™ื›ื ื™ืฉ ืžื˜ื‘ืข. ืืชื, ื‘ืชื•ืจ ืžืจื™ื•, ื‘ืจืžืช ืžืฉื—ืง, ื‘ืžื™ืงื•ื ืกืคืฆื™ืคื™... ื–ื”ื• ื”ืžืฆื‘ ืฉืœื›ื. ืฆืขื“ ืื—ื“ ื™ืžื™ื ื” (ืคืขื•ืœื”) ื™ื•ื‘ื™ืœ ืืชื›ื ืžืขื‘ืจ ืœืงืฆื”, ื•ื–ื” ื™ืขื ื™ืง ืœื›ื ื ื™ืงื•ื“ ื ืžื•ืš. ืœืขื•ืžืช ื–ืืช, ืœื—ื™ืฆื” ืขืœ ื›ืคืชื•ืจ ื”ืงืคื™ืฆื” ืชืืคืฉืจ ืœื›ื ืœืฆื‘ื•ืจ ื ืงื•ื“ื” ื•ืœื”ื™ืฉืืจ ื‘ื—ื™ื™ื. ื–ื”ื• ืชื•ืฆืื” ื—ื™ื•ื‘ื™ืช ืฉืฆืจื™ื›ื” ืœื”ืขื ื™ืง ืœื›ื ื ื™ืงื•ื“ ื—ื™ื•ื‘ื™.
ื‘ืืžืฆืขื•ืช ืœืžื™ื“ืช ื—ื™ื–ื•ืง ื•ืกื™ืžื•ืœื˜ื•ืจ (ื”ืžืฉื—ืง), ื ื™ืชืŸ ืœืœืžื•ื“ ื›ื™ืฆื“ ืœืฉื—ืง ืืช ื”ืžืฉื—ืง ื›ื“ื™ ืœืžืงืกื ืืช ื”ืชื’ืžื•ืœ, ื›ืœื•ืžืจ ืœื”ื™ืฉืืจ ื‘ื—ื™ื™ื ื•ืœืฆื‘ื•ืจ ื›ืžื” ืฉื™ื•ืชืจ ื ืงื•ื“ื•ืช.
[![ืžื‘ื•ื ืœืœืžื™ื“ืช ื—ื™ื–ื•ืง](https://img.youtube.com/vi/lDq_en8RNOo/0.jpg)](https://www.youtube.com/watch?v=lDq_en8RNOo)
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ื›ื“ื™ ืœืฉืžื•ืข ืืช ื“ืžื™ื˜ืจื™ ืžื“ื‘ืจ ืขืœ ืœืžื™ื“ืช ื—ื™ื–ื•ืง
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ื“ืจื™ืฉื•ืช ืžื•ืงื“ืžื•ืช ื•ื”ื’ื“ืจื•ืช
ื‘ืฉื™ืขื•ืจ ื–ื”, ื ืชื ืกื” ื‘ืงื•ื“ ื‘ืคื™ื™ืชื•ืŸ. ืขืœื™ื›ื ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœื”ืจื™ืฅ ืืช ื”ืงื•ื“ ืฉืœ Jupyter Notebook ืžื”ืฉื™ืขื•ืจ ื”ื–ื”, ื‘ื™ืŸ ืื ื‘ืžื—ืฉื‘ ืฉืœื›ื ืื• ื‘ืขื ืŸ.
ื ื™ืชืŸ ืœืคืชื•ื— ืืช [ืžื—ื‘ืจืช ื”ืฉื™ืขื•ืจ](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/notebook.ipynb) ื•ืœืขื‘ื•ืจ ืขืœ ื”ืฉื™ืขื•ืจ ื›ื“ื™ ืœื‘ื ื•ืช.
> **ื”ืขืจื”:** ืื ืืชื ืคื•ืชื—ื™ื ืืช ื”ืงื•ื“ ืžื”ืขื ืŸ, ืชืฆื˜ืจื›ื• ื’ื ืœื”ื•ืจื™ื“ ืืช ื”ืงื•ื‘ืฅ [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py), ืฉืžืฉืžืฉ ื‘ืงื•ื“ ื”ืžื—ื‘ืจืช. ื”ื•ืกื™ืคื• ืื•ืชื• ืœืื•ืชื” ืชื™ืงื™ื™ื” ื›ืžื• ื”ืžื—ื‘ืจืช.
## ืžื‘ื•ื
ื‘ืฉื™ืขื•ืจ ื–ื”, ื ื—ืงื•ืจ ืืช ืขื•ืœืžื• ืฉืœ **[ืคื˜ืจ ื•ื”ื–ืื‘](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)**, ื‘ื”ืฉืจืืช ืื’ื“ื” ืžื•ื–ื™ืงืœื™ืช ืฉืœ ื”ืžืœื—ื™ืŸ ื”ืจื•ืกื™ [ืกืจื’ื™ื™ ืคืจื•ืงื•ืคื™ื™ื‘](https://en.wikipedia.org/wiki/Sergei_Prokofiev). ื ืฉืชืžืฉ ื‘**ืœืžื™ื“ืช ื—ื™ื–ื•ืง** ื›ื“ื™ ืœืืคืฉืจ ืœืคื˜ืจ ืœื—ืงื•ืจ ืืช ืกื‘ื™ื‘ืชื•, ืœืืกื•ืฃ ืชืคื•ื—ื™ื ื˜ืขื™ืžื™ื ื•ืœื”ื™ืžื ืข ืžืžืคื’ืฉ ืขื ื”ื–ืื‘.
**ืœืžื™ื“ืช ื—ื™ื–ื•ืง** (RL) ื”ื™ื ื˜ื›ื ื™ืงืช ืœืžื™ื“ื” ืฉืžืืคืฉืจืช ืœื ื• ืœืœืžื•ื“ ื”ืชื ื”ื’ื•ืช ืื•ืคื˜ื™ืžืœื™ืช ืฉืœ **ืกื•ื›ืŸ** ื‘ืกื‘ื™ื‘ื” ืžืกื•ื™ืžืช ืขืœ ื™ื“ื™ ื‘ื™ืฆื•ืข ื ื™ืกื•ื™ื™ื ืจื‘ื™ื. ืกื•ื›ืŸ ื‘ืกื‘ื™ื‘ื” ื–ื• ืฆืจื™ืš ืฉื™ื”ื™ื” ืœื• **ืžื˜ืจื”**, ืฉืžื•ื’ื“ืจืช ืขืœ ื™ื“ื™ **ืคื•ื ืงืฆื™ื™ืช ืชื’ืžื•ืœ**.
## ื”ืกื‘ื™ื‘ื”
ืœืฆื•ืจืš ื”ืคืฉื˜ื•ืช, ื ื ื™ื— ืฉืขื•ืœืžื• ืฉืœ ืคื˜ืจ ื”ื•ื ืœื•ื— ืžืจื•ื‘ืข ื‘ื’ื•ื“ืœ `width` x `height`, ื›ืžื• ื–ื”:
![ื”ืกื‘ื™ื‘ื” ืฉืœ ืคื˜ืจ](../../../../8-Reinforcement/1-QLearning/images/environment.png)
ื›ืœ ืชื ื‘ืœื•ื— ื”ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช:
* **ืงืจืงืข**, ืฉืขืœื™ื” ืคื˜ืจ ื•ื™ืฆื•ืจื™ื ืื—ืจื™ื ื™ื›ื•ืœื™ื ืœืœื›ืช.
* **ืžื™ื**, ืฉืขืœื™ื”ื ื›ืžื•ื‘ืŸ ืื™ ืืคืฉืจ ืœืœื›ืช.
* **ืขืฅ** ืื• **ื“ืฉื**, ืžืงื•ื ืฉื‘ื• ืืคืฉืจ ืœื ื•ื—.
* **ืชืคื•ื—**, ืฉืžื™ื™ืฆื’ ืžืฉื”ื• ืฉืคื˜ืจ ื™ืฉืžื— ืœืžืฆื•ื ื›ื“ื™ ืœื”ืื›ื™ืœ ืืช ืขืฆืžื•.
* **ื–ืื‘**, ืฉื”ื•ื ืžืกื•ื›ืŸ ื•ื™ืฉ ืœื”ื™ืžื ืข ืžืžื ื•.
ื™ืฉื ื• ืžื•ื“ื•ืœ ืคื™ื™ืชื•ืŸ ื ืคืจื“, [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py), ืฉืžื›ื™ืœ ืืช ื”ืงื•ื“ ืœืขื‘ื•ื“ื” ืขื ื”ืกื‘ื™ื‘ื” ื”ื–ื•. ืžื›ื™ื•ื•ืŸ ืฉื”ืงื•ื“ ื”ื–ื” ืื™ื ื• ื—ืฉื•ื‘ ืœื”ื‘ื ืช ื”ืžื•ืฉื’ื™ื ืฉืœื ื•, ื ื™ื™ื‘ื ืืช ื”ืžื•ื“ื•ืœ ื•ื ืฉืชืžืฉ ื‘ื• ื›ื“ื™ ืœื™ืฆื•ืจ ืืช ื”ืœื•ื— ืœื“ื•ื’ืžื” (ื‘ืœื•ืง ืงื•ื“ 1):
```python
from rlboard import *
width, height = 8,8
m = Board(width,height)
m.randomize(seed=13)
m.plot()
```
ื”ืงื•ื“ ื”ื–ื” ืืžื•ืจ ืœื”ื“ืคื™ืก ืชืžื•ื ื” ืฉืœ ื”ืกื‘ื™ื‘ื” ื”ื“ื•ืžื” ืœื–ื• ืฉืžื•ืฆื’ืช ืœืžืขืœื”.
## ืคืขื•ืœื•ืช ื•ืžื“ื™ื ื™ื•ืช
ื‘ื“ื•ื’ืžื” ืฉืœื ื•, ื”ืžื˜ืจื” ืฉืœ ืคื˜ืจ ืชื”ื™ื” ืœืžืฆื•ื ืชืคื•ื—, ืชื•ืš ื”ื™ืžื ืขื•ืช ืžื”ื–ืื‘ ื•ืžื›ืฉื•ืœื™ื ืื—ืจื™ื. ืœืฉื ื›ืš, ื”ื•ื ื™ื›ื•ืœ ืœืžืขืฉื” ืœื”ืกืชื•ื‘ื‘ ืขื“ ืฉื™ืžืฆื ืชืคื•ื—.
ืœื›ืŸ, ื‘ื›ืœ ืžื™ืงื•ื, ื”ื•ื ื™ื›ื•ืœ ืœื‘ื—ื•ืจ ื‘ื™ืŸ ืื—ืช ืžื”ืคืขื•ืœื•ืช ื”ื‘ืื•ืช: ืœืžืขืœื”, ืœืžื˜ื”, ืฉืžืืœื” ื•ื™ืžื™ื ื”.
ื ื’ื“ื™ืจ ืืช ื”ืคืขื•ืœื•ืช ื”ืœืœื• ื›ืžื™ืœื•ืŸ, ื•ื ืžืคื” ืื•ืชืŸ ืœื–ื•ื’ื•ืช ืฉืœ ืฉื™ื ื•ื™ื™ ืงื•ืื•ืจื“ื™ื ื˜ื•ืช ืžืชืื™ืžื™ื. ืœื“ื•ื’ืžื”, ืชื ื•ืขื” ื™ืžื™ื ื” (`R`) ืชืชืื™ื ืœื–ื•ื’ `(1,0)`. (ื‘ืœื•ืง ืงื•ื“ 2):
```python
actions = { "U" : (0,-1), "D" : (0,1), "L" : (-1,0), "R" : (1,0) }
action_idx = { a : i for i,a in enumerate(actions.keys()) }
```
ืœืกื™ื›ื•ื, ื”ืืกื˜ืจื˜ื’ื™ื” ื•ื”ืžื˜ืจื” ืฉืœ ื”ืชืจื—ื™ืฉ ื”ื–ื” ื”ื ื›ื“ืœืงืžืŸ:
- **ื”ืืกื˜ืจื˜ื’ื™ื”**, ืฉืœ ื”ืกื•ื›ืŸ ืฉืœื ื• (ืคื˜ืจ) ืžื•ื’ื“ืจืช ืขืœ ื™ื“ื™ ืžื” ืฉื ืงืจื **ืžื“ื™ื ื™ื•ืช**. ืžื“ื™ื ื™ื•ืช ื”ื™ื ืคื•ื ืงืฆื™ื” ืฉืžื—ื–ื™ืจื” ืืช ื”ืคืขื•ืœื” ื‘ื›ืœ ืžืฆื‘ ื ืชื•ืŸ. ื‘ืžืงืจื” ืฉืœื ื•, ืžืฆื‘ ื”ื‘ืขื™ื” ืžื™ื•ืฆื’ ืขืœ ื™ื“ื™ ื”ืœื•ื—, ื›ื•ืœืœ ื”ืžื™ืงื•ื ื”ื ื•ื›ื—ื™ ืฉืœ ื”ืฉื—ืงืŸ.
- **ื”ืžื˜ืจื”**, ืฉืœ ืœืžื™ื“ืช ื”ื—ื™ื–ื•ืง ื”ื™ื ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ืœืœืžื•ื“ ืžื“ื™ื ื™ื•ืช ื˜ื•ื‘ื” ืฉืชืืคืฉืจ ืœื ื• ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื” ื‘ื™ืขื™ืœื•ืช. ืขื ื–ืืช, ื›ื‘ืกื™ืก, ื ืฉืงื•ืœ ืืช ื”ืžื“ื™ื ื™ื•ืช ื”ืคืฉื•ื˜ื” ื‘ื™ื•ืชืจ ืฉื ืงืจืืช **ื”ืœื™ื›ื” ืืงืจืื™ืช**.
## ื”ืœื™ื›ื” ืืงืจืื™ืช
ื‘ื•ืื• ื ืคืชื•ืจ ืืช ื”ื‘ืขื™ื” ืฉืœื ื• ืชื—ื™ืœื” ืขืœ ื™ื“ื™ ื™ื™ืฉื•ื ืืกื˜ืจื˜ื’ื™ื™ืช ื”ืœื™ื›ื” ืืงืจืื™ืช. ืขื ื”ืœื™ื›ื” ืืงืจืื™ืช, ื ื‘ื—ืจ ื‘ืื•ืคืŸ ืืงืจืื™ ืืช ื”ืคืขื•ืœื” ื”ื‘ืื” ืžืชื•ืš ื”ืคืขื•ืœื•ืช ื”ืžื•ืชืจื•ืช, ืขื“ ืฉื ื’ื™ืข ืœืชืคื•ื— (ื‘ืœื•ืง ืงื•ื“ 3).
1. ื™ื™ืฉืžื• ืืช ื”ื”ืœื™ื›ื” ื”ืืงืจืื™ืช ืขื ื”ืงื•ื“ ื”ื‘ื:
```python
def random_policy(m):
return random.choice(list(actions))
def walk(m,policy,start_position=None):
n = 0 # number of steps
# set initial position
if start_position:
m.human = start_position
else:
m.random_start()
while True:
if m.at() == Board.Cell.apple:
return n # success!
if m.at() in [Board.Cell.wolf, Board.Cell.water]:
return -1 # eaten by wolf or drowned
while True:
a = actions[policy(m)]
new_pos = m.move_pos(m.human,a)
if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water:
m.move(a) # do the actual move
break
n+=1
walk(m,random_policy)
```
ื”ืงืจื™ืื” ืœ-`walk` ืืžื•ืจื” ืœื”ื—ื–ื™ืจ ืืช ืื•ืจืš ื”ืžืกืœื•ืœ ื”ืžืชืื™ื, ืฉื™ื›ื•ืœ ืœื”ืฉืชื ื•ืช ืžืจื™ืฆื” ืื—ืช ืœืื—ืจืช.
1. ื”ืจื™ืฆื• ืืช ื ื™ืกื•ื™ ื”ื”ืœื™ื›ื” ืžืกืคืจ ืคืขืžื™ื (ื ื ื™ื—, 100), ื•ื”ื“ืคื™ืกื• ืืช ื”ืกื˜ื˜ื™ืกื˜ื™ืงื•ืช ื”ืžืชืงื‘ืœื•ืช (ื‘ืœื•ืง ืงื•ื“ 4):
```python
def print_statistics(policy):
s,w,n = 0,0,0
for _ in range(100):
z = walk(m,policy)
if z<0:
w+=1
else:
s += z
n += 1
print(f"Average path length = {s/n}, eaten by wolf: {w} times")
print_statistics(random_policy)
```
ืฉื™ืžื• ืœื‘ ืฉืื•ืจืš ื”ืžืกืœื•ืœ ื”ืžืžื•ืฆืข ื”ื•ื ืกื‘ื™ื‘ 30-40 ืฆืขื“ื™ื, ืฉื–ื” ื“ื™ ื”ืจื‘ื”, ื‘ื”ืชื—ืฉื‘ ื‘ื›ืš ืฉื”ืžืจื—ืง ื”ืžืžื•ืฆืข ืœืชืคื•ื— ื”ืงืจื•ื‘ ื‘ื™ื•ืชืจ ื”ื•ื ืกื‘ื™ื‘ 5-6 ืฆืขื“ื™ื.
ืชื•ื›ืœื• ื’ื ืœืจืื•ืช ื›ื™ืฆื“ ื ืจืื™ืช ืชื ื•ืขืชื• ืฉืœ ืคื˜ืจ ื‘ืžื”ืœืš ื”ื”ืœื™ื›ื” ื”ืืงืจืื™ืช:
![ื”ืœื™ื›ื” ืืงืจืื™ืช ืฉืœ ืคื˜ืจ](../../../../8-Reinforcement/1-QLearning/images/random_walk.gif)
## ืคื•ื ืงืฆื™ื™ืช ืชื’ืžื•ืœ
ื›ื“ื™ ืœื”ืคื•ืš ืืช ื”ืžื“ื™ื ื™ื•ืช ืฉืœื ื• ืœืื™ื ื˜ืœื™ื’ื ื˜ื™ืช ื™ื•ืชืจ, ืขืœื™ื ื• ืœื”ื‘ื™ืŸ ืื™ืœื• ืžื”ืœื›ื™ื ื”ื "ื˜ื•ื‘ื™ื" ื™ื•ืชืจ ืžืื—ืจื™ื. ืœืฉื ื›ืš, ืขืœื™ื ื• ืœื”ื’ื“ื™ืจ ืืช ื”ืžื˜ืจื” ืฉืœื ื•.
ื”ืžื˜ืจื” ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืžื•ื’ื“ืจืช ื‘ืžื•ื ื—ื™ื ืฉืœ **ืคื•ื ืงืฆื™ื™ืช ืชื’ืžื•ืœ**, ืฉืชื—ื–ื™ืจ ืขืจืš ื ื™ืงื•ื“ ืขื‘ื•ืจ ื›ืœ ืžืฆื‘. ื›ื›ืœ ืฉื”ืžืกืคืจ ื’ื‘ื•ื” ื™ื•ืชืจ, ื›ืš ืคื•ื ืงืฆื™ื™ืช ื”ืชื’ืžื•ืœ ื˜ื•ื‘ื” ื™ื•ืชืจ. (ื‘ืœื•ืง ืงื•ื“ 5)
```python
move_reward = -0.1
goal_reward = 10
end_reward = -10
def reward(m,pos=None):
pos = pos or m.human
if not m.is_valid(pos):
return end_reward
x = m.at(pos)
if x==Board.Cell.water or x == Board.Cell.wolf:
return end_reward
if x==Board.Cell.apple:
return goal_reward
return move_reward
```
ื“ื‘ืจ ืžืขื ื™ื™ืŸ ืœื’ื‘ื™ ืคื•ื ืงืฆื™ื•ืช ืชื’ืžื•ืœ ื”ื•ื ืฉื‘ืžืงืจื™ื ืจื‘ื™ื, *ืื ื• ืžืงื‘ืœื™ื ืชื’ืžื•ืœ ืžืฉืžืขื•ืชื™ ืจืง ื‘ืกื•ืฃ ื”ืžืฉื—ืง*. ืžืฉืžืขื•ืช ื”ื“ื‘ืจ ื”ื™ื ืฉื”ืืœื’ื•ืจื™ืชื ืฉืœื ื• ืฆืจื™ืš ืœื–ื›ื•ืจ "ืฆืขื“ื™ื ื˜ื•ื‘ื™ื" ืฉื”ื•ื‘ื™ืœื• ืœืชื’ืžื•ืœ ื—ื™ื•ื‘ื™ ื‘ืกื•ืฃ, ื•ืœื”ื’ื“ื™ืœ ืืช ื—ืฉื™ื‘ื•ืชื. ื‘ืื•ืคืŸ ื“ื•ืžื”, ื›ืœ ื”ืžื”ืœื›ื™ื ืฉืžื•ื‘ื™ืœื™ื ืœืชื•ืฆืื•ืช ืจืขื•ืช ืฆืจื™ื›ื™ื ืœื”ื™ื•ืช ืžื“ื•ื›ืื™ื.
## ืœืžื™ื“ืช Q
ื”ืืœื’ื•ืจื™ืชื ืฉื ื“ื•ืŸ ื‘ื• ื›ืืŸ ื ืงืจื **ืœืžื™ื“ืช Q**. ื‘ืืœื’ื•ืจื™ืชื ื–ื”, ื”ืžื“ื™ื ื™ื•ืช ืžื•ื’ื“ืจืช ืขืœ ื™ื“ื™ ืคื•ื ืงืฆื™ื” (ืื• ืžื‘ื ื” ื ืชื•ื ื™ื) ืฉื ืงืจืืช **ื˜ื‘ืœืช Q**. ื”ื™ื ืžืชืขื“ืช ืืช "ื”ื˜ื•ื‘" ืฉืœ ื›ืœ ืื—ืช ืžื”ืคืขื•ืœื•ืช ื‘ืžืฆื‘ ื ืชื•ืŸ.
ื”ื™ื ื ืงืจืืช ื˜ื‘ืœืช Q ืžื›ื™ื•ื•ืŸ ืฉืœืขืชื™ื ืงืจื•ื‘ื•ืช ื ื•ื— ืœื™ื™ืฆื’ ืื•ืชื” ื›ื˜ื‘ืœื”, ืื• ืžืขืจืš ืจื‘-ืžืžื“ื™. ืžื›ื™ื•ื•ืŸ ืฉืœื•ื— ื”ืžืฉื—ืง ืฉืœื ื• ื”ื•ื ื‘ื’ื•ื“ืœ `width` x `height`, ื ื•ื›ืœ ืœื™ื™ืฆื’ ืืช ื˜ื‘ืœืช Q ื‘ืืžืฆืขื•ืช ืžืขืจืš numpy ืขื ืฆื•ืจื” `width` x `height` x `len(actions)`: (ื‘ืœื•ืง ืงื•ื“ 6)
```python
Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)
```
ืฉื™ืžื• ืœื‘ ืฉืื ื• ืžืืชื—ืœื™ื ืืช ื›ืœ ื”ืขืจื›ื™ื ื‘ื˜ื‘ืœืช Q ืขื ืขืจืš ืฉื•ื•ื”, ื‘ืžืงืจื” ืฉืœื ื• - 0.25. ื–ื” ืชื•ืื ืœืžื“ื™ื ื™ื•ืช "ื”ืœื™ื›ื” ืืงืจืื™ืช", ืžื›ื™ื•ื•ืŸ ืฉื›ืœ ื”ืžื”ืœื›ื™ื ื‘ื›ืœ ืžืฆื‘ ื”ื ื˜ื•ื‘ื™ื ื‘ืื•ืชื” ืžื™ื“ื”. ื ื•ื›ืœ ืœื”ืขื‘ื™ืจ ืืช ื˜ื‘ืœืช Q ืœืคื•ื ืงืฆื™ื™ืช `plot` ื›ื“ื™ ืœื”ืžื—ื™ืฉ ืืช ื”ื˜ื‘ืœื” ืขืœ ื”ืœื•ื—: `m.plot(Q)`.
![ื”ืกื‘ื™ื‘ื” ืฉืœ ืคื˜ืจ](../../../../8-Reinforcement/1-QLearning/images/env_init.png)
ื‘ืžืจื›ื– ื›ืœ ืชื ื™ืฉ "ื—ืฅ" ืฉืžืฆื‘ื™ืข ืขืœ ื›ื™ื•ื•ืŸ ื”ืชื ื•ืขื” ื”ืžื•ืขื“ืฃ. ืžื›ื™ื•ื•ืŸ ืฉื›ืœ ื”ื›ื™ื•ื•ื ื™ื ืฉื•ื•ื™ื, ืžื•ืฆื’ืช ื ืงื•ื“ื”.
ื›ืขืช ืขืœื™ื ื• ืœื”ืจื™ืฅ ืืช ื”ืกื™ืžื•ืœืฆื™ื”, ืœื—ืงื•ืจ ืืช ื”ืกื‘ื™ื‘ื” ืฉืœื ื•, ื•ืœืœืžื•ื“ ื—ืœื•ืงื” ื˜ื•ื‘ื” ื™ื•ืชืจ ืฉืœ ืขืจื›ื™ ื˜ื‘ืœืช Q, ืฉืชืืคืฉืจ ืœื ื• ืœืžืฆื•ื ืืช ื”ื“ืจืš ืœืชืคื•ื— ื”ืจื‘ื” ื™ื•ืชืจ ืžื”ืจ.
## ืžื”ื•ืช ืœืžื™ื“ืช Q: ืžืฉื•ื•ืืช ื‘ืœืžืŸ
ื‘ืจื’ืข ืฉื ืชื—ื™ืœ ืœื–ื•ื–, ืœื›ืœ ืคืขื•ืœื” ื™ื”ื™ื” ืชื’ืžื•ืœ ืžืชืื™ื, ื›ืœื•ืžืจ ื ื•ื›ืœ ื‘ืื•ืคืŸ ืชื™ืื•ืจื˜ื™ ืœื‘ื—ื•ืจ ืืช ื”ืคืขื•ืœื” ื”ื‘ืื” ืขืœ ืกืžืš ื”ืชื’ืžื•ืœ ื”ืžื™ื™ื“ื™ ื”ื’ื‘ื•ื” ื‘ื™ื•ืชืจ. ืขื ื–ืืช, ื‘ืจื•ื‘ ื”ืžืฆื‘ื™ื, ื”ืžื”ืœืš ืœื ื™ืฉื™ื’ ืืช ืžื˜ืจืชื ื• ืœื”ื’ื™ืข ืœืชืคื•ื—, ื•ืœื›ืŸ ืœื ื ื•ื›ืœ ืœื”ื—ืœื™ื˜ ืžื™ื“ ืื™ื–ื” ื›ื™ื•ื•ืŸ ื˜ื•ื‘ ื™ื•ืชืจ.
> ื–ื›ืจื• ืฉื–ื” ืœื ื”ืชื•ืฆืื” ื”ืžื™ื™ื“ื™ืช ืฉื—ืฉื•ื‘ื”, ืืœื ื”ืชื•ืฆืื” ื”ืกื•ืคื™ืช, ืฉื ืงื‘ืœ ื‘ืกื•ืฃ ื”ืกื™ืžื•ืœืฆื™ื”.
ื›ื“ื™ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืืช ื”ืชื’ืžื•ืœ ื”ืžื•ืฉื”ื”, ืขืœื™ื ื• ืœื”ืฉืชืžืฉ ื‘ืขืงืจื•ื ื•ืช ืฉืœ **[ืชื›ื ื•ืช ื“ื™ื ืžื™](https://en.wikipedia.org/wiki/Dynamic_programming)**, ืฉืžืืคืฉืจื™ื ืœื ื• ืœื—ืฉื•ื‘ ืขืœ ื”ื‘ืขื™ื” ืฉืœื ื• ื‘ืื•ืคืŸ ืจืงื•ืจืกื™ื‘ื™.
ื ื ื™ื— ืฉืื ื—ื ื• ื ืžืฆืื™ื ื›ืขืช ื‘ืžืฆื‘ *s*, ื•ืจื•ืฆื™ื ืœืขื‘ื•ืจ ืœืžืฆื‘ ื”ื‘ื *s'*. ืขืœ ื™ื“ื™ ื›ืš, ื ืงื‘ืœ ืืช ื”ืชื’ืžื•ืœ ื”ืžื™ื™ื“ื™ *r(s,a)*, ืฉืžื•ื’ื“ืจ ืขืœ ื™ื“ื™ ืคื•ื ืงืฆื™ื™ืช ื”ืชื’ืžื•ืœ, ื‘ืชื•ืกืคืช ืชื’ืžื•ืœ ืขืชื™ื“ื™ ื›ืœืฉื”ื•. ืื ื ื ื™ื— ืฉื˜ื‘ืœืช Q ืฉืœื ื• ืžืฉืงืคืช ื ื›ื•ืŸ ืืช "ื”ืื˜ืจืงื˜ื™ื‘ื™ื•ืช" ืฉืœ ื›ืœ ืคืขื•ืœื”, ืื– ื‘ืžืฆื‘ *s'* ื ื‘ื—ืจ ืคืขื•ืœื” *a* ืฉืชื•ืืžืช ืœืขืจืš ื”ืžืงืกื™ืžืœื™ ืฉืœ *Q(s',a')*. ืœื›ืŸ, ื”ืชื’ืžื•ืœ ื”ืขืชื™ื“ื™ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืฉื ื•ื›ืœ ืœืงื‘ืœ ื‘ืžืฆื‘ *s* ื™ื•ื’ื“ืจ ื›-`max`
## ื‘ื“ื™ืงืช ื”ืžื“ื™ื ื™ื•ืช
ืžื›ื™ื•ื•ืŸ ืฉ-Q-Table ืžืฆื™ื’ ืืช "ื”ืื˜ืจืงื˜ื™ื‘ื™ื•ืช" ืฉืœ ื›ืœ ืคืขื•ืœื” ื‘ื›ืœ ืžืฆื‘, ืงืœ ืžืื•ื“ ืœื”ืฉืชืžืฉ ื‘ื• ื›ื“ื™ ืœื”ื’ื“ื™ืจ ื ื™ื•ื•ื˜ ื™ืขื™ืœ ื‘ืขื•ืœื ืฉืœื ื•. ื‘ืžืงืจื” ื”ืคืฉื•ื˜ ื‘ื™ื•ืชืจ, ื ื™ืชืŸ ืœื‘ื—ื•ืจ ืืช ื”ืคืขื•ืœื” ื”ืžืชืื™ืžื” ืœืขืจืš ื”ื’ื‘ื•ื” ื‘ื™ื•ืชืจ ื‘-Q-Table: (ื‘ืœื•ืง ืงื•ื“ 9)
```python
def qpolicy_strict(m):
x,y = m.human
v = probs(Q[x,y])
a = list(actions)[np.argmax(v)]
return a
walk(m,qpolicy_strict)
```
> ืื ืชื ืกื• ืืช ื”ืงื•ื“ ืœืžืขืœื” ืžืกืคืจ ืคืขืžื™ื, ื™ื™ืชื›ืŸ ืฉืชืฉื™ืžื• ืœื‘ ืฉืœืคืขืžื™ื ื”ื•ื "ื ืชืงืข", ื•ืชืฆื˜ืจื›ื• ืœืœื—ื•ืฅ ืขืœ ื›ืคืชื•ืจ ื”-STOP ื‘ืžื—ื‘ืจืช ื›ื“ื™ ืœื”ืคืกื™ืง ืื•ืชื•. ื–ื” ืงื•ืจื” ืžื›ื™ื•ื•ืŸ ืฉื™ื›ื•ืœื•ืช ืœื”ื™ื•ืช ืžืฆื‘ื™ื ืฉื‘ื”ื ืฉื ื™ ืžืฆื‘ื™ื "ืžืฆื‘ื™ืขื™ื" ื–ื” ืขืœ ื–ื” ืžื‘ื—ื™ื ืช ืขืจืš Q ืื•ืคื˜ื™ืžืœื™, ื•ื‘ืžืงืจื” ื›ื–ื” ื”ืกื•ื›ืŸ ื™ืžืฉื™ืš ืœื ื•ืข ื‘ื™ืŸ ืื•ืชื ืžืฆื‘ื™ื ืœืœื ืกื•ืฃ.
## ๐Ÿš€ืืชื’ืจ
> **ืžืฉื™ืžื” 1:** ืฉื ื• ืืช ื”ืคื•ื ืงืฆื™ื” `walk` ื›ืš ืฉืชื•ื’ื‘ืœ ืื•ืจืš ื”ืžืกืœื•ืœ ื”ืžืจื‘ื™ ืœืžืกืคืจ ืžืกื•ื™ื ืฉืœ ืฆืขื“ื™ื (ืœื“ื•ื’ืžื”, 100), ื•ืฆืคื• ื‘ืงื•ื“ ืœืžืขืœื” ืžื—ื–ื™ืจ ืืช ื”ืขืจืš ื”ื–ื” ืžื“ื™ ืคืขื.
> **ืžืฉื™ืžื” 2:** ืฉื ื• ืืช ื”ืคื•ื ืงืฆื™ื” `walk` ื›ืš ืฉืœื ืชื—ื–ื•ืจ ืœืžืงื•ืžื•ืช ืฉื‘ื”ื ื›ื‘ืจ ื”ื™ื™ืชื” ื‘ืขื‘ืจ. ื–ื” ื™ืžื ืข ืž-`walk` ืœื”ื™ื›ื ืก ืœืœื•ืœืื”, ืืš ืขื“ื™ื™ืŸ ื™ื™ืชื›ืŸ ืฉื”ืกื•ื›ืŸ ื™ืžืฆื ืืช ืขืฆืžื• "ืชืงื•ืข" ื‘ืžืงื•ื ืฉืžืžื ื• ืื™ื ื• ื™ื›ื•ืœ ืœื‘ืจื•ื—.
## ื ื™ื•ื•ื˜
ืžื“ื™ื ื™ื•ืช ื ื™ื•ื•ื˜ ื˜ื•ื‘ื” ื™ื•ืชืจ ืชื”ื™ื” ื–ื• ืฉื”ืฉืชืžืฉื ื• ื‘ื” ื‘ืžื”ืœืš ื”ืื™ืžื•ืŸ, ืฉืžืฉืœื‘ืช ื ื™ืฆื•ืœ ื•ื—ืงืจ. ื‘ืžื“ื™ื ื™ื•ืช ื–ื•, ื ื‘ื—ืจ ื›ืœ ืคืขื•ืœื” ืขื ื”ืกืชื‘ืจื•ืช ืžืกื•ื™ืžืช, ืคืจื•ืคื•ืจืฆื™ื•ื ืœื™ืช ืœืขืจื›ื™ื ื‘-Q-Table. ืืกื˜ืจื˜ื’ื™ื” ื–ื• ืขื“ื™ื™ืŸ ืขืฉื•ื™ื” ืœื’ืจื•ื ืœืกื•ื›ืŸ ืœื—ื–ื•ืจ ืœืžื™ืงื•ื ืฉื›ื‘ืจ ื—ืงืจ, ืืš ื›ืคื™ ืฉื ื™ืชืŸ ืœืจืื•ืช ืžื”ืงื•ื“ ืœืžื˜ื”, ื”ื™ื ืžื‘ื™ืื” ืœืžืกืœื•ืœ ืžืžื•ืฆืข ืงืฆืจ ืžืื•ื“ ืœืžื™ืงื•ื ื”ืจืฆื•ื™ (ื–ื›ืจื• ืฉ-`print_statistics` ืžืจื™ืฅ ืืช ื”ืกื™ืžื•ืœืฆื™ื” 100 ืคืขืžื™ื): (ื‘ืœื•ืง ืงื•ื“ 10)
```python
def qpolicy(m):
x,y = m.human
v = probs(Q[x,y])
a = random.choices(list(actions),weights=v)[0]
return a
print_statistics(qpolicy)
```
ืœืื—ืจ ื”ืจืฆืช ื”ืงื•ื“ ื”ื–ื”, ืืชื ืืžื•ืจื™ื ืœืงื‘ืœ ืื•ืจืš ืžืกืœื•ืœ ืžืžื•ืฆืข ืงื˜ืŸ ื‘ื”ืจื‘ื” ืžืืฉืจ ืงื•ื“ื, ื‘ื˜ื•ื•ื— ืฉืœ 3-6.
## ื—ืงื™ืจืช ืชื”ืœื™ืš ื”ืœืžื™ื“ื”
ื›ืคื™ ืฉืฆื™ื™ื ื•, ืชื”ืœื™ืš ื”ืœืžื™ื“ื” ื”ื•ื ืื™ื–ื•ืŸ ื‘ื™ืŸ ื—ืงืจ ืœื‘ื™ืŸ ื ื™ืฆื•ืœ ื”ื™ื“ืข ืฉื ืฆื‘ืจ ืขืœ ืžื‘ื ื” ืžืจื—ื‘ ื”ื‘ืขื™ื”. ืจืื™ื ื• ืฉื”ืชื•ืฆืื•ืช ืฉืœ ื”ืœืžื™ื“ื” (ื”ื™ื›ื•ืœืช ืœืขื–ื•ืจ ืœืกื•ื›ืŸ ืœืžืฆื•ื ืžืกืœื•ืœ ืงืฆืจ ืœืžื˜ืจื”) ื”ืฉืชืคืจื•, ืืš ื’ื ืžืขื ื™ื™ืŸ ืœืฆืคื•ืช ื›ื™ืฆื“ ืื•ืจืš ื”ืžืกืœื•ืœ ื”ืžืžื•ืฆืข ืžืชื ื”ื’ ื‘ืžื”ืœืš ืชื”ืœื™ืš ื”ืœืžื™ื“ื”:
## ืกื™ื›ื•ื ื”ืœืžื™ื“ื•ืช:
- **ืื•ืจืš ื”ืžืกืœื•ืœ ื”ืžืžื•ืฆืข ืขื•ืœื”**. ืžื” ืฉืื ื• ืจื•ืื™ื ื›ืืŸ ื”ื•ื ืฉื‘ืชื—ื™ืœื”, ืื•ืจืš ื”ืžืกืœื•ืœ ื”ืžืžื•ืฆืข ืขื•ืœื”. ื–ื” ื›ื ืจืื” ื ื•ื‘ืข ืžื›ืš ืฉื›ืืฉืจ ืื™ื ื ื• ื™ื•ื“ืขื™ื ื“ื‘ืจ ืขืœ ื”ืกื‘ื™ื‘ื”, ืื ื• ื ื•ื˜ื™ื ืœื”ื™ืชืงืข ื‘ืžืฆื‘ื™ื ื’ืจื•ืขื™ื, ื›ืžื• ืžื™ื ืื• ื–ืื‘. ื›ื›ืœ ืฉืื ื• ืœื•ืžื“ื™ื ื™ื•ืชืจ ื•ืžืชื—ื™ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื™ื“ืข ื”ื–ื”, ืื ื• ื™ื›ื•ืœื™ื ืœื—ืงื•ืจ ืืช ื”ืกื‘ื™ื‘ื” ืœื–ืžืŸ ืืจื•ืš ื™ื•ืชืจ, ืืš ืขื“ื™ื™ืŸ ืื™ื ื ื• ื™ื•ื“ืขื™ื ื”ื™ื˜ื‘ ื”ื™ื›ืŸ ื ืžืฆืื™ื ื”ืชืคื•ื—ื™ื.
- **ืื•ืจืš ื”ืžืกืœื•ืœ ื™ื•ืจื“ ื›ื›ืœ ืฉืื ื• ืœื•ืžื“ื™ื ื™ื•ืชืจ**. ื‘ืจื’ืข ืฉืื ื• ืœื•ืžื“ื™ื ืžืกืคื™ืง, ืงืœ ื™ื•ืชืจ ืœืกื•ื›ืŸ ืœื”ืฉื™ื’ ืืช ื”ืžื˜ืจื”, ื•ืื•ืจืš ื”ืžืกืœื•ืœ ืžืชื—ื™ืœ ืœืจื“ืช. ืขื ื–ืืช, ืื ื• ืขื“ื™ื™ืŸ ืคืชื•ื—ื™ื ืœื—ืงืจ, ื•ืœื›ืŸ ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ืื ื• ืกื•ื˜ื™ื ืžื”ืžืกืœื•ืœ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ื•ื‘ื•ื—ื ื™ื ืืคืฉืจื•ื™ื•ืช ื—ื“ืฉื•ืช, ืžื” ืฉื’ื•ืจื ืœืžืกืœื•ืœ ืœื”ื™ื•ืช ืืจื•ืš ื™ื•ืชืจ ืžื”ืื•ืคื˜ื™ืžืœื™.
- **ืื•ืจืš ื”ืžืกืœื•ืœ ืขื•ืœื” ื‘ืื•ืคืŸ ืคืชืื•ืžื™**. ืžื” ืฉืื ื• ื’ื ืจื•ืื™ื ื‘ื’ืจืฃ ื”ื•ื ืฉื‘ืฉืœื‘ ืžืกื•ื™ื, ื”ืื•ืจืš ืขืœื” ื‘ืื•ืคืŸ ืคืชืื•ืžื™. ื–ื” ืžืฆื‘ื™ืข ืขืœ ื”ืื•ืคื™ ื”ืกื˜ื•ื›ืกื˜ื™ ืฉืœ ื”ืชื”ืœื™ืš, ื•ืขืœ ื›ืš ืฉื‘ืฉืœื‘ ืžืกื•ื™ื ืื ื• ื™ื›ื•ืœื™ื "ืœืงืœืงืœ" ืืช ืžืงื“ืžื™ ื”-Q-Table ืขืœ ื™ื“ื™ ื”ื—ืœืคืชื ื‘ืขืจื›ื™ื ื—ื“ืฉื™ื. ื‘ืื•ืคืŸ ืื™ื“ื™ืืœื™, ื™ืฉ ืœืžื–ืขืจ ื–ืืช ืขืœ ื™ื“ื™ ื”ืคื—ืชืช ืงืฆื‘ ื”ืœืžื™ื“ื” (ืœื“ื•ื’ืžื”, ืœืงืจืืช ืกื•ืฃ ื”ืื™ืžื•ืŸ, ืื ื• ืžืฉื ื™ื ืืช ืขืจื›ื™ ื”-Q-Table ืจืง ื‘ืžื™ื“ื” ืงื˜ื ื”).
ื‘ืกืš ื”ื›ืœ, ื—ืฉื•ื‘ ืœื–ื›ื•ืจ ืฉื”ื”ืฆืœื—ื” ื•ื”ืื™ื›ื•ืช ืฉืœ ืชื”ืœื™ืš ื”ืœืžื™ื“ื” ืชืœื•ื™ื™ื ื‘ืื•ืคืŸ ืžืฉืžืขื•ืชื™ ื‘ืคืจืžื˜ืจื™ื, ื›ืžื• ืงืฆื‘ ื”ืœืžื™ื“ื”, ื“ืขื™ื›ืช ืงืฆื‘ ื”ืœืžื™ื“ื”, ื•ืคืงื˜ื•ืจ ื”ื”ื ื—ื”. ืืœื• ื ืงืจืื™ื ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช **ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื**, ื›ื“ื™ ืœื”ื‘ื“ื™ืœื ืž-**ืคืจืžื˜ืจื™ื**, ืฉืื•ืชื ืื ื• ืžืžื˜ื‘ื™ื ื‘ืžื”ืœืš ื”ืื™ืžื•ืŸ (ืœื“ื•ื’ืžื”, ืžืงื“ืžื™ Q-Table). ืชื”ืœื™ืš ืžืฆื™ืืช ื”ืขืจื›ื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ืœื”ื™ืคืจ-ืคืจืžื˜ืจื™ื ื ืงืจื **ืื•ืคื˜ื™ืžื™ื–ืฆื™ื” ืฉืœ ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื**, ื•ื”ื•ื ืจืื•ื™ ืœื ื•ืฉื ื ืคืจื“.
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
## ืžืฉื™ืžื”
[ืขื•ืœื ืžืฆื™ืื•ืชื™ ื™ื•ืชืจ](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,41 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "68394b2102d3503882e5e914bd0ff5c1",
"translation_date": "2025-09-05T20:17:14+00:00",
"source_file": "8-Reinforcement/1-QLearning/assignment.md",
"language_code": "he"
}
-->
# ืขื•ืœื ืžืฆื™ืื•ืชื™ ื™ื•ืชืจ
ื‘ืžืฆื‘ ืฉืœื ื•, ืคื™ื˜ืจ ื”ืฆืœื™ื— ืœื ื•ืข ื›ืžืขื˜ ื‘ืœื™ ืœื”ืชืขื™ื™ืฃ ืื• ืœื”ืจื’ื™ืฉ ืจืขื‘. ื‘ืขื•ืœื ืžืฆื™ืื•ืชื™ ื™ื•ืชืจ, ื”ื•ื ืฆืจื™ืš ืœืฉื‘ืช ื•ืœื ื•ื— ืžื“ื™ ืคืขื, ื•ื’ื ืœื”ืื›ื™ืœ ืืช ืขืฆืžื•. ื‘ื•ืื• ื ืขืฉื” ืืช ื”ืขื•ืœื ืฉืœื ื• ืžืฆื™ืื•ืชื™ ื™ื•ืชืจ, ืขืœ ื™ื“ื™ ื™ื™ืฉื•ื ื”ื›ืœืœื™ื ื”ื‘ืื™ื:
1. ื›ืืฉืจ ืคื™ื˜ืจ ื ืข ืžืžืงื•ื ืœืžืงื•ื, ื”ื•ื ืžืื‘ื“ **ืื ืจื’ื™ื”** ื•ืฆื•ื‘ืจ **ืขื™ื™ืคื•ืช**.
2. ืคื™ื˜ืจ ื™ื›ื•ืœ ืœื”ื—ื–ื™ืจ ืœืขืฆืžื• ืื ืจื’ื™ื” ืขืœ ื™ื“ื™ ืื›ื™ืœืช ืชืคื•ื—ื™ื.
3. ืคื™ื˜ืจ ื™ื›ื•ืœ ืœื”ื™ืคื˜ืจ ืžืขื™ื™ืคื•ืช ืขืœ ื™ื“ื™ ืžื ื•ื—ื” ืžืชื—ืช ืœืขืฅ ืื• ืขืœ ื”ื“ืฉื (ื›ืœื•ืžืจ, ื”ืœื™ื›ื” ืœืžื™ืงื•ื ื‘ืœื•ื— ืฉื‘ื• ื™ืฉ ืขืฅ ืื• ื“ืฉื - ืฉื“ื” ื™ืจื•ืง).
4. ืคื™ื˜ืจ ืฆืจื™ืš ืœืžืฆื•ื ื•ืœื”ืจื•ื’ ืืช ื”ื–ืื‘.
5. ื›ื“ื™ ืœื”ืจื•ื’ ืืช ื”ื–ืื‘, ืคื™ื˜ืจ ืฆืจื™ืš ืœื”ื’ื™ืข ืœืจืžื•ืช ืžืกื•ื™ืžื•ืช ืฉืœ ืื ืจื’ื™ื” ื•ืขื™ื™ืคื•ืช, ืื—ืจืช ื”ื•ื ืžืคืกื™ื“ ื‘ืงืจื‘.
## ื”ื•ืจืื•ืช
ื”ืฉืชืžืฉื• ื‘ืžื—ื‘ืจืช ื”ืžืงื•ืจื™ืช [notebook.ipynb](../../../../8-Reinforcement/1-QLearning/notebook.ipynb) ื›ื ืงื•ื“ืช ื”ืชื—ืœื” ืœืคืชืจื•ืŸ ืฉืœื›ื.
ืฉื ื• ืืช ืคื•ื ืงืฆื™ื™ืช ื”ืชื’ืžื•ืœ ื‘ื”ืชืื ืœื›ืœืœื™ ื”ืžืฉื—ืง, ื”ืจื™ืฆื• ืืช ืืœื’ื•ืจื™ืชื ื”ืœืžื™ื“ื” ื”ื—ื™ื–ื•ืงื™ืช ื›ื“ื™ ืœืœืžื•ื“ ืืช ื”ืืกื˜ืจื˜ื’ื™ื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ืœื ืฆื— ื‘ืžืฉื—ืง, ื•ื”ืฉื•ื• ืืช ื”ืชื•ืฆืื•ืช ืฉืœ ื”ืœื™ื›ื” ืืงืจืื™ืช ืขื ื”ืืœื’ื•ืจื™ืชื ืฉืœื›ื ืžื‘ื—ื™ื ืช ืžืกืคืจ ื”ืžืฉื—ืงื™ื ืฉื ื™ืฆื—ื• ื•ื”ืคืกื™ื“ื•.
> **Note**: ื‘ืขื•ืœื ื”ื—ื“ืฉ ืฉืœื›ื, ื”ืžืฆื‘ ืžื•ืจื›ื‘ ื™ื•ืชืจ, ื•ื‘ื ื•ืกืฃ ืœืžื™ืงื•ื ื”ืื“ื ื›ื•ืœืœ ื’ื ืจืžื•ืช ืขื™ื™ืคื•ืช ื•ืื ืจื’ื™ื”. ืืชื ื™ื›ื•ืœื™ื ืœื‘ื—ื•ืจ ืœื™ื™ืฆื’ ืืช ื”ืžืฆื‘ ื›ื˜ื•ืคืœ (Board,energy,fatigue), ืื• ืœื”ื’ื“ื™ืจ ืžื—ืœืงื” ืขื‘ื•ืจ ื”ืžืฆื‘ (ื™ื™ืชื›ืŸ ืฉืชืจืฆื• ื’ื ืœื”ื•ืจื™ืฉ ืื•ืชื” ืž-`Board`), ืื• ืืคื™ืœื• ืœืฉื ื•ืช ืืช ืžื—ืœืงืช `Board` ื”ืžืงื•ืจื™ืช ื‘ืชื•ืš [rlboard.py](../../../../8-Reinforcement/1-QLearning/rlboard.py).
ื‘ืคืชืจื•ืŸ ืฉืœื›ื, ืื ื ืฉืžืจื• ืขืœ ื”ืงื•ื“ ื”ืื—ืจืื™ ืœืืกื˜ืจื˜ื’ื™ื™ืช ื”ื”ืœื™ื›ื” ื”ืืงืจืื™ืช, ื•ื”ืฉื•ื• ืืช ืชื•ืฆืื•ืช ื”ืืœื’ื•ืจื™ืชื ืฉืœื›ื ืขื ื”ื”ืœื™ื›ื” ื”ืืงืจืื™ืช ื‘ืกื•ืฃ.
> **Note**: ื™ื™ืชื›ืŸ ืฉืชืฆื˜ืจื›ื• ืœื”ืชืื™ื ืืช ื”ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื ื›ื“ื™ ืœื’ืจื•ื ืœื–ื” ืœืขื‘ื•ื“, ื‘ืžื™ื•ื—ื“ ืืช ืžืกืคืจ ื”ืืคื•ืงื™ื. ืžื›ื™ื•ื•ืŸ ืฉื”ืฆืœื—ื” ื‘ืžืฉื—ืง (ื”ืงืจื‘ ืขื ื”ื–ืื‘) ื”ื™ื ืื™ืจื•ืข ื ื“ื™ืจ, ืืชื ื™ื›ื•ืœื™ื ืœืฆืคื•ืช ืœื–ืžืŸ ืื™ืžื•ืŸ ืืจื•ืš ื™ื•ืชืจ.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| --------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| | ืžื•ืฆื’ืช ืžื—ื‘ืจืช ืขื ื”ื’ื“ืจืช ื›ืœืœื™ ืขื•ืœื ื—ื“ืฉื™ื, ืืœื’ื•ืจื™ืชื Q-Learning ื•ื”ืกื‘ืจื™ื ื˜ืงืกื˜ื•ืืœื™ื™ื. ื”ืืœื’ื•ืจื™ืชื ืžืฆืœื™ื— ืœืฉืคืจ ืžืฉืžืขื•ืชื™ืช ืืช ื”ืชื•ืฆืื•ืช ื‘ื”ืฉื•ื•ืื” ืœื”ืœื™ื›ื” ืืงืจืื™ืช. | ืžื•ืฆื’ืช ืžื—ื‘ืจืช, ืืœื’ื•ืจื™ืชื Q-Learning ืžื™ื•ืฉื ื•ืžืฉืคืจ ืืช ื”ืชื•ืฆืื•ืช ื‘ื”ืฉื•ื•ืื” ืœื”ืœื™ื›ื” ืืงืจืื™ืช, ืืš ืœื ื‘ืื•ืคืŸ ืžืฉืžืขื•ืชื™; ืื• ืฉื”ืžื—ื‘ืจืช ืžืชื•ืขื“ืช ื‘ืฆื•ืจื” ืœืงื•ื™ื” ื•ื”ืงื•ื“ ืื™ื ื• ืžื•ื‘ื ื” ื”ื™ื˜ื‘. | ื ืขืฉื” ื ื™ืกื™ื•ืŸ ืœื”ื’ื“ื™ืจ ืžื—ื“ืฉ ืืช ื›ืœืœื™ ื”ืขื•ืœื, ืืš ืืœื’ื•ืจื™ืชื Q-Learning ืื™ื ื• ืขื•ื‘ื“, ืื• ืฉืคื•ื ืงืฆื™ื™ืช ื”ืชื’ืžื•ืœ ืื™ื ื” ืžื•ื’ื“ืจืช ื‘ืžืœื•ืื”. |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T20:18:50+00:00",
"source_file": "8-Reinforcement/1-QLearning/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก AI [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
"translation_date": "2025-09-05T20:18:34+00:00",
"source_file": "8-Reinforcement/1-QLearning/solution/R/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ืื—ืจืื™ื ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,333 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "107d5bb29da8a562e7ae72262d251a75",
"translation_date": "2025-09-05T20:19:54+00:00",
"source_file": "8-Reinforcement/2-Gym/README.md",
"language_code": "he"
}
-->
## ื“ืจื™ืฉื•ืช ืžืงื“ื™ืžื•ืช
ื‘ืฉื™ืขื•ืจ ื”ื–ื” ื ืฉืชืžืฉ ื‘ืกืคืจื™ื™ื” ื‘ืฉื **OpenAI Gym** ื›ื“ื™ ืœื“ืžื•ืช **ืกื‘ื™ื‘ื•ืช** ืฉื•ื ื•ืช. ื ื™ืชืŸ ืœื”ืจื™ืฅ ืืช ื”ืงื•ื“ ืฉืœ ื”ืฉื™ืขื•ืจ ื”ื–ื” ื‘ืื•ืคืŸ ืžืงื•ืžื™ (ืœืžืฉืœ, ืž-Visual Studio Code), ื•ื‘ืžืงืจื” ื›ื–ื” ื”ืกื™ืžื•ืœืฆื™ื” ืชื™ืคืชื— ื‘ื—ืœื•ืŸ ื—ื“ืฉ. ื›ืืฉืจ ืžืจื™ืฆื™ื ืืช ื”ืงื•ื“ ืื•ื ืœื™ื™ืŸ, ื™ื™ืชื›ืŸ ืฉืชืฆื˜ืจื›ื• ืœื‘ืฆืข ื›ืžื” ื”ืชืืžื•ืช ื‘ืงื•ื“, ื›ืคื™ ืฉืžืชื•ืืจ [ื›ืืŸ](https://towardsdatascience.com/rendering-openai-gym-envs-on-binder-and-google-colab-536f99391cc7).
## OpenAI Gym
ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื, ื—ื•ืงื™ ื”ืžืฉื—ืง ื•ื”ืžืฆื‘ ื”ื•ื’ื“ืจื• ืขืœ ื™ื“ื™ ืžื—ืœืงืช `Board` ืฉื”ื’ื“ืจื ื• ื‘ืขืฆืžื ื•. ื›ืืŸ ื ืฉืชืžืฉ ื‘**ืกื‘ื™ื‘ืช ืกื™ืžื•ืœืฆื™ื”** ืžื™ื•ื—ื“ืช, ืฉืชื“ืžื” ืืช ื”ืคื™ื–ื™ืงื” ืฉืžืื—ื•ืจื™ ืžื•ื˜ ื”ืื™ื–ื•ืŸ. ืื—ืช ืžืกื‘ื™ื‘ื•ืช ื”ืกื™ืžื•ืœืฆื™ื” ื”ืคื•ืคื•ืœืจื™ื•ืช ื‘ื™ื•ืชืจ ืœืื™ืžื•ืŸ ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ ืœืžื™ื“ืช ื—ื™ื–ื•ืง ื ืงืจืืช [Gym](https://gym.openai.com/), ืฉืžื ื•ื”ืœืช ืขืœ ื™ื“ื™ [OpenAI](https://openai.com/). ื‘ืืžืฆืขื•ืช ื”-Gym ื ื•ื›ืœ ืœื™ืฆื•ืจ ืกื‘ื™ื‘ื•ืช ืฉื•ื ื•ืช, ื”ื—ืœ ืžืกื™ืžื•ืœืฆื™ื™ืช CartPole ื•ืขื“ ืžืฉื—ืงื™ Atari.
> **ื”ืขืจื”**: ื ื™ืชืŸ ืœืจืื•ืช ืกื‘ื™ื‘ื•ืช ื ื•ืกืคื•ืช ื”ื–ืžื™ื ื•ืช ื‘-OpenAI Gym [ื›ืืŸ](https://gym.openai.com/envs/#classic_control).
ืจืืฉื™ืช, ื ืชืงื™ืŸ ืืช ื”-Gym ื•ื ื™ื™ื‘ื ืืช ื”ืกืคืจื™ื•ืช ื”ื ื“ืจืฉื•ืช (ืงื•ื“ ื‘ืœื•ืง 1):
```python
import sys
!{sys.executable} -m pip install gym
import gym
import matplotlib.pyplot as plt
import numpy as np
import random
```
## ืชืจื’ื™ืœ - ืืชื—ื•ืœ ืกื‘ื™ื‘ืช CartPole
ื›ื“ื™ ืœืขื‘ื•ื“ ืขื ื‘ืขื™ื™ืช ืื™ื–ื•ืŸ ืžื•ื˜ ื”-CartPole, ืขืœื™ื ื• ืœืืชื—ืœ ืืช ื”ืกื‘ื™ื‘ื” ื”ืžืชืื™ืžื”. ื›ืœ ืกื‘ื™ื‘ื” ืžืงื•ืฉืจืช ืœ:
- **ืžืจื—ื‘ ืชืฆืคื™ื•ืช** ืฉืžื’ื“ื™ืจ ืืช ืžื‘ื ื” ื”ืžื™ื“ืข ืฉืื ื• ืžืงื‘ืœื™ื ืžื”ืกื‘ื™ื‘ื”. ืขื‘ื•ืจ ื‘ืขื™ื™ืช ื”-CartPole, ืื ื• ืžืงื‘ืœื™ื ืืช ืžื™ืงื•ื ื”ืžื•ื˜, ืžื”ื™ืจื•ืช ื•ืขื•ื“ ืขืจื›ื™ื ื ื•ืกืคื™ื.
- **ืžืจื—ื‘ ืคืขื•ืœื•ืช** ืฉืžื’ื“ื™ืจ ืคืขื•ืœื•ืช ืืคืฉืจื™ื•ืช. ื‘ืžืงืจื” ืฉืœื ื• ืžืจื—ื‘ ื”ืคืขื•ืœื•ืช ื”ื•ื ื“ื™ืกืงืจื˜ื™, ื•ืžื•ืจื›ื‘ ืžืฉืชื™ ืคืขื•ืœื•ืช - **ืฉืžืืœื”** ื•-**ื™ืžื™ื ื”**. (ืงื•ื“ ื‘ืœื•ืง 2)
1. ื›ื“ื™ ืœืืชื—ืœ, ื”ืงืœื™ื“ื• ืืช ื”ืงื•ื“ ื”ื‘ื:
```python
env = gym.make("CartPole-v1")
print(env.action_space)
print(env.observation_space)
print(env.action_space.sample())
```
ื›ื“ื™ ืœืจืื•ืช ืื™ืš ื”ืกื‘ื™ื‘ื” ืขื•ื‘ื“ืช, ื ืจื™ืฅ ืกื™ืžื•ืœืฆื™ื” ืงืฆืจื” ืฉืœ 100 ืฆืขื“ื™ื. ื‘ื›ืœ ืฆืขื“, ื ืกืคืง ืื—ืช ืžื”ืคืขื•ืœื•ืช ืœื‘ื™ืฆื•ืข - ื‘ืกื™ืžื•ืœืฆื™ื” ื”ื–ื• ืคืฉื•ื˜ ื ื‘ื—ืจ ืคืขื•ืœื” ื‘ืื•ืคืŸ ืืงืจืื™ ืžืชื•ืš `action_space`.
1. ื”ืจื™ืฆื• ืืช ื”ืงื•ื“ ื”ื‘ื ื•ืจืื• ืžื” ืžืชืงื‘ืœ.
โœ… ื–ื›ืจื• ืฉืžื•ืžืœืฅ ืœื”ืจื™ืฅ ืืช ื”ืงื•ื“ ื”ื–ื” ื‘ื”ืชืงื ื” ืžืงื•ืžื™ืช ืฉืœ Python! (ืงื•ื“ ื‘ืœื•ืง 3)
```python
env.reset()
for i in range(100):
env.render()
env.step(env.action_space.sample())
env.close()
```
ืืชื ืืžื•ืจื™ื ืœืจืื•ืช ืžืฉื”ื• ื“ื•ืžื” ืœืชืžื•ื ื” ื”ื–ื•:
![CartPole ืœืœื ืื™ื–ื•ืŸ](../../../../8-Reinforcement/2-Gym/images/cartpole-nobalance.gif)
1. ื‘ืžื”ืœืš ื”ืกื™ืžื•ืœืฆื™ื”, ืขืœื™ื ื• ืœืงื‘ืœ ืชืฆืคื™ื•ืช ื›ื“ื™ ืœื”ื—ืœื™ื˜ ื›ื™ืฆื“ ืœืคืขื•ืœ. ืœืžืขืฉื”, ืคื•ื ืงืฆื™ื™ืช ื”ืฆืขื“ ืžื—ื–ื™ืจื” ืชืฆืคื™ื•ืช ื ื•ื›ื—ื™ื•ืช, ืคื•ื ืงืฆื™ื™ืช ืชื’ืžื•ืœ ื•ื“ื’ืœ ืฉืžืฆื™ื™ืŸ ื”ืื ื™ืฉ ื˜ืขื ืœื”ืžืฉื™ืš ืืช ื”ืกื™ืžื•ืœืฆื™ื” ืื• ืœื: (ืงื•ื“ ื‘ืœื•ืง 4)
```python
env.reset()
done = False
while not done:
env.render()
obs, rew, done, info = env.step(env.action_space.sample())
print(f"{obs} -> {rew}")
env.close()
```
ื‘ืกื•ืคื• ืฉืœ ื“ื‘ืจ ืชืจืื• ืžืฉื”ื• ื›ื–ื” ื‘ืชื•ืฆืื•ืช ื”ืžื—ื‘ืจืช:
```text
[ 0.03403272 -0.24301182 0.02669811 0.2895829 ] -> 1.0
[ 0.02917248 -0.04828055 0.03248977 0.00543839] -> 1.0
[ 0.02820687 0.14636075 0.03259854 -0.27681916] -> 1.0
[ 0.03113408 0.34100283 0.02706215 -0.55904489] -> 1.0
[ 0.03795414 0.53573468 0.01588125 -0.84308041] -> 1.0
...
[ 0.17299878 0.15868546 -0.20754175 -0.55975453] -> 1.0
[ 0.17617249 0.35602306 -0.21873684 -0.90998894] -> 1.0
```
ื•ืงื˜ื•ืจ ื”ืชืฆืคื™ื•ืช ืฉืžื•ื—ื–ืจ ื‘ื›ืœ ืฆืขื“ ืฉืœ ื”ืกื™ืžื•ืœืฆื™ื” ืžื›ื™ืœ ืืช ื”ืขืจื›ื™ื ื”ื‘ืื™ื:
- ืžื™ืงื•ื ื”ืขื’ืœื”
- ืžื”ื™ืจื•ืช ื”ืขื’ืœื”
- ื–ื•ื•ื™ืช ื”ืžื•ื˜
- ืงืฆื‘ ื”ืกื™ื‘ื•ื‘ ืฉืœ ื”ืžื•ื˜
1. ืงื‘ืœื• ืืช ื”ืขืจื›ื™ื ื”ืžื™ื ื™ืžืœื™ื™ื ื•ื”ืžืงืกื™ืžืœื™ื™ื ืฉืœ ื”ืžืกืคืจื™ื ื”ืœืœื•: (ืงื•ื“ ื‘ืœื•ืง 5)
```python
print(env.observation_space.low)
print(env.observation_space.high)
```
ื™ื™ืชื›ืŸ ืฉืชืฉื™ืžื• ืœื‘ ืฉืขืจืš ื”ืชื’ืžื•ืœ ื‘ื›ืœ ืฆืขื“ ืฉืœ ื”ืกื™ืžื•ืœืฆื™ื” ื”ื•ื ืชืžื™ื“ 1. ื–ืืช ืžื›ื™ื•ื•ืŸ ืฉื”ืžื˜ืจื” ืฉืœื ื• ื”ื™ื ืœืฉืจื•ื“ ื›ืžื” ืฉื™ื•ืชืจ ื–ืžืŸ, ื›ืœื•ืžืจ ืœืฉืžื•ืจ ืขืœ ื”ืžื•ื˜ ื‘ืžืฆื‘ ืื ื›ื™ ืกื‘ื™ืจ ืœืžืฉืš ื”ื–ืžืŸ ื”ืืจื•ืš ื‘ื™ื•ืชืจ.
โœ… ืœืžืขืฉื”, ืกื™ืžื•ืœืฆื™ื™ืช CartPole ื ื—ืฉื‘ืช ืœืคืชืจื•ืŸ ืื ื ืฆืœื™ื— ืœื”ื’ื™ืข ืœืชื’ืžื•ืœ ืžืžื•ืฆืข ืฉืœ 195 ืœืื•ืจืš 100 ื ื™ืกื™ื•ื ื•ืช ืจืฆื•ืคื™ื.
## ื“ื™ืกืงืจื˜ื™ื–ืฆื™ื” ืฉืœ ืžืฆื‘
ื‘ืœืžื™ื“ืช Q, ืขืœื™ื ื• ืœื‘ื ื•ืช ื˜ื‘ืœืช Q ืฉืžื’ื“ื™ืจื” ืžื” ืœืขืฉื•ืช ื‘ื›ืœ ืžืฆื‘. ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช, ืขืœื™ื ื• ืฉื”ืžืฆื‘ ื™ื”ื™ื” **ื“ื™ืกืงืจื˜ื™**, ื›ืœื•ืžืจ ื™ื›ื™ืœ ืžืกืคืจ ืกื•ืคื™ ืฉืœ ืขืจื›ื™ื ื“ื™ืกืงืจื˜ื™ื™ื. ืœื›ืŸ, ืขืœื™ื ื• ืœืžืฆื•ื ื“ืจืš **ืœื“ืกืงืจื˜** ืืช ื”ืชืฆืคื™ื•ืช ืฉืœื ื•, ื•ืœืžืคื•ืช ืื•ืชืŸ ืœืงื‘ื•ืฆื” ืกื•ืคื™ืช ืฉืœ ืžืฆื‘ื™ื.
ื™ืฉ ื›ืžื” ื“ืจื›ื™ื ืœืขืฉื•ืช ื–ืืช:
- **ื—ืœื•ืงื” ืœื‘ื™ื ื™ื**. ืื ืื ื• ื™ื•ื“ืขื™ื ืืช ื”ื˜ื•ื•ื— ืฉืœ ืขืจืš ืžืกื•ื™ื, ื ื•ื›ืœ ืœื—ืœืง ืืช ื”ื˜ื•ื•ื— ืœืžืกืคืจ **ื‘ื™ื ื™ื**, ื•ืื– ืœื”ื—ืœื™ืฃ ืืช ื”ืขืจืš ื‘ืžืกืคืจ ื”ื‘ื™ืŸ ืฉืืœื™ื• ื”ื•ื ืฉื™ื™ืš. ื ื™ืชืŸ ืœืขืฉื•ืช ื–ืืช ื‘ืืžืฆืขื•ืช ื”ืžืชื•ื“ื” [`digitize`](https://numpy.org/doc/stable/reference/generated/numpy.digitize.html) ืฉืœ numpy. ื‘ืžืงืจื” ื–ื”, ื ื“ืข ื‘ื“ื™ื•ืง ืืช ื’ื•ื“ืœ ื”ืžืฆื‘, ืžื›ื™ื•ื•ืŸ ืฉื”ื•ื ืชืœื•ื™ ื‘ืžืกืคืจ ื”ื‘ื™ื ื™ื ืฉื ื‘ื—ืจ ืœื“ื™ื’ื™ื˜ืฆื™ื”.
โœ… ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ืื™ื ื˜ืจืคื•ืœืฆื™ื” ืœื™ื ื™ืืจื™ืช ื›ื“ื™ ืœื”ื‘ื™ื ืขืจื›ื™ื ืœื˜ื•ื•ื— ืกื•ืคื™ (ืœืžืฉืœ, ืž-20- ืขื“ 20), ื•ืื– ืœื”ืžื™ืจ ืžืกืคืจื™ื ืœืฉืœืžื™ื ืขืœ ื™ื“ื™ ืขื™ื’ื•ืœ. ื–ื” ื ื•ืชืŸ ืœื ื• ืคื—ื•ืช ืฉืœื™ื˜ื” ืขืœ ื’ื•ื“ืœ ื”ืžืฆื‘, ื‘ืžื™ื•ื—ื“ ืื ืื™ื ื ื• ื™ื•ื“ืขื™ื ืืช ื”ื˜ื•ื•ื—ื™ื ื”ืžื“ื•ื™ืงื™ื ืฉืœ ืขืจื›ื™ ื”ืงืœื˜. ืœื“ื•ื’ืžื”, ื‘ืžืงืจื” ืฉืœื ื• 2 ืžืชื•ืš 4 ื”ืขืจื›ื™ื ืื™ื ื ืžื•ื’ื‘ืœื™ื ื‘ื˜ื•ื•ื— ื”ืขืœื™ื•ืŸ/ืชื—ืชื•ืŸ ืฉืœื”ื, ืžื” ืฉืขืฉื•ื™ ืœื”ื•ื‘ื™ืœ ืœืžืกืคืจ ืื™ื ืกื•ืคื™ ืฉืœ ืžืฆื‘ื™ื.
ื‘ื“ื•ื’ืžื” ืฉืœื ื•, ื ื‘ื—ืจ ื‘ื’ื™ืฉื” ื”ืฉื ื™ื™ื”. ื›ืคื™ ืฉืชืฉื™ืžื• ืœื‘ ืžืื•ื—ืจ ื™ื•ืชืจ, ืœืžืจื•ืช ืฉื”ื˜ื•ื•ื—ื™ื ื”ืขืœื™ื•ื ื™ื/ืชื—ืชื•ื ื™ื ืื™ื ื ืžื•ื’ื“ืจื™ื, ื”ืขืจื›ื™ื ื”ืœืœื• ืœืขื™ืชื™ื ืจื—ื•ืงื•ืช ืœื•ืงื—ื™ื ืขืจื›ื™ื ืžื—ื•ืฅ ืœื˜ื•ื•ื—ื™ื ืกื•ืคื™ื™ื ืžืกื•ื™ืžื™ื, ื•ืœื›ืŸ ืžืฆื‘ื™ื ืขื ืขืจื›ื™ื ืงื™ืฆื•ื ื™ื™ื ื™ื”ื™ื• ื ื“ื™ืจื™ื ืžืื•ื“.
1. ื”ื ื” ื”ืคื•ื ืงืฆื™ื” ืฉืชื™ืงื— ืืช ื”ืชืฆืคื™ืช ืžื”ืžื•ื“ืœ ืฉืœื ื• ื•ืชืคื™ืง ื˜ื•ืคืก ืฉืœ 4 ืขืจื›ื™ื ืฉืœืžื™ื: (ืงื•ื“ ื‘ืœื•ืง 6)
```python
def discretize(x):
return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int))
```
1. ื‘ื•ืื• ื ื—ืงื•ืจ ื’ื ืฉื™ื˜ืช ื“ื™ืกืงืจื˜ื™ื–ืฆื™ื” ื ื•ืกืคืช ื‘ืืžืฆืขื•ืช ื‘ื™ื ื™ื: (ืงื•ื“ ื‘ืœื•ืง 7)
```python
def create_bins(i,num):
return np.arange(num+1)*(i[1]-i[0])/num+i[0]
print("Sample bins for interval (-5,5) with 10 bins\n",create_bins((-5,5),10))
ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter
nbins = [20,20,10,10] # number of bins for each parameter
bins = [create_bins(ints[i],nbins[i]) for i in range(4)]
def discretize_bins(x):
return tuple(np.digitize(x[i],bins[i]) for i in range(4))
```
1. ืขื›ืฉื™ื• ื ืจื™ืฅ ืกื™ืžื•ืœืฆื™ื” ืงืฆืจื” ื•ื ืฆืคื” ื‘ืขืจื›ื™ ื”ืกื‘ื™ื‘ื” ื”ื“ื™ืกืงืจื˜ื™ื™ื. ืืชื ืžื•ื–ืžื ื™ื ืœื ืกื•ืช ื’ื ืืช `discretize` ื•ื’ื ืืช `discretize_bins` ื•ืœืจืื•ืช ืื ื™ืฉ ื”ื‘ื“ืœ.
โœ… `discretize_bins` ืžื—ื–ื™ืจื” ืืช ืžืกืคืจ ื”ื‘ื™ืŸ, ืฉื”ื•ื ืžื‘ื•ืกืก ืขืœ 0. ืœื›ืŸ ืขื‘ื•ืจ ืขืจื›ื™ ืžืฉืชื ื” ืงืœื˜ ืกื‘ื™ื‘ 0 ื”ื™ื ืžื—ื–ื™ืจื” ืืช ื”ืžืกืคืจ ืžืืžืฆืข ื”ื˜ื•ื•ื— (10). ื‘-`discretize`, ืœื ื“ืื’ื ื• ืœื˜ื•ื•ื— ืขืจื›ื™ ื”ืคืœื˜, ืžื” ืฉืžืืคืฉืจ ืœื”ื ืœื”ื™ื•ืช ืฉืœื™ืœื™ื™ื, ื•ืœื›ืŸ ืขืจื›ื™ ื”ืžืฆื‘ ืื™ื ื ืžื•ื–ื–ื™ื, ื•-0 ืžืชืื™ื ืœ-0. (ืงื•ื“ ื‘ืœื•ืง 8)
```python
env.reset()
done = False
while not done:
#env.render()
obs, rew, done, info = env.step(env.action_space.sample())
#print(discretize_bins(obs))
print(discretize(obs))
env.close()
```
โœ… ื‘ื˜ืœื• ืืช ื”ื”ืขืจื” ื‘ืฉื•ืจื” ืฉืžืชื—ื™ืœื” ื‘-env.render ืื ืืชื ืจื•ืฆื™ื ืœืจืื•ืช ืื™ืš ื”ืกื‘ื™ื‘ื” ืžืชื‘ืฆืขืช. ืื—ืจืช, ืชื•ื›ืœื• ืœื”ืจื™ืฅ ืื•ืชื” ื‘ืจืงืข, ืžื” ืฉืžื”ื™ืจ ื™ื•ืชืจ. ื ืฉืชืžืฉ ื‘ื”ืจืฆื” "ื‘ืœืชื™ ื ืจืื™ืช" ื–ื• ื‘ืžื”ืœืš ืชื”ืœื™ืš ืœืžื™ื“ืช Q.
## ืžื‘ื ื” ื˜ื‘ืœืช Q
ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื, ื”ืžืฆื‘ ื”ื™ื” ื–ื•ื’ ืคืฉื•ื˜ ืฉืœ ืžืกืคืจื™ื ืž-0 ืขื“ 8, ื•ืœื›ืŸ ื”ื™ื” ื ื•ื— ืœื™ื™ืฆื’ ืืช ื˜ื‘ืœืช Q ื‘ืืžืฆืขื•ืช ื˜ื ื–ื•ืจ numpy ืขื ืฆื•ืจื” ืฉืœ 8x8x2. ืื ื ืฉืชืžืฉ ื‘ื“ื™ืกืงืจื˜ื™ื–ืฆื™ื” ื‘ืืžืฆืขื•ืช ื‘ื™ื ื™ื, ื’ื•ื“ืœ ื•ืงื˜ื•ืจ ื”ืžืฆื‘ ืฉืœื ื• ื’ื ื™ื“ื•ืข, ื•ืœื›ืŸ ื ื•ื›ืœ ืœื”ืฉืชืžืฉ ื‘ืื•ืชื” ื’ื™ืฉื” ื•ืœื™ื™ืฆื’ ืžืฆื‘ ื‘ืืžืฆืขื•ืช ืžืขืจืš ื‘ืฆื•ืจืช 20x20x10x10x2 (ื›ืืŸ 2 ื”ื•ื ื”ืžืžื“ ืฉืœ ืžืจื—ื‘ ื”ืคืขื•ืœื•ืช, ื•ื”ืžื™ื“ื•ืช ื”ืจืืฉื•ื ื•ืช ืžืชืื™ืžื•ืช ืœืžืกืคืจ ื”ื‘ื™ื ื™ื ืฉื‘ื—ืจื ื• ืœื”ืฉืชืžืฉ ืขื‘ื•ืจ ื›ืœ ืื—ื“ ืžื”ืคืจืžื˜ืจื™ื ื‘ืžืจื—ื‘ ื”ืชืฆืคื™ื•ืช).
ืขื ื–ืืช, ืœืคืขืžื™ื ื”ืžื™ื“ื•ืช ื”ืžื“ื•ื™ืงื•ืช ืฉืœ ืžืจื—ื‘ ื”ืชืฆืคื™ื•ืช ืื™ื ืŸ ื™ื“ื•ืขื•ืช. ื‘ืžืงืจื” ืฉืœ ืคื•ื ืงืฆื™ื™ืช `discretize`, ืœืขื•ืœื ืœื ื ื•ื›ืœ ืœื”ื™ื•ืช ื‘ื˜ื•ื—ื™ื ืฉื”ืžืฆื‘ ืฉืœื ื• ื ืฉืืจ ื‘ืชื•ืš ื’ื‘ื•ืœื•ืช ืžืกื•ื™ืžื™ื, ืžื›ื™ื•ื•ืŸ ืฉื—ืœืง ืžื”ืขืจื›ื™ื ื”ืžืงื•ืจื™ื™ื ืื™ื ื ืžื•ื’ื‘ืœื™ื. ืœื›ืŸ, ื ืฉืชืžืฉ ื‘ื’ื™ืฉื” ืžืขื˜ ืฉื•ื ื” ื•ื ื™ื™ืฆื’ ืืช ื˜ื‘ืœืช Q ื‘ืืžืฆืขื•ืช ืžื™ืœื•ืŸ.
1. ื”ืฉืชืžืฉื• ื‘ื–ื•ื’ *(state,action)* ื›ืžืคืชื— ื”ืžื™ืœื•ืŸ, ื•ื”ืขืจืš ื™ืชืื™ื ืœืขืจืš ื”ื›ื ื™ืกื” ื‘ื˜ื‘ืœืช Q. (ืงื•ื“ ื‘ืœื•ืง 9)
```python
Q = {}
actions = (0,1)
def qvalues(state):
return [Q.get((state,a),0) for a in actions]
```
ื›ืืŸ ืื ื• ื’ื ืžื’ื“ื™ืจื™ื ืคื•ื ืงืฆื™ื” `qvalues()`, ืฉืžื—ื–ื™ืจื” ืจืฉื™ืžื” ืฉืœ ืขืจื›ื™ ื˜ื‘ืœืช Q ืขื‘ื•ืจ ืžืฆื‘ ื ืชื•ืŸ ืฉืžืชืื™ื ืœื›ืœ ื”ืคืขื•ืœื•ืช ื”ืืคืฉืจื™ื•ืช. ืื ื”ื›ื ื™ืกื” ืื™ื ื” ืงื™ื™ืžืช ื‘ื˜ื‘ืœืช Q, ื ื—ื–ื™ืจ 0 ื›ื‘ืจื™ืจืช ืžื—ื“ืœ.
## ื‘ื•ืื• ื ืชื—ื™ืœ ื‘ืœืžื™ื“ืช Q
ืขื›ืฉื™ื• ืื ื—ื ื• ืžื•ื›ื ื™ื ืœืœืžื“ ืืช ืคื™ื˜ืจ ืœืฉืžื•ืจ ืขืœ ืื™ื–ื•ืŸ!
1. ืจืืฉื™ืช, ื ื’ื“ื™ืจ ื›ืžื” ื”ื™ืคืจืคืจืžื˜ืจื™ื: (ืงื•ื“ ื‘ืœื•ืง 10)
```python
# hyperparameters
alpha = 0.3
gamma = 0.9
epsilon = 0.90
```
ื›ืืŸ, `alpha` ื”ื•ื **ืงืฆื‘ ื”ืœืžื™ื“ื”** ืฉืžื’ื“ื™ืจ ื‘ืื™ื–ื• ืžื™ื“ื” ืขืœื™ื ื• ืœื”ืชืื™ื ืืช ื”ืขืจื›ื™ื ื”ื ื•ื›ื—ื™ื™ื ืฉืœ ื˜ื‘ืœืช Q ื‘ื›ืœ ืฆืขื“. ื‘ืฉื™ืขื•ืจ ื”ืงื•ื“ื ื”ืชื—ืœื ื• ืขื 1, ื•ืื– ื”ืคื—ืชื ื• ืืช `alpha` ืœืขืจื›ื™ื ื ืžื•ื›ื™ื ื™ื•ืชืจ ื‘ืžื”ืœืš ื”ืื™ืžื•ืŸ. ื‘ื“ื•ื’ืžื” ื”ื–ื• ื ืฉืžื•ืจ ืื•ืชื• ืงื‘ื•ืข ืจืง ืœืฉื ื”ืคืฉื˜ื•ืช, ื•ืืชื ื™ื›ื•ืœื™ื ืœื”ืชื ืกื•ืช ื‘ื”ืชืืžืช ืขืจื›ื™ `alpha` ืžืื•ื—ืจ ื™ื•ืชืจ.
`gamma` ื”ื•ื **ื’ื•ืจื ื”ื”ื ื—ื”** ืฉืžืจืื” ื‘ืื™ื–ื• ืžื™ื“ื” ืขืœื™ื ื• ืœื”ืขื“ื™ืฃ ืชื’ืžื•ืœ ืขืชื™ื“ื™ ืขืœ ืคื ื™ ืชื’ืžื•ืœ ื ื•ื›ื—ื™.
`epsilon` ื”ื•ื **ื’ื•ืจื ื”ื—ืงืจ/ื ื™ืฆื•ืœ** ืฉืงื•ื‘ืข ื”ืื ืขืœื™ื ื• ืœื”ืขื“ื™ืฃ ื—ืงืจ ืขืœ ืคื ื™ ื ื™ืฆื•ืœ ืื• ืœื”ืคืš. ื‘ืืœื’ื•ืจื™ืชื ืฉืœื ื•, ื ื‘ื—ืจ ื‘ืื—ื•ื– `epsilon` ืžื”ืžืงืจื™ื ืืช ื”ืคืขื•ืœื” ื”ื‘ืื” ืœืคื™ ืขืจื›ื™ ื˜ื‘ืœืช Q, ื•ื‘ืฉืืจ ื”ืžืงืจื™ื ื ื‘ืฆืข ืคืขื•ืœื” ืืงืจืื™ืช. ื–ื” ื™ืืคืฉืจ ืœื ื• ืœื—ืงื•ืจ ืื–ื•ืจื™ื ื‘ืžืจื—ื‘ ื”ื—ื™ืคื•ืฉ ืฉืžืขื•ืœื ืœื ืจืื™ื ื• ืงื•ื“ื.
โœ… ืžื‘ื—ื™ื ืช ืื™ื–ื•ืŸ - ื‘ื—ื™ืจืช ืคืขื•ืœื” ืืงืจืื™ืช (ื—ืงืจ) ืชืคืขืœ ื›ืžื• ืžื›ื” ืืงืจืื™ืช ื‘ื›ื™ื•ื•ืŸ ื”ืœื ื ื›ื•ืŸ, ื•ื”ืžื•ื˜ ื™ืฆื˜ืจืš ืœืœืžื•ื“ ื›ื™ืฆื“ ืœื”ืชืื•ืฉืฉ ืžื”"ื˜ืขื•ื™ื•ืช" ื”ืœืœื•.
### ืฉื™ืคื•ืจ ื”ืืœื’ื•ืจื™ืชื
ื ื™ืชืŸ ื’ื ืœื‘ืฆืข ืฉื ื™ ืฉื™ืคื•ืจื™ื ื‘ืืœื’ื•ืจื™ืชื ืฉืœื ื• ืžื”ืฉื™ืขื•ืจ ื”ืงื•ื“ื:
- **ื—ื™ืฉื•ื‘ ืชื’ืžื•ืœ ืžืฆื˜ื‘ืจ ืžืžื•ืฆืข**, ืœืื•ืจืš ืžืกืคืจ ืกื™ืžื•ืœืฆื™ื•ืช. ื ื“ืคื™ืก ืืช ื”ื”ืชืงื“ืžื•ืช ื›ืœ 5000 ืื™ื˜ืจืฆื™ื•ืช, ื•ื ื—ืฉื‘ ืืช ื”ืชื’ืžื•ืœ ื”ืžืฆื˜ื‘ืจ ื”ืžืžื•ืฆืข ืœืื•ืจืš ืคืจืง ื”ื–ืžืŸ ื”ื–ื”. ื”ืžืฉืžืขื•ืช ื”ื™ื ืฉืื ื ืงื‘ืœ ื™ื•ืชืจ ืž-195 ื ืงื•ื“ื•ืช - ื ื•ื›ืœ ืœื”ื—ืฉื™ื‘ ืืช ื”ื‘ืขื™ื” ื›ืคืชื•ืจื”, ื‘ืื™ื›ื•ืช ื’ื‘ื•ื”ื” ืืฃ ื™ื•ืชืจ ืžื”ื ื“ืจืฉ.
- **ื—ื™ืฉื•ื‘ ื”ืชื•ืฆืื” ื”ืžืฆื˜ื‘ืจืช ื”ืžืžื•ืฆืขืช ื”ืžืงืกื™ืžืœื™ืช**, `Qmax`, ื•ื ืฉืžื•ืจ ืืช ื˜ื‘ืœืช Q ื”ืžืชืื™ืžื” ืœืชื•ืฆืื” ื–ื•. ื›ืืฉืจ ืชืจื™ืฆื• ืืช ื”ืื™ืžื•ืŸ ืชื‘ื—ื™ื ื• ืฉืœืคืขืžื™ื ื”ืชื•ืฆืื” ื”ืžืฆื˜ื‘ืจืช ื”ืžืžื•ืฆืขืช ืžืชื—ื™ืœื” ืœืจื“ืช, ื•ืื ื• ืจื•ืฆื™ื ืœืฉืžื•ืจ ืืช ืขืจื›ื™ ื˜ื‘ืœืช Q ื”ืžืชืื™ืžื™ื ืœืžื•ื“ืœ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืฉื ืฆืคื” ื‘ืžื”ืœืš ื”ืื™ืžื•ืŸ.
1. ืืกืคื• ืืช ื›ืœ ื”ืชื’ืžื•ืœื™ื ื”ืžืฆื˜ื‘ืจื™ื ื‘ื›ืœ ืกื™ืžื•ืœืฆื™ื” ื‘ื•ืงื˜ื•ืจ `rewards` ืœืฆื•ืจืš ื’ืจืคื™ืงื” ืžืื•ื—ืจืช ื™ื•ืชืจ. (ืงื•ื“ ื‘ืœื•ืง 11)
```python
def probs(v,eps=1e-4):
v = v-v.min()+eps
v = v/v.sum()
return v
Qmax = 0
cum_rewards = []
rewards = []
for epoch in range(100000):
obs = env.reset()
done = False
cum_reward=0
# == do the simulation ==
while not done:
s = discretize(obs)
if random.random()<epsilon:
# exploitation - chose the action according to Q-Table probabilities
v = probs(np.array(qvalues(s)))
a = random.choices(actions,weights=v)[0]
else:
# exploration - randomly chose the action
a = np.random.randint(env.action_space.n)
obs, rew, done, info = env.step(a)
cum_reward+=rew
ns = discretize(obs)
Q[(s,a)] = (1 - alpha) * Q.get((s,a),0) + alpha * (rew + gamma * max(qvalues(ns)))
cum_rewards.append(cum_reward)
rewards.append(cum_reward)
# == Periodically print results and calculate average reward ==
if epoch%5000==0:
print(f"{epoch}: {np.average(cum_rewards)}, alpha={alpha}, epsilon={epsilon}")
if np.average(cum_rewards) > Qmax:
Qmax = np.average(cum_rewards)
Qbest = Q
cum_rewards=[]
```
ืžื” ืฉืชืฉื™ืžื• ืœื‘ ืžื”ืชื•ืฆืื•ืช ื”ืœืœื•:
- **ืงืจื•ื‘ ืœืžื˜ืจื” ืฉืœื ื•**. ืื ื• ืงืจื•ื‘ื™ื ืžืื•ื“ ืœื”ืฉื’ืช ื”ืžื˜ืจื” ืฉืœ ืงื‘ืœืช 195 ืชื’ืžื•ืœื™ื ืžืฆื˜ื‘ืจื™ื ืœืื•ืจืš 100+ ืจื™ืฆื•ืช ืจืฆื•ืคื•ืช ืฉืœ ื”ืกื™ืžื•ืœืฆื™ื”, ืื• ืฉืื•ืœื™ ื›ื‘ืจ ื”ืฉื’ื ื• ืื•ืชื”! ื’ื ืื ื ืงื‘ืœ ืžืกืคืจื™ื ืงื˜ื ื™ื ื™ื•ืชืจ, ืขื“ื™ื™ืŸ ืื™ื ื ื• ื™ื•ื“ืขื™ื, ืžื›ื™ื•ื•ืŸ ืฉืื ื• ืžื—ืฉื‘ื™ื ืžืžื•ืฆืข ืœืื•ืจืš 5000 ืจื™ืฆื•ืช, ื•ืจืง 100 ืจื™ืฆื•ืช ื ื“ืจืฉื•ืช ื‘ืงืจื™ื˜ืจื™ื•ืŸ ื”ืจืฉืžื™.
- **ื”ืชื’ืžื•ืœ ืžืชื—ื™ืœ ืœืจื“ืช**. ืœืคืขืžื™ื ื”ืชื’ืžื•ืœ ืžืชื—ื™ืœ ืœืจื“ืช, ืžื” ืฉืื•ืžืจ ืฉืื ื• ื™ื›ื•ืœื™ื "ืœื”ืจื•ืก" ืขืจื›ื™ื ืฉื›ื‘ืจ ื ืœืžื“ื• ื‘ื˜ื‘ืœืช Q ืขื ื›ืืœื” ืฉืžื—ืžื™ืจื™ื ืืช ื”ืžืฆื‘.
ืชืฆืคื™ืช ื–ื• ื‘ืจื•ืจื” ื™ื•ืชืจ ืื ื ื’ืจืฃ ืืช ื”ืชืงื“ืžื•ืช ื”ืื™ืžื•ืŸ.
## ื’ืจืคื™ืงื” ืฉืœ ื”ืชืงื“ืžื•ืช ื”ืื™ืžื•ืŸ
ื‘ืžื”ืœืš ื”ืื™ืžื•ืŸ, ืืกืคื ื• ืืช ืขืจืš ื”ืชื’ืžื•ืœ ื”ืžืฆื˜ื‘ืจ ื‘ื›ืœ ืื—ืช ืžื”ืื™ื˜ืจืฆื™ื•ืช ืœื•ืงื˜ื•ืจ `rewards`. ื”ื ื” ืื™ืš ื–ื” ื ืจืื” ื›ืฉืื ื• ืžื’ืจืคื™ื ืื•ืชื• ืžื•ืœ ืžืกืคืจ ื”ืื™ื˜ืจืฆื™ื•ืช:
```python
plt.plot(rewards)
```
![ื”ืชืงื“ืžื•ืช ื’ื•ืœืžื™ืช](../../../../8-Reinforcement/2-Gym/images/train_progress_raw.png)
ืžื”ื’ืจืฃ ื”ื–ื”, ืœื ื ื™ืชืŸ ืœื”ืกื™ืง ื“ื‘ืจ, ืžื›ื™ื•ื•ืŸ ืฉื‘ืฉืœ ื˜ื‘ืขื• ืฉืœ ืชื”ืœื™ืš ื”ืื™ืžื•ืŸ ื”ืกื˜ื•ื›ืกื˜ื™, ืื•ืจืš ื”ืกืฉื ื™ื ืžืฉืชื ื” ืžืื•ื“. ื›ื“ื™ ืœื”ื‘ื™ืŸ ื™ื•ืชืจ ืืช ื”ื’ืจืฃ ื”ื–ื”, ื ื•ื›ืœ ืœื—ืฉื‘ ืืช **ื”ืžืžื•ืฆืข ื”ืจืฅ** ืœืื•ืจืš ืกื“ืจืช ื ื™ืกื•ื™ื™ื, ื ืืžืจ 100. ื ื™ืชืŸ ืœืขืฉื•ืช ื–ืืช ื‘ื ื•ื—ื•ืช ื‘ืืžืฆืขื•ืช `np.convolve`: (ืงื•ื“ ื‘ืœื•ืง 12)
```python
def running_average(x,window):
return np.convolve(x,np.ones(window)/window,mode='valid')
plt.plot(running_average(rewards,100))
```
![ื”ืชืงื“ืžื•ืช ื”ืื™ืžื•ืŸ](../../../../8-Reinforcement/2-Gym/images/train_progress_runav.png)
## ืฉื™ื ื•ื™ ื”ื™ืคืจืคืจืžื˜ืจื™ื
ื›ื“ื™ ืœื”ืคื•ืš ืืช ื”ืœืžื™ื“ื” ืœื™ืฆื™ื‘ื” ื™ื•ืชืจ, ื”ื’ื™ื•ื ื™ ืœื”ืชืื™ื ื›ืžื” ืžื”ื”ื™ืคืจืคืจืžื˜ืจื™ื ืฉืœื ื• ื‘ืžื”ืœืš ื”ืื™ืžื•ืŸ. ื‘ืžื™ื•ื—ื“:
- **ืขื‘ื•ืจ ืงืฆื‘ ื”ืœืžื™ื“ื”**, `alpha`, ื ื•ื›ืœ ืœื”ืชื—ื™ืœ ืขื ืขืจื›ื™ื ืงืจื•ื‘ื™ื ืœ-1, ื•ืื– ืœื”ืžืฉื™ืš ืœื”ืงื˜ื™ืŸ ืืช ื”ืคืจืžื˜ืจ. ืขื ื”ื–ืžืŸ, ื ืงื‘ืœ ืขืจื›ื™ ื”ืกืชื‘ืจื•ืช ื˜ื•ื‘ื™ื ื‘ื˜ื‘ืœืช Q, ื•ืœื›ืŸ ืขืœื™ื ื• ืœื”ืชืื™ื ืื•ืชื ื‘ืขื“ื™ื ื•ืช, ื•ืœื ืœื”ื—ืœื™ืฃ ืœื—ืœื•ื˜ื™ืŸ ื‘ืขืจื›ื™ื ื—ื“ืฉื™ื.
- **ื”ื’ื“ืœืช epsilon**. ื™ื™ืชื›ืŸ ืฉื ืจืฆื” ืœื”ื’ื“ื™ืœ ืืช `epsilon` ื‘ื”ื“ืจื’ื”, ื›ื“ื™ ืœื—ืงื•ืจ ืคื—ื•ืช ื•ืœื ืฆืœ ื™ื•ืชืจ. ื›ื ืจืื” ื”ื’ื™ื•ื ื™ ืœื”ืชื—ื™ืœ ืขื ืขืจืš ื ืžื•ืš ืฉืœ `epsilon`, ื•ืœื”ืชืงื“ื ื›ืžืขื˜ ืขื“ 1.
> **ืžืฉื™ืžื” 1**: ื ืกื• ืœืฉื—ืง ืขื ืขืจื›ื™ ื”ื”ื™ืคืจืคืจืžื˜ืจื™ื ื•ืœื‘ื“ื•ืง ืื ืืชื ืžืฆืœื™ื—ื™ื ืœื”ืฉื™ื’ ืชื’ืžื•ืœ ืžืฆื˜ื‘ืจ ื’ื‘ื•ื” ื™ื•ืชืจ. ื”ืื ืืชื ืžื’ื™ืขื™ื ืžืขืœ 195?
> **ืžืฉื™ืžื” 2**: ื›ื“ื™ ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื” ื‘ืื•ืคืŸ ืคื•ืจืžืœื™, ืขืœื™ื›ื ืœื”ื’ื™ืข ืœ-195 ืชื’ืžื•ืœ ืžืžื•ืฆืข ืœืื•ืจืš 100 ืจื™ืฆื•ืช ืจืฆื•ืคื•ืช. ืžื“ื“ื• ื–ืืช ื‘ืžื”ืœืš ื”ืื™ืžื•ืŸ ื•ื•ื“ืื• ืฉื”ื‘ืขื™ื” ื ืคืชืจื” ื‘ืื•ืคืŸ ืคื•ืจืžืœื™!
## ืœืจืื•ืช ืืช ื”ืชื•ืฆืื” ื‘ืคืขื•ืœื”
ื™ื”ื™ื” ืžืขื ื™ื™ืŸ ืœืจืื•ืช ื›ื™ืฆื“ ื”ืžื•ื“ืœ ื”ืžืื•ืžืŸ ืžืชื ื”ื’ ื‘ืคื•ืขืœ. ื‘ื•ืื• ื ืจื™ืฅ ืืช ื”ืกื™ืžื•ืœืฆื™ื” ื•ื ืฉืชืžืฉ ื‘ืื•ืชื” ืืกื˜ืจื˜ื’ื™ื™ืช ื‘ื—ื™ืจืช ืคืขื•ืœื•ืช ื›ืžื• ื‘ืžื”ืœืš ื”ืื™ืžื•ืŸ, ืขืœ ื™ื“ื™ ื“ื’ื™ืžื” ื‘ื”ืชืื ืœื”ืชืคืœื’ื•ืช ื”ื”ืกืชื‘ืจื•ืช ื‘-Q-Table: (ื‘ืœื•ืง ืงื•ื“ 13)
```python
obs = env.reset()
done = False
while not done:
s = discretize(obs)
env.render()
v = probs(np.array(qvalues(s)))
a = random.choices(actions,weights=v)[0]
obs,_,done,_ = env.step(a)
env.close()
```
ืืชื ืืžื•ืจื™ื ืœืจืื•ืช ืžืฉื”ื• ื›ื–ื”:
![a balancing cartpole](../../../../8-Reinforcement/2-Gym/images/cartpole-balance.gif)
---
## ๐Ÿš€ืืชื’ืจ
> **ืžืฉื™ืžื” 3**: ื›ืืŸ ื”ืฉืชืžืฉื ื• ื‘ืขื•ืชืง ื”ืกื•ืคื™ ืฉืœ Q-Table, ืฉื™ื™ืชื›ืŸ ืฉืื™ื ื• ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ. ื–ื›ืจื• ืฉืฉืžืจื ื• ืืช ื”-Q-Table ืขื ื”ื‘ื™ืฆื•ืขื™ื ื”ื˜ื•ื‘ื™ื ื‘ื™ื•ืชืจ ื‘ืžืฉืชื ื” `Qbest`! ื ืกื• ืืช ืื•ืชื• ื”ื“ื•ื’ืžื” ืขื ื”-Q-Table ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ืขืœ ื™ื“ื™ ื”ืขืชืงืช `Qbest` ืœ-`Q` ื•ื‘ื“ืงื• ืื ืืชื ืžื‘ื—ื™ื ื™ื ื‘ื”ื‘ื“ืœ.
> **ืžืฉื™ืžื” 4**: ื›ืืŸ ืœื ื‘ื—ืจื ื• ืืช ื”ืคืขื•ืœื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ ื‘ื›ืœ ืฉืœื‘, ืืœื ื“ื’ืžื ื• ืœืคื™ ื”ืชืคืœื’ื•ืช ื”ื”ืกืชื‘ืจื•ืช ื”ืžืชืื™ืžื”. ื”ืื ื™ื”ื™ื” ื”ื’ื™ื•ื ื™ ื™ื•ืชืจ ืชืžื™ื“ ืœื‘ื—ื•ืจ ืืช ื”ืคืขื•ืœื” ื”ื˜ื•ื‘ื” ื‘ื™ื•ืชืจ, ืขื ื”ืขืจืš ื”ื’ื‘ื•ื” ื‘ื™ื•ืชืจ ื‘-Q-Table? ื ื™ืชืŸ ืœืขืฉื•ืช ื–ืืช ื‘ืืžืฆืขื•ืช ืคื•ื ืงืฆื™ื™ืช `np.argmax` ื›ื“ื™ ืœืžืฆื•ื ืืช ืžืกืคืจ ื”ืคืขื•ืœื” ื”ืžืชืื™ื ืœืขืจืš ื”ื’ื‘ื•ื” ื‘ื™ื•ืชืจ ื‘-Q-Table. ื™ื™ืฉืžื• ืืช ื”ืืกื˜ืจื˜ื’ื™ื” ื”ื–ื• ื•ื‘ื“ืงื• ืื ื”ื™ื ืžืฉืคืจืช ืืช ื”ืื™ื–ื•ืŸ.
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
## ืžืฉื™ืžื”
[ืืžืŸ ืžื›ื•ื ื™ืช ื”ืจื™ื](assignment.md)
## ืกื™ื›ื•ื
ืœืžื“ื ื• ื›ืขืช ื›ื™ืฆื“ ืœืืžืŸ ืกื•ื›ื ื™ื ืœื”ืฉื™ื’ ืชื•ืฆืื•ืช ื˜ื•ื‘ื•ืช ืจืง ืขืœ ื™ื“ื™ ืžืชืŸ ืคื•ื ืงืฆื™ื™ืช ืชื’ืžื•ืœ ืฉืžื’ื“ื™ืจื” ืืช ืžืฆื‘ ื”ืžืฉื—ืง ื”ืจืฆื•ื™, ื•ืขืœ ื™ื“ื™ ืžืชืŸ ื”ื–ื“ืžื ื•ืช ืœื—ืงื•ืจ ืืช ืžืจื—ื‘ ื”ื—ื™ืคื•ืฉ ื‘ืฆื•ืจื” ื—ื›ืžื”. ื™ื™ืฉืžื ื• ื‘ื”ืฆืœื—ื” ืืช ืืœื’ื•ืจื™ืชื Q-Learning ื‘ืžืงืจื™ื ืฉืœ ืกื‘ื™ื‘ื•ืช ื“ื™ืกืงืจื˜ื™ื•ืช ื•ืจืฆื™ืคื•ืช, ืืš ืขื ืคืขื•ืœื•ืช ื“ื™ืกืงืจื˜ื™ื•ืช.
ื—ืฉื•ื‘ ื’ื ืœืœืžื•ื“ ืžืฆื‘ื™ื ืฉื‘ื”ื ืžืฆื‘ ื”ืคืขื•ืœื” ื”ื•ื ืจืฆื™ืฃ, ื•ื›ืืฉืจ ืžืจื—ื‘ ื”ืชืฆืคื™ืช ืžื•ืจื›ื‘ ื”ืจื‘ื” ื™ื•ืชืจ, ื›ืžื• ื”ืชืžื•ื ื” ืžืžืกืš ืžืฉื—ืง Atari. ื‘ื‘ืขื™ื•ืช ืืœื• ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ื ื“ืจืฉ ืœื”ืฉืชืžืฉ ื‘ื˜ื›ื ื™ืงื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ื—ื–ืงื•ืช ื™ื•ืชืจ, ื›ืžื• ืจืฉืชื•ืช ื ื•ื™ืจื•ื ื™ื, ื›ื“ื™ ืœื”ืฉื™ื’ ืชื•ืฆืื•ืช ื˜ื•ื‘ื•ืช. ื ื•ืฉืื™ื ืžืชืงื“ืžื™ื ืืœื• ื”ื ื”ื ื•ืฉื ืฉืœ ืงื•ืจืก ื”ื‘ื™ื ื” ื”ืžืœืื›ื•ืชื™ืช ื”ืžืชืงื“ื ืฉืœื ื• ืฉื™ื‘ื•ื ื‘ื”ืžืฉืš.
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,57 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "1f2b7441745eb52e25745423b247016b",
"translation_date": "2025-09-05T20:22:54+00:00",
"source_file": "8-Reinforcement/2-Gym/assignment.md",
"language_code": "he"
}
-->
# ืื™ืžื•ืŸ ืžื›ื•ื ื™ืช ื”ืจื™ื
[OpenAI Gym](http://gym.openai.com) ืชื•ื›ื ืŸ ื›ืš ืฉื›ืœ ื”ืกื‘ื™ื‘ื•ืช ืžืกืคืงื•ืช ืืช ืื•ืชื• API - ื›ืœื•ืžืจ, ืื•ืชืŸ ืฉื™ื˜ื•ืช `reset`, `step` ื•-`render`, ื•ืื•ืชืŸ ื”ืคืฉื˜ื•ืช ืฉืœ **ืžืจื—ื‘ ื”ืคืขื•ืœื”** ื•**ืžืจื—ื‘ ื”ืชืฆืคื™ืช**. ืœื›ืŸ, ืืžื•ืจ ืœื”ื™ื•ืช ืืคืฉืจื™ ืœื”ืชืื™ื ืืช ืื•ืชื ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ ืœืžื™ื“ืช ื—ื™ื–ื•ืง ืœืกื‘ื™ื‘ื•ืช ืฉื•ื ื•ืช ืขื ืฉื™ื ื•ื™ื™ื ืžื™ื ื™ืžืœื™ื™ื ื‘ืงื•ื“.
## ืกื‘ื™ื‘ืช ืžื›ื•ื ื™ืช ื”ืจื™ื
[ืกื‘ื™ื‘ืช ืžื›ื•ื ื™ืช ื”ืจื™ื](https://gym.openai.com/envs/MountainCar-v0/) ื›ื•ืœืœืช ืžื›ื•ื ื™ืช ืฉื ืชืงืขื” ื‘ืขืžืง:
ื”ืžื˜ืจื” ื”ื™ื ืœืฆืืช ืžื”ืขืžืง ื•ืœืชืคื•ืก ืืช ื”ื“ื’ืœ, ืขืœ ื™ื“ื™ ื‘ื™ืฆื•ืข ืื—ืช ืžื”ืคืขื•ืœื•ืช ื”ื‘ืื•ืช ื‘ื›ืœ ืฉืœื‘:
| ืขืจืš | ืžืฉืžืขื•ืช |
|---|---|
| 0 | ืœื”ืื™ืฅ ืฉืžืืœื” |
| 1 | ืœื ืœื”ืื™ืฅ |
| 2 | ืœื”ืื™ืฅ ื™ืžื™ื ื” |
ื”ื˜ืจื™ืง ื”ืžืจื›ื–ื™ ื‘ื‘ืขื™ื” ื–ื• ื”ื•ื ืฉื”ืžื ื•ืข ืฉืœ ื”ืžื›ื•ื ื™ืช ืื™ื ื• ื—ื–ืง ืžืกืคื™ืง ื›ื“ื™ ืœื˜ืคืก ืขืœ ื”ื”ืจ ื‘ืžืขื‘ืจ ืื—ื“. ืœื›ืŸ, ื”ื“ืจืš ื”ื™ื—ื™ื“ื” ืœื”ืฆืœื™ื— ื”ื™ื ืœื ืกื•ืข ืงื“ื™ืžื” ื•ืื—ื•ืจื” ื›ื“ื™ ืœืฆื‘ื•ืจ ืžื•ืžื ื˜ื•ื.
ืžืจื—ื‘ ื”ืชืฆืคื™ืช ืžื•ืจื›ื‘ ืžืฉื ื™ ืขืจื›ื™ื ื‘ืœื‘ื“:
| ืžืกืคืจ | ืชืฆืคื™ืช | ืžื™ื ื™ืžื•ื | ืžืงืกื™ืžื•ื |
|-----|--------------|---------|---------|
| 0 | ืžื™ืงื•ื ื”ืžื›ื•ื ื™ืช | -1.2 | 0.6 |
| 1 | ืžื”ื™ืจื•ืช ื”ืžื›ื•ื ื™ืช | -0.07 | 0.07 |
ืžืขืจื›ืช ื”ืชื’ืžื•ืœื™ื ืขื‘ื•ืจ ืžื›ื•ื ื™ืช ื”ื”ืจื™ื ื“ื™ ืžื•ืจื›ื‘ืช:
* ืชื’ืžื•ืœ ืฉืœ 0 ืžื•ืขื ืง ืื ื”ืกื•ื›ืŸ ื”ื’ื™ืข ืœื“ื’ืœ (ืžื™ืงื•ื = 0.5) ื‘ืจืืฉ ื”ื”ืจ.
* ืชื’ืžื•ืœ ืฉืœ -1 ืžื•ืขื ืง ืื ื”ืžื™ืงื•ื ืฉืœ ื”ืกื•ื›ืŸ ืงื˜ืŸ ืž-0.5.
ื”ืคืจืง ืžืกืชื™ื™ื ืื ืžื™ืงื•ื ื”ืžื›ื•ื ื™ืช ื’ื“ื•ืœ ืž-0.5, ืื• ืื ืื•ืจืš ื”ืคืจืง ืขื•ืœื” ืขืœ 200.
## ื”ื•ืจืื•ืช
ื”ืชืื ืืช ืืœื’ื•ืจื™ืชื ืœืžื™ื“ืช ื”ื—ื™ื–ื•ืง ืฉืœื ื• ื›ื“ื™ ืœืคืชื•ืจ ืืช ื‘ืขื™ื™ืช ืžื›ื•ื ื™ืช ื”ื”ืจื™ื. ื”ืชื—ืœ ืขื ื”ืงื•ื“ ื”ืงื™ื™ื ื‘-[notebook.ipynb](../../../../8-Reinforcement/2-Gym/notebook.ipynb), ื”ื—ืœืฃ ืืช ื”ืกื‘ื™ื‘ื”, ืฉื ื” ืืช ืคื•ื ืงืฆื™ื•ืช ื”ื“ื™ืกืงืจื˜ื™ื–ืฆื™ื” ืฉืœ ื”ืžืฆื‘, ื•ื ืกื” ืœื’ืจื•ื ืœืืœื’ื•ืจื™ืชื ื”ืงื™ื™ื ืœื”ืชืืžืŸ ืขื ืฉื™ื ื•ื™ื™ื ืžื™ื ื™ืžืœื™ื™ื ื‘ืงื•ื“. ื‘ืฆืข ืื•ืคื˜ื™ืžื™ื–ืฆื™ื” ืœืชื•ืฆืื” ืขืœ ื™ื“ื™ ื”ืชืืžืช ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื.
> **Note**: ื™ื™ืชื›ืŸ ืฉื™ื”ื™ื” ืฆื•ืจืš ื‘ื”ืชืืžืช ื”ื™ืคืจ-ืคืจืžื˜ืจื™ื ื›ื“ื™ ืœื’ืจื•ื ืœืืœื’ื•ืจื™ืชื ืœื”ืชื›ื ืก.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | ------- | ----- | ----------- |
| | ืืœื’ื•ืจื™ืชื Q-Learning ื”ื•ืชืื ื‘ื”ืฆืœื—ื” ืžื“ื•ื’ืžืช CartPole ืขื ืฉื™ื ื•ื™ื™ื ืžื™ื ื™ืžืœื™ื™ื ื‘ืงื•ื“, ื•ืžืกื•ื’ืœ ืœืคืชื•ืจ ืืช ื”ื‘ืขื™ื” ืฉืœ ืชืคื™ืกืช ื”ื“ื’ืœ ื‘ืคื—ื•ืช ืž-200 ืฆืขื“ื™ื. | ืืœื’ื•ืจื™ืชื Q-Learning ื—ื“ืฉ ืื•ืžืฅ ืžื”ืื™ื ื˜ืจื ื˜, ืืš ืžืชื•ืขื“ ื”ื™ื˜ื‘; ืื• ืืœื’ื•ืจื™ืชื ืงื™ื™ื ืื•ืžืฅ ืืš ืื™ื ื• ืžื’ื™ืข ืœืชื•ืฆืื•ืช ื”ืจืฆื•ื™ื•ืช. | ื”ืกื˜ื•ื“ื ื˜ ืœื ื”ืฆืœื™ื— ืœืืžืฅ ืืœื’ื•ืจื™ืชื ื›ืœืฉื”ื• ื‘ื”ืฆืœื—ื”, ืืš ืขืฉื” ืฆืขื“ื™ื ืžืฉืžืขื•ืชื™ื™ื ืœืงืจืืช ืคืชืจื•ืŸ (ืžื™ืžืฉ ื“ื™ืกืงืจื˜ื™ื–ืฆื™ื” ืฉืœ ืžืฆื‘, ืžื‘ื ื” ื ืชื•ื ื™ื ืฉืœ Q-Table ื•ื›ื•'). |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a39c15d63f3b2795ee2284a82b986b93",
"translation_date": "2025-09-05T20:24:02+00:00",
"source_file": "8-Reinforcement/2-Gym/solution/Julia/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,15 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "81db6ff2cf6e62fbe2340b094bb9509e",
"translation_date": "2025-09-05T20:23:44+00:00",
"source_file": "8-Reinforcement/2-Gym/solution/R/README.md",
"language_code": "he"
}
-->
ื–ื”ื• ืžืฆื™ื™ืŸ ืžืงื•ื ื–ืžื ื™
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,67 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "20ca019012b1725de956681d036d8b18",
"translation_date": "2025-09-05T20:09:36+00:00",
"source_file": "8-Reinforcement/README.md",
"language_code": "he"
}
-->
# ืžื‘ื•ื ืœืœืžื™ื“ืช ื—ื™ื–ื•ืง
ืœืžื™ื“ืช ื—ื™ื–ื•ืง, RL, ื ื—ืฉื‘ืช ืœืื—ืช ืžื”ืคืจื“ื™ื’ืžื•ืช ื”ื‘ืกื™ืกื™ื•ืช ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”, ืœืฆื“ ืœืžื™ื“ื” ืžื•ื ื—ื™ืช ื•ืœืžื™ื“ื” ื‘ืœืชื™ ืžื•ื ื—ื™ืช. RL ืขื•ืกืงืช ื‘ืงื‘ืœืช ื”ื—ืœื˜ื•ืช: ืงื‘ืœืช ื”ื”ื—ืœื˜ื•ืช ื”ื ื›ื•ื ื•ืช ืื• ืœืคื—ื•ืช ืœืœืžื•ื“ ืžื”ืŸ.
ื“ืžื™ื™ื ื• ืฉื™ืฉ ืœื›ื ืกื‘ื™ื‘ื” ืžื“ื•ืžื” ื›ืžื• ืฉื•ืง ื”ืžื ื™ื•ืช. ืžื” ืงื•ืจื” ืื ืืชื ืžื˜ื™ืœื™ื ืจื’ื•ืœืฆื™ื” ืžืกื•ื™ืžืช? ื”ืื ื™ืฉ ืœื›ืš ื”ืฉืคืขื” ื—ื™ื•ื‘ื™ืช ืื• ืฉืœื™ืœื™ืช? ืื ืงื•ืจื” ืžืฉื”ื• ืฉืœื™ืœื™, ืขืœื™ื›ื ืœืงื—ืช ืืช ื”_ื—ื™ื–ื•ืง ื”ืฉืœื™ืœื™_, ืœืœืžื•ื“ ืžืžื ื• ื•ืœืฉื ื•ืช ื›ื™ื•ื•ืŸ. ืื ื”ืชื•ืฆืื” ื—ื™ื•ื‘ื™ืช, ืขืœื™ื›ื ืœื‘ื ื•ืช ืขืœ ืื•ืชื• _ื—ื™ื–ื•ืง ื—ื™ื•ื‘ื™_.
![ืคื˜ืจ ื•ื”ื–ืื‘](../../../8-Reinforcement/images/peter.png)
> ืคื˜ืจ ื•ื—ื‘ืจื™ื• ืฆืจื™ื›ื™ื ืœื‘ืจื•ื— ืžื”ื–ืื‘ ื”ืจืขื‘! ืชืžื•ื ื” ืžืืช [Jen Looper](https://twitter.com/jenlooper)
## ื ื•ืฉื ืื–ื•ืจื™: ืคื˜ืจ ื•ื”ื–ืื‘ (ืจื•ืกื™ื”)
[ืคื˜ืจ ื•ื”ื–ืื‘](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) ื”ื•ื ืื’ื“ื” ืžื•ื–ื™ืงืœื™ืช ืฉื ื›ืชื‘ื” ืขืœ ื™ื“ื™ ื”ืžืœื—ื™ืŸ ื”ืจื•ืกื™ [ืกืจื’ื™ื™ ืคืจื•ืงื•ืคื™ื™ื‘](https://en.wikipedia.org/wiki/Sergei_Prokofiev). ื–ื”ื• ืกื™ืคื•ืจ ืขืœ ื”ื—ืœื•ืฅ ื”ืฆืขื™ืจ ืคื˜ืจ, ืฉื™ื•ืฆื ื‘ืื•ืžืฅ ืžื‘ื™ืชื• ืืœ ืงืจื—ืช ื”ื™ืขืจ ื›ื“ื™ ืœืจื“ื•ืฃ ืื—ืจื™ ื”ื–ืื‘. ื‘ื—ืœืง ื–ื”, ื ืœืžื“ ืืœื’ื•ืจื™ืชืžื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืฉื™ืขื–ืจื• ืœืคื˜ืจ:
- **ืœื—ืงื•ืจ** ืืช ื”ืื–ื•ืจ ื”ืกื•ื‘ื‘ ื•ืœื‘ื ื•ืช ืžืคื” ื ื™ื•ื•ื˜ ืื•ืคื˜ื™ืžืœื™ืช.
- **ืœืœืžื•ื“** ื›ื™ืฆื“ ืœื”ืฉืชืžืฉ ื‘ืกืงื™ื™ื˜ื‘ื•ืจื“ ื•ืœืฉืžื•ืจ ืขืœ ืื™ื–ื•ืŸ ืขืœื™ื•, ื›ื“ื™ ืœื ื•ืข ืžื”ืจ ื™ื•ืชืจ.
[![ืคื˜ืจ ื•ื”ื–ืื‘](https://img.youtube.com/vi/Fmi5zHg4QSM/0.jpg)](https://www.youtube.com/watch?v=Fmi5zHg4QSM)
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ื›ื“ื™ ืœื”ืื–ื™ืŸ ืœ"ืคื˜ืจ ื•ื”ื–ืื‘" ืžืืช ืคืจื•ืงื•ืคื™ื™ื‘
## ืœืžื™ื“ืช ื—ื™ื–ื•ืง
ื‘ื—ืœืงื™ื ื”ืงื•ื“ืžื™ื ืจืื™ืชื ืฉื ื™ ืกื•ื’ื™ื ืฉืœ ื‘ืขื™ื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื”:
- **ืžื•ื ื—ื™ืช**, ืฉื‘ื” ื™ืฉ ืœื ื• ืžืขืจื›ื™ ื ืชื•ื ื™ื ืฉืžืฆื™ืขื™ื ืคืชืจื•ื ื•ืช ืœื“ื•ื’ืžื” ืœื‘ืขื™ื” ืฉืื ื• ืจื•ืฆื™ื ืœืคืชื•ืจ. [ืกื™ื•ื•ื’](../4-Classification/README.md) ื•[ืจื’ืจืกื™ื”](../2-Regression/README.md) ื”ื ืžืฉื™ืžื•ืช ืฉืœ ืœืžื™ื“ื” ืžื•ื ื—ื™ืช.
- **ื‘ืœืชื™ ืžื•ื ื—ื™ืช**, ืฉื‘ื” ืื™ืŸ ืœื ื• ื ืชื•ื ื™ ืื™ืžื•ืŸ ืžืชื•ื™ื’ื™ื. ื”ื“ื•ื’ืžื” ื”ืขื™ืงืจื™ืช ืœืœืžื™ื“ื” ื‘ืœืชื™ ืžื•ื ื—ื™ืช ื”ื™ื [ืืฉื›ื•ืœื•ืช](../5-Clustering/README.md).
ื‘ื—ืœืง ื–ื”, ื ืฆื™ื’ ื‘ืคื ื™ื›ื ืกื•ื’ ื—ื“ืฉ ืฉืœ ื‘ืขื™ื™ืช ืœืžื™ื“ื” ืฉืื™ื ื” ื“ื•ืจืฉืช ื ืชื•ื ื™ ืื™ืžื•ืŸ ืžืชื•ื™ื’ื™ื. ื™ืฉื ื ื›ืžื” ืกื•ื’ื™ื ืฉืœ ื‘ืขื™ื•ืช ื›ืืœื”:
- **[ืœืžื™ื“ื” ื—ืฆื™-ืžื•ื ื—ื™ืช](https://wikipedia.org/wiki/Semi-supervised_learning)**, ืฉื‘ื” ื™ืฉ ืœื ื• ื”ืจื‘ื” ื ืชื•ื ื™ื ืœื ืžืชื•ื™ื’ื™ื ืฉื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื”ื ื›ื“ื™ ืœืืžืŸ ืืช ื”ืžื•ื“ืœ ืžืจืืฉ.
- **[ืœืžื™ื“ืช ื—ื™ื–ื•ืง](https://wikipedia.org/wiki/Reinforcement_learning)**, ืฉื‘ื” ืกื•ื›ืŸ ืœื•ืžื“ ื›ื™ืฆื“ ืœื”ืชื ื”ื’ ืขืœ ื™ื“ื™ ื‘ื™ืฆื•ืข ื ื™ืกื•ื™ื™ื ื‘ืกื‘ื™ื‘ื” ืžื“ื•ืžื”.
### ื“ื•ื’ืžื” - ืžืฉื—ืง ืžื—ืฉื‘
ื ื ื™ื— ืฉืืชื ืจื•ืฆื™ื ืœืœืžื“ ืžื—ืฉื‘ ืœืฉื—ืง ื‘ืžืฉื—ืง, ื›ืžื• ืฉื—ืžื˜ ืื• [ืกื•ืคืจ ืžืจื™ื•](https://wikipedia.org/wiki/Super_Mario). ื›ื“ื™ ืฉื”ืžื—ืฉื‘ ื™ืฉื—ืง ื‘ืžืฉื—ืง, ืื ื• ืฆืจื™ื›ื™ื ืฉื”ื•ื ื™ื ื‘ื ืื™ื–ื• ืคืขื•ืœื” ืœื‘ืฆืข ื‘ื›ืœ ืื—ื“ ืžืžืฆื‘ื™ ื”ืžืฉื—ืง. ืœืžืจื•ืช ืฉื–ื” ืขืฉื•ื™ ืœื”ื™ืจืื•ืช ื›ืžื• ื‘ืขื™ื™ืช ืกื™ื•ื•ื’, ื–ื” ืœื - ืžื›ื™ื•ื•ืŸ ืฉืื™ืŸ ืœื ื• ืžืขืจืš ื ืชื•ื ื™ื ืขื ืžืฆื‘ื™ื ื•ืคืขื•ืœื•ืช ืชื•ืืžื•ืช. ืœืžืจื•ืช ืฉืื•ืœื™ ื™ืฉ ืœื ื• ื ืชื•ื ื™ื ื›ืžื• ืžืฉื—ืงื™ ืฉื—ืžื˜ ืงื™ื™ืžื™ื ืื• ื”ืงืœื˜ื•ืช ืฉืœ ืฉื—ืงื ื™ื ืžืฉื—ืงื™ื ืกื•ืคืจ ืžืจื™ื•, ืกื‘ื™ืจ ืœื”ื ื™ื— ืฉื”ื ืชื•ื ื™ื ื”ืœืœื• ืœื ื™ื›ืกื• ืžืกืคื™ืง ืžืฆื‘ื™ื ืืคืฉืจื™ื™ื.
ื‘ืžืงื•ื ืœื—ืคืฉ ื ืชื•ื ื™ ืžืฉื—ืง ืงื™ื™ืžื™ื, **ืœืžื™ื“ืช ื—ื™ื–ื•ืง** (RL) ืžื‘ื•ืกืกืช ืขืœ ื”ืจืขื™ื•ืŸ ืฉืœ *ืœื’ืจื•ื ืœืžื—ืฉื‘ ืœืฉื—ืง* ืคืขืžื™ื ืจื‘ื•ืช ื•ืœืฆืคื•ืช ื‘ืชื•ืฆืื”. ืœื›ืŸ, ื›ื“ื™ ืœื™ื™ืฉื ืœืžื™ื“ืช ื—ื™ื–ื•ืง, ืื ื• ืฆืจื™ื›ื™ื ืฉื ื™ ื“ื‘ืจื™ื:
- **ืกื‘ื™ื‘ื”** ื•**ืกื™ืžื•ืœื˜ื•ืจ** ืฉืžืืคืฉืจื™ื ืœื ื• ืœืฉื—ืง ื‘ืžืฉื—ืง ืคืขืžื™ื ืจื‘ื•ืช. ื”ืกื™ืžื•ืœื˜ื•ืจ ื™ื’ื“ื™ืจ ืืช ื›ืœืœื™ ื”ืžืฉื—ืง, ื›ืžื• ื’ื ืืช ื”ืžืฆื‘ื™ื ื•ื”ืคืขื•ืœื•ืช ื”ืืคืฉืจื™ื™ื.
- **ืคื•ื ืงืฆื™ื™ืช ืชื’ืžื•ืœ**, ืฉืชืกืคืจ ืœื ื• ืขื“ ื›ืžื” ื”ืฆืœื—ื ื• ื‘ืžื”ืœืš ื›ืœ ืžื”ืœืš ืื• ืžืฉื—ืง.
ื”ื”ื‘ื“ืœ ื”ืขื™ืงืจื™ ื‘ื™ืŸ ืกื•ื’ื™ ืœืžื™ื“ืช ืžื›ื•ื ื” ืื—ืจื™ื ืœื‘ื™ืŸ RL ื”ื•ื ืฉื‘-RL ื‘ื“ืจืš ื›ืœืœ ืื™ื ื ื• ื™ื•ื“ืขื™ื ืื ื ื™ืฆื—ื ื• ืื• ื”ืคืกื“ื ื• ืขื“ ืœืกื™ื•ื ื”ืžืฉื—ืง. ืœื›ืŸ, ืื™ื ื ื• ื™ื›ื•ืœื™ื ืœื•ืžืจ ืื ืžื”ืœืš ืžืกื•ื™ื ืœื‘ื“ื• ื”ื•ื ื˜ื•ื‘ ืื• ืœื - ืื ื• ืžืงื‘ืœื™ื ืชื’ืžื•ืœ ืจืง ื‘ืกื•ืฃ ื”ืžืฉื—ืง. ื•ื”ืžื˜ืจื” ืฉืœื ื• ื”ื™ื ืœืขืฆื‘ ืืœื’ื•ืจื™ืชืžื™ื ืฉื™ืืคืฉืจื• ืœื ื• ืœืืžืŸ ืžื•ื“ืœ ื‘ืชื ืื™ื ืฉืœ ืื™ ื•ื“ืื•ืช. ื ืœืžื“ ืขืœ ืืœื’ื•ืจื™ืชื RL ืื—ื“ ืฉื ืงืจื **Q-learning**.
## ืฉื™ืขื•ืจื™ื
1. [ืžื‘ื•ื ืœืœืžื™ื“ืช ื—ื™ื–ื•ืง ื•-Q-Learning](1-QLearning/README.md)
2. [ืฉื™ืžื•ืฉ ื‘ืกื‘ื™ื‘ืช ืกื™ืžื•ืœืฆื™ื” ืฉืœ Gym](2-Gym/README.md)
## ืงืจื“ื™ื˜ื™ื
"ืžื‘ื•ื ืœืœืžื™ื“ืช ื—ื™ื–ื•ืง" ื ื›ืชื‘ ื‘ืื”ื‘ื” ืขืœ ื™ื“ื™ [Dmitry Soshnikov](http://soshnikov.com)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,159 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "83320d6b6994909e35d830cebf214039",
"translation_date": "2025-09-05T19:21:54+00:00",
"source_file": "9-Real-World/1-Applications/README.md",
"language_code": "he"
}
-->
# ืคื•ืกื˜ืกืงืจื™ืคื˜: ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืขื•ืœื ื”ืืžื™ืชื™
![ืกื™ื›ื•ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืขื•ืœื ื”ืืžื™ืชื™ ื‘ืกืงืฆ'ื ื•ื˜](../../../../sketchnotes/ml-realworld.png)
> ืกืงืฆ'ื ื•ื˜ ืžืืช [Tomomi Imura](https://www.twitter.com/girlie_mac)
ื‘ืžื”ืœืš ื”ืงื•ืจืก ื”ื–ื”, ืœืžื“ืชื ื“ืจื›ื™ื ืจื‘ื•ืช ืœื”ื›ื ืช ื ืชื•ื ื™ื ืœืื™ืžื•ืŸ ื•ืœื™ืฆื™ืจืช ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”. ื‘ื ื™ืชื ืกื“ืจื” ืฉืœ ืžื•ื“ืœื™ื ืงืœืืกื™ื™ื ื›ืžื• ืจื’ืจืกื™ื”, ืืฉื›ื•ืœื•ืช, ืกื™ื•ื•ื’, ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช ื•ืžื•ื“ืœื™ื ืฉืœ ืกื“ืจื•ืช ื–ืžืŸ. ื›ืœ ื”ื›ื‘ื•ื“! ืขื›ืฉื™ื•, ืืชื ืื•ืœื™ ืชื•ื”ื™ื ืœืžื” ื›ืœ ื–ื” ื ื•ืขื“... ืžื”ืŸ ื”ื™ื™ืฉื•ืžื™ื ื‘ืขื•ืœื ื”ืืžื™ืชื™ ืฉืœ ื”ืžื•ื“ืœื™ื ื”ืœืœื•?
ืœืžืจื•ืช ืฉื”ืจื‘ื” ืขื ื™ื™ืŸ ื‘ืชืขืฉื™ื™ื” ืžืชืžืงื“ ื‘ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช, ืฉืœืจื•ื‘ ืขื•ืฉื” ืฉื™ืžื•ืฉ ื‘ืœืžื™ื“ื” ืขืžื•ืงื”, ืขื“ื™ื™ืŸ ื™ืฉ ื™ื™ืฉื•ืžื™ื ื—ืฉื•ื‘ื™ื ืœืžื•ื“ืœื™ื ืงืœืืกื™ื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”. ื™ื™ืชื›ืŸ ืฉืืคื™ืœื• ืืชื ืžืฉืชืžืฉื™ื ื‘ื—ืœืง ืžื”ื™ื™ืฉื•ืžื™ื ื”ืœืœื• ื”ื™ื•ื! ื‘ืฉื™ืขื•ืจ ื”ื–ื”, ืชื—ืงื•ืจ ื›ื™ืฆื“ ืฉืžื•ื ื” ืชืขืฉื™ื•ืช ื•ืชื—ื•ืžื™ื ืฉื•ื ื™ื ืžืฉืชืžืฉื™ื ื‘ืžื•ื“ืœื™ื ืืœื• ื›ื“ื™ ืœื”ืคื•ืš ืืช ื”ื™ื™ืฉื•ืžื™ื ืฉืœื”ื ืœื™ื•ืชืจ ื™ืขื™ืœื™ื, ืืžื™ื ื™ื, ื—ื›ืžื™ื ื•ื‘ืขืœื™ ืขืจืš ืœืžืฉืชืžืฉื™ื.
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ๐Ÿ’ฐ ืคื™ื ื ืกื™ื
ืชื—ื•ื ื”ืคื™ื ื ืกื™ื ืžืฆื™ืข ื”ื–ื“ืžื ื•ื™ื•ืช ืจื‘ื•ืช ืœืœืžื™ื“ืช ืžื›ื•ื ื”. ื‘ืขื™ื•ืช ืจื‘ื•ืช ื‘ืชื—ื•ื ื–ื” ืžืชืื™ืžื•ืช ืœืžื™ื“ื•ืœ ื•ืคืชืจื•ืŸ ื‘ืืžืฆืขื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื”.
### ื–ื™ื”ื•ื™ ื”ื•ื ืื•ืช ื‘ื›ืจื˜ื™ืกื™ ืืฉืจืื™
ืœืžื“ื ื• ืขืœ [ืืฉื›ื•ืœื•ืช k-means](../../5-Clustering/2-K-Means/README.md) ืžื•ืงื“ื ื™ื•ืชืจ ื‘ืงื•ืจืก, ืื‘ืœ ืื™ืš ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื”ื ื›ื“ื™ ืœืคืชื•ืจ ื‘ืขื™ื•ืช ื”ืงืฉื•ืจื•ืช ืœื”ื•ื ืื•ืช ื‘ื›ืจื˜ื™ืกื™ ืืฉืจืื™?
ืืฉื›ื•ืœื•ืช k-means ืžื•ืขื™ืœื™ื ื‘ื˜ื›ื ื™ืงื” ืœื–ื™ื”ื•ื™ ื”ื•ื ืื•ืช ื‘ื›ืจื˜ื™ืกื™ ืืฉืจืื™ ื”ื ืงืจืืช **ื–ื™ื”ื•ื™ ื—ืจื™ื’ื•ืช**. ื—ืจื™ื’ื•ืช, ืื• ืกื˜ื™ื•ืช ื‘ืชืฆืคื™ื•ืช ืขืœ ืกื˜ ื ืชื•ื ื™ื, ื™ื›ื•ืœื•ืช ืœื”ืฆื‘ื™ืข ืื ื›ืจื˜ื™ืก ืืฉืจืื™ ื ืžืฆื ื‘ืฉื™ืžื•ืฉ ืจื’ื™ืœ ืื• ืื ืžืชืจื—ืฉ ืžืฉื”ื• ื—ืจื™ื’. ื›ืคื™ ืฉืžื•ืฆื’ ื‘ืžืืžืจ ื”ืžืงื•ืฉืจ ืœืžื˜ื”, ื ื™ืชืŸ ืœืžื™ื™ืŸ ื ืชื•ื ื™ ื›ืจื˜ื™ืกื™ ืืฉืจืื™ ื‘ืืžืฆืขื•ืช ืืœื’ื•ืจื™ืชื ืืฉื›ื•ืœื•ืช k-means ื•ืœื”ืงืฆื•ืช ื›ืœ ืขืกืงื” ืœืืฉื›ื•ืœ ืขืœ ืกืžืš ืžื™ื“ืช ื”ื—ืจื™ื’ื•ืช ืฉืœื”. ืœืื—ืจ ืžื›ืŸ, ื ื™ืชืŸ ืœื”ืขืจื™ืš ืืช ื”ืืฉื›ื•ืœื•ืช ื”ืžืกื•ื›ื ื™ื ื‘ื™ื•ืชืจ ื›ื“ื™ ืœื”ื‘ื—ื™ืŸ ื‘ื™ืŸ ืขืกืงืื•ืช ื”ื•ื ืื” ืœืขืกืงืื•ืช ืœื’ื™ื˜ื™ืžื™ื•ืช.
[Reference](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf)
### ื ื™ื”ื•ืœ ืขื•ืฉืจ
ื‘ื ื™ื”ื•ืœ ืขื•ืฉืจ, ืื“ื ืื• ื—ื‘ืจื” ืžื ื”ืœื™ื ื”ืฉืงืขื•ืช ืขื‘ื•ืจ ืœืงื•ื—ื•ืชื™ื”ื. ืชืคืงื™ื“ื ื”ื•ื ืœืฉืžืจ ื•ืœื”ื’ื“ื™ืœ ืืช ื”ืขื•ืฉืจ ืœื˜ื•ื•ื— ื”ืืจื•ืš, ื•ืœื›ืŸ ื—ืฉื•ื‘ ืœื‘ื—ื•ืจ ื”ืฉืงืขื•ืช ืฉืžื ื™ื‘ื•ืช ื‘ื™ืฆื•ืขื™ื ื˜ื•ื‘ื™ื.
ืื—ืช ื”ื“ืจื›ื™ื ืœื”ืขืจื™ืš ืืช ื‘ื™ืฆื•ืขื™ ื”ื”ืฉืงืขื” ื”ื™ื ื‘ืืžืฆืขื•ืช ืจื’ืจืกื™ื” ืกื˜ื˜ื™ืกื˜ื™ืช. [ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช](../../2-Regression/1-Tools/README.md) ื”ื™ื ื›ืœื™ ื—ืฉื•ื‘ ืœื”ื‘ื ืช ื‘ื™ืฆื•ืขื™ ืงืจืŸ ื‘ื™ื—ืก ืœืžื“ื“ ืžืกื•ื™ื. ื ื™ืชืŸ ื’ื ืœื”ืกื™ืง ื”ืื ืชื•ืฆืื•ืช ื”ืจื’ืจืกื™ื” ื”ืŸ ืžืฉืžืขื•ืชื™ื•ืช ืกื˜ื˜ื™ืกื˜ื™ืช, ืื• ื›ืžื” ื”ืŸ ื™ืฉืคื™ืขื• ืขืœ ื”ืฉืงืขื•ืช ื”ืœืงื•ื—. ื ื™ืชืŸ ืœื”ืจื—ื™ื‘ ืืช ื”ื ื™ืชื•ื— ื‘ืืžืฆืขื•ืช ืจื’ืจืกื™ื” ืžืจื•ื‘ื”, ืฉื‘ื” ื ื™ืชืŸ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ื’ื•ืจืžื™ ืกื™ื›ื•ืŸ ื ื•ืกืคื™ื. ืœื“ื•ื’ืžื” ื›ื™ืฆื“ ื–ื” ื™ืขื‘ื•ื“ ืขื‘ื•ืจ ืงืจืŸ ืกืคืฆื™ืคื™ืช, ืขื™ื™ื ื• ื‘ืžืืžืจ ืœืžื˜ื” ืขืœ ื”ืขืจื›ืช ื‘ื™ืฆื•ืขื™ ืงืจืŸ ื‘ืืžืฆืขื•ืช ืจื’ืจืกื™ื”.
[Reference](http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/)
## ๐ŸŽ“ ื—ื™ื ื•ืš
ืชื—ื•ื ื”ื—ื™ื ื•ืš ื”ื•ื ื’ื ืชื—ื•ื ืžืขื ื™ื™ืŸ ืฉื‘ื• ื ื™ืชืŸ ืœื™ื™ืฉื ืœืžื™ื“ืช ืžื›ื•ื ื”. ื™ืฉื ืŸ ื‘ืขื™ื•ืช ืžืขื ื™ื™ื ื•ืช ืœื”ืชืžื•ื“ื“ ืื™ืชืŸ ื›ืžื• ื–ื™ื”ื•ื™ ืจืžืื•ืช ื‘ืžื‘ื—ื ื™ื ืื• ื—ื™ื‘ื•ืจื™ื, ืื• ื ื™ื”ื•ืœ ื”ื˜ื™ื•ืช, ืžื›ื•ื•ื ื•ืช ืื• ืœื, ื‘ืชื”ืœื™ืš ื”ืชื™ืงื•ืŸ.
### ื—ื™ื–ื•ื™ ื”ืชื ื”ื’ื•ืช ืชืœืžื™ื“ื™ื
[Coursera](https://coursera.com), ืกืคืง ืงื•ืจืกื™ื ืคืชื•ื—ื™ื ืžืงื•ื•ืŸ, ืžื—ื–ื™ืง ื‘ืœื•ื’ ื˜ื›ื ื•ืœื•ื’ื™ ื ื”ื“ืจ ืฉื‘ื• ื”ื ื“ื ื™ื ื‘ื”ื—ืœื˜ื•ืช ื”ื ื“ืกื™ื•ืช ืจื‘ื•ืช. ื‘ืžืงืจื” ื–ื”, ื”ื ืฉืจื˜ื˜ื• ืงื• ืจื’ืจืกื™ื” ื›ื“ื™ ืœื ืกื•ืช ืœื—ืงื•ืจ ื›ืœ ืงืฉืจ ื‘ื™ืŸ ื“ื™ืจื•ื’ NPS (Net Promoter Score) ื ืžื•ืš ืœื‘ื™ืŸ ืฉืžื™ืจื” ืขืœ ืงื•ืจืก ืื• ื ืฉื™ืจื” ืžืžื ื•.
[Reference](https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-quality-on-learner-retention-31f956bd592a)
### ื”ืคื—ืชืช ื”ื˜ื™ื•ืช
[Grammarly](https://grammarly.com), ืขื•ื–ืจ ื›ืชื™ื‘ื” ืฉื‘ื•ื“ืง ืฉื’ื™ืื•ืช ื›ืชื™ื‘ ื•ื“ืงื“ื•ืง, ืžืฉืชืžืฉ ื‘ืžืขืจื›ื•ืช ืžืชืงื“ืžื•ืช ืฉืœ [ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช](../../6-NLP/README.md) ื‘ืžื•ืฆืจื™ื•. ื”ื ืคืจืกืžื• ืžื—ืงืจ ืžืขื ื™ื™ืŸ ื‘ื‘ืœื•ื’ ื”ื˜ื›ื ื•ืœื•ื’ื™ ืฉืœื”ื ืขืœ ืื™ืš ื”ื ื”ืชืžื•ื“ื“ื• ืขื ื”ื˜ื™ื” ืžื’ื“ืจื™ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”, ื›ืคื™ ืฉืœืžื“ืชื ื‘ืฉื™ืขื•ืจ ื”ื”ื•ื’ื ื•ืช ื”ืžื‘ื•ืื™ ืฉืœื ื•.
[Reference](https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/)
## ๐Ÿ‘œ ืงืžืขื•ื ืื•ืช
ืชื—ื•ื ื”ืงืžืขื•ื ืื•ืช ื™ื›ื•ืœ ื‘ื”ื—ืœื˜ ืœื”ืจื•ื•ื™ื— ืžืฉื™ืžื•ืฉ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”, ื”ื—ืœ ืžื™ืฆื™ืจืช ืžืกืข ืœืงื•ื— ื˜ื•ื‘ ื™ื•ืชืจ ื•ืขื“ ืœื ื™ื”ื•ืœ ืžืœืื™ ื‘ืฆื•ืจื” ืื•ืคื˜ื™ืžืœื™ืช.
### ื”ืชืืžืช ืžืกืข ื”ืœืงื•ื—
ื‘-Wayfair, ื—ื‘ืจื” ืฉืžื•ื›ืจืช ืžื•ืฆืจื™ื ืœื‘ื™ืช ื›ืžื• ืจื”ื™ื˜ื™ื, ืขื–ืจื” ืœืœืงื•ื—ื•ืช ืœืžืฆื•ื ืืช ื”ืžื•ืฆืจื™ื ื”ื ื›ื•ื ื™ื ืœื˜ืขืžื ื•ืœืฆืจื›ื™ื”ื ื”ื™ื ืงืจื™ื˜ื™ืช. ื‘ืžืืžืจ ื–ื”, ืžื”ื ื“ืกื™ื ืžื”ื—ื‘ืจื” ืžืชืืจื™ื ื›ื™ืฆื“ ื”ื ืžืฉืชืžืฉื™ื ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื•ื‘ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช ื›ื“ื™ "ืœื”ืฆื™ื’ ืืช ื”ืชื•ืฆืื•ืช ื”ื ื›ื•ื ื•ืช ืœืœืงื•ื—ื•ืช". ื‘ืžื™ื•ื—ื“, ืžื ื•ืข ื›ื•ื•ื ืช ื”ืฉืื™ืœืชื” ืฉืœื”ื ื ื‘ื ื” ื›ื“ื™ ืœื”ืฉืชืžืฉ ื‘ื—ื™ืœื•ืฅ ื™ืฉื•ื™ื•ืช, ืื™ืžื•ืŸ ืžืกื•ื•ื’ื™ื, ื—ื™ืœื•ืฅ ื ื›ืกื™ื ื•ื“ืขื•ืช, ื•ืชื™ื•ื’ ืจื’ืฉื•ืช ืขืœ ื‘ื™ืงื•ืจื•ืช ืœืงื•ื—ื•ืช. ื–ื”ื• ืžืงืจื” ืฉื™ืžื•ืฉ ืงืœืืกื™ ืฉืœ ืื™ืš NLP ืขื•ื‘ื“ ื‘ืงืžืขื•ื ืื•ืช ืžืงื•ื•ื ืช.
[Reference](https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-language-processing-to-empower-search)
### ื ื™ื”ื•ืœ ืžืœืื™
ื—ื‘ืจื•ืช ื—ื“ืฉื ื™ื•ืช ื•ื–ืจื™ื–ื•ืช ื›ืžื• [StitchFix](https://stitchfix.com), ืฉื™ืจื•ืช ืงื•ืคืกืื•ืช ืฉืฉื•ืœื— ื‘ื’ื“ื™ื ืœืฆืจื›ื ื™ื, ืžืกืชืžื›ื•ืช ืจื‘ื•ืช ืขืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืœื”ืžืœืฆื•ืช ื•ื ื™ื”ื•ืœ ืžืœืื™. ืฆื•ื•ืชื™ ื”ืกื˜ื™ื™ืœื™ื ื’ ืฉืœื”ื ืขื•ื‘ื“ื™ื ื™ื—ื“ ืขื ืฆื•ื•ืชื™ ื”ืกื—ื•ืจื” ืฉืœื”ื, ืœืžืขืฉื”: "ืื—ื“ ืžืžื“ืขื ื™ ื”ื ืชื•ื ื™ื ืฉืœื ื• ื”ืชื ืกื” ื‘ืืœื’ื•ืจื™ืชื ื’ื ื˜ื™ ื•ื™ื™ืฉื ืื•ืชื• ืขืœ ื‘ื’ื“ื™ื ื›ื“ื™ ืœื—ื–ื•ืช ืžื” ื™ื”ื™ื” ืคืจื™ื˜ ืœื‘ื•ืฉ ืžืฆืœื™ื— ืฉืœื ืงื™ื™ื ื”ื™ื•ื. ื”ื‘ืื ื• ืืช ื–ื” ืœืฆื•ื•ืช ื”ืกื—ื•ืจื” ื•ืขื›ืฉื™ื• ื”ื ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื–ื” ื›ื›ืœื™."
[Reference](https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-styling/)
## ๐Ÿฅ ื‘ืจื™ืื•ืช
ืชื—ื•ื ื”ื‘ืจื™ืื•ืช ื™ื›ื•ืœ ืœื ืฆืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื›ื“ื™ ืœื™ื™ืขืœ ืžืฉื™ืžื•ืช ืžื—ืงืจ ื•ื’ื ื‘ืขื™ื•ืช ืœื•ื’ื™ืกื˜ื™ื•ืช ื›ืžื• ืืฉืคื•ื– ื—ื•ื–ืจ ืฉืœ ืžื˜ื•ืคืœื™ื ืื• ืขืฆื™ืจืช ื”ืชืคืฉื˜ื•ืช ืžื—ืœื•ืช.
### ื ื™ื”ื•ืœ ื ื™ืกื•ื™ื™ื ืงืœื™ื ื™ื™ื
ืจืขื™ืœื•ืช ื‘ื ื™ืกื•ื™ื™ื ืงืœื™ื ื™ื™ื ื”ื™ื ื“ืื’ื” ืžืจื›ื–ื™ืช ืขื‘ื•ืจ ื™ืฆืจื ื™ ืชืจื•ืคื•ืช. ื›ืžื” ืจืขื™ืœื•ืช ื”ื™ื ื ืกื‘ืœืช? ื‘ืžื—ืงืจ ื–ื”, ื ื™ืชื•ื— ืฉื™ื˜ื•ืช ื ื™ืกื•ื™ ืงืœื™ื ื™ื•ืช ืฉื•ื ื•ืช ื”ื•ื‘ื™ืœ ืœืคื™ืชื•ื— ื’ื™ืฉื” ื—ื“ืฉื” ืœื—ื™ื–ื•ื™ ื”ืกื™ื›ื•ื™ื™ื ืœืชื•ืฆืื•ืช ื ื™ืกื•ื™ื™ื ืงืœื™ื ื™ื™ื. ื‘ืžื™ื•ื—ื“, ื”ื ื”ืฆืœื™ื—ื• ืœื”ืฉืชืžืฉ ื‘ื™ืขืจ ืืงืจืื™ ื›ื“ื™ ืœื™ืฆื•ืจ [ืžืกื•ื•ื’](../../4-Classification/README.md) ืฉืžืกื•ื’ืœ ืœื”ื‘ื—ื™ืŸ ื‘ื™ืŸ ืงื‘ื•ืฆื•ืช ืฉืœ ืชืจื•ืคื•ืช.
[Reference](https://www.sciencedirect.com/science/article/pii/S2451945616302914)
### ื ื™ื”ื•ืœ ืืฉืคื•ื– ื—ื•ื–ืจ ื‘ื‘ืชื™ ื—ื•ืœื™ื
ื˜ื™ืคื•ืœ ื‘ื‘ืชื™ ื—ื•ืœื™ื ื”ื•ื ื™ืงืจ, ื‘ืžื™ื•ื—ื“ ื›ืืฉืจ ืžื˜ื•ืคืœื™ื ืฆืจื™ื›ื™ื ืœื”ืชืืฉืคื– ืฉื•ื‘. ืžืืžืจ ื–ื” ื“ืŸ ื‘ื—ื‘ืจื” ืฉืžืฉืชืžืฉืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื›ื“ื™ ืœื—ื–ื•ืช ืคื•ื˜ื ืฆื™ืืœ ืืฉืคื•ื– ื—ื•ื–ืจ ื‘ืืžืฆืขื•ืช ืืœื’ื•ืจื™ืชืžื™ [ืืฉื›ื•ืœื•ืช](../../5-Clustering/README.md). ืืฉื›ื•ืœื•ืช ืืœื• ืขื•ื–ืจื™ื ืœืื ืœื™ืกื˜ื™ื "ืœื’ืœื•ืช ืงื‘ื•ืฆื•ืช ืฉืœ ืืฉืคื•ื–ื™ื ื—ื•ื–ืจื™ื ืฉืขืฉื•ื™ื™ื ืœื—ืœื•ืง ืกื™ื‘ื” ืžืฉื•ืชืคืช".
[Reference](https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-machine-learning)
### ื ื™ื”ื•ืœ ืžื—ืœื•ืช
ื”ืžื’ืคื” ื”ืื—ืจื•ื ื” ืฉืžื” ื–ืจืงื•ืจ ืขืœ ื”ื“ืจื›ื™ื ืฉื‘ื”ืŸ ืœืžื™ื“ืช ืžื›ื•ื ื” ื™ื›ื•ืœื” ืœืขื–ื•ืจ ื‘ืขืฆื™ืจืช ื”ืชืคืฉื˜ื•ืช ืžื—ืœื•ืช. ื‘ืžืืžืจ ื–ื”, ืชื–ื”ื• ืฉื™ืžื•ืฉ ื‘-ARIMA, ืขืงื•ืžื•ืช ืœื•ื’ื™ืกื˜ื™ื•ืช, ืจื’ืจืกื™ื” ืœื™ื ื™ืืจื™ืช ื•-SARIMA. "ืขื‘ื•ื“ื” ื–ื• ื”ื™ื ื ื™ืกื™ื•ืŸ ืœื—ืฉื‘ ืืช ืฉื™ืขื•ืจ ื”ืชืคืฉื˜ื•ืช ื”ื ื’ื™ืฃ ื”ื–ื” ื•ื›ืš ืœื—ื–ื•ืช ืืช ืžืงืจื™ ื”ืžื•ื•ืช, ื”ื”ื—ืœืžื•ืช ื•ื”ืžืงืจื™ื ื”ืžืื•ืฉืจื™ื, ื›ืš ืฉื–ื” ืขืฉื•ื™ ืœืขื–ื•ืจ ืœื ื• ืœื”ืชื›ื•ื ืŸ ื˜ื•ื‘ ื™ื•ืชืจ ื•ืœื”ื™ืฉืืจ ื‘ื—ื™ื™ื."
[Reference](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/)
## ๐ŸŒฒ ืืงื•ืœื•ื’ื™ื” ื•ื˜ื›ื ื•ืœื•ื’ื™ื” ื™ืจื•ืงื”
ื”ื˜ื‘ืข ื•ื”ืืงื•ืœื•ื’ื™ื” ืžื•ืจื›ื‘ื™ื ืžืžืขืจื›ื•ืช ืจื’ื™ืฉื•ืช ืจื‘ื•ืช ืฉื‘ื”ืŸ ื”ืื™ื ื˜ืจืืงืฆื™ื” ื‘ื™ืŸ ื‘ืขืœื™ ื—ื™ื™ื ืœื˜ื‘ืข ื ื›ื ืกืช ืœืžื•ืงื“. ื—ืฉื•ื‘ ืœื”ื™ื•ืช ืžืกื•ื’ืœื™ื ืœืžื“ื•ื“ ืžืขืจื›ื•ืช ืืœื• ื‘ืฆื•ืจื” ืžื“ื•ื™ืงืช ื•ืœืคืขื•ืœ ื‘ื”ืชืื ืื ืžืฉื”ื• ืงื•ืจื”, ื›ืžื• ืฉืจื™ืคืช ื™ืขืจ ืื• ื™ืจื™ื“ื” ื‘ืื•ื›ืœื•ืกื™ื™ืช ื‘ืขืœื™ ื”ื—ื™ื™ื.
### ื ื™ื”ื•ืœ ื™ืขืจื•ืช
ืœืžื“ืชื ืขืœ [ืœืžื™ื“ืช ื—ื™ื–ื•ืงื™ื](../../8-Reinforcement/README.md) ื‘ืฉื™ืขื•ืจื™ื ืงื•ื“ืžื™ื. ื”ื™ื ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืžืื•ื“ ืฉื™ืžื•ืฉื™ืช ื›ืืฉืจ ืžื ืกื™ื ืœื—ื–ื•ืช ื“ืคื•ืกื™ื ื‘ื˜ื‘ืข. ื‘ืžื™ื•ื—ื“, ื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื” ื›ื“ื™ ืœืขืงื•ื‘ ืื—ืจ ื‘ืขื™ื•ืช ืืงื•ืœื•ื’ื™ื•ืช ื›ืžื• ืฉืจื™ืคื•ืช ื™ืขืจ ื•ื”ืชืคืฉื˜ื•ืช ืžื™ื ื™ื ืคื•ืœืฉื™ื. ื‘ืงื ื“ื”, ืงื‘ื•ืฆืช ื—ื•ืงืจื™ื ื”ืฉืชืžืฉื” ื‘ืœืžื™ื“ืช ื—ื™ื–ื•ืงื™ื ื›ื“ื™ ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืฉืœ ื“ื™ื ืžื™ืงืช ืฉืจื™ืคื•ืช ื™ืขืจ ืžืชืžื•ื ื•ืช ืœื•ื•ื™ื™ืŸ. ื‘ืืžืฆืขื•ืช "ืชื”ืœื™ืš ื”ืชืคืฉื˜ื•ืช ืžืจื—ื‘ื™ (SSP)" ื—ื“ืฉื ื™, ื”ื ื“ืžื™ื™ื ื• ืฉืจื™ืคืช ื™ืขืจ ื›"ืกื•ื›ืŸ ื‘ื›ืœ ืชื ื‘ื ื•ืฃ". "ืกื˜ ื”ืคืขื•ืœื•ืช ืฉื”ืืฉ ื™ื›ื•ืœื” ืœื‘ืฆืข ืžืžื™ืงื•ื ื‘ื›ืœ ื ืงื•ื“ืช ื–ืžืŸ ื›ื•ืœืœ ื”ืชืคืฉื˜ื•ืช ืฆืคื•ื ื”, ื“ืจื•ืžื”, ืžื–ืจื—ื” ืื• ืžืขืจื‘ื” ืื• ืื™ ื”ืชืคืฉื˜ื•ืช.
ื’ื™ืฉื” ื–ื• ื”ื•ืคื›ืช ืืช ื”ื”ื’ื“ืจื” ื”ืจื’ื™ืœื” ืฉืœ ืœืžื™ื“ืช ื—ื™ื–ื•ืงื™ื ืžื›ื™ื•ื•ืŸ ืฉื”ื“ื™ื ืžื™ืงื” ืฉืœ ืชื”ืœื™ืš ื”ื”ื—ืœื˜ื” ืฉืœ ืžืจืงื•ื‘ (MDP) ื”ืžืชืื™ื ื”ื™ื ืคื•ื ืงืฆื™ื” ื™ื“ื•ืขื” ืœื”ืชืคืฉื˜ื•ืช ืžื™ื™ื“ื™ืช ืฉืœ ืฉืจื™ืคื•ืช." ืงืจืื• ืขื•ื“ ืขืœ ื”ืืœื’ื•ืจื™ืชืžื™ื ื”ืงืœืืกื™ื™ื ืฉื‘ื”ื ื”ืฉืชืžืฉื” ื”ืงื‘ื•ืฆื” ื‘ืงื™ืฉื•ืจ ืœืžื˜ื”.
[Reference](https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full)
### ื—ื™ืฉืช ืชื ื•ืขื” ืฉืœ ื‘ืขืœื™ ื—ื™ื™ื
ื‘ืขื•ื“ ืฉืœืžื™ื“ื” ืขืžื•ืงื” ื™ืฆืจื” ืžื”ืคื›ื” ื‘ืžืขืงื‘ ื—ื–ื•ืชื™ ืื—ืจ ืชื ื•ืขื•ืช ื‘ืขืœื™ ื—ื™ื™ื (ื ื™ืชืŸ ืœื‘ื ื•ืช [ืขื•ืงื‘ ื“ื•ื‘ื™ ืงื•ื˜ื‘](https://docs.microsoft.com/learn/modules/build-ml-model-with-azure-stream-analytics/?WT.mc_id=academic-77952-leestott) ืžืฉืœื›ื ื›ืืŸ), ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช ืขื“ื™ื™ืŸ ื™ืฉ ืžืงื•ื ื‘ืžืฉื™ืžื” ื–ื•.
ื—ื™ื™ืฉื ื™ื ืœืžืขืงื‘ ืื—ืจ ืชื ื•ืขื•ืช ืฉืœ ื‘ืขืœื™ ื—ื™ื™ื ื‘ื—ื•ื•ืช ื•-IoT ืขื•ืฉื™ื ืฉื™ืžื•ืฉ ื‘ืกื•ื’ ื–ื” ืฉืœ ืขื™ื‘ื•ื“ ื—ื–ื•ืชื™, ืืš ื˜ื›ื ื™ืงื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืกื™ืกื™ื•ืช ื™ื•ืชืจ ืžื•ืขื™ืœื•ืช ืœืขื™ื‘ื•ื“ ืžืงื“ื™ื ืฉืœ ื ืชื•ื ื™ื. ืœื“ื•ื’ืžื”, ื‘ืžืืžืจ ื–ื”, ืชื ื•ื—ื•ืช ื›ื‘ืฉื™ื ื ื•ื˜ืจื• ื•ื ื•ืชื—ื• ื‘ืืžืฆืขื•ืช ืืœื’ื•ืจื™ืชืžื™ ืžืกื•ื•ื’ื™ื ืฉื•ื ื™ื. ื™ื™ืชื›ืŸ ืฉืชื–ื”ื• ืืช ืขืงื•ืžืช ROC ื‘ืขืžื•ื“ 335.
[Reference](https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf)
### โšก๏ธ ื ื™ื”ื•ืœ ืื ืจื’ื™ื”
ื‘ืฉื™ืขื•ืจื™ื ืฉืœื ื• ืขืœ [ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ](../../7-TimeSeries/README.md), ื”ืขืœื™ื ื• ืืช ื”ืจืขื™ื•ืŸ ืฉืœ ืžื“ื—ื ื™ื ื—ื›ืžื™ื ื›ื“ื™ ืœื™ื™ืฆืจ ื”ื›ื ืกื•ืช ืœืขื™ืจ ืขืœ ืกืžืš ื”ื‘ื ืช ื”ื™ืฆืข ื•ื‘ื™ืงื•ืฉ. ืžืืžืจ ื–ื” ื“ืŸ ื‘ืคื™ืจื•ื˜ ื›ื™ืฆื“ ืืฉื›ื•ืœื•ืช, ืจื’ืจืกื™ื” ื•ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ืฉื•ืœื‘ื• ื›ื“ื™ ืœืขื–ื•ืจ ืœื—ื–ื•ืช ืฉื™ืžื•ืฉ ืขืชื™ื“ื™ ื‘ืื ืจื’ื™ื” ื‘ืื™ืจืœื ื“, ื‘ื”ืชื‘ืกืก ืขืœ ืžื“ื™ื“ื” ื—ื›ืžื”.
[Reference](https://www-cdn.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf)
## ๐Ÿ’ผ ื‘ื™ื˜ื•ื—
ืชื—ื•ื ื”ื‘ื™ื˜ื•ื— ื”ื•ื ืชื—ื•ื ื ื•ืกืฃ ืฉืžืฉืชืžืฉ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื›ื“ื™ ืœื‘ื ื•ืช ื•ืœื™ื™ืขืœ ืžื•ื“ืœื™ื ืคื™ื ื ืกื™ื™ื ื•ืืงื˜ื•ืืจื™ื™ื.
### ื ื™ื”ื•ืœ ืชื ื•ื“ืชื™ื•ืช
MetLife, ืกืคืง ื‘ื™ื˜ื•ื— ื—ื™ื™ื, ืคืชื•ื— ืœื’ื‘ื™ ื”ื“ืจืš ืฉื‘ื” ื”ื ืžื ืชื—ื™ื ื•ืžืคื—ื™ืชื™ื ืชื ื•ื“ืชื™ื•ืช ื‘ืžื•ื“ืœื™ื ื”ืคื™ื ื ืกื™ื™ื ืฉืœื”ื. ื‘ืžืืžืจ ื–ื” ืชื‘ื—ื™ื ื• ื‘ื”ื“ืžื™ื•ืช ืกื™ื•ื•ื’ ื‘ื™ื ืืจื™ื•ืช ื•ืื•ืจื“ื™ื ืœื™ื•ืช. ืชื’ืœื• ื’ื ื”ื“ืžื™ื•ืช ื—ื™ื–ื•ื™.
[Reference](https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf)
## ๐ŸŽจ ืืžื ื•ืช, ืชืจื‘ื•ืช ื•ืกืคืจื•ืช
ื‘ืชื—ื•ื ื”ืืžื ื•ืช, ืœืžืฉืœ ื‘ืขื™ืชื•ื ืื•ืช, ื™ืฉื ืŸ ื‘ืขื™ื•ืช ืžืขื ื™ื™ื ื•ืช ืจื‘ื•ืช. ื–ื™ื”ื•ื™ ื—ื“ืฉื•ืช ืžื–ื•ื™ืคื•ืช ื”ื•ื ื‘ืขื™ื” ื’ื“ื•ืœื” ืฉื›ืŸ ื”ื•ื›ื— ืฉื”ื™ื ืžืฉืคื™ืขื” ืขืœ ื“ืขืช ื”ืงื”ืœ ื•ืืคื™ืœื• ืขืœ ื”ืคืœืช ื“ืžื•ืงืจื˜ื™ื•ืช. ืžื•ื–ื™ืื•ื ื™ื ื™ื›ื•ืœื™ื ื’ื ืœื”ืจื•ื•ื™ื— ืžืฉื™ืžื•ืฉ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ื›ืœ ื“ื‘ืจ, ื”ื—ืœ ืžืžืฆื™ืืช ืงืฉืจื™ื ื‘ื™ืŸ ืคืจื™ื˜ื™ื ื•ืขื“ ืชื›ื ื•ืŸ ืžืฉืื‘ื™ื.
### ื–ื™ื”ื•ื™ ื—ื“ืฉื•ืช ืžื–ื•ื™ืคื•ืช
ื–ื™ื”ื•ื™ ื—ื“ืฉื•ืช ืžื–ื•ื™ืคื•ืช ื”ืคืš ืœืžืฉื—ืง ืฉืœ ื—ืชื•ืœ ื•ืขื›ื‘ืจ ื‘ืžื“ื™ื” ืฉืœ ื”ื™ื•ื. ื‘ืžืืžืจ ื–ื”, ื—ื•ืงืจื™ื ืžืฆื™ืขื™ื ืฉืžืขืจื›ืช ืฉืžืฉืœื‘ืช ื›ืžื” ืžื˜ื›ื ื™ืงื•ืช ืœืžื™ื“ืช ื”ืžื›ื•ื ื” ืฉืœืžื“ื ื• ื™ื›ื•ืœื” ืœื”ื™ื‘ื—ืŸ ื•ื”ืžื•ื“ืœ ื”ื˜ื•ื‘ ื‘ื™ื•ืชืจ ื™ื™ื•ืฉื: "ืžืขืจื›ืช ื–ื• ืžื‘ื•ืกืกืช ืขืœ ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช ื›ื“ื™ ืœื—ืœืฅ ืชื›ื•ื ื•ืช ืžื”ื ืชื•ื ื™ื ื•ืœืื—ืจ ืžื›ืŸ ืชื›ื•ื ื•ืช ืืœื• ืžืฉืžืฉื•ืช ืœืื™ืžื•ืŸ ืžืกื•ื•ื’ื™ ืœืžื™ื“ืช ืžื›ื•ื ื” ื›ืžื• Naive Bayes, Support Vector Machine (SVM), Random Forest (RF), Stochastic Gradient Descent (SGD), ื•-Logistic Regression (LR)."
[Reference](https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf)
ืžืืžืจ ื–ื” ืžืจืื” ื›ื™ืฆื“ ืฉื™ืœื•ื‘ ืชื—ื•ืžื™ื ืฉื•ื ื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื™ื›ื•ืœ ืœื”ืคื™ืง ืชื•ืฆืื•ืช ืžืขื ื™ื™ื ื•ืช ืฉื™ื›ื•ืœื•ืช ืœืขื–ื•ืจ ืœืขืฆื•ืจ ืืช ื”ืชืคืฉื˜ื•ืช ื”ื—ื“ืฉื•ืช ื”ืžื–ื•ื™ืคื•ืช ื•ืœืžื ื•ืข ื ื–ืง ืืžื™ืชื™; ื‘ืžืงืจื” ื–ื”, ื”ืžื ื™ืข ื”ื™ื” ื”ืชืคืฉื˜ื•ืช ืฉืžื•ืขื•ืช ืขืœ ื˜ื™ืคื•ืœื™ COVID ืฉื’ืจืžื• ืœืืœื™ืžื•ืช ื”ืžื•ื ื™ืช.
### ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืžื•ื–ื™ืื•ื ื™ื
ืžื•ื–ื™ืื•ื ื™ื ื ืžืฆืื™ื ืขืœ ืกืฃ ืžื”ืคื›ืช AI ืฉื‘ื” ืงื˜ืœื•ื’ ื•ื“ื™ื’ื™ื˜ืฆื™ื” ืฉืœ ืื•ืกืคื™ื ื•ืžืฆื™ืืช ืงืฉืจื™ื ื‘ื™ืŸ ืคืจื™ื˜ื™ื ื”ื•ืคื›ื™ื ืœืงืœื™ื ื™ื•ืชืจ ื›ื›ืœ ืฉื”ื˜ื›ื ื•ืœื•ื’ื™ื” ืžืชืงื“ืžืช. ืคืจื•ื™ืงื˜ื™ื ื›ืžื• [In Codice Ratio](https://www.sciencedirect.com/science/article/abs/pii/S0306457321001035#:~:text=1.,studies%20over%20large%20historical%20sources.) ืขื•ื–ืจื™ื ืœืคืชื•ื— ืืช ื”ืžืกืชื•ืจื™ืŸ ืฉืœ ืื•ืกืคื™ื ื‘ืœืชื™ ื ื’ื™ืฉื™ื ื›ืžื• ื”ืืจื›ื™ื•ื ื™ื ืฉืœ ื”ื•ื•ืชื™ืงืŸ. ืื‘ืœ, ื”ื”ื™ื‘ื˜ ื”ืขืกืงื™ ืฉืœ ืžื•ื–ื™ืื•ื ื™ื ืžืจื•ื•ื™ื— ื’ื ืžืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”.
ืœื“ื•ื’ืžื”, ืžื›ื•ืŸ ื”ืืžื ื•ืช ืฉืœ ืฉื™ืงื’ื• ื‘ื ื” ืžื•ื“ืœื™ื ื›ื“ื™ ืœื—ื–ื•ืช ืžื” ืžืขื ื™ื™ืŸ ืืช ื”ืงื”ืœ ื•ืžืชื™ ื”ื•ื ื™ื’ื™ืข ืœืชืขืจื•ื›ื•ืช. ื”ืžื˜ืจื” ื”ื™ื ืœื™ืฆื•ืจ ื—ื•ื•ื™ื•ืช ืžื‘ืงืจ ืžื•ืชืืžื•ืช ื•ืื•ืคื˜ื™ืžืœื™ื•ืช ื‘ื›ืœ ืคืขื ืฉื”ืžืฉืชืžืฉ ืžื‘ืงืจ ื‘ืžื•ื–ื™ืื•ืŸ. "ื‘ืžื”ืœืš ืฉื ืช ื”ื›ืกืคื™ื 2017, ื”ืžื•ื“ืœ ื—ื–ื” ื ื•ื›ื—ื•ืช ื•ื”ื›ื ืกื•ืช ื‘ื“ื™ื•ืง ืฉืœ 1 ืื—ื•ื–, ืื•ืžืจ ืื ื“ืจื• ืกื™ืžื ื™ืง, ืกื’ืŸ ื ืฉื™ื ื‘ื›ื™ืจ ื‘ืžื›ื•ืŸ ื”ืืžื ื•ืช."
[Reference](https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-uses-data-to-make-exhibit-choices)
## ๐Ÿท ืฉื™ื•ื•ืง
### ืคื™ืœื•ื— ืœืงื•ื—ื•ืช
ืืกื˜ืจื˜ื’ื™ื•ืช ื”ืฉื™ื•ื•ืง ื”ื™ืขื™ืœื•ืช ื‘ื™ื•ืชืจ ืžื›ื•ื•ื ื•ืช ืœืœืงื•ื—ื•ืช ื‘ื“ืจื›ื™ื ืฉื•ื ื•ืช ื‘ื”ืชื‘ืกืก ืขืœ ืงื‘ื•ืฆื•ืช ืฉื•ื ื•ืช. ื‘ืžืืžืจ ื–ื”, ื ื“ื•ื ื™ื ื”ืฉื™ืžื•ืฉื™ื ื‘ืืœื’ื•ืจื™ืชืžื™ ืืฉื›ื•ืœื•ืช ื›ื“ื™ ืœืชืžื•ืš ื‘ืฉื™ื•ื•ืง ืžื•ื‘ื—ืŸ. ืฉื™ื•ื•ืง ืžื•ื‘ื—ืŸ ืขื•ื–ืจ ืœื—ื‘ืจื•ืช ืœืฉืคืจ ืืช ื–ื™ื”ื•ื™ ื”ืžื•ืชื’, ืœื”ื’ื™ืข ืœื™ื•ืชืจ ืœืงื•ื—ื•ืช ื•ืœื”ืจื•ื•ื™ื— ื™ื•ืชืจ ื›ืกืฃ.
[Reference](https://ai.inqline.com/machine-learning-for-marketing-customer-segmentation/)
## ๐Ÿš€ ืืชื’ืจ
ื–ื”ื• ืชื—ื•ื ื ื•ืกืฃ ืฉืžืจื•ื•ื™ื— ืžื—ืœืง ืžื”ื˜ื›ื ื™ืงื•ืช ืฉืœืžื“ืชื ื‘ืงื•ืจืก ื–ื”, ื•ื’ืœื” ื›ื™ืฆื“ ื”ื•ื ืžืฉืชืžืฉ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”.
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ืœืฆื•ื•ืช ืžื“ืขื™ ื”ื ืชื•ื ื™ื ืฉืœ Wayfair ื™ืฉ ื›ืžื” ืกืจื˜ื•ื ื™ื ืžืขื ื™ื™ื ื™ื ืขืœ ืื™ืš ื”ื ืžืฉืชืžืฉื™ื ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ื—ื‘ืจื” ืฉืœื”ื. ืฉื•ื•ื” [ืœื”ืฆื™ืฅ](https://www.youtube.com/channel/UCe2PjkQXqOuwkW1gw6Ameuw/videos)!
## ืžืฉื™ืžื”
[ื—ื™ืคื•ืฉ ืื•ืฆืจ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,27 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "fdebfcd0a3f12c9e2b436ded1aa79885",
"translation_date": "2025-09-05T19:24:40+00:00",
"source_file": "9-Real-World/1-Applications/assignment.md",
"language_code": "he"
}
-->
# ื—ื™ืคื•ืฉ ืื•ืฆืจื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”
## ื”ื•ืจืื•ืช
ื‘ืฉื™ืขื•ืจ ื”ื–ื”, ืœืžื“ืชื ืขืœ ืžื’ื•ื•ืŸ ืฉื™ืžื•ืฉื™ื ืืžื™ืชื™ื™ื ืฉื ืคืชืจื• ื‘ืืžืฆืขื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช. ืœืžืจื•ืช ืฉื”ืฉื™ืžื•ืฉ ื‘ืœืžื™ื“ื” ืขืžื•ืงื”, ื˜ื›ื ื™ืงื•ืช ื•ื›ืœื™ื ื—ื“ืฉื™ื ื‘-AI, ื•ื ื™ืฆื•ืœ ืจืฉืชื•ืช ื ื•ื™ืจื•ื ื™ื ืขื–ืจื• ืœื”ืื™ืฅ ืืช ื”ืคื™ืชื•ื— ืฉืœ ื›ืœื™ื ืœืกื™ื•ืข ื‘ืชื—ื•ืžื™ื ืืœื•, ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช ื‘ืืžืฆืขื•ืช ื”ื˜ื›ื ื™ืงื•ืช ืฉื ืœืžื“ื• ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ืขื“ื™ื™ืŸ ืžื—ื–ื™ืงื” ื‘ืขืจืš ืจื‘.
ื‘ืžืฉื™ืžื” ื”ื–ื•, ื“ืžื™ื™ื ื• ืฉืืชื ืžืฉืชืชืคื™ื ื‘ื”ืืงืชื•ืŸ. ื”ืฉืชืžืฉื• ื‘ืžื” ืฉืœืžื“ืชื ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื›ื“ื™ ืœื”ืฆื™ืข ืคืชืจื•ืŸ ื‘ืืžืฆืขื•ืช ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช ืœื‘ืขื™ื” ื‘ืื—ื“ ื”ืชื—ื•ืžื™ื ืฉื ื“ื•ื ื• ื‘ืฉื™ืขื•ืจ ื”ื–ื”. ืฆืจื• ืžืฆื’ืช ืฉื‘ื” ืชื“ื•ื ื• ื›ื™ืฆื“ ืชื™ื™ืฉืžื• ืืช ื”ืจืขื™ื•ืŸ ืฉืœื›ื. ื ืงื•ื“ื•ืช ื‘ื•ื ื•ืก ืื ืชื•ื›ืœื• ืœืืกื•ืฃ ื ืชื•ื ื™ ื“ื•ื’ืžื” ื•ืœื‘ื ื•ืช ืžื•ื“ืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืฉื™ืชืžื•ืš ื‘ืงื•ื ืกืคื˜ ืฉืœื›ื!
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| --------- | ---------------------------------------------------------------- | --------------------------------------------- | ---------------- |
| | ืžื•ืฆื’ืช ืžืฆื’ืช PowerPoint - ื‘ื•ื ื•ืก ืขืœ ื‘ื ื™ื™ืช ืžื•ื“ืœ | ืžื•ืฆื’ืช ืžืฆื’ืช ื‘ืกื™ืกื™ืช ื•ืœื ื—ื“ืฉื ื™ืช | ื”ืขื‘ื•ื“ื” ืื™ื ื” ืฉืœืžื” |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,178 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "df2b538e8fbb3e91cf0419ae2f858675",
"translation_date": "2025-09-05T19:25:51+00:00",
"source_file": "9-Real-World/2-Debugging-ML-Models/README.md",
"language_code": "he"
}
-->
# ืคื•ืกื˜ืกืงืจื™ืคื˜: ืื™ืชื•ืจ ืฉื’ื™ืื•ืช ื‘ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืืžืฆืขื•ืช ืจื›ื™ื‘ื™ ืœื•ื— ืžื—ื•ื•ื ื™ื ืฉืœ AI ืื—ืจืื™
## [ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
## ืžื‘ื•ื
ืœืžื™ื“ืช ืžื›ื•ื ื” ืžืฉืคื™ืขื” ืขืœ ื—ื™ื™ ื”ื™ื•ืžื™ื•ื ืฉืœื ื•. ื”ื‘ื™ื ื” ื”ืžืœืื›ื•ืชื™ืช ืžื•ืฆืืช ืืช ื“ืจื›ื” ืœืžืขืจื›ื•ืช ื”ื—ืฉื•ื‘ื•ืช ื‘ื™ื•ืชืจ ืฉืžืฉืคื™ืขื•ืช ืขืœื™ื ื• ื›ื™ื—ื™ื“ื™ื ื•ืขืœ ื”ื—ื‘ืจื” ืฉืœื ื•, ื›ืžื• ื‘ืจื™ืื•ืช, ืคื™ื ื ืกื™ื, ื—ื™ื ื•ืš ื•ืชืขืกื•ืงื”. ืœื“ื•ื’ืžื”, ืžืขืจื›ื•ืช ื•ืžื•ื“ืœื™ื ืžืขื•ืจื‘ื™ื ื‘ืžืฉื™ืžื•ืช ืงื‘ืœืช ื”ื—ืœื˜ื•ืช ื™ื•ืžื™ื•ืžื™ื•ืช, ื›ืžื• ืื‘ื—ื ื•ืช ืจืคื•ืื™ื•ืช ืื• ื–ื™ื”ื•ื™ ื”ื•ื ืื•ืช. ื›ืชื•ืฆืื” ืžื›ืš, ื”ื”ืชืงื“ืžื•ืช ื‘ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื™ื—ื“ ืขื ื”ืื™ืžื•ืฅ ื”ืžื•ืืฅ ืฉืœื” ื ืชืงืœื™ื ื‘ืฆื™ืคื™ื•ืช ื—ื‘ืจืชื™ื•ืช ืžืชืคืชื—ื•ืช ื•ื‘ืชืงื ื•ืช ื”ื•ืœื›ื•ืช ื•ื’ื•ื‘ืจื•ืช ื‘ืชื’ื•ื‘ื”. ืื ื• ืจื•ืื™ื ื‘ืื•ืคืŸ ืงื‘ื•ืข ืชื—ื•ืžื™ื ืฉื‘ื”ื ืžืขืจื›ื•ืช AI ืžืžืฉื™ื›ื•ืช ืœืื›ื–ื‘; ื”ืŸ ื—ื•ืฉืคื•ืช ืืชื’ืจื™ื ื—ื“ืฉื™ื; ื•ืžืžืฉืœื•ืช ืžืชื—ื™ืœื•ืช ืœื”ืกื“ื™ืจ ืคืชืจื•ื ื•ืช AI. ืœื›ืŸ, ื—ืฉื•ื‘ ืœื ืชื— ืืช ื”ืžื•ื“ืœื™ื ื”ืœืœื• ื›ื“ื™ ืœื”ื‘ื˜ื™ื— ืชื•ืฆืื•ืช ื”ื•ื’ื ื•ืช, ืืžื™ื ื•ืช, ื›ื•ืœืœื•ืช, ืฉืงื•ืคื•ืช ื•ืื—ืจืื™ื•ืช ืœื›ื•ืœื.
ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ื–ื•, ื ื‘ื—ืŸ ื›ืœื™ื ืžืขืฉื™ื™ื ืฉื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื”ื ื›ื“ื™ ืœื”ืขืจื™ืš ืื ืœืžื•ื“ืœ ื™ืฉ ื‘ืขื™ื•ืช ืฉืœ AI ืื—ืจืื™. ื˜ื›ื ื™ืงื•ืช ืžืกื•ืจืชื™ื•ืช ืœืื™ืชื•ืจ ืฉื’ื™ืื•ืช ื‘ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื ื•ื˜ื•ืช ืœื”ืชื‘ืกืก ืขืœ ื—ื™ืฉื•ื‘ื™ื ื›ืžื•ืชื™ื™ื ื›ืžื• ื“ื™ื•ืง ืžืฆื˜ื‘ืจ ืื• ืžืžื•ืฆืข ื”ืคืกื“ ืฉื’ื™ืื”. ื“ืžื™ื™ื ื• ืžื” ื™ื›ื•ืœ ืœืงืจื•ืช ื›ืืฉืจ ื”ื ืชื•ื ื™ื ืฉื‘ื”ื ืืชื ืžืฉืชืžืฉื™ื ืœื‘ื ื™ื™ืช ื”ืžื•ื“ืœื™ื ื”ืœืœื• ื—ืกืจื™ื ื“ืžื•ื’ืจืคื™ื•ืช ืžืกื•ื™ืžื•ืช, ื›ืžื• ื’ื–ืข, ืžื’ื“ืจ, ื”ืฉืงืคื” ืคื•ืœื™ื˜ื™ืช, ื“ืช, ืื• ืžื™ื™ืฆื’ื™ื ื‘ืื•ืคืŸ ืœื ืคืจื•ืคื•ืจืฆื™ื•ื ืœื™ ื“ืžื•ื’ืจืคื™ื•ืช ื›ืืœื”. ื•ืžื” ืœื’ื‘ื™ ืžืฆื‘ ืฉื‘ื• ื”ืคืœื˜ ืฉืœ ื”ืžื•ื“ืœ ืžืคื•ืจืฉ ื›ืžืขื“ื™ืฃ ื“ืžื•ื’ืจืคื™ื” ืžืกื•ื™ืžืช? ื–ื” ื™ื›ื•ืœ ืœื”ื•ื‘ื™ืœ ืœื™ื™ืฆื•ื’ ื™ืชืจ ืื• ื—ืกืจ ืฉืœ ืงื‘ื•ืฆื•ืช ืชื›ื•ื ื•ืช ืจื’ื™ืฉื•ืช, ืžื” ืฉื’ื•ืจื ืœื‘ืขื™ื•ืช ืฉืœ ื”ื•ื’ื ื•ืช, ื”ื›ืœืœื” ืื• ืืžื™ื ื•ืช ื‘ืžื•ื“ืœ. ื’ื•ืจื ื ื•ืกืฃ ื”ื•ื ืฉืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื ื—ืฉื‘ื™ื ืœืงื•ืคืกืื•ืช ืฉื—ื•ืจื•ืช, ืžื” ืฉืžืงืฉื” ืœื”ื‘ื™ืŸ ื•ืœื”ืกื‘ื™ืจ ืžื” ืžื ื™ืข ืืช ื”ืชื—ื–ื™ื•ืช ืฉืœ ื”ืžื•ื“ืœ. ื›ืœ ืืœื” ื”ื ืืชื’ืจื™ื ืฉืžื“ืขื ื™ ื ืชื•ื ื™ื ื•ืžืคืชื—ื™ AI ืžืชืžื•ื“ื“ื™ื ืื™ืชื ื›ืืฉืจ ืื™ืŸ ืœื”ื ื›ืœื™ื ืžืชืื™ืžื™ื ืœืื™ืชื•ืจ ืฉื’ื™ืื•ืช ื•ืœื”ืขืจื›ืช ื”ื”ื•ื’ื ื•ืช ืื• ื”ืืžื™ื ื•ืช ืฉืœ ืžื•ื“ืœ.
ื‘ืฉื™ืขื•ืจ ื–ื” ืชืœืžื“ื• ืขืœ ืื™ืชื•ืจ ืฉื’ื™ืื•ืช ื‘ืžื•ื“ืœื™ื ื‘ืืžืฆืขื•ืช:
- **ื ื™ืชื•ื— ืฉื’ื™ืื•ืช**: ื–ื™ื”ื•ื™ ืื–ื•ืจื™ื ื‘ื”ืชืคืœื’ื•ืช ื”ื ืชื•ื ื™ื ืฉื‘ื”ื ืœืžื•ื“ืœ ื™ืฉ ืฉื™ืขื•ืจื™ ืฉื’ื™ืื” ื’ื‘ื•ื”ื™ื.
- **ืกืงื™ืจืช ืžื•ื“ืœ**: ื‘ื™ืฆื•ืข ื ื™ืชื•ื— ื”ืฉื•ื•ืืชื™ ื‘ื™ืŸ ืงื‘ื•ืฆื•ืช ื ืชื•ื ื™ื ืฉื•ื ื•ืช ื›ื“ื™ ืœื’ืœื•ืช ืคืขืจื™ื ื‘ืžื“ื“ื™ ื”ื‘ื™ืฆื•ืขื™ื ืฉืœ ื”ืžื•ื“ืœ.
- **ื ื™ืชื•ื— ื ืชื•ื ื™ื**: ื—ืงื™ืจื” ืฉืœ ืื–ื•ืจื™ื ืฉื‘ื”ื ืขืฉื•ื™ื” ืœื”ื™ื•ืช ื™ื™ืฆื•ื’ ื™ืชืจ ืื• ื—ืกืจ ืฉืœ ื”ื ืชื•ื ื™ื, ืžื” ืฉืขืœื•ืœ ืœื”ื˜ื•ืช ืืช ื”ืžื•ื“ืœ ืœื”ืขื“ื™ืฃ ื“ืžื•ื’ืจืคื™ื” ืื—ืช ืขืœ ืคื ื™ ืื—ืจืช.
- **ื—ืฉื™ื‘ื•ืช ืชื›ื•ื ื•ืช**: ื”ื‘ื ื” ืื™ืœื• ืชื›ื•ื ื•ืช ืžื ื™ืขื•ืช ืืช ื”ืชื—ื–ื™ื•ืช ืฉืœ ื”ืžื•ื“ืœ ื‘ืจืžื” ื’ืœื•ื‘ืœื™ืช ืื• ืžืงื•ืžื™ืช.
## ื“ืจื™ืฉื•ืช ืžืงื“ื™ืžื•ืช
ื›ื“ืจื™ืฉื” ืžืงื“ื™ืžื”, ืื ื ืขื™ื™ื ื• ื‘[ื›ืœื™ AI ืื—ืจืื™ ืœืžืคืชื—ื™ื](https://www.microsoft.com/ai/ai-lab-responsible-ai-dashboard)
> ![Gif ืขืœ ื›ืœื™ AI ืื—ืจืื™](../../../../9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif)
## ื ื™ืชื•ื— ืฉื’ื™ืื•ืช
ืžื“ื“ื™ ื‘ื™ืฆื•ืขื™ื ืžืกื•ืจืชื™ื™ื ืฉืœ ืžื•ื“ืœื™ื ื”ืžืฉืžืฉื™ื ืœืžื“ื™ื“ืช ื“ื™ื•ืง ื”ื ืœืจื•ื‘ ื—ื™ืฉื•ื‘ื™ื ื”ืžื‘ื•ืกืกื™ื ืขืœ ืชื—ื–ื™ื•ืช ื ื›ื•ื ื•ืช ืžื•ืœ ืฉื’ื•ื™ื•ืช. ืœื“ื•ื’ืžื”, ืงื‘ื™ืขื” ืฉืžื•ื“ืœ ืžื“ื•ื™ืง ื‘-89% ืžื”ื–ืžืŸ ืขื ื”ืคืกื“ ืฉื’ื™ืื” ืฉืœ 0.001 ื™ื›ื•ืœื” ืœื”ื™ื—ืฉื‘ ื›ื‘ื™ืฆื•ืขื™ื ื˜ื•ื‘ื™ื. ืฉื’ื™ืื•ืช ืื™ื ืŸ ืžื—ื•ืœืงื•ืช ื‘ืื•ืคืŸ ืื—ื™ื“ ื‘ื ืชื•ื ื™ ื”ื‘ืกื™ืก ืฉืœื›ื. ื™ื™ืชื›ืŸ ืฉืชืงื‘ืœื• ืฆื™ื•ืŸ ื“ื™ื•ืง ืฉืœ 89% ืœืžื•ื“ืœ ืืš ืชื’ืœื• ืฉื™ืฉ ืื–ื•ืจื™ื ืฉื•ื ื™ื ื‘ื ืชื•ื ื™ื ืฉื‘ื”ื ื”ืžื•ื“ืœ ื ื›ืฉืœ ื‘-42% ืžื”ื–ืžืŸ. ื”ื”ืฉืœื›ื•ืช ืฉืœ ื“ืคื•ืกื™ ื›ืฉืœ ืืœื” ืขื ืงื‘ื•ืฆื•ืช ื ืชื•ื ื™ื ืžืกื•ื™ืžื•ืช ื™ื›ื•ืœื•ืช ืœื”ื•ื‘ื™ืœ ืœื‘ืขื™ื•ืช ืฉืœ ื”ื•ื’ื ื•ืช ืื• ืืžื™ื ื•ืช. ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ืืช ื”ืื–ื•ืจื™ื ืฉื‘ื”ื ื”ืžื•ื“ืœ ืžืชืคืงื“ ื”ื™ื˜ื‘ ืื• ืœื. ืื–ื•ืจื™ ื”ื ืชื•ื ื™ื ืฉื‘ื”ื ื™ืฉ ืžืกืคืจ ื’ื‘ื•ื” ืฉืœ ืื™ ื“ื™ื•ืงื™ื ื‘ืžื•ื“ืœ ืขืฉื•ื™ื™ื ืœื”ืชื‘ืจืจ ื›ื“ืžื•ื’ืจืคื™ื” ื ืชื•ื ื™ื ื—ืฉื•ื‘ื”.
![ื ื™ืชื•ื— ื•ืื™ืชื•ืจ ืฉื’ื™ืื•ืช ื‘ืžื•ื“ืœ](../../../../9-Real-World/2-Debugging-ML-Models/images/ea-error-distribution.png)
ืจื›ื™ื‘ ื ื™ืชื•ื— ื”ืฉื’ื™ืื•ืช ื‘ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI ืžืžื—ื™ืฉ ื›ื™ืฆื“ ื›ืฉืœื™ ื”ืžื•ื“ืœ ืžื—ื•ืœืงื™ื ื‘ื™ืŸ ืงื‘ื•ืฆื•ืช ืฉื•ื ื•ืช ื‘ืืžืฆืขื•ืช ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ืขืฅ. ื–ื” ืฉื™ืžื•ืฉื™ ื‘ื–ื™ื”ื•ื™ ืชื›ื•ื ื•ืช ืื• ืื–ื•ืจื™ื ืฉื‘ื”ื ื™ืฉ ืฉื™ืขื•ืจ ืฉื’ื™ืื•ืช ื’ื‘ื•ื” ื‘ื ืชื•ื ื™ื ืฉืœื›ื. ืขืœ ื™ื“ื™ ืฆืคื™ื™ื” ื‘ืžืงื•ืจ ืจื•ื‘ ืื™ ื”ื“ื™ื•ืงื™ื ืฉืœ ื”ืžื•ื“ืœ, ืชื•ื›ืœื• ืœื”ืชื—ื™ืœ ืœื—ืงื•ืจ ืืช ืฉื•ืจืฉ ื”ื‘ืขื™ื”. ื ื™ืชืŸ ื’ื ืœื™ืฆื•ืจ ืงื‘ื•ืฆื•ืช ื ืชื•ื ื™ื ื›ื“ื™ ืœื‘ืฆืข ื ื™ืชื•ื— ืขืœื™ื”ืŸ. ืงื‘ื•ืฆื•ืช ื ืชื•ื ื™ื ืืœื• ืžืกื™ื™ืขื•ืช ื‘ืชื”ืœื™ืš ืื™ืชื•ืจ ื”ืฉื’ื™ืื•ืช ื›ื“ื™ ืœืงื‘ื•ืข ืžื“ื•ืข ื‘ื™ืฆื•ืขื™ ื”ืžื•ื“ืœ ื˜ื•ื‘ื™ื ื‘ืงื‘ื•ืฆื” ืื—ืช ืืš ืฉื’ื•ื™ื™ื ื‘ืื—ืจืช.
![ื ื™ืชื•ื— ืฉื’ื™ืื•ืช](../../../../9-Real-World/2-Debugging-ML-Models/images/ea-error-cohort.png)
ื”ืกื™ืžื ื™ื ื”ื•ื•ื™ื–ื•ืืœื™ื™ื ื‘ืžืคืช ื”ืขืฅ ืžืกื™ื™ืขื™ื ื‘ืื™ืชื•ืจ ืื–ื•ืจื™ ื”ื‘ืขื™ื” ื‘ืžื”ื™ืจื•ืช. ืœื“ื•ื’ืžื”, ื›ื›ืœ ืฉืฆื‘ืข ืื“ื•ื ื›ื”ื” ื™ื•ืชืจ ืžื•ืคื™ืข ื‘ืฆื•ืžืช ืขืฅ, ื›ืš ืฉื™ืขื•ืจ ื”ืฉื’ื™ืื•ืช ื’ื‘ื•ื” ื™ื•ืชืจ.
ืžืคืช ื—ื•ื ื”ื™ื ืคื•ื ืงืฆื™ื•ื ืœื™ื•ืช ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ื ื•ืกืคืช ืฉืžืฉืชืžืฉื™ื ื™ื›ื•ืœื™ื ืœื”ืฉืชืžืฉ ื‘ื” ื›ื“ื™ ืœื—ืงื•ืจ ืืช ืฉื™ืขื•ืจ ื”ืฉื’ื™ืื•ืช ื‘ืืžืฆืขื•ืช ืชื›ื•ื ื” ืื—ืช ืื• ืฉืชื™ื™ื ื•ืœืžืฆื•ื ื’ื•ืจื ืชื•ืจื ืœืฉื’ื™ืื•ืช ื”ืžื•ื“ืœ ืขืœ ืคื ื™ ื›ืœ ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื ืื• ื”ืงื‘ื•ืฆื•ืช.
![ืžืคืช ื—ื•ื ืœื ื™ืชื•ื— ืฉื’ื™ืื•ืช](../../../../9-Real-World/2-Debugging-ML-Models/images/ea-heatmap.png)
ื”ืฉืชืžืฉื• ื‘ื ื™ืชื•ื— ืฉื’ื™ืื•ืช ื›ืืฉืจ ืืชื ืฆืจื™ื›ื™ื:
* ืœื”ื‘ื™ืŸ ืœืขื•ืžืง ื›ื™ืฆื“ ื›ืฉืœื™ ื”ืžื•ื“ืœ ืžื—ื•ืœืงื™ื ืขืœ ืคื ื™ ืงื‘ื•ืฆืช ื ืชื•ื ื™ื ื•ืขืœ ืคื ื™ ืžืกืคืจ ืžืžื“ื™ ืงืœื˜ ื•ืชื›ื•ื ื•ืช.
* ืœืคืจืง ืืช ืžื“ื“ื™ ื”ื‘ื™ืฆื•ืขื™ื ื”ืžืฆื˜ื‘ืจื™ื ื›ื“ื™ ืœื’ืœื•ืช ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™ ืงื‘ื•ืฆื•ืช ืฉื’ื•ื™ื•ืช ื•ืœื™ื™ื“ืข ืืช ื”ืฆืขื“ื™ื ื”ืžืžื•ืงื“ื™ื ืฉืœื›ื ืœืžื™ืชื•ืŸ ื”ื‘ืขื™ื”.
## ืกืงื™ืจืช ืžื•ื“ืœ
ื”ืขืจื›ืช ื‘ื™ืฆื•ืขื™ ืžื•ื“ืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื“ื•ืจืฉืช ื”ื‘ื ื” ื”ื•ืœื™ืกื˜ื™ืช ืฉืœ ื”ืชื ื”ื’ื•ืชื•. ื ื™ืชืŸ ืœื”ืฉื™ื’ ื–ืืช ืขืœ ื™ื“ื™ ืกืงื™ืจืช ื™ื•ืชืจ ืžืžื“ื“ ืื—ื“, ื›ืžื• ืฉื™ืขื•ืจ ืฉื’ื™ืื•ืช, ื“ื™ื•ืง, ืจื™ืงื•ืœ, ื“ื™ื•ืง ืชื—ื–ื™ื•ืช ืื• MAE (ืฉื’ื™ืื” ืžื•ื—ืœื˜ืช ืžืžื•ืฆืขืช), ื›ื“ื™ ืœืžืฆื•ื ืคืขืจื™ื ื‘ื™ืŸ ืžื“ื“ื™ ื‘ื™ืฆื•ืขื™ื. ืžื“ื“ ื‘ื™ืฆื•ืขื™ื ืื—ื“ ืขืฉื•ื™ ืœื”ื™ืจืื•ืช ืžืฆื•ื™ืŸ, ืืš ืื™ ื“ื™ื•ืงื™ื ื™ื›ื•ืœื™ื ืœื”ืชื’ืœื•ืช ื‘ืžื“ื“ ืื—ืจ. ื‘ื ื•ืกืฃ, ื”ืฉื•ื•ืืช ื”ืžื“ื“ื™ื ืœืคืขืจื™ื ืขืœ ืคื ื™ ื›ืœ ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื ืื• ื”ืงื‘ื•ืฆื•ืช ืขื•ื–ืจืช ืœื”ืื™ืจ ืืช ื”ืื–ื•ืจื™ื ืฉื‘ื”ื ื”ืžื•ื“ืœ ืžืชืคืงื“ ื”ื™ื˜ื‘ ืื• ืœื. ื–ื” ื—ืฉื•ื‘ ื‘ืžื™ื•ื—ื“ ื›ื“ื™ ืœืจืื•ืช ืืช ื‘ื™ืฆื•ืขื™ ื”ืžื•ื“ืœ ื‘ื™ืŸ ืชื›ื•ื ื•ืช ืจื’ื™ืฉื•ืช ืœืขื•ืžืช ืœื ืจื’ื™ืฉื•ืช (ืœืžืฉืœ, ื’ื–ืข, ืžื’ื“ืจ ืื• ื’ื™ืœ ืฉืœ ืžื˜ื•ืคืœ) ื›ื“ื™ ืœื—ืฉื•ืฃ ืื™ ื”ื•ื’ื ื•ืช ืคื•ื˜ื ืฆื™ืืœื™ืช ื‘ืžื•ื“ืœ. ืœื“ื•ื’ืžื”, ื’ื™ืœื•ื™ ืฉื”ืžื•ื“ืœ ืฉื’ื•ื™ ื™ื•ืชืจ ื‘ืงื‘ื•ืฆื” ืฉื™ืฉ ืœื” ืชื›ื•ื ื•ืช ืจื’ื™ืฉื•ืช ื™ื›ื•ืœ ืœื—ืฉื•ืฃ ืื™ ื”ื•ื’ื ื•ืช ืคื•ื˜ื ืฆื™ืืœื™ืช ื‘ืžื•ื“ืœ.
ืจื›ื™ื‘ ืกืงื™ืจืช ื”ืžื•ื“ืœ ื‘ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI ืžืกื™ื™ืข ืœื ืจืง ื‘ื ื™ืชื•ื— ืžื“ื“ื™ ื”ื‘ื™ืฆื•ืขื™ื ืฉืœ ื™ื™ืฆื•ื’ ื”ื ืชื•ื ื™ื ื‘ืงื‘ื•ืฆื”, ืืœื ื’ื ื ื•ืชืŸ ืœืžืฉืชืžืฉื™ื ืืช ื”ื™ื›ื•ืœืช ืœื”ืฉื•ื•ืช ืืช ื”ืชื ื”ื’ื•ืช ื”ืžื•ื“ืœ ื‘ื™ืŸ ืงื‘ื•ืฆื•ืช ืฉื•ื ื•ืช.
![ืงื‘ื•ืฆื•ืช ื ืชื•ื ื™ื - ืกืงื™ืจืช ืžื•ื“ืœ ื‘ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI](../../../../9-Real-World/2-Debugging-ML-Models/images/model-overview-dataset-cohorts.png)
ื”ืคื•ื ืงืฆื™ื•ื ืœื™ื•ืช ืฉืœ ื ื™ืชื•ื— ืžื‘ื•ืกืก ืชื›ื•ื ื•ืช ืฉืœ ื”ืจื›ื™ื‘ ืžืืคืฉืจืช ืœืžืฉืชืžืฉื™ื ืœืฆืžืฆื ืชืช-ืงื‘ื•ืฆื•ืช ื ืชื•ื ื™ื ื‘ืชื•ืš ืชื›ื•ื ื” ืžืกื•ื™ืžืช ื›ื“ื™ ืœื–ื”ื•ืช ืื ื•ืžืœื™ื•ืช ื‘ืจืžื” ื’ืจืขื™ื ื™ืช. ืœื“ื•ื’ืžื”, ืœืœื•ื— ื”ืžื—ื•ื•ื ื™ื ื™ืฉ ืื™ื ื˜ืœื™ื’ื ืฆื™ื” ืžื•ื‘ื ื™ืช ืœื™ืฆื™ืจืช ืงื‘ื•ืฆื•ืช ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™ ืขื‘ื•ืจ ืชื›ื•ื ื” ืฉื ื‘ื—ืจื” ืขืœ ื™ื“ื™ ื”ืžืฉืชืžืฉ (ืœืžืฉืœ, *"time_in_hospital < 3"* ืื• *"time_in_hospital >= 7"*). ื–ื” ืžืืคืฉืจ ืœืžืฉืชืžืฉ ืœื‘ื•ื“ื“ ืชื›ื•ื ื” ืžืกื•ื™ืžืช ืžืงื‘ื•ืฆืช ื ืชื•ื ื™ื ื’ื“ื•ืœื” ื™ื•ืชืจ ื›ื“ื™ ืœืจืื•ืช ืื ื”ื™ื ืžืฉืคื™ืขื” ืขืœ ืชื•ืฆืื•ืช ืฉื’ื•ื™ื•ืช ืฉืœ ื”ืžื•ื“ืœ.
![ืงื‘ื•ืฆื•ืช ืชื›ื•ื ื•ืช - ืกืงื™ืจืช ืžื•ื“ืœ ื‘ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI](../../../../9-Real-World/2-Debugging-ML-Models/images/model-overview-feature-cohorts.png)
ืจื›ื™ื‘ ืกืงื™ืจืช ื”ืžื•ื“ืœ ืชื•ืžืš ื‘ืฉื ื™ ืกื•ื’ื™ื ืฉืœ ืžื“ื“ื™ ืคืขืจื™ื:
**ืคืขืจ ื‘ื‘ื™ืฆื•ืขื™ ื”ืžื•ื“ืœ**: ืงื‘ื•ืฆืช ืžื“ื“ื™ื ื–ื• ืžื—ืฉื‘ืช ืืช ื”ืคืขืจ (ื”ื”ื‘ื“ืœ) ื‘ืขืจื›ื™ื ืฉืœ ืžื“ื“ ื”ื‘ื™ืฆื•ืขื™ื ื”ื ื‘ื—ืจ ื‘ื™ืŸ ืชืช-ืงื‘ื•ืฆื•ืช ื ืชื•ื ื™ื. ื”ื ื” ื›ืžื” ื“ื•ื’ืžืื•ืช:
* ืคืขืจ ื‘ืฉื™ืขื•ืจ ื“ื™ื•ืง
* ืคืขืจ ื‘ืฉื™ืขื•ืจ ืฉื’ื™ืื•ืช
* ืคืขืจ ื‘ื“ื™ื•ืง ืชื—ื–ื™ื•ืช
* ืคืขืจ ื‘ืจื™ืงื•ืœ
* ืคืขืจ ื‘ืฉื’ื™ืื” ืžื•ื—ืœื˜ืช ืžืžื•ืฆืขืช (MAE)
**ืคืขืจ ื‘ืฉื™ืขื•ืจ ื”ื‘ื—ื™ืจื”**: ืžื“ื“ ื–ื” ืžื›ื™ืœ ืืช ื”ื”ื‘ื“ืœ ื‘ืฉื™ืขื•ืจ ื”ื‘ื—ื™ืจื” (ืชื—ื–ื™ืช ื—ื™ื•ื‘ื™ืช) ื‘ื™ืŸ ืชืช-ืงื‘ื•ืฆื•ืช. ื“ื•ื’ืžื” ืœื›ืš ื”ื™ื ื”ืคืขืจ ื‘ืฉื™ืขื•ืจื™ ืื™ืฉื•ืจ ื”ืœื•ื•ืื•ืช. ืฉื™ืขื•ืจ ื”ื‘ื—ื™ืจื” ืžืชื™ื™ื—ืก ืœื—ืœืง ืžื ืงื•ื“ื•ืช ื”ื ืชื•ื ื™ื ื‘ื›ืœ ืžื—ืœืงื” ืฉืžืกื•ื•ื’ื•ืช ื›-1 (ื‘ืžื™ื•ืŸ ื‘ื™ื ืืจื™) ืื• ืœื”ืชืคืœื’ื•ืช ืขืจื›ื™ ื”ืชื—ื–ื™ื•ืช (ื‘ืจื’ืจืกื™ื”).
## ื ื™ืชื•ื— ื ืชื•ื ื™ื
> "ืื ืชืขื ื” ืืช ื”ื ืชื•ื ื™ื ืžืกืคื™ืง ื–ืžืŸ, ื”ื ื™ื•ื“ื• ื‘ื›ืœ ื“ื‘ืจ" - ืจื•ื ืœื“ ืงื•ืื–
ื”ืืžื™ืจื” ื”ื–ื• ื ืฉืžืขืช ืงื™ืฆื•ื ื™ืช, ืื‘ืœ ื ื›ื•ืŸ ืฉื ืชื•ื ื™ื ื™ื›ื•ืœื™ื ืœื”ื™ื•ืช ืžื ื•ืฆืœื™ื ื›ื“ื™ ืœืชืžื•ืš ื‘ื›ืœ ืžืกืงื ื”. ืžื ื™ืคื•ืœืฆื™ื” ื›ื–ื• ื™ื›ื•ืœื” ืœืคืขืžื™ื ืœืงืจื•ืช ื‘ืื•ืคืŸ ืœื ืžื›ื•ื•ืŸ. ื›ื‘ื ื™ ืื“ื, ืœื›ื•ืœื ื• ื™ืฉ ื”ื˜ื™ื•ืช, ื•ืœืขื™ืชื™ื ืงืจื•ื‘ื•ืช ืงืฉื” ืœื“ืขืช ื‘ืื•ืคืŸ ืžื•ื“ืข ืžืชื™ ืื ื• ืžื›ื ื™ืกื™ื ื”ื˜ื™ื” ืœื ืชื•ื ื™ื. ื”ื‘ื˜ื—ืช ื”ื•ื’ื ื•ืช ื‘-AI ื•ืœืžื™ื“ืช ืžื›ื•ื ื” ื ื•ืชืจืช ืืชื’ืจ ืžื•ืจื›ื‘.
ื ืชื•ื ื™ื ื”ื ื ืงื•ื“ืช ืขื™ื•ื•ืจ ื’ื“ื•ืœื” ืขื‘ื•ืจ ืžื“ื“ื™ ื‘ื™ืฆื•ืขื™ื ืžืกื•ืจืชื™ื™ื ืฉืœ ืžื•ื“ืœื™ื. ื™ื™ืชื›ืŸ ืฉื™ืฉ ืœื›ื ืฆื™ื•ื ื™ ื“ื™ื•ืง ื’ื‘ื•ื”ื™ื, ืืš ื–ื” ืœื ืชืžื™ื“ ืžืฉืงืฃ ืืช ื”ื˜ื™ื” ื”ื ืชื•ื ื™ื ื”ื‘ืกื™ืกื™ืช ืฉื™ื›ื•ืœื” ืœื”ื™ื•ืช ื‘ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื ืฉืœื›ื. ืœื“ื•ื’ืžื”, ืื ืงื‘ื•ืฆืช ื ืชื•ื ื™ื ืฉืœ ืขื•ื‘ื“ื™ื ื›ื•ืœืœืช 27% ื ืฉื™ื ื‘ืชืคืงื™ื“ื™ื ื‘ื›ื™ืจื™ื ื‘ื—ื‘ืจื” ื•-73% ื’ื‘ืจื™ื ื‘ืื•ืชื• ืจืžื”, ืžื•ื“ืœ AI ืœืคืจืกื•ื ืžืฉืจื•ืช ืฉืžืื•ืžืŸ ืขืœ ื ืชื•ื ื™ื ืืœื• ืขืฉื•ื™ ืœื›ื•ื•ืŸ ื‘ืขื™ืงืจ ืœืงื”ืœ ื’ื‘ืจื™ื ืขื‘ื•ืจ ืžืฉืจื•ืช ื‘ื›ื™ืจื•ืช. ื—ื•ืกืจ ืื™ื–ื•ืŸ ื–ื” ื‘ื ืชื•ื ื™ื ื”ื˜ื” ืืช ืชื—ื–ื™ื•ืช ื”ืžื•ื“ืœ ืœื”ืขื“ื™ืฃ ืžื’ื“ืจ ืื—ื“. ื–ื” ื—ื•ืฉืฃ ื‘ืขื™ื™ืช ื”ื•ื’ื ื•ืช ืฉื‘ื” ื™ืฉ ื”ื˜ื™ื” ืžื’ื“ืจื™ืช ื‘ืžื•ื“ืœ AI.
ืจื›ื™ื‘ ื ื™ืชื•ื— ื”ื ืชื•ื ื™ื ื‘ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI ืžืกื™ื™ืข ื‘ื–ื™ื”ื•ื™ ืื–ื•ืจื™ื ืฉื‘ื”ื ื™ืฉ ื™ื™ืฆื•ื’ ื™ืชืจ ืื• ื—ืกืจ ื‘ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื. ื”ื•ื ืขื•ื–ืจ ืœืžืฉืชืžืฉื™ื ืœืื‘ื—ืŸ ืืช ืฉื•ืจืฉ ื”ื‘ืขื™ื•ืช ืฉืœ ืฉื’ื™ืื•ืช ื•ื‘ืขื™ื•ืช ื”ื•ื’ื ื•ืช ืฉื ื’ืจืžื•ืช ืžื—ื•ืกืจ ืื™ื–ื•ืŸ ื‘ื ืชื•ื ื™ื ืื• ืžื—ื•ืกืจ ื™ื™ืฆื•ื’ ืฉืœ ืงื‘ื•ืฆืช ื ืชื•ื ื™ื ืžืกื•ื™ืžืช. ื–ื” ื ื•ืชืŸ ืœืžืฉืชืžืฉื™ื ืืช ื”ื™ื›ื•ืœืช ืœื”ืฆื™ื’ ื•ื™ื–ื•ืืœื™ืช ืงื‘ื•ืฆื•ืช ื ืชื•ื ื™ื ืขืœ ืกืžืš ืชื—ื–ื™ื•ืช ื•ืชื•ืฆืื•ืช ื‘ืคื•ืขืœ, ืงื‘ื•ืฆื•ืช ืฉื’ื™ืื•ืช ื•ืชื›ื•ื ื•ืช ืกืคืฆื™ืคื™ื•ืช. ืœืคืขืžื™ื ื’ื™ืœื•ื™ ืงื‘ื•ืฆืช ื ืชื•ื ื™ื ืœื ืžื™ื•ืฆื’ืช ื™ื›ื•ืœ ื’ื ืœื—ืฉื•ืฃ ืฉื”ืžื•ื“ืœ ืœื ืœื•ืžื“ ื”ื™ื˜ื‘, ื•ืœื›ืŸ ื™ืฉ ืื™ ื“ื™ื•ืงื™ื ื’ื‘ื•ื”ื™ื. ืžื•ื“ืœ ืฉื™ืฉ ืœื• ื”ื˜ื™ื” ื ืชื•ื ื™ื ื”ื•ื ืœื ืจืง ื‘ืขื™ื™ืช ื”ื•ื’ื ื•ืช ืืœื ื’ื ืžืจืื” ืฉื”ืžื•ื“ืœ ืื™ื ื• ื›ื•ืœืœ ืื• ืืžื™ืŸ.
![ืจื›ื™ื‘ ื ื™ืชื•ื— ื ืชื•ื ื™ื ื‘ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI](../../../../9-Real-World/2-Debugging-ML-Models/images/dataanalysis-cover.png)
ื”ืฉืชืžืฉื• ื‘ื ื™ืชื•ื— ื ืชื•ื ื™ื ื›ืืฉืจ ืืชื ืฆืจื™ื›ื™ื:
* ืœื—ืงื•ืจ ืืช ืกื˜ื˜ื™ืกื˜ื™ืงื•ืช ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื ืฉืœื›ื ืขืœ ื™ื“ื™ ื‘ื—ื™ืจืช ืžืกื ื ื™ื ืฉื•ื ื™ื ื›ื“ื™ ืœื—ืœืง ืืช ื”ื ืชื•ื ื™ื ืฉืœื›ื ืœืžืžื“ื™ื ืฉื•ื ื™ื (ื”ืžื›ื•ื ื™ื ื’ื ืงื‘ื•ืฆื•ืช).
* ืœื”ื‘ื™ืŸ ืืช ื”ืชืคืœื’ื•ืช ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื ืฉืœื›ื ืขืœ ืคื ื™ ืงื‘ื•ืฆื•ืช ืฉื•ื ื•ืช ื•ืงื‘ื•ืฆื•ืช ืชื›ื•ื ื•ืช.
* ืœืงื‘ื•ืข ื”ืื ื”ืžืžืฆืื™ื ืฉืœื›ื ื”ืงืฉื•ืจื™ื ืœื”ื•ื’ื ื•ืช, ื ื™ืชื•ื— ืฉื’ื™ืื•ืช ื•ืกื™ื‘ืชื™ื•ืช (ืฉื ื’ื–ืจื• ืžืจื›ื™ื‘ื™ื ืื—ืจื™ื ื‘ืœื•ื— ื”ืžื—ื•ื•ื ื™ื) ื”ื ืชื•ืฆืื” ืฉืœ ื”ืชืคืœื’ื•ืช ืงื‘ื•ืฆืช ื”ื ืชื•ื ื™ื ืฉืœื›ื.
* ืœื”ื—ืœื™ื˜ ื‘ืื™ืœื• ืื–ื•ืจื™ื ืœืืกื•ืฃ ื™ื•ืชืจ ื ืชื•ื ื™ื ื›ื“ื™ ืœืžืชืŸ ืฉื’ื™ืื•ืช ืฉื ื•ื‘ืขื•ืช ืžื‘ืขื™ื•ืช ื™ื™ืฆื•ื’, ืจืขืฉ ืชื•ื•ื™ื•ืช, ืจืขืฉ ืชื›ื•ื ื•ืช, ื”ื˜ื™ื” ืชื•ื•ื™ื•ืช ื•ื’ื•ืจืžื™ื ื“ื•ืžื™ื.
## ืคืจืฉื ื•ืช ืžื•ื“ืœ
ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื ื•ื˜ื™ื ืœื”ื™ื•ืช ืงื•ืคืกืื•ืช ืฉื—ื•ืจื•ืช. ื”ื‘ื ืช ืื™ืœื• ืชื›ื•ื ื•ืช ื ืชื•ื ื™ื ืžืจื›ื–ื™ื•ืช ืžื ื™ืขื•ืช ืืช ื”ืชื—ื–ื™ื•ืช ืฉืœ ืžื•ื“ืœ ื™ื›ื•ืœื” ืœื”ื™ื•ืช ืžืืชื’ืจืช. ื—ืฉื•ื‘ ืœืกืคืง ืฉืงื™ืคื•ืช ืœื’ื‘ื™ ื”ืกื™ื‘ื” ืฉืžื•ื“ืœ ืขื•ืฉื” ืชื—ื–ื™ืช ืžืกื•ื™ืžืช. ืœื“ื•ื’ืžื”, ืื ืžืขืจื›ืช AI ื—ื•ื–ื” ืฉืžื˜ื•ืคืœ ืกื•ื›ืจืชื™ ื ืžืฆื ื‘ืกื™ื›ื•ืŸ ืœื—ื–ื•ืจ ืœื‘ื™ืช ื—ื•ืœื™ื ืชื•ืš ืคื—ื•ืช ืž-30 ื™ืžื™ื, ืขืœื™ื” ืœืกืคืง ื ืชื•ื ื™ื ืชื•ืžื›ื™ื ืฉื”ื•ื‘ื™ืœื• ืœืชื—ื–ื™ืช ืฉืœื”. ื ืชื•ื ื™ื ืชื•ืžื›ื™ื ืืœื• ืžื‘ื™ืื™ื ืฉืงื™ืคื•ืช ืฉืขื•ื–ืจืช ืœืจื•ืคืื™ื ืื• ื‘ืชื™ ื—ื•ืœื™ื ืœืงื‘ืœ ื”ื—ืœื˜ื•ืช ืžื•ืฉื›ืœื•ืช. ื‘ื ื•ืกืฃ, ื”ื™ื›ื•ืœืช ืœื”ืกื‘ื™ืจ ืžื“ื•ืข ืžื•ื“ืœ ืขืฉื” ืชื—ื–ื™ืช ืขื‘ื•ืจ ืžื˜ื•ืคืœ ืžืกื•ื™ื ืžืืคืฉืจืช ืื—ืจื™ื•ืช ืขื ืชืงื ื•ืช ื‘ืจื™ืื•ืช. ื›ืืฉืจ ืืชื ืžืฉืชืžืฉื™ื ื‘ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ื“ืจื›ื™ื ืฉืžืฉืคื™ืขื•ืช ืขืœ ื—ื™ื™ ืื ืฉื™ื, ื—ืฉื•ื‘ ืœื”ื‘ื™ืŸ ื•ืœื”ืกื‘ื™ืจ ืžื” ืžืฉืคื™ืข ืขืœ ื”ืชื ื”ื’ื•ืช ื”ืžื•ื“ืœ. ืคืจืฉื ื•ืช ื•ื”ืกื‘ืจ ืžื•ื“ืœ ืขื•ื–ืจื™ื ืœืขื ื•ืช ืขืœ ืฉืืœื•ืช ื‘ืชืจื—ื™ืฉื™ื ื›ืžื•:
* ืื™ืชื•ืจ ืฉื’ื™ืื•ืช ื‘ืžื•ื“ืœ: ืžื“ื•ืข ื”ืžื•ื“ืœ ืฉืœื™ ืขืฉื” ืืช ื”ื˜ืขื•ืช ื”ื–ื•? ืื™ืš ืื ื™ ื™ื›ื•ืœ ืœืฉืคืจ ืืช ื”ืžื•ื“ืœ ืฉืœื™?
* ืฉื™ืชื•ืฃ ืคืขื•ืœื” ื‘ื™ืŸ ืื“ื ืœ-AI: ืื™ืš ืื ื™ ื™ื›ื•ืœ ืœื”ื‘ื™ืŸ ื•ืœืกืžื•ืš ืขืœ ื”ื”ื—ืœื˜ื•ืช ืฉืœ ื”ืžื•ื“ืœ?
* ืขืžื™ื“ื” ื‘ืชืงื ื•ืช: ื”ืื ื”ืžื•ื“ืœ ืฉืœื™ ืขื•ืžื“ ื‘ื“ืจื™ืฉื•ืช ื”ื—ื•ืงื™ื•ืช?
ืจื›ื™ื‘ ื—ืฉื™ื‘ื•ืช ื”ืชื›ื•ื ื•ืช ื‘ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI ืขื•ื–ืจ ืœื›ื ืœืืชืจ ืฉื’ื™ืื•ืช ื•ืœืงื‘ืœ ื”ื‘ื ื” ืžืงื™ืคื” ืฉืœ ืื™ืš ืžื•ื“ืœ ืขื•ืฉื” ืชื—ื–ื™ื•ืช. ื–ื”ื• ื’ื ื›ืœื™ ืฉื™ืžื•ืฉื™ ืขื‘ื•ืจ ืื ืฉื™ ืžืงืฆื•ืข ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื•ืžืงื‘ืœื™ ื”ื—ืœื˜ื•ืช ืœื”ืกื‘ื™ืจ ื•ืœื”ืฆื™ื’ ืจืื™ื•ืช ืœืชื›ื•ื ื•ืช ืฉืžืฉืคื™ืขื•ืช ืขืœ ื”ืชื ื”ื’ื•ืช ื”ืžื•ื“ืœ ืœืฆื•ืจืš ืขืžื™ื“ื” ื‘ืชืงื ื•ืช. ืœืื—ืจ ืžื›ืŸ, ืžืฉืชืžืฉื™ื ื™ื›ื•ืœื™ื ืœื—ืงื•ืจ ื”ืกื‘ืจื™ื ื’ืœื•ื‘ืœื™ื™ื ื•ืžืงื•ืžื™ื™ื ื›ื“ื™ ืœืืžืช ืื™ืœื• ืชื›ื•ื ื•ืช ืžื ื™ืขื•ืช ืืช ื”ืชื—ื–ื™ื•ืช ืฉืœ ื”ืžื•ื“ืœ. ื”ืกื‘ืจื™ื ื’ืœื•ื‘ืœื™ื™ื ืžืฆื™ื’ื™ื ืืช ื”ืชื›ื•ื ื•ืช ื”ืžืจื›ื–ื™ื•ืช ืฉื”ืฉืคื™ืขื• ืขืœ ื”ืชื—ื–ื™ื•ืช ื”ื›ื•ืœืœื•ืช ืฉืœ ื”ืžื•ื“ืœ. ื”ืกื‘ืจื™ื ืžืงื•ืžื™ื™ื ืžืฆื™ื’ื™ื ืื™ืœื• ืชื›ื•ื ื•ืช ื”ื•ื‘ื™ืœื• ืœืชื—ื–ื™ืช ืฉืœ ื”ืžื•ื“ืœ ืขื‘ื•ืจ ืžืงืจื” ื™ื—ื™ื“. ื”ื™ื›ื•ืœืช ืœื”ืขืจื™ืš ื”ืกื‘ืจื™ื ืžืงื•ืžื™ื™ื ืžื•ืขื™ืœื” ื’ื ื‘ืื™ืชื•ืจ ืฉื’ื™ืื•ืช ืื• ื‘ื‘ื™ืงื•ืจืช ืžืงืจื” ืกืคืฆื™ืคื™ ื›ื“ื™ ืœื”ื‘ื™ืŸ ื•ืœื”ืกื‘ื™ืจ ืžื“ื•ืข ืžื•ื“ืœ ืขืฉื” ืชื—ื–ื™ืช ืžื“ื•ื™ืงืช ืื• ืฉื’ื•ื™ื”.
![ืจื›ื™ื‘ ื—ืฉื™ื‘ื•ืช ื”ืชื›ื•ื ื•ืช ื‘ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI](../../../../9-Real-World/2-Debugging-ML-Models/images/9-feature-importance.png)
* ื”ืกื‘ืจื™ื ื’ืœื•ื‘ืœื™ื™ื: ืœื“ื•ื’ืžื”, ืื™ืœื• ืชื›ื•ื ื•ืช ืžืฉืคื™ืขื•ืช ืขืœ ื”ื”ืชื ื”ื’ื•ืช ื”ื›ื•ืœืœืช ืฉืœ ืžื•ื“ืœ ื—ื–ืจื” ืœื‘ื™ืช ื—ื•ืœื™ื ืฉืœ ื—ื•ืœื™ ืกื•ื›ืจืช?
* ื”ืกื‘ืจื™ื ืžืงื•ืžื™ื™ื: ืœื“ื•ื’ืžื”, ืžื“ื•ืข ืžื˜ื•ืคืœ ืกื•ื›ืจืชื™ ืžืขืœ ื’ื™ืœ 60 ืขื ืืฉืคื•ื–ื™ื ืงื•ื“ืžื™ื ื—ื–ื” ืฉื™ื—ื–ื•ืจ ืื• ืœื ื™ื—ื–ื•ืจ ืœื‘ื™ืช ื—ื•ืœื™ื ืชื•ืš 30 ื™ืžื™ื?
ื‘ืชื”ืœื™ืš ืื™ืชื•ืจ ืฉื’ื™ืื•ืช ืฉืœ ื‘ื—ื™ื ืช ื‘ื™ืฆื•ืขื™ ื”ืžื•ื“ืœ ืขืœ ืคื ื™ ืงื‘ื•ืฆื•ืช ืฉื•ื ื•ืช, ื—ืฉื™ื‘ื•ืช ื”ืชื›ื•ื ื•ืช ืžืจืื” ืžื”ื™ ืจืžืช ื”ื”ืฉืคืขื” ืฉืœ ืชื›ื•ื ื” ืขืœ ืคื ื™ ื”ืงื‘ื•ืฆื•ืช. ื–ื” ืขื•ื–ืจ ืœื—ืฉื•ืฃ ืื ื•ืžืœื™ื•ืช ื›ืืฉืจ ืžืฉื•ื•ื™ื ืืช ืจืžืช ื”ื”ืฉืคืขื” ืฉืœ ื”ืชื›ื•ื ื” ืขืœ ืชื—ื–ื™ื•ืช ืฉื’ื•ื™ื•ืช ืฉืœ ื”ืžื•ื“ืœ. ืจื›ื™ื‘ ื—ืฉื™ื‘ื•ืช ื”ืชื›ื•ื ื•ืช ื™ื›ื•ืœ ืœื”ืจืื•ืช ืื™ืœื• ืขืจื›ื™ื ื‘ืชื›ื•ื ื” ื”ืฉืคื™ืขื• ื‘ืื•ืคืŸ ื—ื™ื•ื‘ื™ ืื• ืฉืœื™ืœื™ ืขืœ ืชื•ืฆืื•ืช ื”ืžื•ื“ืœ. ืœื“ื•ื’ืžื”, ืื ืžื•ื“ืœ ืขืฉื” ืชื—ื–ื™ืช ืฉื’ื•ื™ื”, ื”ืจื›ื™ื‘ ื ื•ืชืŸ ืœื›ื ืืช ื”ื™ื›ื•ืœืช ืœื”ืขืžื™ืง ื•ืœื–ื”ื•ืช ืื™ืœื• ืชื›ื•ื ื•ืช ืื• ืขืจื›ื™ ืชื›ื•ื ื•ืช ื”ื•ื‘ื™ืœื• ืœืชื—ื–ื™ืช. ืจืžืช ืคื™ืจื•ื˜ ื–ื• ืขื•ื–ืจืช ืœื ืจืง ื‘ืื™ืชื•ืจ ืฉื’ื™ืื•ืช ืืœื ืžืกืคืงืช ืฉืงื™ืคื•ืช ื•ืื—ืจื™ื•ืช ื‘ืžืฆื‘ื™ ื‘ื™ืงื•ืจืช. ืœื‘ืกื•ืฃ, ื”ืจื›ื™ื‘ ื™ื›ื•ืœ ืœืขื–ื•ืจ ืœื›ื ืœื–ื”ื•ืช ื‘ืขื™ื•ืช ื”ื•ื’ื ื•ืช. ืœื“ื•ื’ืžื”, ืื ืชื›ื•ื ื” ืจื’ื™ืฉื” ื›ืžื• ืืชื ื™ื•ืช ืื• ืžื’ื“ืจ ืžืฉืคื™ืขื” ืžืื•ื“ ืขืœ ืชื—ื–ื™ื•ืช ื”ืžื•ื“ืœ, ื–ื” ื™ื›ื•ืœ ืœื”ื™ื•ืช ืกื™ืžืŸ ืœื”ื˜ื™ื” ื’ื–ืขื™ืช ืื• ืžื’ื“ืจื™ืช ื‘ืžื•ื“ืœ.
![ื—ืฉื™ื‘ื•ืช ืชื›ื•ื ื•ืช](../../../../9-Real-World/2-Debugging-ML-Models/images/9-features-influence.png)
ื”ืฉืชืžืฉื• ื‘ืคืจืฉื ื•ืช ื›ืืฉืจ ืืชื ืฆืจื™ื›ื™ื:
* ืœืงื‘ื•ืข ืขื“ ื›ืžื” ื ื™ืชืŸ ืœืกืžื•ืš ืขืœ ืชื—ื–ื™ื•ืช ืžืขืจื›ืช ื”-AI ืฉืœื›ื ืขืœ ื™ื“ื™ ื”ื‘ื ืช ืื™ืœื• ืชื›ื•ื ื•ืช ื”ืŸ ื”ื—ืฉื•ื‘ื•ืช ื‘ื™ื•ืชืจ ืขื‘ื•ืจ ื”ืชื—ื–ื™ื•ืช.
* ืœื’ืฉืช ืœืื™ืชื•ืจ ืฉื’ื™ืื•ืช ื‘ืžื•ื“ืœ ืฉืœื›ื ืขืœ ื™ื“ื™ ื”ื‘ื ืชื• ืชื—ื™ืœื” ื•ื–ื™ื”ื•ื™ ื”ืื ื”ืžื•ื“ืœ ืžืฉืชืžืฉ ื‘ืชื›ื•ื ื•ืช ื‘ืจื™ืื•ืช ืื• ืจืง ื‘ืงื•ืจืœืฆื™ื•ืช ืฉื’ื•ื™ื•ืช.
* ืœื—ืฉื•ืฃ ืžืงื•ืจื•ืช ืคื•ื˜ื ืฆื™ืืœื™ื™ื ืฉืœ ืื™ ื”ื•ื’ื ื•ืช ืขืœ ื™ื“ื™ ื”ื‘ื ืช ื”ืื ื”ืžื•ื“ืœ ืžื‘ืกืก ืชื—ื–ื™ื•ืช ืขืœ ืชื›ื•ื ื•ืช ืจื’ื™ืฉื•ืช ืื• ืขืœ ืชื›ื•ื ื•ืช ืฉืžืงื•ืฉืจื•ืช ืžืื•ื“ ืืœื™ื”ืŸ.
* ืœื‘ื ื•ืช ืืžื•ืŸ ืžืฉืชืžืฉ ื‘ื”ื—ืœื˜ื•ืช ื”ืžื•ื“ืœ ืฉืœื›ื ืขืœ ื™ื“ื™ ื™ืฆื™ืจืช ื”ืกื‘ืจื™ื ืžืงื•ืžื™ื™ื ืœื”ืžื—ืฉืช ื”ืชื•ืฆืื•ืช ืฉืœื”ื.
* ืœื”ืฉืœื™ื ื‘ื™ืงื•ืจืช ืจื’ื•ืœื˜ื•ืจื™ืช ืฉืœ ืžืขืจื›ืช AI ื›ื“ื™ ืœืืžืช ืžื•ื“ืœื™ื ื•ืœืคืงื— ืขืœ ื”ื”ืฉืคืขื” ืฉืœ ื”ื—ืœื˜ื•ืช ื”ืžื•ื“ืœ ืขืœ ื‘ื ื™ ืื“ื.
## ืกื™ื›ื•ื
ื›ืœ ืจื›ื™ื‘ื™ ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI ื”ื ื›ืœื™ื ืžืขืฉื™ื™ื ืฉืขื•ื–ืจื™ื ืœื›ื ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืฉืคื•ื’ืขื™ื ืคื—ื•ืช ื•ืžืขื•ืจืจื™ื ื™ื•ืชืจ ืืžื•ืŸ ื‘ื—ื‘ืจื”.
- **ื™ื™ืฆื•ื’ ื™ืชืจ ืื• ื—ืกืจ**. ื”ืจืขื™ื•ืŸ ื”ื•ื ืฉืงื‘ื•ืฆื” ืžืกื•ื™ืžืช ืื™ื ื” ื ืจืื™ืช ื‘ืžืงืฆื•ืข ืžืกื•ื™ื, ื•ื›ืœ ืฉื™ืจื•ืช ืื• ืคื•ื ืงืฆื™ื” ืฉืžืžืฉื™ื›ื™ื ืœืงื“ื ื–ืืช ืชื•ืจืžื™ื ืœื ื–ืง.
### ืœื•ื— ืžื—ื•ื•ื ื™ื ืฉืœ Azure RAI
[ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ Azure RAI](https://learn.microsoft.com/en-us/azure/machine-learning/concept-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) ืžื‘ื•ืกืก ืขืœ ื›ืœื™ื ื‘ืงื•ื“ ืคืชื•ื— ืฉืคื•ืชื—ื• ืขืœ ื™ื“ื™ ืžื•ืกื“ื•ืช ืืงื“ืžื™ื™ื ื•ืืจื’ื•ื ื™ื ืžื•ื‘ื™ืœื™ื, ื›ื•ืœืœ Microsoft. ื›ืœื™ื ืืœื• ื—ื™ื•ื ื™ื™ื ืœืžื“ืขื ื™ ื ืชื•ื ื™ื ื•ืžืคืชื—ื™ AI ื›ื“ื™ ืœื”ื‘ื™ืŸ ื˜ื•ื‘ ื™ื•ืชืจ ืืช ื”ืชื ื”ื’ื•ืช ื”ืžื•ื“ืœ, ืœื’ืœื•ืช ื•ืœืชืงืŸ ื‘ืขื™ื•ืช ืœื ืจืฆื•ื™ื•ืช ื‘ืžื•ื“ืœื™ื ืฉืœ AI.
- ืœืžื“ื• ื›ื™ืฆื“ ืœื”ืฉืชืžืฉ ื‘ืจื›ื™ื‘ื™ื ื”ืฉื•ื ื™ื ืขืœ ื™ื“ื™ ืขื™ื•ืŸ ื‘[ืชื™ืขื•ื“ ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI.](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu)
- ืขื™ื™ื ื• ื‘ื›ืžื” [ืžื—ื‘ืจื•ืช ืœื“ื•ื’ืžื” ืฉืœ ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks) ืœืฆื•ืจืš ืื™ืชื•ืจ ื‘ืขื™ื•ืช ื‘ืชืจื—ื™ืฉื™ื ืฉืœ AI ืื—ืจืื™ ื‘-Azure Machine Learning.
---
## ๐Ÿš€ ืืชื’ืจ
ื›ื“ื™ ืœืžื ื•ืข ืžืจืืฉ ื”ื˜ื™ื” ืกื˜ื˜ื™ืกื˜ื™ืช ืื• ื”ื˜ื™ื” ื‘ื ืชื•ื ื™ื, ืขืœื™ื ื•:
- ืœื”ื‘ื˜ื™ื— ืžื’ื•ื•ืŸ ืจืงืขื™ื ื•ื ืงื•ื“ื•ืช ืžื‘ื˜ ื‘ืงืจื‘ ื”ืื ืฉื™ื ืฉืขื•ื‘ื“ื™ื ืขืœ ื”ืžืขืจื›ื•ืช
- ืœื”ืฉืงื™ืข ื‘ืžืื’ืจื™ ื ืชื•ื ื™ื ืฉืžืฉืงืคื™ื ืืช ื”ืžื’ื•ื•ืŸ ื‘ื—ื‘ืจื” ืฉืœื ื•
- ืœืคืชื— ืฉื™ื˜ื•ืช ื˜ื•ื‘ื•ืช ื™ื•ืชืจ ืœื–ื™ื”ื•ื™ ื•ืชื™ืงื•ืŸ ื”ื˜ื™ื” ื›ืืฉืจ ื”ื™ื ืžืชืจื—ืฉืช
ื—ืฉื‘ื• ืขืœ ืชืจื—ื™ืฉื™ื ืืžื™ืชื™ื™ื ืฉื‘ื”ื ืื™-ืฆื“ืง ื ื™ื›ืจ ื‘ื‘ื ื™ื™ืช ืžื•ื“ืœื™ื ื•ื‘ืฉื™ืžื•ืฉ ื‘ื”ื. ืžื” ืขื•ื“ ื›ื“ืื™ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ?
## [ืฉืืœื•ืŸ ืœืื—ืจ ื”ื”ืจืฆืื”](https://ff-quizzes.netlify.app/en/ml/)
## ืกืงื™ืจื” ื•ืœื™ืžื•ื“ ืขืฆืžื™
ื‘ืฉื™ืขื•ืจ ื–ื”, ืœืžื“ืชื ื›ืžื” ืžื”ื›ืœื™ื ื”ืžืขืฉื™ื™ื ืœืฉื™ืœื•ื‘ AI ืื—ืจืื™ ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”.
ืฆืคื• ื‘ืกื“ื ื” ื–ื• ื›ื“ื™ ืœื”ืขืžื™ืง ื‘ื ื•ืฉืื™ื:
- ืœื•ื— ืžื—ื•ื•ื ื™ื ืฉืœ AI ืื—ืจืื™: ืคืชืจื•ืŸ ื›ื•ืœืœ ืœื™ื™ืฉื•ื RAI ื‘ืคื•ืขืœ ืžืืช Besmira Nushi ื•-Mehrnoosh Sameki
[![ืœื•ื— ืžื—ื•ื•ื ื™ื ืฉืœ AI ืื—ืจืื™: ืคืชืจื•ืŸ ื›ื•ืœืœ ืœื™ื™ืฉื•ื RAI ื‘ืคื•ืขืœ](https://img.youtube.com/vi/f1oaDNl3djg/0.jpg)](https://www.youtube.com/watch?v=f1oaDNl3djg "ืœื•ื— ืžื—ื•ื•ื ื™ื ืฉืœ AI ืื—ืจืื™: ืคืชืจื•ืŸ ื›ื•ืœืœ ืœื™ื™ืฉื•ื RAI ื‘ืคื•ืขืœ")
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ: ืœื•ื— ืžื—ื•ื•ื ื™ื ืฉืœ AI ืื—ืจืื™: ืคืชืจื•ืŸ ื›ื•ืœืœ ืœื™ื™ืฉื•ื RAI ื‘ืคื•ืขืœ ืžืืช Besmira Nushi ื•-Mehrnoosh Sameki
ืขื™ื™ื ื• ื‘ื—ื•ืžืจื™ื ื”ื‘ืื™ื ื›ื“ื™ ืœืœืžื•ื“ ืขื•ื“ ืขืœ AI ืื—ืจืื™ ื•ื›ื™ืฆื“ ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืืžื™ื ื™ื ื™ื•ืชืจ:
- ื›ืœื™ื ืฉืœ Microsoft ืœืœื•ื— ืžื—ื•ื•ื ื™ื ืฉืœ RAI ืœืฆื•ืจืš ืื™ืชื•ืจ ื‘ืขื™ื•ืช ื‘ืžื•ื“ืœื™ื ืฉืœ ML: [ืžืฉืื‘ื™ ื›ืœื™ื ืœ-AI ืื—ืจืื™](https://aka.ms/rai-dashboard)
- ื—ืงืจื• ืืช ืขืจื›ืช ื”ื›ืœื™ื ืœ-AI ืื—ืจืื™: [Github](https://github.com/microsoft/responsible-ai-toolbox)
- ืžืจื›ื– ื”ืžืฉืื‘ื™ื ืฉืœ Microsoft ืœ-AI ืื—ืจืื™: [ืžืฉืื‘ื™ AI ืื—ืจืื™ โ€“ Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4)
- ืงื‘ื•ืฆืช ื”ืžื—ืงืจ FATE ืฉืœ Microsoft: [FATE: ืฆื“ืง, ืื—ืจื™ื•ืช, ืฉืงื™ืคื•ืช ื•ืืชื™ืงื” ื‘-AI - Microsoft Research](https://www.microsoft.com/research/theme/fate/)
## ืžืฉื™ืžื”
[ื—ืงืจื• ืืช ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI](assignment.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "91c6a180ef08e20cc15acfd2d6d6e164",
"translation_date": "2025-09-05T19:29:20+00:00",
"source_file": "9-Real-World/2-Debugging-ML-Models/assignment.md",
"language_code": "he"
}
-->
# ื—ืงื•ืจ ืืช ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ AI ืื—ืจืื™ (RAI)
## ื”ื•ืจืื•ืช
ื‘ืฉื™ืขื•ืจ ื–ื” ืœืžื“ืช ืขืœ ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI, ืื•ืกืฃ ืฉืœ ืจื›ื™ื‘ื™ื ื”ืžื‘ื•ืกืกื™ื ืขืœ ื›ืœื™ื "ืงื•ื“ ืคืชื•ื—" ืฉื ื•ืขื“ื• ืœืขื–ื•ืจ ืœืžื“ืขื ื™ ื ืชื•ื ื™ื ืœื‘ืฆืข ื ื™ืชื•ื— ืฉื’ื™ืื•ืช, ื—ืงืจ ื ืชื•ื ื™ื, ื”ืขืจื›ืช ื”ื•ื’ื ื•ืช, ืคืจืฉื ื•ืช ืžื•ื“ืœื™ื, ื”ืขืจื›ื•ืช ื ื’ื“/ืžื”-ืื ื•ื ื™ืชื•ื— ืกื™ื‘ืชื™ ื‘ืžืขืจื›ื•ืช AI. ืขื‘ื•ืจ ืžืฉื™ืžื” ื–ื•, ื—ืงื•ืจ ื›ืžื” ืžื“ื•ื’ืžืื•ืช [ืžื—ื‘ืจื•ืช](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks) ืฉืœ ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI ื•ื“ื•ื•ื— ืขืœ ืžืžืฆืื™ืš ื‘ืžืืžืจ ืื• ืžืฆื’ืช.
## ืงืจื™ื˜ืจื™ื•ื ื™ื ืœื”ืขืจื›ื”
| ืงืจื™ื˜ืจื™ื•ืŸ | ืžืฆื˜ื™ื™ืŸ | ืžืกืคืง | ื“ื•ืจืฉ ืฉื™ืคื•ืจ |
| -------- | --------- | -------- | ----------------- |
| | ืžืืžืจ ืื• ืžืฆื’ืช PowerPoint ืžื•ืฆื’ื™ื, ื“ื ื™ื ื‘ืจื›ื™ื‘ื™ ืœื•ื— ื”ืžื—ื•ื•ื ื™ื ืฉืœ RAI, ื‘ืžื—ื‘ืจืช ืฉื”ื•ืจืฆื” ื•ื‘ืžืกืงื ื•ืช ืฉื”ื•ืกืงื• ืžื”ืจืฆืชื” | ืžืืžืจ ืžื•ืฆื’ ืœืœื ืžืกืงื ื•ืช | ืœื ืžื•ืฆื’ ืžืืžืจ |
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,32 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "5e069a0ac02a9606a69946c2b3c574a9",
"translation_date": "2025-09-05T19:20:43+00:00",
"source_file": "9-Real-World/README.md",
"language_code": "he"
}
-->
# ืคื•ืกื˜ืกืงืจื™ืคื˜: ื™ื™ืฉื•ืžื™ื ื‘ืขื•ืœื ื”ืืžื™ืชื™ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช
ื‘ื—ืœืง ื–ื” ืฉืœ ื”ืชื•ื›ื ื™ืช, ืชื™ื—ืฉืคื• ืœื›ืžื” ื™ื™ืฉื•ืžื™ื ื‘ืขื•ืœื ื”ืืžื™ืชื™ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช. ื—ื™ืคืฉื ื• ื‘ืจื—ื‘ื™ ื”ืื™ื ื˜ืจื ื˜ ืžืืžืจื™ื ื•ืžื—ืงืจื™ื ืขืœ ื™ื™ืฉื•ืžื™ื ืฉื”ืฉืชืžืฉื• ื‘ืืกื˜ืจื˜ื’ื™ื•ืช ืืœื•, ืชื•ืš ื”ื™ืžื ืขื•ืช ืžืจืฉืชื•ืช ื ื•ื™ืจื•ื ื™ื, ืœืžื™ื“ื” ืขืžื•ืงื” ื•ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช ื›ื›ืœ ื”ืืคืฉืจ. ืชืœืžื“ื• ื›ื™ืฆื“ ืœืžื™ื“ืช ืžื›ื•ื ื” ืžืฉืžืฉืช ื‘ืžืขืจื›ื•ืช ืขืกืงื™ื•ืช, ื™ื™ืฉื•ืžื™ื ืืงื•ืœื•ื’ื™ื™ื, ืคื™ื ื ืกื™ื, ืืžื ื•ืช ื•ืชืจื‘ื•ืช, ื•ืขื•ื“.
![ืฉื—ืžื˜](../../../9-Real-World/images/chess.jpg)
> ืฆื™ืœื•ื ืขืœ ื™ื“ื™ <a href="https://unsplash.com/@childeye?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">ืืœืงืกื™ืก ืคื•ื‘ื˜</a> ื‘-<a href="https://unsplash.com/s/photos/artificial-intelligence?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText">Unsplash</a>
## ืฉื™ืขื•ืจ
1. [ื™ื™ืฉื•ืžื™ื ื‘ืขื•ืœื ื”ืืžื™ืชื™ ืขื‘ื•ืจ ืœืžื™ื“ืช ืžื›ื•ื ื”](1-Applications/README.md)
2. [ื ื™ืคื•ื™ ืฉื’ื™ืื•ืช ื‘ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืืžืฆืขื•ืช ืจื›ื™ื‘ื™ ืœื•ื— ืžื—ื•ื•ื ื™ื ืฉืœ AI ืื—ืจืื™](2-Debugging-ML-Models/README.md)
## ืงืจื“ื™ื˜ื™ื
"ื™ื™ืฉื•ืžื™ื ื‘ืขื•ืœื ื”ืืžื™ืชื™" ื ื›ืชื‘ ืขืœ ื™ื“ื™ ืฆื•ื•ืช ืื ืฉื™ื, ื›ื•ืœืœ [ื’'ืŸ ืœื•ืคืจ](https://twitter.com/jenlooper) ื•-[ืื•ืจื ืœื” ืืœื˜ื•ื ื™ืืŸ](https://twitter.com/ornelladotcom).
"ื ื™ืคื•ื™ ืฉื’ื™ืื•ืช ื‘ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืืžืฆืขื•ืช ืจื›ื™ื‘ื™ ืœื•ื— ืžื—ื•ื•ื ื™ื ืฉืœ AI ืื—ืจืื™" ื ื›ืชื‘ ืขืœ ื™ื“ื™ [ืจื•ืช ื™ืขืงื•ื‘ื•](https://twitter.com/ruthieyakubu)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,23 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "c06b12caf3c901eb3156e3dd5b0aea56",
"translation_date": "2025-09-05T18:36:46+00:00",
"source_file": "CODE_OF_CONDUCT.md",
"language_code": "he"
}
-->
# ืงื•ื“ ื”ื”ืชื ื”ื’ื•ืช ืฉืœ ืงื•ื“ ืคืชื•ื— ืฉืœ ืžื™ืงืจื•ืกื•ืคื˜
ื”ืคืจื•ื™ืงื˜ ื”ื–ื” ืื™ืžืฅ ืืช [ืงื•ื“ ื”ื”ืชื ื”ื’ื•ืช ืฉืœ ืงื•ื“ ืคืชื•ื— ืฉืœ ืžื™ืงืจื•ืกื•ืคื˜](https://opensource.microsoft.com/codeofconduct/).
ืžืฉืื‘ื™ื:
- [ืงื•ื“ ื”ื”ืชื ื”ื’ื•ืช ืฉืœ ืงื•ื“ ืคืชื•ื— ืฉืœ ืžื™ืงืจื•ืกื•ืคื˜](https://opensource.microsoft.com/codeofconduct/)
- [ืฉืืœื•ืช ื ืคื•ืฆื•ืช ืขืœ ืงื•ื“ ื”ื”ืชื ื”ื’ื•ืช ืฉืœ ืžื™ืงืจื•ืกื•ืคื˜](https://opensource.microsoft.com/codeofconduct/faq/)
- ืฆืจื• ืงืฉืจ ืขื [opencode@microsoft.com](mailto:opencode@microsoft.com) ืœืฉืืœื•ืช ืื• ื—ืฉืฉื•ืช
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,25 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "977ec5266dfd78ad1ce2bd8d46fccbda",
"translation_date": "2025-09-05T18:34:36+00:00",
"source_file": "CONTRIBUTING.md",
"language_code": "he"
}
-->
# ืชืจื•ืžื”
ื”ืคืจื•ื™ืงื˜ ื”ื–ื” ืžืงื‘ืœ ื‘ื‘ืจื›ื” ืชืจื•ืžื•ืช ื•ื”ืฆืขื•ืช. ืจื•ื‘ ื”ืชืจื•ืžื•ืช ื“ื•ืจืฉื•ืช ืžืžืš ืœื”ืกื›ื™ื ืœื”ืกื›ื ืจื™ืฉื™ื•ืŸ ืชื•ืจื (CLA) ืฉืžืฆื”ื™ืจ ืฉื™ืฉ ืœืš ืืช ื”ื–ื›ื•ืช, ื•ืืชื” ืื›ืŸ ืžืขื ื™ืง ืœื ื• ืืช ื”ื–ื›ื•ื™ื•ืช ืœื”ืฉืชืžืฉ ื‘ืชืจื•ืžืชืš. ืœืคืจื˜ื™ื ื ื•ืกืคื™ื, ื‘ืงืจ ื‘ื›ืชื•ื‘ืช https://cla.microsoft.com.
> ื—ืฉื•ื‘: ื‘ืขืช ืชืจื’ื•ื ื˜ืงืกื˜ ื‘ืžืื’ืจ ื”ื–ื”, ืื ื ื•ื•ื“ื ืฉืื™ื ืš ืžืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžื›ื•ื ื”. ืื ื• ื ื•ื•ื“ื ืืช ื”ืชืจื’ื•ืžื™ื ื“ืจืš ื”ืงื”ื™ืœื”, ืœื›ืŸ ืื ื ื”ืชื ื“ื‘ ืœืชืจื’ื•ื ืจืง ื‘ืฉืคื•ืช ืฉื‘ื”ืŸ ืืชื” ืฉื•ืœื˜ ื”ื™ื˜ื‘.
ื›ืืฉืจ ืืชื” ืžื’ื™ืฉ ื‘ืงืฉืช ืžืฉื™ื›ื” (pull request), CLA-bot ื™ืงื‘ืข ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™ ืื ืขืœื™ืš ืœืกืคืง CLA ื•ื™ืขืฆื‘ ืืช ื”ื‘ืงืฉื” ื‘ื”ืชืื (ืœื“ื•ื’ืžื”, ืชื•ื•ื™ืช, ืชื’ื•ื‘ื”). ืคืฉื•ื˜ ืขืงื•ื‘ ืื—ืจ ื”ื”ื•ืจืื•ืช ืฉืกื•ืคืงื• ืขืœ ื™ื“ื™ ื”ื‘ื•ื˜. ืชืฆื˜ืจืš ืœืขืฉื•ืช ื–ืืช ืจืง ืคืขื ืื—ืช ื‘ื›ืœ ื”ืžืื’ืจื™ื ืฉืžืฉืชืžืฉื™ื ื‘-CLA ืฉืœื ื•.
ื”ืคืจื•ื™ืงื˜ ื”ื–ื” ืื™ืžืฅ ืืช [ืงื•ื“ ื”ื”ืชื ื”ื’ื•ืช ืฉืœ ืงื•ื“ ืคืชื•ื— ืฉืœ Microsoft](https://opensource.microsoft.com/codeofconduct/).
ืœืžื™ื“ืข ื ื•ืกืฃ, ืจืื” ืืช [ืฉืืœื•ืช ื ืคื•ืฆื•ืช ืขืœ ืงื•ื“ ื”ื”ืชื ื”ื’ื•ืช](https://opensource.microsoft.com/codeofconduct/faq/)
ืื• ืฆื•ืจ ืงืฉืจ ืขื [opencode@microsoft.com](mailto:opencode@microsoft.com) ืœื›ืœ ืฉืืœื” ืื• ื”ืขืจื” ื ื•ืกืคืช.
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,178 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "612aef7a03204260e940131b09691977",
"translation_date": "2025-09-05T18:29:55+00:00",
"source_file": "README.md",
"language_code": "he"
}
-->
[![GitHub license](https://img.shields.io/github/license/microsoft/ML-For-Beginners.svg)](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE)
[![GitHub contributors](https://img.shields.io/github/contributors/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/)
[![GitHub issues](https://img.shields.io/github/issues/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/issues/)
[![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/pulls/)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com)
[![GitHub watchers](https://img.shields.io/github/watchers/microsoft/ML-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/ML-For-Beginners/watchers/)
[![GitHub forks](https://img.shields.io/github/forks/microsoft/ML-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/ML-For-Beginners/network/)
[![GitHub stars](https://img.shields.io/github/stars/microsoft/ML-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/ML-For-Beginners/stargazers/)
### ๐ŸŒ ืชืžื™ื›ื” ืจื‘-ืฉืคืชื™ืช
#### ื ืชืžืš ื‘ืืžืฆืขื•ืช GitHub Action (ืื•ื˜ื•ืžื˜ื™ ื•ืชืžื™ื“ ืžืขื•ื“ื›ืŸ)
[French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](./README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md)
#### ื”ืฆื˜ืจืคื• ืœืงื”ื™ืœื”
[![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr)
# ืœืžื™ื“ืช ืžื›ื•ื ื” ืœืžืชื—ื™ืœื™ื - ืชื•ื›ื ื™ืช ืœื™ืžื•ื“ื™ื
> ๐ŸŒ ืžืกืข ืžืกื‘ื™ื‘ ืœืขื•ืœื ืชื•ืš ื—ืงืจ ืœืžื™ื“ืช ืžื›ื•ื ื” ื“ืจืš ืชืจื‘ื•ื™ื•ืช ืขื•ืœืžื™ื•ืช ๐ŸŒ
ืฆื•ื•ืช Cloud Advocates ื‘ืžื™ืงืจื•ืกื•ืคื˜ ืฉืžื— ืœื”ืฆื™ืข ืชื•ื›ื ื™ืช ืœื™ืžื•ื“ื™ื ื‘ืช 12 ืฉื‘ื•ืขื•ืช ื•-26 ืฉื™ืขื•ืจื™ื ื‘ื ื•ืฉื **ืœืžื™ื“ืช ืžื›ื•ื ื”**. ื‘ืชื•ื›ื ื™ืช ื–ื• ืชืœืžื“ื• ืขืœ ืžื” ืฉืžื›ื•ื ื” ืœืขื™ืชื™ื **ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช**, ืชื•ืš ืฉื™ืžื•ืฉ ื‘ืขื™ืงืจ ื‘ืกืคืจื™ื™ืช Scikit-learn ื•ื”ื™ืžื ืขื•ืช ืžืœืžื™ื“ื” ืขืžื•ืงื”, ืฉืžื›ื•ืกื” ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ืฉืœื ื• [AI ืœืžืชื—ื™ืœื™ื](https://aka.ms/ai4beginners). ื ื™ืชืŸ ืœืฉืœื‘ ืืช ื”ืฉื™ืขื•ืจื™ื ื”ืœืœื• ืขื ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ืฉืœื ื• ['ืžื“ืขื™ ื”ื ืชื•ื ื™ื ืœืžืชื—ื™ืœื™ื'](https://aka.ms/ds4beginners), ื’ื ื›ืŸ!
ืฆืื• ืื™ืชื ื• ืœืžืกืข ืžืกื‘ื™ื‘ ืœืขื•ืœื ืชื•ืš ื™ื™ืฉื•ื ื˜ื›ื ื™ืงื•ืช ืงืœืืกื™ื•ืช ืขืœ ื ืชื•ื ื™ื ืžืื–ื•ืจื™ื ืฉื•ื ื™ื ื‘ืขื•ืœื. ื›ืœ ืฉื™ืขื•ืจ ื›ื•ืœืœ ืฉืืœื•ื ื™ื ืœืคื ื™ ื•ืื—ืจื™ ื”ืฉื™ืขื•ืจ, ื”ื•ืจืื•ืช ื›ืชื•ื‘ื•ืช ืœื”ืฉืœืžืช ื”ืฉื™ืขื•ืจ, ืคืชืจื•ืŸ, ืžืฉื™ืžื” ื•ืขื•ื“. ื”ืคื“ื’ื•ื’ื™ื” ืžื‘ื•ืกืกืช ื”ืคืจื•ื™ืงื˜ื™ื ืฉืœื ื• ืžืืคืฉืจืช ืœื›ื ืœืœืžื•ื“ ืชื•ืš ื›ื“ื™ ื‘ื ื™ื™ื”, ืฉื™ื˜ื” ืžื•ื›ื—ืช ืœื”ื˜ืžืขืช ืžื™ื•ืžื ื•ื™ื•ืช ื—ื“ืฉื•ืช.
**โœ๏ธ ืชื•ื“ื” ืจื‘ื” ืœืžื—ื‘ืจื™ื ืฉืœื ื•** ื’'ืŸ ืœื•ืคืจ, ืกื˜ื™ื‘ืŸ ื”ืื•ื•ืœ, ืคืจื ืฆ'ืกืงื” ืœื–ืืจื™, ื˜ื•ืžื•ืžื™ ืื™ืžื•ืจื”, ืงืกื™ ื‘ืจื‘ื™ื•, ื“ืžื™ื˜ืจื™ ืกื•ืฉื ื™ืงื•ื‘, ื›ืจื™ืก ื ื•ืจื™ื ื’, ืื ื™ืจื‘ืŸ ืžื•ืงืจื’'ื™, ืื•ืจื ืœื” ืืœื˜ื•ื ื™ืืŸ, ืจื•ืช ื™ืขืงื•ื‘ื• ื•ืื™ื™ืžื™ ื‘ื•ื™ื“
**๐ŸŽจ ืชื•ื“ื” ื’ื ืœืžืื™ื™ืจื™ื ืฉืœื ื•** ื˜ื•ืžื•ืžื™ ืื™ืžื•ืจื”, ื“ืืกืื ื™ ืžื“ื™ืคืืœื™ ื•ื’'ืŸ ืœื•ืคืจ
**๐Ÿ™ ืชื•ื“ื” ืžื™ื•ื—ื“ืช ๐Ÿ™ ืœืžื—ื‘ืจื™, ืžื‘ืงืจื™ ื•ืชื•ืจืžื™ ื”ืชื•ื›ืŸ ืžืงืจื‘ ืฉื’ืจื™ืจื™ ื”ืกื˜ื•ื“ื ื˜ื™ื ืฉืœ ืžื™ืงืจื•ืกื•ืคื˜**, ื‘ืžื™ื•ื—ื“ ืจื™ืฉื™ื˜ ื“ื’ืœื™, ืžื•ื—ืžื“ ืกืืงื™ื‘ ื—ืืŸ ืื™ื ืืŸ, ืจื•ื”ืืŸ ืจืื’', ืืœื›ืกื ื“ืจื• ืคื˜ืจืกืงื•, ืื‘ื™ืฉืง ื’'ื™ื™ืกื•ื•ืืœ, ื ืื•ืจื™ืŸ ื˜ื‘ืืกื•ื, ื™ื•ืืŸ ืกืžื•ืื™ืœื” ื•ืกื ื™ื’ื“ื” ืื’ืจื•ื•ืœ
**๐Ÿคฉ ืชื•ื“ื” ื ื•ืกืคืช ืœืฉื’ืจื™ืจื™ ื”ืกื˜ื•ื“ื ื˜ื™ื ืฉืœ ืžื™ืงืจื•ืกื•ืคื˜ ืืจื™ืง ื•ื•ืื ื’'ืื•, ื’'ืกืœื™ืŸ ืกื•ื ื“ื™ ื•ื•ื™ื“ื•ืฉื™ ื’ื•ืคื˜ื” ืขืœ ืฉื™ืขื•ืจื™ R ืฉืœื ื•!**
# ื”ืชื—ืœืช ื”ืขื‘ื•ื“ื”
ื‘ืฆืขื• ืืช ื”ืฉืœื‘ื™ื ื”ื‘ืื™ื:
1. **ืคื™ืฆื•ืœ ื”ืจื™ืคื•ื–ื™ื˜ื•ืจื™**: ืœื—ืฆื• ืขืœ ื›ืคืชื•ืจ "Fork" ื‘ืคื™ื ื” ื”ื™ืžื ื™ืช ื”ืขืœื™ื•ื ื” ืฉืœ ื”ื“ืฃ.
2. **ืฉื›ืคื•ืœ ื”ืจื™ืคื•ื–ื™ื˜ื•ืจื™**: `git clone https://github.com/microsoft/ML-For-Beginners.git`
> [ืžืฆืื• ืืช ื›ืœ ื”ืžืฉืื‘ื™ื ื”ื ื•ืกืคื™ื ืœืงื•ืจืก ื–ื” ื‘ืื•ืกืฃ Microsoft Learn ืฉืœื ื•](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
**[ืกื˜ื•ื“ื ื˜ื™ื](https://aka.ms/student-page)**, ื›ื“ื™ ืœื”ืฉืชืžืฉ ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ื–ื•, ืคืฆืœื• ืืช ื”ืจื™ืคื•ื–ื™ื˜ื•ืจื™ ื›ื•ืœื• ืœื—ืฉื‘ื•ืŸ GitHub ืฉืœื›ื ื•ื”ืฉืœื™ืžื• ืืช ื”ืชืจื’ื™ืœื™ื ื‘ืขืฆืžื›ื ืื• ื‘ืงื‘ื•ืฆื”:
- ื”ืชื—ื™ืœื• ืขื ืฉืืœื•ืŸ ืœืคื ื™ ื”ืฉื™ืขื•ืจ.
- ืงืจืื• ืืช ื”ืฉื™ืขื•ืจ ื•ื”ืฉืœื™ืžื• ืืช ื”ืคืขื™ืœื•ื™ื•ืช, ืชื•ืš ืขืฆื™ืจื” ื•ื”ืจื”ื•ืจ ื‘ื›ืœ ื‘ื“ื™ืงืช ื™ื“ืข.
- ื ืกื• ืœื™ืฆื•ืจ ืืช ื”ืคืจื•ื™ืงื˜ื™ื ืขืœ ื™ื“ื™ ื”ื‘ื ืช ื”ืฉื™ืขื•ืจื™ื ื‘ืžืงื•ื ืœื”ืจื™ืฅ ืืช ืงื•ื“ ื”ืคืชืจื•ืŸ; ืขื ื–ืืช, ืงื•ื“ ื–ื” ื–ืžื™ืŸ ื‘ืชื™ืงื™ื•ืช `/solution` ื‘ื›ืœ ืฉื™ืขื•ืจ ืžื‘ื•ืกืก ืคืจื•ื™ืงื˜.
- ื‘ืฆืขื• ืืช ื”ืฉืืœื•ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ.
- ื”ืฉืœื™ืžื• ืืช ื”ืืชื’ืจ.
- ื”ืฉืœื™ืžื• ืืช ื”ืžืฉื™ืžื”.
- ืœืื—ืจ ื”ืฉืœืžืช ืงื‘ื•ืฆืช ืฉื™ืขื•ืจื™ื, ื‘ืงืจื• ื‘-[ืœื•ื— ื”ื“ื™ื•ื ื™ื](https://github.com/microsoft/ML-For-Beginners/discussions) ื•"ืœืžื“ื• ื‘ืงื•ืœ ืจื" ืขืœ ื™ื“ื™ ืžื™ืœื•ื™ ื˜ื•ืคืก PAT ื”ืžืชืื™ื. 'PAT' ื”ื•ื ื›ืœื™ ื”ืขืจื›ืช ื”ืชืงื“ืžื•ืช ืฉื”ื•ื ื˜ื•ืคืก ืฉืืชื ืžืžืœืื™ื ื›ื“ื™ ืœื”ืขืžื™ืง ืืช ื”ืœืžื™ื“ื” ืฉืœื›ื. ืชื•ื›ืœื• ื’ื ืœื”ื’ื™ื‘ ืœ-PATs ืื—ืจื™ื ื›ื“ื™ ืฉื ืœืžื“ ื™ื—ื“.
> ืœืœื™ืžื•ื“ ื ื•ืกืฃ, ืื ื• ืžืžืœื™ืฆื™ื ืœืขืงื•ื‘ ืื—ืจ [ืžื•ื“ื•ืœื™ื ื•ื ืชื™ื‘ื™ ืœื™ืžื•ื“ ืฉืœ Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott).
**ืžื•ืจื™ื**, [ื”ื•ืกืคื ื• ื›ืžื” ื”ืฆืขื•ืช](for-teachers.md) ื›ื™ืฆื“ ืœื”ืฉืชืžืฉ ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ื–ื•.
---
## ืกืจื˜ื•ื ื™ ื”ื“ืจื›ื”
ื—ืœืง ืžื”ืฉื™ืขื•ืจื™ื ื–ืžื™ื ื™ื ื›ืกืจื˜ื•ื ื™ื ืงืฆืจื™ื. ืชื•ื›ืœื• ืœืžืฆื•ื ืืช ื›ื•ืœื ื‘ืชื•ืš ื”ืฉื™ืขื•ืจื™ื, ืื• ื‘ืจืฉื™ืžืช ื”ื”ืฉืžืขื” [ML ืœืžืชื—ื™ืœื™ื ื‘ืขืจื•ืฅ YouTube ืฉืœ Microsoft Developer](https://aka.ms/ml-beginners-videos) ืขืœ ื™ื“ื™ ืœื—ื™ืฆื” ืขืœ ื”ืชืžื•ื ื” ืœืžื˜ื”.
[![ML for beginners banner](../../images/ml-for-beginners-video-banner.png)](https://aka.ms/ml-beginners-videos)
---
## ื”ื›ื™ืจื• ืืช ื”ืฆื•ื•ืช
[![Promo video](../../images/ml.gif)](https://youtu.be/Tj1XWrDSYJU)
**Gif ืžืืช** [Mohit Jaisal](https://linkedin.com/in/mohitjaisal)
> ๐ŸŽฅ ืœื—ืฆื• ืขืœ ื”ืชืžื•ื ื” ืœืžืขืœื” ืœืฆืคื™ื™ื” ื‘ืกืจื˜ื•ืŸ ืขืœ ื”ืคืจื•ื™ืงื˜ ื•ื”ืื ืฉื™ื ืฉื™ืฆืจื• ืื•ืชื•!
---
## ืคื“ื’ื•ื’ื™ื”
ื‘ื—ืจื ื• ืฉื ื™ ืขืงืจื•ื ื•ืช ืคื“ื’ื•ื’ื™ื™ื ื‘ืขืช ื‘ื ื™ื™ืช ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ื–ื•: ืœื”ื‘ื˜ื™ื— ืฉื”ื™ื ืžื‘ื•ืกืกืช **ืคืจื•ื™ืงื˜ื™ื ืžืขืฉื™ื™ื** ื•ืฉื›ื•ืœืœืช **ืฉืืœื•ื ื™ื ืชื›ื•ืคื™ื**. ื‘ื ื•ืกืฃ, ืœืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื™ืฉ **ื ื•ืฉื ืžืฉื•ืชืฃ** ืฉืžืขื ื™ืง ืœื” ืœื›ื™ื“ื•ืช.
ืขืœ ื™ื“ื™ ื”ื‘ื˜ื—ืช ื”ืชืืžืช ื”ืชื•ื›ืŸ ืœืคืจื•ื™ืงื˜ื™ื, ื”ืชื”ืœื™ืš ื ืขืฉื” ื™ื•ืชืจ ืžืจืชืง ืขื‘ื•ืจ ืกื˜ื•ื“ื ื˜ื™ื ื•ืฉื™ืžื•ืจ ื”ืžื•ืฉื’ื™ื ื™ื•ื’ื‘ืจ. ื‘ื ื•ืกืฃ, ืฉืืœื•ืŸ ื‘ืขืœ ืกื™ื›ื•ืŸ ื ืžื•ืš ืœืคื ื™ ื”ืฉื™ืขื•ืจ ืžื›ื•ื•ืŸ ืืช ื›ื•ื•ื ืช ื”ืกื˜ื•ื“ื ื˜ ืœืœืžื™ื“ืช ื”ื ื•ืฉื, ื‘ืขื•ื“ ืฉืฉืืœื•ืŸ ืฉื ื™ ืœืื—ืจ ื”ืฉื™ืขื•ืจ ืžื‘ื˜ื™ื— ืฉื™ืžื•ืจ ื ื•ืกืฃ. ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ื–ื• ืชื•ื›ื ื ื” ืœื”ื™ื•ืช ื’ืžื™ืฉื” ื•ืžื”ื ื” ื•ื ื™ืชืŸ ืœืงื—ืช ืื•ืชื” ื‘ืฉืœืžื•ืชื” ืื• ื‘ื—ืœืงื™ื. ื”ืคืจื•ื™ืงื˜ื™ื ืžืชื—ื™ืœื™ื ืงื˜ื ื™ื ื•ื”ื•ืคื›ื™ื ืžื•ืจื›ื‘ื™ื ื™ื•ืชืจ ืขื“ ืกื•ืฃ ืžื—ื–ื•ืจ 12 ื”ืฉื‘ื•ืขื•ืช. ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื›ื•ืœืœืช ื’ื ื ืกืคื— ืขืœ ื™ื™ืฉื•ืžื™ื ื‘ืขื•ืœื ื”ืืžื™ืชื™ ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”, ืฉื ื™ืชืŸ ืœื”ืฉืชืžืฉ ื‘ื• ื›ืงืจื“ื™ื˜ ื ื•ืกืฃ ืื• ื›ื‘ืกื™ืก ืœื“ื™ื•ืŸ.
> ืžืฆืื• ืืช [ืงื•ื“ ื”ื”ืชื ื”ื’ื•ืช ืฉืœื ื•](CODE_OF_CONDUCT.md), [ื”ื ื—ื™ื•ืช ืœืชืจื•ืžื”](CONTRIBUTING.md), ื•[ื”ื ื—ื™ื•ืช ืœืชืจื’ื•ื](TRANSLATIONS.md). ื ืฉืžื— ืœืงื‘ืœ ืืช ื”ืžืฉื•ื‘ ื”ื‘ื•ื ื” ืฉืœื›ื!
## ื›ืœ ืฉื™ืขื•ืจ ื›ื•ืœืœ
- ืกืงื™ืฆื•ืช ืื•ืคืฆื™ื•ื ืœื™ื•ืช
- ืกืจื˜ื•ืŸ ืžืฉืœื™ื ืื•ืคืฆื™ื•ื ืœื™
- ืกืจื˜ื•ืŸ ื”ื“ืจื›ื” (ื—ืœืง ืžื”ืฉื™ืขื•ืจื™ื ื‘ืœื‘ื“)
- [ืฉืืœื•ืŸ ื—ื™ืžื•ื ืœืคื ื™ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
- ืฉื™ืขื•ืจ ื›ืชื•ื‘
- ืขื‘ื•ืจ ืฉื™ืขื•ืจื™ื ืžื‘ื•ืกืกื™ ืคืจื•ื™ืงื˜, ืžื“ืจื™ื›ื™ื ืฉืœื‘-ืื—ืจ-ืฉืœื‘ ื›ื™ืฆื“ ืœื‘ื ื•ืช ืืช ื”ืคืจื•ื™ืงื˜
- ื‘ื“ื™ืงื•ืช ื™ื“ืข
- ืืชื’ืจ
- ืงืจื™ืื” ืžืฉืœื™ืžื”
- ืžืฉื™ืžื”
- [ืฉืืœื•ืŸ ืœืื—ืจ ื”ืฉื™ืขื•ืจ](https://ff-quizzes.netlify.app/en/ml/)
> **ื”ืขืจื” ืœื’ื‘ื™ ืฉืคื•ืช**: ืฉื™ืขื•ืจื™ื ืืœื• ื ื›ืชื‘ื• ื‘ืขื™ืงืจ ื‘-Python, ืืš ืจื‘ื™ื ื–ืžื™ื ื™ื ื’ื ื‘-R. ื›ื“ื™ ืœื”ืฉืœื™ื ืฉื™ืขื•ืจ ื‘-R, ืขื‘ืจื• ืœืชื™ืงื™ื™ืช `/solution` ื•ื—ืคืฉื• ืฉื™ืขื•ืจื™ R. ื”ื ื›ื•ืœืœื™ื ืกื™ื•ืžืช .rmd ืฉืžื™ื™ืฆื’ืช ืงื•ื‘ืฅ **R Markdown** ืฉื ื™ืชืŸ ืœื”ื’ื“ื™ืจื• ื›ืงื•ื‘ืฅ ืฉืžืฉืœื‘ `ืงื˜ืขื™ ืงื•ื“` (ืฉืœ R ืื• ืฉืคื•ืช ืื—ืจื•ืช) ื•`ื›ื•ืชืจืช YAML` (ืฉืžื ื—ื” ื›ื™ืฆื“ ืœืขืฆื‘ ืคืœื˜ื™ื ื›ืžื• PDF) ื‘ืชื•ืš `ืžืกืžืš Markdown`. ื›ืš, ื”ื•ื ืžืฉืžืฉ ื›ืžืกื’ืจืช ื›ืชื™ื‘ื” ืœื“ื•ื’ืžื” ืขื‘ื•ืจ ืžื“ืขื™ ื”ื ืชื•ื ื™ื ืžื›ื™ื•ื•ืŸ ืฉื”ื•ื ืžืืคืฉืจ ืœื›ื ืœืฉืœื‘ ืืช ื”ืงื•ื“ ืฉืœื›ื, ืืช ื”ืคืœื˜ ืฉืœื• ื•ืืช ื”ืžื—ืฉื‘ื•ืช ืฉืœื›ื ืขืœ ื™ื“ื™ ื›ืชื™ื‘ืชื ื‘-Markdown. ื™ืชืจื” ืžื›ืš, ื ื™ืชืŸ ืœืขื‘ื“ ืžืกืžื›ื™ R Markdown ืœืคื•ืจืžื˜ื™ื ื›ืžื• PDF, HTML ืื• Word.
> **ื”ืขืจื” ืœื’ื‘ื™ ืฉืืœื•ื ื™ื**: ื›ืœ ื”ืฉืืœื•ื ื™ื ื ืžืฆืื™ื ื‘ืชื™ืงื™ื™ืช [Quiz App](../../quiz-app), ืขื‘ื•ืจ ืกืš ืฉืœ 52 ืฉืืœื•ื ื™ื ืขื ืฉืœื•ืฉ ืฉืืœื•ืช ื›ืœ ืื—ื“. ื”ื ืžืงื•ืฉืจื™ื ืžืชื•ืš ื”ืฉื™ืขื•ืจื™ื ืืš ื ื™ืชืŸ ืœื”ืจื™ืฅ ืืช ืืคืœื™ืงืฆื™ื™ืช ื”ืฉืืœื•ื ื™ื ื‘ืื•ืคืŸ ืžืงื•ืžื™; ืขืงื‘ื• ืื—ืจ ื”ื”ื•ืจืื•ืช ื‘ืชื™ืงื™ื™ืช `quiz-app` ื›ื“ื™ ืœืืจื— ืื•ืชื” ื‘ืื•ืคืŸ ืžืงื•ืžื™ ืื• ืœืคืจื•ืก ืื•ืชื” ื‘-Azure.
| ืžืกืคืจ ืฉื™ืขื•ืจ | ื ื•ืฉื | ืงื‘ื•ืฆืช ืฉื™ืขื•ืจื™ื | ืžื˜ืจื•ืช ืœืžื™ื“ื” | ืฉื™ืขื•ืจ ืžืงื•ืฉืจ | ืžื—ื‘ืจ |
| :-----------: | :------------------------------------------------------------: | :-------------------------------------------------: | ------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: |
| 01 | ืžื‘ื•ื ืœืœืžื™ื“ืช ืžื›ื•ื ื” | [ืžื‘ื•ื](1-Introduction/README.md) | ืœืžื“ื• ืืช ื”ืžื•ืฉื’ื™ื ื”ื‘ืกื™ืกื™ื™ื ืžืื—ื•ืจื™ ืœืžื™ื“ืช ืžื›ื•ื ื” | [ืฉื™ืขื•ืจ](1-Introduction/1-intro-to-ML/README.md) | ืžื•ื—ืžื“ |
| 02 | ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” | [ืžื‘ื•ื](1-Introduction/README.md) | ืœืžื“ื• ืืช ื”ื”ื™ืกื˜ื•ืจื™ื” ืฉืžืื—ื•ืจื™ ื”ืชื—ื•ื | [ืฉื™ืขื•ืจ](1-Introduction/2-history-of-ML/README.md) | ื’'ืŸ ื•ืื™ื™ืžื™ |
| 03 | ื”ื•ื’ื ื•ืช ื•ืœืžื™ื“ืช ืžื›ื•ื ื” | [ืžื‘ื•ื](1-Introduction/README.md) | ืžื”ื ื”ื ื•ืฉืื™ื ื”ืคื™ืœื•ืกื•ืคื™ื™ื ื”ื—ืฉื•ื‘ื™ื ืกื‘ื™ื‘ ื”ื•ื’ื ื•ืช ืฉืขืœ ื”ืกื˜ื•ื“ื ื˜ื™ื ืœืฉืงื•ืœ ื‘ืขืช ื‘ื ื™ื™ืช ื•ื™ื™ืฉื•ื ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”? | [ืฉื™ืขื•ืจ](1-Introduction/3-fairness/README.md) | ื˜ื•ืžื•ืžื™ |
| 04 | ื˜ื›ื ื™ืงื•ืช ืœืœืžื™ื“ืช ืžื›ื•ื ื” | [Introduction](1-Introduction/README.md) | ืื™ืœื• ื˜ื›ื ื™ืงื•ืช ื—ื•ืงืจื™ ืœืžื™ื“ืช ืžื›ื•ื ื” ืžืฉืชืžืฉื™ื ื›ื“ื™ ืœื‘ื ื•ืช ืžื•ื“ืœื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”? | [Lesson](1-Introduction/4-techniques-of-ML/README.md) | ื›ืจื™ืก ื•ื’'ืŸ |
| 05 | ืžื‘ื•ื ืœืจื’ืจืกื™ื” | [Regression](2-Regression/README.md) | ื”ืชื—ื™ืœื• ืขื Python ื•-Scikit-learn ืขื‘ื•ืจ ืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื” |
<ul><li>[Python](2-Regression/1-Tools/README.md)</li><li>[R](../../2-Regression/1-Tools/solution/R/lesson_1.html)</li></ul> | <ul><li>ื’'ืŸ</li><li>ืืจื™ืง ื•ื ื’'ืื•</li></ul> |
| 06 | ืžื—ื™ืจื™ ื“ืœืขืช ื‘ืฆืคื•ืŸ ืืžืจื™ืงื” ๐ŸŽƒ | [Regression](2-Regression/README.md) | ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ื•ื ื™ืงื•ื™ ื ืชื•ื ื™ื ื›ื”ื›ื ื” ืœืœืžื™ื“ืช ืžื›ื•ื ื” | <ul><li>[Python](2-Regression/2-Data/README.md)</li><li>[R](../../2-Regression/2-Data/solution/R/lesson_2.html)</li></ul> | <ul><li>ื’'ืŸ</li><li>ืืจื™ืง ื•ื ื’'ืื•</li></ul> |
| 07 | ืžื—ื™ืจื™ ื“ืœืขืช ื‘ืฆืคื•ืŸ ืืžืจื™ืงื” ๐ŸŽƒ | [Regression](2-Regression/README.md) | ื‘ื ื™ื™ืช ืžื•ื“ืœื™ื ืฉืœ ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช ื•ืคื•ืœื™ื ื•ืžื™ืช | <ul><li>[Python](2-Regression/3-Linear/README.md)</li><li>[R](../../2-Regression/3-Linear/solution/R/lesson_3.html)</li></ul> | <ul><li>ื’'ืŸ ื•ื“ืžื™ื˜ืจื™</li><li>ืืจื™ืง ื•ื ื’'ืื•</li></ul> |
| 08 | ืžื—ื™ืจื™ ื“ืœืขืช ื‘ืฆืคื•ืŸ ืืžืจื™ืงื” ๐ŸŽƒ | [Regression](2-Regression/README.md) | ื‘ื ื™ื™ืช ืžื•ื“ืœ ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช | <ul><li>[Python](2-Regression/4-Logistic/README.md) </li><li>[R](../../2-Regression/4-Logistic/solution/R/lesson_4.html)</li></ul> | <ul><li>ื’'ืŸ</li><li>ืืจื™ืง ื•ื ื’'ืื•</li></ul> |
| 09 | ืืคืœื™ืงืฆื™ื™ืช ื•ื•ื‘ ๐Ÿ”Œ | [Web App](3-Web-App/README.md) | ื‘ื ื™ื™ืช ืืคืœื™ืงืฆื™ื™ืช ื•ื•ื‘ ืœืฉื™ืžื•ืฉ ื‘ืžื•ื“ืœ ืฉืื•ืžืŸ | [Python](3-Web-App/1-Web-App/README.md) | ื’'ืŸ |
| 10 | ืžื‘ื•ื ืœืกื™ื•ื•ื’ | [Classification](4-Classification/README.md) | ื ื™ืงื•ื™, ื”ื›ื ื” ื•ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื”ื ืชื•ื ื™ื; ืžื‘ื•ื ืœืกื™ื•ื•ื’ | <ul><li> [Python](4-Classification/1-Introduction/README.md) </li><li>[R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) | <ul><li>ื’'ืŸ ื•ืงืืกื™</li><li>ืืจื™ืง ื•ื ื’'ืื•</li></ul> |
| 11 | ืžื˜ื‘ื—ื™ื ืืกื™ืืชื™ื™ื ื•ื”ื•ื“ื™ื™ื ื˜ืขื™ืžื™ื ๐Ÿœ | [Classification](4-Classification/README.md) | ืžื‘ื•ื ืœืžืกื•ื•ื’ื™ื | <ul><li> [Python](4-Classification/2-Classifiers-1/README.md)</li><li>[R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | <ul><li>ื’'ืŸ ื•ืงืืกื™</li><li>ืืจื™ืง ื•ื ื’'ืื•</li></ul> |
| 12 | ืžื˜ื‘ื—ื™ื ืืกื™ืืชื™ื™ื ื•ื”ื•ื“ื™ื™ื ื˜ืขื™ืžื™ื ๐Ÿœ | [Classification](4-Classification/README.md) | ืžืกื•ื•ื’ื™ื ื ื•ืกืคื™ื | <ul><li> [Python](4-Classification/3-Classifiers-2/README.md)</li><li>[R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) | <ul><li>ื’'ืŸ ื•ืงืืกื™</li><li>ืืจื™ืง ื•ื ื’'ืื•</li></ul> |
| 13 | ืžื˜ื‘ื—ื™ื ืืกื™ืืชื™ื™ื ื•ื”ื•ื“ื™ื™ื ื˜ืขื™ืžื™ื ๐Ÿœ | [Classification](4-Classification/README.md) | ื‘ื ื™ื™ืช ืืคืœื™ืงืฆื™ื™ืช ื•ื•ื‘ ืžืžืœื™ืฆื” ื‘ืืžืฆืขื•ืช ื”ืžื•ื“ืœ ืฉืœื›ื | [Python](4-Classification/4-Applied/README.md) | ื’'ืŸ |
| 14 | ืžื‘ื•ื ืœืงื™ื‘ื•ืฅ | [Clustering](5-Clustering/README.md) | ื ื™ืงื•ื™, ื”ื›ื ื” ื•ื•ื™ื–ื•ืืœื™ื–ืฆื™ื” ืฉืœ ื”ื ืชื•ื ื™ื; ืžื‘ื•ื ืœืงื™ื‘ื•ืฅ | <ul><li> [Python](5-Clustering/1-Visualize/README.md)</li><li>[R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) | <ul><li>ื’'ืŸ</li><li>ืืจื™ืง ื•ื ื’'ืื•</li></ul> |
| 15 | ื—ืงืจ ื˜ืขืžื™ ืžื•ื–ื™ืงื” ื ื™ื’ืจื™ืช ๐ŸŽง | [Clustering](5-Clustering/README.md) | ื—ืงืจ ืฉื™ื˜ืช ื”ืงื™ื‘ื•ืฅ K-Means | <ul><li> [Python](5-Clustering/2-K-Means/README.md)</li><li>[R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) | <ul><li>ื’'ืŸ</li><li>ืืจื™ืง ื•ื ื’'ืื•</li></ul> |
| 16 | ืžื‘ื•ื ืœืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช โ˜•๏ธ | [Natural language processing](6-NLP/README.md) | ืœืžื“ื• ืืช ื”ื™ืกื•ื“ื•ืช ืฉืœ ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช ืขืœ ื™ื“ื™ ื‘ื ื™ื™ืช ื‘ื•ื˜ ืคืฉื•ื˜ | [Python](6-NLP/1-Introduction-to-NLP/README.md) | ืกื˜ื™ื‘ืŸ |
| 17 | ืžืฉื™ืžื•ืช ื ืคื•ืฆื•ืช ื‘ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช โ˜•๏ธ | [Natural language processing](6-NLP/README.md) | ื”ืขืžื™ืงื• ืืช ื”ื™ื“ืข ืฉืœื›ื ื‘ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช ืขืœ ื™ื“ื™ ื”ื‘ื ืช ืžืฉื™ืžื•ืช ื ืคื•ืฆื•ืช ื”ื ื“ืจืฉื•ืช ื‘ืขืช ืขื‘ื•ื“ื” ืขื ืžื‘ื ื™ ืฉืคื” | [Python](6-NLP/2-Tasks/README.md) | ืกื˜ื™ื‘ืŸ |
| 18 | ืชืจื’ื•ื ื•ื ื™ืชื•ื— ืจื’ืฉื•ืช โ™ฅ๏ธ | [Natural language processing](6-NLP/README.md) | ืชืจื’ื•ื ื•ื ื™ืชื•ื— ืจื’ืฉื•ืช ืขื ื’'ื™ื™ืŸ ืื•ืกื˜ืŸ | [Python](6-NLP/3-Translation-Sentiment/README.md) | ืกื˜ื™ื‘ืŸ |
| 19 | ืžืœื•ื ื•ืช ืจื•ืžื ื˜ื™ื™ื ื‘ืื™ืจื•ืคื” โ™ฅ๏ธ | [Natural language processing](6-NLP/README.md) | ื ื™ืชื•ื— ืจื’ืฉื•ืช ืขื ื‘ื™ืงื•ืจื•ืช ืขืœ ืžืœื•ื ื•ืช 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | ืกื˜ื™ื‘ืŸ |
| 20 | ืžืœื•ื ื•ืช ืจื•ืžื ื˜ื™ื™ื ื‘ืื™ืจื•ืคื” โ™ฅ๏ธ | [Natural language processing](6-NLP/README.md) | ื ื™ืชื•ื— ืจื’ืฉื•ืช ืขื ื‘ื™ืงื•ืจื•ืช ืขืœ ืžืœื•ื ื•ืช 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | ืกื˜ื™ื‘ืŸ |
| 21 | ืžื‘ื•ื ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ | [Time series](7-TimeSeries/README.md) | ืžื‘ื•ื ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ | [Python](7-TimeSeries/1-Introduction/README.md) | ืคืจื ืฆ'ืกืงื” |
| 22 | โšก๏ธ ืฉื™ืžื•ืฉ ืขื•ืœืžื™ ื‘ื—ืฉืžืœ โšก๏ธ - ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ืขื ARIMA | [Time series](7-TimeSeries/README.md) | ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ืขื ARIMA | [Python](7-TimeSeries/2-ARIMA/README.md) | ืคืจื ืฆ'ืกืงื” |
| 23 | โšก๏ธ ืฉื™ืžื•ืฉ ืขื•ืœืžื™ ื‘ื—ืฉืžืœ โšก๏ธ - ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ืขื SVR | [Time series](7-TimeSeries/README.md) | ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ ืขื Support Vector Regressor | [Python](7-TimeSeries/3-SVR/README.md) | ืื ื™ืจื‘ืŸ |
| 24 | ืžื‘ื•ื ืœืœืžื™ื“ืช ื—ื™ื–ื•ืง | [Reinforcement learning](8-Reinforcement/README.md) | ืžื‘ื•ื ืœืœืžื™ื“ืช ื—ื™ื–ื•ืง ืขื Q-Learning | [Python](8-Reinforcement/1-QLearning/README.md) | ื“ืžื™ื˜ืจื™ |
| 25 | ืขื–ืจื• ืœืคื™ื˜ืจ ืœื”ื™ืžื ืข ืžื”ื–ืื‘! ๐Ÿบ | [Reinforcement learning](8-Reinforcement/README.md) | ืœืžื™ื“ืช ื—ื™ื–ื•ืง Gym | [Python](8-Reinforcement/2-Gym/README.md) | ื“ืžื™ื˜ืจื™ |
| Postscript | ืชืจื—ื™ืฉื™ื ื•ื™ื™ืฉื•ืžื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืขื•ืœื ื”ืืžื™ืชื™ | [ML in the Wild](9-Real-World/README.md) | ื™ื™ืฉื•ืžื™ื ืžืขื ื™ื™ื ื™ื ื•ืžืจืชืงื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ืงืœืืกื™ืช | [Lesson](9-Real-World/1-Applications/README.md) | ืฆื•ื•ืช |
| Postscript | ื ื™ืคื•ื™ ืฉื’ื™ืื•ืช ืžื•ื“ืœื™ื ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืืžืฆืขื•ืช ืœื•ื— ืžื—ื•ื•ื ื™ื RAI | [ML in the Wild](9-Real-World/README.md) | ื ื™ืคื•ื™ ืฉื’ื™ืื•ืช ืžื•ื“ืœื™ื ื‘ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืืžืฆืขื•ืช ืจื›ื™ื‘ื™ ืœื•ื— ืžื—ื•ื•ื ื™ื ืฉืœ AI ืื—ืจืื™ | [Lesson](9-Real-World/2-Debugging-ML-Models/README.md) | ืจื•ืช ื™ืขืงื•ื‘ื• |
> [ืžืฆืื• ืืช ื›ืœ ื”ืžืฉืื‘ื™ื ื”ื ื•ืกืคื™ื ืœืงื•ืจืก ื–ื” ื‘ืื•ืกืฃ Microsoft Learn ืฉืœื ื•](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum)
## ื’ื™ืฉื” ืœื ืžืงื•ื•ื ืช
ื ื™ืชืŸ ืœื”ืคืขื™ืœ ืืช ื”ืชื™ืขื•ื“ ื”ื–ื” ืœื ืžืงื•ื•ืŸ ื‘ืืžืฆืขื•ืช [Docsify](https://docsify.js.org/#/). ืขืฉื• Fork ืœืžืื’ืจ ื–ื”, [ื”ืชืงื™ื ื• ืืช Docsify](https://docsify.js.org/#/quickstart) ื‘ืžื—ืฉื‘ ื”ืžืงื•ืžื™ ืฉืœื›ื, ื•ืื– ื‘ืชื™ืงื™ื™ืช ื”ืฉื•ืจืฉ ืฉืœ ืžืื’ืจ ื–ื”, ื”ืงืœื™ื“ื• `docsify serve`. ื”ืืชืจ ื™ื•ื’ืฉ ืขืœ ืคื•ืจื˜ 3000 ื‘-localhost ืฉืœื›ื: `localhost:3000`.
## PDFs
ืžืฆืื• ืงื•ื‘ืฅ PDF ืฉืœ ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ืขื ืงื™ืฉื•ืจื™ื [ื›ืืŸ](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf).
## ๐ŸŽ’ ืงื•ืจืกื™ื ื ื•ืกืคื™ื
ื”ืฆื•ื•ืช ืฉืœื ื• ืžื™ื™ืฆืจ ืงื•ืจืกื™ื ื ื•ืกืคื™ื! ื‘ื“ืงื•:
- [Generative AI for Beginners](https://aka.ms/genai-beginners)
- [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet)
- [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript)
- [Generative AI with Java](https://github.com/microsoft/Generative-AI-for-beginners-java)
- [AI for Beginners](https://aka.ms/ai-beginners)
- [Data Science for Beginners](https://aka.ms/datascience-beginners)
- [ML for Beginners](https://aka.ms/ml-beginners)
- [Cybersecurity for Beginners](https://github.com/microsoft/Security-101)
- [Web Dev for Beginners](https://aka.ms/webdev-beginners)
- [IoT for Beginners](https://aka.ms/iot-beginners)
- [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners)
- [Mastering GitHub Copilot for Paired Programming](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming)
- [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers)
- [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,51 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "5e1b8da31aae9cca3d53ad243fa3365a",
"translation_date": "2025-09-05T18:35:13+00:00",
"source_file": "SECURITY.md",
"language_code": "he"
}
-->
## ืื‘ื˜ื—ื”
ืžื™ืงืจื•ืกื•ืคื˜ ืžืชื™ื™ื—ืกืช ื‘ืจืฆื™ื ื•ืช ืœืื‘ื˜ื—ืช ืžื•ืฆืจื™ ื”ืชื•ื›ื ื” ื•ื”ืฉื™ืจื•ืชื™ื ืฉืœื”, ื›ื•ืœืœ ื›ืœ ืžืื’ืจื™ ื”ืงื•ื“ ื”ืžืงื•ืจื™ื™ื ื”ืžื ื•ื”ืœื™ื ื“ืจืš ื”ืืจื’ื•ื ื™ื ืฉืœื ื• ื‘-GitHub, ื”ื›ื•ืœืœื™ื [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet), [Xamarin](https://github.com/xamarin), ื•-[ืืจื’ื•ื ื™ GitHub ืฉืœื ื•](https://opensource.microsoft.com/).
ืื ืืชื ืžืืžื™ื ื™ื ืฉืžืฆืืชื ืคื’ื™ืขื•ืช ืื‘ื˜ื—ื” ื‘ืื—ื“ ืžืžืื’ืจื™ ื”ืงื•ื“ ืฉื‘ื‘ืขืœื•ืช ืžื™ืงืจื•ืกื•ืคื˜, ืืฉืจ ืขื•ืžื“ืช ื‘ื”ื’ื“ืจืช [ืคื’ื™ืขื•ืช ืื‘ื˜ื—ื” ืฉืœ ืžื™ืงืจื•ืกื•ืคื˜](https://docs.microsoft.com/previous-versions/tn-archive/cc751383(v=technet.10)?WT.mc_id=academic-77952-leestott), ืื ื ื“ื•ื•ื—ื• ืœื ื• ื›ืคื™ ืฉืžืชื•ืืจ ืœื”ืœืŸ.
## ื“ื™ื•ื•ื— ืขืœ ื‘ืขื™ื•ืช ืื‘ื˜ื—ื”
**ืื ื ืืœ ืชื“ื•ื•ื—ื• ืขืœ ืคื’ื™ืขื•ืช ืื‘ื˜ื—ื” ื“ืจืš ื‘ืขื™ื•ืช ืฆื™ื‘ื•ืจื™ื•ืช ื‘-GitHub.**
ื‘ืžืงื•ื ื–ืืช, ื“ื•ื•ื—ื• ืขืœื™ื”ืŸ ืœืžืจื›ื– ื”ืชื’ื•ื‘ื” ืœืื‘ื˜ื—ืช ืžื™ื“ืข ืฉืœ ืžื™ืงืจื•ืกื•ืคื˜ (MSRC) ื‘ื›ืชื•ื‘ืช [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report).
ืื ืืชื ืžืขื“ื™ืคื™ื ืœืฉืœื•ื— ื“ื™ื•ื•ื— ืœืœื ื”ืชื—ื‘ืจื•ืช, ืฉืœื—ื• ื“ื•ื"ืœ ืœื›ืชื•ื‘ืช [secure@microsoft.com](mailto:secure@microsoft.com). ืื ืืคืฉืจ, ื”ืฆืคื™ื ื• ืืช ื”ื”ื•ื“ืขื” ืฉืœื›ื ื‘ืืžืฆืขื•ืช ืžืคืชื— ื”-PGP ืฉืœื ื•; ื ื™ืชืŸ ืœื”ื•ืจื™ื“ ืื•ืชื• ืžื“ืฃ [Microsoft Security Response Center PGP Key](https://www.microsoft.com/en-us/msrc/pgp-key-msrc).
ืืชื ืืžื•ืจื™ื ืœืงื‘ืœ ืชื’ื•ื‘ื” ืชื•ืš 24 ืฉืขื•ืช. ืื ืžืกื™ื‘ื” ื›ืœืฉื”ื™ ืœื ืงื™ื‘ืœืชื ืชื’ื•ื‘ื”, ืื ื ืขืงื‘ื• ืื—ืจ ื”ื“ื™ื•ื•ื— ื‘ืืžืฆืขื•ืช ื“ื•ื"ืœ ื›ื“ื™ ืœื•ื•ื“ื ืฉื”ื”ื•ื“ืขื” ื”ืžืงื•ืจื™ืช ืฉืœื›ื ื”ืชืงื‘ืœื”. ืžื™ื“ืข ื ื•ืกืฃ ื ื™ืชืŸ ืœืžืฆื•ื ื‘-[microsoft.com/msrc](https://www.microsoft.com/msrc).
ืื ื ื›ืœืœื• ืืช ื”ืžื™ื“ืข ื”ืžื‘ื•ืงืฉ ื”ืžืคื•ืจื˜ ืœื”ืœืŸ (ื›ื›ืœ ืฉืชื•ื›ืœื• ืœืกืคืง) ื›ื“ื™ ืœืขื–ื•ืจ ืœื ื• ืœื”ื‘ื™ืŸ ื˜ื•ื‘ ื™ื•ืชืจ ืืช ืžื”ื•ืช ื”ื‘ืขื™ื” ื•ื”ื™ืงืคื”:
* ืกื•ื’ ื”ื‘ืขื™ื” (ืœื“ื•ื’ืžื”, ื’ืœื™ืฉืช ื—ื•ืฆืฅ, ื”ื–ืจืงืช SQL, ืกืงืจื™ืคื˜ื™ื ื‘ื™ืŸ ืืชืจื™ื ื•ื›ื•')
* ื ืชื™ื‘ื™ ื”ืงื‘ืฆื™ื ื”ืžืœืื™ื ื”ืงืฉื•ืจื™ื ืœื”ื•ืคืขืช ื”ื‘ืขื™ื”
* ืžื™ืงื•ื ื”ืงื•ื“ ื”ืคื’ื•ืข (ืชื’/ืขื ืฃ/ืžื—ื•ื™ื‘ื•ืช ืื• URL ื™ืฉื™ืจ)
* ื›ืœ ืชืฆื•ืจื” ืžื™ื•ื—ื“ืช ื”ื ื“ืจืฉืช ืœืฉื—ื–ื•ืจ ื”ื‘ืขื™ื”
* ื”ื•ืจืื•ืช ืžืคื•ืจื˜ื•ืช ืœืฉื—ื–ื•ืจ ื”ื‘ืขื™ื”
* ืงื•ื“ ื”ื•ื›ื—ืช ืจืขื™ื•ืŸ ืื• ื ื™ืฆื•ืœ (ืื ืืคืฉืจื™)
* ื”ืฉืคืขืช ื”ื‘ืขื™ื”, ื›ื•ืœืœ ื›ื™ืฆื“ ืชื•ืงืฃ ืขืฉื•ื™ ืœื ืฆืœ ืื•ืชื”
ืžื™ื“ืข ื–ื” ื™ืขื–ื•ืจ ืœื ื• ืœื˜ืคืœ ื‘ื“ื™ื•ื•ื— ืฉืœื›ื ื‘ืžื”ื™ืจื•ืช ืจื‘ื” ื™ื•ืชืจ.
ืื ืืชื ืžื“ื•ื•ื—ื™ื ื‘ืžืกื’ืจืช ืชื•ื›ื ื™ืช ื‘ืื’ ื‘ืื•ื ื˜ื™, ื“ื™ื•ื•ื—ื™ื ืžืคื•ืจื˜ื™ื ื™ื•ืชืจ ืขืฉื•ื™ื™ื ืœื”ื•ื‘ื™ืœ ืœืคืจืก ื’ื‘ื•ื” ื™ื•ืชืจ. ืื ื ื‘ืงืจื• ื‘ื“ืฃ [Microsoft Bug Bounty Program](https://microsoft.com/msrc/bounty) ืœืžื™ื“ืข ื ื•ืกืฃ ืขืœ ื”ืชื•ื›ื ื™ื•ืช ื”ืคืขื™ืœื•ืช ืฉืœื ื•.
## ืฉืคื•ืช ืžื•ืขื“ืคื•ืช
ืื ื• ืžืขื“ื™ืคื™ื ืฉื›ืœ ื”ืชืงืฉื•ืจืช ืชื”ื™ื” ื‘ืื ื’ืœื™ืช.
## ืžื“ื™ื ื™ื•ืช
ืžื™ืงืจื•ืกื•ืคื˜ ืคื•ืขืœืช ืœืคื™ ืขืงืจื•ืŸ [ื’ื™ืœื•ื™ ืคื’ื™ืขื•ืช ืžืชื•ืื](https://www.microsoft.com/en-us/msrc/cvd).
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,24 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "872be8bc1b93ef1dd9ac3d6e8f99f6ab",
"translation_date": "2025-09-05T18:34:08+00:00",
"source_file": "SUPPORT.md",
"language_code": "he"
}
-->
# ืชืžื™ื›ื”
## ื›ื™ืฆื“ ืœื“ื•ื•ื— ืขืœ ื‘ืขื™ื•ืช ื•ืœืงื‘ืœ ืขื–ืจื”
ืคืจื•ื™ืงื˜ ื–ื” ืžืฉืชืžืฉ ื‘-GitHub Issues ืœืžืขืงื‘ ืื—ืจ ื‘ืื’ื™ื ื•ื‘ืงืฉื•ืช ืœืคื™ืฆ'ืจื™ื. ืื ื ื—ืคืฉื• ืืช ื”ื‘ืขื™ื•ืช ื”ืงื™ื™ืžื•ืช ืœืคื ื™ ืฉืืชื ืžื“ื•ื•ื—ื™ื ืขืœ ื‘ืขื™ื•ืช ื—ื“ืฉื•ืช ื›ื“ื™ ืœื”ื™ืžื ืข ืžื›ืคื™ืœื•ื™ื•ืช. ืขื‘ื•ืจ ื‘ืขื™ื•ืช ื—ื“ืฉื•ืช, ื“ื•ื•ื—ื• ืขืœ ื”ื‘ืื’ ืื• ื‘ืงืฉืช ื”ืคื™ืฆ'ืจ ืฉืœื›ื ื›ื‘ืขื™ื” ื—ื“ืฉื”.
ืœืขื–ืจื” ื•ืฉืืœื•ืช ื‘ื ื•ื’ืข ืœืฉื™ืžื•ืฉ ื‘ืคืจื•ื™ืงื˜ ื–ื”, ื“ื•ื•ื—ื• ืขืœ ื‘ืขื™ื”.
## ืžื“ื™ื ื™ื•ืช ื”ืชืžื™ื›ื” ืฉืœ Microsoft
ื”ืชืžื™ื›ื” ืขื‘ื•ืจ ืžืื’ืจ ื–ื” ืžื•ื’ื‘ืœืช ืœืžืฉืื‘ื™ื ื”ืžืคื•ืจื˜ื™ื ืœืขื™ืœ.
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ื‘ืขื•ื“ ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœื”ื™ื•ืช ืžื•ื“ืขื™ื ืœื›ืš ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,57 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "68dd06c685f6ce840e0acfa313352e7c",
"translation_date": "2025-09-05T19:19:54+00:00",
"source_file": "docs/_sidebar.md",
"language_code": "he"
}
-->
- ืžื‘ื•ื
- [ืžื‘ื•ื ืœืœืžื™ื“ืช ืžื›ื•ื ื”](../1-Introduction/1-intro-to-ML/README.md)
- [ื”ื™ืกื˜ื•ืจื™ื” ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื”](../1-Introduction/2-history-of-ML/README.md)
- [ืœืžื™ื“ืช ืžื›ื•ื ื” ื•ื”ื•ื’ื ื•ืช](../1-Introduction/3-fairness/README.md)
- [ื˜ื›ื ื™ืงื•ืช ื‘ืœืžื™ื“ืช ืžื›ื•ื ื”](../1-Introduction/4-techniques-of-ML/README.md)
- ืจื’ืจืกื™ื”
- [ื›ืœื™ื ืžืงืฆื•ืขื™ื™ื](../2-Regression/1-Tools/README.md)
- [ื ืชื•ื ื™ื](../2-Regression/2-Data/README.md)
- [ืจื’ืจืกื™ื” ืœื™ื ืืจื™ืช](../2-Regression/3-Linear/README.md)
- [ืจื’ืจืกื™ื” ืœื•ื’ื™ืกื˜ื™ืช](../2-Regression/4-Logistic/README.md)
- ื‘ื ื™ื™ืช ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜
- [ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜](../3-Web-App/1-Web-App/README.md)
- ืกื™ื•ื•ื’
- [ืžื‘ื•ื ืœืกื™ื•ื•ื’](../4-Classification/1-Introduction/README.md)
- [ืกื™ื•ื•ื’ื™ื 1](../4-Classification/2-Classifiers-1/README.md)
- [ืกื™ื•ื•ื’ื™ื 2](../4-Classification/3-Classifiers-2/README.md)
- [ืœืžื™ื“ืช ืžื›ื•ื ื” ื™ื™ืฉื•ืžื™ืช](../4-Classification/4-Applied/README.md)
- ืืฉื›ื•ืœื•ืช
- [ื”ืฆื’ืช ื”ื ืชื•ื ื™ื ืฉืœืš](../5-Clustering/1-Visualize/README.md)
- [K-Means](../5-Clustering/2-K-Means/README.md)
- ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช (NLP)
- [ืžื‘ื•ื ืœืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช](../6-NLP/1-Introduction-to-NLP/README.md)
- [ืžืฉื™ืžื•ืช ื‘ืขื™ื‘ื•ื“ ืฉืคื” ื˜ื‘ืขื™ืช](../6-NLP/2-Tasks/README.md)
- [ืชืจื’ื•ื ื•ื ื™ืชื•ื— ืจื’ืฉื•ืช](../6-NLP/3-Translation-Sentiment/README.md)
- [ื‘ื™ืงื•ืจื•ืช ืžืœื•ื ื•ืช 1](../6-NLP/4-Hotel-Reviews-1/README.md)
- [ื‘ื™ืงื•ืจื•ืช ืžืœื•ื ื•ืช 2](../6-NLP/5-Hotel-Reviews-2/README.md)
- ื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ
- [ืžื‘ื•ื ืœื—ื™ื–ื•ื™ ืกื“ืจื•ืช ื–ืžืŸ](../7-TimeSeries/1-Introduction/README.md)
- [ARIMA](../7-TimeSeries/2-ARIMA/README.md)
- [SVR](../7-TimeSeries/3-SVR/README.md)
- ืœืžื™ื“ื” ืžื—ื™ื–ื•ืงื™ื
- [Q-Learning](../8-Reinforcement/1-QLearning/README.md)
- [Gym](../8-Reinforcement/2-Gym/README.md)
- ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ืขื•ืœื ื”ืืžื™ืชื™
- [ื™ื™ืฉื•ืžื™ื](../9-Real-World/1-Applications/README.md)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,37 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "b37de02054fa6c0438ede6fabe1fdfb8",
"translation_date": "2025-09-05T18:36:08+00:00",
"source_file": "for-teachers.md",
"language_code": "he"
}
-->
## ืœืžื•ืจื™ื
ื”ืื ืชืจืฆื• ืœื”ืฉืชืžืฉ ื‘ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื”ื–ื• ื‘ื›ื™ืชื” ืฉืœื›ื? ืืชื ืžื•ื–ืžื ื™ื ืœืขืฉื•ืช ื–ืืช!
ืœืžืขืฉื”, ืชื•ื›ืœื• ืœื”ืฉืชืžืฉ ื‘ื” ื™ืฉื™ืจื•ืช ื‘ืชื•ืš GitHub ื‘ืืžืฆืขื•ืช GitHub Classroom.
ื›ื“ื™ ืœืขืฉื•ืช ื–ืืช, ื‘ืฆืขื• fork ืœืžืื’ืจ ื”ื–ื”. ืชืฆื˜ืจื›ื• ืœื™ืฆื•ืจ ืžืื’ืจ ืขื‘ื•ืจ ื›ืœ ืฉื™ืขื•ืจ, ื•ืœื›ืŸ ืชืฆื˜ืจื›ื• ืœื”ืคืจื™ื“ ื›ืœ ืชื™ืงื™ื™ื” ืœืžืื’ืจ ื ืคืจื“. ื›ืš [GitHub Classroom](https://classroom.github.com/classrooms) ื™ื•ื›ืœ ืœื–ื”ื•ืช ื›ืœ ืฉื™ืขื•ืจ ื‘ื ืคืจื“.
ื”ื•ืจืื•ืช [ืžืœืื•ืช](https://github.blog/2020-03-18-set-up-your-digital-classroom-with-github-classroom/) ืืœื• ื™ืกืคืงื• ืœื›ื ืจืขื™ื•ืŸ ื›ื™ืฆื“ ืœื”ืงื™ื ืืช ื”ื›ื™ืชื” ืฉืœื›ื.
## ืฉื™ืžื•ืฉ ื‘ืžืื’ืจ ื›ืคื™ ืฉื”ื•ื
ืื ืชืจืฆื• ืœื”ืฉืชืžืฉ ื‘ืžืื’ืจ ื›ืคื™ ืฉื”ื•ื ื›ืจื’ืข, ืžื‘ืœื™ ืœื”ืฉืชืžืฉ ื‘-GitHub Classroom, ื’ื ื–ื” ืืคืฉืจื™. ืชืฆื˜ืจื›ื• ืœืชืงืฉืจ ืขื ื”ืชืœืžื™ื“ื™ื ืฉืœื›ื ืื™ื–ื” ืฉื™ืขื•ืจ ืœืขื‘ื•ื“ ืขืœื™ื• ื™ื—ื“.
ื‘ืคื•ืจืžื˜ ืžืงื•ื•ืŸ (Zoom, Teams ืื• ืื—ืจ) ืชื•ื›ืœื• ืœื™ืฆื•ืจ ื—ื“ืจื™ ืขื‘ื•ื“ื” ืขื‘ื•ืจ ื”ื—ื™ื“ื•ื ื™ื, ื•ืœื”ื ื—ื•ืช ืืช ื”ืชืœืžื™ื“ื™ื ื›ื“ื™ ืœื”ื›ื™ืŸ ืื•ืชื ืœืœืžื™ื“ื”. ืœืื—ืจ ืžื›ืŸ, ื”ื–ืžื™ื ื• ืืช ื”ืชืœืžื™ื“ื™ื ืœื”ืฉืชืชืฃ ื‘ื—ื™ื“ื•ื ื™ื ื•ืœื”ื’ื™ืฉ ืืช ืชืฉื•ื‘ื•ืชื™ื”ื ื›-'issues' ื‘ื–ืžืŸ ืžืกื•ื™ื. ืชื•ื›ืœื• ืœืขืฉื•ืช ืืช ืื•ืชื• ื”ื“ื‘ืจ ืขื ืžืฉื™ืžื•ืช, ืื ืชืจืฆื• ืฉื”ืชืœืžื™ื“ื™ื ื™ืขื‘ื“ื• ื‘ืฉื™ืชื•ืฃ ืคืขื•ืœื” ื‘ืื•ืคืŸ ืคืชื•ื—.
ืื ืืชื ืžืขื“ื™ืคื™ื ืคื•ืจืžื˜ ื™ื•ืชืจ ืคืจื˜ื™, ื‘ืงืฉื• ืžื”ืชืœืžื™ื“ื™ื ืœื‘ืฆืข fork ืœืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื, ืฉื™ืขื•ืจ ืื—ืจ ืฉื™ืขื•ืจ, ืœืžืื’ืจื™ื ืคืจื˜ื™ื™ื ืžืฉืœื”ื ื‘-GitHub, ื•ืชื ื• ืœื›ื ื’ื™ืฉื”. ื›ืš ื”ื ื™ื•ื›ืœื• ืœื”ืฉืœื™ื ื—ื™ื“ื•ื ื™ื ื•ืžืฉื™ืžื•ืช ื‘ืื•ืคืŸ ืคืจื˜ื™ ื•ืœื”ื’ื™ืฉ ืื•ืชื ืœื›ื ื“ืจืš 'issues' ื‘ืžืื’ืจ ื”ื›ื™ืชื” ืฉืœื›ื.
ื™ืฉื ืŸ ื“ืจื›ื™ื ืจื‘ื•ืช ืœื’ืจื•ื ืœื–ื” ืœืขื‘ื•ื“ ื‘ืคื•ืจืžื˜ ื›ื™ืชื” ืžืงื•ื•ืŸ. ืื ื ืฉืชืคื• ืื•ืชื ื• ืžื” ืขื•ื‘ื“ ื”ื›ื™ ื˜ื•ื‘ ืขื‘ื•ืจื›ื!
## ื ืฉืžื— ืœืฉืžื•ืข ืืช ื“ืขืชื›ื!
ืื ื—ื ื• ืจื•ืฆื™ื ืฉื”ืชื•ื›ื ื™ืช ื”ื–ื• ืชืชืื™ื ืœื›ื ื•ืœืชืœืžื™ื“ื™ื ืฉืœื›ื. ืื ื ืฉืชืคื• ืื•ืชื ื• [ืžืฉื•ื‘](https://forms.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR2humCsRZhxNuI79cm6n0hRUQzRVVU9VVlU5UlFLWTRLWlkyQUxORTg5WS4u).
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,127 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "6d130dffca5db70d7e615f926cb1ad4c",
"translation_date": "2025-09-05T19:47:28+00:00",
"source_file": "quiz-app/README.md",
"language_code": "he"
}
-->
# ื—ื™ื“ื•ื ื™ื
ื”ื—ื™ื“ื•ื ื™ื ื”ืืœื” ื”ื ื—ื™ื“ื•ื ื™ ื˜ืจื•ื ื•ืื—ืจื™ ื”ืจืฆืื” ืขื‘ื•ืจ ืชื•ื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ืฉืœ ืœืžื™ื“ืช ืžื›ื•ื ื” ื‘ื›ืชื•ื‘ืช https://aka.ms/ml-beginners
## ื”ื’ื“ืจืช ื”ืคืจื•ื™ืงื˜
```
npm install
```
### ืงื•ืžืคื™ืœืฆื™ื” ื•ื˜ืขื™ื ื” ืžื—ื“ืฉ ืœืคื™ืชื•ื—
```
npm run serve
```
### ืงื•ืžืคื™ืœืฆื™ื” ื•ืžื–ืขื•ืจ ืขื‘ื•ืจ ื”ืคืงื”
```
npm run build
```
### ื‘ื“ื™ืงืช ืงื•ื“ ื•ืชื™ืงื•ืŸ ืงื‘ืฆื™ื
```
npm run lint
```
### ื”ืชืืžืช ื”ื”ื’ื“ืจื•ืช
ืจืื• [ื”ืคื ื™ื” ืœื”ื’ื“ืจื•ืช](https://cli.vuejs.org/config/).
ืงืจื“ื™ื˜ื™ื: ืชื•ื“ื” ืœื’ืจืกื” ื”ืžืงื•ืจื™ืช ืฉืœ ืืคืœื™ืงืฆื™ื™ืช ื”ื—ื™ื“ื•ื ื™ื ื”ื–ื•: https://github.com/arpan45/simple-quiz-vue
## ืคืจื™ืกื” ืœ-Azure
ื”ื ื” ืžื“ืจื™ืš ืฉืœื‘-ืื—ืจ-ืฉืœื‘ ืฉื™ืขื–ื•ืจ ืœื›ื ืœื”ืชื—ื™ืœ:
1. ืขืฉื• Fork ืœืžืื’ืจ GitHub
ื•ื“ืื• ืฉืงื•ื“ ื”ืืคืœื™ืงืฆื™ื” ืฉืœื›ื ื ืžืฆื ื‘ืžืื’ืจ GitHub. ืขืฉื• Fork ืœืžืื’ืจ ื”ื–ื”.
2. ืฆืจื• ืืคืœื™ืงืฆื™ื™ืช ืื™ื ื˜ืจื ื˜ ืกื˜ื˜ื™ืช ื‘-Azure
- ืฆืจื• [ื—ืฉื‘ื•ืŸ Azure](http://azure.microsoft.com)
- ืขื‘ืจื• ืœ-[ืคื•ืจื˜ืœ Azure](https://portal.azure.com)
- ืœื—ืฆื• ืขืœ "Create a resource" ื•ื—ืคืฉื• "Static Web App".
- ืœื—ืฆื• ืขืœ "Create".
3. ื”ื’ื“ืจืช ืืคืœื™ืงืฆื™ื™ืช ื”ืื™ื ื˜ืจื ื˜ ื”ืกื˜ื˜ื™ืช
- ื‘ืกื™ืกื™ื:
- Subscription: ื‘ื—ืจื• ืืช ื”ืžื ื•ื™ ืฉืœื›ื ื‘-Azure.
- Resource Group: ืฆืจื• ืงื‘ื•ืฆืช ืžืฉืื‘ื™ื ื—ื“ืฉื” ืื• ื”ืฉืชืžืฉื• ื‘ืงื™ื™ืžืช.
- Name: ืกืคืงื• ืฉื ืœืืคืœื™ืงืฆื™ื™ืช ื”ืื™ื ื˜ืจื ื˜ ื”ืกื˜ื˜ื™ืช ืฉืœื›ื.
- Region: ื‘ื—ืจื• ืืช ื”ืื–ื•ืจ ื”ืงืจื•ื‘ ื‘ื™ื•ืชืจ ืœืžืฉืชืžืฉื™ื ืฉืœื›ื.
- #### ืคืจื˜ื™ ืคืจื™ืกื”:
- Source: ื‘ื—ืจื• "GitHub".
- GitHub Account: ืชื ื• ื”ืจืฉืื” ืœ-Azure ืœื’ืฉืช ืœื—ืฉื‘ื•ืŸ GitHub ืฉืœื›ื.
- Organization: ื‘ื—ืจื• ืืช ื”ืืจื’ื•ืŸ ืฉืœื›ื ื‘-GitHub.
- Repository: ื‘ื—ืจื• ืืช ื”ืžืื’ืจ ืฉืžื›ื™ืœ ืืช ืืคืœื™ืงืฆื™ื™ืช ื”ืื™ื ื˜ืจื ื˜ ื”ืกื˜ื˜ื™ืช ืฉืœื›ื.
- Branch: ื‘ื—ืจื• ืืช ื”ืขื ืฃ ืฉืžืžื ื• ืชืจืฆื• ืœืคืจื•ืก.
- #### ืคืจื˜ื™ ื‘ื ื™ื™ื”:
- Build Presets: ื‘ื—ืจื• ืืช ื”ืžืกื’ืจืช ืฉื‘ื” ื”ืืคืœื™ืงืฆื™ื” ืฉืœื›ื ื ื‘ื ืชื” (ืœื“ื•ื’ืžื”, React, Angular, Vue ื•ื›ื•').
- App Location: ืฆื™ื™ื ื• ืืช ื”ืชื™ืงื™ื™ื” ืฉืžื›ื™ืœื” ืืช ืงื•ื“ ื”ืืคืœื™ืงืฆื™ื” ืฉืœื›ื (ืœื“ื•ื’ืžื”, / ืื ื”ื™ื ื ืžืฆืืช ื‘ืฉื•ืจืฉ).
- API Location: ืื ื™ืฉ ืœื›ื API, ืฆื™ื™ื ื• ืืช ืžื™ืงื•ืžื• (ืื•ืคืฆื™ื•ื ืœื™).
- Output Location: ืฆื™ื™ื ื• ืืช ื”ืชื™ืงื™ื™ื” ืฉื‘ื” ื ื•ืฆืจ ืคืœื˜ ื”ื‘ื ื™ื™ื” (ืœื“ื•ื’ืžื”, build ืื• dist).
4. ืกืงื™ืจื” ื•ื™ืฆื™ืจื”
ืกืงื•ืจ ืืช ื”ื”ื’ื“ืจื•ืช ืฉืœืš ื•ืœื—ืฅ ืขืœ "Create". Azure ื™ื’ื“ื™ืจ ืืช ื”ืžืฉืื‘ื™ื ื”ื ื“ืจืฉื™ื ื•ื™ื™ืฆื•ืจ ืงื•ื‘ืฅ ื–ืจื™ืžืช ืขื‘ื•ื“ื” ืฉืœ GitHub Actions ื‘ืžืื’ืจ ืฉืœืš.
5. ื–ืจื™ืžืช ืขื‘ื•ื“ื” ืฉืœ GitHub Actions
Azure ื™ื™ืฆื•ืจ ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™ ืงื•ื‘ืฅ ื–ืจื™ืžืช ืขื‘ื•ื“ื” ืฉืœ GitHub Actions ื‘ืžืื’ืจ ืฉืœืš (.github/workflows/azure-static-web-apps-<name>.yml). ืงื•ื‘ืฅ ื–ื” ื™ื˜ืคืœ ื‘ืชื”ืœื™ืš ื”ื‘ื ื™ื™ื” ื•ื”ืคืจื™ืกื”.
6. ืžืขืงื‘ ืื—ืจ ื”ืคืจื™ืกื”
ืขื‘ืจื• ืœืœืฉื•ื ื™ืช "Actions" ื‘ืžืื’ืจ GitHub ืฉืœื›ื.
ืชื•ื›ืœื• ืœืจืื•ืช ื–ืจื™ืžืช ืขื‘ื•ื“ื” ืคื•ืขืœืช. ื–ืจื™ืžืช ืขื‘ื•ื“ื” ื–ื• ืชื‘ื ื” ื•ืชืคืจื•ืก ืืช ืืคืœื™ืงืฆื™ื™ืช ื”ืื™ื ื˜ืจื ื˜ ื”ืกื˜ื˜ื™ืช ืฉืœื›ื ืœ-Azure.
ืœืื—ืจ ืกื™ื•ื ื–ืจื™ืžืช ื”ืขื‘ื•ื“ื”, ื”ืืคืœื™ืงืฆื™ื” ืฉืœื›ื ืชื”ื™ื” ื–ืžื™ื ื” ื‘ื›ืชื•ื‘ืช ื”-URL ืฉืกื•ืคืงื” ืขืœ ื™ื“ื™ Azure.
### ื“ื•ื’ืžื” ืœืงื•ื‘ืฅ ื–ืจื™ืžืช ืขื‘ื•ื“ื”
ื”ื ื” ื“ื•ื’ืžื” ืœืื™ืš ืงื•ื‘ืฅ ื–ืจื™ืžืช ื”ืขื‘ื•ื“ื” ืฉืœ GitHub Actions ืขืฉื•ื™ ืœื”ื™ืจืื•ืช:
name: Azure Static Web Apps CI/CD
```
on:
push:
branches:
- main
pull_request:
types: [opened, synchronize, reopened, closed]
branches:
- main
jobs:
build_and_deploy_job:
runs-on: ubuntu-latest
name: Build and Deploy Job
steps:
- uses: actions/checkout@v2
- name: Build And Deploy
id: builddeploy
uses: Azure/static-web-apps-deploy@v1
with:
azure_static_web_apps_api_token: ${{ secrets.AZURE_STATIC_WEB_APPS_API_TOKEN }}
repo_token: ${{ secrets.GITHUB_TOKEN }}
action: "upload"
app_location: "/quiz-app" # App source code path
api_location: ""API source code path optional
output_location: "dist" #Built app content directory - optional
```
### ืžืฉืื‘ื™ื ื ื•ืกืคื™ื
- [ืชื™ืขื•ื“ ืืคืœื™ืงืฆื™ื•ืช ืื™ื ื˜ืจื ื˜ ืกื˜ื˜ื™ื•ืช ืฉืœ Azure](https://learn.microsoft.com/azure/static-web-apps/getting-started)
- [ืชื™ืขื•ื“ GitHub Actions](https://docs.github.com/actions/use-cases-and-examples/deploying/deploying-to-azure-static-web-app)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,106 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "fba3b94d88bfb9b81369b869a1e9a20f",
"translation_date": "2025-09-05T20:03:57+00:00",
"source_file": "sketchnotes/LICENSE.md",
"language_code": "he"
}
-->
ื–ื›ื•ื™ื•ืช, ืื– ืืชื” ืœื ื™ื›ื•ืœ ืœื”ื˜ื™ืœ ืžื’ื‘ืœื•ืช ืขืœ ืžื™ืžื•ืฉ ื”ื–ื›ื•ื™ื•ืช ื”ืžื•ืขื ืงื•ืช ืชื—ืช ืจื™ืฉื™ื•ืŸ ื”ืžื•ืชืื ืฉืืชื” ืžื™ื™ืฉื.
ืกืขื™ืฃ 4 -- ื–ื›ื•ื™ื•ืช ื‘ืกื™ืก ื ืชื•ื ื™ื ื™ื™ื—ื•ื“ื™ื•ืช.
ื›ืืฉืจ ื”ื–ื›ื•ื™ื•ืช ื”ืžื•ืจืฉื•ืช ื›ื•ืœืœื•ืช ื–ื›ื•ื™ื•ืช ื‘ืกื™ืก ื ืชื•ื ื™ื ื™ื™ื—ื•ื“ื™ื•ืช ื”ื—ืœื•ืช ืขืœ ื”ืฉื™ืžื•ืฉ ืฉืœืš ื‘ื—ื•ืžืจ ื”ืžื•ืจืฉื”:
ื. ืœืžืขืŸ ื”ืกืจ ืกืคืง, ืกืขื™ืฃ 2(ื)(1) ืžืขื ื™ืง ืœืš ืืช ื”ื–ื›ื•ืช ืœื—ืœืฅ, ืœื”ืฉืชืžืฉ ืžื—ื“ืฉ, ืœืฉื›ืคืœ ื•ืœืฉืชืฃ ืืช ื›ืœ ืื• ื—ืœืง ืžืฉืžืขื•ืชื™ ืžืชื•ื›ืŸ ื”ื‘ืกื™ืก ื ืชื•ื ื™ื;
ื‘. ืื ืืชื” ื›ื•ืœืœ ืืช ื›ืœ ืื• ื—ืœืง ืžืฉืžืขื•ืชื™ ืžืชื•ื›ืŸ ื”ื‘ืกื™ืก ื ืชื•ื ื™ื ื‘ื‘ืกื™ืก ื ืชื•ื ื™ื ืฉื‘ื• ื™ืฉ ืœืš ื–ื›ื•ื™ื•ืช ื‘ืกื™ืก ื ืชื•ื ื™ื ื™ื™ื—ื•ื“ื™ื•ืช, ืื– ื”ื‘ืกื™ืก ื ืชื•ื ื™ื ืฉืœืš ื—ื™ื™ื‘ ืœื”ื™ื•ืช ืžื•ืจืฉื” ืชื—ืช ืชื ืื™ ืจื™ืฉื™ื•ืŸ ื–ื” ืื• ืจื™ืฉื™ื•ืŸ ืชื•ืื BY-SA (ื›ืžื•ื’ื“ืจ ื‘ืกืขื™ืฃ 1(ื’)).
ืกืขื™ืฃ 5 -- ืื—ืจื™ื•ืช ื›ืœืœื™ืช.
ืืœื ืื ื›ืŸ ืžื•ืกื›ื ืื—ืจืช ื‘ื›ืชื‘, ื”ืžื•ืจืฉื” ืžืกืคืง ืืช ื”ื—ื•ืžืจ ื”ืžื•ืจืฉื” ื›ืคื™ ืฉื”ื•ื, ืœืœื ืื—ืจื™ื•ืช ืžื›ืœ ืกื•ื’, ืžืคื•ืจืฉืช ืื• ืžืฉืชืžืขืช, ื›ื•ืœืœ, ืืš ืœื ืžื•ื’ื‘ืœ, ืื—ืจื™ื•ืช ืœืกื—ื™ืจื•ืช, ื”ืชืืžื” ืœืžื˜ืจื” ืžืกื•ื™ืžืช, ืื™-ื”ืคืจื”, ืื• ื”ื™ืขื“ืจ ืคื’ืžื™ื ื ืกืชืจื™ื ืื• ืื—ืจื™ื, ื“ื™ื•ืง, ืื• ื ื•ื›ื—ื•ืช ืื• ื”ื™ืขื“ืจ ืฉื’ื™ืื•ืช, ื‘ื™ืŸ ืื ื ื™ืชืŸ ืœื’ืœื•ืชื ืื• ืœื. ื—ืœืงื™ื ืžืกื•ื™ืžื™ื ืฉืœ ืกืขื™ืฃ ื–ื” ืขืฉื•ื™ื™ื ืฉืœื ืœื—ื•ืœ ื‘ืžืงืจื™ื ืžืกื•ื™ืžื™ื.
ืกืขื™ืฃ 6 -- ืชื ืื™ื ื•ืกื™ื•ื.
ื. ืชืงื•ืคื”. ื”ื–ื›ื•ื™ื•ืช ื”ืžื•ืจืฉื•ืช ืžื•ืขื ืงื•ืช ืœืชืงื•ืคื” ื‘ืœืชื™ ืžื•ื’ื‘ืœืช ืชื—ืช ืชื ืื™ ืจื™ืฉื™ื•ืŸ ื–ื”. ืขื ื–ืืช, ืื ืืชื” ืžืคืจ ืืช ืชื ืื™ ืจื™ืฉื™ื•ืŸ ื–ื”, ื”ื–ื›ื•ื™ื•ืช ื”ืžื•ืจืฉื•ืช ืฉืœืš ืžืกืชื™ื™ืžื•ืช ืื•ื˜ื•ืžื˜ื™ืช.
ื‘. ืกื™ื•ื. ืื ื”ื–ื›ื•ื™ื•ืช ื”ืžื•ืจืฉื•ืช ืฉืœืš ืžืกืชื™ื™ืžื•ืช ืชื—ืช ืกืขื™ืฃ 6(ื), ื”ืŸ ืขืฉื•ื™ื•ืช ืœื”ื™ื•ืช ืžืฉื•ื—ื–ืจื•ืช:
1. ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™ ืื ื”ืžื•ืจืฉื” ืžื•ื“ื™ืข ืœืš ืขืœ ื”ืคืจื”, ื‘ืชื ืื™ ืฉืืชื” ืžืชืงืŸ ืืช ื”ื”ืคืจื” ืชื•ืš 30 ื™ืžื™ื ืžื™ื•ื ื”ื”ื•ื“ืขื”;
2. ืขืœ ื™ื“ื™ ื”ืžื•ืจืฉื” ื‘ืžืคื•ืจืฉ.
ื’. ื”ืžืฉืš. ืกืขื™ืคื™ื 1, 5, 6, 7, ื•-8 ื ืฉืืจื™ื ื‘ืชื•ืงืฃ ืœืื—ืจ ืกื™ื•ื ืจื™ืฉื™ื•ืŸ ื–ื”.
ื“. ืื™ืŸ ื”ื’ื‘ืœื” ืขืœ ื–ื›ื•ื™ื•ืช ืื—ืจื•ืช. ืกื™ื•ื ืจื™ืฉื™ื•ืŸ ื–ื” ืื™ื ื• ืžื’ื‘ื™ืœ ืืช ื–ื›ื•ื™ื•ืชื™ืš ืชื—ืช ื›ืœ ื—ืจื™ื’ ืื• ื”ื’ื‘ืœื” ืขืœ ื–ื›ื•ื™ื•ืช ื™ื•ืฆืจื™ื ืื• ื–ื›ื•ื™ื•ืช ื“ื•ืžื•ืช ืื—ืจื•ืช.
ืกืขื™ืฃ 7 -- ืชื ืื™ื ื ื•ืกืคื™ื.
ื. ื”ืžื•ืจืฉื” ืœื ื™ื”ื™ื” ืžื—ื•ื™ื‘ ืื• ืื—ืจืื™ ืชื—ืช ืจื™ืฉื™ื•ืŸ ื–ื” ืœื›ืœ ื ื–ืง ื™ืฉื™ืจ, ืขืงื™ืฃ, ืžื™ื•ื—ื“, ืขื•ื ืฉื™, ืื• ืชื•ืฆืืชื™, ืืœื ืื ื›ืŸ ืžื•ืกื›ื ืื—ืจืช ื‘ื›ืชื‘.
ื‘. ืื ื›ืœ ืชื ืื™ ืจื™ืฉื™ื•ืŸ ื–ื” ื ื—ืฉื‘ ื‘ืœืชื™ ื—ื•ืงื™ ืื• ื‘ืœืชื™ ื ื™ืชืŸ ืœืื›ื™ืคื” ืชื—ืช ื”ื—ื•ืง ื”ื—ืœ, ื”ื•ื ื™ื™ื—ืฉื‘ ื›ืžืชื•ืงืŸ ื‘ืžื™ื“ื” ื”ืžื™ื ื™ืžืœื™ืช ื”ื ื“ืจืฉืช ื›ื“ื™ ืœื”ืคื•ืš ืื•ืชื• ื—ื•ืงื™ ื•ื ื™ืชืŸ ืœืื›ื™ืคื”. ืื ื”ืชื ืื™ ืื™ื ื• ื ื™ืชืŸ ืœืชื™ืงื•ืŸ, ื”ื•ื ื™ื™ื—ืฉื‘ ื›ืœื ื ื›ืœืœ ืžืจื™ืฉื™ื•ืŸ ื–ื” ืžื‘ืœื™ ืœื”ืฉืคื™ืข ืขืœ ืชื•ืงืฃ ื”ืชื ืื™ื ื”ื ื•ืชืจื™ื.
ื’. ืื™ืŸ ื•ื™ืชื•ืจ. ืฉื•ื ืชื ืื™ ืื• ืชื ืื™ ืฉืœ ืจื™ืฉื™ื•ืŸ ื–ื” ืœื ื™ื™ื—ืฉื‘ ื›ื•ื•ื™ืชื•ืจ ื•ืœื ื™ื™ื—ืฉื‘ ื›ื•ื•ื™ืชื•ืจ ืขืœ ื›ืœ ื”ืคืจื” ืขืชื™ื“ื™ืช ืฉืœ ืื•ืชื• ืชื ืื™ ืื• ืชื ืื™.
ืกืขื™ืฃ 8 -- ืคืจืฉื ื•ืช.
ื. ืจื™ืฉื™ื•ืŸ ื–ื” ืื™ื ื• ืžืคื—ื™ืช, ืžื’ื‘ื™ืœ, ืื• ืžื˜ื™ืœ ืžื’ื‘ืœื•ืช ืขืœ ื›ืœ ื—ืจื™ื’ ืื• ื”ื’ื‘ืœื” ืขืœ ื–ื›ื•ื™ื•ืช ื™ื•ืฆืจื™ื ืื• ื–ื›ื•ื™ื•ืช ื“ื•ืžื•ืช ืื—ืจื•ืช ื”ื—ืœื•ืช ืขืœ ื”ืฉื™ืžื•ืฉ ืฉืœืš ื‘ื—ื•ืžืจ ื”ืžื•ืจืฉื”.
ื‘. ืจื™ืฉื™ื•ืŸ ื–ื” ื™ืคื•ืจืฉ ืขืœ ืคื™ ื”ื—ื•ืง ื”ื—ืœ, ืœืœื ืงืฉืจ ืœื›ืœ ืขืงืจื•ื ื•ืช ืกืชื™ืจื” ืฉืœ ื—ื•ืงื™ื.
ื–ื›ื•ื™ื•ืช, ื•ืื– ืžืกื“ ื”ื ืชื•ื ื™ื ืฉื‘ื• ื™ืฉ ืœืš ื–ื›ื•ื™ื•ืช ืžืกื“ ื ืชื•ื ื™ื ื™ื™ื—ื•ื“ื™ื•ืช (Sui Generis Database Rights) ืืš ืœื ืืช ื”ืชื›ื ื™ื ื”ืื™ืฉื™ื™ื ืฉืœื•, ื ื—ืฉื‘ ื›ื—ื•ืžืจ ืžื•ืชืื,
ื›ื•ืœืœ ืœืฆื•ืจืš ืกืขื™ืฃ 3(b); ื•
ื’. ืขืœื™ืš ืœืขืžื•ื“ ื‘ืชื ืื™ื ืฉื‘ืกืขื™ืฃ 3(a) ืื ืืชื” ืžืฉืชืฃ ืืช ื›ืœ ืื• ื—ืœืง ืžืฉืžืขื•ืชื™ ืžืชื›ื ื™ ืžืกื“ ื”ื ืชื•ื ื™ื.
ืœืžืขืŸ ื”ืกืจ ืกืคืง, ืกืขื™ืฃ 4 ื–ื” ืžืฉืœื™ื ื•ืื™ื ื• ืžื—ืœื™ืฃ ืืช ื”ืชื—ื™ื™ื‘ื•ื™ื•ืชื™ืš ืชื—ืช ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื” ื›ืืฉืจ ื”ื–ื›ื•ื™ื•ืช ื”ืžื•ืจืฉื•ืช ื›ื•ืœืœื•ืช ื–ื›ื•ื™ื•ืช ื™ื•ืฆืจื™ื ื•ื–ื›ื•ื™ื•ืช ื“ื•ืžื•ืช ืื—ืจื•ืช.
ืกืขื™ืฃ 5 -- ื›ืชื‘ ื•ื™ืชื•ืจ ืขืœ ืื—ืจื™ื•ืช ื•ื”ื’ื‘ืœืช ืื—ืจื™ื•ืช.
ื. ืืœื ืื ื›ืŸ ื”ื•ืกื›ื ืื—ืจืช ื‘ื ืคืจื“ ืขืœ ื™ื“ื™ ืžืขื ื™ืง ื”ืจื™ืฉื™ื•ืŸ, ื›ื›ืœ ื”ืืคืฉืจ, ืžืขื ื™ืง ื”ืจื™ืฉื™ื•ืŸ ืžืฆื™ืข ืืช ื”ื—ื•ืžืจ ื”ืžื•ืจืฉื” ื›ืคื™ ืฉื”ื•ื ื•ื›ืคื™ ืฉื”ื•ื ื–ืžื™ืŸ, ื•ืื™ื ื• ื ื•ืชืŸ ื”ืฆื”ืจื•ืช ืื• ืื—ืจื™ื•ืช ืžื›ืœ ืกื•ื’ ืฉื”ื•ื ื‘ื ื•ื’ืข ืœื—ื•ืžืจ ื”ืžื•ืจืฉื”, ื‘ื™ืŸ ืื ืžืคื•ืจืฉื•ืช, ืžืฉืชืžืขื•ืช, ืกื˜ื˜ื•ื˜ื•ืจื™ื•ืช ืื• ืื—ืจื•ืช. ื–ื” ื›ื•ืœืœ, ืœืœื ื”ื’ื‘ืœื”, ืื—ืจื™ื•ืช ืขืœ ื›ื•ืชืจืช, ืกื—ื™ืจื•ืช, ื”ืชืืžื” ืœืžื˜ืจื” ืžืกื•ื™ืžืช, ืื™-ื”ืคืจื”, ื”ื™ืขื“ืจ ืคื’ืžื™ื ืกืžื•ื™ื™ื ืื• ืื—ืจื™ื, ื“ื™ื•ืง, ืื• ื ื•ื›ื—ื•ืช ืื• ื”ื™ืขื“ืจ ืฉื’ื™ืื•ืช, ื‘ื™ืŸ ืื ื™ื“ื•ืขื•ืช ืื• ื ื™ืชื ื•ืช ืœื’ื™ืœื•ื™. ื‘ืžืงื•ืžื•ืช ืฉื‘ื”ื ื›ืชื‘ ื•ื™ืชื•ืจ ืขืœ ืื—ืจื™ื•ืช ืื™ื ื• ืžื•ืชืจ ื‘ืžืœื•ืื• ืื• ื‘ื—ืœืงื•, ื›ืชื‘ ื•ื™ืชื•ืจ ื–ื” ืขืฉื•ื™ ืฉืœื ืœื—ื•ืœ ืขืœื™ืš.
ื‘. ื›ื›ืœ ื”ืืคืฉืจ, ื‘ืฉื•ื ืžืงืจื” ืžืขื ื™ืง ื”ืจื™ืฉื™ื•ืŸ ืœื ื™ื”ื™ื” ืื—ืจืื™ ื›ืœืคื™ืš ืขืœ ืคื™ ื›ืœ ืชื™ืื•ืจื™ื” ืžืฉืคื˜ื™ืช (ื›ื•ืœืœ, ืœืœื ื”ื’ื‘ืœื”, ืจืฉืœื ื•ืช) ืื• ืื—ืจืช ืขืœ ื›ืœ ื”ืคืกื“ื™ื ื™ืฉื™ืจื™ื, ืžื™ื•ื—ื“ื™ื, ืขืงื™ืคื™ื, ืžืงืจื™ื™ื, ืชื•ืฆืืชื™ื™ื, ืขื•ื ืฉื™ื™ื, ื“ื•ื’ืžืชื™ื™ื ืื• ืื—ืจื™ื, ืขืœื•ื™ื•ืช, ื”ื•ืฆืื•ืช ืื• ื ื–ืงื™ื ื”ื ื•ื‘ืขื™ื ืžืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื” ืื• ืžืฉื™ืžื•ืฉ ื‘ื—ื•ืžืจ ื”ืžื•ืจืฉื”, ื’ื ืื ืžืขื ื™ืง ื”ืจื™ืฉื™ื•ืŸ ื”ื•ื–ื”ืจ ืขืœ ื”ืืคืฉืจื•ืช ืฉืœ ื”ืคืกื“ื™ื, ืขืœื•ื™ื•ืช, ื”ื•ืฆืื•ืช ืื• ื ื–ืงื™ื ื›ืืœื”. ื‘ืžืงื•ืžื•ืช ืฉื‘ื”ื ื”ื’ื‘ืœืช ืื—ืจื™ื•ืช ืื™ื ื” ืžื•ืชืจืช ื‘ืžืœื•ืื” ืื• ื‘ื—ืœืงื”, ื”ื’ื‘ืœื” ื–ื• ืขืฉื•ื™ื” ืฉืœื ืœื—ื•ืœ ืขืœื™ืš.
ื’. ื›ืชื‘ ื”ื•ื•ื™ืชื•ืจ ืขืœ ืื—ืจื™ื•ืช ื•ื”ื’ื‘ืœืช ื”ืื—ืจื™ื•ืช ื”ืžื•ืฆื’ื™ื ืœืขื™ืœ ื™ืคื•ืจืฉื• ื‘ืื•ืคืŸ ืฉืžืงืจื‘ ื›ื›ืœ ื”ืืคืฉืจ ืœื•ื•ื™ืชื•ืจ ืžื•ื—ืœื˜ ืขืœ ื›ืœ ืื—ืจื™ื•ืช.
ืกืขื™ืฃ 6 -- ืชืงื•ืคื” ื•ืกื™ื•ื.
ื. ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื” ื—ืœ ืขืœ ืชืงื•ืคืช ื–ื›ื•ื™ื•ืช ื”ื™ื•ืฆืจื™ื ื•ื–ื›ื•ื™ื•ืช ื“ื•ืžื•ืช ื”ืžื•ืจืฉื•ืช ื›ืืŸ. ืขื ื–ืืช, ืื ืื™ื ืš ืขื•ืžื“ ื‘ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื”, ื–ื›ื•ื™ื•ืชื™ืš ืชื—ืช ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื” ืžืกืชื™ื™ืžื•ืช ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™.
ื‘. ื›ืืฉืจ ื–ื›ื•ืชืš ืœื”ืฉืชืžืฉ ื‘ื—ื•ืžืจ ื”ืžื•ืจืฉื” ื”ืกืชื™ื™ืžื” ืชื—ืช ืกืขื™ืฃ 6(a), ื”ื™ื ืžืชื—ื“ืฉืช:
1. ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™ ื”ื—ืœ ืžืชืืจื™ืš ืชื™ืงื•ืŸ ื”ื”ืคืจื”, ื‘ืชื ืื™ ืฉื”ื™ื ืชื•ืงื ื” ืชื•ืš 30 ื™ืžื™ื ืžื’ื™ืœื•ื™ ื”ื”ืคืจื”; ืื•
2. ืขื ื—ื™ื“ื•ืฉ ืžืคื•ืจืฉ ืขืœ ื™ื“ื™ ืžืขื ื™ืง ื”ืจื™ืฉื™ื•ืŸ.
ืœืžืขืŸ ื”ืกืจ ืกืคืง, ืกืขื™ืฃ 6(b) ื–ื” ืื™ื ื• ืžืฉืคื™ืข ืขืœ ื›ืœ ื–ื›ื•ืช ืฉื™ืฉ ืœืžืขื ื™ืง ื”ืจื™ืฉื™ื•ืŸ ืœื‘ืงืฉ ืชืจื•ืคื•ืช ืœื”ืคืจื•ืชื™ืš ืฉืœ ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื”.
ื’. ืœืžืขืŸ ื”ืกืจ ืกืคืง, ืžืขื ื™ืง ื”ืจื™ืฉื™ื•ืŸ ืจืฉืื™ ื’ื ืœื”ืฆื™ืข ืืช ื”ื—ื•ืžืจ ื”ืžื•ืจืฉื” ืชื—ืช ืชื ืื™ื ืื• ืชื ืื™ื ื ืคืจื“ื™ื ืื• ืœื”ืคืกื™ืง ืœื”ืคื™ืฅ ืืช ื”ื—ื•ืžืจ ื”ืžื•ืจืฉื” ื‘ื›ืœ ืขืช; ืขื ื–ืืช, ืคืขื•ืœื” ื–ื• ืœื ืชืกื™ื™ื ืืช ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื”.
ื“. ืกืขื™ืคื™ื 1, 5, 6, 7 ื•-8 ื ืฉืืจื™ื ื‘ืชื•ืงืฃ ืœืื—ืจ ืกื™ื•ื ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื”.
ืกืขื™ืฃ 7 -- ืชื ืื™ื ื•ื”ื’ื‘ืœื•ืช ื ื•ืกืคื™ื.
ื. ืžืขื ื™ืง ื”ืจื™ืฉื™ื•ืŸ ืœื ื™ื”ื™ื” ืžื—ื•ื™ื‘ ืขืœ ื™ื“ื™ ืชื ืื™ื ืื• ื”ื’ื‘ืœื•ืช ื ื•ืกืคื™ื ืื• ืฉื•ื ื™ื ืฉื”ื•ืขื‘ืจื• ืขืœ ื™ื“ืš ืืœื ืื ื›ืŸ ื”ื•ืกื›ื ื‘ืžืคื•ืจืฉ.
ื‘. ื›ืœ ื”ืกื“ืจื™ื, ื”ื‘ื ื•ืช ืื• ื”ืกื›ืžื™ื ื‘ื ื•ื’ืข ืœื—ื•ืžืจ ื”ืžื•ืจืฉื” ืฉืื™ื ื ืžืฆื•ื™ื ื™ื ื›ืืŸ ื”ื ื ืคืจื“ื™ื ื•ืขืฆืžืื™ื™ื ืžื”ืชื ืื™ื ื•ื”ื”ื’ื‘ืœื•ืช ืฉืœ ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื”.
ืกืขื™ืฃ 8 -- ืคืจืฉื ื•ืช.
ื. ืœืžืขืŸ ื”ืกืจ ืกืคืง, ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื” ืื™ื ื•, ื•ืœื ื™ืคื•ืจืฉ ื›ืžืฆืžืฆื, ืžื’ื‘ื™ืœ, ืื• ืžื˜ื™ืœ ืชื ืื™ื ืขืœ ื›ืœ ืฉื™ืžื•ืฉ ื‘ื—ื•ืžืจ ื”ืžื•ืจืฉื” ืฉื ื™ืชืŸ ืœื‘ืฆืข ื‘ืื•ืคืŸ ื—ื•ืงื™ ืœืœื ืจืฉื•ืช ืชื—ืช ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื”.
ื‘. ื›ื›ืœ ื”ืืคืฉืจ, ืื ื›ืœ ื”ื•ืจืื” ืฉืœ ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื” ื ื—ืฉื‘ืช ื›ื‘ืœืชื™ ื ื™ืชื ืช ืœืื›ื™ืคื”, ื”ื™ื ืชืชื•ืงืŸ ื‘ืื•ืคืŸ ืื•ื˜ื•ืžื˜ื™ ืœืžื™ื ื™ืžื•ื ื”ื ื“ืจืฉ ื›ื“ื™ ืœื”ืคื•ืš ืื•ืชื” ืœืื›ื™ืคื”. ืื ื”ื”ื•ืจืื” ืื™ื ื” ื ื™ืชื ืช ืœืชื™ืงื•ืŸ, ื”ื™ื ืชื•ืคืจื“ ืžืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื” ืžื‘ืœื™ ืœื”ืฉืคื™ืข ืขืœ ืื›ื™ืคืช ื”ืชื ืื™ื ื•ื”ื”ื’ื‘ืœื•ืช ื”ื ื•ืชืจื™ื.
ื’. ืฉื•ื ืชื ืื™ ืื• ื”ื’ื‘ืœื” ืฉืœ ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื” ืœื ื™ื•ื•ื™ืชืจื• ื•ืฉื•ื ืื™-ืขืžื™ื“ื” ืœื ืชืชืงื‘ืœ ืืœื ืื ื›ืŸ ื”ื•ืกื›ื ื‘ืžืคื•ืจืฉ ืขืœ ื™ื“ื™ ืžืขื ื™ืง ื”ืจื™ืฉื™ื•ืŸ.
ื“. ืฉื•ื ื“ื‘ืจ ื‘ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ื–ื” ืื™ื ื• ืžื”ื•ื•ื” ืื• ืขืฉื•ื™ ืœื”ืชืคืจืฉ ื›ื”ื’ื‘ืœื” ืื• ื•ื•ื™ืชื•ืจ ืขืœ ื›ืœ ื–ื›ื•ื™ื•ืช ื™ืชืจ ื•ื—ืกื™ื ื•ื™ื•ืช ื”ื—ืœื•ืช ืขืœ ืžืขื ื™ืง ื”ืจื™ืฉื™ื•ืŸ ืื• ืขืœื™ืš, ื›ื•ืœืœ ืžืคื ื™ ืชื”ืœื™ื›ื™ื ืžืฉืคื˜ื™ื™ื ืฉืœ ื›ืœ ืชื—ื•ื ืฉื™ืคื•ื˜ ืื• ืกืžื›ื•ืช.
=======================================================================
Creative Commons ืื™ื ื” ืฆื“ ืœืจื™ืฉื™ื•ื ื•ืช ื”ืฆื™ื‘ื•ืจื™ื™ื ืฉืœื”. ืขื ื–ืืช, Creative Commons ืขืฉื•ื™ื” ืœื‘ื—ื•ืจ ืœื”ื—ื™ืœ ืื—ื“ ืžื”ืจื™ืฉื™ื•ื ื•ืช ื”ืฆื™ื‘ื•ืจื™ื™ื ืฉืœื” ืขืœ ื—ื•ืžืจ ืฉื”ื™ื ืžืคืจืกืžืช ื•ื‘ืžืงืจื™ื ืืœื” ืชื™ื—ืฉื‘ ื›"ืžืขื ื™ืง ื”ืจื™ืฉื™ื•ืŸ". ื”ื˜ืงืกื˜ ืฉืœ ืจื™ืฉื™ื•ื ื•ืช ื”ืฆื™ื‘ื•ืจื™ื™ื ืฉืœ Creative Commons ืžื•ืงื“ืฉ ืœื ื—ืœืช ื”ื›ืœืœ ืชื—ืช CC0 Public Domain Dedication. ืœืžืขื˜ ืœืžื˜ืจื•ืช ืžื•ื’ื‘ืœื•ืช ืฉืœ ืฆื™ื•ืŸ ืฉื—ื•ืžืจ ืžืฉื•ืชืฃ ืชื—ืช ืจื™ืฉื™ื•ืŸ ืฆื™ื‘ื•ืจื™ ืฉืœ Creative Commons ืื• ื›ืคื™ ืฉืžื•ืชืจ ืื—ืจืช ืขืœ ื™ื“ื™ ื”ืžื“ื™ื ื™ื•ืช ืฉืœ Creative Commons ืฉืคื•ืจืกืžื” ื‘ื›ืชื•ื‘ืช creativecommons.org/policies, Creative Commons ืื™ื ื” ืžืืฉืจืช ืืช ื”ืฉื™ืžื•ืฉ ื‘ืกื™ืžืŸ ื”ืžืกื—ืจื™ "Creative Commons" ืื• ื›ืœ ืกื™ืžืŸ ืžืกื—ืจื™ ืื• ืœื•ื’ื• ืื—ืจ ืฉืœ Creative Commons ืœืœื ื”ืกื›ืžื” ื›ืชื•ื‘ื” ืžืจืืฉ, ื›ื•ืœืœ, ืœืœื ื”ื’ื‘ืœื”, ื‘ืงืฉืจ ืขื ื›ืœ ืฉื™ื ื•ื™ ืœื ืžื•ืจืฉื” ืฉืœ ืื—ื“ ืžื”ืจื™ืฉื™ื•ื ื•ืช ื”ืฆื™ื‘ื•ืจื™ื™ื ืฉืœื” ืื• ื›ืœ ื”ืกื“ืจื™ื, ื”ื‘ื ื•ืช ืื• ื”ืกื›ืžื™ื ื‘ื ื•ื’ืข ืœืฉื™ืžื•ืฉ ื‘ื—ื•ืžืจ ืžื•ืจืฉื”. ืœืžืขืŸ ื”ืกืจ ืกืคืง, ืคืกืงื” ื–ื• ืื™ื ื” ื—ืœืง ืžื”ืจื™ืฉื™ื•ื ื•ืช ื”ืฆื™ื‘ื•ืจื™ื™ื.
ื ื™ืชืŸ ืœื™ืฆื•ืจ ืงืฉืจ ืขื Creative Commons ื‘ื›ืชื•ื‘ืช creativecommons.org.
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,21 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "a88d5918c1b9da69a40d917a0840c497",
"translation_date": "2025-09-05T20:01:14+00:00",
"source_file": "sketchnotes/README.md",
"language_code": "he"
}
-->
ื›ืœ ื”ืกืงืฆ'ื ื•ื˜ื™ื ืฉืœ ืชื›ื ื™ืช ื”ืœื™ืžื•ื“ื™ื ื–ืžื™ื ื™ื ืœื”ื•ืจื“ื” ื›ืืŸ.
๐Ÿ–จ ืœื”ื“ืคืกื” ื‘ืื™ื›ื•ืช ื’ื‘ื•ื”ื”, ื’ืจืกืื•ืช TIFF ื–ืžื™ื ื•ืช ื‘-[ืžืื’ืจ ื”ื–ื”](https://github.com/girliemac/a-picture-is-worth-a-1000-words/tree/main/ml/tiff).
๐ŸŽจ ื ื•ืฆืจ ืขืœ ื™ื“ื™: [Tomomi Imura](https://github.com/girliemac) (ื˜ื•ื•ื™ื˜ืจ: [@girlie_mac](https://twitter.com/girlie_mac))
[![CC BY-SA 4.0](https://img.shields.io/badge/License-CC%20BY--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-sa/4.0/)
---
**ื›ืชื‘ ื•ื™ืชื•ืจ**:
ืžืกืžืš ื–ื” ืชื•ืจื’ื ื‘ืืžืฆืขื•ืช ืฉื™ืจื•ืช ืชืจื’ื•ื ืžื‘ื•ืกืก ื‘ื™ื ื” ืžืœืื›ื•ืชื™ืช [Co-op Translator](https://github.com/Azure/co-op-translator). ืœืžืจื•ืช ืฉืื ื• ืฉื•ืืคื™ื ืœื“ื™ื•ืง, ื™ืฉ ืœืงื—ืช ื‘ื—ืฉื‘ื•ืŸ ืฉืชืจื’ื•ืžื™ื ืื•ื˜ื•ืžื˜ื™ื™ื ืขืฉื•ื™ื™ื ืœื”ื›ื™ืœ ืฉื’ื™ืื•ืช ืื• ืื™ ื“ื™ื•ืงื™ื. ื”ืžืกืžืš ื”ืžืงื•ืจื™ ื‘ืฉืคืชื• ื”ืžืงื•ืจื™ืช ืฆืจื™ืš ืœื”ื™ื—ืฉื‘ ื›ืžืงื•ืจ ื”ืกืžื›ื•ืชื™. ืขื‘ื•ืจ ืžื™ื“ืข ืงืจื™ื˜ื™, ืžื•ืžืœืฅ ืœื”ืฉืชืžืฉ ื‘ืชืจื’ื•ื ืžืงืฆื•ืขื™ ืขืœ ื™ื“ื™ ืื“ื. ืื™ื ื ื• ื ื•ืฉืื™ื ื‘ืื—ืจื™ื•ืช ืœืื™ ื”ื‘ื ื•ืช ืื• ืœืคืจืฉื ื•ื™ื•ืช ืฉื’ื•ื™ื•ืช ื”ื ื•ื‘ืขื•ืช ืžืฉื™ืžื•ืฉ ื‘ืชืจื’ื•ื ื–ื”.

@ -0,0 +1,159 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "69389392fa6346e0dfa30f664b7b6fec",
"translation_date": "2025-09-05T19:39:30+00:00",
"source_file": "1-Introduction/1-intro-to-ML/README.md",
"language_code": "id"
}
-->
# Pengantar Pembelajaran Mesin
## [Kuis Pra-Pelajaran](https://ff-quizzes.netlify.app/en/ml/)
---
[![ML untuk Pemula - Pengantar Pembelajaran Mesin untuk Pemula](https://img.youtube.com/vi/6mSx_KJxcHI/0.jpg)](https://youtu.be/6mSx_KJxcHI "ML untuk Pemula - Pengantar Pembelajaran Mesin untuk Pemula")
> ๐ŸŽฅ Klik gambar di atas untuk video singkat yang membahas pelajaran ini.
Selamat datang di kursus pembelajaran mesin klasik untuk pemula! Baik Anda benar-benar baru dalam topik ini, atau seorang praktisi ML berpengalaman yang ingin menyegarkan pengetahuan di area tertentu, kami senang Anda bergabung dengan kami! Kami ingin menciptakan tempat awal yang ramah untuk studi ML Anda dan akan senang mengevaluasi, merespons, dan mengintegrasikan [masukan Anda](https://github.com/microsoft/ML-For-Beginners/discussions).
[![Pengantar ML](https://img.youtube.com/vi/h0e2HAPTGF4/0.jpg)](https://youtu.be/h0e2HAPTGF4 "Pengantar ML")
> ๐ŸŽฅ Klik gambar di atas untuk video: John Guttag dari MIT memperkenalkan pembelajaran mesin
---
## Memulai dengan Pembelajaran Mesin
Sebelum memulai kurikulum ini, Anda perlu memastikan komputer Anda siap untuk menjalankan notebook secara lokal.
- **Konfigurasikan komputer Anda dengan video ini**. Gunakan tautan berikut untuk mempelajari [cara menginstal Python](https://youtu.be/CXZYvNRIAKM) di sistem Anda dan [menyiapkan editor teks](https://youtu.be/EU8eayHWoZg) untuk pengembangan.
- **Pelajari Python**. Disarankan juga untuk memiliki pemahaman dasar tentang [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), bahasa pemrograman yang berguna bagi ilmuwan data dan yang akan kita gunakan dalam kursus ini.
- **Pelajari Node.js dan JavaScript**. Kami juga menggunakan JavaScript beberapa kali dalam kursus ini saat membangun aplikasi web, jadi Anda perlu menginstal [node](https://nodejs.org) dan [npm](https://www.npmjs.com/), serta memiliki [Visual Studio Code](https://code.visualstudio.com/) untuk pengembangan Python dan JavaScript.
- **Buat akun GitHub**. Karena Anda menemukan kami di [GitHub](https://github.com), Anda mungkin sudah memiliki akun, tetapi jika belum, buatlah satu akun dan kemudian fork kurikulum ini untuk digunakan sendiri. (Jangan ragu untuk memberi kami bintang juga ๐Ÿ˜Š)
- **Jelajahi Scikit-learn**. Kenali [Scikit-learn](https://scikit-learn.org/stable/user_guide.html), kumpulan pustaka ML yang akan kita referensikan dalam pelajaran ini.
---
## Apa itu Pembelajaran Mesin?
Istilah 'pembelajaran mesin' adalah salah satu istilah yang paling populer dan sering digunakan saat ini. Ada kemungkinan besar Anda pernah mendengar istilah ini setidaknya sekali jika Anda memiliki sedikit keterkaitan dengan teknologi, tidak peduli di bidang apa Anda bekerja. Namun, mekanisme pembelajaran mesin adalah misteri bagi kebanyakan orang. Bagi pemula pembelajaran mesin, subjek ini kadang-kadang bisa terasa membingungkan. Oleh karena itu, penting untuk memahami apa sebenarnya pembelajaran mesin itu, dan mempelajarinya langkah demi langkah melalui contoh praktis.
---
## Kurva Hype
![ml hype curve](../../../../1-Introduction/1-intro-to-ML/images/hype.png)
> Google Trends menunjukkan 'kurva hype' terbaru dari istilah 'pembelajaran mesin'
---
## Alam Semesta yang Misterius
Kita hidup di alam semesta yang penuh dengan misteri yang menakjubkan. Ilmuwan hebat seperti Stephen Hawking, Albert Einstein, dan banyak lainnya telah mendedikasikan hidup mereka untuk mencari informasi bermakna yang mengungkap misteri dunia di sekitar kita. Ini adalah kondisi manusia untuk belajar: seorang anak manusia belajar hal-hal baru dan mengungkap struktur dunia mereka tahun demi tahun saat mereka tumbuh dewasa.
---
## Otak Anak
Otak dan indra seorang anak merasakan fakta-fakta di sekitarnya dan secara bertahap mempelajari pola-pola tersembunyi dalam kehidupan yang membantu anak tersebut menyusun aturan logis untuk mengenali pola-pola yang telah dipelajari. Proses pembelajaran otak manusia membuat manusia menjadi makhluk hidup paling canggih di dunia ini. Belajar secara terus-menerus dengan menemukan pola-pola tersembunyi dan kemudian berinovasi berdasarkan pola-pola tersebut memungkinkan kita untuk menjadi lebih baik sepanjang hidup kita. Kapasitas belajar dan kemampuan berkembang ini terkait dengan konsep yang disebut [plastisitas otak](https://www.simplypsychology.org/brain-plasticity.html). Secara dangkal, kita dapat menarik beberapa kesamaan motivasi antara proses pembelajaran otak manusia dan konsep pembelajaran mesin.
---
## Otak Manusia
[Otak manusia](https://www.livescience.com/29365-human-brain.html) merasakan hal-hal dari dunia nyata, memproses informasi yang dirasakan, membuat keputusan rasional, dan melakukan tindakan tertentu berdasarkan keadaan. Inilah yang kita sebut berperilaku secara cerdas. Ketika kita memprogram tiruan dari proses perilaku cerdas ke sebuah mesin, itu disebut kecerdasan buatan (AI).
---
## Beberapa Terminologi
Meskipun istilah-istilah ini dapat membingungkan, pembelajaran mesin (ML) adalah subset penting dari kecerdasan buatan. **ML berkaitan dengan penggunaan algoritma khusus untuk menemukan informasi bermakna dan menemukan pola tersembunyi dari data yang dirasakan untuk mendukung proses pengambilan keputusan rasional**.
---
## AI, ML, Pembelajaran Mendalam
![AI, ML, pembelajaran mendalam, ilmu data](../../../../1-Introduction/1-intro-to-ML/images/ai-ml-ds.png)
> Diagram yang menunjukkan hubungan antara AI, ML, pembelajaran mendalam, dan ilmu data. Infografik oleh [Jen Looper](https://twitter.com/jenlooper) terinspirasi oleh [grafik ini](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)
---
## Konsep yang Akan Dibahas
Dalam kurikulum ini, kita akan membahas hanya konsep inti pembelajaran mesin yang harus diketahui oleh pemula. Kita akan membahas apa yang kita sebut 'pembelajaran mesin klasik' terutama menggunakan Scikit-learn, pustaka yang sangat baik yang banyak digunakan oleh siswa untuk mempelajari dasar-dasarnya. Untuk memahami konsep yang lebih luas tentang kecerdasan buatan atau pembelajaran mendalam, pengetahuan dasar yang kuat tentang pembelajaran mesin sangat penting, dan kami ingin menyediakannya di sini.
---
## Dalam Kursus Ini Anda Akan Belajar:
- konsep inti pembelajaran mesin
- sejarah ML
- ML dan keadilan
- teknik regresi ML
- teknik klasifikasi ML
- teknik pengelompokan ML
- teknik pemrosesan bahasa alami ML
- teknik peramalan deret waktu ML
- pembelajaran penguatan
- aplikasi dunia nyata untuk ML
---
## Apa yang Tidak Akan Dibahas
- pembelajaran mendalam
- jaringan saraf
- AI
Untuk pengalaman belajar yang lebih baik, kami akan menghindari kompleksitas jaringan saraf, 'pembelajaran mendalam' - pembangunan model berlapis-lapis menggunakan jaringan saraf - dan AI, yang akan kita bahas dalam kurikulum yang berbeda. Kami juga akan menawarkan kurikulum ilmu data yang akan datang untuk fokus pada aspek tersebut dari bidang yang lebih besar ini.
---
## Mengapa Mempelajari Pembelajaran Mesin?
Pembelajaran mesin, dari perspektif sistem, didefinisikan sebagai pembuatan sistem otomatis yang dapat mempelajari pola tersembunyi dari data untuk membantu dalam membuat keputusan yang cerdas.
Motivasi ini secara longgar terinspirasi oleh bagaimana otak manusia mempelajari hal-hal tertentu berdasarkan data yang dirasakannya dari dunia luar.
โœ… Pikirkan sejenak mengapa sebuah bisnis ingin mencoba menggunakan strategi pembelajaran mesin dibandingkan dengan membuat mesin berbasis aturan yang dikodekan secara manual.
---
## Aplikasi Pembelajaran Mesin
Aplikasi pembelajaran mesin sekarang hampir ada di mana-mana, dan sama melimpahnya dengan data yang mengalir di sekitar masyarakat kita, yang dihasilkan oleh ponsel pintar, perangkat yang terhubung, dan sistem lainnya. Mengingat potensi besar algoritma pembelajaran mesin mutakhir, para peneliti telah mengeksplorasi kemampuannya untuk menyelesaikan masalah kehidupan nyata yang multi-dimensi dan multi-disiplin dengan hasil yang sangat positif.
---
## Contoh Penerapan ML
**Anda dapat menggunakan pembelajaran mesin dalam berbagai cara**:
- Untuk memprediksi kemungkinan penyakit dari riwayat medis atau laporan pasien.
- Untuk memanfaatkan data cuaca guna memprediksi peristiwa cuaca.
- Untuk memahami sentimen dari sebuah teks.
- Untuk mendeteksi berita palsu guna menghentikan penyebaran propaganda.
Keuangan, ekonomi, ilmu bumi, eksplorasi luar angkasa, teknik biomedis, ilmu kognitif, dan bahkan bidang humaniora telah mengadaptasi pembelajaran mesin untuk menyelesaikan masalah berat yang melibatkan pemrosesan data di domain mereka.
---
## Kesimpulan
Pembelajaran mesin mengotomatisasi proses penemuan pola dengan menemukan wawasan bermakna dari data dunia nyata atau data yang dihasilkan. Ini telah terbukti sangat berharga dalam aplikasi bisnis, kesehatan, dan keuangan, di antara lainnya.
Di masa depan, memahami dasar-dasar pembelajaran mesin akan menjadi keharusan bagi orang-orang dari berbagai bidang karena adopsinya yang luas.
---
# ๐Ÿš€ Tantangan
Gambarkan, di atas kertas atau menggunakan aplikasi online seperti [Excalidraw](https://excalidraw.com/), pemahaman Anda tentang perbedaan antara AI, ML, pembelajaran mendalam, dan ilmu data. Tambahkan beberapa ide tentang masalah yang baik untuk diselesaikan oleh masing-masing teknik ini.
# [Kuis Pasca-Pelajaran](https://ff-quizzes.netlify.app/en/ml/)
---
# Tinjauan & Studi Mandiri
Untuk mempelajari lebih lanjut tentang bagaimana Anda dapat bekerja dengan algoritma ML di cloud, ikuti [Learning Path](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott) ini.
Ikuti [Learning Path](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott) tentang dasar-dasar ML.
---
# Tugas
[Mulai dan jalankan](assignment.md)
---
**Penafian**:
Dokumen ini telah diterjemahkan menggunakan layanan penerjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berusaha untuk memberikan hasil yang akurat, harap diketahui bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang otoritatif. Untuk informasi yang bersifat kritis, disarankan menggunakan jasa penerjemahan profesional oleh manusia. Kami tidak bertanggung jawab atas kesalahpahaman atau penafsiran yang timbul dari penggunaan terjemahan ini.

@ -0,0 +1,23 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "4c4698044bb8af52cfb6388a4ee0e53b",
"translation_date": "2025-09-05T19:40:40+00:00",
"source_file": "1-Introduction/1-intro-to-ML/assignment.md",
"language_code": "id"
}
-->
# Memulai dan Berjalan
## Instruksi
Dalam tugas yang tidak dinilai ini, Anda harus menyegarkan kembali pengetahuan tentang Python dan menyiapkan lingkungan Anda agar dapat menjalankan notebook.
Ikuti [Jalur Pembelajaran Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott), lalu siapkan sistem Anda dengan menonton video pengantar berikut:
https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6
---
**Penafian**:
Dokumen ini telah diterjemahkan menggunakan layanan penerjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berusaha untuk memberikan hasil yang akurat, harap diketahui bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang otoritatif. Untuk informasi yang bersifat kritis, disarankan menggunakan jasa penerjemahan profesional oleh manusia. Kami tidak bertanggung jawab atas kesalahpahaman atau penafsiran yang keliru yang timbul dari penggunaan terjemahan ini.

@ -0,0 +1,164 @@
<!--
CO_OP_TRANSLATOR_METADATA:
{
"original_hash": "6a05fec147e734c3e6bfa54505648e2b",
"translation_date": "2025-09-05T19:42:33+00:00",
"source_file": "1-Introduction/2-history-of-ML/README.md",
"language_code": "id"
}
-->
# Sejarah Pembelajaran Mesin
![Ringkasan Sejarah Pembelajaran Mesin dalam bentuk sketchnote](../../../../sketchnotes/ml-history.png)
> Sketchnote oleh [Tomomi Imura](https://www.twitter.com/girlie_mac)
## [Kuis Pra-Pelajaran](https://ff-quizzes.netlify.app/en/ml/)
---
[![ML untuk Pemula - Sejarah Pembelajaran Mesin](https://img.youtube.com/vi/N6wxM4wZ7V0/0.jpg)](https://youtu.be/N6wxM4wZ7V0 "ML untuk Pemula - Sejarah Pembelajaran Mesin")
> ๐ŸŽฅ Klik gambar di atas untuk video singkat yang membahas pelajaran ini.
Dalam pelajaran ini, kita akan membahas tonggak-tonggak utama dalam sejarah pembelajaran mesin dan kecerdasan buatan.
Sejarah kecerdasan buatan (AI) sebagai bidang ilmu sangat terkait dengan sejarah pembelajaran mesin, karena algoritma dan kemajuan komputasi yang mendasari ML berkontribusi pada pengembangan AI. Penting untuk diingat bahwa, meskipun bidang-bidang ini sebagai area penelitian yang terpisah mulai terbentuk pada tahun 1950-an, [penemuan algoritmik, statistik, matematis, komputasi, dan teknis](https://wikipedia.org/wiki/Timeline_of_machine_learning) yang penting telah ada sebelumnya dan saling tumpang tindih. Faktanya, manusia telah memikirkan pertanyaan-pertanyaan ini selama [ratusan tahun](https://wikipedia.org/wiki/History_of_artificial_intelligence): artikel ini membahas dasar intelektual historis dari gagasan tentang 'mesin yang dapat berpikir.'
---
## Penemuan Penting
- 1763, 1812 [Teorema Bayes](https://wikipedia.org/wiki/Bayes%27_theorem) dan pendahulunya. Teorema ini dan aplikasinya mendasari inferensi, menggambarkan probabilitas suatu peristiwa terjadi berdasarkan pengetahuan sebelumnya.
- 1805 [Teori Kuadrat Terkecil](https://wikipedia.org/wiki/Least_squares) oleh matematikawan Prancis Adrien-Marie Legendre. Teori ini, yang akan Anda pelajari dalam unit Regresi, membantu dalam pencocokan data.
- 1913 [Rantai Markov](https://wikipedia.org/wiki/Markov_chain), dinamai dari matematikawan Rusia Andrey Markov, digunakan untuk menggambarkan urutan kemungkinan peristiwa berdasarkan keadaan sebelumnya.
- 1957 [Perceptron](https://wikipedia.org/wiki/Perceptron) adalah jenis pengklasifikasi linear yang ditemukan oleh psikolog Amerika Frank Rosenblatt yang mendasari kemajuan dalam pembelajaran mendalam.
---
- 1967 [Tetangga Terdekat](https://wikipedia.org/wiki/Nearest_neighbor) adalah algoritma yang awalnya dirancang untuk memetakan rute. Dalam konteks ML, algoritma ini digunakan untuk mendeteksi pola.
- 1970 [Backpropagation](https://wikipedia.org/wiki/Backpropagation) digunakan untuk melatih [jaringan saraf feedforward](https://wikipedia.org/wiki/Feedforward_neural_network).
- 1982 [Jaringan Saraf Rekuren](https://wikipedia.org/wiki/Recurrent_neural_network) adalah jaringan saraf buatan yang berasal dari jaringan saraf feedforward yang menciptakan grafik temporal.
โœ… Lakukan sedikit penelitian. Tanggal apa lagi yang menurut Anda penting dalam sejarah ML dan AI?
---
## 1950: Mesin yang Berpikir
Alan Turing, seorang tokoh luar biasa yang dipilih [oleh publik pada tahun 2019](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century) sebagai ilmuwan terbesar abad ke-20, dianggap membantu meletakkan dasar untuk konsep 'mesin yang dapat berpikir.' Ia menghadapi skeptisisme dan kebutuhan pribadinya akan bukti empiris tentang konsep ini sebagian dengan menciptakan [Tes Turing](https://www.bbc.com/news/technology-18475646), yang akan Anda pelajari dalam pelajaran NLP kami.
---
## 1956: Proyek Penelitian Musim Panas Dartmouth
"Proyek Penelitian Musim Panas Dartmouth tentang kecerdasan buatan adalah peristiwa penting bagi kecerdasan buatan sebagai bidang," dan di sinilah istilah 'kecerdasan buatan' pertama kali diciptakan ([sumber](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth)).
> Setiap aspek pembelajaran atau fitur kecerdasan lainnya pada prinsipnya dapat dijelaskan dengan sangat tepat sehingga sebuah mesin dapat dibuat untuk mensimulasikannya.
---
Peneliti utama, profesor matematika John McCarthy, berharap "untuk melanjutkan berdasarkan dugaan bahwa setiap aspek pembelajaran atau fitur kecerdasan lainnya pada prinsipnya dapat dijelaskan dengan sangat tepat sehingga sebuah mesin dapat dibuat untuk mensimulasikannya." Para peserta termasuk tokoh terkenal lainnya di bidang ini, Marvin Minsky.
Lokakarya ini dianggap telah memulai dan mendorong beberapa diskusi termasuk "kemunculan metode simbolik, sistem yang berfokus pada domain terbatas (sistem pakar awal), dan sistem deduktif versus sistem induktif." ([sumber](https://wikipedia.org/wiki/Dartmouth_workshop)).
---
## 1956 - 1974: "Tahun-tahun Emas"
Dari tahun 1950-an hingga pertengahan '70-an, optimisme tinggi bahwa AI dapat menyelesaikan banyak masalah. Pada tahun 1967, Marvin Minsky dengan percaya diri menyatakan bahwa "Dalam satu generasi ... masalah menciptakan 'kecerdasan buatan' akan secara substansial terpecahkan." (Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall)
Penelitian pemrosesan bahasa alami berkembang pesat, pencarian disempurnakan dan dibuat lebih kuat, dan konsep 'dunia mikro' diciptakan, di mana tugas-tugas sederhana diselesaikan menggunakan instruksi bahasa biasa.
---
Penelitian didanai dengan baik oleh lembaga pemerintah, kemajuan dibuat dalam komputasi dan algoritma, dan prototipe mesin cerdas dibangun. Beberapa mesin ini termasuk:
* [Shakey the robot](https://wikipedia.org/wiki/Shakey_the_robot), yang dapat bermanuver dan memutuskan cara melakukan tugas secara 'cerdas'.
![Shakey, robot cerdas](../../../../1-Introduction/2-history-of-ML/images/shakey.jpg)
> Shakey pada tahun 1972
---
* Eliza, 'chatterbot' awal, dapat berbicara dengan orang dan bertindak sebagai 'terapis' primitif. Anda akan belajar lebih banyak tentang Eliza dalam pelajaran NLP.
![Eliza, bot](../../../../1-Introduction/2-history-of-ML/images/eliza.png)
> Versi Eliza, chatbot
---
* "Blocks world" adalah contoh dunia mikro di mana balok dapat ditumpuk dan diurutkan, dan eksperimen dalam mengajarkan mesin untuk membuat keputusan dapat diuji. Kemajuan yang dibangun dengan pustaka seperti [SHRDLU](https://wikipedia.org/wiki/SHRDLU) membantu mendorong pemrosesan bahasa ke depan.
[![blocks world dengan SHRDLU](https://img.youtube.com/vi/QAJz4YKUwqw/0.jpg)](https://www.youtube.com/watch?v=QAJz4YKUwqw "blocks world dengan SHRDLU")
> ๐ŸŽฅ Klik gambar di atas untuk video: Blocks world dengan SHRDLU
---
## 1974 - 1980: "Musim Dingin AI"
Pada pertengahan 1970-an, menjadi jelas bahwa kompleksitas membuat 'mesin cerdas' telah diremehkan dan janji-janji yang diberikan, mengingat kekuatan komputasi yang tersedia, telah dilebih-lebihkan. Pendanaan mengering dan kepercayaan pada bidang ini melambat. Beberapa masalah yang memengaruhi kepercayaan meliputi:
---
- **Keterbatasan**. Kekuatan komputasi terlalu terbatas.
- **Ledakan kombinatorial**. Jumlah parameter yang perlu dilatih tumbuh secara eksponensial seiring dengan meningkatnya permintaan pada komputer, tanpa evolusi paralel dari kekuatan dan kemampuan komputasi.
- **Kekurangan data**. Kekurangan data menghambat proses pengujian, pengembangan, dan penyempurnaan algoritma.
- **Apakah kita mengajukan pertanyaan yang tepat?**. Pertanyaan yang diajukan mulai dipertanyakan. Peneliti mulai menghadapi kritik terhadap pendekatan mereka:
- Tes Turing dipertanyakan melalui, antara lain, teori 'ruang Cina' yang menyatakan bahwa, "memprogram komputer digital mungkin membuatnya tampak memahami bahasa tetapi tidak dapat menghasilkan pemahaman nyata." ([sumber](https://plato.stanford.edu/entries/chinese-room/))
- Etika memperkenalkan kecerdasan buatan seperti "terapis" ELIZA ke dalam masyarakat diperdebatkan.
---
Pada saat yang sama, berbagai aliran pemikiran AI mulai terbentuk. Sebuah dikotomi muncul antara praktik ["AI berantakan" vs. "AI rapi"](https://wikipedia.org/wiki/Neats_and_scruffies). Laboratorium _berantakan_ mengutak-atik program selama berjam-jam hingga mendapatkan hasil yang diinginkan. Laboratorium _rapi_ "berfokus pada logika dan pemecahan masalah formal". ELIZA dan SHRDLU adalah sistem _berantakan_ yang terkenal. Pada tahun 1980-an, ketika muncul permintaan untuk membuat sistem ML dapat direproduksi, pendekatan _rapi_ secara bertahap menjadi yang terdepan karena hasilnya lebih dapat dijelaskan.
---
## Sistem Pakar 1980-an
Seiring berkembangnya bidang ini, manfaatnya bagi bisnis menjadi lebih jelas, dan pada tahun 1980-an begitu pula proliferasi 'sistem pakar'. "Sistem pakar adalah salah satu bentuk perangkat lunak kecerdasan buatan (AI) yang pertama benar-benar sukses." ([sumber](https://wikipedia.org/wiki/Expert_system)).
Jenis sistem ini sebenarnya _hibrida_, terdiri sebagian dari mesin aturan yang mendefinisikan persyaratan bisnis, dan mesin inferensi yang memanfaatkan sistem aturan untuk menyimpulkan fakta baru.
Era ini juga melihat perhatian yang semakin besar terhadap jaringan saraf.
---
## 1987 - 1993: 'Pendinginan' AI
Proliferasi perangkat keras sistem pakar yang khusus memiliki efek yang tidak menguntungkan karena menjadi terlalu khusus. Munculnya komputer pribadi juga bersaing dengan sistem besar, khusus, dan terpusat ini. Demokratisasi komputasi telah dimulai, dan akhirnya membuka jalan bagi ledakan data besar modern.
---
## 1993 - 2011
Era ini melihat babak baru bagi ML dan AI untuk dapat menyelesaikan beberapa masalah yang sebelumnya disebabkan oleh kurangnya data dan kekuatan komputasi. Jumlah data mulai meningkat pesat dan menjadi lebih tersedia secara luas, baik untuk keuntungan maupun kerugian, terutama dengan munculnya smartphone sekitar tahun 2007. Kekuatan komputasi berkembang secara eksponensial, dan algoritma berevolusi seiring waktu. Bidang ini mulai mencapai kematangan saat masa-masa bebas sebelumnya mulai mengkristal menjadi disiplin yang sebenarnya.
---
## Sekarang
Saat ini pembelajaran mesin dan AI menyentuh hampir setiap bagian dari kehidupan kita. Era ini menyerukan pemahaman yang hati-hati tentang risiko dan dampak potensial dari algoritma ini terhadap kehidupan manusia. Seperti yang dinyatakan oleh Brad Smith dari Microsoft, "Teknologi informasi menimbulkan masalah yang menyentuh inti perlindungan hak asasi manusia fundamental seperti privasi dan kebebasan berekspresi. Masalah-masalah ini meningkatkan tanggung jawab bagi perusahaan teknologi yang menciptakan produk ini. Menurut pandangan kami, masalah ini juga menyerukan regulasi pemerintah yang bijaksana dan pengembangan norma-norma tentang penggunaan yang dapat diterima" ([sumber](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)).
---
Masih harus dilihat apa yang akan terjadi di masa depan, tetapi penting untuk memahami sistem komputer ini serta perangkat lunak dan algoritma yang mereka jalankan. Kami berharap kurikulum ini akan membantu Anda mendapatkan pemahaman yang lebih baik sehingga Anda dapat memutuskan sendiri.
[![Sejarah pembelajaran mendalam](https://img.youtube.com/vi/mTtDfKgLm54/0.jpg)](https://www.youtube.com/watch?v=mTtDfKgLm54 "Sejarah pembelajaran mendalam")
> ๐ŸŽฅ Klik gambar di atas untuk video: Yann LeCun membahas sejarah pembelajaran mendalam dalam kuliah ini
---
## ๐Ÿš€Tantangan
Telusuri salah satu momen sejarah ini dan pelajari lebih lanjut tentang orang-orang di baliknya. Ada karakter-karakter yang menarik, dan tidak ada penemuan ilmiah yang pernah dibuat dalam kekosongan budaya. Apa yang Anda temukan?
## [Kuis Pasca-Pelajaran](https://ff-quizzes.netlify.app/en/ml/)
---
## Tinjauan & Studi Mandiri
Berikut adalah item untuk ditonton dan didengarkan:
[Podcast ini di mana Amy Boyd membahas evolusi AI](http://runasradio.com/Shows/Show/739)
[![Sejarah AI oleh Amy Boyd](https://img.youtube.com/vi/EJt3_bFYKss/0.jpg)](https://www.youtube.com/watch?v=EJt3_bFYKss "Sejarah AI oleh Amy Boyd")
---
## Tugas
[Buat garis waktu](assignment.md)
---
**Penafian**:
Dokumen ini telah diterjemahkan menggunakan layanan penerjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berusaha untuk memberikan hasil yang akurat, harap diingat bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang otoritatif. Untuk informasi yang bersifat kritis, disarankan menggunakan jasa penerjemahan profesional oleh manusia. Kami tidak bertanggung jawab atas kesalahpahaman atau penafsiran yang keliru yang timbul dari penggunaan terjemahan ini.

Some files were not shown because too many files have changed in this diff Show More

Loadingโ€ฆ
Cancel
Save