@ -163,7 +163,7 @@ Our score is **.53**, so right in the middle. This indicates that our data is no
> 🎓 Inertia: K-Means algorithms attempt to choose centroids to minimize 'inertia', "a measure of how internally coherent clusters are."[source](https://scikit-learn.org/stable/modules/clustering.html). The value is appended to the wcss variable on each iteration.
> 🎓 k-means++: In [Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html#k-means) you can use the 'k-means++' optimization, which "initializes the centroids to be (generally) distant from each other, leading to probably better results than random initialization.
> 🎓 k-means++: In [Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html#k-means) you can use the 'k-means++' optimization, which "initializes the centroids to be (generally) distant from each other", leading to probably better results than random initialization.
### Elbow method
@ -173,7 +173,7 @@ Previously, you surmised that, because you have targeted 3 song genres, you shou