From 2944394ed44d5176716a686e05669f0ce5f9e45d Mon Sep 17 00:00:00 2001 From: "localizeflow[bot]" Date: Thu, 29 Jan 2026 17:45:09 +0000 Subject: [PATCH] chore(i18n): sync translations with latest source changes (chunk 2/2, 199 changes) --- .../zh-CN/peter.779730f9ba3a8a8d.webp | Bin 0 -> 62854 bytes ...pie-pumpkins-scatter.d14f9804a53f927e.webp | Bin 0 -> 8842 bytes .../zh-CN/pinch.1b035ec9ba7e0d40.webp | Bin 0 -> 35124 bytes .../zh-CN/poly-results.ee587348f0f1f60b.webp | Bin 0 -> 5680 bytes .../zh-CN/polynomial.8fce4663e7283dfb.webp | Bin 0 -> 32784 bytes .../zh-CN/popular.9c48d84b3386705f.webp | Bin 0 -> 4692 bytes .../price-by-variety.744a2f9925d9bcb4.webp | Bin 0 -> 3994 bytes .../zh-CN/problems.f7fb539ccd80608e.webp | Bin 0 -> 74440 bytes .../pumpkin-classifier.562771f104ad5436.webp | Bin 0 -> 30100 bytes .../pumpkins_catplot_1.c55c409b71fea2ec.webp | Bin 0 -> 6890 bytes .../pumpkins_catplot_2.87a354447880b388.webp | Bin 0 -> 19274 bytes .../zh-CN/r_learners_sm.cd14eb3581a9f28d.webp | Bin 0 -> 18134 bytes .../zh-CN/r_learners_sm.e25fa9c205b3a3f9.webp | Bin 0 -> 17494 bytes .../zh-CN/r_learners_sm.e4a71b113ffbedfe.webp | Bin 0 -> 17694 bytes .../zh-CN/r_learners_sm.f9199f76f1e2e493.webp | Bin 0 -> 18104 bytes .../zh-CN/recipes.186acfa8ed2e8f00.webp | Bin 0 -> 513526 bytes .../zh-CN/recipes.9ad10d8a4056bf89.webp | Bin 0 -> 505736 bytes .../zh-CN/scaled.91897dfbaa26ca4a.webp | Bin 0 -> 6040 bytes .../zh-CN/scaled.e35258ca5cd3d43f.webp | Bin 0 -> 6076 bytes ...tter-dayofyear-color.65790faefbb9d54f.webp | Bin 0 -> 14586 bytes .../scatter-dayofyear.bc171c189c9fd553.webp | Bin 0 -> 12930 bytes .../zh-CN/scatterplot.ad8b356bcbb33be6.webp | Bin 0 -> 13354 bytes .../zh-CN/scatterplot.b6868f44cbd2051c.webp | Bin 0 -> 27616 bytes .../zh-CN/shakey.4dc17819c447c05b.webp | Bin 0 -> 47294 bytes .../zh-CN/sigmoid.8b7ba9d095c789cf.webp | Bin 0 -> 2658 bytes .../zh-CN/slope.f3c9d5910ddbfcf9.webp | Bin 0 -> 11420 bytes .../zh-CN/solvers.5fc648618529e627.webp | Bin 0 -> 34462 bytes .../zh-CN/svm.621ae7b516d678e0.webp | Bin 0 -> 23056 bytes .../zh-CN/swarm.56d253ae80a2c0f5.webp | Bin 0 -> 10540 bytes .../zh-CN/swarm_2.efeacfca536c2b57.webp | Bin 0 -> 15504 bytes .../test-data-predict.8afc47ee7e52874f.webp | Bin 0 -> 9398 bytes .../zh-CN/thai-food.c47a7a7f9f05c218.webp | Bin 0 -> 116000 bytes .../zh-CN/thai.0269dbab2e78bd38.webp | Bin 0 -> 4724 bytes .../zh-CN/tokenization.1641a160c66cd2d9.webp | Bin 0 -> 11098 bytes .../train-data-predict.3c4ef4e78553104f.webp | Bin 0 -> 61954 bytes .../zh-CN/train-test.8928d14e5b91fc94.webp | Bin 0 -> 45268 bytes .../zh-CN/train-test.ead0cecbfc341921.webp | Bin 0 -> 45268 bytes .../train_progress_raw.2adfdf2daea09c59.webp | Bin 0 -> 9314 bytes ...train_progress_runav.c71694a8fa9ab359.webp | Bin 0 -> 15810 bytes .../zh-CN/turntable.f2b86b13c53302dc.webp | Bin 0 -> 37754 bytes .../zh-CN/ufo.9e787f5161da9d4d.webp | Bin 0 -> 434956 bytes .../zh-CN/unruly_data.0eedc7ced92d2d91.webp | Bin 0 -> 104178 bytes .../zh-CN/violin.ffceb68923177011.webp | Bin 0 -> 6618 bytes .../zh-CN/voronoi.1dc1613fb0439b95.webp | Bin 0 -> 14292 bytes .../zh-CN/web-app.4c76450cabe20036.webp | Bin 0 -> 26882 bytes .../zh-CN/wolf.a56d3d4070ca0c79.webp | Bin 0 -> 38514 bytes translations/fa/.co-op-translator.json | 596 ++++ translations/ur/.co-op-translator.json | 596 ++++ translations/zh-CN/.co-op-translator.json | 596 ++++ .../1-Introduction/1-intro-to-ML/README.md | 150 + .../1-intro-to-ML/assignment.md | 14 + .../1-Introduction/2-history-of-ML/README.md | 155 + .../2-history-of-ML/assignment.md | 16 + .../zh-CN/1-Introduction/3-fairness/README.md | 161 + .../1-Introduction/3-fairness/assignment.md | 16 + .../4-techniques-of-ML/README.md | 123 + .../4-techniques-of-ML/assignment.md | 16 + translations/zh-CN/1-Introduction/README.md | 28 + .../zh-CN/2-Regression/1-Tools/README.md | 230 ++ .../zh-CN/2-Regression/1-Tools/assignment.md | 18 + .../zh-CN/2-Regression/1-Tools/notebook.ipynb | 0 .../1-Tools/solution/Julia/README.md | 6 + .../1-Tools/solution/R/lesson_1-R.ipynb | 447 +++ .../1-Tools/solution/notebook.ipynb | 677 ++++ .../zh-CN/2-Regression/2-Data/README.md | 217 ++ .../zh-CN/2-Regression/2-Data/assignment.md | 14 + .../zh-CN/2-Regression/2-Data/notebook.ipynb | 46 + .../2-Data/solution/Julia/README.md | 6 + .../2-Data/solution/R/lesson_2-R.ipynb | 670 ++++ .../2-Data/solution/notebook.ipynb | 437 +++ .../zh-CN/2-Regression/3-Linear/README.md | 373 +++ .../zh-CN/2-Regression/3-Linear/assignment.md | 16 + .../2-Regression/3-Linear/notebook.ipynb | 128 + .../3-Linear/solution/Julia/README.md | 6 + .../3-Linear/solution/R/lesson_3-R.ipynb | 1088 +++++++ .../3-Linear/solution/notebook.ipynb | 1113 +++++++ .../zh-CN/2-Regression/4-Logistic/README.md | 414 +++ .../2-Regression/4-Logistic/assignment.md | 16 + .../2-Regression/4-Logistic/notebook.ipynb | 269 ++ .../4-Logistic/solution/Julia/README.md | 6 + .../4-Logistic/solution/R/lesson_4-R.ipynb | 685 ++++ .../4-Logistic/solution/notebook.ipynb | 1259 ++++++++ translations/zh-CN/2-Regression/README.md | 45 + .../zh-CN/3-Web-App/1-Web-App/README.md | 350 ++ .../zh-CN/3-Web-App/1-Web-App/assignment.md | 16 + .../zh-CN/3-Web-App/1-Web-App/notebook.ipynb | 0 .../1-Web-App/solution/notebook.ipynb | 267 ++ translations/zh-CN/3-Web-App/README.md | 26 + .../4-Classification/1-Introduction/README.md | 304 ++ .../1-Introduction/assignment.md | 16 + .../1-Introduction/notebook.ipynb | 39 + .../1-Introduction/solution/Julia/README.md | 6 + .../solution/R/lesson_10-R.ipynb | 722 +++++ .../1-Introduction/solution/notebook.ipynb | 706 ++++ .../2-Classifiers-1/README.md | 244 ++ .../2-Classifiers-1/assignment.md | 15 + .../2-Classifiers-1/notebook.ipynb | 41 + .../2-Classifiers-1/solution/Julia/README.md | 6 + .../solution/R/lesson_11-R.ipynb | 1298 ++++++++ .../2-Classifiers-1/solution/notebook.ipynb | 281 ++ .../3-Classifiers-2/README.md | 240 ++ .../3-Classifiers-2/assignment.md | 16 + .../3-Classifiers-2/notebook.ipynb | 165 + .../3-Classifiers-2/solution/Julia/README.md | 6 + .../solution/R/lesson_12-R.ipynb | 650 ++++ .../3-Classifiers-2/solution/notebook.ipynb | 304 ++ .../4-Classification/4-Applied/README.md | 320 ++ .../4-Classification/4-Applied/assignment.md | 16 + .../4-Classification/4-Applied/notebook.ipynb | 41 + .../4-Applied/solution/notebook.ipynb | 292 ++ translations/zh-CN/4-Classification/README.md | 32 + .../zh-CN/5-Clustering/1-Visualize/README.md | 338 ++ .../5-Clustering/1-Visualize/assignment.md | 16 + .../5-Clustering/1-Visualize/notebook.ipynb | 50 + .../1-Visualize/solution/Julia/README.md | 6 + .../1-Visualize/solution/R/lesson_14-R.ipynb | 493 +++ .../1-Visualize/solution/notebook.ipynb | 853 +++++ .../zh-CN/5-Clustering/2-K-Means/README.md | 252 ++ .../5-Clustering/2-K-Means/assignment.md | 16 + .../5-Clustering/2-K-Means/notebook.ipynb | 231 ++ .../2-K-Means/solution/Julia/README.md | 6 + .../2-K-Means/solution/R/lesson_15-R.ipynb | 637 ++++ .../2-K-Means/solution/notebook.ipynb | 550 ++++ .../2-K-Means/solution/tester.ipynb | 343 ++ translations/zh-CN/5-Clustering/README.md | 33 + .../6-NLP/1-Introduction-to-NLP/README.md | 170 + .../6-NLP/1-Introduction-to-NLP/assignment.md | 16 + translations/zh-CN/6-NLP/2-Tasks/README.md | 219 ++ .../zh-CN/6-NLP/2-Tasks/assignment.md | 16 + .../6-NLP/3-Translation-Sentiment/README.md | 191 ++ .../3-Translation-Sentiment/assignment.md | 16 + .../solution/Julia/README.md | 6 + .../solution/R/README.md | 6 + .../solution/notebook.ipynb | 100 + .../zh-CN/6-NLP/4-Hotel-Reviews-1/README.md | 408 +++ .../6-NLP/4-Hotel-Reviews-1/assignment.md | 10 + .../6-NLP/4-Hotel-Reviews-1/notebook.ipynb | 0 .../solution/Julia/README.md | 6 + .../4-Hotel-Reviews-1/solution/R/README.md | 6 + .../4-Hotel-Reviews-1/solution/notebook.ipynb | 174 + .../zh-CN/6-NLP/5-Hotel-Reviews-2/README.md | 375 +++ .../6-NLP/5-Hotel-Reviews-2/assignment.md | 16 + .../6-NLP/5-Hotel-Reviews-2/notebook.ipynb | 0 .../solution/1-notebook.ipynb | 172 + .../solution/2-notebook.ipynb | 137 + .../solution/3-notebook.ipynb | 260 ++ .../solution/Julia/README.md | 6 + .../5-Hotel-Reviews-2/solution/R/README.md | 6 + translations/zh-CN/6-NLP/README.md | 29 + translations/zh-CN/6-NLP/data/README.md | 6 + .../7-TimeSeries/1-Introduction/README.md | 190 ++ .../7-TimeSeries/1-Introduction/assignment.md | 16 + .../1-Introduction/solution/Julia/README.md | 6 + .../1-Introduction/solution/R/README.md | 6 + .../1-Introduction/solution/notebook.ipynb | 168 + .../1-Introduction/working/notebook.ipynb | 64 + .../zh-CN/7-TimeSeries/2-ARIMA/README.md | 398 +++ .../zh-CN/7-TimeSeries/2-ARIMA/assignment.md | 16 + .../2-ARIMA/solution/Julia/README.md | 6 + .../7-TimeSeries/2-ARIMA/solution/R/README.md | 6 + .../2-ARIMA/solution/notebook.ipynb | 1135 +++++++ .../2-ARIMA/working/notebook.ipynb | 50 + .../zh-CN/7-TimeSeries/3-SVR/README.md | 384 +++ .../zh-CN/7-TimeSeries/3-SVR/assignment.md | 18 + .../3-SVR/solution/notebook.ipynb | 1029 ++++++ .../7-TimeSeries/3-SVR/working/notebook.ipynb | 705 ++++ translations/zh-CN/7-TimeSeries/README.md | 28 + .../8-Reinforcement/1-QLearning/README.md | 247 ++ .../8-Reinforcement/1-QLearning/assignment.md | 32 + .../1-QLearning/notebook.ipynb | 411 +++ .../1-QLearning/solution/Julia/README.md | 6 + .../1-QLearning/solution/R/README.md | 6 + .../solution/assignment-solution.ipynb | 478 +++ .../1-QLearning/solution/notebook.ipynb | 577 ++++ .../zh-CN/8-Reinforcement/2-Gym/README.md | 342 ++ .../zh-CN/8-Reinforcement/2-Gym/assignment.md | 48 + .../8-Reinforcement/2-Gym/notebook.ipynb | 394 +++ .../2-Gym/solution/Julia/README.md | 6 + .../2-Gym/solution/R/README.md | 6 + .../2-Gym/solution/notebook.ipynb | 526 +++ translations/zh-CN/8-Reinforcement/README.md | 58 + .../9-Real-World/1-Applications/README.md | 150 + .../9-Real-World/1-Applications/assignment.md | 18 + .../2-Debugging-ML-Models/README.md | 174 + .../2-Debugging-ML-Models/assignment.md | 16 + translations/zh-CN/9-Real-World/README.md | 23 + translations/zh-CN/AGENTS.md | 336 ++ translations/zh-CN/CODE_OF_CONDUCT.md | 14 + translations/zh-CN/CONTRIBUTING.md | 16 + translations/zh-CN/PyTorch_Fundamentals.ipynb | 2830 +++++++++++++++++ translations/zh-CN/README.md | 221 ++ translations/zh-CN/SECURITY.md | 42 + translations/zh-CN/SUPPORT.md | 20 + translations/zh-CN/TROUBLESHOOTING.md | 601 ++++ translations/zh-CN/docs/_sidebar.md | 48 + translations/zh-CN/for-teachers.md | 28 + translations/zh-CN/quiz-app/README.md | 118 + translations/zh-CN/sketchnotes/LICENSE.md | 190 ++ translations/zh-CN/sketchnotes/README.md | 12 + 199 files changed, 35466 insertions(+) create mode 100644 translated_images/zh-CN/peter.779730f9ba3a8a8d.webp create mode 100644 translated_images/zh-CN/pie-pumpkins-scatter.d14f9804a53f927e.webp create mode 100644 translated_images/zh-CN/pinch.1b035ec9ba7e0d40.webp create mode 100644 translated_images/zh-CN/poly-results.ee587348f0f1f60b.webp create mode 100644 translated_images/zh-CN/polynomial.8fce4663e7283dfb.webp create mode 100644 translated_images/zh-CN/popular.9c48d84b3386705f.webp create mode 100644 translated_images/zh-CN/price-by-variety.744a2f9925d9bcb4.webp create mode 100644 translated_images/zh-CN/problems.f7fb539ccd80608e.webp create mode 100644 translated_images/zh-CN/pumpkin-classifier.562771f104ad5436.webp create mode 100644 translated_images/zh-CN/pumpkins_catplot_1.c55c409b71fea2ec.webp create mode 100644 translated_images/zh-CN/pumpkins_catplot_2.87a354447880b388.webp create mode 100644 translated_images/zh-CN/r_learners_sm.cd14eb3581a9f28d.webp create mode 100644 translated_images/zh-CN/r_learners_sm.e25fa9c205b3a3f9.webp create mode 100644 translated_images/zh-CN/r_learners_sm.e4a71b113ffbedfe.webp create mode 100644 translated_images/zh-CN/r_learners_sm.f9199f76f1e2e493.webp create mode 100644 translated_images/zh-CN/recipes.186acfa8ed2e8f00.webp create mode 100644 translated_images/zh-CN/recipes.9ad10d8a4056bf89.webp create mode 100644 translated_images/zh-CN/scaled.91897dfbaa26ca4a.webp create mode 100644 translated_images/zh-CN/scaled.e35258ca5cd3d43f.webp create mode 100644 translated_images/zh-CN/scatter-dayofyear-color.65790faefbb9d54f.webp create mode 100644 translated_images/zh-CN/scatter-dayofyear.bc171c189c9fd553.webp create mode 100644 translated_images/zh-CN/scatterplot.ad8b356bcbb33be6.webp create mode 100644 translated_images/zh-CN/scatterplot.b6868f44cbd2051c.webp create mode 100644 translated_images/zh-CN/shakey.4dc17819c447c05b.webp create mode 100644 translated_images/zh-CN/sigmoid.8b7ba9d095c789cf.webp create mode 100644 translated_images/zh-CN/slope.f3c9d5910ddbfcf9.webp create mode 100644 translated_images/zh-CN/solvers.5fc648618529e627.webp create mode 100644 translated_images/zh-CN/svm.621ae7b516d678e0.webp create mode 100644 translated_images/zh-CN/swarm.56d253ae80a2c0f5.webp create mode 100644 translated_images/zh-CN/swarm_2.efeacfca536c2b57.webp create mode 100644 translated_images/zh-CN/test-data-predict.8afc47ee7e52874f.webp create mode 100644 translated_images/zh-CN/thai-food.c47a7a7f9f05c218.webp create mode 100644 translated_images/zh-CN/thai.0269dbab2e78bd38.webp create mode 100644 translated_images/zh-CN/tokenization.1641a160c66cd2d9.webp create mode 100644 translated_images/zh-CN/train-data-predict.3c4ef4e78553104f.webp create mode 100644 translated_images/zh-CN/train-test.8928d14e5b91fc94.webp create mode 100644 translated_images/zh-CN/train-test.ead0cecbfc341921.webp create mode 100644 translated_images/zh-CN/train_progress_raw.2adfdf2daea09c59.webp create mode 100644 translated_images/zh-CN/train_progress_runav.c71694a8fa9ab359.webp create mode 100644 translated_images/zh-CN/turntable.f2b86b13c53302dc.webp create mode 100644 translated_images/zh-CN/ufo.9e787f5161da9d4d.webp create mode 100644 translated_images/zh-CN/unruly_data.0eedc7ced92d2d91.webp create mode 100644 translated_images/zh-CN/violin.ffceb68923177011.webp create mode 100644 translated_images/zh-CN/voronoi.1dc1613fb0439b95.webp create mode 100644 translated_images/zh-CN/web-app.4c76450cabe20036.webp create mode 100644 translated_images/zh-CN/wolf.a56d3d4070ca0c79.webp create mode 100644 translations/fa/.co-op-translator.json create mode 100644 translations/ur/.co-op-translator.json create mode 100644 translations/zh-CN/.co-op-translator.json create mode 100644 translations/zh-CN/1-Introduction/1-intro-to-ML/README.md create mode 100644 translations/zh-CN/1-Introduction/1-intro-to-ML/assignment.md create mode 100644 translations/zh-CN/1-Introduction/2-history-of-ML/README.md create mode 100644 translations/zh-CN/1-Introduction/2-history-of-ML/assignment.md create mode 100644 translations/zh-CN/1-Introduction/3-fairness/README.md create mode 100644 translations/zh-CN/1-Introduction/3-fairness/assignment.md create mode 100644 translations/zh-CN/1-Introduction/4-techniques-of-ML/README.md create mode 100644 translations/zh-CN/1-Introduction/4-techniques-of-ML/assignment.md create mode 100644 translations/zh-CN/1-Introduction/README.md create mode 100644 translations/zh-CN/2-Regression/1-Tools/README.md create mode 100644 translations/zh-CN/2-Regression/1-Tools/assignment.md create mode 100644 translations/zh-CN/2-Regression/1-Tools/notebook.ipynb create mode 100644 translations/zh-CN/2-Regression/1-Tools/solution/Julia/README.md create mode 100644 translations/zh-CN/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb create mode 100644 translations/zh-CN/2-Regression/1-Tools/solution/notebook.ipynb create mode 100644 translations/zh-CN/2-Regression/2-Data/README.md create mode 100644 translations/zh-CN/2-Regression/2-Data/assignment.md create mode 100644 translations/zh-CN/2-Regression/2-Data/notebook.ipynb create mode 100644 translations/zh-CN/2-Regression/2-Data/solution/Julia/README.md create mode 100644 translations/zh-CN/2-Regression/2-Data/solution/R/lesson_2-R.ipynb create mode 100644 translations/zh-CN/2-Regression/2-Data/solution/notebook.ipynb create mode 100644 translations/zh-CN/2-Regression/3-Linear/README.md create mode 100644 translations/zh-CN/2-Regression/3-Linear/assignment.md create mode 100644 translations/zh-CN/2-Regression/3-Linear/notebook.ipynb create mode 100644 translations/zh-CN/2-Regression/3-Linear/solution/Julia/README.md create mode 100644 translations/zh-CN/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb create mode 100644 translations/zh-CN/2-Regression/3-Linear/solution/notebook.ipynb create mode 100644 translations/zh-CN/2-Regression/4-Logistic/README.md create mode 100644 translations/zh-CN/2-Regression/4-Logistic/assignment.md create mode 100644 translations/zh-CN/2-Regression/4-Logistic/notebook.ipynb create mode 100644 translations/zh-CN/2-Regression/4-Logistic/solution/Julia/README.md create mode 100644 translations/zh-CN/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb create mode 100644 translations/zh-CN/2-Regression/4-Logistic/solution/notebook.ipynb create mode 100644 translations/zh-CN/2-Regression/README.md create mode 100644 translations/zh-CN/3-Web-App/1-Web-App/README.md create mode 100644 translations/zh-CN/3-Web-App/1-Web-App/assignment.md create mode 100644 translations/zh-CN/3-Web-App/1-Web-App/notebook.ipynb create mode 100644 translations/zh-CN/3-Web-App/1-Web-App/solution/notebook.ipynb create mode 100644 translations/zh-CN/3-Web-App/README.md create mode 100644 translations/zh-CN/4-Classification/1-Introduction/README.md create mode 100644 translations/zh-CN/4-Classification/1-Introduction/assignment.md create mode 100644 translations/zh-CN/4-Classification/1-Introduction/notebook.ipynb create mode 100644 translations/zh-CN/4-Classification/1-Introduction/solution/Julia/README.md create mode 100644 translations/zh-CN/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb create mode 100644 translations/zh-CN/4-Classification/1-Introduction/solution/notebook.ipynb create mode 100644 translations/zh-CN/4-Classification/2-Classifiers-1/README.md create mode 100644 translations/zh-CN/4-Classification/2-Classifiers-1/assignment.md create mode 100644 translations/zh-CN/4-Classification/2-Classifiers-1/notebook.ipynb create mode 100644 translations/zh-CN/4-Classification/2-Classifiers-1/solution/Julia/README.md create mode 100644 translations/zh-CN/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb create mode 100644 translations/zh-CN/4-Classification/2-Classifiers-1/solution/notebook.ipynb create mode 100644 translations/zh-CN/4-Classification/3-Classifiers-2/README.md create mode 100644 translations/zh-CN/4-Classification/3-Classifiers-2/assignment.md create mode 100644 translations/zh-CN/4-Classification/3-Classifiers-2/notebook.ipynb create mode 100644 translations/zh-CN/4-Classification/3-Classifiers-2/solution/Julia/README.md create mode 100644 translations/zh-CN/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb create mode 100644 translations/zh-CN/4-Classification/3-Classifiers-2/solution/notebook.ipynb create mode 100644 translations/zh-CN/4-Classification/4-Applied/README.md create mode 100644 translations/zh-CN/4-Classification/4-Applied/assignment.md create mode 100644 translations/zh-CN/4-Classification/4-Applied/notebook.ipynb create mode 100644 translations/zh-CN/4-Classification/4-Applied/solution/notebook.ipynb create mode 100644 translations/zh-CN/4-Classification/README.md create mode 100644 translations/zh-CN/5-Clustering/1-Visualize/README.md create mode 100644 translations/zh-CN/5-Clustering/1-Visualize/assignment.md create mode 100644 translations/zh-CN/5-Clustering/1-Visualize/notebook.ipynb create mode 100644 translations/zh-CN/5-Clustering/1-Visualize/solution/Julia/README.md create mode 100644 translations/zh-CN/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb create mode 100644 translations/zh-CN/5-Clustering/1-Visualize/solution/notebook.ipynb create mode 100644 translations/zh-CN/5-Clustering/2-K-Means/README.md create mode 100644 translations/zh-CN/5-Clustering/2-K-Means/assignment.md create mode 100644 translations/zh-CN/5-Clustering/2-K-Means/notebook.ipynb create mode 100644 translations/zh-CN/5-Clustering/2-K-Means/solution/Julia/README.md create mode 100644 translations/zh-CN/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb create mode 100644 translations/zh-CN/5-Clustering/2-K-Means/solution/notebook.ipynb create mode 100644 translations/zh-CN/5-Clustering/2-K-Means/solution/tester.ipynb create mode 100644 translations/zh-CN/5-Clustering/README.md create mode 100644 translations/zh-CN/6-NLP/1-Introduction-to-NLP/README.md create mode 100644 translations/zh-CN/6-NLP/1-Introduction-to-NLP/assignment.md create mode 100644 translations/zh-CN/6-NLP/2-Tasks/README.md create mode 100644 translations/zh-CN/6-NLP/2-Tasks/assignment.md create mode 100644 translations/zh-CN/6-NLP/3-Translation-Sentiment/README.md create mode 100644 translations/zh-CN/6-NLP/3-Translation-Sentiment/assignment.md create mode 100644 translations/zh-CN/6-NLP/3-Translation-Sentiment/solution/Julia/README.md create mode 100644 translations/zh-CN/6-NLP/3-Translation-Sentiment/solution/R/README.md create mode 100644 translations/zh-CN/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb create mode 100644 translations/zh-CN/6-NLP/4-Hotel-Reviews-1/README.md create mode 100644 translations/zh-CN/6-NLP/4-Hotel-Reviews-1/assignment.md create mode 100644 translations/zh-CN/6-NLP/4-Hotel-Reviews-1/notebook.ipynb create mode 100644 translations/zh-CN/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md create mode 100644 translations/zh-CN/6-NLP/4-Hotel-Reviews-1/solution/R/README.md create mode 100644 translations/zh-CN/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb create mode 100644 translations/zh-CN/6-NLP/5-Hotel-Reviews-2/README.md create mode 100644 translations/zh-CN/6-NLP/5-Hotel-Reviews-2/assignment.md create mode 100644 translations/zh-CN/6-NLP/5-Hotel-Reviews-2/notebook.ipynb create mode 100644 translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb create mode 100644 translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb create mode 100644 translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb create mode 100644 translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md create mode 100644 translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/R/README.md create mode 100644 translations/zh-CN/6-NLP/README.md create mode 100644 translations/zh-CN/6-NLP/data/README.md create mode 100644 translations/zh-CN/7-TimeSeries/1-Introduction/README.md create mode 100644 translations/zh-CN/7-TimeSeries/1-Introduction/assignment.md create mode 100644 translations/zh-CN/7-TimeSeries/1-Introduction/solution/Julia/README.md create mode 100644 translations/zh-CN/7-TimeSeries/1-Introduction/solution/R/README.md create mode 100644 translations/zh-CN/7-TimeSeries/1-Introduction/solution/notebook.ipynb create mode 100644 translations/zh-CN/7-TimeSeries/1-Introduction/working/notebook.ipynb create mode 100644 translations/zh-CN/7-TimeSeries/2-ARIMA/README.md create mode 100644 translations/zh-CN/7-TimeSeries/2-ARIMA/assignment.md create mode 100644 translations/zh-CN/7-TimeSeries/2-ARIMA/solution/Julia/README.md create mode 100644 translations/zh-CN/7-TimeSeries/2-ARIMA/solution/R/README.md create mode 100644 translations/zh-CN/7-TimeSeries/2-ARIMA/solution/notebook.ipynb create mode 100644 translations/zh-CN/7-TimeSeries/2-ARIMA/working/notebook.ipynb create mode 100644 translations/zh-CN/7-TimeSeries/3-SVR/README.md create mode 100644 translations/zh-CN/7-TimeSeries/3-SVR/assignment.md create mode 100644 translations/zh-CN/7-TimeSeries/3-SVR/solution/notebook.ipynb create mode 100644 translations/zh-CN/7-TimeSeries/3-SVR/working/notebook.ipynb create mode 100644 translations/zh-CN/7-TimeSeries/README.md create mode 100644 translations/zh-CN/8-Reinforcement/1-QLearning/README.md create mode 100644 translations/zh-CN/8-Reinforcement/1-QLearning/assignment.md create mode 100644 translations/zh-CN/8-Reinforcement/1-QLearning/notebook.ipynb create mode 100644 translations/zh-CN/8-Reinforcement/1-QLearning/solution/Julia/README.md create mode 100644 translations/zh-CN/8-Reinforcement/1-QLearning/solution/R/README.md create mode 100644 translations/zh-CN/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb create mode 100644 translations/zh-CN/8-Reinforcement/1-QLearning/solution/notebook.ipynb create mode 100644 translations/zh-CN/8-Reinforcement/2-Gym/README.md create mode 100644 translations/zh-CN/8-Reinforcement/2-Gym/assignment.md create mode 100644 translations/zh-CN/8-Reinforcement/2-Gym/notebook.ipynb create mode 100644 translations/zh-CN/8-Reinforcement/2-Gym/solution/Julia/README.md create mode 100644 translations/zh-CN/8-Reinforcement/2-Gym/solution/R/README.md create mode 100644 translations/zh-CN/8-Reinforcement/2-Gym/solution/notebook.ipynb create mode 100644 translations/zh-CN/8-Reinforcement/README.md create mode 100644 translations/zh-CN/9-Real-World/1-Applications/README.md create mode 100644 translations/zh-CN/9-Real-World/1-Applications/assignment.md create mode 100644 translations/zh-CN/9-Real-World/2-Debugging-ML-Models/README.md create mode 100644 translations/zh-CN/9-Real-World/2-Debugging-ML-Models/assignment.md create mode 100644 translations/zh-CN/9-Real-World/README.md create mode 100644 translations/zh-CN/AGENTS.md create mode 100644 translations/zh-CN/CODE_OF_CONDUCT.md create mode 100644 translations/zh-CN/CONTRIBUTING.md create mode 100644 translations/zh-CN/PyTorch_Fundamentals.ipynb create mode 100644 translations/zh-CN/README.md create mode 100644 translations/zh-CN/SECURITY.md create mode 100644 translations/zh-CN/SUPPORT.md create mode 100644 translations/zh-CN/TROUBLESHOOTING.md create mode 100644 translations/zh-CN/docs/_sidebar.md create mode 100644 translations/zh-CN/for-teachers.md create mode 100644 translations/zh-CN/quiz-app/README.md create mode 100644 translations/zh-CN/sketchnotes/LICENSE.md create mode 100644 translations/zh-CN/sketchnotes/README.md diff --git a/translated_images/zh-CN/peter.779730f9ba3a8a8d.webp b/translated_images/zh-CN/peter.779730f9ba3a8a8d.webp new file mode 100644 index 0000000000000000000000000000000000000000..a6a5172711969e3e93f27d14bed2b527384ae371 GIT binary patch literal 62854 zcmV((K;XYpNk&F~^#A}@MM6+kP&goR^#B0y6a$?BDp&&10zNSqi9@0xp&=y{xjFhWnObHjvIUh{v8`1k%-<~N0WYw54a|Cjx&{_Xp1^HatBjd;87|KtC||9Ai0 z{-^D?`@i!$qU`_s|LFZd{J-^2^*`Q!(SOkYC;$KcpWMItKk|Rjd&&Nf{5=HJj4 z@-OIL=)byujQ_d*GynhnPpxm<|9gMC-k|@Ze}@05{!{md<){6}{m=4W`9J^v^ZJ4P zxBXB3ukiomzyJLKe>nc}{~Pn4=JWp#|8H}D^gs1~`ul@_K>rp0bMw39-~O-vkN3ar zfB*d(e_#K3|I7Wi`%nL0L0`}Ry#L(&rvKgY0soi(|F8%BzyJUFJ-|PI{lohW{#eebtZ}va=o@D()`>*`ohW{)3_xo?~|L4Epf0+Hy z`J?{F`M=%II{!TWcmCJ;-(Zi)f29Af{{8!h{%7|W>a+9zX*l+God2=;qwi1Z|LuSD`+@&D{cepUH`}b-Q%(9f42VspU}U+ z|Ihy^`Kk1`{&)VL_Mhv2b$!)-lm65HH~OE;Pq1I*|JQ%ve}?}*|F``Q|Ns8Kd%yoZ z+y3Bx?)OdojsMH}{ziOWn|b0X`MRTaz9Sr@SYP+gya*H?Z=Jh=O`kRuN}~#A3r@xr zEnvOL7(^@nlC8GqWz$D|=BVR8oEZ;40Gd=U1&SQj>MnB4O}2A+hjMb!Y_ByrhN$ZB zWK!R~;SSUrYA8(KxR!$ygA&{xfsAbyK)C{2U(w08?=d%QIm`hGos{QC8c{UsMvi8E zOP>Q@EFZd!y|KTvPD#q0Nz9hGO5vOh@QkVzM)O_2PCz%&>%&0Ul`eR6l?vmhxN28eAF-0P`s zylxAmKk{~w=nwxm`iu~yxcbJBQT--4rg&Rm9M{{+6m61PafU^EJbq19qUhk)j2j~H z226+~KAPFnz*U|AZ4}U&LpXf)%&oa-{S|xlX-z6v&)JMQPAI8#y-AJpm+x_~MJ-3c z<;*jXi;XnIe$}^->se#YsFXh%Blti1lpu~*81Ttt7%DVFQlwyZN5-nVHtx>t7O||H zT0h1l!>N4-&jwn-)uFWvkqP`%t|5|w*O)k99<4%sCm~xZBS%QE&Dng)G}UPu&0+l} z$fmp>!DwE4yeHU5Ey9XmA0n7tB)06_Q%8~9S$|2O#p6;V#%>hl9CkId=}m+o$&Toi z8oq7rB16lZ)!eDL!j}(-_CfTGhWTS3HE>lBL4$oe>jR}B7*9g>*hGqC{++6zQSe*A zSsk%zB(-VW1chiqa^Pfcdg!G>YFigwhSjfpmRj30>X?grf$8o7J!L9G&NdvUL zk$s+oQX5m+xg?J?7UL}|MjP|q4E3j#=qm}M{$;C)^MWF2D=M6vK7C&ob(|9VseGX^ z0JVhVHk$#QgrW%|GMdRC@Zsn=qDOMfuKP0><6t6Ipq$)cnJ<|_WT9pythsOHC0oTQ zNeD5(f({%QGW>(bYdyxrr6r&kyP|GqjEitDJBwf&>{m&2l7_}L4`CF>{zfL z@Rxu8cv(n_6Fa|RCd0fL(`*W+WxMBJN_+L<%4Tj8_`Y2@2efh>5foijo|EO}3Y)}3 zr>EgwE3g;%IB@2MxYfu=w2St7jA){Vb?cc|J;WO=ZSqBSb^W-2)9P&l8cZ5{zmkMn z<6mjzxbxCy4#H|F9;Q_87{K3fhdKrbk$BqvvAm@kA-#wy>zv+yWJN$0imMuS3eenU zHgtsf68LR&=v6NSJFl*dXaw!*PC~C1R#wHT&*bzAVXKA=+II z@)8st&)CLJJ}J5TF6S zuSV`}1(4;`?B`c}>EcE4*KWKa!d4l33m%<+zQljUfAxv5bg1QX9=RNyJ6PdRI^cpa zPoB6Kl10VL;IRtTPkg2>oJ_w2hIHA%>dp-$z;l#Ra$4Z6Qw5KXXO7PH;;S^#1xS)1 z0(ta$^nyx>(XpVA5cwl`8s{;IQA&RXjoEUiJ8junv}jx`;+F` z`V*05R*t66IWiYIZz0tr^OkaRn2*}_5U1I!>0tQ7YLLX*m8KBEs!W?b>ICU!*zg_5 zMS6lI{fSV_>$g{5C(c5NZ(tC(x#GW(G^1@OA`&mNjXj=*C}(cRb7=H5WpeSq+r_!8 zj>=rbr3NA}mHK0Ft(#BKm=9-??0ESOkl)9oGx!m0OyD2&msS31%p)%XrgfnJxpBb+ z?dEY8b%DetN#l)m%MT}hM4_}|`zh9Ftp_dB%1}RU?Ld%OWnzS>1a>~g2Qlu!`w07# z8>9-uQ+Vm_^@_4w?)!$K67+y8T0TPi8|k2fL1LrFK43$Fw%}ov(6i|5MqbP#7uS$J z{Ml<+(2JDPhig#}qdSM#on0>;Zk>BWte>)_Q|S+eGyHKpsBZrC6u~p0;|XX&#Nlcr zRO4a&Ja0jyw`&6macZ{Z5qL!6&ojM<07Z3ZFJl93%vT~|EYOhTij}SahbHTzj3(^b%iAkO~;N_WKYgOLCN@t z>X{cYB%#|jS~JE`IDW4hujz6q_hRaUi@czbhZ|ji-k}z|&xRPgCS60b5FF@*V@TYo zW)^Qva%GW{y+MdonDZ;ZcQTZKR8pl#TZotY$Z27+ihPXjKtExjJe+9&l+x$u^hwyg z|8KRmH;&|t1$ZSuzHKP;==3Z?)%6qD^>JNw9e=yNfwv%4FO+L5#HvXI z7jXq!Y-z_PVojKXt=0oYQk>_Os;v*SAVR3dA}hNl9(HODT@`3Q#{x#Pqw$)TJE3RN zL6MgE@H5>+nmChK9PnGJTzxG)ey@T-Bdrsa62GugP?k==Suc8{bP zah7;9OZcji_W;jv4*H@?}ZzlZ-Gn#+|Nx0MjzW)(*PR0P3`IJV7z|+eR@P zA8pD;KGs3vWzJmYrQKA!sVZ4FVB+-NAgN10C+&>2XyvPZQQBsgtO+;xHIS zjOVkOzBXad?Ctv*#;@xNqS=J5LeNLUNDzyvGS3O^VmIqpx?9D4boQyLH1R@J?XsaW z9vr_*;d<`_D9@WyF6~A}h(X5LRe1>_8%+6!z}k)=(Bm7dG}RB1zp%0MMqVPaEIZ(k zE{(mUj$h+G)RSJSd-rjfm#vJraXBbtmom7yCKo}WU7Z!nj-~4pH4K8qRSlS|ZF8`Q zqy{Gp2N{`Et3cq1nUrc=(j zzTU!Jo6t(l@#c}7ZJA~-Q`-%=gCZW+h99pU@AC>=Vd(0@1Laj+%xzWM(yaJk%YjcDlsw!NSofe9K0)HTnSiI)eIB?3Tlh0R;%4}v?q}NG9S*p~GO5tz<48 zMTip)HxoC*173q2He$H?0EvnozHNenB*I8DC|3Tu%wq#hG=W>|iQ*pkyLEqpWMUZH zhHxU!uz0c>sxE|s2SEhtkus5fD7sGWd#dCsQ(BFBe3FekQ1~3Q92{}zmDYK?#90r2 zsEHtrT7<-iVldAedDLn`1h4F{`-1{j)6e~)27ATmg`HrMp&6}PMj6(KH>i5!>(tgd zJ{d5tHf`!t*GMoe224!P<;W#5{+Huo+XJ~RBJp55W21?0+~oE!YD0r{ojV``9$ZQ5 z5B;?|zR1RYSzqA*ciXWP-`Q8;mBLuKKL2RrEiBw|fE-QLme5Oa6y}gn_#GC*8<%rx zQOW*AY(4#*eAK3H#%v*hrnuc1rh*@5g{1~F<@-iV@e*Q2&>m0z(ay3x%u{;r zofI^p9=W?o#*^#Uh&rHXvdCpq7oJEBT~E59;g(CUZRPOC$g=u4z_jAXlZi=_t7HV- z|9Sr#-RmtFI?@kI`MH>C;uM3PXa?&{3i^qO*z_a)O`SN&tQ~?gSEY8GUIRNuBwXuOduP{z_z_!??LMZ!J4_ zyz+VbpdjUFg>}Vo9)ISwX9|kln-T3cnCe$27z5AhE6o(4cjK6JR(S~;p*nsWFXrR| zRo35meatxAMr|KpDc!h=(7i?-b)fK7yzlqA;y;8tiMiVp+Q95sVdglXRR$4_NV-(R ziD8~^Jjj-|8`dJP@)f(U&hd+{fuq7v(0$ZGFA`N^kL4P>FuF<7=40-XG5IfX*g+Fe zL-?!yyrfOaTTqO~A&mddGPPJxJIKH(TPb(yBV|h4SlO|PdjlV`@YnG)rM%xDD~sA? z#yg0v$7TN;=1sL)w3+WZhCEAGG$;6biF%G>z^)nBxm9btuDXwOov)C9mNMyyM>dQa z13B$eQ)e=$VMSr?@A5Ll>K%eTs7e1MPO1$638v%XPQIpo9 zw|1$((v>SxoU6P<7TxXFDcZlMrb2o1Q=B20qJ<%Y9THy~0A!5P^k8yl&hqHt%K$7v zTF^Q@qko;Rld;Kijc9z;x~T@(3Fd|mC^^tl5Hzdf0E&7Kz2+rK_*p{Rr$Up{xvyEl z2X|s3&s3^&Yj#MjlejW7E%&(sd3ne?&dQrSKq5`*HytBm*;U;?(6DTibIbbnE6M39 zs6#MFpP$_&zOMH$i6NqjuHD3i&U&krKa`z4YwQ`t3M)0ooy@LE-S+BgD>B-ZA(7G+ zY|gZOg+$9_FgO8mT2K_F-S~}1#RL~X@Y&IxwUw(@Gx@)FK&F~tsiv?4)AVM3GqRfu z>`j>lJm1dBKr322Ky34Zyh5UE9i<*3-B}4ZksFaT-S(D*zfK=VdHx-8Udbft&tld* z$NTe)(a-e+WElDvQYnme0h9Y%G*xxFeC0lxALVCicQ4jmmE$hy_m|Cyrk8G=S;QID z#X&DMw3~rwLirA+(ni;+7V(&9G)SpJ%D%H))oPMG>3$Nb5pH;dazpuX*Lp&*Qv#A5 zwIdwczJ)On1^rXYD5rgs(}qQ(-1#i#7!*R2(@@RA=3y7&he!-H9a1StviH)!`OPiF z_BRC?W2~d7N&;bn>QbS_5NNZhiS(sp;hWH|{;!4(B%n?|3LSvxP)5)iN;tO`8c!^s zefw}Mf|EjevyU~Q1=(m8(@b>dN0k8A1o;hNlt{tZac5w9msKKc&Ang?_TW*91?6LA zaenm`So*z~*2ccqAC_GP-T_u>FOUFc+-p!u`>C>!YP_6X{eX5iJvO~F$6A8*2LV2d zEzH$8xN)UQC$WH2GF%r!_&>D(u)Q)uIpd+KQ%n1)25W&)p)=36joO4JSJ9|IPibi* zj08Pj4RR(i9MK848Z}xb!n+xs{!RQn(i+c^C1a3{1`GocG+m6>Nt% ztzsAGD~|6qP+Yg=3vY;%C*GsE12OZ(ApchTElP{lB6s=f-HHNgH%fq!=5E%*5hFIcVWITmiliP#)VSO#dr3iKZTal)x6upPCK4vEqq~WmFK<&_*#3Ixj>0fNp*oBkrPHgkOn{h43CH}P?vw< z1D-qkdj%gy#&41Z>szj-_Ap{a|XTTnmhkf3A2j5yUp5 z#?dfW^2GEw&(2oWr7Wd_uZHnT{mTwK7dG-({VgWw&B*8Z6}3}V|AaoWoc6^!dYYjY zDqn^gzNl~rdE&2*tYRd@VZQ5Ar&-9N#PHn&6WyKeernIBi7OU9Ml6!ATEOhkS3d;M zZNDDI%zNyB#^$L}kFZ z#ECX)mjT1MlH44}V0RmVwUI2<@hVGq%02vxGDC02M7!mOpnr8Fo*}p^w!+GtMfvqG zun+L;q=!M+8)l9cVy=uca`4=XAVg+aV6vW&VRaCIITewR29IFHy87RCNQ}H0o@NM> z_JO{}b%!RBOb6^AndD%MXf{ol>lwzqdb&Kq;MGO$eT8Q)Q3qEsA6`8sO%tK*T$+0V zxOVy9ZXD>itAOy_;%#wXH)IcXVA26XWJR`iaYK>C6TJe`s{_Db+2SR9TB0KP{Gm19 zR3?BZ5c~ZZmBX+jX*@e$jU#-}>k&+QWB%3O0m*p&OL6+Z2r!uz&wi6onm3D78~);5 z=&oj}Pk2zL;;se;-hvq^=fVgdhYr_flHIT6odNAvc$0=(l!zV~FT4~Z&BKg>AAmnA zlnFl(^*)3W+rilw_<0>SYllXgE1uT#n_R@kqz&;4}=!c0i&S9Tg z${=}?;^;5a!{=Y)by$rMamOJD%i*LS?{B<}o={!NA-p|Lno_na^?k8OD{9g#2Ig0B z+D%z}(z%pjV8$@uFoy?>^s|u~iLm-46xx$kPhSQ&J1;K+ik!w#vCnE=I%%J4!Y7X(*(Extb)1L>K~yg!jZ>e)82Vv8j%8zEj=-OpZj{& z(-drC)vrs@L240ZlDAeZb}D`PD7JQq;J0dTpB>aCO6|EN`35biWK+Afc!gyJs8v&q z`YH0FIZD&-ainoEpEB{;NEJUs@n4wj+d|>H8VuvT(=6c|IPvq4jhyK5Xg=zzZ;)Us zSQG@%J2yS>?TAK~PdGmH%jS@0DeO9*q*YXE(R!(JHcB0n11E_1%hDC^f> zbWdK$PIx>KT!k3^*PW6Om(cN7zi;gL##PhY4}O7;zWOIgqCGsLsUcdC=`q-HH=D8mh^N6CVurEU(uXC{L7iu8Fxfis1}`#D3K2mQNS9Vg}`7 z^TOPgGz$)V&%&{`Fbkf|@jFG??DGCw7I>dopVM@pEGgsmGTaA>vB#@n?6LzzqgTfQ zdPqgvG5&PRb+Gk>KDTNz{FyU>t2MKM(gI7ongq-#X|D0GvlZC!Tgsm}o!#W=jeq4c zHK>2cG*ZSZ1F0_8j1PpU6_i2%m^p2#xqVf=uYa0`JFBMlDE#9pYXa!0unG2K)sAW%$hj%$O#+M ztod7=lOq3WeFgO~c`BOtfvO8gCik|>d4*9|aAT^l|76b0?<4^jpi*7o)O0@{2o@Y# zr1kpT1Fvb}GoqPMW-3P8kKLUZa}k*)8VE!#c-@7dgU3iH2yRo9AUe|-UB0wSOw3jJ zGA_96E^61A!KU&pzG$3!=I1pp*_cs>1CFNCljA928JO=ZI_VyZ=>SysQSKnt4y(%d z-~fe@N?TvlwTz0i zdp@T>b)wiCKfojKj@u#0Lb(?n2LJ73N(jTOKu?MmKC7X%7QK)z9DG-(nzKOfJ$Vj+6qb`+@PFKZiFF#f zBK{%wKd8)cgc*0{Wv#|NGIZk-Z-O5u)u0OAA3?V>E(C!YyBC(t7lIH;=gx8CrQ|yx zT6vpI-#@Ct#5`5#g)k>!b@}Z9bVjw=9De7q=>VUpX*3K}htr;FVcet`ZcHFnOXHOS z(7|;>bgD6JXB?~)$TPTqG_Exh2+yXgV8R$FCnfLii#L6_7y z&(?i8`XRqzpD1{J$>`a5l!FKqH&L(}B)hPh-nWtP3fb(5J(4J3edrQgu65Yvmy%rc zM3%6qm?HosAiX!oCvX-1XWaRl1F=!ez|;s`dg@$&p>iuTT+(*Nw0gp*H_Ctkj_)Oo zPEbuXQ{^2%GsB&}lS0NuKVs3fnxd0x(P|jJq1-?s(=QO(R^(;Lwe%EhdhxKOL<)X? zQe2h`CWh9riqFU^@xwZ&rrQPXE3$|L6ZBlZJT}GFwf@F?3(P>8kRX+49y)Lmw7tHu zRouJSA%UhuAyI)swEQ8f z^n9#(0t8Jk<}J003xO9%uh@g#s>`&dwz|8n&5%F~u;U3&9byPy-xu4BeI}~5=RITr zke>XKGdbvrl7HhJx7sXU4@vvLjDJOKNJN<5Lwc9i?dY?7b3|&)XTB)7v&GLwu0Cs& ze%a9tt8S|2V+}4WzE+v-C+$JKvv<`RApI>Uqa`j)EJ0_xAEhSnJ?dh1EN)I_a2g39 zv0f)Gs2X3DdICL6V8}dobHYfDu@?b)qt(AIVcf0wGXRKJcuxRY5icC_8WwjQz(fuR z_)gs>sWg=wcDbG`!hS@?;>aIXAxK(Ef^dVQpwaBF{j!*kxp%9^V$&x{{nJmbE1qEH zUtYs~j3~_)%@*!M!p+iCP#zonvzdbs5YU$==H6%gu&Th9$d(r!o|0Bnq-Et3Pm+{Q zigA_2=)_V!IdAcd9wqlyc#y2MGWf_Df-gdf&bw1q?0yisg`?zVIC%h0Na5)L40*~- zZ!9k%2kP{fZivjUFTD1=^dnHCuj|fW3H9NBvzR*pYX_&Tp0@`T|bLu0F zm7^FJ$~?YhQ~IUE?20kk@c2SZa4P7*S1&;v1egOoG41Sm^F?dmOWp+16%j!&h!zw( zW=XqS$6^W+NYat43{07uy7Y_9_%hU?M((CQG4-T|KYyp$Xel^37=3%TKY#)Tsoo>W zGzIE4D5Yn!D(M*wdR%J9IPg^?qLn=(AOu zp8<#|S;@MJGewFlq5|GJ*n3(Z`3W>kY5gLZfo>@x=cp=~J>GlI^CUUKs z$yWT_(foi7{8{#4?lYt91NhPsF-Q$r$z~Z1IG$;sV;@OtIc&DxvG{+Kn~f`yub%ra z%PP5Ph8e5*k>mrnT$*@!=+Q&lRAQtr9$B(&@OSF&t@sqp{&>SxsAJKSOld+0i0&A@ zna_yFG>QfDB&MO9-0aQUK8we3yDG{uge{@^fs$xbLWrUn4tL$;rdp{t9!UZW0|>@vKk9`buNSw?i+Fj2X7WkHX< zw$!^Q$WGJC)*SE)sX945Gm}O0a?@(yPBp-#d^KOh=Rvl8ebNd)!p?TdE$S1%Q91Lk zf;B1@Y=j7L;)K8OBOB8b86Brq%-$pHui4p_JZA01Bn>?f*Dv8A8hZ-ePu5Rd9W9~G z0j}*=;>V^$H!sX6-uDcBC3B-QYwp)aH&@Sy8Ju3B0!l<9J+55WZBS4hdykE}BXM`Y5liKg9=Gqu{Ij+7xlADz?L+nCM~ zVB&5sd54icAf1OW%9H|qCj#N<%RcDSmhNdpb*S{QaZ<}FcEX6Sza41z_Mje#l9&O#SN)ZHTKQR5t;y#^5#G+4-_~o{JNydtxKs<;Oo{B(|G0I z!YiLw_<4Znnb6}7YWLN%|38;alhZIDy%>I0gm5LQ?Dd5aV0@-|>E@NaFdR!_kf0xk z9906ynv=3G-a!vXdP);+vF{O#WmpQiD!_y1T5+{RQuNz7`!VU`-cR37mJ2zY-B*X< zWncLLzt{noPf(yWKlfs3mwK#Dc^ydieWvhhxlP^n=ua%RgdwRY zo^@+NG+amGJi;wB55Rv)Uk?6PtOm&w23aWxs<-I;t;+P>pT6=KQ$u9{O768nN8iMH zgQJHs;+lW*Wui82f=6zCNs%+B=6xkN03#;1Uxop)QD>d<-W*{spB>#iv?hkdDH5CH zc+Y*kwX-*JIG=aGvd~M22?e{`kLe-_D}`XDLGC3HlK_P5-0BQqfD0pWH%GlNiy$o> z{YOaHM6l*SK#Kg$8}2bE`8NL_G|*f<`@J zczc*L7|6x!DYsAnUk+M#^v+eRP>XU+YEGq#b_6vM7{@A_KfK=?&ldF>&*Ymyk_eBk zIN?4W<*p4-m57X`&L(efR^nx{t)Qz(K|pdWAvl2SNf=@!m9zLGburLvLD#nSFsEg9 zVYVUaiQ{vr72LEnH9G&9c^Z)yh02lkp`~Vt0yzS>yS|k0M?LYT_R1Dx0DpB5dg0<{ zqL(Jq8GVd?690oNi6LP#e_tnu_PAa%qE_vr2=OWwzb;tQ21Q4qxeTRll1TjyDgyZ= znG@0@vFrq4tPMb97#I_gvAvfu0H>N-gm-3bdcO)Q`$x{MJhzXOF38SVjF*^i;Tv}V z{%R*C;RT0=e^=JniNT9!tT1v%bF{fq*lUGvC_k>H#K7=M3KHU5^%2m5dbum4JAxNX zAzAd3I6a3Jc!R-rN%w9L!}JZ|>?U?fL<9Y!3C^ff$uZ|P;KC^Sn|rs7$UXPw(RnXGdXA$UB#FwG_l z)MZ8_zuaQUh1kZ20C~E&6{4s9=8vTq3qlx+YV8xvoC(B&sLT;sQsX6i*qHh&XS&{L zM@qOO9DY%EWIoc+;&Uow8y-0OmXn@dph8!WX3%@mc{5HLgp&C@+sglIBG8E@Ujg)W zfF{PxO#3HmbviarR;v~^M<>mYm9LgWxfRei?e+yAPBIGP?W}>Ke_YK*^~|fnIJ+t( z*Ag$$+dKsyLJ}3zKg-t&^ZWu8X(oVOps#1@)gTmBzxLgczRwX!MJA+t;pbIg7v-cE zk6G6c$>dZ1sMsejg4EwDI2Q5-TaV1DQziebftV?!d>4wwr7P!vv9P7e)r<_qLV)j;_$*u;9;Kou;SMZ_xEev15uQl`3&B46ET#GvJ?8Hk3? z_`u38m>pTTjPFy08*Y#OD%HwLV&AY)Kh?&ITUWO-3`$x@zdo^0E9&~@Mz=3}(lZ{YVU*}*aeH=Y0~$5x}PXAun?dpD+HMFHVV zo%yQFTPVW#bp51T-C}GZ?#P~wo5+^JXs$s%!9sWk4au)9&D2X7=b*Wmy=;OIb4d8j z^{`T=pKcmo;S5n?Ww}pObi?Wq?7->8VM0ZT>3q_Q~ww_mZ~PdPmPD zf+HR`qty_g?se>Ocx!M9MX^cxp^1M45(lLh#zu?gPRv+Z`)#3vpVsp=p?nlA&Pb{M zESFamzCpNbgmx%{;f2@*H=}L4PQ&R=vSp zV#*SUr@Apu?02+a9bY_a`*($4tdU*+i{qG#lrqy(Abm}IvVq3B)&J%-yE3QBWC`Z> zkAQ%8Dm>5}+qRuYkd<-KWH|2HV?~Ne*ev2QT~gZDbh}sT9^NX{ zcl;6abDgeYWip9aYM)g(Uk>WV77R0KU>{~7}dQ2ZM7G`%%g7&1-FQ)4-z#7)vs$Jskpwig$npg9OQuWfNiP4MY`Y@&68|=cKt&_Ri203v;CoJbRZY z5V?bwMb2tD;4UiQ`zL?O!pGnPE%1b+`DYRN-mLEG<;(={wDk>ByNJQLlP{jnoN3xG z7#4F>t_@^it*g-;xGn?G@W3W`G;e|6Qdom{T_lZ9^TjNf>aJ|J$lnf`KFQInZAdn# z(`3cSK{gUqV)-m0G%3f=7B_@0wMDwD}1uk#AI-C!BkQ*JIapFHtf z!wSS%RJL5qW1(Bln0=k~gn7|2;X9Op!<_I;1EeD`0eM++v(igJ0Q#Ap~_6xs_wXzWu9X1hv5o&in zs5pywO5hl|%JV+Tm)oO)7aWBJhwoaS%*#_l%X9wefA_Z0a5Ssf z0$zqr>w(!{lQ0iE!gkIbq}KAr#Qumt*i8;H{_TwW)?RbKq|3lui?60{EvKXIM~Q83 zyE+985>zaxvs?~eC0O;U zr9~ZV5D9=d9DJ?JW72V}1j}>F>UeE{CkT@6kcSB%6p}GZMBgcua5~ppPH2ZM9YnbH zF)g=?uB`1LbC|mfeoac$u*U7_)VUfabr#|}F6v@#Xci=(r$v&CE;Qro;5(PK83z!8aY+@MQJ_OxbWcr5=8xQ#MvO2^4x*uP&t;OM{)&TV~|8Mt_tl!z9eg)G81 zuSYVm81}>^%H~{vVJ2BkmRP5_`?RVzpHqyd~aMH|o<2 zo7p@FfdMfI@njqsiW~D^+cmq>80ocND2=#Jl)etZ9{2Z`Sde}^uJr9j$3rxkB@U}V zZoyGYYoA)!lof*6X4Tc-yQ_VyNv2Pc=U?l^dCSBk>ubK!lm2Pkh`mz zLq+2%FKkF>wob<%Dk;Ppaim)0(AM&{B1Ib(@K9PcZ;-rn&i-r(EBs^g%#dfh2Tm6* z@HWz+wA7?&Enx5Tw9jLAB_J0ByQIpiwFsH@mHe$-aNKHyE*b)?wCpbMJks;B_{WwyXI5y=hk}Tj;7cPaK2dq#dGP0N?{qL ze8ElF-U=}Mu3?Sxb#EX4X*wv2UJINzC9f?AXl_>qWKMh{ep_)HFaESAdqZj=sfesM z%GA|`?tP1*Do5~=imnXWm>vv;*)E)yyce{6&pO=Zv^-B4qR4fx++x{!!-B~NY;n9; ziA3k3@*F-ZmYorC>W0}B17l0LHJSGY-TZlgjqS`O@M>_F)dw3Jn`WA(aSS$NmUt57 z#5%A}%>@8t5IOpSEpB-my)uO-IpO}7n82eiMyZ%h^$XL6x<$bh#jQo71`Mo7 z@?=)>jw-kCQx-O*q6V-;4*C}P;4@)2X1bETOKNijNT?X_Rf5WnW1mD2a`JLSo$f6x z=H_OyKrfF%h6q2ITf$bKiS+oRBXfCn{=pD7TDF|e<2 zDIz=K4LmQP+{k+5-?tO3XL~Mhq#0R`n{}ut~t8v)ZCtyLyo}WG*X|aSb$h3^@>C#abb?P5CaWI~w*QzogHEhYbac z1!NL;1@4WuPp}ey#fofR=%RLw_d){vo5=fm1da-o%1tRreT?t*P;T#?3&Pq|y%~e7 ztZo;c&@63mv`cxT-@Sn(U`IZSzYiYj9AZ@`DhGI~rkAS2D`OOj(}$YP_EVOA1u37Fe|$PU6| z{v<+nK(IG}vTI`6yS&SCg&SC5Omlh6S>y1LWmreETd=)o=y&{qZT9+e<-X(IKVqVaS_9btIP^ zC`m4c6cv&PbOa0W5oc>P3EYbh-}9mCgio?2++NO>98Hhk^=xG+U*@f=N&QvHifmQ} zy=f!{Q%q~-qQuEm*o4ejJE{uszN!b`w4GO{BLI?!US)@hM!*cL{2+Y2fImG7k@=B(iiVmyRtDM7g9z|UcW^}ZOW!9N376Iozj)OjaW$EW;%SEn{ z^}`@0=nxPT#R1uH?~KiT|Kew%opNr5@sUl%MKQ6}YG?I{Cb`Wxh)m^u^f~C9L|@Gw z$^ZNBe*R1%xIN~qjiRW$d(>fs36ebaoVpPa(zhR<&>BocmVf|38%MJWF(zwMib50j zYKE2%3EeW)jTA&#`6MOgc$}Y_WB@Wj+Wp+!uebq@I|5Mv&ICYw_o}pRkecKv&0`XF zV9;XsHd~Z2z?^Ez#ZEeDvtkS)m2FJB#3pd}dz+k5I1JEtgYitE^ zvRd>XwHSiSzu6+nJ}!sil|QX4c*6p_#g=iV5V!!(UjVYaKFn0d-eC1pUQT2{F{h~R z-bUZ&>rMivf zr^=$60>VWVYoo84ZxfNh>T9;W`_Y4;zGk$Ih&^T!H-<8jdEjsPGUygFJ(WBBrPme? z7bLVU$j)9*g6-#D$%mxR?5Gk&1oq|C3HD1%N z$~3?a2`YLHvgQ;nXlhXwVNZ-Cfptyh-c0+!#LC#w&8p>f+7%;SKdJ?0`Jpog7I@a9 z3uV?-m|ZG=fs98TaHx4`U%&z4|IekE09$7V%fy*k25hcnKbT&W9uT*t?+2f&@8wap zpsvDh1@tX5NVvl3GrJ!6{12K;5G-N}1Q~2}&vAYA?7ctutXe0FtU#q!d{T0m$Yjyv z=|FXPFC7-;IJ<n_R|z0ilrx@Z;Nf)`s9FnBZy5-@*E`?Cu;u9ysGDnZsB=o_tCh5$}CFK_(& zo>Cu})>*2+Bv_LE9whD}L9lL^L}U%YpJH~GQ>c&0U~pj zFC5GP3~4lfTau^{*Xci)8)55vLt(s8RS3JEQS6)55}?%V)z0lNP5wZ z+w}};QsFLqU-z>fc1h_MD~)llR@(e6VFsMqz;YF2|aNjAL?w5nYW``=N$ zeiC(ByTz?r=c7F6{HBn6umORn?uSV|KPntEFOZRU#9k;F>^QWS-RZ6sfLdpL$vr8U zaG!zIk6}yCN;#0R`#sl9vV3U5H8fs9>z6rzbR{-h)1nN!_}f0m_jZSA}od2f*=4PK;FNaHiNIs zaA9PBH#mRqsw2)IK|*q#mZ_Z(sB@}zUh2Hjo+lE8tUlAtouSM%9r)qAEV&u_cIb&J zz5+DfA+_-fr9i`Io~Lzk2E#KSA4VWfu0rKWF1I~p;5+$$7uAhqB=5GW3>-G~$t!hqKt>KKE|7Xe)eJM|IIOZ>VURf-H=lhuCrmyi1)sWbZ zP7ivy&!ksDsk+A5RlDoLs(49K52QpokHp7d#Pmn^P&6~Mpp@pacoIsjV17tS^Amww z>D3N}@Gkxy=xD)iQ?Hj6qn&TdN+MH(wI@7>0SF>_dZIjKccwS& zLmq|N8RpV@G% zb>W2W)J|PB>(E+k#j4c5IOn={P0~^{i;Uy&rGeN)R7G^p_+ibOOYn zquSbj1md8M+Ot_&k}&oKz$Jexf_?KB2lcglfQO;WV`Cw08n+KC4bIPM^_b5S<{ zYJ{m!>lSni_X2>XPc#tVpD-a=qbo$C3vK4F7lpi8qK!_5kW$ul6I4CfFaX^~daGLI zbXw{qD0L>WRSXYjAhSOc!*~t0T%TE^UiavaU?<>amF+p!dW1rmG)TnOA_CM}-4&Gd zoYUAPl`re^JmB2u=95Kf2!*peulYWL_~^$GHFFfPYNI)Jx{b=-pRnHuDeo?G+$h&+ zkU_x?FrJuWZVZ(Vu;n2OW6Ap-J}dJLQ+$3t4IQ?3_3(`YTNRd_ic=+N%FJ>B&ZY7| zRSN);_&pr!P6GPQ9ZOX?N^hWP{<)r&mH$lu|3mC)I@KSFjPgGCXz-&61rq|D+|*l` z4AR7?=c+s|A8?NXi9W+kzTaL==EebS+%q_^8g25VHQY$d;bwNn-wdu(yx5rM>aOc0 zM$hlt``lPE9_!bFTn@@iTrBTfKn(tKv&oRRJV@hbCzO@9_(N_-O&WIZ@ zjBvnr>lCTDX1w0OsUD9O-d=R!n)(Y86haNa4;qoh4CB7}G9Z1k;kPQgwqP%}%5KAw zUJ%t;w@E97WC2`Obo1Y@g6BxJeBSk)7EWV%y3#v)S=b4br z=vb&n({BcZQJl;j&B<+C0#FF<&MnBROO>ukBGoQkUG_r{B8Y`tHt0f>H@L$)+aEP7 z@VN)hfNc)Xp`t`hK>2!-p4#*3??;+zt``ymBs|bI7yeglZ&FF>%s;Do@dlc-Qo+;w zn>RcacJhoo5McZ|HBg0t?6tSEiUx>^l%=%RP z9#Thr4Cx6_m&lhm#jlY>yh&>*sZ=UdV}u`5Kwvz7Ncj{rVmltbM&7?-^wb3J2}+?F zZ@zuG#>o_4-3ar%ekZV}w?37fSR)M>NLULZ(qUX>&&mNwb#m5Th~ z1{cIlV?J&-qEh`N-M>w1mNTL*EIUuXtzCTl9zW=ob@A`yq~?L0!7s*Ym_{Mr%t)UP zg&arfw)P>*+b%kcbPuDzH)>gG(eH}rS8uB;lawWdX37(t|9*rDk!pL@fw@Zv;`KM^ zY1a!O&4K1E8QvpZxzR=?fYu%aMz7lp2o1QPc-g^54#l+Sny3M((R9}QO%*Um8fGPv zuoBH*2aqP$oN^m*pI0b8g+)mKLZ-gI3JW1NR{qr z=#z}#mvs%m|M>m_YS-NMXe2Cofn2rztIuud7BI#QQfhp;v7-F*dF|x4f`CKiZ(b%H ztTfx2x_zgAi5qrOwt||W90c3*-aJ}ulu8YdpmbfO5pX7bojkOq**?ohzHpS}$wMdFd9nw2A#tdJ?Q!8^z51#m z8>#cH0*6jL??w%V8`%2V&qi$en^nTHXOvJ0m74Tp7ZdL~h~WkNU?!|L>a>g6f66RX zh*B+m(x&(R8C&_KH*|TND`%c!_I%dT=Z}fv^gNzd4;(Vbn^P-48c%P2W`N)jhg!Sg zoG5f`^+gnVYr1Kf6I#|Rzi>}`+HQ;}Wr-xu&BoE44e~yYqXKp#v={{QpF|4z5~9IZ zwaG0_Uohg+ml|*6VeIW1xH{N{&o(!bTPGNseWCRfHrq6bCErP2OTwHu{-q;p9A=(> z_!!9nY01pIE6#lvm`3N97|O#1K(dt?LG?TUE_pT;F-^B1=4<6>Uemt@OF*=fb+6xz z!}Y33RQR9zV|+RN_Q{@B`HB^FyB>`~Pp=E8oLIj%K-8@q3&&f0kNL^u{tFKdwE$J) z-~bV~%6Kgb&Xc12^~O9mLLJ&EG|5TF0~#)huRtI`eiyZjQs~mpXzZsBmOm+n@u|I5 zWZpsujl97bzpJ0%{vkv!`cXnFCK9+a`cP zTK*UpCNHP{Epb;ZP8cr3l^GsHF(|B>>w2Ye-uX$3vzKeGXmWAt&PmFesR4@BJ}A3c zc`qg~eX{j?x6w@y^PnI9Gxd0{=`$(v?hLRqdW>n`I~64v3SQ&B5+$VZXd>FJmC`FB zX_#$L%g5C7)kNHEpPzQP{93zEcoh064fns@C-dS^oCQx^umo;!xYO)lhM%myB))=8;&l*OQ>$!Kj~;=M+|Ksrdv%Z@KuNNdX7P3gb(@Os zhn3I^D$6kN3#zQxI_XR&0N;kANF|Z`|Ff+=xOtW-Hhx}6>}{qr^RFA%d%xQXlb+(G zHZF3B7)QHz%u@h{Uecj~ckRjEfc&$X6k`}p7u)nZQ^+k08z2d>NFB@&saed6@iA(o zr=S-h zG58XA@^SV@hEL0Q@RcsGXHQuqA)r&E8=`eoWnAeNzu=GBlFdOBH(F4dT-C*%JGbx$ zS`b+Bzu)}dK8h|Uts=34Mb~6YcahK541URg(_ZY%AT<;UH1#B40ouloviFZPhm=#d zDtFo(g*x)PKSRx|t>hqY&XPvJgFJRMgGbmRbfx^djMEP4QAAgn&U`85c(cQ<*)ZNu zP$maTP!{#LW*^yS0sYN2fvA#U=wJ{!y4P9-k1AiHnJJjSSwNUC#K9wN+fB`MZer$A z((4V*pi~Js0A1~5o{v!qJ4}=mVCZjY-;J1*C3dPn%)bqyf;->|Gi#tSq7DjaTJjqBMD@NgQ0Q06B^9T&hFcBDm6q4Jr4_ zAk(Z;hKTi5PKTKvw~_^ogw+8Hm9>^?4_J+7D!NWOQ3c3(hIy&U-CKtb!Se$}H#yB* zAAYW~N@_r+bg-`=DjG1M6s*U)`cMU{wXe1jt(Qe~k0HnRX+5_gUv3(WoV67v5aHz> zG0EMxjK~50D*np5PL1V!b>{mHJ@@XjmZ3s;;Ph%^3J9bT$=)H^amFfbk{P6si~7of z1UN9&afPKcAp5^QuZ%*AZUwzBF>g5p&XI1itx{>(;S=8=op)S3KJcp$1@Pgqb?+S% z>Mo@d)m+6%ccb&e%l5O2fR9(wDuqV(z-j1heo43GApj&!-<~5$TmSxm?d2l8A^idY zT&}@>BXL7!EpOEueRfR-V~GeOb}R3t^k~dYp3rj$VS)w1guKKg+qi74*0~jQJJzaj zw}7A_1SKmN{ur55H)luL0;Q=CG;g<^wV>v(2*{i>c z0u8WyB)qm7u7Z79|FRgS%SKV6$$whss10)97o7Epg!Q;J{<)SCJFy3&VdWLRE-oc_cc9j|j{zVx64D9(dQj)*D9 zq_@YRHd2SJCN$&cQNBueTFL*NtYm$v@Km1mHqwN;D+U9zUMJ0%XtPQxswbx+;d@73 z4=fnUCQtJmt*N)Zy~HkTMSIEGxl7qFnrw7c#l_$gSJcg#wVd~=cuRw=ZTu1)F(GI# z3%xI%2kPD}&RZ-1<$4b&aOn#T+f#*&ikpp6xXB_acK+C-a=KFRcU~-x=b4!-^3(x3 zXeW%{n`Bn@oguD*Ws;2B^?BSl&|nQpVspB#?vHd9a+#k`OG``Zap8$_QNM{f+MKA! zSal2WQ@J)tS8Y_XWM?7OXN8ZcKl6uT>{u>VVm=V{Bz$WegOn6w%U+jl4sZec6Lb0Y zu2qhFyQrbf)>^986UGB5O6_oB2&;(OuX?J)9k&7&Pk}lPCMehBV#2xCL@^P505l~*7Edg>TuHFMa zI0(>$3cWdf)9Sus(Qyz){`$+UY&`@;jSO7~S`T|;QK6K@Jt7ONY$~aAP0O*_p7wet znjTLQfOKK(%Jya46ww|fiW(b`!&?-;Yc83yh;?X|c@Lkls?Ud{4XOujejSwSj7AGu zKihbhaJP$Vf(BzO3YW93`_V%`wf#0i_~34}qa z`gIF65Yp*?=r{M2UiW>hjFuJaG<5RMa-SH$;J{wN=&mT~gZ+J(nbYtJSzB4WSA}!z z&sua~f89MCl#Ck_UU-bCK<)rK6DO$q;zMn*z|4)1uhp|M-UG!7)?L+qcv6d!Jd|Bh zoI)t0Au%OF4`3-uYWCl-NXbH@X@QK6cz-lSl8G5#C=#9;|6nJa$6a&E&ViIM#1RPm zM;V7cbutEMsYRsdQ&HE^8G=nAe9A(LR@gWnvP^PIdXuEQR^muvbT0=uGth%va>|jP zZJGx_sqFft{<8!bMSNb=0FW_jcIV#SRHuX4dLr~h?pDJO_-_ZRQsM@jVFQau=C&5) z+?>RqbL}7t)1F3q%^|Z6JC}Q~CK$ZedObA<6kDj%Vf6F3AoXe3cYfrkXGMH;NCVO& z`SU#lb(YrH`)*t9X?5R1$QurHoawZexX(tLiT}Rsmf%-DU0sB0YiIUJNOfK~QbOle z&2opNOq@t~SJb%8RAR_lp@Tns(Dk`rrJ_;OFUB8eZuuC!85{sn>3|K~%Y>UBr;YC_6 zlSiBA$c@yl9|ZDLvx3qc3R0D*b||x48Kn|+Ts(c^uV+r}F<|x!jneN{muf`%6=FY0 zS3i8`V(dnxg&@aP2GBL3^8B_WEw`15>r`DlgakTCj92G+M#{YzSgyI_r{)1cL7y_IdumCeR z8|3Nx2;z2neN3sT4lpP2bIy)b5Y^A>zJx=C#Pbf1F`x#jnV=Jgk_dZ2UYQ@4AqJ3+ zf$w45FV(f6WR&1{>VC?&XjR2#P5L7x`c2FPahlK-F+jQ(l*kDW(GX7}j}ElN%$xwt z+zZhYoah&kc?mDE3m80aqDSi7t9&_-i3-RsF##HE`9?9nS(gdZ0(97)eQ&3?=#i!q zLsmGF%ZBNv?g}Tl&l8ogppB=4hGgX<;MTW=WoZe$s(oxNl9o8;JY)bz6!lEOMqZ2^ zVeK*_EAcm+EJq80A#1Zp9*!`k)ON0hmUxF9%fdu~`AQ05?A)i%yVnfW{*EYqIbqen zV|_@%7{$6ry43p3V2{SZq)r#`xW=SEl}}Mi_*PGJY2sTn*6)N;Mi{k|a`^=AwO}B2 zn9mVWC<$3vO0PMIF6OqG?q^RHu9gmCH{tC?KZM`6K@7PoR^VJ!7qD5|1Bm{qvu9sy^5!PUeeJaaq;~}nwKLr#?!x2`3 zOs&>9jAVhutprFw*Fy+9JU1p}JRUzGgDFzV&}P%=^ZpHS9?y)bb$#Cxn6=JU=LDHV zh;=o|{(Gn7iN0`W>G}g~&;tcy&3u)6Dnbqg=YAk`??uu&`863A1ZkZa;(0l%j?RHi zV1{?P$wQRw$}KZf13GNe!v-JEl%})m^<`>~l1@?zNV?@#&O#GAqw(3VsCp}q;}=O2 z^EkTSXc{?Rxq`Q=dn;!H%MB)o`JuSgoQTH1 zYf*0?S}o^r4nv7`cQ@$^Gxqaf-NPuh;Ns9kSNr+aQ)J&!w*5;XuqR%rBpvV)rTe_i zMDW>hb>Q800#Sn;c)88&K0*N;7oxR_onlQtBI&WV+;00=IL#OAs>liK|B$N>!Z%Cw z;PyAl@9GyOkWt>*{U|H85_-K7LuI9fWgil^rne`z&JvQNv=*dDY}(Ct8C!Vz8=$`5 z0d|m%br5-M!w~`~4+ZgEc8IW?#Hv(!ME`P)9wkOTkr6^^$NPaW#R6#`T8012R9|G% zKX#?z*S5|>ob33gZZHOU6@9k~{xkig8`T?AT@G zM>4CHMwa7JjIX;v)(YTMQ?+mpwmZN9Uer^Dq-EoI#UNiM*%yr-X4CEhC;O5T3q#V> zP6Pi;^w-g6$LpS)_G!xrLQ_)6qx?KvGVmC`DJiR?*5j-r zEwO&*`gIMdf-H2)k_KgIUHgmMm*?OGs@9eAJtr#l9kw)ve}qA6DRUy3>|kf$?sC@H z*cq~q`dBqOA-3%pCA*`)<=nuB9VsX=3&3E#C-E!y$WFbPt58e=m9Y|Ct_u}1ys zv3oVNW1#tqo-ygxH{3VZ@Y4eQ1s@lm=OskWtQp$Bm>&k*pGa$vY$=H>rFh&7$@7?h zs&^j!LhT?YlizbzMy{-ik=}{E<25VPRcuGQbDLP97Kod+8RX^75UlStl8tLLow(f% z)*QRf?fed}G15FrEQ3AKifMF5xXatn3Tyns+>=h`PyNnK@@lOHfNOw>HvC(56(Kj+!mgGSBiV_zcAoYJ7Kfr zE=yu9VG+dZdfEll*q=)E#0A?lOoCeqo5`V?FlCEfgdUa`R`4v@H^Cfa_>p=jO-O^Yg_$MrT!|T#9DqWjkbvZPk(lVa{TW( zDxgt48WDWx1Hyzr<{n9GqwW~cQ2o6bf#_rXh7bf^v0t*RMwuT=@-*dpQ@J2EW*dkW zVQ@4t+^@W>J0Smo0N>BcZuq=-xCtIN02xZmk_$ zK@1$-dP(2NiJ-*n!tx| zY+LEUw#w0W9D|++(%YKb)hY~_eouO|!$u)<<{Huw%MrDtw_}Xs8ShBsCi@p2B*wc3 zwLfJ41M=}|b+wcGGFpKLh@$SBkbiCav{>(kLNSm~9CvJx?OySEEr8r8f-&TMkqbps+}zcW%6{q1-}3i*vyspq_9 zD9aEBp42GGZX*#Gqarg9qL~D!**i5T83_kQpzeM0O45&i)qjbs&dv&k?p!$C+Q{rv ziI?k#V)gEJRN`aPMYfnhAcrN#iYo64rII~ycIkHO^@9(R4Z=e2o*Q{Gt zG+%i3G-ILtj|lh$NXR*N&j0AP9?ht9_E3OjIC8pn>s;ZCrnsmf7Wof(+p`a5+251@ zF?6WV?=2IZS{9q|65O~UV7YE*9j9Gm+ulAjBd%f(#s2!4;()`uI^W0LJIxCuq|}Y>awE6lOcZ-&vIYS z>Yxjk0K%+E##=yqv4p+imYju{wWXq8k=zkMcWhDen4=OHqQ8*`6d->-+EC)OV{ee* z`PU@sbQ}C3L&Fvvrboj71dQD-x)n?B=k-f8%Fu;DWn@ zd&kFDj~%%Y3|ZXIq)?J8Y~c?w9F4J_Z&&=8S6E`c<3nX|3s*%1XYrqc08KuTxJ#uL z6Tt>90E*_{wWb*|eXa+Mry^G=Z(P!8KT=kD2Bj2|jc)OJ=-Ii9TE11^(eksVxES*qZMLjJr=!ezzZ-4zclRWU-2Lo?D8{iT$L(&u<;)eg_pmII25f zsTV8`_*)FyEuG4EhAGmL8|(>p%E+DLu}!#J6y_@1AJnfk-$;XEpXU=0zmy7TJ`Boc z%RV+rG8U1YW_Zr`1T;?utUNjKE41I+o>tcUOn@~_uMI=wAyY!b{yRXdN?hny_a_BD zD)%#yfA^2B&|ieulG z|F85>9QtWRUd@{}lq&>iP0#^tmjxK11L`tadx)9M06_Wv6uB;hZ(7LH3UMN`Nh=*L zfwn46r*GYkJ(;xPf`lZ9)M2s|tn zCtdp!=ax#kiXVPvv%4mNx!@e1RCzK^aGvV&=j<4VsmTNqWvy zD8?$Bx*1%jX^2XTDj&~1vHo&1#NM5OL<9vywTL)b#vs35#@sk5dA2;B-mnO>yk zqc#^6)$;h;-#e~;7+Yjc^SkLsnfD1&$$^u}mxc_YK`Gk3bP^rwF8LVwumFuCYS#`s z%#}Cn%wnoCq?KyoV@CLR09k+iUo2>JZ&UFpQ@YJaCV>2L8B?>+-8PA{MMV6gz6}m3 zF7#rfH4X>+nY%x~9?W%h`3f1C3d?0k_2O7ta`GCi>Wmc<1?QJ)b0ffwgee}~zBuHP z1)a&`kUx!62$ubfmcCf)-iLbH*ng=SxWo<@_1&elT|+G@1ZW?r`NZ*L|yjIe&l zMi$NMqn~$H5`~3#pm3H05(U!G25fFs%&~f3#=4Dl!Xa^+qQ{YljnejHl6@B;G@M^v zKOej5&SWciL{R+dc;sJk_wk*uQ5DV3e^A-e-B)X^HlWVQ1+$8X_5>qGXJq!1726RNAAWcsmv+1|_n)5TYC9U*4#7+-5g*19aj!p3u`OvAmn!9DZF9hKvuJ z@7lF9$NOiMw?JUOFckfTseLsemA>Ex(Fx1KFEr7@loKu1D%dGIWh!D@)0C5HGMjb0o12vs9I`0*()87|!=g^F_ zXd-EXt74jz70lWr7GP0aoRTihnKwaOCE*OvBvj3GsoK2k&I4D4{tD~y9XS-pj9prK z|Ne+3=QS)qc~nmm-14~%Xs0b1`e)^c)0?s@<&R9Q{By}jvBXXSszCg=+XM{bUt8SN zPp238;~*%70yH@O*Zfw|&mpZkfwR{%S?@j1I_-oky*=v=`5ES`6yvMru6Yx!cktWe zB{})aEl&cc3?VXJ-{tZ$rSONqfC?Mf+##0-abwk8uo{pB%FNs$W69i;LZFZA*`URm znSvw4_K@EhB@usuq{=R;$>rQ6%!L3;SVM%bu`GuoZe7v2ke)S%yDH}2WK}ey#uYvsc|ma9-Uq7~gg2^(3kmpA9G8e{SrCso^*;9hljn8ce^>x;y`RZdBQN z7g6a}w%_j<$E{)Pl@FxZ=Ylp#-^*p}0$^+8;z4~`>^Ko(;qC}BN<<1f*-0{QY~1ql zLAU_GiL0<2I73Rq%;tBOYi%k5{y4N_awISS-Ov++TFTwg_sSle*3Q zwqG+%Mx=wd7+vUxrA8}fKDcIZN&4ch~JrW&|c9Vkh`W}ML_i40Fr{LbC<2k6E7>qx|D08?(W(E+z1-CFP>Qv40t(T(tP zL_faK>mlT5%Xh*6_&>t|#wn#l5tZ7F^8vqVPGas)z^)lgtq>{PeS=XHWu;Gz|2lS% z9}jfWv)S(H|HQr)?+m;a814w$nrl0rw4*TAsrE)^S^)sVbU_vs+Buqj>)<|gUy?Y^VGI4nGE#NHfcfgZR#AtEz`k(eSwWML#x8mY zG7w-#n#kv&3`TC`?C3};iT|C#?v<|$6vRyVOBI|sAR5??d8_2)a-KR3wnCcSJ+3Vg!Z!X&GER@^V5q#&noqQ>BdSpkS3shPsqQldc*mfKSN8= zsMI3}eJ&E2jRzUT+_m(&)Rc(|MGG;*?Wu6aDtoub_SYo5OXrgx(74g5d7U4pXE|CE z0vbl;;U+V51yKUV{zB|a0C~t(Hq_=A9jUHUU>!AzKBSVn$MM*k8t|4qH6X>Qu#6}N zbz_lgL_6#A=C%lfh7@!e-D1}lD@%okCepRnu}E&}t}OZba^Y!dy6u+SQyV!|HyW>9 zo`G0`U0j6SDu)WeY+Ib~Yq0q$YC$f00wDJOXnc%D63%a+{3XxRsn%|Bndy2x3YnvW zpoSFNOZX2zsCohS-q?J1p5I{xNo!&;Ku4=c}^I!t0 zI`xV#-uIXRNBWTskwU00d5@KKb6bpSJzr5SJa3DPK%TrWgfKj(q$KtcgFE+D1EKl5 zVPq&WxiJ^vWsZSYQH-db$sSs?c5d1o##eL7LdWNg$SQY5DegbLJ#F9nMEr78gj*3G z{j$EdN67B8{*kD3hj#|xhVC=KWJ&|1uIqdG8G%i2yIo+Of%9qme-O8|X&WiKx*UOG z+pCktx$$2`tnPGQhg??*s^zJRQV7SHtracj*9)l+w>WO$1P!57b==!+`hJVQGMh&3h@Dq6)!E^n^U}dj7L3&miPr>Uv8@4D?DR zHl~FGsv`7M!uINlIuJcRJ~@IY%v+L1kh$>H#@cCCk6^{bVzMCdI8TL6a^g<6DATIfB49KGIm4^qPY3Ud-cbhm)v=i)&GsF%_?%wmIrl-FpPsSBkS9apgI-S|r}HTjVeh>lB=OVj2-rBZEDXqS*n@u*Fgf2Yq`17E$W zH!`|9BObm=$^CYD)_1Sd5^cG3C!Y;m>nv`b2o5;Vk$FbwR;(6MfkX8NLP%i*h|RaA z>jcm96+T{9(OO5cLiKscrU!ULHGcX^m8!JZ3;x`nZQ)xa0E&>v%E!FEk_9Sc*3b*| zt;q9Nq{1b=MMov06Q(yV57MIUdd&hWQ73R}ULnxSiAzrV%*EXc-4RMAL<97CbBCVI2|__R zmY=k}E${1cTWDoUV&>i`015ILO8Qtf1Xpr^sHPnKCQHa}Zb&M7=cLTujH@e+pa}8- zTvAr6ypC$5vh5ZgRIBz*O9&&d9TAW7r#E3V{M9rV4S54+XZ40n7ak7GS2>Ej2C z3|vp-16qf(i=f-PKh}q&UTyWc(~!qxV)Vl0OOg|u227uUS4gGSFqUaU!=89r!S>vD zKE&*S%gW}g)64XcGqTxaQHOELORLzizLxNB>~JwQ4W#7y?IW@Dtz$ivM>6d7mBQ~I zb=0%IFZm|p46naE_3Twd7T7a4#2y#%ScnvKEJXo5W_dHvZlN4C%uR_d#tFF zPjxgXPR;At(tO!pv{b-zrK&+^N266M^oc{npy3zoDU7iBo`3sAEoC$@`? z0ax6KevR5o6z(Xvk;xWjQL2T81BPT6VV~IMl9|j#`H_LLl*1C`*P|bHB5Y$S&8>pQ zAe;QqZU%@Yb85K93fA|%)tB}}cxC(9*in;`lDn|;@2rO=0>~r4&i{m8gBWLe0{zuo zcY99ePaz=@q06c{?)8BG`l(!UhwZaPd3}~vBl!@+3SD1?l1eJhCo<~l42V<}N86M< zjoy1?PmXEE%SPELhTMZF?Yz4SvY&!d8s{t2+~+8_&<-M;qF@$-%Mg+T46}=lJ<1~K zeU*GJDP1mGUAT6@l3IqL!si?LP>y8v4OE#@C4tR4A6!(3rewuITjKppz%c5f!p*$@ zX7QPa71^;m4Q5}faq;u)O)Bkv86#Cb?&RK52Qc!zt8Zx-`p8_S(9W$qXZBc|B9^T!@TuS`_hCml-El`& zarxfK#pdM2$>R5kdd!CV?FR$TDeLw8KWwJw0Zp;C9EZn5 z2ND@3R8Q4-j2k(e?l6##D679L6?R3mNRE>n#^J?B>wEu?kK0-D*erB(WF)MAE$YrX zhwJlLX3M)$gtsl>1bVN6H-dhcm~xBmab?`rNMchJ9!$<@e}R86i*4LvHbl3b_QAR} zWEs?To2De&KQUs*YbZN3`CAH?4fvx0h?wg@0Ov*k++NIUQ^?hq4!eyU+F&S$)=LSA z4rAB>Ppgej)WQf!tI8VVeKaH#O0R<%iPU-RTSH+_tRi9VbeB1nvZwuzJpb$wthcx- z;?$rm`O&3jWB%Z_NJTT8kSSFjtyqBeH#K?32Kw2b7b7G-#QopwSN!op>;REB*4rQyXiIdC3Ux{9#vf_Y`qd0t^VaF*cmIXT*-F>r!Vk2 z(V;gWWrXR7a*f{WJ?BanE41P@NxeqrtZEXHln$Q74~0jT38a3DJz59-GOFS28wENwt`0-MwH>0BOhNK6OP%5+rqH+ z!V*HB7GstD_4q1aK<+MIot{Ip<&W|(Ogbd>Yoc2dBx5vhA<#vv#0U!*kq)l$bCtAfPegplKbf4>ajckP0!f z!P~GQkfTNkLZUbPvR@=az8EsYk!L>d0mYf6C#mV$A_;ZC+Vcw^w*m&?| zzW2}zN2F45_}P3AANln6>_K6itY~~cklY!F4q!^*-JWXQQ{mzPbmBEqsf;y0kMw{6 zMIc73jMPV)GR!w^A^D2aPMea)xv&!RNN;v-H5a0004ee7Qt8ut;7HdWfbv{%Xx2C+ z`tG1v6tJ9{SpEgghc>6|RVev^(oxJT_Lh-g6XQLqOQ))Y0NNS*d_JS6_@@Mo)2BPV8 zyOu}=TFEg*JA(8-164Oad(Eu0MG+jEdPY6C+o`-gs=MZaFxd{~r`LOw?j51P(-O0a zK9qEm&BMsfND9ZS(Q9v(L{7_<0-P?=nFhWhtK@JPnO?|8&tsff1kA&d5o72N(O`IL zkigWLE`gwbk_bZyg>15#GV#{RIGmU?7I{!54DUb<7w#n5B`9>@&_!oHUh;UwXuCT_ zw{xx`)j4YGU2k`_2PiZ5P4RNYuRPA|P&tk2SkGqTW_0-_l*V*`K*ig-jWSv7I*Gs3 zw9o6-k{@`lZ~$Pq9y5Y}*_B4RaIeO4t*HdBc(I*OnL6@{WAAgvoXhu{ZcJt}=xK2Q`C z<-8ATtZ1@!1OZyE+e*MOa^ogWIDyYq+md&_ zxb+Z*_d_*d2jJnN7plb6(aJbWjK&s#sQ*S&94}l`?F}+;?yM}(i?U1QTi3sy4mGkX z)cFa#i;78*9itbh(fuKw4YMeKNr*WDhA=?dC4>kM2j;==$Cp;{ad zUb-w17Y)>@X}8X_!T_=)svZ@JVL6yRM@=NFGglp!uLSS}2dY_feSk*DjU z=|$uA0zpDyVHDgOk6HIbb~2K;9ksV&IgV{b*iC{z5YpBjbK-X7;uYg&kL+HpS$i^7 zI5CF^TIBISoHZ-KR9#0f-)V9=I9pj@bq0((Y>QRTmC7+}NjP0!Su4 zM0<@(XT6c#+UCQw z2#pA_#I$`nzQNME5#%A9>uIVR_Y;~rJ)Et6dKt}B*4c^RclJi&LwrX=>2np>XQAnK zs-7W;p<)iLQkl9A>5iH{wuyFZJ}^|i5@G8j;MI@>5X;G!$;16Jy5~d8-Aykk z4g_Z9p%%P+id=_aOmzqe@fIcCaCZUB7&ElW4EW|QJv&L~4v2v?tmzwTSvzD50D~lr zz=y0tuI>FHwNsYA?pWe9o&^Vvg-i=I_}%0cjiJ|bxRhj5n7p_3x@*zZOSRpW(<|0S znQFoP5esEmokQ&{;&&F8=gRHu;wDV^v3xe1gnE~|ZM$Mbh66zOo*Fe+c5;6^MOAS& zl4}p|fKM+Ir;poGm(_AZ)nh7l4bZqCzqm~&-{CKE2N`F~3dBsvO9tac!gTWV(Nzg( z$_#K9jEXWeN8}8pVK1-{uY_O2Ms%>pAB z;!jKeJ`YTbB(xA17GQCB15QXm#@k2>a$-iS)Jl0@1f_!45GY>n4D3{Bffz8)nZ_zL z6Bv$948dhCWU|j+=N(+ra)9rhyd^>KC^3;TGCkx1rS6gf`|UPJIyhPOpDNG88`8om zW}|cMOnEyrj5>8>2rw#(@*w@atwA)sqYmwYQY=^3Qo6oh(b6vgKtIjTJCaixDuO6~ z2o+hXrofAC@P`r{XT^k>uR;s8G6OJY-rh)igq1wost{|(Bd>|eZl!7O&$tslXv#%!n?-s)e=tbr|7jWPwuG0TTwE?8^Pke8W7ilPVZwh8v=O>t79rJEN}9!MT~k2T ztCGb-gRBjbLW0BBxc@8CNpEWlbaXYyj|cs8G9M=dn8B__v|-@2R7peUM}B&wV_Cte)cif2HG} z#O`v3`pKioC-dZXTtR2|d~^=(BAdQ4A32st+;I1IGQbCY*K1NywCS>epP9W`9HQXs zCybYXT2elE#eIW7QCs3+GHZqZh|m-20(`T_7I|!m!U3jkTlHRfiub0g>8f+RUspypQ;3q zM|!MO20`8QmZOIra_Wes-{-py0N-zw(%7O=F^M5}Amt8tPb_*Usr~E9H_Aho$%Qr? zaOttSmo+M_Frw|G?%kvp9YSh5`JpmEraJem#cUp{N1<@-F~RG%O(a%XF}LUaeymS} z0V29z=!1HHOHwH0-`@rQX_!ZCbTeXflmYoC3{})IfD!oj>A0H05d?$ztp}4pe*G2rGc$0DhJ0R z*R)_z8wIDza{OD+ML$ek!@l^j7&v(4?NnRI?o1R{fu{(XE23N1Dm#UPZ8y zYV}y_Adk!r9&6l)l4F#W52Kd@W$9(^uQ$lF?||Y zu(>BRT8oGD`+Vze=fa@(uEdFa%JR*VaibHpA{lKCQDDyFVRQiFu*OWG6nAOHt37__b|2zjg zOUgy#!jnqDB7#{;f}XQ932zxyt(k7c=3aJ2KKFm(;N|w!Q$gDVC`Q;BFPPsHUbYtR z*d7fIByoEP^LSJ7y|@A>y@6wG;Rn^7;asS(XW7?fQBBqLls+&ujokqgij%mJ9kN^^ z-vzV0t#f#g9$ux3>`s*^Jz1>Xz*MB3ML7>Tb_kMgZ_w-Mn0uIA03os{Qs>4^djg@I zcQK%hsNy33oX}USJrc#;2B6CNg8Z^Qvwzs;p*%7C!iX9c znzSf6{ZR{5d%y$E5RZ%?&CwLky1_TqqwF_Z}ioy`m@Qbjy07W`2giaHZ zf$x)p(UEQUK5Kp;dDCP(SbO@n8KIe@9M5-JTB{JZ$AZ;Knh1frb~)j!eC72jh#-B7 z@?d6cTh8nYK}7U#c>(DW!z41Y8VRY(%Qu3MHp4CK2}B2Fn=pX=`?jTVl4exZg6;Qf zKUPuy7aXTi;kSzvUorwquv{wNmW+14)XU!~-?hjvTCl%>dj4qqws7o+bg{I}1bEKB z;CB6a=M~itjB=uY)?W|Ze1X?nZXi_n>R6v7SBQK2iCUd&IQJp5P?WP1G|;<6nSzO4 zGD*s_v~+E}n(&v8EfTp!t3gyt)9m3{fw2biA|6 z>gsYmK8`g)B}ym`uGiYB8IgdGuTp1~U4E*e4vjh*+s0G4PV&mDf;8eh$c(bkw}xd} zliCLp4OOk`n{2k9SMnKMq&GlTMAXiUFaE!zUK)cnY*#l*v2Z=ap{?{(8l4C@0tM%c zL3e&Om)Tjh+)&4$oZF;fQGA+q##^M=xAwNT`4tC7nV%GNBIV{n4p7lR)_pY1QJn;j z8Y0=DvYt79w3!-5`D!|v&s568@qNRqyIXgT4U0TKqP$SY{=%3@C9RQE4&B%Ip`1#` zK*9B`8Ik^ymDVxKlBtCndCJ#ux0P&w3D_tr5zwj;GfFhMI`fxc_*)X6!02v?eUQw1xMkQ!O_F=C>wZ*I$yp~Y?7S_0{vM2W-rh)`EX%sxv345x zD&nqYsC4^34b?Pz4d$?Es@L;VVFaw^o+3~{x6nITXZ86-ecI(EW8f_)RD0NITi@I& zCpF6etSbv9G03)eAH=2pk;4<;IRYRCWOi_38VK^>Yc(CN7e1mdLOVxRqZYMc+zNJ- zno4(Vwnc3k-j*Wgs)K_%f2l-Kz=H4Tkv)gbr{`sDb7rd);3fXZ31&)#7vEdxJ~Wrz z1Dbqy!8tzg!aAuO8a}{5nvZo^k`AB^;R%4!|6MKvElB9Rq+B${n^N4d>J6~*bl=^D z1O2fG$Vuv+B+n?$1H|DN zp75M5BSJ4-5=ARwl7tE#n1FxP#TK@K(yYJ#tc<_QGD%_Z-^%dH2NRc14{-~;v;=%# zd#cUoy{x1=YD(XmeYEEth)X^!_gW2!CEJ^Y(Gn>xaoFmqeN?2CgP( zhlI2;JQ+oGxW##F_m7iFe8~Y&nR;0&%j+jWtpj>?^p{3~7uOtRa61M&4-Ql~6;1g* z`;}i%ALv9AuDTI=?$U$U2v0+|L&3vn75XlG(%$H6R-Zp|N`bZ&QNuPwt+f3IYPFUN zn*OB3L%US1c#LCyU*UeO+gjJCCLAt15z+|%;w|m@Q>n*3;k($Y?os&S;%fE#hw4^g zeq;Edmk0t}X&nfQsjTkT#m`DURH(4<3HRP3)O5-Q9W|XrMA0AuR9J$5wl&x(vP%$U zY|2gh413WE)X@tKB-(21J|t`CG^PPwImmY^1O{trZg4SGl+`&cH)=AOQ#FL}nc`75 zHWiq`wmrSnZ9BEe1Ws#go8@p6GE)65&5AvPym(~NZYa2QXuN6xLxcOrD(E&bp9a4& z15#`K&0Al#d0u%eCWto4cfs4h0eRTSTg}CB0O$>l=@$+^&VEdGR)*;P?oS}8paOWy zQ>-at=zkToFCfza;Dl$y#_2J-Q1Cq>2d)6bI#ha&w$XXg(_%s+8>cQJqpr6U^LUm< z$c($tlb_|UY7n~2vPU#hOGme6l zLW2VL9qT|KcN%AJP+X)oH6kyB@={L`n+O_3xqaLa1xfvFp0ae1@d}HMCCLM8s+9Z@ z&#{4ZF2&!bC)`-#)bJbI5T}j*k2RQi|G7fElg^0b@KHGq$*HEq%Zj4Oqh+_qU6t^j? z(RX&55Iw(bRA9n?JrU#OokpM}jtt#!7l`5aRy)ubLul_a{ph{R0n`=F{qPvhtq4Ha zcg=B~D})o#x%)73KxPUD03a%Vl=Ywm^dkn)Oz`Yx&*v=|!XV%(H{~g#toD|cfm>@g zx6l>~iQ4|{5`S{iE_#NN{Xw4x6Ewwd^1x!H?FP`&EO8d~Fe!OFP2uVcy&et1nj zm%s5q+fqPz?aCrAM3PPqwBq6aJZ_C4DA~`k&2508^9(#yCIJeZKWgGj*56A-TeaUE zRuIhjlN!?0c2yoG`rwR=e5Nk2`NPpgaks*W@gVe{)&1kk+&H2lJ)N|O97p4lJ&?lT zKSMX*MUwPMnzl;tz)PY3&`?(TZKa2|%no2v*-^F=$Of6o8&x>)V>Ai1ev%VmIpT|` zBvX9>>CeFHwcjRS#P;8#mkXe}ut|iH^X%N}_FFXLW~=>nNbp#${U>YTt77HDo1X9a z1|4OtrJ0q6oyhV2OykCn7mYYdkz>}p_3_yPjccm%`?Ym;1BW)OUz-cPb%@LGn&i*T!w=IehN0s)%U10auEm9n5 z!5HN#PA`lXulthG&!<_A5VOn%gPoRNq>OZWRX6GSb%qj?1|T^63D&yLax+E&YY{MN z6MAz)Fl$dgiLzn?VV@KYHso&?8x*bRk!XH(afTr@z5Fg7spR9Zz{V}MgOIV_@T7rf z8Za#>u_A^~QPHRuq67hv-pmWpOiwJ|#rUZPUZfV!zC99T^;hMTD4WsEVAEBdmi2){ z>b_~dU;saYN$w7if4DjJxJnyBtE9py$>+?Lxq{Gq8%GvfSG4f*b(BE4`H7ZXl#p;BG7~w> z`H+`Vl3|LTo_MZ$OmmPH^W&@^iX;KusB>u^rJAq%Nqrj;0fRG^K7$j@-Q)kX*o13` z&btJu9kGz=Z+Nw+`Lbte;3)7t9%@ZzGCd3AMX7ZG^O|g?D6CX~Z&7^S|G;!Z+l^T9 z23hI^c)sSXJz84_BYL7KAGK0;+e!!)QTUBA2t2gJxnV!?cxmx><0+4aIb4}qGGxV} z(>^JRm)bCv1X>gC%%dS|h0n%nvBu+C*yXqR?)r68YYycSx2w&?Md3W6Oq6-jo~LyoPooVr1m0@@sU@tO*Xw==)RK*{6&P7x7Y^34!*={a00= z_@}yN@*065%i%T9?arx6qKe2D$#{{CoZGMFO{lVAn|`PV=bal3y3m-28p&FF+O>2Ip z7q3q0JFCH!6sgzKE#y}BC$_{fwiv8Fb%;n7`1Y*2Ttl^^CQrts`+3dkFCzdy7JJK| z4>EDaXL7Ug0+hfuzB(GU9eInpFcj(gHC=+GiD_-yGliTCp`+wiGi3Kxpp4_bM0}YQ znuQ>f$a^4#)#Ai#H)OKCxQmSHqkGjwzl8(`_;kbgr<@b!D*Vhf33kEYejb#)ak-{S zmo`pVsFuwhWq_}u}x5c!MBxCrRaKf0)m=PEo>&BC?FOD5*aWu(>lOOZ z%OgyPM32?TM!<7jG|o))GlhzCIG942fy{v%VZ`NhXA zco;6L*~|;zC<00R2Nj$6?G^zu`5|}-#CkPu)1VS{qp(TQLjKhg4ilM0N4?qfDa@gT zC`sYSui609dyyWrfECl7N{#p znkrF~(VoGS?c?to7h^goDX)xnJ_~g~f3az*g%;9wYcS*=y=%xd=YB^CZD8Ld*f!s` zOh9VP+9og$!@%bEtilBQG2bFrGjM^Xf3`sw`{y0~t=OMN{jkA_%+AL5Z@3h~ z47idk_U!)kA^U_*st`56*Nqwk(91doCcYiw8Y`Y^=im4N_$DQwf15nQ0*AR@_KGtOl2ho z0F-Wl2ZGsZPlR$Ob@FXTgfLY1>B}VBOixSzJv3JSfPVX--zyF8At09eJ-ST~^(Dk? z%nEAKNkFV?i3pT-@Z>=cE99n&f(&3p3g_`x#MHxXg8bT^OvF6t^l$$2paw6#tJ}EK zmENMlujo6TU5S(BKJ(f#hS|v{UCeO=GG`1DLZGBN>_OrU&9sF5o44cw= zd9%|09JAEJv*5}ngk-}b-NNAg_9)WO>m9L}8^A5N`0+T zB39f!K%jgpvveNFo$(K zhK~0cYJx%ErfT;5TG~to)+}-jzZmCJ6amq3Z{r0>*+MOzlv|V^fsn@dvzS`8Kb|~e z4+pZ^ zn-4OUHLsqrcUm9d6y6Ddyu|oLh*7=>>juEB4xq9n3XYB~<>_25Y{8$H3kinTt#29_T0`3cQ4EN1u{ymnNkbxb z-wQMq6;Bn{icu_YvbFW(CcS@W|ATO#If-F_QTE-T%3iH zV-FLH4+W(tR9_Z|Jl~j`nYy#iWGnNw7nQeXjX$t z$}vL$JJ6I%poc)s27o7&4nKCo$-hxl7o0S5?&PpD^?mJVLEcBGc z)rIA8KOWh7&Vrz2b^7H$0|essy40KfzBO)_y>hC}{aVQ#i?kS{K(#8>?k@Z>M$4Mo zlwHbs{yKx>53ihLj@W)}?yza`6jLS`_V{2mvf~_HU-*J+cb~U!Wn$HIH(R9HuM%FV zv0$rjNaF1qB3%5m@g#ddq|VJF6T0l=wtoB!#$y+l7NQzK;PR%TLoZi()6x;^&Z;N1 z+2zba!qX3%(aJ8OZrL3-lLW6g7W+uPduKW4v%tL8%yMNZG?lt3Gtr4Vp~J@ECUj?c z15>{fsffs$F|?B5jsheM>i8I69eDo5NN#l|$-3*?{NqAX*zP81#XgyVJV&nmMR6az~K*Q*HO1&ClC) zCELrT$cm?ZNCaw==h=|oA9(Q{BC6n@guV0Yep zK7bviywA9tY-DNOuDE*BW9{*-tKZtU!_aBO;FTDGDy0!fj$;3mt#vBH4cSYifl`(k z(F$P50N!Eww@+a|L;WshxP=Cd;63K@4Lb-;NNn)5nt0$?HS{4l+43UbqY_caKvFKR4{6SxPB@s(d@^Oavga_G$U^h(yKGI0kl3Izm7*{i`yo z#o;&h8#}!i-Fg`P6pDo>kV(*TSPp7W*3H2VJA00Mkc5mXw9^vBc|u%kRJOQr8Ki98|Kv?FMbV zFgpI6m&5j^3Ji@|eQ?c%wiuI{?!$W$^=x*A7*x?RDZ}H__$BRe_US*XBTu_dll8+=4&|`n?hp<-c$uMiinZjl1^VqE zd9vB^+5e6FwQ767hLAIVn=n0dWH}6K0K+=+UwlF)sCEP)?!-EasZdU4n-XKrkHqc5 zZ>f&rS`^}BcGniEnbtdjcv6jM+F<_bPR}=`1G5+AGr%+Wosf36W9e=xLC6#7dWJb| zXe2!xnF{H({iboBO*|e+@j|^F|5gEA-PIFOQKy3X&60A)yJTV)~pi zs=vF~kpF?02yV2C7SxSwO zt1UAy7z@_FNgnx@yZo|}{UE_7yj_!{DiqK94z_!@{<;+UdP~p+;iLpxeW0YUJfF?t z*$rdZzP<`NsmiQMAe?x1LQMO+By!qd|Gcona+VOQTOXbAcul#huTwC)xvLtD?o826 z;Az*&<;2fNJ zevu5dEgEMr# z%vu=+MFNmSM?52j%8v6R=Zx5Xr=B&n!9d3fZf#g)`F1oe&Si;UOY~Prb(D0QcSeF@{qwvqFp)RA#&)AxQCs|vuzgB~FkR0^sBjXn%BTETK z`zZ~e78yRrh#aXUV|Qo*jW3W~N5NBLYhIw(-rQir#5W5#=c^dUMDxO2{#elvupZR+ z%&ud4E|fa2$aB!cM=Q?p;DuH|eDIa;^A&IGLCKMH`+y!cjm+_0Q-|!Nbe4R?536iN zPNv;DGL@EY$|0SWwsUy2aei?n}u8N1vhroH#XXywE3b&h%&Dv9z&FA=Ps)?+W zS;P7WiN7$?`Y@k)#UDUt7!kq z`NM;wL!i8sWo3r;`#uOxz!^V{Id|^XGR|h(4g?jGG@b%?r3r&sX=C<zS!2W@=_1kgz*>v1eUA#ZxVHE*FP?%HcJ)jRNFxEio@zA$k%~us!k&% z4ZIcz=0{%vV6So&UYn}}fEQa9fYr`jR*y6)tx5@vy^T!#KWA_3@_3SF|g}OS8YuFu;EdH(II_1|AynbZX z66A|LMlN2dhc)R09@`nVOwqb~OD4|(6X9pvCwVQOGLkv-k2FZUw-Om5UQXpgh z_yEQ%kEO|PAXnu^e$2>TyX3Yh=lil`I{{TkrGSBB*t1u_NpTJU1ZHQ&$eZp@D{NJ` zJ$-{&B@b1=3Pq>ZWvnxghA*wPiRe@{!;U?IEF3&!4K6KrOC zlZak$IUv*(Qzou;fy>%Up%!;$CN(0ejta6tK?5+N4!;mU+FPrFjhK&GQ3nrR{ChfE zksj}8ON@*s^+sknUeLTnG~z}epKsNn-DHD9*ES!gTQyfY%X{#GKbWuus=S_W9f3%I-o z;^wf6`CQ#;ABc)$hi(R3$a(7` zqevn*BJt!rlti4gv)x5J8VPlP?SK&cE`9F>Kf~FfM2nHN(ZzJWGXDZLG!)_hyxW~O zv^hzF8ZFlsc{Lcj%R z&{SvDT&lA{BZ5@lBN=39zMYKm&M3+{LVGr91J#wCI7<%dhtWfF7MIEF4bL~;RKTkb z6;suap}L{+Q4fBB9^FZ4)W-IeiXa{zkZIc`%pugo+3il6J8Yo{sBSX*)o?V0Ak;nstQd+nmANics7?65tTn1CXOgBWPd+pMY-iK&uF| z!P+MDhrc0{&>byW0Ew6dE^1J?uTAn+dN<)r1P>AuJp*03e@wuzTQ_~q8HiCt)oOgr zC#3!ctih|33gqTO8m2Lp+j4lmulR26jbMzS)E$SfT^Weh*4JdYXxU83LV)WnM)Jl% zIP(%jSe?TorBXSs!?%Iyy|KdXc1Vnq!@jNnc8qGs1(f^a_mTXr0*BDqtM#w+Ekct`xHUZ%3AuLpsrdg>P#%HaGEVqPbP zV%|S#OQ-@>YcENEncMUWY|P)5_WF&n8Xhi2$!ME>TkeldqrrXuO`V+jRNbto)fEQf z%V6)+hN((8_Y;?!Lp6j+Kv|%&F2Mq?j89R@kXW5(ypjLaRfpA|l@EmC!U+Rwj_)V{ zUE9GQZ<5XIT?RA$PB^VAamCf{^#PVpir5nRiE5e~`04rt!sRH6bEZnh|N034rXA5a z-sq0I6ny8F;q^-EmXilL_V>qh(a$IS;uQdVVB2=Gd*%HBiO}OUEI_u>l^SJq9av_C zq3{CKC@)fwQ7byR(|49M?1hm@@CsK=Qv&oa@jR6rm4mlgaIRxUo#$>BR7a4)4Kr?F z!{0GEc>^U6e1THs1)VfwTsT1PtVwV8GRb|{c*_Fm>H@(-Ydy^lXyFEC(t7vw=#yyY z!kqq?aD|e2ETeWb1Kq^dz3I`OX!tfY1W5_+zEeZaQ~9(qatzwcp2@aV;jY1bYCMkO zTnTrpxJO|YO$Wmh%F^GvZd_bC2m!ruWIYU_iYz0ih}NF`8&}Qt0Jn)cDw}YwM5Xl#f2YYM=+#T{_X$^}BER6FtJwAMFNuKys*d@m{ znqxZ6@!-S~XN^Vd4vifcR?Yl&?qy4!jLHsm31LW55}`NsIM@DEoNA;?o^gHnYULQZ zWzj0T!qN^~g7@c$r@q^;026GrxF7M)V?hZ>bK$dDJF$yGRNU!ZBr(Jz(!rm#-|Uof z9YK^lhsCJg<56(dR6FwRbQ$9^G%c}{^98^eAQ6T3zkiFDnB2j;o{hl7mjOs3k@;$- zMCO6uep{C?Of_cxEt;QEX9<`B(&-UCN6)GO$L*bjvKvEXJ8T`2yndFhMfvcs+rH}{ z0}a7+rXezs_g}f^4uKOD^MC|^KDBCxg*D*~4izVFSE1_XkEcTTX_wbd{-KD+e+{bs z1a`=sGpdA9G|;u}rb1%I<0b`d=nmshtlK*Wz_6a79AGyjM=2$cI@JQ$#rnw1++fz0 zdlpV3o~``eN7}RiQGFyvzw4$e8Sf$Hl)-mPOWzKl4wMRI%~Drh)vxdgROIx~Z122JN!}Vp632zJnM|@<12!liZDI_XaLB>;at!o+T5d#%OndxNIqeY0t7ne48Fig~s)&SAvIPfF`Gj!ki#g6r_d| zAS&kItu@_IpMm2K`n~_n$MM0&&A=(?DY4H2U5}KnaBl z*;NW4Xc~OK+!q(#rbIsdN_ERliyO#7uXCAnP`3QpAi`E_1h~PZ3DH>7z*`0x+OyYJ zwSKNCG|SJ`EoiVY`kTa+)`9Vyo2~PMaOcQ`DzVYy!l@-9VIeJkj%P*FZH;DU6|3g3 zK+5UBNd8ySU_bZ{@#?nM$c@*Vb2MfllNKyajUeA)a6~aRcdV3PQEhJA+I$^|cTW>} zr$eZrB$&!aC&VQS?ddwj=PR3aVRQ*P$<%+ne+Z0MWh6;P?gI*|tz7{jhn0vj+zcO@ z{qYNR@ulP)-q|+`5O>*_a3}XiHQ+B-UbJ}^glU+&;JUY&lwxM!0*$$0v}~w#h@noc3wqCEfcn z?-w|=DTr&wsj2fOUu{ANdYhXzWYoDp|G}wJVoN1FsBS4ILQ8Uo#!wG*!qOGnrv!Of z==%BQ4hkKtsYUJUuxAbPFf)s{Cl?r#6-RTcIDmaYjI9_kV^DyhT za^o$dR_hZVt5@>)Amx|iBWV#FI*9bQ9+NLm1q{-|+In6c0(b%VS zgqM3)<&m1Rz3P8E54k!6Ro*}5>oe`ITDQrOQ_`0Ss#O*q6cZAc_qIBwIgcmHbtoF-mxvsScRxh|2G+*QYuxdk)6Q23kXg?vdEaLU zgFZe3fT5;uy=Th5vBgQ$$C*6D(OIy}0}~83Qvsa!tAlI~!s$A|qkCxDx@fVCp5eah zXm~7_2|MxM6p49!NHe}!h`z|uB!MY6MkEvdV>Y z?4qiZf^3G|cOag*Y+5(EhmckmFgkI7aFkG$rTlRo1`R5Ggwtwj0NA~Y%cxaP%xHMe zNKzMuUTUGQk86&Z8|C6Irr9CGBup+x;s&ui@)5M^k!CabX9@O*G8}k6(8TuF*C#hd zS=*NLCbHps^ePf0`|D;IRL0^c^t3Ox>yjEF1>@4hZ`-=jg^Jy2v4?Q2UWSaUdFq$O z8#FD!Op<)7@M7B#-=Wdq6AHN3JF%Lr!W*I=UQ?%y@3=M@1)~ZCHk^}`N$OvNA%!;2 z1L&*FM@H=HgI$y89c&v(x^ec=j!3kC-awHIe3+fHLNy<1%R-3zpRHhEXVl`Lu}eFWmjMAX_~>t0;{~i zWAB#FSyQL9Br(JJZ@swRIo(L~HApbj=R^7`WGCD&L6Nt=jwAXqvf^N)KP!aX)<~PdB85#p}9U+ z{yT1L9r{`A&D(`vy{0%p;$!x@#2G-h=pTdd3f5q0$_d{w?NjSkZ~+lW72!5|?CE5Gp7kF{mB z-8iL~-eu;{6s|~ByOi??^&1#GFE8=(uK|dLbg(jTV`0J?eMn+w5P{&6(p9L*C@RNm z2xpQ|W{ny=>(~AOJsliGX}E-2tbUwZrrXn`VvHk;kpkfnUm?c8tg@E1TW1g@b?q=F zWmif9EEnx8XIbZ$o?Rr+&#qowdaia?X*A~}>l3r>Lf5LpIqG^=3461!Og)~~Kezxcn%d|{nM}Vg&@LCGQ zDi8boz*Z@3A}u6(u<4kqjZJ1m$`WJY9%F|XSL%`_@4v0KL)l7Y)4y(3HpD>G>zP@M zB>wVhKR0i{SDal|u1I@4RDkN$u;-;ub30Czin4$+JO6=Tp$p%x-+^oz9e*C#ytB{= z*Uru>C?wa$q;WvM{|E1lB-JS!e;I0*74H_CHpl;=JQ>K_dTvCsPZ|?*9zV8>L0F9kuLu_!<)1-v?!1>lUGR z6c(kx`K}xh%%;h8svSL`)ODPQ?HT{hc$vy7_TA68AifjMlM-r^L)(s3qB^h%S~Gv?=k`tcA%tlII?6klykA4sOAKmh1XoGXKUV4#ZNO0F?L!dmSXCE|_@^9F(V-k?wqnfcY0qz|#X1 zW_NLRl-d?K^G>`sk~R*1Ha%$Hb^$vZxb9N@F#PUuG&-unRn7hvfS!eq_MVg!#9QM< zx6ISue29J)n~-E2#cx&1Gxq8!@bepdBzG}PF&?pdDc*M2Y<_II=1|VEMrZm4>VJk< zC4WSaD+kt8r(Q`|^VhvM!6l2NXvR1<1x~(U(1o?kbLO~9Ic8a&_y1J0+`VRyO|RlX zTfkO$Vc;TS>fQ=y%^gy8HN`XznChZ1T0XcTljdy|=0{srsKvk|tNnXFIr4NoXcUyI z&MZQdG*da#I`bp(K*P8y;$5kaatnji-^sx<0oOH|V!HNve>@A3sK9$fGbgU*wFt>D zBKF@jGPA$|{Ow`91=FQfMpvs-QxiRhPrPt4xj9I$vp-UXRLCL&X$2x^Fz`gr)1kn_ za*W8XeY%*ADUH`}HVXc!>ni%ZysENA=hiC@P#71>2+ zQQ7gt|H(BrNK{-IffFWcxQC|Uf-iEA(gSB6V%3*Ox}?^0_bEo>*O2Q{@yo}d)hv() z0P`maKRkD5&+SPp1PX!1g)-{K6BWMpW}e9xy}v4K!GJ(uRN@d*C3QI;_#PeddcNN z3+?#|K_05F49kl&a;3b+;X>SaY;BAIMIechq~YOX0uH}M`Y@Z08nXF%_4>85>=+N3 z(5&;J#RaR5;KG{TU4+Uoty)HF#LG=4wF&izOreT-I$T_d)|7l*L=6fSP@8(QoDXtr zo<$H4e3q;02O}`zACBH&Zt;gTM%B&t`3^gpZ2r_@eO{}bJ$LMPY}(cCB~g5;(BETy z|1Tw_;WPf4A_Vo%E-5}wSd!D1PfwznOc51*vkrbVQQ>I-r#N2< zvWtB7{>N4|zzKjL8Sq}uF^f4Q%SSM{H+TH(=Vt~@bp)gZ=iY-aXtXP8fL<&5Jb|E) zC}v^ew#bv}vbJYEEjNrkr^2mmJG0a`dT}z?hML{7nYKNDb-D1d+$`W zP{GoO|8f5~^PjluMCv#I4mpc>G7hyrm7!XRq3YE-O?m1isbp~LbQZtY;@!CE%%NOT z9nE$|!X?7@)&&C=ZV%FjCoO}R#V{JCa+kwuFEPL3T42FcLmqw7cEWQG&TTZ*u#+}L zUc#ZatFxBuVr*dIN#A(;j42=iq6tC>8;%E{U-)KiV-Mew^X32x<6Ar`u+~cz+C37= z#j#riX2<3cFph`8yUfi0W4Z7Vo>pg}(tr~C5!=rSb5@q?W{|itg)BoApfc$IN;k%F z_`&|kTyAjSG$GYp(3fJM7O&2!3|_^LkIZ_0!J@{k=$!XX`Hiv4@9UwUW?Azo<>n^e z=KXxeze;(Sjy7vZ;xYr-F`>mTZ0^dYN11ojR*L<`A6NH|cEf|NdWe0)lsgmgk4z-t zHv3KUqh?e{x{2e{-yNP+HhtKAay3x%!yy=#80nh@y3I6-RfTbP<7Oekx!e-{i#hjb zRa(`_Po^}d6m%_`?fuCQh0;{~Y6N9pvgHO)a`I`4oXftZQp;2kBhg_`FWd`jj4J|9 z-aJKjQB?MmeOj&AjNZ4u?_(Ju)^fETmrEOQo|2wfLcQi(WQR}h_r#H{wCZZBs0d!lG<*zT4MT!7=ZpHE9g7^Pm$Mk^ zxvLa)tu}|G@()HU4rx^N0A424yq17+0EW=Jy;uanh!OKg0g!p@iSYpmaV_q$k1*1j z2+#mNi3;AHzrm-n6LbRqspg~ah#mc9>Qn7_1#r#(Plm1>e{0{Yg)oTisv?+`e}sNgy((fb!YHl+Ww> z(sae`|ROD?Pot>;}S&KWzNre2Yj`3?p1>43tgRQ(uW8TgUqZx?Sy(fD<) zU7wq9z}@2;$>$2&(SwLVT!bCigSka!!O1>Rx|!bzj=pUBg*;*IrxW#JWw4&lrrivE zg1`A=(ZqhVPf*&oc&ryVL#1k;&15A|WEyZv%Vv7?K!AZ1x;pf>-oN&4iw-EWieX%? ziXhp?cq&R!p@A0w7M9W7^C|6(AbOr+$jaNN?y#l!kmKv-S=K3*QhBWx5CN}8>(1gs zOFU?O16^7OvxS*%4#xjAX|>*2I~iLJ^jTYCruHa)aWM$h>}Ng@KnHkP9@|&!xy2R5NCDZNDq+C&kSCq$mry4 zf)_P#hTxTf8wYAM-T4~8Aeq416%WfKQ0&yP-}8}Ulp08eTKZEHa`A-FK{3IK;)Pv; zgL84s-1Z8^MZNOT-$kt=wl(6_#aG($n}XGNN)8%dYAq)xNbWQ|O;Bkvlvlft!9@2Q zU#^U@T2G?QWfR&h%~-hw!81WhE;VE@Wc_!~A00ry_~Z)DV>WHpKBdIsQ%k2M(r3Td z!wktcZnDVm%eMM^fx$}ToK71_lbk^_;%YKf*Nt5>;-{w-nTXP6$O%fGkYHli`)5L- zD7=G~I6lik>1fLCe_Hfs%e=IuKD6eWnJ6M7g(6GdQef~F;r!Aa2Um}F#L!IGt|Ryg zt{#XtQN&_dAh8)bxJvm}kXp?>33m6+xbhZuk-)-ThqGfdx!nZ5J*%~KfQp5m+Gyp^ zd;D|?hU@MS1{BjK5J>vpS;Um-*?ty@L|ve=uBdi5Fa`{7$dcO|1%2Nl1j6D5MPM6s zQ6zGMB%}gdXp^@@SX1Mpta*Nb6`8K~(Yl^%@4dx#e~Hi|o&1U|`9CvUfXpP2;e1)2 ze69o@WRwm}q>9rDJSG!&7+JuYE*|RS4RxgGgSD0wdz^eL`|qckvEpDB6X0e2Ti2ws zuXkUd+-8}8 z!Lzu9@Xx10&|%*GvTR=>3Hk?WaLrEnY`!#RE+RdYNPv$%0CPUrxrN7bfs7GqnM}Q?qRUo9(D}dUi=AqS7I)pjrmf6! z$tGlV3^W*`$IKYYlfR%1hmLBZMm{>QnMn<(0)F_llxJRT5&JZSf!wAi zivG)fQOJ5;mYs1Kiq>uOo2126omKwWExa{<=;@h{_-|?!^;7_VO&9@xxzv>@ zZ4PD~gYEuY=SW0>^c&?9gA?K@<)=ipM{Z{1!~MR{-?%P2-ZW(KQw2SXsu8y4P*X;TdBPrk4SI**Qgn~zo@~h{jj<*_Y<$OG0TVUs%6Vaf(y`h~ z@3%`_{;PO~Os&TWTplXyG6jKmq5Pc*-+sC=OdVX zZn*_s*Vz`?HM(_^Lx0`Wy(XCHVRS`CI)3&6NLWe)d~0=GNcvvU%$1qql_5GdLi)}w zNCOs%B<}4HQ}_{Y;T~@{)P6%Z`8)@9c1pr=$AV5n<6anaOZuS10n%&@+mP2nv0nYW zLSM+cGp$PT)m+05JqL!kyE92%$h5TfnFwY@j_LtZn4(lh4#nWQ3owwuA##z6?=hCW zJMTJ3+)V_9j3}v@4M%1U>=wf29*#(WMM$8QD5T&D72(yrFdISg`3;cz>PUR7hSo(w zr&&y`UZf7xHV+#omb$d@4YZm8O43x}#ZV{hVNtc)VFdn54}+AkU$Ynav<^UW5;#z} zBio0mBdzehj<_mI4b0TIj`@FNv8QPs;$!p5_^E^ij&SnrX#3~nqr2PT5E)PW_CLdX z|No)xqawx|yEItdD0HL$b1h%wNt!OZrJ7(fEezxpCY8T=7l15d*C);caJ)?Uf(BMa z4(QzoJ50IWeR2;TagNWQhkyx~_guKf|2LEZe^~m4C^#|zl z86tc$%vH2FNvw}(ikLJ+fZ#+v#*J$w4Oo`CF;+~)wcPiIoLCjuOb_cEAslPvet}sQ zi4FM0a)am(d>{Kb7xZIfMBK3BSs5K3^kYmhpdQ)%TIF)0F;f+|luTroK2c2I#c8AI zGh*sdV|t4`(v>*!$7ZZpb+=JiGv3e56c3^MbUysyeSTu1pu z!Um1pZ$g;eg!O%89)h9x`<`dbY?2T2&44G^oWB99qu1Me9z5_A9bY;OrZ>lZt4Wr9 z9E%)3cv6i0`X%_w zk;f_yaB)nF*sV$&K3Z^4cOmdPMq(l$rz{`oX8@G#*CmM)$!j|j_uVR77B;=bi#}-P z*Mxx@L!HM^Yy-&sSm%{Nm7-V4nRw;eY5T6GGQ%AjbEB7s8}~)JCm=$jhw)konoyM8 zt;!xR0YKb^7J1zVW}H@)Q9R;ftc@B*^^UX4mXcHvFZSjtsfobC``8-oEW(ypy>63N zUds^A!BibJO?ivWl3h$^4k}J~?5VXmdhYNy=%g(CPuK*eoe^A>X&inQK z`6n4XhsGbER;?eJr9)euUacbd2%&rbNC~f11aKe~hiFe*ieOT>s4txbIhb(~$u1<@ zLkrKhR{z^1gG;>#f9XGOjgys}zI&fM+#FI2#XfHY8G-aefe72DH>nMPWmgJN=na1q z*6C$S)elMT@Y;N{xB*f{@zwGOoFlr2qBnp6{Nuo4(yuYgoeI_hrnk58Ql8sUbK6G_ zY>jTua{IlVtIc);tgMH6%Z;-WS&r<8c<@<06i`OiL5}Jwqo(Woa$J?5QY1+m}Q(x zGyb$QAFSNBre(-k>k)v}^HlcKGV{Qj!^8m@s8@<`er(!{1~{7MdX?&>P*u1A_SESN z!o}Meqyom*s|dK83e{7l-+sTmM@gUDHUnP2OD58@wKhtjOSA|V0Ms&CCuc?-b4Ak3 z<82^=2!I8FkKVLRpR)i39xGSkp^Q{S@L=ae{MI|;kYV$E6qBMvYWfYRne4CwbFI~V znf9dkjHUdqdsWH|GiacBG5c}5FsQVc5+5i2CHzwB=`-asF(nS6DZVkA~$3``G`nuu^r|cU z?8lkfVtj$xypCq#_sgbmZF+??gH8s0zT31)p&HMdDDs{?M;b=!^#1Gpur9fEyz>i1 zWZzkehq)p+WCr;O^4A6BiJhQ(M#&GGwH;z`jo_;b}RVODoALfKY4lTLxRh zF#f2W*7P4f=tgB88J2WxcZ?~nUHS6KYF#DGKw;lymv`@bN3GfESQ$3olat%YMisNl z3T-61MbuU9Te91gMOG{s2j=ugfOQqC(`63@COUZ`qqR9k)J6>$Y2y^zrB8N7brT*` z)RdA?K?(MLor#7}&eIN>9a|g}bVOqcOf71L$sk=Sga5sbWV}7=ee=v^SU$M9^X5p3aV_sUiyu?QT9M>|$5+$)k6YJ=L<>)R&c4fl_SlBn4x;})^r}<= zkA3fpEHNfnWOr~#W=Kh4*l)+eT76w|b2|*8&uCvTu)hVAFRdC|zwqgdeS=_=qHI9))CWX2# z!_bKl!tXyLnLdYrdsa#bUE;yj^6k4?oXQ=217kqp0j{S{ds08@u<3tw$Y@}sN>X~A zo!4MRx^Fe|Q-nCS#PW@1yHSs^seSVZ zVRs%jjc^=N#Fj{PXv|wL&U|)3lpHkq%?Z8i{>CrVG#zgKJCtbb_nZ|?H4L~OwfVjC z*;u~S5iGXg9&?<`nS39~uPUH~M5h-CiX(WThs*aUW^Q1`Bz8%5T71xs1|s<-Lp}+! z2M;n6QyezpjBF?p)*^~bD|6;KPp2esgpsP7COMV6`-I444-{O8tIdpwB49B2N=)$y ze2?NN&lI4a(`rX@4j1M@KeV_!Xh`zqAEK{YAO4SXYutDpElHu8t_5=8l>sM3UY^;1 zU$deMlKeL;R;AeZ{5>Q{?xLSnF$5;c<;U$Gtp70tOuoQ!@r&_QEbg={w#!F^o0U3G zW{tk%k_DDW-8(xR{iGPm1T%>XF$fGQ^1;ebC(@0rLhHRV#tt7O%}q~b9MJBFS-yHR z=6ixUgZ&CdjJXL}6&Z>7G9!t?bDia0Fbq(>Hay?QeogM^cG%I{F)E0+ljYnyS$5NZ zZcCa!GXwPy;Tm_SSP(;Cu1(oO`*ceO%Pf6mXI(D(i*SQ#)lRyei~M4F^dRt_?N|eZ zq9fP6y{u0y==8ahX_i2@=sOUE9_0(&xJ7VEzw|s_r74m^gM&9hy zPK?FAiAT4a9uOT@{FC4_8pmC+n?*h^??Hh-k0Sm4rRRBwes9r*d_}ZZ)hd+YQfAUn zF!|RnXcGt%$AYTptQKCXT`00g7a2;%!{!F$3ZvZa_Mk8V8dWI(P_LZw?-1R{9e@xm z_*#WU=Y-r0TT|p70N04Mt(hLpdiEH*U#(+M$N@D#S~miX37EUg;2E1089EOUUxx+1 z)UgnP2F@^TvY=pI81dD?5>_%1`OEE=se_}n<;^M_UFZo!n=U|}qg>x>OvqyB)=9~) zsLQ1-0p0IL)4f9+)Y+PH60bOv)y`W(s^1*VME&&V?Uvr0d` z<(l%k?Ye}e+JwexDJgoH`G)oYSbDv}x~whS_+mC{_Q6TBZx3YYFY7(_t)q0`$pa7Q z<||CILiME&rxo~*fc+wL+A?g3?LRac_PCQbIn>t*2dU@6Pg==k^q?b)2|6o`B2a^I zMg4Sh6=X_~o$WzQ{(hr43n<9hR9ZgM5M?yaCYK@M9m1eat`(0dXCU7^YI$wUFqiC; z3>#hGkkUdO5++9vGhN-cZ#9|Wso8wWn}QtMOFv76&yAfd^CkR1RObIOxQfmL^;2Vh zowtQl6J_IQXycSzz~NbINL{kl1+rNYjJFi5^L?D{`r%K`-9J;38ic7 z&VP`sIKdfj_(bBe^#@qfJq*(~-!QTltZI+A(i=uIU4v12Y{JQB?(aKgQiUUa8CjOj zL!cvJm&AewL-aN!8Tc(5#=<|YKtoHEB7dMCC@BlmUFWzu5!b#rI88x}E2${}4&ExI zzW43b3f}P@8W;xb$d1S$AA+g)R;Ng2_uYe#7OxY$&GUrD4cYQ{qO#<7X&h-L_mFBr zSu{eRnH~6Mk8CMe;|yCD5D{(ZiqD7?uk%81PgSa~vEbfJX zd)i%uffcT}0Ti57?!P4k;N&?HP)`&SwB#1^-3C z1hL_Q1b(*&7Wxx`41)P$2($IY{}Mc z+TDK>!n7nb+BCu1!q(J$wkn$bU_0-?l@RLn?m1%i$B6e+=q;FFDIDCjL@A%+z?A-t zcfILQP!>A3HC5YtqIA?U!|OESK3|shXyI>cO~#T{@o=DfzKAm>{QXNJI>s+XQV;T( zz)B<^ov3GS^K9zSd4pGOKrxwqF7nJ(e>FnUO%0rL_Cr&8Aavu!uBX1xm3zr~2*Yc3 zV1hSFJ{7e-XWcw^<}_&!!Ku-`zw{Zp_uCw%#JJUPmB#ZBhUF~)-p==mTz{~GB+YHx z!LWPv>yJ>_nUS}D0Vw*PPm!+o{CIqE`MC=lcLk;Lr2q40p0c4N>wl_rvzF5=1^WDhJ2WVMA1Lcc+t25(}rJS zT9{m;4Mida;^)@%Y~D}7kw2y#%GTL5ws7R`{15!dJfRub#=6OWJM#_OIBuFR=;p9;f4#*;(&mhbuYY@r_=K_Ah$qX95Ekq zoxj_wh1fvamqwjVb3@aIf%wkL2Kd#ZMqrRBk1y81 zvYNkW$#ol*_*dXH#`LDW)rlpHBDpMj{!DGsgS`Y2V5M69^ip$EXHcJjdqRgmfnS`G z-kLV2MUUajy(uLOf4Pvc<3yybmDI+nfz6i@#0?8$A60)jAgh6!UGx)7?$!GMLQUhx1y;@uB;2)2 zi<-YawMy>u)r8y1{Cn!Nsbm2oQgI5yO!ySAi#QTqAHZa-}$xlXP3dZS)h;#m&rGHlMsO z%BYcEo`fGc4|Iz))9{eQ?n1fIk5cUJT_La_6Dk@=_(jGSGQ{luU$WJ}rV#B**j91W zD*D)uN1MzE1g>1M&&7fOy57+p4i&4K(6AAu9Z1 zxvz17m6&_=N1j~ybAFoXJff8wUGdcM!hTtOuw>I;1kWo$IbZ(Y_xO@>n_q+FWgET| zkSzl9VCRB*A0rWsOKDx@SIGr0_2>G}44nr*Yo1^a5@?W7xzY+Y1)3sUV-d;-ttV;_ zTh-$^Ia?XIq2(Qqu6nwYq!JnH7wW>TlflDtif&R0)bN>J^(ynGe^c1}pLhV<axF%PXUw*tq5p4; zzQ?Poq6_nkTD~2OgLuh9kwk!1wWEL8biYxeJIG0e1pOYa^U`ivB{G)-0tx&M>^Tof zUb}sj1H?J7v1~I*6NHS*b;J%%Jq+%rCgvrtuC0-chR*J%IKTKbJM-6*EBsKWIm&U) zxfI29Y9-OMcS{F~;!O6jA{wd72Q$64cI|`gW=I!Lvup9YCC6`x_G*O2HTO~;9|bUt z#H;r|?W=w)q@?O*mqQN3`x%qn;5(4^Q=r1*UmH3@w3J8m<%v$i?`cpwnIG9=g|A$c zfF1jtvs;&GzzFdLB-FGscpp}%4+rx+WJBX}z+l$-Fww(;!uCvEOZWhyGYV})5Wc>&>AhtkUXlb!C#B)af5B`l-!5SL# zO#HSLP;9YckEpzymX|~PZ3`6HURy(@6D;=Q`G0$ zk6$Ji5EA%_Hc|1f+tdogD|*Nc{#P(bOh4J48L1}x#mLWVvo4ZZ--69Rf>#i=t6>%Ia`*~LkMsVmJlhE>|5}F#^;Km^zi_ASoSH9>6 z9RbFT{Ifn(u~WR2EvO}ScED}pb3$G%*_pLpgeVWLqv{Lh&T3~uy`zLl#DjLD@suMw zhlr>aQOlH&BbQ)v{PY=?O*Hrd9K4CCz*jYOGA={AO-As4kW)Y3a_qUeDV}TdbT0yl z&L-XNEUxBeyD1Sbwi0iP{ySodt(x%3A011zXwsurdrA|~S&Bu8EM_}zZ~%LJqIJ7> z#Fuy@$X9vF{e^{jGcks?*yg5qe{N|zPJX=Kk0Hu(H7iMn#8N6*D~IIOaW`$1MqQ@p zr5Wxpznx<*R0{!8w{^2+OsTbm^#EE8Q`N9we+8K45ki+^ zI=@8^G^QxFdI4l7DNmrA+aqAtye%SOBvpv@&B);L7kG`g?|*m1VcyOqT)`2|v@g`^-M8$=_5kFR zFn#5Nx4o#vKTtu2n6_=IZ9?!Ic3@j~(;$q%ib!wZdCU|?g4%{caq%BMBOtWB1w)p4 z0V0d_Pvf?k8N|ORo+I^@l8V2dRR~2|AL@KqIr|+m`og#uTzs^s;L$dBm0Ed+lPRON zCD^6s5RT_%|KGQ?N>ER^fdk1u79Bhh?Y^Jr_QY+|{3(B(RNZ4Eg7C}n7DCDA$Qum? zpa2c)7zL=tBWg>{v_9{1wu(tKsdu#wDzfI~7XgmmRKOm=Zd$*Z9HW%OaaVlxGbn<_ z?+uhTS5#&%@+m=GjJ`$!gv=Ij^$D)=Qx|h_oe^q#sJAU76Kl=WR68ESBR$0g3~l^mK$2I{<+ z_ra8wdOc2!BT0So0YW~aBe!LfsZIP1X4BLtoh(AQU@1;ljyOHSbTj#sZOzhZD7r)Dt=V*ON{6xr~ zNWYWj{pVPUxS{jhrVJflumqV4SD3`3f8WA>{v9`NR4-TbeKD}ps*wW8$@B+wF4GP0 z2Pkz(A-{bZ#yxRgvTPreF-m0By!fa-M_eSjWJwi#@xFq5zy`e&#oXJRahm96((KZh z@g|lx$zmX|1eEG_zTGp5(syD?_n6gy6ha6e0b{x?G?x|>Ys3;@k3Yn35n z%9mqw7bsMf{Rb5eHpuIG2BDb{StpJVw^=ieX#9hnwIlY4hV2I%W}VAqtE1R@!I%^s zW#w#3{STzdKogdWBP9cy5?B90cIazCl;v#K#C8z?+a^>ABxncNlKj?F5n**-sLnyA zH3`S*S;$yy1UylKh?ul?OP`%FJ>da5{o3V{CQKSH-A&xQMB`356XYoa3DSGnor2rQ z2yK;2=AJ**Z1Eh3<~L^h-r_rxb?pbZQbRbt)NknEX#KB4#rIz_M0a?LoR;E~L8si3 znx4x!y=Pe)b@;)|0fL0O?@A&#A!RMA8m|}=(iRH@aZ4<8r^s=sh;!E<*jXz_ z(@AV3fPg_;#k$Umcw`A<%?a_=^{%<#*O=edvc(1~wPI-BBVS9amq|wW6b=g^ok1IC zksBj-F9A*hZPMN*us86=1L~w}3X8wwBg7w-z8J>DX7gxjkWu4ctQ*^lW&h`RMaVYe z0i!B58;6>S#0Nzu=?E~oX&DBr)a;N zQj?xsZfKh@CN`vTK+5=p13iO4@USbe&qH|jSf58LVn1!grs{z`t{s=VSAPBxa@~_+)7N3hBZ=GfuX2)HqVz&{Qj=%|&kKaDMSl0IHiiJsjjnl5 zGVNLGcpR>;Yz2mSS#Dp>4_0(IT8$1uZ7Vvb-7ZoN%?rmp?z$@qnsjF%@fNP`MG13t zzKQ6%G;4i@<4CrJ^&xtJE%_`$6mNxP#L&k=+`K%7qns&mlACLW@h+R##&p>LsNNJP z-~=%xK9gqjuJF32qDA=q=5kiFTbG{29rI~-f4pyxtZ-#jds_DVMyD^EGj9QDgs zp0EPNAPC(#ev+lF@aBB~?@d_@`IlpizavPuxHLs3LPX`T{gICD7W}~bz7HyyXEthXM7|%4Q#%&wNorzT@2!e z*S{Js9I-+ttedY?KYFPGL@EE(MilpO)XW*!@7FN-h#X>tz^o7y+M^5QjoVww>(EB3 z;ZkYi4CHSY#Tkn@V%Jy{JRuvuVkCfg?rwU_dQ;Q&M+kZe8>Kx|m@g2u+-8@QYn^B} zT+-q%sYgFfyfBA6208gV{ zeZObchEn*AzeWuC{gTB-((_U-w)#d!R>*}***46md9y@@NrHc1$P9Ku<)_66pvvw3DBz zy{$DIDB$5T5gXLwf$?TZ^zBZWb|9xBr$VQ|n9)5N;QKF(>f-0~2~>YyMJ@8;3K5~_ znM-XGPHJcN7CNVzEM8J>C#M_zK&RTnN3h<(f;Jd$0VARv9-A*1_w!{*xcxt(2BA_k zy-S1eyo^w{aONO`V9ySm{t=>t0HHLz~3&Q$MYlEa11ozJ0Kt{3ML!xQj zK3vVrLRi3oKx*A>@l<{}za?lp)obuqk#%kp@8wstm}Gq2N8LKqiJjVH2F&I6&!=fp z)~OJ7+d$G;O{G^J#d=qWqz;NInqaKM2-*9-2OT>7oT09rB%Uzk zpfaNkQC*}A0NAlWBsnY<)pE16H6HSz#!se(V-;Z}&o2zPdsxeO)BCD#s3v38MC8uG zu*3V^McMl_5P-7sh4iEU4rSgB*!3|;MwDeukpsSDYWgI4d$2+k&R)J7kaS!=4Z;5)X#^1o5xQx@U+G<+E8_vQKb16MSTIAF*`?U2|f=Pz0^!gR)$KNDx;8N$s zw3pO4G*1ytW4l^p>0Z`>QA$&Q*LwH0{l+9*#V4{q1ll@`po>3+!Vxm|SlGpmnd#m@ z_E*>MY6#M_P->|yd^Xy4l~7y_*CRKJ1k@(UItMZR$T6?Xb2DG_s~ip8*PNcjJRe3e zIMiIe=|F9xa|b=upX2%#kuYU(NNfM>`gyZ|UI#H7!wbO6Js?=()tukMz4XT05+n~E zQ0^3<8z0t6cPBObzof%7-kTb+YpS*6PyYm7+IOM%b>0-Ve zmb=BXk^rUC4&PK>A_w0=^*>{ z$0IjpDk7^S`mUA!_|V~s@-K=(s7V~<+BW?q?_AzZ^DbemL`uVg7G1-~s99J4Pw7V; zedIdEw+0r&hmFy)Y-{L9gui73(SG>8CK3DCZTi_~#UXq?3Co?SzC_0yN$l{Jtg$Xg zOUj7d#@~KXz!12oHZTac4yWpmSZAZWH zbX0#05?%2;iD2vVuxH4oy)QDU>pIc%%dB)#2zos)Z_r9|ho+5Kw?w6Pz-JVGkashOxP}~>IP`o^L z1Ho2|3Eji40HB7+|47+NsZXv9 zOUktlUG{o=$Lg&4KAQrPtw(cpH%Lv_du$7{bo%N3XKBUxs52o`5KtV&;8#Z1T`2P# znrswFL%B7eRjl|pr@{^SGT%6V#bUAc31J16Vsi|xFg1ETI-%w*RC2KF1 zv*b-g5l6O88zpTHf-J1pZzI7bKq&;B!9H(9IbN=@cyEDE4RHW)VNaWY8d8B3r?7S= z60)ssD24qcu}_UEe77#(tH! zDQC4m|4YKSFiRvNcUG8wtX@^uaz`++VIvC}lt^ZQV@FJCc#t(FUq?5#s8llYi>SVq z{5Zv-9fRAJ2B0Nkj$p}CCq4Jy>mkM7^PF5Jt;cPv?0N1piM@d<8!_P`$q%U)sFRAO?$!XA9@QkqxQZFu)wiwgJbPXjnfoqw#*L23Z~}FwU#M>ZHUBCxua2ubn5z=> zq^t@1wo+qe^rw#cN)~&i#sKVnxzDZT2@ZDm0xy&g`)TAm zz)QcieoQTiFeCiHQIO3_)MtUId1Yk0dZYeJl@_0D>ut5M#*fdocN(W(_vIw%?ZxJa zUx@(Llzl07J-F3m1+a7HvjZtcL2C$!GUl=RiX}^f^^!ArwF)ad^FUvJsIFO|0zoygdF5PBWTEGc4;$!aEd0W!t z)ycu52Ec-?apjrky;soeXl87K+j8{ia{9P-TK7{IMHp$1H46jumSFvcLh}HbB9S%T&I@|;V)!{j^sz^QePJxjE zDlhE_DiYG?)B?vBbW(KI{QwivVuSP)S!?>!FP=ClrbX!>!dViazK4X}R3YY_oXhq0 zB--vh?f+eg=dmR*+3lJlSs*Aavbx=Q4dcE^j52+5ix!CFn!Lm|OB2O?^zavK1xM zvwn1tnaB*<{SxfBhy*3<;FFM*y-LN2QWJYnxt34RvNu~?Ij%7)1phT)%ST1dd?}zqn%Em92hh08Y_pUZ9(GP2tNV8!|&z8o|cl?GZDoAypn3&(&0QS_-Cu=dALna18HDNqudm(ce@ij%-1 z7iq~qJKM>%#ZC=Q6y!nOz>Dy75C@B+$eSF4)n=TsQA%O=!Os?Ufv2zCX^r7rdf}ea< z#=Ko7PwEF@m)7qy*F(CWfr41th|0}^&!4mrhq69$74|Y03^KOG>7OU8TBj~uZK64( z%D3NQP7hkYfL9F+qeLSu9^T^2_&{J10Gj@}yVEOCb6gh|CV zZaq{{Mg{FQ^V?NRXM-8#T7{K)KhWY32T-l2au($`u``$Q+LR-lr)^FoHWX=EreYIy zD0PL8Aqu^pIfw&g0uk<*bK@Kj%3_k%jzi2f4EAA?OeeSrlgGti!ExlFyn-lbnu|p! z=%SGRwuHRoQT{qEk~a-TleN|*P3g&z(ba||i@{q7!-jw8MYY6C!~v^)4#9y&oPqu_ zpPX@Qcm9?;zi+=81OzT7PO8q(0}KSaB^;tR-&iNlTv>dMlc}kj^t7`ROoe0dCnds< z!#sB{SOy_P5b>!?=MR$~5YLfUjF1)zac7~mk?KQWhv=8vJdgtl5*`Gtl|6f98Ur2S z-11MfMp_pJ_`B1d7uhYb*&{EVSOP_SW#Oqs57HP1=$NBGW{u?d>a>?cC0FnvF&M*$ z6mM@9%}P`Jj<9lLt|!9K6!QHmA;=9$n9<5xefSBv*4tP5V*d*V{Kfzz&b%zr@Rq#0 z8g_`{I81DXFLn7hSwaAV-J;Cc95dbDI`N!}5+8Ek?(GERqeF|>OfzFvC?a}GR>c}# znFD7em*{2OV>XDo?)Dt0IlP>si(#SLo>7V1%8rD&ogW^O@1BUkp@t7%+;jEEDeTkj zpXnkEEnaXP?0W!Ojv|Jr!Uu}EBASVJS`Al&6lxh%MHVoi^;(w#1PQN`Y;=gL)@L-v zHfLU|B&~qaC)1&>=kBJMW(^q9tnP)Y=yE1x)J0MW40@I@xvoll6?XVrxn-hfV>LX> zys&?HbZ7`ge*cXi%}2n-X4g3T^IGp-y!6;i08Yh!mY~RGarGqmXP0pAG#-q6FS^tB z#>ai}kq?7A(F<-cW#WjR~1<#(|Gg>)|t&kjWxMd)nCYw3aW>N|ZYC?s#rIWW$ zR8_d-@Yn<#z5M+)}o0mWrA+wid_tTzq^oReI85|AU8zeSn`3 ztJrYceeT`+cIm^%Hwrg4*A?n{Nd#HD8baw>sv^ETGdo>}Wo%FXF;qgFllA6wFpgd2z>9reVkXs$Za zG9Z?FV%y;lrlBC=r&9;L=9%L}@;qo<0}Ap?+&OES4&Lhd9miIatp&Kr5z4x_v$05 zPmh4?HXZ8~7?=^GVM!^n9(RQpoSspyd^>K@pKz)ONu7$VD@95~BHTX)Uj`Z|npcpf zNR*(fchE6cp3^sreY=kq3?dpb%O>Z)Js>IH2etecz9|2|5z!n5gfw=64dX5~HZS#? z5)|4K{iq2l%RGR8Rq4p@#Kr;Khk?km%pKa(yxf6Ij!qfY;;Fj{e6eM(#p>Nex~-yH&3BQBPPD80O)-exr;;DT^8 z;uW->{oQY6Nsc~@2=9OuQ;kR_QJ9v2U1Wx{pcqIce4y6sfM;YP-^-qy42>9Pdj(OU z6F!NlTpJ8CK3k?DH!Bil`Q1)`>aCEkSR#viOhb<6XPMN(U)=u9CEU64pw>f0NZ~(a zQ1;ypu#w!@O!+n-HZL`fczwd7;@Q8MtiHNIb&nKhEa}h~kuGG z@55RP$B#0yQl<)5*Zv`cdl*2G$}z}FENm{uxxKCD<=2%J-)t$|c&n0i5ZoIK^8etk z)RTqrGnh>acK%MlG>=lAKz|VMw5zf!H{e+Mc=lxS?LQsXG#B=e-jyZ*hYuJGN$H1* Lu@m37&PG50{NoxW literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/pie-pumpkins-scatter.d14f9804a53f927e.webp b/translated_images/zh-CN/pie-pumpkins-scatter.d14f9804a53f927e.webp new file mode 100644 index 0000000000000000000000000000000000000000..c606bc6ee3826349fbf9aa79c575386b91e75685 GIT binary patch literal 8842 zcmaKQWl$VI)8-eCmQXK?6+4S;MnyrB{3RFbk$HjDw|LA#fba5-m3Tef0CHv z@}{&Nn=z_E@6%(%C1Jz`_Edv`;&&q}2w#MK38lZk5+)F+KZGki!y*~zZ0=)>Q@JHM z=1Y)KO(UU-zT$9n?a=VJdr)dK0Y?V(Yk1p6szQQts)bLj&s_$gV=SK5>xieaJ*Sy) zK0%W2UFxS_QFp0J7;8|Q7UV{xvq*!c*gI@E!1<{NguLN4T!BCTfUs(mKgef43Jo z2qfsw1D=8vn@S1Q8n%I6XG?RUBJeDsvx!6rKid@+qYl~pqwb#H`9qzt4|FBRP}7*- z`$HWqslVkT+!gWYFBj=)u|40nj8=VK^>r2R!rlk=+aG9=UbP3rKH_g+V?-1#RxyxmY+`LkCuKRRfQ`)q&9j;sMvMaoC55 zjRIof#?b#@6i4{{2ws)>`=jqH8tB*~>|TcJ0%Gstp^8Gkf@5gHej3PAn50pOz9?5t z&m*#n0+LUQn6GGuV-wfUo{&bNYw*`&XpU7`7CbU*U_6)MoS>y@Gao2+)%#7u0RfruHgtTh?m;5n(Lsp_Mf zXF>U$psr)d5qKYEc+bd!t?TGfW-hX8Nt!)R>`Iby?Nsjq0hGy4_YtOOlpBUKP%j&(`YxrA~$d0|+Gga&ZqZ^So>&^z|0&9MSoW1GQMklbV zcGLD<&z~?~7&;8LfB=Kl=AUE3UTj~0ul@HK8^{;rL*!d+V%}!={X32)IzlkuxyZfB zq)#JiC+ExgXZ zCct0Y@4YSj4gexSZc4Q{3>;<-Y{25 z;<~2BTpG^}tmCA4YM&A{*b?nj^DnW zFohy@%7z+_W+j{t>KEu}M^cSF2<^U1mKr&wgBykZgPtl4iA~iCNr9jOTS6_gbKiQh zPyV4PoucUn(BM*@`Cf=rC(YKSY1MShI65rUb<$jo0I7mg-I4L6mc+ESXtTN(at5Y( z7)3p-K-<-GftCl|H%*&uzZ<8}P+yN7@6*6<0~Uo|?vC^#d13PApc|Giqu7+BQunn@ zkiUl~2W%s3#18wj3)Jo7EqQzC;BdGJ%fc$&07^N(mua`e#yB@1p74OB2yq(8dhY- zRHPp)+Rz!3SyuNEDSpWanU#F~T}QSoT_Y$io`^zSI9Y&e7wuPs!(Sua%o;|*XeaAn zHCs-Rp8M(1uPa0=gEJ2-!@89;07r0rcHReWZhFlP+|zzkIH|2<)i?T=z}8?Uk=j=i zRcr6v?&eajn)uRhf$N4yy|~#|x@3HHChxD$ME=S#_ue{TC9jSja%#I4o@AYSkjDJK z8AAOI6|vO=#KbjR=3tTwK6|qPRaPnM9+z+YkyhXvCx7G53}ZIMVyy0jE!?>0T3?Q& zH+79pTd}TTh6e%d2YAas`T$p)d6~qF+g)CQB9u9D>5=FW+%<&ny@Cz3sm&%)LEimb zmj}0A^N{s7ZMud0#Cgo{@Nj?YH>j zTJOfoCs|r?n!t8xlM ze6m%6Z%vlHrHeg~Set549q!IoXCNT8Fp5tDE<4J|zUM?)JoqdQPppQlDKt9Fe{xf! zo`{yGdGV|hL1;!Sd)Xl3?&{iP-X9=ihMjp%AL)@&j}RW4i-Gmnbt~Cw3d9aXgFFy^ zTX%e5gI5XQgy>>Ll7yuskslh9x%?@CE?|Dcx@lr6?JE>7c>yGj9lexoh(h&po_X0Dlzl?_uIH}*#!oj3yhGro%xic)>0<`a6}w#jPx3$ zC7FolPc}lVhh!U#S9j@n4WTlSecHJy{Nm!7&M3IC5?VQ;m0kTRlgy)E`ov{|PRU0H zfK)phmc}4>R3ZVsee#{|>pOm}bdw(oGDNQpqxyx;^ykR}l+NBHb^e(x!Z64#82HMW*oPRb7v^Kcpq1=cp*FCgi3zgC;o)2K_9fu(N2m=&~)( zg?FwjsM{q%p*G&%&h$yZo?h9}b`Lx=AvJs4=61;I$?3A%|J{2(`GZ$ym7Yew60O-9 z{Inp7`TvhYktcVgoruMk&n9%|Gx7VrY_V^S9=`{uQJ&|x{yEqPW9!Xp>2tN3p;)Y% zW;idM;X7N~O@0ykkeITd1{zAz_>gz0CF_;=!u2_?O7agMN26NAcr{4_?^h+frRob3 zjWdV3nnny}qQl3&G}C^-Y6z@M-tI>&u57$ZlFH%3@a<1BYh>$ZS{9T(>LtWvNSiV_5vxxI|RDwX) z#KS|mZaptdWT`Ga>AY4*}=FYU|1V(2{;?g9CZpGd*&J98~9^;pr!9-bAMd#<+qXy;5SK zqt|b5i2jWIU$j_B4J|F?IyVqaH!=D0@<@=i^NcQx@M7WR=H! zg3n{y{Z1z9)U6zoB&y<>=U?d6CDX1^MB=butuHv7VK3x~q3<8ZgY6Q+&^tlB7A~na zl6YCVS>@;F2S*19^2s<#^NNv|IIsx!dM8sFBA z)0TMGcB}*+%PdbU9n9?>S4?e*tPHNX8~#df5RLmo$b)v~dz$m+aBPT(cy zAyRS|4`t61dxrsdGEw|~Rr2Fu*41Qb0nJBfMWfy#=jH%9zoYlm_UG^uB2PghL2ZP& zF~7PDt&WK@RQ^JeSw0+lz8x&=rdB#(ZJv5_IIMI?fY3Y>JitAj;^K_1l^?C)RB2}0 zm`c6(@5V`#s6njAfj;-U1did3{{!C{7o<*makfg%Ta2fCw+9(4RlpxEt7z;SUwED5 zs*|T~oZ&N}8?j-3=QgWc+Q01oH7kUm)sT+;oS<1Ds&MUj=b^7*vbJP#;=uX%ldOs{ z-33DmO{8x^xj^#Q+4)DR)9-}%-KROhmZ6dBA2LI5G3x#iaZOAxqoAI#d_xa4F@Wc5 z4b_n1U3q`bUTj;(95f4z@q=pi8(~cyAByC{uDaJt+L8HwGDJdA&P(ttcp4elk08A-(sJ!+%tY1ey{xe z)jL9Fz%0hKZq#l$sY=guN6+*>rI7j$StE7udRB7GF4$H4#xjn{nq9?pYs5S4_b0Rq zu^#;YR@$fcHiEk^t1{kp*XT}hW3&V}>h9`dbYHTOuCR2!+Kzg@A^BB#wqM2crx?@n zWwSQE?%eH`Kv6y1Ztc7W4)=P1bL5QR+t2&|&i#K-gZv+r8b7%zl$?;kuP$aGb+?v8 zF*znH@lc*(7Qwv91fr#t$Q?*WWBxkp=sp#k1OI|T5g`VCmB3%ohhOg!#F9Uu2InMv zBF)H&z9jm$dQz>=vuhWx+o-Ku@pj$FQ3pH7QQYlYP|&F(qjPt;Bl+JI<)O&t^T$gq4yPer*Z!QAU4AzZ-MSICjcKBoT>OPvDHQ) zB=g8(W%SQ5A>%N?|AZ~_n^g1;nn^I+Ytz}k?aq>%3@7fOP!>XtcMP+be4E(o&arbr z83-88x=wHCIINzWcJ0zQLz?Q>>VGjem`+VAFD7-1#j3b z|HUl-C~1bc-?QG>BQdCjsX=@-PTme5Q!C98^lJ{vdBgu>c+ySf+z;oM(~J%a=Rm=S z|C=&@79KUj#%EPqeZX7M3Pw9c*f^KU(5r@-F5 zk?1=@P6F3>ZdH>C_kWWjT|Zqqgh#ct@w_NMV#0+1#mM0v*-Y-(vooJRt=I0efhun< z*@#OPP*RF~43Qd1#{^9Bh9c&WFT!G2uad@X(Ij4tSZSmdRAfQsgEO(q_g$8pg<%tm z)#teC+-9$Xr+3OKb^1y)gZ9Z$nAr2}SE&l2tM&R{0#rZG(hshWl`w?0mkiO`$xe7; z_4M%VA~$H~1-mpO^aktxWli2F5gzoJEXo|3oylC-TB6SD+1y-@r^x++iwSwD zEwPVYtm4ANR3h|b>&~e|t~!kiQSSW+TQ+-nS)-^U$AWyn?6bdY*1kzl;Os^Ln>qOV zt`n!r=g94C7tzy@>pgJYn-ED)TeY=gvwV z$jk@t$19hs)3cW!glXG5c-j43NXQMryIjmCwnT56ApDRUZY>7SDZ75C#q;;*(F_H` zCV1_fW-q0e)Ue#VABc}ayXZ8FmM*X5&|X<@Hq#d_9TQ<^f(&oVFsgYtDa9q#El=8?MZHghF2|$^93Qj*KdV1B`3S{`<(gMI9|< z4m!Q6^C;qbHcn+~faG92i?D?-xZ<;;pXO&E*APcuI)rt*W#=a+vV zlH#&mbX+cuK58YKGxa0PLnU;bOZYqP#~hnci7%;$vFmeM-xVv=wo0?SfbBaepBHO_ zVY~sh@K9sqy8Q1BdB1V;sGVic+3v6nXQ-Wc@aWGUW8uh--xg@HP z^Zen577J|nF_}Xcf`!i@y4ITHulf0G*+<7@9klyerAshKTQ3coMwT?jmy1R4y^R4{ zbu-W=dN_r4iabCcu^CQZB|GtH;7jl765^hpbL0i*VI*z2gZ5@!$lnNFO-)yIPPzyx zjQ-LPu;$0z6()65f4YT&JCs3^KHNwB8chV?lSMQ%zuo~!k_R3=4@2qpwww>k7d831 z4gRtfdlK6msoQax1|>rw=Afbf(v$awV(|xQQAnhC2Yik=3x6TH!Q^>Lj&C@^K>5qK z^`ZByWL&mG;fvdc^x<$~(X6CstDjk~RerV ztM_(S&6f^&N~L9h%HHRx;PziQ^lKfqCC8Vl<4B7E{VD1w1mi@-l}zAMoQ9T%Kf+tP zrel|VMHoETg2{Au7lJ7=;*6ZENH%3c zv;lCqSjV5gUm?Kc7+w3c(=`qykYTHXZ6_01M^j8ncAql=#-5(3a32O3(0L5ghy|1C z!+xwwo^b8MDjE9#(yX5cjzN`JTZVEyPJfV9eb+%{T0cu$hjq+3TKZER zZ5#{a(TMvL-(8!|6O993P10DZI}~dmE?G!Q{Iu&3T%E5tdQMgzxMO*xd3Ro;Kqi}l z;wd#H3{GZ!VDmFbFEQ@>h>+6uVetTWNz-BR^@~!U5JYeM{G;ykP;m;lp?1V`r=OGW zu}_u8BVxa(BXf!4gT3*O#q3R=dY46KvYvu>e{&hfsaR(_VtIU@tt@_J0Kf(p{pyXUpZXxcocgR3;e4REXKVv2-79 z9-{DQe26iB8glxmtzSt1(a1OBsx0~TOL#U&S}#RlQ`4BEYtKc|k(eNOuEJUD3oAtw z#-A%U_XoUNt?rhr5~z4tsLlZwUt4**`~x!O2I8?@D53V@bmehJi|K{V`lF{Z=|&G! z>Z{y&k#2CAvSuy@(rqM5wl8>&_+nDA_&Yn%h-~04t(0f){j3yv_;Nc(mrO$Wg6qid z%S@}*v+xqPscB|Q5wyA1f9IkK|4!Pkg^(J}6i}KH9*w<-nEt?KIKF)7|XT&LP#|dhUQ1= zfNT~ltzfQre*CJ=+#X%XAmIbzpHUOs{NlH`!9y<9n;GN$9Z)Q`RUyCe?fKAbqC4g* zz+h-JI9elhba$WE?Qw})ARK2Y*i)cP^LzKz7hEBcUVN-rtJ~pE0{Um5vAnx4v9SQZ zUVF?mtG;I(E6xWICY{)^wZtroK@-M3u$kg7x_$`yxlo=7?et`qz0&)2Crxf~ac0H3 zl*-Clf-ApN!|ZV1&5coq!s{BgxcSYAuhYH|+V$V8g9>e#V#|15Xf8|`iLhYX^0oQT zU$PB59(7RMFAXSpDSp#~t25_s1)ojQqjCkkGh7_G_@;h1BJqVKiIOv69eIA9k77ay zSrhI3Pwg?IodE>x%v&rE==*f7M^QFws(4&~UXr{J)t^QSGVeo;HqQdEd5;-Uuq!(S9JYPc%ypkgu`)@@;3&s+?g=f z`;Ev*d>_o)=VK#>{&wjLopTPncVtL2r2=$Y$7g2oKm~>=C+z<$1>FGjSe23k_sBLp zrH6%#Cv7yJA&9e2dYfMQ;r-|aqalgM@lt7Tu)*F-)jI!3>CTl9nnMu2)K`v-DS*wH+eL9IUsU=AyFop>_9nsUx=%sQVmHbp^L=CD5!?~lUnP0wj z?+7fOkME^!@COq)q<8FH9Q96O{D^n=HSZmWk}Vv4UiPv7`E(*ND!C*KlW5zZx|YzG zZuCMIGyk6`nA!gY%y(7!k*O>KYMb)IvI)JK*Qr!8AXvB;o{9og*Ra?kJ~_4ScIyIZ zX3ot-#9}g_%`gxpy}NW4=$0r}bF{E>xN=dQoC|a8imS99k@Af>V@PXd>AnR;aIDVU z^r`B2X5JQ3jkDHH{Y8xLgVw?Hsdw=(xtJRsED%h=^_(rnL|k<%(ip=s8I43}v@;*9$hp>(sqa zx~`H`s9BK#mp2G*|FW_W@y}X(tSSW8YU6#VR0v#@-kwru7OYS(z>Pll^E;(@&_%rr z5RS<}-W^t|^|tI+aWOqcC+m2+`7*`s=`(9i#-p>F?SC^3U>-(ANF#n|7hqr?ta|KG zzput$i4v<%Kw*#l=1Uy*N~z$=)L_K3A)J5z8dbcKL(qlK0oL2AAt;foa0= ztIQT9Z&9^{;7ZteBa3Rv!At*bZlMGGzST)^`0o%l1Omjm1u+Ljs|bdEx?&DAMDYs! zDxBm>#xoKpW!%}uYLNnESQIk>Pa~2w3ho-!gWIqDTn<9oRnjq~21dWCZ#kVG{ru3= zEjG{Tl?}C#vLI46m4G1NaV(9;R-D#VDn;mx{A^1gZ+{F=2NF8PcWn+C(Mi&j@PAiW zSac1u&J{R|o&R8w%22VlTXNqd;Y}W{g-X+kv_sq!eWM-skA!>Z8OMPRJ!yAuByy0U z*4OYz`W8oIlgYu%0}nZ$Msii-@thM$x84V+7vJxR`B;0vMcWo+U)wLZ))p`3?lOd+ z^dA1Z5fBgTi<=YwwI`S~fZy z579NmVG{kseR)W{&Z1b!hH%hl-o`=a??%^70PFlFq7FH2tJ#T}8D{F5Xu}z&sbDm= zVU^C=xO@a0I#MaNh+AK>WSCVVRf~o_<54W;?|2<)%ab@BuBkXYVRGqycWq_s(;?|G z;*nCwJ_a&pAz)(MuU)&9HXzk(s+^>LyWZN-OYT$YQUKjYn?W)cf7P0*9uTu9&`e(3 zm9*myZKmS1-Y!%KHT$*wWfL^NEM#IL+Wr+up{~MM;>$+8n;sRVW^Xa+KHGV#5H=IQ z={{Tr=3MvN*!=D53;;lLBSOfE4@Z}Hmocws?&Zm^a#%!nP02`i_4z!Qqn7oE3=szd z(MipkD$JKItMy^{D%?58Rj?6NQFDr8ZW?t7I>8Mz3+SA;BZhQA;MDbexc;wY9MzlLwO4M6iTwTdUkf!N$@yjZs$4w z*A73$vp7r{^iTbqO%|>1@jct6j?=`q7sB=eVvA`?<|p;uuSX@Ubx89XRbR@mZ>4bS z^xgGJf`tCvpd{kk70$Ir7Lk@*upnzKB!;L@ zy<|kdp+Tc?l84(_X(mnK43dkoF#oNfy-Ql%dG5$UDJx{ zq}yw8kV_XYBUQNX*lB-3Ms!07l~6Qqq3r_b)@vH@7y>W;`obF-p++NY`41O)Zsti3 zBA>LVsEEm5qXZiXAO#ixmW)`Q2P^sal7L6bZeD(STBojJG%}_6c@?C|XJteZ#yW7< z5|wjPJBB>pU+#~Y#sC0hRX?9hWKugkw; z|6l$m_jCLI|Ns79cR$>J=Kn$N-}PtxKX6~vZ}tD*|JMK8{}=!N=L7yf_pf+AxxbU& z0za?+lmE&7hxgaz%l)7I@AN;v|1STs|CRrv{$u@D|No#r=AYcZ?0$dzZu=wuivP#| z*W5q($N7Kzf1m#vKl}gL{{Q_X|5pET|Hu8G`=9^+Lch>I!GGZWt^fD(0sqg`1OB(D z2WW5Yuc=Qwe^dF1=`Wu@gL`wpEs;;le-Hla{EzM*_^;f5x}V{AC%_}}pXfj3|0(~w ze&+Im08h|AvVW%k6aGj3fBDbce|G(B@&WyF|B3mt>#zSa$g}gm_&$(6!9SjVj{lkd zSNC82kJDfJANs%5{#yIp{S*D4{!jJ4z28B<%s;UIy8jLP#r|Xe|NZ~GpZs3%zjeKk ze`J5^5qIz%-}PPUp3!B;G-+WD({=>BqUblxmzL6J)Inqc6+>VU9i1e(Nb{&EJ)*LW zqv=&`M)W~-2*sADMd|t~+D}KRK`ECh)6?zaK~;&8+Z3t57Jmko7;XjQza=vJyS7TK zT_FNEL9u_ZME6=q7fttB5tN*i>bZS&j9Z$HZC=?C=acd};N1`Ec7dN|k77}YJ1Fyau zf$g6LHdLgh+N|r;KtY@vFEiKGa;qdCX6P4wwUM_^q)!k;>&qf_2Z*_|Jk50AI3W} z7QkQoYv$hNB36rS+J;%)aq(QtBs_2gE6KQ88;rGxQA8BelILA=c+Oj zsEzCI@rmrTi{^{F*#zFm7GOMr8H*XQc+5JQOIqrqV3gMEfhe`Mref@(fXA0 z!<+IXNQyDpkQMDEczhIcZD-%|p7E?dV8-w|zKkrCv*#-tcx`CXiuDof?f*vOiTmHM zzeIOa@@q^G){CM0a%4p{%57>R9x*EZpG6M2+kHq0zy6^}JTM_@KlaZ8l{Kjk4E|$K zg9M7^ofus%fqeVKVr)NP&v{qCxNkUIQg84JBHso7N?Qzb&URm(rAp}!=9_dQ7LTS` zU3hqYHW*?~h6jzEPc&a-{KMzsAxG2JP*USZL}7dK&c3u)gg z(eoP;o&N!t-65sP>Co{1p`MEtnS5)GCZzjK7=^f~Ef@6uZ_Cm^8xbllk? z*CfQFT=&rk=2-dkXua-h0+6rKWbo^-as@HT3m7#OJQ?tJrPr2I^ulzJ6{>yOD&0!i zm}O5K{s7aBqx({W$rk%0r$5td2$FoSMFt}DyR&HcN_9J~`>MveT}kIgo*oo{x+|(t z(v(wsFyGSKnDO~sRYjkj>-z*RW~t!k9Z5X=%N;iucI=>8`L@iV3W$--G5VDP&h;*h zA;V<0E(PzM59H!G-gtOTx*%~3!Kl1*6~zkuxzfdO&l+u_GMvLPtZ@-dm{q9EOs0U( zDvU_ISm+J!^*~MYmYJ{!syLZ0zn3Qw>)x{89}n@=3Q}rsH41V8GzkjX!)@aH8_Baa z897kfIF<%S#60DIyTUbI9>;ipk}&(J!~Gf@9aINWgx7$O{hfl+FaB02>`^&6p4qk% zJ8tuK`##f|nGy=$>cN=@54>siopohi-C{w($wx?DBvm6^Sv|CYx-p)<9R|G|8RsNd z71a*Mk4n3BnBJwg_W3FgyJGMpP)MGIEIN}-UUH=VRBFhY{vukA8)|e^O~HBCjC3gz zrI`C_0dMuzZ-XnW+VrRUN=86(uu$!@y3izPW9E^WlV$j;#?^*pM}^k8esPMWWPO5@ zAL{uf)f$O#rEaF`LzFYd%xLy8?dR_XYD^%HBQAbtAC@|;elCLHa+Z@>RPk{e4R|Jo5wb#=7@OL&98bTnW(=2yI2 znePY_^m<(=7|mCRF95F~m|!N6jLuFV2SF0WM$$fj{696-FX%*AKjDMoX?u5?3fMqN z7&>7i%z;&{>%s}5CQw9QL_yG?(j8%QP>9%EVv3&`jw6PJHAgAj02y=4qj_5ERF&Ps=;AJ$c{pksqw+2Q|}m3u#%gt}q7&|8I`# zh^r)PgZ{#|*xaeH(5e{zE=^Mh`i%JrAQ3#(HGqt98a*u!OLRKNcT+U6YBatc@nJ|X zdkfQ$eM?eAUR(Kzp+=$Y{kh38`LD}7N|(Xo;_$^+Bc;pC zTk9RQv{EG51aeEGNNUGWA9yM^H)~bCU%zT^z3meH(xECbqnB1Iw?Wf*gN`MfSxVE?1fEdhm&G7SH?k#+LsV=mVdcCqHeed9_C{%-KJd{3rUL z>!dkwTDj|XHzm?%|GX?1*bmR- z)p(UJBz`iPnBVYq5P@6s#cTRSDDW_`F*N--w|xSU%K+Xc^FIPwvM$Cq#YxyIu-naz zlHY@LBS8MCDDdozG6%ErF1LMq{A|8h^Mqaky9RhTS*faKa}X!mOKhrN*y0XtL;vA2 zFG#kQ1ACp@V_tU4GlfS0(g^~Ylp^(Es)`u*FU$>yEpguB+dDqDj#oUpK-n;ibc`J) z^*Lw-3<9@M$p~T~+{UpQjJp>f!|rAxL9P{Nc!qwa_;mkuIjV-l(i8e4xSDS_u>a6n zXeqHmh=u4vpJ_%9UHA%>kEI8x0N`K#DXgx-jO{VwI^dCQp`Nb)u6JrcoL!gB?!(H5~t*AU9k3y!>&b?_f+>~ zzaxa3NQdxs`NO@}0pwk<4UMWNlUQSAR7$zClt7vV*DGX`Bgb#Biws)bmX0q%J5;q7 z)O&0h)YWzI`4RM)d2|)RPk4!~@B!K|%|f9f$MGS1sGVuQqzX#>W~6^G*8@s8UD|kn zRy%&OUO=kUKT@SJmAp0H8hEofCEgQ}egG{P-f;aaYO*^udmpWqm07;P&_NDvwa}O) z#fiZG)!ni$wi%tLU2iSJRc07zigvequIjJjIz94+`M^oy(KELNKL0dcSc9 z7aZRF17w?`)o&WQ_}WAt3Y zGzoHHH(gjXU{Ca`fPuSVSvTyjxU_SMSKh=Pg}8$q>)Cs&boUEd+Cs4Ir2&<8Q%X!+ z9sMQ5)SRoky$Z-(tFL^4T$@BbX9Cz#E)l0}5V(fpGw0#?RHIvsf1gY(J~#eRKvsZ3 zzDcT3Lq(F|;<%*p`1%P;ZLX*V&HvsaXLh#BmIn{Ng7}vj(9fUI74rfoa z^aDMrgLC!~dH#{OiZ?$*4(VhA$Nz(t3qv-rf~ywt{37yLvJ{~mW7{tm+RAJ>>h?Rs z`bq?8c&o|j{})1<)3r_A6m3 zMEC54^3MQ;|A`?VUeE7}Cz`6(mYxthhoB&bU|>(qOQ1}m_W(1Dwk5z}1`8b%w@1O9 z*#U%{BjbxZyMKueECa?>H7;2s^VPPp#q}_v*trTX-1ZA&qd85pKhVQR537^2;K7r8 zX=q3SjPBSS>b7*p#5-``tM*+%0OjS8u;R%R#y@EIp`q`SwqE*!Dc_K1=+`OwM92i$ zc>2YI&Bni@F5fcNi=I8rP6fcc2R5MWayUlNv@lT}m|YrDEW24Ip`rvm>cLT>7^gb| z@gTjBjYFtHioC2wIb1*g-uGhh`cfhSew9Za?-jM$Gje4hpI{acJ)r@TlH%seuF|3{ zqxTMl&JO1qT^hvL++QCQBV+JciRuP8(vz2k5z#}Kik<1ry;V#=kkEirOQJN7QU{Oc zOvHOg0A0%{I`&mXByINtG}~b`ptjn3HUZ3FFBR&Cd5e~ZVz>YR{`U_U8@NwjyKTR{ zb2_JM=LO`Ey0eY6({Sb~P8VlBQicr6R*OAOBn`oZ$q~eK7d zm9?jI7{eX=Rw=_bdY3+tN%r;kD3y_bKd!~}{+KSR{U_rYVMDg5$Hhp*lC?;~|D|#K z*Y*{QUliB8bI%vHD^EO7gNUnuTV7p0jpLIM z5X}QDh%!DoMaI7*Q@IS7G+6$Sp#kM7W^q2^9;YxSZ>v^%m?<_L>{*Gl1Nn*>wLV$)hyvLr9uyDT_SI8DsXvbmfo1Yf7{r^d*8prCgVSTB)Za92N@1fPq0 zN(S&NN^mvGy(Lq^Wb(|HL#U;&Q>siJeO2aKjzNI`DGYwYyiD!q2mJNhMBT+AWT`%T z%(vD*V7F@g@XSB>n!(K%?T+UyaGp*RsIMUf!o9ZnA$r?QN4BnIbGuz=5rY*}B3*`` zk5H2aLIOyv(^sY>)VGfTSmFtoP)RkTL-nm_#urhZCmGQ_mpf5fuqY#Zco5@L1#GAVXq=A|xx9Clx#T!VMGjZj? z_km=`K^jrRQb(wo!h>T{pk-8W%U-D9^#g`GaV#5yoLL{r`>yYOeyMkH|Kef!p9gcw z(!cmI1Gy?4TmLV7jZFo8D(HCE;Aw#(K(rq#Z-e(g4_x%5yxrf09)Kq56tkGIX~=GT zw1A0Te+!ZPz|lq=#nu5X4WcGnOM@m_owRv^5EP~DGwVO~-=FRAY0f)TG7fEx(qKQe zwv7!MXGyM@_IjfWFH<|_7O1OAjMkpeF<3=aHpG8#&-$gZe+=l2wx*@F+semrosW>$ zF<@2n1(58-^13;WB9v(pdlCtWl1ITwHV6QCzKsTR1+NY9lrr3tRV)d_ne9WywY zpy0DXt-|H(#_Q}mDw;Hd=}(E}pdOb!n8&!$7eag!{xpyzwq?secQSrxXM*9M5a1|= z!@Y3n0_(=!#L+#CQxw|rOt^2~Ddq`M!G3v}yjRZ-m;-lMiM(*ZXhhMCj_K4~a&*B$ z{;>8appkrxyRXgWrD8xHG_q;^J!MKRCr zg774+wYR&2IxZ=2&e-^K6m+*rgT*3LiMm-s^UM^ zB)Y`|&C-&4W8-R>-rz2~7F8Pq#RVcOvcM9V@!p`pVi-@>J__KHGi#z2t=KFG(0eiS z;D$JCQu!)P35A;yPf?0-{5pZ|qtNvXI{6A$=Kuof zlFvrl%ZNhU>5Z0000IZrK6wh*MgUqx(|p zuA~wNz5@}X@VB}=)kBebJ0{a+%Dh**yBNW}aaHLsZwX{Q6$Ve zp6+UuQj;~`w)zVC-9;=xXtne8%-k^m8OgXMkgYK>DYFZ&JK-amYr^a|zulJ{sD2l* zb}IWxO>ufxZL;(y&dzdOG!vRlChHIki*S)qXhLg-bO9RWvBvt{FFI5%V0xceJw?&ezdLW32?Ev1+)k)`CIAuO~ zAA5eSHl5da3Lx^*ooA(&3DPW5qpblt*Es%%ht+;FL9NG-A(^TgAtvpf-mKJkDE5C9 zk9%n6d5!1gDcYj^Y+jP4Q8zoJCSI^J8_r##coxk*Z`!kf$h%URZKksHE6Xrk!{~XG zZ(!kqCROjz<~{=2xdZp8Mr?q&T2TD3{^#TSf!X;HacD^L z7CFj*oy_Q-nC*IsaoGp2cFK*;yM-xn>!UqvGV8yq_!Y+T_IO>ka#5>NFOO=4I?TEd z3&o8`(CP0IxCk89QLgJ42jt{!HUI_?hOx&$7XZV{I~|?jo#4kr%+wJpne$Xk)*jBU z1mN+B(Kr`-&Kf=RO7FIQFCY^%Xyr8qUwsi*Qcn1PnXi(6W6wRW#_>>KDR@(GU%ftn zK&UV50&4GH!+HMe!~ww-kJQnq0ZVuwEAzPgl`hly4q7c)w*_ja_paOR$BWN@s6-0% z=BB$(Ap85L*pSJHN)zC6ufDVCHKeB=pzDD{}coVP13v zwRnVbW!Ch-*#4zfHqa)3)x|gfSR7)=ZMVXBAceVVco`YQP|okG#u##)*H7q(IpHC> z>bAIa>2QqYoB3%@?1i8%oPESD&+|z9EI0Klu_QsvzYx}*H&)AqIt$&#OL~xoX3U&G z4oD+*Z@^O9ckY*m)$nZXmOxm-bC~_CcOPGtc*vs@tz~6<41DOkvMiMcH=NG}dp9zZ zRKH0K?abvRy2QT3kGK|jopUK>W4BzGpR;tX+3lh@vD z+wOq_4Cd%TFIvdO>z6HLl5(yBu6iR#m8-j_F^bKr1K0cUUoiS^AY^RRhurdndm7g*!&~X zlW?nYZx~J09~#rzVymLlT5jo4T4^TlxLyD4WSO_{>`VJmIFbiS+tkGdM5^;Dz2H$e=`+_$E~n&1rt@<@~a#!racRXwye+SPiEvIK}n5n7KVQKLf`I3Eo%iG z1#>_7v&&-kw|w4J{$3Ti$M`MjBm1|gVX}Ek3Y@1%NummGd)c6-R%APBSB#Afn5UKg za+V>rv(HEl&1I0rBXh|St5C1>$ARI-3pM^6e8zUdQQWv3Z>08h57JY+(th|YS;xUb zdVc|iev&S!|G*G`_4sf<^L_0(O`4)gS|9rRN$;h<^_<35{Q3-MlUsmC6wL+ZI=!yd zdLfttkWD>w4lqam{oK=M^{po4G~wPDkB&STqY{(v>6J2mY(VpT4qT8)?D`%1`UvNe zZoDipfd8oUdCs~2_wKk^)zA9v9*8&PKmUx7{#b@$@v_kvas`&CQz{-Pb=JE?>S|ca z5?>Qk|4#K`&Kkc@tXSG7Rv7bglYH~*{eBAP_>Y-*tXiMQ-BPMNi*Xk>AO4AGzxxA) zdx32*INmPR%cpTKjBv*|g1PI?P_2P5XQc~{&XI`)KSJ&DORh|$LLdL|Y-A6H7J#3P zUe6nL=(lS~I3N7~*B+4vfL}~v-5OZnR?t?0x70PfD)h zoOBB%`8fp6pl&C){V5qS6(dj4>0d-0mRJWepz_Ul71;*^1Dtfe_V@6c z6$O4%`n}<=ABYb9?+1cFKfkX3Z(GnS@n-kmPGk1W!SUhG%fxW%;0`cLuH}xyktEqt z%c{Fn0CC}Nk%0lEB)@@k+XBAg7cH|M4vwf%itiJH|HSo&hpIq6dN?(Qi%=X@ShiXw ziN_Ve1u)N|{E+BIYBrkWIa?xuK^7r8l8CWP(2@PoL3%sB+!=xn+e&mMgJc9nYIC(O zD9JXy&~l*1mmG3nB#VdpphE?|Aa@5kGqw`F`A8qAI{$jK*U9#TMZM$&b{wGi znQ00fls@KHFMD-R@62)~wGM&k6lRxqK)YU?3!e*R=!?jBugcY}XVEmBi6X-=2;c!4>lOrL!xO<({3DY%m$S>Z7CG`f8eAAmA!@+DXR002U8T+r<1Ci>@b z+oA&&SjO2`-jhl(4eFqhhn(_N0-x#=>q7TjhnehWEO5cj$g^w_4=@s|g#kOSu*Ekh z1kavT#YpbI0pwc6EkTK$La~mYAo_4Ftm3F>V9ZWc>iLnWX*8%sL1)ztklN|sT}mlpuF;PMCMIHzn&*XMGa59ohs zq&j{{@t=Jk@mvi_B$XQa7dnZ;ST$-Xy-w6@G6a1%mXtvkZrOhV%)j^)+`+W)$CkEt z%7_w}FP!2`)$fRL%;o+J-gq_8xT}y7e=A7bc-@lF(spki>TlsbeM61*B)rNjJ@j=` zbl>%=$(J6MSRn!m`)MU^q*CNUNQ-uC;a%ACQr%1$9%kVE=s|Z04%a?yW4pC!yqq)! z%HXtdakmAvPcySVVG6itpif~>Uku?d8TGvxJvM<IWc^lY zIqaH{NQLR0dU~587X~*U(z(cxm}`*|f%PPo%&U&~qma3j#fqZty-C%M%!D1OtNdDz zwbiXamFU(JRUVwvvBxZm<^%f-MKFgB1ax25x6R}GuhKI;;)Si}SUp5#`opryL9jnY zE6rBnWQzc`7)ez$buHZpFJPWF*YE%$EU8xr9xI{GS$>e7V2}+(+ZOyp?*QZ^c5c2< zb6Dj+fp;~uTmhB2|F)PJNR|Uuaj7PZe(mR}Xk+=z-&{$Yr}_;QC>c1Xw)jmPmV=kxIF3bYE;lJIh(a9e>T}jV2*GpS=Qt_i=4VFs-pAFHN z1-{#yIy5ckqAkL=9}8x0yTF8>4sj42gKMc?&rz?1G*d@kWLyYnD#p-0)VZ9ttbN|W zq8*V$T5NV&<+}M3X|KV|%w^oAo37xqyGBV5efL_AyQKrG{BY95- zha#gX)XY&E$~$`BGP6Ad8Ko0~vmfJ!Bn`tg%Z_gMxQCGJ9CwUk#Nu3Gc2sRANueZ| z9TClPU&$-`a2Kc*Eog$Jn*by4%>X^aba+jG5p5JH5#9wEz{iag1l#Wu1(Z3_)LTDh zHc;Br5Pjgo^fIOJ4Xj3WiIvy5>7Ovvxkz?#1vibUM2?hsc5UC^evqRsyAyd_)G3{@ z=BPmJqKXr;?~i;b)x09@XJ_~E@B58lW24c=owl=89ldAU1VLc?^SI2`Uae$Y@7?$g zKzGJ8AlvV2iOUJ`uUz!03Fltn3Y^Orj0W6jTkOn4d47 zJ3K@is40r#x0!x&UglgR_atj0mg(eXC}aw+R3<6cVI_p-hw8`yZ8A^slfE2kh<&}%3fow!0P@#ICh&Fpy-e`v1b^|kL^bEZD{S%+i z$a(ijRoBb*jQn^9?1pc&My{PhZOo)*(xj8;-?8Lr9Z6`&ZF-n%g6s)-cOkD&y6~|& z=?Kbc@Ao?|`;znOE*m5HRIHZch5(6hkxP##4)X@r3}PqVwShfd3U7E=Ik@95Iugd! zG9`8xFp8JgtUn#B?3|$*3Ow2iX43ydtn5<WcqZVXzsBfnAbn{+>(utGr}lR!?ziUTmW?5%3;J;zgrE-&Frrmzw&qwW0SS zKYPUTjOC|MKiz_PaNAF~&diepxMoW0M1e*NwShgDJ)DyL*5on+5M;R00mLc$efNt< zPqsahNcFIX#l7<9L{G(+#7Cquf-^mANCdOeJ-fg|Me<8Vs6ibNY|iwMJa>|m%?%c~ zq6Y`~wBacq2D<_2RcIkZ{zLD`(5#}I ztZwmtZB5eUXRx6lM^vZHlUcz!VB=&d0-h9|{@1TQ+;r?WCt6-7o5clcIDl9IM(6Pu!<9rk`>b(56}aL?=3y%`Fe4~n&-F_0E3{N znr(;;(aLKjH)plLxaIvV#&9XPun60*V?uo6i5lxLR#OlV#nYD8wsryYavVR-`&!dU z;UT`4+fs%TOxw!h>W-tS5}K-v^`#r#?I3S41lx6O+t)rd6t}e6K8C5W1;ltdjjC&D zvu1{1nXkt>A>28uB2|Ei8`NhXaK>=?RpPHl`JCVwt90=$2wrZZ80jz7NzM!L!8Xj( zU|h~X@{w8mVQkYA^Sj9IStiV0zd)LAhiZ+VnJl;>Wz2ugW}$ID@L>UL1&A0w&EZQk zz-vXV4rw7I z15S`7@%}7aCgpR}#5LB-=x2gGkEX&)=MC|2Wz{(X73M!-#;t>s;S|yFu#jWm%Rc2% zT=I{!uQ7P^I6VC7FN#&b4`#U6VfAd)y2JhhY5b?ewoZ2@AvO`+4Gc^z%@Wd5>#1lI z3p6GPX(N|_$TVX%`&I|#J7j}~UUgl%Lja5jkpafpO50D+(N_02P)gHLLY0(APs*hAVZ16c zWn5)KNHW5NkO1Df!IIY*a*1N<+nnrVsz@39VjNQoJ#G!^qq3@6dy22(L?y;pXZZAz z!NK^!F=NvjlLo_s#A_bReO8b)flR*ImnP9YAmf-hpzS3B_T~uZiWFWoTcuFge$TUF z+|`$5j}YE|>N^Xn#y(H&uq&Z`JlTv(#9ZFy5<`XM|H+v%iHx_Gsw7Lck`o|DLzcin zA@%|W=gL0Y3toi|h10p>R)$Mgd3cgH9tQBvTo{p&3Wr-C)W_4GCdSo}(H^Q|>D$=f z!VE<(MfNkgL5w+dg1^HWj>V%CJQ7pB?GxXY$Om*xJYA*AcLX7b;gBe#a#j;C$kGK< z{YwSt%PtnYsg4e104T{)q~E>UgL8+J`W|j(Pw(zHd=C3k=tKnV$%s2UWqJ<~33PbF zj0#B6ITm7A`ZJV#mf8oJ=&SNmB{LkXVf(Nf9MdoNjeZ6O3rhkhOtbqa_YPJAT7fS? z3*N>{edZ0ybRrMfztthP<@M27?_WN{vH_pMny< z1njcV$E@W-ytQ&F_-0}*>tSp5VkvJE{~8yZ8W%HrQ{|xR?Bw>nO%RN=k@5}!g7v=c z)M4p9YTCtGAybeeP$^Ppcdp|w*@<#h0lQUG>75AD+~)YYcTh(+ntDx=thzdmQ8M=V zkjMM4VB;`Xu)YQLuvjFspzH~~dLrEk7n&x%Vu%2rIhZ1m*(3JQ@}FCeQ+Bw(hF{dd zdvRNL3L+Z%q+ublebewk`5ItuwiITOG*9DPM_ymZAjfjUMR8 z-D4ny0_?9(M~pRKVVsMbYA4J$)>KZU0w48{(Y@j9J z^4+@zyMBUOTxw{IwM;QwQ>cGWO7PBpJnUdKlg3zxvo(5A|HQAx3ui^t?*`hHXd@+H z`|}hYenw0mYys~rpu&*oT&YG7Nl6F$hQK2Z?Nm*5sJyUvM}vv|^mq!MviyXh4d zmey?*5dBlajvH4*cI1~l1v`YU0R^t(bw4nQ*yZ%pjhl{;uh9k^`9qnqxd0f4-2bTq ze#&CUl0o0&IM#-<%>CR*CW?-#W06ou^fS;8+}bW0=xaKjR@Ywkd@eJeHW()=N)bx1 z&Fjx8S)P~G8i!-9GGCIEI>*7kvw=>Y)y$W(6F}A*AwMu99-3&@-Xl44l@h~+v#Wmn zfl7KUWldR9HzisrG<687wn=h-q;hKakwz}6v-d0+?;%3ply?IrFoVhi0BZ9V#)EuN zEcKCjy|6)qt)JWs6A&_!sAz;ogVpLhg0Q<)B@{q*F|d$av(mmxObsTgIZjZZU%i*O zZB(d7x7BMQ0e3RL95Qa#Tv?W-U}&637T*LzvTjfNGo1+L2oM&!EW?X}hg!}rba!F$ zANh(9|Ee6b&&MdUT)JGU;qWkMEIVemBPh6)S(OAh8W%yS=A)~zUKQq1gK9L^9GD<0 z?M@683f^%*e;8yGP@hJwi_T)=&Lqr}K@xMqeR?lwq!g(YyyD3>G*PaI>mCb^uG#F0)FKq~bnP(}1yS87;BX8^rEa(;9ffPE{}~ zxks8EO$icRJ}rGWmf~ba>)dP+fq{ozgH*Th&s0W0ugys>3`E6{KiQFw@1_CLkYLj6 zuoJMcQOf;Z(dpruLz9tFH^T=1(m}QiQE+7cq@XjX_`aTRT4tqGhFFHOIOZ6n^KfIE z@ZR7Agbr79q3}k?Qs~ncouE&bkJ>vQ>;IL=N@!)u+BX-z89)=lPgN_`KT(D$XiIL` zz&f-pU6fl+LS-QZ9K#Eso}ZJK?yT|1?Ev+uZ4Y{G8iaHmovAQzUsTqD8Jl=Vm7b-6 z)=T%LcJ};<_9$uh%z!^AzD;x;dgS;}cX#5u(_k?-3TE5PJkTOF8a?n8=hW;s(qRx= z0Q{1x9I=zO6ZpYo#v@k0I3}ku$FH^&b=n3>MXK0wvfF;jNGkFoRc-xw9%7elPSi6r zb>zC7#o7gpD9adFJ&ZVwW}CBH{D z|WB&<-6M7}#9aW3*Yo)GAyp$kR^^VF2-6i6Z zJ#tfy6|`jh=Qhjh<#5K4P6OC2eu50$*xD!7rEx}v4>5(I*^d!<=Ie|4@-h=(L+ItSjSV zCG!j#Ltl`tE~5tWIgSDBk!M5Wt-`dll<4#HJm+G51L5NRL}t>DL-k}gJEmFH2<@7x z!rLHa-+Cy&DbwyWS!73-MnQD8WKfGYQ0*_LU{O{)v_6rDJ$6N6hudo#z6l8%PSK~p z004XtYNvH|UM#)E>#i`+#03zmGFNk+oGSGBlTgQ)Z}D7#3q!4pPH6&T8*BXl=cA3{ z8uKvbcz9(nZ=Ic#A~ffzik!i?NEIU!2j-zEWMATB zu@GXW#+oh)omP}`ytk>w+G8jG@9GGVY|LC?5oOAwSkIYTCe`^T z@5Sst=DAt1yk*nN0yv`0SE^Rs`Gd%AbbXbTsmAcD&}w-l$L<(~An;9ZL{ENQC?OIG zf$rN>2w+C&! zDEr+I;jQTZhSbJF07HcHnk=3h0rUlszU-M4Y~?!V*HUtCzCZ)<6B}&|i8_i4K&|UA zcA3ZkKYF@ZFw6@dQ7!iO%lVdSXJ;ndPacqTeruOspkho}E7M0RCYi3#ntuD(ErOng zbT{QF!Ck&&A^;3BgD`l^p;diHlpR{1eI4*g7nfkjVvD7QSOIHsVpw5PMQtZ9&2x$A zW35L59YC}MC@a?+eGB(a(e+eV0J5&IdKi{v%~Nt&_3_#n!pv*%w{t@%ya4>yAy#R^5Jj z^NGLFamYu>QR`zbh`#jmb6ND>h})EGiTjT1oUbIX&IuLEF0E%4o;p(;i7mdpQfc`% zv71a=>pn*feE@Es@n|?lk|1)M=C~rEi}giEl<(hk+Rlw|)~Ca&9*}AZaPpU02ao}w z^l{?yC&71PB(l{xmq3(Pv=Lft_V}Nre##COAkIZ&C#daI`rY#u#TjS3GK=ZPTlHw? z@TnP#iyOD9lPL?Zq@-j(uwW5F(%ZZiV;H}<_aUz!kDwJH>-_iHD>JUKA1Lx=c7!W# z$R2iEbZgxV-I3&u8Fu+wXY28Vgz-}4hOWvAGYblstwQxBUNi!*>d=jYpu)O4b}3+n3t;FQv%7m1WkURtE{~WWbTFj?&Oi8@WtYrwGw7*lAS;tu z4}&ODm*+Nr2UJakL4n%fiD6a_IKtC{=sDG$AmReq|NnKyDd~7r4~@@4t9zZj%RRcu zpfynS3sF>Rs~`QVQmNjcKduWq+^SfZB;un(2?EHyu@@E|3LjF&*j-GoNe*kVMtlPB z0LetKnp59&=2+g^{YwpBjV;jNyixwXn6g`X{lilP1?GXuH?l~mxVIWD{{qw@A@=sq zW5Anhoi-v!CS-)> zrc@Qsb+?ou)j?<2*jM!*5*J>T(kr!IL!GXX7_+F(vm37%Bbesp*?IgEmIN|0XCNwg zCxZk`*>gQC4S2>?JD;)t6W8Gex(9}Pj6QP3hX5PnW*(nUH$4Sql-z%j<(h-JSG;6T zX=9^h(cWb?RrbY4;7{=G07JjeGC;&suqdN+pK>|Of`GYid#!S;RW2LiYZ0>8mHD3~ zN)@{5XX)26wM%3~mBj@NyjP>F1S~*D0MCB08tM@jn0LclVyK$Q!~N(8>`oiS zbE|ce0}UDvvL71EA;|(|j#8xLfRj{US?s{SQBTX{c{DVkR`dqlW=)osiGPH0;mCFW z5XszmlBcXI2o2m=+su(>MmpOkESeSZ2X}ign*cInPSEYs%V67to@bTVoR1-#hd$F1 zb>duNc-ekqr}nIc7a0~80bUloIf^b|+XwYuMzV&_s^pZpPx7c`O{}-TR+3p+slOXS z{;kwxWC~eyDx~@Pi}B=07g2epk%n_k<9 zrT)hML)Oqyh4dwFC;4&@>{AEyP_CPkPWRZCVi6dK3Ib+xdaD28&zwtl{RdWNB{^^= zPrB$sXx+}-Se~_vIuml5m~beWk;~C_+ENKCX(oGRJnLn$df7!GwN>jorPl1np64@( zdsK^h`_2*%WxpzLL`Laj8AbZ^RT0IM*Av$jTgm+~H~eFF-KzK%J9HXkZ|$fk1o32g z_=^p}d*m7<2nIq9bA+Ia~a{%y# zv8g+BMFsMtM7``UBtdoI+oyGl#TjmCiKm7X1M1dt43z`xUr;@PGjHck<5vtlimJ3O zo*>6i;Pdv|yF@ElRL@@*DpEmttXYq2s~+BBFJJ6B8Pt^vQ-hyezS9ul<~i#c9{(6+ zmqkoPBDMZ1W;MV9H~O>9w={%xdNZdLlrckP0Xl)jf!d9frYgzzO&&;8NFeGBc+o>T z@tf(m2nYI}*p}K_n5do0SxyPK8-Dd*y2pcJ(yC$c9{D2DpX}u@ufG|qDICXGO_kK# zc62;`AEtuK*WgmqMiqTcDzK#>oi(NNdX(Ce86y#Y#Ol``Ck)jvnr(xSJ& zuyKB}hUzq8-r{K8#AxHXP{gX%Q~1T3$sNOa_i14hQr9rMoyO2eD!=zysBQhGdH6U4 zg|BybbrM$`JLrwrMGjGRN??h-q+^<7_LdV%^=DXimE+;W!=N${d3FHpIek*ENO8~E zR^*f*u@g%kgK*nw1leei9CZKKJ?Y3@3R+Da-q$an(!>ii=r@;+4#=#|L@rc7leBCz zGqr9F-6Y`L!8Ih77coMcd5NO(fFZ{eMp%Znyun)5ZRy19hWGR#N;!8T1Fqu+Q4PCD zp;it`J?&>P!}VfZR-opJPb~6)qx|%G&>oP&dt*}-Hsf}FvmflJ6+p9|L{%4JONWUJ zIeQ@SJ7#8+eZvC@c8!rG}eId94pTbt%@ z;O232*RAGT!-di?>;9fqa=BYmfn*x6zUV%R1IFN`;f89Q_#g?<{@Xm?Us2Eh)#WCf z4A7nTu-&${qOcqCdz!R_ih^`*a&~_y$OHyZR2h-sS%`-`@h2zcwkqXuqQcFA)~H=a z35?3~^kq8jRNBm?3b=bDJ^z$qp0BNzDKn|^Q+Re%#)(f3r$I+0Iwg=48GhAanMhbk zT>kqD8`c~UlK=kXbi69-!tZ#?|DAsBAKe+x2U&xMV+ ztW|V#lj#$_O0N&o0DI`XV0AMii4Vh#wDIO|j<#6Rjy7VOB0T*m)LLHFxi2Xl>BlI6 z2R7J4rdk$$JWz-* zabu0`=eBzUNJ{iCa`H^#-w+*&D5Uly!1_#g3D(U_`IG}9 z$dn%m&j|z71~1+;V?-2|A^Ayg4EIyO1{){M2g&>P_8-pG%m_kp@i(#@+)pS>ERHN; zQ!=W?^*@`BV2xEhDNG0eLeULXlW;$ISCsi_S#Ugl&)Y-?mpPl*3x?G5g~h+Zy33q? zhc4XFHVcgTKiV0zxH|`(U_=-Hc3TYw7{v)3V~+L_<_8)BV3)DTUs?)-9g70QAo?{A zI}u}%{Rbb^TF|Ki^;Lu!|4S9yjCWf)FH5_{CMygDQ{zGs%=XGmD)vG;lGAK>&sE*i z6dEdsqQMoRIgFv}Tv17DN---m?Dl4`~XoncPf)TbAorLA6N zc-#Lbm4hq`5T)1-jFx^ss`2vVezS;`9!jWqxG!6`sSzV!M`4K|6tJ&QjW@D-mV<8n z2x;w=Y%&vwC-pRR*YT@RjRSueN^aVas?23Aob-#^TTC#h zM<(jlV5(;^Z%-$kYEK8Wam*s05ByZDkF7{g^;T^q(%zFw#z1<6B!wk9CaG4<+08VS z8sw#Y+G8!6s+M?TuyR|p&3pP87Djkx*!UNe1vKfv{s?M^kw@QbmB7_MW^ne*A%LAh zXxph}Q3m6~o8^q@;6=Qlr%vgJvpQ*Tl=j4e`>h^Y|C&5wrI=+rfA$B^qX=Us!f+c$ zAa)GKTOk*V(|@v&0|rh>$4O2p9yo&pfQ&P|PvBLq75YPt7FA6nRQzCPp^$ls(8$=) zz|BUQ(>J6${}&*2h59?CJ-Ut$7@VA@>?Ww>spP#JkJiTb z8UWZtvAr?Y z(LMmi_Uu`RULU}xX1PbGXH%n%t(*TAJ@5KGZxYZT@t^O@JMD82)d|~NS-s?Nw}jQm z*D1#!qhV{}U^nQrM~=hKk7`7j;1eSz7DDfpLxKqih%`r<(tg{)V3z6$=33y&Y;jsZ zDm0}jxaCgW+J?xfl2mC>Mbtycg)1&6ni0aB^Ds|3T;Vowt-`6`)6`M~Gfv>H$zUlx zo8sJ&Qap-!$nw`F4{{ZLK?FCb{9jAK)#Mip=mJgsv3i4?Bt@5*F+(qQ>mgI)R7c$1DDmO?$ zVjx0Wb~IWvCPSTLG)f+8BX;-~;lBwxHe3MKjUi{gqqy27{)PErCR>vU4@_FD@Y(J? z9d96=pYvm-rFD8&Orrr?#(341#v0QQ2hS0#V1-#vkHnbk5BW$ztwxR1n z$S%5&$7LIVIm{S0QFuvX;1IKgkv2IuC9O08h*QnxlB( zuf89~4vhuQ9<}%9Q~(687!r2-qf|W099e`;6u;c-2WlnbFWn}$)?t4v?x7+w%7CsPl%3jZna|0+HkIS*l5L$`U*xx`}I|YV23*rLVN9Fk{GM*U8qpsdMt7M#Z6t@mW%Q5+?vy>m=bbCC+!RkH+f+rhL$R zCVagoAt@F~$%g{B#N$^}wQ!a?rBX-&wj{LxgsnFx+4jsK}dTj3Y=< zel*Oqx!9*QhIB`O_^MXi=QWN@E5!I0*+79cff zbCJ$^lEjJ)r8k34@2?MW)68229?^Jl=3i{&jiyB|Tp5V`cxbYYMA2i_a5(OR>Ok+X ztG@*`QPsw`jFn;bELm~a08D|^P8%GCPk-G#iN0y3--1;%j}QBSKlIHi6w4xFdVCRT zXDwZ;kV_?^5OuEHOQb~Z8kH3$TKf8P@H6TQ8Wv;8{~<_G?02^O6WHA|Y6P}1%2Ibg zvjm&>$k8y?;S@Ql@o8xdGIFmNBKw;A$goVvkeXuuDg4-M012ez5|+u=B_I;Z-KftI zsc}ex=?J0RQ}BGhb6&ErL(ty#K2Ky}6&VYgl1CG*`8H|DG7sb@C4xQs0F06GJ(nBhlv63&5T$5}H3tF!#p&n4n+T~9ZElw8@oq9#^hc8wI zW*VH^312X9H4D_Z>T4zrX3~mIl-nK|Sn&CM;i%k`st=^z&l(5R?(|%-e3?-F!KCf6 zfb#K`@w#(I&nNz8my{nTWaPm#F0MFpE#xAcSTXXbH(pkhY z(mQL@y_kKnm=(Rx*1E&BuNbfY$*u3=4V6j4*aaK4xjR6S?jbX)eVR{OMAt?Z&Clx~ zNLL*uf?X75JE|j^eY#~{8`7e6ywGN{a-W)(J!X`3>^GD7VhimGTs5CLiW5!h*H-c% z&fLB%KF>C8&0rox%E{QJsCOhx9PAtBA}m(eBCh)ht8c9%?6MuYs~R7fQwWev4wUf- zr?YYc6qG!B*7>-V;Pnb`KCw{+#jV;YEl&VVomn$80pepLxN5EG>SKNHza6Q zkSpH>Sf^ZDw$Z=SvwhJfQmxwqU8eW3_C#+Rl~oL}G{|fQ725ECzXY*ng(?Z9FAPYk z#qMk&RQ1#Vf{V0<_feT>z!TwsdIZCcVn3<0tb_b%Ai&o<{^;s@Z_#?bhNA)zO`TiG zFc9KXs4cO^{P7(7yj$NQHLJ@uDnf|UPL@AN-{I|2bxjSs3{yv z+8K=!5frGX_;KMcSK?|F|&;n#?OWCEsZ6`GzVE@RUgyX5BqyGlo^gF&VfV=)TW3B?#YC9pPktN zj}ibks`FQ{$;6)gaqgGA9zN&<&}h~S^~{5r3r$M{M<*Xt`uA#>1d&=Oq8e_&G+}vB zlAUkL+WVya;mt~+0lB701CzUALa*bGU?ddtCXXY|`;C#fpR6tE604i45a`3Iw-bk% zv5OKgIVB|Hpl}raZ7zKA#F4HJDkcZ}m9S5X3R%yOd7JR}!p0(^hT&4(in0h71Ef}O zE9KQj5IcIa>N#ks-HQUx1(Z6%G5_F}1s!eW6aUy%UbS@yak)KOl!Di~U2^I&$2_12UKi)BjaAp*S1kVct z0Pf#o^OfV&!}yrj#Q_aFGtU~f8)YRRVPKUG}m_u3HOD>j;t42$6Jr37fb#6@8_s5v|wk{d7#>4uHKw~r?<+VPN*T|vu-CrE0!GH>$ z__M4DN+>2va)F3|1SYqvqXvKBm({on(xZ&rdZCJH&*kfRHszQU z14(wm01n5^fV)6Fd*vVc1%-!RP8&5>s_H*kbD95Jg!?BL12SojAr z%V#|KO-?_D#&{V0DWAzXn}f*FrD^b5;L)hAvrA>;Ie&f@oPJntoJ&mQ%JpT3Fc0+W zQw?B86#?J7;9=4C5>+KVN*!oB36wo{vc&L9b4%7UX26#oT#&eKEy}$_yLW9`$jyTm zR258WQ;loy&yn1M@z9hJ1r~gf^t4wMLNyDVm~(NK9uiC}6+Lm-ZXsGZrMsq=~|hlx;0r zof;f|Pk{E3zzbFi?}CW-T#?h<%$rbA8%U}zL~7WoGu{&-2@uLSsolXo(9zdW$!_?q zez*$##@ra^3%>WnLdNPzfx?fEB2JU5{~Rvxs0_v5rh%Ru+4|R7X>>jyUqoy|Y@^hu z%It>i9zs%zUgPv8Q0*GmM_JcgE)9y7(ctb8U$aFo@Ks$;a_ZgYD>wjYdOZL3yN0RJ z5>cwkatLQ&?bw@x!M(WR@1>;af{xKetwe1q#qj;+`Qdf#N!V+DEEiC za6BPz&EoTh-lhMFBGYkE2DekF2YB!bRL%G{Jb(z|5oWE5T1uP0{uNfP`KrVwZejUJ zVRO^OnO16WA7<>?Ug&_bhuU zdB=!(o``{-T`q>4yt>fed$>}&7~vMGQ&y4>GMOT)7AsNgkh7LAQ~k1Qava_FYNVIP z?HI!J&dSmp2mQ{c8_w$e(mJnjt9IpqXHy%-lweP5A5u?s>=^CNl`Xa2ynwo2MSQXN zpy1)oiF5v)q9@!642ChMc=*hG>K_ZHc0ccTXE+2v#5wKi?^BBuC+>YhXm&o#VKTCw z1^Ru(C_64zq{P60|q_H4oII-=_W4l7S9}rZ;hmTQ@sa06$0ewKglfq~iC|(^T@W<5T`}=S`T7|vlwT8;4b;NBgpl1hvPap1qOpnjCqARy*|?#Y&L{ZD6(rzZkSpRK>5q&C(-Mprlx8Ci?jGe#kP;` zi-%@EcJIANp)tpwu&r9tX<)*zg%LsXqaAeF=6y#(cn=jV(*N6iHAOy# zLu8(sTL<~R-3>;qMHPgbFNG;(>926z6xi@YGi4_TLf0^i9?@Ui;%Zs*43tI5Iqk|T z`C5Ex`J=3vNcEFI7+cBg+KAQFJ8yIR*XO#ydsi3}A|vg7OY?c-LC}uCAb0@)S=HeI z@#_>kMY&>C=?)CF3Qx2L7NbsJrFEH8khFCU$Bv2B%f&|cYBW4kKKwePwaNX)3n=N_ z_=%Db{$`t$hmS7{4~z4Lqb39L73$O^JSI5{R#DjWZsSIEN5_L}bZN==ULEj=>FcGd z73MU)n}#8lm7`!qzsKt{_vgv~Fhmj(spR`d1^rnKBo9F}yrJF!btC5D60%X7;FxRV$iE3v3}4V&?+uS{h+hKYsNI1gw@g?!U&&O8M|3*=G0(N@f)nMwv4Slbu}aI$UC%!_dNXgJoH(wb#$ zyDpUauFZ?{-DlNZGB{s&>f|pR7dtQUW%=~1PaRAu7GD-_ctluSc(f)ID*^FeE?-!D zoVZAbWp%Aup^8D&WcymX6ddSxq}O{@4~RTkVl(=j=#2Xz(4*uab%||tQBbnBV>W}t zj070VoA^vggS+&^1#p&<{w?ECzj8IL&c-Y$<9mV|9Lf)3SFd zDF&z7*y=ZKG5$T~+Ex58o7oqD+fE32HhD`pW$`}+|3s#Gyx2M%h7bo$u@ou7@ExI1 z*v?_9LoRA=>~~NQ-uwRb*Da|Fetoa zWE6)uGrxonDb^HbNK6hmORO81E3ILftH`Z;)pFkeTaPR$(aOPK``RGdrY8OZN5RfH zXQ1UofxL+dWWT)^**W~!ryQ5+vn}>rT{z3sRzFm&GilTv6TMrJhNJ^Jz&rn++1I`6 zila8NFBS-p<#=>kV=b1^Z3qqv9p!~;uS^Lty*sl7&e_?wx?+H_+PN=Ec{?T+-EgI- zxX8Xmkv&}h>e?UEwJPe7U`xtOC&KN|!fiSFiw_x}Q9~qRm_t$a24)wPwCmL;msvpa z**yHM@~-pMXp~26iLj~IClAq4 zOoeXHhijMf+?@X@UxOLDpmM)hZe`M=mU0~VI!T8r7Wp^7i!@wPYqjZE&dV7{nmrjh zi!K9D#yXrU{54H^Ra*6X1ZPf^35e3mMp@qqkA3j_lyFjhY>Wq?4OoBO8f%7H6dJCu zu>hAN=$H+jbwl49#m=^h3x6X=>8 zbfuw!>bSArE^~s|kF9~y`KLj=o;hzx)Vt7vGPH4S=y887(U=4c529xn{6v4#OwEnM zz9VHl1d_|F&T#~?v$TvkP+Vq;N6k0cun1ZIIP0qyUZdt}`%9rV(s9~=a>~k{l=4nL zO12NmG)PAqf!ItL0uH&&p1y-sr;SEeq>IxHu~k87L+tv%LvV{~$2H#Pt4NuG z9`>B)-|{Kl%mZfN@+FI$oPK{oKdCs}$@i}E{(Zz6GL-gwPNYL{>=)t9g)#0y$##&F zsRAZS9rcA!f=*Kta*SzGu*%9|!efYr3j{aj8Y}nQCD<+cnRP)R{+Z|Q#CDkP_OG%c9 zp5;K`DBxN)GAn4xwI&)?Zebf0V$uki9hZG~H(l~<~^UUG2bN-m8-OWd@m9Iy!|5=2MPbH;vO7xbul<&Zk58fL( z6U*~ct7}`n&!4X&R?fa9lkqjyq{#TeyiRWu-`_4B9Z@AQIL80{F#Z}VT`#PuYjb9T z2j`n2jNIJVx4Sr8PY-<`NlF!LJZPh{P(Y>g)XVhVUMZ9HZi&hHaRTn z(h{idkRdaA^Q6yL)@sg8o`2%+Pebgt8-B$7OabnX47HW|+>)j>?oER1Qz)j9^wL_u zbcs_JLM@u+Kw6WhSJ4l9(_vq z$z$cPGuU^4h%u4*mjuo(%Fl&gSTh>a=wF8~R^=e3dEtq#_DbWVoHa*_5M9k{f7<~k z?aoXlErX>W9V)hAOj1f}FbLbO)rlJNK2X zmFRmcavvBM-Ej#Td9p227rI~Mpxo5^(SOK=_ig%4;T0&+3cm2FDOw6A9EPwu>AS$$ zvrnZG(?s!oe|Zc4=uc+o?Yogu$((O2*Q2=Yc~&EmLa@RgO2uvOoEip^5dXedRRky~ zSNC>sBH6(Zp zO=WyQ!tJlCRXBWhD|~Teh&>v&Y!OzsQ&spqqkr>oIW29(vHxc&ggz027w2W{8hKg* z$moG5x0QXpn0odMMp^?cnvyXZy%~qiEm9+Z)mn#K-?XR6(X}prq7|E{y4)3+M$btu zy?rQC0207gd+nR1L`85L9+T|cQG7>ju{7vOwsK&k zvQ5uf*!^#8BC|oS$HoDi)U+AH$AvY-2JL%&kz~oJtWV1#Z!ct@aX6nO>zd#ph25v2&PHHuN@^~k`3#qYSa_kRn8$vC+AdnI8F60@76xgh(LArLG^XI!~>u+q*Y zfBL>N@tPbmb;bGq@70_{7|=)U6;Y}yeD2zVWr9#0H!>2s zC&9+cq9@j!biA{)b${9n__BGs|F-&va;pNDveC8TOtcR<+jkYJ{=#amYy#sF?*c_1(0Si|PwNPy4gs^;utF_}aGIL;Q8g zJo5{Ckm3!Y5rdZN@oCozhpGgU$#9fYuqMfRQr42SseFJmoNG{x!@2gwcJWw0pCnx7 z_(i57fxI9={AvDT1BAzX85>dF=f-0da+Om2mw&{%+mhC=?zrUlBH9Sce)?HBj*SXz zCyJiT3z72EEIWO58RTn{oW}!B$yt&i=uS@@LNojI^Sn;}UQ`2;@vprE8LnCTQyalDTdQ)AI+kP zO(<;8_`jI+goLLz>Xjj=SXENEeYao~@G7MeOZ{ z&$nle_n#Fk$rt?=yfG?CRQy&kc*0R8&#+RmLYy5Oo z>2oKS*EfXSPd<>%(|upDC4a<3J9xFUoQz zgO&m2{_nHrvs3!F#RNJAk`(fG)m^C&gKK0y8#r($m?uxaH1&3g-Mzzo9izVCs~hUw zskCy zAS{Tm%ej^JQbxGZUkA$5kJ_xwtlJwFh@?muu0-OqZ=z546@1NuL4Z@Sq|4nDDfb!pM8|!6z^)SVR1kWrb7tf>h5Gvf>`6#|7 zo&0`YOVeoGevr{5cQ)rtpE?|Cq3R01p?i_o4n$OVBU89sH7((*v|L%ab1S)M zs<(@tWdf7r%!z@jZH9*T41wh={_md)2K_erIx1Ss_y&zf-Ze+9V#FiEsu5kSd2f_( zeV{lc0?ux&z?qD>;TlU8sRUcb=$K6zqE;s^mqsM+el)wIpa3dnE+8Tw%zpn8Q2F1X z?5{UF0y8lVa~dAa12E7rJLBv2KsHGe;ij9BRX)==4UezHv_CPfT4VRF8r$KW0i7NQ zjv;GB&04_%t5Lp(=N>&-#flGACS%1UosRBl!r_Jw&=LERpHpdY4jcGHf z+Yr6r?NwOqB0!J532izl5E?fNkTm>;1e+y><~|vgaU=Pti_AvXo+(ci z%8#Gse7LdZl^bbM&#IIG057H{)QSPai;tbloD& z0n={z5xn!@Ly+WT;6G%J0;TmSK-3SHvA(=>G8V63J9*JNZ$;A!xQZt`Q@0VZL3Pu~ z{@bO=zmlzwfp4|CVGx-Fc_q!q7wLct3AB$oqU1#mAw@Uwc>o?D^?zP%i|Q%Ebei|W zwfZTm^CF1^ViG~KyIe_$HRPd^zIe%JTIFCSNKl7EG37Rlj(_+v#Ib6OkB>1*rx3$w zsr}zRjuOK!u<@TQmN@A;1iq#x`~3|;JXl7%ZqD`%=iZfOD@gk!27$I;FZ_Fxjpmdg z_ax`vC3yADjOoj5hqapLRdFdp-UHe2p2gxV$S{iXU;H}u*gDssEpz5QQNVo7f3L(= zV%a73N@|ZUO5)G@*6tFjiV+^qwSr{KtHgU;@To_4=OYy>B~&H2oxXq%kOqWaH8I+n z)jCv-VLE|3ro9UjMv?SFw$2VdJ9Ef(m~w?n)eo-{twL+h%Bd2%O|Np4%cAVt=l-V` z_VpMvLd`{FPi-U=ylMEM6awQ-FZfn-ZNOiCFBWd7Dw}49#a_&6N5nrn`5m-$ur82z zad3U)uAng3gI#XWI?^-Rm8ZLIfJ-UXii;k3t7FnSELkGs@ysr&nez|~g(`&}I%`G6 zm7J`b+m^hn8wAbIqEbp)Z}c~X4u)=+CQ|hlBG!-hg8OV;@RBi!?pnx^qHZy~>-kct z8Ux3$B;TJL&A!6|t;xUN)pDMw0!ZHAkGcE*x#Y`#$b@hKX4Z0kll?DrN#i-F9_?rw zms&+jTr4()5Z&#txJMy5zjh&bKmKGN-8VXMm^4mpU>ZEhPubc`Yg#^iWNnxSNX@=; zja&CgA36oRz+du#GZN5%xZz;=xk2hd4EILC^k=$k^!kq@-D}?3HGIIP+B{Q8!GR_9 zxKHuq`BHQyqKiRmmx)_h_xB_dXgPyWXPw~~hol+>SZtcdz1OC;`AMD2zzaPnNxwoQ zV$=Bjd8#Sy^bwk+)w>~NN4oAak-mQ$>{Abj1Yxs`=}Ba0c#7SKa)^{D(~PP)>5}U0 zt+4s%ZFsCLo4yBiIa2F}f_{ImLcl2rLl#%^uXwGmG0zAx?AJd)cPlVv2(+iyaOis6 zwWTT)`}SBo4k_fI=UV8+`_5Y|0#HkYOyG1`Mgz^5xV5f)RW&pv0uJGcz#iN@uLE>D zE$d_ozoa*KD(5vRH;`es#DU|vOS-kDiN->}14bw_Y9p7U+lQN5qDM|^D?G{4#J_B| z6sFKMVj>cYjtE=%*Xa1a*^Auu)q9_4pE*e><|0ztNgOlbmcaB@ejCya-qUTRZv(&R z)t$byQu%-)lhg}{{j}E40aqfqg{+#tFjgb7h)s%fLF2ySGei?r&1S3%boVdNpvlUj z8A5p^^-BlxjVhI5wmz1V_C(4Wy_$9y?+urk$zRgAh_Is|Is`E<Sv1b)=AU+&2!F+bQ*PUEnR3xkUEk<0fTYly^ zxNuL+ZSJ?yxII*xbbW;w7$#v$KkW3A)dpl~@zViUnEf2v>;49*QEFq?)}qts*g<1(gvpe(Uafth$H6G88l5j(z zwVCD9nw&Y*z+lOwNzzqI3mHe zEl^@vc^*fERh28&K-#(TvUFT!xE(fvzOaQmsfMk#$qdkaGCpSRV{ukh^EDtNR1or9 zy^ij_9`zintY0;hVbu;c)quR7Fpx+S4oD(|BUxEY-$a1@5k_jAGW@Ur#eB{47#`9ETSSPnApzEVgmC4|q@P)bv^9_z|b3gAb}j7QBHU8%Lsl`f&6ezGK%#m zdf>F_mq1=tq_sg!%XlUx+}>j>CZ+&C45z&yIs60`~A;BC4%uPUB0h9oU!6<%^H#bl zGK&s09_2z9akphUggJpfsV7a5gG;53gqlnYM94eVib<#dmcQ2w%U?`yAld2j&x#W> z4Y=8KdBwYH87C}` zvvjhOpT2E1VpVB!N~3{lni~~}4OkgUJZ2>^tufwxgI)A@estd8L)nJG@p?T*x6Vzz zFPo3R{OsYo_|!mzOXUvs{SWz9g||+dv6f2HYY4urxj8o-(i27kYK;8K-(! z`m>J;iL3^?q|m_hCWy02tk$m zYiwK?0P&t_|Da`f#}dPg`>o}Lr!V2Uq3?nQHt3OqqKa|69xKxD0#6a+b|{#!%* zfuLRgUNH}n%ky3BwA%=dPT*;2Q;t!s=d3nn$Es0cLP$2Quyaxq!pH=7Nj z#^FwR&4vcVIl_$2{8*kbN^X){F&7F?txzR`aZTQ$l$Oj(u|)bnrL5wt=U8bHA=&GWL9LP zvVr{one~WC#4OdcJdrM%biYaRMEzC@8s4yCGcqiP#8x9#;f{Q(QXmUs8TNw9==Lvt z&O)aSTFDrHpaPNQnI)PYkn78SEjX+_=apVD2Kw|Q6xp#a(Tx9mz4m|3uGXJzA~-Gy z8+eX*X*;Wq*2^DON*~Sw$-5ByvI}?)f{C10vX_&Z?{nDA>U*^S=C9BI08M%gJ5v+4 zn>uZkHsB!u+GZ3o*)^=2vlK~7`(sm1mh^{d$?*B4AzRz`l89#WwxX*~W0!lwnL;7( z3{sY1g6~o6ucU-mMgLCqkvguV7T%@S_prk%Avw8ACs+vb3)T&_pNoM{jjRzhW*}2S zqUpQ;t84xy^3ipek|D8M;&9`VKPP?1;2k?4QKx*Y*~>xq@%hL*E>3Z=;X=p|f96mT z+zQ^Oy@`Qdk-#z@XXLBdjl_f}B8hs;Yg)VgB~J}A2^gsPdik3Sk+j^)I6%K|&6D+m zyyi%+#kJ(XW1)5@t4l%eHomAl;4i}QV7-v)#0l49u)7R&QZedNgnOs|M1i`r$G+Tt zgCQ*m*EMD=Vwn+t?Ji*{5F_d9W4{qbCuW@hvpPa9=twp!X&T9Iw&zTVTl~&klqh7; z1HfCE2HwGHy{1=wRsYe>n)H1p@Jyv^nS?s~Tl|*Lk04INmeVq(P5DesO#uxRVZmHY zcJnklPWSxkMhI+DZbs=AwOHXc%U`^NYi7xDanxN5M*+(yw}qH|^dlqjm#_b>!Rkz7 zA(9mr_;fSz$HbB^(5!)$1%h2hpD2Z|SCF!d>YM8sA)1Fo!mRyZG{uXd-=3Kw=ihsA zo@q*OpSYEv96Wc_qpc;C7E&RF;D`8F4{?^b%1eK){SE4#d4b{gYfs^7dklI^CFME4 z3cMV&1Nj}UehGjRwd+G>JMGaM->bOd9MlI-V)WdreS#oXC?8F50oDp8V1NZ~7eQ(S z0<#M1GMgO6NI3EwjMsM&S@5Mf`W6J3JmVP3Ohy(sIBu-fbrFCTAflYes;zoH^&>jS!1()ZOtlu2d(vhbhQ!wGb@W_OERBd_6{}*7}=zLc5-{g`Shcnop zoqTR@)XEv6x4bRPh7YC|RRvRURl&L;X+t>rwDxGve?maGwG5_L`*J>##**)ybYmQV z0T@9#8l}KbEqBMPWWDu~(^VF{9!bq=s?r_+a~_wCb5}Oqes7;)D(Ya$){@%$g|q%Z zvAYkck~3V|h?486GZZJX7%9`yOet;;NtQ7DCvY-6>q863NB=pT?}qa*>BL7~HfNq( z%f3)C%C7R7xKb1!O!{+`WiG^!{6p#Qnp?z@rES0`{z=cXRA6}psz^G*e@})^WBas! z*dK|Z#wSYKq^DvSi{lvM8TAmo;;^ZV3Mr>6WY>iI1!WF zIusqudg2*Km0GiZ@OK>ts5R?9sTrdM{UvCN6pp5=A=ldfrELq&Ww2RiD-DIx+Gpo+ zGl4GIojbdi;@E`T)gwU&0A?e&Jkqu@pWI zx}oUzSJi;m7DFjYQ5qgZ!&)&5Eh>Rtm&-*kqQdi3$}GubvryVanxVBE9SPXvcY zHK+AIz_F&4g&68#VBxU&GkO>HQn*z$1ar0Okumi)~hJ&JRFhOo5ly;TJP+u ze=7C_RV+D}DC7cTBBGYEBVsfxC_;w^)q+l(!)UcET^uwkow?_VGhyy|cc>%I zGNf)lk1y_lVDNVmlB+)}d^17f;*b%}rb`JwIW4#)R_+KZk%fEBXm?B-Fb%G}-|eVJ6MJT)A=ELDsCEC@#TAIPqP-UKvkO(>3xSil0_F)|=A ze0`3#D+JYUg%zje^C*3gi>w+zxw?KYBD*2vwfZe>uc6b;(g5t=q!@AfdT_VFkwJsa z^Xd?^rJ(ZeMmCJ!qwL}%@vc%GwgkGqhAH=(g+{D`b}dN|%-zlaIBr6=?|MZZTM_$q zPVNAHEfG#>rEfqY&PvjTW?5_H4NhhmDv;A|>XrFrT%KXK>XUEjor9{yD$21ue7oW- z9Dg_J>ySJryS<>oq72_2ZAQhbEcY_Jpn{fL;HD%5eF)rkjk` zmb^O>Y73fpY|7ayhSYyxZXUwPznu{tD5FxYxe(>+*Iwg zHQY&-3!(Ziv<+XCsZU35C=pC3+jo^A3|9&mqx!h^t$p}up+0KWxUnAfI{G~1+9v}@ zE?~HPwe}IpiWl-Vr&$Z46jhQu>!p*x#Mey@8XAE3jR6N(Yyh^_uqOlwuHaIO5t|@$ zcWTdJ)-|3l{vLPlV5iU=tpFYd!y~Su*umkI(NBduP^F(yYBuY`UT&$ zH<1B~K5);r@6j$KF#O@)6ZYzhds^TH3PeQ=Mo|CApW zcur5sK6*C!#6(Wd{B^C;H|!&0tORhxRo$Y8VpM`yWVXhlqCmLL&{q=5=Q6H1*l+rn zj=x1<&&V2n0JYDIrh^l4M7#C6%jL7$-H}K zII-Dmk~OrI8rZlBN9wc|yKbjnh6EOw=%U5Hd~ELGA8)@aVZ7sOZpt`3se1mmm>)i9 z2aqLFEYQbq69vFCrIAI}GYjjQK>KGizuy9`&Yql{AUt`h4jn}B3&2IfKjV}`I=(hu zz3y&}gP{xquK`E+$q=LEg$8KpKO^4Xa}gfzfv^RxR6+_r8Qy&D#)VOD3oj>x{?;#VY${o{!vc zk!U?vv?b1MnKzJDM(DzVqB)Jbha3cCDWMg{!;STF)$6e7QSgmvZd;{zQnW86IDUpU%6%kp7P#`fxjJ{Ul8p%b4~>02CHHgN z$~{a$4$e=e;$GGUr@HgNBez~bmA_Ka>PMYURh#az%AtEgjy1{%2t+$$uH^ro0m|iI zo++CuZs8gIeaWr8m_y9A&5246LMa8D=}{+14Xyz@L(oyuHPJK4C1Bj}^M*M8rP-xP z)Oy~h!8}|_-g&)xhs2Mb!PgOFDQqw9%N+{6d3>=J`%|#( zt2o^}`Qg&MSYR!JSXbg)1n@O@2xLZx_+0{b=at3Pg^`CDIOGfJQ-PF?Rbb@_X@m8U zB$O;iSC^^QMpK{4-7fTu`nWYi0!L)IOrZmCbb(NR ztHU~~K7_@DRjZ(bFXwyMuWc+edvvoA|WN|;v z$Tqz5EFyKA&YGmFnwCm1mYA~s zX!@;DU)uUE=oP!9HDOkkQp{khbSakHwx6z2EkqBMNO~fQ|DX}<0wQ-zT1}3dftz!A zx}b5>2$STW#XRktnRC}->t;Y0T*F{*_IQW!&fxqydj!wJ#G0p>ltT3bf)?cp9<@;HhQFKT@hRhzRJ(KJtRuLLKt7vrVEocB; z9h{_&#Chtu?#|}ZipSa;pAIw8$b|5dA`~))dSQ<$(*tvC<=pQoiy(T)xw)N|->;wi zL!*B+%6Rm2^Qy=yoq~GLk)raMuD>6phvaFzuVNBq;j-=}EU67P7^HI9Wxnps6T~OK zp6QK?EZT1Z;r6Lv!la)QR96V_>6%z%V$>1_ps4$)S(SS{i+5u_yV8!|)T37OPk)KV zhVooL_c!1MSJKB_-6J{cg{eTk+XP#kU#NR}#97L(-2Ed& s9C;Biz9Oz$_U1u?;!*@@cPtxU2aQbitq@Gun5J6AQT4BJyUis(VRM(tr8KgAW3$TITLx047w6N@wz6~+c0BY#M?CC zf30X%Iii>{X+$BV21HD|APs;`8!dU%>KjhZ7~$jHbJDe(?RCneITqYjf>C3Oq*akI z^o_FHfA08sRpWJ%tciP_!r=q=I+Z|b-d?8#V9nd>v@vh5(^fEVuhUk`yuD6ai-x{Y zcKgrmKmVH&i-3~US^rtS{v-{Svo07sT2(r4;-eQQr_643n)gc?jH4!Nl^aPN`bOF7 z7;gW;?Z4LvUKR89I#~iTa<3CGZ|F>&x9x@jt(g~;j2m}o&D-mQAZ_RyWiMp7{Rg-I zUMKjHd3&9pSp)YvA$8(d;Ka!(BNPn$MOW3Dx7X_^0U$iMF z&l?ojnfjH(PZUzRA3#qDtuJzga!cS)-X%N@mTjp+09rUa_MX=zeDhH^r+(@1OWO~i z=MJQyCDJy%oyyZTI)w|h1X7L4g}V8un^V7X_-V<00KNE0^q?hlrZy_q60NFE;ass_ z16H4MuGoFl&8c5F{DdZyUWB%v_Txd5@OZp*j&G9M3?y~)Q8%Yfxs3Gl0D65BbRK$7 z6WMyF_`Awkz)vZmlg+lApAwOL!F-&8dGp{9dgG09H^qAZ8N)0I+8OodGI! z0r&tuF&K(Nq9LIXxc!JA0|c_Sem+cnVXT170`Ldu2k;0WAAldA9v~k;AHX^QKL9^K zEkE*rzX1FIyN(!s!TneEzsW-j^zZFIxxFQOd60amIIsM__TR}Lm%rEl(tm095&AR! zAGjCkr}}^I9^Jp;f2#Ho{bT)){14O*fFH>JtpD8p)$aZO7t|;BU-BQRKi0lLKcWAR z|Nqzt{pbC^|Nn4L+Rs-1`JcA`20z;W;{WXbd+vgN%+mu0s4dfU;01eFF6$eKb(I)|4IHA@dN2c_z(L(L|7iam`vb_tQXi9IPY?G}Mo}D*FW=2`T!J!o2FH;ECIe(+5LtUq*p-4f~ z(VTWKy{!)AJPJa1Cn1ng)2|T*gk)K}G5|GHY-QB}&r%TC2_Az;yW`-F&rX7bVprdc zlB*gN-NxXjP`2R^xtNv1^z`YwLOQ1G(ZE4^>iib%bNb`7mWxO25~p|`)6|4GG$X2M zqv8XANq#&plGM zF&TvGxfmf>^P`oL2?%gyIdUu<#MpdffNpiS?R%17=&!~qGAiIxVy6Iuhs~u8D&yo_ zA;F-1T?v4xWKQaXTM8bkrNscBjK5K|88A-9b{myaHkil58R-{Wkc4)6blssJLp5pW z&N=9p@35;S^t(bjrtJvoo3tYpdvI51hz@#?fo(CoNvNZxBcV)RiGk_5Gcq=|8lRY# zQgeh#l%tUYUQiA*TiRV;+E$84%sP?b;X~zv+<(OYh?fm$4wKj*G zN!tyP?Xg*pW?Lcb1WW!6$06p*$jpF87n2E2#xc7=s)g9!`N<)hMFw zvvR=-01E4cCEHY1#II%%k(#_`IF(T~>{N>8*q*%qBJTxYR*d%K;{v1613Er?BG&4T zS*bER$p7iO)l!z209Ob-L>dwCD+dyK1eJ&LhSRSy!)e$EXhq_7G zu{!U$oL*)lJd|nlP}`tu19!KGecG04j(*D9FuNO91j9tJgx)gWL^u5?$M+u#r7MZinN_d5ofLDk-C*jp$_6F@eBOa>0K zs8^3?(GU1)47F^3#)EDKDA+ImgbJA*0YmZ}$A6=ZQq_@slS*!b@}#UMlQq91Jf{9uXsU*Im8@QYZ)#SPEqLScpH zJgp7Oj$)4YsUL!Nr{7yG6+EATX-oGuPJ{YOhf5oWPqnZ76+fOn0tr*le+}2PQoZ=) zI$*E-1QMm$dI2{yXlr>j34s`r44O%efs6j{gR;hHoTYH^d;4pUY1=?zj0)%(#dMWo zVPD$)&*RtU`&1wim`W?UbNy_Wv;+U!-wa?m;=MkW@GNl;mzS3m$A6)$Kz z%_)7XvcmQ*IDkq_1S$P62fU|L-zR@l0&eUUJVpEe^XN%pp*F=&UXjHYI)vmYhwOkb z_G3MO#!+;pqxJPL)6-~sp3-bFJFs;BK6XT)BJ%%V+84wVsS{nWj~&i3gl) z+Yzf*?Hx5;0+dF4BDbx1BV~Fw^@Mt*Xw!1oo$eY1>n`Xm7#QI8_C@o`5y1Gq^!RGR z;u?!%-w$U|{ZgDYf;%LepRvh5_|C}aInEOdT7k=yzH7J2p&LhgNtFY{6q^l8gRyA9 z$`cMcFLPa2zHu2#3@-a{_rGug00Vkg30{heXkeSHj^+?40G|bEE#uHRe~NBVQF6xY z+BmbkM>vvuvMi0&%r)4iVFO-3?UZx6NkrpI+>8!4wrP@>>UNCE0hx%`l2YmJ^plK_ za0J7j14s2r{&=5Jj>7oDI7l(q8(|$~TPfg0xuvJCOVY>$!%!7muAy9P%zKTdFYZ^` zs(_-T;~B>hc|B!R_l~->?O>upL8_+UR?jTs zan=WH797)a03#aRlGUc3FrIADfFTE?zMAH3ZT@Gfr#kbU^!oPLc{|Bkdn&Am&q39K zFo=BYN}FzquU?msf@#d?;G>k#pXC!#0qX$lFY{<=6f;wj&KDU3vfsRcCrJ%(`N*aT zC7$4twd;_-dqDB*X_akN_IHTrRT26_AaHKG^EAD&2aEsN85*;#mC||Cazx+oj*RUY z!vh9E%r#&$h9iC{BQC(~W&U)Iiu}B8jeXH~$grM)d^wWyTPu$Y^qpdpDD4y-_8^Ep zSfi}g!5rHaa&0)BOVLaQwk?hvk=@ixxH~QO6?R7T1J(FVL+{vqUt4f$jq%o|gEMMa z+hDIWbSdJbVOSCgGJ?}4?adE$?^V+8);S9mzI@$%;(U}K{CpDZE??mhy7>?21wIrY zvL?@F_|7^ZDj?cfak@a&2q$X%He0A%Bzh1OfnG5duB1DUA7#wT$mTKI&mVe!H%O1> zVLRVXYnfj4xChv3w@=fbjN!nH|MSAgFJw`Nv(eIusT_9uJRes}2L8>2-^)OO+uAV` z4}wyZN!~s{fY~yHK+G&4o?u_h;$Lpt(EaRkA=W}lJbI5_=EUodP=2oAf}FywTrd9k zbMcSh8(CTC!(ln~3v#l1ZN6c7@Qyi>qYn9&jxqAqY}a0-xU_yUzg{pTBl#cCNW5C1 z*Q+@aHxX6_mh{uP5A&p_rhWcA$ah2@BfMPP_abkGFtg3(o|U=o8p zgrB2zxQH|o-W_eXF8dStRy3lNgyfu-s9N{`BKeW6?|lNvqT>7O|JY!V3-(ny-}g*= ziZ!;?P8{#O@OEN1;go*q>BqZVVxJb7%ayY2U(h`WH9z3JS8v+Lb}3JGq<|VG5wix0 ztJJ$It|(N>;_I`jvcb2X$-FzbN4v6BEGzKSLm;MGz&7@|yzaLu)wejvNqInhmMZ!r zj3LU&3yk!`pnuFpc>eC3eJ0QX2K!LdGRda}1QDu?#Y^D(tf&)Mw($7~vVxr$MlRvA zHRg_FRt6`7tc2hA`}`1$1(dl!$?2z0*u3?-M6#G4 zln*f&fNCHVaGQ1XB6`ocN`k`qhHj4^$pVI$hDVOxj-N3q`d2NcNht9ko%9b8)N}9_y%zWM5!Vlqc)}Llw;#Hf>E24{@Si#Q{dV4~@ zkeNthOJ&va5AkQyxvrH009pr+dYIe=-3%^~m%_`4p9}Z@Ah{DB=IUqV;mm2!8l_e+ zSpoufjoPIQbzQrh(Inkz3-kB$iw)g`jnd$KJZ1hseUJZC6^D^Xxu_d0<-yX zOW6*;P9WU5`MTGb(A(L3ub?V17MCyO*;jfSEq^a`u0h!W6ni*Kwx*3G;m;?y<%IeJ zI24#`;)y^b?uTLqAQ68Gg)yIQ1mg8BK>k0KXAx!mxG1B&7bDUxI#eVU(KDK)a+(iF zXzmR{!s<XRQ27LupR^&=aLctz&LE<1JC7^j^Y1$OYJepeTF2#9;lng!-+3YIIZ4ckZhM zg}TZ-v-im7>pQ$zDca}HY~phegQN1Euhzc>E`nq)OU*Ki?j4)cPo#;0clLSh{%Kv@ zXJ0M}5hUObZY>FN0(h^eFd~oupYsJIB_Rmj+&;e0LL^r`*DqbZJmPcAUYRaFtCXyVm zVSo>}F4Xzgo-8)66PA7LngP0SqPTO>NkEUEEeU4cKDZ?2Nt#?~29Yn(w^1uZ%%Egy zcxfC_hXi&Hh3AiPLiS_D&2Wy({dZ)K&08-8aMDT{Lntl+1M0IWvL`F(#4H=D>aE|J z%{duP{u?PHgN)8j{eL3GE&q;>91VH>VZk+CKBORrKcx1C)_;uXs!+FQTN;c(^m%VQ zSOW92y1fRyB`vd!{en&R(yi7Z(YXTc5IDW-EWnUVeI|gJhMvWeT-j+&gNFJliTf|? zERQ{2MB@e4GjyEQOkU&w5Ay zZ|wD6@f%b409+~}jaWzuG-lsV5aHZfKXEXTv0aEg9~`b^4sQ82Que}F9H#m|gsR!B z#or`l!i3bd2Vw4Yn6(o7^WOZLlRlK>xP{zo@hO+pPD@<4Bt(;dJ-DttA%8g;Ec&GImMI_e32AT_Uw z)$SI-S5AD#z1A&onXgMgx?Ocl?4eGiljMJElpO*f?`hB@ayx3~sPYdbg|Y;Ud%GiO z5zT_}@nN-ioU`w2&<)dt6~ms2N(6lQXiGNn^}#1Hd5M7Q>9%gQC}%>jnY+&^E2N^b z_j(|6uqlXL^w!Vh<=%5=c%F(v5g#z7$`!?5Fbyo^y!N;FX8B~T}q6K_N-e6xBqpQ=f@u*5Ipg`$+Ppg!`L>dtYsmecaMBiFmlVUln6=jwHM?wk-!yK-cLeth4>h=o35j7Q&RZ-LNa*d;4_b^Q>Seqy%9&C__l5w2*D(%a?S(aWF0aT zzE@KhC!9L0M>cnNphQ;P62Bws@Q!Y*p5_%#>5VgP7hw*Gu&lT9Ws?-GJ-#7WBiVX3wqf-$#d zjE~K$?@Ka^7W+%{;Qt_DY1*q%ENg725y^J<#5KdqM%vcd(B*b5lN=#CT zK*8#pK41H|!-le2PwV{18lFjUoqUVEg}uw!0yug*v)J3eU%YU>w7lo+mXUHrG+qBouAojbmog5P`rfYFD=E6O$VD}(h( z2gFUm0YD3&{4Mys7ytllEQFT%t`Vvb&iYQiZvsvprvR*Tz^}Z|?tqQ8m|a34g|&^J zAA6ev-1uz0QoRrRw!RO)0066}oKG4LlbwLKRYd`v_r*8BJ?o~yAVBYZ{fYRk7a&>X z8{xfi_w52uC%EGK0BC-`crB-Xk9{|P`6enD^%njLd7pFRdnMTBdjYV%c7N@>6>Rn0 z_^k1i@xHj*)Mc<^Fyh;BgHe(=ILlFvtwZvgj}^Lp^qxk7j?*wjfuCgxi~d%JnCe+>ly8VrsBM*wet z=!?!}eK8z1s`xz14Rc zN&ZP#H~|07IedePib=Gi%8_>u90JOHeuC0FH@6$%xux$S5e<|McQ0*dR)!Ls5{0C7Yj_C&`!{(o&sO(e3~D1zZ21VzZ&C@!roY zNk;k{tor}&Vn?A-Dl-Bj(vci5doB2XRB?WKpo&l;3t*LB-FGJx`dN3|eFO#$sW5sh zQ38E}(yLJaA7ws1Kl zBr)FZ8u19lP|;*D;(_`!OQc+)s2!e%TE2f znK+`6lVX!5z#67*AiJ&WXb1j`;_p4jocTnk*|zdWpJA4zCnRV&|0{J{98y|B+Mk)? zjQn>e9ySyv_c<-7O?E+|Dj-JwnXP^&xctO54}EflLGH_-Z1Z0&4R+glgoO!wW3|5& zW%Nhke--0*7^~?ttFgB87oJ#ki>K|ye+&WWem&*`97waE%6F$`QbmNM&TkPSzXssf zb0lh762f|ZhU`*4^ZR%IIxR>5f}ksPi$KMB7$VoR;ZuWi_>VKJF9?e5ZiMMlFZNNJ z`oY(Oj3eA-x$0ob_e{Zm&6`)D6g{binrY51U0CmY|j_k7-}5!)Bbqy<%%;V+A9AV_uoAvWm)UeH0q1%xrX$s0`2WY z^Rmi2G^mx;57P^lCV7~yZvvf67@=`e5qODp4WvS)R0EKlL%sD+D&(+IsLZQ6SapLh zf3+*1;UH|C%Ow$N;%d+Ak%tSyOl*q9(Y8^hmlCd~53a2{gxs_`8EXE}d^8;RSO z^sz)wl%UkitQ=H6g2ycAhVW$)&!m9Li3$8Ulc&q+8>^p5&lDubmzTBlo%Qa}{?6s! z;K{t5){817TdNTP=0spzd$(Kv72YbELmQ9Wi$sKnF3i9nv;+DH0(HbzD{A$M}O<* zQ8@~)7vkhW!n;qhss2zH(_9IuP0VyD4vPQk(7&+Y3Dedz$EFcg z(o0b)ULm|Z-~_Yg9w~9|`cYCKNRcrxBsN2XD-#CT?}XYs%@4xN$0NnVcIW$_y@8}W zK$$0kItG$ws^4}B-}!?gpQsy)gnFvD=6CJ?O(k~evZ!fvJQjtS2E})dBSc0ytMKt>^r>>Eo8$V0)wW@7%={=w*@@yqc1R!cvbmIpI~ouF z2b6{4lW8uf>FFf=0YuK<<=^P(<5XQcP5%oN8BII3*ntA*jgW|HDm6G1Od*}{IGi#; zFHJ29W|F@0|Ds+fVHvFKa4314e#dyf_rqIab1}%bb3T1#Uza_v00DG1!aA-zV;EOxb-133gZ~yvh+hdC{2xH%Eh8j_u#{_0lDY%%4<=3LabVuR zt|X{ICfVm8s-r4>jgq!oWS!W%K+zZwBH}DTwe@u zL|uYjXvz?9ith7z3>-cL1h6Omm+X`h^3TA^Y{t+X>Vo!jd6yN)5y(?J)x zfkcf+0sJq=kl*WyzY)>=!k)hg5I!s+0clCu`n5cci9CGcGq2AE!;#on7Qa-(Uo&Q3 z7gCCEOYOZ_?OE1NVC{4ws+|=Zs&OdXAG@sNB^V|c3>!+s%DyfSb`30_||S= zP&{ZuVhwG2ddh0qp0j^MEsS-9Bs91kkDzf7nIm!6Z;q1}D#MSy_@S#AG0ESRxkN;l z??&3|uZH_W%{Pic(V>_e4P5aWA@C!8_1tri^809S6TKzYMO=tk9nLWN9}>WZ|MXmd z*^R~~PI4HN&5D&4DY)6_+doy>5O9?u ztNBSBnU1-ViN@BG>G*PwfaQ;cUr77gFoNG@I^huBIMsQ)#Bmoxjyv-0$DIerKeyBi z?oGx_PCo|S8KeEvM;=PId5~yv>Sl!%JJvx$O_!?uGJmyJ$R+dB$&$X} zpLIWSAYeHv=t(#v<@{^nnWJHZ(bQE7aU5WLPx2Q33nTv^r5qQ;iQ(ilW)LL$uPZt- zo7v`_L)F&jsWV3HzPP}p){^5IZOy;WXV-;|k=&@E#>kg^eLMdG@^9GkJGo!->*baa zR08maVH+>ps6p}jC`MhbC7?Byk=9Z0BEiYgcs5pDiyxIkw5bW3{EY_YUyFk5(U|$J z4dD&ZVNdw$+21zfZz%UuB=4&WT3Rg12Nbm2mXa4(9anf{@n`kPiR(_*hr~xfC(*In zgX;Aaqi6oUP3{9(qxe(!O+C3<6G+yA63l-ou|LgNa_;KA3RXb!FWGQW9w!$pkmx!d zzSsrz8}dBF2R3y^Ra=S*OWA<>l=l^8h{*rrRDQQ+6l^8501tSL;ZIJ_P6@+|A;ey@ zi_?Al<8W4uo#gY8p-x|m^-rbjgFmSYlq5`RDg1AXlFI-CgXZcTt1#@JWX=)omlS+Q zF=%4lpeZmU==Kh;>g0@6e*>``HqijQ+4!}O3HC>dw&jvcZ;crhJ9SknC@J}zo05Z$B3;_ z_y^wq1I){>b!g*0^dc|HzhzR`d!<0R(m|XYL|tb<$_6~T{6c0YH-89KYI74IP<=aDmhz_0(G_h6H>C@KI^v;+APRTr21VdFDm@+-*I+R zMutQAbI0(rCx%5Knk+4gtd__ZzigUOO~*ex zW7%u+$Sw*~pXTOjz08;*nCoPMcuyM;&;4keWnn1y7fE>yB76vd|2e52nw)?dbj076 zSii&n&%oAcq%3h-%Z`q~%aMq}3RIGH8hu1pX*8aHS?>QCOaAUZcCB&KsG?|7>h238 zj+PXrIo3D_W2QYjozUZNh*eW^_v8vZmK-n=} z)WE3IL!yAPTUF#C{B_HH&$@|x@0Zd)wvWmkHOI-_WEN2o6I*EHyf~tc#h$+hv0>}rdVTLq` zGS?LG9KIaODU7i#s&qD_(qk$?frDpa-k4+8YlY>FXn&BH6UH=guyT-kLzD*oUb})h zke`noLCDg>JxBelbV@=>LE8lM0ZHouCsCdr&-GjdKjATO$4eh}Rmo=jOQ|2y^Y{AE zvgpFz4&Y}}nthCU_>g>QA3yQ;aL7RABDreIp;->S8eqwO?c~G{Vqit);%!Mi*aVbI1VI@XQb7+nzZRRq zXh>;e_z#b)#IONPpqFWpOH>p_92L4Tcp6k#zG%lD=bZ*8)B3HU^F?5C87&-H`i+-p zFwpDNvQ=}qlRpd*QjuW5i2PJi@3i$j%lEZ(s)u5+Iqt8+!u5c599*Z57vm(*cD>=2 z5xMEL>G~@(OaS0Q8H6#|(3T@FME>mh0ygd2KJ#41|f^6LjNi8TD= zgoXQnr*1cjS`I3k07N`0WAk6bUiNDAiR|C+9sUM|^nvi3^GDFodEm#L@X}qm*3%~L zTQW`lGNTMGFHY%MntlK2^g=za|CE5gWBivB+$-bZ_m41L7EH{zg;0pFpfRQy@%)@G zQ(QwTOw77nUhy~Y`D?2VD)!g8{d@2C|9)w5{^f^Z&*}?bZ6CE}{a=t2HTQpZQSj@9 z$?x|B{~N^qOQ`*iZ*=}v+27jhZw7)82fD*w=+zC~vN58=zZtZ4u}7bMDPre-ojmD5 z%n_^8FA;E6i|V6^Z!~3h?qfy50+s-04!sT8st}%D`7li|C%V7f!v^&4ACOu9VO89l zYo7tlB0m~`3n3V1JBVQnmlE7*9wHh9XBK)ZY#g^wB{mW?hjF~&osR@J9~y)u7BAl3 z)S#0!^+n!~^cs#8)|U~XQXX|A_w95$h=SBXvxtC*(3)9wg88?opoDu1g6~<*lz~#z z(v9vZL2S@-QB@uJqD3dZfBjzPLEyXQrk15tRkKFafP$DWV4II{6zF&INmBbnbfq7L zzt=}#Un#MS2YuMuvf&AwC}aD4-eLz2#x6=y$oh+Ux91~z^QWWd+OwG_s1j|#aYhe& zztq|cg)a4?9nCWz;|*0Xb8q6?O$e9Qk4r!mG7a=kxy*_nQ3zJTGhHa)>b34Zk!xv2 zYM&2=p1H!kxQ}ZCPLcwSNx#`~$24MPMCkSnW04LTNOVLv_c^u~@JfAs%dQg7mNZZe z4`p@YQ#lkr8nkwb^F*{Snb<@10(TI6J0vz9^fmv?;zaPS!dM+}5QDR8BC4x;6~#ed znajje7F(p|5auE2MC5y;j#-}H6L+T3RV5yFo=KywdsnS4##dB4JIqunGuC}Ym7Cdk zy8t4uqoE}a8%knWR=KwR-C7LL*xtPtlxjo>BcD{~+uiofIaaGgjK$M4@_VA+WKTd= z@I0h2eF@^%uDJ|uZ5py}uvOM1=JzLz2PfdU8Or|q_nPnIjPWqTz{pc7rLF@#gR8FM z*k4k=7Crj1iP@GOm&&bi#?Lm^L>#p8)f4vhD(Qv!?F?mxY>@&bD)IQ#?2x84Xun#uk94WCF9Z_-3;R-AURNS~XlkiKLE?{X9nyc&Bl?{A`bnjube==BpNYgF6&ce7BIW`8Oc4V<(y{x zi?CJgLp$CVJs`U6C?EolHi`&wpUtjf6#EACMCq+I@TGHY7d6~?C3DdHNqyv7Q2z|& zDp`oB=AP*L=olY3-&rED23i)Z?S)Op3N4TXTT0EW|K>dpFwKdqEV9DVF zBoJpmv$idjd|nla-r|-gD8QiPVVd=#{?u{VyxdpL^D%?XHfJn8druXFFjXUggzAo7 z!@BUhw@9>a9BR*VfQ+w}%Xcn>dWt6$sG*}pR-Px1;RN0w(f2q!IfJ}dK8mUzS&ow& z41Q6W@)ac&rI+<7XjB0~duu^RB-}zv2z=j4<+$2fJic1KxMZo|3brK#q#Nss14+0& z?xRMRd)hp>V?m7=A-kUwD8u9c%GRxIb#+4Lpd#)Hc`uhza7W%N&Lf3it0%3fu8{*4 zYe^F=>ez>OYFb;@4{h(q5SD$Wqg^e3Jb&$bj_(lr^!h9ph~HK>ctFN8OVF>ZDSMjN zwN~3-hP5~Dwqv)SqHj3r2g697njw8Er@I{S;PHTv_zq+70;FRQ$>18&>C_YtPj8rV zxZrUPlout%L?V~kO*)o|R`v7%Ol&){l3&~@T&fG6ra2AQXGQWRWPf#3q|kR%w5RC& z$SWzorL$~ce&;K!)y&3RyfY1E7mXe3 z!@~!>p+nC)a&Cfbf=e!41MD!Elwqe~X)Ne5hoeGA-UC1}Tt?by#^XVCVl4B=%^%W9 zgDelu)))=IRl&B~CZ4Bl%=Hzl?2eRyLyP-!SVsy(>xEh_yK_FkE_KEvo}niaym~wW z!~?~SK2>(N$XYyCZ4PM1l!Qgz9koT6q=^q4jY$qg=tZM`cWqf^Dj~7X<(}Cjkp+h* zLp)`{&sh8k;t}cJwGFjq1K-<)hrzU-6ue?$*sSz?=(sQhiz_Nuu%S;RN_A??T4X^TQX$AN}b#Ug!JZh{K|eFl6w0d zn_pEuMKR|*g)~uLp8)2>rYi-g^P-_ub|}$Vbk49N-WKt*mbOr4BL;OL`F<6=#2RMP zcetkUClE=F29v#DJtakAWv?`Y+7R^^kXrNaM{$1FWQR$pg_F9+aT=ll-IJq+yY|P-m4Z@5uAE4;Bxyaiu?aJ#$wXnBaN<;0<{QCfdkYqJ?@s+b zG*9_!)d0N5;$2Zn%rNru8Pq}tZ+kI|X@2IzAEK!UQ1&Rh-_dntf|83YMKp$zOw_(< z6dLGBe@s}XB41WY>k4;F)(qH;0s$OMd5`Tqjw*PdHUnW4%^@@vdbxE-PE+VJ07-_0 z3J%iHKnpN9woN$aw9FrWl-wBE&j3)}jrYP}vJ>rp7I2}flx;IoD@KtRjbYM4bQhV= z@Hj*bbVoM-Xp|dZXI1ib?4{5w$jRI7_L9siHd+<+8-oQMrfR(x7W~tWiWV}{Hpd}? z55KqB&dQR}mB#M4NU`av1gVOLz8Z}phJsEk$O2kY-^ zXQTv5p=;Z%ByGQUmPIjyfWA0G-(AQamI+@7Nu0p@1%3ZYH?Zd$;|V&F{1z%im(aS| z;r(P@_dN==2#Qh>Do3Q{dW^I9-D8a)Fm?co6J52AzL=IQ_pEw{1Ix1DAiOdcD#zC9 zEX%4sYy!)HIsh5Vg;tDL8V~cc{|%L38kkc%O}}fXBx_?3>_WL;I3H+cfDfoLfYlLj zS`hDXROP)Jw>t>+K5k-B%^lrC4{P&2M@lAVVQ%MJlD==mcuev__u|LMtk(Y}9*=vd zF5XcUXU%7UuJIw1OJInB$zvn$er{gWr5~ElOOJt0_X5^Oxk7z#4P9JxB|MwUQuEA3={99j{OhD<9L!4|O{_-;(97B$uET zO?tWXN&657!)v!h>10QDRr$##TS^HSS3opmk>Vus5B!*Rd% z@U9K?Sunz_OEg5|zHa;vD&84x}-3rJ&JkZS^JZS(5(V#{P8iwypzzD-vwERnXL{ zkms6R@O-EtX!d{*>?xh#=uuh;#|;j&TF*a<@EIP^5+d3)QTaCVLqCG z(c=*5g&A~%CrPpZ%=WYs-Rq)DPs9lhpa31zIE~K z2r0ew60^VxZerPr&!lQXX;hS}_lc{&q~s0-r+VvR(z7Fm(DE(oysN-*9Vmey_{AR!SclP@xH{pHrhZxAmzEzI!|lr_+zu`iFvs_U28PXU49@6nrkq}J-YN2H)G@dN z=|@~z+$wFW86^v^LxQzLR;GLvRcdeKOwUEU)mUUrSY_ogNVA*4xcDLv67CW=qp0+H zPZ7jGk@oW{UV`Z_TZ}jg;9#6W9AGC}s;7r0$Xl`~X{_3azRmX6 zg~tQ;nCoxyE=nq@@S6;wCF%}EeivZM%5L5v3zl(c7et5ZhS>xbBAuT@Bv2g5AtQwV zjE7;LT^fP7NqrLrh6eC~jau) z3&60YN~boZaSd8=*6m3wz;ku^4s4AbwB7y+b;@HZLjBU;GZQ~_*Hdizty*n|{6}8GfcS@6$|Oq7E%6vWY`kiuSyt4M6R8rUUX+8I}a;iy!J-ysaU= zx2j)llqlqGp@$z44FS#;^y5@dF5)uwYh6HF+a;?wcIv8#y3VQbTgxIOAQwmoD9f2z zn27qs%k86t0BT4q-7Brk0k4BDo!x0`KxP{++4ut6?FfvxGs99%a_1wL1s;U%c@g<# z>4?2=C%siFEsd}WHeV@ zhFs93XKns0kT*5cl)}%}R-Pq|7SUw{5!yll3-Y8Q8M$pQrKXUbg6M~ZBqZa6@i?Ac z>_Y8`r`v^SuZ;Jn(i75j#OpL1!6Y@U9OlBi;zs`Zt!f<^>Sy)u!ocY1rbznu0&s&T zRoWu@L3P4%U>KKmwr`PY8Ivj)6IC6>tR3-T-7V(hOyasFm9icL29yYO%hQutr625n&w))#go?R=gH_Hm+ZAnt1>{vE3$mmBAH#7QI&Zo(7R+ zXa^@n!Xl@dgp)IAJB9Tf}QvG2(|cC@|~2+f0osKr;!Gwny4$-Wwa@50xNE|s z1Dca(C}1n(w0B$S{auwg4k(91A_ubLAP6KSI4S{|&zxDw$2LgUVDf0P)`O_mT^va| z^^1cjB%wf^-EG~Nhzz2={he4XoEKr3bLd=fYb6J!B_@TwXAks%b^h?+`&GYg;6%{yR?+TM@5BdpPZ|hd z!%0moS(k=g^A=f4cY=jO;yxho;Ej-(H5Fc8`#|pQx=8f-l3gDS$ zT{-IdJTu0=bZ?;j-go`efsbfl1mBefNI5^I2C#r8Dh)!Jc=s?H()D=6wAbuc;F)=K zS1*5cS_S1r?y^FiYgU!e48BpFTW^)-`5K-y959Tc9D|peYSx}7@_j{B-^sIdqQN>T zv4QahzclPnX5-;tvxn65yyP1Qikr6-N^wA1H)uLGFk@swxt3i^Jn`{5f6Xp9+|%S+S9+1=fT z=CR8D5}+UbOwW@FdI84cXcE15OqpwxyeSJmqahUW{r*0+g;LmUrxnf z$qP4w1Y?#V(51ktvM9zb9$<{>6W~36AZ*w*mK)Q4Fj>~HcaYScnlbdp9#pRYPjlR1 zBrMs0V%0>#8zVtwFCz6;MmXAI(|p`kjf!+oKW6MjCOP{G)`TyH`X&A*)7vnR2Yzek z@j({>!oHt4krJw(0DmIiKF3R5-cRYh5>LdF1yX?ak%T^(Gx@VRt)^(D{{!e*qabjw zZ9mW1fL%eJq?u8MK{TN#iLmQ#t;*dhEf5xW-NH@SDNq)tmI2e^ewM(PJmW_jh*2X) zSUrWw4aB{x-ByFCFLIEQ8t#;`+fKc5n{34dY==M*{I0%l#a^Pbvm;~Ura<6U!IQIH zKDD+jzI#EWIX&qiz%pc`8$%w%+npK`fp2oADyQaEZjIGkSiK;oJE*H6O311KE4BRt ztCd}dOVj~i2XmmMw|gxtTk3euM1nbTQNF+>lO>XY3^AW_9s8wNIOUH4h0vk;^0$&g zu|xcTK(# zn@PmU`VwhilbZA49&0^^#_ai8pKalMPE+uBk~Ddb>Hst=W={^u;WqJrmSq&UnIGss zKx*X9WSSs!wx$|+x?a}fJR1=QbmSnFso|5)It*R{AQ42JsOU>Kq(Ni&fFO```z^+A zYo}^lw{3w7SrX&uq(Jb1s46h)4#-(=c5l|@Jn`_iw8;8vynf`R!#%6 zxAer7PblA-5|p^pkOypEHwO7x(&rPFx#v-92?Cu+HX=6c&tCi*>k#&GutKgq2^$q* z+=evHW9h02_KbWeZYbC@IWZ95LX}IY_8U7C7B@{+G8+5E8F;|2s>oi3z+ePi4#ekH z0*&#$*e#OkKoyn>@HOy#LDM7)_Rh!Cab_>PplIsTpLp^LB(V*#k9xyVJ43~X5Y)?+ zeV214*X@<1nrAIBwk%Ig`n*000}DBw^rMs=8ollceabP@oLje{{+&9?%ANy9CsAZ2&*l21Puibol8{-3maNlT|o!mmVY zrPT0*z}g~ffoB-m4VXi?gc7wK-+gf8~VruEPWO^08x$t&JvTLkSjIIdjm!`YRY2HBO z58DZ{rt^7hSf6MR)W!(r;)J$rZRL}j$H6>(PwCcA>(he6S0Frk@F}^P-K^{jjO%`% zdb_OazzC@Ox34i;Weti2y7re(8#Kx$^`nJWRoD%L9B;I*tHOu^3v;m<#w|PvvJ2pu9)eF_UYgwKAw#Bl+7FtI z(L%U@OoS7TR~~85jF?@oH;qTSSCM1#>xKe)XD_EYqzUu0G3M5zuj|ok#@iS|<>JN{|n*9BBpGTO5 zK~uvn=-YO8j=njuc`T!y1=P>oFC2$p;;e3_-xC%uRzrMG4MgA?GmF<_K)GVz!|RCq zumgS@_uxa(W!Oq6BW)-~3&J_W0jijD)1}kmM8qO-f+ebLfZN$*H94DrtCXybs`#Q5 zoEB?CSyi$XrG8=6biD#sb%Ls@f*CHY85md`j44q1$(W{4-XqKy0j@gwM6{&lD|piF z*XieiBpjm~n#DTQNEei~nKYk!ZJT`F%k<+yLCj_SuihF`@EqTpY~W*mV62%q2%i2( zt-nMK-Q77w*%)6KgNaghVKAN{bg1z)GNaNH&u7?IgZI~IC>aw1qT-y+s})xT)spke zZ?YfkA7*y8bKY2Vzy?EG^+uN@helugy&iJJltp9~q{NxpRJpoWa zKl?KHR#=>KyktGs2}L!}l&L!osarCYEIot$QESrRBWwcBGNP@h=MXwHGBtKOfsJgo z!q-eOWBZAHdiGLegeK7iVO?L01dHxF6e7 zN3`hX4H(mTWM9|fFrlb?!T=Llkn(U?>P3}(>om|4BC!;xFIe?4q=BCzfULwqAMlYp z?{&n?P4AmE6u;KB3a5o_exGOLPuOgfixR^}tRA(rL}UnQWMMTzjpW|6KDA~bFhL3} zSuJL31j5pE*&AU}K4EL}v%VJc*O~5RUbW*gqiC@+>(4VAsBex@2i`?9k zfi%hG3qsNX$A%q{(P8w2IHNCo}e~2rDu_eYi9lOvbWD5;U`YO;S~7-;S;KtM{#9g@YUr@L7lmC zk61Cv8g#y>l|XXDW!)M`Rme+&jW)Yg z%fpasXaHKIF>tERP$Vt`Fc{9Oc;M(Oq}kVisSiM4>KjP1lnLpWb}1pV7br4p#?0m~sGVBWYgaRR7Gm&wR&EFe z*s($_st-E%~+VD zcd#(@8GUQbVWd4(O^K%mXS$!E>_C^5Y91M)rmcr<(ygKVKRxb*Mi{~F0j6xtTv}`p z=lp=Q4+{!&tXxkVmYcr7GjLtej#}U)mm3C5;4{E}3DrxyTu}Y={_d;bLv&8 z%qX9Ua>W>cPc%AlSLKXb_BIZg*}a3QH_-&Q`iX7f>dJP$kngbF9?+4~tF!sVkx%KOmz9{3^3w%Hsf*u` zm|h9bU`fbyuNB~m!(YI=t>Q=Z6z&u^G~k{;^(Gu_MVE!c9N%}KoKf{500km@z%8<` zj7&3U26nYq4D}RWDi#yIkoHjbFI-wxhraCMV`Xb~r2lZ^kcfM*`Mh@Pe#X(v zc;Yb!ZU`0C882V(j5J}Uc30ila>z5urg_;O0GT&ju14mUoud;naN#h^8ze3YSYn-X zqzsW?mtGrPF3AYLUA)@N+;CHcls+PEs8fvy*39^{>C@1OB!U2br*>$80)t6?!|<7> zNcji`%x}H_t0-uN3TY5ZL|Ra*Nc=Fu4Nfi2dIwxwy=OvU5oR@<<06ipNEN8&sx_BEg#+?uST zY5$%0@2`^ZX5k)ODlpzc{a$vraKok%U2}KN0IeBxXFo7L)kSpL@&l@+hKQ@7PLIO$ z=Iu;eH60{A&I!A(t4iVY-o9qOH$Risv=l** z30^Z#7RAhVn4s{l9UPuS(#!u`1=@LAo3P%Rz@(N%+pkzs@;!>83EV%e87Q1|9b1VH z5O26LaE1f8ZgFptvO+Gwfh&8BQ=9aTB0^Qs(D$u0Ph3EE*zsl>RVJ3nvfen$#)vz} zX2`iOSl>wAi=9QZ?`Il;(#Xd)BiOr7IY=Mn_;qCU7I6-WwWh2-yZN-nNO}arrU*8! ze08FnJS+Pu+)&kqDdD#Smj^NSQqSpU#dsNjFWtVGKH{{^5Q&?(tJ@BCKL1#1U3xK8 zG0wyr)y7a>tuRnLf1--FV#;A5(8porC&_;&>FC}DZ;Y$-alCM*@Wer$kS)j4u>ivT zUR!PEmE_~{qHAeBR+j1W76oiR?1opHp7%?fG1RD-ky_MR7cNrbfzYKNYs&>!I&lV@(qqm1 z+eJw(m6k*(y|X}Xo;_>tgRGG93yGd0>@J+|Un`@-pE!L}RD_L^m{*9OePBw!c`wpbm6P;?Z3K1v(tmfqBXB#x z4BIM0$i5bqvm8?0>zs;YSr2n0HoZp0TP4tJ?TF&Jr(r$()i_5)0CqCXro>?#bgN+X zp!9`l^^uixNw>o{Y`Uf-*g5{p|B76A2G&i|#4bUAxX_ehd=+G6>sX~A%*{$xY=40h zSPzZ#eRRp>2JZ%jW}5*Vq}DRrD$uZTIkv!-(szLt*iu^;#AeC;_VSh0Y~#_si{{{p z^wnF2aQ{)N9-a3M|3;|NJnVou5)Le}gdj;aZb}*qwFdYzlr~7cK}13xap{l4aCFH5 z8yR`e^&Z1D#!$r90a7e{7+p($F{uC=t%hP_&`Tn9A4N77SA~Lxpil5xgv_SIE=Hgv zxQ(xl>Rq~P?0UGyWByf9xP9<)7$a7o1zZ;x?*(P{Cl1&xatAw2P^UGYlBS!9?-VPh zcd1-kclL<0yHxNF2pEk`yEFH;tI@`(=pGdYB+4XHN1m}=g9e3#&@|+M?Uo6`hHM?B zR;`YqD219D6Kz^Ag+?@ZM)#UzDOkeQ2$T3+O=4}6(>b@$onW`cETM(Taf_;%tFdz~ z_kR9Y`j`4=lll!ZmX)8pSeyp-R9wh9ZCcaKyvRA2X>(aQWh1R>D?f=q{3_F$pEY96|YR2 z*g(iuA?HV_wobM>5as9zYU=|#1)%HM1#@iheI3oE@VjF^d=kF2Q)~B z@=^9s(s0~>lz~-w_A#$)(hm3l>H`J6ZVgLZcK#GmFri!ai@syzJ5Q+u3U;vj6+ku4>Wkzr=(&xL}sfFCE zdRwjB3S-{=U@kWZ-O-*@?G-PCjN?R4pdVA0o^7R^<7J<<>j~Lk-27H-_30Za7F<24 zuJB^T@;9C(+(*@~g=~et|b?|An{MC!SsU<8JVCPL()$_oH~F12p7BA+k4bQi%kJ*?Mb%K zx3i&Lt|7jXgAgSJZYoMMO+@B_Dw)D}KoXKBhPgK1WpyktBKc)F2)f?%BhFBiF>^4p z#(iaeB{pUNQd{z*p(wdu&0Vu20x6XLOJGx-gXv8RopY?2XUmY0fFdmqKLrBBqjkEvo|edN&RzV^mK( zwp2PC0hPKvQG=KrY;Pb^POoGss{}s&|&Z0Xz!&F6z9n=?M z*$d7`FT51PhnNKgd3HyBIc9xF`85W3$8sAuOPZ;`!etVsH3KYMZ6+;0Ai=8*>pgyl5iY|$e z#70ux>}3mS<6rl0&3|Kwt#=fewKLi%=>EopGmXP|+o^GClklX>MFu<+@=!9`n`(aY zJun`A{WJ7$a8#z;y{~rlkStdsj`+`uL+uE)(DcuFdB0l-Lo7bx@70NBTJCNN2J`;kHnJz}IX*23ja3O;2P$TE=HDM7|H>vc>nYi_r8PC|A1^}Eutc_!X2D zjPj}msq1==3tSaX=|h*gq~Uqd7(hy;Ry8&-BMZGkZQ&~H`o5K5+pbQ&;#WxVM?lPZ zSo4suWg7imS|UjR_V}A(D7#~BqroFR6v*;ErxpeJH^4Xx^BP8vH)+cSA3bvRP?Gc5 zqPg^K@p{xcR!}jWHP$(Qd0%Coz9{i`d!4{-=-Mi(N^IVZ#ueJDDnf(&efloiI(k67 z`QjwB4auJ}qgMEw<-$XO^+773wIX8o4NIiHu6vW!V7l?9GC@pD)P5*wEDtL*;RzaK0xP7tL@5MgXBrg^z9 zW+G1pNT=g0g@SX8y7yff%D+|5?Kv=O#4=;W{+CqF!ykN}*MH+>(NNbiyT-x&iX}cU{sA;G7WgXVUyZcCwigFM zez=QW1s2bLh5wUT!7^lU6R-m^_U3lDiTJ~kuXH+;QB(S-QZ__!{vmOvwzTG@)1~ z?@YR&{fghc=z zKI-*);>blk>@w#V60{odbxb)2WKvDtB0Zge0XF|dqkz|lAuBGap+GHDCIA~I^i;BwNL~1JZT}^t-_Z?RN8};gD%x5lu4J#51?~z%HBC4OGJ*EA0n|P z8tWArfq&e(wzJvfg33Q!Zm*1nWAsK>Kz0E;UJ(H`5hVgUNHrOjqt;lEjh#lho)sna z7*#L1M%Ab;%fx?UI7Pl4Hu%s_QdS>?Jzwq_|Rb}{XpvJz!cj&CuX)cK9X=l3!cd95H2?B z9CR{35;~m1c1xTh4H43i62|Une?RrX6^aG^oq03E&Mnkq%UY(LorcGgBYeKCc6=4J z;7!fdKNCpZ$Hkd1kM?@~-cbOe8Hmb*A}w665S|+X07jQ>hJ)UG&S;BYA~+^G&GEP} zaUyQRv!qWnnmtffGL8$dVOr8**KCUE3HFDBP4jJVIN1Gv+nWKTr7bpGS^omnq~Gu@ zSJVf-AHE_|L!(=@HQgSt&*(77WZ73A+5QJ8I0zhh(Jc2+2Y*|T5dDgJI89lAue-o} zKoE^;!?fO7v}Tcz)Vto0qfsQ`_B)M;u455W@#y?Qom&#mAL&zi?u(tRyw->;A&`JV z_-H6TrxOV^X!sg=v8{&AvyjN738R|p+V$(r%Q=4f$Jq3ImJk8Kf@Fz|Sfx&EESE(z zgB}2VSgp>H!gTMlO`cs~hMq}WD>zJH@mk$Glh*+er+QGIGrVCK|BXV?0koU- zO*DJACa?xqQ9=@q9G1z1qCj|%X1apn|3K^mZ^tm*!Z-Q0WTObU%VR~Op5H;EtH>W8 z&8X5}hx{sBWV4KX!v&F=^gkU&v=bOBlLj0)G4+k$S&+L8OOcOR%hT;0#pwd`t>(qr z=xK>%Zk_7iYK#j2g8%OQrL4yDBPmc(ZuXfT_B?~pI5gdI#b#Cd+Hq0o$}R>=nmL8L zc+^-0AzChH<0=2?P{uJ`MriF#a0U&dx`hCSMUG5Yyi!k73GMMx^&gb{k53h=#ze7;E-d3 zbQEvd!@x}#gBZ)W_fHk5z_yXI_u+yEqi!C7S91tCDIYjh3TE%o|v{Lx^vCaq$u>n7-T&3v8x@(T`$z*I)jRs-nHfz(Cem0{Gwuk|Q%@ z>%ikV@O+aV(J;l$kz~o;ht9XbMUQA#L^Vja7eH%(CGM~V+J-g4Z%l>&7r&VD2d4u8 z9g!RkcJ#5yAMA-WU(KWq zV)vLT`9PtTjn$HVQ!ER!Pbdk{V-}E^KQqK&Lco@1q}_)Dyo?^x?iK}S-D;gpWAl4w|?j})$b)D zh_$)4SMix}6-Tzb$H_#nggXZ|{xGc|p=eL6Xj!wui@|cR&!%kQr?~?2pST}ub+uq{ zQ}HB>pRfd!VXtO_;k=%)WXanaV6qpPaT%l-Jfmm)NTP>Q7R z!sSoin;ZH_Itly?A^ZEWv8NZ6D5VBVN*is^nfj{$}|E^@$)g9ttKw znXxlBxWZ%8c*FnLe`;T#5#~yGr5i<=6CvEJ1h4=CcwZqz$#dx61GJfI!bBS#X{m}uAezL_kp>|}3vXMw69DOYn{EItmnWse| zPBmr^*$sd}wI}kKzp(PSyhZ=4@ahrWJ^aY&9kdyr(2T@2d=2|RI8^ZaJ}oS^1yW$Y zBlJ0BV3Z800Q9iZLA+!(S?l7R;Hgv96wFp^iio1)zh?zEd7nlQ;pelMTAu-4>@f~> z$2_tDgxG4PhPyTD#3%wV{=zRf`rjytXQ!S^CM{JKtSm06PsVl?A<(hTzB-5f-t-Ee zxB2Jhp3SV#f*ci)Z!IC8)cp=p=l&-yF5B?{w#S#=+(I1K)gs&9X7EwGK1#W$F^GJge#&b~^yZ-!n;=4`VL;(Vdy`6U#ofdqkQ&b!8 zsj9MYkJ!#wLjp(Nx&R8w3+kIGFd?t}Wh}e?Emyn1ng9T{#I;$07nFX+`GT;yV4dj9 z)(((zGR-893SxV~b$Pn2-jRoDte7I#H5j2hay14D0twu?dr zT`5{=GD@voq#$a&!8koFCr|0zUdjOu0izd>LV8vQGMb>KzyJUNTpX?E#pXZJcI5s# zhj(zHLqHKj=5Guakr10xg}5cMjAk%rKPUotA(OsL6kn0|SB6bTB62}%J@(bR(&xgr zMjnNe#l<;;4)5ThKd&a7xGeqWqIecU%kD_y!c?!dqDWy|h;}2~5qy)wHOQMG7y<2y z{Q+_K@BxNnplQ>HkzH~t@J5baHqmXJdz!536cgIozAot>aL6VS41TQYooTHhrq#5F za)eMaObX+|lt5La4mDm9_W`L-XxDk`lp!+TG$DmYWaE!>SOZ+HKZ-Tj%9|aXf}ac| z_~E*Tew=^$P#kgS00)IAvC}8@*{|p!hd4Qc)M`~yPPVxmFJj0bGPKN~TQ6^1KAA4u zrOQ43JQsJsC^&|$yVHxS^+w9*u}OL*1upF6N4vNe3^jw_ zy!nwYf!_%Ve?NFW5Kx8K{Kc zxIc$*Ql!g(SAFEDKD&{f?IH-QkqU>DW1NNefcB%5nh(GZKj_HlJwvqv`L_=O=$it` z=FFCP=2}j)`WG#5A3Kh!w=P(psj{l$t~Ckv?_y@dvt;Tn3K0yipUC=?EhgtR1sZg9nGf4)p++~)AwCf7#ps>6i;G0 z!%NL56KQ7eaOr^Pu51@VcV-qhI zQ=~e|^c(29QgCVRl>^Egc8udhS5vb=8pUH>H?OmWjhYT&;027Rd$GLedvEQ@ z;e(09YcgW^Jh1oqb4aLv$POOrjr~CNjT!pCiW*h+9Co6n>sJy8LU++#n1ubmYhJAK zMT>F`!EM_qdXVqnBN=1l;s+_U+AwF)6yN%jl1vd~#)y50kt}md1ByIef{6&kNf+6B zDlJxw=R4(hZDTX1p-`-L;13sLL)?0;C)~K!-j(_9w8B^^C_L2qWdwQ-{V^vZ~tw`&Kh2s`v`3KM$U$btX6h>9SeQb zr<>fPS4Q9ak%mO0yys-)i!$vn*;q#4ryy^P*aJjxQMPXpKz? zjOSbigxAjM@Ji1R1O(vjVmdj%{_+dL=yoW>auHbHW9vMTa8v4LZY~<&k`jT$+?KK=h3;T=Dp=8XAMK(WXU1$~hSZ zPz0TdoG)O_t{)+N$#cWBUuX@Yz?~4%>Mz)(051F~+uA^U zcf^adK>7J2tg4#G0JG)Tw_Aic)b=I-00%Zo0plyHz8|h6^>83sH=ZtEg~`UX8V)<> zwoQ7&taVeD(975kur)ks#7GsNSBL)BXH($;z?1?e9;qjWb37oixcvWe@v|h`@n_MO zwasij%H^lz0!uiqgW8kaKJ~&(7w0&7vVTqmVC@rFL+d$mn9_u!=ctD*ClGx%t^vz4 zGJ0!GN=){r!-SYO6tUt|R=Nj?teTj|5Mg?++8uRjK^M!|b)YZt!cgk14K#r(y z>tgA_`+42HV9lZdurA`Q=DgY|mmW0(id%cqdZyq6eDU=49}j~AS-WLyyz{)V<>r*Y z008JAk~$GKT7fyN!|+x+PK@u)ONk^fv+$~?`&KK*L}&sHK$J9_^w4@IRx$N#YIh%* zlaYk#x@nCQLBYLM_Z!HCL*fZMTW+E_YFy~vvged9FIRE(_6u;kKh!R7#W6p?56wCi zis43%hgH!t+VU1Renvo=KAGYHk(un9>kN*f*0$2t_Kif{Y_-$Q4t+83o;<~1g`XEt zCpEfb>0brY4Jpjt;@XD|W2jP8$^Ipt>qC7;7dh6P0IiANtW&QNS#){`$p}RgCrQ&l zGI(RmLVJE{4J+Kvp-~K6ovwz|Jb~{&Qhwiaw0r?Ck;}p9Zh_H$!I?8m_OZDRSq|M11E$5 zzi|7)$VjGM%pb!+q{K#v%vi{~`Rp3t*17sbP2*uO)g4 zE2K{|$Zj}4_~_8}i<=O>8RC$?u&>f{;BzV?xul{4sZcgre<=x`zh(Npr1^tjRjiH4 zM&f*QuA8ux!WL=mYFK!(hz=j;2Ee@xaPPuaH+xtYeT^0b?bYJ5Cvm#t+ZbR3;B4Ew z@-?5}=$i~=P>v^Rgc^Ot0*!|uRDIp%sFGvUC_d0VWj522v8}I1P5*GPNig$Y*eH%O z=gNSR_@Zb^2YF342Qoe!{le>D-SfUtFP`AqFjF6ok2vkBnz@g;srJ5^o zY&Jj7*qpL1ySJI6=oy@fGpeoWm{OolqBr^@76XzO{Na|_A1#)cV6YA0-%i4Z-rD)1 z<)moAi5}l5I}<`Zz`%fW*QI5D-;&1q#bp&%qMUJQrV~hv?riVxhzo=Oyh~$?27j;` zo%(8>4|lFJP#QG=sHoSB-j14GLS4|cS$Gy z$vtn@H|X>UjVlFt5nEk2HB3|qtUQvOTlFrzS|YKrC2Qnc zd>!Qp=AlrO41#hm#XiWs!4jk#J@Z36PY%yA_{2+x1wpg#Wgo z-FETw8!KMCOTw?lJTlNu)W`9#Cmm#fY9;-LcnLm47<qWfi=s7yQumwM(wEg1*R#2XxH5`pb|uI>8a*0$J3r7<#C(K z@w)3@$~wS2oLYM3nyJn2nEx|lLSzH!8%Zzd@{lC3h=lKIz~k^oyVw@j@**2AE<0tiz2)zv z%Z@EQ{5*u@=3>uMmN;(dDXsv|20w#Km|{PzNKkZn&9JrVCzqmkSt@QE7U>g(&BM|j zu%7Z5s6w=(-`8W$G^V=|4RB^KT~;X=CWF^Ckn(;8(qF+G{`{zh`$AX{vki14FLLh{ z0Zpr!X2ED<6r5hIKAm!X3T!hM3aQaJ_z2(X@K87(kOg-5(>?^PD($E%$C5uqm*q#1 zCPtwOyY0XO)8f5&0S5C1U`2z1I8+@d5kaBm*+45!ip1rh{&-*1to zgfDBgZSHendy7#`bJtd$!0?SOe-OeijsW6a>s9f5dEa}nu@B6pr;Jeip zz8*{5r_`Sy&5QoZ1e6>*VPmkonHUvef7wc5)GFLqCAaDvOx3%m&OErdkQJvmq zfG3rn2PbEy0q@bk007ZL<@&Q-V0~fjCj4u%aO|lgkx^C(@gOrL-=wk8NnjT$K;=l}o!2~sMRJdnjNpUIf%VR%f- ze-pTRDirw3ubIFA188KGS*b^?N5V5txbp@h$OFY#|Off%6mFJfv_DTZ0{5Zw{0Wx@r0E;FXA9voC z(6T~2Q$Syzfn)Z7*h$w{*k&F8+Lw)4eIAaniK#X8?X*G~wG2(Vv#d<9pF#mkk~@MS zB0ejcyQvE0`rYw>2JKxy`)iu?5B4OKR3-p2s`_s$=m(38tfR;^=}qWQL4W~#h`}D6 z-hx-N3^->*Cg3wwi$OQj<{U4`BlD(7yHq%l2I%`d9HOagxSl}aC^HzwDbDtdwd%6a zxXm^vLd#^$VxrLl!PAP-A_xEnoy%sB$fPe6cdEM#;H~FcB;VaT6H}-r&7@2z>bDYE zuzPBg>^w<*{eLY$00A6~1zSg&Sj%HudoBFs30Sc|a!+6>nV4emm3R=TF-*@%leJV2 zl#SJ`4kVM_+w-A)ngk{ly1K{wd#1l?ZBWO)DUfrQQuh{hlJO{TmbS|)!@V9b_t{oRvr zGgH_2^PqtPpp#`|n5Q<5T6S`iv5H?8YC@2chExI6OY2J_v(2=;+G#HeyRRoj51ZDf zmRr0{d-@DrmLG7^;fzounQr8&t7~)y;NlL<{>3<5`+|-#msGAt}@2uS&=c}M8KRz zwaNJ1%Z3_O^_p88}viG35{2PLz&t;CL7JXqO@VQ1Ty zsHJquD(ZLL+#kONk0&|!&M%D9f;1?2Qt=&e+VvKLX>VfVJloxz@0U3;~ZKr}ZawV{U4~p@6$s1w1t$PoJaogb$A< z$X8O*ICp9+70iaKGkBmpnoI5C_L9^@ZqcUPZqcUPZqjyr<9$r21>dyCm|b|pbWi+D zgi|e^0{hN@$;PI`F?k~dJ+L=L?&MgD1U0MPQWNF)+BwY?mH9{)vfpzUtt375gg2+# z05_-G0B7OV(&Ui4Ul2VmNrye~1z;FM<%A{B*H9Z{rHhX1M1=&i?fn6$=4_BEkfiC9_bkib zhXIRNbOc>jR8lnv2Wg=aK~$7OJ)~8iSQ_f3A*wqS!@YP?$6i5SVXGE@ex`XSq*rr~ za;ir~2!Q5k_h$;^28r)P{H)2Mv)vxyPSrK9ir`{=Yj^F+v2BPCiDg$|2#v#{ zSaNA7xCd+pOY2HYrq^SwYr9*ZQ6y93B88qFqe53TBs&eMQvY&Wf)xWRHb1fl1xkhZ z7sB@$973yEo8ai=IN*C$_-_X6w|2RMSQ>;fN03@$xr-G)a|Hc#M>w`p`}pe_LH=*o zrzq-MHZ>`$5GDB+wt~?r+<=Lqiq9Ie-KWGWxmkj;&CAp3`BJ!X7a8&XJ}&=AaBvX~ z_#sj_wd3wZq4Yqk+TwP?mqg9xAMb%kfvN!9eu6=htXxVPeUOsJXbb+Hz7A8P?SG6?j>Zy2f?Qw z@iFj(iwFlKS-0sYJjHgMb|NW3?U-F11)y z9+V8Go5O6*$RbKuUqyOoyX>SL9VwQeipy22fr6Y2pP|%#t*;N8ZLnx=O_*(Q&AN%5Jq)Q97P!5Qk%$h z-RS2llJ}GRx@A%PSy!Mw=_sPaR1++z7vKuk0N27XcmKJfE&}MU-_u;HN`_?Mw{9hk z%PlQT$UwjhG|-YJIh0 ztX^OnJqQdAIOXjafOS2pYn>EQ_{m{EK-MY_-527|{JkOt(L}lY-fzXFb3s*1PECsD zQ+;A7mJfW=|Fyf^pMJ3-&x7bQ zRNkHxU2jgrGq*RT&1%HL&PhKhfK}x0RBjovt8mxL9GZfmWZ7;19jY68Ep<_DRgT3^ z-~U0aAd@aMjMiS88>aJDjb_Y+0+VT;@(D)9x(#RfxC(KdwB;_E{}B>)b^sG{2(hTh z+;HZ9J8o3N&l7&FDq!MuTpUGhJd z`{jA)z1bIeCpKHpi?+RkiG=dDg(FZFce3E=zMJa$Y{O~AnJC;!)5~?JU35kJporC+ zXkgY~M5#+r8+dKmhRS*!WUv`*2-I|MP+dxVffJjGVMF!nTYr?Ume*Ok&VrD zK3s%V>6XzNd7}4&VxOsHN2(PG>b_WT{GGkfu`PE= zVjHQnf0)%FNBCBRBmFUxNP1D6)+E!GlxOY0%7e-?B*-or2~3W zuO+X%ppQ-u^S%XPb>4-_SZ%1pk=C~ng@s|sMzj-s(Q*zzkoY!hWu<}q3?%Ez`x!2h z(s;I7Ny0%i96k$=L)7#P_Q{Z`xQifG^J}h)pM@pJcySf-*GzQ$j6Nm1uqAKyG}$Gf zO34csDf_kfSKWkjIr!-_7cxZ+?ml^vad+-l(V<)($x3+tkR{ajJMt#999e)k>=9id z@%eSoMc6FUa^>{8R_2|q+9IdyfB&-rLf@YyK75m>U_MKqM~SMwrux*lFbdD!%pbMn zx94m=a2&e6Cru=L(U1Y}B43vC%J2(u%pL@;88z7O2qD4Ha`xb0(AlW19Em0twOl^X zV6Jqz7cTZWHTjUDei$Mec}=?>cQn8-(ve#QU0ES5;*BT4W~%*%TJGMcOzD*Jv>>|9 zhhtOe%2>^VUhzA28{CzRle_hlhL0FKjWiLON}L&WR_^oy$Ld4>IDk$~l@+o+g#uVR=G!(IuD<#dj}ne=K=Q+%<3wW2{Re98LP$KdiGogoHXH#q+de z-ga@N4-`+3V7-4eWW`K7L=yd7JRew?`OA3d%%?c^^_4}2)Oo4(wU}-)eXx9q&%#Qd zJX>osp^u3iBKzDwaK2oO=*Fdj<2A_0{_i+<<FT28_yzP;W%*6Lk+oWZK6Xlz{(b(itXKg1P;tw zoD^mjnnaQ>>*0>@M8N5C=D>3wkR1HvZv0B~Gd_c1Zs!5dYvD^?>=Ue-(H~x2SHQVa zi~Py3QD!#Y=^#5i@%Ik}8c zMT;Cv*k!sOXW!cn;>}>l_NGda(TCBoRH#q$6c$1-#QT$(_R@b!!k055<2?2`L8M-y zgNOuSO6Im4_h}DI9*m0p&g6u5IV4m0&@%u55=*uCq<^3gZ<6rAb6?k8N6Gy(Ag)bX ztQ}4zFey8ehIUMq0pS-CkzDBC`F~Cv?CsHvnq}J_Vnhx54SK@E-p>OUO)7=kl%LW!wRUOZXg?zH7$!eoa zQ|Ex-(jCgdj9=rjc@!4 z(;hTh6#^**Fx?lD-}7BJ);PZBa`*&-j;6;e?R}R{=B0>b6p#FBfh^yrAugmvc?!b; z^_VJ)n{U*?e%M(2E&2z4&5f9owrgx{f`n@&?*uP}f&F)wBRN!Y=s1DiV7 z_n})7B$9*ND#C#ep(ryDtKgYMM}~eF28&ShASV5E(`TKK z?TG^DHoTalRo^yVGT<_{<@Mq4__EP0*p^%8TeTnVl;e_=zlHRn!KH^$fGR5F0AkV# zgnWco&j`;EXMJ=IazmG6qiYqL>cB>~#dd*QG)5C=NlWQ6$Fa=ZSnzW2kjxYYH@QGh z^R`EbiPdIGA_R6FsL&c;BM+^+G-Ee86bpp9Af1|Vgku3pwl1xP%zj@v=i#1CCg5pX z`_YQGE1lb;tzc+4ON1B5>9*moR_P>j`+_#R3sfTk&v!4$AN~7@vL#Zo9ihX4iH*c z0gznt@eYhn`+oCDdJML$f>8?T<5Vspt?ZPlreisgNas6jTC3gDtEKS9fag`{Iw7Fz0{`p*i&i`&l?E6rJe=U(j>F&tMc7Pt+0d*MW5&ubYy98!ZgXwMOGBj7bC4`OE^;o z@DopE{VDHHW-thqqsurhw0gln2fFCE1b9&~^ZreM`zo~@NUGL6LJI}GSz!^8dgE|m znMbwUFI0Tj*;K_vRkb2h&y>}vffR699poXW-X!Nric66D%A2^6oeGKGrfbV~);*?hyb;w$ zn><+(&#wc{BjOrJX`R+l87^BRKO~Q%1>N7mUiYC`KIIPkOkj=m1%tMYcmL18d`mw+ z^ww+vTYiw>VQLPPV6su9B9VhV{Kt4?j^2xaGc-QGjCJu^qW z7V=z*B0VaBX02qB#JhbMeX6y>4x*1NVzR1o>pHckCaX5wX{({@KbR6r5SpXcr&H~A z)QU1o3(w%nG9l%kV-HD;vpIwA-dcw!`-tLXr2ijLo(K!oW0I>*24THcrb3_ud^Y|1 zezVm27_DrzlPtOkU8`AzU<@UWRAS%4t&WA}%F)JnYw}C|A>p*Fo~({b4lPhrk0 zyYHT!)zc~^kXj|{7sIg`cJ`4i!o+J!77>0e%cn4wdaxUQ&*mTD+XK4!u0ptLuxp*Wf0BV~s^+BDrfD(G-I1{{Eq(FD5 zcZUc%Xl?Vgz?9=U8-RpzTIEoF9s>G+qlERPj|U5!NI13LP=Z_bstcSqX85WXlK`o7 zWn_<&Zvw*rG?;+vijLaoKp}VbCb6^+rE?Ff*!>|w%=f3D#KC?*Ud$(TSMLIypB#4B zYGWztIm5G1Fyi=Lt9d{@Zj9~3ysp6WkYks(`V`oF#vpuSSK>%X_?xxjzeSoj4n!Uo zt&5kQ44d%@upLy>d|rKSLm?>&FLvN__ZHN7asQd5H%?R>i_{X7~BI{Z5E;(C5+S_0000HvfZ-U zM_7jl0O5RsK42zY^YjHs16Z&Rel;UjElkT^9q|(}3mtH0)q2I0`aRE60j))xiLEgH5!RQ751z?0rG_4aq4{bFw ziA=xog>;UdJ7X80c{(=AMpZNBmo2#bQ~(Gg?h^x-+;lc3uh%tn1kVzt4Xu-$e5hE3 z>9HG5u%TY)1fXU2x)7$L0RhU2exs}mKOmy?l8Gvh(n!#LxY-KW75>F9#|?v&zHIi- z;;?RWO$C!?-3tQ{V~mqqO=~BSQb%aGk*iyrg%q5M$oVdn3yS2tQdPd2b?-zo1y#uh zil(1)D7mN0gnlrxeR>O(pj`>Cu&mNGs#*BYdpaq0kW>*<)?5mi+xtXAZlst*=9K~; z;t8Q8-ibwGK{S!kkn_$dUNJ z{^M9x2XZSXr_i^u0mJHD@P(UyI69FjtSm_yU(dN|92Z~SDf~*H9b&=0udbhk?0@*x zq8nwt5VfyKp_acOvC6=SdeAO&Y|~)Hr5le4n+OfKtY>=0^_4Xze2FMCGHC7dp4|g8 zdS0e!$~0EJ!BpuMyBDf0OW=<#X8!)c1jfq~<+%`x)PbrpSw~<_j+b3|;bE^X`B(SA z1x;(UhZS)QYw)~#5IEADNiKtDmgzHaGS}wS<;JyBx8FT21MTjN$non=%$(i&eIOd5 za5{j8Yi9goY0KZ)4Q?yqs6Pis^vfcjgXE1?=@hBT=<~1qdWt)*3?qDXkLp@yzj_;; z63~AGdB-va856_Y`AmR7f}wQ65qEfSyl3Xm1!83H^6C7bhHEno%%5ZAln!%dVQSmjKy^I zOjvDqiuH2_(hMR%2$SD~D~{PKBz07`ju=mF2Q98%H>WQNyJqtZM;%{=orB+e68UmM zNQnRd%WndySb~;Gs4&*7lTO(E#fUn3MTOb4&t~*?RSo_612Z7yC`Y?=1wtwJMBs7H zy^m2+ENkCZ1%=DB)NH_c{+6c|f6;1{64>ZCabEv|^<~te8cIO(|;B9wj!VgldVs zM-YOLx6kkQJlFeN@B805_c_rK&*a9_ZFdMPbih;Ni zs!yLBmv1VJj}B2_Aq(wTNY#r;i2Vip1h@{okRntSc+{XjqSA`D*Sf(wu{$EQyX9yY zae}CRj9k*3fCz*ehVLCfdMj3l4=-`2cP6ngnbQ#D_!6xFB|bmRI-(;OoO<99JNZkR>kv4RNL1YOC;{Wd_ufe_4F==zXPiK-1G)2@9^4Y3E-ZULvigo@!SBK}!Xd*34J&5}7?QKi%;vDY}V) z^x)Ui)}4XVtAB5w0%$yUQzu$PPNFXNGoq&bw;Obg*s4KT^2-OZ>yRnR1M` zl)u4kHX?|HV1&fjf8Lc@l3(S6ll1BiUxDOnkm23;r^F0i{=RcnoyzHWZ^jol>dd+S zj~65U*4Ux-wx{(p0dgSFzd^|?DHWZoNosIB4-s(vi`?IalIkuScS?;YhPqQgS+IYR zm04k;-Tle2+FWMcG2zp_4Q6#C;5qB5ItJLf>s0^EF{#q}V1556*?yD;ar6nh(!}}S zbUc{nJ)%+Fl2W85|HSoIQ$pRK2PkGc?erZM#$I$S28{WC^bBpqw)|L@n4I`wk?aNq zc=0zP=K=+^5sq|HtNkIh^Q3iML7UY$qH)O{9 z2s-}J+FL!gXQZ?AXHvb$N2W*q;EAzq1{vyQT}Jm@L=LM7rBj#D!FaL-QY6SK3ja6!$ys>Lkp?;UmT;05x$aPPuQeH>Yc zOl42xI63=uvSbfGKF2#wFs*e0zQ{b~n58YK@GFw_9vf+7-ni;vF%Gj^2fJ9f)zP!s z1Xy~5J5)ussMlVjDoUOLM8BC6Dykb-=~u2Rr&9z+>$H*TVpLu;jDg;%>qf-#!=kJb zF2sXUo1Y~L82BM`t=lN}=Dgx0MS9Pal8I{64qjFrFc?dp=sp$}%oF|*!V@WHxO1~} zJaZ~{pqSmi%s z3HROORbEy`d4kf z%*kA%Ma@^6z$>471@JV-jG)X+R>&akr@i`+{wmkxCmj95{_@~8#t7A?{@O%y|~mqCG%V-t`sGXiPlTOguFEMskb^wj7+gL z4UV&t_7EUjeW*1FfhHkc zd1$Td#IVs@;rABy+Jis5>J0;XZiJ`uTxfqLXxFohg0#~gEBEnT`1=I+%`;C%2Ryq$ z>b9mTI99{*&Uu5bg0Fx#-`u!baEUzcd2vVA$J}(~>Im%=bYine%KOy2GGr8YUJ{Z^ zW|GdgZzgH^8>ot_uR5JTS|=zO8S8(lH%suMgA86Ldnaog=*`6B_4xnnwb*I}QaTADNqCJczeL%pz7Y$Qv8#p~j=CyXfuWd)hV}i-k6YcL@u_i(C>)&Q`{L8L?3itSA~ zhaK_;%=>7%AXXkJp>_uT+gk{gP)tS_-y2#%VAoq0v~_swE~Q+X6aR~R>r9E3q4wj% zq>dDxEScWyd9iXGgdDDQijcqL<%ucKRQ%AgyN!M;Dgr&kIq^$ zqmNGf2Y&^oJ#W!Txd~@d@Ro*4YhoJ7bZP6)D7m=H=EUHjlqag7JOBVdor`~SwUwf@ zg6}M|qRm9s5Jg@mksI?h`0M+y9bOd4HYVMAZO=V}rxK%cOm~br=IL-gxI8sw zgTush%iJZ4Wsvfo+ul{4aO0YfRgPwgS|mT7MOuGuguW%gaa^E4tF=O{v!`7QvKHeI z;Z<^bJ)J{mM3TTyC}t-x;|d|q-?d#;*Ri*x-z;|~qq7CGL}T4@?q1)!Io{JI` zXy}W8BZfJab*t76pL=`S$$mFXywBL%smNEx>4q@2+@kMsB)i`i!k*UM%YRyjd@i@q z8h>22eaX^r@v*kQd~^NOyFFM|oA|?dW8;oE@WDHKi93N(*MT+>_@H>$@ULvi%dVMW zg$}vat(_G=q&9LVeSX>4SnPhqcVQ!b$x|i{fxA9jDEYKUqoAgsP%08Uxgel@+EOo{ zZ-LR|xc2?`Xo4bjJ8*{?xJf{#F$=~6KU?dol}X0zC+>UJ7jv-;7{NbjKd4Mrd^s^T zhk#lQUs61nc@hv`HD~NHaX^YYQqASuWJXsnQ??N)Ob zyDEfWD+_U@louXk!ALx(s$LF11znua-3iZ}NiRfZ^khdlE!L%#7na@X0ru7u_G(7x zxzN>{on-CbT_Eu*eVV1fpArZ>veIw#0CKn5Y=-bi6Pkg)#8qeIm97^^3!an-+76hd zsJyM5dK_Bp?(+0;@m%q$$mXz5jD}PMfORENiug*7*ugPa8d63b71)r>zkc0QUhiS1 zeVp&;IIp0p6GS%n&J2hyJ@LGjd(Uals$8Hke-&&t+I(__+@`iQWKL)d$j#^ScIcHk zgF8{;aOHV^=#QIJZvtcOVF z9WLY2_!9(LqR{KE*0`p(BhFdN*S|@J;!3R%@E)Jk_Z8kiZ#L_Aup9~GQwx>mtEl!~ zaUrSx=H+GWFhDD7<)~=5DGRZf>WnuX9R;UDtsc6^KGU{T~ z_p~JRZU*P04OVmc_x04Ad=!_fnIm3yyaFeXc=(HoQbbs?UUvhU7nf|vNe4y(5)_VP z5Sf!t^--cWKJq1|KEKNANHwEsMdQ_q812lmMIVA$Pb7BYwEWcE*o1o!YgW=Fdm!uc*~5RBzZLelF8|zvlI&MRqJj zPfI;$D8Zl?v@szS|K;d%T=hh%@*$l9uf`Kr>wv4zSU*uc~euDMFAU{L-U9sMd5vI{>m^f2MMVW~urp{VG^+_jksA-`AUokYfOV*akvJTH`dW6Y2kEBXKQ|1`pGneF&aKQ8F65m^T zcl0Zv4p4oAf|fvg&G65s*RbWNFDNOL5N1ej&e!s{{d?p1D186r;YFi*qmB}X9w~=< zyehYeNzZgNeN>5;J)Z@6?_>fq|Eqs zHR>=zk>zS#=af)*mondh8MrrI(ER*@p|mNt2otB8lJ3WGJIYG813uoTmouO`Nzr^( zaX0kaZw{tGKfL$%ccYc|duKHXx)0cSSo7d~MDrb_dU;wVIDnZa#?*&mhN|o(4MFk) zOY9odc|X6f?c~G?Um1J}o8xerhpIWnlEh7|+zBUEMfF}I+eV8OxM3z4?)TDCDa|fq zhP%`@y10k2BEj3DpD<%;7YRc9O^!)i*?e?blVJ_*UpDeQW{`W-edKSc+}fg4`**uv zO6pN&6ur)djc1C`_umU~{Y8Am-+bbuc@s(BHU4HDeM4U?Y0W;jF&PnK;Imf{RW49k zCAfGFWM9F=;i@eM%DYy|?oAP{B2JY6US|~jT1&%EY_5C}@9KJTUCZ{q`#Ek)>~qTS zfV*Yq!+Fx=UM>2N^{TGDA!zXPEJ_8^uvV|hOp@9dMnCHi!nZp<0`!A^6UAX%JmQt; zkzd~mG=F}DDJ#i?A0g6Ob=}`vtNngLcOnXA@9 zy=Fei0nSC(>jl=A01KAcLcL@H9GPTpne9YwYstRp$A6#3$=yk|9a|=7W%8xV^;)rP zYO-BdVegj%LDmJZUQS-+Evo_qSxXkjc9dOOvTyqF-=}eMcOtjfOwh_CbID#STB!F- z%>mAyIld_D^>RWB^#!n9RX`@0OBTm=$ZajzH~skUn|}QFXk4#$dps6eQqLN~o)I7K7gegU4ye0`Hl@F-}V@sh_4ZJ2QKf zmReGeQW*#6S$z96c{_@4M^RNknP!#kWs0az{i*#3*$;%dWYE*^)b(EUZVzz zS;ja1LsH`*H2>x9;qM!&tjf=q|WP644$Xf z?Wwb49y4%DEverDRE~%kNI8mc-vXkmszwng-LuRb5I{bSTw>gCXESTu&SEg&r|Dqc z>Nkgp2dJ4=vp~Vc8Xb*_7U$wx@S>#GOasBGwiv2oN#9|>*>54rMd=s>f?ZE@^%ym z_t9IBc50fjmF{-{ls>6ZvaUxt6##k%1fc9u;&v3$UE(b?6u-twcfJW8r*5Z#@L7uE zjMrhJP6hAaxgCWlrv<@k*) z$|*MexT-2^&*FB^7C!r&&PB@-sB+Jm%l>`M@e&V8DNmIJbMY??MPIT6drB?mYv{w*TgqnVp%rYL|QV7kFh=YSGjg zk*z(e0EpVN=Cb$9SKhNzS(SD6EN=H~-wg$L)%<%~M|4E=p4IK1?R#CwdzKxL9eak# zooxC`Y+81pvi7Wajo!0;udK?d+OxRbvwg4IJv+{L-7}(`V%g*5szo`qXyp{Ees1^d zui_3M>kBe&LQ53|IKJQuy;VA(E_XtwqXOAhoOTpMZ4(t_3M@LI0*fdtXi>3FQCMl8 zp!K3-+ZUNM`+U@Ds4pV4PlnOV%co|^(g>W zP&gnS3IG7mRsfv=DsTac0X{Jpi$fwIp%qIMJRk!EvbS)#+XQeAupgiwz$e8B55N!5 z58xXg>kd52@V)0`|6XVs4w}BfZx=8 z1%ABxy8oj6p7$~SAN;qiAM_7d&-i}FKhVGF`xbuI`geZC{33sO^V{_R|NrU%)gRJd z;2(nDs$Xt-0r-JpSM{96{~#G+--8}Yk^p}<)&TxF{=3Wz`QNiXp`-wNosF*~jmyfs*XK7f` zAAA85B^=sU%F*&rXNMwTR%t15qCWdiX}5GmX897$L1g?ILYH~pY4Tt6{rmCAJRWAO zMnXeRm5mYh5RaY_uHD=2TCPSyLr;~B5%v%%D>@mh5kk3OMnXeRm5mYh5RcLgtAqVLXS1F&tKx{au74py*{GAAT$Y06m483++**w z%nF^yG9vQN6Nn)C^bIQ&usrM`E+B(?r$LdNW?m%fuK_)4b-nHOto4tiTPFAbi4)m3 zzywCnm?6tM&ihZ5jS=_Q?Q71{Mdy8|%EpNM?J)~*9U57nk7-!Z9Do4!V-~6s!tacbEXCLJOG{8~ zNuin^^m&Kq&2Dw~`XWoe9>#zF-j}52Q~majp?_rW;;s8HG5K3YDLNT>J2O}V!C+X6 z>8}=F$%QE()U!-P^png(Tf*99o# zxc3FyXCC0YY~$P)ZJc|8?X!Ur%8NRop+ z#PjGD(o8~dWa^bEou2Sa_0RnpsJNRQ51CbQuB$ot0~j9_q+j9y^d`2dJ@EG&x8KSu z{~!PG27luI)vv%A|BL?%+EK-4sQ>@DXW#h9JLWn2M)nyZ4EIRC)bx3jJG|Y0uv6Ff zf!uD0Xt`{2?ac?YN@t-QiJbMc0#v}hFRZP<{?QJ|4aGjv+!22^fzitZD2|^G_Ul`D zIdU6hv7Rm=-7rIhb|E*g9h;v^YJ-8~gadWoeTM3c{9LdO^#{^+lti*~@0h*lsc>l$ zDX1FWtLsHOdoUL*BTI&tlca#o84t`g*b#I@+YB3j#A}%6yR8C69XK8G_j?lga)b{G zgUBs}WtxR0x!PVzIa79KWa%b*R?C2+UQOjy+xx4@^05AE+x+kPm8CUUdSPVy z`BhKfKbhuf6*SXK(5uYy_wISqh!#9g?@?jf0=&&=Ixy|n6@DX``U^06>gRD0IewoaTa}7|V z4XAj@^+vD2nan&-fMcso=D}KNuX44`(=G<3qr??DC^6N!r2=%KP{bRki*Ke7wKQ)f zpoXm0yTww10VimZDi4w>4>In)PVRf1*aQBfv4=|*=dzvQ#d(^}Sv^!;KLrw1$XsuN zq0-Xr!;uQ=meM*Fi=m!h@mPL5L;T!&n+?(ot4>+USwwAt(0cz5w^dH>bhAubAO@SL z;!0^9??>YN469{5ofEmC+A-#is8VIxGI{#m-!4&d+=@7vN@5gJJ};0r|LnV5jLqfr zIGh;Js(b+tMM+-fUA_FU z9}V*)k(8KbHb75h9}64I|Np}r8LwDjDvpyxam_8DkI)0O7*vfe6IohFtEo3o^m`6y zU$9Hs2=d34QT^o1iUu9I2qcNRG^R~1f2-fepO^?Q7*Z*QDTb^`%YVft5?rbM*OGut zXk^yOm82S?%I2K3s2%^_w>a81fei50BB@K5Cdo7z%K)w(H*R2(Xk=}@(pJ=OdZtw15cy88zA-9_*+>FDPYqHi6VQ+ zistLWO^5=LCFiYvJ_q#UtcyzOPyZM(n;S)`%{1*^Uk_%;J#OXi)7(q3LR1ma|i%>-N zB^%UMo&W&3RIFmi(6|98c&5s0lLo|>cyc5oI*zk`$!YOm>|IiBz1UnY6HtManbZtA ztyOi(j)mBbd3Ak*000VKX5QW$1-gWcJUz=RkhxYicp@A$t+it7`c?#jRb0D=zG ASpWb4 literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/problems.f7fb539ccd80608e.webp b/translated_images/zh-CN/problems.f7fb539ccd80608e.webp new file mode 100644 index 0000000000000000000000000000000000000000..29cb579236c777bff7bf93c59a7706a2d2300b69 GIT binary patch literal 74440 zcmd>l<9l3h)NX9sPUEC$Y^SlE#%XMOV%umM+eu^Fwr$&)Q~cid)A6Npq2aERJQ zz-J3;KSXTe9Lo9_#Gz}M&4w&;{`)>OIOw_y0dhDG2xOz+ai2H~E zLcdl$b-w!ec4h!Qfu7HYw+28xVAXq;Z|8mI1Mun956BM`0s?MN_p?3#A5{;)3&8t3 zCO{qN`ukl)uaiIl!On@!I^g7c7V!L|4EX!#LVoWAz8?a70V}^BX|I7lUILN31r$1K z01@w=@6*rc*OSwoRRC8Y=?D2M@q6c&PLX%%SB}%kC*s$vbAAzE5fFYaZ>+Ng=zLUl zOK zcmOyArd_x#3v2;efSRw}SMbN1V*XP@W41q|5{#tnO7-R;|eV>JQi6c5K0 zx=6sW9(%Zrz4$TR;OWP_dKpwdLIJ=L{?%hXbTo_f?2S5h7^2qjOvlXJIWj_`)oHzK zwtR?69jawE_A_s_Fj!Emo36c$5d7xyMWWSc!ThA`V;6j ziWW)4-v#^%XPJ4omYU!oDLWj-PD`A zg|tBH-4m}e-0oYvJ(t9D~Zl-BetNeIH9vYV1 zcT^0`J_@mX#x(S2wnYf?;4x=eBVj#;~TQm`J0{bSXM?nekLWc!vs4AGm&iZ;VXtz^keC*HJ&^b#X1+ z!3%{fVi&!vD!GN*HkK&(;p(xTySOw}AEHpfN$fh@@5*LV7lg#=i^~1Mgs522VyD+x z{zSw%KL%>xci#R_viL10yx)uVL{*R-c{a9>9~CwX^*_0` zvk39kE#z{j@X&&^cPB_d6bZ%{iq73%ewT`U8;n;OCuM}DN(S2+LFjW5>24xHEqsJe zio5vY*qhw0JN_L5Ep_9Fcb{=#Zu9n-Z65hv!P#>E_3%4<@kGR(s5Z@)WSnAl=!5tr zMCkm%(>LlSm>*z2xfgo)hdt7AoroK0*dNr!F~4@aMunW;N3+yJvDy^6xK^!QJ^5p0 z`U;#cq)as)LR~Q%WLZYI(cenNe#P%+D|pvnOGt%eg z{QK>n9N^cX{{n_Pp-;m>958@Y{P}G>xHoLx$ly@96P(CRCoUEeGXxLPzlTFM`6CxM zA+hc|Ck3<_z)t6I75(DA6c`=qKD8kDO$FBcN9sZnQQ75TmMHUN*pB{N;+;(>AT&B+ z2R53l|Mzr?&cDX`1FamE5b;*N;ym3}-)VN2u7EPoldeR3oL$nra}xyrT*?V7#+jq3 z$lD}Sc%;0EHxI+cd(3EPQIQSEkm?o+cqOE3-*+d!f7%`zEI?eSwlQ=Vv_+IjPYfS-Nn9c|K z=bzp*6&w31`nSy{9z=P2P}f9#M?-gKG^t{6o)K=u5Y2FoyPtOTUzgFR@H!Nn{JgSx z@Wf{dwL3eBM3qij1#jB+N#7LqFLu5TS~|a1iZh55H@K2pd5Fg5|Kl zMJ`a}z5s!b34E#%y9so!mGY}}_yzqo-6i2oygAI{B;4YHq^3IA4#`5jR|gAKwzqte z%af}7Fpam!WU3!61LJ1SR!2kJgcfNbBBH9P@EPCm_UYPxtmO9qLMHmhaXvP-97A2j zv!-8b>_q!N$=uy~J=2(D1|IKClY+1w+H2_5p&EbwnZ7`w$Det(>W`n@&%s{<&lWsXe*vln~t?>*% z<)8xFl^ujSkVJqU%51MmN#4nEC@i&$r$ss2p_A=Npsj$BeO5>;-dt#*isB9a-9nA5 zW&ai}Aw2fcPWwY^kr^?&0g4vf zkATJr;g}@#!EAiMwhxh`PkOY7+u`o7{OUNRpuUftxkDB@YNwuzGch7l5KN0y;nnGN zd?`Xtu3D4urldNZtxNyCf=*DyUVhDlI6%MT+UV!AakF_?{Qu; z_meEUeacy1pIq&EJb(8%5MK&$dD1%hz(p*(y5wcK(?Ev%oaKZ~QZJXt>FjU&@#2<( zVgQc88YX0ghrCv;sb=t)d zW2;h|BEF+tl6q7XOD#F!H+x50TgOR7Ma-h)8nda6Q1{uIe}aO^5;sV&lEIdT)0X~2 zNyM7Ci(@~Q|D3+oi)4rXuWF;nH4Wku`7{3ITyK?)c7G)6J2Kl2H>8rk72aXf$BAOr z_hU+S@2lSsdt!3e{CDnRV*(>j^y(@Ks?|r;d#i~NR!&7_tQfFXzbWlbRLk3Qg`D$1 zlg>rK0LuAoaM@t{_t;HRV(tazRBW82o51K?u0;5E?a&9%`du%b$fFv*qhbxy#P+W@ z2+hX&ei0C%nJ)hs(BZTKz0<1;cql|)GR6GM5Kb?Tm+Er;zbWfC-Zc$pU+Xbpt~M92RN|+2j*t(qW-8|H@h=Tnl#`PaoX30Gu|0xtL z)tUX2Y64lfdi8B(;$K&s*|J@}YVKe})3?9UooD)8rT>&j7rtC(#D5P(-%fVRsFRMWa{hi$W+G$G z?T#*YAZ@4~Cq$p~Kg?ueALiR*W$C`({*OpYhR;E$#tHk6;y87MWCUB#{?`q}OHuu) z_1`-F9#1GB*xDh(>S4kGf9D4^yZ_A=Em?CJmuJwnUQC0ZQToByPu`sYe*iLv)jam8 zEO6Dr9R_oc+UW+)8=>#lK^#hVzX*$iy5xtzolD=3%aUtkL&>r0{`Y5a!``=m3UhEs zksEAn_oWU8dt#>y9^ZC3PB2Y9kzUzuZ&o_98F8JyxjGf*iO3wV{Px-u#L2U^;C5{xF3pr2(_8cJh#w^HtTDTt{MmYX@Kh; z?Td^_cT;X?twpNkSFIKc_##Vp(|}3X%;pj$yO{*P7D&wT zzBro=&*yDwnEHeMgn>ByEyMpJZ|ZvIx7GYyRz)vM{*q~fA@>(h%oa1{I{#GGZ+q&= zhJEum(uY?AYxd8n66g7IMtrBxSF9F+`h7K=wRUYD8!owZ# z{?=7o_>nQiyaIzUhv`KWe|5h#+`lPNmlK+qNTDXo_P~9sdHjCe@||I&2g!*SZrd(s zKch${6hdwV+#&T9#j zAspd?i-Bt+TB*4FP;XvjXjbyC{h^emTb8TjNRpZfwTjg@LC`odq#)W~CiQ3Xw|}m= zQ1^HX0mIeJvnwea3_DG2RXWv1ZxKVq`2zl8nM*bU*F@u>IRM2pDK6Mb9~;JAxgX+35P#|OFTk@8kH^##YRL|V?9ebYWwPyeig~xq6~08 zPH zvXd=eIa^W#mO5HZxc1S^zh*2LV>SFS6~8&UHeOP+@fTve|J$v7%3T5U23_UFuddBD zRHBxYm|rP5m4k`xz-@p67b4j`n^#0YDel{i1hHWo0!r6 z^xo8+)??A8ML(P-BtkCV!+Z3+EMAd^dey!12MT&V6hbLx#6i|n4Z(2VQ7Ccksg(q+ zN6NFwzBm_Y$=w(#qIUw)X_tMBpm~Cn2HHa*fMFpASCP7|{((4blX|Ey)$VJIEhy3t zi-5D z7%t31wF8OT@l;fAZ;HuR1Dr0l%in^WCHLjsECKFV9lVUVBwVJbX0J5`4-kdCdriMK z1j#EiG$sklGDIK>CrGD=OqnFs2#UjE_1Vn0ruwDc%+7LEgOqOnnKtXf;)4qi*)@#= zhdVhF?e&fQVs@7_ZVr6~%}5_R?}Vumb+=C&H(rJ^!Ju(gClhlG4Yj@Xf#d^GM^aj@ z1~Co;-fk4DxL`t9Sf0wZ;`k!h;pRq0Zs8HTu(ol8>kyQhJ4|u?akh?qT)ci9HoUfp*qbMUy547`A=2c`Bn>; z-_yMWeb~a4e>VVk>6$0;0oTw2#+FnibL7mVI|x!3v0@a~9}9^89~Tq&DBVqfj+k9=^*Gd`_s(vQ}d(imv~4(S?kUgN6B&)ThhTkHaK)8-=vuVZm7xW4H+E zz|8`ZP#;0bxM;XI@p9>5aPEDKPPOnv@3M{z4q6dh4qgco!2G0c)%|k8E1M>l;yN#h zcXIp8gk1M~S|XS9t6HOpTE49K{FxmO2TA|30VU6oZ&0MYz{o@Bu?mkPl(gqi4GfCc z5=uRv+x?u1f#9UBd0lZ>81n6@QydHNmqp1`AYM7|u|Y*9c>T_MQ$aBMYdL3J11rfA zUP$hSVlX^N?qTZwq{Sw_N^|+1;&Mv^U%*rVZL0+@5ap{}-$5$Wuif0rBFdYmvSKO$ zU@-4&F)YPO=0C~#zv^9Vbh*yADNdlVc^~p=sO}{er#6;@KGHK{o=v(PqGLkq!=vNK zZpTsA6LemB-qhP&-BdXnM>NFU7ry<>0+lmnkP`zfNvrD@jF}B`^2S%Ya6+6UhbE?` z@lxu&?#yWEBfFtn02M3Bw8BZ&H&3^KTwQ&pB(|Z_1HccH>8jc$KD61)&ta&llBnJP z1+M?8{vYND@E_qG#w%HDI1eR3cREJ~s*vts>pX}07OpwuR6Z;|RmOPm%)L zLNkovdp`$ag>pDyYR10M=8I`Hn_O5;_|&?ej3KYi(ZFF(Z{P&8~+LSUGGuANA-;fwmJQHxrglRVEI zg7GgG_HHitr;Zb=D+9u7f)ahIA|}%;%<{KO5UmI?+sDO=XhPD-)(w?jz@PTQA?xkQ z@)qC-syu;7Mdp0QhKdIJA66q2*Y!xP<7L%mb6<&|z?>j&}vE1a4`{{`ERlN$#a!2h1W}V z5zG6Viwzz^=(f=56m^b1e?yrv=aLM;2?UZ7;g(YaxEn)fXA>1OonG<_>q$%q5aZ1Z zLIwrANZMqVC#lJL={diy@79NV%uu|)tJ?ZLmSLOY@eG510#Syu&34OV zZQpiR9Si^V^T}|ysKpNh#IXvVgD6q~)>L=Ck?Mie?%w22=e&>}{xe991xt=J{JrO` zV^*=xMW7nFgc9LYMbW{#_BSOCGe@HlxG}Pad&s{al?(G6C7&?X8<;3y7j9_c*7VPA z>g1d!r9tRQ5{Gbig}^v7D%)(FHy~x{eP~iQLB3EZmxiqE8IDc~Y2I+6Lv6~;OJZmx z?ZFcAR;nr3da|VVvG){pdKvx~Yr9?l6QB~795o%E?^*ALi5cXb&U+P_!@J;K|L4{tnI0_10 z$4kwLS&I?5==o6x2L__rl}ZShODzX)+PuYeXw&VOzW--W#C{0>HBl!Zv4+U=VK5Qs zN~s4yO<6;|3o`ADlpV0)hzS!#okV@^tq@X*bz-HxfJHEqakmx3!sK5ztI@N6aw#vT zjFf@QCGp`~<>#MtzO^S!)QIQIF!HTHubo>HA03B&1$QmgP?$L}Z`OZE_wo4pJHGxc zdP#c92&U7+$Ve}raPGDvDJIkUd&)Y=Tz`S$BzC=76ulaE6N=4oxRxMu9L3?C#xG0$ z2w+N}VXrxDL5$C8usDBFK-hs7@qz>qItwS0DI33S{rF|7<@4X}%kNa+KWlua{pKW4 z<<-Ja!FuFDC7A`6>=s2Zs^2x-4@TqHlO`bSXm40AwGGqoTjH8aObFTitRrYqLI;qD z;+Do6M6@rW&C(~egG%3M`K~|tCn~X(-RJ)e2>%J~X`hh(lTC_VWGu_9jP0 z3eqn5h^7L}p^*=G>UgXk?T>BJ?a_y`d*RO;T>rBX@?TCmXnBs)1D`K1Yg}6se(@pq zz0i2zAV_1PC>{}ew$CF0S>v<`hj_;hsr?JO*ROxEzDz+DA*EjHJ`Dm;KeYsr>NC#q z$Zo0uQGDn4u|f6-LQEHgW8U^o#ech06!HIjYiRBS$#(FM`Cd1HMZ9|es>3X0!|m^l zhu_fM!}Us&hU?)@QeHo5J@Eg}1tb2CN5Y&8%kUG?+uhFu_um_ z{!qa77&s)xzZIs06bLU3lDc~0?7D^bWKj)cH4Y1%CYAH%ylL^JwNJ;e;vu1TDWCA) ziYKYlAJlxZ9#6N=C5e(Juo=(bspc^ixHJba8TjeZvF{VX7kfk&1!5T}++Dp@GLEaA z3+85oFJL-iqx{Z9u9aGQ_s;MR8jY|hIfnh-?^*UgA|2kc2=;|i^81f+Gg2bm-)U$xA{}zuGMnzqPYII1*o)F!Av>lLY6?HvxVqX!yP%2v zN1yP%N_G#k#1rJHAMK;Gr^c1N)5wnUDxc^k;ndg7hTHJRv;hL-mrV#q|(A7>{a&@wfx-J%sKruU%IHL=Ur7mLd32A7EEksJmxIL7KB`41F%2bQ+fzVaMX&%`q<6Sh^*SX3*_E2t8I1-A4Z zo46EBN)uJ>nx%tNJWW&<60lRPXWJM*6Z98|D?2GZe?!oqyU|k{?^f zDQx+sFwD%#IW=L{!g#G@itn%mapfWIJyfG<9P>n0vXaWjgx!0V@$-D9^)lDG ze*;E~jEV5jbsk#vUYzCtDYU#f33|ukttq7&V4ch`FGRtTR}i!?J^S%vKI~c})r1qx z*=c|FsVNQA!XA7ckk{+w#^%rGLRJUQ@aEU1IULD^PLQ$p?IY=#i#>9;Tiwrw zUy$?&QH?4hJ`K^-vFvViArihbY+WvqI8{o2IUDrI|EU{z1cL2UzHeTj{l$0Z3wGPr zytShjR(1$TWu$$|&+Jdl5(}1(z>;Cp^<+!f4CkB}RDv8l5}O=2{1)U(wKw$$yZ4xm z8d@4&K|m2lIGea>-bEs*fAHb3P1oTb71wp-WMjp&Q1_U{2Peb4?6HKo6}SmMHY{My z=cTB7Ng^=ht^fvVJ`1eD*80L<(-a%~I~!j`zIm^ATVd_6xkU9S670#ZtOoeCR3Z3D z*~a0`dY@sWzB1TtxeLm8C?sqrguD)~x;pvqpQ}4>izgs>2lUi&+U9e33lDGWjwf#^ z74{*?dU*mD#+@K>P{sidC$ST~^d&txV%3^>{;$`xc2-FV<7|z)#|#IHF~i3$Np~cq zodr8)XY_^ci$#3qh$vad_p~sYW>2z?n-dI+iAqRE;BwWw20S!!7mK%YK6RWJ;lGo$ z}cxIz!OSKm$1Oj)@tQyLA{f z2BQzt#o_U(aXmAxt=~7@ap~$BI(bXd6~r(5Ck^TuTZtcQj*o2xG`EJLjNT~+^@Z=0 z=>$Ba*&4JR(y&CDwu3jX+j#TveKD~G7X7OYVDU2-bIQ(UN!V=Dt6K3TnuC*_+kf2 zKjxI*v8HlGniHoJmOv2T5g(ISdI#NdeF~tFy5EjoPIp7J*G;1+VXyw@~ytRgaV$i{wT6^ zEF7ojr04B6!Og4mc~QT6lEiT#>}N-3#<9Wx)YS!E{$?j@^b2b?l(Po|6yMispRbag z*{(uA)#=}ZNWa|GiM>9a>)?)5HnZiTI4Xd~$(wReQ60oHC+kBwwi!+bL;@-@d^z$d za+OufKtK?yTXy^p0V*fkMVN?1jfHck4&G_7PlZt$pi_YP03|7NtI*IQ$C?n1*&12B z7Jd~vyt31#X!o+aow0b3EqgfJU{IbDw`VoOL@}sr0WFP=Updd8^h47`xzM6Dx@$ru z$KOz+gOkS4%c8rfRxoV;&Ju`+k8kMx9ydcsa|F(mTsWJapECcK4#LtJUzdg zS;QnBMM9FM)VP3i(tat^`A(FVUU@Of?^_6x9^WuT_{*K*-QL5aj5o=Da17*?_=xb^ zT~@olAyw21ws5)Rw;nEr&AZ%;)rnO(FGU{p+YMRVD6_`Hxr5uIbE_O9XtAyc)Yp*^ z;K?U83I_OH%VbPQr$vM~DYsIT!;ops%4kz}UWza?kTX~J`|StMa5}+ZdeGh!AIZh` z*bh$|xw)yumzH~YG6#nWoCEhO58)Ft2+2G*mkt&*KH7PSANduuRfVed?kdkBMo|oaNX3ui({L>y1lKJ2oN5zfHl9^2nCWwd-u7v=+w4cSC1eU?w2S6Eu(?RsrXnyV;qF01ATUDYPFxWm_Q=BC?H z4?nV%_8F8gJupRJ^b?=o(O?aDTm{f5@|ZH=U$p!8CsUBOxCqNX6Yd{=si^W7>6Nu* z{q83ClhVZAeo&PuOub#0NY#~K&*%j$esrV~7kmGt^C=^DEE)E)o(Ko|6KRo`Lh%q+ zQd5A>>rx|M^3pC&kVR%)GNpVVr^h*`EOg{%!QHn392i%hx%iZwk?3hc?^ciIpV-6A zrj5ZxZwm!^C|V8o)K2-)I$r%yxjWTDLTwLxV$;&T={}t%?NS)C+cyAct{9UxKXMNe zSoxuyDJr*hS0Z#bSb8)y1TYJzVNk-Trt^SAO?j{|Q6FgDr&tDFncS4*rNzP~+D}K% z`36rXs>^*N>4mwa<8gD$RgUntZR1(K{WZYJa=s}D5IH;Unu&ZYP~ zx^zeCnWJM(mzr{mzM4AmuP=z7hPVbqG_#P;W6I^~1amH6Z^Ynkls2&Q1@&o)IikGh zvwUL@v}RDQlTwPs#=(Df8-=`nCZ|{-)7zHnJVsVL2X!2j9-R~22QOEa!MC+m7$WMj^$RY@W@`8Zd zNhuj$8n)5<^V4TN3W42`zUM?_RqzL$F;+*+aKqBJM~*dlf;JR6Q2?nD+Pn(idIXqv z=yoedyi_rMuV3HqXrl0^vKE%4%u<%^r0Z;%ee$IfUyPuK2HK6P`R5T?+7G6e%J!^} zS($i@y~@`b+jGEX_}{i834Liof67xrlSXnK7~o3ROWQZCXmCWlzp&OC5$Y zY7La9|2d8ZUUS14B7L zq_5;8+5j7^P5PaD#}GX`Rju`{k1h;q92jtC4}4gL61|kXafhyvTU%N%Ofd&P;+?#` zrCmk|c8gsvGj7H@`DVH~!co4Yu4`*g+)<}#p~G*x=Fe>j2!-Ap!;E&j&&?(xW(nCvZXX})-)g$Wnm>H zRiBgxWi*K$kmBwoJzY4d4ct57`z}|wV>;oEd@%uxBcm_Oeh z9Krcd7x`$TUd(f)jSp!sGeC(aDLS|*en}7$$1Ca3QIeqil-Z4K{PTEPG9k}M(T6QB zf@L7-W;1RAOpdiq;fc))fge$Apc#n4{-895AA`>ct4Q7j$W0raE^pq>7ITMND8W|g zXLfy*b*lLh>Y6@Q2T5W|O3lT`*$rR3OV{5CpNPk4SDp!386{>t$QFOk9IG@~j6r4e z`!~o({wnT}qdqzG+>%to6hmfGiz*7vi2ghlBm!)wb5fql#J=E=9`FhZvctyn77l)E z#zHH(?p+>xDSP4*T03-$hUj%bwOJi{Y)iDr!jR_(tcX+PyeupWrO(&LckpIqh;1^p!XddlEal|j8z^{-I{gKew&rJ}x=i3sM<%i(-Kp#K;b&)Du zv$+q3L#grT)1P--3AkLdC%Ane{PD;~%g$4CP=%V`r+S`dZjK!)Ha}wRv%>`rO!%;K z(9)v0Wa4Wj>+d`@2qw2a&+IpnEDDj0&q)cmkasw zyfl}i>GW=RR*l?@qq;%%!ihv14#B4#nDN2Q=dshEazlzV>di{kq{--6^$p4g(kKFB zkoFQj3y&yGLb4*Lb^oNF7Q;%o_c{ez78)J5SJIP-WAFpqp0mx0AMTa&Y;zp^p3%Wy zlU-eAeloM(bZ2BTHR%LJzn25a+B@?02OW})F`(j%c~^d>cCl;dr8pL!AXm*onN89x;XX2-{-zYkz}q>$~rzPe9KJaf>>-zYPL~N{Ja+ zuT|OxQJ)JH!&%&$CCXT?#8hiO1l=^<=t@=e;qaHUZcXEicdBr9Ss`&c0#kal+aUF3 z#x)l#iR@)JW>Bv0zRDuEwr9Z?{HHMv-gP^NLjr-fmE-ESy=g5ceSWXtk)T)&ZhBML zpv#2Tw{I*|EbHZf?eo2P2t$t0Yir^~I^UA7xIUbp#_1&FZs3O(!xW>NZg({5$G&CC zeo38@zO3-A#OIY>fH=!~i|#UmNjvy5eD%tjF3&Wzz0pj-FK=9;@g=b=;@fj)q-TEByQLqK2RIXAn)pjGKDKgS6IHH{k?cr)Pig z*&`w&$yX{TCcrPW0*|ef;HoBp>^LtpvnTv|$$i^HmrDb?WV7CZZ!b<?e2aC&53# z0?)WG+W64Qhc@dH$s1M*ua;}Jo+eeX%PZCFTw|tnP0mOgDo(b%t`iRDk3&kjaH6WB z@*cm@t!!)%v;^ni<9s%a6_9q)fl!8nL#?;m#r{m?_!$pPThYu_sY{kLDuGXvyqj_0 zBhn&JEq8~%>kV4qbbQ{1m$@VcYcFA?JeA4i4f~< z|Hr}YMSFp+peyo^wb_7j94)`gnVR($eoAVs;QLrk*m-+(*QyhjkeMY=h>WwDjj@pT zG8>^b!Mr0?b@VI{1oyH`U56^z54H}o8^|-9nQz1_E*4Y6@)!<5y0`8>Ui}*E2U6FI z6rpUPXOoIKWpq1B=$uO@r5fy4^50s&QqSnwjK`3tJ$_ZXL^!;r2WG_K-T7UnEX+K# zkJk||De)Kbh^>%s))$ZavMzem>=+1oX?=>L|iEvJ`dG& zu&`od!_!2u}I$jF3?*8?_ zP+gM$%`WOGe)KhIPA&(hD_b`utlx?R@9rIb+gV~h=-?$x(lD!k=VjnJd&|Gai$}6+ zvI?x|yw~#P9(AE~?~}Pnl=iovyL0a&huNZLqjSV(QMmnW0r{P?fZ0JwVcHydtN|1n zj;hdO9~+Cks_U-OiG;~5hlSe12B#*l@o=-?Jd7zTdf5I%4`I&Y{I&t5q! zujS;sBurYQ5(g}t#IVMrfLB?XEg94}G{nbwK5 zS5M23lezcdCCI=beI&#C!RdtWs)1CG9tLb&Z!RwE<)S@u`5N*UcajBcik?fOYU3ST zvzfdBsO8oL%*2!TO2ko;l)kuu&+F!{d;t^A_d*_632H9M2enb8YmH8IDX z4gDct6S^8PiB9&c_Ug^OAf;+f&X*b6yherfH=wmD-N-$(JCk`J3Ve?3c~-x4LyF$g zQt~3_YDFW^p@p38tWm715MxfUuTl6AzGH45;7M4|E7kAQiPBxx@Za|HZpM4n|1g%? zSm-ca7GPYN3a{A_wUY{lj*u@9;j^myDi;6ao-Wr)oL8%!j9iyQ1WcXchg8f)QRIq8 z@#iRboOYosr!UC^v#<{zkmTuE-{9)tOzFx|R5BFKE=`#Xm$PE~HCD$11~A?!+HY}E zv%RfB5ohb?JLugX{q+rHj;|NrcA5$-sbY4YC2fPD z1^t`-%^Va59m#}FIVJ~IkFL(^4#Y0>y_a?AFDnJ`-Zj#0oxWfX<+&8qctihPbAdIR zmS=^bRy->A6V{29zP~>%FL-*I$+N~S;tI=Xj(RUdS4<`u7A_<7!S}BF*@@iXzkhi2rz$g ze9CmvSMjKjI;cagQAxk9bHmfWxv`yiWScPuY{hgZ)Bv zgc21ym@*Y2vR?cgpfLBzvU_ZKvr@7QQbt{SQ0au@0J=8D4Y>dO^zH$h+QlRe)%pcE zN6Ko}E*Xz?N1tpXQ{SR?3YVPbCD{*Vr(TKT!Li1(L9m?zL*`<0`?p949SkHYss^vJ zV_9MWxkv_SLQe@$Ss#jmBQyvMVaeRUXieRILTKw%eJhr5H#tT$KS$9}ECBix)tl#$ z)WmE#y+J3~4TnonU6~e3Ub} zf%(+Pxm`X!Z?DkVMP`-ICdmkBt|@ZKYD;<5ZlQtO+wf&bFYcl10%_i0WX@*9Ph88> z_=Oj(j3KRiAVRtoZwp*?4nG|4hqqob4k!XQ%6_UvZEDQhyBmrHgmc1~QRp-jViF_{ ztR%50lS<}{#Zzs0mD`r@W_%lhIX#9^a-pb%9+rFS5H6t&PNTC5zghoz zeN<6$bwiV_j(VcoB@*g(mDLS7*@?M;tAUekqDqs#XrT zn``{TP)j}7W>S`q*fVS1AH=9GyWNZVlLJ{O!VYd|c~ulvY4n-F!7%9o8Uo{u#(mze zNlzAl{Q2Z2ze{HQku;P+OHzh9!L3RZ4I@}DAqe4YSZ+Ej)E?hbbp1Fwit`pfQ0Q$4 zIA3X_A}$nm%mi@)g~Jl~x6w!8fAskE4T9G1p(*CTNOhk|gO*Xot57a#AGk>H^SjttU+jD9f!5$CDM%b5J0dm&1 z)shv2Vv9HWUb|XPXC9#>L@^y6FlkLN3WP3-#SF2~YNjFE3>Gy@)w6Tbtr$mNiFFQZ zgnpxJ$zynnqSAfG>i1vm_5JB{USgQT=BH$(@Z<*ly*kGrBqBbj)ZNXk2YjyClr)-# z#0=nu-#1ABtU6B3q12sVGE8vpR&LcRTjpc%<%<&Z&1EC=&KA0!LPIUyv^!Y?*;h4S znbH^sYr@ip{@_6wwRZrLD7g|i?56jm<<~E!d_>6Ct0)gdW-5d@C@+}<=qT@J3HYl@ z8ui*PmC5wCVBZhFEyOVz7(EBiL?b9D%z+MkLwXoVtrYL2nH>F0N`xa#4RTASXX?+{ zU!pd(2|{H@>6kcOF{?@7>+YO5hu#;K4JJFN(2vFn%Q?-Nk7NEUA=!7JT>`y|s~)@u z$v17hbw31C?)%OBhXm6n{d>10xoMhbDIjQAg9b)8ZB3#K+G`K)e7a!t?TmF4up*bYuaTU8HKr1trf>`8cLB&5m$&dwQ%atKcM#l%nz<@ zDdC?P`lW8nHIP+pNG}MER|t$r8^jpHYP&WN_112bV-LNbB5u;Bg9oLJzdx|`V$W(} zWl~IS(M{y0+G*WmPf^aJlztcf0RfUlbCK%ai7M(pgIx8-M+%T$SL1$b+VW948VRJB zyah)Mu$0L*4MOP%-zlhwF|BPYVxHPnzzLt^H@A&^!fgs_--TN-(R?RgY;H-RWouc6 zZU?u1eF*we(ub&0LN1Z=4aF^jj%G_{3;%QG{UDdrSJa|P-^1zoKBNI$Vxg?dCm%-e zIkjKGdgbpPo!jW4Y2~XkCAj)p$G$4U5lz{zOq`K3&Z)nW>b6Ziw=$!|B*|4RDz1eocIL= zAJf9{>>z(>ngqU_Pjh6&O;m5q67jkjI2voXzd8h-f^=paX=Ig!9^?xZ(t^d}YacV2{pQwGoX; z54=>q%f~~uBy0SQueW`2b9ceCcteblZ7%7qN`kLnq=*qXF<~k1l8cLRo{k1O31o;@ z^Jq$6&_VEJ$4Htbsxwdd%1@moy*2RYPkgBP?*R~TzdR@Ap1*8vWrCz*PLb4|LvZDx z4n>^~i|a4#fvDdR6HiGW2rZDw)PLnoS7D&URM-2`tgset1|@B ztR?o{^-Rvlak5Zh_U_Kf#B28mucv+3GBLqbu)y$!1admzrk?=K-^Rjp14H~E=>&tK z`2(zh6K;MrvlFuw{+aPCO%sPu+Ud9nR6?`)GRe7e$ zMQ;?rk(*3lANKi|oDW_7a;nRfsbZ-?ir$pKPw)r_=JK-e6lQ?u;gj*)@%&VV;o!|_ zLtk(zN1Wu$=?|%;Kol4bVSGhLT`NutR&~tHW8pQH(eJ7T0?*nyGSW1Qs6zu2a}w>Q zO3j#4D`iO+aEjRHC=MVeHV56gGLSt&<^YuvCXy-bUhvN3prGar7+87ZD*gWhKS030 z!%eQ5oyNR-r)=B!uX|(pOtTf`05+O}Qqk&p>6}_BPbg9ho)|FCuyb}=m253>y*#z& z^gR-}l`VMST?1S;C{?SF=65#mSq|s8UN~gC7X^s@v9|at-D*PrzH0z z(Y_2a57h$m$>r%~E~U@Knp$ttdg+T*RdQLE@Q25mPV!dOH`Sq?y7!-JzxcSbOE5bC zp=^&e*U|7R;d`}I=|4cu_#JQtl#_U0E!>wm&xPJN2QTca>y}*Fik~{mx*|771u0CD z1)Z=7>6Y$b1bUu|E8vruz^0PLY=(DgRSTK}i_^Yt3yT;hRK(SNP132;ktJEKO2~A@ zMqdF5Wx{=^=o7#reb$}CWRsdt#nD z#`ED%0*@8X%ps*r(wQ_ZZtv3j=EP~6TMWy{&-PhD!Hi#Y*Imq@0$#D`adB9aOlK7| z`o;UV^&G=&&~Y{-kOc&dq3D+Uy_nfq-!1Fhub3U864U^3RTz>PZ$-_;VX%d8 zJ+{<49{#QXN}kt#8~a2ns2o$0F+uIk#Jv?BAX~{%G2_)^H%0_#-83$5AF<%<1^8^Z z#lZEF2jtQAx}E0I25+u1m1zVN*hfuIkqqAph$9FtQ6p6h0=LTazlHzO6@=&RH`N(k z5EI_Aex5ES-c+jHO-32+!baVRLy1w_)Eda@f+4l^8`7}6%tgMhDzW;|stk&fw$`iR z@|P>ASTK+&J{72zA7$A$H0R5mwT($>-CX+#)|DY>EvVaU;5yPKsx-hOX7hjU-XWeY ziy)&XI*_bN-A$e)B_j%D$lNv(grkU(`QT{UGC{aX@BQG&WpSd=^0|G);Zp>1=l*?( z_9`0I?ZG>%7J1QhEIbFKs|XxxciuLotw6LFB|EaN%2eTYGE(z6bl@dR|5=U>1sKZgOWpwb(Yzp^q{IXdqKHUC19N;ewx61Pm;Ev z5ld2Vms)i^Aboo`Yt_SX9}^8#aPmK=sST0J%a&Z6G@p7L6qc3s9;1{f;2j=7qA;x;i#rnzPbFZ7=mfYvAwveDZ(+O0!M+N;94`=wRGprM|GlOQ#B{2Nd7R)i*rPEG8tBN)Lwm5tcm8#a7ddb38VNbcP+QB*NGV{1I7W1O)5sEZNV8ty-H> z#tI;WFE5!Ju4bXyr?OL=`_2_(FZF0-v*o$=UpdhuSaY*!m~H-wx&x>`*^`Zc~hk6mXXvh&%jvP zqR4w2r3x4(;CZ+FD5aq&h!9@)ngJdNn=aHo)mTuGk{UpP{I(iQg zI{cFheZe8X3;ZUPVZT_{Df~F`Lj?o}M+2L>z$FW}O)07-r;dE!kJ}bgyhb{fwS}|& zm?}5y9=-61&7F%2Jv)#cDp57 zUXlwz6YQzDyb&FQ;F{`>?{4dB?B3#<-mSkpbZ{G`^F7!R>KN0qvYXWz2!&uA_#j*s zgx@y-sCRyC85sc%&N4p?82|!OS_vXI1tDjDt%F?ckMvMvKS=Js*UKNXs?^#JH^2Cm zS~J^&9GDi*guzp`{65>z>$3>2$ndKOX}rXeMd{p?j@r+wNg~(p1R=RVnfq!Fbr14V z77jfjpI%5~O&aM>#^@6OXVdl6;>7^Xy57G|9QS4-a$U2hId?yqLRk%knkKamE5QTg z!yCa}y;828piiC*wvt>Tikq|wqKd7MVOZzl7O!ZtbG(HR(pOUOKz!wXbpFrFC};y@ zxTf$EMD-6K?TUaoQ^R{UHRbXDEM6#)AcwN*jbqzLMchFIC#Sw~tTaPPfwV3V7f>%| zxw~8Mz-?`UwA*5U~QXawt0Yh`Xm`TQB?gT>gEaQVjjzC~lj`T~^_^mkZ*Z zzA~D`2i5?LZl0tN{Dmi2&cW1F0a#A6_B}PcnO>m*`|~{Px6yh*qgBuB9wVtNkRv*q zGnXBZm%}4C?r@^m{@m#o7m6DCqmeQT3H*}8V!_5)`GPH7wD|wDK2P>@%}5bX7XF#$ zQ^4My_V1S2)bd{%E^{~6O^}F1KzsC9;a=74r>5DhWT%Kec&^`*2VQjNqi|-IO$(vM zI-*4Jaf$q&*^Gh_1~ESBt02e$&!~xM4w}b{-r9dh_jOldjel?UwDv>7y?2G#-}rNj zKqJ(2g3j2EPLlw$F5bwr&1tVJSy<3A)!V~r2!vA8&C?I&%}~{TcGN|u_+`NoQ8M#@k*>?i1&lODuKXwBx5RcY5!6UKve!AM(nR ztqBEJ#(AQmyTXob;;Exh%3tC3U+!<7p6e)dKUbbufZcsDS1aWdDe=^6#rmp7?iyM# z;3)E)lM25T@~rR03zBK+cTiBTeQy|rMTQJ!%=dldg@SHNGgqoMqz6j`IzRobhL0r| z12U!sx`rNz&d&(&qLsGmfphRjS0ZI`*F|Mk-qYgwt%PkBzu266nz79X(5>0^%L{(s z3vM`h{J?WrXgx1myp==-OBVJN8*33p$Q3ogn+upq-;L&H=yVWXqQ9(;`DMn0V5^+n zwX4VoTi)9tRA3``tDjFVRjr!HCLnV=mnb?7y1Sb#e z$TH9j>Xyx{`vPab<6#lvog0XIN+ZG!LjDn!?$FnrzE1%Ra}`+V|HV8^G-klq#V2KB zx@=4;QU`T^HqKsCO@G?$I;pz<_*K^kd>Vy}l4y@4{)r%zSXRbsX z_adgp2rCvsGjR@;6BwbGE}bN*CJLc0_;*7jq7ds)lIQ}kvMz?7^4$@N9R}Y=jQ-}J z{Wq|48CWS=2e;#6ye!XQ6i6}#X>)n(yYKn^vf)UD9tMvhU_+R4R79kiMwCc#8JtLO&4gL`(}PHx z2XXcR2GifrG^8$rskx{dS{-OH@>N>L&=KI|M02X`ZVEvx?Noy=2L(2EnUOd}TW%R5 zV^b*O4XRbC*DH>}X_j~N&b{JnOUJqNE|K2fQs}6+s1ng$_W{q~Vp^=dc09iD{*R@n zJvV>)o!B4_=UHf`dk0m-G!n-N;s$6J;-}D1k3bB-hn&+1M9@VlTZa5q_@;Sqts`O> z)G-ik+3PlgG?{m4{ra?koKgFqUP!9ucRu39!TRX@v2U<-a(Ch_#pyso(-GR4trTWM z=!UK`LheBVRvtr~;fXBYwt61Y;^hpt_u$8>_=VoO)Z61K$XaP6_zln=Xv%kSI|KrT zwyuQyK_{)5Jv^N^4ebazQ_?PITshjTd$bth=%{|nGE#e4mvmNF-h@xwd&DdV4WtNh zQ-;527JZEX;b)^}#6UtnoqVdwc$p4qpa{vhkkkXh#}0t`_h-$w8!50d(x@PC;0m&G z6a*o^2@qt{&2!d#wl@XL_KRl*GLk4Qnj$EqDWg?mWJSxQq5~UobnfVdllq$1wN`|R7QHSsrdet?$d)MFqTj+ApuOI6?CFEVyIi){giFjN>h&v3CHGMnQA+NG5 z**^Ykm7=o%b5_UlpbFaFR2663%3;;$j$U>$!`ga}taWSYip<;_nI2vm+ z_91N(Ya?%H4&@EgWjwx;6I?M_i&}YQ{q-igeC|!|q%M1g8e)&F$n-R$Pon&g2s?(; zDvH3kwhiCs8wvk8DM0MdA$QP5!mYc}C&x6lmLdM=d0YE(%|lizFR zngTVRb1J)$8*j^S!3ywAL4hI=eTK*P*w*LtFUczE!HbZn?U%9HIfPO&C_QI&RMPm4 zBw*g3jMemzaxSEPtXM|u%jWC>R$T=^#^vQi{Sv14gO%SxYY7zvsH5KQ`1m2&q;{EmuGRvtPXLKl zH2GOJ3c=6AB?FzS99!Hsa`*x(&V08{_-Pz4B4tc3+2vUTYc~I9{pq6L>m^FDl z_(iR~42HhooYE`c@X-9x33nL_)0758%`a*-3st=GNy+zTbp zHQlN_?{>ZT4F$fJe97)SR|>VaJU6&MNDy{~=pZY$gje}9t*EcANRk4QPV-a*$H zUIDIqjjDb{F77a2{j)sgw%HAXzHs3(!uMyCOuZI3j@>mCY4Rucky&^12gKA92{Qu( z8$49TVLsiQ5s3MSH=xymAJr3brOBTE8Mn_ER}ZAaq|dvAjZtKE5p+;WwCrwr#(Kev zgV>Wm@F!SYzwJ_fZebj-D*Us~gh85*Lf4<>lU$wmIH;Ko4L>GkW=SRcK^T1I8+bW+ z9Vu;PB&a)wUSAi*o;J8fzyG)nb{~viz<318&+ypi*j{SK$S@NM(BLm|492|=+YIkJ zpJ+HkTwRYyVxPvDN^&E=%wAj*S$CVK~PK0O2W{ueQ>^Qn8 zqV=~rI)tedC`Ef$RfTS6YI%FDV=%&4d_Z+sGl03!F-huz{|hDg6~P(>mbxCf+2kwl zoDWjeMQlhU2Lj_O7C4pa^~o2p0<7(%+Vy!3s_6J&x7$P_RrPi?%HmW`jD*0`fkQH$ zo7na|k6e{uBfjLjvHk3wvHRGv?pwZR+uvVkh>#ihAswpaRSY0Ve2CNHgjZDae`lP? z(kt6~1bxPVGAc4}cL#bXxy%63F|A?7wuvs_VOIn{60+kvBhI=lp(f@Hszr^maahr+ zqf+S61JW*&v>uhEvf@b;CGIvQ2IYji^F44(s?rzSuV!$jE!4kAeOas>?efgsrH&W| zaj0(uqkoF`<6aPhl`)+&gh85@5DG-K$I35CfbrI_+h=l{q@w{8yeXVBEzN4I#5qsv zaw`9ET5yYkdUDXYZ8w4G9MR1D|A*P>96?=|Ck#F{tEv4A^>vD!SvU1!Gxo;ZAmtPi z@!OT0qpH3Jh(QQZ(RzqAWFabLU6e2-Y^es5+FTfuMQ}WO+d9(tS0+_Rj|1yG_xQPA zN-#b%tg^36_jz-zwRpxqM25*C9=B+WDy;tAeNKU<#OtPeK&75lxEf(^=i1Ix#%hgWz*vUOc1JSy2x+qujLJ*T_pbYh}@%g z4$q*=#*)%fN7q$UStJ;>SLakjyG9UL?3a!DblOt0KS~ma4%;H>!7P?QqqHtJTB@gcDd16qOE%^7(6J?fVW{6jbkfnz=M=urK|$y#8smvYt^w)m``)$3 z&uJ@lEUflUVBChPi&JiOF9OU4l5~m^mzKC)#dHa2cn;_t|6196ln&yrXzlOAr zT)uiadJ0;0)0>pWNj+hTDZVTBt)JzBBikm66+N{{0-HRrZfE*_rznlh$tlDYglMz4 zKwG9shi87gzNlUZO}daZdXf87;rrQE1-u3~vZS$s6hk)yPK1ZFAWWX(sH1C3`YmA? z$OT=^C8IsocA?)*3fT(Xga7_dh`9U+snSdXcMBA{tlWZT6?$Q1v+~cQ9D;xnx}Q-l^q^Ba6WLvE_BveLG4K!vX!g@4(M7<^-eAHYgR~*aI>{SJ(FhP7w zy_yO=gf-96ZH?Y$%Xe*-zZg#O5Y9HKp(V*c&*oFb2=OW^mszey$J2BJ?7fc!#$3{G z40YF^H!wgUQ$0VjiSCKYuGt4IQ!8pPJ%{P4N1|LZt($uPLk3isIW55}06pTUXgA=> zv>Zbs#cKWfowSy-FE9P308lnI2#k5!v}>8G`er4?(FP84Ld~$@T2|w_+UKL8-;HOI zMcw62_Gep7cOJFUH}1H{KmKF)-maU>&$FrwiHrx%ERnk&`NGWXj@arQ^-&g3EQ{;~zMbHftG!RNp{AK@6Oc-*_3;wJci*F+Qh{5k!}=6_@2V z)Ke{E+|}KoB+%yDt@N-hqIai=s4OJ;L#xEh(qun$fxQB75Z&Cw{;sSUa0#dmeomm2 z_^uh!?(V_9rwYMG4k6E%k>y=Hb?%xr^)!~0P0&QC;9&F`CxGp;-Q3*<%+|-Q2QLbF z!T2t?S&%5zZ5j~u8J(#2O7QkDkO!MsG02LM;;lj8gl24vQ|(e~0Xl=%<)8fA3Ld8` zCm`3@e^o=%vUbuyaZo4i#7i6Fqj~{_b@zoGvQ>-AUd_P$g-83U4w8~=L_M79B;bBN zVLSB9yRQG}uE*>ON%Jd*MqagCEp5pj4HECU|MBaK23G~#GPz72;7hf>biXUClBqNX-j_{xnAf0hpQMtc4@184;H49`9uZez5-a z+9d!dD%)+%d>Mxr*}_FCIcKs&1vPBPed;B$89#)_{Hjr_932SMrzF!9(&8xfP8-!s zr`K%UybkPsAnGOs5W$l^v6p);vUVy-tr})CHdTq6d;#j9 zRsm;vnSZfHGW0+qkz1M9_7Bq&7&$^Q$9jM`N15k_gDX^QCIw!3+$%UQ>vc<;MSnO5 zqf)3lw)VLrr&W4))BVAM)8pia{OlxtLIwFt!|~-@htK?F70hCpL9p;3WmAtoSo13c z_$_D*X9|1sC~>JoN7d4#u#1nIj-9{K0Ta2*-cQhc4JVlq?P^g-w=agh#f+j5mXf28 z(#U`x@NSC6$3-Pq9*A{!ZF3Z}0OAdI4gQauxg^*#aXe`d17F4RTtn53_B4C1|Ltj8hry4}$e!2VT zK}R?+IL^gZ3RrKb9Y&4KcO|3a;LMu(80m0+O|T#3TcR1l4<+J6-T21ca@vWIyZb!< zEIWO2@uao(9=C#X4D_k8m^&!e9B;<6!ZG{4zhSU_zEdVd%;~p6oW3IG;d+hGm{hs8 zC>TPSRhYivR7<#%Dcnq&Z}(mSy?eo~XZ^~E8K+W7XUT`Az$^{?b7;VDtQfHC45WzJ@A{XJUWMsyAh_dTy!1^dq0 z1^8YfoWuZe1&AFKATeCO+|Hu5L%{%uU}T~3*HCuzDs zXJFiWmj?C3daQ1mdvwclsE}Q1t9_gH1#Nv9FUfLF0E(0IFs8(KdB!>v5!)=5g!tv* zcYboXglT*!#_saqS75z>GazF8988Yme$@b%wJzQ4KL7Qbq%_N!;+qq|Ldi2@Kawmn zYrjdG(eX^=EZe{kS>~3RK_8+79YhPoA!PxOVWCi$9jmWcL2ptivoV=PxcA9&oW|i6 zx+4csP#YJoYr^1Oh3Oh4)-0b^y#LDr?&Be{;)i&ZR7P^6C46(wJVe)xAls>du*1%` z_5QZfp>d;xnD8FRNvgb#VUlrd24+)MTvGVW{R7==Plp_!q%tw~X650@*abgOEpzO1 zLdhmV>~l7DL?T*n&MOR|<6awHKfCyO=HbZ>gc?7Ahw?;Oi$;D*0Ucp&b(eMn$eX&D z=PW5sVgkagb>I|M6goX@Q{>2njU3m{w_CitD$xQvhTBNyC)%knn<(sTecMg|+b`aV zRh-vKi0_OZOlwvt&`PJwLFDwA!rT};yfr|7e=*zNS+uZWoLPT%%RCp9bloIp@`dX~ z=__!GLNZGv&hYWwP2lMZ;dsFDM^D}0W&2MC2GE*|S;3*c zwiQa-KRcj9riz8sE^2V zo6m08h_*<)tOAa2FKUB#?cKdz2GLbQpuKCbEPOBCgI`86(yrNhKy=n}*?o*UPyWOX z{W*XD=?y5pcR=?;xrRyfn`D~@Ued(Zk23+mtkbqnoZ*4UitPVtsU0EWM*Q4{#|0$< z(HGztFw#)L>A@uzzFgA{k_s&Pt6c*E?zmBx-Wwt57?%EJDfa}F?V~-G0QyoblM;bY zm#A^kYfjsiDWTOAi)6&0RFH+obch@impn@Bz3(cg;8;BdHoHW{a`M$qHWH0fHil9H zi9e(EUf*?m>)OcrF(lCR5zRJMo%Kgq-Y^o|7ibyA*25;TrsT1C>GCGgH5^ZmlV z20zieykCA7(-^*?xhOzcof4Pr&n9DL0Z7h&H~q8Br~Chve>ed*HyVFaw}QjFu2Qn@ zTC~V&bK8Zvf-IVyaa)gNYrbJtWHmHaEYyA>A5z-lgj& z*|R4qjQvS;Nf336&UfyC@3^uxMm{w`s@2Dl(JKN%nq1MYDS+2BL2nnx+5;ef%?qV) zFWpVqC>O%A?T?uOMIf-v3G1UqT>q|D-Q>9nlh5K$q>V6l)g3K$SHU*wf%i`JpLC`( zA)u!SouM~LY=-9-R|Lol-5v#3?;6n>Ij6 z@@^I^gpKr&0*q>##LnG13F7htbU|fxJtqNqiY&?FYV`5#-mGj|@&OQwS4U0qR33?L zc|^JQso6I-bA|L7&nR^);WD1IG8D>Y@}KhA2G#eMVfDD-mc)w{znS*riicmR=aQ+X*6TvQA0JK?rsHD@;Uv)PuE{KeFgRt{ZIRH0|!ygR6w4XHscGnMg@_YQ5C5YeZ+KlBCp6FQhhb zG!)zM0Y*oA4&wgAZ&btIaBscn%y14w>?$7gY9ZLLC&d3*;`Grqc0|a=j-J%8{;+5^ z^G2Wi<`yUF1omM65ZeRBI(76nqZ|>lf#nM-rnJnHM2jtVelZoG7s6HrOI)j`8WpSa z{go=Y%Qadvubo=|d)?UEwFrqB2Ssg;{=PlK{-TE@c<}H-gabVgI_)y*{*mg}Dbe!+ zC@xeUU60`Pm84NxvMFwq!pa$Ko>}BM?hr!V93&&cMb26wqm56No~8mHgB zVVhzi|CxldV(zHRQ(6n>9O*a%U_CRo8^FLelwf=(wZS<})mb;>6zs6k_~#8~oL zkEm1>>%OWrzSEM68X}&Mr0$gre>89!sYUuV_+g)7ZDr9Vj%JP@O=pU5Dfk^X{2g^R z)M)h7cOtmu?ESZ?@uh$=W9@q^YqYz0$5}}b1VVJF-(|@tSz{JqIWD>lp}I03WFk-A zy9gjNHvav-vLMKQE}f}AZL`9Y0Lq4JlJPq%s6|4NTZp^ZPP^7|{*Z-s|uo`p}FZO(@-I zOvso?UKPlLHBv5uq{s{jhw9gO(ex5#K z6g`jQ7&`n;yQ&KU+!w>d>=fCroK++EuX#RORJA2~ytGH4PDduBZBIY6GQvMd=&$Dr z!YzE64aPug1N;>0Q=QRt*2Ou9S)ueqhkU+nzUi?1*{4IX`<>Jd2g2~Kfpi~I={f*f zGMCaT3W1SBAH#Hoi|l@?J~huF28WS*@6OQi4*wXw?wms=^@a`QF}iVIgt-wPsdy;= zeps1mHUcXZkq4}~FwbxMYJvUnWVNt#_Oec(jz`(~1Mp(0Ex4Q>k3h5<%u@^>K_R_P z{2>!(IjHKO#sOMr=6ptKB6O$GI4GBKt(BHF0>VQj8WSHZJ?h;c#$cF^*`1$oO8zSHlF-^1ODBHpddViieTdcf8M-T| z2Zl0Qwm9;#KW*TP-AEh{1EL7RrPS0LCPCeMfP~%wSHX9pRCNJ|Lnb8G6k)S;cL)+a zL3Cc9g;0oQ^OxDu)X$eRJ2zVSZLVw}727F13~=el=hv&rfKX0*Y_9$Xipg z3h2WvIexNo@9yxkBQHFbF=8lg#bl1ji)dOoRc2F3x&a6=vZ>lzu#RfbA7!a1Fgeox z4tBq>g9fX(#ee57gAu!?5>CPNC%gL4e}tf|$y*67l0dGaW)7!wuW>(%flL50gZqAF zaD$hUON089Dxg&QltFf5gt$++_5I z+!?FNocS3HUJn>~Sv!Cq|2zv#dCzC%LNPN%_+l=}?dFPKJ@vU4vKT$4c572|~P|Smk_8SAc!$J!v^Ml`rMB4ow{X zNW@R=8z8i=%6uDyOQ%sR-sb?aZJ&YL6e@*h%KeKDhDHdTw5cn`Wr}FAlkG^F6fI6p z#S~;rGY~9 zhgE>liKf$oNmy`9J!7&%<=Pg~O`pT|smd1W1#5_u-D|r-n(`TAo&eI+Qy=^HeidqS zgZwVOP+j`qRVMIOK};~8&ZVVk(GT@F8rJUf*fbJNw4um3~{aN z*^n0gjW2bvy;}oCd<^vx;aU)WszKFJJH{~zhpR_H z7-e~`ydXp21yA%qWK*n!!o6MH7B8I?Yyk4SsbQhY2WIYGgJ{*PLhKTU3b#6&YlLc$ z3&P4=_wYI66X6!LPYlrrGYTWs@1eYX%>Ozky5UjN}VLDQ(B=>ekUsM5R&!?@y0pK zr>oB&)E&XZ5UPns->n>j;1qH6Ol2l-LxdYqdfL`IyrDvg`9tkV-;~DrYkRMAx6%XC z@oxUpt(0E-@iG3PhYJlut^twXn5>G!n(pY4k|uI6mf3O_tbcR`(E5-ubk;g{_A$(4 zZ!Ny#X8X8)i@1K5A0iJ~ADYUJNSmW?bOh^{6no~Ag-ne9mD8oLVdGJn%n%b7&$o-( zK;d;_EYH&tu1G>qwum~dBP5f5Cy7)oLZ8?BlPX&D4s#M$(iW`74v?zEV&c{dVUK7O z2AuF&VJP>hbjfTSdxYT{L1$j~vR!=?iGM##4qO%f5@t;)#UWsgR5BbRTW50<^^&zK zzwH|wLayNuX;$I@m48G^Gm4W0wqyq~P6c6W=*i8yt1`F*IZ=3@t#g^g5+Y>fYeV zApeP66Z9DpMIoueDRU&8lXdvZbwu5A!$$E$R48QE<)}VLes}z?|6e_6sI1`BCM@I4*dcIg$5uT9<%^9>^ggH~0&GYVkJ1BhwcH66ihgHR3UyHW z8aCE`!u6$O4(Bug)A&!QI(DBA=H$M4Oc8nYh0eVE!bModd4{rLR${;Q92u;H>Hp$Q z%qx7aya=nC-`H`4C2Zgq!&2v5UeS{ejIZ%x_5~s4a=>R%0~MZ5&zmdp4Xg!eWErRo zu7(@W$lGTk2I!o*mDN8QQ}ZUh@ef&Ksf4!S{ccmdoaQ2#@RGt~2jAVdlxGF9+E|n0 z+>Og_1%ic9gcTp+MS9fXny%PFO~ujFNA4|xC($K3xq`M{-a(Lus1ps*d!@qTx~KP? zxJF#Ym)BRK^!Y5AuT}lhR2Utnid%}}k^~Og(^sLkeFBx% zy3$pr*vdjk za9ct6@iks=jIW14Xa2j1duBYsh^Z*4@79U)y&KM)Io`DO5-$!4FlJ5tQWh zg$OU)Zs=yPU3D1~d(;}BF$4v+aWxe3H7aJr!;H&A;Ge7^lK6eXyu;fESOI&~N+5+>bwhV0G@l9uWted7t3%!}rh&elrJJyGysl`Q z3Q3PVyuUKztpXI-l{iS9ufDHA3jlE}v?u8Q?xxd%Y3CKN1ZWiaMA>Ii@?T5wBHEem zk+42${R_n|fhv5JK%Ij6c3V1`J>g^frKuX>Y@AWo-7J?thnTz|K@=PTOuEI$w3wP7 z;lH3!=$6xy_(0=gdzV|R<9S)^61l0Cveg2xV)gRcyl}7sFfm1B5uzxf^6wj1gBaO1NJbo#0 zW_u!-gbC~dPyGM@pstr9kS~aY$uw4UNWB()7jpT4Rpp5_dmt16U}OEjDDNtf1Ojj! z7=s~jc_bL1P9r*{lIl&A(me)CDVc7-X_#YykGmlharykZZCa@R^jw^iEdBl+l|8**hzrQ z);Y*}YC-13C5IwAM1Mk8Hzx7?GxHFo1z>KY!L_e!$oft|hNM#YTO^~>uW$8eQ%{<( z&zgOA0ddH{Gw+#-xe>5FDOssq*@7$)%hDKuuyhUigoEMT1uY(avr!kvM)@ zWPVE_i*!)4^Ke0ma&U$G_RsUY^xnFeMZ7-zx#VGV+XqU;z5aYkyV+Awir&{TmWvarL6Irs_7^-!rv< z00Tf}9~ZXl_P+NUw(KaJYYzO2P5!E$)uJ`K-qM!m>*g#Cuj%Cep?}r)mlKQ#G7WJl zquI+)XTBb%RZwo_Dw~>&CQhWza7$m2J~0N9uvURV>RZx>168?tMTDPN6^Vmcz*={u zNP8Nquf>{~JYlxHa4mvK%#v!_+$gI4&f)TTfUv3H>J@7MvKfOs?&yJZ4n43}go5*C7@&~VUi!P*4FLUJYgHyy2%ooL zq=Z*HL|>@1-YidkLUEuE(q+Mw2vxZuw)p2vrS|I0qpYzzzQu1$wGEoJwqctsO_q|1 zDBDnz!9d|KdoDf6vC&`UMjH)n^_7swELYJ=1x-lAQ{!2n?*#_J-Ox2#+-Xd#wBV|^ zE-*?ic7Cz6PO+Be6u)w3!Ct9+v8Plbd2kR1WzKQtit{j=gpFbJ--XZ( ziadezLZdbti{D`y`$iM$&t!k=uM^AMJ2dpIQYd$Grlx(C2wYkAlH1woJ{ zU%afA?ZRvIdch9tY5{~mGNwrzN`06CmRhyi?ePi(j3YBjrLO~s0L8h+MHKYpz>d-( z5z06$31SpSZXW~eIh+#+Mp5^(WRRXjj}y724F(Mz2g^?psDs#m=bedI005Ya0XB#6 zMPYuPte{4*Km_l%!_e$gDm*Bj_{P9Y@K|@f9w9lQT zg8(VBGF;i;FwG|r9fBd8s(A;ZGx=Ochzn-IFIZj;gh>z-&=?=}%26W4o#&Y)IKOmT zQZ4rLgEB)Hv)_Yk&J%LI;}1K#)l<(Y-z9F*U>b37xZ0RvB>QCoEhFE!SXroH(JDQ+ zRM9nI&Ws6@i!$2SG0M5>gAf0fgGBeOs{=#SlV!mGWfr8d*&duxA2+#uB6p^5mFIl; z%GOaFf)IYQg~T~ti924*2KI?rnHoPcVXu@?+oR5mxn;i2lwum*NnJIM8gn;z|6=X+ znr@r`klXcIKE$jlFbBW1mMt&6pcX3D`0DQj=n;Y6mKtEfB$IsP=i)j!!A11LZ0pHT zTuQYdRdVjXIz=8YT1SXTmbC5o^$Z{Y2oOT{&Kf__k&V%89S9-=$B?M(E-F7irJOU) z)^=t{Ot4^NSM8zeV$&99)d>dL#dwdC2N|oq4ilkF>PZ(meXk)6o)?A7GmXwPb?v^O zVV`Y`LIwq2fM8qsaGG8+N-nu&u!41OCj=F}D3`04%`!-k@Q>e#G5VXbUU|)mWkEzK zs^|cCM~glvJC`nL2ISNP)VszaIa7%JZF(c8R+35>836)09IVHqa0!?WJb|*jZMg=6 zNDp5xvg|+K2{T}?HqKF=0ssSkXsVJ26GIDA9LfQD*KtEgAs%@CJvl!p(h@D#x0vL{ zUZGW`&&^%{`&7HB4c{2KpMivfqPz6v;^IBVr>H)eN{ct`;v8fjk_cF>CLR0)RTs^K zDf83g)L$b~fVrbnm)(x-t0Ee+Nbg@b@|s(D#A4XGwGHDS`S-QWLeK+}ksY@A)t9LO zY3$|(BG5LMXUdy%<(aO$VPj8KXw_N6qGH?hB!}D^1|Jo!)8-N~hnv+8VV;p^o&W`c z5~r=TvXkSN4;vTEP@sK{Jj!#=I)}-*IO%DivGPy(r-BPTRekrRpq{nK?N8XHLZSMF z2~A}hJleS{aiE@I-39=LNw$UQp#_^ zAinO3=X9G&%N)x#hodw#4a4Vk^iYx5JmCVO9zTc_tmN&v4*_%m#DfF}G@Q2~fN>s)}`U?Vr8^T}J;k4U8uF zN)48BdH@2uq~e!dZ&H{5UqGP0uS^n-p%1? zv=t_sV?33q;IO^;PEJBME|Ng5qGk@KbFXnfi-Al49zpi0k#QNw00vDq=H7h6YA8G8 z+8oK6HSF;yv|xHfU0`nh)?l3G)0J%rr^S~E40>O%*gFz0RoS2*E-Pap{OgRx1eOaMenRlEBSkhV5 zG{+sv!F8Nsas+U!gfV=@>ORg&HV|?ab;&Ga=IVJ2k>kb&6em}Vn4%Gp)A~D*Qpwq&?Jw(1>*KYn&P!9seVlIO84Xltpc@w>jhY+Xyphm*% zRhZXLbHu~tA^+EQQxdH-vYfO1qC83B$JzP{$J%Ac+_P|s%Q?lb`UOBxMWoXODivBt zkt3o6sFL6d0++A%5}XpMh%>&=W47E0)vX4}L``+-1oiQcHcWN`B5z0~>?K>NpG?sD+s8j4@k+)Lq@3Yxu%T#DX`DJJ$~o=kwc)_s?tJj@YJGB{d3;ui5~HQZ!?MB1pk@a zxprNeHF9yVzd3Y%vxh_Rit7{k*K;wHD6H>vB8Z2~?^HbysXQhG@fWEI0xDqB93!yFOlCykASl-p#T94C1MIbL}V6fwC8gChA(0A zfW2CUv<#gK9!=Mb%i}*^i{TGntEy{^tVyZyDzJ0{K0mfg>mM6)+==L~Kd&r8wZzyA z!~%`)C=#hHY0fTh?UtG*vQ!mL@Eh4oR?A{Wm|Gw!-;_z?M-sg5onYRogeDe|YPIQ2 z03VyAd9=(aBF}6Bm7`6W!=!6%ToD_P zHlXT2-E4_c{%eH3^ZLX7DKG#4eac_#WigmxggNks=l=@7&K#Sv#>TD%#zL8Q{j^#u z$O2aqp)`XGVW7QXU*;A_k5l(an>Y^oWcQXHuWa@Ri@AZmn*TR)!tpI2zC}dd^lWQY%W%)AI?qn-1090ksGZGY`GWszWezPGo1-X?7s+Dth;k#TiV^kU(79-qCM(^AZApCu;Z=rH{Mrk z58O|BtQQ74HF zf!%Ii)v&xwo;Is|&hb1_kNd%)oKn8BWKV6%)uj{A3xZAlB}+V)tsiSL>Glx}t_0v` zXjmfP0pF$E+O7&B5NnsLUp_5Oas7}d&D)(nw;bnTmF4%n7PsT1?1(n=8poG5npK7# z9k(<|E~&qhz{D;^=6&qKA|iiY4y428_#=oHx(RdWwjDePAEXV$Vd&207Islj7w1ZY z7fPtP;2`TuMR@^g23Qh&G1k!ZxA-K85L|c_Ni!z z6-316v}|vd(*0*9o2T{+%D7#Z*n&GIGPjasb)P@H0{2nWj&D|P*sy!@ZWz^T{?Jxc z507jp5GVK|-+X7$GC}@VBie)Tw)Icxf+`U!+NdzUwaJPuzEba;oL=e# z1UX`s9M!8k6_q}m`%RO5J#ebx+TI$K@^%ICqIQ9Rmc9N7h(ca z>y0Iv_Dax5`=7H9#)|gfM#yQt`yL4& zF0(D)Y!s9{SL+JLGl?#Axv6uAOHFKp{O1wC(D>?oz6<8(LCH=x)-x)G6FW()mU##yT1^t8cGRn6wpYfb9uUILm)47w+=gU?) zqsZYCY;2{gCX60%;(KO_dL~lcB9G7Ja#Gg4-s}4zpk${X`Z30z`_~Q$Gh+dqD`l*K zP@mnVo-<&4p@-Ew-+jNzg-ey_K;w2t!dEwMsQ<(bfj#>a!ya&Pikino zu}vzD!>ZhRRP)#C=8IA}v6DGy&6-@N2M+9bEzmbP9tW7EMG<1#s>&rnFS=Y!MBCvZ zrGy|j!tz2F&y8LZv=Gu71)3$Qr7rOCid%qgQUEH- z7=1X`>c00FXKpIgGks>MV=rb0zGus$eUylBhmvp-96k ztcegBs2nUTwP#hWvepz;0)ZF84r*2V7kS2mvTdB2eati=m3Pq9{HuRsrE<%nzYUxz}a&XP$4}oYM?tTi5z`@-EEJ`QUZAvoc!kPKr z-RMo#^+flt@BA0OvB8Xp-6D&G0*A`hMYwS&b*kH;HlyDs9NRH`HQVd2WFK00000 z0DdAbA%Zq&({mM@oqNos|<8l7enL)6|-JIwO} zwtE9{hQ{LFbOw}4?S9~*b&VLjJW7CmwT+&)LkVvI*X?qYiZZ+x5pc_x`ophOl6PL- zOWiC7uc+vvOD9d1*dhqxH^>>99<2k%^IH+I;pLQdygAJK+X+F}GC22_9IYmTx0lQi zwGus<^z;MBl+V~-V{%w%-FXO;xz69OthPh3Rq}J>)6tpxRpC64p07-BY{|)Z1!&~w zXs?AwZ3H=lHvvE|?;pG9?nzY|P*dgQ!vy}H(ISV~y)vAsE6q)7;uwD4y@0fiExk@e zA+?!|B8WGKVv%F7q}w1QtIiU@XQ%So?oTp&HDegAM`Bz;vI}P$OHYhYo6_&WxX{-L z2Zebg93JA&tEH+No~ua@Nv^Q_k5kc%M({J<@a|qzv|(S^Cc_S!wH*%s@|u-qEQbyt}~v%!D!yr2Rny?Q0%FwdR=V+=&T z1tQxaqpxUGotm8@GuTy{k96aYT0F;FFaa5PU`UwUD6xlQ7oFjw<|gqg%8u%X|E#GV z>!_u-zcl>fDvLlb*)2-*i$Hfhf7jllX00Cxpv2L2HBipgi1SV_9) zx+BEys&jV-hl`@nJ>XEp-@5mydnJpdD-4}8)iob_+Qf`%^tp8J?}Kqo{@sU&Y8d0G z#HT+aT63yaqHKO_-D;^)91R6Pi<@9mrETILh2J+IWGsdXZ6HY?A#3Lw1V{Qcp(nLV3 z!p6oBO8lVB8r8u}_K0Xk>n^g(F-Mm@9=L|?-=&5ut=2KQ8Z~Ga#7O~ z8HP!Epd=Oasjja}m*ei-h(GG_#mQ#7srpR2OgJK0G{gb(b`5culXuzYq;3W*AKK7?n zo|50L@Zcq)REMzKzpsDr$1tzqkz+o>Z#)IS1aHl;eaaA2#W^FdGJ0WN%WK@@-TZfu zKw0XvS|Bf?_jZ6g+xb6El6B4>%0pe4Dzb+w=yfT zx$0%X+cp6HXiKzvd&>)vlzd*>?txgfs2H%jC-)qZ_*1@c?!p=L8^+`(B@{#L5T*Z< z9k!8T&~ADcprA&0NLnrVZP+QreRH&=3;V;!W1tlyp&f5N!K~h1m8nkA{C!ioJF4SI z=the0gR>=o00i;wTV$LK-DVhU^7mTCVT7>wodCwV{CB~^YpdeR$d9Xi1JFwC(z2`t zH!4kn8mRY8$T)@S#m7ymjdGHuW8<%XhZXr!A+wP(Imj}Pi`#L);P#BTFYXPYS~V$# zp#0Euxk@C!>PGXqcVX}h)i!gJGlNz1hu%J%g8tzD@#}Av&Sclu;)l7JN;i+|nA@z> zdH`KO0cb)P_{^?bda3GjQEC0qzPQtbB~;=cMFXg8(Pkh&N<;tvC;oimq8IcTrSy#3 z*!V#I`_L*r-6Qxg*aSO{sA&1$3sIk=u-&>Bo?qM|V(BK0)udOEIkL2?u&)9DYY}L? zGPZgP8#Ev9DsrlIZ8`y@Qdeb8+6#lxUq@UI-TTZ|j%osMy*}MNYAV0w{JB~S7H&~V zcGaIKBXE@c@^Hx!Ca6zVG)PjsQ~Dt79>}jA?djdaZweL$V3~!qu1L>3G0%1pmaRW3 zsMfN+pi^-z^NSAv?9%-YF9J6Z_go6u_L4ziQB0s!p3gZ zpRkFy{2oEJsO3PH-A>S7fSr01n?eyDx%RX7L>tX7+U$nxTPr}$H%2( zKkCOt-9z%u1xbk{ys*B106zB$euQWq1eQtqB{yelvx07&+wP=8PzKS}Ap z?PvRP$M1JBr=hct#1Z5}JJBYJbU21$#k^6sk2Tot?X>jYc_(McQt!)Cxl~X4`z1W> zMLKjygR^tN_pv)$pciPFtM{4BfgwO++~}@l4_=#vR^1SLR^Q5h_eJN!rqb!FiJ}0> zb2V!qo&=j^kZ|fJjl{c3*6jeytpo!_SH|q8Bg7y8t2t`fD`+P56VZBEh9ib#Q*$Ws z&6(?Qq!F%c!_f@s!%vF{YG59S!GmWcKhoA*D3sOf1*vDL1!(Gg@%ok$&<@t(V<2LR<_WQeG(_RhbJVa@rhGv&8Z z@uk@NH)jJXsa`hO`rQwqc7j}@D}u64#~Hl;kd}74{(1ZMX=GLJYfpk^RP+7--}`Cu z{kKgi%vnyh#|j?-EVXa+G}Uhp#tJM(nV_7A~9d z!o+41Tuy)JCN&Z%srGV*Mu1l0FvU^ne&`Dr~9p*@i9rIv_19n^Qot( z8;d>`(zO?V`#Zcpb*FBNYpX`1?%qZmRI$2Q-q;RVF$UltLQt0OAa;Hi+X*^IdnhC`uxt09jdN>pqH3LQBO?-j$d6}NG9A|J!d=okf*8o@q3BiMw zU9R-}ib+i~?qoJKQjdkM zR7{Lj-2R{NtPiwsZA+FPDtUE+Z<6^Vt5yu6e3ot`Fm|S=X~M(lp}+-EvYyRMHp23D zRvtbh`Fl1xbV1RpsS+Pt&Y>JT{81L}7BrrN?b0xe#1nxZh9tzxr-N$$$mZPy?F?HF z!)m20MWw}2b)#k^Lt`S@5Y*HjjD8+%$-bNuZr48IpvN4rR)2h3k$FeQ&AIg1uh1Vr z2j{sglsJi)nPR_mV8Z~r?|v;eAjs$RPkV6ZauG_uOjZi;48Uwx>Qc_XE**X?(b}^R zDttLFrZw{4*Ba5M+vfcr4L5z$ptdAzMZeLILqg(M_?Ic(D-wcGSH+_HM4wxleD9*; zbFoP1f)ZVGS5v85emsrOse(Zjkw0)n`C9rCU`uFdQ zCHQoy@tEWz5FAX%FC9}d!utL-&_|@c9ZWrTElv`S{4VB93h}z(H|KuFVFwV7Wok-L8Y`!++V{+{X3A2;m(I@#Ba~swl*6A~>;sl^|WlxLz@yCtyjkSGB zQATH|{2rm|Vn~#Yx6%yfI4-cZ{ZFC8-$zuvoa94UHqE5r0WBp5Rp9>kv~^3N0DOw$ z@c*MVyI~FAbm(`qT2}kne`o6kjmH;Ift)9IC&IdJjl|pL`!>|*EZzZKA|$rJ_<}{) zuMOon;u@c}Ie;}SQN!XjBZyV4^V0aMU$u~n$*on zSVeE!E0ks-W56VYNLwNeB(%*=D}yNunugC0F1_vVJA2s^xvYt@-e9P{z3Uasv@%{{ z-&`__Jhnr36aR9XaMz3o(><>&XLHncZg;Q~eP)VRt!RO<3rh0x8yHb-+MLv7g0&%| zKwN!R4KXCW{iCtulDhwJw=_w8EXzm99eR>#1|GjH-3xP>(9eGupH0ne3|W?Niu*~s zo^u&W{W-4HpHyzS!FfS^dyM{`>DDAu7qc2L)Y^crs-{ z9_~@pRR3S17s?_SQ&$SjP8Cz69yOdXkEF;*!TeX=rHw{VfM|&?UT)f zX9TLXb^y^pT2dv3^$H!ccM#=|0pB&qfL0EGgORf=o+uURq_@TTz~*-W`+Cx%y$aT} zDWq|}0gh`ClsWvkMDCM!U!&TzT@^**HgI89{7X?G|EIA^#$uzbaMpm)9viELx9;;$ zsJJ92#jq|dY*`#oPblCJ`Z*0D7v38KkA23c?qvQbNdI@p{gPLU>LsGsduw6Zd%Qu% zc*cnT*iq7q=sCY3XI|vq1D5TFCm6=XT~H{V*7wXHv7LV(a}hEJt<8s{^s8zAu}qdm zTEzjITNpX{jv0*TB%;*FPOFW?m#^SYA5dvT+QyKbLp#y%k{Nr`HlkrLex05H48|zw z9vd|anEzacAo=%f0#*($TxWl?F4~P{Od1zFXU(;I4WikRE?o7Q6VF zEqnH=mFa!o!FbVNJjgoB%_jtZ=WmRt0rIghWZQL=TdMYp6VS#$RU#xi*~n^%EpMf! z1YLE{>w6tekZ<2{_$d|5HXC=#1Mio?@UFXB79Q#H;IFGVN`qBI?=TK0g_AhcL|d+n z$NBH^JUA3d>fI*r<;Md3!J!4*kBNB}XH6l6%oeuD5S@mi7Eu_+zgKbR>~xxfEqyi3 z^GX+h$400y&F~&R+_#qGry^WO_{Yt`d7mzzB=BI&6-8aheC)#E< z@|^6GbaykTVNlJBgo-pI)5l~SDoG$=7P=Wbsd>?@A_QsT2-Xxz$4qMNKmmdzR3DyC zD{)`=+E*Gs^7@4q)j!}(1S2CQOBA48D-N$M{e@(p9KX|jhVtK*$mHWELr*WVyYO(Y zq2^?HYAw}+pBp37nTkXM!w%k#(`#)_A=@)J^}gv7aYKV22g!~pdg>!bHa6ApZ?+(o z5m+lpl~2X>|kYdLo~N-o#c!YmsDI0k{yrbQ{js;4VYs&=QvLR`mHPfCChL*ByCE}~WZzMpmcQ>T>f-#Z_R(;x>B48f|a*nA!WbQ_aJL$rmt0}k5278BZ)aq@a zj61&u>XK!^W|>uU1J9qE?a_?O(+fi|M`DnP(l)a^+~Eg;15iS!5rq!tU-k<|?iD~Z z?fUP^ExAgoBtuW1d7NhQw&n4A3k9IdAv|HY@yhR!7U&1(AT$(CB&&5@70UA=86e_{CXBQ@>D0sTVImnF0dQ$V{qlr8*#5lBT^t zpoS@%o5*6^(Y&^duv$yoq`+#=OOBrh6<2P}M?^3vm{8SD{1{lDu}Nzw;UiwL{$8^n zp}Rr*>3WM$9G1pk-1|Omuk4t%JFsXNnpJq)TjS~Q-y)`K=@?^I74O{V#{gapjyQj1 z=VTaupK+R^PAMz8(m?s-W19}?Y?7s_id^*u0Np;-+`TMzz}0wlyM1&U<%`H_ zL&bh)fO8Sl>};JN&OPXdjzI33_E%7O^B95~)8UYZP4Gu%(n3JW4cFQrLW#@gm4lJb z${SYf>G05kCt}PLz)Z>cNbowi00Cb3^G=2K)5moMRLU(@5 zNA9TH<=^9|wMe!nv2|Oq$U%Ytp9jvc4#GtV@atRY0+dfgRp42!${#CbZgiU-NZOfO zvp{D~{nmkTk{BoHidC5}Bh?cCUEl*rLu*8x}JH?xn{h1()TF3hVLCvt%wg}3x# zQbEL8MXfIQ__A2ES5{S^2Hd4qZ2Jp&_8Y9+-}Tz|$aB!S(*NH>**f(gbg^+9ZUua{ zu0xe#yghJ0LmCOIr*FV=diD=icg?t_WkG?wlsGS%iV<-bc3QpkR)iUTp1ZvrtgiwX zQrpi{*9B3P1z)n4jUZ4rSxGS?CaD)cZwT+^^@&j1z`%8HSBsB*OJbtv8?`VQ0hCSj z?D+oALoEuCq4Ce?iOR11{|s7u5bBbHd!3wMmpXMJK#-9bISX>iLj}m;u%kL{SA*%a zM?Ka%0Uv5p=%1d1q9t^L*4%HT@U;7#SEp$q){^F-iRXr2Jy4Q%r7dVAw$F#VPa}}DcRSCWNEy5S@^B7gGX^^tW@>;e+SGym-S1X zUJO~_xFK3P+jUeMq)*36io{ba7AhgIH`eq4li_WB%jt&|NwjgR5Jhl(I^-d+;yk3@ zdI=0=D&gkCxj@q8LSLT$@3c@VZP43_F`zVAOyC5McHfFQ`u+i^nwM?N2D+Zd+!o=` zUORzPA9*kFyUEPj6n6(6_>(5RNH0MIeaV+O4L{8dYIh;9W0W=~-MEv7t_5AzA#D;b zKdnMpM$ZnRMJRVi#|E}Aesufb-;Ry2YTg^<&D$j!kK*DmgBUhEJ7Tx;9>E{gxx1O= zEm~pd8Vy#cjGl8Aq*8`tq(J87uR3mmtY*{zyt76h5rNWkRdCFJx8kFU2vA4CYw%1+ zW)M5!9P^EgpD)9_I=~FC6nN)_a#D=;K}26WEdwE(6#T2LleeGPdRXV3x7)lBA7#ux z=+W?9mS@zT1V9`No!3f_TXfwh11xwo5b+gjF5^I>niBO5p?M{Nia-W}*3Ci#ai8@i zXMfMtg`GyCpiZmr#&-mSuR?xk)0_@#^BA*;PAO0qjr% z#{OhoSbC_?7RUCV`KX#68g80l2^|~xa9+o-PZBb9O+*}-$> zKI~-h9$j%L5D5-MuahT`b(nL-XUk`$uG+^K@jI~dq~vqL!dt5Atm0qczX?KXe#_EV zo1x!tpw&|M#Zd5}d5Qz*;MoRe!7 zT<7`O|E3q}YB1I_ngyQ!FyZ6vgSV4vkaX5g_XX5~nH?Dz1z0A})4JcKVuvhR@V-@) z%#4qRH*utD3UTZcMH(P-VY5@^Ngxx^CY1Im*jGxS?3TjRUMC7}rHb8%pmWLCg&yO% z=B%7rinA}4At1I7uB=+1T868*StJ@go4}{)zG-c{ym(K*#D?9`-BSBZFWCo z;`4DX5|1IAD^feP0$|&Dy|G3)R;Z=a>cLS}zEpn*F0(dfnuE+@ zvIcJZlX{6?sU2k7Fa(Xg=t=);OL4+?nnzjvGInA4l)w{d%MP(sm)vr-xtDP0nKPK9~{)YpZFbf9E@RbMknu5oGafZMAb)+-r%z~SJ1ev!aaST+tqZI z8Y>wDOpKNC%^q*Ra^m&dTUttCz9I%M! z&z$7k84J0WY_?TdkQk;{_H1j~$2wwepsLs^FlC5)HH@__#9|?D44PowH?{rYEwoAA zG<-3*D(LT7VaMxKwnOT{1e~}9LFE)6E(KnqP&=RX%O;9iicP)0lT8R0{7uuBC1V+G z^U=5o&C3peEcbAdvvP5*GC$NZX41k3l-SFY*6Y9Zof(e2l63@ISr4Bg2%f7KH~I6& z6KpSS&_R1E(q)%Fr73&|@E|NL3)c_E`JI~Z9kJ20hgb8MqVnO9Ak>$SeFF%*WgawU zUQ`f?p-n^My|!ZY?x}aQ&BdjBNbC{*BQL5wm=C`FKK8TtG}}7@$NKap&Xm<-_kr*n zCoj#Ph)jh6#hd`R2gHM_i$oA(Pm?*)(+`&hc#J}M`R6iSdxl5!vz{&j4!D)9|LX1n zUEbVeL8(|lVGz)P2SRrie-j7Z=ydof4*WIR54EO{9ab;8r?k%->kdzv(VdXo;}3t) zn)8w%8-El)UBp1>*bCpIZi>7+n)6olSUVhaJiw^<85M6j8e5V8H}$2htK@ zAlY1;J=F^~L!>d-+_@CV3mHqV4T=%6nQQk-H@oY6hSO}Y^;US)2~y@7^`rb!Nxw3+ z$k$K9B-a58Xev~yuilqEm*W8aB2|I02{&Qsn!aQBNWqY(S|^B%&bIR{_F$xUG$W*d z3{VuQWr)A{6~3+LqLG}jD${OKV@}L37mynQY=pz~ydByj5WOme64?mjOg8#L*XiKT z@C^7};H>gK6SbFeAso2aK8#CJ&EAJ;vert5Uwf{yDX0Q-Z;UQelDPEWkg1Zzl3N7mInxix6AVVo0NT>5N^jA&bg~ zG7$fV+iqRsJ@woDu(C`_+OcDhZ%#!Vn*z7r<>BTkfh6Tt_{xCxjg#MAN5zLD5SR!P zZlcv7;d@VOm&1zIt%)L}n~?7>y6t}2pSed)Hr=yhCCa1IhAq-NvKByov!PRiG`R zS*#oFIzX}}vIb|;99Bs99!4fm0s@dnYERIviYs*Pl<{=5+b`*)w0Uauw{8H~!uIaS zooi8r>{C7$1j29?rq`VhblX3)r+VPM=NFKtO&%P}>@y>hJg!d2L$2&I9m6+Bq4)i> zCTs!vNeU*rgfiYJ8z=j0l1IH`$@nr-hi1jqbxy=W%MnX`T5;B8nfhCx4S?5}*bA64 zv+kQDb&KMm&QzP< zYjAZQUW_YQ^BB)}Mw97N(Q!_QfrN8FiA3_^pPPMv>0Rz@tbKfQ`Di47_HJJ5K*tfV zQYHlra2`5S=-*?d{vCshYl3R0fOg;do;QWzs`YO zY9MAecHR!mm=|IPZlf<(oMhn=iVaC-Cv+*9hQ~E+IDFbMPy88#zk8nC(`%jJ z=N2MfO*3SqmJykwQ8C`*!vaJ>b+_WC3cW9WG(`Rh^INzk;H&WaepjF>xUO&CVA>uO z$;T8yy0nZ2C|`SFp1+C)FAsdP_nEr6&V+ggV@D%Vq2UT8B~^7d0PJht@0>s8 z!$xGK@x#*$BpW!aKV!WPpQ9-gb>-p_Zh6mR-L<5;G$@2;MXmu}iF4X{@4XJFi|a(u-;WZTt!-Gx0+eL4q_Uh2W>dSBgd1{NLC{e(HT-W)RvKaRUJ(! zIFnzsavRu+mbuvjhl0ULhP{$LmHj`7vpe%I&Sp);Yyh@C!jGvN+w`7mr+XW}1Y`IppmFvut@G~>e{98d2WeHH& zLDCu}9ouRcCzU&d@YF5-dO$lc5SOv&xYJ1BT)>N2)T_c-l>W%jpH5+H^DZ^t!(V#E5XSA3`)a|%W1$MTIK`wb7N{Ok%u1djV{OsGc ztzgXu^z>w8Yu&n!h?M+vN!%yPRW@BUIv$V^S=xV>9Mt)9v*2JK2a1&GhNGt{K;4MR zgAC%>{khYa=LvaXPPVdA#eA8WE_-=&FePb8n7?SCa`b zPYxj$y;iEwBhYsjJO1|ExvSUT!@2>_Tm}lfUNAF$-V*8|G~nYz)SrJWa!|O z=PQ#uQ>*ZBIQ&x@M)9AiKA2wGDB3lV)w{shmfDb#`XV)cXNFdW5>SHBf2i zf{Rm-MD}Ofic6x91^adAOQrR0W8fFRuzZxQ8t_OmF2E|$0;nbCJ&Z|TuOveQcd<>6 zyirk~7N1P@%(biMd$qbBO~oZe5s)QaabS&n*<%*m`=GC7dWg#P)i#XLA0dyhe-<#E z=8&b!HG5G<(b?i5oO0q?Nkw;%Tc1rq6VpuO;9A8xlEHB*eieRF8oTxC6rCvQxPFiL zl)+6+57mG*OY`*RZx~-PdUV=c*+jE5Kr?hD(D=fo+3lkeLmeH@y)_tZnqL{lb-(gB z)}}(vOB1MLx1HkBrW+=e05tuO)~-w?nf&JaBeAA|_UWmj=kB$uz3kx6d;64cN~5W% zRsit~RHF)P)PMwU@3Q3jDG+UwFrgl%1r#~8$kl8k&`XL zW8NemoQ4gIquxH`8^ddzJo8DfBY~K3+KWV;rl@lg`%&jPmmd)efMg(~QR9*XrJ;qr zt4_fH>-ER46CNUw1+cYNBl10i&ntQROU~|XYG8#T6WWJ!x@Bl+m*~P1#5}0 z8HpE9-lz{dl7>?<;V4t}J!XI1HX0Wr1Z;1Wf$?5(2%fP*^&PM?Lrmdd+KVste@oIv zHrKfHYXbGcy~c6b$ks}^A@RC+oOC?Q0R2`Co&6S4ByXdSFYtUtDgBSa>WKt9?p{-NVpQ z2VmesPkq3UZuKm<=`pTy^C@lc$VgrO*<~MzfHlp^C~6FWryTcnE3uu7Hx7&^&j2$O?%bPX+}auf=JXFbNF5H_pDRSMa9b=&B; zku4?jjvp#8?! z58tB!ND!$XI0H-@-b$xT87_G#>pQc5-Z`Oc)HyyF>9(245UpJs&eemB<;+pXZdq|A zfTL({n>je)vNbFWgFFACg1pk~6Ae`sRX$%ik0DU_MNUW!j43$mbe{eBPh`)Q$&`?1 z{eszBFkvdB6JZbB_Wo~!H#UiQ@zQ^fbpur9-xf-_S<4bCg&->J6#noCv%c;2_)7Nh zSJy7awCG(vbXAs>Cc5>OP#=@8F2(b6FtG`8DG159Ss9*3yAf*^MuA_?#riGmyXYqV z2)U=&EPP)eobt-^LffF8xGt)Z26DT?yv7ITT-|yL04OZB!$rNJ_q1$exkZqn-7 zARlNT0Z3i7$9Wbl7&5@P^~phV5~=RYKxj9;a(bz;6CFwQ&SMW^6Sv1=yXc{3k}({q~52q8JNfU;&dGGE}TQGL8vQY zTECON5w&(wjkbCMRv*We$%;h-*3-jrR)*=b@3EMPAyv%9Lrv?krM0iJJnX>kj#*h+@fDk`g0AW#O=2t$$m>3}fS?sCvqXH{le3 zTQ=NjA4^`JFb=~ql2lt8a`m!gdM$8R=h%S5yFf|r1@DUx34SI^D!qwR740A8N+Q!C#r`|E2DGxCWA$q&<& zJ@RIB4F0BM_idC#lBGcW>|Psa+k3+4*Dpw-Gz9E%MmepY011O%81@hV(*?|N8Ap`d zvRu55T3GkFMf1RSP90DVmrIu~-QG)x`CPoe@&WT~`NDx-XD|UGq57wDhj=aq^lTET z+7x;^c=K{dD=(G}oH@IoI5!>XUUzrz68>F4Mc!}OyV}=Qq1I3-D zJ!ge(RVC;Qlv%;`$5|0=czD-5Vl+0)X-ar`m33+1#Ss?FOyH z_fnhg&a*=C*b&-KUm(;hpXr6(d&lSmtL2^E9`1=Lj6D5pRHE40%nE zwDE0&0Mf@AKRPpB`NOpY)SruT%DD*O1Bf~G@QPPz$6@CV51;WVQXJSYAKlQ)5(&JN zl(YS|A9ZM?XA6XezACUlk#8x7ARn~D{hcYHX$rIG;Q@Mi+K&~fI}C;@E4p(2gN8LzPs(#K@2avyF?07s?HwvDw~{B7eJb* zGl%Y}{|E*;lv+|DN%fNzeB70IrgmaX4sd>`~!b^K4l}p zpK|BhANgsa5uoi=ky?iL`R%X?9?79r%I3lSm*IWrwrc;DQ8dDH9Ju@t>jj?N{WuN! z>Dq_h^Lk9$GC6#W9d&|_hhgjVEm{_0fo>2>e-m26AS^EttZl9_zWdvE>rgR971DhB z_PO!|S&5vSthy##vxckyQ$Vc0x5D2%5L}p6baFy~19)dts&7+*N&9IO*iIe2IZV8J zQ<0l#k)%Gb#9laQ<(aWv0^OUoG-z^ZS!W?a+egO(69NIgpH0!;V|ApKht)`To{ky8_8H6U~M?T+^ z&orWzoS5Mw7>8yNzS53Lt80fk3$d7Y+L3hsi z!D7(0GkB*H`&P)(aY$eefC{yF16GtXk*Yv;)ym_dpodk^iUJP1vo|zN{ng~0o~Lim zHb*)&$C?l2(_gSlc@OquuVDvMHkz!(6%tI8`{usHmTfb-wH6&8c9edm)~zf zk6e@w?3*mHma`uR=$5R|Oe@XM7Dj}M&=V!4+>JY2W(hXdjI87xTx@bGu zLOm~l3JO`H51!Q`*FIriJJ=bC%VKo}>b|@+#Wa+C^o&#A>0=%C>!R#UqRGWT70*V| zu?zzLVa&|QBxFJ@92L^=jg(e6GYHW|*3X7>+ICU6O64$mzou`1Vr_C=$mJ_-x- zN8sMLA8ghqOp!wW(mS#z#?TD}GK#-kv3$DIPI|Z(P<~_EdKh`Yz`$~VT}T-zjfcl) zbo4DSAc$fDjfM_SxY)O(fPTG(C+wm&ZZA|M<9RTW6h?ToDYsM6_Nw*z;^e}510~p9 zYpWBQ8E89PJ<86h<#!J!!+OdN#M7X#1l$?<&TSIy)mH* z8qdiEY%Eigzd#c~>r}?YgtA-|K z6|ap;WOB=RS#LD$lM;`nWu z25yt`ixPq|ByzWA*4^rl$$ug{)6cFqjZk{L72izEi9lA`>>x#dsnVC1y-)+x8>VQ}_Up9?A8_+}N ze)_>$S}1!INe~F2)1GZZt9Cn{5%~i>7R*yg8$ZsjpKuW#LGlT}@ViuK{YzxZFQG@*~%sFu6$eXjy}`orEv#)BWTn?(hAhh`HU9!q7)(@jfR_3d-v zPLqCtiM;Xbd0|Ng_G3~l)dKd%CH{+iQ8>aL&NdO=bK38~MJo=J;lFRtzT>VmYp zhbA^#M#gwrln?-Y)0-sq zK?M=#fB*^sk$MKTn+bxHY>81fd51eUH3g|oeB7q>)CCr@B-wnqI763vKhjQQ_RvHN zfF3vq{j+^_lP z=K}-?f9LD?VypuY@8%c#FYE#Ky8?0^)I3bX*}%{XVOFHaMSzo*c|;X#niQ&Nhw_s) zz-u!GtWHejtYOAg;^}g?mZ=2qqbs(c2{Ybn+lin_8hd^ycEjwNJBBZuDKpSMsE3(h zFInZ!3m;{l*IcXtvFb5x7t|0Qc650^wD%y3><5{n?GF;rJ>yI<=ZwXp7?jU;aY&lj z)HF{*o-m36EW`8Y2?(cAGiW_w0ZM2ZNpD*vyKtn$apm246Oefxg|>$OzJ?hu z-N4OVS_};@$IYLJt>N`3r1j=ax_$fi<`p%3XB%?n6`jm^Lg#b`OE@q(*c$rv%my58 z)jI+uqm_>Xybr9vysbTtnAMZ(qVHd96NP^ayxzWHaFhb76QLW6%W)D)MLd*#IiM#WNo&OQj$Xb686BhJ6_gK(pXM^=}|2W<3wO`kbiD#1z&- zpr_31^b5ob^XzI=d=(WPJ;So#AiAyJOmjR=P{>_+nx?3CB?xXU8lofon-Z!bjS=iZ z7y(T5>u$WngX6}&Hv6--RrGS$a)9bYlk?$o-+B0362qW|gu_~S>SJk)+-WOI{O{2} z66qpSs`hX-H+5cJVUYj9{}59D2h|6cmV zr3KbuIdYQdQv|CR;Hp&ou@!>fgK&EQGJ{|BtH}SqqU>4 z-S#R9yO+ad*XMme<_^8ssFjpRLd}i(E3&WT9gc{oZBxX_Y`M3Afjk?9dJ)i6$%s!b z2BPu^**0Y!XM%GnaU1jL$3{c&SnCHUg#&cV$>W+s_Px+rhX?~s_uwQ| zuRCvqRl!ird3^Xk?xq*VEm%^}{;ok5-*Bo#L-nLa@1v^))+KIoH(fCy-{nizHMvhX zB$o{hVT$k#=yE3@n@;J6mZ-~aTiA314&a^;ry4!PEVEJbFg(Q{j52(D2$)!(!>q(;b(ImH2`cHXCa81OWT#E?LvEc!ZqXA}Jr zx#Why(~ao>3f4vHI>oN=mkw00&xw&C>6$&jm;H3(lt65`xyTe;7=D38rCPm5X3d@Q zO4v6=YNAvj94D7&XJaS3uZ*JvZf&oS(5QceS(~LRGH-E#s$VTXAAQnZod{IdE=oqc znbGc=m`mQEV`N>_yN63Q*}iPdrOt_Iq^@8*nB8%*ib_d@%t>$8xRy>o?HyC~W;346 z&${en%Idoy_#MzaI*L#e9?(!ErJ+5*xVz;{iw$KkiZp-mw@zwzXvg+6*&jnAk-?@L zfSbq1yhjONs&OD1s|oC)h4RfEO&R69?0-|vzeKreafNWx`-oAg9Sy6Bg^6&vy1m-? z|AKT`;F#R8P-;Vz$`Xz^l_4`b-eDJFhn9j5ZUQDgy{-*a7>MF|zoRf)#lNt8n^l@w zpIHDR^+L;U9f`XtJ9b5VQ^Y~gxr{M&0 zsmm~`kJE$MxiUBB+}Oog=D;`=<^+oP03?1M(KZ7n5^dvA{?cb_^21}*#S$TB({E+|&%KsYg2liXi=S}A(qt=V!O^D?QQ3Q9m z&8LQtEj;UpZvVk*ewe)l#j|Q2|5lby^H&nMqc)pja(mU<9e6z_JT2o8^B84!FWx5+ zHp?kNCNU)g{N2!+^B*V~;B{jz~QC?}HVVrYI=Nez6P@l`4j|F6D?5`&Xq7+N@d9jw#@zE zGb+V4@b}-sbIThdBh?G{wNkgvJ2g3}-0Y$K#I0yQHir|dEp#_-D4N(#2Nn-%$(iA& z0u00BlbJW;1xrUGVcwKVO1bkIde1wOawMmPhmYI@Cq7AH!`244Z`8SkNRGx)wyxUc zDdebQpM;zH(#!`?r<|Z^>9aAhM*b;Ilae6~C6Ky;J_NLc&Wq*VUZsMNV_cPg-Trhy z_LH~r?6z-DxL6i_f}BkFPtNN|RIR$dhdN6K+#w)ugv!uP7y#F-_T6eZd21bJ3;FSX2e5cBX z2|tkx9WEr$d%i1|Wms7q%AYw-5MQ#Rg3IT_d$URt=)gx5r9P0 zjyj&kNZDh~E$tiaNi*v^b&Ws4*tC*%l~?#{6u@OrC>PMcey<(>R&$C-j=^X;|ON{gi4J)^V<}$OW~h*k=}p*KoA#MvI(J&jxAUW z@Cq=>wtB^)1^yD+!)#hMJrG3^)0XCgWX-O%miyIAtRi85x|$v>g(B#BQ*wyB16<#C*sKcahJ`a55!2`>sp@LwP7?&aYa7X;WNL$#S< ziJ#WuIT<^`-i7GdS3Ds;OgHk5;63MiU`8C3 z94k2C#Sw#5-m3mcF&Z$Ffm?G~?JPo{Yq4CV>Qi?%gM)rSIZg61xSAtTN0>R{8Z>7z zx5v|=|Asi>4`n5e8v9X7^Dqo~eriYDV$-D#4`}EyDm4m?d=4CSd%JN_g;DP2Bzria zu=;ZP-5V2FbG5Q-{9uC4SRbf>fb6s5#mRMeA1bi%R1ZfR;3RNP$T)dcz%7qygL08mluC zYszQ7dM#pr0nSd7fIW!UMbKHY5fDBDoI z-Z;0^Wx{!rv{8`0R*PROJ3q*9hKu$2A7&T5JjlhYN%3`{UsK4xPxv8qJ4<8bDy6C9 zUSTD#SmjhT3F+-}lTVxqO79ynEqA-ac3&g|>4VAlQG_Myt6}!dbRKPV2Si=+pQZKg zJJUXOT>Ap!6r)W<-TT(|E5|{qfO89?Nxfz5l!H{lo$#?2WOi6nY;4 zYxG%bao+yg{tKxFBN4$6bh$$r+FR>~)X{wIa<+#;E7Q+n+xVWBI)RliAB*al*v;I$ z$-|6&*&Ph^yw+tq`hj!?TST8Ecn8<|4|j~sD;1dzu} zW|IV0n>%D17~Ata)>l|cD@3I`EfPx*iHEnOSLTiSw&=?_$}T?oK!wOq3;GM``SD?5 z_gnO30!vbAQI*}Y=&dx5cg@kGW2d!nogUdtq6Z7~m?{E22z^lB3#~$u25O8kWBzcr98FYCx#)GtsK))I5~g!m6pUEL9um>FM`i+ zrC4jshFCTsD_Mk9l9mw+uB-v9oy^qVRyFZBhBqHvhr$^w$G?K#Yu;}EQ1hA66sIp5 zIAqej-911p=wT_lxFT9rzV_mka~K!~hg76>GXC`!=+LBnfgXEdc@_lOs!&ARUKIj} z;eBz+tL(V$a#BY^08t-jI4{)F9jZlGZsS}?owG(foUq`itLEfXi(kJI2+qW6Skr0G zX7=$Y*8|PaGb-&YBa)SA0ghY_Vs6sQYyvW1Q`0mwqYyQn{vrpBdd51q*x<}iwTm>Y zoxpOV?F#~|JLo=g&m%d7Rwe1E3O8d?LFxMtSBh9l4G#;_C(wV(c~!S#*a_$W50H$1 z^`dlT5m}iyaR(xg0CMGoAbBo*$nJNFmrgpS%3~t;%tLtM#5;&IoN)Mah#d_g4i$kb zOaljmi$JKZTdb4t=QgO=&omx_@^4Y&W2=j%7DB(z#X%`$ZE}miP|&*t5tr1SKPM}XhcWjtt7e$b5AS1ZDW2Kugy7w^%3Lt(f1Qzw9@Z{Gu{kZ*I)v$Eq zI2~fn2$|kSB`6@o&FP= zy@zuXo)k@D6}2S?cJT%5=~B4SYn+d7sIJs0l;VZL4D0!M3o+~ZioLO?`UJDi_@U5IvB92z@ zpVAR_6OVJ9!}3c^IjRQne5O@ux+I8n?b&r90pZGaFf~pnJ2gR~ zg{c67@FIP}tT__Akpe^V)KB2(#Q`8lu@T%tjb;)pegspD=Olx4O}^H|d8&xj`6r)CxS6HI0(kv}KfGHOGLLmNs)MaI{m3$mZSb-qg{K zF!RgRnnBPRn2%uNBq{23f4WaDOsQpYXV@*y2ft-t5^zeTobip}tHy|_^pagiDA9Ow|De6qZ^IMy}k^Kb^_H1CT^N!UwZRK9*HdW74pj)-=E3_h~(Z(#onZ zcz`6}bLX9;SH1CC2-#w*Wc!e8b3&{%2R0;|4E?P)L4>j(lO=EKI~@Et9<+d0Eh62B zSNPIPSJUBSq|{y+{mO)`0B4ivPfeCOevC#ia2f$O=YB z7VydN1c`g5I;3vxBs9iy$!u7DiaPNMV(o2YL&U(u*F)VCBjW_lrV(I)++1amBS(xX z7l~*)+&dgmmtW$|i$pZ?Zp~~5^_|nIV|gHYm(S)|k!@O~j5#jLYk!K*h(Ge(L(l|b z@~5V3W{#qjerdn~+=Of>aqlYO+;_RyFoatMW1MC!Dh@@>#0FQ)>j%i*!dExu@2`+5 zxh$s;J-W*dZCXjjWZ%%IfVhj|;f%&uHgL(~!kP~yg7Q@GQ_GPVflL6A`vR|?#G?4{ z^iz&JN2B5BmCp{|Gn9eT;BwHI4NK|-SKl`@jAGj?W6nUmg^JjtSx1CHTL^VVfNulb zUtfKEQ@zCqus%|TRX%X*Bk*sJno>|7#gA`5Yl~xRc6LoYXF+mYT0jD(%0(dT!nW%M zrrQpG8(cFdBn8g=-7>|T^9lQjmUKJ|ZvBJ&p+dYQ zxEn^74vbHKpIYt1Zcj2>*P%^G;k3Bx`g%VYg*^QdPm?=Qu%h(5`U{=jL(|56^ij#U z(0he_xa-#le*}$r47-K@g)TyKDEOl>y@5t%g*p7Omo+W=Z1(*-pRrt$IxT?N7#)u6 zHJ;S?$Stg%=MS~MB-t^Gb}D_mm0MywX-H-!TBC1FHJ{{QJ%2LlHxpg)Xw#u^g8itV zj~{tmA>B}n7X4k`LrAMe<4XJxJ9ubug%sP2?<}tRPZYn5d1yZ3apI`&8NYYJT5Oy? z@AC4P$j#Z1`N*^iEJcV@f&?T6F;|MzD=@0B<+pE{sXY%?bwbYI zH&$!`8TZ@w2V2mjWk#7gpvv|~UiJ6)r zxO;i94PLy3bPmIg7ZdEysD-P0_oG4byb##-!%gkAkhBng$a9&i&7}?k0CT{2$#ZDomihdOl?H)CUrJ?qwA`6Dd7HS3WUYkRLy*O}Aw{ z@L*;rID^d@ewGK>js>LL+_{>OuWYKdUz%~{(J;!-_+{vv>^puy@r}C9;lp6J7(Tr| zdCW?F%tlRelFg|Q-_aWHL`^==_TJ%~RQT$ogb2e{HX;z0inqx_? z^?>dP-VQ%__5=_vVPhcMpSTps@HUO`{*kG4I+|dfG-x=R)NIp#q&p{?IxUv@g|O!B z4Z4SwLfW!jwPpp!Lxj{&2_R4{=aN;WQm^$js+rw3=u`j`YtOumW?Q6nrXRo9Tq{WN z6#$3rrR6Zn3jR9TWMTfK5%K@cj`m_Ss9PvTrJ{UgJN$DmIXBKeBBTl}k<5Tuy@bXt z7rFq#q~BGw3)F%<Eyjtf`r9k>QyDZkV*)AAf9|&&s@$}3`D~^^RDKt0M~}*nPp-s~YAc)K4vtM` z{ih1)%hBtJ>mAH2yIej;alw`iyL0PllvTOYU(c^OgOF8QWF+w|j3Seabb?iwKV)69 zuv`kE08#{ul|Y_h`&bW8W4l^rtq-3}ezaR=3$pb`^3cf7b%#y&)#Hx%(I1pB;uG~` zk%6tSC*#43%Jx!}RK5AU0~Qb)_O|Fn%c}M&o_-ty6*o4!f$!eH^INj~cTd>1_A;+s z9ho9;HKj*L2{iSckGj0}fTr5}N-<7U5`j8*^(u(PL4hVONYW&UCLF8qeiltjn`flA zB^iCaprk)NN0$J#Qq-Jt?2?%9Hc-0kIbp|DJklQJdHJ4_Db|4epd)kD^m=NZg|7 zZp7BpoJNDY=gX;HLRf0vJ>H;dOkabz;Bw;941y2Y04lcjBjaNT3*i_N*H!cQ?1(>U zBg`a!2tO086Yy0Q%*CSvkGh_M9xD8v;Fb!Gy!Qm$LUMWMPkoFkf$qgri&EDeOK^9f zXtHf(sita!Cwp1fY`#Y_qyDM(?2`=G58-MJPT1s0D^C}T?0lVBvW$}e%$|AyWl#otI6c(BBqInoL6;CDGR5S@$kq2j4O z4iIcj^pHoHE(Gt5N2}h$<&|Fw3EmJ{LXWD-i_7oYJO|mfAsbdk1+30-b3SFD+X?Zy z_QoKCg!!~WIQmqKTtz8S2LR-M)xY=#&^CqanIa4Ed`xB5{ikt4#J#Bj0R3g6+xqrxqDpcRLzhV_zB~|SNoeD5S zcSeZoFZm3KBS2Hy2hzAiWd8>sYH&}D2b;P1K9uY3hB%Nfrd+gqJ78i$`BUw4ToR1r zZH}I}VZSOvH&%fZL!SXU*o_-Ug;B6Sj#FY45rmfyO<2${xE5Cs>>c-hEG71`O0y~IvAqL?n*h$h0dz$> z-yp~#^(1H%fKMR?ql8v_7jTFdbPi6KB>q!fr$UEUqN1WcI-uzVZyCj#~_(<`9%3Sy;@20M=-`&Ik zLV-&yS zU46~@);uwqzYX05m(RX%ny-AAgPmOjJtT1Mtp;Z@yIor{d-yEKqB;vJk&V0Xm#|j! zeW!1np_JH@hwXLWw8%pxYB;EUIJse4GfS)`WwrI}}2g@s7uB>DijpZ;i)DNMGK|Q@wkg zJPkoYiZ|fxrH|=B1FmW7bB{RGHjnD($gWT_xPga)_JRn_eBu}kc6+SN|?0?3+bEAn@?KIB@m|UCaU?s6ni*5qqWi zfXG2La)7<9sHmUcNs)HpCmk+>gWa$vA&8qonH1F_8rg0LknhUD0U(l%{$A%GW>Be<^Tr?`VfszdVu`leU97bCDS|>hIqGT-M5CIRi5h6pE0Y_Tj)wC4A)j}L z{p2wx5tM~No-Gbjr(l&MiP7!>*Ho2JHKWg7D`O^1HwNKRJuztQ&-B1vTJ z$7Ls#f~$hXoKx*_^-y8$~?}V zSvQdxw0RsSFFiG&o+cA`0rUNxmGeipiJMZH?eR))rrS4eywYZ{wWK>-843JjUKzK5 zF^V87IiXV_`6J#Vq3jbM-PS^jb-(vnPk3in;l@IFY3Mtop65@mNZFC}j&4@=T%m=t zHYr1;zOrfB!UCGHOQl3*8e!`M=KBuPPJeaiR9$P6)2DXEJRK><}C#O zX7+*Vdt5uuW@qB-o74CQp+Jv>~Cfc-AwUDoTfU{9ZUd%|GU!tWB54pd*Zcv|wO? zjvc)?Q4s)rs61l^S{vc8LWcRd3^Kp5A32|;=4PD}( z^-NOwM?b|bUC<&7Wii-ch4T<4rZd)G_{URQT=p9M#oZ|6blvr7;dB)k1{zm}Z%hz9 z;n0a@1FySB_n)sU0KVQ0<11MGYdHby~ixPhWNVBF0y6L{w!U{Br;X*UVb8al=mtWra5xM)-uXu_lY|5 zgLiC#K(?J$I0c4Z>ZY%!3MAwrJ~`pJUPM?DD)gp7NC_wMI_qjuGlPLsM%j-O22DgFW- z?IE0H1F|zTB)K3qO%nL6ewH`u`WluN&MUvmeg@=G8xBgjo zl}it*Vspv-2JZZw&T7o@!R8U9b`WWo5{#L+j@5rH{#^1U*y=wVepzWajylvJQX!~q zziEyqCOdb~Sl*+e83{%VPo4#+6e#&WZ(u+|m6F7l?Tfn*{Z!E!eZANzC$Bs@ciUFv z=JS|&x~V#|{IL!2hKJe(wNJaZEevzO{U?hpp8~d1V?DDAMIq@mC28~q7eNn`KucM2_!s+!1vLL zl4_?alnSMoX@>Ocqsr9oP1S<~Y8!V8#m&h(7bRq@@6pGVxxO6;w z6J?An7(-|Ac=n&_`@Bs^Nyr6=HEKedyEb6~HTNm)OPITtY2dIr<;B*C>(oIsmEAiG z+M{i4Ko9vAh)HxR>R3Jm@ge5-N#P?{2HzG&JJRiP${IWw`1t`;00Yu$gV`t!(A|E0Tya^&q1nmm>e#uKQ!yP= zqZAoIozp=0gFgT4XeQBX65hPPCYXx4?xAnc92dS~7&c};u#P0^PMp11UrQuD*A!eX zzl*13l8vb=Kh$!=i(?9QGP)u0tT}v-`#={#nk8(nR;yl984+xIxA?7|=W_5+MPCC+ zO@U5>?0%(U|0)x!i4Hl-Tdin=4<)StED)=KfG$SZ_4TY?E${*7KiTe30gG$wmSqmgI^e&ORblD{CHE z82@m5wKLo4X~PS`Jh=BUW?nkeRa}bqc;$Xjs(mN&JxUQG|L-xAi;rqjT<01a|AZfZ z=+kvA@<)3|7$lX)x5dAlKeVvF0178YMF0p2|3T)@w4GP7I^8RN)xa08b!m|U7XXn_ zHRbF{g=vamc68k>h#Rc16i;5P!B^$0^VISFGiSZM1?rqw*|!S{fb%q9X{s)LgAM@P zr8B*c!gs&a)na-|-vj9;@XK7!Ly!hnV6>t@?Fmd}hX-AzbZ;}0k+ATN zo*6gLM`M%!+Z8WT@X1d`V?IgPsmQYQpPh^4ad(=_(U-4Sf{DW>NWsp7FVJr^7Y(4D zPg=dwu~T}QEgyEm6+JNvG^L7EJNoUa+G)(k?rVX|Thn{aWU1N;?b)J%tKPe#o!sWb zr9}umbamb(Y>@bhTq{Wc6ui zW_aL$$dI{{=TeUqLhD&!Q#6xJ7AQHn-yXo%r&e|6tmq%nemCf%)b45HVt2{kcWwtm zz3BJBSMR)=u)nSCNX}tcq`~Wq_2CplcCH`z9_IpFFQJ(dFCXkW6+hTS{y&-UYRSe< z=Ge|AY<`He1T{1!)&|$^@>O?ewU$A+xHsspv8pn?R4-Ui9o3`{jHuh_hQ$$iCrb;Rd~)kcGLISZvMyGv`9hvjMzetUhR6BeR@ zMvLhV|IYgaC^u~lot+R=PE5gCj9r%P0-_6#WvQ9lv>!~WM!4}N1pkMJ)-&3>@rXUM zEANQjMjoq?!r9Y{f&f%VRkcC*5mkFnFbFWT3!wCljIP%~Sz|tLx2<}z8@{RYW3=?v zTQuSAC>QvfOe)VsG~Hz5`@?*~o0d(9#zWa~S;BkLwxvOTdpq+E@i3Ce=Q)PcF=rf_ zC+3NA1j7QdZo}8b@5RX6l72@ADDxK=w_(OyC_lkd*j66f9c+JWO zh9~>9oQ&D{nbrxwIrcOo(UOGxHN$8(4;e=}31P;ufH#|Xo8mCwF+K80Y_oq@=5~P5 z6Ne1_QAOz?+aP2G+k0G}$ce|xaH>j{V(t=n(SeAYWTW0*6WVEu;HbOO?i)+2bPl8*m#MN8WX%He8 zBtdN0_bU(yM#mvGF*CL^g&mpMKF$Y7j@9&wsM^LF!`@m$5EoG+3qe4v4L4bpzWEXQ zx1gOP>pkHUR3&B(N$*SgrSpYI(EioxK-(E$4-jU7=U>kYPscRX8c62A&#yhWOsRL7HA z!viyHH)D#3rwn0@SWr4ZZRh5{ldQPifLH~Dl1UNZo}_=BNKJlREIZHtdgL%bK>dU) z3?PJ@mO-P4&J22!EARF)MDpG>4}GBI4;I6SJt|8FwC$bl+_MbZa3E%4dg1=bC2G5q zueyxJZj-BTKLrA$j>^dfX983R#wRfDrsTkHnxQwDyUVo-&4LGUH*mi6l!%6gO3db@UvWd(}xxDwI*w^`AW1eCW? zLvY}k1|jIp-7UE&K6!eNG+(&46tV=luX~9_nY8!+;}yiex5qK z#5^xrNSA4#Dia`>IgY(HU z@$Z;&Q&ScU5`+{Oi`;qb15v(Gb{+OaG7aLv%g>}K*oem1UGP^-3F10joW?u?26D1= zs=R20%3W2rrUaLr7&V{*D-jV=I;aXiuC%g*(;ZSjBs$wbasw zbuU1j{chymwVQd``ih0EcjwTg^PX>KeD;*LmO(BBID7eLNC=i2)N^9Ln=)%j(k6 z2G*u72|W!FQt`x?V)_Y2=u*&?Z%J(snV(h{ zX+>!S>T=QK3F;-LC&dNd<`o<3$^_h5Dn(m7jV->x!dhAY)8Q-^xsLP;lTD4ai%|C) zsZ9#u9xQQ7f$8fUVOBDai`#kA#Y6BOH`UopA~2SC{J2=nYeoGf9yJ=|l;gNaH{vNr zsy5hbiKRuH@TMA?(}D5PD)b;Jwl^%!HT2AT@5tsvE&g=&o%EC0KmTY;V-mxe5cZ+G z9D|I|Lm@I?^9g<(f!$Kme+D%$&_UX{M<`$F7nM8( ze|D7)7qxPZP&caL8<&QZUPfghmiUAVu}y+F3J=w|)-6JRX!G8L zsoCx(0m?=7=S0fBrxW$>ZXa}(Qr41l5GH%B6^;MxKc^~D14WiQn)fnKO`B?*AO>?C)Y{i8 zvaa?3Ae&2#sEm2hmTu3ATKQz&(V`4-;v3TbH!odyb=6!-RZiM{BJ){ zqx4Irht)BbYW65WjIXjBV=f^4IJ3BuZlN=^*yx|P$N>-J9{6fGNJ$!(^0u(x)9-)~ zS9l-~(qgqQAqP`UOu^c};ND1gpRCHr%qp;5=zp%3kR5LB%_kAxN(}p`rHXJ1 zYls3r**q09U8Z9(_1uxBV(spLyEG4lZwVqh?O69J!?Vr^G{#OVheGJ=~J3*X_!RP3{A1GlV1;Ix({xlrw29p^z z6f99fWgl(GM+bhm@G8+$oCc}4crQY%i~WPaVaTlpjfylB(lsWOjQh4LqpD2enb#_Q>^DyNHIc2UI5EZ5L8tO3x{!vv1 zbL{)p)hSZm01-?DhGWm;DT#ie{LR;0@Xz?8QzDn#-;-Il5jDTeeUClzcz(W})T<@0 z3(oqC8Grx)nr|2O1OkXf&_i-{=AeR5I0fJ z#@81JspEt$ii;>ggJ93Le7dVGrcH|uKj@dSsp!gP0^c4tV%Uk}tdu2?6n*f1<+O6C zYOT9*bDzC5gf;UidH(Q>y~QZJcXx*X(uDgBgmsbTwSzwp*vx1<`H~AQi>P-05|%n( zDqxnG;B$*NztsDV%>O4(0#{}Q_B(?IhS6rYhfgSdWO&{J$_2@ctQ(x(ltm@7Kt_tP zVe>vxq7Vs!z~)WaKrD!L-RZ`+Vg~$4so*5nWkTyO$1GSOS`gjVtduoiY=pCIcn<*o$AB(OC|r>ZBXFv$ja0*eOWO zkCGa__<{34dQ3t?@&r>XE;WyGi1<;{90T+AwMoW78?y?n=~%q{vBaG z?vK|i&)?V~7Ne+$RO1zXANdw1a{ML_%R>Xp0?|zXjGL|NNQM9oRmM0|uDil*`lbK? z7l4X=-Iq>fAoRY)$4f`h3bVl@QZzbU$Db7CB+}P0nm1}A51rW+Ab(r6hsmbVQEOX9 zLJrCcF=eYOIRDPOBTOxr)}QWCY8%rbz}~8G{{>6>&Im>1M=1W2(u^9zI9VU5or$eV zcrHhl*ZEk05QgXs)zle0*5Vr~8~YjyIRw3^?pCMip|K?o!Use&(cyz; ze{IG=_J7UU5s#?b<7VeinvV6hAla~^NJM4QOdgt2v8GZFf+NDPTHWt(gkRS8j#BI~ z2`%gGTQRK1XMW|dO;flim-}fh)k>*$YU4VdIzR-$L2>ClqUBa#vm>iSrhInrPtH#s z(^237wH-?0va0mGC@}Sm5+nS*|4_2I+SItiqG;JG=>RU(&xNqXf4fc|2NIfh?45|w zJni@rNNbC(Q;wbD=={LliFs_kkwf>>gx^TZ;7vwjvklSG&<)uxC9uNEF(;0FPQe7o z!aBTI08l&(Zg8?jjpGWxt?2$n&Fwzhj2vw}+IenO0SR&+ zL2C47td&5DP`RmM3kxpz(%wjxu}Gll@n{7UT?v75+mf#KFcTnIdd8wZf$n;141t;c z`vaoB6}1rqQ6V=vBEJT;e(?#&1ixR65?d{h;oTkF`(YMD+Itrg!&*>6jH%XT&;b^C z&Ydn+^VV_IdkU`3^@x{(i6#R6r5uc@3!5)Guf#G};Rq&4x1bDvQcv*}rQop1`5*e! z5zEfuuw|JyUVnvO8DZ)=!25>~m<&sb%~DE-1(oa2tpp-I^&E`JG{GJH*%+BiWT>yf zx+hJzWi!KCqIG{SAkh1S1qk?=#_NLII|cZ0lx1k~tX&&%H~mq2jbY)3B$R!v%3X3E zgC_qfy-BVW5f|P2O7byL1+fwgb~EsB%_P zx+csQ5P*pJq=#2$&f4&=`XT@S4qjllepZY^@<35_5UWIGsfi??f~dTv`7oJYxBbD; zwUnY^BZOKHjz%xR@*<_iq%tgc-TjII5n>ZmT~GCwZBcW0i=?j{9z42;2&IYkiH9ep z4h-I(@v9@kA8-H{wFote?q!jyB_XRuL5&>)BpvVc8l2bDprIpy#p*zIWPzXA3eo;s zT@CsfQdldIfTR*bIZqQdH--T+%+fL}yu>=DxMrfBOR9&3_v0PTr%K{46X>=Nq*FTk z*6EyleKw<0pd@_Zy#thK;`sWahs`{Td=VHdcIp)<>;NF?SLacx`BSd-h-}u%6T+R- zXKlwobZ|3&+95bhdm!HgmhpbY)^IP25M)-}Ifr0+KNy8P{Sr@;J5da0rQ?reryfJo z#x-&3#Zw-)^RZ6Mi`*G;6=@OC~NpjqB{Ah z^-gM4Q`0xGNg4zA=cozds7_Uq*mh)ej2!Hh46MT1l+LQ85ejRVikefg87L7rJx?!fGqgSF*-*)jjqwGlB^SLq zAjCDQfawnA73zdnwjJmL$9q*t#`rQBDjx`6CqHY!0k*){#B`A$qQYX%7jUw_mE+R# zDztT&CaUmCzDiWpP-hxxd8YX03)rcv&_&5tf{uvmA;mgeVwIZvh*MAUMX?!_g0>^% z+y*3{_HV;Y=k}S{8^pvBhwpw)4XF-Y+i1bhpBjVncp^2S82#M)8Z~L1TA#9#9#-p- za~9y{I3do8tQ7@-r7U-B336cgOm(!G){EdojV+99*{&CKWI_;Rr!?j*)PXf+@*u*t zCqGzBZsxIHCNAUAm;t^&&2GJ7chht=$c5# zjpY>{G`FDF?VxVv?ui*Aw^PU$kpw#Ua#ENxFL*H7@lvrfvlwlSlyP>wHv&qP)-X(OtUFr(7i>88W6(^oGw!&S+AJdks z8Xtg5xNDjLxtDo^d!X2g8nbmAiIfLxyurP)>#Y50Km=w2TDOx~%_t{sWi`mx*u2<$ zAu$4)-X_Xin~(tNRTx-G3@;6sQ(6+3)3>EG@{5Ak_O}yDvlrj#S@-Qt*c%8|`wqe*@Yr6+vg6_Df#-EDSG1}OK?2<#Ts z-X&#tq60h!N!N!a$tGu=GKMMk4X@}xnyJm!qQqB}b^ zVj4NXDg6q4$1^78ki8AFZgoM!DdR{q!h}0Lq2{v$>K3#v!@H~;0_Xj=21sCm2KlNb z$5M=@?qqWq_2TdF-uY@Gk)~GZaugb}*uULc`F>AD_ zK~miClR*4!?Hq_HJyY>TgNm_%;F-!-#HCpg`q!1D40_4Hek zsFfz*N`LOl9*hH93s(45H^X${5!G6PED)ls0Q-rZVRZ@}0eQ(A=B^$Zb?m+Mv$yH) zSCKkW(QF5G;u(^DG8vY{j#0>}cbNX1jy47*mNp^)h?5n2vYB<_J&59{_GmHU?#WIr z{vgbf9N=sDIkTr`H|9Q|Ou|8-3#2GQ1Pmc(>#mEfowmLX+FF1+gKI@~SSuzZMlPu55icQT>j7pvjZXuNI?a_)tz8) zE!YHzVTH$Rn2HZG6M2kkbOzfrPNUtZiER7FN2{&w_!CzIS{I}B#^TUL1I~h+86rr| zCGAyl@c%39OwZ>02Z7{rs4c1hZ{ec;Xe`W zIn4vvu-KZKU+7$;awpXpi#gZ;*!fFMQ-G$sw)Tc&CLry{dxRGpd_E6kw82$!Z#<05 z+x4RI*r4J<$^tF^B}@$!>>ZucTrE*zrX;qQ^`t`HTG+vgNL;(AqQH_#HdTNEWrafU zEqJscjo@@A@emEz00_wTr^U%~eox_43f#jDF}EA&3=>prS?(3{sswS^tn2nNXKR(W z&o+DWMBtODAp$b(1x*d~c(E1FSa0OypcK9FZrpnSKTZVZrk>?vTn1tMA9%7R3zR6N zC;WsU?A#t*2zB*pT54!f%X4F(22S~+xLeCT)HLxn92j&K4iXA@j9F8fT-17_(@`lD8 zE%G9Ys)odUryqcmQRL5Fel|>&7NmeAg@vZD2Kfftmh>pUa0CsubrhKs4jkD_2C(*) zp6^01_0|r=H^wA)wM3vHOyTaXY*88gFI!=(2*kM?lx@62t1Uw8-vR8g7k0;acOJ| z!4V)ti`8&V2FU6x@pIj7#&;}Vj?SW}Jij*DNErHL>;rT_p1yo>U5t7bWC1Afn>8(l zbikY&O$;_yhGWLRjs-gI0N}Ux1}2i`jnf(MrM2AfL{95MU&C0Mea&L}Vi8wdB;r)IFLm=KJX0QFF3N9+%@e zuNR{hjg<@iR6AECanGeH-8?!or?d@JhRH}=?a~{N^;=Y)Js2u>DS@a(|BK(hs zAlOC;I)e@VS?BYCpMutegk+VTd8*^G5uu4^m;}Q_@!+@7$w>P6X z3@KVL3PkVT->8us%QKaHa#N|IwKw#^Sp&1#@&a~1oH2kQs*Qiv;<-e|*y2}h!$dnk zWH)@dsb1Z3eOjuJ!6@8w^F7^bY(fe~tU=e}A|0Eu8m!2&xZeo`+xnjX01#eCSD)QD zrk3t3$NYp+Z^FZW;k0Y+(DKWK7yoU^@BV0Zoxr20QjfBC1*qy>s)gKAC~(_Pas@5V z9Knfl4Z+Ros)=#WG;s{tciv`ri?ugzuMuXZRfBVZw@l%}&rPii9CtWt(FM2p#F4;$ zs%w;T0oplFU__6ooBV<}8jAE!=2KcK732oYok=gg+o5~H!}MwiqGBX0e>!pP-Tj62 z>Yvr9Q*~>sUlx8&MbN9ya>@1V*aw&BqG@G(+#{q5ct2Eu5aE9c{Jscv5ACoR+XZh| zWr8=X1LD*v0!^|=>`PurL& zc1reX%UZHQqCZS?-$XwpiuAP@?Q5aj6(0)=QGMAlsv~8ozHQTA6Kv8{hs-uM1Sd^- z>n_RSc|*Gr^pe}njtH^8LSRQ{E73!oAigAd?Nv6we3yJ8eXW~(348L(n<1mM4~*k^ zPB};kNS-??uDwqqn2d`+0Dr23!PxYGZ0tCuT>8W^g4=P)sRHw++;AD?)rA8b%!67_ z8kNv7aOc#Gm4Q4E$2_)=k$ow>Gt*m62dobo04~Hp&_fhS*aC{3=jzH9#WihPkr^!H z{H3*>hZBl9L&qP7vb#Y}(0iNPM8#XAE;xyBrW%;Gls?i1gPcc889`OVvPD@~7wdf( zyohqOI=(;DCu`}XiC@`zOCPF&NsSl}glEap?C}O*12|8Q3~sJt`C&Rjyu+~3odikL zVygIx8is@6M!G&Xk8qlb6MNj$_jh|kPxA3g-TsZl^c^Qw z^d7)Db+?vC(~ZcSr=To2(W;`4Ra`Q?4v)caeFv-C-%g{-Hs#th;E5ACR8Lrhhn6_SyS#TDuAW?B9!-7bom`^AANJs^fY|*KWgNC#7QEqVA zxuQUZ+4|F`wpQnWQp^7K2o#ZnNsS>a6t!#N>uyNSG89e7;BB~$weB@!ysmeG$|n99=uUWU7*8E6n0~SrJS5t)mnfx2g{Y3 z_VYAdt;n2qzZ9g1+1-i)}6>Z+#C3Wv}#VTsup)Qq3_AsdxN+VjeL zsbslV6^B` z4XwE{tkk;7wk@aW+jO8}aD5=F?mQzaK!qUM+mkBIORTG6+J2q4N(LvwiYNJ)b?u)c z?{DMbr$LO#JIG8+5>h8V;gD7L97){#yk*8qR$~chDXDH(#x5D9P4<8E5`q2&koTFq ziOo!e__UB?(&vL!s230}I-&Z0{ls5%TD|*!P&jik%O!0T?zAt2Z+xJJxhCm|=eO;t z4R$k$=(5Ni8HZmRwQSd*wa6N@qhj%vY?~muvSHPW!gfq$ZzRa;J^hu``>Gzy$VZj@ zj18^1GQ%7-W2%X6U4Lf6X?y4$sB;WknIjBj+VeTExj*?~%FPB6f7=dT&=AHkY$zKU z+Kad7!A~z&U^{D%g@!n4$5NzCUo_QLwvAHd&{g*pfaL5%{W`UU5t`gOwHZOGn8c}A zrwbN`z%L-Z5&xkITMBCqeKG0qGC|C6$^g3(Pk|9QY6Zi5E$rgudmi!k(PE``5YXcE zXn{0JL-cdevgCqJ&bfz-Qd(5VqEk z&}Ji=JNM@G#t*0DaSlHnC+}|y;2m-F89YRSIgcv!fH7jEvAioa?egWf7;iM91QVFb z3Yv0SBsl9-)38e`Kj~(7Mi?UixYvPUf`bIxk4=^Ol4@BJs=nQ+xv@oG<%8yi4Dg+YCrBo4djA z7DAtmP@h9*#E==CfWns7GL%^?@FoeX@NJqr7k+Kj**dndV_F@}qdy16Fgc^__0_t% zkaQ*|S(c;uU4#FP={y9`i7${G%Hs~c1(31-jG(8pQi(N-xry>=AVsK;f`*ws1L4#c z)$Wiv#$ccxr2MgR;~{vh5CgeI6Llv+7ZcW6?y3q6{qtf_Mqya(^c@r`8GaOkh*zlV zu9w6wAhLj|qp_M?tDc6+?0K6nhWVn$qSurkGBE&4wTtqtd=Lf3+;CMv!bLW+EP?R= z9)+bW;6Z3jU6FmDw(+OlT&(5Aq(w5DcBOriCg^Y+*?|iDRyK(8n@jF<5NkELpv8ya z|HtBp^i^h-ME_U=kBE?Bf*}Llp;h)RNj$H)Bc^?TQ0}KgmhWXhw!jUj4|THbSRVQJ z>8PMN6w)VvAhz$rV3D-M=AvkFP(bRzO1IItiAohZohXX$aXNaOGvV?B>K1Rsj2GUG ziiS?1vfaww=3VyGRF#y9Z(ZIWe7N5^&b|g23T_y=4%5i=0vS*2vs~YeNEG;;Ooxk< z%m*1sNRUz>D~0?&D9=28f|u#dcOchG@8{&B@5%^rfZ7u5PTJ`+Csph`ER>Cme0YxF zn8<6?cWrc!mIsfZjpBc7^6^&k5J|!oP!+D1X$0!-F1(YQco}>#gBK?QebjUzH>d;; z#G_!&$9OFLh(EKkIWQ(~Bs>ciaiCv^)i=4-tG}uI!?5S<_VpA?=5GyL?VJWtB! z{tM}cF|^za)IZw~!ny5qWu5(J!ay=r1$I90Q-I_~Q`vr+G;0CT6I=l&ube>x*7_%K&3vO1p?l;m8Pq{St2H{QZxUWtNXQN4`THWUnm00nIqYcWT z`&E7Hh0{P`oXX|?OwJhG4m~trZY0k;QqBhfOp5Dn*{ClRYWW+Bc;y8&l0J==E@y%e z%wuZ3wJb%HE32XAwullN^me7%EO(PJ*?;SV^B)-Zz+a^+W7<0$vP6OeHs6D!ies>P z2^xbG07oLtxX(LNf^Ni( zZC+$Ft!lP?&FI1RVzpc~z=Ib1TVFpCbctf%dkb*xR1!EW#3f?^LD^G^S9LUQj)^>( z`2#bjzvT^xvY+d{lCO^Z_<9?afCB^FkBvb7MpeFR)nk$@p|ky!Ez+-o{aS@pUalrH zH97p`q0;0unL}xGy2%TAMm1DME>klCVHo!(!Fsr>{$tg?UlfF;X83MD0@A>X&49-8 zXbY1v#_u*PlR^ZY2IgG0T|;Co1tluX`i7Y#cXv^qa1MW`Uz%xG(u~Z|3pd15B;b9# ztTLzL1K=bKZ`|!>IOdyN6$QW}_%l$}2D~~aA&!Rqz!5n?ks9cC^ruZ~B4 zg%h_TQ%P{6DM-axAS8?OOI$ywLH56|bpnp0+q4b-r?z)#af~ z3IMO^HT~9>IWpB2Z`BCg@_+a+%CL5b(uiMm=e@lzCn;(Fugy5j&RL}5ww_-a;r|V zf-Ztg6>5)CCHjlW@YU_rLJ!?yLby@U3?+gu|>_!Afewk!m&9eht}`zM{&g85Llk~N&t<2Rp+pmM)>Yc z(vt`U8WMz;sYP5yg40|y9F(&{6l+Sby%in9QM3cwg0oiM747b_rNvf#rlap{-MYz} zz(0nnE+Q6<1uMP@zMDFX1>-#GoBxpNbKhI$@Od`5j@v!xxHud43ctpb9a`95v zcP_Ys8slpzaKqtJ1T14Dqlxqbt%uit0?z^Vvnq{f7I#27^D^jsP#0M32q_ZR!55=P z*?mh|_#_;wQ8sJ2cBeKp;kso6f7U_SQF++T5T=8sTEv_2yyBg9;65FoZYJQ6wwi2P z&Yt&eTbDW%6N$J^15d9J%Y+YUn;B{6aUIxoF4i%TAv85U(5Z4w4vPG)P5JKGgQGY_p@)YJiVd z2(Vi5w2pwe0G~_g{rKE7wZwjHdjQRV*D3H|;B z!YKa@E9@oO$9>kA3S6~Z*HfddhwFq?jra>JV465Iiq?!iEjR!Myy_zuMv)2qbsh*6 zLz3P^ITDUo!TC1>kN^Onx0EG8NStBN6WLxM%`XQk!+xZle${ww)l&*3NpHUENEP_4 YzyJUM000000000000000000000MQzxMF0Q* literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/pumpkin-classifier.562771f104ad5436.webp b/translated_images/zh-CN/pumpkin-classifier.562771f104ad5436.webp new file mode 100644 index 0000000000000000000000000000000000000000..57d269d4d54dbd61a42b3be98690e465d551fc5d GIT binary patch literal 30100 zcmaI6V{m6dyY?G96Wg|J+qP}n$;7s8+s4Gs#I|kz-+A`l=RLd5htpqHuhrG8`?`L2 zt!iZ{aq$>8ARrAfVMTRCPQt){b;bnXTwrP?P)!hiCd?>NVxmH%D%uu8P_U-Z7?5gM76~PX`0T2KH zd_0fw!+gZQ7_9YQ8?^1Ry9HbbtO!T}jK8ZsTfbL7^C7y@zi;!}6MyV}L_Rg%@;?ZU z{&fR<#(p<{dA#0kFzo(&3kT2zME`uh{;NKLzV$yi+yYkmCjcuykN>`u|Ly-`xXwER zQ~)Xgsh>u7kZ-R~@h|y10$zPu{R4nv0LG2V$Ji^w8^M;qcEHOA(2vP?{13vZ#Z17* zt`WoC?zvxJK>EM+y1ltiKly;UZ-<6}6N6R2@y~R? zDp zpK3oWKMe1;ulcV669ItN!}svFfOmqEfOWt=fCK=z!+6JdB6t973Csj60Du92pVRI3 zZv^Ln*4=l$X@H)oJAteI9)$PinjI zw6a7LO}%fav9EF0W7e%?OrB9_w!O#%FVFV`Cp^hH@=G;jTiXRgAAD1gNd8yN(0VL{ zD62AVV`ba2?e|qh9abBXyY!0O;MHKK3^?Z1<2lt5p{pzy6u2T z=KFw=7O8EkrSukcnp) z5|_}xx`gExhMJ{XY6e^6A+IqX!sD`uLMyMP!R;9+n3?S7!^8*GYmw-E?wgEtCW-ph zXc85oJ(p=s-3%9wwPX|~y$~|6hGk)RQg@V-}{F@#VdN)gh3{)-dz zz_WhZ<)EX0Zi-2w>L!{lL3ubZw*QD2K{2-zj?kMCDF2J=urWYO)YoFkUyp?G9Q-GN2ow44n{=5fds=&aey(?TVM&d&EAH z|CvR7q;RBa?5SC*+V?=dkOs*snYa?>TmY+!{7`_esb8pZfw0L=+Psan&9WBIL&h<}aS1tq8Y#%nG6#?8E*s@X86Wq|el!^UYMzhqP=L=9(by`u` zpC!)8iI60V7I#M65S=Ap=5}n7-f|vH-O@fp`n3O|>c5O==j}IdQm8DpJRdslY!2N= zN|=728*BY_E3QSEyT;gAX49k!Dg(QlV%~2xjsH@)M~_mky@Xkcs3iRsF$wb~E`L(R z0xKPc<;aOJ3!BC%>Bc-#O3YIB@?%r`CVDn2!qEBz<^Nb@wp-W~bxfrMNp7TzItXJq z(ez_|D7)@8p=bdwMhC&s`kj=Rh&E<;k|GvEL9l!jL(1J&Za_~St*j>3kG(B~ltpTES0s+H(vO}q$qP|FZzoj$stgf9jh zc#zTBBQQ&Ejj3e>a|Z0I3;74Dpiu)MwyOU>7XL2>{&KMtKthEe%Rq!KXrb+p4*ZrH zw`*mDg-l{L$^a=R*9!_HFn4{!s}67Wrwu7_w^;!x&_w9{+y@^Hq^IQ?@LT+L-ox=y zMj$QxZNBwTr_f5ZsWxddN|L?m5Jxk2`!mvNB6w}Vddf8fL zGax1&GoVWR1NRLE`uULur-i(yr>*)B&_yGA)VrT75wVaYFHjh0n?H|{s< z#-ko|zw{q$YNp-!{DUO~)`9q&rT|o`uRF_yf;gVET`C#<=J}6vRE!0vIODsQ7s>rO zxwZIfT1+m~csn?ejze9`(AiJ9DO3_G@cdOQ!>%UfSjE9X3Mx|)mN2 z*FT{Xg+GC>`oFch_SVce{n;N&a|aq9zzFa_>rmWq^y$;d=X3P~Jux^?M4L+O^O4df zq#lxu{skB8W&NTY1UHgpV;iCDm~7mcu-(XPH2z!u7hyIhPiL%} zX^$1?cL(m@S!4g+kphz6@OSN9E^$kYq~~m_xH%V-yc6GHoVO4cMy~2R|29{ZDFi%J6M6GPAYp=sJ!B z31>HEi@&@%WCz#p5a?Bvdhz9bl1ci(_$Fq)^G=OHFdUX6Xh}I#d>m0Rsq?=w4ogl- z_kri(zo(jnLS?x+us{lX#syK(scx=bs$K=6|0AaVm72MdVC+aU^>p-8leZ@Z81N&5 zzTsW*RpOMREV}@g_}&`I1|k3B%je$;KB4nRpLPHL63721ukkG(U141Kz3H~;wP^O( z4LP#r*yk3x?sMZRos!d@$BE!3ou9CLBp}@wH=MF=!0-P5*ld{1{~hTfbn($zo~ZwvSF2j$pE%`r z6Fikv2efUB!E`sMAi$k6YWxw_m`8v{2_kuR;zs(qVw6p#(!ut+-4c7LeNj30uO^ zuL)%j%o0K=l+`?Qh(o$C;zDXO;QM@YXPkzXC_aHs>~a~oo!87-<0 znf4X(M`nD>`>|#AmT0#w(9|0}4>zK2R3Lsb955n5SaivPo)zzi3x<)!cSJ;1^=yh~ z84{*eupMqTPVcW(e(T zOXMRx>DH5k%wTo3V!W5pikxQDLe&c+a!oo{ErzIipOX%^H(F+G4`@cn zMV!qc>q_lb_gIrHd2{f8q0PLFg#>seH!lc>DebA$>a=wRY~t~cmBKTAVAzgIqqWQq zY%XIsUeDWdsaYjy#6to_VVcF1fb5w8okjq$wwqKQ&27`@k3J24LluPdzlQcHQDjiw zeykv~6Qs*fLq7jpNmb|bGC%#5nj?83tbB-&ilj#P=^O8WguRos0i%1SwF9e{&R8ZL ztM%V$E?a$x9-AgbN6s66pNh%536hpxjc~1ri@MAKW~KH;;Oz&ZhtJ~f(KhIzZH0qL zm4_5S5$Qn-OBH+QOQ+f$1l`tpoT-%iW+B|0v*8eashsLa48l(hB8w|Rh2}UumX8v7 z@{8`ockE%s0308;%KhSevo6r0N86o>tAzRSruh{Vwx0fSk32#{rZBi0_7mC>`H)BF zx=1Yb;90t~!Ke9ndKCoqDdK*aiE;#y`;zo~t+1C#^IJ57fTEBCZRMwKJ=jtR?NoqQ zoHr0dzBm~O2-DvQ@ELGCxA?1@rq;wrhr}#D19w4R&eKQJbOKD@=6%`bY)To7O^v)` z%0>IiMn!nhY->#EAv{YIO>m-1f8}z*cXv-c!*iCO**fZ1@>IolVQHpyl-53M0W!}B zlGn7IUn{A7%Htz7G-?5Pl;a2RBBb?gA%&qrtJbiaX+-P6Tt$E>-OQ_<()3|8Z`mu@ zhOa~8pu6bPG2<5gPYA%$+i-DR_D;!CrqIz|IsxsHrbgco=|V5>B6(KWwEOLD+Y*5> z=V>pJeSe&H=dKiedU{nB4r6iB$}~d!%l;HtYvi;j>bvVh8l-@wb)YW)GM{UEVoKts zQ$7J$S|?taRf_rd&m$cEB#ffRe3MTffNhQS4cHdLLi0feMLfW)j7HgKZ4;i2hFT!K zr|R9$doHsK=*P(AQ=8LPtIXhGQ#XgAy<7+}CTBRa7vnhSieqr@0738*Cg`>gecQ6q` zKg=sz^cyWgbxQ2@L&PzCzH)-8wC|(fvAE3nCp#~VXne?ob)NR?F^8Rrm z2GltY8do6HgE`TQAh`pyzN+PnF-Z3=9h3J1#Ql~kLJ{r)`+Ec3T5mm>;RI&PRyIGf zB{%{8mbqN-0a6Aj8@{>x77^< z{lwWBha<2bf2bZ_(ETw!P4)>v0U=2JO@n4P#ep(YxoO*LRDI&3)BUa76&bs+F8 zx2j~Z!ew$rAjaDTe=tqQn8fQ-vQe-u_?s+Uu_$X3i?@{Rd<~lTiZ50S)Lw!e!aYo} zQ)Kh7<$j8at*NHiXx5g`(j~MRjv8qg(JN({B*lYz?@HzOiNawo^^C+?-@+oAxubrU z52d3U#rmb9hLQ_}lOUGZ(QZ9}_X3MT^S5HpuBy@FM{0|sshpCvs!)80r~W3KTIV=7%{7v}ar8;3Nz9-X$X z+?14vN14o;Hkk^qU3}6$?m3pxL~*S7h%oLJ3IrQE(*31S95(P_OO1e>hPd+^n|?vC z`NXY`T^$cg3AB-Uzf`jBw|Mi_ilXHl+3bfk!a=T5ur}38Xuf$P3ASOkhp~JhtLJ;z zY>)mz_VJE;jLLmdd*F9z#;nM(zeegr$sMFgKmSk_|Bq%Z+GXBqkaaEL1A3ky+_|Al zYnc_b-j*)aW5-sN#Q-+&iarNjygF@kKa|fq<3@>Qdy?&tJRjpZ!`*P!%zz&uMKu=O zj2jR2i*Y;&1S4^SgcpX0Y~>m+@cMG-fN{4?<87t&>)=;wmL?n2WJ)-f_77(p+(t;# z>QAr%xzVbIu9pZ19xN18NX2FgVtfY&=sXl1~X^xpK&556cV; zd@43DFx1+=GC9|UbR#>ljR9(Uk$ZvH5gHrSdE)d@A#!4}=&Co8uj{jr>8mwY-Z^7| z&}e9S{3@ie*6$T^ZhDT3II7L;p&U41wL@t1iYV*SaI@I$fuOIX4*m-{NSNE<8W{9g zR39NoMM>mLVc?Y(RG@{WO`PiNk%^&ni8w>jJFnQYgXOFGhB*3vAOSN_^&l z7#d%-8RRQaOsSR=p`&v9sjT{PqFHiQ7qV0nw>bY8H#4*IE8Z^86?lahuBcbRYG-n# z|Mv938C{0abk*O$FUTG-m1L;G2-IQzlfGr^D`uN#MFm!s>oo$ata%u`J7E&L1E;gZ zVps>2qhnQX82Pfzey_+i+cF;EujF-7+wjXZpTYdEl*lap{)Xm7&vJ=uCKP3 z-}l?oYOLGKu`7;z@>}vd$zN{>AsFeM?{ps)Y5>JI{K%1D>h*f_#TwdfE`lckd6#v?w(hbWFrGeLtG@QfIaUSW!Y9c7t$(p19c^J`LNO9+7AZD4 z&uj9gEf5|r>a53W%)S4)CHYI@nEAmYJLVkm9`ZwMebyHVY> zuc4GUU$>^R4fg$&*{ODfk5$%sJ)&Q^J=IQ;;R*dNm)(E*RoDdeI^K+d5(ogQM7f?#90>Y_Z*WB z3Q%0g{6O&VD|)C({;}R%gJPQGi%{z4xRhbD%eicHcRe*O37{*bP~9|S-X)buec_s> zk1Eez&8uh{(Xd2m3-#3D$DivK%I+YwtCAP|!F>HS>fQDC_lH<70<8%%O8O@k+5;p2 zM_<3@S593+UOfAy31RiS1tjt3RuZ_r#(u3c0-fC1j>PuOOcr_Q^YV?6`Og?VaN$gN zRJl5iR@P{gFB+$%bGM6GgIK~`7ksgj+xW!8ZQOuT`VLGfmILq6jV>z&*^Z*xMo(~V z5Eypl6xowSqqm{Y9%59%8tNxE!JGXxU;O;%+3})f!ZVKP@5ik|r)mk({gYp4WQ<5c z$9&arbIfN6M@7^9X0s#H5J}||_|oC!xpA~7_Rycb-&yw_H;RKh+~9jACWrMiCo4%D zS{r89@f`Qv3yh9pptCDly=-+aY`0A&v4!*_p4EqjH>&r_h}XQYiFNWC6fbwD+&A~b zN!{WE9#7yKND>L;ogWqB5bih0>t$Xlxdk4+;erS2rlVaPOp*FvK>W6O%(}qE3*rWi z5hyZmNA5C@CAfX^Vw(@xKI%kIQfl!oQYucV=mP*&=LSupo)l3kS4rgKn=OFlyZPH? z9GR!2Jf9YHNlh^TJ`T3fzQ&lA#kJvBV(sG1KA0d`Vz}gfq)G<4-XBH-?PaEx>+wF zzPZ7-(AouCkZ*3=StDeX+<)gQ)aTVGanyb4J~@#Fy}}Asu}XKD@>@ilV~;~;6H3*H z5UNbb=i$6r>1dNC7R4{TYS!v6dm-My?FRS5W@W|FqMJ1xB!9?r2 z(i?=BqQIhr-~#RRV@2O9tmP<_u$Xb*bsFg`KcUJywg=^m`mMZK_uIu&SqjBBwj%$K z=ft-=A0aEY)zI>#4z55Jw-RPrSySENT;T*>a)C+!d+yb*P~cwiqlwdu2GgSboSsJ( zJIA?e$+vXy_3sZi!nEa0$!7_Np6d^+K9wNKOVdyG1(T5JkMOPZI4^z@@nkAnov?^9 ztY(V^3i|KHb)(XADu_&^?5L7BUlAu+F1mWxy#Vamz$qaErQ7+2th&^A6k{|{&Andy z8Sq?LkKgXZ+aX#EOrs7%)eM)irUTL$>2#mozD@{0VUcq0U8QqipF6!tCO83499jP37x*0;hq=bT#M$;Z!ZCMaX4M{Jii71_l5-xxY zbqYHd67lW~zlCJZ7R9v?hO}o2;8^BTydVpNGO!WAr+%ASWBD_icOZ)@$vI-peGGVB zHxn=Rv)9nm#-N%GXX_(uA{aU5SU+$Lj&0JK4fj=M=pLF+Prnjb<}cj117j_Q{KAt_ z^l92f#{3g5PDkTrG)H8mZ_mCahx53&*w-W@gI-cu1&>It5$Dt6-(TIt`m0^l_^}=G zFBA-OJBZQc)glj+*R-2MXALUS<0)uGSZ~MoZy1l*KrGp3CP4b1qV2A&D?#q8s{DXX z%}Se4sa$AzXu)4eX6=Ft;4=NgV!7=JgX`h6KgaULanVb=ZE=37*J2TI$saRomr-!k z)f-9g8BXm;Gx#!Nir|{HTh?RK1NH z9!n31IYSfBQT7E?up`}g!w-`cf3{JMO&$5^M$KmiU3Q+<7vHUqpof&ZnlD=TIp*2D z*!9|P*tIh0g}b2%1iT3AOnc@j^eJ3UvWtyM&ysX3tD+RnAzl)c8n*R48UlOknLTJ(FffC4R{b-lPaK+KwnsC`cXy0`gA8`}KpZ zq#EzCFqrRb$Rl+xKh3j%)%b~@$2NVTmNku65T*S(uiY1VbLk_l9t6 zi4r{CAP1)i@;quu_r>P3G4fT8<9a8ZQ|mgwI(~vArk<;|aj#&UN&%kgp!zsKJfw zGsfxT3u}=G8!)sD&?|*3yo(K}q@h{)cx-}k4(*qp0(V<*(>h6=RH-(KxQCD)aP=hY zjVUV!_4!S2HapesSD-wh_ducy*IuChoykOQLA*XMxMs}Od}$F`UHFk&($B^AhZM>b zvSAKgi3N1tT-0lFcoA_+oAvZz1kcn_pra zeE(>&rLh>H3PSbH^KL>D1rtc2i$OM!G##YGpM)t%e6JZuD!rMFxQ3^L99>BTD*oan z%C_6IDqgW6pe#4EdIs~BGMs0Lc_~KT_L3L*K|*n9_bQaOp=O1l#(2Vw&}-t|ZAL}^ zw*1IY3xjC$(4681P9Av-2y(>{g#>aa2RkRHy@tYE96ly5n05Z;Z9>Q2Jm=dGKVXs%k^Ep@dt)EytA-YyR6dHG=2K zz63)er=P`TikoJ6`*<8qlt5QjYs-{tNbnQtW}_^#j+?4X^@WR4zF9Atv^LO~Z5ft& zjqG4f-!vCgR21n?-MdnO?Mc7&BNE#EnFK2jkv$gF`pTn?3rJzhtfz?1LZ^;$cMLD0 zPWoGZ`7D3Ce$91Me56^+7t;dX>_5|!t%r}_kH95zh?b8~jWtwm)S;29OnSL>@StCe zihhNxS3Gc*W63hGShn<0nzj?7FO4fizen+&EDt3`JfPCXLK*%boLVr#5f1H)II(y%GW z4hv*Wi2VEW*6YQsy8HLiCB(xy92+!=_}-nF>Fuf|M;DLr*4~kwvRR8BmAA;U6OdTs z0vI?gP&-BReBMA8dwJ)N6XS^B0-fm~MSYb5W-~odoLFK4dmbKjgwmoZU+ekf&kwD{ zB@{&Eo6p=<8<|e$-rJ4Wni^KrSh2a@^U(D@Xw|Wi1(PN(eRWkYd;B?lj zfF<>6S||cR81VY`c3ts86$7<~0NVjUa40IvsvdVn;e}--1tNWy+d*>9P*hRaq^D_! z{LURqgB7Y3W<2768eTHm3(H9R{kzj)EfGJ<6KFee$Pu@)6G9blSgy$KmsxSOt7L6F zV-8qNYanNGe{-wvwPn6sx^q(+3ZMO&n?^Nn+=0Ipz)%6XlYMZ0(ujCTH^T?j8N z7evwNS@)>-@Mk==8a@QylW}K9E;P)%cu~hGGKgfwqRro3lZ?2}#XMfcZc32L>8VN2 zSHE+@K&wqblgCEdkPt{X8V)S^tyHTtCESU2pHNX>xYZR#mp?4HT)4y3{4p{R_Su|D{7u*2znaDw)z zrK*GXAs7lt<@LLcyrDLY9%cv91sI^8)tbZuQ4m)d(Asv)13%Si-41SU4Tbfz-sa5- z`3-%oo>qP?a+ovvm{)#R+41+H6h(5hY^FD)Z=hy}Ln2q)dNU1dg)o*Ix@ghQHMuJD zq=WQYpP#oDxHGf!A!n?7N9VBI`k<%Z2|}UZh85hl+=xDVZKp+EB<|P|s$A`YffCAB z$jgtQv*Xx0=XX@uc?rLOAAOqIl@P`@ zSaeHA*NJgYfHO5e$!bF7_JyU>c64W33 zD{s3Xx+IJLah@5(-6KRb)*jVlKRH(#W6**1Z*Ou+>#w!Ff#`95Zm3RU4WE#K^;bux zB0@&o4?vKW%QDqCCp8n09IA5-efzB8f=}cnrS`z^t}*96oc$zXc{neVfeZ0*{j30K zu5g8bdgS)n62Fx$R7ck>%%JRx!Y>?s2yNey-soNEf0Eu3#j-t#uUYw~`XWG{$IXVnV3*vwDU-!MwHO0hgK^x)3jTZ7)@i!jhf~WDsZHo&| zv=GAW+DlpTM%;+SxU&FP8;#k}YnmVKdDaNKg85)~TkFsQJH^uO$=vea%QmE)FCqY>W>cjcFOQ&Z4Yz$w*2(XzR`3I9 zY%0Rin#^-dz-$Kbuc7LrH{`0N zrh2ibJ}s6DM13a1*R-TlO+aSO-jWhkntXH;pSr%9&NiFOkLrsbM~zax$_`Cm(h|KO zQp5Bd!0Deh?a&)_@V*{HmGmsR&=q1I{4ATbkcZ*dk)yN(=a!-x0M2gSbuR5w<_Ij> zSzJW3iSpOhS+1VLMx(;lTO6xTUy({PhmCTWI*WIIm0coQMzfRp8k{iJxiGw*oaqG< zj{s@Rt$YQ6+zBa<{+eJAiP3p{BpGHweoI|1BeOKCTM)gmE;R7hE&Z-`0Ml%9TEQvn zcZimkC}{dMKPeSf&b%<9nr)+aAsx33ka4CI_`LSoa1m&YaVzWOMK*2h6cm1}#(ysb zRT{}}DzBQ2!6`TYA#@ga@xL`L5g|OfaYq6;5!HvIi4_e6hZSCYn~qNV0Nn(n$w=JsmopZsnxUhTFaFOGMMuk_=j3?ROYW5?EvQW^h7`Ht5q_Z) zFOreaTabs2`oiCVw#irPMuei>AfY5v;js4)A$uCSpAl$S+Mcf{HyC#gTCMo1X)8OO zUu-!cp_rz(t`EwcyS`VKD~3{i0)kD*$_WiwsOWn;n~t2w-|~xbWM9z zS)0!@ATwq^10R)(lU#+XDI^{k&J)U-Ks8@y38WfHI{p2rP(D>9Ud|uS6AT`x(MiQj zD0f0;jYCi2UBXZfDURKa*(4y3PTc5xB+qr4veVq0ZCi*kg*pU6RJwD+jK2WyGj(^) z!wGv9S~_4Ic%She;Qd5f05;q#5ND1I*Ou)!yqWH{lz&}kiT1SR3CNF;r2MjBrx{Xx zp)MFWS$gz>g!Ql3OJ^f8BRqXQ4ET9y){<1+D%25NvJZL!e<`BkTZ?qw(PggAA2A~p zZc+`NR=LNiWhI z9M|+2ZczU=J1e{By;Ry#Fh(0J;o^q~>aX@@F579#O-4lOiVprSu|eLu7NpH=T@j)` zdGaizFinYjHQwhY9X@ct^9QWw=NoXwM?^~HrEUBYB}+#)vtMD+Y14djb=U$3FH-<; zJewKU(!!ew%B4u)vHEj!bNJXfR-p6yC8=Lfx@ry_zAR=c5$&Bl384R*7 z-$!5J8J~9K<*ky7FHpf}$F3Hs7A`PwE(L?gVylV96wj2)Cb8m$7oiM2Augw$6%Z0% zP!9`WO-kDmB8^XVk@z7@#eG@R;EKGeB z-kB`2a4#^JSV85d(c*Ei6ddiKe&Pzt>*lB{;8H`!@dm%{C?Dz)Y zVoUh9twb@#OZ?|mx)8BYx_WFCUYbNWRj10!kY^|vOVy_Q_><9k^~z1LQtnRMTv7_X zh^mzua0m5y#p#|a@+k(GMFz1-1tl?a%uRcUDm)%Q$Dp$ajo=NM#$!xy!0>>C`&)PQ ze{D*F|K_uj%TYe*Fz5G-z@UAy*?22k+X?~!^jIq@E-}Q=WIZ*(x$>S=e;YN_=k#&` z_`S^T5h2%OVNEMC4V~s)4ST%D%`)P)noJL%8{L{cZ@tHY@^8NDRiYOv1KvR_*V{m8 z2*#Md;4R|nK$Z(=uEu_%Y}M_=CoC4htE^*il8NL;|Hj~g_Wn}lR`plC1L~2xJ;RVf zAy+>^kBrRkmw6dj&(f(Wm7t&VL#3nIIH`X|HVI8vJqMPOm@cUPoiq+A3rZF(m4-DP z&CDz3a@_MHHC{VR+h!mhkIq_QPgddoc3zd$*cwU=*?)|iP01Jv`w%r7ns|Bd+%+JuE#*Ac`rrR(Tj87l z)vph9@THgZGKj^t$rwD@s0eKg?c*V_-6sliSU45C8+2E)YV5*KW+MgP&TFQ0Owk^3 zQc13v*&?|uYik%XSC29zdk4*s>*@5mc1#)VIyLEt>x1n*vpN(NBL6$e>(P@!hcQtn z!n*@!LHZeLn>2!%MuMsZG7E@T&TrpK99H35z`_bOv&UV~MkKO;zLwGx2&ckRbEGro7wd5&+a!&?4LWW<1ScP^@0&Pf=~ zGGsMdZXv0gudZDU^A9{u+Jq+JjmBP#s^|U=O0USBTzK2n>)5@a>LPf@Prjeoix)jX zuIME*n1uuVN1y7$9R0Xn$0|Z)GxTLzBhk<*D8VNT3M>vL}q^;2HQ~S5kzQO`FtIN0|t?* z1h+{Nnwb*l|E;Nr{-jwO(>YY8yzWCYM2zTG&{+spU!lEVrJa7f79FH$9}7n%#x%g6 zXG<&k23_jD$v4$W?0#+3CJVKrgX$il-H`^3>~|UaMLg(g>EN0LDT@+LDliKYYAMUG zi1937bNuIyf7@?I>9cS-02E_9SpZj=`VN}X6md_QxO+zz`vuU)s`<%!+whD+RfgY> zDYN8aYu*3ienyg(`O`B0O_5DoD*~i*XpIBnZPs~e`|l2%o^E+$^GokW7R9SQ`GWZ+ z?qG5Kc0U%kDOioJ-W#j%FynlN)h$b1b}-h?~> zQceC^#C6Ye#t@cC#42QOQlVA5sqDLGa+pIy#}aHM(0PZ}GVELaF24te8}`?)Uz%wa zAT`A@@6J8L&s@`CO@{};J6!piDQbmb*}!2Ih?k?b_aU35B{UylvTg~B3ADtB(_i~C zwuTAV-@>ta^?$E7F;6Wet_0s;9uXS$;=ya?-h5arimEA_u@*kqhXHgG9St2m5w;ho zQs51q3Xd4uaFwDImfd58f|-+nR~Mr@C;kxby!;va%Rm?*mDPFNfCf&v?&*O+oxJUA zfsZKOp9&z!ZrF@E6xsvI$sX9Q5S>0TVunwlW3^FcYU3=-qw>_a_xaW zE)t701)Tu@Yb66*GRGZf$P6Mv#3?ewkDS%R!r+zI-TdPUT>wI|hfVLtP0kKGRqOcj zzy}3br28Wn%`Sy#nNpVTxuVSZ2nhDyv`}a%T{8z;v780vGA!IwUT2M}o0+|dRq!4# z_)89nG6=c(`CZu${J_e(a$I18NIxB*5qS47_^V;rndWQfC&&Sw10)~Ko1)vD6vn2m z+UA4ai)7FIaPB8pO>xwFC?KGsy(B1eMrqn36x@W%!b9t0GDq4T-)@JwkP|Wwm5@ zK9Hs56fi}Krt?^2C^R!dljlJ%b(jsHXNcXVpL)4*Ca-AS1Dck4 z+(hggxCb9T?fpUC1QDpwc9=c(eCU#oLui%F&fxPzm&ba)K$kB~V5bz&6XGQxcYnKL z^{GXW%LI7kXV}{@DFIKCXV)IIf)TTy$<~5Wy<$`XvUtMfGM4Lu%U7pU4H4Y?@;mMZ zE=xDp{3>7B;Kxf`Ldv#TU%(uCnf&?&o+l&-uBn>aVODyH2Wp~eEnFDhqp85|^sGP1 zv?jia6mMA0N5M=OMFir4cqgZhO5gK$w1bAfr+y@*!`T&Xhi-!LkIPAZHG(6m7QdVH zBLab+E>4o44{&$}Z<@o`Da-E8qoj2*3cSqHI2$Fobv+qNj($An*+T32R0O)ViGk)F zaeU(58KqhWLX()n2ah9k8JD)tTDk+;Ar;dCJA+5qw&jn1*&j`S@6!*4UJ26pU>+}k zf^Pl0g}3Ojf-xo^FSFauKt@kW*_?C~u!R^mNh7{)Hm9|>-Ua4#9Seg2BS~znppPNW z#2mVs>%EB0m5M%$?iSqp)ch5>^%YLeUU?P#oe>!lSYa-EV#%U*vC*wkJ;@`>sQ{!Z zRR*WN@s^8O4f7_ex^Vs++`^>I)oeb_3q-;hG^gdyC2ip>2>jWh*heWb%qIB)y4;&R zKFaKbswM+GCAeb-$fsPUIN{l}1#A0Dxlr(%WaA_kAg$IwAK69)p`H2rk*5v+%>P82 z1(>4n1s|45>&RYY(*hyULC;10&tri@6Ua)6kc#~&-w3qXcLJ}&Q5R5LZ_grQIyfal za42hh)UjC~@qz8g^`i&c+whYQfejl*-E4VD3#TU#d8ysm4PGB2+(2kFMNyimXdu-< z4QCp)>fF{dXJCR?T(C%?HX(K=ZpzZb+b)TQ@qB;~&6Q41?T4h%x0&`%61-|4y;YFT zL^$8QXl`jk%u-wbN?{96_VJjVDk{&=a;9~TKkV4icL`bY$*;7!|xNYZv(s-=X?u*|E(R1CF`tiu^T&bV&6Yi&pI zD4!v;s)&sE27u;6L+g-@(v_8*%X2SmHvelns46?@3WG9t#c|AshCMf*H~uiX+?D`w z5%(^Cxy#=VwYG%d^4I%O-q?`jLd=f~5uhZz4E)UGZ~2JvBV9@qZuxGSL0=o?bxWK{ zb~qZrw#?i>lp|_w9$AhT6iExY@G_xk6)rR=8Q+^~X&V$7V~*MDX8#cvWzhm`(}q)) z1>7N`-OVSI<8E@6eN+QP%nIhvy}2HUC`%rc{VtCZGoG7>#NGo6+FBU#qv%WAb-~o8DX&Z=|3Q)$alZ|22@MRA3pyAdwj$Yp+3;` zQ&O6avKK>rh$4TrnP;`SEXmv?rTN`8#9u@%6??f#%Wt0Jn8*vhBiCvUi2xfsgoY75 z0Bnd*SCO?#EF^YTel2+QRO>q7fM8_AH5CV|$Nj$JX()y(o@<}|h3{ShoqwfsY{M-j zKI-5)8CczodCB2gmnI&$b6yX>5K3%IIz>khezyJ5ed;d?ZRKTr;LECGpV95t9%jMC;1A<| zUX*!5Dd^EX$YcvYc|5t#k!j4_zq2hbm5OSr9h5!K2tS%F89*Qr7c;*YOj}lzu4))p z;+jG3VlvH48Ja7)WV6!Ia*yM44U=vvELJ9$O_5E_cZ)<%7q4ix_2?rSQ7P(>%NW%<4 zy_jn~C=R#r%^Iiwiub8ksP>`q7!+UM_7NMR11RaNdU|bvsDPwc-^nhg&d!J8oTU#+ zIg_B91JI>Nkz;lCUPR_|GT{^YO6!q8HIQ0202=q28Pr@WlLaWgbT&$3{Gt(Q*&dPs{(&ug zM?U(nH2TyeOm%^}@Aj8pasw_>q&reNObD6d;E2GYPFtjJec*g4V8JJ6f-SMaKhe*F4;;sZiK$r*TH^Amluw_ zPcRRqd%BMgb#8lZlb2NuB3~VBiEYufUOi*}Wue_&))MGL5?<`^?c$9eca!nLC73v% zqcOI*3#h$EWru+hnx)+EwtNPyFVW%K;cJgRWx}kV=@HFOaq!5{6c=Wm1ig@5=SwI zPd0iE=@y^nd}XJx3xp#seo`emX$5K9OOXLzA^FJ@9L~l6ODY|LrR5}CRh*wYy+2cn zn^o?~6sCwzvMO8OAb{ur?op*JpOaMjce!cKB6);vbAqn@hn7XV$PAww3!GD|MzLKn zQH6N^{AMi{;g-Kj`Y#8@;;mz_E-8KCV%|jp?a)84diDg@^SvKuXjjzPlFU3$MTrV3 z1N_%H&+)VT8^DSnGTjE?>2iVnw*O;7S!fpWY;I+#z^o9M;%j?~6CF$(aP?$9dwL1% zm6wTVv(3SH-bT2(YT9k@CBK%tk+TR4tDV(i=%N0I)%hQEW9pU9nG7&=C84w~rQuX3 zT!?O{#krdvb)x0Yfb6DFL5Tt8!iNz8!}dAyv_*5%x;&^Srq{;h;)NpHH7@WY=D|)s zVkYv7_Ew|N1jjGzH^y}FQ;p(xM=5ZZe}H`ct!N%BMM0omANpdv4En*Mz5^KNK|)Q! zw|;;*+Q838DhK5xLFunSqBSZi%njp_=^%C%gWQVjbk2`TP6YKY`(Wagqu1wp?a^SC%7KyBv#c z-fO*s`jL`p!SsSJ6v!Fc94RyyGJDvT2!O}4B~ZOZdI?L9X-s>~(vp|FV_>*}RabO+X4L7p7zr*x4GvXr%U>JCbjz6g0uI+Q?Fq-;DJi<4Em$E42UnsuYp zYiaHBw7tadtX^|QF;ii)SDOk!La>tlDR{^a%L4*F>bTx08z#iTv}F_AGP3rCnw&fn z-Hq6^B#2RakE)%O|DOK6|J7#cRv8AfGjDQKMIn#v^wFgQ+4u~td$OV$)ajVmRYI!C zQvrFmg@QBqD{X+&w4L(xKV??moAXJmpR_$@l=OHCt-RbAA;6wrYaeZPi>=d8Y{RIi zvdlSq_+XBj(he*T_Wn~h8v{xt9U}+qtSa4dRkqr1l8+Y%AV+fzw$IxWqW>)w z-sjN@j+uJH46}&`$TzM(c8Zxe307g+AGq~W2WgPQw^^?(K(Gwz79yBYBb5mkxKZ}5 zo-KZdvAO?Ta+qDowbJZ*TC%-&7bjqY0a}}XCtHwOtn;MyYlx#hFydT#NYK)$9Dlw& zzJ0Uj^!1upk!q_p6*!#-%4Fq4m10GZpCjX{E8WKDGArB!!4;QljP=Yz#g+CGnBLwB z2?XQeTBW6$YCdyAHdmmNhqX$a3SDe;o~U|33(kzo;ttw9&pxH5d2?K~67Xq;9p6dk zyY(jzxIm3ngl38hMI!7pr7V+Q_ZmAzZ{n`6ybhi&oR4I zz7Akz<%gSNLw)%P^6#DJOHE<;s)sp^k%^7S<22uuYLXg90AUp{4K&Oyn%%@>o%_!L zJs%BwLOaQTXUPe~dK`~X;FjD8I&E3(ZeoQLh}YY0_ospA{4@m``|Sp`&mE1A^yB z1)pZxVe7P3B_kTALJct*h{@S`HfS5sw`YFX{? zSOEi^*JVmgRK)oH6bB=>DovAQMx#N}TM589ebmqdI4-r{;9!S>vcAhC)1eJ37l?D7 z1S7E}Dm1CfzpCxDT|^lM<^p7XcGn3IP~0dW+UhoH-y9%aDK?Rf5e{{(cc0B}pA0l8 z2a5P_dhYdQK&#fK(xoEwGpc1=h+?n?cg7+fLl0qgJm{u-k+cS$r)fkg?aWKW;jF+lcO|7p$< zb{mn+jiW$hH`+TZ$Lge+EYhi9q-Tv$yLe2VP5nPS84+$=?Ve#i$U$1Hj;lXiD0e}k z!eB`tcWVvJg<9kviM&3qNIf!RkE<9WE&!eXv~=1v;PJcpi?MdoGC^iaA4SaN6*G71 zkfTwjr9C~%QJ<_)q$J>H!+nVXTY$+O=8)loc%QPpJ)4^^^W6>=NQ07^GeO+)|Cv^O z_@CA~XLFq~?zC3z8qm*yqhavW(T4({PQ3n%i$ z#|a16i1aeiW^|9~cGV;Rxy59=?n)fG_HRWUhQ?(LbJZhdBf@}9!e(|uHh9+$3j+gD zdrMB(#~iIX^5e;lb(E8DP|`O*k5l7jv87lgNE&cItOXbXV&n`*g%R1YP#eyNnGZTR zbPSj$Ihun7RSTd%qO}IqnZuJZqqKAQSNKrCd@A#3#H>=_!MxyDF#RyeLHs0KFOqPJ z9zbZ3hO8MHWyYD*2|&)b^u#xIOG8onPn3wB=eN1Te~)t35>PV_)64vlr(45(fbtw) ze=rv-pR|B2vGQR4);9FaN3>{>gyo-#t#~>JhN%k42X3s>WWnV;Q^*?O~ z^0?_1uOjZ7`7n7chzcopjEvZbuIzmOruIyy*d0bZ^Zfdpclm{n!CCZN>IIRbvJMAG z!|z|*?QM4Odzu4pHksewGlOky3x{{mypL_5%laKQk6)K)qP{_{2@J-I|!? z`G99&S+T89MoXR4&-2M`wckjye+z4n8-#OFN__ad=Qkv*A;&ixjSqSxz|h|=!Cf03 zhWX&rm)!JHT^Z$AHo0)jzNAs*DHLc#Yi&#Eb|~c&GZb27_k4;Z5vl~`$koVIHBsvB ziao#%pNF|+fF+n$H^iX&l8(N)>p3w~8IVfFlR7}Cr5fON=<=W6pj%(vCY7X^(o6

6t z!9_3b9GWl#9d3XD_ISHzC@7=yo>TEDMqmMl_)a5f>~@U?81R$uAnXVx#*>3}U6*G6 zqi`UEOw3QM zG`uFWSU+;gTT*mjM|Xg>IOn$hF)YhxpyHF$mO63c9sS_edl0J?Qt?`E=B*^)56a6v zx1lpaZS6*J@Jq)6;pWP6Bhf$f*o!Jfu1TF{q3wvx+SYcR2m7~;M2F^d51M@1XV3R; z*1yUU_Ho2s#(`)!00tse;l%B_Ld&6xfT9Rr+Q#n75AgPwDX`By3zx_k+p5|g3`U{% zhJj<9C~$4)Y&ft#p`H2yB7`5us*Kn@*a*k|F^Vo6j{wZ!!oG zc%ZZ3d*b>@-7c{fDHo{=d7Fzx zjJV|xzP5%TxU&`sAK%~U4zDKdaJ52Mwg_rqQO-LlWynCG6oW02Sfxfr;e6Qy{7^azq3Q#wf?m$pa)!!+XnO8Lr%13WTIIo~5Ud3{ z;{lea`MD}p0~}jO+5F4Pg4$e!P&c$)9H1z09*gP(yuE~`d*T@KOb6q)u7c2?wAH4t zdj4mBi`$x;NiF5;D!=yIWMA5n#os>jxq%j)o~9YjNtq*^#MkK?9xkCf3(Dt=kmxBi zvl{*n-kEX|{uLoSacibfzzp|ZTWVxwZAw4&(>$jK z=xwIDaRt@h4LIUcbsw*ran=vkM$yKS^V~Tw z5xf_RZ6spvY*11?pW7{piv5y7t;6^7PCMi@cZf>%j0 zyUb&NP*)*#3Xkr+mo=kJ7t!$jj}KbsJY$3yul^CB$sane=%`)wo zU7M505O63V1f}!WRopmAZo|Xj*_hn_>G1>D_xUJ*{P!I#-mx+Li3*Q-MOOmZo^kNK zUam2e2$3I>#?2y^`xseU*sPV4O%?Dd^d@X8$Xfzv?{1!u!W zknf%62I=J=x*f;|dmYXpAhkkMeJ?Dl;)k@(D(QdJE2MV#pFwt1w=<(_2t?BMJ|(w7 z4x6YhQnP1fxga@p{-r2!T+J?(M3qdpJaQ!Hqrx}r^o^-ye|)aN3@s3}!n=KSd`~L5 zC*m7Ys1?%9nT6e~e0?fuPA7iOxp*i+ny>8bo9RIY{kA0~`B9QzDp;P6=fk@O?SD{$ zIojv|>BmhM##M|SE&;Oq&kO+Adlp5o6^@`kD>cN_+TU8Nv4bn3>Ry;Z^9`R6P`?3? zX^Jk0L;G8!Z4Q`fVl8m?K{-_tf#VMO8sUWB|niK-L8RIut zJDa4Wu$o)B7aA8&$lK)i%Ch$#wuH*tWM~5Y;H`rnz9>Hrm*4GtpGrBiSV_wwbyhfW z$B04+gFR<#B;*l~oCA zKNF&LkgsYEoP5=gJf3#<6u>1C&L<+E_O! zaPA7O9?DB6S+4u^47(2B#dAk0)K4`*bd-x^)$6ydHw3pATz;zw#Z~rMs(N$Ey-fNm zXp;FOZ2SDF$tZ!+fyoGWjaf$b%!mjY^eNN98g(=O2GaZ^2=TR8ho3y2%9NC9!>awj zT>>01^5Szlp7#fV?90PljT1h%-P`uZp)F3ugly4_L{Y{So+6FzX87-%AzJ>~e#Y7O zL?-E%XDV6gqbyYcA?V{*Au^vP(}eOnsBB0r!!L@oCwB ze#7hv7*NE%m&Ch!kFWouGqRV-NWQDSacPZVh#6jDQ1+EAK|;X!Wr(J*Cm1{v1ry3f zH4Eoj%mp{RN-Xy+jaN6I9%`httGuBCxXso7NGHC6iEliAh{3wCKFxqycD_*HSI$Z+ zok?7<12U7*8LrkuGy07`(0Z>~0)Td9R{`c>=?}))vabHl!BI~m;>es+BrrXaX#vSn z)NJH|4D@yLuiIauH-i%OlSeHW*=O(~2yC~W@$ zJooOs@As<|ej@T%?8uGQJ?PJ56^zySAq}cBqd0l1wu_jMgn3AUWeOKEfhq@z$!?f%TPw4EpUZln`-|uW3CD< zfyN?4BfI@UQh?E||Bgw$>*a{`wdIEa)YZuB#-yJI=h!YIWuwDzYUunHuoVrOh?&~| zbg)@6$epCChha}~DW1UA-_Ru=*cG#WgrR4l)e)@He(jfwN~p^MirSo!!PI_)8IXDO zsp056!$wj%piT>^Y@MFqyefnLk1%kY6&tjrGm`@4yoUt$wlp!Y01b2&gbD?L0QYTt zpPe|#wZB^9<%|Afw02lhcCAtL9^BXz7^y1Q)#!X7UOAP%dq9&{wu>nmECVrX|E5wN zcF2>>?(`M+aI|i)ezM@;RTB(=!a$*(>(nqT9oAACtV5H4a_|FUAC_Ru5;~X5H*aLCss9q(Z3=!MW^@h7>g^00; zyld-680CsV*9jGXhd7pI7_ZHnLk7uKY%=)M@-1;0GM-J5IweI6G=tdm2=p8 zM3-6O_bSVQT4H%OjfQWvCE_G&pRI^is-~8k=-qxCpzYGu4Gjf#{|J$-l_fmZfKY7ml1yGY+dPl~#_w;P1=(U`0LhbYF<_25Pr zdze+O=nBwLV=vR39mZEDALO$XqL$d-gr>aUcUbn65qA%;(f9_j-6E2F$RCfCJL)Lkw&;_+< zT`NK->Hm*H9Qs^fo*WcL#$acNp6$Lv+a6B@4rntlfEP2w_t^}AhdH>GJthfMR!?nj z!&7YkuNo^=&%F6aN(yENKz)WdkX1k`sN)>5`!mTQZ6>3&hkju^pQTZKr6>V-GL4ef z`lAaDc52aozWWOY=n<=xOE56mVKVXHh0fODn*dVh2>^O=acxXc5nw#kRKrK}E+e=Y za(~HBS<3pzVGU2%em-`rT=8;pD-(1lUhJcVaWA~P1k5Nuav6umy`ylm zt-800vGg!%O0|senL$b^HSPKpC=VvLA?QTl%nKL0vhQafm`>{uOX; z^ZIIDH`J+NKTmDVS=nHexa1)bet)H_eFydM9Uy%?7%=P=U;Wn<&6VK#5JWQvw(Fh` z`)y0lo1kn%T4W@;ma`e(h3`D*1EMc`N@``UEM)A%VSG%0WMO5V2iyF=y@0$F z`Crb42t+Q!A%NPO+72ikVZFEj5uyXB($7)1_9)w?+wed;2Jg?Y3lav%bi~k8<$Oa$ z=!)Dce5+5#Sr#Hew(&fzfTIYjJlh;5|I=<5!b76HMpq!{{}~EXH*)_X%e(o zj&F|YY!{TIGr(=6(=cJ-Q$<;|S&-e*gA)vaGL8b<3-FEkuq_7T$N#Rx59*sye?1yZ zX+sI&aYY384E zEu*|G9$xldnRnZb@JHX{>BwlUF@OX~^C~DXDj=~g04Ww^60Bncj{nEoD$?ak>gprs zj9_Hhy=8^qW?}=5wJ|jv>m&80UD|@5lqy|8r-)p~beNi2;MO=ha@X<5K|Tz-h;wIY zX1J7dXbfn&i_KT&cajV7tqn*YZVCuG!XX3&@1#C0@~~x>fY~Th$`Td04dB#@Vby1- zIQmYO;yV+IpoIOP#=ml&s&B;BxC{i?Vk324>e%ObeN-1zU1tYSnC>Ez?r}rCQgbxJ zVQ+%tDLK~#khn+1S=ku;d~sr-V2|6w(QhIb1Z+1d7UwHi4P6SW?2v|Y)?-iG9$Wtu z#05EdNMU*Nq7+o8kq=;s2sg@uud9<$a+GSyudqfFH`x9wAW)aBMR9XJlm6O~IDQi1 zb9ysoEG@d(R(d>wdkTfX04fYrNlgZ$wJ|J=Lf8O~YJc~?)d)C9eCXWR6WcMCHv9^8 zHt>(QruwCZsF-6baadXKw0@2|!&`9@>F9Uht4C+}Q{lYT$O|@kGyKE~<3S=xV-(in zX-u%KVkanP$?k#qE~t@C`y<9TsDr=nkG0ha!m%>gBP$B9RY;aCRJfF5qTyuA-GI^potLnAy7CUSF_?Xk9Dyo>A<@K%5k$xS1fwQ&HbgEWCs5FJ& z!ftn2Wdgq%8`R0*<71DSj&Ni~w<_|+@{~LP7szv~O>jpUMr-v{^isQ~Qp!6e1a|6C6y~_#2dB&-AQ;KoN*}IMtEAn_m}WqS$fr^x_6mhk_XFQB+0T-!+uh_Z20|E?UgF&0S3mc_IR8V0xH=$oXLMAcI9A+G^2bESktQKA?ns1?BfN(SU>7ou-nso@InJrXbnuQ=SRt3R z1CWC8f7-}zIDYu|~H(=U#?XD1`PFk)fFqX9q@1To;NuwoCzJ?_?Y)zqrskOZR=1Dus>TD>!#OALJu9 zAI>lMqylQATEaz<$jrMl%gAJXx@wpxnS7t9=G-KBD;aQ!l+TeXfWW*Q5K)+-OX47# zlw)A6jhdEJ7y*3IGC*bvkG`NS7jbw3Q=n(&bEJY_CDn93eIAX8kaLv_=l$e8!4}nP z=w0)RevP@(yWy{s_U0f@d709pwUqnBk6f6;E_uu%?o(`bN8}~ zt6{p>@Mr-0`ngINYn3Z;i`^~yNa(164;c23rQ-q~uUYCfekvzkqj@LmflZ|75-`qa>;+l1Z47d+q`sshb+dwT=5|x$JBa8Mv7^7S;%8%^2(fiEMh1J z5!75{76KcJo@sQq*AtD8q;UbF6vr9HJcI-zv9B7fjWWGhC)=TL%x!mwz0L5hDU`ez zS=iEe({Yp_-%>xitU?x+)fN4Aauxry3x`lod1p3bLd{V{v_mdJZ7P+6Y39Me>o=-| z)rSM%o)x~VVhWdDkQa{wMFn$;Ew+j0!79ltyp z)B!R(6X1S_XFl$C z)qcvPMg{p_N(cspW4EnYgnG;&VKbx=wH^;sonQXySiW!7u3yK>;47&-Mt}Jh_)vkf z*&#Kh+gMXlfh=W*3OZ5B(*{9B^N*?XjXW<_9FMA(jKnv-<)$_oB-qS?7nX5&q|+xp zU7NC_vOmK%TQ3)u)x~R|BGbZej^=&DK9^z@^Kg9|RUd7Sh(xhm#4EgXL_0d)7@B`; zyEVTf3u(~{{*s)lfOCl>rl^){_FNu&r~ieP6I6}4{Xh7G!Xq75f*vE4`h9rJq)u&!(|Q7w=;{cnUAXPvv&CPjnT{VC(JqbvQKb&=w&r$$zO zgRbciAU0jp0AV1Cv}^`qj~F00QW7098U}s$5;u|}+pA@xCTaDtEv0j9iScK&&S}gB z;9Kp#+{jf6b)Qs{KhX=r@pbq=Bh{PXMM6R8*n8(|ZQ(s-8H+abA4$N^j~z>(5*{eU z61_V?eX8pca`PmUHpDEtL#IGjyGTkB#40HhPBL~ls?irA@djCcL(tW@*ku&44q))f zP*UMEf^04msuj#YF*RiD10&6}@IZv?6?R;=5ea=7dZnSu6CG~{T2xr|JY;E$D}Ys* zitOmEiJkl{t;0QMsBmuGs>7sdVmA+x(V$sr(X5r5_+*6dTv$2!8b}yz0?skjLqy$< zqi+gcgX!diw^$*qoY8mj}($IQXyI)VD1!0)^6}I#%L(G*HyWkFsYcGQq2ab*o!im-2t9`1+7V zt2-PGevC&(&>MZKgooz~V0WHW{lKt%tt~&@dA(}@n%un4>z4nJMbKW*E5J4)y!#Nt z<1m#YbZqBXdvA)=>hndib?kYY6b^$dhce8er8IBxv#<`wxxxW|ese0^u+MGNLyHVxxy@ezWT=M(eYXV28Ic@i9UqE& zRhB(xJTZgm@j_9g0u^g(hNjTx^-`@1yE=V3OC(~1JE9kDhMj12A=yBr^AM!?5LNNa zqjlmf=as|*IV|c^QkcG7TPYoE!wRMB3H3C3++b+!YWdMlM^WK?Kevn*dz|n zEL!MODvvy1P-71%U`;gjM-DCeV7ku&EWqrV>R8>hkHSa<0TZYp@Dnguz4Xs;p(>BW@+*{6Sn9KrU4F~mDk zz9M3DKbMAbr#?+8Rh1Uy8JCHMu+CKT%N%pwgJqn(U9^{-l7wXFBw8gJi`go_ha7Co z_b6V>Q0zkZfy4;dVR*%O^(o3rrFyLIQAURv5vh{Mye~pf~{L>BLw8|Ai z$RNi6A2L~o!NBRbK}t605HDxrptmEQ{LuXIhzHT(z#JRdp!C17K>u*G+^r>5!GC15 z|85WR;PH(-bCAHq7ZJ)F9aX_x;lcy@WXZbNGzHw*zCnz9bG95-!E@I5Cex(wDIboK z*!>+DOzqH9x|;t)@?*Q$7S0$dw<9zgkD1~ASSKkixf2!a(^l$|$uJM7v=WT2M7mVw zI#`$v)6T^E#W#|hfk6XK?e?MG=Rw#k`%$O7PMMjPD$R4fBi=O>N@Y0N&A^Sovu#Bn zjy%|prnCkZlY&GN``3i|{8~flSE^>kUJ!Kn%-EtS+7=xL3oW6A`2Tn*zN8_(-L+#r zjDMBR<}t(X1`aq`fI12dwZ9|MxU7&m5L4mv=0+^Z-=)sFt^v5!vIyAI1{IKa3Lg(h zRG*{0k9Oi>vjdQJhz*o?!o_Itbg%v~H`$xa1QD1*=de9>_q6CSq#2gR(S2&{EL25+ z%k;e8p#~%O2h`gF?@4?>T_PpBXI6Qk3g0H&nI#s3kFZrpPflq(!DU_$&!gjA{jcl{ zt?=j&11+iiQuO!bk6G#YRQ_}>)#CDzO-K6bv^13Q_JG2-`CtSf&*%A$ETS zToby5D7Qor`k*c?Z8tL9XOWC^eNwD-OdYPNHk@G~TWCi7&xQVz1@IN@_>xn`LaoIu z^ys1Wc<%@f0V}X}<7YU27>6XLVf*J+n2Hb1f=>RaodLmemYjmGh|wf7stsVR%th#z zP-?>j!I$ps*V+h>1>p z7H7wX&?ukB{2KV?e^xzP2vh;nN-#7bhxJ6e^<~8)M=skxUxSaw@gs-{q=)L7>pv;U z%?TV}7R`0RsjDPf-S9O3bc&uk26s%NL5NAMPWFyd^t%^6u0u}?J=5&iCJz#CxhOI) zha>9=Bieh4149~z3+c4sz6c&~B8vn{RyjJ;;Tdm997jOsi(C1XaA+foTnS=|S;QJ? zVFtBU8Yu>L4dgLGhO8m49hCU_iq!UsFL0Hv{f@b1gaILcNx%$(SnQU<@>#n9=^{fw z1yCT$>)OmOAiLc~HfGuFU)}Z{sU^LkL4r}KObHG2G7#2M(Pq(@M?E_#s6bH(_G5-T zNPr4(UD~pjv(>E|&|uffHN?7zfM6`Qjw`rmgKV2EAt>d@6Z53 z5@AkSK7FrUp#c=DtKavG%kOr^n!lcGE)eMZsHoqrZ zm9s^MT5+ZWgZ@MPs&J;Oc0fzfPlL-fnIxoS!=Wfa$P&j1>gccDso+v}Z8 z8_tnDvw`>3eE%=j4O%1ySqX)?Z6Gi}B_`hsA~wkmjlQW|0lVXb7$aop=qT3m{^8-A zYl^qzZ?pUiPQ!TJFVh#wv){oaMi;J>`RQz%C?bNn@2GRBFhX3cZOqb}WpX^d>YjNMwrouN zP7Ba9D-*A?1pN1^V`k{cZ^$KzV%;cIwqO;iLaV6Y`_K9WPqOWu0~t z6oI@mHpCH^a5OS8rg`!)mD4xc;ExGvpg$m&z0qcDiyQB+ItzB`UrGKX4caS)RvF-t zHgYhoaA*Jk3_-Yx)ii@ehdVwosj`6)i9bC>UHY!6O`80v?ZiUY z(FqoEYVLE$KTva=D;7wuk*LIPT?S7FM3t0U^w-pG`X@@J*xW-2@r}to{f@`R-1woH zyx%t%0o?qqR)gBpej%heR)*UMKFo}lw+fF}0oGZ98r+y|Gm1XzHZiNHTFx}$ZuP8p z7Qwk6o#yw!q4^Rg20?fH{*-+8z{q?w7ytkPE*6t!47uLO9n~=n*MN-HZ+Un zxPPMi1Zv5L2(%!eh^?DBv^bYNKw*6N;BbBrOTW9~nxR~Qt6egmIq#I4e(TXWb03yY zn=+BVn({YK09+oS#8mRj_H1X+7q@UWER$HQr^-jicYi!m?i zo`y}yxAk~$;e6)qr7llgJYpYtxodb0D!USIWNm#goqXlkHccKdde+y6-4;Ct+1GWB zNaKng%9s+YayxFrf-8EPO=U26CckX75o*UT*kpY$hDd8kQ_N6-c|}XsnF`#1#i`ZL z1)yWHie!%m5}RfZ#M-KWg1OYUP~X9()W*tX?f?rUjAxXv(D6H`NVZZlO`BsMVNL&e z*)jG5iTyjxS(kur!X;>ivKBe&cflAiI>SNK39Q$6H3MAT%{j*uvw}^-;#7f0(|JLu z+-ftgCx!Wc&O;AA_5@pg)Mku+Z6{A0F_KZ-Yt+HpH2#Ev>+^HS)YNbc_aM`Rf9}M| z0bpZaJO%k%O!-b@^cxwg=G*kBuSAoHv66)NVv*A1bKCuYVOTXM89^D8hV(jNErV0} zcU1bA3W43D8f$gNE-h*4mNEls{0Z8#M^K&S470s1n{Ef;SXIuq1o1Gw?Dk{sh*0hG zq;^PavzkL$!iXiGZwvRiI|vHp8`5;hk6!G^!80N|6_fW}p&-dHMvr@_vt1ci*VAS9 zuV#>EFZD>~D>6M3;moBN>@|v|q7^hlihI#T5HEWM>JTQ3A zjK0&55K1a){lA14mGih0m=T69|C(_qc+W7d&y%Q$b)lX7JgwcAXba1L+DzrKXEoYG zNh{=swat1Vh;6g1kjh?|jf9QYfZ*2=4hEkz;d9UCkvCjupy+*M?9?4_JIwALMCB`H zQ=GxxtBRQd%ZjQPNoNrf!Ds*g0064;-tp2NTGWws64=vs9or-O-@_SFfwjN@002Hd BOPv4! literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/pumpkins_catplot_1.c55c409b71fea2ec.webp b/translated_images/zh-CN/pumpkins_catplot_1.c55c409b71fea2ec.webp new file mode 100644 index 0000000000000000000000000000000000000000..58594e5da7c9ea84c3f00182b04e5c4cd652faa6 GIT binary patch literal 6890 zcmYk6Wn2{6_x0%zWC%&=E(MhC?oP=8WGHEA7#aaVhA!#uA*4haBqXJ~ySs*&zux=# z-RC)P&VFlWOiPZePnSSvPfBax+tqS zeB=-#<93|3lL3*Tjjw_j)#OCi(1B6Fal{ips^@@P#4zTV#1>+!gDF545&GnQi}VCQ z(A^_nBF0zK0NXi}9cu{pTQEZJQSU@&9Q8(EMq^s%VHY-L8Mp{kk$6}=4j_@RM>v5C zJ>J9O;V;h*H=I97$iY5dk#+~#f*p1~5@yi^C<1|qI0>AA9{1N`9=Le;85a7VZl8~mwK?!j^{Axwn5y!&`2Q&-Uwd(3He@J_ zh2u)A)$}V$_F8p z+y?MFFp+PfROZnO!@u4BHdeNl4vgYCwvNBt(4&5pZ_z|jT6p8Tab`&~*vgFkfBB-*R)`=q6MXKv?Xg z|6KfkEj1aeKk_P>g8yR|t28BbQjbYjQM7zA|9*F`+G{5kACm_8|IUpZnHc~+Z{NIX z%AuHG-(LNVdgAej`43;t`(KT|)Et$6bSPX17D`SbU%3#v`J>cdz+(7O0mY++qs`2m z8uzam#y6{~HbzF>4?q5euh9$!tOeciGm~A0j26ANU1~3WBolQs%QRAWNuy7|2YbK1 zi=%gAOTtoSLu6VkR{2}pNG!<{b-P}vj4XCtwxytRh&?Gdp~?^0dllKu$TY)GV=wig058JBrlc~Z}Xm`YRUA9ySbwG?2XyO}t@SejzG*|uk z1$My0gWKf!Jr3fuu?6#23aR+RAOFndoZ}GfJu9C!Q-b~iA?H>w>ttbrf$FPA z>KQxQzM#3A|15;$5Ppp!X1=1NexaP30SMo821R||1)rdtnkc8YyyN|Q;*aBECUn4? z&->k&`!%22%XP6au@TY6f81pM8_}b`>Ap)5ulTX>UyN!Gox1$cpSbm+JPf84v&NUQ zLxzhfF_QM){u9B!>i8@B90FDC9Z`-b*!g@NFuKF4(EjH;2S(2Og%L)Iy}#SP(e$Z9 z2g<$_cKNc2ZLZV-Uy&u7c;{eqM&}!M3WI)-dCpNsekmLOkCT6+CZBOV3;gnUqBx1W z<=CjI@(V@$`m7^~s?`mVrgL`Y>G=17{F_Sznzi1!BDn&38T6xnqu`TR!|d=wwK*43 znosDWj^ct}jU&ZPE8XVdLhQy$D8I-3!cWWm+4-<_r}=>3g8%Wk6_l+j7Y{zM7n@|Mz_V)$Sj2UP>at5xc!@R`de>eHR5b)S%Yh zEts+X?{UpR8033{N@P0`Q*$J;;xshSj)SIa>(f z8M;7A-RQK+jlgZZHw9}t&&)sBh2F9kt}OuPyOVj$THaiPnaVXA8m5+J~>f1a(wTXiv#-pwYZ+bpz`!;~!y6 zJ56~{CtC4ylO|^X1=nbI$Ygm(XVU=K-RV`OKZPw?=JDSQy zZ3K+Hg2xs0c>#lo3~p0NV)B}HhwkFcycMrrGqT@qZ8|-gr&W;#z;ZIBB6%=qd&xra zEph)T`){7NC45F9v9^NT=}vaA~VoE()biqY*m9Wy8qd$=U+zVlh8gAjG2N$lp$*nRlW7Fk@Q}T{DwvbaNSo?PX5!R zrZuAA&k8*h@ z;7`aR(SbG^Umki9H|#j5Hzk^pVqP%w&T-+}LsI;2jfEB=cuvF+=p*;r04*SOcPs-R zr8*Wt`)KxeG(L)Rd|)sz0ZbM&CC@;Y1^&f&cDAO3w`!TvV$ER680tL@5z9YS=;O_9 z-v<{T7ei!O^VopFDe609pYa$H0WC=UoqN;}5nmcEGT8LhLG?58ry?w_5pPN0jm(FQ zWrZl!Yz#?dZEKn@w9lVq6YGWc@e>b`Nb06_Uc9UV3%yFb~Xf5=8Q$Z zcB<(a=t%h?B(G5zq|T<7I-|S#iq6Cv2;?7_0Uj(|Wb<-78)8Hf|q)&jm z^hTEjDQVV<-Br%CEVh%%IT7PU#KTAoK?Pv&Vm>qeu{M*XMb^A=x z4%Oqegw2hZ7^v0t8)M!GKh^78ERCSbpR5`gtBd?_vrEq1Y=S6KNA(##f)65fp&wkk zQfG&H=tVAhM_lEHdXHHaiH(fgx;h4n22c@7^v!g(mO2U;b)&9rVWJjl?BhI*j(Qcb zJ_!g~AR4=M5(7E!sSR~MQW!$i^-pe+R>HD7}S%Y-6M;# z-{{&o&0>j?TB-5L!-!fAUsz8^@F{g}0YAJ3sWc3S6xXAiD8j#uw)}PW*WixVwUJ!evs1j?rq>B zxK2vy_Edi@hLq2@eRg8N3ntDqZM^Rghq1|r+vON zCrX|wg!fI>s?Rj3s|jhn`Hshtd}1iNSl+6P)K zqV4!(rZZjI$dE~{^EXT(h;G$~QXk8^4_S0;%sIPE`8AFFDWm|RCbJb`VIO7QU5?KC z<;Z&PlF`hzvLuXDOAaXl@^4S&iN13une0qn#Jwe$#wD3n*!7<#4uZy9eq_u zUoCPl3FP&Tm1e~x^*a}NoEH=&2&$4RLb3G?|78pW-b8C>)q=tE+rNrg-muvuh3F5e`j$V=EOOtfWhJ+b0wPK-iMod zJyk-D@-{s8Zn+2m0OXoD;L7MhVsfWKN;nmPaaWXLQ}jN-3o#iwBX1rrv%T`MFv#** zO;FDxdEqDp`bN7TV(vx$quZC|(O0_>zDbc&V!tt;F8f)PtW8!Z)ePON(Ap)kB9on~ zc|RJQIF@#CF}BCLvU(-5Xoa^SVL1nkuGWh1(X^BfSFT|&e3CkNI}c35NNpgDQwtoR zcg4<@5>Ow81-&ETB?}tc_Sq+P@1@1QVjis~N8&hN!iAkCGJn3Q&DQNMb0b7&#@nu{ zo?ERvkLNOU5K&$)RABr;H458o3{vbgC;6eX>u?zJJ}C1(JW%H`94r~H7>k*(Q}Ym5 zg!|PWnm&f1rpUn^w|E^|EA7|>A*+#hed6x&4#o5!xxc&NnbKt*0Tv3~Rk;fHH>jkY zcX@WeVxT=rUWg&QP)`3H{oDJ}9LbZ1c2(eBs?WHn!uJ&ydEwiy$uMPhB$m97+rSt2 zp@_2LdV?(iS`(<%Cbu!$@lztr`^br0?Qm*Mbq9VSa*J5>Dfzfdds!PEuF4IuQ-jw_ zi`j#yO0;De&CkOg;wXM5&3}u?^(EQ+G8P?r{?WWSRk zu=c0t>YgPTvAeeD6qrhh?^d>`Ff zpd>PxpR^1;N`GzR>l=?elzYC8oU7lLQ(wDoGzQPsiFNGf9sOin9BU06@!zND?3?Wo z+v@b(5HJa`5A~(=S5UNl0xIrBX&RNlVsAD=VApa*U#y0=F|pHfxl5fyIgZ)zu-OT@ zH%o@te0jX2UbL{04~?n8OscigW2AA)v26sgF6lxZ{M-wZdZH?%l5qe|*wuw3*1+A9 zE$bxCx!DW9M~orJeIH2MAQ|(W2~i-D0FT0gZ-)pR)yh7#u;z(F%Y5ribAP8d%>NiG zY;mlP{LCbsI*;9FD3x?<8!;y5au*Ga9J3BfU@nI>3yxA%tC8=d-#D1vUKuTDaW9>Z zjJ7bNF%j>dTdzqOnJtb#Mqf)jW_w8!XtO2#mYB(cj2XI$TLe6E=`zYio`O|xAXT$h zMJ-p3!^?oR$Zl%D(YD+p*|WFLOI`Y8WX9r3zKNJ4AuZc2OHpod&TZ7=!A3-Mwvto{ zTWy|Gc43gugzFylnZPreL`8Ax+~6q8NX`qh1IEUnl_1OQ<b?& z$ib2IbgCNzuElX&9pY1*E&LU*OI+dB2vSOhy#baQSQ4j~izQrWR}O2gg7aHh?#bqi zmyohSI{mv#wk^vCv&LkUwM$&8>$+=aYcbS|W9+LTW$AWixh-@nvCTG68EOcAUs+R@Z2M39 zG2SstWZ;c??M1EVc(+o<$U=5wP4G(UZ{;eS>M&e&$AamQ#*xrul+ss0thv4;3#ZM| zEprCfB_Z@)<}w8!_fTgR`|fnQ8PP=tIYnLVJ?2YD!}r zb^CpvOHMXTE1ugWAALPS6d9-y09~qc0NiULbbQYsRr)WCXaT|tNgj#`)vn!d>dK7o zM3PrmwLV?{ngPP}d!C8RI$7qT_>zk2O%;R5&*+hmsQB1L2kJIkAkRI{^O@}jpfMyn zsUq7^bzwr?-JI&^ykTe?SQ1b4(hFkQQgD(#<<1 z!=5Ie{&*;f%*fF7i-kf;z05iiN&OW6(`gl;uJC$&Z8A8uQ1pQ8@QUyCFKUb70 zi_|(}VNQcs6Jz(IhZ|$F5Qm)-{mhFsC>lHio9{l7(%`bm|BKd-l!JPNnu5=%giXnX z8~JBquN1SiGjw{P(DatI{9n2tESt|cA6mxV!hBcCm2RZBC`#SNY`lq1Q=oRsNM`D} zq^f8<0nz*4?)L8>87eXmvxPymal0Mk8SP2v8Q`}jk|@Rq4=o*sr#ur?OY?*0!NG2r zz9^=JBNKm?bD61t#&@`zJJ)2&#AT_P6qp0Q#^Po3d1=~Yl=zu)!4t~l z&GD4Jz6xa6ww`0JcqD06L4gtb2Wk5A;7pp~gH%xMYJHzWQ6`JrtEXv-d+^RXL{VLkq?O_jg4+e<`|bhs!XY z@E8>~TvQ*?LO2p0dq|NcG6Y#W={WgXbI?wA;+j?+LB9C=YIPu^X8Tdh z#F6C>qABP=m#y(WMy_N3{_Fj5Z>-2VWph$vQwH@^J|PrvD2CFY)+~*7wsyHQq!24} z(x3n%fCbd_npho(RJu-&)cmE{^K0)Y+l?^;0xG7aeh?fu)gj_3STIkD?ZJH5P z=K?I`N-#eEU@xGSPpLYpmrf`ev`%&34#w$?Ad*z3$}JlvwrOwUj^gq2srZ5;Juxh* zJSVI*)hqugR9SkDn!@SuyA~gJ431-8>7W95TrI!k*$hn@%Wap6^EuXtYtOG_SQoZfRWR;WX%$B7$h>CvtHBmD7bHilYDG>yqv9q+bNbihI z7e1r00k!4#89g6Q1)+*ut24z>=KQQ=rNOra zI#UGM-e$8qYXno5Gl|1pyy_^3yx^)#!m|{+NFKWmvvB)Q>t2o$%KqOw1T3Ze?{F$% zP9hnu%j%)EzkZ4O*>&23ip;5N^Aah1dM1jxzb2Z<9+*m|@L5y75{kjCLFfI#aT`@k zD@7$uBA_BFI-%LA(2%A2m{C_CU-?lb(0t_WmqX($>(cB19{g+$K8NZ3V4WE3VTYJU a_>bB!yJ>eq@gSYp3N(nvU8_IR-}QeIV3HXC literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/pumpkins_catplot_2.87a354447880b388.webp b/translated_images/zh-CN/pumpkins_catplot_2.87a354447880b388.webp new file mode 100644 index 0000000000000000000000000000000000000000..6166b0de4cd90275cf3f18dbcaf78b59ce2b401a GIT binary patch literal 19274 zcmb5VV~}LsySG`kZQDk7*|u%lw%KJ@mu=g&ZC97=%IW9-o@e5`XJTUB$uF6)BRAr{ z*Sdb!Ub$0AQcO%p8VE>TR7gQhfs2Ua@8`Ky;2dBY7Z7f6K4z>a5fb8jq_d?uB2ciV zR^LO04pP6Sseq>;_wS;kv@gbS$U^Nw4U?43KHmUeb334(iDW+W*VO_41%Ip0kgrYv z>o{jE$+J(l@9zENNBF?+bHZPQMEpeFKz`}|F5AHG;ot7>FP)_i_7}UGok0BRKc;+v z0RjG6k68f8@1Oh8&!sP*>(&5@Ch=td+HY2W(YK%brHj2?-|hYefZmJUgI(S)_q)a@r&~raGiFme*tLqtN+&hus^@KOWVV|M?C0V^d|#U zeQ$f$eowyP?!N;0qkRj0)qbQs%|80C0xY|0d(%FBzKd@eCti*j=OFJ84|Z4lJN)MT zZ2({2jaU57{<}VY-@^d+PsldR+neLvjoxxVHUR#s6)?MLeh=95ZwG_`q`$oZwO@o8 z{we+*0RC^nFUC*A``$0WxnGb!*0=1}=?CZQ?(6Rz0Kos?!|dt&BNC9cmG*e}ReKVD z^IAZ}#W9%|+GghyrVB$=3NX)@HXU3E83ocI0NO2p~nKfo?)$5zz^FK&aDG}^_;>W}_*IT^ICC+UbIU!o3z ze5C0X(5|Yj%7^z?Sxu2+LwNm~4NU3x9DD8iuY!6g_Po1$S84lrtGGRDkmtD$e0GS@ zz7zaY&AYGrB-;{S5lD!27o=AB*4*MLE7^$tbD}`y8ub_dg*`fq8Y{OdqUuwA`lj2C@N8N?v&@x`C+O<8 zOsk`>w|k6#2E~6a3h0KMGto;CZ(KjY>qVqlW=*zEIS92se2%CTo_M z7`0kzEsNkSbt{2HI47$*ZYh(^qQwnYEGwT*`~nABD5Uw(xkG#(JC|0A*B-A3@!ijv zL_VG(rP3vAIa^<%3bmLDj(|nm^s^y_N9E*|u$D2_htE+@(HFAx3FPuJyd;<$nP-T# z_qLt+p9^bQj#Bhym>t3=_ne78=VzfHl+doH&2zB*Kdq|{5dTkUkN?pCCi>&9f2YcS z^(h_WDzeI2d|e=!yn9U}tm*}_W#MxZ&vUsZ2xH;Q2VdVMr##{;bm3uE8v*M^#hc4a zwk!DHa-MTsS?R*Jn|d1CzBJ;sWY#$}@|Q#ZiGzt!4chEP%wQI#Dc{$}%gt`D?<3xz zMw61e^NA-yQp34&QbeOG`!&cOgMx!|m;{@aO_sn*IGmZYJvsn(H&m~Yx&NHwaXy64 z=WXYM)d;LjAOIkw>w?X6E>rJ>Mhff-@xYyPp!2E~rn*`;Jf2I7)aOdo_gc;?AP@+| zF|YYdP|kAlAw4+X8Yjk%NhmC}t_|N?0WG~z+F?@8v#=aQtxa1gZ(J>7F9s6khgH)N zmNQls=Lv-1OeH*L*h80VT1(OsG8@_uwg}wc@*k}95E0C)goUAT+6J*m3tL9HWAhrF zMRhWa_5EjrGg?HK{1<4Jpu%zXh|2=@HW@-k$o~INg}(@6**}{w3nxM$dxk!`ImKD= zEJnh^HJzigv9tOQ?ZUj8p;)Qx)r`X>-y&K8?Iakkjsla@1`Yq2h0aLIYldVzOgs!S zK4Cg{=r^FVapdD*bRAvpX;y+ake~Xuy`B?Bv_;*e4q$#?AJrA(yG{JVCssc>m9Uov>glz#~nd-k2ox25( zf7=Fm2(*y8*unxW0gN6gY9A?fmIzq!ran_qvLjEDjI{Hn(X+DADc-Y9vb_L9i96CT zf15TRN~``E(ks*bTNVEaBtCR~1?RmVtgszd9LVLQIw39oe_@4BBZp2)(rv)L=QW?# ze~|WHqW?cA@=xjhztDr3bUBePYu>vl@W17T*32xsBNBK>mT**B49x~AK}TvZB0&HS zXrR=;GpKJooQE85_EjhSjR(pv#6;Ot$6%aK{My~XAuMb(*&X!FetUteXKcZ8*Uh|C z$7$NIGXT? zJ|p@O`_S`gT~UN6`@C9q^E82hKmRyB|8mpCa?$U__Nv+7dB-~3W}eh^bPq?8h)Te_ zPb*U^3uw)-r6zf58YL0NaF$G-b)4!1s0SQ+OD?vAzIn(t>nC;P_f~ZL=-Sv*SYq23 zm5bG4|1V~Hs8Dg@-_?036}HBna59TU?KYr1{?979{-0F#-*)8E4E;aA&(rwHm-^G# z5Os-SCxtu%=mvh;dTaF+ClBS6VFbI&E+UtCw@K5k8x8XRFSD&{f zEK3?I5HKiE=i=08Nfa`%@rN_|i>g?Yx9M0Mf`Dn;tuRN=7hI`sm-e~paif0vC+-zY z6@O%`&6)l6{*6MP@f@q|*HBsFX}I$CGhZAJ)QBN&o;HY--q=-}QoIF9m>W!LH-vH< zlGA?!^vB$02Pa8;|8&3sByk=qhnL__Wz!{!ChYP z%aZ;yL}r3>LR1mK#i>Q}AHx5p^^u}uTmfjX&AXsM|A43_1!$VLZaH*mEJeb0mZGUc zS_95IO&*8Cs8e{&?Bm zq;wur2*$c*6^lh9g1ueznJ*NiKfUq$dU3lNK*+Q{oe6o5HY~XP^|y+x;n{Vl&R_~} zLnfEwHrx}6ARAAA?>ia)2R`rV zNQ^*$Z}@LSKhN``RH~s~4#x_AY4-$C!Xmc(@f#<%7bX?FCMD| z3%i&`wBe6)J55;pWXaopP(Y!-`s8xxP3=qxwk8qHDz9(-5u&5;e&=zQ$7SaV%{pxK zk62{X4m<3loJpgR>&v$rMuv5E2#3=xJ_|jZPWKeW%1hJ!m3HeL#!uXtbC2)7bW_9V zIz%Sbyp6F0Gwj_mDO!&z>5O*91e*Hb=j?j#lFkfx^zH?6{fZmhUF^MP(_w;kEA*1q zOz+uK&`bKRNk3DiUQ4Dok&R5p_03$!PQOIT!fzR;?jAhllG#O0*xE0j0YZbS{QpwF z8e4QuF4%GtT#vf?1tEy*oC3kuDAc)s;@^IW^xtm{)t3HelU+*8znlJV7w;ZX6x{*> z`u<=IAgW(clM^{mNNMtWw69AA(uJniA?9xH>M%pZX!2XD(EuI78^;=pLt5~J$8XHg zn!Y)<$hZ`6BE>3XrdV6^IO0S~9(Dyt#S7v0T4MHg>((%Z=k}iGV);nJDlO^M9l^>c2ENUg# z{z+68>1PiWcoKUs9X`XnhHvNFn$}HFU7V+5Qh&(fNaEwtOe%$ji9K=2?Qw0R=-%8e zoOx!H7lH6+;Ori5Qfr?)@0jPLKpgLR#UJ@OQnN!eP-6>Z{l!Eyl-u@%2X{i<;y$2! zF-W8OuZA=%9igynucyLA95k55>qqP=>w*kR3@+U4kE7VgeT5MGAi zOoQo$Q%omV&T!meGf|0u(ui|h+NrL79Fe>YRyKv7535c}xQhpEYk3jZ98AKF^36jB zu_w+-Gy`xWDh}6bdTdCcLs|ZF9MfM9r(zXT(z4Qa_P)#&)dsc*sP8W2vo2C-K(?!G zj#kp%b=}hqdRi|R<-~&wv-ccnzMJY_Yn}&*Pm#i_n3hLr0 zk@~b6o@1P+_c0=dBQO#*J`NmClX1C3%%+!TQZU62X4_#bpIDL30ZtX7|9*Fazif_2 zeal5tGO(r7=jVPJ(`th&Q%+-ri{nhTP+Mv$#pCt`LFReRZYrN|U#Fb)@3bBf`92ox zpoqTrOAY#Ny_Vq&6z{e*(^a3^r@=iTW?yTdZ5`t!PNwjvZ?nvYPR>NM8gzzk@9|Va zrJvE92#Dw~p0>3rnVyVFywH@$VZ-s%>*k1#kM5!agCb8p^&b3OLJh`XpjDMFomFnB zP7qk!A_}IC7A$FRCQobTnfBPE-OP&9`4X4fq{2=OH6Ctd7lStf5r)#hQ=q#dYj08(87f?aB(eY46@;Cxq#4Z0ojo-pn}F7L{@>{<>s&O*hR zr?Z36^@mpD@h5X1kbzOs-(50IWbVL4>B(HqpB69nDiHmZEu*+;8MgF%=xPX&T=*LpK(Hd zhw1NLl>8uB7!A0!kay)W#MVvK1sQC}$K<}mMgWj=8=5tx!!uXWgPc}izEOmz#eWeT zy1O{~T#?Ffep%coRp5OMxEg9ux!7xDb=$KASPBLxNPA>ZZ|%Eh&6pR0Z!wK}_huqv zPR6GmAi3kOZ&zw6MhRqIpfuuGeFO>N#K1%$KJP?I>xsZ#=%DhH^2rF9Qvm?0UIEXP zZ`eL@uy=feW=tDoey%OhOvfRDBVTLGoS0#OU>F&8?V;j=h)Yy5#ga+6PI&w=zkvCZ zK5doKr179CW!*Q)>o!g~h$T3=^`lCd22$W3C0Jii86+0A$KQe2tzzMtB%r}KciZ?l zuR5VsTwk)a|0I3pM5w^LkNn`z^@c3XC=!UW|55xV<-R>F*u@sk?P}d4jMW&%K{bLI z1Gu?u9TWh%zQv?EE$5h@!E_LI<{Iu%Es49T^+N}&tM|}A5ZuTx6#(~_{#gtOseuNT zKX0^aLVy2q(-B@%_gv*^0&(G^Jc{j){3w&t8x#tO6IP6rfX99Gt zm-43D(XVzZgJDf@)W;{{|GN0WX|(6w)Gq)#`S2TnfU;G|)I0kvHc0_YTar~p)pPKf z{L~xECIGYq&tq^3c#$TCgRQ4#bgvvK6*`&y0<9SPo!*~ECIFk0^4nXjVcBJ#j}dWL z4X?#_N|O9UCvdb6OWU<|WT2~+B63baT>j{IkD{SciE0#%d|Sr?#mb6y2_mx_Ijiv} zEaU@&;rM&*Mw&mKrZ(2z&m)&5eIXCb8&Y?CH>GRZ6<(0ilPJSs%faHZ z={LNNzhLSc4YU`?W|B5<<*4roVZ&b|^oO%P`g!Y)N;1>T`TbR3r2rxJXxzAxDN#I_ zR9RH9!%ph+l~?n+o3alWE%k)oikxi>O6N&2@tBrh>tuszZO7f6x*!)bb1c-+w?JBw zO+q7OOgGe+3avw+9rx%wLfc3#UnO+B1kM!pZK^H6O53T4`;M9O707kKEd>RJ@Cgn9ob+w2`!Ihp-OF@G)9%*$v_{b`iqryE&1Jx~P5Yxc;Dfyx+ig+m z^`Fd1<2N#t(=hj9(?t@b)cEN{imxn=auwOY*!uQqLcNK<;#1vJa@v?~pM>69qOi?7 z#`vX)Y$$GBQlvKRPKolwkXot`XG82vVs05f09Ho^0~_CBW%JcAeIoEYSH9~Y91LU0 z)g`a?HiQ0CL-m^PP6{P-*xyh9xN!+~_rbnWeM;ak^rFM?-o#1vf=HXNkC>6RTnX4C$hNIb(&^aoQQ;r)5S_ zTgd~86dL?$1BRLQYngq=)DI^MJ6hHArJT3{K|J7!0qjy5>CGPh0ZAcz5VN2g)MHCI z%bnhh;-ycc8EB|biIr=r@pua`Lsv)xi!0n>&0{ z2huAR-C{Y!WCGdls86L>=$TtM<||z}hQMk%>~nST9j_i&SsK9!P9=MPh|kobkiBsP znPQ6X3|(c#PmY=if-4a|b~Dj#MMSE}qIS9{u}Bz#+oyfWveeXx5N;Y4iPp({a8kPa z%H0gds8Z;+?9dC_V=F7ZitKbWl-?TiVtgrOl_Y+6@;>7{?~NVLz#)&UuoYI30m(IV~nKn^*;C*ed)WU?sUZRut*0w)QNE;n&j4Dw|RIH1l8adXgRZvpprdD~1A>ccz zg7XDBxd1{>Y}$0>j}H4B?}_-2(DfPtkN{D|qpKu!qrCPru>ec7_YN9$yw=O>3LA>v zmK|_pa)z<9zztipUA8mjXJL-=O3zjy)G))uXrJHCT=X?vB;S+qlg?kLgs$q zl_gAi%8pR?dfA7C8F6D;>MEDI8*Q2+%;I{%4T&qo<+*V_|9G=k$pgGc#7N^c7*qfr zM%j%^<@X?G^v10Vza?Y-R;_{5#uJFGOUtcdm!N%OqlBs`E$MEDfNX>k{>cs6vqR`E z4<@moQWacguQPp~ml4IJ=%3ruQUbGJXlQlxexT$|d!ylie4SVahn~h!YHyBB)t((2 zBU&cSAZW`UMD8zk16gj6hYHHWIaEH)&gY4(Pt~YzX}DW!tqdCRpRW{=V9nob>`^`0 zGE6;nIlH?P4NZI-VL{laoH%Y)L`P?%46LRWEVS8K&LBTqAvKLUHLyW< zj&tTPtci)q=1U;7kEiXJ|Hi9fon$}hQWc3jV)rpAH*B3ikBic{D^&>n*0b`*@Br!E zrD!vgTC9n@&Ok$pM`n)Pq`AKR-vvM~U%S}8@5;?Rt6f|_j!vl)9$NB6tR-AxAP1E! zLYlcap=Z$n6(q4_2Z!e>>f=Xn!GpPKhc>y=yXxT}LqD@_BoA_hk6 z?=%QHSYK8saHOp8uCO}$t&figIdpZ;UJaw7zN*+*Dfo?_| zd7w1lS$7p`>sjo(gg-}1aRTqF2mVwyW5~{~Tk9>yHaMO*vp_iwCV2h`Q{&L;*Q9S} zF5d==3-8yImKf1IpURwkC125+m>W~bb0&G*<_m<;f`zg!o4^|xc9r!`u31w5!rf~A zF;{5jARezjDa2TKYmeGZ=_8~gC`1o}mG!o;D^=qtsnUsX!%s~r&~X6a0iH95)G(SP zN4qRq2jokBJf1`}w4x(Mp3gJ}CKhH+ic9c!bQ%<*qz)@i6)D+w0K9>@uby zq2!ZwTIl7Way*@Pj=1fRND#ev%S(zWz0lUMjo^yfmP9e#oJ_ys4_>@nq({O>aC407AR6M}!`WE${ zOgXQRz?!E?@bu-+j@?%fn~oH!XXeXyYKM#XNehmCHyMUWcV z7Yz)kMyM}Ic?*`_NG!q~&N&_wR%U36O&@IeVFH(J?8tY{w7S6K_5b;FLmuFJoX;E3$^>9sL*>XnlDH|+@@`?~40DreU^JIFt}V$>62vEEa1^=m?xbMqi^eYmLx zzw^8(P;T&GK11slg!KcYoG9=BwHmHZg2O!zHTe%U^0#f>rvzsQvUFA1Ji7I9YV6qO)LhVvDAWH#y0l& zO$Bq5G0ea7OU0_#KQZt_HFD`PWe5d^}wxU9DHo~4E7LD z+&F+>z!VAL7{br=#4A%RMFZ=17TchJ`{D8H-+Mh7`R%hHxBO@hV}nw;Btffg_n(+f zc3u1p5l|B1b4e~UCQg{+z$)Nk*G}qXGMNPh>B1c#ucOG9AiF%18Aa5<-4+!w72lLI zm0XYcu+BMoh~QAgx>oSL!rnwX0Le94#(m^WFvW9RuZ!4aiQVsY7xeV&tH6?kcN^#j zG;`l*Es3U_HQ5st{sEaX_#H%{IeT7|O;esQH2lWXR;2E())dWda**J<1(8@cw%T|TjIkbWzm2Iz z{f^+!C}xa7Q+Yo4VmbN0<#2g?H)`4sth3GXn#bnk?8FS>d3MYa@D1dEqcA?MLj&>Z zCaJTHtXGwL)GW5S^q)|RWq9@nED{u*Py4nWq~L&D0s%Kw zEK$4(Zc0G6+DOH7%lbZtvkoneEi|^C1j#_~hB9y{G5A}vz$%DzWi=$rsy@i6BF`it z#m{+_p^#I9FaANTZAUPOPEx73qOplH-4&)h`vn=saIsZ~{`TS5LN{d%Qs)L14dcvB z8eLDEu8)B&_~s4di&`)t{8aWvmdjtA8dNKw7phLK$QZG!IU7;|n2k8nL-Q91G2Ui) zY+JzNg!~y@{-NB0Hw>0LE!TsYnM&L|5#F_5*z*SVViBIMcTgWet+?3Bs)CCydC6PU4oBs z^OIxg;Bb5Z5|Zh#uek=!{JIQZtiW`!`A#x%ZO{cnA6Ksl690={iHU`(bFwuP%iSEV zazN&6`6m69EYAo9d19-PobeB7=&Rg-DR0_cKB- zI<&#!xXS`m9(>`V#JVIQ4BZtvr7%P|V4629tIV`lI^Xna6!OcPqF##&?ve`XMVssn)-!R>d;$Ff`ENgh3-?7LVdiaaBo+7!j} z=PL{i&18WsHZAR#pN_Vba#l3eOrm`pq7h)2Y?R5B47m?#X zwjJzduxSggC$W_2d)^(F;q{lM$Zd*zw)P6**r@Ht0vjiYYt644hgNKngc4HSMNe&` z*erZB#5$;yNop~?(rYYGtBZ>1Pc-u#O+aNI8yw{-FGP&5U=OM6`MiQsgQYN-c-{4G zw9&Say4C2^%L&CYm0uNnJm)6%yHogfsph2crh?$QcA{*L+>oiR0af) zBwBKRs=Q9}W2-!YbRCIQlUH*@hkQIr5=e_zRt;e*Fu@LDFg7<2DX)m0W5pI|f4Z1%>prR_MhUZDS^icd}goLKagYBU`tO+yx zJmbF*m|40gomxR9k)l(#AYu<{`n*a(A;AnFvW@y0s0sO~_l6BH#X-lE#dtwH$%h7Q z?WYCce+TG#( zI$hHZb;F@LdNZ!4G2K1O5`nubr_w67_^rR%vh8CP@{HQy`p;zsJ?U*Ix(r}@Kc0?; zX}%gz()cP3$JiTD1G{|E)HSe)vkAPu*`aJDZ4??~bZdQNB%C^6;_P1 zq|m2N%_(Y6#BIVv0CMdSPqAVlZpZhxwa(;3*Tq@B#@i}Wg4NR8YyP;0I4s-(EEs4r z_$xu57sa}W$d5GOl9+A%A~dl_WyoqF7KH4N|MUtLGWTUEGvn2&Z&Mxs6FV3G?*GAn zt&oMk{GxK*gqzakA{I-P{nKVvf!yecdyFo#WGzz9P<`dDgtT}8csr$HJ}Z6g1*3Ij zE^6azUSu`A&)S?!n!ODZ;DBfSeA=q|ZZ&LpY-sxD=aN-fui(D&?qWe6PwkCE-iE%& z87jOJQ9c2rVhuifbuU?ZTgV4IWK9O%z=%Oi@!>XmTyO7bKJ)j80ZVBd(~_OrsVeOh z7A5X9%-X%#XjcQBpThLO@6ZU5(8;#RBA8d@60K|ApM$2wqO)DrL!TR`sZ;tLP?>Kl zXggmY-(zptoM^t-7Cw2wI8ybdr79&BG6h_2s^GX-WJAEqErLuXNVvz{i55;<^}o;i zu>xVX78E_p!D=>|kO=*^mjH@2V93n7$a}BIBzH+WxEW@f2Wyovf7jo9JO0Q|_-+n{ zhAG~)Ag>OhvGyx#kB3L$@oX>5SR#b44`4+*T#z>J-SQy9u6J!$@P&w~qH*m8L^=s-Q&qusi>xD66GlG&0;Y6!GfHMtr1CqF*pN1xArr=(c8!xYpBN?h11f= z)4(&MS6NLS*p4qM)(x`m_`AIWWdK^7F0=oN${21U?=Q)LRTd2ZCvkc1Cz+mJKUky_ z3L8K+MqfQ#KKsC)=~wj8*Hr3bjP)2wz9$@D=OIFmzTu<`^h+&f`~!UNdGsmagN+O( zt5o54(aU$U0)<;`Vsv6m7l2f_Jz51SR7i_t#bhip_GNPfw;t!He;+{P-=_~hFOmG% zO5w4Gvvi6hH)MGe2xASc*0V)ND@2$v(8x^KX*KER(71Y?m^ZpKE*kSFr|}<_^h}wK zgcm^^7x+zGprU?cII>pMw?Dw&#I-vh}j`E4(b*s>YUj5-- zROpKBC-l@v(T>X(!Oi=H8ofy>0`vF_Sy-8^)SHbD#B&0}j;Ud0_zW!~oebuvsk53S zZ|7Go$Jz2Iv>oMcou`u0p?<9~dj;ojQSD6P+DscF;6ISsO(Khu)B{&tA~%iQvk8k` z9DC785uj}0aFne;9j=8Lv{a}R@`}ucm3Wp+2MnJM9DRCr7{`oP1i-?e#rvJsETk3r zqX&8weP>943u@tZ?}VWW@sEkNq?)&)A9WPEl+Ig9j9$*r_R1avRoqKNt4ki@WJf6o zXhLJjSiKfy>ltN=2UnaA=n}z1jJL&ifyq|<7uYnO{!dn-KlPiSGhxxy8$Z})`>oWA z%(v~2o|MJ>T&A-0*Vk&vHxy$IIWh+oVcvrAK9Ue1XI$^h)6frYTv!NvLxcPc6_`$n zgaNGSJ(bz0DO*9`TY)>qS5aeX0jjP0$T^~AgMfaZ$;m4XtccBZN=-gV-5(dZG9XVJ z=sf53m*}NGoz-m#$nN+aCoT_Fb%A$6fjrE}LrhR{MobBjr3DFl`TejR{2H|-&w*sF z=#L<%dwg{xo2ooOu5r1xICn~UEADzv$Tp&UJzZnLiiKzc;5?uZXZH1d-x6?3ZB9Zn zqzOhkT^EKTU)w(x`)j2U5DbYp{l#1+e3XYZV&hC@t@0!@aj%{`6IBtF$ZvFoUIiMx zH*(hT4&%2So>Ob4ks=;kt#pX557W-f+T*((P;5o{x^}TXCd)k2A=|A%()X(b3ZHAi zMVzgao(jJY(2C~jchc1Jr5tSRA=TF&Nn#yU@;3-@juhz?*)?Mcmz-*C=F)nk5$~sr z5alMw3QSd{d}5XnU=817tgaA%8h>cb5k7U0Wqn=i#(>7S-eq!wR2F!F$x+of4c2`n zIcs17eM_MH zd|9~tY|WZgGMMX{|Z1s`*kr)fcTBUznETPKpM-S z?9O$hG{~0r4G!r!um#{vetO}9Tq;1l=TUuF_$(+Mgd>JmM)~-jA;pBH8kK3hQ*VQ} zECibycnB`nz8j_v1Qf?Xb|7&>J|)s4Yg|7B+VTcB2~s)34x1VwU589UwbYakl;)bh zlTBuP$dhO&)JmVOSEA;(c6aXIQjo)0-%Id#qW>q!pWev+9Y9AwxNX~5avZxr&No-6 zUz;hex=3e_OWJ%DB2lb|rHP+$h&)12c z;F4aTY*dI;cRJD-SA!H*@p-9h$A0XRWLE^RHK`^^A(&{rV$rt`g$#;5NoLKagnx_C z-ri#}IP(zRN1a4$p}G9y^F*5~gCpU{zXS;Opz4vBsJYY_-101IKE-g*;e~ozwj>8M z^ymE}NSxiMi|GoMX&yWMVky>&S}Y(UR(ACw<1(+37UUGYhc^eMM9JRlV<-~?B5SM6 z)JXzJwtstRF!YG8l07rwSnQ&zT*r{%^)0J87`WkomW#~>*M~zSN1|9xS; z0IcYN>@Jl%;-ewm`(jN{48pxm+X8=rM$zP7H#4Qgs@xemRAiqok^e)L zZqeY1EwU<>!CzKj__O&VArFi-pvUhAJc@|_`0Yr8>?Y~S?i(Tg4=O*lE+3pkwbX@6 zMf%m#IeUrFq`_ZwJ*(`r>{w%irVGPK;nNcv#MP~*B2>o~0?IR~Ml4OS@R-Slx13%-7*KtZ z!}8vZ$S0;T_sV0Nd2_@(RUR)&v^r5?;4f6<{DhH9Q{vos1H#J$jak$mL(pTIjI2)2 zo3xRdP(VBFoPk{WAbQ(W&}z|73XI&|-5z+07n~6yVwus@7f!$FO9X2+cz>+8SWKiW zX+UoO_zdvX97WQNDltU&WTzDaQNr;~5XbiIKclp}&vJ!?)szCZ&Bvfxh(^NvFhiCBD&rhDCtoI+A<6^APjF9mE^$d{xW%Q6AnG ze!$xop8KJ=z)4tHG^kS}j21$zk6`Ddh>X`28S`8E0BoiK%-pc)avvSt*(d#!{FlOV z8D7k9SOsoE;oWZ9oUbze*@Gl-*J2(KPSO|U>B7{TIy9C)zadOnTFG;aqnA)>eIJ0! zd)AJKhK1Fr^_YgGSJWz5Y8Xjjd$g!TF($a19{O+cp_s4L?YvpeWRFqRC=rBDCK;DT z$q{4GCf{%%V>w158>@0^pr7IJLZ2_Q6t3qGbjVkuiH=X@oQs`~AIQ0(5B?Zlz3&hh zZK$3Wt7c4G8bkxcMBdNxWt87GmGBzoV>hDd8Mj%eI58EL_=LAHjmyd6QK)eWbkWy;L#?L2SX!4#9!E55GUK8)Hv8v6k+X zwO$BWbaS4o8K}rU(hGS%pbqmV`%iX2i$i5tDpIh91^ISxxs~%k=;N`WfdeA3dnda# zp-SFQCuR_^Dw=9-N$UrcgN@y;umZV?TZg$viHj=df$A%>S5JpbC~C_g3sdQh$L9tr zW_yK6z(Wx3!|J{qm`WUVg; z+V&}GjXqGqyH3^>&a=Of84^W*9Yc*`vl*~ws`(lIzDZe;a5$R;|Bye5#15q%7Q~1K z7H`F{0&m5&B|aW+#^+quj6YpHBM|bOwYeH8x5|@pYOL0X$?PD%_0(SFxiC>3zqpRQ zLZ@FY-;JV#mpKI*JGx8ROeWWHs7YJUxoQ_T5a98B5o0kikyQSbGKxJT>U+ zQ1AMCnVSujr50Iabs)U8GKk)7d}PZ1On^aoDdI_-z!cLX=uHI9VUXmeLrz!Xb%{$x z?a8kz4{y8>2u~(6V=`K!p?Y86s(1?VIte(_*lM0ItPgdXEvBV+J_Tbj&kV7p(+rFK zJ1^D@1Ia%dQ7C6w1pLEOgnkJ>1u{4$opUO8TYB2V6e|dKG&#GK)w;maeWg-5-$F@- zLx^{!i+KCjFvO1$1_BmN--sJ|ew;q*mM?lD%0G^QXq7R^YK|tR^#dwYL(D=E=#MtX z4Qh~Hjf2Q5s_n649E2cu^T4u4lRSdZnCHlv_LCJp^iM(WHdq}j*7Dg%bQud=6)1G% zT7LZ*iJYVG4M(Vv?QDP7O2^yCmsL(dV>GWA|I}_s)mfFUQ&f>MJLw&U_!6`PR+s4Z za-2BGLQtxm*V5^59&6I5_wO;|@6!th z_+}W3x)(TvxJnW@;If5-e~}pjAr4Tgz`&mhAU>TiObrz0+-qe>`UuZm%rV0p?#mpj z2VCuzr#Tl&CID|qmz?`zlai5S4o!=FnUEV4i!#-N*ib!sqTp$B3Hd#CR6Neny3GMd-7 zBbEinFlCJpUIc=tHmTvN(h-?fxqy~m*Ne0Fp9LeHVSa( z^E^nViRQ`cnkx$=r_Jkon(~CsfPYXyB~qir5nQ^TWKyCc2F^yp8m2{}1zdf2sP3 z#4}R*JoY;V50#9tU!>YWB{M(x+$b$79;8teB3OS1_Pj;w+aFte^n7v`hegb4^AEx? zxa3e;x$!ZKeRt%R2%O!OaWbTR!dsXmM%LbhhW)4>pj0g?KOj!#@P^J^B*3TxSfKp` zV_5%j*%5Pn z&v1JKd>Wg($$aU^l=QA&w5Opot0b~>Qh$QBQ~hvH7c3XxaIvfjGXU1hBFQVNs^+Vd z;!Kbd=a7F-G=~>Gc^{C42juWt0wuIRe7x&lyiT(qmeFAPnJ1zdx`EHW;KpbbquqNP z0lAnc*nm6gA*1*JrAFU@FuVfA&2EZ_@_V2>)<(Du!r?#?cM04*vC4DM{(623Dq2Ow znrtPNKaTn&ufCqcoeL93>qp;_XA&iSn6l0)Grz2{ekAR!@1Qm~fhs#MImB34@Gzu&9G)7c^!TzZs9jR{iSw8ci}w{#@Zy<%NsC$- zVi>uy%h0PM5GrMAxujGcs6a(34p~1-rOXgmWChuC~i3{ zOylMWVm-b?Ql`rDc=>^HeZkjJyx|26+;kgNs(bj-WWMSY$>*#(iH{N2Y^oHBiIwIx zaG4Cg(zSNoY3t@y+obMZB>kutNg73c^LXU7VK86mv!je1becXK@(Y)k`C0XmQ8aYx z!OjN598*cxNQ=>dB1fj~MK?M%YCn1S?B;7UZvEvKhDW<6eGR~0W#&sd9VeKF)9&@s z$q}Ovr!Zmu%`L;w&<*`N$_N0NtNTV!i#dh>F9Zhp*s(Zl;pQ=v7&Nku9zi&>SR`sF z{by!p2NbQDTF}%KGNZ(cO`3`+KuEuB{F?I|&CztQgBy2j9+!{DFx3G_19AP6AG2Pn zV>HymuY!epJHdik>J`R}5!$Yx9PHSbxpb7^I{FVJd+(P+J_tPj{12yFFwYyz z(p8k}$0DXvDbnIQ1#D9)*)HJAKoE&b#m~Sg7Dqr$%VwxsB}vUw*H7g=b(PG6h}B2c zG^)l{44W*E+z7307!2ml{MXm_JdU3?~?Zn(G>Z&=3d| zbWJ|r3Rb)ndMM>6YUgG?bT6YP-780TYnil%VFr7d$qe_dynphQ1AB$2 zWz8K=v6UAow(|@9TMPyWc=Y|-7_#dUYkJN0<)rt5-LqcOiGt6tEw-Bw3%W|;Xpwvc zu`|w?UNd%ylR;S4Ok0SZ5EW-c0=jg&KYCZqX)_0-Ha4x{%Or_8XV`>@5l|@$gah81U__j1Q%voRU-3OlZi8aiz3 zPzf0-`1uo+!Jg{Nz&vorQLYyV4Kt(nW_l+;yUi?xYZFW0P-;!#R-CKCAO8UU@|qMu z#NST+qC8l#qB3BE{j%Fw9>s@$C^^oSq%jVUT$~4@Ujzt~+CAWX{t8M4C1?`*GxZW< z{Tax>E!=+{8JsKuCq#o&(*ZJDq*K*rlHLA!{iiy4vY}6^y*-tB3V}cIg0Zk54SK|S z)JN+59*pI`&yMMMfCsU%MOa!-SU@#_p#J)6X%Ps7@vht^)&eW{YQQHywpyPfuFFP% z3vu{PRbw1!&T+t*;L^>8*Sh3_>;AkX1K}Mr){@hLt3R8jtlH+1c6#wT3YwY(TY^U6tQ|qV? zxu&TUG-$Dn&&`^tYNqU(x5k8VCq8|NN$ehbH7-@J)Ql|SY_w+Na;uOTHvkwKzkBEOrZSJK+*(6^ljyUgp@;i zb=ZAgOrigz!#JCROUtYOV6Vow`m{b*?;HPTECf8xw?Z+DqB~9$4>9Vki7@;L4ib_6 z6jP4roQ%7DP-k_-xJ6<8t%|yhb`Wsk*i0`r6*S%wt+VCpOu2mFdK;7sfz(^W?modW z8X#zhbcU%FB2sZ8@&5{72%q=cVQq6H#D2Lv4{n>>elmvj?V(ueN`m{s8+kOnnj|E` zc_X0GY4fh(Djb$sWXMbTeu2gO1vn-4>J6MWFOfkvNgpR z0==?O!li}k=q>FCes5jxqhYMjCgQ9I0`|W?8mqzc<1XB{#vlU<>!0-u5C6H?GI&PU z*z~uPmOG1F*(x>vuyyAB>R-kGR8E_?6kW&%5YdQPVc8Fw6%|choaC!QAYU`00Q6m` z99yjW6@cK{?7E{Ic8;*I5G?`PIWF3T%t%z0FN-OZGw8ipS%(w*(Mf1CjjUhj*G)b+ zBC#@u91Hxdb4s>vEUJhTRz7O=o~Q}t7-O0(&HP9ZMXI5zG@*J}A6p~6Wdn`NX&}Pj5FoKg zb>^AnsN7)zp6NJ;*%QjP7kmzY9QL4d*5{uqxvh&O@NFUDGD+ip8z!wLo|+2&q1t}O z3`>xa_jLPZdGdofu-S%_*f+&PS@s?D=d^Y>45NHs!sXVYA*-Cq9~zr*tk`uS{T(IM zZx>|7^%ziGiCl}vOHLz$qt<0hTNBaQ`oEgp7deBn6=l7}L;tXSc@F#8AAy*gG2@ir zdQB)4Cv8zXNTdXGV@yW;SJl?Nh5GyW^#giiwNrP4E%VL~H%CYdA<1^NxtQ(+j#pKcZeN-l zj(_&i%qF(&N`)69<&`!GtyW`*U;;@yO9Cz9xc9yDm&=?-dL|1Z$3zDZrI$4f0X{WnB(iou^`hJ*?egG@#*hes^v%Dz(Wyk zF6uZema0r)9v3+|9Of{;?*t8UtQ9qo9Q+X+`{(x#9puhXj^U_%0AwmX3+#3 zyC+FbuDilX3Jxc8`B6S@Zwt^kZ0JQPQgNE0(X$QMh<+denBO%dhQej>Jk+HKaD&wH zm_DQv-09X+sGjTa?U64R_Mm~#0;}`a32ur*A5)a;@{ddYMjQih?dp$pD~fN=29LkP zT%s!-NuhKv4A6hwB*o>g>aX1 zw{RySy?o#N%wv+0u65K2vvUYgna+9IpVUcxH7Y@Bo|2|+eJCrx_jw;O2LQRBvQtvR zk3L{o!rtr;>(_|7g`ItU0`p8E`3CFj%vuNF24avuo>v-{$ZX`vQwiy&fLMO=Ykl7AtLDOhz^+o|VBJ3TBu&KDZYYY*`qK;7TSE$x3AmXnW z;*?7G+-ToKm;tbOvGBj1mLeyE-%6hG4tTQtn~R&JvYeONlLpr)i;}0g8Oh7~Tuxq^ zo-}H=a-v^(x--oxP_Uzy@_f7m{Ft&EQ7mD4>07ON2fo%R8L_|jl*79Gm#d5|--iY#42Y!+!#Qklwt)BP?{Ip1GETLz z9>{oGsw^=lvZ1VkIaz3?!|EN&!Tt{6ZAd37t=&=2000061al%;6B0#G00004 literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/r_learners_sm.cd14eb3581a9f28d.webp b/translated_images/zh-CN/r_learners_sm.cd14eb3581a9f28d.webp new file mode 100644 index 0000000000000000000000000000000000000000..074baeefbcc48a4595d8e47e4648de2d499777dc GIT binary patch literal 18134 zcmV)FK)=6INk&G_MgRa;MM6+kP&gpMMgRaX^8lRzDmelf0X{JpibJ9yp%QrgEFc2} zvA2E;@~PAZ5{%aLm-QX6a!-Z6=l#R_|M&08ubEok_5bbvo&UOj>;FCT2mOz9{c-fo z@Gs_Hp?{$M`TiUK5BKl?|5kt6|GM^L`j7s1xF6}a_b%?8o}AkYDJZ-oNSg9{%L}2LC|+QR?ac5B9s^ zC;G4YkN!XFzvg_0e?|WL|6}uyS0D+518ANBmE=zes*ie{K13@CEq4@;~f< zlON*0b3NDgZR=m^|LXdJ`t|eQ@n7LTZ-2yo^ZjxAxBA~f{>T5r{FM3u{!RS{{14@? z_YeO+^FA(o8b0&?6ZVtf3;7rIPxBw&ztw-{|3Ux%?X&sc`Jdwd-GA%z+n0dTMkQ~rjj?jqzZ7PL(Y>I zrjI*>izbPMlSIPFqG4phcl@|qL<>kdQsG(6nNP)GSU*4hvZ$m2M8EORCLi~8DL$LX zABTnW!Q)S?&98_XZ`-MsYH+Rw_ESDo*GLL$qy;t6Ik`YNw~offt7|T0djgz5h6gK* z|KzoZ!NRS^PNqeYK%Q^aHn-SlHsc}lSIPFMDCX}_-I40mNv&$#9|YwuH5)By7n;1!aIbEW(7dA zx>pW0|F9x+x?(A@y*rO!3CW^PrApZY)d=4ahKTRsYbnqHR5--k2ows^{oEQtsXo+O zZ#D9BG$X)ZugY?l1wZa^8W+mhCF6)AFwDRHcIKAq9!`3xdZHqyxCgTrodRlslVYrZ zJ<=*6jkWfys-5_{CW$S7!C3P@t{)3G_7KrF)Gk^QI!-~;7i|H1arS=EQ}OD)Pu!ae z8=pi4@HBn2NN{6*g}Zq$J}F$Zd%;V4x=3`AG79|diggA80a#1Vt4v9) z5dKlBDo#Q?IrFu6P9nI|M?R&KYJ*nP+F#1b8S0FFG(Vy$N8HW;4`f4*N~XzmrMf>V zxfc?bLs;W~<2K6?!8#sn<3Xs{LqAnt%|T32f%g9v1rQ6|;+nJ?xz|+9RUg-6VN4jX zfOIRpo)te1;&_rU814l=2=3ER^MvaAnyE+vx;#_f$yUwfYl#au|A6)^Am9muK^K?i z!wwhtB~5fr%Y3gg>F;WMcTuTEjdI+K-3<0dI$X<|yT{2nfgHkZhM`N10h0=&oSrtr zC;Q(DC9Z~zT#ki6ytt3n9E|PDssT-=F!>jXp>K8@D+*pBe2=Q?*eMzFeZ{Ow9 z?dHOvE$i#3B6!O%F6K*Qw-1^ps;q`rKO~9sr|t4pS~TKJ`#oW&=T>#E_XZ&uK^>Jl zHrL#+)~DawbjQ=YYfe75&B_hHGAAok$Ia6#C)v&9b04V-QqZSnQi7KP2#)J{LoOogR`kA(>S$rsl`qLbAWGZjVw`}~Q#8+}*d%%1 z7xiUHwPv5k{c7idkncSXG9rEnq!Sz1GVAm+va_w49q8}@Qh-=Fu>_ovq_(ZaB!c4| zykkGDSE$8L%HZaJIj@0V7_!UJ;I$?w`5G*IV=U{C<~)MD2`5hTvJ{(%!MOnAGyOrD zP%C7ll*WRiUtf_i(kKD3F2 zBa}VRI(qV7&uOc`T@xu)eaY=r#GC(0m?JAQuO5I)(xP){mWMT&s$9{oNOBhnF;$9c z&;2le@RV~bI{bR`k!|mtiY@Fb6#6GgPmt}Zn1dQPPeO zSU_s@p4f&QR8darD+O8(J(w4nm%fO+v=M*v=mt}T%E#)o50IZcT+mc36z(J50mUc_ z;O5FxRE~mSoUY}W_WKAW%WQCC`Z&rUnfO}9O^DmlQIs{pYyjhbiSZ^9MIZU^_fmh6 z83uKfj&Fr>2EXpLYcn*eJ2gNn4?xcw_^fzewyCi3Q9ld5b4bjr2Hi4I`h;zlOD-21 zw}$vOzcxc5U@6s@e6>s`$(=}FY1Tc#Q8#&}ttMYRPO}GWTEZ(atEej4pejoKZzEs; z20!T-9^+Ww{%C=DxcxjJV=!!1Unh!6VrArz@*E?CbU%&~hM%DvaU}+?xd#-(W7|@( zfrmal84Tyk^ZCY%_8r>8w1Jl0{}A4PbqTNMJ*c4SrDaGdI=EGWOGFx$Oq zvxYq`W+Slm8eI1peB7y2R#7XH)a$S@?~Vzr~3>N8p86`au zw)5KO2zCzUZY8P+VdFc;&Eu?pqDrNpOYrMiK>JV=(g)4qv_P2tK$1#(dg!Vh8ss>P zjSauB3MLj4*iO-OZ@TK*?n*-6-+PU;fZ|EEBn(DY2GQ2wa`E@9xeuyNuus^?zqdJ$ zm`+-$2#%0UNxC>9!Qt)wGDs;uoEo-paE5-{(I|A-eS2PU+b{F&jp+FcH7qoau?v|Zts58b( zoFp0X)sN2nV#o@RF(<%q({UfAY2X%8Jm$t3L@NUzfk^6-F@OObSQcg z>w`ICQ=9#>nY_sH)bkrDU5dphq+iEGT>%yU1fbZN_!z@`@sTH|Tlak?8Es#}eIrRP zE`iA8C%B9uIU;uWdF*2)|Kg^}IhBC&Hg1U11ttGz$ccMzJOe3VTd+qB4MMkdmgMu3 z^3rHs?u2{_`N*?D)Vi{J%?$rDXzXSmvwgU(L;ftLYa`>>lsKVQ@mFKJv>lWE2XADL zCAmkL`84Y+tb%@Ox5ib~U)YGx-23u{Jlx6xLHHWGbN}Dl7bw=ma;y-xJYCUB;7qc%>Kju#)GZcYc!?Y^39vVRQ7>q(eo4@k7Xoy z`ydq}rns!%QlaYckhULoAqvxJJHz%dFm1`&fliYeVb_fbaU=Vz`A6$e-Cm47#IpW> z6Y%XPjZ`lG*9wQ5o7n{|ng!L;;2(n=*>`PY2CV}gQaLn$NbXhB)SE z>vM=eQ}dk;<72 zV>UluT$K`<3=BY_YoP4Le2P%Nj9IV*rZz^0N{DyX#)xfQrma}O;#iEwrkg6~21`L{ zXJD}qfg5tsuP_^?u1azC+9VMNgd%8_!3a*FU=pp)ivY$*&lRnFv{Rg zK(<>F(-3=XUgI&m5`SbE8~j=b3+b+`@%o+cB7IYOn?vnWS2Z~duVVJ&L+nQ zhDNLD}d&i51`=a zM`({U@5QDQVO(i9k-6F4Y79$@9akL($UE(#GEdE(YfWB$zS9ZnX(6soDA(dE!_Jvw zB(g&>xqWc9RX9Tn`J*Rmr83J?Fq|ispNrZRy)Z=7ATjjY!Lpn7TfgLD+{%S%zy=VZ z1`)pvwB7!R|MX8647sLho3rKWRtdp#djnzq*5d zO|~gg4n;q)OO&zUw}8f~vwX$TJ#NZdpjN!bpKk+lu9g}0Vi`iwi)k5IjbzmProXjUyJa@hN5V zfxyMf*_96T-uy1pXwF++#oPx%rE`d^kVwo}xA~`GX3hO4%?TJXoI|O?MvuAX&a*f5OO-`J%3uNe&ndC2B=RC>*Xm@)j(~=TPhWrW!)T&EB=C789tu>A zF?~u>Rzk@;D4X&jY_yjrz-`AbAvn9_%0Q*F=GvZ_qs( znx+YQI~iD?-yHr` zwN}KtD@hQt5HLZcomOeWZdWdvMyhr9O5DthCL_V`^O|OlQBgW-z=VdeyhIqc=jYHA zJpGBTU6Zre(Z9I5t1IQjvL{kB=Edg$YnNDoJ;(i*LrEWluu~rK;GAAw& zn-|rvH$bnSNIkrk5o3=`9+}^daQ~M;EVd$lLZ%P{KH>{hH!W}wC(wIjzBFjnkTe#6 zXu3WZj%b!+G23MeaIcf77@&N9^@#>!DGJgk)Q#mynD;E~3UYit3(Lk^v(Tm@H3;1U zX%A1evOW`z9#ib$v#zZyu1y05(FB+#Dkb*I98OJu0#4mNhDJ}J-7cKgU7Dg!`*aAn zAsnfxkm!5yji%tL=K4dA8LfRSwrLF#q7X8*h+B9G`R)^xDFE+r9EEfAde)eDU}PW| z|Avillo)zXcLF_D8*v|o4A~se(!A`(D2Z8V$A+?qq0O8CZ#m8gE7>}=M3fch%MkUk zl(*I{DI&*2H+av|sLVBOBtwafb*~vC-#VdgNi_HIFaf9;oHTNgO{Dk*It=oFXzF`^ zi+FDIJ}Uw9i!$*ZC7ZnW>R9c|K}g)D8`>9_@00m})(cLMbZU=+Of`IX?gM6ZXSuXJ zj9cxzER>fAQAY{oz)+^Z=x-AHifdm#eL=S1W-Xm*&m$zqrmxrME4(@gw^^DXibzPH{) zF%ANv6&|mqry(7Lb~&b}F$6Z%UsK(AY{5GX*dV)m#G$<7W+Mx^k*)8~hoH$_3C7+8 z#rTu&jB|Ffm5=iV!G48qkeT|gDtQ##lsOY{T1oShuYN-_SmeQ@^UtbQGwT%zW?FC! z1h8{kphylL*^6=jUb;c4IJjvl2u>$_9UqKWp*Hv2@VlGQ4LD?_rCvg>9B^n+`|aQQ z{lWUac0n6r?B=jr1~FVbbL!ImcKc8gB1#%ykUg*vbUKqN&==YM{V_KT_`aos%B!Ap z`56h6ns(f&b9dPeRt4S!NrSuQb3}ls*9GdnigvGaUdp!&G(8F$TwLl=`6WsMfpi>0>-u2?Ki)@fCft!A?|aa%vN%Xye%5*^Ow~OBhWd7(YqVKUUs-jDzyMQW z%LM1)|IJc}xeGHNd|rk0t`GgpEp*lHOsx_SO=wQp2@FQIs5hDAq=DOl01}&Y=6=I- zgou?qOyssZ)8=M6DorM9B!JB>b|g zW*&mW7d&#zBpf17ETd>r?|o>2^K@?BDQOwHav#pk+`SN+Hv{R{=G#lU8sW9s z^CYTq#ylwhra;bFQA@rLVkUe{zvMm=W zQV2dW+5t(*rXyI?!fncf`==PQj{)}!HoxgexD0!J+Sd)`KvX%jQNeAyUtV?lqGR9v zk2N`~SEmP|Gg}YytF+NO(2s?c*}d)lZ?l@+^1KeDNK*Cqj6;T+oj( z%B_ad>220!lvXXC(v-w;(;!2AFdh;1x2}50{dp;tEU@4PE3r8BGiqeiDjs>td#LB{phr1LfhEa4{kZWA*;}Z=&#U zm~UR9*XhDz)_$kXM+K>-iO>)!|La`ij%tR1k*!@)V@Ej1wL=Mus)ojl^>r@4ex`?` z+}gcy3O}7wxnZ)l%uD>$kG*}C%-uXjK{w5enc-?Q9=M0D7d~vVV2PbR)x&Idssvk{l*#p}0=Rv>=5 zuV-{6;X0jf>J+3n`Hp1RRHXn~%EiQ)4TrzXQb7Y;|LZR7f%)}fn;=<_RP9fQMvY(x)APDAo|lE5CY=mQ5TRr`GBn0jDEx8N zsamtF_*FoQ{FZWfe@KuQq5i7VAzILwsxK7pd1G*!eF#q`fTy2YEvrk_ivR|rW&tA% zX`^;^V0>)iWeqEViZkV~zNEgx4|Xr|BH>uF;&ef#nAy8S+LJ{AY(}WKU3s*+Q04fT% zcu*qxqD}>-1BP!iMvV$A<|$^`=%NnoOmd_ga791t&2*KOPoJxCELgFAkVOo4d@qqW ziabJTTh8%%n^YTCd>ueuZu9_$E*M+IvIbfE8-S9g{Y-?^Lsrms=GUYaf1*2rifGmi?d5Pg{2{ME zyq(|;hFsg?2sr*dOsy(wJTShnArc84_Z7EDG!x)>ilblMJnRb- z-cOXs)4a<&VTK!MQU`2XmM4311xQjUBBpE{%X zesBX;%C(Emg=k&4b*6{3O`Q3v$0<>}T2oWnwvj+(l-`Ld$YR!MZq7}Y#_Xyae%}lf z6a>4l$S=hKDobZbenvnCdbrj|;8IS?5L^?#ZH(o8;;Xn76&sr3Gofva`Ij&SY2C22M0KwlI{S#&o1`7t9rKWpt&94 ze0fY>pK@bLj10~t#vRBXL_9%g?0AUZedF9q2lfrG%+u|%bd|^`h4Jpe=`5-;>#+LY zgnLlN^u|vdjaZ&ws@D})?=gDixMX(c_BmqZMueVMWX82Ey|bGODI$ii*bG# zPwR2{V&lafi>%=tvgisByBPVmX^*%=v@Pbq**M-FYV62O^4=r?-@i$!l1u?{q*5ft zbB_+Fxx!p&7F^S3t)a<|vyv#gPg0A2hd0C@@nN!byPjs@f|>!;1Ppo zg{JrNAi9S}i;bi`hk0nF*(|7~M!hQcxSxh3WTnJt$6=ELUM+8Xh$9UF)>;+oUbTyN z8v&|pAsLnr@W@KNkGiT7M)UxOa(V*gj`W~=@Nw(jRFOse>3)yzUiYqvgEpRLYnZ{a zQ9?8YZlC4#NF<$+nVmM2M6fv~dSuMpfQoctYqlGK@7KHeq%|9~wGjKUi?i^J)hmBL zM&$6n#_85bN%};Z|3Z8iDxA^>;{HGw0Fs3WuA_Nx(%GR&?kXH~xa;5GKr+pXjZvm7 zd`HlXB3&f6Hqwm{ zCOi{;eb@K22saR9iklXxgA{Tdw&ne@{1b(}hCCVm_x{QSCt1GbWLSXb`313Wp={o- zlV9jbullU%JX0@c$}Mvsn8u1`e2`t{D1Dqc8e^@C&U3dZ(rIl{##|)x$O^RYP2c^n z;OLoT7Vj$|rgBOpcj(CP9wU)&2X#s%d#tgtbeL;MIW+zz4QU_4*wnHpec=8q zDLvSph`QOa<4m)KEH=CB9<3;JgLxuByhv+a4UILtzdXouC31ol(TH|@v$xYg1_H`R zfciNXk@ESTarD_XnZSejxwn_TLbn$=*t(7HMeYRi1UIJ0?+v83ntHL{Lfkqw2f2oL zjq_=V{@M>je;?I7w;u353Wxv^)1ps=L)C?rR`JGo%3X*Z2RgIehOZr*W_^6f7@*I1 z%QgMT!1I^XzH2hNU03gGW>%{}tzxLT93yw5Z%VhBwE;vp-P@?c;8c%Q(G3bjJaf zz!4V~NqOb!Scje#3W738#!X?(3VVCkAb3NWl^eHOOiy1Ln-w{`J>m8&=y>7Llo$gP zU4o0XiORFg<-TI2x3neMjLaZylN49u5%{v%8F+sxO*GYWWnu%oR6U^gd3`1ahgNy;x%Al=FugqIDGpSI3ekXZ6-_ z=RBp;C;o|+{9T$GPO4t&z9&fUnH6QaI z4ZOZXc2v=SW6XIwL5o>^qtduA3NTs!%%vgoE7Boo9q8O7rN)vFEHOmLD2}w%Uu36s=cfe+BVmA4~%IN4ou6Q7FOFtyJ5J^SGu0KF$~PBCbn3JYa&w* ztM9@rxcD-!1%R{N`^aM^g&()pWSFxuMC~Z0+xKsTM^UEP3S+T4CXr)}R@Y<_XT}^@ zkD4BFr^Aj$!;RZQCxA3i?{hQUi`1I5mIl-|#UBU1qlAu>5uz|K(Arnyb&a`);5b4k z{vuvHTOA40bPC_ezd|WTn*#xl-UchE_t$VY32mHi8D^ZbU!@{ z<|KC?%tDn(*B8=jHoS|nmpd0L@Is#zb|I^T({(ZA{uAr^EJN0hMHi4Ki-aBZwpPD( zfZWc;ZkF7G#d^wX|7mTTBUMWTy)pk8;ni3cB!6RYVxoMI?PXqty-?#oc^8eIc~7#I zYZEqqePVm4DzXN!01tom%KTW_Hj&7^MaiuAM8av;ZOR^qyw2AW@j2@j;OYl5wNvBS za?J=tFCLFE{f{HxpV^{S$(SKD)NW0!yqJj301uxKO!H;7y*hkLL=N8FTp2HuEVA1$ zRwt}D4GNZ-vAXbmSJj`Te;ro4yvDrs2AlM&ekPfxPxLS2dL@+3@Xrh-dXujt?7dqaiwtrCsX?_+RSW0O%A+0bDd&Ir${e zvxUiak;SUayr1X0OdR%mI}k(EYDq*hyhu6j*C*g$y6h!V?i1>g>;^wpW|3!_eh1axAZ9kTa+24?6s`BDlsu+ zYn(t}1@OHTHR2JO@VC;c3~5Yf@}^xvt8Rho46Rkg>m^oaYUni51B8Y}GkLEXt{B(A zvcIsq>H7aEsHfsa!vDv}WljAlPM-W^Xf(} z5&+So8aDeqN6Lt{KIQxoA-|#62)+3Hc@iSv0vE0TO}_GVr^)B)8q19bHj#NE?UFO~ z)a|zCRhU=(naEmcgwxl!Y6Uc;OZaT%zi!+S-A7B_f|8Ll_{)sP5DXE`uls?$8Z)Km zryCfhOuvx{gK$XM-0)PMbE-L5hc+9D|o6-rvaRE1AylgSO?{0F83L}*_%chQw=&KGCl;i zt8nBSywpUEE^A5e_?${`lm53m?~YQ~4EDow=eyajQ5yRL*J4b z&tcQQ9s~Qq1$S|5JjNODe=_%|@kX*(4IeIyo@34W1N-q5XNAoG)cvH`VJMxfw<~g{ zX!(YjyvMKuTMZWKbUa*4u_(@Hjb-Vo*_XwolRXlyx=5)FJ0F*2_va|!qajqdC=eMi zy$&_BS-RwIIP~5K+F@i~Hmp&Vj7c3}Xsj;zJ1O{@LMI z$pqOX`?*}8991ESXN~yvO6dGLnVr6@OUdCWs8RHYI&3luiuJc~zmL{$M|x-@EVIvi zqS|RiHCwr7c9b>JXh-MIf6iT=geu{-zp$Gd5`@do$z*b44?#g$Gd_RALA;8CE{FB@ zLQFzbs*d&V9Qe=FE?|C{9)?P_LAr$pAt`f;=R|8K;wNA^0icn>Cc;M@??kS+8tNBN zQc{LbJKa%?6*XA2eN1#Udx)Y=YJEc{Mh`-p$em4?af}VCl2RL?ZI1c&T#me_;o5BM z4}Bmf*wG^w0o z-JO9c>!*qnF<7d#$F4C_r7k0^Ko1_8)J~z;!zWb1v)Pc{iVdbO!gEUz2$A3iDZgSRp#GvCN)SxSaOPMxhj75pyn%ui%GY!qeRod*Kaa^@+?! zVupiY%s-V2z|X@=Afa^h9!#P^y7VU@i`6)Nc&;$s8rSDa_Yc8L(ym#l_yy#M)`(df(BwNrZE)iK<>gk8yII-GA*e9z?dMz*qq zS}bdO%5Y`kT-Ssprm8HhHdysAQl@8!SQ4a)V{=>Gqrs{q01>f`@(AL{PiYf0?;`yhGW( z4Shs)e%79(8lg27sW>5#DYH#lx&SDy8fI6J-w75g|6%YxJ`uId+m)1#ud-d>6S(UO zk@4;5LDCXv-6;SnJS0>yo|?v|srajJIRle?L<>H~_!mp0dJu6B-a2JOXy`JG=|WIxW9KT(0QJU2hBdSk z5UbsO<9LO>8U%}z=f4n$z9J*8L*Zek0SUX5`eAe_uu+yi8iRDVqxIXLE02m;*5qKu zHMYQ3wh!hwE43iKEA11|fZ>gmD#<90Vu$=iW{BL&ExP2wFmCRR)vEMziF0&yeqcnh z=GyWc;V6uXOG!@gy(yJ;vTwi7pca$bU@BOUoR_J}Q!)UjWa|y+F|T{R13@_VJ+5pE z`K!fv^ksR|!G9MOLvh5-E2ynd%=D7q%vr(98c!xNPjkm@b4BF(a`&b11(3{5hp{)D zqf2cZ5FFTKbn*;;73(!@9pP1asmSH&Y`Y23Vbz1a2s0FUKiS4IKC z`GzoSug(~D)+Eaz6eV!Sr`;kf^>8H8)rr>2lu0jd2Z&+V{^Z{>Oui7x3v+t&7XN%d z-by@+VjWzQ99y~sS>Oa1nJRqpZnpU`AgYNNugUmB*m$5Y6J0spk%TdfHP@ikOL6QS zvIFD7ejsYL@Ge;Z#zR3vt9TT538)=7wVgfVfG<<+`mJ?g_z=cZhZIAYp-&*ODz{<} z9>13EFAY;!qJ>gNZM$d1gmuB?_ChDFRO{%A{pgR6$d*>wQMz!bbC;fN|CEWI6@k(F zP8r#O(zG;#-IV;iua;Rls(2c{1x?e|CfU5HMAAC|{G4cbVrjC2_0jw2SbmB_4SO{Z z5X1wT10SS5tnl(At}kKg#cv#~MW%+J;2g7ZPR54{y0-p=_=`+@uhvg;sdy0UHJP=?3tMn$Q zxLK86R>w?h6r=@Ae{myZ4|2?Y^!)J)KN`$kDz=g<#`b5WuTw6rRG(KMf=PY>8Fs7N zY&D8hNQZW7Y^Pqs{19W1R8C^^Q$l<}gkh>1@hQGoUzl%CNc&;(i5Ac{hIMrtN7rwx zLa~|^TU*m94^nO>{8z zuj$yImcVUs-kdkX^UxiwmQlYyOD>i0Pjvu>sc@De4zw$I%R&)Cj#k|1bd}s(`qnW% z&?LgQL@5NCQFOZ7U?<-Ocsg4aofHNXE@_ZNY6qQ0JZ zvRdDVSs0JoDMSwGb?b@)&{BG|ROE1^x6J z)=_}qm%LyuE%(yfZ4-`J2W>s?<)9NXomHhyRtPLw!fX; zrxw|~d)$`&T^^Q5{FgwN8};0I$~F{X_rlU<|97~`24%>(TDv2RN<0_;%`B$PIHi$u ztPDb-@vfCPmBtk2;@`SD0hK7%q}*($rGoxY5t}X4*sRojxNB(E(m(e3T7GRLNeQ1m zLBpzu#511c2kr@tsK+ zOC-x>EI>D+BuD!j*j@n{14a|DH&S`F1`Id(M0rP*#nA)iPl35sG~T~V{^yZbOVvhm z%FJIVfEUU%ggIJ)iy-_ZM}zGGO()6=M?ihPB}`UO(#rUhSC%FYjz-nfR6|V0B=*&( zsaNE;jzU2%T$70arJ0w%D`-P~RueCgV4|T8R1<%&##wa{T-7y-f4tyQ8MGAC^AE!=ppZ51uo7n}u(L2XqC&)W}fnYZl?zY&Mr}{(Xh=9$Y z_rGM#n0)22PCKD{K2k|$HEC$*+}hl-$~FHeA*$@&oBbziN46jfQ7Ts&Dq)pF@${;H z*PW8qc;~@Ie2a9}j@BNGT1AKbVjODCXzgIJz`H}m^0U1CQJgYP$DA3t1kUdf=PzqG zYW_N;DXU*a*eJnlZ29l5IY77mI7&too5=NPDg8hVi~A8tys_&^PwD_`)1)65$|Z7g z$$m8RC}3_;3gIz_WvzRo5tWUz^>litIQgmN9*6Qc1ah`pu-#O1XPaP;kt{>OBtT+V z1fTT-#JQT!Dp|R_w(GS|wCGAN%4I4W95MS3CN!`rm}1K*i_F2z2cnoot4dB}e09v9 z(*493VmG~4^eAsX68{H;*8!t86v7lW$wWAa|JFq^QHPLhnhf*xan|YnadJ)j4Lu2y zz;BRs)vp9_30K-eL{D9BtFPYP%Thx1r#v*CC@p%TX^)+e1jYzASqFz;AXbw4h-iG%CK^!aL?(!2ZOCUn`q5*K;p|(lSDBJnLwAWDLl;dBL z++J?mPt~FMZ9CC#)yHH=Fwt->Pw%dL^kxPD-$)X66(dr9!kAnd1j@If-?MNrGW~E^ z(MaKMQMcus#RAc~wY8#C1!E*`$B+=S`TQg;)1h}3eRu(JnZy-MzN!)SE9O@uDeWV$ zEWX>o2Z`*OD%=nRevg20oxS$tvlDxyHQb(E)F%qw+ECe|M#PcCaYqICh90eI0%mcU z(VeCL@&G+xOnmW|f);ft@Qtd(nKyaE=sFOFAWipePuW6^(CK2Unc8WRCw-H!AC-Xr}|(roB|0Nd6M)+T?lxHm}>x?8kJ*ce~6^G4qg5 zB6EmmQ^?B3BPLH7uHx^sP6FaD#zvVE_wKha-`;ipCqLWt#$A2g>HZL-SIMQt&m6ff zcuztfs6FuPvK}z<>Qj1hO6VrcG@Avd1?;#%*{pvx#MDo>7!J1-onI*1cCkhgE~X84 z(_^V3MK!E^52HiuiRhbxU8yqCQ@uv?2}SX{gk&YcMs<^|ORX{q~7n z#+p1BQkyN=N+BVL+535JuC}_W(MF!PMDX|ee}k1tX6?H8btF|no!Tj+L($$c3bqug zXYfknlG~<2x&qimc!Dw%5Hj3rCfAyyl!CY&Tbu%7*MGUFHeY-oHaczD`haeOz3ri? zy*wt+NV<#2fD0-wpuX$h(Qb@Hco+v>P4dpOlpO!BMSjMvs|-F=jXtp*>S@I@m+<mu0#+YnqWtNUCLY%nj-Y@T5@6!UMvc zn#ySjNnMu;3QF03OeW58?}HifgTX!O{(R&ZDjV6BJvljs3Xa9A3X@>zftfCni1gqZ zJ!Q-nw}2_bZ&O7ODUeG`2#jZ=%_WMR&|K~BB9Sw1a!*fz@-Lo_t>pE*z=to3-H+BxevLb%CH zoM?zL+yzSQE|D($XZ&}x4ntNApVSCd&H)I5SflcSLE7*ojSNPVdWbsc@H=kg?TLcP zomsEIG~RjkCaRO`{?12`j|EeXw@*+skrK9#BfH{5C7)QmLHm0qU8XsmgpZ2R8W4nN z6&*!O0TGC0Y$`@+a1vA*-T}}?e#F+V90O+-u^OIbK&*YpQ+wqfrrXdgJQmq*YR3Xm z^fn>*-eqb7D!LsF1uC_8-BJl#bQ_?Ks3dVJSjeCVc5`dE-r_yA24}a$^vk_%1AkqX zQf{CoxcH6rk_|c}^rJXG!hBP&?k|e4%w)O^d>lY}@ZphJaRnUl2d1`yqvcYfc8JnC zwb)i1AtI+X<%TQ=Wg;NMs*X?J^995$T=iJ~HNol>WQfj|C81a&qquBLk1aROqo60* z)a2zt83@C%x~rjTgag)q$=~R(k>~?WT?)rMo$JT6T(IAN(-T&nDMeST0Rs!2v|c?Y z&UZ12yPz4|o}K`0K#ePRJk7qV7S|GcB|$(V$ohsTt+kb_h8OBl(PT@!X};~2JP5Ku z7)Yo_lWaJVf@0z1q@==P;He-8^__VM@X*SP!BGM0@8O-$23!}AVMdX7;hA-yN-5fu zcai@PFl@Pge!$0Ei(HK`^hU4ya%kTVCv$yT-*kQVoTUW&>J42C#X0M>mwDTSDm)0=)6~5gM79^@GPGn;Wy=gf6CU1Enw(i-$E7+0lNF&1zr} zQbd;aL`5H2=KHTm^ehJR1BsU%9D6Z$7fBev;G>2R@uDm{87E=Q6Bkd%k}GFFc3+Y9 zANT|bl^o_Y?)KGDlYyb!tq)puBpDttKL<0?yHw4Jc@n3RE0#;xMVkCyeHXZRSexO| zzId#vs5G$myZ$(n01n(P^E3#gSod&C@i?+dUKm2aP!9X3BX2DG`Sx*YmUf}Go%|#t%Nn80i>Qk8V7~)=u*Wb9Y=T*N!seiSPkKpim zDuPs%LK>n_=zD3!Q-G;km}!HV4$qUX$*QI9K5LSkIk_9YZQ*n1E_mA2EDMbKvFhro zn#}@NYa{zl{XE*z!y6L0h^20~;_1DFa?4{X@$oeu3z>&-Y=;k7{Tlln8-1QV5b3Sp zk%Nl+ET*od(Q%pP!y93zXu30;2CvLdhOY}r1R5%$GR^bo5k}evp`!%l7LOGb&jS2C z)Zi-tEXw2}3&`%s51I8dyz%@qU9o6}kb|TbS?}8~C}GCEk#QS;TF$VDX?5gwn^CVb zVQEg5hvTJH?cUT;MJDG9y**93=!dKseRJFJc>E8C-Dj|#%&UV zl$wD`fU?G|8TJ9hWi|1;%fsNwKnzLoZ~y>=BQCG;SbZn|PH{)ViLttnC1v)1Sme%2 zU~tNkwSjnf?qYz+9^&hb03jO&WXsJ(N}!ht=h_G!(nSTpY)H6ReCXmCmSwXJ$kmIU z3C+A)*7~Ek0lhV+O%5lAZ6n`mjOV@z=s1c%PLu2lYsVnaYT798yqe@d0@lv>I`UDK z%+5QwCu%(Z+8aAvIp40TZ>;K^uoZy;mIi70=OF-e;JiwXaLA%v3ji9{M0iUeHs%qu zL4zF@hU28!Gl6P&`qV@M3CR0N_;Z(ftH)u7(3*y;33vPgvfx@YalflR=bE$&BK>}g zwgWBV(U2p_6221RkD{wDYXD|sw*`%LkOKsOhe^b0nW?S%w*&e7_zMuTmQ0Wn0uKTo zyb$(TFuWbI#s|3Lw#vst2&kp^F=zp;qEFD%p^ATy^_z7l_az)!A)x{9Lwe88U}z?! z-)_fE|Fvp7KN+dnl<$uN#jiG&R!PPi5vZaI?-I22W`oLdnCK0HFo1R$)orU_b$X~o;H+3=#UBI>_<^_ zU6y-CBHr}lfuTnJOm_94H%epd~fAp=(+;Tec?-hU4@A$b zzmZ`Am9ix}E@@1R$f}vS^<5B~*P2LTEaHp!zp<5ds9%w5B(@knrZhM?-Soeis5T*- z?mteVW}ZUp562%$V*A=5n`^|xSf%#vB&-JtoGzSRqUy>-0G2p}eSf6c!I;o_AmO;K z0GwnlUxoLME4RM^r&y$ySP1XxA=yRv0(n z17?tNg-Zhl0C<%XU0DyLZh)I4hrkBd4cU#EjQ03VtJ{QueZu|0EW^iU(lCDiV@=Qc zQ(avmc+wnzigG{&Z|_+a#T(@aw31A{V8ttBlndg!H-kQ2Ozy!3B7U8%fv1yxxeTOf zWqKOas$i{ycc@RYLFg{od>C}Ii~#><%0tiCFe}si;4}H%4aeXy)SOv zKftI!oy_~-IAuGqR6?cj<`Wxy7W(-=bBLqJV)W;VjqDwK9g;A1$!#I5FajMMyiNBe zLk*0D5`s4C%(2!sIb#*Wiaq7!1EYe3_^S!T9x_(=IhB4e|-THQ|tLG zI}A79`igkUj;pdXxYHS;S}zMtI*p&VkBP~E0>9!UOC{O-ve0DU(&y_XN1AfPe$&rXMBbFm4~BtM=lEP((Y?W*=8Z9<^ZJkz@4iDIg48vMF)q@ie z0!+notiMk$hkP1F9N(;$stz#2(aYpCo+gI3gcK|P`v)o+0C!{=72SSLIUwxTQ~z){ zr7EX^3>?9xFivIoW0}V$gFdDl*r{>0Yic`WKTwjO_YeC&tT3Qb&!@CQX%ehUIiCFE z_y24|#|n!WrngyZ9Uv=~)>h~5vcj%%Zta}6Ac&*wloWLnq*BgYNT!xaSfk#dHuRP^ zNx23T7=8%5ypKQt4Cz-o9$J?=RoJbok|9b4fVjgjvA+Sb#)Z(j7ebQE4SfIr001)W BsW<=t literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/r_learners_sm.e25fa9c205b3a3f9.webp b/translated_images/zh-CN/r_learners_sm.e25fa9c205b3a3f9.webp new file mode 100644 index 0000000000000000000000000000000000000000..1ae28b35e221911d6fd8419d2f2523e2cc3b5873 GIT binary patch literal 17494 zcmV(;K-<4kNk&FaL;wI+MM6+kP&gn$L;wI#@c^9xDmelf0X{JpibJ9yp%R$gC?Ep_ zvA2E)(y7!368ag<{15)?wX;h0@9tmIf588M{h;}pu0LS=^Zm2`cllqJpXoo2_u1Dz zW1eC9ANk+!|Kk7ge}(`5^<(|F`|oA{r~m5vfqt9+hW@|%lm1u#|Nh^suUQ|uAL)Nt zz5@SD{_p>9{O7xO`Y+gjc%R!p&VI^&!1)FKiT&&TuVM%8N3dt~5A{Fz{ha^ee%5>> ze^vig|Hu7j{eO_}=)d0o>i%|ofPeY*0RQdQkJo?izt;a%{2u=W{tNaa_ovxE#Quf* z2lp@UU*SKx|KI;-(u1h~VLeR#JN9qxzuo_4|G59~|7r3s{BO3eNq$BDm-$uj1^Bn} zPwfAbzv6#%zPdigvzu7|UFZwzkI=uxe~10O{`K+$?*H%o2>T!Y!}A;H2l+qrKk%QH z-{8Oe|IzrR@L~J^{f}TT zvH#WnlmGwVKk`rL|LMQC|DOND{ulrM{(roWW}mNr^nJ_!T7T$%f0O+ovC^g%PkgDa zk+P&n*-|8IsR%o|@p9f4(Ue6x)ZbDYh>GBS?%+cU1+9sL$9-JIj#33UQX%MD#N1HD zQ6r^HES~vOT_a^ki+ZI2g$@diIr7P*IyiHO7}y*;OKH7lU?3^XZPdJ@y$Tj^;?Wtx z`QY)V)@IklAivGj%QZMxH+w33Dr=-{sS-9+h_}vQ!Lu;5ps1Z_Q0dy?Qb&+GdGEL+ zyWs>odvoN> zLdD73BcID^cD0B++2qGXi|v?;CVwhKs8j?Pk_;9j_wC2S zY~Q{oegxQ5{1V|@tz7niXZ(aPabc4PzUq-OOHjo_k$y_qq1!qZ`{E&9K zj_W|$MOF)0OSTDWlz+)wjftab{?6muOrvu`1dVZoh0!)r%xWSNc7rVg;NAx~gWJv2 z=KpBTAwV|w5Kb#498@{b@JTQ$$mvfYtya?po+F-UzP1216xA8RxkPo zCG-yBoQZ=;GeyA|Wg!6l!n>592OZ}B#CkCgpGn^W6EabD)1B&uG{Yf4v<`w|I?R&# z*3kDZ*y{_qi%I#SJQBe?|LDm0alZJzPb>crvY*MA2^^dm%e;0FGhB9Y_@?Pc!av8W z!qIKhcigYu&o_Ai=+X9LX2=unImzqt$8^$zr0rX}>TYUPuy5Q)>kdcuTK`(7nvVyR zW&f|Y%Uf9OB@Q%K{5N3rwj>i=HA^t#{m|>A$DWEb{NzuLF&c(So%*%JQR=aau$NO- z3)YgFejncdzW?9w$*IETO3$VP!}^(nY=lR?R19@0Ke)eLl*t1U6Q~xF5F4!K-!F|g z-1EUw6bZYQz^=TCAkE=fA`iS8Dl2iOnq-S9!8LHkZK*2Zw=eH3pe>dGY2s&^+gMP!LEL$(D4G{XF+$tY@5QERF zf@hiNA}FS#xZ&07OcA);LZ`@T?Q@^h6W1@nwM(w>AS3?OkK@dWR_B8S>!6}c+2z>> z{~I{?}kOS&+4C;C!&OBYrF#jv7;D)l;kbzq$=Bhky(_KmNJXk!WcY-KSwmeBslhRmiNfp-QJN!NRcbpu%>tb!D!y7@c8<7gOA!Q zNxM#S#VjTUW~*HxKZ}8_3gLqqYL|>_kb>=Pwz8i1uP7N36(DKwk7*J%REZlYm}h#oQK9T0 zTYpc#68ehAusKOz2eNwwDQm_Er0VgjE{evA%S$i+YR(uPJj7HR-e(SBN zk9heK`9EO{khv5g+S!ei*}GRLbVl()fQaUQ?;O&{uCCl&M5_NR86S+CJGSSZblreQ zIHZhYE$wkH+kVwfdDL-EGm_`jEf02$tjMbgF^Rruvsj1Lq4Xu`1ARt^{lC>9u z7~{AL6jptQl4}xJ5%Zq6@y{2_BGh>lAhnBuD3RSHig8;Um=$jtPervW4XW|0bZc!p z*iKfGRM&qj+OgJf$!~m>|5|vlxzli13Ug)bU9=(gs{f`i+gE@2SNWHHjKUp{8yik& z)Y$BoIUS~0%jNIcXmzUuA}DwT>N-oih}qLo3utjv-6ENxx5$!}3Cc)V8S#Nb26Bdf zJFg>mMuTAKfY4?#dlD$7nweVp2azNK(QPYk6VQ4Fh4e1Lm^`0?Yn+uLh;&DG)-xCa z4!T$_G%ymY7vBcTEBA|K8gmHd%D~dkzzVhkkBF471NQ}4bDx`Qaw7rBv&yY>qemc% zzmAJNEN8!}?(SM`SkIA53i&cPqiT~R>FPSDX z1rZl|!o)~mj8zLf@dEyzf0vXp2rjH=#z#0$^e!PIL7Yqx#%Y_B^~Sg>Uu&*%fi46f zLBQ(o{}qpczu3YTgU4s)_K*LxX7cYcOSOEy7|$CYyqM@o_%Xs!TL>TNJR-bZOnq#j znY9AL_EZrxO_o^+?`X>fMni&exwJrfrr^tQ5e&2?lRDr@UA$7~lm_ezj$t9W+L}#i z8>v0xwxtAxLJCpxp~&`wr4?U@#hpw

M>cR~Kiutf8t+QU^{A*jFsT3scLyh#pB zEs}5&KW7u4tSP1#l34=>R)0{<)&?e*Ju!Hloi_x0jH^yaVTuqx!Al`y$WXF2KsWzx zVL>jC-37}jb^J2OlzTeX)K6SwmQBs=(tQqkupQN>xqKY;Y-RizD%VzoW31`MoIl`~ zSzg2`1u$rF)NfER3hC#Wj`6ud4T-jnolM~r8%w$d9eAU>g8`gyFo&!h^_nptomk&0NPn%Q8C~yIaL{9$DHNC&O!#W^(ljG`TBhVz1lALm0!0#DD+_ zp45)2GBF^>sR?N=O{XJo%<1B)J-IDCpqwOzpQ{=WE${9g2JoB9t9*|V2Mh7k^!KR#n1W^Xso>Q5+O#|SVw4fbgy^*D4YKBK|D^z{fQgrg z5^}wGoo=h4cnSh%@fvvgsrMg@n#tqEVAxR5;|&1nG8@X!X4vU*o28588~Pe#xV+)B zWiLD|g(uAab{TThqV*_;&#u{9l z_`vMaBI;g5=?L1C__q{kxsccqj7OwVvco6=1a1>c zPqC{C-o=ZU0yeHjx&T`4)(hb1rzNEGK#uN(yh_VL`WPIlLfDMg-n5a{E`xdfmI}sZ zABmcq#35u4N8^!d(Cv7ey9KEtJ01Y$=`_YSV11_1)Cp-ecn7WuU0NSuAWi!%(cT8% z&@E4PCP69*d7y7eKj##C`*~z3762xBw_X{2X@wi^}(9%u9Sq?EL ziKR^8K@30bLPJo1Xb6p{(T5!=4AsC-uS;LJEf;*Rm7N{dkek%{rzt`d3Q&?#WT0*Q z0kwfBk~79d^yIfBLH6zZU`VRkh6V=vr|+}Gx=Gh{dMhYz3)##=v?@nYf00ockh}3j zI5nv;$rZoG{=b-za|7@Qa3dII zFoT=7h6OHhxhzcnGuOuDKwWZ-B-p?6v6_5n|IBAK3(S549;UgTO;@|=)co>Tp?hXw$p&T^!t1eXnc(m@3$!IRD!Z=LIGu3EZA0)9fa znwHrwjgo>8vS7bw={Q63+2LpnlrcrO#r~dviD(50)@0Oi{wy6u{5H^%yVDiDzUtQQ z`<0zH8$?=Ni!A1Hpo-av*LcK$`*-qAYO{b)%^WUEd!2uYlZK(l*IZH8;AYql=%f28 zi$Mw%m6jW!4C|T4&So1v5%(4Kaslhk(TJdg@}7wQi@b(MFFjQu59*->psr8@(tqt> z1>aH95UbdB^tGs8JcmH`0T>fG`(*_o`Z3V_VIubS=TBXR7z}xY4eT=ieZDIY-um^k^-(8g>K>> zU|F6UAB`JUv4>I)wIljq6A6)w%RqeV!eQN(1;Nvq$O2HQ1r$J zghYp+Pc-7nDZP}lu`kuX5#%iGD;)=}f~82~*s`iJij%-J?UG=|06qJPMCQIwFC3L#+QTv0l!iEa8w1`U z^?L?gJ@f9?Ld=as#3t9hIckZ5${{K;072+S4!^|-mLfSqnYPBR4O%-TY?e??_I0_c z>?i#(x8Ed%rcY`b;}S$ec#>YKXq3=PL@o=K)aX*pjZxV8q+#~-dAs@agYU@926Wq% z|E@bH5N+HJR_aEMOmr6z5@iXfiliO|b|85}Te9F?5~AHpWCY91JrZc%+U5z`Qb$RQ z7%5+pUJ{=dYFy$@PVYM;14@prCn#0$!rRPI+Eq-RR;;#df%#a8$<*qYDdKWXE}zCYj(f3! za0x>cm=?id!qYK9lwd5bZ?N{+-Jj64KUq8L{Z@P~Xb(Z%4*`)<&$=w_>c>@pq_JDe zgHa)rcKO`?1dD?>-tE#Kb6j+(A%9Ow2qQnr*if6P2a?03;W5-CB9A>}>kt}MfDK-{ z_OGP35z}l@I#g#dBevJic|2T9+OM%aQ}_m6oS3SVB&dZ>&N)5NjKSV%^hjCcn{F<%@KXPXPH2~@P{AGC3B>vnk#>|Bq^ymJ-L~Z z0CtG*)NJ^t;nD(p=zC4xk(W`pfu*zNAcP|va6ThZ?lJz}>uV6suyvUl@~Y}+9NuN? zifz)-=3`hi1=BZ*ILWqx#W@S9Z=p3|$+saqvY*-QoTs@nbeO&&S?IA6?(#YEF^jCGNh-y2liiClGrl-%8K;B&dR0 z;CBPuKv?Ldz5;B+x0!H!H%TXd+3nu5eDJXao3EK_eP~e>X+i&&Mtwh>Dx( zdBSUD(XN8rf$v|upp}0#*7d8hAaqI|{PN~aUJP_B3lt#`GCs|}o~%9`sCA`~DoAIw zc=#u)eg0ffZ$Z=)9aOw##|pomI?pz|&{pU0>UukoA1DAS#100V&6pZ5_f4j?04=C) zosGu}6nFE5iaC%O)Hx#%udeRgP7lb5D0$xSJmf$=F?eNE?IZ}M3XaZQRWkR=<) z9}&V72f<*ze>sDLGi$D3fAB*|XDbphbOCDGWxg&ba$7o-R*B#=A;vpIL?EXvAcunmAGRiEm2A%4X_r^p5r#qGkCvF8 z>Eo$MJi<6*K0bTyM;`Q~ex9XXRrikm<+9oXKFA3elIn>`$E37NQRL zDxeJpo#WmU7CItbsGt0!PIdwUm-jyQEXYxvcDh`b1WHcaNp6@o4sr3iJ=G}51|bRy6TF$4 ztpsHYTdi_mtUi_>I-xD~L_E>IqMi4oQ&n?NmzEs-7*rmoXm61$X`j^T)-=rrb>hGo zZss6VxXM3SU8EL|6@02HxkrbFNwCabmC|GYu`4Q}z31=Qn<_&Ol7)`j776{S)wjm> zVo9Q@ec&l+{BreIujh^Jqjcbyd-ie2bTbY{eF%{^zm5>$c)H-cqt5I_0_jiWpZadF zgc=lHg5>>I8yrnVl(o==N@f=7ENr-D+u~m%y`?IY;)m+VI!a!97(fj5Zeh~6x63?^ zzIE4pE_Eeoz4}>RJ6WaoRyr%xSE08L!20lT#f^|aLY|<%Sd{OK9$h)d z*c3_NC_du-u56?X4Hdsc;&PmSUp{Tp=UK*=7V`i11Th^=y&Sbvk{iREf~rPzh1v~Q z*v-gIKo<^h*SN*}WZ1U4c1FtjC{Qe{bVC)byn=hA7zyHf_0E3)NnlV4T2UXlgq9^3Z=KN37J)99 zj5)`gVLBO_@6==3i6$TG-(Bc7s9gCbrT6L}OUHEE_t$!9n*P-tC%jWyY@ft!#{eFT zORlVIx*#P|L2YrE5qx`O`J5eAt7ce)kn;02&F8eP!q++ZdxL_G$zbPvOSz0(u;qj?x-MP$9@g?`J81FHr*G|aK%pvYhZMV`2_UJF z;w&Vz)1{+q{DJv+ozi^BTJeF1Hrx1)K=jGiYHYP_-X&3^y3i_97_5TX|A_fZWtzA> z9m!8xy43fwEwB`zBd+|K)*#g&qNSW-AH%G292b%rFnQuvruH;P+W|;3lq6wu?~c~d zw;rCT>AqV74D86uOle~3rG27qyrYN;>#{Rw9(KnoCcfh;1ro6*rpAw_4lS-iOhc%A zaHw@`w#PI5lGub*K5)g;VYS1#L^zIulw`5aY+{2Dx7W|-(7$G71VCK)1^ZA~*mXt+ zYy0OUv;%`4yI6RnrfhtY*%h5Wirz3vfH1qj{*7A1P--8%6bd6}cCBwM5S!GS8Dy9T zxYY&({UJ)Izr|Q?Fug|r(Q2c{2%15;QUNnmWv%gjd{vHXH%=zZFeVFcB>F{Y?#z`* z0z=;ZeaXcm2@y$4>kjuYgJ!<}{U||r6O$u9l~6WEoLqv0Fl}Mx-A)J!qH{iNL!{Pz zFFY$c>l7Fej2ubH?eIDc^77m2eQVH7Q3ZIoRq*FKp2{dUY3F{N>(t6jNPpzyA!j~NRFKZ@M$r3~Jv8zDm zfh8He_>K1u*+(}URdUO-JxMp$@tHI*d#F5EyLi`|A;t5QW5KEnnf7P_kXSf$k3Ru=r(p?C~GHx$~_sgS;%)veca=#JHLJUZ%N3 z6K{8I2DYGOQs9Bu`<#*G$Lrgj*>g(POf_iB)M5}w|6$R1Oggpx#t2`Cj&Cr#(Of## zLO;}dNG#H5p!F%%3QLgho6QrP+l^rCOF8xQsX*!pN~S!gK;E~zGtX2<_!knmIJyiP z;eXr21yKyU&vziWE>bDn+^OP^+xWZ*0IKf`8Cvh$@S~>Z(Om0Ew1u=_*y~Tj?))j6 zy6w2_OAKYlcqmWMfY`WpII!yi;~c@O&B92bw1Xg-@%p?#`kBf|(W+=C^0oBCmzaTl zT20Af_6!w_@wnXm{8(D%eB$?@i1s_;&PNYB)y){84wfEV2FTkL&{7iGSuJjhDsV7%8@h*Zn&HE@?daW>bHN}MNju_s>_GkIOkW5xj z;Fssxpt=s;To1Snn^V~PE+xwY?8UTAT(#0WqzQ!r^_dgqQ_le~!~Qfy7IX2y{YD4q z^|ovH5RWRi%mV1y_rB!7AoglFp9sbdBRA0?eMV+E;hrG>n2ccGIYvvEU8`v#pbhz7 z3YXdFUEK}<2Y8)-NnsM3rsE}UipAshtq{&T~AjCh%yLDZBpO0({Kn^&O z;$Th#(6SVX#Z^Re)eD>n!vK)4?JMs#sqYb9m6qsYgt(fVy(jdnBw*cU;@PJslfduQ zv#evCN!zni%hawyi^0l>8w4y#0_$cnpXk{;?fMKgD@0`{_c%CxQ1lFt|8e`vFWNfj z6yhOrt}dNUQj~vt74FGD*oWaj`zlSg@dAoJuGEdk=NHXeT2cKT8Gvcld$pebs3tsG zE~%TMUtD)c&1Pw}{mey+ZdQU}`S0})=#s~>>Ml?TgQ)fJB1|J(GqEZ4eO0D`hneD{2!T}&v$KU5bZfDCci}at3>GUHsI@fE5 z95Op}Z!A#MKp?@Ds)t7Cluyi|+Jgp)dEU+E+t;NczRxH#hA z8Y`s(Z-eGRyPnis2>?RUR?Y?5*mf6P^@lE6H4z#{Y1Mew6=@NFMmGaGBLH zxT{^tB_>*hE!anIwf}0ys@!u!6xHw`93y5q?hE%BR$GU~(c~vP?VsryZ@pU_$n1@Z zg;ps^>f2tR{d4o6R z$wcIspn?yH)SNoRGSpJne2PpNAHUNY)2@?6)p66uyaQ#auX^y({gUmgk@+K{@627? zhbm!|)_B0gCc84;23hJ2wggG1Gv@(LhJD4FK=2+Q28}YfB_#bYg0O_a73?Usr2`_q4ss00b}{#YK-eU0DCMKdf2DtTi+(T zSU$5Nw73?7_crJ8g{h(=CK~>0UghLz1?iEMmEb?*yUG_ude5VC)cj=|90~6&k<4jd8D3Yq_mU zmFx4};JYG53>HdRLig-g zAyH>s>=TGPk7u!BbH`Hx%^zwq`GA``Dkq`O1-JpeuQMFPnf~HOV5oO`{$8+NG$1is zC4TCUvBNZ7?_iz6`wtP(n2lComiuDRyWga}AKA!)tGpBfvg-51I#*im-&(l#}hQCdp|0_JhitlU!XN^T>bs?bhY^+o z{V-<@`%yH-thp`2!V2nFX`SZ;M~2yO9g_W+Jp$6H$#-!RJ19r!@c9?DN^=wL|idmg!3H8qVHT;-de@dwq0Fu z`{7l%?1!mUx*jdq#52)D#)0Ry-(z0eHlj*-5En^` zo_6`NJI3nV*K+sl04(d@tzDWocPObOEwkVR85VO%cKs<5ywXIB8b%5-cKQ2k-F1d}8bh z=uom@KJxxlhsSIx?`h!FX4z@kP<#5bYUd8AO}JfFPB2px348pjlgqg!L&h7c_SZX` zcvEImZ3|JY$h>8?ft-Bh45$H21dnwRhV~O5EOPR@ph|n`pF~iB_JTz9XDh6{-gRW=vmdDFPL!{ z?WSS|VU9%`?yR6ySkLdoEot}&cEa3JHt#F|0HXte_sI?IB!JuGK%RCYe0IMK-FX*@ z#s4(VDEBsm1YR^F`MAYr%+n*9K08eGrzvfWy@7mGv3b>(9l$PfFkEaZHpxtxHzp*+qPz zv#VItnOr^)^{tPCZ+j^cntXS0b+R|3ZYVb>v9&D}jrgsr2tR7$A##X(25>Rc29M3a6gRggCB_c=hJsM%-1#$@l!mD5c+Mx3em@bWj{%xM9(No|C5PdZ z)B|y0sOjzL)6Fty;^q)5i$xwbu!f^4PLsky{v4-o@Hd;svm#F=#nd$D?#p~Aprk%h28eZ9=^(P3i6#Ulp8Yd1@%a) z(W&#ch54H@`s^!wB-<=vvsh`~9+mT7`Nqz|k+C?N+Q>{oYA;e@fswH=I(AhIrs^%k zNW|8z>e{4qHaa0JUIgx07SUu$YbpCt7T{vi!1yS+U)r-Rg%ZBGYp*FS$ZT@@AT8JB zP)04Wc@$H7{jG?XU)p0(6|CtS&V4`;_bp|f6Vkx=uD-3y?=%OLHaLO?I|BEav`iT` z-Ob87fqF+P&E=xn>qrO%KZ!wzCrcpEPkd}0_pOJ2o57^K^J<(pkC^Vp$P)!yagtMu z5J6MtXm4yOQ`&go%ocl)nz#u{rfS*rlc4r#jrZkx>!0+ud_lu5)8Ye*YI5avoOxE- zY@2*yrCIAz2EB7lO=>vK{yOZY1W+n2h>d@-#`$=+nWa5m;l39c;;)>8;cMX-iSidY zY2VQt$ISfI%h92hoapHz-Rvg>B&Txbz4i8MVNOht;LnAf)*a8>|h5nN2d3PcGs zQ0o6y*r?8-IH|VF-mfCKUo*(mk(P0dTu+{=9lb3F(Id$4pWYNKq^fc^+V=(NG?gwj zUx0zR1Gc|VJTeFB(1evc$x5av4&^F!JmTd4bj83p>Y{itp=V)T&1H7#>SJkOm7td{ zCjb&v-H4dCViCWt9+b*bDQ(A@ftZ>EW)JwlR3kLNtd4PX?O6P?6$;yJvXl8jh%jI= zMdU%GQT&o5VIX1?>=^PGSdZk9BHm$a0T8}*+jY)G>@srUZ6F3y0%>q5$T>*cy@Tn? z39h>y&OT2h&h3VxH=n1ODNvqvLDHg~@aRg?sT#P$vl<|V0F#4ea~V{{T4=j(cU}8v zblIA3mthYgq_I>nWUn>o{rWny`Gv!e)8U@Gf}Wee`x30W+OwOXA~fNmM}M7|ufTZ# zt08-(L2@zybS$?|S!n@ZgQ*X!M>KMg=5-Gvp12IXqvt@ zDKT-?zE%O*>hR~v7k-T~qoR<)EPH4g2Yd})=1p=)_e8umhXe$edFs>S%75ZKl^mV{ zKXC7!-hEp9_Z4Jg%=FQt+{oBwAb0vkZ5c(Et8r@5bOQ~UFmEy!Uk0Mwl9IN2RuwdfG}BoT^TDS#1j2^r-ae(KwFMw8vo?XMIvsQr+VG@f zO5*9`iZ3@$(l?w1G_~a%lXB1b?ss%AyaR>;P-M#7#_CrgP-}KUwmUcjSf=+o;sf?AOw%-l=QY@iz*Qx3Y99 zEJ%8J1Phq|R4%xqLg>HbMZ)_;dcrhJ0bk7w8_=mp9S~OdBzoEYryt9t|3>h3Ig!;e zSz{}!r4l2vq$38P5Fd_4XqrG<8yBG0U#cmmT*9pkp%#mIx61GatBl`6&(hZZfu#*2 zAXGHX8GQq2n*uuiU$SIKxzdKnovl0k7KQ!!x_xNoGHx`10KaQJ2nZp| zF+eh<#yBD#QpR;#>Q0#OCV4F#xn0zs>Zsvuz&;)Hayhj#r!t#)DgFlKwD$yrJdxMn z%8@WOSwG$2{ILCl{jzpnYGgw1qXk(me7!KfPgUze?T(%LJDla1ZrZ+s1dFu>7rWmD zGICTC?Ri|d7y)kr)kNahE{w!?$S8Ev{ZOswB#?l{%b;21kPYU1SN0RF563aqMU+e$ z`c(9Rfpg{l7QU)n>Q8F0+}MB?sGIUSvM?ysA=POhgnIx{sx#(Lm1JuBH2cn?q7*!! zv44)<k&vC`j{cFMfN^;kl+{D`I!7Iw;X(YhB)hVxGuzlDWIMhXZ7=iU+T4 z!Z_{P+X8gxN%F4-!?;bh6P`4rqi&tSguWlNVWK@ks0_+~-fVttP_iMXh zX2P0Mku@TJ98z;a=xxG&jtwMEzbpk;{rkr|O|j`$bR0-75t=!U7~kVh?jP1;`-zEk zM)8CGqC4wisDyh{@N)0~IUdDB8^~bqC$pC)XtG%I+i6d&|3nF}XUD%nN1(TVSr~j! zBV+NF(yg#t?abq?MUC@dWKv~O#y$5PK^mq~Fq3~}Mm{ysO=0u7?rB2T@ z0k_#{S^C|XkS>Zq0a4s(Y`aSi*#c&^x~T_4I+P(*na9iIBs^R?!HvrB6~e%g?AzlS zY!?nOV_&=DfJ-O5cGrH3n@X9Jh6L)@K401(GHcfO5mtrQZYyli>^kuZRxoc_;vT7m z{%(nsRAL#N!F#fsH?hP58yuDrIqoh6W-BjiY40{WD6TSIUf#yqNFmYAfY71@IHayd zN0^tvUJ7IHJ}mnw*tJk?l(V%DeWZu%0c-GXSiq2^ZJs5(-T+s{Kk3W`G%E^poV=(D zsOK>(0!OZwVBAJ37@9e2pGh|V2|A-9#=M-(`IOqPw0Q=mgdwG=rzyh&fCD3^Z zTFMPdZ8_&DX1f=}{tFcEIr_($inE9dcJSbu-Wh8n;L|q3tspvFn0}?CCB)Y^)Z01s`_p%O| zMkKkGzsaAG;XSAxexWJqr{wLP-CT50iUan;U$y=JGU?xF9Pt+6CP5>Buv5G*3DiI0 zNe$OJrpN443K9PW&u>t7Aw~nI$X@;Nf#Va>bVU0Jk-$PZslg?9&gIuH(DnZih-h>X z7jxj8iNWmaboF>tPB+CDyP}ss1YlKDoZ`gOVEq7bXJ}5dNkOqV3WpM!s?mBS15H@G zDt((DCZ#@7J#`3C<^3>lEuKN%z8lCnf+Gq35~@sL;0i{#)k|+kc}!#_Vyvh!s|Ct{ zVuRVPHNF!aDcN&xtc?B_lXsqGw5G;qmG-AL@l46vg=-LsElwwC8rl8zJ2fpl1W*>j zhSUr>*8{(>$ZA;#hrDvrI!ov7Rg{(-hvR`GnRkY1$jzBB2r2r;$p=#ckh-{RQ^&3| zXh$}?x$eGpSvBm%4^SgX;|!yo6ePT~-ka^c5QpS#w|Izq)>vbXOcBgAAvH+w)#ICqZI9eJWsryc$4bSVT~4s=w82 z@Y!Ax0{Z|f8P0dp`I6!J+4l2bicFOHWj&^ftvW_jFjJK8H^eE@R_1JQ1n{!2 z7YDySQn6RS%J*Q?3sBnQYGy{z^ka14F5}tW}m?M-^I+0u3Wiy zeYn~LZv0T2 zJ`!JYM!*4?_uPE6>nyG$umSllK1p&yj*$3~(v|_XEn1k$qiWwmHQz2q`r=!HMz{b% zqx4-69Z$S=+^4`0!-maIo%-6|SOV~$DVW(aLifbKa=R}W`)aJ-Aa@&VF=pllYFo`! zpV<^$5gA#a=+=&*1&~2ZEHfI-%et!IHuk8HkVny9Xnl2UQvZmSdiSBd*QZZHFem>W ze5jO+LE2k_4Ob{FG=1Tme|xLQ(vZoS53wSCna%iK+}~fwDjqf)wJ>{ZJ^b-5c8y>H zw;#&GmR1e1pZA|0@4`isfZn3=r zC$gjzn)NSaJ%PsKDn>Xvl=}|N_+vZ>vzYCQpwAKklJoDR>Fqwpu`umni28}CLcCY| z=@Lg)u6A*kme-SpN<`|mw;IQx`cf!LnA9Sp+JtkT37-O1)wpQNZm+_QH?Bg4ZU;*Enh zGFN?jpx(PXx{1)dEqc00epMgV19I0hj6^Om?9UqeR`$cuEuIVnwn=T|q9x_$h5y?` zG$UA~srEPDayGV&9iwOX(730ZGxt*nZ646NC6gz*R``Edb0qu0TQ;LkN1~m(nk`Hw9C{bqL|MeacLy zn7s|gKJnz=Y`Jr;65Uo_10u>@+e}Si+ohB%)6(=P?1_V=aAF6+v!(`;>^wu=k%0$8 zaUs|^0=HvzJE@8d5xx;H>3HJy(M`=hvNndhYTCoANmP$SOA3-Y23*AJvpG7}z~v|; zm-xRMoi}xl4NXf#rRFu_v5BN+a6``(51|U-k1P83%EJtw+y`sqOJrI^T|fwRy#3Fn zq^=`zt75G$TAT{e`Z{OZt^~QVy%2HA za3tVIi|A4^-IBDC|EkALuxWe_xOKz@8Ble>tmTfq%kc%|rFmbrEh#oUY6x^cfj*4$XT_;n%^!|y zjz?9VD~V zBtfUsaZA=?9!!N{{Qe>kv5jPmE%b?e^R{w{^Akuob{+@nP(wW9Da>|$V)cdmTnXJ~ zdMpQKfE||zH191Fy)3|Up#wK+hyma)M6>`@(-$1@8pxB*Z=*4}{H&Xmbc?j?(x7bK zf0*~yXJBWQWo^s4-UzX$7FOMP&fRY(4+ZcS=gXUGGCHE|?nQlyMOZ7(Atofw!c zHlyVKoPo0 zIp9wW#%+5st^@iDd+#`F-IDh$ELs5JSQo&Z`pen7^voB5WmFma+=GJ;9`0cd0$jYORgx}OgP)00w=Yq-|HiU$?)jnYY383Pwbs3S&^8v=x`CI=;fW5+@N(!7^e&1qMYVxMov% zuOTT74sgwaPuA5kDrhcw(;QzBoS33dYK&NUl-MHClhj}@U`@|usb|ZAC>t?pUl%e? z>r0%!0dJ<v><;M}N4%0JICw$sG8l(KK$X&~DJ(tKqV7)=^sC9^ zyQ&ZIZY|23N6r2?%iJ4;5E@fu6Cn;T(lqiLBXl}e&4VzyF_=OP&!pDN?Y zbSF3rFH7^(SD!B|f$%4$jPCC9oqn+m5dy1T5l*iE^ndT{&c$;@SrvQk35&BAgC$L2 zPCLuHR+!HnMAbWC5&BqvqelM(GBCgZ0008IhG7wi9|4YL+TfMirhd>XGX(&xzBn|j z!rLD>-M8q}ArfVb@c*f?D4%)Zak?K;W&>s^u#M*jwr>@V zi`yNS4$sP&Er+O-SnZne4Dfx;VU!DlEG)#<<6 zvA2E~9DQN0S-H=FpV@Y{$G$Q9kM{5EKi@wqK4ojK*MGbIc>e4Ev;5D@Z}ffEb+6Mm zz~`9$hyH*2*Z2?oU*G@#{aXKP{_EL?>M!~J;9sWy;lHr{;(w9<|Nr0X57t-iulv8) z4}ibY|G9tL|2g~r^5Oo2_AA~m_RsU5vmffdL4TrudjF%?efyK_8~p?QN2{m&PulN< zpX%T0fB65e|EKaD{TKV^{h!W1kPrVJpdbCZ(fa%S=kaI4AMhWNf4u(5{wwpp*8g6= z!T)>z#r}(>e^CG8^gsCT+3&l5asL(mWBXt2hsj^^{@J}F`4|2-<>$Z`;@`_oMv>(_i!d@_)wu^?#7|@A-fD5BPuLe|dk`fB*l{ z`Vah*`Y-x_?jPqr?*D`T|Nn#U2ib4zH~jx|AJ)J5|DWXg)ogT%xYt#&(kkO!R>w%I zjdfW!H5Or4PF>p3<%P$Hh;1S6PkXou+=UMdGKbqT<#&S+|EMC);KFEY_DOf2O%-vj zt7D{9#<=yAD`a2SqmF#CX$uN$Q`t5LeQ9D<6o5#V{yF5s{_dqG(|H5%@Vw%IjdfccBCaG1rL9e=+%#N3$_d&ARVI<-4&Hm_*$_zuGk{iE z=EOrH=K~@TdI>f}RLs-5J?aX*KAI}yT~^0PtBrMA9(fFe$WqHcI|sKR_GR^xtl;k} zQjC`E3s9s>(?wKpVBuqG?9QCC6HmJ(dG-HROZt`HJ#d2v{ku6Na;6n)BR43n!xsXP zL06ZRZ^f0FScRGGvUhKefDZ`1Qy}B;r*XdPE}WmXw1ytDGk3-K<9+c-7)RDw(CG$~ z7@8KT7X6oPmp*RCayy(P*ZfftDCKaARmH`^t{72YLb!HAEF+a1$Li+GpNs{FkB^zE zcCUnD7OwEmXzBxGZLQI}Q0Q!;r-V7q-waSo zi4U>i80^~?9z==PKU3IPo4)7e%5iABKx$;>M~0i0%r5Eg7t1UXk1HKT>BA zBwsk1CMp{M&TIVm{oTi+NIcC=uCWv{aNW6_4%thwmhpXM+DowLUc6HP64GM|XREkp zw80_cOksp<%4`3{T9oNc>+Vg06;SY(mFt1BnocWhz9*8xxtc4Nb6AluXk<6h=W)-# zTlrVuV7|7u!t-_2Z%($XLSsqZPpq1a9+SqTp%uLTGsuxuBD)gVk67%#m;A@p{&-b! zM*p25YNj6gfz~c(V~qFyir%~HL87ck{f0QOGjzuByTnmy{Z0Vi%__Innk>U6czYPt zupsZ=y;TEz(Al>1RpLF}QgB(p_6$k(8)ZC82-OFp}%;M5A?dXzgTd8>coApO$* zIA-fT2mU`?`?VC!G!r^1?`WG&q+7ctf2)DytD{4Vd(S1wzgV%=IHx4WZs(ZmQB^e3^tVdxPZ-Pb+Q*wj!KGW14(+TDpl%0zr_Pcag6(WYIY z*K`o$8A4~T`knL6T7zzZ+p4G`CW^RglNW~++444D^sh%xnVF4V8|r9hIP85U?jIZO zs%0G~6r`Grgh-t#(=YDFwWdw*9&Ui4_n|1X*$FOOQ-#R18hR9Y_a~&d$47?sCM_=b z_jJ+WRWE1J0bELH3Hau;#F~Qsf|empPt)P_(N`MkwP#jnM=gGKwZTK(K3pp~osTL% zP)J-@Icma(n-T=kgP^}OdjV&LSfxN!vC_$sLx5jM7Z!%99$H$*#7)g7>+wR(O$1XE zH{JjIq=6`7!IMQ?YpU4k6>+Ysq9b_~=4TCZp7ztH+UP@9!F(bG_T_gU|3R*cGtphy zzb31Wkyje(wmL;zYpU4k6>+V3OJB5_rxDnRQ~&_}{XtUv@kU?(A-tu5oU5nok>3OJ zc1eG}6=6vtsGTaV6SVwm1pmD_6uF-!(}OjzWFuUz#}sXDEcj1rmnSRu{=lV7b!!?) zqPq}Mc&wMlcOfNXl6~q?OSJAuQkBGR-0VjWsYIe0@Rp+#fH|6OY2N#U)O1Tn2Wgh# zhVL*4aGx1?P0~`A8Dyd3_o{YfR{hkUZI)&+NNL? z>ZjlPqPF{D(C1A4(Bsspf=1tHt36JDeWzu@ljf86aB{Ty>)~DV9dvM>EIg^PAbrf| zlB;q8n7+oiGyW`dr>uoUzltD+)+A;C006IisbZTTg@8utS>M$Zc73##8Y3Zt$NVc!}wL<9l-2C)xs&Ls^y~{N$uvHku zv&^JsFal@)0u1j7)7hIy2yxB zcT;Lj2*cVU0vgmjnWUF;V~T|P`7@%gLhiaNjShk0fdzG+{@K%nX$59q@^2QVk6VU+ zHU{}^$*m6?R|voKgBkxB7M%Z@!Zlt*TKr8k7V%)`HclPdCv$=a6G?@-KkwiBmi+{p zZ;r{#mC#r+pZ?LC%b?zT$D?B75Nfyfirf4O=P$LrjH$hKETX*h?EVh|6bE-Z|0>%2 z1j-LH-BQE^%qOX9OLb9F!$H`%W;*_$>*P4i=jPB6I+U)XFaSMvmIo>lgS&C#t3xMdfJ)=H z;Pp3D7Ge2fa)olmF}3#-s@ANF(9)#F_W1N=Ob`tEsL0%8FD8Dt7jKooX9kAI&SymB z%w{JTUei)Ro%FswA5>s8+KG zN61coGTdpNXuR{rQOw6KE;oYA_;O33c_H0%bo%m~E(Cp0-?J$d2bRsrL5klWP-&pc z!H?~VoU^g?puEHVHXS-V&_LQ}g$lDPMEnaaQ|i_4!8FSPcLXMW*kjl#2|>`u>lK7( zMGWLKP!RZ`sAIYFb`#j-r^#XUtx%d_p~eC)+mEAFs*u}_b!D%%X}*B+Ahzo%NgkG2 z1+SoI@5Rd&mK!@ka$NF02I2bT$e!2@qt$-4B_OIne#??1)*#lK%`y$rR*= zCg7$t-h*d4$r=^93Bh-+NhN_`ijpA}yo2>VmAYnATS!7W;}X0Ub_?t==Z1j=aKk=0 zumS9RJp|z%E_5dX#OS*|rN%AMfMoO5I@xVGUDQ%BA@s;vCQ)U;-@*T^>uXo`Ea+(T z_v1oRlt275ysAQoVMAn*??`f{b93@WD1;%fn#Xo?COkdTROTSA8?$5{@}yszctHm% zTP>QgWa1;E_Bc$nDn+Y+p2uGCql>fPf_I~^P$vt$#Mg#6a8gqO0CS{|_2Ngc6@D6! zpFQNu^6d%Ig@H0TR8`@pq5-aIiN2JRBl#3l+r_#qvNYJd62yp<0t98gZoy|qD~qH( zRTkO||CJ`qd=Jd@6FfN9j3fwPylrFFz#Ki{FXCBJe>3w-vREWXfnCdz@FvR1b%pGTbYyl<(Z! zZrJz60jU|ZQZTgxafn4pxeP2k#2$8svD>5H1HPP&>^f(2rMV*>L%D)Olrs1o39-69 zLKkZkx`k&>o1yUZ>N9qpQj*z$dvCfwD1%3+i)23qf~NS=YZOCuv zD5dMtNn9iweb44r3?SEM2LD5`cB^{?`VY?^1)JsHW)+&XPTpdx698sUSEzaiW4%vk4rs z(X?xkDGtpB5OZy`@@fIQm%S3%UC@UWJysiF-+l)@%ry{e1sKUeYmU5Qn@fc_9P4t7 zj?MMm8*twDGwyd%LAGB%&R{nM{be(f*`^Vj)qA~VV=9JGKqGszHYrF0F-TUz>N~Aw zbO%^)6_o3Q!}MN-(TJSEx3FK$joYlUkghA+E(^Qx4wcO5I&dN(MbtTMx~B%wCzf2j zf?ql@F{q-X6tPO3qR;nQMs&2aXKhif+i2Yf2kl{!Q>CpTTRZbUsHK?e`p^GpoR@a3 z-#ma`ijQgeHOgjI+4KU^9OV$a$UEu=7{w{XpLJxg9ECbj0h~esrM7$-_nOLL@MpF#_rCvrTZ8*sVt_w|y3c(!7S5n^W zgJ7fg98M3sD8=AeVBfYVhmN#k_JK+=bdFKt45pToOeC4w5hBHlNLezqAW3sp(U~uF zDrabfv&j+wK2i+@Xfm#GK;N@u_*2GB(TW&q(r(zwy{XL@SlVpXMD1c7RJB9_che(W zYY2QBN(ef+spAIwg;%C1Y9}Je8$ZSt5U7uP9GzH#CY<@wK&T{aW=dz$H%&av(k{2d zGa&(w!i7j3T^^%SvPCT!WGE^!)N68u2XgPI5+UZ%4yZoP+1c3zPxx+cegbxrVB4%| z-U1N$PkD`&=%~KW=SL#Fb>W`}baxsbmK|T0w96{;k@N~9iXt5>%r&)(`Wxw!a$l{Q z3T7-g(R@?EpSK{P7`tw^4lW$AyN#gN-)NK(>wBSPe4BXTC#T0h3ZTJb0L&b<&Vr_esslFv3ST}VjVI-uXrTsJ zsTbMwLw-!4H+;3Jr)JljD@!iaV4FM-@QSds7rDnN8G%<3g!~!=+8__up8jTk%BeDP zISXaNC_QgbXt2&8&q4XWK69!j&dTYiJMi=?@2uWlUjpxU3+=>kPz3 z?bWWq0w0t+IAVaqwtvkKFD!#uzE9sRC=?0_Y7t#ON7wjCyl#Jq*!jM<50ChnZtq5t zHWHSWo5YB(=H?0~mB;-;?<-jLyY>WZQgD1duRkmmS)9J2 z+9Q1BUEW|-_p|%@V$|EIwf@^MLZ}>&&n4B;dpVx$Q5 zj;q_ZKF>sc6L{!ks|$M8!6*=!O$jLkwr0k?ThOjKBq(lT2J;(H&rzw3eqpYRk65>b9fcF;?|;*0h=0W~uJn1il+_J#J|mj)bc_FF?)*e17#SJwjKU)k>lbYYe7ccKrbNAa-U9n(NF1x*q2zE)*Z z7FVo?hoha5sT;Ik_`LNA7^`?$JgFe#hmGGd;10XYl(KpS65R6f>KbFBJrro&*C~V| zklj$I&S+(tah5L8e;f^M#2Of2c;Uw747hcr0^is(t=lIflB4l9P5SvKK)Vw_)+sEY5@N3$J zDw~(kdQax_;mjHB_=?7(J?@Frfl#?1wd_HT9 zaSICdZw#i8C!oCqubRPSeFz@Pb!9#nmvTS$ghmbA?z=}5e|Eb?!x^MfnJ*qq$+8zQ zm74W^4yv<4WIr(ffA7UvEomG&VTonn2UvZrm-MQxjFY}?Dk8p%WU1jN2OQfjfPpZU zNn|{k$)X)&DjDQe2B*-8M7VtFPOzqNK;i=yp4aLM%;l9{be0r@XR0i;PPcCc+xB|A zoB{%Dvd$GtXA?o*Gzx&Q1*e$H>S4wMZ&>$fKaj|^h=B$Z^&NUOErjB z%w2MU9j`L1C-Apcx{5#T`1J6NK0R=(8you7Rw$)bcytkTC;V!0FsJCP* zN*;2|IZl<=O3T`Xoa%*$9iH3d(|RiWI%0eM0*II|GTp?jYDiMO6bm?7hG|>2VrYpW zM@HD@r*G~BNc4(brXRW=m3e7ahPd1@@THM)TF3XjW@F0)6?|EE@G_buHHtQ)k(b%_ zVCsHCs5(MuJ3qr8|R`M|Mo zw$k8fV@yu2cOTL`mn^U1`oc8l#zlCw-r-B_&e}+FqQ|Ir67#Xf*1DT~Wa<{o}SW*0@ zMu-!+;2(H#rukm}DX~G}E{MOX^R0{uDrZ3olnfAv2P}i(lzi_d$7sXa{kR6|uG;d# z5dMROM=kGG#Z1q@=PThd$B0@RwMUcs;?Gq~s$fV81Ldt%=3Tw^z%Ws@+u?}mXQ#Ks z$Nj6f##YQg0*5vAyk*w?{LgGVL~3NK$pR;s$Wn1l;H{UPLhqrqW3O_e`BSzmH^{E# zClfl3!G#H?Y6cxA@g{eIFz;SbcEmHv<*N4AEP);cQo;{7)9{n=4~_@OhAM4a{9G@J zH`*BdOf_X6v5RY*%QG5`%1(r*pI9W7{q0LQMj3>rYCNxv!?{@aDuEhU^_k{(}UOX42&NJ`t$yF`(k@eIlnWrl`Jn+OgK-Y=}=8$ zFU=TaO@9qZ(5^${w}#0oPS1U>b(Q4$BHnbd0DeAJi2`9(Omd9ba*0ip@mxY#JB()B z-v`p&98Z@|KVO8zEf^aX|9B^%8St=b>75;g%tH?z23M0^*K-r`!dE8g0M~XiUst&6 znaPE3>=d72+keJ}9_9@1lQ-)}=efYb;GrhKS0KEVH_7uw8yCKN;`}6j-gfp~_J2`VmNkxq*fX?@TF8$3jGe_q}JcpL279}H1AUYU*ODc6xU#ps6F(@e3EN*pe z>ZRPbX$5@5Cj)YI!_6q6-F(a^H~s4|$zdXqH=<4&t$rK3oHg%WY>avQ1Qws!Z+3bQmOoWjW6cs{qI5Ce}DF$k<=8fzz!$;nqHW$+}S|YX+k` z6Jj35QyzDF+7BCGuqG!v)#eIlJ&4OiH866$Ld2su z^g)uTuqBFV369?cce>p&M8&HksH;gZl;Z|!wQr(prvKpm-^)pu5P+z?({#AQ8v)?c zHqX6jSvamwcwGi^5-B}e5hcn18PEwY$^77fxs^(801fB>PWVT=#$s<+B9iZk`$(Pj*Ct`Nk=^yB5yE7fz2b>fw@nDY6w_ly|`<% zdlk4!>3-Nm3!#mh;JRB<^{g1d>xfJ4{X*vq6FH?;!$(~1{V1_fqb-5uS9o~qq@pnK zi?8o?qruMS%sA`KezlqPH%zE|ek(W=tVj%0;H88oz(=LBEPiLJDWmsVn{68Dp*J5y z8>|al={kU&OJzZoBvwhuTqxNk=p)eHD8`y^IHDpgfpUhXcg>mJv};j$o^se!v`8JE z(UH9K#=TLVx`d}EplQl7&pc^}qHHZq@VR{`c9;G}o@m;{17(~iA1=7i`cu~3q>=s#jC8dh-C@)%wE(B)yx z4%Q$A+@%NBGkE%w$G@#c_sOf)S^YSzo-Kexf+3kP&L4+TMvjoee3bhv=KWoZa82CV zw88!*!%2i6S`hZ}PT**W^0cHpT zIA=4L3c%$V22wPUctQg~qaf7OY_@vZdyfnHQ1cZt<*+6%$)NhCx0SiXKbt`E*0Oiy z_Cvb&hT_Z1ZGwFMf}{>N;2Bhv6Jw`5sr{4j`qQO34Su*+E5if6f8}zuVM_uHY{xpZ zT&cY@nsgq{H8wP@gTZ{oj!lH=E_T-tb*Oe#eH!V0_DuC@uB~GMWo8U`(tO5G#H?ZZ zhQpV=0bTdi1YQYX%w?(j_V1RHIaS3xsrO>`qgcQQPxz49K1V^CIGBUnTzs?*`#VhS zq?cKKkC&R{nSF=VRQk?#gb*U_1F8OQ*U!5o#VOz+t4Pk+{O0|1FV>^s`AU32GZT2k zwdXW*{Kur|d*|*V!>Ka7$5@uhd)ISSx14KOXK=3V?Vw8%NP|pSy-HGl>x;>lb@7xQ zf}3sS^pMkANGRWBv2*0jm?Kk!>7$RY&ZK`1@rxwMYz%Gbcl!|hC;KG#sJ$457Lx4Y z#|n|}j0|x9a)#_cDB2KN@NdQ>^Ttx(XBBhn{} zT2du;>G;W=TDz=7wyr?n;Z6@uHY9mLdIb~q2aVM8yR9OWy-Pi-!{ zy^h>;1IA-Z7z{gK5|$6(6BE}|<*vtCV~It|-e1(c7KHzln=@Nv=$!dOj(uqEXiX9; z!FpQ5Oa!(LT@Tsj{K%amSFX?-IPFD}#k%P$mlAO+!AfRK_YCsf0e1K>5P!0TLA*U2 zUR#awWT^xNOG3ySIE4)|zDiqmqyvE#!5l^W@J04};>>g(#Zgd1QZlUYzEsrL6Nt_5 zi)@XGmqsCGA!DCSm(Af#&PXnH+GX7Av_&Qxj*?R@;Zv$Wn6E&HUt5VPm+{9VJxa$^ zNw!olvC(qL&&%J>424MPKp8hBxz0%0e!NI+hRRpv2Iw>0NL?X-#WKsyWLBN8U=DS6 z@v}ZCstFR9%*w;%hZ1PjAKDXIud*Zop9yCkw|ajEmLkoFQt-G9#`m{DQYdNF{mMo} z{mwmxVJ=33WAEc7km{&qvddOBxTfeyPhd0V9vyI>c8z5mDt1}#AuqJd69e6gx;N#vH`zGZ^ zRMX&1k}5sRisFw5OfN`$mJ~e~Dr$9(x=r$Q$b%1w7P4nw7q3>}@;35JPC1G_Tizh`J8x{(lHb-3BGryr z;TkBdf21r|6H=%qYtyV67;42g9s{v&0a*{;uhNHt1t~ZDzaW*7Xkw1T9Y&K4Odl2M z{;fhhd9Ep%a&T9t7USoogmG75avjQTFc#mnY81GGfEn(8K}TX&rqE(e(4;RoiSF>! zKnfJ_+54UT+<<6jEk;{tRpgn@xZZyZ)~j6>mjcaUtxih>v&q zekNv)8i)a=d?R3~Ngxq$?k@`v^eS)y7e7#e(B+Ou1H+XK_JE=)*~WU2i`p!{Hg=OFNp zR{Uv|K_a2RcGQ^B$0$@)8ZMI1wGnS?VnaBzW$0KBF}~(>-FkSLSNbR_^yUo;6Ns)! zTex_uhY0S6W7=TrxeHPMe+63)kq1nI`B2;p@6+)jw?lEF%F$T6O)hGz?1!b0E?Dr^ zqe8hUd@`Q3d;<+CYS;gsmfpLD^cd_q4V*3777HY^l!p}2AAqRn+4bnYQtMB|QZp=d z1w~Ub5Q)dP(A(CNv1H50qO5M<#k3Lrb9+sA+J+Mv<-w5SJ^FK0mp zTAKzCuhfBHvihP}C<4z{^Uj|sBhjPnD9rQjS8t~W!Tc@bM}WkH+-G>bCuEfr&HK8p z@(v@LOB*#zXgqkfha~_tu6>GlZoyr3Geg7K_S3o#`SG@I?cw3M*d%6mJjmZU6ODp} z^g2dF`cy&jbgs6{!z(JYnbLPYi+U8~hnr!=w|l>sjT47uhY0Ir%Vm(3cRE)+ymam} zrA8X~0qfzxMpu>{sJ)~yJdW~F+S3-iQGp<}Z zvsMR!D!)A}z;BPjv{(QG1K5IyB6BeJsYwG1o3kh(S!~ct+UhUbkA!7_-j|WM2FCWj z`oj@K8|56fCL)^}U=5CYZ5KDel(6uPi|UnXvZ+L8iZF%n5t_42hI$A6?$FH;X#uEN z402-DMpVNY48ub|CO+jl*lvdZ+w(l1L1I}s`#VwF9o z$B?f^Ka%3>E(H^lNLlpTSrg>Y+Tk+h49q^8sh2No%yUOD2g&@xjri-45auH}>DSPU z<4dYCo?QI7j7OAat9y$SeKqa$#+r%ji`WX{T~7yV(=1Zwp$wgqBg}ZzCu#tCKZ9Uw zRq>Y7kAo;VW){aV;zNLSYgw>X8X8iz7uj@-1?ZI1ZtLU_^Aqf-CT+#&znXOf`^kJj)z~Lu9KeM6n&Jlo7H{=gDtZz-9y&1S z1D_eU8rs)W{;m=N0Bj5Up+6+emYuw@_Dq2eRe(eFeVzi%qAaMg!;$NHdP0D$*j;eU z)~hY|g$VYL1DFvpZ>Ay*xBZDi-em~N0DCY=`fGuSq?sdu^N-4zn>}4HLB>5wjdnAgY~`9vrqhbpYODRGoV5*A5h*CJgTTGeYc;7 zI$FKZ#ar;z%R^tR<+9ly~3;Xi~n z-oE^+H+x7q7frJvW8#s!SxqhvNf0uYRb^Bn%&?;^UHYM)*?L5st5vLp|2b<`Ey^7d zvosK?@Rzx}afXYHv8_1Sm0U6~6-G~Rmi|PpRx$Npy{Y)Lga}%ZstkTgkT2Q<1=(Tw z8$wg^RDpd|kNBno5+nN}{=BI6k1Cc28j4JXVAS=3Pi3>@XX}+ev}agU>)#J;9*B%G z6(|<6Ul0vV#T_=L_P246O~|s(YmML^{K64*UzguL^NKLdPPu5%G8abmT0esTOyvmoD zCy@T2X|sTfSic#aVYZ=sz(?6Y0&VJ5LcFp6>F6*ae@Ev(;(-O6gKq{a?hgh2%K7bz z>(7q2309gfEp;O0V_W-mYJ9pezQf1%M|B6oM+1>1mURsvzw%#qN#Y#gRLOxG(C*gX zs+oq}sn_LzIN3WC+BOC#i+H`8taJc3Jqw7*{T?Qc%coy|i$0Jw3A}>C zq{+W1>v;x+43BV64svv;BEYru#U-r}C-;>0TqEv!s7nzhuDtQrFC+r) zmmB>SbjR)uvBB$;^DiM79FKw3l+Tn73n269gycc@km%cHZWCg+s6!+bV$bux%*HJ3 z3jwO9%EA!b(68Gawy445b+x@5ApwZMg^hwHlCyY_jeRd|S2@MDNq zEvYl@Hr zgC=Rt1XwW%ST*2X^)Cc1Q=}&FAkY8SMD`UO=$~3%$wvARm1>_AjMaxM%3SQtCY#hb z=BH7^wDDI3p%OcN9}8m%bZ_Tq?uCQPnn-QgBt>JzcOPF285w ze#2Ltf6n#KPM1_xC*ndvrBo(&3GN&`S9og(~Y@>tdxLHOQCEk8#xm?=S?j) znWQO06@SLND>_3x6ZKeZx4Tpz{-ttX1``=qN!If9w%os^>DDHuo@6@6O3^Ik_r)rI z8@L8RW{sVC%yKba30!DT*dmD=CY4$Q`)S|Y(UvY51NMBe`SZ~zpk*oml_o{kqwCwd zRRY_d=G%c22`^GjS||y?1d4FeZUp5EtQ=v%XTeW%1%_xj&i`aS%q~25yD#)BHN`mf zrt$il5(j@ckW7u%F2j9$uW7<>W2*_`iK*fSa&C(H&=U&W_nK1Wt=$fH?sz6Qqm9|l z0QmdIcwGH!68XUApxI}$$NV>5LQgf%AMhmrSF5*fBa1WEok6yh5Xm`u9c<1gYgG<@ zVHSunob_f1w?j#0cFS@jb2+~$5x8nU3=hP2SaMUWqB0kiVjRqQJW7a0D7T?2R3iw z-^ZLWijx}x^&0LoHx2I_Ii$WcUmefsa3wJ8rm-)~6$EWo4Bt?xfUCB%kIR`>AvFq^ zPRlLd*37~NKFPkqawrs*juo@Lzm_NccCmKlkC*uGu_!_U$IJY8)>uBApaw=aBllIi zweOHJB(ta>eq25{@a{^D(^K3e4jsdE7*j6 z(dx_9Olu*?G+&7#MdKM~#z|yy{6;8lwzM}0J&(wAn%xEw{$b2f;a(x?_z%q?9CjQC zyg!9c;V${j5S71A-b%3t+(Pk+Irx%9iB+Ey>2VVr7#sVdZQlDCzWt4cwBe3%-2ePt z9e>&v)eTKOBo-&<^L=4pun1p%$5cGSubg<6FA>e zyTFRu+#_WkuhFiOb4AxK1G@gN=~bL~UD7JwB*qfYM8h-$1UfDi2Su!+qZF6J%#!2P z;pt1#2;PCZ5D@2LW-#={YpvfqssL4`&X4$qK!oFgOr=_XaFRfpG3`RXf4^N-%Op*@ zCxOcEjyf%(6?ekR&-jaKFd%Bcg=u3^k;ELpQH|->Ecp!mEV_))JNVKwx#e{r7O7MD zWc78nsWn{1fmVK#Y`3Q?3T-f$^LV8&Zf@90jN0UNy4);zK9VB0vdDg}R00gu{?ufs zU3Ox|tc@#=^13%&(jC&jAzoCsbAS{=)uT%33IaiuuS(-v=3w(=l5)s)JVzgV15z=F z%GJXT9dsZ?^Fudrvzn$v4w6fTR>$BYeRrA84sgng6K+dS^6s{t2K_*0OJcFd|*Fna?amUx}tI2k>htb1-wjP zwaYR?ZX?A$G51&ipNRU=jg9=g>ivk_U1X1B%MW_k}OW*g7xnIcVXTu4HVD8v%4H4eJ90 z0}cO_Q0NB8J1q7yOwAYJ4Yy4UKqzr%L^j2!4=2P?#n3JkFuYGV4+G<)LI8BQ)Lp41 z`H7>j7YR~awLq}T2~>7H4uJM7BT2$N#vk!F@izXe77fICBR|^QRnnp}_!qnDjW32= zEHN%{uBEG4XB_kda5yj6w#T1+LN;&yTAI&0lo4GrXHxNJ-l`dbAGjq9ut`AQ^| zXN>R^>smY0MC2JwHGA4L(WC?`60A82OvAe389}3mA**C9B4WsQ)dCspb8J4|DkST3 z(WeUldr-o#g^rd0XMj2U$;>pE_D?&uo#5k?q5t~wRGeHhY0jDdfS^U;F!MblRPY67 zJq|P7&%DSCFkDmMFzkFBH#LU+3u!2D&vPmvx)=1u3`3R*uv~U_)nkh?!DdzNqn@Sx*{@XkPG%p*@x7s zha9kNS>l~9p>hhLh3XrTe(#mSN(Px%w*T@skMPJ#AShT7+-j_st$mcWT)#NWPsn@k z?6}rxHOR|;fZ3y9ghV8ALfnt+Ugp(713V-x^VFz6$AqCd}Ds=4&~e#slde%g+{ z4U1XV)4%mkv`1vjn$c;!E(yDW%mQk%C!Q0FkKCD~4al*m*Uwn66T!lT7b?+^J7tE zq>$ufT_CZp0VIlQ$fM&Qq3Kj%rdZ5Nfnp${*qx-GQcZ zNSHw2S<)})nZyjszHzjQ`N;0fAGF5Dg+yWzWYCPPi7Ek4-x}LV9rj+t?RP>vQnIhv zW!wPhfM6%harLbNZK}MKMcOHqvDOTNNw`y!hG2h4v7y%@X{(cIVlss}7yrw(IswE(Crc8{y}$b2Efh-(Ci7f> zl6YbU4xB{!_tB0dS%;&_An}-v+p+A08FGb(C(i|&U>oy> z7{;!O@-T`GZS*8v6PpbbbAg_`Ekd6YWXi4CK%TxYS|&Nm>^$J9-^TFLrnSAFulx{6Vro{#QJY}q9h+UK9>fUX zk8!6^ak$%uD}?|6N8R6Umb~xtO-BD;s5Yi??AqkXjCnLXspL|156w3ugp#H#83|&n zqNa7uHJezvvI^?gYG!W?}ax9?6a~C1{DBT zHt~75u!{XDDmo=IXTLiKI1ZNqWg~P`Ki16-J(|JEbgb8Tiyu? z|G+ci@k99AhD59EKsQCc=%oa0sKpPV+4KIxkKS0W{xMkc3rI|S_?;(`p1*?N@m;WH zFw}~S!@B9oy2B?_Np{|rUNw;I?!@qM0dJVnbOQTzTVir>3cNy|H#BeZ)|N`H@O;*$ zaS`E&OvvM*gnpJt9w3w>UniaLzY{i2Vzk*^4OzgphvYXK1;uDZU6jIroFo+k%C#e@ zK_nZ1P&bfF>NdS0#$4a;-r81qOQ>Zo%Ei^HH>Y=Ssu54i_j{pnT`W#wZ{pIl=pr}G zYih8qB}8h*r5QH$dD^5_4x`VO{_=WOYRcHh=vwru>mhra6+Yq)AT4iiJ)S@-~bBA1l%i*a&R#D z*daRTI0I7d^hYSuM-sr&rr@xw;q;lPDiixWvnUy_n$gQjn28x~2?#65~v9n@e*wyM~h5>iqD%X7Jb zfD5-;{wSZ=mzZT`w`juAK}zq&<&OjB#lHV-J!gaddvw)uk%=O4PGEsaDlwk z6VEq#%Ph`0u1Lp&ql#a7BBB|z8lMiTj13myxSB;JgK2%jx7O}CS=fx3%r0HV$&!R0BLJtyL+h8kgtH6K+@gAk02mD(+^u#Yt zD#_E=Q^Ah0lW4MY*C=ATrjXu4BK*V-l%yJhyd!n@zUrs2=`OpNqI$swgha?WIjWp03bBW0Ve z9llSb=viuQo1EUjTkRV<#xYP(<1t5uvlY0tQ}=-wzbKk!*7^2-mS=AOJIq%JyW^avyF8 zS_|EcIoTqPAptl|2IZIP$!Z_6 zvA2FFoPA>dZduQQztDEU$NoM0kN2b)WxL@Tz|Nr>^?z%qJMh-qu6)*i|iZy2mN3D-)B$wpS9l! zKh=NKfAard|3lmTR;w|?<|n*aay$^75^|M4H_|L*^o|Nrmz^B?d3 z@V~_V_kXni|M(C5i~2A6PwpS(|Ly;Z|NsA=?#J05>?i!+bD!2v`d^`7UPX5yZI83Ht2@ zNHNAXR;y#ARmQrlj*(04^}!6oM^7jN9A?PZekb}O6Lj@Cgvl&Gu`QYsj>P&;T9cMA z3;*ZOH?BSRYOq7Nl_v;4tePt0T~^0PtBrM7cZ6{AF6mli&RcOLKIIj`Zs3PW4oQ1P z))M73J~4HPV3SZAi_&h&I>6?$(tEZUNSCIHxYt#&(kkO!R>w%~1X}q2mEjTj&?|J| zEBX0{U|N)9w`f|0B3_y*qk{(v8|xFUM`m2&lgFWOr4ktn8V*D4D{W|Cy)DScw zzQ*F*fE3kib0IcziOwam@yluo5-_SyOYx}=$Z^k-%TJN_i~WK6iSh_$Mca(ieUMd{ z^;Z84^-kyi*`WWFR^~bUvD}pmp{!Lo#i`p zP61+mJ~B?ISK+$%`TC+aHyp}Z+xz~_5?@&(@W|zb`Q7J3tSemOJ%tg+O^Kmf&>4D* zq87LK9d%yA9Ax!0zdnRGO>n*a%y*cHkk!lH%L;IH26^zh9OTaR2R9mK zZ9g$KR?8+_qcRC@v&t3m4;}Of6G6Ti>nHd#7cwDo1e1bF)nv(Nv= zsue>S2YORcvGB5lYnK5ly`@zn0%8W}0rX+0wQWmXWX9kMq}n0EfTG z!#-I@?j;Po6$;Iem?S84;3h(T!u|q7qQe3^Y|KGD){QBN?H;iNlG(v0J8QsEV;a~BNC-5q%dedPT)v&Mdysl$? zV6xwDwB8`FLMO@nMLdo4Bvts zMxr+6@sSO-IEcouJ*&K7k}*e(MHQY)xf;p!v%h_=>D+C7_?4q*)BF~2nOWvrIs~*N z`R?7(*^1@&k@^eH95;s_|J9wSCeM|^6N26JUnAF*wAG+h=%}zEN~FH&J_0q@9l-vHG*XCw}7=szGA5yy9RXsMAC?HCJTk9bjsfSmN8@te3xO0E({v z_gN@ISZcMC@l~T@R_AuNr@h-WVuOaSuQ$nf@&`<;kQ5eLWfTCiZ|9ADX&9Jf85%4v zfkXtFj4I<@R>wz<+oNh}+^F$01gYEGj7M$jGDl_PH#%x*ugBC975N|;?bI5^i|;tJ zkKvsYc#jsA52?`0EHVA>4hcn+uL&<&6fl5(7dgnfz5n)_?!4wHQjsrB6>+YsW29H# zXpJIqB}G|>W4Z-bg8uj~eAhNgrmUWWhu-0YybC}msG5;YZT_nYzM8fFWM!JNS zF5GimOve0fFg%9)7FIxxiI-MQh$GoejXGV!4%crLqz#qmg9{DdrK>C*hme|ja& zLR++B=EjqOoEaa{#N)Gk61IWv)J=Xd+v%ECar<7Br~~@yU_?({W)>(*xx2Rvx#iVS zam;ICA2I=bE`BZtrfe0Sj?|G!>3Jd4A>_aDpwCUG~;J`0wTl?PK)`$1j7H60Lrw%85Gf_`zbTj4k;zd^56d zIJ&3*7A$FllMV)gM1{|U01Mt6vfDZiZBPIHh;!_j8VrpLFKo6IA6d>q9e)u!&wTbp zQey*ZCmL47)f@y7KEgU<{_H)ZpD}stmQnNUJbmY%#EZ|$uxE>Z$k_hFKFa%nU;iQ@ zqq(5h>sto=Gr}v+IUbRdMc%_7xZ=P;ka0w4?;%LwMTJQg!X3rV_d(>%`x8GMfm8K% zSem=E?~&vYTkZ8pfj|Ce^O|h+p!l_VeO;9)Hn3ljARo6;+3E8k&aZ2=6Aca9|I3E3 z$JXJYs=@Etz3G)khPbP&mt&s}N*Kjn{*!CNntaigI>V}b_o^P&!vDuGjARF;nL_OH zg7p>#+Fop5GDQswPSh{|(wG_$e;`(tgW$fSm8!w`IB$}^Wi6=u#TY+5tpGb0kA&C@ zJwTLSozR6*i*GuEnhzkJmb#(aUsHVGhYLu7ROr(Pq+a};a=J{_n7Kvw!wyAj z*qCoR+K=|I0VIyC98S*I;f|V3Gia{~%gW%8xnsM%|NczM`-^;05O{Xy5p&)r24%5WQOh$F$1d|mAr#w`;2K@~lzPc;K9$HGpls&CpGHabcmVdp7`Xw3S zTZ1B<=6Q>!!g8-q=`j6X^)8 zGBH|upJ0{?e{+q5Ycb{AAo!0LE8a8b93KSTooO1So2Tut*CBeM;#3Sro3Czvj&yO% zvlW@(_|Go8?wLz-XUJ0!yvK5ql4J;XX~N!T!bL|a>^iJ)GXMqUNHnc@nxx6oIf(`} z)9hW|dgR~D8D@XR6yt@NI>|GUbx{Bv?7dHARuiT}DU(27&C&FCuQ`D&E~3cIrc5UO z|3~<#J@E-riI)5o)mBAqffN~xOc~j!j0y7ftm`N|g~`SjN`9hAPLglE{>@osce}W= zot0#6r1Y$wAx1BF4^n!$ba3?X7ZvrkLD0n)ucev-aq)G~)mhu!yA)W_LG(qqSy!xhPrzomS4Mi~V?3;)-@3#8&S zA%J8c=lQOh1|)tb7eNsy=6>p*jc_qI)f|lbP1BueyW^>1mfB*p)e;Qr9 zdgW#TX15&R!J~BQ5__&}3V`)}|JJdVbO358!n*Iq0K5yk%|2@d$_OcrOMMc+pn{_u zAW4R&O`=1o7kOlNv{CPd-^Rb2LsuAc-_Ntb6@pJb)F|LDWu=`Kq~kN=@XPWRDh~sr zjD|rQuu~6$B>)thDZ(U$o`qHIT+HH4tfwTcGIStBIF(3sKb$_|kh4J-#!c+lvC0(t zuirN)ZxiXyLjE*8UF|jzHF356fdz^=mzaac4ZvplIjkbt@%E5U-XIBvhw5;MItpnXpj8K>7(6)@Ca0pal%J^c_;FccX(dHbK zx(52r2SJ`8eDu|)C`#e!lTS*jb_mwQA2@K%5rce0XqanHr-#^R^r#5fM<#aF_fOR! z{&=A1|G5G`pD#2W35nQ0+{~cnK6(ZR90_?8@z?j+siM#0!L+RbY)0J7SjXBnJ`6gt z+WZ@VhZ=9cyWLvk*gD2gqFXb$D*V(SYz^r(i~e!WB15t;yflc75+HAnCACH~txzfZ1-Gb9({ zy=SjFCcydmoXoknA}1i;ybtw&B|5*$VQB>p-nC$m!kPkSfqm=|?N*-&9zkN1{yLs5 zQ{oqFq%oBRjVU6|Oa13I&n|TXGUt^$sgfHB4|A(|!32hDmud3ls*bt*#1$1)>wcJ_ z*=xODTBig0to$?x)A}-56|VZI_7NQIbH%FsA_rJ?GmyuyPp1le7TCmrTg(IAicdUJ zSoMS!U@MoOG%)7)Dt$ymu3Ap?32xGi^rAESQ@k;6zHXj2uO+hq07#$O5-#09jsEo-=a%OvJ?U;q4L$!? zdH?D}Xg=(bF4TS8teLrhe%uR*N5*JqQnw+aWW;cuFn-&GohC(H^IZb+d;6AXT43%{ zqrn4{D-(Pjo-n{~Qvfh$isaCgXQ8E9%#Ac=+#p7H6$_41o!RsY^&78xf8YA;Z)p(MVEvzDUn;7h&mI=yHrp0RFLL6CjA`+@tonTP%jLB_i!BBT zE?cRs{)5!#5>U!F-qNVH8V*E)74;_YSYQM#0H2AmQGuCgjC2dTZ+TYL)|9H|>@LA_#*u75C{Sy(-O5P81m`OWhZ0e>cE@Xfl9u(xsm^ejlKm;Plv+gFwQ zCIZH%hg#zR98)DVeF72dJz;Eu%tu;f1I8nCfH?Rx=QuU<%!rWvsAb`9M~xq+u_q&t z=ArM$R==5BLDT`@1WXf6!L&!hL?yStK$T~jCU`-tDN=DDVGxJxhf&p$oS|Y?S-X}( z6acb3Z6&d;UV4HtB{UZqFE|0)OhV3)l=cY#imcigyMW&xiIg^=$GoCgLifMfFkq6b!tNJt2KT zd`Fbwal$y+3L4XN?C50a0t}L5>?YSrdZIDOsw(IH7K!zTaBYIU?q{pI6&PPl75Sl` z!J;2XNSaJ&m2)0hOS||Sr}2*vZf%R?XuC9q({~y2yvhdP=<*v0KP)d)OzZL1 zDmP)6N5^Bn@uK1Bg`^XZZA~qVU;yF%UUtN?D^(q ztd&F!AqV1f_mK;uTKKH8`mP_e{Mg%3tLktpjNWpQf9!Td#Ffn08!dX}8eMCwSuYoq z(JH}$^!>Mw&gpFMG2jilwRXD*6oQfEbj={#iNfLQ-!Jrw^=8ZjC?~B}1dg+7GZ+&q zPKN;rBYFXPQ=o9);qv}RfFPByzyv2JkEs;7gz0gzx0n3rT$wgz+?`Tf18F=}V1Bn^ zO!Sg*27DPRLo5BHx%0Y>u&d?Ar!3jkZqN`B2vVgoF7u6RWR!XsDuH1)U;GE59=3As zw3U`b0m6RHZzVbMjt$<)=qVp{4}yU6micmezZhMCd`*rZQ^uuD^1VpfaFWRF z!5h3_v63GMe95DEeU(_eQ{zhzS+3@C{lD&S^JT7LqVL`g!n$ng=!SYBeoe|U3izIR z&klB3-ZClLsC_2dwI)y|*u-;5Bu!-oCl`JpeaQupjmT8fu)pOQdjfV0yZ-syM^5y+ z2R}U7Q6~xjz2eld_6dYfFrKXG2^*>vt>8Bt2BqhlxDi`^L7jjes-T4WeJtI7*Xr{X zwGnAd#Tccn|CgOwXiIlP-~WdAG->|^P?x+AD!{W#4>CBORvSA3HC24OZwN1P4NKH-aFta0n|Gh}JZH>S?FwxW?t=UIN=u+e`8Jq&)Q8S6u zGs*$?l)55>#B&5h<54iH;50r!9|H9*aU~1CLX~^dbZaWH?5t~xLFju~xZeWwhDyFa zy(PG>1#91`__7f_1ELp$B?nbr_%W5ijvQDCO;El+GAGO@u$8cAvU~7wXErZd>HP7r zO2$(7l8aczkHjHx=v=#7#yK9tU*&|V3Fs@-T8I^>mR^$%pvABH2|tg>0@20ZiU+#E zuXbtAjP`Tz2o}0*Qy>*fO^;Y2t10$Yn-!rz_PKQEQyY@9>h#bT$mQT*{IYpb*dkY#q z6s_~2yos^phPxq2FTQVBaRg^($>Flkul5%GmD@(o-R0B3iJ;T6?m(|;J;uCZX&cI? zcomLS$zdOX92C_tzet3FXaq7p`CJZfXpzmL-hp+Ky%Kpp1fZhNO~k%FFj zBMT-{w@%!PIm5?y5m8S}y*$oZSwIDQe!# zsw%4*Y$@|se*~_P4v)eeI|Vn-A~evyZ1!gzRG=E}Goe?mnam)|pQ$o7ZRm2lwdT!T zI(fEd@v9z|FS(vOIV}d(Snn3f$>9>hBki;Pzh&ikby|kQm2!F)mZ3Y%_E|eW_bM5` zR^FieqWu&-U}Lp);;5sUqC<9q#H|tPITy}P={fMdT@gc6h)si%@1nA8kLC*h4yRKR z_@dLG+_ab8Z7Aw%&7%XL@rHq)%>U;uL1qg{!QH?!V!gQ?%TE~ws)O9v`3i8W@`c}( zScqc#_}oYAI_+<}X>W+L6|}0abH=*f_QeGB65?|N^}!X+CYD-zm2iT9U-k#2A%dFt zG31(9)B%&8FMx|2gAq^eZwY}M^^Q{98E2h?kRv5T4J%6Yf~%7Cj5Zl?)0I2ud-!Q# zc}#pcNz)PIb0f~~!~1=|DUpocx_3=C$O!D&B^Fb11%BKg_=p1ea6|aP5Qn6L$BOj}1OJ$*-HuIo`&%>1d zP?93u;nRuE8BUN%-G01CP}+9%d=+~V2-4J+-MR)an1Mea{xe~F7l(L*?X(Q>$SPKD zz;)d6&i7>MtFdR}z2mhhJhqDer3z>K1lUC8XJpq%*Z?4{eAA^f@53kAEuSQv%2*l^ z@>d?jHuwm0`r?xCtG11$5OoNDouLnBu!P8>IdbgCALF|a#V)ZBD!31bB z6p(90JVzxFY@~Mftg(t}uM(V>skzyv)ZB@xw%~5iA;#t@ba_c z!^10tgUOH-oH+wXW9%6q6RR&Spw&4RRneT3l*uh6{npF>0hkF)Z@$r2e%}Yn+U_R#)YMCvMM1+hU7OCgTBWd~#f+)%;&GbpJDN~Kap(OCB zyDY!J8NQ7m$Lz{%L%^OG^;?CA@@c- zW2a*9cVeO6lP*p-J6KS}b3~)!gzCyzAjFIyBAm8d-p7Qou3l02bsi7||6cJXgxxk1Z+#h4YhQ?Y;F1`d`zr*?81;$Q?|0N}JS2e7)7dxp>D33( z9!C`0kX3;LdueE6HI-|u$l0j4T?VQx;HR89vmLo2K}NCAUiQ6D;z+AGSu&zZej|lp zM(r$L@F?vEx10Oz0Mf;vGw_^vNytXSq)D<3mevgRz&d2Etwnt?7z{bY92uBC*%w7k zhpTP(N(xoAistaXjCta^II9$kdAX`Xo#LQ?%3#mps&FPHQ^JaGiQ5wQCD=7F>F?F-h|DBxp$R$V?T!>NqE#xM4TSxz}iU; z;DYB1k))2rS>t1cK6()6CH~Itif!QKwJ|+d8kV0M=EQg8At3niG`L@7@3VWG>Z)rG zM@C;u@JFn9c)8!q3lMu4(x-yG1#^IRqey8uQ;obru0is3Q21N zmAUB)pzOut1l4L)QNIT*dd0OSSv>fp&9iod=zy?e&wUDZ8GRODzk9K-+sd=l3fRps zVd6={0I$Cl2`V#A?`S3ZU#hCWCR1q z?>>-kgeN1thD=%p_Vp)i1^ab5fsMEUL%m{@esQq;6z%ucD+o7atsJPe)6PC+?y3^(Of1vv_1!ig*hA`cIf#;`|0TyuqO+SGp8n}H<<6i8 zRj9j=Z-;Q6Pdsc$(ndcWLMmHfU6k)6F~-&CC=1oGzqV2vNr}WBt$3&1y9dGiTF^r2 zQs~X!B~ivB_L(!SBUn^38H%fH|I>gNz7e@@Lz8twFp7{<>5@(|{RTZj{;eV48C!P< zEH%peM>m26q( z!WRj2Sn&}EqW}qi`}$JRI209G(7+|Bj+KDPE9rS|=|>62PE;tdNp$DC4;PWaZm=j#dg)b1t|6&;t7&nJOJpq*u%OiSN$g%JssW1581nhvE7t>wHD4gNoTB+~|e2bV>` zbSUEsl=Z4Vw*+V)u7Zw{_CNh=4LexZuxAQ|)1_&~91p6qY6ZII$xfJ(Jg>ZjgurkfcbQJ~oC zhF})rXPfNZQc}7sw3n4MoqUGv+2D?lAG1T{RX?WY$62BWAugb}L;L@alMk{Sjl7_BYU-q^;utda zNT={{rHAWj9%j|7|8V6%6jf>WZXxxJzA*CPcdK;bMMXhD;^^b>z~;wsf@(DSK4_gO zeRS*wrI9ahDq@l$bBJWo1n&7QI+O>im>E3X6Nw-=4>!b>5sKVqiA<83ct2p6~6`HfBaY{(4DeKzbn*Hf(sZp)+g+wwJl)6>N& zxCbkO;~+FOLctMmyC~u0isl^d&yOGNXYP??v)EwnfZ{K+o<~D0U@xHnic;O9+|-D_ z?&IL;+?}4K#eQeYtd*1Lmp6Mv6|DSd zYKf<%r~^a`?<+nRvxN~Srhv}N?rG}*wDe5FG4}x{GN^66)IvSZC>{I^Klz?GOBFnD zAx@baKxMUe)!+aUHc*V-!eT2?f05U{{P!Ry&#K%f5nUHCA>!ARLyi8vRELLk5sK5^ z!;%tbZP&f?tfggN>|&t7Z;s&qC+e;^UlX{wqQ$57Va3`-5)&kU`B<|A#AALoJG=GE zSAZ31JmdUUt%;n{d&Pylk~}p4_Qf%NR0VAX9J%@P=CNi6!Omnef26k4(aRl4 zFI5?#s0XTbW}XI=9@edJLsph0^?ENWM=ujvlHNl6wGH@dwsUeO9;7_%V?z8Q*8P*7 zcs%^Qv$%#r^p`(njF~Kr?}A7G)Nq?88Y+}aTYOgh9=d3FS34`rdJYp^Xw^Hfx_*cs z?dllWy=pX*-w5U}Tx8moAwSKstx!mBHza^1Ku#OCepb zvM=O!LYx<5B{P6GL%&U8_Hr9{GLafAVuUN zO%98vzy*;BbUxfk?gFknPZBjYozk`ds7dq52Ws-Fi&v=EA~33t(5V2N-#=Hr6G7i2 zOSI?~?gmB+Rp`a`3RX~qnlBlna>r$R21rZ zIltn-STb39R4;b<7cC)8cMbn<;6QJVCq=lUqWIeOK=PhJKyy#Dme`& z?{%*OOiTZi`DwAG%nDLT#|&#t1@$&1o8RGb?A&V{o^%>PE+BjzzRxmoa#Q8olsDgE zE!XKnMX>1}Uosi27;<~4jLStPQ1x=6dWBC67OZ6yctgsw<;b`?VtEg7$ko6>Zqj+@ z3vWq@0f@%HEqtC#ZQIRT%xGDJD3nS_|GscqYboHK(fJvTqWUnlu0+@`oD>Pvhxe~y z*>ziO7&`{TePL?t_DPatNr(QLu>L>479hTM-UDp$bh&dDy(O;zEg|Ol89)cJ(+bSl zk?Mx2j_FSmjBijcM5&w7grT}V78SD{JP-4;Kx5o(!xcnv(igkvB0?a0VRe&PsDpmn zx(|K*CPENp1B2;j7Tf?42D|xZ>-uM!VF6{=Ga6R<(Y6u7=VlFWx%9@uxC8E<2mk;_ zz=DurBkq;ESxft-Vmuy9oZJ%{ajoM4Zr7;aSH5W_nZe{QGVDWUAZPd%BIP71%W zVYSFPrzEA*?^d^?xUo(2JKaDcC#oNr1zT#u_b9?ez^0L)bj_k8>lDBF1J?i_^tRCq zoP_GL{mF*ck%_uhKyffzK3y||6=A^en%GBU@HMRjC3k-HrsrB}xgw}x9p1m($1b%3 z%I=$n1XhGIQa-3tf?XZaa}C&NdvBQ1NLW2z6pD?zpZf-nH$;KfI4Z&{F#dVje7w%u z;hR9AiSQu-F{A5M-fzh2OqWlTU_8VK`Bfx+?`p$Y>Yx67Ny*a$xv3)Qla86!bMe*D z&|U-N4+Ni+o%vINTv$$yqw+-5%ZlE?!$!bixY${on{+V#mvCH81BVaZ+N=^x+RH@s z3OP<%0LXg%vQ^VmV&w9*%MOi`g}L(kyNxloQ(Vc>o%M)Lu+CSiI_ks}-~^^p^TNKt ztHt1ztPR01PorY!<_TDh!ir4DR+}Yv+iIUV(D;5x>q57uG+t2har;cKrIvtd5#Rs8 zQTstK=GLJ`3gR@B?ShXMZa&Zb_f}FnH8+`w1IF)|F)McE zav^d@gczkhjk?2Lu^4yO9y1G8FW4V`dNX}Y_tFxlbH*~`7JI>PyWzX;{Pfa^qW3r9 zk9Y@_=7K9F)Ei^otb~=T{3;QZIF@zLl;^-a=M{kqW*}qB3(j!A72LNwN0w2HX>(FYb zeB_YG0rBB4h#D@%>fv`&N~}$IBm27aSe@}HFzIu4cyw@cwN0VXvnGfi0k>+;+PdB^ z0;1xzL~0EHLjK+4;*n;~(T4pC0>W?2#$(7o)Kx9%O=jlX!-fh((+dX?@20h|#6`6} z1WOV{*64_`q2l`A>p__TZ@BT<>hgfE1`RS0jcMK}^cGV$eY*b0JRt2B=F~10_BN)p zo#b^{bbu*sWfgj|*Zh_bAO8k~romU4_7odgSy@q?mxN6U%-bI;?4Tx+k)E~&sqMv| zF{)OW?-k}K=HV+DX+uFyZKxwh`#HLNN5uy#GiS|?P*#|;`nI!WC~UhnoDfn2UUf#p z6GgTo^DuVDQ)L;DhT{EMN;o!Wx)H z(kw%8_NUFZ$}myGSAiaDW*#a+?cMWW7L=7WzZLo8GTzK~A|A#p8tfQ2Q#l>NDY)WE z-GS@n_)0)bM>b>EDdb&)%2$?<6LX0TD><|C-NhfM6*s};s2Z+tG4lEPuAQ9T>#jIP z4UlAiEK}5;WQ(PQyXI2NL)81qZ)hfgM*XD~lVbqx;gN)r74wp-lrc-gQupw&m3OWoT2|p(_H}OVtBnLp2Cwv<@oL1Q1|64x18sbieAq z6eHPj{ETlp>D7Jv5f#Qs(=eT;`T^(%sh
    h-*$ZMBhIcvnj<8L_}M1W<9$*u0p; z^)jHls&;IwFgv6GJ1_i~)Dd{d8FwN1+CL91Zu+UE%4ba0Ipj#Q{RMbr8!H${JB=f_ z`?3r-rRjKLRWU_@F5YO+9YUJS=5Ng*NoWw2w^?~`j@!}I$4`z-AyC5r*0vJJi8oed<4E7 zl_R3_AEG{=H=d5{^)1C!{^%QFWz_>;*}9ET8GuZqz}7JAkz)ulIR`&-x!>*0rvu#m z19w?RlFRuCZe#&NMecM@A)(TxBTdb>Txms8=2XW6JG;eYOI3*y{1yIhom|_Q$Mg{5 z?P;x#uj)EgVmZ9uhc^IMFh67=UpeR?-5ii)?@q&cqzvnS#dePD!QyoukWm9ehjAHB zcYBrGu|%+_c+PwT-7G^GmzCok?96IOqm@P5NS`}GfD>Yg&hiC#3xFLM=qs=#x=-Zb zPVBflj5hGm6KUu*D%N_ARCE4~>WfbPDOCh4SzA>$AiBhsR~}AgEJ&Oa&4`_c<$US- z$cQr!1jkd9_`^8>vrvmq%g|lw9jjf8ei~-Q!RL9JoF>63uticyF-WY#6qYpMv-o_g zZp>`P3N0OOH4lnHCuxML*3K_1Gf49nV)Qv)QLQ&mu~$>kSN<++!bmTw?Cvpl7&h{B z#2R=xbz((DQ%_$kdwjt)7)W)R+{jF@f9@d0pH#~D2_FI8@_+>{{y=9qyEm_})FCr(yJ5H1)>i6K+PNFeU)+|h)TOcQdZPZ%=ZXyC}TEC`*DqC;tr zSVm)yps?9`nl)Wm4=IibJ%L`(mrM#~4%!T#5L@`=Rs4y2%?o=oAuQ9B0h7yY zW{kZgYOMvZAaSAi(8A)9is&;9L4o_=bSeoT^TYr;S_$`k+Y;J=?>T75ELid71GMU6 zqMjq>J_(gCCV4HGkQ_fY6Lhz4_YU#`p7+ri3q-7VRk-V`H3&Kn`j`%iUyw(G4(@D! zrMIC>K}`om8i37m0lt}?WKD$IMfCs71|=Y{YaNeR^@Q=*md=GrFh&x&eo1q|Z@oBG&c^Avu;Jhg%m zU%7@9Z-&XAX6^lZi89KWZ{@i$?3~D_@6v7HU$+oYz1R3UcR`#wMZp*ylvI+~xL0!xbtdpTfdeh} zG((oTRE29N+d%=Qh}}&9XyR4#5*S2PdrJq+#+K2%(g!Yv7DM}el~2Mb3u*z6r6l#p zzFt=Jak}N`Hkd}Lj2&eu-iP{Yp`gy(;b1gfyXRl*-J8P96?PLv`YWBU|uuejl_Kvf-$L214OVANhNyHpVeoG#R7O*3xY zeq#1g{J{iOMN_d?VU>rHl=5)K-JQvy3hAU0?zn{9b&d{X5dza9T{V}dZ;-lky$ghi zqTWvPk^mhy@Jj0rC{wFzJz4XUU){l@ds{LD@&9QdxY4N1T4HyAOw2)g*!I zH;s=o)A2Qd$TzD@T&_yvE^;qGFOpx2@EldMIWxAP0v812REpmC=|}0^o^Eg7uVrLgXgb+7B{_!aYP@>f*4>5B+oYo2smp zLE$8VR#cTn6ryeKl=9oT=I87pc7ZvF5x7Sz$0kPRb-(d3XA1#%u^XjA>-g>TFnmf@ zxWp=~IvoSBKgK!ptg$B*rF+%xZNG3vk;LjsM;+ToX~e$D*o+UBh1yb>vAknsuErTfN@HIF zY2p6$n#AUQhiwHAqm2tt7T9&{d1$#W-!Ol&We&@v9I+w%K>=7nwxRtaB0jOV4SUIw356 z(d>If2!~&2f3X-y!k%nns@K=*l8NlK2d-(#gIwbJe5HKY2jNLjLrnZ?`g1421{ed1 zb&+Z$y={&Rt;Rf8(7&C~s`Y`N)^4>Tg!WD$;z=pW`T{n61s6gZe4jvee4WGw$+`%^ zU-Hu=eZ>kT;1{Z;5{K(xu8o$yPWuyKmq6Fori*Zy##ZWGpjGH990$s5d4LZ3Kpbe- zWOrNdGD0FMnq4trcV>B=+k^c{r zf*3_F>$qe9Xd1E+odl&?qnKBfd<0?R)6`q$T2jy8cP_#o@{rdj$d-EuBK*=l$~LQL zFq_++m0oQo50g8dhBMRiZOBEO*Z`zZXa`Nr-<2v$UWR{x;My&9aZTTP;r{hQd1UaQ z8Sf5^%AW)$8&VsSbBl-)_ZqCcF{y>3EQmy2*lD8ge$zfn1d5%ZNmdyc-(@?!!T+De z=a#oNDu`iw^?k#d^!lvoSc$O-ow4f?7AA~xn6~y6N-2Hd#`l3tvJ3J&mR$V7CXyg0 zDTCUuq?rnN+f^x^4kc`rsC(eFH6x*iN{^`fzx*sqHsf-Z?Wihi%#mIC9 zoBu3~Y7|v$>~&$DO1B!LKJ@Lh)oSjZqvU)r7;Iy7Kq4M9fsQxlAD`_Se=eOb<9tna zV2-kgk)^dRFI=-Kj0La*0fM=5s=&J6q=%R%D)(f$RH?1Qq9}LV!V9_4vGinv%mU_0 z6K_qOu+T)`JF-r&>F8v@=%AP)rGWz*y%N->asdqxFW*Y~{|&S(UIopzA=*gO>F!uA zU%yWCHaiRs@b|?lb9iaEPfaq3uLC1}mKsyScev;X1#Sc-fb0B_5~;uy(D}?UmwU0TOf60jrQs)|>rYISO^(7vt76 zbDG?~ll!9z^=8cPvIq)&^E94J@&$sD7*xq2Dd*UIL#+sDB`bn?E0_;_q_wWEH zP*t#-=eDA*Dz%0xsBuB)VVII%UOTnqvNxQ@v!pzr)LZG#O&q~djkVScCbGE~o)D>1s^i4GalWkWav<7^@3`=*AnI^=!g-_-L9 zqeExTKjRA&SpHr{{EBz{H09EnaQM73To2n4T_$aoTOrjGPxsl@;8jv}(3QSXys>;9 zgjD~Hp<>(tA5$ZQWL5-$r==SV6FBC>Ylq671!u=;GEoRb1CO;q%ALX~aG{7LcJ=3v zKdvWYc^B^-=nGGgRA(F7Ro_L0b;pV;t>u8ss3TaMDTc}_Y zB*v#49GjwQ*{}M18Ntv9p_BUYfaH}&*|sf7z(j>+((_YxNp!`&X7WXSF!)gCZb9+`SZJR~hrXw~Jc5TH}unGHXy)XRsqmyRu7Ka4v zL!x|;WJr6OnxcS|J6RZsjb(9_*nY@vCL{VRxY(gsivD=K?l)>=PuFDn)t4Wf_$&-X zbi=m_);qWCL`qMORBiF1Dd|+c>n7j?((BJ3$eb4flW-Ful!qb7k)}w`GsO6=U ze7=mZ?Ln^fjqh^toS!>f|CQ@XFPXtf9EzhKkrjl{%H8sYrRTsIU6aLkMU;gV6vH}t zBn;hHh3ng3F~#uax!2JiBEEY36AGw-;!a1KYtHJA)SZLm%_w1!Hbyko=7Ce0N8Q5Y zx<3JpuL93a3WFae1X`f z1~`{cnr@tf`=BTkicI}g`(dcmUJ0@r$zTz}gAftb<cej%A5Q9q$*ItYC?mD@o zr~R2#2)IVeE5sGKpsWS+TC*TMHow`wJZ4rc;!k|Q}h9fJ< z@)w^Po4L&_R(b0rhUm0SM6* z0|ZD@Pln>FoP3SJ&aZYzg>7Y`Dgj!M;20iJ^{IQXpy2cYEdk;HZcm$UpA#MK0ipPM zf^Rd~F}=tPCtTUDlKaRkl^C+9pYkf-|9<+C@44HVpi^{f7^LC!PpTR8z(ia4wRrz7 zxNP{~P#w326hK1yJVwquPgc=0m=|o5y!7B`)7{RDkH4cs1(C&L* zRf8jgg=GcMG=i0Xx1P#sY4S3X&q2dEfE zKglp^D-+_9KgYKdf0vscAH)s$$|ELPi?VbtX0ZO79}aTB&IXo_g@B1%%F=W*T$OQg zlnl~3;;3O;maKmwO1EP$Oj)h?s4SiWQxrx>fbWc)5`NKZ?hG-&T`0%{hqJzz@C1r( zOFCUJ%>PPUYX_nic$%s^vNG~xg<6(~jOTnW#Eb!U9=Bk{=f%$#xW2M<_J`hzcLs=1 z5qkP|iAhNYS>@{rKUJQuAlCE)fQF5ng2a1$T&Bv38&X^ZQt2!xX>}9>57UV z_{)+g3lSQc#Gi$2oz}gvs5OIUdlz8~uNDun4kJ?dTsLz8xDn|qLNnF%nTx-Pq{>rk z19s&h4Y(#Mkk^R&Qqq+)S!;Q< zw(?IUS@xF-F9I8`3dJRH3ANL`s1V=806%7N>`Gn8=bAwz!N_ccekE=$eb%)zpO;=` z`d9z5V1KKTyh){DzyJUM8xq|&*QrPkuMR(naPRnFWcvIFzE)|sYTH?WBbkcZ&_=SB zOdtbKY*M7pz;>+bt2R*z&{vOlT5qLGPe%e#NVwa5(!j-1=Am*-)m*d!{yK=7DT|l> za+7$n7t{RUyP$Wzf}h76Rb17|659x~2Pl)FeHM2;M70$p_rLGuzA~ge=W?u9xY0wV z{^1@2W|U5&p!@PK^+=fmZ@7OP^H1lyyIXiRqz5+R&Cn5r(yj-QC<|j_PfF2Ky*8F< z2n8>6HWi#9LMz^~4zjG#0;fbCAO&YQ?`s7$002xtnKp6Tw|lXx4DxlIC8Wz|EJ;L)bVTFs3P!W^o z*xpYOK|q^W14_5_8DB_W&#u?P^v0e`;Q*0@y{Ezi{ zz@_J|C$4w!IO1Z~g1oW!_3LEoHbC|U=2iH48Ngp~s=|NGZ{-=!Kjk%X+jqUL4iJ2S zya!zCA9wTvo&hmG5UHOWt^m9IlYo2xC}8^~YutqNuI(tQ+dBgw{0a&vdX#UEy6|2G zC_fPHO>_gM022@2UXuWCe_3aOFEuaT_wv{JH~a%{8`kd#U&UX%uh$PcegId0BvGR5Ou)WJWAK(Ni zf0ci}dj;I-0|1XNXWmCIi*Ne}oCH6cyi~pdu3ter(!ApUW3MhR6M(b34#lh+{s%w< zz!&iJy1pEIlXb`c%)bC=1v~)6kBc5%?xUVMcKK(#p8b33O+YhX=rw9?-w#j@ zD0<D4-Zn^QsO2 zyk<=j?(5G0rUCu{9)S4MJ^=9Ijj?_OnD7Ju01xa>Q7?oq`se(P9m_Ai0IJvT0Muvk zhqsM;Z*K#htzRczCm#84ydOK3ya9maD~2onE5aMVsCNlq`!(wABOR0LyM*66R=m9d zY=E@q^|wugZv6KEe!%%l*-I~A{&o2d@Z;=O`E}sL1~B=(*C!eUL_h)>n1~GQpO^n! zhkq8qKgIA*C-|o${sRa9z~Vog;2&=E4>A0Q75~GE|6#@du;SlXF~5urV_0|H!~YK$ zV$}2#3h+cu*F1%oDn|orbfxMAT!fOTf_I@~Tu30V1azlG!-*gt!+i}ph75D38yG`# zRN0eRDMKX0I#OimL|3&k|7`w`59q^pS_zW$%iZ+ht8531?ePbfmP}4QF!9aA;Gf1? z`OAdr7X~Rbzm3!0@rC-eyKfcIm`3j^&!4g-rN}*wOShEIA;}%K-rlfwM%iNZ*qpH3OW;31*fiP9 z8eMdm8CgTEgHY;5)KKf$_pd}1M;n9Nr8QjqFJB@R`CoT9fU~0tCCh4zH+0;)<-hEy zPy^`m3Dq%5L)3T^NHa_DHNGRe#g_UF9BEyKaQjvS24)Mp4cRx79LL7h&c@WT-|fN> zlgc;%^VC5XbH3~h%Ao^5(sgLS*K@b_njb6UHKglE4+{~fV9w}L+Rs$19+hpvj zvL1MZJWy`aFvXBj4l+{vfaMlV{&u#Qe@g z%^7>7xiw?K3Nyd+J2^ql*c9l&0|l-)fUBkKGgA$taSDw=25BKzsRu`@uxcSNX(r z&qyW%${Mx>ho2_+e39D$nJPIe#0C4PK36=KxX5CY8rEwdwGolm_( z+a4LNCwrf${gvYMZefq8hS70A9w#dvX^SH!#)sk~Q;?s^h@e;|9H*YH_7%P_NXX3DO{uHw7!p3!;ActbeaUxYv9g0b-8#eX+S9Gb@Ug;W%OW246%3lFno< zyFZ_!wg#SK_cJJcq)Rj!Q4ohRzQ16TD#td&e~-nmmdxvHDq*${y{w3UJHmLvpE34Y zXB3nQz52CW+R2`qcUEj(*wcx&D&OF?qDcG>yn2v`ac887TWLXm#>uP=IvTjvhIBaI zPwDivpA-RM4F&o09usJ{VQ3n*Qz4ANM_%vl{zR2PrNlzIFZ^{*bF?ZvzE1*MC#Dgj zqq#ogTRogKgR$AwEsD-p2CUiR``PH+pj04?r^7U0kU2CIrY0GgvU?~ye z``JE0Bn_?n47gB=Tr0(5UFTOw?HVr8BQ0rXz19k=XZ(fd$M!a94wDmnGa4n$&(75^ z(E;eMEhEY|JlQnwCm^PV4z`=-X+~ER)HnNMcisKTNK*@A-IqLhY^bVd*0lG`jW!j7*(8s)Bw3?2Kn=aJ_uTy0_=xVI z#7VH*EcGjpf1BKTR&%Xu10+cpEN=ZYGtX2w`k~+jT+ia*QIV|OTU#V$Ld3y2{(4ob~4y)cZ1Lkpb5Adg> z6y`0BYP|iJ9nF_;R9r(wirfk_nNFG#S$r+o(!C1X)(wa17t0jw;cN3}m^d^?GEu-z^Jc{re2$_M4aXlLJ^R6qq5<3gAYifUA^OvWnx696swV9U#o3k9by zSawqis%Spu;o@~U=8$+tpGb_o^^1I~guho|26Qf>rwbA>OWefHk^~$r=hg70lf7(< zKFe}&Qb29i?22?xn1skx$JG4bTPO312fy?U<|UT8_d^cqAXr&07>e(FCDdJDrSe$# zddbV75dyczuocP_+Dk(45Io*BC3?=XJO=Gs*5&%pV{3{TYf%0|YZOID-{R%hGv;*ZjoIAT z*R=)Z>)8ighkmvv1Y>kmNGwR)_yX`g7=ss%KN|f1TgxUT906>35EY$gK!Ib>x~}U{ zePsKxH~?8p`eRM3GCp9bTkYG)~M3&5x z6-`DeBT`YoG--26ZF-=R3D$i(-O>#5ge^?C09;dw@?%Wq$a@Z!>o zX^d{KJ5rk&StVPaNrU^PmS;=#G$SQj*tqn zt)f_AqN-0p2$LZ|ZlC-ZwEG%P0)kdk;N{j=9*n8j>M+dOP>^$h3IL6_TZ<0 ze|8NJpGJyVksYULZ8ofrv~t?^JC|3Zd-<^XRPID@k_a!a1j8bImuAt5*hG#So0o*u zs}@|%auo)A=ylDN*}zHG^&0w-u`aKsBD=o zlBRrn%FhyT@hlv?XYMVjt+l>uEw?5YnwQZSH+F~GoobKf|m+&p^?!i zYBJ29ok!N{(Zyklhkd) zIT*L^ruL~Eq*%l5rbDOXoaQaF|oRo)Iz`zpM-wyCU~F?P_me>lRhNnvlRQ zcRjKx5N#(Cfsqz22kMkxhjCscb73&Fn3POYhkAjEiuC>BHoTrKi3h3$xl!K}FKG7t zs{4U?AK!%k_6gfg8o34+wNOCppB&}? zVF^RMj;gP7JOs*t1O)~rp1c3pBB$ae+G_+`UZoJ;QrT;`e)q9+w+1#7 z=n_?%ktMZEY1KWz21S&Iwr_O5i=xEHhScG8?y_fy*^sYQHy7Hvo|Hw?#uwV3^@? zTR};V*mQrEz^x(Sb1iW5rcHmXJ&FB-ZNC8X!M@Y3t|WaJy|tXGTHD!T z;kD9EezFBJ6o?9g!m4n8UsP}87NM&QC=VT+uT#bu&M~*7ImTfTjY6RWWQrh;r-3DE zY7KSH*^5f^4u#GWGfz8etgkD?vB?XDfu9@!+Ep)$V+HV-`wf_2fS=ABysnvC>&Ha< zov7M6`shh`7??4Yp1Oc83&p83R>Q^~upHgK_N;bM`sNX>Ix^mxAjs;cjG8+Bp z|LKGbR3=#-t;Q+4yv*)?axJGKeC zAZmf|Q8OlGe{aR*N#Q6cqp-x9tuQ;Y&4Y^WmKtJZ#shn-Y1KXFoP25m&j;M%%Fu^4 zNTK~Y{%^AQcjtnv#|A>B`zR!uHM;Ri1>KP~^0V4~V{OMK8-umbSQ!?=n?W@w4YHYjy7R)3Dhm(Sy7A>EZC1Gpd3F%p4&s zxSzWv1q=i_yHg{x7s3LFu!wS97uppab&}dzgUdUT-`n;)@}`?s!l+1}xP%7D_j@1C zilSYvW2C~lSf7Qc_Jv#LU)loxTEOh|RAwJ4rQgxrZeaR(vI4etn z^x1mJYeh}D+O;>{8bL6EjZ!56#TJ3zRtVy?3nB*o(l;|i{x%H={=9?3jkCdQVoc`I zf}xgoD)O9?XPw?Vv-1dztmk5*L%DNN4P>7Bd7LeeE&+llAGEsBM*Hy}JgH~-M1kSJ za2S}(CRQ2mkUd}WJ?ZmnT@Qva<1XR(k_vn^1M z%bOWk=K-!Jq30Hja1R>+6>tx7)wKi+V+8egl_yqe9H1=@u_DZ;XOW{O($5`NZL7z*k z2C!vB3K>w>nGNe`Ja#57hV2 zgcmz5*GO&^zb29|lKAh-hS;ykIWgaV4W7%&##It^!ObL@@hc!@_?J~DzTvID9ESF) zN+#c|)3Z1(Uiy<_%ysFHE$AWd6?d8KVBY`y4G911qr4)#bPB{SOJ7SxZ{u3MU~mUY z5V~FR)jKf(SGsBmb{_9a&@y8&C7CVoDv!+9YMIT=1Qo3Z#CFP#U%K#L%^V2uCuBX! zpNjD>??gCZK`*0VsmRl+x>Hlj-hV}d@`LUz$NJV{aSJb=bsF06>bwwZ8BtPx|Rdib2Qse{B&+@u{nxzjwn3d4-)mdf>b#rkul{A};aB3EqNXNnJK}nG<_#3s{%A24 zqAu-KZNQcm2x&SHe9GQNyyERVX$(a-{6^OU^LPz~Pt2KQqVA}9eK%ZL#6tF;rjQX5 zq#2&n8(?mkw~qab#qH(8CHBsy`cT<4=6}a%ewqiC;Vz7ak}&Jjhv<6xi7-y@wzXx^ zM8!|<4CHR_js0On-ybdd%&)WxJ^6|{;B1G|y(;x-P8$;pDNR7D3|jH~rO z6;lcQN}g@4Y}cY;u#3LsXKGjUOmIU&1QWYMX4&!-`;H8t37?;Zk(GOmigt-dN9K!e)a2h6@EWUFTH=p z(N~jc0BwL0y+>?aw43ZkWoDt+fYN`Wm@#?adJ`Aj%t;+bj`UiuB>j_%1xv7yd87&B zal>P4)fwR`rm_Ol^EEp06*lT3(olI zrSy-Y_Ja8~1?O1+v3{0BV6LIL%#270obQNV!EJyl^%&XkNOb~&(Z<%A``)Iz4&n(F2xZF0kH~Opx@Kv8T)o!#7HY{`f56a>tBb!i}LgTW6g^p8PFgQ z1m+7(UM(jyemXJ;DhFSLmk;|`wazkWmtE@xeS({UxYh`f@8uaJ-r3@nWdUKgwe}tW zMS0hM&8w5GVo&ZPqG`=PK$-UEEgOGUZ;NlxtEvXbN!i7A` zjG;+h_e^Sg?WcIxDkL&5x~uf!iWrTN5F=0gHl*uHeTYvVRZD}PBGKPR0$>FcUZ@Gz zIs1R{YA{C(T4Jc5Y!fxM#cup$0;Wp}f+*9jG-B%A7$u?6BpLx_lFw8W1mUX@%_)zqR}HbfA>1X*$!FPx56>dHF)cfs zn93J+ht89&%-XiLj)Zugn0}CR^+r2(6!U`VMSrTX+<^#IM36(2z#hPT#GAb7h?ke& zfi$slwLWD3oY`h0)t+UrPmW(^`nX?um}+(EmKPc{bK4vqlEs#Q)y}rxx1>#Ya0BMl zj;w_f)@%IrQ0_Q}V?%4*t`Z3Gx*uNwqbDrCaNJmmOauOeGq^cXeI@+(d4YOtb09=> zUVN0}fIu_Dw%@D#YlaG%4L6e->cf&FrjT%B zaN%UmdCVT33v7_*e0xxS;{Mpus2i{Bb~5!C3~MscwxJJfikiZw==>X_LcZT%ihK9C z#%kDm`r)XoqAU7iEzcF0QW2IE#$HHkPR4pFCw~~?141Go;%*=jqgmKEj?wTHcBW{j+N! z+)RIvxfk*4up}9aCvg6$<*3KP6w%~a>1}>jMDAbdJ}8Y-32{$MohE~1m&2{&K0I^Q z?ddXCgwChrv+j-7`_wX7+?^!Iqs9sL1_zcZnUCx7Fcc#gjeIKnDvSh?PfQavcVg~z za9tr<(W7X6sY*kQxO>N>y)f^pn>80GR82r?U5&A8A00%riIlGTN>%CmZEugQ0jOSEe>?p?qPut?wWXHFqE@}sz0vW^Cx8s0bj zoSKWvTb7~eq&vy)t!2`6BJu77qh#=lX z%rw-E2~LVjsN=WC#)l!*uTKwaVeEHo6X2Z$X9yPM zrBKi%ONl6L5ObL1p{*SEpurpoCSdq(5S8<7t2GKt1O*1*cRc!`9RGG+gnsT*?kZZG zO{z8Eb;4;|3zJy zX?ycX-D{)0hUnVzIUhxlLVi0{3dA$oMOUSk+N?8Wvi2UfhJ88X89G0)IpiYE~N zAp4{@{NFQDP^}bHmu|WboqdXH(SsIog6%3Qm$dATJLVQ~hJ60)x^ESXtzE7-vPnxo ziago~tU$x;owvMgNgENXR-Tp9$9Rv^h`keOn{eHOi%Gu{s7;K4ki^{!85th_!D{h_ zYZ$1n$~g=RPfMQtRE_55V~Z#II7Q)_xp{*w1M_v7yOuQRM^K#y`F%Y3=4)CIytps5 z!JQ1qGnsBK(OOs)D6ZU4)bfIQUwz^Rc!?~;g4V1xyA&~F3+?}Wg7<~;L8-z5Jx29u<>XdKDSoBp!h-q2lRlFWT>II=%G8eurl=hl>rc`q4tiq1yV z{wl8d#bFkslmYKq5Em*WXXTgyQNQ(pB4>Tux`r`Dqr}B*@A2Iq!iGrP4!^n@YPg+Q zSru8`)uqdT&QYA+LK65M%!L?J*oTXU!|$GVpSIc4`!#d-%DB5d908_wIl>hVsU-DF z-j;;LdR7q|)V4z8f?@DB%OQMls=o_?sHwzuNvT_U!_PF!cq@?CxsStN20aEQDB34E z4y{5-Q>MnC$3SBZ@KVQo7_C8jk+rf1hb*6Q9cK<(*d+MecQGAp@9VfhZ84#tS5QHAWNo z;TZJ`p=m}e6f5~3*@d4yANd|B?)b%xu$kR#c-ADK)a6N(e6uK6jHrdU75hUAZP7?3 z%IXY%hbKqO#+TGtw+8!0KsvuYHw#HdInRvXVY>oKAKWJqy4Eu7EeOifz4XjzAP{@l z4r?CKGvMo)Z$8lQVVt+uMu?5-@de0uVDRU7)RT0KdE5`PTFBO_7{-)xhK85M~ToPzN?#j!*WbzNxg1i0tQe zviR8@dFbMZN|FPnBKs4fxp{${?{$=P8I$4BEM+xJBKjYWqnY>$UEzW61CE>8=et6s zQ_5h}*94IX@b60Nz?$+W8H@5AmqDVVvp8gjCB}KXU-}5HyK{E~{vN;h3=C1Lot&rL z>cleJZSe;W|Nn?vO6rChbqW&g@F!fk8GPyhxFyEX%sW~>MTZT$Vsq2#C6bCrq z3{05s zRP&k~J-vV?Lb$zA%y9%haN%4Yg1ShoF3r#HH70j6W(n@DprdbT9V0GkX1i*C_at@t zU`i8BmwUW@P?%tR&kd-L$^HGqMXouP95;*y4GLt(9sMF3g&o*QQ)=?uXV8RBdKh7o=Mn5yiMh$BBO(L^_*F7|_5yxKPh^Yk zg~ESd&jWMHM}JQ{^QZLJH6rN&+nzx;6jy?^mqvFaB`jhwRtI~7`{X_)d?`+tVE z{*57voR8Ye?#iQp0xHk??I#NTamX`cv~B?n)8fRMt1dZ9UC+1iaMe?*!shRSL;4)W z+!GIv(ubM`?ZBF2PW&siOpoyU`_f;nuku4i)Ja6E2Iwnak?XKO0k7MR6-2t>73%ZI zrcN>?xmPnix%>#Pt_8W8R{B-BT;CRDZXTzAh4{J6yWSgpwDl_7_!1|`G^J7st58Y10el@~$1{^QyeJf1Npq5sO);(cP6{s-UuL;F z4*SU=^Rs+9(_e#Xq%W<~K}CHwKIXV7cK%tkXy&((1nc3xD`i7wG#>lM^MXtl@KCH& zrYyA38ecSj)WBY?6t7QCfz=^|I*yViewJe3^HBZ7y1ik92&*K7EK92ix9c2dOMKK$ z#Q}o%6%{OhMR?vr$r_AHiM;8%yBeO+Rs-;g3&-TAS}U~Q-{N)Yqu3Ch%b6Z7SG(95 zJY&h=iB?jwCLWHV8&9uF?Y2j?%Hc3+FI<{w)s}=oaLGV!yO3-|+LeeiN!O1eE_t70 zFAzx(I>j~rgrylFB89)a06qM7_vOFzJHcT86t~DvgOiDMb1{=tNIz#yz*|X+i3i+E z^RYQvk(7@bs}`p3%;RU)x6~O*3V1Y3-tEusLE!~>=dxyw*B#VOAD8VUY`#F1T7!Lq zCRRs-&RH7{`)$z>`cTUwcYoq}89ez+wX}4ei%WI(64|!@oqItCRung7M{3XfQix)U zXVtPB&U^@J6LVd3V0wvif6bucJnnf9RWtk~?yBfaoW|tU8vDJBd)7z$Y#pa!{<6R zbp0MGj^=t5_0;R2B-byR2UHwzCCQH=PdnuO3Z+j+lY)L)6$7Hl#hrR8? zU+MPmM&f^15xowe^}sJI@(SJlL+w`QyQ{w3s$_HJUrb zXbH?IJh;cuvB=&6?Y;Ljahe?jYtLY5Z0g3kqZmJl?$Q={hzJac)|HQnY>fO#T(>C0 znr4+7Nf(n5mDg3t9ndSa6C|B3EXs6iwh57eDdwxmBZ8;Ut0HH+>p)CLXRcH2Hsf_` zh|%Aa8ORalh@+R*)&(R|%?!~)Q+Q*zPR%Hx<-iO{4-n=KlD>Nhhm_WIyGilJ6DQm^ zpZjI813%EW(UMKAhk-$_)|}eZ-&LGAjmsHkQ{T6dOzX((RKL1SdhPE)HW}5iWv(_3 zo9}B%(&>uoel6VpVH&thTY)pFJGX0f2uifK! zWhoQ=v-5&HV|r>t6FmFEYG^t3R&eI*V-Cn+?&;_ZsDTE_~Q2AKmPAkWXfRNEr2&bEJdMiw*n0xvw z*7jLeSfAMEmNF7lgqs*XR8Eyg@P1|9-ER1ZHmVcSOQ0H8H%d6>pZdvQ0f-9=Z_8$7|zWin%nZKQ4HXlqQw|ta8*o z^MFtY6HVs&_|0;h&E{MmG?6MS9V2I-O#@gYQfctYpGWn3nwanlT*qYTff01!%m<|b z@cuXX>zO_ZSo~?3mij5cn+eYt7o@Ji$nEz|8E?JNSB;Q0_wTY z5Xf|JsNoZ|Gaq++K-~{Bu5-VEarNxG^_X6Il&;x=3WznN1*|#6;x&XT#S1f;RjN_u zWtlF`xF7HJql@Y zhwkigtM3^MaCttz=cSo%+Z=Xjcr!BRt$qqZSq^^pW|UIs#!+b5_2H! zPsh*s6nF1FVu4d2&ER?T)UWwS?Q}REB!GJgf=R=BQhL$~1d)WiQ{<*jQ%BA{$ov=Q zQg#YI7YohN@Zp^|H4Jn7S4$$W`qbSaxj*&DAHwcmdNS7jPc+4nAMF=@T*BTE#HwE2nHQo946!L>`eh2D z7FOk95igIg(8+zojwoOckI0`E1bD>9M_9V@Cq(>&e=Mpq*3DhqIhT#}qhpsb)x;R7 zz%XPK3yggp^&$Z~lAUAV65sthdT=*29a3ir;rDH(2f(2iX3yj;`IH8o#$55f!Lw<- zn%~|UZQ#pFLQT>diY#aTSUO4;<@6ud0>n|3ZN~gYawf`uDT^WAZ07uj6Iq{t-YwH? z53*ua)OPFn^yVg;%h^UW{9B3r1<#jhLaY3>509k%xAsK4>)q{ocj4Ffdzspp5h#m+_l+-v@ zxStq@_Hf1K^9avs+>wi8)z4=R4X8Sb>E~0CwcG$O3mI5pee6(}Cx)g2DoGhIJ_;3S zub4Bn7WX_cwkzwMFT>cIpq6~KfOO@i9i+f+{B~#)89_O2%I@O@_!{}lWh}WldvJN) zmKb68B~-DpL!L3>;6E=X=^V`R(HyN02`ci5|0ed1L?8Q8sqe4ka}#{x!bPVxO+&$0 zH!u|wBypfK&Y~gNA|r5Zgz8lrj!btfDk^>({#*|DP)X0w-Z65)KrsqsDvY6bGFIhm0KLy4Bq2 zqkqJl6>XPaB|z26KQYc{6up+8%?X=HmFo#+s=G2yUtXjf2l*H zSsK81*zon_SN7v~0RFj-Fd@m}%qTT~J z-50Y7$1LhOvz-&LLvM*~yo>vW+f?aj^7m?f@Mu*vV|+6ZzU*h37*9d7+j#ia@-yy2RKiDWzug zq0uZ^4*=D|{XuBKE6-A3ZZlfM&&zB2!NOO;d+3!!^{Qd^M_+S<*!HtRFT%H5Hm|y# zsrGVJrq3(LJ+=zzzAqT5L!0%`t7zX(rI~y`(~C(7YkBe%RS9?|{Rs<)@LSFQ7i8s+nj7H#S%1(|wEl|lj2EK#FU>fs^3t&SAfxl4 zkTG*kNAs*u9F;I8YG3ou(Zm_@Evs9J<76_7@-s|SxU&4=6m+W=1Y2J<#b6dRC(wwV zbCBf38ay=@i^{4>U`P0*KEJITpdMwd{G063!UHoeC9T<2adUUaTk9X`V1CKXpvALC z_ry|ZFQyU4;Jq3LA-_LF1acS`{`J6@^IbXySd~6f_~N9aD@a=hkI!p zD~b$bZAX^sU~jA~seW$f9Y+6sS-Mj#(N=t!5`6*~O5a3slu8>NpKfG3F|g;1oEJV6 zw3hlyFa$+fTbb_2X8$5dK2NxhJJ_&n+}b>WP5-+ZB&nP7_ z#&gS7wG79$-{Cc3rgCZ;M>1~jSEf~Md{^#b8aPkUrC`m2X+eRWdU}w*v4wp8$PBGl z(YKqCg60?*b)R=UsfvIhyJYq!r~Ac@#9uDi1=NMAWFHt6XRMvtKaqdc4aWb`1NKMD z|NCY7kF69Ezrr8P8&x0P~J0F~5W=+V^9r2YS3xoLTyMKf9LMqVPn>E>y5B3~T zz}|+fQfEX_6#=#pZEcl~vz}$d2{xlOpouC{M)Xu!w{^X*;jInf-jY2?SCcmBP`2l%_4E;;hES==_dm~gQdF!`i zPUwoz2=DLF41QP*L^6~(k`FCn@19wU8*urPhx*8;f`}49CQHLb1LM@$5k*8KwEBEn zswN^Y_T69vUhB5C8w*7N^WVqA!{d8G)&lujTJ;zGz?Y6ymCeIfB z{h2sYK=yk67Y&Gzp(2K>!pOJ+ZZ9CH6`x~KD}cw^(}L_J<(H0=v~Su~Ohg$^rcK6G zp`ru4IP0}WFQ5Jfly69`sJq;;Kn4@rN6UIko(53?eoJ*a@fM4$;OBy;U7k$g5i=CAh=je3HZMe^`C7Hs!P)< zxvRcFJCsZaOdqGdmMYe=eFOoL?dR%veeUsSeYIQrj*`Rv&GHV3;E$X&P>+%`!c`=S z3kuD*L5Qxh6+V=zUI3mG;YhQyI)j={NwkbMaz33)DOdqA_5a1^N%)# zl(=a_>_+S58Pt(KgG#3Aofu9(IQ@NA3Dis3@@$dB=vNQ_f&D_lbyzRDYsLU)Z3|=o zFU&5JNjJAcMMQ?WEAiv*c~)HS6Nao+Z#DMZ^!1+IQZCN^4S@6-$2;- zT}@rIedsd#a3%2iNJ9e6k+Iic@`mOa&E z;GQHYaUsg?qZj&9p=BdMx?LiM+P(2Klp!!`IOv?11e1jrE*cHW6Jf)UU zK1)dbWOKWARuqyej%TB3jHlUGfzW4YIu)_K^9l`g!KBCw5rwaD)#@b3r?~T$p4i$& zrYcwVwJvP$hM<*<(pu*-A)u)$a+%@zYr5s_oEYOeAn`*ZUc@{bn~;XT{~>IDmymz! z(_mh%n<39p9=VhN!#|UxY$h0pZ$32Z&k(6l0&U=rJFuW%5!2SIXr^pRj^F=lgMWsZ zRr@1-iu`g(X_lS|0h0DWZAzTS?mKt&Go1J`C`r&to%<5Z`XE01_$*({-uE zj0iTD*OfHv0=D+4Hc}-OJG;xLpWyqqzI;>MC(%a1#J5D#5(ljVsowPBjI&PnMgi#Q zDf>j_s;MdXgnQ*pQ8`yk2AUchSqt@Q2smAtn-y3Xa3F7^9@za}&GXotj&9|*km=&F zyJx{N+nR;Ad~46a;!q4PLpOR4V<3yxa5#AXkd?plj0pFG?J?=~KSao1ufSi)+bJaA z{@gG|6}CvAk-LxLHXO$g7ss5$h-Bjq_`7Ce-R30!fUVwxG z49+(F`x$?1vguuWIP6Y<(<=MYaOGe5tsx4i|3=NJv&l1 zCk`S$BnA?2{pZrfuV2fFMp_Bmo%p%k{9Ju&TA4jZm}K7@T;Uuqc)1XTey7YmG}ap( zG>6SjERB)ZoQCg-&y{V#43d$BpDw{rJyRPLU9+j41^-@C{Prm7t;^|W8mq;?AIU`@ z&VPJ2uUR@Ue3vNPom-ol;+koLF=$s8C~BHF+usFDG5%Z#2GzP5^a87Zscw+cAQO}a zNiwV=+hL2Bf?*I3%3PCR-oP1(QOPXqieI7E06MbM>ixIS#b55;A1@&^_z$00j_0sv z4;iP52pk8Z@?;B}#$Mnun~P4R&C`qTD+D_HH;MEueLbteZwCn{t2BdHiU3A7k@KkOHl9rMKA@15peEmcT;|5JsJ8IO{;tK?u zJ|I5`yNH9L@NimxqmQke`lu)Kaw9yvSAiSb=PAte@Sc{NEJBsyg63Yvo?;6s)`$|& zY33ZKcfDK`f`zcjM7E~kiHb+fyXns;!5Pn>Nv6BvY09VwHPUt7KC$w(N;r+wyrd5p z>O{4~3JEtOcv9s|3Cz6?BZf(iJs?^J0WFB>J2RhK&n3mB4Mm%$TAQ?xK~$qLv~&>Z z{>)IXakj|=X44c)mPp(CGZ9||+9JBEgdxfhq;x7H7&13K82qlwWKr;V6qwCEyO=ikSMd;Yfngt^z$|VBIdX6NgxNpnW8CbkdEgP-D4hLc}I5XDgf{7u@FRx#5)SrW&C25Z;yX~*HvzG+C6?OJPocy%uM-I=um)YXc@4|s^Q-8nxt zCt;LbJo*(~Sem3}`A^tXLaB>GgpeE1=;X=VOW#mf4uqm;=>h|1Rvy!glH*6M%nZpK zRIL36F=o-`sm?=yL|5IU^t_=y=9u3j_qckn<;{dHsE=5tuI>L)e}99BKdSgo;9#0j zna`h5{xy+%D+)10r3-ml8lZ7eanFI#Lma1PmXM?6r$6QUubqA9BPHvh$b(DiEs#tO zjK#8$y#0!8OB3;+zX(i(^MSuQ_oo&069ueR5sM*S(zaD;We%6>F~v+66YOeezcHx_ zyJ*-*j<$xzj7pB@gQk}ktP>sy2IuFCRYjDO{D3huz$iV;GTs;ZB!}3)!$Kd892kk6 zO~>4>AS_XU9chU8+Lk!J=y{t)N0wJ{5*zwOCP&(VwJ|KLEYV{T;au8a$7CPb(DmXt zFB67F)3}H5p3yz)aFEHcMe0;nmQdpusi{$#^EWX{f&9KIq9!j_VNoSd!x-C)0P&us za>A1xTj~LY_qL|btWe3%-K~X%8-_Pfjn^x4+7RR@^+Z(Y89NHVlI7kAjiKSo@HJcW z+USP_jCu#JDu_A9_8kAE>ZyK7j&)C6n4Yu+F%=;E9x&}{qWd*A#OGB1D;yhj$LGmw zNez5S>%zGxu^XsjhsbVk8SE-05|GqoCQ)w~TVsxVT29rPWGMjN^aRmn=~P*ydJD>d z*vQeMMoR&38HTCJ7k+7dkXU8{yV!qW*Z=80zcJ|Ni*j|hJtXZvXcuAN5|Hr_1=QXi zbOh%ils)06wM9#w&_4t1ziy$I^!KT9K5z%r!-f?4Pd^?%hh37IKxm<@u`%}0awxys zVIfA>SKAfRDVR?&oy#X@|H>QGRBdI4FDbSiSqcJ0DXJ5$P*mjHS|EcBA=_GqhFt40 zHcaV9^F6XFWL#iBhP(b-&to=Cq)3=q*8}R_)5cno~90 zYU%fgtUTPLJRQW|n9C2dE^&}1d51g5ZpQuOBN0(FiBjn<31sA`N76m-8ql|73Sf zhOLg0b2?iMkMJmR)Al}&0YO&Y?j&UW zQXA8Nq%^&Lyv9CPA9dr3JvlI}#A!%lGJZ1Ix-vmdfV6so5zIGG$LjH!?xQ+rju4C= z;o2h<^?vM8tH?&)+tJKmQ6Ga|tP~ej3Cztbm64u+s*Q*lnZYtS#v0d>2jpa$Wt9!b z6J?_xGKIksY7skU@>_x1kPwJZub9P^^b;bKwdMlF!iuwR-V0-vtb&E9oqP&sP?SNr zL~@5Y*7lMY{YvL6!GUbY+5LZL`^vB^w{>e8q(i#9yQI6jyBkrYyOC~??(UG3ZjkQo z6a?v%_+D_8uD#bj=X~e<^1Zy^<$30uca1sjaq9w~aCf0;@CgQTSiwHiZ+?k~f4GO= z4B69prsTx;nf?tZ(tzz@g**JTQemydqn;RH|Ky zXMFBil}M674~vOd?9IC^1Xhh}VJcKXJjAu;}Hp~~oGbmhQW>>zwRh{AF z^Z*qdT8h|tbVgt4MBs2+?f~4sf7uM1xO($WK+DN0N)q8)S$6#Z+hj1fviti8{aG@ltRy+gAr=p-%iNKn=pWII1=wTD3NaM9I6I#d+BNCZ zXVMYoz9i+%J7TFX9X`UkU(}Sech{4SQOIjCd{&5+Lz?pORW=KH?wnxHzq7_@uYlgh z3uI{Re$NrB(F%w@;B)63T}F(91uD}=P!(@=oPS4>+&Cl`FY*o#DffDKU(q*{*fMGg&0ey7b&kLeywUf{!&I&PgE`D*0+xu;j>c^S*Zl z#F|Xd-|L%C@3j3K-687f+SbBr5~zNoBDLJDEBzVY2pr3lY+km$S8K1-w)N#T;GYK?KRKJdYsB!O4B zy_rYhl)x_an5Bh@2@fDL?#^Boe#9d*2*|P~NAAK$bR#_=*L-8%(+!iorbm$JT`y_Z9hiaa5prk+}<`v@P4NqM^ zgeUM9j=`j(`f?yVcF;A$X9q;gTRg*5%pgmDgfhTRGV=!823<(S{?*0Z=R!l&fO?pD z>8SYv*F{yZT};)U%v#u8h!QrAkQioeVOOX7JARW$WRT6Wo=w6x z=-jdc4g4D9pA%fPM|okzet0hM?bErQ1tUB$FyePYNzUiQ#zZG;b=Qkijmbo87UCG`OzdH4~Ynj zRScFOf*?ofLOiqspnz3v9ek(y;mms{k zn@FC7OblkM>hyx%5Krm!h`DGC?XjdFji6}0m7I)+S@fX9xpD^(a!3jf4w65VPo|n} zF{fdeLb(U;zNjkP1zKzHn1AR0{U9KU1oWl!Ij6T%4$W&2uM-?rZ`ihi!>akkml<^P z`@D#H(XWZ}rdEJesLedONKGk+TG}NVOoZrsJ+?Awqo)kJ7+5iG3@8j39+$XrR8KHc z@#oyzVJs_Xgh$9fEIY(!5uom>jiuCdUF2x)GH$fJ*($yFXr7PyEHI=I_z5B+GWuj@ zZy}j@a`a=l0gI=^0j{5Mp6It4DC!_%6rpynGf2k$}c+X96w0mn?blrGWMa@?U! zQEFk9Nf|=4I>>u&mSR?u-I|x)D3i`?6cMtQO;NlbV2Mr6*GEBQxrdYw)2N#RUrkAD zeN{-PhAzUJf6!!S7DsNkcr4P(U$mm-5VbAaew?J>yr=D%yZnaL>>7V1^zN;-5QW<{ zM6rs#*TXU%scfe}l+~AX^;Ad9b`Ta1OPPqCj?an2y#dU|WkWn|dtXM+@yW+d?7npX z3nW0@3BIG$#*wd$JiX;K_Dp#X<|*O=q0DU#0pwXpSi|X?*+;?hPK6Wt$W}df19B|` zGu{G^Y%Uox>_usfow7jL!9M2s#EyG=^J0>-SVBs9N!aFcG(bmqp-d zmJA~8Z?IPd#MrXaI;0%v?NoP;KIvTZ9X`BwWliG|4ALKKFccJ!Dz&E%?bQTMANiUr zKS?A1n8qYR+ZYO#OSx#34=E5_jFZmE{uUQXh{@E61ss_=J|()tAJghP|^DBYk0-+CP(zfmWYEQr%`t7>_{J#|2#;pDQ> zQX$f`mUHgCAlK$}!T)*72sXzBb;!R$a@Op3n*P5i1^$xWLBO~7>5xw%2Z?B&+sE*+ zb29{syb?%gmM!A&C$u>aK_e26!=R|iH2C0Z)ck2H$y=WA++kHrz6t4b9L3r;#i{!6 z?umgp4-0L(JGJI@i^}T>3yk6sgRFxO^ZpM>EY%v~q$~~z-d823#JrMrs#u*LKX#)N zD`rVACwGl$Oa^alf;cj+LV0dp^s^M2eS&_A;28qnX2gomP`JGJ9gH~0EP&_ulBruDkWSg(WD zLFEw6WK3wHV1(K9OWtcAYC5+FZbS9*j`etj!vI=pany$pNj8WBFXT9Z1co(y#Jq+( z6E_-fS@!ipF#ufUGy=DKpL^^$=5g#RD7H!K{fJZaGv2^{n2SY<(3m`?MzqJlIeF!| z{0mBHsk7cZrs6U>*mQHWG^jp(ILK2N8b$RO3=zI)f|$t%gro6iB&7*L^)UUQnI;I(DA2W%}X*S~l{8_f}q(?0nj#0GhJoV0y(j_f_1 z7$LNTBW%mZZ67rA62-X$7hwkMalNk+>MMo_^Dh)-Sm3|n-3V2Sz!OO^Vw2526H|#* zz-wiy?R)KYs)^y6KX^&%D5h=u@mz5XIN-jn?Q|e+_1wrlj0F)vBg~>Joy+bL2fAZ} zeQ*>_!UpeKhrE7q{fa2NUeHc+wshma&=>Y}`2@JJjwTu%S&-y6d7n+h9rM|bRMBo} zE6KQ1tD{JU*(>G?x$CZL_5+1bwL+c2EM-BRxIKJk?#LkZmCI*y#gU9o--?K3hR=WfaiVJ6`J}(`|*8et+6` zD2~z$&L+J+_2>yAxWzAXEb`N!>N}+9*mLPf=<~DuIa{eEGwlR@KGL(1EWarI&CUKe z8T_JgB3LD-jwbqA^)4yK?MEgcTML0vNz}T}+?5{yAJDWsztq&l?`R$Y35+sCi1|Vd z!_mGu^QFpW4o|nE+g1Fxb}rG{Mx+CFJV^!S#tZ5g-@sR5feQah*aa?Lw%F|lmM_lG z1(tI_HsI}go7Cde91yp{7 z(+{@dsy^?GMJ`Csj_?W9Ujjw1$;!x?h1{F5OD=?U!YIFr6&-x&Ial3?Sb>=mO_Zfc zr9kCt6vak{6y68rI1R+4G42X@e@awT!;KnUm;aI%nl`(Vt;jOKD5y*^!l9(TS06Ja zWiI)IE;Syp>L#U~5&qS~)+jF?3d2jX_Y4r>h^R2^iVWDJzy~EQGkezoD)b$Fz zM#_a&ZOtHH9ZW%+9(hM=A-ef_{U!SA|k_I1(E7@pTHPxp1YG#_-KHiloWqs;C zIqrc#ZzK2%@fy1cW>H&DrFDuAE&iXD4Rvo*R-+sck3rnpGXDaOhC$53?ISXlx_(xz zQj(9n3og&GCe-Fzn?VGaMC?~G5pVGY7;lOu++Zm3T^+hEQPg6X3~~+4goumQTrm@R zXKppD_DheWK($xkrKw>R(>qpMl2Tyz-&(4xz~WpPzEOF7$uPj(ltuR(aR{HAEzmG5OrP2Vg&LM(E$0e+qC||7%>0O1fLE!_1=1Ba z8QHUnpCzs&YB@5PWbF*wu%k`Dlc1i9lB%(E8#Xd$X}wiJM;Dx(-{tDESXy07CoJx! z_M`w~SXfiwJ89rKO1PFOMvym8Dbg+7TWc)cQn{}zFtj>z`}^cFyq^825_d@bk$d5c zYgbJYW3fy;AJGU&#i~q8X7)a3=d4S_7nHq}Tk0=rW&Ivr=j=YLex6u4Z*Au;GlF+3 zzl0{&msXj5KT*xziylP|t6d<`r>=|SGvxKnUJyJg3g@^c`1NsxE3O;bdF@QxcJ4bz z&6^N(m1T_K?Ra7><*>%AlTGCpCl)6!L;;XrWhn z)&Hhc{m&`z|7=6Wc4JIW6Qj`4x05lN2QND*N;ho8*IvJOM^mq>U_Dz3gsg?+7~W+e ze&I~f$HGxjQ(ULPWGGK_F0T7HDZH;P61|Qb68FlzFRj-sH2^!C;a#K?g#89E+to?q z(S92HYCzKJP-s2^8o07%RzF4*tRyY9w3srB?1($A_~5OIxWJq_ceqD4e!v59{(O?o zmR+%r*SXBeeL0<2qG@W5zN$jj;%iEd)&PfIf{!@f7e3+K;{b7>up@Iz0J(xs^e5Gx zXBPx@7s>lXsQE1k_&+)6Kf(-t9t}~-nkRz*+mH@-`-@>)Lq2kWPv1m@7)T_S21bv9 z4qj!%0)PdaN&_#YAfoT`is#pl!jksfyd|H3XmjTwX0E*|=2Qg+g!`;U-fiBi)bYOV z9L7TZ#1Nf@uFVaE{u++TnPDVhvC(@OK;xj|L2OZv(2F=qSoscCy1$Ao?9pN3F;4Kz zP}PgVXf);jRfq{9>5q)av!oe<39kOr>4G)sDR5=A*vI-U61M6jG-NZPPwTPDcw$~v zyFzXf2?P#q{APc2Tm3Hv)W1a;sBHxlqEUgJsB5~Js*lP!NKx|%0nCLcUwRFsl3^L4 zWa9nCjikSWpiAYrnoM+f=&pIEkXWBlR+6EJ8audwTYB(9E}C;seaz!SOMqTdVmTex zXjtEajz`>22b>F}ko9^CS6!fla=D{0+2rFU+W`LWZ{lNUz%s?`9 z^3c4xzLnWT+58Gj*2EZ~`X+BIV{$Yg`y>FTKHmD_JS=kZtYnjk^hpb@YUmX)mqS`- zFG#0<-D13$E*-TN%4OqFeBF$ypV@EPFaL&e^1o&H9LglemLpi(cMKnG@!z1)nd9>p zGRmjX@YlI48+GlK+ir7z*%jdqSPIIJa}@2Fo;1TTcMGjZQ(qq3rEx6w7W@OqUS zbDmE@E{*SP5fy*W0#M}=3a~#=bh$Jqahr27?R-o^ z2rx|Cs+plWs(;s4j;UW;{lNJ{4($KXW}lZBfkRmp_1wWUz?O?YQblY;*_q)D2H! zs#U*gXWOyvyNY2wOUXE08QP0|F(B=3{diBwG`R_Du8jV4On#6ie&2G~O0Cy{zY^yE zw+!H?tOn{~hrhO5c~PRS#ulM>b%zETpeD{V)6Mqv!V#ts$t?%@Z8u3*Stee33*ti~ zvTG&rUh3$=p#e07L#b%S7Zb39mqi~FSUJ#gwg3(M{<>|!kLlpMn})hfKDG^95ZbPg z?00D206a`;y~q!wsBEE@aD|f_KRv>W81P@;AL(Y(Gxk;1ucWyDlNERYGzemVE!d0k zI-M9lUNo^;N|*C4eyI2JEAwdCB!fI8j73Wxu$jI!f4Ixuo!5QJ(ia682?;K z4B9Favu)N+f4}aY5>q^Mw@x@sv2>oe2Ak-x=$AtbbL(ZRBk|-zi;hf~U(;3Eu%@?UAufQu~FgJnT+3+P_jMwTF z&H9_`HpQ;f;K9i7vT&y2kIvLcdh0U#mDvrdsM`AYifD3yIVN8{fisLwgP`}y%x|y5 zwh2TL!6q>C^W@yIzP?Gcv~VnX=qk8o5Q(BOdhTq3ARv42-5z0s%OEZ|BM9!Dpi1E) zK;)EdS~(-)8B7U$Q%zh7GJ(-CUMcqqbbBk^zC4q@SU`!Y%&w7x(vg4R&>6 zBV?Jk&OP@B8#%<{s&$m`Fohe3p)*gt|3HmFalMh(_Ry>!4%_$^kXEK+n{o7lI_oNq zuu9}z=;o9I*TOic?)410#0W?cioF{N4TRZWN`4z45ZNu0z;J2a0MbF!?rD!GV$J+)93LIBGaxA zyhso6ZHgbEi9$D4m0bT4ANx*`&4W^3v6%ujR#B&@&BN05%k%h??l*+5WyxR7psvNN zqm2-VX36Fv3JhjiFcOB{M`ZCykI~LEI^f#X;S>P74Ypw%=rb9Lt&fd13Dncr9v^jd zJ(zUQCJJnfB6QSbe!zbp=rf{A3aDVT%*teCAe!B(wqybo{ep>9teOqNx? zpvyG-)Xn+I{cK2+l$u+Mfl2uQ#H*gRQN|! z)r6eLE4(Eoch_`ieUrdTAD5PBvd2fx1;eMEb|GGG_Pj*G*@n?qN!boi1QEjdyEe3m z@1i=%FWsoW?A!lV$YLDR=CAp<<7_HuTQrq|4v8FTkIxYbxi^!VeX9)j30y3jJ}y<) z(V|>+UdkXe`=Ebggsx~Ct)DpKbEtd}bgxtu@!iJt@$}X zo_U;=-%EztSJZuIn+Lq>$=^WTkzEZjKOF6*sMHt6vn#^vNOKbgO;)dD7BSES9r?WH zg})m)hW|dUi^3H<4*9l9nmPDg5F%&bv8$Y?VaHXwmjI0Zwe;MzHhS(I;tqdPOD#Cs zg?efV&6oWlf{e-c`xmlkMc-BgLV4Ne&l7p9L?4K)VbmS%EVOhX#LAMO(hRJD!6PvF z$+;ctrY`+hq5EIG&szM29S*`zzr--VD?Ii0o%zSS?>YNL3f1?2H#qZR4YWFQhUJ0! zquua&!HG_6x-}eM$U*9vv&Eg7@oq|&+(r{Q_X?I5>O4oYIojmJP9VXHxm$*(gyvtd zkAJgTq(tf~tRkPc)Kr3kXe;3m%b@I1tBAPtuSN<48S1OM&W~BX)OGZpDOYSFbmstm ziI^M}Oncz1^YDvl^b==jS8`$_qP~{1DD=#@*O%zS4cE>33?OEd9!VNeA)W0XAdtaI z>1Q#44wV`PuXUecEeL!}F~jQj!zFxi&ImrEo}Dqs-3K&;APQ6{-?g?gtTlX%Hei~@ z-*>$pX2RhaC(5y-V2tS!x{H!EGgzgiXLJP**3G?rtrrtkWe`nL?otSHv|OiYDZUhB zFWb+Z?s`*o8d7x5^J;8~3GLC51`hSpe4k0+uMmT$^Xl5Y?(`410Qah|EhX_e$?b89jesnWbM0znDTXnLh`;N#C_)jy?od?lV?Qz>*?I(-H zZne(8qrK$lcCKClFDx;YtPnO2kTVqm;;f?a3R*rcv7lx*BE9oChI#l-|ICGY=)eX6AQUX#zQ+! z?hEeMT2q$JgsCBm*hqhM(uB=JE(%FO!}Kgeyf#`8q9wSi)Bt{LLneN%2>z`BnZkfF zj*7|x)a2!pl0;)oKErho7A#2^@umaRs=UFiU{STNjK>U~996c_?P0kF%4d}7^dUb` z`L99qAn>a>6o#4ZZb7K9Pcc3;F@Bd9k(dQC@5=r zB2iT7&j$T3OA;?XY53PacW(V0r2mz(2Wr9rub5;;jzAjDcucJD^7gvV^a@PGGrofb zy6(pv18f825a2kfgxcfEj0{5IXd1g}4(-;}L13W>UrU+!cAHf)6B;XkrV_&R{c1Ho z2OEqp6ewsfp{W=Eia^)5VeqMUC$9JXJ!E8+?hzV`-_M9TD|Ch%A2OOdB%s6Y3EsUd zxSunrA{Fo!2gltxctR^q&U#G&HQv)%9e^k04b?0ispkW9!T=ouy2}u2= zxF1}RWNuDM``egAlj7&AIuPiOb!fx~Ii+yr+hJ8T&hnd^ zcJIGlOU&Mj4YcS5j@^o=jl(V;cDDB`)z#sr?5Fg=y%kikud7w(C6Pxo^tz6Y@Sm-^ zP^lKA;F3!23P@2-TT?v^W-Xo8u0CQfWmm_PvuLB{V8fsDlxs2@z+HAk%_S{x$7zckh>0?5C{(8U!!PINtrWRR1$?{KcpKem0T9 zsEfA?{eqx6JFXm-uXmHYzW$QOBHh?B!&xRKky0tG_nY>D3^ zZ_3JP$TUdFeJl_o*0}mBC4PCp$N_|Pyst16`lL@z^P{cQ83^^e>Sxb`vhnj-`X;^0 z!3n%y^VlJY4I_GvTK5qg`K&%#67W+fNCh3bhyOt_`S0frs7Zqm1LKJ!$N$&WLArUN z@#)6x3-BvAGaf`8x__z2|C?)ptt9E(r+(I_MN(s?R0_*Z>~DF1N<~aHt06uO=;DY9 zy)O31*$p`R6*qLw^FWpBmBt zBoi}S826Y0`n%{)RACYUODUYo7i~C1vRRIa!@97hgzfc^rL7&<-K(=cq$QSRM zX1U03@@hV591;zIWuQmNNP|42sGm+RG<$s|3ijbNp+3Nn4SQeyQ>+VnJo-|3;!eG?rL;dE;l~NaS$H!KH-g#Jv>p27V*g)n4=4+VqTipC}vq2$p51mjn$#6o+hM1ppT=mu4wLkrby91*5M9!+As}+Wt8e2AP(Ixd-B58k5IUPQq*7!yePG+ z41ABTOw#|v%8ju(r%xX2eS(1+@>j+&Kv7?&>J$%`74Mj~5m|*1tMo_mYYjSxrLc7q zZA8&_F&=nu8o&EWhQ_Zxk@x}{wbTC9jr>Q}EGfesudy~ylpNm682^&(bqR4KzwoI` zM`L&&6($c06m6=1yiN+UT%~l@qqntsA}|mS_U?W-s2qe>bbm{^2j3xBoh{hXhT8<4Sc>)2!&Ppp)B`njP(SmN}&9?25=Tx|O`b@)Ueh_}Eu zFPlHemm|Pl5Hw_F^xOl*B7Q#hGEt2VJ{?z;kl|%a89A4YD3LX#lFJq)}EZEYMR+p?L!b7P7)N0hEE3^iCT7TYoPby7XX=#D437J$q4D>4_QPFZE{tf+RXbe) zGt21aQYY|T?c(<#wimY$e<$_93{OCzJ*Q&lG;&8{;teJX-=z3~N^Y)w@e`AM!8T`; z43JIh2he1v1wp^s$CNMwDGDZVVhXl<;OKrbfntE^Q=*j6Pfry6Na}X!NLuXUcGwix|z}? zZxI=gJzpS$V?^)UXbHbQ+`cL>03_(>ZCH7NunzsQ1ReBKQ1g5(jMdty&b{ z>UTInHG=?K8DHpAwVjejcWwAuai9*6O{xCL8{;qqjLyY$iB=(y%!2I z^iYa-?4%~Z95I{v$jG6tsug4;u|9EEGThV`0v>dN_il#iNik3BMM2T7+}JZu&QmM{ zWUxn(iWGS3 z#b0L8*F#KON7P=$%_H}5YhzzN%U?93Bs@xnYbyQG$2&=l5LwNHeaAHBs}eUkr7PAq zrhX|jkW!a=?qo>=FGHq~H1a7JhQJCrb23EYj##aB#WuuxH77wTd+KZgbMwV+x{ zQa36CGB@COLMpg_!0_-(ShIA^M&c^lJY`UQE?qaGkdeK>$K8hn^DyrT|tHG zC1}DP0tl5y0r@Z{S~cT_NiPH9zy}q?P@k7ON4s8V>aBF~*tNy@YbDi1nrcmds%Sr{ zn*1~x?|G6Q3U?3x;((d`vH}!S#~*?x8Vazy;FQmk!2X^6LJ&^r;tv?m@T4(|zQv9l zX97UFYyf_>l>*s$YrI*0jM^f?@Q%rid!`FQC`BVv_IPwEja|a9F|hp`rFBf_;R6J+ z&qZGrpafz+gYqQo!$;HJ%Vvt(55&^fnNV(2eB#u;dpd)W{pavHpf^9lB8rk{4HGRU zQ*1G&m|#a+SQPv)TAxlbagY>@A;)sC8Vy5%Ttx_aeg@SG5kkc-woY<;VDGf*C z8+Dug_o;y4ch-R`_sf(NLmvq`7o)>A{kRZc%TRaOzuT2Xe(8{REmjhTKW)FRkhv#M zOfDxg|Azv~-;J3B%u_*YwT@jPg=NhrO*eUfDcqyY$g8M6`8}XdXW}|@yZYlOZ*_0k zgplA%vRxR<5kRQ=keZdZ$rC0Naiu3Gdc+Zx=N@DB`Tv2|wr4XF;SEm6IK5U=y|UgyPYtynLK$%iBxx?=hN;_7>0} zNWhHg0J_|iGib)9NK1Ej7W~QB5S+k#&OJ+j7CaKFLAjHt{d|S+W63wyVjPtiUBBg5 zziH@%NzwzWalQrT#!8Mi(5*IQ*#lxLL;n@2{M<+ErbP78&_U4avcX?_I+WC&BWEO zh@l`ty-K2z>2u=_8efU#T)w`YufX{_XN1YcN)Grsc;p&|r108Q(5hOte<`#fo)0mc#+N z`N%U~LLFI;B-2heQ61n*#r4(I455DkJ^g9o;L{TZ{59e_K3rMC8AYWpgvBvDZwfMG zDw4)q-Sy8|y0!WchS=BZ)u(H$cI(R-@tK|Y#1Q=X;z{@pd=J}7g|jwsg*2oVvo97y zi$$Y4pI{kAj;!9L9rPy?;TPL-iB4xI>isbc&@ocrqF8g!<|IIhkQ!yY&CVKSXvGFS z5(qXr#KC8uUTpS}UXm65me)WulJ;c(5C4pGT|?;v{LO&#DVh2O`}xBQ7+~mQ6rPW> zdzoeNYJ?sfjzTgtm~+`6C?HV7Zex3*X_xHyiQtVJW(1}Yk{XP+TTt8}Xsb?XmVI9a z*_LZV;m0P_rgd)m2#@hqr@k7Zl39x}%1iyd2fwxiTuDYFsgstu+5@l+4#5=B*U_j{ zVklq$j6!T0Cv0A*uE?IQWUHP*vW5oSpbuc?#CfN&WsE(N6c7$>%X@(C!qCn=cXmE4 z&+nPuUq2!R%21iG#ZukI>M~8-c^Pj&G7azSYnacq4z$*wZ=!22m@7ntU+ODkhoxAG zC#P#wVJKZFojJV7bR8JRQ9OH_Ir^0GZ18+H!e`w7`208UmmMXgl0P{5#JN}|GOQL@ zyOR#i925oMFMqI$>2(D-g+DBozwwW`X87ss*9`ym9s%$hzz&+<_horGOT;s?k`dR- zlUI?ec{2IN{nB&9a zuLhlbBmisIZKpJ}r_PDs*k4PeZA+4V{xXv_N`b0y20>8Rqv!BjQSeLPIZOnjwN^D7 z5GubgaY*vYU?AEnR_C3$E40APs=59@z>pVz+QDBwf*<-8kyDF^OAXmX&-m5$YgvA0 zG9{7rNSS+3JY7U-|4xMh<8R*|0PzuES zxvPKK;2$3uf~uo)((XUwM&rV$0U$t9L6|{gROjJ1*qQEp2`borLF9uuJyesmWl#v( zLa7xSfBcsx&Sa+|Tz>R}coLj}r3LH7jwF)Erm4e8$mxe^q#gc_MJkn68YClLXL0h! zcRIkxMk=#(NWRQU;E%&o*19l?M|hs^4{(dTY2p!tv*%`=uN^n1Rj06-qKI)3QzLev zpzcMICrX|F!+iQMxOHz9WO--__c~Gk#r8d&8b=U+i0x73Z^Dvya7Hl%ic2YJSB7q; zH|;)G7Vta^uG%mcB4?&&>Xsr*LiXSKt(<1`Kyqim&_c~7;HnvuO-=jRd0tl491M9t zUpJ7(#^?@bsCP)F;LZ2IdMRXJ1cm|Gx~7-RQGtta8mWjkgyDm?Jb*mc=Zq+Y-@bKV z<>@fIO}qCS0P`3^&;BSX$*;fDE(jP&@?;~KFY)87)!*f4>1(&Lms@H_z9Iv?RMNie z_oTD%5xQ5KK~nMg6T&7&HbbH;!H<90^fLhPldoV1t1TLJ?<`e+{Iup<;I3%d%?bQq zsH8kMCS@as(Ea5c>@|nnNN6Jk-SGIr8)T;?(_vH#a9;@Zf%XcP*g8ivi-Wy);^psA zDYA3PoXNm4TQQ4WNzCK7m+>{t_5$yx)(#EL)ij+gd&$u_s&!lRsSKasD}wW_mN25C z)9*@yavmaTp*7`3ga3SG=ZS2TO5+Hl^y!Q7SF^@fDC@UvucC*EEVY#&y~BL!I(O9A zdqF+o>*r5M>t02;NlfL3c0|a6o?r!-%_2$59Yw5GMT;mQFegR}^W$;9JpK@Awc(5q zqC@99m)q>VrDXGCGy*0t&qkL&95;tmhw|hd%4+XR#8~A^f{JX{Z>e5r%zE;J*A#

    9HTPo`|UQ_D*+TUsh><_QROgt)e1$jd-CfcKl688;wx z-U5|)Kqf!i*D-sv>Od4|9yWv}#hxq&y2bCZ-RHt8FOe!J%h&_$4?-3xBe@6|{we;d zDwkztrWwKVPwWz-5n=-q zb|w$sCE$i*)lCvb9}H~G)zB`BJ_lRZFw0fXS+-?%YmtNjF4`Tw{is4U<-dL6MPZVe zCZrp;N7H=6GQ^S_KO(eh!YCA2Ji~4RuS4JcaMwx|ug0E1xFyAX65-cx@ZEj0B1r*Q z5TpioeEJw#j~-jY>()$gI~0%&DYW3rva9+`4^^~ASn7gbzIJs5tbXc2lc%o2QC1r1 zG=-L%QBj8E4uow#3+%zFuL?(me;TW=m7d|R%tC9bUx)=cXA<%4LPxi76~Xh_kM;fV0{yeD*pP=Z zRn*wt!5Cd#rk%4^4tLF17pIX2-jD(&*Rr1mG|)+mULkB8A-X~sYE+9;duG235~?X| z_CcO4yAdx1{-<%?LHUN(0NT24#N&)58n0qU06-)y`>+Q$>A3Sf&13X6iC=JBNSv@}DpF3gFIugqzEWtn{XN!@&#=ui(HxMHc+3 zE2g*#ZO+7SfIlicbC=1%E~K14IEtD3?T;FKIgvWFZSx$n%_I=(8aaWidYxkJepGLB z@Q}?KW4FA;6rom#rTaSyw{@BCNxn&Ek|>mla>$IH&rU7C7Ca=~>7Qgq6w29`v;1$z z*XU4Q;G+p2-`!FgyR;}H``KUAsT zHZxb8sRKripdx-2x^YY`a%;sQpeva=A4ElVr|RO!xfVSEWhe;Bj-8K(me?ES_6P&C z-u54~Ow{$TZ?u)zXd0*Lf!sm7Sj<%D{IcX^05YZ{`uT!6z9lzyNsP4Kd=v>}bp z5w*~O+lUF*vDK;&XOK=LxmwfNP*lw-y)*^3z9(`S2gPdM-%&WA@bp98Os^`U?cbQ? zo9G16KvmPh@DYhnftg@aL%NT?<<{rryZcMdkZub8?Uh`s0nctcGgdjLXKQA7V0-Fh z_K(o6+RgpazPmsfY|a%HHj))gx}qU)+R@Yp!>rpGHFA1 zSwAzLBY+-BsI3;~1H`C`CGjL*`Ri@w*@{N9#+t(`mSyf*luFI_NeJsQL>{4^lLe`$ zCuI^jCpHwH^)X>MXbgD0TNAb%m8V!c8;z|Z8m5M-MrzyAoru#bu*GF3UTf9KCSW#5 zF5`p)5i0lfrC7SjN_HJ%W??gqa{ppm9yCnT;NI{vhTV&#%@lQ3AG}ai8SsYc=`oX? zczvgy#!J`aXaY6Brfv4uL|GRXNfkGykH>*PFR97Ib-^UBSL(0@VQBHOS#T~~Y4F@~ zk8|2gA?dWK21IL_q*rsiSm6QxJ}qI<%$%vDAz(4pIcuYyirZ$72CG~Lb}5DcDr z%_gjHV#wt^+-r2cf@=zuxe{Qpp?ziSXMbrw4K1nu+jaJ!X7uE0vP?>US|>FcybS3J zt~=Ke(6RgmKX7K{sRpo^T8V%)R^PhyF&-e5K~^;y3WG;KjYsd5ssr1d5DN|D{FNfa z3TOTxv*2=F5b{pqr|3cA6PGguz3p5cQiP#EFurP2pUx z+T{N+tc1R#@Nlz{!YtB2*aNv$t}5AMjjy<#1H|&kEOUvx=h163OuFW#d zjO6Lu567p(%T(n|&Ko0xw5;3u+*iEW3_*u&Wm^*}NQuWA`F5TOj}IXdeef!`^dw+@`?A z?1=bi)(T(%TjOp+2bUYCZ+nR!{~pnwS^B^EwRj^lk+@Ps!VJT3mt={!YvqxpkdA!J zyMyO7SF5a0Uik50>0#QF|f#812^zu-nnoBkxXWTb@?B z`ulbe=io0EJo!&E>WUwz)tKizaBp-kgekMW3V<;lEj`}sy#6JyB39Z=f%fdLt^L!@ z{D%@vz!CnWHFsI0iiDSGL4#Gck8fFx&0#dj$t!6@lqR0EnwZ?bdcxQ2w$JKoMc1cg zG?ZMEB+6ksE0lLvd$`&SfNs%>q{3Ck18BDvRs|bUnA&@W)WoZNjA2V`ow7>?Ua9_? zM*7P#Fy=JI>L<<_e>ee)6JLQmz@#+p8-XOTVpa@s6{d#k%qJ>+bT#6hxVTv>n3}vR8jgA<{)9904GWP8XOX<98eL8w^a`6W!?_2e z#c|`ZZFj-oOP}x2QZB&No{8px`2P872I( zPQ|PeIdw;STuaz#&U3%S+x|fv4RJ#@FRC$@emVo&Cty~Zy4?kwj>m&I4v5DxQAUl) zme6S(%0ai+e3KYn#dL9y@&9_UJ0Ve$sFEJ987k(fKyYeyOT4>L6!{vLLHIUB@Dr?u zPI9AvnFeA?eSfNI#xS?0S(Erl4t%g>CW+{#IPl>ND605MNhd~ZE?ZHA)Si}bs3rx9hb!pXix8Bz*S28N%~d!%q?$vIrs^!E+p z1>PWY2y}k-92qdQyZFoj)1l%7DS#s1_RvQpi^c*VzvpWn|FD1%uhX8AQ3;6z2NRJH zbq3=!{$nvZ>f~4pO=NQX@rq-#x9{ihSrn%IYU#L9wp5 zqqE*RAF%U9SemaEy;Uj;_UXXw{;WlaFymZ&x~QYUJrrE<_Uu$D;45iK{A!q>LH;5X~v z?*l&dtf89Gh=nk+jPGgow1f%>OiLVX{8IFPcoj@=#X3NiveEXFUm?>1vKN4XI9~cO z3wE!_VrQTLDq<)knie~0!+!T`ti9ijm3<#+k6gysoBGgGI}y1KaZtz6mI%r!JdQ>n z*NUQVMvrrhj#tD9d(s3J9za9e&ocxZ}leTanpJ)9?^ zcP8lqs*EbB;B3)gNf(zx*;>RiV2P4m;@msXC%~}ot?ufMcLxlQ4OrUF?Q2-9>%)bJ zn}CmRzShk@UoRCuk*Xcv?OU3brQB+-Nwd9)Om*>Bw0~RR|kFMouf$p+4^<#+q(doS6MJ zE)5WYrMr%m87JtIUAUCC*8DPODC=b%`Eq~X@s%+3P!SH4%!#m^!isS9leDy68(Uf~ zR4yy+4`cM-6C@}ud3;1+7n+fUiI&c^LO2hg`-ty2@hK;0(yW&~=0^wk$vb4G5u631 z<^WMu8l02!!fz=J+aP$&{BgR5CM9H`K>BO!{H{j@;a$rBCa$t-uehbQ8u>CB$4Hv#(o2cd8tO>e4MVJnmJlD-l>(9#j944*Nr6Mz@XRuABNzA! zO3)b`@sRNNlY*(7$b-SVd;q&57ZNp9kb2w z3ehC?;D{CEXbXI;Y%ePE-3bWf-*xp`A9{qQ;VA<0Qsaq4cZxn0zNBLL<9h7N=VV6? z*_pak>jk9vW%g@INJbSP+8W;P{-v>jRcCW@xQen#g-M@mk?~-XPf3LxTqf_?bFx2i zq7p{zEq0vDrOE0mV@^{e_E3Tf$qK?yAOK5bK#9yNTPOC;!BMdr;&W z_*km!JX7*0AxG*!k-94*0s>Lc|Cr>dj->mC|G6h*-d5+zZUn!>l^mzU>h&Ud%TC;K zp|XmWO2ny4y)2m45*%wwg%-@c()^R}wn?g9)z1xU4{7oRa;B9ObXSq5&GmDZOyX|C zf79{ZbyJieYob9JGPzrRw4~pbocq311kAFOznF`7b13x;-Q^ds&7c= z`HdUF`nTUeBoq(|bxzS1$>DT7-P|mO&~e$F&CCUpD(YWS$MXJZ1C*7G*oymloEZ@5 z@)3S2o|Qy66r0osvkHi`aRkCYbuRar_rs#jfTx%tSdb2;9*?`msD_Q}eKSJ{RGZ`k z!GUfSLd(lcU%S1Py%bBH*O{1rm&kP?15gk(U4dV)?Bsd-P?(!WKS$~r_@Vm5z38%n z8ky9xu=v;oib@C%%G<83lOC}q*fT({2E}QuVTo{a(sHc(+4dS6dzgwN=RO_St~6C) zo5j0thf66K*|6^l|G3B-GL-kg6|4w%ARIB=Pwrz2ZBhzUkv!@Curc=h^3z50m5j$~ zDK@xQtr;)LAotwavoGFwI=VfaL1XT~<*ovT!R7UUV$H$hC6hx^g$uMd3p>|(#@ti2 zW!STm`!$x3!K_T-jUKk|#6>vJ!l!G+ij3yFn&5e-lP1dm@)9p)l#zYLFaw6Vx!>9l z(bAWVmt6@hVeJu>p8Sdel-09lpcUSOn|`F z&M5SV)baMSI`X7+lF@%|D4D`I7OI!WsWS1OB17H&9`Jz0?9SIl!*h3O_-x_8Z(n{7 z8sko%EStR$OEaABwEa{wy1wZx%!S={kHv}}+79R7o&@SLB`St2P2cv9oxV1TJca_I z-TJoB0Pu`uNg;&LybUY`lAIfS!Q*dqjNCHn!r}5EjVxnD=GZ?v!8=>|IoEReshV5$ zw+n2Z-z7|1O8?4s0T4=lo+zW`XGb-ql!Sl(Y3D@^%Nx4Avg#Rh9-INHKVObM*|7qjX5NV>0GcjR&Gg7X%q9%;XmwdNMe4z z#cuzprDgapc`Bg$HR^v=7K^$3jW}6nTrR)UZihk;Nyr7BuvJJ4Z!wHs4 zHm6ovljuf@iTmE&C`(ea+y6dLeDKINsjBVFpVYv0C7An)h7v4>?bq1&QWdls7yyN4 zjxt=>JCRp8pA{F-zT(9pc&|u(U_6@8fsJq79c0GH1N)j)$q1>17Mnu04lpSjm#dv< zFSrS~1p;}vpN0N%1p6aj__*SVqv09kxT!%0Z-b%oXT zuQA0Y@?i6f{SiB5x+*cH+-8XY;F^01AN=uSo6B_XitkdL&6?u+)qTb5{*0YkRdqi+ z=?VUp`eR1RA^^-&G{cfPkR2!uKsjvSI5bLwZEB$h3_F3YHKqCmqMQ|41wpEqn8lM9 z1w5frVoU=9&e-$%zw$9)Hf;B&HL(n@fwuBOVP))zXfb)pm z{l}jh0+D5))3kn0?hlvf34pb|i%V#=#`c<|1g91M&$=H{52t&%k4d(9&X2nuMO!G6 zj0gkhKuciVvXjwbb(k=J6s3A^&-7}cx{*Z$-lmgu` z2Q{D*Xl8dpxpa^73FQD@4Dbew3Ds&X#++)%YEIRv!qs z{*KQ;WmH{<@U34_kr13fhj;0F41d@Gkr`G6&bFY`(p`xhuEf>>4o6x4hCjPc_rGg% zWOZTx8V;tLHi$6u=#jYy)CngmWxWRnk97&1WAMrSNwWUe{+#F?$B1gU5u6keTq56r zg|7^MTSoQ4$XFTXvIGO^cF`JML#h>TQ`0BY*L?XM`Hp9c-LgHG?Q)?_+g(sbJc=CO z+{3f@;Wa-gspR#qD|0Lau^@-9_8aG3y;Kc)HlamBXD9UZI-W}wDfWABRCf*2^BnWT z_mLp1V8ACWd>q|cmx3zk4OKRvMrHe|pUdMdE^>IFGzNP%Dk!uOYXF89_}^Gjnua>8 zA-%;9;lV^Ye3*iW0s0b)L@BfxhJs19z&ul$iGy{g=hR{`S4^2p*!V%tPI2mi&ONSy zu^Qux5QCJVbCc5PbFw^Wb&*Ye2i1aSUuC{q6!Dp$5>Yu0d?`1~yAJ+f`_A~|xj60Y zm!i5?<{R8W{Za4WR*2KeNVR8Ko%2(Ck0O@FHoD3Fn5&v5SuTJxzcp`uiIz`= z<|L4$Y?;VZt#;F(_j##RX+Tf06bJ|3L?Dz-rKYt^ zTD065aQhjnJlkM-M|vz*HT(YuVZHqi*6SUyNSLWD;eXAP<3fDJo5_nA`TDB4@A( zf6Wzn;6-VFGb`pHbQT`(#2XD#d5K>oTlSt!!6o^T>+?qKUgCQiBPr=W_pdeMM=%TL zd-=F9MHq4WIKB?oXN}QoEL!Rp?jUcdF(D$D%gdG8nC{m^8|m%MX|)hYFzUsJp!BT(5}M z=a5O2_Pn}-OG^b(bh3ea3n|aqmpt}dA=D1I)(WtetU_bjE1o8p_S^W+M=6LVZn^hp zPzVscY(oFQ*QhJkzs~Iz6s=P3OVt?^n{K~D-mlLPsDSjIQiM7g?I;y^p%=^U=N#w2 zdBG|x4*d?+u=mGK1vj8(5ZVQ92<%XS_Y|gvU1Aj<`{ZqmZ85|^VKu8 zZHNB6iguPs;U!|Mwgy+)iu$CZCe4h0rN{C6-lH1A`ONQsFQgLd9BMOK4sHSyi0x&2 z8gXOUE4W<6|M9pmSsxm(^|A&+vK~Di0U&HR*#!tdffpxn^e@5k`44aC!I3NnUsqx~ ze|=2Bx*_yZV?0t#V~DY)-?^_}@`4oXcodI7mNmzmkPJBFaW={5(ND;M>9n&_)aHtA zLl|-7EYwRe#)qpm?0Dbx@^W`LJ*~wbk&J039I-OO=i&p?Q`>}phKN{?$lQbwc8j!D z*`TkI#j;O70N5*b{=XkH`;)+O;dU2+w6lkZ0mDJ@hDdp}9n|~&q&ICP0j{Iv$s6-X z78Ury!XzC5qtzaX|HWbF$pfwCVH=h`n96#b`D5kL$p86U1^-+9>SZaoTye@3{p%m1Rn+6)wFwzC(0G z`}h~Ofj;QXw8}cRNA*Cd!1`QEMX9}`$RExFw>6dPS*jm&LdM^TJ z$;kwUkS(dH~Ir>l4UXi+nu7lh~|-G3Og=@EL)ru%UWd03Hzx4;w!em)+f4fAH|Uci>(a zs7TM5;KaYzdbT93wDvCJAIJ%9-?Z{B?V%115KRYYuQM#j)0_}SGDt=5nOb=t`8Pk* zu1(BiwB)AYoqyr9T8&Z1z0dgQ`F|${z08}kpBW*lZBCwFLW5nt$rRSGpF5oyC`a;q zL6`IsMy2D1(+*=_(W7?NSnn&#pLy7C!}-K@Xhu6Bo9X^OXIaShAJ-H}W@V+crCj&6 z-?oz?!^ZCOMXarXAMNqD$BK0cd0>D>z*B<18+}VD_oYVa#}pA}Wgp~E4OB_2+CEQl z0W)u3p*_VM^*kV@7^7Y!beTB)obILr z6v`m;Mo&w5E(`gNW6Kt?XZ^c5=zmV|^6McjHK z|7}}4na3b0Mmvz9q?r7hIR4`w|L5!`f-!gxN2fU|27#VeICSsbbi15LWl^PwSF?e!1=h5Lq$ zAs%6k-z73rj0G=i5MM%z?A7{#8x7^Wz&h=p1c>0hz6w6rvdA{uc zwZ4WkD^zSWX-#?~4)hoi*CLKc6_;3N72Zw!TF1rs2TJ28N57jK#W{LVC&`I{$wbQ; z4ty-xYxw|b5-Jl7axVn66pxl-X}{wB^~V*zDntTg{+#3Zcz@^`^Rh-YPao$KbjsS7 zGdO%`AH+lERta@~>EWzC)^pXJ)+XP7G$V0YQU8Uz^llqjg?Q>kxAJ^|svf>-mU!fK zH2l_}6ecJUN3X!fXu>9{F=kKXbJ)C^`{9r-;r85^t?p<4e?>5Yz#Dm#wcbXP-+J^l z;BgSXhyM|nqW|Tt^R#f&JjAAuf3v>;a?Q0rUdm+Bdn>MV|NoP@^%J~^So;z2y5)IC z`QJ00-$q~Svl(I%S(Qf2QzU_pbSlWnlt21g2U5;_x?`3tHfy6Cf(srqV5TU5q>X| zH4jT?a+bobCgXr%#@a8j{|U-vgw^AqrsEl+nggvW3>U-@Zlc1U*DG=;|PU^{$UuCPV%!K49T0k4_k-6+lYCn#O1D8{1p)E6G4BBb`;pYO(Ms@UkB z^n5kPG-wTKumAvRMS$om0aZU>CmBbZJf27A)?WmIKQ0Xd??cF+k|lQJ+teVOl=V~= z>Ya|8O`@%-ram@xM|RurY%d5tHLt!F7&jZ6hp_uH`pyKoramcAc)ksnuw59~a2U#f-Z92jgWs=WB+E(O{J znq^EgqE!GZH8z;37mDE1j_La*IzT=gec&7TmIJVgnj)9*vwKF0fAw2zIi~*q}8D#7;^O7&IqCk{3%R~@+ zP&B1i97<*blgRw8ix_&Q*mqeV^ediuNry7_FJenQDznfQ>SUejcSxdW-j42v?`=s4 z-@e`Bvx*Aiby8m2?4|PKtW7yNe+laa^z#>F+E^M5`Snu`E6%NNJMb)jVoT)n&m_q_T(YsXnDxgMMq(yKtb ze3YWmk{LD z+kekR*$TZ5@^Z>vlwzgf?P;UnvurR+YUwidAXnXjlR_*@(D*cvK--1Cng~{bj+h)L z%|5{`hJG2gu^8{sQ}-ggbMB|C^{kyS?9_ZXwy^UgMNs-21K$6DC2EZNIZ9~8zwOmSSaQ#mcc8JGU%Uod;Ps8m z7%fC?o#|ax6mYx{IM<}fyTA!jM}Z~ncVovwq! zD3vs*bRL}M$^yc!a1989v^qNz1-;H+M@- zUGiN-!$x1QvrB^|OOO#8nS#Vtg5S90&y;3K#L&wC>eZSB0K`4Kl86rdmT+Wf2phl^ z6sf>{x+=`6k|Lui3Y^oJ8M-|6`U4NMQjtP0=c@KZG6|<1Li&O-uQ1GP5CK@8CJh?) zFrTK`B(iEc+zJNZjBF>)%`pG{SaFXQe6v=V$rgV-me}-7815HX7*xV;Ka_F%FABt* zFpxthg*POGa1gBNhciM|fD;%pU+!&C+XdO`#{sGS=TVYHX!{rp5IyAMuvDU_PP3C* z3BdS(C4jk@I@e-Zy#hGqNOz5WhzUJt(Xw>earKs_PxV3t&a{qFn{dYDz$?#^e} z7KzFAECtmYZ$&Sq66gw!lzYAiR%I&tu-;`dWa@ZFoK+)KYq#v|cD+!-JP+F0x#i62 zM?nV9#wNou{Itma_T&Sh_D{!bQ2bDdINByuDhX!G_>T{ormo$K#x;u3PMtP`P-DH&|9p$ugzHv$g>^cQoResDieIaD!9K!=i@vC znmB(Vnf1+3Go8H(Ce;qKafVa2Bx(cn!1fJ=6UC2bFaCmL#5cl*hU;YBWE zDuDUM)XoI3yB;MF>0pVV;0=Acd;eZn3FC8j{waX2mcMf~9hD*2LInou@f?pC91e*E zR%J3^Mb|b2v9v>|V*2?49d&5WmwI?^RXuTJ681a zUHy#gb>Qf&ZO(Z?v-LXa*2 zOBm0+MQN}?49Ea9aW;re{8De4)P8+2NWBY2haX=cN83o<4tqEiC7y5yev|3dZ>xOK z3~Sx7bn2spoxXP%aFdGTCm~L)@V1Jyd00RTGD&M@va6VL1K}ND9q7h^Hq6`~@Xl!;gpAkDWuaChaReA}}1k zuOLCp8jiQ)Kb#5^$EL=Ez{bMa6nIZauJ>FX=4)5i&5MZ|Wvo=_9`{LxAWpoCg;F^1SiFhRL_ng z5Mqv@zSMFi*EnB(Vn{NbfJssq?G-eMx!@0;ps>}cTSCw*T}-zsDhcB@!Fjv+*=ldP z9jRAkl&JqX#-RlqFK_hp3svzKl+;e?bSL@G7kw4hA zzdsGYexhm>$C3Z2?tL@DB$n6ALnKXgPh?d;85LR&A2VXeqzcQly0Owd&gHs4_z4`C zUO^oXvk&}-hY8FWdBee{2E47NM)5_^XAacc!b7|J5`;osJWygQnBY?{_qgQMq>4Mg z&%*UOsn$y!JX1}+r3d#CXkxw{ui_FoiI%YLe>|8ZXk-$;2U|bUvhQVjrrH2leqblp-k`_%QV7*{#P?_* zac;Pv+jfs)=Cs&lfk6jnrhf-kA&yzzI{!A@S>z~7tsk^vzf{yqa=B}GS%Au3PNE{A zusf3t!-nkKeA&AA@7|fFS>TPmGd45Tb@(fKE789UvThXa- zt);qk)Fsj;{%W|K^-_c~YTLyGuypZqU+&wlaU^-7euHLY2a=1FY$!!-+eH zA6C&eNg&#K*hUfp#xejs&(EAj8AZ$Dl;Mh6P|?ef$%_eobMz~B$@Olc?+*lns}cl& zPuNzA+CR1dYHeNz$IrP4c3a>Cz39I`ugk?o1)8HUAXeA9mn~ufN1}CF+Nxj;F-%0T zzn1AE?gdUy1kZEI8t0zpg*jI`H`=Rn+prIFr81WJi{LpjYex*|NWY5<}D2gj}qIY5Hwq(G|K^WA5aQBE6!baEBEp1 z`;P!Gpb{;O^vkm?4#qR2O2{2)IMKamPLBXHtRJz5{YNpiV)8Z|l>+y`TGCQNch4LP zR&6J~s3Iw?lK_D$KWy5k)v_WlC!#W2D^OeXpAO?5cr3N_vU%}^o(FQ5d66^?Wzc2C zplNPj=W7-${k&nDDCJ?Z_aO z;R^~c4>9)pJeKx}Z0=lPj%#8xpB@O-Tl+bc-G%1pfr?%d1|8{f6yR=OC(vY}?ow5L*T6^DPYI*>^v z_Ch!Yn0-ko>V?qc|-8{jK@1DBM;#jjo~puQ^HCD!kZ4=3FT9 z36?v4i&TT<%JC-rR<7jRJFVQ=<9Wb4J@)H{@B#!$ek`IKxhGgQCE^S5?@Z-dP~FBT zd&_osOEkooQ>jfLs3mymS7EV-r%wEp-R+@QB$4L8IRJqC0H~v{9C88nidlhh{BPvE zkZZE7Xuk^M{no4?+vghEhF-rHxAkC~lvePw^Dj#=Frp+8nfrdnx zz#ac2aTC~uD*gsBiRZu*_C-@ zp!Q4)Y#K0a?>tz+6gRF-z2R4U-9TAc-43BBS(Wv;Gd{s1o^p;lvnC7x03+`H3|rO= z$ED$1ajOM(qFyj?=|rS&5>{Z(8(-|W^3MGb9uFnZSf|VwoHx;%Tz-BzzzM(C5{oA2 z1Ue!T4@8#k2MZ?O;OEA0F73MX0Kzn|ls6UU1h?bueqE$hB#w*LGLL z-K!FKwJWc>s3O2!FjK6)DYFygsZ697nS6L%IJXJ5Ed}7 zzdCD`XtT2$2Qs=ZUp-Mv5P3IQJQ$jHQ#iNpm+1KsjLkPqSM;i!F?;Nc54o>a;{jV3 z3ZCmSd;O&(0_ZeoaRzkeg=s%SF6}&CGWRv+18CAFx)fF~sM!ar)njj&3ef1|14b>J zmbkn0zMI8XFDGWO%~xvo0zc(|-(# zp)Ma;Msso`q_d`ijR#c*@ifyf7|zvC2FG=nWRW%zZ@N4QJ3SqCwJK~3^X<4sElnH*wu@&ddwf2&dy$36cVNU{=r?`H-4_gZikd9 z9-(A9v3`Uo+vN%1_xPM#0Dx!-tv|3ykEjw4_crvYQMR4J>7fOezP@APn}b$I2drq! zw-tVSI2J>!OOAB9E)>lity`8_KEDMO@4)$s;>%d<3}i#^d-*XLr}XE{P+)%0j&0~n zZ!_Ob;ClC+D!gTE&n2uC@aLg>tmSOqT>}I2)~nF(?MNr>)w3>fl?f^t#qLtM^EG=w z-eg;IGZ+fRS9#=TRB58IcIgVBhmZY%G1 zcA6xDH1A_1)_JuKDg2d-tHv<{Fk)@n?$9>1&uDYoipdP!7i)_8uF1{SWR8rIbCG_@ z%FP+<;?WuxC0ik7mOpbZ)@Ia$H%lP|X+tBP=nfeXx zn(Le{X+tKO(13p{#o>;)QnEjhT)<4wUj@_BblXlqO^fH8xWT($Pu_(G}` z>2sd0spB4X=d}E)Tot{OC6W&sqMqAlvw>5%VX4=(7wLWxhzUaRr4DhT3h6*NnkvP3 zt0%U&S8L##@7s5d%&(D0Q6p<=c0CuHcXIC150F3#E%2hCt4Kqj`Y1>P@Jwl9evtsV zVi*3bPgH-EU%3#!cx>Kgd?F(oc-vxiUVo!%&2|ps^sn|`v9h2?Vrc{ z0ITM;Q@&ylwtYG6;F2f+^NEUW!?UB_T)jiN9BBD2gIvS?Nbka&f_nJP@E0a%w=A}V zTeCO|vFzj@N>cc+v~B`lAKkSfpU#J+Q?xQ<=row{xNh7}E{nAY=aof6HJ%RhJ+jf@ zF9PXa?c!azPIZB9#y04r0F z08~mebLXeo?9q{C9JYEwcfwrMpkf&X$Yl3;FAjPLM*R5<{ zljTO=4S)875c%%8Xjt$0)G};E%*E<=(N?9R2jr`UJG2>9*EoC%lBDpA1 zcd8j(&|^{Ln|b>{n}a%&)R$P@OL^w2+6ZyMs8yfHi=Sk^`moQa<-PT9;i>pDy((wj z?}Kdc7fUf7R^szp{vyM+oAYRl&oH3XC)Re@_`rp>jK%^(p7BU4@U0pCJ6tIoDdk-w z9>E~xoQ9pH4%q?%iYkwyLc))$C;fJ+$fu8qCY2H&$m_UaDpRG(t=w!a5cH44e0N+0yh=Cf?YfW`p`vguIitu8}*(W=%h15C9<)%Z2#XXXA7@I zoRYqbli`Lq+(&cm$xdHPts{6C4b;Av(TceU5XDR9*Kw-wog>|$oNXW@*XAHm9bPL< z2*9jjnltKcsxS_<;{yOOXID`YmUwuG*`T{xH!S2Jqb&_uz#wk`9JMIG4?|p=Z~Oxt z=;Wy2nkm)YV}a(BnKlm?5rw!*h?FS}i~@1$2Ax9_C9Zt{?2=a>a1J7u*VF63Ptt9@ z^%0z%7d^*(_Xn~e!4*PJ(AF{7rU7z*vX)}yQ@`9wlgzHVb;VF9VeDQ5fcsxZRSda_x z9TgcD`}?D_bBv(sWfR-=7 z+IXsCzEImi@#x(%knD5EZ7hoqQ$d2aK%4O<$I>7BoqFP{Dk5>?w+gW!@J9h+=`I7<|AEK48naMph;Y&QEOmxRqB*qb zUABk56@p+7Y|r*7Z-_%X+-V{tBxeU+3Aj0sB)35CZsawwm>u><;${PtH$DaBib(Ei32XlEP#2gOa-dBQ+v~_WU<3RbF{N29IieuvUV<~U& zPKp)Ray5qGz;cd3pPpfJCJX>ZVV3pDqg|j;!&Y0ZoFt}9T%>=Odo<^Mf^u)iRQiC- zF*~MKjluk}v@JD6?#k1O=c+a5?2FU>BGBnDR_T!w(Fm1YW554{_6{8k4tCerXeZ4u z!3wdCB#V70Dh@m?%cgk*C+b<6V0D<)(`nv=v!5~$1n->ZEgr@f1ep#U%m5^J-S^CF z_6tkfqPKN#KkKds;@0f)PAzC_8IqgotjzrY% zd(x#ILl6?xs*)zdpb(b&8wA=QgQJHd2=K7a95?W(>rsPFw;$*ZXq)cq0(?5?cF-a) z5i=ppv&_IXJ_u~ECQfKSu&1!lo$NUGGzP#Lhqx|cXQGfISrMZMdA1!YJ@*>M!fG2D3%3Whu5ZOAU%ytO9xail>~ zBQlpi4lmgMd&6otplgis^Fq+mnoTM`nNWjMe*EwJ{XX)G&XRs7tzo3%2MzV>KuF7Q z*l&G9!qmT8z6zVFX{8&O*M?T6h$%x*o1Q)+AEt_unk6yHgo&g=F#QZ1{&YrH5q7Nvrehkb0lU1w75#2UVMT+x+@gI8wQ^DtwZhobOxoAIQ^6wz?B?%?q|M!nta{ zQHbR3mWT#J{eLoOD7@EO0F76MUdN?U-G(wQY-f8ilJKM40Vz%XVe0-7(73K5lBth@ zGzC0;Gd)rVeLu5TwzwEs9|8roE_~9jWnDuJ4R;PpBnyl{M}dr5Zt!i%vZ6EO&*S3) zh^4z&UdT5C1TGEf`97I#gP|)P90P1bJg}>Ga-25z0hf881r43a@zyOiyJ~criL8`Y zF)#kB%!5F7TJj};3}tTNcLdM6<7PXIPr}ly;P_uR7z1hwVwS^aghzr?^`*8Gz?tIa~*FO4a4g z978Ip$Ds(r#)sCrbf;{fOq!ohJw}p`S1AQDe@|F=Tfc~z#5Cmjq>N;5au-8>Ff@d9 z0Mj?0U+;7z{d}*?T6Oc&Jg)pjZ&_P?fjD){brNe~PA#fzCY-U$5K z3aLC###AA`N*U92X3e@o`~XnVcR{Ra_9k1l-I;0f>N>8PBNmdieoO$K-7T}AMnyJA zGFa>Xhd?J^P4hJIDO&^qs6dr2UgzjJhC&lQ!}D^<9RSAkst#rW*0#dnYNX`RG2YsL zg800$1A{S`#O-ZzRNkVfA>hM}$cVL*kg1w;m|burD()+3iO@igc+LZQFjKRFUUOpN_F z3VO>@S9_OX#b*eFx?aXs<>ys9+p#_&OMT`GP!EJ2x;&eL()C9*+>w8NW*t5+YGFl% zzRMgd?I`XlRu?|67kNTtMFG^gE5f((k`jb&gK#`|`3ee!YEtf{=<4>KGi^PeT?Ov< z#FGIbF*I#Z6W!AdpQuR?M&?9u4TiAk)Wrw>Vh0l34!uwoqAx95@zy%5&b|!eyP7TN zaY)8>zaky5EY1ODU9CF#7Fxe8Idb`|P#FUzf#zoPLdcu5`ge4iiwFEg=1uWddTLWt zv`p?!eBkPK5#kkXsG9ZLKrOVg^!YiSIIOH(px=g3ZKsn`6MJf16l^7WuTtCn?9DuA z=gYEiIkMI=(R~rGqvgM8aA!x`2jCDDDt(Y^+x#`CC}m)~nN0dKy(*G2JOQ83^x+3t zAn(ltnBJ61KCkFsz}sJeA07x}9mya`zqe)pen5f0O`Qv0kWf67Pb1s2>OhX~9g1Np zI?@0?u7nXY6gw?LUqP|)Ix$DmS1BLnwAfl4k0(D z=wDmm5N3@rgsLI3)wg53()A{%l&3nXEQZK~om|g(^=GV2B|5P`Q48@UfhO9B*MKQK zIUaxMZN=ou7;9Jt;xlB+E|^(l$4O&|O=W zW_}{!c;e2xVZ`1JJp|mrI|3EDVcLn$Hnj(kg7u{VjnPQu)tIC?_Z4hHIzw%g#qhsU zOwQ4f4O^GyS6Z_nf2sPST@qeMdo3medEe4D6ZcARuyn2Fg{XL@+x^z zJr)L49B?<Td2meG-7yz4RS46JGTqsZY61 z=5vjS_E;Bj$z{N(hYA4~#P1qLcT{@g6VCsO#5_+B<%+__&?)DZgZCcA_SQ4H@OyPC zpJBUexRfJ5rBhA%mOl+V)h`cws*uh|;iyl2qLytj({M(-Id`a1TB%y!1i~dO1%BG; zC>eZwxX*9dc~zcGj_vNU8tik|@5iV_a5*VyYbEG`L8Pw2DTH=j2wxLqsI74+6^3nR zG(nT+N&1&`8;P34F~2(8+nQozEt=yVVDIVBC;JLLf-z-BN9c=XfR+EK&!lnzvT=RS z;9EY;a`CS74nY;|3d4bN;fpLd)7foqBtPU z>`PETElfZ&Na5!RrN2~7h<)oYc|pT%(NVYfzn;})hm5WE)vEy`ACetUvm7;78pjh` zT{%f8Ll{qI1*UASBXbfMN@6_dZA|qA%L;oS6lyH=P>)@W3cc#;kU)1Gog-<8RHjVh znNpcdA?88gJjVUk$>2*PUiJwMsud^L?tkT*984+xwxgaV))I-*RW~~7J!_N9Q4Zw^$7WJpRGsP@ByFYih08UWJlka`c{a0lUw1FaxsVq+c zQMzt-4q-Z^&)@qo`Zx0DdkNfC z>T_TtSO5S3DcOEDCRg%(N_l_YTxnZqzi*$k0h9uIZqT2$jm>0*#>(8{!1Y}lS~@ah2HCr2EbHFnx0U)O7*?QNOdqIA}LzC5dknsv*BYUVZ2gy zO4qDp@-7i<55Le&JAN}qCJ&Ke4f1JsK+6bJ20=>OV^tM@T>vvxv?_OLFv{wgoZEim zjmoJ$J($K4Q5Zp`!W}K2xKw4C&tREG#YnQ`2%7?7J>tPXM}T5YE}V;~1%%C%Mwgu# zh@#`X>@p`8MWbTyt}PSV$4m9D*?g6krIw#$UO+(UAg-jYvyx>5yW!n4PyWQ(R4@ zeP8I>0^C|LkPyi(t8|K}3RAU<((7Z6PVQ5Zj2*ds4v6vpTAVAzWrz~jqs3u7V^?(0 zKwiDAn-thm45l4tFlH4=4A<|`z72x9Qg*BM*sWg}v%_Ky6)H7RBxI;>(4%qMCLaES zy1xHFXqHXjM4N=D3Hw4o!%ll+?%OfQQUuQZoLFuI_Vlf1?NKrG`UsY0m95DGe{<00 zQc@|C_*iwd9C}>kl-cJ(Q^DOF_P9rTk7%^&72N-NBo4&mrkA~3OVZ)?d}jpKwaGV8iUaIXaJC0V|A=CSHZ zFhwms6OdME!+H=C$9vPkd${P+)WJsr8JTQ1Z(7CdwPQqLhK4~M<4#OtH$fGM7fgkD zIM<=>UkmH?@QL*eptPJUT;YU>b&pvx3$hKT8TTsoqGyEM#HdwR#?9pSYg0rXcIJ20 zT0ZFdC*w1fm>fa%VVTAQfO>*e&ZJLYaCEUTTr9*zkY8QD`swj$Z~>(K*jU0#4tHIn zAA$wXqmv238oK0NA=jI0f49Sw9Ywi+Q-=s>N{-Ya7t`Uu`nu{?3TXp2Tto#iIiW^Z zH0b%177}cW7ze)w`}jIh7l*b z+{@xV+f5Hn%qO|)iEAQLtb1TmH_ZS|xyDPlH3#T?{aB&{cv)L!XTTS@t@QWP{}OUZ z2CJWQti1SS&bmrWjVF+)rFGS(9FtvriG%K_?UmbWs$173CK(i7jTHKJ(ykQ-JeuD| ziX9nS(b6mh8;;s1x%kuot!Y!gP8BrnSg?C8SJKK-`yNH&rZ%JJBoQ5uags{3^-{ z+8gtQL4Z$nM5w-`A!BE^5U6ERx{f9=!rP=xOGBvNA6YiM-4=LZ($3DbtQt7rEoaMv z5$d@-d@~6y#cxH8&T)yh9wO;&N4_e%fgWx^lym1BVRAoWB{5!}LP7DSnBmyitES6e znUs`8`Dt?n76G)Ujue^xID7&L^ZzDC;G8|7o;pL9+4vZm*EIGE2!k!{?Ns^txGC2((yB$%P7Q6%jq49Vl7!mdgUf68Nd z)F5ZV!Q-8td`hI>3{!qwR~2P39>tN(!e1Cwr8;;YiwZuz40{ZY6E`cZ zzlN^IfaG?6i7bV1xKazkK=qT)bW#`HG~ zJ(@%+*kVJS&4)K9!OW1dzTx`Z4PB;ia3?*_pLyyr6E{kJlF_1y&K!)d$bv=!_*BG8 z0LhDEM>K3zjf6Nm;e3lqdoWUn)tQ<&c2(-p`)Fwry)BaU@;v|Jl^8=Nz2$EfDPzX+ zi7s+~cb7XF{zaL0!@Hx6Ub&Q;eCidsiu|47UolVhAs}>3B+wZQjKa298vx?#J_T0W z5|K#V7h^&$DGbcVOMedcNj)$uW}5(7tx6H6N*i#i*g4J<+{T4Mf>8RO`TTSsyF`W9(w93M__zHHzOxUN4A?G$Mw7l|`n% zu4wsB)CWB@^@jXXmK1DQA5C0%2XA`0Nv}qNGX){2cXz>}xsc2oP>N?E)gn{YyzM3* zfXCbNiXs4+WS8vc^h3UzcRy19Z;mgIh`a0&f*`P4JM25e@{ z0QI9_Z;Vm(WP?YI)Qa~NRSF<+;{+9cK`WRAt+z6=1>ck%jFU4r|MfXs3wb5^IW zrsfV%N=dBOuADCfolK*@ADoHr+J1g%Pb?5C4hKc0oqcmWS>T2#TyLZ%v}GD(v6ja1 zAp(?oSJ9o6M-&59hw=yFEp3@-G|BtE1i_ec)T4e^-AaA#rm0`Mg~b5%-awri>Jdnn zWVCrV|50GpY@iT00r2g&v;i{do5%l{@RGK?8u9OK%Vg_P99zOWj~}tK=|lZxZ#W_{ zUL~=h(W;z0*{m5fJfg(wmq5GCE|Q*l_dX?D<&ziE=X-BdtfI$Muw~7P z{4uXe?oV-anCVU9iIMN4L*Y-~F^{eg4^8fR7|_Ow{CifbOtdD=A*^j(R9b_lZt;H* z9|_?wv{3tVyi=sYHLM5bKRpEaZ)k*x_tremh;3W*yRjz)#Bbvjt2E3SbuzNJ(q%_& z00013)RWn`P4T*pdb0NVa!TUt#I8v~9r0;HxD%}g zza8Kk97%mJsPftKQcI~+RFB{V;b*;NON^L&5$h@70UpXECW;Jdf0lE<^7gD{hg~v= z>?1ESZS0#k%y&iXiaDWH*D7nTu9$X6`Ym$cPWK{YhT2UyLALWL^YS9mp<~cMS#%gh zRf?4$pq;7Q0aAN%d8lRJsPU%4<64dX6>s3sl{VSoTCf{~HM~#v z00$HIkO9djpBT1yLXQ}Dh*wSOW84i=?1*NZJ`!np=eU(b?FxooE=>xBL#4jZvF!Y{h?e_s);kA*qx97gra(K(X|} z3^O;p`@BprKY76!o0ZR<3W1y4uuarf668==1>|XXm^*0` zMTQZ>-QfTy$zDcz1=S_x>FLDvty>XSYr$bU*JKxM(N!$svK^?Blh^Ymw< zJsAVChK0#L`$no;V??0&b&JCI9qyIkv=^{@J+MA>+IT$WNi%m<%I`vZ&o0$&PNiyK z6*&sdWmOVFyEjD!fml@#bT{<{xJP5&OrXl4NUxC~!9zl@;Fk8^xwz1JkbO>M_T(!)Ia)d z*EV=T_e8rmJg~onNAIg)QrKysr7*g&sdqhCq-Ef&&m-ql_?(6%jP6`Ra-tdF)&&1= zLn({dHNE$3=%FoA3{aGc?7lj5;J=6Q1RbKz7G%GU{b=Hu2nvN;NMP&`xQp)MWE(`8 zVvHXs@+i&r8m>QF0{Y?cw0Mf9#xULFA0%ott7!$Ep0=H7&WKWEmZEZlM_TGgzrhTm zi-9O2eElN8ctcTVmG+0pU3$F}v@560{jS7tS#7^s1BG{LhS?7AQeM$zmPM@=K%lvl ztN8z~XE1J6I*WDjk-H|VU?e;;(~tp87G_9uivKcdNd=-Mq}{dUt6&oR`vG29ZCu%g z5W#=ZNB;5z#SCDNA4G)D0doGB4W~R1&)_Acpu(_X1WkfELL^(&+#b^#Wzl`h-YN4B zs9f%X%AHYYT(HXG)r|Qm6^nB(w9G8FOFS0FC<1Vzlgc@G_vO%Eb9!*p%=BKmRAMM~ z%xiFs?SCEzp?jQ09anM`SfB22`?Fw_6UL_-mTz%(=ry}%Ubmm$N57F*JqZ$Vbt2nD z?dSUbGq$YBWkcgSv%Ao1QYe4#tiPG#%V|7vWs$>N-az&ER^Cuy*NC*wyM+Rk&~Dja ztPuF~;8bim`LqeMOODlDlYYI6j<79y#?~OAt&V28!ykzX$dFHqaGe2JpyM(Pm;cp* z2yIb7(`kispXV&eYE`I%zN}X`m7zx%6Iw1KaC_T46pF4Dgi#x|pHYNce*$3UmQ?yP zZFlsN?-F(a0fJl9B9BWxNaQdn6>;`-oIkn@w9Jo25OURe`($>o)c&in=(2b$@`36|LIT_Tc*DSWt(5p z8U}v$^Pru0PeyDwy9gH2IAB; zYa{jObNIc@t~8`F5Y?jpTkVT#1eT`DzHY5=I3XECBs0c;$H&x@Ub|7OcP2nwUm1Sh z>o?yI#mSI1O_EIm`w{;V)sC*$Dh+weBed2SK($ErH0K;>kUwN}b<#Y&4k65PoJK!pI@?^qW-wO^rfm|+M=`OSk_ zNEKE6Ikg=7QwdU&`NMit6nMGZtvJ{$FuL|L`cG)5`Mi?n*7R}eg0H97_Se>)+AE-hJ0~LOU=d-HgjLtZ^71+J*B!XFV znV^XJDV-Uyxs`@H*jL7eYn#sg*KrS1f`TSUv(GJ7CP*e0LaTfk2Q0F1r5*v*8POGd zxMS>RRLwI{`BscCWu)cN~+ zO_%;a7B9JtjG{YuQNK8%U_1b9;AR2vmSaNh?xxCd_+oSpl9mhOo02lNGdAGLPkSX` zZMy1T*P~H-LlgxAV?v?^IoUDIcaH1LHeR&AaSn=!#~H;jvmY?*q%9OOiiLZ}wUb(X zpUxNOjelhWoPn8Y8w}AEp%!H^23Zs`Qe>1!y|H41X3R2$u=#_`R8p<-!Me83x)+Ii|bZ?EsPYC`lKv+hw{*ecH%*{*@ z`&?AzvP;c?e(!>bSl~kOK*XE1Er{V>41F)G!1jFuQC*z$D!In!5K z0TJ`4;4X0dG%pPJ_qi>vsqjp+_@5Arjb|$jCFB!~>|Iq)d34kUU4jBIV;w_)V{7jw zM17&35?&vN&|(GlFq$;g&kfm$3%PDx!)5~(IC z5}4F31+oPvr@#3HF4N>BAedg6P3bOdVa7w@X`6`QMsCTDWtlXu{!u4pGPkxHcX6d{ zy}Xk|aj4Ja-0h(rw&NzMYJqZ9ctJm~9e}hvFdxr~P)Zu>A8Sl%Cj|J>S#Y+lZ!X`} zehJ9-OHhv=0zPFd7{BWq+FNhYeIZ)!*Trm-K?`gWHe5Gc#v)u9bJl<@q@Ut>XpA^ zoDp%jWqVqx6AI!8Lzwbj)?0hH%_bB%C=)=?Ox|bTVEhN(RaXw+_%QP_rkAtWyO|&Lb%+~bD z_C1jKLQlOi@2X&KL`{O5Wt??uiAukKWk|tq2i=#P*Lu>yN$(6ig1fnqVC3xN;&Zu_ zOG!a28wQ{%A4)^F!@x$O5voq-{~e|$VCh#~8kTT-l5HLd1qu8IaZffnq)n3)3G z>gN*TSt9Q8!(b|XPKr^RyF6O^*0vQrF~yvpWrKJ!ReH>nVX%RN5PS+PY_qN1&U2s% zEayhF-Cz+TU7HkGO_SFlimA2j63oRG(_&L&Ze73Vq#XqzHY7RTO2I?QYzDvp002Uj z_zA8(VhsDlB8B@$%^&Lb>CEJ1Fi^Kb`@J6P1GO`6Fq?}oLr~xdFkYzNyRpXG;HR46 zp#Fyq*%)QJr@f$mPP9rptV>N674zt^r-&=-V3zQ#PpKvTaOdauc1iOK!OZ%`TC0K3 zNXx=(eyhduFb`d1gX|*ceN0-8RYQdqb^_ub5Nw<^Oc)giP^^blf4OfwsE=OE{^$4h zxTy4rM}x(25HP8Z8;9V)Ts)=m72-RBngOB9kB5@f0*z!`Ms%Yu z(F3mowp%{UT&8}SKxE;kJ!k% z0t5-M1$4;^GeWlGr^&Ls&gH@_Kh9$XEF`No(CNP%{XxhOwrC}k``u;b2N~%G;@zEWhypi;bs}x zdmtH{<{Y#hfvS@iIT&Rb$oEO=K@A9#c+2>faz>D9v{%WZlIXC8Vcw|9rha0+Bl$c2 zQIyi*3IenJGa}BVj;QWlZHGphH;oJmer$S4L%6I->8g$HOTK0lSEvv5Pv} zp<~N1b{XS2^rtnEAP1Lq!QZ&mx((8G(Q#!rnG)oUM1m+G?ns@mP8lajwy+?O9>$*C z^PrItA!`cPgFrV0r3%?>cxMQr@e-M&k@(4}4s*`g^@g^Gd~{R`9ankKd-%m(k)$!r z$;imXSg0W#;#-empZ7ER0MGC_3`EX-rR=JPo}7@JipC@BX{mk1;xf*A8qQYjCL9Im zo9}}!2$8kE{oJO&RN*Ozu=FtcAGr-XO}EZKfl>d zT9U7vjVkMt{SB}op_c4`lpBx@`Zve31Ya0SG-@V1Wnc}F2PPcPf{}Gb8Y)K~E&=yJ z+TGLr`0UZ(AKouqcBr4qJ(}i39h45?kiS^@b(P!(f$;VF1 zS$L9lDomEle%n=QBj+#};+tR{qwAxeQeFH0t*64f%x!vd<|cXMiY9)3IA($=AcB$` z7s=>pl@4zKJjsNO>_hQn@~mVLjmMsA-STs?8)QI+;AfQ?K8Bzy6^6VWdghGtUMfldnINz~iOghsD@VnR>EekJ#LT!#m9u~_Q! z<74@lm)?lK3FNYkP5A1ndzMJ>D7U07w4mMIA5pa7!Nid7-^JY|pwgU9{6jiRDgR6^r!&C*kLkV zhfwNApk)u`84rzIS`>Qzs5~@+5E|i z*MI?+vG9MFe}9*8ytAvchY1k=^^2z&)I+lv2F`?pfUsO(e@G*j*RsfQ#=y6d$)@9T z6)ryC|C!|;j5QAT7`M3KN==W9DRw0-zKOOFLVsQyBV?Xl`nYr=`>#k6q6@ZjXjsV}tVT+ad>);v$YC(uVcFK@3H~ zGP|ZCXVBn|8|rIgo9)>W(al+JnVh)6#?;iez*V!~Vi);)JEJ_K!o?-=+lJboo`BH$ zDYJ$m*zSjma!fz;8wX=eMx7Bfe33N)o5o4Pc-{XZ?MYWB$-jK(Xiw?#gQ&H4H-F!K zFGHbd{CMmT4+N0-hX9&&`U8PSRyb=Be2hDch-lCwTpZOi8@c~^?9ea@BZ z;!2P&`5o5}4?t0oC+%R#r$Nni(}5&lT;_lhhQj6vhD7CH7V~D@95o&Z#)pqQ>9E4! z`BUGJ&|wP{{q0pNvTb=Q%>TOp$k)}BNJCh9Y%8FHcv~zk*iSZI$VXP)_`WnDxc!<) zHhjCW@!NmHhCep`WjSFlzc54~B)&euJr6TS`aj4yj>-L=**T6s?jfWqfTJ93ftKti zk`Ed&nA(o%fMe@Kjwbfs+;lz9fM+sJh{`T-jbM7I>NSc)%jcKJzVuL8uaqTVIDLO**H_()KuhEL7A(`q zgr?LZbo@D!tUm$qUhb%wtdVaI!E3c$NBR`w74RhK%&$CP5$h9oaI{2^lS8+{uYQ`D zwM$JEEt9_ny|Fr=9m9y3$+Gpe68|+UJr4MeHQhmUZbTG2qnwBD?yCIj$QSAB{0iDp zpxunSh-qSrxabes?s;1&xuY`4x$fTJZOUmKMSa`HWtNQ*7ztLpMh78NWF6>AuCV0b z6*a5K`}PzQJ_N=eMHP`k_EF2Wk{Q^?4u=V>{k{1YJ8&2uJaGQ6a%+yGKUVU3uWbOx z|5V4p%TtBjjJ|@L_w*c}5*u_6Zsn7}-z*}kgtzEfA(YomAn0rTw#^`02mI06ZkF7P1<1QTEaxsP$`K1I_h&7xFw4C z$b>LYi@oh$mi=7XZQmKt=w2P6DqHmRCHJnpK?M|#vf29CO8{@yR8tzq7FO^+2v^f4 zx1(GZSe0Dm<`*}{10F{G zSRqA?P`3Ojdm+u@p8g?1^IKCecUK7<7n3g7M3(%%-x95U2D$Z)jqb~Jac8{}{R00000000BL<`U|Q zXVNUTvp->^)K9}lBw~--Er+`AbNFauS6^nXVaOm@p17bupG!t>qQt~O`D?xp#Q~`_ zYDcf>RXw!CMiWDib82NX)=1Axg6)g6S~H|D{``9c+bDn!Uh^1nCh)^={*uK2RQ6kB zf*`$0oLwuB`fZ(!pH47<%yDnhv782E7jJ(KL`!ELa1+m!iq3;qv2bA-hwO5gsD{t1 zVdlkflhpE))BRLaP_Ay0E@XFB#RJum#QkrPLjfnFVOEQ%oUh2S;&ig3>7{jUini=w z(TlIdo}>$ZW90x|m_CG?#w`&pdm!Yt7Sb2 z;xQeB1J9Y%o_AOJTOn;VU_!idfl7>yYLw{hQRwiLTrdZ@z4FtUutT6R zP%B9+M1&&o!T?a$)n9I3<}O^8GZJc6BLQs*XqKd$>A~4_>$})-A z&=56Zry6}O?P`timX8Y_t5`cUFd=NA(L;&`TD_q>q1RA9p^4s$XG#Xb?rLrKFu>~Q znC4@3M@)~hekm2YJ7umM>R~tHiPVm9MTxW~=~EJ?9AGiP8k8#!2m9gFPk4$h>Vfh4 zhJ*jRffZE-Um}2SIa2B?^tgx*29J7#Rzf>;`0|0#OzZWaaAqd8vsTh00X*EG-bSp) z&rix)I|rIfMjwQt)nhE-zso)H-CI;z<%0S+q(Jsgloy?G{8)u)m*rwEcKe z8V}~>Y5ydJo!8j=OA~%Bii!CMoREHqs4j=k<+kt@<^o##y2~4wiEsxNe`MDs@@pei zpM-(2<1vuB2N+BSyDO)Kg>SfP3UDB{qo8xi2;h89Z7uBelh`^}ZTiKULx5Io@;z)s zv=+rd4qjP=W@-`gEeUjh$t&5C>TawZ4rl8hC~&hl)`yDZ<4yNi}~G%gi`V=7WYqy{PL@!*#8M z6UFhi@}apxSIV4Mw_@RoG;U4nCnm=~9GpL#zIV?1@6YPCZ~y_S7KVER&+{h#?`oSh z;*MstRfVKQB}c&u2_GZ--F1HhLe4SUo6Mwj4p3_;B5s@N-A?;%F5~uUSJN7A2LmA1 zj|tK0^g7Xq@^4yw7=Rb-f5Fpw{TAw|J%6y|zO_@4hgyDrH8xOXf9ofu24rBm6(3~; z^CGPUE1C~MM&g=ovHMrqf zpL%mi{I?fWUN1E%Jd0r@v|UooI?y{uy)Y4T7Z{yFn0!T(nKQY)l=Im}vF4thCD zs9})lAK7%Z&x{hkWhLe-EE2-xgmPqc`c}scmY2OEp=u@OZXYA6aX523zq~DeeJz{E z-mpJKcIVoZIDCP59F+|MxcV(DzT<=UL!F1(Tw=r#?%>pyVc+VN*JZFsY zo;o5xISz=B4zWEQFkLynWwu3GHE{h?jB)8B?+zh{hCjG`y`<3s6{Qdp;;o1IA>=^e z(CLb#1IaUC2W}Ra=yF6uL;q6P=b$im-1f{-rw&4(H#>JR8d1yJja$9f&@Ukll#n>% zYtF|%OQ{rgH^ZDCf}+(dYCn}R$QZ)K&1$Q;0FKJ7{#DlZpB*#D1!SI`ve5>cqodFj zP%VZYhgi~y=xUDEgh&V9_B$2&(}oknE#{?x@s~9Z+Og^!`{6}Hb`ZB*P8wkcMX*EJ z3paX4cFUKsz~n(t7OCddvOi~Rsr!a1Sh>)e(0@umNjy+cOxM^NQ;9-^CI;oR;26_W zlR|nftw_Q&miG896UNVNpQ*arZpHb*%NJLb@`DYzi(xz=7(*M7uK?@e8z_m^qn2+j z+z9cB7@B$qKPEv_W!)*GQc1==tU{G-6un6nB458p_9y@V008|m8WPzxi+&o9+Z|jP z?*dIuzt%DcjpLGV(*{2cFZY2$vme4gZ#1V3Y0jJsUZ-_XhHWYBlY_vdFjT>+)3OPl zNwHKw0)I!UboFoCUTO-wS9+};jxa+m0Hobw%al{d$V$ml&t3ckd*-OiBFj^jWB-jr zFpu;W#YhqIrt+Y9Vl7RJ5V>WJNOU_eN=F14wk$&!AdY{MehlV`H7XCgBfzN6O0gL^ zXd%&n>|p@em6S|2S*EDZj4J@desz~|qa^f#52t^UKe&-T|X?6Lq_D1PGpQt61N|F$m4V!R({ zB$M6{*#fdd6STtkF#w6NJ{Rqguq62Q^6f3|Fc4k#USo{Nyv(gNt34rC=COn+AlyD+ zJGZ9ZQmeh!+*?SW=AX)$lom#G4a)E*n+QurBI@w&tjoNN=hm2IV4?c_V^72_}Y>L60X;98ZU742OL{IajZ#NYF09O{Yn3V_b1bm=o*l@Px=TTA9! zt66eXr99iVEFDurd%i4!+F?}tL4J}LTE~Otc-pf)9daM4{Lo1yTfj}?a~DQfvR^*1 znHRIY@#6UY?)x|S&r+FN`+*hoAtl51K@HIHKuu*G_c!NN;4y_r2f&Xt%`97(t{~Q0 z4%(skNQ}<#aFzwn!=vYwy0E`ygl1(~BI_V4ig+uS zwrDNCi;=Nf`5pxS*8}3}c-}mm2rei<00Q33OS4}Drc`s_RUPV9(;JLgni>8(sE)&Q zkt&glGid6`E)N-P)Jx+B6DE9mKN37|%P|*XyB%S?MD|h5d_8;PnUb`hH zn+cyWRdzvK#L#@0tN)hksEbVvrc8MnY>7GMWJS%(O$J*;^SGvZFot-nn8Z*foEE z0ft|WV#zM6EJ_)`xnvDV$B~n{WIW5`Pm)EAWsZ)|(;SP$T@65yM?WVe(!m4!KaD;a zlaXG?%~$(y9|;7iZ#9{=R{}*whb~X)6Upkg8{;6sC|-gvj-uQG)}fu0Dh?lIDt098 z@&P4{XLrOF6c%8`)ulZAjvhX~&ba=62Lc_WHKnu?0LPzS+a@krspG3PzrcM6@o2H1 z)h^>g{V!dhK1r3mY`ihY!ohpVY#|wCH4hj2Bt}*drU>BGzF0wbl>3H-$;i*HC9rua z$KoiyEU(b3pc#s*!Lkq%k~_gH#RcUZ|1O3BBgkn-`{V6oIgU0{Y5Gdsm zUSzeb3g_o$lFJ4YYb#p#s`yymDQKu^hZBPckoAZdB*t~?N=YrgSF1V<50VWwZ1i8i=e zl1J!wA%&HMBHjMi3+722?K!xixy4iU(bP zc{29s49@5Za)0X7sj60FIuzIyn@9BvSBg5b*u&!W2H^8vM;Jb*NVng4;u`d5G@wZgsz0x^W7T}P3 zn%cJ>=sUe

    ~6R0(^RJc~ZOqgGBSl-fnE9;wfnRVnqGuoKEKi{`Kd31bQ&T~TzR z&I8z&10GxbOYW_<7I&A!(Y`dI5lAM9%8ts*XTsfwquCoi-U&So1+qx3g3e^73S9Z! z9E{OTX_$qzn0nhzXH8?CI#2p+?blTTrj6=$dYZy8c+%}+p>I=dC z6ZQn~YK(~BR?U};zM}uzqWY=9zgUs(Hxd7C)1RhH!dE}HMJjx)cF{nC4yT7;s7Q$Q zly*=>Z!P+4Uxx=0LcFH9l#kdD*qq7tp=;-Z_+bYX1B+D8R-rau`VuKCRBi##%$879 zbNo}DN`MXIhrvF}Erpvx8&LuTYk?>MCXpgDl*w$N9f3l9lZWIOp3-d;(=l+?CEj2vOQJg$NcE}>x45&rkw=McZK_2Dfsq5)eUgHmxq z$s?g?7bexQ=IgF5*xkVOd#l!c_~1F_4G}R?K6BxA}WCr4J+jP`tjm`JLw{HlD#Owrf0iY|?rq@#NkP^8ur%cr~|q3vV~(9THWMrC@pPUTUPm*fT>n02^n~h94=oD zX&x^Mn;HOE*W_7^p7f9dOm4F>B`eEphznR@>$u*L%cA9DK5CT!%`n;aXCTE)-!gJU zHwBta2Z?*w+wYW%TC`6{SSm^#r(!eBy+$tic@6O&Q^9lJZd-VHQc&jNMZZo8WzH!v89Y?%HT*H5d)T56SOXl%djG7ts6s4*Rb%` z^7tV7Mj|EhEg?);uqCdH5Vc1GeGu5UV29eJUpbIJE~jMf0ygtIn9rs ze)AL%z510h{{UxH$mu##)fcZvENPg2>m;?A-=(!Cj3yn8gd(8(d!q?pLlKrjOV~tL z*cr7nu*cA!)HaRgn1c|eax~t^d$U2k6;>k?unz><5L9LMJ=Vf<4k-mW#Uy8u0r%)* zE2_v+T|o~2e4lfhj^3$W*ke1b1c^__e0}BmK$L#D^IG_JBG!K*?RB%*x3=5S7sJ$O z?6Fn?H2Em1oXAwWj(N0YRp#4-S^xnMSEtkYsmK<{w5q%9qGwS_!_J z)ziB^6gN5SOmRNdt5~*t4vdlco5?3@SGzz4jEF1<#FCN5E4jay?mz$l0000000000 z00000AZY^w8C_IfhA8GLEi+7SwVwI_+5bcoFaIc2%%^%ZOlbHNGWPZWY0=j22<3mb zwHB1)Q{vY&7ua#R%pJ@iT_rjVzO*wv2CZ;~6kP4&=?2sa!CrX}A4_ zL2WPq01KZ2MlR7vE~MVHpXPl>0*lSkRyD52cb8dB7HnnUiwH4xI`?NDb}f$6$(9*z zx}L`sh;21uyv&`wh~_45=HQusAP0o=k&|dpBOVYe6S&q&H&{EN97*1lz)6P-XS`k_ zLqR+5gw2^HzL%-X34B;GG2MxiuH|5iOz1VJva}u9U(Qjs@6R6=)t}Xu>d#AJ%qq2% z*Ydk=3oiv{-?=v&9e4tbuhV3a@{MzgN+^_2P*cSb>6)6U{|$z?}WQB}juY6WFr{oZU4D z0Ur@=kbMsfc!D2KI}a|V_@gn7fahCk1r&hJw-gC#;Co9c_~OFQ)=57)u&h9qj+q*B ze#T^(*T-x8sAgv1One4fPM2w~`-U|6Z9U4-+&>eDaRJC38i;}`h!*Ud5JCD9E_B{X zU%v%FRWc$}dV=LK`FJteG@@~7OO}Yc3(NryuD(huZ*sc68?c)yfjNO}}2g;ubp_rL&9&3)1vEgCCI(>p*x&YAqtX zpxEu)G-G(;7V%+^Lh=A}{$$?z53z}_EW+gxRo|?L!-gq<_M3H2ubeo@0oy1$6rx8eWjf6bgKskG^ zJ4_Ui{&ipapQAEpp}4Dy8FG9VDUFBqA!TCka$B|9zR&V{Kb8mX)Qp8h<9|g{jY_gG zk?%(dPirl&Fyy7(HlbK!YQY#4`Y%hG;`j0DBMA|Bhm}&j=7)=@nD>i9d_RcXrxjfyVd6||D1Czfu!)65i=4K!!0NYShN~!zSa4ts-{$`_t zBi6HXN=Kk8?#hlffY{f#r^ucMq26f+I{AUnkoU~M%;(yI0skwg_OY_dPJxh5grLBE|sW+(k7ZCGP8J_sO=2 z&clWxq7P&@^uMRe-hB)Fsje4vb#78!^p;lFYX)~$DrI9J?tVGx(g3d(0o$>2nSrGHA(z z)13!cwkfX6CSpWymMOPoa}>`AUv5nDmYXGM%~EC< zzSBK5M2?OP}u$Z$=SlkjwcRxj>nWmEld=@<1W)vHSrxA+}J=| zR2*(Ie{MeHv;V|b1N&q@=pKsv)UW-p0l6inm_|ztn|_->M@+ax6I4?8fY!&xmD^M^ECdvfc zjidnwQ0c|su)m7@x(gBm4&1FSE+9~}>H`qIS&2KM$E;Zyk`Me;D~03;euS4gPTb+P zn=eKQr>9S277|sapy0O>NGPeT62W{pv8O%pC{BqXTn&<61v332_ngi~Qgrta%2rx* z%mmDv3G7>mQZKAQRCuYnVh>pIF@~8>!Dywo(KlaC5>(hh`QNOC^UM@%Lcl=c-^^68 zvX?8|MvS9$Iy6Fi&UR)Kj-K{rrV0jvU8vO`lrBm`2#n4FXyx@nocYqpKK|V((>RR! z99veo2uG;^^11!VM@?B%!m4V-L@Zf zD3#p7sr^;YHHSkEvTqoAf@Ef2hy0NTmmo+*zvyci=l)6uL_b=&%J%osm>I{IpBFja z$9waQI$r&y6E!%^%Oh@|@BsH;P0kcJ=6p%yXZdNa;DHlmLF?vIj zO5z-cVBe^9^>WT#9`-v+4_2SEfJBdP!C6@xQMhs{Ed!bjOuY`q{#%o5$Uqgp_)GvC z6o_aBIjsrxW|EYN{Q+P}Gm-e4^R4&z&bP$KhkK0ou$N_8LY4fwUw-sPQOTvg{O~Mv zM7+W)-fQfAy)=%wmc3LE-17aFlGwtWd7@dR@$oa{a}N9w_#E88(D zyZow5t;t;pto84Mp;4C=b+fUS?oNq-lNJUnPQ@mc2SyhR7$@jb`j0L(+j%${f8~*f zyCN@F4;yy+#Dt2*WgXZ^13(04>igE>JvyETUCYT2=4n;TVzdxZ&E+jpOl9V z)Dh4ZvWZ1AF@H@^79?xynTp+aT(dtkEix5_Q*KRW*C-gPK0aZ!)P3qdcW;Y!8hPFq_k*M2-c?R6GpBqLS3DWa1G8U~yqhL!H8n7LF~qQgitnYvzY+Uof6gH-Y&>wx zXv&*997Q5$eGB}fBUel)tlB^mdSCD8Hh# zSY!_FCj0;ZL>kIYVb!KcKH7kZ)Ew2%41*c*xNoPZX7I%x-@xG)o#R5&)VKB|g?XC7 zcu9vFN!tM{d@+wRlonnN>_>3qVUqs=_r>GnP}gQVxS>C_bXqP%TFQ{w|H4<+V-~yc z<8l7qTgjG=PEcshw6(Er-br?@J#1$VOOjqXLIqrsyVQAD~kZpZ8N=$ZYHD8u!I{Fpl_@T6HJY{eJszIRT~5oP5VsrWN3u6bb(QjX|s@m#}R$RB|2l z=hjj)gN(7_q_2R)Y`1l^9lzXnMtE6!CRz$*NPwRIiph>BfSQ=kc6{U3w$wQ5F!if_ zztEzcv+lkh*SNhjb!X31E^xmUXk#4+VVzG(?rjjXYoZ`&Cv#n-vGhRqAo&{Un>T*s z>&pElH!uU(xJmY(J%uZFd}k|^lo zcOUd$K+0HsPok3#YRCk|5IWN6-D*|6S*&6fItZ^#3(CgX=m~gPZ6L`HsqM$azotz@ zTXldYLC?LXr-fIDb}EVSHPhROlflhToz`k$bu02qta@bOh3M1id z54E5Ykhfoj%>*!AFcL=Ck!Z?Ngz)e-)uC&oco`4S*%stTLotTao)>DrGW-i*^1wgT zO+v1u8?#o;$WMJ(9PX!x2~CovTLB(V0k}8DW!yhGxqYv&R?&j#Q=8SD_{|;K7b?p+ z_8UX9>)B8``4%Q+#K;Q-A3rsjg@QX#TUVs@0KW^|M&7{q76JC>CBuWD=sZoFP^>sZH(xabYYXq*bTb4?QIp zBuvs?r?!L!$k82b=-Jo06g=vaW|ZJwj)B)11<^R(U>tZWYzS2pvT|W76}j;C<1EDx z+kruiE$Iq0b7#IeYk4nV3cKi!p=TBP{}<=k|5zEe;^tiRckbIJl)jIzP**EFu*iat?!dYQ6&4Q5Cf3s)(c7S2Au!-d^l z1h<(=M>_+GS8+#VCZErFPohQHzYkbVr4MYVKiVjvxyoFddCdb?oVSTihI@1U_w>V_ zUwrQ>=LZ}bGo>!u3C4-qWhOA~kow3$as*Bzj+ZtfIuF62#a{Dakt6%fbhHd2d}3fr7J;^_8_~n3 zP1pnP{RAL43-jItI%{BqmHq`HX#}!)y#ke*a1*UBA=_kji)*kB3MfTL60UUos>~cX zL(}xPoC9`qUtp>prM1jyWTNA9jsGWXvh-_v<&c)j?84 zO{I1ibJ0A#)@!l=&D_8i=kJ3n^el&I-hJB7lrWnu>J*IERc}fXXH3&~5n2IvmGrcj zBHc*DG0&OHJxhMGmvRzv61_+WAWjFXKk-JlkA1YVtAO$Gst_pnb}zrq2<&>1RJ;M6 zS^x{<2DgOr#)U!A@BmY9nvjeUeMJZ)HRWqL8SGi1yr&V?O;_ViFZmr2N@Sj3Ibf|- zMDLz5U?|^ZP(h-5K1KrFOp1yMqDw<&CV}xt5gs}WIbGk2XzHud*^C-=`wB!KS%>Rs zi9QiQSO|5`wLG{ZdTOv^Qf-&%zKH-Qy23XgMm7Rg>!e{`JF-H$7b>gt!|Y3P5!WXJ zsGfZ_wVs~!=Ag~}&0F0vEa6ANwSvN!kN0NY?PWa3bw>z@O5DTeO)?wQ_OIRQu9>2u z=~g);g}#trKmMdRCR+u?I2wwfCQ>wS4((EO(wn-F#acf9=GCqj$ouMclkB-AiOI@dZ!44RMun^C+DySQx=SSmZ3^U4EIbPI=6P#xd0oQLVFUcs%6UA}=Ya8RG=<($LXfm4^VC^{fF8 zXHGE*0d8q`#%wN1^lSu1_GvO&2o2ez?`lMl)IS1PrAc(tDgp{93&p--Id;h5;A>yqYNi_XF3&Y)-mZI9$}K8k8) zw0$tp?8X1B1#^V-+YTm3V%4L0SlpB>uYIEjUaH6`JnM0nTtj$I^?+itwr;EJeWPA( z@4sIh%4-^rRor0D0Q&3!t`{Glpq%i53Jw6Q9cb{s)d!Ck zq~H$#sNEmtMfBq7dzDm0J@{&%?+pB7%TBu#3`r9|dq4mFxgPoQXY;cziD*n?NgI=wj${Xm)8TmlsMD&IjEP2YAUTi zL0!n-&*j>7z8F$_@@$tjsIv)FS@#Kx@v3T$g{;$jG2-E`&k?ogDEa7?F?14lFzVMbP#+CEH$Md36X+fQFP z_qUeezHu-%av-G(@-u5eN7k7S!tTlUO6N|x^KN5`$*tFO+lD_kldqcDoj@_Q3wpG1 z>WNW!W-9>y^lUB(V-96gj$S_~l2y_T9w*qOY@cvuoTwROGY~A;V}Pe!75n=MV-}&@ zQx5;0b1H)#z3zA`)UU41Ki5$eBFTJ)B_)PUyfr_z+muRsL8p)8v%UAEwo*!H1%PP zxwecLg@SFT7hxWyTGmkNgEY}$o%v;85h#W z?(W7h4jPa85V7I#bl2V7Bht!dzMGi&J^{z($GQe2?3b|-;9L!|R)IltA2wBq-uaE( z6+XW;k2cg>zVXdDVoMm*2 zKwn-UBpw(CMU|zI+aFqBV($L&kmA&dTOTJM+qU$btLLT9g&i|%S)!m4MnKd2jO!Kl zIa0m1H*MMuTWTrI=^IN?u(smUK0iXC-)7QQSyBZpAU8=;z7*;r!el>&ML&3TRL?S3WQ+KZ^^?@(#u2pSFzhE;x!> zKS8BXJXy(eI23fnYIaK*ulpxuy2rv(Vw=PE#@5p(liX|^`-ZDsgPTo6v$5_A*IZl~ zSHFY*|N5_ThZ9o;Thyvb*gZENTn|COV;CcKYsOgDJHaG82NaGgqRrS#;X|%58iMmK zl#tJnMrHW;|B+B@af(oHRi(2~EerizcD)tqz#QCCHZHsSMSP2dr>j}meG{84Oe?ED>IJnG{OO0WF0g zH5mzel`MtQFrAm6n5Ee=k_B6(6dOM`*P;U{yJuw>orPzGx3EA@ZI6O!B+QLaRm{^L zcPsXZJfM4$aJg%~RgnqC*cC7suDVms!O*~JxIY&7)BbS-d%XTNkN^M_&QDh7*SWQ~ z;Y>5`X{&E(&S{^&-lNP7{mfq7-dIIbB9-PFV##%w?OYfnzKme)bWo#MSV_2=*uPN6 zH_r{F$6|6xZ+Ab8Pe9zw+uSmuXnA_sSUJl#+VMP@IzH1$gc!qdCwVqg5Oa1Z+f;|9u8Zqo} zTjt<`@@O0bcfZ8o*#bz|iL%F0t{9W5S-mlhu6j7yKU1#3(D!y@$bqL$P73XD9Y#y< zZA-oNC(D&1P&8_fTgp#KK=l>GbzMTEihfNGFdMYJn9j4r%qu>!HTBD1$ZgG4tE#}v zmf@Q@viGJ9ozUt*(+|t0#ymAcK!Zn{iYY#qg`Z{y-arZNJU=gR;`Bb(s zNAT=~0)(ZLeLK`o`Mfd{Y!{Z32KsAzyyd7?V7=?Ez=mEu_JXgkOzq7(=YN3CA(QER zPn~1BLtw9X3Ioy zaI|qNZ7t)_znJrt?DKm!=0)_f!@TjCf}x1~V~SPUYGiWp(SGUmH$@gtpf6hCzN0uO zH@ulk2~{ZZ8tThxDF~p;zqy~wYK~RBd+?ZruJ9a46 z=eb^uyqpQokJptOU_B)F8%lGPE+8*|PEoX_rhs=uagoK8Hx8nEs>cqPQywhPRMc?H zRMUb&TOL?#yEF)xQ|+f07}^I5x6m^^j%*(x&HKD-VRS{D&|ycUs=c*=7)Nljg`8`) zq(YtDqD*Lgb-v&4scH!qx>N7l`5~!qnFzhgN}l``VEPi@fF9>yH)}G9PT*J3L8S9} zA5AnttQ5ND6GPQ9eX~RuIjN?6i$S;~5)f>=P2!ys(48bk&$vhO-vQu6KX_U?ew;kMXx(OpR>O$Qh|v$xEoPsMELH`HQZ%*=%f{RhcvfRL^2~8uCR# zQ~jxRa>+}3LW-wx8j>;*2&YCfO~FIs=zEE50^C@t5cS8N|L(N|iV14aT?LZ6B(qL_C;W*U*}cNMP0Q zsDo>}O33>&6%`c1g}}YzPHJyx@kwSs^#)pXlq$ZhO3-$|*(0_t!v_+5)yDUpo`Y+^ zG}rHHX!^PjZ=_OH5rr|I$ys=ye`3B5-J|Pkfp?ttEE_hOr`y#jc{Vn9k-DFvwDc0I zd*pV_rkJ~QNd`$#85eb9M|*MSzXUA(=f@){c%YV?1$!t=88T+Av$4>n`$@I{i8M1G z9yzwk#&#AcMteOo2EO@zP0@E|i(Yx4f$e|*02rzXo@XaAp)f679hJPhnDbC-QJU;v1X2Gb#S2QY&`V9ukDl|BAKjnBH`=I@= zNpxfCO~{DAiQ2uC2X>BC{{O^8R!daN7q|bMwNTSypkxmhE-MbTYL!T+oh7D$k0T#X zycVexjCL*K;&79^`;5ul<+J*d4~&;FV#{kBUJnjv2iK%IAKe(YNlJBTv*CKk-=m5L zhrUlG`X;^pG>i3=g~;Ve#})m|KnGLh%2+eS;Taw~|8&<*4~}2(xU9%D#Pmq082Pb& zSYMon2>X6oVen_Rp|D-L(%9 z@`#M1aE0B}fzL38q;{>r&Fd4fQV7{R zjHY2NN$LV#PFWaTd07-ru&7H2e8856E`tj{0&_4-48SvvoWP3SBM0Tz0=$NR@1_gd z(eFgbXZq#+93!7~DZA}T+lYBfkW^B&vwLUt<~rnKV^bBJ?D|=;LEa)O`g{=e$uSe$ z`d;6t`9Zq41!U^(lr(FaYnfT+2G6s1Go2}f);Go1z#@S=_QV~gR`+a|_cHPy_0nAu zp2^!-(uZYAmCVvvC6p;-RLzQ;XWRp9C0oo9uv9Dy=!gqX zi%$xn04LX+ppRp7c$D{>xQSjwkCAAnadEq9O_p@pE9cYcqKK1S%dAf)BBc+H#fYEM z_wVg8&7V`}t5*=<6s67}Z*Yf4D2uC3LIm1wM$3KiedM;= zb)VdNadBMbX1Bx?nT3@_r2p3PgbISXKHT)|y2t{^x@F`GViowq>(ME78u5WCs22+< zz#&{|A(Hf1uYC+|^ervQHtCtiGm~L$zPvM-TS$E#bO5H~4siVIyjzxjU@qfVJ^FJH zGD6?qJnvFuj}R~?hM^+f3*RBI*axW|xmSFY&zT2pr8(|eL!V0Qe{~sKJ_gK>P74AG za$acnP|lBtKriY1n?4z&V^lq?dX+=U)-x;*#xThDuxGE^_>qMzJ~|(1EiBqU7X-P{bAq{R6C5MW2!S>e{eoOkVaB$ zu-3uLBXw}OGGVZ9jlWHp$8rcop-97!RNPC#$4Qg=bSIO@{IJ@aV&gRWZm^fC=p;v+ zq;4@jk3NFoO<8m>mrJ{mQ&n~trteyPZipAEQW53xrLCAda@#6fYdn}NqDPlgXhn#E z#eDiA6fc!zTmL&2mMldK0&|o^bNx3h+Og6~97%nP*^Lx9Wg(B|Ps4>Egd0!|)JEyH zbSY>Oav2|4kd}VnfJf8J&OCwsX2RUj;^MIgWywEfu`<_>|JI3BAPyJufm=o{J3Fd* ztGzWH(~d_d^3Cx__?0BnfO(`msO7tcY%~YD69_YArMT9%np+CuPS)Xk^dbWT0N%AO zrLPipdM{_H-cNH$&A$ScFTyk5h zm3$JF*P}yzJcQ#I__+X`Re5^;e{^g7LlT z*xszWRI&QTW-FU#!-JIPx80RUJj(W`>^!W7-St7RHSGmujSm1Yy^JwdDjFwOegZ5x4p`bW%yyG@suPJU$|d_2DKv^SdIi9WbZaV;&X$ zsC_}pAeSa>HHMv8M-p8dk{~2Mjtf5P<0(bK3ilOW{gOGz#)hXg$kRrWL0?5Mb;) zMz8=tsb@2hfkLr=1&u8*ojL7FN>o+D|G6{ryX=j`KX5bUC-Fjf&v`EJ4Sb%vN5keV zJYnQi526Z)d(TXJO4E?GZ8Y)=_Kxjz%1QC>u-Bqs!=1ycX~N0R)Cre0R*9>u!3QIv z0Bsy(>!Ms$&2{0$0XSMx9t{+4(G;2)Wp0zij(T+Z?YZyDKx%cY$Nq}{(4GURT|ujR z7_LmmAHcN@4UeB*e{ymr9B%xru%DSWrsy~3c5_37a^CQLF<$It6$`jkZXvT(jJy80 zD6l(OeCr7&tEfIDo0lEj2lu?yrEfKVX{1sBc{J4PAG#d^CVQ?UCqGn#ZbP>^bU26| z&T3~j1x<~zz*uN!*|aEWmFpwd$7n&Ub2>0MP=~GO{#JT;;lk1&p)KeSm)eWqxc2db;L)%us)$LyKCcuk&ZEREx!xaQ={SZ_w4N8F$X!X4*M({P9oqIMUA7f zW;DaLcn>l+mR1s0WSU9f3dyZ~TeRg9df+{&i<7CM=2e$9A^-pYK;7nIseYdaN+x<% z6ad#GWI^b?;^jKsK_x`EJH!p$DL5i}cyH|^5QFUpfPc-jCeXhk6SZU2!m}5Hi>}u; z)bj$%lUdF9g*Qx)FC7c?V2g?&pa&4T!^)S_vRv*<=^dSfZ}Xj)yS|d!Mznn-Fj{6< z>()V>`r4pD&Mf}1 z#-sd=)8o=YHVUF3?_ss_l!4#rXvC7ldk?=RqopkJgZNO}N* zy}Tf>hpxLK9Bk6cFTDhokpxIg)XS`()7G}{wczL>#kwL)Untc@EPto!x`})#4TYoK zz-a2-mX-5>Q)WfrFU7TxZ=>EQMlE??CU*4YTP1)xx~ycTI#IWWe#_P0u`k?e(N|yM zVef@ao$gHB(Hquul+7HdZ8qv%)=DLRK!15cuT=FxZx3hca5RWGFUDBjImmYar7~jT zdCZ&l5o?vbLb)E(1fB?s$tnu1lSsxJXa?HmTMT1Z5Zj8!0G(ga#QK%6xp?G>%gpF{ zHb7%vOsGo?;?t}!+OCts5wuYz3H*rAZu(XT03KZ~j7C3VgUW`Fk0#q1OMdjL^)Zdn z93desN8@5x3Okmw45jr!d+xiFTC!C}vM1&nVNe2A!^L9-^pKUIXm%gWTq=b%U>pgn z*6sWX+EtkAC=T#*zVmX)DWV+bWKH9MD)q`W0IG2Cf2kaZMDr$Xr(lyhw};LTcp5=3 zfCY>ZZo8Y$zxs`x)XJZRnGm87?#IC}EVCz!%c0)N-B+`>l|OoJB{ zwXRBK+K5@C4)BHclM-Ky>KeEJME+r=d)oiR^N~Z$%f6iFnOhDovS()OVa(_LNGf09 zOYB|hg`iff*=&zoHmumQ*9|Pef!TY}l{WQwD(%la*QEzit#h0<53~wnaY31Yuf3Ot?CFQ=7 zVEo10jPcF^4d{{+7%lc@!26hH2?VIZ9Ui%8~|0SugMR9L9y%h<8*xS?%Me*^W0|3!|g)LBy% zGj*W(d^CveWCI|Zokn=B2xf*gej{NCU#Bjiwk3ykQ;!S!!+-(o7wCkqIIV()Z~x*_ zs%N|FKbeEnoN+)X~gO8;+MfKZCNgY3R! z6$Lc{1Ovfp51Q|3mpmzYl1Jm{+`Fd}pu~mjG0~^j$Mwz5mK3@4(C|viXc)MT`EC?_ z((EL{_ik5IW$AxqHK?4+w(lD?8b8|{&QjO*8~kuiyqlHKlWrS7yO!TN#aRdp@P0qf$r%9W!NQP~fLFXZC7dGqJ8ptcMiZ*#%#%m=<5 z2$~Sjv2NgVNqZ#PR~RxB?K4rR_FQW3G6)u#w1R_h2Q>#R8G3b=UfE_$tBxsgs1yW& z;=dxiCeCXU8Go{Gr9XS0J!R4dO&?woHDSPIR94j?MdT`M>Zv}?U$ zE|!i<%AD;jG}-oPEqsO<^)037W!6!~lXzSwjB^xtaH0 zKRDA2rs4iJ0I^{##?5C1j zsV^W~^iuJ(qYIxW^x5IkXcq<(fTO^R|5$)(z##|#8wQLWAE%3Dfi^(9wdRCFGQ6-So-w*p zUg5Z#xU?vYI?S<>)`x~}gF`VNfZ1b-(79)~>As`x%GRI|zCmt_;pc4%{C=Al4&dvb zz|8CxZSdP8VHV%9GAMZK0hhM7zOLt<7+`}!8Q11L6+WrVL3OPEq&5-df)&_kNX(6( z9UV`MLJ*15k(;{SxRWq*F5#gG4pV~0kaJy#D3l&QdZODioeFqHU3Yo2vG9g9q*5fi zuDKfRMul)pDq-LP9P{O|DBJGkVAwqy2+|ho5R^^r&z`1CXDnELO2PMo#W?mx=13m> zJ4%UCcPIF6)XRd>_+?PVUn@I^;CqZ4=80-4FCZe!kV;7u6txUj@u z>rM;3SK(lS)myW2=Rt=B7a&2s1_Jh=7-D;ltu^KYQDQm^kF*B@HTc?Rc8C3;&(TI% zDfRS&HZd=VmUAdNZ}4!~4wpyqn{&ku5=P9KfSdv^`w?`LCTy^3suel)YE!Pe0x>oA zWW?Wo)k~>Kwew{9dF8p0j-|IgR@$o<=r~ve0kReGWK-OSK07>F^%8^j> zIhZ;#v$|#I3iqSl2P}2{s*f3Wlz&~Z>;@zq>UTOHmWuy|sJAe!Bn5=s*4OBk%R@Z! z7LW# z1IgCkua`H7jVWax7aXt8Oc{+a8}J7GN6wmVC=7)H2zu1!@|H&2^7Twp zt~=`3KeQz7FL9&7{Zm%8>RXXkn?=8Ig}+#yj-o) zNX;IYIX+VQRU@-hA&6}4N3o&bS)t9qB6yDlr&FlD@F-5c2zB1uu)a_~%TZ}-h|h)V zk3?-BsoL^Q*v_(_DC$XF%HjP2oA#k>NgA<+vNwVf^6>-2Izi6ug82wE*1dDB98$69I$== zF;A0U3fUwP1}Pg{fcPc*st$l0Lwyfc;erkEx0hh}2={aSATC3x&(i(%ZHXD;woB@a zg=A;Q1Zd~858qZ8IW`ebZqW~InP3dLGS$>y5-8Xw#bT#N=mHU(Fz(uAtlzp2Ze<1# z2G5jOPoyPkAD_7W zhT`pkUw<8eR65c1r^OS@afy67qRA5R^Sn-rL8;at6HQPbjQ610#ZDH&bp$}Nz*4Y_gQy~Qm{JX61) zD{$U#OdagE-~Vjy9St+l9r>O6CAGC&3$v&eW@6~cR~t%Nn#o{?3C%)s>dAlz_vNTm z;SC>#;d67bFdkNk9nf3HS}BlaEt}l|dyJ4eSHv6W& z`t?2*GNI%rkR5Aq>)1&~Em z^=R5`hcAr)!`a{4RfBqSY2Y9p7k`2RH@7B|(+OqJiXo7&{Rq%Zg7QDh*P5p0a`<2w zdkqEkvx_FCA$rsdBhupTm^Dj79dXLh-hkiw}m(7gBocah*$Gk}wewlC4TNsLmU{@fZ4a|)W$fA(;L0Eue#*rHZ*&91c zf>*xjvdn9OJ48zIg%0a2;KR+SZ(kdsrH#)Yl%DYW$-G0b_~e}eJ}}jtQr~K^Vm|H_ zA?q;#+4a$;SNUozL$K)U?BHS(p+I#ff~7;icr z>kS`ZK_x)H6x6ZkZ~AWHHZuRfWdfIOz8;FWgtAuvrBauW1aCW2snO+Bskf7!hPEqIcG=n%P3>B-Ac4q- z%2Mp)kVUIPL5Y|96z@&aJyc1layAeRN?SnwgAw1V$Luj!OX+FvNy2YBopsyv&DM+I zo=p#!@1)M^yjkW3;@2A?0YD3SG8(ix@+P&vhIf)+pMcK&R(#p!$0#$g7@^mET zf1#=&EfTNXROpa|$XW88W8I5={!RTL2a|?*6El!jTPb1kg`L`um?AWOk*pDOu7qhh zdld=m2xI~!QZV)dA$+0kz2k8HSxGC3%?j;A2xmR&vv$(%_h(FB(>2z~NDAtpK?3gv ztrxCSAbq7gKRG(lU&kQflZI7F^k;bA&fVAgV=-!i9-@N$aEnfkzA-px)G9a$ zRIVJNtIL%-xmG%X6Y_lHa$sbXfBg=3Oa3Ui`xM(Bz-ybmIZAPXJW@IBLI+6e*0!J> zsRJN9e_J%3jLPdh9#ci>5neBtC~XN;Eb5RfV2!h!c=6IIW~qDeZ)QeTeK!>oDiODC z?y&1s4{Z37FbZw58>v3xek%tO+0sH&Vv5o~$TIcP1gTnY`(Xg@ofYUlsk}HIt>r5o=cI;*+W)1Rsp*oY_UgAcf z3D{q>=PacLJ6P>`3v6NA?sXvbMbHC$jm4SyOz7xv&Lr;~n=1f(s2lO6;BTOU z@X6p5AV)}eAt&M_rFZVhP@hU1Plvxv;is|F7z8G^_mcPg3FwBHu#IfX)B2JE?Nf0s zwy7B#IlR82AABwH)l9P^q}i7pP|9h3Q+VZ~eLyk=I=Y9cQ7T4?U|6-W z`^&`xeg85T{Q7+Q6X`Hs39AdCD<2W00P;vYp4c1*Y(WSNCoFJ(=rwGLax_lgw)=W> z`QhZz{cEanK<@FCw~@_1^yQ@4CbffWCROd~v0MhC8PVzQ0_Nawv*d1m{*`@4m$GJ% zuvc8Ny5L8`G?Q-y~sSF^6;w6%ZAY1dFr%fN~5P0 zbscAhN-VgKFGrK|e2D=4Ol zrll*f%2ruVt6zd&SfJ1s&ndXE6Vwdapv#vXLZ6@t%nOF@JLa5`v-b7QG7*{`3j9^r zYBZnb?^ZBA6w^sk(y>7Y{4 z3B-qm6Yr96TY{8-EG4AY zdHjh|G8<|*-JbveDE7T$4wr|-|3)gRcdrQ<rlb4j!gIpN3hH2_42!%iB z-j)iT)|s)x_c7!>jFlEM;4wDzy9~y1!!+4d!dT76D{nvO2jV!^IEXxG+WEavo~MZ~ z9;@*&d0J?+3Rn&5_e5sY$!Y>&p&T*fA$6weyc|;q$OQR)_6qfk*s;J+ju}gf?#4|QnemEY-ENL#7HCM`4 z1*z|a_H)v3*G*)6ZMT}1^gj}Ht!JT4A3pfz3o+8p)`}?*&-Y669d12S*O*P(%k<*` ztME&BZcb<7NyR1h1XQXd{j~bWx7Bn$W&L|Co(aO8vpHA$KD{WO%VKaLQqT@@+_Kn@ zsSfE_inY&gg`nGz*P$272zh~HhQ2fwK6Vk_)^_h2dIO`<+dt>?IHw`EHBBEQ-_aNV z1NkH+19cn1_;UHBrh#4Fp-XY29_N1ctR>URXf(C7SnVm_o4XPw(@^QYdwbGkJbuDl z`{vm%fr$Ke^dQm(6_0dhmT_CzOc9(ip`-EYjul)$FMyjQQH`(EoSWuCR4#iWLBVbc zMvB1ST?Dk0T3TFpNK)gI>wVBeZTY3f`y1LkejT` zhuLcXFcyaORXSkaGR#nmhh<5lT}~4onqa6nlY2|&#G!1e{S&5IRmbuP(+UuPI+|rq z2}4-x_-nfCcqVvtJAYWJC((rzimZ0{2CMWXUY!OmCF<~C;Sb-P*#pdrU1lA?P-U4# zU)e%(qe0d}dK*-~dlv}>nyiEU8Dp#Pero&}KJ-=yB}NTN-SofPnho&AbgG-pnzWe5 zFl~PK(&*f7p?hyvN+>zFdKMKON5jQJ%#>m+m zzBm`$P87!fL%fvzw@~TN{AI+S`4G{L(5szI4^_m*tpwjQ`&}=^7JmB=HjKjH{C+Le zg(ze^yEo-&&(_((WBT)Dfw&G{)9Qbr`20hB_9p->CuhW-&yt_ZZ1+;|Oojvaad4dl zHr&e|wp8z9z>c3sS@Q^Oxcu<8EfdksYPpj~2p|f|ri02FqDIpB$K#C*rXvqQ@=!p< zIte+vo>UC{210Wc=Zr~7MWH))L4%nsAqI)hiJG_VR|IgpwoG&1~OEmq~xjI=&doRKMg#)ENI1*kna4zf^k!J z{S2Jf9}}DpZjWBlUGG~DkI*%pGk-h=Z@ZsPUL&y65SetuK^d0NsuWEE!ONdTMyRcq zFlv_N`|PT?^`|!kuo)xq_|>VXSDkCQn{K|&1&p4^FgoY^l=EGu zfr{jRC=v4v;H2cJOcq~V96eScq56T{F{K)5XdxE(2tyKfeW=GVIiX292f<~WxA-;G z4fNVkoBBLke9#Ld@&2v^WwSVJ83T*;Rww)MxHnv3AmpN^EGrY zvv??Ag@#xtwUqnaw*-&b-X=)>Xck86p0~|@RGco=D_+6{>oKJF{5gcM7Rl2;{>SSq z?>t>HIrC+Fks@(wE4lEvPq#w>{X|Bu*_}`1WrOezugol;r%8u)=T@A{``a2h_rG^=Gd}@w3wNf za?rM=ly7NlRFGmstbBdxg~9;sRacr0-zQ0|Zc~iltyWIE0+Wlj7n;&}7S6)=3v}IlO$shB)f$IYiLtqCc zU41{S3CO(+yU({AIM{Lbs0u2|F2-fUWJ^ z(T&k3@erpX?~WBniR%ggY6Tf|!P6y3cTcTgHHdE@H4oYgb(=r|0LBIvJC z9%~E@BX4Q4(GX_$$%6g*;`yUq2}l3*9QI@N}tZrc#en zpJfE~MjuY=O|7L6|L5qgd$~?|VVMv%+c>Z^$|Pt$IvJ*uB{`G7n17HEUg$2iMdgpm zi|P7Mc(E}A*~okr3G>Fo(|J6!o0+7PVLKlBIqjf6T1pT?>9ZW@h9U8FJ&HDJqWRR@ ztC5A<*?4fHVm?kFxyl?ts`5Sh{LF zup1i=dRJ7ro1cxran((y__3BidH6{isl|l^&RLEy4KYBa64z^b^<#>C9UFOH_2Bj^+KlRG1jb5mdR$|6hq68J@K{grp+Q# zXHe139X(02Nr2+ux=oRiYF#+?STR?Vtg!H~alvGtg}(X-@-KTndsA^P;dkc=r%9+l z9d-P0dr>j_1SrJ_5En?q&!v98&g zGq+u2Hf={e)ZP5KZ4t&MHU37AA@;13-%DuBc9#yC3Fbj`CQn#0A&;fLlpTq4);twq zKc>AU80on*QHA;1(G!SQ)Cc!T+%mNLM8QPQuzu;~)ZG=ixBd6sNjcjf&rQdMbKKB3 ziWtuZf@5xQ4I(9j>7MeQEU|xhrMn23wEOgAF19f>t^%a-&5yY94B2h7E%nkGN~tE8 zB>8Nd2Z@nLAOcbvER)!Q4RP*sqjSdv2;=G?L+KXYQ}aZ>?bkfYY1m~0$Sb$T@Ni0e zsg#{=Uw9XfVbA>3LMobVgjz^=m?jqZZ~yuo3MQg#Mb{$(axmv zP1(PvjnF4>v>Kwfv>C(Q&<`i0%3+@Bu=x{aEJ`hD>?5Cm=k*5sV2#S+Y%@>Ei!mjG z%u2U9{)za82fVr~w7>SO*h?Ns&B43|bH?Y0oYv@{twq3Eqa5m(|4xXi(z~k%V_53k z^d#PQKL^P3x8@ay1{yH}VDDS1>-x9aR;6vlYwA$A%RL>iId_&gYB)>yS#! ztF-%Ivz%zkl~CCimZK~OuuP}L>f{JVZVakK8lkz`2h*Gy*Bx8gVFR+27~yb_h1Rk* zsyU|r$>j6GjJn%ZQ*e~m5~xxa!%I>&;5^3qtW>3i)d^zg1%YkQeptDnkyNb9g*J9L z!q7yKdc%oyD?q_x#`e>)BbQw)ybI(R6lYTYlXb0fT)w*ThzBa)_><9=+5~+IS8bm~ zi;sY*Rh>Cez<$?NKC&cv2}Zrkdmx{qW@+xl0fX&Jh_cmWJ(YFYq}TZJ@}v-z)EW7+ z-y+BLs$_qlgoUOTg=-;U@5hPccz*X7{2;5v&5ooA!Qn1m3LM1Q4ve^o3eV% z7prepzdaE}zobe278yW327yG_^cK{PCRmecr>c%L2w7ZL{Tq))=%O(Na{de*=h>Kq zMG0!Z>_!S?@3M~_4oUE!f>g-$#pXVi;#8=~z-3a!-E>SxXjlLM01s24Gq=iQ0hl$b z*Wz8u%U1MhQrxx?w_hKcc+9E6PoycE&m%JQ9Z;H|a{Lxv@ty3XsL(GwG)b`{?I7sK#ybo;R7@ zKM>TfolEYmG*QWnTPLNc-w1r8_C%k^~MJSJRaxfXFq<7c2XQ&uP?Gei=0?~ z9EnM7uK>ezUs-J68R{F{XB#7GzUf$aSG>BZj_U7$O~G+>kuinWx>C0rylcKO~2&e1d(r)O)>JUEOF4Gc|T6fCRTfuXlVs;x!Q@k z!^TW9_@6vu3+zvS_8%(P1VlHuV9KniSrAg8Ckk<#d|-U!&K!KnvX}IAr5w(AdkSZ_ zYfoU@C7(VF(|#+}Skziwti%@V)R{Em>_e1eZh?W|qIC$>yz?s|On`f)OX(Cd?i_HP z3$?VCHzjZLDI556qye0qheig)u&P29oiE$WoWNC0l+M~o4BfN80qclSse(3Oo`cDr zt8fNq9x%-bX<9ptPK*rvM`8zMa|%7J2y%HWD93ejpT;clJgd?a35CoS4YFR! zp}RfjK!4TOXfAu3XH*@627^}Pfi6~415-<7HR-s)lD4W6?=ZG~c;^fwWCY}0v!ZMO z@VRDyq39d}>ULZJYN-s{XrZHlTmw6YF=&L3ov@XTbMCG^U$L;vVzYgkXh*W6`62;b%w*drJ$G{w6u|90V~=I&)6 z)|BidghDaMgVB?HOYW71Ky!It2oaWIWbiq#H+%TlvZIT6HdPjo3sP*9v`}Dz7HLdt z%{)vw=owaCe>LhI>2l>AY(ok~L*D4RYHh0I5&$+4B{AA_G^FexYS1r(je=F`u?5}> z=mL%)_`stOUfpB(6+s`~ifQ@xhskdb;xLTUzkBGS!R1Y^=KaRtsWi|=r{Gbv@2hu& z35l6h4ym%DL6}3B$Du{cH2QP+6Cwqe%PoJbEUEPDO#(VLZ%4*u(GwCYK zlHSLJMIlyzFmWl)J(|p=CB~n1R4n>WY(lCzCDdi4<>Khhqbh+v?X1v^O-Eu|J_eKi zY%ODXQQ`UA#cdF~5YHJ$Mye$706))}SXG(Lq2rnPASblT@Wa9$Zhy!Bm9MxZIWc@} zfD6$=K1$-;b(EZ#@qVjI>VK!MpuA+ZUp-WJ|UQGN1cZE2+5=a2By%;kE zFkzAKqbNp)TYSS2>{UruVvZ8zg++nhwPud0^KP`nzQ9y7+I``l`mvqMWK~#*5zDI_ zH?EKDI&Sp2m-VK&p$xWT2;&zj^xL*WUkhHiX>+JNjZrkBXQt-)mB`{8H&Ycd)C zTpt!)Y)-illN!q@KtLsS2?+HfrWF14bF8DFC$>KQIKyZykB=|TcJAC4-t5H_C;+Y0 zH3$QgxtJ&>LhX#hWz>+b3-uIK1k7U=V4H?x^PlGF+~2 z!I||v)5^2j?RPxd?_6x$LKE>u$Us(O2IWe_X#&5rKQEeuP zkBO#n3ZZ@28)KTZf!{#|Rfo}6Iec$1Dc z!eujwMiGJ1v`u{xZf%I`oQ`pWvC=zZw1VBcuj6%pyauMFF5FG+3|vDKt;;0RnLmpu zP0pklfxY@zk9O?IS3Z-Q7~pKi^^m>$E6z67H1YnZ9`xu-_aeK z*x_xMv3UjV`1&@HJMRm@{oQoVp}yP={AT7Gy4JnQzABy=BUSm@N+m%vh5|?mgPCLV&4~j1DsLEcxT_E9cmC4 z1cB}c2WD7$;$8m<<adD>)M%`E0{I)mW!hhl6ksN#J_VdXL-B)=eI#Pod z?I`;H!BBKN>$W<#XO>2AyH8zsJY=G^-Bc87Fvu3udYW6Uf@#H)jCz%0T*%*aXj8pv z@;gI(nXpYeF05`TG?*y??gY3btF7=3rl;RH@;xrTW(806mukT-^%V^caOZtkNVboE z#SMLATtk=birSl{{|cCos4jSkJH1bs-R!4KokDGIG?E0n@X1 z9rWXkPt`tyE|0iU=7WbL>=oipcnD>%=BUf|QX5!CvDEXWGS+!vZRN+i)!K9al^!kRA_Qun@q{Y+|u07>ZP{I^y+$4=U`~Hnfd1{)HoCPlNKGm8S;m(G! zaLv-dFdxcng=3)+7AjZx)SjQ`ZaI)Jh=d!$W^Ns^21l#fv3m2o4}@T?=o6Bs z=nE+6<&aiLP>sVm>}Gwa28m=x5JgTdgz0@?1O(^785;)}K%e1%^F?Jt>iGFSmaJs| zWv~A`WFhE`nfCCFS{cHOI3>-u5FVy~w|ip5bFJUC@Pt>$)f$F}P*O+OVrRb^&o1OW z&`&yTu`)oP@X@e1X3uX9Anhd>4|>0j1$}Pggvy4K|69g-QEf>rcyhYKom?fhq>~V} zo4OIG_t?U^zT9|P?M{sJsQk|7?O@v+Z#v1fuj$vC=RFp~MVA6^d5~}bwd=eXXq z?85+8d`89vTztz_<1$magEi0dA4&v$G|xUdvsyuc=oz!!qql-dQB6l~2;(?L2a-jL z<#fpb#$}P65MYg=>Ono0{Y5NIeLrC(>g&-Hg5C8vg7E1uv@<@3zseL1o(0*V+AYNp z$A7+n*4q5vJy@O>E)Ah~D1IeKr&~Dcq4)Y=iP2G@SSi!O1=K_~CQ2O#L-FT*0aZ>E zC^iD=oa=9#J#FC@+RWg_f1Arfv=D~C@B%pN^kR?{^rjIAkEy)72XUPL1NiFN7IAub zoW()^mVGzjl}Y0EKpu@636UH2)7J-iEkW$ih{Jw~b{PcFtEGM;oz;*h#z7qmMgma& z%=4i&E|kP6>KN2&g%|=#4{fT88oPVAHoksW5vhRuoVUJT&7eC4WBO*#D<6d+giGgO z*aN%0C*do6&Qe4fmiEckf&cgysYZj$hK26~?kY9Bk7Mg9KjjC)CNRLTONz+lHqxk5 zfQFBl@IC$Hk)A@7dlI>#FFIKa7(UIf$5-4~j@F{KpBM@_qDia_`wZmX<53wzNB`yM zKAKPO+Oc|5HU!qPBVI;P@&1)&5GUI1`5hB7M>^XtE{@(ZkBFil~5a{ zvOm>;T*R02{3zw>7^R~VE4hMUS@ylCSHJd+Yxo6FkOIc-ElqE57-g!R$|yDUOWl@0 zw3H}h?L6|!(e{-Z!)Q|UMnq5GRG!8gs}^di7XhLz5sG0QWobbZpVbWzB1s6vg0Q3`>gC^t(tv-|_ZTE@DDqg{E2iMVQX`CfPE`>$x-*PgWVNY7Q z+p;o-UHS?Mtdz3HXuxKL8=F|g;N%fV%xr*B36zeUbe~^g)CQ02IixtPY=T=;@rR2D zf-P0QIzD-7v2fR=JkvOHa=v(u4!VaR$N$_;_3#`3R|I0x45B@`Tt~$3Rp5Me*dY5+ zVM3hppGW`z3_#39k<^oJn*umt1eN!BQgw*jMYK5?biwY2*kV1vi1yF~TRkBmB~sRVnBVF@v~1Ra{16u869AwuZ?zo9f2gN{^l}y z8xpeWYU8FNg=fDh#==|Hte}w|YiiFw);G=B6DUCcm6e`V3ydIPy1LT6DX@(222P_S zOp4O$fR4-_xeG+Ezzeunf0arbg~m9y0Zk3(NLRV8E>G*z*)UtZ_N3(a$2L-sQt=yB zG)angL5eC%&gOb~QP!po^>1I5cQOGhKg~aZhJ`4&Tg%Y|3Tu369Edy6%5- zKbI578~+P`@XTsi37MBLqmOe4+jogt5XGXI&ciyHcqK}8Liv&M{TZukQj_#(A2{On zqhnIy%;QKEEt!2(h6(+z8QubRz{E_qN2VA62RL&T{|S~Z4s{P z(5I3tySo0d8OneXK-ho6Pa_sCz*cvMBRt!|qxv0Bu?#{vYC~CRv9Oak78ko@W+W-J zO{K!))G`;K(tgXo<}zppOVoQuz@x_ac!lDnFq-)1`|G`04h6Y^31~Us(+N4nEURE( zpP#$G;|mn2-+~LRB}@l{sdH#pq>-6=O5LJ@3R!K5P{ z6~ekati7-YGG^H?TTz6?c0~?VL~RD_kk`Mwpw?hJC_)ZvCvpeMhQgMcsoOGL_sK=M zhFy7t=f$bgD5U^tXs&n#T0v6FFaRm`xd1J@rPE2y6DoN^HW5(&jg}MeZ)m~|ztgzL zMO{~$H=l~xjnFU~byKcZjqUGHHk|3w^+PChi?8fs<6q%mC~Z1BYcKcA{Yl%6hs;sc z2G8~U#!4>5k*I_iD|%T8Jn)QrH}1h?Fw&kXD^)N&vxjiONAyQ~A?Rqz0+wXu0{VFQ ztFJq!zVqtUWIRnb4x5shnDbydTj2BW_mkI9?oNumHtUm}pd^EyH7*97`!gOI)Jnxf zcYp@0_PyWu@a(_<)yVcCq5cWI*XIvr&Pyp_I50-i7`+^8>Sd>S&~Ib^_F)Tpi^wjCF2iMDniBwxiK6b8P=+2pmFM8mq= zh^@$3XSKO*5|@EYzzD+wl`B^75T#I6l(bbb{#*^+006kc^o{+JKGi$#!mq$Nsn+qf zaq5)qI%+o9?cbfES76U)-WwBjsBr;T{qMp%d!p4|6exj1D8-gV0UK_ezAzLjW_pG| zK36w-%SJgAY-@&%<75@fvffla0&29ejE<75OLj`m%P1u&XPOtc!)IV=8^6x&RCJw( z(4oBfYYpCvWN~RPDBpaOW;bkZGt=5XSJbARfx4)QlW!O}p^N&@_XdIT7LL!jxW8Ff^9kZ#gts51MsLcS)u_f++U3oQu|DzN_uwLXJ9W0>< z1$_M`95@2PDMg}?bE4OrnajYjAu{tj;Jj1(eb$1Y6h3``8H}8#dJ5+q=bivA`ee@a z!ugejP#aiAoJ7VnmK)+|{*M626t#Kw(uE%;EjQ67i0%B(F#+;tEQ@IX!ZyFeg?)PEBktnti?vGc&PON?S-ndF1(Y`se7Ir{HpeHHY6vaxqFvo zLke?0UBqYIv)Qpv{BBtu^%0|9vkFs@L2kx5S0HwKk4>$3#d*Qz8dj>_0`)t$RM@{$ z&`?^F_2+k*7x@?iI+cKeSXP`nFW-F>r)xE@=jar*iF@f19SA{?4#6=S7d>qScPKwH&&2=HQ^DiY+{kO;|EW>E>9N zg5AHA!pw2X8SC%cS6CH^jy$pW^@k>=(<`hR^9lEl;N(`ScYnsT;fWG!xQ0|yy=`K; z?z+`>SDux?4D?+KNP{7Q(8uU8erx0nT%M~Tc$xtq>%|yZHWCs#t(eb6rNE~Lr+IX5 z!l^pw9g5bS7X#_c|G5jXrZ71J0)4++>?J*mNFg|0ht9|ez2pc^P3{Yiw$G|>mvjFI zL5tZs{|8Oy5#&8kbzqzAC90@_wgQdn-CHEPv~tln#y$02j>Bn#>(5pd;{9?X{U|3O zzqkN&_p~Z-^REMXDcZ6np=IP0!Rw^W19Sh>G4W{)svXgUx}aULbjC6Ue-_?js zWC{ep38*IO9;?Liyg84)WS;NFzhr#ktDmMD7KDHq&NasylNvwI{oq%%k2lLs zUh2o+&kh)LtG7+#`H}}#n7tXCCrRQX^Sax$gs(f;+_J3V0YOdl{>YP(B#(Ci(X$Xj zeiCCgf5v{hjt?Chw=g}{CjFE{wtXi2=K-v!aO$i&yTtw7 zK^@MsWivwMBxJ$|PhkYQEe$DTTTwd@wSLc0k4V#cfCn9ihO-Wr&?Hm+fN!rxGf2fG zuPjn@e!`P$8@6@8%?%9m{q_r?wenZ5lai(PV2S!r=oK1qJtzV@YI^bIWnvl|%qHY> z8=_Q+vG*C(6@ycPAYR_HK+m)AxwCvfOTeJ6!&Wfi-kk97&L4pgn%ukUpvCM2RiXZW+`WMK(rRPrWm9k zzfF}5ujkyCfDzr%+F*urP~X>DIrNcWMA*(JK}G6=;R)$?!kCO?YoYehersL72M_dD z-X^|ax3|+?$UPCOXn^JEv>vXAEHkVUsLB3>X%Q1L4*V7wxkjk|cW=hD@c|u)lg|V` zBHDj@qI|3jPaUZ!1zrgMjcn>v{r_aE_3?}dKc0>UlAs^7kX_LFZ@P)(pvU)=D@y} z6jg;TF)DoU8`GEmT#cJ*6rRO@C%R;0!R>_F%R%|8l}E5XxN}daf5qR(<<_>Ttqpn> zWu-3*zkW)Q+ple7j}ryx1EFF~CYBqAXN4ZY7SsNgNM`7O6&7`3c)k(sKV)J>^ z#c>yGI|XayEF&-C+sQY9j;Q1Du<^xSFP!22u?709`}WE~LWrnkEL5EJpHrnzObNx9bo_8^x)Xl*vfSW{OXA zUh>)UqaIWDlO}7IKUr;eHTx}Jjc9~WFe?{k4~k6`%r`^K*ppwz?mHi_!#s^B$qvHc zpEfw`dL!~hl_FS(BzKk=MFp#E0{L>=2AIO{*#s@*tcgnVT?Q4q&FG@fRVULYHN6YD z5xXg9JK&Mx<(G08{IHEcg3}xfYhrcREdD6;ITq)?!%dz)BU>CJt;t!0BPrwI&Tr-eyH%J z6MgM_2uDck;59i+5(4TdL43JoITmng=Nd+yEkShscmF)~#;}DpDBMvIG2-ZW>n_s- zdt1W{D-_s--kAUZ2PW9Q4Ws_o<5u;<@r+%Khr-*X>+G)Q^~rEhI7P8{brL(1yIy7~ zi;Mg$z+`evDYSVq3BE|*?Jb!hT1Ui>EVZg%eQyg5_-4$#1Ju20AL+ai4BEHVj+Map`ZV zCG5O5>9o;RW{#|>wX)jI*5Rohi+OJ?<-E6&Wjzz(1k?ZM3x`hz5;4dY*{jeEU~Z@O zKNviFs7&n=NkbUd9)ReBTg!QGE#DzRR$K*P&zKH`} zwY|lY3y!4w5M9xOg?%f{_;F{a$Ta>MI$L00;S8sNL_}A<0Gwe$_s?uELtCU%;9#d1 zROob6+_H$Gdd63e7qR%X;gpJv4cyCcMaT z(Ow~PdyLy!Y%(6;%@p0anfB`@`^GSmGR?{qkMm3^Dyh>*E`wBaz3&YPlHpAx+~0V! zbTAp7N2z#lV!o%7m6*7A-{J+Nop?9#T5WsMAr329AT{B*9Z93SOD+U`dT?QNKpeYO@eUW5OmFe|j}SfT?PTm1@@lNPPDlR7DKvHa&2;Q5 z?5Ke(*NJl4BxXe+(hKO+gXK)k(KS zG_m194z}-#+C8a<@~)MB6F@~D1)s|wa{kuq(h0>f(}f70(9^{xT&Om7P~u(cOnZ9K znAqs4j&xESfEGrqi`e`%RL!!V_7N!N$68p6c&6%mK~+X%J-itW!pWN@q?T0&i#k%G z%5|)AG2X7S+n5$=|IGxWf@DA;(`-Ypb-{q1aoQ9;ga$Lb#U9{br%rAiEAvNEd2o7O zwgm^+0iNic2VYW@OgIg($QCE!jJ~HIkrER=(|rdg1iwLc&ci*$ka*dCgW|v(rRulOGM~yDytOqTEh6QM zb}GuYz?*TdOdN4H9_!9fQ^P<9%#1v|Ag6a)_sEjqLUAlw@ga4c7y-cS6x=#~JLhkZ zw8B5NA}xQdGDVWWCM32A`{Ilp$s-vn39S}2A;xLxu8&$d8Fk$*qvE-3WvFDsET{<*_w-+Pv#^)7cfzm46S=J*^U+I=hq~?D=iSnpHg3jaYaH05i(A za>B!=9{6f;YVf|A)p-}iH@q+JnPvy`h>Jc4)qP~zdpYS0MlF5-J$0$bG=mrV(!`nw zm>sF;w#uCJl{f!C8nM@?UFh!v+m0W7*ors=!B_zG0mr$-;pH*$Y%IC>Z8?V?cR~=J z0dabHE8({1A4OXh%XvkLrm2@(eaH56tsDKT4^bf%DBlv;8id*tgH(1+g}6*1H~yJ6 z6SaVT^>eF7;W|Nfs(D};8@>001&p z(dI==D0(~KizkiMNFVjHU<9M3;On?42;ryROl?UYoWN@?@+(th$kd3e0z5Zz`u|A; z4tVA7ofQd6ayQqEVk5 zQw=u_tts&zaBmXum^UTS9dL5?j5gwzexu_W zqq}6gkj`_~hR%$JN?)YaIt#eE5LRX|#(5n}?b+|osoCaZ#${}jrfb_Nipx|`#ds`p zB8V6Z$$pThqFiFaxwRMphSW5RWrw0(2`Qa9{_+4hB=knUGANvOLF<1~#j5OeCHgvY zh{_!lqKutm1*9LlyLi?Kiiv-6e`mD#dE!$pmuTU*{*5lJy=NMuYR>e@V-Au@4`o$AOeiTK=Jg~rCW zFl|Mhz8s@2fw|; z@P@5kekqD*tq+^*k#nB}g>74S`ELU#rrzLxYrGW1_J ziEGX};sFkXj2bB9d&_1MT&BUJ+)d|)1wO;Epad&HQ7#nHTUWo0q7_48knak3;^u#~ z=o~_(;W~P>bfClcgZ{OUAK&fq%*3H2`xkZh0j;`)U)w6P-$<9ji}{TqSDD___;TsN zo%wASkfOehxTbKWOEs6H@Yp(t{ZEBc3=Y!s@87yNT5w!(E2Y-IRkM=Y@<}G#83OXE zT^OevXsy!L3ls)s|% zJLDD;lBHt2#B_Wh+_m3peWI5*fA90rr|Tu5$%(gNK}^9OAydyNAd_xj$U1`kN859L z&+P}nZBLD}X+%RjTp|Db;yUj8B&0KUelfrR000saI#YuyUSLmca7Kj8fT9zG)0!54 z{lkC&00SxCh0}0g0WLxVrHD6I-@d4UXAjK1BWWteXy{jAG?8)7HK^4VBh@?6+lnu) zNzdMnmk?Alh&!}&!{?jS8jrt^@8AFc00000A+;VBQ57w|m7AKrI>vw7ox`T3M4&+u zct29Fmk=Xq@jAh8w6C2TPZW`@T}E%t^H?07?HH{_GC&qha1;W zdEtd3jj72_g~nkrN4g7FpGw}2thC$W)n?xctDPSW=Vrl^d2#X|RUiNW000u863o^m zLJ38{X!OtJD5tj-S1t}7yDpya#kdMf$Bw;N+-}o5FwAl6`4&Urhkb`Ed#A4nvLXdv zgpbHW6|7S+mcriI##*Bt?AD?HEspi4nO}3Kj>eUkW3^R}1R!LS!q}~9d^CJg>`BOI ztN@)?2)RwI5R_a&AEL%|1Uy{juI%&|T0B|1l+Z2Jj%LNkvrfwG8P5-joa)8MX(?7x zA};+3i62U)-gcU4&j!uw_DSXx@=7`*OHV}QnHyCCLBigINInxe0pzW`CP9yEUk<-;k#&CJC6#nU zdh#Agvt)(h@EVn~Bo#s1O?syW>aAHCn5D`?Vxt}vXdIy>(YE7)ig;cu(>qHDwwH0) zY{tT{lBPBp4B6%O4wfp45%Yi5(=v%Y5wt0aU@c&KKtOWbf@IyToyn&tG+ko8^y`a( zwFh5=Q!|jPJe`qs668{iN`Gu()!!X?b8!bqN;(3VM494p=_^YPr6WyfF3%GWvp;j{ zEL<*~)JKeRr3^KET}4B~YXUFYNp=XzGj>n@6&rXXpQV#L&+$c|VAzC2BCciA|B#>h zaAy^&OIuqx`!w>Rxne0ZVfdxVa1do^Kl9ttSYJe6 zCQ*cYekUOG)X9r$y7df%MHisOU1cvc>3Or8W43uq?Iul-?(`IaTGl^DAz%(3p0wQu zp~ZmwzS|29$}^Vx`i-0{1wBXl!LQ*mEGl&ctV3R$D8YoK1yTCJ4S#HbpELi#e}n#+Z`<;KIC=g+x6F zY*w);1@r)pHk4)A^blQ~c>CFD?0^PYu2@G_i{6xiA>n7UmvS-Z&+4WF(p)4>9KQDYw?!np zeG6>M@}SXR^#aY57xRt1YD1WS+IHEf;CpM>ZB;^WKSbLw)vx9?`vu6w#y-bB24aca zmH}%RJh!+N`rd0s^;|}x{nJsIODGhyqs4l29*;&fJJAAy**UTzB+DMBbb`0`Td0KF z=Y0T;k&zC1IA#-3L8&M}jb$7J9`;j}vZ5xPTa`b1bOFQx?!f+ED<hcq`M2NwoF~+F$5uP55deaL0-61}}2OBQ6ZM7?7(P9tOq* zU)L~8sJV|<64%K1VK*!}a`{I478^!eA~GY91BVh1Amf=P>AzbOW-NNTy}#SQATWCZ zPstIM!yvgbSt|rE0>EKV^$RHgE(V*qE@sN$TznwZTC7A`?q4#6NT)K+c>o?3sBWw} zK)Ljn0(lj+1u*qmaw4xnHK;bkLP*;c#`>_6r0=#}FI$p+*F*=t4V63jy*v4F*DS`13>X&?tnjHQU*xbLwRNcjQ^ z0BLm&6u%%jy8Y$&XM%!*O#RuAG~+W%jA_QC@95yd5b~R~lYx>coG-4t_juEdN#E0c zTNGH@b+1T$o=0sK4QC;iqc=jqs?2e!=W<-;!9~!7ib12F@~NyOc8XF{XHL0$06du9 zLcZ<-Q>bQfG1DlgB^(~XF{duA%EoGr^?z4IsMJUS1aY4;y#+Eu%{0QHj4TD`qJ6!< zCzKaQNap6&4wwM#l1ICwz!(n+rO#YJ5VHUs0ssIff^z`aUKXOjSRP3ktn4D!EWGHgnLGM0z*9e{2Cl^x+G?>7xSj( z;9}yT@c?wsfyQ>_{;Qno=0L3y)ibq(_hvIRMWJ+^0_;qqG?dYj+;HGQz0Gu>fI$}# z6`|`DH^hJOubWhcrO_32|8V_jd}mwNQ9Q7ZV8_nT?4w-tC&P$r4(>M(2jLk%A!B;l zX=8CE@m#iNEQEGq*gzn6M;$B7>y_SMr^wtGTa*L_4!yPnp}Oujq*_X95CS0I{PM80 zcsN594F~{hh85FxhS_s6=-`}XDR1t69zyBlN@AG6$;0x2C~HA!BIrVe4W4AbyM5d4(0?qQuHiNE;UwKcHn0Q9jr}ObO(mTalTpC{ zXd@!X;Ueox*9vg$-wHOV-2!+)JYS`)h2wB=0uA>%fg!K`Vyt7?@hwjjVCtIFrk)G? z$;Ts#NN7goDSrP38toe^pwI_(CoMP!P1&#{bXzKQu74wAFOKhNpb?ymKU5>`TyX`m zrv$65Cl; zT;Z*I7gZ22wAa$ForjUTl+TU;RzRu0ogoajdN>W&Xkg5aL;AG{RkHC>T5hNmLzJ2z zSCt+&+kQE3%#0#}LwFFo!0WC1VZxR_fAY? zv@H+^>o1&){?x0JD$wi#e^@!1?DyKdMtt*fBfa;xSkc*f2Yv@tKr3(yjuwOW!ji=5 zcokdac)1`^@^0Fqf>*?IZ;n3;2 z@Dpeq#Pye>C}v@x-?(=6Ha#)!xIJB(-wc`V(7_o4VvJl7T!;cvxe9j(pezeL^#o}e zg&?i3a|rLMd(39s$=X^QqHg#AKSvT313VoCR0W*QDOtA?G5xo*%X0-NQBa!5 zS>Z16I33kmN!mYb@u6v$BmXDJ1SM7`own`{&$`1oE=u~5_-JuQ>soH1EXMq7uZ~W) zqtR7k|LgqQC=yiol|vYShNY{w6%ZNB6Uxx=OR&aW`ndrHx;A_h`Kor;h@aLZMZkPa zE$~6>+z+qcTH6G7&4ZJewqFNN49IU5xqUJ1eGLVR2lR z6*3rFSwq@Kmqo1r7~+wPT_|Lm)yaOZ(!@p@fDMPM!SC@)1w zv);Z4cPrkRwUM9tKmG;RY`D~R=%I3evnW@tdbQ`kWx?0zgXscUrabDg-Ebsp~D@RL)n(COMd#CaiC(RrZ?TXmW8BN6*MG$IL5$WvB#{sA}odiPe109 z1Zh8DbIz2)z^JrPc`&Y`6A4HJEG|i-}!V<$77;@GdfEwj>W1 z>$za~uKmFO+F+$&BMG{aN7;qgTOiXAH+j@4sth9zZym(Ty)9l-pR{)ShY)##F`ZI- z#CsGMNO$kgS&UCzXU9XsRDQ{a%;DP-XvAK@t#NTU?8GsPimy|g>@9v#nLmJMsswWN zD4=$7?zhC@tJEpCS;bT{waP5MD*#mLcvLF!e_Zh_o3TW!j-y9x1^f8;D2BEd_ciu6 zY5y;h_m(AbD-N5D*G|mURW?9~gw`F4s8b?;Rhf-Za5qK<1K8RGnslX8%L~*2;-r!0G@8@6`ZFwK8N?uge$GHMtKmGCmzQuZ+j!mrJdUS$ zGl>?7-a# z!YO@i0DRTiRzv*<=7x|A0aVBsY&1O4L4HOX?ik~({-pouq<8Y4E}uNA0CYQ`y|ZvT z0!$O6@kbR|s(tbXepcJg#c-9)(W25-B#Tcu`wj-HRqXqOH#>jjaP?ioCdN$S0M?7J z0009=QmUz)ru#Y5Z*FMw_G#2%3;gBWHqJncb?>DzfB_dlr8`#3?VbO)}N7g8Z#0No{PoC9ee z%QP4OIhx*M%lqo_^wLZOLBJAonpE%*%q(h=j??6?h0O}kL0T(SM{07}Tv|vU5qDt* z652ZncYKYUMw%6Xb8@UW2+*t#&Uw=K-n9eQ@y+!>_BBq_n%|E;cr-!$)rXeDDVg=j zQOLT){voX_aeb{zrR+z&^ojx%$U<`I#ouS8Ti3ccy(!ozJ0lH!4|?4w=-U01&Jgu? zfy0*U$(MPYv*qafc0GF$7_+W^i#O!Ver2i%6(;zV{SfI!a;l>1GvScyR<*2T2djf~ z&4{L-8N(<-@ngngnfTtfb}65aE0KqBe|_)Ulv@;{pT9@sR7ZlPjXMt4#Jnzl*?eCw z6NYPsNMK>0k$&r5yJw#4bZs#XXf-qE)Zu_}0+{C#kk7m99)23Mcly*?`;tf|Lkx<) z2AS$w?=z1z9u3)MHjzx530Wl2bi3J?6KjaW1`fqQ{v}YMXVCxDHgH}bJKM;(6kbS& zR!^a9`N$_WPo>T~u?;A)`dt-Xe7fb(2txQmvGxwIo9VyfY@C(JzNQ`WS`O*+r^yMf zIssd~0g`}WNq5sx8Ij_A+p7)H6ck=6gsK?#TDJzr_W7z?>rrl z@2AA6164V*~~7qAL04HJ~ui=Vkz+ItBIM z{LF{qa-bUt1Ufzu`sINJ6aM=1pVRmehr=o6UH`LfDhzRZo`$~`3}IfgL|yz8RSlZC z;O`h#`}A+g#a_$^sXlr1(1ZZa>qSe52!99Uz@MjXF3DdmU3(N1j5I}1l68!UQ)DJG zm6h56T&KB%^5K3=9ci!3L;(?H=Hrhm7b9GSI8@3U_q%b_58&4MTK>uA1hL6)Z*e|t zjoC0xc&23$<*#IKKwsdSqA0nMq{J7%<8Lz4a7Xr4SqWxUig!->@rw^Zy?wbn#2mZN z$qns371RCtMFkQ94X2(daKR~~wVZMhWFtMvl4vJk>>Dj9bdqAljqS$Xzswvqv>HSJk7TpY@?@P4!YWn5_z&JU&S z&k6M*K~7o3g~5CR{}LM^2PSE8Av>KZbedn@4A&O^bLkO1GH0!{t1&ZQaZaRxb%T(b z-wo&gc%HhpDfcLFypNUEuHQn_$2h6)d$dK!=pilc_?uNq4EJuF{%kU`I~Iap!=p?o z-z#!bRxR0HZ;n0&cI_NL=r1U4#HP8?67o=iQ`EzRK*!CMk_<2vb45vtbyqKNmZ4E# zMYlnhz4{e=X(!a)*Ux_+uR#@+WU4yw5MFYPR-6OD3p(Y1S^!A=;OdEAE@{`}qb{d} zAEA02YKb$AZGjb6>;P$HlzhBP)hfum_N!QH1w1bEI;4#u(tOR&3X4HFUzBg@$$fdH z3nIAHw+`tNk-uYZtVLuYZ7Ei}3J>FSZXITH;FW1I7pdw@B`V=vz7Xd3QX4HUi;yA> zLY7( z61zhSS-_Z1aoVmfv7x6GWx#g`13`5;;u^cegE5>AWQ3$RSrIW@{IP<5x@9%by}_|2 zyrdpg(ZkH5SwyHB76QM2Pz|SOb_j&{|NM@Wg<}A#yiPqHNjb{ud2BdFPt5k0{XV&V zY&SF$`7LuTP`yg4+E~FsAL4GK?T~V9$r~RmA=17CAO!zlf&xuH-1qr7vEN|%%M|oy z@f-g?;06qh^w#wdN4E(u-HAn+JOX-lKpY4T6Jnc6tZZV&lG8S9+fg>Rh`Kwh>wUvsnaOnm=ueV63 z(xI<99wC(~eOK~Lb85u#SRHdg^{2RfSWd_&9+>?5&KEq0jAV27--25V>&xUlz!!Jb z!#<;pUMBy#wUB2Sbw*LA@5mplVkhMu^kYf}7rh>iqw_oyR9WP2_KV+~fy#i`xBnaF z2k#N62+Dgz$jR*Wm7JrDLV*xP)WsVpmIC1YWLNosJ2)?k4)_Q+Z7#4m6ly`T4!k(4 z?yy}YMkr67dY~e5k~NIE9+z|}#jJwWXkypKM#1(AN+g?^6Y$9iaSxCqo+bt?#6;S5 zyM>iPu#tNwb8AeZ6qe|yb%Q1Kve)-Obll?-A6?tLps9kziGfasu9TdDeR;@dC~~oa zfu)p?JP}Wyb}@Wdalmy=Th6ro*1~6IOnH~rX`AdE(O0udZR^}2;P(vY8Sb}Fcy#=C z1Yyj^S?sL3rcqEw*BYn`hqR&jJ&+)tj8J=%WBrl+2AM2{HE8O#BSAOb3fzrLUn5&t z(=n=3B~B#XH#)N0V$R=rKb`$5eWcK=`p-@NJxQ87fKNmVi$yuAZ!23)9Vym~-E7F8 zcNO2$yE>8HiK%5<2vCEsuf*+e|LuL54OHn?vq{dggTMZ-;Z<|a(HX}Jn!rx`(IeZ> z&bp~+on!HG!@D+E66{($@ybhEK8)JoW!30tEOEYkeLQ+mt~mlW6!9maknC_F$(p&` z`AFY791+iX$p2trk90*uw{XYrMVtm)Je3P zUuZVSicY1wu4O>{Z*@*-)1c|bC4+SL|M@pLBy%+QPRWExqTgYnJkAwHQ1xa7UWgB; z)=i~5u@Y2S*@7@daJVB#R`{1EjlSXxYCOzmS6YY+o2EZu-TtGl^+=d0Uu~5%4P&Qv zo6RYTmP`nu6j9&3aNa0Q7Pu+Lpl3DH%h!U5=stm(;UJr830W`nIqefW~9%v6>RMF}qvDV)xgVoF%rQ{wp7EE&znJ{}Hay1V19v0Pg>p+^0?&Eho zOby4~g8>(h7_|r*z|uoo5R6ECMR-0$9+TZRasmP+S)FPzvm8fSz&)OgCxh=Y2*$rP zXIsW=$u(wYb=UEeKk#_0JLOSQ(oEb*k9TH&k4;1bD9@{fBK%icCcWH$+x#$z0jobH zx#_Mk2ecW`P%Q00Q$|t#51uOrQ4?(31F4#9m#j_HhcK)9pDY*E!X&B^6&+h0zYY8{ z%o<1>*)YtogV->80tRBPL4JBnfbP3QSQCPUN^mGh8)%qj?q$~7;iCPP7=8n;(sj!f zgF{QWdpkp6o{+9t7AXw}R|gg0@e>DR%BvY6_BkX=p|5G#a9mNRAx5#M)bKQM7=*Q# z2U5J5V*0HhbUzco>d9t#^v9Y#{T?m~sB^VSDl;PXjaOA1zp-NjOKj8dyh#99 z)MDN#7!&UDuH9WY;^n0{Mx{&g408HIX+lnaNSd5VFW-Ni$&wEVm)gycB*!X(wH^gt zw~HzYaV&^zDof(!p;!~E-#J6u8D5b5**5e`P=8qpD0?WK+z5amKR@%0zR`5r`8`c{ zbXlAp-Yzudo{HRtdK2*n4nRTF&qd6*^u22d;(sQ%y4oTsr|F-Una?NU9q_8 zau;Q!Xg%)VRS4!{-s$%^e~c-=RxM0o1P)|+(IccKH##s6^JckMCyk15Npc@Du6@jd zMd)aI3M?V;@qhDUaF3Wq4KsCz>Z5=uJJot-6xaj2APRYqWqgWynq!}UODW*S4oN(U zo0h@pHwEi2z77N$Zl6j;MsQ2=OgWJ~8fK-IkaJl0iSBUT2k`}l&pxPRjp2u-eIy^q z;3Hrjvy$M3MWa7}RYMJGZj!cVjzgAzwaxaijogGf_|?@Q%!t8S$V+6#G34LfMA-}Z zqttJ`@9?sCzdf%0cB%r|lDS8ZEkNhV$@HZ-0000Yb&K`WIxnwbJ?bUNn9AAXMZ2kv;5|AO^ckWIuWqc{#Gi9HfJhO1ba$K!y`e#a=q*I*keQwP4IPQ0y(1b@;W%~9J z<&{{~&7p5eWx*OKMT4jvy5h%@@jiP9}`|u5>N>%AC z-<9-BAZ$7KkWgXo-GeDSNi7SHW<@Iu=NZPuk`r;fZz)W*Ro+}Xarv}ziPX(>CbPp? zo+jb{%w~ZuP{|c@?Kf-?L|vxJJovCBZE0l3NcL(H2YTrAXMjebK)&YE&rLuj%uBqT zXd^Og6`Q=%EkT!MTjy_QpV@oRC&B#~2W#Zo0-n+yu!JEE4*>;j>0!^~sCFT-85{Bf z;X6Adk0Rzkb=#>v#UG#DZdrZdDK#ONyDBk#yT2q-H^eeqBc%>RPntA(2&N4MApB$K z(7)baPEU5Mf-q!KZ_^>aaaHxY@`PAb@ZYyWQ+`rQ3_QbS)ZBPsZNJI?=qVt^x?r88 zf{9RCqXZWv`%u(S<;nJMSvT-8ssF}5k(RkL+7|=cZU$G)fMI?8h_@R*`50i=zC+!b zJciAYBkcjOhq*0L%DDX54yb=|t`8w18#D z&KB2kNeUv|T5^^nCJQsk0|+~_k~>}UGw6hM+3@l9EE{#LeVMw= zU>*tYXpIr8oFd7RgcOIDf}8+JN0&7wAv`e3R&5Lf|B%@Qj0yLgb-6@gwECdMjU;o+GvNdDj9IKhUdU76kz?5JNV+QYefT9H;27uNT?c+FTb0vB>m-+_QezS z>{M026HB!E3u?shk_qTPZoDs}JjQaVAI>jHYZ2J{2(n8+$Z>G5%zw`oVz+k-IJ!*7 z!RwiJ7>L)tui)F4-|c-kfE8)PSZLci*FVW5cb zn%D1NQ)zemJVJH#x=8Ix=o8~f>+p81qp)aSZuePXQ^AF6v<{EB@@Ej8c!2aD3j&Ma*)&l+N+l*J~X!iY9LsRVRbZ>w%u`LGB4Qk4=|1R7Vdt0+dh*2jc+ zEDHTP$XU-if}cuxeC>;0Hh>jj-r~*vS8z!|H~t+AQJwRrowj10(3i}LlL8cifO!=F zb_%avl)p^WEhqfefm7v{(+IPLy@>8r?|vb6NC(j?<#;d4wSAv*5IuT8{4pHFv1^}> zgJ2q)h3-2O5tEb1?qb~B4jkeO!mg|C&r({snojz(?pfzgO`#@6+{q>T(kfbzq^P=r zPT9)?1ym9exZKs0lYO9>Wa*GVjmAoO6I^ISIgY-=Pz{dt zQ^^r!-S=rgzM-4jeJz3*F#s$#4J7?X9UdSwsH>6ngz&ZB$86<9zd4u4vs&t+jkS}e zhkgp~O(7D8LufX_QO)s`R0VmE>uZ9aPYpQ z$v!Vsc3;1kM-E(!uGN?EpjgbcPKcPpN|nn_2u<2@;*Rv9FQ9;!1Hdf@r)Hho(X<}; z(`QnBPzfP$vRiciOA2e-L@;!>`gIC;9}2A~+`tr3X_@rQgKKL;nFH0y&-RNa#RQ$R zV1(QOl5w5g(~Lf0bf7HUo!E67O+nC=MSV_h%(ws1_D05Ym2${JvzKzH%`1P!li#3~ z%ix7jj;-GQgjh@!A^Ps?x2M78BvsvRY#K&7hGt{mCgAJc zazIgz#PS@T+<%aeLr=f-m+ip`AXS=AuvQZv`bnj_DwFE|6m|30lIYh&S6B0gw{447 z)SzP6QGOV@!8hB**|v(%Ud`X3;Y^@TW!_HYOKEM-8em~o@>&jj=$T)8cTwEo`%g=i_RU>?dp_ znpIlnL|P+AkktTpmb_+X$0y?GkS^&S=I<>d`uZge%qo1?-fLiXq5|>x%EW!K3(wzp zW@%t&f%Vip<=R+?8yVca5wa%w%4ZMZ0@F3=uH(te+laicz!o{F**!w7ie6)u2G^UM z{V0)c9b6+gPxNuOM7r*`YgUl7hPwL~Cx~2a(wyld=siuD2VPhiv{W)^>1oy#rASJN z1N)UV7yD?0Qir50u$YNw8t;(RbJNV7^~L&DKBl|3PkJE~~#bC%aI{80E+1PFx-Yfz%h44d(BNlLRmoxBA2 z?KjUcOhj%OFHEL-2xK^G_SBSa?f#Uc>c&>h|6sF8#)u$#X@VaGxu29BSqUW2!yi0f zWVw6lf&8tiMW8ibJEST?&tsj0AU>p z$rjnEj9_oo>uX_r$_-+O1|Z9S z-VpG`6s0>Q|-sKHZShVKq?aIEKj{ACKzmfi2v$F}CTaRgWYk5W( z%u{|F`G@zA3kvQd4S(*jWuA+kW{gal(NG=0{^1YGjkZO~^nB@g#h7*gFVl)A_k37r z2;m;vu#ja&D{nh{=P)c}5QW>mN%YdzkG8TNnU*NGtyrNBKW+02)Yoag#_m2IDPyT% zZ~iiU(9yoBrjDDXJk9cvFz$^*yVX30tOXV*-nY4iU%KEKQb~Z8i2W<(**w|C|Z>Cxug1(#| z5h%~{!ARhMd;2~XlG-~nBW7a2kv)yH0fMCM-|!7R&ujVbO67A>g>bE*~(>?SLxc0$O{$oj4_cxdxbtw{1i{tb)5& z_tdyLMJ75`YqRGvzBGmkss^&$TSs#pm{d7T3I;*CP(?P9>k3ah_^1m~ z#(?GT0zMyGXY^x0}j607CTBAn8I5O7Mqjh-jN-+xz)KO(PGqFnwVEtf7 z+Ya;9F=mi}dQBB8hE#2_a3~h)@R~)TTjV*wp@dYCj3?31BLZQPlCZextZSAGZ8Nhz zl13VoU_gH{nH3x8oiRumz)DP~mJhCRVp}ePN-pD&k!?u{EW`fY3GMj!@8mu1|KWAt z0Mdq$_ENu|$~{mu$6y5NuXp=@uemrQ&OIC`AHXs?gznI-kZbB7cT?Cc0013;H*%uX z1n6iKMm0Ke+{VJPY8t9#BeC_id2;L$m10UFPFuTzY7%hhRt`AyiuKS6tC(cn1r~*e zh?SDTGp3x$cqd2gq6b49#Q!JSu_Cc*ibiDq9dq}fD(=Krw#X~1V zLg1rruA(gmk~kDtg;fob+-vOh4$)J6hZVONB)rF>pnZvMM^#Wk6qR!OdPOD&KP%j0 z+?V;(^)Nk3X%2U6)x1qE4gjVPj=1F+!eRm-NTLvg93r_r7f%*9Ko1YTlWQ~TZU!_R zg;RfG1Q)dq-^I7?^WO>WKp7xEdg0l$i*LBSNFz<^@;tO=TOr}@FYCiMn)tLmCxus! z;|Ym5%&dnYW1CDPP?vOznEFfpDbRLz#NdzDXVa&j{5~5MF5U}zF4tbRdD?%J;I<`W zSgwD4tZZn);EW~K0h0XucxYx`WxKwP#ihF}{Q(8_&A-Cg!j&ukPg_GucQ-3Gae5TI z$a!rfZ0VPmn)T^D)9>8kLHQ&SAZQ*&d3G~AVMitgFzq|e?n68ZPrzB+9-FZVZ20I! z|98QQk>!YL6>Vl(roN#An=naT0{0_&zq4>t-+0=AlH7;1*VNnb(a1qzitgdSInfP$ zVyNL5y_T*@B&G8#o)=GujhVD9FmlmACT<5fh#I}=GqefpD3M8R1xM>+>5~=}8Wt~#9mN}alsX>kvZ(jJ zzqv1NrDHAeg5%MG(6YPDyN;2+2VffX52CRLZ{N@E+&tmFcH?O5g#fK&Hih;zbAJTR z|NUO5?oqK}KW@P{8&+oCZ#xOj7OW}O1k@!eI72|}aKTI1Ky|{KL*)=6sQVOD7i2sY z3eiDi0S1wJ9V1L2`>mzQu1^@7x8!?L`+oHl1N74o9Pr=osdg_35jJe=UN^WPB(VEw zw;CjTq;HEWV>rH#2CNMovX=W0;YZW;k*{zD_q=}C58siH6w(PkJ2!CPFK&It3g^k^pKWBUD}<-j z2{&Tnj=ql^B}1rk)RMqCme|_1NjhMUpOpHLn+iC3|HRE>Nuhh8)k>$hHzB@ffD9A|A1t6s z{NZ`o*Qank>pBC&T#X`f`7wxnl=KUeXEyWpG-Mro@q1aBLHZ#I4SM}{~{5- z0ORs#6J?A>lP-?X`O|XgG-^v;p1mwcXnKOz=r*leg3m{QE_fnJy9Fh`M$)c~;>?KZ z4FiFGP7d;DJg=n`_9nlu1^m=5(Fh>EX&W6Xo1XlLU?Sv*jX2?Xd3(und=b?t=IwN6 zh)tsgWV>)=T5ymIN?r+Sh!z$6TZirYEp5u+BOvOAab>-RroRPWVE>%aj*_JJ`USm@ zI3cgYS|;kxd3i`He7&013a%|rR+@q@vU4G7q>LG`L0uS+)&Ea3*G59@?!B@??;MKn zZH+l9?aflT53G0+azh9R*%Qg{rN#}$obbC^2efLCdq^?-(-hyDbpifBEu~97|oR(znM)X~4XBsXjh@;pyYQt^z5W*DLDk$%Z5Z~Ce*{4gP z*2KaeI@*-ic8FKr{%bZb^QIe(zct{V6akMx7NtVVjwTGzw1l*18& z2I#M_1zK&WQn@hsH(RM%;{^A@~zYWrhUtkN_&T zC3|EF=a}bL9f$;wCYrl*=)geh%=^^%DxO`HO6al>CPWb$7C0000Wwp9%Z`+lL5*LePZ^MB$PsH@#p-nXu9 z@|F{rZ}~3Q4u(v{D7UhvNbUSuOx`RyRruG0|CosnD#nW*V_`$C-Ha5KJ=jN7%Gv0S z?r_6(uOCDdxK+)&9Vw~D3f``VwzhdMI;dHwGwQ9jxW&UVg3os3 z&9c5b$&Uj5$zYLN)4KxEac$rrYuwW9ILnhw$_Y;?8?)Lr91ZZStk z{Z!yRlRJf3kCENvS3}rva&d~rGQ3XcYE-+)c1V0`u`BUUYN?^*?{?J{z+b>b27bwa zQ^?Q~g1!h;(15 zH_c96MV-u&5|_kTb*{2&CE{z@j2VDJiJk3Y$U=i?l58S#d{zFtxfytjy|GwHkLJN~ zg!(<%Wb*MMGYMR4r;LDWk%_#M#5alY9pqUBxvQhK*K@Bcid8cb!Q4n9&|S}CM1(83 z3k^E7Re+LfUp9B-9D;c?X^u_6L0W?B0wtAb`1Kz}S{7lRyUhK<3~XSZdU4MfRGIOG z#uy$~L`efafTp*+xvP(LA|tJU>y|@P?|(YgnLsumvY#EYVQf3>Wk5ca1LIS^E)UV9 zVovX6+j^SUM5a7rt1n_=JRMA0Ux15Ee*0j}|Dg6RngXCxBpWnDaz*4-5nugK9Oa(_ZC(W5%aYoJ20o!;{$F>i*~`xo;C z(iroW<;qwwjY|c=!}UmDSxqmg3=29rbG<|Ub&0r}Y8WPLl4Sbes;VIN&@S|>iXt!(b^ zm_<)ec@c*QpOr~CgEjGt%2QwZ$#UbbGLQ9x8O@{cux$_eiq?mNIPQEOPs$Q%vV0$`3LVQ#n=3SWD;M%y>s ztd|}Iwqkz?V9`K1`;C}=l1O0pUh6(Va7dNt16K*Md5j4q zG~i)Z;-Ba?siDnWNqos`P}dr1AC3BD zZ?GXXsqa;MT#jjx;FIvWRsj0vLN806!FE&bF>)U`+8+J4L*@w1i3)PSKjy({^TkFD zQ0br;ky#B!?}w8gyYqfwd`rxQOFVd(y3VIu<_e9bEb^RosKi=AO)G?u>P$Iuy7#0} z#`Ut{2i;{e>+Egi9j^A+^%@_#;`@Fp4PLA?Ot<};&rXMVP(#7&a6T}k>D=IagfZs> z5~Jt#yeZ zaSn9xsehosW5m6_lt1($*6XO(g$ZDS&Ss}IwfHl!{PML$113=>B8$}^x@VwW(9K9^ zzyN$D$aT@!p^uHF=CSmG*UHGGb#l+b-%zACWqu0s1Jl+I6X=U*+K#U#Jt%M{IQ5Ch zvRCBc3t3+&LW8d%`o^j4ehpv>C1ic z8siIt26{HKV+n&L?KJHvj+{L#-L4aRo?Zaz+Tl_PgruA(}DL1 z4-^*Nfecl*JQYk57so~yKpC{fD7>FF%6%XY{Ta- z%V6n?{IObxdC%5xqc`*$;YWT)t#q!;H{2y5s|sOXx^Tl~o$bIr)=UGz%R7l^0UVO^ zy6gE+Kt0_Bm)?Ax0l95)BRlHD3LMPfwprO5yGpSL4{sbXBCroPa?S1F??$|_pP-FJ zfx;+mG{fx`(GA-0-^UOyr84y)f9~r+eb7sp#(LYnNF~qKrno&y&KI6L6R%lrC95+6*>V!ykY5D* zLh3rbOy>?xcxqUZ+CkcJfCCCy*J=K7{C_$d*ph0G@kmpu;OqkXC@q^~f_uDO*t-Ek z5@*PF-UxpbwYB#BDm~FQGw+0=TbN@kZ+)ivEDTo#8cRAB#;H#$$g*;b<3q_|h@CtZ zy;t=7_lk-ykooAwN0Uuy1*&NIw_ySII03j6*7-D2!#myN{K0O&9sril-xDdGuA(Ih zvNcKs#t;xH(nS3@%OL&~Rp8J=N#1TY;A$|Lpu!>fXJ^P8KIL49+qodRX&HN5%F)eXXn_|p& z@-p?Y&Q79tgck8Zbj9P67+(pL|Lg#59(3!B&`>m9q-D=-*`9-47x9`dx4g4fNC+SJ z5G(;W-B%7UoT8Q5F5Lpy)5_+~;v~j<*s&0-v==XX>vIRXpLuhDQ^tE}v9{Ikvk8U{ z%hcLg&GYE{sgwAw7TLCv&1T7oOS>?H*xvz`C zqfsAtGqwL28=B&`*iY_U7>b6cuSBx~!P#z^rO<7=27Sp5Q53l!)~k*1)Y6!+z|f2S zmqQN9?=F#{iSt{4eybol16e}~PI;DI>^Ml(skboKqq?$45^ef#Op-HeOnh3>7T$`UY~+`b9h zRQ9MB#RX3oi*h~DNAX#M8_K6LRp279mRx6OU#?T$;#PNPGckM36pzx^QvPI5nEZx1 z8r(KjLun(rE@rTX-}cnyP5Hgqz5ce0rSK|D%xsA1is~UDymM`0y?pMURjjgd??+lJ zVq1|A?_xOfK^v0`?*b+TKRTva#30#Lt&^0Cj~!NTvOW`80wJBz-C>n zgE|FYE|d_j4wKol0Fk=2Jc|m7*A1XO{|G>}M$pKOn_>zf=38Pl4n+Lg0x~EbHk@;> z80(1aG zy#jNzGbFDx9fE`XapfmH<7Wlgqqe)T1XE%9mF?j#aar3C9}Jr9XCD|o#4Xx2frvbw zpcg_9wS!uU`PIDMcBk0i22Rbr{M}vcojJD`p}ai!gIFn;v^+JgOgpPl-wpx?mFk5i zh^hd?V9$0=9VRqci4w&j(HXkTNxk^z0SyymV;BmOyA~q(3Y7dv!dfpG3oCG#t2kv; z;k_8NO9(VWW=HsxSL#>Ahyyz<4m~C1?|8*yexRFOk=nyo?`>C-vGPrSs5V~I|6RKp z965<=jX%J$-CQV--;u80h354mC*$}&0QUMB$yTc^K)n`{MRZv^OQr70+1V7zwoGts zxMyF%d(hz42}U`Rkda5Dk3w(-W(l0-3W;h;U?4aDFOYr}Z|T6TxgO3x4Z6-!fHd*$ z*mr?$`F|P9l9V=R(7VyLv09^d{!9A`J2GJIcHGrwZ1}U_FoshEzZ08WaE>e7RWDI) zJs)3`+Bi=2x>)GiHrvGaq^HKavry&cgGVqOr}8P|E{H_k5guW@Z;-4>CAYSTg7Sg< z4f}m>kVvWP=CvCFn~h+*JY~g7ZvP{Ir(Kl_f%TnjRrt=vXV_zv;U|T{wGQF^5+A#g zzN2H)2i8eAfC$(oP>aGAb5zM4cwaNy=n#|?G};}g1@ngx0oI6JjZtyGX|Z36(r6{` z0A+$Cv6j-V;f||lv^dPhun;#)5vkH^G<*hhTB2OKC49wokP2))%%SikE&LMqg;q6k zf77`!ei9SS%$9`obUlh}_Dz?q7g5*!;t+i5G?H~e!O;gz_bR^4^+0OJ&RnC8*=upK ze3^KjPo6!h%3SI`|DAbCLb_^VotDDNUhnXK;itoDL-mAa_ew3PbvbI7IAl)PAs|CJ z%udm{TYib>4&`p#UR?H?IjqmRq0HWlM9t`n2bJQFjZ}d?GRn zeo4fxU0*CY>IGMya@5A$8j9g;yyDTK7g#tlQd}{Wa2oBsQD!|?Y}j|zxap;BCNg_t zw%e}3<0+1WWX4S&p5r_-ECLMy)vo(`%C0n|AA=4)Og4+_?)eo7ji)bXcZFKD%p(+z zQw8ZvrtJ9^tqqCCc-X)eVx6xW;d5H&9}undt4+ZV*_IBTQROwjdZ$VeCfGX=ebQkc z!Ow-Sxc)BxJOHtV3KN(~sP%0onoTuecV=&AH+dLQ1oVu9m^)EPM1AQZqqH)Zky^>>HdM;Sh_oAFO0()Q&V|Ga5kBcqF} zt{(@hXhxmDQ@NL`+a26zOm62oHiHwRE#m0g2(fGjA(oA!G|#|_^BM=6Vx*H(dA6e+c#l`D;V8C_S(rM*7tE*+Dv`G44a?78f73==+1 zFj^z_`v$}yktRQw1Dhk$Y$2~nb(`_!Pqx#uGnJt!?nR(xTSV0GiS*jaL;W$zS*_!M zIJ#-nPmIr!+&@@N+C2QQ63b7xgddm!`0AZ)5df{Hk*=f34vvWPEO;i_;df=q&*QO- zE}jH(0@I#d-b!7s2^tqDo4e|Xr7*kANWlIUsb<>m?6IibOQKm`b8e9PnBF;T!a4ti zB-Nd?fVeEeoK%WJ!RdN#0QT6B+xgicMGrB=)EUR@Z2;Zu%U2hr#Z38dUaM_$yxQd% zFXgS?YVWI2Juv`wK#9Md2|ZYq`nf%DdYZP#AXyjR^M`YRO)j`7nanX51K7ARG#>c< zFwCL939Tynt29*Qvc~O0N^+wSw;v~X-*@76bq?npy`g2Q-l6w83!3VaZl)(4*%o~_ zB9+#>rOWUa=yM1bGaxse_Ol2!AJLv+^QW_{gL?RIsGMi$bjEy}Yc=KP9J@1B(df_~ zWC>G85ZMOwT1ux!pxRz(NR!B&CIf?l@x?|{00$@@zQ1UQ{F^PwoIz3tSFDk$X+!10 zc*%}Bk&b9?fz9^PFvus(m9IK>;JNJS)S}{-_C}^GK3=rbmA>MFCa2MsD)%p4PCrK; zpEU7ClRId|vuUjEvF@Noa3H-zt*hO-^bSDyNT*=Ij#vx#E{Sv>Z5f>_Cx3#8OChos z!Sjm!m|9q3FZK99KU=1p7SEdNgu48ke!W}0G~Jn7^5!xpe)45H=2&W6C>Y%(j=;zh zHVAk|1L~|GhTs{pB10X&KryRn1Y2Fc{G?K;Q-2R{7GIc%P6Xhi6 zhgfVv6=}Y#A?55WWH+7D^~^lYZ4N31VU&5j03ws~5*|W}`{~ylBVSe&yxqZ+6G}}i zSrhRbm*JBRl%#&@;+rcdn)mQ!elhWo_wjP%Ml7OtR~z(V2;WfTw2;zmudOT%K(p+C z_DT<7IO#^G7P?$y1`~``7Q22lCC^02+_MT`l$8NUjcF;Kq@HNJHI^~guii2h5)Oo2 z4}4zx*{HYcGpQrk);)f#_N>0?H}@)%T<9^0Yy&MNwf^yo9u{paw_gdY0nIowi%5Ec zwghMSATCC2!;Qc}V6NQO291@pc!-PV!)Z=i*jIDct;HrO%^!V*R%5X_(&NVqVqK#C z^fj5qjI0NIU_fqVGS*s)8w1mZeINqS+rXu$ni)bH1fs=~-TQ$_b6xRxJGE4+PRJfF zou2$dAol}d{}<%(_4nZMi4TflFAb+5i~$Z^Lc@6H3dSBl#>(-{{8ni;YdSSE&)ogg$iK zLij2iklY)DH3wb<9Y~K&5k*^$K;pbhM#b+f$K>8-_(wv7o$+>tZELkqcjb}#j*_KT_&B0<(i#Z zsb~{Y`xDH{>;f1!XGV{uBJ=?sckhxIaNk}Bc2k)(j+S)pJyq}d(C(f+K5T*vNXLR6 z_na*CDJTAis1_r&!4umjE;o!|KE9oW+j8Z!wAL4vv`#lj7kOGy%rTbshP{yBU5Y7k zL6jrGyhuNNLO87;p1i1-;4Xgf5Se9LuW8?r%E-c(A73*@K|adc%ZBUDR6hsrR9Ov+~SfGXyr?3~src`(P%Zbm( z641s<{7q@H!`R^rDoRY;Y=H7Z&=LwHLfRvw)4EV2_&yz2W@57&URObPeAJgmjrzMd zfYI>O4jmTy?ckav>|m=20$sHs*`a)+67OU{377b#7>~yVMeBf{Fxjh~tIC&|k05<$ zV-Au)Hq+f|$a`JSQM8!g9v6zAUwTX3M}xM-sRwm+Fr1|uG#)l+P?^ZmP(A&Q$KGt}m^^0rl1m;l1?LMe}tdc1U z{B{EqgBO+2aq`4@{vffJoFtXx)R@Nl73&GAQ!7%S<#q_A0-Z#??mcGKTEO!v`54~) z$kDfBIBKrz-?f>+EAnH&PBD5l=g&n&~L`(b$0ms{lDR{k41K&vBDB zi+zHRWi|T-E-?n+_Bvk@!JM@FxHtry8=XL#8r8sL?1LmTV1;Ask4)bXIk;D+$hcZ& zpLoWVkwLO`h-}sDoGG*3Z$=1l!ZY!HVN9ggJuv3^c%l^yqzXKiU&gBwjzZj1aN-{A z1Rui@;)$N%lH`l!bSQK$MOn_6nij3qw z;$OO#E!D3A4;|2fdBkuaBl%qoC52Dr0EV0-ewsj*rpUfW#6lTmzmfpkqa$^b+D|U# z(wVv9^|)>8yBd@Hzr&7Hu79*%OLw7(SttG=WQGN_YbCe3LjDw7=BCVwa0Jp7T2;dS`VIr}t3HZw~%aq!0wJu!#09X4^GFI zdMqo05R^#KeQzfB#L=Rvulck9kdb$H?pI|IYnFToO0A*5Fa8g^aH08)dEpeN|51i` zx&D7HZbaT~-s-1R`)!04iZ*0j~Db%q5A0HZhz*y7<szz&=9_@ow_WpK&c;GH=cf4WV}71_-}RwJtSZ z^zln)CqOOm@C3}S>ancmm#6)}JeH^1=k5{WUBJePq+4j+NdjqRwSM*semlOCqta>K z&JOGh&+=3$2k>1gHb*~sAiEvoI)hOgJ$7Xl$vjJ&k8dAc=5*H+qMPsy#SwvL<^!S8 zsx9Fte-$)^Nf;}zM^Ka3#pt2td9Vj!9gu8g`>Oz&>O^;{S9K?o(-)}v0dGZuEUBQ3 zNvmums;}cST+`C|uDj6R67=JbaXCUGl2Iftk|>L?W3E(}4pyxQ1jzBM4*azcgP1R5 z42<0lGornuULkehuXTZt?fI=HuA+S^&X>ma&Y!o}O#s{=k-M4yABjmqok7${hIuj} z5?|_}g;1qa78Gm=Qq;a@H)m>L006tiT;*U(;*sr!xAoFXU!1OtUr<)VH{3ZPa)Z=M z;_()YuC|DWE~5`2J-zXS{VP#QV}Rqm=!Lir_Ki%K2hJ|2jvD9~jKKr%u^=5`?_Fhy zT2bDLka+tZimj8Sey`fAeq9vb#z%2jd<*fb??f1ZFv(0{B_0k7J~GDWc|v?vE6 z6X-1oq>0|*q}C8`=*(Sb{1rBAglRoCHXKkW*M_&r9MzgJX-zy*8|(A7YdPWH`1?St zPhhn(GDdiX!p-rcZN2qqX*vU3_(8wCk;`QP1&WcHewxEz_QL|OFEOfn_GaBiv0iT~ z2)L$DpLR)l$#k8E?)W^wJBmARS1iT#D#M*MIwir$&!Wv16Q~>d1b>AfREes7u`|ig zNNH7H;#C9SnJDMKJq#G@_sj=KpKf~FJI{K((9EW_vYDb8SXK9~-wqYdfR7dt;QncQ z{e+bDhr_*W?9=-%C65kO)FJ9|;!O4!iZz^?+mzs4>xnu+e z*v?Ph#(TV{eLO?&E%2TtX6x40r=U=E^f^1b1<!@4>Bg0qO^C7h6NiD?w7J_@C6|66%g{21HCy7scPP!X6K#BnpB0Fe4sGf z3&bwW8Ds_rOBsAEE*G`_30}E?(+w|MONN@Og7+~?-g38-0ar~jiJ>+SS^=g4BBDqL zEcI5PP6xk4U$4UtlPXm#>d#Lo=VkeNUSe&TO^Jw=xM`;!VZ?u&?#n|w-no1`hHRLg zBxUPzNzOh^kL!mCh;3W!I!8ioduk#WftG>%A1KXF#BY~s+=i(BX?v`fuoi;viccXNf z{!Y=sGRm=5rzd>dAvRfK&^ot+4zE=K)BUelsvv`dPH0CsL&zZF&n491EB2T0M|@$> z;8Aj-xvFrz7Dje06x2P=QKp+_+s_d+zlnj==>7rfFy=lV#se5(2mHFNx`13VVKqb@I65bK%cjY10PRgl}!OSmDNE&bWLV&>u4K}G6 zj~!NyU_T(^DEgjFlP@y#BNwLEfX~r)26k6f--)7#^a2ia@-w`p)hCRH6j1y_ALSv& zL9yMo=mEo+-rk@P000034CSLZ6I%+5S$XXJ0-V-`g+QSGvKEEoiHZhed0WPUQZIlb zl81qijq7?>dr-q)EVqeYc|IN}AN(!m8-OY}x5tu3>4_~)#fkJi zMhgG37!|sr+Z`-L4u<%0D! zY?O7N<|i*WLKr*>%I5!~uARe;>B@Vc2~AHL8V!P1d9jJRUP2_PxYqKrow_ZpCNIk_ zZen_p&GKZm7J{w~Ig^C+G$wQLOGi&~71;w@45z>vg(vdz)|$Buurjm$Yqh55cfd?o7I1L}aqi(3@j z&vC&EfK}_cpmM_cV;@o1qv`u=yHL8tn5xe)a9OX@&;>AxxpMm#{C|!qtG3C{>n0fC zE{|6=U?N8cz}@@{!(jk3{1aJK=U#6Ub=PBpsJFs%t%T3{ih^`NWd8QCVt3cOZaC;U zQ1zc(GeGGD(K94tRLZD`c(yJ)k4vWiNp~+b{75?wfL=~f4UX}KLb?dOXjCvG!{Q=E zj~v^c6@x>mD_sR85KlQXF6!}WbM-7PQ$>HCa)1phJ>Eebhach8AT38)pF?av%M7?Y z7pUOSJXIrt-KQrg0t(M1F6Ha5!neh?>^rWX?fP=V?K_05Dh+qFFY(wNcTA?=ToO^bfGMO9&Ux1#ixP1B zP$-)VwNHz6uQcYZaQ@4J{mG{ohpl^Qg`pZ0H99UF7E#UQI|j16n$cbSm-SV+P94!_ z5$FJ|(DzNU@iZdThzH`tqUx|0^C3OpVSC)QQyeq!@@>x2g^VWrVYJ1Y`zwyny0v1I z^88ik-;4vc1r+M?i7?8taEYJ18;r1({EVlP`&1LTLdsd_{63`x zxX7}Uu~)qid68G?kR0lpr{_G38PHQKql*t#Z{9RiBbGhXpl3qI86V=ho7XmlSJHU~ zz6g$L1!4&{mZ?UuT7K|DM*o{hZa*(2SyX@UOc&I*QSRGbFz1FUsOgp8Vqi!vn2w^IqD4eruj0H?Swp z?Gbabcs2RLqpLeb`_RI*r316GFY4U{Fa)38I4=u=GJ<=d`f(ax!23#?qmM$w%c^nz zc>y-cKO%!}mDMX%*^?-+%)+SH&&uA68yby3do~Ml$|Nr;u?m!N$yU-T7>th0o=6@= zDo>TUtS)fIkvHMbZ?^=y+r?q~&8ppIng8iaG)6Ao2U9@uMMIB%^4X-*!fQREZ>}@> z$0n})$gF&pp!vRo)L)M3{km`>sc2hX0_3Ftn+*{FvEre=0lzF{n+e;jXV8y_H(c}WsYiK_FU;8{dy~HEfScu`eJc=03)7ojTe#Md z;(Hh3^OA(=6TzxOun4@|vGsm<5L|lqmG1)tqk@;DD(Z}Fj&rr-^;moUI~F-Fb;Ol< z6qV&d{F0;ejTTQu0=Xnk=j@c_?8eOQ0z%Ls1Ai&J~;Xrx6cO74r zIi%q17WCHmI(cw1V`0oKM-P@X6STIbB&-vG@2c;{@|x{2DLe;UQ5IonV;v7q0SNTO z2#|^$Yo8Y->`}s14`oU0aIupTK4*CEz+9~_Ci6&KmEj&6UyQ?$AT|K#I!8X8FxsaL zpvFg4ZRBXFU$usCl(477@J;n>zy5j5u?o!%p+7+T5!5Rl4eTJ%x@x{SsW#IM;*Imi z;@D6bYDq}CA)qc5Fb9MEor@# zK;UH3GYobgNEn;|K+^yK0000Vf6OB0$1`*MLA+0Tm@c>BpchKFFaQ7nV1l@%Zvn!* zxP~s@l?}jL-z&G=>*pjN1?UWb-KwMpkZrL4z7S=Nu*It_BDyY3`{_<|0oRpHHMe8Gj}`o78Tdci{;|anr6wGPPY2n69`~P4sg}uQnYW z(wZj|yVBC~B8deBEi2Y#(V2s?-x#IUVAU5-v2=5n&~>_yvR~~T+WZR6Uf!QhIAT7r zI<1{tKQBw{b;BJ^&P$GPwTFzHAAn}e}hbM19HAIIT#R%O%60k#!-RmH%2X@F<$ZI4#q?7djlY2oD&+vT zb>d;SU-3-QYI4CRt_&GfLYzz}4MQa!ig=^v@DG8+`^IK1H?Eo(K1PL}oL|#SYkEZ% zWe=Aq24JHF9@&8m<9L$bvVoX?w4@2lX5g8+0pY>A2e#M1n@i17hyAwdFl%6uj&qbS z{2P=#!&POxCq_m08b`O7;l@E7mFEH1f=q=3tSxhs|6_hSL&&1C!2hQ`a(2iMzXf_R0#y2CP z$Wg&21yK*XOxrM{xkvZMP%zv&Pz&Xidh{q|GzD3}ecF=u@wK}+<;(o0|Mnfo<~I5= z);qBP^6w^(1P=GmQ{2BeDp=$s_LEHTKg|Y&P`$xaD*%9qg^3~q(H=Yi3#y!lL};s9 z;@UqXLoaqpFgg6M9XS&4ZGVV2zyJVMO?`bu=olLqXyXzUff$PZInX5^7%>e_ga7~m zZ?0?+3vZLqJt-AmJ@(s;Sp)h2P5X(LcCtlDE5K5|sf7oBCwPOPv@d-H>*?Xb`E8zqGq1yMF;dHlPRaHGOyseSyJ-hHN-(2Lq|+*Qtu2TB&BRdP zzR1UaSPFH2N~NA1H`%fzE#O3Npa30`{u>l4d-^k6tc=={Znc1nP|16}Gq5Y@Z1-KV zJrVYz<=yTeh$_R0;yecPlN*}RYrPJz$1g~-Jr=HW>Tpg+`{Qv*}05ri5+f34S1WP}QREsKsIsj(+)Pgm+*>ZbcT%40C zVcvotB&vz?NuY~q1C6cEaBF9;J_qKR;($=WK5_O&BjRnBcQ%U0o9{c`{qzX~l#~6S z=Bx~3{regCWq*K$jB=TK;c0w z7zPiWHVv#`wL@@T?7BPEeH;8=m*k@R4^NbXtMc26h2~H0&kQ-xR}g$m1R{ht6uhc} zossk8jeOZ3JUg)r8;b-V7lt`TxYD7f;B;RrJUWAyjiF3E8ehwTYN>4=i`v>L6{EXj zTP6?gb~LD1dZ#LD9ulWuXNQKY-Pn`wM%v?(lrqY~RBTNZ+d$mzvAC5kM}%7=mA;HK zF(e(IhR6@6-8f@Xisk`^QN~`@(@hetl9SHCBlAL{&|IXP-HzY9;Tvmxp9~U$HUzjz zbVv_7DXB}bR~xY*sAJnJP$(u^r4eTQ!cqCAKoY&iej3}Dlc=c)&iWqNIqE1#9Q=a`eiO z99WEHK(?Viuc^BTp6%xrq>hZxtl1tFoQCLYLASY$NE*ZM+niXuXIkJ*_dpx~H~fssR30He`d@uU${xDlid${-}zH zDO3BC0nSWurY!2rNHKhOU{(d*qHRu(bc@Yra;igp2EkOT;Fo9>jeTy!AFWD7-oAxq zPK@Q~X*G}v9(Fq^cWt2A7D(xPW@W<#Tth)s1uAewcyepGHCDyg&mhNrSMDANg;dK( zT36l-xMfmhiWfWfNsF&y>+&ej4giLj_Pq`N&8o@j9pb>(>rR`|6m``)7 zftqEvv?qbiC0?#AR4#({{?gncWG zOi*hjq#+qm6~wzN=&vsZ2bM6zSM7I*AufSXySkqN$}6!-s4*J9lrNFaB!v*abJsxU zo1X85C(2BedF9tdwl@2AjE1dz&UGW`E&TrgZ5K&d#y#2GaDUpec11={Ms0 z_u8c6cN_Mq+J{x|6!&_98VyP(szK`JJHH9Ldvn52cLkJz@NzYcD46+0#5pj=QFA++ zj=o>yNrnAA&M&h;t#_bk#kjd?0kakLB3zSO1UOKA2gyfU{AeP$Ny{y>`!rb{bQzNLsl6d+t;jLMk_s+H6Zl zg8L{z_ltLSop2K01{XAo@;BO-`BbV3r29*k9;2(SD$=fLVY3HOaUycHu7rch$)?DW z^LRLXo7uF5rLX(_w>AWM{8=!F()3GB-y*zJjs@4(@z1zE6!z6;3991pZEX(00009y%1FlfCM;RQE2j;nrDhm z0~g=R0fEp8Y|3001OUA$Glt zqQ`;C{{fE^kV_)oiA!xk zQh$0konI79!U1#SzS@tf787zJc2tCXw&?h@+*01>j6b`Hx!t&9CtesyP+6B@nX7?W z#hwxx1M~3SJZG5fO1@u08*{rZlS-&~d#~!uuhR*}~ksZ5LzyuTq6OO@C3dq8R|i5+~ zR@qzLBu%$!*Sbu0AXO?AUDSQuQ()=Jx?eHPFWP*hFgMKK*tQfuy*YpP`ujU-GKW7N z0_aO@Nz8gP^L#XHw83Kto^69y*syE$b!CT*VOI)`>43>wUJ#c%cT#HjXCs2@I4X|A zq#*$hMoEUJ=)XjZSr2)ZJFE_DKApe;N98%!m&Jo3ZZW`R>`|!5dd%MQQ}$xgYSp+T zbT0+Xo}ZJ_aLEsc#cg`%1jQoG^~f7XxTwNFUxyp{#H-_Dn}^*qAsCSp5V55OYHtQt zk$ztn+Gp_nX>zC6KOp5rXDn~yDz^rbn>W(H)+!G)5bSmu8j0?z7lR)PN3Scv$ZZU$ z823>Z^97p@5pf>f%2fis>)gF2k#-!-j|=kM_uvVWkj`S^Gmw_CLcrcii_NIKv&KBd zhTMkX#I>_H-C)ZTmTk8(*M^p6Ylt3FjkScRFk=uCR+W~Z;aKPtL?{}c}c~`8B2uxxN7`+@S?fxd&&l& zngnj^>;i!Qal8N7`NzvokUW4M5&%ESa_-7A^heEIudAIob0GZEiu5e01%!idrX0r3 zN|VOSr4U2mR%M{AVAe_Ke1k%pc9w%e!F%J zZuv3*@~v|6MN;^2Q$b;<^v?&=1sx)_7@S)Q%q-5bAW2Fs_$KwrOKGg;>P-aou=~}# z@(4e#y+}h(X_Y{b36qa*1)BQI(Dx`a)ZU zIfG_TN%fef>ufj?wO1QMKTOo9qw4Sg00000000008vdVenMITuI5qjXI*pM44aiQX z9{DvA585i-&!uiXi^lthbTMC}g{@8McnI?(i%XY9T1Xm$*Zk_r&j|h~fB*mh00000 zB3>RovuQ|YA>}KvkF_4C&!lD|M3iONB&+B#Y&(++N&KJDtM(?@tbr08GfPu<<+k0e zN%C1Yv+0j7Xn@)_6N^Ez2!~O#9P8eiDupFkVgFOju~jx^=pwihK36W9ULSvM>(t$w zL~7lRs$7WORE(o2)^R1@7tDzKkk<`2oCrg(7s4?$(OGWbf)53wJUFE3L4AM!q}7KL zaXZy|=5O&WM33hX=;$Ai=SI}CW+UHhv%ojXn&2X->JZ>u-dO7@2w1v|S$3G<4Vz$L z(HDRB#TQs~o3cC;nx64wy{Kv9Kw{+DO#3?%x{i(T6?#Px_MKYBgc`?$eH+nET8 zUplq@hmNtwNm%FyIq9fKCa#39jwDV0HxC_ByItmZ@OiipV*-+(#L_FSRs%oC$~}m% zhnopBEO9mCAEq$M1SQqZ4;pP=p!dA1j)Qy&A*C#s7-*g$!~ctB5^Srm8_VLI=wPp} z=>I#c5VM9B_DpVg(w(lx*oZq091J-X>m;8zmV)`?Ht?tUbTjsyU+-ucNMv zY{bMumF!#ka?H4mILOTo7>pl@y|^v+Q(Z+F)e!?BW@kdYV|P?X&ff-0HbMaBdZ9%Dh$MWOQo%~@zE-FLaX&yV>z6ja;@dc? zDV(kAs#Uu)=ht*_y=^xw0VZ@BfINRymY%O^KN4Q0GD{;4LZ9q4?lpwEsHI`#@;$@B zky#1b>~oUNVXdP@7M#YMM3`(z)kX{Kan@P)Y(~zk!j6M=Wf>p{^}B?5cGZKeX`<%C66>CqJ5&EyJ44cq_1Nm>k|#hl6)vKtbF7XYm65#G2Xe< z3)RSU>6WA&Oj(&yJw2Z0b*@pdgNGs&-jkUe!Xy#oO)5^`6381u9f52$m@mEj%|CDc zjnFI7#F&td?wCQpVy^x?+5-5F!JtaFL*719KKZUQzjY+wwPuZp)~2Nokx-J- zRb%yWuYQ>an$4|4rjd{bNOZeghzIbbl}uz;nMi^F^>bp1q-qDKXY2WT=C@?eNH;kT zsIoH;e!OaVSS70;!(r8>UsTjr%t`(QU=`DDBck|&b&k-D00U|P!3-3BYj6%F z*wGS8g#q6VX@K)`&!l~(>$4VtX}e~&V5%kaW)@UAeHI>6AF`=39aT6RN_CAKohC|W zp0X<5X^OoaVP9kS4nWJd6swc{{%ey!CZHsC3`x*#pZq26n3pe|V%4^?Ch&&`t}eX4 zO?;NoC&C?hvs7#VRXMPix6c++DVE-LYM+f+-v3=fDEUYjR!Dbj@Ex zv%v+2eHap!#*pYWDnTgYfyuf8Wpo*NB;&+D00000000000000000OS#s2<3bt=eZ| z>n?K_AmXFf)d~PF!Poujq9Z2Gk8Upw~WIFZ%XP1DPVQR5*!-1=>6ThoVbaPkhcH{6#hV zv8sLPzz?bSiZ!Y?nVy^K-PJyUGr6sv_P7;`<8SyJ>^1CQeX!ISLIcGy>(~wEhtBd)ovcg)VZ|nXfhSkHa zQBlY?UZmwRFZ2(u2--VEL` zyB!2{lNfml+Xohe9)msWBZDh{jG5%~BhH+cWM}j;%M1^)Ue&#xWn@?FfhR~xnuXT&< zFFy4RDb41VYvz9-;*_Om4oPgIuiB;8#4-BQ+B9;Nf_Ma2xj<{jT;@nXWT#e_g6z}HKvJl8;442Ld*hpKlWu57CnNP?Wmt$?Fq zY?c1Q{kzpUCA*bGM*6?8kx@9sC=e^sUYvi{#wpXtWuwILIXOF65}<=skR@AG?gVJS zWN&9ha5&5^OV*J#wPl6M{K(c1rF654!c{2G+xqoGd??qi({Iv#;nf{<&5;Fn%>J4b zgTGr>*Q2_6+ZLEK*CK;kj)NyZZ7aYVQTS>JD1y~@0Ryq;X_mTG6E|8?kv;?EevRxG z@TOZh)FsC`S|?z?foeDCFM3Vid+3t?Z>ECY_Guj^Gg z<{HGiHa!%S#z@PB=pzCLB>XAo3BiqN;#}xV*mUE;ImVC$S#K3B2r0y|X*7ocWwmhH z!D{44ii${CF`;wB=<*G|e_ybxVzp2u@9 z&1q;g;mTR^r8(ggzR#zV}s{?&lGIz`u5d`+92x400C2{iwUodos-bJ zh|kNtCHR{UkiW~s;Fw{(5whX>vDf@5K0U1~!*A!xZI!L_Vcnxn>PwF_Hp^!Q&J|Zb z?H`PpL;amzjl#-@ec<6CFgmyuiWw&!uKZk`X5aZXy-0UkgbvI7LgnJ2dZ;YY_~smG z8!#<@#3pQ$-l!dR_FgM*c~iW~;gNv7^VY$&fOL*LP2K=^mdlP4l~;eJ>QV#(Og!~| zWV&!<6U|^-<{%wbtU*&Pq$fFZl14g@GSZhS71q253^WU*i;&I;_JWBKsfkFs1@ z^O^H8>j~uOHRQGsgjX$niz+qwI0U!xH-HFgXestJY&!}%+XJM>kXOu&lOtx;vi+N~!bEGdJxyUhe4 zczy0h32E-cHa`ACpsi9!wvrY-LAh*aU_lFVqy?;R>7$LS8)u=S{@EIsTNs<*BtvhH zbR*GqZoAS58*(sm%YPGsM%{ey`50#Elx0M%9|&pEXB=aejyUg{Xw3(@nXRkD0DHI> zTcgcWjHo|HIGY}Hx@<9mVqoFezBI9!``)c;w@p~MXMr0&<3?--0Q%B3rfBDS-&S1F zL)Z^*I#==!P!GG%FBxCCsgpI{(iiK&(q>QeTnUg**Yf{RyGw-q^Av+mHb=#FXy$YS zhzF_)cWkiK%ulqC9hH5PRrY=B264Q}VY0b=Z=#pEskfcaMSf%U?#m`axdZ@S2j4UK za&Xy^Z=*z?huSiqt)Os)0-p|_Ejv`L-F7;aMY6-g zq<0^eT(*H3d0B!x!HILaF`fQu4vlf0>ocb_1{lx-e+))iqrZ>|8*@7+V?uR! zBZ=3KVl>KIlKO2vfOOR2z2?jAhJHEI<)+cg$yBbN{zaBfLesTYcsgfK_G2RNxwdl(YA9l!Wt3xMrX;!Zwt*=!iL z2gvM)5~LxRsEZepqh52yG;yBF#v4ilm1QuzwE7|a)eydXGon!Pw5y%b*1l*CtuoKP z?NF1B#Mnx<$@Pge4CLE&TcIBDcjXcxGyLZlH!POMOI#@|%mUX0et5BZL1j|=F>~D- zX&oJLjf=aQd#8hNC_QR0IxOhsg?{LVxUq|Occl^ z8==Q7GRtqu9Qs*T*M+iB+_*4B#=DM9OAS(W-)rH3pxbtlMc6E;@+4k)e2pWe{`&!j zz?xxmpgoIh&4O`RyF~PwxX>I9TdbX-McL7t-{>Hy?796a9QC}{NRoZST}?ghlQnnO zUARHqCB32tG-4-6?#)8KjUOqWwILJO_!=gr#ytU}MGe?mF?;KGcVm)fXO(29!tK%p zP6qhbiW?=~Fp%Ez`JwXLTv{nxlptgcjr(MhH)!~9l&JF|wbJm47eW;-N@jMvBU2&6}o z+=SM7&j;FbgG;REC>jSccS&Bd{Y^5Vu8-gFfRDr#?;pRT$YJ(CWAvDy4VDxJt}TXSpcoMfUOj+hrP=)>Rod1>yd++7;Mi>q(6aS=9UV5E zM?ni_)ldWxfJ_Ry3WCZogpVmdf zmlZ3OPhoBc#b1uO{n)Rp@f;t=77~q1Ay&9`=RR`#*g_aZ0V1)xQSBc?i6c+ z#?E3;oi%@5H$xJs8jS6fOq|ze`afTO@JSLP<3I!3HIZ?ta9-zySK39YV0ChRK92Q! zBQ4+AJ{mpl-ef&8^ASnTDPOQ$flnpWDG>@Tob=OYn0p6VH9Ph!0+q$D_5?u5MNsXk znNK{BF0y#vM0$LpQ~?=G1!@aHd!;NSZ+Y1q*(@{7%ud_F6D=CX6E`jFuS72Q)S{cT zFLC=@5iGeylc*s&F4FFg9qN@FxI<-%7!GBu*>=UrF9eG@-h1zE8&VX=q{IOF4Q9^o zQCbx$zDZ0Ka5JF7am#T_ILjQE(QE22klQcHI%E%1GU0&9$JjMkw%T&;#0M@E$^|$1 z?+%Z98l%N^{fS6E3fcNRYB8}*W{&_?rx&(E2gQw{fy6NePoU71zL~#Aj12=fNV9bB z^R7OJY^_h!GIFG(@sA)5a8|yEuB=Xq60Y7beuYo&Yl1mE+i@6t@}i!o049gEW6g`U zDaPVX2>getcTRl2h9>1-0xJ)))+~jVV;QY4tev>9mzCn=^s5RovZe^?C!#yvZ`)F* zZKqjp`Cusz4>!1%MNj__tWO2aQjJ~fIeqHH#lgO*dpaThJlip`gl`Z5<7*m8f@Yjt zO^}ig!z9KL-k5ke{hDIDL8YtTob%_7sO?Qdf^4SFcQYh|IW0j9c+)+mWg^`tU*AD)a%!16xj|S>a2AIXoqOd(nHulU}#c z9Ry^(jOO7u(M5O9Rf+IEldTS(N9EkIG$?ge&(K89^PdWmsdC7t#+*d5LJ_ZX{X6FR z{#V6AJGm7Uf?bb?&=^-;A#nY;e6r+8(~MB>-%KCUx)b4kgq3)dBmAGqPK#P8y7J4U zNAG~;_24zI*WvK%`=vb}@KCrtgNpezAVHuj2x+d4#Ed{|5S|GdCD_x>cXW+;h0lr( z+P4#>USykEzV8y3P$WzD#$Dfisj1~P;hB8fr6sJ9Sh>%zED}MqNIEXbbTJhdX|wPm zV^RxYa3$My-(&u){FQE45H!Y7-n~({e;qE2=3#>L5T#cT^0?Jf^cetL&lPOkhAf{L zV1OkOqSAfq+W~%(VlrWkaNa_sU5)CUuTC|nX>fJmZ;Vr6^i-aaCAJ18oq=D}=%Xd} z3Nn$YW-G?gaD9Fvp+-#7>PZD|1HUBHO{{ca4=_9vU>5KPMNB@VMTjrhWh&U415C2nkK-W7(GF9a@hi7ep#l;%mSgrrSrNXtEM_cA~U-Yb<2Uza8%J>(= z_{ACoqQ>(rxIUfFkt(aWLSo!Qt8Ja;u^|^?Z6Hf1Q!mp zNmI?Gn1kQhJ%7&c;Q#=fyDm+)B@I*VqT$+m-t5Cb!2Leo1j}w~&=AvKC!5D~r6d+U zV9c9QPdrc4lec>BB4wp8rsV8q5Dp`&Y3o8ise}ETT4RR`v%Df_o8&-<`r_EtJ(V|T z7Vv}K$2=*4<+K7N^6qHBJVvnpe#P(a%wjUL6~!3k zImH*V=Tl+H`Z)K|kz}`pTyuYqMfRfiR@h7U6cHO$`BaAyfsN&5LHNT5>ftpb^0J}J z$Idk-@HeaYdZ~anTnQ8ej>*ZxBr}iXQ_;q(;qw`R{3yN?74I-`F_X<~?@64l`X0ui zAb{Fv1@Uv?Na&ko7bUjj*7eBu905ca{B}mM0=uJo>hB@^)TGNQogd7l_=;q|D>?F+ z%Rrg^pAkCbX~(XEZp|S{RTBO0D_G8}wqCoe6D_stDCuTkcRDH#(G%y;Ei#+EgfGQ@qRqc@7!c7L-Zwsl&)lq9eeLr(1 z#dGcp)}_#mqSHt+3k1AC;z){!FkX20+;XXk$vhJD(kf&U2Y2?~1e+ zu;{q!1400!P~w=qU6{$BQb(1yJD6tao_Pf5gP3%9*u8juMgwfIz*EDe;qyvtFXGhl zzJUIJg5-IM1J`5y^w&4Rr+OqfhDRLk>J^TR2X-}T5w*Fv+%r0nv;*tpE$CyBhb)>f ze&c>BHS(NApe_()cKf|(=kLs;-qV~dK!VLSxH$Gv_0GoF-qS`0miBc z1M+TmU@MROoW`IQlJ`{uleNW z&S^NT)#8v;8rx~z;my&SJ(Z#chDEF70u6)w z(!Q_)1SFEm&O))XC!G;Lvfz4O#&QKF;vFVyf(T*aFxQ(9F2S-Pc!y>UJ7_XO>*i2h<$-OG2S_(;#W z_2BDaQLNW3-l*ouQje}%$+d1x1~Zh}DcVx;T%=+eXGJ0v^25Lj*axP`fRu|u*b%b$ zQcEr50-=+p&XrlpPjJ0d{+mjJUU_$=XjBI-9!#jaSO-__zP{ ztf(SG3#a-(84->4#Z1EEvElXnRT_jTtx2-xnF z&M9JlTo(@TMe#m0nZN5ME$P1ZAe5MO!NjMXy+leM@|7`^v0t$OYw)>qh}k0^L1xvggcf+(U_xc=Z$PM*z^>j8rT<+?7pLR z{zHu)A^Ucjoj1sq`qYuZa{-A0o96b*jZwp!`RON9JPAe;`##>g?qZBmU2xc@s5yx# zsZtyq(>Iq_MFaDtn7mB$d^WP;k#y9Wr!Om>qnR*+=S9zE>hnSu(iI zO)o#v92t8$R@k`=ORR(7W+scMJ^}uxoa~sB;soRr@w9J#1fSsEUxqU@hfNjvnX5$*qpO$1FW(Ut2FCY z@a*;XZK;?o;9q0w=9WPxO0iXqHZUq;tPj$g-o&`M0vv-qIbSL8KgW(9K!V0D+wK9V z^70WlEONZ)Ztm=hw=dSQ7WvYnsteap(Zl4*4wwbwc0v{r>aF2gpxl_qH82rs&nB@w#e!xb{5IeKKwq%z>Q6ozLH&Q0SpMO|2o3lFDo8C|R7`M9rfsmi_d+^i2hplBOw|sG>=Q*v5-DXC!MO=YGpV*4>My6_P|g^@GPD6OtxstS=8;+oqM3?*wCwV5qse@;CyqHIvpOcqR0|%c3W+gcm>9LbA1-^PhEYJ_UXcqJPY)G?6w=e7q>*h_|(otJC z2J=;Aji?WL7BHRxJe6l`nSP35l2Cdk9hxvX$&g@s)noD^gs=rotlPcCdD(CRWIR!M zhFTof_EMIGsDd%cB4YcjbfwU_a5U*YxHE4lq4Er!t!o)1UE_!t*I`Bq4mjJ3Dp}SH znhB^t2)nq`B3T4O(oMuQb?Z)El4Ov61(uPNj0qb$`Ne||x^FBmXr7>aFhu_*p7Tn_8 zc!vOW5!jCjfjH>y|2CWf=yjC75?W0)&lR}vqmG6alPO4>Y1CNg!=y|^8qN*wq*OE> z8BHz;L^FbCWXxMoH7EmC1}mW6md<*K1BG{m3(cj4^Sa|)63SWiO!ZB|`K>e`PQOq5 zeOK`;EYrzI;IzcZ2kSaX*2!i^cYvDW7hV?Iz=IgLF-rXgU5(Gt;J!VO8qg@T4abqw5V5Nf zkg#w&v2G$T?ZtZpLKr##hM77+@ac<;aMK=7sX&4Vj#d_T1P4kxjTq711{67{@c%qe zGWCd5xirJ$Tf`1n^m=iY^l)N=MjeV9BCN&!^&`g|4021e7MQ;?str8|&NBGW{wHKg zdRLs&O;@YIUKp6oj$$4Tf<#Jp(gzClO?Rzq_~EGjuaG4;rwK;V zOdJ}Rch+8>H<0Ib$lb_a8=S1P?RJX&@>!!sl*0gP<5cClf)~{<)PClw)Krgg8$d`R z76et|^Is%Jv`&1q)VCkKeL9gdQC7D!7PSd|*_t3IkXg(}KV6P);_DCdwY)~Oa)3E$ z9#yu&R=j|UQZ-ylCDzQM3IpM}6Xg2(XGU=iUuU2OPO$&Xc(9^1m!UX$CR+-rLF6n; zaTGU7iK4%EY$xI z7BMuWUeqs`Hy1txO1);gw0_qX>%a^7N#wYs`5eZ7YGhh$a$qldy*aIy^{1s+UYCwT z5(5Nikxa9UfIfwa3zP|VeXEL<%-kmkZUr51viMJa$aHsV`9ew-iO;oyQK;~o1A}&i z55Vi8-MxKV9~PE(e``s8f1@>>k|yR5v^X*^W)U`H7E$@Rjr~aj02C2xSw}colj>lf zaG8)+Qe=@%AV<4Q$4sh73)hA4N_Wg>@zv(L8U@5LK$mVFpo7XV{5(r2X?;g@W)$Ec zk~7qd-sVn+KkNZcHuq1$UgD z!_t2G?3JrFsHJ4&M!n@^2rJ3@4F$tr+U#xZzi*!#b+m`geV7v8!lVSpypBQ)a)SE* zr}qQ8{8itpt&$@NSqUr~_>T?%G?Sut^_K&jqmzW0lDF-oEp( zV2K(!V%>Sduv<6;^qoSSJiDfWN;bYn^Qq)j=fQ+`2MtqC1=Ikb(z4ORYn&X08&O4e zr4%iG12F@NQUSX{nkm8o3OTq#Jgq3NX@dL%42<8sWT0qt(50S(tqG2~-`~FH*Psh` zY=A&nd=!EHVt4HoW!h?M_&3cM&^+~PgPsHzp^ZWoY_BTv;NO_;izQKX7m(sokjFuA zLMs6?hZG(_;*%d-naFXi8s@ydWIA31psw#9Xk!z$mi=^glYqs2D7K8bpPx1S+yM&M)`8WJDTuVG^>&-PnYg?A>4U4S~VgA99Mi|o}r zD^`Jar;1^uc8w?iLg93@#>b*@R^z1(gsiB4^V*vD{3X4nGNja z!B!ibv4@%DbS$L_|K))lrkQ=e6AUf8sLojV%#y&FMd1kMziEnrep0)mFx6Esp(YHS z?La-g{FhwCoq~*~RddVA5*J2ZPK4VX5|nU!hhq~E)6hLF-6Bgf+XWg3X=k{OT<1Zf zYfaM3?noQ~C+UhUuNW0%N#ZX4Ipm}UF-0Wa@%^&R7Pc|oO%Jf4C4!iDCg<@M0z7pC zM9^o(hBLVU@HDcJ2YN?~WQkHRqateMk$Qz949#c2XsV zw-H7};pZLvXy`|(=4_V9qU;AnRukJZ4kC$Yb;o_Jp4vtB7KyKGP zf}mpgm|faZKHnMG{eO!5XHkMn0QXn&r9C4c$qY2G55&coH;$F>MEJ#v>ZRya%1S8V zh5h+^x4G>h1r!^9vqS*tzi-IvObO{eMPF?e7H?|~e`Vq~qt#aKtD_H6sb5c_XH&#W z`o_0@lMV2b(O;I5-2!w5r%1iLq!MQP{hes*4T3_8^rVsh5*g6+O?{x$J{MGwYYj|z zW(fH@qx{Bw1jo(MTs=kMLC+shD?}y3N}(cx)hb6eb!sxkJb*T!@o15BVCNYJ!QvPS zC46{BwPA9od0=i9J*K*_aFat&a3u&2-gH~6CoE>?syMv{>q5E@<@ckGHl6ne^IV}m zHG7HVkYOdbEYfRocmZ&?=aAS%UqUTRccAwrN(FlkzAT&*;ppNQ0`}zB%%R)hE*FFQ z&X)t*u&nlQqG>)R0*0F?tc4!S6F#+8me?er;s+FY2f4_KwFYUTm0-`|FfwVf=iF<9 ze3GRMVa#&&&iG!yX-?Q zm-nno?}_S71x&o?$$Kt>?H!3H$OnMt{h6PEipAv&r0ZqD96Nfhgt`Gjp>$ zt)5n+dma{l`8fobde=;!^9*o_Bf@y;&HQNE*XU+d57+xl!7S2CCOfd%` zGWQRFb#yRk{8gd_<`DV&82yn$!bjmaz;g$Ecb_;mh6r-+ zd5AwzV5T+0)A7&P66A!JB05E&rp6zelm3rB-YsN5O!Chl&t%-zHu;0VnT@3G${-_V zC4o^{HgvKZ(xb4(3$2DnFIP&qGmvGJF!yCR)-O1&mzA^HKILeg#6u*t`he1|UL|BH z`__+Ef2pptnp+|%lYeuXIoA`WdQL+$hA?Q22slDCgXd)}rHhc3KxAJI*c>bUKH!>P}|~t*w1L7g9G2H=NVRX4$>P znTEnwWV2;Sf7Qp58bIigJzY(OPvi*3rHQ>Vx4RIC#8vDLTvYD}&?8m8I%Q`%%K z4;Hbriw#Y#K$|FO0Kh1!t*@U1=tLB-V2dG9|ZrCRiF{4-|lo5i%&~@eA3*rNU01>%n8O;Fzw?>DL?GjWx+NIXCzlo#Sdv>7OI z0ai@7N&*tlhC5E`i6@rPH(KCUEyJmkp8#w+Fd)v4EuTx!?0VYE0*f@9(bEI6zGb%8 znbc{}`fghvvp%7!{>}jIDrW#o_;o?o45lmw%TG}VRb?9-4N^*byQ3M`6H)RiKqeo1 z5qcvJgyIk7Abh02zwY%GuT&gvUc?o?g3PJ&AAkU)3^UeOkH$J@14J0+H>!^IrzgvA z5@yE%w`UBp&b)Lxru9j)^dSh9%Y}qok-K)>m4c~b(LzB}nx+=woN19bO@k>zlyA+3 z2K(071@HqI;;FIhrL&grW}H z_O`-@)#S+=1VF?)iF&kSvW84LTaY%o;iJO#uPLO4o`a^-l$v)%z4}DK@Ua%JC&!DC zl_;q4W;eA~Qyo0*Jx!U3KX-L-FG$n5 z@-jjLsR~Q5Z(NgKN4b{Sg{I~>Kn@M(zSUSp98rkLO=>ietcc{f1S2FmZwe$kmRDk3 z>)r!KV40PX2q>(2`IX9(^N=MzvUfXH3D<|&!!!hBylM+Iw+4Rb@HxD{m(`dgAo~<9 z7VBqIx?QQSepgOE$Qo4*guS;KwmRFp2MCi~(W^()(S%#Q7v!DLuu%-&?fWgMxH{y5 zbiRJ>~5{*~5eU!79FtK@Nv@sA+k6LKDG zfk3|{p3tVc7|{Ly!`KOi`K4p*xS-iGu_*^#g=nrBYye?q2deZ`rBk$3DkBz)Kocpu zH<~gTKom+2z#n+03u^eYch!W4e&xR$#br$rqs5la_L#Km6fB;U8aUMblw@K=>S+OS z2Cq!)Qt^nj=A3`C$)&cncx^1{Vp#G#vB%|!tE`SE;b@KBGenq#Yr(VjO>iK$*$yG- z-ui^&c40v5^tH&B{yM8Bs(kUlHwAEVSN9(aLI&DkQ3-mQUqX$++vpExsaU)iIj-e3 zSTt0vuC58M>fQXrpMp{0FB%4c2BXDRO`^3}bP6B*LE)E_?&ybeR3VC-FeIEAAOQ<< z{#!|`?k29y9B7NsdPDH{A|w6NfEKvq2c z?j8S6DC+x`xp3WB@`?f-_;={nOjgA}-Zq=t;t}K==jbfJSu#77Hkckf8jhw&ieD@r zJ6aCapRs1#Zq+BtYAt}c6yzIN9RzV1vtwTNL1sU)z2M@Fs6(YA)Wh38SH!#Fq6>^d zkm;WJBMpFg_ABbI!jO+#Qw5uZOr{}L!SJcdC5SQeDhKUOVI1p6^K`5$Shx)BhvOj|XTH}a%MX>GP-T1j)>S2K@@$#2Vm5whHd9p$~i1-tstz+v+fAoGnGNS`M$$<99i`k~pgj z*qem&oLS;6dN6h^)2HhFUJDSF!X8YrNX^w=s@phWx62TNidKCuRZXijfZs3C^w~E= z`@%6Ql}q6F>I#$v3Hnoa{>UV629C5@c2A3ulr8CK8;p1+Y@@*(D2} z5epYsyLFKp!%fK}udAY~NLG?Vk6vyI#B=1zndPk3Og7c5gl4^8t){DhmJ7YF^9(PY?3dO;c8K=iUIMgCjs1{292DSV7Ui%7A=WZFTM2IS0t8h~3K)y16XQoFb-P2rZ9{+;gSlU=EVDXum z0wbLF&1UgT*xPE!%ctAdG4Na*8S&F8Zk5m8|*QV<#>4wKJ+*A zU6HWV-9|1$f$%pqNZ&a%wvd^IAqH?`bm}GNEv@K4cx?UW+40kT?xA8}kO7 zN|=|;H0fV~KQ+A*_+!{b*h5 zdcz3YK8Pc5C)SA#OL?cBUG#y!|3hK3g2OU&d*$8d0&*-Ii`Acz~6%+u9;kxn^mZSRT?Aa>?qYaYG!O?=4ja;c&Lb1W6sHRid?(;4*wn}DU<#;x#l!-y^qRP>b1 zCPee@IG!N~n``YX?R`j$eg+{lbitIOBjuvXELDr!hWV#LXe_xFmWbgIOhucor@4Zi zvSg5PcMR{5-wHX0@^{@nXcCrKQFT6)9PQc}4R{Fr_E~ynnwdeWi@SGW=MZJBbH|_Q zF&jEUD@=B$btHo`WGAYl6-2V|UVV5A+gixX*jwC|_wl8;+7D(ym$E(2GDPAUN`)Qe zdYh}p?(IUAN}F=T!trBWG_@7^t4(U2%tCI=?RWbMnprJ$ zOVf!|M8*Nk9!FC?4d{^et9u{hXsjwr_8MBRDfix^GeTFkjy$PRJMDV;gl2mOn5#Ya z$mumjXpg~7#KIDJ*INyuvyejuNW#+GCFC^%LttX?ybqFM(c|a7q%!#Who#nzJ{|Q@ zxpih5+8kf|K%31_rg8=_Xd)0+!;ebM}{&jXH?+9Dp^P+h z(oEFtbm;JE8KSWCT2*I-UhGv@kNc4>?6SVQgOU+N#*CCh?$-+KQ{Hy2!+`D%=olzVuVw`3AFwBs_s(XTM30$7I&;sla` z&kQE-*f`zJmH3IGMj5}_G!ay2veHvOoD$l6Rq$t;QV+2!6M&FEP>sdt`%l%xE8olp zJ3wjvP@-Z};c>|9*>Ed37cB79f;q8p7aweB1;;n%w$;3gTx*4hI@~j$l7tG^@5(aZ z4!UA0lx>;KtHnZDjjE%j1Znw;g3g=!){mri_bM5TG&mqsk?FS8H==7GOTce0LYclh zZM1+Tv&C&h3hZKVwVKcqF6_o_ThkELl~bYd1kD36uqlD(nUyBBchwlHJO70Ic{~z^ zT>kjKffoW}xx?t;EA;q`cvWwt6G$x?C)+S_|3e+f5LKr7bDEz;Nkd>v3Gb;%V3`&T zAJilYHt*stFxt95hU&XVM0o+ED42`MH!eu?QQJm~znuL!n>(>E-kWWBfS=U(a7tAS zOSz3U*fM2FBxQ9iT-xDv)T!R=nh5d1bG=b4N;NF8RrnS|7x}I-9JrUVQfd8w!&V<* zt{@^#PE_v|JMtEgxY1KNPh(5*RbQD&oFuFkfl>GdJy-Z+zokCH*XN8eflG7jX7~Vo zXu1n)Rb^<%9>qA6^)nU}0E{UY)6y$+)4=SnYH}qbo>M*ltdP8mL*n$eWCiCcdf`Vr zXI~2%>Ur&HlUE@!4>W~nf!42rU`z2Wr{+pWyrZ7h+vI~#XaOysLht#|H7-ZwJX!|f zg5Wfn%pyhu@xjbx^2x9ll2m2mHO2A!3;9J^6?M5D@Z@soyg^X=5@!|NVC*>Bt8(RO z)>ABwb2WX3ibmi0)0h~p$sF&uvM*9-Nh?uTk>3$vY3|9N+K=7Feg>R}y!FYXF~)-rulfS)lMc=1E<wX3%`aLo0dG!M;^=+B(;^?jAx-C*cC2lRw5hG>UmrCbaKIaL4DZmEi);CK zd4U*i4q6vcOH(7z(|J`WAY0I;LK(JQnK;4US{4aT7QhJfippNS4}w-8*4drga@{a35&tJ z5-WH;%U0i3Z1Eup5jimgw*hTdo|xHfa#n!xg-(%3#_pm#;tIyL>VSc@Qi(w`7r4A@ zpoK{Tf#5MW@jcLiZ0K5s^@X$3OYaFs&x|WN5_uU)P_;F4lW3j$u?|2>8xz|3XvWEx z&H8~YO!Jsmp^^_`E*{i{Vfx;RENGKI?LaYLl2Qxy<5Jh8)inlvd7gncCN^Le^z`m`8qvdUfZzOg@T#tEGD;VEa}#v>D&ZT4Jmd2~J650HFXDh1E=or@YW=do+5C6PvPp0f z-B&^*FGO}FU=|YQH64=ho@=RruCLA%^NDC~Tx#hDY}O#)44&*ZGw~J2qEP1bHFtH! zij6A~C{G=Qq5w;oX+TJ`@3ph{{g)mWR>g2vTQ{dfwB#YenC|CMmeT;;sIJKYNESRp z?Or>*K-8M6ZQ~WdiMC{Le}M0q5ZFlbL&HPT`-pB@d zI^)N@0-}L6x7|=?LI&-)uHg~?dRlIwNMbnIw&&m^?4abPk=RBX?kjlWRsg&F%-Tsb zgQ)r~6#ARn2|$$o{ji5Pgp3$Q7b%l>Q>Qs19=p8gHVoes=qYZhZO1-H3=Sm*;X2+! zIBT8BKAYt#40^*mKSWi%k9J1md#-mGLk~nvBVz^f=Gw1tz}%XlY;d!D>Lso>L<&_# z=b7YhZMw@C{?K7(sD0~?_E?V%KG9ie-Q+dM9{|7$MQ#1+egFT?<7%OkU>gngxYF)z zeZqE#sAGRkj2QFcm~^D@CY314=E%Vf`V4~~MXI!s5GF{iD%$#$}QM?jm1h~pD9K$lcNSx8L)z0$#{y;s&s&A|d}4)tttAqRuht`KOJ_*_Xm|)hw{lxP z*4jXwEAasK{~V0htdm@puWnjfh3&P`Ou`!Iz3w@|IglRCJ_aeI1_ezF5ICXb^f)Ci zKsENkfk(p;;r}s>ygVfFOMknO>c(7m)f^x132(oLmn^dASfZ%mW1`d~LfHlGXQ0o9 zlmI`D?y)}|!^)C#HZZDS{eX2W(PK>R%+E8ID~T-_a7eV_=8{vU(+(JBm1ORg1BuZn z*@np7yqk9!XAw15yXg8TjPcAvVh~2@&&7GKjFuFZB zA>l{fi}9>Agdi^xukK%1`ZuKftJ)V{U@Q=iL_43kpO@o}{x@hWi$oSo>)#K@duJFD zTovrL4|Ec1jr(FAPn0ve?sqG~Z$krb`UyO-b)j_q{b~+{#-8#4;rrlsFTX*4a%b{g zpW3N*y12ls>qFqx;$W)Lu_D5oC=b;vw1I?~&oGU$Jl{Q}+$N0fOu3G|Mga|kYsVC; zzaD;sIjU^DH7`k7DFg&m1xUi(>2swM+a1K2bkk$inO@+#21uIO-tIi@KHX9-_SxH7 zgR02owS~&6_<*0;alT|Q`0W(R5Q)M0?0Z^e&bxcWL4W)=xJh|wrVc|C%C2b4ljoAR z7ENSAU!@T8Rs7}?P*ge%)i7A#W{c^NyWJ7W{-lkK#pQZ4C=^YbCLW5>Ge7kjdBwIQ zNnu8$?rq1&^{zINqgbobhP|b_Az>xIm+jnmG<37g#2}x6C9knKn_+8H%$x z{2ULhm>RC?T(1tAuA|lDrHAB%dwWVsXfaS@xk03!2DlAqZ<-%0lEvLfX!L`_D3fKc zGBQb!-%KVF7>*YNK(>f~t;M9PGDnbRVJzw2H1P(DkmtDz;tYH!+4Ewh^JUUU8cl4q zPn3ca6@O1)Z16LHzI+_c{;?4evG=is)@G-DiGqy0L#=#n5 z$Y-m`-55a#*TcIAx}xXhe^O{ksb8-|s>p{4FW857yzf=ALEnGhlx^BUsndbqpD%DM ztmF3*Bgqo2Rftpy&ulObsbc4oQELU1_(|3FZMyFtU?pg0LN=`)L(tZE)w{4?3#S0O zAU}%A1^Xu{CVLqeENx_beZ9SS$XI-WgRx)zol~z`#qN{bsM15fX1yfyTNY?hnpYW- zC=S<`hv#^jq~`8n@gVmXQ7U>!{?D=FD?`S($@LaPkkMuJq6u$9#i!=a0lI&Ip6sb!xK zyy1(~W`y;3cmXo%|DR|ZQXVWzcB-uifH?JkzeRkI8EUhZ6;y&K=qX%jKy zwr0FdUIpj@L6S-*aPpPBE1sm>VGq~Y2h4W#+m=?gk*Y>(IDkU*4oCHi&auzQk_)3C zq;Q>NYi^mBsz-aZeD{i;kUCAryY)gp6KLEW!4gv&m(kgr@8cy*ag-mHIFuX2N&LD_ zTIL-}PE_|Iuwp*D(W=r&kqXW6s)7*@A@eWYd+RxKgpI_~q!kLo$25oxtKpR?2HKsMAHvKzy5H&Qz6`WM_Kv z>a0r-9Sx4_m=|*p5i!jTlrAO!03xkYH?u1c_>bSLcYT?#pzW-2Wf7gbQE#1*1U9Tr z2U+_$B)|#yy#Uk>mCZiK{~4P*9BhEPuhnU~u`gC&OQd@XD_h#Nf zvxMk+>zgnvBP6Pqt4xHtTs`dcnWH}r=~ZjPAQymx{Qv-9=!@0ELae&f>BEdN*KIyv zQ3*E-Rjfp+8RLPg_eY^Doqg=QCaJjOx31`_kXqT^M%n)6LR`0*H@ODHd{m8`i{d26+FZY|SceV1ejm!k%Ly(N0G*Yq) zvsuOF1HU24&gr&bv=E{azE$grRIg}59!b_yOiP2nBA6>D){gKM;A$HevP-cV>Gb5T zhUs$AQNtt_zaIU4sf#-XnUroUK1;NVLbsM2D)|IuJdRJDmLD$ybrlouJ%jz-T{ucu zoCL@SyXBEZZQ+WhUu%_2GM{D}?B8Q*=h9}st!~L=Vj6|)$4Qxmk4d&Ok#WtMaPQ3d z_CDa4VCis+tE7z@jpe)z$29WRZueo?Df5{4#Zp)gnzRI_ru`vBOyCwy)D6jSF7<>b z2S#*G2!(iLf0fLoaY|WdJh0s#X+Py^XnojW2L%V2}=rOEn%H_649$Rc#Pks-D zIHlpz`@&;rWCUEPfZ(i%2ydu+AU*)fw}3w$bUOe&*VnF~!nBF9i9lR|pwvVau z$>z>e^II4Ig^KsVm!wNHnnnKSioORXlGd;a)6QmxMPKAefgWwyxvDhX+_H9|=9AFG zr%SO8u_?W!BN_)jy_c#tN}g~KgdFg=PE#fWXh9DD=${nxL%8V57IWg>7M_FF$5n6l z)sm6Z6E5Av@VG69?qt%3#iVNj_?N!x*o?-vp^qTbm&-v#r8EXkj)+IK@>luLU~`*PF`! z6jVMX{(FsMVEt(DzRRVHsae?18s0{LD?SJ*sLu>!16YDqYE}$CCRlKDNSKxVIr$fS zWMRhPdi(n4>V%89SY;W3IQWg!CH4;MrJPE$VI7M!tk8)TCx+LFBn;Es>$N4<<5*N~1b^!;-wK+0iN( z({-CWRjY-B;}5x?V@kt$g0f3uo=IhWfTDkoaUI0=eh64SQAC@tpm8DD6N#r`jlIx* z*c)HcuCUja0-!4<{a!Ym3aV)9E#?bfyHm7tL?arkj`68Y-1MBG@9NAPFJcK6_kz0 zu@ybAR|%YHPOYx~NF%w&J_;LiNbkbpaoZ(?cuPMmqbBh>XO8`K*Vn3tLi4Dgvl`H? zhXfK+l)a3!l`CPO&*zwPEgW5h%#5)?Z>;^W8~x(-_=1t*E@_@uk|k0J^@Q$yWw6$E z3TJEy6);uY;^T&j)Nd=$?pLxqmHL+0amEomTF|`%?X?c)L#l-K>&MCha#>Lw&v|Sl ziHBSLG|6#1yyS?_)Fvc6!N`2aO^Zb4|02^r{^hQ>LszO>>zjqp$!cxxen;!6{s!W8{Y$)z-R+*-$vyRG9DW$tifKf6*>9!mKo>#u%T$$W?)2O*R`|NJ!~EamW0b zz5S;a065q=jydOue@AyE1OQ#w2MBNtKYkXSnAPP#uSaumkRHW=*_m zyjf7$Me6QS1S>D~i~Ls8>r<)~T3{f!C838czCwblW8I5)bn~|S=o^;4f^P(NK)DvT zg*tsWY3rl;^KYIU3SkuBZyqrrd|h(dwcGjxbc`(A)&AxF!)#p=W9J2sY>lmK57)=m zE$QYF1gD%jwNG59FnB_K#2PDF&QN9?ZcV)6>y!^P>RmaYQkHSOXAUDPn3McIIPt-$ zuXdgC&1lpZ?eO7TV9Kpz6bWW3>h{bDh`0>5twK@x{hXYrsxF?Kf6F|8&v5-yDX_;z zI~62C(mM@aG(NpensTqD8fn*SY7!|3NJbLAZzSkRHaaCy^wwnWNQLqnqrefP!dwhy zE!R$DL05vxNsB+}Ww{Z!WE#7T3@jT$Au`7NPgF7>T%k+CPI2lR7UaM#Do|hb1Y%`u z(pk8)JdTJS`hw=nD1)A7I0a7W>LxsdYT%LD7wL0DwU| z4I8#(jVl}Cm$TYYpv>4}Qb;~JPR4aEp%EA1zoUt1ngbBzUWyR-_4z%=(Lp|RjX~k< zQQrbiP^$$Xba3=_o=cMMU9*-GjIF+M#q6Afx-Lz>NkD| zLvD!PxiVt}f_I(Ue<8TM*z71fM8je$|NZ3yLmoa5Yn^qyUzy4Rw-^k=7MBydH7~uK z`Kzw{s!W=R3;d+|p%P6MXwR8PN_CD&`~Fe?qcNdIl+j|Lom~Q4A9I}vx!bssxd}bO zY>ma(O*>hP7KJwS2`m^J@m6bl0i#^c(L_uh@hj+>L*F>C?pAYmyO1q64a~W-#)BL6 z6Hg>DwwU(F5mOm#8;Ke0DjbQ zw6{$ErlI9!`ez{Yo^qdPLpsP&w9lq}0*jvU^L7Ap_J09iK%l>Sk3*2SiD7L@h#@q#;O=nObRu-vqo`sh8dAkg$YA(ATn(Ekxld95X7Ou z+Otr-l zZGb?gTlcOz;7L#hu4pnbGe+=COem8q5LLG6>HGR>C-!1&<<!YFL3*v6Lmo$I$KYBwab?ZKAkcAPzV5~$FI!_j&HKb zJcY56K%WqYIwg97YWl$EgZ7X0-FSILp+*=3W*qeulvIM8lognl{%gzj{t8hLV`SKFKfQ3zi1l6X= z@csnVNewYIxj@t=XAnm}Iq-3gytD|mSRNw$dqCySxyjTtM*<3`_t=*8zn5QnYrrfq z*Sj;}ZJrkv|5nB0lBc*Q&DQ%uq#s5LKxI4S$w4XR3RVs|woYxo#KUd{y5CvSS3nK7 zAK@z#Ci{S~06pHiVci>;?T_{h0>^(T*{INvQ1N4Ih10Dks1(E|;A>drTmmZ`f`#n& zkg+})d|v`@Z9`0q=ul-3Kfy&MTH`LJxnK6i^xv#El5^to>QpNgxr46^BH9KMtAO+T z+-);T5(?iNk7e^SJ(WS3q4_$!I|va8vB+;|d6inI@(!m<_R{GuYS=Y^igK&-{7JcngK00003dC@k;(oM8QX1f~N z!=|d!HlYpB$m(E{(wl%Dj(_0joR~Orjp3Y@+E&`8*A}ILOHnHz<`HVh-XJP7ZcG0d zeC@)+Yhq--GN*?ECG>`v{y6Vq4`z$ce0L;R7j86!yBJ;ilr$BKLB)ABOe!NnhPE>* zcp@KxvI6iRGY+qu88d(YV$!)QDr+mc?=l>8J8FMoanYuQZW0Z?H6FlBc6&VCbuV>E zA<~D>2BShx+p!I!CHSo&C1$`k?J>_TJFZ<=mZ8xxVUATrhesqf5wiH-71_?s2yRlV zR8I!$7>IuDA+rh@TL?>yD7ENzP!a80F8#v95(r=`s#{+dm$_@*K3fd4e@bM3_Eqg0 zK_CflI2X2~Zt46zzDv994;nb-cX?mbqjy^>q9HV^cM|LBwgI8;$i2cjbn8@){IOK+kMydgv!=0It5PSn&DLf4}I(vA= zV8Vi5(f~shtiJ%(+QGws(;8hRJ56unB&q1%AIYpOaw0+!NyEO|Os^OW0B>%f4g?g@ zC-*MN;1RgH$9f0D9V*VCFE5$_^auz^^Ayw?pzS(%k(M1q0fB_29o`S^peE3Fo?Dv0 zMuhjCCrCqdcHWcbqz2zA;7d77g0$3PM)-{4Jl!?S1I|Tl>YXJ++tYwiG1$;b^~_W~ z<yQJxO|$8`*THg8^OAguw?;0L1D=k3~J?dtM&h5ophT zZHYR=_NCp@r&hRog=%bvXIHbw*Xp5I^qM5HH(w z-zNo|YWFHxg$SVPMkKE5~@O*Nq7=Sm** zskCacOaU;SO7(Mey3=ueOmnrxnbqQq?pEv;y6|gJTw0pS)>F^e6G9lEvE9AL60s^Q zYABgq9%sR39-2eHzo!-CY8#qPRPZI!`pZ*Owq`^#<-T_tzHS>5I>xJHjJ%mW#lvWT z%MIGWno<*+&&|lp`(KbT86yRPP4aRo;-ZJBViN00mwZ+;1VozRP+J1oi#9*?4v>41 zQXdW<3~v_A)}sq>_wh}DX0#gSVl*6iJ?~u~yfc7UF64GLpdm;2Svgn|q7b+1V~@@e zgPDp2jU8UiLrq;~tSEdeZO$wdcKKN#v~O!FG}-uRP+*EZpw+3br{RPVZMV#?_#BNv zj7)V@Jx;@Q$kX5E-PwI>ImEU*t4O@@%KCgjo9I{T2T_we`>vsnO!j+8tgs^KcIahJ zOTYe_msXr>VD7jvi-$`WO}}9N@WBWu4T@*u9F}fYl};LISFGEh-AOJecS>p#)S;&M?`#@ zVLA1|hDBHBP4LgcBXJj`+-v+f*MyVhi7cpR|+L5FH^l=;!;%8ti$i$C_=;n68;oR z?`(N*(>8R^2OIU2DDhdH)_=bd=0>`EBp5*kQ8g=@N)o?)Jr)XNFa0s&nd$H~SzOyy z#$r98P76JX@3_Cl$g62-%NIj4*s7`5hhoZI9OQj8LUOK*e}bUt)w<#odj?k}1I}d2 zc4IurNv`x6k(XLF4W3T)fQkk+r68MhG6*y~fv~=KLanf>?hl{Z*DJ*L$H4To8UT0X zboJNNU>nct)HJ`9AI*urD#SNd(;OV7U6|T@J_S@Y$7LCI+JC`+b#rTlAUOXV6+`ix zSr9DSt20KK&_#j zEnp<2_)gpw3ovm86A&<}x^@s+EF5lkf}-g7l*6WGfvxm}CEK!A8Vhe>~tZx-15dZkR$faC>2e{<8ByVlA!BjtSh(A|up zWa4LROYwHhfKe0Eom;^&wb3yO@L|3v*PKD_9smhgMLm$^%}~1cq5(Y+u^+a@4WGAB zLA@X^KK$PdRd1Nm5ujpCP%(%7a`NDAGvRsdOZ&)#b1V2crEVLJpgVzZr9qwPKjz)( zCl+I*#p{z(xd7ur_ir*ABiOYgJ58kWcnd=zwmUdJPU!R$yn-l*vKlJ}PF;f?q$u4( zg+74D;E%OnupLO}2s25lyAlEMo|K*2vBqJuIetM!-&127j$x`}WrO}iJSV8}4s^|k zy*_fpo$lY1p-7S17#vr|nt!TV^s8NxX#txp`7;R=_3#yqA5mQvWF;V>sF{3w?He*1 z)CuEm&~ELE>3<`@?R;?~s9sB$w86UyL^$ncWv3Q)g@#e?z?N7|xrlba>{dWX-Z@k)X|arm63d3D zAn!q)b}TQEh-vk-xj)LA6P?ZY)=DUvJC|{!eVI2}7r+>hG$_^{L(u|75LmgRol)`* zZe=o$UrDcA_)*#@l5~^wdtePCB@q&i?^NZ5RQoQ969n>QvxdZz6BQn*pG$)b3!pz% zv=h*0aOwrkA@a%wtmk!G26L?*B^tYWG>JW#43vN+&wTF}zuJ@)rn>Y@2`YVOq`?f% z7i5Fg#;vFj4A2>E@LFeqAh0ita<oHFHX<#D`nRY5w??}RWC)v84M~#>@_C132twS(j=qp3oY1<{gs96#0!&(dsf=xh4;{TB z*@Why_6#aO3%c{%A{d9RpWv`&iMvxpR*w8(WnLU2H!a4EMaN{H2r8HhMrr8sR_g?%5cV$%Vf(9NAP{Bn3ro4 z{ev!w0enqatHhjvap@9lV&ETh*|=Zvb*o-+Vbfc24c(Ea{}roi<@VrFBf#1Uh8A8> zJT$5<63C=bxeTP#5H?onm*HI6x2OWz4b_nk|LonFA8XA>Pi-Zg(4`G4wZu-*zkJdb z^NAw54#uTO*s474OAAgk5c~DW@dg}&#?M(dFKkWWU$b=@5(FbK8&pxxw4Cl9A$%=u zZzqx(Rt!U(7p#RdOhGJuAn3-c__dH!b!#Rs>~fqVuI+=l_Wo8*0lNfX)PJ7Zo>r~m)} z001okj(E6lRR3y#;ZjI;56T@(<1|xzR=QAs%s%u)U~Q7#&7K1(A-cFFcI&ud1(dyZ zJB_bX@QaU3@-g;qcoT`h00B>|#RWQpRX|Dr0002j`APXn>&4*2{lf^Ur=3fj;ZU|- zY3N5VyC#puB+ehjRdfA$L(H_{QF3;_{UcZ*FC`|dT)JpF=cW;x7m#=)UxK{}P<0qy zADi`gnTRTFkJ*s0Joq>r!T}F#kpVrMA}Rj1>&E3`=7?BnmQ02*)ZY{#s@aI_w+3n^ z;c6bbBQ43w5l#8lq06etZvaGg$5I!C86r%PhrE#T>$sg+loQ10tB=E~Nb>)oWftm8 zxPg@dY+~(wC|HZtw>q_T^(tciB%GsAYx5E^?SqouU_exdZ?pTEpJ#`mVnQai9Pbe% zLsk*9tOM2w+mIc2o(>#mbp;>kw9=A%8b&WSW)2Pxn`w;E4}-GKmm<|kVbWFxP#(umcPqR6Lwweb=+(-YRG~U z?4?e+_yhJy(6S8ul^eS zrgM!Y!d69X8O2?6jFao5D8gCL$eu3L<8KUYJHYh?3EFo@cKO{`4#*a z^UI1Bua+k*MgH7*g}2QP{~&9!nUpIo24m1qcXqLkP^p88A(OXT&5604)-8Y`LAoW8 zXvUzO5EYePiNI%6kHyp!02XumB>n&Z01F-7KDn5xm1PO0pyL(m4DRa?TArIJ@hs7a zf2ip!`uA%=;_sgdCt|Z^WB(7S2^dmym`ZOaz?=L$dlxCh3n9ZyQOx6tWXu$+?DKI> zGug>#dg6}q6hgN@+Qyp4xd-9;rdT{r2WZU*K^zEpDkVcfs1-+=KFWIRL3b$c2?wD$ zzIePjZmc@u!ENe*?RnjIk!s6Mm^tukkA&xgz@QV{Rs%IHLW{M1`mUcv#M1R@$F8hm6&fB*oyFqIHVeb^sO6n9fE7(a}eH07zEQu`b* zX&H!-v;1~v{p|I&^005}tON)#kFlx=%0Nj;OOEo|v3%?xDEO(s;`ly! zC7t6)`btKTE9`zlD7dESIpbet8sS#g&)M1a1rwc1+t5j6IOA(}Y}BXT)**++u$PJn z(yIWEcsXb#0pV2=qgkqZxqdwJizU?LssRu_95<1G4*D~PvK-0&6e@+5rh0~27T`@| z%a2#E4rR3=YYfLI1q*WMY_ao2-0KHX86e{ZgAFw)8Xm_?XSZb^m@zmguPO`@WRQJ4_&vu1UtNn&w#FDY&71LJ^F;x~{9J&O&_9(Ocfvv><5d6Z)+g zSVg}=TBT*YI?zxQ8&j~ou)W7`N;D|f`Z7Q$sIFm+Em*Adm}hgJ#FBMCp%_aQ1IJD- zZ+w1y3{p*5*JKOwKIrDfy{e@^;i^lggw`S@cS~MwTKcPCv6JDEtZ^162uUI@QsXn| zWFdsHl2SaP9nagdy=9FwbS-!fbB`~YS_R7&mE(pVZAA!;u%tWb7J6E@fLlFWW6k2T z!BYa}znA$T*XsGT|1sCkYHKr%;1y%xcCQj^JNS#v!?RrsPHqX420$Xkz>a~K#@4(X zEFBmlD;tfv>CUntRbGs>hN=FhYMkvbt8f$5`FAV3b>9-HiGCs2l_x1yUFbr*@JD(# zk*E(*^zlptQ!}8cqS9^Mae0GkMBSF=yGA4yO7gi6ZVy*EL6{XlFMNyDS*b>m0FnL1 zaMyg0pwNz!4uf`v4lEgF+f;R_S}QR1Y%G-j$}s`mRua3H{q}dkahLEr&@euGC{kq{ z?`sS8`g^w~7}*bGoQhK4W-v-te(r|!s`wYGYI2p>31tVVxyFjaxL+<}kFX`^wz~BN zlq`gi(i@aAIS7f}D;d2%@6nOCxVOp9k_vEd` zPo>S2u0|P>dC!xjujX8!v%C+m2c0;7Bh)uiOdH0}j)=GvYBor}kibvdC5pfdUXAXO zSIDZPVG9h{GlEr-?p*Cz#&EmDHOzfArzI=X(I#uzmq9_$F_w3X1iXmHJNNUl0sVqn zhdlWjxaVBKOJzz9;loBNu>c_m4WKr)WSe$(8+%u&d;vJj1w|MtO-MfNkXp`Ib<4{x zmy5pUHzN&>s1>O;IDY`Z z)FVZvxTM4cIfoC^Wj)8li9l|!gt>Qhi!UtptQb#edIv4o0%;Lt8L*j-P@Yo+<>4%D z;JrYu16BPh8!-wnp!H|Z`v(3%6-z6_WAwZbaN)K)^W%1cR!^Gu&k)Rk;8Z{U9+0NN`bZpx`d@;0vms?hDmKgNYgR~;wyWv zEG@}UK9SPR?TIk-4le&ff$k>=uzIx0CYC~G7S{BfO4piFek>#V(YZ#F9R`phzlBR0 z;)l5Xp9Jn8Y1}QKC=t(s!_}}2*SNVm!z0V~}^=G6_AvUG2r>Xt?oP4+EtVmeq zp+0p|DFbRvJ8o*Z7_K78$daMa*LF??gidjZVS&bvuh@>n0?^^dM~r=-p*|fF2?!f; zY)xw~aafR@;p1-E%@eu4R+Rr9YaWaZzMXnN8g8WA%`u%(plS)N+NMVwn$8Zi!vF}{I$KMw+5)eq4i+!#XQyL+^o#cFD4&5j}OoeqJg4_rrgo|DR z*pBpWC_BvR2SH2e-Gmikuf3pmu-GwKL>*qSe}?|=g*h`f5zpPCO|?rxVmfm}Ms~>_ z4Iuh=4SL{UNC^r;D_sgXL@4Y`3Q#7X7V<#ZdT9F+mT}TUIEL&qt(k|*b*e07B0w^g zlJ|c>b_b(Sp1G8Yu8Ka)wPV!W`KG=ep@sK`CS4c%-g!VqEkA6dd(4dEI1@#<`;?6% z!>S_Fl5ySYHr8I!i}s}G;UcgW%-`-RGP!^!qV4kk9np`sHp|*_o>!CQPj~QP-oKIY zd4X#4-}zS6ODM)6dE$H|8iQgV6#2t&GJW=q;`1+)*MPVfRqpOFahiY?nZ`8SZJoumT7y}nuQ{6+WHDc ztZ<&T*kLnunZj6mF0lOe~^iYjm`vScKtZG5Q=8W`;whP>bgJhq)I;l zBaJNNVc{E$h*&}H&+MfRdoGqXJ_hHNb__)x^c?9A>^&F0sotU=;tMA$sutP1L7A67 zi5s(c``RSQ4>zn)GSM8xszHjdRriTYkcv9N*{XE_kea~f6SK_hRex{=iYm3@oo0!Y z&j?uyhK^Y+>^D$h0sSSftUCzqpJS0t0mu@tCA_ zk0a&RTy4!7>2}*P#s~OLVD`PGcV{6SH2}r%yJ=W_r!XOVe0Nj=^Sd(&*G0km{#CgB zlWpjjdLN{GBEmXuuT0ueXI3<+uNBV9j5j_==X<68TdlX$DA(+xIp*@sotutK;P_XF+W;fJt3U7!nI8VDhFk z@oT83n(WR=nSS)G9rol*3!ntDqhT}*MggQ^M~fJS@-{ck!9?j;%YqXk`G46x?cK4C zPrq@ek={mVF?Q!2P?-j1qqMzAK3br{&Y(z^PX_e$R)+pPNmQtDdrUh98ecJ2)8L^noYg1DQrVVbP*e(KnE4{ zGgs9uD?FvoPx1SZJUh9WjP3#$$}g62?y{dv7WGQ}1p%g2ug8+NDK*}S1?rofsp2D1 z9#aV-+6<{385qPuCRW@?ND#2ePhlZ;{zd%pCa`;=Q>xoyTS_f9Y)ZN4Zv+1>xym4B zcZmVVMaV!)Sg9fstSLH|u3|cqNBqzVvCN?u39!d$#8y@V|?k%x_wYGj%zx z1M`0a&POp>+@D1wvBkG$yA6~Ud82QA0Z8;=hOGoO@ikWQ0~WDsxWoN>9$uvSf`b(}&v;^NYD0 zOV`BYTi<26=-^Fw3z7h(2moXHv{E5e>x+9_twia<1~HXkTJ8BoA9=QJtidQj*e6o1Fh zT49=5RQ3P{G?9ulbW%oKV<8~O;)^X_kK08H&$$}3S(lG;ht?g~R`329kQLJ-utYLZ ziGF8`Y=Z6&y?`FXAV$XzXxEu>T1*Z)=~~@*`*>o;hpYTTTS>JGcO=%3Zgpa&+$b1W zZ?h6fAA8A?D}Z{0focPX>da^}8h?=!(j8v^ozG3(i|QgG1dKSy`Vu=iqpHqh77%b7 zKqZxvRlD}q^T(mgN#=s&l;j9axpYR^w(hSqvkf%kU{Kb-Rvm;|NEp-bYSmEymjB)Z zZ4|w=agZlI|LF`jn2(j2k0b^dEEKx&VRO?2yZ`{73$tiy*sOv)h14eLkk$m$0d1#= zNZgCs6o&bu{ZzyJUM00(gu`yMiT zf$hRCKQ1FV4wlLJNKS|vNKyuj4c_-aH3q_fh+qH!070=9EJiTaRbK!sLYenu{*+P? zQYnY7XMK;Gv*Y4>{kqaKb$xSTZ}56>jya%gaJ`H>09tia|$!Zu$Rm2qF<=*{j=^iy2+8fg0vj2I6i2(|)3)5}4 z5)uwNSZM$NRJWnad5RWz%2|A|14x0BAY&65Yy_*Np9wJ9;aAJs?H0cB-UhRvhQ z?4lO*DPZ4zf(M*>|EekHc$c{RFrvF;%7%o^r35>Y@StI4;-w%YKqs28U@LEC`&|V6 z!jvcB;a_pS2~1_{m7zEd0OM-ec2ZxNm@cws*MZ6(E$?=C^L}h-X_0MdQFl8`>VlWO zFCr77n80T3g72ckf>J{eYIfyvn_-4db1on)z}54H9EBNX0; zlQgb}RQ*CRfRTboLm_liiGTnAKQVLrGawn$at{Sb-=bCPL*nTGSch^el4}4d0L{?- zz`&aWm@64YiHC)t53S34s)mHbX~B+bWw{M=>NN>v^mxUGVJk6ghfTFQPSFFf5IMh= zbjEvjQazVcxoGS4|9%Nx2*chinXI|-IG?U(vSjqtG$OJ(Fy=cVa7pbRoC9=~uA6*Py(xX0$G`5D(p-co z2s$Ns==xvsxi&)Uuv;Zvy6=C7M1Hoq@>2>h(tj&Y%#EZR;5}gf#Ahu1S00@e_-Ukz zXQreSyxKK&l}lYJx=6ABPGqmygj^2i zRFL0|7>-l3La0@Msx!uT&l%%9XO5Zq#r&zN4&u<~h98LSPf@f7xg+*R?2p+WvMVhG zyrWerq(#w`zb~Pm6_yc9=QP1EOcMmb2_oA_{=)%depTkFbsq>95LNI(=FY$FDsO^* zr+|{8MBhMC{%kV0WVVRL6BU2H&#}lDV3@e%*36%__jhkFmK~CUEH>zhwVA2XNcXk- z4XHo?0?=zc{;HihwNf)aj(6uUeBDweRLbjXBN)kF5U?l-XcLD_t`q$%zodpTP)F&R z(R<;7R%ThxEx}VGp8IUFTUY=|@4>`-j7=b~erv$l)t|k*%1TX^ocQHnMa!t_%_tBI zu}57Xu%W)qe5QfqAa^rbt^hjD?i&G$gT+=61k$*smlL^1d!VWXw!LX=vTqb))R=ynp}# z`vjEQQ{l*X*HL-yu2mk=LSSqA4 zOZ-_!$0XF&_Lq-KAo0b_B{oQBF zpxg+&Db^aFXAHl9L%AlyT};_(?9y5GBUZFY8;|<%FdFq_h%8ZE_3*t(kWnNNTYm3l ztrkt0dW~yNnezUd;v!u>6y0kt!GFR{x+XF90ilO3U^VE;mWlpo47ZbFFI9AS^hq%F zoRcIW%W2Kil;`N12;dZrI|D&l&GPrAB-Q(7#c2T}SfBj@LS4-=?VN#A=*)>iGH9az z%R-nZbp4)D`>Nj5^o`mGCya~?Zm^`z28||}x2&i4RvYM?osfK(kLc(0rDnK$?KUGi zm^&fAlngaBZr1dBD8vf5l5l99)%YCWv*!qr@Z1Q5)OW`g6Vu%!=N!#}gZ#~pH{*0^ zT;mh-UZ;BXy`T6k=Kt6jZvO)|Fp#t?BVIzr521}W*&k2^m6eHlxqRZ^F*As!TS3?% zGtwozSQLHMA!(;E1c9mP9in9v*uHymKP)gMitNylMG%Xrp!xys>GS-91Hf7D7mMeM zlguo$0Xtf_XCT*(4LE>rbeL+H#Xf`ElGUC%w^F9+j zaSjZ-SXvAJhPuw22(>*#tr13ms6izrbePrQh^4CnMYSM_9{2U_vdQ;`s}BB4ni)$v z=&xAy@>14ZOK~I=U!171ymwyd?s|M_42MN3Yy|k#mmGzY2U(KV#7psAq_TalIX$eOB2K7WR5&H^0 znSY6_PX~0gk;`U);E9>10#*{AW&=AJptj~WsQ>FfZ%8{0mS&rwAc8?3OPi*CVtW-P zqDp-GcD7VumXh$+4mSz>OAtVO-Q!^ ziaGjDPRGt6SUn&dzm+WD;UIErwsb0o(P*SmKTrhjR85fkqmYBYThPSEdx zjFO<*YReTBboX{mm%&aDRZMAiMMT3Pa=6%B|~L%zfDH5!q%xdtGoGRGo?mQsTuTGtt}B z@BJ-a6+&gaCvjiwe&^z!Ed1AtCCUMqL%hC@=zH~KswA@P%1v5cm_}1@70?2?rm5F! z$5{>P6c-=XEzhB)_1o@AYqWZ-ss<(%PyEa#+{wL|0T$aF(;{eq7?N1>lTqZ9Gp1CD zqth|$lVLnwnqP3Of|BP1f8>ejO~tj(CV|m$QR*p6RQ+M9YL=y0(mSG27ctg13N$RL4f%{aYq6ylYf;aKL-zP?q}e-S$G1} zN78M&fZ07`@;m;ZGON5TGLUXjg(h7kTgQ{D!`^N3#5m9h>9Fxa6nMr37YTS)0N8+6 zk9dMyg|rPO*d)&5uat(^I|OoI{}rB#UhxL+r>32}d2VfK@r;q0FXZTap)f-~F>>oX z$X`OgOH*D0LtuNr&=wO*liu}x-P_(-(addoi*UB%-Y+C@DBm#Dk|AyLh0 z{#FC}+(wXsaa0eaSDm%W$*|I=bdY~`=~Che*j@>(8z_La32ZmkvK-aWA?@Ls>qUDw z(frrdllox@Qu}yh^pPVV_z3N`?ax!xD1WWQrdt-nt>R=MeR~Yt`w!er=#1FH@sgNT z)hWPSkx}Ez@GXD6;|Ms zT_WRPwn&I@8Tn{(`~`oMVGcx6AIGfE1$o^tXk|AA{fdZUby;?e2#@wd@euJ`G-gp@ulRXX@<{utzKjmj%A~~{M z1qu)TeG?b#$*?@WAO4Ep=~VbzI5^3L?&NeeI|p;cH7inDmD122jd-IyxZk$SM$l&v zJjZ5D=*k)ymH+@xHX$56P^(p|ys}S(q*wRn)#N^2cEp5PlRBJKx%nAQcCJ;YuisqZ z+~*sBnEQIcIe;Ou`luFK5G6LFSZ2_#p-JL$a{EaD?8?|sJGZ^u>fBr`q-lQ?-5W56 zFAfRtjtc@;KIHd@ylq}g2ZJkJD#ig!nZl`V7}|ZY#E4{XR*UteYBt->k>>9E<>E%v zgKmaD#ps+vw8ZtM!XN7(5y~@osT_F47$ATE3YAmw7_iy?3K!%ETRoKwT9fv_*Su3H z1a+sbN%KNmB871>_eYl`@*v%sqzE3-3KeYbjl#RS*zYprq7Q19m$^2#WPf>XVX+`Y zthOaG6b0~ygKJ#n_>8>uv^0p8hb&W$E?Y;Zv!Nq9%qIyWx?NM)5a1~aEaVMMQP3}1s!8-ebB`L_rTez}i zc~~$@j{X#7|Gde+jWv29Os0aR0h_H7<6jiBe6ceXG&ipmN1^6TU(ZM^i@rx^$f@w< zIYAX?{YyqK9vcU;2FzSF{BLz`#qCTwnuM5-sjz$-^pcU1*?=+D(v2XDkn3XmeZH%} z>vDnV(J0vRF2-1i9iz@j;eOs(p0NsM76BUa5_$qRn^9s>puy^zM4a#hy{>b8O+tZu zY=GIpmwVP;iUT#95v7y;a$WrMLUnGSSesesxop?R=%GLBe7%D&c}10$>A8R`&(Yzc zGJu%C#Y|XH73_Iz>c|mK;v@sdEEII`JhW3K3Y{E#43CY^B!tA?BTdcom ztHD#^1JP`V-6n$cd?%UV!#up8PlCA99XgHQ5}F6ooc^NPKRC`3&SA&x4vygW+j8lD z#;KI<##ehs>dhSn^e7YV)-QzQFhgv@}0 zF&dUN+giNw>}EsaL1|VbwXymmQBe_9id!rZiipF_;(?w)2!xgI)3lRvn~TxE4bguU z5Ijv__A*?0u(vrB;DK)~->2GJvC$Ay`H z`P56o+Hua3n7TTzHCnZIg_$Kof8XSwmM(jj(W8N?0O0OZHuas2cR%MotAv;zalBP< z%N@4mC0&bbtDB01WpVRK)WNgMH_!QZcb9CG!hfbHUJBhxBDV#GCo5gBiAwpt>k8Y&{Y2r(MW26bz}3ar9l(dG`C}(E zluvKQCQlcwESzH3vx7h>MwTA7%WRcT<)ct;(I&ahpa%tv&-~cCItG1?l0PYYYGf|? z7zg6ts44ztI~bRLbGC{?2AuEVPhv8S*n{dZ*%Qn?unFg3(zXH=M7{_=0?Z{ztpql0 zjm4=ZMXTuVJN67rhgZFjXVXf+(bA+NZc?+B??Ak15@x_Az2>rRp|w-pS%2#5xl|ds zTksLPQ(|IMSq{_py}MuWdkO66&K_+prLt-S8uA@Xt$fWLhAk(JYIOY72!xh2cVepH zUfI)KNvyhs-`Kx{nhg+3k+xv2S+EFZkfc{Fm&z)$J4h#SBdX@t1E-6is6fUxUz*9$ zw0aQug4&3nG`pc0QseUr!|Ivwyv22pbKLdCT?PzESZud( zizL|u^!}WyYPn}5n&Dpo`yk!+HaGiDyP<4k--(LKrT$SN+RFF?Pa?6V+ z5!dU4AlD zH6=zcb(^q~K!vTIge7cycvRziTS!l4irU*td$U?2BV@*+I$6`0IE4uBQ-#4=Arh zRU0XZFlI)fxZi2Y-C2*?`SO^kHh}iJ_>`#qy~?{oc(=@=a4>EE zYyrM~_!7RYn48(37g=Bu^^!{yBTL^2sM1AYE^d^!V;!PwM#&;ns&^slq=3>W=e9?M z`;)o<&iRn*$AjviNLZ1>p4?w^lyVm()dY|a#+%N-F|EV_6&}oMoz-lmO$Fuxl1%Hb zH=#PDhiKV2sVoh*+QFvfq6P%*!aiLkz4(Ey;G)#_rLHn5gV#AR*0P^-GfqgV#@}U? z+>8VE6rjxWMkPEp;3nIeIY2YQ09mBwc0{G@$GYULrglkGxIVyx-b%ru?3W~-g@5Ul zsFa{5Ck_fC`NoazHRe&+!7#Y$z(OrGeB(X$k^RRW$4m7x3wS8eimdLp#mwHrB_W$m zv6R!}GTW+;02@817S#!vZtz6Ir@+)&_5P(Y!rKx~2GlSPXFJIOb(n28A3a;xv|E&9 z$8a3?v@(Vn*>JOCn13il12}J-!2bXf7B2eZkgB!Nh}+shxVQC*YZ__%)G}o?Y1#DB z^_tI57J^&U*E z4R4Nx_<3sNFZJ}O%MRvIW&pBh#ax#2L$lW2Y)&*g2uKo_gHc4hpHitTm$@X|w~r<` zcUbtW`eg{2-PzK)gUj=3RR;1n2Gm~)g!GIN_3NJ~3>^%g)YB#7`P~cmT)R*gAEs1a zTHKTEPR?AY^2ihvz%Cy$lE)DL!J=|5lKmYuN$LEF$je*cME%6s{W`23c(!k%l0p%T#5{3(lfq0G9z7S}|#2=gU6#D?8 z;*@h&-ZznMdaaajt$g>o+VU8VeQ1Y z6eJ;ueo;)#j1wemn+2|g)LWi`-JqY_&G2jdLgJ9fwMcK0;DH%XZx10Q_4n`q0k)ep zG}lDfME@VYxHZ{dTVQ|}HgU8Dn>(Rz4G1wWfwo(Rjf-Da+s%QVF8UwRh5wP7LUY1f zA|z;m$+-?TY8=EPHz%~tTy5sR48O}gdTUYCEfwI8Mv>lt{{teCO`2UkajV6@On;JI z#0s*Ybh6{#@HB972mnqCu;nybDrUe%cZ;DU^Uvl>l3535?Ptq3Fe%SPsf@MYm3M&6 z3&@Nr%5~EME24Y9wpF*H{I%9I&<42fX>!SYm5x|>3|M;BbS^F7ejKJsc68L3*0`acFnp$*m=GL+n8be; zy8L7Rei7YAz|hBxr4QRV2j(&ubjV{UUE!C9ubFJmL()4qlJfChK5<Qvlh|P3S7vDu>=H|OL*EM}O?u)dQ2P8WF(TF~B>UMTgAi^!a&1K{}2QoHz&z4_U z(pF#$q0MKYM0g>6`ReWo+a&kVXz}ZHS>>13(6mFD^Z!=qOd1-CGh831BgISIqbgz1cHT62+1;wkv7GV%W_2R&R57i%0)F!?DOh6SfRKlLQB)UUY(c(8 zOIozOr&@6LOexrEe-e!*CIJyH#fA0@WTefLDg76mJ08&;VRT6|7dsK#0onsBVe`p% zYv$7#7or5M3ybA)f3R8a4)?#n^ld=?Op-#{>TYN?=Xx_ z`f{P#DjrbE3aZ{b7MnqsPz%%=Nhk+x&sae5zeFEb2_mUe);-S^G2zu4A~^y+K?G^+ zBjgXKjV>V@5b7+lt(}TvnhcFmAR~2}T z1bSjeE5ouL3!hO8gl@TGKi&C3-rvcqFZ{zC_e^~pLWJVhDT{_hpq_9f!F`l$qOX!c z)TnbWI!9bYxxwa54tdbFtIvC)Zwh-C)g1CnpXfWO2~(Vno{b^Z4Xsg5A*2*p@kUsQ zTMaZ4y!>Ia%McA?wbtGg+tUrF<9tfHEF_LvC))e_$|aGxtL;VE3L=ksc7ja3NpVw2 zFU&-ur_42HwZZVLEYdQ`n5!acimw}Wg6((P`7BJ?uPu0L|HMlq!UW@Ubb8q4?q16TlIm+S;?VwPsQ`IlR||=c6S=3Xe3J;#C>Ik zr1;;LI3|a0$HOE54X(mV6U^>iG1-Hca7Td{{eldImS`UXPy&Ri$_ydI`GY^GnIjR*vtuXbKEzg)UnoQ*|n->srlZig=fm z8~||Da{GNM7H~GyBMw z*lb$qd+01a3Qmj@6j=bL!0a2&rYJkQ!0h`EqZXdyu+<*5u|G{TwDK+8`!9Z3%ArEy zV_qsNLWqbxQMfC}+>nPECg`f1l(6H*XINX_F(Gg^zn2r_*El zizXf_t*(E~c4Qc_ESdn&TyV$1MfyCAYysI5oWv7`MEBWqmLCZzDK30|uG(KmO@9g1 z`oW4{ea2q25B#nZ;|+SKHXqhqP)5&8P~A%^T}mR6l=oXHqjyG9$$ zB?0;!as0XV%Ris>;PBIJeq@(B*TJ5a>(|TPTL&O&uyz@h&-#_vPSg{ssR09JNxD#? zD&qLM%NBLpz`LS*J{IP#cnn^-&2yd1gyOYw!+DS@{?l1A=_@!LO8FL+2Wi}6Xwq}g-HzB<vkj7T<~x{o%f50#llzjjI**eL$}|$L<0I|M`5@Q} z;>DhB=gz*g9NVW$*g!l<#geV`(jH1_v27}7u?u3DLGR{T7L{oU>5mhtz zTqq#+Vn4WBJl_WR=@*77J0e;UMP?1a0~H$Ai#AtKbygs`xdCg4Pi_v~@3J`JPBI3Z zABQlQQ+oT;E-=h#iUdO*E)}Wh`nlJCStFLP4ai9erm=U5{iKs>9z&pfM)i z@DX!G)jgCVz|0hN-UL5rbdfw%Q>)Ga=Zp~373;N8idkbtujYL8O%C3|P;38O8!3gu z6+YUTl~b_~rk`|-(u9SSk~(a(2NC>JQ|^Ho+u&W)Nh5?gydB4WqZ9SgxfI%8)ta#Kf2<pl;1k)i@oU7}-(C)Y>Ijl~cLygO~sIh?+Y5msFmlXQM3bxDYhqyXk?{`e?w zV?gi$ZB8tJxZ0W`iM@NG^%HhvK?>8 z=PIgf{k6YUIc%9$fu>+z9KeGywtH%SDy!jUfOb(lD96c(yzzXoD z(>L4?p{gbAeGDGS$dhOH3p7b)iq_EY*EBd>1=B8@^)VSQ+(uO2E0aV)P+C{8pJ>a~ z7I+}JG{b*Q8Fl090ao%I&!#kVwIgk<{}{yX9Ge24Lca*|J%1GVmn=0uYU22s?$<&j7*S_L|nu@yEZLzxxly3D;nR%w3ej%%fAj=-b{DTWq#Mn$cD{ z^zGHrHCSm=7L~Dv#K??-)^sYGZ^1P8+(Q`RbcR3Uq*yG|)0*^~(=jU_={#3SZ6x~M-=8UCBSa~i3qOi6nC2U6iZ z#lJWHa@90r_p=^)xu;H0q#T~jDV|loBYoheY9|LaUh?PU#(A8KCR|CdPTe(JlHxF8 zhpCPO?9jeTRjqilaU!YUDJ17?0DT8!hc{ch_GEM%g}5nRXzP!&GlIa(TPq@cXoz?5 zOlGGx*}tkTPe#P_@R+s4RS=aSpkc#0opLcWuqy7@Vac4%)=Dj-Jhdr~A}d!Vo?jTl zokfeM|2HLqY$Brj@oc`$7_mI*RVqd4>;4DzX>NpUtVeZsJz8G;P>xg zbff8`Tsh?#grN;WLuPW1F9}rf#8_JcU=q==%KqNphMFMlh&Z0(d~T24nADCOT_7+b zMQFt!2T&@3SyZ+EzR@C9WBY*@%L^#F=Q;#m=PT+hz8uREFJx)dih=ODZc9c!ERS(9 zwAkf_z}g_)=$S;S`dIw|yvsb^&@}91?J+zg@-)XUyEacpIp<}W>W~VPP0FbO0&Mmr zS~!IG;ghb|_$i7K&ywQm*wlZc=im%3ALr6bXNRAK%=f6xZojfc3|g_e0_-Niy(+3UVUaI%+2jj}Jy?)r`Lvqs=Lx(HjdU+)Ot_zF5)PrTy!iNI4W1 zrXC6!;>TBV!bS->ANc(*cov*2PV%46E)1S!q@p_rSnomyv~*2atDgcNe9NJu8i-M5 zCQ^h+kdpt0afV<2)4sC)m6j8{8nUf?o%b+XOdSO-2jsg-H;yCQ)eLS%QvEkXpoiLd zvH(cJ95!^lCac?tPwmRff7btr_^bO?s0n05v6$Qf$+EY3yC&13cp` z*cole!U5P*pyJlA`a;?Ob?V47AUwAOZIhH3>uy#i#t5I?HnzAYY@-{Keg(7Hrdx2T z3fN{uZruB!g-J8iD71E7?Jf-58@2YY^mUz#S-Rav2_F8yHWkZ7Gmd`?J1EXKpo?ua z-zz2z;G714ZF-i>9bgCEe225P+Ex=}+Ng;%qDl-m1>|##e5`{wE^qvkPJeDY*L>)K zJEKFZWXbcJyb!j^@c#e=B1=jauAZ4O4&~{CQr^ltF*epq(ZH3qYlr3sKkE|rFjM1~ zLGbdT{fz8sWS598Vr^X`McmVpAX2yf(1r&xY(qJgyB$xPa2Zifr+aiv4J^EejYXwu z;&FkC>~l{kGMm(e@-6(d46RHMv?iC&8AUSS7KoUQf%Bp{%>mktn_ynN@Bv z&0FstFx(}(WOYR4Mr@=HiKX<%Wv=l>a*p#0~!5 zdbBD?883plOL(ILup&SSAdrno0x;m#8y~P3XY$pal|fZvG?`@7^*}94De&DBdN%&i z-k3}~3b|T(V9Qa>Up{*bQ${6RivGnhwcaVBd+3l`Qjf~~9BRg%Y(?sKdA0|Sbp)#K zHpWcW%S={)f4HFYk=z8R3%$s$uFF`Kxi8|cxUbRq%IS+>`Z}JeS?YR0!qC2{OMj$z zIEMosRo%O8NUsD0!d?x5!*-FA>|unFT=6wx5jsEwlKW19UN5huk@FcZ2RJ1w00JWm zE-`5Hs_>KrGD~vTK$Wo@O%7ecad_mUUoZdy@XAf6I7i?&V`_ODUpYnU?;T*t&PZsL z8#hCK77N?-^hIeC8*MFJViFYvsYGf73BT0Z)*_E`HET||J{TBy0*#2YfGDQqEvFF` zKwqCUz=NiN#2kb{Ff!lKf0<{t=eqhMhV1vJyj4LCyD3~j{@s-2R*ecHjDVc!f`*>8W9EJB!*d{q*zYtIbw7rL(A8cyMxbe13Vc*z zZ&QJj5nzh@T16uA4pV8+000bn6-lx6brUoUuguF@#9303tvf--mBzJn2{^mw%8DxpnP@8w|F-|w8{1rKIPGlWeZ!kLjWmdu*a+LbbibJVIr&1C~bnv8_zLV^tQ?(jK zYd3JlOOZNHE=E1KCq%Ixf8Vn2kz30T(wVI0LV!>Ju)r44I7~*U1Fa1VFhZ+}bvP(+tLB z4Lzwjak9+Yq9y?2=^iiw?ed^4o^tWMi*BUAP~qI6+;k3iG8tBi^bn(!1Uos#+ZKb9d>+oF4B8sr$5wJS`a%~Wl1m}a8gZ`dN}QO#Kgg0(zg zI1zN!+cW`b3Q>@vglg94r4M|v1kIJvf~*tx^9*jf8J7&8%U%u$=ZWbyPgs_SH#+c+ zAhl&DIolKTb=$x|Ycovpw2*>PuuKU}@VwhORDR`f?HZg#OQaG4_q40shk@2*qV6jO z`$6a1*Bo^mNL!cMDFm8|3RLk$)kR&LpfLdeNUIfJSPnF$f>D{gk1r*PrKc=S`IALj zu^`>M^9jO1T;Xx!*xRX>R8@8P*pQ#A{mGP=X0ti-6Fp(kgacm4eo68adLY@?^2#9q zBS)4;yRGXf6lu$!$2%V;ai>}O`0-%^FBWV1pMSDfnf_UrN1h>3;Dp0J-KYPhGX$A9 zHyU{|OL1Lt7%fI&pt1+3wEN!`N^%)cC_S|Dv=$sgkbI%(5B|H zDnG+cb>v6o@E2Q3ntpW2gTCTt@TtI`jx$dYK$cC(iDU8_tyP!3_HA9b1n6(Pg#(6U zLSrNP!ieyBdP}qa{|0?5{M~r40dI@A*QAH`_J1|F$R)oL?&p9fXxnkF$^#a*A2&&> zT3=Bq?+_F%CG&$6(UL@jWp*gCe()QRYwo8B8S8$5d)`{eD=9J4K^<967F>@w}?1m@{ zI+vUaK7m`a48ni);YtReeD_#`q&}quvZ-_U$$hec;NgCn+5jp!+wV|*%$HmoYV?Mrdy|x?u5a{0&>>_2ODA!q^m%d4 z84DX+l#ZE8dcZxbX;e)@VA~r5NG%E&HfOBxOY{h}3?}P3x>$+V)IPrm@#G-a;HKsO zMwV9@W3=~xXVVsh@d`Q6(>)?8Ck<=ga8kIqi<+JAW7mPK>Dq8U4Z1;w7kvEtZ!b@~ ztwUEc_;^X}9|$>u3%~id+|c6JPa;?7cWPaXT15HlUM67y9i%as9-&J0GfJ-tDbnS( z`Foe(%Bt2~j`3@xI1||<43FR<9681NKNT=l61{K4uAmAYb^rhcfZumjOh*y9&p2_97wvIqKo=1{^P*g5m*=-(49o;=k7}NkyUnkTdQDu4bJddc?7J}6e zdD*hu8$#&juMX~LFuWzm|2VBk2Fgi{+$R%;V@+8cD4m^#5Dj(I>6fTo4 zRnJcQfy1s?1FdKSP#4IFe34qwk5*y-Z*M_T*pt?g(+(GF*sda4*L5lj6tG6>xmk6O zhn=>)N}h3=m^OVOMw7o5yG_2_3svLQs^E3mXJ-_D6=3)cG|MSi`uHtAq!JP@?f#U%z?Ih%ZovY}502A3-Vg1~uD z9D|Z&sPkiQN=%0>0?n%O-$7k?+eZ6gP8RDANg}`gvc(o@@f)oza~qn$Dw{<}Kz1LB zyP5XpWhm#ySn_{;HOSZY67RpBzh{ahAcT(8&pNv{DgDMv(vkdFvh~5mfY;hu(zEiv zBeu6ZjR9uTNj@#s{S%bD-*cOIwz(bHZ$Ytw$BKw5B9G1{s6{dGUIS3bU4eUS`<>qE zpyb1cnq>{0dW1^I%JrZAhg<4e^xG%_bUY=QoCkW9k+0|U=!Cb8XXJ z=Gk8-FjjbJ*ns0-og}eZ74FJJ3uVL8cOl6Y!~`MsI(GniUPv7z&Y1OYF)r!h`upvA zMu>FI{g)VBwjY_EcR-qTVb54~U_OX`+~KZ(hIooqcjP=J!^BL`n@4UNtCrsHed1ni zULZW6@t=3Oai7Pq*7m~&EOZ;EP^v5OG6akS6#jMarXkWJNIS*QZb-n)#5?aPc&F(->p+rlx9tEY6~;L z1OeneJE_79@LYku7a)SlUf9Yh2P)3%hm2cefQjoyecYNR)ZU$OC_SYXnl%g3Zw44O zU?$Drk%5J}!cPxWZjoB`v-`p6V3DPSi)n3E4!QVGET9A{J^Y!no?*DGJe!r{hPyn@ zDXIUQq$Hvc7^&S)+s_RqAJaGpTC%SVDnnRGukaCVqAVE9Sd2Cnt=#ZL(m~2}1?;c? zxfMlvE3Jy+Wf|-pY;H9nE5&ra2L>NkzR}jAR)Wrq2gs<9<=OKZjhP*Rpuf{Z>rd5d z2XijsC&Trd%@^Lh)kc~Q$_L@?syL-xzNR)e5DEfJqv`C6 z&f&e4TNSQNVGnpHpUtIu6XNjI-)f`tBEV7NCRdJi2%M_#oIYQm7tPMUw&xU3{R-#_ z6oV)M?qNC0;v1Dp@6O0t@?eWv!q-)9y-MycIOB7CafWR|7{!%@qwPt827}Ps2nQ=j zseJWS*Y#{==T8{?v5jBoElHK}u5|}B^Y+$7_rb8`{Icd^!h(66>>YIdmR()i=K`X< z!GhL4&rPG7vq?Y8Y0du;OX}6Yh(=x677SxyG&5sUz&3nxS~roWzc!>qGALRPMeSz_ zY!!Llq%@Taix-XDL(gipwW}fgotV4PMo?tK|6|+wf$Vu2Cd{IM)d|Y9ir{`_f3+b- z21b06XXvrSXxEz80A;ZDA6IO*LNU)9pwOE^FWXUk+WK|58n@Lt%3NmkG%R4VzhZUk zQwPt@9-8gh0+plPL&(Cqgu-!hf(BLA1nz1;cKPC2dVlmuisoQ&#pljJaEn?M;q>^+ z3P5{Wl$n6r*}(g0Nd+#Xk)z&F@Xi)e{ zcyGFSq@og5oA9XO+ViWcPVHH`q;o(V2-o)0G?!^IXgcK9`r$r76B4v;Hj5;yMpkRd zygX{?`M)CeD3heV1?d_jXQ)z$?9_@@VH2~z{G{VazR1WN5CnUrEbMP zPtKi#I(8qar_4Z3!39E>)kUXSt>|VbfFk6Rs_Q>LyF=pYL-+|nt3AX(XI-zT zlO&$tBn;Pt(ej&W$yG@)i17>koNp1f@$XJ-Rvo+`4wCrdFX+l(p#TDcU<=GTjHIpH16` zK`VGD1QM@l;;ZQJa%JfSW$5H(on2km_C(Y3kq&md>V`^yt(xH!J{3Ic&za8UciT+u zB4(s?LiFa>y6UTZf6u3=Vmxc~e^wTktZea5tcqKh^QOwf5kB>FfKgkPPA{+0Oa&9Q zl*eyYQXT+Vf^t!eY~3Lrmhg58C1oomI@OG@MiE@(4tIa3&*Gjs5`>Fm;XN1~zZgMG z?Y1nkSMo#1tW0bJ6Vr%8D7z7*PbMGLH$lb@eMsIP@K6r`AV2^D2S_9uvW3VF9|APA zTt*@!NUIV=Pj+TxfyU{^=9I7~#esR|t?WyD>xv&wlyFHTy&=(8}ls!LloOLg`69 z6v0|Vnrp(nAYE2m!4)zKWRV$c>WsC4n4QLM$OfNdG;g#?1(>($Rn6Vp)%1}6SD`&+ znxQ0A&C#)Amaf+`GvKyl6_^w}J*zL{Tl|ue807?*M1i0(NE<}%S72Lh4nW`bL>`hr z(#4C<2%G#eax{);%d@v65^Bl$i98svo7BGHL)NJGs0WPyVG zpt)aV#~(v;v3x?45+OruKltLTylTMZ-uPT}>DyE(|DH*rsvWE91)VE&b>NeZASE=X4zKTdzPjR_oObD5^1`z`~^dYzf+a=&R zzf1FYD{Ac9w|iw?b%57UQht?00tOtF>GGcB961$#&PFY&!0wB*;_D*qO%d2CU(TKvTB-m!#NI_ z(?(kZrCZqhMzYv#dcOvdltYZ8ODs8q_%PFW#$jtW2KuVib$t2tD&~ivM3(Xl<`G9$ zD1m?hc2ni`z=sr_D&EbsX=Q|rM;IKy^)iQyDVd_ldjq?8x~amgHZeQZcg~W~h9yj; zj7LC?G9}40_Cchg78nBGiw?BK(x&p6ap9*>HA%-Lo;U1GbZuhtd8-O4dq)@+f~mhR zCCC{P`iLHNR;!{340_p^9oSwi@`6Mq2|M*oYX!rasbGCVWX&n56cCi`<$f8Z0fI^? z_&F6|00_QK-nmIF6PfS9H|A6lr5r<3MR~xiew70SPWzy~FNA4@HcK_R=lB)-S|L^K zyzR1kw_D{n64}}vqZd?3|AXfTVMlXPDSPl6UmKB&NYBpu=ltsq(eP7ktuwVIo(o%&!Q|<|o-0`1{;+LzcbBnvi=YC4nldgKrK7W?wnt>axbC ztC?~85c>|r&EO$N^Rv@|V=>9%5v}FQ&g{kid?i)jfBJj8EUrF0h)SK`THxl`9#EXZ z4pks9iwHpc;g>~XEv$5)b#Zva`5{NjWzy; zv^UCpFvvjz{rRZ6Z3x5qb8vhE)ixnn)7Tc{pWReDDZgg|zW*FA|J*KBy`8a|)W?%b zXaa?T62MrBhii@8AK!?@uQHi+LEnwhOK_dug3iLcq{42gWQtJPo+l&4W^{!;y1Wvx zj&JL13Cx}Jm_p(?i(w0sYxVPp$5j8%g+^u$Am~F8&T}nszAoG=X;zr=5BQ#?2qBoUTwdb8q#fc(&aU7Syz6uG1e3V@hx}{x?5Ut zDQ#XHWL8r;!`(0$p$rY{2bFN>x5Q<&h&XIS>G?!!4^`_#Je>AI#lzk%%TexyY74`~ zcyRBrDUd#hC$;1vWj(;V?z4Iiw+vtwvf57$;08PX0M{ktAsdoLM?)7{n`|A-3Q8CH zmj9m>eX|AVvL270cjwZOk=>*)3HNFtTTjv7vG$wW^;nSF}tAe17~ld9l?o zCDT4e5<_qO9?PT&rq}1^VFje%g~adAQaRDMiv`LVX*_6hbB0D-=cG;2%s!8FByC?9 zTe=gX3+lsWs=FKD3jYQjd!M*1HoP`3XDG$D$&~Uw{{KSdhYr8uxKjC^lGFHZXT!#1 z4CSu$M_b8e!rkLzz;nivEBP^3D*gkM@{)g9&^I2`hYogqmy~y-h^Igp)1r+%QdeWDS zF&=;z!g8Obo|=VfC(Ouu1D&0{GX%G76_q8Pa9(#atpaxSSJn1zUxpzEKx}?AhPi}A z>hZ|ZZVOb_%~4ra2ZSL5@X`j2tbz%Q3rfl6U!FP7(Z-1i(QKGGW>nd7z;MyfrJw> z-c@n`;Px&&)-`N2H$f|7ePd@}CL&0w&H4)O0U{c-1?i_SqYqxtw*+GIK3*NeqU|LC z`Ry?g!fsVnXvV|Wv@Oj2z>YZ=b!eiM&2~HsoCE3Yc}~MNDOn3=3C7ox&UgR>Fu~dF z)9@5+cXk7eC-%#PkrERAAXLZ4l~DC*BxV}zO+;0PzW`K9~DS#PBdL=OHXmOsy--eRY!0o z8lZQ24Rj_oJp34As=#t8CM}DlsFuMz+_+D$TTKPm)JT#TQV8wv@E8PKKrSv!qzliu zJU_yNH}zg&H%#i5h@lt{z{Aa?E*z%3wYMWQcGj)1m_e-5alj{*}u9 zJ+{br$NPZqMqJiet@=C|BA|Nrnnc6mJ^$T|Ax zV5%9bQs(NPR3eL0li_e}eTqj?Pgf8&2nq#0*nVihiE}U(=n192{0zS^2gXL<{vr+1 z|3Qs}LpYd1xZV0DG1Z}_w6dvR$e3&#Xo|_V4%D1-hRNzZ%vcTr(;a5BHKs;-&YPVR z0GZUd)D!K@$^6Oy0B3Cb>3sp7!;&R$VoW9Rf(h7)TYP<@7Q2>PUywu&lZrRl(ugNi9Yk{Z!5XpnkEq1QqL+02jV zjb^|IwMoX;Q5UEBp|U=LB^fEhFHja4&x+Uwi|e9r&bO>Qq?i_Y*@pHa!?MH9DO7tG zy=4I~nsqL&twW+M)ZF-UJ^i)FFwYdY_h;>`&UrQZ2r0$cPRA0;#1?+D()CI;Xz$eh z#=er*2NU41YqLZ5Eaw&bx;#^)?J%XTcYQUkN8)=PVm*mw%G~Ol<&WJMlbdm!b7Vx+ zl&`_Z`heo*ED-kYSFMLQKfixa+HhiOJloXzkoNMgYVMi$D>{jZ%kIz1mQ{#eQBFaNXDHQM!E!auOubQ zWf<;Q{+jc44JkEXEer#NF}gRF!C_DK%r0&XfsPtngebO{9qEr2}1QMlz+L`n+l8l#KY&Z^5+z0fby1&p(|^{G}}cYCf&Be`|~_21d;mY9?}c)*06 z&!`tmA1pn>$%qK-$wi20kh`SDwr>%z2!P9-5B(RuGH9(Hc0eG7qL_`g-n`}zid({2 zW@DE8&s9Y)0O5jU!aF7VBk;q%Ph{6k`|U1)JGI>Fn~|DdtkGOeb99LZxCsrC$!mW2aWt$| z+{crn?cBo!<%O$&AwERhE4V}$94p^u0`HL)r27`q9PcY(h^}zz=pZ@ z<=%X|zZpTZURh==;S&|&QDOfpu9PA5kvNd9{5Qx6s&>;ZgsnqMMnYwuPhVnzosnrk ziS`QOe1ue10S`cFS1!#g)TBQ9Jb)9O2)&ijw}4v<;yhRYANw*vG+!^j)WAOU8 zQ9tW<@k>6k?zx1B{N+A#cbXOPxa5GhUkv$1?a~eaVWNJs9z>Lyq$yv)3j$AO3|5=I z)15G4eHgy5w6|GmOUK|>F%b_41i}f9z*GQWG!qWde8W}C9r0z{A6vq55Y50k+NQan zV*BGDH#cpr;i)=@6T z{nt88Ay$t=;hoo?-Wcbj>t!Lq8Ii2|q*qEH{b2t2zM(y8_2R;_OzZB|$MAlassB0) z4;mX@WyDt35#y!J+hOPNX@I!_t{{cO8%2)9b>($!5q-Q|= zpAc0-b8UX+Wt83n$O5D`P;=k(=&G*tyS_F;2+*nWIek7x9=6iorbjV@_4}>hG&G70 zUy;AiLsOcUs01B17L}A${?BT*=g8_F)6KFuCjOgf=1A;_0^EuEXVPaJ7U!)31Yh^G ziph2NX5CaFvi;7_NBHSA%A$P#CYy6DlE6ti?$`h%+6y5ec2-ABs?MC7+HG66=rpD=e6HFpX^kX$z4_{4#TqP@jTsTjC zOCLY%(2d22VwA@}@N?QEC+u0$4*vHeU(}3WpGv~m`BoXs!N8~d8NsD_R{U7%3jhER z9B4`@ijyfZCuop9 z2xS-yRHG92V@(E(e|uEOG#C|i=a$MTik}e34mB5)KQ7579GZhy=zRsXC@JDu6Ugd> z*#ZF$;ay(Nz7(WvbDXwk7qc}U$ET2Iw)#m@D&b-Yn{o0|Iyf}D<1ju7?9{bs3@k*0 zRTIz>V?^kc++`+T;j&T9tvE?xh0NXZ?yTQL;wga<(m_e&oprVJs!C6~jEa2|s=17H z=lnT#*CKKo>@()@;pcqGeyV%Q%?0M~7WQS8Sg(KM)G-(&v_}}%?!tRlI<%I2XkyQl zBqC&qH}9d|7xq+4>sg0IJ(1`*KjCc@gy1em`qoTs)LJB4z|e)e_{WCkL%wIr!Tx_r!(Zpj?gI8)*l*V z7+495&Pjfkqp?kb_*OY$v?Z4#_OO1bznu!cEyOx^=WeXTK8llUmzj2rvP_5VOIX~2 ze{zr!7|Bjj!ZSx`z%RXDZ|w?HM})S0Vs;^tN`k$lr~yOk_^rA2C58jsE?i?SEHLXZ zRh+@MCn-6n2V($U!b=1%{w^UoX$BN(?3Cek-#$a5Wp7WM0>s9(F+6`z)JSSX;8(h*NX1_C0ii4?*NYXas^tN=RrIyJPU6V zPXlV*#BE%|rAm@fHWxuAv!F?tDG@D{(QT8kr-LKx3(kFRd zn0aD1B09+39O-JqQ82ao4t)z4oP42Ja2EV_pR4!Yc6WPtcokR z>@joN00Hk}jV>7x7Ib4ZyUhNyuj2cub!kaUT!HV?=M_AxC!0$29=3n#+jkh)n21|U zwNNGW3@LVjUoycrMg*@Nj^;_YHz{P3rcrTqak1&AQ+a(o=_m&s3_VVjFb#oupoRBt zi}iS;qp3jGhzO;i00Z+uu_+~%j2cxb+xozJp(mA(fbso~-0Lpq>LqEmd-lI$#$l0D zc1F4L_}1Uud$ea&ZQlPp`-Yumb8YiQ!OtHGG%hlSx1sAEUggEjiFenW+B_Jxc?f?i z$bOVMH`!qjoUP$wv4%XS3pmIzY9Wzcs7AsSMZ_K)AH?Fy)5toSp$wW>f|cgts!K#W z0ofhl$Y@o^P@tk5Eij;KdKuCi1_fx?1;Et^-Pt+isqo{|Muxq2kb7TBxTSyuo>qZ> zSl@infUA6-Rk0mA4pFsn2*h<36VDCLw|A|ts2^qI+5~?r7ceG@iFIg=HUP0l_!Q-s z`!h6)Xg2%{*5U@si0eCXy@^MdGQRWnt-I1y!5vD|xRlo$YKTRY*mB_18 zYH8dGb-VDSmnds3ByBcv%=lLkmQwv5fl#qKZDmW8QbZ7F9VI;X0JW&R4Q=PaB_$8Y zR=eV3?uxI5==5YSYVHP;+n@AA7@!giBVx^*P=v1*AwqF>ld~QK#-s|o;If}vV9vNK zb~s+Fh-6Bw(1=ci%vBoP5-^0mrk3a+`@u>Nky|sU392lJToLcw;`8jAuJB6~vgD@( zAF)dRrc+bdY1?F+Ji*E*Y|N|Eap6O|;-OX(-BTT2(psw|FN8R_H;z^~i>n=M!LS9; z%)OF%wts;Jm}))`byC_8;X+4{P5yJIkL;xE{<)Hv=U&+cp!jTK(4O5$;u-mpSnt;o zu*Z8_D=j|9OGZ=18lnX6T$NJc4x;6pT(s-86=V0b_s+B6VQ3Bp1m^D-&lu~uEpM70 z44=>oa8v1;1HOmqqHHp{IrXDV7sH6c>~7#sXM%Xdffg)Ci+&DgLKBHbdg3dik89G} zq$@V~E(^R|ti60^LdJhJBuCm2m8 z5%$tI@X8Rs^O1M%f;cYuwq_ z*}lLhIERI=%4D|3Mj|86Fqn?5u-lkTu87T2d)Gt2d!U*2@DDTgO@k} zHD+sdg8J0lJ+k|?xUhjy_M$7+Zr-~@+Ea{rlA7y}OuV|;re>XZv0^%Rn<+;bQ*P`M zScHHW@C0TbE3`K7L`SBwM<-~ZrKSo>n5B(_c|(rDgpZR?2m%*?c~QSTLhD^r*K|fM zwX|VUcmF}3}O6>UH^Rjn26U8BT2=o!6!j}wT zG05jg?k@_WT@tCn$2!>XAxkTSy@>gTPVBfg?oOU2fezjJS?2P8V@SG!e)GmP%uujx zZ4%6jmner_%4-V0R7f3F45`BIC!umW;o zRS7yfVvN;%29z}o$%aVNEWrWDqk2*p2l66b{F;ItXN2kG>j?sTN3P}U$W@_e2fgnc zw*pxy(^$P3N7XW_rYpd|APj|XOA#kFa+mYQYvVJe$PBr4_Fz5gh~sF1X|T;b{5C=5 zdu7^e#5qkIx49NzEDY)M=>Q_rufoF@i7yjYB>d4`YsTdeNyN8P2(%K#id?1E{aTnU zQ_f@UZqfh&Zy=H;QIj}@?=X*yWG03*gL3CGT$wmzxMnJPCaAwW>2RpUbVZ|cIm58) z0U9t{bwk{WF?t`0m19hS5wi1i>*X815-B!HdJqq^nH}QR_x#{@5v6?WT($*Mlaxb< zvuwa{&Dhh}4%S*S0GJ+jWx6uL8Sst#HN7O%>CA}HfBHonmg=91^CB+zBP%a3 z8Ba*QK4S~1iy1aTOAQGTHQ6;EYX@!;O?iEZHLwynYZRx5?Ny~XPo?3$Taw%^ZA;Y2 z1^g-!bL|VYCu5S~st=SDTi5_yK%&1Q3*njSgCqr2imI_t{?e{^#Jdz$dBEzV%u9djpKBU{ zjCdaE_r2bxR^WvIE@bFFw2U&CRRlVtNUd}aYm!&1moPxupVX3cbYkqf z;yFI_PmAwpNKk#7D9E5p7br>NceHMuf?Ry9*m_rT(7T7yo{^EGf;edr==1Quoo`Ej ze#$3WuMV&v8q~DOQR>p_e|v?pxF07W-sC1rKfd_kNIijOEUl+Er7SH7<2vi@N&htA zonN?@&y;BXD$CNfCV<)tF)xoX|2Zq}2?{Hb6DN}2+mlj!U+RCZL$&Dga6)GBeQ>jz zr+bt%u_zsm-E~UWn8%KNbcA=cq>NnN6u-MvQ$SLMqv3ja@8Fz_A{e)`nSYb@MNyXH^W#LWe&aCjnXVYqhtB3Iy#0qjndR@E_M66=ALl z@y8jS9xhZ*vm*)EejlXENip)E_F#*;Pm9bG=6+djD_ynrYMvI=Vlx+PX3pV)91$7OvXrlpD;MhL+qn%cp39X18@F8UpN(lS%No7H z+9;wTYHhd0MmVEus9D2v!w#Zkh=@8ru<)rD99Cl7T@@~+HCqPB=e5~1Iiwy2Qn9-E zhMKR&dpI>8uDDR`Vvq$CWTwg-T`8rDdN#TqO!{~KkaDY;G$7Z%GbXe)m&v#sA zy|I@jC-d~y#4w3Q!>0 z|3xHp%9scd#b*JO2dWe7pjw{}L!kh&>rZbQ?{|v%hk&f}{b>c}3-xAXB*3ab>ra%2 z1bpN_KKvny@v%PuMOL32SX*=4>t@E=M9>!q5jcjVjCt;u)FzIN!XTii(FGaqgEw8( z`I)PQ!^Her&I<3Y_cZ;z`R~VOX6KIO`D@7BBFc>dp?nHxPR}-iw zN`DT}0E2eAy7?2!nP_ZE#k$6p4!NRkw1rP};4_99;SU2fnBghoZ}00oRX-`{-f>;d z6W$K<+*mKCltQc!uDhWJEonjeDQ3%OrU$fsT`{A;lAz||ZyG&gXh840Xo?hM=fXJG ziOS1=$^tr5te+RdBp4G8wX!1UgTJLaLro63;^6SlL~d!4R~i_37)M>!a9hZ|2m460 z{1PHm_|{*h#By4&-~|qR;N2*<`yBap@(U4#NBJeh2h7c-6C`7X=1@Fa{TM5k9$6O( z!8a<^JcLVL+;QU$?zjpXK(FnDvkhlv!|^0a`lKIsM(wjf8ZBUJ;A+(?^0pE5#ZPc- z;H*RA4f25Qyq6vjuv%EQmXHDI9_&dec&dW)b&9P^glTgFKXIJO9(jp$5JII6$Z0Of zOzxS&`LJx7g|_IX2~l^s$#HTbRmR;VQe#WRS(vKCR#MjLo67_QmPwAH@3_4MvvH;E z{QS2nDuO^?L}s!KxyP@oqo}HoA||~4N3JO$QuVUO%vixnZ;CQI<5WvHNXe{wymNm> z9Mt|Oi_YJEMNJk!DWRH5hy1K4IF((trdVhoP@n;#0NqBA)^R|cE($Kq);6JGU9+~# zAN;XJvIs5Gbjj@w+9)tLD!3`EDDd_+QdZu&;6*~JvRB(28q&29Xf=H6JK*Jxs5?$F zWvYS$iNZRC0%)fR-fhaThE2?)Drkb4M87shlDRM`G_a2Qwo&IbkxYv0@e~g@k+1R*!zK6uJSl|G0kf> zAo`P9zmqwKY9@M`JPZH+YCoeHa6-#KbUb8>_C!_m1}5cKL&@kSaphXE^+GlXn1*_f z+erAEC13u&Bm?Ybe)C$)v^WL}WK z&mR|D2mMQ8!%mW(LR?ub3Bb7jp6e#6BdrsB`N>2^0SWLa`2f^Ow($It#mtk{Joq!~ z@V2Lv#Z2Im+>K5jihMgGDTVAqd~Fw6UH}=IX__z=DIrJcvR-AS|GN0iAlZ$p?Bm-= zr#8kF@l0U!3>6R7$@bS-%-FwcK}y~R#@jY{jIDwuXvsXo3O-8TR|WuPWd?VK2*u38 ze<&s@-gCBr+24%Ml64~BD5^F>CIUD4?r!X0o z1NCZ==feXg)Ag0R=eSe-PwZT9#gyXv7Gm0wft~o4D}d$%z94$UVg#ebLA3

    BOg)Vhkq&0 z(=;uJ%hbj2vj-QXH#~@A+ek=|nLPK>@_+0?J=zenT2!^9A3~l~12(4awuv#ZuaqIk z_+qz92Tge6LNbA}&G{IZU?-_B2B?Cmr^=alW?SxGHJ&RG5tzm}#FmbjbWQQ)Iqubd zMysznMPgZAA}(M^VwjoaHx*nM&{BNG#r7F*gyi z0y)Fp!;iqk0YcKY1=g^LWF+JHKuO7;hDd6V$c&dZ$?D!UvJ-P4000000000000_B| zg1NMS!5sEWz6xVFR2--l0r@D~lBT9?Y$J?^a`h#nV%?^%^lWWrPl03fpZM(q6KkNm zr-Gq%MgmxlNklV+Yw8-PSWqX)^W9X{?RvtIq0at5O1B+eT;Zm+*SWBz=C|b%CdL=n{~xg4E$dye{=-h(@{VJ(r3GOe^)`HA z3UHH&;lEcanWkPAe;w7fz?fKg%MW(indu4(gCOVWd`TXDK;TfaqlLRs(GCgT?qs1~ z`OEUI%GZ8SsA#%G@`fp{`BrJ`6u%yifW#w&VX?W01lLt&j8o^cfw7_!pZ}%Bf$bEy z+;LR2qr&rv*NC;-3qro#H;g3BIMqbYo5HpV&jsDbd}u5s;GF4&q_OZk1g448s1N2F~W|#^^M$QAMzqg?=;Ck&`o+1li}%9F2gN)2$h|g!J!M3 zxHSgL?eUel9mu%9G$vN=l(+3<1oW z!)IiK(n4-`ZQ3TwFt(!`q<2`GaN;6K(rApVFu&*=gu2SaHuio%W2L zwrUKZ&G&$$AhNEJ0S0AA!foFJfd>|}DhQpT9Gif=Ne-U=LR~@W#S>?FU)9#<9|IkV z@rifVoCrWdU<bd_t#`za=LXM6{DA| zHz^DPA4a8&bq&;KJ*g={pL6ypu!IT{ZMu?AukuFt5q$D3vt!1+XOq+aXUZ&m8bp^s z@P%fdv^NIJlIXU|B-Q?27~gP~Cv%@;OB(82{YBFDlsd)c6ND{>1=AZFzU)PQRz`Na zPLFp7UGuQ-il~%b69M|7VKsGgcGM?b+^vWGv%z>ObQagWkH-bSOjQJ^B2kfqQsVE$ z2a;xIG9HZmMHV7w6q3bq3BeJbewhRFa4*4nRDQmrgjBeh`u5+Xympp0-3RAOy1UNW zvY)56L{?aDgN5zQSm&Eb2fUbfZ1$tw-reLiUWFk*Y z7Tl!M**31gKbpadyUj2n8Zk1oYv>h6{|yp(B38Hf zECNFjuBN{QNCTT-Zngsi!{}v=F0i@do8idfE-6gCZI;_RP3ix8=7B;tIMSQA`Hq_` zP^+?Vf-gQ(X=3Q9+x#Zl-+`fW$!PWlC)U^7#+}B*2=d3_4~F^v%j-NBjtxh=Vg7EC zt9$#J$puizI+r|WKhwNC`W2fHb)%v0Mp<4=zI2vP(*oun&t-lKF*xUVl5&e^fy0wf?03{ zwtEQ}jkQZrjOfI8|Jez;R94V!bh~l=!!Sz}7PgF4q1mD)$xN4tsK)AP2 zv@&zWdX|nguUye1uvyJ-uJ2>(RulN1P4@|fFrxsI#bdAV!%;ZKXEWwZcv?;0g$(t- z1NsSSH6>vln(u;ecUAnvGlaMb)+K&b+~2-1RV$d_XRU_+z7686Bj&)F22&FF@WEVH zJ0BbKTvA-G7;e<@wp;FoIsTv}a1G5}@Wsh9Nx7zazklldTeZ?rN-5&c06##$zi|d( zZm9i72!#o9+RfTA-(3);%$=SPOXj&j9%9NxHUu!{jwgNTw8qwx)FG!VvI-x=8i7j! z+pS!<#^A@3EeL}#zp?qiERtdx<*HTg^kDZSdc@oo!Xe$eSeiwo(H!uK$PxW0K@9*L z;>Q8vQ@S$4)T_iZ!CogIo51p?uVelR)qsU%eUusuP9?0Zo?pkK^XNbRN`!FI-p3Q^ zxvd4h{^nUBfF7~*cXsBLy{vUVkkORh1us$2P#)YItOVwcI@F*?`vnYV?k~(c=h!y9 z7)NHEF#!*H+uXC8YjZJ?=hO+!G6t}Aa<8b4+Uhow?Ef{O_IKTbYl?CXcyqF6AlD>5 z8`jRcMlHi?pD^~hFKP2w=Ua7%mHnfqshxUMhrWj|X@=sJQNM^BYyRob7nOpgV5G=m zsmHHxcY}ym-X|)t($!#ja*^B3ZLa3Id#oj28tWd|eq?YzGB(ZrFdg_E0lCZO)ZBCYsIR zmQzV)+K3t?n9ILaNIcz{Pd8Uzi5Hq?oeyv6m;Rn9KF7R~C~Q+vg<7n6wkR6WZ(Mh& z{q*dvw}!)StCNjOmQygl$a7v&flbn!de$>j|YG2mwep4JH7=*}^Y3s$uG%IFwC^4devCr-;bn*Gw_u z(r|r?>`$uN+T7#R9>m11DYv;t3}W81HfT$gIk*Xu*hS8QiFGLimQUj4U56rZ*JO^E z?doRv#omxoex3CMuo6&!<|e+olCx=kEW*6DrXC*?aJ;|xFil$}2q-uZ)_y&{h;loDN)%tkZq@Gu|tVs^ihWe$iH$!?f3Uq9O@A!iPuUq$l4T z>#YFw1^|fw`TAc4a(CU}iZncX+tAf)b>)~+iIqVYbn7>W^xIsN9`*V%lT>9-S^=gS zC={)jX>r;K@**&|XK)nSt}Of!)VBO#6Vl?c-~yfu0SoSU#?kzf1;l*C$gw)iKTt|K zldR4OB3)VW#nU>4<&DlUrIo@n+S&l(N%bSGj++BqF_^UG^jo#G@Z^O-*g$Oo zRUZ=NZvBJ?ja)S2S?y#EejeJ}JTD1AB_}iYy9Oh-UJ&fG2jTfheRzt z-L7cLdRaJ+lM)n~38FJ+!4fsM%QU;PXDNC^&}G*i5=+AJ)95*u+M;zf4t|?7t}!rf z{=OI=k6^KIbP-$GKz=u4dbwb?!%<(!>Ika(%94G9J4BjbJHls7=GshE>o#CD$FMET zO$7y)k8*kH#R0z*Sc;5oeDO@yB>y>4^#EB*%GY6(a1!bJc*bq!^9j5k0T^FH`bWY# z%?7Is(~BxSH0ONlF{4rUr{^-S-HDJAR8Zp~d*eUwTlVGBYQJLW%M`HIo!s)k7rIKBHqViyottazAzR$@L>lrGd{a-T($$J{atb?AW{!Dq#*J%0}v($iW+1Um#XpI$_}a&BYN9S5GRHF zA2{tz?^2d8t$#F)u~K)_IJVnAC{xA8gwu>-Z)d&b3}8u(D$E-np?+e#y2K`L29g%-g_Hrb z95NrUe<&hIa4#lpz78_ehXq!j5$rWIi(vp1tJwZSNfiru8m25wL z3s+j5dr0;+7+5*G$dE9cqX5Ahkm6_8D|K`hg`(hrcK3}PVOZ{@A8u^_qgry*L`>N` zhBl(+tonX_FFsFCQaVH?1P}F=9;sct18u zNNWV0^fHkk)oFTRx5ckSa?;v0c-|Nq5A8liBNf|02z4u@vi27>^=tfXlvN%xXMn6A zcxYW%E-TWjzg8$wq$qXlxGp(F#ps{+e$s22L55>)c0HMgjm70Hix&utplq7ruCTDu zf&fSHO9dtZ*t9ClS#uwYufxwA!4c9D0JS|v%a%G75JXVT!W)d5dM=qK;$q0bD5$2c zF3@XJq7n^yZS4!$1|S|?;84EfSf)-!SH)cNusUbYYw}56V~@o$ckHHl(rPfWu3Gv- zLCFm(lSX*Y6u0k7{yHnL=yDlOR5ct%pbL6yVUp7oV#6}d$(@+H+}h>WOQgp4dc1Uf z_RG|uV$8m3q-H`wHKWSfOAN%1W7Ic;sHc-h5nEs1-YVc>S5n7Ot#W)qnJ8y8$E9Xu zxe9{UqNdNmh3N}v4OU;Oh+yDY^OBU}`xALMe+ZtpTF`z4V&#ls%5uP=mZ_Jo?sn1e zTu3~WekKp}S73s;A`Tg%JY-o&Tx7oE9+dHwoNz652H*Ia7SnDa*eEY$WJ46WA{PxbHs|ea?=}?_)OQL*a)xkrD%1Lzy6OOV zGq%70RvI%CoYh&4GD{)as*~Bfzw2hAG9L1SSDIfLSJ{20rMv9HjpFCdWZG8xMkEG+ZV884PqvCL-nsj{$&T*!Ls{y9~Iy$GE{R zU(^v_YRT$IpBGaJ$&GQ!-_Gt}MT1>D*d}P5h&(Z|(RGvGjgHNHcl+)&7ebW z3+N`F7Y>WZD?)RS9OaJ*hvhHmNIU@F&!$w|iM9@DtdI(q?R18Vo~*ym$_}w=5z05c z_Bz94SQ8dGBTP>82Kuoaoij$H5hna&9cUvy3WR&FsjXq${f&4inT;K^gXgV&M_FlR zcB?s?oTcAC_!uzLwK zv1{;_$t(}+waT7J{_(LBiZ%Tnw#QMct&kv-nXr)kjKijb(8Qr!+J+GQd0o>)2&Ztg zoArl;O_!j1JY`;QHK>`}^B4{Ii+@5w32C%bot2`$>CvoO!-%7@d)!zJz*;6Ss1^j1 zRLaqUcE4_}t4*`YfG6u?Xe)fzAhFsL?|@NZq`|!VN^D@VyxAom%v!-=6&>~Csirh5 z0Zp}^Z3vQA>YuTkpf28wHg_D=Al9W@g_d<0n8pQ0Tu&9z=;w&GsjwJ(SJr)WxyqRT zt5ggoe)6*TMM~k-?i(G)Zsc31s2R7uV#6w_7V>+X-}YrA7?ec%`NxZSir(w3TQSRB zNZH@YA3m3N8;>w4t$l*|s~G~rPuC=7birbEu{Q?IK*4v4So|9!Klpj$4n z#mdrfMRaRI5&FFlCc_b_jf=W;g_w(>m@NF@;sBvUMO&X>ACp>3=51WY$3uy5B()*z zlY>nvh!AHqh6s$uM}J99g4O7mjyawxvzIiytv&xyizs>`y({jN>q~MdDTzdwkQZlD ze}ke~9%CHvy|IReISC;A@Ss_nh>d*|JpHXT$86cZUo(piMyyogy_9}*`s~Ezur5!{O``?5814T=#Nlj5aq)%4JU^Z~ zte6g3u^D|Jt4Nu>FGp}^F4^2XdUI6dNRdp~XSX=Pd2M-Xq0D&!t46;oYIrAZ1vup? z@JbyQbX2AoajAd7boLR}gkZ`=(noW!nN;Ag=jc7pb6z*IJ*L_>dW4ZM>2O{2T;`An z<}0lrVe@0#chWS7;22ka;V-j{xc*9%VnEjodqdUBa2C4{78<}nVZCrt^E=T7q0C|x z0@)P>dl!oCu>3gfWx{ZxHx+a_{w=s05t>vXP85dxnY^Ic??~ZF0%r;y2cO83t#Oo@8bOHbBh%@(^86EbPTTnS<|{VkP8A?j0SCf4Uah>TA$)T)Lq0Bq`H zrX;;@O0!`akiHSqq4|G( zPc-x{V0TZ^?mg6*GKIh@dniMl3V~XVwJ(M`;);IC}LzBB!@h|7G$T3#s{y zY>9&xM5;6jM=t9FRP^Fot3*Ce28WcX3YT&1VA6aJg%tc%`S-La%I&{Z2lp^{HM=-u zMz2>G^oAo3Y8wjbFv@Q|R3V3!M6x)Z)3=~WyJnhruh424=7XAgldL2R_Me(X1DjRPNnx>gu%uw^4`u6?+?CFe~ zw+??y-9$CN6A;%~Lw21G&OvtANS)3!lIY`XToHfAf3;J!mv?BUQq+7^p55fQ-T9P~ z{>rr|JL${ZM_1Yc|L%=WYu&ZkBgV$pI^GPt<>unUPI}EETD}R0%P;Qtb^odlyd{P|;xpSWi1Z)SZ|=e56#wWBOKSC?seM;gE%{=PS3k3e_?p z7~F$j+9mu%Iw-XZ)~TT{L9J)SHS`}wa^CY9gRF<>%M95_b03gc%py2;9C#;4}%o8anlQsGDa{_9M}E%hB(G;;=!KyXe$O=+yj? zf)Bfivzrx$qSit%Lc{QlGE-1x9hl?l%Ta_b)fBSlA%JmpViI1gd8~=_3oDX?W7cw0 zWC+Amc&Y3a+-pjIdW{ZD_saE&F&TdP@AOwUu2+0QTKFAm2LI?P$X5)ko~CZw*vJmV zW&u}e&Ya3j+q+%j5N>Q&vgCVGG}oGr;@AXIuDF5{uedRN>(=VgDky*F^xa^cfK$pXu3nP9^9>As@p}|hpE}Y3TwIRXKM)tgvQUeq`88=MYw70hvtoMj>riwiT13UAT2az2CH8Me_9a)5 zMQ_XoFjYh6y{hTK$fw(G;BG#vXGd`Kl7%99$mCSLWGV~Ag|uJAZ`8O@Zl=XeTW0d& zlu_5Y@*{e~xPef%i?^2UWQAb!-X1T*@|_zA6wFp0Jw7LO)SrDKxjTzw;(jA>nKt9n^s=92 z8(3BMtJ9D88u_I0cmZaJp&QeIyXn+fmILl920S!u?=}$OBVMaK6#^wAsawsiJi;RM zgZiHMCgBk{pV3r@Ex)wKCb^JS^UFP#+4TXGF@I6<0%~Vm{Kw{PP~x%y7f$EX3OO3zXCNnwHYm^kIB`;a(M0 z83p6PALY<~Dq@+3sBWXu%(OXY~wzn9@5a8az%65#fz6(VT@VRObqj$ zK1~|2Chn`HcPRyjf5E-IGsa<_q|1)?0VC(I{fwRZ$+SSCVUpZ#z9X~=xCsq2Mr$_6 zeEWMzok+pmWGoSn0F5P?W#e!@RJduFLp!N`On_5wyF|j|QFYZ6Tjp?!AsY9~vvxC_ z`#;h+vXUCo1|`0IxqKn}+np+XZ`j<)#dqfM;km^mN+VHj)^LyiQN=)|c3IowUcaa5 zM$XyzywQ5*=U)QYR1!LSr3-M(zHp{Pmas`xIT8k$rz)^^&Z(B@WhUcOg0F+$lM?PP zypi<&xuOs~L2L&I%2||`+F0u#Y7A-w7Kh%@&~RAO`GJ``W@}Xl{9He%P4DIZ4EXSn*3V4!fD;? zdZ$Eh2+Em65ar9Z@H`4aMcE%gv{J%!A{?2&{CU<4(Fv@q?-xWktF#}mu)eBMcxIUX z+OY5ap_y+0xe$eec6~^{2DecP-W1|)JpNMh_#W7Jgb!x!5>uIlKfW%1lgt(#7A*Wq zwxg8W`1b$swY5_+>II>opslAPVYO0*6Abc78LXn=T>~zo7&R52;k8KDJ$re-Ji!Mp z@Z1%a0RTLQi(K?bIT#norY^(z^THFT@YFkkd~8L!}hM{I*wGT>8 zw?S4#k@bi(Cp82DcvdE|WfXsoZP2ZkuZ=_@)4&L$GSWh*Wq!Zic>h+wN1Lkll|Mgx zSiW_aR`>yc|1p}+Ob2wW#)?p7OsF3L5Xi0(OKtK8;J?#OZ#L#edZVMAz3_rM#6Y_n z=B@o$4O+qQ&>>RiZ&GVn4LBjU6s(AcIdn6tz3s;6Ualp-5p+966Ma5Kd~YAkCq+YSO+Q>C-#ATvZ(xzxbQoHP2b{x@JIgkg$WB~OyU$>&IE1l-yLR(NY3~$m|r)l1TFQAE&!9@Mq$2@0u<~k8KEKijmzH8Hd!0bp{^69Et zJ<3c>6*sohaX5Xa<1M%ICtB}-08~AquhSxGr=yI%<_`v|9$u$-VvVSMuuuN+tqE`d z0002Xe{a+7ozz(V9&ayYXb@b30m%K#URb#PY{&wX!vtQEAPT`1&i*UYG{(~VB{~mP z$y|!qTnqjV1>&TkQmM@&hup5r+Ny73XJ(c) z#%=oUL!eWKm;e9(000P9*im(64Ji*dpEFq0u6Qo3i3Mpr#VAtP3}gL%^5zROIZ|f8 zikU!t!bCjP_0R;)ryE*%o~o(5MfvYV8qlP*x~_Xl>mD5aP-&_w3VO0~W>sRI zDsCuBYH*m0Ik?YH;wm=0KQ}jhXfoKpR%u4{H9ESlF4pQ5r^*gg*j6#-fye*Baeb#4 zgtE_H{B^MS8FqQc8VANW`Rdd4CvshxVj;wa6&PX0$9pceKt39>0O?AuGk#7Y$H6!x zfvw680#)-)TI&EdVS9_c+=y-a)4~OSlGKSI`wH?#Mb>BPM2RKZN;^qa_&(BEc9h z-mZ1>ThVz1MCZ*|kPpQBc;Q|LyZ@t^G<1r?{K^}%QpCUZT~B5$pE&xi!tP56nq=uk zJy`b_+l{-@Ak{UQOISrP$QN+Z1vZnn|5;kyljcocp;frY;0J=W+@#@@7fpSk+3A>F zkejj1RSO2qUlOqYUW?LH3SOI5wU{`M!hey>>S5AS?Rs#F3i2F3f$yDXd?L6iIV+kL zfrtYub}*9B|8$!;lxIp!5`a3+Fe=`w34Dsle1vI}eP?YpCZl8etfEaE-$W=1!h;Sh zWma3TZm#}7ejhR~GLDZd6J*P7bTe6^5uEvoq(%!&Ip3|4pfJ?9yhxulEYyNdTb}#> z*HD{sksnPl3F(tgwSbl$2Gl66>_+yc=c$`dtD)jDt#$N&RJ<*?=8q_-RW3=$*Yeog zp!<(hi@=~})McsCv)TZn>YW9z9-tslaWV^ry8c)A&EjPD?g_~E#zR$~7NP^T^~zja zs|WuM^Z1*V<}ehuMs>)Dbqq9y5&?&Ja=_6kWPY`#$(QGd;Q{7GG|lpNS$N~JDP{S- zk8MxDWrXjdxr0+KW*6GB*ib1UT@zEAq{spx*h-3#U#pTM{9t|WKL`f63VYqE>75ez z0q01WTDHPv{X6?Iv^@Ya9V5A_Om=w9ZyAdLLEZ>1k;7w<=eT5NFcIO97h^Dnd8ABo z_rJpBza=jB7lC`oI_SX#Wl#A*c6Sf!)0q-CtjyNj57#i|u4T~S+iVQ+Q(ihwitCvi zET_XdqX;S;NQ=Oe`K1!awt9eKEPAi|k~g=tdL zP{+-)KL3=OqWLtGlU2Ydu zGP^})aWSHvO{%D^liUfs!`V#;Z~TIT_gJ>IYLAS@vq<6hsf?>~ZA&rR%sgf7p4kWD zU{2N>h;(V7;db#>dEy6^=4l`$#SPZQ#A?!v?W0U5h2#Iq_7Im2bd$!6y;mx?A127= z9tj;U%WKy6_P8t&h*k61z@NgMhq*=HbY4}cxmVWbo66l>+Fg8D49}0i0&2H7BBF)@ z5c6x-!oFZ+pEQEQ-j5Rh>{mvwX-x&t;VKf2BA_&^-lop@%iWSmu)1%hR5?ZBz1F$DpIl0bjH03$bCgw7YS z0Wb-=c4d=o&;_uC?8zKtTMFvVyra@h$96e!X$|1$U>dbJ_3c&>Rnf1`Z5bGtO-fTC zLwfUWfsv~ObyxALj{}edp)4u?0r1#=4R(A^!|9|O&o|c&d}DQ@;j`ChY5G-fJu^om z;K~3i^#Ai=gnRP8W#5YnC{&zx*|v-)0g;j;e#G;M|3Tahqp}*QX4%G2g(dPiu&SBK zrwM@?4B~_PLNC5og$gf-q|8f}ME-*Jrv88=;pV1;QCQj*OE{@Xo1$Q7@`m4qV-g#S zC${<((%~fV1d@>8S$9k5bw2WzS3CoxvAxq#3mVMYkanc`{aiOwxC_zZy>K6puo~W7 z>eGV{jk-kG%xHZb$iKJ%ZOvJE7CTQI$$-EO-8Bgz|FvN{PZY##ALh8SQFQa&t}K_M zEeIFRgizc(jL>;pLI>+#NZyea`6{e_Q!^seSsvnsaN1<(d?8;l=97m6dNzKhOjos87Q9bKlMMf-T+lh7?8$X z`i2oMYZ>&UYXv0c+-A@-ZrcXz3f2j}z=i_DFPgh9%rU2Z3W;!{FMk2b9n;|*6fcjATg}>`?NaD5B`=cAI;Vz?C~iC#KC1!7&!*7oV{rnLF$W1Zkd4Kdj{8jFmi6OOm~2IP$V zD*ZO_V@CN0Mgz3B^Kk1iailm(3TF=}lHW}okCy6)(%#r?3vPe*1kg%yvt)U%c8;`o z#zV4TDbd^OEs&^QroUTAT+3MQ*%6MqqqncHpEuz#7HL=PcGXVKt|b`S+T`@jGJ zlP`CztyG23K0|mFplQFbSW5N$2e6LLX{bp`igzTcEOYSMY3%j8R!f94{NK#JFqrqJ zeQ~<@Ow`&S5B1*4R~GC!qLzuH!A3`(!r2LbhwDsu+Xnx#r>kx-<<0eq1t&aF zevlr`3{$*sp1Xp5!<~9d(cJA(aaFe;sXe7c$O980yST+*JSs3>|aR>|b?SiB%^?z1>88yY&w0eib$v)K;ZtmK3>4-L?51Ra+le}`;Nt;JEI%}Rt0*ywo?+9T-M*2U zi5qgU5}Z^~P=e!CYe}puMHxdYr)c``t{~&&>l_QfyR`*k+G|kn784(pV%Q;^pQ{Ma zoK4`D^Ni!1P;y~Lbtj-7ruxAMrw55J>00Ho5Em-99(H4*W1+JaQFEY9XNuU#R6$33 z{vSVr-HSNt_qvDj4m!*rQ7E3oIfGFQMUTiIXAplK&_mtFD59C7bl#yi#4noq2@k@d z))yMk`_9n|9tE@Ub5Y-bsUgrC9tL&}3cV+%dgKK=lE_U~ zlFlnybreaUDy$Oq0VG1~RC?mp%B(jqPbPYN{wm8MBpeTT z;podaQp>b~WPABfq_;Up>1+mNO}odGx?px<06bsNkE}S~|CgZpR@-I>QT+r@3(%u} zyz9$$LsDsUaFw~F3e-~W)!ed|G~(!Qu17zmhT_J|AYw`}JfY&qtmFo6UfV_G3W;0A zd{TncJ-`eQ)cYt7izd9`;&-h4E|Qz~>*37KERN#1(%xl;Z9FS~&j9E~5C34*DW~)d zzcZPx$BzhJi`q9h4chFx!}Gb?Zfnx?DDh0eWsVvbxcZ=;Q6>Vu~WwnYW8E|H&oJX&+a-4lb_sIt@{@zZ{#VwoFoB zmaxeP5D$$Glp*+x{~QJ{mUc@1xa;I@(pnl3FWTw&!iVWTsAOIU?uM;_=G%k!m}25{U`%8{d??A zbc^k819)X0%>^8vf>MoA7b5wt1r-h>*C0$C6=Y-9ueXFL7q<13a(H8Lt&?rr>Dd&PX0o6}9!15ue` zG6s(_y+@SCg^Dl18ct#jlfhuNn{C>dwvsI=5~xV4U+|^shDw`vcr|8pwlhowgJ1;S zR3&T^a}F6c7+4+>em4iyPU6-q#KCUSj}p%cXceb@w1t3-d;m zcd0FvySg~6}r#$#kF-F>Ma1$=4_a}jKbAUI2~QT8&Xa_+VXK@ zMwTED1F0two;1_zAOH<8FMKCP?{labt2k}5x}q55AwCEI015W7L6xoRWv0gONth8# zVLjed_@m3{+aq%x6y#%Gk(qNIo`zol01t7GD&Q)(CM(Xe@;I!rTUB6Y+Jtq#fcZ9x zK~4K?8t3(=rP!mAY3r`Xo2oO@!lJMO3x!)>q7U6sulzm`pVF@LxEr?PaaOVC6_-mf z#6~2Q($d3_SPzNf3QV~2FG=J&s^6^ElVb81BLM%5UT;#uC}J}H zKj-euJ$u}8zx=XtCFjE+9pWXR=-nDvK#T}`IKAaA0 z1FQo&pf$c|EywA)ZeB`?Wys*TXMzmHB6tc$Ly>09&zd}kIkHGvS}h^D&|QC8(o&x7 z8WcgR`J{!r5LzaPX>hJzB3$Wu?{x5YvEUD;aYhTQtKmso7Hw>tE1cilE@81{xG<#nKI6*X(pBdT zP6B8;ATy~w7sRu!#$sTMB@6eiuds&fn4bOtz)XqR>_B<40l_!8RlNS1UGbZC`?s)a zDCGeIlXE=M7K1fqI7e~sM~x^-pedQUFMj81-&bTABJKc9)v*|zcOXYQHr5Ola)+N^ zIwjQyU0rU2g07dcA@@rKz@4eXTaufEzsB9)@TQd4NX6?0{&_t2q~!`8)|5f1t-if; z@}Cg`3q4y9Y@QPjmAbC)YSeig%V|=LkJS2GS^sXWBFXJZxpE9_&Qh7=P05^Yt|J6b z+NbeRjlUbQwDR?A78M^UGz!vYEJ8)L7I{+&#)lP?hDDRO)_@XS! zp#G{?Z0AW<+#pCen9I7yALs_|hPpeqb(y6JeIA&gEFFrb4oMG=KUDltv%A!hs;o@K z31{+~MF5K5I(?*?orpw+(%5#UZKY%q`Ixo`^b2lhY<8zbT&C&u*NURtr%Pnd)nX__ zgCHbUim(lvtUTE||pp4FUx`KooDy(QMd>OY=>IVh8j*A5seY z7;X6LIxn`h!#-RKF-o)D;1Pf^2QGcuSobEHh6`GL)|Th_#ycxD{WW0Ex(d@oRMl3u zY;4JLs$G!0MDf&grDui0dX`7^8KsIJGcYJRs>IS3XeflnL!(~J8-hdf-q=ldlDltmkV9$$)zP8{y~0v{yyBR?-U7 z;f+o2C;DQANNX@HJ%jvR@IKSm5GV%=l0>ttWb@g4iHqcF9pWeSmHoK!1_dllQy&J! z{l+}s17>_#z?H;T=sgpS%W)xA7@vN2?EEiA-hPN_5uf+cEl;eRaM_KsVHIz4TRZ9P z*U`t)#~g2Hp5ohL0^L;uTkh1ZXqXvKA)&^e&)oxM$idic*PnpmylSLbGlgYBH(SL9 zR=pAtqPb3mN>9ux9UU!}T$r1b4dw=S>%Rmegn;IxJf?B(SN(IBTrN;~OeM=ON3H?h zZ>XHm<6xcHP2iUOCQV#4IaxCV?rp;v|Bj-x+IIaJSPt4lX)=^pc%Lg%bmTt3mL)?z zkm>*oT6aAhedtQ!&tpVpR0z}p%JDh-={P|P(UTQ|Lk|6a4DmwfWQEOg%1p{K6Rv2= zCSHJa4KhRqgw)+5+)XhwUsbKm2q={MFCTZSd$qiEqSmGawyzEN zk*RKKLhH|3qOghG^5qhdLyAiQaoO7Fh>`JdJ8pQxpYM&NocFFRoJVn-TPK(&lA_j7 z(pNG!?CU`#gZlm1oxtSkfOLWC;z|VQTGR@Yt>0Hg4wtVGbw=il+Uk;ho^P&?2pGGP zcBrGv{mYb%!nEM^io?5%8cYX%tr+JRf-F=}|0_{vus*B;m!v#AUE^`gRAu>L5lXv@ zi>r9B{t#IVfyhl-@wpA0K*;M}B&MBpB#`W;r9I2nm|%^^A5 zHvDG6zCbmy6Ftfn@QuF1Mq`)An)jS>#c2^lY(?_QyN@l%!USP&9gZ;3`s#jetfMSc zNQfvI8F*IE_#F}7j?|#l-Tv9v39{Hbq4Y;<&(f>T{Ezofr-!|vtzj$TFuf#X{u4Hm)RNNYZ0?RQG z0K5nO2WFHdNWafzuXdFfShjIxiJt`CN}x>$+L9ajAvE-M6PFEM?Xa6*jY@RNh~Qz0 z(LCGJs?MHBho27icQJXfzu_?ow{l;{WUWYaR!xi261S=5$|s(;cPMcOAZ zjQ0T->z)$uH^!X1D$?L>8v!;o6Uq;sPv0JN{lf)`)jM3gDDk#I5@PU%@Os>Yl=cn? z+566hEJxX#7nE6ERCm;&Qxyh^q$+Nq=Bc2p8@+Ir9s}TkS<#l$+EztlIw9Uyi%gI< zH#v1r;VTC@{1LDP4A{zy{d)# z&{0~xMCi|KHO^><58xy~Xj;*Hfn2`XBh((6BH4_mHY79?vfu2dl~o3rJ-h7=UD&yz zdE+UsnkrYEt;eomA;n3c>@wvBz2)<#A8kGf!$7WK8hfox-mfK7Gu69F^W%rQBSKVv zL72VeR0s&KMR)_~pE%&?5@m8}uTIpT4 zJnQ&5G~#ktvPQ4QNc|#}R#Y+(z^|`=aS`TwFHefuwFPGKx;b>1X-%#m&8!7C7xKoR z@>=SMcd^j|BStxyfIC>F{FZZjNI9bs3E)-WV(WL(0Onl;8qd=Xm_p%Tw_Zi*ry(Adz>V4~2l(|6R42>=?y@id z4Uj?t8XYGFBn^GWN)bkzHwSbrV)>s^fT|!velgbg64!{>b`#t{;27o^=?1un?X0l%|5 zUbotzbc`o-ZU8}pMy&17)Gg@Ff?JSPvThvwrPc7gWT6h3ruAlCJnz>`lQF+y(?cbx z#-D*I+fL+!?FugRlJ51)&jJ&=x(d$2@geJTmJSPl!JCgTBwayfgtw+{qz1;uUb|wE zegBKj+WDq(JzH)w$w?&OvYB$oO#iw3Ip0%!?7=7|txd!jtDYWL{@7@$7lp@jq?Jn5 zOk>D^M9RnF1C_8DBDY^u)By_hUptfBvhO$mNh#{;zq3{F`i*u+H7pr;Ny(vV5BYk! zY&8yH{z4z2??Frn-3E*z&bKc?6HC13WSJy6ld*^80i8If?HFAXHfKtA-ewsJST@gB z$VWu7s0C8NEhUl6_UpWFT8c*af9(-Pe?Q+sP^l|Eu~rpHo034mK``2_&v_3CU1$dALWtQ% z-~5SNj>e`}nV*28K`KN<#o$y2?~?}{nLKu)8a!_%JpoeQh^im$W`mlIb&j37M{h-x zMU4HU^wL8gb;B1guvW*;7y}V~mqx^X+7$mi7~M%%VdF9ZZ0a5m>!O4n{MNUe0n;1K ztyd>A05-)kGEncLMoXwju0S{-YbL>*5lnE%@OT7QzTn_xzg(#Vk99G5jUrME_?~uM zD11F0ulKh36zR7n<=J*?aG6q`j>_YP!EbL=u%Qruc$3TDifzeavQD{o4dn?0>V2X-fg?XJH9Y#uYI4P`Xo za?JN?%7*Yorfj2nXL?tqe(T82As`EB+qLpDh4PRjA@~vueWy@fTFb)^iyBnB`Vo+f zrPB0$h@g&*N?T(%B)G@wVcG=;@~7{Xw%HavU3V}FTUMS{n8dWYS2sMX4CiKKe0sX> zU=+5kJvaE|*gU7JCDhmCR3<7y+Y-+@Y(J21&|Y;MzY#vcSZFP3*Mp(Ot2|o~AuONF z&W^uZuD}4Yz6iVUh3+9l_>T&Hj`TxPfYeX`1`Rj$1r|uI!A}C%EVbTar^3MSf6B3Vr>K;=#H9?`&=50o~`1r=N;XXu&EECk5;b+v?sa^T-CeJAHct z4!&%i5T6N$DlEh$<*g{bQNt24-0d^#WtKGq9`I4gmMORZ0S--GHilbxwUrrwK-YzQ zdXe^e$tmob)`T*7d14zn-8fa4warsZHSwrc$~Y3Omw;(2ZgZn1$I$nAC^jJ!|s z3>>jxAa`#IOlpB&b;Mp!6)IVSV^l1xb7`QjW z_s38P99gl$Dlb>mq0d`J=S&7>PiEuaB+9U5M-8oL^Var~)B*O?8imiprox}BF8-XV zh2T@sryXXq*aIUGo^$yo3YT`7!%f|bP7D6}^ob0rB+I!rg@nOvuh-+xL57MGt9kCC z2qS61o$F#LTq@?5^4_?|Ojsx2?eD-0H!_oJyPx6}?vc_+re5;nP;>G8BA3 z)aZV(Q@k?=CcEH$=(^?T19W*O|NAMCBX|0=0gPyylb%vd|UM?Ebyt(0O(4Y>zs_e};vz zM}#mNx`m(5K0=29nIIZPxRP6m9L~8g3bUZ%PBPzc8K=IAsA?vF;eqLk0a0y(Nt;;7 z+K;6G0`46oLmq|d0B%5$zr_i%9h@i}tp47LLMr;b%m4!(N=)7Tqv2e41?ox&`*|bd zxGc4b3Ahof(A|*cD-DR2T%CPdBQFOF9{B+YPQkROp%8XnRff&+W3N|Py(@Kw+_wFK zAy(}`YR_v7addjcR+Mts-KtpaK>`-jc7BvIi@cpvwOwqM!v9PD1n5zl(vU9lY-$q- ztPGccF^tlqXH?hDj`{jbw)z&lS_(Cy@sgCYX~!HiSIfFeVgp68*Y8<5N!^t{wWe5G z*nUyEHzn?}5w#f(-y>V=)YYhXmR{MlKGpM-xh;%7dQ=3MHb0C|=Xcjl0 zinZ6Dawn!MpFgq`5ZWWq;b7=l9gS4~WGSJ&mrG_oM?H#&Q0a{Qw+iMdiewqLHB|n= zrYHrpRSZOAW;f_dAo|Yh{H*( z0mA?b60fSoJin+(&=h8{`q0g#i2Q#DK8k}4;$u6=zfJLgkwkvvUZ}q!pB#&;K+`c9 zOq=dcvLp%@fbp^i9mG`LE%mXVobLmen(-4ZZ^gCVmdzD{)a3Eg0SO^78Ff}r zIGF3+MXx_?Z@K4SwEmY^l700~%}d1G@ebtx0dXAFpo+(_-;um+Kq`2UjMveh`J13U zWTdGZt1iIhD!_Md)f)r-FkI#+^320)+?^Cc+^K)bFV!Rkk0$8#uK?m}w=S!xVAnkuuc0XhG-jUwbc-@h%_@Pk__C&N$Km(D1d@VvRy50MJ9l~-8K&~ick@_D*fn?X&Zf| zCSuF{AzG({KZQfkid8(km-l$gt{C7+lBPt>p9o-ksjL}x!R?Ov1iF<~9nyUD2Bd~7?&KekDs+k+x2bTkmAT4TcG z_b=Jva7kT9cb%&-66WAcwQ_6@+iRnp)t`P2Ms%!6X=vm;SJVN^&!fP(<%X36qxbuv zIBz7d6>IRq+5xa3ct|dx9h{?GOymq>%Va4X&2~U5*V85exkqMX9zt(#`_zEwq8|%6 zdolF9*H?7wFj>6-1LvQ+GNe>NhQ(Mu#|*AM8eKR_#* zbKxG6blIe`o*%)(0^NZg-5QLS3Lr}=ZV*9?I3v(;)3-ijaA0r^Mg51`jG=2UnRdR( zE5a8`5l--!Shj?$tEKZ#QIi}6o4zO{8C+S|?Q{>Am79;Pnm>D1V7W@Ds=(JBpt}># zGpGKxCit0kY)$OQaW05Z={USgs*!ni2?M*C!Nf&-K(@m=-x&X%Z9?~uw@7ojD3T@m zx!5jI#F!=%8)+6L5b7_xHLVWPEQWOoTk2@slMVLKK`AMGtGpV%ES0Sd(m~(Vb=j5| zz-{V-JR+2js0PmjKeC&sX$RB6rCFC*rlx60$#t}_tE>g5leNd_*adt+8>RJ}x2LLy zN`qhJw!9PD*hW{Ob?~ku_fVF4ms$9bg~?J`{$@;jRXKTN;f#bTzn8Fohy6YA%&Ytk zQ-8FJ=?4@-(=!Nqds$S^5^Yz}KVH&YVaJr>@Jf92KwKE7(;~$M%!LLtLBuQD z{$-zyP7>e{keC08mFR_vmJ^lWY*mh#sgf{p$vZ?tj|2RrDxNvrY8i4&mR}yrL7;hw z()~pBNN?S}-2JX)`_a;_QH4W)ogVyioB#j>J?=RAnhTD^dN{)Yr$0lty_s1J+ z8MZgMo-({t>v}RFZz7T23Tc}L!AlQCPNG$I-{>Z$8q`pcsC_cjkW8y=1mdE5cP62&Bs%6ImSr@dcA%7cfb(5hoC(w88XbUbr9=Wk7e9k^DImU9l0otmamG6V5#{ zWu5HrXLW_f(yPFUqxW)$z1MIR=r-#k0pGwkqERj0UFUGvGZ_@)2WR}?e2NPS&aZt+ z`5ghrAlamIQP7by0-mM=*rjW`%^LD!E;MEJcp8J$=}X6)&0J1XTA0pO7Dt2RN+LY> z;fbgmM_jAzR<H(D2)a%_PZ?Z<8 zpTpEO1e&ARrYK=&eBZd7yP~5uxIxYCf0XRRdcz+)U8_0T*sJO9P7{!itOIT*_; zlRs4bM&@7vrpIwz$WH`BCL)<3gg?BF{tS{p{Y?AEtPBqhuuRrJ?F(_YSmk@`g98+S z*73}DxN?$F4riMPS%?`J5_EMiCN4gU%q!BVukeC}l8^y?E6ziz5xfPC&X}ToRL4`u6$+1GKqlQimgMA8Rde+N4d~T}rh1 zneu;La|;epBY73E{+HpbyzMoe2SN?m(+iU2K1w=cAjjj2q`$vhzqPhm@VI7OpV!+; zEP`=}*YQtK2ULOH<3j$~#4~p>8Z%6 zSGKQO)4}}zoOD~0Lao)}MX$T%P?(@(!P!$NWoa=I zEFbHK%17fS(YZNy)Xd5fTxT9uJWBxH7h><=fro0Old3LFlRZYTn-9M5WX7@iS28i8 zsSH=G%FKGNr#p)9wwyDsAZJxkkn+NFuG^HF<}{u#vdq^}9ECHgJ%GK7|6az^YAbvW z?FlJS%sS5&uJoP@IYqslkZZdIUqvvR-f-e73R-j{<*@=mG+ZisTKpV7XmmYOPxCCE2PeP;TM@2h@niz9ZrAlci0v5`I`<4{~>%Xb!0pLyxhR zIP~@o&Z*|cvjg91LAmHvmX9-0>^!(#&{n?`@lENHrCB_qlPdjZZgb`@TGL7;`NJ0YpDNON7Duy zTBb8F|9vXcgswLmUXdszUK>T#Q`yAk>4E!VZ@V7%#10GFA+j#gUi?2i-6DlYu*C#* z?vGBkPrjz0f^JjEkx%*k?qHkwP2pZ#P8Ag7!qcE17ifiYWP4}g{2>)}^fGfz4fmAD zuf@|D@$`frt@7h{YGevuRF>{b;80ho-XM`9ts_fh_2YTFsnWK6!>uz+HEHPJ5nignQ=_d;q zigMS@dy+1R8;S)gPX|c4uI&B*XJ&>S0h&+mxe!1n0BkG#Ci|m|g>>%O3U=u$%zE6b z9dAM>28olmW@@HEGf-Uav1FAbor>amo>}Q(S7QhoOg*J@%v^~q>XtatAvu!^A5Cbd4t430l*9pV$?47Ta0YSh zHoLx{4D>#KcmtYnU~OdFrU4Oq7Mrytm!0o>St))UfR)H-nJ?u0D&XEVQ4}8s{m{&M z95t0T0kcc6VY_MS=PLopKn!=Y$7+?9)6rjl`7Y7RvXjgeCG$PxdbQjnoV8kYDf}6L zOFvH;YvHFvDc|Q1+P?AhsE2*> zp4Z=F*fSv%_;$GAQ*6l|<^c~S*Z0x^hwXqOd7{vb^-D@W-t?#I9Ky~wwHL)S?5Qz| z`4OAIX5zR;qCX0uQAv6L_IofP1r4)VS6~fa2MSP~;fX#AY!GWdDNBhu+5^j6!S3OR z6u|RW;M({;;N@mdFvB3=p%)dQbISxPo&XfnM7;_ebKx^vcfmw()5so0`E$#P3~#Ui zZJ70IN}Yj9!5zT~-KtDqv$j!D4wTZxYGD8hhne`dXI+eFhxim^zzOK9VA^1Icnd}p zh&G){YjaG{xR!6x<~nEWXXE`{BBKvtYf? zbA7UAar@FaXHa+$@|3@WN0F*KE;gCL7 z?ay#5{MgLVqu{}pMpF^evDfE)9`*>@~=e+X%RJsbiGv9=oe!s% z5*70COt=jqjWg9KI4>2VoA;cmw#!#ZG7{V|PiTzQg38rzGTE_O!YL zT?OPDh#g+M$%MJJR7b9;PK>A zR*QG#OwC*Y>stO>tiEEmpM^kUWp6XarI_f5A(vTMI+{vSmIP!fTDW z%Wl7{8a=d-N2rNM=#UYr!jVO8y%$jGb&58RvS9)BS#^ezdl#o_6gdw|{4vUsU~0;i zkr!3EpZwtWmK}>H$DQ*DXi)v$Bu~0iEx+N9;4a>yq53{_>l4y|ae4$$gRd+6lxYtc zB^3Dzl$Q@Yv;-@)3m!+c#iEn0n~Z-e0+{W&Vco|P+Cm|E6XInsTyrcXPI_~ z{lHj)BgQkEgs5B+mT!?sU3!A90G&+C{C@nM_H4UknUU5gV68?L3^q2hrpg`WxEfeX zO$=7?;~oL)=A^5HixX>J9Xwk*h{CaVOlIfV;F?$X$jTL{EYNCa3t3_`LBhZdSN2FL zbd&7rZ-30Ic0@Bq#9wiHw9lw3`u#Hyjt#tH#q<*PJA0IeV%q;Flz~eBA5ICGV+ZHa zKa0k_1C7`#zmNq1GPM;#sDnxU|^b7k8XF_R55o%z&vxS>^ zFy)ZiD>R2JkCWJ%`&cfmfa)S_#IRuCig_W>i%}*Yv!TvSQ!>)R8?2D^p+T6?T{$-<0%aE@bp*OWdM;tBU*vVIpzGM*H(QpC5(941 zvcp^Ox#~3rIav&Y*%Y%zuGf`Tt~Y6G$Wa?KZFyVi-)y4`^sg9#3?|5k=EZPjOK(^K z1V0po1AY?sZ~G2lq~MYSI+7G@t;dMtwY)T`6zdkEpbS}5-{iaV(_vuKHkqhQ2)JD5 z*~=@3Lq-R|F`22_$qZ2pbwYVv3Qvp9$j)OMqP1j7H~2Mp>|ySi=h@k~%<>W(&G1%A zqD1haC8d|H!W=5{cv9C|c_uyWqSy1Tfjgb-K9vN#QZ;;HKUafw8D6XK{{no-SchMhwU>= zI~g`nPE0Qx-0MU+k4#BSENso?o$S8~a||(Ny0n~LtMYMO^M(RLAJ+__HA8U_*Uc?o zZ*k|PlpnDe-P>uch+fG!)3U)-HwLJs?(saUeI=b79w6>3znio3edw_#O8ozsa7k7c zNI26P#U-yfBT-FQ1o{Co%RmbE(2R__aj~v2oS{L>4>eNJ#Win{7USV@%&%c%2V%ut zRt+V0VLSMEK$TiBulVg~Il|iBfui0F*fr?dIcdkT?^Vc=_xnO~dk}TsYB0>y3Cxo4 zO9w_C$Wi4VWWS2%QgCbm@feLhv~MW`B7cimWZ=#Xa&^sjGZAo>T#?s3gTyd=hH|+c`LwGUqoieC0D>N7ZX_h+ROa3dn0doQd0ipXez1HclBB@;y zi2t(>G@Ps>o5MDiU8P4+NIGlzSXB>FSy$dJI?@okB42}(X zgpfm&*LaaIw4=La0z)mw%m7fSuWF*c1=^vjW@()Q{>4F+PK$YtF6!b-(T$rMkB{){ ze<5@~WslLGjJZSHU+j+{Dqvvd12k}_vns7xEG(Gpxh)alOdj-cYxg{MjZp)Jc^|Q! zGsbwUPJU*A1LKfF$53&lL&A3}!ET{bi!>2gI^x;u7R2iZvozB*Nb4HotY@6vUo{rQ zNc7zWYNN=K=!aTL0|F$?(aMg5k3n6#+i$ifh6~eglaEj(jcS?u)dOquu$5UZD*yI*nH`gXllJjc zP~}1=BNV8f0du+-w#;TCO((>fRaxLkJ@tH|i-J|sk*0>4Tb*_^{m8g{ zktQjf*``X-DQ9X)&(FrRsAdYo(Jz*1G?%0^!)-7uJxe2ue)`l&+&}0EH#$jk2`VE` zRkm}qBl@p`@ZKr7;AYI$mNJ$k>kW7JNW+h1JytO+`vdW9c*m%OMBPfQ!*GVjotVXm zZgoz#S>@PJv@+#|1u2R69Cd6;YOD=qD)|raQ|{k8TEkp`Fu$vVd7hlmGKdMad}>2; z_3Y!54b|o4;b?fZ$uE@@6Fk131En>iy)6@%(s0tQt}~cV7cPspw=`2P%O8Fh11Cl2 zyki9IzU`FY)LT-51vy={`v$w|^W$LLs!LwBAFw2sd@*n=3RX|Jjtg*784C-;rf@d_ zD|@_8ZYqU9e~~@Vv)RM;tqiH6#EWbfX{pRh>;amdNvBeCzO0%@y1gdHpSxItNJ|XBS&PwVgoO2MoXU{ zvl3?Nl5%$(gI8Nv*i#Z^lK94xov_wo>pK57Zxh!U!fh0HqdZ8-@-6XFS1DUr_3p%H z@zn4$)!uw{C?|VY^K$IFrKT z^laSS1bSfaHQfAK{!t1I)kEZzB%7|@gzP`jWs)b{<@8|Sn!4y!2*SL*+{FI zi~$^DEOvOpBx4jz1|2qz_;k6CS49RDd1*-B$U%|E0w0neYAPHGcNWN^$)&^cCW1vo zj5{emIdC!w&cO}h`39r1OO|l=5%Iwm7NKodkNJcuvO}Z`Z&vSn>XS}cX+W8=-Tv$pjMK=9}c!4&%TFgY1JzIy)AgjWN72mXjKjkMWnpK zVIkVgVV! z77E!HG?C`YtIPo}8fTosK3ZmX+3ppioJZA^A0scCak0<~GB#<4N0e=|n2y(@Q!9(1 zcz6P$O{IArKYVUx*>FDe8WoL*N z?x)Gyc1C}f_YjMgSmn^~ie4OV>s?9xx}*?_{I)}lm_QQPVugfq&*dBtHRUF(kfPDu zwHXJ;0in7nNqKas>(-+>r=_ceF~k%Iy%`l>FR^n5sVHW$6~Gz&eEgvnjvYnxO4wZ5 zY$rTKk?5AQY>4tp5&~uOvPEw6PB3MEydm%KH=C*C718zc7QHH?UgEIJnf3V@mFKuf zHU}874N5~?ek!zN9~}trYD?HjY4@y)j#jXshAwV|pGKoh8VeWnE<+UqReJgsWW)G-o^0JHWeI>eB8NXupGa$qbf8`$*ZJTy1P~=!&ilnKw#4- zMtbK@wV#klKUzO1sq6XixbmeuMp8V*kPkn3vi$dqsKVVX>70=kWJMQWg8G?JATLk) zFd(6@@t2Zp$W7gRKd{Sg@}Y66cFIYd_ESEl%UxVwjHTSF)s+Lo)pAY(3wMX*{{3Qo zS)YV{d#MXEW*ErNgXPZ5h(2XBDiutvWql-9Ujs)!Sfg}%Hl;G{+cXOcx!GFKqtL zhz)};w%3PJD>Hd|3N^QCCI=@~k?d-W4MR!>fLJ0&MkdaC*m4TmC<^mtFJ|UTlgc~) zjV@)yWUhXq-(S=b%pkdiQB1|5}s+DzGO+ zu6jI%#+PUXL*}@`^pFeXdA)5e758uFaByPiFMBQVuZ=?bniEy9p!j3 z{yjLBv1Egpe2+jMWKMvseK))X&UOnW-z3W{3%;8j^I_bxDaz0M@|D-EICA+D>!Eqs4&3TnqNTzL<{Fy zx*~7J&76c@;HIqo$M}_XE!A4kcSm3-Q0v++Nw51%9Uul2fB*nYtsZryrs;L*tNV13 z0?J@_g6v$9X3lR-F5JTiZ7esCz1ri+;DbZZ6%ZNYAb)B9;6c>DzyJUM000000ere> z0fePrV5QT@RPW*X^j)(}fpB}dQeTB=84vGgCPY8ocj?@M!<)0ArtJVQ-qbnF^B<)! z`RcSuhsJ3d?3L_r@_=l`X^j<`7xxM zc1QpOr4=|kV)zCfzKD@lq(rko#z#Zt1EAFi>4#aK;E6bpnkm15Tw>uQ9O^M>5z#$) zDq#V^0}__mPbSxo`{O(6BDF^uB@p~;aB&9pAkzUlQqQ~iEIWXA0L*q zo*qMWE*5g)pkKin;=2DP1T$fIK?3fZS!&9Cc2bm@dub4}Q)*&C1t0(b0000000003 zR-AMXPXlq&7Eo{q)28}OEd+@Yfeqf54*K+#+?Zhcp7k&Szd^uaaSLoA{8<;xxwifR zw5E*8!C{M=WoPzHgv6Ba`F>W0hLb(RU?j>e)Vdf#(f`)qx49nr7sjuEU)3j@a6FqTf* z&(eJ-R;}^@+w<<`^FQ=MIC!V~!7*vP%h;iWu&PNSed~96whe!htMl$jy|brz)JT zrwzyQP0)1Pi2-|V>VWXziuMepD&hDU!~^JK(Ivyl&i9N> zV7>JwM6(EJXk;UmnWl4EQsRZ8rWLs$rhBelt(}lZGUK-_3J~wLPn6vgtWJON(8J=tu;? z5?<6u#Nj8)4W+Md5jz}RPYK~_+Nc#BbzAM77pr znOGIuvoshE#v1)!B!V4@>jx?llbnroOSr?~MSLiEffe$g{tz@1QQKud58C0wCj0qZ z6g_KyQ*ARx%zluXhfIFkmWi#Ht1#t&KSovO<{HZeENFtO8(tBMOoH!xBx9~Sz}T-Z z=#e{N&;S4c000000000000C3SFz)^U7h_)nQfW01y4!#N00000GQ`Pn3rz>W=_=L- zoHMn!s)f3(5wkgKH!)NSNl2g45dHOVnV=!%Aepd^o2u*6HGbVT!0>~5)4O631^p)X z%){E8UznE*Jodss7Q5R~eGSw_wh3tjksa zA-k%K@+nqCX)LlTsTjhX!hK3v%ikbsnVyJV!s`hVk2E|H-{ZVN0gv`JSt(2*!l=5A ziN{PDWZ~|8a#fu#nnEv$uNhCvy_$zsXI%S9@Z5Aig+m}LGd$8L&q)(4KMc4Qu2cu~u~`XUYB{Y;;q=knm6%&UO{4ZP(6gdFYD;k=r*c{!6N<>yKuyw6lv`m&p?j~Jw8 zParPUdU~dhgnT67D>D7j!TbJ(Ix9oP1o76vQ5x~J@V`du59@gPDSp60VyJH%r&ajaHd3!6s8}q7$xl*-xB*Uj! zA`9Y`FxL?&@DX-hZjP>Slb$6v;KOdliJH$gk5uu|AiN=$93Bo*`8L5*oA4bx+T z5p#J`2)E$`=bdmZzdFnA3`Ee#k2mo^~XOgj~JT;!s3p`I9`D-a%_~ zqX=Ix!&0q`j`5ABZ1tYcxG#~r{Rp$m#}Xr3!7wpOVcm*b&Sf&tPZ;`ODpz%woF4r= zqPxfP|XxHfELD3>;}u>ft}b< z$#1k{r2$LG`K(3q000000000!x_V{7*RvfM=%()#T6|CDlSvVca-icMnDIVvhrj&W*QAVRu`3@Q1!{T5=zk))z1-Npyn<5+)_DX_i}+zU)@H zH)G%fd}oH1oFI`pSNJ*~KZ$2l)iTJzG)*tv{c3N;MTcOd5eWwC+D!eW?gN~j ziG~tRh{l|MXg|wSBjjtM(xf6%GIC;3KpM}2thr!#Q)R)%QgHU38{~~a#%O}>Jur%{ zVdMvvdsbYhuDVe?TXXRP;t&xB21@Bm*%DA`Ob+BUOL!F9gTA(xVYMtBO@J0|)DhQ$ zL;TH5MQl6tj`jmqzHftW2!PHqqSsMt)4is~zBJ|u<`wUg>FHS$y<+9P2|!9`3Q$`T z3HuEo9C(BUR91YV9Gsbm7L{;wReEC?e9>2pu3oW?v48*o00wnCpQc>s<_4T8h5a7+ z$z316!vaE(Z7Y30>~qUi^#2l6niXjU3PQKiKO9PAeZ-pP1x&ZWBztl&7K>zeILoxC-YPV%ZGz%X4sd_eDOD;2=g`P_ z>VM}vk4Pgz)J?ld~d>R)QD4r>-`G4iguyB5J zBAvVNX&AJTdCq?y{fe1x{IQVf2jEl6U5cn& z($TciAbWEsL|?lhJ{9_vi|%OM0%(Mu*Q(;H{;`)6Nc@6jTy$_ZP$K(?SnBUZ3D`P_ zgu4(Hzq9hG`;&MJnQS}ifaPj|aoi!xNi)oItOY%WmuaM+aF_8VybX|SqB=;}6E+bZRKc0H$~Cl@-V?J-MW~DcgJO#(h%Y)uMc^ zoSyFArFI!04&nPY7vJ)k8Au8L7N;F^@75rbuR%>){UXthRw~VCIkVtQ1gu%|T>R=s zB&-^a>d`B4&m>R&Pk!COj@Rd13KSs(C&0$u;{L>Chd&3^@L4nFNhDXcm~|vtd4o-E zUCP_;3$Ww*6#Y`%MD(eeVo5L7syo*`CY^`nvi000004c3;w^Atbz!=&6N$;--v z6}7V{*0*Riu53uo1g{;p(FJaTQwqUk)1g2h%?&}EmD9Gx9ANV(- z^y@&nn_m)=2CX94?p%~GhW$tueL6Q#w&mM+r`S|D#r4@tRvAFj zN@jWL``D*O1pHUd?1TiHVrU&u&Ste(of^_8_3dxr;HlGT$6tf`nX+UIAe9O0 zpnb^!n(7*zTo8-tqH@A@-Jlmw6>t;nzfhRv4>(#E!3dbNh;@rUe#i&(B#F?gV4~8jel8m&PBGtXSSuB6Sk9E=K zlV>8_(Sk#{FO>qZjVCbg$JLYsum2?k%1oe=Y<)fUB0c_<8blNIHRu@>Xg-70Viuz{ z&jko3bKlngUK11V396ofV&TpHDb<6iszHWBrK5hCW8l)L!aQkw{sX^R>B+4s4hQ^J zZ}nozy+awbP#-v4yV?e;f9d??Awlh_1i$yBy!rwu`(v@czg#Mw<5sG1b^nrd3hI9P zErl&oaSZx@iGHVIMC{~Ak6 zBr-&lH|9oK21yB&l(?+ZLQLoU(7kWbsxKh>nYRLpwTZ5OUu$vc;f702mk5_=?aJg|+hDrJ zQ~weWRJnUXl#>}&-s(H?8|QLScy#CgVN45Hw`-Fd{|}RFCzkE!Oo3Hg-35r}R5dH$ zAL_$x7MY2nAUjjLgCFL^0eMYe0B^kg%*ui04OB2^%8%#KEIlk*bbBowwLTHM&V(zX zM)ouTvZvu-@@+8y006qy?W>hsXz~apIkFdDQvEBz%(x7?gcFSSaaD4s&-_BPT@8uN zI7Z_xDgSD1G}_B1)&K$89g$E-xVBYAqqzkqhthcxV1^Hk0WnZy-I^m|`Xjm|%ndy@ zyx&9cmBpqk0$FuSf8DNMGYQO&DL0P6B9)gD;HoBdN6+lag>z!a2dYQ>+{NbUxeTNE zf?~hgMuojgV_X&ZcvQ@sTgHo@05cs##gHjW*1JaSHwxpI-lbRzGZems+(YeWt_T7w zkDz)ero=~x2gvDpYo~aLGC1yMs7#CqJIs+y+hC*K4ha;!;YYcS3$YWZVaGpvcafC| zN0Cme{~7uxTjJC`_GUXYX!0=+rV?CQ7$JJL|Wo7*J&@I1et&&eJe_f1RY4|B{OYzN}7U7s)%WF%Q3?GQI&fj7$gDb$`YkCy;! zCP{h?Sm^~TXDRqNb5?QP*<_|-W>&r<3f|!8qPZlA8IwJ)Aej(aF&2E?YBlKuL<1u| z&134lR;vI20000Cq%gULHkbnUwI&xZocQa z>S~RGLJ#Yx3p}g`d9|prl;-}y>&>RZcOoDpCkt$c3}bzyLAwr# ze1+zUA|g`SVqzJ^?Fc;K){@MfX~*ugyx)k;Y`npo>!CQFYQU=ZuT$5IJmC(;{BOVO zQo&QIm5EDX!i}06Wr3GNRsMGck+fP(tY~zJ3d_!7>Nc8U5&J!A4-(m)-QGmrM1fhZ zx!k16`OHY2ad*50G?+IUjOVGzoFaV2#%fp<`U;-h+tM`W9KSIfUOu#-B3qX2u)x@- zau=3AXC3v4Lo)PT$F{KzdDf$D+Vg^ZSIc`M>ga~lvnser^Es4br6>w?mxng^pCc0g zSWiqomEi5H0S~0Tt$Xgob=m$|*=V}2o6d*Hn$96Uk3;|zy!5~Q;HOvwx12YhXmytLvG&4uz6w&0Ej66L63UV@f#{;RddWa|AO(pV4wiR%5&IZbpNet+(Fb-SfihE5f-H~sB{N)- zZ!l`hs}1Ge$0{2!=?mj$5>k5I&$(c)gNN?{^dAm=|3dV|Bn5?lfw-taHF~;VgNxE> zx@d&P|DwYLN{gg7xuJkTL}R-&O(5mK^}+MKRc@?TlvULg{23P*7VZDo-}e_EcAISa z{(hA4yQJg0hx3UH4zWTlPKakOQ07ZDa+PmPYCkf@3q-;a%3M3Rje+-#*HWD%yJP2( z@UP)GbX-|8b8|`Wq52h_bfJq-mSx=6I}|!qH%A~4Po-|2kWMgmF*zN~T42k9kKH@{ ziCHocQFSG=(=2fxNF-9%*>h<{1F%ZZQjW2*#4_BEytMiLA{a*!;S`+Ht8(0EDl;qs zK<-Q~_ye$QqcTM!#o^{``4qGc*%)&%k(DUIc)P0H_Pb1qgH@h993(RRK!5!-(2sDsrIM6S1?kNOQlJh(P@9y8OcVPlU@})gvD| z9bWNa@j!3|ax{(^3wxySK}bDXULI?9Mjd`tH0uHt{xPO}bKhH^ORqWCcmv5V#TF)c zT0zK=-qQE_Xn0{?!6(HV&me))H)2DGH2n%9*6H2yS3DwY7dGa3e*Xy=PSJye?{hIa zg;;n#2a1&^0Th7-)~2N%Q0rdrISI~Q;SOOImSn4~GgLb9DID70<@@yXMpb1k0hbd~ zgmKHleBv{|K4>B3W`KKh5h>iQSH1l1;km6CQYIkgZQEWZsc=}nMOz1_GK1qzkv!>X zNYRSwxU1?*=vqsE-_`3Iq1@(XGTo;lPS7o~mhu)b zCc^iXNm;zRSF^Y%{>`!)3EEj`)6Lg}2ZoIW9sJ6gPv(I*7~eeg$YVWSNprl!I^QCz zujNHgibeI~9R>AanlWNNqc7eZ<4)Uwm|@tC%-{r#uyJ=xZh7UMeDMZtSf!P0fu}}v zj>9V{gG(zURQ5&ArQlpDaNqZqvj*2bi1jEax)k5DigL z_R!@eF*X;GdLX-CfQX+u@L8a%JR)U3L^S8b?CO&=#CUNDUn0x$An{ zaq!H8DB=i(D3vBUwG5}T`0<$et@wVc3QhJNV+}`JolHG~6m~g)KE{+e|6{gOau|FM z`4naWFS`)Ud)Gq0iEiNbZ;2?{d z>kxk2zVxW|xbd&Iaa5Rlrhjh{RseXbrZCTm2)ps z1#pTgfq3e}Y8;TuZcTIFW}v`@T(r7h_}LHvSW*+$_CQZRlZ3@P-KZaQW9brSVN9TJ zr!C%I3O(iBkl}3C!MS~3logX9;p?@zZUScrZ)8X#r`WdTfZmOL&~Txzg!_$O*I$=tT`(m+X4TSVcX-I~_b!OPM_r!7l ze#j`sUPx9Oz&4BmAhgzv$*fwQ)867%3H-G!v>4WJ7nC1dm$|ODLf2opRvX5SG9=bw?z zKAcy9000000=%p=u#ss#du!?xo;Nh8OiL);eN&SqK)2;7+w8Kd%eHNwvTa*kwr$%s zx@=orwq0GGp8HMQ8xt|VU|tgYAtN7l=3WuGa;m^d z7KZ2BhX?kWQ`+>7sJ=t4(6$nq;lqd|(JHKgV9cv^vnnv6L5@wSolfYls)L=q^%3|` zVBJ{rFcv~*QyT1mqSHA6xKks0UZ(Xu?RckIDm0-A>RwB z>(oX^Fpw_8wp||m#@TT|Paa4@Nv%2D&h`zlXOgu@^j|p03!*L6^hUlkP@?W=l!gL~ z;0Ki*ckA2OGPZKUb9 z^-**RJGlkG|0$vjPmseKQ;0!9<;cM?h39no@U|?w6>_KdM*G~o8d`d>`D<^%#`Y6Y4& zCX9a0XQhnBg=gdIV@%B@?D&8Ao8oyez)UuW>%Q_Nf)eFf;Q=UavEHn#TU)TqY4lYu zs0DrC3>WJt2Es>~<9EF!2eTwk06HV-f94+Y_PZ)s5v|4;zqa`-MbQ}|$D0+PVsNRw zTGJQ`_8C+BNK>7P#p9GCKU?ip)ltWCFB*0=95gyi-bh|lR;7djXLg(TXyB@GjvBsEH%?|*KD?VhS5f@cAJo}K z4i2}7tD@Gs_+IU?{i{4-Ds7O1kJypz9p5~H>l=#A*CZaP7rI2>zBki8gn+oyxD%S& z{diB{40(~2D4BHTj`o)a0-nv}{(`is z-?m)A%Vx=3i+GXNLjKznpwCJ#+YgcjoQgBaYGsE~YimC;8mUOhsjM!ZGp!g$Vfy5) z)EIOXX`$icpC8PJA^kD1M>Nlb8WHT3*a#D~FVeO57mcAAuWz#`1NWiqG-~D(3ONA^ znGCc-|8m|%L%^>POwy^q1)5RALUXB0EkNgTeQ5kr0IVtTu+L=sSd!7s04aa(FXPEh z?J-6;s_nG3=BKo_jmwQ%0|Ki#{mdJ>wT zTkcOcgl*a%k0nUxGU(LHu?%E>t_Zpmlc=;I*@H|EP`Q4*9yXLx%x25rQcnm9OXtIt@i?$0mEcl(oob>q&^yg}V`BoZd% zT2AP3vwl@pv^lNyoA3(A z1V<4CMsDtt2X&hpJS2B?xB&=$XT;fvf|sqBpTKNHmgXzlH=9htw+;tzpkgCSN-k9T z2&)G!0P<83%xng1iUfNO^7Wmpd&EpS!a_So$STXW6_+G&ZEb~T(TIx2bBa^LPC)UL zn%LUcwzGsL{4RPo$g^KbwWjH)5j0^10RY-`#2W~(^h1GW7on?ZsPs8y0k}zHgG0(w$98KG#r&B~SDO@pngqM$RrL z=Ev+fAZW@@Q?)V-B&WN%grCT?hbSC{)`TT0r%nspd&!+tPgRlI=lrL(;R;ud148qp zrfP7x%)qy+6Qfs<(?lWZIxw^1-GzWY zPyKz2Vvo`Q;lX4X*=_aEu0bVc?lC>89F&am{RZWb(P}Z+k|JXsxAi9vGh)Yrn>UKH zvZLW3ze84c0OCwY(t=-7SobO!W|bq^9xAvk>jd>F5WIe%Usj6*eHn&uKmanty<*~&f|BGbSgW;qhMz|V`gbC8?$K(IUAj->K- zA7qJ&tRPFFL8nt0Ga2Rm0oah%slRVva6Y6I8vV7 zPxB)r5dw47c{+WbhySf8?B|+f0B;G$&3v56#Bd@$07H#QNA81@L74V2Nb@sfr%^33 z3lOL)lACHGc?WFTF)#W{&v)adFWN+v$ilPSN^aC0M{g8Yi`Gv5_ulrqx%cqs{JORMgs{G^v`skx4Iu2*Cl7rtovqZoJj)}$`uIwfD;S8~osEDUjl+XvvlXeo z@!5{Zt3|hw`vu!leED$+ERNZ5_-W&G@IQBLXs+>f3C+_vk+2!07MHm$2>z{!8e6FQ z*NGJAl8H#_LdMu%gB7c|-_ob5vt3W?v9Y`21w}RdQ^PX!ZOE;jzi|c<6AL3DF2&Um6T2e7`U!ifU^TCr8_iXD)?%vobUO)Kt6w z{z~rJGwQ8afFfglDUhm;rJst!VCd1(_x>R1ZwnhU<1N9-=2OO&$|zy}wns8%gA5za zpeKhAvu>b%+9aUeg@+V8L{M5q2zhd2C|iXBfmTOw+Cm7WnM?=MUa=<9zf1vt?$f^R z!Vi%^N(`c{yYF}f7NG2v`bgVGf03?buT#YGQDna#$TJH#@3&3m+Dtes#H|0ojoXSm z5}%c~tDXu{szB2-S)pDO*ZfeyCg;)H*fU?WPmeAqFFsk*^fitS;}hu8=jr?TUU2H8 zjY)t^WBGFQHNuVl@|A1qS9kKeWss~Jmb~O-?I)F{tljtZ=o92%dmiH%I0u$d{HL7V z8uhCrBilqe?f~4Eu~R~SDBURv{ehr^iPECwXDR?d2Q|-TKiHiz4xMN zgxB99r=jApKYOv@pza5|(%=9zAkgoTX2~sU>nHCtRfDQ{hs92xE}kNis9L3C8D#q>PA z3WRw-uCN-}X5GtrpH z*<#DUVRsBEN;%pv!75$yi*p?CM;`j|aS$R#Vx-%Cz6}aj{L{bu1YbTdyt|Ai__;6d z+f?h3`LEdUfXB50=9_`oi)_00lq~#$TV)e7@_(Um07xvJhZ{Im3IGYm>J^H#OIpkv zr0`h-@6~MkRYLjrtz30^lo|L-MpLx-MjmH= zEBjbco#d@nbQ!k_J2A`CD%&S#)v0VF|d|zmx~ypMezC zsCMch~J#z`wz&Vuy1yjitqllCCkP^L3B#!LZp52LnU28-y14 zUEdJQRU!Czy5E&i2qCVL7Y5Esx~Po7C!v4TIt%D5U0DAqG8o0%OLIb{$w{;xw;f#7 zrzc=;P@3#~>q)Ed!}1ThTrn9IX0kO%==_<|=+w@(sJ3qjLlLF`OQ>2WWSo)y%WX^S z*6=gt?i9W}i<^!rKN>6jmSH^AcYVv>u8sA5LEMw@pF2w`c@85DQ_VCYa(|u^@zr7K zNU_T&gLhIW;rb(ZfjKDON@B~=`3+b?q%aVe6JfhXpI-8Gk9%WoWk>p zal7YUx{N091q5!CZ_2Xnm6f2vZlABYwI{4Ih>MurnUV?j@cln(Zc0|`<3k+ zPBKU%0uq8F{j41HTc_Fhf*CG*mJAIh{b#&Fime@x-|Wa$lk;Hi>O!XvmkB*koA2GG zuaAl}FB^{A{9Y%Pw^==DXhe@WBi@eEqu6hRo;pO*X6fY62;Sm^MUB*zTMoJATRS=k zLue2&CCZ&%{diW%i_pm9(?t-vPx#VWBHDago4c8)f4=Knt9s2)yO57M0JI4+S&_1d^y?CQnG}O42b(m;#THlAU7dgVfmx?ar#qTO zG0fKjU!)jB5E9G|1xLBd8@6H!Ba#sc?8As)F}Sigu?Q`R0Jie zLVVt}^7VTVc`gt@it_6sRrJ1oIv#_s zA%9o#!_K@-esnERt*`nUoU^xT?>SmL+bsmmkuN5j2mYYpJQN(k-b+BZRA{L?Cn-)+ z;o67$NI_dlT~Ks0WT!-c+?NwBPOlrYu#4GVZM%V%@Gr#;;V)t5I^M7vft{qAl9W7S zr9-XTN!br19MeE|yF&W{P5Q))rXJhp4sD@Qqs1s`U*xkERvt)Zo#>+JG0h4GAJ~*x zb_6a>oaY_Jh-Zd=d;%Jc=WwU(ly>pV1LgUUZn7I~U`7deCZ!?J0&(DSG|s*I4GD>l zN2KR5nj)zv|N8 zqpE0d@rUgF9A}Or33NnX{Z)=9WszU{kGaqPDqi}e&A5BmuaV{e+%||m`J<{KnrBt# zq*UL4?28RI^MkK4R4f1@-Ca|xNfi%Ah_Xl}m6HP)srsD z{8lDZ6FwCl3r#T}VrB2>SbqeN=x?rdQe}~-nm+?HTbR*x{6=WU*!=Xi&DwpXiZwpt zw_QjgfZei$nT=7}ikPMK0R!gOv+^G=`Pk#*BJgDG7V|Ca1NGS+IV(TLB%1<}SP6NJ zp!6`Sw~sd~W)tG@+m}Fdj*3QDktE6Mdl)Loss4@>+U+x^>`V<~({p=^<~9+~@CFR0+gnDkEV^ zq-$i?l(L_dP{JKwuD&Pu0G)icN7iAA<2=FWk&$8M;d&$lP2iAwxG}(UtZv0oBJ2s5 z+YKn)+g9`MmkQlnRT}7=n?d!1sefn=1;D0R&5>3jQsu;=e|oPq-X+7HdP@8 z$q}*nQMeXT^)_+LM3{Ay{sz6pOAX)8GPGS9WIN$!hnu^PSBc2#W?vnu899M$M+_Mc zL1#kQJ5q|=pEVXF<2oRc|2c>iOLyajBm)$dNq}SE*@&cGT_m^I)-h0i6>5?%3Ro9# z)*@&NNkbTBcowRiy3_b1xFtJWZI$O&DuWaB*j+Q0Z4JdXHXafnrq}|HFUM)^O{@DB zRysQo&bsm^GZLfOwc;(jfHem{gHvjH5Y-y#QB^HZ2aPs0hg|q7T{U;GxS>-paIc8YOHcCRL8_S^!JBNZY$qB^ULr!WoHa6Jy=35R?boWS!!YRYh^Zulx z|A0A&OAavgh%UO|Krfwrj}Br$Sr-hHuo@2#Lod}OvcA_kf&wx#0ssnC|GX@|V1y|+ z;MPslDSqi~H6MzPTOA%1&~ee#RolUpepL$Fj$8yl&!J0cg;M+n`~mJrUjWtPj#(@F z55A)N2mvZ9#9U39WzTU3a8QhYY5*M!!|w{7%Xa%v3BSdQq%CS;q0(&k4-CzRP!6aw zlbn_s`2+^lhG4Uy>W}&)=gkV0B4GLvjN8nsB)G?{!LY;7v~*9xeU!W=AxXd<(TOXh z_Q7{X4_YP=)BLhWDk?5ro@K7vb}hSQ9rP7#hd*+R36ZbQRaOoQPK2Z1Z1fqzeAJw2 z+q$U+Mi258?X9$i6?$;jHKLhSU)~$68&@R*eaE;k|C&vpt*)iB@ac4FU+2W)ka#B9qfdJ?(4>=Cq0 zPi}a3^nQqsTv8_N^{H#J*oU0dM(~UyJ4YaqKiWfO^AAB_*y$s*?ZAz;)=qW z=3k7>7f;|ra13>MJ;zF6lYVZby1!i%fLb(ip95!5IeJk9@-WB8@VI;z1 z9{&3@rf?7LZ}(z3$jSP3cN{KyEIjevA)_D<2%Q$;-?4L@?MqAW;d*Xl}c+5vxF(~v%z;b1@^jiL}@NS6* z2ehAm2-zNAD+v0;U(B~|iD6sUK}P0S5;{|o-q-IFTq8ok`E7PD*=Xla*HO|-J^K)E z==-}hk2@B`0Q0?;*?QX!r+?(_O46rHi#}PDixP3WdnxVchtsoQ3lpCw-$q~Kq_*^d zSI^;hd;yyt)W(eQLI$r}(3XM*zvLK5a7r0WNbQvw4Z%4>+qUeFY`2(Bi>KTuZn){# zSX3RC7D5?p)X4iC){(7AYlR9=C5p-H37YwTt_G5V?}>Tw@Rn4+)lqp2J5$|$vlVho zt`A=JO78S>m1KEIO>^dw>KYTx%jm$y4kwGfuZllc)74055d6& z?`l*1eJN)71N*MBBVUL=ziaJS8@4x-u~*nWmktz+k9)BEI?kkFdQKFrAiwrRrVrm& z9w3;hSCjn8OF0ZNAg%3|xx?i|O4HF#NEAbyEAxHNt<6YY=tbpn@>il~Zn71-Yi`Am z{APaR2V-aRYFTthxH@}>W`ds#@!H-vNui=wgMcz~ByCs9UHi<+p(gMW|9&X5s|io| z*dhVb4L$NkWMS#q^LIWPH!P$hO$vxuTml)yt?%9}O*Y@c5}>pSiZCCLsqogDfc1rx zW#jj4$$T?3PJru_3ySvcXeonz5JTNP9%NUov znrCO-=l)4Z4_@2e*lsjhbtvdF5W2BgEp`0~5ACy*{r*t5=6bRzBDa-jrJfip&Gl{Rnka54 zwlsUQWRl_b^m-75ky0}qHeQt^uCEm)J$gwIELD$<%M1cHub5c9xYL;E#O{5URo6i7!M3D51qYQ2kcDs?qe=+77skCaw#INKz7rQs_Rr1fWU1 zLngVsS@!c`h=(dd@>y{$caE-ih9fG^QWxB4>egCm+T?86(YW-bYN-PWXWsk?g8O7y zt3#-!w2<}FKmmG*g0tWRE*Qf#u}?!z2yIDX!JP*SP|H&;Z{3j-j9%g-Xq@nSkoN9< z>yDr!R7^Ul1(!;{wiK&-*T}|H8h$P+oNhCfTxO?X|VG!yBeFV~RstTXPrUkfbE z^RiaIylBgOb3BNSZQFvyc2{aZZAlSRJSW?xE1*6_OFR0)%4#v*jL(jgJj_jXjBfb2 zs;8ak;UI44z)O1jYWojqd+=4ZA@G<8@S zr!>Fl*NbS>{=U2>{~hs6ewh{8hG#%amn@kvvwBnh&DkPRfuq?Nt zBNc$mjKr&W=HXYI9K%A(bG_cBPWi#U;0@uj!jzXm85~_O%3_Aw;6)&%JF3v2E|+}K z9YcmXW4uIyw)T*iqm~%Id zCh5%K1rwzhR&YbbfW*s{za**ZJe$l=)){0DThgkgp%T8_MG3~$ns%~DMRSTO3f z`q$Y)HMU}CIrRdDs-kBRO4a2~0&WIg!$l+M>))8hzJ&~mDW+Ya5oD1|5oViP z8c{O0Uqgoc~K zCWIc?V~Rj5zK3$WavezaJV@d5mODhSGGU40=gKGYkL)jGjzTI!T0%iTLnAzN6*MB_ zyb27E*ypOvdwaf8fjao;)Nu)?Sn?ogqHKHwq5RpNC>l6dA!!p>D=5erqw*xLHKknz zFb_@@DA49n>ReIG`k+#l`2z`6Zi5#%r(D9@GmNP}8SaVOP;;w)DRS7`4*2Vyo=laq zLGdhuh$ED||ETTY{YNTL-P3Lr1nB!+M)AOO~^UwlG_kL#oM{XT+0HE{{Ya7vfD*>E6v^f%pEq%v>I{w?10`|c-o3J0eZ@ObD~2FB zmLDDGl2-#Bgy+TqCDzi?pxR5MEB$+d6;7HQ)cy&QT9q#hM~{0B@TqoJ%oC z#f>3f97Mdw4Z~)5lEyZk5^0z#3rDNJ;^O9X{ngS=v9f0cLSf|HX@4ZgJpDPt0Mz6t zGA$ki7Qm%jXRGA-^`)c*M|kN~$d*;}F6~);OU43wzMd9o@iA+h@oGwmSeSB|kc)*l zcS)mF84rx0GT#uAtr=l523L(0K5)MKlm0a+x}Q4RsBuX;f&nopG;F==MX{u+{;dry z_nr!&%~Zb;I`F6%exzSdaPqLzOzJ84%d#At_TtKBjal#Ct$2Hj2xz3~Jp}R*)kFLgPHg zk8nb>CxV(2Bk5R^_s{Va9&J$y#^!k%%8lCy#|S-t(3^hp$0@og%*?{R;bfvc38lY3 zw=88cT;6YT4)K0Yg_sz!s_>K4R~4+ci74w|x(ee&S5V#cJtPl-dWC&ZJYk}+9PN>s z=26I@#`K@8l9*c~7`69ma(KDh$hb;X(WqD7++dF%;&p7q38XCVgZmo)>T3$IH#;nl z<}-^Jxes+5v-bUjD)!5msxt(j6KO{A1R__Q+BGMZ;=TAap}pQeXCifYs$Y&E>H``4 zc7|ACunjicFch$|C6(f#UPe4#sN{Al0=$snPDxWq_2nrv07KE||=M3~~jsWZl}?B_<`>QL|b z#0@nf-%zeWNb45Lkc?ZO8gIV406;AC`uxvr4uT+=hquI-OaO}Sp;q6FKXo6DJU{#y zp{6LN%OkLO-o|__ES*QnM_cGi_l>ZO5o#Pe3${n>30p`}of6}8^tNtRbUW~FQf?Gv zPOtZC6eVG<9Nbt6TFrw(i?F6-)M}$n(vBW$Sq<$TR|bKX26uFPpxVPoqp$>PVo|&? zF`;CN*>-RQtS-5X@47XwB35w5V(SOVBpKqn3{DyZWN3pG;WPIl!+94qsyRqZs7h7w zvawMIEVNOVR~3Yf`bIK{i!lk8GmEN+SUi2=-)D9`ed}hE9wE8bIT{#4(UV7oqMrA? z4>n~!J#gW;=W0Ucc1Zs8N3y|TdW+4_=n!bCoPKpeZMcTKH^$c&M>Cw&BG$q~4&!IF zYHQ5dHXeq2b11$U;~JKhY$|r_ioanR6pt@oe9?l*<;D#<%=U}wx>rG+q+rIJI0)>_ zOq60_yy58Rj)2CC{BX(W{-VZnzgl6l+0C_7s~&>sJE+rMk~^IpBLGY2$%<BjCx#^F;N3Tzdk54Miq-y{o8;nk-<{#Z#zpCT>kC;+9e^Yc-@t<5q<8x19R8Z&^OK8J(^^`!;EmFMn{V{ArgyDbT@F5?R?Q z*P`>(>#aI^Y}^|Owvt-s*E>r(>xU7;byEO~|LyG<906NPabaA>KUezzhroA47pC*v0%cyfrMrwFQFzj_D@R z*PMW4ncv+ACG4GhS57%n5}zD?ugCIPAmD?A&6-9e?PMDtN~;+1g^i6`G~G+4vc$sW zf9Tm#RjeghClG;S!?TpOT&s5pE~ik>2&3iOd@@M9o1Yfc*veD$Ea4S*>JYY)n5(ir z-s5gl0x!c<9b|~6X-dqIF%UxaH{Jho_+z9_I=M&N4*D`bCk2=Zj8y7Sn@Bf>%|LVp zefHk7rp)rYfnR~zg|<*#GZ%f)qVns#DV1P1m(Be$YW1z5(KSP3AN&o&zIYx50X9B{|s*)+3@~Cxz@Mp zggzQ3EG0(@c^4G9TPmfiLtG)1qp4*|J?2zs=o zRG(3ntUgR1u#oL50=Gdf$4&f5q-{DvDs+773SYQ(iR3pt;J97*MhX@)!uU5MMy(H_ ztfzfAvF;Uef?&t($ed<(s70-@rK|21OjFMxFYvW!z;g5M*y}}{;@4Q4O z8nR`5a+%ltS5C}jngm+kUx-AmF}ROPA6gP#6@1J(19xp6Bjn^V#fRR9c7&`=J}kwy za@arIac?fA&yoE}53&)9Sx?J3p1ks>bv8#k`tCm#LB_rlytZN2Jf^USPqfs@5WbXo zN4u^S(}C%lql*DA5^-hJ&Gqy1GX^t{?B8qbrO}Ku6CMWZnuAN)jnRp9;8tK#S#a(L z;bxBW+?wnY>^-3T{wWGv)R8v>ULdCbeSRU5R>?l2moS_O1wQB>m8U1+=%?1Cn@f|f z*et`1P>J!>VIWI=0tQB)I+OdbksC@8UtJ-uv)Gq7mRp$B!Ch0cpSMq;10&U;xO)M8wc2}z_X~E(CC-@QfKT6+hku#o^>Y4N9Mg+CnKY#gjax!*Z$43!1 zGUu}(k4(_#>ROE0o+WUVFy}gRqbB*kB;nwjkc@o{B0GPntBBNq(A3LKi6S`4G=gJPwakP0XD3(;IgCMY5>`x-Jv zK6IE-{glShap)H+YS!+^R7O<&p_@=3Ku-;9@`JS}+C{Pei#VWDII@C|q@S$B`GUiYE9KJVCW0 zT5b@2BjFm@LN>qD^<&(};!71y<@4}19=63|*Cc#UJ^RL{%WBAy>E`>E>M@>MXLp+r zS4Le_2giZ0sq}RW{Pe2VU;FPIb+(9Q1?c7$EM{{I$cy)B94kQEizUgACWU zN=m9nv~Hn;<&~l0%L4-X4uoUYw um}2^QQTxLaS6%aOmFs_J^z`q?UFX$cA6dT0=JaS_G0id;laFV9ag>C!=IYOwAR1(>lu zijfd!lV`t&8K{DSeP;_S+R*2CQh7ePX#0@S^O%W57y)d5`ugD0q!0a6`OvN`cme3V zGkrc@^|}G-7X!8lHw7)9M1k7ZpP%gNLSnBJcKgp5A2NynLBN2g&>LqU^bz9?Au3=D zSa~4&jG4Fd@!9j~#1vt7_qGpFaOs|IZgtna!2$>goCkj0Y+nTOwd(@!`LON_i~27G zj|lI4&U|73?K?N$p^peZbKWDH6F9Wz-v!{BBQj9% zGSf?c6WILRd@eew5Dd%(=3cly?gC#Pf-30bg41+M^KUS5CQiQ38B1|GiboI0@ki4h2VUd?VF1eO9Do`KJHK+e0$mrXtw zg6GeGC%UH|VEc3K4RCMsTKl>EJ0);pk~|Itt_TcS15;6mCJTn&KvNi`#FyyG&lCcz z1SDV%@}IZ=IW7NO4*x8Jf2zYjRq>y0@K2Nc2ORtZivGch|6t^QxWPY^>HqIk@iiEG zDcBGUq$((M89Wsch9U$(6%}^~^V+s<0Sjt3tvnfHqX+P@H)%SOb|T=tk)(Ltw#izC>UOwbuQXL+0Im zTsneCqu!x%G5M04__(fO)xc3h3iNP<6w~(Wg*gfjfTFjdqRO<5Z~;)MOXkfA_dObm zxW&L{an=(@bw8te|H2K08NPgI3_#_2FKt3fN|^dDr<*W& zwtlA1*m>;_zl!zv?_c;oh0}^}W_DA~j05nk-*Z}MwDuX4k4RQ68Nzv}a42H8V|;Kc zmAsLqJc(w0jW~Is*Z|12#mLxd)J1iXWFRfpMY8Isq+iujohASLF8!2__H)b@m@QWb z^P=rW0eQLnN_23qx#po~z9zHW+gMY++Klc5>7vn~*2irjlkX`grsJcq3bY$2lFT$G zXOASAPKa3Y=0D9atrD+0vB8DOH!$b#&buS8$Z6<_W zyJDcl>M@w-)+auFq^Zzcm+6#NDO4n{nPDg@*H&K3i0n(|7h*_y^Qb$C>G8JdDZ3#z{^ze zwouTVg%x$7e;aKH`L5Edm{{J1Bn4l8hz>OrqSb8Fp_A+37@6apqr@9SMH}JQ+){lo zof{MepP8CAJ0l~p@faTlk299X+32QFdTF-2-3){K~ju_P^+3uVxO6jpOxScMZNq}_BqsHWt)XUS-A z;urL@9+FX2A4j@!^r>V8XYCkmAB+>zwi)e`G0o)5jj4i`xy$t;-Msb-8dgBra!}pD zT7$pmrZ&&`Kxwh{3ZKMd=d)izI^m94L!V*I|Vjl}e zHSaOB$&re}0N777gLLvxCg>;1jaIUJ<}#>2v?NGktg$0!jlDn?7s%P_Yq~SM6`zT6 zk#}?h`0U(S?rjS#RvX#meo=Beqd-HZlx1!3<;nf+H`kB#XjSmmykL8Q6Y`6FV$^$< z{PvDFCl*9&|F7mMX1~BNA^$vr3IUuh)7H6LipDhhRq5ZUv^`nUB6{yo98Yro6`>+L&+sv9!Ye|oh8~mHy+y>C~_z_u$A)&u5wK8LP;AAt|IzD zJLrF1VHlK%9g{B!hpdM1Q2S$HZ*Eg9ymg9lLsxiX z*_Td2acn=8@c1;F+uOj6uBiB}E?T;FqP~%Rlkx0pNaf`|vC7EqD;h&$*KND4Qhj8^ z3%76sQI<0Gq!lBFiM(xJejlg+;j0B6Bb+%a!^Gl1_$;VP>mATxzE{1|U#I7U;t6w* z7ZaPMlN&xuINJ_z6p;gCa@fXWz;#E=hNcWd9PyBfu`*K_H3JK*Vi6%nH1-ul(Xj39 zH=)C+=qLtl$dgtZZ;f6R*AZl}n1;{I^#UlBF7cCVl_zLV&hYZ52B{^g9g-|?(`yU# z;)4q&w!&NP^d}=g%c(Ety2D)OpK?GyEf02JT~05Q+I2{ba3tXH%KmlrluipP&*8vjfthhdM$M7|QGghT zb8!Hpm({W>z|IlkrIT|qT87upoUiZPq8@Xz1q&$|B9(!wtQd5P=dvb25wdVF_N*O6 zg2kZjrbW21z=waDKCAr@EI!`Bo}bd|OlR0;q>^RoKv-f!RirSbnig<-1C;#T}mgH80Mnp)RB z=ch^V%6(S&pCcg^-=6e0@2%$B$5^?pjXH{F_rjZs~K^a`+Nkf%<38+9q1ZR$P^w zLmoS$BsHONzIK8`@~AK>rDQpyVeG;T3kFAmzRi1{8h?;Fk_P#>2K@R*7IoWNSzPQ^ z&ek`s^$&>XRgAY(cxq|}5zuO6DEfvtV3gYS!81v`t0;|fuaZlYQ7P?b`)M`k*4i%w-s<2B&zZ0R|L;5$4P$IdVK{wuEqpm@GV7p7Np z)%KWVfewBw2z?Xs9@np+IAHv@JPZm$>j&m6@ zK)32Zcp*^dOi^#GoyBf8j#QJv!zx=Wb*afCbo;NZ@O6|!!NSc~dgKWx+|GgrP^V6> z-zu`@iJ?hTTUh4-ICAv`77~4l5AUrJQCD^q<=j8+c$nhm!@S#5VMsT zj=llI`y=OFG`^MH-g{SEi@cLj1B_8Lkpf`nDQ$_U!j&_?knz|w@1AQPQ`a1gg*6k+9B0KSwu)l+-Jr&PpT-1bys$$(}B_yO(KF8 z{Re3Jza|Wc)cRf(sA_!irsVI*Q5i_b2nhG*rU<3l<+TL{h|6HSI+2LV($W(y=j*R7 zBaub@8SQut%cCf1a;FreS@M`~6Eg(}qhI5yttU8WPov$lOh#r@)|_o0Xy?`xPh;Y_ z`w0EUXF!7N;KM!Q%@qNmL0LAOLvn6V-2Dn{4-&l0Pf%EfRG-@jFa*9CaN1rQDP0+} zNj^T<&z87dKsX~;QnLaY*$XOsMsa$pk!)wurp77dmiTc}EW_!?v8eVmj@llts#hEq zf;uDZr5BFe1@y{jeaux#Oy%I70s?7+?RcbCB=+k#GiX!V`YT_dz7~GCu(x5WAMGlt z(eg}+3H=%i%Ry2*>mU)XNt<7AlO`~irDn2T<)YvT(2Q8c%rAhQu$yJ@8Jv?3kU1E_ zHTHVqrAWsW8NO|QKkGQhH{$M_(Q=-S#TeninH_Sz)c1$mi0M%cg-`b#kHyOFw( zgFIN}hC+0`K3e^+M}TuMEXV5}R?&!N`=oHx=4*};`xV_+lL4%xGZT9*;yy+X z>LF!50v|}-$k17uqdT%W$54ab5<5*lhi>)d7HV14@AU0eomX|==@k>0UF+;K;sj`u zWLtw>a8E3gsT{KeEsI* z8~Hc?cOnH8_ptKKrXjlcX?V%VqX@_0yqqe=N!NzZrA#DtJ4%_jw7`mxh1Jl#@HnT&9fe7J(Xa)jh{AZp?R#2N^hYXGj%FAs!|UV;EP6l} znRcL(x<>H?elMDm!DQCk$G~=?zs((hlf*Pqk;|HTCTNf2);LdteLmXZFo!gXJZeE_BAaYRdh zXJ9nKN$J^GVcf!^7v&uXe;(zN9|tGeOLmiaoE>ABZb>ez^V+pm^ERs>-dVIRN}3Ct z@e@0S^11x;5;};1Y8sZ5lD!&Q7O^~Qt=lbv9v7;uL5r!yf#fKYA1hpbFBK;{?NDlR zx(jt`_J=k;f0|}&@&jjl@O=--@W+hgZWA9&bBiP~FI8b=Q}ig@wfWUpl!Xs1TYs;$ z$snd$C1+_p$5pqmju*cp^=&YKsDjpk>;@tC*nx!`7x;W@@J>Z>JLg=ncZ*X%& zbl;h~#bCVOyBs@u!)?hw*S?H5SYyE7kd-1MUnW(#tWg_~uyk_Mk5Y|6t3(~Z@;_1! z6DDYa>=WZUdtu5|-evh`8QhG2rv%qbc`#6^Nxk6r0xLu#2*lRlU3;>L&H{zi!mIuz zcKk17NxuQQtwWQwkbt)kX_5r`e*;knAGapv8$NB0#O%?Ne{)EINsC}vOQ#9{b!lP& z)E7OIQXq*G!gRuRqq2TR1oQUH`=cuHnKF4on?_oX?8 zXIQ`Yw2X)t`A08r?QldXg2i__F=Nyfy`AeMvb6!>1SieFyAx{VUO}07Y~ST za%^OGq55-Bne&YrK-`y-sh}#7OFj428xEA?mE>nZUpz>7ded+UPBM8@|KTl2Ug+eH z-S6rDOoWs%$L4G=QH37iLxJ``Wv~ByCCHV0%O)}$GNbdwQboj;xk!L1QuY#G%l*u$ zM*Zcd=IT}cVJ-ZW?^XO))w9V(`f3^_JZwRZAd0Gk6i=VI@i70}PdV2M+7pPu!ZNY- zzd~X-;QR$G4hBL^J-`VUsxvyhA0Zk3&FVGkap<+!ROW}QO=Lur%GkR#CKB3R3EvDc zL_U5(PZDNHi;nH9@r`?ky#J!Ca|>&qG*`Fb8GAQb@6i24#G7S|wqQw5%^1b>|7bwE z@hAP zt8x?|{SaRwHx$gkMms_;56CUu*AmJIty)F0Q|NOB?0L@&yA&d_;IbBuzd1;qoGgMU z72JlBM?_AA?#mE}hOa!TP)3ez*tK5idf*zC-hYXZwl!AHaquzY7!lyg7F!;o1CjIu z3qu|cS`|CW&x)QjOA!d2iWleSC|;X4j*sh+bAM#W`37hdw(Np527kr3!HunLT2A0& zas1u;E(>|mPIl+B5p=D^XfsCzTz+7?Czj+F%>Oqutp1NRYA_?bKb(qV`pQc&kTHjwBv~DiV z`gzR&Ak0pBK4Fo~M*lm}Xh~h$s5D!9LUbMzp9u#`G6Icpooxo^uvo^SO-{5L%T|GV z(EY9iAkZHJvZ+q0wic$&9M?}(ipvnW`sXs~=iQ3ShO-E-b3V(n{i!*hAE_6DCL76G zb0I+?^tOyhG&{{a!uQY?qON2&OIjn#+=w!X|8(O+r6vqpfKM@6xKjs;Q!4TL+g9Ri zcz5q;#K5nPnY=uZ)g_IMXoV&6AX_YB4S0y+V_nUS>3&Je*?0bBJ`oBjs5e>juq3`z zg&8(JfpwluV`Nj>Dnzb?2JQ9o6rb1h^!TUYbxS~R*s=`5_>e#fI&!~*K)0;*f-2N6 zh1i4QcYum;UWgFz%e}F*cn|s-F3e$?BtY+p-}}zTGJ$C1-KSYh{m|Er1JZynxL_YK zo(Fr{sLG?1DU&!7e!1w1__RMOG9crRgoiHq>T|1gn7V%}x~q30(rdnPp_CxCm{ILS}8U4QAt2X~NJTjj-?hNbC2v*1E?m~!o{yYw)+jDc6`n)-@>&DxN;ua{1HgJeIHB8?ztinDu}#$+kDB9QOJ!j7V` zY7yWtgS-iEMW{~s=ph<7ls5=7a3bFwr3}Gew(MXxjoapyufX_1*RnhPDx$EAduU+b z)~3XeoqY%LpT{KECtsV=X(D6EqmSD;o}+^1Zs6B3NcTn6cZp*VVePpX@^NhwktVUrY&s#E!%n)a+BqSd&^{| z{%pO|6Iz_9owNP%Mym3A#C%ZDK;{-)dwT|ZO|!&;K?CzdEk<6m#^Y5s=^|nWQJ}dH zmpfs!6E6$*7m0Mfwhm3b67ZFsrf}KQK+Tqt>$JP3MO0YZT`l2i6WibqvrBHoi5@;hHqfTG2J)CkvOT9ESeW zxCII7$r%!445do6yoT&>Tz_+(DP&+%8IHVoap-_&)J3NktiO>+S$(&aQT5y{ryMi< zi}}H|1hia;D}o)x^e4(IgMLIGLpn2Q!05AH-#i9&F0Uz#7W2=q*0T`(!Yhwd!hW}F zr!|zzx)OeRZa!+rklosK+^4>67a<5eSxv!^1y~H$ zaAUVaaug^hNv^W6d;MO)v-mnMq+{P0MO-S|IG-*lisTcB#}#g7WBAz`+bq_A^Q)-C zC>*)A05Ag)S|7l690I-<(8*8dvVY9uBNE?lL?Ripq8!aIel;h;$Bx)c(E&+Y*PzS7 zp*inU{DATT1L=(lsX6<}_@6=zjv%lSD|JrX4%Y#w_KeMRdm;{w3~@>@-_YFV;8%dDVRJWyH<8I$vpH;r7p=q{}1~Czb?tcR%O4 zpAN!{HTWMeQd^Iz!Afs{d!8?vG2G$u;Rm~RQ4sNIonLx6Es1 z$DUmdaY+%g9-V0LW&4oNXEnRW;F}5JGm@<=b-;iy0E7AJgDLnVQ;0<+H z&4GL6(?bh|fHMqiPdL9vOBG9jm?;~WtPH2R=-jJOn@?2h@v11j%waHo+69&L;wsH* zBgX0sa71HAm+Xe1FG@3QdU2D0M6VNMdSe$6Bt$v4xv$<7-7V2K`WFS1hbEM2-sfE5 zjH2<1Xj`}iR4*&&;i0df@XpXNT0K26q00CajqTeCz)KS*)2=kLbr7`VY*M=(Q;oy2 zBIG?MR-}@#_VX?jB2scVRTOg@KJwH36F!w$IB+X=$s&6vJZW#pMv;lu8R(eBy__rd zXY&EBbeUj6flh$RN?q@N;Qm3lKu}_Hg|EAv&)wyZ3;l?SK(BNVR8qWiUX8^VtYUx| zSeQHCJ`_dg>u&1eu@|uZgkPAhyIlV0;WBiL2`3KkcD=zyZ<4l5;*qzs{c{{+e%}`W zCseM1abz^>_r$^RK%*2?E6|~Akhd~I>r8ByF~&$sfVLHW%csW2Z*WS$0v-W@8(s}m zvIoA0#@ef9!y-(qmV8~wc=#Ls%?r3u=;MfMw_nPO}6nrCEgJUV7a>AqshfOGTjV?hb9uNNms(S$e+Z^vr!M@5; z;;b2bQjD}C)`Wmeee*fJSlw%aI%eHU;-0gF7-tN9WZ1b~{`Dru+>Sqv*$FLV*(8Td zQ?B0G;1(Y-Yh7}RE?1;zwnDLFoRlgf78nfSo#W;aglDKQwE%dVf22K=VsQZ`E2QS| zIbIKun}-{7(_6&q=;D4@gkex-u?tg_T^HW&uM*IDb`N!2>dDm)mAQ`jksY!2m13WI zcL{p3M`1sJbbj_tkY+=K&SZUR%hL}XKoQ&P%Hh=bE>|?nvPIlk&B}Km-_hV;7i%Lz z0M#1`Mu3#R-AjD(c9bYGy259ui<#>bi&%I=zV5;?4Z1w|Pi5DaXxm$SXbeAYpnBPj z?T||5cZL2xfcFq28|gJ4`_vXy2R|R%H74~c&1W~SGIJ5(ROsB_H7;!PRBP#Ib(A3+ z1&J5=3*bMu-OeH&=gDz8eOoa&&KaE9>!OdR_5L?)EQOyXQ|2ogvOdczijCLUrX{)O z`Ek8=-Uio%kTZTKyDHuR+Q|93>|dE^R1mw}rK}$ZOjF>t17N7-ka?g*N>Ja+(==9F z59{APzD=+uCYaX0O&@2N&7(P689ROyfhGH?Sn2Q}=IvB;aJ5P8+`6K^zPH9#r8ASn;J1+(Ag#7UPG^tXgbwAjn zHx`y+qcaKbt43Li{~`{0I4eR}{gRe^!Ud+%DyZ+vf0~WHul`I955ZapPflinYOf&# z_f>5IVgmmH%l_M$DNwN3=IPZ6M@$Og>xQ0|S4H);n4W!Yoxa8H~%zf|_ z=-|-ja)&3h<8~}JIn~uQs!8(nPW2&0^vnLh15-I>O;Cl>(vAhcj&I!T*uJ~!Q7)k= zu9{+;|I({ckPML+897q+T`T6+PIp*mdoKA&u=8%Z<+E*_tnhyB&| z&Hm=%?XHpCuXH#a_RN#MJdN^i9&TQAoj*vFfVMi*rTpm3f?Qc0>+jgt{Z*|*?E1!> z+Y)i3!gThITex<+cNxR6xCV({%C=xP!`)~%CPT&OJKYSodCM>kd61V1MQv*%RK(Fb z2nTfR6*z3kK3b6w{I0!Z&o@aldnOt`UUDmwHypI#wU}(wgD$&r`U_F{(1o28paWhj4CR^;nAsdD73oiVIU+DCYQ>{!vMhit=$e0Sr|y#~mXR%Xyfe zoI-C0G%0s2E1I1!pY*EFoHkX_B{nKiR2HG5PMnUabOp1L+VoilhRflfAKeaw(H`iqnj3yjRh7~mKw zq6LSUmjDpb64<5yyG<-ic6zS1$vzthebtf@3$3UeR#Imz4!$HBsQ%h(DB@_cwjyfiBJO_QYZ8LyjaYl)!y5B?BLaVxYw?#~4f8NDODxc~G2OM7;^%j4 zA^2V7$d2BhoL9#5N05_c0v)%*B?-VC-hKx)`$%TLn0NVzj|XGWdI#~)V2*oHe^(g4 za@!wxzHQb0G&VItSIOX5B}ngt^<-A-+Wfqcf zWj}{-Cz4Mo6G_@2tW{;@@K56uzBWtcaDgMDs8CKt9vT=k1+eqLiCcMafh@|Ky*nqQWvbot^k1yO4Yc;UI#)^#hjP=8^*cl21A>$GmUOF z)yrHfN^c2DQBm&+LE^MP1xYGT@?jo|20fQkjn^J7v!V+&pxe5>xH?8`M-oHymw$wa zT#;e_I!XJhmyU^&!CXdFcNFA=7RV}(WdsVgKqu75O6cmV0i~JPYp_L6!g!?BJOY)E z3b^DPRUQt!L-zqq_6%+DE^=!)G!Ver=SNx z(XL~9nv{e@x<-NlhZxDrPg%Q{=DtWiW*eGX$Ba(Pc-b%X;ZNCPGPkEkrhPNpdo^nw z)Xw*DpwK0ftQ;duFImU)UbKK9Y2S#+>b1vqA~aF6Gp}_M%Fv1rA>a@Z(9}Pcz)u(J zw_1f7^~jABeUTqw+pxZX#p@&pP=65V>OQd2{#Hw5yB1|rJe45$cNPH})sM_>VIq?+ zn~70|F9(yYd-wO~V&zzZh-81vp+HJw)#fMp^`lidiJH7?_BcyH`LiMWI)SQgLHdaa zEd_A_AB9@x=P^G1YA1KikjyVPw_Uu#Mt$L)XnNJ=KXm_0M41+IC0Yyq=npw=7x&F|Q?kQhq+xsL_)5Uz3n7?U( z1k9dCt`UkPkw@_%OH%g6!46~yD+#g8bDKhdB43=m6BX%xqSXF94dIu;;@0Vax7Tk@ z>;vKN_--_NfD%Z&ZQ)r+&p6JGpUTTj&Nscds1qq1dUpG>K>wlsD1#un4QgkBFC%wp zrJ&xz`^~8;o!@;wu!E4ewkLrXw)Q7^l_pgoUphF<4@wI1QkwS3Sfi0NekF_Qc@xnfZy1w{y}=m}#^(O2y0CP{L983;4~G ztlj!Bi~JRlPaNrqFYgYRw+L5R)-d+8_)B2!&$MpnMmn`=Dus%~Fu0LJb?pf+P7d|T%sV5$iqa@vlU?Tc#0WY3gj`3b9uJ6dL8RuA1;@}F@6eoNgQmmccZHQkdSf~w@VjWtnD{}fdzF`TvTY22tFle!a z^_`Q2V0vb9MC^L58Q%$p$Tth?B=hM?)o{+zNu@L{ao7D<0`VYL$nUvgNYn(@j?Q!l zj>dE}-Fs3v=7XBDCOG{^b_dN5?(5go64S9UZEo%bLcWwINa3%BIx1q^?;X+PxnhPp zUMl5lc9YPV*M={h;kT#)|5iILP#_$RYb(2yP5hMhAwK036vBHnc=L&Ds^>?mb=Ot8 zy6EZo!`MuuX@Xz+;lJlmcn}0*zAAp`uzH}jpMZm~o>ml!EO$C%CxhIQ_jZ7opgaXR zJX5p`A+2dSvYLf&mjjDOOF$+oI(tjdGyWY1XGG5JANk;b$Tt)j8 zo0cB85q_7eEAb~EvH?5?m`4+vZxp9wyruHp)C@PRjwhpy^ej_cF{4IWO%itRu|-Bg zR4B5^nt8M6$%C>7U`;lBNmD;skR8++pAV{<`@_-h9(TQu)C#?Y3ON%+;pv~Bz5j|V zQE{@TEevIe*eT)weW_(d89Yzvq@vzP*9W=Rh)s=Xae18433`?B*Lh2Hk2iFU-2sn{ zz)UjHk<^B;6(Jh_-uS;8#wq%_*dzk+p`dXuYLK`U2Ib_5n3Xvzi#i^u7`u+&w&5&w zH)eRd50WWvqi-YCM3`ZD=kG`BYPu1#f1BL6+BEoJ8NLxA8tQ=`3#PSGvCRN&XyrPa zxNok!u8|pY0eFE^LXQYBytTvH@`&PUYWQwA97rc}@Kl|MNY|vVVV$g zuNO8Six{>su%G0BR!pn1sP!H4#;9BiBCT#-iY3Lt$7y z6CWUUd=IKI*lR-82T5PtLO;%}DbLCn;t&bhB%*}eW~E2+*@z7^h;fyp2rymAYAFQ| z6w^BgGY!#7P-!N9YFMQ`L%^;N=s7}KFaTeu|CE}V)mREQc?S}1!uIr2NL(|KFQu#f zwANG4e;7z%R%Jq8OTI*>lLjw;u)d2xcLwqbFH8?9fH{ZMMCTO_mdoTzOCMi+{d<>6 zsA=4}64BF%Pzy%Lyd$7}vd*^hFne!ydBECWriZ~LXRag##xYRWo%4WGt z+ITrNdJHFOqYC4LmJO^u3jg)#%us;|7L$JXn#Cxet zU-R%32Oy7mBaceq>Vvj{hCuiG&s@Bh*fT6}*u0qVF0?LCWRT6}vDi$at$pJ6Xekc$ zyMKvdBx89XKO{2KD>KOtl-IHYCJOtL3C**-K>8_h(!jzbgNYeaJ^8RxUFL3Y zq@B7z!ky*E5oiML{h8w}%S%mkNEshsm0$R&2d9eiJts9jC4y?ePAJ%Ds4zF2)>*-J z#qe;$=)t^{MrC#y-y0p-&nsYr-EUgjIf-gg%&gojbZ*}y7+o?UnO=_y(F2xG?zQwE zQgmmCV88p5l*CARygAmi-Jx(mvn~--05fr%StJNrtpS9odo@MhFghgwOm<l=JJ4i!D@izoV{^-5wR7%flRG!0SDhdWT9!7g}x7zw+O zcuk-^xQ&1Tm}{TTUWth<+Fur5E>$04B3a{>nvFRpLj3STUGBx^e}#qp{J$R$=8Hw> z=|k_(J@_S#rtsIO03_mxbN}t|6IzNIQ^*So@t}LgED)1#|c)r?H8aQH>IL7y|Pt*a{Dbu z#ES$K<@Hc@4nI(HOtULlk%^LNK!Ct-DGCMp2oYS16QcT6R_^l^shpMg2JDe)24s$U zHe~JscUzRp@?RovCA3xs<{gbA3Q9$&aQ|`WRQ1`Mn4uS>ZfYYLoA!e#?@#g96Efvr zK}QDqbL*jh#UB%bnj7-k27hS6F31uMFgXv5j5Q`0JuK+~W2>tqA)kk2xx2NJJJ~_K zab%jH&DkUxU#NXsuUr1_1DTL;>J#-1tNKwmY_x&`DY626MT8fp8ai6p!t3>5HAr>) zay(L7Ci>~9j?bX)Tw1|;X;SLN78rnkxxp015;e5HM<^b0`+m-VqEYp<7HIHsUUA)TE%i8`Y*kgg~( zDy0M&5ep_WzR}^BKK6*-WzabFmH01t=Bx5pPBz;20*f@n*K*ilWg82f9bFnPOHL?z zmBKk{214+XA9u+J@zm%ZP znG((~>ccvFF~s8Ihc$+5_GBYl_OB5@6tI6m)1P{;;z+uQ(iiX1_cpHFreMwoe7_u- z*l&AHq+)gaRQhAcvO|VeE6jh4B+8$Vd^{mKJsZ%>?yYIhg7K!xqadelpJ*E10O95H zP8A~gP!qxdztuy4Sw{XgC7jL0J{}7D^Cyd3i0iIZTq}o_OCf$!o*<;QB!%VBU1FTh zmObh{g}U#B#oxKP@08oKefP(Z!$1zC%GZ|3O;M=*5|bLO@D#nFz0b!@^&HZyMVf=W zV43R}!(ZbC1=|BB>!P{iwoA*I5OVnIwyIiq-e{C{^5X&~vAUyiT#u?-OK>89k7tIwUW=r7KL%Jz&o7 zwzKYQz3CT>1$nw-z72`5nJ8DETeqIAnU+iUG0rM{AEsP1)n+hWlyeFsrD$QmPb7l>eu@QuH-mhm`Mz|*W!EJ{*2w+W;y&ep2| zsus!=?tX={II5A0pxU&4BjRtlb`(7?=ym?Su-z^`=>^`rXtsJ?c~R1EUU{R}Ge zGC)->xica7Hv}ugDPjql(#`}uB~Oixbj0Z6ib*zQ`|dd^>Rk~P`?%Fd{aQPru-l1Q_I zN$7RuXIz@8UG!(m_ZRFr$mKB&4IZi38REJ1j1845^}nlMz6JL8WY1E@>FjLGhsfT; zraZ`N_Izw~Ppxhnbz;H5?=uWh@E&i}c&_8KD7{%MiYMnvrRgmi#ly2hDqqrDVH^u_ zRHpv&dSUH??mBX6d8cV}lPRbehZ+ll{>oj~E-H8QP-=KD*} zo~T0kU!03}RxAJ*;w^q>~2(h{u0tZgrz(m)-8`^8y45)&C zzchs)5aUF+e+|X5wNGxNL|w6$g+M|#H`o2$21xWGM{89P{4#)k7Y-G^$BO76Vrq~~ zaFYZVxw6lX0hz)l4taW?fXMAM?u1bLUdfEw zzuXZ9$g|pZTae$#+j-5@=PTa|8@nfdYKd{3SD#%E8MoN#fo=0ASzyLV>y!}^C`qt4 zXrHqHKQto2yUi5UyJ91FN2wEb;qA1xcr6TjRFkbMH)0Hsn0+MIw2cj$QHe;gS zo9N*6@w*vtpOInQp4ZGAD=L)Rk(UrNo)^Hf(*2QpL+Lr+%~YNuF~U3iFbsgL;B>P`A`VX$Qc{|pjX9!@#Z_95aqtr3X6p3nAi_X?$1%q z|H9`8BXk1^Vvh8Ee*a*2vk<}pSx5IbgB;X1{tS?C`2~so6b}E&JN&}b)D;ajHY%c! zqv7qyWC=BcoI)*T{4acmI%EyF$v&kP8}=U0{e5gh@y2my|!0P%(rSNk+`Gv!2(f-bZ3hfJxcszm$TAV`-_ zOI>}`_Oi^2vxg4yhYnY|C>9w5eD0S%;edof0V+aXueGuq&x0UqzVyP8V$PDWf@1i+ z6QXf(s}$GqiE@zcWo-V2N;Fd{ZMNp=&YM4!lRzyH$m+SHgJ%y-sdCxQM zKB~MZg6a@>zbDH##3Q#M^2Q8$ff(by?)rnYbM2AgaJc#hNEgdvqc!1B8{BIn(Q|S; zCwug7pw|_VzO^1`O6B6xj7Yk-6IH%l;3WYBr$Hnw<=`DQ)E8E`x<0<&rZF{yK|V^B zZyvY>I2pO*bx5JPt#WL77~^x7b>BXxX|}eoW^Rf@E*lw)3PAOIam2%TN8DwxD(zdS z6Fb-0b8x1fVaDX;o#NF40~gUEoPR*=uO~!w;(O=3$jh9b3ThPV8$SYDH@kEu!|ZM&-aN-IgZX{L~%53Ih*UgI&V*2i~BxY9A`*}sNA2ppbu%pFe_YFTn z(dzp9ApMUAK~SpBp!b>DzO@<1TLb48_PwiL1SUg0nIid6^nJgjcpRMa7I}CevbZWa zCK53ff2n;-UiMhWYHhXVP*=S~!&*Wg5j0@k$Rn9g8us~d_zV;i9y5_3Dvj*OZ|sel zSQYefxncbhyLRnLI=xUuqw?&7jD{G$>la~Xhg(xi%*OnDen<(He3R>LDJs3Rff+jZ z`rQ3QqPU+jm{P;*uM(`nhC+4B92Ka7c8ej!ZHzI5>p1!n@CUCubDC0ic@f5ali7=U z;LfnWaOl8_s%TE<6HNv#1vHtdxNq#iEt$BZ`G4@bFzpLK3HGD4?Sn=`o~JTfcwX%9 zM2aDWgAw;Y;cBm?p>~GtZTY`=d+Vq!({+EC?(UTC?oR3MZX^UGr8}j&ySt>3ZloKe zyOA!b7jgE?=**tI&-tD8{>S1`7ChfOuIp15f>=qMa5<~$fL@->B}ILyJvxT(dX}@> z>)GRy(wVO1t&om3(F(ungV5xpeOuxy_F0n!#RIqFTjAh%cI6ULeqCDauk}P#uezuL zsyyhQl6|~+swlfr_6ggtTa~lrVEx+3a3ZgaGCUI28?WG^7iumhs-<3&7U+Cck&oL& zA4?`mvxB}Pp0nXHk(nE7+o#2}yL(fWYwO9gu@tK=l*qHVWT9|C*xMZRrpIbbwC3qc z)QN*{8X{6Xq6l*J6^8=Nw@?LhV#MxU{ezDjUqZCvKXZ0vPf+x#XOC^Sel$`4p&0wq z7539o{Vm^DBH=+2cian^9;$#TbDj;`zsPhcI1At;;k=&-M80mt%y}gOqiIc2($Muw zw^xkelQibCNE{_sYUHyl!utkZl#Z>RL!dgNu9|8vftE;~<#@zjb$Pn)F02`33aE_m zs&(nWYIUVVHCI552k8~b?5vtl(W=vPR=j`qP>OhJqbylyHw=cbOLD;u9W#L(fl2s@MEy9>B}9; zZOEbAhKPFSTQ?f9;W`_1H_XIsTd)iG3BH#1wK*)#JR5>RF=G_Yja2;DhkA5yyDRmb z_gNddN{O}0{KEWA3|FPk$fLMyAt;*Wu=oDkX#V+u6~~&Si&O0Ph>YKqAnH*Uw-)aj zcv5XWMEOXtp&x9`x8l7S>xJDg}O2##Q)5hzJQ zdAW@+NFLMbIwQ34{p4n=JehbG{PZ8GXOWU|>vEhh;~gJ1{rxWrQqVg@plU)-K0Q0Q z%vrg=bPU5$%7hkmhE;zVp*Nco@ay->)WFSoKLsi%g@aePmJZtz&*RW))#H=v#~X zHav*nD>98(97nyoScEJUxTo+$8V84EM_;~I($KDt$N|)F z;rz|{e!`<6Bvys_{v1gnR8H6h(NT^iuUKV@iJ@`h8KRhM93OJ7ENmkKVg|Q5-iA%z z8;VT=M-j!gbnn zPdFTyc5FTH%K`F?FYFfteZ-BvE^HrfQWBnP4#|LBxY&`{abJvr=5Xd$;2%m}0K0h$dMU zH|UWN_lCE@y%&S3DkagW-BIB5mPl|=L^G?vH_@!#-_BgcVW6>vE>Bg}n_M}z)-9Qi zN9>K6pDqn49%c6{>8BNwq0m-8D)d%AqvBP%YPN!~^09=QsEskbsJEATE?gGNJ|<|OEJ=3d^i^Z=;uF9bwH#+QZM@Gp1wQA$$e{9 zIdagh9mLJqoN-$0p}NSf#mKBz*O1F!kK)7?`a%p;C6fKl_2O!h^yGr5vC7v;%;VTL z)iLo<{Oi8KuiK88o{t3HAYkt~cxHhtYwDnU@{n9KS5U^K_8=PyH$R~ryASVEscSaP zhJX8&F!!m$0OmRY$At_b;q1d3y~Wb;+Jn$dMOEgHV+!fr{B;#c?+Rka&QPG|Md6pb zVkj{XLoS3o_1X5$>nxFOBOK-|V+bNU9{p-ZOq!@W+?DxjI>{whMtQx21MG?T4{f|E zA@~z>xrC^`G%8TR0*v_GBq(+S9mwv}dw%LD{l;*7*fzK_N4&Jpuptnb;@?hUA0#|S z+|fIirHB^PQSaS$PCg#e-IY`MjX?U`6g9QY-$YmBo#QWz!ryOU84EgoKy^VFO@;ibmB%T>{iGgPN_p4pn42) zWfzFus-!f;V|5)T)M4wF${FH0QXH(Hv*+2b7VeyHI*>1eD%xmKg_nVSGuAgw1Qh_K zAoC1~0BJsYC5b#`2iQZzlTXLt=I(LBOo6)Z`*6|^YARcqXKH{0nQ}B%CkWqp(dFL8 zdNaXqXZ5%P&~;1o8*6_?@W!lIf0(?s4`p(o6LU_~Lo{oBi?87~2%Q!?ygY9CF3Xf# zAS9Ul4$y_3K{NsQ+VjTfvS+2R(rQSuX-N~rulkx9`z~q2^NX4z%#)P2eH3;zyQf6X zg2H*@mtnzbc2(IN3=o#BxQShJvxA?@P;g#iD-+_H_4pfn`65eqKjO;Fu(w|B^T_%4uQUgR1ty6DMjp^d+_Y1+u8(e=yMVF zs5z00WoV+MiKZy00=^2xmYf0iz9D1R57y~HovFyY!HBb*VwMALKPN8$jpCD2ZobV< z3p-k4AInJ!6C|O*`#6`dgeA7Ex%meW00?@7i2YsH_%E-KU@T~FSP4H6fsM;7DXB+0 zymgJ$M^cJX9l-gC6+Tb387_KW=rwEJ99E&`zcR_sBwpQsT@3!qFZ2FvcVBzCy#$xq z%q!%c3-zQQSOaVNzZ=pqeF1f?#6<7^Oxy^_KasMm9Hod2Mw<^WN#STBC9ZBwoqAs+ zH!KhltD{v#t;$Htnn>Qj0>^v;qLndPSS~Hct&Pl}&g<{1cRa*;8(Kgvp{UQ4T&#~6pIc@*faLz|ZSSeu!tRJo=_ z3oy%j1-~qMFdpi#0Y=5)Oik_*v=u^P z8^0fAqF80r4(|4(fT{^{SHzx5qA_}^$RW^Yy66=ac zIFxiSIZR(`@M@y^qZIFSdMWMccxD_PIlRk>sTVv*EgPyWaFD(0JH4plN=<%?Xh9K zDy%qY99yn_-3Rj|l)9JGa?ICLUrWE-#@q%3Tv0LLc2~ssbh)?W&Xk4m+M}?D@0IOL zAa~2=j$*92+T_*xWv!XCt~2y1cOa}TUX*PF;EzD|QWa)zT%EdvZi=?sr;FkWAI=(OrVb2&lB#7BrOewEN9T8a>M3m8+hpml6 z(7UybnS4_f{~&fq{^7AO;h4FXbO)!B)CDfQ6!+GV-ggjN>{&9IQUv~VoVAjgk#5P+ zN=;92Ls;2QVW6=Q#+=;1lj{`Yp;mMO@9r8v`ktP2qp6-l61ZGl&h?eZmse!djjIIN z+nG<(r`m)2PktnqQj1_jG=%{kznpr1 z5-k5$2jwsDC&1dA9!j@YLkRU)&$ezI!j^GNuqd#qyVSM-if}knEg*#dR}nBv@d_m8 zNGWm)edXgQg}R~#%=Qgb`w7=30Hb1 zykqk8(+B%Bb?K9ZX1Jz#K7HY0xDpESK!4OYK9y*`_t~Btb%~Z9P4>yb6K||!;Fu`I z2GUOO4D?t)9z$oKLpMaP z*Q!DB8l8jxf>=^NKnJ6F2w z*ds&L|GUfcpWt@42CFN*Hbfgm08ls>G>inve9O*;Og%`Ov5-=&nYC18sq(2Eim3b* zu|y?Fd@Dq@U=aKwN4Z`9<;1tFJ7Hsm9U&Qxv`B}j#HL4cLQ^d$&Ly;*rn4!LOa1xJ z)Q^m@@%dX&>=dcbG&Kt*jkCkWPl$e)FB^%!AG%5onjQE%+;c1bd;7UeNDUQ>=SCI zES8UY!;)2Rb0FAvAvCgTonwx~D^Ai_l+bXphq$>}Gkg&+oIBsN=7j`M)5q{#B>_U9t7|RUUbh?ZQaP2R_^!`y}g!Jn)sP5$SwMN8(i(>9iYsxDJGx24P~9j)yXjoksX`{Y`@KmvprKv~*e` z^O3*1;Qk~v`M-Jm=KaSQ43d>I8=SXz`yG2OcQK#}p=Y8zRR(pYQ8HWb9+BsZ?NwXv z6u}{8;lI*EFa!darpdC!_I64pdYdlNC z0g(b;hP~Cd*ArCVjYe*xnAP2D=Lvt9C%(60bP9jX`DbU&1R z;18$d&$30OMpx&#kJ^}>XlwrD`jR0f{)%YXH_#i$?(5U0krvrYZQ#SGh$vYhojzM_ z?D_QldFrpr`bm(WtuJesC=nEmAKKB(pzlYi+$KTk-^`PI(%4AYSYjJe@PwUAn#v9F z%DPR%M;3EYKn*)$^m@??xB4fh%m<8;nXsuSvzwV(UN?v3MR>nYa|9XYo%IhlY*7E` zPS^|1ew&W+`V$T`q~H=U_&(-z~gvW+N2qGQ3#sXAHi6^ZTx92Az2RRUy8i{ z^Y!xM^$kYqcm#|f*JhH2as){$^mx+k?|dARHE|9_#!=0Hnb0wvWpI8UQejbnY=Bt~ zIeOQ2yj)6oNa-9bS6W)E1?sbp4HX0#C}@LDBnmxR#KK1m}4(A8ftJ6SItUU!|efGoBEO`j6klfy5io-e*c$b!F(suj-I(&i@x(nqaStFpAQgF`e;TinqRF_ zFH+8bDYt&=jD9w6{?9J>JXdge8wG~#Y!tgL2$q|Prd$B8Rg90#Uv&gIrR8vX05egu zw=3QNK))YUMwUR?@eFp~-|S$kn0Yl$y4IdPnyTMdh&~$8mOECF&gT)89HY118`&Y1 zb?40I=fup%;yO`=UY+9nCR`!PK}2TzewXyxrr_nZgQ@0`UD!cH8aQTtju+&|N&{?a z=M4mfV=E@6uQZ1b9TQeI)J9<+c z>hxHYxY0|z6YoANi3BReXshd33oZL*1KxXnw8dq*Vw2*UTw01IV}cz-pprK}Wijx~ z73nu|7ly`kr_*l<*5oiVUFZfrz{ghw>Aq`UQVrD)uD?&DlCSMck3Fo7zgZt2xnNPT zJnXJ4#UA#|&M40FT37}T#{~qhl=ur$iMpd@MGB_%zdv~Y2QXaG4#*wM$ApZXQh5W; zf_7f(Att&|LZ*(k1eVlNSucN=C*%U(8);GpL6E#X@CQ!$&&mKI%L#mikp^lAdYHVp zyZ)tix{*it$e9T-x~Jdx)nZ9XV?uH~^I_LhLwuB>E@I*aW0OE7C|}Xg2vN^M9EN-a zrVvv3F50|RdwOJ6;Pv5mOB%-^YEFG1-4oW& z=EtTh)7bBFst$5M=;w`!pf2OT(qioYbh~#nh`{yrqt`=%of#C3O7Dj9-BfiZC+BHSoq*YkW1GSHA3XAl?XQ4h_1ey3D04tgKd3H5KoYZ@QGow* zYZ3`5ixIMJO&LJ2TDSZ@60Kz|JQcK3FJBq!`wu{H$=+&W)071t)a|7xMLO2&+2?5BlYiU-wZs6lmR+$^309J8xwMJ!z^G)O6Nm=wQ8fagj z*IBrQ#Mu@;Ec}}qM~}yb#cnSPCw`PgUDu-dOh#qauA`_J+Y5cO4WSpG^v@WlVs#(v zwe|nJY*&&T(QbRPAmI3<$LpWFDWtD(W!o>%pX@P}pK+c)^>b)sl>omI^)djqi&dM+#roja`&CjuU%s=M zf^8IriPh(7MErA)I^Cd`FTkO&z;lpOO@YqTq0EZT@Ic@vQraDy<&}h)A~b(mzF3O1 zVZ`qwi%hn0jxbvLB7FB3WeMBfJOa>by4d%1h1Ol^LNMjHEsSQJ?@+#W6j!8ffcPu z*va)<6GTOq`p4}$mqrf(31C6ULv-f=Tl|4*Di91t;yKG#S9{(exkQ1F87r9bP4K1! zV786)O)Q(37(WbI|7Q0@l&GL0Y@N$=?9L+ity5HO`aBzfn6y*9c2GuEVyg8BL4^6o zpwwKS5ritOiWSIy?7N2B+F_4@Hn!9J!Nl^>6TA+sxoMG0;ps0cXt=A-^9iWf5U_HD2&P2Z%)dHAKR#Qq!E`f8Lw{gP$^i*(7pj z?LXbCH{QiQ?RUosoYGg!0d=*c!FN5cK~y7GNfq!yYh${oW`vVj5a?xHrn!0=m}Z-I z_kBQ2=?3qhZ3>Km1`wK^ek5`H8~D0^&EVbQ+&yjHcfohx;I7juCOr9tz;5|d7nOXw z+94eES{46?@@Wdglp!_XwQW)(E`=Km8u?1wk&1}x_b*^MIP7ako|k*dSrjQ#D71Od zEq2VMbg?8f#P7=|(IS_8Ss~;P>y(6$Y8Z>CV*s*}Mwp3t-T+OB)XHWnYnTVo3SWLv zlq&&()utr-;gKdXNo2M5g~^8)U7F2a`xgz1H#q1_md@AsaG8K9knn6+IiceUek=dqaKYO zNkR5V7yW)u*h4DJX?T6{jNb-ju$CSzrh*Y60Q{I1$t)NcuIemEm+VfS^nJ%89Ylx%{UzG_&)3J_6@?(M zZ~XKOe+y0cqxR$PjjuGu`WhrNF)Z`|^oN+^uUHoE>7os=>D<+esE!J~A7D+NFXV~F zz?4U?#mw?41GW03Bs6juF#^--=hI7_4_|knXHoH8<^J~%P4VVlB#Bc^zUsTod;Oz< zc^`eXXzSbElqJm;)0IJi4wr21c&VaU{w70&2ZeI+%fd7=ve~wTC8tJp@~b;PiH0&{N=cFI0Xe55~fyH%Sc@>gpHxCFTyK z;IUSoQHeWwH2>_m`nJVQbEx%)>PHDW#ld z!_S_7?E6Gp0O+c}ULJqG>cE17vDmR4m7 zc=)GHp+uc)oGbXt(sC3nWw(HeMZWS|NpA+x$+euHJySH#flYtj)jwU{pHDe!RdkrT zuQR{DZt5bkGoH&Yk_o=uEcI{SgaNbrCW_YG6Zie%VQJG3HpB~|;&3f1c-eyPy0Zz0 zY0%Z1HNn4!zP-6IVuSX07TV*{-j5;)B%ghze(}OUR_M>NiPdA#Pu~-EyzWtJ%K(R}1Rh&B)Lwq# zK9f2Hh3wqx!?#U}^5aiICCh(4wgsEIb~w%l0_!4GcA_n?JiA(A|A_@eu~y^ONlkr5 z4&CX!Q=iVJxw)|ObNN1h6Yz&}Y>+X(!2Gph^eYw_!7eU<`}~4a7I0l>@8cb|%g2$I zkZTO6szpl2`eu5`+v<&hhiqZ(VRlL7r5*|5+8y7$huUHf7v=ui0~@jRH6n~aQcZ|K z_SGl3N1y)ZB$_)MPxn-3b5IHsm;L{9Xwfq+;&3MRnpA;~kn1Y$CHg_(3tNJi9n zXhMFmx!O(`Tw7@&HPCMBujyyuI{{%5a!)3}%ESH3AA$x*XP;IfDKkW>zt)~u!gWKg z6$GA|nyvVoNkrOl_#(MN8cq1QPitll1ECb}${CZGXML>0EKzLLhUPTB##t%@|5l*T>k_+mlvVF(Onw7H zm63vN*YWT8q<`@wlD`~ae+-6J+BQ}#2G{TMhJ5a) zaagUxoK|Ypb3-oR_N2={jRXElPf54@47Y^1xhWQS0!u5CD2f_^-RWn~y#UDdDZ2;# zG9XHZgQ2oa+5v)!p(3Xc(!w7C)TRB&=$?z8t4uXmF&BE_$U?%NLUz_5?s7NNmCnJuS^cZ1BR}RF{)k0RzC%kufrSv3J2CUzTHc^`ZCbT)#weYKBgs=<(~CqZ{s+ zqWh~rNS=@TfH8ApOmYxlgA%KYo1qRc7%_?4N}9nVREP#wc2ppOR+~%a`FrzF7H#EUV@HHT!jM|HN6hy-TJ4!ip!)7NRgBQ@!%`YBhBH}!2a8-L}=ev1s0ip{MJ7RmRN8vm*is$?6 z3sGeE{39M~&#%BjLlHeUcHuQ`dOp1pBO*3ErRB^z>aAVRADL*kq_x0ArZynrAYx|L55)!DeU;57( zg`D|CaC}K1Tb;-Wa3QMPwT?4cXDJNXsDryrDgs&20SM!MtoF ze1QF4=(T$5P7kTOjlP`!487$<6BD0k0Kho3Qv{BN5y${JYOLa6WyW6D^wHLfzLtrT z4e!B&obYEuFOpGGmEuQ!Q!g^Q{rFJgY0)zx)4(k_9MTzt`ZOg>u`@5-TTIBh^}<{Z z+IC+jdVx4RpGUMz<6}~AAU+fKkQX`Q-}eJX40K1TtH}#D^Y?N**_}{mF_n3^6*!?m z5SP!_pUG(~Q7NhMh~nu@N`)`Gs43Q#uTM}NELr3e*mqg)y^2DwFvtk8Y?4Xtz>Z-Q0K9<+iXb^_fIFD# zJ~5809SqG1VbX;-I%t{O*-dei^xxaYQ=A*j9^{7hA0(`| z&e6wVbXG==AFtBcjJjjC6N(e=7{`c~fbX=SBSduxoD>kc!$`a|bz)_F349*w6L;FATY} zcR-wh5u~$NLD`aI_wAVgzJN&v;ZnDB76d|NlGVlnZigX#<{8F7SYBHj3#Yil^=x>hEtS1%?9~DsGTX zIAxDkTA^U^NSt>!Y?`Qjy}xuPKlbRCTh-{7M&+@MOVA$1qhor%u7t)OfrGT-_{ms4 z$Y}5uG&e4QA&KA-Y?cp^xt&JJj`g5_PTZun31&aXA^*YYZWQjF)@zE{S|$aykpwh> z=db6ukNsdbX(&-_r6GmhTZE5y$$y7vWF2Jhg~`2QM$O(-;u+Dt0%ThLM|HO902i(k zxh7{HIY@fz5TT_^GS;CuF4eJk5VIrJ0|D~Y% z6@&WM%@6#w_`XD+?ohajHmbQyRR9pscXs3RLZIEJ3LvrE%dU`~hdZm1^Qo@Uv(n~~ zD%Zvnr~-B%cDC2}C_8p>SHhf^hOo6{0!g0q@N$^B74k+01=8aGMPBg}!ey_lFLhI}4=wg?!)ezEx>A?#tbb|hl6u46>7@UZ*Zu;) zb~R#yTm-t);=_lJ!ZL!cXR7jzB}+iP^&K9R0hiyWaNS(rIB!rCwZ7!jD_syo6o{Rz zOZsQXY?@YK{f=UccGw zQ47&BT9=pDMm|2MThP)K4VQWr_mqk~qu%5ziPkpMuPh19fR#pN?{}!rC+bo=(*Ra$j|GLNZHPP8W3VGg`p0P>QHGjplUG5aMUbgC_ zqpq{nEjzo&h0q`k>*0Wj*Ih@nk=uX=ujj=BcTN|+JHpE>(*uUg(iKmo?jo>~U_F{A zS|vwmLI#1j?kEh@?{)%^Gf=lGCdGCus+eQ~f~}8JO5lyyq{Bu;qoNz-mAh8vh$6D; zpMH^BKW75opV=uk(U_)k{#o@;nF&5Ar*-46r)r_jl@G`TxQo#7y}Ewc9{l%a59eTN zKjn%2gwpfh6&2?B!>pY5JN|7Ys{A$WOt-Svg4 z->S6vF+7L}5{;DgAf9m*J0L_q>>Ei1=yi%^4s!iqfwYRBG+~Q(0VZcZ`p7;$d_g~b zC*0)jq19uH6S}_o@)>}yi@h<$z9fh$tEANhJ%Gy)S3@{HSAiZHzbxa)%z7-Vk#*n? z`5m;ZNams1Db0AiL;CkGK=N+-R5F7Q=_EvqjA90(6+cNwTePckqHo_-@A$4C%; z4GZZ9g+f12Hf)D1M!o~Ob3Joyi$`su(EtUbYl}nb$!3MsNJZSI9qxiKhk1-P)t{1R}p|@G{5DSJNYmyZ@H`z1>`@Gw>NZG3T#tMz-t@(#0?z; zCm6e%jK~mFs?CoHn(B;m!fDl`?J0Ei5E^ukt-DTM{&=s@0sHu|_2@mCk?1-zS`SntTIA+Wg~`7_r$zC^hPZWv$(|@&$+v`h`~c(-0&ua6Ebr z1+o7}-srZs_}`lAv$(`;CKqhP5f-dqd2@T2w`ROU26W+0J$(}&d~wgeG4rEf7vg<# z=sHR3$-IlX$r^YRPbN~BXk0m0K13H7k6}S-o($BUKYJRLxz=$e15~_7m?4nu)+&@8 zT{s50LrpJMJZs`k$Kwn4&2`GEA()<3BF@tU7pwY;_3F*=CmRHW-+4vZjSDQ?a(>P~ z&fDL+|9{>X^-?+mt@fuIbcn=m{Y`v( zC9V#>B&`^(t)#Ds6Y7cOsFdI;`JekG$Mi5ZypyY^3g`UraKjY|9GaWRq?1w^r!=vLM-!2HZJrauvZh-J{V@{d_C zP2FG7+bU@PoXhs>ZS#s6ig83>RmkVtS6R7&Rz3p-o!u$k#m;z=I5lmMcTw@t%Nd;Q zA~MkOI-9I3(~5Fd9n^4z$Z8WMSe+m-?9rm&GL$o#K9=)~jlN(at+)QQ)R{(MHIEK{ zx!>1VF&S^O8{x@0filPD@YWG(M#>U4Vkz-Iq132yfQmzSh4U~Z(JM0A(;c5^$8ex3 zp8_?pBIbNQjP%E6BMZu4=@aQ4WlJ*>o%pWZG@jZO0KoCwK95nP-Dv@i@#>5ujC+&F z5j-v5h4$gAtbzEi8v`!h_2ZK5wo>_u-nUQ-_F(`c(!*-iuFH_IVOl$w$(4$f3T@r<^AZ zI85JXOpsp>s)aI}ycys@zu^U^5Y=uR{9PYl7&IzD)W)9k7Y_3Gy$qC|=-5>VXZzVN z%@bL{kwT(du~w;)xZN6mvKdcXPHmkHvPBU3J^hj1rRzP?a|e&l{`7%)9(Shnz=#|g zioXvSR$dy3&+eJ}az)pSA9sV-uz?vZ6GypfA~Wc6KPw?PEVefN!5A^za^C8qUdhrP z`od?#56BO^deyVQu_xsP5!?OGa)4I3aY>$OZ?xEjY+0#L=*AEyr7Bz|)G(N``D_|~ zR2?wDiU(mk-kRhep?7 zK0NK9#rNKNId{NA>Jk4?Tc;ZyzE={^VtJma!-&_ zO?|Y18f?zoR9Dz-sZc>V|3N~88;DrMn}JSbRxfLB1*Bb&-lnQB3&j0_J8DTpcSKl% z-u0$X(+pln2dJH34maw)&b9KU_3;5ZB-l^yjlB{Y$|W!cj=wJ}l-#%#w#<7g;|IT< zQ?YQ%XeNo!Z7p#BINq^`liXncDW@A~1ze%$Sk3;bcbq1A(Jnu@5V2KY(BFdc ze!u83>QUHWkfDVwf-@39Mg`{5+v{X@;aWes5!!b|u8Juq5Pw!v@0c=AH+`<=PHzV@ zjHuvCI7BS>l@)B&-C+0j++)tnE8-4JFX4&dP^jp*GL(#+au&i6sI9}vgEoYW3juFd zF>O;;)N6sa8=M5Y*Jyw~lW9x8s5)p-xIcu&13YImMc&9ixLIhuaJ)*JYn-qAqlFL) zwzl{oH5eYUgN!NIfA$mnMF37;^VKPk72OGn8{xthtv8t*h(BLcGTxsYOL{Hh(;c}i zHo`cxH=DB+{NWdVGsklOr>0h0I}U^K!bX(0_hKQw3>skOc}^rss{VsAsviFA>2?co zWKL0AJGCLC(ex$9sJH{0+n{@R(}+^F*2g1h&{9Xj0ghfqN8R%P&#A=1{)sJ>p29Wf zSt3T4QlqWiKj?q(Sr#TV?g^XieN%jow$bn3WHb=b$|ovVSA7$_QI@J}jr9tA@CVm2 z7#5LwMLv1A>~jxsWjJ+~n5Ff*pVd3z?Z?tzN0CPwbyCQ6PM2{|H-~iY0DPISStwAJ z7^o$E_J)as^dfGuO9YeB!e2?U(O66SR8J@hm>mXit1t3|f7;{ib;bhNF5n*a zp=Gm}XKonM%+dH+_yH0n7!Lu{TmfZya|77E4fv)ud zg`*MHl$lqaYSS9I8|Z@!$Sizp$pQ>$4!Y<{f9G%J3Q$MDtXsQZ3QpD11zAA-XM#xd zlY-Pd{>Lzk&98+KH3#Dx&rNBEl+1khO;0}Pgu^n>hcp)u!C)=aWozQ`8@Udc5SR@q z*1IanK%oFpQZtRa)I|;0og>LhZm=tFu`zj?mpPTX{4loJJIIVw26|wq+$tJwa2Y?M zbkd}74q|g_d{)0=rlwf6VOZ3Bp?f9+elO+zPKp2dcn$DU10iXK1dOjwPn*e|;WJw5 z?v;O~3(HGpZ|K-JQE;DLV4i2(m53IaK@P#QF-lnaBUjml?{S;-*R#@aiVPgeDm0iZ z;@O~8xLA*v8JM91qS+@Tk@rLf)+m`^T@V4Na=>Q+x1Ng4zT)8R{Sd;j>tf#zst8&7yT7^&{1G_2x1&?&@jUo zT!|35P~KmbaDgMJ6Pr{%KG>Z;4|^Hyfv_6B-54q?_WHw51RZLGVb$~}=-_*4;Xb~d zjsIOgjKpHB_U3iO$)?0qPk^w7h}j^wJn?521duf%wlt%9IZjANOL=9uxbr51l0q_Jg|rBKBB8+EpL0lMv!7Yw@1P6#c}nE{ui*Utt-!*< zGqlFvUr8obL=FJ;Jzz2_8j$R?8leC=iA9HGcP~2CN-0>S4Xp z^m@_o7{BHR64GcwDI;JRC^NBILY0qFls)H(yNP9pz{R8rRFZclWAGlQ)0Y+6IAh* z%+$(vLu;Mhml+VeWD9b!c%T?t}Tg*_(HQt+}utPIB$YI>74z$%~c= z7>PxNrvAwBOp))n0bBldBPapYZn|!SThnoeh&OYz8YggkfS@enr%)A#&iiNSEa0UY zv;cHW%pKg9RI`{DZEi{mk;jmmNX4?sNYVRw%*jgU`*1ozMTZup*~T|ny5B9vD8};k z8k?D!AC5nBc}bgp;)sR&^1A;rDsT}e%_E7E2LJObo5dTLFuB567oLP9!t1owgs=5go52J97CObZ}WO(d63&UsynRO6u6-wH`_%zUl{pQ6C0opNLs-!910< z@59>GuADG=YP{e$ob75L7Qv-?9idPV0lWzVO z&@hBJNJ~Bj%yAhf0|hJ9>po&Gv81 zlaizxn+Iy{AB+0X6;umMw$vK_5L$%QN?A! zoe?FC!k;J#>16S3TUgoWgT0Njg1J_HgD&CFzx!jfejP?)geCoKbduS*R2QmWCXl-a zt@5X*UX8+1^I`z2p}sF-%mTYS)B=i!A4{-n7OxXc%^D7eu*A7K_t2rh1xK3Z$Ft@6 zltF>`qlti`5k##X&*hkN>amlEIS`E=-cLqArvQfy4qjVh)r20Q{iU>oFd_1vx1ju8 z2anw!=%x^f-Q2Ut!nKjADn>UMgiu@aSIkY~N`@_;CZ);_NseuC zWy6*<-=hW@?i1}fU1JCR(`~i_o?I@LZrK+-kq%o8aFAD(6wL5f7hFH?rUiRR4qKuG z7yX>w3N8~e@j;R5a}jk*8ae<=Uu}n5&yF3leL0{JpK5dnCK};w;1u_@!`|LIafFdU z``?RHyh-#~@{^EDX;ree$w}IK?t&JRY;zp4seD&k0(QNueJjADd#O3`9uOlc%oTD+ znV);4)ph-*$;QwjdBvjtdV5ugF}Y?OA1zdXvhl}$PNnNW{~)fA;uC&5aziFkouC6a zI@fXEMipQ?~m>$JM?bg1{1 zMBQcRz(!UeN_F3Fh3&$7o3Az2XgaakSJ=o>fi$=#?pkPMW0wZ9WG40N?FJc~WX85X zdYQj`*gxbnh|Sx@2RT;2mvTQ^#(TdkI*Peh#uwCF~9f@B$dzR}R!`wC)I5;W&0{>DqNDt{I3^xq9sr+=*&AcR(?GP# zJdNe}e|@%a{dLXJyW(t+n(udQP$IIEEP4CgS*_D?m%D8MZt@~xT?HFr=&7d2#k|h` z*a3@NmR~~TW8cD0e^K>rznsE+czs+zWC0}pr)=eZ*pk7h*>D>g4n|1I_8SMfL6i5S z!cvH9G16oBbMpC=M2c7A==z@{_AQV%*`Yr+1dz``n{x#N@8nq5>kp>N4b29m%PWa_ z>#g~<&WGV)GGP`@K=e@{Cp6t-bM#B$#v`&`AejnyjtnzI1$OIXu0hUe3UP=Qfgvi0 za!zoB#GZlQ_#7GglAeIRynDpXV%_)0f91?iR)Yyllz8!W!0To@JsmayU>bn_X|1@K zmjAnq;y{euMAOOEV$r0$usmvFxV4d|^dTyEGIXhHA#uCV2^R-`WvWYYPP()vlGEX$ zGDF$ot?2fi9(P~V{pJ2cyL|&et+E&hLHb&go@M=flSfa_1+6w}Kk%Ep*F&;G{vsI4 zQ0R7WJ1N7kDq29S3DI}@pIQj24O_!ti2huF0sQ~i#}h|>X&67FTSHcwIK3@8h%VxA zUsFkc#A%_wyT*DMkO4x_e3tA9rTswBE_1uc+QiDxhwCTMcn5>kU&Gb1Ouoz;3j|s| zFf&_VIzh)rV3O9FO#^Xnnvd&rWs1mYIrR}2Tk}VW$-any$$X|P;LhI6ZPd>C`LrA; z9j)3Gn7}j}rv*4kBz>2(-O?9c?mYnbF8jXz%bVHVUN*#;x#N~W@99R~SYm@#t&{h}fMPX;rKHc6CIue1uH(weL~2MKCUq6}8E`(raDyRf=pT$W+T& zgfW()iTVg!krJv1pt$2BpWfOzD)|lOhENk;ZBJJvL{*tsD=Ir*Q91hmV;u13^{^)k z-rdz#z)q#mj?LCSFR+p2`g-kv>&DUg3-2~EpO5@AUz8d@l0%GFJsNE)prL%)nfP|f zQmZ*VomcfMC`bPA6dwVXGy`471CxM>7(HoQ*YnsMGU~67B8hfBn+Zjt2*F9D&%pDL zoaGDPhRQdfzmqlieHso%)7>Injn|9Tx_-9wxyYt;Xg!GghK=z}Os36$na{A3s+)w?wdDfle*Q9g8lBHuF1d2B~hz6dTW!EGL+=MOikHVpj%kPNgeOC%P@+ z*&yMP1G}EziH$i;iyuNLJUf!pN0&VFe)DJW9ga-CgYc>uQH8(HMVb0hhssCMBUzU& zA3;_otthqzBsXiq&my7<%vPE2{_l|msJJS4+h`SedYK^0PCEiQp%#c38TvXe>gRHMZ$Rn2-l1Wv+CFoYVVR!z{;-QS9nJ-!U;L^ zJl64D?+A*)x+U1lkHUj@14-e3f*kZoODV>IzOd4gANhaX(9c#TFdAV~ynmabVRmDD zlw7LGk8gb=>IZtXx2E(d#FWce-w1o_b{dXQQq&uff+I*01p-s?eYv*Vb=WAL;AVxq zr634wMev6N0CZ^Tt4Cf*O~UV{joKjZL-sVgxZ@3BYOcZ;<<+ydevO{0FD| zjh(|1URQ(FpuX@siU?{bn}ZLUAz4bBgjC$L)>^m8l9|IFbvL<{1!Q4{N~>bsgA?nHD+JbfvrF%De3}-fYD^fwrse_ zn$cS8ZnJ%5tq)cur_koO<`WIq#!@y zV*Xbwpgv!#q3ovJExI$lo#qw`FkOMg@Fye)3IsLZqQQD!s4AnEePN6-Y+&l=L?zz& zCHXyu6a3_KT1-|otVb^tNIA=BsQcGsk6d~<^a^u-1hl4r2AukG9g~hUv!+(P1Q8Y+ zp6UhV50KS?{jd+ck zh)QTGpwK78UYDW%j+m1yH`OBs-d~(LL7-P}BL*uJ@-443gyiP@A}WUIqTUL;7o8O< z?3JhWCYILi$~(JIMz2eE0!PkD5Shpy>)G=S_pjvtSf2)ko3e# z<{iD74TvU3LT&3K|3QeAwXxML#4}3K0Isc)`21r3{O4bI%$}p>qT0vP7b5<5$*Iyg z;qH1s_E3riM}nuzEbzTGPT1;O%7wD~@8gMB$aiQ)qh+JpZ;iXPk`Fm?ij@2g)H%?6 z7-4@i;A)SFt&?IFDfF&$frchw>~m29i0tbe0l43Y^)- zfBh9~Z$}@3e3^SLaK!hmnycx@ed>MUy?AY$!f4_CiZI7u=E)o0c{(w7XCIi-B8r

    KIR_5L+RBJ1&=+CT60RK3r~gU1wdsmy{E7|i}IUQBiGZLQN_vC@lXZhmnNbd;FHLzB~9*E&Yzkg zsL#2zzO^TeT9J2JWJaYP<`Q}RDa%HL-u_ObOrRF)%B9%n^N}5@52vTufFm-&E&8-~p3;2X+Bdbc^r2H#4?-+9=ZNqJ@kL&OsRz%lR!%f0B3BQDAN zUU2pDYMWf~_2=dssT~P_%P9zP_MJ>mN}tB>uOOz99T1IWm(CnO+KCP!1+KNfBFi|E z=PXCEz%xL(M`!VZvus*Fld{uI^Q^-uE{NOANPq*wKq}pWN5oS;L}v^dIx$3%oq*X2{U#NG)H26`NOloc1X(W3%L}31a0zo(@9UFJxKey zARw+sPWS&%yT3UzrW5*!y6jJF)vn_!5oLabE8V*po#~&0`#1!GKJST;wim;nyOhZhkP9Pl#OgdL6!$%;VOU!Du9lUG2K1Ke_$m=u$dsDS7=F9!ew-TrNJRHmkz;J{InE&M{F> zmya!WTeaT!jk#7SgRd~70umGP|2W`awx$`|+&s3DXZGLq6?eVuyxO-U+@1@R5F=6z z#B>nYoS-EVCd3>^x}2+)zdX37??3vI@XK%*I*q8VV7Dq_h$^0?IX|x-y%>$K_B*kU zVZGlgfvbG7_yYMMq~rv!wN}}O4L5O|1ndSSUD=FPRE`Qpx>wEY~GtV|E~na3CfN6 zwUK7PWx;Pn17H+YN@EB!j5Dnowu?6WGTg-xw*}5BdE`^3$nE(g`a?P4?&rOlW@;so zM;e8jlBMvlh;H45+C7pMFQJ4K5p)=u?e3FIlcK>RA{U7lDVABH2Z?}p0zDs$x{q)W zRC#!qus%`@yE^iSGN`H|IipBc%D(x=R;*d#Cgj!?rye|=RA&61LCz@TSWoNJF_nIW z6k9kxTG_iqU1+R!tuJ_`@6or1Fj6A#I#sk2m-}Q|Vr$m| z*$O{y?IOwM9lB%_DBXl$%FXzx#%^TQO{UpjSJS|L+Rqew2}xWdeBhg;e_=+yK=$UC zuko$Af-v$wQx)?5hVjW*_X@O^NpxrL_%<%%_b|9(qu9#KQt zn|kyHkc|Jey&)&B{4ezh0qu_^7IE+XiC^J6!p*tz#<9I9h-ew<1%OK$<=giSbnm9S zcM&wD2VYD3YuVfyZa2`iMOhHGcAV}(= z_zI~EW1LVBztuyX&svk*uXboCTXFo`oFE%n3ne)J$gI9i)@JPw6i&ehbxARnSE2 zhA-LTIpv{6hZuex@Fh|e2Z^XkdQCY6G3Pb#Un=OIlNY>6FlcDmY<^luNEJpCL@9zl zHNE_YBu6l?=sHe;`RInY-0k-$@HDLDoU+_KpwOJuQM_aNEbf9-qit|~z)ru8E5V|R z{K9Z_Oll52H1GpNEeY+uqxlXL7r-lyhMmrGz$PioNd}$Q!8QTYhZavf0U?+xHa4qx z+>+>k*v2h&-amo${KvSv@%moAY=?bhS|-qq>Va2el0*5aEg98?+&ddmuAJt@x`sr#C> zGDiZ$4Vqlw2ruyZPcHXsNN7Jc7ox#nHJk7l54C+q>o1AT570R9m-wSI_dqJUBo4!Oq|#eW_j<&6C(R<9=Je$oco0~-E8BTLE7&+ zZ_KhFuG$?75iSw$VI<@9Q^*#C?mQH(h(`795X zOPgcGQt~_h?GZ-`lxfv%26t1Xcx+|>-!WZa;B+s9$#QT-Dauikk?^m#y8Q)WlxRV4 ziUl*DSp7R15@O+=e1@h_1>QVVY-wBk2iy)nw_7~d0c}zO^t6bU*d&V-HblHvm1CAM zlx2sXWYs-nn+uuH%u;`2{DzJ(JbT@Qa1mdYmq7`^NI0t#xc0h*+!e`3?_`rIw0Sp{ z5%h!mY!uX{L6sl_jnI%#VHOa^J#9i(Ko`)8(EVLZoq?#&pEv4JudSJXap>{e{M~ES z&Ld^cI5a~10lSr^L8RqSnXEF`DXDPn%aYWnmSYWWQlAaLeOHhJc2jdxogJ1Ymo$Jn zV4Gp8xTJI}ng94FJ18gMo3Vn&Pu;}+Qb5^-;10a49Q5i;mOH$4gDE**n&rK)S8kM! z-Un}fYCm4Ux+ncSfE^%)Cml%5^EG!*DX%3vnEWP46|g8lfjuzaSvmd5g#n`V9)bYB zK-YoNGqO!iP6O;WkIKjV9W$nYt#PJ@RIHRk<|DAtwqlKvYcOBel6z`q1h zm!WtM(~yfH>>BP`{1x=54=qBBGz(&4*^pD=X)AI^3^UY-WXM@`xkJAirP_`r5$@v;L^5@oC`Q>);p;kJ}5A&W&(yG$tgblY0>bE9eqM6@~$UeX^!;%g36e8t{IFjRw23e^*y;ABBcFSVj=kkRH#T0|D5~4 zt$WG-QH)n(s3YEbFG4^lwZ+!|JyruIQ~5iW7oLV=Uc@~^ap^%f_pjaYFqeZM&QG<7 zu#x)*z40JCg zC#35P%qRBgi%24e9;CLRL635179Pi8mG`jr200jjeTFA4popTHi5wN@!>RHVe={h9tFG)g$t@%`LHp*xA2c-@|#$zXr@J?nH3kKEQ1q zPoF4N9|w!h1*_@^fW3MI6+Pdu`0tM5I@pvId&rEhtw^H>!_*tBr{?id$=j$?3H?(p z;~|P~i>Pl_{CVkDDR?-7u%NSrVwwx$hI{14%#G+Pu`k?qF%ev;z{8-@B`${0P|?~v zFqxMc1Qq&W@W4|zJ?FCemG|~+Kh`RI#9E%|hEgW=ok2134f~s7xAmxB2Fe)1+4&&| zY-Bc(B@?jb_8@bA=|O=;5q-hFGpFUkWL5eFgLOOlBNn?! z4TGB0JZ#k4cZQ2A686h48B?+@Cd1%FZM;sG$xH@Cb3^q`I6lM}IoD_^G~EMA%=ivs zMk}2aQceA2=%Nmd$NW_uD#zN$wx?kca1f}%YtR_#h-_kC%s>w{z7f6JpqkN?@xxt> zpmWS^IJ*T29rLJfwl2RWcMgS=D)eV%)g_SaHeln$w{%iU%NS{@AD=~bQ;_9R;Po&{ zdt{mOZ?tJXwvbiVneClH@wei=VVHK=DDVuW=L>4GBVLDf92`$}vI6lQ)|cnWB;CV# z2Pl*Z`Ncmb-iEQB!+2e6eFteuu$A8!?1LDN*eJ+lJ{Aew1Q|5sq4AF{i5UU)(i&jT zT>}(fiJ^YBRMxR0rDS=@#FT=cwLQm*W)flUslQCLFQ8~byn{ck2;~R?&y^j`q!QU- z^jHMS9L%8~HecB!J5FR)J>?7kKOXkN&DO8#<*qb0hPx{YBsZyTQ2Tm*H*Q}bufRo>g9;mTEJHYsHgVd>aP4KD422kEiuIDgI=|5A5d&B~0tY6K~FGH?=n5w(8-(jsm##Q4jaZ@Qtia5nUbzo75e4x$)9-ETQ%p zbIq!36N+b6IyM#)Mv`scqsi+(DrVr4p<%_DrsqFH&HkfL;sVc=q}bop#`nJzw`uIa z|Fr&fK!utd=h{;$r1V-Dt%wYpJfTg&q#ww1)WosBRtBiZ2rHFyJ^t#}MRG0{pb*#C zQ;Zl=#!D``uh#R41ymG3A;WD6)o*p;-BI_iKS2QJKE6bs2Z1Qr6yLHV>9``@eKcO* zvCcPO19CIpYou&PQ)k^vw+iY>?K{qY0Qt=cW5uF}tD|)*6+qJ5b&3ae&_~v{;ZG=o1ctYS{GK@m)ItPyp9boCzal0u^-VZbx-T{gsVZJ03o*r= zOmxG=P4TOp4B19sFyEs(PnZw@s)SN*sQr(hk%Q@vJK=0P+(AN8g_c#; z!W`$4dy954xYZ<CNyyS_YVq_Y2lmD0kJvz2V ziq8&IAx7`!dX7zR1UnaX635L``P3q5GP2Q3c?0ESZ}}CS*_l1yS z-r4{v67bO_b6@%Ok%kbz5o3QQmbJShTp33Fo?+xSkJYIh?~9Dp%V8>zWKX+ueWRVa z)sJK8@Q6C@=%AL{*7jhMmmHPM1qKrxThkmHlxXQ(QL$}%btaKYh;>^z4-WXL;^xlO zOkqgr50_p~a}Y#GT?S}XpDMZa95FeCUi4@ZX=$9nllppbM)WPiixm6r)hPJ)?9}ZH zR!e6jq^9EY6c)v=pJMRL2ai%ap%M(V)9EH8=an*|#bagr-%a1*`q=(NR@7QHE}huJ z;g>y3>M?a_2{V&)!>ZZ+90S|wWy3C1dn2Cmg``P*_wv2ctW>T_dtp55YOwhUHXS)< z>j|#WkideA1W~+eH3UC-fwrDk?=@+r1=%j1hWM|o9{)&1i3Uq(y~z)UJE6AiX)z45 zoY40iXZy0)I|d%k?A(%5DaD29xbCDhgLi=j!&jv#uVx}635Vl04^I{b`bcK4tgx-# zz=U7bpMUtnOk=L_IEj%I!QjATdLrxGUXjby*B3XDd*>W;uHap@94TfmQi@*h)DTUq z`mK6nvK&TC)#R6)Cmx>^U1eX;!niT+J2u>Mu$T44KdTVn@Md8sa+Ilf3Nr6jJf?vT zQ9Aojk>KvWsEvSEf6|t*zGheT%Oq9CH<`Hhs~Nkt^$jP|xo}WFD~kxJHK;BvB)KL= z%Au(MCZDcPG$zmnR%Xu(#E=WCq6sPBr`Gm+b309j4H$Vl{)Qz5K%Jth3En9= zD6D${ARI**+lNZ^AGv*|xE5l0`^D)>rrR7!Z7v3pSP%(EnL#*Ely~0scY+!Sd*J$k z!7Oo?cMRu*I`yw#r^g(o?)_qTgSoV*?L{)PrUb#*@oLNzYB6T%MnHC z>tk&sBFKnex2W$RF-`X-d}L~PNIv>=Hv9w4SDHrs%9iaZ&6ANGdpb5XM{_NmDAM{_ z9C}|rYive>1dTN?VKS||(0wHi@`g%kq5SXl4CngmLl1ZQ{khjR zCs1F-Yf;<2R3c@rGp$v{Cl3xw#^i}H}t2j`Xi%jfax*^`DRG5Ty`wx}8CPnop_}nc6 zBhUH#Q20u`T$7lKlhy#e@ldctz8gEr2lyBbU98%iQjit`yPMD?Il)VZZdI$V$V=`> z@z?V=#TuWz0;o=zO$n##m(VdMtX#{+K3KhEigH5~sXF}u^`h5Bm>UOIxIerSG?;Ed zlw5gJ2V~D#bCt7N>Xx+ZO<>XD*GWXdCA1WEIv^Rp3MAtX+bn-Fpg!hot{+-jhL`Ry z-rMIYxJWRGk@Or9AmgXt=GqBUt;E_tE)e84{AmqO19JM7WAs-*cQ}OMl*7o=Q1Fiz z^&%ov`vKRr--iNeROM~2-JGe(?k-`Nzvjal5?C$M(y&3bDgBuQOZn6;#sPNmU2jy! z7X9t9-^S{<;H#P7elnih>E*v(5zwuZkW4$>36rrMh3!96QAzr*{0qYmJbNg=d?={X zFbf`Xryo>X9D!*Y-@ncyA(6iR;RzW}J+SP6V>iT&CmaK_AIyW$r~qdldsc8JIOZc( z@eLcuijjFPl_RCC9PnBIL=@1a-A?}J*CqqTETtXX*o>a_!d*-yz3za4tN^)>EkXta zdRZecbe(<$LEgu$SI`htyH!l{Q<9djmNb2H>dJEb#%67f+ul{FJDrR@WGDx0F=F6L z9|8s~w)kX2d5~>h^sa7zSW}9}iM+Akx9h1rCln_v)0aGrW;0?$$$O6#U!JSDeSiW3 zEeH@tz{*e69W3z1gBo2Q2RwmjURGjoP|hNQF) z5J#7H9S%j~_bYFYI3+14yTzot0qJ~0EXA@WUudHg=$)SrBgw1D9#?IoEJj$VsMOh7 z)_^7UI~iL<$yuNggJ;^~Ujq<;Y)RHl3>uph_4!dR-lAmX4UC&ar5iMqx8+RbH1_dV zdO$b@jb?kl77OnrH>I2y7q zG6d_6A6S5 z?4k;12OIya>t@OXS8zioR6YXmUvY)qAPBo9QXfUtUAmmArPtCt6)lSVKRT@`nT@4g;ABvNNW+T!GJG-7tLt)Dq5WdnOG!?62iD! zFPbsP?P;4pjwj48_gYnojY!Y&on>;HbtaQaw02hTtQeVjq&8^~(PqjtDsw{zxVz^5 zvO=B8u?R{pR=9eDOJ9Xg?E_6uN`KOjlN^arG(3r=@xP5^pFXRJ{~~2_^&@XqmgtH=b33)Gg@Znm}>X*-ZfEGkNC~SErh3 zpfhMltvQ#W6QSacV_PL&^nPRd=zY~8oi=Dr@1OA}R~lIV5BHmUDD*1`99WQPP4%_h zrmrk#Xt&nI_Z&>-?9T^QV9kb``2JI2Y98f7#;+l9CcmPmmXS+qe8onC5d_xNGV^>nfaXD5|M@a_o?}>sG_?Zvq(IUy zH!Q_!RH`CIoveC-@4(}}jAS_Zy}qV7FXkODFQHtKRDlL+eU{Wc z=vr`z&KJ)1_j~_j2)O2RsrpRkeTjSww**{pke3l*y2hc_V3(>+9qJlzji1-WA#vW> z@oGdTQaJCEnX6s;ojfhh{JP9NL0HzaT0VaRKSWWNIk{Fv7!cWf|HF}*o6_dftfJWf zhvsh^ON4mf6tfX!@w#@b--Gyfj|dUq87Gbse{N>D{~5`+zgkvtOL8t@G^~XwoAoK; z$SsJKS4&;KDgn3Y05L%~(9I~_XI=^U(S-kP=RJ3pC=r6dZDANM69xp%0By#@E(Vll z$#f9@eQ1j0@aeBwLU~Fz7lK8k6uNybX6PjW!(e!&G1KIRq1Qjj=$Vx3L<*=pNKvMH z$@^vgM;ZJ2ef^kGv+nxmg_X-i6*eR#Ws(nEss8>H-^^`e1k|p`iXIT^M{Lb<2vk%t zy|?^DRqy*O2#ucA7!Oc^E4u7^rhc?oABfc9?Cr2ovZ^eHpHp&mhxwWD-iK`AXQE{#4!|v&8@MaJOix0~ z29wtOI+c+o4_FPO)kG==>@`GU#mrlN;pDbc1gl_@iY|j+GzM9#v4xyVhZeFggg=D8 zycgW#*Y+~8og<1?E{GKf-CrN@kHnTo$WR|C<)$PYMIr3Tw)A0GDp57S|8aLc!xI#>jXPGS{N7_cdxcJNV>w8=r^`wwQi1yColVxYwGH8k zu^`iF3x2MYWG7Sl`98op!ykT2$HkbL))%&BfNlgexgjBqF@SN?gLxekKMvs>x%ygq zM8ae3h8Wr6Cap&-YQj3zI;y5^I#W_vb=(}*pKoZx$H`ttjjBe3HP^z0`h2^nj@s(9 z>zMw4VH{4IFS9f3wuR!o`y=6iNnx@x_^5)FO^q<)HL?xso?t`rgu9I;(K#iWASY44$d@-*nxHCw zI(R-uw2=SF^#ueAz9+Os${HD@Tj#u#-XW3za~$RQ+VR*>*RCuk0ZJBNU8cX9 z#+(Em_}x)6WLS6EUm=>!6{dX!vMX;^IY%%_pUe|&<~I@L&sIs~T0x&{l&IE(Uo<(g zbuCu+5lZ2dx@~$lBoz}^Q1?AFL1c6JJxmtW(s1)o%SjY~l{t$1Uv0p{$-|MoflS?T zPQ2bXj?=hZ+`aJaGh|H6$0fs4p8z3IL>>_rCwDFuzlU_VXQ6J-(RU&0hNvGVPi|R& zA$)|%uMyXuxQXIf1Iu``9Y~S9^l^{jzNsOJ8#I(lm;z4ae%!)caOby;a8I-Jb%`w< zP_p2g4u9Tzj<1(vooTgNegxnZxQLmLicR2CBFknZ#@}KOTJXMg8I5*v)9GlVZe;r6Oi1%2&8rhT;V3RSQ{GOB4+7DwvpNvri~5NP z3pW=9$<`|^QL*1-s#|BJe>1(CU9Mzaq+BSv#3PF9)8ALQaIGV0^rg;97S0#)>CRZm zlKLOZNYbUU81Py}YsFXV7{Zi+F(m=t)~pO8hfhP_Cc@j)r%R5Ju#!g~;?+YdxPc1umDzlr+$d$YA-ow;L9%%MN%5K54kM6vM ze`^uKW|~)i#j*A%AVm+WpM~(97J-~d2!|bsRXZ@QKg~-bDoZiO+co;E5=%)hVAdBG z2=sxr$gdy<#yvz*;uFy5kUV$ayua0FH&k{Yec!LUZDXEqC=k3+0d4MofYQ%Bgcb(6 zG$d$NJ~00BwE^w7HHSAko%|62dF^UxoBbr4Z_Cg?Mgh{C1%zYPKk3X{ zg(ae;cVvImy5h&bLCv(f?w0#IX@*(K96@Teq+&P)m+z;%jL_M!8}1#gsZ`HBBg|04 zN2Tyr$%mGV&O2Z3uYzsP2i>JQ365j4tM0Pn3WC?}Q#_&4HoOD1Gqg=evL$!#0vE)A z4IfWz4=9_)I1?gc_siAOdDqK3@*-Tp>8u z7nBjHe5CnpO=e4)hK3uGse(~Vo5t_}X+FJofPVJzECE3kbwyBm+E{=#CZ3OD3A;lM zl^Bz?hLSlZy@K+Llo={H6!P2b+8_r|i@RC%;pP{&Zv+}E_9j#?P3IR3LJ>_o%EYYU z+ZVft8>sO-PXY~n85&!)y#$`t0-$>r+#TeIn6k~Q6=ZgZxZEy6+%7rWK_yaCL<@7g z6P7+6!$?;0Hg4pi6h^1!UPQ|OrJ{P&Uf9HbU%$S6MZr1KZY2*>K_+fJK&0u*4kLG3?6Yz#};YgzT` zC!{l%lNe0u%h5ZL9_M6fRQi^zM1`>6NE2DD-{x6Uw(s1&G@Nf0hDQ(R9Jn9!hrI4bnwprZ@8jPfI;9D>&@>d?S+}36?s}fcKo;`# zT*P9^-(joCXQE}`*<~B7jNrn&uM!T*eAD0LGQN6xV0&+~#eG>8iS6yIk5bF>#D_z2svj>vE5rkiaGX| zKyccQHuOmqlJR?0z-l+>tsDk4?9clD=JLI5h!G*$E_g4tKT8e#)jKByoM&TEipj}u zh(_~d?7Vmbl$4OIg|b+_YGkALM{;@%BI2@zrfnx?t{Y|VfZyOZ-JtxuUOp5pnBOQ# z^mn&M+qVy-wb!4$1#W~Bb%`Wm5LTq{+gahD+B}%3_x!1B$cWxSFkVo! z^L|utibAY;h@cp~HVOzR#y0;_aI8m>O0QT~_@{pS%Q*3%L;@D~c*X8gav`l~?uAQB ztB&p<60lo+V7~f&6z%}knE}?r7Ub$f`cDB`Kv%RP`Nq8rF_hhvm3xlthDFmsL763o zu7*@VjpyaYIiN&ws)YG?n^wJK$(QX9F7=8FJnlsn3X-ieYr6=WTIBz&)UZ;K_O{mD zU8#Ux^>fu($Eur`lzb7v1jl}>r&|GHAmIt5CG6lQZ|*aU&c!ymPm^oij}o_hqewv! z32vjzn8zB(-ES-w>>u9#du-`dg^uTmV{|vnRhEkerGOTe2II zecn6;va2yzzA7z`!8zwnXV{zc;?p&D92%(Gyz@sR5QUx|Pj_Kr$wGV^!d8U> z0n=BP-x1h;L5Ago^6Hl=z02uJo&}$h4?7BaclJJheFpoP;IdD{LTB{V;?!*EG;Qnc zfn6))?Fz526c7FDw*GzAr%OVBE_tjA->jDOVNyRhgoWw)GOY#I=G838chV2UR8aA> z*n^JIxb6P!?0?}(;J*UeIl+`9s^uDT-k)t+EweoIJPbl!M4gNujW20!+%XJM@3$t~ z%M0}BHKD`g93F8vEQUT*FSt!NnK)yJVapZvQZz=PL6_z3_2-3}%VlZ+#eS#O50KzJ zpK4M8OljE0C#5fxwN&_aFp;N>Y{zK?n~8gO$9}3T7a=_R2qEDq_ckC?97@;mO+&*n zvzyAvE;Zpy#E&+eV#Q}ffhiL~o;p`mW%JQ(p4p1am{x65ls1ZGuNy9S$GWX*AIVk3 z&~sO5Y)NVK{$A&evTc`|#le9Kv3E0Alp=afCED~*#B@US=COTsMn!hjxNY^}9QUUh z`W|@P?+mt6grP6MHNdUgXUrad(^Ywku%x>D^P1z8KK~}qe3hR$=e<8pF;>kxPjdwi zHY9*(p~Tzo07ecJ7oGu^Zzo04pxuam&{|ODyyw-vwxcpnUf`N$iR0Fp)1)JWCIAa~ zSab55lqT5UN=>~-mjTw-xSt$)xs@|r+UA;=+%DRIs8iCzpTX%8@RH!tPM&_@W$^je zcm-{#l`m#iUH}NzTQQNoI)K|Adh6Vu9e=FSI`Sfc~_h>qQ!U;W~8BePQmoq}vB+I!ye$y09UgJq4a?w8bDe^D5U=&N<3$E_Au8 z{d3?{`;3vma#B3#wM_Y*7v4WK>_>zA4nXwrWaf0ta-HP*_NC-*EBM&di278{hmKgS zbyg7asPL$j_0`^W_7|o}^fkCbY`3+N8qu)b4a;@?&lCH5Iw(P`G!l?b3{F-oSK><6 z(K)8-Nv6l#^3}INY)p=~bE3j_wi$HnM5_aMYZ)X)G(fiO$mNM0exr?=x-Y;yAnT)3 z37?T3i@66z#6S1Lu<>!?pf+xh>2)Fj4KMqrF$)PI>Ge4DN&^@!S)l!PARW2sP6Sv4 ze|2Ks*e0~IH7Oj)?-)B4yE4Bp5+rhwBO!TNX+LKz6hVTz_Zb=i8jZ*O2L_5(dq^3i z7(}DeTH_es%RR6UJH+ElaEl59O<%JJf4xi&UyFTzW!+T>wv|}}qL6Wj$%B#}c0B0R z#WBaqB}VH8<)VJrqYcU@vt#%PY!pTIrG0qZ8UG3T!r6}!E5{IRgqebTMf3*5P%m|{ zc=L)cHYUgBRg*GA-0*)=a7GM-9+JDcL0um{hIpFvxYm9^86hoM&_Tl|03yR4m!Uf% z_C#w+());+jkM$^UH1b5#>x--cPZonb++HvhtdwP;(Jxozaz<%gpdMpv(mpFvE%|X z&+7qYvWD35E3nbJ>!P)fpj!ZyOh>4vk$Lv=f*fhn+d_MzJdM-Q3sCHWQtq0@;&wR% z#!hF|{t#n{d7@5m*YZh=NZ&|5q$nN+oxNB8p>owVs43p!u(GJ&+%-$X7CdEBN%75G z9{7rZanX(c?MpQRoS{iA+OL3Ll?V%X@VFhx=p6EY?2D#f8uiE>^l;@f*?e`__iLft zacq|P);Ot0u@ubA$^njyvnlNI!OpHP4oKz)Ps-R8!n|Ae0TXPruf-JGs@npLgv9i52$ItcA^(ShmZ@6|&aUpVKb#2yCQVFcxtX%)`5mtRXAc*1Ku6KKa zV;9r7U5(AOk%dKV5Di=2hWS?MgH+G|$J$>PnXW<+FlPT(pn=`nc4;x9VW0Kf$L@n2SD6 z_an(}bp_1b<#ZM9JG+_39_KO{Cuu$PY9+NJhX(GgaMpE+grj2`gO_`Y5Y&SR^}E-G zWnvL?yxFbdv7PVB?oHEq~s5O{duN|4QcH*S7bq4QI>p2-IKKo{M(>0!b71 zivxVP$|r;b;MFM0sWCJ!!pZFitVh0WTpEu7gGggOK!-p}nBUBcHf;%GE=hI8)#*>L zM^{SLTADR}DTKj{J|LqW3a8QxW?SMYWFZ^K9#0r#FXR$FO##&R?1xnFF5tMtA0v)U zMlm)DOB%9$uv+zOQ$r9R(PBo#X4;Wl2AqXi;YEEdA+QzT^7{$Q5Bcd!{1pQ(eyvBj z6ZBqMo#w)7zkd$m_vT`j_B7$Z58dBD^12u6!l3vWzO%`eh}X}O*q$-$HM3)66V?M& z78E`rqr9=@s~GcmPcQ{U2D`Wp==SGo@JJ)?B)RLR?94I>j_q#t_}BMh)p6F9yVv7S zufSA%_CvS8mB~^z0^mH~bqgG-@!lPKXJlld36t^rjsjEQdP5S%e!Lskz`&2WSHJ8O zA5|KEcIP=`0+e5O((06zT_=b-MoluE=GYZV&}$X6-}eP|HVPhkmHKEZ zu($2Duk`3LiJKdIlcX#aQylz!4<05aqRx}TEXKc-BIWFP7^!?8l~8aug-|dAE_7F6@#4sCY+m_?(hiWtt22`_1yv- z?N%(;pQ=K4ot-X4mbokw!dVor>xFL5yHin|E;nA4*gjP7+m|n2B%DwBRo(sIhQ5)v zbXW@^NKiH{z{&}P@v5$KA{}Tfo24*u)H!@**D*DizY?)_s;FE+*YK(M#aH^76y)&S zK8_5h>VZNRa6lGj*dSGN1a4yOwoMJE{7=jw?+Wh|^@r1CyS~@(j#5SWMpCv;S|_b;ksHL`0!@5}OO))`57fMwavL{1`EVMP&Oen1)|r6!x;^L8_&j22 zK1@u$kz}?8b6}<3id^au6Qecd*jY&QXyC`NT`Es5%z+OmxuD1V5Phw|6vM6F+>eDy z&96Iw#VoIyI+F0m_Adopw&3tH53Trvm&HTM7EI@|;~z6ku*fF9NWC`GkLh(Z1T$WG z^8B>qj&F|`?qo3=j%#P{3;SljI0R&0t~B-MRlC-lZc_(j*_Tx%KT?fAMw{P-DD%w${nZY!pe}kxTF9|ijJg2(jNx&aaX>eeZ+)0j z{JTVE^CsOf1`;!9?BeEIY)8(xfMT%ZF;HcA*i`<>EufcGvb0$@ zltAU|&?&4O=MZ?)E(dA`qBBmi2Dk07Py%WZ%D}uY@&8iuB7tPW1*KCPjMfg2#d5+a zuHzL|ymXB}hhsf#sATAkS9cWWdTz?~EV$@Dw?tLG7SB+HU$nYK|FVrB^`3T?t5G)S zAoqidmaEX0<;!ghW=uKDAoK)?fW8t0Ox5>gF(w{)0DmKgWVf~aG2_VY-V*U?Sy+w2 z#_Wt|RP`NzgCSnISAGL1<7%{GTpTEq($LtL&fFUW$L?$q1I!`I(B6qMxptjvghwiv zSF;~iIwWZT@RXVp6KknqKtJMS8J5oy&;zVf z898JDs`Z1Pn#=$>?Sqh=wucce0q0xwP?KdF-sgb#^#jflKJZ{vIqC`GykVCIaA-yQ zI?>sjRh;o%2@`?lu>K2@bfSzBiCP)yE|>E(L|PKV1p;ke<9S8jb+3_5^Slt}M;5zb zl+r=0|6m#uU_>+KAT@LqE_CnIUO)CmJ$T0gead5X_^$2G1)>!`nr|%!Ht+`iI6>+u z4Tlk^;8Uf&(V#1o!#INx|diHa&ML5T)Le9u8dLK*e2d;om zN%(5KvY5LW_i{DUt~*}g9?UJpUv2#5=t;*=LWBQ@^}jcKe4c}P#&*i{>iVNYV>MWJ zr~Kgo{ve}I054fhUO{q3yzmPtuW+AI6?&w_R_R`}>dwc=!i0??_9_J?PmlH#Fi6vR+o*IPt`SpqhDI`X9YGW7YKFCIs~cPZ`F-v;`52PVDvr$;va|Nw766L7wwK$Zp36 zRy3KAFL9Q00}({;)N68B>XGsqE-3*z((WfpzVv=?JIx5aj49LX_?Ebdl2g)1lg#4E zBYR>ipyd^1vx$S*hY^He%*|~KQgITx-atp8&B7P6#=~b5nd1l>valg6u%(B$dpnUr@S&G}lez zYG)-2e~&&SoxsPspf05qyi5jM{nDA?XiA}M)l{7>oRYs!*kFg-fd&r_iR}ClxAqJ`AGAxDzWPUr4h&)G z2BYTycf;usXb);+sPEUS6*&=!)v#m~BBWzpU_RLLRU5xYUZ3gh`?Xkupcb6(v+#U_dmqVCLL@?$77oJ&qpuhe*y{MaEu?nZH(o;_X^2Ic8( zPl5BPn10$eKx^l=zpBA6CqAXDNMeuxFxI)D2DfDhP#1dHlHc?v#svsB#BY5O-kQ*E zz#?^X$6_2q&N|d(?$OJjd0$uQ?8w5#wT~aD0^y&y!jmZ1BwkDC;4*Rm-;NZtn?l2X zBhjv%*Q#uhVEo0Vip9lBC&tq$mohK|4$tZJ*@XB-ehCMc^kznLWVQi?h-dl3OF>x4 zhQl7J15hqJ3%d6g$^M!<gwbmz?YtjKtxF#vC+Y~tDNEt$G|MWVq5+15Ge}3!gT+eez2?q5gY8qQIj%-gCtg}4ny-l_ zPE^6tH&YZ~O~4CiDPK!{7+Ca%1&&wpzBc(~zkdh*E;wuc-8yX??VKo#E$IV1YPer1 z#QVC_jUMOQ#YW5P2YJyygHtNxvb?=_<2q?CR8zGHkLW?MGqt!4N51)8r})b8HU+~Q zF1?*c89HDjlZ;8Q*z}r`p`-Pcu>{WEB1xYrTxC{wl3Hl(ju9&yC zeo*6gig5*XsAjmhL}^n{p~wHYFlc}Cwe)I(TN5cK^^tHC39{9nsh+TlbE=D96D0g3 zP~Xs4@%svZ@GEm|Lk4{7n}KJu2=lz1n1b#g&&6H=&X3e)T0hSHU_$YxYq>pAiJ<`f z1NMy9+z$Q+3+!a#^z~c_B_w;LODf%srZ2BoNd!YoBP>qWY=6k(e-$)%Qk#MHwyucu z#sf1!)U>G`hKeOYu2r_Hxh6QQyAAoKQ%ef$Zb0efI(-MkKSTLBv=K)e>ji5VkF8eK^J$C;bfO4(wap|q^cGRSe|9}|4{u7SGRd07<`@|M`E zkk!!wZV{PPblx~mtFjEWCRKUstx$SiQS)7lpg{f_9{$7@KB21*58?C7%xmto!V$`+ z!C0NLSox&2&_WcL25dJ3d~%;am~l1zCce6MuvnC1-f9%|n^flOl2{qHnt>G~uE|7G zaTS0QkLrJ?0i4c}FW0>Q*b*L9IImmg3^-`_A)+n_u%AF<$Y3qwJF*~Mz+*XP4eatb+{7!=nV=BZX}R6J*^EFE6;!CN;&Q56 zGi%O|;gv<@C%-54?*k0J1hI;^*1k9bTu^Ax-#|19qu}#P+?{DIZ=DApvgBckkdxd%&1BcNS&VI|qyV z5>FFBodw0h(3mmAB3sahs+mag1K)DtH)DtyN~(TRy2EI#()5-8@%-Ja6Sye9;?DE{ zP!e?Kb#5)?Q}ylgQOvodX4_k+gI=6m)Y+{*3`lnsDt|Zf^baEXkBw$|b-~gy%Kb+; zQ?YL|#Vb8JjB=dbzYQi@>hVPHyO1zPZ@!8;?G~k=2k;mhT5D)LIw0@LnXEgB&MubH z<><1i=x5uAzH?dvlcFt4R^R;i_tQiDn_9(JCDKS;FYMuXg4QT7OqbI${oy+Q$Ax{! zp?ZF4X7%T;yMR5E1R}cca=>3FB_0zEVxHjquFJJa`h66w^o_xdrZq51W$FTQGOV_F za$oBICJIkn%wuZz$h$qfh(2yh282Nv4)R@b%SayDxqCI9G|`rr0ecg|eFArTo6>_i zED+Y($(pNnDWuUUoBzJ;XM2UNI%dErXFUXPUN!L{-xjqDp<1=aWVHkyGqB{lkNzQ` zF{yARJ{77i`Yhm&63>6`WGGM{t75HqFvnRKQ2?hp+Cn(0%xW6jY*bd0Fy5hD#*NlL zQ{M;v?!Vk_Xky+7`_H;qRj878AweRuz1ey{h4_Dd<~geQ)FlM<>;iz|rsc(**H&m# zrV_^Kho+<4XA3T?#Vo3_;`=E9Vs*p658J25$U`FeeBUXX5MN;+^+I6((1Y9mmZYvl z^(FfUfVU5;Ka$^ZsKb+ep6uLfMjrEKXQD-$%kK+{Q!C8yjo)`EDMEhwQ@IaUfvm#S zV;fM*us5`=y6&NAe!Hjn{|jsXAG`X1X08p?P;gszj!kj{t9tYoT4X!B&>mGYmH%Lc z|A6dFpDk)K5UvooH}sIaJxOw6C8JK>EZ%18gY=EYZLS*ilc`!;%QqezB>1!H5Z5o) zQQlp147(SPIl%J;duICpG>Q#Th&dxERn17WU#`X=GYoTkcapigN49hozN9X?SAcj0 zI8wOtd|0V^*%dHw=m#kI%xSv@b8W7Pt*eLjFLxp9F2Ay#^^LLXdgJFP@||{|AM*zay{M%I@Du@2vh3VNd{K`;@vQ zM+#N}fUC!43AY!0FfK^FgMf@pO}CBCaRA-A?R#c(i!ZFu>QBb5zevH5x?P?#r(6Xs zvkfm1k`puET*>Dg)4bnS$Dt#gFS0A0;`FywgF z_8Mp}8~67FD4R|VqK8W(_-^Nf?0N|3U$^|9g7IG@TmO-7+=Z{Tq}y-0kES~O4Tg!T zv(libw?97y#}Ktl=KGjffRYJG{z^VNwviN)o93Ed@h-*7te^&r(G#s9Z}CIY15S$d z01S`S#w=BL_?!hp5dp7!*;x(?QkdL`(*UZYgQh$S%}uSx%*_nm)c>!Jji%Mv)a*w< zwTuDB67(9w7aKwNN3`2`7-dYLVm|8PyFdJP|LV{G8JzxBS^o&0CQtFp#`{Fwd!4Lf;6y_>}mW#^3rSIU(N<3X8-+9B@#s{ zp+if%>_q`8Z!if^<bmG}vi(y};O z1;=gOWbe9)fqdHtMpaC}TjLGi{5c``odG9vU)Nd+?RrN@(dc(9uw$jEzH5z#n*Q$2 z59h^P8`eQYY$vDTTXdpo6MLAJcxOh~pRBZ^(Thn|95<@0GPHYYZaI)^*fU(zZg)`c zb`lO+3?}wYEQ8cK7@%V>e`Dum>?yClWpK0C>x~N8P12(qQb^3$PSk;BUK#y!UH`dr zkSl60!~vcU$AS7jlqIPr<4&+3lEt7tLt&+;Y^2ejS9!a9TCCQF17oY=f;$KATS!;q zKlT2bZ;NaNC@nyr7|LU=i~`v+qFbAvUS5;emKN!NzyVTadWJE%-o) zECwqq(;pvIk)+}SYB{Cpt3Ud+f6ENH3z2N)Qm)?8heQGG_nE=Et5GVOJ2nXHJ6A@C0=2xkl@{dessu6R|WYVHzyYQQ!jDYL5K1W(bFA3G#z0;?I+^luB34R z9vf~S111^3b#~Efq`S}74m%*Z5?(`|1GR906Nl}0EMu)YN`b}kY3}oEPk`AcR@%$u zZcKEQd!$gnCe*|AXb06t0QoJFR}!*z5&y?YW*%( zM~C{*Zl78+^)kv5CGZT?p7$f6L9@kuAa`dnld?8~%DH;1m(yfkw7S>MNa)Y<2)sUN>JD{MCiQT0R@OQwuU5mw(9=@VQbdPt0la4Gx+h9 zxpmxTJyADjb~)YrmutxX`rSd&%_*Qvu4 zZ=O%%O)9L(i+PAdI~zD=D?IT7^sI2R9%twHYQ*_!ACq!G0Tmpa)u6Ea`hB+|)74bi z(B`@jMc!wY7fUq5OTGjpJM&KR->4Q)%VIkMp<{O%46GnKO8gb0_%~hcwlB3; zZh5j8ig?{QKf5&9f_+*!kW7@@*HChjvR$0`1OmbXfIFi0QHC3Z73t~i!Nbaac{*7( z2nBdc*Rrw)LMt`z{wl24@~)43NuQ=R9+$X^4*bTLvJOEP_EJE_ErF@i9^q=`Ki`GF zFe-29U4uC2RxYg>et5*Tq0>S)SKwX`7Vc%i{%T@>fVa(?9tRZjUpfh8Np$9xXMpg3CJQQK2Ah0#%xB%jp+Pj z9x)puf#(+m4V!gL?`X>&Ic{J)rq|%`-P-BEoK`%f&i_%J2?VuOG2r#^WUlO5>;Gaa zWE#~|F{!Rl%SK6y>VM-!{U)68cBxvs0!HJv9aYGhj^%7rR8e{3R3GUWyNwV*%IjAQ z3xIi9Icb8<;9=Lp5E>2724&q9*Kjb$3j9S{a`AV$>pgJBtnSQOcHE^|5r7H}$y9s% z=P7-tPCj_Q*%q*K$?`1~vFd}7$ec1crEI@Jm z1Z<*?;KV`4W|JhB<4usiWVX9Y8@H2c%4h%W<<%_&n4en9B6p}& z?a!1dbj2Gi#JG>TalU~gY$}dbtf9zlUqCuW#R)325S9nQIN5U{J`@RwVR;7>u`r9( zrUe+0;XX?}6v<5#SCiE1G^ARCffE`nupa!Ea1-S4t<3u1=`i&O6?*~8+-R`-@qLIT zg&u#>pxw#h2^g6+-)(|6C%_x~D^xS0dzWUqR$g;bx_2F;EGhQ~#__gN@sc@8{%{r3 zu4Q)Xj+bzW)Nfl1m1^@a{HPBNtlMDEpYQrztVA9?eJo8Q6|~;;?aR&*vVncbYWoP@ zx}&XZ)y8gVO>Iq;Ue=Bs1@3dUAwkA}Z$FjZITy&QCye@}s38*p% zpM^h$LtfLT%C~M#1`mT4I`}D;ytj!qHtq%3)74ND_$wxn+hwL7b1N!POxp4`Y7gWW z;5L1JAo&1IslR9uM9oP1K25%wdop#o7wBQ)>AqWxp9#ni~Upj@6?#T!lJH6R0}#d)LWJzj@5k2@`&4MS+BunNUsavHr?2< zZRHv-hZcIFXkyW9zflN7b`IB2hjU*J&l%3>q&J+3 zZU5E&ou4Z#ueSOr#Lb$h9an2rXNmAQ2nFn2iALWFvHLHnEV(6&-!? zSfH*WcF)Vcq~*K9n;UMAZ5|D{%L2wiG3a;|r@WV`(_P>{*=Sqm%OxsC&H2Q3zQQJI z%@F>|7Ma>h54OZtrZkryd<&{-h)fk#$%(_>^Nb$@g&b|ss*kg{I#%H6^@8SqUD`(dnRs9~hrh8}xYb=8j#$S&J zB)A5>1(^vH4|$fDtqUwj$p`{3-pAt8wxOr@Wm!dN)!%@E1KB%oeI< zSlv3uHa_wzbmU~}fU|buYENIbucfPgKSz5G!6T*A8W2T%YGs??S~w`{rkVgQJB)Cbr6QVQdJ zVBRG|5)5zQjJ?8YNHg=OnzG{ch?mMxLrE{goK}!5R@e0 z(ZHP=2G`O&9wh?$vz=HXfDlWEOukwND&%WG0*V|sEE7C2CQ{_t?tz%u#ACZy?RlIzmem@_JoySYEu;1?J7;AlGAMs+|^p>&C}51B%*z zQfdBni1Cfs4bl5%hoOm=eb}22?sL}pOK4^EZFTE}GRIfH#6t5ycu(<3LQ8SlIQkDkOD3j-ql!e)0iOj{Jxw3*TqiBHfgzR7ca2s%|rye#3m? zZm5(i@;*#EGk3*a25q_S{gu~MSsz?U$^u@}l&glYh%r{%X@69| zY}FP0S+bC2HiP~p*cME&G!K+m2{u#vN||t3rq$WeU{#S|?)NxWa7ocAMXFQGwxzO9 zM|3h;(%UF87^=r~Kj+SlSO3iIyV_Z?AVM5g{2)mP_HI3q^dQ~EpE!^=OtTrC>B7Y5 zF+%pjN>~=OkjM#bQ{W>ALyn@@fg%FW7f%OFD*0If^N(4~C3xdND7`=!u5BqT8KLve zr3yd6!eT^HY8YXtSTR((4#Uu)OswE!*d`=c{stB@q&tx3elhs^*Xe)rqRKr>d;yHU zyv&bc_>~DY-Bd&ngXa_is4^{#THq^oZ@%rfYPKhf=bAl3VU}-~-!F{q1XNy8?7R-% zlFLo@KT~?=+yExN#P|_{DvlT`CR^xt->V^IX>V>Q z)fIIdN_N(AQq~RGS_H!wF|-kfjJAAP@mU#g{yx87arp@{{s02)#sAq@pxf*d{!UiRMu70PyX)CPcLTP_N)o_kR%4U^#(Y58 z{nPp8JDVX9usW0ECzTDN$_4<$!_9@1mv1^+#jZ0A{glq^=YO7 zel7ObblP=hOTA{MKim^zdg|felwU}5!M?~SvKpX+GvPp|=*t}v>IajxLL74PINw>< zQBCclpvgOq;F%v1`V+sDIpcxt?-=p>=Woi8C6zrdGjmPIJqJ8@2ATp?03y_D4Mb_( zeH>P277J?ZO5fG-8(hr{s_1Rx3onF8--9k~>9(|3B;8d}8@L@tGcgiTGYGX+m=FFp zNJ*zaQs*DRh7b=osDIW8my``_)sdkvqFDqr$i+dUsOZscFZ`ry+MW@NII*O8MJwwn ztTavC7Z(UM11tc%>j_1x=*`UW1!wSA);0#9?kMatW5gXTRz{_;0dMs2`H5Dg=o z1S_WJXGXJ~zCZ%@kLTr*e3=-Ihyl6x%fGt|g!}h*LsBiF7l0QhhOVJ_41w3_u^P-F z9ZGp?Tinq~Cd9%7XPxiq+3K*3QNzp;2VOwtz?fiVQ#_9hQ zKlss&_Fr%<(VBL76#H*rY2=Sa`Yu^ZRJRcTi*y4*KN9B`p!EtQLko4kHISvL%K!cw?nNmsSFWs0;u!S%b!Xf@}!_$x*-O6K`6%o)Zloz9`gXK9bEwoNu1u* z5lAYpMbP#v%T?)cbvzSJV@Y@)>j@<$X8lvU1pdFcO55mYF<2Fl`nTLtILVRlzrfB&nDywDdxvBvx# zmL2_j$NOW>WEjb1PJh^!7lQ^7!P^6)6(kI66tV+wFga7&;NbUN<%EMn73p>xwZEQX zK9KiR^5g8>9gxP3JSAY{@I}T?jrlP-B+nm}f8|8ctOT&|;vI>n!!Md#V*iL$yu@!YPV6?TkB64phTCVe zkMqU=I(xfjTg@=<8OIrS05Fvn!BqA)A2V5eHAca4YI)+=);SY$70co~*h!;Z+;{mq z69v(7u)2yY>Xq_@R`w~mibEWgZ)yWWa#&{@W8`b1#c_M1r6 z;tTSf`{9o*XrQN+N#ojG)PkCpf<8>jDxdpc&lgV`(am7SHv>O?TF??iH@KOYX-XL8 z3HiZ@f?A^p&jb-o=4;9Jb+W6Ua@0_3((!by)uj4EDf65ZSl>r~7oR~KaP5u>f}t;; z|EAZ^HcFhk&SiFBiQ=Kiy z^^`*^4~&+>aXo2Q!c86`T2=`d28wfIa-P4UJBR$%$!=svo6H~yGO$&=QwZ|KZrL1L zZ6vcq@IC|L%yK)UZ{4slyy1r;71Z~bOGe`Z5B}1lfxx$(9Xoh*9=lWOS`8LYJXFIN4y9hC_$@o1XUSnHut*FQD2{T zvaL$96*g2oy~j}=w}9xXa$zhcz zAB5+2mYBSWE|#_S@VJz_+MeNBw(D74AR~)*TgmP>6T2lxQMK08V&Ta5kfRKVV?|LCY72}! zJ;V)uYy>`>pVuu)(&cwKlw#iDc-Its&e?Z#b+*zLZAdzNd1~fWkW4xf-|V4;!-=fh z&bw&~nSC`90qV4>6%2Xr&~-0ORGx1$ojR;HK#rmPfuv-?xw=*uN$ka%=TY;q+vZ@` zaQpKhv^%CcL`GdDdwOyuO?>QUOne$<_p+acil&0;^Uk3qoikKEWNoSLA{Sc}t{-?u z$o7LEW9+?Au}1e|U4P_ip^#zH6bXb8WPB57`a;oc?(>`D>X#HFJ!{G}dUR)=*(Y@# z4!U>5i5`Gk$K{OOOUp-WB|_N`Q&iK4?B&8qVeCESp-D=N*m8H5;V(SVR;sEB>%`bgcu_^S}2XX={D(?KcW~^ z(LAwf&z$ad5{HndjSa3hNiR@D!%>QX(9VG!?KpdP4iS(z;QLuWuUXekM$@<_}Rr>F*LWKA5;7%j> zSm}O!Ptji_5-RW14o`kX0Qhz4LkK>QDj`B>2@71mj9#U%&HpfEymU_rxxjBxr>m@A7-M+U$O9ZszsdwNYvbis%((f5!|5|L1t2wDDA%&;q`bqQ}7|6o$U_32RjspF>TGCprYKSe$)5$q(j566VKhbTYRd5XF z173=x$g-d%fxIXrMLJ_j0);U_d_2EJ?vW-C`(T0B+|1YS zt)&z2&2=tf1k5`@3?^2{bW_%#AI3|-nCQhag6Nz^^%W6v6U&r-f>?XI!bg%jV@4+D z3b9gNCNK=B1;m&WMvnp&b%ZOk=Q0{>!XY$2t9)Ln7;PdHWLSzO1(SofB6xC;g2$;P z<7*|!-zdeSo}?F?kN-I zLW_0Wls}w1Ui>T30dRgzF{z_IjNA=a%9PGG@$`?!D05-Nk&WHLPzzjvQ}_>(b$|9A z;M?)@7i&Z6-|P$+q&y@AfY~LT@!^&Y#eZjBL5(0z`Y0gY#$| zCJx57@7|j|l3<;YM8igu)y0k&+!qcx3>b1@93g0IfM{2q4g>kju^X__eIDnc2kcPi)Cf1)uOf^|)w{%Vk5TCC5KNEr7_M zw|YX+AiqVxr<9r1d#LY3^V6{Hv!!JlhNk%u1%5rFbN@)v_4TX9Kv4bR1m_+FTQzu^ zVYB2{P?&dwHSR`<*)8ra-K|RcZ>KllBYx%Y61(l$pI*DxfRfNvf1O1J#kRUqOcSmm z+z*g`q_v)wIasdK4(X(Q<8N)n5^j$6MglNgLSewMGbL_isq#~dJwDthKy6d8O zef+tU5T^w^Q7~MZjXE_RTI?~N0eh^k+BDWmnT=fZ$bs3#6|=a~ihT~)io$^!=5B07 z@b#~-&BXLi3T&eLRE(x}lv~0x*#+XN$4lZqDWUs|`(##Nb~)ohTN2OC-<=}hcb(B6 zX^H2B-^JXPO@H5su4-ah<1ciy!T4`YPJWOVd{Kkr1km3%P+q2@^Hsd44hT-KIQ$Md zG+(yYIg;>}u+t9tqTI2CXtBh~Y^~R(_h&Ny%xT)tm;{|<+wCUUzjrujaaa`F8BrSc zHk4Q@#EHOyB$8g|<+NTi4KSg5`4b)pgK zmbGD;Asv>by=)C0zWne5Z>7)TTB?#=_6*B{V{jhJAUen?Rx(*Finn{wIl( z1{NR&h4dL~70LRmNnFzQwYH0KmQQ+x=|alZu1t2sAF@P;7k;9NG)a!qbIJaa)z_pr zKvs`xM$7#oM3hFD&p2ev&4!wKMz@p-dX5fl7c9Evk~jKu#P=)tnLqf9=u0$W$)4X3 z4y#Gcg4LJWt&}1c>DlyxC|iYNffpxOf9|R%L9mapy;Y9~6coEDEWe6-q}m4UdFCtt z!3vbhd1cf}LaG&;;fe6>mqZQX$pXq3PXvuyUwyzY?*_~Qgv+?5gl12S6=_fkTkX_P zS5PGOP#YEubpd_-v?%3jBu^NIbe#VgytzX2yu1#R;5AFNPC33n46HL{uRMQfETJT} zP48f%Y3u8KcSRn_QdjuT^b$1*32VeTuQ<26h%?|w0x`hHIJ$NVHZSv(D)`IaV3I^i ze{I7i$B)(RNZUv)dm(JHrIli=1y0XjP4?%8J)~O@@1FC~{x9tOtpuaGz8+Q467}2+ zhU7yt4K(2e)*{%GOd;svyIcDEn?)yZZV0R#&IoN$Iu8?=(Kq$D4$MN=&MfD*}c}09H zly~bMK)Q7f9#1Hb)<=O!A%M0W3dUpKLAoe(hpqqL-=@C$o~QStLZq5dA(p92z(ogL zuxL=jPJ`1X>}9^+=f6hJkzY0i2iZMWTSXp8LYNAp_W;Wbg+Bf+PfoBgYK(0tR~e?2l>Pi zdVD@fN#0~RDVDlt%m06D3wbKuDzz~8?meJE-2nbKw$AEGo$>Sic$x#X6P8kq5!m{6vt!6bAcz~-$|#BxYi?A&20u!+-juYI0Vm~|@GG#Oe2fN}eI#f8Y(k#Mq7%3ua_4h05&q{!K zr_yD^Mq1kkw|G+=HHY9I-gaIq@m0AI5oZj%%1n7IN}m-s_rSzI1hoI({B_Ua{UliM zU3Ash(p|_^7YR*=qpV;aM?`?YIlnH~*i}Vvk}Jb@ z7*UY;<(6dJsw$Wz7b+e@fOwL}qMEzNo!_0dG@?XxNdNS)=jusU0!R|o?@WuMVNTuF zq|Wcq_-Aawd0Uf}LCjm^!(YScIFooGbEMZWtwgG9kBZtZ+-j5r@hK9!Z*1mwiD89? z+1cX8a`t`XStMNddF#aIcbtg2#O%GJ={TC}niG@~oUBba2ii3>+%N-%p(WKy_qOz3 zl7xRGZBK#X8Myh3XL-#1?^TbccU1R!0dR9=NVx|VB(wLtajI%TzW}muw?E15+Ld)D z{Dw~%vsXHwK%Qz{38@ea8SUa(BfNp?N_?0L_!1;6phA=v&kIX2A%_0+`9RJw5Gtd6 z1YXwf}d2|LiNSdX0u<0c{j#m8M00J^-jpl%qm+ucwEun&IJr{b{pcQM-H zqsS{lx^Pl9Ee0o#lUP=~ju?(6%Q6L&O7&JM(4E@hPul$+-3!1#zj-?~h;>yb&*Q0=bQHyL;H9J4=_w4BZ z|8WMNe;S18)LN$t;1gH6sw<7KKbKBii`k&Wwkq2@d13-53MzY|(GjO*X?xvw`I$PY z2`u*8yujd66rH4uso7Bp4DbxmQbcHn(dN4?8aQ@JRZAYe)mJTqsVinbcSkvT%>gde zzCT~4$!;v*WvEPM+D$}tdg8s<<7}5{ZEvCh>Y^%QU-w5?WYj!GR8-=Hs{QH9Y(oiP zO!D_DqrKDeSi%Neh4X%P^&C$!=EdmW?cF_@S>ei8Le6oQV?$Bg1k6a(=-~ z1>fvomwl2ZB`#U=%I6nAo>1x;at8vUO>GABTpg@&!wNt}&25}0HqeTzZ&YQzmqn)q zfk>IK>V)^=ZLrr?xYB=M5%v5{YQ-b^Yf^1lX%VV{o3crsm_~SYs=TZ+AmKuh!BSJv zJr-eiY~56ON|_(&vJqgh*)PiP$u_G;i75G4>O|ejt4;_2oh zhac?tD0`h2E#959Hzw>lKTUW~(~OKirM1{RyVQ@j42rv04C4n*x=a;B8FaOSvomow zCE>{NGy{5`Qn>SFk+=}W6!+#0#m4jAI(G!P!prQF1R=s6g{gRwcnXepiciv<{}*;G z)l6w~3ecLL!yBtY0&=Ra=*G9myrMtcBvx@7wIYW_V@>Oh<%|P(Ao83|N)cWN@uWgY z%D9`XXC2L40?l_|_7@`s&C`qN-IaZHoyWeZ>!*J;Cp{?5-zZ3Vl41od?7sx6lrOZgxVZS7 z%d#~AniYI|RjlNJP7Mkg=TK!b(b>w(iyUl~KZQk?$D;%Upd$HcY@WZa{pb4E{7&X5 z<#}-5GV4_w49?!XVj=R-+GXMJd1_J}{!R=ZjC4f7zWY%KC;t-`ZxOlvw}q&01eOV` zi<`;v1Ryo@U-vovZ4UbnFruaC=Nq5a=x$?KcB>`B9}O!B%>3kU3fS)ol7-&|^v(&xQxe~OR#db(F<|G@s+$kIQJ zjMM+(7l_=JQ!$G|*BY>z?h)`d+NBh+irLh6?oM@ox#=5p|+NupHW79QRc9FLPWfPgXuf!0bVp z4M}-e!L%zArokki4IXqh4^Ei0R0rP=_lVSv+ALai9{;V;eL@TNyki8@^;Wm(B?M*7 zZDTC?b#L!I$XYi}HI-d2zhH|ulY}jgPp9Ab3gMxRhv*L*!Ze~B8x{x&!C1P{Bpw&$ z1m!zBkyL9PC_lRE9}PMSs#?A1jB`xXyFUOJ|7_I%2fX#q;l=+Rse(M zQatkt3aYi`*Zf{k$*A=myw0Jrn&_~L=;ur`ki{gpjJ`@x`rulu7)r32VgOzAH_m7Y z8APEQ-lMw`bSj6vgrxC-@AvyPM8_mU>e2jw5pxfODa);}S<(cYI*0JTViTb5BQ>PB zgpBypFScgb$GWElx}|0-cdar(oyMM)gpNo65WLVccU`nPcfZj8mjPn`OFZ_ks{7w_ z3jbwdL333;q-x=Yf(z#WWZ(zaEVcRDy0jb5kiZ3TY2bbqR1MeRRJUf_<7vqTk8qc z3qNIuafzjtyd@>Thb|#lK`I9Rnh`!=Q0m``#{R{d{10*Je-0S`Z&2dDrs`Ng8Quz1 zltG(tldaMdMT0_UYImXGmzYXe$iVT{7-d;p(*ZkiUhci~RMQT=w)QYidZ5ONh%^vv3RkE^U0JTZF$mDsq1$+)eq zSbE}FJh3k_MnGBzt+vPzN^S>ZsKLe$OGb_y(~1(@Pke68^FpRv@H?!`{##|XhJb1f zmKa`R)|iWf1Xo~r?807eF39Xo$;G^D@>w@f z8<9Kp4WOmy;g8PugdBBymoeccdWgKizxuiV$-MpVsmK53U-`Fq*8gy{KD+<2#QoR! z?0=TH_)mip{&#)1{~x;IA1D96Zms^0n!006#!z~uq{@%$Gk0F^-SAKyZnelJ^{Q}>~Vb2l6U zn0;b z2Xv(g@#8q6Tqz81i`TEMi|~<;)JGkj+o)m`^+4cHnolC6Uu&1V{RLd}%gsQjb1@T} z?)wqS3v2zqGE`SCHL_X_~p4LBJOjocb5@sW#!tC zYy-G9i;QdOio`+t_hhc~OJZ)J#HX|KAe8cPYk9JF2%#-#T^4tZ=0PnXP-q>Z<)Z*B z12y@uC6LH1yCm!&33L$C@)|&kYcE!HflfcqgIv4fR&axjqTG~q%{~^=EHp56J9hba zz$fLrhHMVE6HyczrFq-npnFz(ibBaRZFUWVuaqSbbp&QA%yP%5H3_k{4z7*986IfS z5}6#c7Y9+7{*ygeW1Q6e8pSR7>_#JyiY9(r?UvrXM3&-_v+!N2A8A}fv4Sm2;>#&J zhSGsp3Z8FfS%1DGD)j76u({ueZ*ws*>~hhF*H)N7+5MVnO8!M0CsL7Ph4$E(!R0%+ z`SSt`W30i@Cf2$p6-8Z3z!Lh~BZ#RZ!8*khIdHj&*mO+ORy~3?Uf~avGb*&aV7Ckk zg~OdtJP8^|Msqs5AcuOMxqLYBmw8DErR;~0NtxZNzwV|4voNH!1d9bhI{5V74n(A= zNHum^snX$Inh(>EA}a(0RDu-6Gn@0i#yj7eby=5T8bY0sG%7eu=^5r@7IK|97D@6$ zAQl;-Audgi;RX^YF~4^<$6xv=PRzxH_#1=OlvcD6q8KC`%+3{G=kX1EfGkEOw|Xt% z=c!p1lz(YaSA|WAPL6-8fCWVJo0uu^`Xt`k5~5~kfAXS3uu88wHh14wguvCU%H-Q+4e)sN z_!cKQI!Xty_HTGpqLqA9RIkrIp9c=jj;<8QV8AmWx$#!iv786Sq}&%En7n=#%m4N~ zi-tFv<9Pd%Q*_3E1z{e3e!KlzF6mB4ZZ0`^>0WF9O?eU81{njmu|<|pg`2rq;tNY0 zmVDgkXvAA;gduJmJS-a_gtRnqZ>uLasp3{&tPPe5VopNmb#bs#Q)9GB5VtReb$(ON z2w2K*fS}Dsn-I7sYuH|$SG6$1lXdtS9Zx1=6m$a-R3|A*NdcGaV&JDnvZ6WI9;<%J z*y&)c_2t)@hg%#uzla8YrjJd#N3Is9%T=I11ou$*2@wmzChBSr=DuPHt5c5H*KTP3 zt3EuP?Q4RHuMhoPLN$zsG$c%>XG`X54ga{(AZRIQp~K|{d;<~6vR^bfbI)~=vV80z zK?C5K)Ts7;)MNK7`f!94u;o?0Uyc*a>LkUJ5?r+0aeXx8# zfc9{Bbmf*qz&)l8_2^z>0LLzbcN|2p#~0MM6VBrc2x%dKL!IOsJNfq$Q-iTStmB`5 zR$+jygSNPX*VguD1kTz>&6hEAy$$5!I-MfU4FP&^$DnvCZ)dQl|fChVwW3k1XcvXGh5=dYs zw4y957ni}3!J8uCob>#FJi6OX&2K~YZKE%!s)3(IzT~%Xg8vEHyB|?3*)eoV=_!Lq zG=M>wzpS{JA&veu3jX3kUcZR^WY}n1wsZu9n0$IxFHl=615MI?$3pvZkJ-nGM6%O~ z3)DRP#b|72zL5_{ZrNHgU}dB9nG-?knAK3yJvm->{%Qr9=<8%DR`4NX>(}vnKTouv zw?}=OAWoU_J-1O`FdTl))C`D|j9j+eBvXc54P=*>cEn@!9FdU63G1kE&ICCgPe^5t z7BE1S0*wOd7s%m`3-r;dU!gDS{(O}_ z(=RbKs>{W+z{J$5(L+QBavOkXe@P6Hw(4Jze1)lEidpRht-pjszgGnO)E2eJy_DqC zN*J&L{rJ+8ELKV_(Uh0zT|Ug`W~lLElE#QTUl6PX09y3DZsAF||F#xe#_0V?EBcbU zeO#!w_ac^#H+qrl^ibJ%v?!dkK?ZHMa0R=apw*i+c`<=XGExr2aa@&!(n&jRW8%P~ zzN?eDSs&XM@y-ujfYWVp9_h=B69`}q1dIk2H|Ra`Fs6Bc%GK5guZhdspwSO>+e?rO{b4GBbbX`9?Ex?NC2 zSuU9+XTGh&&!5$eLz>8$>kzmfTBc*0Opio+wGq6a@@Y9>-knmI>AL1D7YDyHyP@D_>K2Fv~>|I#yIwY50o&M$lr;j&SoJ3zPEZj59LYZay*~D+?sh_Ts_@ zqY;m;%&kymB-eb9Pp1*nBhEfmS9de|m;xSaHhwN`rNLeyVJFndy zGAX1I6_P0AxHqq$NYke=g@Yv{mRb&!e6|?WY$>5!hCQ7+tpi|xgq3$#5>OT9EpeKW zT8z1zGbDAM7-Ygb@wH~D=&M3 z_SzrI4nkeD_}&bH0%`Hv%0D5EJl@TazMm`-?M_kwZPd|Y%Qbnnuv9flBV7P5M2x)o zN;PM1mr((XVGR->>d)k46dzThA!WhzTNxkpSZ`{3uP?Ztk<**LCdLJHkrc@!r~E#4 zgy&djR8()J-)qG|N(Bq%7pzGg^&l3+Y-VV{n>c<@++%1HJXkc2?$fBt1Ho#gFP>ij z+!KDu)ru$fzjZ2f5Za_aTzXM}_a0ep%c>JgD~FBA@Gp6RFNnlZF-Xdd|KjUke|s6v zK=Y>&oc5nNFGozz)KhVs`mnZ7ofe?AyYvK90!>iY*H(tM1gQ5%+rRcXrySNe06;>Hk<0=poBkNy0Cqh|g#^|(P3Tz_1^FlKW0GW?cT92UZ6Vf*wf%hTGiTvP2^mY^#6 zk`Lvw2BVt~Qzt-+YXSI4_+x!#C+alT@EqiY>7&hce##mKh5SFvuh$8Rhm=9|A) zG>nm@R2pjS2c%VCW%|Ywj$>c$cVP@Q0yZHAX(*A~YDXvz&-fS|x?6rZT=WG)b0@cU z)Oclgt`0Kp6ut7ma%-P=Q7&J+TG22@oHnj$^5jhE+YW*q7DVUCK}N=E*W^ZhRpb1a z_aPkU=#OEbZPPSNK|6RHHm0KzrLm>~wBB$n!~2AQD+((+Xx#`Xih&)$izb);;@MGB z6SYzH{dzk_34xBc(QPW(EjJ5+s!v6!br^|ejk@A&gBHohZv#P(u6s(To?h-8DORf% zEeI`{(wLr{Hf2ZSa_0${C8dfGll}CMQVdNuUNqbWi*dT3IGy3mQnBn0vKMr$7mc;$!kDnL8*WD6G- zFy0J0EM$rD*wH@6X_Q_{9e)?UO*NLk#PrMP+{JOkdj2 z6fgqts|d>ZMyi$eLO&qXnjRw}VTx-DH4QSOjCWoOZiI(GsjhCWW7cXt=o?Gqd0JSc-*I7(LU021NaF=q(`T8$O)PXy`wxi||0UU0)!wq0jrl1Ha}R zbzu0jwP1sT{Wq(rrstEanion$bQ^y1et=(G;!!9-eG6huNxr~IyA*Z!D6*7}5QpGn*R3N5ehl{{ac+{3M2Ar1ot^CI*g^*|j=P1G-YS;Kwn4$fm ztY9Br+zMMr_Bz@Pom)TAprRp&4U!9<3?{Qfp}A=>L}G8+Y8ESA^+uXY!5zizrtZe- zWDPqIn4|n1X!L1FUd&*Q0c!5f%T_vE8A9CgOQ1y02p8-MfO^(LqW$Qd7It6>IG)k~ zG=Te%QLR+Ni7Y2UVlUC8+DS)W!nX}WDFm0ucE`Wk4us>e4w+85$6bL_ofYeTioap9 z-oH9uDQx&`MTt@~DhshpJERM3fb;qA(M-Rssm8P0!b}W z1xk#1)HA`_Ll0x$ahLdJ1=}t}`SY=2hcRt!pzAITio1(mAK=iC-l+v+9K?v?!d4RJ zC`n@a=5i@67wsKztq8Fj{v9!Io24tqe|JxSkWT#qxe9>~8igMhoysI@!{TZGGDrt( z1!Xu#pNSmyYX2#tuRNG6t{V_F=;K7QoaTmF-nDi}D^b3N6PJW5&O9*GzJCx;W4u(%i1=_z;wXld6y zLI-oJBvZe^gG@E27?mK10h`oaWP=ooPE}&m(uOH5e&o=Br80Nm5M#AF3{S^`x@XR_ zZHRGhNZlG5wsdfMu|U8bKLV*j_7*ZTn9FxWK$U;?1OLetK(K?AkYb{S!ns7(ZkLE? z$c5%>e^pl>;4%R@bV0-&RXrHX>_y?%uSjYZEmaJ4;g3Ma`zOL+ zt^q}6Vce-7l-O8}3v?UskW36*A>3UMlOQCc=XsHX%T@d1YLu9Etc8G7C4UpH4np(j zDR(ZY_`Iqt*TxouZYLv!MBTxh5v(zvS^Goe-r!kLi?y>t`3w0YU{^{)8&0y^dK{Xu zjI42aq`?PH3o5-`PLnQJ5CjVLr>g`spU%n+m3nn@*WO4ZY? zwCO7X9ZD)3wo`#}U!VDa*sweeoE~PQZlE1_60d#>|DBn;13Q@x>M{zHih=6Daq?*m zT71A81V7@%1k|bJq{dI}!uGFK|3J^#L*|1x>j)MUGiUC#5FLsESji8EF8BHrKE*!4 zs||t=E)@GTHpgq{KyR)1gmex^~EVb>yzu9fu7{;bc-Lp$Y zm<$nwZfDq1o6y7BcavkOpw2)K-aj@l?JMBwarF9w)J7SB%Q5x{Ag1;ZOSuB>UWup+ju z+qn)E!Z_hKd+|#@gw3Rc^YVG=k&!d?CO+`0P3}-kd4@Dx zJq zcUSVDG;B}|#Aa0bZnzQjNI>h|GToHzh{TLzFO)nH&+1No2@6L*xFTZI1h|sV5Kc-Y z#4D{Coo~Gv%n`lPjIpg`w`)uL-(G(*R5W3c8Qy#_%KOS03o;|)0lD_|nW9<#Zn3xO z{G3`D8^&@G`*`QIZE^?O_XS+EBw6nCWg^Z`#N9GoM%FC!RTmuQ3=XUaW24-94zIw# zodwXM%Zy)O;kd-D5^{KLV{>qAvrW#oCSXWg$fA!+(0X`MT?kp=C`hz zRTRd>{~#_S;0e8}@Pr7J;UA&2=Z}j8@e-WnEJWBDqF;p}Q!}@T)Zd#GFj$zC5BF@z zzQS~Re305E(=*@g!TWPJHV-#v-V(urI|OjwLGQ*KxOwWdib&-tuJorL@X(hXM0GQz zBVL^4Q1qqG`KkRjy|_Dx)`aHLcf~AA#N-KCfJ79&QanLVV}pou)FSg%k64PLmQ??d z&_E7`NSm{D7*6RSMMLA5M~^gIn12v~9-Ba*+}@)6RMnWKnK8MP>h?b8Sk zam6ycYMwm<7*^`u#Khira_9S1{qG7;G+ygWw-twuW%ACvc|Ww765}N5i>>AWS*T`j zjusV*ST%tMlg%zcvMM}6Pk#ZHg?T1DJT2{33xwv#?)Pw)D}FAiBHx12gUKRdAhGE% zYdmX_!)fFwUDpw}`(1&2oZUirBp{3QIKanCC1sr+FdyC*1YT8iaX!nRT@Eu_)U*bN z1*n}4h*^8_{1!5Kb`N=X(nd-n43IZ}#t~DY@(G*p7aS{497i1@qO|E;C0O;HJzuYF z=sl<_&MfJ~Dzo9ybJYEZhoz_Cvo{`^0$o zhax)#OF58-@e+Fo#8VdHA_ZP;#GoQfWt|eLg>;m!dIeT_Wfc0nK=O^YhtIRs6pc&; zeDhZ0I9955YT=~ZZ=tW6zwf&CTRD)I&{AtVFET}ii!~iORcjK!rAoku%SE5z$zBS1Vyz%DnW3$!qr5dc1<4Ucnu5(Pww|Orj{3a-k?@+(wyr}bc|4L&!|D>F?!Q}}Db z^xigSLsuS`=tzdZYk=zpLjP3pcB$at^>^siJl`r>^?)vQysE3C{Xw(~=Eo+->UO=U z1;a4VvQ>fAhRv*E;!5W99v@#J^HOXyzv zC0XElPVk)Av%L8*rJ49BMH}soYwY?#8k}{N$Em!`eKIEpl=v%{i;h!RI(Re zjBy=7WDOj^If98b!Jbr!1$&pbZHp&!3m*@t(?S|$fJU)}b1+pddhVYPS}dX5ch%)i zyKwrFH0ER1c+>PEE-X9A$Lm6MC&xJ@$|WlKMhk}N(Su!@6qD;P41z!EDZRB+)8#d# z@CT|{c$VM3;#=RB#(%-Qkju&B-oirElOBIX^+L-`{$^;HxN%kHdHQ9iTiKlHr&BP; z+V6ps1>^vbt)kN~%(IxDdLW8;Al6w}rkiH&@1s_(29B5`T0uO6^!@q*2OiTvBSbm& zS{7=caS+zV-Q9YdJDF_rcrCv>$(xyYj_u74;6_M9)D^x)4%OjIxlzx@U3|9OOw|Ly z4;8C`$|8e~VBYyBYHr>bMMkao|s|j(`xi zf?1g2G(w~2wtjc>RUF&N{-&MV)@-kLdC0#C)R0s_NQQReKTQ2WrV!PgNIuOUZ5J>Y zaY!hxVv*U6-Uixr{OtQFuYmssNQ%`#cjYyKd!zR4Gt1yi>3f1yKNLK;5 z+GWW!UCeuaO|yRb-JdztR;TY{NRwHog7ZRd(*I#16lw(PLZ=Hpb05 zf=Us)dSt3s0-?PgIJG#?usTuu`$1e1wkpNmz6UQ*tDYcFxfrU%RJP?9kP^jbY=)Tp zZ-k1)k7w^vhjm#vNbGrnvU5r1z!StBaO+&j2A&V);j90S6@O$jViynZ){M z2DdJFwz|>u1B<*hKpO6pN&hcubxQ$y62>dqRp@#~WmvO_j?85Vb;S2h1j#n0Tt6`% z3Vic9Md1~5qFBNx_=}lc61Zry4Gnu>xsHq-mk+dXCD-+GISqe_xe{?8VZxgHP(LKc z#RVT+L%reYFmm9IRMAt)K(1q2o@SWq@Wc=%T5nJ>J8#OU zg(u)L>0w%Q-!gC*u@+ZnKXD8sd*LbT0qlG6?xmeK@Pn&L=?*MXQ`&V5c;Vtuzsh6g zr5>!V*cC-NhX5%qAir0=3OMbC@E-5kW#B(wCwy|YWE>=|-$wx87Dz?0Y0F7Ae8?D3zueUgrJ-dKJM-?826|WmaDo=BHH;K?@U$TaxWSS6O zBaoV-w~IUW+$TpkL#iGqqKw*&IG#6Ww)72&mCqy|Fq=~vAatUujNpAl!^Q9COankk z3-_d|5-6Wb?gKp)`*1wbN`Xr_Pc$aJ75TPK3$0|4#%C!^?wS9z1psQ9o!26Um4Wqb`I0xSSh}520`{NPL@du71=Dl zSa|zSw}Kq-ZuLoFnF@1zZ}YGbNT7Lz_B-7cqNpOUhtyZ9uN$mTey&SH0NGC{QXu3Gbxp~T&(3cNTcDJ&nscBKc;gPcFpJho)>G3RQ^{tlsMp2S0WRwU3O~Z{|bt$cjZN zN<~0rwHB89>41LS+}{CWDe*Uo)49|vGv8P?$;*V*{HqRmpFe!_+pGEYwwu!n;fyO% zvXw?V;TI(Uq%Oomwub1qwD*yoVIDa4{?npa2z5&{+kVHz7oga+Az_R)SdMic~MfJns zw1NBSvJz5Iuyhv6pS7JKXk+=NM-hXq$?~J60`85Np3o?A>w#ypSg{<0tV6t&k7%sb z-`>rcPLg}DVN&VLO;1|~?j6?3XzkET>pFhS(`dX`5?F6#!fUxpbQeHt2e9@T($gZi z3d)kGovN22z?}nCGFs}HSZa==jHc4siPs7lWsHOrzSOIIQ7j0{r&y4DO4R7jwGosYak(s6qb|P8_~J*q8*Lowc)PRCgIK zf5#83f^AZxgusNSN^ixJSrrJG<)_LWG5{I=fH0?82$_Ta&M+6}@McqW3H4deqSQX& zPC?@*jwc>Z;bCG_w*%j<{6buNX3%-Kspx%&lzuFiBC<~LkGg|#%l;8V*}bK(4p$Xp zL+~kZ6Q^(BCi(tlW^AwxGkV&AI%t*-Hccy6a_4fW zJUMw65j;`-r3a;13^LIrRwzyg`oOhErf);w3y%y;V7@mQ%E5N8WYNE*@eC(uv#pfw~B}$p?P}(r#yVuCc8}X_qr%#oeBXQ(P#iRNZR@+cG&`?nM zo#(VQG@5t;_uy_I!?o7WD+Vzs);SVRo*i_0nwd#@YSC8Akc%RGtD1gy7qju?l(-fa znp>6kE`8iS%XE&UUH#4eJi@hEt&BsbKI?CkPtk$YwC>_%(cvR~h=v)d;4+G+KnEV# z9J(_laaK+64ln+R&Xq|-m1qYP%wWt8tgNc-RkAKBu9YTO3B7261Hjs7W1PnR-eJDH^bV6 z;cj$SE#msgdC8XHTk>+|YmHEMXfq`tz`VXneYsIw5xoJco)Q3nj6x9*VNV!80OL7m zhFBNVZN)lv7!9{rcpy@m(qc`VSV;eQ{+P2fneU;jlAXTB$*HiqrWi+A;Ku9Zicvzc zsd*EWWVRFnHazYLuIZNiU7e7M*3`9=U$-PsvPa|`Kii>~4I*cZJRT+^DkVu23v3fW z>24KN%7ZHx8BCd&^WsIiT_u8jvrxSePy8?q=Di5Eh=m$kVtTSG9zkvW88fgVq_9F0 zDYn0RJm2hJmK`dqb8?(?f$gU23!5oW%zcuPi6i_Q@CP@|NVyDz_<%`95nq$|C+0RkTMePD{JD8cJulKVb|#R#l46y6fmmOpvJjm>KBlID zUemIV>5bbnG&^|F_4t%h+XcW8L4A!;MQmMh(l9osL$t=n&2(=8&J*u*5I2xOCN+t! z&)E=?^ewf9-$+C}F*bwBwOIc!#TIGxWT<^}(E4`$^aR#rk7Q;rDQa z`&&PZh>W+-6=2$cjp>7-FRua!1OUIX_iag_< zQr&4tk~VrehA{a@`1}H`pl60(*g6i1=IsmRh$Xnmp}W+Gw+(FH=19DI(M}U=W~bf5 z=kU1hgGm3?bl72xoowm)a=%xOK=>Te%`mx`UXjRLd&I2d9cSWfI9iHfa_me`wv;GD zs9_EKJ&GP6b2@WRlc(?A~u)d-h@ zNxPDL=#h(!S=EB+l4`$!G6QC-2iVPG<=jfh%WaK&u)_rH6Dae1>ThCGWYy0LnE7KU z(5}ffd7}DuBD?@L_?Pq!XIC=n8hIm72 z=mbT)VZ}ivwPiuZK7O;0>^f2rh(ZqM$LZEGXuC`&O)*CR3WB8;c*!1MdXw)?{-STD ziQGvMs2ZT!mR zmeORAa_WWp0CAld$Ho%UjaH^nMAl=9r7jCQE*kohNr6iDYxIKfsu(yH_Kq|x(dV5C z0EwS^2Y2!y7T$+oD_rWL#fO0EW+Hd|t0OOgT~lXN8q*E=qd0|j?SVTu7HArS`x?RK z;<|z#sB;;5l?7V)RVYgVk2w39hc3#awgPSpY5RMyZx~@DuGt zibw%Uvpry+>D!O?d$6yhR3C@(s+uKk`Ursv*uizngl- zRS_Lt8(+BBnsi2LEGW*U)@7;X&*T)e_NeSeA+&Rc`4OWYV*g26%u~r7Y@u*0aEGvqXtj&fTKn~qZOzTc`n7#v+EZ|g^fQ} zv*if(*P6P!p)n2~>L%~FB0=6H(z+QlSb*_?8t8&-i@r1RTS=C2tEdxC zgeWVAeIKdfc>S32qKChixB~|Qb%RVVFL5P%>{v&NPj_?c16&s@E;vm)6*}Q~8Ru*9 z!aWLVi%(tS$Yw^~Bfuj2U&Hzs0Y!9OgP8D{|Xzr$i= z_;0UfS!13?1P=oW>L;7u(E;w!I5&7Oe+gm4_5G4?TZ{vTlaSLEaMmHoJ=3h*cJX zI}`(o4_0nYCDh6Dx25M4Y<6=6;5F+T!{cYO8YGQXf-90f zA%P|>q46kp>g+XOGHeba>ZtNqPzNY^Fc{z4W;2BiLv9!*H{F_Ze$goxOauBPa?l2_ zf=8&1--+-BSqbpXPvp9z9oF5-mw-)WU6(GWRFWQC+JRVO)5v8hoQ3$@f6)#N9e{~| zA9#L%-cT=WqUudye4Ny5h;l%tS^ucIV_otH0v>ggsjq$!0Q70C5 zy=XCncs7Y5IH!f}gJ!i6bwCt=?gg%YV8~gj@lpiYhQ%MaX3E3@8+`MZHNAP{>-e2?^B0bw7D@`TBP*qZ| zJVk}#D4uX=u;opwO^xclW6&atCSAK~mohTwPanXZzw*Ma3y~{66tIY({q_ES&+%AA znD)}0h6}IW{W1=Wz}|`&WO1c$&uP={5qGkB+d>A$V5LY7&J2%hZ@gl4zaNwfTrE}O zlHH_Gb>&pXRJIO5n8$O)4Z9w^mCr#M6gHwzHhz98DomRcA*Edu@_>!}I}WR|ijQY3 zK7P7c?a({GqoT4sI9Fwe$#94ZfEYhj3Z?P)pU^v{moUu~)La8|{37oqVcpO^NH403 zB(J&vM&LvPREB6oGIlcubYV3QB0b)%Uh*i~>H@cI%{l)vrC(z8NmFP`w74 zmLFN=iMxx6Er~S7u-xtME-(XS3raheC&;Eh%F3ZmJ^lW`1ZnHhS_)5cunF?D#UUAi z_$Ryp=!~g%Gd$Z3MCNr$Jf=tb}gH=%XG6Jtb-b5Z9+kO^+Q{^ z;F#0c-PE5P@F{x78Rqsr`4&PhRhDQ)=Q+z2FRKj*nsbj86|f-jF>~*4$ryB+Mg~+M zLZiS;?2oZ-zkuXC2b}aHs@R6shjU;&SnlsuLI{+MQVxy56lwxCFL6Tza z1t+ua6`hING8>pW{-1~lU|tVMhBx5YDRZ^eQkq@8^UH&#WhR&(se!z`q{Ndkg>a8D zayRkl=Y3@FL`t7A>7}>@B3W}tb4zaJKoAEtO&By5nRhz&OS8yXzq|DhAU?FM-Zllq zEIT-#|CP$)SLsRq$YEQ;eT|drxvydg>ER5)<`i+Z(t*)Y``85a-ZyL-lJ<-1bu4hF z{b$!9exkG-xm%$?ls-Fv?;8mc%sP2_l89Led?=^9?d|muI1}_Nsl$S?ieUL?Z)YZ+zouRS2wuur*mO>xa`O@0cFqidK&a2 zMCq=V^!Sf4YMC->wa)zS%Hb8xli7XoOcl+N1m1+%$Y&Mg4LeEb8Ja2m4IE#Gp(M$Y z?*lZL3LH3(O|rS>`cnbg(&R|drwAEFbB z?82S8a^L`7uc0cCz9OUdcVBTWEAn+c_k3`|>t{7=sluOH1(_PBnp|M@S;hS=Mh$K} zpOy1luIc!*)uqXNyhG^uA??GA9UMe4Za=h(_Zz}gk zG@~ZR#^JxCte7XXBy}_9t8gtN?NUoiqHdE(e)~y5Lell)0o784?w+Acgd>|x)erza zkZHd=RcO8NU(K|oBjkvf)94WYKLBGuoWJk9k0nqww3d!p>Z`9|c$A5;bKN{jl&Ecv zap3Z+yv@2xlc7r{l`x2J1)w$V8w9pO<7+h9Sn@CJVC^*bfDsXWfk04%?i%||7u_%> zy3TXa&5gb(4-!K>^UH7Pzwu@<+PB6XQ+yzaHjC{h?LlT}0ve3RG#T1R+FFx|Eq_i$ zD|4=g8_jHl!+zC4576Y^y;{H7pYww|cH1<&DJt#41V)|OB2GG-nDF3i{s_!$2KFgYVK-38fQ)A81&~WmY7=z&y2uM^<-Qv@pA?WC ziW{_+Q>&!J6hI2#0Ye6)AFNkGf^pRV!L#Pj;9RE0!?E~d=(=e1YMjpLR>HX31ES_i zpampEPV(GFo&o1g;N*jx?I7Gt9j0jFt^^oao9)3MHqA=D9RDZk-r;@(UmO(V4uZc# zfrT6^xiU;)X@t{Ss=|J{rgI@Oj`~0k!&LBAUHaR)u|1h%PZgSS^gtmX_x#jllFYJWn4xzDL=SLQYDE+es3%nQlc zRb`lHbG(0!$xMb&8O-rUj-ZZa`m5)BV~IIryTwbqr zuT_(OF|zAFS{7n7jEkKaH~w#EOY4&6D}?$LNe}f}(Yw62l*PU#(sWrc*pVf`xp)Sm z&ZN@WiRR~a@?Ez&LVlDr6D+8^R=Yn&9RL6T007!Isko=ttmI(&%4nrk(D}(Dy(V`p zbp1}2KATXwKG8CW90t#M24+ygrvC=`6I>?^tg-x~{w|Hifhu)6`7fl&z7wDi70Pv9 zkm_glh)Dm~l``O&jxl8!@~q7d&a#g1g*#!SX{TX(6Y~Pk;Lg5q+1Z(GPKWjrJc)XJ z!_sfHl43a*LS`0LD>c7&;#Wu=u^p;zo!|Ko-U#4}_+YK;r z7b`M8&iXx^oD2jurn%9=y zB`XWMl>h($000000M?8c-Z}x2bDG+>V26N#4@s^1VoJ{CS)9=Z$Sq$LK_s30q~`&0 z^DOiwr`Kngj=EQH-8K~M%ZU#%3 z%EuBpXYBdx&i8~d%M+I!`p+spR6Yz$-OXE1s89YaNTKxONzv$0DI|{8?TkI46M_d~ z(KzNtb*7H}dHU+x*j&%Tfaw$PT3-$K+JDs9P^6Zc@r+>Dq^Tic2zT&87WfA^gvmQn z37-Bt82uG`uqA;1d8k-W5du@5T8-e$C6GTEhzm6za8AM0@Pxk1g|3XzWCL40wLc(o zu43#-H7@rA#bDtWbjiSOdeHKNq*T4>iCTjaC`iPSD5-@K2bmc6b(Gl|VSNs|Nhkn| z=c-i61)zcYhz!pj4KON!$O+(9q8|7qW*zTX_b{`F%x7R{xim~vju(X}E){c6 z=^F-HGyIQMy@W%ML&!Ewy3Hk#FDj&IvNAc=B})| z>(Tj<1*@pzKfvnjo!FkQMb$O0I%9I(xuu1Il8HLzKc+&E>gHNDm@9zCwU$bvp?gzPjrR za%8~Px};BdOu`;ICy15?gPH+vF~a+Y7aA-2)bs=4fkjnyn+GAi_&{4=ieU^=ZbP>g z^g*q$O#D`Il7Vp4dtx%=<2U`ky;`~mbK6-`)HMvBFL@7$+B-dP6|Yc1umDe=4l>$a za?2<=dsvcjR9RXpe)_YDAi9eLTMKKv{=nU)@@79)SXZRh1I`UYMxVOKJ7RA;;_Oba zd?r_c#1DG9F=XYqhTy_|{adRKHGG-x^=!D0lH9E*T7Pj1pleod21L1p<;MgpO9*YD z`w^*$iLoZ)q;aG)k~2COAk7{^0D5%D3fZ-I5YnG#$oZJ~(ZfcMf^*QXg*=Ck~?A_`_rX1qo&wFkp4v*05l1?4Wyl^ zi=$*pMr+#Q5D-<*4k7+6lcpT{OsVj`mXrkEyC0(|CUeVXyY}u zLqMe4KZDlcJr8IQq6D@@OvcD6$N;E$#}*DqaBjaP`6d4-qL?&IKNDrk#?utx9qLXe5LFgq_| zz(R4C-lyqpHru1i*cmG#lHn#fAtYFK_iFRFeE3Y|_&RGmSF5o7?yah85YbSN{qKK? zYbY}T$shQj;nf$znRtR7$M}h>I?s>#os94Go_~k3w>zB(`=NZ+KY3Sx{2}7)Q zg3yov7`J*8QAXW5&u(Z5T$+d)m)la?d^qpVUlX-Du0SA{2qDb9^BqwM|rlO~RJej_v*gN=Ma=iGESO5S3 z00492E_a%Bh{pfsdA}OaS=&$*6ms@2IFf1Gy229_qD)eI?t)$K@f#^>sAD*GTD)K6 ztu{AH3f3Xfbbg2s4E_FHbY@>=JheENu%5GhBx)eol0u%mg$bM1;%`P1j6d&9gxb>U z%?1N1>e^fQmp4057cqHiWmVVNJ^lP3#ZAKoJ%1}9^E_L)BF0&cxN(FXH0MrQVyIrK z8X3_I0jTl;@!D#A_`p#sPO5~GX`5lM;rF^G2sm5Gg|LiF0*aQ;i-lFWNeVX~4-j4m zfHsd#8Ko_WTsBx#xYh6+(9|8_`r2nH-xem3ErEhnAE?MXmNt&-$IF`Yn;4Wh36iw- z*jxKs23b^~t-Z62iwV79T^s!8d)1@xa)TSuOl>zDY@vF5zw+1|QMFRsbI6gKMTu_K zEFeMxvZuQJ!jz$Zp;}s51aOk49)c8hJ>emf{+@%jsT!o`MJa2D`Wnic0l;wjt|}Y> zG31>egMcTL?zziAQ3MiYsE7J*t-^42_u7#%GI2{n;lGiAj4acotHP-hFa-eyNPGFg z^UOO8z?lHx3Q>okdSt$&uyLLTniIcK{#WJaRG?e%rCy1|nSMba8bX>WPV)Q`x^-NC z!PK$b*}hr!$z?X<04x*Dc+w;&^iws-QGOFAJAC}1RFTf`KWWyRJQo*s^8_qQsP|=_ zEG?=|D>3KyH^jSgH=)pD30wHT3JaqS#j;S_c>#)fm8gsqs3&50Q*?o@?QzEQ?4ZiU z4`_Kb(}ol`U>EL2*qOJeD)q5Ycl|M>e%;bUV5;}kcjHeZw!^p`Rpmw&n5m(7%>^?O z*vnpFdn*)u2?G@I#ZU6n;qEPdwNuTBEny#(DnH8Rr=Ot3X9Kp+g zjkz54YBF+62Zpm~{zxr)O$?;|4)^!~02sARlWWdNi9C5w*$LA1eY*;eEM+PGX}!3i zHS|uGU5CU^ug&opY!FRJLAY-`D!aolKr>wbhT4CLwC>yd>_7Fu3`xL%p}LhB>+9zj zo#T=^EEv5ikw1$pNz(fJv3&{*00o=i)t7cn)P0}iQ>^_rx0|Zv#931Z_i~&e5?guK zHZvOhx#2V-P8If^L@2iQ(ZYejS2s`9XVmpBc;t~B&S6$i6Z}m&I&$`-|D5W3P~5fr z@#ev5aoWO)w^6q3iIH&-9bFV~pmcj;MJVc&1HT*OJU0u;-!$8K^||W9c7vG}W9XEr zQ}3r^ke@7U^l_V52So8#x_)(|W5KZQrjJ2~=VN-ykVT`adM*Z``n5G(i;EK&5K>Sv z4kxUI&37TM9}q)7knrw9E*QgDMWy(k6XoIiBc1i`x;ql&I)y?HvjHmh41jR1<*H(N)m{_@-l{SYU~EX$ zurzb~i>S)0e9ltkbj961ao|$*t+Pc8Oa)}Qu}a%8pI9B4|UopaC;O#onF9%DN6d>@CxP@Mw4c-yt{FnY$5ii<0M zBmfFgd^?Q+$N!g-Gg%t5G1ATG@X!%LT zUF&!l9kIq7jy!JDwTSx-Q9BGXC*dr!36(ZtqbrA{$v)i$oYb^X^qM=0XSxE=3H-vZ zU`Az+))_@e@$^vDX4pb6IDU%OKc`TFXYQV+7Kg7*cV7a3C2;ICZU6uP0000000000 z00001&pSZgnSvQBk-Tt{vR6TUowW4fDC(UqA|(mGijz$?0TfIr+2YpRou%7F8U~w4 zRqjtpPm&WJVmf;n&cUQ^7Ki`)n}a$={GkHxRI@X#pY6X`vi8J*OtL#3UR z9&-jlQ_ylwo2uTi(zSV%O>V+b#e2YuqDlfvFHLqX@`|M}0ndqL%FP6p`y_1gJFBLM zS5WxRly&lCHX%=Y^fKniUv&l4SYAN2zAnx#e#R`H!?2~n$Nr^v-7$uyu?(nOl;(Te zN->JZpG+6_5g0?uQFen)rSRCd$=>i}7Ti-oCh{;s>U$o)R{Y{&xOxyFr>io4^~7nS ze-oGOX`YQr7Cq2J=z$B8{KrRc-jtS7>qNZRjd#ZQu&~2ihR7J#w0Oz@33?|-Ef#y9 zLGKZ#9hiQ9-*H6EilpK6S>gqE1K>c+R=5h6frs3Yp`?Zuo>rea4Fl8Pw{tS0cSTMIm?qkGO2q=`GOtb7VPYCKr z6wlMlXGW85>?Y#lxVU@7H0{Wyu`=F9uZA;}H9AFwtY#}8q@Byc!Rj)SWn^7cN=)Bk zKT(F{@->W0>kC4*HVQqmPO!EKv~&R0pd%RszY~^>UUE<3KDr^B2k-!^5Fp7nVtJ!Vr63qU5z7kO@fbGIXOEL3%OeX3f9UBvXCG0^;WX>4 z;Qd}0Ux(?`IVrxti+$RL4?Dvi8_cllTZ{Absr0kIMTIaJ?|3WZCK%Q zU#5{dcYB5f)lK<^J?5M}n0X>^AN~AU3NT@jP%cqOqfKI!iwo(Oiu_o4sOPk1*)2(G z^_L(N>kpyS5d`5KPD!rVW9jm8#iT<9^_8D~h%a+Q&ab?JoOzt-arO9bpgo}d6i<tfBgCK&`anb3at|!e8z=yvRzw%so)xfZ&73&Os{!nx+EyY0;w z#=*-MAiBosND0jvPict>!OVPCkyK&k+3()jC>B=XUm2LO^vn{$_c|AYB|m262W;@u z_eAp5;hAdZp{tTfhWE}et;Et_vfnXGZvDDJyALmajsO99vL~kiw6}_<-22oG*`k^g z9X>Hv$}&{QbBhZ80_i?WpDw*aokCs*A5>Pcm>2!LATTXw^53MO^~h&}Na_lmQ?CZ} z6F4oD32M52AHtp$6l1iXf!J z7d`e?izh(3C-@~Te8(6&H>u-^-~+|_wx+Bp`E;K*AEQm{R8z*l)niF*Q14^-SK-zd zk|7U(&&g@3yngta5WmTTKh8;&JxugfgK!BE*`|o(TwJWS7EM?yJ0d=FlybfIO2fcT z6VUVLd@Y*w#a~Pm0d2li-b6-rih1_J9r=_ofo+uQbDf=za zFbfXQO#a@n>yfI=g*GaQ{+2BQHvdc_QW=~LJnoo=b0RtQAk95@6-1_rFhDHVG z(1^&_kKz*t4;w-Jn7Nj4#rN0A@_^Tef9H8yO{!$9-V*%%6IEmzOklfx+nD)QpR^tF z!&l;K_ea2Gl2!zf{0MzgeOm7=XP7G3C(_W&d;jm^n-9vWlP^nVvdM#JJUbBvz2glH zdW3V`ZaCj{&v^1S3KIx5##=Ibx<6Wv;p*LiOl|=Knee1&r95@soey~BHNQ_E$Hud! z95d4UoQgPIp0n?l1@zpWGCyUWB5|y~qrHTl9pqeVH7W2i)M1p|kT9^hSBWujWRhGJ z$zk)Yp7IxDsBiOK1H7P_KM}{2N+b8?P`dU%YdC2=Nh}jJklU%}>Ga(N*aCf7cS+2E zyTyC;u=&+kpnadC0OIjwds=S(<`kY{SXw)0M*md`OWY&)| zL6B9d%lLnJONBktBo_(1ujxBb_hy}OV_|QKEDQ|`e#n&$c|;>WD)qjn!OtjdH4f<| z((FJ^6tQ(Z#2lD@+VcO|paaj0M-VRX%rbk@UC8g(zWRSL8OfgXurCJa;h-S4**#s{A4*b^5Qe8HAEb2MLP6|3%r@p7zx|)+M76&ezPvKQmJr9+EO-E zXLpIeHkN34xXec(p=r1ap?YpQoSo;Hc|>yq3tf4IIK4voRY3!`(yLyvQ5qdo_HV7tGg6+-=|q|vUsJ*%eGjM`A=u8=(J1Z~Bg;_|cGP7& ztxXZog?BDla0*q9PZ*`NMfj5+zKB;KD^-?UXD`1JsDTiQ*m^oQ zETmz-vxRfH@1sH4Lr772>C3Qt{&dbT!U)rEt>bn{W!W_ zfz-^pL1ZX+Sf9ySDxIqr*mCV>4OWsF4x<{&h&XRHPQQkwvEVWVsjyaivHcW35QG<+NshD3H`%G_^sme&;xO>S7k+s0`9_g(fQ9$-$5M%+ zKwLLJ&pHA__y^e>$PvUTo6(J5%0jdO^_a;N5>{!gh#&RNa@!lGIvrle8x{BLo&2`u zDr1$}?N@Gr)YfS*Q)fg!Jb%k*?nf5une6 zlT?q8BiECN9NRkW$DO9^v7Tk4uJRgtkJsW@JH6xedoaGuOG(=j2-py|N>Km+uc(rP z<5jKVJlbKa7%eoTLx#1~1hD&7PEk~tVT@e4D+O(NwX9Ys&{b|je*KbeLP^)Xqa^Y3sve$jeDS#u43@e0$0`KpC z=t=WBBTp!Zq!d^m_(S5CDeN9C;g)p!xf+Cu01mMyK<0>ya=lXUa?c6%;*?gJcB-ImK13f6sHWOQc?<7@~ z{DT0>!c&FWqk6~*%yWaVF?Ue~@(Q@gGeh2uATN6G3tWs)@$hQTur+gF>qDjqVpn8I zU$00{osWuKCV8B*-o)dT@Ho>ikF0z0Fq{bhYj6beQ&GF`Z{^Nz>2|q>BuEUy=HRTV zv7&G4Lhq%49g$am?=>`?yOwSW_+qaa8YK?87(YKLE^t^d6ii@{ZLD^?JD9{8!%DIO zFT@m0tORd;5u?YGrAYbbAPsCH43Qg7UK5*a=Q&CDD){*H4IeA-jL|3RMcwhzL^C9I zmgy=$(`cQ?Q3>8_tq;shlrGHN9rrk=b{Gy?V?&SAyu@_2a?t*~1)Sz$L)HqY%>+?a zLmi4MR4;zMaEr7h$cq6e<{u}Fl&1UW#8h?b^7MmCru@WqNy{PAePi!WL-9X1PxO#` zK;Ilpr9L;JE-_!@c+$Xq~m}b1)oK5NuZ1tG2_u zC9Y8m5TQ1}CQW+DFGp4#n&MLo8L1^Xg0Z8y#H)2bwy3KrHZ0TUU*O5R)uB&5tqEz_ z&G>D-t(JF&tNh$f&77^wF1CZ+b9i-R7A3;X0zXsmzh3M?rMx~0c-Yr>T@#G03}oBS zY;M{0EGDWmrmLZzFz>3QTYKN(uJHa_T>kv7zFVXNbU-U+9W%xoIK>3($7+BgRAl0z*?B_@Z~x7y<{QZo`0^>pb@wu&NjWr7!D8UoX~v(VPd?HHo}%3XpGj5 z7rZBHxKkMZuI{-Nx@x;Df<)Rlzs=bE=Q7cCj&>c62<=~m?m|LUimfmTyz*A~RHbCb zqPESL9B3$-NMRw5hBEUgtbWbv+8zBR{~|yxgn?V4%2tJAqpn*xv4IpiD%O}WNxo9~ z)qzC}dB28)XACB$kL&NxW|Nk#tUs+HYV}^r`d^#ev>>04#s=l@Ae&aSyaH|!V`^so zch%)J%IG~XoxfJJ)-!uLxDWFHdd$)S&NpULXqEgB4$n?R1;QOub)?mA?{t>(dU|%=)#jLGw0zS+8pW#25dWb?^;o`7o?lArvIfO|C zKqi?IbVN18&Ek#tZjR&=Z41V;-mU9gw3s~9K$|GllOtK&~H;vn8%LUsR*4*=8t zWdELJA$Yf&3qtZ5sxF8g#O&4gv^DaG2d;4_RtIa*n3e$(%9M>7UTC+=^O~jHc+n|Mfp(ej`O*&>to|?Tk{p?wrZNmu z#8ND}=7yI3vC?MpA$Q3HfqLaysemG8gOsx2_Q=n#2sV$9lgk^s+;u7SwD{dr{7}`# zw$axYlr!kf(DT<8U9@9?t319u>f{`319!6E*<{iU6jFg{~c! z*WVNHZ(}_P!{SyBwz_b<4sL)+2@Fz0I$#3ky1Dtc~w_U%x0GoCxCTT+Q1h#aA)t3TiNr01 zHp9ahG4~THmDr_7(}Mda4TYW4CT_B+zW?k5gXMyAKK#i--0Ua1SAe=b$4lT>$v=D% zOH({RSuOw>8!gZ?)_a?-p)oZ8%g8U>RIf7ECn(N^` z7)90iC``^Ji#lK>;&+5iRO)~OtVu1OY^%IgIg5(>h>1$2Lzj1viy(WXW345OBo0hq zBb8z-!*n_>N)CJx{5~`AB0yv;0uQr+(mM?-fzVz#8TXDn83zdiQY^+@6{!Ur7O8CPjKr2Ex%=#KS9|oDJYCD`vswE$>r#dXP`!QC7neMNOEl`6mZkRLjVX1h8(;* zLr*yEQC-vYZg<15ROIo__v%V@)5}GXCAi*a5DB&0k(qr3%UNsIUTW%D?D6ts zUYS~SSpe~cn%*^rv!10018lS+cgyCGH=keKGq~61REueV^T*9gI04j_v+h8eG zzjoWfSag0GT+7J1M%>#o7?btcP(=9%Sl^O8sXz5OY*vz2)pDs$#YE%~&X z?XQ>bnA2&MK@n}7vA_Fq9SFOCt1l;I`pvjjfdC%)e$8f5jEB|$9d9~gO?8P>a9tBL`n@$+{c*wnv9CG0)B-xRHI zsXb%ZQYBg8`Ak3!`DnXLnwHCb(-HS2p@jhip4@t{vTjRc3ODcclS+@?lbo=8-*i}H z>DNe&d6DY`jo3f~8~Ar9FcKD(sV5vLV~Pdot{4V3BRw8E zX0AP~HpDpdAtDNf*)zcBhrrgQnSPYGm6-G!!_;G)(Lyldwh{+g7Av3-OIxZn!rftw zo*Nbb)m69wmbR{0yzD2KQ^I@j03u4%>*#R=vvKv$>&9I;X~3}7;v#yDn#q~6v+u~W z{EYoiuC&;r$#jl`ae1Utp=1*W=lOESTKKM)f)Fr0#mH7sSh=NhC7qiXf4(?oRbjC5 zBsbwN3_r+~-*!9TCeazyP>-QqM81Y*NFNlG9H@oZRqt5Hp^L5YBQyc*tt+mmoCM|V zFc#0kyyC8|u3WTy98;n--*8UUq5E{%rDNPr{f6ZWAf)swCb+N2#?)!w881Xd8`Zzz zGd%P9=DxP}Lb(y&fyq2aj~HkTYzwc~Dl0yHQMVEK^7R7%s_`aP`QT+Oi>f*jA5+r> zD6RH^?t+HEg`+hcYCnwb`}9fB+E}WPT#|# zrC`e{c}F*1$tqUU&3wQf!AYdM?SR1(I3mY8LnFsA&Op8q2Ej1_*;ffh}Y!p_k`WsG)I^@3{pI;s9<1-wjGF4vscUct4&nx)((SMFVEwZMhXZCkEarG111ov?3SvXa+`a z1@QigZ93fBuKfH3Dm**%ZhxMEvf6kO3S!D43ec8%id)Hq-b!vWiXIr{O{=0gcW$qb z8;Z*b?SO!G1O9^-o^Xj$*efTU8zb8c2>rk>uqDOyNKCfcaF3yq6!COtE6nau4z z00NTvk95NaaH>OP#J9lOPlb06y40Oz_lB7_`v7pD3;%W!&#J4ca$S0Dqx7vx?`8oO zhZOlu*fk-^_z}On<%>&(zm`$ZViwc^2B5AMdwKVuId7C$vY0w}mJRu&I26FP1POQ{ z(i=Ve05nRNqMLN5$ajjnNVBYi=8Nu|3bG}1|D%xX^_%`8HE`?*0bEAzOU=`pUT%p8o@FInueVzVkLySv7 zMeW~xX!;-`!bQZ5y?;-ghf52x4E|S_rYD!~*q>qejSY}2I4-ARPgeQa>qyiHqr%s2(R+% z4;-Vk7PCFvuOR`{_qm`n>)8NyW~0H_saOaV>pLI@`(OZ4b|IjwEZr@fix!!A#8#QE z6Re^ufhba_oF`bfxu&iDp7_?GqOLb=exFepW9`g%;)MwNv<8lvO=~-R?d-d`frc9! z8QXK?CG!4{Jjr|@G_zYTatlokWQe@i5)#~bkoTjh4N_HSEe05fE!ow#t(I$$Of4Wb z4uYXNJsG78+Dr5LBYSFg#qS$1(3BL_t=?6RfM)jx=WqOs(l&_!A?2Kr+#hA|L$KaC?y6}`YeK^^qTvfWeF@m_WUWnW$7+N}NKmZCL`-E<$y%};DNblH$ z-K`p76?P@9in;g1L_hZ(c4Mlw*{?p`Mw{hHvjh8xb}=7ucvg=9rsJp`?x$d+KwZHD<-+> z!T4fZn7>)&YN=$I(jwS^zR>~ndw@?>pkQZV;t118NH?K#`Vc_E!+}KBC-Flls?zRq zvq9~yci~L);n-U0)Ho}6`LY?}LLCuyAjKd2k#*Z1Yau2HJUyv`UlNY6nXyS`OlZ;h z+7U^21y>y>&aPdE|PUZsKYuur(a5T>)U>?qVDE-YV|7})i)y8L&;+u zFiLpmN#SZRY*>p&k2f6UNX#6N*X~SCh*r}s-`dnzqki zgrQ?A1Dn|%1nRL#?|CbB$dSTTN0xQB);y^=&#k4zl|4tXHZd1^YwSm}4PqKVB~U@2G(mr6EUy-ieKs-o%F>;zjF39Zz{(w8$*(_I}-p1F{9 z>wXdh{o85$46vV)SdUE2T6dj3Dv!s>tgsCRL^Tbu+~XHXI-b4~@J}F(zQj#QPTEX@ zao|J-lp{m|#|=bEN?!SyC40JvJo(AhURT$R9XfemLgLOwl&IR;#ElCOm&C2r2Nj{! zkNF8b7cj>q184TS(3i&iDR((R_7rXP=;E4Oe4ca85G~HQJf6N0y)>T_fNBm@N%^Hm z4hkiWX5~+49dYDry=}VFJQrxUK2I7{R1_vRhEi+yqVf>SJd?4;5ah$(11c6GZ1%Y{ znlwJXR}0rf7lge~o=EB7GVDu<5?D+t`@9ej0Q85@%P?yi57sZj?OdyqAw=kSm0Idr zZ$dmdzLX4xJoH)TVt1``XR5o-v83GKVau@eAb!$tSq6KqJ$zIG4}ayS8hThu@`A22 zZ~dsHD5MZ>0r_khbZaq1=wgYKBJ@W*7i%DPAGAN(E8Cam&re!(IiUdZU=C$d^W%h1 zO=nz<+ZTorl4?d|Cmqx30BEq3-=qM>XVKBIt&~l82W26e* zdQ@?Bg^aBY**&tBxUEg)=E}%49h|@GxKto}#i#V6ovb0r1K?ORbU0&X+h!}OOpx8b ze=aUrFz?>m1qX>AvKl$`_L10XWdSo3x6#d>nS6*hJffcX7vvA13!59mMTJr81+>}o zN8UMyJD1F?(Qgh#5bu(E=w+G}MXihmEl2s1zo;@epQm1(?%OxM*ScVcMRW;W{<%#6 z49U*{WOO|#>6E&Ra?1dd7lPs)r{8&v1rJgErE$FT&&i6}+8R)k2cFKLzp^JO4p_<6 z;n?OtG)3*Lc8#rO@QT5}48mW~2e3cYQSM;LstT%ssJ?Aukt#CD5dwnkIpXIU#~a z@uA!E8=|-svs~4ZL64e$8(m$B`jcc_yFV!jGfu}NLfbqp0nq!nLomJVko zBt~Kc(v;gDqWj{9Y>8%KPoKIyss3^{opO~UP&h3+9>{Fon9NOA4WM4Fyc>i;o?o1M z(Q^9O>8w)cKlO&oGaZU`QoaWoJ}jiA>PlaY*Y7O6CrS=7-t%l0R#lZfcBQgvkD>)k z>K2rpxXGw{5`9LfJYvHVGB-5BxBahc6mHj52{*&v(m&SxNh{COtZ;irs$1XTGb@c3 z+y>x_ae=WEFv-+pO`gYd8X1}lL z9ND%6;&_vVgl_Svl-=z+=qyn@9f1>cj-NZApt%+x#d8#f z6mp&#it>|B$Y#-hC`*$4jw5!AU#DTLXUTTW&WaOoFbp!jjeL1V+Y#~Uo5SRl|JrFZ z9%svM){m}wWi|@z?jM|m)TuMUo7n!}glLpo>H+D?qhiedU@Xz?Gu3w34E|pHpsA`r zE8k9{c@Gskuod;V7b7-Ud@FMOc>jZ-5FN$H z^dB~hsQuksw_OGmHnC++LlFY3(RFHjZpyl<;%XFsx`IKsW%EA}Djtv%CDxaXC3}|f zxUZQ3yp35p#-Awz$Ir9XH*cd4WEFOzz6%%?rH$=~E;`2d}&F1z~r{ zN~)4UbkUcEKe6^bvH}aHP~_(qZ~7{jNB~7Zy1z`TGeBxUpQ1`~i-Z1hOfckW=lMR4 zc+YtJw=k)ILt{3CtE=zzav>l)aksRk;MVG7ajEUSW^|sLOzfxST_}X1SHv@LNS^6` z)x|k-jbhej2Z3 zk_YCWWeTZL`f&!I`IFi5bu6s3Q1G|3-hYfYKlLr7I;}fMk;^-p53EE`|5#*}le!rs zn*E_g3+KU+$~AVHlUgnIkJ>aK!ojEa_-U0(f5kc~Cu$bB_ytj@Df=AILt2ZV8E-)Yp=ZK0|-PFT_@Zwr$qzA4iW1+5EmlB`p_6i1~IgM4wBFU=LTC^oBV(RF)%mJ{o0E7DS@ z5Uaojqhl{J&Pk)34WkKBX(cL09)6ASTDu+!CGY1_dMz{XVNq_Rj7APK7FWlv=Ve)E z>_PczBJB8ia(fFquho0c9F{5>-jv<5QA>K*4PPRtifRj6=`zrnE*vvY##K>4LMk!p z6X1=Ou}5*;WIf9-fZ0=tXuSFEXe389C3-0yHX&qafUdUtX&UvC_bOZ|QH;3|nsg7$oEn zGOYs2OT{ewVxr|3c)+GZw#U{AubSX@Px=TolJHPUW-xAO08kyv0vBywFPt?mH&5wy z-#F6E|4D%nhvg_3ZBV*2?uz&SEav0Y&e!#y%@HOmdfYUvNd(T3CJN&;{Y?fA;-E2atIy8ys5;g!myQu>NXSaL@clYeynyz_9^N&xdOPZS1J-oU5{rFf(esr=pM_tR zX(e&mx9<%)*E<;sE6UeFgucv`x(R&2T;>-3O)!&b9DUm6lMQ5u^Q;Z}g8Pm~CAKIq z0skAAC2Mp>6pjM(gBuYKrB}^xJIUcZTR+~fuP!s?C$v>;t42S^#ZHwjDFzOnW(I=34F%aa|`;XVNRp8PnR?$J&9boIh3CMf3C zr{}i}0ssJ;?%9J$)sYWu;zN9Z?aq5cotl{zQ(otT?aiP3{T_hj8(1GSK9*9LBS%*! z2d}i;8TggCaSt-Oov zyg>j5{Qg4rv-PfGvLbp9x1!2O{;(7nQnW^06Rib`Di6<^U=ae|8fAZm~{<6nCijo;eV8`muVJ^L>v3^O!BEpE%~Fd1}A2-8b1(B4@#W zPXLnGHk^!UNBJv66=n?qteWaq3^~|I{3Ue*kcVak|L%cjoNO2K33!O?GFFF@@)|%= z6Z4MmC?e6vks6fZxWa{UO3-b8PqJ+wnDhwqU(C-HQxljO@M4m6Y438;g#8!$$w<-Z zx>_KBocop9_$)K3c_W}RKz5E9T0!4urOrg9+5cM2DaH%?Iu1;dI@}7r2>1R0?-( zCyp>Q9Z7T&Yd(qfM2(8YLO$%Bp*lJtbsrjmn?hL|UuBT#3kHfV@XM?C~PDXSla+Jnru*IB+P#0R)Uc=a3Uw% z6umh5iE!-AF;MHIe8V`b_;SK{-p(TFEB!j7_aT>F{3sWvG7$SBi6y&AYY-e4HmFmF zJ^>8UZNfM>V?iJQI>b;m5S54*vA;W}d`$NK;=nq?2BuJ>e<5yZ<7Iml5j0IB)`aMB z8vK%!R`u0vLXeypAuldw`pM8>84X?;U>p|Y@A5XR1`guSvbXpGs ze0e#>`7+Y%M`gZmYo(5f2I3VqE*E?F5T`OR_Ek?t{>n5sp73LIVY&xM2t?RnJbL7E z62!6E*5(~&$EO7IN9nfpc?hMu65~s-+oDYxmy-foUIFd)z0kGq>(kM^qe3HW7#U~+ zW%Du(qTXMDsa6}>k|z_kTP4s7&wU547!9??jHI{kG~I9Vzuh6m7-KR*ArBd-H=E=SW0#j#Jf59dcu zHxYcaJ~Jc~UCuL5ru9k6_(0D`%Y);%2f-!HBki4ee0LZQIj2~4E33`5!SmFL<#*?g zq!YbNs5xVr*J`8*eK@9~1`Rr*UQd2beoLu3F=q3IG3*|6FO7Eg4rhS=Pyl00hu`x< zSfxedSoaOS=;z)#`76feU|1jax)@pXXZ>}IBop=FH(_I1m)l;8xM&iYW{LPEPm!fW zmaUUVQ?N5*57$|B_iqEGH4OHpg(uPEk4kx+c}b%*uB(!Oft1BAR20T*N}c1RJ}ouY zEjJ!!6tSItJFdpioaqQB1$dKyB8!kvdTFYBrGqz&KcE~VBT_8?Z{y}lKozs#k z>=C&dX-2_w^H0`&hE}=;3-q*09BA>|x#8zx<;-&dTbzb+FcsL0x@VpTM_Km8v0Crm zXA&rXja8~7P>*q`uK6?DBdL?aZVlXNY8Iiy7k>-ZA;`wb_02-{Xqk z!^L5zJ~k>4<@IlCgsKvx~toU0K4U=L9_xPbuIzla~yR$Y{aQ!+u(BN?@ z$Gb0dn}s2}{kNj=+>08hsBG=#E2dXNtfJ(oCZ4M(Ra5h~B*-$p65s17x69;M$gNkZ zY54vho`FuCX+9k5Jvc?HbHkS=Mo*~fJ;q`hjtZpl#zAl%PC8ySUN_JGM*uwtFB_I- z$x3%xcGq<#YXu}RHou?VJU00)q=@oKE$Bn1G#9ogclxPu8llY5qMI;1oz z5NPxxA1DxF+pfAwyvypEZr?ZygPmqGJ$-Ra;hsgt0t?6wB@lj*QRdAU0|N^p2(MoO zGPj-OmGfez3V1m)*Z!ayG7DByELhs*@IN(S(HonouGS>%FI0gq#fe}ud`q%BZgEFn zRh`sEI3z^5bY91&iwxD~{iGaYj6P2G%IM{1#04LERm`?rq--duz1yr(o zzdd*3>{0YUArz$HLDJyv5iPD=raW0^)481+@2LyEz$Lk{G8O30zh>0i@8m%5@D*# z)zjc`Hf!&ddktt-_o*`Yc8owv@L3Dbf0L&STs7;*;xR8{vDx>$pP+X=_B5MfpOgkM zcl>t%)lcHg@_b=FM>9W9A;|`!|KGsTA>~ggh}mMspoGuMpIZg*}}Od{Z0aa~uwqV-6?g<5Gs{CIbcujXN{G%-)hU8)uHfX%$3{A75D znBuo#=9`>_zm*{@MuIW-9k38a=LuUqdd8o@?ZOxh%1pzdG2qqh+V^pofK?e0MS`_6 zNTp~g0}MTzBfdNZxEUakg0a?kNv-S5A=b>2UV(qxNw_a3xXFX+8H+vl_QDI4IyOrM z*Lm*7lKi*%i`2w9BkAFEooxRL(GV#1FE17HG{;*CLO!^x6F+?OvGy$+f}@I(?=*Y_ za=)Q|9Z`A=acy-Q@!cbfTpX_oG!qwZ?5m7CqMP&c^(sy1tOs?}sa`p}<>F8D!Ip0z zYEr`umZb4%<3pjadH8yJ71f)=|B4cH__HtOX3>K(kLV1_nySKa(eenUdIuVJ% zF(g2SAZR$`s+~ z_aimc4PzKui#|R!TNS6)_U{B=4)!=5!OXzj>kDex%*AW z2?b_%ot^(USF8*_H~$^MMpt+wx$#~K{0`picmo&g3_0Q61{A9qufSEsUQi`HEBB%9laq-+th=X(s&V@5mwY;vl z^b;fx9p(3YJtYbGx6!g!R>FT^ZlF#o1L{b=n@gXZPs2NMH|(C`ja?? z)~AGHldni;uU$E4?~B1fa>GyAgon$Oq$}@CtpdmWhe5RvSCfgMsN`=l>1Q6o@G;L< z@B-266Veh{*nx1vCmAc0vZ93b((I4Y6*s)&1^W4RcKytXc^wa02JANIff#qJL^&48AHA@Muebj& zMP2V&*W^Wc32~hUL06>g@sD+Lv+J6 z`~UzLGxKX>rJ}x04Tz*PlOZBmY;_HgDoGPVgXjGUSOIry`{yP=3sH0hxb|anvhU<0 z5Cw3quOefUu@PuOXlrH$=k=)2MZa6x>WDh<=lCzY+Il${6gs6W0fLv*;g-1AqX?|~ zo(!{vO7_>zzx2ZfbJ%Plh`sHAxGi<%-O{`ZnA@||vd=;Z5S#ig_rOseF`Wr)X#ZqY zGfO@7+ZDyfAdz&oaq+=(0aN+(Ya!O2vt^ESy+M^4S3KxJPHx8!*KR!{FoLz0tF>{T zrN`nBoQSY=y{4R5+>)g26QB<;8qhmnf;o3;vCErIZ)zFM8<~=LSL|Sl4~vRBA|deW zSpGk-%Pc5^Isl%y`)3m+Fh)hhl+p^e0Bqy&@2f_}5FaId7LUM~apJ#*3~yl|cyFv^%~#vJxQ4x?ZaR@>K-z4x zdPra+*r~z3IM={IokzmA z3#Hg*D&i5fuEvY~5)PW$P06JRvp>@hq(n8H7IRE6NE*>5{vUHZ0fw<~T9RAWayV z##aM}F%%|--#e3-47+mNOu%++C8LlLgD2g zJmE51O}MWXvYilg$0=({KXT>4SB^BNub0%!yQ)?i?qc1e-3K0sqGHqI=w@X(k$v*IHSCQ1oBJ}FMoCZ%#RO@pG2Y|?8 z9=Z#ru|AAkLx0?r8cnex+_gUNL5m32mGfmkl`n-!0js{o$Iq~kUU6)IYTTT=1g!V| zAjZf+qJdS1-eLGk8AH6fu>Iy5^jgc9*HHy&nG3g;uK4+VO;c~*0>>#0cP!&jTNocC zwtn8|E`#r+%(V!x_A`Nwl&h1#DWCQ%Yp1)DS*MwejP zhcw})>Hr*sFPVUbQ@&N8J~;SJa^x1K@%BVePCWOX1`Dzk^jcZB6c6fVY_$)X9cH>r zFKc|r_8IA)QJ#8ZCeD+XgZsvu74)w?zB=a7;*r55;t*745Au9D12zpxm1W)N$O15k zLLGi1qhEB2i3-LI>tOmTnteTFiwc6PD^!!m@7A^sJC+KNWEUmMhROMV8VD>S%FAwy zHIu*gs94NSYea!V%iRU{3G<*p{zfZ>Jp{!UNqr{8r7L$bWLn4x=DwWv8-me!3(RTv z4gXZmwuB1?|D_a{#{s=ZHT&1j$}}3GWxASp4?VdBMQpY34LyWHh)K>HxIf_N0k1v9 z-h9tgi-1oI15@eTzTSE=%_mxDAeJ3wPo;Y5`7s>NE-7a&z4QF)u@j!qZ8won_#k!y z>#gHvUhG)(9i6#vv=bgDdolR zFn8MZySv!9_+PQtDNiZ0AH7wo)%Wc%&k) zCEm6LBusmIy~|z#5)7Vfc^FJ%%FR>dG$2C5I~KmWzm5hHCq7TD&LiRD4CY;MGDT*R z<87yQ4s0ZmAjho*e0bpMf5lAi1<^+H^UA;4{goK%BVR3;?nq z8JHo#%js>Lq+7I+{GPpn-g|VKwzSW4sl~|}={0JaRDc^{{xL3*+A!pXs2)5nDBm2| z42vhsX#{^oUHEC>x3JmbKBSCA2-RL&1(&1h-1x$VxocoOxa*w}9foATIzUYFzkqPL zmIpCOw;t>_97hjZuQI8IFUgkxJsb~&1ol_?{ z;|d+H)7E{=LIXpN2Md0EV|u6^gB+FWYU_Gwjs5y9gS2>=kO@>HhWMjVQyTz@;X~Zw zH}#}Da&*EmjNflZ`PW_eZEbeWq53g%yn6?x(9bbocG$$GEVT{6img=jB(ToZy zHm7QvdQMWIqO*9Snrk#e69g8+z~)^J$F{2WVhAjOazm)y;y>|a_}>d{-*6Yaoq!J1 zs%wrDPaBMCWsQw>85HdeEk$1alC()IkaQF}k}MUTaj z&mSIEORKS^x_y|z6f!s>MM>qG@+oIp8+v$Wn89%|BOF9tSxlP#APL(qtGA$iiWi}? z8B}fEfm!OT-^wpEXSs)ikHj3B0td-V!|}JuOj6;h29a+F3&0&E&FiUBqmpX>PB z8*UQ|NYa)TOm~)_sjq9~!Jv}}l1e?81L)OWx3rQD+b?KdBBEY!e9y8{73lvLX}sG9 z$e$u_A@GryKVc5+ty~^q3J`(MOsiv>tkWQ?)4rHsl+jU|v^3_)} zDdxw=<>ZD(+1z|dVDV`&k56l)uD1!^cAoI7e4;>8%NXgO|FomAFdyk|`l{hhoMmP2 zW#bL(UpW_of5#sH9-%9jJf5$_qw7-}MQ43|d_YC|OL|Gr9Ona(w(qcV8-+1_+K-5d zBEpYkhW#&1<$u7C$M$<#w#l3;pwwO07r)!UjM0J%R2DWt&I**@D6wR@VNl=+ycZAr zvlNZMF4~HUJ%^hbS3ZrKf-3iS^py<-_SVK^RPIPV_C7LxLzf8C?w8&apeyVk?V)mW z{?Ej6nme2tp$P_hcb>M5iR8q9l7jAuGZ~j*41kfJBoln7>Ds>tCS~sXjlu;VxdC&Y zSq2tZhDHZ-0bj1Xj+C_oH;6)CI-HL!ZY{IM#*4tzo514m)|0kY%GJ5$#FP^$;GH`g zK|9lz#axIIv~*Nq2NpxadnJ;I#kt>j{0wXP&*`?23A+Oabb)j`L|e ztgD<%b}f{kv-7TJUoXLg*9QH}a!(_I*52>UE#N?5)7}rKkbdoyqR4CC7V=vC7oz-K zk*{uBDfURBT`eREx@9l0|y%4WmF_l(;H=2JBH-8zFU6xLHQ-7$)2z$I@d{tQ-St${+Pqg#4M~}bzzHZEF`E~gB)x$8K>0*^JZa=Z8zwQ z<|zRY=x7cbc21)B^9bkO3M~BC2RQHhz4bu9CO8PsgL^IE{%5c%c(%Sv90Q3;YLS+a zmro9&QxY~tiK=qv^N*{8Y(;uMN`L4rZ_6*dJu@ynPC~=ylWIp8o!w(f(Ko*fXo8Px z+n?4tCUeaMFgA(dEQ2T-=u+1E*PoA&cJBBN;Tc843$fsN;JLA<`_xvFC)_XZAxe+o zbEMkpmtALxN8XO0e=$McwaMQL)cFOLX*B~;G=u8?awiI*-+9M(NxF zOskgN=p&oU4{kwAihepEEyp7GQ5;9!I`W_WqD4s$Tb;e~Fk5c(;`x@x_gU89^#!Ze z`~Yz>Uw24R>Ods7gH#dY+#bZZm5#fas>xg5w1_6l97QsJ+`kZuw1)E1vi#6{jwg?# z52PAYr(8hu`OQM9NV=C{056hATh;R2xrKHheb!MLDN~l6a_`NuCG&|7gKOWmZK6@! zZ_{2}w%x9zR@v=|bT;fZ+=g#db-{x$$XG9eV+sQOaj`_fL;F_W2g&-fyflY{IIzk+ zq3V?k+Je=D?R>hgh9D}Xx82U@M~PIx`ZZevO)4J|?f;%ixA`nrU+VnMT0U`@JZ#{S zJ^Vy#4G$m@cC<8qx^rQ%=n6=N>ONOc_+cs!-L|QMvKw1SPw>4sD?rHkbZw&HsxvU@ z3Cgrew!WmSDx>4fzXG~l1AaYXpR;RFY*+vjrQQo2A~SN!!Vs{>elO$zp?96 z`Rr%-vnm4h8V`oYr@$%Aj*#g3hVe#W9JtkCBLSL>A5Bap3@=Lm{CZTE>+AkAo3DkE zh31CYS!FuZMF#OWt2QlyxyU|Wzc4=N9cx=D3MakfIWS)=uYbMNn+FyHPc-&|a7a1$9dc%Y`k+oTV%YzR{A0nGgAD#z zUg$>a5fJ?@E%pB7@}w9u$p-t)3K)FR&H%c=ofv;ylhCTP5PcIPkC+-Wgyl1{?L3qe zFO5N#{W!S~fFnG_+anj>Q@+G^A4-jn9%IeJlxKQ~5G+-x5C>+!vm)SDr8yWW)M(|U zkmlevJI$pql2LoS%?{U)L05aDuc8D+MVxLIZZJVrEFk+#mLL%QwhMM4jh!CwfQ0K| zhJ&o%_M=8>BGo3!$70U`c1%{Cal}wD4`5flH!zO`e>+}bWAq0t>Rju}X2_&KKTYzu zq#zgL?zgB=kk>zU@}I?oo@b?ZB!0JX4?5XrWw$m`wsAbIo?$DgBx%aH09ERV1>0R1 zoj$42aw5Jfz^;3IO>62ax}VmxlhY0`W>wO@!>CuUv~wwJ001~)%87Aik!S+Eu9lJ5 zc)D1i>DAo(MonVF$L)^>FpgW>szmIc6Jjrkq@)(VfQfVeKUY1gH^V9H>kov{Q=Q{6 z;bpfEY&EfU1K-2oNdySp0hTy^g`#6tj}cONmnT9206b!XuZ--q$Zb`sg@Kqj8{~j~ z5eNxW(S|*!lKj0a{}Y)wZQ*L>`Wk9VvYv5D^8nCn;K(MWX9RHbG#=bNDN&Q=f8e_2 z04xNm3wwSA^mN3)O?U)PgKQ!HP|V>nR`EGw%)xc3fDou4oi~qD-Qdm;nZJYEJnw#} zN#?I!1yn5eH~Fz>t@x`$afba#k^zSsWLV8YFtUg1V$o&tANd{hu%BO@3ltivnlIb- z+eaENt9g|Om@Y$?4KAwKOMq@46gOqrJmT2|iKTO{0v-;LuYzs|LW=lD7GRt3lk*~* z$4d@!IJ3}wP*L{(0sskLzmdE~%Sw3+bj4Ek^Zv9{a6d>eyr8YW+C1uDCZ@8ox01Pr znB^6Ce3z=4TzYk8B8lm0_PTl@;D74)2f{qrl_QelgK81N)SnXmN#*yQNcGu$VqYhy z;q%%BA-S%XJckdh%5V@Cw4{XV|5s zS0TAvhOYJGSJe8?cijM~VlqHcgiX>rwpCjN9L8)YvooSGv8sj#yo=er_Aa{5Z}TiM zQ|4}GcspszTp8JR>zh#tP61su$;R!jawE(A( zpXLpLII1+1GsYZ4`83NXeZ?zDuHtrO*|mYcSdZ6g8JVwRsiv?(d4%7gK3Pin-6jq4 z3veuRN^V7$p2u6t3$PK*=exm&PXRN?dS{*+oJlj%G_aPz@@#U;Z-J)N{oasfbB;#!SoS$4leRqf1k|H3IJkeWt=r3vb}H@dQFXdz zz?J#H={8%mGR5DyYxjoBG>Xj-j~Ptju56ZHuIz3PD6LD0fqUL)V9=?D{}8fCnt`F zK9fZPa1fcp+Bij-SKNG!$Yr^g>My2VE6#oF(2VC{6*ufTkP-@!7sv(q(HB2g=^_X(M_3wVAd!VMV}BVYO*0R>VE6E%+%uRu0uPP;Oa zYv$|v*l|FT1wt?6-+%0bCjF1&54}F!k_DaTPgeUB3juMUPs;j&4dodyY4H)qL|_w_ z41fZYI}d@~?TwW^NMtXX?qy4)SW}&qHjY zPJEt6Hf4sfwqFWhsNE1nv~po} zy90bNzY|Ea*FovFts`O#JQ^%B-XM(cG{NnV5XQ29>R{~nVm!c}98<;|H6@wu@kE;| zswV)>Y-UguyIKj4AKi{0L;HwqLd3&xqR~fZKi2V52jc5xgi$^fFF`y5Hd(7i= z+lK<(Z32`9gf`z%KH%&194Hr?iz-Vi;J&{yRkm4aMk`4@YL&3U`NsXrQ zjP8QJGLH)EfCuHZ!D1`?m{ux$D^*--q0q*ctPe@PtR(NxTLy2t3q?7y{^_0B_8eqS8a%cD4>CL!>mj9REUhbAOj2T-7RPV8k34RCbOxGhW{b6;J=cJ{-|K_~ zy2voTbB_&CnP@~}_xo?)0XrSt&WC3&u8~LdAFe=Cbh>N7j5tbo?HF4Aq`u$SWranU zz^0%}MAm1qMgwvgS8{K8^fD>=y zb`0g+rcdWXcnx)5_+gDaw04Pz&5G}IgL#+P_qD13;N-um{(zEBIL2j3K=_4H5D0eU zl5kDB`z^F?{0WuX0hS?Dx%yd6p`aApk;A|>;Y(*zmjz0Rb@2A%e_5IqwSWA7_UkKt zS!I2gC7NV{9(;m@KjQ4v(}40}Q%f&%v{{ZYUurC!eM{)tQ62K%ANMqM*%Yx2d5S_RBvhoLUXLn7veI7ma74f&bF8;F_BP*iV?P{chTgp+n^1cV` z^CJFhABy(Qww6*>I22m{`|Y@nOHiT+g$Yklo5lmEmxVJlngXD;yEO z@_6jwuclre>)f)DYMUsN}rXt?atR7c(ZI+o^oCnCpAiu)m>yPOdmiEz-VO4Qd6MDLLR~A;2wD7~lA`ur} zpO@S;#w^RYP$bv&jQpDQEBGc)neBOiUfWu1Skg-EP`y(tWkcWJXUV>@lfERm#S~{d zAd_$)t8@dpra+468ykgUKSwdxrz+Nl$|0NH?UeiP)XpqSLYc_pFqL>S%Btc|O7$>aX~~5q)+V#v zY~o1nTVg8--A|kSiVY+4-{CxIB+EUt&7O< zF|0$#kbx8-S4!t&`G)VE%)Gq99#r)GKl^mugsmg5&)>h&Y2rg%>?p|~IZxNlmVc^O zSF|%7cqMLbcbe7iJ)5B}k$%zeSjWKF4{Z@Oz}&Fw!fJsKm^HVI+5K3G_(+p@lat9w z(?a~$1#2$(wZoK#PW=S^)z%#aB1CCaqi8#UGlMR%fFKr2oL7eC{^4ll`#dP5y*wRZ zAjN9|H4$k<61!bxfSqcpjr9ZYj{lImIFM>(+oL;{nr>>@?#73aTq@@^Mo)W@2CK&p zV9^IkCxp59!S9FAR`uQ75V1mN(DrC@ln4S6YuvUkI6 z$sPaa4(x>=lUbxgV#>S}GnG$YLIK{yX?2S(Y&a~K(61;QIZWE#+D>t~hC)qbxUoD{ zn;NFCKv}Q|o(lR_s{rBWc~{x$ktlZIT>^nav~^wT?G)kKWG4(0zwx(9@H&Z_)*o1G zLN#%Y@5B@!8lE0RKV=93w#@%<8bsm~fo_?Ytb(8LmUFXLgJ)xVrt&_^8>y>!6W5bv z!BV4J(SJza+n`mnuqWrsZ*BlzCKHkFyH~P$Iat!3YA#?CPsg6mSk>cm^|v^M)~jSy z#Sav&s3uc>wWv?|nd~iW&Z;=%{IvG_Y;-y2XcUcwN@`zm!u&W-P&|RXaumhFIv3{o zuU|c-zh8}@Ku-c&49`k@;F4pLhYmA@jEhk;?2qCfpn;`=yc74sIKxI@kez2phi_zr zMk}gjF+JJXVq!XM=@}1K_kv!)-26+!=C{^4C~m-!z%Qc3>>(7`ygB#ZMl1i7oOKwBh0V)w0nof zvpC{i`&|-Vk$&&EK?FJ*57Ekp)EHhlDGeJf!cm_25}pLo90pa>~U+7 z{*s(i;kckEDs>FcUcie_L9g}>Oh*n+qnevHfV6X{WNbY^b99iNq7RZt%%m4Rj42y~ zF>dt7kk`jJryx%doF}UJR>^raaS&FN2tEzjA35_7x_el8zH`OY01bzp_)(6Px$JhG z1r7eK@>8rJ`gNK922I~Jo_I7>S#A6I$(Nq@NcLX$Ba;;60L=5ecP$J{jZ_GMNe2ly z-${o-dH&h6sRVN7nvK1iYnQ_=mnC?g8?RdJ_4qWi$k9%;O}WnxsY_Vb513HoKRoa% zW-4zcqlBiA*i5N6ce@fcv%w`wM64?E^@UTY!o?{pyp`&Pvpy;<+2a4mBj=q>$pC*n ztwhW>pS^`^vOq}1bMyv!(3)>GT0~Qkv7^~-pQ_*%bQ!SW_K5g#T!4XqOMvS6OKbZ6 z3Jh*?iygTiEsgonpd|b$!dB=Oi)$9QkG%*;pK?`;g9%lVR_p7grjH)+e&|CEK2K}U zBRA(dP{n$hST!gm+iT7Dc|GcSP*a~VP@h&V?> z1Y>IcJokOV9eJEBP!n0u*OiL38Gu%}yJGVv);8k#&-MGNoEMhcLNA+6qwI*VyLLYJ zal^yTUO0|5Y(0Ac;Z?DRKIwLy%1#Q)2XLRTMa`V$ifP)ve`OJ>_e)%oLD2q9M z>CiOOtwwER9~Hd?>%1uA-d45$lLM7v7d`O(yrhbpUOxARd5!3nl0$^_Xz*YO@SLlT#FP>J?4e!4ZT3J7S}hL&bL2XF$b2$6ynH9`D7jpxClIbi z14U5*nhnId6;K^aL$%;>q#1mVj>|gQWftcud?F z<2j1FBCX}w%gCwBzzIKlX9G?ldb3bTW*ZfVi% zV{_qny)y^&hD`-C1@a>>jmW;OZj_-DWg?iQ#~*CPn=eD)GfjCRx*Os?Q}$XRv3&!P zJJTeO*2)@DF*%D@fnU+B3#j;%hmsQm7iOLaZ(bNbS!vh7{&LIQ88>`DAb!%G*pt z?(GCj`IMTpNg?M5-T8F0u#+r;V)LlT9}=nf>pvXSIsn_Q%!`gxiHAjvqwAoJ5Vf{_ ze9IutbhOUNDVa5NL7c3L^tFDjds(A)c91CfZ#0iR9@sMUd#m)GQKSaLxVwZ8F_p|1 zdaJ{LteFZY2CX5^J|OFD5Vux?-JsRR9Rgq!2$vmYuXblNhQk)}$>*35C#Bt~+RT_v zBD82FE;!of{v>6Z3>IUTD~Am?3bU>n6(9nW+PiFK`05_z0w^nofw*uZS!tGPxuE#E z!fQ}i=T`Y}P7wF#nqF$kPfCVU^NQNK^xTQ`XrcxpNG@EzKpiW9E^31)$3vxUDnnRn zsBQoN00I9Bm#O`eghKh;^$W7Gr)dVWCDxOeHl!w>lJQ=;K*|JFTF#HB2009x>zJhc zW=;4wfMdQQ*tTC7bYS=&v60SW+g5x_N%cyxv6^jh!+B2kG&t$gz zN5)SVv^2I?7$S4JZJMnwa#{33?ToP!#gkE9O&AfP8LUE)xkP$T*nDsmkfsup2it?{ z!}VXtW4MiCHDm)l)BB=k^C!0nqJ|8 zd}NaqN@%O$llU{IQ!Fwo<7VMU7&83{61^6W5oyizu-VsGD&MN}4xI`XNVza{%p|{Q zg$Si);|95EmtXph{TpIbF{wH}KLqTGiuKEdsS2Ds7#*>!z&8ISGH>N~ z^FZjuuG9Rk3JS$KQynIHdVr_{FX!iH9jscDIS*|UJgAG1G-yw(R<_gM$-eJR4TD0T z2VMDl44;ZjltRVU-`d*W!OLG$5mk^F+i~Anvdilz3_@b$8~$Fb~BXD3`VVtzx_OBcR^8ENKPt@PlKi{Ff^XP1pz zAdZ4l(oJ}2%wbYF%XqtKI4bX0#nWc1e`)rx-c;%^TF1dbK?){x;=UkMdAu&!zZop7 zc#dnwthRS^+JwR?CHi^rFhBB;n3eg0#Bi*>xQ=J)(_nhl=)T2&oUca3AXEX)C$=us zieIi69_N?a)Rx0I4KTzISn8M7@F4YekwlCmcpv}%42H@St;s%B}os6+SPn|1NN zS_!2wwHlUsA+rjh6H`^hD>>5x7v|ByX9mG?3o3F@6-cgsj-2C21(1BfD!ZicIdacl zCn`zomgJV1PHqib6t=}m)c3Z#%|K=FO(8VF^JRrd2SioYXo2+WO^xHce%v} zzei-SysAB~+7ZOobzO3Vrp&-wY;>JcDN2<2{u&;i(+Os=sY19I6iqy{toFTbXAyixAQ zJwB<0B~(uk2?_Wf=pex=HpRGWqCytdD?JKqY$aO7ksJ>P*4OxNz|Hj|ed-}~)cmd+ zY^FDqKspt?nJd1OI*%59wXi#*@+s?-y!mJMvb8tb&adey1g*wZVeo3&l*YS**T5TrM%DkS{3pECG@W!RbNU265SLA z5Z<*5BwHZ}Z~zfy3DOsj-5`0bKHN|T?^E%rt9Xx~bL+`+;4Mk4jh5mGJ8EZ*S z&t#nyEpr69V*v*Vvf1DSr;K&xIV2i22D(G%^;!xINJ7cT!1#cPN~djYFb)bor<7j? zw-_uxG_#Fu@kqjD03XOXMU-w{6MSrvNq)w!tM}w5$+bW+X7P3L!6C=tsGh}&NuSaVMOCAFNh;;W>-u7Q<$>pC} z`s$QK%5fLnaf<~rQ93kDt9k&9G;4ANPzh`@v#v)XiDrC1AB(<{eoj^|gFy_h02c4qS?7vg zXC(>4ux?MeAx4eLMtg-*B$`tqUa4#0(^7Pg3q3XduWfgnw7^kl{=q&YwG&5@DE0X@PQvb*Pnu(m{A%F<qtyrgMu%^1whd?CUQv2IOF4f8nIl{MFx;M zlvo?oq@k-h zERV48r(})3<+*=!I6frg4)S2_zfHS9Gke|;W)Oc6)-8P#aE+&F%pzym zGQ&!K=%w`BgK+jps4cnaFEQ%XLUMCnX+=8uG?QT;X%9?GKe-6{H-Q9&Mmf}Y#V~b) z3f6J2nKSTN)BHL3uA6wy;V5xm-Ilu)7lL~3iS0rMx1MzZrt04Qi&<4&B$&kM^lPq2 zZ>?GTkYF}Is|GQ%KXyu35#$o{TK8E_CqBIOPyr7uhOWOvF$rSIG;!fpBjqHiDFGPb zHioeNMt!yMmEsd6JUYk3@#BY1>+AT~5@BXWFAuQnA1~WS6#wv-V62;?IMOU)n@`l_ zDek=DJ1arGt18;%_+2J8<#W54Krl>*!u!~dlnM0ZKe0ncp;-~1#D8ML^To++8_WiB zBN>3qANrnkGYhrgD2uykp<~B8>6E#R2yYluQVD6zsupb%(k7`&Q1_?CjBsB3A-8vM zpJv+mL__R~)BU^%qzBUHZ9ksxU}U5%xdtFRGDmK8mV&Kpg+pV znnc4~v9@k;G)o}|e$`}e0TESiM}AG8H6N!J3fmh~2xbLaE-Jt^(g{qVDgPAb+W;@q zJIr>YHqX83TMv$&wgR5O=?Cau06ibpP_#L|N)JELRgGBH%EpY~u;MBSb8(V;w6XSDgpDL+om|V69{P3JIa;14h)m$t>3YrM%)y%{Y7bA_v4(~a zZfy5Jppc_po}}9c$TepniL!6`Ia!%&kPcBtV_vkq&A{ezTU{G|LcGZVyFEBvwarT-IPnp|FOD)xv5TWHfmlp=WT9#H@#>G{rdN}w^E7W z9)tuxniE5F(@EKjh8a*rpxKCxftj;#W&{`J;8$YafdSF5XFD4gUw_D?V1zg6dRAqC z$<>lTvLRRbXsKi;`fuzpxunr}`QBxZ)4}VQsQk5;r*R|cLFS7Gxmi%hmdKdPn2Sc<6S~kl8EuvNo` zlis3vSW|tR483)KVbujR@_~!wx^JVE*h^o->o|H%?f{u?B#c3oi(o=+3s{vC&hPEh zlcD!6I{6k=ppO1mq6gXoCn>RHl+FGOQI!l?IXqJwupJbwJ3bMkxbZSylB!wD1e=(H zVKymzQmD!{QMWMi#olL^zR#YFtIR3@jZF5P{ z+P!2^lzi5ji9ZvmuEmT|fgx0=c-NyO6t7S_5ELip(l=SO7fS16^F?<1>~um&|4Gv8 zN)NWL^h~G>s=Xgqz^2ShbwKetGFX@&+cP#><=P(rf9%un3aZrmeds3$S-bt%`iZR~ z!sj~n4q{xbs;%PvmPb7dv)J0~dL;@l%)3D-8A?{PGi)Vj%158eg{K5C%n4<%UX%TR~ZsZov6T1crE z($Up_8LZZOlZ`~ zeOa9R^}47Um0)jn7eML7vEqM>X9&F?t#rqH>7gSpb1yI9L$` z_Zenrivp*!WkO&F1@Goh{BL6jL{Gj5VDZ9FSig8|Fcdlq|E33T+G9zzzyrI6n#1RJ_d~4}iubd-`}t0^FBJde?x1 zW#%8;8-GL`6&Xj%Uu%xqMMNHW_-vN^ zkhZmPu_PhPimkEPz-?QY_Je;^L}Q5Ukem?Qlr;fmE7R+$5Xg3=jnjtpU|~`88M6sl z(bRa>lB$8Yx%Rm+{>qG+bFfV~!%#ds)u~^T!YoiX4yp15i@2-kp+* zODCITnuZBF+3(d)9pkJ7XYAePuST*Ujy{VanjYdd;^UXGjhg&ROXrt+o&KeRC1%un zCr+0YJp9?Yv>p~Sb$fs2kk~jIjM_O~_+ZD-**VE*&G@>WNwe-?C3n5Fapw3#x2RNj z4=TL%z|+O4&`E(`eJa?`=4V|zl&CnALDmwt;vC*?2Lz7k)Bpeg1zIX%c?1Bk&h3Ec z6;v>2!1j9RgiQrbClc<`3+&z;s9vp>E6+xQX?89(V<0Too-(L7z&_y$6*x@|BxaXn1dY~V#H*S znWLmq)s&proSm!zpU0Fn?b1MI_VgCd)_hotsUk1-PV9YO1}`Rr)I-lbq;Pd%1NbM+DMreO!L07E_i3@aUiM4U!Hwzn0TjFhPg2G-<>Wi(FD?N!+9JH8Ga zf>>@;fl5BhD=!xZThevILU!xh4FVWmfAbc>|aBN22FG8N~8 z6K})^qQ{-ir;e0o&}slJeGv{IPbqfAVM+AdRTtH&JJE_Rz8eW)A4kEDv?!|obi%7c zPA7r_ru8YWaJp~HEh*mi_F8(yfp6iNfk5y!QYFK5nY1pTje#UwMKj~P$$48DeVM>x zJu=a_*qGm1iARc)MnJ--S&yCMoH7!mn}T*!dxy=4Ha~IW#CI2*TeX)OQjEUov8{{% z8Sew7C(z776WNU0TX6lIy&9N+l-kKq<|d5#q{N_WQ1Acw8U`A#*|O zSg+5lzetg$Q6=z#(#Gbo`aseD`GP42K!Zp0prf1e8Lf?vi-jhEKguXx7^UZyl!~l5 zn?jG8pD#j}q?3FtD#yRE$3!WBQEZa?czMuULn7mVXg5GK-V_WWck`yW)RM%4G<9w$ zePa7BP)juU2hKV3UcBmoM4U4(ZXkp*MSubxXF}!@gDM$cMMTsJqL0JbeyL9n7-ryq zOkk^mfyJ`q!L^c+Gb2gQiJerqW4f}7}1~Nssr7E z5aEjT!<&B5jYUsCU}hK%TkDM?+HE%ZR(do?+wX$|CGSQKh_u_*m%b|8Kqo#lqfgn9 z@`tCmkB@ALp+f9RsM2g@HenxW+3PR2-H)LCrjQBCi{dI zadqJ-E>A7~3|TCf88J>Z5T>tT*_PvPrEh0}fhotdMRI=Vd+MlyjJ?wkd$<4u|Bw#~ zQAh`cCqe}<>T;em{O>9W-=WD++92{;(r;X<7>OW%&o_FVC5Izr3K+Pl^e@w`W?%Mi znh1;PpLy73`77CupB_%JKckbDe^-=${o__W!f&AFeUuEIuATQZu-z8++Ig$~-nj!Z ztP&t}0d0ERp(QhG!M`BZ+u_-jo;VsGjyAmc;I)V90<)eWzyJUM000000000000000 z00000000000000NQt!N1R_+>CZvRrfX={VD_O^$;Mba|sjajo!>YQL;aGhnC%+Q1m zvukgG?Y8mT0&s7o%VoLy-d<{Bu9O#r#VV3Y&x9toOKl`e0`k%Z}EF+7+Hj^5sMyY$`*3V42d=Cwd-ZnHA zv$wY+MmHpvy(2!JO-Iy6!|G z(pPe3^6KaQ!Cz(UuVwW|bjT^Lyr{F=h!5kR42VB)J*7seN3W-k($t3ctRP<`){!#$6uBIV z8la05v2+cSC?i5YiY8t{5(+pinxiX2(_c@drNs(UvIf)*NS6(L%jlIrT*xUwC~uMt z8P*Mqf+Ro!7cNn=y?$mC>;fwJ!l>D1ZB$LK?HYBCaMh&9nj!tZtx-lTbuoQVSH~(O z)p9;+l%fj?)NGD=4p8OzcnP_@2!DB6a_D!8b>fJl4|_(KAx zV4laHTuzb0vuxyQ%1dzo-PDaD1!`NqYPpu`xk7e`Taq})iCCLd+<)wrA&HnpR%l6S zL7wS=jOy{>_+bIb?*K~ff>M+UH?Xj7D?$O_qojh_%UXt>=YbklwgoJ?yAk-mU3Ub! zpl}E;8h77B@>~+E^;~8N7K8EKs_uqv8__aV{boH`xP$Wo!Y|MXJVheg(=qTc{BJ<~ zu6>LzL5c0k*y$OFsPfO1F+J?267m!Y2}(;#)F4i39UIPj4^HdmF{~dM?pA;FTp2ud zM;U7yBWsdHkvgu%N@tqLh=M%=5Ta_-c(ES99sUCd`aLUm$th|z8Rtgl|BBC-t}J&`;+k%QTA5+1)-Gl({YRn0kdHWM zRvjlGC!?t*m1v;{Qt$}7vQvG~77T^AD}T`h%za*{1ZrUJ+<$1){fGk}bIuo~|Lq^) zmdUsQ&k^y>y*P!VLzE8U5nOxo_lPW$Lpa`u&kqG|YU2+m|AC(1YNT&x(aN(NgpmCR z__F?e*r``~=$@ge(ipc3tM0;^v1FcZz^Fu!da_*f_A}YHOO=rM3H+RKppxvR#5*JVN*a z`XV&U>F9A_#0C3iKH$?AwFMN4?iTXgE^|#LY?Dgg&KWd|^EivS4m3cSH(a8Vud0ddzJYz zn#FvNN|i*MKxy=M4Gb^v30gM%nj-|MlI5xM-c_225{G^R{ljjkfg9OL_e50>VbGr4 zwp_lJf81gWSJ8VRIwQT1+*_W1kG4Ah7#No5jAXfTxmn45kWgXC7cZ&#z6VJXCJ_q^ zz#fFZm>D!6;Z1lbv1IZ+C~@Y-6;tpCw-?<*bRlB5?QxT*aQ;fA*U}mgD`ifY-*Oy5F*&REYzgR{%6dchMIWyA z6_MKkbQB|YPq~+6lM_6hVY;F1{7~~qd^e|9S%pSpSoH^^CBBBA@-pEYqfT%~o`Lop z&s=TmZChlWhFQH>)u0N+ZW5w@ydxnXpq98gy7evoW;$su3aGq_Lq9E%TRJ@X0OGpn zq*Bnqq?o;HyVn1xBfn|p;s6kvD(O0^OWkUcLmog_a$m)1zvHz%-o*Nxa>PC@T!T!I zU^#GBvet4hCZ1ndnsy-HnsB1SW(RDHLfAZrD{4wPE@Hs=wq0NlN`WSwA3w_(l480; zn9ii!N2BFkdGH{R@#%p}=4XrV@I&^1A*x1{Mw)!-Mr1z9tS`t?MhS5OPX1Z(lNI8p zq^@KuT`?S^4|^>CwVlK>iN?E_Y}WEfFO-^y@XnfZ4X|U9&7FTY9wccJvQb<-6kJOa zz4JKkgYhV7A+pCrE`k}F^>V`uRV9&BM$eU~o$9|(c7dFBf}SJvbE5}pZaB^jR18XG z>Ktk@BM34`!A%q*FIzCf0A+y8ja4rSFxEBK8Tno+yj$hC7+m^?Uy{#@6b1qbZN@MBzCdJl!2nb-B=2Q13QYu>&a7G`z(??YgEs6?8E@LI!U`+>z+iADwf9Cbjw2SLiO@Xs0_4+3&eHNZFe3^)5_R zoF311?002SM zhTXz#XE{*Zo>Qm1-bhM`i`|T6?2{UtG@EEflQdnlqPjqwT8CJPe#fBeLt9y1ZJA4mp24(h@@OwwER<*ZQt1~$EfR%aX! z5lMc93`I*@RdwF=**yIx>R3e`&awjs;(8KvL~#uGEMfmdNF?-f{~;lVdIqqc_@sCD z{lvhEZZyUV2@DL68b$C3_orR;vX}kow<9XwdgJHiIXoepS~2fsKGf?zSTKet;>fga z5(AJRiD0CWa!rR>+N(`Qgca_fh*&Xf-_f=lC3uQjDxImAhsm1cT1O?;7UCND@utxH z;CC33ZsjS>+5*d41Dtek*XKyCKq_VTob8F}9wFj#j1Yi1aR8C@6KiX=5*EH4^cN-% z1o2|avG7uEr*_4wN@$7=P784p0JezCK(~q5x(DQ3iR1VRAxN3Q&=|#(`WE?mc=H%V zEAu2pl^TNfm4+}vJCIQ-al<85MZkfm9n{XA+z-8{?mgrMeR(+Pb@ zZk3>#B{Xrg1h}-Od7TLUHhgy}CPB0{0lv`iU8$==H@nrYBO-^{-xqQeZz`=U%d7e~xzVT7VP&ep6j-RnMDM$MAi>H_%TlLVov zu^C2yu(I)4a87i*tQv@tuobktXHOT!=93cxKmap1j@Y=8OR8z>dn@R1;8dk_jU~nr zj`zC)SL)ceK&GvMNeR-@D=3M(EacHxbW6r zVgc;#qfflSMOg9i>FLB*`SAONv8NyDncJ%&%mil_JbRBDTB0^8yYS}VtD~i4B>nHfjdlj5|PPl z=LtQ~U5*#}B}IUpJ=b3o@*^A(a6u5_X*f85cqq!6N4y4y{IyHct}rH^>{!S)_QT^P zU+-U*q)1#CRd;=#jfz;e&dk0ze9wG*CR4XoMfssqlQqbbPfT^br&A?|<~C$csYwYw z{<{MLbcl}#0m#Mo$UhU!NvQ~@E!b#L zG<3chgD3P5<}D8{SEZ*zELzZJ4REhUbbr~zrY12EG#Q}b%T56KB9pG1{1R>l!)WS*`zqgeXM!L>N?I5O$*Dp1+uS#U|~xzb@qyd~>46H}0U13dpOOcO)%W z@thb9rEu`CG(06 zUMpyYC)f5ORApU~G6X4=Gu&2~wK6v!SvbEJyfp)h$lI20KR3z}!`AJKg!qZUwTHs@Kj|QbZGja#B6g3!d?lc{aPD3El z^rWVX;r%FOBUw@3&2Th(xb#~iuGa-hf&HLR|2;}(UL`no7Sx*~;pH+8)kM{Uq8siw zIdy}h)sBIWKZdo}lZK77#1pUM zOFLNYgB5<){U(c0!0uj1mqcUH^fL_YDHp!88Bdpbvm$wFEZ107}VUy;n+W zZvAGV`8P3<`uiIygC%DlIh>t*9KL&eTzZS*;bm<|fMr;li zxW+HdV6fW6gY2y40bdFhTZzv})RH840;I z{-gni6oubx_H%Wtc-+ z*|d;)5wsk8U%BMgGipdP2>-!Zwj);0sM&p&1X3>j+b0NsyAVWq?d(Zl(96&SVmOu+ zegt^_n2-7qN=Y7;eDbj8&%eTV4Kb`Kp#7E}BY{Wrn<$@UIZ+;%G8)RIKPJTlr~ZEZJTM6rGeb9)$#49k1HXSE zoZ}>1xk`NmkX9|Qf9+XLhILUR%T!`fHfYwMbG>`|gmIV@J_9OnQ$20r~K0sp;vGZ)5Y@k(_(uQ@UX{ zKp%mBf;*)+=b}L$>9z1o79sJdPWF{Pe$*z2%P3 zrApfX9*}Xf2@sKfxmUF35l$mqrw%TJG##tFX5SH~4{?!X z!9;e+|1?Tri3(G)x3tRcua4@dE3WIUr{bva=**WI(sE!1lc|HNQgcBMj9TU|o+zuB z89r!{kdRnN)`fjF9M1AF{Pj$uCA?!*7JY?X#6Nm1w*Mt?PdQR zT~$v~N#x=@UO^i#h6>UnJ(b(^Q#>as*~85p<>t;Bko+XYoq1GBZEbVOT(`d-VBNP$ z!zHd;#rOa`Y0})WobEo3S?4;`$8eJGk@PEv@Bgq#31eg@2+9(>y`>2Y=+(JEBCUEP z*_0LrIsc=TCdVZzehYNkIgU@+P&rJALhL{q+-C!AlCX%<#e$jaYSRs)y(dqd|1Mfx zpr&iN)?HHd(rP)Flb9~%{NL3_R=d0*w(?JCmk2yZ?CPzMs-xwZUI46{(X9xT4S$U? zAWCrm(+W(gN-+&{l~}EjrH*hnWt!5hpxA;w4y*u;E_CAoRTJ2naQ;&E0&=7X$WlPV zVi=^Ys718kmOU|wYvEE*hY_l-$z#U~RccVEO1KEHxR$pY=G*W9Koz_&RZWawN#qZX zfRZ!Ur}?j7rZWKE5*f?NyfO&Y;%M4|tw?$@SMA4l-HNF(E5`DgP?BLf+40LMZ=_DV z%y)FXpy3lkom+sWRy^PTOmJmhUaHa4Kx!+ykY>3i>slr;Wo|{9Vu_KFM*RG?2@5NH znA4*Q#2~89Uzw?;m(FQ${zT#GZ|&ZRP*&7au@D|mQ8mCNTYBK(GZaHdt+1JI79=^CPhr-1u<}Dzv4AYapkp!a|*W1|t1aUieTBx&MU?cgPF%<$SM6>a!gLM-buz5sylyBz8 z+p&bdH@2kaRr*j6x}nPY1M(8?ce-3&EOGeKR`txR++hWOyJy#*X}gLh=IEh|a}Qyu z(-3w&8->8kiT_~!fasacZ3?)-R#W2VWa^#LTB{>*5vL`POLlK^J3^3uO;mmciQ)ec z;$_}j$`HocK5QmR;{6T)SzxSyzH4Oq3)dAazZNRe_NJV$>P+y61=HZW{->KOk2i;m zj+bH7iys1Zttdz}iD+!3I?DKeP9(R!d)p9z1l&obAeS>~-ax9n%t;%;=I+_QlyAF6 zTd&~wRi4?(=F)B?< zJ{>Q9`vsT6G_SmlZIOXhRzO&V&$D64lFiJUU>p7uw@1ELL+S*_5KEnX$~1hor}Z_X zFNgX$#bK^1NJAz0Eb;^5|NV4_Sh!1YG+il~N);@`WYZg6BzYlK>Po}dSVx904)59J z!g6bDQ_lsc+f>3DHMV|&yIZ&`5U{YAZ?E9j!teRzLa$4b@@ z7UppBG?)V7S`SRD0y%jm;t_R|-O0f7HWI_rZVC9UMZXs+@3Im;$#IpoaRqrC=+o#9 zK(MsWl7I^q*bX2lmDMlWsF)a62WyzA8#dON3OxmMy{#*EY6a*3!tm(_gIgqqS6(qG z)4o4L|9H=+aQuT*&0*N{?}x<~93341F{R(v!vB%nFDu8uJ&zDlTbZ3lu#{7?PWv?s z5W;+9x{8nUTOueB)zovDZP6MP(|hxIAcSUT2~ofYR4^G%IAn6QM%FWCG;5DDo8wR8 zvNd_6X)`MEw96Na2W7N`$@I{pY(va4`I@l;=8@Ii1zU-P9}7A<9VCRF5R^8b7IMFP zT){U4gz0et&0Gz#Buqs+_T2b%<>>f6TiywbTzqb*SR*U7C!l=77q@pY=80rsj>Wb6 zxOW(o8AyXwZXq{aQ?>P1OX95rA?<9{P!P_c>V07~_2(DUeA$3i$qcCJa#I z>UBZB$bGfk@DZbYKdTwK9L2oIGXM!j$*-*4w>bI2Q19Y|QkzxpU0zu=cVpUk4i{Za zK3^S!qlmQjx=}ifk;X}vfa*W+eNyKF_F&+^M4Zksbrdb6tqgwAL)j4bx`~Mq8)Y!f z+~^A%vJLu21s%h}UcuqdOfM1BL`sO{$O52XMa?91e~TYGOEuZY$fQv15#8|V(zwVw~^-41a=$Wsj8J1Kp-# z@b(t30MmRbYYc_OB;X)bCTHv5UJ05_##P@-eF{U;4+KfkY+ zQ+r>chnqG?+0{;jINB~vS#In=XO27A=WiV*EHS1c2)l!h6JthTk%>g{azx6QR|26o z>L}bH=Yq&m9De9C=cOE58Fo)xTGR7`@SR=u*F>Z~x4)NpeH&;Q8YglW=cDx56NJ<33IEL++XlVe~MC-Si9WGA;?=b3sF+7>lRn z?d2lUC8j{bp`H7T9`3yJqvFS0!zsOxttpG_KCJ7wW}JFP{sWag(sNY}p2+lHjk>b- zLm7IAuN<$TwBUQJtA(HUO5_xj0K(Wm1i-GBS^vHM@hSn4sKA5pe7aQO^sm!}HcDm< zSc|WLdrY*dZ(P*39wdc5T7*Bbn&!LNFMKA1)*lT_;WhK8XZxaehGL>+=q3hx!1bx{ zW-49>0d=HI=?562@m*P{#(7=bHO!K!;ZI5`#kpyo^;S({A*1UHy(zcLJ^2QApD&sV zvgzt-$1o*MZap3n6IQ`FGfB|D;+G+IEF#6jI==Pf@%Rv(V0wc4Y6xK6!58$8m4Y8b zzylNh69Fj(j3NO(DYK=PFnGu-FV3T{b$i^P4rD%5uHd_J21}Kuxe=`42p>8)cXhYk z5q|J{o`~hqb)`1$=d}-)rtp!5ndfQl`-vs_;Dl%wS}21VB?pZM-@PcRpA!HQmE!*H z7zFCmNw0~cxA&Msxh~r$3E-xefY>FMismSOF)Vrr@IaQa&fAxDDI*^z+QL^n(jB|5 z?!0o||2ax{U(0F@i6b*iS`mR*%Dv%eEtcouiJ@af2>eBpsgL7`IiqIW8&^@8=l>_}+Wf2sLw+6s7YuKj4%p zq0i~b6+TNUR#6sVA7hUmNKOkED(XMr&DB^B+6mV!tC-VEX;CO)o2HnQvc{Fbis2Yy890MH6|)L;>+3@qXhI+ zG7Pm%3Tc9D$7cHswBD^iOS%o5{2h<&ec+UX*oSn7)enwi{IkceBEeiXxZ6!@>7z=I zv9v5~xQVBTH^>^59!*QC-rL!~FKva2q{UNjgkEcU4oTCCp)H{EFTr!m!Q*kW%PaGg zubz(U{!s{xMlkZ##AC{gZgM7BHJw_H~S%XBJ7j(hEt zfZwV?xjg}IXKPJzHae*RFM%0&A6TX9&tL!oAv?#ms9-ZldSA6Q8izA!@6Y-2>t%Y$ z+?2*R6j778@RDdiAk9afKy~#Pp!Ks-9FqrIz&vUm6PF|SCOZam3JHurBCLG3fwMAH zMpuqPE7us@fHr18tEpK@2y$vbIa!)rN#XS#zc<`2Uq{ElbiHy@uWL<~_ZqZnO{zU=y$1A(Q3j0Ak?TQ!^2kXDdV` z69y{9(?0_q4QVN#ivwAaqJ>*?HRf46`rY3?eQP zD5=D>M_FXktgfnsC=eXhsT>r0nk7`?-HhKttp2f*tv|rYpeGI4je&yRl4A$%B_DRk zNn8{_%U5etJD|%jK~lo5(OsB-88ZBSkQa9*(BCB5blCt6ebYNGEm@VF}x9bCC*v!NZ6->ofBYp8*twA zCih4FR>)uWmg*AsEA(QytS(4xqEC(mRDH0zU4nRjKpg;hnArqmSEi`VDS6tDLF)Ev z0>eZ${KPIQ{@E728)EW&XNp$RBQTyNb{+$DJQ%LJM$J>;n3c!q z8uU|css?ha*v!Aej@_yP@+2W`M17F@?6s|f%>3^6N|JKWiH+qmLB3=gYQUAtXjdj@ z@N0pe<(g7NfR|Brn9K={)2-~M@r@SfU zU9dv`+nP&CoUFi$nJc4u_{@XW{k&Q>oxid) zLU6J7`1;NB9<@OC<*~IfPl~eCWLw4y^cbDS z_P?!nM!ZHrQ5BjRWhI*YSxw`Rt6Tsmj{3L~sQuudy9lwcR?RqT?Ik3leV)841YbT| zkRc=eMx(>d*H~+&tA;y|mSDg6$s@qlO{r7f#L$7sMythUg?vyg7sGx>lVv311?<5) zzwszgmOA*XR+t>i%$JD2FY}1I)4kB~LBMScVbz;X7T-w+RYg#SBe~6ecv^Hj3T!!w2|BVEBm-bW}@r&vHaebIgxpJ?arsW6|e$M2=;BEfsb6 zG8T~xZZJHJ)jQi4oV{bh2``cUqm>19&3WkH7z(CR=iU;y3p?V&O>mn+DV%&%gqIua z#+y05GV{C|kxa z>qY^8r>@!kHS(h^UVd!}cxPLk)bwH{t)K_yciM`H*FLd0(}NrW8M^Qc>RNi0*z9<3 z6G7#XWuR~VSFmD8?N@t?h9pM+-*~R4ahpT;@jbcG6Z=ORiRzM4iss=kyNI8f!?{;Q z;sKz;-<5yjT4vdOXYne*X0w4jtkBr=AYrJc0l1^QTWzJkm*46%71*+pivZq2EUV#K zl`Nq-V-sr_q@a+AZh-Mp>!4XyeUz>|cH`9^4vQIX;6JfNGb!=rwEGNYFjXFl+Veq& zJ{7}BvHRVew=ZOUmo8sWxW)+O^a>O4>0To!vJHg$F*;XI$YC@RAw1;p zFz#bqYL1;zxTi#`PyoHZD{dFz$}HE7!D`lWGwG?|Zu!fL<_F5Wf-+4bxBfiud^eqo zdLiVgbR5xaQq)xTu*^R?AZo+^bv}m-E)~ev?|yOa2i0fl4#cDSPryvPn?A|!zHX!T zLkVC^`BfyP9E9d8ka$ z$b@VXUOxIOP>FOLP3M$`IWPnLYKa{zJTCF9RgP!MgfH_zdlHZ4Qb#%Xh zWY5zn0k_XT(O@_cnd*jrm#ZV@>%@N(w<{^+)WUD|Kd#ji-oGX|LY%%-owSX7_vJE* zg2hgoWt_9(hw`ckA}5<6hYCmW`<`AooG@u-q#V5n%eYJBpHIT2mxjk|A{;tN`-)|j zrRTmvyW~EVImC2*Vu7o=Z zFJ>q5DU4NRcj_sOQvXv!{E6Ypm|jqj;|{Z$lGuyT=oa*^1t3LZn^-7Xy;v00s1DGc zTJi@KSN5!$Ha$Nu{?M#4q+@IEJBCq03GbB5T;@@n$IdM~|An&z$a2~?x0%8sZ#n^n z0YDL!vc&VY91PKQ?7EKbnY~5^W@r9x3g7@|rWW~%J zV=n8r5FOhK1Z~(NUTPs#AHKxN@7BYKccwj6nb})=nu|C08|Tb`T-mg*VZET@G?maJ z1c>|m)fHx)`d!k!ylPK_(q?X8i?iSNE;aRZ8REZ45JV=SZyLtGaxGyc)wB2yKYxP~ zL*efvOGSRcGD7Il<2h~ps3G8%!D}$Dnxf8Ir0x%FhECqM=-T6+w zJH8h=@+yBj_`EF7Yd8Fd`P98XD^s!0%V2a&7k`Rp!yII@hE}$}YhG}uIOt^Q+2q$c zM0}BT7MrPS&$sZ&+zQgEMX=XHis|GwlYymg&p(*7s$^YK})MoNoJ^DrMpehHKkM?Z~KwN~@Z8+_8n!ycoX32<{ zU+=s0@QVFPdbY-=yIzH^`#fz2R7D4)j_lqUyFiG+8HE#$w#c3}S+^85R9Aum+ za>q1w13$7wE4VWf1d@LeNE0bd+2#oPtiz1nX zCnd5~x=sJ}Km5vN_aEm%bmSE-B#Pqp*e!Ah}J8igaqwMcHZ$f6bY#O zmsk2M|Ar&69~A3Z+qhep<`jkZ*_*$Ix96PXkmwm}bT#lRein~FiHDv>;+W0!+Qm(! z5;wFUKB*o@BGm?kV)x(z8Lv!fEZu*naV2H+q=w(00?7hCkt2bBL1+FXn#5Gzh)vNu z_^Ti)8!Iva;maK_5qOraFx&m5JKyE0T+YS7KZ6Mo^3el%T68gKdX#Hr)2>+V+`-K! z9@1`d+c9-?lrPW(6GVG-?0A=w7&#zp{`tzBJSDo1K9GCFF-BC5hj>tdRoj%w6Ma+9 zz2!YXwG|La0+g>wc}`ey(fYk1X`!A@LmeY7o(ux9NuROQ-pND;iG|2bLOGe^XPY0j z+~|q&vDWIdpcgN;u4QA?mz$$^6R@5ySu=U@ql^oDR05N@m(*b-w8(xO`83!XbT(H7QKiRe)&+*_+zChtJK3v=3bB z8-H|_dt&FR4DP&dAe)Y;Udr$CXTV&6$KIv{+CDod8*{0_DS2?(y%OZ^#@(U8)9Ow@ zI5E9DvHQ&ydBQLRt>mU&i;enJaOCS0=5l^^*WpcZ$OL} zce6z{nb~}>WS**@7tWo9x^?7mP773fg`M&S%vMh=6EEe_16a$@^ROx}3y!)wTyEs{ z`O2|M1f;RI{~W`FHv`$5kCBgy6TOXRN~L{WCX2`x(+q~tpPofz$EI=0j~=$1GD>&{TznsqCQ)Doi2Pn7xj?vR6rX8SD#nN-*1r~ zd0(&BUF{w%(W1A!2)-{O=xkSyYBKq{HjjtH?YwZeTHnYK78d@`G8TeXWJce1KpC+9 z`-~3+n9E5H)m`zO`(&g7$@w+v0c3QxhdA~6ZZ0k=C)A8>eAE0=4d0*hN|^o-001A| zkQ59n7=arY8WC&wZvLoHR3q!r)M=Z`N}o(r;lH~R(Gb04!bN|YoC@}_Di|#`hGZ&% z3l9MtW%_zlcQ#Qjsz2VPN$-CyKnjP;Hsz-9M)hXZ5t0VKs}~H&zl@X zimg{?Tcd02=0K9*Gz)||4Unq<7=&D25`LBOSt~D@PUn{=J7|-GV>+DB+VB-47&n$JL zw^gV1=}px@S1d2RGidNvW~Qj}k<0;Se{+fjPMk*PSL?)KMPc#phI|j6$teIg)5m!9 zfs^^G{a!;MGyXb}affStL1pdgsB~qok(u*zk1z_J4tGv;anOo*{pIV ztG1Ax)5qGQ#Jv9+dBLc6!=m~|YEf`)8{>QXM;a;=~^{7+1FNa@i^oa z*1lH#2>Viu^CVV|yHE6Jda_wQKKvs__cMwUi@l%vuPp%?hbNspXMhwwh_smU!?ReJ zmayqIou>aFZEgjN-z!2Ym-R58heULq!>}rfzD;+>hZ{*k-_|@<_64hldesbxN!t0!Zr zhnY9^e$}6OJ&;scMk&%i^zVwYgQMT4hqLQ~AaZIvwNkD!1!YdPIYEP<<5eEmnA)qo z6cdnP!5pvLY3W~UA?3c&v4exsHq6$vpD)AW(B*ccLHrh zmyjM8>X^1d*_DI_wmGT+Q-(%J*~f$o zJc|bXyr@Sk_)Fe6cCM=`-j1#Y;zO2x|BP9URyHRxVMvJD$c#Y$wX%D5<X^*GvXMl#H|M10;!$%wLUF4c=a;K)t$*4gm{FJ5AZ z!Q#}8-39s18U8cZ*qC{I2`j{P=6)PTZ=j-8AH4KSd0>1&S3^!Pw(;ICEA)SKiWYk= zm4465{)FoTp-5D98c)~LyF|`2{3{?`Kr7@-5W(cChb`}YQ zi8N>Uwfk@#d1wgidD#0Fjlj+~H~#uPrYWq=inkK;>Yw+<3R9q^%bfxvqO%KCj~j`p?N*K;1{Nvk~c3u8w$gmUsrQ?b9&V9Fy=OtFs^t z4UD;_076%FhGGT^rk0c5)iuBQ>nrsQ=#ttUwD7NLELlx3qoC{}*%=e>Kh?wzR_|}x zhL|n{M4WrDLijSk`k2{!{*!i~X+|>|9SCnFok(NV+JF|<7KTE)k%5^Kf`pT-yc&8D z0>~FYes1QT7d>x}(eczZ$f}h^lg)wCglAFmV4@hmY1N;-2$R_C<5nILW)uRJWpm!;&{7@=7V;gm2C4-?H=#nZSim>!^I;Bv2r4Mg z%srFa!Hk-175R3Q?u#wzLij6)ZRU|T44_%=k9X^xM}<15uL9|zKF`nCwT$w@F6v1ONfdn$D|R8vror zHmNWj_7JbNPkW+AFw>J#=dJs>&&Ni$aecD*Qc~mGrf|SfR_DA zV|MRf+RrlPa`z&M#L1aOQUM$q=sU&)d9a5UjAi} zgl$DLKN`WN5w`x=kyrsSBYGid4y+EWumLNo1nQCO8W(ws&hY8mi!*Bu)>jzzQj=ka zNSH-Xb!Kp!6_7u3TCsK|JnjkFh+OUt=EcJA{3;cES1! zAuc!w_;;yb?fmEq_<)m5Sxq#<`%24>RWT7=4>WCrushCn$tTQ}5y zz;_6#E54_06oAIB)#v@{t^EasrJK0=zk7J2+nyySRm1q!4dr#-NG$7K5Y_zw*Kzztyk*a0@`biW z+yz8ngO?^Y!Mq^RrY?Y*^GiS;qvSD$o0YBJ?S?3hKwoS%tEU5i{VR1%3XUTy2uVLH`4ZqQJt1**z;SUC>+TJxhQEW!8K zoBtJ^unK*$;b^O+Za2}GxvB_<0^;N>?bU`)TfTx=J;B56*e3P0Kg2+g@jlkf3_~`!rbDA05D6-el=R z$On`g-Z(|pi{52cfrlhYdwMn5WW5jEf7S%wMr^cG)+tUO`4vM?AE@>1<|xt7wm6n} zP;#S-)F*DmXt{y?$o3>)m9Iaf$N|pp_F?y8m&-8ye*oav!bAuUW`!&4QH<;UKg`S9 zfY&3JAP$M+UIc)tLi69Ruxvt}a{X7^hLaqVEcwGE+yDvWQD7FpUfgfA%p_rHqPlG& z#NlwFK!2GNu?HwMx-noenwT|oF~z(YpK4+~&d-MHXR$%`j{P{@aU0(+K`9Cth};;A z0?J=g&nGgrK_lUU8W`|n;E+BBWJJ77OUZTzBOe5&so|^4aZa)BgU_6AHGp!SPbI%k ztd22IB@?i{8)n}_im1qzbjh``*(56o0x{-EEAjjDQwckKSw->>RpsS;`K{0Ln**!o zd~vBW&wUQn11_r$>?ssULc4ss`>EZMB;@*+ED8lHgnY@zpWQ?ae1_aNBkQ%yqXJvg zu%Fo%RuUx^*ywMF9rlMt{H`&NLS(}dosL_=)2SoNN2b{1g2UyNjDK0)#q=aDE_izF zY+!fxiML>9H>In>QZ;>yhSFLIDT{45Lpc{09tAg*z5}sd*MLIVCH#TtK`8PHy+ePk zh!!Ur)H+69i$r3#R9+xJ8^5d)LDOtvGD{p(xgGu8N7d`dA=#Yx5VRs!%kfl z8<^*)ddYx#1x~5Zhcj9Ss#$pr(1}m_)(**zTtrCzqXG4Y^yi_Z(DOf^_WYXg2Oc1+ z(yt)&`f1a+AF~{V)my2t;$*(nd({3?^M>$Nj{{IN;Lg!Gn!!A%GMMlX6@6cj>R^ZO zjyN&E{SU8|$X8F;&j&hK4qUEK-AJhlVT|$Ry!E@UFRO7JF!G6A&{uA%Kx$~I%LJ<| z+sgQq^Vx?m{Z9b%K|ip5d?Imhz256uMODa7jTEscs#r#l=`}oT^w+WgPtl^4*jz}F zWh72Dz^?ZPvIIEvJ(p+8UX{-ydLczk+^P#s`2upYI#$uz%gr@VXFKEgQu@q^ z2AhZhh}$BTTS9NnP;aAa3LXY|pnL7X2HP+myjseu0pmJ69JnO(@}+lb3&wzq^`(lH zHpm>hnKxKqtbt57bmf`2o;Q@?7)TC(j%tTE(+dh6j+OBph@VbRz3p{*w(aPI%_*2(88&z|D(ViY|U< zEO!$+Vn?^4a0q#nNI#zKP)B-ja0pJxC@njEVMIG9o1922h1r1wIw57`rPpItZ7F3u?3g(n@weLvYM56?+T zExtGnUqaOp61!{ZY8XfI!&I=yd^RixwC1TacRMh}^#bN`4J7^bW-t8r<)`K}3Kl7+ z+aC#s-7m+t9RuF)wTUE8bfoaJXR(+$JAdmt{^a;xG`*VKHKd2~{CBT6H#4)o0SnP97V|KbrZLpVT30>vQcGV&3!#}@_Kv2M-;7ocJFW>VN`9N%F&-%*^d%LT`$YE zc`IBvX64;29!DaWmVJq#%B@2ABFyy)(zZLq2F?_K;71hw|2_m?N=KjvYJaoHppj4U>sUpSq1~Lk`fyZ#k>|6E#>+PC)>@Sij{0x$7}u~HJ9r9fP{9+ zyA3y=Eq`5j@Uj=>$W)SfPgP(oY~@^54;*CU9uO(TYVXGPslF&lLo58Db6MPt9t+>7lOg5 zPApVK;9}rAprSqVBj-H}J!YL&@3Me64Ad?ZXaL4g3YO@Vu*{9g^^yVGdhxyyy26gx zu$X<_cL{YGx{vDJVMiYY2+=)$3S5SQfjK_Xc~?3{iDHDUu1F!o&skW984VnSR4muL z+-&JBd>)oIBR51|iwSCg9h^9F;}(J#9Ptox6I(J>+_+bJ0q1PC!JbO+uc)A=v(A{QtXj$x5*V z3PsKIBme@*ExFUaFSrKajyf6p(=h9oz-VfR0;Lr*v1*&+XhZN?Z3un~IcW4Wp`(0U zCka7?XEj?cL`L*COiA<~@9vfr!U+9DF(Kk3yRHcX0P1ZeIOnCwy1O_>B9*W#dIiX& z6$TXgm7D*tBiJyaS8x2{=!$C%l&|CuOHQt%X+2wVtv#Z98G2GWA?v&Xe`e8P8^=Qn zhuEB+N)M}wcfcHRbgxVycT#1w-h1M8HitU2`wg~z4)OsK>J^}y`P#huh4CiWr1qj~ z>NCnLt}Q1CtF0Za+#Gts4OkK($r+HLp5AV0HPvz(^5&p7`n1}I0h#ryfTVc=j`N<& z&liD#J1Fs~{ua7+Ef%TF3&}57;b6TbO4H{^%=BHKC79ocW&dEXBmSsCRYYNgy0Xg~ z&KE9$+hAOi=?z%uUDFJ>E3n*#-+`aNxZ{U0pM9@NpV<62RKa7uc;r_Y`Vs?7e#2z` z^T4*GKF5-wWpQyfNg%%7Rd@@Pg|F}7;HX>ruJju1xd0@vBP3ao489TX$H%VRWzVOTpOFs3u~z^tRKNRIE!j3kK=w|0d7U%= zuY1?I?ST`gZT^7|^ap$JCp=MM7K7Mck~hO}-+A7Gxlvr3oBpzBO4%MgSue^jRo}&x ziGUv6&4uo{7>ZY;fK9V1(I5|EqNOMe5E1{;}Wu2+^} zw|9{GXa=SlkI~)0wj7E^1V5I?AadqvChtsJdS1|^?J0z$u&$42$sS<_Ym;exq>I88HdnV`y!&4Wlz-~&YSXHAXSzI~Z> zApse$T@|`VwP>n?91|&8(AaqclUr!(Ghdy38w`_~7MR&NoI<}j8;8Vo zAD;VJCaLfGPlI2x93Vim4Y`H{4W(DRj720kd^KqN@Fwy7kbNtrZ>w%S<)NE6_KYz0 z%UB)a1FEV;T7j27~Fc2hh3$_)&|r=E;i(w)WV z(89MbG9)HdzhRV_2iaX;XhOH;mP8G`gelHSBPc(<+Bj07W@pyE?R3)Kl>@k2-Z@Lb zqcrQU(G3V{$e`9n1O&Cvd^2AV`rF^A(`22af-Dh3EYxd(D#6kX>uw zmDU=fZjK}y;n=T1QkW`JiQs&Zlyt$@zDSK`ep^Ic>M$j|q8oXQ8oj0VDPHFF?!@*) z;Ej0?hEMB@&5i%MQEf_}sW;cVqOLl>)%0Bx!CJjA2aWB%KGegB?h=bQgjM>l3|mKj z_;e5;E%_b#DW$WGmIV6(jo(Dj)DlwKG`VI_G8aYgGGz4CHImzP*+({hh}IM>)*dLg z5BADLqp*H?nkF;M+vM*yJ&|GMha&Ifd%}HsG_t7(d|c!Etn0s^m9eFte_Bs24JeZY zc(iTRCQ^aLZmrS0SB1Hs04R@=&#;kujLW@FO6u>oeT8bWScF&P3pn#~bjjc#zkH-J zT^p<^Bn%93XmwkteEfDP&EdCZ-KSxdh0f?u> ziZJJp6ZLSMgXt9@0>hl=2|qUT5+{6H@6W$5k_PBMzykUefA-yo2Iif-l$mgkt=is* z7oKahzcR#Nyui9b5-s{Bcc= zbg_bY?!|x;pL`BvtAC2Xbiu7Z;&GcP;$q?>?v~wd_C#RBh2W`E8}w`+cdjp848?H9 zlx@~1NmO&EA#X68<_RB$f-Xmi6?5cBi5m&$*y3BIZivQ-t1MOY)2NpBjs{BXPmtiA z;PHjZcNKWX7v}r+A~nQX*yNU}eYONkiMvw&B5I*!WV%4pEO@0Yjl)v?wPKyQ7a4C| z6&vNM*Yz)W!BDz@E2D4IwgiYJLX$rP%Kxe!EV!&w>;gO0-Cd)BY2D8Oi@0-BEMlg) zgwFNOU%1`3;2ur=r@-2hXfL%29UgOoeWUrkpQjPLp(L%Cd*(8hD&j@RGsC(p$b!?S z_77y#s)OnuoenX8DE3i8Q!#HAa;te0;UC%@w` z${8Gjx7__ptc+{+6z)7MTpL2F;G>0WT6fApDY+Q>9+gfx?Dd}DfkPszq( z3uuq1f>+|8$}+8z$=9GBhupc`HVP=a?HuPoKG{kM|4%tMKTFB+;Ma0xiRMUM4kRD$ zbZ985JjWs~F}BWkuwe0JlOwBuYv0Yk;lm414%)yM}!63&T6b;pg8Umvv#3J};d`TX0&C<)mHWTm^1ItHZB`(&XWc$jz< z#tpmkUfpGxbt4J(7koW%_*>!b_f@_vjW9}OG1(Ek^Krd5g^<{IIE0U4(JAj z62#5U=e1aF4Z7&G>1b6__06%o0|+z@_mQB33fuAE{OYf1$>^DAyYO7oIJT0(HnG-( zv`Er(K(88twA~Ic>mo+c>OPiAWS`ciGp9nROdO7+Bc{w)zKzvq`zv8jJfZ`jh$g3< zmMTqIS@_}ul2(WmUamWl;Wuunmi}wZeB*{sYM7c3Mb@L=)Z3VVOpT4J9jSq$3fJK< zG_~Us{M;*6VrbNBsk+hYElYx-=2(c{`n0Kk3Ktj2u{6N9y};p>+imf55|r`mbnFx% zKa)7&y6$y=?+!4rqwau=1&34mr`si)f!a{SB>WjL9PN-*9zHO8ds0X`!{y8_7Db%) z_rB(}O>`wy>#7#4B3-^P3SBo|d&Ux_;osF^X>?02PXG20Yjf3cE$3(hueu0aZjFU(a0pqzkgmfcW6td1>0PIE7a$MUcJ01Y$g zUpL-+wXWUHdjr=kOUuMaE!psA-ue;GwQBT+0R!Mq{nF~g+IMam zQe~=&CE1zUM%JbM9md&u^6J3&CF9RuJ$N2*nVL1xdY^C-@Y1eA_@YQokHWtnP_c*= z^5D&6wOVB?&5I9kc<~C1l)9SM$bk`4#hC4Y5p3yopR4wlXw&p-J$w#K6qRj;sed|i z9GqOQhDj=*9L;yERpXS}_-q+;y#mW5AS|l|4+Xvt0hsI&K@Vs5z~Ozb<5J)xXe7Dk zM8LQnwvE8YeJpf!hbX6EjrQd&`LV=m>VIB$xk|hczh>i4er_sJ<&*@ zzhSf?wP3~BSW6?+5NE_;dA%}888Q`+-XUR|T651g^ zXBSF_wo2Qr<5F0z8a6kd#(xMQl~el1wjnkH1@f%DlRr_BC6lXXo18wq-ow}B$YlTj z=yTy;=82>@5@in`p$p>AB(4BjK7CyD0{OdJU!-{T3%)vGRd`)bw?E1+dF`#qg%eHn2e_zjCHfz z-PxrPPz0U(4oV*EI^82dgRob17TQP?ouK$Hx1wk9g6Dg5X=`T9F;Vj^TA(7Wr=dG< zUkpN(cP#av5V%D>F{*{Ee9gVwj@O~)T-$L0O{S}6khfIhS~7vcs|%{cCD?eC zwJk6e{}*0b9ncdT(aFlhN)G&WNn3g|-d^>y3m+he0B5cSW@~iPws<>n56R_z zIgWm(Kqz(mkf@?O^q_gU0xxqZObh@0l@JOKHIXt%Ca_TFk6BV@;V%=9u#?o;7kfPi zF-wL|52q4ta?%9yZ1<|N0chcB`JVY8w&ax zky||h%rAP|t@O$;Lh=^yHPqiGU#f(waX24?@^5?biXfmn2k65HVuO(7%`S!RBqtEK zmAPgXWL4y%f1;wIbm|+lTQBkf|c^C-c<_Rf;nyX3wNM{*EkNnM=>Jr&&|jI2R> zJZ5T2JgJPJ9_6aM$%5h~3?C_a2H`6Dl1u2dr?0GQ7z1OEIi1F3d|^1y%3lpvsa&73 z&=rC);U)sZQG2@EvqA?2HQc)Of{5%QekvzRuA7wKzz%q)*Eg;Lc1HxE#E7TWuE+AO zvxfNr7j`E2kbUr%+jMR{gaWCpco+{BTY*ZYvRI%dIy( zJ3qtTHyKRve;tjUrdz8Auo&rMXYvf?6Kw}}FZysBBNgo=^BfV3fLw$+x%8rCAFF0Z zHz9tqGdSp4<-(Qhp+LiL>MJ2{Eq?*L50@jP7@i_#Q$L!mUVDo1538w{5Cq;c8_J74 zvBv|SPaEt|y?a7qH<~o5!~XgP00ztL&27WWn}~2S6|?9FZ%maK=5wBI{uX^Y##1Z{ zB+!W-jYNJ`(1_AAzwC?v%8XOD17@#&15RA#J!+li;8=-Yj(khaU?2HT;0~qe9i=>p zo1cB?ng*onq9qX7gZ@gY`I#bXb}xXeHsw3$*6r3WftRG8&(<6dlrA5DyN zaYs%pYVtlH#7q%p=h1d@>*>i9nNg(S-l^9)=3!*d&DN-D3$XuAonuX!bv^WF4_CK? zWs@zS9LEn_K8!9xX$?zv_Mz{Lgq8~%_-!pp8~bs%KN{%Qp&Bp*7!MAXO>z|($)g9<7mUe7GKN#to>3g=%5LIy2E zFRO*QGct3eU^)S5Q3Fge7zyzk^%yO?n~OgIi;Jf}dqKd`>fiNu-$%r#1H;l;4s*$9 zrkZ*@S+s!wmVBOP&;E1c8XdNH?)5Z7PgnK~WX-UShisV09Xem`=SLpq+Ij6XZSLm6?=eVUJ{H*jl3cA=;RzxWiCc1C(3S;^{I=d$Zs>`o}LgH*j> zu+%G1_GNL~^ESbIF_M!NZ9(S87Fa;oEJ?qN4rEtP(n49H6}+ts6+!7OtowP4*NvZ+ zf`C^#AMMYMoy5T>KI0k$jPH<(tQ?ko%PO~mJwTd=erFmhFp!u}V-;20%EA%(NiUoT z6tP1X2&yakP;Wge)kd9?1h208x()Ttm38P;@SiKBaIUe!y?wqv3EAWNZWj0M#}Tm7 z!v4)&hsdVoiSf~0VNLK378~jtBGY2lI2uSg+iX@0?igGNdVWv!*#kBg-y&k>@tAt~ zav`;$K?Ks%6ox$rko~_vy>IKIapZfWPp88xOl+NDQSJ|iWX%>Ha%Q1BHfmnK5nL-DJV_j%o&w zX~?RBtL9J0EvtBcOFWqGW4y-Me7e|(E3|sqT)=}?I*ksk_GD?;^+utxiH2nJE@Gzb zCe0rCEGeCdO|77%-v+OgXg~KD6J!QX5t}hQ7^~xa`Z1AS$}SR;tF}5!q@bXajhs9% z;Du+|lCY2o0$f{3>Pw`tI~+OVrb2h4tnd5G$e?V?Q8Z|vgU(i=g+3=rV`K&_g(7$E zc;>)y-&u@S1NP@U{(RIz@IciNaOle5jpB@wLvYT!y!*uS@9``WqUmVQs$ZGH zIBn4Dp@aPr54Dm2uDaDn&~xF_;{^d{csgJo!pZZ?5@mAiEhyNY0*gk2HRjqwz#|ME zb>5pHWKiWDfGmg>i$pCJQYbQ@htO(6BX;SDVNWSbW$a=S2sG3 z{595Zt3FnHo*_$LM<4u8f=!gg6-SCNQ3zmhr zbGn8VDiB4+X}f0cT8cHL#28=D+BkxY=C{7~MB8#%9j{15onyD$uq;$b2Wt|<9C~R)-gt(t zY@K_Rp5DJjYCobA+82KtAjF!x;yvSs#R^4rWVC@L71bgKLJ;JwSf2m?0`+bP4H|9^i~T%kd-8liXY;> zL!v0om}S!uLLm|%CN}i_U4pe@+om|~gMrpw*YUsflZx^dGhDA6uZBeaW?>jv`l$BF zroMa}F+qj7IB)W1Q2U0OZfLcCPy|Dli{6o~pX;~ginU~z%H4Il?%_6WMs7-B+2mjB z`@e>iKK2_VR%!$|1IXQUyu1G=sJ0yGL$}d`BcV9kc~H}L%OPy#oQu@nSXu+o#NiN} z{0nw1TNbFYbotlzg>Kj%ab%cd?dr*kSi<0BTS9e`(-yll(S_@atJ}Y#YB_;&g%p8q|*)~ z6Jia@n2^C|rRL}a`6<61xOirpQ73DgM;xlINhNysWp!!WgH<;=Vg~DwKxhjdtFaH0 zn|viqGr_q@Xy@H6#T-?KS*sg*MPn!tpo0}UNhZ_R~AC_qsYKmYp6<<=((32y~B zl83Fvcp0qgme@YCdCP?|A#iHai#nX()cVe|PC{QQkWe~1sAlU3Ah%(#@W_?&^8q%6js9PW^wMg$z`T*RlqItH7Et##`8?h+bgkBMI@qM&G#W zF_Ivs+x+vGAd9d1j{gWyvJ>;V`)8RV)04@%~M`g5L4F7T58gLVt+~U0~vosOqXaOcGzd72|otuFjyG z_zI`h=er@AN>M}pB_F|bN$2yYgJq0xK)V%G zRWrRoJmOWK_@T?*{x~j8C_2~kPuDA|D+4oYG8WrZgaRBZwHUD=;zEWmwFM#$?jzvi z&v~_0#{7M8IR2shRr-I9^yK;&kei0QWd8Ik4Yp`g_S)~iDp5F4oY`pYlItwjIYbz4u zPJhR1_$rn7tExsRZoL(N_+t@)wO?%8H>@e5bh5Dx-~Kz<8n8XbuW>7Xw|UGp2_MT8 zFs%5=y(YyV+sS3|tE!O79O^naP ze!*c^tL@3F;l<1?<_OiUj_;t`PCmcei)~&gTRr7BQ&=Hy)g-qC!VY696$egws70UF z%LS*u#-YC}JK-r4m~Wp;nL~Xv;uM35z;sAdjwl0Ngz>UE?2RWUTqnm@UinD4Y`SKhlZ|0S97CwwT~je`_oyROFZX;y?@@yp9WK&C#+lm$kXAAB91tU25J8UmA-k+u z_v^Sc`*&SV_qh2HHm5uR|8%WiR@WSuaMH=8H;V9J&Fqz*#WL;N{Uq{?wbhwv$f+|g z2^6+h`=qmXnQp6HW`}aqp-iuHVc1ABi6<5JP9l2wS&eFf*o^WmEeUE?vvV%H?!g6} z51W!@#%TT~jkAtb`EQtXNpN&OYZh=8=n$9%%J;kEthB_WH{;}f37UK4-q$(W5`3+N z-LOBFH$m#CI<&83tq)v^&h^X0Y|d}daXje~;rf-9g?f?vTtG7+RxzK(|I!zh%|RY}yp;rNl}sSh=#vMv7JIN*RqC8r>0|(+ zn7D!wVf7Qwwc(`nhCIV!QEvqX33Drn_?<`i)W*fpqU#$G_%6a}YEbK}zC^K{jHk*r zKIQ0hClm?IM6Ypx#czsh%TfA*?p*a5mL^;<<90Q-GgH7*#&2H5Yk74|cW1q8^}6BB zmY6}7UNmFYI)gsqrMzjpw@iv((b8@K)w4$hl+(!@K!vmw40!$O+V!q~x!y>=`ca<{<+Q-QPSl*zvhLCpVpGfT5NXaS=wPX3F(q*M zI!Nhy+F4Ld`|?Vd-%E8pN5acacbM_>!J+l)+HMa@>Y-51p$n~Sh^K}MjqMkkP|8zer7o4RVVjF)!v>r>XU z?BAV-r{G2ZnTrIs;-nw{Ga7pnuA~H@pmka_zAd=y`-#Ry_=L$;u{yvXY+W~rIL`hY zB?4)8o@Kl~G?II+`^ha1)$)-`gasge6%xdee_p+XsO^}JEtr=4b_;sk^7m-UALxFi z&;)fnv;R%wvy6=K1=zeSGV1t}FDS^T_!6K_=WZW8HJvgYzr4?a*ob@m*jk?)e*mV% z>lOOFkJYs%kQ$f!I!UKx8S+4~I@!512gK<+z!(-$puul9<_Iswws^ii1HQ#me_xkt zJXjhYu=5oW&=+JFkw3x*M;OP2tPyImy4G-IPuMNb4Y|y!C9Fs1pSN*eR*g`5kNkPX zC&L(wrhG6AjT^2_PyF4j%mr&~8TKL*x^qROt(cs!qs>kv2jw2@M`#$q2f)m|3-oi}{en&SJQXLU~QwGq#mucAyof>C$H7P$?Pv%MzSF zCh0YgAh!=n{Ne@1?lbJ@6B!+Km|o7SUFZ+1*Cpu>K~gFMmN!rO4k+Um0f-*2YIWqq zm)vTM1Pd3$nCl9C#fKAe;?fMQrCY68hCAU+6{=1q)9$D>J`03hXuDD^U{aCV5i_SP zC}b3bm~5-g-a0$<4K+6AN8f`xSo<6qV&Y6NV1hpyp({J1xT&QC(%<@tEA(2$?;Lkwp+8PTK+ zsq9H9@>`m1qN}zQ4oGbPUt}T9@W{^k*NL{fSwY!SkGjcvJOz2-F&jG_e=F7CM4KEH z61K?3*x0()I{!R%M{L&g+_msxNi9xY6k3@t`WuRZnU7`|jy;T5P%7)urEcYTDQLI~ zsX+xA3A&sug%TFO83G%*Dw8+$&mbr(3TP?Q`i?nmBWVFN;pRfUn&cilYAvISCaeM2 z_NAM_nAn z{Gw#oy2t9q-^xbMd5Da}xzPn?#09l=%B`Dna-N;TTv#=*0;6FahrWaLw0kP=8+m}I zj8aPIt6c%%tcX)Z77@5yV-X(tkXnbz3M(Viyf;Fpdlo;Ng zh+(;l&>W(-e4%@Y@X|ajFb1LIuCh-w7g8x2uRDq4xumG7Wxf&d5c#6=US0f6gh@xj zimhRL0v^fMO3yZ}NS&M+pHYWVTSpkTRW33kC*>LPGfx5H+h9u+)^VdG%Vt@TS6H<+ zt+S8<(Yt4Lw(pJ44!hMIv?pZu9x1cqPK+)N`n$$uaX+GXi+M^f2#R!;1ox~8T|D@r3?!5$Rmk{==AaRbF9^L2wUt;ojZmp?mjp=~ye)A3)<-DqC zR$?SNkd|psm40+FG4Ohwjk)r!x2%c5DLi*SD0T2muxB^>RqXsV-g(c{~$X(ga`U0`9QAY%t+f{FtPy3b1 zK$S;Dd@!)wf2jMo7X9?_OgGkA^Azj6N=)NVcF`YL059RLmVx&@-flW7@dC`7+SZ)W z!UkrG3t^rXTe_YhOQ(R^y=U>_bWOVpWz*F5b>o<&Rno+iesV?&xYByw;Mnsjn!fUP zMOk!e+MNt4+BG+by3>1aWZ6K0i&ceZw0$I4|7hC624-Rz88&*}5;?Si2V|=#1Q{$3 z$=q}#f`VVy zE3({TXzuiXXp5cjzdiSfkaTRV$*jl|nAg{1$=L*Jas$S>bFCo)PA<1^|7KQ@Dy-Qj zCz$_%R-wVDVViP_-_L&tjQr&pE=9F|y}nY3z8kMJnn9gS6B+>vDh?F0zj?T&Y4L+@ zEC2a|D45WJg&RtKC|jsgKk9hT-#F$A5?LYRvQI<{NtIjDiRN`U9GIOkvdT4qv3o5J zVsNsI+gg5-kF+|9tekd!sahmGU*ob`wdb~gAz@54CcGogk9!ElXh9;S!}x1i#jgeX znl1MbW+i8{K8u+QY24uyS}2UTb&iNa-bfFl>-C{8Dl~WX1QoHvViM1UJN<2VG|p6K zu>#hWI#4`_o!xq@Q1S{@g4wUH6E^Ck=R9w3+{kS^B#}U`gHa2>T`(?(Mz=3OwD~5Y ztWWW^fXR}yD!MhyQ@UW$0kxJrp;pDYGNeWG3l7&AhL1fQ0v25L0zKrHXF1f^aR%)* zf{E1oF@69~Tld7IkBh$xJ(gtFTrks)d30OKBRQ`m=A^bd%qDN>neFkn?c8od>-sgm zsdG@3pSH(H9$b6Bf9`s0wPsa*60AMTfi@>`^xq}%=Yv-9I`04}Rcnw6p*Xo`<7evU7yx8Io4+y8#N_;Qk0=HS%NH*L~ z)8nGLcGBcq(V)@W7tq!_Ub-v}_QQnnhI3RE&WTToJRL`dp3{I`bfWEUGEfz83UXPp z!0q4h07f?gn^s(@uzYbxayOffL@H&wC-L+l8h1TW`+TwSs|wF=vrS=`_>Aun-5Ywj z{~$<@zoY_oe?_4Hs{#$LkBC^R{Ou*XOsffN{rllTbVu)(9io|nEwVUVYE=we1(6M2 zJs?oB$Q`R28QY5^(Env#hw;z3<;jOxEn~?q9j?@{y&7R$>|vuC^*^wJ{WWi{l$7x` zcYK7;Z&nv;6`8hfN#6Pltf5Z5`bV`R8Q{dne!XpUeKf9yf>~k9P;nh)4)2N6{3Pc3 zsL3~M;HQMjn|LDME3aG-d3-Gm0f8^j0{zqRc6d=l7eCbjc?u*Nj7|~_kar2j&c%dX zKkXzq8}WC}TI|EYlasF`O7iv|-7HcRAn46q6x9UW{7Fne{ozrK_^L6%Zh?hs#4*|) zCnqm0wVg zU>y-GsDt!88*hch!X1W>=N}iTY1u7aFytEO zsI>RH)L(H&!XyoQ11!WjkLBH-{V&ayIW6rQaAht#!0bfW<~DfnZv~N$cTejZvF??i z%Ay`!0e~GU_-eW4e&MWGQ$U@o9O?ZkS$SNN$7k2T_cv%U1(n5i>~ZQWOX}l5jnOI- z?o7XsIXhs7_UH?KbckV)L8>xo3Z$bmp}+t!5|%d-Wg%Rj?!C~S-Tz~d1=!>lyt-t9 z%K%LejaZ8HWVX3b&&)D;TW1FwY_MbS!T!^8p8(?FU~=F15Z8ik>E4-nrsOKhYj}p} zsx40ggG9F0pHXAQ!B1C{tgt5~qkFF=oV&Q7ok!49TZIH^nIt&b6MLg9ys5{2w6Eys z$d#%Q85vUceD^;4prY})VRuu;lqSE={?X5Zz6XDhgTt|l8$FItRZ&A@8rl&}W9->d ztHfyy7IoQ{EM>-n-da}LsjVyR_)wTwK4MPJ_EF~?et+K8%xP&CpyfL%sU3x~1un+` z+3I0durPTG9us*_ruGGvT@3JK7>hl_Lbu!`)Q&QmW9yjiqlTBkXK$zLhwO

    A9(` z9RwxLI(wOhz&u*|ibLLg2%GMa<4zC-HZh)hQ|raVA6yk7Se-+pV8yXh5t|;^*oRjz z!taDU>+@|x9(zj)-D%*nqq+LqkdBE4$K9aXmpzSc z>lzm|z#A~f;yttWP6;pT{6?O6Ci0>PC$s(0HZ}4VT&doJwnf{B9$4-+jK@IdE8k<&eOqN_9vtN+?jjAInP)$a;(1g*6Lc;MJ?UqHz=%=CV&NH`(kV&u` zL(gvoNg=Qz~ zn61a&bDtx};&97rLX5s$(s2SZ*YSw$4hTvxkquw*3YAT-BIf;Z z>;IU8D;|(-oWGnG;k(+Sr`_E)`r9cTIO1T{ss4?6R8s_UX77xAUH~y)p$Q7hnxo;LoSY824Bu3yO9oU}|2sKj$k8!PWSy z4(v_K^4-Vfb*NX-RJ{xy(@(c1Mcdx9Vn7Sjj_NX?uInJ%Pls`;xLiOIr_g6%NDiVk zBN@2*^zx+hI*gjn$e*+xuDK?AvPb{p2+f%sQ@Nh>tW7&@3$+nwnndcdSUH9mC8I{I zuvLB{vu=B+Ck*ED=*%$vI)bCadh8zSve)1`n4XOyKI@TR#eBgWBP`JZ=f6j}-W2QMx zRBr#9r>X{cjm%6agQ9nS9JM$-)J7_C~I-G z6I`EvaYqmQ5YB>%Ba*s3W@(G8eh-pxu1xcG`cpVyy#(}`V+a>lEv6uVav{@`cLU#v0ze@)0KmXvzG-==vm000&SaY7_i^h-&6ajFeQ zN%WSC+&l~jW9oLH^C{MY{-pBz?`cS@*oMTr))5~g13xLBx*QdqH zJVvs)Hvwx9I>Yq*RVQx9%BrLSlTM zoH~&+>=?H;pIF2$>aAcsDC5rN>5_Z&b29l$F<3Dz!i)aRPU1UMsqh3RTgwt`g{uxv z;4O9aH#3EC75cXN535! z%FKY7J%Gt5`Y@B+N6%oc#;m=Ws!SXRs%P5D#xwgh4)!`m8~8$SB$_80{=!}pgu%wd z@l5JO^0U_-{ET@Zs?t0!k;)yemR~C&kPdb>3ja?6b|020^=+u(>!78lx?A1p5;yT` zBL%_P`*6=zOEG8AX+M0z04&I>>B8YfU!rmV*#@ncrp3_U&nHmKBRPF8ZuU9rH}5OY zlx9_{PG#&H$dCYHsD)?Ax@FS!SD~GeZ^zT|ea4kzFsfYNy4K%2b>i#4@dR-0y!-=z zY9c7pFDYnVop7WsRWm$tsvkM(x%?cvqOY7+pF66xqY8-p`d)9MO~(vrqGF~qGw7J{;9+I4*bpSnzw&_<#G4C~%m(_p*BGRgo zw{(_eK&~#wM4OE`NR%Ey;B8DBy4smKs=qz-#WEM1xtg;a^KOFzh@mTdKd{63qu7NO z8o-5ay=`}jSiSLt^Ur<*F1?_~$6OQ@TZu ze%qw@Jxk;FdZw@*6M&N?zaI}@gRDx^&)$zj1GT>`oc8E|DYNaCHdlhSA*AJoFKZiX z4!*3|k-=d>xoTki&>I#e{k~U0Uk-`HX(?k)X zG5DOSz!OWY?flexLc9H?`!adF-nP?MhBxe1Q0E7(>L|YVQUNd@UAp>)zW|a0TmbuY ztaOUs?r9Uym5%3iM9fr+nwLRvQn|lZtW?bLYNdx;C_U7`V;0u#Ca>N|4atL9Azm?B zzp^2wBg`^6@;p;jU{B_PekHNv@iH%c>2exK_g&aqbLM=GH7@Bjc1AP>|DHgyH@GZA zi(MA&gM=HrL=ObZ$JneSB+zhc&ZF1wdfyYNK&r%4X)b)G?=IM zhn3FM#hA*wIRo&&pc zrB#=H#Hdlw8^2N0md=y})ctl%jJ4MVx7|g%Gd1U3aFhE81m`swCE?sd?)BG5d3`b5)%=y;W8Ci3Hc_xFb4 zk2Yx+Hgu`L6Kz8vxxU3>8C@8dt_ zrtWEHQ!N>t$Lr`E!nCGHmlp`sx^8zl*RjQwX}|RR)N&&%Cl-gSIG~St;ZnqzVlZPi zD&)-C+W-z)F-A<227N$Nq+ov_hsNx*y`zf$F)5kj=o!)uV2qH?H;x`Q=D4maLP8nR1IOC}s1?vPI7wZh$BFWR5fk?ObY1v193zPeX`Z z!$Fa#>a*)LcPv+gdG4iu#X2)EooF9<^(deVlY8HFFZjLvtWM&e`8|QF6vG@r5DpsB zw#J?TNZX;SL&U?ZkDgPgEsOLV?cby6$3(=o>pGa2iOCS6xE+@ZzGPA1%0!DP85A(R z(Q@iGY5+|ykOS(WVA>>>#Pez@l6H8V(8r!)Hq$Q+Rl_Y%lL){CP66v9$U3NG7=c>T zkxi?kYDc@Ik|z)b)K1MxwO&~txs?+0+M1)iGuH-@i06p*q1V$>G9pEVKicbI{nw8_ zC3D*sx2B-1k-n??9SU=p0gwBwEmYt{Ish_S3anTV14Qkl*XAbwYl^YL?A&o+Zkh!~ zPIoL%5ee(35Y>aOiY(unfBzdg|5SNPZi1h&1Ke>`mLQEa$=55Q@C_$^S1ec;wXGXd=E5)Br z2;+@?O=B}6lPszRq9IU!feiqW2yzXbuc~28#_u_Q0#&t~?q{YzLARzGmwJ^56fHKx z5r_9R&vO0$vcF2GH4PiQ$IWmlR8+)t%pG>B7$;zjx^*DATMy{63>FKN380_>BvP6j zka{%+V#RkYKGHE`0K}5`DU5T_t14Y(1pT9u>9nP2q8|TT96xNS1n_vwe$?Wgf>okv zVl@_aTTRP#wzTl7xe$`9v(RYQG|WDePpCbaqp~MiRYjDSM$a2hdqPklFO0U8Oowu* zaqbB+31Ei*0XJd|+<5_zIIswBfl~G|dS0+hG2Y5N{`nwO8&LxQ_*}z~&h(OzD`0-@)uIDE-xnj}= z664DeZ*pOaWAnnQr3qoJv-HtkSeXU6o_8WazgCISF~!$-`WL>tYl>?fW%kCClmW_j z-E9oKl=Z9y|BK}V<0Kl?5Wjnx`vX2GS;%Tn>pMu)2J(51u*)gj=+A}a4m$9f&(Nd8 z)6$&-`pJFX>toFcv|4a;<`qNL200tu4RBZwDY5%AOsh7Z{!VJYrDRoQxF?_ZM78IT>q#GHo2GR|T*8^VqooMHFuVuS?w{YE)tXzvmMzlS-fJegM zTnmA4E(Do%&I?!l$7tT-RM`sA&a&fL^ba4rSF zxDt$Z#kC?{7yEm_GkJf1)*E%=L-IuFIt&wH0H<{iP|t7RfSCS*0f(kP&?T5iAXR^o zCp2Ns*fTpfoawqm$!PVIX=LQamaQYB&Sy!e?I$8uM7w#3MdA8yyel<5F{|Ly((WQI zyTvYw0>S%F#Un+7P`(Hw8V?pEwt=8x!>^)on9ZGCRY#MQ)0({Tb&0Tegin5aNF&NI z^2>9(-rno4asM2STYjjqofoBqQ~Xq}0UB`ECxw8XspfKb8^Uf^6ZJqX*I&r9+=j}bKRDvN+jK>PL~Swb3&{MIj2eUQL+iKK zo0PaC6bQp4#(tC0k{&j>mu1fuSL%iG_H5H(u?AS!h3RF_qsRNX`t6ng_h`*_8e9wq z$5wA4Kcqn=s-x!5gp4)M%{KyP2fqQdbFK&!<}-(~{a4hmCmRZ=@mBv?r*CP2kQ9HD zs=e(qACE9AykH>+AiAPZ4+X3IZ$p7LzL4`r+lYFj>A!{QL|oiv7hzs0uEg=1^3?@7 z&^amLiN>s=`mzGB2Pri9jM#Tdlw+6x`Yl4EOxgnLJ|fnJ;ZsdbQkUQZG~UNYxGeSw z^Kv*VuFyB5v2K0BVjsO271MgT={Jz^5m*yQuSzTG!Om9wM47l)K4PpcI7=gsCdLtb zqZr^fhgkjSRoNYf!p6LgX~3>-3K)BF(L{Xfh#VHl0000BS6_gwxm5hKKN=JBrhN+6 z+U+;PLtUM2$^jIMdX{>l@Sw)yki?Sx!c4WqZnOEv1ib*>c^{Y%bY_2llD!RM2>?D* zDL@MZkxgrfm(Qg=6_w`C@b*U?I1iDGL5HE6dDPZk4C4$QxCh+TkA50_`^;erED7+d zI*|O~+G%RAe12<#3)Mw(I@^AMTcz;))X7WthTJoP^!(fyJj<-_wru%?}O zxE0uJ;HCm$^wS1y4mBCWW|sGIZMY5oMu9BwESFh$reJl^Blt>B9`(A?04sJsb>5qU zLpESm?;a^3tmTT8OY$zxn4pk*sT(+{a029AlUIX(%j?`F`xN8t%y3I#7un%0^X)t| zxyBBMnr40?K0RtAcsrI8p+Xl{1QcE|fHNh-#n56{y|wgdNTeuqwyoot*&dygR}a_I zPuYN^@D#{b-~~rjC)XrEH&vV3yl#J7K80W|<_v*}{s9xm(#t%^7IpmYo)#uVOqYG) zQGB}2!a^;eeF$DHSQFosJ}OTL8;~ugC`(omsF$e_X{nH~E7^;Q~wH4l3H6 z@`h;fP@lGRkK&Fo`KtO=Wy}yj-r8ePx?ou26#Gh!WeqOrhN;A?<+r}EdT^VdyC3BG zV*f=5Hf6}uMC5iaL34;C zPa{5*F7P3k>Gu6-^mQfn#*nbphI6a_a?8#^U^3~U5i!|l8wKnNT3oGjWzH8fI}iZt z$2*K8)_F_X=KQSwZw+vZ5LEz;QM^8Z&ublv1rd)$$a^lT6e9F64`|{NFJQPdlPgBf2f|qWbP}K4AM6Qg;CzcW^N;>oy51 zc;2xG`hw2n*`^rDZ;M1>2Wl$n*89M@d|JTeIu1C)EsIOK;O`lCvwE@=`kR*u$*93p zAxV^uCmAd%#|)7n%a(%)*(1ao*gX>Mq`6y6rzr68fB=d2691+s)BYQyvzsNPw>|cH z-rH+i9aw}mYci2N;d4_89Vu$KEs3{+vc0%c9tI0KTin=$B|1NA(b77=^cv40Qm=56 z*`A+4<_pfz?tqoiYRgBDW{tj~H_F!qZ<5|Ocg=t~9^y+6><7*U@&kY=B3Es*;UIu3 z-&I`dRi?s98!)Pv*WGh=dk|WZFKEz4OUeZ|v)iwB{e|`S+FDmK$Dli?tbDdM-2W%N zegO!GGzHej9;?m!1DLb%+~q$T@btD%noE%N<36i2#igATy-Hjpx^(Hr8)%>Q1B>N0 z_(nwjN`m9{)Ss;VTWxN6HAm+74WzGksb5V~n2f5W^w}~UWyq^j8cNWRafp$Q?A^LV za+i?QWdiDYv4+VI#R}l)d2jEW^e}MX+COK8|X*p~*?899Gt36J6Kd zS4Ny()zzRfHdEUU<8we5S}_(Fa2&)O?EW$7aH9~C3EG}F0007OgJ0F(7Sy<*-NCn` zuP1378mZYQj$v^bLjX{RXaE2J9`s?gNGUJ&vG5(MboipjfwCc(eBI{JiEy6%os)I6 z>)pR4=1O-lLEMe~F(Qz9vE*&K!k8RE-eYbryxx*5b^L(-000000005S=Qzz9Uz$4A zWiIAHo_=(M&9X2dNH$9BpoXC#-qiLlj=`Hjny6FsV^gKdz@O)8tEHS}(K^MiIKEyD8NaMr&_0@6(sxz`~g;`y?^1}1}M1Tt- z8&^hU~ggj$xmlku@LzKfg5C&su1Q{x4&!PZvA z|K$K(t1Uc6L21w!p*Yxu>#phPjf6Z`XaUa1YD(W#*ymJwO0D>Uu1P5VJGO&70~R8# zAqC%tpQ7tlmEulMH|4o~4SyD68W#a{DvYq-(f91W1?}EX)MrbpB-%qP_r<@G0C?1- zNaSum*id&C&Vp=nqWtnJie(gmjHpG>Rw)p=**SQ0#xxo}NpLI^vUT97GIiP_>s~3H z&zYaP1pOv{vVK08mGiR!uuw19W@-X443JdEq})-ChXq5b+QrEpb*?7nNr!+cLYbV=IVz;Y9r8V%2Izu^YKzQsQ>jEqfFWCddaH zhq^u{Cw76U`3B(=pR&NSU0bxoO7#3WUnyw$h%q234%>t{4tJ7iDX^TZgqc8aD?HpL z%=>m4Fgun_^xj42;Z#8H-J@H_H5BAv=b%hucY^!Ax(?}9#hxXH=j(DpU^Z(Q4Ysh4 z?s|4vjy6*T2=lAyI%P_}3hlqsFgwZ4C{{Z26S^H7=s*`? ziI%Bymzx$|RQ4TZAnsHiP)jZUUrYTNOTzL*Hb}C-fW@7IcxKU#g8~@U!4b$Bn?+aWplOn*|ra!HbIoAe@0YR6-{*M)}S8HgMvSdtir zoC{;-{k=p0DDdJX?F44YLrA`HJnT1d+T4K7!I^gm-B)UcnNeAbdG_Je_wrFW!2;wu`C&7iz(o!Jl~ z(zcK!yzqz`sQ19*IRW33sRC;)SOc|ESR14@o~;OGr%IA}vm@JtN9w_H6En_UY%pUJ zn#mu88elX@6`dZ&s1h+2WDN`~o{t<-!XC4A{CF{x#RQ5`su3C(Sv?+a z#69Wwu{+I*N0HkagISz-sG*PWYPTF}tL&3K`aQPcB9Lc){@S|h0dbU_3{ve`zzz~J z0aQ1D(W6sBO$<^g^-9ZfJc#7lA!&CCVObHTjESlLR)HzoplplZXnr3^`9=TSlWPN3Zz`vgE1RH-uImK?!7bYbI z9uY-O?pdQB1AfkO3Klum41r&@PoK{TQBUy=3BvI>_CdYyEi)r6z0skAZLIJuD1d$< zNJCa@@o`2*%FH+$O7V&X9!-B@*CG)aZl`i2Gwh8p{az4AT3QcoQCHh$z-4&6pIBzZay|RM`yexKnX1NcS_s=&LQ` z0kmU}-heRP*dbCO8t;3iFwE;zs~jKcO>jHeNd&`!!THx-=5ZS0ughc*ltoiok;C|+ zq7hTgvYYMDBYF)Ke79ZyZHdHD_L>Ir0l#d8#&JoRk4$B?mP=EOIC`eAQyKu_BQgq! z^cAH+??sjO?EWo%NXdf=Q`k&q*d{YGeD=oCS^jfX-MRJ?1aH)nAkNvS|-VZ8(ARqUr6U!)o za0U=gGlrjQ?xl|XC{izd6lM$TfX)B}G&gKsqX|^@0p!V>N<6%V3DNjKGPePV2+Xuz zr~DlygEJ9i9X8LnlO}F~2XYGL@KDJ;1Htwzw~#CV5N@03bsiQhS0#t6yx3txv>`L6 zxHL~Grt1F(#bE?{vlo^}07t0A5dJGu!mH1=c^k=Ol{u(2|0v=8yXQg;sOB)gh&7BT z@kVZ_1#~ww8k>M+@M9xb~%(&$S} z-AxfuLSC7|xbF&Ij|Sh~qYUpFtsr4OA}8eqkz!IIAMuy9&(Jol?wgk|)e)?Q7~@>n zll5yXMt1mnlqt#dT0lAx2V5a?s#stT;UxyM0N1iyt_Z(^`vcTbzeL%=||tqVG8TCEExBIX)Mwnn74gtX|yxA0nvZh|T0$2MdcStwiT zLUPnrY!+x%s4=YX`~!FHKrI}gLdzQD&@q??HJ&SqeETZ{<(Gfao62>D&yMAvGG^sG z4#SZ^Gc>Jo3X#Ux3o)t<(ER|$)q7Z}x|UrA`+Hp#3wdlewy!V+Q_LszVNFxrs$`#G zAp#wFrvX;^4{N)bZF`wOYaGszY+8ROr6qHwfVm4}^TBu#USUN|s_}uVzj-L3@nQc& zcru2R8AY}vOeEaF>Bj5V;77P7=4G`BqvBN!S$2$@_y=i6OoyG*TbG-NpYcwuAUMGX zAR{fpZiZl}(6g4wZs!3#<*h1?IaWmx{_6~IVEGD)C}3%Kg`L?@-5Q=9)r_xjpWz@V zcVMh*n84xqsEi?l%PD7!!SfnL2sB?20GzW*DXq&2WW$AMO!9!}3E_fXq#=t@9WE~Y z_yB+rWD+|;JI0^VIA}Z57A3OqZEgWI338UH3W9snn~;!L$K7$w-9w@zh5bf9IwRsn z|NkL|!F8om(g;+~$=BsS;EUtMy1yqdk&C`G!nov8+Foc_|F*OLhA|$K0T0puAwBl9 zSq|2*=SsLVrH$B&<1gQqr$J<=Ia8SU`C^O8Wc{ZzH-3)F0pOjRsF|Y`dX|>l6qhH_ zUGpda92HTIpKAC;4d#_`pc!c$p#PuK5FjM( zRDyCL>Lr?1r1wBuk)<>i1z?xCBAwgqWSR@c;yw*RCkK0jAV=hV%fMtz$%=^8_myQ2 z9m(j?T^LNtSHmS)stv7x3Ms5@MXiV?5$+d?&ytS7 z#|{l%j}MS#+aV`*CvrSOC+IO);VGP<@l1@GFP8Fnzp+tLvV^1&LdGEqeiEje--;^c zztI6v7w&;DeO~r27wJ z)>8ueD0^Z?*|UF^G3@FUK4Nc_W;FHImkWaFcP2;%5ZdcKox#u69A3MQJ3Nk!IRD+6 z+}oxJltibqZaFa$SDw?w2NF&%FXSA^VKDLjNc-9wP7WiS8`jPEj_g}f2tU0!b87z} zI&y^TaGx?}q?{-N*A-#x4*q_f^0XDk9X4?H@F&8c>e~*PKeO-C{osxvQu^uokYB)S zMfcSj)*Mx85faDw?4=UR5TN)%fPX+U3#g;vX0e7L5fwy24QoCb{ZwXlKkpFmzf`{Q z9J}^?TxzX5lw0@I9nx^(3+Xz4Xu{sxxB50&fogty3C%@Dv+luFG>-G5v<04N0bZ+x zM}A(zB3Grez+z8!oxg(=eMECoVjqT(9H*=x1qK$;=nnnOy|m$%0r@~7vpOu8VJ0~8 zrr)6K7t5$psxo)#9G?iN{fKZ3=;c}>`|L(91BI~s2Aw)bsBqV-unPj;_~sl?2k@-J z;Jn*@5&r4~ecJOp8n$ylw!Xv-{L(Utz-;;Y)K_Z$fmUFt7kOC+I$E z|2hrO9Wbp6%1<8^HXc?C11}~Fv zvmdixI(1%KoPk-*#5k6B&jhGG(Hhh)9$mJoo|#I53u4^1&d=OfW2iPEmNQ7SL`k`!_(e`Eq^uJ_)!+ygB>z?YH z3GXbDn?W5F;##P3-$`*YZW`K?w=bCTC2tRe^CLi(@3@Ng*esWTJjVfk%qp9 zy=087;F{=^7d%j+=}(^?vSe-CJ^%&#bo0-Y}I`W z@zBMl=`SkRJoe5d)4-p`V?EuyNP-zf?x;6%TQazkiv{N9 z*-~ZIsK;OJ0xevJ8VVEU7CpB~6C2cO!A~>|T3qr1(hdzHxsH(eb<*q11^H!T?Tc|Y({6|9BIA>b zY~v34^QWkui{YWW1YzS$M^7mw-IQl0?9ykHX+B$B+l2;)BX_mrCVPPxbS6|+zR*UF z1N3#PiMJ?+)dWqWm)QiS;E;*=76Pu)#nHEq@)ekPRa!ULLbsY zI%lu05pjm%Ee%B23$6e;TMKQ$thl!v?!!)nm;UFTJZiKaaR`v420*T#qZMiu7x=C!wrAyj*=G#+Ear3; z>GTdA2}V|?)(b%oGUx5*sUj&oMygbjKBcegNgh|XdoC7%&*X`#KK1pdgH3gN`%4&4 zhm$Pht;^&gX<08tBPcJCx{rBo0)-tRl;0{(gys$YcnCrYoF$@&!g8u5qzXS6qVpC* z#fhs56irGi$-;2VZboKCEyl=*7LKNy;!Hnu`aiF zRm!NvbESHeW>FbvXiS!r&0PIJuZ_h)=6ag}zUj*+PtDHIKsWlkBPXhZxmJXEK7Y=t zjY4h02FBqFQAW~^LKG^AySwN45tU{NqW;TDdQ9Y}`Ly)~$gPq&nQ4E9p@4Y1wIxOnPUpIIVm&5o6>Q%;Km}s!Z?)7_nA4(7Gmqz_A zQ$6cUu+HZiZdx6$GXECWQ>M6YE_j^K;}Y$@sT9~^@ms*#|9O=QPLah+<_~w<#*Sg$ zobk+^3{7Pv9Pzm-CG;94-)ZRU6T6|eRb$+5YJo=_mz+ZkLrm4nuxn|Neq`W%@cNCr zZEGS4#EWs{5Ugs{eIv+78h92eZSV{PW;LXmfR)KBxM$)MR9@;$f)_ZU@GEClpIpDM zek!dx7#l*YxbhvuF6v0A%G|-d%Y~9ANIX{1$m)PVK~i`U^Zq~>0;u4O1H!+|e_^^8 zBTNZXB=ZAdyj2&fQ<~|#mN%DT2jX`wfjx*ytD8fC`FlxQl?7WsCJ68MZOvV$OZZQM z&&sGW$5aqZfy+%GYV-jOGxjSwJX;DT%vhBG%1sl@Nq;wzPR4C&oQ*Ar0THws0J@Pu zAEf<*(gu^u!Ho-xag{fQzpCw}o{t0Lju$DiB4IPZLt`Udl|$G~@c@C3)V_0?CyWlT<;WR^appK zogqc5MD2EgIt`pc*7{BdB|6m7AO=fIDk(u(E9}Er0ruN$>wuL31`aAB0u}|sJE`KP zK1oj?)lPlzC7<<~jehI@nSDFsT8LNH423PQC%gFax%oy+qHHFov;lp^oeLH`7u|yl zY5*p?A<1Jgm>7CP`JlmQUVwibHS+aw&Ww;TQ9`&F?#bwreTe;| zgy@GJ-j4}jIm5c6UT2$?QVTk=vw;&ALx^}oT*`-Cxld20ls>OKiIvwjx;5ItV^K|F?ra z;JG>6I8U*l_%*Gac4@x~tNnZU8Dy91u&&?{_TyOv{6c&*fTEvC>ny5nZgru-WolA6 zFZ+XWMI*QJaWwcijJ@uS9M{=>o|U0uujLRGzKm2ePc|*VlX52+2(4CoM8Wf<@|E#0&bA!2W)?-oie9OXSiTtZVY z4)zY~U8Tnl`8NxQ=xB%sR-kV{MYCr5xSs*uDTQxZo8I8n7+Z!`T5BPK?mJ>^V;?jY z51*SI6o@r{*$=D9e-M^$g1dy~*afbiitc2GP{;F&!}@FwHa+zeNVD9z+^ofnhFEXf zSzY^t*!1B!llV$4kq~jMqX~keS568ZBET&DLO53^KC=VcL z=h)okAr*mMh7XP?gZR6#}0KR5rnZM z4+qUDj)`rvY-+Z_Q57g4M&2*A=CF`RHlSUnPcM}3wEtH>7~Kc~pus5aopoL^I2s}o zJ>Ei}D7z-Hw;QxdJ%-I4D-5d5J&Vrbr>uNofC&my_Cx=n@;vL23QlpwqI1buS@NR05i zz_HPfk|oGX$gwQhh!EQzT$|28;%?U0o#fpFXjDi0PjehpKWMyH>abn8i=!Ny=v|jc zs3E5VpOQ@Yn}Q$hvt|fMCImBHPkh>_tbkueh|v0_F)^6bUD z@bj}@4D)Pg?8*k8iEjP1PYbe=WnqiLA^jkqrzz|kH;COqK2YX;Vv;Fi5K+%j2mL5K2jYL)NuMn+v8X5t-HHbI;gE)DU^7OZK27 zJ*yXjL<4~P?+c-G-oC-dSM@MYTS89*BJ>Lgh$zeD3>GR}-DTF4jMBlaEZWW4&}|n} zkKJN~wl_DG*A+Ex#+KQaUx-|JZ?*gYxUSe691NkUtgwc6`f5KZj)g&!jdUTQZ2qJk zR1Ym6fU`2|U}man85D5BRwReN+5yq$tb%)yXP)PK0{o1IjJ<|?5!PN^eTWz9yR=%O zbZ~@8y}u||`OhQin+Ji#%cQ=QGCf?+SE+P23#6kV?HWjD?ykU5ZwtY%S3HCAjd~#W zHo7xGJ@kPg893!AjP@Y52$3!{ioXsXemBPw)uOK>jR0|JF@KwzzP}};h#v{`>K4=j zI34eh#QqmUO_}Qe=F6~<@2zGTxeHw3W3GPBk^m9lrwIAbMUR~nZW~1W|KBKLCowC; ztyO@YYr-KV+qMCG{=C?uD&8mAiN!pK=zx@+)>$&P$Cl;F6vcVLDus5$KWID4Fsiuk zswbs}=RVjksKTKZnlM0&xU5Ag>-<099~?^TPl<+o=0~oG?fllD$EHNZG|y9e>=X+~ z0aqd(Fn=GhFZvO3!X9)xgu5CpcqBbI^6fHcGklMJ$Nmj);Y(b9 zj8oTIsU8W>ld~jES|$*FDO!OGr=|VoYtMJ!-NMD*_<6&;G%X*HfB^CB&+m0CdUQ)_ z$?yr_j05PRS-7ezq*>#vHYYGWx{|#6YXLoRz7S3fohp>dgXy9&WXuP7653#u{a%clr;$U1tOK#@wzsIjH zH_X7aX$d2CHso5XnLZO|+-$YJ8b=E12J|RZ!?DHkCOjo>EnMec*V(Sy3R+RVA`t16 zBG>4FtnU-7qLoGCyMr$Ak&aMLB`d>yV!GW%LIOTi5Bd*rM}y{6+_93QlDL$K+-}t$ zCwFA^JPu(Q#Nwkijy{C$WOd*JLX>OG$*3WEUr3VHvUeTJ-a^c#aU!vN%l9=79JR%p z8-tg}wgM?-hbyeaP*&&ycLx!p{rz@F2njbgNDnNNh zu}PzlKeIS8ke<1CFt}pGU-tabincj+nNeG`IPtn)=I|iI1OorD$^hKO@k3e+73j|? zFh6mSDRw!(G#%0$d4BC*4Xsdc z+hYGi9C(0s#O!2)^#T!db=~maEQAoKl}K%Vqs$RsE0mrs6Ksz_MVxr2fEiu-P^N$o zeCZ2ow3i;%L=E%XR0#&w&VCYCVXdVkC%%X;SIy8??wVDS?fa)h`EacDul^!?8IYIY z%5S%iF&eB@>HlS4ev4BIid%?9l_XIRw3-_n0^J-EK23FPei^(6bc;Wuv-D{xuMoj5 zYRjPB1{Wx@WeMrKms%5IDY>@h2orInI%-m&(r85-v|-(=l6Q8hM?_c`XNEre>+Hm? z4!A06*|5Jj8Fqc7CL(vP_p(k8-bY<0u7;|kL)!@m6XqMIjDl$lae zLhvvZZW^+XyZ!$>g0YyKvN=wNun|2G8jOLQ_uY@t8mjn>EKi)Z&CDfoVfn8VS`%cD z>1DAQ?W66qoGMVZIJ3pb-_m%(N8#E zCo>% zAbmhq>TVO8@0d=DdX}9eEN5#)`fp=UN)DCVGgj()v@c|Yh z4H_W4H6C?EMXE5-a#|tp4KF|hDgy4$lIGZ29x?nJ_j^fs?}Dh+j$GgvYB+~VsVp{} zxnnE-`th)QxI?6pKPE#%xe2?se=nN{K|pVA6|jcuSFGn#;$_vA z=O&9Rojo7{(ETnl6|x=n3)!o3Y_!4C_`Aj#*P^nr)bZ1MTDY7&8^W~Sk|(Xgxz`E- zn5*IN-oW>^^z&V&J0=vZ3W!NRM7LRUyNTL3b)Yxxf?!*4l)Aqd9ZsE|>j_p}lD|!h z^RVl|@d&V)ul9cbSJ^ASlR?MY^Z9Juy^;pLj!N&ZxwOjkp$I&Xexdks3; zw|?(qs7Ka0wI=gQY?)KpbwysQOvIu7OWOMN&A3LwdKyEstk3`3(ku%`0!8n18#ruyJ>c()KA*KDEHk7?Z}El*naSSN<_E>`wS+;=8Q zCrI77Goo76aKJ7S)cYF~<6D-mSMsoIee&@#{zB3k5L!L9sPS=TVucfwoQSbgg)4ob z<95(8-U+)=EY3#ghHASSjyp{8ooE<29T)`-;}C&Bb0S5FjqA7HN$CnKm*Y2~nKEwp z?WXE<7E_kI<_rVDD+0(~9BmUmy-#3A=zxRA5}d*HoFs(WCz?eABnCZaWx8mblw75w zibjc;T%o3@TYe0E=wbEf_6XL2V~ksMI2ntnJQzZ`I8kmTH0v|0v!%0V)|M_}S)66G zBvGuDo~c+)L5cvqH1$6Odp1*l66ruXHc!Vq!e97%iw(FluMl}!2H~PZQEqw=;l3Ej zL2yyY4y(v;wE$4c(*IsUs-X^XoMM=tiRHhAZcIQ%LLoTFzo5Jwtf+5jilt`#WB#K$_A$sR%OOf)i&8S5-T+r^z=yYA zr8QUJIKgQ+zHPFW*;I`R;1Xe6Ahu?tQ*CwC&g@wFHqVh=FMbK5RqKMnr4yU}| z-g^-OL{$t*+jyzp4N3LF<0*0cv2!GDxv?HnT--c$-CdP}vTiXvz?f|$?Dx>+x}V(c z0H&}K)??2TZr@ym(=l*LI%8*4NPlAJ3fJb7_Lu#e= zgUJeqO5@#sd9s9|?y1q1WXf9_C>Jv?!O_w1mSl=pQRy~fLCaBik?T1cI0HjrZXZgy zB^KO?4K`#W?TZvE{MzuPO-^URGyNF0H7{_6cZNt-L?S%It0B3Us@We>P|VwDim5a- z8A86TKkV7qK$+da4_f3!5dv*{^>A1qyRhW;!HIsPJ6-@!|%n0z> zm4vox3~I8j5c>cppZ2Kv*jhe#bBn=1$_~Nr)(uue4AsvJGmr5q!5LybuBeXhI`HjQr(K?&iLU#ZF00x>V4WUqRWLv`au6Wwao{sJwE>ktexOj$+ zH6*AxYw%!*$idQ5UcDlNRz> zrtYHm!LYcAqXo>%5GX0F4B{gN9xhH!FCi?iaSkmDVLU_lwKf=g=NUCfNVCzPX!=Ic z*l+<|^kf4|A2UcOgp02;@xkfn3{ zGiA-V^LMQnA8YIBO?3a+jCq^u)P(@V`V2}?r-o0yHiLfvlbljpL1q-UrT3Ox5kqb5 zN@xsiJ_KlkQwjQH7<5a$A*#d=SCf@_;E&ae;YUC#Q6}6KPRcSLu?Gs09lOaIt;;eG z{7DOw0?Wu>FUF$*;c4aUKG6_pMqbl>jog8~MaNMG$t~Pj?;KAStz?ZikK;dx2?_Z) zPV2GmV9^^N1n(jqd%F>6OGC_sB$_-8vT8uWTJztc>bbo zA#^Men|@22!v=2lNe?FsS3}lyOw3s{SEKM%axir`f@ z&m?9uSoLrFIZl;JW639-c>RtsMy1Lo$-&h&rCcf%7+G_f{OfFouPm5FS&vrDlup+1 z;Tmi1ueDxd=Yv(-q+*R36fN8XBF;>^;5N? zrCmoYwQ>r-O0x8JA(3WicN>Z!l>cX-^|FqHp;ppPag8cYftj@q`1v2j zwLA94laz?-@C%|3e#%vI=4!7?sAaSWs`JO4Jg9KSngY{6(15$HkA87O1TY!6DP+ew zCOEH)@rwxZ1lEb^G(;AaR{TPBk2XioX1scHplA6A+StXJR3{y+2^~w0qie`7{%eGl ziH+XY7{%2jTU$s=G<9v(2m(LB0YhE~3K*fV7L*a{_iXw@GJdf+|mDel_HX7_}N+}j^e0-k5O2jHdrKI8;V9;^qY0g0?RB?{xQ zG~`|`X~L-m$Ww49(Pc2G8os$_Q|9-3rn{SfqBmLi;*msGfx$8Tub_n0B(+nmp}uNK z-pb0y(c@&DzSt;%eI<54fMT&>>ov2{gm$W@Hz;7_U-w@6MyyK%*{q=cLmm~_5ZyRF zG_IKMA}Qh^M))N2!-&_OXGpc#AG)C+nE-C0|iG()i{_OSE*&NjI z_#rqo`pAs$g4ybVbH-Aoj&x1+KTaLwT?4N2E;fid_z@?YF0~5O0-ZF8%4r#jOO_vA zO#)h#CNg2j2TdtCQhE+@p@P&wUtE9yvV(VEKX^`-p+saDrwll)AP%7gW>OsB>^r(H zsiT%8sxx6smGrxC%BL>Ip^&f8v&jPNG~(?G<-3ee|9!lJvzv6L#s3GKE%l@Ml$iq` zTs)o+@?AjleF-<{7OYgI=j{W1NE)S1BlxI0;+zBljg>&c@X?C`i!iF8vRjRXnxQdD za{uDC-`ta$pi?|Yd5@nJE^V1UU)|h2Z(!1y!tgoZ+)PAT#5|<5j`gw+I)AP>%^|m? zXI}t@`i`k`sLf<-6&yX9OSTqV;8i+r)l4EeBX1Ka09DAIW4SV~g*(`nA=8_Pyu>>< zfX7L|+*{H3v*8o=GhLrILgD=v5`DIrNQJguqP12f2kg`$V|& zj*{$gZ&VtCyXZtxRP@jK+%3vR)+H#Xs4gX@&~y~(2U0GWo#eQv0pvr($~9tpGgU;j zGYkTf_hJT$-fqM*m3MlO=;b&*kV8?{0#$B{;xe3yi!KZv^)2uv(oSVJF7|7du2Su%3t3d$U;{yh+Zm7IP=Ar4bm)JJS*#mW*-?KOS z0|L5^CHJpLt?rNOE;5emu^QXiC!DoIsR_KilZ1_E|B%I!^ArJ8R}2Bb{MH2Ktz88f zz>e~GK zK6yNOSPYUUcAsg)^V^_hx9xI#iki(%MU-+;T$PExnCplMGTZ>{TurD@q9FK6e_J`Q zN~(}hou|~FP{&SG9*K&wx<;1oZLwciH~wev>{S=WndYm_fI#Ao?Yerq5$ckF@u)rI zi`!kwvuwWQLiaQ*Af~_hb#<4reLdFU)sNmVyFW^O}mWRBL*|Q?fMk z-s_A(`jej-O20I!PxbVSt+j2rn+{?5-w<8jrRc_X+dk72#xb7ge zwxpj`*JkeEbdd&xFi%-#tDC1Re2A2wgt73IRuw${Z@m^;D(w5*{u&b1SqK6wOqF@z zDb3OgGrs+Ni@v3&srotLSjEkfUa=Y~Er2i&ax&k?4`@!A!5%GNbNfY(fXKSp=E0#@ z7MzynqrAn)Wh5pZazBO6R7*wzmaG>mZ(K)u7^aMJVrwGRiz3(giKr+fx6ts;7L-Ig ztA=EyW9^J zzy7sbaw1l8A|WeH++TB|;5+OW!y#&&nTeOs{N|SpH-r*_^LKdivfE*2fBxNAKF-o3 z++Tv{Z~sV{I{;G+UWkDnjPM!!8s;cxUF5P}D{P`2X_i0wShbf4B-`7Sd-&G)#za%Y zE?b%st9#V6u5N5jtX4duhB%ONZN!BFh!0d9>U|}Ko%|{`C7&oqVPh&L9qg|7EY*=c zoPenPOmdDIcECp7_UzV(gOB2jD&T*7cgi?)w0000CZ>Xd7{r9$m@L@JNrwj}Q z*i|sUtwwT%x{XM_rRFCWqUQ0>4GSa8R?yq=5}rTqXy%;TH=c6y(!FLWXtb^bDS6D8 zHeFNd6AGbxgke=i?VXmMNi^khVz?XisB}4v#ydSe25CliQR#ys!)AkW!tS~coeg#X zGG*x%c=0=WQsMEZ758}sZ@HUlWOoxh%g*L80MxvX>#TofQxwG&I#R)qvoV1w(Py~! zy!~ryYfrBc`1zl3-1ApnldXi%=UBUVBcXirbdmB(GPm`9CWQkaK$hJL z%$YTubZwX=n?bD(ZBDep9#?ZZglfOZZ*J$ldDSuY2qGhW^t2$-s5{*CBakd7j&a?B ztM}7ApN8JOH$pq*xddU8vacb0sl&Gu$;KP(%q0gTAJHVaDB*;5bGbK@a`Lb?bxH`H z(oSx)U0T=w1EKB9Ii-|tR9~>p`?j;J;{TpOy#LrrFAvzJHqrA*IsdQkD?W-(P`C1q z@rzMzDZ1!^3heDPMO-t)fxQxCL!Jjs+it~DnaTck&T4Ctfd#(t-U%0;kv%Xf(FoggCBR$u!AHKnYa0kWzspb znEisO2oR2D2azZ(RN~=p2)Fr?Dg>i2g4eSO1mYYf=yp`@--%TX6QLFtDN z`9_{Wu+nd~pM~K%>-P||RUdXs`wQ&rkTXsX7V)Vt_vYPgM-VUvuDsAS&Oltb+z~wP zV+>ETjX@G>v_znQylUj|CQb+fmpN$pRxDz0U}hDoC@Q3!-NJ{=9CRTItUj zl5V_9@bcKLF3&#dlp>#E%0Q~mm`yBdY-RC>2}`{7voXl$BeXvm{Gbn&Ml zBukk|yeB>}!lklH%~7tB2 z++Z?kz_^TvEdD2z-Nxqc0TrGzkn3U}_%i}*0%p4^2s)FgqLhVj1lDe9xSA!~X*@QD z?WWRF+?)BOSqhR#dvBr+Lt9~ohX)S+4Q@Je2%KujfC;O} z1J)&=BS17+$qzC3GauOgf=ky%ZN>%p+zolscpTx{C`}}gh989>txEdC`zFGx*{eP;rrU|FVGZf+uFjm~EooF(y)71fT_z6||EMx%PyrfkAL?8t)?1XV`5P z-Zk-=VOXV;F%DoYh;#Ye>C|!sFJQQa%SNxcwS}k8r~ZWm5lD*K1P%A`W4MNkiBk@D z#8rGXKsGre2?UuqA=j;;1Cg}<0O@xZ$3x50^)LJ)H~E5@QN7Zp4uM;*kv)$_lU*9~ z4UIy}NB*~n8?|A8Wib7@t-TiM?#9uyF7q85!Bx+ih{A7LE9(c=L;rHh&OMwT#6xcg zj-gYuY`MbgKZ#9kCBdCJ2Xu!Qkv}DyqmJGne8rX5s;Rg7W%||-9mG5M*v zY?yAakHFWh8Yi$_|C=K=5FYK8=u_ed0U^ID>VFZynR9{BZBr}lcKa7BXN?l`d13sM z_9669FM+n`&9Hn}62BCp7Y;oS`EfvskXm-*jKa0jBQE#THJH&kmSb-Q(dx)>5TCWD{(YwC{j{5D_t|Zc$$|f|~ER0sVvR zUk$D_pQZ99>>$f{^wmBGTmxJYAd|xb#HnjY^7uhDLWbb!=Xx;$&yao2IdH-eWv|x& z|1ytY-6i(^-BamBQ4G&aGB|VsC>hO>N#5%=C|NV}h z#(#(?50lq;_8i-ey~;s0@7xu6hOO+`RgA(IFX=q^k2M4IZM?s8>W1O{C;K?TX64rY zX8ieFqaGM!<jeArwgj)yp_H%V&YQwcdY%cbEmoE?Gb8+ zM|zG3N_5=9bDoGFem%FFDBdbvg)afh+T4nJ$``MCSGO==scEO?4yWNezZq`bq~1~GC< zm1jJdTFwoi>Lgt85^gmepeTJLrt$;JLS*h%%e2NUC13t_U!2D3AR1Z11ANF3YfXz6 z?Yu|DNElt=s7Pj2uzVcJAxkWnpehmwJf_yQ85k6+80@gQ%=rVi<##Qn=RX2kYD|KG z(q@`HC~iz3_L0(5@=wkKGZP;|eWg=rDrPSsAISM2n&pirSDBv^BY5Q(@HkO;#V550 zo&Yr9^ThziWiwZ&MII`x%q_8-Zg&D4VeFx;R6{D>z^2S^OjHIWF%p{q%~|-$Po)vu zg3U!IA_V7FX`sw~)BPS;1)fi6YYo!}L;DL&JG#Yc<9+cC^Ozi6R%jUE?N?Zii#zg} z2RfEG*_%HNLxDn!_k}{U#I;D!p?goz2%AtT5b^b{n?_ania#55iThB^_Zvp^SOMP! zfEZ%>2+@^dZ>UG48k|T6Ei$1&?CmMsc<{?Tx)aqyi8@->8e;e&xthRqnG~p2L^th_Co5{RRpelCO~pLG@#s(E0cIV$cT?Eob>iq?09gV+RxAm=}9(5=RDGE|lE z4aK@mM)c)+Cq~#GqVdcmtG3C?2vSvTp&=Iy84+HoSWd%{?mJ>6xGGGwu(<;^Bfe@{ zGSg>3pI5YDeoiW9#-XlZ4ena=*X8@A*~~uNC#!O&H6Z`brCOBHr`!Sw(??(>gs?9J z=$82g*cG!ziz52+X9{G_zH9dwuKb2I*IVXb>v}PdEI;d*1ZaTeq*e{l>3SgmYbrq@ zR&2k6O6m1+8fe3#`6p*i<3B`s9?~y$ZI2f!7d6eg?%YUT?r&E201WY(D(#2tvXCOS z$zmLOx|NV(E7t;paW5~~gO(iWzMAZeoam5xwAmIthPqKRherei4d+Kzs6aUH2Z4z8 zaEL!^=|-a-Fei#--A4$+#3wE`6m-S!3X=G&(;)Gv%Ho@pmBlyK5D!>_<|Fj+>wAXj zs$cDt_Z<((&I-eLUf@La4U{YJ-AzoV5-;DSpY5WfhozcaMWMLN?~@Q@oD!yW=j6Sx zeH17x0Zm-&-v(ylsLUXvZA^k!8nYIgi`_m$h=m#&aGmZ1i$IW|PWJ-teS1BPHR^iC z>!aIK;&pOry?&e-UhJz*M-^1O-{%h9q`GUXvZO_0^7rx%)dWJ7`c8J{aF#y~kt?jn zf=#ggmG5f>*er*6U8mxH+kNJ!4^6h zo|WwSEisBFr-@1ckqEgR!;7TfOKlbGz7YN&TwAB0O$1PLVm)n&D z7^`6`#?ecy5^B&;kYDbp7>~#$!R=?bed(VGEy_^~V^9NzK!PnJ>y-gnreQlr>7t^} zC7qp@FWA=E(=_Qh-I{=9exE?57lwrep893-uU7H@bzd>e^d-z6ppLgUMHzN3>K_$e z!U#og!(pICxpZRTzkXpl9+lzEyM9YRs=wSgCKv}B{sS2phFma90fR zm;<{8_jugyXjL+KK~SS_iw2uMinTU1aK@mBsj2k2J2nJO09y8f* ztKT;uzlnJnYcXm&bV0#q*0>3?dZ09}$v>j6xEFvaPubW@4G?|~Yb@E3nIWZ%A5^Jw(ja+v-SHJz$XF2piT+80##C4OG7iEsKa}j0;)I6k%5k>pP1%Oqe8a*ev?^o=>WR!@7dh*4;@>N;Wd2#=^_=Vd{!DuCPjd9#-;S^qQ7A(8?l0IA8(^EaTZoS4)uP&Yx;WzqwM` zcp2S58J%`C!B4@f1oMg@12L~2piT1V*s|7U@b064za=||n`vxVcp^WQf53D&^0tR@ayta8*g_YQLpHmgnu4Z`Ye{NgjD)$YY|^}J~$#r zOpq?k_pxIbCm$fZY|heo0X{@VWrFZ8lYbdXI`7n)J6~U&RUw9*IBtPs*x2KN4DI}$ zGE-v}%ADH8>BQJdUwo1~~r-P>?AgO)iDpJ= zH4ca2xcJGBk3R@338Sw-30o3)r7Qbv)(qmg9S0>o$b|hGZHJroj|3Lcdqj}JkMGSw z(U8j)NV!Z>D-@jI0000fl{h*26{2EdV60PLWtK>f0{!7kt$)lia@7s#G#QQ=+(W)q z>-`Lav|+D|eMoDsz~lyaa8wlUDs^dt8{tegx*ij$2&|N4f1jr=OWkQ_h)FCWFhwf3K`P4A;8WYD&MlS7^az| z1Y-q|_Po8fJZ_vWsO29w+}f(e#V|7^M#Wti^_e_TMk8*E^q=@~H1vsi8#?9W?U+i> z2q*Ivfqcm}lyoQIY7LO;*t}d{%|?vY$z0{S_b|ru&2f`3sy0C9m$%C+-|}P)#lCSA zwL7Ve6x{t)U3E4HE@+vyH$cL%C$c*7=;g3hxqyRyQ_rKkU1TGNLi7zp()JJj!*Bo= zpagbCBrQWmQPz)^+%B8-JMakUilyEy{{&-tBrL7Bp_ZmrI}@655D&g+*Y22+nu}C) zApg-&)Dg+I62(+AU) zT!xHR-!ZEA+;}pHJcv6!jN8kqq}^k|cvOZnuMR(eF&;btNPBJ*@uaVg&G<;rIFFmp zK_?%1eriR_WSv8CcXx@Kx{*in&l9@;(?tA>$U{A$UP1UJV2y|+k1#8-{L4{N>9rIC zJ#atF$_y&2K?;6Lzo0RF^{^cavsLPHsjrz!h~5*xkPY^$(Ly#KNA;%U2terQqkO3v zz;f?$-sVt1*PJ^~&59oS>**1xcIFDlwJg7W42#dkphq^1*B4NL!j9q%(^+pG1;#DL zpgS7T%U$jqaBE;E>YCz}&bR`3INJt<*M~Lybs~qs853dbfcIdk=F-#Zr^tq4<|2`A z+`K8%*oCAZq$N&mi18fFF7xlCVFcCq<3Y^bgc)~{Vw44+a!O^=F5Z5{o@xmxp#BsN z$@-r_qR${@er-Uo=P}eym#uuEnh>gpbH;{U7RU3`py(d*x|*Ih!6CcHlzL6)i0zg9 zV9Oa{A7cWFN@0fXOAnwqi%~+m8XIO9Si2$riL|kT?mi1ERd$&dkWG$hng4Z~o3f(i zwsL$T**jjNwoiE~n}zlNTs4Czagj-^5k0g>*>=dClff3x$HSUXXX15t;~7oI zm-ve#p_XByRPW$)H)mpOJY=|VSWnK$zvM*E=OZZF*;}vqs_6K^BsB!dYJiL>v27~t zqEPAE_roULP1?0p>!iY_0BW3WBXa7z_fW=c2t+Nya-(C5EuuG@(W4vkA!O(`4`a4S z4g}|nRswo0-ckW&?rM2E@9J2J!&7dM#lj}lmyB4sMudLI6k+;u(Gt;3?FI*JYZ<-gW6?pd} z%SEE8BSP80&_?h2hBYxhW=vgVH@7-5junWl%`4Xe_(V3J5?e;|(4XnSq^3XlCI)zcpWv$dG(9%sZ{ohmB#)bBDxT(B%(vJo% z2sk*YeSvY$-o;n!IsFXMwMO+Q@J>TYv9#G_Y?;vSlGr6V(HJUYEGWpL26YStf=QsO zj9n0J9S#PsZ{u6=MRm;Osyfam_vb2VkAd!f+&_=8ecV6qKa=WAlkX!CwQ!J3kvlU@ z%n@~N<}fz8@a^6Uh)VkZ+o>!FIENt;r{aozaLXC5ipnhtK^ho>*psn5(@UNOdLfl! zinRh?VDEJx{+vRjVnjrdbYmd+IAb$M;MMMmGiNXsvYTuq!#GrZS%iIQ&7MXzFnrR~ zhb;u4BK0t=rh9=lB})!!^RC8iAOBI8BMc852lVQ-W4g$=622?!A{$DU*LmhQ;cV6f z)4%SJE8%b2bqmvFev<1f^j%*an7;Eq+)u3|g+Q}DVf1+8sw8KPnhUgVt1W061~}u@ z-GdkP*8i^WPAY<4HVJhI=dJ^A=+&5j)Z@f$B3yBurqgPCY12Ru8vb!SsPUd?e-W@9 z^|H2pVyHbOp3 zciMY-8G-})qtZbrER2ZJIseJ(e*jS?s;mXBif2#il;`bLz-l!B6ENPSrqhY|jIil~ zM@vl<5<3Ct>V~cw(pb?dxL`_9I%`49tVfwF^ci(Pl$vxNz6mNBIsg@;Z50#8n z8bQxuh&2lOf1_dcjtc?UhNtZ?;ROozp# z-Qp|PL^>}r1#T^Rs|UkiTj}>?=eF3I0LU^I(X1uze}3g)yZRMbpLjAS;!~hmgDl)PTIxrhE3@svYcK?KlZR+P{kCm! z%_vm0X#3=?cwB;N*3d7^sf5rv#ls=IeN_W8S$Gb2M!H`K z*B5G)t0RgMFDcFPF9B$ZKqaR`l*>Tjn!d63|4iQ5qf%)3Wu%eddfsUd^hATEw&iS` zm8iBn6^9n><^q;(j!3t`@q5a8HCJo%!81O-?qCXTnZgi5!RxuRzVtuP(UN6{6eczQ z#zYU0R=Q_(4l2ZCRw$kxr!8`gIGAWyck#b(y{hkW?Heia1$Zm7CR_HJK#Q?#3UTin zNQ`{NC`>~~1CJehQZXeWGOE(YRnwHV_`UaM5f=_|mq+!x1`7}yO6VehCX^2# zEw|cD7#SqGz;pU+-I#|$JXwG!-ns;RxZ1dR_7P%TG&8L`$li6-w4A^|7{0Nt{be8tp+>rK3NjcLK=f9c#90&etz3>uHQ&G)dpe{v zO?+#4kw<7ewhJaj@~58}4g4JxbbZfxuS(RgtP`s_8Lh)tFoyi1SJL+>oepH^ zkjFXC8%qP$t8XSTuZDcNwgDW4*)}OP+rocxKcXt|%S>C*?k;CmM1G*~ak_c&(*)wc&;Tz5XBECLB2%CeAhJi?GoJcj} zLAOjPvUU9+?soV*jy^Bosn9rLWPy{bcE{sa;9FoLTN^5sPMBZn1#od)ij4@QahFwH##MB{uuD2R8Z_r@Ogx~*dc@zl}(QLiY(T#0JNyulC$VqRjN!(icWEV zWY}{TR0&V^5S@7WnIUrd$}^NtTVD781+FjD<+!sJSa6x70%IeE8Ti;lP?PYGBEYCh zO}>D5c%UOMVr7GZupe=NUfG&arQs-ecdD(kR~LCFo^7*)BA+?>oX0YonP`wGsH55e z2rIW08gn&voc{5RK{ZzqwT4&U)q^n#vv2{Q&Fy!4h0t;9ARHtJss>>&xEwYOe_C1# zkG8uV$K5Z$01#$kYNYj@s=ruMOfEWX2frPA6h0a_E^xIzEh|xVh=g%}Cmi6j>PTtl)m1j zR+I7Yi@Lul7<$*J-&U8+_)A2)r(4oducvAGZbZpo2ZdPCN&#Uq^CjiC2>=cnBT`H@v#k%&e3l86@G(q8gp+{%+ZosHQ7BwQ(TKU|6$*h_=|gDXYnLJu~(mwo#jU%THw|6HzdicU%s^@_X9G9FTdambR)np z4dTMz3dStJefr|uB@W}~K`Q=gQzY4*R{-EQ`H4+fC>JuO zs5X|cI25oaBkhk~t2 zCe5)Q!sCDS`p%leN{8cleqcTD&xX`kNlPTGFHFM)1Vu;J1@G_#{Rk3^xQmfVeUv29!rivN z$)Z4?%itIMY2zL?$8S!aBtaH#>?YoqD4v;DUFYD7MoeiA=KAtHWb#&yw zpg?-``eMUM7qB(@+Vdr8xi5YoGcDtP#a~lU|Az2LJ)aYxJeP%=Qf$y=8l>8npJ%i; zMm$kZ8K6qBuP{(A66Q^q006uB{f3S?7ld0j50htx*oo0fQbU8>*!xW&Rm$9!Id1qD zv~frLaR0>!zl2pJvth8=Il=v2>8{OoUKCHCBU z5H2t}5GC8(b=JKQojC;ucSwP+fXvKQO&RD}Mi8P8k@!uj!P{kwT^ih)<;*mLhn;786IeHF{^GkSB_QVQ*l;0O3}Q2D88v`Cg@E? zYuI)^99{YMTiq|Y&|aI~^hYvgnzRk~o2_UuCB3Bt%M~)rCQh__$t=}|#dwG{+4;`i z0UYbe>x+!DKyIRW0SjZW00005=nJiKk)1J~Ubnay@RLz~Ck_FlFnO1*MlBm+61#rs zO~|(@fD#-KJI8tG@Cy`~{MWa+GGCVh1PRX6Ip#O*44&aEi(#f!8X> zGscs6LR0E1?aGj7NE1P}X|ZeyJCnt_I1 z2#yHLZk!(fGCpo-Wj7DV)r!;F2`p7N7Iq2$(ufrU*)Hrek63{kU)TEWC{5B+5grR>ge)j4H)}a`;ThUCQtjQf2H z;seiuVZ6%C6G)Bns)J$F3zWIb4L>u51yP_(l1QxjR^&~8Avf|&3}Eg7Py!u0A|hGo z7=M{H3VZUD$TPt7*nMf=425tY%mIg_lfRZ!j`giP7}$xk^3}^HYm@Iq>|4~+T7ke& zoJ7$zUf=f2bH^mc1j!P<_h?g8F=ENsH4C)`yt%C)#;@T>w@g&kuc_I6ENZ&|W{*c7 zpJ7`^$%R@~FI#)y7uVUy8m+$leTbafKG22l4jowLrL!i=AyGwUXi|1CEU74y zhplEYm6tqr@ZEue_i9UEO(3&%R)9cv8#H%Rz_UmN11uR=Tw>TzvT-@nl!FRxHo=#L z@W!C$Cn&y0K78-Uy1{_#r-*obj=l{bvX*75D}vOruowZr@jD7@I}O1)?9&C=U@ z+4X!VS8{%i$ARqf+Y2fWitUeqG%_|!!rP=Fq!hS()L|%zd`+_61chZa=H1;yX&)2= zv`C*`15wzl!1Hbk8S5*;^fH=Tj`dj4TM0~Z#E!h>i_1j_+PSUlk6mHoMHZ*`U9e@a z?K=28fh{CSOxF`Nj4`ggA2v$=7}#-V#1em-B3t>8h!Q|`q#yzm@V1(rOG3mP#gn0} zR#fyaqQJ1qMpy%g*)ry@5Qpz9$!%)lg`g+jYBn4aLB}akp%9km34c;n`7YBMg;ecmMy8Jyd z-#9vqooy;Ge}mF_MI#}Qd5Xp2!e5k$`_p_9MuU1&3E+|k8yJtqt*8$Wx)ksxv~Y?} z09nNy8Z5#-RuhdM2IUB{##Y5hjTKOU+DTt%Pd7qjyFL%mfDyo+8NKIemm1slL8SdA z_1iXTmuJ<)L&&ZEGS95X=LMb z(q2nLFm)v{L||&4kS8+u^e-%;QjG?u1x2an$9#R+c_=a#D6!ZC`}y^We5aAtgt>PB z8pug43dax`6TFP1%v+>EYwd`*pPKVtzGns;#}bVaNigX%u15e>4KT$-w2;zh)gKH5|#KV0ZLuFuCh(1T17HVxEy0QiNPN)&DK{O z{mL#fUh@+;BsOlw;=9|=x=QbYZWs<|~1yMkWZI|*!d`uk*M_S32NQdb!*c3!fs z<$S~gfi^&-hQHL+Agnm(mSf1!_)BMBIq%}&{#_l4xd_IAPCLpuRM&$kaRPM(^v3~L zTDTTBZ-3j+-~x&q-*@LN4#qnSjP1qBwKt}jbftcDAN?;6wwlDf+bG4EGoUVwc*Efl z6kbe@RYYsG22E!K;3lH|NroDVlfT0lF7c=Ascg5nM=oT14kF8_Ld;m+D;Rj^kJ(=- z{u|ZujXEmfs!T$_)?uLs-nIxP%9%7>Q9eZ}( z?%VpQbE>=Rr?a!;L}f+Ya48xV)#E0g!lOS{Ljl3|+o1hQkG9~!LXQ;RLW>HJgx|x3^;II6;GijB#j9?RLBjS?w^CBh5pMe+&}f#|b(;wCmXK(PF-Z1Jy0s;o$fekf z(zR?+x&X^nRp#hiT}8zBwsDY|U8Tz>)s@fu6k{xbR7EW(>NM}UpD(w4!ynBYs9w)| zn8ib`{fd&z%qEbNl3aI_;JsM0DpI|m;oR?h_*^S4|7Zcgwbx&~0RZJ|MdH2TDInA? z#Uosk5~tVI|rE@hx}d1X36dMnRitB^5g=%cH}XCv zLEdUu)UkEzP|VJj^}YWX@?)8X*_@N%7qQ>9x`nJjv!-jVCxI$c_zRw;#q*|k(EFO`I( zP__*{a+zddj~M^}R*r5JQaDr+&3v9)`bx0O66c1OQ@2MD@L#MvBLafp4CfskISaXu z$D*xRU;5tx_bwe%gt_8}oog}o)+)V}9iP@+3C9gZVr7%AOv|KPl{gdpCxQR~L6Xa^ z2v?P?iWd#;XVihMn>s5UP=Mgn#_edtK%Z1lQCLinWvA=)Ys{9=nsXo{Etix^RYXFA zRoHF3P@<3Y5)DAOXA!zjyFT1PeP48{5!mVRbsTvK`q*jsa#4!!n~1b}6dQ86^7Rk4 z-l3y+gQv*P%YP27=T*4uLU0ExTPb&=nX63H+9Wx7?L+Vr3KGIeDdUH8;zlAX0R1we z2;*81g%K_eMQ3KYlp^wWR}RvYtwR+Ox7lIShRIjka2p)8983d{B>SUNtw7q$jea8Y>i0gV@@!Fw#ctd_jl@} z8WG&#_h?3g8>^6m#-~eZg+e;Y5C*)&)F4*0>6#C-6G(a8u2VPl#;WL7gmo#Q-YaX` z=S2eS2binwA4D@;A|8I~#j zIX4VeM>*#MpCJT)giprH+Dl97D61Srmu@DWLj7elL+B)vJ_q%0RmAJHnr0gApykf28GCw|3QRb0s*6>o~Rg)g_rN*!~7w77rVVM}~LlwNNhwq6v8Zn-C}Rd)pJM5i-EglH$q6GVeN zbfGq_WhOeN0l{9W>n?@SxQzyjW>1Ujz%VKD-^G+bD&@^0A>fw_rrXYf{d=WW z<2&6Z7a2FVQa+wYe(GcbrDC@5M%Dqar~p|(E=1a?k)6_%TIK|3XN#?NXB^HI)93(G zHl)`?0Z1U$S?Pfqy08;IeKd@-lc9;8e(V9PUCRqjkw@lJVG}6p=Z&*_7`0_=RQ|#x z{Nm;wK_JS9h_f4iS^wgyFmDI$eJB>5-{UE-jBU^K#_&YNtMkDu`?GPhb=Ai?9 zyFH14$A+z~9(7ll+YWR*1qxkn@_K?n>1-{*tIK>NOduV5{$?39b8HC?YbtQ01D#xq z=bq~{Cv!pP_W5THx9sZyE0W${r}nh*du|MU+@5b5&knp{LVM*Uf)Sb;%naHzD7&vig2t3IEozncW^3K)_BwVK5YWQBPA_7`c)oGDAHQGBw(oSnD*h{Fyb zG&KC};4#t#I=T)kZVZrp>v&r67#*dgkqgL3nVkU`u$*TOpwO;f|g9?ei~SH_Y%%-wN^j?0udeNcjiwroRNZK3Vw84+i2*6FV!3gaosb zV>sr6m<+z95cDoM@v3^}nSs&EAW4!Brrw*p@8Em03TBghvrdwWm0l-JYSKXo_Np|y zsF5A}IP4m03jp=-D=B5QvvTGi>Ow+whdb1@lFl7HmY^Z%;dhPB>lSwUeM!jfOIh3D zFy61pxI83@FgM4&UF>;eaK5pBn0D?Om85aE5P+=M53PJ!tMC%!E9#xu?{9-RP&l0# zK{Z?}uF!=sEi52nD84EEUgh9%0&B`Bc~wTa8E7qAL`8gKE3sccT-?Q-csd5DQF=&B zF~Nmy)rQJ`ZcZX*?_GIdq4fG_FGS-d&f7TLO!_3$hSOhFZSZ2WU6QZF|Dw-j9mj0E z_fSkl&wZax1}Dt;?KZ+Zd(7F}_+eCF>bR|-RXGiUfQhemx^Ha}dc$`no6_k|tIMx7 zx~#(sz4;c|qO5JhE!(fG%GI6OFJ*ZH!&qZ6VwK*qrCgy_LXFnkL(=ujI z1|k;s-6mIFp@LG|LvPTtOMLU58h5rJK>`D`zj(w8%{G(MZ1%s;ip_Qo%(d0DL0s>OCT56SlpK>O005*} z5rnooz*03f@EqcGTnAM$7XZNu-&x2n)qv58*Wm5Xb?L34zJ1r~kdqZL@1j8aesDXz zh#fW_AeV4u7c!@YRH|dUw7Qb70<8F2De2b&JI%Cel5Y_#GAMAVU2n5x#51XGn&p5J zr1eO%sDd2ToPn637$bhkvL8HGJMn>;EHPzdU=K9l-=TD3RnHCjIcWY%|IN66uMj5LY4d<=JY=U#D+E$Rv5^!+*?Zb^GH7c z0Dy;&;*HG6L4pb9qbl}GVYQR>AFS|1XB-*4ne~=Kv3OXt_Pmz+QnJ1;bw#3pF*wc`^ru9n`XDcEAiiw;7#Es_O#qHtmLqxD!be1SNW)w`Ub*Gqc!fDSb(4&ONcjh#XB zO7EU{66xJsUKDK@JS@L?+-frd2!??hutg-JN3J)-S9*uxvp7c{;Y&8|6odxdj~nB; z)(3w&9JbH6wY^VpbMd8TJ9<2A6l=jv=))BarP1D}5V?GKKtsRp-qy>K%5VBzFweV< zu8~EHM9IJ?6`bhuJoVmpybf2oz9M^p$R!&A0P>m?$2M25=l8H;H9PCbRRR<$?3;(H z_Qjn!;B(CyWz(~qbzlqi+u=gJ7?X!-1xH7|9lW` zfIR=aqz|SygvdIn6{oJ?>}r?%jc)(=T zRQ|`OIS(2-8>+wEfM6AQcfjon+z+Z~A~c{3nTqzolQL2a*OjrT%NlE^Be)?&u1>}b z?wPPlZ02(I_(dC105Waj-oONHiUuNPPJK$a0C~7_6AVSSeDII`@%mU50bzSzk$dmM zza8u%Xre4%45cP6iRxNJLiW5x@$}#aMVQsRMV%%zq6*a12HV=jQ^$`5S7Vlc5v%z4 z@<({b(d=~?EbuKC_8=wuTyK%@DBZf4Fwg3uY)v&lT&1mSEq+R#R>O#K9Up-{ie=TS zf>Yl8Puk-g5F}tVfD-giB3CN%C#i(bEa`fqbS_NaJ6l13tPzy~WOZZg6^G)_@w}i&xfD7?^Ng=_z{GTN7HeRthOp z+f)sP%Gjyf3G>Cj{t6}V`irCVy`g>gV3hNNa>c)5*^;G3+f5r&HYTD-G|)Th&QSbh!0(BnMk2cJZwaYgvc-212G zfiSJhig@_5xMqF9shU(Tw1xuWE#0yc&y!rwAbv4qsE@G*U0^gOUysc@2`|(zzdy|Y zRnp(YPsP*fg(&HaLXCc;3$F8jyVu{SgHN?;ZCyX8c?+!L23NN=%uihw(i_mPxsG>^ z4j(cu3rj>bkvL)s1R(24FDqrw*AH^8IKekeVYn=Z$V)t7+w2Ci5nY>ug){Xzl`0Q$r{>O^x#O&*booZ{ z2{=k|IMJdJpuM4$!;iT1*)w2vw2;IBTb7>g_=}~CRHKN@(5oB;K}FcVJVsu@xvzy>(_APWmi_ zc8#UM900~>#q@-K1Kj8MQ_&FQ)S}Tp3NAH&{`y`TnMGb~N*+jc)925+WdDSM)GFBI zekZ$f=fr8}u&m_a=W7-@b-$sQ{P7pp?5=Xn3mNbZGh|%#Hu|!e0jzo?9=dzcATTdl z#SHlGl(Uf>Wj;e+7H;e?38KdU^Z|DUWHdw}mJBZ0J{3l^fTnzPR$|%!57TlbXk;0^ z*?>al_#X}2AX9B=rma1y{?qFC;|>g6UQSb}`RcBV9KJw-7tYABy-%2-sM@{9FK4aA zQ;ocQK)E?Adt1IigvVQ!)T4tCa{xy=Liuf1pg$x1dMhpf-byo_{gPcsTNW2yJ z88)$F+@i(#W>TBR2Dt%QDG0#wJ%4BHmX@s11K~G6n2DW!Tf&3YgX0d`Xe^bqy8Xwe zHHPQ1(@0+N9I@FzKYJEA-YQ<%^DcM$-3X_6t;)e1iG+Sat?|14#2?Bpep0Ye%E^GG z(>zAI2euGahtH39;IFC7egC4Hh^+|L^OvVc^BtyIQ1HTBPb0?);NZe?rV`tVGNPkm zc)3Hf!+7JbvZ?saC7*-+{Pa=@se3hAYK#zu5YyoWG~s&SA`Q_FlX&s;rnYj+VUBPB z_4cQPdF*_^j^O1rQJ760ERupIkQdGe@X!^=R}Rae%vUTc4{Ix*8=X@li72eU%WVD{6)#&q-T9_JMyBpEQk_>iaYkq6IA>3oT2-<5m zL`w%iC<*)5dW{7N@D>pj)u7B>ybDmDbvyK!u|YxIhuH;dlOO7RSRbj?t@k|sZ?5Z8y3=-dwf>%)rJYUEp(@H zz~Z@OTgxn*F$mv(RN!q(?rp57LoO~p$)cdavcjfQfWgn5%Cr_LAg$aetrD3;4nyS_ zyC<6Qa4rW;!U4LT7k|mjA~UH;VmCLi0z$56^^-GYg9rt}_0#4F0 zTDqpK&copG7!bwh#PSEz%VbKw3zpk#Pmvb1NZ7sO;Mi!Bv{yQ)ew$eW)xpMZkxGIw zZ5lhElqI2r2G4yyicC)lT0y|e`G^E_YJ#KY8PW5TX@>vFQdIzON1QF;d-Jq&#^GIQ7{6BwRmj{rh zjIz?g_dsK);YJ+M15S_YyS+5%?3nol_hj8H%w(~#u&YSK)o z{&whX44C}{%1+L;7&Qm+W%ntvum;32hUmKMf;*c>9-{wqNQxTWgA~GtJD7_i>389R z&iQDrZ}nsSSujW&Aji^|TTwpNye~L8NY#5W*1S$;84h%wkk~Et=WdY5A+_$U3y(;Q zm{qa_K&5=%0ikY%9 z&@`ycfD9DXm>lnA=*Y?6Z{=nsw zfuy8MU%wcfkHNQ#8BzPa1%gFyoCSd1B-H0NlMvP~eejw~mLG=V(a+O@)tB7M-48Vi zkz-kXRd`pe`VP1>=~NVs+g5KSG)$=TAT$p}Jjod1dCZjy1dIQ`5TZ%KJ~aQ_v1WlS z7O~{p4=1Wv4mb`nlW2U9BB0`}oSD{vn7n=_%`?D^9HBtV6gS4DBoSCulN|op)#zC5 z@OCOSi^HbTMPb`=;29ntaf!%3T>#CL*;S}2*&XNL_k?y;W(A@TG&*ef+TIU|fu{Vt z%CsGl)M?PQtxo3iOkA290tj{9b&dY|oYvIk20CTS=W-!hYqgIsj-b%zQ!sSGmrxLx z&DcwodGeP5(4tyag=vsbBR7<0Rigr`Go#hMw}D%W%V z@HjYW`&YyaU;vy3Gae8+;C79s@QEisH~t$3km<5QT5#z}JQ279WZKK)xsFyU@gzfk z+BA9%=Hkrhe*CE3J=AgO6gMXH-4VmilBo~)BWq$BdZx@VUV27R>uMTygsquC?`)SkYcF{@kyS7(J;wis;hj9ePo?5{xS`1O};S035v+Y zV)>IhfNRy$gcFn_n#c`1QCm9G48MVj-dRq)uOAq!U9Abxo4f}N>U5n^y4q_MscqR% zdY1(@WZ}3Vu^_B+gJjgYv1YT*IFmqMipv%-b+F8YsB$#$E5#zBw!J6( zSmxi2SQCASSTr%4fJaPn)NHD0e9zd0(gd4%Vj~5J5EijU%H-H~%`||4>Jh|De&_rQ zXVg+b^I-IS56z?sUu+0!b+!?m=p&@(F@stV1sruZ^lT%L{v7Pew9AbDjsxL;i^`e|P-p8(+WO#Dg z99#FFNH6ne#!&S82o*|LWMsnI!++UVA?Mwm?AH%n4Dm5CR#fE@#V`Qhlqd#?5YPcD zAdv=w4#5q5szZqPHUd-KUk!2-W>UnS!o^-uA`-h#N_Z9uLww**}@97w9h)7(n6$IIrGU*e9Rc564786`<0r`QO_UCrHHDh1k*xL zSZFK*IfB+j$Rhc-f6i2flq#|s9(sc0J$b9;Jdnv`fg(z!g{l8qNN5T>R8Y5-W71ko zwW2wIxYEq9Gp3LI&uCzh0Gz1ME3?k(QqQ18@;4xyB{sQ)D;@L(t-UN%A_f0_tXE?EW4-V%V@P9B~$ISOtpP+=U?V} zY-q}BS&)wHgY&o%(ULWwgOwE?$)HTucKN{`;(s<1<(Y2wlzT%J02$u%4A3OzsO()B z`=!5cF5rM4XG&!|)Cy4{Ush2j%S!bK2|hA;{K&_KTTMD*vr}2EwZdbf8k8BE>z`Yw zXz;+>U-|jR%u4&$tU#$-^8;G9yLj{0{bghf_%CYeY=Jb$VJ$#{jjt<)j=D{Kmk?>H zIO5y6dK7EA4FsbiiP0!FOJsB<^~Ze*?75V`ymc=(uwxJ)Ah(E+>0f19J?e=H@2+N8 zftw?7i+psL`2*B>lWvui_IxJ873_+VXs>a*Of{XMKO$JF+#;+pG0yHUF|<+aVo}Te z1S1eTZ-G@SKacBDa-P{Vr9be%7hLghwX^dXMV5t{vxiZl-Woy*Q^gh8l4Sa$5_`4_BntAPSqOd9l&13XW_aI&8nqi z)vyGeabyR;tCBK?eoESAiz9ehKIED6|to0{`TNi3KumYci25>Q{a zL&)Bc;!s?n1FST!bvwf6dtfI9HNb(vXyn@|ktYFmnx}jAE3S)4?fq|=aPAF$Lp&ob zs(*|%PMk)l+(qBSR~FI&nnPeA-tkMNau zBv<&fF3x(^Q+Hy^;7xsL7>d=vE)Qs{&GI`sn=ZhyjYH0^GrdH=>cuJilj)!g0+~k^ zkui(ylXSM->#A!H0Mop#6A3VvDrc7GEd8F-dEo-J$te(t>-<25Xk8_h7NwWaE1;WN zBtz6CZkF!ey{U08iI8q${_UmF*6*~VD9*w4vN*4Zsc*= zt_!A(phUO7!*?1Zlbe?IVyN_%K91MF76{VI*ju)gUHaRJwU)9;ira9ym(rDLae)XexiWfbpR{L|LW^fXmS(QKQMao)5BjG z!$c(8zFz{5()mWV9HyE|6dI+p4DiM@iUew5`qxJu((wfo9<`x*fZqFWAa?NNVNuX| z#hX%Dv7nveq{9i~hwDv5e{3_*yDZv}VYut=bK@mQIIo!zK9wgq7e1ZG`mU*~4C7|7 zkg40|-c3?<>8R$pey(WMPPJ}!Lp}`i`%1*$R8YnJMD9_c+_@BERv{|qd=XK%b#n94 z&B+OgitKjY4$rwy8D7aNF^4R)T`^*dI9s}E=duU#(gV$!7|B7DC@P`NF}#Zk7vuB$ zR*`f-Epf$IRb=CNzL%yIJ42X;fE(7NWT(iO~?EmC`njxPE*3tb|r%bOu6oD0%(MsAV4aJLo$y z@Ixs_9P86}yjWB$QmmemdnI|$N1nJuy?vS#xK%@}+E2^H3lUZ-mXApwS*HRWRScS5K|lrz6>5KM zFRZ}P;&`^?|F&P{GM7Xt+>NR0aMZlvGWFCkyU0ze9RB?|w%0Tfqb{NyvYqI;GibYK zPoj;%Py1_3iX#a3iKI@Qo+FsGJIS|qTVdqNC8`^6LE63Jv`9r}9{ZW|R++}7?{AcR zj&?kUuas8%^MnR<@W`X2yJq{n&DCax(}R*FjgkV+GR+VANwxcad7Dpr$YlE7yb&sc z*)^sJG%{}1^eSvYZ4u~EF^J*ra}3oG!?p{KQNI`Ki#XRWv^)2@F||bKc|=~}HyrS; zT=@>ugqQxL?-Ssb@x6Fh)XP6N0-7wP|KbCU7Ti>$vOL_Yy@+&qeVf$v+!6`laYhH= zmdE@h_kkJ4hS#>->v-|GSM5}M6B3P%B_(&}rJ_%N1saKtT(HmLwhwITU&V?j&2&VE zkFZwdiG3*to3#xajEwO1iu%4FpPtKF!`B!2}Zw= zycVYN2Q$E91R6BM7Il?&O7 z<}r%CM+hzw40Eu6$qcSlY_uR4U;18Ox2H;cAZQZ;{h{)L|019No6s?Gm!li>H8k=B z{<{uRX=+dUrDP>2fL=gaP#{Y>)*vYCFU6D@uzrwq$!(*q2@lnc47Spbk}h_*xhF^^ zxByoun#%Jz7vs?=8AQ(nyj1jWMH0~Q0J-m*iSccj7#9^`<%a<1zQqt@+Vao3BtGQ> z5``Iu+{;g9-&VLj_wQHar%@=v=+XC@!Tj-VtR8zfS8P=cSux<_Ng-C#u4il?oB~}Z z@r34RQ1S$Y1q+z}c$zUMX;6%jZpT<%LBA1NhMpF5#t-9xE1d+{Gy$Q-Q<36SS?b+e zxLwEq0CG6UR*gaJg4+Llq%tj{C~v$;?F;4NRPAhhTHP zh1ar2mX1ER8YOmL+5j&0Jk?-rG?0%pH%sZ_=0=S;jDvZT))5WCmvHrm7Q!{}u@=h{jKtg`@LZ zvJ+3?co2AWsATZ(^0IdlPk^2a?GIb8eg6j4nkOGz13H;6t$Am}{@;uDl1QDpQMuDZ z2Q#`ziE0`-o+DM(iN1TDN_LhtV)qlqbL>`Aah1eZd8i~-6<2{iDA(oH@eku~PeAt% zGx`(PECw!~Yxi5Uy#zH!Y=>+V?wVhJaWYiBlc0YDoE;q!$X1}aI~uZ76U7Z*v{Qdf zT5*RuU^sg_u?{oklXP^84H}_gSsLZ+LRK6Aqo=@p>>k9tOYFhCdryC|>fBmIuo;(` zaTGNx(0i|flg%G8pkH}UQPawLq2GfmT~g!MTbXeedJx`Hs#F={x_#I1pz?M}zl1;) zr?OTPe2eRRup@Mc&`Ti?Auj}e~BFe9c!L2pPq+LWzsV{Fsq&Y zyJgjX@)6y^D<3qUB-heDCUi8(G^Y-iF&7w!rFBm1$7IZ1oRpR-*Ng{VgvsOQY7E5y zqT=HF5yZ=I?CqD4vIqV;EAqx}|}^WK~2qD-Mtr75J;t zZ$b@JJ$s;2~6ODaiq6De0CEy<07OAt_Ru@HG{ z{(y>SpOr*%Ap49e>W-o~O5_SnylG6#fsFcSdB=f5x9sC9!SC%!^1A&hjZ6-lSpn5? z02dPKP-81jO_CAJ9qi_lL#ybqIzEc}zD6@C*h?ImSfB|p(>xWAh#lh8zg(LMePK)u z9tzSRez&#FOer&9y;Q0P!`onmvk#WBNz+vMtL-o9AQ$2Whn8Ve>{B(gN|u3k%v@xj zHT*uOs@%+D1<_=~QPK#>J&!H1pch64y&d94rqQE!R>eMVI2%E{t7_owjUL=7Rdw&> z=G+oz=O7`a11nrOh5X1QQepOd&Vgi$l83WYmJ7uWfH0ul`;!37Utv%RkVa%g?=V*I zM+E~*o)fh_<6RDFxUN{R&6iugm8Emxs@bx>CL@%^0@A{mKnQTzqt4XL=+aK$8Ept& zS5GW#!l%>;m5xQ@*{!CxHXixtqOo$?X=mUoWQZ_vk{(6k_P7VzZF&c0??LYwTJ!;6 zHv!qf_!<+4GXRJ2p_E$eC3=^ruiyklQ&f4T-#imQ=>XjYyO{yuy~SCtFH_^Dwf8U3 zJs4V5Y}+&E8jrGiotaDLp4I@~pRSq`?(DM*5sFD{FALOfR&SBObfq>{wJWk|qnEkr zA&jJ`!*k>3;>{2bi_y1eW%jfb*AB3#hdV%J{sq=Msmop;=eIgb;qDC@C=-tk*kIW` zC5a2W+N@%32D+mZRN&;6I&5ZaKZBJDq)h5TuZZ;3uxxG<8oWZYFBokf1vfdBzi5o_ z(~w;r-LN^!|1??RTgx)coHXGNEF7W{M~-hH!wK{_ z?!(K`im8@@G|R-dk2=XHj&QZF`%BMco-rux9XcntnBt=K()d6$s5)sut|F{!dNk}n zlz9}3NwMbewCTN2{}s3z86%iu)R9(maRI$rlYqe9>RuRQ-C=r)nLs3*Cr<4+e51@> z6^`xK!YwZKTycwo^Q#TPOSW4E2#1ee2d;zb%?~!s126y!^@Xh`&JPe{K;Ff+)B=54 zQa+H@I1ihL0T}auT>yv1CVs)kNrzX9%loITiE4C6*f8BJ8N8#yU;S}cS@8~#4?TP| zHTd(jpj1)WGJFO>kZBIuG9EauR2c*Y7d?xT1f$G6sS_Y=ZM{H9N3e4NDwMRE1e6fE z4yd6Lbqj!YhDbXuHi+q6%9^$XTIxb=-=~f##0p^0rqlW-CJ%YEA4ej8ck>cXv}-jI z_jIc_xv@5XjXxl0NIxS1n+fX*)kAL$U7+O^LoMtaKAT z01Q9D>N{Q;LGOnwg{40eGi^%yDdCphE5r@#`=b8!szk{4DX|N<;$g@!8l=E7S7{ZD8Lu(V5UBh&b=+CK! z4#G}o-0J-BQS(QJdv|9?@JO^JGTif&B<(0WWQTp<<@X|s{1C^8biUpU21Xb;Q*W<= z_Q>|XVjaEw8o@!l(6&~rNQBB?GS8l0yvd0EhlQs0SO^LL z)w|5dGY{lQG3kbU=!DMO5`N!fYi5F+J@K+KK z^%ZrcnSNa>UAV;wRzSns9}j3Nt(miKDp@OCsf4^qvqM(D5xem|>z_ADPx+bha=}Zb zZUbH2p#50s!PpUYRO6f1LCDR`6D4XQcq9;h+%Jsaqj@vf17+EUj|bzPDT@2nCq0q2 z2s<7sk@4yGAK0vY{{r}SO*^Y1`(_-(SiXx8y3-7dn#T*xZNa!+*sdw4*|B+pUOMPM!Pmx83r@UJG z?0L!f+>^d1PHa>uiQG4{qm?Nb!`Q7+(Fa%?lVmGAuvyA9#v1yd#^`0_|Wq8bpQKZ!8aIm;PwTRQXE_edi!j*;( zhPC$7?;1s5T;1HM9}}6ab#7*uiw9F)QTOZyOJwslfGBR-M{OKf+BHV?w0t>s1JNkn*A0E8ZS8;7 zIxLDXzz)oAf@umBc5ur6$EjU$$ZJU$ESYOMUdr=f)KdYxMp!@{3~oqoSAG}o3gEsO z{{B^d&WJTQY_7p-kM(?_+`++L{27{61tP%8llDc082u2JE$>8vn>hP{QeLi6HJ}koy7|=|JEnr zqbZU@yteiZk+t!<1?I9=$U}yk&kA`04J$u`9;2q%QjGiNYU`n|5aprv+EuS8MSI*u z_-pn79z`$jcv9)&$Eu0353GzcDQ4Gr6XC5$mk7g$yc=U2FJqdLq49uY z4u6EIRoYDb{q+;Db)HZco$b%DOFYkC0hu#VD5H5nfI~ZM|BTC`Aq8+`PmAFZbwFOO zMKbdNguM^@5(5tf-K@m{0xPqdpYJk3`fHR}d3$h7cC}+=<-k<#&}KjeRu|r2pkDt9 z=K~bpHQe?Bqtch79R~~Qc49mfkZNgui;_0Z9RXCNTs8KInRMTxP#o#2jy}O%iTG7c zg+}#@aG9G~z54?=n(sHQrXlDFo6YIXmI9)4d3*Kn1ZC+25^-<$#+e@-SBxJJL#DEf zFKJZflt8?F{HB;_p`!QrWLi5(@LScMZO!@5ES$->Tb4GBc&N)P9>&@q%DYiVda8up}!qr-zEA5A3-r-tfn*L*gC2~(WujgVs&q6lqd z?&miJti=HS2aZ5-zhi|EC1Mp$t;ikuD68VtUD&4tfZCZC1KxMP_H(E#j<^dT<7+Pj zm6wnJ00V=FP1+{$+Q@)F`BQ)Z00000007%IlTm>$zar@_5p4+@7Hr*YA&^2dOFw{I zUr?GIe13K**?HFgZ6($#$JPAAb?vj*@!f9C>ozM(95v`n084Yh9hu;eYS3rUGOEEu zv^#xcZEG2WT*F)qr{huH_VPD=_rs+>7kgIYS_0dEKyj3ZeZTfKB@{Ej|9v$WQyk80U8Sjt!kb*f$PCV+Mbs@EGKdp1zrkg+>w@rZyxnBcx+?gVM6zQX$N zIlU%5mdBkN8dNgu>sP70H%4Q?;n%-djVp*6ZVya(v~Gs#^;W{=^sP?8w@k7sEalV$ zDTC&4KB0FnT*=_S&0(6Rm&-&@a&-{6Ai@MQO)WQ+$i9{6w_KoU*~;T?!)AiHJrrHp zi2j)YMn*)XqZq^oD!@UY5r!UZOgqxxI=(Q#*uj;n8Np$_?wAoq+M_ zP<#9p&^4d$j34S6*#kECC5J{~Lc^0h*E}2NN}@3L6H@_VM1~f*w@iE1iIf+lW1xd%ekNw<4daucyg7%vl$YgHBY!h0s&Xe<$W}@%^|2Gf9G6h|6EMh_qnw96(O?G+ zRKP$urd{E-?YI7RKq4sdLML&1B5z0kl^}~jYroGcfcSc|c(Vxo=ha-pEda0v#ndc7 z*_`r&t+PeUct4D^?1$5@Hdxdl&Oq5VRL+;0+j!Y=Y~lbcq=897N`URKu_$Q9@9C1_ z!;hJVAFmJ38u?=;x1VIp?uf4~A&-h~`Q)7c{*3^~k;&zKx&Mii(HhWT`EM?=FW)@u z1W_Vjz<6kLZu$keS2m`me+4NRge-*dzz3IRyRlUD;Db0TGe-*Dm5W@WQJ?hR2?kBJ zmFmgS|F_EO>|T`ucQiQyVqBS3Rm}!(v4(#G7B}QZchb)$cSXg;#i1>A(4S*Tw>YiI z!k$P@u$%wYh=GgTHgT#IPs_YimRLQ;yzU3ymR882fm3HQTpoY`1HxSOihPEQpsF^( zq*#@(0000000004)E#@|5_9(I0V@xGUICA98EM|b{Km`Jf44&a6AA3_a2-Q?%0JS_ z5Z&N7SN`XZ7|nVRIHlP}v8YMr3w0E~>Uo_`%>f5?v44SavwGD?0Wu4#n|RBuFfLny zU8xSmxiP(6nUjfud@d$>gBRJ81f|nuM^p%7{C0q>|EixqmRjMD88Ybp#J_{hHu+*R zwMe97L^i2ZbM&w&i*7j7JY73VQS$d_`)wEG!@&r&GXmxV6|h&j-k?=4M2AJyu`cd{*rH_65Slen#xu&;n; zhpBTzhw32`58|^FSQ*z!U&X*~`ZlBOm|fkEmb!&LA%2k#EG~+r2}<@gU~3$N{YznD zuU+}ySto-~g6IK04B0U$^h>Uz1~13KsT!!2i~EAmF7lAnzjVgl?P&Ej!Z!{XzoK|M zZ;4dHi~$O8^BaQ#Zn9O-kt+wIPRCQK+QoUkXU6>0}px7RPouPmj01U0K1lU6wNsm z@{jPoU09MFYwMH#FvMX7kd}!D`4(Ggj7XDY9xSr`W;w@!vd8<$s$|C^dx0HP+BP?& z^gE3UxE1~?(DtMF&MfjTiqg0w`dsOHLWmh>b($7sgW%(JoI4qm5?VfBr7$ouNmlu-R;uq@NmG+^^ zmeYH#r&4uenC(GZXjWhs4_IzTgi*|eY(;&MephxK!t- z`b=8%=qHSg1BtcQu5f&LMK0IvoV_j-x4lUeejVD@wz<~X8r2&-y%cxK{l-G-l7W;b zl}2?nk`DbA{)P@F7}Y?+p>my04tmD9H=4SrN+v}=Y8NG zKt%3X4pLD*r2~xXE|A5d&LQ&)cuXz(*r2_=?Scp0D!~))a3Z*a;W6WB^8i<$!E~z7 z?40+fU|hotUI4XCA(D0o73qT>!B?;lD~S37c{6poqt{0tiH%3Il$C^yEf19e?=;^F zrL!(Sh)b;uzzDs6Wka1v<2mXOZN!il;O<>6l%{DM|Nhd%2?J{vtlGZSnmXpj*a;UM zPJoUvlT;g=&ukApo1Q(~P;Sn{dqa<5Z?E2A;fWT9&x_PJ5dJ0Jvi+Z_C>IiMh)Ngb zu>_mP`iscmVRnYGzFDExExcrw*U@^%p;QaxYDHj^XLuw>ge1*BD#ls@s1p`ST#~3b>oN0vqC|6oouAN%=BN>&8vtoQ~<)`qO?< za%0-}JW5oI!(OLI&=lIgsq=7oUKYw9#o3(13>8BFKEiTgyz0PffyyotOExtQx>W=j zBz;YIh16eg4~!$_fzX&HmIS2cZcHkKXH4Z)F3g4$>%_imJIWbV(j%Dk?vw+Ve8?lS zBIr79FQzt{#z`{gAC|Z^$xo03A(;ptih+Wc7^eajpL?gn{Hodd2s76$7sX5hX);)3 z-s|h^$atjnRJW{_2Vx80{rDY!jW9xaBCk=Q2T31ZiRR!pH+#pQUEG)uej#C^zTVXq z+6Yqt%otzEFsDfrwlJATRPZk_V_q>INbWEMeqXW*%y7vBB18E3iR)Rz8JFbU|JOy8ifaaBhkKy&c#B?hI1 z?ARR=_1fkE}>Djk|jprZ{Ak22w{g2^Ey@xt^N zK!3-E&8`~y;hmRTp%=r0~m7(LU?Gjv zf!=9;@g0Xbyz!h%M;?nI-_$uul`{ssKFGCOU$k9O7xuw+6>#Svq8w8V2=T{FOeM=S zhWGosh205QA)jQu7l8&__Sx()OJba+e1w!`@GvEM+4@-sYW{hjXJ8+lNe?NdB2DF4 zHar|Qp8BGde;wQhg8;7xv>e;0_AHtO+PFNvTw2wXgupJ2E3yLL-~g*8Z%S!%&}|zf z;1YF9?idwAAxA-P4!miOp;_+xoF@H?xb>CM_3v-D%!!R7;5dS6SE%Nhetyt!#OMF* zBWGBm%<*S5fd@#T`=)xNHse1MMYu(7DjTCp+ylj!Ycmk%*ms=L{f989L?Co~w|?!F zE2m%sA1Y#^)!r3_`Q(U zO)*3v$gMH<+BtOwrb;jC;Lgb@_%$~E%|+_31-H!eXpPzK%*1LopIS=gfFCb@xR04J z2{?ZvBD4tFeL~L-;-9`C1{aMqA zB%faD-ONJ;oJk|bgZHS{|AtEIalaC_L&y$qSM{Dfzha7}a6)(EoG(XJ*Lvq$fe7$& z*?t?J!c*-vL%Am(`E~5rKay_f%xg0_jcKs!o}Nl9!7^^x!l&D{V1f1nNFGD_5{f;o6}~_`hPcJrU!pG5+b; zg9Et8y6LN4p^=EvYTMS~7yi#f5pTH0@oDHO`QgoK$ELR6YBslTolk8RFLY)183jsak;{e55H4CC3apjVz1Nr) z{JxR_CXvAZ9h6;Mb*;#wDm2Yxa$;Z=`Iw2M5-*Ir#^d+8$dhVxgPVoMMYSqqN-U>i zbjtBZO9EA$=E0qE&p?tLPx9x1~alp4zEU($Ok=~i&Ums zhqTVLT4?AK!c{67@?w-FLac>l&6t+@Sh=9CCxzS{9s^9iz1^US{EcJNyefVGk{rPHh*fSMje6^E0NAzk8z0t$aOZsf zXFT#BS5k|eS&i$>7_5UeFLqLV3KF?ou3tVbc%5%(BbPTS2!LSmih`V!hXN8u*Gyn zakxLnVjw0JH9+(&gRGsE_9$M3i^!qpYRw_7pTN?c1gMOk1ILM}7jZ6;?FagNyAdnc zt39B%Co%>*!sx^TCH0c0YpcBtmC^e1m=aoBea2R9+ioV}73k;|-sx}&_puJD7Ic#~ z(GRhr#`XOy6=b}X+lw=B!Y9x8JKn^z;;)+f9VJO)F?khCyB zjxQy*0WRHpVhSYDs`2DA66xsFCpWo|g;Z&V^bHXTgSaAMJDoEQ;I>6vpg3INYf z2-RgnNS=_I5Ov2n_qy-6+Wx_#Ba;o+%GTP#4(NQ(@gl-6!OZH%`eU5HS zY3Ids^Tn!z0z)0_FzQvE)%vvO7P;fl=ia|DjeD{yS&O_M7AR~w=c(Bd#Ui}bHRkMp zh+XhtD84;-24(AzV{;0Ydd|tKrnZZj#Xib~LDj+PS;H8L4o=f|1>`pHZG;$PqTjsO zl%2Ekbdws-m$qr~8sE4Thx1;C?GqvxvM=HCj)!H#v2&xq9`pPyGLw*ao=O zQ{WG6TLYoJ&o9_^*LeA-+-5gSU+(pvxEMUK8WAlGPk!icYJHz`cOo_tl3p;itG?*# zepb6IJ3Lyoz4+5w^~~|6gAF91vmZtQNONVoo>g&7ERE`x^Gcr~zF~dHKj1{j^KEa{ zGBtw=HNf% zm;eBz^@?m8Jq*oc0000000004ku#lmgnA%9I+q#K6|l!MIr9t_s>$bz$mn5yC3tk| z!qw6CYIuvgsZEch_ly{GGax*1JC)2xwT9R7!qS@-M_zV)HO_F?!~A0+U{+pOiuO!R zQE{A~3l9I&se9(Y45h97Rq3LxkD_Ia8fZm0ETf9TEYrNM^DD^aT^xp_++0qIy6QP7 z;r-Ctb`&yZld7BdYYl}LZwgQ0ZFxFVl6PlMjT!_SzUq3SD}qB}TY`ZK8yYeJ7#*qY z-^c?>6UilGX9-feuGjNWagaC~e3)17_`i-rl|e3T{P|m9QN8Mt{VkvL?WRs|0o%{z z{tb&L;y-BwYc-a5MT2kFGeZZB;`6NV5?T9c36y~F$<51ro0sk z*q@CyJZcXKD*v`oVTG}tSV_VX+dRr^1fx1KX8O6RV5kp_uc@EinIAQ7+6Ym zn?(hy<+19#>P%_#R_EfR38Bvh zw{*>_m`E#KNRYO}hypV8VFbj=@-FXaceUajBLM~I1nbYX(5dYbr1Y**Hu;Zs*}8aG zS%|JlWD5yn)I44#qmOhEssF`t{uT@kYxIRoBnS#oBFWaqU^;h}C~6prtK;88oV6P=cV&bE8&LH|-|;m*WO0|jaL8n`b}JOJY@`aA z%17fT>XF8}4dZW37xY9vUr2YeRDubouy=(1GV`T@K0feD%(5`H;ulFtvEpr3A>+hHJ1;Y>mt$#HG|OC?}@!?k5%rMdZ^qBQG97!toiicX!4FEG zM22f?@voW}s9rSohA<$2K;`=yU8?=^m ztKd~6B+5=kMh(09LjeUU$v94G%icP*S7~S7qdUZ9b;X?Hzww?)G_)FV82NS8=@UK& zFMQ&J+cErLwmp6FuZA>+41b_9DjbEXo`6>0Nt znSUZerhC;(CneaMW_`R@aAjM_6x{;v(DkgtH1;78nbe@bDtO{GQBd2sbTgKXz%bA$ z>F;atPXB)vlzcey5|^*(_inm3*NQ$_^NR)MWu6`M&Z#=E)c-f0n5g<95IKFCf0|BS zT4vHPgHwQZ)$*+Q7v<);tR<83w>BaO0=aQg79YlzsJ01Q+7`fOUAS#&l$T0*i1UFV zAO|I(4wrmA3NnhB$tSQmqie&Ze?<<`@R3*#W{_YTVe)4Ia$c$`V=}@U!WF&ln`V;t zyYOMX!Dh5eH9f#ttGv(kJZT^{P5J8^xWk@z;ALW7_YZ5wWR9=sLmPE3+Yp_>)dI)n z$ZHF>XwqocpMT@mEgdGv>x|>5(^os6abIs{f68r+yW=hH>J>Hg+h0G4(#vOgjwnv| zL?&Nh`|9?}gRIx;F0H^$XGfb^4dAWTMv+Uldsb!+A{#RoU#V6}|O108hBRQ)%A=)R7jDouJrt-X1M91!C}WVLHC9Q{-+5R52bG;!3%k zt$U5;!|R_gp2#J0!vv41tyfh(d*r=$5Ebig@msqTO1&XPTXAJnfT3&92e^`+?PVk( zOJ!}QxegOV;N=VH>RG{};KDQ2Av^ryS!2-s$c-JuVgtaijrft zB;T(&57Ft%m686{mwm<|)q6^2TcpJ}L>DZpI(m^L!6FprP$ZI!J_S!9hf7tfM!@Eg zs@PLyDn^H@^6{UXGgdvhkjVp-AetWBdZNQkI~t~6q+sMQO9~j^d>vuzcaAUfwrFZ z^|^Oy{`377ngSXnQN2!6l@g(%mA z%K>`Ds2flQfcMfLpCtIKu(J0kCI?boxnER$TacQzLqiNd$UkUw5#u0szAUZ>cdKh% z7hg@;n>{TdRTVe9Ke=tbI*={BBs^PYJ6m_xPFzQvY%p-lEXQt)a);S_3?_8HS%k+j zF`j)2Q)qr$NM#R7n>ALiZqFn#Cd#UM2`UEg4W3|hqmJ>F46{h-cBPSf9=I2=3y=7g z`B^1z_tfyr-8>-aPYt=9M={k^?<>NZ4n*=VYT>P)bG$?LJ*e>F5pD)0`_OLg3H(uX zW$%I-4_tYUDsK>%nV%JZ6tD{%+FG+{p3jZ^001AK*B{UKZIk3CWG{w}U$)dHyVY;8$2YI#{LrqXz{+XiZ4y!2sb1e2Hs`6t+Q1qZYp+wr4AFhxyF zuCf{THeOlqSqK0uKEL;TGJ}2>bZfSn(G&mx1|%!gs0%G5Yp-LAB1%d5)5pGh9&YFR z$+8MEgy6 zc@2R2cYue}N0B=lyAg+KzbKtm7f;|2gZ1mlMu=ALvOhY_AF|BT5h7&_%S?oO zBkR08GI!C$RaCug$R+)&%C!e!8jCDOxc)U#sBmgrv5)5j9p^F{9}svs8>dsAV5BOO z{mWtA!xr{kvN!b!>0DaBbL=*Ua(co(cFMe7X>1_f#f}$9`yfL>CuJ+V1WXqmENP)T` zIS-vd{t8`IRc9C-_T%`om)8f={}u!s!+#~dSTvN*LKb{X_Y&1rL=wNRkqxvzBt2O@ zrNH{6Lv7Z8hf`E-Uq#>swcWN%yaN{*fO5xWQn%j``g4`ZfbliOlW-P!*6wb*s&aG2 zU~iRZkNY$ZG)MAXE(#FO?;nqqRVhIvUf9rg=wN?X1OSlh<|P7m6KpXTpg|RgyIt>b ze0lB=g{JtSEU>It+KZ5$E&8S*CbMEJ9Xi$0=|sr_v$7?yBCBz%(0AbFuD&OG2GUH4 z?7l47U=TyzNCV`}qWDX&rZ*%nbRL-oh*iA;@7UCVp=Wlm!#VN)_0A^CVaUiYz8@oT z`O-Pi+$(!peG_@&wOcf0_5*`sC_%VQ9Z0G_Fag3*pXRu2V*YA1NpBHn_Z}8U4$_#M z(7mb=J_aBh;uk$&7x#^vp~@+B(ZUZh@J-&A$ZJWR`GhOT-{L*qwb3!8V|JOwB9~-& z^>70lp5X(}ssT3z^E7AX`eQcwNJc*nm{W&i``U2#p$j$G6SO|v^Na$XXh}s>!K7sD zLU`17(~8Y`m3odHq22==_XBBptM$VD*o=Oq7~Ax;iY-+;b@H-?+VXmGa!ry#HJhb_ z@w37RYBMWurH76$a%&>ASPcLV-k87Mu~B6w^}k6E$*-b@rox{)%f+Q|gS+q#>1?Q< ze%dNgRrToyoDSxHPMmiyUe0u3hM=B9@a~M$u>W+C%9c@yUU|Ju~GLsxLJKIkbw=_tFAhYh4@xYmK^ z6(Ne-=&+Wc9hLX|OIa~k;HNE$?B#Yl{So??ZXr4le;GL2_S=sY7(0&(_EZC+z%$Tg~a9f7|arbdu8XxAVX@gU&>|{_#K4W zIS$02C2>MWdU?vqJJ^oLezhh2tRSbT%ZH>F_NH^{o-Vk$3VYY1$s|k3IOm{vOc6Rz z78BLm^~TDgCS#=b`+!(vfqQ$6Qr@ZTD4`wGd_Gud|&!rMe^v36N%+9qWlNe z+eK70#AaplnrJg0N9CN?<<+OrmzKR_qFT_s6PH}v>47E1}p_KHV zHhb0*$`POe0e#pG^R&?mD-i(yKmY&$Iv{})sjW$SzembnQ(Tch-@IV3RXLxY@43Zw znFlEcWC8HE+uC-FbSXTptkbzfsiU#Grj!)7IZA)8zO7tXF*%&~LSv8E(dXUt=D36n zWbq_noY6tHk5xo7`pl}N&2Hn;Wb6S4+P3e>%r`^It(~HT=j-vy!ts_GJ<5fMQ#o3d zE;;E!tu&0qQBXSU&vtCwz>-l-x=sABLduj-mn+~br{8yqhX6a_moBH52CYc?h8M@u zq7_>pA_7exn78>*A_G*?%6X)ZV{R^X=G7!HCQ81VWC{A+()g}+qp$Jf4q*)&squ+p zH;g_DKM{-HCYiZZVMNcS6|9+(L;sFEJL0u`0s8jsY&l?EZbWLLZHndM)8a7)l0#wv zI<>w?j)Om{D4>SII1QNAvln!TN9b@wqF3a0%%y)oJWM7MnYYjFEwrnN6_nEK5pv&ORi}zW6JFl;@thJe$D^f`NAxUQ2L+v@JJZxd{;`X z`9*Ibj#GVIg1Ut5*!*=S?Q*qIosNv-n9w{>e(ZE|$T=d=(Y--}?~1cIZI68&WAIOF z`Z4_R1w;0)oKX|l?EJ%X8Y&$Zu{~oI^CZ(BmZ$KD00f!4muL?|sJ&^B9_LDgsX|}h zFoZU_eFz4fV3tH2O+Q;JswcYZp+Am4=>1i`@@?DxXB9W;bB8El51zDM zV{(enzyJUMxs@~91OxjGuu*RFFqsW2-MV*87!fwBF15`w%i}^RcoMVJsTw+$ZgzS9R84;>YkT6F0tpuqE0H=SuO-mfod20*m4=O#Q3=gH0CTez0iVi^+Dp1AyV0Ml5klRhl9Q;K+ z3+7m&`McY8jXc2r;r{mHxD8o!OcH5^3t7^lBIy?MUQVRF%C0?xv-+_HX|Qnn$7Kht ziyXCS|6Hpv9U}mv(6j*(cvGZyyRftJ}Fog+W3P4z<>iqp- zcMt-+3GH1llR8^FtO6zxYN`BRYWBu7%aHC?DNLM1Stf;3BvDCb9AZOd?BRb@K(wE& z_iSF>d0GIgeUQ--QM4iCn-vH_VDC_g5nKr}AFF-h0T8j1iyIUcraS4PBe;u!R z`BFtNbRY!c`G!7a$Z=-{PkI9X1>%Mtks6=-(+4?&rN5}Y^~^4vDKtsBDuBCPm6CiL zudTsZDFozkegVuLrsO5IhG`qd9Hg$s&C`j{@)$*1(q7?gzF?zDoTMW6-_(WkqL1_0 z8|zuXXe*O_9RC=aBhf|9(oS|uaWZQ{*afRNZ^z%aTyhE$aV~E!!EY+aN-XS6SLF<+ z|CGF!uH4kU{kvK}pB~~(eJ*cAZgvD}E#k7;@Csm8-ish+)HGQ$2A5JiHeg2NKo|dw zspp+2$?Z=)J2t3S)6&o-1cu9VC`q_@#B0Xg+nTjfG~=Y9_9W7|0?*-REcYLU<}6;W zB*of+gDl8p?wR_#*`9Gp9Jet&t|jWh6WeTRO01~~@Ri#C8Rd2d}g|v>Px$)^AOgVHMld0v*wkRan zEBK7f|NR1LB9zRB#@a_3{X zWh!dThfSQ#SY$aNzGN&N6hG-uXH4>(+Ib<{*zN;d;a&5T8Okag002-s0?Ey#E47a^ zUAv8Ikkec6cyxRRVj{-G$Y5X;bwxjGoI|F++0A)^9$Y2KhV<(Q&TEv`tUTjGH z2TNM-1M-I}G+$qEOrEpSfT?QwuDR6WPgVk@<-)VHV!mIc&C=^dtQeQ6Hx?LOy^%~|JVqYqs(HD~ zH)NAJCJgmd!iG`zVz+>Bl~?1mLJb1j1>c3W!E$!SAPzO1;rllzb556DaxTbX8?>0% zU^;&dvZMHo@>+thyAZTt=49<9gMAxk)$U3Kc)o0p%)K)$v+)U36nvQ7NB)H zrlFJ&rNF#xY*hTddD$x3kac#PC02lnOY~~9%+LS;LHlp72*z5xzCG6sv?F>8FSLl{tfB9 zqj@Uc!~Org9B6;O&CUvjZHPQ6ry{7$B&VO>?)MbSMd%VCfAgZ|kw|f3w`Vx1b~trmQ}cPWQQB&- zoF}H|OQw_bD@xNNdK^=9K^p!f`qnG2_J0`|M~do@qma6mY|%zIXWV@z{yBoT1;*U_ zl$H_U^;=eGR@aUYMn2;vDVgRFv|3nxDKn-indRZ$Z4Lom?zEwqqrZ7HHIjt zQD>H}cz;&fN{abK$eq%c@)BB7t0~4AbH$kbTB7swW%w)kcH)2Zz<&$paTHcnGlp+U53h)?(j`^xOLB#%^eU4hdQ2Tx5)om=~ifijdc(L3T1 zoq@8cgukbLDr%KKE=|2Z(Wtd6_f_yAijSv|$EIakZZVmMk91}X(Ol~h*|VpSNDqH(4SJdL|!k!W}xPPi%z!$h5!niX-R-U@B^>_ z0003$orlnW55K?gEUK|#NipCpTHifEOI%1+1oFzELN_Rs5%DJHW#u6kjBfL&Yzl7Y zfjmZt@vX} zys45&e&bfw7GZ}+Ds=+xRscu1lmfgL6`uU673Zi->R2FizATk=O6m?a0lGU{)Ltg;jkf_{79- zjlA6Q-C;G?EU4y@hf3 z$7pNy1z@|2*I0s`dgBskkU;h6GlQ9IrYeOh3zoRN4rElLb%CqSC+>`QT_G)#fx^UQ zVk=I`m{_61XL`wvaFp>M2R-Y5F`f|+FHusZer*n1cZuvw$sbe)ng~z`Jj%0OF)?FW zZ#Jn_BTSqgQ6 z+&3{fxIe*3foXB;i#P|@G_@PUQrbhkl7!w!jSr^2UF^Ex*A;BZAOb}&QmekdU~B~m zYyX+pYLJM!#O9hw@sj^!Hd=XI=-hBsffatdw9P)3Cho?l5cL3mKqQBC{ z)IC>JN4q|I2;TWbMo#PqA!N)3t09H?X5PS}ek&@b&`}F3?t3(0l=dU`p$q>sTSxUZ z9kySITi61;&2PsNp)jf#DiwjpdPBc2b79!T*W|?SGL8h+_8(3=r&QqY(A%@G4v*#J zz#nSCHG6nlziEyfx0TD6hVmNVb_Z2|ezO|b2X>CR!7mc=zvJP3?*HLtt9p`YLA2nq z^=w>>CM@x80Kd?2eU7_>fC1m`Jy+Jj&L;Hhn`R*|w8%Z#!-nVI@-|dD&;W5wT*H~6 zE8TWQwSX_LncQ$U>Vo}KO<0BZZepI831HBw6QPFFhD%GSk(68vreCK#)t9kYiAKPI zHjj7NlV^4lm2-sNjK_YNM|@+cxxDiTGtG!i?TQ7$4A+Bnpnkqq6~0RIUBGMeNbR+jW;*SE1*IJd79|pn<db5Qlnb=hIumjUdhHB~_00qa9IqAL(HdU$y000M$q89%`8h-?g00002 zrEy+_ahS$@G8fI{rtLCRMFDT`Q?k>c=N?ihZfO(4U+T&p!=yGvxPm|E8t>Ov3XC_U zX3v}q3_)p?^jh{2A<+#RU9gdML}kh5jQ6`o4adiM%KF56dcTT=Nd8dTvi#PNZ8Czs zS|ctemHnfv=bk&YNED2!7X@XRTFftzd4LZK30%P@@j{fEG*A#DR!3fsB!tG(a$llB zC|&yu+cVu7nY@WUy5^RBFaul5R({v#$7V=`hDOoURFs0@enT5*6lqG0NIzSr6Pq`r z?A`ko1hpZk8f22pWnsOa#pdl89S-OxgKGS6` zbDd}kp1RVWZgfY>ydTtW$}!@LgOhzeObgPGU&sIe0000000000000M^MB;Wn>zF~Y z4Hws-JNzq{SI;J<5r}jyMMDG`wNaW;E>f8!?lIres&^!p<&N0$A&RqrKL)Z2vB>;T zbSTSm2#V8CQURSVygmz@qpreY`~*<>BqCeBQb>&kFcPmddOs5UaKh0N zU`sYxiF~;haa~)SFK&&$009s@aaC#lVTOBe{^eGtYvM~)1AhR3IZ$!}JZGGqtckjz z9zt{j2l9AEyi7#kRae2m1~ou&3@C8${pfie>T&Kl^a$KmJRznymRPRN zJ0F~$L)2rlxVnmpkY7k0rdc`R1d6bB9<6`Ms#b4Ogq-d6y?HxLo!h6J6A7_3HPHRt z{Sq02P}ML#N7s09u3!pI@f$z1{jF72ykG2o3^K?}6h~OmBdU=GrvnoK2&CYKNWFE@ zI3CgafQGd@0>y(2Q3XuyXc(qAO0w7)!trLsSSCBHN$+=1iR@xtER(DNEsEkL%iSz_(06tV5ejvo)hsCr4VSc;C=v?dtK~ddT zBToS=kpdmtZVIfuWPn`MFA;Rc--7royz zVnHjwU_^;?8OnS?@1q}}*`q;Y-nqr2xNM#0RoG$FZxi}P)n=(+#?D&bn>h-mF_x4v z2Sq9_u;{xSvba9ugt$pJ!EhW0V?WUW^iK*$dT#2f$s7iN>4)Au7QK;r|NT^P!%tL z9|{N6Usi{#Dv8cpFLnXSq}LRGW0PYWN>>-gK05De4huovrq&BffDHpWOsH}2alBg| zz1$Rl)T>F={{8eb_k8}ku$TL1Z0)Ed+p{7QL+Mmn@sK9 z$3Usxd{663jd(oA>hB|BWkI+r24_w)NsmhVy3|l7yP4k3d}vh+z%Qn~BT58cadZmZ zyX+G;RvTa6ZO@I6nx?W%W~uJa)w8ZF9yJ-xNITfn7*IFqX7;gL;^jgr5<@9a6M9pWH!BKF=qa4An@P-MZ)T5L~tf~ z78ix4@bwEysfbt@=Vqk1sHsuPlBA&AukPLr`LQK)x>~hg9V9Rz`B zqDek8C7#ok7nUbjcuo{YqS=8k;3<4T=;k} z_m^z|Z$Oa0gHdy1@{?%0|6Gd%KO>FJv+U|$+W!wDy1+Ps0;?;_DyK5ii>zF9^feqP zO>HEf)Fp4RO=>vK+SzMlkV{cLp7pYfpmLEBnwp8yvRVDbU#G(y?Vv(jMm;p8_u$O1 z)P2YhCy8-CE5AlSqH0_sknVMN0?exEP@jWaEk7>?T6)igo*Pp54pZ=n}dlh>g>W3(Md*iR{ z7?CqE{km})Y)7W&lZdU+}T7Pp|m-?|V@T@zc95WKGsfEuY9)t&t{@=SMDg(14d`x{(= zWgjO*}lk$M{c61w!FSlNOJ%PPVc{Fe_1gL zxnVW5_Be-+rlu=)sLk&>U?M*_e4r)yh7k5-*s|sZv>pBpU2ZrcNFkFjF0JeR&TaHn z*lbgU&Zv7L8VL*0bUkMqt8*-p;HijO%wqp6S*&oLvmHIQS_YJ<@4gIx7B6tOaRh{V2- z_`8D`LOU|+r(GHE=x<)BA5dbFyAl;8#Jp`-koCRdQY0uFA0>b1iUF+i{|fQ;yxJZRg2Xy{_MJHbgcw~ssABS6E>QXo^-n^ zaYS}H{~#8V#|KV)ox6pV{X^SG<5tZT(opeJe2_4j4O6JJC&NKr(~4ad$8Rh<*W)wW zy{b>H6nnQQO6=0$?ys0%9``yg zZ~daB1nhKv7p9Yxdr_rKt=yj)a0h)t-G;a5tuMryFkx;*pUP!|g~kO2s=JS!60bZB z@=s%11v=;LX)U$>!sY)(;tP6-Q(=!l>v{0M8;PnEwY48s;bh9K@V5BdQMya7HSOGAoxgB7r^03YH8UDe_fxd(i6Jp-pD#O%$F1%@jA!3+Wj#=q3dR&8227OX zm~Y3@4Ut~;0$}YfQe66K)o+^(%<5pC14Z#ntrIQq7*eofK?XVZl_hkwpzK&}Ym`d+ zMOBlG2K`m)im!@)Q?jnE8nq3mq@JoF!k>&byLkzeX3$ZzT zV0~zY#Eks`U}qG$tE5&=65D?7THbJdYVsaLl|s5u%=3nb*FzN*5R%f3FZ2-{Q>^aw z1+jXD{qLv-m9fzJ)na$AD~27;*62;1A1F5&+KAaq?@c+yAsNBp^6vEmLziw#S~FZ0 z`oD%Ji-FCvENg24Y~c624Wq>rn`<}Yie5$Aok{~Gx6Z*6o^IKDT_|%eyo9dnR+@2y zYV%p58g zf{yz=R8tOT>+j^cucg(J#h{kAvF1GH z=Pw?v(c4%y4&SQ`F$2_&^)|r3ZXdOoskAK!7ntMqDedE~YMFd@Tg4nPmuHT(Vn+7_ zD14bRJ3wW*Rg0BvD}|UsAOHa03)&&~VHm6k`!k3cd2j2SoMiu)=vcd8PHh&^E!|`` zqc;W$EyG=G+%iQPZH3Rm7`nI!FGb*qV)h+izMn}9HyE-$-Dbx41?qp&<$$)LKmxTk zQlYt1bkl9=xpM9Aid9!J_QK1n%}CYh9+U03AGJIHv)ls=;4S9QSIX6(xJJXcXQqCv#hZ1zlFbIjWhL`2vf1<=eot42Ne|#}t3qmA>cFCRS z87U42$4Ke?dh%(DAe{ z?jjX5v%tU=)`&ab&CJ znK4Tlf$pU8l*A|kF;KMjK!qOzh;0J_o(PZhHGlvB000Q9rh@N>g`rnd%>RKC@{kjP znwF@E>ZzH%Xs?HFd_7PzNy~tLpa1{>F%p+DM5KNjLES`lU!p5pPE&T{)* z>A%n>;%kPRf(HU)5B%#ALWnaV@L|;>r@cat6)hx5Jy&Sv$rde}5 z#Pe{h+LHd}o4F&9P<;O$m#$9Q<)UvNq3utvs{xb~au7kJ%PAFgrq000E*U>}ILv746&dRz5*_v_;RPiW+dg$EDG78^O+kEJ)!58C&>>KD zCyCU2GE?5Te`rf-QQz9X6qphfqq$(vdx6T&v5}dXAM(xoo)NDeZ@tr2r-~)LU^K{H z=_1ltt4({-qc#}Y%(a9700XSZ7?3XJU=9Vq?^WSO~`uMG>|@(dn3gx6v<#0_Ya2f4?`0^ZH0 zBq-sgar3dRz7eTmkCgE?eHTMvn2n2)_m^#*Vp<(#LJi2!(M7v_DVCxwh*}7><3wnU z5u!9ki0hHVKfhViy7Acg>S*M5r#xo^?2;)YQb?qcNf?KM-{sW~qmw3>zb_$y6_!$P z=6u00OcMmb2_r0c{>AU3y5q??Gvo+;=ZZ?|0J!%scOgFlo{scig;~!hdiFlU`AH#h z&iP;C!0Pj!na17l(w8@K%kD3}=M#XVPCAK6_ zp$y`s^#JW;X*DR@29H`0S558IM8GtqB?;r=pQ8!9K(Z`_fdN)OqA3uV)$notG|)1Z zi%0<~!bp{3&XTjMATcg6D>dtv*qU7IXIyz`$YUSy9T$=xNZZ1uIp09JJab)Wg)7n+m2 zxdl~sGsl0D7p*x`)^Rj_1_{1`013dJ-{+}TH1X~ASCTV6oK0E?!! z(x<2T4ZKUuIO`yqBmuJFfZTAcSNCO-SmW#?`J~^h?MYTGjMe$}P<(=nR(Pocr(s%m z2wGZJ6?N29EvR>GZ(Z26Kd5t!OQ4|y zrkoErgfYvEvrTgunVxJ^q^-7sJaPit1rO8ea(*9)DPDE(7w4fC{%(my3i!jW z6=VaPgZ=5QKWW)HgXHD|i_vdXUvTb}vl78asjg6aDj+A7tvMu)T1CL=h|<;U9#BWI z-)cspsKqKea{m#t_l zWsd*=5+xf4sI*f;s7vq!H8z=Qo698T$i==%8Px3?QHU!e`NcLtrQf(LdH#7eg5^yG zlDu#BV}QbHR~#PWUUPgL$R2OgFbb&3bT~Gq-q2ABoxV(=p~a7Za6o7Gk<=6P0Quuc zVxOzk6p6Y+Bh<6O-NHXb`K4ixmhk6*$EVk1E08GAl4h=lrDn{&c+DA+Zax6Ml>q0P zvlt)Am=ZPZ-(UD~adud({oCpYrKOOO=kG3&u-?gn?JS%(p!xAskak#8GExs~uhQw% z2g7P=%++d35s^>qPwpP3*;0U~EHo+Y&mu*OeL#a{2oOXx8oNban1!M<M{TK=~J>SEqCRfTWGnI_#Px$P;hJfin56i&!Ml6u_s3h zk%1JeDnpNEDz@1atJ0Z1RQU^JOAWA2= z`bbcY^VioCYoq_)+58l1f9^ltf~0P+xb33a2pcm&^rHDxzj^$kuK_KDb0%@UPCiOO zd`*-zN%&g=)4n1VqZary#}nagWC|n)%>P9O2hL>1Bdy$&XFv1?65yHFi8!kzNn@)DsLj zAdZw*9WOx$`;g*X!&6d0LvoV{VhB_bkWL-gd(rn2j-S+-8^3OGd&9`4T5s$+?zdKI z)3@PdN>b4N+uJ9+s&}PHnD=@Ce}Zdpzzt5M^ydAZ42{HQ=Fy%iszeoA(7B!|LhGzO zdJE$q%9fy#^xEOtQ&kNCUK9tZGKYsJ=nE?nOq-gvfbQ$iVDiV9APWdR8O zC0IovlP&A+(H0@W2hf2Hbf3IdBs9}x?t=`HUO%@iuE8)kBh2FuDk#yxjc zLZ1cIaNMoFfu=rv8Wl)kQ!>Bm;;~lJJ*x?f%>O*!^rhK;+`o+aWRns_@4A&}uFq)l zR5Of;+Lq$?TXEA*_g`HVBhY$(XVGdSA-S=@&%3x;h~v;A{J5gjbbN z#H!h=MC4WmF6v2Th*B-SuU6T4E;QxR9*=O~SSU&cdgKgL@>%sdJC+5pgK-FnvP}{W{o$du5JHD3PG;kW3b=~iBwO=tRC-sL?8tw;Q*kl(T&|h-c+uE8DuD9ip2j@Sizl=;=qUE znWlQKa%PB)_F~FC;we(Sy9mhigM~%9&?ud-ew`0e0NSa<#}E(VsA=5LJX%l+^c)9;M_C3JzSdz1TB3v1mTB(@;*y>3LpDzE3TOxF=Zp03v1}Xz`D3qc*03R(ykHk>T2wN5-X{t99IRnQBSM2F@Lf zp|6v$N~b)trE-}l<_pLIv4$u*eqcaEW8jghp7G&|4mmtN#`PIrSzw!C!oHODcV0NO z=-?!H+9IK5|r1WEPwf8Z>?LZX0F)YXy*}DgBJxmFQqB ztuJmMc35`?>aP9m#v4aulX!Eqi!V1EnG6R;DMnxT^;cjD0@kYoMEp9j52TsfSCb=a zoCxL$UVLQa2J*6Dg4GpSr(T)fXvqkdc)`I?FkV;SW4f_q<=Y z^m7;liRGw@PegrvSoPg-?f?1VnB1p304J)2eq}m?w(`5F)a-`@-@(cVf)h1XP@5xh z(cGYYpU^-hxTBZjfjrrH6aV6O!MCQz^3r z9&AJtf?2&IJ&F_U4i{s}RqUTN{ig*_O}8MB00hctSN^Vn5(RtH{lT8>SO=v3e99}_ zN}^4;E0lAr2kwc^&d~!U**=eEh|Z;{wN(iQxL#wl4demvYA))IpGkowNqWsx=0jeQ zr(j8{Bk*Vr5e*EmHQ8JAzPrVb>{9kll82mouP{rope0293BJcc;e7Nrj2gyDFbHViO#-odv+qsUoL{D2fsXwQQ$3hTF2peRgOQypEGMC~9XXU7pDvAi}%t2AE zuE$)Uw3QUzhYNDE%JD{n#G=Tq5^N_r$Mdlf8-wF^y_X{F(oV)zoj{*38_aOCRP*Ec)a!5^8yHSO9(5azq3Q;80Uh2}Ca1yc|hm&2v% z*P*@fFfD`=^=Qtem;f+?0@~8v-=Kj$k z$s@U6K!M) zQ<)G4mYW>BI~jXNu4O3_*FO6x-v@Chze7z0O<^OTo8!K@3c{PW0;a}&*pvN^HymA> zVim2ZyXQlYf)aj#eyp9o3u-~LA5Dko(7b9<4Uq2sb`NJvcX;5eW~Lk`*2A7@wKyLNx{ZFzS69n)A#nNE3}tMqu>QmtC0=l_QvF?*i=oErVwLtr z+G4^`RsQVsDSs%nh?k@{F7;bJr+XRAZl)yM7ypu#djh~M=c6~>EvGHMiqPo?681DYNTh6PON3>VGwsn_@Ey0C+p>+ z!7!&vrc5`Cj1a|yt9za!aUdylYQ983Ke>Y$05HKNxy;b6BwGt-5q|O;!P4fk(@2~K zT%61P`%G5O0aVYmrv40GQ4|Ts)w+>99}5WG)mA$S^HS{;<7;Int(E4FWBDgCxlC77 z5@?yAAh2&Nq+ca*6dogLBF?X5s0D9@@%Tu4RNyVGjkxw0*gxCywi5z)>DFU9+~Bp^ zMV#mP0^P-wv1{i^*h{+02Vp1hwWBuaDy6hr=0xQ1H$O-*4_-_+VY|k&UBPYeHpomK zPe=roH<_>miXW=8lmkUx;A6M2&$LSvTsmIBHM;U2O*y7fPZb1rKCdBuVzqr!jzeqn z{|w_<+W`xtmHl~uASSyWGi;niPc#8}=ua~U__u169sx>QW?Um`j>a@iMA_P)OyLW} z@7@XN<-^R~l>u#z`AqmKkhSdSp$*wQyI(Z82xrs*A%G8VTW2RSu^=tz9oeTAC6IJa zm~L))$wUL3b(*EecfEZ#gv2!JoFjKq~Tn zuwjt;^2ZuxEd$_f280YyGTsT~p9~>*i&)B&U)jHQMTvd1sG3s_$8xPTaK+AMu?!jY zhSCvR|09iys>8d8>sP@X1->_pkl&fF<;4zQSzUZzrv;kyMX%`gCDGFkCD=C@H9Z+L zutvhB#99Qph0c1?*I%5KFj;CJJZ&CU3T9!N>-0T~otM=51bfM;5B$L&ZIZH0N3X_T zEzz3&LUn6qt(!S2j$@gtq{7qAM!L}7tJL$FFX?ZIrCbv;g-jq|M~RA2kE zPCiJvUpoPhS2aHX4~eb^4xIg3tN1hJ8`|J7^LT!Mr7}Y@M9|eM;0G(h%vw|^ysXrj zJdUd1J$-5Kv?eXz7L~E!wVg6oRgu#Dg+p%Y{UhzA}sHKTVsNWeCRcU#xL-9!hy9_MgGi0$qTOj-{r#WJA4F_rjw~}7`YWN#Bh`(bS=`SRKY?T?XUz! zq`En24nG*;-QnQ1Vs=pkEjq1T7Cj&RO0zQ$19S$jbfhmHYG0}OMdqW(9%m%vhoJhm zs9{w69i%$6a-ka9zExxLF4~u<6)3HcdFM zfIqFhW=gJxc1tEzbKRZvUzQXnd6{6ps(dtWp}rmrD9S>JwrlRYoti2j-l&KvN`;3r zX1wZGn*3^@UNL_EKxG+Nx{iUs_RFze;T&}|A5_va;S;u6S^fzRjVh5rx^!{PPkLU2 zby!X#{QdrK7W3f7_Vp`?G<{9GCy9qqyex>w=(`EEv;XxB5_0FD+ zXXD*DE=F!*395{L3#Bd9=3w~9tBTJ2zueH@$KaAo-BR8JI}5Iort-h-Io(y=vBfZZ zUHNs4^c`~S*El2sBKvTmtS7x2Yy5xa1P=91%V#9d3Ds}$zMCgL!(kzb5HHr_T) zNcY8vSC)$WP-Pc!d!I3V!V;ly`!t=!|5aVyM+nM0*fEMJIa8z3giYl#GH`s%C77JD3nr91!t%n#UOXb=F)g+XOf5GmEH@=|1z9jqV}UrZ7MG95=3 z2v{)}g7Jbt*^uG`y z_mbG0GOKNDc0iFWNP|&$5+8GL2no4z6^1Y8vx(Fo8`mv63!L7p7qyJ`4NfXw$aX+u zz^^4u3K*s73M0)c_!tfT!5Ak)YkE-XaDK#pEB%a144;B2r;rO-fO`BUWDk%Z&Tq2I zZR5{X){>35xxL8^c)PI+vk6t*VasLQCw_USH)?FwH<8~^GxT_ZzS=Kf2||YWiRee$ z%5APGsag^$8t47e;+JmZh1AWbB(@L8S#`o$g7^_fLLT)1+2pp3uV()7m-Qkab!-YR z&r`#`2OgPZ>AZOg7R^)96ad#iPz*kih&2>N=rJ?wfT-5gR2t43+W}EmmAhQ3OSn=S zaWuXyZ$=fT)grZ*cRHvvm)kj%eg$2AxIP$%eX4Fk1Tn45jZvFzdi`lWukFwhmR_Qo z6{rjJ8P#rGQ?zDM<=q|LR(wSF8nZ^cg$1Y}9{xF*iv?NO0|3<=|j^@(OauPKgvu@OzR`gf55mRqtzQq`%)0)vs z|Ck23YQm)$XN%WPl>Ii59;tmgXx@~Xdh_M};4Uf+ zJ!~pyPn*)Ft|FZ=qJx;`jgfLLD`nM^ySVk|EF`%Jqva?Aoi6UGXq?8>l>f-D&c2IX z>Q+DcG@2)M}d%xl@5c)2m;o2bVnX%`8_4{WP?@Jeum%r)3dx}=1r zLB9e0yj<$2W#}t;Cah1h#k+jF&=A6&o zS!Amy=6If0Xh^~x`va8}((|TASDe%17D1hC>R6X#8!y>z^bTE1St$I?{52<%&5A}e z70k_cf!&lA<&$a=VAaaE`~3A@oVVE$!{$O@DFhK(wTRK!r~~_s3_L)QC%WQKM`9sF zalJs%q)wJ>e#)$mAU-6BX=JQtto#&QJm3Rzj4Y@rca1Hs4+-cwiB2?Y=ft%vPGVOU z_De}w#`K*kQ4P4fTTj~5_*39wlh=O~r`pE&G4q`lnhXLHik=l*j9X%Y5=m0aB>Vy0 zTDM;iYz#-+=*8OV|5$$|4JZJ%Sz9%60KU)ymahs zofyV4FtRsCU!bkvOk5TO-}7OkL7m`8l+2MkT%2%R>ixss70OEo#cMWEX}|+Cb=Z|+ z2px6MCy&TJXgYa!juCy?*Yk=oLETm?MY)~f22B13la*HQj4D9QpGT^A{gVxZ-c1k_ zNvKki^JiVXT58y^-`FEPQV43c7c^U#U3!}LseB)Do;J!^;^bL$O_N>NqQJlQg{)V+ApVk z$vYnvt+clTx`lxVsQ_=s*ipDtPL|Du+xsrhnnSI)F4|oTDb(pf+1y?Ib%w#Gl0-;* zuL)*F+tchn1@^#0?H@|=Yc~X}DC0zWO4@Y=Axh={i ztskYozWZXZgHZeEB|nVrjzd$f;a_UTaRZIogA|vjv7}VAH6OUh-_$iok~(dL*c9@6 zFbVWVN|vBxY7;g%g4e>5N+um4qacV}1SKvZl5%o4HZyuo)x|I=q%PKra>)h^vnk)` z(6bk);4+;bE*oa#=?H!x#zNvqO{*~sHb4mhR(;{p9-9ac=R zCuu1Y@zuf}J|(uNsiQIMM23eR4@ecI_iJV#?*>{Kz@Xqv$lz?ZHhZmjT}*C6zHrq~ z)Kh3kwdu08P6IqT;N+okX2PI-OAgnU2k-ScRPRu>>^}h1E!at|UlW(?aZZC*iPQ5N zc5QigrVmKjcdBv>ITy2k1HmDxw=u6vlbjD2r@U|{d++OLkk+^A$qds(XU8g95ICX| zI#=z;iCaDcdOx$Q^II8mx_s#}se>RsOtoHLMbMm3?!6;3#pX2qO*zxzTKLf%-gl`y z_uW4ac5cD_al3pPsECSxu{*11HI;up1qXm}^ASDR%EFhDSPI!3f)K+CN|#H&E_py) zZS*`Jkj}Z#WRw9(3FKVdm7GeN)$K<_X6gU{SDQaV+YjU~*{R$cc>2Q-oLjt)rFNdN zk?k-4x>)vUe+%sf3yW4%L}&_`GAM6-Iv}!%*G-$}eqvN47$T(Dqxge4`}C;GFBab( zoR(FFWF%fQ^ohgCK>9tVMYO4~MFb>5zNTM<^_ms2yIO0uSmv69@G?h#kaf!^9>O_u zGNME)vFM7KqvAU^Lkj6Yh+!*E))d6`n4A*j%H9(ktj2$_v`J3TmwDt&#nYm?+0+C2 z`g*)WRRrjB`)DMV`6xzM6=#wcL|N6zAUa*E-gwh=@^`^I{~CngO5={Sxblp&8S8-G z^#|a580FaQD7ZDZZSr?}uHzcdHTB>{5n2_xZw{K0f7mpHUI&=k3bn6SW}iklHj8>X z@xo;>9AG?425{wCey#9?+6r{POCR8>fL;t4rQJ zza$oJ7DevoZook4Y}d70*MENN2lCMUn8YU2LF)S_^H->Qx&(bDhh7H8~} z`hx?GDNnPx$167S7)~jU0Qshbw!T@HGo!<^1_dDpN*nm4C-pMD03Raym_EBDX)=!d z^yUfClCJATh7Z&Xr1F=oe%vSwfAUDJ=|^rn3S|^qPenUAJh9j_R=)V&>jzw-sT(G1co7S8TvYxTc*xS z!7!Ma%JGI}$^!)WZt3IQ%ME*Sq$uz5S`ubZUzkvGQ?Swa=tXm)EA2`tISm+bmBcQU z59^r$bYug=M0U$4jv^po*yiKIqRwi1MsBX6$}{806ceXF$ap7pvc&BzUk=Ki3?PR@ z2(xZS2zNf->;zMBTN{8_elQ`Xm(T-*(ID=}4S}7}y5ca8(L0J7t*SB>G{4St*b;R( z;zUCZS)@+DEQ1!{+_j6job%q^%llxC@;6Et(taqbhdYMnG|@5?LJ^a^=>|85$G6QU z@eD%sScS2VMY9~?ou+IP7xE@Htykvyo8djE z&lluc=8hrko~OzMK3wctx$fY_jcENw5*4z z3s(s!x_f<$jnUdl*w*b?>Q4-9Mof;D=7gP z1ZM98E%9%fL97~0aDU5*k9qS+6>`KIq_;<;-p zb1I@Aca+|;UO-1?J2(njewc0>&!~QnC`p(~puF@_Z{&s4*HY9Xop(gst<2YrGe_Q=8Q~ZcW zBn8YXQ0{!ZCFY{n=IzRT9H=r4;x!^c zZ_!L@^xqUChnFgZ)JVd%PF_}E!8dBc55H_(z0>4(Se2ao_AmVVOzJ}tAm+keggH^! z>S=J)EuR#t=+dJ!u!aVmGiM#uT-6tY2S!PlmB?$`2iqknS&2>DE2`5EGU732trG$N zQSlFHAU{nkeQsBJn9!|uteY#qUaL(7uVs75D+_w2T-xy0vZ1e+PlD9VfB%@7g)$B% z^qXfG-$S3mERdE9<-9lnPDbZyh9c^7HhW~6@a&5^&h`WBCUvhEsK=>DS`@9WsrA(z z@`k8e#Ogka+>Y%<&^NM-JyfYnR)$Dcs*W+NA}=qJ|0RM5q3Eu3A&j4x;fWER!X}Ty zUoP`UwCXd$fk}mG`PV{mH!0CF%}XG{QUAC9|5iXMjnyu<`wR(+J>tw$2j1A*xXGU_kla+6S{oNx?l3W6X_9waTH~qw;(tM?JmbDF}s)*D&5qnn?PAH>M2gEbE-VZaF96cFEFVk_7gjw>yugHpBKo$!2iNjhe zDVo$r`kbw}o1UPXj+f!AV{u7<8uP~2kz1BZmXGHVec!3C)!DTJ9qPCSzOwK+$@__l zsl_}%F|zm~J;isFNJs1pV~yQhxAMX*(xmbVs+CW7uI^vdG*)>fp7|58k~^eMCi?uh zS2sT(@cg}Ew(bwsP`@T4CI)ix_o|dRJ_(m_Rv|qHUwG$WLXh5wiSx%eJ`Y_$>PwNl zW>PZ(<@9El0;WjHksl2b=$c4-a7RZOfb>Cvc#SkwMv zNry7^v+jPIvT#Me4iWKV*V7plQ3`GsXlsU3=+bZ3ozi0^w@u%arYfm)b#}hMf;5j& z=a%5UixB{I>h~|Pn_bx9gT*14d&vU3xg!%fY5-IxZW?Zr7%!er&X9s#EdI!B<4SJy zj|w}n_75oQQ4@&=gS~UejxR?s^{7CEa5BK@2?mU(Cuz>{T~Uv{BY(_~5wjJT*Cx+W zCQMt^(k;Pj82%xNh(JYUI?mO!uQ_;l6;HmBgN5>OL2`b*2chYuwF4Fpy1(8GXY~I0 zBM(6Tr6m2S@$7=fdLodzph%jvBL>uzZIR)aHosXb#S6!RYN8xHskf-`=D?&H2GKPF zy+r{6>eVH-liVc?neu|xu7z4#RdewK2Wb<}-X(G+jA0vEo>Mhh$8@Z{BYIfAR5euB z+@@qt$huor>rXVp$S}@WEpVT{j8ci&i{yw{=PD(B;#K^Sg+vjk;dT9rZ7`|joh%u% z(fK1iyO<>@!n}BzP{Ucr8p1LUr_k%v$0aGu-xenMHjxsjHk zVSb~R&4|4T$XS$7cn!a_yKFhb39*NR?%zwR!|MyPb61O}l}!DM>SihkgHAADHN_e6RFfgF&mcH3L#$~A)oVy9 zCF0E~i-V?8lp8d}sz4Mqn2#V}5WUduCYH;8_vkva-)IM93| z+ay9`tN}iSMOt>OP^A0IFr(n0^2eu~ zVC9`JRH#Ju;m;5ms4<=^Lm7QPmP%cL9jAc41~bNZ*)CSkOrfv5>G6S+HPOJh3?UTf z`~YU6B6ntUYYE6Kysqi4(YN(NaJPF6+8<}jx)|We&TqF_2=jaJdZ2HtN*T*i`1gBw zYT0ByqDMOlZElE@xg5m86@sFMg6_W;BS+r<1CXfc!b=F`C1e)WATQGpz^Y6STn-us z3Jo8c&&$8-Pnh#J@Q6Ce&cc$;CtBiC{P=rDcgr3`dmS zJX-f4Qx-V7M~@x$k+JyHdRfMjXZp`9#5B`bJ%Bz>_B@fi7`BGQIwRWM8DMI<{(PCi%GX}Av4G8 zV63!SY99A4`ra8p-M;^e)>2ipfuxJ8sxPB9k5h>vVh-WsrTiGva|qkKf5EDoVZus+ z0h^Ds>r8%#t7z{j{k*EL%E5?F*lR1o&YA(FjH%;F*$Zidrc68&)@)rWvN>tISV=GuywoXN=NWqI=#gI z`rq2_>VfVL=D_VuIHGdwgP`yi`JUBL9|K4GFK0;Jl)L0*8bj^2XeLw9r@w85=d3$0 z4z!u7Y;|5O8C8x#%N5G=eTEn^+q$a$fq8U;xSUp${l{t2VqLv-vrxo}Q)d+{dtz}4 zz?Vn!v}EPk28to=5O3}qOx$pS@S3S6Fdq31iKt35R2Y0GnP7V^JFRBn5W^`~r=UQg zf1jE{*uHb5f@TQ#!1m1g?@?q)1w*KU+aalj+P-_Y8I)f9vxSu{ATp9OPJY(51K(h| zkNoQUE__KJuN%&@fDg-bA5s55E@l>DxvqU}Lt+MDC{0wfbFcngitYFAOy(ZdY&`i)w2VR~itO^cyexLLf9W-cK1`2o*k_?u9jc40-Yq z=37B<8>LO-@<>k@p9c}kQuDm{Xv%!>8aF6+Tud)pV3i(_R5u6R+GCTZE;a!A>}p4L z^el2Jk6C@^Oq-*l_jF>hDEQhaehD?*cTKKg)_xnsCyeCFn>p zMd0kGd$V*mZO#E8n!_T~4YP)yVT5OZ@&o)y>2~cpx9Hsa1MZ=?LYpK9@B@P_c5V;@ zfhX9(Q<38>|+7fBwhPV2j)aKeZ6rBuRjX{LeUPA$LO8FR=i9uQE{BnanIu}nQd zC&_05?5gjRD}z;kJpmJ&S;l&dC7)b!+s@@%?S=YGhNg9YlqInD2`S_?qWdmNGrtcid7YlZ!rs3TDIMb z$@muP@g=sb1+Y$nK5gtfV+jC;-y;navFEewg@u$|O43|xbl}eTN;wUS4nR#-UWlTX zIZ<1izj{b?7=0{aA(p@!f)5|d@fxT;r977i`Q}S$L|sU}bD;W4Dh!#1dy*BYub`$!Jao>)ey9G*0$timSlRBy}XRkSCL;zBZoDPwR$w61;jbO*dX%StL zJg|Zs7B(-2DHYlgF~X766|Pub)KCs63X}?`feJk1gIo8cT#?#^@>@h*I=^G>E!b7U zSKKUI*?FfJXXu(=C4`TqP<*vDrd zI^xteW&yUMbLP8UUum;MhuYyZf>dQ~A2+%UL5jgQ=_>rzz|5$Is<==43STG4b-w!u z+p_>W)i;*(9*HLXBOF!zp7xUwxyLtAYOex~B28l(F4VjD{?KMevygUIWU`d_X<~G6 zEqh8!y<}5JP4KFFnCt$sO+BKf|4Qf@wUJ$tYHGh!cN2`pTQN@TYq&J;hTqU3h3w@;f&$#cC&o<(*%t6Kx%%!3RKNz?cx9h2{WkwBr>tK2F@?)E}kPzXRi zSEMJg_{_(PCK0O18}e=+(}}WX`EMiTS0CX z`>`fV^bnDI;AMxQNiOI2cAIL>3Y{SRLzcR)=8db2CDRFwY&scGr;5V z%`4FXPnsIF4ozXju$c7eP}nB4qLf@h(v+I_HRQpb`4fNabT$8hZS42Xmk|N)bz=Mz z&6*gbVPOk^fzR+`!uSS0o&k@6h zJlbf2Tt#9RMB1Jz*s71d@i7=biKVn!!hy7a2K{V?$RT-fE*zeC5yZSQ$mWg=S-r;wTA z|7}czYnsk>fPKBDto;@Jxyr4=GrB^wuJR90t0Mhb%mw2U1@^Ii`gj4tK+vTYB{oN0 zi=|GKeRG!_tmWO5Wi3G?_^+$DS<#rdm2c`*!~uj2SWg}nR(#as+bFr*U*7)L?gcN13jFf$3X$J8^f$54qV|o$bAMQ_lqRt-%YT8OF z=!tAl6Mk+000{qi#%VGIdKWP0J5jqKIIju#|5xC!f2m^_2Hci1g2H4gc#+n?xZYF` z=zCYaffjAQz-DmyCUhPi`nb+=7QcGDlZ>ip@w!2$*r6{CmM~e>NNp{C9f;@Uv_Wn7 zCK_0^2T5PD#Icq{uFKS@O8!yc_ZdTdpneZ|$pkXQHPeDQdk4>R<)i~&wl6WdT!UVN z;tM0tX$I+-^@A4nDuXVh0S-}c?l^%H3hz%)ca5p6T!Poo>`+q`X)EkegQ?RBTTF1| z6g$+hxTL_T<`E}S2vc4z;fJbpbw_4KmF=Ct$ffVpUQCWzLun+|?F~VhjT&g@+#Q3x zL#{TK6n;NAV?TYc5zprL^)a}zMmx&j zh2aR7x9y7WI0ZA=8|7R(;ZIB_R#Ul`4bngjS9O00N$n1lLr`vnwk#m8fXBu0hhHhm zs)~e&9jS-jhi*k$S;fXYb1s@No}oX#t#0$eFR4M2F29}CU%&tW00005ii-Sr$egm8 z*w+6Sfy&qG@!+MDB0iu0A!9b06XR!r&`|$9jNgpD?$mX&V_3s%0i_2VUN1* z4-c+2!g7*~4a&!M2m8wWq6Hs**ytxmNqK(L2_A6m zdYrbw2ZF$W{pr%1QA$1<_Hg$ejd9*c>q7R+$D0b12Pc@|)Edx$=y@5R8)- zuYri@AuQ-UXrBM0b*fFOh@KOrK}RlR&s{pJVG(Wbk8A2LwyMj;5qkIbIj&cebg&50 zVl;DXu?T}(IQ#|BY{`E4(W#h$1kn4}B8s__wIO{Ax06zQ3^7@X^j&3AN>0N{)$jMV z(rXgs!w)CRX9H@>Q`p#tImp@QnSh2KiVUvVlqu(&i=O7w4V;ioj8oD-Tx3jv`$sCJS)Q1VC5}#SsnJ zTh(noK7UMRgdw%ss1UWo5^=oqWONZn3Pc_ht>MR9~#z!Y<~@xEcOf8 z4Fv^E^RQ1<@NtFhPAgmU!qVh`|I76O22cda!?BN+9*D7ctR@hdr9HEr19l(+5*PDm z@Z}m7D5CXSfG3eC&D9z{>Vfm^cA=Oa5eany?q{edR{sv4B^ z+dnQjmmite5^@z(t}tZY*GXp)VD0_OWj3WfJH{~?1mTxO9Osv4m{~J3C?b+wUynAB zW$)1yj+U{>B})3nVZWve)pkjF275uY3POl-vIrv~vbrd!_~}_!UijbH=DCjXs+Q@Y zJZ@E?(eIt6cw*x!+mr)7Vwr5Hph8ueYsiS5OmmW*1R=`t@+CwicRBO2spZ$$xWOLx z9}kgeg}LxHS}DQX(~qI&uLl#rdgP&SeML!g@h3`$qVE&%9rR9#NLZrv_&O=XYm(-@ zVQJG}%RbzEPXMaZ+03yEu{b>%SDi6?iM(SrshR4#N(N?#0ioFC_BcLYyFJ2S=nBtB zAQ#FYIBYC?OMDlfUK9?E3;2_Zt@L^;t`W*O*ytpCx3^df`{>)ggU0`REtG8BnVlK5 zPihE5ucT1&r%}1>Ff=+R@@&r!pSXx|)1ptGxRxP^Ks3~C9Uz*LU>d*su;79j-9P?+ zb#cxFvulHw&^U2zm@?Tv)I0fA^>OsqSH33)R?RS8i`ZC{@NcnwbIp$iix3X@L7>jcw7-3ViK4YWd@SMh5`z8!t?6 zu{{Z^o`^WRsQKkTY={%3uS!w<+k{NWdQ+Y*G2&fYd_F0A2Cz+MkJQ!?6c{f^ zQ~$;wpZV3?_OWwu&2xtXvm`U`{i@kgrpyxz1j4`1`wP63@gZlZOKz>zISjlo=TxI2 zu`kJr=q0GKZ|d8=AVSRsCHy#k{GfRhq&5dcv(5x8)0{Hc04H_z1uQ zp1yYD5I>(r99^+3v>}L~&P)YJ@};GZD);X?uaz!w7@NllUJMY2c!53wOnM&v;f{8tlD_q345pmX$X#8+G;W*jD7K6INz=*0e=pC@*Eh12cX5muVy?egRf7 zfqc80%B1<4v^m;a-U*ti3m^}W-xG9tWz6ZDnse<5pzIlhGD>@x9a79_T$d{i*QO8IrD~XkIXmfO zB2tMxhdF8H(?I;r-0rPnNLdoI_ z(#%5QI(Ab8vwbnyNV2DykZcOx@V6j0R3cSVCYsN!SQph$@J7yp*pY>EU9u?}mL4Hv z^d(L@MnmC8oeLb&Ee+PlG%98%gGx-+JT1_c$y)TD%<(X-w;=)>O&2|VtMfN_T%1B{ z&m-=q+PMJT0r@9gY$Sl`x~c(v5E*CPGm>k+7eH0LfBrQ=mFh9ZuJJNSN$3x|S9H2y z;u!#+bV==~>LQf-7j%AOp%~B^kSgg$b%2joLw&Kp#0z$qE~3d$1L8%c<6mC}=HT3m zS+_x zY{mLGIld3tnMAL!6end%$95`fO^K!XR4L9+kHb)x!h~n{BLOwDs?MhGvy9F_1A_n- zwJDk5Kgd6m&{ou~9;UH2HC1X_(ZL}v&S;Od>r)&L>?nu+TObjLY2a7;QKjvax!LVP*#ij179agZeoc zoCglMW%g98!G}O@l{eL|exp@Mu0r-1I#t>lLCorNsJ3I+j`jme+DO9T#*(f5k6W>T z(5|*(rJI9sO*J~2#Mu`ZJd`2C_cpn1xOjT}gF7dwyNN6~wr=L!}tNLfmZGL)?&pvq^0air*S_3U}p-(|U zp}UmE#<=$%;&||Y!e^>!kxk5@1c#R;PdcIwQ$({HI9c(bqi|Sjt5$7%=;@`9E=p;Q z#-+(o|7FEXIZ=VRL=!SumQ(MiHR~^P0wH)UiDCE@dL#e<4F%DG{7U58eY(L6(P)<} zjFx3vXw%Mc?!EZMx~<8{Z{Ii9=ds?{GcZ;uFJwEKqAc5K0|dOnG^nwE2i^|Gj;p={ zT(kPJ8)E^jxe!wIUnru??3*J6-ttS?k@RU#b=AyF2U!u>k`W*9JKOnJ452h!m`()w z+dpX%>%tZm9&eNk%Ptn_(3fn$294NEzm{YP0<}PCAOh#g!ScqmA@*crx?PUANdS@EV#) zC)%SC5lnDZXm&}+VTLRm9t+I4a6E%#u85po%&ZchEA)&_0Fev%cwqfHB@Fq?#%BYIN4M8_d@+DN|}=Ivpd=?AqVmC-m>Ty3NQQ=Ll7Mi zuU_d9HaAnOh8HtZ-9hp?;|ntmfLNl=5oC6|l}Saqx_Pp$hUOE{@V| zSjA*cG4z%3Vb+~^ZfL4JkaY#QPB&L2PET5iE_E@di(~e4R!sx0l6q(F&sJ5#enbog z8`<+;hQQAjN(2|#XCZ|j4(hWHcR7$s$@3PA$V%md1RCJCePtox zr%#-ch$mil<|2H@Mm8~0Rn9&+fwDgb368qCDAHfR8D11C>8BCS=68T5Sgf^SBy_`-%olf_=e7%MkH$wDS7tsk3Cj{e*v2cRQ+ z(!%hklgr!TGhUbx6|so?tx@i5NoBkdH8f_1@}YGKV!4O9 z)KR(latj9q{T!7afo=8>>cd6Jh)x`^`0z%+<}5@JLh|nQ5e#1PKb90cVlF5IkkK8( zCUu4n`Ws1)A^;T8MELA7%2+6*W8^PfGSopAs>VwC7UbLl^RTn+#;mSjoH666F!?&^ zcFcoL61X&)*`2nk4|YV~>)08G%d9#Vp=#dudsv$dh3X=NvNsuGK2S`vS}=drVY=0# zjAS6zxJ2CChxCW0btjkOn?Vva3vZYX>3X(57=fapODo3ettC+v zxH+Ul+&yIlJ7`$!nu>8e8hi>f|Hilxfoa!*EPX@CgEP1zjUW}bY`AQoR<4|n>9U4$ zCq>f+zyJq2?;aSKBp>@3GA9GJr7FuqUem;*W0-h{9gebyLl2k}W&i*Xa`OFjC1%X>PYGF~swnJ-RhNnqS9R#qAeyfB0;`P) zjOKi27Za*2g{ZR`jv_hTpd?nHME$(}*=wADLa=qK?&pqk6VAqAgfoEcC4>c4Jbfb> zrz}O75J}mwIUpRYKN_m$ef*NNxKR~|?j0{v8i2p!Gf>;ta?T3Q8t$l)$Gmx)@XSqJ zP-a7T>pRZETn|SBX|&qw&d1Y482l2}=#ip3M#$|QYxa7cg*#DlSGB|iJiXg}qo>HJ z+*Z_5GplodP77!yt$4}EYSr$Mgez}ElFTlzWybIh>>zWEiQrLi)NnRd=UQCKZvdn@ z7Un@<6*9C}3zfYvZvFb{Ne+lrBcj~0?BryU?YH?N2cs-u^=8LKXh5Q6ERHci(?t(% z!!si`R_XMX1J(m{Br3KDcq9!Wa^oTucFF^W&~9D>Ae_lgGV(rJ@sv$m3D<5_jNX*w()8vu4UGei``jWA7X5ka!_9 zJosQy`83QrT?o+GobZA(hE?FxZ0l~ukr(|d~Ad=9wMoC zD+cF9Qo5atX`+0kxwScN^54kAZTJ$70g&7%NlJ}n$N&HU0000000000000068@j=P zl2#02p)3cJqp=gtZq59z4!U*aS3zst*diH+!Q6({l~GExlYl7L{>;()V0MOC)?s0q#3yUICb#uLbCA?yI( zy^j<${mwwzi_4hHC(s39A_Pd*V1`UsNxC$rjkkZ3dT5o5lAZB9`X77j*T*NX#@9?( zzC63!^|}fA$ED0O=V$;Oh0WP5d5+p%-xPTUagYdpEN9^)oEM*2+qNWLAjN6Q_9IJ| zoTcLxl&X39tMGr3ELAd#Yf1!lt(-|i?Q%S8p_FU|6dav19A2%9rxwLjDD#dX&kdh8 z)$Oh({Fjy7nthP612&cATdj8l*beDAPm0RdTe5B% z!_*>&xovsxc2BxJQ9mhE=|7g4?m(cuidQUV){|LvlBA{=TyQ^Lv?UeZI+xmtd$KDm zRf?0!L0P#)wi3hE!3cb}I8n-yDO*Dic!8W=tR=y7=2HM@YN5juJvDMByUj$ED1!`h zsXOWuZQqj{2x@a1R25vWqE$y;fiG&0BY7aoKmC5n(V*?@pk;I3gRYj;Wkq;iq{xEL zJZ!8!HAP(D^0nlp@=lZ`-}FGHDU(N=R8U!*cwT zc9l=LDk}DGn==y(C&(i87+7EcjXcg4qXq)fk(n@NDO0tvp#x2zF?AiSK(AyGz(Yzm zvp8o~uF&{PVhpAQh=qmUWA61Un<7~|Dy5Ib#j04-*LgU67>V1w1~f)((1^Wh%J_3G zxYz4R9C}*1-Lvhk>um9NO0^p=rng{D0m~c;7rY!Rr7VpJi%)Z{ZT$nl-|l7|1;&e97CCFo)T%u5!kb|kF<#e2vlh)H@n3zDB~q% zc?s^22yG=4{q*+$3na4f@~6Nbig?g$EdUfg2bF9P2xOCnc=lzEN=t+HO(FKV?q1vVN} zX7d}&>qiH=fqQdDVZ@O_4sns6I;@0I9BFT<)$RB6gSOA#{3tqAQ9nRKeKY8K60IPHxT3G3Oz{aL3k>VwU zeNG2ZY)l&Ky8Oz$9pzZA^9rfqT0BziK6}39{z)s9b})VQ46j>GjwHO1_}&l5Vp|!m z(99T|EZ~=iU1kL$#hYIDPFe87;YTy&?3|U#Au`Z!ZlMzkpM_KZ{WJ`Vagv0+Fl`r;x-!d$ps!U9F& z0gu0LyJUx#6*rPv&+m|KpQ*W5DE~~{b57&a4~T)mjfl47bMcSkll6cxr`+iKw$Lr_ z_Z!PF5nY&Uu6^<2(b}PF^Rli+2$7s&60nujfFF+D@&JglsX(}!fkHuo?lCXe*v-pk zL`}Z(kjDJjM+>>G&*q`}G}{SL{gxp@iD^H07Cl}m1>^?HCEj3D>r?%=K=-wjk0ibU zpf?bDy;44cmvLU`>-buP36|`7Njz}{+?>X-)?fetbdok5%NwT5wxc??tl*;i&2wJN z&V;SYA8y8->Y#n70$>Pl+(DBrDlWSD&?m{#loocGfBCVejzF90099Wu7Qre-g6C$ zOw0@`ix472cp%usK|04>C9zEPTXqJ9G!VlH07g%h05Y(dJ=CRx2re_%-Qy9fXSJy2 zB|(P893Omu#n;)0B%x6Xcw&YoC5i^;WcQ2qd_V;DFf+9a zKmnXlcwIE0&^MfsA`toY7hn*(y1fCcsbPu7u+TS6PvBsx@$BO9hKjBa5njs~P+n`| z{kz-oeA>+R1ThJDssN_B>1G2r&G2YCqxP}@2p|_8xgv<7OsbWhV;aS>Vfwo`YWjvyQ&!$NWD2C=lG%e%+=sZe*ud zrwq0~D(12xd3JhS+9b&K91)@C&Zzj5SapvDUiBjjAGTZu@up`nwa!8OG;pG$W7hz+ zTIT^qhle+gKcTjEA>F{-5 z5$U-#tpZu3wm75=98Dd*|Y5hIeaEY{t8x7l`pR119d(mXj%@Cm0-R_a7%xdzu z?VqK)=1PQtug8f8hAaDQUndE$KEZj^t^|1329}ZQf7Q6ABm4zAU?t{P7YLUaxQQAa zxLbnHaSoXNB{haH`M<5XFU-o8R2&54ib%aM01llK>QBz#d>u;)X|-=WVAc^$cS(NA zSU;SEm@?E|Otczw74&nwn${@A3Jsf3#GbW-utcSyoZ~v139kD7Bojp=4Z+Bh-S3Is z)TcsgHUA=lLx3hbx#5^7%e&oC@@tO6Ng(xr5J-Rk5e%pO}jJ3c9_&k4OtXlN)&s;o-T>qC1g`}nKK&t`;$=#v_2k4CZ z+1=#4b@kv~5|MO>PuF>-6yE+2u1fz2L8%F|(|vu*{3)ncJVA-vk6Jo(Xk!Q)>Nr9C zPV3z}EHV~D$ri4lvf$x=+6r_c5!M|Bl~i^E3PH)D9IP>+j>WKFZZ%o{_oMB*Tu0); zS4(7SiJFj-E44Bz25aCSW+`Cuv?zA8qPT<@4(ACxCN)9G7dfJGul(r{l!f45^|Gu* zKc2NWf?jYL;_hdSkTbS8e_wa1$6{|Ky~ianK_geOM7E?7-^Az!|0Xn<&n*uP>qa#0 zCm`v0R@F}vx43Za_2C26j66w_bzgxC8P8@#nK)th4F$2g3TMXyQIToR(PU}6*OeZ& zk+8ft(>cfYGxRE$tmh2Tq%43&#cFqz@Xb@AAN{YxQsery6%)Ju`hARdPU2-Ysr@0B z05_$-8>dAwWY*=^h*1}&%e)>!{tY?ExB4o=ZJWJ#G0kz{h(+JPJhy||32Po4jAZLW z92Mdk&XajxFo&OlA|@D9>2`_WF|7yNS@r?-$szUh+=`!6_iVQ`5`*!Zp@7tKKQ_0f zaw6-8i?UHXGsPm`>&?erE75-`P+-lEfDKdf4kyr0PoS8MirowYda*oNcybT;iw*O+9TjIDB>w_@}3Frv9?%1T0olBrw#A zgA%=Yi`2A->*5V<%m1ua18vmbq?B}}jzrB# zudd%N&|g3G>fitX03pxN@vQelauoLB2pRhsLUeGH&QeVBt;d=YDqpFj7BW+fPjp^R&UUa$rY)cqe6rR?<+qt0y@o+QSs+Z}*9^ z*FwI#$`%k7rcC+j{agY8Ks@`4=Z62jOjwA6ePFS6#s$0t?ph$WCFL9#&9rBy2M{r8 zH9$#praX9Uw-kb$j1~jFXGz!hzc@8FA>N<#p9=5M4xMF59EW+by4Z_v5W`W)?jdtmFeIsPc*33Fph_A5g|#XykQmXCar%lfc`Ev~z-k6j zdQ4pKa$pVE0$95n+DF?S1ka{?jU2vM7>(uH;;Krf(j--&gS@E;d!~V~niSpBI-36} zJNju~W4|{Y*dqk(qb!9h+FJAwLd@ai&C5(P9w1)RxUT*<;`n8MZpK<4@x$qDHU-S_ z6=f?c!K*4UtByQ`+?AU=`CZJQgNx0P4(8j<=)qrgJjTmdUwTn8e_>ou&Pq4)V9+|M z0`*l&nDOWTX%>mij_nfy-d_Aj9J{{kp=Rp-zAPITY?Kn=f`He6JpkDN4R;VrPfD>x znO~5r@@xVtQ!j;}N=mC-@8)7)uT*iz;<*WSTQzMcFgJITx~7E&h_zRh#VfdD8OI0(+`$fVGmC7B2}8VS1f zoQ`-QKXz-<89~`}@uOnGz~@Z0U1faUjTEFTEwygt2`@Og9z7 zk6=>eLXF!rvimjY_Gu(~?1>CL{|!cB_rMSsXeaD5Fe04xnU7yhM0`qaEWMCUefV#^aM3h5=X^X0bM zbUEI7SbtqN7-z?YoCzSiX2eI+H3D(_eIp#77U46an>nEglqg+%T4-@qN|n)(o`Cq2gtxWNO+A z$&Feh0-ko`^+fs*mzEz?g>+qX54e=JduF_Q=;fQ4Hwo)mDprG)LpeBa1r~i{?+fS+ z+&YtdeTsWrMs^Tpciz{j{(tgmYO0J^;X&o7x1)GOOwBdw)+dLJx58o%p&{gxP!M-8 zMtLtK-ify87F(A90FA+d+dOx)1Ektwc07d^FXzZ6pyh|huBHF`GDxj*IAy6R_}&BZobc^O|EU6CR^2PEma zwDR&;`^D}aL`88<4gCZ7d~J)O2v&{r`^Bq5u)}u@Vt}jaO9^XRslUkrVuxEEHB;YJ zR{r0g001Xa8^BM~Q-J;#C_#1^_bLU7X+9e$KcW97x9!^n^6;;g7%IKr zNJ<(l#)xSl>#VTA=b@NbWs~v3g8|g4Y2$_YFtZ7(SH7 zkHioF5`%zH{Xn?)fDSH*&tXQ$010`IFb1p(WU#3FU@P9MFM52S9AifLiffa3798?=^|!NtT}#bNVNX{S(2<AIF0H?Cq*?cQQmD#WqDs(3J3;v4VdX#R+E@E-vKF(pA?DKbFkx+6~xa0BC8z@l+%oG6C(cFxg&Sl<;Twcy1sifU7K`bT%3X&+xe=E^+?0AlK@M}% z*dmld#15FhX00AF70fO;;?q`ob(sgX(32R~S~B;C98a2x?L|Ud#o}0tFpXgo3SYy7 z1*5qfbgdErN35r8!#~$%Cvj&8E$51=V<$~i5cNmokYExfxFxDRqdSuEvr9V7ko86b(_IOwpHO_SM|E%cKc?CAHRgUf{ z5I1oBj)ic4t4yM_y#;u7uB zOkc#+IOt#)NS3u0ewUM~_Gb|XS~a-cO^`cBK5J~uA!W2T~S z&=hGd+^JM786yW6igaWb8t3%l;9o-TLg`}}Ck1+8(%pbYNYw+YF+3UhK}m4 z0{_=sn+(h}_G!B@4!1DS+GmiED)b&hX%@N?LkNDh!s*yvv0iaD(LZsZ0xp^mPdMUB zoeUWDG(@clc9@xDX1%OWx~j^oG?z~$qKqEO70|ZFQ_+X8Hqxlb?)z;IK z`j>jrP+&f0u!8fCoZq2txI3uABPVFb63puBJn_sHJRi?Cco0t;r~nM za|Mr4vSX?s3N?*It4)>$i#eCX_QcC&IG#_sWC{VMzh)?|waUEPt4%^ZY~dtP2j25{t#4g5 zKD%-`5|}4U$8IJAZWW?`fdoifwrqgp(jT8;%_FGOsIT7ECm;h7aZs zk{o1C(Dg zT5qNIvqb+tRWVmL)vc7#!o020gjY%n{0$@gz9IE#p9ig?v zyq*3VPc(Q03vqP~U|PWY>1n7|9@j{Cvx-gPg_Aq0QZ1$?>4L!-;;kuve&8JnWFNb< zGMF8(pP4wREV!!!53mN}u2)#hkhvDjZJ=-Pya>Edhl%UP*-<`iyB*7rUyTRL73qUyVH=|<+VfQI>v3S zygCy$e_w>`lRjoNY)uUM>40i_(Uoc0T=jFl z%+L1d#iYBk65G%K<6EZOp4D?QryP&~Z)0Cv&PbP+{_LxhBr8)7*bqlC%rQp8G>9p0 z*D=PdaJa}4+*K5}*n1ML2U9mbM*07EbC#rsqvO`+Bs%n8@&~rwir&ARtNlA4 z6Z4w!p=VNchG{$OHc5!VPK@Sh$3+Es`W2F*D2Gr&XTdir0_77+rX-LcS_AjQ5~sib z1gVa0F#xDt**tjO3q6&$%_J2e@tLk)Zn3C})_-KPj2Z&6S-nc|cm1M^w%*kT#!GvY zTM5NtA%Y5BhQRugQaR(PTHY6!oEQEO>(Wa=h3NaUQsCN_zFFZ<&ECpm)G zS0~#(1B)4P2lW#%f?S1&am>_)eI^ClQUX_(Xf17(1AEsEb5k9$h%`bY8v&mseQeUf%ghNK1cQYc8J?$j#gYak42-sx!F?hNshO|6{ zO#MG5H)mx_d6s!o3edJXKNnbXx-fZt9+{-pgbcfEz53rluHmmeeg@Y^b>~5S>)|3i zcCoUeW2WF%ivPx0XAxOe!Biq_d=lB3PDdyTG~+a%065#jTOM9EBGPk8nX$G0*)Rb- z6`vDJTwbG{Jy&xvF22%-S4XF8iT$k4VOfIMPkT1Huqj@+I_8e(se1rMfu!$Apq5tU z&N9RiuiMRFxXdqW*4r>48A#q2Gi8oW7N342$AZcMNm8pwOy1{CALCF-;~7PLhF zEG63qu#ibYNHOP_zc4f`G1S{ml-aOj@u*b~elW>VhN;yrX*WO_iV}@7lsEml-&MwW zzS~f12H=yp>61=u=Z)EayiwG>OO30~r3E%4rB@blr|wE}ztmWlprH_~{orS}Q_X9Z z_8RX|QV^lGY%=7MS#CqARS3+%_RVC7l17u(b-)k+000xl!g2Qxh%naxyfgvz4?qFh z5zzKQQbiY8WoJ^1fpBcpC^&;$Wc%yVdl>@H3VT#NxWKtqO-&;(htC#R;RiVEHR>PX zGJ>{XoEZRZCxoBTHw8Jv`_;YYmxAsgo)p zvOnLHW71MRr)u6*u;B zKTFRz-pRKBQcdKQ&-@I75%Smcz{Cqrgo@)}ziZd<-I8;bcJ8G-k0jnj&*`df-nsO3 zg4W%=_3w~bM-_)(@_-vkTBxZB&dihpm4a0+u2RvBrjyL0Xl%O-qAw#S`ojx)>a%W* z+93$u}}4Xt;DC6Pr`}1dT|(IB1)uc_FiCvBNxgi#_15+5(TXaGZ>M6AmS2Hsb1b`&} z&75R{va7qojphDnbWJ1V>0perPcepG?D%hxd;ON2p9y+K3n%8?<4t*%`<)jAPNO7F zjY)r}5s2;!p6h{XMd9u%%KOs!&l~p6%)xQsj`t z#f?|r!=R!*vVMk1qV%|uTpzwp=xPYCSB>uxo&;Jsgk|vxL%v6;S^hR~3jZ!ba6CJS zlCv|kulxb~Y(3Jn?u2|YOmkaIsS1X@i5z4}oP+;q7&^#C^Cx@#3o4x2iKWws ztTaZJec2=oWCHfl6cktU4J&u}HEQ4Qf_m(^{j=mLnxpqBmii;Sb`k1CZROXUm|38v zf4m=;v(=lpNBL$-E&oJSfuEaI-S2DS@sywoAYKGSFf4QKKLFL)(@n;SHAlAqg8|^l zh4I+go6RbV3T4PK`-f3ac;nH%XD?y4On9p>r3aO=11&cqr-k!Uw_g~ytN|{+|EKP zDYuboBgZ0w={Ti&e_dI-T(l8T4KizQ>mnrV%w`8qw=Yv*1V7L%2_W!cL+xuke!wFS z&Tm624q`f1rHCDbYfg4}1t`MaJV?Dyfu;A}%+iSYUhxeBt5N7#xEtRXHb;rCG!^4w z`Kc^A!xt7pkF}%A3viQ^L-5Ct50EXWpC)85&P2)nL-j@ubb5dWJk|H-Kw;2%^b^|Q z@E=?YwCzzQQ28b9Ov1G1sxFpT6gHYw!N*Y7RAqo-XKx^YYf8Ie5V;V0%z(yP0B%76 z&`1CbjsOmszck$8oBoS+&&L=-8kp{do~sgS6)6#+&+TvB)Sn=*y<=vt{F)25AYl0H zt)?;Ns3lN_fy;^C%X%r0rO#??Op0hBhuc8_dS?_aSKZxiTMqp{P2Q{F_Aoci>RpFq zM9%L`cbw#nWPZuj>Q$$7^1UwgxF@ zFxSmccKw1aTbou`L+J@&2*DU5a1q!fp4d1j<6~7y{3qHIDU-pGJCbLqeEm~a)>?R} z;s4S5U77%3gk0VD?zL9(#|oGpY0)0Y)@9r|D}IpV9KGv^4VKgU}S|NfVa<5q8`tHV&bCUKAsp(d%LY z@g|aT0X0kEd4K>1wldvrXGQ+-BF|G*=ym``K)Ju$D0yw9zDYVjWYzot!mvYW_xuD2#^x( zY8JeA(P;BF)}n6JgCSL`4&$a)!<{#4a0tNoEMa0>Bh0+<*pc80mQW)XW~Z zsfn{<_EEOu75EbVHeiV;=YQGv>4e`TD0>CnaYb^(buDFS_?Rq?qQ2^x?z}5OHz^sn zuakkjxf^b#EIZIA$I_pva8_pDi3^Q5s#Z8&n1xr9*c>;LBy|5XTFXmU3Nbp14xQX= zG7M#7zqW2TKX>@~rDKNl2q0WZoyZEnM&jR8*0z1OeEedkt3@)+$Dlh867ixjEGMse zE!gbyy7{SBE^J+qB>GRJ_^C@~O_U(9m;hM{&o1+$m;UXnYICHAK+LWngdQ$TeWjT{ zflbCqNDyWSfjg&H6Iqen6&9wkkG7*;ZPI2T@?F)9C?QcgSqSRqUky6|hM^Jql zCaz=#`3HBtm-t~d$RaigY|1ofJwH>{jH`%G#)|=jG8VIk0o_rDvYQNCMlOe4Vwx+= z@&#e$Exl9+CPCZR&9xi6;hvbN!pI8KIxFTU=HM=kPUQ)^A#87gK0_5-1-jltwB9Be zSf9~a_My@{k>xRbQOfF!%@faO!wsqS@W#Dgcp$G+$70+WtO4!73k${cy1u`o_)2&K zws)`q?g#WjaU?sihpCgZ0Crqzj+a99bng*p2x0T}`2`T2UJ2lCR39=2j}d+eSxTbH zBA_{A(^14o#Seo^jH+s8?~nv!47>)b*}i{X1Jn^O3Razu-YJ#OiyPp2AF z_|bpU=Y>H5brDE~)ZrdNGR1t>YJa z_q_$Yzl3VYyt+F(b4e;__#~Z|I4s&^`>a@M0*CjKHnNYkx5(A_>sj1L#H9p5Q6%=3 zYx639%kk`W*0ii%HK+>ohKw&R;fDA+AI6W}+hDo&~%DURMStOD0kD+EVh$j{yl0N!)bm z9&|Vqt+BJE7DIKb@zc^IqdBa>dd6Yg^{;G!)mp)W7Z!RIQ48Gz2)92m`-{Arm9w7$ z-o<=?a-}lzIB{u6z^*%`StPtWo!;5t8}r^+c31nWG0iFJ_UwT$tj7tFAF@&#{Bd@) zd7o!-g|sPBl65(@PI+o`CpQI?%`z%>LY1ghRHEQeMwTtfvskb4OuXSBk1WD)xm2^A zvk)c$mS`et-^> zur04s|EWYM ziRVmD#?(>g$S2N&k12|~0xEQ+_GN6n2~C-DrLm*Qe552XId4)lj=ZXJOaHLQ;%8k1 zy9@Z5l3o~D8=t;|)90ws``=Z5GvHUoVj`Ag6n34;lv6%557}Nq5&)dB;qEc321ld3 zrm`;!iaTzA@EcNwJ&?deOkkEUxj~3EW*r@S;1l6Zt*hk<`grSS@dPw6DtiqSHeV%__UjxLu+gmqCu%(2_KBZWMpi9XDNiFrQ@Eu{T)&|~{5UC2sL){c)# zD8eD{_Zz?=hsVVqAi zT#3p0(03fRgE$|GXB+#ES)Ic3p!|sS++Y98Uyl45u9oq&vqcNnpTS#FG_kKQqUcP_ zv-bu%zBR!Sd%6Rg!P>FP+y~gZCFe!fou5>`O0q>DYjVu|=GKZ@DLaAHCpEn$p@b(E z-LA^abteXsEO>3E%-w{foB)ltKswg7^UN$$-T4C9t{a3`Re(CIYTl1#IEyVNAetb+EuxRWqXh}Ctwd&p zlx`^woW5CRe-K}S6ah7FXYuV3l{7l{G}RAWOvIP5+KL0gn>31$*(v-ky>$$_3{&X; zGQ8kh*TvAo`6ubF#<&{>9KiKlqoKGk9X0$)IO z6oko=>&vlz-T%e`v!l)*b~tSvcR4!I)=`!-sxXw8g4wccI;3P?=*^EZZDMaQHoY(r zmt}hENmNev-61#Rh140dRbPZk+ww8D+}%`OQa^!Vs34l~5K$w%bboRyc3|dWY9!yp z2n^-g+agQ1-#S4g(Rv|DIaNU$00d39Y_dLqHMt(WE-LBi;{+=z)_O_pH#CW1qGYG$ zm9me}2P)a!O#nV35e@e_;QJ&>Ja>mbeO=2;OemkK^0!Wuw;LBF@jf`@Km_Ru zp;S%pD$ZD4qn?(9z`9|#0Iy{ZwibMh>`MZ|@kuv#5*?j2b5-%N7j8?CsMj&eVtq6# z-Y=7thJgM`R0due2fpHRKN3%gau+yjwBi9BT{0j#kpEOCHKKyfIA#IP?kx)LFV$qy zdA*anBgdscw|*0IMItg5#v&z*jNbk*qE;9B@Dq6+fq7-m)#YvZr%NcaKP9vEkerZH$rV~O^$+{8;gFS42agdGlz^7yg9 zucjEz@f`e-{*}lXi{sRnGluavNQel*fvBs7&F&R#m*9T{kyrCU9)2#Hmg|KT`=?8$ z(b4Wr(*}$o(22qH)>OQmEy0YCEiq_*9dKZs#>S-r#G~F1lBwYYv4@UcJO4i$87{w3 zRj5CnrM~XtvAV-p3xl$2?1&$?xuA#Wc-UVx3eOf`e;!R74ej}`Flx(K@yo8|Y@e-_ zWJfPs%?wMrXxNREO~xlo2r1OG&vjgJzJteqnI)pwEW0w}R!0%^Nfp02NId(dfpekg zAE#Ixm9~(jLaNJe@N+_tQ=LBA`5g(AAjD7ns^g>@;U(rR%$!OXj6r*3UCX|5`PsCY zCIb*xyr{H^otVrVD_i^hyM*<=#yl6HEmxm#WQ z{W{MXP(`Z8B5T~zN~h3D_+^#@tPQL)kPWZH(7+juTb<`<+;$0B#=W3#NoQ_)b^(Dc zt9f4;xy@Lh0oBc~XVwG6i$enNJny%}omn{3;&%kYQfb!d|MjJy8w7VIoohuPd8jXz zf8)03XnIIuauNSy8?CUL6X3e zQ1CTDh=}ZtL4Z_68E%G^+a`UV3F3OIGJF#x`^+^^dfTb4pCprbPpQtxGVw$2^A*-& z&}c4pmbZ_CRH7mg4RM&m&cGa3_S+()fl9OlS58`Oj7&fDR(Xz$nQR?rB2^U0XrUM= z*>AqZ8Sc)d8rt0&nu>WdrTrzhlZj8oNF})j$GfWpSOy=8a}tbcX*>g$JgN<>E#<8; zb}(y$;@_Vq(*xYmrZ^Ek2*tPRmDV`4*c-ah-#5R(-Uo)~lETe8kU@wsDa6^|(SQ!v zkYX$@z*k*?9ry}W?q2H5$c_E2KiuBIJ@6#>;o|>S(!d$^PrngN-&{gyf3a*P;?-Q} zSahSYz&ei|G&O}lDK%QEU4Uw=vm5ImYrCVjyW@*nzy26C7&!A5TVvi==A$zbMETxP zP1-U{<-p-%vrcvfl4**=Jg@=Org|p&ca^7MQ#&UvE9h_0SdG4B<3$h@JEt*e+3vo^ z*WDmAfj>PN(oyE?P8V{X-^54L6${c^CkVRZO)ySmKgTB(Et{J}s6I-NFoOPslzr&a z2i+x|Oz6;j?!mk#KT7~5@xkBQ$tbQpjvy(J-+E23@7_Yi!_@DaW1`-DOXUF>nz!j+^(v$@fzgj4Z z;Zu|+WTvVG10e2DBzRRN)>CCfhZl6)=idD=q-T-;$1~6$Ay-W@d3|5f#M4u$tOfY3 zeN9jvh~>w9y`acf&2)jnA0zM>?;gd?i&naj?xUddrCfuHznrPHLpd1)z+C(eZd40z znoMUjP>G_q+F+=h=L!FrAzT&Q*MAOAc|3FdSSZrXRla#$lQxW?8@KdqagIhHv3H{0 z$1w=znJDpBb}Ay-J_leU3VzEdIp@w$P*``bg@vOwqp$uE;o&VE;Gh6<+?eMk<-yvS z@prT=H0uka5%2Tb0YIRYkNZ1tqn^isVSC;mC=C{TPVG{-&Igs!F4iq>rnqOQIF2k_ z$dzW*;*X*Sy9TdLY^?6^JV!9^F}4oMTQ9k@Ze^F-E6keYG+;$q8yQidA{)H!VH+wyni`VAgv94K%4P( z+%Rq1LM8n!gi=d?cvBw--o%V3EtRjmda*N&mmGQNViU|H=M>)GyhFHF1kjU~J=0Ra z54n_~s`y!K*hJn^00G$vPAO|8nc5YPCmRR8yqB-8*C)Mz7C$2gH{W6h(5L4|GX_;Z zm>1mQ3_5~(F8pV$AclK*^crFI^tuh&P3O6<00ehbnZ|s|>OsV_CECd{o4~Gq22t>Y zzia)zwN|SO1HL2T$ZCQK@&dI(_UOFg0Wzi}e2cQiYV4C;?omvTCb;T!1Pvbz=_{%T zO&^&;EAB=<5Qy62W1t8S`3YN|@g?FlQRSZM@U&Z@xxF2?@Usc{W zhVulna=A?VqtcN+ZyhF9JZ%7c`FAuOs3uCm$G(+k-UH!v94G5ISrxgS6!f+_(tC54^Zp@1{z}X<)TzLV@vJM+wlm(6`nI2pkz~}6_y}w} zKCVr7!vd|u6J{MtzL2;X;A1&>h$`8ln_kl2$d&w z@%{ZShrU^2xLM}4c`fXcM~!O(K!IH>Tw$8$!)MdZq@i)Hn}O1V22e0s7?*hY5)7mF z_Pj;XflycHi1zQYjsI%(HVD6kr9D9b@DPBj`v-K%Fm;u99?#jjsH5PtRaAF1K)6fM zshWq&oPU7vZtOQg?F};$( zRfYB8#=tFDoU72H7F1AU2OejP{mrxSmLExCdO7}7*X8u`nj~2A7tkMv@refZHwtE5Lo-ezk;$NZ25bz36)Re!1)KeLD# zY!jReu|EvrDI(7xs3*p(ILTEQzPH+2@ksP-1S_ta7Lm*eAl4A|N72T`N-_w-Z!OWt zCOV?es`}%dnW?UAn%l=WYhY3E%5O<$<}GBfNqOq`v{Wo&)`|xkuTUE#;@biP>~(e9 zn-zhtM4T=Cjx@_pgJvjbgCgZ(FIb8@EE&<4)HXro9E^yvj$!NwZM~H5;tlj7EdC~x zMrZ4kJ_%8_!+LK(f*o;?<5->x;JW%Q;9|Chy4%rG{|7lUb6u0}lUXS9n{gJG4d4{_ zgtx7`Q=W^oP=*91P$h%UW2IcDpbpqrFti%3*%c>)GHpmTw_^_7jWR{qq~~*X#M|&iYjrAI#+14QdKg?*etw z_90X9kYKPyv0b` z``eCLI~9S*3cuFpJW@4;LJcufz{6FT2IPY{N8tyWP0Z+f(;HuIf-XPA+xU6PTnyp< zg7uLOu!<2q_gS$hy3=W6ADXccw>PLr+lt{Z*bn%+p6}y|r?q2j`edKyPfqOil8`0a zv8P2dw+-N^`(ts9lYLr)>1EQ)7gLW!@km&PXr-VtLA!ZuU9e*rz9M{DC~1ES+p7Z@ z7>RkFS#cPRRrBq%3mCiZIq0(_ZVtV<)4T_bo3 zlTUe<^@>nHinP%GHC?1m;s(;+cbVRtuo@h2R=R`SNI`ccU9v$v*(BH!2Ap-g-iPuy zXjbWUAme9~w=oO$pDlZsCw4SNfqctMT>sM8)Q=n=d{w7owfkx`w~Q z@kl5BSk@e@W#jkOzc`ronCnt7CE;T7)~=-zP5;y{$v{rRQ>o=leMUaT``&n}{KCcY zw*%57TxOb5GR+xoDkdE>V>cjzMk;~)MjoAOo8H zm07BzG(aT`pf3$spgHQOl3|(*`Ze@zT+#M(hrM(A4F%6^IW%q^$WM7yH29QrFy3a_ z7ZFzM$j;)%or|@>ar^`>0UY32?5QOznpG6%UEtf`pNqB$CDT8VOC`}<%oniRlY>0l z*SE@KF7zh3%4T%6kdDe;&zgKH&67RiVh)g$?Ctn+=mx5ycxTURPs3*A%Hc;jd2>>3tgVv4@s(_V)=f5mm%G8Vj3gg7%K&pD$L{Q>*?wkgPh+su zk5bVMoW|nMB#e)md<$3x3E4L`8sT=+WpELLvoefKr$LC2vY&_@-fvG41Hb1cjyU4C@ZDo|dg_relGh~IEeWwXW}2D)5t z@Qe~JRYE7$sf6`$R7Wj&NTXX2OuCBV$C`p`nu=Io4x7>=klHJSERE3AlZ(s` zDqqx&lyLafa@C1JmiUd9#@Duj0T$08Tu3FcJzxwtuN()U9u%Db01%3RB5!aro#_G6aVEbE2FIW4YgCSSBI1z)@#B3aPoLE&VqYmBF!xU|BkUP=7OWuvmAXXx9 z#7#1+)FLG83KdR`oADaJv};{0vlG?b#?tRJ_a7ecIA}aJmEr zZ?DDTUbi(TL{PV)h#$@CO#uQqz+NpE?7X?J(_615fPz5s3C!{H68vnZFRbUq3-;Fz zDB>;L#*Y=%B-4PR%p*5nCJ0)eoFbq0)O4!R)s`0Xylv~rTwQOL`Gu*J5vw&vJ00)h)3i0rI-k54kEczNfz)AzL!gR=k!DWqs^0k`P!yuRR4qwSM}M1R8CO z;wa4gbQcW#H(AatWQ-iztGz!+&en9Cm~3T~nTOa-gC}##*X${x@rZzSl8;o(QI08J z!vIy0N2|}i&+DBikG=+o0| zzWlkqut){~`^yWsg^=%u$~cD>!*b4GNL;F+0n&&Ze>_I8Zw9&1;E+`)D3TvNnI^y~ zO1t_I$!@QuokY7E#LP-$pP!q#_|kd{^i&;~UJ^2REIFR_x_G=x z(8xl4Ch?yiXrV(hvJhXDWQn-7&lnOQqnfA`xCqHphOtd`e4(_9Ny{B`y{mNHLvsUH zmv0%-ulV%Aga4T5)wOLZhxDUvm$I-{Ez%W@0)ySn4d`Nf)ZD5u!dbM?R{e1Nd+I!c zANI%pI03uv_R2aVWKS{xgV^!u4g-BQ^p@3L#f*ly$#(8$`>6Ort74ndVw)Up*C~`o z&VVKiV7!%rlBl@XVw^pfv6@GC4lTjMml4ERu7e6R_e*pSrMdI)kTVIP3$u|S-v}Oo z$1Nbg{$yr|mWRh+Ogj7ak)I)07c}OjDRO{9$>jF*|C&^@igf7xI(S6kL0^szRiV?X zs}2Q0b7j*snOCoWTre(8syxuyzLP~-XXN%*ZNLOpi#l>wYUpHUVQj*pd1w~9_&uR8 z1r>GA8S5)*hlur9PLoWM)-x2TFM5*MsWMzkIiK?<4{msL1Zdljk6a!xop!dkM!U~= zc*K=RA;?iJ+c?+fNZlEu1gsduig4WqQCJ~_fi%9WlH6=gaQ)BSX4YO7p{pab-)le* z+dtX*-;=X!#50#b;+hoX8U#fCki(??6S_sBF+)D_e}mPHKMF`!>llK_DzID@P%HuW zDsYZ=z4>_NX<}-K^!b0tW`stOu>+hW#tPHR3s0r^YWEO>DJcgt_zgPRd0Agt~te@E?wPQgoh2Idh31E@y9ooK+U+?`bv{7 z>q1$4>avnv!L-;~e;aObb?J^`K`D&ch2!m@}PzxL==2VGHnkm-82Z#=P?vWDH37pH8Y>xtq6^&|_GJ@(F^|L1MMzwgx1|7@47A^`y2vS{ zMNQ#byXFXO`WVwK@CP3x*r6{Om6d;MS21R{)}u%bc?9tg%d1aBYvP}5(me$d>(uT^ zxflpg?oGc8zS!MW^2!?XpX?`>PfWDH9f451OwLMJ1wJpyHA%7egh<0)f=1rZU*#6R zx+w6SdaZ>s2DVie2?}CCMz8nlZVO6~`^z-2w^-((w2VEiaX04DBQ&+CJxM{aOWw*D zkggr0-IFX!D&|~iBex^mJymxHoMrIB>!DLtEtG-3*s#^8Kv;&gq2Ou*9-oVqRoRv(;?-61gjKQpFQs6O#}KUdWlcRmLt8*(fNV9(Lx z%3c*wCP9Xu$-v%|J8I~o+jB-g8EU%M*-BDq3Q=4;xL zUn||F$>^MVYmF&j2@PM>tPXvxtoS$Y^lZ0nm*i{Lm|}&k~IqDV9Wc;S5#T*Y`$`kLD%ykgV!sv zABrS`o)b(?7uG=~4{LZQZs3%}*2UhQ{S`t|NDh4aqNAw7cd)g+rT*pc`}bk;qlAQP>$1KsF~<|@-kZyGQ&5o42ISG>=Df*mb~^1UO8h@YSKZA z=WR-*0H(HVC9cg9sEem1Ct^lDx*H}2WjPBe3lw-Q|FO`YpvW_aZluaP z@iNB%9#>EB@xv6*xX@wydE1l?XX(oBHu&e`J0kj6L`;)&QG@=R#_Gy3Os6fCXj0zl zL!?&BNcSaulggwVYC$QiAcdVG!1TT1V+SXW>?O!hb`E@v)*+943dhw;HOW`=dN z`ch`oM{XrH0q4ke(yIiujrrCtwzx^1Rm3%p&2^&mk0MOdZhU*#0rrAi_6ul&Z3By$ zI5TAsn+@+2=fRtSDJY>+G3il%=MHisQXjW{{s*WIsn7vk5XeybDC-dffRtXcB2CPH zHD92=7+1p?@)YTQSn|hjgTZyw?Dx(*3IJt3SRh;`jaD}t`<}?p^>x0k3&DIKz6Ee& z`CW7UvJ>O)+|C&WV}qQ0eLO5gT3$`7qNI;6y5Wwv*(@XfAWrdClO6(&h*tXH98pfx zp6VkM7TQ2@!`O3`+o&Fn?uRYD^HnNB7u7~JamhLvnimcNC(CkCUL-`7yqHX~CzR=V zuKwK8YM#LK5sp?{0$8L&`>+ZK9fWz3dPW&xia=cZppx_1qypwt$-}e@xJPvYHF0;m zYS_@Zp=xIrEBW)*#|yq@Xy5u?lV_|_zY$Jw;f^X9_m`{L+Y@!rMDm0#etYKSuI)&8 zCc=0U5-%DN+$Q0NvrK zknL=SxBf`*FKnptqVF|5Wk2<<(pfm~OGEcv$^20`XE+N( z^Qx+BGPYSzx!)Q8)(h1eU6D&rG(yz81g`<1w2-%W+py0eK#cKp*==sV*MJ80vz2~m zlnSlGjvF;x@X?d~k}V4L=qL|hY6lU#YWI!Mve;b8J&Er2EM~*=KQaSxGY96ASb#ZZ zr=Jpl$oaJ-0k=$-7CYufdl$a85>&z|W?V}k>jUcoxJxm~>Z%WuAiR97VuI!@n`x=L zWE$YT3P?F^3bZ_S=wqr0a{M#r7^X7nK>e3EEESM*+V5;rYu)% zH|am#>x{?af;<(c_70|=4H_f zp~`{?`1!-XEOGfv?-+$$tMMBK({?OwfrDplr|Q$M|8BHrBZk<7_c8AvTXdo$`)D*0 zk&R*@M-%@IG`0G-4H&D->)$5@;+%!l(X<_A67iRhsw|wPQV=0DR8>~`*F1Jc=sEc+ zBOz9gCK%~?pGs0?Q1_ho<(0#x38R{bOZ~QiNZ-&gFva~3I8&M}G@%(7ycEKSrCE>q z905vpm>9i_y%5;yJj;ZV5LveQ?49PJ!XdtmM^>m03npw-5SF#pxc>XtEdN#@Ts-mC zK&IV3MKKvLFUJtbmx7V!a5^<-3YoK7{<3Hu0?cT8JTedN$j)jZ-(dRtdjh`IU!!Hk zZdKHP{OqjcCErxEXuQ7LEQ^ak3XYf{XORu10QGi#%kTDKnd8%kA&_6AopP!mDRbF| z`MtEw?{CFo-MPeOeb&;19e9JOvn!qO^D4W%&*g3e-3cwyqt6E&%i)$9+ox^j!+iDG zL4qy&Q6&O%J+Y@7E<4l(pufOIp5HfzM{{^gCK%0;*oZv2M~ZarRi-%kN2&0S5b)pm zCxrozeBJ_+vrWm+NH#_^Yq~trB)rKP5rOP(wKPdCOkpabaRpSJnY}Iex@gv$Re1b` zj(>fA5R2cAb+r4UBeVP<$fkyFS3KtP`38zj*#xQOD+mQo7hDlCE-5OWL~DApKf#bG ztjtN_(dB>SE-M(plB@^z?g?&&E$}mgQN0GA@mfF^@tUR5*(akXm3S_7mwXLB?6$q2 z#vaV>4N{_f==%F~Pa-a7ek-!2J+|Esx+cp!xSmsom)QnEIi~`<;uevSutrI*fLq@; zn>Xw9w`EC)pL}!3|9MxbOaYLOnL%bEm?ZN=agMc%#)F0Vwd%^w0tN0G1@07g8Grx? zXoq%{70LrSPu^5D-`&^McLS#R^g478>SD%Im=1E(f4rp3M#-2L znA5~gV1pV{nT(grFV0~m3UhOLv30$ure-rr4+ji$?a>D|OPLcuYj-3{Xyj1x`^af& zMZnyzk|?!i*=D2)HrK}~oBR`SROaYlp(;gk95J@XEa!M{qv-EHrHW6Ps^>oOEP8xS zm4p17I(IT6E6xPd+tCHkQXc35G$;bz9C}y}iAjL)f={E{@?HRBPYDKKWU&@WoUwhr z7T4y3rSc>|?=TWv#qHkCJqnIVJjJjsuLGy!cFf$(oW_*MEd~|U2>`@CaWDVhc_~8? z;}bO^WORp;qmR&Yp>}uO6z52Rmlu8pg{2xyUQN5`Blat0hx8ze>*Wc`iC;VV&tE4` zWBYUVhCcV9-TZa_hAlZq^2x@~bpbyRR1*B*n0pA;fY=Y<8FQ}OGBoIRhpEU`q*oP` zh1yu!Tt_kdB$5P(q)g?yaQ9_MZ2(5X~9& zc#cetY;y`4ZuD8vv|ycwZ<+L-!Rp_SM(;fCd|P8SqOJnzD0i4rrM{8|pX5=IuS3gfq1tmDwslSM{RR95fB zZ}O{N6z@G4z8;)xjvUwy@=3w$x-KZ9Ye+{!ULjF4^jh#PttvPWzwblpzWxg1zpP%x z3n4Zlv3;?%vh8cyqv>d?3?xxtk3*-Hrwv;SRAv8sUlw1?H{97?=q_jqFaQHZ7r?=y zAV7!l2ld8Wjq%61FI!y%gU*7yId<=KQMYO;;Qy57`i zsomnR8CHZ3t>Vzp$}b5 z`UMuvRSXw7TTaMFh^vKqM)BWzuEfnzd=ztIA^SY4I_kl8W6qCE7_yjAP!dOq8oj~{ z{znY8scnP=_EFj&T*Q$a(2`a|GGQ2fH%Xq0Bqb$UC(pG@kz=Wi;+zryT9cN!PpU~p z^n|?Q-dU@am~oRuQq8z~R6qOhQqdYsv!Vpc2Wng4_m!FZ8}<};VmZrWl}??~>@5g7 zOhBy%98J;6y{WM)UpPOq3*ulFUM?e1H42V2=7R}u&jV#9Rs(nM-))-iTzgw~h&)Q# zfMzYCGdw23)L}1{{=%d6_*?p_C2gd?sHAQ-ULh<-de!$>)d3~pZh&0kC(J%O_e!Pj zf=ciTRYSXO9j|wQqge(358cARR4s6dC;GtZb>*H)x+$8mw~D=oXTiSQp<>jb@H6KH z$~T+Usnhm9x-v(TXkf(7?66SqUaTRZe#jOGMw;i9Eo|!aK?x_9Wjd0efboD_!qagN_bFP({6v<;;jhIT(*|P;K*5iO zrT4y(d&6H={346R3nbt!%s#O`mu?}(0ImN`sfB+Alx|8sKx%VbwopHG1d?WK&*4#E&xGix> zzn>(PRw2#vCTW9}nw8)NVR;u!P&n@^v`%Mmcb1&vb46Eigo@t63l$7T3ay793IQ}MvugKe(k;-+ldG<%!IComA~mTwN6{ki z9hog?uYPcfA4ptB0MZjDG7dvzmWWG=yU`=!nm^L&jXXmu%&9zqT$+Jz)w{dnMA&Ij zdbg&GQ1Bq@!IeSQUqX3^a6}1<+s?{QTG9jpO8oo6en&&n!krRR`MRt%o8P zhuDXy`JAEv8E4Fuqkt^im$KJ!vQ1gegsQLlihQC%zT*wmUm9o6D*>73E2up5uwZ?< zGaR<7xiFot>YAVE@I_N;>$b5^Df(3#Y~qT2hfW0IltCO3GO%s z-}|MaNp0zsyZ`#axFyd7K$6+&Vrv?aK~8s2Er7pj+|s8^^JDghhiO1s#|tn?02s_} zv+bWMm`;^a@93*on#X$hgI8XBk&;&{VJIqG+YFZVBp1bM9$r!x!SMfrkcE-1xwlE0 zxKn!-AIm~MGhpj+J3iz{;Lm}O9RG0RN8Zl21@?tgoCq#I+ige^XI@ctSE7TD4EyZt zlSMCXlxBuCeX{;zw(OjOA`9xAmM9OKl+#x-L2GKw!2wU%Y36u?TZmZi1-rty+pegB zRWkwTSmlzQvR*8%QX(RK=prsM5%xe})%qiyq?3L&WK2OPC}MkHCv$(T3h$rlsjL&h zq*sQCxwk84GX0#P(>3}58{aaNW5iOgBCB*FjfN^%`mf27hdYq~0~FU#PNb7)5^NXlMu6e+XZECSk`RpHJ4;?< zrM=yC#@WpyblT0aRBa+fiX+xeuhnB|xI5Uyo%OvQ-D$;#Cs;;l$Pg=LTZK6G39b?L z^Jp=U93HRm)@n6E=?60>wmouBfU;N$3B4p^;49SYn1e;D_`8rQo=h-^gq@i z^^DYF!2jfaUP_usB=DmoUsDvALSxrWTAQLxI02vujCXl@U?6<2H}C<4vL$*^2~tyW z;Q_&edf(>#Rxn-oI6>O;N)eC^dj+1|Zf0EklZH4kkXhoay8vpF<_Ft#9uHHX_d+Pi zv$Z%N!Ik?_5&T4BY^;j4JjHHFvO^{>ZbEYsAqzp>JWNvEcP6km(h))xwpZX0i0FlK zh#JNWk<@h2ngeq5UG>pb9~KCV4#qHK@*x5=Oy?y+L`F87y`w?_1UkP*rF1_35p5J_tPop87q|n5X)cyfbdEB;;xtg7>4So@u&|>+T9o! z4ka4b1HRhm!SU$I6Ufp2_9#g{J`NA=G~SarGylj82f_0UuatsaT#3n}qrmrTP$0V5 z+)EZs^v-1A@~>~FV7NpUKlh|K8g>`ZkbdG|4OK-)W|~@lSlJ0GjiG)k^&aKk+Y0+^ z);jt1z9V6|KFuwu1g=VKI{4`*RIHQKT&;YPQ?3}mT2IwY6ti(sFLm_@x||1+^jpg? zgJ>2Fe^y799r8I5cYF8y52bT`sMfT+i{VCGd%S#uZ1_boqbq&e2}N^-#Q{Y`+( zi@%TU^%uDB1=Oq&-h;fH9-N_BUa?)8sJOi8W`a%q{vXu#Ih(d>*K@-OT)gDobD!7a z`o`FF4;)VRhK6&fV-Y=WLHNvxso6*%8{iQjo?t&Fea)Me)Quo<04(!Ux#ueHX;fdB z=-2zgok`_kIe+^68uA^0W4=o5b@T{KFJK)1#PRUZhDQ1fG(_|=IH^@*F$WcZGO|?6 zRlmg>3`s9azeK1r|8hxqO37x)~>R{pkEdnvJF znBJ$f4TZw%GA0mu_Jw6gPQ%66!2mdGN#pqeIU%QugI*E>6(RmyDw3EObEffS$=U*V zRs|*@+c-b0hDn<(%tPCv%f!M7DZcV_iBi@JVj16PJh*&rV-0KPI(HR)yC5xm2$MOQ zf}eyJ_`!jCAzw&VzSPbM^4=jHrA$ln6{CFhcl~Uh|8+5{U&{QoYTMBZ&(@JRqN$WG zk8PDDww$1t_Y7Pz+;`*DXVNhf=L(zf0IeieGCKNV^8YDzhQqCowqU?WnW*~ zu*^HKB~;6L4NMBtgWZo|iclge`RPoBvN%u1kc?xjZ> zN^T(Xk_6+a%MV0AYE`^aU!yhoiu={lxR5ZkBJ;*ChgpAL9|x+{Z?Cd-FPi@p$x%2h z&z3|t9-}r2J*5MWW;?$MV;^%+3b5hn$~QthboOyu(8${$q1l!s1Nx&({YHYMf`%6r zY@uLC@^#!WeZpuHOi!T|jVH=Ti}6nyhHAwDO-+4tFw^mH^l<7($~Y9|TVz>mZSG3i0-Fz0EjV<`>w~2}+*HZp0sEJ!;y)0^lQ$9gk^+gCH=v$>WvB9q zRbX^pYC2Dka_W6bYq`K=`Hjt&sO-hu_HslpfDY7xDW`isQ?sA?)Ty#R_%N$N= z6kH+~=djN)0bxL(gxS;J3Lqt9+PVDw9Ml(e*kuSVbve|1^<;L3G@_41MlZLAj}9i0 zhrjBdnZVz{9VJJ*LAYLHPtQ@T;O-jIc>9oU9B`L@hPQQD$w`YZ+J-uNts;>#_Q0JdSGx9g=swnHdF9 zy$t9F7+8AQMdru;;@BSQD)!EiYvthj{v-UN2mOwKizb?{d!+%UzR%Z{so-p$#{h6v zeD3t&LeniRg9pY=|IR8Cf9TGwx1=9@(mMwr%a~N$?N^Jji9CTzGSO1@<;7LoZhi*uRNx-AJwbGk(x&X+RD*lz`YbhXL(^6qp!&sQF zMox$iMTojVl;KM1jwQOY@rb(>iXcW<0PD`7+AJFp>wuMw1_Gx`7$;g)5?Pokh-Pl^ z5$?h$z666lOPV%l;yZ|^C`Nig3M46n#WJ$giZWJZT68-(AUC#kmH{BiPNt~fmNlYB zdbVZR)JlD-&G1PRXOSvq%>){nc}}RNp12=~ZFiFJqDCxg75nt)y93hMrC^pPZ-+v` zi&*vHgJf9_$(d}24Wzji7<)S=sWenpV%*KJ8!;Jrvq`%`SXbaKgoODmJm3{}dXy_m znY(~tHhuAlNy1U4u2KKk|LV@``X|?AN|FPqz!lb<*&f@dNy)r2>vgE7&xI6abdU!$ z%>lAJqLQ%LGZY6*X{q4eRC%kU4{^ZkrO~Gw$&J~p?$z;iHuezx754uI3w)3Ip_RKn&@eug* zA4E9oTFCA*qxQK%?(P2KKJLGJE$`DCr_gV`oB#j}QN%Rpf(rDf8W#`h>U~++KjY>M zZltfir#h5P1y!UkP0p=Op~U&SU{<{zc_)rbw4)z=IPt_nT=YNMkUz~Dkt^|{7;U~k z=KmQI){1^hz?Ce)OPzkH2O^<6xN^dZITDGvw&gro3bPF|&tyB?NQh^v>tfIx+)^D_PsgZ6wck@4JpqO z&f0u_Jd8xrQ(5zL^Tkl{E9oqz(o3W5UqB>$Q!aD@wX`>qFq~5czq!nqdK0FV3i2(TCc}^1_|Ffu*K17uFVIth{kbwH80GyfQpTcnlC*UyI#qKog?|WYpwDlyq8Sf(-ET^D3QCY?W z!h77chA3G=>#z9UYl9q#{o;I9L0Y3l!kRm|8=N~VChOm^P);s}vhqcs9lg ztZo)C>bcEy@%YZ%k@n&64fn)@iS-TBOqn;{KVf%OBM|#KP^9mW-z6lTT425{RN00! zN40WWLt`9=(d3@#)hkgS4Vn|o<|_9)k3k!bBLm>9ErAI!@C?XJBc5occ4?mg0002- zNFYh;a;A0_BL;JaNY#OqrT_>HYvHeVYUf)j5Z3#Al9HB4&4GkkleD>p!Cm%RDCR^D zxH?-e-uZMNT^Jn`NZ1~>C3+FBu*`u=HgR)(oKQ#LO3uiUd|>Jq_@$K5UQ z3qs`vYfi2B#(|vz*;}eFTqmMPOTa!$>Uq1Hf;LTBnXCa*NwN+YiD()uA4ozS;Yc_` zVlJ-`ts4RLJaF*#8m@7vYa*qiVq5&1nKYgxhEbNSBZRFyu@4woIrTS8gaBTT?i4bu zXcbT*fTR8CbE`O(Zn%f4HAD|cNq}n{pqu@0-zLd}te4i7cK!I??ee8Uhs`H|Z`zx8dA`T`@38Ah=S_loVuy3J>)r23}n%2n_Jh9kf8WXx)Ml`lR1mjQRcg zBW^IxJS&T$QK`v00~F_=AU$2FiAVGuSDj|*xt5?Jl?$b)!akYYspL!}J|SJcj*N&L z^3O|SWt1FdjvmUO$~#0R)W$af!3(4{z_W;S?j@hC;V7TpH_0;64mi+$Gb0FORYaBg zyFFJ6ZDLA#(b>O_NJ7{My2yYY&EM6W>_Eft6Cza89(gB?tVe+)*90KOJR_jy=?hNu z{_2)-RNq1I@|=!)x(FV~nzNWoJnq{NG1ZG%mwTXF{x(WDrSDRVJ_xDq+{y8946KvW z@U(=MQrd<+YdjSwxNyJM000{ct_A@E=%K+2*U$=~7j?n32Lau$4#(??N^~bql~+3a zkgC`b(xwOVQkj<}kXcpw7@ny<#PMQSXRj5kh^I;IqUld}PwH$I@&bgHP9mk z8ySg~O9=(LMLbWm132v7(Usi_U~xgRiPgEl@zX;gS)@hJsv9S*y6($qY3Q^txH?XX z(IcNNX&jS&Ym>alqog49v{Ul)D>wwpJCQDx#}!9rh}8{qhGPAZ@-#>t;SiD98k~bU z@09^^s*CF07+S7c2;mVFG4sv$`(JtX(JhQgq&wMQq+~B9J9)|alTKbofyu-7-(H8W z&p*oZ225bIi&8XN3!5`5!Tn(DwS4CRY^R_I6>hkg;FoRIKwR2jt>?gnu%>~htDcHk zWb*+Bo%OOD0Jgw%!q~q%n561=1y*Y(8NZU?YlSzOH8Qlf5@c#?gG)I6AdocSk}Ybe z*c?DqY)Lsoc%R6&r5vOhzqx0q%U{+pNN1J1=N2VO*4e0EeOR=JX&&QiYo-mq`MIpD*g5;*GBK*!KKiQ7*D?wGIfqVJ)e8DHo*H0lCX=zD8*j5LeG zOUmhuZ)CXSHzm=Y=6hsQ6rsvYIX1}eO8wcyR#2eOWOY%+YVFueQ`q997^<+>(K6cY zWhA)p3C;`5yVECkQh2V1oDU)2`R$tc1okjoWs1q>Hu7BAR<}u{c>rRQ8F>kw4yCwi zQ$?P2WSJ$#gjYhb3$KyEVCSqQC(2$VPn0~**bzJtZ3 za=6XnECNtMvB6k0=KW<;91S2Q@uEPNw17wcFMCO84EU5DzkuB4$wpo!=m#_r#EiDd ziKNJejU#zVnfiJ2K7`E;K>SJ-HK?CC8ih3=p{0&wu zuLM$?I@op>7IAnWfM8Mu8*ADZatZ0O!#EU(X$vKF1(D4dOWi|OBS!2mOtA^ z{RZDzcyIz%Agmy&beb8w;1V2km^Xm=g}kA#b%K$OfB+TVa*lAS!PuA%XPNCNU`#Lb z$v9ASc*SqeqlVkyDSSd)$V~sFEgI$eWhRlOlUQFi63&F;xFobWpJ4g`BcW~mMfE!R z*4$6~7CvpMt3j?a-|IxbY}$#b4LlbMB0y)|+^;mD4EHgK5Ry#jp1>$BjW*ih>}N?) z?)gNDlmQbZwy4Il-$b3oFL1YD3zuRKVsw>69GE5@3#i7>b_gL{lrf(NVhHR|cDMur z^;Qq)(3wBuIQ>eg{E&rY&&pS2;>H_V_!K(_ZxQUoku_h-Q3 zUXz&@mOLGN@)W1H8vL0>a_|OZcSs@XQI#DGA8HZV1Ooe%YRS$ff9nJsAZzq#i14Ad z5#nRnuuO3{)%zXsW01$w)3^_u z4onWDrG1KK(>L!Qb~3WXS2#`GdxQuKgw1f)+3rnWjKX;?c0)sqP=Ryk*nOh?Rjll$ zd~BMr&oQAt$0?#KAgB~&IR7{aYh91pi|#?1ileEo(GTcNl!Qf*^wyh908!*OFHnK_ z(ZCwX-m2d2c|=CngLmD2PKZ{ErqddO{o0 z0iVlhtfu9@?o)g?e+gi%WKl1Wy7?judt7;~{}S-PiMfDA{oe(hH8>g>PzwbqcZghg zR}97jJSS^+ysy(#=WrrbJT%7;TOp}l^zUR-S4D@c%?Q?gIgl0Mb8H@B9?Pp>C9YgQ zRpfO!Y4(Yv1vTgR{1Yl+Z1z$r2YV$;0w06oah zgp;G7Tjt>#=6ry-FsMA_0AK)tLm1ye2}h8H1>yy+p> z@?&uyu4ClV5=`LsGitpYd&N#boK<4vhTfuM+*F|Q9 zH2$n`S`P*9Bz{QV5(LxdgEhTN!L0Bd2PJ;>c^(*8ptF5NDVXls!Dh?HPHX)tx)#MY$(fg#a%!l5vA zyeTE{f4G}EN`&HSE(V+#Q;fvl5&exkQEkwdyMF2+$v0v1N6^LQ5TKq~rYd|Fy^a@p z`uBtT=S>P0pFQ!CIvwmwe}k$hr6xF3X->$2P^PN!))x_`j>0mRN(oP5kcF{DRjE0A zhFb~o%%Rbpu>DuTViWi(4fTL=ewAAn)2!R&kJ_B8ws~MT8w4Tz z;<6R5!f){&SgdQFpMX%d5=m*Db5DYvb0m(}uBD~^j}Z|gL#Q!UkHko&r0*@inIy+Q zHyH3f{?*=Q-fpLkOLzZ-2CM^5Ql_5jBro~%e!D&P42}cZbGCz>E~}A+hGalJU&@8p z>4#(dwwPkk4@{oj>7{dxZhMeb*w0+r)ejfDal!0oZ@#x{c0$>n>t1S{&CLSfRD;}} z4wxe&=nf)s!0HQv?c1oX(@7B!GM-$a(Xj!|fT12R6~$`2Y9FL_cn9?tZB0ec$JB@Ddh~MrV%2l60-uW)^n0Sc@y`%x(ktfh4Lc`NO@A9Y$mw z#&i#OF!XG5;27`hNNA!&y)DPhg%+7?e585eRN!_Oss%!i*ooL^N_%PBisN_lKw6jkzeOhi@hg^ z{2*Bv8}2EU9tunWGrKPaG=stC4M^Hf%a?Ef7VX$~!1CMP9Kn#;W|lO}RTNc}7NgBN z1w+Z`DlF;6pio#>nX-kXhWTn7>%#_s#eQFYbFJqtx^G3CUo|0rNBb9fWB8}~Ndc@b z-pM4T_;AD5cgjeCG4bWU7rVI2wM0uA_&mV{Q3DK;rIqbo=<+!W!HB1Qx{zwR^*=!m zxrKg1xU$z_`^eJJPbslTe%5&g7J^&$UtF_vqaKr(S@3fn)frZZb#FIDGwz*~OgJ;ef-aL|~-m zF}LdAljHtz5+MY{`$Bk6_43srhYE-X&qDrWz0qw!+cGrBSH!G)nEDPD000000050L z9?As;xjD?$b?r0Qw#ak90-*)8@t~;`@&G~C2nt6#j}+7hjp@4a1wo4Z!N2_v{dIQ4RY|STTy``9&f946h-eHtE}(ga*z;miDJ86e2;LyL|>CbjDaz!+~TD zUGpDUNt0TDW|=O(jCEAc{e%w{6}-lR$r8hC#@KvH0yrn6l~;la=n9HaLPEAQu*gTC zLU<#IV3Z5g=Z?rCQFqq}T|D7JWk;eoD`dDOqw46zCwtG&4^irio=D%S&p67F+^{1l z^JK0+-e7Q!_{|QJ#4QGV%WDe0d=v4QAy=mPgS6SNcz)dnprQzh?vtWq9gP&{iqE@5 zvPpgptUV(82J16Cv=f)9;yOD-syIYo>b@mjY@$(NPOHeuP|zZEa6ebd zb9Z-$PDWLrfH*^DlY8*4XM1{z9k^-psU_S8OQuD3@DPw#k8vY6LmyUgEm9@6bVu1r zPj6>DD?UZ^>8UD<%bcxmmI7wfN#-<8j*-oE8vI4mlS3!q>F*!v%nyYP!Zszt&w5EO z;TClR$?V4sd-gGjlbeoX{T$q$HnW1E-D4@r!!~2op-u?mlB*R$JN$}nL zD5jnWZ|Ezgf_{H?7FFQ+m+!hwL5^YL*{4#Yjk){_Is=CXjy#4KexMqimq!TDo6~Pl z1=&L2LYKXYSSEt>?@txcYTgC)2qm8?=T7pM2_ zu~P-nd77EJPD6z!*$}~2y*xGi6~#C_kujQeDoP_@zko1_oQrRU4ij)8DqA65q|%$h z!#2ufKpTAX9B(%S3ZISfHWUyZmSRCHqCzqL{B)pAbKuFFo!OPL_C9@w|DuI9liP`( z01VHX^s0h;oixMC31LUw?G6nF3*j*7Zm`$!U{U-8P*Kk_w95)Sl ztC^N!>sejLL+kj*Iddy}6WgW7RJ|thH_Q_exhLF3;hFyFGQ$((ol7nyBcY}o$`{i; zk>N-Y=GoiBp5m@kF3Z2)!9Fb!E*3;SlGMRbOU<}HCU_{9)sPhGXy0h!PgX0Is@?gY z5A9=j6RT7{rFc-2_V8V-dZcdYcB!3?v}Qzt;Hd&>I7O6=hD5Fj31gvpA;OhHrHxwL zm>h2_&&Hh#{C!^C&3n+hx{GUX@P~)~+%hf$BhXlv{G6~&W#3mlk$zPaZT6A>u~$A> z2pp>i^(G*z^TOFzHKJy<;HY@8UfxZR!P?gNtm{_-`+&4`s`%910rcg01>g|LAx~Mq zmqs+h;}19+@J2>SD@=5)E5<1Za9yu^KS(#5wYA63;EeE#U(1i^^)5`RE;g$E zu*_-l+i9@DR}mxy!DKM}>%{(3%<|0U&X32C3BJuVT?0*WhP|?l(}x;qUgP(>by1Oe zKSd*GPts2Z^DhW9EP|AJT8?iXPNViUuZr|p)>Fgno=JOk?Iuf2~O0=k8JySt(p|kCq)6GrapcaZ05yNwOD^C&VU(AT;<>a}Y#R zbl1^qhnpHeO6FqgF!LlZvPJu)2!S7B@8XU^B~7b$L4jPK5<{|@w6KOHnH8}w(ZI|~`rT{l zJ>>%Ch?s1tfhaS>ke_x~M1DqXo?<{Cb-^*dn>FBemc991d>fx@M(kNG52f$lSTQ|qRpYo`*(zIRcXyC&a{Ur>P z8d2Cm)s6_75lwWjCW!Nlo0i6G|ACAt9QWtDymIF`e=!;vi(jjFG?X2*!9yeEs6vOe z+?9Js)!4Dcg>=O-ik#p6Y>W&~4{c95VkwN4LVEOUTE7-mXLmuk`B8-mk zPzL(;t$?~!uqq6U8lrXpm?q~81A?q)CiK_o&(5yu&l^bxz6M|4Z$3iRTBTer#nm+? z&?C^wk}$G?-e2LTBtgwvve>81I6xQ!+B4;-F#Sb3t(6k2Y8xSB_n6ti z2T)2sW;~aD!Nls*MUqQMLC%lxm@ zv{Mb=%ti}P>sTB(^UfCF6cnqr@`i8`VzoV8L88;o?xgRy+|63Q_E+IIx@v8Yp`($l zmtlp)JyGSStF>Z$u!gwurhGeP39Yu?7y}x{iyNM`^OY;h^_1seYctO~Dr?`N!5|3f z4*u0H{%3j`^V&33jX!=rg_)d0*I{Dh=}eT_1Lak80002Bhym~rBW=j64Z_wY(-a?8 z6q}9dm}Y@mu+lG0D1XBT;bk*s9uHsCI2&R96WOjMZs{@9p&SQuKUcW8d~ zT8nMiZm#Fm-Cpd9%yBP1;O}7r&v27TqyJu43TFYbx*zuF77o3?=his=BeY!@HMiJT zb$347W9fzu=gKe^lUKW6cn-(La+4GU}1H8TC)UlIRC ze*RLuT{12-_-mY}mqWJ^wl22XHD!9a&|$tktzPp(rConG z*0}tj=K34G;enY9IRuEVT(s@kKgxNgEIuO$a1pPpJ0$?(^^hb{K;y7 z3lGY9J_v8b5LOa!O+n2sJ2YAlCz3;c#-4_zdav4fNuc1$Tv9WzYXD^T?xa$h@7>~m z|6z~9o+Ma}1!~sH1AQnLH_HjUrM5?~Q>3OihH*G(E!ih3={<1Pqlyh$?@b?@|F-dw z*i6@4p_YSXQySIS68?S`N0oD&P`Dxk};B3!pqA4Zb+ zzg?m^V(0|LjB42coqcaWJI!eUWT=_cYE?j!y01Vo(SB;|?-gVZ`j$DSm-L?)>m=E0TMl+a1;v2DhmNl;xp`ll&7M?W~gX9!<6D=shI5f9T7%hM+)%V-~S zbC!ipDv7~5$|h+OHSy@6x|BUfO1w_ffV-jwDTPyd+3a#&4G8!j>-4HR(C0z)89uOn zlk?_`LB9IWGS!{l4OI>kpo?f8oiyE23oz#cz*5?kWjtlcy17q6@VLQD3Ww8-)VRdt zc<)d=X#W^zOXA!m3uO-9uW;_QG-ESPd(j7}*>l)CI`^B277-{6fp8IgGgOmQ-*2gF zom<|E={*2H=kUc!$iOHO6B{=@&h=(iN#xIF!$DYq%y^JOzZV?;6QdUQnhWdSh)@#X zl{Uso)`mwO(~=`m@5NOVGv>XFaK*j-_J0+@XOuHq$zE!QZtC5v>OPn5%^1!~>F%h6 zk6w&)KZKDK0*OrftJPo2@jokzl9^gXukfJIVP|2InI201H}DaOe!N={yhN9!7GU5s zI3Cd6T>K7b1!kBs%4C>7c@ohxep-URfwGmdk>oPWVhf>MHQxNrFG+N}E{f2=b4SPS zIrFYoiu0}upC^8@K)Y9{!4De~82pMzA?<`YQUd zXW+Vz22UbWH=6@+Y}e|EKyWD4g~HNWr~{}Zc59B!SOMOX{C?b^&U(Wn+S1(QxU9*B z%z!nIb|TkNTbx@PI3wvyc~B|(yPQ>lp*|B2_*rO1UDxNr`4n61{`jA9Uh%X-qxw^B zkOO-q!eHiUTkZ~CHKO+(&XE&7v{E7nxv2Bl@@rDbHHUh@R9aO*%zq&n5)(_o+a+pw z^d?7BrWhb0G2$tF_se-fXlcfVALh^-~RxqDna_`+z0%u`|Tf*68eg(Tlyc~HcR zHe$K4zEOa;-pI3_Gv0+b&goAY${lPOb&td`oD<|@mWguz*+qSfcOK6QXTcp9I}9h0SIQWaK(?n< ztLz0+nGiFED1V$a5Ni(i3q=6@1S+q+Y0fKKBQv@ak2e@S!y|dot7gz03$2&YHa9?E zw6~LX`%&@FXIu~6ko%E|uFAl|kcv!aV7C5P%N}r$lyokaHltoxl@>)x&6YSOkIg4~b)dWGyG{ov;E}IdqVj{axK^_T$(g{E=*JtH1mZi%p8pDek*#QnNEVl!4Mv zXBiehf=aq*Gu^)yGxUk?D3Zt)!Fb)?nF{|%PY_gK0m0O&18h_#q@qwnTRv9!w7zBb zS(uKB&&#?3g7O_+FM;OCZ+{~o5Sr-ACrE)~L#feWr7^JVIgiPE)586C(IOE&Y^;T8 zEl_ds+$RNIR-0%g{;`F?J~N?p%Ff^E~qF<1gD%>`wG61 zu?BP9d?-HESnA;=hJ1;d1dc6)y+Pk188UQR|8D2N_OksUzqGB8srjB5J#`)${hTuw z@{%eSbH8T{PujODLis<@6%ZR6&8Da5%Q9|TceQWot6qx_x|dSg#*i;kc{-8`+q^ti zgHx`NZ0Or~81V6bdkOOKXVxE!Jp82r7|?thixD3BUjsK+t%dRl<<}l7r@%n{R%HQOQ`qF{F)ASv9+5RqkTL7P>bhS4-lt#Y0kn8A^e!m4^&v#P)Qs0fCM zhx@8&4fwDVr?Ma(SO|SCjuJ!P*m!w|NeeMAq?!~DBg|k-i{ZMSG|cRZC76w0oZE_E zF0rB^ijlew*F5og644*9eu%y03~nI1W7;a2++&SvBrgx=x?CmR>uztlqqEZRO9@b# z8~i>8HugGA#e76nPg?4@(AK@5*|a}|MuEhVHT8elG293o?359%r%u=2=1jnKa+4=xHs+OnK z6+%{=foUkm6dABd>~&9n?Fjh%SI-YUfQ;bo4OZg%0{z9$pB+HzFiK9*&YsbGA!bHJ zk=_TKUW|mPmctjCTG^??3WIjX>q z+4G#UOp5Xkk~DYK6J0kUXB|QPyu?mzvBL}shz}4LC0dy&cCWNVT68?=h{ z5*&v1?B(k&$G@6rHaPqXHS^u0EqMI+MB4OLJxQhI)*KF*=#64{FFec$*k zG?2>oYlLw*=%IlA`MK~EVHE8ZoHSnBgYl;|9Y>2l%k@BxJ#YSxN1kv$sr4F&0000S zA<)^XB=e+QeRL(7s(6fo?|lD7iyq2Ls$2QHRGJ)_9dR`^VeAAnK+u6WUPcg4a#2?o zQCr92Lg|E^7{C8Ii%=QobqPr6Al_f3S2OOfIkHXR@{UN&)-@-SECaX%AS}+%*>uGi zDhBWc`vEjQ>I452MqZUpq-}pqIwa4Q)!ZgU3_5I%i%}_^Oq^%GE|YPCBp1CNmnG0_ zdnyY2>6L&l{R(#-n$)=vT^NEGS5#rI^d~#dU?ECrNaU{B#s4SX zJx(S0Z#>skQEWDKd&EdKhs_e_DSP#Eq+K?`q|^-=+mQ8wwDc2zOr@T=FYaLd7Pl?g4o0i2p)X!d|9KI<6TlAi0=){AaJ;5k%V20I+! zlbG*hX{Bj5oQFj!x<3c2njXK;+tn4t-l8|3*sy&Ny|uF<>bs*aE?i~78x0{+!%E?) zp>q&N?mIU>WvV9=Cn)>Hz#!Qj2vo_yKWdry=4K`7)C>gdOTbFt?#oSwSdM!HR{~Upk+$h?OnmI5Kopwv@y<-4&jiYtUUacjt z`6vJ9u1zVynT5|Ga%dn;+DbIw+K-#%iKgesgd(k;RGV&N7~UBo#D)(GL%M+A_ReZS}%a$1pPt%cdjq6|T>T9G+YVF|7~kzsFgH#qKAv-FK3dQD2a*${lM5 zNrv>5ZKis?pUZ=tSP_bY{ey5lLihff*sRxJPy!Vvq#tpNZh~zTR@Ku(u-vwOF^%L@ z-}!?jE0@c5VubPCtKYz+37LyL>h-hKeWu0wkyTvq4X7!1EFmI>F5O5MKV#~2m}vUY zk2DZ?G(l9Ewqkib30!~mOV0{#|1i!hPW4x)BrbLyL`T}1TaGE&o+P0BpKS#*#s7S5 zG6v&7X6Q^hu{s;AM*$`kd-wpWRRI~q@Aad>?LLv)POmMbh^FjE^#0W^c3XjRmT`j_=od~ z+s)azmIbgfDIZ-VlAZh7YVWFqgZLAs-W-LHo%_5^hcNE}h)sd9mh2~7i^xI_hfAYj z=-3Iv(V~E8@ab+E(0Y zkiew=8N=|NS9B}zH37WB`>$fPnn^-Ybx7k1vIS`$XljLR7A=%94bALw-DF?3KUBg4hJVCpJU-0jF<%aGeFiCp;&F5sB~wIz^L@cn5bL#ETW z*lkDpJIW=O1Xx*uX+$Cia1V+I^o)?7Xobn*juzI)3!5iHaxFaVWNCVIYTCJ}TjbOh zAX`{h;2v9m;05Q;(pH%ft8J8|s)Y%m=IPJYEP%U%FZ^kA@A znSWeY9ryI2yJ*kh zCe;vNx~UmnFEG)FRt2}!4I0OjKvE|utg*Y-nF`c!Ob%yOqiK9)a?<}JXaK;hOR7=Y zs5v0t1J=$IO~teyMWJ_ZQ4o`c_I1gIIS>AvSBsgPa&uGOX^#5Kes9WRsVfQW!k+Wa znYbYyW;O+N-vcmuqKJN)l(bbPL#U4OXBRi!*c_y|G!9HrzYegxOaO5chmM{gu}Je# zc8tOeY-UU!FEC=>OE(3qX&b0ev+%6@CSQ#gX^vlLy&Nw1ZJhsq~xwOd*(pU0@}ht=*>u4y3hBhy_yA>(r2`tfQEq#T6UMKcKR;D zq{Hs(%6>(aAs!VEja^U5GYNH@kxu^Y6>W*FuHwCmlLzI%DQc-&D(X)AnT4l83vbdp z{G1hQPSA{MZf;k6q^n@e^J#jUXI+ATKFz|hq+EOc#-}(Fk&RM1E^HLry~1@Kl{awL zo)@YPUJ>`-4^V{I(b*OHKfdtB9;SFuLAuhyia_xf)g;ksf-PVUEp0k&Qu$^+jxwq_ zwM&l!+AJZ{Mg9d#0*<6$ge;i$1|3_e*lvukdOYk{Q~%Db(}}W^^KV~QYM=lGkG-*w zWJfCmr;%+1WcHjR@@3V4qI35S)Z?S{KLCNV=AMDZu6Y2eBw_0TnTz-=Y+2k^PHDcV zQjnP|)ua35wVi#-Z@y^iio6UMIXlj0LZN5Dtc#eR^8Z2q@18TFGoqeNgjiORaR+6e z{{=hLujB+aUSLY1qEH`BwsdvL{F7`50VL^C(`#@)MWZ^m623cu_TW$!w+82Pn>7Wf5k0 z(VDZ1RH(ZPXw@_|cz?o9={Wl|*9R3cCfH4jotwY2d`}o?xv2@$02)b`tCCNSTobL} zlO7?bUxJOZ?x?BUd3kf?vFdqQ7^mvhDisYx0BC#+c}1LvI7%ZBqx#5}R1lTLF9`F2 zwTQ`*mtQ{-eNYB#GlQq9b3`QInwu*$vG3VjgIidl-2560h!T(q>h44qa7uhVOuNum zKoTV3OmygVrs1~BCE6v2oS55|+9D=;MJq6qtEev!ax{$3be((M$1(tA5qL#F@o7>8 z6qFdXQh)#EW!fI0`kzCa7%S!5AWyO8zwSX5-0bpNxg z+sazL)dhqOqQ5l@1^gLh(jxTE3O;6(Kborz$m@vG4wvf;=0PqOfHBJ>DEoHvd*e(! z$4d)sot|d!-i^+a{$Dj?VF&+CZw!;Da4OTPP=J-$e&T*=_MJvkFtfb(lnTlPPK%E*rNJ=Y)ji`|{+mNFo%v8TWe@i_`KSk`ksjisF#aPft002>IxH<>x&f>a} zn4G>3#nKW!D$j4}j*{Fc!y&3>(A|xK5uN?3C|v~9dG(y zVC$ftF-auZ z=@01ry-Lv*q|h4b0RouW$()mPb8fR?L?4-P9!cwBZxH+FNc`6LIumbNJJodKZOTBJ zXv^D8j-O529DyIutfd3|s5W9VlVe{A8D>dH0PhZF7TT3^ue@(u@81ziYl9_qOdyM> zC5gmRnVA7t8u~04Ilt)90z7|!pIvNF)>TecrIvi7ag@|%S21#UAw7pb2lDjR~Op4t83D1qB|ZeEq@=G72ZZO6}2M= zUc)8?5#LBGMwtZ03ZVfbqF^hk@S<0VnnpV>4P?%!_s@>zF`N2rUfq~m;cu?mMKb=1 ztnNf^?Nx6`*~gZwfdd)tt05}9*zS+I6&2Nnh{`TXpp-2*`o&?Ir)10F8-@?!?SY9n z(5yz7WRnzFncOs0yW13{xy6ec+Qa=j595Sd-fmb9u@^={0&hEc~0FtLI8{*!Q+?l_OzPy6+0K@0p{C{Kj&j#ssiL z1E{-k;PHTBmvr#>3zFAQ=K;2bQH?0Lh9l}=Y4|9~ZqBa8Q5C^1S`OmEFO8UtFY9!t zgUbMrg%^MlCxRj2zsmO1)AHE#Rzt!Ks(blARV)&W8!YuLgxX&eejbhP59AoQ0lNO) zSij>O@;8Nd($(eROR?L}yV8%1KcT{s6k?6$7yMLz34d6}yIn)=q1wRg&eBrBeCtJM z#ZF%qwAc1EA}j##4iDK#`COC-W$#YUVmAO*Zz~pQ&N$Y7z)YWJ1N)}gNjmVl%1SeW zrNeV{Y@H?;tk^#)3H^X`@R@bT(vjf5s}6mqdU$;5IRZ&XWFdD&!&xJ4>kF1siLlF? z)$KTHo7y!o>;MSZg2}r}Ygxz#B0Qnxv!dwiX$V!VvuG2&^&u8Mb_jUI3aRX?sI27x zbun2=psZy}Tk!M9Z-BnnLY-))YOjEHwQlimvx@YI${0pRs**nYR4rjFe!_hBcIF?n z-W*uTud?8s`7zR=MK4{8hNYk&zY=MMfMIU6tLGB(6wQX#Y?K)WdKSWvrxTxlPP3?lNHagU3?q?tu-R#&dKkQHIH8Hn-HuJhn^Q*PgxHx7(mTfEL1?8m)Jm@%>AVm2m{=R2 z&`0ipS~{6tU6GJUU+J%Ih2FzAroU+{_@VaReKOjN7g9_NxTK-}Qf&4>aP5Y9aoXNo zyf+Q=rvutQm+3l$fYttU$4L%kF``Hlc*^}6O1A9H3Jo--Ni=-jiqC*`IswxmF)0Kl zwtZONIN?H{n<)6}K~|(SC+WY=$s-NEO_`zkbNp?_a9!J%9GNtDG(?%jpE6v=wUjs% zWrwHls9X`F-Z)!T6kezS+0GBa66`(&P8E&Ye|0D32b@dE8qBwEV@JUt?8eYG#hn>| zq9FB9WCMq4%e7HZ ze$09g;)O-W(7*xL?^b%s64ecU2Zfdm>!Y~oMFa069M~a%!XpAf({aa!0gWG#njCII zAzt{s5_Q{SAkQlbbSsh90yvT9GXP6Kw7thdsDM-P7;C6SP{S`ZI=TeK@Y{$BX1NMp^l*XjgQKy>P%D9NvI1{xSD z2gW@e(T2f;w4TTx)0A*^CW2fiH4S!X7PRG?xv%oh8mesj7)StP^G^%WF#&@#Qw!73 zWp>m0>vL1j;{LPWlkTxbbaQsu1MXQbJ^m1uo2czJC@y~Sp78P zMPN|bDtZfvS39r38;)b^^9*)J09#@;aDGT)@I(Nd(yHgaj%Ob8ETo zx7~BCTI}@M2_d#^4$P zi4%2<)6dorwuuxLp8VKPVl76XXP&X|-cI=|ec&GG!>tmz5N*r$8XsfU)#$g+x^^GH zOFc5rfWm-?vW`LDZa=0UL)JV;lwc1JuYsx0Q+)8l`D(~L7twtT1Aqljh^!@x3VEjG zIR$Q`b*o2E7V5Fby6x>n!tN{WZH2*gy)De$&~iGSTP&-S0HvTad#@Vd%9r|H*GD$? zhD<=w1cb>i+moH!wWCAX#jW!2{ALc5N-#NFCeEm13$y-9seR1d1kubS)NA`D=E1;; z2aeL*2=@UU21qkjP ze{UT6E>>bP@iryywlr?Z&W49n+u?TJHAO8Kx8e%eIDq4V%yE=+_pP0aULTM^3vun? zYYsPOKotEze3M;m^c{K)6ZhYN0I6fmBri0m202}gY3>_-$$?BT41~CSQq@~PGy&(u z4Xy^l(N$jo*9M3)u#2N5>{cRFpKQP#&B;1PYfe|kcuX{_Q)mmYzzcyo2CjwpYOq|f zlRo<4I#+ZWJMiAX%rCc+dyCUkHGEXdW68T=?s~LTuinm6QM_C%<_La{fO072=cY9U z_ff{Rh|D5B{&WUh2uOCu=@)UK8(=g!IA%n4FQxI+&>Ht&@|IcyDbZCb*ho)mH|LS7pr1>z$qr8N~Po z00vBpc)ZxY?gvOq&=jsMl>n9s{J`tCJSFM*o!98CoG{u_v5y~v*=!Kv= zE!I2~=K-jtGOjw9_(HhOZ0eFyKseO=yD?(?OX(=U6KjmTktKmazt`QWfkjZq3l$T( zc_cy9;UwpG^H`Bb!sAoawXmwRL-ckRtcV!*wou0fF=ZYjRsDGcgV`IsSTo9{+E$mV z<0B$XHjmn+Un=+{K{5OdcawcE4*hkhx-m{gNH-E%svv#SXR%P~2+qx3!F0WzC}cw+ zaqK_yGMzCb_w=_a0x42E1tQBFOH~sYMIY&Y6_2rXon2i7?M` z@IOqgc38xGy|2vCGX0{Ogd+ET6aG1kZ~ucb@&D*O zs54YM&Cjc54Tf8+jf`{KrhV=z+?gR_v$+w_h@@MDS%&f?3l&r48_9PukS;I=Sn0iE z2|RPI>eUV@r%wli0X=Cw@H38R?jOel_y21ycX@KUNb-}@zSVbUKx_W0yloAii__yu z74qx7__NkB4UCsPvGr8nk6*)T;z`elR6JU3ri{13?TygL#>_gZ0 zcQd+iijkNuI4)H_xESTn8}i5-LZ4IPQm!iZFIzZHrG_&*KF%GLQwG}BOK+8=d)YUo z&P2nhDlNZE%tbpI!_)1f;LADBYbMCSnvG^{9ZSsF{>{bDOp;NS>Rrngh+HU$=OBFP z=X=+3&;qa~w8@5<%9hpm#zozHre5;?5)K2t@gmA35tlRGs+-h9;tsRQZ?{0da$)e68d2s?G2upFo1 zxkWJUtOIOtIm@{`jT3y}xIW%>`!HD#8ND*bs(tss00uQNat<`=+YMeT(t9Z%p4nO_>=kz_H zrmH{UEAGW+l%~Ar+Qntm+#{EPR3A}ATEn$MCm03)J$%?keie6r{Y+wP*N_8)O%#%!~KEwNB4n`m)9X6i(tadXV5kTl1v^_U0bw{MD+gM$ZN2 zaBnj?X)%%+j*<c$di<4Ze{?KzQ=sW9J`pmu=iw7HVoyL+RNeiy6p6K z^+z!EC+&3KiYUQF%k81P_kv~`uFAOs?ESIj7ark?Xa8ilqg>m|GAOu%dAlJ~PQKg& zmiOOOX-Hc5%i}wWhsCLihf_6R*ZvbyH?>rp35c6Zpp_{+=j?!Zs3^EKF|l~v7aweP zRNj|xD**R+Sfw)H{C_)(o+>WHR$V+nCMQfRnQIv_aKLTzjAnv>^gy1Xif%64&~vc7 z#JAT;knJ~q0XC>rEl-FNyM6iP2Oo$eBnv+wq&LWHU<64K5_qZn@;~|f1V{E^r1!m1Ap{eq$|Epf#uQ!4-KR8l+nQF zSz%UwjfM+>5>Ov_Wrd`l5>&M-d3vtOZL3DYgdE|U+G}nWP5ve~LKNdBj#beUt>(};YhFG);8w)F^P1k@ByXUR z!X}2Vho;q@(QfcvWw`594ouFm^6dUl#n0sLlfq=hFb{#Rl&QT8z2|5I=RQ6 zvv$bVh6ceKk2L=)I>Iv|fm_=GZ0AjzNf4%3P9~bXv|ir{9D7jxhw@5wZ)+#!r2sUfGN&`LF@cvBg{EhY%a6KCd(hIcQyZW;F*D!)e z@T4lMj|3dP+vc*a7pO!@Sz}y|4qH$kqysAKGNi@j>p+?=IZ*5pyT^Fm>`nF*b^Hhk zc=?jtCi-?f;aLY##qkRw^A9J>zI5HZ8KIu5%M5w9Mg(<6%O*#6;8JSvz8TV|W)$qS zJJuX(8qI5}HGK#fM&_Fm+cT1EKn=UH0ua`0!BGz6^%1dmbNpP_T0M^0g^1JX)8#JK z)K}}~BeAUlS0#D1{qwmm6!0d7h;$8ohOjLUMh7bb(<}FK8~XsRY8cH%OCdu8*5a-c&{{P+-}Hh6fueu2q!FHm z;RtWtT!Utp;3g^Da%iU`B(5*hEM0eO5kKcPli)7#$ZyEMR^u^U$TGNl+gXX zM*4Zkmm5<$yX{K0dZ*n;QKNrW$e>-%OgsgKF>i-F;;r}~01a+)vaA&ep5tu}HzR8K zWF&+E$XS*fuNIbvmLhDHuJ=sGaGzBRp5+(5mWboEt*zN!(#uu}cUkO>*qM76>Mw@T zjzm*?pKMhPdAf{H4q1E%1uDANd&68M*#tGR>v2k+D>D?w=s72>H@)onRHG*SWu*9i z+?tvd0!Rd}Zwgz+kFWN~!VNDLt}+uC^fGaP5=t2+1qPe_tFm)$0jS{);SJBdhnl1WsUa)8E>VzZ#zU9@D5P(pqL3CS1g#L;w&!rLdFqopJZ+K8iNvhGr zXA{AU@ik-}aaXb)O<`fTFxK(l@3Y$>XTr?>6=u<-*UDVJslz_%5r8`&a)M)(Wx@0V z;9O{>Av-gh=;FlU8k`GqMV+v1)odc0;79tw&ZzY~?C{fIz>k0c02Uwx1a*7A zAv2HyYW|V;3_LX1zkem`<(jU{^c<9&&>h4B(Q!gkJIfiJplnYYZ2Y!{ShFW`b9b5O zLL;c&$wBaF3891_ugag(si?ct-Z5gIt47IP2X4PJ+V>}%(>%u}sn3w+T)gYPY<^H| zkW@9g#N$r8lfzCKUQN<7Mzq~z!%rXco?TO?@mfLA&DGO^tyjeF5=3jJXwjHzL2ShH zJG1Bw%k`UpHptTtL4E{JS>;Svp3>6LhW&+LlB6gAT$wStZ~eipq$j2s15sZnfCX&$ z`&eMIF5^=G$b)3~pX_HvL2VcSRgph#&K^CwI(+l!+Cl(iv0)t(mPMewub9wFU#?jT z2uQiITib)&%4vmZoZiajg@~fVy1*yd!e=PC1II^yQUEwdCOu}rAuAT1y%H8cS`6SM z-lKayR>w@z0=l+t#^elX>sgs4hT!CHfqxs*K}H;qs++3s(oM!eb594ktA*mt;pr$( zkgX6;zjJ2-nu`^>gz_mJiTwm%`(9b4)F@dh=3NumQd+vl(6Z@5L%;wR$y<9DcLg_G zMkqgzvd$Gb@i+DvvpRY<@u<9>ozjy;wxif;4WUj^YU_cu&-#C){=9`8+k_UWja;^J zI#Sv%hydGvt%O$#ydBWIgc|a07UmtVEYft>#P^vxsTG2(B82}-B&tE7xaD1PG|Aui zxy_})BEkS=Q(_0X|NAee(gW#2TSQ-|2(4!QWRf^^My99PBEccp4S(5E`KN@VgGXJd z0E8M=iJV&9Mn4^&im)1p@O-X&rv^<~h&HC4+H82f^Fq$a{Llo3R7#pv`#w=dH2^az z@GbpouWl zT3Afa!*V&s(c1rc>qbCXI3kK22?koCe=i$D;kp8y&+PzOAf;eV0Qr!Z^3?w_R!>Rl zt5lub`4D^NoR*7Pq=q;1q@SW@bm`P?HqPI32|4*yK{cNhBVsB=DMHSYLtbrok*_`K=Yy2 zAWJTH7gvzNknbtiZ6}TKhJKQK7H6jt^R6w4qHKXE06BOo*loCc+srp0%o+Mw7MFSs zKWOA(ZxbfBu_fu`9%_#IpNH+gGU|9&(pu+My@n0zeY>*D#{OiZh9g2S>nE;j%XBZ` zygzM~p!kbsiryAH11O054g@|_E2<}EJ}4lJHW~KPV2=+1)xwqC7~mP|rphBxJ@H(e zpa8m>xMGw3xNm{-e(iO{6#-!}u%d7YqiQ=v zX%{-RK3QG)*#}upXatv7gz_wZb@nJ&2soyDzehH=$3&Aslz`~^VHH^CvrUm zpw7ZXwh$c)`AT9?q-G+AyAIFKI9`?@>L5qm<@LJA*0xT6Y&_@1DPVG#nsTLoQ32l1 z&T`V8YPlC)K>WcW3(ZTK79t6^KI=ck#B+^z=$^Ju?Rb$Wmt6>?0(1 z5cT|HkWx2I=_|uf-&=6U2z@St0DE6E@e?MN0EeN0yme*2tO_75F(cvy&9@VGQaO574x8o3W^20(?1fKCs% zjfzPr6j$@EvJ7eHoZMKGe!>3Qpq=i_4ZK{(03cKZ$usssr|n)uokXgtj)z28dqa%} zC4A>ZF)S2#1957|#&^=tLR_Q6#~}vLrKX1h8Tirh)dW!MCf#KK7_{cwhnJDQN}Fpi z@Vk2H!b+|-@84L~b3HkznZxl}VzPOej7cGvCZXM4FLiG0S4=i$GYijpsfY>kDnbQ& z>fHGU>)rCVy8x+|yv?vqH9U zGSz;9c;^)6xS!u6@?zyVL=Dl6xbrq9d-z~0O{Pg9zUzRtgzX~gBHK6<+!@x(<=}49 zq|9m-*|HKVP^Jn!Nv?}t#S+B&prRBd-IG^wtvoD3V!bOrTR<%Ste5l2$H5aQ;`MEV zOEi9;bC}3vhERw@*TNyw54pB%Y$!!yFWm0Et$0my!qcGWS03F1l2`LYwhtg2*?jiF z3v?kDWKvc{EDV@^yp(#(w{|~shgF?T-(Z^l<6yRV%85TZ9}AO{;1yE_FxXx_WFP`C z$4K0bIQGnx;ZXmWBAo;Sli?6z=ncX>7gG!#85O6cU}RQ1y)3-CY^mloHY}EU$f1*} z^o>&syzei6I>FmjAHQ`t9?HgUfv}&iJLHnb)iU2k`B+ii5!Y52VZ^H>`mDeX$U^Bw zow5ZGqd0JD)C9|Bdf#vm+dkZ|S6n}|3I8Qrxch$m;7(!OU`SoCFnfu7j($*@oWKHl zbP9C8NAHbqQ-W~)MB0IUGgN5Q(q7APl+^|}zXooG>5Ql^;3rZa)AFa2l6H}7b4;b$ zzL5{TSppWBk7xh@01ugALH05?=k7mt4bNJZpil^FMMb^jw}FKMlJ6@x0001rvcpPE zAN0U#Nf~dnzzP_Yn*YUs3DwRDnbnwYIgd)8ntr{4$H(N0V4{*p+W(+H(TXiul95O= zGwwzu1;su0Da=JsfXjQ~lYfXV;eR_&_XgLm&F*NvN(X;cuO|v2))FH=2J&be*e}31 z!X+2A&%`*D;T67ZLz*pB`+X$9c%-=ia(QeuO+rMJw{iT+aELVW4jhXIBTS|hv0UXi-*vFBrf^3GIT z;SnDrt~KN5;5p0>-g({Kkq^1U<~a>p+_cb6f;qLScpDMDeI1hdTAx#Ram>fyb@4-H zaE6x$ue)*l3Rc_$xztl4$MaX1f^Ubrc%*6~hL-{B?t~2LHu>;=zHDC@I&X~Jv7IbX z%dsnh$a~o%@I6T5?oP&zX_^+-n0an{L_pIgwC14gG8u?1?!fj>5RsGfwu)(SD*R$$ zo%A&$C$|%ZAd*xh|4lL`tdM(5k}BPt=PbDVveuDcPkDxLN> z-5Y>rsJ&kpua4jTp5BRY`J^mnaKhspAPp7Lgl#wGuyOWxnOq&99!vI(E89bJ;W^Ne z+(fp3AwjH=%UG{{f*Zan5&CV6nu`{eMDSZ2FUMN-wkm=*>j~q&GteGzRA-3UQtJWw zPXPkyoiPTf6q>u1V3UE4JN||MVhHv?2a7i$1tm(8*|ruRSOjf<*PoIsp5pRqZNHB%s|;iKS!Pt<0v^N4+h)W0}3Qq!BYG24PsE6WfodlC6l1EM*l1R z&QV4bld0to#Rx8*mqf*hXstS z5B|k=|E5)X1VwzZJ-RZT-t=|>Er;{#c!pR$Tl63#{75k!ot0-Y8y111u=1zV6wv#w zf1@T(fKp97gL{MVSdsqnWG4R17Q)_f7cjn9OL|Zp8KW|uB8)qn=Q5#uJ+J|uJyAxa z?;C^-lQet>Do<&M|Kg42F5(TP_<=oJo9pv)tSBtbf(m>Nvwq-cy{9hgCw;lHT_cpF zqRAG8YY&qp1&KXgl*z&;Oei+4g zDr9yIha0-IwfM0nzqI;G&NLNws=|Mrhs7i=w?Q!rf}?nVZqME@6G#0`lhUahIeIN2 zfWZVZ{rf3dN57gUh0XO@cUiw7nwcLzXP$_~&u@mL+Hpb@MzrUqNF&fJiB*;>VDE7+ zAXodugLTPiV3O+tb1eE zmxr}cJZG-G!x1;E({`TfBxI7feunEwFSQ$sZ~2743Z#3`ifWaLh|&ah^kSNY$&${0 zcRZGq!$gvFxTowMs|5zg`A^#`R(n5pOEpZ2C&iQtT0mAXr9>)TsP)ZT){yA$^H26c5G#QkG1IB)TQkK~kc zvYUez{y%}AiSs~{Ji4X1NDo126X0;x7kFu)F@pEt#HWW*`m;N z%P*VKnUmmG&sCZzG6Z}#F7i#}@w+@y7&suE80z?{*rh1Ynyr~Q#zgo+l|>Om0vC~J z(wp!qr%K(wpgr=e5u0un_kDi~TjqxW3K+kC354NL?UES&SPn19uegXak_G=R2-2qT z*|JANNaOG5o1@{G@uO`)2OU@a8!%b?Ri8US51h@#6^%|yMfe0Pc7VerVXC_1h-V)2|gYgLya zV^EL$vb^EtnkNTy7}aP>W|KLS)^8`J`q4EHo~@3Ty8&`DoJC z?&mfDojJg7j1d#?94UD_wKCwfmDo1~n5XR>Jr0!R(@khr5ztBzk|WcBQhZz42ijoa z0AXb1qzAZ=Vy7-xyEyxB?zKNdi{7@035sk z5D7u^;vo8g@0(JQ{PvR-Fgpdplk5{I&X&aU>f2x|A#>;rTcp*b{YJvkWo|}PgvFZ8 zN88k&Ekhp(TlvW^6~oxQvuO2M5YzN1RjHrB%&`UpTT#3o5Tp+3VUJv*jM3L7AllU0 zfOZ3LUoOrSWJm~S+PCF6Jg2op18rge2Zq4!KSo|86e_fWv0$HQ$$U7L6$rRn(pULs zcmP@pd~H|=R6%`D49opJGk?UaOtbN!Hdd#|!1H&QAYCA3rc?e3ORC}{vT8FHc8hI* z?h2&;ho7aM0~>6T^kul~?nz?%o=^$0@MF+_Q}05jxl#6br~J}K(~o05BPx2`K+4Dg zmo8h@Vi3s**0p=OwJIs?X~6#{Bv&~^4grI(gMK!Ca~Kd`|fD} z%SQJ@a-C5)v{~pnH*7_bIzJT9DFFiizYY;kqE(*Q58Yn}5mD8Bbpo5`7o{B7i_BaC)a^3kwa5TM9)UQAW=NSdzPN?T< zwM@x;kiY7tuJMv2U$7ErsuxG%TE9rC%kK305h7dRaCldWEMHcJ=fL}v5Kgu?E# zeOde1j+!Tl$et+RJ8s*xY9aATEJ_YdVy^MMJopd%=(Gi8kH0^)W*x3KdtiUAD6_z- zb7H@uQX3UkUW5{01PZ%QDQ5A(z6R>_iCj)&|2f%Vf{Y%ENgx)T6VXe62kCgZAD4Ly zFWqTi2HcDVUXlLVLk0~sR0%v1$TENIsP2c2?($fRwdNdA0OO%OjcBCLZ5_Zloe(I> z0$}afu`aq<0UATvo?`}Cu}JCb`X{V=em}JuEo%k9b4Ft@1}UrS1uR6wYApZghgite zPCM@O&qUIm!BsvO@Ulm~SH|UocxFrj`|^$t73*9g&D`=Ya-21cH;T>ZKIE~A?E>$) zht_c!F3m-I8)H(zNVNfk4H@+2APFh}U1bc?Y;S&?6D|S|&dx*)JaQ@`xmp+~y5cH~ zyc+}<_mvy)+Y9;W5gP0E!7%`WFuxwcqJLe%V49TRAOX)^efxf-&{B)RcVK{q)Xh5p znIa8*D9*xKSSp#UAgwxh2DJTYG(py+$J6La(z55Lv8_M43HRnE^?*_n(JK>z!$1i;lT$%6Bd{9 zus|a^B^X{r2nwW`aj28HCqiEGmX-sDQ)T5s-R($T7)!54EaH!h(j&WO|p65w|8&1#KM+OMP<|XSJeg7WE5c7{LO5m3BcDp(jT- zsFs`nFWbHtLL9gMy(ra`v7SG1zr30@hDYH|eVe;GlxhKW=4<))4Dq~y8&J8h!b0s7 zYA2GrTE*WUK?UtaO>C;}Si8f~*!Ji~d&Q0qY=Q;#S{HTMh3Z7mf_xBw4(O58&4H<$ z9ZPez#ke_}FtseH!}=-Fx_Qtdn2|9Xm?sIR88|DCDS>bKB?2=!>yam1frStE_(Fb`q_!Ek&vdv9mud&z59^r~p{ zBuPT=Y-+&AQ$EYQX>7Dgv990NH z*eD|!CuN)yYUPD&XZ6C@xE_MAhMEq@cQg7e~!-4M>^5Ar0pAY*z4 zwFcI|N_?F4_bu-#SCEEKfFy_l+dNFIqG6P-C2O8hPuBBM zyM%>rFTvNKqUefpM~_((eYVnbb}!!~q?E z^{yk6F4=z2hut9LT2p}>^CgfhYP$QBD%Ft9ih_2>1bf>fOh1VHxzt;R-e0iT9Gv|w z9ZVF(K}_Gw{Z5FKHwwB;z^gdEQAJ)LLXx7kSd3T%K)seYdwSwQx_Rpp*!RPt{DOV) zZF%RbKzymJQ2oYMvox;Et{()2{qu&qdE=zbj$l=B26s0`pL_cLo$z;v=U^_0RiAb6)6B-UaaU$+` zlar4mSwQZBc|0I6cu9rpliZ!y;f{s!bdcUKZ<^(HZBOm_G-U~#Apk3>6HZfe@TZ=t8|jN`X(~jiIFL3h%+8@2KPoK zvPI5;PoMMe853Ny`lqn6yW~rZrfTyB`M{U6yfs+Gf{T5>7?9%r!mXuVIVB)Hc_-k38ITkn zg9Jg?)kwFFBYki0?DwH0ctU2759NDQ$dF~J$E^QHl6w&fAQVzNcK{}4Xes{#gX zpvWa5Z2Ba6C21oy%(geu<_VNQk-HKmqA;LHW>&w6oq^6uiio6>q*{;s7;p4M&UNy3 zwFZ$0v_wf!rn(x`vqf9l@xB*MK|w5Gu{Sq|i>K2T1MWX^#F7GZUo~8o;8KF-2)x8+ zkvU-PZ)W*9eu4^dBwLSi0By3L+2Or=!$%5bF74Vq9Ngxn)t;j7F)7wOcTHuu^L?lH z%CpcoOB<*ddw-b^9l4d2Cj~p*z-J`zqC;n5h!i_q8gX#hY5)ak7JZrJR@iY-$Di%tPoStBL0aICgZ>wp}jz@k7^aS7@O&8d&^`t z`B#mfbIuB=ofF*2Ia5jHe*-dz~QodM*$tE6c0qdBl&<)#k##f6O)dkAJ_e=GWZ3BMw?BB%_2Vmw@cLeW+65ej%Op4%Wz*Nk_?7{1pg=$M zx7^=M<88eii}4Wgll;O=@u_j%{q)E%gjUI-+?$ofjlo@}B2z-j7lzjueBrzz2=&ow znV$rNkJKvsfJYVAk&PnAcK-He`2>>GJwk-Cb{Dpl4t$Cu(P77VZ3rf+`3QL;{@TEy z#o#Ab>Y^4RS!QEHi~D~N0P?2>5VxW<*Zi6>y2fm%f?26B#}T{W?dUK7osT;)aiST= zAg*PY(Je|UxDWida#{;k5HCnl&7Y1(BI&5uyyW=r?yq}4Ls|{@FwOr4zr_zV_UY7_ zp95!Ib5>zV4c;|V-SII2=VG}%`DkEzWC@9^=*c)?7?ik!Jg}Leqe{=XXM4k_&FSA#Yq2S6Dqz$P01~v5S?AVwovnaX3o4?ADAZ4 zX@okus3geH1huU+s=82Uz5I&V;2Je4l9h-ujN`X;Ei=$1Z7M|s z2d8Yv+r1b`f2l_@HOMRj?Lk>8E5rNIw&dVRz`m>@iA`X<#`zILqEIE4j%6Qrn8{F6 z*|KcfBIl~f7zZ=clZGkq;RHEy&3jvM6AE&w*Le><0MY8MOsFK6dw^_5g)sLp{C)_x zaWnP(_dbd^{@-jiD41hUB5Oh_%A#)K;q-uM4K;~M@E%(x3tv}78tIEeec(eMkS8p- zac1AfC{2b)lts2D(>kE)3b`v@*NlG7<Bzgg>w_@;v-1UG`KMHhp>|uhUOLWeVStB3T~K<`@W^22aVkk2 zE9D6yuU@(31cix!T*C78N-}|d6Q?6EZU+8SJ1f7czzJPb)eQXmQ3*QU?ocz-k`)wJ z^1OjzdK*&wg4_PK)v1oWP%wNQ6nY34ECi-#UHZSYCr*8(@7FnrE=`i%O;BSrQLp}& z5}aCG_^*lMP&I4 zYzA3F+(k+$u9d}TG1_&D?kjAOju9Z`k0jZJB0Xi$myzV-!M469s^TTbTG=8 z@!n496ARE?uNKz0%i*L!X=`D_AeR*;iQ0WT^1vpnq78Jz+Q3mwG;5_w>dy4&))fnsN;MLUO4o}eHg;r7;2^4kYP$I z001L$_@^xw7Pn(J3vo46q<~D4;hW!a-(o+?37^n?>%sg*4p$#^Oe%xDN3nK_dtkqEpR6<1L=3aVC`zI2p`m0yg&M>5KDcrQublFErFDXCq^ zbKYXk_*10u1GC+f0vEvP4GWiljD%Rad$L>%ANT-8+8|$Hzz~OFmK!{6xr!f;Rb)q5 zPJ^aDv3=H@>JuH_z*>34oR3OEYfhWR^hlN$YyFMbN`w`k1yNsOrw*Ye1crv{cZ?O9 zGP5#o3{n-jWnQhX_j`=~XQ;M^mKU!R{4&($hq4~Q9N-%QwOzRwD<9yTgak#fg){^T z@o&}xhqo6Ue%IvfOT5r5&kly3;4N_H^#k;|pmeera(o5Km#@yl^M9aCfQWmge`Tu# z(4&M}w*-ezDPV#GKpBB*K0wX+&&8;3;RRNYv;tC+&ez~ItJ#QkO3-<4b19rMDp=V$ z|I{WG+}{LGy)&P9?K3_nxk;vFy&bqeGrQEWDY}{qc%G*w^Q;~6zue4D11y?4uqf~8 zV*tA@Fxt*BjfDnA%}0kUx$Jf8Zr|G2JI3rT+6hzy7B@ruiWFmqj97G(tY=3O#_sQ!}grNs?`$}m9`*zRO)8{*5*K)NfslK@>C2=NFtTLomuKDrw< zy^^J@(@~gBMCVP&wApD^jl5;4v>q>3RFofS3agw!HMJaE$&0sxg9^3~ohNJ%^qID0 zv+Q@U)T*Rk9$F7+xl1$kfDC*$O^iuHSTvjfQ7T>L_iPC=%AQ>RE@Pf29;;RNzZ5#& z4X>hXAYKtsZM44Y3OwTHsdHnYZ}bDBWKxjOQZ_)V<*UU@pE4!)b4XKVmrBxtFLwwL zBfIMBfzV@^28j6vQyTqaIP&qX42o;?5yiUNmTNTAQ2^MPJ*jky#IG+7>=HtEIR2%3 zoRb$Gjz;fp!CC8xbDN8V<0&T&Day0DGJn?f{4f*gcbA#y(a}$GKQ@JmQ6t$3qQr@O ziE!G`r7d^dS1muU5>!DbA94E$*57%*@WTz=O%^b0`%*`%HsJKylA`9XE1q#wV$F*B z<&0#i+V5__;gD6xGo*G3dwx?{YuyN{@D7z81u>|Ug5|J#nSbZALM!Bi%KLw zok7c&ipGfmi0F)hsBgMn!1 z_~nQ(ubu#n>H#WBs&%E9gk;D-&cE0X4wRaIR>`LW(P$bWdd`RCox_9*^hUssnCy0u z&Iy49Za~kj^vNSX-0|Nl1@3T z9(Dl|bmI_R!ejbpIg4dw%i5j>ON_b*J1H^Lua!^sTCC8eW|=@pE(Dk269|IUj<<>U zGMgQt>0J_vML27o?dj@Z_lP^O|L=0-7OiY~)>lB~?)*vo0J4klXEgzbfe(cJ(ewRN z51bnjGJT;mCGAW?g`^K}BSfB)ppHWGM*9?GUk?;_BJymoN>89MSy24E;s%ubXH zqZMCT>~jVTViUF1_RwFx%4jX4{v&C})$tI*GVAh1xqpGkE^*j`ht3-+%#H>=<;Sa3sw^f2x$V)2>Ux zMeF)ZJg1#y6kBwk#uWrbgsO5le&aV-6_h|~8yIkg0%MjCYSYO?hY$(%$s?jC@bTf#V^awi(%&Xu1O9Ii!2aCQF;ccv107|*BbYPgVJ zQM1X$FGv|Ii3Ns;>v5U!Z$J&kP<;?L}4Yw~vCnhlX}E$95Gxi33899I;^C zk*z&hT>UX)g_?-H`?~wEEp5>Bn1`_mT@#IM$VNu>Y+M!sj#W&u4kZB84aOw}iwP)# z`0R!fjJ4q9oPiWX(9^;=DN#12E=so{2;!k$)i;OGGgkJN7;{0TFLrcP-(-!_S_qHXJ@nH0Fd*t}LE!s(KQherhKJGu;%K=^j z7hb*63|8IG&Gf9nD!9A9L+)U%jVzF-yKNzp=L~_Mids+I2oerlzJjS zIIv`6M*$|WAk4wNj(`I(Qxlj#7b;JqJ<6nKhF;0$ttywz=cF>Jv<&7eeLcqR)tw{dDQ{Ih&kJa_Zw=s4>J?^EOOe?3kC6N0mgPXnAg6YQBBiErAUY6b4cV zdcKC;koi4t?*t7Refqs`D<{MZxFYt53Z#gH$ZvPAT)D&r=i0D1`w}pmSEJQQIXBPW zM4}BKWomUsqEYb{5(pv%n92sXoQ~*EXEXH{kpr=KtwALd*!K+}L&?#h82y>Tgk~kTNWFB)`$F(ek?-V1KW7Y00L%IuW(&$Gn z?mWMPNuRH34p*ehl<#c*@qaA@r6 zffTtzMZekxFD|V>bYD+HadSpe%;5Mr{V4~1%t{ShMS1fF7A65CU~I4GJR%DP=?`qm zpczUt-W4rIM?%DAn0!dvX^zklI%PmAK_O|uPS48EzMcY9x-{1r>(Mp)-kTrQszy?nqIRXXZ|?o&nSk;9|= zF8ocsM8ZQh;qKa_Zu|d!bsP%vE}Gc#aA<%XwObSh&)sXvbE`i2&#VrsaHFI|OoRJ{ z92vha2d^_8*u)y;;thIZeSA}#hbODOzX>7OTzm)klU2t#WU!-)2}(nx0wmSi`L7Fm z)BsjMslStuY4ZR@*h>a}ojB=*HF)~RuYbc-Uzj@nbB)4HRy%S_{Lx$dDD1}P&Ln`G z7A!y&ffLsjjux4piRc#+-`&gcD1ZmwQ%G+Y7b!ZPoys4A0|MT&wEcU$lsI7Eq||hS zwgTC&nvi-DF=lMudh4M{+^KxWyxoD=4TF3vT6RS%3%{NY&uh;NmZb&!(%Gp zuNim4YGO%h+HNjLP!|9uy6HAcLVZ&%`qo$p8L*ER z{-mu6k7YCcWApTR00Bvlq4r4ydSQ0fBuv9|9c8f1V?8AglOOXnb}li$)eT(lWr0DqSbi!KtSXP2lVCZBDjJzeZKy8;JNTA=%-`@U464fdm|D)NO zj5H((aLB*_01%+1C~)t74I5^?Bew0{-xGp2?0(9(TQXVT9PO zP2r)#R1>9TN0dky&OsCG3-3thF(6#y9-Q7qae-8eS0;t&4`-7=Av>pGda4ja7<|Xy z__){ej`mb@cR01b|K#p^S)RnpZ3;W3J}9wn$-A2?cpe@8s15)jQ2- zspf-NiRly@raRcem48*oVzlQ1L9V4u_`Q9bail~rq$ltaHCAba*AFYk5) z(A2Wm!ba@sz!08D#``v+Eox9}u9hQt;o~5voGEH-=o^zy#=G3FtY1y(r^MZf7Vo>N zFoxbnS#-NXYJls8n^&+9&y1rkT$9H}fiN2cm8C2kP?@?P7~V|}Zb<-9PAB)EYlb** zY5GUIU)B?>es;VF`GDdINR=bEPBX;dX=6Tq2?N>TpDjh3u4G1-u|hEMk}YYSQj~_b zUo#h1aI<9lHv%o(o>3L@dt9J2Qq@xx0Ey2jjI->O(~^;Vsyqj^63|v7ZSJ;743A>p z*ZrWNHF;odfbz`oZ%&IFto#`$(D=WoYzY7NO)rYywX)vpSbh|94S*Ae{Fz7{owymR z9$uSm2Y1Nvp`SP0h?-r$$01jK&~Ha}tX7D2W_FH~)1p;H(`; zadoJLyjo^m4tXBI``hoG(#Qm+BOYjermjq)!d08H!#1qnlz&ZgH5v@Dc`xzixMq6d z&*_r?8&?>F(PxFCX#(2p54!6X5Pn7*Mk4X1L2k8if-pC+>3Jx5k&R04LaPe#2gYDr z)G4L#FZ{y@*DpnPpO1YE-Ge{NSbhcH3H&CB6x??2ATx?4z=`Y8Xqw6fm5Y|?OA6C?-SJNdxyamI9Wjw-{k~msGSX zQUknI)iXDG$(V_63IjA#&^ThXh&j|PR68lx^38Uq zyO8Mqccq02E#yD)iDs%Q^w;B&_6z6u71eP*cVRn(=Ztl#m6ic_U=3qU(=GP2wy}p* zEjr(Jlig!%UIPuY;IcT+VR6>~Q|Fkc2`WvNW+O}kK{Y2;DuXSkH@3&aLeaK_?a=V; zm;eM|5B%)OA+$9{YkCH$Z%`5uP?P?0doZ?*2D(HloZ zzh=IK%t2$Fg!Ix>ObU0a$@CT>&9qQf5I3nC9s*$Mr)`7oT`@&p+F;Sv=G8ehFK+=gyrkx^W z1h9euX!Qo=HxcKh_wfxHH%8<-Xwo+AL4hw%`l=wlLttY4&01~3SYHUlXkeH-w6G0JJhZ3?3(y*QJ1R#o5@xID%iCeeG z70#+Jz8ZiQaHBtzEn)lG`Iq-=eHUK-zt*haSPZT zh+B(de0XQMxsDk_oAw(*K#cD;sR4!Ue0s2zIoMqdCH;Qy@)-7foc{DDv02DJev z-Jd3G(>Sx8G1l)+1s;||#Ne_!^4v+JL`6lLx;M8r(jN)PvGS;flKgRwfTwBo>0 zi960$!mL{cRiQeEB~@>3RS=2Cz=kso<6@;jMmD}<7^11Xc)q>cZkybxTWk`(%%HY| z0vBm=BBo`RT!Pnj*|+$If(;!#x$2IW#=I?!+!)Xu$&PAo$h0B8A(D#Bu856_j7R58 z*BR&svpFECX9R;SPoZ)AelShwz3XvFBkM6>x9fm?8|*sphw9{(Bk`_n081*!-UH7g zci1>?{mJ^>lOn4<%`pT0q6WT~RjOsB5#~itf(BmK+nO3FfXc-s(}N;3Cng**>a%T6 z=%)#LBrioh_BOC?L51RZ8f`#z_=Tl@Y-S9@aE|8T|IDD{rlKTIJNzIZ&nsQ8?swO5 zJ!z#MSOX%|^k%^BXxg`H`L>XQQm3nIwQ?ib$V3!jChw~}3Z<^>mNLmg2ShXu-0q#6EL84^9% zcxvK`0z02UJSqr6hG!oGTPnJHD(WYU-k}dMHk8dcV6FV6)+a)nONe`KNtkljBG1cF zezGcmouZr*s8%5YQGuiIIk?U8~OB z_C%-|29oT(;cB;=@bkaT;N$j&qGt5r`iXNh7SM(Zx+S*VO=0I?qyTL$0ubrmNgEfWYtn2#2fdV5U1?u8 zN%I{>KAA2DGnXXI$e{tU6QiVRsSUB8B(}yvb5$=A-lZ8|bSzG1d zFHfK_OtiMx4Vu1pR;u&c>$0lphy|g8t+#^mAV5_naffN~iTuHYjEMz=VObDEYrM@n z4RBl4NhUEU|4xiynK&U-FRve?=TrFOiflWt{`BbSJsk)&eFYl?ewyL^e}}oip{^5| z7+z~k?I6#dC-d1$0+)HAk!N^*oPQVNM`J)tkyuPZ4Ux=<3GVV7q0%*K9Z3kMq)E%!zk3Q#Y+ijaDsCLM!- z`Q(&GWr8$N^GFdWJWoJX>NMWF`MD7E*fF|^ownG<0o{Kqt@*DCb=ar}MK6Q%pTMbB z9j|E$E&2KkePh_42MUhS5L|;^txzMsw-%|BX#Uh$1x_eiIoZ$Nz_#DXxIX$rP$@i8 zwMe1B2P`$VaKedk?D5*4v_&u0T+9wAdEz+%Vr79IE0UPSWHx4?iJkUg;G6NYPIa1_ zPZq2|9~^)HBsK6hGAOkL$WR6E;Vz%Q$>S40zNlBta^c_}E8G7P0$*D8c*%IB9} zU_MipJ}{f7VDYrg5=0Ay-p>JM$eAx4hr)H>?vtq^1|h{cjJp|S)&t}EB0L{iT`;R7 z1^?#Si=?crchMi$@%4-W-!R0}qD7i(^Y*2}0&gGOf~@vQw-;jR(!p5kSWw>Tq^Bar zvkMVba$ODEXv}7I^IschexGLfl`tNdwfmlnQ@vrFb5blbH3x-7h;Y%ucV-futGx`- ziX+omcgRgaLz6>>MxLHyUvhaVu6nG)`{<|Ip%&UZ7GaIuS!zP)7Z*N!0czzcsivxg zisDAbo_9z=H08bfMX!fp!N=TFy^`5*c&J*)J3oP%kee=+@KY+KI{(3V76Ue`5ZKkv zCM+F!<)iwJR$&ro>x5HWs|dZGXb2F8_O+B}M{xM=XPu9dNTrqhYSRwlG`Gjz@;|XF z1m4(2x>of}jeGsOd&Y@Rop*B9JK7H12d@ZzvcsZWnRpO2Ephm7sh{LQ?X;ZRW}xgopQK_TKz;o(jg%GV8t3 zLz&r@Ar!LJQ)p1`Hu>Rzbf}Q`+%Ynxn})z7#gUG?@P2E%xm~N5)AiSoAuDLekGqVn zyK6xWfV7@^;l%>Mqwbk-3CprlldJYO%f|8@tZqG4qOT4Gb3(-6ooV z0AZqxS6w^dv%70Di94NO6>TF7nsIL>`Lzgi#LG4^xRKPrjs0iAaP>sv1YNzbbr6DA z@4y?h+G{x&9`zab3})V#z$JdT3(8qThAg=D_%)Cr66^hks7hJw;>G*@do~$cA0ps z`8LSJPuwdHXdSK;oC0sz?b#J5oZ1k-AwAP!Q=?S<^#ttjgjA>O3ISo*Jfb`XFsrs6 zG!pM}sL#UV^vGjDD=o7J*}`HrB@;5JLaE*1q!I|7M&jI$2*lMad#<(GGkg7TZ@hIS zNZyHXNJU~+3$tX*z*Kme74|}Z4E3Wuzo001OOK)*liUN}aklJ-a5itQ+D(>f0KPfDqBI^V85cgOvxiNQuusE~nCQbKt-o)XOyG?-*Se~d$q z#2%#0Sw9m+%Ab&LwtAk35slyp(!<0w6m=2tCkmw^<})S_M+>dzAL6eQuN5T+IRm)q zt<^HYjaAmIiUu`)t!VmhSKdov8T+C}dMbWHaFwFv3X6E3emZK0bbzn^p`A_Mtbbpc zsp(#ebFjop#Zs=H6`#MTwi`@Z{Y&@6R0W#UZT;Z0CeYkrNB-2lQ=|ksHhkWrS?L0C zt7_7F@@uO~s;2`{XH~{`WF-f4Y&Rp5#2*kgfCv8u)3G)e5DEdIg{qu2sVL55whAl; zxdn^R(m=T+H6EGJ80*+H(!jb=XV>_!cHv|sGqdH9x+DSFS0 zIHLC3ZoNPKBJJhthT2y_DnfRBe0{0+%fNFo#KSaY%=P3_@o#>-5X(8y-=mYz1nG7X zs+J;>bi5cy6Nip00k^T6(TsZfa}r1nZIwEj35t?rkmzM!{!!%`zqt(2&(1 zV_IlUq)bHLYs{!w+Phk4hQ(*O-!PXH8Fw%tc~!_nx*to6`Qhc3zyT!vMf#V^I-C*} zqf^Iib+7r{oPo@vRR-)15<<5*2<{77WX1Xie3bklu zKA-zr1yRPDON0UW9`Si2v^kDnkH-HV&1p#SZ-lsl{VTY#T;a_)bIhldn68YyMpT-3 zG>3(vgg;}N^_@f{l}y~@{2{XrOPS-+`hbK^7x>F}X8USC?=Ym3f9}Cj?gLT}M;grd zjqY@GC!mlEv2pRrL9)K|w}j1Ybz&W)HMb}Q+U1Qb6$ zMP%IQfCwvgh?CvTr${oE!M7FVVvLo+uN4tXMeqzw__vLDLDDyS3;yY3tw* z$kO_+6-Nb`3k%aO>$gl~eN8CboZeP6)JE#cmwLE;4MUxQEW7kQoBL^)DVJW?D zqnqHOK+*zr&z=kGvp=V6=5TV&me3JX4B-_ShS>nL zK*x47i#!z7tk&293E#FFwryhd#@C~J(Ye(@*u}U*2zatWH5*aiRx^L`7Uf!d|O$K3T7a$bLcPtI1{5-z9g|N0B6IO&16d%KpUz_ zmw00yQ(0%&2{|b=q6PAArKLPqUN#*UoSvII>00J>XSP>QEcS4!yN{&+ig$rJB?z+p zztXDTI}RortP|Pm@ET74d#e1c!NG2YHbP>dF0@Z;72}c^|BgsA0^U z5Zq?8v6x6B;b3PS#_CaPzHHGVz7>m zX3_6#szHNb);IS-z>basFzD4umbQLft+licdJ(pR%RD{^UT%BV>8_mm&E<^F&;3{1 zX#TvpJ1Y@3r&NMb-)E)HK!~8~8V08m2{_znGPO8gJ&X`ggGpR6z5lBY@d_7S+KbEL zA%DWTG_{%?5cIinUM~#m86ilspeZ)VH=7CsMv;R-WJ*wyr|VNiNf%3fZ*xEsg>2GP zg-j~T!(UU>U@+1FPdS$Kol{~HL$HB9L1Rrz%SpV!=>4{tr zp(D_M8vO*!{ZCMwZZCN=fi=a#dx*lMe>=NzbawShn%oAQ{3;KhMVD1GGE&26ob!nG zU3yd(Jb-D0HYB+W2w_){KQKQb8x*DfzM?r%l}gL<0b1wmcsG!;%S9|h*rU+eND9sT zB$R!_BVcNP02c`}k$J6CH>myE*y%{RKyH!}cq@4si)Th56TTKR$My&d1;T`l-S&E1 z-q9A6E$R7%ui50C1t|Bk$;2{Rjh%yoy{0xhV7Mgzr0iaC79_^A(%qA$+wQMI`?Ye$ z9Z+ul;y;;k026q<%deViN2AlJnrpfpc?|x3#In}1wD|E~0y|5C9O3YV2Jae_=NuSg z2uS8KXQCvNO=e9(e&ZPg=8g&8s+_eHRz+c%!8WIoQh`PoUF}fCh1t=xc*QAz;cfx4dD>fu7swE9y;N|0LyLP zK-t@w3ai5-?&FkpTAX0Ihwq#EY7DR)@Zq@eP8HwMZ9o`2M=KzYZ;(*?*NG|wNJ+vA ztR3R#7GN0y0lUnF@R>VWqo#8AWen5i;=9a{gOI~sc-r+PCuitfLE1Djq;{sx z1KZE_dcMF76k<-_VpMhU9;-P{0lIXwS$HC(Fff`tU^6H2vge>l zfIVIqQ8IJ>Ejt<3>}HRQMwl11KFBvZG#Optw;ZQLEsNCK0$gd50_geCx)D`UK4M`) z-R4zhi`jR2&(_Q!=ZU%ixdq*R?(a6YX0 zUX&1V^OwY$y_^5HL|mp%7kjd48Q@%$G7H(%Zhi0iUfW~|VOxr?F67f5xq}VVvKmJ~ z3PIpdqMdZ}=|S7ry{R<~0RqJF%k-72(lLksl>zdGM#<{kSO91imx03;G5$vFX{7Ac zILDrqI0s?qOOXHZcy<_{v+Bsq0(iT8XFj6yVI07lyYRtTMGC%hObaLTxD60h8K|ci zzCnFWgBB6^`cnlbtF!X4WXj1XC<+<%IEi5*FuM^j1<@&qFrY-Tg7RRZY{2Ck5*s(Z zDLvG6gJl%O!EEu6_eg%Dp3IH*Lfoj| z9LU_)_wuWW7J|&Bg)S&m@S6_S$ArB+b#+K#G1Xzl%(bV;J(|Gzhf(!L1qEzG`&4j2 zZZHI?l`DU&O+;gxgfDa=Z_z`CbOyqh;fcdE1x*_KeoGjqP0@>w7VcCj?lXH-tT7Rl z(gtGrawdD7?Zbjp+PWQIFQbo1C(&7w{ zumYDnSak3lu#zZ|`2C+zrg_7yWXb0`jY(4p=y-|=El3EFrYS)919Z1fOfRx^meYKd z$MKLjE)lVZXs~NgDj*F##H+BzEDN}GluYqovUHyqyqzJWYA$_6qk2BE2zKkBuw{A*oi6)SF6M#@eZFLrL$nfN`@swd znn07YomC^U@NC!!Cg&VrY8kcsNC!V{0mxaal|+zQ*^0}7Y zc;2ROj3J{VSB2L^3aab+k3tGpg9<}(6QZmTCADa!<**WZ|D_woA_TBGv&nGRlxZ>w zb~?FJoMaolTANCjX6E#$*1vW}9~nu|vhF>8i;xB%DgKvpnh8~u%saAY9Yr{w1Gfjx zp8MKL3j?o?mF%ZQI{yF^k#0Y}#U|Vmb{5<;ts|!mpuq&P*g81wFmQe6?10r@fUT}P znu|{bZ0lsqWv~2LncwB$%jMZ(C3?gx>s!=|dd^xYghGrBl5tn-a{AU;kC~ZzR#^mZ z425%S*jUv@gbzqDYuutBtpqKhWgf2YsDJh(vCR*(qAXa0)PyU~vq{l_hk+ps9uKYOmhn-Uhd9LB?^-wo#i& z>lq2q2u6+$q|7XC*3iL8TM+l!2hd&YFLBla1G7S2v)%VES91Urs!}9egD@a#8ZVQu zY8_MQ8(Y>0%4%?2Q$QN>ZvqmXv$UYBD^_pkA3ofJm4|~^(+O&S1*umF3#>^@Er4GK zt6+TfG$+O=RHK{zi-cW~YT;E?Z>i|H5Fqb@j@H&zmVVwzaN;mP3~KA`X9wVsHn{db zzH`@qq{^l(q_vz|o`5U{B6EEdCLG`-+1+t$Fe+nbs^5(awQz5V_ed{b+X5k?5^9}4 zwgo`*L&bv=sFgVAJl5}H-~B;U5X*eDw#))C;*dx&Nyvp$kQ$G_=j0MH0quiyE@`@v zT&&^ZY}a>vzL81Ethi#RKvcJ5)ENp6yMK^0C94OpgjH*x5w2+kXoLGt_7~zJ)Pw6o z0{>L?7s52s_giV1;%>cJ4c^@vkQvoPG4cA-l7``-p{W0Yg|KzYHV^KQ+uR-%gtS9f zmtn*HJINoBB{m%g9#(z!^)3;Vw$UW+Cd(ljAqvx1AgW@SoGSXb>?rGwR84_U~^N%koi zBFz6E70f|+B1d(M`6d6c*Kw=iGm?py*ODl1H+^c`C$3-IO51$@b3R8Gue)sR8Fk}A z42#X4Gxd@{%o)Sy)<}@G>RJMjK$p6wLdl7JW~_Tq9R3`4lq}xrOi!>LYAX4WkD&!( zB?j&&5o)FYweCBv5f)_%m!i%fOLa|}>!=y(AyNy40IGxCr^P$t`uI^fO9*1NWiVWc zfHUd^>Yc(wc$zP?a6{PO6s&U{(CDebz!8a6lI!?^3#xN7Aua?OB86}VLeZSGILjQE zFyKnn6dUDHOnJ2>7M1dU@i#5N;C&F4fzFH=S_lAc2%n*vC!A-fy)Vz?#>fwdG!|xJ zd7cF1Qa^lMFavHby$oBnou>WG7189`9AVab0EYYHAQUq3KvFIq2w|qyv#=XweTR_! zX(_*6&ZnoZ08z3kw>Ot~*weTQVu!m=il@pw0}@^hU~Pbr%E@KSz?IRkb>S%-_v!1I ztFI#&lmF?G_x30MRJX4LogFVW9>QRvoGK0^8UQUmTOP3_U2~KS~R>CdZ(LL*XN+$u{1c$IMQ)I z24O>BI;HkM-=GIB97E~rA4x}JQqp0ZwzJWgmn^ce1{i=MwzRAnY~hw>m;)1RYOftQ zh7ZJ7CK1`(S-(eh#U$-jHP5j?M3(bsG&VGwi;}QU6RY&av!x4;d3Dy^PmpehZsH5mvT)x5`3Y&?~F|WznG@Ac2pGz`4F9#RAwEg&})_;Hl4` zgx0rqHfiZfO8qid6h-R+QS0(girI-#kA~yY_X{W8lJ65$;%Zy<5d;B}} z#Le+*-_;OTQb~Uj*7_KYOXZdl;k57Wi7rw+^J1gS-ra#BLh|Agepu3n=VCO|hH=5XQaZsHL*0FJ;5h8KKH});GfFiT)6JLE^ujkOc;i*!8 z*0z9XmKc^~)zJqVEk;5TWqJ`pZ&N&~px?WfFiMexam4ffAHQ)j=_n1O?Ghei283M| z0A)CKwF?90sD+RIJ^V61lKI&xSiF7r z-|4&V(#`J69tnDIJxZ@rer&5vQ{qSKZ{5R0jKEnhb+`wLggFroHRp{+*=VdjRgO^C zEUXX#=1XZruh!pH+bw`#m%5r$%^Q^8*pmJ?oZ^Ip6UH&OyMia=AFjSwTE%Zo`>CSK zZ(>rJ+7-MFpP!Efs!m3F-$!qAizFbxcr6q7_!xs^gFo`Ov_tORgGydVz>x}j&rk22 zOpsUYL4C`$0)CeNtDP|#9or)K#dZxmCEnw9Bd@BE_jVYc01{%45eN?x$?AYJKuBTP z4$^!jl5FN7=QY66Eq)XDI3Avm*P_qRDBpvTwqF*o<439d6swgMS!9?L>3c4hjfrsu z2ch~U+8Lsm3*Mesyh`bdb=&+^u<9f6agrHqA=mXlFAI|F;$*PkTa%?42%ymGG~B zsbaBb;?pWZLx!v=D)aH4=(r%#ZIW#WS02hZ`5qmTdz0j`${J*1<%ifyFICR0m6X&a2m@zkOse4=?8piZ)mDtQ}>&8M`B zG<=}WGXK>~f^_Y1L@G>y=AYw2Zv1lTt$~yW=?$1wMko>YYL7XnUlS*~iUHI`RuXce zXEt-}WZmxC+nkCLd1#$snjH620X{Vh2_XnB9B@mTG!f*~m(hYwa52s2pz``LST?0V zz}+fsE38MkXaF47(t#}=qm5H}e#_gq%#;#9YEds^#qF$wb-fM0%%b8Q!XPSZ!)D@J!?<3>1*q_FoBvUw`c z#*lZCOR^OXDqSb)E74RWY(8+v$1)obye5v9Pnh^#&TqcO3j@OZPXBqYV4<%uN+qa& zw{@4j>_R*I(gV+T+~SQcw_)%ycmSGT_7zT%5JJX4U>)4FGqZ9V+kDTHPWUOubs^H6qdSjSCBP^ST( z#TZI!G3-t~9BlOQ$57C6&*%nXVJ)=D94OJa4A&wWG2}8?aWAweD+UgvZ-}lc6IeE z#FdsdJAy13dAI9c-0vEz4=8!Yr%!QKc)(pxAAY7U1*|3!<3}qKVS!xZTO2f~5%)oi zig;+G%G_zh+zwu4l^Rc60|f3Y06znDCuRcfP;V#Jn^R57B=e`vaIEqvnR8L`6Q#;oV60a_B z0hIBzMS()l7|*MMRWkULA0V`E!a76q0Uzp3rvAjZaVEA-E4WLdx&ong`is~WvB;E3Zu@m=Y8%fJzg#A!UGje{Z99y z5`#P8aN~i!AICxe-t&6&Y;OtJV3iueFj+tNGTQtY?Z|5m;l8T5a(NAwkyQhC_b)R- znaNC)N`(V9kZOl!O*L0ycMid=W>X^ikF17Ee|038m>a*FcIYxoE5wda(X79kF5NT? zLm&P%vgFMm5r=I+xwxR-*H&t`#6{tK74a^kzZ&qK*!sM_e~kcwp(E~`#+s4o;N9cK z{brGH2UmKJG7Krp z!Ol_`?IWqPV5QjY5ky#O_)}Yc)bOyuZZr!|j7fz%*`_G@@Q+Bx#N?iSm%--uE-U~5 z000000000000000000h>?30D?wsg2_*;o}+{a@sVKvI(V=KhC&!2kltz#X8}d|VYJ zx5~s^2yxx^dR*So6SbMn~i#)m^}#(w!T!#3hL!->7TcS2eI9z_s{k zo3UZ%Tjq?(H?n5M@Kg98S|5Kc<3S1(KGQ(#eby`NDF%>RZ)GBy0E!XxE8 z;de-7Vf+)L-8*SL`N-(o3U8phZY%(2R;4kk5vZQ~W9LW&NXU3LnU!)&J0*;GVD;e} z)J0O;l)63^J^uc1J)ecb?cfkN9k@hIGEd%9LbXk9Kp^}TwZbPbbjMst5z<4=Kqtp* z2ZRVXm}~+*CP!F;ljHz_PvULpe$bz7B>(qj+Y}*d7J{H!PXT0j!{?r?`5YJVo5v&x zfGjA`duw=BZ5N;1i0W^+&{`3%nFqJYkDX-^kxas}7mSDHF_p8=&44bzE-0LPfu|z_ zKwIwE#nT~N{o_T*9vx6=U@m|w2V}diOuP$|o6rvA2>&K3dpbyj9mB5}C2D22OO~aZ zfu6EEqpFTpYV{k7k;l)s*O5#U~YI2rYl4id$mIT7h!p3B3nr>Z)p*}sL zl-+{D*{9l`ld(smFxW3P1^>N~Z@x?DgEFPkulXrNMs#OwhOm-y=B87+QFL?EAKv_R z(3;-$!NYYwCmndSkrX2(`laVzb$K>N4h=0uA=pK)3_gr%ufpbfmUHrpV8NnGFQ_9W zk)-lr-c`f@exv{Ce

      TrZZY64yIX!@}2Mxg}TVAItlXTuTJ`6s+6`dLxjB=fNGa z%n|TP1JLkk!RB;`r4*6U_PZ9!4wgxBR9BcH_vUm_NXI#LQ(#YTjH0>p!x`8T`%Sv zrnp!Q=gw7mM!kZu#mSK2a|g~)XMbNF6$jbT(KVni+S+^Tm}3y^<7l-Y{bB*?EO=@0 zl|*AaWIGSz%D0gWDZ8>-72?}yWh+-{>hM@Ze6b6?h0H*T7=Mc)b zfEMI3DtrZpa?WM5L}k-Qd3Bv(|G5_^+ZO*5h>S2|qahL03B3uhecE6hSdsH9s(%vR z=1rBx><3PIfFisvn&f+i#k5Tm7UAM!tqDy<1)uVK z*F`c1t5?wpU1s$BYJ$>nlEqXV+^BX^;f_aa7y>NDa$kdRE-zl{LL1as}GaEJJDQl|~hEdX@)0%LE zWw9<9GP@vP^g#s>1eT;*8fbg3Um7Z0wD7uFEJ~x~h^yI)eNWV6b=C~RnUV`d0E+r* z{$d^0`?EfdRnY7KbtFssHzbH0!9?YsMs7|ss0ca){wX(57#1wrorE%>%@hQq_Mu1A zen=)f2{Z)H_sY{S`4Z#D z3Vy9hhd2cR{=E^p50C?V;^jx@qdD1?J;(AeEaeX(+`2~rbDpvE?kz_{RL|e?9yY%# zJ0pPjQQleiZK!B0B-AEMjr1ilF0MC{0gGU;KaHeWJ=Ki~Z>8PYw#>SMyEsro-<7<$!lwr*rizw6lCfC$1zN|TUL%h+7~H<`7r%+M5QMM_@< z#*bJRpx^O8vq|FyWb+7s+2S(f`Fr0mL|r|V_XZLGgf zAP#&&~C{AWhvHtP3+ z1rjMshv6B^{g&jWYG#x@5$D6nNZKgw$1vdKe{oy`R%2K%dWJFZ((_Fs2}W0b5Z;qx zUDlP>PQrncuzIqzRV+pT!wteGQb`N>ZAmJ1Q6Y#XBqe@JT5P*HOrprO+q;YO&p`eL zH+ygSl_#}m9(OELu5MRUiN#BnVRaFc4@Jou^4c6IU6#^~H&qu)<{nd)U*8kW429Ab?91moowbS*VANdsk6#5IBBkh8?(K z&NJ1x7c$(9|0%DEZk#z=pf64>567~22^B!fooy$W^-I+0wJX8cl)JxfzM!Y zH=RsHpo13K{T45N9BJyRrm*{XXdS9oQ(GH` z6hOd_G>0Emg(cp@W{a2psO!k?BJ(k|CJzOkE8s@LUQYSCHRtAzJr2bR zd+TiUCj5(-s1q`1s5Y#S#yIPzTise}3UGw@)tH~kFJru(F%XfIOl$CLUP(zC7i-0X z-cyp*Sa(t<1WmrcYkC0H3Rg!X>17Dx+-4NWPMuo<6qC7_HW%|swk?FC)(5Rj_O@fs z#q_Y2J{&A2C`(o+F+UEFUjm=d*_yf`;N49pt%$F_o_gaeOlqWx4Rj8r#}*)|4P?Jn z(EDiRU5@PXakl1D$8ATT+x$sYb$k3BAzjP?g%T>1QCbSQ1TVS?9wEm^VIU8=3EUL^ zmQR5geH`2^ne>IjuWN5U{|Bb8NDporh22Lmn30|xA=LJ=yo>$y^^-xqb4e+PB?keQ zN9Q_zR2@N7-AlXxCxYR=5BG^oc z;N;2l*yO`dGAwcCt>M?K7eG*^8X>IV=v;1BXn>k!DQyZ0_&NuGXa*fhU!Y7vr!Pkr zv5tXWbIWL;h;OH~vpR{|DZF27wd0m&HA}FM60=BpY3iQ+)tUe2i0*~M(*M!dKz)EL z;iVt$7}J#GFdG+z!E!(x4>q+k`gN+^6S96>+%VJ>Dm^I1LWbJ%AD z!fe08d`!!|;Q=Up2*p_`4E0xJk0dBA2-}wDkr5I7Bx~4cZfXj!I4bc|(LQqx$fG|I z3yF#In7KrjuiC{o)N%nPN8xVL5CX58!)rLtR^le=S&(+9X-1r}J^9r{-@of4DIxb5 zkg~pdqxOshMCkpLnTw5)&;dYe82QJoP7#*WG?`#1Nv`8cn7IZ+6;R-v=hnLka_zIX zeC$LatOo8nAe{o8dbn@zMu)NIE3;)y>XOvI}m}@ zn!U=aQT~t@&PH&rV~`mQ4S%C_w;d_U8JYRFKcK6NeCb;w#wuaE$iP$O;H zQ9YLNimDk>htG_ERX>Jy-(Or#dSkJQ@GrDLOGcb1H7VE#FKp{jBp#!Xpa405=!2=w zqwlA%se4k+lEcQ851f^{TE}ejq0(}#`BdI^Mg9jeMw*EDJNk7-z7Whn(!SvHma%NF zq!Oeo`qGpc$Gb9akywVy2MlCE$GnpiDY-XrOgcvxM%IU7?`*}|>Jy+QnB&822p`HM zIY?DKD01fKX++c_TdW13J0miNlXeQ$Osjr-Hq`#zQ;_i@lpkd=xQBF)&bS%#AOtTs za!v&}Hslrcgygx#AhK~&KBtk~#&j4XjA9Y(!_vb?ob@BfFa`8Fz^y1+iQ~xXvwV?o z4zOtkvd02G@f0Huu*2F-r3VM02xqlJVZ^^jIfEq_wJm4U#`V`-K(}S|rj&qXdAldL ztyuT666I_7VUF^rRY{tM1mNI`MdoX#$ACZlI10Bt~$zefI7 zd!_E$6CPa5Ef~@sKMqj4gf$YmAWJk`RWFLFN7veW%+9!OWWXZ zX+e56)XxWo6?zba>W7o{&IcBd#>Ytg!uh2_b18^z0zjT`SgDyp-s#ArZtQV3I-cWhm$HI zBz;2*<%XiH^o+FQJtl*Haf9E`y_^Zk9iRK%t>se~D1E9(*34^qkp|ZrhVt03<)RMZVfpb;-MeVbWcE z*g3>eYu7PesFrX3?}P9OTiBch&!h+Z0<9MQSd>;#YpDYe3W>D`IvABK`7$`3DU6Fm z)->OaRe@HlTk|D_J<2{|R{X_X zCbE?*;oZ1&kVd@?cp5p(0s|XyXs=T}yQW7yS1$+xtci~;a>ZB6?anJ~Uj&=gj>67G z)^tq+mMw^eJCln{SMW@wT!ZKv^H$kGYNB~Mv*L&9X_Zt= z+N3Z{8r>F9sF=hSMDa$^sz@Wv(8yOd zsty$JL{E*eDrFQhW-LXq3AGR%bCd?};8athDtKiyNFMoONmMdcIr-@h*pwIXH*K%- z|1c3Ep*HLU?a(-PHHT$W`QrL3M&Mzm1i1uR&x2|qHpF-$Zp3b@bK%W|ePwRf@qCTO=2m`V9B!yGO9iP#Vf$$l9@gjHT3&>5Lf8nm&s-}}>SC21zNEGq z4TKeUG7TWa9B#Ccu6JlPM3#e=%f~JeRz`~?Lg^aDP1G}9+Utkig)ju(WjzNezwN2o zP7Gm(in9Bo*H%56q%k*PiJltpv+~D}RoP$Q48O1Y~EE_)(jb@G9;KY%I6LmaROf=&QH%Dx^Ozid# z3y5Yt1UB~b#WlW&mJnmlVK;$$5&H}jPHF5MhW0YXsM9K^EuKogG#(|D)VX`2I zCf?LAa4%RyY7%ZJej#gT8K@n?P^o-ubauUZncRp?6qo!VV1T?}teK}+^PhcdwKEz` zbq*f{=(3#nn``bTf;lnC8=v)@{agq;q;>&L>&gzVGW)dTE@Q7-_}%m<*?;t5;0eo! z*HdoTX8_&IQl=eSb%Qih$7i@RYYdfFdMinWh^QXU2$!F>DsRsz4k0Zu1k@418mz?` zF?8Kj=Bx9XKWfE>nL~3Y+1%UVZ6v zduGMj#t2^tsxvfOGYfz*b+d|vrC!5=?gq^}T(*Lz%IXvY<3F-eN5LNpa52#0ApZpX zZ0;JL>Z<%KFmlsg@t=-`ETtJHHC%4T@K7cl_ZR6=J*!j#)ttcZlp{qMM*W|Iu<_5zkO!|ogTg+?oWD+!?)~{>=tAPk zQjb5_K$0U92?sp|ntl7@HLG9Zts)las>3W7G7?`4d}MYSFo%k+cJ6t@$ey(hy~I{J zl|?KbY1cKg&(trB&gT{Dh|h->-79B~a_jN=?MqYvrY-gfmn=g9Ck646SJevkfgjso zMg%uLz!f-CrW5AAPYuLwkuOjI0qzQlAI=CO8eh2Mf1WAP+tpr{5xfIyi%X%A?33$9)u-)+`Tc|-TzxoTw_!N==nG0?gzi-I+beiy+i+Ah6&Wzi*e(pTY=GeEYCMNc-}h#WHygjH7^wD41odHNFwR;2TVwqWOox(lOFHim2;t zYo3KAoqzxU00009E+)WR0R+H@mr7u{N~W?GsZteHm-6w;DHWw)^)x*m2EzPgpH)X| z{j@?TegJ0?=gHw}>za5qITZ3~(54YZWy(QONd<-J+01NSHoC=A%YK64GAn=IqeYm9 zHpx~HiXMqmjaYj8ICc+v@yV%b#9rXwVMEuc1}6uR22$6x)fuz|8N>{BL=C$ciF%bj zfih0{Qy{PeXb@yL(3lx@GNe$+&qnJ^iRNnMv0Y>(s?O9k>|aqg2e$Po)|{rbnB9pR zJD2JPYUk`3N-pfHqTqSujmB7IU%|wiHSSWh>*@+dsId(%cWx!4BYl;rB-Esn__NeH zC9QoRvn<;oOvaogoC?H{&c6j7*ok2I(5jVUabab3Qdh4bn!!W$%vY5VJI z(bep6DfKsKD2L)5S8i5h*_kDCrmF2@It?*mx;Er!z=vXqY|GJ!ou<@|sIJHk8? zznxbdR6(H9zk)0ailG~#%1fc{Kq@n#1-T5pRZRCF3ku;dKD@m|!gv!a5M5;ddxY)1 z+P{?brFa706e7(HOe_Egun-&oj8$~zM}B}{YtcJ!);gE5)S3y}V+l6E4@^h}gc%!+ zYE6Fve3&kY&zCbg7Y#qSG&ynA_(YtE0000E{IdIf`|3+AyFK4?h5hiq)pAHR(N~DB z5&HI;ixuo|0nB<@o<$!FmF-Q|KTV75j+!t1*U-6xn9ea*OdzW-N6QLd0@8MN@qC*g zJRGWo9Gx{L>OBp$B3gkxrsw!qto8!(P$~S}0bai#jnYC&q=F(hSrj*O(h@B)A=dl=501;U5F&K9DT+NsFQWT*8(rb`>hr9jHjTz#|gS5my#!Q>Xk>;>Y4MQ;+M@92mhig?1xu&LL0 zEUukt_$UJ0X;z`KWu0kyaA_mKl4+mzGEaa+c+h|M)QKR5<@F+Ufp!5S(zx?S6oi@HXjICnhL`&U;qk)k4F^8K=~XxUby#@mafk?yU21ZTz8As%CoM(t5r?tw z=q48YC+ADye3qPwXZqnzaUgHF=^2I>Hp3C?&&Nzz5I?(wko_JT-cmJAvu0i<-1=A- zZ2erksEwu;AGI$E3bnCrt!-7=VqTSjiteL_8c-2=lh7%wTC#$3C?*)Keg1SP^$D_X zCRFygWYcZ1kQ7gVqO;!cwG1HbFE!D9X}}pxTOd^_bM_69AI_Axar=`lhl6z7=rm0d zIN5#-QrIRAOQ7z6Zx7z-7}%!&1_pGIwjJv4a|(g#s^Nl_#XDnePZ|AqC+yrnMPgNA znEp2|&kpv#Pr#C&li(TXFf9~U39o^}$7hyQT}2*-r6%~}hKdaABB6A(hh>2tttLWF zt7@K+?gR>nk*_`0mn#U3qya;j zwI)TpK1sS(@ugsCt>O&@>cM72zmr9UU76_mqd8@s0rd$?LzC@YOo-tqdOhuJ7Z}g* z-?JUXN&vAW8k(A^BL-$4@Pf)x7Tg$btZ&46z@OS3xpoh1T%@reKBWWJ;lU%kvlZ;! z2L}%cE5pt*c?5!K(=?T!4k~-LxKfXTFD`>g01$%kGt5-RJJ%03IuqL)5o> z6pcWkVQ)ift~r4?+ikT+lW)=Tk?D zgB5Y=Mk-g`?6F91?`aW;$;ljGJUHP9z}AEJAUu1T_O^??O-LKssmJLn z_dR~ZNe98rV0K+cR;B{4AfmW9==jcI=0XjGaW(dL`B%k1ak*b?nUVor)V#oD~pf~<@l#hRRz{!wSMiU zr8o24h^+Bn$bP!-K{PsKWFu8RDZc7$@7#f8{a`hzkxNrImNB3NEsF7HA(wVh66flK zPgUca((BX#Kaq-XG8|!Mv_cK&=L{no^yr2>Mtf_5X@)T@kfJ!j@4(z372e!P3;XHH zPzk7Ugi^>yRFF18rS}Le$v(<0=!dl;ZU*FH-ZWq=vq!(0O+$ufMl+`&{<4tbWaD&zq#nM)o*?Mtz5)@W1lm3#e0L!-0#cqxA z`1e{`O2swz4S&oZQfOIrp>R7OBN1;z7Q;Cr`Nbf`3VAs=f@mVKu2NXu>YOUYulcL9 zQWJyzoMxH7&n(T>MgBw_4_`R=a=gx7zW8Iii^$2OcUy+MOB}$^D-}U@i=Qq}x^H=N z^zCnRzpf=%yOvqpc@*{z+jiv>zHQBtN0)rL3@OR1j*-T<$FT*X*4xoJ--x4ynkY4S zmb%Doi`Eb;K2mz0fEw#Ol^t_fng?xqv&+(XBbs>4&;QicqsJ?u@HnNK6}97rch4f4 zvesPVLNMi#YP9SiJE#D&5*VbvkW?cc$&Tp#TYx9vU`K3jq;)KW7p!CyjbhY{#oT7T zH5EQFTG(;Mzw*=L6x?qa@1e1FV}Oo6`~URxLO*XhX#M&)85aU5T2@4jO`0Rr(mtVw zGFbyOD1a*tMlqVCI^TlTtz?^5Vi%QeLY8N`s>pI|fHT{wJL^m~5^X?4K z(>d^`>rj6ugd)|v)SlM&%$ZhZ&$YswmS|Sd;d<~8q3O@~yzE|Es5(k`Z?UKxxECA2 zpQEw%<3J)ES%GQWS*O`H!5&>>Y!OaYAyjMc2!=hk5FO1(Vs7r78F*Cj=UH9J)d-f} z_{Ft_wM}!XVTym6+Qa6|Dkay3j+$3;O(2^LjauQr005qOHw%eqmN{DOoN1=6bY-EQ zr`^L1V^nE+R7VR6?Ec6f6dX5?NV8GUPxtTNw4iz{iCAjtf(sa=R{_nk-%t0nW6g{# zy+TPU6^nV0XM3`m!?E+&)0p7R*O-F-qtPee`rcxda)09WP^#YDL{-m9a}iMK)GZKe zyC@R^%7j!C;a2=2+3IeX5EW2!9pUNJFi^A`zYqk%@DhYAp8!tgTx^~poRA^7f82UoKIoX^4iyk*#Dbk_pH;~6+6zg5K z@R5s~EI`tpAa_ER{g&)m|c-V1(IuJvBM6(ErZp zXLM(q@tozDSmQ#QK=LlqW7B%PU)9_Os&A>Yp&&O%bpQXdPY2EIi@Gg2LOvR5)cJuF zUTDv9?h&PK?fqV#=xU0#uLjZgVt8ZebjBg3kogXevM#%J!(D?po%Pgwd0 z99OyPwu!zEUu%q-?pNLX|MN|vq6PGmIblmRRf7194j9kWX_{moa$t)No382rLSO;K zY0jw=x0+5hb2^P3;RPiW+83-a%EZF+9%DDbIleYW*L$_km_|2?iw6ML7m$NaBi=Qc zxBlNtX9gNwy&CY?+>jgun)YyZGimU5<=}t1frCd^6Riky%*xm-}N^l-RNBx8n=7B?CU-Xbm5E5X?Tr!RI)MAcQbv z#=fwL4MQq0`PGf`io8tluCiSEZ{9nT8v(xZYvQe&oRl4D3 zj7Gdj2>SG_lKf(si+j46(t)48L_xZNfO4cl7HyVV>&saj5Pt)H{R1Ly`&bPfa?J|Y z!UWJ0v(aY;qc`|bZN_9Y*VW>Ni`WF?nDczq53Hxh z;YEr;pjDJo%@M0)IYz{*Je&Zu6RF;559cuRQ8Hon1Xu&{hzM`h-@b|frV{fWu+XI8 zjunbFlLuI^@|h44gpRGRWNL3tu!ne;GskiMw2Ig4f6aGFv+O$Y_oa0PU%GqRnW3-v zrd~q-gH`(gj|zqO)DRUIiBQ4zD%pjJ3u0}CE3qx@O(NY&sSZeD#_i!-P-hZlHMfM& zLHo)YE@CpBNH_D5<&!)M+#}?MqWy7smm8x(%V~Ry4IQ|s#PLGHwF!LOdksgbik`Wp$zSJ#|as}}zc27A!1Q)v{@ zMJAw~gjLbH%8$>p)UG!LIbK^PkWBJiY0~MhSPtwn3laaG$s+;&;uH&X+kppGpF??!=1-LOb_l8fYlW<%LImV6#Q*5!fCD;l672J z9o#RAftyA>H;&y7scl;%GzwFZ0*^{?>4I+}Alu7o*-C=0gbGMRj$PldF*A z068RW5h9`11?%r1C!Mr@)cJ$dP&||Y6Wag^D*u#^kct^kdz!}9sdi9a0c;N7O{D#! z=n+|5>B~UwvB|RT!1;?iZFV(7c}&W} zTYKKv`b8=Pp0{>$;=~1mIcQ5q(6s7iLIKMMV3F^8%?BWHa30hu1yMe%0YZez%UUn~ zpbP36@FvO%)gs|6T**L<6D!R3(9BQ7o7O=tU}L9$j*x&9;EQ=m%*?BVloC}rauf>G zrW!pgwgmy%H8B?)OUna1eyLkYWE=Xo*#lh3t&Nz>>sQt0(@eT}%wny2{O&1Y!L5ri z1!D|2xMxR;nNIERTLkUyot=soq1LpV>sj2VufRP>3Zfh0#(G5zZ2p}NOM2$h2i>g| zv>3$!IsM8(590l7Klgfo!=?M0d;byH?!On{x-Khgv`%x1gn>H6?)A%8ncv<2*VTVu!D`)X|k8MzXA# z(QLMbRU zQ|*n4hbeT>2jre1)q7k79c^({-P_nsM8gXezg%7h9 z$S=|+MO?^3Wuk7JA$U4x_}Bn(1*GXLR@l7EEqET&z5{AFdvi7whwqz5xfKOOo`Ieoj)@pZTY%zU%EsSlX)W>vwi0PAhzv!Vx zxvsA?93=xwtuZr9RP3A$>-o(Gv_2|;9xUON{t zKh3+jugieVZQ5iP{mSUDAPKBmdEF(Xo*u}@xgO zh`c^zHm@7NW_4zf8WNFZV*8012|Mab2n$!c8fA(XrR zh-zHj;sV0BSt-_$4(-K6>jyH!0r(dQ>O%d@0Z%&t)cWC2WRk&r3VJpM(#u&E;5jyX zm1T)G=&SK~1I_JYPrXotM`}_gxoFMX7gZloqWruSx|Nqe9U|33l@=+f>MzBBI5o+o zN8eA;L+r*PSeiCq;~7X=H)b*##jGd+PCTBwVcB}(fE*-dMaXV#QS%GdX3?3yyYd&U z3l#S;1PoOip?L;sb1^;+BbN^DNdyY8a6!VL2KT%dk@XBOmKu;oY#+1fhZVw4@6at% zbB>)7?T2+Vnv%YeBsUST+i}d%2E}LVS_Y2DU0|z{`ZnfSzB*Ecbt$;n3)e6L&e1qk zeKd0t#6p;Q)!*(@qcy3{G|T6Pl9ee6Q(wv{8CWW)9Q8JeIQ4-lU3#c*%(pH_p;6tS zuTD%8C~{uGRXR~)B-?rODb~fj;SM16IfT*)J${@et@OAD+zrM>1U}fY_muxH%Y1(L zj;{&qni>HBgb1gUo&eCgeZ_HVWEk|qG_DrfbaJnf6G(Bpms>XzSh zA9pix-pQ8ko{@yt9@3Ow<0KiK0Oz!ZBe*={)QQp{`a$j$V7&3OCl?_QSi^reVZ<$e z)-5~?0elf+%y!aB*n!luQcEg-D5nYy01=J>2b4L5LlPXvR3)O)`Uy0PK$%a`+fLAF zM)`Y;D7DHHLg_1UN0#Rn%xAO}Bt~%4Fh+R6pbzK>*d}ms+%FNCAB-U9U)rlt_Ghem z?<5DZ@Ctlz@zlf0_r(J#ZE94x%ycIGKqJ$0_y7O^007Y1s%?@r(a|!)bd+^uh4)$|rtX#jc_z+Mt$JdMA{c zBy}UY)asC4JbQt93ed?_2uv>9>Ym6{XjEQR%${OvpyH|Z(Xc{E&x;$IDu@Zrvmw?I zR&a(*0y54_825ZwTul2JQ|%%EUc!unk^w3D(%Nu1rcnB_9;FfUia#Y|BkcwWE9Oba za!(Vp$=r1=C_j_UyMa~eLeH^a)BVdGN-@iBYe+nS5~-qiyLQ_}8V_FfK|SWEj%%~{ za9~ZA@}ulETfRyDh;WZJzQP32fE!Ib=O{1{Iukh0QFoq8@CUSI?L4Z4T02YdykfAF z^NT&**>x*hR-&&i8mND}`1;2AC7d9#ZKSZA*+czLPc%e>W_ zfFE59awiuo%rzRsHIm)xrWtd zu{7gAIG#JKS$C_?uBJ%PC3?ffh~B!NlhmJ7@k6K~T2{pyf}Qyp%dRNGMR4C>ac{jY zy`v-I!1lbnYjUR1OYYm!epO)NV!A&riR}F`1d8*1s6`58Q0s^`ZmwJ85shMB87oc1 zw|Hib4eaTThVN{#|0M-i91qt0^Y`k?pcmK1xs#L;P0F_Ausf(rWmMXkX5nM^)FH{*DP82dy#3s!DHNuW=AsuG1%Lw2?ry2!6@Ujb zC4YJ~v~wdX>j>Pt(K8(zy3EY7>9Sl@7^s^iQfN0mn z6u>z|a=aJh0n3uZLZ~Xq0N;4;8fS3TSHeR=rDHRRMa4B*N7CS5d-6aGXsPIT(#1lG z;*@VM$c%TWRd`!Az-A#(mY(>b&ZMt3pI2?G1&9D2mzCy}=}e^0*(l*!6X=w2xTIc` z>VUZEm35{c4pMN#$mY@yT=}%%wy2tZPf3DS>TaD3L!maZ07u?-nYg+=R4X`h4f}pRdM=Ec~H*ocr@r4$8ta23x0UupY$1d7mH!3RX5w^4K z7pQyr{cYQ-IpQO--zd_AH$R{Cz}{n#6m_y*j3p)VMy2?SUx8nvYPY)@_meInPYD1j z=9%Y&111(2O;L^KjVs12b;v8M(5<7!fbluNo@OCHD2TRzK&Uw}C$zme0gSzU<+Q(d zGIOlZ=!Wzp@(CDdSC2FE6wLC|E^{N1Mum$ax;GO4t(@F+O~;`;&|4v5RAN13fGmtr@-U;wtwk@Wzj77}V z={d&2tKci!XO6xDfs)3Fc(CQ5R~8ka&LnW=s?nw8-?^Zy&?2q#$Gg|>M5Uan&RqUe zBd-&&Z-CpsxIwJ{Xp|z=uTXY2msg?IZ?u5S_lz3!0Eu?^@WN-Cc%wqzJs#7Ah1H7| zPAtn#l`K+;{DW|p$DmK%)SoXpwmfxMnrq8Z6L_^kOB!`h|+K&1ipoavHpNV zs@JlMY0^jftf)P{o7l4|9*s$#^amKkuXqK_{Vdjv{M#ch`Z4R0;R5mWSzp%IRZ(o% zNyay5MER4qz>Z5LTbSO2E@C^$4)5RV?&HaPNgA5LOk3r4`Po$mTUmKw46BNQl9_x8 z?m?6EOc;3}C4HHEMax#>I`rr>pFb%A8lVI$prv#=*=9yk@*b7EkH}^8*BzmoIvQ7> zXLUjfpJNIP1HU43`A$7@%w?dQlnZ&vb}eE#_pfbqnWI-e8@~4C>rSqCBZgMEdgkpF0!3{YS5|Zs1ayDF z%Qxxpp&86C)tB;5#_^M&ZEqglUIbvyuf1DO0@rfEwAM5y9xOr`HM}2RZ_7BPf+Ks) zN70M9zO+lN7?Tfk)d?^*)ZctjdIvf?xL?zRl%_pW5M7PW`taW&Q~QZMrzf{$y;>SH zi{S}EVUUGbb3YtJ@E@Jd3l#}}@K0}{I9t!rBg|1odATJIUg9L=77$=Fvg}h^4?McC zA+KHK{TSrGOVpb!Hm9-xrK(HXgbd#8O4rY}J*TxUG4~ZbJL1oNnrY0o?Rm}bO3TXa z-~I|Zd*1nG4n>KI=gJrj8mWPJ*;34j0<{Z7sb*?2rycc@YTHo~LD7*=Cpdb2?4nxrls zT;0UbLww|T4U4;4B&Pbg4b5(vi7tnjWJB2rJ^h*saNu&ZZEY^(z`%!a;VR$T7Tuw2 z2yvB@*Cc=Ey_4)-$nQAUZfVVv4ZlG6|7$g#P;WxK;(IQ{G1g(^t`WTHbT8ior1D%C z(PJJXb}pQ7PQl4e&752u0(1-qLyWzMwreTyUT1PXH!p50vADtrI?eJCynrE~Gz|!v z#zYh0Brc-DbOdUURpfUiPRa7+THq;QQhRaRvlNojQCD&za5zw5xn zUKQk1+&mFd>*{-(%H~tU(sMzmBA!L4G$6b<(S;`xXmyL`zavUQ&OvQ~zyJgQAK9?r zB#0aGJ6$t)qcqXp<0+D08kUCezs6Ua^KtpCS~rkl?wvm^fuq^*`uy(ND@C{xb5el6 zI{26~*pY&s!MuAqqiUgL)>63$Jys+hB0y(BOKapI7l;7HLA;AVDo~e55tT%io|~eQ zlwwNB?pBoS&BWpEja0JWpSSZ$<5zLx?s%)u()y_nI=HatqbH8w8yo)Q(zg0Bl0nX(*(xRSm;)jT8ne4grOd6cuOCO{j;e-%3neVc1Mt%*1}*b zXyue6Z9Ysenl1|iJVH>DIK1cLisa=>ZESs+!#p+mkO}ntaSN~wHyV2w!A>9{N;3viQtS$g z5fT7u!A+bZlM~lYt2&#$y38&IdD^F$lvX)>XAx#I7ifyGmoAR+v8uDdygXHZ9Ts3O z6Hef2$~s3;GxD2{wv=fW<>J^F=6e|aYoQ~~PX;j^wk4eidCA;F68l4QOp61>uEs)` zkjVO@Q@$;MS)p4;jRDp1qMb%TakRKy%UG2#S84vL;3(Av zJ>PDs@^6A%l}yA0pvblnce){;U}yjDS$g}C!PoXWcLg1HQ@wWFLsANnhqstw5 zwDko^YZIa8x_Q$aL({iafQmb&f^u8?o7I>3A?NcXH^HiJLaV)BC<^v|1RLC%*C`5j zX92;>bXW7BM2nLeopbdnnkG{PrSC_vcjaY7tD*U8Xh6h?Y3Gr}6+RPXf=65SXR$*vMcIGuh- z|4`puJILq5SC;l@?K)4%$Hwspggg5w;rQT#?>tB3Ovkel_@X_HDr#IVj2VwB zPXYW`aKZ@AtP++5K%h?XDi4{TkBr5(j@(H4C;VHOjyHi@{G4-r27SzzwNwp-^^g@b z1=@h8;AT96GiyQ{H$0HtwzqsnqG%dMuT-4g2!;QPIX|jWH_a*^W-H56?f540ogOhPWV8cK6^cO^ zi&J;+&=hzbE^=|q&_qx6$mzAL0MDZ?aRV(POaqKN5n7i2<| zxEhwQeYEXz59fGQS%LK=b*tZC?Ae$B25CO0-S3kGw4=~i?V^f&ln=H@=jtr%AmG7! z(GhYM+8!N+kJTi2)1@&oc`B4CCt^toB5fF2@sT4m_bT68=Be%t&<6{`@ia=gs_q(E zDDe9)H-V19)2YBWF#$o=YIIkG%qlYMhZMuF&fa9u7it2Zq|;DlUz}-Mj0ZHTP_8l( ziv>e8bj83J3u^fB=ayj#O}+g|{yz~8F~(JLnqnw}yclIT{)uUU^KXM5b-)DG;Zs`K zj2$dTC%p!r1e&e&U(!X&i2dZ4YZXW@V=k zc|;nojUdFaC*q>+sxkYyVmF|${_SRnmEK2}F3D0(i#j-i13l1pl_cqMOA_ z4SeyYtJHpxPmII}7cEMYtbY+SF+%R^9imL|wj0C`YWk@gw?Ct_<9C*qFaf+$@B?qd zW2f>&6Jy$z)RpHvKg}#CgVV*{a1EF@0{#A5H#zBrOTxFb=P!$$U2H5*;dd-Cg%SS& zNuLBF>N_wY*&b)3hA-tNgAdsdbUN?ou#oHBjf?}5+}8L)0!7_iqnqW?8G!qJH22gd z)1`U3kd}@+l`hKZqca9UF~yb05Apa9TSvP5NS%>*x)hoqOU zx2{*q;DlKw>L;Mkx}hCs#&tWH;k2MQ;5UYjk|QdZ;8`&!>{mT?-*Gb!Uzo3jT8Q!| zK0P~`a^M4xQj8m%R-r3;HrE0#`w=h$S*|!zM++NkZaSRmECHnh1*CmK@&hC{CMO(c zt5i2S&K@N16IolvIMn?lvA{||_IW7t(nlUDW_|~=6}>!eW9&R~=?Flr;f?TRFcsx) z0|j~A(B)uo?{yIN@NdrYB@AhHI37{5UxqLTF~D%F|1n?#72gG>OVxe7xedx^oPq|x z01#{Yz;rE6BGPJBOeJ-d= z7`-q0l)k-B{-e&jg)K3oZvQ|iqi!A&8~;q@ddt9Br+til-k|8*Yp5#N_3y*d($8v- z^JK+Ab7eBAG^F{)*PD)|-x`@@n>s#f3=;{~Z`r;#U`;jz`QOb*!ncOk%u>&&Ar?Q# z5SQA1r&xo(i0kHNG!9uaMlJ=lDIuZ!Lv#9yL)CF!WITTppGzRO_^?e)7Ue06{7Sw< zaP}q=7FWb8`bv`11Y1NN40V^0M2B!4u@N~u2lVTGKPIzg{x?$hu{C`v3@MCzoe5@U z|0VT-q<%QuBBHSrwVEe8Wu{87lF@R-z+n{@BfqTkiqeP^nnjW=lBJHmzd`e*)dl%0 zqf@Z@sJ8^1IlzxcFJ_|U4McZXDE2ft7pW=5LOHU?+Dx@M-_l)r&;DYtVHapwodmLIXrA){&gOZR`dz41s{(eleo>7C|&-JGZDvyB3NtxrQh000000zx=NU~xn1w8yO;RsJPKkX!|2ty>~Q07ieH z#-rbGawSAMVp0?M4U>M90^SM-vP zd4|pW#$@B{Vv44^@aO@%03X#`1D?uBRhZI)aF#7kPb>;l2DJ#_p^x6hgWR`MXU==0 z404bmyAQrwj=HNbkyT6gwDe}c_OH>$y8MoSZfPC`brTs8o1OUy9eU&~5ardib zn=0di0S`#Wa!k4rOdg~!uYuTH%pVt7e09sF27__%3CRh}-f0m}9Qw8gQKC9mQZxGj zs{p_!7*WW2yw65P$}jocmijPg2Fyf-mr@0DEUJp{a%H*`4=&{GUl!(DCN7XhBOF^0 z^ezorv>#bFM^NHqnmJ5FfDs5$$pbN73=Wc0cBIpZ#$NEDB@M57SW4CEvK2?8b&I|Z zycre#d#7zC`dlUNF$?3djhylyd$?!gsRosCt#~lpPd0Cpt=g!#+K&|J`)p^$2AL0P zpf(h?xLZ8|l^tKfgl_!fuACB*HVS5$T`7;LTjv$x)Tv=Y5o7C%8{I_9CHCYip;jp} zCvxmq7B(}AJ)ltfbbSOezSozK{h*k+{?FQ~-(~TuM_c98{E?T%j}{bHD@Hje6T0*b zEZeFVtU;u{Q;GNg98LP_`Nppm)?HN>QW?nYLZ#ER&Oh5*AIDP*Zj(xU?e{17U7bRT zXTdoPO!QO*-}5sg0!GdBS9A~+86N&1d5)Zs&q@l8=0sh&T0NLU#$HS8Rba@AOQaYp zLam!x02m~~uPQaNG_>44d=0Ute3 zdi$E>HAfe#+8KbIg)%evp|T4C87x6i z?ShujkT9cbPv3GR-DlIv0}%?LCe4%|fvJ?&iIgyFU-X}dBdp^V|EY3FlfkoxdFdLy z4`zKD`V>++O@c!QzV3=J#pG7}0T~IsIKKp&7Vo&pK81M^w}^gp_-`sU{8;mjX?GY0G4!!B6e63r#38VV7l zp3?2M-peQ=4eAw2iVcU8nsLtj1=}bjhyk4NAE{AHNh8*`X!#`Ieeyap9w|h;I0TxE zB5C&#W=YAR9u$<27>cw^p6KKzki)8B&NeYG_Mm8x9%B95F-A}1@Sq{~s=zWre(YkG z+Lu)UY3wNlT1p5iM>M)Zc8Zg&bCpIDK(A1+hOE{%(@LU4fx<9K1U-VHgA~L`A=v>#A+}e8`lR#_$>i5OhS(mR)`u%WmJqDR+&R#PpuQwz}_{?)+O*(x*?IDmi?A zkD>n59GuDMgjKCWbGl7o@+u~UDtsxy5%YP?x9{d#g#W&~Si z`u!^N`$h=*gxBqFn$IE@ohL-?RG^_K{@ml;UZFA05lFgSYf(8=QC{e$0(*|b>K4Rb ziL5|y#WB1;YQZ9Ly-CF~#vs1XoxDh>I^~}0hM5^Mc!O1k7^tC+>Togn>&%-}(au|% z9ApnZ0OBRjBCG&rI>I&#VpZiCAJA$HGy# z+xCeYS|CnYUX`n=%5Kz~jp}lVnh>)W#7V9eT~vv#?8!n0U(9pm6nA9@IXPCq{K`WK z*COxu0qtqav1UR`|E+oL8N(KCIg9Z~39V>k7WjOpYGF9ZCaY%;6Qelh@`a z8vh#k_{4wA6Z5rd)PEYO3T3k1j^s;|aFhf%Hy^T~5dcMEBh#_7gi3 z_%^2hg_GXM2@I|xihzb%sJqMxdBTI3uBngDzgA2a(|#4T!UyD-MPuF57`<_igj#X# zNimVS=N|rUNjPSg?jfP~Ci|+WFLU&!2Oay&`7daR@sb0`}=IB%>W;-S{T#%LHnc;4UrEaAHS)uG``JTiTJd_n7V->sIe-urWJ+n+LXhxcC5L7_P<#rK zJObKilvD%wSAmVdv03!rLt(?)$6xf9#=}on1PZo=oo00dda{mcBefa)`Xods@r%oM zOLxFq&l~8Gc$@coC^5ARHK$!hGgbWLuYlM!1Nhy&AmKcI$r~0B{5Xo+hd?@lV9?Ok zs-s|r><-t%>@nYTzD(G<%=4=-7GH!kbV)QHe8Hiebg8u?M=gT?OqD-(??lw3F;saZ zv@=lhLGi^d(gp}MElJdfCm@41jdA6p#J1Fnu7I=R+YY}$5c@o79K z_%OTu?EN}r{jJjo8zoyn@HYqJ@xFOkJ%;(k(EqP8)q9CI0@XP*Egty-s;c0r>fILv zBluuqRJ?qK>)-iw55u{!Q=f#D2*?LZl{)t2L0t)80000193;>?7NtJA0CM=TnZy26H0SRO<4z z-SgA4hX+8PI^7=Zw-Kph+!y&C7w(@u{~xhDo`K_S-O*|ks0lA0HCDwmt-htx7s zB;0_f_}V)Drs4a0J<6*`XqE}#p9K)gejOj95l`K^UkXZyXk=M zzvbCi4f{a10Lu=(h7|?l?+e7FBI487)!n_YxAbUr3)ve_1FHs3QC~{AgL(-K=Q!ID zvF6RQpIOfOkpwPxo?Bt`k)=D^eV$QaveQH3Y!kw5?eRG#e)XPwJeRxHm8?X-=_h!oS03mbGsE?0l> zMU9JlAo@aj*}#|F0ci#h00w$3bYsu3a-+?jrBu(!xG#}~yDQS>k6`0zxK`|%?`a?z zxrJ4?1wbm_21*X+3houPmD=$3YQ^*wY9Ht|Fw?cNmWLr>I*RV36e8jAhcHd1iEEI* zq(xA9f%4&4drPq@k}Bvgo|zx5PGpxtr#~Etw(@w_rtikXN68tO9pDABy3yE!TjM_v zrjCTW{&3g?Yk!hc-Dp#nT#fIV@6VQiE7ML3eG)9{Ehk!-QO+_iJ4oulATOR3gL~dcnhzfuYrh)p-m;? ztzP~LAB)OLEZZgHU6UD;HxlaP%{!o7hPK*wTsb*#u_*n*xt`=N3WH*fV)^o27eopGW&jf> zGW@Hjm4$EHzS(A6A3k)KvkF=ZY=Og>Go*!PW5Pm>dhCOh-=uKMK z<1)D~$%XH?GVN?4)bgkgr2o?$Pgi#j`;`kQK*&RwmT72&476%C-*}V~n<-2b)cfIe zv`kNDCTi==@Ic>`?QD-i*ke_ly*b#w2PqsIQyd%5n8KJqpsQ!&CPFg5%Z+?w01x-5 zpajRHb;fi^e@3M0dbSH5U`uFgVa29uni$@-2)$`S;hSdD3l9+_-pG6~icqn_{#m>f z)TT7A>GArL`@}k;ho-F#pxdugHKKTr5CM!ruAJtxu@{OCRS-_@vSafw>5L}wYJ2_< z%1)@bO63Og?@ak6_8FCN*^Su__%I%tm)Bx)giRqXzs36L&r_qI6EDH;pa~a>T2=T< zm@e681ZPZ_AFKmi1_C$^{*lG!4&lSbb_%>W#r?qS&)Us7N#UMHxQ-%In^bW(*O+gA z4#tjcfS9q^DWYZtU+~)8Tmbm+2OUhpMUeJFyNDg*c`*bbnVywE-liFzoLq55>_B^1 zM)<{SpiEd|HsVr@nii>s0XTJZ_F%xMx*quh5aIS%>DXYH|IdC}(`CpE<{}qWHz6yY zprJavdH!{Zy96#IVUHVVK5Pieh4XoD0ySlq&Ohgg4<=DUgHe(^6U4ebzdFv~MMrpX zvV<$B5SV}t-AYmGm?A&3l>Ftt#uk3?Y6fiS-d0el#kHL|p$oA7KFhpQoa(V8PG@F_ z@1{5U!Rb-GGl5(3zJXhY2XbQfG+P^XT@t7LJPoLuNY0kL$#I{snK#Qc|2Lw#7faUI zECmX5`;0TfGM;Cqf^#ca#u0Bc-J~zyDWl)6m}?Yi+UcAxXHPig3brehsq`-x5E?_J zITxn@5|vmtlPACck9LA)fA;Q>O-IXDgrC%Qy$7gVX~MH-`|I5HbAf!bPAJR z%~26^c=c;Akv4vJh_bIT&FifKaeAkdBNux;=qP40U_Na{j^MW|A57*&Uv1D6$P>aA zGskJMM?NWy)<(wU)(gKmomVo^;m@S^{uEq92qAO=%j>spWGvYe;=|D?svK459*y3M zTWXBd6ZWnhB^|wgvjV68cS(iRD|^u%ztPR~MZj^Pf!eL~qR%8yp2bDPB-~)<5_40> z_iDPaa@ZM~jb{UA-jlAyvCRFF2Z=Q1dOWz3f1LQ%iogg-&M<=99tv@*pMzOyfLkX5 zO0f&t2Qk*06R--*CSp5armnnK3gy^-G^1Ucyu;!-&m*{=6t7~DRFT`Hu54(I4?PNw zJVSVQoSSd|0h!*34T9)Ricg1=r3k;aEb^##dKe03c=RAxHvRkq+@T047d2kLUvFRX zuKcP>q3roi`B$3BnvkgMXQ=HOO+V04bX^DaKm(N;bo7%S3F4+iA`j~oR_-97m5JM&R(x;u0p0roMn~E zrtE`qLh^_4?aCJQ$#@Swk#}kW5X?T=g;?3}JW4z$PJe}g9e;%B#!)b zhs@INb@*?843;D6Jmk4E>CgcwW9_sKaT_tNeT8ovxBG^hh(#W&XQ1X*YpPsIhS-}~ zLdX1>u1;JKwZ-;F@nDTQ(`Z^Mf>9{q5v9z`iF!EqkUU&0Ua95q5a-_+zlqyZj{~R_ z^fgRJ!<*|?P)aPS|NfRaC31n)AB}9Ms;tpj)$m`DI_g$5{;oQZk+5gVsT($BVgXcr9|WC zkO845JUY zBMH@$R8t2}sDP>v<(#_NlH(KF!_mBNTa4D?y?z$aWVVx+C6K6y9PO|u*D+I9cSj9} zQBi4!-22Y9!&?9VABm(QKFXr>Cn9vN$!5en!2^U?&BV+cn&tCB*rD`pMygmH zFaV$Y5u&K%96$zBQ;#N#GU(=R88Pm8obaGm(p#0m<;=`MP zkhN#2*{(W{g`x}X>BMCdgeQTS6I9ewW#~>xzCIdJu?S#$Qg~0yf6_mZBfG%)+v3i5 z+m^~=f}{yL3SiZ)Qjz{?6h2@|N0dgmKp#RBLHi_b3QJE*7zhrR04?0>aNA`AmZ>X+ zd@_+m8!B&6S5Xx0<6KKB#;fKGpdlRN+2_3w;ZOwiosS~7G*bHs6)*+ljLsb|X9T># zrAH9+IH%b`)XUKB=5!fD6iCw`cZ~e<58_Fm&O3`d#!ocQN*xy9VKk;_4{4CbRGT?b z)nUgKi4|x&Vf<;sH5*|VMH2C;D01A<*s47h0%jxzE2(4=!4d@%q|GB_^Hc|dgcj!z zT=h>ajN2~Cq`$6Gnn9f<^(lC>DWWPc1;WX+-L9-~ZZoE#HAGNQh2nqO2ne$-*ukcT zoCW1asR45hE9s|1S(R?UGQC=3U_i%tEnlpa+u-lBR_r-U#;ut{vD z|E05B?dK(3`k0iSxq9`G7@Imw*@TN+XKIw-KI**Py_{Q@ZfFgUZG<18Zb7p~xtfa2 z8=1l;CMhINu*_QhV%e4RRBCBIhIX~+BG)n+{>WRZ0kFyW#F?KdC|=}xHD;+*4ZnJE z)o+-}|KSKNF0FOIw@kz~v2(|ya8gvZxC?Yd&Tkz}xW=ar$^W_D%jrffU8v@~1NQL&WY`S1NS(ZwFZ z*e(eaA0|tyJ9?U!6|1taJjG;$Q$a*(sVpf|ZO{`;c%f8YpoFk}J-8+h3*s`X24!+! z}#TV(#wW?|JQP% z+K0u;xnrodHF|KPXV8MJ3Dl+QIKBMV_vrV??&7`(w-SPWRePWnZLl-^iFskB`{CIj2i$Bl=A9)`G^oK$Q@&+MDppBpd!$cz^+M0NT9pBii ziKM5%DoM>2`8PwqmqTSvq7SA^7Z zHU*1lZg(qUR%jSGS?`|4;g;BvTQwbNqS1nr=x;Kg<)Rm%L;d#HwmDWDspi_Kf^RD)>pMcB{gbWKO%bC+C34RDz=utVUiI#VkS{d7r{q(wvE>?JN!Xz^KQ{$yww~d zu|s&JwHlG-2DF>$!+P$^? z)9Jg)cCMgEPK5{`f334i5Bq55{xYemQ4KXn5j7WNK)ec`-FV*nKU#;zXA)SihSN3_ zd@L&l4k8LENam+0{Dg{YWVGq0QwpdR9L@({6>#AZ(2RM!pnV2t)fP4(S0@`Jbe?dG z7m7}&^qPiyoflHsdfa&I*PL0jGrTP6mWE4uLE)ebKA)W zsAY{bn20DciSkD>pdOl4Gt0SL945mE9fIB;WB)HkF}6%9@iRNxx;=sR5%V^^dX}L> z^&a@rIpa+b;I>fBCNqDStJ&bQGh?Pj(7fW5lE$-CAeW!}?yq@wOH~|BQLe8gQ$q12 zLyym!ZJyybl4RS{%7b7CF#+jt2E`~yrSgDB2t1PsHpi$!N0N4! zlp9=ES5Hsi$SF$WkdLk*Dn-tpgk~X2w_Ij?wqe0{QX@{Oy&kh0wPDIO2EeH*a}~Vk zvgHmS26g8qTA@TwMh3{_&e$-z*B_XIbhh#=KK~L-TD7?VYaYJ7&$|H~l_olYtvW z+%Ey}Oj!z<(Qw^!8T9QkT8)yt7^M1qvi$H^bFAHDTSLzzKrv`|6ayawA3DLDL_e)- zYIyC}D)i(~-GH2JW=nLPOhI8|;@68Qb|J@m5dC-P028X=1W)~OX!9gqSOuT2V@uh? zi9*L8x&nG7uS|;O1u&#hRVh*G6Kn;l5+6jU6AdK(GythH@kpP8$Vu%pp?#vUFL#&&JVP4ngv3g;0o)G(c|k!Kfp>D}l^-sg!JhioO2~PzaKZ zOIidgq|bsv!794P_fy)E6h-?A1+=>Wkl*kV-xm0*f%7|UBsYBmoQN_EV)t919c zGS7+^%2D1MFJK(fFV)8Fv|SABPNg||_LL2-yBhVQm@HU#iuVh6fe<5IistXo+YzLG z1Aw-PoBXEAaMOwz*9Y6SG-Kyn7Z{E;j(3A;0QiQ=uzQdJMT8!bxeyzr9J1&!#(9b< zq$yv~x=QlB-17hFUlm-2n^4CZFTf7R+H}BWj`>$bZgQtBqWjQ-iwf$z{UqWi|FriL-QV zNwUoYeWp2}EFU*U-*qVLy5NF2C`dz^|2hnv%}(l44di1%DNli{F;2s|lW$HWN>B(u zSqjNE8&wkc+(-68Yl#UKlA8mB6=aXFoaJUI3rA7W^^EO_BZhlkHV@gwo1G9_nT?fL zZc9m&CQwWYM~ZfP`OSHv-m>v0RAE-uI}}9P->+GMk2Fc*8B`b5J1_ZEzy{yvDXh2y zmk^9hn-@r7tOriv)YCzkFb3zWgUt(o!FcmihaHpcx(nj6rlQcS^W= zGx)4;N0A^k;pi?8+Ark+p^M#Rvy5KKqblbZoZkb%ee1;#l z7Bt&aVgukZB8hMI5#MpMQy3i)r5s@dS*s|BPE8IUls?ZVlYUtfHqW;_8?~VG&}$aW z$w&~$ZLm!Eobk^WelwZb;^LGD4n^9WZWE@ZGARQ2YCx_Wbx-L@iF;l#%_0Ia$*(H5DOB8Hjc8Lvg}8N{nHX ztGnC)YGKkY-JE!r$;i%LgOI@H$}g#&6G{zy&T)A{?`79E$)fMF2C$wH&&xwUkVH;K zFl#T6BAscGC4ty=v)ad=^5t$3?y(35C@TUfXS}NYEHxWlgSv@!yDs{W;-X>B$NcRC z%iV)q`a=Djemew-5w^|83a(o#14^JkCy4eVoEER=(LG=nDM{4~uME37z?WdI z---(7%T#GqvaWm@LOeR9eD}sGw0t*7&SFkvifCV&$&ZVn#H>#rURUyb^IgQ;b!Z&Z(W$CYULketGv%)Lh%KVbrs&68Y(&XRZE36`lQ%ndvnn6U8bsuB4|TH z!Y#C;lw1Xw4V0KuEX(G=ApAiuA0;{9+79#NsrcDqIs)-l;1>oWH!6O09h>9U;Jq*J z^cOQG6YuVFG>mB`NG6s>_mMui(}z`n7jCL~P4Xl{H3lvZWl@?)=16T>!{B@Jbb5D? z7MsTVcCeNsU+n4e#D3S1_d_!QOx6ey{S+@IN7fl*?eL1*@hL9ks0TGXBW{hrpDr`C znyWm8GSgeJ+>v017gS;s<_Z)8#vCc>eDXww>j}~A_TJLYDVumGme$HYCE@e3qm`@< z%kU|6fwD@VR;HE12iAe)u0zuKmfR%hm~lMcD8ihI5<7n;9o8Q;>%38P$zSpzV%%(m z2kHj(r1i5R+}i(_eZxd8|2C9BNf4^|u!zZ(Wl#1nbKJvK$;0K*Y z@s9fZbfZMLHQ*-l*iRRskuIn+^=+%D-Aj_$!euMEW`s)o$@(-<6j|!TIEtqORqi%i zF;G`1S3z#`G-0|3;>W0qWG~|-v(^814ZD!NE-)&hZJuUGW$8~AL`CA{h9O(jzwF8+*6m+<_AP=B3A5?Cjad80NiW-pO|IG#wck$6YIUwd?Hj0aAqih|V zxdkWbM@^hfLJ}bXi_ZS{c|bEW}sPR?q!$G9K$p{%q7>w zs8Wtp_beX@u@8!mng$R^jgmEA4iuo4MUa>@)!?Q~)>|0ZUUW5-kU_zu1QO}VzTSN0 zeJCx$4#PU-KAF_K@=;Gg^)C^EiFfS0_^&4Y%@LEbh3a!kg@`m+#jO#UD4RN1$>|eA{nw1Y5`X=3PbCqrymAXlL4mF; zW=3M0YbB{Gv%zl+b&+<%Z-7lH(t!iyOBMj$4J@6yTJW-Yajs%l)MIfv6QX+>;b>9w)UlwAeGi9+RZjJoAaXMy{qKQPmlY3BYlTN%vp6aN5K8c#J@Vir()5(gBNt^`S(kD0Oifs z0#n=gBIVxf2AM^uY9Y`E^xClK8W5ei8G)KO zoVdtFgr5lv9qHBKLn$oo6B9LZy6-+lhrA=!?}GjD9qF#-i~2g|l+KO>*YZLfWVIyO z=p27(I$3)35jdq9{b~cZyr|B()_iO_FeH$`k9kB77Kl$Kn~}i7pD9`?o%nIp1+5jc zc1MxcRrzYs=W6)F`K8NqKCRqXC8o3PjR?7PtlndO*)osknjP!yBS>(8^{TMQHjuE4 z_N0t)$|*h}hg;~5d~UFhxQU8Lz`|Vk_)r`@G#x3O31lqNgQ$tL7rAs61HU&1oLb^C zS>!ORxrYD41zdR?<>dvrbtFtHq1UsWExR@{@8urql~IfftVn{Pa|Owof1+vz?jZ&2 z$VQNY>r4m<4I~O!r@bB)xABhwHDO)VY1KFv-@xm%T3~_J9D%utObpJpRe;-QaaF*O z+R8qa70F#IrsaPG!oKZ#$7I+w4qoJ zv~RJY@Y=k&M%WVn*sZ9T;h;5KL~2AAXLQ@S@-Ah=OmAF|z2s6K8C;jz-&QNfPJo?+ z)k5H?Jjd(#$Ky#KBfk}<6zHtN9R`wgvp2pzSo&(!>Ml8*PppK!S}#2B$L)7H5>Yt# zfmFpFbX4o=*htZF6;{Ti1TOlW*AD}%Xp>V2V!&idKM|JbM8lIT+_)na+o1W9DL9x5 ziGuV2L9u=HYf$Nf@Vpj@Jss<!nJZ zj&kRQ%gc@?tIGB^l+7{|?jtlaBrFL6?}}Iz9zD*G+E8e< zwwKYnEz7j)L1X?5!-m<$|Ei|xPjB^))_SU`e%-0tiS?*vE&iBAyFRIGy)JZ*h{*rE z-5Sn)xp2DAU$9CIztRNZAy)ja*c*`UDs$sEK_keJo_h8!ZXY@(8BBdHPZrmQ@L#4} zlamT0S69s-{ix58AnEq&>SIqe(|Yzl%o)Fsfh!8wxb>(GI!*hE1I!h}= zRYN3af6PNp_{|AWG;ywXJ@)<#C^TssOJB)d zd8}y1KA~y1W?@h;tI+$^EVn5{ z@;yAEZa@<`yG+0pp*Sq%V(JGckq1!*2jW1SpUA zHoN`QG>IT+^z9(CR6M4iOF3z|RJG-mMYLPPfH0Frw#-3Yqx^(Z37Os-EhT$rGavzs zO%zjG5c{tibtW)XALfL~tLw`4YJFe2!u}|qb#ex9_}GnkFiQq8TUREc-RXjvfT}-> zRLXeizVBZZUGLVE{M!L!%iz~fr|l-Z+2rBi5d1@nj?nOXf{t}3qQA4d*9eCN4=0q} z4I_;^*1L2bEDT>Rq)-&?5KK9tI~w9>BVoJ>b%8=F#6gMLQvHVmQf^mlRF85bIWihu zoLEbOP%`U5q~o+o5&g`~+z$;SSGR`s4kkp-OE9BcMJXLoeuE}|`J)8mH;eJz^!?&+ zYk_de4KDD8eFQw%D~MVk_G8mgqrY>Z3cwH@{yo#vE1tmBW^c(7j_glAqT*Ko2BdPj zyTXNkhJ+wd1%Ob4h0_-E;FS&mMw9`J=|z;cgVUCUVZU_b^3=Tlmap*LqD4%wwXP>* zZSY0^u0{(PYt^2t+11Y4VXiV+Vv(4{m|s`b>(_u>m4`#OC`qbaF8c{hJ~_`0j#)zE zuMaA3@old2!^=NP5W|HJ){DQ9lWI&NI7u?rx#N@mN)o;$lN1&NskKWwoiCYsO9p8)Zd!S8-4T&CT$&!o2q{$e{9RwFdme@wP@t~(q3)3$iX8K zr|xdZKdTJ7z3Ilev}&98PnF{F4_(bm8Lz{nfh~>}wD0AY zjYR+D>OH-qonNE;XNc4+OdM)I+8=IE*~kg6{&vfU;3ajlMBIZmRb+ej>L z2~&r@CS}>2niW{J5WOL*mqHE%!Eh`N)d$63G<5DfT2Vqfjb=_NjL{8Pn|#+m@9EoC z_Soxdxg@{BSJlU(aNsT`MXj^gxp$&r93LL}T{|!mT zS}<5dVYfl;TgDpZxV^~yUWC{H00bJSYO5w~i1qL@J5U{7%+AyYKy3!{Zqn|`gSy{m z`KJk0TRke4$4L3r$y_L29S8kw6Mvt42lRRGLU)3DLzR3o6< zG;v+fE~=rd#p?dHxbIYm_JCaRvY#0(|Ar8y>#^Oi1dBDuPl+HY?L@9t4A$(Q;=~;v z<*~g2e@HGeAN~V#hp%Q`>9v|A%&^Z&PC%=vJ~okNa5L9Cb52Em`hPEh9PXg0o@E2= z#7i-sAv7d0Zt?`JAJ86D5;)Xe1>5*dqQjs5Dj-)TV6f5Uy;T!Y!k@4+24Fa~)dEPi-X-xWC zZf9zBkzBjG&kEvYk~@CDo-6%p?frJ*+iVaz`hRn%Ml7<0Mo_ zK;Du7@4Rr=Iq)!`BzLu=cSOzO-Lj6@L_CMi4)}n-0MTv5=|6216|948|P||jmPlmoyqS-?Jzasxc9S_9r7@h zxBZp_;js(7x+ef5!tKh3UIQctBVU32>z2*9hph4{u6i_f3W(D*>_N8$g2zDXh1Qnt zMzqy}LXqjAi+Y$1!v$POBX=8C+%>C+jWf&%-eI4stNUcF3{H$}fCuD;uvh+Q_Pa>` zw~*0@1%gTwgVI;Fb3Y%%I2ZXiKo-HCR?EDy9eB%VXNDAXgc!SVDzwK>HAMO56CABj zTRzfeT9?BdJ+!hKP62iN+7uRW_SI)S6ad;Fr(`ag`FJ;zlJ@XRSt`yZ(Pm8vQ|nd* za%_Bj%Ful$NDOVMqVmiyze$ZIrx4~>`&?<5kC?FP@FyfKnxU*+!hG?86LbBL0HF8t@lw5kj$? z`OD|YO~JZ=9Ey1zOl7l_vrx5Z9RrB6L$6@B^URTvxwSz=6V@6~DbG-2WT%fZv$4Un z4sO7lsBV&XcSjXh+Ou0{x7BDIy2kOt0g6cA2Kmey!nFqoph01IQwW*j03@iMe#G%msnbQZ2lsq zscI%Z7Qwt|toD@4MeQ^l!NAH~PaKVKg8l-~P*<)5p}T%T|3NB}RLo2F2g^?4qB4fl zr-pDU3)?#}{AQ=g7=!9RcsBUo4n^T62k~paQ6-&MBbFV5M73 zHt?Hrz&x^p=b{|$)L&a7kWxVoRRTE`v2GpzDvAq!f+IMVzD}sWmy*+4=z7KxHiGo- zju-L5CUT^Z9fcq4KTQb*7j|I=!OIJgy2*qSrZU*A!v_MJ%N*Hf=Yq{K;p7na0UCg~ zEZQy=2eC$phw2ga%QC+HZ=^q?*0t0z<@zIiLinL`2#xbu4(MY#BdV`f^OOfk#>Tqr#=s|EV65 z#6_W(-fHtOS%!ccUYg^mHZk$ z4RM2ya5!n;gL^%7A;Kt4M2pjGL^ri@w~v`R`01R^HWJGR?3`WC*du&X16TflbIl>-Bq}Bw^96wnvJNj5eD5{38etA2J9

      X@RvL@Xjs!_^W=+9CPKzr?Q55QmdyBC?GncCXk)mwy z6j!W@B4VfafHJxMfX7V1n#5M}8pN`}&8dr6{t~%z0BCyrrpgF3aqoYNWC6L&zeS(n zCLzOBkmhzXYCe=usEVezzL5V0&8re+EqJ=p_Fp6>xVPmXop&v5W(y_kru=nF7cBLS zKL}f})K59#w?LTpEXC%V&ziXkusJeE;OFk?prZs9%(eD&+gnoGs@1P)hkxnnM}Eub zVlU1M=w~XHz9pL{_W+4F-K1Fk&zgpY~Q$NEB=|wseT5DoF)s}YQZ00 zPXsk)8%id<1LsihB8u)bTxTj2#e*vvNj@@Ou-bwftL`Ft#@GPl*VP6%kONZUkIMmQ z(0bt|w^_*wtbVe*Ijjv{vDFZrfS`Ah3wf{b2=V52%Ae6J2%}lad90Eh#j3M0rD=jQ z&eLF=E8Le_TZm14`=fhu31Gki0{TuG5s7C|6ZtLG1HUi4Hsr98;y98hWHvCg+5k3OX<1&b1w;|Vt*}b! zLo%t;`UgP}^FF$xVs<8{k4!m?z|PM+IHBQb;f9P#{%vk30%{IHdw|YjXMau~1p!^lh-wuB+pa4`j z1V0{;mOH*QrYGghFtdn9Hvnn!BXQvEg}c5v&~CjA>_|pf(^>4X?ZQ>1i*``VTht5T z%kaPe7oFS~I%v6Ca5MYWD9)3Kn0=9H^^jYS|5;RJS!tE$(^WD(V=z#wUDtIjyE;oMx zt7Fcf|H`3U+O@P#%1;l{3I9MQYeotMRZ90V#2`;COVEC!a@-Ob4ONVFp??q`g;hE! z#gexGz{vzoKw&3#A~J+SVh8CU!H(-@t~#olU8hK(QiNXayd#V?oIk!KJwt~u*AFJ$ z+NX2$jkZ5UoCxi}g!zoYmSfq!19kyN#`xKKqRZai(6PfWQa>o8?{(mQzjteX5Pt&P zKp}dz{Y0gn?mAaxIVn)#3Btucj+n$C9Tt*@ni4|@LH&8Nu@k_Nz81gc74QmhNC*~a z3r0&EREA#RLdIk?^o&2iPuQ+YEjJ9+GvGHt9~=@j4mxhc&|z0|?`a9VE}SPV{6(#PU=SAB@Z|x|#f8QP81=$_*fE(|G%ua{hY4;L0nSsxfJ_wTQ~ymC^(}o2p)q z9a9=>CsBH6nn~(rijEN+6)tJ%<&)?qy(?qtFm#e3TB(1_PcoJ-k5&5bG@j_+%w9tP z-M%_xD+?KuqD9TahcLvD|eLpHcxl@U` z9+>%nhH~!;ibt5AP8q7} zNtPychey=qSIA~bExr`wJ=jYkjE3}Jur#zr7FMC=?+Uw}-a7|vge@fBhVA|Zk z9Ao`!SqtAi>Kn-_x&s}~Jx1|yegBP!xp+M##TNBEf+x>{_My@;wVb7hz_P1QkE}m* zc|Shm+A1wIbcN4v57Xt<){9y3l0Kx<=E?A3?L3Ms%g1!@TB6vK2Tw``Vkzq+DwurlT=>{?=&m8GkD*GR;z;$!9Pm_b z)32jIH)T1UG^)5p3%eIXY-2qQd3%O~JcX%9GNi@~DTW{AxFLdx)dY3Zl{9`(h+7^$ zpdtt!eOPe20U-7ymnMG(mjvA+EjnxbnNETqHPk60Csi?c80*917(p$UOeQJSHLgk%Y|QW9I$3)m1DWqS3s^zF*NHPDUZN{~Bfsb9I>rCJ_H@%_wL63-0EjKWZd2N;?RPJFbe)#)0K!YP7~voAL?ilOdeY z-(RI|xkd!1EsVz=@87 zN8|ynA_M6u4F_>d`J!%`tPO}$Se?isUbSh~j`kg9V)aEmBR;C{(VGl(6K?I-#}(Mt z2p+|Z4AQA*>Fq1BeHQ8*n&z%=Q{x*mZBumxkukVwH#31-$q*j6y(eA#NsqSqE+j81A)ESa3pXZ7)mFX`H>%TwrwP}COVCG zupp^7B{`Z*W_qYb8F7W+_@x4b8i{jI{Tl&Rlg#>FaYF-MChIvXr3GTVjlbeop7qodSf)9({IElLC=b58v{bpI|ttQ&Wli^Qj&yDQFZyZ_$m)*S%@50`NlVkZx zZ7Lf4=IyviHw4q4p$w8U>NAR>xegAy*wC^WO_2~gsa-Qcji0Y&=EU0IeHsSQmc$Q> z^uk=YJKm(?L7gRE6Vr@m2^fqgq34*a5#S;z4a({#+bb3Z>=8-4TOPCu@RF#{*eJ9$ zdq9!!Bug=17imKHhYtGSNRW5GpnUB|L~l<@&K$hnsUHR&ongo74&=AV#uIU~>Hs@H z#J?4m0`ZuyQ>ap}%7OVBLh?sE87Cc~Lyy1}DPPsS@ff^QMe zvB~j@iiJ5$|F;xqeypIb!ppA5%fQ#tNgsn0qX{<+v-3`5dP+WxbuW;o^0rvD|$0?vqi70B&m^)>Z9-8M+52(a=7#A_z^ zl|Dzx9`jW4*M#qGQBIVm8Iu(E?O%u5ENU{++W_Z9*_9Y2NpFrFl5J2Z*thImo^yh6b*~6eIG!DfJT+5)}qtrCp3*%(A}3Yx*ud^M8IbO z8m;9ZU!ie5_QD)?aW)#-r8sDAD2$-z z`I`8ksuMb74vy1a$QU6YXA#lWM&Nf+ZE`v6Cf0vwql9k?gYCSQpy_v6XOT_`Bw5u1 z!}3Z{jClNKQs>=4&)e_TkB#Ic%@_&zb$n57vLuxMbR+8Z=G??J10J(lZp(z!Xv57vfNy8ICkXrK0s zWaoFQKAwqtk9EG-HV=VGGk+Q`c1gjqelcJ+*hXLPbip^(3B zT~lt?nn59A>qtzFi&K|Y2O%Wl*nR@JR1EKp(=lngQREJfsnNjm4Wa_!FveRIjbKu;jYX<;tSQWI}KU^ObFjjIxIx<_k z`^)CiX3Dq5u7m*DlD+0_+j=v<`Vj%q32kHI!=K6uipy~RQ4r4-1~z|B7hyyA-`?$1 zE2UFrtPu2>Um}#<43zbHr*Uj$&0}3ch%1pIujT}NBUdbg&Rt^Vs565)CZ3O(#})yM=(DCw5-O66t^r(G25_1AE+4pf-x+340+jobvc*-Qd8PL<@zy%5R*Ocyn!&|80Q+T)=_$k?1`(LyK|6xiDUo|cW=N+V z28hF2izREd*bibkjI_%pS0W0LN9eENYBpMCVG|K4bPX7DZ*jmBilW3GtEqFYxcg>k%^IA=W zHaF|XTS@VwJ>94K-ui}HXy*tPzxzirb7^{(NpW`g=8Z;>EG5gc#mY2=3-y~Fe6U!x z_CRD6YijJDVC*;PN(LKMa>DLSeRND`e4sLpBZ|sLVR(w4Kt9Hm_Jl-pHstdk_5xBw zE|I%S#`R}_1Q7c&#oiyKf+OO|PB-U$=V0|&N?6voX4FCK5$<4K zC4DsfgZS?cVA}1lltUO(`Ch4@;Mudos@(OBULB;+hN%fzC$}k zkC#J4C&)oWaptdPE+m1O26979H%p?vEHRf&es+sYj0bO4e%JiF_n6}px`g`MirXSB!N>m>hYhcB5ho#Yb6V^nwB z?%i*9CDsi9PvTL45x5<$4uplvVcYQhR<0vPf`h_h8tl6WJdtVeN`B{_-K#IB6?a{P z#Bj`NnBW~Ka5^(ovWWW3_q5S3(6z=Y8AjAE35}GuZ`W0lb^R`?yGE@ar$c)5;ovZ7 zU5_{A7PpKQ0mjjp@lBgn*1f&&3%aAV{hQGa?%^dbR59!BZSql%_NNff7Ft8Q#PGQR zY{R$}W2&f;4w}Qs5w>2mU)-R9El>uT;~PF^@i6kmby<2wQY zF?jI-1t-?*#YK4tG3W*ms0%~owy|}3AfQn<%_P#L60gd+h8;Xvcp3%C6Q39rN`wyw zHPMyflKW)5M7qL58>wGKq{2QX1O89E-ulX9m9>`un)F5bu1Zi4@qXPsQ|@sMbs;x2 zE~C^48tvryvbvRncXb5^3F*o`Y}>ZM2fQE6BIr3Q(iSWo3k%&4uqqfG5r^>lPRMV= z1}9GS(cn%x-qx+UwN!l5Yf3b6Uq3|IUTzi<@GzbD zMM`lrt-Z!obWn4B(^$lcamR8@P^J%>Q}2!8nbryd;7Rav3(y-X8G0=Zfy|K+7OH>-Ua?dlT$0CpSX?qY>A;Xm94a#r6L&Hle;sr1>Oah|)+ul}LDbAo^_PTbh7zEn!fu4a}|A47% zIDBpa3S~i3%rA+I#}xI0=#Q}*k=3)q)VX~G=<0Nw1+>RrlV{g?w%am!*|6V^iS&(p^nES>bKNEvWz+x0Ri zn`oCT-d07ge-L{dRP|BZ@?jq&L(AEs&7XnNGx6E~&xoJdAO_t28n(LMoJMams&HFT#C`k|-^4Nep7TPMvlDl)CWWPfce zP%r@Y4j5&Ib88p8_E5Aw?>e%WK#{TWRuq!i9n|jO>J(Zj<(6aKJO_O61v5K^d!u9c z$FnAnGIxV55n-o6RqMMpV@IM`2*=DS1>!fHu23~Nw>ZqTF#AH%3k9fyVubL#Pt)v9 z;+d{{ZBXO##R`Ye$s5v%FcR+LS+N%^9{1)-oKGm<7_lHT8fHQ1K{?Rx!h8J>Cxc5! zBYsglE##pDrd@GUSONR@@@2HE(j$*IiD!m2j2WY#1yz*~4(O=xVyO_x0-hXvcq zd0I*9tZV4lz21!L{<7$+|C0j1qpKFHrJ41IF8it~;`0HOfzdUeh00g8SVg_n^1axy z0Yw3;N7r=JGcJ=uafUt;k*k(_9RszsJI=*C(9;p9S>_OLPga2AX~4w_ZZ2q#y`M;> zt5NO)Fa2E2eii9x(ml1+0aR1gOHaBZw>AK`NKc6aiM1vM&8BO`0>C!wndRZlwtYgn z7n+SoJ6$wOm9SaxHZEfBU)+lG`y7-dgPNaPd3ou?CjhtYBNDB!R$zR6Q^~1ELaL>s zr&t}0GY7F006^;QY*#mai3vdK{P5{bHC_?~&uMd}81u5I05-YC`je_f{jkY!Ye0H? zPI>ha;DAlJUw9cxc2b~19J^LPw9fy3|KnHmx@*vB`JMz`6|{BWCL!$dN4fTwl-RW< zz>Ftl-?3u}zq14!%v_z$|49AWi20~;BJC343qa^h#BX)b!eJ&HG|Wc7G&$tfXor&y zP?l4OK6Dczfxd_7ucU!9giH7{{PBGEY}GwGr{YyWA&nw=z#&yJP8WhS3T~ZzT zRL5Z+!h}bwgp9gf9_5x)aOO!A^~iX;ans0VUi^c z6zqX*kPOOA7auHFuX!@_ZPx{eQqX8QGBVDW$;m9pE4`c(N{= zlqG)neW>wxxJz->K8ITP*oqA^A}uljVU(b)&#Fcmi1Z$Sv zUf~l8xDyigP;oKzV;@3(ex?<)LhJE-bSgbK&u3bbi!x{$JEuRjEa7p;zN2HK@pcyt zL09}gFt%4xUBD8b)SIdpCU1&0Z>HD%l?Y3D-ozycBv7`T~>EXFOp zB}J)x^Kn?!=nr3CK5@d$uPJrQE15u*u9fg$bF|_@UFp&sPO?b?ffvwG15F;*ei6d_ zOYI8g;Z}|#@w6XL?*Q*76=6{+-DyLL3;~#sJneQMth6;d?!FPW!6bfdq4F%jK&>!& zJttCf^nI^S8DJLqT1UTmfg&i2>#CU_UUGR&*1F`RDl+!(=xRaStcc=F7!R#`+J820 z@}?sytVahpaxQd{b_)|@`{C~`@+y1JuUfQOoxM)(3^~-=9-5N250v#?;Z3mQ~*!@Q=zf>?Bd*a zJre0~@G`|Q2fj0{4AM8T+|3kQK1cL-)LAV^GARU)`=+k>_WmhauX$@9X_37f)ykc` zHik-9acM9dp99t?3et!;F_`;k>8yV=vxcOrW4zE8j^7Veef8xp*GmFF;*ZV@}UU_3*^0E z3e~i6n9pX~GOB%48bJVA7XdMAJD4yH=>FL#vwgjnhF7Pc&K{-TFmd$Cn6h^!SFQgR_ zOh-ayUUi{B&p+rG?5(Zj#r@RZqbai6cNr1_D=z%LkLXj@(i3?MvCf+ z&NE6AEb9%3Xz!^qgVa__olx`oEgb0_42^c5P=^~Q59cXq>4j)<`9<#Pb4%{v1Gvnu zGIAfElU6&~ztrlsJFMf__S+KvbLu@`Qj4FG;UX`ff#obkk!exFTVtu{;4QU*{|81u zkhje$B*B_Uh4izQS4x@s{y8ALR8+Ug-pV zvJ44lY;s}!!nwQjI2nKdA0Dp=dkt}jtq&u?h$+*!Z?nlZDvT;EkN z4?Z8^Ysb2(wL!dWA>ps=X}zB$_P!PtZ#i+frE9Td?RhFyR+Lkvt5`k5v17Qg+;u*q zUC>-rNvC#(@$)BnXi@~ImJ}uC3Tk;#2ph%9#WL(ce)_Te$+Dzvmf?TcH-Q}C$dAA< zCp`5RfqHv+AxpxyUM!T3O>LQhOHyt5O01rN=3Mdoh)yyVwsc{@%C7jJS%>Z-C}#Ww z!KFjOR}|mGeyx>ofRNU@_um6=8tu9#;w%+C6?N0fw4S>)b2!^hEyJgDEAVScovFw~ z;33)-9}%r*B=3g~IotpMG+4AP&6HFFL!HOK)Y$;dU9?^P%+f4_nvCRIA_lu76dS+* z^?Vgbb*vJ(z61uQk|uI&O|QvwSV4wH%^NpKbxw_J47=7^Mwf3^gaYh5(fKEnQ7lSR z&aAJOi?5s{tw?_A7-HbK(F;ARR^BqQ2g60og+(E*o5?wl?KzW6M&|z7VJo)tnYrz< zyIcb$c)5{CZ@&~Z{pPgdD}8pgMBA;AFrz#C!t#dy^^Gs6K$M_Usly!M4q{ZPC6%QC zsWE0Prx%xij?*vssF+N~8ld4vDv7pOEpQxDaCLL?n*s8Aq#E`f7V)F;MQlkHvl~yy zbeo6sf&+?HT7rf>1P{39SFx7|j&9rY8|{{XCJ^VZ^b|(M+AE%uK0?PkhBZ|AB?V%v$*g2XCo08X@`imBq1wGamvoTRRJH)@fG&j zOQ2;rL)Do#ezhr9l_?XjMGN|Zt=uT>q_(*P0n*FrtXb3%8MlAWzZ{6v^&07w9E57` z)n8k{EhR&K;{@p$zw_W^h1~x~al9zZjNUSgX?}KCP;P4LkOvtb zevDH_OF6hXN!&x=VBmTl;rx;F=ynm|`NlGtL8Av8VTtx_h)yz!{t9VE(~tP+Ok(p)>`TKHGRKvX=^FX6J|d z!D_2aO@U=n&3h1Cog7cAhUBJHN(_PWu}_D}YEWgTie5?dj_FzXV)oA|R}1)aHda); zMg$EI+;+WJbLQle;kE3(@;8E+36M9o)pdR2PF1)A5}Do2AmDs)$g6eWYmh)`jA;mq z)p#%)0e`qziadyvmFyC=Z96;JU^3}rj0?grbGs+$lBrU=rQDkNXt1Myd87G`7wv37 z*EWo&Mkv4pKB7_`G+06^i8u(RQd3`Y8TU@(4Jl%9w`B;a+UtxCTc*n?usIUsx%Hs_ z50o*_u$?5;)9!B=U%TNtm?lGBCqfd4M9fq5l)?s6m=1z>C6{?pII1j4hHwXTRz42g zD)-P?&-Nq^6&+uEW{P9Fpwo-C9Difl_O#`S#KCznk4Q2R)I3X=Om8A)8f+~SBcL*tfGu{m#p9)b+duhVy+00X_Qs^yV4b$1Yf zQ__<7cYmh0Ph@^L>yeVSo|cq>JvyJWsYM*<)%5Dg(8UuefG8XEE$Wl?w85DhfS+Nl z_mk~939%Lgy@{v=-697@IIC#{3)lNaszMS?KQUEgcs+(r2J9N50hTi=Qe0w_WXNNH zwBfsS%vod}nnxUBM1fYfp0@Bohg%5eTb+!TF0%Q%pat;6=vpnNZm!TyC|Vv(6T3L= zz{Fx>o%}6-cca2W4ezL$Wrb-SBHcY!Q(k`EhAeI>5hN9cV6z7hN@JxryZ{z_0PA~n zZ@mWW#%WPpapf%(01ZNPVJ~~LL?OnqC_2^Iso;*#(HJg)YX$ul9iE+H^s^;xhL%3~ zM?vBS*OLK`+wrSf zaS79w+sX8DWY%OGi4MuzZku&mALHqohWDlUyk#DxzGWu4we@5C2;NFy{+lVr8Dj>v zqfAzNW>Rwwf8+lw;_YB)N*K6dT>o008Gp2)Ny5%?6J(D$fs6=JcH{!ig#{sjFTp`{ z!wMf5joklxw_dyf-M`9K1}-8dVsRK}w|p!-A&>-W>^nN14$rG-AFl$Nu#xyAujHOk zDPC9$7DxmBUT3o<;BG;CJ%QhLMzCBr5uNFyZOx7EdWen^@pvuvn8S4YRjexF94jWGenzLXJ5YFjf2N^z?N7Lk5@ z6fc=pzLR<8@p3Yonw--|pz{2B6;wW*5(2VLe|#@-?SqYm51F)2EWs265tdI1bxV9T zZcGLJjajcNk_V|Xo5&Qmk?cmcSlX+bLVeh5kgKi2*rMH05}H`ud1)4sAST~DQ?yr4 zK;e3K&m)ACBMddWVIA;+s{KwMIFb|O=UI`L*<3H5b%- zuK?fGw^5)^m~3|VzjaSwgRkO*O1D@N zJdW((RMvdhdik^Uvg{9G5B!_S7l=S(dFu%K^lio8z%)4s20xmF^x6 zYjSvy#I$xc=WdmQoUM>N_MkWP3JOfS>i`K^_W_M*995#sjjA#>SUY$>S1WL_zcG zx_AQz#fQ2+ZA@V*oNiXhKe*wBz2T!DJL*p0iikHgEKCu5QQtv-hZL+Hp7<1EkuL8} zCEqsIOGWX0nGV_5UzoNAoZpcN_BvWA*?raY^WPL9n1ZL@+`jU8h5Q362I3U<-OlIW zPQskse0z-jbZy$mM9tJG9v&uP5Hr@*I!c4FqDfVH*XF9dnhZRSlK9hD6aOR zJ)j_a9`}6u{wi4{wt_;BOkvduR`IiO^W23eQ#hB6pQaV%Q0vMWq&y~jmW(>+a?r2C z!UT+?l*=eM{TQWSp{R69tcd_wBKk4T@h5_|SUd5)8B=Y*wsve3w!FEDI`?HM0F~`P zeOiK2%B6z}J|s;e0xH@4bh>DQIE+i#9CL(q%#ZC6NOlO6Aa4~2zV@@qAKV$VaIaD0 z$R8gHR*S_xntza0prQ6^oNu(ZJ~Ui55GE)Xj}j0Ef$i2^_)kY%5p3H=w|mKtW&7G>ONvkbxF8*Mwm7E246p-k*HllKHn8n*+2iKL)rHe$qN}kxe%i}LvsOAkqq_n z6^?X3J@$H7_C;>{6f6OUAQp0PBD~$)smZTpvyEYQqfVzE$_ruB7RMh!mG^Tk$r(_? z?_Yj-maDr(0Y>}KrGFaY!iY%j-y( z_{ONmwJ9L>sFA)@#v3+#?KK>fkHo$(je%2FI+SGUj$3xx?joo>%cs%$)NJ}QPK@QZ z8kXSWC~tQ|6LI}NOO9;5Y4yob;;1-%^OjZ&w(T^uPmXU*4}Qj^j)>JMAH4D@)dJy( zrs@|)(q+o1WnfHcB)Td)FCzV%r=}`~I+7}J&gJ_jB()Fyti{6eeRYd{B{pRyWcdDH zfrR3GK6aiwm?yIgj^S0d%b`B@cUg?GnGi>oMi1>?EDuQH*$g?zL4EGv9~+n;-MIS!iV)4xm(&Wsq+_ z0yvHlbKSp*ezrq+oFLbo)$qC2a=~{;eFz^aPWQPts^5bA`ovBkPe)SFgOtYNyCyk`F>t+1qwdRUE z)@2%O8Z-hQ^*a`$=M3>ISQF{*1`IP5`4Rq%fZ`N{@%#hfwGWXkZNggWSL_mCFr@HI z{=1zM&lOKaPUyi=kG-KMQG$v@zNezGrKz)wE8Gz6(QJ#R3F)wi#KchA5oy_rWOh@d zU6n>J#Be{%?{UexR*2B|yx}a3CGihRRFIHWp|VowpHo-zk!%CWLH)90(cUf&yic=d z4eWLbDZ*XlxWNi{?elHRrVC~H==bra!zfamg*96_&u2FH_XRE|zC2=#5b&ShvlxWB zgh2Y3a0o_8G+WpT^*roRV<5rA#a; z1>a((1q_r*tUx+#jfHn5E2hF=A_K2*($E-D>}JOhrevKMiM?N11eaTycN5v3+yrUm zNP;aw&z>s~(3g@YVN9k$RM|Mhs#rT+iYDcI4(q$wmqU#~-c`^IU$h z)n}(much#KKTh33NJsiJ22o>I|7Q=AdUcxj=OnfpDqm9A2#u7kgY*ypqnd+&tz5U( zXDI~<-z6&iaSvgJ$|M)9h+Q_m^V;=-mg)(Rge6-}!Cg`>m++B)@aEq_)iiO2ZmyqZ z3R*2AmEiXCf+yASKT44lTOvv19c2SoI}+Jlv4IY_H8+AY9k4&8S|TWxUfx>(hjV`g zn(k+xPedMgHwdUKHIv*Qh8HYyIR?sC-a@i6iL(&X8_;C0acArJD_Z<_vfr)2x*=xF z+{v4!i{i)7Bxi=F?o2CmyB*_7SZ>{?M0JQZRm8I4C5$`h(z2h+}?j?fHL^OgtE7| zV6Oc8haV29G3zZ0-daHM*{d+;^P*PybCs^rDI6#G+EDWt^i3XIOSDh^Y_zoY3{Tx) z=JH{XVQ5C-`fwD}a1*SsO>70N1p=1qf%DO$m$I)~tCht|voeMEpl2L*iD5CLOGtLx z{Eawo7ZJ6e!C>3c+=(uO^sA)aj! zw+PIAGU2am)qTn;t&a+~yboY`$P)`BH&nftF)pOVeu(@z=lHq!4j~JH!?TbDgf*nZ z{Ls^b(56wLVQ_Qkq;^1y1ij0DMvD^bjreAFYTX+lQ)W$@Aoo%xbR;ZXVo6=uP0G!O z+h7l9NON>`>^y*MKCgqp3UN~J^stj*Ui@4B<}DgRF2OI!wXeI|aQcKe zquVk-u|xYLOoH=N%i4C@(gXGcFTR!#zrP-!o*tVyVVdYHlaD<}*xwqh0p6k?A7CMm zhSA0=fHX)X+&7(TanL~B@YU}!)*lkdZmrhXD$y=4=rL>y8~qqJBfUBidu?_BV@JFI zYlEA=ju1n54W6@5hE^t2jrUkCPD7N5y1&uMW(%a>?yLYnpo&%S ze|xM-Q=PEtq-t@fK37ZOP6XzXtNB@QWO~n{3M$<>?C`z63|HCt<+X;l9jcrE7gqva z5nQoM*ap+?N{oM$pKt@zx5~E^P6xAb45=OpX(xnky}Prm9X*4?tw+D&59go%H^Oi) zlwmN2%7y4)J|Ips>f;4O`|$WgLN2mz#8MYW?Q|paorm59_%N55=>(!~sD@Q3k%tst zYqc@MNANM?>oR8c@25M*hj2Dm1qsE!sDv**q!$$-RJ(DK8zop8m<{hA41thx@ryU} zS{9ABO1mSfao2M+mXD%{6pSP^2)+bKBu8@H`DeAJuRJVSw$eiZ2h=0<lbEn;t0U50vO3Z#aXmEp~TcfFoj48`5`kBb-#k;84P9?7H$>X!}V56xE~rYn{w&baAw7sc4bS`?TWaq`+EWk0M{Ov_1t`?TGS8zx+a8ex1n56Q=99m3)%i zymETaj;qMPLjq(7JE_N*O~RlxYP|!?h_TC-&1x5;iG~(^=VWS5r6>D*Y~2m-Q6=`} zXQ@G*#1DgSG%3_U=sp$>g9sE|P^ylJ<7x^hxwEdVwVbjRI(WiAz}2qjXsatbVS`OT zOBx5E`~bVNdjss42X6(wKfMLIomv?xTFLbgu6G|uQt8^ZDF4y8%NcPVt~kO)4F3@5 zI;cr0A}8!ZSc@qB5A%Cn9SOTMZur~(s^3K@5nb#}>cSB}DHjsr{+2V3*G?9BOh6X+ zl*6)Kxpp&04eMZ_e0n1yLpBcYw6*72acf>(3(a9*;g#i|XbBE+2eEPIMJkCh-Q>3_ zH|cbl6p6k?SC=h?_mcLCT$WejUydWqP_OBNu)2`=_Fkg?Vdh`T1w!WyHBuES?KJg> z&QB?Z&#=6D!!ZHyQ58t`R=)WtP)P-wmg4Cuxw4Nd5(l}aTdTg$OCHFr-(rP9b(aXu z%k*R;WBeB2#}G?upHZd+>8Buvu||7;yv}slo|0v%+{9nfKce%ueBADd+MnmAp7lZ< z9Z$@1Q@KazM{>u`NB}R9&|Yb79)yizCR@;eJ7T-&2OL72Ej_qh#%K&x_|p-84%&;TE{1(b*-=Hrko zxWgll!P>1*jB$u%zi|DRsbOeM@T6LH{0whvZ^+O@M7SKc%;)J_fG9A_u zi0t302&~4arC>3~j&l0JnfrGZp%~jqw!bxQ*?)9fuL|d=V3@_aa(x|`#Ak6;k zu|$VoQf9HZu1^%zIMFm3q0wb#jP$@NPUUl|9X7OZt}1Y*IdYY+B4hz?q7*rM*{9&; z+}vy3P7a`SU$>H6)q_KRKd<4NmmDzqD{s^NEe$Ogf^=A?JP-lIBg^b{;-+)V%}VSw zQ7|HflV^$sZ(Uxekc0ASl+l9qEcQFrG?)|a@))AQ;I?9HKoMue!Me1?ZhZ!vEdl4l ziGYPQwa>B0c?1s2jOO;*jm>1L{f=bi_Min_P@J@c8c8`0A;Kx@O3t`TiJ9P#qOZ3FzV?gw4wZQ;q zR-0X}1N{|lZKQ1{nc)c3EU^+=EPj!rYSE*Sj{#62)962q7oejIKFAKxhV6WeQJ~}K zqqopCpSgkEWv;k=l~0}EeN$lyVc^?wE&wxko~P|lrJx~{?uuwv>o;v$2Inr7qm{ng z02|Uj8Z8`_JWB1NFnZCFWvpr_z$KD5`2|^Sxk_V5_53G0)chk6`HX}1ld%6c+%ISB zC!d%sd($a#KTXU7I z7vfP6>JL)1DF7n&c(GzvY&hLeyV^(;6wfs-MKZxv@y$IUxps}pg3!$BI*;E*coPSR z(sd%cSL9*05W{)!r%`W*PKKiBEE>DT3;bJvsPsNVEh<6_0CHdDg$@D86XW%ma!LAj zZ~{&tZj10#1L<1{T11$T%8yISnwS`D}u7_spa>-tA#nfByfgKlL8gXuNk7gt8yObp`^X&5pJ8g}B1GWOl&6u3zVy`_5FsVN7=5SGA3+-4_a;Lco32KTTaS2hBacVFZ zhSm)Vi(FEWudK5U)@QO>qBj`kLg?8zgh4tp9e^Fs^9_PkI>~XDc=zsuv)`X{RIJ+c z-DVT+cnwXjOEi(9xAM1THZ=bIa6Sxi*8;NTwj??c_{eqpaGy_LyEC%iiQlFquo&{` z6K^e`pZa;Q09}{+r{UwUp|oc2sxWP?zm#W-O44=)?Dnm*@Q19$eyZ1z{0!?!Vt`t9 zBc$1kdezr9nOe_ns7@~pYj3%ZK{&uC!B66#*-b8%QJTti zOOuTL2c7RqkOc^%MAl;}J7oeg->T^5t=v2G*K4SWrlvBq9@}xRY*=|9#Icp0@fmCD zIU2;k|NQ&!rbbiOjg5|qETF&h4-5C?CSJMhYm`8wosXr*E2Kq}UE>?8fCP=~$`54g zIP!Id;C~xmhY=W|i4iT!Y7bBR;gExHV$SRlyz*spd1>33}EweH=NH5McAcuQ-LAf0@@2)~clLqBk4wDOTg`)1?@G~FGx;IoF+`d3td zGw&$?sw#BlsSx@P-MjU7q48S)L*>s2db-iWFcqiR9hmWdgz8X+cOYNo2l1tRsw)Pe zhVuHMvrW~;@6Ao-TFo{{4G4_R8~S)gQ|wC;^v726+js5OX>dHVuol#+XZ-f9V4|=+ z!iaKKdlOexFq`l8Mz+~0C!H%?#`a^>$G{U|#Y9eNYSHhEqftQOZbh^p&!y=3M0K^N zzrP}DuT>QbV1A_Wj01vv#3c?<)~jt63KYWS__zwEEB2pRmoGVU-PNp~g&&XKZOC$_>scW;^5Af`#D#i$LC$pG+F>a!Ubf0W(do?>mqp@Fjf1HO976 zD<--Q=tJwQj2e2d)24(y_|xlfyo^Vzf6oTu`Ak%i+kEh%51n>^EZ4w!vMSbO(J;ny zb9eBx@JkXhc9)qw;=!rEw>#xa7cZi2DD)E1$nr20QX5(E{sx8|NDyvY7;9!{wp*UUH zDZPqc)F&PU^`&Rz$OKV5!if~sl#2PpA>Rt@K6W5+29T2kuzdH4rswRTu+tObCIh<= zzl`QfgLB00J65WRsEWP8Q=7;fK>c-bFF%Fs5DD038@~ElWoQqsan_z$$^3oK=UFgT z{my{wYEAF3&rmAW{4MgQT+P_^{KgU-W#ZCXYd!za_#QcY`_^BF`n!-yZZF{0p< z=X}t+N~)(w8;RfJFOu5%{E(~c%smK7m!zS)Q=RTeBmJ8}y=4E<0kJg)1%=1=e}C#X zgZKU;v%%>LHq2VTdIMl8vjrrXiiJ`*@zp$P@=-k2Xgv3{6! z51q=SEOFlwo`Tlb6QVE~mskz_b}@J?8S-DWP!_7FsO{$RTq{8h^@Bk}77%?!kbZ`a z@drCDc?6GtQK*sYV)liZK(X_0AFF3jE)(|#4@w(dF|?-zex z9EiXEZaFS~BcSJ6p62W|yBto*qbFICnA=XEg*tohqH`K%UkjDRx@3gHCiS z(3>}-CL2;Z*vm8#?OSq^-&Ok@74%F+AmJ<-^M&SZKAE8hjJlgSs>6Ep=Nfm;GH$17 z8R10i{R{Vjy-uKKt}tynua+nSR15iGK_b`@{7;0v<_)4RF(~ d}CgzI!(6fF?1pY;tzP1IIeqYB&^0lhHHZKRNx3AhJhKO2hjcvwvJQ3`@!xN*W;?kWhccNQj~e^+P2fda|Y^?X?jMMPxc!o?hYVqq&& z+ z657FFzx?-mSOhPH*rm*qG6)Yaofjm$$MB-RuU4>nYe}~yP?7yF|ONj}M7(A02 z!qeCh31MN_^S@sYZ4|(_WUG)Wb=y0kj--2|_Je;KNo40F7Iv^qC#&cyxmw5uJfnO( z8{Uy7z<WfhD59ntNul$_yPCGgfgqtIc2te zh{;Kv9&q#t*|Qmg6~Zt!g&Z4sh~>?REQ;@7LLDD^e>70aj*E2{d2&%L16STq^2j5q z8Dq&)(5Te#7p5ckQ);NpaI8cL;LmcAFakg+0AvllPX~```|(`|F2o)2k5UR=3};!W z=JTf2_+adt4pstke7B$lkwx@Oj<;=ix5-oVGa4bI_}+jwg%pxqk6^tWTax^imI&`2 z+)4H9Vh4=?pcRwm1!zq;-54HxtD-g%>s`@t?`80v`Ja-smR6{~umi9jC*Gc>5cQE& zA}79Y8)r0Dyg5XOaFY_#jO?mzdNy|9F=V}xWw z-wzOsiJ03y+ZL_rd(R%PS_^lh+Zjrj3CxZi)9J>J{Op#(0E~6PVe}!<#W9+%rMn*> ztDj(8k6BV_?;e2x-ti5#>sF;7@xDoUTe1^k7QCYtM>Y&_?)1}p(y0ZVpj?B0rHmOS zM{xSOB%q@UUACUY1vp_WxaA=+0?^WI>VRehBn&FJI$j*=d*0%{itOV50GK1I31}gm zqOa@B3kKaon3rC&v*YOTanylogVe0|;Y0+Xj}(T^AX;W70qk6O5*j{h%4vU$7puS) z3C-cY0dTwM+?W6x$v!pY2rZNi-K=rtjU;87H)wbt?Iki!1f6l( zmAfj8*;Ek6VWctRA`a>uhd)j6>xt3vebK|n8|Y8qka!k7v6Kl7hsNmSI0wWzyrq#= zR1#I0On*)R*&R-AC~X;w@87V%xwOxEGpud{dmh->>s)GM7IJhOAN5!=Fn8tTnQ!|w zFVMx|fI|k=aNFxth7Y4AK)Ck}dyzyH>-rxa0tsK+=K`_jiDBR25tkgr5A>*; z4Rq8NXPJd?H{6$wSvz!q9dko{o?)FU%oiX_SCndzb+ngcoxBO7^Qb;--K~F`PK;F4 zE*(#QI*(9ygYfl4B~2ZRuBn$JA8t%xN`I?o2GtFicU!62A|)w3ldeBMcvR3a!C$N* z;a&;-5KLzi<6c22j71T`>9o-*-obx}A?>i<%R2n<#o+E0@fhMY6DC{!|GpE!wVe#GM`a%9#r1Kw5x3>&;TNE zrUM5*6)uGQexZw$UI_oZG2b&WCf~U|s;NAQE-vvL0&4)O63Mv2y6pE@;v0S5LHUGa zIHoOAr_G{289u{H2AZPB$G7wo1aFFj{g&B~al~|Ed0N*e?MfKy)P34>Gn`K>t(t(w z0iq3PmCAK?!duk~^8yVDU1VoG*g$p&hldWC@e1NFUEj^dfYZj}SPDJ|$0TD?-utc9 z=1UKe*J)V!r#^V0nP#1^K^iu-8>?b{Op7cahGGnQRoE5Qvzroac>xbqY{zt~ukHkz zTjds8#P)}SvZEA+t{Wlc>uOd9(5Iqm43I@OuHjgIgyt5j-7a^bwJ1wPfl(PNnOj5J zG8UBzwGHEZNj$!vLjXrWxWCs)p|P(2rgb$nMK2Ueg5k3Ah*LK>+d-&Me!sLN%CoN- zvY9le5OWkARR5o8gg(8Zw4&{Xlo3e-Sw{URq%Ou%Br_2WRA#uIw!cX;lNv40D;xq( zhZh)?5%#NG4D$akzLf4zNLGov=Hk_KqziQk;-*jARi!hgzulR%;r0@dl#+uodHfUOiQ+=-3!CsA}_Nws0wcAy1gNQ0sId=@@3U8A~-B>L1#d zDXpzb<_rcp(U0_*vke*%iZ&E(ldk4*EQc4)>0ZZmkCx&-zN~Xo&}7Z60u@c4AVWQ< zlnXmAr#ce!c<+>CWw?W|8Fp}~xR%J1jN*Zwz-b{Q6Zb0LeW(&o4gj5Tp7ETIR3}G3 zWhA`$Eh-bcx7$LkXwgXwsV|UE(Vc7EBlyYylO1VcS*rqxR!@V{pGj>;cci95$_0;Y~7nYxs zohMeTAA-KA6#CQ1X8nr9{DJRdq@vWFaYl`SSHD!5J9=T4sLi?wksL?=S6Yr2$kz)+ znT2qHj)wDn`IQ+ZrAa<+IsA4uB-yQbLht_i`|b}ZU9WT}H58^L;>>fKR9Jy^GyF{j`FX<<>)_nQe-*w?l&GF9GHmJ@UBBz@A1zSOe& zLCPnJM07+Bj~Qh={h=X)B8#BZCbKt+1kq&ZXX1Z74+lR9KU*&*4Xedum z&a;!L$Ind6qwEQjiOr+}i?6+w{ckuy1=|depfWw>JmczqMi>6|C86_PZfF31wFJms zVA0^LSh{-F8p`YE49HaoS{7i@#iB#0y9CpBYiRS^>gqLtCct3c=;lA8pMsXsMi~aG zBqw*9Ns{0J{)g$xhlbT0KOp2#8SM2gA^>ygwF`|tnGu_JQHLTgqK-FJg(jnyuZ#A2 z4|=WV6$_y+{I7So8_xQ7mXiTSpf&jNs~T_!yujm5xNj3^aqAZdOgKc&tPjZ6dc=O zoUY`w)|Xk(2;eIGGh=8^ctkSiE-Hr%X!1Sm&h!=_M@3Q1xR;l+(kL1p$^H}5407tm zazb!2R}<2&3U9p)Rz=ZeZZ!1BzfXV!P{F@JguIqiju=Q9S8E44rn%=fAK%q}Ye+>- zy3h!Q(2OC)NUH$oQ$OK;;r}Or0e`P=>^9232(z-ciL7Qx2J`Z#BFa2 zg>dbgnomY}vxg{e%^zQY2;AI$A`%f9rezckx1HRYi~Qwja{ zsb~d|0oAurAB#oR6k+wlPqq`$n572oJp9_N9#=vQ<~dG?GZX~F*cq;30?3Lbu+TJ= zD7tF=Q3E4kN14rnK)@gh<#}|g(&8f1;Ew^ACYAfkAMLq*b52gBG=Tfh zABV0SXfYLgwyr^eQp<2<1hOZR(u8=nkARX8-pJe`jRN4rz1q=QIo-bN^ zqhE~}LECZE=NHqF-?!ic_QvBIr<4RqSnv@cEmE_;U=$*=LrGxC<#TMN5Lau34J^ZM z*7C#{)nynj3qvoErrzUHCjl|$2>=hNa9eCg>=WFnXHxai(#fvf)^W~~f+s)I#ZR3< zd7i$4qTTqW`43C4J;3Y}H|DWUX>f+WkOQZ2W(4#U^Y(%S9BKpR<3ZKxOU5?kpl!}T z@5J2N9wyPb$~gGti4u_nKwpJ|#AmGJ>YfMs%WI|mWVuU)@Q?I6$Nh;?ICD%!S|COyWINWiZnUzfW$H8#Zz*NLc(y(Qf%ZeGAs&CW$gUWVapL{D+#Gi^A3 zSLv=QBs`4;Qa_P;BB!zaPhyDkdyK>i)XKEbo)oO=uQOR)>AdHKb3qGNETIt(%_YbH z07W&M(>0t1?P5yovcEwqfI;AY66j5D&ukH%b>&t=%Aq+bWz#9sD<7;G!$9sfbebQa zCyJTP*kg33gsED09Y^q&T=5>#wvCu7W8E@KfP>+>!FQh92~Sfln%lbIp9$;Ht~mhdp;GeU}T}Ee-QwgMRP< zlmYZ79T&v}HwTK=<=ZDKztUOu*cR5Bfe2e-dnHQwH6Hsp+@Vl#eac*+YXqRSq(vR` zSmV=x6r?i3NMvad!HxI72#4^1#FYLj$WZuiDy2&h0k+4<+q3!gD_ z%)1|~7}WwxCTPEl%Kxbd=yP8d#1<0Wz(@W&_BBtUu7XANoaFyu#L!)y3kI4hdjiX9 z(&2(J?JI6K4}cBJh>hT+ceDIZUQ|V;Zp12iYyOdL!#BP|hPV@W=3+Bb5WO~9I zK}FB-f}fNYY3RMomYI)iKvSl^lWCkL3u?Gg^7GXBL7w9T~oWb}i zS7`<(hefqI3al|t5Uy)%rrFIhfC0>D;u|%fkxE@s2|}z-sSgyA<1ap|*(!$q=5fE< zb!E!2&NO}Wao?BA>5SF7PP}LV&zpRdLT7};yWc%tGK>Ur1d0DeYvow7H3(x)pE~Aq^-|F#AsKsq}ruN)N0ELQR zKbWghpw$Kjoin5Kz#+W{i^K`gnGCKE1fZApVZ4yC_va~K@fgDHPmbV36td0Nr>&-C z{FOL3CnS)5B=e^C0nvH)Bk8#goYI4Gwg7}I+Ken@l-#T|@`af&NpUCe7hUuaWH}YA z!+3T1k^?butv~SK@QwJ_)|4;Q#ix(YFnXM^ugXKAn$4gi;-fE87?%^4Fmrx{jT?Di zJT5R6;XhO?DLi*m4IiZQ*y@BF&E=<&cn}fiTXb))lr)BovOwk+v*PH2wsiEZ^=3ov zTozxhbG<6i1rl@fU14zu07h0JOv-mJ6}>){3If`n2gz9P&B0ukvsNOA5dmaktbq^KPB-{~ zUS+gs1Fo&VoHvh7V!dS|7gFp%!Io8VoJ6gB1~TH@pKZy@1s*EIglz0H8?PBhCR;Xc zm4gjo9jVBNw#w9SjczDOC)c}w3-JQ>{$$`%S~T5Y>HaL>yT4;hO6Wozl<;)qqf0== zS^n$@(A$6j00003Vy}zRl>Z>Pg=8;6DlyoXJz*jtVG{0>1ka{twe&1)hS^L!t5$~6 zt0D7@$@=rKRG8>!91lP{(;FrV-s9DOt$)$6a|d(IXQ=DJmDZ>H_d(#wb=0f}-G^hy z9i-u3coxEUd!6)F*Ce@9J}K_ZaL^Kpxe{N}L%K%~TTuD(_cyhXs54_efEJ>n_k#D?*Og zHG#N=^F*0hR-4o&@EUP1sdnXv|3jrL#|5?k01f{_3yH)^%NJXzi@Wk7K}&dVCwmTf zF@r36EGfIr8EB)V8(O4%QbGq4u!g>#mZw*c-)||C9`9$jXsB=Q+O_tyZ#1v`c10`y zmd`xsIOd}oYcqGyY-rr9aN?6h`oK|JmzHW(gmW6?nvGeh((tnB+v50$_w9yxTaGjQ zLSk`<#0>~DPMntr6_|cbQf+!*Z5R_O*m~vY9&v;HmIJh{7InAic{>hEga`wANaM`K zBbX4+A*m+=1Y)KlbMS~N=Q6YNh8lP+(1^u9N<6rg5tVuB%?jG}`<9Y9A4C+a2<)tA z`tQyBb?56DkJNU4>(PJ{)t$V$G4wa106o+;I^=C=R1Spka%DDSu1O=_a@!KqFbkHv=(p480!NiR z`|T5q1bteJIa_+}r_q)ezhu;hbAt~lOoXAb#~fSV4y^8vFHP@Wbc`@wPO4^ztrp`9l?9yGdvvlZ9AfZdU0QTS6yw);m zk5&pv?+qPD0%^x7*U3H_Y_Wq~Vt@&Gx_J*=tXcdu%dy3B+( zf`CytnPi#t^Fhc%V7t`vbD&dn(x#?GQ!MK5Lv?@~mt81N?WyT~{avQ(@gSA{0jvxT zS6(*cWz3lSy@Lmoh@BB{B3a=yb~hf}TB13a&zYw$BDx$L#BD3nVwPEw(ltNvJi~Rd zVpDie3si8~)}BR_0cg4HjL5Dc70l4JJws;hq5We-!XtuC`lITD5pt#3Ni__XiISbC zPOyimx)=@=K~>cNJE(fKQ7^bjlX7^Yjcqg!?o%F%k^tnS-$>b8IH&C#Mbi=^J#ZZ> z{Xy?e`xf}Yx1~_X1aZkb@U#zv7%?zmDAH2_T|a*6j3f2*cLX7+zdjXi}yGdt3IX^8TBnH^wuyqhS*UED4NDwp~7?ZJ^5)7+)Ugj-(cGS z0Hbok{uK%o(t1Nkz09KlJLIh8(b9D2CFE`WCGR!Vu7yaH&GONKjYvqI-a|YwMe6YT z)iMKU)O{QNoApc>ur>rF{Ck76g{8ec)l8)!D}(R=O+$w|5D>fjv$tGP8!8aw5y;|( z9Xm~~0A-&aAbj_@M;M4avX>L=_#vY^55rC8Q9O1r(LT26-ffX^vf^OP@{>vPAnp?% zUS0Fzh#%yn5ue(d=6Sq4&&TVdbV1Ev!01(8m(-V$mN*ipz{-;U&Vzh|bLPh;>)k*A z0}Rx9-}y?$Gvt$j#`0k?{@wlVf!Yz>+|r=dGgMKD3^I8(2b~VCHg{s)+)*cL1Z^(D*{UDVHNAt!{V zsAISrG|#i)?N8Dgt zZ=K9;0*`h}UDuCq9o*2>p@WLi**@NN5nvq;Sq-|Lr3SMO?H&6%)t{8vO#WkLM z%Kx2SR}~(N5LnS^*TWL3IW7Ox2rYzIiZuh;b`5KgoRI|K^;871n;k7%_UA2TF^BA3 zlh@H?%@n9Lfs)~!F?`x>{RVdHhD3V(tP+2E<|@o+vs zqLA(oGI{y0GW(2|i2FD$3 z2n$)Qvl>>mIQ>KHgV*o=TC|lAJ)}=b4yZyy|D%DWOkUSR-mNtr6$kM>cEwhO%suOS zO}KimmKM805bCwsBOGlB8g0z3%LQOS6Trs4vcAlb5{dGv8(D{V!1UT75--U~va4y~GTvR?^iy8X}50LPYO-q5t9n(nr+3f}kuU3>tzDy@pd2 zG{^v@*I;EfgWNS&`0R>_b>z!m{PVyfs^e~hX4YfJ5iB5zCjS04c2fG(r%W@+mSYz} zxdGc5I!&1mUY9Jlv2WIw{7d%fbFqo!@o=)E!|Jq{KcLZ$ zvU}U=0!=l+-%6FMP=!nTp3$OF`Cu9X=aNU(vz&)h?PY)Eg*BdO;FFG_6xSlQ6pk)K zF7{xWAOHq>@*#0=V^mXn9_1n)F60IW!2z{<%h$|39E^`8zKyX1hBT7Dr(uJm`$QcN z$Y7K@JOBVmlf>-uS8#gxtK=!zDevOQw?~y71gQuQHfqu>C0o90f%hN7#Vi`yMwx0v zW0AM`m=7nG^~X26vk4z8`#X@Ohn2};T0(n*P?-v(XcifsCa{h)F*J9kzFw`cfmM85 z3Ign7lH^d^>V-p#Of*3&5!v5ipge|wGT;EWjW32N(>Uc%xOc}0ODyx{34oHs-HqYq zqt#0X=JL3~uwk7_43)ew%sRe*uA|}`yZPdc_&QxwCO@6HWzyJWnf_EBzWX6P_yJOL-LE#~;#uk$% zxPTHP6tXvAsi%x@kb^k)fR4vAx4NZLeu*{a4y!tq&=8_JYv)y+P2Xo3qi}$^SY`h* zPGpV!q+~-vHY$~%ON68ok;&Gl_ppL>^YzOieimF6pPT*iiXfe@Gxj)ZbfBPxLAxA7 z9g?G%&Q@q}3$1vlB(M`S`_-FKp_o+sYS26dqL z1%(w{r(v*NJG@uh?I~)z(yezd00to2JTc9tDzX0a3;1V$=%wFx)fGCVGK+XJ zjsZDqjg#{ZeWbjG3-#P|guf>Rpb%a*d;kZ1O=4=`00*;j&$QfQ->D!}Mx`~OQ}M0e zbAdTTS#vNTHJXysa}DwWwY;; zR@+3SFIPtfC~sklJ!(&=z!^%H%;mBo5co46TVY2hD0C_YXh*vDIWKVXXa@TUW-fi{ zG7DKTQtn%F5`Xdb*Z}qGFt(bM<0<<%n!Q->`iM2s4;`2fn`!kNEnHRPFWrjZaqE#= zogUr!QuAgY26yY6z|2X~eC0W3zf>d-5g~xu5~~Ltx0ipyn&q|pa&1MU|CV7Owr=sf znMVqq-W8zXiu6*n&he^nQxRtg?WvT@n1h+7ROSt@&Lf$4&zcsR1gThCCw_RSkixNK zlp#L)XB{?=u(=MfFY|eAW9G0h$&Y6vQ4>sO9-87&t;xBs8?ct;^|}^?J%RXM9xX+M6y|# z&|x>kW5ddFs&U)1cC6}@5>4e#q??KAPhaXDQgdN5KKYVKlct%7!kVrX2)xOfrh2B`-IT2T29D&i zRt#9oB_XPPAGXgOPI)mn31z8{sH4R-w_)IUZ7<`dKWiqaT*wb~_$p>sxp#w$>u9*< zhb9z@j@3AavU*dqF~zgM<~6N9PE3O!HwN&(zDHP7d7f!GWqPRp2SB!`eL;P~F(o*} zSMyIvO2`d-Uwu^b|8ftr+p5@pU@FhEa<-s8in=K@?*>;h9LxqKjwCC6nfP|+Hc~*O z#Wt=#4H45Srj^3(vuEY(+-^43C1kLirv*5vV1zDI>|I@Z03#ODmfGfofO*)eJ7zM}KX#8&bi@3UF_& zeO$q`1znfZrVtepyXq=_{(V;s%c4+`St!S`dMesGv>;FQnE#V4s|`2A(wB8yQtV`v zecJ(>2-}mz*dB94p7lp{dH~`#{Jr7_)hFVcbnEa+gr#~sN5kn|izN6g>|lzi8D7 zz{uoLc4@dS+(ziLVM*oAu_3eov=JyhN_x;rOX@nC7pou84{wYEocL4I3=w!}$zSY8pYqr`G^K;Yoz%x%C^O`&A5GV*QzVdqpvz8K$Qd3$b^6CL`AN)aBUdteH61&(yfB?|` zUcHxmSupauFv?nT`R)Wa2MjR4Q35PAF@-##vbqq*kgjua~ z);HO(B$UTMuMiWR0e7XF0pG{L$L!N00bl?C0024UaV+Q6{r6~_DS$n-8RF+p`Y$ck z$Si=~2MWDWsG>f88cN1+q3zVoE~c@Z3AjANq4&G~{-SbojZBaN&VxR7;D+M#oicz< z_)7o)6$fEbWMRU5kEu^xn^xYpFP2NOo(!~+O*QFm6(~%AZ?z~2gWOOCC2}c?K_L{_ zW{yVo9mx_^QSirw%3ENS4%Ej`Jw0O;RcnC1iIz;!y;{f(;G4h`j)p=jGOnRj@17?= z7>(==E_2i)b25&#+Ml}+O(QQ(FkcuQ?V{Sj2^UHSay_=1t`*9LoLS@>2S9_72q~%? zHMeVBEye{{H;trJ9Gq;gf*V%3~x7F^{;xV>~GHtg$e!xlMoerIuaPw^^&q*f7l{ z=7h8|Bq(W`plo$I4S%_UFraI+kLw$=@zD?BcH{A)Od`wwqSS2w1l09uN71v68AIFs zfnLqa^jKaCQmG+Y?RMF&G0hE_Y2A)M3!h3D*RMg>6)s=rf)~1g(BzO>kru08kOBy) zn~7JRcJu#Oh9djxLP29FEA?dp%KEKF^JI%Q=n$N2$|TrP@ExXI7pmAEkH$&8@;9WB z!xf_d&%F9K>>w+Ctq0%}I#A7e>)`8bIK0wvC8o~>n>bXk6lg(e-{)%{l;il&=qqF< zyOMr_h_?-_CyAt%8`q^#@Ch(Et za!5Y!3(tLYNY&Bs^=qAY{xe~|{=~;H4-Rut)c?@+Z;`=1kFmAd41)aO#gK06h7+J@ zJ)k)I6=eYS7c*>-q=u#HprCOAae6vF_IaZX_JVlV&&YV_n@1qv)a9IN68@C=>b7+ znHG#XKt*-ph4pm0bT26jDR@Hmp2#HD14twOYmj^TO~Zd-HY;N%iTcvJvDZ;9^dTc} za@xtAz-q#(85a1b?(joRJd5EGr8M_UFn6u7dn9{EZ_h*CEko|Mn`Un7nyuGU+eS=i z+BJtIe&qC`i(%EFZd=XJ>{as+)V`7DLMXbuT6nNsc+@TPXg0f;+jz~cV{Xg(NcWg<5w5{R5p#9PB~*7gkm5^UT=d-AFD(i_l> zi=tSJO^f0eOW9Afnv<(L1_M`ID*O@ z=!{0<3^Z8HFQzJ{YOfF)9Y(7uvGUvRHxY)=@Nge@oHAgE&aXY-@A9VYZ0am0NaKh{ z+{`2$WUu@^A*?X{yU;Y0zYOC(?INpY|Rg;NB$5TQ)xiGyjIUET8gzqbI`(jtwipr_q;UFHV`km^&S z{D1%fGIBZ3Q1Hvj1zZ3a0Fj))&5G)HZv)J81G%Cfu^FCbdm%UFV{#p^8`P;vqH8%g zD93~9_I+7o$G8$`j27T6(VO*&=VEV?h!XOGo~N@BDraacPq}s7yrvSpF&+v2dUYZ) z`!nRW?4-B8>^+;Q1qHNDBXr4K`bhv@Bw^6X0&@qvLPa{c%&^$)5Fi#Eit%~?CW)LU z>thZSCh+_QP5#6P|y-CWl0`6!PZ)(I|zLEod`R7E^)dO7oU@R=u&_n4JF9^gRDzKphVMAPn zukjuG*n!y2ROF`oyuzS~J9Rz?&bo>70>@c4y<7-kmOl1L?f>@m&1)3)DLR6x4@{+a zQ)Z8xY1+Iw*o@(Cr5GA3NQdpN<0TwL0fhZQGlhqEc13a&e|;JvG~Y=;#Wjp02EY+A z->KC@P6`2#YVLqV+ffXXjbdvUFeNvT`8dY=A!|2!Y<_bf*Crb=OSRhs2nA?THUag?MnLtC)&i)2EYWNTk4gO(&GrD4fXE%A1zONm*hT{V z)2~zDVjwh%rZY176wNTOv|uTRE#K{0cf}2q;mU`3-=_mWi(iDcGseA)_b9s8p%fwp zPq9fs+!g62H43NTADQn$qW*m|ce&ZsDhO){^Kn$FXV#pB?Tw4Sy=RJGqf=E<}&@!`Q|zRuTLELmt-eIY#?6%+#^bmnU{6a^wh-R0B< zP|vaD>Q~OO-_rx9X{ZUFy?R;W{~ zUFNz;^KvIv0W5b+xHsSwm^ok`>DCl~>2O6S4OudB6)KzQO?*r$m_o}wQo003;1iT0 zqBCF`3oGFH7!mO9xc!^QLa8QE#m8YRpakeSC#PQ= zLCF)@_6hIX{)D8mpLCkMxPb_svPMg>6(`b_OqLr>jyZzzE?=I}FU>}H^&Wj?@!qU0h# z)O=Js5;Tg?0L}D`z_bK9QE`d)+UgS#_F)!2h}k=prfNRji#tC&k?o|2F@0K=J|{;i za;+eCsr2zwK#WDoZSA_@ocq^M8?m?5Ot7=AE`*tok!%Q$#j7`i4sr?Upk<>)=k5+@ z@ALtMq_?-}cMwgNAqwRJe;NE1_Pg5&Ft+5{@Sj8^Sk>bd@hvs0EQ;@LBVJa8)w`o3 z@VEw9{OUMX% z2U#t?Z82h152~(eUl3qZY}asu2xP(7B?ij(V8g?tdZV642&W1hTKFSmYMVbQ00000 z0018*+*+xBd;kCeGa5;w=-VulC%`Jb+vW%XB1e>Ch;46|1_J0i-wgFs(r0O4Kxe6*)@QJ-{#P=9>kfNdYR+&RL#dJOc7twnJXO4{#y@im;U?}!-&2gLn9%YvSVufS+0 zD2*XVaA?a(5)W8W%376fClpTQ=}d}2HvI3>tXjS|2@&v5ysin61FSJczJ%lnt9%w! zfmCJyN$(g2+9Od$LbVppfLd6Me;W}6|MsYQvqOY`?!{3flk0NN^Wa5MGy5Dc!a{vHd3FYKuzUX|h;#{5MpS2#t92@w9$ zFrfS%7f$i2*k}y0OG;im|1S_A!oZiM5kHykM>hkHKye-Z_JGEVNf4bu(&?%|G2&WkyZdy zS2{5|50!SK;2wKr3$-coUyuTL)rmMzbvH4#o)gLelyK&cgbfIHm7zm$^N6L@3qN2p zBR7_*Vc_4NBvplOXMP=Gik!tL`^DzP23qGAnIV>b))kwwNkpzBqkvvN+%T0v#0ILO zA9Yc%T8;M_qEURMM(BC4@JaZfW2r|7n9hIJVv#*$4E!<5k>4&C+F@e=Oo%)i)#ft}Ja`?EXfuZuzI$2aTc6Y^vxa1VwN^$%kkV#YxdAnPN z_xf8qkV7D`qf{%m)D8!~BW^QrFHDuklDP9{FTev&#vHRO zr<*BC+IA2COhZJccQVqA8?*YM)Zmc#H}YY$@DNH&>cG+dfL1ktZGXSe!GQVJb*nK0 zk!kOp9!!MqQhvYdXoaLDy%CqH6LJGp4^sqqI=~5ic^H|KmUb-7;R%`3%#CyC-I&$b zqMR&mp6VF0jB#to8o6f$89p`}yUj+*%!5%R_eXWh#GUuxOLLyFpqv44qi}=`Jt)mJ z0`HumbR!#W+!3Pg!vkD_)mTck(@UX0t2tnAwI4@r3I*s_TP@yG{u9F?{3mjaI4nP~ zl?aIC_!x+nCcr^r&PT@a@C(@#&;lc$GYa5+X-A6J zugxhZ*g)lrPEm!Ay`bBz*$eqG*7ozj!@41{5a>B4OVQ^5Jb)_a=ASBUyMbs8vLM$z++U2*FBuMzasQ*XA7eYlgj zjg|tD2H%nhK@5J)PWBcq%q0hWcSQ9t!!%~IqH~tri{$oS9?>Z~m@P|-~ z7;}U*s(=9&nz`SyjeK^&O7;81K$2bffCe{7_ZB(roS&n`ssab2gr<_!ZBBBX-gkC8 zeB}M+Q|580Quc`kSuku6lCWrKhN*wB?1&Ir@78eG3z@U>Ihj!m+M;Lx1%ylO$ZiF; z_v3&0+|@wVp>=0hqOy8bs;J&6?V5nHSepf=soRpgG6o>=0$Xs;gP4s`pI^JPGuGVr6Sr~q8#Zc{qTgyyFFLg>CUezx2Iq*wGTNX-DflU_ z=9n7Kl<{J8yO{o2S)EoI=NUz4ERE8w)&HXp(o_0^&v`h}I{bQa)(H=3=39!VFGUD>Vg@w_+A@N$*c9fypM1M=3qTk1m6J;m zEWXOpB*hCDuLL-IYCwOswlpZ)?GY45B$QO{%qZh1#(djJ2Qi{H<8a2Q>MkYd5UB`J z*g)HH$RXZ>QVc!-~eo#8SHE2pa9_`D=eaSxk#HTVG%9<2Q8o1nUuRWn;dF|@PW;B2PUg1_~6pz zkO#G|f(`|ce<%POg~g&sRzLQIIr<;Z*< zR(Gj4kR!Er(GA!07!0Uxdw3$#d-*PbaGkopk*YGd>iFA@k&>i-#CX_zJ!ON8^f#%U zFbKcVs9a(;Uwrxr?Tq!TncjjrZiE9vF6@0&d{P%A{T2lsmwDLWio09d`O^uO2Q_DD z6iKBr+s{tK`F2|rULisQDh9#o8-MmW3~mzC@%)7|ZkhF#FPf+mc&1V2t+g@WMB-a% z>!ly&I_wedZlGA+TevXw`-qHl{ou~H0I?Szub4#LFB<$kXc?DAg1&DV>jU2ghg_&z z7u!%*L#^J3Lf^hORqCi-?X;-SCQXwsD?DCxLx<|NHC}$y{oypS%9R))FEzEAQ=Y?F zzdtBe#5>8CA9}gsqfWH9Icf;AjV4N9U_)Qyjp6+{YJ&$TifBg@`_O0w_GJd9Wch$R z-+&6TCRSglZlhih=gcjeD7EGF*emo=uZF&O5KB&=pYW<{u2D_rMZx{txd^^c0fX&noK;!#! z*O-mu5;Wb)4HwyEWl zjZMZ5Hxq&&%#N;%EwtuMgmEG!Fad3*GvRcP>7Hg_Tj8+`+|}%i`(&$M3f&N4uW;uI zI<9h-8VJR(E+RtE*O7oJ5y^`Dw2g9{yd5G-gD559_agUQ<3~NvCdE)Nm`NCGO!r)+ zi+cor*P6~Qh{w>4eXEdDuu!s~l9Ic@ECk8m>m2+Tpce-B9{O~~QmzjU;n^a6%9C_= zRw5wUhKKp_8`m;Y+6^quD645`3e@@Fr_vdT=6Cf<1d-n=gv91o#^@F1Ft8h?7U{Ve z_7MwfRX4FQiRO0}0mgbqo%Md5AxH1n_1K0b#3llE?)|w)*8MQ*c+v}0Kl=H2RyCV4 zK4Z8vU$HYJf35Y-RmPzi!UYDFJgO7qguQiu>f3w95$=`+8l?W>n zS_>8z)hSDujYu?tTj3Vwc|9G@!$_wk>a26o5J^!~e6T?}#uU2bGJle{pcu}&JC)(t zOYpG)SOUa|DIM(~yh3s(7@!{j*!W=300wcfR2E$Ir~Y0GxvVcKq3cYos{=-58Pcht zA~PnFPLeF_dGkP$6tT6R0M3aG`IYYHX2#)fmUWh;<2u>C;P-hLQ^wgdf+m;~V^|f` zjT3#yN8Yf;T57A|Wo%#LQ-`&nBw9f}g?GSJ=XyzDB5EE=XU}hb9!P^Y21`~?osL1P z((##;cwj1<&&d^EqYrhd>MxR$)sV>nNNY-JH-Z`y-Br>VPd_*k8t2Lh;logOAZAe4 z3elmY*2Qf2#c5%{U}$w0uf7_>=1BQ%zHDcXXQd&R1xQ|s>fS23U?}}kAVKS2yT|0a zVv9$owK_yp7^7a#BEV$$ex-_M*@|mopiUMl$K_JL=(K^aNkp(0gj3i_j7oi1H!x-2 z%ZGQ%tMy5U#=Nu;-f^Ju2J*+$B<2CG6u!!KPg`L5+5Et+11l?5~VK)D0> z`RQYwfB2ubB(MH}+8_u30tsuxy{|WJBsj-cSJe`Ri)IKRjtG&{xB~S&YW^|X&nRda zJ?sTzww1;aKGM*13YV(>RmB?s9 zwSR?a$QX=lVBw9Fpw%y?bC^`zRE=eE>NZ%f2FZVd(PcHF!WI7R9Rik*AvObv|_ zs%v`JR^##LQd%2?2$91foUN&Xp!O& zz$&UyMzGB5&#{@-PV9JH2IBWUEYx?sdgmNOH2HXTbr=M6Zl=^P*qeHXR!}hUpJrI3r!AI{492 zxj@<%g>GqAgcSpBy#B6hh3H41opy^WT1M*z70V;2h&R#RRm4^JgOPrt%A8>|Hn$KL zDA<66^MY;(8O!CC9+rVRzZm6saST!b3xjJCwlV#^XylArSgrgF^DuLy1@4b0@g2AJ z4gUgh_j3a=q|h>)KlmDOYbHS4I2mq<&`~+IT4fP9in-$dYwLncw8tau!*1~p19WPl2xBLILTIvidmS81v4x_2RWnZ}D5 zNmmWkzLJY}on1%;;Vfc9{p)Vq;(E&6FbVX{Z-m_6D`fJOtY^k5CT4xW19K0W(f~Q6 zE=@?HKoppIJJ|M%isN3`IN}*nL2tyQC>^>O?BbsT&)NO@Gk}2UcHAfTm=#Z)sQSAO z;V4G6bTWBKuP>eKXiy80Hn|gUytD=nSLVY9h#p-npPFCNbf)Kyw*YoPiNAHhuZpY~ zl{J6>zj$hAgA1J%n-We}1xIA2RAE`bO<1x)~PFj!Q+TLQ}_9H#{Nag%j)Tt`tt8tYUYJqP4H7-=)H5`R&_ z)^6{ZUE1$R5}uu=sQKHxnq9*RgV9bNUX-_p2JQsL%03?Ou{8{nmSHumuEr9QkaV5a z6&MNrd84j{t}Pgi2minb7e|j)G{~{>m)(vnYH7@ighYmQnNoqEqh-DLZOX6-DjR^1 z;q(TEqZ&n`QcOz(x3WMzuN}I*T;|&MgM%H+6c$*22FOegy1aNU4&eLe+3yIRE^fQ@ z#@!9K=D4{^!AWtc0a{BtQ+OQ8Bzo!Rb?s4y*=E}gVg;`3LVKC?ioWXZ1=zJ$>z|bZ z-|jmTe`%ZGs&tN#cFQ~)=5LTtVz#JM`=gUb30GIitRaz1KY)yFw0wbXPnBfQ8;$(O zpCe?~QCf0iDf~RbG6318o7OO{9rXlM=e3uS9;96Iq4DNh|4EmMq$5`6 zlnq{b$)OnD3z=)tXC^HGJ_F3*{V z{l~eYu}1mInnd#2znRAwh}_yc`>9QOh^6cSyiczP8aAulI4;w47c)1cRa*v}GxjXJ z15;;X$iOO34EJ;FsZCgjYN}B^m;{$8>-kq)U>Pvxu_K`3ucufjtAUNw^t^mAKEKM1 zD61?!X$apy03p$G(bF8-QWWw)8b7pR{;ETo(Y9eZTj>%6MBU|a5(n^<)a&|{l<~vY zZ905P{6vHAr>EboJit*E(3hIx%|uIV#d;LNb3 zIS&~sE!d`Ls3iLC<->7(@6$ciGR}Pl<)wC+!P<7K3&$)GT(IjmL3?elt{$&v@cz>C zzzFZC&J-eQ{qv#=cPyI0^GdN38ZCt27J+^7>c4sKWSl^FjhJfY<*SaT{S2KibxZoL$Gjn1gAaaQ?3S0-f=p zHl)konLR118MC$D`%T)IU_8ylvTgNy!(bc3;(69DlOVz_+w zZPo5}au#Z30~g2?oP+Pr$LN4yuAq#>RU83;@kqhEC{7D+*1r({rfDF7Saw_K5O;S2 zdDOX^)kvTN&dNMrTCX5)PA0IEZ*qS#-sVo_TcVca`w2w&9bM*T763gIqiUx`*&ZN& zU@6z{^D7hc!u;+aNkvS9_gUVsI*|VV`2p*0T~JM81yvYuGE_vl1w{0v<0n~KB~aii z_paqHM^@CZU`}+;s*z1<)`{_qG79kuNX;a8bHP*ATKgfyERl2l5nJjEAkWcEX^0c$ zXv$#AZnAIC^QeJoKDN+s+`9sR7)V54ixsOv9PudpKZo{BTjo_Cg%~eeC`ky-CU44O zZN{YeU&c$2tN;KBzvQ!Tq-&)HJ1m%z=e{zE7@)8kkk|kKb!!YHL1@t>b8J~1A_u#H zs<+=CNKXD0C1GgFX_V*|jzLu=>)iOj2B|^80`?e1dodT8&$K_d8LWu}aK<;x;8ag> zMr#l$0#8Jcq{MP>R4r@B(=tZ#j-0gon-)n5s!rP*G?zW@L`*&jUtU_%eMmnseAsyl zO3_~^8c>-j6)Vd_dR^~no=-kPbo}bQ(&<^%V%VsbIBZ_vSA>XsZz(tWz_8TAqv`bS-)%V_45%M^dq172@E_1T7aBxqA7I8pT_dFf!OI7#S zTP2H~AjQ~@$qnRjqn#w(!}EQR-5d$-f~=$K6^2z$>X!+iPz*@-&C)`_9OBlT^EpT= z_)?Zl)81LtXH#k;CS-E%bcA%t0tFIMQzhX$+ zx6_YsrbJLwgGvX8EE+@pQshI4uJ>Q_-vId}$vEr)W$Oi3y6n}mC9MGIC2w@iodJ=U zRbFkXZ3-``(;`tvq5rt6C-*l+TzjEv6fXJkmmP+(%Kz2a_RFv|7n`*GfMV1hAu|2M zs+&kmPp@o_zi5l7p^w&W@dm%N`&+~k(22?=GIH`{5KzJLs^tN@x36a(24m_TD)Mu? zRQZiT&A!G(tmY^_-u|SB09HLztJ@K7!DIhrY0!KK43&Lf9@qby*n$1j=4SY?Skfn2 z6G9b|pWIhBSG!SR+uYO_Nn!URDfyvFlVY^{J_5%#lvmHM;(NIy6COx zMXd^^abRSf^L$6c+mYwDp9_U@knD)0Ty`CR6z3E`4Qf#KpWkfsoG2cSX$5CBwhCoU zF7oa=nSS9P)JHn2Vn;lxl^rKLdnfignFqr4i;*`4){Ri26kb$PI4)rD_zhCB!*l1C zK2XF)6Jk3OGh&=K3+2!c#o7T~q zMU%`*_%4PSL#==g*3zruOQ2eO!z8BqS_Z>|mg2|LF(+M6-d1VGUz!eP;}Ju2ZRtau zlz3x>1FIVaJRzz~vzIt#fUS+6n({-xlb6F-pDi6(bcx(f*8G!aA9Hf=tKhHk31 zE9~{Xl_WbFfj#`q1RQ$VTaNfc3G-EZWUNr;R~qZZ9~@~QStoUq$Mg$12`i;oLbo)1 zyq}{6Ovk8ouyK|C_l7J*6BWgI+WF6UN`}eQcC69l=TKm-aOFoCCb?=>9KD{{)x$Un za?1;71mBMLL~vj6d-QUzimHRnV!QNKlHM7_RCw+UgnCA;S>RurHRzP0=mqRVL3$~Z z1qn*E4aF$HZ37j{1_yE@{VAc+@S2~BY|J80^UZo?b+*_czF>YW54CYb6ih0(nHr*b zSD&~F9ZV(vOVh95Kz43i2Wyw7Ho18vZAYx?al)kw6>kieR%P+{QyE8!Kwk8@cs1q-NC*;|BI!`A$@gy~PyZk^yp001Qc=%0(0 zZ+9boOfcEYFSH&o8ExPwjEK$rjk1sAAN zw74L^l^=mP{ohB!mbuh%DmToZ)^;jF-62gJFg>}@$YeP$S7Wa`CHJ74=*GN5fNfJ? ziks_=OuSMEfOaKL!OS9sOR8Lm_MK;!B|^rbwp|j*|GzxN6hE7sbTtf>CB3Q;_y7b! z^&i>O)rJ9AhEJ^GsA}A^w=^k8mYn)aQqTACUv+LAJ#hXdohmpw#$M$7mT((`o&mi4 z*tW1N;r28c6SgO0$d)o~TWBSZWhScDys!z;nnEafx@N(%uf!Q8@-7b#p1=VsY)=ax zfsQ6zpy|9&XXEcIBAZ3z1 zK1YSnHq>>^6(_&Q6!Zr2ncEN5E)Y#PA||jcn4=j3_6i}J&Yw){@j=377f#`xyArX| zLC8SlEHZCwYUG9hJgZc$8YPR6IVjjTFn4kwaqCRY6q62XqgS zh?e^kBTp)ycT}pPi7XznU~%IeK?!z3XX=W1pS~hgk?4+J^7igCV$<~ZXj_j3=#E{= zZ*C#_^4XFG*RO!$w4b#Q;`zyec=LLYfV#^dljdA@te{<|vVA)HF&{ZMl&amD1LBJ( zq3G37E^@Fj5(z3S*&Qu({u*3!RGQlyxxfydm{Stb=&Yg;fabFyg#-g4&|c;@{ddO< ziQeT{U{nl@Mz^jt`FbK36Z_~d)$9QJ_<0{wgLN`@+vT+nULcASyh%x5;WyT#sZaqs zohJkX#*{k=<)%lP(>Z*Ffqm^0w_a< z{E}C$*S(VL@i-)@KOf2h(!dmL+vSJ&g)_~<{mBi+(mn#v*x!amxK%qj4PU?u#O|M~ z#M+F=`^Sos0vr3QUt8yN9J19)xd33&JWy#qgqS6Ww{+1+`1VfrIU<1@DTes$2I`Gz zpnWM@d_>_l|JTP5hR zPNlgBwq3&NwN$Af|5*IckJK)+UEnV#eN>Aa_kYs$0h-B*gUp>wHSztS$>~0Y#8Bex zl{KvJeb_8u>YaTS%yZ`$B-NM{aa_ane{@G0YZdKixtbnUFi%2=Y1 zr4OxqR#5F)ja|I-yy7$=7=IGLQ<6-r53@ZQ{$v5|O6r(^=2}@HX#Pk672&19B6nrl zxBrUrPsSgfTR2CLdqcPoT0Dz2EV|l}kNeZjq|Ha9OAh)4ACV5NTSfiKqovigsV$gNQ_IjV3Yw&|#Q>ADEvwbH5w6!2 zsM8w2i!SlTR=TZ=5B&LoMv+5#nFyyw!1+}r3(|j8x^~x8F0)&UOZgRPp3Ty7L3A;z z&0Mb~)5np-2LV*_H2hdi9R=N=ae#q@y5~r=3^uVWYsb!AazJsiKI$ah4H>R&NySJm zysI39nk}U^JuI6M^+JZ9tK3n3S67xN5Q;To2|g|s*Z_XXO0(=pc69cmG3T{5302YZ zDtp7z$ncuuH%a#(AljR~<)GZ1_ieIt@I%KXAF_^U!6rVpvCfpsjb8#)^Zv_R+28ut zko0yqgGhG-y{yfFX&ceHnq!OHx#2!Wd9{&I(q(3VjM&*ma#zvE++lGNzzAffetw11 zX7m>0yZHB<=nnhOr*2>JVo+=rSZ59Y^W{lfJ@{i0b@mS!JP|%(EH#D!>>*+h<$QTb z`Q7AS+~(>fR=?gdiKuH3J>_x|k9n}Gv5ivM6(sK#K_98YOpT4&`>XC(kEfvK$#EUzzBW5Kz(Y{EUHD=)mCHaHhaDvb1ie z6433_!0p;uPe(;4uNCL0cp5BewG4Lp(y6Fo57x-)A0P%O{1b`&KnkOmXNsuk$y&1 zwZx7@n%SD@0exL4Tp<*{1yMOiEAVm@ zv4jeZHFG))7=TNSP~r-PzF~mWLfb$9%JU~;h))}FaXX9~;{X5_)5G#5O&*mlBD_2! zk|GOGS_rM#l#w_u%ECry{Y~g+F<>6Ar{)R-l$|?kG528jHJ2XZ1D>sx!h)3Z{`}xw z*xnoF2TPRPF7cIp22q~x@BFhdR zCztfi|Ck`eg{r^Skfe{it^iOdj>9!T-h*~8D2I0hu=clTTP#h(#VN~LUB?8A!;th&I90^7{w0AiFC#U0tl2D&zNpg`+WtE22W2r? zXXM7Vyby3!Nz~m=gWONu?N+zXgI%t7NOFGobc1y&qV>7XCE=|pt(yT2MJ`21LE)Ob zxv4^u&AsYE3n$Lv=BD=un{?kn=>!aLKoq;DQh_>faefWV9zDM)XjgqIp{gyFpDhuO z&fs`{?Kj0F8wcIYOt{WsC634aHoLgDC&IyfP5U4_D8|OKl47cAPx*;V@`BX1MCzr> z;`@}(`Pjd!b0aGL>)bH)p7@-ea5GaN3=nE~sc>;g22x;CgrhloV**g-G_97-038hW zeE6`orjOxJAYWWuft(0ZE(nE5MHB<5azn3)LpuS4PFDdAeb0;l1v7=5XNtP7s6*?` zhP?KG!)AVGJOob$#Wf*Sa1@ep@J`dq*ShlQZpJ%)*x8x%4L;&3MLwBXt+Ohcnh3B1<*RMZB{K9)PcKaFvLOg@)obObm9UtRfZjN=i0LJ{RS z&#B*k#cB>#9nAoyFLlnT*d8g51l6NO8C1h4gV*l=f5x31@sbK$-O z0&Ux>p*BKTffA;GOOY$C_E(AvyDatkiPGMjNZ@i!RRn01nJkbts`zMzQ1INqvlm-mU#_5N&Tp*#e7GuKnf-FgC}>eIOaCd*lV$& zpt$v|%mNTtqb?OK4_S--sW&^z$2a_$SUNTOu5>8KHiS2=LfnFISe zU~LG@K2R_HTa-S6ylGuCz9%qsdLEQjtnpTbq|EegIn?Z^XaO^cksqg}%WGVH;8i>f z=?U($D&Tf_DC?g9Kh?gSOr`A)TTmIU6qA9(icy*bp6QSiOo9qa$Ib&}_4*UPl|Cid zb~2x*hcZ6`=h}!{NpSz|j$ny@c8=-G}f)17slPoV3t$U zA_8Kw?i=z_DM94^%E*BcY3YACEAL;CSF|qbuQg4dMANC#)T6X)7JZ zZsr9x*7RPu!iv^>9>=NopDSPi)*9M|JQUygYJfzg%<2nc?K2pYOO1nK1qthO+veUU z?wVt%b$bNx(dkH8wuh!T3W$?s?t(b|9cx`ioJ*AiAdriB3S6ho_q6=QnoY|33` zg>4=*2YXY^Q5PHRBU8`%!TzFeFaQ7zt)|BG!<#ahKkk_0h1K6%kmEAjr!!=VqLNVJ z*&`r`pwgLo_6P~_^CU+?C$YDyR(Nruv#+sAVD#)BDY@FQ>bEzSc=Icz#7^#&A;x+Z z*bjdJWoUx6A~p+SX+Bhx246!yum0ncR!+F}5^?c^yO_{3ZSCZzsdlVBglGOXflI!)e3gg+ z1siA!=r0-?v>oLAraYsD)Hu3gB?Jq|;wXma9co7cAp>nO3L>C^kdibyK!Q;6mb0IK z<az72leseIOuyo)C&mx6e8dJcbBH{}^r9iL%00nc( z$J|Jd6{MVh>>T4BClE*TELe>b=_|IFiT7vy=LFjsr)@S@qf&RStVq4UkRoJ_ z6X(R7v}kCmJFfxn%VP@0m|Xf9E0gPrOm(!?udvuV*Cf)Wm03+B2OUYuvOO8}@@%JT zHYvG6c5KL>CDl>!Fsr)B_nA&d-FWu!Z34^P`E`uxJ;Y7J892yFkI?=^3$}W<3k^j2 z+K;d%4pN~M7)qG7oDzA0Hk(WNolJG^fC?0TUHE#j$mb(~c+pJrl8nJRvyxixNo~C} z#JKup&_5qqz$&SU(F(`$C$$oOdIOE%9EClm8)R>NOdEIMn!Nn4I3|)`dfS8zP%InH z6+{ZVO=FRRV^LJLFu4Kne*PXM4Qc#O>RN}QK#(@EMcDTtDwy^HKSie}bY2r>_3v_X zMs+a|YlgW@GI0#{DQ}qhp_`N+F5repZNJRM-(Pxohiy8$)ce9n*O^i&Z@86x$8F&r_H!Lc`>j=H)@F7En(N{kNR zhiwJEbZSSr3Eib9Qag%l^iNewVvY|0WRde0d2idq=VJYaWHX;r0Q-9QH~!R| zy&G?ZwYkwq9skUsIaGfF+%EU;xqu*1_=+eCdj(oIOm5!}!Zy;rAY;?oTR6Ncw8zv& z{k!`%pw*vGcTTdz71IorWEE`gt^5+#Mgr3-t(lFFpye%A!-w{KkUii;tf1 z--$%l<{ejU7);UFR$xE@hJl4;Bfj~|u3i!Wy_xhMEp{AOSS&2mgBuiQa5)r8fzL+4 zA$1x~@H0pH2fl5cjm7@kE%n_4iz6nq(dSxl5h7=v)WTvul`%Z<2&MefSaGnbV~7iz zUID6Plp^*5*uT4UKC3F2LeRBK(b^=cQu?qs0T#B@fSK-f@ZB-gR`IQE(vJrP&sV~A zS9}+J0Bd=6!SL{t=l}o!0PwJRUss2f)CYN$y8uRqqqhpw>GGk9(tSc-s#AJlSdh&% zVLW0=Nlf`qTLK1+Y(fZHG^HmP;J`&4wuOxIaK)Gdox!>#9c&Qj?`T4|#&Z@mVsa5e4I}(>s+Wvj@KQH z>b%u_m_13#lSe2;=jKJmLaJlF5ay{E(8UG}08t08X;r2ZHoWMa{4$sFrb?`p{;lsk zniXBISCkChk|Q zE25CNs&)-&0++Uc6T4?`+vT}p@`snS-}j_b!8Ax_%+tRU9@4@1I}Y;ZO3J=C?6oGK zp)ZQ`g{XqHpif9j>U^0 zVb5aY+GA%zp0eYMB={ooBfQ+=P*nk^Yi@!P9^$qF8p6HcA{~(24p6`i_0AMkCKpj+ zMHa*W0E(-ojCBCBalo;}I$`;VwuwJQ`_HqUZL=Vm84(s`K{a$X`>IX@ZEkXKifP!(_gaN~e%GMIioeqg2O^i#tjRq}9k zyXyf8d?nja^&O!;G(Qn)-0}_=NPpcODWd|l-2l`Nf6P|z|A(#A=eS(Ip)`&1(8Gao z>~2KSlQU)3)WmKvOi7-ib-hfrfMahSS^{TxUg8Zkx)+MCrE zD8`n!=VNzJJ1)*;EP2nau2!+-+QQ&^dQ?VlrWx9VcbPV8A?WcxZz+D@%=9ZyIQ_x= zdNBz}J&ht?(_=kl{jGeS1hj)>dbkPO)8V zVkrDc9Kany_S=PRzEzRV0V#~cvk(fmfBE{oXg#mWzPfK9`M2X23E7`6#oY(4C1v$z z)gSBl_9#V`^ETo&-rIq_RmA+h$=8jLsM~zT!HOa09~O-rZuE%U03v_rd;|*+fJ^D? zmA$i1);LBx*RDIiVChHw(kJlnw$qpidC0-2t5k#e-p)Iq8I+>iO^l8q7O3OByJCaG zS!es2lf|paqUQR+HpNMlw!tR){d(lB=6BB3>msK_DDg79+D>zwF_$`^)?db+p2MK~ zI(KZMOZA1i+uz0%N7cRq8vSP7FLImN?(5b)mNzWo`T__zW>hxNII21*)fk|DJ@Q7# z002UM9JS$GvnCcXL_auI!XZS=UGCZlb)9ckd(=# z=A_%&Hf3OY5*T7D>vtrsSW3n&KF%A5vvE;l*pIx|aOXUFeK?D1d#{AYauQa;h5@o? z(<)w=2#Kz)QmNqVNiZAhm%kBix&FQdK)*=HrmlVYVo2D7rVV5BovxTE;my0kC7AW? z15kUzOuLT~Gz!}7v}89#^dxKdpzSkvL#(b$cn?De0rJktpuGM&W1$mY^ds}WT!;bv za?Rub04AcqkPLPgHR;J#QF!zWd#3y|9Fy@gPHnJf{b9jB=LE0!fc?~$oN*g>>9b-i zORBNOO1Vf;!t~ls+1W74sSGHlW|UWD_O3eP=;ANX0CZ`B>{uG4V)zA#7vlF9F|=-M z(<|`?hu;9`{P6`>y?@z&W_Gb>-M7a1TwY+sg^W4ru+@AmRzps%bKxtBZ)S{;P4LERx}q1&$q0UlZ()bU|MhhM+guU0CmyoBXS6Zj6;jy<3Mt?>mJwI-O9nmt5_f z{*rEDw26Z8F(Oa0Oh9CI*4n(^Gv2>G1Kee;h*vaNJK3eb%q*_M2K2z&$tSTeIXmXa}YLu z@IG!bq`nw#>~B15PQ%mK!k3;A;iI9Z-@s*K+m8;Ekk!7G!Z?Fpxsdn+OUfre8;|-q zo2qz}YWun(ddpUvj#0+9o(PpBb7}+B+ERhe!5c|&rMA?Y%-C_%IY(klb2Cc8Fn^$? zfC$qi^~*`G*iNK6hH%G1k`+vZ-uJYmX}|-zN}vE-V$icza)328a{wUYDC?aOIwE3n zq#q@>WPPe5##8nFtS~Cz|0-N*7)Ag9003*_*Y{+A07gTbb|hOU-AW8z9g_L*)QQeD zNTlfy$aOi?ef4jMe86s%hOJ7z=NReVB|=9ZIpPXRDYMoAwq7hwj}Vb#Ycx6`vi`!W zG$oiiwH>y-b9f@{L^44Wu{u$sZIwMJIM)E(DsNVmp`J&VGzFYzqg0xK)TSg!c7gnw zJl{oVXj!3JbcGo8#6A?&khqW}Q_+r^KFDe$i0DN24dwwmz5g8=K09M>$nUB4o;AEVzjodb_x&smiOS3~5h_WY29J(|%^lZ0K1 z++-pC9kE@w!C9Dn*O7LZ?7ZSji3h<`>`+)b4u4Aja<$X9nO8wP@Zr1xZo;@i6Rlg) zeJn82`p70tmBe7v5Sn|2?g@G?2am(vLr>jxic}#a0iOu^3wKrA!sb>|t4kep`s0w? zJ25J{3IT3HCm~wse;+hSdzKl&@NC;BFe-cd`Vf#4y-d}SR@cSxtOXH46%6>AuCKCavsTRf)Ht zp{M5}k8jaFgaK}_@xF-_j+>z!+fj05bc388A1y@MV_8;YZS%uml;yc>=roL`dn9Ze z{A8KQ0qB%>_l};}dvq92RMFLN0^owwi;ZQA;c^!fl)bUV~#^;vo@6;D6vMp+!QIHA!LyQ7rhnQs9j30l4YU zV6=wMBnV||7wgwDSYfuvsOZ>ixGPG9`yl$u10|q#jvD}7*(JQ{s{lA6tY>f&HJ$3b3c7QDCDD8PWjx9G7V`r#GS!gQ(JMrD-YvqIk;7Ilo5D?(jG`rgmZ zf7gqnX}pp~a(?p~L3@9yrlD^x?Smi{KmpLEx3Yjg(cc4aHyAq2dtP z5vu|Gr#Yc4c{#W=#BRmVf+3KA000_J$HG>bnZ4x<>Q8IkbYjM_m^^P?`3s3(?-!i; zC?(8==V(P}JCy}o#}zEaMDh54%6?77_FhEIQ3}l&rpccrZlTA;?mz0Mg}U%K6s{DM z)s3*&q=@l z00000002ysmhLH&cvfAS+b0g8c@d47%uPa*y&TtQ6@8f~>pY~(xp}xod`%kQqK_6s zz)BrGL9s-+$<{X;Vm?RSy-%IE6LGJ?>htesZqO;Va$sTbTk*p2^?o8qg2;6X6T&N| zE)ujsi~Kia+7SIl?^p15$v*8g+4kY=zLpa5ZWhZuq>3T33~ZZCphY)>-|hlqrXLGj zWnXZnor-2K{gBdXSU))M_Xz|5f@p7uD|0oV000{UCl@@BSM%aVmCT7qZ=L!`!dCUR z_KcLU&MGKMp1aStDU660OxsjvpQ-ymWfL7EX<~P0^Z2Di zRg8f{5H)8}J~k%jVNRj|&-DpLua?4AxQkvOw^#XBhhW&=!?t7EFX$Wcy#88QFPp7l zOgUDc;>?gohcv)n7g)tV)*cK7Q-9kX=K-*};dJ`H@-;uta*o(WkkRR6Lq{M0002YR z=30dmdDX>lL8yj7eshwJ#xO0x9aD+Y-AJ8!v8u6Jc40j`{Qimu-eKPS z*Oyrx<3D^b0=Kkv5b+r_&4*8zj==><6l>f%EAWb=W5oBU$w>g9Wi9w~rCXVsPq2^> zR|pYH(Q~Jt6JtRtNV}-gfLP0#sUtA0E{zZ()jR%Z~!R5 z5^GLOgm2nq_|hqM5EGc=SKTnS20rhEt3&D`K&mZR{0zl0NEV+gF~Xk$!#(g&&3ZUT zeT@#)7k@cd^E<9=8TnQMjU7k_B|tsrxi^3V56{f@l3ri{001krBhhUbHUDtLZzWA> zO#HslFG@Q{%IC`qk{)I`w=)If>pwASx#!EUTiPHt#JF;UC^}-`g{888V zf=tGLaTVFL>i=j({*LuUMXwtfejn2-@>cNYmb3sg`wOXzNGMEOcqk?S0d?2o;em^bOOVs>?{QfU;5alKQOe;?W<*F$YQH~#08J04pDo3+ zSM|%jQ1tfl;90Hb%2IZ^10au2k^~pQMVjGppxX(gpj(FSC6?=*>Q67$%%QG$zijqj&%S00R=`l!oU(8;#1c_Yb9(f+w>G zTX5g=n(?=z9z?lJN=?u=zB7)(NMwoy6Ht!>*D8JqmqaaE`p0M=-1>%-Ljrt8orsl8 z>xdBLp^)z>hIQK9Kn*;5S)ID6-lDQ04;<-UGw;kZrUIEcr~V7k(VDoY+W;B185IEG zTu$RD;6Z7^GeNlrQa%~&=SoME+>4DK#j{kAbhjzvtU%kuc-=^#!b zxq;Nli#ACi67ABbRHe-m?c?~kBnhVd(;cWyIKsU1O2P7gv5bIyPZwD`2*3aX#!Me_ zK>pJ4)EuIl8W1w+*}s3KPaWrdUj@W-r$4nrB_*BF`b&`&6|UcCM04vG9lciIP*z0g`Dt_j)d-V9^~_n)Abm;Ekt)$1j3A_1Kd2SADc%K|A>Oe$?v=@OEY_T&1V!I&s(E`wqam;D zTo%Irru3@A7)!zjj=R}GccitjTvZ2$9<~&tfL|nqirh zN~tYA`XaSuWhdkSO-B=ldFwrN=+uT+NwM&O3@MN?&94)E9ZcLIXWkN(aKj9?g1gWu zj0a(rd<@HaD0> z8b%n`q~Z$;@{H$Hbf)}=TojBle5s9Z}esnn63(hfCXYXD^x5=%socf-v6mUG#Wrq zj^UQKu@es;2h5N>V*s6;^ z8cL?Sy8SSITtva1CDBmIbh|ooKxd%JqS&dTwAdPdp#NNNPPTjLrd-%2LPU)6L!ICx zF3-)HGtNYF;o_S{wj19~c7;Op-@3G4r$5rii2AG~8n?A#OjQErLCVMi{wUl&PP7}QR9uN0`8@Ck#ietFzc_c^p1O)aIn>Mr08=Drm zbCMj_8EekcYxbg?b-|&P>CMuKC86@h^8$Zqy9*Pnl-wP+WxyeJq^O}a2=fK4OBL-G zmzUJcJD+@@@jcmMB_5_8f+(czWfC6ER#z6sx~s=is|6ahF&s5V*<5&0$Cv;AfW8rA zeJC;ByybkilC+y4I=|B)L<{4O41EGheKIYPa8 z))WtuT~_AOB2Wna0w{d6xu7#!>{3(BSy~va(4{80PIf z=&FJ-yw@r5$l$xOauun3c_kF|dAG?kY|l-asw>@Jh1GwemlHkJzDG3l6jDPSssH?nBRkiAoKI{EYq6ZM2+TVOn!G# zE;GXqOdSi0IkQS$+Zy4SQRh)1#W*KDn7d0q%#M$PI2Tv0T=Ii;>c;ocmuA2L=GVPQpFDKk(vYB-f|C^-m5m z9_ES_A^hbCkBht&JQhXY*AvG@@=2yOdI6bLhB}tSC_vVw;vSJ(GRPtI=o2^aHnQF9 zFiPJk7Lq<^U<$~O+6}6eN)rb$S*X-V>VsW~&hKzj5_D9D*n(DW?tKgx_0k~BH>PU3 z3+jV7iN8&7EXdqgZF_o5bZgve)ue}B;C+Ls9AblUAJD=kMym1Cr-qvGO3HIo=7lOBmd?1JJxK zu$+Eio=Llwa}wC`h!_W;PpS8klZ0k&H|$3VZDSec2k-z~z$cO9Gynhq00000000JW z3PsFhEXhzCQfOG!)#HH>%hta5WMf23EHJd)p2$eySJumWQ1}ku00Xpva&JF!ytI2f zXg=FI^Jvav^>hLw{au6=m3jzwWc`}JJyd@fn=a=m1)0-xy3kphv%X^8w3jbj44zM0 zs=6cJZ|-~oPaXeR=RjB~1`C1)b%FZfALOXrtxj)2C--OQUgyT}t-t^P)xO?(f+#np zNSy??&e9lSh9K}YB-obYGibMfPaCdw;C+n6)#CN5d=N1yruL#}f;6 zBB0)7YYRmx<2i$!6*VQli@fnTZ?*%!u}W{6+JmOR#*ZR|I&2Lw2Meppz$MIJh%LN% zb0u&XlwZ}DJ5NQ40nz#6I_1wNiug98lrJj~Qzl`+TDzmb_a^ zf?4BvJzC@fNxpBq*#r7QvtCo4Og5(hzrWzDlTzGwWHAjV5J=_KZJ8lr>=L6O$MPqp z(O1LZ?QHB&H#B9e<7Um@g%eFGC;K6_ZTTGgz?7A(cWnzB!Ros4`_B7rkA+`L@=w?5 zgaec6(ZF^BT5s1ukx{a*T?s?2mrYRyDGHm|WMQLtiORK%oD;}1Ni^G(^H$HfK1P!sVn_>Im)LSF(n>$0h8w*|oe4Fk}g--r9pM;arOe~46=vYIIq%&$ggW*iEv z@Ph@yGE*iEsr>Q*I9(|FZQ2egkq?=M3VG~c0I_fB%K$wI2U|5CB8${vStp~+Hu9~@ zX%`1bwr&o{pLSCDQXSkp(-wCME>hJVNN%04d>II;g9nV!D^D+CsQ3dxl_(Wb+Ey?k^@N*&m`yD zNQuK5Gcyk&oY?h_?;v3z06ByM@39xCkVSoQ0KEl1Ai@mRJY8#q{A5YgqNwDK=c?*n z;dbBdhw)ymT_{J(o!uiN&F~T4U`b}~4h)Ena$g-1&ZWX|F@MS!?goNx-Nin#g|AnY zyww+32X=@=grBS@?U6-GA%zVwAA{d30K(&38THb&U_U5>stC1Dg7Z|RhuI&@m-`cG zi~!GD*D-15)CDSv%?y0Nh|QcXL*}a2JefH-qa~ie78vvQtQmn&-dN{LMsY}EWt;c~ zt`4()mopNceFX6v)7FRgOtz)HFjO2Y%3Sl89K_e2K%~_aQA!nTjn?wO00--0Q|lD= zV*c0c8<|>EH|RulucBb;hgjGuVIeK8AlM;uK}YV3&J$zLcq>Oni;fE{e0(hXe5D~H zB}d;;h;{QjWiJhr80Y|+*yTxCX05%ByxL7u@V^j!WfrzwcJ`oarojfq=f&^DXl|I{ z78hxzB!bJLp>N&?4tho}9%$8o9hvbS1>p*G%d8!eu6hmkC_S0QZ?uA_#T^pleymHSKUhVRMCSE$F-_zJZRCfwtj| zZ#=dBt<=?zlK<(_Evb5yovPWY7~Z_tUqbJZF4Ih%L;1N=ju;ymvlF?iF#IlJ3Vk3{ zAKnqfgzzMTRwtSGKOEkcE#@bAC#a73mDg3_afMUrTUS%Fm1u1ZoOSy}$TS6i^SHJV zHlj9VY-*FtU& zq`38Qx1T;rTlbf>=N$5!X7?+r*IL!>(mw8AAIk4UcrK87bHe-F!~}UyQg>o^Oamql z^@GkJuJtg96ZeJOQ;u|CiFf966XOrF?rL>+D^ifazgW?n^6*Nd;7=96{9MmJ?ZLto z_rpdz9*V=QhlFZ(qF?vEaONTg23%NFw*4`ca0<{0G4DplG1z!D)D^9b&UIqj`4o+T zjs*ts?}Vp%=qeKh0^RBX!HPXl$MmcD1@iE`D0HcVF%}KyVfyXUv3y-WQ|!gA+HD9{ zhP#UKBX0MMG0#vuM}Kty`(k-IG5W=*~VcZ)d~-&cZ((tfk3Yy`d$A9 z?LHI9EW9xAJjo6mWHPN!+=q@3cVifpntaIX7?_30RWY4LBKEP^FAa%WXtMI*DbmS+ zCPl*(7DorHEjMm)ZY%*11#n^7cZ1}xy1&d3gtw$E`}3g;<50q7)u4gW!u`}AtbAIL ztvvHQdTtj(U0~NBsHb`~mlQtDG~TBYMN#N(s?{>y6lB^ML=`C|Of_3qVbk}yc?vAc zC*$R1?1yXf<4UJb3u}gmZz0uU0cDJ`Zc|gBfz<|!U6z1QsLYo#tvkgfg1fqoSB`K9 zuA^m~E3hib2?3{DS`CVn-GHUfdU`z<^#<#pXfzUu!7CCn$!h}C@bP*=O%k4hb(PGO z6fHp-Q)A-Fzxm)dCRRfs@a5?*Bb=_prp~+(yJutuW;Z>M4|V&#QBr z%o+9rJ`=+&Soth$^y5WX=KxNeLk2G@mAL4if}XJJhr1X`%g+^oNgg z`zyiUCYRj9n5xwgQi1hhBCGnO60Cu}luxZhC6N^8h?~x)zQrA%o={v$PBKh!Rva)J zIkDxfZei)~s(SBiG#O_zp3x27quFT!)kdz!Ce9l&CnRO?)%9+0f#t-t1^{98K$W5l zcF3o%<5eSa^g?7OEPSlUYQw4%VO#O0ux@Hs- zk{3DC<_0Hv%U$~`S7UZ9s_Q$ir6Bo`7PsJqDD1r(`o~ zoUb5{jj4zHXEWh^t-J)2GP$NY9=nWFPP5qf`qBm6uwHO9MddL8dlqW5>``b^eCDy* z&!Tbigw7&TZYI`i4@lly-bdPJCyl)VI#KpxEOuKh4>JE0 zzsG1Fis9l|;PYC|mGHivVG~_Q8Lfl`*l9H2ri1XM1+LatTN$&YC0g*2fX46tQ1dW> zahS45QX0T;Hk^em)i()FvVHOih6@{pWOalE9;(q&wM9+BHFPHpwG}!Yn}xu4bN+nK z_?t6iwupBxU!gcC`2*?!Q6$#n#5|24?KhkQ{sdx4$c9A%}(gmm@B@ zNXB2RWRBTevUK7+D+lOVcN-+)lK*J=kIdzH`>zJRU&$Y*iGq5G z#Q3&KKLO++)aP|%msF<`gA>zuCz{)~GoIQ8-mtuS} z+{weEUWm>8T9kLOuqi+|$Q-<=V6{31flC$$j>p1pmjaEPv9!@P)Zw1ir78|F0~voK zp38Ib=NomNPYEoot6k~`mv$fs1qqe%QSMI>eLuNq_2JQ^%5wUvyeS2@?}1Wk^F<+- z_9M<2U9%xsxzJ5bV^tK=#Y0u{)<<-{iUlS}Zfy*5jB**gDstXl2hUV`>Ii;TXd*5i z1Surg;_QIc8kRfj3qiA41FXwC(}Vl)(JL`z3$TSTs=2Mlq|9PFgqw#D1DjaJ6-8cu z`4k+Nc!6L<>}cmmca;8$;*~Db!|IVo{BBnsYkaM(b!JJ%G7SNd;A>Q;SGwJUIhP%A z4A~=gCla{V(^RX&iDxy40@9o?RoJ}_WxH}jdWTuK(2Mj`dJxMc!iwI{?dZ5r5Xj19 zh(ya*LLt~l)UR%j0Cg)o>IE_bxXC8pQ>P-$i34mlv!wLV47yh9^` zeJfYc^1=Nx$hFwr^~^+*2RxIV>*L%)QUq<`hi30H+wV|nc1(qL_Cb-CG4WL#3!FYC=JIPgi^cDNqQ{15`BpBV^`U6_?o z6GkXMr}yg2LDOf4f@M;#Ox3$p9Gz!L6wAyA%bzeM2F$ zNv-1`s#{UC=WIPSM_Ja@Srq3OeWiD1|5z(a`w?#R>$hbyCEMkP4mK-18R5y4quDHj zJ9>5=ms~`3y8PSrbRLRAT-_{|o477V-ro5S$3U1MCE?`E|g!cM7w)E z@+Hgwm(U2`u)@?d3Pe|J#S1OMa|!FuCdSXQY+w0!2dq7?>>p^)1xi(m#hHEg`PAl- zR^qWV!aWg0Qx>cg*j~MQxV~Qai5_XkOuun&K1G;^bX_^0{D={J<#LO&`rUR!^o=I*?JhuJ5uaKm4}N8QS#ynDdv%xoXD{uAuaSYX02X>$Cb*E7C|#u~67U0$Oc&(ThmB=kHr%ci zV7mXta2l0+P_TcJixtA8>+_e9I z>POi5=Fi-4muKw|cxAbO-Lmx9CCQUYNA$MUr-bE&q?7JTDvsSs4JMx?zd*p=wp~O z7V4>0{;KR_L=4m8!cJE8TzGABt!WrtAII>|&Iba!JU{OObxYiqZ@Ew8HBMFXTAlo9 zhbsi&ue&swn#cHt`Ze|4ZHsidN9W<|)rDPNh!UKP^q%lanfU@U~YtD_T`AQ?Aw+6kCiBOw+gyI(2F%85yNTT@_8^SGi!e;!)ZwblxqI)V zU#UbK>7$GB!1B485UlogiEcoB+!#LJoGX2zOf`X3$7<-Xc;OBL_6cBJ-ymW{R6_bH zh6QtY_E%JW48fuP_B^A{`B~ZXei;4kLu>Y~%1kHz{%H{@pWnd2<_ULv-2)b8gw;X) zzT1xGfza{bPM?O*xO4-vnMahbeTg63iBT6Hd79)XUVb~W`hv6%I38I!3*oxXIC+#T zs(GDHf2Tv+#K%X~duk*XIYOaIRT)Nn@XB=r`wQP~W+q%$?0-HY!%R*g{yY-;&;E!) zSSzOHZa2;xP_Ek5X)-QgV5d7h#lzU8m5e8JFVl<$+l94NPO7l2DugDnogwVKLLfQK z9Bt2rDIi2sU+SkCtG;?oZd-P34rDFiWk3L(x#-*?q2RmiY@Y@w~P|uP-pz_mHEz=OgvDtm|6yEp5@H4|AWYEad-I zZmQVym7!!K6o+H&p2>ad(OSnQM40|>UE{ycRMX9ope6~gzA8;X&9ZcHQY1fz%kjh2 z*Dn$^%PMDg^Z*QX(gJ2a z0WfhV)h%tk#xJl%0eBY5jSeR3X=joC(v&8Z3rg?ta$q26juMo_NK|h-)WS&8HH8T8 z%pJ65=Gu$N-K>w+UmI658HP__o5dxNawZhCsksjU#F9msrgda81xe465=byi#4V z5ky|Uz3T$E_&Cb!F!Vxr>*iQ){F+3J{pbiL*=e5s49-v)NkKox3Ol{~R~pLLmBMw8cG)cb#@QC@((CquLoy zR2S)W45HtM)t%KR#t<=<3B|bC|K3Y;P$PpA7Fg>}oM~ntx-REfT`EHEFhMZm-M}{S z80#cl=AofavJH*H=dC`^=seRiYQ!Koz>p*)pPg@cp+!QI zvjX8{ym#RayJSI43OhO*caxI6Nr*hVL`T!8@``@?bmN9H>rGMnpvzPBJ2Dqw)oGZ?XIu%cOXXYXZoEuBxr%*Tm1wDa+R3RA5(qgB*BXPpB|?#b!LnZi|}>9*2?%EnWXTy z6rP?2n@fya!r5-zBvgKuQJX?oi$=B|fo?a-@7PY7GIu?_K6~_iO0eP_?JqrK z7D1KpY`}I|vklb_Q+}A)o_y=@mI4!xE@rvsvdqcg@f0r?$jmu+B}8%@1m4fTfY&8EERc`{&c>J9l-h-mPhWE!qNfyu-kd8^BCAH(9LI@Fck#EXSQiRsvO$?M z&nc54Sqyt~YIrGzdM=sc2B4q!A70tm-zIh67?Bf;eTjC zHokEttj)=&oj=q)vy~&=0j2jwY!(4dB+t~oP0iRZojQA|bprKnsQ24U&iBK^Io9chK7;6TI0An2i4^f=8j7kKFW($S zRWn}_Ci%WNVX*sdN~s?yWHKw`x4a|@wPHc}H8~#MLpUo$JlKa%hDMs)3*?pZmiRUN zhx`Aqw;$HLYdWuGMP2d-m^hP>LDYy&88qfX=Fkv4^QBhe7kp=NF|vtZk#cGEfvRxh zo;Pyyj9%p{DSqa5z$l7-7Wa1!NlhtZh8`4qD8d*@doTZ|HK$zhPsD<&B0iJg5qIaY zmH%H?VSXCq?#}b;9g!J#8)k*+&Ew$vxY1Wn-iLA&p6|@i*^Ha3`HJsZrmYaGWfduo z3)Ru{oe=-HD@FcS8?MG7xOO1}e@1NMVpC3J!b_d9QYO%!1PB=kcetGM_9e_NODP4m zQ=<7cnx;A;53uh7^QMldA|_ZXBOYkAE1sb(W15Hn>z>MHtdKJl3doHhy6|f7#mZhW znNNlZ1TMZn$_DcvHJG`fsn`I7nW@C-ggw3Hs>&O7?E@0`HlOnr&sg7Z z5PTeHi?oN)K#f?OFFPxUDl01re?qe~UYfg;AT99J9FUJ_06`$jB zMz_0jZoH@Ni_&-MCS*iss02t9aKE`)SgOGl>$PcK|L_G262uM;jM|XZ%|A`W9L)bHN(NPXSdT?)cWPG#-NU0n4v}7Gb zGS|PeMv?|lf;Ki_>j-+vYP>InZlpfLFH84$NhM?MhWkXFOob=$wc&t=JGC-k!t%gS`O4&vsZAQoIo_E9(Z+ibxPF zG}CGFpp2f2j%nVFxW5q1P@b`ouz9kvD%4Q zP7b|F3Arc{W;Y3Bmy7wr!B{DmeEU}i6nqXQJ9 z;ulc(E?PSVOoIR_=}}Y;F&`y-A~Ht%7w14&BiQsI6kAKI-g|;adJ_RAO>HKT*iewU zND(g*ow~8($>2b2 zChY2{ye@ZWwaVmrOE%KfAW=jXto^YeEg@WQaarX63750Yx&7Q_D?{b|*R{S+VwwZx zbu&AOc4n|T0)qN&2E{Ew#M|fo>x9TUzpRv`uYyQ?;0;jKjubAA%yi6ti<=HtCihyl z+6;K3qysCrk4LnLc}|!4g`(>!QDcMR87r6d;i&t;V^DFs_ps*C_y{&?McA)+Mlr;` zQ(({hJ{x<)g>G}JaUKmn?%Qh*vX$Azhc8 zcuZ#uT>nD^8<9NY)ANzGuVi%LoIl>_^=e8C4@wd)*TYUEzRUVm^BW7~urPSUA_&Qc zEQcQk47bpnW|6CFjQ*dD9BLvW@&9Fu?6RD*wp$p>vTkh?tdusgkrvXQf*EUlN0mG<7`M_2qUDRMIsmDZ-%QG zRe5>J7A?S#vQ?y089rb=B-mz6{JAdJ_*VXU;@C0b^66lM9+Vx0H>FSUZf0KwAe+O3 z0(pc!mJS;W@L8KnpMnDoh!_sy&W`kKm*cr1uoFD!I zd_a7YNC#YzffRo;g%fAXesJvzE2OLy@gJeZTP9dL6xu_1q&+@?i}Ux61j8MjMOBP7 zc@{*8D1W5OF}xX2L!+2mf{LWnzfr_ zh7Rl^Y5WE=K+^KsWh|&bXIw~u-fW0{u|}s-^soQ~l-HRCVI1*d9FxsNco#bU6& z1H|bM4g_`1vDX$5#%LY^q()NL3^-`)3OG>wuRgfSj<=QM6C@}{!2EP9kh;|_S%c!E zc^nJS=N<9r?{XW(1)6W*%|>;M-q~2MviF9ZBnD{51a{`F+oG;zbCH=(Y@94TZCVtt zh1)%1fq5b*sc+o@U_HT!&j=|fvT#B2sez8#;Wm^po=9-ry!<;lP>pVlrk_E>`fXK> zQs3b2R^`DTPz2(QvOaZL)ZO*krX!lwa%VoG%W?3s&vYJ{KDKt_1#dmc>EkK(?ICHS zD@@XTZ>>JyECPI@_Zel62RJ|ir2R4Ju+%ez=Z53Bxa#6OCSRKfEc3fC+{!F6==n4T znGbB({oce{4-kpCzS5lDBxo{n!=|_#r$eZ=K#LX6<56~EkT-yp1IGu7C=8dvIoS{h zK{Z)ZmuTzy!A>|eGC-smS-;%)gm=lHLRXfiN$wjvQ!R7PMKxJu@hO7;=vj^lL#=@? zd)u~x+Y`IVU~W-tL*XRS4NV(Us|R_k-N)IY;g&Obldq!B5UP zOth6n7GJg9L8F=w@be!ja5LHFGU2)oBt&^7VBImVmJVvgu_O1cRRK_)!_jxbs#pjmz7$TnVDz5o6AZ= zSGC82#TUnGGejSTC;sj3sw3h2HVtJj53jtpoV^d%8JtG)5T z|HbW1_04+gI0U~cdyXSJFDh4I3|KEnd;0Z7ZPEf^Q*X<>x6(!-Xn_)#N)!= zzCsXDX2j_e<15J{3U3(GzHbqPU(b;hHsq@vHDRo+|Id|(2c1^N9PmsHBmi>JWe{WTYgl^roBrHM^!(U z>R?5&mr56tU!^P(^B-%Y!|n``$RYOR)0uB+RE0&QwzX2;(bRjm-SXrpjrW_icK$6} z+lJYej-h4BM?Y61anP8pUI9}O=ADL$L2<(5MwLFiL$|h&QzDC70$Y7ugc90@xslbi zJWuZpx;wLIy=!mekk)17c5m9pPui6M9gE^&M%C=EIN78F!jm_5tUF4i_MC&`5$0tG zP9g*(y>WO#VQwfPUKf$upbwn8|5k_;4i>+d(?}PiQy`fv5&*Qzqqv-BQ&JXq5j@9> z@v^=XJZ2i)OT)OjTyGFe?D8XpGZ*_LxAh+h#(=EuVfI+U9*)Zl4OBXo;VuJT+u^s4 zax%W3<>(U}$8w`fg19OMz}`JIG@5ednD7Nk(K}A7&2f}l;^xSKnX>H#@ST4pMe}I@ z5&mBTA!0cXOKs`j>ap=CEtS(+^YDb#t~SG5Qo&?iE9$>aM)odZ{xjr`YhL%q`b{gi zg7MKAs;xupOv_LXu*SP{2`0ZmQ&2EVT*FI zUh~H6C=uWFyf4+vJ9Rlymj*45CKg|WUs147FL2T zXeX+wX-Zb6f-D7xnO3?u-zn?f+ObesV)a#12QiwX07B7h%^f87{9}C-9f%`&1k&NC>TdrqRqK-|PnKf56Ku8OOwXzRKXV{5~>!*Zv zlqAcu1ymneCq=S@C4Jgzj7wATJ9c=$%xrkc-E{=@wS!oQEPt=)Q9Q#N^#ewE>Z}=8 zwdg+__rDRFF-LJLQ1Ix!C~BhN)>aiiKZpQ*N1y-!ARK#$NFV!o@Yhw`HE*n|LkC*2 zV^f=CM9=j*gAmZ8dZt3nHPAdS?E3}ns5+i4cjyP>{+s#Zg^!@lxQ2iwx|jXTP=&s6 zwf(ZZ07?4Hke3;{2&d~S`x@?CM2U#XshOkHLz6PP2I^ zYSN0F*drOFnE%UjX+>xz4gO{(A~-csq3?P!Q6(a z{X{4Z_~t<6obRoAkaMG6jpJ_@f7`+*1_p&HRBdpEjRJA=qY<^^+2OY- zx=BdF?1IrC#!gi@j_AkqEMkuVr8qsdt~1v)%hy@?1wwd#XWDn|L+B4YW2^F%LU+NK z>u+=-aqol?{y|09ZutLuJ)STO)1MF+71Ps|jvybgqlGZk@ZQRFz}zLH-zin1QA}$| z;Y*2)AB9Gfv(o~+U=BX(FjL8x)~3(U*Ma(N1I|5!Qz1z_8KCh*wEBwyotwyP)!obkuVJrpw`jZUxu|P=gwQy40i9G2Dsx^`q z=j1jes%6IGgHPjoNbYgQp&0w~bx{B|x3Q%cKfw{Q=io&3gn2rx%b-xG1SU z2p++qwc^@iP`67}rt!HY*nfrP@9DqF5o9xpH96n*AI?OjpN_PL4g_{Q2%tqW6uo`D zMqAU{#F8u+*<}(>QYkWeESZq#{Tr5g26_P6+777U<)1#Gw3;1Ru|rm(jdynw$cUq= zMuv_rX5QVr{lzW#2rYh%5=vKpsg}_C-&EeL0II<#dcwk|Cf~%ys+s?B9|}LbjMi8j zXQKE)A=Up9ecXzSj=+5EcUtV?iZ|eRm03E%ZP>ls7h||0b19JIl7vFGup|Cv5w|63 zJSU`Pad37M>8Yh4?FH*ZawpXR4nzo7fs7}Obc4tt|Fs$d}))BeW{WMXfpu*0=G@;k#Qs2n%&M3K&|&j?E;m}Opuzw({@>Zl@)o?`KUMPWy1_5l%mP`e=!IOW&KzCu_^ zme~sQ7!J;D|9K%r1ldRj@PgCvH6>yAbP{I!gJ6}N``=3dkx9>!wLvgqCG8Mskwg!1 zANl*)w#2uqPlV z$24~?ZY%=FyIN24`5eB9Lt8Pz0$@co9}s+pAfrT|M64D>ly7u@^h2eI1B!um1*(aquwYm1A0XmVyu5UjB z`BvY%E0O8ptLy)^_~qTXO;iGFq#16guN?$5sUj`YSEr$xAh6xCx(~&Ez3DyyTdJJ0 zBCv-qlO~SAT9il^@y5`2mV<5d?gKYt@86xKisWFX5M^CuS8!rL5jw3C zn&33}IkLyWsWzAouj#ga>R)$qr)qSv!dq57ES*bLhKq`O6dDqwo_84@lwyv0jrsAO zZ`UsqN6@(zUXs^5@FZY;%@Xl-&#RbifUx)>Ds^u1s{BPlI>n5?H8s+3oe-7xj;1d* zr7BtUvA)cF4SboLDTm1R>CuJ_{idXQvqPR2b#Ye}_Oua@%XCAHYU%BPvQTrugZ-?= z=|KDS);7>11dw(%AQmf#{O<%=H1822q( zQLx0U35a_Z7GQSs>vD{0mkBSLChFcb}CB`UmjL5OZPuNCIJf#A zu{K#zRCT=gRUOtn8>X*GGGMO2pQ^fnsxsTiZMCo^dApDcJ zI15q#C}uBVqZss@2?!@`=10a-^|N%irN}te?>< zVX)xt{_aT`QX&)o)qH<8K0CZe5D)TCwIhi3sxBgiKI)6fn1X#BPwzt!VCu72SeiB$ z$&e`uD2eS#t%>YjcJjJI=J`Nf$;7B+^x|~dkr0QV4@lx!AV{*f-TujX!x^+eP?CwX zS2ENFPbb#;)(a;ZLx^gZLA6>b!7Q4j&)oTCcDjPPMIWg9uga}Zbs3h!okxxk-yK}E zMn+z&K!{_zB`Uhrwz!$4E70Rb6a0Z7R6h-2*r_=AD|Xy*=K6U6P9pu`i{?=3%D;XK zXC0o2E>w(>?{=vd_^9T9METYgemw3vkMi2mLoON2G;jBsh@!eY4YI``sN4ZWzwN4k zt5wcBNu!Mo=hlzU*OUz`n|-C?v1sAbipO!?8=;9~DTwIZ704!!_m@B8Httu*O>CW{ zJqLuUQjb6Za)jN5xebK>JD321Yq%#Q_at=k-VecMtJO~AxgwdD>zAY4=c<7c_qEI1 z?k`*pf(_EF)(_~-`>*L;MyEY<9?$C^Rteg+wsDLne5NQ%JYV?VA=Kwm5Q#CNgHfCz za0^rTB59~ZLPuc?^SAK^PGZrB=0q|Qm!vMS4abs?D$*8FNxJ zvv0$`oNLp^Z3=G;K)WZkEt{4z|Aw7mc0EURk9r@9bS>YIT2Fp+-lX#VQ;unhr<`4D z>9J15n70S!WPGMDnScs;!25aVclCEy4TGAR#aF>p;{l}h%d_s6nw`L1C%=2%3*%rV zLuu?v&k}Eaea;tg_0ZmIx5yebCkoXV!@JCg$DLtZfjuho!z71 zdA!4pE77x(pQFn1FPLI`F>abYPYNc1Csad0}pwk8RJ3n4IU;Umn~aAvMS zF%S9h^hBAVvb+P~(HutFhMf88SO_2)$%n`WG0?R*bLul08Y>+rG2UcG|hDin&Z)_QoRPS19YE7GOXKx00000000000000JaiUBqCH6o;v_WWkwf&3I zK^tj>fXWl6K7{0;Y{EQl^1`A7@{83;r$y4@~P|66#l*@Qn%h(nEzqt@zxZq3b-Rf%Sby3PN16M zG3*Z8nhlHa`o=v*2!a>okA4`f)OyZ>Zfpv$You0EIK*K-t4&Yv6sf@Lyb%0+k4Es# zXFK*cUswZL#ISBw5vdpNK?QZkJhj#hev8?F%YT!wB8c&(hmFy;iFhQH7lfGe8U3O$?)*K`>UR&5^E268n0f}{e#C4 zfnHzzCjj!#C<#biNTjf^CW^{(z&iYZFv07vFkV$G+uCIh{(qEqqCl7s>5g`n27|+H zof1tQK7(Fz-J%d4Km?m*f z5-Etcc?NXI5nnnQf;N*-{*M1@`#P+@cvk2OfT00tin3%s!k9^WKaDau`B~+W>C0OF zhRuRG{pzfQy)XE`x4&zJen|@^A&#+*(ov@W zkan@+Q$2Cc8K0?KyH_S5dF>;$KqZ&);KfVLGx0v+|1nfuZ0KZ;+`OAlE%#<&Vay%Z z@yCI#e>g8FsY{=jsy>W!=E*$BX$ApJid&W&nq)oOAyZsk+-CH}mC|x6?$-ikbwHe_WrT+l>6l&G*?F2+D?-V`UX+{~Vhk~m+ z^K7&BmBm3}yaB($u+0p|*9D3o&^;D(dU5Qy{3C;v&3qBzT)~ic%GzIbFO29Dh z|HEFA@cRI?{BxNVmxGZI!@w(ucb)6(j;m5hkwIqCovOFqNvLZN8A1qTJFgl&jUaPp z0QN_!+eb2iF91f>I=)D5Qu8-ue^C0Y$e47Cve_k?I`py$43z0AQm`V8dak_j;g%(b z6oWGYC(M&+BF-z=Qi}j+K$pK(bQ6w*M@YCZBO?5u?Jl=h1k;!mq-m867rgQ-o7G(u zGNDwPr6uvtv(OR8(1_Ma&xr(6LKweH0Xv_En>U{qrQVPbpTh9<$-g_d?Cf@)at_rN zST{#zy+ibo?;b2;d4E61gGdKZ-)~294I#*E?)lu+IVQZ>Dopa{izX?*mytAw)CWZE zNOCQ>K(ea)j(_n}>g}v83pEW8Qy^@4N-w$DOKRaXy+j{`KbrnjDHG*He-JL-Lr zn1B#D2-Gm@oc+3voAM|%Lsxc7Lz~MPr-_rX&RP~Xb$~CXTYR~L8d(vO)4DcX1u_y* zv-+xeP(`GA6t#9{quM`Ui{>GFcB_~5e@l5pU)DL*Vse)jCBinThn%~) z;c7}GqYg`wwlxg;M?>dxFotjcc|G6JVJ3aibce%qn;T52MY0dC!kkHCN`VDvKs)ic z91q{%nRDR;&O)%vqyPW_000000000000000U=^IWh(mc^^gd0W#Fu44RT|yQ%Xza6 z@3au90h}-Vt@F-vlYRC@#xsm-^l*p4wE+C?a`YL?ZuXG5<^Tk1xZYqo{&Y7*-1l2J zSKFIRPAkHBxy=*F66gZ1M3Diam1_i7@;D;-Z1)SCJC(sqWc`>Ke*}KK_8`@_-qS-! z3OSxh(6YfJ>{Kv_w6pb2>o#5>rfi@zEw{S=0Ah%aD~#_OIp`GlUII}en~E9id@>G@ z)^NUJo8oB_m$3if5>24=1ts-+X05AGiko!{1M;61C7TUeSWSRt6PJqxh9S+tu`8TcAo!41>`u!Tx7A3=()C4h`Z zTdl2FEAsuZ{IcD&e(T8{Q%G&_;G|aa8m>m=COH(;56^yd>JcERsVYGS-##*Cy+D}ObD4>9wXipLeDa!La{RJe-RcA#m~N{{Or z{GKcJYi{QM=!x-6@$;q6`XFtjDNB=sjM?;ZvYf=C+BCAF-> z755tEJOTCs)lxhK5_TwpW!4e+?M?_x(>G!M?^%;>)i-hCn7S;g{s8Xvo{Dv zm0gR_^}cI_NL1|WIv35f4(azt(-r#>58$+u{%|mNdP2rFhpBqS+W|koA}fJ{stcf+ zjj}YDqci}dCf6B#3-gPO9bGsDl~^SPDaHV24=RP$z);+YMafhM+zgc7Iu~tkjdeiZO1OS7?k=&O>>Ti?L5wh( z6dWf}Qu5%@33`Tscsi|;cB3U%>G?ohk6UEx{g{UMGte5Wbi~P<8Tw-{2Oo4CB=;-` z-BV}BUC)6i8)>$J(%UQKK-ZMp6|dAyZ*UJf4WnOg>fiG`CHm$6er%q`1Y8|y?zrq; z6EG69#sr+DxI)O}5snfEe&7iMGga7H{Iy5ca~HTiahI8HW+8hh?AVC8)OTr=DmzQA zLcw`8U&`4mWb@ji4Vflu1ptU6R^D4Y+wB>^8b7mMw8UcYX*2r4?Q?IocgMD-0zPRL$sUnE83}uz3c!eD(ZdHbsyGPSpg| zy#EAx#f<9I!tDbG1;4oWshZmM2RZTqSn#{{M48^7A2~GdrPN`o%A~?Z45`i}J?P!| zk!fn&{e_jjc zE+XqfCdgt)3?!_5*8)fQ>cJF%Mk2iaI*{*=gLib8Z?ki1B(ZR{bKC&+$vG6><;)&B z-vRBgWh*mmM4688qt7F<7Xwbr+70K?qoxA4E^GQ#^Wpto4PC3*k-daAIOieEvDkl1 z{m%>!zlm^NLagwxZD`%k6}Wl`yPJPu&w^~3eqQI4!SYKja%j@R%c=6_2)RaFWtqUZ z@A^gvd{NuqW5HcAH*qVkoGH^=xMQNvvnlH^v8$m0@lN$O9Pmd+>G?j`(@h5z9;Es= z8vJYc3N2O<<5hB5HsT9{{Tze9-x?X1MWiYQ)mUgGqOo7Io67-2tE7(=>sd9zO{$OV zLL1p5>hT`@!*!47={gECG_?w)_7HuoBo;v{2M*0Pdv%gLO-sSno8k^@OhH2R0KQ*-ZaH$XIC@Ai84!*c-z>&0THrN7u1a~qT^1NDdu zc=V2WKhj6sxZI;|P*2&peev`|2yaJ(u2;|Ww3QdrZQwBwatxaL6Uz{Tb(dtkG-JhDM30P7qsaP5t`EHiRaVHkzit zJ6!{ELUJJc>HLS${m>EThD@(2x|!PJnK>;UlDrjdt@Rauf*2FT`|b9kR0R%Wtfn#9 zX-I6I@5mUhK-XJgC=5k7^mKc2EeLx5YLPRLEyZbCJh6?3r7crY&BfM6N78f5Ut62owZ@QH9*o}`E%)YSvughN`2a9B`b3)A&TqI`5 zvm(emxHm?HTOou_g@1oE7E}ABdaEPc>_2ndKNLD_J~LMT0?DYvKmxtIIprc;m8!UbZF~bwR}vTdNWr2# zskJqzvOah~>}PCu!@i@I0#v|&3+pJcRMWk8IpL}aI?=FD1?_FzNCk)ZXB}q9je898 zPZ?@Nzu4oFhT~jtP|P*xAqC`9L?7RonozKw^VqiKJq~%q+_Tk=R2_}R?m6?Bu;qF6WWBU~lt#$fI?{sx4uK5__PmE*&)Z6Bi6ULzsT_&icx zxR5ce+*kWYG1ps@3IY#vZl`q41Da(b^BQ0Rt^vNFiRzG}A`!GBo<{EjYpm(Pz{C4y z&XG~pTG&0cVGKMM)!9?cZYa*?s zZyfH|sbyd4P?S#!?v&CJFXsnm4Iq198 z+>d*km+Uant_n zwCHeh$Ne{JJ4J!Y9p9Vm?WD+EzQ`~ z;vzWD0_5AHEEBgG+xFFi95o#P^O+cofC|9l9t@A7oAMd=-nGirUgCp3s$*ehG8~la zQiNZ2*od`iWnvsx(<^;WUm!ES9TaBB{nVD;a|z}*t9U^A;xPFmdh#>eVmW>dG-+#3WFoES7Tq02Sp;t{R6c2Sv?&_q?2f`S4{g~Kjv@$E3C8*p z2+WDBRf{+MoomLYw~ahx_-Z2+s|5M-IS1;z%(D%iF14dIeS=M7QgfB)#8kq%?Qah8 zg?A`%KdBI?nf-7>k?`;QV-;+N>k4U60>z5)w@AphKYt-$`ZdL>i2ZhkKE2y)CM~^F zI||(Tl^pp^*{=289eq6DZPb!QgIhB(EMw@ajYLAAIG`fR4uSbyp8)8~6Ej&Ab{pcx zl>kh~@ikD>no4a8VN53}JUzp{aLU5$p&lRgtMt`y@wiI8%fY-}vKwZ89L20DrEX?=hDkn?3 z>xd|628K}Gf}Y&0B(5J_*G$=>bn)mtDjp8bF*uq?sdj*dO0R_-$poIk7Y4A$dw)vv zv1nh3DTb1^0(+C<1vgHkt!_{7Jv%`A|JdFh$?C|KBSo%U3h>eD4hU+Ff3b0$oY%C{ zotlObcb3Bay@nCk@7_}pM%Rby*3gkMe*GEfLI@)hlfSXS_P!o^R9tK9tZcrWle~{k zy6q6Glaxns4}`W1U1qzp#Car(c)Z$jn3rd$3=bNpW)$IA&yotIWH5dum z={#>1IhNT*3}dr{bQAVHh1KfYLTX|FHSvn8@G&>X;cs4sK?67CTt?1*k3$2&g=QH< zF~ZM_)&}$~SuT^pKIIM^VQ!M);m}S+YXPK}VxPm8b4jUM@;0lBLhoJ3*uVKtVNi&% zT;s*RfW%wGyV%cja2ip^#ZZns9GfDX$S?yMlv&r;-KOhFz#VDrBNUbAaA8_6M_%_T z%ze0ai$uWV_eE1wxoi{{jXy|xnB`}n>-*U$aS50prI>9dF)3yRF55PEw@$KaOXEPD zomW}}zv0c>Tt4JXo#{l}V6rmat-Bt>%d*6WDqQY;SeT>NhdP@6xQ2hjwGy8Ds$|Df zM0onq%|-YT3p>HKw3&&NF=J~oHT9>+T}jU|W(8TaGpC}dPs zEgKuWu{e-#u0Q=b8ibGB zu;U_#gWuf58Qyljkn7vDSOzyB;nz*??WBdZ1ri0|*jISnJ>3S{@+h3@jKXO_xfFy5 zYL7h`=wux9>fYU(|G9JodtI9?&%IDs0+k%ACOu1DT8^d+_H~yxA16c`MXY|QrTuW< zEqWt5^#z{ay5TzqXP@@A17!cX+KMoD3^)q%(o=m&cm8m1kvU4V1{x9$#6e4}Ibvgm2bpweeDBgc z-ZCYQoy;6cHo02C@S{zJ7AH=j|Zmi}X(!%mc@G&g1?sG=AY1K%qz6YZD zXoS!ap6=7hmm&j>s&Q%vUE+XXj(tcgfDd!}NgN7<3wIj9czHAStyl1RaJd3Eq{+|2m_j-Fst;8A%N<#R5Z)|1nO3v)_W;t8^uL1%kYKIz zsXlZfjZ<%xtE4cNs|%vWyMhKJe@8)GpP!)|W{R`MbK zyfYe6#S<#ZcuHOnqjTI)D;niB3lRXCG2s3u8A$1Xlcg>sF*Gx2VSW0;PWv-iyk3^Y z)YN5B;0!V6d@?#lptJ-t7^lqwbDb}}Zh?kGU(q2Lu^f27;-Q~@-sS>8vZm|03|PD* z!DI>T7zUk)W^9UbD#$D7=T{PDde5_lcleUxwk$pkZMW7bu&j~R{s3~UxaDCh0shQC zu{t8Din7qBK2Dp~+}K59!YEJlyXvca?^7l+A}xUyn3KyaCS zgsjuK2M?<)r(*W`Eb<8_5>)GTJW=n8eoE&fIGquTZiR@9{S|pf1#2-Oh-?y$LA|-Y zX)risQ2rS-JH?C1(+-A26)W+6_r|UulqGsd&m7#6;Zj`YA?zPc1bc?5n^a{8@kTlS zOOxP}6|qf-1dUM!i`OBB7?gdSHVFl@H%&FE9P5;~QuXf^T*0cz5juYrq?Z7#-?#i4 zRm|r#WWWKv5RLr0+GPNmbtd;l%3+R2pdmm4-rXh)^2BXJ5o^2MZf1ZfQWIsx;_}}# zCGGafcKuAi^jog_g!<+zlala^0ihA4x^#}?j5ZQl zFR^s4K>(#KNMvoJUZ1_%hvfK_JtLL22L%fyxpT7O8zr ziOlf0BF$*jArJL4DH~%EApdlSZOkOyva^gHWE$qYM*t%Id!Co7Hm-o->i_lpw04MK zYSQz@=v_C%U#r-o!)!3AXA!o3C(IF@uba!`jzDvA6w?s2=2GiaDtJV6DPH1Wj%#ux zUEZo$)b_iHDYH>2;X;zmxw3rv2nv%@&HG`L}((cJHv2PJZ9yV^5nzdhV+P@OiBp(Nbr#lPa~s&R^G zKiUcB!c?|fA)APvHn!0d1p2;Iq^r5?B}_b}TVX)l6DSNZ#ykg(&luZQ_%ll?jlF){ zN&;n6>iI}5C5-fqv3i$G>J_2 z^s%-HIGL7#v~4TuZtL^i86jUF&2V;AOhW~kG|yNH32XJ>hwKmMmGKxs2ueuZUZQ*Q`NB5Zz$GkiLR`h#_-V`{5>H z&0b?~KLyeVj;8{})fo@JZ^ZUpFxr0WSFD``Q_blWpR1q_6w#E%^A{-_fN7yp-cTFk z_Vddf@bBHAh)H6U8oO;G&kQ;c-!>ehoyRe$5CR+isK!7iCDPdp6ih__tuI|vry%-Z zM!Jack*TZ~)Z-|K*DIYiH{eEckIa;=YsNQ8|Gt6s$sB?OGv)vFOo&0aQV0x@w6 z@-SbEuT;wwMpug71hj5e=wUE!T?Xkd!B-H(wT=IPPX^v$RQOc+=b|=|{3%VdD_q=C zXT0iP$e!JEub>fFGpa&~Ll`{r?np`aLzfNoA2*}|_w zdqQvn->d>&6n|>G@8Z?A-)scuE}B$)Y9Uc*4NAFnR_pWzOgJm9;mqr$tKUKGLA)^rr7|^7@==pMKB3SUI&vY^N%q5s6Uh)p(tzF!6~g@#V;Xa z;Jue79oWpQ&!)2}&;aqESz`y|iwJ0QU^%g)_pDi*uo7~_MW`bd&eoe_5I*#nsT4Tl zVPy^4dl0KxKEVb4$Mxn=X<0tx1)VpoHL6uI^*{kA<+tnxRVogtPIce#k(PP$gQDX*5-b4uVw9{-|KBF*I(I`7(?nWv<>_@UmYQGg z^D4973H!jda*!96oa9 zL|67y5GRym&jYzzRJblCQEqA^7eYhFqPi1G}XyZfa@gnm06fJ>hSc`3n2JT)elCLWN$-NQud*$bW4yW*eQ0Ux`n9Fr=kC3=K z-SQvpYqVonzPiAcwwfD(Lpw z8M{C5@jb8UxRy~0_&kzKC1pRh&d(dH1lKe~?W}vo3;iM;F={5ej=lG%D+TiPi@Ll7 zOUvY-TMXFun>cqi?(qS^pBpyzydfWJheO&L-!<*vMCCE?{t5CA@W6gKTI`Wjf54LUFTU1O-I6be z000000000000001tLyFM+(bjj|1z7u2xlgkyz@_crAgM*vAFJPAG1T%Og+G+3i;8( z{V*ZXBJh0}aL0t7>* zqDZPg1vf;cJ6X7X|BWh~0ul79mcEW|J4WceYn*U%t2C0JDLJ9j13Q8oU3O%;S24HI zVC>XUyJJX!=t@bmFUC$!)<-p4BQBfgKA4MC$`DkWy2B3e<7pd+ULN&dFjq^mJ*Gcx z)Snn2G4<>Md&QaV2O>^e_{9Z0|KG8)QU1fF47)T(>s4}z4*NUf^S;Yp?#S{LcnNrL z4$Ea~r_=2#@>l#aI$kw-pre@ofh-UMb9zP-S}*0|Jj^mn-?q92Ntg^Oh;INd#Q*>R z00000OGBw0)kP6hWIa}D`qgyIqQEY&=^F(~>p80PwUO&a2osLqW%tv}_hXiyb@sp%ATy3Et$L+^qn5eo|v>%?mk8jL#Rk}Lo-U}y%|x z8Gb7`y4#-um*MeK+MV8hV|q19@{JmnCgK)Dvz0VdznGBW-PfXTL-f2AZvD=jrZ=N^sfs z2qW|PLTx0;usbrtnt9?@;VhofU*t{t*-z2}))~_1Z3a4p@xW{+f&|%7hbhX=e#f3Y z73Gh;c{}xuArEq?Q445c97`#C_Hx9bC*(J5QriT+;n3|M}O zsW$w~d-wh9sFUoRUqo{g*``!biu?au$Lw5$?StjQfLP@MHZ~e%=Y@pw!|Zr0+_@Oe z1FBMfU}(x!4(3kFlR-!lKIOvL5RC?P(?7gtiJXQ?`zA$oSO^+!21ejMDlsRP+wC2^ zK3eXn!%pn{Ps6YXY*D{m=ddbJ_cfr4!jMdZc?TWKuqD!dtCLeAN%q6{?(L&K#r!r? z9`pR{xhcmI<|~;pDGWd8hnnJ01*5?}!qsCgMn$z{LeRfhPS0`697An|Yph%Chx?cnYn!;yp14~9 z51fJzd+Q6mWKfeU<>L3C4;)=8#qf?)wnNbsKqU2|7d6{}5y!Z>Mqcd*x%VCEY&W{f zb{On8+6@gPnj*yD=De1A$*rFw45YffYj-7hj^JgRv5gcRMJ9%Jl*jY>6L%wvQu-L@ z55A!E!nqACjk^4Y#NoR=X%z-U(kHk7xoqim+3rJ#{ z<;}u6R=I9kwa7EJJ@067CvNwn*}fr|s~b$}u!*KBC-!5s zj$EsQ&R;pXRO%=~HBV}n_Nn;9JFttxmVlleMJw6nKqp!FbWW6Rk7zb<0tF=@P@S~k zo(-VjBcrhlTxjdf5tE)vQiZk6OH8p8<7`uGjMKltpu zxghsDP2ckkHe~J;pLez;Y=WWuSZ!WzSKC$Tf601D9Yn5EE(MCBm1*ii{bw4}`BTZY zNz(D&%klXJk0Ju>^A32JLe$f;J`d6Xr7C=0pF}K2%Z&CI`Ss7}R{eYWYIt#jTE$}| z_eM6u?- zRt5rVZ`H-bNQ}vZ-f@8|hO#G`ZQvw2YYUQPC z+*HP0;gwW0Up_-aB0~C9MHo5_E!xyP?ZIZ1C)!tW=H9|jdynOjpWe*rsvj`1Ce;&1 zPF|xy4kevMjC76?c!ySI-Cg68&JXZ^bi(GMd}4U{zUX6L;5#|rc3l#usNXN1FUD-@ zep&oWn*1c@SoBcPKA*R=fX~ZwXNYh4pDdpOj%_FZLIAXQ7*^qY7hf&V00t9Z%AF&3 z5^?G%_~zD}gJ*)Lzo~aZ)TysTa)NC24(uBaqza}D=j92%5lvZzSpmka*;=2lM}FFP znM)CZ-bb$~%=gnLB;W~cg`A9ZFBRK*??bfY2(9^NJi9deMRUloKS!@u+>C9C6ObMv zqk`EFd@Njfj#9z!Ss%VV-b>$q9t4VQyDkR-5lk}%L@K_(2C5mI{sm=8X@l^Eiyj9R zQno`vPbumRX!RjGK>uorCt=Ewn3sd>s>2)W6G7{YsM|b`I&ioSd-pAmbmEBNkbqBo z6$VL03cv!Et{Cz@E@49TX)m+VI#>P7t6W;nNLl`|3~tptGF+g)E4`_~tIgB8dB)oq zGZEgTL(>hf5C{=jVQ;2#*X`x6EI9TdevzwE)%1nk`$l@jsJWwF2X3GIFM-16ckCUcS29bC2e+h(9oX>+p3ucyoc1`$ z+)4YMWeSO*i#BQQe^4D_dDm)itos;8u%?pM2((lH1?`U73O6+vW-cyjn~^vJXtgDO zw14r&^vAbjkz_%oE@Gyg%SPYUS0|xyk9)?L>dg0B@BpNSLzob&6}&8d$#WlVh)-LE?8kNP56uD9z%7_i;-MsI+@(#Rfv%zDa4$ z=fJz^+~hHMeuhddV}m7L@5dB9EzyXp!X*?(`6_h`t96IS7zJu}ku8cqts`7x4&Qt+ zeP^J$jiy9++{$L8K!HX>wI8!MS+q-MDmNrvPiT1wwVF{%&V1jaJ|81>J5bc z&%D0Vhxrblsu6rWm`oC;;{3$AuQ&63ma^l+y zCz=rS(~&ASDf{KNt^>aZ74bSU5fwV(E$+PnBLG!5OruutQ?(N6Hf&34TrW! zTi(tX!^G?`NCSPn>9t1W=apz%mM$K1mAUH9x9x@byL*Zs_7HX(IYznBrvs#DXh$R? zC$vY#^;tOB72Em1ocf=F2Dk)Lim5EECIdcw1!*S59Y%y zb$@r8oxP)Y^^$ge*}>}2{6OV!JDW;RSswdj4L+B{2nsdsWM+d0+yi0yoJC3V62k(k zB97TdaBc($=-}`s#SVAV+>Chr&4=%GqLEZCTkXHS4(9FNdeER$?&DIt-zuD2D(xO5 zq4%`Ae4Ee7L4}C~q=PH;uC2+-w9^x%oaw{!{%v)xnhA|u6UeEb8(q}tmj+?;19msw zE0zQQW(jC_5Hd5vqK<7ApkOosG-I-(YmI;gMUkJ7#Jn*7gu*;8Y4M0AgKyoG zB#!D?!?+M5i4w$U_<`tC>%zE^;w9&J^{>1T;10>AGRe-r&*@?+DDl^Rwr7^qtKE0dVtRCP z{ew2Cp|!UwbeUm>^EnPW<(2s)U(;>=ImXrsP#&e9Qm50VeKq;x;&)8!=9?q}x&8jm z0V;0h<4aT%0mPl< zHfsAf{cp>~^@GP#7)<)86QCx**9SZoPyhfd6s|Wu%i1l%Z*7ZkWZEwG^TZ{?STF9P z6>EPSK$)5V{=L%h9?#8E__{5})N+8YijK1`KspALK1SL}%OT2s6rOLyq$hv!-v=KC z{?JCssnBNtlF&{mJQNvmWfN4#YCRI{xv!U%MjiWHKHxlFuuA~ZTTNV6kZY5K9oM70 zW{mcUf;r6886dy0toRc@D^);cLxT`5M>_O&h{yv-c8!suJ4LAN8zV$^jhys7MFrR$ zqhxlCk=i@gqqIU{+DOE9l1Hd0e02<1DqE|DmEls`)da#L(5?rZ{a+(27pi~l%Tm%E zO`D+4*hUGZ__-n={ificn-e^1=C27F2dUcF(v3IDi^?ug3Wd6ku1P%+yRwsV^n0oT zVAF%o@mmjuH~sD$a)`o$@-O)QRP!xJzc(v$-hS^8%-=z*b)1l?u0~r9yJXBrz(+UW zrQx^ZHIn5t41M^CWcXjn6Zgt^pjE!cKSla!ih?=1-?Ds5Y{jCXW(_1>PLZMk)BN;m zdp2qQMKcPO*UqJw?=`0c>du0;>CTw{D?buDA`E8k1^vWj8&Y}EXRJ=jpqi z1scum6a@jxs?znd@4lKwsc5!b_uQp(|Fx~c{9XamM%1y#D+U+;H9R;2G6)78gEBAu z8OtxSO3Ou5-j;AYk{yMT1Z@_s4juwFb>mN=Gf2~}`vKX##i2wd+x(NrYR@2(`&u}5+x&5|k zdx#Bw{U8N2ucjAMlk+@5qB%s(Y7Jhg^Ta>8vK9_C4?pd8;HU1XAL*8F6p&XU6Tbhld=}m+UT-U*^r^nI$;j!6_Idx=t!>O_bnaW{ z#_rkyxH@3-)6=GGb#k^G524y_ftT~anBkZF>8dEomLa=Ou9PnzuF6tP%sk={EsUZQ z!GQr#vA1hziV2toY;JKj>2T3lpE3B>m=>zO4$fGT6KoMjpxnfUo zZ)AgB}S~lYb+gKNQOoQ@!^3^zIO?0e}P}+^Ox% zY2!KJ@j(hHPK$0H8@ zaCEwpn%l;x&Lc4tQG(BL+8RHeP2Yw0vj)p$>sp^#v9vFLI*ggm2UEzY8_c(w56-`i z%-2!y5BYcsFMbZ{y^-T$_9fCSjrllpr2>Zu=Og00eEc6)HYa=N;YQ_C%n5LDD{Fn_ z$Wx(Ifl#27)-$sE14?%!>u6#4H2^Uim#AuO162=CIKPLAo&-43#LR7o4=)r0%OAQ2 zMBW?81>&NJGJxk^k6U(0GH7X)kV;zRTfW3R;FQA){|IYc=z21J_4~bdhhHIjSsqU$ z?T;k9CKJ?8V&7B9`9o|cRgLI{QO7O$MXjVACbV#jzk{lEO^N^6?hH>Q6Ey)k_Y*v7 znxNa1_19*fLW;FvQm&T_&>oD9@nZ1X<9lD~+Q4MhKq^O(0VHIi+Au)=JSjfFP_CPtO8D zz?yk)p5I@Rt4)-Hv*I} zSnGPr+_N#a@JK5nA z%~U;!Kn#OQli4+`j`dTn@FIP_^wuU|Ce7EbUBvXnj?j>q^f(d~|7an0BWIiXazRv; zXF#eY6?nz))VYs%N^4=VX^|D!8he4g;5f*$5-}uyuH|bz{Fs^_Nu^OL@!qZKU=dRJ z=c!WF{W>Zl4_gc{*(W&Hdad+$l|D~GQl)&EfNf(h@z3nG` z1hTZrX_1ALJ=sTCarl&LvH%CJM4eVqx-5g=+AUYkyNWyC)tE;4cMZTl9eoLG5*d<^ zwTsU}NmIMP6+VqITBY^HviC5$!sA*8nnBmEN)XbNd!nr8GdLj3oR*(d^)_$EMIc<@ zJ=_)1z$wg0!zES@UdLI*)SdhlkKfSMuK)o`zQI>R^RRGMhG5bNhPFZrK@q$~;YO|n zI5Mv?xTb>$v;08`PX=Wwo|g>%9lr;OUm#K1&;wf#e8G65wRZj0I9I3NczI#0ljYRr z-X$y2busg;I&W)z_T3+_pPMU300#WDWu{1lO>q?&DuD6d4UReB(B2VK$$F_TTE4U8 z=y__rh=4ygTlAbfvwkQyDlJVHqrytw0u}@U`9m`dhjMN0@a1IPh&>$|2kdqTlPdr` z)hqxm-kM0KPd>=IJ5-mD`F6#)iPZKWhlaEDo!f+xyxzA*{+0Fc2}v#%{AcRqmJ<*( z3{W9-T>*=o=nw}swtD>w01zR`8^!t#xE@;umTx-22T~1IqHeMDwoMarV$iQ@yO}Z3 zNi)>CMz;_i<(ZP$3;xhM&1TCNxcjNA&pjM}A{SCTXKn9-R*AAM1+lMbgc6fcE$-|<+QQ1G3Kba3CYnFkGjGdfq+wrWsAIc-*MMMLx~cZ)$t3Y(hgk=N zU&?{y>ghgXdWt0`a0PrXHm)`5ImXNx9kPHwVc6x1`V6N~4F){d1pk1wTgC3UP4UHt0<$`cEQ&lN$` z`7YHS8M3u}FS!ZmAA1(MyT6r%#5}Jv5NyT}()MKWq&l&M$?#4x7fb=qgFZo;`T|X= zeGk0(gK(=(>@ydpe?QqwLjv~)83D^l4cob)37$(FqC*#ppk#)>#S z-n>oF9z%4F+{VYnATG?SYlOtw)oinE{y23nc(H|6u?u0JF;uez(z~k>>!we*TaR*T zk^Q1ODNy#9G5uo=TVQml$~(7E3HE~u4l0UX@EnroqSRv(>Eacbv(JzszM<+X_F!%w zYz;9p(scQo`aGs0@&%Rl-gVN<-zp7VNYs9fdRV$Y*erg3A#Vv}Xlq0_X0@7Y7wXq- zE1&N9?qY6_V6~k6E&ng;^aF->xY!@7@9!BZ8Ke)}kSC>u%PkatlzSh#pS7F%DEoVd zb;3|EHH69HN2fpe>xajD9YzfWFVZ|PgFQ-qOv@B2zbM1%{sSrt0|)R`-@h*mUpBtE zdG}gFXVx-#aVQDUmg|wkRl5lq0~qQX-#wvYLtt5_i_4FZ;amVf_7o|$Z8V)S#n0rJ zjX&zuRe%&D&jV8~q77|hN?oM?q67y^E7a0`M@#$w>ozgielzyjSfe5~b~^hyINOU; zek)(cM1%!Trh$~oDq2LM)PLweUzJ<`gb+ePfIU>oL4lo;p$-7)xeBJiM6a_-%!b5} zXf1|n5-!kA>PxB?F<_z<(vam58H&WN9p=t}rV_r8_TUuca&Tq>M=M4ZK?r92@fEBf zat#PF=kNgR3ei@G&YI>}>m=G7d z8avg(vN2U`!*NVr$h$Nm7iaA&twEM2c@r^(pTE6smBLY0ZyG-td%xTlsx;!#h-VIP zhl$%s#Qgawu2R=`WrPSo>}Aj}N1P!*0-ix#qx2dTJTk%MP5qaVZ#@a1u^pj&a92 zW}?biPf=6quk|^SpNrJPd(kT5IF>1nhWlU56BAud_aT08%Q77yQC|~!5-AXBaaOn8uL~)jx1m? zD-C|T-UU!ow^B33&0Eu^?+;C&>6e28d&)o1xnsB}<6|Qxrd{dSI0*VWre$uz+rAJ1 zfCo=HgZ8~>$$o%4C+z8SJ@t!l(>dt38wEly*tCb$R-slDkqPT-7&xE!Ey0lzihH~U z@CbfBCrw1N>zN)i`%!szZgf+Wuo-1mTLMa>UC%&M^+APMobyb|nz?62iy9bwu}p6y z_43j%R)r|#uK0vt<{wVT_sh&fDKlXbTZYw|F(?d|xU>8j`HeHJ=+WFVxb02IXnzHG z*j~oVF`(6(j&ox$jNze1?&8 z=v4aD0RrRG_Mr>}!!=Pj&>S@l;;3l6&Wy{x}DcpwQ)!Ev!Plg~JBizp9{* z;L`!ne@o}Wdl0^RR8jy`4(EWOhYi?Qj;9z`|A#-#O=u;gHiOwitc9v}v?1klnQ$tO zhNf|nUps(mx!LCd*C2mwA}X#yLDr(F^H!XZNhsGT{mx}2V&lJIo{mXmc2F6CgV^Za9=fHK=6K$aNogCZEVPDnKAi=GGXG*555 zo;O?mE)dPO;gyNJ@?i>k`1#hysgSsQT@$Z?-LFn0Une2s87$~1{pwlx$UpgV%`g>-Uf{XXk=KxCSQ$X!dvnPj%7TsC?w@Ww zRMvL)M-8$>&Y=ikb39Pm%BLy%0&tMu&V&!hR`w{%{8){RcmBc7B_JkEuBh~{H_Hp2 z_oG)hmtI!`HL+vmUXZo18?)a2m}bZaen{0-`Etj(tLw#h9!{U&Pc9}xCFFF$8CHmq z0z?q_KaRd6U48J0^&ZsZ#V@S-c<=|o!qY^rhgEN@hME!`c_Mfa6Pe8wg!(AjJ$PHJ zy>a6pn7E_u=+0xn#7*X5n zSA~-HQ8jj0m+GAn3*t4^$$gec-pa9`a2wDv*;L!HAK`r7Cuo>+u){+X$0#DbB!dv; zWQfY0yi5{O3PNLfc@CY2gFVVsEKq}wi-$15M>yiVVkpcYp$x;ED%ET#2qh4$D zUkF;>clV`{Sd$KJT;cBFet-JUnr zM*<;l_dx=ew`q=7!UW~g2C8{qvhT3}AdpU~IyT8uGO(oqy~>E_1h-$6fd%Ai|Jq1S zx8LTyq11pheJg#R@Jdf$yB@-G`Nb)}2k%)qEZKJck&f+lJs567npKnu9Aps7 z&a#y15cCyPvL_&vz)2GRQLh(|v~a4Ma(&CvV|-f18+`u_TpasDM=X!}D?IEotqwPh z;f=G~-*5bjZL zxFo^;xG*s*G#>$!k^Mi(&m$xDw*1mlBg)ZvfS->}Mp+~J&WN(=#g6B^vnJmp15e13+xwFE~M%}b1o%c~2oasq7q zv#}?*bIID=0B(M0)menHURf0!F4ld?AYKI>nj|~CTvtPkQ(_(lh7OM=m!r!IA6W0j zgKVTkc78R_IJ-cAql~aSC~|ukZQCy|$qW08P~huXk$7z@#oz>oA+Ly}s#QfG)Xy2U zBuV@teS-DL1tvc8Kkpx&+&DsXZ<2#*f#R+2&JPV$?JD>}ni%o{Arv0w={ApN{c_%~ z8XpP@!$x~Fa}@Yeh5N^vM5V9U7`SvIR@rk4%&>{ zrWs+kn1wOf??R8%m2~aC5yeD+Z;xR?O>=J|w8%dVhf&Num&*ZDtRXI71hSGDn(v_d zpyGY#Y|j1^0+i6`a8n?18Oj}#{-^s^u0Q|)I8x(|oZt9@GYYx^g%J1;nn(&;>n4H` z6%jQf$SWVWJmE0f3UW(`j4KBu1_|YaP6AOJ=d+Sdfe0Y6t0yqk|I-U|6$EPKDNU>$ zUhz$m@GoBsMyQzl|_i@$d7dy`>#P*bb~piL05@! zlO;>SIVt3?`+Es#|A6x17ayzyc2)DL&7^TNpPG3{gZIiW`c{ z+~s;8bh4zrDs|TIlFCJf1L8bF)0^FYEU8%j9BUL-enO!iKPCqP!+}OR_h~Ynf}h|J zd%=aAQmgY{-XJpv3ULyUbB0m5P8#11l5KC#G;W7P3x5Bec6?C1f8!5{^tCE?@)2}v z)0J3b4b%z&UJwy6mXA-2%=sPT{|-;J>F~}0ZA}#&H;=dYHEs_jrXtmqJJS;y#@gx^ z7iTQSeYnJ-(u6t4nkQCv@~9tG&?xcIuE&Q;((li4zI?l&S0G1p3W7FRB*nr$WL{G8*sZoavyjEHj~ckuAVuiL~9^DOc5 z2326eR<~T!G^vkK+84znHXIZl`&c9jI+EJ?83jD_6>>-djNtaeG@@jsH;Me z22xs{i-*}G4ph3in zL33-zo*8|1iH1}&A7`@~LVD8u>}T;OHrF_0G3s*jUpsnPCIJSvkR;(=^&4#8d*B>* zm-*+u&rrx_bMZ9!=E!m0Ax)(+EBEd#_Qrg6eBJr~e!tBoQTBnaB=C^_QDZmRcZ5It z+u^Cg%KPlRLJ`b&&@hzku|_NJi$U5}vRC9=YWjKEI^WF3 z-$21J_I}WP31Ztg-{J2>)sNXAaLI=NzJDB}8Vr}B!wMUN_G+*``FXGReZGqjhjp%6(2354H%erJR{Z2{9{*8? zgQsRB6h#{7`Yr}tElq+9UD;-erCw*XJ$t0&`F?ECTO9>E__ULbEJu%nAdn)Kt^?Ft zdW(LMEowbl`NNvj%<-2mkb;KOWi*;GuU@kDe=A*)OoM~1Q6R$T;);|C{6xQ zvP8gM`3+40^5pFpDGVAUr;qMH`jjU$0^ci2jenW_Bwz2(BPyT_gOv}Ic z{9Ey|aQpC<)pqhFlEz?KxXiJHIF%3Y@_1JCs;bca8W%5X9TR(vtx(7u-n6v742b|c z2bLuk#2h?;$+b-5tZF@CBh5pA3xbqnZj{o7tgM#@57LI?1Vqnu2+zh=?OYb-Y!+(*B$k%sLjst0Srj-hT zRal+qLk5mV)K8ws{j^;iK+H!MVe=nED%AJlJ;rUQOSB|j{v9u+KVQCOEOn|sGF3d` z*Wg>|KOuNN9lwy*lCnA$O5YW{ zQ5USReTnTX4E zUcZ4n$Ws1MX0CbmVqozOa9`dXxzSMngAx8d>i7KE+Kozo>@hT<;*}fp(x%lfpG$W! z+~WfXXGoS#_xz(sA5qnlD~Tu&qqTNM4sYPbZtKOi4?zi9_>Q2KvP!HZ+;M>3Jz6ZN zMTnYI6X3F~sKY1NKOgwH>^f#9Vkpr<>?n-80+oV%Mq^xlQUuwwx#JGU!w9S~aGHfM zd*wMVE*0kBf8bmQe{pOxtw$0w^9`-=vX%8QONGj(V;0ZAd*AQYFh@iM8M;_scG1v0 z0))u;Ugr-gQ58+W9DkB1t$1G(3ws~wOBFFaE5CI;9fQHQ5~LW9zA7@F1*<$Al>+uvYgK|1OB9+7Pdk(*~G z7t=K^el^F1D!-)Q+cGk@u)>)YVg8p~a`V&NKr?y%RGF+=fkz;J_ z9*nW@01O~*`kQNhRqNvxz?{bAv6Rq1Y?_L+?fme6KC@g!ph~JRCoePkq0z6jumNt~Kb8pUYPJtx^%o%gy}ZxFzx=a8+Eo9Pn+=GQ_>n(X z3-f_K^_SWsXEBS-;It$yo7kCSv1EU1>~_pZ>VGx+JQL@A72*vPUV0MAV46k76;Vy6 z=isi9eu=->>k9niO1AZGjX{u2F7px!<-KLYpXXfnwX^SUBDGE1y{psLhZe)^&#|UR zL@|Ie_+*tSQSqBPPu@o30lpduppLidaVE$Q&#Q|$49Lj*lS z?_j;9sC#2UO{8j>wFjW-+#(9ObW`{dG7mdGyl?K!_8An(huEQd8!_T4KQ1I@Z@Xa+ zP$WkgjBc8+;o-meT4mwm`Zs71q9EVooDNrmhh&BhBdEk#oV8D&LoYZb+i1UHiHnx02F{xwg>lT>VDCx$M#NFHU@;Y0q#fD@6=PI zH#Pjw20TEw!L5)k25QgK)Bty?$2v)V?r&j4}5gZ{KTa*=rbgAFI1A=uvw?zSoQ}5q*6mcJof4!DP`u$R3 zfU5v;=AJu+%4?=z-tO~UEmv_j2_!vQA<>r z?n2vSa9XSfC`?)gb2PrIG5qkXC<25ac?^O&$!PL*Z(_!&6Gc>FW1H0 zzzf}PR>0}nf-0CXiu-7VOPAR%*U-}qiTC#+HLM>skPg-#D`JWm#j^Qnzc_=^5D5Hh{2Gnf1qCoP>H5yFUr3tT0jUn$n%$cPyz{ zW>Wu%nfHL(1gV3}AR0|Yhrbe6Lb@6!*mQpc2Vu!zI|3p5fK?8GLJUa%9n#a0D$u)# zee}HZmsGTs?C(A&-zsjS4o$Y*(ctS{YN-$LG0!jx7du2a3DjcID9>e@EZOxgMV29MFXS>9Yk?Ws^YRE~Y4WL%bUIT2)! zE1iTpC$g=919xyV>x_@nRua2gE3FNKN~Z+7fM^0V&l72F@Lszxac1v0dm6hPeq%_7 z&r|cb)xMVQkKz}-yk~>Wu_)_!M$l@PGcWhoRr6KVKrYwaO1It{U5pavCDhFx1|Wzq zHt8z&?kjGXYRCpm zq|^JkeD}@g)aH>xI4~Ds$PyPE{Z=~5PUDYkCjba$$eJ>0qCEL@mXakA=~V0(pMD|tn{r_Hetw#woC~CbH{$Q*bom3O#wS-bnFRyhFM;Re&(3yr zHmIT=y$0+(X#0t3`m{NyJXSK^?4DiXzhWRqbL5{Hh!Mr9(| z4%4{x_wjLpcafmW7R#6Wz!n>>R51uwheBR-uxYLvZXV1*>Lgn*e<#0Ft0vpN*Es|t z2wJV<5f#!7_A!L9PakJz-oxkpILd_6T0^%|aBn@)(LG8zyTn;l@zq2(k}MoV*G2r5QX- z`ok-wtd)|a?_Q=h75a<+B1JGV1{KR9bElDq_o`=upFgy*nO(PypPv%Xa2gBh%nQ8Z zt_VsS01TB<`WC|4k`VO>Kt|x$9@q-t1*$`c=mcH`buNrjJJN6I;1z{xcV}f*Kh%4_ zq=S3xi_WV>uq!hBL2M(hPI%z+SS7wJQ0F~Y4|X}4V(YZWe|*=h09R-}BDE6b+UOtI zzV9Yfb^^32NgJVLSo(6@>?ZJMoL8v2;lKOl#e5)d{6i*HW;ZW65?43qSBtZ-@ATo( zmD|MxU3D|$PNw|ITqKeZRq`R@Wm>C{w~Hcq%;E%kg_1E^yA|hXpEW$uTrkxBPY8TA zWH671^jQqw9~J(?>YFVFFG~Ln5tOIw4TepSk3lyq!qV=u52{4Vi)aTSSOtmZ{UgXP z+-RDSN$tIMiHh`sWpNv1rUUQjuRdB3L(X!i7iglh1N#>NUt2qv126vR6lCi5jE>gC z?&#UR02Wh-lw?nZJ2AEgvzH92wG^(bN!K8#vn^g>n#5tnDq-_Zn?h?C#;YMb&=m8j z3mgaJXa30GnI7*;&5#hlmyRiTsdd-`$X5!^k~5?e;-@}Tpq@wDgb0WSH=7KfiL=^G z2&8q_@(Qr>rTsM&E7lQFBpRwEDl7)z3)5-F4ed5nu33$Y?WHD&12McdjC;Z$3$wAB zd(Wzh0&IrRXsIfSdWn~gzZT?n3yAIJn})s^W6`%3%DzmdzjYqUt#jrl>_v`*P_1pw zsX3rPPF(a000000000S3dKOtTz;w9?zUGC z23n4aKPH;11VT<^4BOZT8U0O#l$leHyZBMT^$#c7htQod*EPrR0dY`;FUpiOt&76w zWg6afxlXUpQ0QNCspy%7Me0eB{D7HO41xMa1GtC`%lw#2U1rOMchzea3B!9;o&IzM z3a<*;G$SrYWkA*@a{ihC=&wZP(qhE{zK72?&qp*wwUQxylTbH}SwuvXq=3t2F9}gU z6IV@auId$3pPu55#f9lvb6gDzK!|eBqgDWE>9y^*;?Y6dzdC+Sbk423h<*F(F-5Y5 zJ!qK7HWQw>ktN7-={33p!r$#eNJnBsUTQr}2&3KsdZ!2Y!@I=W-vkFno9rNqMc|%V zBd%140eF|TbpO+q+|pe1>;meu>3=2^n^A3gr8~r!zbEpMZWqCp>{h1Du+4|*(C zRF|l(V&!lT6|R)@Q6|x*EB8K%5cqA5^qrDfbHB2g+R`*#mWn`q)m(9UUzsS%4icdO z0|nDy#oGRQhTZ(29JRDRJh=Z2?rcuvs^$gi%j(Ho{2<9_c(cJW{XJrR+d{M3K_NMZ z1U68KLtHl3Y`UAb(VIosiK^Wkg?>)gh$O0{pL!>-DlvK1j!_OdhLsUDy>dXAX1N}O zf~tDkG2~{50|Zr=)r$-=7?7W|aTLwVv-C_Ila9mq(ZsUl-7ipk(c3rOunHJAUoIzI3cJFrLMjK^QWxJpShblL>! z7vPBD{f?t>lSBCO`F8 z-{GCkUBd2l>~jFqN3)Llm-qt90B_`s^hBp;W~|nOr0RxX;g)C+daNKmNZc0o)9N=Q z>U@69Mta9%BJcHU^I*>Y;Qcfz$oc%M7ujw^dBKI5T*_~Knx6OP0pUM`_%$9fIbuiL6z|yQxLia)VODz#Nw$8a1)u zPiAa$un0zmsu=!{bCVLVXa+9sI==~o&px9`*%Yi!@>??4HC(woPqUBFv&Q$ul=EuW zp4HFzk)iV2R@v0CxK^<~--v`9K-0GM_=C^0XgYvq&_~c!W_qMXs6D92-CH(z%W9!C zWPpPVt(a7OVr$%j!SZ(dnZ=m!?L73_dWg-a+)<&(JV_xj+YKS3$}Wfu)hsj>kX$DMdk+Va+h^Bdjs&iM5&S|rp}M1A3dF{gdO z^05^O{5Ma_u^pj(!C1 z3WH3&gCioKG2~7V7??9E0~1M zJzz`r#%3x|>QTYR2VR3!?_LP{tbDE7R-nvp#5W0l+!+Ww5;vnl)?w@Vwrhp6^E6@s z3KdEo?;13+>1m<`fgjunTzP?RK8f70K-rs8%$SgjTlPhN!mqbx-^aRu=!r_p0gi^Z zxJ(QAj-H&3xGk1>lXZ@g>!Bh{krS#a7Zk&t%-e=&PQ1xF&OfwgDJ|_HJybALSCMb5 zOJ>E_4sONn>&@PSX3T2<+2aU@8@jbMw9+V-dnX*WE(6C;tKW(_4ZhRZf8L-*s>FAS zYLIX)0~AatWg%_7zb3~{T_tH#G1&Nb&k9u8$nmWci75z86 zbci-S`NbDbDiufd{W%DKBfokMJ{tlv#|-y)*ON!ol3bMI?IFly!$>}GLo@g33GIX> zvgkd3sYbjx0mjl^QR@3PwgJccI1W=kNmc5H7dIlSn~W&om;<`l`-nydk^O5$V88N z_?Fm-Hm$Wt*yzqPv8<&Ct_QxJZT)*n7!(`q;~inZmjK;n74uoAVaR8(nET5?R$3hr zp6@Y&O|sh5Y2(l3Dw}p(F!P%~r^xW6ud97=jb+}yjQG1eYoINI#ubG1GA4}sh(0-@{Q1WfPEc~^6^G|?b?O-Ujl$mj^P5qIIS9#g}y`@>g(+v#v-x$@~u@fL+>n2 z${}{YHR)t0XpoLR(yUXkxdB6rg{Wy3@j26DOt=0>I3O}s`q@OtsiOfl&_1v@v^;d6 zSf=FUl7xOss<(L<>ZMe}>z>eVzj23qJb+kCvzbYbWrB>DGaPdYUWhv0-A>zrc)ms9O^I}_qh+2!sN4KT z0e?2RsV49k(4-es`2zNow7pU6o~BFDc#;jvCk*p4!j{Stjz9dvY;-iNb2f{08WHYG zTnx(wYGB-1w0Bs}t>K{6B9y|1QNH$I!~V*>I11x)%e{ckm#|pj)kiI;c`-Qz*LI2E zFRPCJ2Rx)_Q3a#&@AF~y@qxfn_~xqR8e2u^U7cn#;HQHI{CcZHaGcjzyaRu%p zhmH?koZ1e{4Y?qFwX&`-o3B`HFAW~Nr<{p7C-c~Sc=FC|Hi3$YC zMp@vV6rUUzkkwmE8Xmw=gXigGRc6(OeMRVl4L1*1gH%uldHvH~v{gYu%|7Kg$#@ee ziS$n>eEc^m=j$PE+eK3MjV`2Pk$hlYR z?s`Wbf41~gMVzD!#K9P}M7>K@mqx?g6fxRl%ZvH&IJ{R1v>TI?3xQ(+07%9pxWO+Om zLc!VYrVT7TGlE_%>yJI`h;#uBOAaeND#0)}=~@wuh{T3POJ?(aKp$#i&;tVF4Ct$v5q&nG6aK4z3&68? z^!Z>p?C>jJOib|RMrPrJSx;$L%3&5`wd<%eda|@~lVeKE5|HYZRfq|6u2bTL5T4Sc1>{8HcV37i*kzyV;OPA@3p%LAaj($b1z1jD2kgR#Y#g#k)T7+Nlro*xZZd5K z(8);>mOix)l)*)bOu(Ql*b$ejFP^y;vxg9Z{e%LZYbjwxMLl5a(k?O}oQHh7l=E+r zofTWv4$j_-=?w;SR982R5uz!ubDhL>PolVV8IDvoEJm<0TMPk~(HD?s&g}0Yw?+)y z2g1A8^H$|GeB_q2Ai(PB{4^PVvdLsF7?^;vw|OrpJ3u)1pG_g3Y|J6qY!GvNM&ZrC zgh91fm}Ca~&(MV6BKDNz;orsPz?%cGM7t!}tPMkyS(5z|jSjBTJT^J~r9`i2TC<|;%E0hqa9YSyP7yv*GIron`GG0v)pVETEn3)E6ZmG)@ zB9d+la(!V7h{q{xa^@Dn8W$<+@_~(C43cQJCjeQ|j#AQCMzEUm<$MLCEJa2h+|#Xr zmXhr|yf(=#036C;=l~GrhYVstRAaQqOshVUAmK|zr4)ht8zGU0P=$ue2b$;i^P}RO zdHL4=FubnC3N-Zd+?)YeLP%9ttRISPMGadq}0*|cupjiK&y|zzHd)pwGL^%=;lpZA-cyOsV7;|4J9ZEW+)$j zZ3exS0owGV)SX;Np0!#eOET>2K5e)hKGZN^#C@a<5c86R==u7s{I)o`syViazX`RP z2LJ;75Iir&DiTNf_b@aO@-#)4cYaEca}FD|5GB?tFOq#oi3#$~`6 zk!WId$OR4`f&1%TP4=~m`euURG6D?u0bsv3NT1rxT$C=vP%orgeWI6L$%rj)FXPZE zzibOv$H!?r9Xxm(ShmD9I5QHEcBfzV|5oYH*T5r4UkQ&O4Jh>khIrL*VQHBg0e5aX z`hLCb_1!+i_JCx@&+Xw)$x9I4sEssYSo6`tA|z6ILFb0 zJw_q(3vlbTAtK{L_qDp_G5pBpy^B9YrwyLPe?nFWPXpyGJ32pmAJlLDfChLV+wC(kCKyTodk`L`go*!D0lZNd{#S$LSMYn> zd2}Jm@1Rmk@5mbBW{rzfWv^^Hy>+0#Q^eb(9;d%VpYA?Bi zRdGrl4(-EiJR4-XN{`CTXylX%%hDu{*$}ayyrwnBmpf31+Aj?Zx8IqhbD~CKERM6w zXKszmCPCwACD&iyQu#n{Hwg}%&Tt@f_u@=dz76+Z26ttT&lE1 zj9w|{jgWyyXLU)qy!s1F$a{%4Zc%vcE-qR@l%|@s^smHQOD2j?ov$LcXSaoo=73`t#r-~)qjk-?u z3h<#v)Pt_L4DMWll|aE(zk`yk+fF2wFY#~ORdD4}b06K&>ODWpsUcJq3%`%sYULmu zY?O-EM1o_RLGI~lGTnA$&J5A&WNPYS=U#q_CBX3H;? z4?^uLk%rL9`03Ub8YEm4g_MNvj+!80FPs*bC3%;Q!mvfLBCi=R22;&gCN z3B=9H9;xeS62Q8M1rvsZBeZ7o!8~#8BZdu^bgU7O3bM2BC5fxJSVSoh>K(-9oiIi_ zDyK>MyRYnoSH1JNj*S(O&fBF^}fsuV;tXJ*5h-+B={~Ox z_{mmeLkoIAZW7XzJIAzBib2yUuh z!5-k3>|dqeYpwK}6xMand7{+h`H^YHa+Uf*3e>D2yGH=kf0V*LPRx(KG;2xMk3#)7 zkH7h|gS3zv`u}_bt9Gx)ACc)~s4^v&6NZnul7E!x`ISkdX(p*e0_N)k*039_m>wfrs)D2-2wA^KO4O0=9M&-EbFRj2n-y8eHpsMq4!4$IiJjC+!@eP zHcH$0Vu<*2Vg}djZ9_<2N4;|Wk{<;HI!qUPI6?G2^KBi^Qk`>jtk#?kW;(Hc8~N74 z^vpWfNpbP%&aB>CgIvjApXzUZn;TeChp=}RgC2yk`?mhk!b(;LxNps4f%x)dU*E>P z0!Az1Ft|lRwlS1i4>dCOT`egU)7G}a%(wS}1^L-4h?&&nnZILWA&y1};XPi;cz}@=@L_DJC7>zW)nfp16}d1 z3G!SE7baNE*XQC`g-YT8jM0l)25@ur+A{_k*aAmVoutDtFDR{ID)&LKaTRbU1t6#? zd>b0s;`?!}g#I|9cr$=FBCVin$VV}snaRjFKU;h&4ORPZo?OLjlyvnF5*Y$oM#||Y z#ckM1vu^$-wz{2Huiw=6KKe3{8VrFmt%hckACvd8=h;c!1!G%W9hH`IxG;CaH(As* zQiAxyt(=WIkeiVSjfJ_cyOb92;xNFc9_>O4+G%UBGvE!F01ntWIKJxNY;cDiL$Z$o zX-R(eAGs7j`}&3!;5wsj(vd$O+cJR$-%qt-HY;_19Yvsj5k^RB@GxLeu)ZFMh%NM@M?Ax4?Z|wql}e zGf>uqYD9(;pnzJzj5A5;N86`u&%<*d8X~5gsv*<5pu&u5NV4{6Mfr2|F?vRtZ|G6X z08yjeq~cmt#mJDnPcG*GuVE19k0wADXo&L0T-sr8=1!Cmk-Y@3h!LZHU!qDl7Tqmz zWX`1sFw z5=0e?POFwKu?z|X&m9$bG{3!Taewym(N)GteoY5)00uufmVtwA>qN9>xLfQCI}%t2 zJ_VW24{TB)>+zIKh}lc1NWY|T98NChbS}VF)iCPi6rV^?>#JYiMu^!T4q+%a;{uHd%|7)l&s~g9XsB4_XS^8u&ENjZ&SOh2< zerkZfj0AmTw3O_Z)tD5y_@3ATIGIg#aJDGD?KXyDe14G%eMVA!)Dl}BK^2Mbr>KOE zu6q&xckr#pa6i^_eoi!8z)(_Xxh?9GHwOCVW3HbB46dV6!qNyc@XpTl3{?NZ z>`<6i{P2<*dI0n?#mKcd<5Dz-@kx9H63NN9Mh}v;iPo+_eH=zDl3a<9zlG|`MY7@- zakL>WiZ%0>{)S&KFV4)*_1`qBR{|awYmHVO>q-xZC|#Z+SHlBz;0?17iCC0rM`(J= z@#q?|3Fdy6Mze_1{CXC9220G-wIyn3MUV=jR7M=IzmD zU<|gg&H*+dxcXXqT)HUlM^z&^9z;+;-p-VKZd^d_l#F-4G5Og{ZK|_)%kF@%5}=JL zwn821L&!qG8+M+ud%TbPR1R1}8>DwPDYSdM~VSz+wAhW;720_CfQ=$*23R#Tmr7@tUi=e;)hu5Ju0OZ zyUZ-e#62|owEVs^^Qi#$4Nh6=tcf*!iuPhve3?TT>Yt*>Vor7NGvpO-Mg(4xxt^eU zKCoC92$t$XVUXKANHHJT0ne+~9YYIVCKqNH|HWwkml}nyssRc|5&1|ao)mQsl7Qy6 z;K{0Rowzf4V?y3@bU*MsY&8DJSfC&teXb1&)UIpJ62Euw{bSL%(&etDs*v)&iG; zA))ksNU{T6@qEGS+$wNukTV;yKPU(Gmu7ZQYdBH!qsh|E5ZAfMY%YMxq;ME-3gCZa zJXn|qX;Iz=Dgq0S)p7ZeyP-dg?$2(lE%%K>{+PDlhORlpW43QKcZY3<#o@>QQ0&lP zfm1DU_a{%Rl6JJ{$I*nZERxz4dy&j~G+V!VSJfGAdD-G9M`!*u!rUcGqL-$gBk#>( zAT1snLNPYZbZQ~aU4$x&tRUH>+h=DDZl+{I9!LTE&mt~ye~uRoVGJP!JVeX$`Vcy0 z_iabvF@WO~U;qdK7n__{lrT#r%bddBi_tc;?*IkiUy zgLi8F^00000 z07=AZI|#81atXZRN~5v#VzF2~sMqvz%KrO2g+5`OBEu@$jDcvlfw3!ho|9mqZfa|2 z6sT->0g`cXNDwT#EOFd$ zI{E@V19)isf)ST>E5{q6OkoDe6hXy|?!xytYtgs=dIz-+@Yy_YT4|dVp;;=KxKh7f z3Ry=mRoj)#3e4VD0Zn)Iruj=&?TKvJ7~3<>(ZLDR>yQjR>Wzw~I1S^}Ky=YQ8h|xO zD#%q`w2fsVdKdid@F(7rJQ;+}1fx}LWz6w`_D0&0m1k-(iEHpNd+$(&`4C!0gWxYT z`b-0raS}=OYijIZX%PSry*x+wO%g;IPu^|OVG+=+RM05jVzepq$i{X7*=s;>w*yo6 zz>E-u7vZB~>EOpA+3aUJSqY|{UIqfaF%ShpNeNuXO&*)Shj`(|8Nx1r;-I_Xh5rTs zE=G;3K)Y3R9O0}$gyo~YF9k>(;!XN1JQ_9I1#9w74BI{}exH38PWO{0sQW$cCIX8{ zAt;opW^31AR2cAk&7MSJ+E-6@cNwD%dXlB~v%zh)6WNd3wo?`^;_gx~&r?2?-hrLm zkckh>Ng*5MM6N+NtrbKCMQU~Le$XzYo`mYC^s|f$pRzJ$w>$Uh5e(Q9OVUA#RqcE! zV8Yak2e9zk7>GRnAi=rqwu&AS6%OYQIlfm^c|I~AEIyH7C2X=+A*^23>nFfWc$|vQ zhNL52KrX39ki}vRh_X_ixj9$2IOQ_Zb|$|c(aHZu5IE9`OLYwrZ-u|eEQ3* zLca~~C2oNZckzwYX+Np8u-|vx5l|12Ar*mH{~K;RHM5^TRlJfIXPHXo)q!?k}b%3WtYyut#i(|UAq-Y z>%lA1hy04@XlB-%PH3M{qyP<>1Dd#b=kHN-%dz9Q4z>SbGztB8Z zg*au*!wP`&p>X1#5G>j*CI}^{akk*RFvd2zpi8lpRS z*@=(G?o%SFcIi=mE|(4x^=IR=HcDn&JnWW-rOa_~2oh`9fQ3$XyvfB9mUa#Aci+<_ zlsXbc;x2ljOyKR*%Ub0md89wRfDI6nyEKUI{=^ zcGP<=s;O4nb66+?bVrz!dA=K|p&BU&YYE^+Uf>ZjQm{;Rag}rGMQaM1TzUjwCgyj! zjx;Coy94fKP3;6I_m4BBTlpo!t&W0Ejs zcf4iCriPa`sf7_-j33*)-Gt3iuG=eV!o^`q;}e4JyC3J)Q&U#o+vv42>!azb6M$_< zM%3dmRH9eXMd`IOIAAmKl<2>ElT*`jiTF`%(9825INK_LowXSmu6;A?&$#$*|4cb=2<^ z&w!WHSe#9MXMyEpNFBRl1s!ex8VwwETKUEX9H_xF;iuc@%iWgurIomV9yChVQ3pId zYy!KqYsSK;sVl=b+YR2r6FCU8&Bop#HV01GV9>FPf`eiwe^(@%d1siNA@o*IBPYTN z2`_f=?)bTYEV9GCOH`nWy`W%HfT4E}%kd!Jf6qKa$2I;I^q+dGKi~Gx^?5xWZgayd zb*x`%&AL=MD5E^m+HbvGc33GWRrx!3?Ja@D4_!SJC>#UcTxt!fjkYV5RV+ck=~wb@VrI2b^OfU1 zIC${BbKo12*G6@;TOjNUL^g0^F8ME%-nAVl$3c@``zGdb>Q(=zf%PfuW!D0>ZD_3Y zEw>F^Aj3o&;$A5Y47^d*cVtTui9)S8 zTNs=kerL7b9vpwBZ-)mHhWPL*Z68+j&aIw43J6aY93iswe>*Z9q=PipHSZ%}001~; z^|k&C-tHdev88|!CNlid=UU=crh`td=|UZd)`loa&C+!IZg!wY*5@>};A`Ue50KK} z3y>0&ue1IW^Grdm+Hku$T6?JVB*Gf;+WceNmRSH^n9)%+FS&)Dki%VVoSkpy*XHmI z3wYc&I{-Mm|D2T0CpzY^{k*C|swpv({ew@R4Jr`sr83eA+w|^O0Z5}-jfwn%cS=cu z*0Ddfc~{_)2eW9o7QbMpj@a4yo&pnUp|8pujygR+jyFBv&-PfZ1@G~lznf(!HsB2^ z9wV8W2fG6FC560LVyah$-EG(!V^)*wvg-*exL)|Ci?sO>-h~nk62_%>M&lM(?x-YO ztKPSosDBDA-u!`-R817Ir|_uUYPGXho!s zF^33aJ=C{2v`1DQ$5NtXc1k-w6upEaWgf!mF2^w#f}dKs$NLViPJ1c(!-^$pGP6De zWxK_#piGK;d7y1<13%>*x&VH%{NsY5`Ni$0vq6ght$KzC=iwvVoMTQ9bvE*>nMiG} zibgfCADPpbz9_}1RXKbroz_74T~AwQ0}Y>bX>uH*H1+F7{{NcC@lcow4H#iQr~i+g zH-@!SdhJFfIT&eXS+=9yoW`1ooX5^(7kmNo4fO z={6VjoQ3jzW~+$0`h3XzRhiAU%3!q0GX}k-&lpe{}@JWoWWb?;fz5a{F6d1y;E`AR6k9Q zaK*<%vK#I%86u)p?h5E{zQ(O4kXFN)v8Gs<=?PJbpj3c;is)xwTy*Sf0*6xp@bZb2 z(tX6JT7roCo;W zYJod8OjvF3G4r|qzc0@n%SUxnrdwd3FvQV5n7o)p-IJn3)v-wj_ucd8MsLn3{elUj zjj#@u*~`h!!he?BSy9Qho>RyDEIEyi1lDF+2$NPR<$T}lr^8Z<3Z-}PgDi*5386!# zzkiP9!4Y1uIAu-ci6h{@sUyh?q;8pY$szkH_U~SS?w_K;e(&QuvdoO$_U{J|22D#e ziJK_m0zv-%h*BVCWe683YnN?>CSj*r?3j95+T%U`^EVu__BmR2J)7~uF|GkPNbT4S zaaVY@!u1FF{#*?CJiK0E!=7QWT~UDQyj+YsW+_QL?81*$ zWpALKfdi(9>ouQl3?$bX70Cm6)W8G-m&J2Lro2CP#Fgz3#im5*N;t8#M&BVRaml*9 ztS@Yk7&IIqbtG35fTOfCtwGh^KHp3GDBBYcO@;&fT~dkPN0ARgS@>R25e3Y=DoZ1w++xh}>d?=N(I zwBrL`RrSZUC#zU*DQw&Sv_F9i`}_#~iPml3|FpysY7kHN^5@~On1uoI?^KAx zh4AA~hob-FAVZQnXuH`)YL1!!F7&)gDic#HTH*rf^aoM63ZqwPwc4%5_^JnfNHv?@ zwOedK&E}MSn8g*)P&s$5nzRjxZp1I+GqfHFN^>M7-F-pW>?E|Zq_+j5V)|1imfg^y z0=*ZI3Feb__VU(NY^BbIyR`j!9312m?AY=}iR3y{FlG2C^Fu|8q4Mh>dXKZa;mCCYRkahL|005MuDHUm{yV7P8(&4Yv1w9Dz{gTM*%Y`8s+qte? zBA?Napa2B4qqs{oR1>}8=ZJ@QV*C;|j0Rc56JJ)OuWa7}%uhKJmlGv1cWXAgcoxk& z+=sn1`z?sSLnQ+|vf~X~n6Y@&mRf2w0zk5Q@cuCqMF7=XdUhh0i3s$i>GhEDPemEu z0Vpyn(*O5GmCBP5+${`*oUTI}lsr1mtQR@ z7`%1T^OUCWdu~AhgQ(|uaO2j1%3fV_^W*6K-paMGRmc50{^zG2M=g&2>3LV}j#(3x zkj20<#EU^e6_z__O;E?Cox`qwX8?@nz}VP2|IU= zGC55l5;ZdfQVeE6T*c+_9mS=%t>n@g@|KF?DlmFZ7AZo4^yQlTCmW6qw@F$s#&ubn zyNb#jJ3`Bop5lU9+zj8MMWl<+ViQJ9TaI>Z%qm>2vqvgUWhjNn?AzcE-*kplN5Ewb zLkN-Z%0z^IZIeF~W9>LHyAtatCAFj4ay2|$yfWOtRjq~am<@|_ROFpsCq;~;A42VA zguOY;T#2dmI$tq@In!Bp=btB#!Cx1R5S6nyR>jY3xRT1%!(y#JWCX8LAwe-Q#M<<< zbzCvaO4*1A;c6YCvA7yP^;9p6IN^XvBO;JQ z#%{alpdzd`OWMqJncWgY4V)U6j^xxa-b+gY?i>6d&wgcH2ltY#x#v_6I+P)5PHj*` z!WEobn!k`qcie>!lfv)EkB_`zyr5*2;gDvEWYN|L-AZG!|1$^;(?{#keKbUnV=-b) z-X0Jh7B&BrI&i*AP*oMLR z?Mz{nyA9n%>}{hDm=5do0E2;*HH*KFWpJzb1)~Go{xjjU4KIs)F~M$cES0KzRNa<& z6p^-;K1pVLC?#!ENG9ax)ly{7r>Dme5+acY$~@rKsHY#kopq34QsClAzM|qa+f2*E zg#@`R9EQCbcBzXRvPwdPztLUR4Y0JDJ>c1q);h~jg6w(2q|n)U1m>gzih9FNK}kBetDb zv7=|a`1eF|RzQ8^xL2!x8bTK%nKO*GyL&CeY=o!HMz~dX)Xyu*2sRv>bKUMH_m0hx zKuzCh;q)`T@NwFPbj(STVPNz8X~FS*u<9TqqO#*MGv@`$a~Vzfb{#B+obuQ>(`iYz zN^}m{6}AjGpw`h-94|lPASGk&y%c%bPhZ{krdxNb1rSYx z_(}%yvLL?h-Q4B~P)T&H?K`4G>UVs$L_ZFR2$|ssaICE`j{K;nv>^Jit;jdh=FAr< z^_MJ?AE(8FG;8B#uXMOVBG0ATppMc9DS`Y!*~L z6uqzYm#RUM)du#ddsOHKY2et-1miPw1s_29H13@tdCjEWfmO0&FevAj8~?9G_s;07 zta`52J`yvAIx}e@e|=n0h*x<@toEDG>PDHuLe<4Bi~!ZE&xbrOyoCuVEGvHN`tg48 zZCRKO$i4zw=jq?Kz}PckRN7yZDGOhdLf9Yy-#TJ;tyf^q$Harlo$OINZ`YpyYupHN zCJc$uzt&81OWOvMQgFW#d>jyy!?V#1 zRDLka$>Hen9}sOR2_Qd#EE2(MX9Z6BAF8fa{36YSY#O z+Qc*Wo}8COjh*K3VzInFs%3fMQXF_vsKH`-J7n%o{?tie-nps4(7MHU!4jtc)$xEK zk!Q*mn(oON?eQ^vTM)=t+OtE}^RiK8RdupOy|+1}2WkzIi2eM^4il%gC*;lE%+heQ zv*21$wGzt0qa=;KDU#I_$SOu&>BQ;9KEv|^vxzvCbkq~BC&G)HPO2?|49hwqb@|SQ zQtVXUjtMH`Qi0}M1ghZ$9=M(%UnJm%n)gIhH}!GG%UEf3&cjyVHGh+oehdx?zChjc!avNomdyhTYwT%)n4`6#8wmi_vUc5mLk6kbW(XK zClh}x#7aI5P53$*^_oJ22TmPwDM8b}ob-x5b1lr&@Lyw0)VV%09lROlIe%KCnVZVNw$ z^AT@=>>j*|ohfGzWiB=jcqEz48hX>t<$aWCD25{WEmpmvaXqdTmV@~8T2;ys6+$hE zBhqr#aM-(i=Bi-8c#yq^1|PcM_j$~ko6Sd0R~k{YL-M4JdQm=^GG@r$ABGMUs`jWN z&pI*0^iKz|2#I~brSAyghPjzy!3fR1T@$(jTUB@bbNEW$rF)zqglzqm+djXrSc?lSHzA(yS??JbMEnsjP z<+F(;K5mB#06jA_xGwULGP?dxkDcn;ms#>M~7Aqbs zPswwD0#W*Uw^ssHQ^25t5@py4$Ovpe7X0WZrMuUA7jGc=GM(TIVfXJ}a6EBc0Yuwf)x*q z3w)PhzPw2Yut`lDDUbD?_q(PR_kgnAUQp$#U*KGOrXSvX&bP&Qv^N9Q`!#8NyMLHY zlALZ~nVRD#!x5dZ>_7L+YECs_#=j`%aS%^#t&dG2nQ1q+qd?IP@F~@U5}b zqQWuq;gTL#Jx=LJ6Bg8Z=j%DEX09Y;SBu zwmTrQWT6G)y|D#x1D$-8lm2(pVtoNX%gn&x$=AuSbVjGw{iTFc)QOBE;G5yBq47Vp zK4I!0uV~^z%nqwjT7Glw7z5y+kuGTFBvin%T$oFo9Z@%S|R4ypLO4$p?2dBPnUwwNs@%}Bl?^~Pt1<@JPQ z8&1+jcs`^Iod;f)-uDL?0JAfkceX_^8e@skgeoH>KZ6EAXxDW((=Af4f1KZq0dYe* zSw3-e#>;}b_VAE;D2?J1&{(+al6CPFNKs?j9c>|N)K>{c$!sD2nenxxO5HBv3`sL7 zKjqT&Gz+o=8r88{6TC|j-Q~SzH9K_oB7j;X-q zvQzOLbol#)8X^-X+ScTfMhTW_=L%=gonm+TX%UC*->(&&5$Vl%fJGfwGTV&?wbUQ1{m?ICYV)N|l4Yre7?>Iac^Oc)z3vBy~Ec=I@hZ zb1NZ$aFsY?M)pHAUh6mCv`t-;n5Qz8iMtaFf>;vKY*RIRP*lnmvls@!-_w9tm=HK) zEtPUBa88K45Jo|ZJMx&XhBxS8h#c@sWxcBUE_$&(ntzL^=j2hV?eZb21vD|cu=kQ6 zFwgJW415vLG_8rku#TH^(yBsR0 z*s-_(1MCnouBS=M-p8_S`?Z%ku#5=8XD$QXHuE3l(#?sCA;H*!phT|1sIoC>N8{nw=6aUiV0W(m=Q zuCfAfP0)x5EXn&qY2(3vO667T!U!bFmT>678SUKEMZI1%(5YLpI)-Dt;t)n9zyL!K z@5NEwsiGL_l^lRDbD&NCiGC827)?`-H{j78}{ zvwO0k4QH~TUSG-JH<>|C;L?~N?wq)iJPgtOPOCCg5BXFV``vo35xX49WX11%I)p53 znU8wnYL2ItZr@eF6t(@L@pG2%kS7x~wY~U$V{>A|HRUUYYT(r<_>Z!*B~aM)>)G^d z;DW|K@p*k{8>QoOZdF<+2IJB{c+%{$0gL*JePlcPaQ%@R8TZdoTpIc_1E617D)lD zt`jjZmE4Q9dKnKxH^IvLaR>#C%ATN&YLd*q)t&K6LbI!;H?3vY5+JHJmAa9oQ>ZHf z3uzGyRv!fcua`X30NA5r$50zZwmc!%NM0k~n*V{uJ2X^0oYdN5mxAP3Mnpjbj)r7b8CCkM{B_V&BLLZcAQ27w zKaUeoe7{}<-%EA}vESsxpHRC~V+G3Ms31=j6S-YKxkpE*xMd)Xy4?3uZZ1O)8Q>? z|7dfMxXlZaV37|4fY1D`nu_n?GHdV;e)XE0Y4T8+IM?TCIRe-|vis*4`EYg$hv zX|?7TfO^nvD0h{}J&zUkXh5AcVet}%wDm~4%F8Q2W+FD#=d$b{;T@){cRwBYIS;Sx z+`}od=yYAIv(9Zzm96$fsX+gciC&M~1(qf^MV? z7Hx`Bw8XUx+h(vmDp@@@20nUyx$h6W1jh(J0Gf5M-LmS z&ST$zPCjIGq_J>>a>K}k5oNZuVu^E!alG_0bc{fQ<1$WBBSwk_^alObB=0|V>A{iD zlM!lHzq(wD^{8ar?Ct6N;lJX}t})8{I9~cmSFm?ks=wuZKkCFxp>DP^EToJbM4kWu z0002)dJz%H%Sm50S6uE1e4ukj8CTikmWYc5vW{`qfB*mh4*oCxfkviNx*Wt6$klyHgryWja^!s7j86QOZ%OulfPQY8s*acbOgfvh>T?VBE zsp=f&Te0px?RkncCOPvAJ4^@IAepsYL}&#h%wUr>wDCV&$dWU~x(r{KKIxbJwrA*e z#6y}Op;%s6^svUvg&4*hJ%O@uod6RJ9W{ZS;^>s{bOB3tb;fAz@{=(yI7o5pga+42 zLHsJ$UE$?4RVx&7RWNU3HJ*b-$hdm)75}0{)nEs?BMkLje8QM5;3fCg_k$j0_(mt|t$aX_Vc_rDY|FkR6 z_Q!Vv_>E^z;RE2-_g?k{G6pYW6&sHaUF}r4anyeGRf<9>roIfmU5KL7pHSx2OJ8j1 z(o8Sj$17!<;qx-r&s6X@hq&EBha4jRUufsqg|fso-5?uV8I%EW7V?2_ zEqk=E$Vq)Y!AmU(CB2UOEI#qrrI14lE7nx5^<19+&XbJ~riCO{9`#dD#<`LZ*7_Cn zzz_*iNR+K(48}Y&LSy=V)#|mYhS{homz7>{;-)VODF8ukEJM}#*8e4IggsTN+emi) zqfB1@!b~>(2wzQNoWy5yq;f9{mXd_uD)Iy2)T_0SEzoa4z*KHwgw<*5sPr(>AN@wZl133yxtElH%FwC23VQfkZtXQMK4*|3QrV}JI zmA)u`>A?Yl-6Ijyrl^j>o~C;vr9QQ&F_%rmQ4@0=u>U^L4}WjpAdeLHY#JB;N`BEb8BKDw@CX%Zc=3hWZs_zqBv=hY42x+d?g&_P5p3|BE}H(+BP; zIQyegXe13PJJ1j&I?#ZWpfLD!aMso#%19Yf=H6Wy5 za|or`wNYRn64uCO7pbeR)QWSI)P?|X$>yU&QM6|)=$JoJ0{bot6<}gj2(8H(AA~&p zmut`1CCG;2I%$kXK8fpR?*=$?XKI(Hd8P3Ps4ED9!K0jbm~D>U;AofuQ-Xf z(|S+0Yks;G>|>fB8Poo{3p1li00c&^>zFFO=!;1-tE_`x$Sox(lDrX?V&;$>-@=*# zMQ5Yx73{pFQ9SYzr0@;eGvW)zgeWDND{m}mS24FoP;$YRR&eJJ&;$ID-##>FHH*>pcJIY`916vQNvP1;OmI>(ps744Z?dN4 zwWU|n0KyNC7w1tVK^sw!4d~6{czuY(lYi#KR|I`1tJypUmco`Ge<*!BUMt}yc#3Rb z3so}T75vk#XMgrQK+_`f8aF|z%dLwG2*%kzzT5DIWv9)tJ@_?lb4tQ)K}6>Z++Hbj z@p$FS-6Qny^9^)!d6vgWWYWO*hHNPE5&tHV{~7$DcFU8kWzK_?0BmetVq3tTAuo03 zIt|A6PoKXYv!+XvyV0OoPM-U(NXbiHD}b?8{ttQ^U!T1^<+ytH_`LRP{#Y{_Vy@+7+N{pE z5Oy?hfvj(D`wnIYxtrT;Vm%Eg37bX``zE3aG6Sw_O5R`eHwp`IO0v}+nmE7XwW4-9 zmbdaDwRi%S@zp7A4S^xd078leppMS2L#viDDv^nDTvFc4Ce)6poY}ph)W8}Uqo^dj z=X%wy08S??y;50|!!!R>X&S&|?R@B!-9Mbx_>Xdui*Sycd#*BO+hn3+Q4e06$26tm zT|&K_TgpUUs3&zGcq8B#j!R^)ocX0X;Xa8wqdDOI@?72T<8o<^=7iDtegPZxq13X& zy48&n#^Rc#1RU;h$E3LkB_X-{+;)d%350<6Yh-9K(cBfoFwi8;F>e7Mc2=o0N zSU{#Ggc;I}Y$*3k+IsL7hXodP?z?&;!Adf>E45k%_fLM}f`}ls7ETU^6Cu0(6?ZbV z=v{x9phRm)BOL5i2u zqHQI%+j}mFG`7>QBlYXG_7+}m?_@%8fo97V@4v`UPkjAHp&By3rUH|x!kppG-hr+J3 zY_KoR*bchGxGr;8)?5fqP`5O@8h~-REf4A^r5E_L2`R_)Jq8BB*sUu`hhv12$qF7r42@BGWR& z(#@g!hY)xU$LDF+fy&X(;4NLG(44e)IxVeQo+um8Ricnze=?wv-~M?%#=;4fjVt&7 zS?6B}G1U~bHW_7Wmh2}}DetQOz|f?RL$b`Ah)l;C2nkH(J5+nr9$R>gN zHi^291!ffk{UByp;xd6$1(l(_54`ih000DT=2|&N4igyK!FdYLJGA<`zDI=87%Bn7 zNqN!m&PJy)&H@N%SOZX#LZbG^RPr^5QWQH^)Xi<(A(zoO^Ex zaI{1Yiky$%IVx@AEj!Ro-mQI8ta0Tv_GR}7v6hhpxdUH|2$>(YWSFS>Laa4B*4~(q z!%Y;+qJY|DlkFW<^Vb5!p@wPG_SxC)NH2aoQHd(f;*wNgY|_YCjZ~D8L0bo251aN`#1n&rz3~$zq?_o!H069$@nQ4^GFB zLz2dC0kb|l<2-c5a%V4JZ;KufIo#twdEOMC4wJS2HuCQSO||_J$V$fR3Fe+ijICL< z^OEDzQDhL;F?Fva&pUT_4T#HFr{(DwludkajDGSAnnm=<+6qKX9m;58^eSl9_Zi6o zy+Y1!x`wOd^}YTM92SU=``<^Sk?Htg)Bx|kJ%*(TL!e^?r!hEYtfubuJimp73?0vvr0dO(rdTU^SHJt z-{FGB6oK2j8COi(2CdrMbBaoBx6JF7!8xb-+P28Q}Fv{fA4M6WnOuUL84Tl#Zxrm5f#s z1^$`2`ivznlKNt%?%6_yCKzDw1@l9N0wsM{*@>BkJbR3|vR2VFVDlR?c*-hHoX31+ zC&Oc`om>!IlR{a5wKYV3truq)Ec0un@b1}eT)i&p0@)+g%AXr5<~Y((_bTtA0=4PB z5V6XsaJ-B@00000000000vR=&CCX6Bz?j59r4eye*h9Q${mi#Yu@bB{Fci*$s+X?X zDI1NXSK9ljqvypksVOb9xdAJ%!*qRGb1gP%c%~Q{eOn9XE!Ut&!UIN^RZGY8qkJ zLj#Qm3{h-ytWLmX*8;c5O7u+sOEcd}y?rcWQ@DzGeW=mXK#;ybrZ{J!%Xh?k_Wj%2 z`6Zh7d%33180RP4ULE(&62tRKzqmFqdFG`p*Es*Yi;ohRW2V@tC&Q<`_luWFEmbyc zD$3&c9(^F-uoBozQP>mbhe)U%e;8XHfmqyz_HqVFsy&QR>>33jB9Hj(ivHXDNiO&3 zqer+AN2f%hYo)#R$sG@IdM_6+K?~R%UQL&Fh9E1!fQV9{ggY~%uVirc3OfT zRS%bMO)8v{V4;0z)qkx{$P*aUKz(XBL<8VnVvkIVJ+qg$k?d$M5h!<02CL4vSUjam z)Jmx=XrI1Q-FexUvz&cTp&`+9S$W<&7#^#RCZYqad?rE{Z5(PPM52+l(3luO0}bs0 z;dK_cvfOuHXnuKef06>KAXunCIDkBBaM3CQUX5-OUx2rKfz5)dAl79ScIWv50z?01 zAqAKH+xrampHK6)Z0h~vJ*yxolo??ggsFPuKAGj>Nmb!3ON4rf)Nt^8BL=k^mW#-& z2yoB4x%=%gF78%f2h7QWxeITPYqQkSq)49Cb105{`BU-#-lO)x^G%`|kEkY<3a`c$ z0@QUsr-@Mp$g)LZ>ETs!A7(YalhTwLqs`&1L?ADIAb&`I1mB=_9<_us8m9&H$NfdJzFwH`CwdeAfZ z#Q)Mt_xDDWFH$~6cyJFV8dx#Vq%Fn^iiF|9-`Qi@Z=E<~%4!c%^u>hs!q4@8)5d1^ z?aZe~v?bUnpQbeblW1oA$*g{ivDlxm>q$oEa}oSXQLrd@+T1Vd2d0x$BR7TIac>To z^xjrepFfRf#HX+zie8TFeb}4I@4{&!-NP#}Y=ip@J9j$QpAN$il%XBU^yPJhuDJ=l zuQ`!on=l-8kH!`FYu&J6wksbLfl1jd_vo@i3*UO~?T0f*^`l31q~~o_ka4W9wB>>B zlQ20q#LuS(rFYla2iS5+3_7E=X;-nhM6?VSuq6=^qdUPuH3O!jH5cKL37l3*9MBSA z^Zb`boLfobW421|CIKS+6A5u)W?mkGEinsRv+XF5I)38j4%JXlo?;fV-ic8?|KAVo zzBvZHrQ#C9pqcv7>lUkp%gd#XoIvpT1lHQ<2X(-4yZZ2OJSK$JSuHbl3UJ<0=Ttob z9k`;ARWZcI^69dLftXQfz!)NPi#QXtkJ~LK07NRqMvYG9h(-wMMR%5z-vuJd(+c~h zrg(z->|u!QXn@7Ebe>4a0)sKrTpHizq=kbShovzNvWCS>GG(TT=OWOvS1k3*_EV5= zy?@&XbItRq3?n%wT1l?N*2qiMvu@0Ekuq5T_j5Upjr;2iR|{NMfz_5&>{?VV)L+sb=DA2gthATl;7=yQ*pnv8Kwp z4|lwpG-p%`%=4S0nwj%Gi#$^W3M3Mq&Itx52xq_8a5Jlw{!77l%oyt6&L;%B&vKk4A4`&;uJhj;wLH-^Br*B>X&oZuK)RIk7% zQO{|^RZAM=%Yk%A6OREXPjJI0aWaecbG^k-IALZW3fI!;#L|H2X};L)>NU$ANBPjg zngqlo49u+2<7zN~;i^OnD7eK|OA<6dbFVm6Gf68o#Q!bX-xFvp;~TWMuqP$I8>q!I zPsKCnGhSgIw8@xF^><5;L&BT^eD`9Q@MQm!5tt28f%qrWWQ+4%d`bO57^Y<10OP?k zpqV6m+>TssT^`?;m4~=lOcH^{b&B(AOW=I2QoUcl$CNRlclj?)$Ov%7*LEcw_7{aG zAKtpQpx3iww`IJ!Gjd0vAE?4NFPXX$h%dEXLKFgYwXK1jNo>37La{2qowzYP(B=|| z!Y&Xnf1lY_GR~OixVGKfe!LP!KEg+{%lyc?blsHg4=9T?4*Xt zYmP3Q5oycGjxmm>qrwi$A} zJ1SsHE>zNvaoSBWf0!rOGl$F{+grN^E3HSWilEZe15CY^rNiov)%fPj5sgs?D@(M= z$Qcww3O_u}>_D+e*O%2&*KC&(7Ph>>_2!f`7Hl>0@kF}mEOR1wvw*{v4)c@NgY5o0 zw&*5NDYEPJz+pYLk)Zywo1}=ohid zuNcFRF8&p{D~e`Vrs`d#7ES%3YP8sWH=g(N)&=Dgr9Ex_X95A(3KrMI<$!8^o27D+ zzmyHVtLS+n$vqvpjrAu9XrX}Gy!R9^PYVv=v)W~aaX}n?9nbfk1l_%!0!FYz*c-@b zQQ@7!@HDWJ)R12boTBW0_>lJ$yb|gi6O1s9{nHi#{<@)nA3BAjA_Wv^!_oXNQs_(B zx2I+F7kjHPmj~40l5%|ErR`+(QEnRXNa@A5ZZ>CG#=^}yR8ORtn1?ONJTWk>@pJ#8 zE(wJxY#=xdw;Y9{*>zTvhqm?{)x4Mmk1LXZiHN_YnvZs6yS%`f^u4pzdLyl5+z&Ql zJCu6t8;Z`<(Fy(E_G3j9ReSW$9_E4S;wt5jL6c;;oeqZTqW}f*rOb5&buSpJT^3uB z&;U3H47EUzRKXe1`pm3{?*0U|-x*$YWA(j+TQZZDq z6CX|L^kGV=sn$Q6C61?8uc=t z&3)Q?rVei6YKGRbnV?7rh^*$UtL&zs+mFTz37!|$f~S~BsGLeYtE8f~}vE^HfjCu4~~#3R3%t84Zw?NQUMsG6Ho z>l(k2P^wxDSVQ-8?d5wpWZ#OtPFOd-n-~q9m?`y`f@USv@0tY=cH)uhV(P*(p#n$F z0`u#=?Lit_aySraH21Fi3Ktw#t1SwZ^U;9+n}`qdvm3Kw~Sq z7r_el^)xofe<=*9K*EhnAyf?Or&c^XW0F2v&k|lT$p0J@l7H9&bpKDe`qPDXAFSj7 zd5Px#zlPf=8GIZ?cgg1kAA6DXIuu9!T@a?=ka7XH5f9=Z`7|Z$l(5Y|86FS@nZkAh z!{C@{tqBKV5E*v8+e43blG@{?|2JFi9Qo>mT1FS8z8V3!;hl1rW4~JEPOW{5)UK)W z9ztLQc5~z!SfW$2RtVnue~U#_Puhd>QO-inw0`Pv4c??21D*@+Dm_%6IwP1=Zw8VR zv9Qvt9IU4y&#I@;P)^Uohl8?f=cFG^P9ZKN!q95~1-hA@3@_2r6Qtu|s=1QKRsL%b zS)hdGiSHI-pP3@%XA)b1)z=XgkDH1B}?+$%4 zWiwok(Xu;6iOs3cK&(Y=&Cph=1c^YU9mzM~KM}fQrj3!MQGd%g9~Xv&s~>_SiY#@g zhWgLdd=Dl`m)QbcCZCtH1Y6GzFBA!*ub$;D$?=J?U)4;6-D?>pDL7xUzo*e*N~aRJv1hw^a!5?oKkE6GB=>mrF`o}&NJFzGWsV;;X-;D@Figf zKp7@ppLT-zc-=(Ne0v89M^jJ&zo`MFOgCZplGK<=9lHCQ;)6@V;l>pebGu-AeB zy|Q^Y0Q|qF9uBl?yoX_H6oW#R znmEB@1ZY}a*BQO6ND0A|`UJG(5`6m$qCdaF@?vPLREG&`qHgUbpNrCsmX}9&kY-h5 zFG?C5H?GuN&Jvuv{{QJFNM?Lb)(Ei{FGG29L-WK9!gTbJ|H&IY=`_$&{l^twkmE8+ z5$@G+;O*RyPVB-meoQ%vwb|Ufe6?+X+QT<<)D+uvlYcu>q_asLNb4WS!Cl=0gT~Vi zWC)|m_DV-i1sY`^MraP97Uo1W1mJUhObDddd=j>>$$#c zVVHMblE0cM;uU&x5%mwmC3xn`+>29<=C-siXp?bth9sJJjfZH$z+eQbDr48FJ#Pz= z(%?Wfx4hp)F$?Mao%o;ZapW&Rn1Bg^mne(du_@$Do4^C#)t>NN{O*+gN&l2;% zp*$HVyNC5ZlF#te#1O`xVa#F1e@%g=WGpn|nkNs~xw1XdmpeSg-?cZla&5l=iBccY>xmZY+ z)LT2)`{f5pd?4Vmv-yKlsn8Z88di>p0Bo~jFB9U?7<|&FfyU*aq|V6w4D;DP)PC!0jVexpQ;_ zE``>{tIVn^d2E@wF%SLrvh5a@R05acmqt=-JXzH-loSS^uKxQGa+T2_2%Fiv*5Bo6 zyCt3tle?I`_N2hpZHV9{-_w1HBiVz_p#7t?Kl8^o>TO^KG8}5bES7@4$44?)eus-F z5;UUIKKq3!F{}Mj%yoGqZlmhb1adQhe=WB6`#3VgdU`sGHVrW(*8!oqfOG|VbcHwC zfn-d!Jv!LRj;2?_6f`WWwVS->Zo1|MdH5m19xb(_NA{g?kj zLhI@Cnkuw5S+j%CPWjiZ%EZe__gKGxb{nBs;XU4VHUl0T>yH{IoNC?9Lx#Fzz0W|x zVc669Y^l>)=aiGqK_A6`1Xknn=^`K)Ek_P_M4N- zPlu&a`c%+AZ-|3Egu8pc88`NB6k* zECK^hVB*!C(QXVlpk0A_Ueqc-XDIURRtv@6aWgl5rp`xm<9jN~0{kk)IZB*zZ1Mm) zLnV(VVI6dSkV8q>;Q=3V&y2IED*q3b57EQb>}~E;A_*rjzkK(=ht%rKzr8OUFleRgvAyZ~-);l)O3c&EIvY9=R<46JI#_|Z%i6C(} z8%2Ih-%ckXkK@LEQ_{5+}BFQc^ZD0HQq~pVTMZ^7loQBtdZ?Mt(^>b z{SFZ`$$nTQQ;d7T=<7W~vrtJ{pY1$rg{+S}+9$bf+RHAp=EbpR>kWn+2498Ixa!$) zq)+_1H^~lJAAQ9@nD&X*WGRSRu{+0e={8GyM?DljGnK(&>H6C_G;0soyf{R{LT~<6 z_{c^~WP4}!^TcFhVc2Rf@HK+KhMoZl!hv8iUS_qN_Lk82%XwN*)VSU?R7}$*BVsLI z;N=YA>Ip}iT4#eKi<|0!hH=pqgZk3L9pX^M=>Fq;s?j!0Pb{q;S&rbBCrL0%5a<^{ z&#r9d9@0_YdQ;%3e7UufRp7eGW&oe}nOJ=a5aWCFouiHI%xKbE)zAy64E;9R(qQ#3 zMzgrfdUZWLd-Uh15)Q!*7AsyJl&WJ3S-gmr)uP< zR@UI?^(ij|4}Xh)e#v3?h8|iwbUDzg9^_v_6_j6k$~uRR9Bxl#EBbejeW0nA7ZY1l zrVZMg`duEz*^|Q8G`4Uu(8*>z*I@b>($bvOoY>HpR}?>}q?1G!3Yjgs1Bei9C5~Ad zw=hb@rg&KR#bhN}Blq$7x*`55jMVt#F>#?^a_PA>s7OP09}li3RLa;AZ2l+Cua+^j zc1QPFiJR=BmeRv=XrBsYYD<5D{xbOyy+729(5Lu8E2X5kF_AnovkaeWt{BGY9yztv zG=0Vtcf<5=^(Y8DMFnFi5>=oQPkd=1?I67L5~I%Efm#O+I2ViMbCa(Do-R*Ngbx*O z`8F6^G=w@HVT?OqxJ%7T3jOf!d4air#f>x2Lp$Y zW3diwRvF%hEfYLLXZYKS%390b?PAeDPVsV&WC~>50=0!^$bphj%KQPH6m(W+Nj&OZ zk(TJWZO$4*l8?^H{8_)qR{e$DUau~KT0`#+sL9EqoubKUiNHtO+6Y5ZMrKUorp@Za zeW8CI5&$j7eP5@;aeEfyzyJUM0yrL1kdm|K@Q8*K@~$K<9RoAtbAOL2O4G+BN6AQ7#XceJ*)P@mb%WPekTyFke$J6F}vNTR#eCq$;xBYkJ7t|L9>^l zJPE~ppsfl(@0lEgbE=^SmA-NkN;Bd~E>Sr!xayFFVII_ikOu4KLtHubZ^d>(G1ieI zUE9JplPPQf01ikypTajJT=YS(?0i^wMYfMmKCnfR> zBA8Tra`SdGOBe>DLW}@dXT$qgTq&JBR%ub!r()SsOK8BlG$3zl?(#^6(oM1I(4%VJ zF~ZZwrUGDWyv>(s>_zYltaDD#hKNC8WV10ESyi^G($O&>Z3%tazRx*q)uEhuDGAo9 z$_#3~H=)aEN#9zHWh+)&vQAI{0IhWBXlq%3+?~g`Dsm&u8_&oS#+`IK2^(>5NPK-7 z+rw{#U@cLa8pWl3f#{i%<+BH;pd9@x89yzG^ZgJvLvU=!;v~W!%hnFy=A&t16gIDJ zMuNk@2e1xKP-z0EUZ5@lQ>P|?ZBubOy&B*2{1&1Q4%F~jQdmYyBb*)QB*_Hz zB>TqhU19RGStoz61#u{iqj;cF9I5T9;c0&x*tQnh5i}s-a@i8-+pm*cjb+XZl_Khp z361-WssF z02FWy%H$Q>Ne_ch>Q2w)AOk>L;tz%U*G=^J#a15vfcM^iGItue@rtZIg!?e95OnO{ zpI?0mGlr#5)7}9=SG)v1_9=Oc_sF5S_uA@V*v;-+SMU>)84>^x zuJyVRw+66jvKDs)@VL%I6{Rp&7M9?pTaR=1I(0KU0rv7O{{D=Tl@G@U%`Iv-T?kBdK?)Ja*?|m4SQnIKlLL5z zHSK`I6lS?~mc)D-L+_+9vwX)j%x}Q zS81&BMnWz{R_lZ3KZi;x+>L|ElpeGb$4Viq)8_I`0cT|;)ClkU6BS1Mnzq&rF^}zS zf`!TDQMD`4S53E(1Rrc%>mJo8v*!C5qRa|FPZ<_d7@yb&B|j2k{N7Ok_DH%sEv0AX zyQ~bI|3^#fSjSpSf-OOCk3up(jbA@2a-Hi1|oyC(JX0?-L-VhZ9pFlDMvKXtXRPn8QfP)?JkAaX&0000000000000069wTBbC;)VfdFQ1d+IE4Y z00000007++CBQW(3Ng}FL=Ws|Y%v83R5=l;04B*cF?cAg9gCjmESsSmFUm)Wsoyfo zSNF_L;HW|eiN2>)WF8I*Yz@s~v-q*O{yU>ea7{T?UFy^NqV76y)(uV8w-!>IRgc|l zx=eFSLG?LpVB6`Hl0=Z#gtBj>{+LLM^w~~x<*Ski&kceNwuPYxpF`@(~}mPh=_h)6Mj z1wuXLtO3ERJy!{gWr_(?jKRjRG*cR#C@f_Qq>z#Uq^AI8Y&plTpZd`qO<^TOBBT*T zwF$yQs0bTV?PI>Ueu1n^f1VA%2YQ4Qk`6h80ercDAV9?70Dy|^-dz|(JyzlP2p1DK z>*2)lB?UT#U-1*vDz#1+yqyb}Y7NiD`?IAgjuFmK3qrKR5r^#Aux(FrDZnRvb+{~I zEz_G|h6im-(W|Gz`fnUzknQUK{6M@9?+5Vza9;Z<-QZRDF85aUS5OE?bN|wMB4p-JZyPe7}$nIeM{qb znnIUaF%VBF>W9!q&;tpdB_T%1G1Snwlp{q!ciRoNg<7PFz6=5ad|BHdGX9sHKl=eb zk$q8rU1b34T=$pVNa^J&j=D(;2Mf>JBw(EUb#w~jpmZ6`0u*CkBWTyItvocuE7>?{ zPTMt+S=7J#P{;*VK|NlRB)U-+&n+;6KxeM@_UBdFhZsFoJKy6klw)1h#Aw8P_Cv9v z!#eP8#Z#dKIs~oHMcSH6x{W(BF#yV96Kbk2k*`2lol*unHWX6_jfl7s8MgB4J7ZLd zDeC>KV)%>P8HvJ!;dn2lxDFWRJN~|=Tr^y^2#8Yd^|}a7|7Gfobh^B5BJ%juGIK8w;@2U6l=2l`lr|a^+l|j!OVo-8* zik+KHiH=q!18}%pmb2O0YhHj7V?;H?*#xP9e-xlLR+8)J9A)hBj>XhcQ#{{$nL1NYejAX=OAq!%}zbXK7tck_gqrAON1&#&l;8W#1@t9qd$ufZtJyIYAtp_ ztt%<7pfrFWB&lCySH^JX*K83Q?y8NE+BMDbnFf9sW>Ti6?m*@X<`7Sdrpt}?x}x)! zOkzE+3jeP{3i9uu9f*VFOjh)v#~)ZgwyJ~5gM=wqLVJl_1@k!*hyVZp0F@9nbj(ql z$kT4S>X3cLE;nLIB5PXf5fru+T+3bcH|+=Oj>DhqCT`bh4Rsw~c|jic2-Xgh!BQ>5 zu8=m4gc~eMTRxmTVov)34|7RkhE+9TU{0fIm6loikV=v{*M0t+XsiMY#IjBbSnntL zK^m5O4m7Se;Yn{Z@Y-V&bbn)2fwlW>fyW%%phv z27}Hj!?z;~?WCUA+T2&U!WlIK)Nj*`e2!Qb2JVjGJr(s+EyfBRb)_U zNn4Yp;KD&+Y!Dmhzeip{K;L_ng}~BnCKXOKFmtq?F0>`AEXk(^y>)EiOmA{6ft#Ww z*X0wE)v=LQ=^1_;L)+2+`KC^|uw@jdQNC^{c;hU-Q*{@bmtOftD+KLkZ*xc5T13f5 zx05{wTgnAnE?TtB1Qkt+!2GW>b-HeCU%jo#E$ZqyK1hTY zYdMQp3udP0-CQ(kAK)B(Q(~k=RgX?wrj21 zx_zj=zq^`Ar-Z9(LpTM$&DQIP7@1xZ$>syLvry~!D{533@1sb!~o{w`CB)VFmHIg~)5oP0I09iG?H$+GJ2SXRm$#6DY` zJ|nvqA&I>ql`}#j?pQm}WcZcgDjfGm02N6v>SzIbPD2^O?juIYjQMuCt+@osT&QSz zFgVqisV+e3XW)ou^l$`_(ynS{Q+6fbay7AgttY86?;M#R$QqGK`a7|FH-T^XXK&f0 zQ$th^To=ah#4{!8rcjmqZ)Rg>V8%UhT>YXi~ln!#k`B{N~w90!zJV+)kH%cJP7plQHi7c$N&HU001}I8JhaJ|JM$p z>Hh3W6x}h_%;w(lE&}nol^S=SJKv99KS)2Kd-qy0T_=(yYVFZx`4%G|yCJVj@xlAl z&EHVR)>Ba&W2gz2lZoCVnqP`Ae-Lsh`q+CWL(NQZI_PYdee^ne`>3dY(#|QzJl#nE zi9mGIortiAIN0^=HGDda%DU8TV-0g;`J8^jY z@55n^b5DS7P{6HwjKDcPe@*_6e2J|^+RA%g#~wu_;XP|E%_rJ^fN*DurH&^o^z|eW zfg>-oOrM#!env$0qt>y3TGB}^^dF9E>*Y7z1=i|yZvxHTFQo(SGV-*-C1SnqMdYG7 zDo4AISQ4f^WdWcYGF!#+8Z9my;T9Gmk&m0{n>~ajy+uPGww27i?vlCktI@g$C=THH&0)`r)4dJ(^)Nrivki*ia zGgHaGaOPintYy@v7vPc8EOy-I2XW|+t2 zUOHT*1ikmi)}3#P@7=i`#=5^ScL!5T-C@u#}~(jEB@({G&UbnnJVhlchG0ug=^#+eucZc|T zty&;&HIeD-MR6YboA&!nD=Tk>ZVJ@*ymGT|c97HFRcD#4zW>mzJFkP*YdAoU^L^9e3NFK<22y!#0MLVu@xNT|GFZyicAFy3v(Dr`7=`w=V*_}O#$-x zpZ56R?A|Oz-sW{uDhd$r0d2%5)9?P=P+8Rw_?8y~1ylRaTRbEAyYB*wq?!$ZE)li# z3xEa2tc@TC2?kuiw~>PE?qd501i(EEjsKVFwiD2j)1{!TZf=6a zbgAPGa#9m0XS7UMIRXQ_-WZFPS__X$5+?c6{LHhSV8inP0?Ph~qRVv2-1T97G zil8R=<8<3-M{={a2zfX_09RfBDW8hSGzswhP9_9J%^J3(y_G#FH+MPzBQNQ>_3C4T zK;6$daxnv$f)8Vna4>NL0n4HI%6{MovOS*2$p`LEaMGIN3{DPO6DNqW?$iErkz#C? zqQ#l@uKxFdM`PecxgDkIS!8Iq$D0@fv9z4B%kH%eRBa;YDI4Ubzz8kf=cj(w{+Ify zd}5)!R;AB26Cb~y*^AXsB$V3I>0mnq8L5prB^TFbpWCcFh>8>T4!#c=4xk z`cqRZb!sD-Jf+3tD!#37nwFQZ5k+B5WDt7)!2~)fuHCn^)FyY$BNgexTH9HHA5?gL zZ`^lBlvPOwy}SHbax;%{{rcRcjlA&aE<_df5U5lM#fE$&tsX`3}!Bk zp%g9hbu(mOAg<%}Q3F@Ot#fqMzF}?j?~2iQYtSy`Qu7QwNoTr_&#o%Hh>w>F=G+np zrA)C_$(?S{hSqC=S&m)tyfrY`q9aD+c2CD-$a8=Fm?BDLH4<-=S!u%HW%UZtSmS;P zw)ZO)tK0wp0002SLem<3Xn;HmQekrvRaGO$Dq#9F3E^W83u#{h|_Tmfa77Ud0X5iQN<8 zV6f@?HfKrSXxc}-R}xNSf=c#9;awr6Jep0&2Z=1P_+E>iUPm#kj=eai?+ppGn#!cD zwe3P*pK>yMJZ@ddD1{@LGrCdUcW;zgI-R+`N!Wo2N&zj z1hgHw-7R3m{C46WnuGzNgo)xvsj596k}h&1kPqi1~vV zPuvg#M92BQ0dzjxORmaO|5^RtwoTk_htP4IB@cngb!cN`l& zCmiPepC(3OFimYohZyprOXy!KA40#Zj^)@7;1BaS0hW%7TQ`SsrRpXhR+6r{>ywYM zTlIWY(i;JethECPIlm~%34Cd&EZDXl_+Wq=$EXh$0G|^5T#bBR-M*1p_|PIF@f}j? zki8)&Bi|^n`LYT|tW;wBQA{8ZLU>}<0W9ubhrO9txiv9z<&S4S0qSsEk(i>If9l1Q z0@X|}tgzF=F-2evBtFt$k1Il!+;}&T_=C2v^fv*|nde|yRt~ytaD6S`?t^;0YrUbu zH{gWP!2-F+GGKs^{97ivIFs20)ZayDnLe%mBbUy;cFhGCc(3c%{DA*DUwW|NcHOr1 zQ}W#>HQY_ntmAf00Kgs)%X%M0XZo{mKChx7Gc>88S$QYkLuMF&O$p}86qDZB730k# zmCe;v=~%s???&uBjkfYWc71&=2ZB#qvP8^SZV7Dj1Z0(lpKG-n-(Qn1zcBsNlLOd6 zWg8b#Ydtl}7xgn3F$s6TaAXp!>XNU;CWe&Jr*v<`~tF{zlT^dG~7T|(=p#xhukaDGBj(1J9Tf1*S~o`^wUcT0jiDS zRZr2REwMQ?33m>cR{cx+Ua9W?%eTGk>t60f%#I@VwO3f@5(tQNo7h3x zE5fleJGxb0>lKrRu$wdn_omPH-i*wKjt~;)y=~u@6I6>#0M0MbPCgY@+#$AGt>eGQoafD#x>Dt2Bx+Y_Yt`&+ zK4-4pyY4$VANVUg*LmZ?!zS!ab~|IHOFcSN)s`H*?}|k|eKT4PnkToCh0IGjv`!f5 zg_s04jO)G%x-&i!!?a@BKF6)$sP%yUunHy^VF*J!hfUh(rUxo`QZPPyX@QN2xV>+9 zfW#C5q8sMJ#;`eVDxNr85`>KFUZ?+_TFQ-9FQ&3i5K}n;M`4A@U+nK{+02rSkG^(d zb=+u2sz`TfCA()Y>_kzUB*?$?qr`dmVvqyg@nSMtL#{n(hsYFh*dpn zYxW(GLH~qKXd{@my&dsM#NLs}OC==4oRlayUY|u0TtmtIh#{VdGvYJA#3gS8>>+iOEhlH(7}%Vg<(;A~BK{e=HSX z`uqTaTE=?S9pQa#qFefb!C=(^Lu7w8t*iA&2<-myKogKr(T~jOeHX-6ZSyy6-a+|8 zMl5E5XFGC)>dxGv*O6Pj5sxKblJ5OsfMH1Pe9xBc3CY=G4_)NiMWY9f(T*O% z9BxeUwTd8dO!pEat;k;QdwuO;h>jrZ8A#SOVfa&8*UPhS3Pj4%XA--*C>q6KlVHd_u@~w^W zWqLvh>P5jqU4%Kv9OKOh{?s8pz_&00003d@ruIU8?+N z$Qk^!g6DNx2jE)8Puav{$#|KyO8vDLoT%bnFdmkM8((L8~Wg<;_yvac>U-#G)V+R^- zyq|gE&X9YMM7jwC2iQYx%ugO5(i2Ls#)qCar3gF~#Hp{H)Far(C)a)@9BdnT&Y^sq zOAwv2Nwds_7D2PZ*7zxweHch9uok)*xz|QY+<6#nn+&V5Y;sniAWYT*h$g!jZerMV$hOQ3d@12yarYA!hqS`%FCV7=qb{$muJ#F270&tn=Kk!s!n ziSly>Xla;{2Q7&7TH7h#Tn(d4tWd*Ue6Ux`$Mp=p$>LpN|B9>{Ha9SUto*d9k@{jW zOX)Tog9M08XMa{`DI{vHhvaj45KuJ}udwBC`({W@YG0elM*E}(Wq|hm>SPWVS4d|| zcw+P!Gd}sBDOQYdBaqBL6BHAVEjA|@ zRz_s$Sw03U5#gf3OjVg*J4$^ldjzW{D4q~9%N+x?8Lv~NF0q&ZFDJRE*6|o6Di|bw zHb*7SdKc+b3w4s1bH z+#V!_{v_jU_O0n_AZ>>r4t$(w*51xBp&95Y+4h2z!M(^wo|+%@ zn}gQn2i7z>e@Mk=p?(D^lllR9PL{qU0Z;R(=O(cxr;!RjwcLjj+2&^%msiN^1F~rz z7c;i1Oz?xU=4pF3dJ`+==OIX_|9Ra7sC{GP=B0077AG|suWpMm7Vh;D{tKRp>cDP^ z_k%YCg2Ac$RVN_Q+q>M82_2bbugi>XryHT?vj(+iQ6yXJL`l9*f03S+(!zN?XkUMA~}f&P6so&L0fuy0Q>PanrGNaht7k-;)TV&o1L@l2VX zYHWw*AMY#{ifVdwA2U%6`Z*j|O*6}7A3JS&2Y{A1WTI_+PZS`YB@=T^r@s=7-`ot# ziQ@I79j)Lm7)b%Fk1bfN+D=sg58kZzI9po$Q5dQ9?+0XhjgKt(|2mes({*qCdr@6A-MT>MYr)uysw!~Y(uALfW2|ktdKQyE>neOIi zE1;mmpL(8MC{_{tzYJ7rlN$@ybfn;A`jRteJs*s~)mW_Bd^KF+HfHzjGf?Q45R@6# z&&#EnT+>?*o28Vwbpk2fB}W}Qt-JdlBP1MH8Kqm)MDrhvHYHduPV%8C!KYT=9@bw7 zf$NP@D|n9(7Qq%iZ19^%+mhMy0uHR_Q|gX&m)a0!x$yCfb{%9+sP`96_bxdBQ`p>@ zm@DRvy}PUo6Add?9d7~_)#A^C##N3W0h9rUU2-}&f>0?+{6DWY&~3GOiyr2Ld|&CB zoz@y5JT)q~0ugW7ff;F_WSvtAYVaHRnr`^tI;3-JLz1|OS~}^iyjY}bFID~H*b(Z< zJ#0D3_GXRF$gzJOqj?)%gIg*i;?xyN%^n@T&1p=fdI^Vh+1P$gQC0>1Avx{mkeJy+ zAjK21&{*F^DojakL4AZX<3_b|Zv#vT4uw1Fs()zOU__3RUxVaATX+1Tt6E;rQUR9x0M4O_Gz@JV<@wS_IX2s70pA4I_jsa^krc$=EFP~Ah5N*aU^wUh@9u2yDp7DvoN|}}?mwLf&em&X z^xmcQVJ!8n+`~a^m@SQ>Gpz$dznj>q)Xao>Py?7F1DZHpX(rSWF=!iXdaIExr7O6% z>kpK;oqh#|h@x5qzB_)OD!QOpb-EqYSrA++rkrB%>o z0zNS=>jWvDj#db3n2Wq8$BYGrMzk;*L4m8>=v~bgHU2>Vj?p%aOVS;EE&GYg`X*?F zB3X&?uv313r4(l!M$_H}p{pvtaN5iam54$V`cFcNrL705WCA~7jFGVu$&Kc}7brR- z-s`wQ9)bJWrCr<1>S;j5T3FnzIyW%Q%buxRn#})IP(DT29}#t26mEWwZDC`A9gX_4 zk5SQX%6=({qeiw#?YvqTPdpl} zxk_W}$%X|SO$(td5v7p>uP*v^0t|pO`=#^m~Y<2X?ssUJZ1|vCK&Ij8!9&Mc%Nz`^b z7k||3*$iUDB^|P96{N0s!HQw&*+c_36`i8X8UzM;o}I_V#jG5%2C023zi5ba!S6C8 zx6M<0oPFuK`|$uXySJl#pa7s7wE9AC6=YvQRL>YD34&#qq~O6e4UJ}pL^q=VCuy~7 zvUyzOij+sQz&cJjrOq~7#1Jcp($+q;PDJsj zdZj1E@##>#z300000009OFcz1+SO91cpWu#_%Jt?P_ zSeWiFlCe03nsQ(NM~*6!xVsyl3G z5g)%!vg@DWR*>vqKSc2Z@NWshV(S}PfpfghRd%o9sfxAOo`K#-#OAm)_RFv;y9Ore zplCmG0B!2$@$iSVZ)Hd zp9iE8ymLOpzsEE(qfZ_(q8r_a#$D3B>A0Snc8d#t(6Z2|*t>Vx_e`}`V1koU=!dP? zj`qRGy~gfxqFqND9w)nRFIm2|V+Yl1?*lRyo16b?>7=>44G|_z08)(!^nq-X0u+7g zt)^`+^=JtlO{3Dnf$3*!V06cgp^ows{N`A%--z@#vg~H_Y&j_miTLSQw&sbRXmiy! z#-IU2)n=AM{B_=gtw<=)RrNKiDt_#+R=jU9j>~CH+aPpgf~q_KvfRQ%lRkHiqL$&5 zu0hbGEQvV8cL581BFt&gwKOWJGXKV($fBTKZBe?uYG#vAUS<6p~Y z{Y``VrhUH=pO>k{VRjSQ*aBctu93f9c^mBazQSMm*WRLO zJ`Fia%QwR{#YW33p{_=xRKASd_7u5Am?5pP#E&eAj=byN-5~4vMd6CwKpWB(-f5E9 z+n8%s0oYG|^dP`P41WI5?IK1qpEp}lv* z?^B8a0odkSTi?Jk^JaLCUok&2NRrSJNa|NNWl+=n{X_cUiN2t<76Cy@DkuiPtL#NqDK-TFM< zsC*J0?Oeh@Vh3BAIH9dvAKY|#4v#H*1I=m6AgIf}SRM5LFFN$jO9pDf0YaeuPTVQTiYqkXK zNU;)SbEgW{PacIJ3BZ>yjCTH47J3n#d^u<1k6|z@CEdT{_?z-%U2JH>awlxOD4(e@ z{F(w=uKx_VTTV}dqyQr7Ygb9?Vr9GNvHvfU904$KKci1Me|uo)1n_~?!ZE6c~PE&Z)Y5!+aiOl7>@;E5)2w^uur&$fv-u@w8`#^c+uL=Y2 z{DvAj6RmmsiNt89KL%g zSN8v%j#iMm)xW3&x6!}zvm>r znnmF$kV>J-0(N9Ifk&Coo(~kPUK%=NFnb9f;sSM_1*x)svieD6B-rNOr_0Zn07KAb zaLKpgn1lz(&0)g9ksGa}qYdGt7oxgn7SZPjZq8~^m87lFn-#I2)NsFnF2f>)u8LP< z)?Hyf`wgn$t`CMJ&TB+7bq98lfQ~aU-%x^;mU!*ejb&P7%U#X|C+VSVmufS7l#0cB zEY;Xktq*M88zyL*T8TUJS3OzA;ShT~1gGq9zQ`@6vs0}X>a0z${&AW_8ELS+W1Zma zHKsw0HdrN_yXZ5sh^IgDE-Ua2sahd%df{F3PQJ6CTv9GilwpJIQt|g7{T9zHY{#55 zdx*~mmU5fpmNL#{iTm_BldoN$#Q9)vuS9WE*4fkC# zM;rS7$r_u%KQWS-mh={R{(RILXNJ3Ok8dvCQ07`Z>nEJj$v<$HKJr02;#k`5=n$Pv zeVH}Wrb&LIK`9)1;8sJvHLr84sG%Mc6beZOo-8M7o!DG84zm>+$3L1WsP~qt_C)j{ z5ibwBuvqXR-pO#RZoJTv_IZm2o_th-mvGPzZDRb*SeqX%aK+8;e2P9Ym#8tLY z`Zju2Pha)>#J!362kvK*e!|l5>0bYZ8m|ZE<;+!HHBM0M^%&fb<||2bw*VS7DlRSz z=W255TFyA zcp64tYk$j2FhX%CRX1qPhp13ZP^KZuJC*B!AKFkD4G-!#m_vlQg!~HXzm6QT<12HJ3%GS+`1{~dqcYvd%rn6=|(qc$R7YZg_K*ov%damX(*p&F9 zBZXYnHm0dmxDgJx?w`SnJM@nM+b)+qA6} zA$t7RCKS*F?M)ki&T{P^r9?nse)r2C&i>gX9a79MTUMN3_^gLw^=yVjn|#9f^9r=)QSw4cy?_=USE?oE<7d}@bl@|UO-5xVc?7*=a#%x z7f5W1#V!>xNT&9W@;#qbKtKWbvkvf-x3(=i_^eVZ;i}}r9h#a&Zy8SyS)Lu4lj~lW z*Fm1FJD{r!FmO6udsV}GM1Cw>`(ZBxGhoyXaR2Sr^FNewGx1g3m!+EuM}e2;J`c=umCcHRrE!f^ zBkE=elv@J=tv%ab7c!MQYmnuneuuI$r4iaV5x1(s8_ zU?kh|8yb^FPV!9rKLFMZ!pjD!MPW9s4ysdZ&o$`8zbRj;sZpNCtozaKW@B@o*k6F zc_tkAp1-d{o`k+h8=feH8Lgfy``5OOdP`T2C+L-z3WNy>kVIjkN;GQ z5iZ=I4kCA5;ZlUu>Vn0_RpQTuNa_a8Vtt5Sm zb9_?r*KYIzF{XJGb%g01zUVGBxYm_4Q^r)~ujkAv%?2OMny-JFj#+K0@U z(~*(B)Co!BjV@T_qMbXXWM>mDzI?tN5^8zF7UxSBkory*UdF<5UUGcrRnwe-KEst` zJuK?y%$<&Lh(y0?Y3-i>48-K7)JqEOO7$PS4*Qf@`}udKmlOAoL27w-9aAs#+L#iS zIxIbNx@;>XaSfU2*q}G6`a9agN(}jj2aKCWhLU4H^LEbWNDg*JE@pJ zQO|P`;Cx{7N`P-5L7N8N3HauMy6JAb5k@&c8BfCVMOQ+f6|5p#=tu-45v5Ghr!pr& zL8h^!3Wd*ig{eA+o&-^p2_M|azN-dw~ z%XV1#YR8BxDrX0P|~fDLT5)t;{23V(&)tz~4r zrrF}M1u}z9KCIs`l}L9NUt1zuC;YtIG1?VqRYt$GP}oGYk~Ci~hLq|4iCDereDcr$ zq3iCzdym6R?jSb)8D$Y<8# zGlpBziiX4INM?*42u4m^l!@^MzU;zM_Qr7a`RNN&E%h955|hDp4GhH&3~YBt&yP#Uxp^|St8qA3EBAUms~r}2;#n(fVq48ysA zH)`I}t8i>=SMk`_JJT{^Q<1t`>K-wJ4o@k}i)6-U=;mog(6P%wQZahDj=1M7VI7$ABAchU6KPnl^nSW58 zlV9T?^TFngn}>c~5pS!4CGn|&4-9TlWv-3tC}#szD@U2<_*dTFG)K{}UM zq#Ft85LjYq5b2UeL1{!lKuSPbSQ?gE3F#E1q`Se__nhbVJJ0{{e7g73ocVBP&YYQZ z=JsnyEPZdpgP|hDy?Jq&>LPxq{$~mT0I+b$*hEYRL9Tqn;cTvgn2-(c#1h`_W7gCg z1cCwRqWahrRaa9fj-yL#h>sx@RJ|b4tk)?1mdfgO{SFnP!shtdHw|bsWvnG4Q|b!D z5O)7_u4&l_U`-lWEuNBJc1sSxDprG)jlRnSsuGsAbKOfyod%P%!RJkV%#oEH{V{_O zSmLV?TKrz!!^F15N&J<}8|^ql${~eoSPo%$`K1@?7aVdFYMuZ1ry%Z}{6~b&?P6FW zv02)t`l<<`tNvgKEy1n!!(&*aimT+(25qZ_!uOZ0RHRt&)iodG9XdxSx8tt4(|d+& zN1j|$vGL4bR_6%x-Ist~M?{b>j0t&{@$I{aj6oOxAot`P6al~=y=5LlAE>_JS=ks! zd2H~&<^{vfKUT41qF54Rrvtt~Hud>lH2MKXINhg9oj|QDKHuebP3P8UOK-jhT7C!s zCXk@w`926PwJ51U1;2`-I>OLRuCUP`Kt$!G_%OW_W8U$(jhcRB|eHh6S6mq)pXvgIc!N%vDwM{GAV)%?Gmpl!%uD=bji3!CF6uj1EK z0#dVuwcb4k`z}5^<_&{|&*V7xlje4Q*zA=aJe?^+{>bItK)$Q`+MHnuy<&60b}rSh z&r(8C6s<+TdhAu3UY<@hOz~^R*|HZ;BU#Wrx{vU{&JaTNO{rJ-(6fysY4v7mMXl_5u-Li? z&8j#m>l^nQN)wcEv8y=J3L+Hap?io;ZcO2G8#-fFx!Q1&IK(%A!B}Vb{K<1WCn46_ z3Q|f@r=lU_!Y-cT#DAEHYU%CcTERASMrl8d8G{1U>of$OZ2wx z8aCMsUU&l&+EX60yNn6Tc6al8(U-Iq+7W59uLv}lqI9(EXtwS7r{@U-F3obtm%Jth z-=aD=w$+_Rr^I+2qLfxip61{pO$2k3-&T8`>A;n}d?S7cw4Dbs1SU)Q(Hjt%X??)6 ztBA=-?vbpC$yGi3X->r8#|Nd}quF}S_Gv9#Ynnzcm5p3eo3*+I;^siO_bo|>@5M@B z%SH=+C`arKCCfSoMr_+bm_SqM2Sg+Af!~C~;~ZM6!?5$|xcA+p@|bVy`^cU3vGXB4 z4~gvH!tXWTd}mO3IY z32v@`_=cQDB;N+i>LH?c@c{__;Xv z{<($@vt@zN^t88PeCAy=Fivzte={s;4=P+)Cq$L@io6oPho*h894PbX4VnJvAB8lTOsjxPt%W)$^uN< zV&vK6RiYgn$gjG1stu4m4e=xc&&)|NsrP`yI2K$q_OL4KOFye4-)0Z4@LgFeU5^C; zA}TUqD^4saHlk`W0VVD~*{wJByA3|X2-_E)7HTN;>{><5e9^;B>I@6yS!4t)wck(S zVhv26I3yIh5ifcgg4JprJFnC?t^rAsuZ-WO)@G6UDUB`{R^JN6{_1wsYU`*1mK7;tA53JSk3O@M8wtAj{3?cdJ*)1D=Rg`pI1l@m zXv^H{ep8a1AeN%8Q2%hAdq*XKS@Q;fA$A4#VC4$Xbuv$bE-Jp}J+i)2cn_fp-egSU z1R7+hK1ho!_%@VXm)O*61Wnfb%u^+#7@g|(+a=c zes=$gH9K@D{g!yuTl3`~-|ci@p2gW}flAq4E71fpVrkwjtK`-YZ9Afg3(1 zwP57oV|p`)>`miQ>`GsU?gYifrNaH!Tj;+kBiF(yt&}?^A)sy{{E11Q9+*P^Es7dD zF~-gvWoV9JuH$f{Z1czD(jo#YCyGscQxPd=FN|X;D7e51WhnQjL{%CP-U&@{o=R)f zeeP!F{CgzmxumQt@$B?_aRNf7p(!3F8H`B2#5sLp(mT`2Plsd_uoBjt)J#*sHMD2H z1X!K+5p&+7A4!v1d~CO0cip2a?QyrY$1CYMUTsffzv0yz{p=IFzMl{6;D0l z9UuWOz82-~i^-puZn~6RbeO-I98-QCrFbP$k$>_2Q)YC=GpPJ-`LiqfrOcFoidf!g ziAc{G-8m}v4NQL`Q%)*_Ht>@xQaD}c%7c3*idRJ9PJzc}mgSn$|Lc#!1!_AU>lFD{aI#_8s5vkZxmbLlYM&)h+#*92@ZYz8O*)UOV-a{OS=I)Db^PGbLMy2 zc%*;ryl9)*37F}L&PBB^DBmb_>|G(CZYX}AcWPiVh-Et~aFpi{EQ%#9G09TScKgQJ zR}rVqNmBi?yJmQym2#vr%oJOky@3Yjw+D_6y*;rEyhaju-w5Ib@N_tO!X>vaa`1<~ zbZ&#MNAmU(Iw5XS)q~4GGP)4YNt<=PqZ}h4R_?UAANr;tg50jxbzobKw(_dND|!KG z2v4HdoPsn;esXPIc1^Rgi0r^wQ1p>ph^yBTGYm)U!=7JWgH()eHaj10p2T>>Sc0G#Kd6S+R$WcZ8Rb zy@uQ-JFYq$o5*x(SR4k?WGX!aXZRU*S<3*NKEe;Do$+3lrrH+w#88zKn-q6y1(T_=q{|XgF zABy~>(DMWpY@Q0y3qaF_6^F0qrkm3GGfOxz0tf29XdZ)0H2dfMX?qerzK+g*R^qcDaynxgh$%%ee&?S5n?dhBh%PFyU==A#OsgLNUqTI-#@D} z(6QnjLdHwE0_i&$rq9qxuJ5C-Yk7=PNaU$xuAF}nUdrFMrj%%g?`tw{6}nO<7zeYY z!rit4)H%ttfp%I(fuGYUDu=Xr7X*_$7No-~`;gG^s(T*;U%8buK8?7W1pWy47J0KzGUQv66Hw%4KiE#8y7 z;N_>hz#1Zx@TV`+D7dT?Tl?tHYSp;REF{7h6qbI{d+OD$q-Cq`=Bg1Bo@$_gZCTsy zn(+1M$Oz5La&=mPktK1wA4|0DAgn=Qd64s4)bkQZh48Ze)@t6`d<#9nD2TxUvV9DT z=~nqz9B9wD_(nLP+vd7gm<0=8oNlpeqGEAbXVX3GAB|$Dsj+>yBszHogE#fuH5Nh?-M$ z{uAvlLae%SD&Gjiwa0SsQ7McE%V*c~quWLrl4#y#1xI7eV`~fiAY^mgVl+j5 zUlR>so3#p5664<$VM=BNDY40PAD{T^ro&l2*+U{2Bxj;3FOPc@x%?R5 zNc4wIWHQ;>v$l;CKbjsT``b`_2mNwYm#j(wJ8*;lR1mhI~jvA&5?S&nb_QVc~@*QXl00W_=V!IO?GZ7#(0kmNEw!V5&7nun$ z1I&W7A-TH?8cAJLcH~8?y-o|llh-96c2ZZMGvE@eiQs^@F+l93F1HN-fOHovcE}Jj z0Mt(Ek~D5Cfd;ksw;adyr*=};cl`zp8btaX_>rLPTefT_JxKxpAU$WQkRR_Cw=Q44 zOnQD+E8362YyANebJF7(o`E{|NKbU7C?JmXgdz&!Skkk4c5=%L%SeyV^UPUKLD{|` zEGx6PNRPF(b+w6$>3=7J^f)^^yN-;Z{SeUG`_7(vfL2Ey)uYn1JMxGfl{Q(Uv^(;M z9hG)GZQZ)mqYD;jcjOT}D$UOvF!$5t$Rl=CT8b2qrs#6y5j!evPRzoE(X(|q@~9n^ z<~(6S3+Qs>Q9CN_hoP`_(B;S@c2wGeE2*d&Nc*2c1yMjO=?Oz5Oli;5U74Q2<7hty zZ@Fe|OHdw>H~oJKy=OswF6Hjqym>R}8LU=>rzSxCha-V=#3u@fqJN7dKA#lIj|zoS zQ3~*+mM1V){_Y?&qSA;?w=O%>5L5on($WFC{#+Qz(e>xTD2`@S8uhW`EohF|XvGmD zu|`xH%~@D1ZJ~NpS}9-$Zt$P-Jia_KglQyok=_udk<>+bGk``?7v<5F)J1VLle!4s zG?TjM{;-y$F3KCi)RVeMZwOOQ>M8~7zzzOW!2mvQIWC3xi~vy9PvO(RUuchqxpc77 ziL8!1{ngEJ>W%Q+7*BaBw>A>@SJkCFw&BW`AuUS*J8*;lR4|6s1yxQz+H>NR*$=N8 zQ6AIxb%7%*DNl>n0H$71H-stWx++`Fva;m_5M8Jre#`^l>4U#naq>Y^&QAHJ|Jz0aittDZeuC156cTD&rA8oLz( zm69H^)9mcW=XZ(%3e zA*t;{W}25DVS1`}tOnYrK;N}ggX7DA-}6d_zUNYSa#kb`7j*a(p8*VtNBMymg7t`&{Z%eV`66U?m#Bq8KT&6?eUXzhI_0^`)E9 z=0IkmEl%uRj$QbC@;un=}btzi!x*{!(whrGP!pYrS(E%?ZOz^VvFqT@RQm3bRx z4=)3L)Acaxxzxy{YE=_PG85fDuK~jqi)Audx5qLOqXqx=qPb*)KeMxS;GBhI_9N&- zFP9)FrcGYM%J+4>jpbbGM-C9Ie*S#5fSKs54;;tsWF{IYy2DQMs7EiZ)Lyl79^U5IKOo3;aj%i}Mrn z`~W_Ke?$I3{P+7e_b=QZT2INp3qODQ1AnA{82!rr&F`P`&*l7}AHe^F|4jU@{~7=P z;ji}Z;veHb*8g??|Nq?Ddn!JT2l-gL>!c+_5D|6R zG%kS8Zqg}paDDH^HeUwV#*pr!@T@%@H8Mtm9wx@pDpeK0dNo0e#%ANxt`060yafb7 zVHEIM5KZCHQg_6TjLvrnGh1g+W3>3B2ks)U%~-7%4p$nS8cAm>y`fG=3S8v!Db*@s zH2Vedr<2;TVQXAWOeEiR{eK+S?ZhdI%cEfb;~o#pzb*b&F8b@wsPmd>l_tr{gEJvs z&LvJ=AIr%`cCzQTUH=yZ-zK(gdjULni_+-p-I!?Xi{U~h$t3Sc{7ju=9bP?tUK39O=gF` zD3rSwAR5zz>_rgM;p$72)CV@wic%dPgnop~PjPUGRUm@UsKbKH&g`8)KYi+a!a&$> zURK_eeuqbb(5S^74`@<}FIgKnsYq5QeeN>!79EM6M}hz2d7qpSJL|(!FbH8y+PktFLdK3p>H2db;A0>z~zqX6tT4q8u;6& z>q^rP{gNoZH~;|t>C<$CqfZb9ZaOmiU$MecP!bM(G7T%q(h#B#T_p+p24qDRvea9_ zUy-A2gP*DfePG$wQUv4Z15p9bA6lp#&EtRZGm%4&5v!_dCkbCfv(zc=-kzXsXQy53 zb`ZJ9j~<#Se)%>iYKCYtvsxJE5S??pw>lZV)TH=Vxnj*usKe|$v|lD9?@KiQv=#H3 z>5fy;Qt!;qJ^e`$=<2v|$nArQWz`h9e$7u>jDg*;;?AS|^Ki&eJxtcAuW>{p8Gfle zi}*U|csqpoUU4VL5ED{M0PBHw4+sOVp5M>nVdod|j_Nf0iufP_k1}=kIDkYxGkAxK z+z>zjmo5tNi(1ybrjfs}K4Oq+zo<=J+4TE2FBn?loT-8)d5G~fJK9}A7G0a8@MI{G zy*`y(l_qIEXZuVj$zFR%OyK(Q!{V$;n~b6VE8Kc7Y#s0J-M-LPIIc~{C>l+&iX5v~ zp6@@O*9_Om7pNR6|A#A=sE%)wTk)Eln29Ho4l;l2+wbi}en}f79MjW*AgIoJQofoU z{~6jP2v^$D0CIy*zzuj?S;caa0K{ha)^_*cA4*!O3^CqnFF4N1K5UQQ|No6fGyl`E zPN^!jKRf{qyIvhz>~(H-?o-)8H*Ikpay57SdU~XV1GY@+^3KsHJE2!b*k@7_&e2@+#Oz`c4OEsd0D(~XQo&>JN12`}oQ7uDm8q^E+@n<7DSs;3x0 z|9IoL?RYe|hU29&CzU^xrwhNS9~5eo!i~Bmb$@LQGdWi;+Jq zVNwTu_0aN`@qmv6U1i8hk~B#ySO~e09nE1G1Nb4!hGeR-kmasB2PnQVn!RY#LW!Hh z4DB5t=;uX$UwMyWRe-uERB~uSRnN9reIMKbatlze04YN49d$TX*|qU_dRb*DlGC94 z3z@pEwx*n$GAiLAn7iD9cGuM~aH(G~<~Ubn@H+PHA&1rQnf;^aIg8W`eBT>@vec(} zXW!uHq@CdyU(r}$k-xMzuFpkGefw`#oyJxo-|#u$`qArUzWPX~hZK>5uS|`kXH&BW z=wBpY!U{8_958O(fYbJLEKrGUTo4@l--Ge@Pv@@Ji^liVHGoCyNe>M`t17(n%vD9Y zpGPdAwPD)#5J&)!mT_NaHax+k;#jx_htWlJKo zK#i_H&%GMe--wp!;rgneLvbw%&oy-cEN+Sa!^)f-$tM9+t=IczrEafo8aRhND=FjJLA}XUB8*#E6+Jl*QXF37Qz+aQ z+7w#e%<(#{->+`*7_>y`UTgxQ*pB;k>Xf<30o0PutI4m&oasL$24`5X!Mf?MK1#Y6 z%-&n#ZGOc_qeC@1qYtq1(R`T9M^2%u7nB2xtG>rv7rcaCkS2Gn60iI3DeT|%hmopl zBI@& z;ugCIst}~Qmy68Onz?P}Rb{jY&{7UT;dp<>*xP|iz|uVcHCi6Y;CMWAS}va7o|!-M zuD6|Tiq3Xt@H91t?X)K|@ay`P&s(1zu);&M*pAuC!&C1vDEx35N@fA8{03o7I0EhQ zkNm3QL9LYkf0(ICc1jLB$sO5rwzTXdB}i?->2K+~UN#Bts_jC_t7YB$2pA!));izC zoi=H{aSk|VoFd>S%QD~VMLq6MjzWP zH$_#(C-Z}itv|*?#H$XD%um-`4NzMLkmZ?>GcT{~?j#Pfy3dV&TkH>Z1nBR9!_X1@ zFGJmcCGZmaxbmZT;as9M4#>rEfr}a1S&LXjdv~|s-Ax;dZ7nh6hSFm3&)`2Xd|^5t zJ={D~a>SAljx}fTpN*@D+$vGIrlvcIV2Dz~+lKq|sxH?V2`%YhSD57SRfYQUoQqh7ZTK2v^aaFGp0Ld>~MQYXON2c8; zRTlX3jNQ*MtO5pmmv7qkZ*-IP`V|2(VWLSK9TkBs)v}omHkE4Z0~BaAP2JV zq{f7+CFRGt^EDAH{4+L+)gbyVIRh5tc9-{N|4r3=3sEN`m`L*ONGK%qFIeI{t`gr&R=d+=?^FN(<5JQi=KF&+W`B(nRGp5V9xwJN-IgK_=OuvmJHj_s zJ@pSJjX)uN6uS0bkg4;VA=vY|*6w&{wR*iH5Jx-Pl-5)K< zbSA9jJJS(;%iq^`;w7xVloff=?NWKF>p(ehZ6a1oXPVMYlE8bd`=bu}@0@-iSph%R zi!0Phl=YL3Wg_#IJwk4KmW+|rY=&QLvLVP%bx=Q{QT7hgJHvPhV({?$BX$TkZyZ>F z5e@a@s*gcCiUWG|uMpqMFE(&OE-_vy+NgKhIoLujZQ@tEM(afsw3Z%LxVo)!;H0Nw z$Rp(eL5#B1*O7W44%+McnRga9)(h0i*lj&vki7FB6zPrH#KiIf@ZUp1d(q}0`O9%M zQ*LME`GeI@+GrM-2fc)bx1V!UYlV3El1#r@J0b4-U0xxBhOfjQ!|@^w)w1h# zArhpad*w*MDWc4hH<3sld)f5z$IiUmDKe17gYHvTnMTFEvFECFa`k`xofD4(bTeyP z3!Z<2E}9B$egtphQ-LwFtB2>4#X8zUwu%3UGehye@8K^N@@SP_GTn+;n*-UHRf&%X zv>z{EA~XBS1j5pPn(0As_XZ4sQC~ED!3YM+xmMePE$bzdb7X zHk-r&@6B8@fVBRq6>Rbjh*cMV6j*Qa zBF?FfrFL(bKcj#QLOnn@Ni3lAu{(VD$xx{le3vxyALDVx_bR*pu7U~)auUky+;rhAZ^p7#Yqxs2_Imt z-a-HX2!cFjF_uL6In8&3%mfOMpNbMM8Bx!O>KNTv|wqj}E-)wKYzf~EGf z?oFL{rdGu7eTMWr%*g|>ubY3eHn@R?Vyt`$(3c*A1TSirzgv&*FK5J$8rL0b)3Cc= zB4e#86V+a~mI+;zEr*p^1%?GmHpXFKQK}PO93=n$gyoe|>&l!+8zUZ>xU@8xwKas= z_z{BJfKJJPX;c;h$-wg0 zU)Es=^XhmEXfe>Y$Q;7efU1n|q6F5)CdR-}OZn+9{ON)F`O^lU^QH|y=S>0D^MB5m S0Qm0GKtI&z0000000019FbpXG literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/scaled.e35258ca5cd3d43f.webp b/translated_images/zh-CN/scaled.e35258ca5cd3d43f.webp new file mode 100644 index 0000000000000000000000000000000000000000..ac538319fe88f5418ccf85d88e6a72eedfa532c8 GIT binary patch literal 6076 zcmV;t7enY$Nk&Gr7XScPMM6+kP&il$0000G0001h0RZ{{06|PpNHYci00E$Y|Nr?m z`b0~4U3JY|%wBo+Y};#Zwr$(CZEv+x+n9U{2Bxj;3FOPc@x%?R5 zNc4wIWHQ;>v$l;CKbjsT``b`_2mNwYm#j(wJ8*;lR1mhI~jvA&5?S&nb_QVc~@*QXl00W_=V!IO?GZ7#(0kmNEw!V5&7nun$ z1I&W7A-TH?8cAJLcH~8?y-o|llh-96c2ZZMGvE@eiQs^@F+l93F1HN-fOHovcE}Jj z0Mt(Ek~D5Cfd;ksw;adyr*=};cl`zp8btaX_>rLPTefT_JxKxpAU$WQkRR_Cw=Q44 zOnQD+E8362YyANebJF7(o`E{|NKbU7C?JmXgdz&!Skkk4c5=%L%SeyV^UPUKLD{|` zEGx6PNRPF(b+w6$>3=7J^f)^^yN-;Z{SeUG`_7(vfL2Ey)uYn1JMxGfl{Q(Uv^(;M z9hG)GZQZ)mqYD;jcjOT}D$UOvF!$5t$Rl=CT8b2qrs#6y5j!evPRzoE(X(|q@~9n^ z<~(6S3+Qs>Q9CN_hoP`_(B;S@c2wGeE2*d&Nc*2c1yMjO=?Oz5Oli;5U74Q2<7hty zZ@Fe|OHdw>H~oJKy=OswF6Hjqym>R}8LU=>rzSxCha-V=#3u@fqJN7dKA#lIj|zoS zQ3~*+mM1V){_Y?&qSA;?w=O%>5L5on($WFC{#+Qz(e>xTD2`@S8uhW`EohF|XvGmD zu|`xH%~@D1ZJ~NpS}9-$Zt$P-Jia_KglQyok=_udk<>+bGk``?7v<5F)J1VLle!4s zG?TjM{;-y$F3KCi)RVeMZwOOQ>M8~7zzzOW!2mvQIWC3xi~vy9PvO(RUuchqxpc77 ziL8!1{ngEJ>W%Q+7*BaBw>A>@SJkCFw&BW`AuUS*J8*;lR4|6s1yxQz+H>NR*$=N8 zQ6AIxb%7%*DNl>n0H$71H-stWx++`Fva;m_5M8Jre#`^l>4U#naq>Y^&QAHJ|Jz0aittDZeuC156cTD&rA8oLz( zm69H^)9mcW=XZ(%3e zA*t;{W}25DVS1`}tOnYrK;N}ggX7DA-}6d_zUNYSa#kb`7j*a(p8*VtNBMymg7t`&{Z%eV`66U?m#Bq8KT&6?eUXzhI_0^`)E9 z=0IkmEl%uRj$QbC@;un=}btzi!x*{!(whrGP!pYrS(E%?ZOz^VvFqT@RQm3bRx z4=)3L)Acaxxzxy{YE=_PG85fDuK~jqi)Audx5qLOqXqx=qPb*)KeMxS;GBhI_9N&- zFP9)FrcGYM%J+4>jpbbGM-C9Ie*S#5fSKs54;;tsWF{IYy2DQMs7EiZ)LodGI=0s8L6xDS5K%pDT|K{Db?a z^#AT(ssB&^oBo&km;CGcXYc|2bNWB&fB8?3{(wKIdI0`?{v-BV**pEm^Pk`UlYggQ z;s3yX|NQ`ds(a1Se#?7IfA{ME|NqwC z(J$fOgx|CuTf9d3U*jL{&rza6{*ZiQ@rUw5*@N)U@dKC((Eq}J8^1I^KfnX%H}mh| zpUi)^|A_s*^^*LD@YnbMpf~x~<{$QNd_RzXP2~Xo3;ZAYujP06FaQ7jeptU_{uBNu z{ipYD|Nr}bYJMyH&;Dn)Z}QLK|Kz`_e)j)_|Nr$L)Cc=yZM8e?as24%_6E5uigd<> zI%7YW0|qc6%9WGFqcoFF!Vj70BOVFoU+uQVF2(es<{%PLtwAPUaEuMd@*(Iu-TS_k zIr!8t0t69mXQUa5owYS>BsSX=yBF1|+(RF22&J~zl_Y{l*P-g7=)EasWhlh~4`2UH z0uy7N$n^80Ew;qLBBn5K?{W0L+iX%=pl6s6n>v+X?j{J{?pl1b-SW;*bSg1GL&jx- zq-4wVit^A58Mn6AVU zFnacdiz$MA&#dK6SL6~4u;%RIU1>NNUn4z=!EAX_6x6l@)gv#*(=d@vyIOJwySC#gh>f{T!3p%6Z@1% zgtkYQ%}gBlCHRwRJjB-fF+Ih?2M2V7y)U*PDUml);k~n$Lny1vH?J#iN~}Y;4`Q(| zOYOGAG~hw(^Gt07cj&cHQ3b`hoyGS5@`3!(Q(BW%z;gt*&O>)h1c@5i1c@MFB(gb` zTF{nm7YJb&RK{Si={zAsCS8!~RE@w>82JvD20B#)Eby`%N?c0JBFpdg@prmD@Auon z94!ce&9-ce_Ong&h+3V}ljm*3bR~$?ST#%a{@yZ4;ru1uM~)}xS?p)`Dt@q%0%y6s zv617ltRF=;9JTJ3S#`F&7BW!vB9ipwviF8K%4w#xO?!-5@rg_^wIjjTL+ho#YDc9G z%SX`wpk)`Rr8+jtb0AHACLVEr81AD_$ghF`81pAzV~hkt<2Q(Sy}<+k339-xVph<9 zuTc}Xg-4;g4oayZs#U5C&;JIED|+6-K1PCbV=eFUYhLV5k>cbqtgT&iwZm*bTru~5|OKdy?P-bJ)r*UI?-NVP1yrSH99kK9#{nlP~ zgECwF&h6Z5q@l!`>jFH|xSKAf_xHfS`hGEZj@qtEv|KqVg zO@S6E8~I;q^TNKvpe>wq%0wzwuUuTOYk8*10#{&Z(wNx=j4?sG%)5&t7Qg@QQ`C=8 za*2ODT(j_Iz4XhI2>1WP4w>Uz>Qcj~ac2&)k24R&PTH$&TVVp_GB`!$LbPw6CkZ6g z3;sm`>p?k2pqen-1yAp-5apy(C%?7AtcUG|phnt(YU9b=kAv2tafu`!12v=o=h;ka zl8#VbZ=6%7Wajuts4?%9Q)?3@%oA28btD23;(()S8P7$qt>Z)xYi`yzohH$S&PZYD za9(k>h_Fh)Ha}Gev8QxpFFmh*zyM|@32Z&80shz%I!;vc5V+z5k;hyYLbrLch_!6or+I}0X2LI}HNRk0)8>rdts})uNL>^qZOK~83n~V+}5|T7gCh!Qk zkRFX;7~%i^2y}^=Dy(t&YmULnFO24|S~HfXSCJ-3cn14as9)>vHS9{T7exw=O$bW5 zT0yt`cmV1_OZ?ykLuJ6?IiLtsyj~ubSxRKI=syDHbgQkYrl5GGyndwFa%vS$f3aH?TsOe zQa7vho6Z#82O#ImHHjo^xD!IW3hNB9O*8mvr$3tjo45fw({pZY_ZHUpnG1|$O2hekA5zF`VX5KtSG zb*WX!yzH#r9?2sC`@_Oawr@4EV;I6^5d)MLKQ)0PfIOsJM`-I7`*o67{?k~eSN0C> zLKeV~y31PTaG1SyBtChHv~f#Jg1nO!QGW3&1uC0h|2o`bko)?gUb8 zx)~QzEltOO+{RW@$F`l~LFz>qwz4XEdWuzFEPz#4CnU>V?gnt4YZDvhWZR16fX#qY z_%f1Cq$VZwr+qBgyq?2i)YKzP{yE?h_yzf|K1#Y6&J!Kg8;Z)2MusX(--gwQwZ^cC zRrXmp;KU40@sV(kg%K_+?k`77pEk7 z@Hg$2h_6+U1unLGN%lR!PBh}Z%*_u(ly<=1{f)wly{r0>0aa>L4UJlEv30ZAt0Q=q z=)5Wwr<(%FHt~96$j?bz&k!>26_q0{ou$!2GPor$@c6)}~yv z>JOb$R}%vjDTZsV#9JKVnf3GgFJQzE7xEvtFF%VqmNd+hFi3Z#msT^-$fdukZ_Q98 z;2%~S-P7JQG_i?M29>9j>DWH4a{d@mCh-xF71e7vOp$AMT;1g7J4h9xs+M9r*TeUg zK!#rhyh=U=a;3~3Wus^ka!)+@4=Bx~f3m0ohfy$Uoozm@mHRBhDG+Rl@;8AH!@9^- zvVtD~I4$2V>i4)Z7~Y%I;lDGAI|9AHsbF|V6Hwtl3huBe)%pcyHn;VD8Ii`K^saj~ zC}>OE3>vZxcQo0QKbY1uOoJf1P+U?6^AD z0sBs0axi;>;7lW323{Ri5KHzD!>P z^}AGqR|#*XD_!Zbb|3%$#-)a5e!vUMQKaaH4K8wvN2IFt^Gg+XNOszUmD))o{4qEe z*=IPJggIQmQXalVSLn?T0H6zN2w$I`Xy}*I_Py#7|~me zvWJyy28K^DXmx4&OeB<8M}m(zx*ozTD^U0*bN5S*W5}NdJzL{g2xwkli)w@?CzMCdmex&eORqmFIaw z<(ia93W>qOQItLhtb?{j>YyHF!~y0d6k$s8LrZiIveHNRu3$b^UHr-dUHs;N& z6M09rM%ZHDZ1@-UF@vDBtSrKe)V?8$hOfit#LVHI#T$k2>v~h60t0<#7qrl@76)mq z%%wKt04Fn?Tau*;n?roVtObm)vE>zj0?dt$m|GDuHxRqGS>^bW-hPA9bIhI`-UM9f zRDb z16136 z^x$G3VujXLp9^Ve_TXBAf9-0NBvAiV3P~B5vO|WhHcRRt70WhGC@l)9L9T zEGvGcE3f8`PUXWY(-vT$AOS@9%>(c(&AB9v11~RF*2_CxOe?-9%y;`bCKD$2n<=d= zeE5g8IbH0^G=47Y!cZQ{{vS$kUYAwhM|c@CrW50t!v1rk{<>v3ouLXA(;{N`sAR#<81)Y(dl$R|G4tQHrmd7en7S_kKIsok6^EMXz!D2kpKV)jaDW>1+M(ih}u>3 zuVQ^y32f#0GhME~`?Ov0g2HqAdh~4G literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/scatter-dayofyear-color.65790faefbb9d54f.webp b/translated_images/zh-CN/scatter-dayofyear-color.65790faefbb9d54f.webp new file mode 100644 index 0000000000000000000000000000000000000000..cd40af301592d3786941dc5bce24c15e58145724 GIT binary patch literal 14586 zcmVV%<7>IZXi%@(B1i}!q)~oG}J9jj%HX>Xxl2j?ZhGZ`b8RUGgEB@lMk!{tq zS$z2QpWg%|Nl0W!(GdV{FfTkQkSx11FagY(BM|B%23hWIW_5R3L!;I`q?2jqfvW#1 z@9RGwt6;z;sYS z4UKA6cc=Pr`nfJp)fE{-%F_iI^w5W^q-22O;&|JJ(?RVF=I)%UE_%*T@~u40FTkML(%T%{g}|KY8@-{EX? z&f|FX-(ULr&!09Vvh-D%dPmD{R(U71^z>|X-!&1?I10aOBDAne_nPAl6n@u4x{=hs zYpODR{b&0dFONtfLkgcqc7hS`p;)7d?wCCnQD&q1FO69OF+^EHP0iG9RbV>-vH=YbuLZRoS0hfD({zp$yY78%yOaLpM&6u zH!=Qrf{CAm;6Fi(A5ZYW|El1>&`cuJc5D;CGWB-Bmg#E*canOW;8!--dKP@MUQdQB znCP=LS;Y;%iUElfbhe&%3)W~@BsdfrFA2VDgRN)5H|tfve9c53ugQB_D5CF}9U5*H ze3H3H@W6;W1i!q&*82rF9vX))nds9sdB=m<)Uo3O@Nu(X8bj9z?wQ$d5&Y@~TQ7p| z)e9iTnu$JMlXs+XG`1x)4x~eKjbJ~T1=poSUjrmMV1YFgWqWH{82ZfIQtrN0x46h$ zB>1#=EAB_k7CDE`!G<*xeY_@bh&xVpeMGxk@G$gTBRCbxy9J9p4Y^sbrT}Xu3gC@H zbR(}bgJtU7f}1CGjbJ6&?-txiJ{jm{y_ux1ndsv+`3Pql^M$`Bq0AhBkTDJwm1P1F z&n}W3Ld9@M3aG^eeO^9ga0Oh=P60h9+wkFVa-hYbtf#YA6HI9hozOtb^Sd~09u2^h zVQB1VkVM}Us3=ZuK+5oE96FLrJt>o(HFeB^9W!=ZoJS}Q0nw1XXH7%gFm@#QAmqxa zZ*S(%ZKtLKb;`0R91i(AvN7{=@kJ%ZE+ME>#rs`-J|j8r{h_A~IG-hXMoy#N3InfLemPwaQ=H^`sW zpZI;ie@*|le`Nid|0DnZ|Nq}F`QNgh;y=27ocxaX0sNQxkNB_f-@5<5|Ns9Nzu14h z|4r^&`ycw>_#fo{0DqN#Q~Tign*V+58~yM7=dd61@9zKg{hNQ_f6)IK`_J@i{cHVC z{ZH}VzJEZU&i}E0%l)ta`SJn#|Lg((EC2tn2k-y8zfHfB{uutzcU+xDT zeo^KH=?BOE#D8x7&;KXn-F1w=~d^ZmJNLf#OzV9ga5lO$FS?{{rfSU*{o ze{Jit5^;e({}=#PMr*wtXYKZoI(-#lr~T^E@>00MRjjiDHIo?2-^pC@w>~(KOe#&gP}mbD%qEru?iivYdHJA=JH&tbYQC-$J_~v?Y9i+lA z$A5e{ev+Gt8o~#v3D7Blh47Z)6|8s(!P|*wwv^9itz4y5^Lf#^gwCy)aXL(%)_G=b zp@~Ul6Cf+eeJ)AgK1kY%m>_;+%{ZmD!WZ&c*AILyw=?1vbzTao zvxjQ=*l$7nKC2(ymKaNiirM=J!vk?ZUqccpAX;ze$h}$E2>JkAXSqpqLgqr7zq$bqFj&2I3_#*H6sCIxttu{5d%OqcfRWAO1rIrCONe8lJp! zP!3CV804HHyM&l`_w~b?+9owGpB#snIba)P*v0l_X9j)RQB7lqy#00fh+<4x(z*=Z zUCMKwH~$Ir;vx*TXpXbeV8*K)p(x_)cLkypWD8_ZD{8up zDS<_sLV6qS&U0x;DR?9vzVMx%Ygy)vmHW5i<0L1azGhZ=P~$uPi7b-IXw*YSjDYJO zllhpYF_$LAF4{(q;-cD7_RV^jKx>jsPK%DI_7KxC>XHd)h6QG6;YOM13X0}9%+3jm z5g5`iVxTD(+JWX;7EsjD)06#~nb}5yH?<%13WDcP{fp0+{AZ+CzpZDYb(&G9-PmfM zy%7S?!F{WHY2)$rcb>nhpP^zar@J?tD>6^rCohmYBHwqt9=Cw?NdsUI0R8bW>dN>K z&GE5|G{v%Lak64hw~GO1%p{nI5F&1GGenDn%OYqT9{s74eYQe z`Hx!+wlX%Oo8HmOW0TeR8IM-0Qt!LYq22FsANzdwlDdeL@hBYH?0`87Uk-5}3XPUl zCI$mA8l$HAdP`YS9ylxO3jZ@)M1kCZ6dgpry9ojr0X1lBcJe+o@8t1|mmr9;K5K0J z_>^0<3)$Uc5}7q6D5qL zM3p(l9acc7-6G6-rQr1(eOIWjXpRb-!{S%(jcQ~B{a>GSzR)IJ25o9fQR`)mVK}2m zx4?8L9OWgBQ-CkLP7(TS%C*cFHs$!@d?do%`ZvYS7RYW;hPn)(6kfnkQo1r*kFc;n zw!|e)rxkQ8#`hAnqseOYDNq8+R9%~~jqSpC>1#dQm0M*Zfcg9ig|zX`#|6-H0Ec85 zlU(s;s=r13pA|uk?&)#3)?kYO=Z4dazIruofyensP3W?(deLV%!J8r#Wc`gGwr5=j zVY5S7FmHJ|bWLD|_Zyx)5+}ctqdF-q?rA+b;VK~SY9CU1I+MN>2zzf(sKB#tEKw%* zy?>csjE>gx=Gw@gOk%YM;E?HpgO=e*S5GzGWNQBJzfEgbWQ@H%zobPwT|K2LI%i6A`&kMr{*;1SM>G8_m1OrBk(Mp%4QASd==L`Nwet2|4!NSz>0mb}TNI(>JbKm63p-;W zvZy7MQ=qz&ZtYA>(!H`HmLJN7=dDLXWt>01P)n(^&u_B#gPynT&6N9)TV!aql(Vl%k}GIgF0G z4(2z=shC%r6E8b}Dmsz75&#A_y0`u2fXOco#2_VM6=wW&fLw9D*28MB8C7lUKS7w1 z90+EwY97EbHTM;c%`h7%KSI;2-FVF>e0ujzHWOXga^zGT)lencndl^qcjD6z3!NZ4 zZ3>8sRpsV6=UCFlRW*rasH0E*K#8SM|A*3QagcifJR2ral4rJ{mCRs7uEr?<9r0%o z61J4baJU=G;s=nc9Cho^uQ*qY`0fM5!K?{v)y{i=De3^LWyB);V5g>`)eX+HrLO zcU2g+&|;upqfNwI(+>t~Q=$^yf_RRT5TJ`JLG>=tILq*y_4MC6B6x(NfKIg?8rENc zWzG7Bx<27C$n@Y?pq9(JvSa0`Ivzq%30UzW4wK9fHV{R1X+Q*J=jdM{drOj^GU zi%7{rCxJiz6%i1(O!US4bWa}AD(0ikdxb|_;z*}9Hi5mzGJ5WI$q7#_t&d03HhviL zu=U{AQn*boEGmSi?pM517ii7yl?{!C)d}F=oqF_phhQzyFLxf=PffKnx{f0JBCkscZZl3^u1l%fzyT6hi`Aym8{V!O|0>^c z9DP@)uV{`6o5SMt(6@&Y4UC^ig-p~y@4g?*7=Qqh85o_vmSAVxM0*=0fk=j3=Pxh6 zFNDO&tsjkGK#A9Y=G)@~7Q#3RiQCFHjj!-m$|@5XlpgW8gjTq4^s@?r;kExn(Utgy zJBU;58#XdvV@$rj;$|(CGDbta17Zp?R7t~AI=tq^No$@H3t){=pv?8;s5269wsjz7 znJti^+<}r3n8S}$#{h8GBPr0i%gC8u|CLBc1W1-Cw}GV)7-qIXI2TF4*B1{GJZyS< zs*Uw7C8k_&<`u6?re6XUUL=z1MY7{wdt{r2>mnUkkXWakGWVOrgzpXONJ>#r!d3tD z#m;8m*vJ%yRRNa7R3SoFfInDM-Abxy+@Igt4vBfx{qT`w9KcI2JkhBi%h) z6&69R;0a*U*+Gd@6!ry8J1(PLN9AMkBqbvLhU%D~x~ZCUZYohrNSlSS&&xI=!U-4y zn7o8$j`F}H1I9eP5Df!=JjwMaGn>DO-vgMEG2*B9`ElCXxv1dJTbS(4MyE)Al@4Z0 zM0##zMVMZy%?4+!c4rHbv}2PpoSxLiWLQV_7E#atlsMP}sAZt{$MZMCg7m{BmuXJ9 zcv?yJ9SoQnKY*PYT{LoOgEM)wUU&t>$N&BvKh0@q=*-^C;BT(XP`~6b;gFD*@$Q!X zFjb@DojHC<^Y+0A64osE;AT=qma(7AQrblr0?7heZawI%S`C!g3}#( zEpsWyqAKdN+xZ7kpA#JCCznwWbYl3UBBK9imQ(=t{3uyYSt%kz3WM+Eh8;PL!i;$yw^_^jK+LSeO^g2gmd@0jCHCb!-iB*=35RE(0-L>K;Xv;mLAlmfA)l3%WidL)f-! z8=F*{A=R3+$V-n(iYf+?{j}=FT?^U3(9ne7&e){oj^v#B^|1JUBLb~Vs>~tiuYy>E z?IN>bU|U!Gb9OH`eoXd0cqcX|9r8fUoUtTtEHH|a#*esNY-+rb5WmAjr1bL0!)^u*xvV2KlAu@aqkGmn%LSm{|Jb?tUj!7C;D^2kB$|AzbTGFDsbn;Q;giK&q%g2CRWGF?rj2zETG} z#@;`0#LzgvOPsPerz8&IE#`1)++XlWObBn4^w}WVFoWaibAx=v2q4vv9e@7(^EM`XOPAUFW4UQvUc>|A|kJ;&@RdN~nGGsl6{phlz7r`nG7+n6)BqcRk zDfxVQgGLhHZ8H;NvTti%{tf$(Ay_D|u*kSpMIWhu==|G8NZv~n%6GUYQhX7G*e!#D zbaRP@>W4eNwY*RG8#6y!r56nTPsca01uu9lrtn(5*J|2QnW;S{T)ypvSXpi?(C1?o z1qL$HbsRoQUXHD{Teh?S4dGX@QUuj#%XE*LlR{k)1TL5d%#338AE3-iZh;c02H|EG z0y-)>4eXJ?H?jg=Rv_P6hb3s;BC&m)O z5x?e)`9UvNuzkDlU$02g%ecWCVmmhC5x$rpRwdoCg(v$X4~YzJg2 zb6dfjWnrySbp>Rts8&wO0xR=Nz}5s5aq6BpEarY(<%<8iKCv zG9Ofww=LV@N-%ru{H%AiK=)M1L3|}@@$}l=q=dL~Fzyr8cUL3pFw^W-B6wvfhLCG? zml@t(!cteb$u{&otej#^mr27KV--7#ticQIWj^cM_mN3^y3Wg`dZrE9{P5&GOaPC8mde#_A}UIjL_}C&jmU}5fo1)|Kq z7OZgbpN8j&hub5%ePDtDAe?|jPdy9MN~CZCsDP&fV1*7Rh|T9&?37nmU}*VtlU$P zvMj@T{|=Oo`0qBf;oRlzf}`ud?uoY6P&=n?|C6wQ?SDV5H{1H z>P6aCmmJBK8qf(udg`@KR&~B&G^?}ThS@nHbMQP9{w$)Rw9h0DNoFC=0aahMinmy; z?%5;Ub>ckFJ&mxzFjAC#C zH1+^zeY?(Usz#Ba+-Njg_hBk$HcKsJxnN+8R<%?rVZhI4y0Tn9CEv%MzV*a{R^V>d zGoMk?WahM|GL|J~^0*rj3DI_J3}mJ65T(FrBKS(hWO>9b@EvMK`28na8R5lCysL%W z7J1N*T4wzgMN6^3GDtV8HQqe+q`J9j)_{l!3;FhrM?wA9lP{Zf@u1UOq1-vwv0eKtE& zM(%!0AYCnK1B3Y^`vD(77_2|g#XT?FD%MDBFP`6L-k~on_ZV>-qI1>nbAx2E-?X1< ztoKpB*oZPg2q9Puao&M%*P}KI?Z3dfgdDvi04sQ(CK%LkrjBj?ftYJv-(CQU#wueX zR=7Z~izxY8v~+OQ7c+ILM}dAzO7d0+q8LHBhfx@_P*EQA{ST{_7sZ~LD0AQigs%`j z4h%ICsKh>E90uPMC0t0WdfCbHF;E>YGQq z!E}9B2Nxa_>P3}wv`G)pYltp#R4|`U{x1*znG){>JIBjS#`_{{gnsK*hkGruS*UrX ze^G|>5nC3SZuckxQt*{yEvzY{O8J=Cs355*vmv~S07coL{^(Y4Vkk z&|elz$U%wkciCL3Brfi>;XaG(-0$W;(uP;g+)kF4YI@iE!m&P)Q_tUfNzf;PfRS>4 z35^4N?>Fh}sUxW8ViTmPn<-#WfGu!fJcKT~C(6+IZJSFAHV>wunJ~miH6+Iq#uJZm zc!=%vAb8pwB&4TN#um79$JU2-iLJtI#{Z=R9@RPI@d)&y{6NQdK8F3W%L3z$n$uq=y#Za)hx%XT^&v8-^l{DAAbp#af|RuOyE#gwes>Y zcgY!Pyv@?7a^Nd_Z;d~|40Q?^*P9*zTOjX#Fve{6{lRxYZ5&%*>JpJgNFqB`npr7C zhP$Hc$QMj3O?fN1(NEM9k>!~j(opiB8eMz{b6Se{(BAjHPZuE~9l!zp5<#A7)wx!C zr>X)*5_+Acx(8?vvq*(Cdy|Pi)(2>6K_(JC>ym&~%*>fZqR6zmr8`cJ$6;8Zlds(2 z8sS>t0-?w|6-I+)Vs9ah8W#i3#xKTm$BNja##LI!9&M)mMg#jxe$LZ^VhSB>qod>? zO~Z+TOyKPK6&0p8-|cFOPF)IZO9{^?)7$v++bJ37gX{}o^ z9+)0V(PxhJ;P;(m+J0J*S1XCl8_`|n)LPazLxJ^JP-+gxa_pKIzIhh zx``Poa*XdHq0MhO7~8@`BVvbztD!FP1zuu+>R+C_&@^zSu^$}NoSUC$pia!$+{x}t zG}93?`COCAet)Q{>18YnQ3N2_`Y(sDBIZv~v?NZ$p=QJh4Y`dr;W|nzd?QZOid3JM z(`sbTiPZ{LQXIJY&2rR(l+^lBhI~q|P<0-hRfOCoTCddnNT?;4$9+4;(9*F1MltIb zFC0lCojw}gU$11E zGxyV#8ZA(>blqqrGk6(YGo*9DN7LL4AW26$!T7*%n5Wjv-jXu`r-jUco167fK?cpm zTJu~UiW(Kyg9Ag)-1A6&Z+E%Cm{}EzUvkF*51v1&ug0W0K8h7jZ~s7QxoXiA2LQku(wGeF)IeH)O(}OM=mp z_cc*IrqzPI=J+Byj$AzPYM0IcDbg@5z;?zF^l@+bw0w!#%n zdVSkvY7A?Px@O{aC@WsyTG`XKU!@l(jmtDSUQ1R?C=7Qf3t=*lv<5`Z)m!f2qgL{_3ZL5 z4T{uulxv~|IyE&8jo&AU&$BPXBV-UTUz}S2!E%raNKm~_2@ui-?#1FN3B(>^7+bNSAJgN$>|h;dvNu-BqbI60d7IA04{e*%P5~nF z{-BRan}@_Xp^GF%M>=tBzcnV)1sKxkK`DPI_c&;^$x*5_Ctsgu{2sZc=Ig^!$XAYc zr2x|uWqv{5?o$<-NdB>x$mpIaJ@@>K97*fDvBQ>sN=<1I3RNNa($jKL0w(;`A$qiE z>rfg044Ex<8k(zrP4p^Ywcc*dcL+~OyYhtppitDP5aPimlMqKx0g5dK*G%#x&1VF( z{uycJRs+b2_lYtAY?T(Sl+!uMK{xfcy9P^3t zOFW|p_zW1_>2zr>jR>@pP|-m04#ev<$Kuss7m9%;Ad$E&Kt@<=rHHjidri{CSmK0d z?Vm7HDyt{RFcUbFf0(5Da!o46&QNA8h^UUQ#+m}TtY=5Xb)Nx_C`E{+4h{x%c)q2O z2d0lI#<-XGLC_J0Os~huV-zhK+9x$NoR*$Ga6fqFqShhK(sB;TaU4M_s=Jrb_02Bj zj*d4y?EkW0$l=hKFE%qCW zkmXV%)`=DuG{Y|a1bJ)^CS<(qKTctH`QEo;Rox|%qWg3mRBLgkz465)sL*Ow0unrJ zSd=#Np=L}&Q_Km(kCw5Kl?Ql9pb@Ff(9@O^o)lDd(`YKn?5l3TY?`1|S%8{>u=*<)HbdU6Lv>5A#)0_W&zxPN)adc*vN)@viT(q-f} zB(RW%SsJ>^gYf)yq2h>F#JF@L{Q}vI@Q5jNG4l>~EXgdK4=0Z&Z)R~KI6~nbu^UT@ zg&JmDaY-?!*J#8G3-X@h6@yy8$KzdaO^7lRJ*YReg+)^?y!4Kj{DFymfh+>G zz55+mdns7Gpg6y3!Bw;e9~XYl8Hap2#`oQDjW%*lSp^Y*8W{lrxUSovuOR&$XNQ8| z#Ih-GLHl~mEhA_nO&)0?Xjq=*lxXi~IVN{WnD%7|?7cPOo@d#CC6kX9`O&o>6I1*H z84zW`stnY^~S} z%*BlP)Q$KCE0oG6dqBfPBY^EFbQ7XQs<(Q3*4Ikcoa}#ftHu-USCY{#e^Pyrs_4_< zK3YQ$|0keixZxbxUz~!-r767qB8^m~2N~s8-Zu(IsdicPT{dD7zvn+bqy%L0JD`I|m(sE!+A z4n^Uy6|`+Ayh3FC@!@pu6FJ|Obcgx(`36swX8<>-0xTZj`br;StHPEQc=w{>65x&U z`>fH7LCp@PS4Li@{fD_s8|&nQoBHYJm2_M%Rs`(;001eaKeu3mY~-IQDR{ff(|4{$#hP4EGzX~S$mdV3&<`%LBg^*@tivxjj^Kktg7Zga*k|LS*D{=X zwQH*9MXqHz0ZPCTdg(fw$~LTB%zgP}fo^p2XQ7s<0&z*hEhqfO9rPTR8`LZ`Uz}h# zx#+7jLw%yiqVh1PW3HVfwNSWA=rdDIav7CKgVXLw#`9xr@mBRAf=!7AdA0`JW#5Oi zK{lD!<{PMLwY`5B?n#nEs5rDOz<415P08fx8B}v72%RDL=38@zTNHZ~U2nS+qhC zqa!~sPxef?p&fY3)MBLQ3r=LP&%i6sqZr^SNSy#{5_!RhP4GrwEU@9=r_cdHAl>N4 zWP1_tj1oBg2jEqOber5_)Y9YFkAz@|A?k_aH*i2PnqVdHWS51*wj{giVX?%S-~N3C zu)qT(^8FC>AT6mf@NM|fMMWINlGD_KW+cYC(sXYU-UV!oFNI+~weWpKT1o8llt~F+ zdUENrna#?1*2Ty8KF38YegS#3I^@(D`%8A@+FfvP%xs*0T-%lym)sC@I;A_v1eFz6 zf!vvIxGF?YII2Ma>K0i~{-@KG*-|3yWyX{)_+#A<`N=o3JwY^RWX2L_?4W_`A#(bh^xomp%eDrdDA=qPnY*qZ`Su0MK@Yu$qeJ4DCdxnN~_T7b^?ntUa59tYgMr9 zs3ud7Mey7jeN(QEY=5WX)sx7?qK-C-VM@m~Zg9f4DO`!eodN>&4o5^)YaGK1TjA?e zNXA|P&N-tDkAJzHdxBgy{S~(!@RrGUvU^yUO`R@Vo$P0l5>;rcpNOeJchOmHJ2v+N zN$v1Xj{u@%R8rS5i0;(a#jHh%0}(F9;RD99g+dYUdX=IW>J=MB7p`L8mgNpw)MD8( zA!74rb;+nR_Ll9*w7THonAte~xwkAaFSsD)bxL=T2`VbD1GzHaX1-eN;541?-1`w9 ze|N^AWuln;D8Z~y56>iaRasGfYJH}T#1SpoJ3EyTaCJHHfGRAPSW7b&ry!p zFmG9q1Zb+C{-d{u2*=l|Qk2c;0pefy69=gD8|jHzKnUcfBq2z7{nMBJFODK>lJWDC z9S(Dh|EbchL>fa|tZEqKHu6?(Ii}G}oibq8`bGDKt-kkbQZJpBojP#x%gA*Kh6pQP z(&xBl6V&$%4CV1@|#6_lBFk{>XK_MmLuCzQNXol9Jr{PkWC?e`otAE)eD?v&Kc}*sNRs<>; zB*6s;1-rxI9tMbx9z@dPtJ~e`{0TZP{jAQJkmZ z?W+dNpJGOfTQ;`6A#yLj*VL(GrY%z9n$mC}L?U{1-lh*k<>#~oKhWgAs4qJ99i;U? zP`OvRo>z#^D!Ia;krx23Z30Sf1RV6jjx^uT0z6=Z_ zU)!T5;p~9cKdQTY1f^+tRe233rpJ6N!Cl==pWy9LxIvt|6}xhaqy|q__y@tpZzHFZ zn3HWgFo%hLF@1yu?-$(JY??bQ8sf>&pYTkvXXgo?FlniKsc#~c+xAt&W~1UKjAN)N z-~L0Ibk}kY#mjrzoJ#GB03BKKDIpp{nP{hNaxwmp0@jji;A}YjKQ9_A4+QLb{2rIsi6n-;(1M8XB3;Tw^6CV7ali zX=1WN+pURdX`B(ZD|dc3kPGOvixjGQNh2T($8WNuNomQ`fDlZ>)biseCbU7^*-hVD z);I88EhkI3%rv3=;(bawCsvi}mu8MuNpRz)B{Ta;>O?z`VKxg9P0mWFxvLrwW@~{* z8LoR)RU@vrrjj##|KIhRu;2j!u|g5&3h|-U-?)7Wp6m6vzszNioX$2Q0xNegAC!s^ zyW;my1FIX?b0Xuslj!uF{QPSwe2FE}hGZX@LEMX35*f%ZiP4+ngt91gAKM9j0&qlK zM6TDi6uFi2dW3gGJM9Q7V4e-*KiJjATDU82Bp+!Oif%24nC}2EQGpq(d!>w>)x%Rx zU7Y3j!726w-6bU<#&kK43qA}b(3t$Z%X)pjz(8n+G6|NbRnuw&4;}2B>#a^B<^OKX zHxJIzEV2m2*H_iN=KlXb!>ekefF7ZS5)`j$Lv3P^YtOFQg3b?wc*7kNV^YZ(~2eODA9K|T(R__(XSQ(gMG6u#IfgQ8YJ;B;PXLUbwvgNO}J zuARLD!DPaDMvH@%?}`(rJ1C7U`ATK$gvNgahTp`6sV&^rlcpZRP}1E#&E zgtJ|-whay&(+`tE;;J>6RVRM=cQcKRm?x2(>?mfT-AZ|~r@8@Fy6t@R)Qeg^s zp0NZDZ|8!kglso&bf0Ddjt7E4gNKuJ!N8j2*Q0)N8;Dj3?zl7rJf5UYGC)(M`|*pT zQku4euWxAkqOO}2mpadUCi%dH@z&ZcecOj_3x|EQ)3ih`fl0WI8ifQgkN{iU7KK3T zPNhla&AwltyHQLL{ZMJ#4Ee`W#a6>di6dz#BZ=vjrgS}gO_ui_OYqo_sk^H=6@)xua)$l|ON_{Fs^P6kKzKnBT zcB8=vaYT>bcZxJ+#SYo``)&^6{Vn{yT;+iR0KtpITUR7iQ` z^NV{LNH1k&k*epP8+L_}fbrU&a1;QM&g{Azr^?OWI0nS|eFf96JFZFZj1*DGW>T+KW? z?dQ&Z9UfUr&y=!a=nHe6n#-#m?$%!&d7L> z!HV}l-Q?Cb5{}v#WEp{zywiQDkm{58Cv6(kHLc(CgFhuD)UX!T%+7-;J*PbBa?`H` z@Q<@PBy@;AJfb;XR%Ky^Vr5B;a2^}9^w-K2G3-@XBU?V^qi(y% z8znopQbwT?xW@s4lt{7o2VDfd@RrO!_0?V87bdHOLGBlYqsmbQ#pwe({E}g)$6Zj8 ziOb@|e1Q_+u*evD{A4j>5>j$%X}VyNbD8zJ>HZW@QP4$ZjW-1OENh=qS}eb2JHGc| zlyuhmwfm&^#41##AIiQycyv=cLV=(mSoiknb}%mtOh4D`NR}jp`0*IsQrB{#q@N&d zlhRhCUb7UC@!+F(sI`JQhb~?j75!U4BKK|s-jKFQ4kdXthpZt_VYa=Xs-3|c@=!xo z!J<{UY-Snp6LJ^+;CQMsuG*p=p^Qd3SI{BI%hr-*{eEN{V!APk|4y9&_`XXbd@MI7 z00`yiK;GGOy{uHjp6Ru>_itn@kuYxlzVAT1+v5vYedf#T001S-1C-$Hp?d}`!1n}O zgLT>JddAnwn2DgGT-e!IdfR(WOE$^HaYRClV#ASoU5~FREh%mAE85bC z&Em8$RnIfoC?P#I_Fg7zdBASQnKZY$X&>i&t2G=luiUPUN4kwfu29|XsVwu4ze$Pz z+Iq&<%b1DGYb$9)ph~VxT_XS~>btJC-fpyoA-^Y__s8BfWb$rFqb^k0+6^H$BIY9X zY6wMaBo*O%A{;}6&)`Kg`YhjRmYYtXR5RomKt>CC!aw|IO#k8T?uIHa?nOsL)?L`r z91jD>qhn{Ly4(_l)As-X4)&;g?Cjz+-WumrVcYx4hxoYUJf*12dt!XCPK@ykI5APk zCB|5+g^WZubNmH;v;=C+bJM(*dN=b>WPMf|8YQ| zbB{Nf_~p}D%o6ovTjlljgbeJoF+m0#K=$M%Fb1RvdW3#?+vXW+Jy$XY%@u>>{Vel+ zaUc7?x#`Bwa&2IK4fSGXLM{iv2lz7Pm=woWO`qnF_x!-a!4rO{Xz*ATyOy~wM=B|> zd`yC8r68gZr3420L3GDfO>6$Dv^l_l0Fcmx>@?$BuJ^=rA=S7mIjA_gay8Brc1yV{ zUQh++VAyuO%lniFkT(k|9NrVDk=sM1*7u<=N1dAIjPL=}1lJl6)0d932w9upu=np5 zA58!R?EyvDczrrx0005CB^@jU!Ov?&=b1idAvCpyynTy@gphg5%gRE9zo}p9Dj$%K zYKGy2+P!71Q2c{o;6SwIR;O^di&!*IK~~AuXzEp7fF50)Ob*l3aiN-kT;H$B_hFG4 kRdHT60XVLxd*!dAo6w)Xb4eA4XP5v000000000000R5F`QUCw| literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/scatter-dayofyear.bc171c189c9fd553.webp b/translated_images/zh-CN/scatter-dayofyear.bc171c189c9fd553.webp new file mode 100644 index 0000000000000000000000000000000000000000..aec045037d37944bdfa2298ee49ce71a61bfc4a6 GIT binary patch literal 12930 zcmZvDV{j!7?BMIxHnz5Hn_Ju4SKH?6*0yciHn#58cDvQq*1O;TX6`=RTxOClnQ$h_ zOfpfEla}^j2LQCC#8tFZcy$l}007#5=nnyah5(2usK~BB0ss&RD*BE)vLujfXsBXr zc!}t_s6jxyft+v3vL-HQu^$R$A9pnyIziF_wowa+V`c@A1`wx z-@4@RvZ?uDNbhmrl?8gF!U;0~WhcBb&SRv<#A%hjKo8z+^_)us8a1%?&NygCYfzk< zPm<$#<4wRsX@5M#(FR5&U8#^DtW#_j`@=-$eww zdp(6(AA|ZR^7i|;*dd{zRdjd~fO9&zfG1`pnBn?R1YB)uR(|LI3khh3K$7v~#4MJ1 z<8T&B{-L=7IIC~scDqKz8kf9wdi%ylkk~a$IzJRlfJICbcEfAAm`Y+%_R+vOkV4XS zWF6mn12JB310ikkQMhYFeqw@J)e)n(*cZj1ZvK|}1EEV`QHb&KaJ=T;&L8JEN3*U$tkG54ZXCpxg6^|FIZHtNy}YY?GNMYBu{m zYF9O%ul;|D`{Pb?HHi`%tv6QD%@M%hqyIF|S*w?cMa|~FioU00HIK6=zV+V)5M=nR zWNp^)oPTn`<$0kWK4U6;kVAoyP5eX#Aw@I?!3CMk0**(Vq}_)ugX_7zP_Ppn3O5|E zc81VKH9Xno1UPS}Z0n=Y+M|KZ$Vy&DOuTS*7}LK7%b|?i2UgrmaW9ZbUFXE-NRn4u z5Hz-a3u<{c?(v&lq5G+5!v(wr)~+J9NgURN3VSL1yq|4T?NEiRaBc)rfA@v*^?aua z$`=A&XtiwTf={qK|)=Q*DUz#F+B5!HVAO+h+7t zb&@;X#uSte>p1={ds4PH&u6vPJbyoagq@5Ky$vcdWb&fyd4{_ZHOMo8IpkIB)NyQq z@Wnyc3spBsdS;ODh@XPi=6HfbaS7fF$Bd1B^hj>~-?sI6v+YhWjaa+Ko0=z_D-v)9 zhhzuu6Z!6QbTyNEc>Z4irxJav`(h!e_c|L0dv;L0HMLF?W|9hVdw?Dd9nPn3JKD zpGhj6Kn*yv|ACj~p82hp(_~?fwo`=ZxPD_p`o)V=RySSi# zHF>6jnP~GC@A3-@{8#M{KfLze-C== zUjqFn_sj(bZ_Av=gTYR7OW-eXzon6!FO3)-#r0Oi*@n%u)Ch$OMft-VX^4ZQ+gCvT zNCN#2JWov`xQQfGlQx!5Czy??Jyn6w>&A?*zrBZ&CEW3UNr;(lQI^LfvBhr^1^%)q zPU4WQTX5?QFx5l*-L&o&%$1qB%pDZvKwhR*m+B!#__dm6w*czUF$(s3^I%zVq0cMT zyN<)F5b^j!TTH(+c^{r_U&k`f=PnVPM7$SZ>f90^sf^7C8vn+utyn-myK^xMc6oBW zByRspCsH_BJGVIuUjCaaP*ArbnghT$e_F>Rm_!RyB;ldHS{LMHWrrKpxIt~;44g2q zQHGwxR*K$UG?ee&b;to)2wwydOD0E%r#@&Nz|?d6O$w}4lOBV?+L+Kv9NPos_EvE4vpHsaBd6_hZqd)*}O7Zb_Pyl&Q4FR z)ybpTCD?FKQ%5S6@5j<7ukv|eU7|k~Ifp?&c7+a_%n8?R>lZO|;mu-J%o3uovpyj; z?AcigV7V7Ju8I<3mHwpR)2ICP7YoK!YsZS;fJD$2ACyHe82f?eu$upQ2bmo%X|Qn| zkRPNLQGxv~^5!eNDM;?DFT9hggFd<8>Apy!(EDsY9@EZg{n506(wTsj`>-n2cTKa8 zm!7&%%d5e#Hy!eipEKW-PQ+I$Zy;L6sw~Vi-4d+18LwGTH)V!MHq(Or-N(r7?%i98 zth;CSOl7i%q(|W~#+MPqVHKQA5ko#uC(0tEj4NmKX7oev_4PN$%C|V2WJw;imA<0K zMS?9IzEnY{QvOE&J15VC&nMIM2hEQZ=E+)U@1#pkGTEIcSIMME*t9=VBzhYMapuW> zm>ks<3v=(nb5x)(ndO{5)Awt#-~W<#qry1nmOZyBSnb}4yM^aDX&C%bpa!+5euyw7 z&PP6?|8o&AU|AioiJ5&XXEyMq@TTFb&)T2&S8?t%`pYlPYQK1s!TC4^O883k5gYNOSoho2^R3CQ()z%_V*$EJT!Id1M(wf}mb?JL>7QEqM{q z?B+YUvgj97C`EQf3fX0ik4fhsgyUT3zJyT8;Ui!VUu9++i_$;kAf)ZUf7k$v4|=QH zvI79VI97ywyQD9+9xRhwGdQy_A4TGm`kr}DSj6TqKP!=;f5JnQM_NK4lZXo0?3a+W zoGf8i2?zc{k0R-T(=Z2{W5v~aoD?Bk!4nYr%OXhc3B8+p_jPPet;MnKv^>7~F$N%& z)IY~u+e~t3vV9Czwa}hg4)c|J8Pls%ZdFXI9p6+;eNEC4>HV9LqU-==wmj8Ql+yK{ z>Vfmo2C;2RDOrFv(2_>=2+H5f$5=fai_Xe5Gw0|lODzpy%S}v-8QqEt8!h|{Y@%CI zg9MrkYP+0?Q-{alq&^~72{oRX#QY}eG0im-<9Emgm& z13fP0r+))SbZOGMh|OG|3+E(UPS4y9a@$qQ&)KPS8D%e$wz+?8?k>+RPivW1>;t#S zu`$@|=_hVwg7KluqC^KZ--8&oS)UjdSjUHDOc%5WdFbiF_qIW6uk;hLs`|8;3)WX^ zZW`VQDG~ISF+8toZ^AwV=`!-=SpT|WMN|_x&rB!tJTUv0_Z>3yi)l7$Y#lUT^_~Zv zPkaNuA2N{_%NI2IeDY+@_l*M}o3nS7*q|{{%WPG?{jtT2z>qhm=Ud#D4ERBXHa~kfup?8Xe%mviL$LeY+>Y<6#%kc!Stc~gdj6&d`QIWHH%WRYW`sNrD$ zePPsl>Da2!6;nPJs_z=S)HBr@=uQ`w)@wI*#u6k-wGbD}@jcpE{U$~LA@{edFR z;rL^o^zaQMCg32eK29L3VT?hPvVe>21VnBUUrsE}q-brgt!CVH zL*>_vcfb)biI8i|!Sl9Ai?Ik|ty#GmQ5hm%*kD`yU1cWOQnKTexq;<$@x@{*QVpI- zE4XYId;aU}caRNw7O3m2fx@i+3b!{2>z0b0?U0hofHtkP3P{aMC%~y_Jd@*B{_U0P z#hQMz1kk2TE?jd2Lk-_e-MUsT2yb-L4a=ib5!}}jNS^bacVpZff5k}WE5I+YLKv{PVuw)a2Q36Rm&7;y-}0YrB$S!P&mo&m-LMe36Er8 z;gqpGT$RXIODO8Y;~Z2KdDOX(JX-AY!hmph8b~#Kmlk@|ewkFq2_Z%I=4&Qz>B|bmq*OePlfRBPfY{m6NDWfk%mWSA0{*wr$J)=_u5-)V>xL8VXo; zNV}AMu~<3tj+&+2o{#fc;pU@Hfui_*;3srBXuimlpW=ef;UUyL)E~QS{SafmT_kyV z=9V~luUF1xER^qA(H}YcAclpXyLpfu#9Ys8bw(N2PHe#M{tro8y`1(uuvPMrC`|Zw z9WkNuj+xRJOt?%)Tn)yX(|JUY&>t(7{2VAo0XN!nDd)CAitsS<8kxkcU_RM+yeiRk#DAuV+Wn|)eRI7RphSOUcl7>83K0Yn1-+CWB_cibuH zdA(!f#<9b0Nw`hmpP-Bk4sWw?BqUA|7>fJ@%`3Bju@@Jn17i z7!IGRfh7-A4V^cV)1!%fA5M}1qvb@cfY8ssQ?xz5W~Swz4%&j5s@@&rw4uNwn->91 zNn6-MK6mE;WLo3PICa8zTcsR40NcwVHtCb12ShzV8*A@)Zq=1;4x$k zlwZpSw99^SKhaxIOlmxP8uS^Z@?h`6JQ0xaw-mqsz#smLbY}FlTWNkh(Qe2&BwzR2(s^*c&uXt z?B&Fr)}1KgRM_<1L@al=nmbMbV&LZ{rni zGHj5G&&(^?`vCtOeV-6CfxRU46T947UKn5Aervd`C<(;;daYH@s&8p%rylct!x(8S zdZewg+W0G740D)yIo(sC>wcvFV)>C4H)I&+QO;SR^k=a19vSw&`DM+x?c$@l*JNR7 zf%X0=bw#x9VWpp&xarj&Cz&}*NX@P04_xF{KAnUyLe1Zq5oNw0GHb}WjGE82qp+J| z?3Nd%V*%&>iyt;l;PZC+5EpldDNIa_A^b!V9 zFA%Z8uA%!XQV~wFd#CdI$xWrHxUr2go8(}c&km-!(lLZ3Xo#^f0_*#%T22X_=A z>bR#8-!Da>9IW2i;GQL;ZClO11b5p?jM0u!H0795?3&*Txa$upc;olUvVva)pkBid zf}Cvd$xxg3YofbO-y58XLS!2#JmsjWeQ~Jp>Bo%lxuo|b=y}_We|{A|EjV@u^{qCj zIXs7qlOHo7Mt;Yzm{_kwtlrK4m)YsaB`?lp`xpU5F&|YgAh?L!n<$ET82X`$@NG9p zZV3x7*pUY2#Wz+Pe^}2ElrrTVZ9}95bxXD{aGg|>%8*_ZE!N0x5}+wM5!wssx=-gQ zUUnzHt^_g8C!{q~hwzIA%Rpzu=M$4r!liJ4mp_gg}R%Lfpeph@dNfZCHm6A z5yFnC>qpMh46EBmlwHP3$+`wYn3?U^B*uK|vWPjOKh|@iXg?CZONf1>jBi`KbUd}_ zJSdjjyuf@y22rh{%~U%z9jP5i77@N~9+#7B2u^mR7_HdKkHs5j+xO{ggcQGI!8h9# z^L0NIzr?8}<5ZV=cpm(gK{h1rfi*yWvDf!WZxdFg1e$W-;OEY#SlKv0&bwaFKC*N2 zDsBAA7Z!fkl&vVZG$(t~H=`9=VnK(`?n7=)%_(C>T&xsZ{AU~zAKNPU^qm-Ti`UVH zY=J`^QYzIuF74Wn$Qc6GdQWFZm6m&><(z_TPC!EVs93L?)J?J+Uw4#CqQjLvHoJ6B zu$3@zKg82@3glC~Zr1?YVb7#=^(T9TFCxoGn{5``Vr*Hayx>ja)G10;*DYoAdO3PA zir|{NB*Ttf|5u)KhD^+=Ok-W=ze^SO8G(pGNE#hoOQC;uZUL7P{uO6V_(S^RkTJ|o z|1ix0gYu;hY+ExoaJUyQRed7ZZoJjJ`Zu{s}BvPU+*7^BnjOCmA?n6{I<=Y5zjQXq<;l z;Kp(-5QWguu=Xrk0ZG&Og|LCCH|CWaSm|{EG^VoZh1OSb9|SQ~*ry;C)FGHEwPx1m z{I|nVY7-nn(eu$ffNMfmB+al2k=r5T*=ZUYVGkhmr=I0B zf0Y%ScW`n-a%~xCx0_gWA3k79q4hmf`my4EU{4V#kfcvD9-OWT&MSx>e?^D7+KD}F zgg=s*@V7PNy903MtA!5yBn26S^Oh!LId_iS^l+;ksa?gNNj>frI)CwQR_$h`W38A#y3a62~)?-NL)|w}Dhl*=I6c z#r-~Akp?XjaU0%y8Q|80clP^DGhsWdnZ9rlV|!o`_HqDz)lNB4c+pnTGs*5jgSRwG zaSq|-H&WpVYkNlzQ7g~WXG9d27VRhi=^WDrele4>msHgwX$E*Aw1-hU$_9sU24ynE zuo}+js84E8Y8YBcCxv^P9mUU5q7W=0ojq0_r zaaq2$nWSL~NJkMdSGixhBlHGHs*s%P`?$vDjos$4aG8!DkK@vlUC=hIMg7<(Uw+OY=XYU|vO!V2&WZe) z!aQmVQe81AxNN+tw7Tjgh8)NUrRF({WaT#VD_)C(v*Q-G{3P$l?$GVX8Nq8$lRM0H z1bOk*xD#R*#vAi#N|Y9K!y^nW9x)!P#``jbh~vM$DgSjvDzy+?R#`b?lf)w3<~RhE z(k>H4=VhI^SqvMg;P1BRE*}Dy$#XYsPbCY{=5Vt_r%>YG#IQGoYsFI#XNAjsNp%PIa)1E|&!*(% zG=Rfj&1`|5(q)R{u`$t=4SXArRuHS#rzLfyyF*O&E@bl)gAux!#s;mnx#mDg3)ViH zW}#91zR6TFqpWpcXpx{W=ig?1y3*IW9+D~JS>O>#Bs8)`eukVDy)k!nTk1X^_37jF z28*&vw4UZA{@r1iG(B@lU+XILH2SuqV?e8kb|-v$QvM{zl^=t>f^@QS$vo0P9@MT% z)KLkAqJ7+FS>5=JV}8ZKf2)#Rn6Kbqy3H1KI(TowdsjOcXo%V`R5%Lxgxq8MhTa`A zs4=)0n_VV74R)=t=&Hima!8d(VHzEIryQ(!dghy~e^Qf}%lf$Kxn4xwVx^TZ`7e|) zN&ac}S9wEa|HO)H?~*>D!@L?_dJ7tzk1MC?Oel}*8=+@XH zB+@s`_2z!QtCJ;7Y*nX1Tl2-aBaBSOVx#WZdfdJ3`bq4LIor4*=tT0_UW&OfQQKWJ z|Ds@boZ?Z4ZwW~!24#Iuu%~1EuMYpbhF&-_OlX$5U*`T{g37zYlWv!(H+{;o}UaT zBX7*TRp%n*xJ{`MLWr@og+}p@BDZBu`G&sV|Cqi8Yg%a-j+>_~*2TdUayVnpiAKPA zNOZKYMja|4*2%`2XYFy|wBv564^#nRd6ksq48sk7WPi^6Y1>WCf<40xbs5MCh^1@% z@i~(#Jmh_MAt^^5J=ug~|7jNv5ZvNc23e%XtU(`hT<+<5ZgtdXI-bAqCyk#mqp~Nu zGcr4H!Lg$&_;I-d>eUT?Jg$j*L?15Yi5(^m-1Yezh{D`!B60{mQZ7+f^G-yk|C zrk^>cdie``G{!E)|FvS1brGbW6$Hiur-qHXAg?-ab7xF0wa7hXuYz%m0BlrPA*Lnc z7IkOROU`dL#`JvHg!bRkzWvLAp?Ck0-!k0F?uPuP1K|9fK~EtNj!SF@)k`mZvnP}B z=_MsJa&>9k6!k{+m9I67p+AZRYJb~Jd=y?q#63D>rf3Lx32bVR*+etiBlcav6~?lF z78Tl5gp~1M|UM-U5p4&+E+~p>c+CN zti)DXu*c5vTPLqx4?;L8Z-b|`c+@XLLrI)-vC(p3F)PU^q^(rpe%{y*tyJ1Dujm&A zFRyhr#`ZqreWYK=J^w@`9Aw^BAKMKzG+bHEAM zkl`-fa0=v!{W2b|aL6lS8|?Y1cP_hbPNixN5%}~(Fc)-VTA@s|Z~Eo^%k-JY#s0;m zLdLs!iOlA?$-6ETgMfBoa!$3gDu7c2>?QrmKjMyyR0VGCsxgow`u!X z_r3HxCL=3!__U)D_r~%^^%S>WD}>7`n2JnruqDsUiyv#?A zfv}}iC1Y)kQLf>2Y}{$Q2w;;nm07xWuxr;v)__>dEaxbL@LO9O7GtA0>bjWt6cLbM zrZ>R?)R{mSL2clHAlt4XC>TdLx^b@@r)1ERR@JxDSCR<9?71O9CGVHt4&g1Yt^HJO zwYabs?S6>UWm_5G?`>63w);7I(O0SiIE|H5r)&uD?0wY03{AkLcbcZjpIAq%eOR3g zjM;`KC!J2b_E8wc5auk__6gXf(^rc!fG^SxQeG~Vou5UrwZ)U0M}>>?@LsI6IsaO= z$M-QMgtsGGzOc9X(mc*)(hKag1t%rsr?1yMK?dc}-Ge)@15x`7FY6IIQf#|yT2GZs z8w8_iznrw;Ik*0}It@#EX6Om`r@Cag7r*kn*Z>%klyYOdl5fIqkZ*b|iJA|LQ(prJN?MOF;yvMM*vj|-B z|Kq73`P%W-0K;K#OskK+G{4Uhp(MW=i(YoeS8A*eYTh#Lsf0pb{QoaTp=Jtu$_AE? z`tMl7fcm&6w(h{$spcoy400E2ms{rb{Ux%JGsj7pvLyDP6xOJK6FK~tcu{3?`U?

      1^WpmT) zgyfg=>gAQ#jPFqj$KpUmgG0Wm#EASx@199)xM>%?Etw7Q__uQ4?J{h^Nbe8lt9Fs{ z!r#0Lk$=YU+FeRln1RZtg7qbs%SFu8i*bSOkNUe;P_A1l4kE0lB`hK9+DMKtyL)?C zSQK9Df)7ws5T{S+?JmM);+}>~Um0&tE!b<-^L``N_5{GxiGw#ts|j>SDKyPf-n*3Z z^p>%9afo^J@dOJ)q72oqIMdBT=O$_&BiYrZzVs_{rG$w)CM$;)dzJ8rh(<#~^b|r4not{_a3m1!ZTtBQM*NPN+Q${qd zG}kDvmV^9nIg=hKV?EdaiZ6q~%hlxZ!+NcO6NRiiB(ah3m%!UopKGcTwZmQGYt6>m ze*(Ca!wGQxAF|7ho6Y+nxo{)_Bk*jH_g)_OxF+$r{&Mr}YSO`dyCzx?DUg($f`!K<*O0;U!`8c<rMQ zJcp3@xdD*Io`GDM91#wXrHMeS@fA}iwV|-UJ}LHFQTeO|;fT-aZv+Qt;q81A?t9uJ zuOBd;q_~fpuV+A1_ho2#j;dtNa+~{=6t>uRIvNv`@$0|VHG@6wziv-pXoQ2|k8uxd zMciskeec;b7X`zUe<4U~{Im{Nyf^CVD@ixgT!d$6c91C;I`4+Gg^E`BF?E~kHCmT- zZjexVr<1ylL^S;BgHfmAT4&P4C%uyrv9a_(RIWK686`vzpIE|S4D}IKR>+&CN^XvT z0(P^|Wx5;Jfw_kQ`9OJ>*Jl7l;pGUa**5$T(|)anj*7d=S%?~dS|44iH0DNRAGi30 zOD04nb}n|-jB?`>-d%WE?OScGf5!=#6RF@-Io1T`Bw9o`mNhKM#RNJH#N^r-}MT5W6cPUSm0T-0k*u8 zl#Y$2Nbf6?Wee*^kJjF5p0^VPXGSJo5(F)7TS*=AI}$c z=LpHZK`U62aYYM3Ow19=Qnxq=pNPBkjg%U22AtTcEyys^y0G3o`XxkhbF$0W&n!@7 z(J@4^4nDPGCk+u(cuYlg{BGF}{ptFE)4>v(Oi@=00kMeKCQxq^Al&OQ!eFmkNG2_$ zDy8$soE-a0Z0JZ-Z)AVGPYVKi<2mSMot^)D9*wX}o~XPf=?9TdTeVSn%Eq96q`0H? z*-uPY-~Wf-!+})bi;YLgoXQdQiT3QcB!+_IHbycf4)ihUair-S$&W&tyCiCJxmh;@ z^e*t^TZR&7L;k0$q9gqN%KPu%Ob?jhsSt6B z*sDR(zW#`)sN2KJ8liW%Gan7nuz6%oDhkn@=Xb_t3tm;k{CyTJ{25rgL5m_zDRQZ7 zgw|%+m^&Pgb)sL;;0#{+f|Gk8IoDNB-F2M!NN9X0qBI7apxUVe-?-6@qt;SI%c!d0 zFW8?`hJMGCG8?s?Hor3`OD7bzrT%h_6EN+L)~dZ4BHOK5aAmzjaPcO;&Yxf#b+2^N2?q3{)P|bUEWJbjajb2Yfkj*$qZiWnhjSd`_d(OC*1iX zY0-G@x46(oT8icrj{5ulW>mK$tB+qtvg8*L(G4G6O#Pq=AbGd3kXG76_?|YMc}lpERSBZzw&s@y9u#vT&&f= z^(*p$;-Vh#4W~Za%MEw?)OJHfF@!RySvezHc2akCKb`S&%xEO(5j?n)mwn4 z%NJieiM4wdCzmSn_aVjBXfsq3zGF~mU zI<-s}dKsUnFUu2R=RjI*q(0zs4>+<>s?BO!8jMzR?<5R|%HPvQ{nT^nx#Jvad3SqL zE4Ml8lr7rjSo^0XtxR5=3M`3+_yukhNZ1Xs3bUttNtFOwWUsh4+6R{4Y>CS)(z91W zROy@Q)xVtU?%}38^@A9F2_hBMwGx?kLXxJqEjzEyP&i`1m`QDRy45^^^il)+4DJ$f z>Uy=HkN;nGu!02%mlP-UN!8`>w1!FKv&$IWEq`l){0#Oh4H>njo0+1GAe{8NA z4I6r_x9sm+TfUV9n6t_n=C@?ulRUeCs-6B~;y8-a+fWKmrN8JTFFg<^@Ce@DTX~wI zh#nhNt{I>CI2yNEm?;&*D_{h$FJ(H~WUqL8rscLNX_}F;3ujfld`iIqnGfD{$QJrX zstCum<*O<9+b(D8DKAg6mW++N(%xzI1H8YzyLigX3Iwl-Wqu0K8FwXF!?1<0O7}dk zx#@Q+5gz>MUb~@OI-U0XutQ&fxaI&lC0WPAw(s{PECXijA!0cbzPFchDYNN&EazhO zx1((dz*-+uG5uLw@QL9oQ%AYDTEby8BP~-BO8D>9gGaI8Nl4_O(^)+qoBNwEuyu%V z+vrl-t4Lv~YH1Vh!g+^b?{B*Qi56ND@@Vnp$ynT8-?YktFdTSIsFm_kJ(fj?5(&KU n-mXTxJ+rD;7{G5h{HWI=xH_4#z+g?y``?4f|AqerYFJL; literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/scatterplot.ad8b356bcbb33be6.webp b/translated_images/zh-CN/scatterplot.ad8b356bcbb33be6.webp new file mode 100644 index 0000000000000000000000000000000000000000..9703a728333fe296f40fd417d148127f6ea3b732 GIT binary patch literal 13354 zcmZvhQ;;rh4Bpq?v$kz}&)T+a+qP}nwr$(C_pHsY|F$!2FPf{oSDEC^WPW*~Bq=6F z%nAggE-Iv;roc&v{-57a50nc`9R`dJ%*TWoDO^NUi1dl}Ob80r-0lbR3UmZ-1dlBj z{l55N_{1jl+x{*6(0_QxFhy`3f8+14cfc>hJKzrlfc+Hx&OZTthrCBP>yHAg`UBnq zo`Ap8Kic0Bp7-7X1H96Jxfh^c{cm{y;FoU!K>&fx{}pi3pWp`o0KN!+{C{fRfqogj zkI(;mr_~oS+#{&?#rl(d6aN&y;C!S%5nSk35w!T9_O5;toapEKQTy8gT7TO;y%zw7 z`3iozKi4noU**3D&wU^M4Zrc9ljrrl^7s7dU%-9{-y|RA$L6o|pMYy$iNF4|1h4iZ z2muUIet17D-|FuSZ~MFaR=jEaKHsWu7+3Ny{j>HD`UV6e{n7razfV8=KlAT^Uw|Tj z>Av87{Da{`|GW>#Kh9tA_u&`iJO5MvM*o-pJ)Tl`bg$EODL)t!p?mG14opRa&A4Z31 zrE8P;CPiZVcmuCj9^?mABw7f9e&# zurc>n#%lyg*BNd|@s!+?Wm{$&espP;a%7mT1`WyBgHe3{7t9;*qd#21&~nu=EHwAy z!QCwwBHj!+?+zlV%Fq?hywG~T!av1Yl9vOska@sXXkVg~`mLy#bB7pMYS0&RZ)Uay z;s_)9>YlMzNVJ-hGZ~G7usoC4`m3U2Q?g`6Z?Q-~`T^UJ9DR@}C0J0=a-DuH;CRyg zm=9P#Ky}W-(UB#GKg*#tFj$E<4%qe_e_btp%`d~iDs2{%rrb1_isJrKTbE3Cu($W* z_W;fUe0uz0@o2>Kj%**tav_eOTx0wC`-zyZu=a$=ihMgqxQOay^uV)`0eN8-?1iI* zNK|{j0#QBCzS$e{&7UZW2OF%2p<_8Gj*Li+VIc1IngGW_S41BcxHl_Y=n8IZdYmnM zyWGN$J=ubpIn-c9XN>=OqxSu5 zzFUMd-K1dWRtWqHvcSfqsD#?oylFZuUA8XQRb;JqrK=f%)`fQz`LSnRjUS$G` zP5)&?LH~wZ6kVJ-j(Qx@(WjBulYpEMa6uROD>3P=#|9C0|M{lNG{t6<`RNIi2$aXu z_i;OZaa6d?6(Y&EGVIYi(KoTjPhq%Nx4*1{AZaOHr;U+b(!%C@gfGVD$O+yMde+sr zApkx`NT2qu##<_=LxlB_CcQGcms~EcgNWF=>gkw0NKNA%3yMekoq+Ee(`KN zD`FIRl!br*4tuYjL2z<`?lcBK4xOd)2TBleRjT3}pFM5n_ct=UuZ9_Y_1>4PIuy6t z#*(%I;~*ms7b3<>^Uj6;%=FARWvUjd{dKux&-U^~(;;A#*<8$1bY7|)kFn|v(dB<3 z8Ww$-aYa20=`G?+l@8I1oc~Rwshy3%Qpb;+b}2sJNc#2vV_&Dc5ujnRNj^rg_D&n9 zA`(b^AqWcB77upoO9((B`=$M!)frXXo;d0jmRY@7w_7>w*4O)5vz?co6GPH+CN|V@ zo`TbjNr_H$!9>OB?m1!iT(!rToC=vdruH(>L!mh>#Mjc*_!{Hl2I(I_@R7PdhO+6l z0JocQgH~D-ZLq27`&vKj2DeVC5~lC$^EvZJs?siNcT-zB5R>YRA1gU@Fn69L3s#gA zPx3M%wTbs4>)8Ei4wW$_V(xg9w8_m$N&dWMp)KPrDD^-`(Y4bLGPev8X<>0XP%R&T ziHI1NZiw&l!6y}OwtG6?teBp4(=!HHe=n+!C1(%0%&Oph&gOAOr@hV`*8aD&3}9BK`O)a9S?+4=>J0L0Q(!8 zezGBa=&m_MohCBo{^udj(KqVHoF_eK9nKKkQTM6A03VQ5Sk5Za9FN0csGqT%jkft6 z8?mdt)e)9~L+xnoS;lan;CKzcGLnfC?R*>q3K|(;M2)hyz)ttAI^#j?b{#Mr09RoS zlOK03H03f%E?^}O^yTI*40uzqBTh!Pp^SdP#rem=8jDeTgPxvtmPHX@RY#9o>uoB+j`)=6Qe%QNF;F#A$r z%qhiV&*%qhWO-y3`$ytxW?k|xo^I+pN!4Gl@zLuf50mGI(11cZNM@!D>!`Tc z7)JukCR0JD5VPwFv=#Vt!1aLjiz8!@oy&nJ2fmUcy_|=*y^}|lprA#`RELWn+`AXi)AcgSOWvx&`J zMn@B8|Htz5OTJ(+lf%5>uRwblRFs{AS$qC?k8`!narpC#!qF7tc#*JQLo?nA+eg`^ z3u-MSdEmX80v!(Y$jQ{%Vn-{ewFi{_$Cd-@aIdFtxm**BD+c*H2-s3rcWzzU`+!(P zdIVWQ#x?Cj6FjSvu;&6%=b_Y)5akKVt*GGBrshI^G>)6vH z`-4Mx4iqgPuCxF$U=MACm>V8h#*NJ`@cl9lQ*7_+w3y%)6l0RO8#wm~g#AV-I! zCA7KJU)zuPC2UWYKujKh7}2kOfTN7)kG^Br(ry`>&Qyjth|&4JI!pee_8B^SLe?MP z0%-JB)OcNx+U1NwMyjTg>Rul_*Dm#!Q91`%qsIDafD^Zi{K;*w$LkCL z_O>&mSD4W6J!VHE{)`qCE-E0Y8JGZv2HDttqRIsQyG-xMltMwcY7r_0HQwKA z>}pZ|Drl<8<cZ)u?qFP`MVY$8Mwb*ZS&Nd<=^QqPjK69u#OXV3+a)+(VP zs|G_KE__48F0%y30y?@ePu!tqk!z`Y@llGiyHSWHfPY7^j<3_&u!u;@#+UMge;dKpL=t8v=I}}2jTC80i};nyJCaA`3~Q<9r(d)scu!q0Wk$yyt%Yw}b#x~eimpH`reVP9u`ng)vsaLyFB{I= z;hG7G1NY7S_n`+c^}KRPaqrV8?%;+cd6c;6EvE$`@;LWksSpi}oM(_NQRN)WK-h-n zE)6)d9V~n1wNin*@10JN1@0KTczcBD&oN`D7~?RUVDBhZe03U8s=Bz}t$WzCGu%YY z7^UEN@d`3=FH5jpgvGjc5y+@>6sLlVCUil>`YayOsR^oZ)mO#Nje-8M-cm+Q{QERd zbC(*lb{@B1)xKybk;Nk5*LKVxZ%!Lko4e?JHZB+=aS$g&L?uI)j9I9y#Yt=db|^d* z5Iup5o1uu`keRBK`Um#A6(irM5vdnM< z71G|26dW)^L4tiD6rI79HX_dA#qOZ=KVRy1)ivyI7RTB^MWN+5{TEOeOSK6yo%|{l zrU%mV86i^9z(lX0;1Q(179#Otx03DN>AW$SoXJ-)enzE&bqi6>>a?n5uJSzG_$^oi zRj6qPs$3I+U;Z#-%s{0R`Pt8vanw|+HWFhxYJLf<3~@Zi57j>zNOA3dkak`Fb^&9E zAiD|$fZK6pRqcgERFa6bBY+^6_C`E`pT}11PAiu1|2xXa=bLpo`Yk9ukICJB6mu0Y zc}hrVQ8|UA?`uC1K;L$A@LZ3njH1e0w1qle2Ds{z3{$}o{IQ&W^4twn?i^T$>nM%x zI+VH~eins%0y9Gf3eWD37hLU6cem~?iNa1@2b+}BXBGjyT0Kz9*z_OgCvMpT6}E8t z$i{CY#z&t+MkU#%EdIqgq5?TRl#WBF*G)~GlluetM zWM#V4;xkTtNG5+%H^+Qb>Wk!E7=AXM%u~gOf`%_nyz$t@)x7x;DRd*oKQg?;lL=2) z2uz&dfIKq~|Cy-`n={5uX~jl7ZzjXq9oGaq|#mc|_j$ZMc6j^hQZNc26otbYef zmHgXHA>W3&{FzlMnf}C|B+UMhjR(O%@*hTf_OZcIzMS+}+0XCn%ra7xMPK(EBdEQ4 z<#6yVjbzAO>%TTOvTG>VUqPTQ)h0-F@~c!BAIL#NAARBp%o#jX;Pw1j$Q{6k&$-^F zhn^N~=wf;i^<`Wt*Yw+RATZK?x9fS`^wjaQa-MslcXLVTo-mqkn?Sl zV$A#K_wIgr{`@r!V=niNmGunDm_{atvG=8-W18L;JRh^Nw_s(HCq^xw!>h^)FAwUX zp1r&Jj}l=#9Z;k6O&eJPQ+ZYQS(tY5Gb74cY8>TPoF{pIaP1D+psd%6*!zShA83ya zPc&?;&|`dJhSSZME)V--w@uDOEB;mK$8HR>K;VlUN_w3u*1X*G%UfEMew7p3re`7N zfu$^;F_gD<`rg>zSIno(COsoIgK8$ z1zOer!s-B_5^_bM!d0wu-qzVhEYJd{D_}xn z@k$7cMcs5jcy!r>p1mAj^c3GT_+aRACMXyF*8P~v#c+2t$inh6|JbX_Ij7ngjdEoM zdVRcfWh3(-pMh9WRv-it%4u715B=*6g0H|x-MVK=eeBK+8k_gG= z*~(_0*MDhjBm%cW?w?fy^^wh#{e9X>epvCDXdP|a5TuC2u7FEYF+4-y@9?4FhXHp0 zS~ZTlZs`OP2()M-`Xsd5m{vs0h`u`lnl9luJe;VVc4CP0`j1Bl|^}zq*vTx^-DfYBD z6dF7sy5L#y8pO=77+a1bU=Z=%b$7R}u!iU9LCSmXgWBQ65ycOgulV>%Gq^u#F(yQ~?ieyb zXDPydSUfVggCGpB%o9J5l(<21kW`~n5PbP%ffGtI`*3jSKlRf54qz&x;)Cd>z_AIj zUE1;sW|=~*84(M#=slUzn7MhTfOik2B@@Ufz8gP!tx$~HvrwpbK1$VdME0_Lb9!4UM1+)&T*SpP2 zE*vd;Yhcm9Bvk3owTN_wy60#;FcJ6j7~b&9UHfRLe5k7g)w6uLgc3y zWDMljop(hN|0=h2oKny9{C&f>v7o06$byJhpq75P-k?ovPGbNrDWIujakhDb!5F|= zf|^2yS9o>4vCRzk5jKjz z{|x()eG)gr&WKu?A4_y*m}>Z8p#W7WkxRA@X<|bYw29uj)h-}>b>_3WLzV58TiChM zGT3n|j-NSkJKM)%R$tIRe8Q@>(?*U(+58~}96kie&qO)^ug?0mE9;9|f=u8B|B;TW z^!C`*B~Da>#>2t<_Vc|6F{V+eu#>2l5#G;TI7_BTbk@7^7Y-iQUB4fS{6|Wg4Xuu| zt)l%N`|kvzOyPBKLuHt5YB59b8Y(Q3hWbf(5GR%C$I>y_HC-rq=PI>tvCuFPVq@C$ zY)(_5G8UH(EREHHyuB~91Kl%B372t6?uXjM6h>FY`LQu0jhKHO4btN7-?rO$XtxK= zDi@SXe+8B2F@@WAVy*%fFMEDAHL|w1gMeFoyYeS7h1Ti%+IJ)y*UjM?(9ykvXcpF|d7e?HRrq zWW-7K^~oI)Drt6^QoX5%3|&#-#EcY)wH?(hTdG@?3DBDd0LfcFvgCvFK7~VD!Y&`g z#n@FikFmS{Ws;lKNR~PJOPo65U({_PU3P^N31=h7t#<|M8R^74x$^=NX&0k-@-L?e zRO##%;$+?R*k|C%)^_RoUW2OfUJ#u8fNH}arE^SHQgR(K030LN&m?zWGNPx=#5&@8 zp`9TAh}%kCk^*HD_at4Y3=w6=0O&_X;+}cSdvD^LvtfE&CaPCz(i?k%-z;br~ zQBxn6Yl*l&zd-wwX>UzhU(i2%9x|Ix*GZh91I=H?aC za$;-QTLX>`A)&}{two$Wn^By*>eyjQ>L9Bo%2M_9I-!1&Fl!#sc2ulbZIJU+Hy7$9 z#GtZ6=*Wb1l!7S3BJ!LGj0h{?P_U5p1CXQpO128xyE%^G3(utxT~djT}aU>otjvoKv2`q|ET2>q7fBb5AZk^^V(~2xe72qkRn*mO4bN`kw`z2#CpvU%_c9!Z|a(sw^$tKlj{3=Jv z>2hDKT!TjI%3o1&$ojcaZgI4SP5*%CFF^yw|rt(HOOf7@&jILeqk4wb!)IE1*+f2Z*hdY@r z+%Bdd-9?{kaD#UnM)SzSRso+IED{|>PNZ!qdd}XdFb`W zq2~v>#uK~E&YisK1sh2H{-MIzj^*v$z_N9 ze{mq2sJ5p&1!CQAk#4rZynRy`ZR_=+#doOZ(BGU;43e10;4EL_7sh1iVeJOgDP)arohEg&P9{M#KrY~}}YlR$<;$!{_>AIKT{~)vN^&xQY z(tH}FbD}pY%%9k`E#{Lu=fr(*&&20P`ceTk05wVi(PNQ-n(D1e;#ni~cjLI4r7hL1 z$^;0Z4iFx*wrwc(;_pj^Z}eI+jj?l2WF>)FR29 z%_xqu&@##<#)EQk*-;Ks&aWYj?1L6r!A%BCM>8k=2djvrn+;cel#YX8)ANsBCSV>_ z1)v|#(TvuTN?o#Ys5P;jJ9%0EXK8wLi;hfYKL$A67%}3UjBdErJR~SK|2VFw+*yw41|v@#^N?zAR$)0L}aPP zylT(m+)5B3)T!%R~)-r>j00;)ynV=7) zNI8d3QvPktYlA!5D3-@Dt(byUla|hzm~5HwN-qJ_xWEScNT9S|P%o;gwxuC0+qvYT6X_i=IF6(1 z5wDu5IxDg3D`=PMtS=0aaA|VV7U=_^CESzA6F1mTQMS&GVdKMe&btL36Bb1UfddqV zittCQO<(|3RR}+q^gS65Um&Lx!n)Zob>pOZFhI{Q|;+hFZ7*v z!s9RHAUkB%faTq%i?aE*vN&)GiaU!F2Xb?!c|LzaSg>=V`)YoNTreiFMQj27^nNPG zjdMld<=iz`GeEM|g`agAidU1?msCaP_ze$j8v$#!0I86gyA5Yj4X;z;QoKr0pom3OLW?HOy)G zK7={I5@f7PfeTDI$~PcSVcJGuMz(@4;e@umf^$=T7l|<^d&@r4fs$}&C5tdF&UQeb zrS~%jAMQG{eN{})^Xr!eRF%Gy@TEpCROzEFgy5h2Ux8S0s3np-6mzeJ^((|2b zIMA`We`M4NPl7A;2;sElR*&@1 zzQd+{yQF3F^-8*msImHJ|p-j~Ua z2%QVCsARi(%50aWfbu_klVw0xBn`w0l+&J+V9;A;qF~25%KeN0Pjxl-+ zaiET$)B3uD27R~ltYaHR{=Tfm?C1>4eT8X zDwM0k66vr61Y}02L^y)+)dV8p-5ndl*;~3DJ9pfAb9B%69ftzZeP6W@?~vN4OI6J%@N0^0yksG5BLPPkJZ8T;%qG|B@%S=O5u zRlN1xFRRC)jUOC_zdyk?voePPh|dSCs#ejj{DPYegjrgH9bR{`B~(^%BM?UHQ|INlSMxpV7&+xpO?-`+_PG|#@xZoldZFM@u|&2VC86??VGI~Lu`1i zykQM3BmGsx`s#~U2mNYoqu-0nNuWdcz>~}!y1rwqb7a;Ll(;piQcm_gYT^VXKOFUZ zv@s~ZH^g+`!+Mz@KDw&LCK*krtGWqX4FrV*iPz3Z9nIe9!R`6L%6bc$@Q;nJV$3oP z{tXkCPrn>^AInxpe&!74xst1utgM^DKdmdRjaCRG$ic%L35)FwbqTa;I(ZVc<7l-- zYzVa98Y~S%(kK6@T6@*)`b_#p_o9eMua7Z+6Z;G&>bnB#%J6Ev5BJ!;uJ$hOu4ufo zK{*cF)%t7E&-39<5FhqhxDKJ=H|2nWT_;2A@Tl)8whO-O0XDQph(6aSklU7PW;{xc}Y6$k0jNzkx?^9=;e?%%L3h$b&S-U z@s{XQ3)Robx`hiP?bn|Vc(%7|&SayO!TF0`Y!dv&%UfM%!}_3+KD>fg2(_G} z5}^AfFVFf88dt7z=y8Q8^&6kSk};4_UTl8pSa{WT%$~A{+N_83q6rb$^7;;Z*`{NB zxeT)8R%ya}I3EB1`&+x0(MfFhvg)x7bknWH41f}~iGM~)iPm!b9M!cW?rf*oOEv7taY{}9PN|E;Nj&cVH2x3? zej96l^4FutmE2S0%<_`{FI?(V|T#A3#HqDC|@Gsuro2=6b> z(P8|hKhiC^e5VBzBrcT=l6#H@P+Ry zlF8)rY?ukKdQsU7KI#za)2WTB1aFrtvJJ}GC4Yjof5 z9p$*|`!;3cVB4g^obz?YMn#mqkYVMj^wi!-p~@gGGpBGIzJcFb&Ao4v7iN9)JyRUf z?dvMu&2H7!=wAV;XSMLce|iQKbv*{cGO|Bs%x; zH@j$934PG9pbi_f!jk^{3ADetPcsT(c23F6sCw{0(k*v6V; zt`yDs%%c0wP)1wrni3+tgm4`;LPk%Aemp7VHGc|Y94&oasj>lVjfmIEvSn9Irjk1&+S%?dTpfn@q0 zoGoJl=3$4}ZO8gGL692Qif6D%o7x@}1x&!mexMsZ&8!l%ydOqE3B<1JzXqfXQi)HO zV=a4RmU5nz{qoc4mmT54)!KdN+2G@tu!=q2Eno(&e%8O1_;hg(dg*he1@P^l%iow* zg3N_+)rcJ&iMKC7RGVUS5Dr`|x~;x7ZQt-Mu8m3N1DWSto(BM4b(KeQVf%&{F5N*5 zrqlw&Dv}m}`39>Lw{>mcdhjuM5B!I5v;=&*)D>{%oO^h<+N6onKTh)sM)pvI5-peL zZNz4w;==)nInFv8S08Cfj%4|HCCNMw5n3BG3sHq?d^%E zq=kc8@(AVP##|{vMy5ce1vmhW`I)XF#lJ%-=9trHDhA3!WxzDT!m+dc9dF(ui4C%j zK+J%LjLM;oUV*$c;-^-$aj+g9NH82p8mb@X{umXgQC)9{`UI!1hj(o}i#mxgWmTyKA1GI>OK`Q98;%fVoxN}-3KjGZex7f%Xyf01?zqT`@99qrGETD zdcL%VnX1zO6 zrW;?tSZrOVBr|l{KOP})zEWJFw}$gcAiO=2Mt3Ol} zah{b|&Md%AOUWgG&hMwGHfzW(^#oH zORZK|+Q2%i+B=1gAk+&voUqXmB=u)Jt8MmObk2?vPK%>UYNNQfbB9$EcZTaB9Ag#F z53h;fg|X8g5~i3^e9rqkwbc4r{7rhB4>B2K(=~c?#7R_M-XiUCpr5rTosbLbPh~le z`^fH{A1!9*RM69KEV+X8hK>;{bcGh|+6sy+!fT!|bcE}O+V|)<^^M>nRePV;pmh8v zMlMUmVt%?Xp6|qW>jFe|t0A1HsOwQXHrr248!WziU;|JDXn1`AS&Uju?#Dq%sd_Eu_Q z{~%zP#FZSKIb?am<2=%-e!Fe_6}&$=tNq>q4$7u>I&YW_QuY)(4IP>hHBv(gA+psW zG1;7UE^i(yry00e%942IR}y-|$7QHjsc!7p$skMAAgJOg61h;*73JqE`5on}kNqzV zrFK6B<{-zMw;fMtt?e_autp%on#Z!*YdkU^BqKP!xo^We^-&A!CEk-YC&-dtkxbf6 z?W2dz*X6>~#3pbp=-U2n@%aysrX}F}sMND|{?|3?wk@9dW?rHm`Vvh}PnsJcvN-K^ z1!$>@AtXK_Z8zr9auRjwRn z3ldTbjY#LRcQXodGu##2u?lGsiLJbYLc05S@}&UOpW&~V2T1Y-S70gn89wr{g^>7=Lz zppKtgxxW&t4fIt>p}vHwHv`6Q$%0cs*1a}9tJHP(;Vg1H5sW}C(@y-5J;snmZO{!Y lke~;mNoKGn+&Kz$1*KEa4{`)4Jyhm8U_VbmQUK^b`yY{g6X*Z{ literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/scatterplot.b6868f44cbd2051c.webp b/translated_images/zh-CN/scatterplot.b6868f44cbd2051c.webp new file mode 100644 index 0000000000000000000000000000000000000000..bf0ce25bc26e09ff8f6f35c3cfceca013ae46de8 GIT binary patch literal 27616 zcmce+Wq2jYmLzz^lwxL9ikX=qr4%zWGb_c+DQ0G+n3U&u>{iY{3I04gGavdXgT1Y^I)2#g>ZK$ODZjG(*>7-7OhggFRD z)bRu$pmmL2AYQ0lNOopAY398)6YL;`N{!Fn=kV*Tb_Sb(_u5zQbD8_B4Vx6`-TTUO z?@jNfPn-9&*TIh>WlydB^8L<)&-#z)53z^aeUoRIEBx)w?vET#!gu@+?AM~Z&CgH% ztU>Qg@0gFn5BG=Qou~)4b(1IjXZ$Mf{SUw=_9yWx>?hr}_j}U0&8K&8R%2G94iMi& z=ke#~8SiKPiNZVjbmyl^9s0TVh0FWo5B$%UDPFlxi1*iruUnmie7e7foe$WLtxJ6U zyk@Urk9^mid!1dM_n$5|8S$@@A6yTTm!0c;mYsv%N1wj8GVgT5d_rD2-bs(hH;7N0 zH<#x+Yrkikz1DB~r0I&IoH_@*xOk z^K)|pU{dw@A@{Vtl&!w~H_r=erg15uB&#TVU&KvL6&(9mGTl^cH%gki=bw?k?{~lOUJ1_WJS}?P#=b2Vz8#>hYVUUUdjz|HSwnB4v(?`E zM}JW%`i>6ua~`-*;j5R5J%9EKojFtD8&u1_;)Vq;ohkAT{%=qAzEWX6)!Y)e)ULfK zlLSGbpL~x{>F1R;&VQ-j`2XuAgZimpfu>lIEBH_(P^-G!mpywF24uBS|KG#^_k|a3 zH;|Yh1j4)XA8GM#K=>rn&~d@dy5S~>fRo*7;YkfX*1kG^!Xc%4@e0-%euG^!$T^!F()UVwuxYL3)T3$<5u1SGN>~ zs;w(D&rH-D)9_C0$e{u~NK>Co*XNN7)Q8PlN9?KTc?hV!{YJX%u1I|Y-M6t@=0GZ7|Ogl{`Eg7UBMDhRF9U5yskWb*+}wB=u#h^9#p zEEvMciB|1qT%@k@Pq;v*pp0SvaVnm_r4fIMJE(mU-D~h}wT}msgdRp{#AKL%&15hN z{4ev??5eM_wMu)d)Rtckj{7>C`tK6^&$MT{lxywSYVV9j8p_3S+eK6T$A$1$nUqEi zhr!8=oR4oS+a{ja#?DO9f^ z9QZmUA3XnNv;O^Y7cc{!Cv29Tcq-rYMNgdjj*b86F8l=+nqE?};} zqQ6em{_;cQq`~uFLZ1~62C9qSyG*%;fFcz2UuWlkKI4ejIqP%L>k)=ikxYFmGEo(} z-ft601tGl!Aps}?#~{6Z5unTLLsxdpUbIMoNYsbg`;H7`LiBCO^aHmaOJEAhKPCCF z38DgE7Rv`Nq*pbpFSI@ZLgr2!$*@cuv>laD_20Jqy6)6qhKAA__D){y0to$ zFch8g5Dpvy32cy-O6@6iYM5M@huWUgOWp+yurcnn3g5H=PMWe+!`Zjt2Fu* z|Ecv0zu`FQn#-A{R7J9Nk|x`C->f(!gmDv+jyh)*-T(-D(fp`6=^2id@=^yX<=NZk z2UNDJMCIDaKViEADiIYJx5mnSq8z)JMr^=$+JLrQQ0iM3wBw=Ll`D_ekD6^G&7Jm2c z9C{Uib1CO_Mg^{Ujuf|5g$?F*TJgF0;&KP>J$*Kv3F-ejfB_;UtpP5pqnUs7w=4*GV8w zPLd%wo+o*gj(885i8U9g^KrESjdy6V0&$~Vg!fJKb8;FZB=~pm3D2xzA2B}d=J3R; zf*?uWw=JXL)C>uuozDxoZo3!}HW2fF)KD*`cD>=hwYdLVX?LOU3A09Vyyp}DyD0ui zSN#(jHiv8Y?wq6MljrG%NQh4#;bst__fMJE^Xw{V1?KCocF@t@9#;UV zI|Of4b3ybW7ViwuE7y%&TR%B%f%Bs2(JP!PP?v_V!Eu8M@XETpkw=O3{^r}Mu;UyX z7c@{UxXNT#abZbF(S^xJ5bBCe=nrQ5^ia=UT(>2-$p*}On!NHl)$Hq6Muk&*LLT2WHRdQZPD9f3!+M+vL?Wte^s7oInY=uU}J=zKtS2recLe*~FG^IEX{;bAg?Qi80x%&f-+u(#b zxV_T}>nIh**zm*5Vm9GIP`)Kz-IOvh>6#}$mqrY%omCG$i$oqcAC#G}uInbF_lPa@ zwXh?|ScJe#FR-g&yTBjeUd|}7?=QO-(Rcy_i7ffcQAWz^IO`O+tX;lCAN}ssMZHKJ zyLc)cJDUEh88bNJkCa_256wx`M~{*`h8xV+vGLgDk|x7KeLj)vC6f+5@hl%np*2`B z3SM!HoYPbe+nC(JxC_ey&zuP3f;DHh6b?<_r7^e&MwWm4fgOS;6+Rz(!Al^}eg}G- z5P7@2Hu4(~Z@3A5U!S2X_c_AQX=>+y%*-h>x8{--+4iQEZUgysbo^)P#WDqo8otWG zWHt;Il*FcV-?D{M?U-6^Mpvz1^y~bwV>CRrEVrhwRbWb5P=h>};MzC^} zgDIEiCH%hyEBG>@Emc)W1i!$QugO-U4NG+uRQhN*0oOA&|IY&d26G=izQ=s#vqH%2 zASIvhpT;)#W9|PF5d1d)|AX)Sw?XO{PU~~1UHPvL{ZDsHCWzE?UAMkT>m~lJ9)F@P zg|pr&oD@r~7%JQ>MUJB=m9({EivLjF6BBcJIwsMt>FNu8{sJRW0+jploBec`cqD=Mx?=eu z2U#;BE-G~l4Xn5w*9Wi*C>hA13yX36&uiS)dramUs$s9&$}4hMi+O2&TiLGEb1Qx< z&2PLT<77AH+Y-oU@9jN>lo;^SS0&%xelj998{2%BlQGxpSPWv|j{BiGaBrU~VC5+S z-d}QbuxM}<$G_lN>wkf~(uv{4zAiiKT=XT3V5WJB{0!?N_Y@i!c#t9fI7{g^L!LRV zvS)=u#-c;0Z-{t6;;Ss$w6kNhP%@K_Dt#`+TI#yQHlPKBo9T^CF<5_fhYVe7aqJV%3cQILGLf$URwfI z;;o3i0DhdhR+s(>_-M>tL^ELZZ^Jo*DvqoLFXpVP)N~*T&dmvsMKvcsfqLOF*d&{W z9rX97pIBrTuv!b3^p7g{upRix-8IebT{(yQQC(mj4+Z38FlVFd#=YIN@sjtIL1v9G zGlg^tufyf3jj6#$sbB}lFQD8C)d+$i+nhmJx_WKMoi`cZg_?+jCa>^?L>ahfb&!)uK=hxW)gQ|2;??irgI|&;#O^TSFQ)o;?5%>2jNG`0 zIIqE2KzN2xM8Yr}abvwp>kn=Jn}7aO{rD&43p{+$P6_0E5Q8yLLfBEY|Ap#5RY&I9 z_x;Jhq5swG;Td05h3a$Qzaa*lsHe|1h|RT>=%GNgdaFJdkLj=HrL}YZHOlYcO&2dFg$R)uN|z|5@JeQOir{{YMG!O*Zs7gTbOVT;mf~#xKu< zdGJytc&-M8NC$2cSq(<}r~f55Wedci)Drc4`}REz4OJ@m8RkT(RWtB^Sx(pWg#tUv zBdKXAiqzBw*E;@xV8nlL(&H~gHDJL;@CEx-EU1vl)Q8}O0SeLlpG>&}f*zJeo;s|5 z#SV>Kay`>0=PhsRjwct244`?6j_6B#`_F562r%PjG{Gq${$d^@g0pD+m-_tE68cm3 zJGH%|um!{Jl++PE(taMQhd%Ia|F68h^J(`#_y~X6H^2Mjj57vp5ZSH~UQHpaJKJA| zULl;VOKToxf+6+OCk+D*V#G)dnum8{)`8(tb?d|*ULS>j^d`_btBs=pV_9Gp8iy{( z?#Ca_7w5skR}F?#J>~D~7^y@dMeXe!e1ABDdM^(;q6zN5pQ)6GgN=w6(EnxQx49@6 zQ^x6ZhP@Vy=d!I&tMq|kcNi{i>_UoY^jnS^qQw1}iJ?~0bJf@~8SdMYjA9GviyoZu zb?NZU5MU(t4HB4}{apJ!ub|pa7?O{6{k2?>^gXbF3pDO^gaG>ogTtb zvASzvdi+(jrtGBd_S^$1-}yZ&-UPt_*q>Wdn5mr8>!?er0&;5N861l+*z zoF~|0B-i~&^K;?r?+gxUwp!ql;&iE=*Of77b;-}vYVUG0k_aIjx>-qar;MR>TQS&7 zUGKEtS9Q|R<*onF`gxT=qceJ|PV~;Jk@JH`7DPsy0QU9)Bhou}#M{Rs>N=p(Nl#%Y zwIjh4NYiLW2Nt0hX#vxZKA6>#Qw&~5@s|g0^4fzifLgr(Ws=~RW)MH4OPwJcSL3^F ze;qwNZ$@WLi*8`oofzL9JCL8V0Xo!>^zJX?ec2l)M4AipDl;^a#UE7?%9`WW!50wY z1&=H1VOERBqhLDUG_~s?{;ct>27D*o?yF|V57|uCG4!kUE?;mwY7f@NUKaXArakk} zsv}`snNCruP#?)noG+7z>}tA6&2R-d1Z)PVjFa$3dunz%N)I)nOKgx66dDPaGVhq~ zzJQ0rN!RwA7^3NcUh^`Rg64{Aj-6)^8ojP4BPWJ)^dh$=@)c{120`$xIr*EZ<9;vn zlgWHh?y9=7s!63W4b^*Nhu2;?Dg#5-;4HK2l>ZvIFv4s9jZNQbRjP*((lj>FrJnzo zlfIw-5%s&+{*@N-hj+XB%t;0Chy%;Q|36}!kC_Qnmi`Uj{eRiV=T88@$LE=m4*)jm zLx~>%_#*RG?&;+0Ce^t)Cj#{`#l=+BPlp-u5HpJU19wUqFTiTrgW=oi1=|#e9t71* zN?8_vig%FuC`xF2T~g9l!DnJ(VG7Tp1dwg=w3FI3J8|MPnLsvkbfDTc62JjmE$u>efpq5rBJ}X$o7K7(DzH1%=qxZ^qJz~+hu^oth|fHAF{&~O96oI z^}a~M3-VM$&h2e7+k{KeU#nVwQKFe=9Roqn{>Y;N_E1X%(iZMI*^rbK1mw9<>JDjPL8}BZ;h+8OfM?En4 zN*i1yVn_KlF(#Rl-6(Cb1#e+D@dnHg=4TeEsJt=v#PgX114hndAiW!T7K{dZLeb3uo45_w_c|y*+Fr99jMtn5l#&Rotn0}Z5{iA|BMVc)nsX}BxWcPusdHDa^MP=fZcl=| z&JU7r2eG($mq&YtO7L~YkEW!-t3>ndj@wQaB}^qewea?%Yrn9OrqkLHy*;kP6El)$ zbYRDg9wZrX8F=Hc3@YDON7)PXA3qt83y{NX@xZh|C)C?`+beH)dOdtl65k?2(d5GS z{|u1B4*I;?D>w-p-g|)c_RXBAcJ)+5(f3Zu$!5~hIi5wyrx7Qb!PmyfJVYR^`5|-V zxFnkX-OW-xx5#ao8WOD#;2iiRFOOhS85I?*Yto|jc}j58HBQT@G%zGVzhyFuFRDnj zM1rvpHS%CR^e)eO} z@B?`IvDkiT89Z=HTzdVce@8Dl@7H8;-%k(wb)cCp!X*?yr7^K9Iays6Q&_AelM*}hN z09D3*N8!;LcdQoz@6Y*#8`z@!&1a<~dn}}US5aEvi6!tG+zG={4``kJ3E>jF3cs3$88P>6`6K;bCQ=UPoUZ!ot!WR~IqX95Ob6GC@G|s+0osgxM0U5rJ{OXYZ0kE^CJyBGdhIt#!x_Pp*7Oi?STGi?D|=>^p(99L}1Uu^YM-K0n6E7L+bpd)J-t*w-KP$U>VlCUM1T!F|s6UzH9pDRkFBIBbKUVra}Tk2!901^eox zZpFe-3V6pvNyZWv4{Q%|xUtS@ulc51TrOlcLnD+@pWM`ew8|(NIsAJmB}^eJ`Y~0@ zRoP*c>V$&AYmET6t3TCmn!VKExcV7*`T7kzY=(i5fhG>WT4xKaxgorgrIUrm?Sf6( z%=6FtvN(SAsS=k=e=D2SJGBqjC8<8AZFlox=w+<{EevKWt8E6(DmFPFS5LrOsteD&5i`TMojXZY^XPwC zYmljTryb(Do8s_ui9;~X=<(#B9sn>3p#9w|0Qmli0I)8cE+8<2MPW>v-R?4TA0S$S zfP{F$J8SdRkhhg5JwrZF(P+Ws^O`C$xPGWFZkV6HymFGL>-U?U#rn4A`#|*-9-?Yu zFW%dgTf)?e_(p63tKK-%9IYA9${Z6nLdu9?p%jd_2fXRd<0rI9QBn!`mb)JDYa=IC&WeD*ar^CE{>#@30U#q?f@q194o zpg!Su@F#ux>1w6{Lf#hDtpNad<&tIS_Q_!rSEHNZuP-_huwM#8HeB@giq@~uE!Ck?jz0&l+H9Gu$JFC`p^jMi}GPH7H` zotf5e*g2VOI2ju(ex_Wnf6K#7cgDMi-q~$*&1JFGNDD75c)f1c_h&~eWa#+7 zQOGY^xPMVYhE`(hc;F7{;Lf4Lkhg%w5w(nxiM#@#b1tIi;JlA; z3xGQX0B!*Q-1q^gcDVbqjC@jT8D5E;3|pi%=(QI5*!{cyPO-;1SthF#Aws*oM=c!O z;1PXMptFvVcpb%TBZ6ZYEFC2|r(8J5p#*M|gxUVe@UHIAa;A4z@*l@+{BWuq2?Nn) zU|Bqdo}Kmj-=xZHT6-<0eM`nydc)9veK!-1Xiz94>%nz?Xa%=E%s zYBC^>hL7uRcgCm_Dl$AvRl@3gOoWh7>N)vgLj=s^(IEgd2zj5UvE_>E1CMmPZIR%* zPSSe08gY$GK!2wqfO!eexK4^lgMK4)EdWvbp3|49;i)rJ+WC`25d+e6)w`nHgFs7F zE^|5_|MFsdR)>xHeVdn-w|Q>PZs!)fWPh76Cea`)z234ukB9dwL>q{PM)kc_W_4}r zB~c`}jdBysj^n$IlYSy}(Kp10#Eh~c3r+?UsqWsgoN4ralN+j_AE1Xdt$e*HU9<4H z)fsA>HWlcU(%R}x`$O5Govm*cZ4+!;BWFz*xaHMeAtD-!*@0DR=`qCVHNB|Zs*{0a zLikP@=2GqLXCU?F(!F3+!03xs>&~Kv0}2auP!7B-a+$3Xz@p$bqVF0Hjs* z4m{nqb1rpC-epu5q9hUj>L2+FIVp0+h$45Kp+eBYT4{(v(BUboArPrT@conZ*tn%? ziELZzs0Pt?aTxTYq&G>7$)#beeGMBkHjLr1xXjMq6Lq-UGvFdEby+`5wv9K@T-7&r zOb?0hS2G*1xb#y}Rc{2^_2#T{wwY)%kMcgg+~;wM$EkQchpph(3mw)mL*UUJ@ZDE9 z8|cN9wk;`=cwz%7#dFB8pUG%v?p0BZ)WTogp8Y(fNmCN{OF{OUW zDvf`!N%ZcoV88(v$YG67o|hykh#y5G$lvCIFaF_;&KdFx@DDHbX8&V!8cYRCdsnid8ujAeNZxlZJqT%PTf%ly3CaaHkO08S?NV= zV-c=;qP#qMhuxITE(eWdAUXMk3{QYK%3K@Xw%>8T_0bjZ3IWj-GM2?j`K)I7akFG~ zBfLjp|K16h3|e%`NsiLy7urKm;}w^GSF17rR~i! zG_kk^JB^fG1#yXwAkQk10ngcnB^N6Ap#DOFuEP9F=AU&_8GP zHrb}i+mr5WZ(2X!{KB7z&Bs9-Y54<}`8b*J2RD#H8gMMQ@ZczZHxMbP z^uEG8(g#EmVeDObW8nOGYB4Xfzopx8taN1~Oqc!^ z!Afp6uv6yTldkhC>f;f`$*VxI#%rW(1#Deqhn$LZUcowCe=RVoMPFCKA}co=*c3wt zvdTA;)MKceP#`xu(C$1l#jWK9M{L|)CBp$~l>Myl%xwdGiqc&N5FbKl88#I82N~x5 z4hwJ^OASllFf-2JkDVKL=PN<4;Qe&kA+uMx1(f|P5EgDu85W-|R)7{g){ zOAeKLHNp-+4L{yBj2PK4bmXHn%OIB957N`7a|o~K@N;2qLT58_VUZ&a50Gc}mK%HW zs0E3%rE7xwnB$?vIv>2s^f{Ce!q*hTSWZ@aOtCGmk&0yz!hTOM(_Dylf@}a zd+@uoYHba-a7$nA=Sk{CpD(YQ_)#4{j3yh1vakJO>Oz5f<$~Ujz!%RIjWg?d8bgp2 zw#qP05|Rzp4N$EnvGSovUoiI|4{$LEz98M!XuGc$UeClqpF4Cya6>Q)6Tgn<&|LUy z6znLUtuSX)Ez~dgs@61P>)zCy9}AG)#@<~3+tFIyN;7+@3i$MAi|vcwRFGhj%&d^h zOAi%Ecz^#X9UeMwzvtPO;9qlM{@B`_@JZI^>&@hg7fEoI5)ndYXT!ITBa0kc;e`Zo z9oQ#2+~+Iex1dl`W7v>{0*p#%>DcBkDH$yPtBrS1&cFM?XfE5U+64-RizMn4-oi)_ zmv%(f>|-OE0*Jq-Rn~Xq{POeelb;q9sS8BImU_Mwd+r(M;F|*0j#4f90CXnr!V%P% zAOE2Gm!aLAytn+riB-G$mY;MPb!EXOWg(PSsyay0dwfw|hA${sB~A20edCWz8U@kR zcWqrssjHdlOl2e__lAIM4$C^en=xS-&GprTu1jcc~o|? zgEzK3rx;rQzRZjBp%auzt=?@!x27atlO0+u(ZUA!pQ7qV-CD5*w4&g2OakB~N!ue2 zX5;~Mt{WPyxaPeFQ24ZWsx^&eBvt$C2z4S!1lJ^~vIC_*;CHzpgjnY)zvgjAwPSP! z=L|YRCT6*+bhh-h0IRyf-oog%Cq(+Iw|*Ft#vsP&Y!RXOVL!)gf`e%5{{x`y2YZ;z>M+UY&2|2ql?k{tHRjL z!aZD{MdKE|Jf!#!T=N@%J#VG4Lz5l-78d{zW&l8J3jq5gXGXNUSXN?b@bZZ;eu>aCEVf zb<5mFJDV*QSNWK0#wovGs@?9ifM8ZTdxfjOjlHO5gZFc^N-IZ8cP(kB>SJ~~WE(|< zAW|aB1-~j%)2lH-8cLl@UI&N=AxlaC*U02uQG+WcHC!?PTD(+wE-VAu!%5KHJZt_1Aq0L=Vbry+R+|Ns3n=6~ z>Xd`hBCsv2lphlj?v1Vkx1slE7vaHJKGV~8Z7Td?;4kJhnTbPXPK71KO5m~dMN3B>l!JAecOu-F}a zo0N?YC}oGdoIxPWg@+kB)iad?Q>1!#A$Ug8lw^YDy!Pz}MB3>F=C;&vyFETLO@E5OulP_!mP zZ^g)Ghzo)T!K~~Ia$EFP)GgXeH$k5cl};a8)E5n1h*8YBy(QSThu+R<)&Bjxo^#af z@glj%aZBLbna5-D^T;|uTLjy1QtSq`1eFM@$Oa|0Q$(gs9*+4#Aql*JxyIDCE)c&D z1V42JC?I<=+;Q2SaIf*mugnA4NsbPr8+fMl+hidQW=h2S5?7-n=N^n}yt-fVw=K=2 z>oN<`UqVorGT}qW?{hHOWm(N*-HZOPO}0yjLr^Cp-;CF}W12VB^~{VnE}VC6 zIu9eSdT!6)+{mQzv$Av9f9Mxqg*25_9|9=ufj5ELlUK;38M{MJ<7fI4!$!$^EK4W@ z(dkDW5;6yH*2M4POrHUHeDj*sU(c9!r zagod#7m1`Nf3a54)8ARf5a@D6V)sv68;yzhl$wO-d@l%otG4Oi7XmdTZs5ipYKP?{ zXSQnOd;u$7tFhn^3QamWSf`t}n-)#7Wd!gWpmCjMPRD(2E6}<8;TG+A6XT z-rM5RLyv*xK;bd3V@S~DAeKiS*enK*nU(%^O*Y znn}z$e8oKcAlG8Zt!qTneSTw>h1_}b&c)j6+%w1cs>Eob`{Zh_^66SxR4KW2;C<`^ z4a5DtDqjBQ>;Msx0v!&;d~^jO*FaQro@3KJ1W{?mGOJutqhk@KhwMWsrncNCw%a>i zeGubUeszzX{RU<*7fE_enq|3Jz94%t8k(1`adM{G)GrZ!L#Hu&xxAHktS4t~9^ zWw)pEs-??sJ)=*A9iWWd6}QJrCK=879zN&w0VCp$8iRPoyu>8p4tM4Q#!ivvvmj*C=;|@(HYG#ymZb5HBoo-sl24Z zBSHoirq>nS@}c`NuL4CcRs%K&{BF;$TaWx?<{pEhA7=SQH99g}96RaPA=D9kkgJOc z7q_fI7y>*8i%X5Z`9(IVw_yn9p1?Uq2pVRAGgT=T&imiP$4T*-i8Fx)2?om?ze*5@ z-SbQM&1>$KPZ~>t?CZFw(ZXn;-D{9?NP%+SY(8IwD(*1KVdwwisLel-sGrm|#&KSW zf0bz0VtG5o_w$XJ@T*0~le(fH^ViySTK3bG^NNnj3pAA%+%;m1o2RR57ab3TG3Gi$ zH>BXAryM^8xSz`29s#zV5AW{x76KW7do#^Q)lZs#v1o%BF)^ranJ?IchKZ|?J%;Qq zG#Y>xD3_=ycOTr&4W`A(NLLEMI4~Ra$Zvp2y#KN_s&{In(bs~>XK8}F zoF~7HJIK^C7Hq#?kov~U zr>(Y0MZi1p z-Lgdh#aZ>W@$|3S6dU>vMV7>Gq=?+NO8_WG!>;YKUC3|o6`z?+` z!H_dl$_H=yE~$bxdz;&iJ~Iy7f|j4i*-BcjJUE~iHG9%44ERn}PY9vBG%q|BUkp{2 z#1Rk*>@|IZH=cNAx4=Dso0YA~ip)X9gOM%S@72ktvg;=Ifk8cRwrh+0q&dmE491Lf zRHzM0z13>;Eo4ry8R61S4cU~67`!=%dUjX#z%+CnYbjF&kPgoe&%TG=W1jmGPS_e- zG~coZkgA4<>Px(gJJ=b=)BXrP)4K$9_Bn_4lJ=xLgt@o5*8_nyDnYr5B_gcKW~{3I zx-5H;QSk6?9Mfy`)!8Ow0^PJ>?vP|caK}a|uC-p8loF245Hj3+gB^Etb6I@gWHN0lvhsu=c}%J01Q@tiA}kB3@W{idGGO#a&dSx>aOE3&$fVEO<6mIjro!7Z3309 zaW)t#Rg7`B8rP~}nt}Z=v#L;z9jIIs@}rLCy}?g;kT^gEJ)aWLa^J;=4@Fj~m`Sse zS0HqdlIJZZUiC(AtW8@Z^v}XAf4ja4jE03-SQv(AJfW2^>j@a1X6%N-A4xy>&O$ZS zN_UGwf102MFD%&l2975N$g!Rqk_)s6bA8uUFBGQ6l}F))UQ&K5r~O)!YEftx`|a?` zlO+24m(+tE=yEOavK*M8LSxM?-IS$Tqw&F{tPo496R;(^CmR$)=*7N5V&Q#%Bo3%j z%a94N_DlFwOhJ0(q?3^!NM<6v{TPI^5G~j4A2&B8XEf?sNdC>OEj5txf-O<%%Jj%Y zk#i}==0&flavKd|&9WL5uQB^y$e-uu zzC*w*iQ030RC{4p)#aBCGmq>CM_^eZpAG-O0V-g*{9<$fS4UH<<>=E=ZaE(VN(TwO z5LS6@v+WyYo6Yk^A!ZhbKr=q9AR^g6PZ@WL#DS4{wyX|I$JoPMW3?O=xA?xRJ3GUT z@zY5tYMM;c%T6^WT@JU(H#}bYodB66S8Igb3)cu%Huh$y==%2dc%liDsCe})FfDNS zOCY7zLOtn9j}i9#f<|n7RBr|uTz%bxemPTe1$6Ja9~M&C4P-vBEUexA(QXwlvhpM< z{L+VV56hRXllyaFy*rE(quhFloXBLu&?>g60WhOFz>l~ny-5?`ug1W5*BMlC=sfF~ zWg5!X^Nhi+oY}cgChy-;;I301?STtfuF#37a(1aSZs&>I+{Lz&3d)ExmQS6v=4#*~ zW%eW4X{z3Lbj8;Buh`>^J?4QRwT9blm}qivC-|1Kfe5;mT+lBw)R|*yp;(t$GoI&A26Hk1*}Tt zex$mes7lZEp`zW47z1&pS!@t}`R>^So7}O%N_I_Vr_8@FHu|mpU02A$SidIDCJ7oD zco@PdW5%dgAEd1~kTIfex6d5ui#DjS8!8v)ZtT#7>CceBt_pZi{YM(gW(N96h{+Wl zLl>EFe^b4q^{lQmVoINc+O{vp<7}r$hBa_H)UZ%T9pcZx)J-58#tiw56c1N@E#kWj zPTmPlA*xF4`!pe|X;KYFJ>oQ-sgL)t`6VQefY9BCUy?~)@X^hoXhE-M&b?S0yuD{j z0bV(jR`|7a%N=4F@IIwUj)MG{$--HJp`Uo0 zyACzwH)ks`HL;tTIpNwm?#~3z$pXb!LAhDzz0&ub>U`4G1-Pwu!;i&akQjM zDk}XR$aDFq9v;jZqH{AAibiacTEL$gB5of;)Su(g<#^?JCwsX853OC05g=$O;y{>J z{@ID0_*PEjt(()Hwdmb4x@!8zX=8;z*zT!_Kdkiel1NP1qne`LBg;?l zu|C%*8O{|#!dx?xzxLo!Ff0bTnkt*hb+l9U(h@~bpOSGsOs#A~9qs&rqG&kX!o9Pn z6-@-s=|;7VkYsz~sc{+ea(-9G1@8Sycc#Yk*_RlkADpAu&k4o;M{A3Eo1rd!zLCMHQZq+MVs}_N-b-5(8hTlG#Zy z>?4W+7aQKbgT{65wjmR8u>XN6e;Q*-A;cieKo@tB$Y6se$;-}wLBRx_dl_Q0T02Rf z6EB8*g9A1;-{mxAn^&G=Sb_!WHeO>`X3)q_^F``w2}med@sDqe4PgSMq>TJIk9>px z)CK*@g)J$VJV&5#5C=t_W|!_+mc~PzDM`T`r+KN>fNC;&kw*X2{ko|~X5S{l(;9zW z(tSR`FgHv8)~BU>3(!4^C8men%&_XVlFsT+Dvh_XvZuQF;3E95HkAgLY=?air=&6m zfx8UeLm)-!&m@Okba`{imM^euxJ6m9o|8NaXW0SqoI1ISL2_`$+n(0?DaIneJQinKSU##dT~x@r5+5=uDr}w^%U0u|1P5B}u;S8H#_`FTYd_)_K>Pbk z8-60e?Y6Vh8-t#_4-pc}d8GMNS_ZpCT5lUO(F4Our#R8x1}``0zqTi&FGi1EztYE; z{EFVqKEwQhF3eX_=bcbyN~CG(hF%u?!({W2@tl6n6LmdkD$3^%JL&h2h93Yi1_07w z7;VJ~u^BVwXPBA3ZP^=qtxYZ@k-YE$peTGxowkANRf#BQMCB~R5{66K*?nUFSjgSg-6pu7W(#`r&E#QXW1r6o0_y_ABVv0wzour_7x0mH2^$bkZHa3+IoH$? ztBW?3>k}c$l^~rK{=HNd46~MdNcZLoSX0nCZ^McA8fYn602Bm5 z@B7H(>+@IVY{WxGxbkGv8bdsLZV|L6EEgW@yMy&SpTkYyf;M`FB7knHi#`kP9l6B2rquf>$7;OC{##Wenk$cUQ zoYxI=g_gFtc-S5d8bJ}Y!$pP%RczavY0|G_qx|+qnoFzfR8ddVa=6y@guuSUQ&7HMKK@dJcRCat5nBJ*x^>J1lbx zw|E1V4=}BXgi3BaQUw6gq>s*%9-I05RM!wh5M2R~8f;yFxiA2L1gGUFd<#*23FA!> z(%a@q-`U+;mp}yF6FHiJnORU5$KV4P*7vCk)E!xG*v|NRSY`-{+xAO#Ib2AW1&@!n z4^RKx)T|zA0BsTbA?GGlg_S8OBYZA6ImVEUrX8}UFgQ`{y&QWt%=R?@9lj)?;5yj3 z>v9bXzg<)Wq*B&0d8i^xFUvxlwL(claNA2@fQo#@&Opp@{oK10S9pgHm?FCvs}xn0 ztCC-GoLPxIJIrVEJf8wkWAlbQHt2Vijqj8BTL?tqp@LKyCc;p!XrNxQmz~&`HB07= z+}owSPj+_X_IN)DAN?G&IO`>dq5O5kSK+T9np#q^%+lib7L^9SwCT>`4>7Z$3cV0%-+f=<_u%J|0Ft}mOos{(1b@lPou}9OmGJHs5qy%aAg{}ACHn05 z9hTYSG|TKK?<~=_7k6>-l6WoSjbA}Et1MAXwRGjgI~RA*kR1t(6G2ZienCE8F#4D0 zJF(0Jfe*kVx+g%Qhq{kQpbptKH2{AL-p*wTOpH8N)zH3sX@B3{_Ch;>0udct z^^dSykAU;y1BV!4N%yei3DWDjJOQ5o_oxX||F;9U1=YGy`RLQsf)9OLI5i|QNjC&a z$CC34YiQ+c?Ri)9So*l4bT+Y;(_N0go&}(Dwo>rOTai$L>Nq2KH$L?u1KlYEHohUmI zZ_-nbOc~~Oo9T{3epU0ggR(Z|2Y5W)(q?WpXj4Z?rMB5O>=EXj&?U_#=2rw#wQk|Q zD6?GUMA{V@Z3w8@^%>0aHR56em5k8rB^DVZ+<@j=1llCMP^H$9J*aQ{brjxd-A1C= zR$^2fxsyF_*Xu?;G!!L}Z4W!Kob~mdz&Yh9CQ(o7w{ufFex#W-0jz!kJE|Hjm6j=q|kkRDPot81KR+*()Zn(oruy@sB{iI z_K`m5Rnd?GXOK5wI$t+u`oS$0Ry!C@Yy5Nvv_brxmtQy_YgBF;KcuhZNNmiWHL9{x znR-<;X^ohDIE!kETu{dm^@>5TC70nQY#6{3ts%*#VYulq%d>i% zwolfTLu5f1rNUYC-setmBV&i9f9i!udOY&`e&=kiO^TN+=alU|EB9$a#oxT={G82) z*3yFGzMD@mk|>62c3b@nbsgNJ$(7(@Qg9jkkY3HbFyP@LHP9=DRGNa~rRHTc`<}x; zqogTOemcA0uk3TI%0JBn?V#`7FJ-T(u6Ry&jR8pj`BXSD49h$k=-C=s&AG zuE}T|tHKj|gwvmPKn7$=~9nqE?BRF|6uq<>|0qV zi^BKDf)@dbNHE#DLN1h~Oh!S;1ez<_qTc8Vc-&X5bHN~}Z~3u z5>LzRQv#eAAdXe%9fDcTG5U*=^I}eF)tnJhiyn<|CobSfz5R&e7k(LT%~h#7Viz># z_mq@#p>h27@wMVpxCG95)iNFh5?)a&Wq*HY*_xxCw+Yno$iI%MXvo~Y!$rJj{6?A(FTMCy? z-zS2U)x3az9@Yf%jG>O`-sg>Jz$LLjv2$;zeU`qD@BavpBX8URbrR@q7s^JR9Oj!) zOR90UXAI{X%q8Hjhz;k>L`WXdr(CA*CkWx|?hWz{Yb94<$7C%Es!GD1z>CswBDD&4 zO-5+}vA1%#fTU3G0D^qYO&kn!^wTj3>Ee~PE9B>Tu-=rDKUfybogzmAyX5d2mSZDV zdc^|ptA0W3l{PLNDT5d`HGYcJXdMG@uepJ*9MI^AB0)1Qu6~{f*oFfaG2g& z&61m~v%YwB+52siidaDZkWG^ztovdW5Jg-MMQRdN&bC^Ni(`JT zXCt0(9^myR`ZgYEh0|>~AgPho(x>nDyN6;&b7H>@tO+Cbn^x`+%_gHy0iP2PzSanY zk!!AvU5x~4?pthFuj>%*bzZ0+w&XzdN_x7Xim?NSn#*jA&9wkDZbR7|f7b|{dm5B* z>H?zjMiXY0vTDBM^3z4H!IaSM=7y0km>Xwp8Z}|X)IjpRNU(dQP9rqEY`yi5F9D|k zy+}E-Ne>J7-V~TdgjJ46SQog->?WZqVpG53F=m2IBA z=P@)vh*cHv#G&pCOPBnp%q$R?yigBp^J4KTCQ(2Nm?8aqP;&GOF+N-NW?_c@$Zd++ z@t@790-slWZEZub`#>2t^&}Lkmq)&B#%K$&rFcskOB&)TXn;_jZt2wLx)QCxROtwW z(*NKmdwJA`IM9ZU-76!{Um{@;Oje06X6k*?JJ8F$M30q<49C?BV(AL8&1ps&lWHve2tUjX1Zf_AL0wsA=UHnRAKEZ%0_mSX91n=d9`zPyOxv zoimem1x+)5q_~5eHcHpITvTi$i=P$3jYqg|H$MXDtZy+$qyFVW`hvNKWtQ2dGeCSq zqP7&k+V3+1bw1tfzAXK*ziIu|HuB%mQ21&>k2`3Bm%Whd;-V1tLGHcc zoh#DS@SOaESXyELqx)F;--Zm<%PTTZ=VcO zxQf)C-=k$y-VO`^a0l$GDINZ=?;ax|gulxZl5o%oX_=w7IqAT{Q;Lj4aU~ElL$fi)5jVDVt&WliWn!p7cHN0bKifWNQBhe;Cik?j?}`Fl zc~qKQpxTjNn=K6#G8Z_@aY-?xtH~o~PE=lxzq5|g;7sCVVIP^s6096qwoDqqEbA_L zd5R3X9E9Yx!#<(zD^`(#E;WWq*h48m(eO*B)If9sgGAfCGbJ`eNkB0bRx_4`k@&EW zrbv&v@G%$LaKl$0qQlfZ{bG6;nrShMTK||b-b!(@gqYRrDse?g7-!$SH~R$ji~zaJ zHpLI=Pu9no-aG!>@V-z57b2Lm=dScsP)QZnDH~tIC3&TjK@U2#x8k2lu33eIlNBuC z8|bQl9PTllGm^EYP!^;KSfA#-9oGd*a;ns54tH}Y@>=X;Djjw*jKip@`YXR_X!U6< z$mq_u|B*(Zj$cG)sK-Mm*kh*f9hV0VJdjZn#IjR@sf_^6FPE3gsjtbhMT%*PDZTW= zmM6&W1w}fXT18w29_TDhT6SmyY6khRMT!*C+c|qf=iPZ%#Q2o)zhzyMQ)lbx7L%ZS zoZ#{Z0b=G>+e!G~rD@1cdWf-b^`Y4miwFxvkkggsj4XbIm#g*H&H!-$ZeE%@r% z{kX#++cglZ3iSX9TP6dmRzA5_mA8aKF6-s%)zMog~`Zf@>(h9wubgnB5ZFK*jVouVE6KW z@?ys?g`zx)Lc`GWX`1C8MUSb;-}r&Ecqzfyd{q?@mQddiCEO#sCM$hCsx%MPed$S1 zuF^iSQxwL95!L#{10?KtjucrAW578;` zD8-+-stKecpS<3HF|A5K8k~ZcfA0T6+kR%2iRcAbxLVTZN4|@O91x@Dza1V^dW5fe zf9uODOFis8!diR@zalypD{E;zSi?KiRl4r0vTTw?Z3`9Y@;GH_b+SBG zCr>P5%*Sj_DRo^en)1*I%YmT?qX+SIG)_@i0@Tho@J7r_Ii4^$*av!V9`@Eb)3wer zm{}osatSNv@7EWf+ac{Tyjop9|M`SQcF>|aCDXo@)4xl&m!Vl>LrTWGV(YdMQhCn2 zd=Y1SH&;TG33D6WY@gSp;tx7*WAX7J!u8(&>f98`pxz@v=*$56VSx?vXTs*^$x}IQg(0N=J=LRF%bje4KDbwU z_vUkpXId{(=l#IDelLX6)urO|DlI3?{{QBG$YdmMGpIq_#xSj43NfG*F_zYX#a!Lz zWmW-H$=aEBOQFoYng;nX+BZsKeU%cy!$(6@At$v=?aO!@Jcn*T6Hg*2L_65giJUpQ zzT}NwMdi_+^*WpI) z1QjP*7s3!iu=22n5BH!mbLhMLI$SW#U}kaj3_e97uQIYm9&`6QB7pSq~qI%Ky zN7l+_VmS!`RsGM2j-HD~h@Vy-`o$;vwg;l4Ff-4Wl!l)7Q)pBnw_Yb!W!V5jANebk z-i0uW z7Rgd1#xcod|>ImOL8hs-7O&r(TCcfQ<{1{zm1;5+;cAJel z=^y$m$aK)uzc#RE@8UmNEybu4NZsGPU;RKw7skvkFmJKjw4^FO{W=w!)(FU_1-9jv z@tB;dR_YSwK?~?_pdu{?7fJ4e6Kkl@Ssd&5_mRYmDV#)Lz18%X~3C;4rs{ zV7^FkbpKv8(k@5#f5{vao7{{K_P{l5pcS_Fkhs<)FM4}+jmoZVLGfGOp3M|Oto9)e z+xB;gNE0Qf;E?Tww??LKq`7nawTS)3n~`4^i*xcUE~g5hR0hd>l(=4(H`mk%|q8oNon!uw@n!3O)?_mbNPHDikP1`jGhtdl~I9h`F;jcaecr7(HbGtfYP+@ zB5MC!EkFPVDeAzcMHM*Yim5;y^n|a(pa0czDa$2s{?0j63VO)gXn9CiZaHP}G)v&w z%-=B$>y{#7cACpi<7pl$8O{9L1Q0+*?Bj6bUY&-DDSgDi*)5)&=^Uf%@p=arFpWciM}I*I<}oSl-?WxwALI&3P3 z7mUIM{E~^`#`@553d;`0A=$xDG@(zMeS?(8}L%?DnrxO*WVbc zWjBOXnc~Otev{NQ<6Wb^q)1lri_{{TPFImB`>m*!1(TOK8$)@$1+qd{V7`;i*BzMY zRhSF9865#w1`6=JVACUkhNh1?c&l@jJ!N+yZ>-yl+-T_O3vsKSdu+jzInjabY~eM7 zcvQLQ4R3Q1li9gRZ7sT{aN}ZrOBcdoD{i&>=rUBq`FnY?!LFDak!g8ld-+O5-d#JF zT~_q+?+M0uTTc&==R~cd{{4X)a5R8WzU&uy9yj>w%M6793-k*&WDsQdVfn#s>t&oK z@1~^?6%cx(P#PyeXA70P`EvvI%&+eIHcc<78yDbGZrlpRgowi3MxCdtzOQm;5UDx) z{gU6z)V>0R(E>CVT=~Rq{@ZO$Y5%A5EY;r8P-B~%ueI{{cn`MWcJai@_?i`6$5HQ$ zxl}wf8YnQc`ZiZAFiMH(V48p7y5T~E0PNPjP8ewIr4yDx=(Z-RvbE{`pJzlWnaH(wvIyJz* z8z>Zf3#$`(H4k!m*rWL{lupN+MLN=y0by-5>8hyfy-T8T0Sj|NZp4H;HOn$>4|`ww z^?mRvya57qstHNLTR=Dx)-LQU1x`h$+De*%-dFPz7HUH4jT_6Hd+>77hqNef@{rV z7SU$JRjzFd1-qzpItGsk#U*W&xXu33)|Re+g6Ck=?{RRelD=SaKjQP~e?O!}U$C+4 zePj%DcFWKcy!MEw>%v@sv$fJ{>s#rU>zqo{ipehXq!3QiD%D^!3$QBbgG6*O*M+P8}q%FICOE8kblzvU0|N000007G*kR5G4RZtFjptF_lk0%4ZQYLpt>>G3TB;rm!o`&SpqU z8#>Yg1N*yF3kk|cx*(D-(${g>tJ?pe4oOwZ*VoJ7d1;RrHk4+JdjXx(sLe7b+bUQo z%Xj9dQeEu*0_nQ4TbALjtEeB)!KE)BGu0ahLrp{;!l;HPlt@|UIHX|96Q}aPkilOr zt|#tyou>6WY<8x;f%|xgS#mZVAL&|Sy`70pfRE$&{y&f7`2Iz*!e1%T4jlfkVoXb| zP3gHIG6c^|UU=+t$n9`*A6#I&}9xx1Phy6(HK>$>i}mhEM1mI@oQ+cUn$Ki%~?z=L(_aa2uX32QVQ4OncU z8dc+S;n)&ZSqfTxqkh9nEvTJ**MoJIC%}Qu>=bWD{;QUs{ujjNHdsscO;!{EtYOk@ z6Xm3#Yei*n|DzkarSKshQ^XVhjff1zzAKAjIRjo4VwU(p+`|YP1PGHg-rwWiS`V@i{l;48TN#l08NGAw%Wno8s%)OV0c&J)aO-Oy5 zFNc^*x4e{`Ik%eC&Q_+HK@)z|* zWqgAhs$@Kyg8VD_{r3@nu;@$1Sn~IWo4!_`(>~Ih0&IgZgJA0Zu?wZNNf~6GZ_4+w zoXQ+P>$>(%SSZ)#qo7Bc#3qKUvOKb?U}|4y$UQjQ=l!dEbliY5tU|Jx7lpvThFVRI zly2sH*H{|9!PgS7m9~5b1p)yrsNaDYBJQt^~$u2971oodSuW|!9v>6gZ^T^f{e(UwVoLa2(>c8p! z$@C+XO?AFjmRp6xze6N2)P#k@PRqA5r7eU;?}F6BR_GRhT|1WpvOVO$8MQ zJ9tcM_LNhDJ7~&Wp(D3YsmEikgROH%HVaVP)};nXO(E0DyxYxnOsFnGrVhR;U7;Rt3qBsThw0EnicF>977KYWSl3+DTs4kzb%cF@Q5 zpWrRfaq*t5*x{<2x_4x3;I}zYx#-u&ZV;>vHSTvqLAFn#bqk;+d`^$;c<-qT3OC>N zx#E29C##VRu_5>gE3Y{-=|{co8-j{kmjM)$`YS1D#&z|4~A7WTj4%;-)33k}-&hMQ3PkMAK4C;CLf^rA28s5}zIRmQM22%lJhs zCWD{1J&tiqeRuc5Tw@b1SohBhui~uV0z7>!#{=|jjvw9?a~=$hT|)fe<~5e7Na*2i zq(6VKkXbO`Wd}Pj(rB3fZg3-t4wr4m1wWsd9COo9?}dqqYC{dJhO4GSarACvJQGY4 zvzW<$k1L8XvAwmf^7rl8O=eC~gs@9Cd_b|3j7ZK~H^H7MsclxD&QMc;!0lpT8W%?P z>El({`FC6|e?QYMa74a}Y~iECV~8sj^{|;}sCKi>{J51Y`&2F0G_<4&Qqc>o)L)64 zvaO*coYTyIkIUkCf0=;^O-mO&M5=;-^4&Ruf3>25Ofr@vd- zineerSZff>hUf|Z%-t_q2dNk1=3OQH-8ziCdoHnKzAy2$jm=WKX||Hn*)_=Ty(?sQ zQDlVWvahmD0_-g>ehL2+?my|)mjZ>aITg4TSjpCr>P9Sz=C(ak#HZTmDq1J129Z1v zaSi}J1Ikixq;msm?lWR*=sUSzyWmt?cWXDL@vjh1s6Q2yh#VkMUJeoLPV5iCgnR^z z>tQEX059J;K3I}0|IN6wvuwf%k1sgg5Fyu@U`9gAlQMM%lXtqibP~)@Nj&okP#II*6-x59F4hdF$Zs){Rugtr%ZKK!Q zS%cugZG@+ewy?R0jnD-g7$j+{^`R*b_W9U*`^qRM4<;#fe&gnlZwWo^ z3Y=#3LQEP?Dvq{0(M~OBvC(9W4F`YjS_8Y1m+e><@FcBTpuk zjX16mygtl6dM+fJ_#i$zYXLe)Ld1NU+;*c~%$tfMwNY9+<_ycfNztM2r9*KNf@gi% zi}388g@#Au17u$w-TUaKJmii?R_dLeWP~Q=pK^>pf`d=!KN58T7kl6z z`RiUWuw!R@-vHCseI(6+8EwW^^xuvJZ{eP-kXa_L1;O=@tL9MFUqq)UGYX}G;SPL# z@Oe(fTDh_U!z3<{kAUF5a1|X8P!CWRU?&8~czb-q5ZrNcHY9)Az8}gj@sKqXTf?Fe z#o2!+g!q!u`5+n$?ce3yDJRZmt#xtPHDB(=Jj_RXm+12hwC(5a#s`)ii2gM-o+NBL zU-}FNF({%DfrP!rKrVdp5S(r~m6`Egj>w@iZJ5_RLw=jafs)9jnei|hJ%u7Z?)&Jg zKDO6gh5O9#13?(gt8k@2=M?mrW%+d9@%K2K7zRS|QL%If9p9uRW+LuUCh=tVky<%~ znWJYoLxiF1Y!}GAoVpG(jQ7cGxf1h4d5?HyH7%~A zl+s{iMs%4Zk2c^rb&K6zJOpSBp$L4^8UYuP|8w<=cpszI616y3*!W1r&GI=`$l=ab zDY-a2!Z#7yFFH^k)ntHw*B+lq^m-`)VtW?DUM==qVtK0D<^d!U3`77W(S82-zCnw| z#502LdF)c=G?*3`RY4D)7T`!unEaul!|+eNcJ|pcbG|FDL>wFyYb}Dz4I1I@9p7TI z|D*?v4dNi}^XwUmZ6>4yor#!vxM zbQ01ggokNsJNeefT^$ZDA!C}MTdWnZ(J239#KC6u63uil)1vHfrsstvqr)mDP&U?C zt`f5egb9Zq9Aw#LrRTg=8|+i4OGQW%gd->c(8Ar5X z0NLkq5?eNf=HfG#jrImP0-HG|09BfM6L=~nulZvE2ol_a#I zsCV)?(~@Sss)cmFfly6jz4-DhOa9;Wh=*`hc9Uwi%Q!E$3y32ii$Tf)9{ej^E_qFB zDe=q9!K6oegrUu>d;m_^d_jzH{yNc(VOCGUoCsu}Y%y}8TR0mhkAN+c@<_$$IjIUZ z6LHl!`28#|tCW2@{0V`;@*`lrhpwjC_Wyk5dqBKa)Vo6tuzofD& z)FpZ?c%zDJ4bYZ)Ags-l1(A}hvxygC69zZb7E71hCX$VO6EeO5ZMuvyTvp2^Fyskyg{}Bx9jb~3au2lHlA-BOAd0iZDBiVb9vS#0W;j#w zIvjKIeskCIPGS5%$q1TZneuXn>YXFHaXl4k8L%dtvFyUv%m(G|w97re=1^z{M9A&> upzV6Kn!Ze2B7Zqt2Jit7o*CZn{uk5#I#c>u{$Gc?fA4pAE&0dw9q#^b_b>2&FTckA;C#zs zkKcdV^DFM3?EhrH=6{I&)%&mhU;cm1Z$JN5{>%R7=EwRkkdMoMrT>)tyZ;sYsrH2n z{Y?MA>M8C2*8kCekpDOTQ~U3h->4rtKbjvvpV2?8f4Bb~`_ukY|Nq&4`aHBfE7&jj z@Aj|wALPGwKgoap`)vPX{}=l|_aC(X2mY`BvHo}cr|ierhx2djAMC%vf1m%${zL!& z|Bt+1`=0f`VgK`crGCJFwfyub?YMjE-an@%L4Q=L)6AS8IofuYPK|#>GYIU|9w-6a zL=ES!tRt0AH#OY2!Ft1iYjDzhJKwC({zShbaP*l8#tTw!HOA48=^x)3w6q`*`vs8O zMd@>oA6D%tKCDW^H-%)i-)msK){3g9q=7EPqp#GFI zt@!Nm3p{t|KPeoH8IdeD`e;%-p3CsYG10ucGf}ijws>**9ML(hK8ze8)UmE^FD%pb z@;-S7^%{u=W}Q zSICF&OfyMdjL$J(z2uLQT)m*Ddwh%#VPC%k>pdFIf%zg{u>q~4Sr%|j@J8NQwW%xi z)w=B!^hPOQ@)v0wB*O|Pg5 zlSUPBrfw>R?YpLzP<0Quiq~dcl)1xNI`q!SZd8<%@lrks5;p4Ify`K$Lx=kMB+_B> zW0xfv{+4{_)W1jv^&C0@29!TGXv-{qwxV!i~Guxox3HQFRX5%`t&Y^Z;RXmp2zN_e0=#lF} z=ga&0NgS_KO=&}1(zK{>Zb*Wn+|HA=R0JB|;e;;`A^B~$1oghNhQ;b~sS-`YKrn~d zPRz`6fZ>vA*{5fjFbJ$N!f1zBr5WKd4c z*^=CcWM3bt|6Pi9x1TBST2R_TOuoB_((vG>6oC4SjBV46%xmG#dJ6tsDQjhH!6$6p23QN?iiAA6^B zIoIOqe3?ITpfPiC$l%2^&oI=sdJ0KZG_(bGECvk6zH`|l7WrRW6Jkton-xlK>~VD2 z{i$QXJOndL7w4&WTEEuV1rBn4CZ21^bLI)?q9n}|-)C;BC$1$!`cHmCcf-4F6goR` z0`H~#OQb1K_a)wv-7o>B#KkWb&MwzU%HIT?`@g5)=8A0EjQhz5aN9WENEEO? z70rvwRA|%oH=}%3H$4`IUvJ+RjvTlvEQ}n^V9}1Et3CIXq<3j_h1F-(PTa0ebq$xZ z9Z1}tLz0!{Q6ppO>m!s(D@LB zGW36oRPQs=UItGoo%ElgvfE<`x)Jt4o9VpMsZIo)K!p$7-}HV6`60w`5VS0W=rn)T;EPf9PjsUBGaeRW`dg7}+9{j5W}B^Xa9gWr;E^Q9%7f{1n$ zVyd`_;R9=`q_Dt#Qtulj15In>;MVCTgpJ$gZ0e60Ze18qZ&YtHlEH@OJd6xYBM`Zz z5{=5_qDk#1;h9`twxb3@Xj?_cB~BtmwqHL_3^S@wnxZ|!;0Z|h^0cm6RvtyBJ3e?C z@C*!*53FMRb6+j+QmWVEP2j(R6AFId<2%EX3f~6mau!N~6MX-X2=MJU^M`2}%a}4D zCk?V38tjIc&A}-w^T+0e-KsYwo4!Y`)3&NT391^)S>=V7;t?hzYX=w-LCU?l#rsSO z9{>&i6S46XEyXq`+BwVXofW3FW~ie0%{zp4)+eRuxn!KKGu_ zcEdbDm;7^-gks(v9jFZW65XoS7HN1T_MzRH9&-$Ap5lByMQ}PSdpGO({Y%Cu|GIK_ zNOA$#_Uv1Lm0RztuE2Uyxf-GkeVz$~$s?GqGJVruNAjX7-1vosyPL?4*h`{xIWZZ4XxQ*Re76*vMPMC1nqq7=+Ua0YZinB-c;9s=I_{rMNJ z<>k&uKY;D3uTw_``hEg~j+0LMR96Ov)Ek8CmFnJuD@<)NwE~#VYQq}1YlW#j+n?DP zaX0Zc6pJ0E@(=s}-C|l{#|zbXFvB4|>F;Swn{fb`ZuRZb3BnEBry|MuK6?xb;9;)K zV+tOZ&GF-&U(s^hrZr`h_xv7zId2)&X>`TGe4z1~g);q}Rgfw??Q`?_XwUs?#tR(X zLdnf8T%#O>Hagdt{EiYa7dUh#$01PX||_^CsCW)tC3UL)_xn8S`?<9Hojv+5&GVqb(zt}&`4t;0U1#&H(Cp3 zgs?PaW@c((ybn?JW1Cm`X^2hZZ(GQ7wR2vxSV5n4EjQh-kWQxgOL@p(RJ{KRA_sZ| z;ib5lvtwxf#xgpXI{cpWBZxvqRdhe4E^bhnzwfhCY{>&$VGYX`Z)c^54ydWv-oL zph~TOmSfKW?e_8)x7C^TR(5P&o<+6A;|sCUR(e>_+sN9-$c9R@M(s0}{qWHb2T$qA z4Et?sSNBGPxQm7;8+n#;{i$^1;+*W2 z_ant`Z{O|9|UE&d+gpPY0OncTnrjE z1UAmmh;Ka1+=PAl>GCDc3Adq10rDJsU-aW^{143T%lmI5?0=5nC-k6}IX6A+og-S- zzA8{H^NMBY#LhPK2QpH@3vn0Q3`qW{t>*ye7E6PzzXXnIt0Ti>U4EUqs}>K?v^mw3 zFw+16&6gxz){$c|-xiQM7FV1}l5KFXsN-x|l2lXX2K}2{_iJO}(^5s(=t?2i=H>`{ zPCfh0e=pH|_AgqNaJf}8wv^B<27!M22Nifd0{9T0msVU!5YW~2Bzed+dZoi z^gZo}!IN{9;BYfw)Mh#d?6j6%6iGwM-056Bk1b-C%QPS6>HVnpRp#6NBvMGa=GNjr zun0PH-IY6@zwWdIb^>F38re(TUtV4}MXL!Feex4r;l9#WT}D6sA85G4pGGI}zZAtP zKg4Fp3i@q*orBo@J@MwJNZ&&F-r7Rfs?!_rs|wIyaIqAPe$(lKlAl#I!0P;~@Gk~1 zd15TT&F7gi$f_T|=Zk6_!QKpot)LYm3C@OV)5)i_G})gudzN*w83ZX&{p%;rA0l9k z-Wk%U5s&mEX?84XCAjLt;lKabcXqQMe`b$N9=4;8lj!4L1&G7*fA$BF?g>S~?G8Pr}Vw(RT|t3Q8?AyU0@5(H=(a&;^?IGWj@>G)(d`*RMm@qMnQ*dqe5K zXI44VSmBUw%7yCa537G;y%I*30r`;2WWsL0Qg6HxRXIu zuc3QSOM-_Rh$0)-eZ)B~57W^jYYe_|3Ctr^)fISuK1L7*1;{!LWdDtukOjWe5lDO{ zoJLAS5ZSx_M*KL$l{X#Wx5&AO1=$(!#h!eZiyJOF zjdRPVL;>ftVnDp)QlQ}o2BCuh!Lyf}y!_9ch-L1K2NFYchL|gd$S4!PVq+WG6W2F% zK{aW|PDRIvFl6K>t{OfAjYLJ}Odru_u$jf7f>a79Im4K#EL4x-K6EO^IyjYv7Fa=6 z7HZ2_X6^pTU}b%)cA)*tg10Sl=zMrHn+ujoCVhR@C~_7*KLW0S82^D2MrIF?mBQSH zemyG6p>3{}0YXEEfAVt8V%f|xoRiL=xjfDk!X`RCxbJ$%duivY$!mYn+j~Q8zRYG(N+Tfaz zQdCYn1NO72pTKt9#IYtw-SITSt@!A=IeCyw;jC`9f`ZVG8TY7g_6Gl4?!Zu5RW}Lj zV9Ms@_Mavo0bN7w-5J({FNn^7Ec_b`Mh@w4qVrV;X#k=CQTl+Vz-EwGIJ?Hiz99S1 zNs6Ia#y}B>uK1^(xU?tUNJFIHV1vZvB~|=HO1ilG=Sf>Kk+v_<>iHVrg@>ohiFfeU32is>9ak~II`pA$C2C%mb6(2 zJaR8O6Q-I3gT*@7g#X+V(g`-U9A|zD9~|)3h~k{9(1!W!hY=rL4)aq3nrf&B1@7b8 z3nrTHFY-~3Iu^@K^~~*W2^JIT?g{?|?i}Pp2_H$J!3SBk?-2^1A#;X=7x_+69wJz0 z%c@4>ulFi+Q92s75@&2c7bI?I(J1Ijy<8ZOV{v-n$*`U2h#q}dq_BjW^a0-Haq2^V z>jV|3XnZ^D(gXVIm}TmaVG0>0&Cb z7xj)K%zGC=MfW@m4b6vt+wz0*;y1q0` zITMJ*G{|=jc;H2b5zrM3*DUN>Z$8o0U38l6*O~ia2x!R7q#;&utt(+p9+OtFK?@2` z^H1o~ecfzKT_|=yph$9}&R?6$y1chO{+PlT%e>(Rwgsk!?Xo0YG#)kEebwjQ5JIbu zN!lhT3`C`#*PcWQx2xsz^uvu%De!G5k)pDC-;v^VQvG6PbwI1K4F60EPSVx3_C3Cb zPeUPBNcnJaO_z_{f`#`Y#o-@0;@+qA`-S&%LbigU0y+L8=BTHq+vRfbU*AMLEYW5l zbo{OPKpFc;o8@Q-<6qi8D2(-Mcdl3JRrw)cWI;%%zz~=~SRkSVgUk`oPTf_z^vy2M zyq*b;lxib+gle8Gq_wJ_?(>R-hd|HyopRHbTD$|tK<49_4^Gux^d&YB475cQohiX7ZX4XL8|%OK$(u(pB-k(em&sTq@?xMcHj zGUekwy#3c>=cSAs{qtg`HM=Gv#XNmFz9h+cu5!0JwxmKd)ifBBJl!el>IAn%YgpsW zDURwazPC?y)VV%W=kF|J38#4$ZDYnt=yMAjIFuv=^R&4r7!Z?lkESRxET$$}{Lyul zyf^~Tkb5XyX)Ix?={-EW;GKkIUt%q#?uL{1zaO2`4%@5k0EN<&Ayh_p*pK^&V#N>c zaKC`p?E;MObN`p!P3+!F-W-VjLH~?$iIinHa$L##mwN$5YSN6}u#eM>#@bhCh-2jF zGr(0#vfGWIy>oBYzws2Ty0FDQxKQBCe5w*tweBA9{Mh`y7k~)Vw|UY5pn?fWT)@q| z4nog-#aXZvdX0*iHj6lOwZ?ABe5xGFx)?3NygSfkj$}|(sJrCB`iZSp_Q z)R-uxXW%mW+0mRG?aqQ&;osvfusA!pcz~f7*t?F&4;78KE;X_B0w~&>C7ledtEOud3y-6QM)lh5G@uImiT=w?S4F}0JmHQeJ>GeSWgSR zZI(f}p1cp-1JwLio*}Ea$3Aju^;KWUDt#5l!y5+w@V?pxb& zFxJ+;3#XnZ6>i~N2xw+^Ld%8kPDp$f~BJ_W37O(cW>tK>}spQ`hO(q0GA!+!N0$e1T&@GMd(`YPE>9wPu8A%^FYmxUC5n zWky4yfn?FB6@fm=Jt=@;oN8JIwv^A!Epz@Mm}S|O^1d;$a45z~bIbAd-b3`ynV-j% z`qEI-7zP;ZccX1U{*Z~%P7Z0j|Eh5P_T?dBk;@*pb4wjG21*D`Z2e0^ox2k+7r8`f zhlX}HMM%v*X?eb`O47Bokf`ZDkQ(zFMJU&sp!#NDGMoR1Lp~qNZXeZHWQ3e9Yk`9C zehXGJXisa;9%3$+4*hqV#uxME+g0WAL$r8)G+u_QdDVNqEs|v3y_c+m6Q9$p;s5VT z#bzYD!OhagXm#=W&kh-g5~yQYw+OzAiN*VZR`-hc?2W3_)qhkXPDc%YlhOx)>0f04DOq=tN4jFU|(dg#)7J1he3A-svyuds>9S(j8~U5%olxtSW; zl(}&|mq>$t3>mdHAzF`cEMs`oelsJ*L-_ovcJvXIcZW2t*&4(x|CJW0m4g^x!!CIf ze!>gAFZy$&vGi{O@W@nbRGeVxmPrf+Ciml!#+`?cP)p= z!Kd$8zQ|c3cP@^3*_(aB93YW=`SiTbz~Z*h8%_&3zzdVE{(3buVqz&7vLQfuy&tL9 z@Dav6jLd_>0L8zwPv(nz%r51S;378e&GvTY4oer+F}VI{*}vOx7#;3F#FBm%xlLQBRX+ zMT{?cAz=MfEi_^m&Q)jF+t1zwOHy}anbFF5yQtMu?`4b)WNQ&pX$;+jk8Y$T(xcXm z&WK`;-n>wpv9NHDaa1@dkeA1lh?P`^1(N?9^tlzLR60q5A_hs&2=>5C`rghl2Kegj z*JzosUer2o1}A=rns=hs%b*`szQv+RCWUeVAT2!z$p4=89N5V&MK#9|X9*~(PZqY} zUHwMoTl<XRejJf0 zU+lLZoHPKE+Zzso;*K``?#f6+ZR>+U!qa0i3;7 zxUfp~GzSTA!B_)R#jmEA>SAIGZw@*Dn24%mHF)7+@vNZnDfV`(7^jV|E*mINQ^kA~ zvMxl~GW-jN&Re2tvv0zMZ686(-%nD5MOT8<29hZJg2sk2n5oswE6-OE05sa)F3cW&BIJ` zeYX#vI0(hK36ounveLMbfAI!mg_M;+JCStE8;f*2Y}JWz774aqX&J3_V%P!`hM#Xn zA!-yvil-uddG*b*kL-r-O#V$JO0@iwNW{a=z59RdH!eBMl&Jfv;b)K(i?=eBV78+)#2vpvlW0Vrg8Rf>s1G8LFH@JGhw7;T?E z5``UKKaOGY71IK|?R`)^TG!I|I&3Orpp>bv?&Fc2K#CPsLy$E-8I*3%z4qX?rmlY)y^{Y?bkmd)LjCx(v!dpEDg zRb$d$s5GyBWzHT(UbAn|8d%K=sHB>hOivGJy+;p-?tif@r5BumWObQ7 z!AuP-TPB9%y~&&Y(oueU&c+MW0I4~q%1i}rrBIRfL}`iiBv_I++wJBRo+Vi5k|Bga z$PUfKQ7i1W9`QqEkp=i}sLtMqwBG^s_W1VmtXpMLjf%ykt_-|d5}noIi84g4k0%`d zVL$pp{|<97$HK^{sAq5CFwVqak9kTvt4_hROGx%0`|(^`m5NG~r^uYLgMPTT$;@CEbzF`-EuO1;1TLuX|raj$!9KLLJf;+I|aI2Er#_7NTV9@}q zh%}>4tj@=_;j?EBxH?ia3{p*5IHt0By# zu5m~23kHov+l`WUFC+m&)VPTj zYku{O%6%)P#)YPgJ2kNf6JVSXFC<9c99obXt}4&EIX#8WFoXZ;ySb)EXKV|7Ul&FTbuY}_>L=pd-deKcT0Iw- zNe@<4+Hzf<%wo6@s86(u6Jteae@*_2=#9$&45rw|%UwtNL^|;S4@wmzL-qLGvplE? zb|z3Id?o_MgdoK*}kk zrfZ92bTxSsJuVr-@(`Cl75Ib7C(Z9+k5j^YoH$DE^SAJsoBou``9fDj-hN2nIzxlW zU6%0#VMd~wRG4I+6Uc4uTm=qbv>pDuz}Xs-R$0l+c{L zltE?Ea*SKkY9Li==br!8JOh%7xiIb@ze-pQGDUu&-@K*?%?RBEDzG04#^P!2Ql``s z$8H#x0`p~rm*KdR8i|jW%7SSj1i6*&hv~`Ay-U7P#g5HV_1(+z48Ap)PZmZrO&Rdz z1$R^Ht34@c`TT7cX7BEKEHKbL+kIju@C%^L!0;h$$~tyKUO=BRiFd64)P1Kcn>)D7 z#s&I3k8Tu4j^!D&iCIhUVU{5VNO*m-Z9ZtBic1`#fyvmQNJl*tf0E+dgk>w-t$Re7 zjE|@{F&ouC7pjowhwR~!%nk!4^#p1LAPO*veY*npBZZKFRX;ZbU4+FnnMFBp(v9bSOuG3J<@=VQxK2n`r&51;5&=u{sTLKb9} z;#j)89FswS%0H;)FcLwaGHOtZc^S92X#bd@KGzWIA!Q=~ak=+k?6)t@o85D~z%=?7 z5_m||2i^6istEVrvkWNXlwce)5N&mazanHr>RjTXZDF`0p4UwQf;>(>(G%20y8gt! zBB%+R*nU(M<-8>wRj`Df-_l0RX6IL1GJej3NaBR_=_IG+q9ZL9pGFOH!M-=~RN_VJ zAr1K~22_;!PG&$R$86RP>9n|iXJ!i2fy!q}kEJog$m#4vQlx!2+-_97T1-sDg3H18 zN7Hh+h7OEP`3^n4Hbz!HjLm8^0F^Zkc~cs4&EICX=Gkz=#);5!`NlS2rn>D4gR##g z$VP`DCJu9avVH>ewrMr9$&QvhYlS?B0{mClRsiTY=C9~UD+}p?<{wJBZlocMEk?;r z1Y#f;u_!`#tHTERT#d;zh zNu5=J0o;hhI4m$k?+jQM1wEMegxlbF|G)v4rJYX|EEV_$cH7e49E}G$k zU>q5;J>U(7(|~kRD@{ok60(OdxlLfOlY!!No3Mz;!2~-TxkFhjRt=kzgyC+X@KQ&a zD`L;rc}51K^d~u?&bDSXfPr(mu7 z)bz-9aT1JH~_y}cR=Y9rzzUvh4a--P_oG6AE#*$UCcR|y*< z$~uM938v#~@$Io}AsXAl5brm@hL=iJ8X9JD;ZbG01tqYFrtrm>Lr0Ool!UWU42aXr z)VmSfibiG@?eIl-(=!ZjH-FlDWGs@-l{7OoYq`Gq%UKfDZp2B6Tye)E_OmK7hj(zN zsQ1{$NX_Wxk&b;<9tJX+YjA8B;Ov+|_{p00sU-d^rr~?YVSllp{Z06vGPQaf^MKk6 zh)H>Ar8iojhc0=KP>Wu%@LK}78R zu*VzsLgW*Fdm@fk0ax5@J}gqJDkd=s%LQ}M$1N?~9v{~2Uzpoq_IhI1oT&*ExeT&y zvF?7&9m4?L^O(d<+-%e^>ROiPcz~;<+a`9#+<($G0pw>T8 z{|132_#St4I_s%7G@B1UUIKXjhxulk&>bm_pm}}C6vGOsOY8m7`_kpV3a*W?mmgLN(7Ft|-tJ z2|utdQk-sFd99rWK=t~5bpkT*%gUK=i=eU|!K~(n=IKqi{Tn%eD$&cIGFWLyE?OhK zee@w{xbDFOh#Mym*tLTsYR6vlNnj-RE&jz)Fs6CHj8QjdMwx5X71yH|-;?p=S5milLFbXoi>giG#;RrUX^{CaiErmTw( zB)f>QMxA%OXoNUtD$a5@xCZiaCE%gmhalE%h|JBJEPZUqzV*;jSmfTIjI~N0>h+f5 zxt1(KPw}h8$n;7}A6V%@*Ll|YXF9W#x$=HC7ovOv24WXL>7xQlqpMOxkfdJDP$^O) zGc+sTZ;?(#eI$B3AM>+}5b@_13xd}Na0+@U+l@MgciBZ^G=Xi=aJ5Z68MH(gjvxK< zso!$W<1#Iy<1Z@FU3*l5^RuC#g&naLv;bN~$-9U||6v*T4p$=+dZiJXk#bc7b@jN* zmF03jBwi&Za{o=OWDB-8(yg6Kfb@diG?C!{qY&$V$61{e`nf@(#?bH(61L?_l z$F>bS@%Y|$>2$nax5VZZYK>MmVY@Yd;pb+~T{~UAMnw`msUA6m-_k`{?+Pkf5hZJp zjWedgqEKw5ax{PT+o4^nBFm~naJRj}587dUZHw{2_j)YCptQVGwm;g6Y?_0*{^zANa;EP#wP- zTY;|~6bKCXp%bf3EL4HlN-LyhAnkFT6e25Ud-}0(3lKr%x};oA?b3UF_B6FneRD~n zXO(r}4_1E@cZl1aXByP+UMmIPr$Xd2*?HiDWqg*8x_ieEC1ITAGy_l`iWId(?uiGl zBpO&3JX!zh1e3T{lqJN5WasFs7E^gFmCer^5n)11Q zq)FSR*tbgM$F2Z3s3zlk!kNsO-D%T|R;R|59_t;4N{SHOUyipTJ;x`7E-a@o@@iPs zDNy3#oveu?GhZlIBSrhVEFSV;EuVIZEjU=K{6oEHl4xwIdmiv+_s4I`R*y-rdrCxx z@Jsd+*T8DyUnXk@{|X}Gvj1iNuHTlW>fBE5YERejWj-Kemzv2>BP3$!x|xa7U)Z4u zJPSm1!^DMqNLi@R!)WHTQIHoGtC^<_nofFD$TV3dR(2mlhXDMWn~Y9BYMQuj4$o;H zcb|a39}dPbt-f?nOU=(X|5-UN#^Jt)8*Eb;@XLG1u2lU#|3NS9US2pHOlIT$=re-u z@<=b0kv)f%O|sw~I@FHYqN=^cjLn6H^-mteI=yr&J578}K|-T831zU=2bUkLN^Nw_ zTvvGHJicJG%RB(QtpzPjfmyd<)8B<+T?e7WhHn3hVFJQ4lCl7?)@MVq9-?lB{Lr~h%^L8|wX}#01Qv(!>{GO>U)Hi;7Qz>kLaX5# zyjn9Njc_$(7Pcz_XlX9)+)L_qLI)I*brhodjQo|yuHLY6#$FyR;Q&=bYvP;FvN(n% zv?Ba7Z~_PjQu%2x?ugNve_4YKObPRJc6s6ZJT{iO|5TnsEdbJoZGU5Y`g0AxaXW3y zHy6>}Pu{?ch4X17!+@g~G);X>r~7lpg4IfdGcN-)_y!B7p#yr$bg>q^_+tp_&%>BC zGMbTiVp{)rrpz}QZFX*j;}n=O3~ZR8g!*&7Cst5Zo1)j6RnREzAwX!H-NoLT)O|0H zRGiW4mw9j!^gDnbSXAW4@!TO1!J*4&B`%{G&FH@0GzmX5Ppf8-Ecqri!kvNT3r{d2 zS0zH);LYfWB3Z}4KVX@NgfGr>xLGwv1Z+}vAV=*8OvE!vnE-?@cip|yw#c;LloxcB zgTsqFsS1@;FF1=3EZ8N@GjWd#*PTHS|H-l7ojF_@9qzxc1mxUiD!S!@zy&7X{E?*J>#WP@0vh!BoPp}1);<$YlvjGm?P%wFSdY# z2`~v<<*B7XZioibGLkuk=t!?NhT>~}`8R^~_!&i8fggc=^LEiXfmc`d16_+m7!nlH zz&cyJA{pQi__fG{pW?VW=YQ;(W_>D0`*FuMK|Qc7j35=&a$-nE2qkaa{48pLEfx1& z`9Lt63@>ffvv@sZcBGLvt#74tAX(+!u47xClL`S41Zf4W7^)KYTMYza(M&tzVbU~p z(|TR*KmO%yXtfC-F|sXI=@#kPa)tFc&ub)_g!(6Egn3wbIQXmjNT^s z&pesZ$zG$9r(R^j%Xuvy{n(b~>+DYGeYNlt7ok*0Dzu6AZFgf2$gg8+=wt!K8D7YD z^V(uhTZBm4&$~vK9B;~(F4%JUe@T8fE4>Sk5uXJXW3#D+_KHRwAFIV4ljP}8ynE!`>mu``lNZk28K@yFsVAJ-o3MovV04$s6&MIfT@L_HnQt}}Xwa$Bi| zG0*c&YM8C}M8wzJnmmM@n|e$@Tm|13F((RZ6W3$$Ow^)wx#7wOy*2JLHKi%$`W&Ri zVZ@LIsVPsONt8H;o^<^1_=m>Fwq|68y5Drxynh&&Qc?t`ClzYh-eff#@{*=3lqa0t z`0Ci-p${#ocK%81KUf>hqh71-W+}Jb?gm8jO9uc>5*E(&a(PpZf=RiD{*@$lFQb=f z#dJwJ$?)}SW-^PT_K}V}t_a&CiWq2!3|J@`7L1?@Q7F8-jZl&Zaizc;S)H@5r8!Rj z1^XqW?qX-#=jo82`blg_>#_+hZQ*2uIelFfX2~YoJ3NVAst^mg{b6+zW)`{ZE+SuX z+imxSO3`kXUoy^(%gK1+^N;wbvPEP5Mmd6?WdPTEg+o_=rOIV*=d^BOEeQ?*S25fo zsG*DiAD{D3`{IeFWb#1&3#eDSCfCr9@M3)P#+DURD~@)}-MWNDZ3uNxzS3H^qc#5Ln6Vw zZmDb%G+(=!&*UGdkuZ9M+||j<6oz9xLsX`lL!U8zH=}`u zhC6jJCu`yI!JvXOfg}Su*W3K7pAktmsQNyb^@r&wxm|P)O?^z_$&4grbZg@h0G{a`ciW&@D<3Vap~k4ramwv6Z2bfSl&6hctQMxEtOqiBb0| z==a^-;sdQ>r?no=VI=XRa-pgWQCwbH*I)aK&XGoK^TFc=anp2Qe=e4qX1HV#Dd;#t z@Y$ZnXe6nMiGwDpvO_Tm?s^<#=4dg+K$` z0Ww$Huz<((Bhe~S(HW_Ie}aa|*5uUK>c_xc(6zl?9xNOKpL$ONM-ByAE(s~VFESvT zEL@bw>O8D_wh{-&O2iIq(QbwTc$ERek1oJ+!0lPP6yEl$=?5Cf8(F+K5cef&iY&MW z_G(A>YfZ#Qg+!V_{#utLBA$DEE^~|(t6I%{22p;mU|sVhu-vI|mc=r6uF4I`6UYy{ zGy|4t7nUM!zw3Jshzz*ataFUkKxWr~Qw~^tVvvKYg_AtC#VGgGp;W1Jb3Zqsvx?)X z>RqYH43pv|JkeUFrmH)DLVWt$n7uz}5p@Bo7pCV=lF_GsQd?hbQ?P<4Hv2pUYOv;p zFhH(xkNPW+W9WHDbjX!V1SPce7sI3dT#}+npZC*evDN;5lG8h)A`t94sMQm5WV|qu zEwEk#JeRGrUc$g=aK9ZJNG8Y?RSL(ZG!Bl&qLLue&m;(!B9!-4O{?3Q-}WbCj|CMYn)+U*BlpdWoX=XC`#EcKA=TGE6U?yE1^FZ7%0g)V0D2Ser=&M_Z54)T25G8 zs>M-WxM?N(kPn$|;6A;7#HS$=@e6o(!eWC-PNR^Ufd63{D#kbF2qG6E#!uzc4j__? z*Ncb8<`~ibDFv)F%b{Ko%(dk>Da%xp7=++~Q|Rk=cXkw2F&P=R6z-4X6zHrI?T)tp zP>079LZ<1 z_|QMytORra(VOa}k5E;7cZSpf@?>{>V_dz50Jz-egzdE2MsPw@_n)lPUXYO)tWz9D zVyjWd8-ihptKEq(W20wRT&{_(Y@;K<{}AQ#pxq| zqkiYgNte0;E?D2Eg<}zI*S#+xoT(q7;nSSf4Sx)o-dx#D`A+d8RaQ+4ZdZfM*$!m;GZ3T3ATJNK&fqv)L7r!7!5O z#ixqBB8f;eY{nwe*t{fFby6U>T(Z@*8JI(GZ~tHbtY`ThX->1Z?k_&UIiCfR?AAaA zO%rIj8w8&I=A0-0f3YG6>0NoDFGgqhDWvz`(p-D>v6a%hTZC6}9U|`&3qlPpySg79 z6Z}sf>Y>i5)(gMLKrJr>LKxe;LMj)I%`}_2viC`{DE@M9U1?tM)f8yH-Jz!|Wro|B zs6FOspvR43nSzTizPSv>JCR?MSN^FgG-ZPYUqk*-%eGaP)r_F_qcl>l@=F=uQ;bc`p&w4bL|he16E(J^&@%+?c`0yIH9;w zy61T2{K}3wq4G~guiBzRb%XgWC*`MKJb^n}&c*?LKl<KOssfP!W zrRuv9NyNl9GKMPxZ5?c#@|43jark&j#dOnwz3B*6pT7KesJf@Rf@ePQ` z<++Xdq91;oTOniaf6`CGf^X}DHKWI_MXI^w@sS{PSM;AmNx6yzAx)QqYn(#DF@Yrf zI;L_I!39|ZsL+h!60slsS2er2ua_(U`d3dZj%G>51@oOH1OPAqGeJ;^0oLLFso7OG zm=P_MGGPj4`5txH@95*7?@?)@SRQ+;lx$atd7-cH=9TczfQu;L2J&P{G9No+IkHfX zK}tqlfdpGGEQPi}13ibDdbHuP7w*O?ryxZ zbgNoV{}D%F#uiou9dXdz)V2fS)|m7dFH~KaiLd9y<*G>k$i?Et3E-K+eCv6|}E!BH&z4@cGeNsGbwHblSlE zbFxs*kgB`j6!iSo*#%NRM7JM#!Yk+<)@F8KuK^Z3-SX?kH@=}s%x828=aQydPn^|} zcG9^*?-JjB=T0|fcdC#LAIR^IUBL=-Sv&Y{q}S)YDC ze;c7?RAIvoQm6f222+b^Z1s~hT8bZ&L+6rf(9E*}?spa)$?pdXKD3Vn(A+(%fr_

      {;1;%z?p|g%iXiqhjL!Z{$P!xb-!WLp73v?Y z4!)D{e_-NRU+y@buRChSmyQ6=a_^Ak1q>A z=oMP1B-10tS;;7keAhVZ>A){u66KA~k&*~^*Y;1;_7FIQkCPsiw>=iZ5AUEy04iRA z8F?*gFll0mm7`GO4aMzYi%q^^A^HrVgRKg|xvJZ(!`$_HVQJ+8JsVfN#4eY(xR-ah z^)c|!U6BNO^A5Fy*C}dXrdz3D0>!wpFB-(`@WoA-e}idE>Dv1|*lO7nAYWMd#&ZkO zVs^sSb7{jYdhl1yS?5Qyy<<6suc#;38Y?`7c9&-&&gu^_ewh$HB}=I3Su6PgOaQ** z(_gjar~RK|JAn&w(*(%R7MIgag{sE3C84nNsL0M`e1y|lo(@$X1F_5&@z*dc-8tG$ zx}p+OweZUMok>*&!-4dy+2QONu}fsB(j)D5Sdaxx{;IY<%`rxn%+UG#i{ju)q_n|w z5B;sW{z=lYbjEl3ew}J%$t(y3Iwq~F*&-zt846i_U=%_fC^DWWFZ%kQ$aD?ZfJ5?O znrgINnE(4P!w(t$k^#tdTzVqb+3+C-3~LoAW6U*}-gVpSDp`#2(+&E}FGu`6$C9}; z9|GrBBG3?8k>VoC`-kzdcwf6r91`K0HX2zKsOT0C4ZKfRXt@o9@y{ay(c@=)n~2M+ zZ9Oao?}4`b*_-ZbfKs-;`c91=Vg!{onV=3ET;BP+o2dow!C<>gs@dMbi8tfuF!h@x zA{pR^!E<(}y35{X?mt?5 zzow0FqNQRmVVHfd|>$bc6u^s^CX4wjGDcI!~1o@#BuWiLZ*c>c-1!e8p>pI+JA z7|57-{vbCH*+m2o&Za+WG0J^(<9i=!(X!b27`i0DnMDX470{R~HYyQzJCTs{X0(7U zK`n5>(Due9>6*&1V6Z?>V%{?oj=fL;R1rV<%mJ|gG^IS}V&E8fg*U3!M+ zW?gF|-wr!11B6Av=bs?Xr#KI8LnIu9s8T1 zITH3m-&zmutsd?SqzM3ib9?X{W^B>++?z}!XTG79H?g9v%i2?!VEg)Q1)!x zoxZSY@vtyOt;CS>9r6I7lIS@grsCA1CGxzPrBwaxc3eE4$+_aQ*qU#8PupNVS*^Ko z(M_|Me#wt}cxpo}x#Js$Z@FF9f#=`lQ;Y~Y__?LJdEB7@(20HxaxHK3|4<19=c++{ z$f@Mev=D-lOg<|Zi@~C8Bxi@}uqAIH&SD_ogr>sUHHKSCh+DqURNJgT|Mm9{KM}&? z%d2%J$&zw;TW2H$M6MTM!%gTHYMW++*K2zXfa-(hW`04~?j7`N=pE+PrS-M1pfI zupMiMg*@@EECh*@%brzrAGeZVlRC9Fex(HPM8@f%;UIb*AavY(21lY!7`}qk13+ez zsmhKV`i5~H)m-%a*r`_kX)&n+sZLG|)ktU|#ESlYz`?U`3a~={5r76Ec6w376`}06 zjjWnI*I$Z!X3Ig{`}q8i?*Y3<#N2JnCk-WFfj^Y^2*c$M8QTiot6CbA6m)gqQ0V41 zk!|lGQsydTx_>+A^%(BT^Xn<@dGbi>vu846=5a?%L6~|AmNca1GVhf`h^Hgn zyNi`8O3doa&#OE6mO_l5`rs_72#!s5Gq)f`{U%t$%q;RUVPNYSARi3mBA%Iz-?%O@ z_t(98gxlyqz4;H!qhJEA(#Ib4IUqmYbTB!nEi)si_(1(#&djYH%!#w5w_oHm$!9i7 zIy2*~tXH1WZ|4E1CkCd421mcMQy=|pMhy=*{g;PuhX)Z>Nuqs#nmp@{3K}468XDy7 zvmIyiW=};~Sc4W>I^d6;pi2X)DfZ=hx>T_SWAlEWA7=;W&TmOML zaEmA&x2t}M&UXb2YNZOPm$=e$T@U6(oJJV&+FJU|m~N2=$x>jhAYzP7nepxx{z5UEeNP zCtCz0?pFX9z8fVWoS^capj5CJN+cUAA;&|oqqz<(7oi5Vt$bBA-z}2^ZkLhCI*VhN zfuUXpZ3_BsKL;c+WW?0F#E&iQH}^B9BylO-ZW`o^ckEI>bWTr$nZY6BQT>uC1NmzJ zdT(fE+2@dNn0uGcj((}RCN@k|W{wJ0Xb@sESB<}Yv&RC)#6?5lXQoFHr^@OV+yny4 z#1)Fk2C8FzojIk4M&fJj3nhx?h)MN4M}VY{XUMM%97+?j&oKm;c0SnrjhQoUDkOXM zh9+Ih8TMINeGbm9F~N^wq`eS?26CrK5Lsc6@dw@APXnC%am=hxgz%U>%w+RfEh49m z3~91Y+d)Rfc1D#)HSm#_a5~$c61iEkM{U)yi`me6q$R>k)nH4dLQnzXN1iC2{6S@V zQAu=iT=Pnwzk;B*w~1_^jF7$f>_I@^lk!7_0l2OTVgI$T5q3O_-xcIBNKqw3RWd0+HpJ+sPksv#%P#>?hDVu11`43OW&9Y zb!g0k3SO8E5LVTd!9Li0N2IM1+$iv&o=3@)?^O+#dr{SWoPbQRBLuaPyDJ7cPKGvW zyWvAelV2>VA7EJ>Gfn2BpbL8MhNfr^w`Ozu0{&@8Qy!$_$2%9-R5bag%xo=z2A;ii zM@z+W>YD(uB^vQ|Pr4{>2-BfU<7k~U)Q+8KZJjIEcKpS`n2#cPwI*Hv^iYTn&dZ>U z<)TeAdWRtY+H7h%eId||-ijJ)`69A-XRGR8xo{o$2PH9aX6|Ug$FwGeRIKPf`^9i> zLDP7T;~|ZXd)mBe-S{8>PDbY1FkBYzoWx)4S=r<#5muU^2y8%L@eucboH8%LRv37_ zw@^Fk6Fa$3C>u!%$w=Moi1lLu@SQ0ooRABA22Q~t&I<^OWx zn=42HDQ9;XDD9^Zm4`lkCOP7EUF`F?+ldU)3xkZR;ug>S*o;Z$`k78rwNiv?d ze1c>Y6}KvR(vcqID`1guJAupaoxT0an?vN#=#&o!H){CrCIk&3{M_&Bwus9P<~h0I ziR+gGekZ=MpJnp9R)j;a#E9}alC%23xROq5bKPAdznTvE6{j}nuEs{fa{~R%#Wa6G zpkf93nACeUD|YWaE(eLCYAsEDrRuc^J~_=O0UkRoLifdcC$*%Vb$to~1At2UKOs%G z1j_nN-sYbj8*2_4SO^H+LPe7bqO+^GbZ;7I%Ejp%4nZDk;gM{jKh1VB7&E-K-SAkK zP0d=9rw}q45|Y$md1wV|!06=`UCQ)HF%P%~=H_JuB7%l8D^Qp_pRtm&(Y1>+jyezR zSHm&oI@Fac2vkg=m^xxjMY};Mw)lUO=cZ3Di|mg3__gfT=n0<@$7ewr%9)~{Z47yF zhF)VF;|b;Ez5qsbNW=NUnPV1_YH!=)WDEvbiO&~ zR_=`nX8q^W&<_A*Q|3$3{XNF%FYkluTyPo!u6J(ePR3zO}-7=NA+!f!i8DSfAQ zKe9xG85oE6N8z@&sh9iB-X~+O1g>JZQG&{0NS?D*xGZyd7}V5uR((4CAeF{q?2-9| zp?Hhza8j@nm(9AH#~7pYN@j|i&VH|Xpgp%MO5euom(*Jhb{}qync|k9v!*x{uPO?<7dx;76oZn#x+vLJ#uz1 zQHk)%*13j#_d`L?%SQ;>+Q2*8wL8*2p98m&j!uYpoH?U`%dFN z)^7)Co)P?D1Dg$gr^Nc%6YuWk#np{<*`F zw$dSEFUB~pm*xU$uE{yGpOP&BFPUXMC^ikxu5B*`u(TH~w;+iII?!t+DP`lf*@Cdo zQ{>B80BCIP8o_eqGYge7fk* zy`JQC{SealIhT7oW7jf|aeIH3+wA%Q?VL9wgZHC>>4Z>15S)q#YBI$LHH%%-j& zOlX|tLZ50pBoK+y*J~&~@77yHkcX{+aQlx&ehScR`Ju}J?ckKKrm~49CY$K9g?1Gi z8YV#;LueKm=2E+Ao)I!uyf&p^fawFzQzspZf&z>_iwD9K6orMsRKb=)9S|u}?S^>U zC>*g16@;7v?JGHzk^Ue;#Fb2r1c5Rvuy8H@SL{UyD+Zc4!jMOPaG}0lgz_NzY@S$E z2lGY1=@1q8Xi~)+8nL(HpL&u5Y?VvH@0T=iMum923`pA5?C0&kSShq(j3mNb38L*- znstn?@(q@^T|!Z-tpzkjmfaB72c*sd_!YM^1al?&Z-0YR>)Q0{=u}7OHpjv^q%$#^ z^RO=gZLG6ogx&H=B(6v#_sPkl=+?26hBwwh#l_6(74mVcyl4BSlK=N|Jx)GQ2djF7 z#c(MaoQU|u@}|Qf_^qE zxNq&_qCMJ7_r;+jZ2`GK%-F7uA1smz#P6e|+6e zLlD{DKkaOL2oz-N4ttERlvw@F>%E?#056j|!Q!^x*>ye;VzwTMxyoP_-9W?~1FFx7 z>tkMcOn?O0xL_s6%WT6r6DWfEzpKKX{2SfNJS!n>oKo2jxU~zoc4zkK<}1vg=U$4Bi>q}G0~2*)q>bVE=MnnBC~cpybtmJtaM>g*67(# zkthyF{rlR>4iOltuY$Jlt2QPV9Snn*XG+A~l7KX|WN(5k#f{MY;HAdyK5g9B-W2Yx z>(ryMvdJ(Z4CR08CX`qEs%5biYBY*MVV-#3G4%=4P~M+qL#nw!DNr;s zWA}yJr|?7pd70@Sj_|Jn4&yWTO&hG5PpvzN`rdYvx~l)m!ySh2#habGbZc-gWa#BS-5LZM)ja*#hV$H0&4=Uj$&BM9Ahw*qSl=o{&KqXSl+f)8u&hKC7 zGap}7wDk7~ePY&*{|ZQSJ?2QC3$KF`x&5t{D=Q2x!>E_tKI$rO{srd%Riti@ zEEON?z;QTC(M|SWl@Pnv@u*GVJe+K0b~%D6KENP%PYFJXn20DWpnuu@CI$}u3A~Q zQ!~u^%CB8CK!icvKfONj*uyXGlSKP!L%Wwg;r*i?*Y}%WE*U>byar#`DEGK!L@+w9 z*9pr76LpPgoK!>}xh~@Ut&3f?Q?IRs6GfqO=%^wf8j@Rr?{z4JX$^()Q0U_=zXuw7 zO$Rc%Rhg(>?F!C~V?LWQAa^~cYn{t=Q}cG)GS&h?vQ=A53bwAcMmu&v2Ju4}l690p z*}UMv8c)=AQe8Sm;CKxS5j7VJK}>huM2u5#lMi7hYz`2xIl^ozN1NAdl>SP;#xcsNzA)uab})!y#_b`bhYbt1-Um z>O*LLLq`@VU86)*GAqQQJL9F$ zcv0Ct#d#q2fxsJ4JX=su->QE7J(d;>%$698SZe6L)Q#P~lsdgGA6Kz{DHS&btvV;% zl8U|8G_rG&-2TavtGm_KU{VH8AIKtDH7^It7sNo9;M4+*mTGar%;Rvp94df=03)Iz z@@+p;+uS%eZ>05}={TW}mxqOOI-2LmLJ;i7`|>Mx0DLe(YxNICN(YjvPhs%f1hnr}GfW;I{`-D*B&LBi>GvvgA*S2S?D78=PT3~VD zT04M<$I9}Ggq81KCXv3s%F(2p@frnY$dE1BAB0h{2Uk~Yhb@xHgcA$3{@*}dZwrt# z<-TqA<=UXJP-gRS) zd06KMjVOZGss@Q56yfjCKD0{Co$9{tuEOsq!aN;RHc8jYfa*o2IuRQvGBO#|x$`hZ z<%pQXbudyj(4@7>>-RtHGLLrAy?@^dejp?ebMCs>oOvK+I64(NlOyye`45;46KSKt z5uj2MbGm8iQS*3);j)M4VB@GN))a+c-GS_+$j*)GX|u;Fu%JBO7TAVwpF&;jK*KRv zjG>x+4moMJU}0O@`~8@umHPNCkZ~T3Ux;e=zU$ttF3nC9EKW$97|hoM;}A-;#f_Sj zoTnjOx%ljpd_z$6MnJerZ9&7TndmgAY7bqu5vqsxXbtz!UU{C@rUq=F zTIyU??vab$k5`1ApSHxAnR;#WWYRJqz;!1GU6Cn_YBK*-6*h9pIiHx4n84Gw zec}zs+L5*~HajLHVM)rxxRLzH6zb-CpfP%g*^+h6ngei1-+its&K@!xD%50Ftlk}s zAhMA7aIXl~?y0ayy+{GOH&Dp`plXR`oJ|usi;C}fYfldiCo)*X)ZujF1_aayZKKWZ zszPB1tG=fe&w0qGk3GQgx?XcnQiwI|rGmJyFaVXOPsU6^JQKA)?OHV|c}zhF{VeMO zMWMi_XV*0f1Mx3-0l^$HkSR&V523M6{;$RO`XH}Jbn475%KP0BAW_;*_)|?+a=4_5 z21=iv@BLn0v|pE#%mAuE^IwCdJ3lOo5}<~Rzw*v<+Fk85gKADP1Afv9abR$qH8XCo z@hd3kx)0r^jTS~K+7l!_cr|IZPKY|~wYx;cNw)zRuOmA&8~?MS)b~Tn`g)<18vh?7 zdNrdkSo+n`Q``>=DBU(m%FDGUE6}kSmZV07!LaPhMgdwe$lMqfuy<}l z2IV@_5o?pJCVNs)hxXu9?X=#llYyelYO-m7 zDiy_)jVL@b_4&$x1)|@_sVK4x&nQ}1GSAglKxE$woydb=pW7c9z^!w(GMeLda^_hS zFWwp}uJ7RSjI$-gn2I(?&=;^knXof06@S-!d5E z`?~rbz<6EZMZ;!599YnMrHMlzzuTaFJn)nCOdC6BIvHJ+XEgqqyhOF-hZ-B(C8DL2 zkj$4>wpuP$uXE~uU94W$lh#^y*$I^|)=ScApA!IUn#?Y_FMu z2hnpsh}v-y)5#1&rm97UW|c5~x$l&*j0b)dn6M&lEIrwE@4tT`3rFs}C`dM*FhN#MvZ~*PU@SqBAHG%cWoO%HQwcGd|>M z#8ts!r;`E!46qAVJiPnpoJH^T!-Z{D#nZyTRZ|~zalfbJI>-r3eXw2Y`gbPe|e2|FSkb>jW zym6}7kCz5=Ja3DPH>|sBP$h!Qm>79-yx)+MZ*8pqD^6VzpgXA+nq7*XpU@|*;^+T<#Mp_GstdkThxNy&g z>Q?#kBEigH#rDWRYqU{^yfgjOlUy8UgK2$wMD%-ZbB8<2S#r`7uTSmxa!?<}JM@FC zMo11rM441He{G|P=xrtvLS8UnfVJY7-&89!p^Co0XodKBp%v`w2ubukB@20Y{ztzB5UU(falZll}KsP-x@xr{93O%@}AhNa)wi4=?vELzSp zO<}Ja*a|~c}AaO0Q%JOsA zjiDj~uMi6)J5N9Cp124NBfAh&9x9Q#cVi9OJzZ?ukp2EaFl;_WPx3EM7f6G{oa>sS zXImse5=irY2y0;oh)=*>wUGbJonYVQfA0 zV_@fGfr>qG3>bB~RK#DI_y%^X!RQAek!0X0?}CMa{^YEJtW)(drAX3BJ(?2z$*~?k zi~3ptj=kf<`9ate1&~8FG)%ggQ`sx|^EX%KQXBszq0l2m;%$>zV2rCj9LyMB$=sv; zF@XUVesvljC9wSQq(PQcSfv|1o>H!Q&GtOP8?Dk3O_LF8VKwBigh_G5j|2Nw)-aet( z%Hu#Cmo+3|A9vm`%9SN^rZX79`1jU+D>v)=jV{3DT}-Ouiq`uH6OysUX8aCAerdF{ zfN6l;*FJe*g4ta>-U(B__b9;#V?O|vmUEJqRfXe$gonz{<32ZP%=pXe==3-g?DIb?PaJ~qVKUYX+gNEWi9EjSLzWek8C-~ zoJSgF>z7P_u`hZ5_;(2|9P)?_Ahzz&5;i!(lHq93>c+RQNVhASV2ZLvmn9KBU9aFT zF$MSJV+LT)2I5iRs!inZ^r%+^v^Lm0&X^6)WxuPeKZ(@s;sXU#Q!z?hudKw>XbR?f z8W;{&$QqkUVR9g9oJ<-L^=o+NR|}ZwNA3wodF66!BJ`G^Aw`W>W9h$Qv~*wwO%?p= zhwiKe2hgvH&a&!y^-1i%+!IC%0D?PNSx08l4$qyEqwIH!rs`kMG-Zq+|?A!T>8UkTN%2BH`KVaB9yq5LI3ZJvwLkwS_*?lidhs z;0deLUDp6Q@LCauIo>z$TFy5aO<=F(XT&K`8N1u@jA0w}Y00nHss7^z|MHdzONC2- zimR429V!-CJ*}g_9MNd~zZ|DPm!Ef@%Jtb4aO)21M~}CTqkBE?mhV9Vx;Q>9^h%Lo$j_w!>(i^N-bLA&nLrR^iV|;TiFEm_oysjxOll^- zrld++0@Hn9jvTfU&+)R@b!}(Ei_JMh^N>%IubT)|pQ}DY`D@*Y!uksJ3l2q-qpYxZM;{)U6BG$oiYe15_gQi&mzrd^{KU|iHJ=QO zN{XLrk{fkp@{J^J2t-}ZdrJ~(J2k3Vf`Kw}{yBp)LdeW9#iK@yVUhI+X!J1Ic4nv) z?=<+1*7UCyXl(j+LIM!jDRVz)cFFvPA}k3(bdS;q_phPcj4_K1fGYQ_vz`Rw3*KW* zJdE1l_#M%l@0kt-jlv0wS*k0o!+J`fv#bJHd=xpyOL`x4@O|#}>NEmbRVKmg^CWj6 zp*}WWkK~2chl;I@AZ7t478E}i-A_fQ9#19wMJk!hZJUd?fp6~47la+|WIw_-LtiD( zzv4Hp+xXegWQ_ze0jin``K`;LIDFOb)Dg`pJMzkI9A(LaSLHd~lhCW0okeP$ zUfEU_8E;w_zM>`GFRhe5mXu2eyw9r>2pM=W6St^f|MV57WrD{XZCW`wr2U26x*?9j zGZl(i8wE2EX~E+IkmO^;S2O7w1XY|*sPyH=7wQQK2Sg^t0m2y+p8ahL=upS;c|&hwNH2%p5tnu~HGCF{{sXm9Xbq7F+e*@ETzLcj&A#-bEV(39JX#)_|r&<54P`OGydcM)%eLo|U0u*@h4-i5+LyX)ScB0=}0*&a^P>xZ;+FF6S{E+R+ zuk#Nl0LwH$5%ADQRKu~(2todPwh3F5atefV{$OfP`dm{r0z>Y7Y3!m_$gZ5jZQ631 zvAXJ+x|o!E00j7Sk+O+jw{OjAOb-(F9bFoOQOA+rI)&VGLJXp`2Cf{ai&#mnf7S6`e3yHM z3zFrL(A_$y;Lhn+Nw28?>xTCm2_-Xh%@Cab+YV5SNOv!t(&`hd`2S~kp2cE{#D(xS zdmE6Wv%k@a|1%2Th?!53$dz;n!~8)K|C}jy0SoJ#$dei4-1EL|$1iou?w6HXrY><5 zTDJh1EGS>(VGT5jJnf6#TN&Kupc?1LpEH1qTP7@1gY|Ny+;>y03YSadQzbWu)NLTt zvkxK%Mrq8}PwyV!lQYT-F_sV_?pm<+^SjV+u})KhY=R)?0|&{K_|z!73IWc05f}q& zL%}Ln+WkvCHyaG<4i@)KjJ>O3{1bE_ z$uEZxQ}3fxA&}nRB$y>iLiD73DJu12I&?>;5T44fTmsF;P3e#*%Sp8`!|)N(PD-q( zs(6b=n_Zx4J;E!<@_4HS8aZ2S?#0yEmty+kJW&SAw!3y94{90A0D&UfNYCXfAvc+~ z)U;7saomtJTu5+lxCHr>z{XvM)n@LBdM5(^>Zt9+`ZtU{w$@&xKFAd8-vI+J#Cm5C z{K}eanSA~+SXs1S<3w#>^Njqayre&C>T!G0GH{HF-v^qWO*?q4(uObcE1Cjt%KwHB z*uIAOq6)v5d&EUHv>m}vBYJ(&{Cj5Ph08>jLi1@GbnVN8*B6ho(@7iBWNyXONg?fO;vl*d(l5;%($8#5uG!j}7dW%^5-a_g1IYWkRfq@Apaw)0%c2gd3g7BU z#k!}E4`+fSzsI23c z7m8d@c?QRSl&+*1n2|h!)sN#0Vjl*9v@s)spZ&%qPgykWi>zoP%XwI8?}je$$aeUo zPR&FhqANS&G-HPe=s1 zW&$2Mg75@0BU`v~;X5TenaXrU}H_mQtHv33fJg{DPLH-99Sh%zTCxg%!3B6wX{ zMCHTS-X((j_$v|gyA}xjFkLb5miWRoHe4A<5bDtjJ|auoa|6*}2@qLsGlGn2|?Q#bw#TW@onZ`ACB zDdbVxA`z1(+t7JHNY>4PVjE}srvNq$4+pp!8;eWTv`5Ah})7>fAx7HzxZ zvkoC0;)`NozT5l10Y4s4jD{L^NfC*KU8_xNsamcKDR+?evaKmWugAyc;mw473`0a1 z*HDHH^!nLX<1h&Hb|RpB(P5Kneve!_CP--98cM1d>v1bOzph#4|2eh(STiugfIHdR zIeQ?=8QUqAp6Fv+oWzlf-W6v|5hk`00JaFC$fTfXL1NTI&VTose;|2c)Ggdntm(ZQDkSr0cw>qLhPlDJ zf(dPCd(sbv7ir$WGlalv0vT1P4#GgCL!jVpQPy#Hgq2r)$TP9E6_ZckmQuKur%Mo$ z7c$3_u(7k31?mh!4sojCjWiW1Y6zUNXt@wvQR@*)fD9RqivnX93iR>sMw&8@+`5CE1VD;a?tQ(>E1j%$ zecolv_2rE{K=r^?G;ZJK0)ZirS^H$nyi z(@@I5CK=`34CD^Fk!lj}KjM+TsNT^}381*Twt+xGwM}IOg$e0uA)tyUxxz0o$wk1# zRCYEu5vrcSC}y>$H9h4Y*wgaRo6nH}dL*fy5s5_WQeCZN(j&*(U{YPgGLDrOC>k4H z0E|%FdId-pkeH;$7M zNk-S>1HT^%TaH+wXnFumFs3Id+b)}bG&gR4C`T0Q%fAfwU@yN4c9egVxhn&!&pK(I zn=PDpi)bl1t{wI9Y9C^&A&{xcL%OIM0^3gVqh70D3d_4;$9YZd1v~pRi2WHz>_{Jn z!USwIA| z=<&R}-F1stw`P6+Qu&yFtnt{sGS0FLG|dH*Tv#zp{XVgQ+HqKqL|MctELEYy=v44l6t z=(w7_#uhg4pVrK2pfvbsaJ8v0v-^9~LxT^@Le34D%H>*SBs!7p|1~C{5&Pwe(e(GQ57dg4NlczEHeLdokCgil5H6@JB)lm)#kp}{_&y|kz;*kjKx1W z`s=8sV!E8SH<57r%<1N@O?{S>+RwWj8iBufs-Z&s_S!bw+)IW{XJKO^3pPOwEM)Wk zE~~a;1K|{Z251EN_$h1Im~{O?FKu6aWB*2&@OIoT_k~{4HGvphfL|QvL*h)yt7jA? zMJ^x}kdWEtPx=&S9AagY$OnjX(WxOr@|AMM;7{Ltl9lmyR_7zE+#panv1)Ztx5!wP zVxL<)t^h+s!K2&>JIAr~2c|;%t2$I%GZfOsgjbYi&3%L3a9OE_CC{ii4S$M*(fTy1 z(_D>pKd4-lzDm*uvT;qcn)^_xG;A;_UBh*D5P(AOe_dDlOt+5r@8M{J3vq`X*ee$cA!&m-VjWsWHhrp_N(lp z+yn|GYFTxfFrPr&m-COkE~rGAFh93hO$c;k-aeoyjsL!KPtLDz=?qfn2*I$Yui&?e zRhUdpr7A@H)et1_bY4ZE+Id&*la2oR;XT4FQ-+KRH;@tsuE zONlja*crTGA?t}B`QULVFOiAQ^n|PVaebppx{N%iMt>sFcYNIwy?7`QZKB1aooDqspPCpiYLK8{cUbzYc=HE`zDM5h_B&4??&>i<>h7azg zmMHBFLRJ(j+T{&;^{PGyrgzbyRtpLIOjkTuX^n>HoSb_IZy2jzl^P^DD&nkGH+BolVaxM&-c2IyJb;8B1k>F zuK_}K5I-qH2tu$BoJYN9tS&tMp91DRL& z?$@)k^A?-W%h8X(r8;FY;1#f4{25sE_`hDSv=0lcEg*zqL1kC2`QbvlCGFG9g4rB| zt?;ubu-Ri8&MiLx=B^bHG=Ze7224{43_JHtPEp*ZRo(8CiqONvP|@1Mo^R*DYSeAe zIe?-w^x*gP&=~0sUQlXCiVR=70j5x&$b#4UJ~rkk_C-M@m>4!avDK3UZHDF3NbOA| z1owM+7?Hnb=m9{p1$VYSm5fuq?4ew_tM2Rwp|72aTrrdYyjIb*0-E%9Pq88K2_kKB zzKCP@!s(L8PS*nt1iJ5@Rf)we2MxCNxOPs|%HT~v_HM#YEmZC%9aWfWhkwPwhrIkp zUWj&wNpam|K`?`+9%=$vI1a#Y`CXgX0uAXAf{`biFIouBN36`iG`Bm|BF7D|kfs`L};h~0Cbr$HRa6AnCW^|z2K08~Smg-W1r^&cyWRA2yZ zzLV|tHY#4gr<5Gi3#2P|lWUv9x6LfWRfr(Z4UM&}isz!XC;y}9&x8vOFzq!4FY1Uq znw-#Z^El!<8nkQ>ReqxAyHqa$uMw*)gS5Q^piN}8O$teyqr)4IGj?`$l;C25;yYl= zA*@^sFv92aruyEe7~la4gX5wbn{m5PvD%lfw6`_lGYM(&aAmxaPfYhrIYgclBwb=F zY`;gH(2cybl8wOmza@jG*dTfRQ(0^jo_nw8MtbR+qc$8KzpvOaMl9QRakYu%z}gI~ zSa8cMcgI=szfJJgG1zYb+7=($G#Tv#e;Qe7( zEDGUNKPLnz+qPC=eJPJSAMVb5 z@q6#-_I8Niq&;WPM!k0^*^1#ZoJWY8I=4G9XX7JAb>kUB%36(CZc~q?)Q`7qn%0NN z@)1Wllmy<=>B+DXcyiz)7O}_n)p{lkfoA&Gve~|QPx^9<6u_?nw^lZN zvWiRTB4~L- zuc~RvHs{{tb=gm;PF8gYfA7KBk!EJ9r8Hq=R~d?m=U~zSIE4EOm0wLK1_uv^<97n9 zM$+^UYbcL?KOIo67*o06g1*zd7mcmyuBE%#*)g|r=5XA;;15;hs5Gkj zI18D;vcbV;iUu<5O0W1X*>m*BVg?)zV8ro7sOGL%jVc(DLQhXzB2l|lmnYe%A>v^@ z6Cu3rd-Vs_h0D$0``hzAqC=XIl$4(@bFLk3L(`USmFkD=2gdAjKX-yc62*_h>G728 zr`k!;hAV{G@Kev-jZFpAbZ1lpI>uZ+4;S}4PNScbuCvybt#rk}Wfk7cSUcmSKo=vo z8LmI&o!(XYIOqitJwh6TikD@7h4m()i-u8PfK}Hvw7_0WAKy zKvuQoqD0MK4!e>n?5RFgRV>h0C{k^07!w;QLAhV}*_@Q<;ypr&{#UbFsQ;Iw^5(lY zDPQrJQX3@xFPj2tNa8C_o}X~+c37-06&4*RQ;N0^#Pn%W{3x%pJA~s=U#M1iv#eV( zs9;X@ar)^7{(e)wxcb#Z7);R@KhIrZ;MAG+j$u~qEuOjL2T&bcUh0d;tK9KiUZ||_ z8^6dBu|g3YBbG5VaXDE8+OQ zE@?-NW>zGggL-?Kh0Yq3GD58O;IT6WKf|`j7;{zU=5AcF%9WMsAXiUhE5b_3BH5N^ zR4)ljOUk#5O=mQW_Fs@IS85UB+q?2zLClbqpt!5{d^jpJ`}{ zT{!dIuBM+BEsW;5Abj`yCqf!I+K1 zoT*0P;xT1XDnkP~)j6j3GM3iJ^MC|~7^@YICS$;0AiNVkG?FH5v_0#isd;erdb^#e>_JKeYX@&&D@ zGJA3*9`qRZ*cBwPf6}LtV%Iku#?Cc-6lU9+Nn{FvqwCorYhI;pN@cNXokgtP6N~N; zn?aV!DgnI2VD?CByLaY6%&SL{_S#Dj z=xBhQ^b|^7A-JsE0f%-hrNDwFc)@yMI%>O?cuy$cSl0GP0*o?59AbK5(;-n*0xD>J zGIW_UF*MZufdFi3kwJvzD!ld$k;IpgX#`#ILxC5zVU4v^!4}43pp1VH#hDy5Fk~*m zt-j}cGm*qYg7Rzwa@Be%b-w*TxlK>(cJ^A2oX8dghHtc}FS;A%j>|J}_X z#PyS~oz8$GU5sMm>*vVomd$Wy>LYcLNb zVpliOfF!Y_@e3#1{#SspqvRbx%ZOBSBo6gh8oC`&kvtFVtmTAVX=eZ+tx9=Tj|RB`EJWuU1F~YsS=_th>{(tdbhS z{JV9MXCAa0z}B`evM}xY{N+l2Mf~SeW*GmB9iy1D9)gSZvyC@&)}uaa7~JP4{O^12 z&V8_*^q}TBoFS~^n=J;q4uEI~kD$7cwxe*ynjN(1!5)7$xkbB9ASfk3y?3lIkOovBjZv-(Dg$xX$u&%hvUwy*&OjuQlX)$s`czc>>|#ad;>P|zp4y_-ASe($ zn5 zy#lv;*m5L4mjF@RF*rZ@@+b9zrd41&XB6on-(^|`Txc@%AxZN==(!Hd5)7`8!5IZH zm`L{g3>P?A6&5im`}F-7+=8u{+N|l>Pjv%B0jxC4IdKIc5XcTNM=7$ph}QF@UTt%u z%T0m8Nq$DJcj#?L{B?_Io*Fdbu%~XGDpAqBwsYCx&h^#V;W0<`>O&_Cb+a0;JNNKd zNG0bw&Tf;_lr%OgCEaJd6QDbp-jJ;z-j9^*1rh{2rtKA4KkTNrIh>JyrgCgEKJjdx z>ad*S((Da8p$$vj`|TF0C!SW9%E=(U!$4NcTbGjwh)1fmnde4PYD@aeTo`lDADm6xCY(AF18_Jd0&B1W(Wa8hM&Kd zy*R=!_40rKC^?xyNbwO)yTs)#gxThtF<+qTw@HB&QTxwQVs&5|?~6T*pFU$xJ{jdQ z?2A!xXM?V24iU!WW;^Y4pj^iXq%1;Nf)pDa`HF8?mJMF6GD^ZkcY2E`1Z_J$N^^Ku zGZ1eqc=jI4vi%_Zom#I9Iws>;LN;P4lYC60ncuEB38<+YZEZbE=B1hSL;d602|$^i z?G=R%6az4wgp-_HUS;JB?fyvGSWd$dIxIuGrgxj(Ou%b}MD*ff3JcVWS=o>3`zBL9 zfQU*3wrr4nJ$U*Lfq#|VLzzNxa|L@g!4R%zDesV}qnV4T?31#D6ZqN!h;h$qm*eKt z5l0pX=~$4Nm+yhKPn$dCgYdUbr-|WnLl5&153A9vGl_BV{(H7+@daP)47zbpA~Af34Ke zchm=|mml|+;-+~?ATjzZfJkOc3ZGNA1V%{4J)RJkMv_RSHzYgH+@o;*)G_-xngs>- zbB1%7`Ir?J%MxB(0`%01t*Fn9*#QukpUy<+QtpO89TIkg3qUiz+W)8$JZsXO^PZFw z^HJGW3Mtc=Z8z-FU~3GsDE_Mq{B%mU``40jp~kqel~4itpK8+~2|)l7R>WHppEV9; z^x~$-XtI#9r^N2Z~x_H|khOkq6044{y zg>KYpjT!*q-~?x;0jK0D-}sL^nZAH>7z9-5Qcnd{fly&j0h0<0>gj^zj@&!w=2)Hu zUQ;1zD}pvD)kT>eR~JVD(#|I~-BuncqKc1taz#u;ZAo`5R`kdp&x#q_giY2{qy%NG zFO^xDxs|4{iy7q5;gR4|D=Ze~_ySG@L{e*NzE>C3;Ov89*Gl*1B2|XHhYC&buX?#h zHE$C2J01dixrjmVXK-<-wmo=PkUVf;)KLtD4i~Wl!B@ZvhIIK5FMFyz56ZgYI=IUX zB>W1pospAF#`pC@f-Cy{cj;2x&as@nN!7CUkAQPIK+Veng}WCcrXtl_DdOAS;xRyzW>ZCAnyv$+9!IQHaOSolzgVU zD6ij;h`W(HBJXqqz{!{IRMl=gurTwIj>nwY;&&c)1towC#D`h%c7tQ29sa?-Qtc>Q z!yPW*e*Sf0QW;H7ou))#D#?yLC7~k!o(o54kAvDzHx3@bijsi@mW=8m@-K%XHBxe{;Uz_Vn<~OdkC918RU+xc!Cpm zMAPO@=%dTf<>I`^Cpi$CB(%o%wzN!qJ)~(T^9^OGNwtW>LLv5VCLQ2ksWYR4Z)9mv zciXBM6*|rLH7^sscfQ3qL9EfOoS&jZCw6HjIE+XVGB57M5dwji8pD*F_j5%JiIeIe zR&)$K1lQeg;ouX9ux4m%@WMe?;Dq|)(fM3R3EIwk`d{bym6ty0BV^hfGXrPiB8ww5 z{7 zH|4oK6WI(o>oV*XYcqW|>P$T?HCN>=t<$FPE~7?K?_}-F>b5;u7n4acIfxWM0@W&n z-F2HlGoEL7mNY5oFk1cDooltDz0sc-BXzd?gpxRjP7M`?8dwg7+Zj^ax{=WU zRF2Hoa5p;`&QQ6!iUnL~7X}zFjK~iz^8g(N>9p>LweSC zrUNdiP0{vW+%6sfYQ?89N=2az-3_}ayI2D12AU_+L5(?%pSAiy7;h({zJ7enkf8H9 zVJ~caXP9AuivO~qMHrZE*_hna=dnEI5zHbr*4qIFXM$Y5jGmRuAf}-&OtBl;nl@r> zF(OyValp7Uc-^kheGUugww{x{uMhUa!CzVEs(F!KRG*=|Ou+)$iSDV%I3vxOlaBsz zoEo0{cb0l7Fp>KT>Up`W;F(nFO-cv1u=)l(h1CKk==b#Ou<&HLz)5q;l|_2QWv<7? z>@`!D$(6VzHu%|lNZDxX9xmbQI4aD?7GTnV?}$6zl0qnLsWF$nUz;#XEfljd(N%I? zk6|3xUQ7Ra217!rt3*#*Dx z^YevGz}nmk*jJyYXl$K$WwJ8dRcbtFO78wKa=5XDVliQUb@XIji=ZZeL_+u~GnUS2 zfu0@#&&WKtHf)4T^9C-jEB(}l#dn`t*&x4iZrbZ!*5yxxpP`)!*Djj%=2l-!*snh- zKFbHdj4=7<5INk@3(}AEG`6!D+cc9_7ACFIZj2W@vaO18k9PV<6XA;FO;@kP8*WO@ zVMpz+R!}cp3bTF+1G32EccPomTY-rF*7)uP6XdK;5r(;3IJLnoO$%eBreDhD#pi-v zvj3uFd)5E-m?d=(`}b(=uQM=BtVF_e=YD<}SPzuFFX;f3*%Mu*Dao1}FbO(F8cuM+&f4piotIin5#kUnH-f`4 zEd44_4z6Nao9ep(hu|#BIE4Ys%}*!$CpaIaxJ0Q1gbU=s)Bz*IOoYtj>HbLxHwSICg;Ev+p z+l371r9TdGi7THYf`aY%wTlB{<6e>3r7)dv7=F4yLDZmPH21<*J7Yg!DLQAT_8rP$O^bt~h4ja>9KpK4o2*^6i)bM^gsp= z8Z6GL;YXb{09j%bDhu8rU)659N?k!F6`m6Q!3WGmuC-SigVRGvY9>-~>~M8Evg;j{ z|I7`(DL%!TUT`p*DCeZpgBfo|^i9rc8}5dJwv_+H6q%3%(dEIYOZ*Q%<8ZF+K~%Wp z8wL|y;o10>jb!pCcR3`ZR@Cvz{}E+zHmHHiq)+W?CSbj}@|Dst8d1X3+TA@XxHWaI z7fAbFJJDb$Yr;^IUVZmQlC8z)A+2XhY?Uu83+lVnN*P5!(U_5)oj^fz8@;$2x!BiB zv!iw{e{v^k0RR+Rm}frY9Yq^f+X|cei$aW9eM_a*Zhv;@H1=+bsFok}N9PnQz6E$HwPoYr1EraApMf@N>cUYn+{lk=4L`dH!#ww8g~ zeU(oJ3u7gKNHXl2#Rf`Wjw)X=XNsJ@ura9TuN9YAlbS>aCjTnCh~zCfeKO3ShI#S? zh%zN~w!Vt>?$@uv*Qj>1yEgn%2k8u_do^T9YKbz9gv~@1G6145Wr3ST1#xPgU7pPO z^hazq9nm-HRtHV_WR-Fty?V$G+jK=i3Y^r*upeo|*V_$=<`V+d z+ZAaL^m5kn+dvshhv={vj&W z&#~B!?bxEORWVcLQN=hhi*9mqwvHzMseW|hMTBl1Wl`xO5Wo~z8tT%3FOj|8!$T>GM8tiZ;n!?HF}l?jb<74wN%# zSS>^1XD*tR-i~`zI#S!J6LaDCv)6! zLSYMw{**3lY9>^nNRcZ4bbAG~HI!eue6Tf9szIZu4nhZx4yt4*Ug13;6GCB|Kdps` zO(rk}ZKvK79NZo{5EsvG&2&bIKPT%fl#U9yz%VPh};+ z48Mg;e`s~*xWSGSb`g|mlJ4j(TeNP{kWOTSus=NewY?hv|Kq7p`;GZNBR9tYPMY4p zicK)NF)V4q?N+vqyHtPEJi~=0|OVolN5foODrG8}8LOiurbX z;CEzO&&0&lh^{u~1OQGd<$mng!MsYJ8WI-6PMrh0!o+gKd`gyvgX)+NZO#WA53&Hm zXwS`q?FJ`{xfI*K?OK(P4uC3xwOxsGsBL9m{9KL+f&xSC`7Ih;xkGAw2IpNS-8=)O zS$vyn?X12-E6?6Xmp!~mYo!<|WCnGI+c%%UtI`|~C-c!E5mYkSPq)IdxOQ4ry0oL< z5kJz=l9zD@%lpPbd@@$YFrctH-S+95+N>YvV0^$ZQ=8ZFS^u7kimi7++4*ug<*^rd zlN66fnoun4WFj;V%n6HTGM5MU6YwyvggK|@wQK23#;Sh2Y_xhMvyvD!tt8l`_m))!B z+b8jgL8-RQ#sO@wPy4uXecf)@y^g$or%Y_tyMuF0nFgOECPB9fl;P0&`o679{fLA| z^8q>2;FDl#!gAeQj3Y_>h9{w8sok9D<%=;T7;hw&wWxaas!EE_n%rV)b2^?B!OJTp z)Yy@NVCk8U5LEuC*!>ZoQBPzH9pmW~nGkF>_E!pf7m9z3J|B{-l!g@9eI*?~F+ON70&7$lhd_2>#!eHubwn`OYKUAe6B`5U4`p zcN}T)L#yQzOw(5Ip`ACwoaiBM2w_f`wUvTr5U_Mppc$46Jq|a$2X>!Z70OjX?!}EJ z`o411Lv_@t1t2ai&6a|NaRrEsZt`p9Um3a=K-V^gd$3JO7YuX57M%Z60HvFy$=CUF zDHE~;*EZI~gLU~+ov>>IVJfKl#4%yL>nddY#74(PL*>i*0zdLvRInH8q9=Ug}%Mfy}S+qKG@Wc>mb7+&lJ zOi$QJIL57`4C5x=RNtj1S!XDp4r-d_x`&xl$x-L`4!DS~e45+DZ+|;dg~Qu3wx1da zX!lyZUyLv24OG1)lg2PpO*(@7g7BsWA(>a#R5bv$PT z`x5v-R-Vvw%{Fzg`>e!P>g7vSvb(lcx?oAK`#~c&KhA#i9~URMZQ#RMdG~AnxBr3u z;mB^t;y?7Q$}&?*mwo^HK|U2(kpLx9{3CP!uM7NGU+@i*n?2mH!>BE9uz&Gg{-Ezc zZjJp0@)wEjk>HXYz=3T0&)VcudaqZm%6LI!wNP7pY)UAIxUS`D%7^erM;lBFl6pV@ zW9NV(1fl(UGrw9l14#k}M@ZlZpPb<>3nLm;G%ps-nD(dm6}*rchcL40hyczo{-9Ar z=AK@lzeG@r%P1ZPPZ}0s;AR49CZNV@a8YUv_Q$ZNE<(s0X}0S0A?T7GZ_=4m^`F(( z^hiuT-;bL8AKAs{Rl)3c zAxO7)rA`fqvZDW6q*D#!uzJ9&Nr0$us8d9fO^klp%S!@}Fn+X0v&h8bLD*30(S0m{ zU(u^A#|mCW%v$5x+2JXf19__%=z{nvVHdD}(ASS@&~6sueH(t!_Z<^}(J@)cxDQ^Q z3P~4h|3V&50s&BclANKS&Rk@5jI64M8BrXtw-I`H_AZ#GEvePysG2A$w94-xk(1uw zY3c7DFI{+nw#%d6y$7yiM1EHg?`TUVD02>v8jWz|R+9Trq672)_zbB0qX(DZ-Y61L zW@D2GC@BJ>sfJ#Fxqyd7t3^tU+un(-G(GSxkNa0VfUQOEdvItW6z_E$P=``ZAA#9}$#U)+S0QfaI9Y zSFR_u8VE}kN79R?!-W|u?I=(cxX)c@WgLCn?=PxSjl<5fYR*+PNKO|ra_5xnrR1JD%r;)-wfmySib%A6(eC^dJO1Tgh5zw{?a7M${@1`0vusZRBG7iM2>teA?JPhvZp0o-g)#o+HtyMqXK&o*c24KR0J=QvweF@f) z-@y8mZGKi8%D-VhaH8dLxaM~TOap-bHB z1h0vEre}0zJ6G9+nRMlK)B6$Yx+~G7#iyBuYRl}(DEB!@{BER^Okg*Qs8#6_sBl}M zzC+E%UPEZC5n@S>x^w+;Yv<${Aj}DtB0r;1X*SGJphI4X@@(#-Z3>Dt z*^bk3#;nC`2kjSDF2;w!ThN>&C)ADVMN*aJ+YvD-Bha`_3O8D$d*dT0W4(nd9+x`vr+-ox29adDaC8J z(1QqL)BogTaQ$pN{94Z(I8k9%bJ>4lb?2+@3!1pBFqv8-_{{vrN`T?K&wU$@ zgh*}FIStt(-1gtM`V^+;Vm#7_BmcwxbdG|#2GM59fbk^xbjb80CC-X0dOJ(I82P%r z=8MbOZK`J)H$d@T&mQ6VE$O2TR&L}_T&+!`HzU;oTNy&>l5N?`DK=X4XKO_3V)ee2 z^+t#`zKv>t|JtZv^q2#pWKn$YUOYw1)r&^_mSZ$~r;kg2hP$(? zs-qRnGx~@TdlYVkdcUfNqS|9EQqTf!q*MXGx$r`r7lq}ivBW2+_W2RgT0QRd+_syP zVpqNQK-*Q#NXMp7bMoFdMpA;rTgEIvvOaNgEQ9r_o0Di@3G!01@4MCN%-22@FP{pU{*rvGIW| znF-bPSzY4Tf~ej)ODC_8F&YbIG|sr9yiIoAT(rR@MB^BAb0ZK=6Uq4*A_y%d3}s!3 z3S`eQGhM8~&Y>vzR4;$ZWIm;^^->d53LQ}xr$2W%fCcV=B0J`!O%JLmYR%+AaoM2e z@S?q$mlX>~#<3V$jZIP*fO2113!WRQ2_(`cm{YXV1k9-?nWSWPhDg6=$-avgZ0ETcO-%HWGDJH9*?0QqVc$f?0yU2LjsrWP%N|*i36btI#AW@GG zp?gWJcdoLxZY+H7KDf>yVh)XR3=>$u5vi9`2}Ui++uTGlJ(Boef`UDm6=@2q3IwAVY%RpY}&>n6#qrV}`ZQJk`u9nOS0^{~kiNd3&15 z!$`o4#Hpu zs&f4^iP52yS^m^%C_hayLZxzk3Ne8f9(#&_DUkSfdRvYMg5#ou?+@T$nm}6wPz!aL zwjY)4mxn6KO8Z6UAxGPgP$yjF4^WDQLt8R95N=MqH(08@0#1(=E@lTiY19F285+0a zq28($*$jxDG6C3Bs_g$r9)U&jFgW&9v)>_xY`HqO zh;%u=qaIBP{nXQ!8vazWG+pD=Qr4$?yU>0tmy`RMn08cP`EHfnBbgLHaM0D+akwMjwN>^tvXDob@(Co_(`_g(=+ zvMx=jC6SvUV{ALj%?m8O$ov}_0CcXK7x`s`2MbZjsOCvQ#fVI%N)EE;2F9meSIKz*KT-AM97u&)4KvdH>3$qh8pfYz?ED zLB}fIrQ!{?(yElhzD&4b`mn^w0TmO%0cqh<2)2}aPF)~3PBt;g?3PytvU<+lphy;p zF2aaKwF~gy07LzI+|8zCiz42V6;hw4=a2C}2qi0)nGU5;!d+I73*(K=S~MePK3lD@ zf~&#kBu2N;z0Q{kVgLgmoU^vH#LPYUc`2I)Nui_qOR}Wd7|S6(Fq;m&tYPlN zsKr!@{Zr&68{@3)4@qBhs~Em<<8|xW$IX0t2R*>uZ`(E3XC!E?c^doU}b#b84rhX9CWBHVE_k-L;S zUD6bGtviPJxKH)Yr;whcsdY{*BI6hB6O%5Vt2^BfS8J z;Kw-1ah_(aI2o%8@Sa z(LibbgiK9y83d|Qm7*Z{WEYp|#O9X;K_;^N-oQbWKZJAOAG0)V_kY@iW5Um6N=}Mm z!bC7Z6N2V9%uju_d)l!(GljyOgxZ!o&8;M4@$ceAZpP5QI61u@xnMv$XK}!{%9sZk znT3|M^slYzXl|8iR^+uaJ^+g~^LdG0d3`5^ zEk~JicJA)-_293%%U#bvJIA@+0YB{m#MH@TW)bf6#C(-Gj^+hFR)Ytm8vk)%aQ{iO zhWwQ$Zpd#G=KF|jJFE(k5|5(Tiu(KbGKXb$lco+0Lz0|qa+h>$lm4>)ZMp>eF0dOU zm}J!;NFSWq5Z3RV&b2tRK0-y5R0r|kg0&$C|E>>b?$7Mz1BMhEfE}y}2~YRkkr%z1pRJotYTgsQ|CzIPYsJI&Xkb;Rv(D+w)+e|N0gvOKAu3q)R^t zJa$3-SM9(;f&8^~|1+b|Z-bw4l?k(<4l;-)R{Zl%Qxn2Z#5R-0pWxp#RI?>zo!NYw zV8XpivY3I*gdvdKoSV&*qpkNDxw|-$`36`nn}V;j(yG?)nG;uaGw#eU?WiB8mn zj4{$OS9wmXTVS)U1@!!lyk8t60KRRLoQow!tADVvF?biA@Sd=6Mns4tV-YT^SU$Vb)0=0s5kg7O;S1+qBOmKKvUH0Ylo9AG#}ol)vmoqw8plu_t_wb6}t z6>*gDDaQCdu9P}dYJW5kObF1)Mg4!zA)|OAuUI#JrQks97d8`KN0BPIl)m*t5>~IM zB?X{$@7Bj8A-QbBDURPsu=%b97woE%uL5RDTL>GATF=5Rj+d)xHM6WzGJYiAwzQv% zO;2mPpv*gwzMNFWC55h;DymHhf_U=#7g8m~jyQ{6AvS0S2`Z>T1;*H`plM_5@el=lYtXEP@pI-j6Ta z%{(oYcJY{^mk_)_X0yLv7f2`6yo7Bz5=mn{>^PzbWWZPlp?O}t5X>9X6*>)F;m<9_ zg76oSm)oYaa?rlxmxG-o74Fv1m%$PC7Y8$4)8d;r0Eb8QROqo}P4fVB=22d`n>`hqa%q-bM1>$1fC{J&rL~z&1aDqKXTrNcPGUWjKRaUMr6a zpNnso;Z>}cJp)4rQb31LU!q$u>U5JuWaCGe7-CH?Kga4x-BDh<&OrpWUFunkH#>rs zI`+?OvGd9TrC=5-=7iomYC<=WcJ;q~zU?q|JM}@ImzHces`P)URURQrrk%J+zANP9 zC+kehc8#A3&SkXPWaifT4jcS>(%gT^+VVTp=KVfeyW+yv)c}Vq9ilV;juK0QI>3({WLl{XqjM=wL4}lq1qu%^}Wd=IZog z!Y~y6x`qC(O1SGS>oF8f3jeKX*&DsNr%5l=q~YS&ErbDoi*E-0XwyYOm&JPZ<81%@ zl%Q!_D0?SMYf@4~8T`c4rcF!tFk+~Zo32w(yA?Gr8a+BA7^Ep`;o%QWhV z!P^7~TaV&mtPFJZ7VWgr)IBTq{L*1Bgh&&q#xJuCDVE#+p zJ=3?7F>H2HHew%WzWy?VgbXhythVj$;9V9CYqd{Z|JiK9X8YWfXZhP^3I1Xg{eH{y z$J9f%nghiyxzmz4VtiWYn<{+SyGaVy59&t9c4XNhF1bb&C}r)?6{1s8_KBsC1Lg|_xF2w9rMR*lu6QYezzR` zIB+;hlLY{=NMxyL$$>gY0UrWo1C6jazsmev4klh7hM;mqgwxJ=LfQC^X|+(D+Q?qi zbSF6J8qS#WbeMkZ_R>CcpOHi;nq8*on0BH#x%dfs)G`sf&tc6Kw~JZoFfrk(O0Aht zghWB1$n`loe!{4L=)ZoHHvSVf1p(H%Db#Qq2|rV>#`SP!o6uh*g8bF8mzlM(FLxmx z57rk;`{EZI-=q?o##mf5UF0f*PcgBYb1HiS8VQVigtRLQFFRbd_8LGVBWslWEFfrk z+yTQpd(N43V5qnb?UIU*49(1Er!&Kddnc1X&J;cY*xN7!E{`R6u;!=}Z!7WHLBoY2 zFoAt%5Z|!SiAKZGNRp35vS+@_9h>`H8q#5gHQ{Z0XJnqs{xJi5Kwg6u*!mKaM?Wk- zsAmE3wU7C$Wpq%_yU_!m2wHD6%=Lx66t-0HCK@Zq!^f6YwYt=8hwS}>E5R3VwR`0z z4A7I=q5^q{!I3+BZI8r#$i{v^_N+!~_z*N?J^}PZ5N2IS%gdX_DhZ^ZkPK`#F~+>c zM@Y}QMK&IN2tS*EG4pYnkwnq<`&PwiWOF$|<| z={kImfB0AZD$0&K$QUZgsc|=5MrNSi0Z_CfQ;rKh*pB*X`|7#QL@$q-O}QyYHVH(Lun=9})#wV?gdq4MItC32 z4d5DP6yjPy9)aXmc)&!3m{ypNoQ6MqR}}AltxV4tg(9WDpih$n zC#Yg>P~z)r$daHY&URS57=ydm#%ho+N*+a5OWMtv(wVilac19u!fz&;*Z0~bn=*$Q zxhgkdtlbtc@&? z)GpV6#1D?+e zE5xeU!)h(hQq`Zi*+z-NH|LyQlADVxiDk|AtwzwW4bgXwn)fU>fMV-fs*?4p+PaEK zz*w!pKnZ!bGaF}A5tByU6OMrd_OgR2gdde;1h#kmP(`^fLR6{bq0U#TGa;0OUO%!ztq&I087`liGWvF~13rnE9!Khcd5fE?&$4AxQh zQ=iFQi`_k_^VMweBx8eD{-K@0Ai5FW;b(j(E{Y@9m&r@*tJDAb+fq%xo%j@;BzqzT z*X?&|!-{~cp9Z0%(u9#$^8i%u4Lh=xS%Gx$ZOeDuM_j9qhuU z0c?^cK;ejV2{JjL+w!A4b_Em^I=sqUzYBCPj-khcoUlnqpo-9LD~BTllxcvd`cD_P z0A{D`C;67Mk4cR=-gjT?0>rI7@jCW()ki7ZG#L}~XFp){SY9NrqLOc{a284qYa!_T zZmKBI7(h_I3}Ki_9DO{V??W9S{h@6Av%3tqI|tFVkY>i6hARqh*C;KTCjF|<<`pVQ z(qyhzzsz|p86D=xX9t{-h-UT7+tMiymK5jL*u~8z>i=Rjj3P)zC5(!5?4VHJ=dkrs z-Hs%356XTw%aOKhk}dl}b0UtWP$Ih)bWO$^EIKvR9U1nkenZFs#dnhfA4rIOVYxRZ zIuQRW^evT81&4y%hYj{d4K4aL4L?^G|i za6(y>h4ykFp~`Q#!pgx~!lC@}VB8c^NqYP8;USB;E8kjTCdG zoOQAOs^FdzJA+ch9v|l4Z9aquJsD8O6AS5Hn!?J&F&mut@Hh!mK+e#i7wzM}v3YZo zQ*msL?kKKVt!|~yz;RN@Ab}roEf@+mxzo>lswtLhGbNSARR-wwF3(kT8w0j6Q$ld` z^7H)^n!MT^-I*L?R_r&*K$Tpk4zYuqCWCRsYFp@_&`ik5l7e}huNW*d3E9Z8XhH4T zuy*mQciVt+U{kR}kXKdD5(@3dIzFaJOUWz{Ky66K>AcY5`MnMczpNR_OtKmB9H6<6 uDwMYAFRFr)y#2H3&NJc(GG>bJmH_d;-{1;o+5r|F!UhlAGtpN*0001;u6`f@ literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/sigmoid.8b7ba9d095c789cf.webp b/translated_images/zh-CN/sigmoid.8b7ba9d095c789cf.webp new file mode 100644 index 0000000000000000000000000000000000000000..f513a38cc7547ae2bdc16444a66cd384a83e8ac2 GIT binary patch literal 2658 zcmV-o3Z3;*Nk&Fm3IG6CMM6+kP&gn?3IG65LjautDyjjJ06sAoibNtIp%BU3tRMpf zw6}1%ppE&!`9u1z;+KQJ-G3dwWW8_vALpN={ypu+ei{3d{7dU!(SIHPEIuahuYecg zKgs{6emj0b@)TJwK#x_vW&M}(yZpEA7q8#*-jDcze-!>n{nPTd`v3p_j6WFm0RB7u zQ~k&0Kl-nZ@9MwD{xo}x{HObm`v1+(pg-gv&OglmeEr$}(f|Md58WTKPus6!uh^k0 z5p2L6)KR&%U=Hdi+}kh*brf!DPEDFkh_+tg#K446xwc>q+a_=x6996=sZ>S)?xKQ# zTBQE*;hBXB&93C~9isfrF3`LdX>*b$G;ImR29NJ4VL2>qb`hg@j62|mFNnMP&1o7k zUMzDk3uj`%p(54!Wb(8~oB(xEI$}eRfhG_jK!E}T2oNAZfNE-V?XakO(wYp4o=WU| zdZYA(!Mx?V#qI4w0}`z_s#pnp;t{4B@^Bd$NFv0I2^IxW5qShDT37!GBCbVrEr7fdOtbwR=gANV2-DcYQrb_A&1ylai)AnitWkDn7BJ?aWEb;6i zz(_h^1OP&G%;`jxQeNDRIu6+yW7>*0Hp|+~aqVPBJ0_`87IglZ*<=k0mxdYO)bxgh zc#}~1%PR1C$GPi37!V#gUt@+Rdh4F3J}4*nqjPM)A5U+cDBRmH2Xz!~ZI}bPiZ?dQ z0e}Gh|JH;6Ka?F11bS-usxJsQ#fo{??%*6#E%U+{l3H@JVj6jONex|yW&6jyAE`wp z+WuYep#F)XflA}#{s8R7%P5qVUzbg(ax9*eeH1R}f7!*@W6EFr+v1bR*ucAtMi;1<*A`2_>f_3~CRnpa{B10a~7sD8l>v`%q>_8JXJAex~V!|5#cTEe~n( zK9Hn%fzR%o1MKWu`%dh=KQ7*%nMf5Sh~g70zT$>eVYt3;j-X5zf_z$$=O3T+*eomP z4jzxjo!mmm1D*~0{9EUsszOe^tR$eLUo+b4R@Vpm2a{kj=>0N!d=#TPO_9BJFnLjs zQCrTB7NHVXOl`l#FNJ77VG4x{@A|HWhjk zzy5U_X|pZ25t*AXr`dmAK}7%9Vj+2V_3V|eGFWS;jnMj_+$`N}s=ucDmtK~h`n4Ec zCvf0k=cdd(adK@0|hA(E8> z=f-;0EO^(Nt?dzN+FVr4g{R4IYUNlF+i7*LDb4>Ku{T=JJa)p)cbIol?~(tbA`Ii2 z$46<;U-zaWxw_|$9)6k~<(|M6?zGomvyBix3^+Q*#aut7&#ICF03sFU(IfoHa!`ut z(2%3>XQ!VV?I}w5OTeXyPxp)y69lLSRPNq{yM+!gNz{Wv@X$fL#$gleH}q$aH;GE_ z9!VGr5RYS(WWrUh%$%ql@4&pyqZ-MBcg}ft`)cPL1-$a+=$BI_MGEe>kExr=Fbe)_ zKh%z%Xsu`inLhci+UgzQ)N|bHgwC*z8~-s;SwoA^#8RHro>MAku5nqW3sQ-8rsD@E zH#Jp}6I!1cS0W3a!vs#;yDX)d1I=h)WJ{YP_4C#mL>ZPNz5kS4>s3| z(nK7c-RA9wCMrkvgG$uPu-@>6Ru9&I*+-X`mM7DXpl0cZ3xrc6H;KX$W1OZ^ zA5<+jBsd;@Ovi$}d}!VM3H>Qu2iyC3@>bf8M5wktIIe1G8pOLj9g&<7OovOjJp23S z{Q_JZ!P5qL>>7H7Pv1k?o=(RsnNRjW$v=bK9s`KwTKNU!_fp~D=~ovZxDjdRINesu?t7U~=DNz71Z3%lqUCLo0J1o=ffjRN=Vs z61uH)GuYyMfAm82(~ z%g6Y+pf)%?2r!;F>PcvC6hm_*1FqgLO4NsCz@xB>D$`G9pMj&wX6nyq0>AarFXn7Y zni<#<$()X8TqazTDftdmB!1fBDRPb965&ez~8#+Wy-ggx?b z1ZiAx2&l{u`cO;_@wL@(sQFl-`b|US44=_wEy6*1m{fYyD;Pg>sXy<M6V0Wp0uy)~LcPNxbzSf@Cs>vS$6uXFn;ymqS1cK2|H17pziGqyD|4p6 zsX~%9*qcwGxuoM_1?W}k+QQD$PVDE6)Go2H%AU` zEVeA_z|T_Ep>{mxh9$*O76*5N&p|+!pQ`bFk#MC|GEHr8wE-Ra%38Uiv0G%wE`zx@ z7{T4N5}~%;dO!EeYoVgp+Sq|izdw{L>ZdbD6bWNITE?5Rmm);dcFlniWKrbnxj`2p z_INtm8?Wh5fu#SB;QaYL7q4M~OHJxpPeTs{7LIU!4doOyVjUU2POT{_IWA3^C`u=b Q>#|!)M0;yUKmY&$01tC7%>V!Z literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/slope.f3c9d5910ddbfcf9.webp b/translated_images/zh-CN/slope.f3c9d5910ddbfcf9.webp new file mode 100644 index 0000000000000000000000000000000000000000..5320ffab0f493d9c8b065ef807a91130cbe22af4 GIT binary patch literal 11420 zcmai3LwFnv!wj1=*x0shvvC^Rw#|*L294F&wrw=FZ6^(OzxVo|{@WbpI?qT|R!SGr^_3MorhW)ZOy#Rl2ar?1`9^24w~;C73~$F=7eloYl~a`z2Hx^u@@9l72)8;&cKTjh&t zA^PLY$e%gSRQuPFz|P*OC9wh{w5>v&AJqnq*Chv+p<}ZkMEB|YBr{n9;lSVc$A_iuav(W?Yvzq-00l%co#_Q= z3N=>UDv)~B-XdJGN=z)>7L&M#?Rl0w5UGIrkl-wpqjO?yVC=KuizP{EWFLuRYnqC` z2nKgaYowyt4zZ@nCjufn+BvP$HmpGLi@t{eo%tkVh@=r4|VG7h@0 zAz=);c%V%0D!WPf82jwS7P%_(fbTv8Mi6Qx3?6zKuF%qvdD)>ztpe93s0Y`)_Qp)p z5b#LX*27sFL;1mKL8qp7ap1li)GGXV-0!G^)flX8RIaO|zurF`>eqi(w*er2CYRA* zGdhlOU-!M094#adc`zQnz}YH8q631ck)k=Am&9W-K-v-lTYh+XPM1SsFs98V8fJL? zyDMWYiZ1z`lD5~?*O$bNewbcpzhGBdE5=1a!XK~+Mg=}0Pj*>gVB~7}M9JAt7J|IB zOO`Zfb+bM8EBEvFPhGfp zbZf(K7C^6`*x{tCFc5LVhagO{_OD-_UM4{6N@48>Hgh^bgy{GV{i9eMF_ML~1Y8C@ zPxa;ko|q@6U9ZRSOF5Q>GD}+*Vc7A^hl9yd$9@C)!{{NE?~YF_(0O(0*H4BhDsr9X zeqo|})Nlr0y4ej)rf8N+BbA{0a_shLnn~WTy-)$Yr@Al2$0rhEqnM=WEXzelrLbbi z?ZM03+g$3-Q!Q4A6GgQ=e(5S0y>w6%ft*XsPfkp&{<6GGVE&t2CIh(L(`vpHg4pTG zj5a#z8C#fC*>9xfCn+Hk>Dts7g0uL#m@l6NP^s{HuTT`u7`0fK%|W4nnxu4YxsTz> zWi=L_lZcMfOlQDk(7x>i<>vzbgm`5J)x%0s;bI5iJ~x!V!!0YuSjclfDrt5M}FFx{c6Z?^l?g zUmwfDsUGHIckPBJ*PBD^xA+T;s13d{mc6_Zzi=fXJEu(a4^_7T&z1o=rWVGx(2tgm zT*T{bR8G9t92htG#K9v4xLTe{wwtn-8grty>y{|M0qa=Ep?~bJ*{RMtF^x>Z=Oj-I ziI*$kKYLv^>jB%7f!#u91{cCRV1nnF5d9HW>FS4>m;ql}`usn1_U+KqT8EIxy!R`K z`=XOVrW|Q9n4Y58oxck{j_Il5b36znE4PgZ$=w;`d8e1Wol1fda*k^ow&+S0yKyw)mg2$^`tB#J=2B*SuFmz5kzJ-@BKXj*zV}gJ z6_!5_xwat60~oUhRViX+nnzGkAMCI3DaEe2yNR}~woXv2g?IZTNUBBqpWyQFc?A$V zQ*D3)u3Bjc3Rkg{v42p&w;W`bUD%<3r5+TKnj+ zLzdD{w@eMEqT_kCvHmp$-d{K@yDr{E1~74J`UGnWO-OOyg-Q=Av!i9)AoxOFtW|{7lX9R- ziEb72wzkiITS5&OoO-LEW{wDvVSSRUW11mKbSek1kA{|p$U8vo*MCfU@iDH;b%AZ) z*{{)N!vJo6r$J@@IT=dStJt0H8T&2Z%;=HA`Wl$-XGLp8jyo{aH9uks!Vk=3p-ESl!-5bs zI{$7&YAKK{+$Y-a_tKzA0g94g2jGJegH&ds3d0g)eoheKzk~>^Vm=x9hA3T z;C7OTJ#4t0gKBl%F_)w{^tlu#tLik4Hw59ATWqbcr+jdIjxhDZjCz}giVF{#=5#iO z(}T5$S_pb6DaS_ax!{fnc3ULYmZ3fek)8J<@q89a`LoI5KbGgU!;3w}qFQoc@=PZu z_1SgIfp8v2=j7a(mU=X~P?R#+c|l0YF>L~jv%d5uTT$+FVKf(H8^G)gnie8-%s=9qQfvI*pL_PHM8$5nPgLc7Mm>C|$n69e7z?+5V(lCMBn&#$HSZg5SXmie>$ zrE=~WQ)Xd&32_37wFgb~_Q$|DOF=n(wiog8AWnSG3ts8vN4-wZOI(qZKYVWSt^6$ZA8PJxJDK$<^W<$z9*-`fO9bTybRH8wy`oKdIh-`Q*V0{ zJpN8n7sWkd8`ZRWbAhDZCc11d8YhPDQICxDdkoDo@s53B_h)tOcH~}J0@w9<-TSYZY?}}iEP8N1h@|K z;88|-z?00!ofl0jH2DE77r1wzJ&9#XZq?QGbC)5a1B;qfyK~}(Xs-O_^`ou}g|+OM z)ey4sW8A-eCGgQB3R-+L>-f&z*-e5orW7gPTs?Px$EMFAWDGdLJ&vF~Z-?cYS9mi-R`$BV zWa{ilqK*S5!1aMS%OqWui7+bWWD^UA`WN(3bcn!js4Q5eLMxQ`GK}flx_@TbdDET* zI<+t}>TXishTXlChUaY3M^)Mg3hHf+d@EK6LsiDgHwsL>js*O^@#u<}abO`+wZXo) zf19wj-?+ty1hw=?tzgqNRl)exW7t{T$qzb>O}yLZzG1R5F#I!EJ2KIsJ-Qv#bUqL^ zeYRo?YDRRv_x~gAPwe}|W-eiASP=uLeP#-vut4N@Lg&7hH-%fImhmw6Dt6s=K}YCs zQvjf+QG{5LJwqsCgrYuRQ|#a>MF)ho?(^XJcX11VX+a{oR{_ytyU_aHFLcj_E@`Lh z1OEgU`_A4YxuCm(;wx5${rLD)v;?lV6av1`!y(|xduoiW_R3^eV2pW7q?(py2RHbo zp96j16hO}~dk=4yvso9?3;$vd5Liu^(-^#v>gDnbum4mL6_Vt9){!PS*s1i#idfds zdK3t+>}v|7&+m`&s8n2v+flTVTL-2aqLmI`X2334m*3Yq&mnuaTJ6vMqv_j0=mmdk z40am`!;*#-(zN0eDdlW)vqm}q5ba=6lnKOuuf>w@I9M+7h5IQG&Y~@77Fg!@F!;F; zDz~$xksx#=AO5ThC+xJv*LKai+93kaYr=*46|>)b%C)pxwMYx(F5m$q-$>j$`Ol&H z#N53NXt8=}dugvfHH!eB_=0PS?JgESx8@hD7B3fp^IV6RSCFYNKH1m+7D{#FKk1{BF1AU zp*1G{jNZ@j3a+Ia?pxx4?o;-Rb7OP4Ha!0O!7OZVX+3XH7v*dc1xn^G)G2#NU~h-L zd#@DdURTZYBx99A#AjzXTOYjWv%F;ad))FH1BecrHx`;ETWPe^7Af>6n}c>k8=xP0 z-C{Kt$3?4lGaf#Hbgw_WMp9KR>~M#nfGrl$Qt_|WA6I)}$7PfdEU?xoep)7^oHlmn z38|(N<~dNg9U;R6=JZ!$}m~t<5vZkr$B<Uf%QG2*hNATiq`f^@7+1Mtj z#o@iW*2`chMgy_?NR>m4R^B7t<~&s1-wu@b#$i`KQwt3ZARLKN-H}(CSH^O!PFYmX z1&Q`-ZcsR6A2aQw>Lq-bfWKqx!*?GwsuL6xpE8#hE*8ec;B2^9P-VVtEf}#z=&0@| z(V>ofzIaj&7XItKwEopZroHKFsULTXQmf}e7W!YC66m#Uw&G`qzB9nG7Bx&?{nz=U zIiJW>4cX-?OL+GL*#;Aerg2=jZ*5O#zS&dOJ*gyv<*mQv48z6zxn}oRVuO@6A#0s> zV$t*BLIUsbjd`T8c+Gic1jAhuPkciDiHO)BX|hbAuBSzH`=?xclThEZdymj3=O@SC zDY+6Wl9z7?Ydxn!akU~PdZPaKF&L8|nz(=tjqctavo&MbDoY7ZmtP;@rzqqkQVFAe zc#PSq9V*oR4U?B(xT`UKalqF)y~gVyBK32OsLtY=jmB!QEp#lPLpjW0cC0OI_3W!>HILa;70{p6A{EG}}sflcOAI)z^c=*@C?1tlX!meH8ZDGBj#K(3JD#>SydNJj}n(0 z#fDa0nUX3;Udp~`^FX0fuiPZ!{duQAzG$O5LEIl*iQ*<>oP~QtG~_BoP~89X2BQ71 zT%1X&<-GO`t9~uZLL|I)5oZIVYZD?{dEcZSK(%^|zzDk9zswWlm)zrUnQrr6#Qj?p z+hlYx+HTQ?p6dF6Uip}r~9php?8$(z#_g##PeA&bA%peQr|URhuIhjmQy94 z#F(yxf{fQ5giu+%%cwd8(>7x?k`l9J4r5`vZ9;1d2D$f7U!Ip+{(-ZmH#K_=dU^d- z6zlHXz}_Lkw~JwO%^D>HMU9QhzbZ$J`@vDdn_eTXkbkQMdw0#n)j0PjgSmc6t|JIT z${&V4^LMDGce_W^cz|u1FZsh`sFB)hnch36p#ly=9e3pt|CtMmfLmr2X)#ql{f+Gu znWKn6yKs7R&V-HvnZz;nz#euTj3ji3)vxB4lQu+qs@)jQdr4Lj7Q{p`BC-U|nvgCuecND90_5W@}6oclZbny;q;#4f~_dLTI8UVgbg~yZr9(W%tIn4 z{XYI``{QvNx;$4bzHp2=P@+ZVWf|&TILp5(p9*?m}J|S(W+_CfgTQHMh(~)D3|IhNzlHP-TjI*A?c})7*xQl0B&MS;YezFa;YqRtL?I@U%I*)rJP`2U(VN&6Q2*Tm zs%nbVdXJ6wT#R)3SJM!-KCGsWZ%`C-4Xb>DZ^Pll9$Mr}lb!J*Pb3>p7qBZdzNt^_ zweP$T@r|I8P!}ES5UeMuYYQ)FbJrJ8+2qNRaNi^Besc*)j1P2{CGduy6dg2Auv*8NYg!p zHT%iHwycyqsK$+RK6 z5_FuP8v*J)bIfiJe7CUsRQA8(7&`?3%!n&3qKS`K2DUL}{`%VbBWMvWKLjvYTxn zVoqW<%2s8`UV?~`=OA^K?4oYO#EV>XS!x1Lvzyc2lh%hoaH+TKlu;f(WQ;wCP%f7b z5OP+pS1f&h=4~l}B3UuUT~0g|pIQ4QZ)3$mTJ-Ik(pdY^+`A3jiw4^x*Rhs1f4l;y zMAkT>*MJ$?eq+38R-5Xz@t8GsPKD8PpDHs_DC~SoJdm zwuJFeL38ysW*2;4{yAY=HhWhScSF~N3rnY8*?(WtCzQGEZq)CZ-($SwD$o?NahI~V z$G3z8xia{iFsHlufxyLOVXGobAu4=x2f29*SP|jwstI@gciBVOEm7$E{w|>#OYj2%cw#w6sb1r%<|Hs08qkRwh-_nG&WbQvC1YCNzRZX zPM8whvCfiCYsdi2e5&XuMzi9ii}6r2f2`-KabLaGP-lgx$4SzubQ*DSo$Ly>$~1E= ziA)0;YWl&SZitnaYFbgMSo`p89U=oRjo3??Q1cgSG0uz(+l%1}@@||)`k5}x`O3R5 zqGyVN6=sVXGKAPO@(!j!|=U>joNqI>xY7|Vm>$x1W`M=;uv#v%D zFkS{5*<-aD*gx){?b;WmCmGqnzxH_h$**(oZ*~x&9NP%oLY(%HedGusM&~d>(y!$9 zc#UwbrykH*QtdaGHvCnsQ3cq%i5Fp^g5Zbm!hgMQ+D6j67NLj$Fn5C@&#`~;Rf zqIE7@h(Uv!2h+L@m<%>MDJ2B3ITO?(PTjBleAdCkL;x>XGi1Sc6yhayZ#)xzS{$Mo zKvyY&%Nv2ON_-go@?^e6D5C_5nw)khjlMB=@w&dVtKM=W3xS<5-(RCAB$q8iOMk5m zv55jR z|FEW&)W#6??4JTQZuN72l5hMQo0R;n-5?;PGCX6h&43I;O=gYTxf%1*V5WzRt=k52 zLA4{_Z|^G0a_>9YoT=i$gKazMwaVd$#(ws&(U8dFRedq-v*R2;w};AtGTd=OSixC~ zmg&9BZ5FKGKP+i>IfIMfV!M8^z1H_i2uuzg(KUs~fq%FJ*Org(>B|Ac>=gZ{r z92}1l+hcLS66qgMn(Dwg!R~f1xKHSTJe>*Hy4^|t42s2b+Lyyj420_EqDbBM4g6MC zOB6}lm_eemrNP)D3M0L=s#$`%TlMPpftnTIC3Q||PzDMl@dlIA$$51TUlEc-NW``y zk6lB@f@~-2mKMi0VG;^v{>0RciQCngSF&^+4@veAPx32Yg@Y=*xuNUbb|MDqCa_no zlK54i3vD`fo*e53wrM;5Pr^471Lk6eqd83#t#IXm>xZ<(K{g3MP(5(Ac zadLV(d+!HT9L7Ah>+6(3*n0+bhArZu5jBro4so*?O3I*$w+pg=QQIqeB}9f0@B?>h zh0@@J=7Vp+75lfWycVJ>^HGuFm*WyV!t=|HkrwJw z|4r~yw*A-GF(ZtQ0+gLbNVo-0^Edo-DfC2rk`i}WLq-?D8R(`_=(JwvVIZ!|w|X2h z*W1XZ_Gg}ryMR!Vo8yU=@;aHTDki5$a!9f%qXU(uKx@y_)=PA+Iov!zFz*`Fir~s% zvS=#aDw2q8a`2pKuP=~@^R0E}EVRl$!nae-`#wZn9U*wN8!zs6>lLS#f9hDiI9~Kv zW3`)w?wzu}wtx8K4u--W{FWX_z$1A*=WT{Xt*?Vq(s|on_WJ@h*aZC#kNakUc8OemG;+E;6di}067S`iz}+<&&VGHny7to?QeLJ zUg*tWxr3;@qF)-hXf2Qr&|F_qZ5TFQl+yFALPbK9t51oei31-jd#*~sKbsU{do~H8 z^C5LF43&bte@WHEMeVRauSY!VG45rSzgbKC=)B(WT=P~UuMH6PnhE47o*7d@u zXtJ?ajpOd=36RUxwwQi0NqR#0H@m=LSX#}@+Xy(%bd*Bn$uZk0MxbcuZv;A=m(jON z7SYxpOZRBwF%C1yMM_)%dFoV6C=`>hT~gXeU^ra#rSF-w@G;1mZJKrzvbXflTu)0z z$>2!D%{W9Urj=(&>xXqDeiv+j4nak9My8J~eG)Nw0DlfV3+~IthQ(r$h;7Vmf6b5p z!5>_IU~q4Cc7II5UT_t3D#pardMSPwyv1bG0heIsrFIQpC~2w=s?h_tw5$&ufxagm zUx!ZAU$U(_(T@ZxI{uf*uOA`)3&lq5u23iI8yVyOj1R3MaYMk11jA#vioW{0KcZ9) zPwZD45SYVAjEO+@OuycY8lcC_17V&dn%e1)M=v$mnK2WSuU|%OZ4)FV@Nzj)Uy~U!a+KC zzg2He&)~zSc=n(dr6STcz%o|G+@>D?9)?%X@|rRu7uY&vPt|Dd5tx9c|M$3LUPU>b zDoK|mO5ew*s8-64BSEq29DPQV(p&>Ki01*-wC)}&uQ{7a?-(k;eJ zYQWEVpv~>Q3isc6lin~R3Eqm0Mar?CaiJN7LMTeHjjCSxy6JgX1*@`Ap;h4Nms~1^ z4QO+%i~6VQ7ow#I9(J;g{h^B{Pvjy3gSu)ol5UJic$YeEOx z(!+nRh}%{Q(F&yni-##)2ZqGZ=hO~Z>US@hF~pj(Hh23%op|FkPwZR57o?+A)&h8Q zgvQoB6t31-`Li841+#dZzZ7eQBLh^PO`q>Xt z{H;MKuq;1F>Xnv|XbH2s{KmwZY<+C!*Cq@_0nvQQ;BMaHAOr6b=D)PU+Q)v>oy#wh z9Es+m$eZnYX0qYt^Ret-crYmsH$8F}E$ZuSZ^0yze6cz>Xjc(*L=M%ea%2`xBDjM3V5i2CHA5qhGxsP9rRhk5q&QM_b4YsM+yu8LF2*EffAR7 z6ru%nm?33`Db#6YOhxziLpC=yiWzxN%*KTxZUoO!^Z=oiC)LteJA~H?)WVv`>8jOu zTnCtMpIOf^8U~mV1+i|EQ5}`@wl}czEYRG8UQ(weEx&q5^+d>PJ-6dmq3{onV6il< zGVD-=EZy-*(~zso;(x*Vvm_ljX4o~q8IT60(En`WyxcnNaho;Pt?9?vk!v_Zy3@yl zV~LA<45N^AFPmmpREUKE$UHme&c*K{ts!`|kA268r?eGjBi*|1>bLqwDwd9TnF{=L zMdgaka>1?{+2?KwF{F4H^v1|gN#b37uHbyn4CPMN%PbMt5GYo;#~eYx)=%ac$KIv< zn!{D1k!Bk1Ysyfn73_hG{o!3;<*Q5?jz~fc4jEU2d^B0lS%3&b>|=(5md6m`{^UB0LDp>6 zf&a;4Kip#U@Y|eDa8f>Fi+CQ@2|FFE*$#GDueEmYn|8PdS-5y2YR zf11-0EH*}2L`4RE(Mo!sEYaU8p-|_VBcW`CTrpu)2Pg+w%$_XJ)BT*f@-b>wMmU`| zQ*H{t5Q91jQp?jgeM^1YO4M@*XLuqp#-c2erFiGTd$qni2N`|8;9>{s8{VUqbffii zVSU-;M`0^D(8E7j^}8|rw6`j=l4)7@!~W|GY}A1tt?13Ofg3+Oxxp?`2oppuF;h0B z6=fUSP#Bxr{`uVkj?|LZtn&I^ zVQLNzuvTPzo1qwwDfRTQR0&w^c`TOfQm1vR6)fSi@AyY1wQZ=)R++UmZ2jYM376&T zD>Q%TjZzoA0#QxZmbZWLw@At=mK1VPS#7&D7r(&YeD_ShXjm={te3D#w*=9Tr`1XT z064nL^~<#ybo%%A!cu_^ZKUmIPBNiENUW5W8yc$)sKgO{me>zDn)c*06X{s8;;5+lE z{8-@}#?g}G%}-*U;Oc4tCSEh%`2 ze$zqNfmB7WMU`j;7@pNTgW z{6x;w$3h2Dl`|yH;kW&qvAC}}Is)?6QF}SY&J2f`4?7=6fo!GiU%#gdv4@ENye;b> zJ&@9cy_>l|N<6qV4nJzZkA9g7X=2LO^%v!hPT{!?OORoJ)@M$T*)+!{t_+0#GkoXA zQ6O(ZpRqHS_czcJT4bhOb;(T0WIr zk6B{avbXnprjQ;%LvC-rV2q%1-t17B?dESXF4Z-$Mxo`kOVaN331iagINgji#kuE_ z=&-^5Yzf=L0%0O4s^nt2#y)arxA@YolAcuD0#}C0uJvKEkF@PSM$%L78F(Yi6UklmqP~JR z!qiZmWnrIyUqn8SAG#bonKvIDL#ey>p=gh9mZX?j3A&kr~iFe%Ivh#wz?fGLKMg=5U3V7VWO^s*qJRhIQQUrgqf@>OiRyJXlMK`+HwM& zR{hRAyj>k(COCNn^cg}2E>AWxPI^|OSaQB!w+o1uRf?F@~)`n zOW)6ev}S{Z%qTFU*^23lfbrN{8cXS-gG-4SS+{r4REGG&a^AGS@F&KDVS+WLtiDq8 zOS*R~3K`)ki73pT&-q)I5__m7U~e}!yh`|C2o44tXu_Q2im$*rl(u*xSfbY z$(?7^Fb6G_{0o(W7t-^@S1>^_|MPsO=gDR4t^9~v<1Y`lehob=|jadE7={BM--(0<6Z~HI94`4 z06mAe34NL!l35q{Xey243aB_=hBZrrMH6Vjo&mhbBU}hb&rP^7B*xGe+X*}|sVFqU z?~(E-xe>Y6bjCfaJEV@u()s(z$^9yRWtn)4pZijEB=0~Se|NSN|07^>D|_?>Q=Q;M zu(iaf0ZP*H6X-|i^kxX?Den9up{9zwWI1ql(H10Z9He+TcjlaeieryesYFpl6LlrDwJOw4$Mg!_h2seMFhmv+HJO<;CO^DidNm@&CMX#x_oE?TU6jqUt6*LAP@lr*e1JnB&{#Mbi6-S5h8 zKYkD|mQJrfb%+>JY@T{)l32LC3ObO~KMh1W>#)0a*iugi$Ula3`qh8WrnP{W)NSvU zKg4m1Cp~gb$VhcI-;p&s%$*f#cX4!cB=Mh+`>j5*zsXki7jTMUADX+%TGwpWxn%HL zy|p~;4=dB=t-#Uj>UURqF8oA(M-uY0%ap22J=D9NgC~Pix;)N9819I&67Eg(;syN_>9@5$wI!BJX)jDlcwfZuWp-Z&htbyaLHMzwAA; z>P~(SE3^>~ZdWa1EuSoR;l>1IN%V;LTF!&k4V}{o?2~M83B#RG4`UrBa?MPGSgW9( zkqfTA6N3PR< zLHE;2ZTQc%wb%ugzIM43+`W$I(B_a(pkC*vl0P=V(7U&c*icSL6w%2?*IlH$%zv&80r5YunPaE` literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/solvers.5fc648618529e627.webp b/translated_images/zh-CN/solvers.5fc648618529e627.webp new file mode 100644 index 0000000000000000000000000000000000000000..fdeb344f04a9d02eff58d6452a95156dfa072314 GIT binary patch literal 34462 zcmagFQb3SB=f2!~@+oqTks~wyi1-jW zr;?#cLBvlS>kgC!Nc9Fv2gJvS5g|fEn1}EO#GU{cq_M?&8+z(q zuWb~_2!F_J@xJ1>6(pH1TeL?4o&9yn`^7h@H@w&3>l=7a;Dfzwzuhm7?*s8yt9SN& z^?v^FufHGH@6%_~kNU6Q2fQU8)Cc+*zK)-2U&G(96s> zd;xqTesO=Azk^@0Kly&;oPAw>V}GU$%Afn5`EL3Kz5ssF|9r*ulil6+^>?4|*LT57 z)qBpX{`L2j@AkLL_v<(D0r)}A2LIA`^Y{1n zbN9LL%X|4}<#*JT>D%eI{`~>t5e>c8hsVNT@VS1BR%&gR)$O@58hVuvuccA{W6f}t zjD}v*%VXIe=%pT1K(O4ucZ-gc=iQX-KzJQ{3HF3PA?dIw|3%?nnYT2_voiY@`V4cL zhs5+C$7xB)Qt|))P?S-LPKi_}&l9M;euQxw(7qQk7VZVgz`@juAO5BS-`!?s31xsH&5m3n|#YF(=j^;8tdse3fMvM8kQw*iNYXn=SX5S^jO~i z-;eyC^SC3~YrAb{4lN(4J~Gj;>C6!I{zWZS3^lvj@c&MfS~5@P?xo1VH_fm@US~Nw`z{LhT5Pj zK3BEJPZV4!eERoZdrv<`!Fa@ga`wBC^iTZ*zte)eE!JD{n-V^JvW=~Rr`j$(-sKAk z-hA*g4jm#GT_Tvh8+Tk&7VQ*>8pe4;y2+QP=LM*7B088!`RTTM{n}W)m~2Z=1d{mx zP9gf>C)Y-V&O_}Ud&de!Q*eRQfPUI1si>tC^*n(TF;_C_EDUd9975_-ipPv~!6@!N zea8{CIFxWTB%EY*x&lQCn0|f1Qw|#SUKtxEnjTtpqU`_ns!9s72Ry2{(#f=gFIL-- zueFa>wQvxFK-`|%aMm8?F=tc=qXxt#r50%uwDsCa8m{T$v1X|jUjlAqAJO3` z2~)V@@1xkzJvT|@svtH{Z1Dk0-Xp)1E(a}Jo`)iYcRt)Wf7_cPY21G0+66{UAB_NBTkCk zTy^5xK{p+*lOYO9O0vy3clF2h8FimzL(XJHf0+HsIv{n1hCvZT2k(V=6lT;0MGHD-fslH^sAXz6{M-?B?<0fAxn_d|d)pEq zP<7YJ=ZMMNwn1iTf4q6*8Z}EEF5@~4^;PYBQv?T9ZX-lz;mYAPTU9vEuy8ATiM%J7=*~x{Rn2T0chR%lFDgOks)=8RGCf$^vWoIARcN{P=g#_1XmP ziBuFv@0;k~K?mAT%WOWZ=fr!!yf?RRI5oZDOI~h)FNLCgIG+jNvpn$|$3 zQZ;0|HG}o%7;}o}O1Fmho+77m$5xL)Hp-~$Y^|K&(_aQ1kK$rj|4=(DMP}o31I#e@ zZnj>s$TpuF$lT@i+_?0(RzaPWG&Eu&6P~_RlE}OSr=zjpyfoMZ>(LvN7n9&|u4@Ee zE4AhdAB*L_GBx|GF~Mbjr@uk6nKorhCh>p0P1 z!M#+m?4@K2!s|BB%84Kdw<{0$AFdHS|8*JaG^(R3BThK_Kg1JI`9g>;ZBmCS_%rCh zkD-A40jFN8q{;fyKd9W>qGXJ2?G$?23pSZ@FKZWncth0AL;q_(8&X4|7}vuOt#`z7 z%x|ETU15+btar~KGfU~p^ejLO z<$qG^ND`R*?S2oPrqM^gfuSnYNZuN)b*)*n??zcQS!Un-u^l*_PeTiW7cBlda zgM|mj$8;=nWaWebyu34D@AWkr`kpY94C(n#wxT!J;i!9_LUcI_I`FepvPD~{&R}jK z8J*CiDG$XZ?$jr%bT+JvN-@vIuRb%5wgt|NGNgss+o*|{M9do8=#x9Q}QYN#dfP{ zuA6@k;*9irKu-U$KcI8N;`esz`7Y{ygKAyt%!z!f?(5fOzSd|*2z=OT7-pXgK)`VViv zgC|&1=UT{VaG|&dyCIY|@xZd*64TC>@)+|gEytVKd-CVT;${#*Gsc2k7aQo~%f;kI zT)^(;U%<8h^r2(ANsr29uHP|Qi~5faifoJuzN+_R{?y!BA<9uRR7EFSUh!(%C5Sw2 zglh}q5cr3rZpz@57LVjb2QI<~jNQ53Ll^HHhYI|2KRg6lNW%sSRJ#03ojHC<)>8xeq&Ub z0EF-$Jm!%?=CV4!r2T{<^M8cEdLy~-9gw!ce3S1er&!yMrfat;oG^!LP$=1cA#un6 zmzNZe*23I((2Tc^D|-4&`lkXree+n@`I!PUz+6X#ZzJSdds|%N5Lwyv}*6?t){ua<2nM?g}`x_qPr)qPo>2>@)Z8Xy1qauKqqv+=b3u$z5s z>H+B=R+EzDVd)v@WcShtjjM8s`R2&m&Y)~Scq|wS-gtjy=or1J+l8W=*Fhx~i>4fw zzNkRO2%e0)C1!>Lc7SeA<`h&NRmz*rGCp zts!3ZqUEFS&YME}&xL&3tOkGmR z7+cP?%gCBS*uW|QoqW7J+{!_3O3fWI@r0&kp3fw^Ua=RyOhb_EWS<3VR+$V2*+&fc z^779RH5-Y68BELbfguoCxX29J&(*);l(jUAIc}ZGopTfj4#(|L9?_vu@Fy0c1{xhz zi@s(|r$RtLP7nH#xYWI;(GhUld-hR$G}J)Lo;JJbjkB-7#A8Lb&nx*q@?Kj&)N({h zD-A|mRDvYZ2(v0_#_d@K;OQbTb+$A8Ll&0QMbBnrRWN=vaL{2xqaZ*|1Py{-mw zuI2da8F48!Uz8o6pdfIVJS)#?pUIa{R(fc~^7`LWKW>Hk*#!Uijb+A3RY=!P`44kV zAFULos5y(pm3yE?X2(M8SuR_XpNo;1xylT1&-j-K5}ZtID3p~yLZ5f<;{Rp@ zcIYqwnE?OSSU`sW$oS>!lms`D)D51vj_!#_<} zexO_-K>8-ua*DNGXl(u;2i2nS5zA^Muow=k;+c9<|DRLcG`-RCt^h#q$SBzm7)kggHI3~3a$fiVSV9(v%QHv zk%@COwGY@Iah5oe%U-W-0^5SZKi_YSm-e}3`(MX*1fdicN|Pj%#0QN9(IM;GOZYEG zuH2r5YI43xh!mOUtdW-=_ZR1K>xC=8NM=G*OKaC8Ea_jnV)r6a%D`aCcfn-m6IEU? zg(=_?IwESI^_mHGytw_k4c2=4Wh5sJc`2d$p=<;sjpgf?(&PqRvG%3m$YYuR)s9zjA^AQEwA zYfw-{miHst6jLLKZU?VYy{`j1)TZ`V5C8RAwB{+0Cx`Tm@HYr-AK!?q`W-Q9%a5F! z5O4yv0(Nes_HuzO7b5*<2;yZsh;C}m^L>hsaX*lsnu40K!>TP9fHk?;`X}FvNApn0 zulN;)FUE=EA@6pV#SM+o5r)k-*F+@k)FksiLu~K70%^Xd$t7%t8*RC!n4f-lj4pK` zW~a#8(x=4Lgve|&>n5!RuiGbu=tq*3LLn^`rXHvkgqPB5#s(SN53|Er2a@VHM0#-j zu*(nw1LG-$)1&d!@?)~61#Wz+KcnGxKJiS1QTkAai% zlx)ncr4!(X6XfHB4DxIQ9`K;7#;*CF)8_^s#a8~Vg#quFxJ7sO3n$_(&7VovFdA_c zPQ%CC-^GSaOaF29vMYuve*7b_joK9dTz+F5&FBXp>O}MCc8+;t-V8%fHMCBmc8&L)ZBF-$ zRn8JM^y-(JfJu9S5$-tGv*g(nm1>^yl0Z7xEdF9*?xlo1#doIxRBMylpea{#L(o(P*lf$ zVU@4CiW>8I(P2a53W5)|mZ17i=!}M%4Rn_c`@Je49SysGX45~xSl|qmT008)Tt*a400rX)b z`b-M#UH-nJOWTqEk*GNg6EgO9hEgQIE`{G0G}4IKfx16p9}#mmbtbFJA53PV*B$wH z!>EE~H4()Gre9YnW+f^f@rq zlvV%c{n{|kd*3xfBiNCVP<{;?IL@{exeYokJYlcw)NkAGN&PHZ0K2w!$a4Gd;mOgk zL*=L)m#2l(H%D)O-906{=y>1}{H;#Ob-rdxB%Zdv(NkBNwntrY-ljDmwqlQf>4Zrp z*X1j%hikMFNK5TTW}w-g`+B%D3PVR4#>F7i+8*qYbB{=kkL+|FH8}ScAo~ovr~=ND z_AfW z1VsJR5!_tdG8cd&1g%dC6~eq-WFO<|uFLAHq%aCWeA=yI8xVz1`ze{(W4kRyb*0{G z_GD%|paqomXh_fe_FkcB1S`Jt3hBN*Sdr`30Oa>+{8O!voOfN^=hjyp@j3*YbkR1L zF39}{001##ubj+*fPmOt{hdMJRoj<#TA+P=+JGs72bnFhBGd4yY`f?jdwFONtB2NV zg+^eF=Ypb^hY8%M=O1poeR-DvU+68*xA-ZE+aQvqjH8yS9d}G!QTzZ$<)u`Mt~M7a z8~cQ@&X$}y!V)t<##1rCd$%_cd&qHzJNYvG)psZL!*5OK6O+JlRdy&9<`7A=6Q`LzEXf}_nidM$;-3*eE1ZCr_r^_!}nheXn};Q-~4l$4#&;Q zA6e@e*mWow`Hp@70A?oezMmxG+;6`E&){4w3;cZVk`m&`aj97=LE6n`qsTF|0Bl0h zeJwClpeK76G=0B;zra7>U+{1EcYJ%l{l8iSoO|ypd)1l7_UBAynyJzt6=2m??VEbB zv6gtGB7DrArw^u3Dr6fmS0kH`Iw#W9(gp=<^mB<35hFoDHKs;mQ{aa#kY4xjf(yq)XugaTw`(64 zDSVLHrV+Qz)6z1EQ~5|rulo5%^}7@LFIS}TB{n@*6^c7H#o1hy1(sXndag5+$J9aH zos6LdS)oC9{Pk(Y$iKB-oR>t$bD`#T$*4XzR zEk4Iuo%(JsAmhny+?eX=xh-MSql@4cJnR1kq0+Yedf%hF#*jjvDz2}NdY8geT28*byO&I%BKGqv;@ zQYl=@^;K{@I=bWql2k_Qy(8>za?6sr`I{;tY*>=XW5}$-TnhQxejJje3+6=V`t@uE zt*I0hXa04PvNh}q@e^pp_gpR+pvp}su(m4xm?L>4l4^aH>+_NQw|sB+&pryn{H+;Z z)BVY6XSF}}N^(>`%k}K)OwF=qN3(He^k4y>7>pMuJGs)PK6Z@*9&~|%{sCE@`+Hd< zZc^(Oasc=l{(AOcmehL2b{#21y&86QQI{lS1g8PJ&Gb%!cxx0(6nV(%d6xqLTz4R1 zNlZC|Zs|BSyEXBdf3B;?NbU_VJL|Sci4+RHm1$NHTz?LN=)R8+kz+KmWwfSAR2R0K z&E%RvbZPx)HII-U4gU22SRtxM{65Djo^RetXECv|v%@Nwdq)qQz&+@E@y|i#XFTJV z3&VO+?q2@VmFoCsJNG>Y4q)Q=JDYkIKDuX@sy^6wWuhDH$|Q**u>y=qwdI-Q!@xrH zsltVGMoyo1pmAQilwYAo+0KOs;ya{6~ka&N_%Uk-xa&nZZ^b&&_rWcPyXO)DvP^>ZH z?s-cwBR?9E&>6Hf;3v^nos>uZ_zb34{>rADY&bSi8Z;ReaZuT{QdKgldHR7dke$(a z1tIoE2i-TaZfZ4naH+ zWm&sE33N3rV2A-e$$hwE&fsHm2zVZ4{9e+%G6sg|GQ9YL>vEV|Q916IER%U}s2IX( zl^%`3LR;s{ln)aB%zdZk$VOK$W?~q=oU#{;Tb-X9rkc@R99yQYZObxB#j*0 z?gjsri``@fAM^2IVmmH$h|<60VM<9?Rsv0C@AVX?H$wtbL4^zC?>ASr#ART{D2#W{ zP)SXMUWbj~n@pAh?%rgfL|COlb@5g$Ch0OkaQ2orCs3J<*3LTaWSBa$V2IHy7X0N#B7vKI11%8auZ*>!=)qe=k$47)3*S922}B1|wNi|8IV z6-lmEXGX~Rdxi3u=^`rDq>EZi(1wvmOAuH@;Orq0(%3~LuEnVR4|G3Y;P2$OUr>;C z%9361t+IC26_XAdBXU7TW4JMaadsOgw!{q!UFsdhFUI?RZZynmP)e=Q$V zOM1UfRC$fJ&I&;U@u5;zP>XO79a(vT7W!F4GE0x#teIi4&Iu*cnHBw#)XGizMj>HOm(4Pxa5BS^)su6y3h*6Y?5%c4u*A z=eErAF7s!ruYk`3rp+zzHd7h$%nM;6eCSx8q7a%#9NOzW8I}!eyA$yJD#hgj4pT-l zr}#xLqZ=}C##y!AH}D4QiT*l_NU)^jGQk+3UwHFLvyN}@?hUq8#t53j6sl8o z+lB6&UkZQ{BQU`kvYM(2@9PY*1t$!0(%R)OD7;Ie&z8wKa z!xcEhw&H=-R+M{7tZ72|>~hhi)zZdlcx!?s9SVfkGY9U+Derh-QB5zR3=85s*(>~X zI*6ss{#>w~nyg*gc_jcQi>mhT3%f<`2l7Etc(n620%3DcB!e@@OBcxJifce#!logBEeiW+)Jr>G1mxwj4)@9MmfvQ} zg;k^pV7fHbXtpK~ZtxDqJ~QIelV{vIM(c^v>2-|@*SfD^U(9=BNm@H4n#T}9!bFlD zDr^%?>O|XAy3Rc<`Z24uqHz4i=?yZ zHEHMGxXX3!Svh|~w8h({@k^0CUJX|7xM~5GrQ8fl{gU>y@+w+C(RngEUvt@q2anE* zY6gr|*t22&YQxO6bhnz`kfV^(zkmH1AAbLHpfpH|twxD8-*PUk_lI>BKj+KmVB~&t zUT5%6Uh}e1kPyM(I=3@u9$9}yK zl=Th@_RFf3IHB3$GP6+R0Zp~o^2)EZoieM>c1tZWe=~MaU8{gGi?zy~yq!pS_`EA; zFN3w=_Z3Dy_Um*pVS=E;7AEQlhxiRj%<2=6fMt3(VltCIk|VWH@O zg%mr2rJn+~qZAWoj+bH4C_I|A1vz>g@mn2da;bezoyGg$@fUVd1*)H8Lio)^&B;hx z9A*4!0-6d#GRNQYj$xfE%nhy>zdt?)7Dy^X$fdt-DI@u zFwnQSS<%WP*K|)61q$KO4hY|auOUqrDQZLy^-7>kC)<)^#E(0QpuFjHB8Z>kD6r#Z&< z8KGi#v`>9HizXiF=9#u32;s;`LDu-2hn!Bzi(ow9rOqX(-SCd5r33c%WCc)IPv(}9 ze0;=)oKWD+7$Xf%L$9`85hFhGMgGl<_z6gzX_bj9RUS@2fXLaJl#IHrCbR=Z#Zm2v z_!kQPBD(?$jI$(c7w}}hD|~p#dVSr0TcUpR(MXvMLZ@7GR6A_Khs8+myL%Ac%hXxW z;pZ-c#IH3jyqmiU(prdaj3TmgfB>8sMdKItYx;H!flV@n!=kx8-$EmxA8oVB@F1X5 z(|TTnjKZ%aox{Es-*jf`LVQW-87h_G(9&PY&FoYT0m#l7EGmds@5b8`t#x6{ zg1^x-ypDK}mvd7Np0uy%I?-}3X{Obegok5ECA7#Am+<$Ok}KK#oCV>^bK!opO^9IQ znLXU>?7>A?^$IH`lPHqsy!e@TX8ZAoIz)Y-k{1gA*W8T3`k_ zcO*dLk2p*R$8-BLamP1DH}Cyidw-TDVjt0Nqm)E`voU>{p=wGk8IR9ly+HBPJ%ql! zWhYu^{K4I}{eoiF6X4jAP;$`sT}qVgonkQAMcj+k$A12Z?WL(|+zmH#E)k0C8XfgG z&@r3?W_h59$Dt^vxa?Q#827M_?GtJubEN73%w;%l#v_?6TIWKf0<92wIuPUjSw;p^ zn1Bx_J~_X9edjbG?5fRaj@mF;nZAc`mNt}kbFucABWq84XN*LVYJ`y4{VkPTE502^ zbT+)(vG-7#F;6HjEXgYul2}8`iI&o!5XUJ{J}&uN>vwIf@e{UZrI{d%d~Da@DA&a( zMp`>C2X7!}=rcvJk>-Lfvz|o`njQld$^ci>lLQn*M zmLfwgmAcw807h2A7GUER&2A3DG(HuFn~ab6(0*$pm9so(6`0oH?-@|NMIX6c7Mtu4 zLd1}g34lO_yed(ccn4a6+FnlPuN~B~o%>e)*f}t8p)}*ChaMWn#TKmv&oAL z%swM+h76bu1X$KE)6*G(ymWT16E}^7mwX;iBSask`bCS>U~3=yj9JA(B}n4XWjGR39LT0(?^Doz5!6JI*R+qOBBQn zt~gBcS#_woTG7?4e13FcPGM=43(aiB-3wuoSg--O&U{|k2Ni-wQ4lg`O_r@QJmpnO zxK!BD84B-uLeKgBoMhEER)$-w^lUEKm9mxMdr8AQ2UQUi3wYPN_w4CSJ>qMaFt!pq zW&<)MZ4CZu)mq$o|&H|T-=PKtyHJ3kvgDmAFL#*q2R8m zIXo+>WR?W-EVA+eY4eTN+K?5g*fA}f z{{$gIve44~!PVH7n3M42@D=pXH1BH*+l_i3^u3VG_bxTp-5cAsz2io>r7!;zpNt9` zquFYgOOI*G^aXHEZ9W~ehc7RqS|NU0j#h{+tcHr!jJ`v+72r>WvRJb|SI!b3Nr;f? zcL}{73?x`B01tLnYsfAmKTUVdz22B+i=49mjO2}L0;-sz+e)2#CcERKG`<`xkW0RK z2)T%aW4uH+SqI%qM*Y^~J|6gF>yAQn#{H&{^O<(P+=PPd#)6bxF*(s%1)FPanMT*j zp31@=!OdV&PH=@*;nyWFV&LuZx|G0z&AuKlt zovx(IffoQsEmmN|^1wj2gH+i-sA`lkHybBaa?osJ*Awe3L`|H#;;o9Y)mtLns}6`C zr04IvsZDRjyF+fwF>0pMz=!=Q7|PbTKNftY_^dANlckr{$qhz8@O#_9>X^KFS~XW0 zim*UkYC;kQeu;m021#>-GfzL6rXO^W_VY;oc)1g$1N~hmtwugkeJ-E+!mXrWYk+>t z9&qAWghGRMoTvJrKFbt4M$aJy+C@Oj(6t%*MRx3ic=fUYfoVQ+ZClpwEXU{~KZDc}+q z_IoyYEB4hiL@GR`yb4af-oZ!0?tb#TBd4M4YNEC@Pc59tIvXG`@2sz6JJ2Q+YN`Mt zTu?45qB3yo+{>n>%U7x|-MqGsl3PT+RMLh1q06`E4RHz~l^9}z8>nMu%v|$?REgsU z_1Y1xW~CF@3}gT#QlLVh0d7kZE?)O~G^7hH6Pk@sw56Gi51p2M=+WZ@R9;Lh(>@8lrhz!wD zSJl(_Hc{ROnu@6J?IF{)Ck8(p#uXtbiOt539tm~T5sp|wqW&w5NEaTKlYFI$^0iHY|n zAp@$P2dphizS@y2U$LdgNnO}oK!24*D6N|pPMeqV139Spk*e}7*YX$kET()ecFzzj z@mOpwus{l*HJ9oK$Y~91>G*2_|L!?vz*SWu+YxmEiXK zsz0+T*!aPq2+NvK`uE-~os|R)*3E{U9?z~2~ukIa4TmouMdz)s4_>Lv!8lJ;5h!0S& zm=QP8B#H-4ZX-R_TXD$?Y1~4`nUcp0s2#BXJf4(?olWtz1qdqDwU|k=*UPtuz$>B! zR4VT%$D0z_`$c`H%Y5y^=0jPU%1bo?+1b3yrs3bNw-u|5c{*D^WKQV4GvorTMC~{A z3fptYQm|cM^jLbLxyL{r!{y~}-M%3>z&hnR1~B0o^Y%*;hW)6zTCv5vcWsc{*?MTe z?s)u4f+vo#0n&vN-<|;_at?MODd09Q0rTSy2E`(jh>)O_4-|vjJop=6AZv2_gjLF! zw-qa2k8FyzA2DMvpfl&DgB(oT7KDTJea_c4m0pmvw3ypBTbVE|4vM|ekxc(yc{iyj zh^pUQ*D>L6Z4{|6oBa`i|`EF1xbrGMyXIed@IqjXaM~hGdjdzYa?4ckJ!s z=2lI#1?H2)>^jlOGz*QFePJYhA)3N0q#q;3{Cs}|R>pA;P(gvN%vi^Oh8}%G8-DoT z;i2@H?O~x9LFpUv6M2QiYL`aHXQvCINk6PI9H@KESGM-ZOuDmHu=6@|V1KFK2oaJr z++uLY%Goq(_VFN*eZ82B&LGOLabBbN1pwAO?#IVXQGZG=@t!o#*JER>Z?i5Gd;T!T z_00K80jTx$yN~802{uQ_#B@OhpZ)TgWb@xg{G^w67?)^71ftzmfnbYyRjo#!zt2B`tX*C zfv=v?f`j8o9x*p;^^F>p&_Rd!_^ZDV@Af#+}hl6S3RD)0xL$H4B8- zLLbNAC=0etvX3MrvAh%_RryYIdgubGAX*AiFXF__ko5X)l7yEQFXmpBlH!cUVX|~~ z#=1<`z2s9$?-||^7Vi_2#A@F@3`d9LjGl)?HZX5ou5`RvY>oPzHm{9S9_DFm)*xAI z0kr{eRhTKrJb>Nla59N3P$KXdE@Sk)4FFK}J(4o~=BouMuZ(q9 zaH(@>GFwnz72u(cAqkY*l@%^+A z@-hsP6@Cz$YhUFAC>TL@g1DrrOuDE)vDIwdMTD)6yeCX{d;q~s5Z1KLZgQcL+usc1 za1PA3948p`nnpU8i>LDu-Bu_1Cyykj_kOLTsV&l1CdVcK!<+>-@M3omQ4EhkhqyD# zi9V+X$HpZC9|8YM%E$>EsXO{$*D@rNL2+k`dCbg;w`cyKq!wo4S3c_=ND>j>*KjGF zkpvWL#VW7!@nI|Yu*Scm%En>rM9FuitSfl;WJsKe%k$=L^RX73Sx5S4k zhs^CXdAnQ+Y*`5xDN8fp71ZLHe+Ma9@{3tJsEt?SxOC7PzZ z55~(E;ToFUh`)4G(v4s@%;r@AsCH~cHcsqgfiryxIo47(6q$a(HD zYpNM_;M`O*_gwcV3QQ!JRAh$wg;-&o(HCnjepJxGI;iNz^?C_VBiWHf?bUW@Hx9ry z%(pcWzEc_cdClBvWDGIVG&AK{1`Hqdvky&f=d#AE-dtyBBw3K@9W-`7k+j=nTXTJh zlcs1#OK4#WpQk3fBu$f;537W8h`o({Zf!+w8N8>!aT_sRuh;M&27M6Ang$JSi&PVeSmvUpA z(@p7|cRZ@{Pz-HgvUB=i>sZ=&K#Tzl9?c4`D~VgCj!Nmml@-NQ%jb7RWSYA{vQYbr zg#$=QF)fRj0wTdu_vQ18_2a{>r zwtWnM+}I2D&o?9f*`f#j94&oB1jVq((arJzucsg-&Mv&2h+?fNiV~ovfV%yi3NRN0 zUy}54==|>>yyK%l{psOxE|_TMy}Xo=|4+KD(4_C0N?n37C8jCE;a#8$#;xFf(sd&T-`$opHDN_scimmvbbETv}DDaD4tK+#~)G5Jbbj5mA*?+l*CK zVMetw3;qEvG&X(?W8~~mWgq42W-NfsYBvmMG;UZ!5ycPXo85Anu=dXB@qv)T@-p+B ziaz&_N#(V~nge&hn*(k*7GY{n#iC|x))uU;(u&i}JK^IYb3W*d+5q^+&PLGv((2 z#G4t#0ByKzRRowmKRGA*aX|~@?gllu*&cYrn`{EE{bsRHFt4>*ZWKB_t3$41g=w0p zW){if!Nz8~AnOzb%}t!Ti8OrSI+hCi=AS{G2;A_2xcyuEieMsZUsq{=s9w|OfSAk7 zxfLnUQ=~TyH{OR2M&^%_KyEv4^PuNU^Y;dp_N*G`jX<8OA$L>P`hi52rnH3tHb zyTM)~Gz+F1q43V|f}9u}blf!($c7b>LsnuGk>4+z(+|Lp0g{`Bz(ets;& zSkT9OZ8<5F7E$X=_FXz-DtKT`wtPI=vxjLNl>7|u&X`kzHjmYUD4rvoOtE@;wUovW zr_t2MWQahqNwpiJw|iCN+;pRDvY7;7r`m<{2HX4o@d%a7+nKQ9X4X>sg=~YjN688Q zqW!yLj#f)*x4`=VRbK{t;B63<0EH|7f8djFNs>AULm{dKd?)tO^jnC}!6GMkG9R@+ zCb5PaQ$+-nmy)MZ6>%;~#VvV(aoc}!;_$BG5PNXM39FTbaINWPS@vAAHOBc$Mb@YG z+gspb8#6Sb5o+Qc5*MHF$VhlW(W(e;#}R_J;4KuAu23OMWN$-qjp1IJvhpJJVS4+$ zSZcvzKIxdcyXCvRPXZpe?vN~d)-<%tF|7b{lvLUv%rVpogbp%!?o)B!2chNyk&mqe zF6G!baPdxv5!c5*@4_-4qSBwZjn!UB!X}xajo4+$grA5XoY*)4xAgPs$9rJ_6)?Y- zsZ@K{66%wva%cs*3+RdVeMEURmY5?>>1>rZo@gp>vTEMh70F{|UBI+-7R(jmgn^Ge zr!^@PFP9DNG5c|jwpaxpMFWG$e$%S@Q*VGun`vsiuGY_O>byDt@C!)Fqy z7`{DrW-Az_Bp7Oy4oSfZcwNDl2T}tbd*1W?JM-iWa48@kMSOdCqg}mZO0E2!era10 zK3VdjV~wf8sgvT9#F{%ach_HiFhr^lW}@a6XX`%8oS}(qC>Fjdu0ao6lTRj=N;{fv z>{z(*yaIY3Ia|hU-_*$&w(YuFx{z2BV8Ob!F?1`7y`?0s23QJ4%N<`kSg_dpM;lC% zYq+nrkv3L>{tKbhX3Ho5aRY*BH9B+f{*Fsg>{jr~joift5qtHD$aa4lhfCeLc$H}w z7ui~uvgfp_z15gmw*6dnyI*Gdx*%Pz{u!mXLPeR<5XxiNn#lrHO>FUV`SG9=i`qiL ziOzrDkW{GhlL>%IWNyzMTpmyj30YJ@J@o_`E6DB+bTm&PP;5I!!Pl4yJP0LDsR_R=PtSelC;)= z?RSTv1$LlF$4SuRU7S(O7qe1N=X}@zllhN7pACf zJi>4<@Z1^!>%-_a?P98P=b*atBBoQ0XPcXUl|*qxi=<=-qE}8tWZ-60!;0Xlvey_; zeex2Ou4k>L-JMN1BcoK4^sC*Af#Wt_ssou}j|wN*Bj#O%m*G%?S2!mk6+_!FT` z#`#_qvk}+>coa_&6vu^d^1*vR}YvYm+@N{1a+h~WgV~7 zsc+Xe0au*Kyh^97@OcRH*1Yo22|0L|^_Gm+oaA|AzsCYM zx7#KtnTn zXB_p{iy4@#xRLNcWSa7XQjjxQ%ikw=tMzQ}{!n^*1=~cL6~_E|3#wZc+6}!1vYgUfvOyA&Pa-I1lj)V;C)wtdc{W7Uv0}T2~!WFk{0H4S6)2ntVz^9 zFKmV_VO}IE*i-qcP9KPT_d(dn{Qc)yn%P@{+@U5if*h8Po{?X=iC(dDT+5T&bu3Ve zw`4sRI}S!t#*Lop_j`?;NLA;K#evidG@$#pUSh~wD4b(uLOz{33LNi>#q=m+r7nc8 zje=k2vD?-Aop=$M;y7OUF-=nCx>XJ@phZqP=dwTS;3@@Pk`o@2Mokb2tAc*5;Vc)|aFcLn-e_NRS=tdn zicgt(W=;DXWoWaHKi!Ui>+1S-YD@PgD+U)igBiM{hq6lj`<7_@{$z#qxVBLyfZ3RD zYmw2sKah;cD?ftQg*h78>@buAB3bXzoU9_K@P~<>Zi~qz zm7^NA5iGEIY|Z$o$FH3>*US`G2)rn*dt@-(MYconJ0{)tvK4`Gh)r%zw*>H0%Ex(k@cXgclA#B@ z{FFs2IpI2?81w$?AgSZCLhVe+s1-xsdXn_bC#;#^#DjXHY6{ta?3#+{3`+_60<3%f z@0aemClCBBjLM1$kGa&L2t1gj`8PWRq#6h@n$!8vQ$E}Ie2MVeJBcGZd&!{jhzhw1=P#XhsrRC>4j?*fifz6eQhI+F}JDy%o*jJk&PW)x62SOC|jV{(I{*#Q@ zBJ?=OtS=Y^wOQik-%loF%LhC{BwEuo2vW({%1=tYy8JU1R*<@s5w05bHM{!u{WC z4ZRJ*&(y~d)2m&LBW3W3f#nl;8D(MICv?2$v%U^#5`9nD@^5}4l8y^=23f=HCr-U4 zP?4=$Y4{h4@xXb2TxJQ`KX)r{lQR{vZBZzvP7sWPdRncE7dOHXOi;j!rFqvcI^}l4 zZ*#O)bpEJVXZ0t+Bo-q*ypyt)b!KI1B3R`^%pP~%!LY%d1Zmvfc--g%^9d`>>t=Ay z(Kg&i>9EUN@0~~vXf%C9&V4O%h3!>ObRn3?efq}adrR0fl=E(*c_*;foLTdz>C6Gl znO3%TrVD5P?)(5KR)Te=^6l%|5^}KBet)#V_*Pr0OK-k{^1X8V6#`_!oR-t74i>I0 z7?DK2n7fexgi4*i+63kqP+jEZ7;CZbkLat7lvEpA(OF6?dlL}c^hPJ@)ihXiRcEHx z+L1bQnmKu?l+rGJksN}F;2uxm*3E}>Ac_vc z`bS}yL9tZrbOn+8rVXTErp+GRJbKhlYH)ZA{~LL?KsdqAoK7k?nN(Sr#s{8gSqF=6 z?+Ae7N}>x&)!JgC<#S}n^ih80gt!aJ>?(|Qi=&5_&{g^$kKIH(V``o(d+lf?=>vYP z()TZw5kIAaCxxknj((iLU||Q!Zs94) z7ZHqiM<22gC);?(bi!4RMY92IVDl7LJL5V`_15r={?hQzn4}b^J~?&1i%w&w(N+xB zR>JC30)bbLl`YDb!hXl-BNyMicjw3|R1#pR0KN+|>Z?57$6Wd452|N+pY{8>{=)vKqlCQ_x)CYWWkmEvn}{(iKfdlv z3Nug9C2P7CWdQyn3iRkTtkyD*+>c4MD4x;c0)N1`Z2(&vDvMJnYIE^`4`S|o!<=ipK& z63}ub)(vU+fi<{ZV3R-RiR6`Ef}rIokzXOuc>{W6OY*%dA`VRHM)z5YGtQ9Fpc3!J z*x>Rn$-V^24w}QcnK>4FQ;x6pTsU?&o{pTY-_^gj23%V_WME;|ZA8dLbSZ-w^C%+X z=Np6^3ATiqp`Mj^6uJmsV8}w4`tq)Y#)O7QhR1IWWX^$NE)%QMtZ^a%(v{c$5-AkCNw?7E z+Q;^SEFY0!ct?PiH_=6rYfol!$q>SooJuM2I4r?PG{`JepJB>RdHhi(q;ylcw~QKI za7TLdv@8V`l%1TUIz7y+0+ppcbxMYXcKG=U)~j=|ftsLz9IU}`J8AjGKXmS1i`E#J zCKd#+bs!GRE(WX~6I5#U73L6>!83)?ili1XJ}4B>`E@n|dW@J(GcP*OVrGa>zR&vX z0-6!$??*{CsOo|-yl=*Se7kmsmj~tLgF3xGOX;^q|1si;?d-u;64rn0Pbd*og{LHv z5Kg)cKMwRHHrCTCj+|ch2Mk5km_bL|d|v|oICStp0;JXjE%jl@a>UB$!t>guA-j@A zqdZoO<=khS1mLNmWow;zV%jJ=;Sfs?P&{E2f?qo{$+_YKC&MoIvdAtUB6N79ay;|l zu-GGj^G&~eAEQ(_o$oAm!?H`ckN~jPZq0H10t=e~0Z`2E{u+gocub`F)#{WhHQj&DGCB)B!8lA z6Ko9TU6b+eC8IbMv z-aM~y%E=s+A!yr|QHTO|c3~hb4T`sD7DZ8p4X<-B_gy~Zr`Zb$}5@6{p+`{f^o&`a{R|-~ais=cUJ2C*w#`m2(*qI2xc9h<8 z3{4rcpD5U7?dsR{a%h~5op0|`*N*LTSJd@=xLFv^W@EL$g&bU?aMTac>V+9u2z5EA_$@i1*C*DuI6_Cmoc|P)eD;?oQN?iGiY=&=yUQl-bDP)^p~7{ndn zXDN4+?_ zszk8RX8-YGgVo5uWnnk1;^><$o7Wkl>mLgIqXilHI%DK7Dh<9Ud)!{_m9k-aox z8x=`*pcB=E8O`(jQ|S#t2+;l^$158#(WtK>cuu%$vO4sm|qk7&go?Po8~e7;1V4ODU)h4!u9O^RZ99d+WM2xO2;`OhU9K zkI;{X`T)-l^FJa->d}kUyVx%_$~5wQXHW zn?V{Q(;0%!U7Z2LE5J8Q+qwZ%h!k1JGFO#Uu!Z%?fp@*K@tCj!LFCJNhW6oS6LAj8 zITH+T#}*#8Y5W^cbz-TXQvT7Y!QYi@W&UtE?-y;Zul?R2DGPpoR3yNDWbe~O93?il z!O|xg!S7_7P>B~&W$ly=eUe#X4nb#ig$g8kF}11{@0DL=9&yA4TBJ)I_+qAE&%BfR zO)_LUFahmE{++4eoQOaTApfz1G<*G)h5aaE?t^c_5ZQ*1sIA*-lv$sSFCdRk0x`3v%lYP}=Yp#i zhltV2U;mzTH*k7iRAS_^oW$xRZPEvBy6quA^Ia+?Oz3f()mg~gZ;m0k3MY}@mnEy&V>~qit>dlj(*cu z-QC;8iu$wS>?SVPW4vdN1VDwTX^*efW9T)*le=BMbsah30z8~p?26t(fv_v`e|QS5 zfs>6KuJGyzTn#uTTYtesJIWgsN=D_RM>NxgJG<4Ip+vOjJMhm4f6`WZUu7?kq!Y;Y zNPhp^D69ui&-XXEu)-es00XCnq+9$UELE&aS_wCb8wIC~>h!x?VkGr=lXB&|DhU+9 zj!RrHFC336v~U?CQA8IPX1?R)^=(r$qY0F;V20A1ms44g9XX2RqxPU2l*)@Fywa_= zst*vq(Zh3x5=kJvZiSLD5;q8yw+Px?k?52q24y|?o*=XSAF$g57duvUz_FtZqZg)p z^Be1p-OI%I3EknbVrd)_X|(HU{?LMi!zhzpyUro+$?<*j6p%f@OBqw_iswRJPzrov z7gHzUc9rhedh0D5zdfWvw65jN>+?v0?pdAKAyhzXnzRLcmQ00qfYW0XY6ty#sM>in z1HR|tV|eJ`4B|20@w;+K`Bp9_n12J0XqzQJXHAX6NR zWIL9|dLJl|4yT}RY1So^K?dbkfyBqz)b+5t_r>v#K+=47B32^XH)frvQ9vQFK4kTx zf)P$%tGSSa*#wUNB2{2p7w8liXqo{nNSMbh9S9nX{rCve5Piqn*$afN#5((*cJn1 z2w`@NwH??_OmA+|V!rw>)Z?Xi{qsJsx)`0UB^;3tVQtG3l&g}O3u_2HMn~g!gYUE+ z7br;D6(sAH-%EkJAAcul%CRNKBjYAMiB+2x;ZPHC6~_CX=Njr}jbp^G=wN|2U{C*^o}JH5gE!Ym?yd?ta=;4jCGg>7 zDExsQukKZpXy&i4j8@ksnx5@Ezs=Hdb7|?O2qW5>0=h`hPN~GzmqOvM5i-yFizX`&Etqh)McF#S2ZTr1^O#xW zm&Lx~w=Fh$+}OSTpj>PQPDV%D{&!CEaVSbez=J^L`2=DUrG15#{}cLx(_-B2G`xW} zH-?wdH$q>6FkN|jt%%&lzLcWB%U1{{T=&i6D0?*Y5w*Rjm3Frs=9lN9tLb+!5OAJ_ zs~yp6?5i0>Q!Ihj;*~@+mPg0K;e{x(2apZaRX*76@~7FQ9<`&~y$N@@PtfcDH?mH= zyo#N=wnwtWj`y`|S2#9#sXT9j%jWSs{1x;OAa^A|0rMawu5XbuZO{!nyzh2WaaxL@ z?NdiuVALKP^oG@^G$H$XJ;>N3YDG)g-W|NY_7leHE|F+bAAP)F*8-xkeyM;pZM zkNd0;fW>yqIjS3Y_!0L{HnBWyUA+ox{Wzc@3|N|URDH6Yku2qzkeEwV7>W_ zgRO}l0U+`!t?OS=V7d{w*P%aOtXntr{ZMj0<&+{Mp@61YWf~vhr<|=zBXl}W=rL3~ zTx58$58Uo6Tjce0c!-=MVlZiwgKAb9vd41myJlm>|GDHiK~`913{M~9K+&a(t;;TO zCM{Exjnd3JD$j2uFn@|YG>UbLVk=2?+*X!|@mb_|weMB3RjaI9Z2UbFs402$P62R~ zH+T`f^tB zcFbh*{Ur*tS*H~kcyrw5O?Ux3c5}~zRu+7S>Lu;{M~$)CU@Ff0%2@cH5LGo+W(|$& z#fFCw2plAlP6fGbLRTb=k$8l*&RR3Q90rzF>(r zT#98qJwx=n97AVVeP3mpIx@z{)meaiLFDAncHBj86x(ga%F8Bg+XMM7RTLAxA)V&$ zcrj|y&;N~}tm6EUafL%@1B$@X?1{O?M$tjxmRjKO+&SxwRR;p6 zwb(OleL5&;>7m@Sb*X!uHDbeaZBH@Ghu2D#){_w}YK74lU5yzI#&LQx$(PiW(vDIP zP>K@GLZ2&{$1n)<3T3H&;b?zNUi$_B_NkP;tNh7c{?&$eIo4FmE+=b{jcq^hffjdo z9u8cNzPPy!IGC}nBYtWx9_czOvfrc9;Xox|1Z6)O8RD1;3 zG=f=Q^MfHaD%xcs(0bJ^L+#(tFk`vIP3mutMDVFnuItDe@L_qG`azHxlM@o!ZmjHfNrV-IE^j|qS zF+T&!&E^J z%)GTM@2_3H>pb8zhyod%m|2e~^99x*H`IUuO2250L7_ywIQ0m*ehXP*E5XB^^Gdl& zcYn>{kA%)tP?ej~Snb2US~PE~k3-Sj`iq6t!q2(J#P%1pFWoxb(2AK~zM>EsEXwKc ziC?}`lGy{J;$QWYgbEmvJJ^B-6y-arelK`jymB`EsQ z1E7}(B1N5C5JzWG#gI@40>W+`Y-=rMTJYyT@{X8Q#aG$A+C+8jx30H9OFL zh;(`meLdAbYyeIA7!4LifqbrUvfm>UuMEPqk*z`xHq?~KeQ5~XgKOgKU*w8WgU(CQ zi05qeU8JK1Qtzpg1)@(THrjLBna5;&7IHpC&7J{^F)XAFH8#ILK@SC+ga=5@8j;NH zPKIOo8$zUD?ib+*dgs|y;1ItHerR*=84wU~m#NXi<6dEGUug9}TZ zt{?}1-@xppfPJF=&gXoLx+OP+jP<5Aqe%m#aEPrP=l9hM@rUM7`0`Q64&3%(tvY_q z*a2_ywuL9Q%&Q8{%(Q9Pedl3Ps+G2VQgvk+_EmTT_em{~I1{2Ks=?fIPE{j-DYhjI z>cR~$k|q>3f+cS3ySucrgdo6!L))ZP@-d_~!2v%+oULZId^g2DsXm%E(g z^pk}gOm?R3qJ@+W{!~<*xLkZQTWN>-LQ^w>85x*)glU)YzHnW(`Zdz+!MTJ0QyP;= zE9fzP%!5J~xb zLb=%;{+FSc`I@2d5}CnOLK;MxhdRJh*l zTg9vyGZsQ@w{$Q^yi?wUBTG%ZZ!r+M41xax{s;UI_#fKp#~0WHTGgu8A%U~Ko^$>O z{15ma+e#s%vOh`H1f>Rd?LL3tf588N{{#L9_84(;qZHBo_D6?k*I-*;IsXIx2likb z;bZ{~h%tyTJ*wc5od1FU1O5Y_2fsodsa!-n_d8~QW9MgAT>t}FbTrxgjCTwWVY-WR9Gl852f`jE`&IC|Q~;eG3*oJYUG^h;1GsVcGwF6Nq<~_OEd&g_*gd zi2~%U2@C_Wr{T5~Sb#?^%6?kmY=a(5*9N_zsusuvV5;Y_XE;u;PWK{=RM;vAVctF2 z^f)1p+&s-ln632D>u7}-Hg`cGdFCCjR`pTyS7c^@xbi=O0#r?KO&$)6kz{r&&K}>m zP3|5OSR1;mn9U9y_5wICY_hLYP6lyTRfW)@UW|DIxj}sCXpFK5u!}{A5ClgqwA&P> z9GaH;%NHxsB!IQQvpPa`YaQ0LaW8tCWhY9w^!Bp2(uv zy>NAU09G#V7U)^G?VM}2h(c$(B#!e>-rybL;)!wk_&Mt`dg2VBA-yKE-kB_MHc|$( z%bje(%_!8@Q?!p-g=No73wq!nek}2zvWw)pM{7{M#1zsH+oQTeqhK~23#ii%chw;H zwcM_R1yPcWQQl()zLUDkQ^Dex2NY|zYot2b(Lbosiw~~1jHQ2C_bFgRUSpX3cNwG>0>33SwN8dIqdJFzS(^7f zgBHrZE|l2cbat@fkh;JF(*_<#U8bI@K~go|yNhK41HUD$3zwL-YR5Ka6ms2(SMxk0 zYog{SDk6K5Tnz*Kzel?=d7#rWe{16(-zL$}9!vbh zMc|p7akhB5I_9sR(sIG6pkOWKk3uJzv0++ueZ>YG8Q|1ew~4R2T?f`MV6km7X6xBc zcCYDje6;hlV<3+{(gTC+BNV+(hk9KE8m`AVCY0mxZ!c4xGWQ!38Ua=5rA)OFG#cnn zVyv7(Dt~F55mLa?pHb((J}GFi@*olQ@uxXYn0F{hlOynEuOR_*E0q}WhFq5m3^Z&iy;1OSVe z@GkYbQck=qD02D{8*p43I}LLp#%^}2Efc@l>>w|~j`&hrelO#vivF-oDGqptx$&b> zfw>oVc4xJ^n($J%N4cmpRy^4+-?>n_+yMJ;&MXukrvCAy7;a9wK5~fE_Ro`hg&uR% zY+U_ZmuJ^ruh>M|T99$u`J3y22^k)Au(8hxc{b{bmn^=@v*+C4Tx2n5AU`phSdsqe zu@RDzidG3jA*N9<7Rwr9x*{}qLBg+Bx@@Lu-C*9oGbX%;6!4xAs!Ch|o0iN0vKl{P zS?Y^Qwt;#`_;p0qD%ysL3zqVbY8cc*bn6<7d0NYBPD{nW8~6L$7yy=;-TSRy-pI@r z!B~G(kM1H17c9+Y&D%7VnbpAIMSWY{Xf7cBkSvjBhaG*}%pQX+=<1@UQE1TVlQT7B z0cG?lf7%I`YmYzA7KEi2S&**vB>2F)*xl0dV8)Z4ZsPP`iKg{3&?c zz)zC{N%~^b1)b!s3z*W^M!P3Aii$XR4EG!L1Aoa|j-S0)t*|u|iK))5+*nCi9u|T( z;x=#X#A$9a>WaGZ|0@<$S3WqYZu>Ihd-P4_IT6&8g?(0&<&lM{vZMMV&0w(vxL=ps zOva=}n4j5+Li+b(#~W1IE<`gYdZcvPjA;!Wek0J&q95?!4+UVa&h=Z}d8}cWJc=!i zBc2O|Z)45ft`K5Nw9w@J1V40H%=4XbUE^%!rit)?Q$)Xlp#v(;SGQ$)EYn1{==)7XBh zRAz+Ua&CSgGv}A5GQ$<8nDYB#3T@E0Yw{=U1&wSqzSzENx2B36^1hq&Uxapjr`kz` z7W*nF!1KOG$@H>F3;PA9OA_f{XlsNyxfd?){ZmF;hOwoHVj}|~bY_OlKswdJ-zu!2 zD9pgEnITHz&A}EszG++Sv>a=FH-`eaUzpKF(rMAqPb_H0S|!pzvO9q1@)0c>svo7) zU%vFf3*?NfH2vHGoJ99$%ujp8FoJB)dVf6AQs=+K} z&pBGly{3>A>$-Dn7$EQ6O@|sQAAV$DARQ?}flnaB)SF&0;$FMF&Ff5Dd<=C9xPtqq z5{2#PyIXXcu+IWkKz3kkPm$V^`>WN8%5p*m>hk0S5tUBm7c+*8efHAyW-U9QrmHV@ zT+*oa0dnT)PTckTxqA~{NJnJ3Q^X_@aK40?vw!g^3W|$DRe8?H4YYWf196i%RFy|m zXaF9ekPvHZlLP>n48gA=v8zs!wQz$!{snLIif9n}+8I;OGXqF$Fy2`dt;|+J zi(i+=yrKjm(r~YS@m?Z&^Z@5vqL8OTRDq=z)ak%h=zzRB3V_6;u7TLHg-|Vo+9_z6 zP(t6AHstC3-=RZX3-S+taz*GKD?_lf{cx(g#9h>z@RP3LtfHnpr40I)H{>Jn%>3F)iHD-e7};hP^P{o6!H zFZ#lu6b-!zj~rfPh+*UP3E7hhsLB zcdsYHAHw0P84g^@`UkXOJQp!pVOzqot${^p`touo+9m-8h+i|`ZQ@=vnzvGcJ(Vk8 z#*=1++79VC+dj3-M-Q|+e^(O)2)5C}Gv4pTO=nzyG zEr#+hZCI~1z*TR?&3aujF5xrG9hbj+ru6KX4MzJ_j994m=}iH7k1C#%iI5y1`Tqsd zO+dA5IiF{NM)99&)5MLwb!8Zu@(a0l6$_?8%`T`vhf^~#x|Az}uQPK&(5nKKNi~de z0f5Tu!bX!PzhRa;UnSGzfe`kb3LJ_xD>m06>ax4uX4nxRo-_XdUP#bkMgD$&4=Sx5 zE$5Ma)rJ1O1lVmMH)cFfzL1&#RaoYQU~P`_ghe@XWjBue52$=Y4o^}u*eeE0k{2G* z2p)D@Lm**YS6j?1FbNnG0Y~>cLxT!4%>wr{yPKP(fZWMCdKR*D10;ztgL^TX1;|)A zN`S|Ep;j#v`l!h60Mf^={80(~=sSneVIM(pI)I7P7FX=hIsm>*Z{d;}!4YU&sts=~ zqSlo4;Kvn>zZ*Pr6HD0iytKo2n!$M+lS{jn#P^%mnA9sb)Jc9T7q808nmPJiUp*+b zmDh^nEN*w2w_r_gLbUaw7?&Tq;0U)M(yJI`&rjgoOX)Z$mqV;+W5MfdX9H{E{)D zIGE9wUDJqYhW0c&XCIS7lOL6H#hIUI}Ieort_d=yI(j zI`oZ>Y$!pq{H16Gj(g>}El+)ea=__4juR|*Dnu7-7H;oGoVV3rcztjW>FW5IR;MC{ zrcT5V_iF>G)T>h^JTf@yLz(BCaOcpSk>VcQP$+_ct$S#jnj1R!BGRSixog|Z#kBo5 z*dyoVWPj({W1NkffX4LvMjrh}O}YHv(ahc7>Zj2mlp51e7g{%gLA*)sLOI*NjeMCG z@8?Q4L~(I&-KrNv`Ai5GTayS(EFF0TeQKL@&&z%^a7P?Cg{R1Agf%FTXhHL+4)F0( z;dZ^e=zp%RJF3f3GBD4@U0^sGqvS(n!*_j&xLMfnO13RwTZO`6yQlS0DW;^+5W_`P z->Z^^&7BPqQ-@wv9)F&DXHSf%z)+U_{;DN3)S4q0XsWyQa!|Rtt5JH#&H6+sBEtjv z&~8uwTkOa2=VK^`F2yA!az|~7Tcw@kqzF_5QPG_F&KrTwhTdVc&|>R z865_ItQ$Z~-ok4C^-&0a32;H? zWWq{yIp44f3`-z!3>6?n0d^Wsc~?uYt3S4P_+N>$mg10Lga2NFPd=6jXv1IGa8mKH zeIiVt^x{bFisk{Zk%`_C4U{{sC&{OD& zLDyPl+DzZjn<`o^{1^yIzw!xq*CW;u0KVK_Vl03G$=~*Zn+w6|{c_&W(C4?Kgl{^; zJ(%TiBGbtI@)HjgL{>2j{3WcM$6tSSe#*K2Z)TOEC+O9Yl{cWAE7iZ!Fg~OuzqP|T z{BN~$ZFA3(zxtwL1w2;Ij5kkAIkmhY$3Wu2JF9*%_-hM}T!^2Ai$=lSjGZ02REM)i z7%d?%=2BjitfkfElV{m^vfX63n7_@xe2dmp(DIk`4$_2R1%p}PlynZq)Dw?;XsemfO%~J$zk<-50oqa?PPEoBggIQ7G*d0M!JsTQz*19fWzrv^@uj-Ca!53`_IR&0$j5-d!>Z z`;b8v2u4nmm}7&k?XP2b8$ERg87c)P1{1tX<>fweWWc01M+ zSd^C+1r3lhQxMf23^QEh-_|jKf;zlr&tksIlX}H&kabYK#m1tz38TwoswFh;X}m`x z>79|q50s6CR){bmC0%Ze1N`0Y!ZV7q&&hO=J`+1}+S1TYA{=n~mD>GJgmU}Qsuycp z$NiH*_NE%XM_Os0N+wXxC9(iv+z&;D#*ULby=d^MENIk5RPHpIJU0H7`SP7FKm!fnN)W90Ae@)# z&nxwgS*XRCiFqTt{1*jgyN7#POMe#}qh#Izk}G^~5Ia%Mq0LaEtMVsn(^`giJe+`P zZuy3_$0EBU`SyH|B~6@#%0S$+n$Y0bC@tRI4rMjkILIa?s^Cn}{$_dj%z8`4E6W8H z&XYd4Zd>f7aH=wa#}&V39W^e6iwXL`>PEX&^yuAT6omo;qon^asK&|>66GE^3f9e! z4%f6c?cS1ZP(r{7f5Vm2D>&k*ZHYF~AE9tcnjl38%)C!7#^AhmoDliYzQybI94!p#|Nt?w}>100AHUDV3|8c<}Gj zJx`6>v_R;ga2VV!fV{?#h7hSJ?KyRVV`hy{JS@n&Lbtry>bQvmAu)@U5j?a&LUZUP zDs7|(I^?4SyvUvoYW||80-x@&JbMy1j*8o*>e?&H2E;kh%xIEw;rj!z{(0eI6+ugO zV)sTEuYXFLb`(;V4RZy&St+eSzC!$#qE-la0!viB-QpZC*1Zby)8*9glq9HS($a&R zEi^vazC~~CiXTf|`%|7g(_1X?c;LuYJK&J#ZMq96Jcjm!;~P5fH2*;Yd;ypU8G2hj zaHyQUp9MqE`6@DbqHnXijeF`)xXtcUAM^(fuy|3HH8KB_O3=`Iwax#Bw$%dmzz+o{ z-mjP2cFbjEsZUQ1k5uNC3hQtlgY_y2q0>7#8^+hX+)9a+pUxtEy~XK-mfu5yz#?o= z2I@liSc;ZfYOm}@lT?=SDW8ClJtQ8@W-+Zqk`dqWm&QMYgW-jLgs&=ZvtC9&v*G}6 zZ)WMY0g510K;KpA3XSvM>!O590k~{mKxYO=9E6Glpq@K zEPVI45RzJs25TDj#`?WE<#L>svx*4pgUbhBGil%?pjJ+Up=C&u_E#CskH%psUD9kB zB+jYxMP+V41L0PI&z(SiS3_h~NfQ%mk&s+a<7<*0hSm{nSn0<`&3mQEDn#G;NJF{R z?JOoWU$)$-l??{Zup{!ll;b)*W$487+F<~u{AEZe?Yy|YF#$9n#|!*d8<&n*yBByd~E?yZBKE zYOCnLWM5?pI|_b6C+p`+sgd+{Epfn&tr?4G`_%=;hYhk|DIkK3!r*WnA*($m`Ou~yV9eUrzNNUp5@9+y2Yve^g1SrrSTuE;g9XQZ4AdR1^)gCwHH z?Uz(Yp=W~}Lp3{EhB?|NIayZDk0t#EQI$05?8YL5K%Q%vZTo3r;1xl95Fge9ji`ec z5CjAlic}Sa+DP~SE1ij>f3@`gvBDkeBH91O_WBN4B|IM$*W8JAm#;{YMN1B(b`O zfq)AU?;?T_Cf+PJ!?hL^LCVtF*FsbayR zV|M8zBcT_}<$%8}XHPNj%rWQdJst#w94%kdEbIbj_U=Q{4en!)MNjsY(L3d6F%iF{ zL3>P#x-&`A$(py52@xpW5RCk02o*3nH5^`4-Dfh-R_;e}zVp0H-n`Y<8$<+ZwuD>` zjNVc7#=8Y*I8=%R_%M9$ROz#VBNlnt__2zcYY)M?aC`u4ROu?TeyH(S#D5v`u}KrZ zlO?HW{)f-akHetbsjWbe+&AT%XPW2{!t6V?TDlQeSfi_ysaJ33XiA3dExkr+9X4M-Jc{ zds5dmqFHIbq7LJFb92U;rU$nv%INs`hW12gMsM@e=qGkaI&4M7r8gMk0RT;3w`~di zgRmB+qa8PCySxu7@ryE!+i(d&X#&B#>?}Jbhp^GJNG}UUI(Xux?u2IC|sjul; zcNhd34>)#cS_;VAYEb&TR2(W=!wQ6YvS_9n66R{n^wj<;WU$bO#a`OKIt~=qR$?-> zGN-N{Sq}fru#wj9q)?IWy%U_$Me=fYDfXk}>R%Z&Ov7DoRYJii7_No??~_;)7|W0} ze1AX!mzW>*$_WZC-e<%0{yLSW>+YmapLp0nBPsV4YN#;@h4z}$+MQy&iwM#NMU17@5^b%2f zb>r}R15xfA^`YUs5tI8Jn~x7?(!XE)WT2dSJ`BttFs zg}#`yg|OkJWNX9lliedZV?b}>nCYmL6zMIsfD+CrBfT^7)Oiyzy zHjjYxsP6$v`YY=;~>>)@%8-|I;*)&|{dj#?sN-@*6eh=O&mjIr0Tsb#WQuZ*@ zgq)e9Wt_@!J4Hr4Gip4Z7Lexibo(^&;am(gXkmNxe zm=IHFqOdwy$4g$!SP}uEtPJHE#LCR;w&B(knw;H;evON&k>m&cx+3?%t|9Wj$LFtr zl;39bI)y|sfYY}Ngv|CdDNY76$1g5C>}n zfu=MWVjSqiZ(05bPj|bTTa-3=Yp&xOTtMA^BBN5KSF`KT0>K&_Ay>r0_MxGX!y?q3J;Knx)w?ZTM^U~L%`J#ouuu)*_N47-;ghmFd>lhD;x@!ynt!ti zU<9wv;(i{4{H|J{m59tFPG%b0b(@t-&`q-=uCx`G6^o(*q}VhQcU^E9l={WRxb#ya zN;<{UXDVK^&8^jE)-G4z1f~f8uO{yv=C}rpRFG;n+oOd2kS&JkXp>zhIuOX3Prs@z z(zbU+x`N>NUrsf}g7JTYIjFBtmvL<0k7uNr32cD$Dg*K?eny1JWT4JkT`n4WT(h>R z>SZ*mr%~u+JRRZu7wUgAGZ!!JTP=a2-srLJR7PnHQRq634 z1`6S}A;Gph=>W3af|S_YcZfZ7P+~d_X%9;Hf55%P8sjnEff0v4djY5SiqP?0MCR5N zEtcQ@=HXduY9!cp^&!;M2e}Q1L3E#H5v@9?{u}R3nJT=D)S%es6y3n8$N@Clg(Q)! zCgRixUCHk{|9r1&_R$SA89#A_YXpiFtSgg{CL}NcNw{jlYlhHYA7Tw%j$y7jmi_tx z&2+sAC87lQTwhfJD$J8qe)?nRDqTYBWP55lmXcIKz(W+p4vB*s-O!$Y)1)>$^AN+T zY0;{qr}R4xcj^64y<3G*qmY1UrqNXN;D^nMg4qfJ$|zp@M}Fs7+FL{?h`b2+F)CQw3Mcf`6`^Db>3a;d(_U&a(}WQi z@C}F7?t+VzvY=Xmi~M!cK4Q7vg6=+YOQ=G*RjpUBiQU4CYz`juM}$2Z2Se6Z4N^Mc zG^eDn=^RC2XlL8kg-og0dpquGcbF^0dQc~lN?{g(M@~6u#P^~vkYzUSV|tigT5>DG z3!KH9A#?FMWS3cvCl&(MlC$zI7J7wArn0 zGnbg|eh6?cCldKRf<@ezS^yD5^*)ptQ<}}~kq>l=Q26;Md`iX?!k<%-b>EWJ$AdaF zslh~2`5SXPQG%}FDwN&zpWXFGMYDsZI95`s^MXmQXWbR{rBAU5vfdf6RgbM=X=F{M zT@CCtgoe%Q%>Ay-AZJ530O}j;gg<5q+Ew`o7{L;nG$?2Zz$MNY z)vr=O81q7~7yEPK#~w5pWSZ!|!5F9RMzz!L`Q)U@`SzjeL6w(zQvqvoAm7SPOK5Bj zsr&TtL8Kc4Ra}>U?MrQi@?rCt_()h4#sacKK@J_JlZHmYFMl1 z(SFV`tC|xBywT2YErRWH`L`cBe^LUCfChhwM1Ks5sDIf;`SLQ{IXD2=x;hS3oKBKk zkkcBX_5~fzSW1-mOB+}7n?*2ayu~L{UW*Y5ivMF-ylW)yp>!AZQTr2rhzHt#o+t4u z%~8e}IGtB&$S~++R7ud`dcX<3EQFTHtW5TIaD1aE1<=2ymM)q$vM%Z$buf8@6h=~lh72L<7XY~tJQBR9mi9f;=+rUXIiBn1Iy?NXFnJIV9 zinKI9XU{HQR5SKmRv!|Pg4EQ*W6eL%lSLZwfn0OeP3Xt6JQ}Y{pawb&(1N-#V_c5Y z1=AM8?@YA*2M6tA(N9OI7BOh)&sIU!;I?iF1$4&vW8nqT<~$giZz|C>oG?(hq;j%T z@Hc)867Mys6n7&tLa~^IFmB1Qnha=E$SYgK2VCPh(o?E8VCFu9EuSlpa2g^q+9eP*}cs2%pg!t^mC zV&lP=9}E$AZ|x_*8+DQxkU1TXCe2eaI$YKR2#P$yEKIZ4w@b1NKiRp|VEN#dvc^Bw zpxSUVpugG82~SL=&(O0~QRoN7kpm)0!KIH!%;Jp5AI<3iP@gU|2Q@`3cDgNI4jkoq&x9jQCh8g_ zc_-BPUA=6y07VV21wx5(I7!9XOHK{(*+L;%$DxBgmZ{P6e^U_jZNH~UfZLYp{vbVF z+;_;>|2v|S66c~0KT4|0tfcG)Hr+suW=ej|UR*Zl0BH^$$j$+Q$vc1m00t{V3roV| W7_QLNPy?tE5C8xG000000002T!!=s~ literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/svm.621ae7b516d678e0.webp b/translated_images/zh-CN/svm.621ae7b516d678e0.webp new file mode 100644 index 0000000000000000000000000000000000000000..b154a746455519504662dd91a21a04557dbeecec GIT binary patch literal 23056 zcmZU)b9kiPvOXN!b~4Gtwrx$+;l#FWCllMYF%#RiW@3BdiP2xryZ1i(JLmUDUstYv z`l(f`>aJQrX}Dn~nxYDQ^C>b%Cugo~pi3M=CWW<5iT5fmgHNH@^oN6c0l0tAaP?Fy`umawM; zM3)ODAhior!93*yxuJH?;o-Ju&HL%M){y=Hv}lfUiVwqS0!39Ld<*bms)%k96-jPz z{qcppmKnf}^zP_3F$xd{=(m(TpaO#`5cNd|%qfq3&tBuU??~+L*G=y(E)TjdffSvz zF&izhrmMgJxAf1%Q-b7FeO&d-+IGI{hJ-yz#6F_Q>`Y7{Hn zV5UDKC#_=-v~a=6R9SHlU2(|AX%d)T%n|O$PdBns$L8~#e(U~qCOJmZ-E}um4T~t~ z<23!}OITMQG&9rQjl?bfH4YnXd-D94SsAplv$G>Lx$J2RMH0bGkvcY8{e@W4bpg{r zF`toe5&O+Wr2Q4uect7>o6m7PyX~E9{BlcctljzwqI~tKA{2WWe&3YM2#cCFSG18N zB!>O7K4l_9;H2ab)YCo?=$8Bew3qGR4omB%WfXtV54J5)2d`AlBnN~CMou`2uKFmg z%Ht!LITVr+nx!N6fUUaD9=y$S@XnUNALsZ>Nhk#VmPule9dCpDNI+;$L;z3vx#gCw ztyy|MD=`G+xz?iSM6uSQAC!4vY;I1)E+3Tu+k*FXUnypuz>Y*XXtaSGDy=;uGZTM` zftFC+tdx!XJKGOz^uqENrr}%uu5IC7@p%1?H)QC+NsgKAx#d`rXF_k05)1$Ex$qs* zy!=lH1r|auezQb&(FX>WI(!lGt#62eEbA28!9PcjtTiUT*4W^Y6_FHERQ%_-&+3f_{wtrH^hKOak1s0?Gw&UmG^w|g5p#dpbVmAmLGI14}w zQeQtN4PG1edtpw?O{{t2&e7t2f5#_Ssp<=!%bFkEo!{Xbmg{x8<)iqo?lhE{ z_83aBZJsbb3j8sb&9=?eu=6cw+JY_>41-}#)Lw+W7$OxMkExh8_=Ol2nwU?vdWS@& z@p!bc@%F)4+|FsYnEtX}resIN$N7cDBF=zRUMNH@xr0^iEe(slL2)eTpPH2{72|CX z-@MJGL^BU8r@7MSl<+BNQuOwRms_$pg%;`M4kfrFYxVi1VTL73J{iJwC=l>U$V7oTVc*yQRd=}%=I9trO83+O#k(mVaZT>cjTwp*V2i+t}Mh` zp|{PQQWUv_oyq3xZ9LROH22Q`!CF3^a(7N#RvbxXLgv1~Us9C72Gw;WI;AS|=(|aa zlU>DQNwRB}pYl~p8FJXQiFAnyXXy~bBDAc)xoP!K*F_{Q1yEMIYB(^~IF7j|s^aGl zy%ZXfP35VqmD&BkqO6ZH(>l8yRM@8PfBCR_L`<@$t94**MKl!Ikmg2@9h}ZRL();U zC1D}eZ{}vuH=mMS`L#93U(3^fz5~ha=*JpfzgsD*-yrlozCR1G4Jq>a-bn%^<}*o1 z$=H`+QTE#m+|U@C9vL^=#0$J}bj89$vN|LL2hlAZ=;gG8d9lja&p4OMS3p8%Le=F| z$~k=F*VE6D_Jj3fKynpDZHU^!9X2Spc*%or4EIA9ma^l>M(1+5*!+m&I`vsY5+<}A zs18AAL=nF>t-q~X5g;%_&TAI+kg0i%h7qOMiPOn3ORHzrkwjjewiRWOx0F8Rc_l9w zRVO!mu^zi*AwJ~B24CL)Dyo$#b{63wBMESSxF(jUz9lLodbgD4`} z(W{xDvfi&>Hi*?tnDFG-U}XcYVp!C=7*FZAD>Y`qYWUOl>u60#{EKPWe`_bX+xA9R z^fqqx&Au8Ny)jR2(HIDeh^IMhcswr}11MDZ?M6%hq%{h8e4OIDYdfD1Fb4`w<=+^_ z+O{<4YQ;w;_3Y_%W@8F@T$XT452ZC(2^;6R_7gb^?>_m6&5WQFGboM1Iuk6WpE7+m ziHdcNkvf_}eOOcBD<2}Go&825<1O@n!3w@!bI9Cu; z?h-bstni{~C&#)kJM*_&_l@rad)72^ui;j->*@NQZ!Z^3F>T-F7A_N_25Ozq#@~jY zscEEXjrpRu#a-%jy`8+1jSnJGzHhXT}npf2$xR<&R^3Vc4KpW_6NIE##o!2>Vs7mMvv=-*+A@?cYr~ zTCP^0N<4v;>aK%6L2^@oluq=JDU2f*u|5e#wK}P#5>NnjO#K!`UIRR%cBrxCElF{^ z_|>9HMI~dbkc?HBUr-7MTPHc=om%7VNhnbj%|B!-39sL;8Y*uuq7U3#36vda_>2xO zypHOOBp@JxPS=Fqet){6o-XSakPrz@(>FUsL)#xdJ?7A5Gn~n-&8XV=ApI;=45pMR zsv6oWaZrnxR$4^n%<5mHyRRJRCxsa0*a$ABm1~90>|vn#iv8I?pcSc*b>U~1%D2l;qxi)+VbI2M+vxBCXA zlxAF;E5QhQfUJc|%2is$-wv|AcGr^TJFAi8W6Gg)<(~al7hAIO{)2>L9GsFe7Wwqy zcN0Z&7-Q#TCGcgn98^Rfw|N2$xQsU_{KAkQCow+43QS&wNJNhR2aK<>!X?;zgNOStwRJE)zXah+A(L)%G-( z!nzn@@OtT-6#n4|H$eVBDKZom0>hju*)Wo06%QV<;nX`xbU_wulWNoBHb=?Yw4-Yrh+1qX8K zcj9$TI!wm1m6+C6J8@d;!w`PB3e|!}8gDrV8&+eTGfGI6L&4B^{`<5e(Aj6bltQO! zu<=1!D@rnNB57@1=9|4-Bva8g=V=q315s6OFC~fvkE8i?x~`?GESQ=+m|q&6&J*9B zgl#~Lgu;r|$uyET-j~Y@#Z79QzxN1Q)OaLn*Hgc^YNGT;N zd04@mVb`E9)J2RtadSxiMc2DJ3sXl~Egt!Rb4Jw&j2u`CZ}yA#IWK0%j?dIvQ9but z&x4-#C{(Qn{T()=l4|vZ@YOEG2nn0YI`~mI?&IggilovlWHA%IQ$~KF@K)<%D@JUt zG&mPUKZ*I>ce3AiGo>zGJubWsKiA_@mVRBRmPVNqkag{%gOyf=wHbAJaO&?}@PX1b z-Rlkpy7|CR81c~hON)^X-37|PG!_mn!z`p1!B!zhGgsP3n6u}%#n@xkS*&^D<%bO* z60x&sq&O~NZ;{VgZBuk4QT;Hbs`X&-S!FxFR^FzBDA!ZWW5@k2C*e7Ia~jM`ifp= zAUVV@cRht82FW97%gX*n^O*UhgmIci6p|tY*56v-ft2six@)yVzYQw}J+8>FSNARb zR`nmGgZ#{;w7>O<2xIzo6)Di>7xjJlCaM~5EhnsI=|iEN=PDhPiz%fXtJFJd{Q;3q z+T+rE`Izt6H1>{|sjn8FjGn+;c-G{up-UKx(J8^FsCabk)f>DfC`6Y!nJq|oRXD^% z!dN+RGyZ)-JCKf(4s;R+98yi#jx~jM2&_Qzbq<`n>&V+3X*jQ|M7@;Mt~pD7ih^HP z&Nt8l%RLbw=>^r3suzqm65w*+iz?;yg6@w7WpADlmlexIjp$KI zx@cL}n`a{8LCf;soXYij`A3{uT|5-h)(8VlQMpS=#Io~j`i(DqIHz23J?^~gccb}_Z{WOTIq^=wGz zk}dY9E*xs5NZ9)oG@VMat}YUXrtBwEuhM2&Oo57Kdvw99S0k?769P?s{B!6=E)p2J z+QO@h1ucQ@@_wd1^d=5adA+cr`;M}bMy$Hbl+j}SBW!i|6Ww$aA&spbYnHytBXtzjLKd0YQ_mmt1o_udaX@m7kYlb zQM8hISuM|MjKCo_)A4OljL_sU*mRVwUMZT~4c1L8r&`J63)lfVt?0&h7uGJ)uy+JC zqZpRR%@5*G>F}-XnJCJWyY5XTYf@1~)zd*CZK+cB(x9W(+QyQprg`g#oc->Bep9)1 zkz;B777mrc#zlNo^fQBIRfWUL9c(LmZUd;orn9f$5wk-<5*>G)rq~|!T?k@aSIe!z zYGmZ(9)k(CttZZ2ky}2MW(W}S)6ZgW=2wtjzHb0$Uia}PmMB`NZuk)G4Vg&>72lhR zcUbAhK89@F{FuD4#bvzmyanELSJ7g7`oAR2!Wir#KHUwme%**@D1fnc@U3X`BH>jH;)eOg7b7^bAS4~t z-Vdj{bNr_So>w(wT{=p~1UEv}*V@!_89s4%gpc0}LLA#&o9yHPvQvg1EO8fh2nEU6 zS>P>8Zlk^?gZ9@k%9`$;4Hx#o=Fj$La02T_qril_^xvlCPB&j}5+g6^^7$M3#Q_u( zsh9~YVElgm2moIjBhHWmQAS^L2F~`5c-s;GUv>MXW&uI( z_M6KP}qOHT67l7pCdudn3LcRWRb@m_yRejANW|y6J2eNmuV3eF!!k(LVU!io5^V z!R5Lhpw)(uQ*Dgapo3$s7yg8*ASDX5J&l9QoUMd|S-VR$zVjG0EkHfxDM#Y!3QF>i zgT}-JX$;QCxBb|VaynS~48r7T;sZ0iiO0X~rD-q2!^cj(A28+Wd>7(RpBF;wH!>NL zSy0ZI!D~eJ81y(cx|r^VoeH9$$tVp@3dxD{8*JG?5-bCVkCYCoO@}ruXG67G)0xxF z9D$1TY@>eRgh%5}3toLaDC{X*F_LFqLQuJGAFfZB_$n4H0p@rU)C^_X8!bXQUVoC8 zU1(2ydv$II(bo_VWJm`y&W*7;pE(#jw}Bi%aT{?1Rwv-}D!E^uZX+2LZ5uHI&gsa_ zu&E>?#R&!%0!J;Vo%UO0k)GMzg9Y@JR`mOvf!8~-= zU8|;&Y>@!$J;V!n&+B&5j6P2(KN(!vyS@HLg5X~Ndjo7y0E8hG3OTqfX~&ZW(=2eK zMG*T=QUi()_8GqSARLd00St_2i4k%kk(oe)?lk-3&xkm@e26C0_`%>C6fw6%ebqoq zI%Fi((M7V@N1#E}WZ;+1;N3Va!rjYSFqpUyx!A|=&MU+}2gNrq_`VGyfEj+@Z~i>g zFUVfJllE&JMy_Y0OT&Hxr)z(%ECzi8OCyTi=MjPUj%RNrH)9qlD%%*BP-dzhW#Eo) zp+?Cj?oU*w@x}Ds<>5k&p+2k^PbFm$WvgVq+CYho`HT>2lLy!~>NXi~WWost_sBa_ z5tA^t$(pR^7VHTy7)81rhHo<0$yHp1pOsXepIe#*wVij$OYZ!|@Y=&LIhJ|U8fp&3SAn3E9M(3j84r5a#${4;0TjZa&DhqCDu{Rckj zVuXevj&eiPaqnj))5+M~d(>sS?3t<=A3M=xt6FtQ$j(4g`{ltiEjeea>^`wJ7xU=E zIk($xT=4m#x#y9ak?8#fO>&D+)7cG6P5iKvqr=&h028Rw^EuqA)MV&r{EVZm^TdZl z@{!Vd7|620Jh)Y@S^29Pn5)NLf^eJnl(1NXqEsldl}a@5^{8QZ0JQ zsJmm(%Ur78jK~vxKoovi_ z8bm&gBQdJGQhf3k1s@dtZ}96kq|0QZCA$#i=G_5 zVtq^3*AS<8J>{t&u-wfW?u7cFpj?q=pH$aAZ}LaoR#SC0Y5MWWR=b#?a`|eF;CF_m%e(l*Wph#6NZEG1T% zk#n^no9k@vQV!V#!#*3U$Z#rb7!~kZ)JCsdj!($cUmsUS0%`XYhi=qBqY+=zC9>M7 zI?9FOU>6`fDE$g?3D~o?UUo+Q;k39naw%B!{j;=X)Mtbey6rbdFqagcPv{g~NzVp- zL?bWLls1bbw_y+$FlNODyMov4HnXTB%aYy8mU|I%sfom-!?9i3Dkeq zrz$`;zPGtOV#fx_>FGa4fA$LzEYsfB08I-WNS@&Z9kO0+cD}MMNju2J^;S~dBOm|F z9F3p5lQ@w3fP*R{OC(SrobiPGWhz1LF<}cdPWCHvnjFPei~o<$_h5 zlW5MY?UN73EkXA#pz0+g;U!vHK8_9P)|No?NZsM!fj+iL2YRo9PL1DGXV9rmBX^1e zFXl}V;`u!E#pNNkRo$v}Q76td`WBESzR?ST2WPUJ4}g*|cUX5%+0!y9o-H9&kTUHo zvlS?M2`uFNs?j7&Wji=;Kadk)!B3)#S!AHFW^tzU(^EFJ2D%k_-MOn%vwR+|h1}iS zihKc(|IJ=m-6H}(<0P&agSsbAfx*6vow%^ z=T^Z3X0?rMEtLUKxG8@iLAW17#QVT;jwv%REuDb-xk{A#suRNbQh|NI@sHO<{FM*@ z4FG;wEeaPxlO||<0M)vCT_>g|dcRvmH>7M(0`MPT<{j21-DI_-s9+>g4~q+!vI3l0 zobZhE5N+J^yCPw!7NC2u0}4%%0Hx3j<-Dk)BLo6PVMxKv6@x_J^?W2Gdjc8Djg0aZ zTHxT&-bp<=lxG=rJT#TKpmKXhVbB5PVq7)23_b%vUgcZFtEj02eR&Le&iO_p&6J^nSW?9&xA}TYp}KM~K4DNZp{5B8r#{yf1I$ zX|?x2NqcKP3$l1=0~HLTzWZ-9jFTFU(g4h3Lng`x_cAOAXM7*e`U>XfK()KVHY@CX zW-+ZM-{fYv9gj!;??h3<^Oj|?H?o_RQom8<;#VnzGqWx3l)c|StWlXC+#v^bd02eXuCU+rBoykWb(1XOJ z15DuKTwlz+uY)kKaI=71C&JzKD{ZEBx*ObdDPWKkppPt|-SG*3XWBzB3$+KSsjk?` z6EqJM8{|`sK_oqcVbdJl1AAL2cZL&ed>uN?O zQa4+O4XJO-39yDG)F3mNaKl{CQyly|7hSkFg7{)_=i#`4?L{g0Ex-m}RR!%dBW=gm zS51-caK*Pq;0NxGu)!o4j6n+^#AsSQXQrrFh89+l>f~VO+@{H)-0XyixiX2C4^L{> z*Z*)_D^LgXk8=rX&{Z=MrXU%Hp9Wz<4(emi=cmJh1rA(%9wO;t0simTv97yT+JaInd`MwluKf%1z&-82J#`H6uC9hJc3IE^*WF z&Ms0}37%ZsQB!x#O!v%HFqU|IrdC`jF2eg^m}eLRskVr4x@eZz$Mc*ET)(x+#dAs9 z*^+XS7FEV#`L&2xgvY8n=OiZ`_k$*xMVGB~Ns&$*#r!_?v%MX^YTv=USmL9>ppzcE zIDmbrnL*fS)Clg$f(Z{NpSM4DV$NAHy>1r1Vhh&_y}P1CpOrygFmZQAXiGoI6DHyJO)1W)EZG4_@)WYj;1ln$Rx3 z+z0Okv*>OYg~<3F*V&RJ8+9E8MHd)7a#1VoFCLWV>rHjAqNiywd1BOg~VbD_d^%Jz`6DR3u+MIDKYYeS$uBhY4Xic;UFg#oo`3F#l!+bu&yn)_3FF5so6}2 zszo*qJCed2N!=9CZZN{^Y0(#~M}*uvp-OW#rc^bpE8 z#*933MCgGHNo1E9id{(CYhd`I4fb z=#Zl6t2HXlaA~#NEiw)~SHc`n4kjE#XC)eF&C2R;@M!G$jgG3nGG8$j4G_gGh{|$$ zZ=9^BSGtzh#|rxa<$>-CD_4PUNY>#W9LH93Mz|vqI8M2hA#c z+zIcc36@Xl7jRaDD}KZnxn(TUy@TQW5EGpH;|A8FKWqvNYJ+A}vjlskUnGS#1u}xp z#zlHuNhoQvFFzUee^@!#kMuTuB9FSc!d?yUyAQD*+vUv{FKJAf>SIbo7Gw>ud*yEt z#}bfBr`^;04qNE2@4I^gY0IxD-jDQVo`8xIpQZZK9H9#`)866W1Pk6oMYNd(uE8NA zjr%_Gtp^=saA}vzw@B44N`l5K zRWhsH+x3I9#e2FFf`~P^7lpA5!TVG*Mk>g=x`L>O7_0@Jj$&Py4}=kD;ogBgbu|+4 zT`8YSBXz^X$0QM-@FVQU5@1_{jh>AU2(v!hf*-lmWPx!% zvO3S!;k}Cn7VVMRhk#v0UgJnkWy}z5g}xI^q;Q?Ypz2|9q`L(&PngYrGxcbnUOR}d z-`{bFnZ(E2L-YVn57^5~aautb(%e7Ju$p1B4f2&t>rwok7<`_OKXn=tyeWqAPj{&3 z=El<|MC@LR%U%b-FEWM{3SnBOG!t@c7Ik|GkUZDF6W{sQD$KvT=7B5-V!Q`t4Z(?gN^GZk`r` z3mDp5_AcF@P-hy8WH?S7n0%L?O60%`Q3ZK}`#xvG>>ee%6VSoF)H zJ~>ttOB=($p6nYWm zVNo5ov!dCUz-xYH`n)Ko%s$8LM{!B^R3OysmL^u@G-w^(jaUoU`#dKfS;wC_dfQPT zri6I-zVpX5803>3r1TE51YXr2wUb=mKT&rg0SJmVohF zkMLV6rRMvLY5dr0Ql9|;?DNQ2z05T1tZSea1|1-npG`dj-emlhR3x$j%`>40OGS`$ z2K`zKqsr&gvqEC=5z*6o3#8{ADW~Kz8Sf_vC((OfUsvxfe;cs|lFci~ysyQiOUQAI zBj_V4Yybs#;ke{o9tz}q9#PS=~2SBIn`H6%aIF5075Nrud?a-_pRye9w? z)b!KZBF44rU78xcx!Cp<3|>G-u*pW6Xn+TLxIbPit(cXV(9;HpJ7D*p(xjFk4E$rm zj3Mwo5DY$pGN96B58>Ufk+Q=Pw40o-5823|?DRwpu4T#Bbb=n|VvV!kGJ(qh zu@8_O8+3Sbg|Rm3yX$u6q=yk*%dL)h*iqiM*bTVJ)O|^9fTDczY3Lf*<<%HTjPC>o znon{-UNWl%_XI_F1|c#F2>B%4I!mM+34`UNufvyeu ztxwZO0`rWqV>yn!6DnFQ+$EdCBRot#dtxbb6$c?eDK&264k9t|VvY6POw>JljQ54x z0neWiB7sQIo?k5cqrbQX5#+jFk%o6b#@7#(@1bizliBQgW9=lIaxzb%yRPEU2v(I- zrO=3!fJ0;}U~BiB2dN z2vOMh1RZ+sx;&e9Xd>c5cxFC-4@?YY3rV^SJEPQ_&c>Ud>9L+UZLO|o#?R97#+98siKNKF}%r?0dLn#Dn%s0);y z@mo}vHJ5E?xR|M3~{dtllQLCcko{7H36MccZ=$oB$vE|o<e zzoasU#;VrC-)W8h%nG`e7L0n!qe^%Us(J>i8E1U!QGWF27FCD5_&KM9Ar`gZmRC_3 zPT=*==f5OuGC-dQWx=N~B^N<$U~|$3Ti0`ffeIlMVSI3Go5H5rTd_YbQpeCe31nxA zU_G*D+eD|>)MLAM6X2C0;Te(NrXX!q77CLAy_7}J7I=TD3dAYWV0&%JS9us=m5+qb zHBz?jT`cKWkr+pGoS6ZS!uNN?LrL|(26GYo_oi8Xk(4Ma_NOm^Q+-n0Vc(I;=C2rla!?Qc zDk07E7UFfsA|eSY9I=#5yObv}>VanJ z%uWfW8TzE8YuyaB?+KE*2vjl_0tRIJ# zQ?p1HDXuG#$W6hA+=b?WpCOd6gWA24(?r*wOB(m=b;o<5)+ahg({!U8$m zPYbX|*=ju@dmbJQ9&L?BP7he7!vBzr)qO?uSs`;6$E1ALfQ~}6-to2ABg0Qm6R`*& zA|bo+i)?j+))aMDI*1ScYLeLbAltgcR`r*cW;ZXmR0#0i6g@`}F(&DY5|Xl9P_f7? zywXe{345~_Had%aGchh{wpO~0OjL`Tnp)4dI=#Ji(C<5Ym@OPa9gI5C@CK0XZ0Etf zVXctQy@#i$f7u*ocRt7gY%r_>ZH4+qR#FFka>tq4z4Z>G} z7>RaS-dVCAE>{{*j}g<6n@Z2lbTf~JyjRpe(Z`@tN#M@!FhmSKFNqx0Qb!t~NJA5c zy_`*>pgI{F7Gy5j?~U-Pk(dmQj&)F;umJ#edH92sE&z?OT`t6t{R)TMUIx*}!bqJT zgEX@jZ#GKRM9I6#QG?zJY{8iQnx&bTAqN|3MrgD!?TLRFQC>eW73qGG&&|ZtaeP4P z$q_JArda?ZdQ^vygceJp+h^}S`r|W#U=!LF`jcbFhvwKq?G69;g+@74SK#hiOCB9wIm^=h{++@Jnh&Xy)(FZAY{OuO)kl`N6|ewukN> zED$`fenM|e;7bMLiXUuzEt%6}F0odOE3II%FK^Zz^sqoPA}t=jznkX!= zm=vYnUP`qE^)$P|7TqyV-0?o(9c&iCLR5{(_t( zNyKtYaE5SM`p*21b~F3#UI;6^GizP6@X7Jr$1LI101MHJN^!bum)f5_{MR+iXVxfV ziRY`V+Wt?3flj0N1uGjS()oqV#1Mu$yu@ytierh0d~2vx>$$;`$#I#1!TlME>s-*O zoJxjmB}k%v72BO1kL%Y;Rk&SUZbsX*ODkQ2_3dS!?Cz=b1OuAbs$ee1E4~Yh4NCgC z!T-rlWaorbU+EXu#db_^h?0Aq(yFt8gT>+TBa!kl`pbwC_t3J+)Y;+yR6uxaa=AL{Z$$-QezLlkf% z8p?Fxmvj2YTS0+K(XvYr(O^~!+3N5sE&A;Q2Er=QA${``c6w$|NwEfB^t+7xd0Z2QUD&<=x@%pW25G&c!`@`dZ|Nk3qWk-@agX4bK@o0nIqw8UHpI8q zG~Uy(o43N|A(|7^eAj6?uewM4rao!gyP6?CiK#VgJ0coFU*G-2L@-!KiSmn`9f9ek z_LXVRR}r70?KjcV&26Tr(8V8llic3L({X8Na74^|x~JYv-`;;M%AektQO zP`;r*P20K8<0VeQ`3xJnYx7Kxe$-TGB^Kk$DoiO>PdpA{4h^RJeh;`cQz)H0dyk;k z;b->WLT~oN>Lm73e$e!icUI`=5Z=z7F~{!Ed%Gx4NAT7yTUFfb)Ca`*D&l@H9?A#? zh@Rg7KY#(Y^$!PLLJ_I~`C6S6g2Isdqe?n>?-VMVBVfv@K)!^fICBJ@-G>s@F5 zAEEP@Q=%(*&HRgZp@AA}->HO;V7i{|F5t&M=t$?%w1J+JXNV7FUg>ejy_QO+^_&(= zJsKPOokv3Mg80*3OMLQqbviz&z7d>b%WV$Rw6_%ghEja(=Jd~)=MVzx4Qam7+llC% zM-b1r{6lVnB0VE*`QyhKW5BE8&@Yq62q#a#kAOFzXLj{0B?(X%^mo1Y54+peubq~! zd5Ri>2>PMDfkKVXnAW;bj`VPsZwB<>V4(lgAp=l>fjM4)<$}|ZK{i1MvEoHbkbf#f z^ExmjgM|9g>Q8(IHvr5u`EEqI0}KQfYcG7w-4k9W-S-Y^LQG&5?M*&KzGe;#fO$iC zhXEGXfxn4AY3_KO!2F^HzUSx62P6Se-Vi^)-ynf+^u0>~KLT(*8fz%0fds&2|E0GL zMC(ti%wx{(;?u@T{`+75gRv*vrz}I{r@ZKOxScFeRI6MIT z@If@bL!_IQj$x^njHWXdw2WTd@6nE zJ^()EkIfDV9p~eEkLU3JPTvxy3?P3Y+<|`Ty=A@>j_*y;^#;Sd6+RI@>1FKgzN^0D zJu`T&eM^T4)8-^rZ?yqQM`LFSePGn#!|jg z_{UU4Xp|xo|F)bTROZior3kCaVn%34qc!WSw?~`NMZg+p4UmDDv@=xhEq|E%l~uZo zD?otEyvsc7%KDGxo(jze<38ZG!D+M`_Wj=XgWfG3SF{lC}bR16%rJ`o2(-RR`&TA*|e;ofW4NE&%j~(3nxR@aN zSM*``0!30G|Ev68+}4O(*@|Sk8uJy0#E>Ri_!YwX2W2 zL}BNL%Qxc$f&3pG{^gv?3>;hbC12`riwcYI|L0)=(P5RcIfCvjQo6>=zh3x@t$*30 zlAIP<_FD)i%YT9JPYC^${_`G4`Qzu6tk=Ay^{C&exYooY^zoDJUoH_KH)@;fdQ~ zQUpekizBsvLG_;y1VK|UztC2rOa*$iLsO@p5z7f#v0`dkq}~Mg7~Bl}e=kiCPBzDd z#@D02GUY2n_&?F|H~Rm?d_f`OLP^FD>lOK5x|H!mfugr*&r?S8l75M2I~N2**>R0F|2nqk49GxvLl zzIHSYNqZVW9tzdXJb84fQ@>l8mo*})EWUWf6-<5YUJm@7YOzfHNka?Z-0SM~q9>jD z=gZw{AsFyDtM!+V<6&at9cBEjv)ZS?v9wmi_(<77JH!1JRAQmhnUd6aWd4CR((bMtOkTGMa=KOS%cHugXVmpq`e`?|?mG1v1!nYAXBP^eUgh248moSXlpIWdoz&{}3lCRxDzyF4`c zMtar&qaN45?$c;^(zRLPEv+%+M?*k(y#nu8n5J{<4Lz)%V3zjSnVo16AD#y8=Yp*u z%eNGuS{+XStZJ#0cE%r+ILsSCxlBbMD`Nn7wEKlZypg0P`RCHhz{G}Nf*usI=C6rF zR`=h&=54Rv%Lj~2+K0>^vJ24m$=&t^!$5D1?6vsEAcDV8js$ESC*>t?4>C6mRKE0vccOL73%-uq-{u?yLY@Cjz|-<;@${cqpR1esByJ)TRvvd`J|u_J7C4WH zFeBZ1-3Ry>RegRM#oXRhjjoG(TpmwdK$oI){EO&ZsOIsUt53m5HBXi&pXaTAIvUK9 zEq9RG(T$0=LtK(lmD_X*#vk7xucd zec%=|aP%X>9JL7$@SEhy!vL$bX}x$>O*CA*>FOKw4`c*DIU4uXUTvcfQOKM6OEH~c z4}Zdj;vgyglCk~!T~J%}btQ6!l2q=iI~~=Wg>Ce{UcC>UhlRCwNxj~VkM!n_V z2ev=7L|h zk2~T+$m64pN`^W6#3y-{W8ZvZH#CbJqt(}EE}bTfbX8+J_b{jKvv>EPeiwHz?9y3X zS$zYTEf*=z0aZlqqg(#Cyehs<=0lfgA~?^q=A6W?Y?s^&Gm7uk>4emg#h64W8B5#A zT5H4{rHAb~V`PZQMRfkWt{0SQl-+4s%DiCa#r+GLFYkvAj=4A=w>-_xRP$^U#Kku{ z?q>;#l)DtuP*6#X?!?UH>O3~VLxxSgKABOD?M8d>B=Bgh+K#_t092Q*Xsl%?~JQYk;)I#_KCt?t6tq9=2Dw} z3M}5#O3t8nFI>y=CWMaq9*}*p`{RHiTZcV!RMchNmY16H*Z0xIIp@drn0QV1 zphJ#MHR2NPeL^=*HD%>^itdxc#U)|vU*gdl-Pm>9$MV$a*V-h1#uE)bE!6$d7JFSN zK4{&Qnz$V9Ne2THDfrx^#nMpUB*a4Zu^j*Q|J8ApO>wB%7H-_3XIxv zFZ|mBRvsb{;SCb3%}^d4cZ~H`Of}KEmhzj&ApA2^+~S!=>djzXjcdg4x_Et$hkPnE zL2O&j*H0n87=CuPCh&Ko+rm9ANq%zMO-G$}*tk;DMxm7wN|;%7scY}2GbZMtdgRls z8Y5CRe1L-AP8heyST{Z1Bxc07k{IGGaM$DK4ETxsUIZ~EPoPRx2Tc*1A$cp*&wBV$ zp-A7E3tO|{n9yJ6A)%fNI*Wbc*wDWXv;0mhPrql(XCF%Xk-e)r0jM*Eu-PLFedmj1 zm&&4F?r(wu#vnnlH6jAf*sS2YNR>0+cUhifzcyI5VJTr~i;7V^sVYB#jLJ%2_UeGl}m&!XxaXkIVN zQJFfnt!9nbF$-FfI4Gbs#SR{|RaedKYC=gz_h7g=^VETQ_qDUpJ{S5*w{v4Qs(KBt zE?Q;GUw>@AjJZ(_+YKQ`T~E-^PN&35(`#4XHIiNE67jn;EgQ{?K?ID`u@kQQFE?-Z z{iryofX)Z)O!*ozf7g^|ss5gkHsGP!@mbCVS0>3Kb|+({BHS2*m)d{0|Lzn3ebcWp zJ-&_3dHr3=w&_jhDklF^wo_de60&t}l0q*3;bpjebk1`I>f;mBiQE($1Hs|5*V`a} zFM5gEMmt2kwZm+3$e5>I_GDvm>*T5N5m+1kXS3I=NOXO$qY#B?2bLnvswNQ z0E|^VQQn$fOOZQ*8h*Sk{5GlD+Og>+vkB?A9bMN+YR(dRXG1(49)55=ULI>Cu|Lt; zn`Mn3Kvq=ee@P6A+(x4B`QjrR;XvT30&pabsAaIB@t)027#du z0Oj1c-t&w?-B7Z-5~8_8z1Y4p+isX816D1Q`euSasO*Q~1!&US?TJ;?pD#fygcd5% z-2IJoBw!Tfy1JLO_ZQ?F5h7i_4gNdaJ`pz*oui|mvceNlfKPE-STbdTTx z9mu^8tN4MFk)yO^so>q_CvQQzRfRh7LMU|I-5hxiOAxdV%5i6|p*OQDbQsAqGt>*j z^RJ5Ess!>fg9X=F`-Pd*6S+TJucL2T6e*avJ-UoY(!U#^V5X`YH^(?`ER87yqo8Rw z;gN?Ke8^XK(18g;%3Mj?Nr3oA30$yPdgg$V0s}f1-n>{p8Q}n1ZRd_-g9tAQo_vBHCr0R;0tBn+g zuRX{Ii4!YHzIx)+2?-$XP_~TxYP#_6J-X_U@r3YGc^qPV(-3c89Q|PLS^24)bh_CX zj{OVTb7EaQ_aws54R}e0dtRkT<=k=Z8`gFWmQthlH{5}}U|ZspAX}>dtK3G-J|()a zv?zCNs0Hq~{xp>4)dh0LtB=IZZJIveho>rj2!!|2v!vh(fqt|+qvo-`FB(@UsPjkp ziTT$|zQiuL5qdOg!Vul{;o>9Z+cfU5N zreB#~yRkw@-x;?Ck)FAoTx~FWg>uDCaN0gX-D(4X6yR}xWFJzyHbG4teCRwuJJ=dx z0NHc@X7f|JrbZnf@jHeZr1Gl4wLns0JqgX`(u3jXiW*%h0N&9A?5x(JPqzkQG|~D03^kC za;KMUY%g(6J?PGpojIezSl0~+gFdqyN=VdQuVtiF8jtdR=^JDiv$B%lYC9@DMHI8=idm3+l)fSVGXFeQ4_MgSan_7DvVy%SI?J z0IfSQ=5Ddzvjw*+PYywsW6UY0akEd!RfWc_)4zlzNpW5={>!I9$gLNyd;7GJhxDzE zpS=`lkL8%v$)yAR@_X#=PfpzRIikV)cmoT2CKw5*qNTN3va{B2+!{FVoeA6XQd)lg z%GO741CXDX&vfgLP3XO4Fj}z-o)sGxC|n7UUg&Ubdy|~hk|{Qv5(cyM1DYJMS`_xT@-MF}}4`fa!G?0;&dTngQ=@FQrt(6K$w z8Av1$;1e)2Px1M*6ror1F^#gy^c6984(4+Mg>t%7#9rSg0`L%R#C<%kR6jSUrhMtJ z)=ji!2-5JUmC1^@?WkM+{Dba}t?|{y3m+JpTi<{|LUj-Ty*3X&>5cY~A4UI`K zV-^NEpP5K%nQ(qK%Tf*JITKAucxiihs0so3C8~T1PuwHwCavx<+0TJ5LH;i~nxF(O zZDpqKZ2I2=v1Mi253SgDzAMw8yc!<4D*YPgEFS?ArUiRRTB(|5N8b=3(=zDHz zUMDaesKjqP=yNE>`}*VzcT}G^m4?FtLvogc7hFaqT+tHp3(-O*(2Q zHtx2D9Zxn}0S<~n9xqQs7Is51j(T^BQA8Fl{``xE;s8K%SfOBT?5_TDyB(KOu>s%d zx+|Oh@86X03;x|^fmtxNB+oBoplvAIe>DO1r6&w~S>P1^2b)yO{s;1AW z43p?e~kpPaxJTFhpqNqx2eR#qaoacUI(yWs= zA*R1C6^Sk`aEO!U(#qIey&nI=qP_)tY?q^SF~z?GpDo2g8odEXUdk>T2dMa#+HLtn z%X$i57=NPdo60#$48$58vMNYmp(SAj%)v4WA~N~;mxHbd?)TUYcDllOQwC)FD<^YH zqJ>uw(JB^5nv?ti<6OG0(Dt>c8ZxIfQW{$dfx>~!~>eyAX0xe!%ptL_GB0DAK=j?2umb%OhzPtbFLUBYK77 z*lc_u_}x>wWnL>{i`flXI>>Ce_lsA+$APW2ua%FwiXbaCrrRuT5)yd8d5pzHi=SKE zhf$AiAov=y@rdFzV@f^-E1dyAg80z9l1)u0GscX|K?g7uAc(tnnHJy?*we@TeT0dk zN|YoUNs+ES2w7c`fGn4{6!r$aEW#SXwH8Uhms%}*DKP>CYZcUt2+gixFY*#?Nd!H% zf|GiOS4oXB4o|ley%{LF%84rJS&J^%$tN{R!ad|E<8);8ks)R}8g=ciT4CvB>0$atq6HeOXr!Js4Mtdb`pe z@JlHn+zugKPQO^Th<1MV2DMgpfmz?ci%%8-!P>OlK&5fcF?%gTjga|r_3ncChE1Cf za+*{{5&l=GZcHrmwCFbZz#-h9V(`|51%Sqa#Ncy^Pw6pim&kxWvQZ}IXiEVHGw3KQ zNhz+*m~F}NfPT~C9@Xt&WlY`#@af2v;KW<|Pa~MU` zxir~HutTgV#BLy`2ZFCkwT+cS(;;*)XMtJWBUPRn@iZTWP2@EAYB6W2r@S0fzW!9+ zQJT(-G1o{|BjD5_34)_m8~`6UJPsharXUH3-w z>s$Z;Q+~D?BKDswiwwo1sX>h8Tz!CTRmHAJN?95`lc(;j{B3})gp$is<}!cB1AOHo zdrY=aljQt@Jv!-!d!yFl`$b|=>+~p#Fx5=i^3K7*N8@}(BuBNsJj(|Prjs;%?zdo+u!o0v*=kL+LPAbh`}fvY|-jl z_P`or$@d(p0D;Jit1oW_vubvTvFifcuGDY0i*d^MYqU+8-GbT~HLe+wN`P&CeMPP2 zJ;Mn-XG~ciMP?aenfH<_3A@++QqvrzRPWL$q>8GZZYN+sRg0j-djVh*x5j=lv3Aj+ z&sETOY~VEZM^}5Cs20E68R}<5{=oQ6)BbtcvqPBFnr@j~ry<-!&INuWE0iNII%}MD zO?L`Njs$XAlb!+g%r)xK7wq;(g$b1*uMNK<; zuSxI2RXNYhG_(;4k@Nqk+&1+V=R`R!aXpNRt&Q}~2vCw2d#D(UT2DlFJb;O_S-cW% ztTRi2!_|fXjGu|veF#Cup%mNH8GYFzoQ^%mYg50 ztkn#GbY+-ZphK$n*{w`QjZ62ll6jL#4J_^*4?*cU|>>Z6to~1N3WL8O* z7!;5U6g!`KzvUsUK%ey_1%L+x0)U;d!>7PfUVb9ZYVXa!RzRO~O4X8{PVtP&&fz5a zh*h^DWg~XI7VGo>LF}Dh)hn3!GUuj-73wN+y{)-7&KgHu7rs;KO!LG`Xj!q*QIvHn z3martE$aZ%BV9P2h#;Y@#=R|L4__dH!)!;BMwwg=4}VT;B0d93RrZw>DIR!gdi@;O z?DgKf(l!yD_v~wa>FS7AHG)|o0ze-itf-Y@&NeY=il&YMdeRB3E9;M8$G%-eu z^p2MpTt*6RArd|cLnj{~DmpEA6|XdC(jl0U)tkC&2vZkSs%8&=uY-gi}OG&JQagmEFYzk=no-#qb-hWCy8wC9sEs0`@|+I`ZFtevC|TT3o!7^Uw? zW|7pWZ%=AJI-C#dB<^Q9R`9Y5Df=)uz7TZF%NESHUlT(Mce4!z6LY>DQOx&SEyFPk zjhXU2Ut^E5kVn}qgU-exWXesV?RbbbO?-QpjIO?s!oxU%Fsz~qSxl(;5$k*!_ivb4 zkZ>9L)5y&u?4?*m(Nn~@?kFyfP2wnmk-s4WAnJ@bGLcki@0rb9;dduCjJdN13XESm z@4y730c*@QQM`LIB3zaX$LZO;MGQ8)+nJ(-S{0yKA*BX=ApS*KrZMVUZm^?&$cNf5 z?Bk5@C+zJBlW4lZ6^GdSNysDGBNM&~d*oHAvSGO=6<|t-`Du#dW$DbDg2KEqySjnNAs@%9YH82>of1MMOM$o@_3)dwkNIdWXD(itk| zo2}yE-eG_0Qq@9hQn~^k|DQksM?kWHOse(W3fjguC>DQ1sYJtbr;qqq*q5FT&4tOV9u9pr0HGY zl9CKwtGqHURjK7f$QZUMx#TtORy8@MEF_$N&~(qxqmHs&{#oRnuq5l(rd$-qcOSDc z?xQ}vk*vVydYf+cw+pk)GDfiEWyNJ;d&Q`hFHg3zdh<`YV_<8E6Ec{ctn73AB*tiI zK#4ZQpuM|wzVo{hkW*`zDF7$h39oc+MbJSL&W$}XczWwO%6^U7YZR9>J@)hvY|~FO zOiaef@`0bcWJSTkD+vXe$z9h<&&c_4F`l|j?{;W+Yxv$fEy%Y#bq zM)fyI@M|bre2_*mYNRX`2VlJFjN0$7jUeFEHKF^w1xI3ox9_FbAivQrf}qiW)l^o_v33x#r*nqMTn&grZnalbZ@LL%6t>R4$5 zxztlik=LBzo%lDw?+BI34qTSPQ3|2uj4z$gKltT3+YrS22(^271RPDAJP$big++$n T*0@-d&B}(z?7sTD_8IU$nOtQn literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/swarm.56d253ae80a2c0f5.webp b/translated_images/zh-CN/swarm.56d253ae80a2c0f5.webp new file mode 100644 index 0000000000000000000000000000000000000000..c475c950a7888f8b014c0834424b8c67e993c3cf GIT binary patch literal 10540 zcmV+{Dbv6JsP!uP=QDqY{qM*V?!RpFTm4u6U-+MJACP^3 zKTQ9=|3LhJ`Op3X{vWXqFdx)Evwz|LY5V{3S^cN>ll~{b4?qv*f7LxyKf!QD3U0>6!aP5#yWm;Dd+zeN8H_}}Zl)W2-~7JsPkXXF2|f1mUV_{Y|dz<+H0*Z&Xe z|MkDeuQL7Wev|oi{hQG~@3|Lb3Cz9!j^^$+iUpuU-Wd;Ev? z|MNfjztDN~|4;q<)NjT=pZ|OQ&-o|z0sMpc=lf6Szuo<3{~7w#XGyA{(yXf!sZ~H&sKgNFOdnx>{`@jAV^dA6!&Hu1}#{UQYi`~Ef|F+NC&tw1C zZ~bPA0#cR3=B~1oN_!n)$^p~QOi8i%FzxxrDh@g$VY8KqLHnu81$6zC``(gVg0$9X z{f9C>hN~|7`^OA46P5GRgjXnZ6rz7+F?iG+2T1>7Yb=iC+5)u3Z)jhI7Pv9jMBn66 zMU~m`7NgEb9M2~)cCYb~C*ARFOAt3;M%E*{)!)6j36VDp>zHGh6De-r-&{8JjK~c> z1bc=Sbv{MgiMG#RA})E)1x))W$xBGvU$tzw-2#BKSlc2WvHl=Q93@l2aAxlFJv0_# zu2t&(Ht({A(M!imngOR3kdwH*??CkTqf{U3y~|l8X>%5^#~@CgxP9F_8D}o;F!FM^fPLah=?gRzo9O-f{?W*?Y7izG|2)wRumh$V~vVwH&4?8LXB;AU?DHLDh;wMvma0NuFTA*W@0o6 zV@3a5qu_!#PDQ@3SOI27#YVR4^=vjXzHfY^h-nWC+0}Vp^Ah#H`Ww?|NvK)&Y0kR>C-A_b>MWMjMnR9Gop8Xh9EvNO!$;j7AU1ROR+MO^W#huU!V5eqSqF&)# z2<3&tgZodWH{wXH)w&MLAYp|P-X%8!WcMFW{j(ENxR9gCM`zc!bdy8k+V5v5eM`pC z^P&Z&?r{o`ZUP5z>gk#MES9DXM1};gN8+k5+kKRlb&LJXu{ikCaMCW!1Bl`gh1qCN zXzQuBL8Zo7;&8Bq_UCBJA& z3wG_4iS{y($=fW4rJRrJq!k&JQ3K1b5V&MB7bW({kGLWpP?MV&lNJ+@k+b-DZl|$! z162gTJKwOUq>kCjf)Bn2K-znffL*WMAaTwamMuc+Ps!b~Al0vjO437CJwrgz%RkWm zMycFzI0@yy!Jo*yz!oZAxpo@9vKJ3&7n>uI32l&jv4G$gN~W@EiH+q41z{(bAHEzS zPQS_}@?&aa1Vsd$ET}>E-rmtxsvQ>^l@_RI;whKzIKD?mYGM4ZXp%VQ7JC%+d({xp zLWtS#&o@lj5>yb)aTs14318lm8eT1D&*3>~=>)8oR(fwsAvjxBq=x&x;euS%n;Zna zNM@4Y+xvf8#dhkgd|_t{DJ=7`DDk-~e)ww{H65xmYb-{ufrtc1I9^a1hV zPCpAlAntA&!dVjVG42g87v!QzAJ`kJl`x+QVJ9lVRd9=fqR;N-n}h91a6 z2s+UL%&QSGyHBMipBtWb6fwQ03c5CiLN>=5XGwNONq{@ToSEI)1MU2{y+qBDJ>E1R zK7aY@#soGP_U@puBR*V0 zTh*=XE4;#pQ0Aiz%;=lnHJqMGgH=!AGwM9b-ij!->e9mCPaG~SEk8a8hd^=hGIj>I z7f=hTHE(%)Y^?(z=Y8a_0%8?v2u)ILVYLQvMDfCwm2dlJ&xLo9b)I^~hu)hzG*TI8 z;3l#s`w_c-uQyP?cnaD>npP9M7gZ{_gZg^KmCdJvc`%fp$m2}_deGT>p^A~p>r=*p zNAQlS3#rsgBtCtD#^ZkGaJ*5J-yMH*LmrH;v-xBFwg68R#+H}ryrzt}V1hAzm8*Mx z+bIu509G|-5J`m6`bHS{#MBz7=fYuk$4}j5)-{%vbcZLEPww=4V`1pxNUIVBolvds z3JVRrCuIt^YQnEj1LYdyJw+9h9#76!WEj578agmL9G~3L1U=s8y-(V^#W1Y%!W@V0 z9KU18G;JKzM}Hk^5N)V}OLcouMkuQE7Q}08@1S^x0rJt*Lk*TxhjC0wG%z_dS89wy z@$ydVvZjI?9#bvfX-n9ahg&PUN1-g@;mUD!(fPbIg^93on*jLNQZGqJH-6jvgL8?- zG>E5Bg*cq5=G|fCQ+m*iloY9GjoVJX__uciIQ$a?nBb1N&5?%d2Djatcw^Y`zm<(W&Ss#k=uF3R8&~& zqXXRh;e9QQ>i4oJL7wz=sAX?8iG9TfxYJ-hJ85|9f1LqwDVKP9bbR|`K}6!>g5%;x z{wkvl#%qaZmcIVQjYWipw#Mb;$_$)?b^Hnl+mtz6;2M|-Wx5W7d>J0j3D z{^YmQ*ydW8=r^IDB;TV1&rf{Ms3r9+c}?>V8D(mo-Hx)+A>v&H^*j>))pYAgzhY&m z4pDTxPq)gsr=tDLdgMP*(j2nH9sfvS*%nGo8zHP~c#MN)8U1@>f16HrmiXLnAWR|F z`aRbBjX`7qdNXPjF}W1~t>+EVBabXv z0_;m)Pk6pN$~v+NnaFcu1Rn?Z28iZ0;(Y$dNED6u5&#z(TU81Zmdu4CkNOeMdIs=Q z#F5nV!CbMa92JFfvYk_q78vTomP+2K^3B;{8zPPX5OB}T-NodG2L5iRjI2}yk#wy*$lpwckymFpp1D0Q#Z{fSe(RQ>#xb%ym%_)(> z?QoeR|2KkbjRsiFR5EwLyseEn?)RT_(TQnR77AvMM{MXrQrR|_a#QAP{Mw9QC^7>@ zx?n_d6Ym6EZ*)-D1~X(M7E8=s_xp6id|PVIaK?t|qt(tY%cWkkhv?$I#r) zsX-L&`04b#q)F@V4mQlz-Fp8=2x>SCDcR?*@Pv?Z6Wts^Zg;VpluOw~METq?;g}-j6G1PlJ@XVy1ZGrJc3Qj=M=yy4}z2-D1h=OQJbeuNC5P z7pSIE9otqB1Dp^=^L`mma~pT}IlV7qmaQ?O`$3j95VdsxHo{F=8;r3jF!siQr}9 zv;fo`soyyUj*#wC4v5^BJhL>- z)stU@MklR>QYDj8kVyUmixcoMIic3`e>;ZZ;XtNCF6R&UDeAlvyvhqM7z5-e7a&{k z-9{K28!ibGYaVq|V9llEhcK^JlQncM|1cn9AnT(ZsOHtg4vG0DZj)4@rkc?|yKE`M zxf z2U7E~m}W`vbMmu80943gB4GT}tc#!DNEBiGAP)_K;f9n04m-_PoZy|zlT3Bx&JIhpjk9j?D+AaRL z?RmR}HgVW>mfF^9j+jc~Wlo@Vn&O=;W}mt|dE$^+y0h*Y@v4=F6bQ)dfb=JmCN;)< z+bN?Q3>sm|Ylx&8Ie zqHm)#VLW45UsOj`s=U7eS`+2HoKXv$J=W%$HBJZnjN3e+bnJ|TyCgQRZ(0I@Pn@rO zeQy%k?~FI}GOHvM9u$Ei zK+Mz+ft4SVDa0BCKJ^GUO(Hkz@1VAfWQ+ekj1ZO*4W8Y zi`bSiWfMJdmpNxr3IW zP>19Qpzkqwo2krsCSiFsa=!kZA_86}#k6y7V+gH(1)ZbVJ7wGwY8PRf5qM&6-Qu&r z_6fLuXS;~qT<%2@N7Tt>?eAj<$~R4OCgp*D1>_Lj`9vO%B?iutDkAWLlg(6gZ?cvk^ZG;nRe?`#O3{r)`t9})r6l_{lKE^t~yG~O8VZnQA#hQO0nVgl`NZ$$`n_t*uYZQC8HSE6-Pa$-BdI0l5nF)(|Q~b$)Q_Xt8pI#qog0@4TBR zFOq+)p2EL?pK>_V9gie~H46TMOu@wDgo|OrQL2uEoyl@1-C7SXLhnk}TPR;bEXg!$ zXNU&qbZ=UKWzR7M$>g(sN1{D^t=_7SQRk_*!Gc%HypErZ_9|7mGyBCi{i!a=e8yen=&M?$SWMj5c@)WPSP{Pb z?}SWev(3;<_J`!;p~}58(&p)Wh&xVn(K@aK|6)$7Cbx9ywy-YD{PTq{ajVW>FG($P z>qv~?(YuJ-d9XcEirCLm&ky@11hXn#BIjjMMi5EDaj*iKkmt<9h_a!viXm{dC)^Qhde#Xz zOL{B2maX;aUamsxjKTOXP4X!r>*N?x2_dAnNy~Dkvj@176L|^|HiHSrcT-5pniBlO zLyP~I-!sNbXSQ$z7ddP;3yvtrVo~Dh^~EZqzbaHvL`^(7ftz2Wcwg_K=okU0)~>R* z;7JW^x_!;RxVMC9B~eCmB@EZ;FQzq~V^or&2@l^!3s&Q4xv;+ILn)Dw-{>Hxwf(My z&ciY{_?CQ2jL?(?kcIz8wVwOPeF$5s|H(-TWK*U}$J)p2-$Qmu^T$2@k9#5z>`lSC z`LvD4s~bbLKMw~TfeAf?+DUtt`86@TO&oB^ZZFhIt?<+zkLEoq{&W93-L1 zWS3DfVtQ@B;ozb!j@lO8CeK@-b0F$?6X%Np8eD4nDv##9(=uG5+>z`~_JMQqUHaxc zl@i5tBx8Hwg3oe|UyNe=F?jsgkmvug^%WrBO%;3tw>4?AtlN|N_@p8OMx$;{i{&s- zq}9)oMJQtW3{xOKfNnWgHN=Vl8DB{xPbesDOn)7XR}*7hqRGDJ~W zIa%z=_-P;l(M~kdVGb%`|J69)Od4)e4JJzatX-AijL1&Ws#T45&u~;`ZloUcSNSYd zNG0N*=!MkLW6k7dKMvG-g7M@LR1f&Y{ z$utIu95B-j&WHw=?tYyA9t>8Eh&(I^e}F)HsA znz3G}USI@G$t3>PYE?#f&dN_w0H3lvqz*Ly)#Ej*Q<1fuZT~I+`0*E`foU)u{@cHT zow*mvw3~73T0&%q-QZAaKII00VemfzWYoM5A{0+F)D;xJ(>lZXxjcGg9==X!>{If2 z%TxTcz4Jz`_IV;Y;}I(Rt>cZ9QVY*d6Vw1+!0!7-x~;&<$jPhg5J2>JnalaEaT4r? z-R7(%F?dV5@icwu~YU zP+=)vy{Wp6hZsa8An8STQN7`R9MH8=wBa%UVXg%|ZA}1Za#U~dFv6QC*@{(}@F~4i zWU8kVm}Ad5LpmZ4i8O{BzXv*9&ACeu9palH_V^f3g>OCY!w=^lghgVbylUI01sG_h z{4s;&ysZnd7@z6Z*xcHEr^u0~Dz!cQiR)4YMVib#g2pO;9SwmFo?tlXqWXvfuQB-6 z?c(qRT#3BHB=rw@;GWcoQp8a4CzJ%em^Na6dE=NuNRM*_R>ovS-9vdn;+Qp(Vs- zhF~*R7D{a?uprp<$m^lj)9NF>zYQzEM>DoA_zYx2{Vt=neb1X6&RRdYU*G)=RP~)K z5JSI{eeBX)9~j79hv;4IqvB5Yi!c%u$6~PO0u5~0D{LH3SbwXy=Z8g7D%~aJSYZJ%*x*J9mUGWx98D^wd_dsa-BO4 zl>oh@iTVM9hGi}Q^*__eBSs}+Eftr29qRfGl z>kIRf6C0OBHyl=-Ru|`di!ZctZ|amW+giQ;|7a^0wszf|0{u}W#!`CE5>0%X_HsYHO`^s=ug9 z>w#oGow^g+_{fgC)PVU{(~3bb94zdAlY}5vddLgjrH2Z0O4fPE=11J~q)}pu=1+p0 zNDIFRfnp58|EFo3CKv$IZrXdg&;CanA^|HmDe&PPIM5d~8|VtOly zOF4dpnDRPF6r^(bV++?F z>%TSBwa!hSTJh`hOXkb>YUhfi_~8aCfdpullExM+7FIJ@hgDlHm^H{fmNQq|V5;IG z)zUZuOwh1W{3@W=jgq4brB}I{b|^FvsD_ZTUN)h|bCHJvmioIO_N?-+Zzm`SRVs;Q zTAeQLZ8%WgUHL-)o7JqA_a7M+S4(a#{Rd11aHLB*arms#ALO{Y>K7?xX7+QICTv&z zul6p7+ppz~{Y6ZCSPGK4lB-XO0W0g7wPUDaM|K&Nf~%<8t2rv4okW!Cc)D3~KcehB z@{p=a!tzVhru|bl->o0n<2VJciWNyX-0B6+l$z;Hm2RPBI09vRSm4>}(!3~nYY$e= zb$r$2Vh`5yrK#8&lu^s)$2aHhckLCRljst1eKcN>zcdwPR_N9`QLp3T)MWt(O6EU;)hu28jNU4=o7bNkQyBtiSm{00r}CZb*m(_pl!#T5%;tqZmFHVwm5EO|tS4m^2fo!``-mFTJtbx)t*~KKc0*-^Oa6ffRdZ7^v8}*DHZ~ z#)oH1%`}3jS*0VhY>;?S7W*;p?ZxA*LNF7)unWCxG)X{hwN{i7tt@nxRWyFk`p(p> z{!Y{Zj--9}7iRr6PqM;G94Jyaw26P`Cp{KC~kloYQj_ni= z*+CNNUoY=e)B54EXz2#72WqM(Db)CTo^;!28%4vd=+;_FKu#MGOjQ{18tXQBOn^gm zYR{GyQxW36>YLFok$-W42^d-J%d#CG$D=MV8-`M{Fq;ry=36Cp&98aSorZsfPvYW> zi@jvML(2$@+sj9w1a5WXNnlIkp17Xb-?0{TmZkeARwNERAu<;V_OHcw@bOYc9yn@X;l z{>$r<*o-PGa1LHe_3Kmte!rbzj#jSU2}p~W3jz7!*lR50mL}>^L~HZ#=N;*SZ+ylR zq_Hxc)_^kttx;Yk81UCM1r-2J*@s{L;2FLE0nd#FijjY$7{@F=gWX7zK7cJjsAGWg5&cQY8`Km*5_u z={>@ywiyJ&4t55R1}zr@p#bfem&qk&=+}@#mGtj8J&`i)E>Dx>@5-ZSNzA=)xu$~- zOeXTdyV+JZDWb+ATRhMj-%afPv?F>b8V)T45c=iYS*c(~3-cF)esjzMCP)DB+K))x zB1LLJu$R%3CkC59c>+$YB>k(LtD`0&T0`0I-!w)pa(J-!lO5s#0}B!Y5y^!79-GA82Nab2P46$9!)!gyv@zf}Dq}C4E3z`^(1+)cP3b7QUFYej8>7u)c}^OC z$yn1BE@JdOkp#|7x&6x)-$D4b(GLC*1KBA_M8D(Nx6jzw&6!nvkX@XV%^nc~8T(XH z)hjL|AdPIsq<_8m5Ef{#5CibMAZ)WkNy&NL-B(Y6>lKvV(H*R=+Oe(DwAMnVV0DnE zU1AF>--^(r`0mh80Hr729@hkN&i4}hcmD!|-Ug|=<=y<;B=>uPuOJ4wjU;#-*T`^$ zPiMeJZr+^|`bHB0X1&WaTW9-*umo)p{ZYdDBX6t%=mVP&AoxGPG;T`J$pyJN%WqMe zeJ~x1IgYpM;?p;|gSFXb zBnq4fKG8T{)f>$@ObDbnA$iY2uOEAjcBBJS>&~4 z*3y##^aOM`q156G*|7gYCHGXpK-&9Qtw-1_inbq#m<3)~qHGH&{+BO*aBX`xTS zX`v1iA7m)x*uD5!cT+tS913dH0>=eMw4vSM3@ShX!vwgC7zZ|l@KAB>zeCX4kt+~ zTGu~5+_1#T~p;z8UD`Gfsxoj7nQNMKsLz9p|ddgkvDn)opF7 zAohpm`q{rT?s5RRk7C<9c9j1wF#fVvB zASSBDXtM|~{QO&twz&2~e$FOq3Gs8gGEk{ldMb|K3uv_T1lrEJ?O^&9fPrzB5yDk6 zhF~s+KEqiN01C(?#88-j4cD=aK7SKo%8v-lrrc?@G8b%Jz}>|Ud7it8yW`AEf&OT7 zZLz9F#fMtW&GZ^}ZHF`#_v2#mGWpvwx6i-mh2d73k>@^7;}qY@dd zD{8szXA`WTfbw(;PtwGS*Xw5Vi9Qo8KxLoTgF~omzsOf)_McY6O^C;2I*pGTK90Ty zx(K%R<;1~4jX+I5z%6c+sy@LPoat>N+T@U^(|Q)gTOQ1zV8IDK?Q&y1C0m6Jk}wX( z6+nt!=&5?k#@EyguP5Z)!K*2zhmJo5g6($URE3uJkOmfk zi7Wa(_EG9e|DUUAS2ChZ6 z_{8OOzw|~7x&ku5SJ8XPdg8P2}wjyZ)C2)x&^HPe3_~q-NKout`KqiZgyXl=V zu)9fMrN8XGxleV}`&?J!u{L%&OltNC{S46J^frqR90N8)s=>fHqUuF4hh z`G`3Is>r5O<%1Tq1xg(Fj37^K+wh{8yneuQuEAe!XlorwOYCMSvSJZ4=_y!`dGP>b39w7@y=iw=j!Pm|}oY&Zo0^x)73pOretAM+o`~ zEy@J3ia-I-j2y(Oi*gK2mx7G}wQo3KK^;8v3cJ5Qldz@!?xJvm<$n3(-BC3+_g ua<=B#d|@?k=G2w6I4=X&_~8)vp9+ALAu}OXhJQ0)@KF83H9!CW0001)lE*dx literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/swarm_2.efeacfca536c2b57.webp b/translated_images/zh-CN/swarm_2.efeacfca536c2b57.webp new file mode 100644 index 0000000000000000000000000000000000000000..87fcb275b04470476f84ae661fe540705940b144 GIT binary patch literal 15504 zcmb7rQ(z|Dwr$+8ZFFqgwrxA<*tV07ZQHhO8y(yJZvT6qbI*P__u-D0s+v^~Rkc>l znsbb?lqAK(!g+vz)J269)D$=fz5njltpjBPQ&EA`0rN3pMv4#<zf(C|L&KSd&Y0yJ?tk8K>J|-j@tWihj5bn;y3yI`uQ8+0jT~ud;tK| z=lo9n=6bLEtpA4oV(rJH{YCF1fFA((67d`UC$yLQaq>w3_}i|FTP{KMxoN+yLwW%mBdH4*-Id{T{*dKi9kf0hX_F7i({Nfsmww4t62yD@`$>GieRO`v-(x(_g4aI0`+sW# z)W6tY{62aYQlE0a__w|n{6=3;o^Am2zx1zi*ZtOgU3~$swU16;dVnR~BA*I3S^QmX zp$ycyk`NZkd|7A<<^OviT?V^8EwH&Ahi}K2y)hdr>D`zAsCn6{S0saRKp;1^Fe%-6 zoWq|6*SOcDjTqG6QrEMCFlycTU+6m3r01d*4|b%`Gy5M{vOAb!J#YU9cAP101HIZ6 zX7gc}lFTrll0D|0Y}9yMhC7Ddd!*KI}amqi%rP!o4!s z$^Eugx--Fa(qzgGOn8Mt>LK+M6!KXz+kvCC!y|yB9FYD6bj3U{y0-s$STi$ods5;M zcaagKH=(uJKggqQ@>{NI)haPD_AhL^eik66b6cK1y%IWU3h-goKvX#HYUQ~U^mN54 zkZ9P$9n;aajW+DtXNG3azb z#b|i?>VDZBD9C(T61LgOg&=z}Ve)9)VMvyk8jrJNO^>SdznGur1}_-6I!Q2W0UQIUQR#cp;)O3s3@JWnF8T;w zmwiGysOH7@k{qszZlZ(CB7stkqQn~hC`B+W><$mTS$8p9JzasBN!=Xe@Ji&$I8GAg zFT<0gEj@|3tz{Nos0=b8>N6!QiKy&WAm2_3CdA_cV&;wTSu5gyBe;2A^3uN0pX~a- z0{^v{fXcReYUv=lnb-#1>N-?E={Yy6-pymx@uH_r)GE39akFlbrS(so-E8Ma1#(;eLe;12^SJMax?u6-b_+%nY(je4y@sVW zb!XmzIWDLvjYRpWL_-rfD4q7vCp2hIHUt~ zaN^)V%;tvEfyzTKia5KUuZnf)vC0EUF-s2I%PGG~xM*~zn)?$yaqvk0+3g9xyN+av zSzxTbLVPE|j!X?Tw1vmLH2HOBW4Or|4x9p!3=RW3=!aK?uH)!}J)^Kl<9A2vT|)2K zU3AsRt7a0ZW%0DiMCy&&1p8R*%qaVIJ9Twh6YzKXdd8*ac>nw6rmMBUVn+URN}DCR zG`qg!1%1$92&-k zGBq7C!e}*S5B~~u;@#kg6SI1yi7t@yf3!+@z1np%=^BU zgmaGa!W<#`S5|6B2H={RHsB!sMmvN8?G0~cW@dm~jQJ<4|2M{t!Z%q;<65Ypd;cA} z1Ooa7+{+w?bmuo%H9nC8D8z4kE-9^z>;WI+@2e)0=|_D1OhAB#K%&at)Ac_aif(A= zY@ROw3=7?aoNl#daQt$>h8he#2RnUsft#K#s4zGcVFsxj9wg=r^A=w2j{jpAr^v zFk-^XCx28H9zH+acknf%cpUGNYx791Qq>sGu2)1KnTiZL^lxAzlK7J))%!5-@PmP9L2SuKvlooE6*QNx^ zY1K1UXE|R&7dSo}#SYb6Ozw@DqG;3qBPKTt`&5)NvQv*YRZn|F6_ zZPE|F@sa8~=XGHs9hw5Iuaux&!KK``$QNg8DJa(Br<^xUoX&89YK}Y z<8IaF*8<~ze)!%r1*Tgm?kFz!D5f07wkjtjD5#;T=us741ruwP99nzPdjblMGu;Ql zt8{;QeID1x6bvEMJDaq)L|45@uD@^FhNM!e)f$*crh6l@A7g!m6Xp(pAIH7e47M%p zBV6OxK`{!L7-sW?2hDq0zI|b#9hSlK$dyE0&UGgFzQK!#_sz}b=^A`H{pRr#**UZE z!D|c<>M_Br%?WK{0i`i}F6fOp2KU0MoiL($Jd(oCSy6vcYVF2m-EGff05S8TDbP68 z6sC>moq}I{SzAr;Q}3@9UwU3Lj`+q`5S#ZxtReS>34^Ks!*>&^6Vu$Y?6<=RBs(0K z6yl=Apufzxc zp`;3MJyEv}&m^R&>{2r-&p-y^OgP+&F3~9D(VpE-P6OEn-30U(pv9+-13u`s>?5q| zRII#Bh_<@v*85PatRe)QucKpDT9y8!Xs`?z4Y^UBpw@AS`04jUN4DyAq>f_rj7N?4 z#tX0xCN}5=zUOddj(MC35WItAQB@1SIQdU)3pdxYBfNPEa%&tbr(Fi?wZW#jOwlxe zOefP9Ll|k3Sua;+9cARpE)RF5u133F_qgO-;8%Y45v$q34c&&KxOg0z{syMS`^5&b z{^F&Sq*V%J)x?`bOp=oo$8VRg7h!bfqVLEhzow-@{9NTMkX)ayuEkUz&2WJK0J<^h zo&zQ#O;Bb>GV?lyoe)*Ore#Jy*b?iMdhz>uyT@~K1f5Ir2c-6Py$(rVcTovQQGA&Q z-};xWmZ_8tF}(8#BBY&6|3&!%y{ab+RWZqCtbpxs4%!j6dl)}#Wbz%3epfAPc@dXf zSvU`Ag4qX}Zb@_PsczGWvAIU2?{4p&C)EH*6t!!$ofOvGT8P;u=0h=8tJxm4RhbPg~oMm&V z7k4E3%P50kP&5o5i&Qj^x``21v&jKUs#LiOX1}OE&!$ncQ|N>D278ce(<}*vPK=1- z_$j$`KE>n+>eyuir^qq(a8DeEvs$42p`_+p)AFYTb63)!Gd_+jXy$gkAPCNb*NCh` z9y))yL#W-i(c0%K_YXh}R_TwkDsW=aF?&G|QvRF)a_{&D%6Nv{*0nTR1P;w9~5C?8tA#GWy$h ze8uXNmL-n@FT}m1WyjAo-_hEaX^4V|FoH|p6S?Q%31}W`i=t7ys ztrV&j$Tl=1_F2C{!==>^rOGrOOZu=3S*%l|d~BqC``^5_FudLQhpZ#k&CaN8rFjwB zF66KxcV%xrq~$u2wFUD-?Hg=@3qlPFo{EpcA#}+0sstfhgJ0W1lU`R-I~#7m_ z#45h>7p`!3y&t6gX7_;_ZufA8TGw+zHP&xu_*-1q{iJD5lhQ_es~3DPqgK~JGSFi0 zO-|7LF;8rbuarkauj`7Xs4Qc#{`@N~PSYA^dm&iRDzNG%Qmy%2xU~wpHKgs6YLW_xiaSm#S)_0G#?ymka|xm-`b8BiEldV=5fEF|q7w&YvcaB& zU^wNW6lGJAQfpJRV9MZ| z_zY&%^>e4*FGnV2s^q+(adxX@Bcg-8Y)1W>U7(_Xe~LQd%CH*#Zm!BtD2aOvqc zFY*?mbJ{k5#_nF3PJVZJL2{&mj8ueT?>1G?l)%)2g~ssJHsXOlk%tK+Lc!$nuE}?` z>fgTL%(w6ee0u|l)}@bdZ=mjj+riiE<~IQIjUXJR&eyY{@b%nC$P1S5ak*Jk{EWmO zKo+@;?_=YPNeap%5AQ9OFK*{OJV73mlqa9okRSj+E?i9iov9aEo5};{bFV(C2=I)f zc;^_RpqwU~Y#yKXRY(m!&$218>bEI#p0+|(hi3FDxwl`jQ|Jo%*C zhO#qQlw5E>3}z_H<7Yfr_N?-F_N*3KHU!pHQ>{lp{UrhroEi?yuD|zP4W^Bcd@cmy zql`o&2ZG?&>2IivtP32a@cieN4k%srd2HdwqsNTj{$o9i6RjEVMHL1nnv+oX%6jw6 z$w{i>?FaK8+9ZU7tYJKi=`6-UAtuMnN_bHZbljM{ z$U?l_Mr+sZhLlapiY>n5&|KRIwy%$0cp^0W%XsxLHOl*(^OPkMMEMTLPHGq=%+$B! zldTNLx~Q&9y$~9uUyNtOf)8~kKxCMAhB~36BN0`JAnc|DFpXS}Hwd3n{sErhdkGn# zaM}WjeaOgJWF7uO4Gze(S+}=CKl#an%*F%CgBEb7a~M1G>M>NjNT%1u7u6IO{?53} zH{^scS>6Z&cI%9a+E*a5{0QS+@mm7^2KGdt3FCM0H?}Paa9K?R@R-f>1}Dn^hu#7W`7Pd-YE-u$j93M_G9>*!Ck<@oE8R=V1?0vE_q`TVc3{@ zx#`h~Xb*GsP?XR#%mLmSDfw#kZ*4;Z^Fndzjnl#}kO;-GQr>DJMK!V3y(th;VUj3~ zZWW$Yk?mBL^-Kw~F(`fpHeBV->6@<>8NE}NR0gznEi1`&$^8YJVAN&iA-Pm$t8oQ} zqi&}4D&)dCbL^BHzp_U#SWI-DHtyrwxWambshXf)`%;2-IirOGc!M2y_R)idFFF6Y zb7ZNeV(Eqnli^d*;I}AVtVp)bOKmZEv#a{q_c$$wY$4pYSw6+!fiqI)!?gtNNh4J4 zvttD|R8Xss44fpVI&Lr#td{!vH>no7Qyepshbph8elDk_Qo;D91D)BiX{qd{vyZMM zuI3_^j=$JNMjWo%j|UnP^TR1$$!q7p;!h*vG6{NvJ9WnF8FGVnF|Zrl_|!@+66NJ{ z?)A8M3UsZXKdLn`prMM)5Yr8=Q-r8ad*L6M`^^4GcQa~8h4%Wrj7L*Y>t)ZarY4km z76lOz8il*%r7N<`F%M2v{HqNm5tgg1gs*dbb=!pUre6CVt!p~aj1v<}0MxdXI;y$T zq=2U|T7Zb)GVpTBqo)L`HnO6q{!l8TdUHSU071KyD2H?rhei+ax^xjD_?UJ{eluRb zCY^jamEn&Q9z59j7zQ1Z=> z+8n#n#cCt-PUDnIl4iQrL#JAUG_UMZFnE@-L1j$Gwu2t=b@N!R0*FW1ccK8Z2p5x`{PwsUo5|da1jC1xI);ANF~^ zObWTxFg%B!`qz5oc1b;Wfn4N#xvJ32nbutzis`KG0l=T?7g62FjdczK*nP=Lz*YXX z-cP6lIgO?pOYq`4k>cL@sJk51*cw!nxRvbz`#Bq{B^a-Wsrf~mzW7jG+~1t{BrV(V zrsU=qE-mOfCFH7@?KVMaq>GfKO&mw7aA%{dgA|#egLx`woDzIFf?Y{TccElN_+au7 zP7>qs&n7$1|3|oyE1(2A=TTL4*=+&)N z!$l`x_UJ)}Tce@&`{!wqyZoj*SktF&VR52^)|iV9S2D}WI&$7S9@vlX85H`Gu?s~U zDu-0Qr;0yK;9+!nf>%FBLoJse6uEj*II*rF*To)k5EPYQSL0iAF~|H$tB}(n`S`U% z!B$EGr=N;&Y|{Fx$dPZrN31ma3&owu!v4f@T@w9nr-kLIL+a4`q7k9X98JTl9>UF_ z0VLfC54(J+=Sp(Nbfefz$7}D3m4sz&$}kGz-nNWFFoY*8=uss|luw+)Dg`YD@4Tlh zI&NW__5t&*d^@5_0i{{0*x90QrE|uHAj<3-fxBzrcDht9c&&qRdoAH-2tWS8<8Cr8 z7`EX-k);@c04dUT!7d*p?9;Rb@0H!IG+P+6Y}f~RxEz2V@>!WaM6Zd%O!(%O{djrP z8tx*+U~W@Av9_vP%MVD2o5hb?f)J}nXkj>Hq!;J2?S*LZGOwfI zXMw4-z;K-lPasLzx|@AmB1Kq?K86m4P8a<3rTnBB#qb-^rE$XdWp|zczYs!;<~9CL zv%q+2n=&cmp|S=NKbgJ8U33-rDBITlh8Ry3H(Z{=+ifRs+HViL=;xVu)wnje6?{7u zLvE2ZtGc_hTPc^fFD`!nR#0+d0-;zCQSQULEorEdJGqEIw5I)YGGh_Yw~XMpok096 zR{MlMfV$hBPU`tGM^0s6-$q*vj;2$x=A?HCCZ-o`c2>tEQXQUL=pe^2F=dF`Q(R+gtmPVOTK-rXGG@k zu?Rm8{-AFO8cyuPr7#u?FFIHIn$38>OB!L5b<7h2dFswB#^y0;)w_4jJ=%k`;~nrm z*NeBnf`hnC{7fS^D=X+ChZAfO6(;$WACcCXv%39Ni}s9KQtv;ui<)(F&-3s#Bm4BS8kLG??yDM$V^<+iEr*#wi>e}vDGWI^x$X`ugok` z8hXQiAj8Q|D{2)TCo%gdvzmvhHvD)4`Zu_3LQOeW=)u4?MsFAV_PJL1Fu#CTF-3x! zMUAEF`)zDZDVH86bv9(_RA+=d4@h0G5OP-?p*Ge-VHekIL*HDq8#7<}8>ZB#YG)-C z0smz-dDCX|`}W_GBP8ZD@d)32uVx>$b34=r#)b;5nwmsHK21X%F!4e8Z(+)4((LYl zW+2d2rP3j>!3`z@PNdQUdL$5e8k5sbK0-z-bMS25zp1_*0RPtJ9o z5?;&klb!GIU4nCM=ESnlo~&(*GD^;LL%Y1hv8E2RqxUNR=V-Bvvn4`{_0x5Ky%CsB zwk<&*2={RdC?LF*ya><_h1;!vSd9P1ObLgc>L$!Q5#qOeOe{vW!Z!ZK9M}%bpGE)5 z%pm=zO&_<}w>Mo9)m3AKE+bjQyij#{f}1)<=jQ`vz-JT|{*VI~>y=vv_2RFAgq+Ll6yN!1|$0ZEJR_RaO+7t7kKFVE0yF@c%NAqq)7w@ty{x@oO z0SOSlJ#s%l&KJC=WAa_br9Gt`S|6Rvtn}#`AYQHLl5*t73@!$v%mx`WP|Mw~+!{Rn z^TkvI{EMFa;gdTd*}?E&c+Lj2NMo5$pC1R{#5-``T8IvE^@*-ohvOCRm0vHe|6*op z9XOr?ul+=H8QX;&dk530vo-%vX3(#Ng_tP`)R}@Ge zxn-|F&2iUKw?gS)s5jFR_> z&v38ELbAa~HomA@R6~@$OaKsZM*L+-vB$y=3<{m$$L7l?0&o9nt46#n@mXWfIHYJW zK~asALyX>M@(k>-C15)@y&QqN<}&0a_RZnSg=~xGCmcXKH0Z%F990&Ar++=iG#!GG zA-xmjo)!%0k-p`0q^7;p#m*?hVw86}4n+Oup{!X^6WKJbMIo(eNQ3n$dB6koM626o zc>xlBlLy~z8HJ8orjDs*fcvJMiPS3vwe1A$C?D{Q>%>}n{-68SH773AOLE;4cCu(# z#PxFdv{M}q(R;hJNj!4t_tZ-GE3M=G6C6XPu;)<4b`xQ zqoXANkhPc|VQe?R%Re*j)>aC#G+X(EJN#N(kNzA+Ex8An&|g3n$81JbtDHhnl*!0N zUn>jrq1kp!PU5>^w_a|Pb^eK}T{?-`rMMQDXkS>j38Sq!wwZ+3D0IUZ0@V0B5>v=( z`VRWKalF!#)fA2c`Fc@bJ75!M91?Q+_Yl>QVt|u_*$g$>lis;#D(d~ud9XW@KYV%H zL58GpJbn2`F2cS&O7@B2Fwd&+Z9es^IA*Na#LR#AtX@vvuva`{v64b zJ}Ou#qG#aVVlTuRK(x=}N`2ifcjfhPWGpyxTvsV>_u&+^$?AQ*(g&(|PepC}rKDW@ zZdU#hLH~w0WoSkNL3fpbT0M^>OK;=**u2@Va<3qbBg%j@8nI^{NFu!rti%7ngR4l{5tTqaU<7B!YOlLAV2%p|!<$+@Z zPpoeC!Z}t9p-fyfcj^=pf>Gy70bf?Pi==sVZnnC_{e%jffEsazDNwi~qls_bOUj7Z z8zH!WD1_`oD4!(?KGmmqrctjtGg3}ABMayvHT}E!~ig=TkgrV9TU!GbTK7orSt0_ zzLnIz({1FR#6|)WuRkvDfY&ucFVQJC+`6us5J2-ckAWpRfSdChSkAw4WfZ8BhpmIl zH*u;I4gSb&{y;cFjs-u{|)c0VRu(u<&=2{;0*Yf}T;ubl=*Ayp2VO)SqsPLWN$*Ps&-bSKwQBrg*N;3-?lo z(slB$*GxOp%O5-+=MGTQ_7;}DuPct_%5cp~0$0ZoE?9SNqE+$`jsqmI>c4=y#zPrO zCvxNO0x=vR3d{L|Ktk6x?(V{Y5YS%_M}$!BF4nlL+k&J&=RtnTtV7Z`B%|&y3R{_B zM=oPvYk=Dbr_~+AlFY?cyrP1z{c=YzA62}_22Yz6`;&yh2J{{Bxmf6wHr4s(%s=4n zgL*Z0=J0nVSMp6RRWS0Qb+LY;nGFqS-&%c=!v{D4!m zxpS9oPN2ujdTo90T9kRFYyCRTp{`!=9&`)nC%gO^Ww_$IrQhWw2uw03>OE4gex%du z{xZM4mEABBjEo3(AM=TP94cq~Z!?u&;;&T2nQR5&pGv)7>Z#))Vaj0E8m;)3_;2UYnz%z_1C&b=M_XtDgrgGtfJC31)d5vb3-_p zj{J)39VH0Kqiqb`r|uKW6*lVEv)Gmw#Cj039cdORQzx*8bED#APT#rj_q(A7oV+DW zUaxAHJ{F;$&1vBPpP`0ce6i;Ks!VCv@@1>bCd_9wS z4ogu8cYE)(Z2*x&8CNx_r#<$I6#tN79pOirFGTw}1a8jL#WsWy?5$yZ&PKEYzq|Or z)~Pir65iCTpeG-((}0tK5@UeOoz1JrMe9*NV*){F`EzOYEChmC1UwdD4@mp=s8^yY z0g!&K3GU;vWp%@o+0aNZm~r=_DkY7~V6r&yrVMP8ZG{nXTD1O9-Wenj6kq%fT`|TT zqpW>y z)~}^L#H>-u8dP~uBNpRLndlm0;7&_uiVU_Zc<_W^qRkNTD_{x#GZmwVk{_Rvc}g$VOHdRq4bqP%oHZ$&gDpdfF}xn&S5;yR`JFk z^tion#zqT}X$RM=Ho*F(J1Ni()mKk#Z#&GptupyLVF@c{W>orcfU`oUIUaFYL$0>+ zNuz=Fgh%k7ckB%a=S$37tBSco$@X|Sl!f)?I_a#jWW0;4qb^+j_{~s|bJrTE{=FZh z5|1X`qUp61vepKJjIdZ+XMmqkN=@evamVP8f#x(%cXgQ{6_wXAq|cW1+k{LSujo*p z10~i0HJWNzFLGeGa>kmIu;(a(3oa+p?$j_T@iiahx(bwRcPf}u1k2+iQjf|GFko5n zunH!-k1kl-0;U>4?b^#KyB!BfW*ytlZ2IqZB>IYIdgUdA{S)zLQ>#8^658SR&Gd%X z!O@VT1O@0=JUrD_V7D1Y+0UzSKH|~^AJb0E`O2nLKU`d&R4$cik1HcU9pqvEu;+g;r97ftofP-_D5k}{}+vqW#cVF z1f6Y=0>btQ%XRNRF&nfVdBSkAi|+ANA%gBnpsd{vO6K^x>y+i*ntTK%ug%SqTA79k zG40#?<&jDXvg+U@^GU7XQ-A<}rsch@V+dXCF>n>kwIEgD6ilS-7h*JuQ@D3zFzx4U z&r?itd!wwn%9K9kfoYhFtJ(bCMe2g+G*QmncFYH;^BQR`6Qk3#vj|9?Dfw?OgJ@3P zy1!}7OK}^;Cl4*Nahy^r5Q`ygk5Y1zf&C_5Fj&HBCMS{{>nF9}(VgA%PU?~Lp-efW z&Y?o%dEvEKTco<$4eNdUMI&biTMng z6Zir`;6p5y`GY+ml?KtH$iB(*^oY7(Mg<1_97jBJu;6?GbO$Z&7W>_jOW4|yTl<9+ z;W;xLzfTH`k8CqIJ6E`?rjhfzxpp5U;V8J(jwif$u#wT~Mmx@Bn$MIb{AWyALRRP4 zI@d!7|C8}pLY1K_ol{fWeP)}6(k9WYx0Sb_mwRWG^K}@mJnbLG!$x%}>n7H1r+iC&Gvy_) zlG$@@`91+c22oaqmh54n4G3x;E>^nsCZ;w8*hrRh~Mv+IHrY&>W za()aENi~{pE~XiMf?==q+^CPK;)4ra)MP{iUhrkkzb(#`Vj!-8klTU}hf1upD2CB2 zBizpyF&xS@EXB34Suz7LHGdV*VF77ZKSty=G*Pa$sQ;!OfPip+>?q*Q3a6kILcU10 z1xU08`K1KoDp#3omvY=&^;7_SwtE=wu~RCy=s{jMvwlzoM0dy-cd z6@~*<=EYwNCrqF0VfSTTj{DmyZufA4C&o9!B{Nhco927|;CP@SL(k3$_VN{9CHF5p zJ95y}75K3WQ0dj#ZbGd}o@A0kYG(!$aoyh(=bU^RceC3uZJpIO-d(Gs0ddWIgub?( zmR^ST<}h`T;}@G%y2G?S74;Pp4jZN@!jx3AS-iMS@-6C8V&jj|;8-S~aof^wDP3^KyxRSfI<~zKjpn5PX+9D#cvB z8Q0mHQp^2Xf6It}=(rx!d%a1;UsbXl91z%jYO~;H!we9aGoHdrKh}&lMuEz#=O>;M zBoO+ri?+JRa8o;`EQxm7TDv86lw(=3k`}U=ABkjI(aBt~Lx)4vi zfes8Awrn0zO~Z(3IToo63~bpd*mC-7s<5e!%D~sB_6cLomm6@|adNci>!%~dG3Iq* zC0$u>{b(9jp*x#0WqS!LWW;6OG8+|LACd+A(*G@Te+S{q)oii>+(ePc*fVE2Hjfec zrD7={hg8dp<-)on^w^hV8P^v3r^@s$GoZRcsT0Or;qO2!QmG_S6r?k9)mF;^zirfn zwtu344wJvs+x=s!a16C;YSJglEv16v8LWE|E{m!PRr!U8^+F&DOT=pS8sa7&=<~e< zj8axDbgxrFBSjjIto|p1F$JCgZ_VFrHU}pNf`cf$&;fs;Yan|wnjNhp@b^73YmsLw z%NL8=&BO=fE*ge^=WNZD4;bQ!SvA@(%2WLT`_T^cSoe4>h5Rmu9c71$Fx6_`>b%6) z+OIHo)4;N}DiJp-nytLRXU1}aQfK0aGk7Fx9$z8CzRe85nwz`6mM6IYo2S@MG>z6> zjOv9)PX#k71DK6Utr;I)b=$B7`kQ*@ZtAVFUG#8;a5tdE>$WRGxy1wbvQarMZr#=c zuutTq@=%CrvE#(PoXr!Cu(2{BeM~r&i;7CxhDMYknDUQ~CL;?VA<)*4$CBno53Y`9 zLna6IaL8fa%<)5i`c{J9>SwWJyblDf6X|QN61M~)9c4*kk#8oF0AXb(!!9I zZD=(dE8Rt9mb4xk$JOGEgs=4Uj_wcE{+3Pm?H^UOA`dP?>1GNrR;6U9>lc!*u#z{m z@^F~GtmlB)z7k)M9DeqF?)a6h+wEQJ>WB00!sk$NC{i|qX?W-5MX4tb}v+j`2^oHNYX6o+|bs%PaKy^Qbr{(^9!V&kZL z`yE!8g;zFPBRTumg^)S$Q#*Y6^iHlllRk(v-Q=F&kW%Re-HjHscLh_*Y79rsguKeR zkB}g_vT)?5U+m(d=yG$!F$l`(qbRksHTt9;u_nOB$&bB{l@_#*1p_%}F6u0Qb#Y zdJNk7^re-G**Bef{uy=xztg9+kP!W6X*~eMU6YW7#V$l!oaEVOd~OZ~5_MSb!BDk6 zs&}@4wDrL=-)Wcu2}BC^b{VYt$IMK5ZucI<_Kl7O=zPRedE;>sLgf__0T2T>`v5mM zVk!>$S))G?5F1M`Rjjha(6!=m#?83??}=<*R6ecsDUP?Rd2XjIp=+ZMLz&Yt*w90k zedrHcmP%_yMn}1=IK$VNXs3MC$tVj-7pl9vqjoMt?-&xQQEOm%N>+66_MF%-S{+h4 zWfp3g)337-FXog`z_&0%cdmL6Xn98jdpovjGPdpr$Z@V!Rqo^bnTlkKywnEM$IG%G z12403a0cQn+qn}o#h^D&&Wi?cX{7N5(`w2+E|hrN1e#fR-y*-dgw;OuL%FqOR@hrVGk z9aUim)KFa&xK#+@L>yz4btrNmhAc)~(y??#KwTG56D|$ zrLW!6(mBT#VE8Yji8l(u>M>K{sy;C4c^hTZ807zVdEM;ef6rTHU6ys~?4Pg@G<9VQ zA1WkH5U_5YjCBTj!LuiAM+oecuI-|QuS6GqB_KbwYg{WCp`P+;mMY_aydy7@AY*bL zGZx-^SHLXfLmn)$8zxAo{Haj8$K~^GYvLD9-9b}{7lgv&h9KXlXrfrKGXWKOY_YXL zK4Bsi_dMaG|I7Qa?fZ9RR|fua2OdKzCfcKO=s5$3!>v{Y?7oN6TR z8mXO4Kxwnd0aiGo^-eZ^&x%P%0biS&p^yg<{JiouCpw!oC7EPG8k#Nfo2}7F{HiC^ zV!eyT4A}U;2IPWL^rN&2ml9_SCSw)xn{ENq(fNoW!phkL&lQ8N^Prun)?#}=T-b>M zBZ!qE%#rA)wZ(P}%Y?DCXX845EV7!Tyer{cPFm;17dA3?1h+37KTn*+nKIuGK~16F z?ITqIcE{rYPr_su`|^_2Ahta%eYZX1dDhc|$|iO};L_b@zd=uZ+PIYA_XQK+0sPge z&ycNYbMdJa}sc$?{KJ2eO#W^Qn$Yh6{%&*8h1~8qh zAD!6&SpSbcQD#j%T{s_wk1zQaMuvd452v6>-O4wduzi=Ra1L?->t-}|UfC;Y4Hzfu zqMvc>7}AsGMCcJz{g3gfL7;heV z*LF#>{tCP(TWqi2R;Gs0^*Cct*GQNLG$Q9gvQN~|2&x#$vVU4y7F@xV-O1}rJ%y=2 zt8t_=zb;FG2*XEgn3p1ppYe#I>;Fq+-_DvUz7d9>07`}0%o6iPTvr=c0(u4R!M0AU8b6B zJC2vc`=)rm(M~Cv{${^5q-cdAa@9@Z0dNQL2I9!Nt(b7g!xh=^z{Sv5vi@`niL**9 z2NKsMoy-y_!--k_s%G}u*gZ;wt#hOy+=J4hpIm)PNq$hId|0=lW&UkvtKPK`V> z(R{v@SP6*{<3Dqr{QU}7y8n(Oyzs~gn5ThOD z@v_qT{m?4Mdt|he*!xCV{f;jl`%CY)%U>DM9|+ckbd9??F$2KL>gN(fXmu7N%j?*w zcg*fXPcnZerp;?;Hhq6di}*E&GYv@a8)emc_F;AQ?7WrYQP@Y_fb3_y8DTBC$xw-? zFv^5?qfnOLBe)y6=kR3%zMl=itD`7WWu#>2R-RBv^bQKCCbKNUg036*Y`(X7p6mk)H!?CY$B;8+NrT1|#;M9lR+j z$v-{O3DkzE!lKnn(<2YA2GrQ#f=@_H^apcArdX!!pn|{kSWx@x_rcxVUuj`uelWjm vy*Y_{1O0r}rEilSmlMCEC~I~VcQ~e{IR42X-rse$Q=yLNo7(-axA%Vl0J?PA literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/test-data-predict.8afc47ee7e52874f.webp b/translated_images/zh-CN/test-data-predict.8afc47ee7e52874f.webp new file mode 100644 index 0000000000000000000000000000000000000000..16f3e5e898413e41eb788a78d95666cdb586f5ee GIT binary patch literal 9398 zcmV;nBuU#+Nk&GlBme+cMM6+kP&il$0000G0001F0szqf06|PpNWBIC00E$Y{r}lW z`ebH0UGMnTwrzB6+qQW#&)K$Z`>uE6wZM$j%EM_mdWE-^lWnFxKNu7Ef${(av~DdTAXtJ3yqbMYN-X zsNpY$ih*r6sOX;#DJi0f*L&ImSPBPY`@)ghk(rOfqWgtZs2Co*8|u_ze7OoS6)L{! z?FgmEi3BlqAn;`6k?KG_i9V;KsEX#%j*dc#-+i)tB^!$!#|FUo4}F&jvOfY>kwVyi z&W8OD6*tfEz7mb~6>m;6Nb!2ch^bKVt8;mH9qS)v?kjX~SeyGIMO3I*`aFvM>7@53 z>T@Y2g$o8EDpZ`{g~o2&jlh?1|3Y|Trg#b!>qJC_ieC_42e8?BZ7vV5XT!tHeU*+5 zYx9aoAw`Q^?`u}7z2?nr0hjqa;{@3sfy4e2_MfUxsFv#}zJ`OcT=}-hY7CZYVae$S zys=nlH3mbC!oE=Ft2#ofF*s8G{uW^I>xitzU?661CrF(kv>Jl}uG~q&7uAGTV{l>& z)elZ&?K5JlF}O>S(|slE8w*txHwK6O=WMwDP_dp}f5lX&SkJD%LMl|OAjtBfA}Um@ zYu8^P6)M)V>#vXs73 ztY_C>Ar>v%IK?3Kfg5U4Ma?y@Q0;uD<|R?$UD*QlVl!yZ(x(P_eMv^*8K4|1Nx% zAM!bouXFw@=>Pk@EkEP$GWq{)^#29lB^P0``oE3-ztp?r;>mgPQ#Wv1ne(j}1=l&{ zj0WmU(xR?Xly3O2bhBal!M)6&-|d*3-^T#^c1M5NsiddNd#^-XW_e~TCeUY7S@EsL z>fdnsdtiHsGrOr7^qcH0a*o%H=Eu=S@7V+es%YJi!ry0Vd8us7#E>2VMn`eWEeh(u z=7*J+q}8laT=r}PNrveM_cDWi#yH0BGr&Hn_YEp?`$?(exHXyNTQGtCuq-P{#_IR0 zA7EGw*1ci|{YTf);e>89KaRRLJE1}ut!vih*_oPNDjPFRvjD)f7f?;gL#kU}YE>!b zwlY*dsFxY^)8{bnMFZ^NY9;l{VBRBm>Qmo?3G`nb2^gvm1OU1pHiP~nm(u@;Zh}-} zs*sdf0eE_*rkB#jl)Sf4{pH@BsJg!@s9Wy7xGX=lwQ>4Ez09EB{?zF+O+#<5MXxLv zZ0Bo`zQzRl@-;d8dmEsykNYn-gMNLN|Er$*(fByhLK&@7py{QwF(a3~C24$OUZaEW zcQE~+ar!~M%%Feo3}$DA-d-Pkg$eZC_ep(@OQF}-#lmA&OrXDg2mMPT{;^nkv<5sS ze-NOFTgRcSInp=A=?C>PgZ?)X(zl_v*L^U7e%dhbC5B#K4E2a(;7CtuDT>GpsG^5c{#Q`!}NoDnL)qQ#)tv~?BQz7-xS7kTQbSFVgmiO z*V5*+6ncFfboaFeOrW2-l=hX9UbH@rw4R`d)+x~RQreh_mp=N7`Xx;jnA4i-0zgIpUKoza)?f>D6Vht~~P1x{>m*tPo z$lpJx7ux`Y(OkXrFDVHnY<8}G=HSWcx4P0S^xR*NUZ2e+&X=2gd`2ETDW@pw5>2fW zx4Lp$i5m`Cy8bwhx29T-Br@koDy_sQp2SM5yhBTi6PK~rE^fGth+ibG-P-9}S$1WR z_WHtF3OZ-FJZV~5oM?gN3vt6v_&y-f`6vL9!|p7N3b1c7wtZS!oM?{abMZs8w?CGS z5zVkv#_YHTihA-?5RzH=p7?=o2OPz#EQeg~WZF38!BZ*AF&_xKf-?h{RRIp{-^&h^Z)*5&5&!@H zXWTEakKK=ApVdFV11Cem-#)N*)*m4iCnXX}L11SkhvIjEN*`q^pw@;2vkVBtQ1_>& zgIeARS)BJO$yWz0)1Jgmfn|8)P2&NY3AZBl=xIQN`rU5oWsX!sGU50e;T|I z*1_|9mDgpB0bYlaGIq8TTiKL$lDV#UlPeZ&UN-`a{|`)MjR9VP z@Q#V|3Z?gqCWxqD5>q#Jvn`)UEg$SzF&eaMG}{=UTM6awVQC)KJMPwUFeS_DxP@ag zB`#eLyiw-GzDZ2o*!$m1Lhz!jq8}?7#vEK`W2Cb8-^9U#cWXHnI2mB<+jX;K%!R^9 z4WeZ$8Uno!JxRm%t~+EUg~NnIY-GtX7|R+0y$>D^_I&;0@_dMj&v50Z-h(#Hmy*jG z0=*9;q)X?<4d0z(zgu!BJ2?ItqVit)p;*XJYKx?!MST4;7r23hFl0NcGX7L(edMEX zi7OvGuua2DQ%41C?88z;N>b8>q_I9xpXs+^B`IJ`^fQeBUPrdeBsgViendq1|2s$; z1nSAeUq9rZ7)FD{rf%(LBLZLTy}WEM&>Op1$iSETZ%6Av(bL=Oy)F$sO$<;~$1)TF3+Iq5l@7(&?u`ChXae^&mGLPi+lqFnWu+fw|MBhv7Wr_qK*LOIQw+RtI$sm73#SlRLj5l(6TJKM z3cxAe`F%BC&hW#zKt_%mW>d08H_=J#gySLT$6y!DOMqIFQ*6nZV8b*r-tK{&Ehj3D zxYlVwd;}5jTb5$ zorUemhuQ&bs`4$5ElHGAOUDCJwd(J_GLvz1{f_UQ!b(bG?Cg=z(8V52Hw)mh0JmH^ zw4>bDtx+F#n;YzLk@T*HywJ~6gGR4%gz&=9spT`(ehoiRTYLn8F?p8>@P5JN#f0p! z1XcE`d?D{79>-x`+{VwRs?;ac;kPWAYHV)A?`UaMba2q-zg+pDyAN}bd!%^82%9lV zA1H&Dsn>bYb!Xt^e3vOCH!$%DmR#3^(XY8k>LSh=xbiDC|85JM8}!@gDA~QnJ*sfN z6ds_-+!uFw?_P!Rnlfe^W%_KbTH1z)U6z0AWJrO3F!-u(Y20|T`;*>g%Kzl5S#qIQ zqXa=pZ~Kj`ewUqan0s!Pf~T|ctazacGNrA>jcv@Url-gog2K>)G_S;p7%C$&9^n2* zX3Oc17up$sa}FA<_{FGV@GM~bK=~~{b;*X#q;q7+Oz#4fH6b6RH2dA|t!IhQ7go4; zJD;x>$OAt?_CNY^FgOXe{X3%5lsVhV5turrp6T9Er6_{1EH(FE)@ux zD-YR(1}w#5Hx;7<5Bq<17N`IHu>bsCZP@X#Xy5*C512!rz1jWhcrR&86$#+xsxkM- zAK5&)Mm_Oq{+%j={FhVkCJL_(?E72+Ijw=2+yhXH-Gv{m3TV1JM=Nzr1-MV3i&X}c zNziu5o}}w|?Ddt04ub6r^Hgs;t#?`stFest>KxWfw2xP%Q}3fyslSe|3x?>f_PdUw zuaAH=!k|T=Wun<&WG?r6Qzyf}v?F-(U?vDv-@!?rpS0ttz7)X+B}&kQ8Kcqn+R&q? zn4mHJ1w2p?AF43H%jtao>~hqqLo=B2%`Zxtz?!q$XP4X`X8@MQrn9NN$YA_f0%bkA zRERh~WXbt}l492p$&*v*fge&7A+x_YdbL~exBt+TH=I9+#ur21xvy-O1Z!_*gC+=_Cn!d&WAgoDMmahKt2nM*#}?2c_Xt$5PF zFRqgQ+aHX1#yUJ@v6a3=F?*Pn9i7I=fw0n=V!cS>TL92ExY#^8)#fn_oHdu zZUfMM9qu?tJ#)Fy*$9_@`pw)~us*d5&W`n+d%7riE+AQmR&AlBjFIU-U8&X^!BJRz zS0^lIIr(&0xT`2gl*2Pfnqb!AAYsO1f9+mK->bLs*Gky2cWx!9lRGjtGt2zkI8>w3 z-RyN<-vvI0pSp}`pX4#wjkg)9A0m_|!%l6mdDRFmraMQQ?yuUzt>YZCAh{={kNbt) zQf+QjWcNRZ8!^P)ZhM$9hIzeC#Z$h{$<>-o&xI_VJ%%UlxE3v56O=N^HOP-BIxsrE zO=92VgO8F)XA;OOyIlcwRHdl!@fX-9k4qeTe2k1Dne1oEN_l;8?#MoX9K{k%N9kq^ zwQNYV4fYDHxJZ{#cXikFZoA(>jfPBPdTWaca?=Wb_Wsuj%jAu_YeWx6m+1^>j5h)ll9dULHXO0>Tq9wGrruUk>r*vyOeV+jY|^fRXO z@Z#s2|4M9}Bu6FkG<8THg?lbU>xJwMxTpI8YmEt1ORD?w;XW{D`Mp0$)r!~m%yJBj z0yrk>p5_=4$ST{8GcL$2$3ymCV`VDp5t^(LTbj1Z`EEf=a~J+t($BSG&6KsX)YmwkJp|9Ts>EDm50xeKS@2jz(W2=yScfps zgcAtHXPb->KsjtA`nVQkP~(Hp7DtL0;@h9PIptm2<9 z0Qk9f)S{;JllP83F0k3i?>(>Z)4 z;^oT^sB)RaF^rK~2N}U29b4frx6ew6EHg z&&t)`wc-$TFv$I%U${B1My$3p1&(BR-Pqt1s$xEkT)Bttc(*$he@J_95<>Y*tUR_{uB0R@nM z9IQc-c%dqE5Jvjj8l9}d&aLNDS#TnHOVh5( z*ZWK7)c6&Du8bc&Deqm_*bJ-tZbKxG+LU@qSw94^nD~9&l>FZnf*DV0#}TNE*)?+y z{Rj&nVug|=%(L*Twvg|e%oZp?ZICpj|G484!u|9jj(+W?SpFyxl}y~`mpkWq*2o^{ zK_RcuZl76PxDyTFXnLyl`-re%NK|{E~IFL8sNIGDKdv#VcH3NUNGT_I`_ z%BK{$pJO)CL1*1Q&*z}gPS}2+p_jk&(F-LXuXiCJ*Fjy_Zp4L;D7`TeB7kO`n17mJ zV(sSI-M>PX!v{_L=4}4}Sb*XHTXCVxtUvtUs?pb3_Z;;>1oXJ8moI(goWd5FzX86U zPMCWGdV_jhU$qlm6P5|XtY76ZO5GR1$to+KhM0X8sRzo3Gv-Oew*6?=xLRL>k%~2@ zbI?GKG#ntw)k3eEf!k}lA4Y!iWTdBkW>d{{2v7sk6UwM6Lm($mGgFCbrq8e$#Je^&?%Y}~qfD58OHnuc{| zgus(4?a{n9c0tso4B2FWO4Np5l6;NpIkgtjn|5{87yA#=^wGd62;44li~dipA)m$t zD1gLB7kHM>-E8vZ*?uyPTw3*tZbbi9D~u^?rEh1x{h5?h(zGJ`T>sCR#x!A2W7(sq z#V=QA<$c})VrN+{;gi5B=zpFP3tXfHBhI|8Eh!>JGC>C#b-Bw>@UcRTVg!YS5N_8M zoJ5-gtc?4*O@_$;s|Mw<^5o00Lfm*F3}&t`vybp*q;SVj?K@CllpF|umjZ@5iotW} z5bZ?EnC_GJ@(6 zg`{f9Qav9Z^D(?3ee?8k7j+^-_ z;s&-x*--D{pI=5;BB2}VAhv14&V|i2U)->TVVM_GjTxgIv6u%9`7hC<)II*IA57LAz_aM%6%xuSYPx_8>SH363YWT4d2`ni9#K)_MnL&xwejHlx~R9IZZ@ z3e`B;E4i} zjkbKt&db+(OK(}V>z*6zDLYi>QkKT5xXTIn)2hft7Iu>*fgnR1 zpcmf3=l};+O!A9;MtaV7D{{q0IFQv8h;c81)x?x7)AWDxUG~AS3T=zt6-o*|0dvji z$1}l7>0I7iK)63X2%<6dxtQ3+rQM3)x4;F@ZYk2UV%iAYWU|VGe_mtC~ZC$;7G6O_Pf}>PUVpXK- zi2U@#QQkZBx>zeX@#mK@fW2}-zP(-P0=S#b!7zxTpdejgspMN2>*=5H#nKr}rRsL( zHoM2uhn_$MB#J?;i@YNel4DV5VI;vgd~_EmIjz98fEH~>9%`9G8P9&+PAU22jIKP29$E z#e-0n_*>}KG{D&hnn}!k#vL3rWwDES%xw&=zJ6rLVEJF*c9HmeYldz@OJoJ8dYdAW z(_{CC2bGl{+IMz-7e@xnbR0+s@UnhjsBh?GYOFWyjX1d}nj(%qL%a9|+=P928W1Z|WCwB1b>sKR zt-JTGXPL#(%|aZ21(=bTRx@`owuIT|kP*${If;Oin1GGX;%L|)31sJHmhfA>9JB{N z==T-B{H_mjB}e z!|9?|aT_+f2D&}JBmlsG6W5nk>BJHU8Cvc3F*5DPsoK3r2%tOMFmO5$_f)=@Nl-U` zym*x!N`sM5;UU||-5u-wA(UpHMvYBY_JRzBXvlzKF)wZ-U=k(r6EcB6J6w9YFcIXj zL|K>e@^+^U!4EAVz3Tvgq(1^Ss{Oi(Y@A5`%X2%4)18+jfTjbXh)}k(AwP|I*;i7M zeYtM$WXvDn7Ri@@#Wi$C6YIDPETq!EK)cJln_-BeqA%4AG+%h#wokbTU=Z!we(rV0 zCKq)#51M()(L;N2)=vxp--uTCR#mHeI>$Z+t`!uqn1N|$ecyGV69xM?U8!O$5y60R zwy}tSz+aZmRu6`A4Pkwh*TIdLm!QF_l@JHojlNhnJpj(&zYdZVdI!zn7kZI*Ut4PL z0w1-Pp%)^{yRU$@*kHAe^NS4pd%uD6t_#15%`dxr&>j!=%EF58CCGZITe$=`;v%C% zuvE4A!VeRUMO%D@81^oi@VeH7^U^oKAdo4ZOt0m*k23$5*~RXbAITf)GxXSXz^@Rh zU3j~Y5tN$xZRmQBtpY{21GdVh+xvsO+76&4SiWOsoOGuc(Z^@FtGeU4!1#V{-?U7B zlB~8~dk83$>QAD~n>fc+)9{6@A6^ko#TIdVz?-A>H!*?3-OpbUX{v&WrctkfY{L-- z+gbFc3-#Tq z_H2plM%7V0*WE% zI`Kz?N!wVfNn)-4CQSj&i+-J%lL4nDQOXTo+PWgwS#hRC!aiW$OvF& zy%LJY5>x=&&Q~O>a$fAN*(yVY^2}{ut0^x8tN8@s(@Jk1*NzpM<#5x{*|Ti1a!w9V zs=+sQOVY97roC<_O@~OgKx4JEdaN{jd#Q#7#Wb$u2{}Yd*YSAo*=R{$Z74 z|5P!7G7Qk;xrR>d=eFF2!Hy}5OCgXL7{sR8(!?kOMpd$O00Dje-{P8KOg`c-U|gdm z{u8}Crt7SH1>uG!RBaN}=brBHjZlZwjBe>II0>8V!{F z{mS3i+RE2O0s`fu@=E(X_yKh!kEG+yLN|JOvD{Ssemy`P1Q7Pik9n+12rWOQ_omIz zsRPFW9gK0xm;7QPhr4SI30j_{Seos*sW!QZ5no0H39(7SJ-9ZmcE=_{{}oz`<-{7{ zMK%}}9sKFX?!< z&7K~e%HsQytLe~GbOO@PlAoMdWw;zRy0fXzLy#eDUz=>Ej{F%otpha@5vQDa?-QRf zkja3i0yZq*$Q=Z8W_PZReiCm8xGbxFK{8RGOBa3rAkqk=fo!jys|M|VH0ChHOFr%X zxiv_yfvqg8-z4H1R}cKd zB?K0^t0nI6i_Y6V0OJ#UU;wS@lU6eSjcr9(}xARIYvMH zAR?<~mXg`8As}Pa$)DebCP#9*COVq(65GD5y(677*DXC)pz4j2#N|Cs#3hO>@OX#P zlDHEqW=H+gWYGvsOux&0UU3ys!E{bo^|Rx1?yX#pJW&6_0xGs?VC?qWI5p~%Uo4ir zDwCcwi_K(8gJg_W5i7|bIwkjlJiq3n9_>gG$?Z8#iPPt58#775iwTAT$T7Yfsm_!6Zo;pbJ;lYkrgR&7~K`-Qs|HDiGKz|Gn000000NZV_e*ZcDKm3R8Z`^nDI?VS^`M*;> z_+2Cad;HJuclvLcf9}8a|HJ=P@dx^c`hWc&>3@IzgFj$D>;IPjMf+j&r~cpV7rr0z zpZ2{`e_#J&`)BUe|9kfz-q-dY`5(1k?tVo7uK$()&+V)01N*Q4|Nno%$L*j0uU^01 zZ-`IppY?xreXGC!f4=SU)DPk};{PdsyLuD&&&$7c{@?yf{eSlF+rO@#p?}2xG5fXT zf6_mJ|Aqcv{g1F;$iCwKNBh6|pZQO9Dg8M7=AND`sf6ag0 z|1bOB?T`Kk`QP3z-~W^UO#cJ_5B!hr-}!(4|M)*Zf0KVo|2h5h_dEO7|Nr`*Zhy7^ zt^VuxgVKZVf9k*Sf2{rJ|G)MH{M-8H`#i_cphX4Qn$MH}4U;JO_|J;7rfB*mg z@$2*-@*np9&wsA}>;A+4|Np|2_Y+{RjX5{{MU5`#tP_#((kmeEp68 z!}<8RaMBCW1gY@2RtqkFiBmd9gt^~a6^YRFBA3{X#)oc-$e3)&TXF2 zg znoD4&tkcp38hLlda2Va|w&efIJ{Z{(lYv6;ujTRFqbz7x+?j_ryEf_H5`=zN>e0zj z^F|R-CWCM+oC>l2>dbNewcKEJQGf+*Z5?BE*Mxe`<)hEC6Uq9}`WBv=AHZRBU7OOK zZKE>(Ic^HY91fO}RHD8Q_P0!FLdRgoJ$M2dh6W(lO)<=zOeBeqZ#$0=DX?7cO4?bl z95$Ev^*+lEpNYm1jm1QAa6LQ`i;E-vN>UQm9QQFiFmWynuASNAxpopFYYyx3OAuN) z{zpyof1%sp@xDbF_%q}cVc{xz5gQ~p7yheQ^BJR{#lGq**gg&wm4rNOIQAV4VS;rg z;!=+Gd-_mjR)zm`P3C0@?D3HJ>kkn372ADkz#i4VrmYxlKrW5)Gn|`k>T0x*W9%1o zeX9)IWGJKNxJ%8S!^Y78(9)SI!$0aYTzYJD4KYNVO4A8KDr~lNiZnaqA0k*sXzzJmXPM4_^?)7+Gba)vpr!7v3Pf` zmRH$w!ZVAoiZ{_&o%I?&kRSuU%w+fVPx9S5Jy4$E3>lC1j>MoKR)W<-?jIfJ{|3EV zm4e9!b0ONs=j})u$VDO#%k0CyQ`mskA&Yc3qDhD?W%ISjO9A`uojH$I6P5@_Jh~q` z(I7TX&8x|K_3!eic#))noiQa!L|UkHJE)FBnmPL?++Zi!9{7U_I7kpp+p zRMboBYkN70RwEg{+S~;dvSkt3l~B{$kVwt)7;+Iv9_jmNh$oYMH%Ue=z9Nno(ht(x zbzCjgm&O$ccaZ$I>bcOEYYojePxSk*k_$>Wz|Wq55t>zANfsn{u1lkga!falTGq8% zw=tl@Ju0o4W8<%;{Y@ihq_O{J8!YjqchsI|>pd1;7ArhSK|!J-oVpD?){)E zl8U?7cRC*=^xWWIMaT4QWDnHJ4gy9=*#rFZooAMZrNu)VRf7n18&M1KOHKIzJ42&1 ziL_m_H1n>91E@C7`EWEU-+MuzNY3+IDqnJNM;kNo6gQ^4HkNC$I-HZE;Ci*_O~p+) zGo1c!`T>Z0k~sxmmsh_}Z(%|-gr(L+5ibdB5Sn#gp6MLDtcgdSrsB!UZ4*d`CuQAq z6*e=vh)_=+hpq&L-l9~4C{&YO2XaAIt5o9L52VFYVVPQT!$clF2Y#V__ufHT&D6%E z;j>SO(YsApDJmsB^W{6wqOo~{zrt9P!IvWGV)iOMX`itSeo0d=d02V7zfH+!G(V`5 zHt+6^f!ey)SaMNveMi(`*^H^IwBwhgsY8h}NN5|uW|=ppP;b`g3ivz3^tlt2bnh+l zN|~MM27TXFTIkG9Ic&AhFE3Qz?JVXsc8hSKdCLadH>0Zh!Uz3mS&=bV{}7F>TlMs6)4Kq7aaOuL`R2P**?LMly3B zHdAmCdjIH|Qga7*)lUxJz=A!47V=P=VG5dy4wItkU50>0 z$f)Hkm~pS{s$SF3mXl!$ng4p4ELgV5O^&56=Rt?P3=_C7Hf4W!JR(4$kf|~`0h`CP z(G5zN+qwVhX8Aal_QvI4&}VP*oh~NKyN-djA>`&BGui{k@;T7DSzX;W^a3uRn#nDC zF9qgy%HbbX5#n@ul9R5n2#i+%z>ZYhM(D}peBRGlW-yU@K`hk9(e(znMoQW_G-?ci z&M+cLYLgBrrxLJX^e3Z)J3%Y9S-E}_9?=kW->KwU?{mvkCRknx4uR1pNs#qvQ%yzm zd708NtsY!VRw_M=nOS1H_CmlLaS0`_Gut0f{~XaM;^^&lB|rkjO6mDw;YN4eb_WXc z)o?O)<&TBIPve8Z`+i=!;(Y#|u6J^FBc~*c{=kVQQ`l-I@it5Nm2R%k+X$JE5Q@Ni zO8n{St8#Q5CK0b@`NFK5`B2T`m-Wtna&G(>kMoKHTQPUS?{EWbJrC2GDNjEh!So@m z9g`SBA(gnj5Q8WE(6c~Ef&LV9wLBUuCdz+jjZt;)h||KbYLaYhT-!MEW+a_;H%=&> zHWrK3aB52|H(9bP_0f#9H*Nq|96w3+qZ1=8VQH37p)!*NT8v;HB^-#O?Si-X^RozI zt_xSh5a(*_>1PrUytZ^d^*kwdK0htqP&ApWgcWYOEj-;a6Wh8=`ig?DG5}tI6ozg% zhy|=$IBA6A)py2zh6JSmMMKnkytMJwAJ&d~bEM3MbHOlKod5TvF_oLRD6Q>&9iMgM zIjtRfIZMf%HqXL$Yk%YO-^J+ugmcl6S@vmBmK6l+aw#Sw(csr^m^nEZdj8O6GM&95 zO(jY?a-!8BQJ#mBi@%OSw`aAB#ky=noizliV+DGRyrd-pu1|Nr+b4bBT&1Sz0^jmO zNG0I5@co{!RjZ5nW&?_;J|uN~YbaoyhG*56Eo1lUJS;vAPkXSQt-Pmx1~1@OsKXPgi8Lb(IbI z+A?5^1?y=jC1G=X&yIl8Z}2irBKy>1O@CEjT&4lORu-&Jg>1(xUf-t79PrbH&Nb-l zQu&<7UviIj++?&OA9OQ?;F>Erd5r6sop@0ODO?+zup(rcVlB& zMDcmwJ^kpt`R)&zOfRAQlKh=s{pb*r1z7iCI$XMSC~KZ7Z(+Fmx+MIYK=5RV6g*W zB$0Bcj;2upUAbHeC@e6p9kcj9i9XwLU&#{QaCId^GBt&F#gs<;?s7K8{_p9sq`vOR zt2VZa5F z)q_>Qwvp;;;yl5$3nX<^%;)Cq(YE<)P^!$+o9MEzM|e<_&!hyb*kw~LrLiisYO`nl zltGWSvJuJ67LOLKXLLPEK1+MkA|<1zaY0gRUWVXHyu48E93DcLb1o~5q}w2stkbB8P5MHYFritri6pA1v2bOcBbmU+81nkfZEmh8 zvoC3{J43WBFo)%ApjAM zqJdR~)t=a_?FS5Km~kgUJW*ZkFC^}AN?R<;$#E;|#sqIHG2<0E_;%b&Vfs0eo>X_& zXGPv=6r&y-S$hzCv?oT_wb;QJKw{!9Q+sfQ^Qe`sE%`{LgA>oDEmZd;0k&J``(o>* z%4VnaB|?rW;ueN+OVLqT6APeTx@d;9J(T50M<^BwS}Fp&X##v6n|TYc8E+#v3=5Pn z3f{z@C@^p}f2zZ)^=)2C>P>`bZLE%42r|=j1F+j8%f96||B~p@s!<>qu-{sPB>n6W zOiX=a<#I?&XOEN=%A_hF$O=<#ti?t27oRc^RWNj7$3%&CG2um7KzrxNJ~{{@u5^wfs_?KjQpcFWQU*g&tCopN|BynJ4-onwKdC zhLuh!USS%yj)b<0w^P}%rQpeW?;DB38+^*UP;wA8#1j7#JNEN79C#aZ{ za%;!W@YPaSEoS{}4axyRe8+YwR8uskI;!cdVD~ZhHplqDo8_Swt8K4{KQuK>K|P^q z19t4!DkenFcTzDnI8Jt#oN?IG7nB*$gLk7taJT0I-c zH>wMYF^64TH8LB>==v&QsN`O2K{~?M@aJbsy=Jcgd8ZbK##9E-`+*=R9`as2&$|45 z&>kyVRxG&)b=rGtlzqVZzL==8!_@KW!TTr`C(1Kjelb}q{rv}iofRR{Mz z@2@VS^*W5GA+FtFKSis-{_xt)<=lavbVPp0`90v3{bjOKvV4W zN$nFL*G&#c)M@^U$c)<*VmZ!Lq9a*dQ~&;SyT9ia4yT>oo6bf>k3w@$=~B$cqr~-9 zu{l0jse)G`it_b`=CLx{Y;y&bF4zCBnJhDR0;N#nV7BV={i@E{&ir8_jnC}+*C0pZH4#D*XZdT4LK0Lv3j?CKeE^P;$|W=Cz~}j zB^%Js4|wPOnAn|UGEi4p87gcp{GLsQybia9B+yoW-eyo6tVcl6n0jh-nu?~$7Dbmxx)Zak!0+l-vifboNn zeRG|H>0=#|V44uDB~^xeasI{GKCTa1GYcb&r(YU=lga-e6fb=;2`vXb1+c#Y=$67S z6sF1gxij|1uC2ab@#+V%mA_T)ahJdPh_r&CYR0fe!;9Oo+G!6DcL*ag0~C17@XPen zg0Pxr)#47ai>_B4w<{Lq+QU4qB)R3-rNoP2dwnJ}Muxu55H^UjuqE>uPnBvefDZ+% z!ClLh#^ShC<2}GUz->k0-q__#G=dlqSUlEk>uIK_deicHF#lBn+I?-s`FVUw$k=;L z#r8{-@m_UF0p$!UjL=)*5M47!o70Pv_I)`VwrCn1g8hkVY1Ba3+^b8nhkK9{O$&i8 zUH|2x%udQ6?u%9Xnw}9d}Y|geh>-k;$zT4VO zPZsgf7tF>>d~#}m{&N4i4kMXZ>tO)7`g9Mju{t-fdHcU0tl#$ZXg@grF?-bW2VhgU-taiHSDDjNnN*?F)JP->|IK{V;(-22NTW7%VMA~yO{?Px95Of^xZ{4 zs8H(EzfZktcWDOtlem$_h?Dmxh{t04q*aKHi(Ay&>ZF2Y;Ez-;CPzqMo>1-nvA7+* z-J0q}gzO7)S5hVu*QQH44%6|slSwl)Z*0ZkmRucc&xnys+g){a%_dRNs7x+^eKU$P zVlVmJ!+9cE_lY}iUpvph)&x+_v)ujF;@uU!SFbmy<@Aw;6W`)d$dEig9a7=I|4nbT%X?o3{19ZN01U*Eo!}|oSb!I!d}H($*Z$r0(w;bWm|9Ly&w~^9S>r>mrXaWXN!quF5A*-5ixE# zSi9O0&_s)TSYfA1B&5;*i(o@9ZGgzGUE^00%1gn{yuenD3=fF$POc60UNR4!ZQ;gO zg?uFj5YmFTe9lDn1sbQ9?JrfFzUy*K=UFc{cklJLPna`z*iNOWw_vB}D8we;zEw%w z4JR?B3+wg4w!uE>y`_zHaNS;KzgD9H`nA_6uf)Xa z(zG}p=O)Y{^RG~IOCsYN-6(rAq-x!DJsPb$4Cv2s{=r+4IYh=aN6;h|;rZ8WeZGq$ z&mq>(S!{-@Pq>10Fl1VZOCOKiEiOm7z!{pkb`g9kg_&2m7Wr?x@r?KD^nYDKl*CV&HgzUtu3o%=hi%t9 zml6PK+%HPjl&}rL)K7&A(UMuclQ%vZRmRs8Fuf?f^i0oq)`oDznKCtdZ+uyfm)gr3 zeg>a*ZB9%jb}7>~GS}7XY8(=qWN+B< zw6_9$?|m|f3(226=ZqL)fOIj?yl4u@2Krx7odW_D#+H=EbPWWWXO9E}^oF>fpeSuE zBgtE2yY3UjwedZy0UfzX(fHcxn^PdyoBV&wIi=5pGdf_QvIpD`Wgd4j_nKMturX*5 z4QzjS>oDtyw6>3!vfY_L0yR_Tosne*f0aEF>~Bz2;VDyGU?SmukPJ%XXJWmV*zpO71~WMXwW(A{xl_CE%jCvgrx?XJ{YO+%ds){%Dz)g^Oa#ker#uL|FF7bt( z%$>jxGS}nR*zr3Ws+=H zd+F%gqkTWC%KL86&<`And_@dORibcVwq6T>Qa(#YK$sK&0RI0Xh86ZJ!~kY^fs?|! zmE4kfa>%O)elcgH!@uucCBmqSpbO5gexfMfs)8W&jdU0kHb~2mV`>Sd9n1?0?*+B8il#U>yb zrJA0Ud?S{$A~g?@JX74FD6ezgGTmrp4eu(I zHl~&g6X0^cGJmATSYTwTcl(7E9))k|5epL-fUyrb{p}Me7G8i&r$HP6u;I@Y5cs6O z^m6EKWl*o}IiVL-EM0}AL~YFrqRO#sboYyui}Lk*>-n_W<2|gyC8ZFe&_6rWCK) z=!f@nR?hUoJ$B0)cE&~VA%{OO2FoOw^w7*gUm%*3f<~}p>vI2neZ05e;yp&;%#ebu zXrb~xY=#DU+9R4Efexx&(NAN`yOd9JLz{j!f%k?tSwZ@Zf!6bUG>Pg^G%deW;H2;H zd57d4sfJIL=7HsVph8l9E1q1FiKV`n2gS4gYMX7mz=a|FeYOFAw56z~7ZMV+NS zwXTDtnC;qCMaf_Ak2O6Uh$`dLpzL~dClyTSoic~%R3Q-l?tK-1iD5{X;fACY3}{Xr z7zR&u$(X| zMgU98NlvyJA7&e?uLFo&OMf@o`c1hatr1Yikx0G}pG9sm zVA+40V}Y+Ik-cs3uwKt(fHM?L#wAHwW&_TQbRAi`$*6WcK%InPxXSd1+Qhnf_zQEg zJ!A+wbHF#nFL3MDw(Z?D*~({_1n>!G{#iI9GPKYWzv!8ktOv%#k)(2wxU1x^sGkX2 z982OkZ;{70vr@@05+1$5MjYtz^~FJg2Dk&yebKE*1g2bBMwCP;?2zsq0``d%*;$YU zl3|D_Nd!DtE4$CT%++NnP7(^b4|hub5u>`s-+!DzAj}gACMnV+X|Q2 zI|=AQydGNO?3};Km+2zwxPfFB5s&GU-EWXHFvWG!t%`Ih5|Qv*M)8@RURMm=uypV6 z;H-oi|r+cfW9v5lcl2d2TAn@vpiLC~?4Tlc|j*?1zKH z2W*xdjnCWL<@ygw5$El#vp@3FUzRG-91rhytAYVuoe0h!GJxSgR0 zq}<(Jfvc`XU}bruHhS>-&=8RGzBX z$wI{nfI-zTh59DKte*=8H6TAHcJR#llv#h$uaKNGo-?3q-UpYU2CV=LDgSiSi{ck+ ziGJEo17Ln%94LtrW%4V|%quTIscujbo^4>T8tRBwBf>u>o!c5>&ZvU>qHr;7{p>LAC>lg~SI^@{3DgDXkV2 z5D)UdYl2>etnOTy#MkI#oxcgikY?)$-0C1H3k%@F<|Y@HnxrEZ`pYyTfYg3Vl^FZf zD^162h~AD@tB2;Dv9#&tOT_oKdUq|*V8RZZRR!yi{ybhks6s@ln|u3xl?m35bE8Ss zp16dD*{DQj8X|f_5dx_Iq2J3}aN7SeVxE`m*D10DyE|84&XbnRNBE83YEw#clS|uk zr~_v~(2(+OjbMbAC0=3_soZd%-R_8h$F zq~irasU4CHk`Qu9p}OJ=RdoZ>(*!xHGYCMz!s*YDl52vi+xw(03`)j%*i`VYOOOd_ z-Mts78wUBL2C^v!%I%52f7Haz1NG3#D?WBAJG+$MyJhJ<6J)JCf{lagypD4^sPAjO z{iS3xx2igxfMU5h8cB#-`=&=ENo^{}x40`-qd4w<^d&k;u^vwGp%42Avrcd=vC)fR|RX{VFrHB4rab%G`7s-X8^=;V=^BpIV8-J3pX?4!`ZSw-=}&QSv? z0drBLVmN!#NdM$_i_~G}|M&Ou`>cm^rWqC!2JuJ+Z;AS2!eA|nwNyOfV$hW@e?n;v z@fe6y9&tIhkZad6${43J7~#5k-PJc&{5YOM{WLZV7v+WD2ghO_eV=P1f#ZZaquafd z7wEz9_%#TbX3lPsn4~CQY0@&MX^R~6Qq{-$t_%HzvQ(Mb`xAm-{FnDfOCY^O~}dSbrN=@eR`kQ|6~e;OcS)=GS~A#Bt~NXQ9vqb1>UCjJtpgtf5lQSdE~Su z!*0ObN(jaHr{HmfvW!9Br<-nw>k}^8L&&-x)J^}#7y3qUwyY)}2;gC9e~FyvRZ!Z= zXS6PnMpi&*WZ-!&6~5`)pA_Ya)2TpU zp#&~z=Y*IAssKLNq0MZU>hZv+9T#cAfgn?ok;t<=%0X0ac?vxj{%+?FgSMx5iy)oA zd|ZE9dQ0Z$Z-rP&L_xeW*c`u^&dppB>(8Bs;zGmXOnDINHgYWoh|v_J=o+)g5ZF1z~>y18{K^XNlEOE$Sm=B;p>H)CorpFb?v9l@E6$;K-muVYf80x zI9o+jxKE2bambAVu|eRGNQNxsztl!jD3@yByE_7N64Lhp1<>WVF3WmscF|F4{$c4k z2fXj@0Py5Wi7~$~VAXRbN27p#HG#5`!7AF%ED>#$mZO^hnX2T(WTd0s#;-L;W0j_k z+r65rRHd7wCB1bK)os7ovK|+=LI-}07w7$cP-n+TciiUaIIt$He`;I2Bf)10%r_#j z9_7LZv<8PW^UG_nyn;M?_ar?U_P+HQCLg#v;DX%Ezoj@6;4z6q|3&kJTP-$J5CZru#PBiM|H?s-jkJuW6ORnG z?h7Q|b^A?w=J7kQAwN^zce_Gg_bg|`v%bT|ef=cc1LsoQ7^917H9|COoE(z0QTCTs z+8^|alEX1?FXf6({!(=Z9Lu3`4`}gAfCQ`KeB{4Xuk`>w+<3m)bowVo_ihG0P#S=) zQg4l*;uOrCo&dJlS3*iX_wqS}vD(0TMF}R!k} zF5?wCp~gxVI_+`jDpoa(A=2`p2E44Bf>OvaX#oR!HfHb}SEin~*opo~5r)J5we^Z` zfc3V_(Kzec%LX=i9e1-_z2|PmBRlKAcYOk7`H8W4@lD)dO&l?9(>78-rjR!+UenMO zZaNww3nE`PBnuLnsb>=tTBpEWckq!^c-d$Qhlu8(#qzH%)5G16eLjJ?|Y_a(H%^>E`tz^?@HsQ zZx|)&^ZHYdN{QdqX5$j_rEq3x59KkRm~fr`AKUnl4!VD(9aLWr8<1W14T9W&u$mnz z4rCkf?Mp#zxDE^iaY)*|RzofU@bAY#9t|G!60R(w(cfpeRuwpp>1D1SG|X%?Fo31? zN!W8hN5U|Y^@_9tiIXsH7a3d_JobV)=yh+~nqni%d_|_@wkz=v1ML8=fybZNOix~c zaqi&?g*pCuA0Xgj+)&CO;Q~8(plS5wD@&@wHZ<)|04`-GgefKYC7&9ouFdRT zfpUYs=~=#-H9CKYK)oQ-snFXt-oEYNM_%Of?!fK5xV^m*)z1|Dr&wx~>MCC9he8du z12N-$FJF6U0nlcjOahVr>aMoALNq1D`hQq38Z*@?j99gWhXf4G2Qa z&_37qJIZJLLTG))8@YWm_?v>G0eENKzYV@h6A{eD27eu=QDyECy*c%DMe~r|s^J#-qc)9oe>&CyK$U?iYWNl#;BMYkA~A63K!`sGN*#@h!df zXpqK-~{Ebgsv7!%i~V|Ni`KZ zJHblh+Dr(i@jJ&U_9g%T&_i5P!|ms6^*<^ciWH-uvpNTVXjX&%%5T>#?Sva-my(^j zkRHE$mt@St&*17;=vpCeai9AD;)g6`ak2eTC3EvaWtn5R1n|Wz|7T_d%EuOd^gH;p zmQz0Y0gw8+`p;F`P zl2tWlPq%fhQ#gL%;{+Q=dkt0OBgW-#ykZL#D_E+dhCl(=_*~S}$XYRuYY+-(uHo@m zFu84}LqjkxOw-aADX|s$@gBNV;<$Aje8Iy~6~Wm~)lMZ(jb;5I8vK7#bX^f|YRE#W0HPx-$99u-fgK+JnAvE?|!06;n3h0 zx6dAh9m}>qebN`hXGh&CaiNZ=G#u0a|HUa^$5oYe54_)RAOt=?{Ej%24}?)WX^IM{ z8d@QaE)c|fL2Qxv%osa^%^#YX#FrcyOt?Ya8F|@(N-}kQc^Y)l%Rx)&#-jMsbr(=> z1)J=2#x1>9WEISEwF-F>Fv0w@32VbMN?fnsko*rs;8I1VYPi$ph zCTTQP%<*#7GLuxn!8W4nGKRxmOttd*nPBdOuK>p+@izVOMlD8p`_WK{F+TTT1eTY?I%z0gL50ZH(j;9*XJAn z7iP{F%ull#^y?NkO9N$HtW0d3^YcKy3)arklXkL`BMfR}MLOO;&^Wl=Q^o|AxgheL z=RotYZ&Du>%374zShLe>Yn%6>I$&C$vObEou&9>s6DPG(zohvz&-MK>egC0YtOFbr zTCjjz=FbF;SVGFR;_0s4prk-nn0kABvsa4ok0N)V;4z}{F;mA%9TrWWoFZHk2UWTz z+9L>M8SRptL9CAxyEuY&74K6b2ZNnZT4vmX7ISc?d0t z@O4=80*%j`7E}uXCEh!aH}8A*xnsN3oH)Tby+KQ0jiB;)CImD#E7QgSLm~%s0PRK@ z;R{$kc_TB+j2zH!O7pZLydXI#&H}G5xf6nqD>0mIpx>1nM7L~tPi=s;epX% zabRfM7)bE4kDIrwT)Wx^qL|=>^4x3a8s}(p?+=hpaJ9O9TKCj-3a8y-R@iA>o1pK^ zwT=`knpF4#eT9Q1Fw6Ed(c-IRsO*ISQzs)mO}@<1qTgrsXRz}pG%kstfl@{aTzUlZ z0~l5*bQs`0w98qpkw$pDzCCo|jz&8lC%UMmk`Q2}<^+VL{Ldt>j=?Z#B~R|D;<{`J zbf^9EFt4yS_C`T3x3c*8D^1UZ%{al)7PnXe#7z7Gm7Ff{#r~|--!hyg8A#lCXf`H4 zodA1(jFav~Tc;!9JK*Jq<1`RvuIxmmvEAaOXc90$Ufa)*E-n18m#QlL7)ygk5xv(!n+h99-dO@mc|2@Lo+CH%!g9WF zozen6q?B!NxZ;X#p$u$pi?B9#;+HlQdG(x+Y1dKIn3NB=l5JevlA;e+MI|@A6iYkjTx&e-atuSfm|bg*+G=NyQM_X!CDW_-o=YTh z58wP|z5c|*Ap1g{I{L0TagNziA~Qhy+EC|fE{W=hKg-wgezEw#|BU;j@yJfl)zpu& z?kg?dR(#s&mVyEJOhz%F9f^HygF^aey;7z<_=`Xy5~OKNhLtpZIKki&n^|eo90$Fq zGrW^wTm=b9Q8LYR%G@DOlS2gA$fZ%PcoZ{u>^D8-Ui&yI7=R&y7 zK7(IEALFg5jAzbceSqrE#ouw(PpoiFCDx=Y?_~d(bA|xZy~-tYmW4dE{RhMT2!oUkM$0X$ zOo|d|cPwWFJD^U~fx5Q4AH=5td1Wq6ujJ$=BuvV#obWmLRFWH^68j5e<&nvObDfjTtQfs;OZcfX z%KIai)zjMtSgqt}AdkXR~5N7WzY~eyRVe<^qqM1Pd|H}5z82d}3DP7cS5*ElrJjFf}t&JGAK?s-4Q>6vdCXo3 z%n;dZhtIzJ5vr(z%j4lm!62Vftf)V68DQTU_WgZ7FS0hI`Bke?b_ho-27XYec21ywc)Uj14!!NQ0WXs-S39vnE$i(o`t z&20lMf4st7Kc+(Wk{8627e&mae@0DzE*z~)hd=m@3bIx=lv_`2tLSU`?8jHbX(KJD zsU$G8bLm$|0tHa3Y}>*t9*Jxk;?CPh_3|d9Wys7tvAEW6#(|UPBM=yD!Ij~WR8Tda zd1a%R*l4(nB_hZ+ePQqlL7%*;NK@?G1}$C4wLTl1VIs*?Ff-_>a(IIBGD_CCe7+ms zh)(bYb@|W6G>?_FX?<6h8lB)tOmrqknrNx$eDrd^i{e9FPZzeHm$oq!XVZ7! zo31Vtq;FO8AX__*M6P~&COF13 zJdgR{a z{<{7-HPf>Kp-v=FJVt_3r$AhHczN?;dmbAA2~m|97uDN=b(GEz&#+a~-FyS!>F01w z9G9!di`L&++_u_ktP0_aE#)T2?32=aEk0zXFmQ$R2b@?s2yoq&4AxxQmbkiDEG&{a6i zqozHQ+Ee$oYnziw=z@pg{3|$3X!0sPg2Hls;K0zc*As+23aE<0|;tg1rD&h|6 zGZ4m2wCsY^ZCa^SbpRSgtP0zliECiac%$w;StOm-b1f%}&J)DUAm91#j0>;F#!yN} zx<&(`=IPsZ-OEbV^BmPJWS$Ca6l$Q#Q}|JPn&ZYMEfB6hCIHjCDH}~G*cJhgt*9Y~ zj$^|FTChg)85j(()Piaxo&IB@Em!x@Gp%QXa7Led{@K=sq>QLA>C6R1VcrACasIY9 zFJ^2Oq5SN5JJK@aCHsJwN^}Q+X~#~M?pWeVb++RvDksM9r%3o_lW@7>lNoggvec-X z1vDZ4MUzfr?j*X2Bqek;tCuZS#y&2Qd?8oaY@C~BE0LG&6wVDEkZ>143{q7(O|at~ zA-pOfZ~IXXPDhOwY~Sx}-Q6}W^h91n;Ra4~R=yK3CGCb}G-W_Dh1~FnWo^tnnMx@&O3ejDpu-M9T;%eKbPZ`$X?lLvjHaZG;2ARyGp5}$(%I{QVt z&%59g?uWTmJy78eWD`Gb*Rl}1pE8EpJw8@fo1|rb$O3Nx=Sk0@6c;MKK$P8}q%NF5 zN9b;rBe#9uQPjWZTWUKmO`sh{ze~0l6G-_36)q3YyCQl4LrBYl_dIoaJ4vZ55IXI5lpK$&p zZK`ZL75NEDx*!(4-bEJCSkKWbYOdLJSBW0?U$ffu&6lc|y8eOlwgDm^RCpqOyd!cr zE#fi2&-%V?*eylwp*)3vUd|eiaNjGDCM{_W91`i(a|<-tLBeB6d>e%x_T;i-S7wqO z!yG8x8@#NWkt>9h-^~$;xpa|#O{%-bnvF{L<`-$e&6PJa!GP;Zu`xEtV?Q-0ZlL|Wu!a%-j(&l!-xn=Av=&%K@l?LGYrz|hZ9#?bnc)&%Qs<tCmzpEzOI+Hr;?Cn#EvTQ}C2r+!)xoCTAbA$9R>dJ~u$0hi1KC&P z-3iGqi}br&i#~v0T0LWK>SvaRp?>OQJknT6LQS#RurQ;8UIwKmo@DfGA>dC4Y|~r6 z%=6+0NTW5V!grU0Vd5iVu_gQE$$AZ6YxxziGpAqZ84qBX2C{V_I`=X37E?4d-}WwH z1*QQ=4L0Kb=3j!Uz#ush6J_fXgO1rFU7n?Ta=x|WeG2uF{1fq%S^19g@?}-!6lLFE z#DaNy?EhCh#B{3SIa2vXB9H77n6brd4TbPtxsa@d##xbw>9{efC+3M>Ubrv~Ts9u7 z#rFQsE_^e`5mvE}M$4qX-S`3VSljBS(4_*PX@zADawPsq>j=Z(zES7qC6n|?!KRLu zG7HbVbSQ4~Vwm#f;_DZ%54Z3)C7uEFDlIIFAzaoW7jbH4QH761tbDC7{6)vHVD1eC&Ih){ez-0{c!H2u=0qs-C z0OT#cw>Ri1Q8|9Mr6Z@%CWrg=ToEijR2A#=Kj@dXA&SVuy&TiK%1Qmt|5I`3P3R)V z51GWJ0Z>VdaF`X|)~YUPS4gHKLw2h*uC;|by*01B$%|Kn%jHG%hW30HGl9`#v+G;i z^ZMt%i$S^8*nz~&@D$#qNR}K5Ls%U;zk4C1SZ}(xe<7~^!atB=eY<5Hz2^i;X{(eV zFe0uY{Q=>O5Gd`4oS&0o14)8c2iKF^PUy@(@;My(&LWBHYU#4dLI$=6lYvysRf@%V zg#ar+)W7DRvcVK>11BrvgW}{RlE;h~E+FOc6iFeqrz3W3Qqff&u`h_eW-(dWgXdI) z8)qI$l3c&w-0d>uQz5z>=fAVLdrE3;p355xPOJvwCl6Xe`xf55b1+Kwnd@eCPJ4BY zqeT9qwFDq2G*>9%rFyBr)SUs;Lm9i}yd z?51y(L}55TF4MsQ!lAJQdXhVhl8pb057E`CSnn> zMcha^*ah-gn=uQZY`93^T_$ZkLK8wgW+?aO$VoRQIkb*Jlxu47MT!k3tBe~eTsL>t zT-1us%P{B=rVi=atR=7HIPKrGx5Pf7COWqUKq>d`ngM|)M=X3xD3K}HGTfAO`%`LR zf*3u-*LQL3pjBpCdXUv&4`tqxLw&@JFw`#Fna%LI{E^az{id*0#i%YqZ_nkqMjz(c z5TL?PL33vBFoE4&ojj3_f3OiNO?a*$158tQWnMfPXQ?w+aY z9=l(^fu@)ADnCV%fY0Nxrb2a=DtT^j%%F*cqocp?6ry->7o0tGeDm6&XY`mqJ~(AG z2;X+9d|!A}Q#}Fv$!zddzg`8m*pG!4zwhhZq)h0q#80|JI)_m5d941l9Ubq(tF+ft zq(TJq^t+9Ze?LMvc^~3i%VIXcqK&vk0N3ZkgLDQ@W5l#*8rbMDJ->@IqpSEMSkW|t zdzYh<#jA=PRZT+q^p#7C`rS<0J=SL{*&g+`YdwgxM@g?`sSNMTvmEj2X7;m+CEZAB zf6{Cggm7n$*)>4!9S{Ck4;r?)^J%@cE0F(^2ed{4+?tfPQ;~YnTMN8j_zb3MbqlKs zTlNhl%e!Ks%#^eT$jJORs`ev>+Bo85uVV;V&i-hd$HEBuhCaId+r+_X%mBJl{oH(Z z31LD*tFIt`aw>)8jRAJmcn2W^K%zz3t9C(*?db+scmvUcg_4!q|K@Igc757#-df$q>4_(lP z`slN|m5)Lb_j^QG1(vwl+eEvRd`rJ(#Xm`PlQq}+yn0`(%ATIAjCDs!$1dZCdr;^{ z9o!u&=Zu4~bD5XWqZ0-y3rkME7}OUS@8zgGOoI0+8F3qmrD6b=mV{=XP~9X4YglhR zlBL5QG@Y+L7 zkozPTVgLAD*J&`9l)!BKstSY_Nfly0WI6E9N&Em*7FI>d146_-Qqw}!WJ!v?qg+r! zH$=xJ);Tkq&Pep8ibbKQt)(f5cQh1$ulBKB1bEzumE@Ok~R>0d43QD3$s^# zw+up9ZR?y<11B*#`XpbfM!O;n=>dHh2*sl1lG2~fcTVdCI=D%ukZZ#y+B1+^I2GB2 zcr&1JDXq>_dj;m(r2d6@N~2Mq30N^xJU|(vpNz-={qycW884F-D?IwGg-!@d=GqQgZZE;}QPRTH@D!cqV1Beml zU2on`@7R;UHxGeFK?6XxE^PtaiA+58-wEDEKH@w8GpZX{)8SpvN47qY`Kz+Qg5wii z#h!?v`MGk6vTFWK=#>J3BPLZ=We*(M_Q&IB(LEIabvrz}K-KrZ>uB+>sO$rRZIwV+ zf+TQr_xr`03AvKqSiu)Nic1G4kE~3tSk6z*Hkhicwh(30D^x$nuQM+qGao0(eY8^J zmxn?EU*eCp>q$?wz?TQgYykkxtG@T1U_vo-0G-3v%p=bf9Qmh0J?T@{Iw1`Mzy7kUGON#i z$rBw|mKY@p_U7GI7UZ97EYBF+vl0Y48lf>T*ylxu5P$sp%gq9lu4oK%<>)mTJ>PSV zOGw(8U)ttOZUf4ieluTop<*h?z<&yWY!Qu2f#q{=VoQVX@Ed0(mOB8@tx4?|J!~+& z{eNuvwBL9)SW_`4-n#zM-v5k6bHX0FfzBMh9AM)IIWE9Xru+4_7VDU8E_te|NHa?6 z+JDO|Sw4+x39_wBYEr6{D6Q+j7Q+5E;}p*V0VMm~_s?awYQkF0Ss#yOkg+=}qS|SC zZV_jV0;|eo`{yMkNpsx-IfDiGt#w|2GlLd$SosVltiZ0bLNj=X>4WJb(a(-ZCPh;p zb-rD?3C);bOa77+Il`oImWuX9gw<&RYZrWxdKDj?W{S;zek-3Z2RQL8I)X7${u|K5 zu^r40Ne>Itcxks!yEkUJ)ywO_E^(jXv29_}zPT}O+kVDhE+bE&0u?ae+BEVo<(06B z#VlL=bjRwBMR>r%-MpIuYbONj;XAEEMlpfm13;q z^vL6b`cb){g?Ho&fPWviP4Z-dPk1r7k<`+b^^ko@dG@1mpPg*fsnn~ce`tXHU=d)- z{#P(?G7Ey6xDV)Vxy5Zxh!$eE7mI}iX4A(A+t!p4H)IqFzV@D#WyHyTEPpA~ej(Sq z_FcQofVIjNcT}cHM;uXA>utAGV-nT-6y)2c2Mc^?=|1NTV_2OZ)juTsJVS7yr-XcO zPw+2`&?O!GYJgz*xWeQFf6c6LEVg}yA9ctqHNYtHQm>1S2pc<0(4WL{dCR2VrPUqQ zahJoxLptV$3G70}G+29EHY7zyg9pLjbg~3@iCZ^}956M>s*-<}yYDPeC*iw&F_QZ0 z!X)(9btF4GWd)0FC{c#3j%E~%K2RQR+a**Fs)+O9Ku-}{;C9(a65xTJD~zHFCM3RG zlx#p&O6%aDug?jUjmoZl4Tsw`RqE-~CL&yGdt$$+J;{2U6ewx^{2MO#(e_X+>Iwa|`w9u;2wx_+i)0Gzwsxd_I%}zl{lh?)WAf2p?75bNmQZ zsSFuE{W6V%JH~@_+RiIi{)|_56G@OT51;5ZxUj-neeJU*C1yGbg_05K6D!sh!jmYssy` zV9QWLr-An|%%rX=sWPfloDb|2HIO{ca8mBcTVz>Diq2>wv5ZEA`&_P+YF7FSQ^KX4101eBQWHQPs_Ew z$9ZGH2d^ZXC-1~&L3{)A7?RNWISQY3u(OrV79 z774#pNlXib*}I6C4|i^&Q=ItikFQ=eK_x)u7-t`4Bn%Fdgb{oGkJeJaP0k7HB`{Y4 z*eGRRvR{9A@a1y;fRrEt+L31(Kt0ThQ8-8>Bm!?ZX2d;X@Gu%HAhTf5?XZ&B??7dN z*S6T2X-;l~X)fn3mfeu*gkbL=evDO|>>GEoHfIiAyCR4yU5!&K<+Y^1QLKftvvi4$^eq&?wy}39D*YaXeF>*pjSL zatyXYt!MBNXDK>DRt&2x#M0a)WPS?rMi1L}AxrMs%|Bo3fPpg;Na~)+9YWZq7!Hy4 z4Wx<0Y-^9OFwKTl*_c)=hx%+}LHOE?U6`X-Odn(_(242?UASzf?7k z@Gq5ndbQmRgox%0fVzq_PE+NV^qpd1)MGI!vk5Otvbjsfm1Jh$}mHE<*GM*{GOg(KZ&2$Y;a z#0IjNsZdmJ8Uj#Yvlqd{Nu5?cOMM{V#6f%7!0I0xKtsjd#HFYmakxB4QWE( ztM1}HXPI)y2{#S!x%@!8{wV5q54~PbT_SLJKfpXH|JzROV`J5V9% zTeWuokrKLrH|tKA_rT@FD^(5f?7q9`o%$2blN&SA5TZ)~n{e%1jzKgRMSNj{*8Y5N z7Ch=67=QQU#`}xD#VD>dHsnZ3wxu`*+9NG*0XiW>zg>@4vV1(t4hNh|5HcpYzV3|$ zr|mB^GWl@P-s$l(S0cN^vz|iV%g46kroK>7VDG+xPy38+{Er>mG4CzJr`b;-QRW%z z&#hu8rtWw7q13jK!b4pf?e zWiHyfmi%BQHO`=NF=uG9ri@?hZ;UB^XkoFd``^2Ivwze|qU-p)nWH4L6XYrW-~G5Q z!fid%_6In&!WX}-_Qsk(o<`mY&D7w1Up3=BPblHBS~ydDRJZ1*oa|0sD*m}o(8&A|zEl-2{9M~%OfaX&@W zQ+|w}kIxwY;X5{mC`l`noKf^ok`wgetdM=$7>^a*ftI;x;kTZyQN3ox0OnY&m*T+e zI|fDCvBcHpla!B^q7v2p+V`ZlP-EJ6cy1m)Kd^q17s-GwqT1h@N1>R=q4^1CtzKUr z?n$J7N{TLbpeAIoMnZ32n)(>f4a@KZK0-*^3{kejr_r}>aR_DRR-6qTrAUh(w2E=!_oI%#3 z^u@cFty&5<8{M8m4V zD^<}MdXX*hkyLcU0uox_A^MQw@&A^K$;T0vn00x1JGykX&607Ix`h-xo>cxA>>nGxJ zky1^?1Gn4-N+Y&F=_@RR2lgo*X@UCRbrnR_$J}A#_fdec8sU;e0GwMZtKh)b7#-Ve zjV3uVOVGOEToeSD`q&eN2u!WF_o71sKH5K%Tjdpm{N+KY{9AEb_I`MC+b!g1my2UI z(I_>e&krCOZxusdKCl`-6*sBRszi2TkGvZ_KayMG?CzzNrI)Jb_UBRqBPWGtMd05| zYZbYrN&K2ia5HiGhh;Td!=!-3SyTeJvfMq6nAsg4P)@dRCR2!S^6`WCh`cr2U#XjT zK3AhwP;P&!eK?9>yL2SP+c}rth{nU=3NF)vGdl{iR!}7|T>rx&CxkrXp$H!anNP+iW*I7F@%Vsmy> zgZ+q39p}$pYITc7S4SCx%ZsQ4iDd{4A^aZqrnZokH=7Bn6ff8O+HYGQ#dPTRiVD0y z9##JrOnt;k|EISZtl1XumKkR$f*;Te7gfO6FgQ|;Z0{PWO*){kKN)smrbq>+on={d z!-T>y-`#Qen`5}gJnHV2LMAyCw`^VM`ii51-6m2#Qrm89^AsE}u0eH3P|paXe+k0Z z-=(VH{AD`+bvbo9Ry;;_j0dcTom6fFkfJjOD-kVV507^{Y6EbMI&w$WJ#Zq zzrq8?8=?Lz&4er<`kXKfKlX9{5_97wd8o0F-bX=77WK+_p^e_665skchXXOQNIK5y zZZl#2t{kWQHmn=F1 zdAhdE%8PYdgS=fhT@4BeRb~)Y*76=3ZJhXt<}e8O1}td9x4MJ`j^2B+z5i%FG5vn_ zfV!|LZepygt5wG8tss!dGMvMoNw*#iGtG`TC8dS70da4xA)qg{>_IN%uNFo`Cf9(D z;R0Vr$?_icjp4k|x}-e|NbNV-j@>3jUZj31-cKC#gz5zxNFPrLU4y)@<*JGt{FCd7 zj~D5tf3p-Pjv!#PyLAad&jOMbpv~OCM7*nlF!tv!YHWW(b>OIn6)`7&mB^f5pShOT z%Y-28GUsqQInm)AM6HhP=xs+HwQQI>Tr+eAvg?afO)#2kzN*25CLKf(Kr53%th{bI zM;Tt_pmW(9+8zAyw2%$}b z2InGVfZF0kgY*R|?keZy$zje5DS}m0&-_D%#q}@YXRzaB7IY}PH=qpadd0cd$EM_^ z+P5_BFR0R670J z0_q+YJ%X_;@3M-q&Hk0*{XH(a?trV8)Dcg5`kf_JC?CM1 zOQ-h8VLq~SQ%I$2ucb-VFdy7%2>JDd&RIC$z5PzrUUL=;>q#tSDh*+~_>j8rgFM ztJQmPl)~2)8)BdTS^SYjpkk2{=&q~nj|lNaPh%e_umNyrIRH=+r@baMsB3Ovj7+n{ zD>fHvM5P&XHUki}t^s_9FMsS{;oGR?m%zN)-}i6YRQ#n6P&NLh&}aDr!yv1)M=#Y1 z_Ktf+PWl1!Mgo@~Za`q04}F0YoHTIt_h!ww^9IRFg#e{@xv2H=ZH<{f@n>I;VKugJ zCfnRC)|cLb7!Usv`Lq&(q~7AJp7uB z$AQ)Hgd(&CX*$MmzajI~7KU_nWG_RQYYUMjKtb>_um^qzKuHyJQtPRj0f#UkxM-V^fu4S;D-V-dYN zKe|-ooONH&W|=fQt;L9P(w@0{Wx4y6E={4};ILa$JzAuIs4=$mhEA%hm|W2u${W&t zJ#>TYWn7ZSu64Jy^!W23622{)kua~aI`!wYPSlXSRElXSA{O+Y;_jKsO34Gn;15J% zEQ#~Uiy6YeY;b8ub&9~ELlTvwqsl#mP29F;hS{uZNv8h%7jf2nZf^WN@l$G9k_dH$ zwn(FfbfqFa6n>Gf?J5CG2BNRzYpk%JR(k13i~-CpwfvXATA*aWKHx|XJLjecDV^~~ z{M;vuE2kzv|0zm;uBB@!!7)BRYZYb(*FX89a^)JBxC|Mcn6-DS(_s-5VsmJ{tC;Z4 zRt&6ckF0YVHhMXU*1QSzpkz{)-=V7#Gzq?GU?XS4jVYijlVIsDcVppiy`zu`7eM-8R3ssPTU&tni0_s5xl zQ0$IIzO`n4e9>L^(~ZmOWywk|Vh}XHGA}G-V{`3?WASjKM&zQ(cs0XCxK}rjyxW<1 zrQl{o$VW;o<{I7bM@&E{=5cLlDqfJ%I5+1h8f_1o#}EL!3yqX}TV zJg*CQvyW{8wb+H6%?U2wNpI(oOpg<dk9SDbk^owM`+pc=j5A6*xi- z|JT*qih+0vF*o+iq-A8d(jL4O69?Y)-yh8}L2qqDNA`cQi(ew#W)eYLkdK}4cs%A6 z`Kn|Q%4r-p7LxN#Xq#ESxzh=|I-b>eI{(#PS-0-gVTHH1Qq zD^{rF>9hGT10K9KAY32qa@IM}H4}t{ONn^!=B(>m02Zz@@e(sFn>us>|6Zu@3mK-O zStHtThQ^LAQXI~y=*cm!8{98V!^-M;0Frq_D5mcMD)`dQF<5*H+&S>E1_{qo2q$=P z;!@AN*YrE>p%N1mX#Hwd=cVm{B58+H!g9t$+R+C0B@e!Xe%U>p6&uuHVIsKl4my>1OpP;lQbAj6RDMeb;t@ue^`A(X4p|~?g1WMwXCotc?eT}t ziA*$QT)TlKX`NkV^y)*6CcamJJ05-WO!_ufe_qiBW6A$6GdR1YLW9xB+ zTOIQA6`Z|3GhwCa)w#`CL;s|SB5_YHQsUTu_B&l{oLuII!uf{9Ku7~laKhJBRNU5d zp8BSK&&>T0Te2D0RP1fVS#%0}F_PAv!J4vX7zmv~^lv@RXP)eH)SjWd;oncL|CQto zrSGo7>rSbr;%d<&KXQ->!@rUya|wn`zxbmsycOP>#G?>tI1jWN8Lr&$U9vZ-7;p+q z$u6nz-FxHSyPH!&I-pPwDUCR8BnHs~wu0jQ> zvhNWEDBpS00UP`0PbRN%Zl0YpDwnS@7+VuR$!6jq z>5z=IV5o^knocTh{}#qq;#52rvac0X!y}_%XjJ=|TR&B|&dzXZZb%#ls`wOgp&*&C z8yD$Z_F2j~zISMX8lK$P7wpt*4B)BO31tW1{ojaW=N^1}x2jm$dMNM(bEz%3Bn5GF zB?3@W9mK9_`J#DnD(I>bqzL#Sg~R8wI&C0*Vb60&^4Z_ZTif}NOd7% zvXmp@;JJauj(^%wIl^ldZvFNnyFMh+JHPOy6?W!Ar+Bf-N4iP<@abCBQwCe2CNh`Y*nj-DOxB`*F)QOToA`ECLMn zWD<>(*{^QBaF4{5TiP&UbsV&hesu4%6oLAW2+^i|wGeb?3n7j^TDq3V?WsZ4?Z{9l zuqZreW2c88!M11hMW|QMQ9VdkGwFRhoHZU3eA{q>CV=9~QMBP`NkCA+Yns5rQiE*j z#Hav#4NNP+R3XOEOLh?Vitcn3K{(wLUk`~Us4Ldix~l?};YuuD=l|Fs#JX@}TJhu@W`ea; zMP(SdY#d7tjS=z2xg92g~Idr#t>+Af4kKF$2 z2}y_sG2hN`j`@TXmKGI8Qdh`qk*D@jlR`dRY-#8sSoVW4WPZEZ;pH7R6|WmO;?Ac6 z1soh@zP8y`j4$4-kz0!ZiWh3h~i)!c)k=Wi6Ur8kfFI%IknVj3vy1B?_kcv0;LM$zF zQ!}njC6A2FDbw@>#{9s{G_O~!IO;?^fPC!3^ekd=Kzk|Wnmyp(?3v)HsSR1~Gk(N> ziT*93=Zm_w8g)12e+be8$IzT6F?Z;EzXtk`!R#^LO;J0^Li}Gl@-%xu2G6$$q5MH$ z#$CwkJle`GaR*DIM^ewfKqYYGDD}K~&3Z$s-8nct zkO1=0J}Z{dw(HZd{Uovuar05!fQ6}GPav@TIsOIb+O!EkRI)*nsB3ORu?uCW<)f*i7?>t8X68z7NW|_+IH`%3F57bHwqODovT-fsir{|N8AP2jb0P=)tKIsMcLY0?0VQIVFE|?bvzM# z6Xbe&Jp9@$K#D%yDcQFKsB4d0g0uUGK!iSvMG?el_4>yA)ks$81K8F$q6HN<|0cm! zTEnHdav)wMZ%4nZh|JU1JzrZjs9Fyi9wS7 zA;jmzn)rgNscljGj?jM)z3uhE=G_Vv(U`+r6AX@k$P?Up@87iSEHbzYSPkw33LjBG$yXp0qyFvq?^2|;pLub zE|rH3pJd3A{87hbXAEK%jnD5zK(+zzkxgkC+;>ybff?vWuhSH0bt~hPt%I7VFrhg) zX!-!ocBSx6p&ohsV>`a&-OXs5$)q`9G<%(& zXFoEp8zgRUiSiR)Bd?(u5pJSSx={5^IZbE_@(-051?cB&x%Zy4oY2MwK?}3*F6aNZ z?WnU0Lq(G8q2$_r^Ab65;}@sf3tuLP-w25kjgYJ{TWn`lEUxU$7Yv!m!mOrzsx-h|p=w0d7L(YcQ0ft37 zm9D}hHg~%FnH0MwWzNg$*BdTtIVxN>x8G9LV$0$&e_}To134G7Hec6`94gp13A*HX zdz~6A!z*1Jt)T~t1;%x6NafKiBCCq-*n4>8U6{Y8BEssSbi0htAs$;E0BJB%?qL@ zL*hHwf?rLJ^ohi$8s{ID;Oa}jA-5sx(hDOX%uB(E8+!F)T{Y(l{Rhs!urvlP4C?!g zUrts0V0U>$03w%{?>TZO&BQHwzHRZgQPuMfB1XW9&(7uk@`=ODJ>xJUZnY#573xHU*j~XT!6&(eO+jTq^1#%^xJ#DI;4L4BS| z=?##Jub4ain^H<2{KMh^WxORtzQlrj&^xReK;ywf;JxA{Z0)Z%-(xIOV{-xmt9DZ6 zvQ-n&&Y(u$gkkdEkRe0{s)v8^)O~doO~nfu*_wY>6|rKa$^(!g4DfJrV4~b$?z*fY zq2~?=F(+%($8i9ySu?i3BvP~1*XiTQVeP;({D!;f7`>EKX`b(+N?MI@mp(X3h1 z+hw$T016wgl5ietNEI-v;Qf@wsfMe`|2}>C8G1;`>!ktV9}0{XPNs#-E#ZwmXm1R^ zKwVb}s87O!Ilv|&?&CSOLkRj}`)atyp8Zw}0V?#YryP}TBc{=0j-n8EA89Pee~OHf z9nr_;m0H55xOQ4ETXHKZYFgrNm;@rod zs$pqDVyecjYB>}X@ugS5NK}&>THQSj#WxvyDwu!n!Syf>-_Xt5ulxezKjSxEbR|Fz3-&vm@F08`hkEvy%}d{MK(t7sB11&{VF-Y;n%W5Q%XbiXDzyyaXc; z{;U(9h1v1lV0S-w{I&1B-&UTc&#p4c$iW~RR#v^a1=ykvr<|c9?Lbkd8TUx>2uw{F zb7fbuq;8jP$4yx>0xx^Kj%5%b}GTJaRrka$uQ9Lm+vJJJe>e#N%^>1q?mDYSb#J`wHL9(;?IdO;|!-6R! zV&xa-XZmcqNNI-nA}BHVP50k^;RZf9g%X_94FRHbMbv!$pK99Gga^w_&y@ zV7?Q?;Cxv|wmCI%<{nZ!*Q)E&tTRJO5y8t3Vv84aSk|QtYPy-9s)E=p;NZn0!-D`UlW(@xC=W8LiJw8?Bj=g8@## z?>EhPc(gT@5P-yF^cj*w>#-0~I*k`oIT1$~o*$sK5@>U*SFerB4ds-p^s(TT^drcp z`hbwY=~o2YXaD|S52iF8V@r$nKI~tICZp-J`An-z&t6j_WsG4jO^0fF!<8KaqC9O6 zWM(R7<0K0kc4o91?0XWlnCqtXSoCaG0E*kF!gvKS`|sGopl1oAw2=O5eP-W%ETp?DL7OezRzM(N5MYG|q&s&JGS5U&Fvh=(uP2hKFCRrgkJ z$s^XG)Yi*n@?UP2Ng7>0qYG5_dap{A<+OlJyQ;P!+Pe zskq8vq+zGC-VbbO(bQm!foh_kcp_BFY(8`r(szc=gY7FWT7loR<4u@9Ib+20jJ7 z277Lv0#orCC2*W~A!yB=1#xDkFSZ{~&Co{Du)#7U&VDB>{`eHIK=a4qwTzI<%_yqx z2fJ|feQu8l$&$W!L}bq;kC4Vu8Prln{V2qbCBgUiuTQ_T2`n4qrCdJKWb2_>7tUh} zAsHdkIx*1&PpKIt^Pr_L)T!UV~3-TPsL&WOiz z1i!GJ-w1`L;5$9%e6|B<{-8*t;MChNWcN}m^OR8 zBOiLN$M8_bc~Gv{#gq)Eu`Xg0DCl$-YDX7DN_!WKfa;r|6h$l>+m3;mG--G23N20i zOPJO}Z3t<&FIgONu_O~MPMx9d4hp+h$#gA3vcwVjwag%Hs7o~362UTtM@S;A#0MsP zhlilD@0FBB^Lu;bA=GYqfX=r_5n_ymDE?bG3%Y)Y(rR$F@-+|Uve1+O^wi` z$nE(Q;K}mBl`nU1op}y>k>x7}1*xbpjoMysPVFAJShmvHgPwKR;4|)RG}4!fFoL@| znkh>3K`nhAD_rOyJl+gPk5wXV_MYa+O)%xWHH~)zo)H73R{!kXy>m(sEdQ-r|Dw}= zb-0NylcAWB_nq#<3YiEf(a~RuD+M=fvnu+rNZT4;h?$S?sgB&Z0vGz89u`3;n7Rh? zHeklP^?AfLmX=I4C~Ra)f%(c9Yey97m39WO5wE6Xz+cTjiXgmYEThOO60p+mUUQ=v zAJL%=*A&v}$7uQQ#mo-Ao%P$)J`eO*wxGCTIj9nA!%`2tA~D?LOfR-vfYP1JE(CE{ zTYdXf^44Vme_P0-JhZ?Ho%ench%PprIHtIDpUr;O=tPg~{~^?J`%?YfgseG#|F0zk z3(v3m{P1s?%Nf3gqcCxj6bA!|XF7_K93gpEqV)it_PLMGmao9bb{Ds~0|GuXc-~fQ zewY;);fyxxg-8*dQbxv$DPpDfcKeS&WejU74S;3y~N`Wv7b| zhmnMuFcTL=Fs_XM*0PbX`Blzs*WNoy>0Rs|wJ+bUd0u=mU?*xLXQ!pV$gubp#rZOd zY@eKI6ji1k2+EicD&bTsC`1N?)lVgS{r?47u+0Wo9B@@&xcj+ZerrkskhSLIAZ0Nc zyE`mQdF`?vau^r?Pn#hkfwz{*l5@gJr;MXO3vSSNb--eeOT_&l)uZF*`yY~8>-$Zjyo1k=wgC8~f6Wk4G&Cz1US&7(EL{t^DtTk=`fgyL{wig$l zOm${@Y-6|7w+Hsxsi>=oq?^CopJ@r`%zsy@A8Fg*8O>T3Bh?`(WucjA$=Y|PWRh@P zK9I{8BdeMA{vX3_GK2xzHc;B?27#;QTvH#75$g5tKD&&Lh6&%`Q|?h_{R@w%d26tx z33~-2BN*~WK5DV^5kQ{iRja=xf-=P2ygS(63+rYSqzU6=)Ksm?XwCPbe)&==&(gii1Zpn7L)SV6z0%dZ||!R0`4jE4euMqzJ8-h!l^Z? zF1P3128i()51};$OODJ{!rscs z`l9?BZJ^8=^6l^a71e`H=x8E>YfKOQd=Y=~0_<>U{9XA5QKBnNyqZ(KGh!=WKSaef z&^t%+1VtkvIKh?$#Pjaxk8w*QEUMD*%psqT^4 zk)!oJtyGJn8zVG{zk_)GL`5eLx+l~K+A;{1s=m7(pr6ElV=!f-kSOF&f*S(jw(gL} zPB~TV(qG}=uzI9|#MHr)68ccmveOt6>PcB8aw5NJ$@M_F8JS@N((fqBmIL(- z7)U|=tnD`?2QYpTBl#XC_6;Hru1XQ3kTy^z3;I;}WrA}65#x<170uR|7#M=AmsO#? zeXX=Pwawg`K$zZTmnamlc^}+Ear!f5CL&;#lNhom5h;{unbd?8;CZ^bb`YBDLoKwl zHa7@26n7bVrcc?DaVegh{WsDbIF-^8rrQ6hRo}#wLG#l&xV=3~cVQg0+66`}39f7< z4aBF9#4o4ZFlJy+Vg3^2sNMAFdG0prAcoy<$e169JHT01EB@`@7(Inllm5@Y z7keY?30BODz!aO8%k_RjZ^MEH3(vBzr5x-qS;42e4YjZ7`r73bQ0b$Gx(ZO~B^z)v z(S?ozRen)KSGSCg_)FKQ@dd+nLGgIQ&D{zy+&H(FUgpxx9VO{q5Q(ksDGJRmPLAd6{qaJbY0IDxx~B;q{)8jpQlGPU#&-rOYOw2Cp?0 z&}DsEQE@Y8!^7@--2?be!$$0qI8PGeVJ+6es5B+=n;m9Kpocjr@o!VbL30y~+WL6vxefJPHJwhdCI9$O>n`ZqlJq2~ipr6}Zm!F&Dx?azp= z&4D?gX2J;)*jh{}I{CYr!SN@bRgF}l;p}dnk^2NIf3cW!G|GZ>lB4K!Iw(kn4z89- zzrS#gI8yF>x;cp!^3E@t4$mS+6FF|PK6T)Ce+K6QsXG6FiMQ5FixMBCro4RkpfVbG ztG^Q+lkZ-@+WT0(>ld3Za))xhUGVBK8~lZ!)Y+wtCw-eb=kGtmMX4XPy0J3FpDC8t z0u%m>I0utXt47)Tbe=KmLUob3K|*@42g`Lb|Gh{2!FzzPVScEJlR zHit=I?gNcDOxkUx(s^F}esq5;Qor%AgF6+ZW-I{Z9L$~m%H+d0*o>?VQQ7ufn`X-JTM9NfCRzkDx}A9sHmJ7LekbL+5zdbJ~@Hp zi49!aq9Fe|fH3GYeR&o~blm%m$_`_2%X-al39loWSG-FfY2Q;5xu}Y}(2&XD?)bxH zBZ((-boYSNKX2b*i$GRXS^q7!zM2sXBIW*-8W8M znHX=%WJ&sIiZ!W97r9zm@Xk3afKV~NH@!(%LZ|(FH#AEX@i2k@fVeA#;3?A73gRC- zQT)>w_<(&fS#Z2}Ke(`-JL;J?RV}h8*}!SN{Z)hy#V>T4M)QFMaHBcR*fZSo%Bie! zUB$X~xcDXG@mwJItIl=WL(3kJDns}6h){%#k)&!A0=5$tk^OTDOdPwyBi>WJ!^7|o zDlT&!fRdyziXgeY+E{D^0AQ{y!(Lkt05g5no}|8eGLIXsoK^PxqU<%P)Gqe4 zk^L#lx)u&;g!+X=wPe$)>Vt5#97k?{>kb-7r$$MwqHQKok<}JG1I0FiSpU&5Y8qjC z3DH#CPPxKHp2|yWvRn>Er~YvnJ;zR@Aq0B^0+vT_Wv+)|{kb3cG?p?G3uX9y4UXei zV+UP%ir15?JNp_jQiu@cn(r_dWz*)Uk^Q)j%)B8kAQfqsOSvmbB=`>s1p5uUk46TI zpk8MZj(!NdFuLJs02njbqlby8G{b0VTe$V8U%3N2@8am0f1iuY1;5&ZOn(U2Megy+3Ql7+X!tzZIsH*J;+Go9V znxP!JLKql=j7>aecKoIv-yShTE#fp9na^Xi&~q~F>d;YFEWfrDIZ$b88M6?MCDRb0t!AN3pkN;*B! zb3gd4W!?pnEvbMBqKqn?>=YR5cQCvrY*9uoP>vY}uc=X4#54wq??N$tJ$f>##hJIh zQeHs%fHulcGV|916qEU4)N}y)z@VPcr$YIFUip{Yi@J;weeNyNeRqK1jjZtyXYtlz z)C=iWiip{Dccuwy_~%K!82F6D=u-bgoEq;gj}2q0aB3t`@&x z_6V`s?5h=(l`dT65-Kt7`&jM1EbA8f!BE7M_W&qD(U;sd@!lo#!T6@R?j1Gl^Og`= zivTo0%fG4+rF{-r^{=}mC5qR!E9=5KhAAKFp^k4R zm?{|aA}j12*V+jkI!BJFyM@b|(*-orZiwbwuJKp^k73^t{!d%hcXFsw8}balz`zuK zs#pR)q^#vAFX+l$T2Jt8N}gTqch8KZP49kJ)$dch55F7~AX(x(&V1NQiWfB~5L*)* zxvsb+lRyin$~~a@vu&+w%5LymIgk67DBZ^KSMWw!6>6#ga}EMQqbZC^NhJz2ePKM% znoHKLD+~rhtVx1e`Ac+=zZ9b(w0d8`0^_oNG30!vKyTpvSQdK7TWj3`I9=ADT!7>k z1F4?~vrP>G;v{foG!;XKDImZFfyQ(_$_T95C_DH} z-L8D-+X$HK++PT~9CSbH*3Rs?mVm20k;eQ#^!VPHApiOzGTRqU1Ztay80#ZWY3Y8W zGhvrK8oxjRmY^fzmIWG7(etM@TEX;ZHNe$-N7}7@iwDlAE;-4q#FfL5n8!eUY(85r zXUWm@RaDtgGqe0HANqb}gS7noH{l6R?*c{j9MKF2#KAUpZELgXn9*apudp(v8eqJP>`Y$EK z3(>;5=Zj3bbNCfPut!d>5cvOpYSZ*HdnO1SK+^ac5vrr|u3~TP$1Y+I7vt`FD)|)DBvu<2 zEUxrn&5(Z;UOGMQtS8GAL6IB%dUdEHs&PI9H9cx#N^_!kiFt&CatN$F?(OihZi9?v zfFE)aQ#oa48y}t%XJgw(Pa=XkAF>l^emP⁡Dp>+tra|hvEl>K%dbb_uJYcyhAp< zjKyx<%+{N=!`Q^i3q#B5MurnP1!{UEckv~k&=BZ=I&I&T3il}^bHkSPz6W0dvdvsE z^kON!V1{Hs_j!awx}Y64O-}J>o;MNyQmwx3eURwB5*17^o z?}TizPnOXjIA|%AH#1y%OPVQtHLIK?P7qqG>NcpW@}}H99c0ruC65DA@$5=9e|A>s zeyqHss~dE2H*WMODVGvqPrV(qgA<#d4ALE26^FaXIA=oHgF&`L4&OK7saSal>1>?j zp)oJNV6^X=vvYc3SO9Los`lzZ^7%7?q#XWxH`dlt3VBy4iy600DcF$n)SSTvqZDWG zE7}GCOP4^jAWg%Y+F3>R|3w#(g6qyLbJdlYPQo_XISl{4?6Br zjw|M8|0Dm_s7sc=o2f4 z(-2y8Po83xdGbiPL5e6ZCM8Q7mgB z-=0frkt5)e?IkH;A|0F*Z|&vNG#NW0lz%>A#h^sLgF|{y9h_?H85%+_i@RuHO1^>M zD})kKjd2I=<)Pf{(g^dAFpR=7yfRUg#h$fQKK3u>3xD>bHHjz_Y&d%7;$q(b+a1?EvW%b&GDtMZ}7uYyRhwhbqNcL?L6_-5@0NEZo!QTcuc6QdFFzF!qZI|oxo2_ z0KzLiom~&7zO9j2T>o(1gZpdLZh^T(kmuDJbLOu+Fyn3sq}gw-e=!LIMSI@rSW6V< z43>rws{vy=)FP_JuRlI7bzyg3CHi6>SYf007XOKo)958socXaRn~_}IxY66IHmFc= zmLaIRmUX?D6!_?AgRO@X)!KB|J>yNMHYkPL3@4~6O`473w*jT?&p(ah-n~wgz}&AT zze&LD#A4^LaEpd1he4S=)kN~nms@=M&VHHecBChxqE38kq!ingdy0RM@VPmCYGT&} z8bPR;)RkOG%VR@_agb;61eN}a3Y8^P_rgUcpjlS8PQNoclLZ1SyU)H&fmJ42QkV~q z2KuspZs1S;Ps;m{tbQ}uM6@pIiE#L{J$8SE{){CgkyNSC%yk;=pMV@yvXtuF3yTcTRvzFdD{1EfmOB)1Pos{ z{o6Rd@>mb&(lW}og#w3!vRK9Rk!Tc-yM7w@x7hNEsP=j1XpXcC_NtQcuj1!Gqb))D zU2kzIAyD3@RBqHEf9RgPrVD|L$6(ao=R}|&)qPW_mE`)ep~f(60n!cz>(uef@X3Ai z^gL7zrnUEU^-xHB9rD1d#D2C-$!!1WhzLQCxpj)KQ(Nso&+Es2K%2o42xiv$^6B=n zV#Yn+WWSOSC3`jMtYgURtcVo~zl3l+&S@=ijr3I*iLCZow&t9_F!=B2&r!IX^?HHY z5C#>6O&IQ-y7GMTeoSb?PEjCxho}G#4Z$zW%=YB;#&V_~DzkGsJ@=HvhtRWO*F6XX zGx5-Zel;| z-S=;~FM~|XIYMV!)fJjF*>p5@>lVLxN-ep+7)FaJhorTvIxO%Ytq(*e$kf=A`n(o< zJnwm{`L0pfLAkanwM==ROpI0ttl|9eo&MlJ*08|k{Dp?`EF_acq#`sll@9!0vfTK} zS5aWyvYe&L?f+!Z)=I~vbN!InCCJ!jKDufR9J3y;f$W{EcPG;5Z3p?TfL4Qc_A06X z7TumY9IMP&QSc)JY>7*3_^Xff?^I+c`v)R?;T&CprQg*b*sT!_mg zIC98mzfbDq7Z&F?w|u?Ul*)NyD;xP&ZZ-Xj?9+wFHSHU!%CK@y{L83`pGV=%r$Jty zZIPLveKnHOw+OGq$HNrY%Bo`#{urt6spc^MyC7oV2)Nhs{(hu&#i6NTO#?xaJyyE| z)|cozlcqY;IJ416yOT9!~A0-uiMUr%bN$sd$|eU@A4#xBnAu` zt<(ruBMEL4b3?cALDgI0uh-z`mt%MwvlEl*gex|i+uZ!#W6~$S%tP0y=Kdvh}gjLV3DMHfic9@0yeq6=gk@uuA`KhD}(y@xVTZK?_s3dOZ6Wg*-M+ui!<+AI)J z=>ZM7{m-6Q0la;evh1!K(iR5=teJ^~>HN8VTAqMc9O%ol`abcN_A+^5Mehf?s z3BzZs`NTPi-Ht5b=L8o~9pDG;JUN4r?kBaC9M5pFJaD;TX-A}YUQZWI{gZT|$RW@69x!hh@@sfzsLOKpv1!nO5+Yjydyd$diMjjFC)O(j09PYusl z^I-;V^n|-Y^?f*d|M&%aop$;tBn4Z%ETd+LUgi5~wtv&VMnm%>e z#I(;u`}y=7oz4QbFI2j7z~rM{ffp*GtkQ$ZP@VtwvX5l@rlyxS_YLDZ&?=?DC|%Kd zR#=fleWvfN0T26T`aPci7-iQ@3|ddvI}A7xP5U_XFW8K54fKk@!biK^P4UX?71~k> zqiVYTQ~5@ikM8!weckOR3rRZNuuo4LHS-uGs-*5DL=pQS*r|1E3mM_W$Li&_Dh<@s%o zD%4lCPcJ_)JQ}rrNTNNEffe|L1S~4Ed-b^{u*{QhRrB^ib(Va84Q(7pR&Qt9fL1t26-$q5quJC9^By5#<(CCGFo3=>3Q8Ct8Y= zYrThSsg$dqtIPZhx`1ODB3VdE?ZJuooya@1&RpIWotNVH7ig6^?71n~(Sj|GwcfE; zRpdv|T@m$1ev-saJlNPoZnAuHfr(gDH8rA`LE4O5{T$+4_4&(=2^CzUu~2Kr z3$q(CZc$Q~NVaY4f`ldYMtEjrjYVf_`7U@4{F9ryc1vRd4C*gmSDvv(U@-qL8*<}Ry&Ah0(;i4d<9#_)_%sD z!8>mh7{d=oqFLXf2L7RV=n?eDwZBQ$w$WYkwdm8*n<;)v$mcG0Nk`fG*ME!IH`=hV z%RkuS9YeHG~y1!LQ$1L&^{<28KHq{#1e-V9v zB1HqetT@q z<+KCju}Zr?Rhh`_eUQPr`Y+c8I}WR^3+DnDdPtA+=4RBkX4g8_#9MeWj{(?QL(e=c z=ua;?v~mk|ZM!Q6BBqfMXk!rSvaxe)0rGn$p2NL|UT=y3b$zx?^)KuxgGxT;i}96>^$gDD>du3V@Bp?286oJJ{f z9u}PnjTc2ME`p(p>efQT@NQEkTs6FCjQ360TT#UygcnW8_@K-u*wBC5jCdSf2jN^2-nw+b06>4_#vgV=sU9 zcW6UGp`f9wNL^{pKzDlPRUM$kQ$w{11TrUjEt(Tmg8)1ojntKKgYG8cZU(fmuvmNQ z7&434m$q)QU$o+(dT&@O5p}H-R8Ck@s&V&7bY~c)Lqwnis`O}+R037Q=tS0C8E)S9 z4^`?27wM79L{ZFR|DxzBA)z6ka+TrPpb?VL(M3^z2YcD+vZT0yF|| zvy#xP=oTe0-P5Yze&KBQg}DIeqTFAQA(gb(FAP9U%I=d2pyF}kpun08Ai&wZ5hlE0 zJfHl{QeH5q=+!9+bovOuvNdfJ37(sCzAFZg))kTFHawKC92=dB1#yMP@)tYRq~bEg zMnS|+kE86W3HzN|d@yDPVy`D}-%cr%X!>WzrO?gkZGY2>7zoAy#62>THMkMnQO%4VwkovA6-kpgki*r3uAPYIm zsV578vx+*9En^QPwik)-bV%pbnhHasd@b+&b2j*uG4M|{B|kR`3JIl&EVob9Q-7V6 z@;RfcG`1MJJSROe6Fw{a5tRgl%{vAqukT$SIlXht<$R(Po-iWt@QiMsPl!V}kKF&kU{}l0p|8q9P zBGI-u3c^d@vO31lpl{&`2l-Ace4qhDJ_9Y%dSxtF1EgbnvA&=zkGdh7HfypIn1)9Ulti582me+49-*66^1Rc}&)+z5wzBIC@v2Qr zFLWY#Ap+2goz0x^*$CVK5Sz;G&qZ)yqggtxE}WESer?j@B_~t0Lqf-kn|$o-K6sF| z@9Gv-0tu6&yMlx|8L6h3MP8hMM?Z0}W&Z4%3?pUN$8qo%PVtr_PIk5pE~} zjxsDaAVhNwh(*m&tx1|=o9WdE%20JWrmfyZqX=hq1>)LI;vC&2PK$fOOz0w>H_jZ#NgG@4xkB~wJIH+ggT_Lu4@Z<++;`AHPfJhZ_VxqNj}77TJ;Pa5!U4rF8@NdksaC zIS@Nm#~FN0G$a_&E%rgzmsKS~^4nhB+PVF-5WCGYU#g~wf`Q&;Hn)oDN<;axxx*8m zq2nHWmo|>p6H8g-ZfF)dx{X-yX8X29>R_~hwd^v1WG%1bctIgRSsjp&Aiy|;Nugi3 zrx0DLJ`=^RmsqEug)VU7;=6&dkosZTjQOntKp_jSk!w}o7kVr>C%^L5K^|OquV7)p zM&<>JKcchW97X&gO$Vg%Pm5lb=-MQMt*s}dB=w<9=)R<0cnqjPvfh?@%RuEovO%re zQw@JkS=)VUusz9jgIg{J%AURckrpbozmn*>iVDLJ2nrsU(fIY;+yd8-25_b;V;;n( zF$poE#dJ%W(~gbUIcOw4S))9vvV#fGao13V6&C5kwr*X@%^AA$G3f<;g-HfcfeQkn zMj20HTb=$R!Ets{GBJ0X(8IrtkbY5qboTEBHgjbU#REGEHOBlrZcxI|UV=9ZVkK1+ zoW*~6a^DCTbp&`SgUdfbLA^+Z!i+a9$ldGS3^-cER6yXtawxs^|` zo`3$Ye@@rph905V`?8OEEnby{e}ezchvF4btHF7oTSW1*`DMda=Bw2tR+S4BS9g4U zv|YNF#Va_uq60=kJF+Buy}7H-@CLoI%E3=8DX+d~mCcc>%ipLz`HjFIxaK!S$Mk@B zO#tUDO=RnX;HkYCx0WRKmCEONal(x<_`M?Lq#gIOab ziU0+}=3=Gn(P1L(!sZ_FRuKSBk8;LIoCz8m(1He-8%9zlxF~K23^qyk*FaenP_Y^x zfFzLBJTe)uKOWQ^g9i)%r=#|H#cFKTu&ij(euJH`u!+6U6x_QXW`xrd2bHD3C|Xwj zqgFDN-POSdV+B9h31~5q4S_n#e|3O>p`s}%f)E&%ALpxnJ@+CvfV|bid}ymFd$Snx_^?>WI?*J?g`k;4&kSYr{TfP{ z)6dX^&g%a$jP*UmHgxfBAnx4n2goKY)IBc;$$33kO?|L(>a!2h3saa;B$g4e4TsXE zJh{bUfFAUg*MrM^*AL(7R{z)JGE$o)?YmS(?FtzNFsB}c+8-5-+J7zR?;pDBm;XYY4>_o3M>;tdZ@~y&ynb7x!H3Q zc&LKLqIK@c4jOVv5v%?%%YVwSTsT1gU#eu0l+U`1$yhu_pejBi*XR61_J@!a+Rk3{ zj$xwq9BNel!fpg2FEEb%e?c3bbhqe{o!10AGTRHAsyN=gL=vdKl!`Llb~d(FKH*~w z_27U~rKhQ`e{;ZY@X`0?#ci4P=?aB{jMm<8Dr$*hpCSC z9`R%_Sz$rpUCy^CUoi}qJk%AovjxtyYOg7@ z9eNmyllgSt5-o^AauB{PDkq41nU1|-lA(R3q!ob|!w94>Zb&d^bKb_`{@jW3@fQCx zVZ|d>Qovc_fGG@BQIE9hcmLM6vG0_eg@KVOmhhY>2{e;z#*er@B}JHXmimvrhjw@0 zHDtY-`GG=owupusu8pDpH9$vC8-F?4apLJ;>@z%P5j;?_1h$pcq{F{drG?CN@xt3Y zc%g7C`_nMmY5fOya}rLgM8_V{Kdn${5iqBJAv2e~`W8g$u=7^qD?%F%z~!VBBoQ&G z)|W#1@53;njYTp4-y_G2X-_XU8G}w9tMksU>O%;`m~pP76P)RW^Y@uKl~#&5|6&K0 z(SfJKh7(#Px_Aa&UzzkxOA2r@IFalN$0IIDg-TMQhFL)(NJ^OHQPUn^6Ic z?z6FZFZFK6Pm136Vft1ktM4s)k0Z>sFgh2^JTMcRi7KTBR0!iDp9U@9KQj3F_LIC- zl+^D3zfQQ`gt|5s7S_Vyj0A^))n@Nj{cv)hWqrDQy7sfX+d>94!1@+_VX6}w(gCKf zy3lP{_&rmu4-?xI0*?P%v)Q&Jg$t_NX+&f)R<90Hu+t|9i#!l~S0PWMb2bz8O)xgW zbpHSQ@B7+)lDD()rO?QJE z(B?ALNnk~yELR%)kKn(HZ*;e?tyZAg86Y)FF@>MYaT%`@P` zS`mSuV5GLq79u8q$!G)+F9ZaNsxP9CMC$`dsMpMZcFrGi^oTm+=pn|9IO%w3ONMY) zLiWtH;$Cy6(i~1mC?Ej7G;b~4t(!#t6V@PI(`TweFVl1=9oalOvA5I*x=mtnCldUA zrI1s^GOAoR^Z>U@zTMAujcUWn0btNq0|0epFsR`t(u}-hE9%AB&=r?0*dy1+5lF_B z@Uk$hia|i*`H_*iA0EH`_VQd^8sSny-QZ8^1n-GUr)VO{mX=!3T5Vb0p zNLOL;pUdM)K9wEG1QO=vqNl&qUe2EM`trZ#ruCAbU62|sv6$$CFrP}W?5j;gm1t>^ zHdtA!`^+n%CN;1#Rp5fufcUeutc(c}D*ZL5qkLko^hW#J&J!^oHCT zG^JT3O`rs6!_k*sqHx(-?e3$K6W6DGm|>OOo0{IM@C^PTwq2Dy=&V|nw=tbFDsfC4 z+w$i4(+MR)r-uajzOI|McK<;Dn2NZOM$kHVN+s&u7p02Os{7!$6&Bvr8(v&}XZqJ4 zBV2Z!-eGQk*Q_Y^>CA4OptIgJ+iEX)z~H$Z6^guUk8^x z=h%vF>3!?KYpuG)I^NvaHt{Y{Ro{r@pBX8)?T)Xg$m4br7^r2aBd8kQAu2mcfG#obZKnGuwDirA0CGG&U^5R>>gMQx{h~_S#!fftg+cs zKo|y>U;vCw9$W?1JHx<5Y`ZVRENe056~BE@#LR!zD#y9RxBh~_>+{#X)2w;6uvppd zY$m-=*E}?TLbY@RAF^4zW_u^DJ_Dvg&uw+Q_q-Lrqwc*5pTW=w*i9SKFv9=zD<-Z| z1YD0qx&@r%!jz<`Mw!6PVVJEES)h zN_>3mE%K_fiETub+4o?Q__;e7aYL+B@p4r>bQLCK3sS>TG0c%N`~6LLbOx+~iuVfA zF4CVYmMKPH5Rv5o0BIjFn)AV`749|&(9&!07eM;bKa5S*P(N&aPSgFR4TW7lD+8{t zb+Ce^m2)$>7o);51jvGAHErdw1Kp3W(tuo65^WNLowNb_<-yA=;X$iR0}qBd6NG}i z9J4M|afah$sfD`ahxk!! zx;Ay?l$$bp0X*ln)33YI!pz;t!1bc90rTao)G(!Fc0758Fut0ZUow;XdSy>sgY~yg z2jfRabDU8K6;4{nIR=q!OfbfO=bImi7-xh7Ge{x7nLVI2S+g-f{qopW#W3HY1Isyr zia7>F%5WRHL_&s?dO2FlSr!iDuGaI*D&*%P~VbftA_{eH`moE?T|3Qbn*+e0g*)dP8C#Z=o7{L(VJJ| z$M;JwhckA5ZYsSXwGHlFbwj+u8=>|hM2N#Oq&3?EF)#_2dDz~)F%pOo_box!6><#S z^@L?Bk3k5)uhE$N@SaGL#`WVlF$De<9J%rT#aEd7XKgVwWNpX3rM1o{U0$AZyBZB& z1aL1-o?gFcm^*fq9ZZVg+nB@BgQz`=v;6Va z^y{Ke^Uf`poCa5Kl>SISaWA0dvyl(aV!Kd6y{zHZ75S;n3pqz$-4)+)>}aF;lj^Hr zY%RErglSD6rBt4Uqk9OL_ot&_-2!X93{Oc73M{hkSkV&3{O3R||E)=JJxqj9)=UmE z>oBLO0w#5xWeANQ5RA+>`T{?5+*rpqI4+a1|Su((Fd;0)Jnr&2T|t4*g{{?(4(V=D~u)!>fhEPHu`$+7-# zFVT!$TE9Vqc7`#SFIdFSSB z)1_E|Y3OTk?kNGpT)V8%tAxxtr8PsR`1#hItokjjIe~Ul`5OYpV51_iJVTiS z(YE>Axi3a%8YSi+UHx3Pd!_$ENMyNw$l=fG*R%) zNpK^n%|@%eswb2Mb5RSMg56p3PMxjj6oM}mWGPx)KIZeCzSljY~dyv)Bw!hyTM zd5%Jx2ytxZg|nkCldG|AEWHn630g>l#U}D4;gUxD)BS?Bh;RTzT|nhWofW%r+7Dhf z?7aSM7JVPnpLdq5zW4DHgA=BZ`S8$ZD(O`yZ6x=XZpK(Fki&oSh)HA;8genqD)Zqh z*i#zKtK;W(*py?JmXj}?tf;lkz@3hJwH}BQc;?Ru?WtO-6kK~lM>_Z?N*obtXjzC1 z|M;THmwy;WrQjr1BE+=eGV{CS5gaZc)=2&bQvF+aJ5b-SrE90jvfFjrs9j?eHJ0U3 zy~m7pUX$``k(|vJ-ppFBEE(LwSF_>tg;2Z(jY)y?Ny?Ox9_M3oo)Z^0le83SdkT8;$(Lz>a0RHfI3jG{~a9;Nez_w3z1yr=-b$UuSG%F!5U zs&+8LdfxC7MsWrp+fvVf+=Af9n)qUq8tMM_1C6H!$_f+wd?T7}xRr%}VTW2(3gfia zZqD>4f5oODKb#gF2xjFHNsrBC$SiG+Kjx+p06aiV2^UFv5cj*r+~NgS2G%+3)`v)y z;5d8+qn=RU7W^~0Nq_0R2bXovWx=02B4a&tv>84OniuzdAJ6)!Jj8V%cN)sfc=JF} zO;C+3Lqsnde+5|^D;I@^V3LMWEQIeje%$F!wg?s#V``oHyFbvGL6;`66=s;a#R$R|65k5t5xf# zS_`fD2i^nj5T?;vi-LMLxge0yfu@FefNXp8bKhhT0&aI(3oPMHRE-48a_{7-4X}G* zfaokVSSD>uX-7WM)RBF7O=Dn{U^8!;~pE$zFMl9rR`bN7Am=A)QIz>R41RrO8Q~Q=5 z?@_wsN+nI?@fq*7NkL_BOCGs<2BAu=p~4tyrmJRnT{4j@-~9ODjU=O+WCD`)=0tH% z0+dm~S@1mNzdZwCExLgXo%Men*429k3QnO zB5Eg7eyB-Do?3-=>);TKNd<>BMJf z%z)+$1nEwtZ^46W)PeZ;R3kFMme#LS!5XG)9OaR8KgLhJ;A$@CND9r5vpL=${^A%K zjX)EES7)sOOZyrA*CC5SZk<0>^DdctZwE1(5hB=tg=EObX{W6oB93*D%0nWGGrDzs zh8=Do5`lgfqrNDAn~l4;L|Bu^1nHh+NP)4XrpWlpBZeB3bQrlKZ8v42TZbujI0t79 zSi}ujS@3!U&x325b!~hi@RSD&EExL7)G)l6J+-=zxxz@o)xmSQCiVTVwAuQH2)jZ$ z_2r*HpeRjRqLCSFh8~b^SWo7_NYl;GRyKsPu+n5D|E+Y)V<(uFK)`UHhmCgUK?iky zPosDc)OiVSk)%TTs~j#hrx`#4oZ6za45Eyo`IL=R zN$ajeF6==+hKN}ahW3kuY)HsNEU%{_nkb~iC2}II3(!_<1j)1o@Zp^`9sf-;eqD9y zAzR|%R#;TaM32pY6*TO9WM`?XWL_q41VX_uMKiyyqbikYKvR;ML!^%&hz@g9A(667 zbRU-z^7FCnY-u@};+kr#`i|yu@IyDI7@h=3>CwL?ql2}HZb zDDQPYCg($c@p)DMBmOQ_Ie>VC+nCRv=E#}lyPYI9(KjUp3}5ZzhHPbUV@z1sl!y`* z(8f@0cs9)VQFigBIO~w%@?1A5dLt}Ns<&Avogo}XU3v%Wt{N!!sOA^IY36Iir$$9l zZQ35+=PNLC(gN;|$X#@WAx6KgMr}DbDpEV>$5T)&d{UxmZI?+_jg+KR zS0%Gz+eTAt$tYA({kLy=R)}qS<9pdDoT#EUf<_KSe-@8&iLV zUYypo>VPY-OSNzfs+o8hjB7tAgB!VBfKvZbop%tMXnc1V(glsth&JJwz4gCvRy|{H zu{{-zV#QN?r0cB8n917D)z3J%IW~|C2%RNbG`VA>-=h}ei)1#ZN{SVtBIIXPNLy^} z#`$V*MvHILqeKrl-X{=HvVXFi<)|ZCBaP7$VAq|ivXW%W7%Go0DPY{%&WS4Gb}x!p zYQ-wDF-CRR8c=4?$o%n5~NRQeMm+PE7b;hOnVelAl#x#vva z#IK61w2U#T$@O8p>LE*FARDW2@s6)5E*=J*S7{gtIoWaV8lKz{S97>so@H#F10(4+ zeOb&n8z}CrL7A?$|7>|up~nn1kR7B?-CH&^Hn9U?^x*?gk*Vn&aueL~L_H&n%un0? zv5nk`WHHwC{8=sA>?l5SE=~>&iy`FhKYjM~p@wO|Wr|ZO9D+;!z3y)<4SzyyEZ*_P z1)f&HI&D*3WKl~x%6Ap$8PxeMa0W@CJxn${~@R{TyaMOdhx8c+;X;@DE{Mz1~Ha%!o_S$U!9ElsoCw)r3@$YZ{EHC<-gB zPBbhNAAo{;4O5)%lDBqA!)?hX`NDH|*acTR4=@rslzJc^YkdbI1>oq=y2F|3$XnsE zqOb`>8c`=wX6z5-N^PwSbY2T|8f>-p_ffu4;{0|;L9Q__4_8U>0H7Q9Ie}NhF91xz zVWdifN!%88opD~ zm`;37Cl1~{{sg$(Bet2GR)xuQxur*j;x06&q;^0mKwhh5a^_OY>l=ojgwn`x2ozm& zP!T6D_5d6iVLlR5^&$EhvD~P@+8SGT{Bd?8-}4%dwx$A*dP?LtpyRvAD8|w?V<&Ru zr*QiP{Th(0;ZLaY9AxOGDY-NkrcJnF^2#7sXG}h@&`1l3P^W75#)cTgbL3B%=iYB8K^6v-E zXht}ECfYHd8>-2}n-t}jcK3WA@I~a%or343w0BFD({XCF8~>Mn2cVmyRJ`}NtNw2) z2Y_5^#`KUF5zkNpup!gasbr^*J_?9fg519Dfy7ZTetl#B0lUhiDuJ|hm-zc%KS5Z4 zBYjVRcd4n+P}A|bOH8IU7q3w~ott!tWV6t<_zqO&;#|Rc5jH-rSb=bew0Nn(`uAs; zQ?|-TPo=EGbwKm${!8+i^&v7^F&(nWf_~@aQ-j!Ux%OW@S1r&g3P^zUHO&XeKY}R! zE$~Ue<;-#mlOGdt!mFJEw%kKs>T+j?1}D@njc4Rm`E)UuTKg#$tKOiTr9~vdMs-ay z)=djJi~c7xmX#d&?l743MMoDvh5@se2$UvkB;@yE&T`jt7H|8|=ukA~$L=#SXq!md znzP5f$f+q%vv$j6|9MF=IojX7g1m{EtoPWwSvx-x$jI@h{@jVp(p|P%@+2yYX>DoF z^jRdx$3`W$b;%^5Kx7Ja5Zj1+lk~HM%kES{h_PIyv&{SQmmZjZI>@Tf4N>cfj~mWh zuBr9Gw`AS078IBOx(;GOr>suI5DDF`Co&5a*T|?53KLv))s@sAnjT`52(;xYl!z?C z^bCaXs07fg6R_9^D%Bna1;8+akvzmc1(#)OH%Hzhw!TuSh$0;1CpLsU#53^SKQ0z% zu=u3mXFjnKy$snuSV4Er^6LW#5$0B^^jyyPG=%eT=F&WrV;XnxFW|}S{=u-^QpP&i z#~;OeF2|UxJ$u&=ack&Vno|m-%~p`c&2Y};8oulF(jp`10?|jpg2;1%N=qvo$XIlh zjPrxhxEusX@9l)5AUm`p&sU^n_6?l{dip)mo8UkqPy=i!mDh$dqQ%S`lZO z6f8O!EAwC_Y^e=G9rnF)&oXlKa>#vzjY3WQ6$RfpWjf}L#?k0pA_TZhQ`O*z-aB=%sVGOu(BzuQ)Jb42b&C2H@ zVYJ&3)pr5ebuWv@*cX8kOX-+BN#IW2n^^O%%JRUJjR^FOt~+>SWaO@PF!ZS9K;VPF z`Qp%l2x|nQrCr=urW>yxzJPe))#6sD6u(?0#@>AC6Wgdtl9;`FMh-&1{+HgIIXDos zCyC1tiMIgaIxmE+RUwP>pQms~Ba20*40;qIK{UvAu(#bJ4Gu$zcCvCXG zE)1E_E`L=Zw3ut-rl@0L0Onz+6M1JI2@X|u-B{C(gU*p4N3Gr`CnmupYp<%gff((# zBevRhnvfg) zQqz+ER+oa6I z$f%ju9T)+GI3S5Xyvq}qIe!Vmxa7~n(XB-=?VZe-W@BkqJ%(dtZ<&I^k8|R~wN%A{ z^afra;2U(t6I2S`cL%7q1Wt*mZOoSE9*6ozdDs`te;GVkq?L9I(lj2dzLTbXp(FXf zr7M&V3SwRJT)H~&7k1;z;+Q@84*s(*bQ7Y7A3r!Zj7kT@83Es{%`Vc}6CtPU8Rqha zj_&O#oJt`8xI%lp8cwJwe{O8?Lkg>Z4a|vm@p{<3y_LJ3uS)KokISa21m8?~R0glZ z9;kLrX_)O4%%FdpR-5owiDH-*smhnp^6axs>81A)ld{SK1O?|wp8Oq-`qZO+CX42K z8+PrR^iQZBAJ6kSNO}@=H_W5fBj(>l9IxYpVS=?*L@SI{qzSaU9fA7r6Z7+UlRVFF~o`s zXW?A^-{&g`HogsDitJ{&dX}!Vej8t+v<#hT6q;xciDp5*C5fc@604-3X;WJC)WHfW zJ!iQM51B#L+fB2r4Gh>oXLzmA%An>*ojoz^)uE$NB)>c7WiEJ!qZalXIky(-%6fCr zkb3Hl2rVTNu)-Wx=)`Mry$^ibsvUGN{KWTsQ^_^5SMd7%^w@IK$dN9ZpghMBi{a|- z*+!RQvsZh!iKp!oE=(%%(V`<0p9`;oxM}>;V&($Y<8>LNGow<@>y@6Os)WFojWR(` zi9lF%Ykv7#z`_{IX7q`bsNhp=K7}rDbvy8+k*Yf z%FXG|9UlPa*Ex`Q2Qm0|tq!Sad-cTFvs`7n5M_atHov1!kPeIAb2ZZ!q@b~HPaWSH zH0-Rxk4Cagh5T7DmxM=57dSJnHvD&5!Z4^SnfusCEln<*d}ArTPD4`PA9!*-Y4pn% ziBoO@UzyNt__qi@XtLkOD?bP`MSM=D|5?!efa-Wb+Rjby-&2-!gd&LyV40iEJG9Kt zwjl({ETNrE#zK5~rAWg5qNWBrOV2}rT8KR7L+HS+JK^>uS2Rc*$fe|A8B~!Jqz0|2 zn0GT+6H{4=Qfm06%9{y7pso1B%ATh112FmxJk>+qW;wnF3o}Z>xb$wgytFZyvZcZ?{gK&4h=Xys?5)b|F3t3

      p7ZYH8y_(=(<-)HAY^6)ptdTssPp;*H8CUunxcNy0K???8pdawbDHDmGeo?;JqhJ zr}CC~dL5P^TbA>Qiibqiv`G)dKe(Xz-m%5`OuM2UiR=vkSKApPM!Q&KJbIH5D>!;L zj0mD%=f9j9>eR}+k=atnUi*RwhG$kudMY>=-|c$i{!VLC-+0LCZIn##STUXyF(~Y1 z>yk`_K}d%Nt$|BAN7X;~;CUWACK@m#@FAYj(8y{ou@>6XUz|_ITr%TGkKa_CA$u$# z*%%fza)s)F{GY~<8&_Y_V{}bX1ZO$KalE8D67u0865EPp7+{4jP!sJXXEToIAIHDI z3bliID@5{n;;k`(GN>Jr7Dw-S)D+&*;pqbW>4cev!k@L7L?ynzu#6&s^d)>xsApT= z?t3H3g{2sZ3sC?sK+wP2jbVMb7&r#8CT@iDQ);$Z))pdOGMLtKl6|Ktw{e@k0%duB0d{Y{;WDqy$Mhb2NXsJEgbKTnqP+{N`D}CBj3yD7;dLvwz#EpM9XGL+`kup7(nWg( zR^d+2Ofp!MPptq5qCyJ_J@O!Eul2pcCE3I^OkX=cR-%GJk?fK zC2M`SOfl?!&UI(xzM~Z$UyAT3It4Jv=Z24HiBOn0&^wWck5Y<(?eV!)2yjqEPTu$r zV9@lqB1VaG53~@>!{fS+KYoAOSC5si+~sBoW72G0l*92v0U4nmvxqliR-Yirp7;gCvi9Q<-fpn3g&`m-SiN+K~*50|3&kpHkPwxc~nfpsstK3wIoSH8241I zHHNsKEHn1BmuKStp?pHaRRDHvW_it%cM+`Wed%>XdC9#-J7I>~SjVa@(cOEJsc>38 z#1Bk=>RrimUhS_2lx+>qlL_hcwh$F^4Gc_R|KIjUGka>*0t@HCW=N~(4JM-*yeD(T z2X<<%7cx0#4Va-M#Vy#)S({u9kPOcZh70qTLm4B=bW_??JQSj?C+zST=V4@ujK4(T zE1NNGZg^BIjQrC$Kt+9~Y9A_1p@+6?bpMa~;qJQ*!n{jcl;^wAB790*|Dt#D080$^ zs=lTMJ>d!s@ohC2BfT|z0wc1tD!^i3L)@+WnA=)J5A0{IUsR{-j0bHlu9BYPp*Bqa z)UQ=Q*f$$SugP_;+(yaUogHs;#&E0d{c(SYAUZ_TY_1diT@!FNl^sL2v1r*8KOskC z{CWF3@|K+gTaI=l!qapV{B3wn(;XgN>HSINMy3g~F@wG9NhK$I zxm*EE6CbChPe2=dn-4ZbsI+|;???Qh*6FL)oXc*NgN<(y%qe!S^kg+`~-jf_>ORd)a3dhBH zmYHM5GyYjcx5gKC?x_Xe(ZxJhbr9PIBo#Wq6JtnQqqHs*LS_0?y(L6ZKvxk1Hy7d zKz3slgC#T5b^pN)Yz@?yG%yH&0K}3=R?V8Ov12w>x+J2;3IB7fg1`roAXpf)7{uv7 zDAI&!1QQt@uc`;+zUSC*Wvip|k1v1g>2si(U;tVVJ6Iu((S17TapG7JVPX@wBKoJc zab1-q8gZ-*k2J1=2;_%kVab(%@C%ZMNQsHsynBPmO5nW4`|2RIOzyu9(!uAi3A1K_ zFO0=kN_fcLm)@ z?Yd;s+@S!P+C_K`O5#2~t0(UtuioZ7uz3pov?VG?tt6Q`(HCq|bG859c+{&gYAnm* zY+x(($PGkdK4yiCGPvJJ8%elIP%DAw211MlbzO;_JaKiED<$3>VKvZ)bG4AK<~g)mpJZWwDF1;!%Joorg-mdH6?JC{ly*n3rT*AE>e`! zB7RPFE<&&&!)~L)U}eVp0bMkWrBY|83ts#SCw$+O=1*t^(g8=co!~LwKz=2)_w|0T zm!i-sqq^dTUoLd$gQ%ZrMYNF3JJ+{j=2L}bx$)=7!w-As^KM=3cGIBe4ff4QuwP^F z|H_)npF6?-H-k?QX(0n&ftOjXS6FxX&wy-_;A(vrDg3vbTza|%AIuRMus8!c-LNmg zUml_rto(Q~xD4MOcYfjKUBBM|-J(ah9rg3a_he~wn-)G+aW;}{TEU$|Vr2Qk{!Oxu zH)d-84(7$%I`I`yIDp3DytQ|S&^2;W)P%oZ7$s$Fx&BBvpEvkyca1s1_Dn9=_&11t z#my~0iikZCGrQTee}dY%@=RXC6iyy>CTgVqQ>3DmR0YAtTKz^BUHAO11|SqR#nL)*%~!&zy=Sc zcF?pqHxBsI5@AD=qfFd617f_t-}B=Ej|(pJr*!{6TtQkX%2Yq&x7XF|fi-G~KbB0& z1UcAIdZXxQnBdj4A_xWM)iS30XiHlI)vG*6LuN?6kn&9q%u@B3VJ}OK;gBx3JUCYz zvRW?iu-oV*=-QI!quJI;eJuj&|3{QN*Ct-@$wr0!j0l{jLC=qxDdT0q2Kxd>G&Mx5 zU-U>yw_mCTW?K(}>M6vk`Qhcus&uvKsorDZG4Z04;H4@}ny}SGnMdJh=if12-s$2) z9<^1_pIv+?ZtFLBT#=f{tc_A*zY}*-f&LA`5xl?pOjV@sTb%A~RGj3azjkHo&CJNn zaEtT6?7HVI6XXzOUIWBd@POC+qwkc9baQ=k@_ggj!E?0|J5~`6{;#m5g2E>v$-RWB zWJ;FR4m;dA`Nad=AgMg+YilZVuc)*gN}>#@W(VV)AH`bnAys=4f9rsYY)tafUsVQL zoz=6y(bP*wD6u;5*vJ9a!i_iy>p}ZGO_@~K;ajMvV)M7LjbvFI3`>KpEH5M6+q1l# z)wu+;&tClbfeM-tI-5z$Yu3i-;QG#A1TD;=Z7ceTT}s;WuUTczC4`OeW*)%|FE?mC z@4W#2p68iJl%$I-$u%OSEGVA2lS6=**!pOm#M2`2~vEV1zg_vNg@ zyHRcV_c#v?9S?SN=^HN5-^9ga>~LZGHK8{?B4}+Nc%>c2BwWE39aNgL<$Unbv@0F6f1T^vp+;geO4- zLT9y&VyWpWf_7W{Oa|b@h)3jL(^#RbqRjGSapgC(mi`Y#xtc2W^sV)oET>;j{a zk8fqM%*->f-yUz(efki%)b7nVCSVs}GMTz(l7vF4aXikGjh)5A1rp<#jKh5{+UKC9 z`CT1z)nC8d{Dt1Ij1PgQ?xP2U!fP|&;Bt)TN!H3oj}(_(^DgKiRV$Tn0UN~X@S>;! zcr!}D_*Iu}d5E_AGqPpE|J~I9&z)?SWu^|LY?}?(MV}ZKCQ)P0K?Iwe@^^e^YV~)5 zV~mM3RP&6Z+>>E*RyLZ)a-4A$4@i1RK+JXHuqB?kwAC1iWZG4SG6_EUlN)%aKX6a; zy*yPQ^N_6J-T(D0gO5s)s9`k*$aCnvyFY=G6(~yKiIJ&;Pfg6IPVXm=Rnv+WYi+xc z%nJjFu4i{eHL)eO&Q&H=qRB@?wTezxyZ0KR(O#eaP8BY_x0+M@OF&Ahud%B}+a3@D zLAwa)a~hv-n&_xy6u5|&bo_+I=k0!&fR9h7uPv-^#7h~qI2Ir_hh$1=#@zX9P&mIZ z$`h9@=*rU&TA7=icZ9|eesk_e74<3n2=lOS)A4jpI{V>^nS|7VruXrZmayaJed<6* z?F#tF9tWsRR$^Enjr(YKV9ch2@to(yzi=uBOf;Z5by&Rzb!}RJ@3W%Whg!C4H_3s? zOrw9fQ9aV@WGTAq3-oNC1EEJ7USwsSmG1vT5d)L z9j_g?9K5T@%l}W~#ZlZ-5-}f&x=<4J70W0{GC>|D4JE6sp2^jd2P{C!zMwq#;}z>J#bM-a-0q{n0rU zsk#vbZL_6!&}=D1&bOfqd1?FbxdVf~_O0l7TJL4VzRRFt(>PvNO^-H&5l{7PuStaH zb-H_TZlmOOl@hfCf6wHTZORyvkVO`9PwSDhkT5LVTf5`dL;H_>ceDd_uh99; z(*iStq|JV~Mdji^s>28TmGOd1y2pJcF6oWTQu2Y0?N}px8Ho)@znL3~G$Gr2aTQAF zw1u6E@*7?$M?M~5W__MufHsdAIIwz{UNc=EqipMBA4|wr zC_da~@*Iol4j7iU`l(&PnSpxoQ}^Ii=aHhw~ZE?y?w^FpTtL5ak+O$rpY8cLY2Y&ab0 zmSEf1u;$iam!r|IDG-xj-ZS0}@rQUlhqf1CRnK=N;`adjBw#`n{_$Wa3E_{TclS;f zcEh){m@0oYoTFWMuu!>iqcKe8itM~Rh$iJUvB+izyMaK?u#56|QJ}7#V2wny&h8*l zCjF~?Tg%?=t*O^L@$ZfEW)F!(tbdNM=59FC>>xOXVP|A?ie5>)&KUG~7!z%Vli>ZI zEc1S-*${D}im!#SXZ=A=u-#xR%a>k&^-D z56Cgyc$$A$qELHrV{oT2q(`g8+6e~rQRCyvH3!sqV-GB^@^b3F8We1il%SeWKX;R^ zB5J3ip~I)+>tz2s$+HgE9F||D3kq5Mxun17R3HvfmnZhqH5*XeuR)J&7>Tl_^xZs^N zE^6j5V9UrIBPnJvfR(_@?og9=E6JSk_ zv@@Oe^*GR>;wOoH)lT0bwCkA z8a`KtGo_R>kfyN@qZL9h!X`UA;n*=Ok&0aX7t#MJzhE6q_6;q32VR?CJZx<}#gjXb zFV$swmuiZWL5REy!un%oFhStX|480T;oj)ry-Bvu4%?CFwVq5}aG( z<0>dAbSUuI$fp}KEuC@58Wj#3 zFSyk*xFXHCMT|JC$U~j9BC{ab<|T)sbT@czgvQ%D1ys9W6_^wHnz}2RfJ`F~AX^=+ z@fj-J_?So)h5xYWuQ$_y*kXzt!?Otc{2Q1iBhMVR;VhD3?e^VxpapM-;v&kOgMHo|HUukz{ zyBz-`3OC^Fwu1q5@PdIncD_Kj0w05%sg_zo`&MyI=?|U^Jwv5$AJ^6~(y}=%ZUHjc zS_Y%p_=#(H2XZ_zYW3sxzp_dsY~+a0Bia_XD!){&sQ1f1#3H(1^CW9*Wn2WW@r}@&c=k#bAcG%c5Xcu7-Wbrd$$J=Zz3% zClu4Cf|(c05!gQ_d4Qa}SNg;w;xNM(SsR>@lyeM~>k<584=^?mk5A~TN1VbrfX=mf z*8sYWD|ZB63^6tE7ES`txCDdBZ`nK`JPAWn-(yaSMPR0LN)Zb-KU=UG2(MF)Ylz6b=uJo^h=vlMvMDB`7NlaHE{Gg=>7g(N!(}E zP`T!Sg3Y*SLfytjPYp=GFo9`Nc>R*<|K`^T*+P{kc=|u1(3m5u#}nZHr+F+CA813H z6S#nBg+<=gP`S$7JH`H?9M3w+x!?u_UX!t}d4WLWt%$;_m}YkXQ@Y&B7>~0<_$$nC zo-zH7DX8lB)pw%UW8~nSl=ju#BC1<}E#5OOz?_E56{mU!F3+4$Z{W(hMB;Us%im-4 zwO_>!9SAd6X`Mu+*Y@>2nWt8(p}PuguIeTc&Z4WOitr-z%KhOt3D7wGOQ=zNa&-z0Yp+Z**P# zCw+DhYTi0!_h3IUsf;5>mT_XQLRn7MkhirxBAOY6Fs}(~YEe9@>g^k(w`anMUE!BBDh;bw%7_0UWRx|RJDcfsPf&djf4PhX^vCYU8H@0}SwxEIo^ zwOX`{gLVc*4z{h1x9=WxvQn>->*XKi)=I9X&DB+@I;*#PvpU>Jvl|b_m@K}%-hVAl zecRl&&pQVyzP=DgbEMXwjT@vxF$gOKMgs~JHCo%TkCM_z31zR8a)MBo#N%=A=3Oau z;iMVx>YW3$B3AH%Yj?$W?z?4<%&0IiZlG`HH-=)#6JMcozWg2!I$8}1$m^nqn0tx8 zacrZhD#L{VDofYl_F-z$GVDM+M^(2`VV5Hsx-!21I$77ya(`%@^5Zz9tY}538m87D z5t{VCX!-t^gkommqK{$1v;v&>yJPWQ^IwO`RCCud9)5D;+PvEPqmt(7!8RRLfS~;D z7HYz|vE?#q^%V}R^+OzwtxAOMxjJgP2K2GC>{hiEu$N)-nSS&mr(y z^w~p_^}n1a-F^7NtZ`6{5!GXKh8E7PV~QluYGvv*#c7e znO3UR1Z>U#@&`fvt)a7;*&Ql%=2r)EtEEkwh+*${*bYEby$D3SfLTbiiI4Lk_EEz0 zh}v>&`FD>S{8#a_~-f;`1#zHoqSUcj0qmKs5 zmrRj!6hN8XW010eY_qxIe#u;k_?O+D00oSae%&gPhV}>CC4lWd0DlD*vtJ|^kn>%x zeQsGh-%GP1NMlo=c@ZSR(-tBgCHO2fem7g3JB#Qt63!X9z-R6LreXAg=L2ZjOV=nYxH37#5k-&PHJMmz0o%7!k8vw0ZTRH-Rty++h zg&4-RJ$>NR^+#H^9Hp^5>V@tuj@uFK9jUK0JU&-O(D%GkSfkuozN2#xTmISD{mqy+ zZc+N=oHrdsGs^X`>ms_!ei~uC#~^ z$#mh_O^x*?AnBMHn-D3-L}#_QqUcs@8!+o6Vk>r(`pv246ci?4Z@19EmTYYs{IuDf zd`BK1Y~|z1{~-<#87o|8c3Q`QaaE{{O4X_vC2yJIeM|5UhP*zkaU9pK=6iiff>d6vOu-tlRG2=0CjK5QFU z0|1q{^QZ7>fKVFmqa+6#rXa4yTVrns;B}i_pe7dOhHJ-JpmA6NTb&z{Z9wUkOv61! z);iONGabp1fp4S$zW^TaSyxhhYR(hcIRE)Dx&>4uLG{DHF&-O<=6 zy)63BkL7Fu-7}Z3vW-1e!X@Gmd*8(mPmeQ@*g=!&bxLA1h39I9T)n9ES9~5JKvxkU z$x#cfub1*tO)sD4-n?@?5A{DRd-}~WlHROV^lY9(zMFE2UAHBQ(?Pr$LZSEnNynNY zg#OpI3Fki&fk6zs9h1XB#+K%S;XYIr3T&1-SAKolE-eA19(ZV`eGuh-0wslsxhiR9 zHmH)W9`jj0mJsuuM{X>tNO7s%p%85cT4GOB)nO^)=4)9Z(0g8)(LTu!d`X0rA+ozv zdU37EV?1;SSf2r8L6;0yjg@uWHWSY`YzyfoY{Bin>G}{nNI4kiI?{j<+iM|a&usoK zKR}JNKp>wqOBfa|-cwHZe$k{(>m%jOG~_SDDn}*UrzRn*AAI|K1D|*Fo)NoYI1^eC z82y}iwIU5xR#IH=>#2F0h@lWIl!=jEt#=>7`loT^babT6@(~PY3~UG@n5q!B5?b27 zD|6jHIysN^;K{ndPN6t9-@<&6SJHN2a!|lR&MRJg!vPFm)guDNzzuo@9hJ%#l7Hs^ zMa7XMPp~kC$Ozo((=P^`-FzD9D^pZG^Whkw5JTWkBe61+Yedbf?9?6m^?1z-p4_Tz z>nO>LdmJuCMM$G}$!``FJ+6<#Mdac?`Y9~QzlEr>r*V$;y9t0p$sLiD0;$VrgdxT+ zBq1%keO*VNSMs}zb_%+)m5O9yM9B;bu-AEkKfK{{3-xSt5*e9Z>2L^#5GGgWl2#Cn z6_Q_^--j#N?3y^}OQe?>>Lj|{szPb;V{GT86V{vsVHVsB9=t3kr@un9F9J8N#Y-SV ze*_opbl%E$Tugc_b2%w zzUOLzQeo|Gbv0l$AQ-T)xH~~6GH}LL*RdSizUK95K4s8QbD$60eWeFCxqH&K`(bK` za1xfrfj~80&*w6?_QpmD-ePUt(Bo3JixhIcRWnAZrG;;s`eSonGPN4w+Far)O06ux zmNvd!f?0f+b?>0fL29VCf%>%65SWW?Ok)m%DrisW&j3$|+trl&XBl!-!|~rF#0^9? zuoDBV@F_VfA4nUtJq&k4$6%pD4n_dN&=_!DDl<_;eEEzcck8aK9gHs!E8zZnu##-d zP)P{{-rk>+Ck%O9k0}_;rsnPW<^leX?M`9pDF1{wVocpJ^vj-rV!l?qrhVr*bBSpp zvm@QPMEOg08FL02M<&URzsm8waqIL&YXH%f4PyrFi#AsVka07Px{(i0+&-rQqC1@6 z^nirA2<^*HnDUVW*UCU#MT2SGZQ!E=GyPltg>Qx+ydG2zYMl;WRY?;u9GGn(n(E8w z1a{AiV40KuI`$-~T83S!-l_12#K;;L8pD)uM;>6{U#BBa;CmktyJ{j2sZ|%l{IXwW z+R%B^Yww2M9pO;qT&hmpi?h1|QtR;htv;Egu~YwUpjl>Qw=WVswVH5|6^Bvl)h}J) zwh6)lUh9~V0K$a%YT^ipbBw-DO??;WdBOI3>p}FY0J1;^_#vHb0NKD-O*_N%jRYv*uU1V;rNQyx~8bh0_9M zI<)9#Ik*CgiVm)doo{6p`nHzz4Ml3^4S63DZQke>FT>7Mgd^5AvJ&*TVeTtsl{>V8 zT%->+>{&O;1Znj($&5R*iu*+O@p$LA`ePg4IEVu7LtI(UONaBI%la1CUgfEW6bH%M zU2t4p@r)7!huZH!3W2LREQZXz4IWj?(glx8!6l_r`acVzA_(1}jSC0iQCIZGfnXV; z+P!~QIM{P(X4e*rCjw;b*E?97UD|%cFdiNz0cE?dDHh4NhrC5OvZ9%%^2lrgUka_8 zXk`28GR4K{pVc7)MNc=C0op&>J-4^zUpjGpomaCHC*Agrpjn};Lo z|5J$pFikh!O5&^eewWNF=v!-8Cm~^3Nz|)T2ppBnQMEb!YteRSWGKC_e3rc>SkzID zdM^9t-AP!qi~6H%GR?a`NYHM?l;63dto)49%wrBNLKG2|yAQaaZN8rc|umL!4f5T;?lMzyZJ~KZXd;_SEg?qB%tDWim95s9{H2z9;wA#4y zyZD5I8{`l>J9K+ePe(Jsz&7ew`slrHTP40O7jr7VN{x4WLcr!x{a8)T*Y`T>&sH>! zz4wiKR>aN-29)(JOzxXWCLAHdXD>&I7YNrvK!ATkrm_a+dz3s?V-O7LD68yITxjwW*4A|Bt4=5K;upI@B-%4PDZ7`Z$U| z-rYCMNh|6%@kUL0$zKdo8ALi#pYG3sWOOzLsfFr;cn-lG5d5KC$jhSbkFRK@i27P8F|%1+D0!Bq5=wEO_7t^2vYuc~8+*y5HM^0qcJweMD16EE}fd1plTD)TTK} zJXvJ#@&FM?y2WZ1ZjB4ddX~(j`kOA4?kfHDoSVd!oiKqKCkZ%g{tg0D@uA-@ehQk} z$%+_tf4?JZHIMjKHr#RK@q;9rZnf4r50no_o_)Pdh0=X^bfmUtRdrVm@PMg&a7AbL zrJgMpx=RaGVflMm6Lz_mjey3%N}c)CXJLUv)2Zrl<) zvh^FNt91&R@6{$a{hLF6uiMffx@w$so}Y9JTZKvYuaYU=nl|)= zTA<$Iup))l0#$5GmG8WjVEu`d=uxg2O^B{VH@S5@5?2M`S>6{`42voeM& zG;G*SUjNr>zPS-+ZQ|6nI6F!%6mMxOxLJwfQN)8w>&#$Aq7dTB13y-E8-gL~*mE!& zfX`V9I=y`7gh@Rh6j@*Q9_r&6740zR=)Fe)0})ltoFAJ-z%L{WVNMiaZ9y=sL994$ zv&cfO1sI`RxH9!9pQQ5m@Nf3!2^(XA{_7jryD11f-7ZuEVTHJddLbUhU~3L=T~+Fw zNoKX-nsC*NO;P#jlD_%P2NQ0}!p28|_@n`}^?*NsBE4Q=6p>|>4ugV5&xY{&XdqzN zwz8>e#XKQb5~~HWnsY#{Q5@ni!!Y_-F+*x#14)5lqA_AA+a9M1aYvFPjDTh`8v)ImYni1w)T zcQmitK75vmh?l|$oK+=~T^C>tQ_rI)HPne`1Z;)0-7@she0e1j+Q)QeyA40xPZ0+* z5f}q6Tuip1N;0X{_LV_QT*cUWE|zobiU&WTwd&=Ytu{xYSewJx_5Qt7EiYbT`dfs` z)7iR49MOtYrkSBlzMx6qtY0c1&hUj*S*JfQ4@e~o|?aL8a6ZZC&uyk$g?kLtf z2~Mi1TL+puvT*NCF7cX~;q5XTy_q9|Vjp>!`LTfbYX{iFPvbu1QU}FV0PlZ&rxrq} zS9ar$;L9~_EyRDMx(#orbYj0DdS2wxWlPz0SgCHQ&YB3SH8Oq2-V?jtU)2OAQNFF< z{qrlaZZC!rs1!G*^vT3w0k6{DvxIe;Q2cH#1MEKj#)Z!io3WpuM}OMz6emi$+=UWJjiAcqR9`)HtH3k=6AfPA6B`;NG z5#t=Tgyi!Sk742<_Gqya|A8sA=vWQBhGu0~r}tZ;!7z){L{CwSUHtCu_`6oyP#s8U zj!7ROOyZ1j_lQL{@O|x!oP-YMm)kqfQ_Z1jQ^`h7UdK^hk_GWs?Ilr4BpB}Qq|HDx zy$OTgab73+A7NN)N@|)I6y^UoPe5|X=6`c}`2(K&1z~4OoR+pa^=D=-a|N*^G?6_| z6H5I=B$J~T3@-b$IL=q3h!J9p{Wme>dtXzpoKtz0zz8&5+u6A2r&O>#c8tAu_Pf8l z6xr<9{Y?s@+7ES;6oW2hZ zuRdZ^{OUAh1X$kj!yY9@jvGO6E$+2`141fT_P#y(5gh9}uRV7RyN|nF7?)1oAk2g< zlY6?9-6aa0W$>#g+2OeLW#6&dhgNig-3&ONt6a}P%#3_m^WK4fP+W>|usa`HHZDkT z84yF4R-NZ#khj=~kPT9K*w^VJSwa$Q3VI+zItbM3GSz02aH!i`|6d1o`Cg4Q>Q8T! zZZznajUXSdC3O)r;+vI2eeFs7Fh#c46}QoxOMyavRh&xL2EX91V29`M5gW@EDm9sm z%{yN$xTlq^Ng|YK2l7iu*G`e8eoNcAX*0c`>tx%^HlA`lx)Fhi(LaK&eG)X>h6o}a z`{W*EO_Ih7F!U+JnRYq2*)YKEzJ)HGJS?$2H$z@}tt!c))xuLfBwH#n_LJ@3Yw5(C zf2+%%ZSeo5AR=_Kly51oKD0wYZ>#ivj%Y%d+kajer7;pEs69fxhrA5ZLyOzgh4NrZ zq=d0Q-0Susy^r8e)*C!SR;J(%9A7iz@Z-N?Bt}KTY;Tys*A!Na;qMIN6n9gfxzI4d z?cU6}Q9vnDM@6cx=eOVm(7&VzualgI;A7M|gV`tLTNddL)qWa}p!b?x-qL*Ge0qc* z8ROWjJO#|77Mb98cyfTt3&f~c7R}nQn}X6sMH;J9%l8j7#UC^JcY%%v7*K(i+V@l$ zL!(woH@Q)EThk55>&BwGBLDir`7RYert#p6b&<}-LEJ7Lun;9pcC_Ed#|WZ6%wTGf zRL@U44zteMo?ETa#x}4zFJDDk+DGz<)`~d-oMA9RY^s~0r{OG7262=hd7N$Rw!tF1 zE7IqS4e=v;qvz(t!mOmx*h==Y$I*Qd=2JBPUBC$X?m7F{mn>2XF7|x9Za z!J$Va=W$;w-5ZL!#?rmhf5E)HSpTKi=l-QoOZNh1QjBIqIMi>ytY(|yb7`YBbGZW3 zKRhr1JJ&c?%N{F}9ru&Mxf0#-z){^YDWH}_G_hQDSPc#fpHE1*`y%+>EO^cy`W^ah zL|5v<{F<(P@bMw7q2b?&_Rdp2IZeWti)!LT2*){yUk`db%u=2MWTve&>> zBqlBOweA!Mos2BN$N#JxEQ)~gLabGnF_enqt{V4B ziNPsmq1BUmq{C!g9Z2YTTeT81FG%luwLlr7)5=iLSOC?7(LIBplr2 z$zl3uo|TSy;6?>Tc3Xn3wc$U9MAUeq&Ue_TdUJ__b|Q(bu^*u-SDcSOJzbZur7&*}=y%&_kLUW=nAxOFDzQr^!e}S`(n&p`%Nv54hDm@bW-0Jf%S-h1U zfR;Bg6>ra(RGHF)p#J;KOV4HSA9JI=0x;YU$=o}!juo&u6R0@CZ)S;Jv3G*9)SYM3 z&9K712SIRuH2|2pLpS+{=ZQ-?R!N<*2_YjFCh^}Wah2k0=TV+@?M|iX_b~UP^Mz@_dm2mSs-__mw<6Ypu58L(l*sRSCUXa-sdINk_+zi>k;lPExqDvcDPgEy6<_^|%5H@mHcAcSIB`Gbvg zpVo6x0)Bb)#g`i@&OCrFmQLG7v0|uFW$Yn`{$>Z2XDImU73w^GNmg#B^u~Mygk3eC z*=M>wgi;OrVRyGln-8ruWLSR9-IXK^#nGUi7>0dtyt+dPd*|tLolt|iS}o&e1D@!v zXa%NhdEg9Uj}p#zY)tOoR8~0ht+%OjmZY-=-y#kbrvUCIX>Y(U7{%Xj2ELz&x+=aC zTSU0*iy;kN&}N)D3XqN(69M|$NTU>S4iWZ)0n_W3`|<#Zd}^e%YWH+VE~k}9p~as2 zR(7sbIpO+L%D_aZoYrwcVvu`nUm?E>n&rN^B@YD;MgF*#jUE$?42s5}8-9x$xt0X1 z-4nlB@hl;ZHI8x=ztaO&t&rGyvN?4WXagy+_OoQT{Wvf4o$eI~rVX|^ExN3r0GcmR zkHE(LgvyqZn0-`*LyWh?gNKgacC@VD?u(3rhlJNvjy(CW;+1|=(CEV)EeTNT17{}1 zaMlmSFVfZkq*5}ujZ5M!quBJ2nvxb^h)(Y)*ut;=>mCUTv4W%~=@yqjYoI~dxeky@ zk3OLVGs>2V*J{4$wpy7cY5Y5CVcw?&6=bR(f5W=|f~0XPv3{ksNpu4J%^U9S(hc%9 zQ?B9_Xw+3yA`(xPtmZG+7VS?<&)?i5{@7P&un|uy{{PNOeaT zMBc+u^lBRhc~>!hHg+C{(pPeesxaMQAFvKf*@Ha_*GJ$Zz+&U@r(OdG(|&3`#0g zDm7|x@0W~I<;JH}YmdR-E!B@x5-I+WZuU6L=!*R zd9HMDB8n-5oPP&uGx3KN*oOOl?4NU1ct@;QKROdkOK_l>vo-On)%Bm^4)81f0-`1+ z>VSs?`yzPG$_c{U4hs+&N-<$abb*5{xD((T-qP@7SKJa75kxiDk7 zy=P9T1=<0F?#*MwxpFk6=(T?`$?afe)cw?@n)raCUG(uAvALTddwQ1s?~e{-#5eC9 zjmSA(W{HDhnU$A(@Mqrtx{ndHM&1A@yvFiQWPU1Air?7zIg)ws%d&DMecQC9x}n+a z?BrxIBc;}sCn;NQO&Do#eZ6H&Nb@4?0m<=&kgW0$X+ZGW>Fz4y;^UviDZj007i}+A z5R#fbV%|4Dnl)BpghvhKAtUDdE7^&B?wQ+D73`)I^ce`tp-z{u`Dc z-fwnU6FgJpc)up{j`Z5}yc%lwuLAi=4=~rbH2S$<)%Ay3qVlHFoM+N}-l?^eFs3JKc!aqAF|nN6K?>^l zk2DJ6!C*u(l;QVQcY=APMf3j_unJEUuF!@6_4`jk*1anIUQz9+WjO<((%^=sM-|#b zLMM*=4Jp_&j7jH@#0mASeC#OxFlRJy(m8}nn1I=+Bl-R6s*E*-uNlq6ux_-lUkyEv z>&Ci-QI^S48it&*VA!QtzCL8at+)hPGImF@5d=(%p-ejnxX=PBui-P^iEV=BNaiA~N0uD-)*CdDXe80j9WzipD)NsJ-8Q%CE7;FM>{V_lx!W^f zZJiTRLw{7dJZWSBRb<2JLLq#0Ci7aQM{Q}8R?IVL^>x62jpRuxzXq9KA&?GGI~f`% z2)y4&;+PrL5RBrRxQ!+$45;qRftSJrvJ1*0d`PG5#kL6>gBrevfJ~*}z_5skFOjjI z^dTbR0(4@AV1QFO1{1}GpgUH@Q=ytMTtA|k4?L#oiojZpfsjo}%V0Y%Hpxbc1dzCj z8)X$lW+Iqmwh6x6@SHiw3gC@=PMCRuahdBmbD)z(wVgb?xyHd!5sFnXtyS$lrsp6L zn-fiVukc-H0oXGsrY#3xN2)fIC~Tuk`<3tZT{*_KiIK$F}(|>IaaL5vPUQ* zA28%oP_H-&D?}sHj%jYb07twiJ$W{$D&7$EV%8*-mKfWf6y=I29@v@7I7|Bqmq;6%!Kkbg z3D;jM=3BESDzs>0h_Qv737MG7T3-EH>G(w1)S(<-Nw_n7OCiEX2?(|H3Ok2MG5wY| zRAn}_`8DSs;ElPgppO7we(dRB-{jAdZ8dvmL^7YG?zC7Y^%CUoHL$XyD*KS0pze7PnLxtk%#PZSHHEVSNC8-tU(+%^clV}`}IDC z5SmUtP36@9TbA(wz4l>3A+JKa8FjU4oo*$0?IE5;74jtH43Hwo0%l{?>6xuk+nIDZ zv;NhluwS#MmW0xkZCRUWxml3nOfZW}VK<);nfPU_OcPrF+C3Bii0@oA=x@5#%>>h? znAtqs4g26TU{Ydy>!FHzlmVYwLBLFR=C5jwVcGb)>vlyYg*iCL9+%lHB~_#r^e&Nm zA*bt{gD-Sg&Gw@gWT9LDBq|SziOHjsw(u46i7f+jHA4ZhlhzUa>QFK0^HnW4AHgIE z7SuBusAT-Un}Nh2Jh~^r+@G%dFdaXcg=6-rdE-kEQ7^&mLg`U2$INEjIls?+89Eof z`Xr&vtWOz6vv9oGVWv2Pwl)g*YNvvo5H0$Hg%+cY&0;OOAoL~qWzR$MNnxwo=IpqN4(N7kPgQ^A4bEf=flJNZ##aKgf zgsp5+v_6j|5AeS8z-fksUM`3|gJ-3amrof4`G8zs@(NP`8rD|i)t3~+=c&Sj) z`Jka2w2}VfIE9U}QDKo49$BcK+_I47{EEzMTmNs7}3X3ueZ}}h3a}F{R zcj$b#+1&m@Bq{Dj(sH_PLWO3x)(xqtMYH?cn9}BM8jekP=L-GzbYR=GT95Zbe$vvD zGj2!&?*)K*p-+nja41Z|Z(faLS#9Vu z?6<10uUd-nfb`OPFt5n{ttRu$D8g zLy^J64tRy7;VQV^T={K5{KNSZfms+#W=hko-+QH(b8{I*JIkzswORhd3YGO@SX`Hj z&ECi6Z-?liY@m~J6)Ew5R%ws~ZQR5QiEnY0zwC1YklhK_{aI+6Bi0HiNqz!gF>fOZ z*%}#4<#z<1ONNW6Wqb}vG+R$aBNg!5W!v;?GLj23swaGvXtc?U9C}IcegPKfIYK z;PCa?xy;{_Mvm{}a9pjImH~`*AR<<0I_v2tQ(cw8`x#D`pT=k{!!OT>!KAS7Y=dWk z5OV8*a~Cn4^_D$L$A%L&Z!LWJUKTScz!WrNWC!3Z<&P^FwPQAs#maqEuYU|0^>1kw z-%``0M4h2op`+?3l8R!>Kl{n3_@i)!z&D)b)m(`G8}OS1ci7F@gw8B>vTkpTW%)pO zx9{4~V0n zf!rhbBt$m!&CiyF_=dy=<{e=jX&6y7sNldIfL$|;bOqKHIOG?!gKTT-U8onRt)uSf zMaoVJ`b)!Hv>tTb&r(?vmop#6Mv$aCl9F-v!Lp>f%XskQ&QthAXEERHDU939y3$!biL9iwI?)2cd7$SdasvI0-Zn~Z6HC!Y#D1G;Dfd$ z6wVjdMokpuc_1@~k&yIdG@)%Nu{w1rw)q$h#|(twW+b_gbDzCX)Lb;a`qC4b5Qddp z2!PL-+>?#KneLo1L$BsUsj#xWR-Uk;4T$idml}%;3K-tMV}2V#G3*OylQYD^p3~RF z4beTcxK;43MgBOvELw#li^km+?aUnv8n*KHfZNqAV(RmzqQUBh_LIy0BX|80L`aKI zKh7#Fo}9Kj8)Xj3v*q`KuzD{%1kF*_avN4)k`<-DDSS-hS{_E#r2P+4I)B4)( zIq|2^1H06vw-@~bw0=$BQ)SS52Pt(6cEIZT@aoi6KVZC0-R>JHsgkM765>lgR6pv* zwBbjW8GY{VE)cpb7w&31O2NjC<`V&G<~e8Gd)J@DdOJMan#-X94cUK7egC%|I%y}L z5jQch4DFDvnxCrmYQmu2g0~R}vOKb~5gXwX;!DJBHm7Po?AQ(X>XU>(4&`H{|Fm&n z1fsr9++jDLtv%F3DZ6QMb$o7bK46>9=*2Q@tZt^D=WYn~v}o4*mDMOKRpGa#rdHL> zxq{yzTPSVcF?uvj8)W^CELz*0INbPNZ;ob>Jk^NCC>b+antuomkWQeT{Uc#HNh>u) zij0RA2ejTOEhs~+raxp&K|`0Tign<3kJ-iljq2J|+4G#NvmdXbp|OeKgxF_^>_41d zuipD%P9C}6lYPb^gbLq33vh)@NC~Uks-NggPoY2QFN%c+HtQ`%U&Pf-{>R=7zU70u zP5#7faK&NO3R1#6YxR!yK4UZE$SR{X_f1h8B<9%D0>~^_Sk6UYrb)(c#?%qEbPo1_ zbc>SmEI!!?a9|&ve^l$*HwK@G4@p1AI#g|8F$;5nj-xLA-|6(<2qXo<23)~XVi)up zdj7u9Lig{@2{$m**7$QXU|v$JU+FTcetlp9$%iM zpg?#1h)DZO@?CPusvB5ltlc?GI&otj6+E(#^OEUc*+p!pHmrR8g`R4?)7a%c{;d_mSTz;N`;nCp_ z#gH+DB}y1`GAUSW2oAvuS3c4F#U}>i{;3X!HIAf{U?1%lhPR=Vsc|JXg);(O$!5Jo z<<&F`rjH5V`}@aNkeh+U6J@)>&NDI?WpS|4IMIO-G{~^%G(}&Z;s)r$iBt2#5zH4U z1wBu_lh^3-bNTB?ho$qO*mU%T#2i(2G{+`c92nV@@k6>R9uTcn; z!hS11eNOhD#ueb)!YwF( znqM*Tk&>SqS~FiQf2Nl!C3;16cMK7Zhni?|{jY3aX>f|83SPFIg1>Ik)wk=iFHh&X z=$mh%*%5UTM#>7eEO#>qcj}z`sO3mGF$tK!{s`)8N}J)%1NPmES$}xmRoh^p{SF4wsW2igiE4H<6eXEdM9f*uh{YBinaOy>mDAFWk0VaB-014t4#rWazlsfeY)E$j` zd5i{I)}`Laf!#hXAXb2rkl|C}N%@fnd5GuKK0W$}Wy^d=rOZu7BH45(=i8mKPN99I zcRb=a?cT8^!MoY^p1E;tUDICzCjus;! z^Sm#5m6+T$^(?PYoB~#|XA_K?1SUg|qGz+aqNAWTOR{rNADFmRqg=CdbN&Dk{5hhy zmP!qj;)&JzPqVT^QzwBaqtj!=gWs-1qR9lNNE54_}AB^jQ=A)14G_65>th z2ys||;;;1p0l6%?$!R%KB@Sr%>O>`37&Q?~bm)x<2G(DUe)HZQ@KZO?>Po9iD1{h; z1#-igqPzT1kPw>}rW1tCJ>#7c__M#K)vz2jHX zwwc<12LHNUz)V5xm7`@6>qdL3t~;QY=i9u5oQj3yv5b7frCY#T9rKca5Xm;GNT~}s zqsjO}hX>T>*YAeihZxbe$mmNhs{Cob7`=$w8G&{!=#K#YU~+s_wb>F2%q=nv=4~B2 z{RaR~wPe!1aYlg92618(2=&$+OySY129AeodhQSbSrdjZRo=}v+#5A&l9nB&NLk|A zI|ew}75hRXoJ$~>aC&y3)VCF`tFXYPUb#d0cDn?H>mYL6y!m)+0sv>IF;VO$(EpkN z$P^k6oZ*jPQ9SjB^axd{t0k%#FRErrSWW6@#gc)YwVA8mRnf&$+X|fFw8fl|dJU{PqY`n8A3MeYWH9gQK_9z-B&Q*z!?l6HB5gDnI%h(EV3 zBSBuRezF~1Cj`Q{54h^|A(kL(fi29j3OMolWVN&u+r!7;vR3k5&%t;#RFha;3PRLT zB(f1Ik*oZ7Ck-`Dd7l}-WVV%!ss${?L6=EB89XS9&?5aXK9|xYYl@XRhMkq9Y0k4W zOU1M%Fw`*0ll({q5liLsgTSfmiL_GI+{i%}94uM=gnn%GFxdO&y8tew%iP?(mDL&I z!>NA1JXR0kC-V}4Hcc0QwJcJhgi~qZPnhBF4lCGJa3Q9xPxjZB*p5_Tq&PFTiS_17hhcXaLuF$*q{XZKCQM0& z_jcF5Tun7bsOe_f9O9E-h7gkj2BVkBN4ZWg>CP)jtq|Jms!2SJ5!C2ZRd(#?b+I8!GZQAbl~Sn;vgxW3v>Eya^?Trn-M_X%kVdRaa}(t$s#W*11(poepoP2h@? z6$S$|mk-V+?bBA^V;`(AZA4P$+-wK)Y#!}+ul;LAL~x}LDn*#%6hNj?B4$L|6Gjh z0Q{ES{0*aE+Cm@-x{_)r$G7!%f88>J(I>S65&2zlId!a2xvEQ9w4PH~U!nV{OVkIH z{YCAw+#rCbjtVMu0i!ty1+o-Fs@@z7-smtg^BJutNlAv-kN<3$kIcE4QKBr671i*; zQ8s8U?Vf?+MQpz<)Mte&?Ip&>GCPZ?0sC#Y%`h>AX^8MAL7KdPU^ZL$;{&d$qmgtG zlq?leC3!f=^IMeWX6yxqv@K)!Cz}*QtbFV_Ura=W5bPpK8_4uAL^xf<8@}L80o`_R z7IePa_&-v36}nnV1YvDZxdlsP5ji#HrHfeyHW*d63Hg4zE|YJ^W@4V^IpgLgH9Tne zxOh{RC5fND^cq}XKKm{lCK$2;LhNKw$G0=4n8h0?_OqFh8h;~?zIF!sMXM{#=gVk! zMDm4s_Np~-vw2&%ed@HK*^D{9baJ=KAZ7Rt1c*0p~$IgGoH($7{wed8g9x1 z2gC)yqE@Nk)Q*ISWm!;x=}+8FGqg4?4?g4;x$a}~CP@9_iE39bYNEi*%ws1#IK8h- z4lLAr{>2zbzWVkNEr-BvBIiqR5TqKkP}$55#4}@aG}&%QV6`U*J~I09iRd459ec

      RH5J_23P zb08iAo?w*rfbROXw8`5tycSH6d<`UwB1i@Gd|cI3q4N$I;mUwk1Va<9RibVA-}IOV zP)h)iacCI`7$BGYB*z~0*%bTCtxZxLZPrs9p`IjN^yGRhP$T+fs3f@khEJ=profm}k&}Z(N(W@-L8*1b z8F!k&uT6L{`6kS;ElZhPDH!G!hTt-RL(&7UCf6K>BRsc6g_|-)ND`H%F1`qI3qq8cfx0;T&z!?5;$r-yv_XQ=;3#ACR&XKK(-)hTaX#n04Sn(an z?z^uO^&1h8-pSBN*rRMyK>=TKL+9bH@ZyC*9$65&2~!FRuhLMY#KJ)5Tusk-TJU9vEc1zHQ@p=|JR zKb#_Jdwc1yrz(9tcpVx5Uij|-Oa2#|Ql1~@kaB|_N}OGDX6iSdY)??3+}*!f?{!h} zXHL)C3Xf)D4YH~4l67f}p@fK9!f~4o%c}JJqE)*DmEa}*Zds0@^o0he%LjpervVE7 zno+{<*hrPd>9CY5T_WIA6t4MJ%L7dS(L>7St_e%hu77vzIR@S*vmT)alUd^-2B;Ca zHOo8>Y~^;%CUP!@1_e+SJs2+wFq{@^`TV=mnoINji7cb9*}po`U1e1T{u19TAkRc- z1<>ppiMkFAX3ktWHAyo#Q;aQ1`K2 zeC_xv%E8dCZWeKVCbrGRbeno||5;2`YX|`?N(*(VT5rC>+b8Y)@%CT+wzM(I z$0b*6W~MjeHEHtxuX`DVUg#INewWdDq}g~@izZ3((0i~|8Og|)nO$fyN!nHtjY|-j z%N}Zo_u8DEA;S?l0$xvmP`XI7-mnY~XgSe_7`x)gV0B^|IUF*KQ})?wQ8?1mOOAFC za;OOiqA#3T7qrV-&9tsb!1c>i-qh=ywLZa&kH@DNbg!&vFW`4OETaS_4y_x(cqN?P z))O~T*wd(LLF^iX*NKQ|{+ZIfX*oPj``^LbqV%F23styFg3M;=r1)&2n^$r4^TQQt zo1sedNF)!4kL2(~7_6Zh_LNF}r5lZ~SG!+@+@IKfw!xwIogej|QFE|G*#|Iee$bZB z3%o@E2T*04+e$zr+2hx*Q9Q^e>Fpcs2<%<$dYyoy`^P zS!NB-P)fRd^#NQJ7f#K6&y!!9{A@s6P~=AqlMc)c7-;XCn?BLhGmLwpLY?=Zx`Inr=<<$ zJH358vm=)jIP2sj?{)vsE9)^UZMP5|P&{_HB=qa$Y;pOV+B35XN?VIpP>(Z_`jF!# zTYqA7MN~f5xO@uDSEQIJH3Fr*;y+Z%OYT17hZ*Y#_PHzCTzN%)Ii_67&9iRL}sguKtJzNug+@CPc-j0FmLVsL`9 zRN{IaoYa)a1O~El#FN<|x-JLDb?+?;ExrF0C6KpOX3_4%jV#&-0grgJ=)Z_C<{(M! z=ar@L^Hw8Zwcay8b1*laAl>U2@?)k`hLxKeeg)T)vg(k~KZtRrTfvoP4)Hc8Cx0}e zX)^r9oouG7JWaTyJfB@OSNgL)IvgIR=7ie~jl%mxEoIa!q7AxHNS#u$ZGennt;4aO zTf8&@K08zfYz`jPc8lbbS#VV34QXLzpO}vm0_-X}op0Bymk89;7>1tA`4^(tf-J&$ znJ}rzdW5r!85<|2Pt2b(cK2TyQFgG zpS*Rj2`2`rS}UnfD&s_u%xk<92yk1F1~W^gpW+Q+ColjHPOxZ-lO&gB@GZ>vET=h2 z*PIKOY7$N)-&M552!<+R{JXK-W#28mD@Kk`h0(+M*HRZmPgoe34moltGt$h-c?M}& ztioXY6ULW}DMT4$B|YPIm7B8tA+~ckwg{G1>5t;vxX8PT*Ood2Rj7cpX%^(O=&O2) zRqb#{+Ywau1-_{vesUn9q%vb9a7h@Z;zprN09(>LnqJ6$a2fcLs)wMLrilM+5P_+n z?XP&#{lH2_dxd%hEE{=N#hzULjJ^r}zji{VA>*eVNT*{O3Gci>5K(LK=umPlBg_>v zUYo%b{rf65BzKcFynqwJ^zf5#rX*lN1|8&4G4hiweYCG^o}v3T7jA;UCh0&RwzFb{ zhOLxM5+fRW1r)H5+%VRjj(iC0o%DNyJcz-BH}v42=?H9 zM8^{64U~#G)d|Paq_ul@Ig4=t!n3|WYZK^0@ZL|PP=5_y{GcK^wi6Y}71aVOCl!tE3TuOTuji9gOfk=-=X%&)~u2n%WHqUBrp z&OkLLtrpHzN>xRPDS{hb9@2@N&@)FV?ZP)h`j$Pv3v4POR~Kwgk!n z0BsyS%w70IlN56CIP2=uv54H99W|}m#!R;Sf3>UIVAtf88$uMXL+hPrXfx3ub`TD` zFH<#wn+Vg+3E2+OtIv)W&E>C3Bg!tpx{l?^1WgK++nsjqmk-7T&nKfo3w}NYxQ&V1 zS)EwI2ZtDsek>7d%w?^&y1wPRQTX3fP3s$nW}|r&@-!tL6KSF31t`nyT$6!9 z8y^SbjJWa>6vNCm+nUYqi*`IE%(BErUG||KB`0Tq@{l}^NV7lkQH8>7m=_nIT2sj#Gh4O$>yjBB_N-9Kp#N4-H`Kp{= z5OFF&`o@9wOKvY5%*<}SW*{)(bpsnZG|7|6MKW_+)BDkVUd;7sQsfHT?1>}ouj1IT z!H2|IR6GaOA_9PZ!qO(Rv$xkWhxVZ~%IRb1cH!nCN6U;jIHy2zGoSvh`Dt1(HQ~H= zx)xpO;keI%^Px;Qrh${;u4&${;rkviO}WYyO|`o1umADHXy6jE56L2yFrbvP$4q;t z8-f2A{E>BTXmk44z;RzAj{$3RDZfO;M3-AA&T`2emoFst`UQe zylNwAceW@%dA{45T_P4-@KjcP1cOTk>u;I!QWE|>B?zx#Ftj++wAv=r1mDfa#;!VS zI%!!TF`Xd+?GgTY5(O=pO!K>WVI*#MHLsIT4kfGEhTBEX~ zv#17^uP<&B{)Cw`K=ha#^xeW6=}*{kkiGh;tRe{Q(vxovl)JU4_w$6CVvCXlnbc3V zslgz$#I?kR#{W@Tk8qYw9X@WIyrt<9pq@QYowHFHghJ*PawKZ%L>d9@22Z&l)jLJu zFt82uA#cI!r{Hxv$dk=SF!L(qH&7veMK~Y8IK?#nz{YRfHx^=_sFS3 z^4--&OJyX+BXAN)Z628;o7*-23SHn#A4s9GE>TWI*^oy2njZNeM-%u2#g{(6cp zVL}s&VNLr~z@XRsEveG&&oDs^^%~aruXbeA2fuiL5;buP+P{$`#x}ZALmM--NeftT z4ulyU;0{?o?YZ2`(J>+sdwYA|{@=&M(4k=NASelFqhp?Pz`v-iHtJz!846U9n18r% z>;?=rG6~O$NFaJba zL2Lv9BVFY_Ywf$C`_P?~dq2t&x=*dpLcV4%#wxIH9xYxJ_*!_%4 z@D{m=YHYyaSd})_vVy3 zGD>B*+Y*|5`*^`@r-VPfkx}jZG$6Ki1$WD&#*c5`iIsxnIxDkE zcfFrR)0>I!9Xt=Yto2(#4q>Ke(~53rzo~7rTSL7%sE}yGJn@=(ZsYDkVtSX~v`~RM zfp-GD#Yl`xf20|idtn#L0mmtf@bsB?vEzEVWd~cRtnJTJp)h*sqBdrQ~ZbiJ?9W(=19@53xtWYMC&&+z#<0m8fQ!BXXa_&VwEM zI%p|mdjA)$!Ce5|95qai1pYRIg6rL1^ZWw{ggx54c?HMO)Rq;A6U4{D*xl6){$}!CAlzE>626Ngo%Gx~7l4Y|Hv%R+QNNK*DfZIel z%;|BO=Uv-orr=_j#w0X0N*nmh<$$<$9;w;{Ec=Iz z)B{L8<4_%!=0UDM<&yyljg_-1nWxF{fTHX(z?FOQNC_N@()E zPrk(U&y((1opHlp0cfJB=fatUJK&dh`yU?1> zF4|x&$mN~_OXtxVvz9uTKPi%9j`uv=G@Up@fN-I0sTt!O<%X=el;T1tsPsCfsd^{W z_49he#h8L>%qSA7L#mCz=AeM7XzZ*2dnp5!qO=sQpYvA=#)A5TX-zf%DBVu|1P^gV zqWEMI*yrF4Cd&cLq+e1Wspq-jZ||ohBM6PoR1?%raXr%asBl=FQoGt`T)8B}s);&( zPa|*WPHu{k9nvYiqx#Iv%aV;0LYT}qr?!bW+c$d9&k~3uey5U(B*BMWZnsK}vAC~j z{@TAI2Zwva$7{R;_qEfVKAC&shXoY%p4o>>nyKFK@(`BLZ;VmBV%N|il|#M>_)i)W z2j-I%DS%8UMVuEvz3Fvs5D01R9f31g3D1obQ(p(aE3cTiTzOddxJv26-qcjqS{ovP z2fs)i;`eIpTwu&!gZzdNMrBt&o^h;4jCnOT)e;!MAKu2zmt3{AR8Mx?>4!29>45BM zm5&i8nDnMibK`#YMM*f(1H2?B^`Fs*(scF4R{DtI<-!*A#EiM@Jwfs+GUSbpnnR0g zPRQp`!)K~gh_=#v|s?KUJlzsFZ63rCbrt5g2P_jdgtr_@1 z6=d9xG-bh+n*^sZi3SF?rSJ_#wvsuz*HK@k)~EM0ZVkzn3I_lKg;DuT_X4=S4Gl_TO7AVjC}$; z7Q?N{!fX}VD~{TR3#A&}l0e=05Ebn7=&wyDZH!q!Aa6#l1v#&iObA*^ zZHbLLz$o0WcW1B%{dv^2qI7ogVlV#>4Lag78+$-j>cZkReh^3k&o%OTvNTN(`gt=Q zTuqVe)Qx>^2{GmQg#bikQ-sXf8M-AvMo3UnwnNF9R9|1Tj#KurV&#u z)p{9R!-&#HAdVF8mrrwQz=WsqS-l|o3SkGwH)Y*!M-#@0oNiR{o}t{qK$Snd*~Gp1 zP(wK5N}$O@k=`&TX`sew#{+N}&`A!Yfbc5SB)|}O@oz%^P~W{V@Iq9LMH%{k#QjJ$ z-h$0xE(F?dd)3yB1wTZiU5Csd>E?VpRKWNCTE)*hyzTXf``Hi8MdAWyDj5d)4#p)J z);4$WU_u^4gEKYlI`jQanm&5|^vD9vyOdEAK}Bsw|KT+u{yo3y?ku0=4l)Dl$BE}^ zw2preR=X%I?q)Jyo@cDPyq<=gbV}ZVA1{mM7~afhA2jBnftiinBL*LqcVRZ97G_wENaP#KWaGxY)(Z7 zU;=9Vzr}p|8v9{tNqCcN0ufb#>d@tB-HTEp4&!YW4)-e042%K^BrO*RB_1#rBZ3F- ztLsDpH0XV~V*ZuuUsg+kI;skKs=rTXm!4kFzwxTyr-jCW5Q{hHNNmfCtXyika4{9M z-0w3(P8RE|V|#D{_3}?vpj3u8OG7V)} zFjhs{i*L_pYweWdRP=5o$g_HNS^Dotg+D&fkZoCSNGx(vowonpDe&i*keuTxnXlg| z`zaI=L~ve$lP70=*p~%zh4kAJ$Ix*80?uJ|nr=4x;z$KY#L4EE1+t?}gdq6cC= z1_iG_u1M@czEI^Hfbka*Om&fArea}bmKvxA836?3$sumXZHyT%;np7vfwG*AP!^zm zQQD@bbo<^Pw+THLew8*0k6QulD13+mm?EdJisJNQqw=eVkz>}B(;f{OZ})ZCi5JJ1 zWM^&RJ6)KP+uF$YUA04Ene_U6s!D{mc~s$oQ(aTub@c4AKr?^(w-uDu)Hj8Bioh)P zu3Qxig2u5md-_y~WJ@;;*lg5B&)E9^nS>K!F?VwSg&-@6cu#*4pWd;C+CpN|gURiq zrW*<2t3kCj2D`ClQXUYBHW-NXNYzASk-b@A>C@R{PYA00_*1^A`* zd+M=GYXa3Ttrir$PZO7yR`)JjSj=R@Fy;s(p98aDEI$Z6zy@6RK&ad8;pY-L3C4EK zFi?nX%xkfYNw{8}B>|jVvv*$R0Fvf52Z7cSEp!s~0b9?AoHE;6ZJE_dIOLfG_kg}` zWee`|xW0-{nl8aYpkI)#huNzC@w}P~f(~)27`8A2{;5Hbs>w^C?-S{a=;ghy_FsEo zH07U}NVpQ~Vq^sSILHe1d=PO^@lC7y6c+8s6F&&p%oKb9wS{YG**IDOk)^WSXlRrf zw+QT}U+QRjvP)D;u~XoHMKUT=BhvR-uXeU%+9dwjZ*0uWX1yoHxJq2LQwYNh1+047 zCveNw(VLTO^^42-Us?T{)Jwbgx zj+aQ(Jmp$D64;d`3>-wvc@(Sg3vR1Ki5j??wqXcpHw=`Kh=o-gL7`nw{+#mBB%~DS zw<^e1LB72!U+_cA$~+7%a4>G=09^B!=D@4C;!l&vnoLPiSIOYrZh>yu3#bD0(q?Hx z{n?Hn-m^7chCakDk%9HW2NmkaP%>GH&xyQZhy;!fAI=$9JujKW%1^P77>0N7ygh$p*)Ct zr|HtNdG;`j#4h-HDL+};Shok$1^!!f4;EGyrM?Lp#ZU6;*>6c5v9?h*=MDjyl40kD zIbvzw%GlFz8CQU-Rdj9TEFY=rH<+YOU0J6Fy%lxeADCW%r(0aWO(`m44hh~)-FVbT zR&yG2s2g8(QI{?dT;1DH@8kMS&D_56-~$e;;62VE;;2>VT{b0T^^R*jfzk{Ay=+_~2|r#QDT{3#T?w;iFQ?q?-TA#ODkRibF6qV};o z=lc3nbs|2yaZ1!COt&Ukfrv0QW=gS&lIn(wWyF&|C(2|^P8o^G=_qm91G!4DAWQmCLP^00M>;DF1&B3DTca9Z{!zRtA3qif;MhdXQ(v*>0l0EZ8gcm9&RxfwQaj95h z%lpfn!;HQcJLePO4B3-(iBS!-K)%bCBFM{}r>A0jRtr4H-0Fy|R$s*Jr+#U@NFHp2 zq$@fvb2`#$?Y}pL)`;l|H^aQGT}%X{UhVj8o?cT_dH#7Lr~~4-INdCoico4Mf+7f% z-v(HGSjX1Xc$*{vZ3;EAv*8U}7k&7y!-|2ta^pmM3Uhtg;>rlK5i3;0U=p=JP8%QmbnM+QgF}?ND$DExC+JT`8UHH1O82^ z=NdU`C#vBY+trnyp^wo#6|bS^7TF8Tv7qhzNiWfT+e$U^iqWu658I^G z%1;mR70&Ghuc;|*ZYHG!-Q@`;(o;T{Wk2ukFIj@QDJKp(;pMEY`DNd&o*dKuc?M}9 z`DRI^et-*z9sPebXm$grv~S@5J)&0eP@29CHx`0I>Y40*A3K|40y|9Ea7~QH|&aUw{fl|nm>@~3iP2KL>Bsi{& zA=G~-R~`k2tB0@o`J#!!>A*i}tNH6YIPrE!bl~>jK=)ZuKT28C$P!)`mKM7SvL}zA zD-1VspQ=$LY)u3FcBkj1Jf%INVAQ>BAagGn)9-j#iX#R&bBoPo906tFO9Vm-+8SpK z+pV+@VpKZyz-QL(U;!+De=}@;?)=)t_t1G8URPPMOzdgai%D8ZmP8m$eGSoGbEOLw z6oub5R33|arIMO${`nhoMg7gvv{Y$|WyS1B*n5DuY49-S^BWFTdu{GmSnrcbywXx~ zs7t;D6$%bLfx^g|G`c5XJ-L+7ZnsVb4JSz}$Gkh%RUU~10Hy5+2-CpI=Mc_hDFEuU z$ZDrUp8pIe@mWVr7Oi;`H}ub#mTYJNPK8!W;k@e$r!gkoR0N8p^m?hA$qMY!@c1qb zrGa)*Zj2r51H-dq>5MR*4iO0?d)LBUD?x41!C=1DQ3-#C984W(E7&(uM5_C{LFVx^ zj21FF$Rri zggV?I?1!;As0{s8?uX8_lvgLc{oL@isz2lE+jg=fVMVD1IQ5AnJQEbP+gEGUdwS>G z{^Unofwr2yos_mP4eFK3e0udGfU!jnRI52d2miB|nzlZFv8ekeNX5OTxB%Tl01?++ zshKE*!);`*7P?6*W$#pRU<&@@GuYB*;p@dpxoy!B*@kWmd?Hu&1gT364LVq#V-+CO z1#C?O^iIp(+ z1f<6YR$W0^nB^XAg<3|O#B`HNZLc70BHB5ZuD!W7SWxdtf{Tu}AeRHaVoTz{{#T0k zqpX6bVGaI(n?&%&=o#m5j2P552yrNO_}VIWwk6XK_}D*$Gz;4y zpL@1at@VxnaNSZ2t_hGBDN&@8?AAW!>eK~yUJ-zh|Fy<&8-Lt|mEu4@Twl^AL3$sA za5Uv+@vk=C*Bqlw>^fc~Sft5xi!E9s1Ae}mrl#nZRaDpMn_%Mrt-%MgNkL@+0GzqS zOT~DrXzN!~x(Ott3g*!xolN;sAZ93;SiikH`iH$im0goV3q2g9Q*A=hTdFw= zG+wiwp-C)6vfV_I-Bl5G_N~Zen9oYg$=t6*V1Bd?Q{nH=08W?%5ki)uL(^V&9g}9O z*lIy8)Jj^0>JMY^!_zZU0S4cit*5D}&?+F@hmk8Yv^2zR!Z_pr zLAz%~zBt}YYj}>xdMCvlK!~jxSre1Z<&EV1b*ugS>p-05z)BsDYGJ+IqKH7@Nnexk znz=*=$=uSF={mVD1a%1;fiOaVu5nayXUou)@tNsU3Erk-!<7r`K&4weviGkW6u^$) zcMZqlObBH1=VJU*&RP;q(mUg2WG8DjaSHfcQFYbi`C00JYg&2d}ZVIUey(80=gL3tG=-5XW$h znXzXP-hSE2^MtT{Ol+_;Et3C(vYr*`M6L%=%}JEWchwY&CMS>dwJEM0TVwaGA-kEZZeoXK3`>RR1^1l+zx`}x$%r?49XAE{O$}(?rJ~U z9BHvw03q}Qk)5zmb!vZe*v#)i_bK!s&cezs^_D>MsS&XzKJSZ`2q=#`hw6_7%K@u& zM_pB58mO=6)I z3aHg2Oi?VJK6|vA1oYRGj^OdwkumtpvxAp_V)BhBv$@6i?8|h%Z&UmNsvfy@vEuPm zX3fCac7E{Cup0^oN$XjZp>Htnad8-b>Xd43n0KRv`fr?v&4jWh+RZoi8S5PUWi}s& z{S=~Af1yP&F$Q#WDSd4f)Ao6GGb?h%&|}NKm+@K5zc)P32x16p;g?B|Rqx1y;(Jyb zS~ZKMnW8R_=peg2{MIzaXbX`&ub-7pGXlkvY?M0_M&W!RgMrYi3~7bT4&l-z%{e-) zaL2gxUrq)tz+BL;mAcGK<6m)B(*OvA{$huENy3aVOQBBq{VvC+{SQwtgd%@m)BvFdKHMEXPwTc4iojc`#d1|&Ji;K_= zczEJWQ-OgNr}-<4WB%CXu8I}doG9nP5nvZxg~s2{?HNzBmd>dq{y<@=r zPbr&)W78kVsF{xBR-{nx>Hlh-5v`LX^*bd;Tq#yGSIo~~8Y%f0_~T5^lXjO7lhUlY zejkw#yOxx8YMHel-{&`DdDSwp+0q&v6 z6)oCEj(-Z<7_BCa(N+tCq)hf-Tp2F6J@F0h<*H9yx0U3Pj{KVi)dDF77C|Yd37fwZ z#X>W%q-6|u=k?V|>-AxlbMQg$Y$9lDjMU-Lo}e_czVJLf>G{>vp}}G7+^#&gCB2ES z*&uKVNWqV(O|pRtvx0oOVr}zHHCtr)DU%7W?Vm9tZDZ+C$yUj{8}) zl16k28C*kW*Y~PN7mHb%O*Eb=4tSV;2KqyLLRIK$WHu>fL>#kXOKa>mU?gf`iv>A?V%ly-qMc99hQ_s`^N>~A_cc1<^jGg^UyP}%~0`AQiQZ$wi5_Q|4Z}? z52mP-TGLVa{WU0e?g4?qCiH2kJI9QDHzAxqay1>BzA9vaop!dNj$=ZOU0 zo*SfS7HUIz7_h*zGTkVv@&3p0Fj>qLsPEo*kVNf2-L8^vO1di3>x0pCG5N@i3t*WN zErksHo4^x>7{Nxs=fh5n#zz4VkgRIl4%}f99SjjBJ4Fa6Z{C)`!clfeAkI8f0e2Q` zjdTfofG%b@I#0526`a1Jf?(%Lkr~^roTl7rNuiZDQinnB-URr1sWL@bMCbXWt;v#F z5D&#MNBBzP+0*VCBm@c0~+P6FQSb7&qvNZ-kJ)iJ0@%-3GM?~&1 z1UHROtk)G+5oz_91APmUHpYuTIvND{Lovr%N&8q2Himy?o?}(uNAaOa`0xsfmD1k0 zRtz2;&1NQzRfHyudplY$3k4?!(SdnkL0>IwwLoN(NfTC9Xpo%PH@az^i6RIzI@1gd zzGcN!f0bR^;WT#y6c8o2c;gu}+;eg95%s4@t|IL4Y)n4PydiSbbMGYdl52&TFU4=y zPR#5jeu}sbH*QSV75<%T@Vd2V1A%J)4l{!9t7SsqQ+~RRq=RV;yek&#Z;J<*TAU}^ zg@l49CE##>*x?|R&)Nko>LyKNQ5W}x6W2udNg8uPOoNv<4UY(QOLFxu6w%w=o321n z+*-l?^JkAU1-?LMNSY8AWP5dBE1J$L;SIMzVC%pjJBfMZo1{k$ZVKu3|F+DbD0`_W zs}f!%Urc7n#X(o5U(p&Vm1^?b0S7aJ!L*~gID6i)hDd>X{Ln{FiVIE{X8e6sO9d7H zXE@R5<|F36b$(g_;(uY)g;a9i)c^#`3WJkd|1?wq%Px{)WK*+3jo>lB2wgF+-qs~3 zu^n7XK77?XW97wSBdIMG43U#$meny!$5rcrxk0!i`-C+yvH)m!luX3HKzSaS&rIw) z>DA=KrM1g_8MrHs{#2ny#tDeg$G&T-$+FxZ)ix_9U*e#$W;9(GHN2osydIevG+ zITb@F)L8m}KHzM}1^Vx4iQp-&NM&ai^q0I8T7k{gIWkO!891<4w6j{~lkSz&X9^{e z0Ycxz%cjn3d4aUBtk@@PUbw5!zjel~eqq2v*$|_aYqXkinEW2L@6xdL4-hh=D~H{v z+s`LOJ)xRK+3Ih`Mf3i2@Drw##3(S!1aPYs;ghL@%ls^_q zqlo)nzs&l7oLr>nBxq*-c&g}YEn#Z0vJymZ;_&dh$^==bu0Y>>t~wi=m*nnU`67$( z_%~_VK79y0<~+oO0I|PQ%^6}itWdv!5xlTlakIf_V%%W6uiH}RdPhLZZ`#d(&he~D z;9-gRM9%58ZgHxuz|eK(R*<-XJpP&lEsc^pvW;Jc{^hKjcDWezF@UyLC9Jz)_gz}^ zBV}IOqnI}A=*b5^_}`xQ`OPwJlDux!T}@^ZxwgG!&^hHx~_ z)sZ^jcGO|RSB}IqxJquWm&RQiAjdTUZ2Vxhn6=cH6erS_H(~I@YziGeXTKnsgj07i zE>tJ5HF&@WsQy3~resCeICLgCx$1S#erFYwXxJZarwx`@_UDd7%}4ert$lAb9fZ@g z7vz+gpQiV?c65*OcIIqn=V%wG_j=%*q-D<5V{Kilhqw8nicEYv_h=K5(hl0fb~s1o z>86F5N18y`DH?cl`l`zF-Wd-p3q{TF9ourSKc})gL$k1g5T&`I=x!eNSQwMqP1jI? zwM9WX0T{~{PF6#f2`Opfu*JdNJZY7#FbW$( zUAg2Nd$jjDcDYTf02o5~*w9H7^LnUT9ebGH6wTST z0vFQsz(83MzHxwk={JZ>e@m*Y9v`!AVk+ZqmJ`COnrwiDL$@0&nuLP3$lTPFKX7cV z)N98|s)8ZaKcr&EvKH}(t{rq18C%3x5=NyfCX0ob>uY)9vv4*{yA9Y2BcP?ki z)H*0?v#3Nd2ucTALi4IaJ!;%uaOrqjl{cEF#`-IR!M2Zaw45Z-SD~6%ma$A1Q_tcm zuSD|vm{=a`O-9IqtI-`Q{uupgc_seyGr=9`)>*~K_`NBze5Om zBKfkec!F;kWl|D{wgCMzjYe`IjA>-(EJa|6(k%10Nec>hE6c%~Qr?X*U=?WLQm$JP z*1S|TOg)W62LfBNOgRZx4|kIdNc3B&Wi`$TMClRIJbViMH#j>QqiEp{yOry8@td$v zmH40_mQWrn3ogVZ@|L$N{U(IjBXiLY*A6;!{-pDZuRysoN5vj%pDph3tou7@WLfh3)Q5(aQwoUSf1 z>mX{k;mU-wo`cj3cP+=;r}Qf_ohe*<irOeZGjgaS&I!1LI@e;Nu*JS9@_a+34s!= z_;7^xM}qI3F^jAOUSm_$VUKI?{zF7W0Y(6CsKw*hi{?lY*=Ct5{Ar^G=O{0SV1jHu zW0e^hKEh8bz>GaCBZkW({$|`41C37dXpr=l4C>=!ewLffL4vFwIH4R<88_nb66kbabj&@>shi zE*uGfMpQah_ZkcybsUR@;!5_Db3>r*rJ(vR74k%O8JKDS3ADm^hL{zg`^bM7tR7LP z{JdK2CL8aSAx&1?N#EO2td!sH%Rmz@aNd)Pfdn(U_M##A7`m8hBEU-w>+OkgpJ^Vs zH+dzAy&l{jc_vefplK(~v`)S$upux}5c0{A%@)82qX9n}2TUiuf_qido0_9zqb@60 z?NVVWw4X>G*72NQ&fIMqhiTfAf`%dTb2bRolynm=fn&q&96<6UjiCEH30Vdfj+Kts z6#NZaPb*fzU*~igBi2*!h7MfWGI4Tqe!-P0=g#QeyDHK31gOlk>}qIZ*GkkJ(Mr-B zjZbPqT?E%tGBFEK){f0FSEvBC2tq_BTUWCNk?`y=*>I7w04k`7B_LzOf8a5V)H=0< znt0wYFe(AjJ@bsr*BwLVzKOwAs`}&Rqk2MpGXZ9b+vYw9BP-L=xkP*O7$}&3Oj@}K zW5B}d7f$akB-(FJ;2?{`hEv&xgPZkN~?&JU+9h@K~(l(l|~x6oZm_1_p#GyQbS6#^VzU)28eo#o)wsxQqy9`Y zpy!Ow-9>E^K$zK+#7r3IOcy?hg59haz3s#R$h(09pHly-y(8IA$G%;&3)zFZ=ZV#T zdXmVU{PVznQ*J0<(DXcPZAiFJOAR&mO2J@6Jk~8PXi5r$HZRlQ0ybH(o&%T2Tvpii z2DtngeUo8cszTRVy#m68eo z&l~$+7h^`Q>0@;**w`izpGUx%f=2+=8|oC2Hef*a^ANJZAJ{wzcd0j3DtzK2u&6=#Fp3_|u}{CZx@ zu?sO5t^!f=v&)DBxaujIl%_vRIhk`IRL zRfvNm+8HFcNdQnr9}lc5Be2?VZJAesk&+>>kkaf^7{-nw_v!g9mcNl8nyE9c?jQab z0+Ab(Y_wG7rU#+7gvvZsLpsFGD2+*c zwR)u;v->A)tBR}b$3ihT4J=m|njQvSY{;rkO@@g;g9!~*GFQB{M^Yt z%D9FIrI+1-WXu?A_6^R{7I~~p%;3?~%KOxD$E}R(KJqV0n`fL9*-VmO=ZslRMwL|z zIZ8;570sId%qZ=nQl)wMkVvYi9ADcP)fw}nJi|?P&?G!Zo|}7h|B0}tRBI$2nN>Qr z)$jE;Zsf2tTr;j5p#Ra-7pmxGCIIPu@%vRniVa%> zxt)Q@pCzAd8|m?_+dv}q*9coSVH0tpnmgu0x6cpwLb0~(a`4H7 zI%1R<4H0L<5a#K4PDNN&%+E8tqbcif0Vny}Xr4t^0G_?+P%^xrLh%UEmr;rOG}@6m z*;Or9I^mcvD+YnlzK?^|9hD+W+LB_8pX9}Xx1)#kX0W}Iel5kfL37^9X zW_9vX?nrA|&1CM@Du=0|5c216cgtWC-{G;!vYNDWMV31N4Uf!r8PR zSDw^!nF%g0yfCZp=@pCjrn;I}974s6%$%fVoHh6}ilVtnk`bjVX>q)pp!_EmTQbX6 zSrmlsY&dN-;b_?}d6Crs+^PgMbTMe+>i=Z6Fq z*huz)YfTAAIbM!<$p+zmk4TMT^ybO00Ab!58$v!S}ECQ$a^|{Pmpw zu6b#eRKTCCx!4o+mo*L5coqk!=;nY8Ru2g@;(!*=M$o1G7@x9E?x)jZZvd>*>yu zWm&gIP7D!_3I#MEQX0YlI_mjM^SHk{EUEMsY8kllIb&8YNgM`Y7VwL|mIl`aDp-!zs$M1_0Cm0K=PC+vR>K7K<<^Z3oi#osPIvopxr4xy^u1 zeJB~A0>`JqF_28gp>;>lpR!{pfCF+rfxSivk=%{R_p-oOi0}ZQ4tUWQExQLkMdCqu zc_@}rOaNKJr-5deJ^>05$B;we5Dmg#g>CMXZO>!UYONeF0BxM+dK zON2v+x9o0U9SP6dPXQf9UKiWD?d#GVBL!+qasUFRlpZ-vQ{rDXt_6g45)%`=MQoF( zfDT3SN5{d%?9{hVK=50!P$Y2efC^$bhfGHim%%u6o!9#l=X-nxjt6*5t47BbM?erz z>D=#2nWQt2;Xkyeh&{yO|A9W)LM=iTn8`W)x&rsB6FLAAj;J|izL7R-h0pl25DF0d zRmrULb{l2jY;ieU?4WT2QXXDKWfyx!e_WQWo(twqLF@nW&0q>#5fm~6Jf63ngyaGJ zC_}{rA^>WkGw(=2DXd8WSpc|=+}Q=Vglt`AH&1hk;H}ArM(<3jvY(uTVo`vl9tQgo huHLfXE0l$$O;@ zH!5_{DzIOrm|`qk&%K6_OtQruKP;AS1q*-^vwG{81N?AXn;wRCXC1LA z3{{h`Vm9UV>}(Y;X0dhhU*LPI|u8ED%0b9EA+Ww-IsdLU7}K6zHo%&7m&hX)hX3noD9P(ps-Q=0$`2a z<7YxhA+;}NQ1^6{OOrA55)67k(bBvgF-7}SJSs8iOei8wvhsRh7puF;)w5KO8?Qjq zMctzklbTwWu%=YxtYlf29MGd#vRp9NLX_^N>-_g(ovH0vlFn*q(%;c@10swnpQPgf zP|udV0~qulWSQmzbBb*wCH4QRlC*d&OFr%fX>)eTL@W25nR!!aF1yTm!!R_-N*!m# zbh```gm2Z@B@OOHTs%u{Bqiwpe_&Azq-48R_gyTOguti7o$~%pw7qNDi;A8UHt2GF z)ont`qT}b=N=l*(xoWQ53@Hk@($ykcA>?j5%E{rt)y}Hgg4iXotKR^C|Eo4Bsj>?q zBuJ4KT`Y3i0DxN8;YLaQ(HS0S7}P7*#iN8xO4=9+d=ccBX7RCI3wmPIpc`%G4z#}G ztg69$5r{LJZ?=G;FLLP9-?k+%g(+5aV zqA0#IHHHvEPKwg|hjspYQs_Efj6@h!Fs>DLf=|kFf6P>rcxVf^<)^yhQcncjcDnmH z`KRi|wZhKfc-VXQFuQx?chmmS6-Pp7>Nt0aYwecLodLux02an-OMwq(R||k}PyoFF z>AlfNCF5FQ=a6;M-Q?!3bYpCP3-PxxW48)k!nMLq@M$yYM=xQtHRUb34Zke%Pf@y? zuJhjueHM%qyun@&Fco(s9d6IhHMd1zTK@Js0c@YptL1^BfU3AdiNV|3VNAr>ssOf6 z=zrMAT~hUI)N-LTM4xn!X24egOrOwyupa{iLI8SRV%X>tS{zUncWn9SLyWEpp!(mPXi{(Cm-%`iy1YKtC; z$xtn}xP*f^2s6oh4SK7&S;|%oE-lY28AKI5GVHy6kb267n#H*Q63q|TI|-LoV|+R_ z7;;>hXLJcb?o!NR0JIqy<_8J5GyuV6w0Z2)pV&bNxP00e1_NE1il%1?!Ni}L_ zp|ED`wql>rB?3#r6qR~ZcCob z56a9Fy67I1)hnJEF?8R_^Wri3IDKF(rUzyE30-uXIVwLZCT20f^qt%|7l$S?2iBr{ zP^O>IMYoy54k{kgcQVcmudt^Nti|-rOFvbJZZk*qPyFFW_nnLx50`^JuvRtbHgnYe zl5j+v4vkJ&?1Z?qo@%e zKsNtoe$R+k6!{7wP9&GE5SHO~K!g$IhVVf|g}2L{#%%7Akl38|nm;180p|t^&44}& zZu>_Vfux~AqXm%FRe+o@E9*5hQM#M1^WTevB8+%5Onf**7*+C6LtXx`huX?mV`0#v zWxAZ(LfxvNE`OLqZ6(=*mN5-3Zt6C7sfPN;VGgww4w~nE+Y^Dn9BNCaqSa8BKh{HS z*@RnD;q0bvm();~Kh{HS+1BcUDW|zQR|DtUf><~}iV{WXov9bKe4owtx~+P4nVei( zWvk9zJ`44_D%|DssMpxyvIJflUo6OvgW&-o<2n72x0z(aFRe7qmy0%pkniGo#kBJ? z1x!Gi4P~b8Tz0v#$aK;N+Mfy8%w?BM_=#o3W4P?{Fd?@I9aAl4U*6nFZqG^m?(i&W zZ_so6Q+xm`5|FT*+h^dDro3Vr++AS<8h=jHH-pPAM>}Boa%dG^G11|-mz|rH+w<5Z zfYo#9m};?pDL`T(_+6(*@m5?P^^18KeI49l(kg5~TmEg`0gqh*n6{tOS5V8KzZxn1 z_{5~S*Q(ajZ3jY){Allb8E%_)`tnhkoAWxp0W{z6vh!U~F>%5Klr#`H-;CXow(r@HYUy=EUiXU^*s_@HJPnPHN!n zj~@5DIH1Gl>VNNpiRsBOaZH&B06c%I81y_RQ&O3jYUw26CX)noiPulOR^d5u__Prl zQ|;wY(acHiz=>whIso;7_YQI4?g{rBV^=01VFf3LBAJ+Yp#z#=S&|7J#ufwu2((A@ z2Y!!_4ZnkBNrgQZV=vo?sTNPimz2)}Cj+ZYgpA*7Hl3-@MRQrsp9TN(rRjcrxPR#l z@QUf+qu=jG(*bEdDmVA!vdgl2glxu)e3Cnf%PyJlXO$O^e;2vK|2Y2D#_icYz#qYXhkrl(nf^il|L7a|?>65xf4TlI_$l-~{NMbK0fK}w z+|n$P_I_#@`DlkWslX|G%|Lz!{P&6Dy3JV$Os;5Znc#OIaTZc0HnCoawWLlvE?}ke zH3BS=ny++7PwzOw_l>cK;@r*PY?^<$*DPg+Ub=}H|j@ih=&DBl_$*KVLX4~ByeQ&Vi>wSkGTkH{p zT~tH}{%fDWThC$y!QgTA%nUqUGa0^-$XN53zMZxJmW{B`8s_|ZQ^G~tK#L@1`bQ%- z(m5Hs@p~0rUrvUl>*lOA6K}b=1e;Xg6uxGlMUpdpBaqiRjiTGWUf!X5WjN_G4};3N z9Fd#p9E{&cT$7wa(J9bd2Hf}{1KQ61!I>+TZTq__AXUWVr(;pVhg)RPH|NUia3_?%4 zT&k0Q|Lj$2%QxB7r&fS+oXO%yYcec(3?#N1no!c&6XY^aIl8P&2WPnjd8AU%9u&Il zDYv0K4D^#cDzkCeRNQ7h)B^9yV7gqjjYx7Jju`sKt%{Qdt)6-0eb|(~P=H8elNM<8 zU}$Fl{B*hXrgEyu_lB&u{9fOF+Y;cFg z^Q)K&$2cP)#H7y}@kRa~tvpMgCHKXtla6eVE;5!hDuwQe(M+OKV==A4OmJ9lzb}NJ zBSU}YnFp&VdUo^xtr?kLB<=PC>JUAsq`BVEH>&^Y+w78;@&XNfDuQPCach#gHZKhJ=6gtt1Gg9hz&U`nt(3cOdj#Q zD9`ZqR;-8oBBIfio<0BZQw()JOI>ULM05Jq!044269@KvQpguQVfpmD7-bWxM(&X3#enb5>=vZ}03%`kD~YN-hx4<;Z66hh zCC~joqM02H=~*7qn0A(B>H-fOOTK2IZI)<=_g~{&JKOl0No~CEl%*)4u-sQ+n|3@) z8vSi4s7*ijux!y!2Hw#!g-&&%tR+}`FyYRzBUYTNw&@XU*Y$t@F1~67Mwc_U*yMn9 z|15A2mog{%fnJ~)b)escv(G9g*xkh8@C14F>D7J++?$++CTQdHy~k(+bNG6*JVYK* z65eM$35^qZS_2mDo9N#)=9wjVP$)g z2J7niQEI}KYAqSItjIjePlA;@y=UIE(eRdG@G8P=oa=gT01#~YNKPC65SCS)4+9PS z$kQ}(3NkD885R1B%skIqW3Zc%devdHF}1_HC{SywAj}q3AOH0JjemyYw@NbrlpFv9 zGSt`+1!1Ce$#tIYD(79LozS7I&UolyIiA$G!ES;F>N?tEA?mLw0ad9*&_lFnI{*_r?09frk5p1qFa^Xo2?fUlJ6f87I* zwmJB7wtTWZy}TL9rRyMs0U45&jek%>me_eA98ijH4KHs>UcyoUhJnO(KC51rn)uY0 zs}ca@8v75D%-$vM|AGKT#QNY!H~Kp4nV-Yf3sNioq9sUXru*w>96xaXfKW~siGGx< zMn7}V@w|-<|C(eTtfA@K&I^`N)Gp)_5e?OCA)!^UIaK|Q{OK5Zks2P1hPa!fA*(^0 z|LoDH@MyuajN3-$+(vd z^!>xL%E|6FS&AR0>iGb>GBX;*Of7_YBirx7VVe8vBUACG#IAP(>Y^gJIah7cBH6C$ zxR!Xqs)>VD69%d#4OC1C3e8fQZ2HcAYdiLm>kyNDTx%5mk#%8~Z69s3zwq@|Gx*E= zTU($eYq!pcd+P>fh37Hmg5jth0KWqVTh#PY1$+K94pa%6Lrc7UJ+)bi{blNCX!Q_U zlY3$C015SZ{|{Ur>!y4D8-PFmhTup4hTx15J$@hX+z|z^DAnd@8{ghY5~kn)0001n CHAC?L literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/tokenization.1641a160c66cd2d9.webp b/translated_images/zh-CN/tokenization.1641a160c66cd2d9.webp new file mode 100644 index 0000000000000000000000000000000000000000..c3ebfb414789a71d13a5fce5a7b60b8135d67f09 GIT binary patch literal 11098 zcmV-gE2Y#@Nk&FeD*ymjMM6+kP&gn)D*ylxtN@(>Dp&%*06sAoi9@0xp%M7KU?2ko zv$t-4-gUxCK=-QKR{x27Y4qNAy!YW>wDn!K1I9mb2)U)eu_57&SHKknioBsm8m;A5z1^hqwm-L^&?@l)c%m%o*e#CVm1TFttl?ME+c8-Xw5^_XEX<2w9;H6RUN46eKxE@5Eu` zYaJ$GJ4ZNyo*L*-t$>z-p$LoTp;{~dQT!i7z!(WVcwzmpU_{Lr>LlUN1V8E|;mxQ@ z-KB5h%b|$S_51R~K=NhqM06;}@AZDZoAHA2?NldEff&CtALB^t)pgy1hq<4I#-3G$ zp_{{pKCM#vMYGq1Yj=!1LE8-CP>UFp29-1J*_JSC0%~0f1HfK3_nhAh7Kf8g{Ve#B!u2hTz__OHP}ZVtmuQqg`ur$zQ(N3SeB}T`E~)e;EfmfX{&0jJ0nd&R6NtqP(lsqwcxCyHbRE*m~t!0st|1h#MWkP>w>;r zlY->BEFq%s-MfW;2FNO9xFU%NNAV<9J_Z!P`J={eBqvsH?%W6-YTEY9qf`+)e^MU* zV%%^oM5_ziBVh~X4e&hD|9eF#v{alb^N*@*i2e^BVs920`q$)Q46J|Kn2|HxC5j3) zg$zn(9r}+75t-T7v9{-DN(GWtLN4HW(T?WeTz{84B`-EqNCT;~{0!TjoqHQ@c5A|Q zne1VqS&DiHQC`k#rO8id&8OgI-0bVv+jFz8V{OcMRFzYSlv=qVKYjAvN>XB zU2NL+Hr(uh0RI2CUPBfmlYYMjDkU7lr!pvp{%sb@|8 z){P#ktl80hu zybv*uxgX8aYxgydUX)`i0TmsQe1#cx#z#3*FxQ4}HVOO(t0Z;NpP||)EI_Ws%03+zDlhd?b!Nc3F0?+8&>~2&T|i@xei< z;Em25%OHF_k8oT6cJSezmPrQ?;hqtoL#1PH{duH&x^-LUj=n{?+g&G#S;pLO59Feg zK?K{2)Z#tlZDbZf!IP*psq)~S|5Ll+7GJ*Cr&SN@3yr@!LSV2SKVNK2-aAWks9F)9 zGp0L$pzDL8W0NfiKi)eDmay%M*DciGrR#=iK41A&UIx=p|O8GOEV@0h!G( zh!DWR3UB4L2t99Ur7<%lGyR5l*=6SDjQ+(uh^|M6V*W4<2^u z1TP=u*L;BKBUiw5^*{fJM3$Drl_E$jGhTDdyH^wzwgW6XFy<6~JEi$8B;N>DunXjh zy^-wXa?~D%-}{=WH8|g%2JRsgnWB&^@l^V2MGUqE2JSeGJ>${gNl1$#2xY%PF05g%qsT!ykG#a+qQ(kzAj0I~B`+#&M!F7D1||URAPb{ncKfh_{snrXVBa%^gXsSI{&8 zGFS2iMy22B8L%x7o(CqIb}OTCBLdoNfba{`pV`!CF#_?wTii+G8hYk|xp*|`o9LIH zECqJYB7qq*fG4b#!xkbrz(?Dc6AP>VwyxRe{LgH*jyu3Ec<-1Io;fkld39>eKN>J+kSEd! zoo_6h2J6eFo0ARdTKJ9FhyH*G(+8U%RWOJUW)c?6EZb37m)j|*gP z-F7|fly?sLkl6CrLp^u-@kt*Y)l&4E}q5nM>PN_MB{Mg9!e8fpqyE z_=6rxNR(oXWqgvlkEt)37U4Z*Z{m?TM+NJPtl@$a!E7sVTG|g=(~cuc^(BUyQ2mD!F-XPp8(V2Cn{x_l1-D|o#{Pa< za!62P}X> z-tbYz@BRa23<79=RtKSP9^o=75_x8f~G^$(j>5rkeO!mDp0>D{C8T74TQPK3X4IF;-#jbG_6tJvS zlTkrub^bj#d_I9xlmdDN31Qf)d05G~Inz)55~Q}m1!alU1+he9us>cPTm5m$OTL_H z&+Tc&y&$0et;{NfOG&Hy%I3JvA?v%nsnP+v%(Ip5)tY!lH2D1R2U)k!3iKzZzZ?5X z-;(y~Jntb4;Ea>$^hxYd?RtKVuPLbc&d|}T-~^qww}*H`Xh-Nc+8Mw;S19fVP;4l0 z%FCI^DU*(O-GC;nQ#CtQi#lz`u_}4u7_e~H?9jRS6{BAM(MrYY7d#6}R&ictf0ZEl z2G8nFtBth-5H4gm+L97R6`6Fi@{%H5JRxX1b4_0~ygQ%1I6M9h0= zxbCH2G59T-E#aG12B{tdlzmo3gqT8Ct}}w5>DHv~Ej_{nlVM=sQ7nLYpZ6Z&B@8lt zwGijd4zm)-PBs43uj3sob9oRj>hjGTy@jgYJ|V4 zKS55koaqO$vXqvj*cZ5txco2wHk@1edS)>RcPRp=Eo@xqXQKr1d1)t849U;9US7Sp zOVcN&U3M^s^+Z@4F7@@ z1-teQZbDQ@SJ;N{Tc(W;CS%Z;7T`q@RWPV=?fT|9&Ipd#T#UoMku|2YvKaMiTp_w` zRYvZ3L~o1ye2LK*UA67f{c?D3ufrYI6JUQ9vwDdCt{qW@F8DGBrFflC^+fc%(k;v) zu_~R7?JoX#cBs#nfrWtGJEiiAj0O0N!~27s(Qy=9AGbY&N9lP66MTSGy>kS{G$?)! zU{Pxi_-+%L7>U~qfvA5YY1h#Se8a344;lOQj~$}`Kag~x+-ud6Q=00kf&4!h(Et`3 zGk=_t7AENmm4;Qh3axKOYWpvMqk|K{kp8r9(#_mN`ML=^(D=u@*2x~&-oIyFEYPUA~`3moiBa`~Cg)X^@ zkD9mrwPa|^4l=ncTt*p+ zc_tkV_n4T1f{x$L(s-3OnAqgLTV{av>m~LjrTp{?+&j#HzjLhHV*kvumF(AjLvJrp zs!z#HxkM;3FXo5EZO0^T!0bF1eB_d7*t|b|gDV289DIihxYVDP{}LDV z=T61ZvJ)TeQ&||;W@(r3k$=77V&*MS#jANBhHPJIFrYwpmXtNnYMeL7000001C6OK zV4CYB00I)a-0uOWMq}pWlob8LWpRKV7xo&^CeDsY629e693_!cN>@$AclvTo~Bh&k)g48$KGO`@l<4&?Tog1g2*CuWE*AVHX^|P z!9&3>f{t1Mv7;5n_m18QcNg`heP~rV?Bo(VL~^3hU11Q82-RSR)FXk)wyd>m-LgYX zp}N~VzOTuIU;i>_i@{t9YCo|&HR2%B(f!_;r_*D6f7sE=D*aVyBMA{0;7IQ@De<RY?G0o6SOFUu z417o%2#}TH(jx91X~+UgmK#HCQ!AR4impno`nH{4n2T4xc~>FC1Oa((1l(&HjV2F8MN^__qtxu6 z=`WTdS$hH{M*9DDs5@3WX2t1WCP0Og2Nmp8Lo$B3h+8CZu4-&BUp-|zga3(%RHohc zE8Lnh5?Wr`jq`;_+m%)tAAz$R(FJ%yrQuyVmEr5R_>zFS^iw!=?e)xqtZo zpf>t6ucqAwddfG#HL?eH4Jrk}I5cckq)#lhDmjop1Nutsg2X zbBl4k2N0_id_IEFxlxX$CXi-%^DnBC<3^|gYv0wpDc~}RWUCZ4A&?*+5O2hF{})zl zH!!8<#Fd3uhCfaY@ce`DhR&KXYf^i!wHxhjMTNG49A%wUJXiN5=(T<%%1qUfpW7kt+m>{iI0-?LysvY?1N7(1Qy-aIq<=B<}^aisI5(5sVuAod7ZwKv~D zUO8-)1|y4!dToDok-!fp{yBlr&z;*{Pf8u_@uCvomkx+}QjQMq7xqQq`~1ukiH@Hp z8IP#qai2Wp)IO~)VCBeip8`-ijVHpuI;8y!pzN7|go7Vt8~HFVkH|0?Co)WLYjH$Q zF&YV`TX!O*hd~r9qp|iNx%OJ_ccTz|jpB3(dJ#ftKxAX_9^Mw0ZBksBrUKW6WH|dt z5etIhh9X(UXLCdiESjoMeD*s*CfybB9T8u)L{|h^o~6KXTDqDM#n&+n9nToaQ&bE0?808n5t_w9mL*KLrc^%5YbFmD*n zT&C5LX=R%t-)7>8mhxiSMm}uhOb|HyVcH}Ed*6g!(?frYZn38J-Z7`-?2YO_k}!M_ zOD}*>|0b>Z_zffsN??n#tS9g#jv#AmH+`?RhIo;Cc46!yh1E0EOb~$ zvaGIS68-me2~`C^A1zMNdWx&8VS5+eHdS*d3ZM87JPYs2uwb6Eni$^)ibi27*!JtP!^Ga_6O5tzcGE{w-+FvEOX(M`P_7}^8 znRpBwDBEG>i=5y2^u!bryjcZd7wQMd_cLTx8|RNF%8eGR*BB`_4Z;J??W7jSHt8V# z7yi#^0$!t!#U?Frtwq5@%cf&j8;?+Gb(pNAEQxjAoJjq3HMwjDh0G?#_@_WrLXO8%jzO&baMmL&H`Gups_w+gmm;bhg%<6x(B>8y@d-j|Lpw_w`6-U|Ife zdb+4y+#OkaQk(EmJ`M4(e|hbW_}Nc5*j;AfJp*$~A2nx$u;)Rg4EuR?L(Vn!3z3b8_3Iccc%fF zIx=DZ;Z=V5Ru`?KbsJ&dNa8rs~p>90e>NTeIAq8p?^B zyAZ6B7$T#Er-QG<)>?vE=+cA6D=_8f+aF^{SA=SK z3~KV*^&81k=>f0e!Ss-95e>&Sg)K;K=vrZ zTj`4#qyaD@e0=CKTR0IMR;gI1kL~=HV`Tpd)kY~vIKM28Mne}_w+b5+7l{8yp)ow3 z@91vGJPAp-bL`KF(gN^ZiALB)+)kfnJV=GFzo6*VfPQs64wRQP3uJj&?-ht;SgSYr z3|hUWGJI8{IXUDW3=()sJE}ug^aQrNchVp2IOlpN%OA9F6E%VJ&GmKg z=BMm0j$#bf%ou!~q*;%%Y^0?#V_eA%NTKnPT_`q8-tgJx>ym^jsHt(|O7=x9I``H2 zUXFg>c>PB4wK*P6J>5Wj8)zr`_A=LFw}}xbPU~nhT^@$@#@Ll-aH98e%PrB5edL3x zNil>Q36Jk^H&h6LMln{$8<^}`T-V{vgG&mc7!S3`haRIw^~yC9>7uS5XumJo#X zK%!m)o8eD5&?YTV>nicYlua!?UW2l!*orSXgnlM^>8V99=V{c*(f0m-a|>WdbZEui zx5#H#8oMKau9;=e(>};2R3~iG%plFmn#~S%ZAqT)HHaOVWWkKGUl-~`ebs$gW&+!W zVIbj)+S}`)n)!Lqb`DLhX1o^>@F3J4sN-#P5QtNys}s2jDC7c6aPHVdFTf?d8OYV! zwaanC>toJXw!w}OgCMfQIm3KC7tQYM)FG7&hZMN|b~@DZfAqJ`?^4^XO2Bj+5!o;` z<2s1B7mnixX$_cbtqoEwjvr5iTt{4>2$wzGw;N(_ISbo-lyOC+H-sRKEIy(iO@P_! zf6KEWH1OVZtX(Pn?=^7~oAX&AQeHF9K^N(_!(?}MTCld+tyRU#f9BZcTV|_u_5V2# zXnWv7=?4yX9ew9Gopmw#1wu~08>an;FH)Nx??_=E;=SR7O@e8ZZ%`+m1QTorbLjQz zjL(`yNczQ3=K=riIMkP$wL0I>%#jP;b~fr+$lOQre_I9=SV^mc>~TdbA=SSxg7Oh6 zw6S1@@W8z4upqSKN*EbB@Vm>hn`cLE+i4BmzVLm0ZMT&Wm-b)yC+!FY&enz5gN6cF z(dcCLnzbb%l!4~SOORxujx#xe)+fdn=TG!6eR^~fzAUQ4Yu+;D$|%{ePuSG(U|A(g{k3A_IxK#w>9p4AeAC4>QVR?+*qXpss2*V+ zM5GE|^}ReZ)I3c&&!HEcO?fD$)#OF9H37+GM6eK&p=waP@?^1#ZlM$5^`lGV_i;5a zFD&f95;XcX&uaKf;465iYY(mG2MMvf^jOA*6K{V?_|k%%@@@?%_(ZFgLn zB;J+&(m}LbwLLg`hvUv055*)c}XV9{=r)qWKtb&V7w1**g3nhQK|8>IcZ&{|Q;X}XQ2Z9gS z?k;?CG}I*Z$MwWU7+$w9b5Mz|%=IFDN{AB!y2!0OGLHJ9*6MygnOM@P)pIDU{}6D? z3uNYNEK(tYAwhryHo<$s-=j&EhIobXrYQ2&9GdyuX1IRUu5tF|Q|be&yDx_d`a|-D zW;H%(&t~^>;ck$R4|i%A;Y#g|o!StcWvdteHSS6X9>YN-Z+0ou*W(9B=zbFA(?OmV zvMHR6(mT({<({i>#YLw2D#B5Jn^#)T!FN|7Uo zC`06~Yq{K-u8!36*;@h7+yM*KVz;X&J>?x=z%5eM3@%9~UfAqZj7hxvZF2BDef|+g z>lw7xgaj$$8cj=k7Lq=1r5XZrC@cbN$SYwyTYR{;FS$0NaC6$GOu_8ts2nM`1^T~@`S>!k8IWYHt0uqqMZWjq< zO*;f&dsC#<2AgV`Jq|VJHZgUxfEQbBMEjjxiym6nlKO@D^5~c3Cf8H6#7UD)M5!z< zFRfcq%nT6zz^kGK_g-|VAo{ko)CH#~PXKiznyzbjh%mx*@RN|<)_WaW%sqk-(sbrt zQ6nMii5)wr*ZAi?hd(OOwnz-6n^%j>IIaszNiW$5KGdsRNL;Ax4#V1>T>Yf0?@^0R z-GV1HPdj$7%3Sh8`O8?-k3t*{@9(5k$}yaCX0qJ86j}US_c^*(gL`8|V`(b<<$B^? zyh(wR1iFAxN0N2FJ4vXzn0K-DQF4g58{E?|(^=Eom@?Ok#1zN%Yg~KrN-Kt?a@;Ck zOCjXsBOwnPTCK^(QD+=*My2kTO`^`;ahUQj2D~+j5G8vlYO1W6EJFDW^xyaxhW;uq zx7JKf1|_TIZCFj_ElbIXOlja#n$7dmkGgaXdz)Imvi3ZS0{01Zr_;a7+$crxn+q8w zxEwE`mNFmy?;;G+oJ=mj*$~ep^q+}}(<7`BI4XnVt{BQnq?)7IK&cqfWw6?9n4&-U zkY}}|5Gt8c5pwu%yrnpzZdR_(txmb@_`}mA5|hDG*{KP!bfP}?TU=;@|6OVO4|p~# z&m)(l3x+FJP|j`;_V#~kF*6C-ix(@j`=ac@Q-95FR(70-^GB1?f4 zfNCqy*3CaA+)ou?=Tg8Kmfk0!l3xitF{hIg6dBas`?^uksa8|4ph3x^>C>53j(>c4 zZD!T7bu_7bc&GYSU*Ed+NfxdkG2@fv#M|`0(xYJ2IC=${tG$Ky`TJQrrO^^h+d}JRAeE zT#VIKs3Ke%%(n4*H%DY5tbj8; zrojnhU4qOaYzs8k`#$}|72@Nb&1`>(0)-d#sBPfS0mbyRvl11|KfUg8MNzMv|Hih4 z006nE^};QL=wH3CxMF^X3~6H;yP%tOI{ z0l>N^s9zOX4qKEeS?hQjlgpV2{1SqN?-s008C82aR2}S literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/train-data-predict.3c4ef4e78553104f.webp b/translated_images/zh-CN/train-data-predict.3c4ef4e78553104f.webp new file mode 100644 index 0000000000000000000000000000000000000000..721bc0756073a6249fc67aae5e98d575126ebadb GIT binary patch literal 61954 zcmagF1CS;`v?biO?e1yYwr!i!*0kMU+qR8qPusRNZQC}#f8KksvAb_~ z^W2jeS$S?msme%7zTbg>Xi11FYbtYV!-0T+p!_>4AwhybK}6)0rHf!eKtM5u?KdRv zzkN;=*Db~6L4s);Vizi^k)!nvvEK_Zt_yCY{eNtV;(EJm;`Xr-9CTB!U zWxAuA%OI;G1`)pZO;Y~tjmhBYt6IjHUX_hXcQfl?PdiI!M-?)Mzf|9;lz1#a`!--> zWuvjjTF^J(G;#adu&~(QrO@xHb|#4`*xB7|m-!UKqmX!Ue0$$HxEc^Y|#H2e&FTv^$dp@{hfv)deb8l9S8bj6E-I@-NuG`*1{Z7SJ!B%nJX0b@ zDHh`y2YJ=OgAbc48bRik;B7$ijC`S=XsHo}mMpzT0HYk;YXl2;qaaW|PAW`#c7y~G zyvwf%fQ|g5C?&-Nzum|;(lAF&o^1j7BMuWbcR&-+Tw<#R;#hSJdpxnDl!TW{SGy1A zr3)^`Rs$UnmKGHiB^!s3>S|v3M-mHQtc(PZIU6emrB|?vLBfhG)`e4)S^;I!#kG7h z-k@n};_=mtQ;`r|Ea4_Kov%{}6>VmtfKfa^uaLv9eIM)fAh@=_Rn<&_5^^~5m^eQx zKYf10`26;VZTqFX`N(OMQ|-0v$+~}qjaPIg%&NXUkLhPGm9HnpI9qW8u4myVVPKOq zX0G&0^mY2Y4Ln=~VaaTNQhMY_tI8u6Of!SdyGikQmB)8c!907IJfEYia_X!_8IqAx zSI-^?#@zi434e{o#iT?UM1XgO$z!W^Rk^3ww#{nphLFa35FRl7O;9VQhKw9X&wkCk z_&16F`#|WQ;RSJP#G19!Z-7oA1-GEzS}V?!H#MwTR*!)8B~;1BevN7W?8wSuwvxGd|PLzLSx0tvB&8E;a6oms%I0P_m7_ zCjxrI2{Um(`hg5VSZwejbWc2bf_T-+r_q&X3|}lLLI$ka|8)cHVa5?Guk3vq`A<;) z1?|6It3DusI{e>S#R88#dtKOFv-sEHAn=Iqf$T0E>r7qYe#y*U#M^xFns_(L#TkaR zl6-2kfvj*UveL4dq40s!6y5r<&+kwLUU&;xpd;^{f?!DT#Yu=8;8Zb6vPB71^Zr?B zf*_Bo2m3y&T)1k_d)@F>HFroHku(-2$OzcodoJ_0BnaAef04`ne~|tQLX9#XI_vSM z$(3)M4K!iiN^%dak8PU%)8}icYk6rWjsBGLh4mSc zIW$VnEic8^+snT`W)s0N{&7WUP37g?j(3&f!8iUu4E(p^{J(7JtjJ4L@*RPm&SLGy zCvOw-0=~K{s{|E}`a1hpPSQ$s>ffw|W@8Ee8Y zBC!X|t0#6TJ&6|rUZg}-{Hh2QHj)t@M|PJd-j{CxPd#D)ScY4iR=9g4&0o32EZOG{ ziOB{r#q%a1npZa~;v{>0c@4lt>?q*#|1eQgMej5+rZX=hqZ@)9kq6`}Ye{>8+BJH= zZWrH^>E0$w!uyepmmLq@9^8|irN)`ZJ-Z*1hb%lStX@P;!1? zb?~Y?@)fuzX$$kDKQ#D;VoStGf(%pX@y`qwoOJWu#iNj$JNT})&bEM?wmAT)IInM9 zp5r&m!;F)gw3TTuUd~8%X-8!N#|sNfc%2pz$R%&~%Z@DO4+N#1Jx)Tgd(SaOX+&#} z0Z>>TBze&)ey${>Kp5`|(6)3}1e1)$r;898ginClkJ_%Tw3mBQwe+ z6amu2)&rqMySk=O_aCECJ0(Oqn))Vn*tYU{pa{ATmDPADelN_R!^K9`0=oJ;$R@aN zpRb-w+Et`77|mJ#3!yHJ`I?-NKNi=O?ibV9>v_AO+l*MQpS){ew4w7cu zc_#BScZx$RH@!imUvy`?63iS1E_LNTGE%XL=44L4bIgWsCrD08>@Hutk)5YY{*-0v)9?J@Y^rkH0A>|HyNrfzr; zl$Y%!ntB<6K*LB;lOIeN3#z&q=_0V!wkj|s6#Xt~;1#(}e~~Z+-!rkokhs{-jN}~8 z7SuguCVN;GQo82jp4P)r3reI6{XpE5!T;kcBnuDnZ|_FJdI|#a=Oq}!aD7uf$A17i9Ti>=Zgxie$6mg_!huFFgm_*rAIKZT zqDPEKKqe>3ApkJ1Y`p-foz{tZ%pxk>s~8?e&7VK z?i~7E>Wz3)=#v-KkaPwP5?H){yqM~@APKGP)Fc0u%tX z{)IBSVEGpR+1o4x1m1pu06w2UfJ^6~7e)(AXMiYRTmHs(ryu+a@gp#0XCH9?UiZ2) z1#teJ{HFWbc~$xnqS`(J&VQr#amD*D0{{7WuQTgS@SFc^eFdy5-2hsQJpOe*{TO)e zcxg2E-3!cof&6m($p47H?(Gmd5NtE#`s9W9p8Y`n%D?ORwcQVd{uFvAelzOL|KZQ_ zrS_fv*878gC*M2v zyV5oBAz=3(xj>-MJ>3WK7x5)<8+Zcr0Ir-GUF;kKP5@~@1z^?ZzY5=g(w!NhUceBL z<)i;w>0e2FkC0)0577W|CGaJ7cfLEnG}L{8o~|X)#Gok}?y5vv%bs+=Wd}FgMN`*N z8_td!mc(hY42jQ@k945Z8Vhqn`cLh;#Q)L;w)cQ_m4e_WB%1@yoH6vn=ySzfFRX*1 z3E>Mi!yLAeie-kB-|(c%!M}fXs23K8z|AiEy{c8uPgmYOfJCxWE|C=0NX@T+~ zIw#tH)OCei`Kxn`y5r=$1?u*MKEZTnQyUv)k?>3W1JU8OGHp!KXQbRX z%(!0!Q{nRKzX$O@(5}6_NJqBaQ!6AR{|oJZl&(v7u|!jGdfmwfq0?p^VePJ=ayZzC zJWfN9F=JNo8>aoAk^WZq$Ls10POV!_H|9`ss4@xMhxp**?HY{obM1CAM zUmwxig$vk?}9-qrsX<#_4?AOo1$*0dA+ieeKhE>~0jQ}6-U?8N~lJ9G4#n_3Q? zj~Ts^^6qWo?*Hh{AL-eZ&Tp9x6SV)YA^NY5YZl71s5$I4ZE(~K8v~82kG9wa8sB92 ze4T>FjYA{{veP3*ejqm5s=fSMZ4V;-G}?jdr%XS0ypD*x2e=a#r;WdDBGq7S>y$!p zkMzH3Y%7Z<2s99G`w@}^5$(_QM$y!FT_Py@Iv=c$H$^1v!Oa7A(94WI;I0Zpj4=Br8H^_3vuOqRm7mh zlN+5R*=tl2UBF&M@7sAe+|LI+P+gB6-+t~tWZ3d?5qW4bc=NSl5}H{0=bb?=+5`6-0sM+y#`oKG572sW!lxwYMo`~mmg2-|8;WS z*9!Qy7(cjtSCp^}%AxQ>1QgD3SKmc%x=aq;L$A3B_X}(cF~NNrPrd{z>!@dLOLl)+c;1U#|utG$2z9 zyOU!p0|4~%Jgp5v-(l||q06)V;o8_9xRV1(DM7a%~ z2|7&dqc_WFioJ?gCgri>T*YD?t%pXU0)H)6B)_8BG_hdZ_aifX9$W)=>iPUN;qJrN zEmn%`n{6r}(sIh(1{}0n9QM~Ts|d64nH6XTvY(I~O%3^UsSg7Zj~$bn_*t1NXJ|I4 zkJKFcT64mu9v8IsoAi;c0Jg(goxiJViwZ}h_rk%KK5Xl{cJn_D4Q=$y8VgesSyC+X z13koI72_vo*8s}0)T+K%f$x(ZhC?! zn#vnui;5QDvv<>r=rj>JC8M(4sH-T$1ms9!%C}XILj@lfvH_i6vp7w}E{EUlJ)3>W1y|{%>GVFt(e6FiRlRi>?W%UGl58W7%6#veE}i zP$H~xt_w2}$qa55AEGM1mH3%67>p0Iziu1$zYX0@8h8(`PVveyrio6o%B^jF72B=n zMB$o3Hor-jh3j=cXz0p4Ekhu6$SWSlOMUCfJZa>a;}p`&jT_`3wzMB@MtyKB5S5?_ z7(ta&Hm}cGEi9dB%E5pUe|i&~=Su$O+X!V2o_Qse>vb#)hBM)a;yQ(}Vd@q+Ny*Ty z2vBxK1S-xc9Z2^C|onol9FZdVA{D$4ua%6BJe0#*!J zbrBnaJAC{yLxMn=!aHLG$v>by6i9BhuUj$#RlRYf$ulXr;MO!6yC(=yEl8LO(gT>7 zQuJA~WS>C3Qv$7ZVMZZUy~!VF&3?(gSw1xG87##f>YZj!vm#N(yldQG%#8`kX7_EL zjXbcft;U_G8zP%dGfygLLI)^C6WAZF+xp~=IvI2>pdfe^&XI-?{z)^Dku%I*5X}0?=uIBS>pNHgl!k;-n)s2uUw0+!{IFc9@>aL*4t2*nom~l6Sxv)iA402Keia(xvjgH5Q4_Rh? ziH9=r3d;;*C{Ku?Htl2V%35TjPab3k9^050`*JIr@X5sEKlrYbxU{wDvX9LzjMKBI z%=++#mnukua>VPPA-QKtVzmihn&s27lw3K`?dDp#jGWigZI=zjHGZg?_fD=A7(Wbg zr@{eo9Nrpt9vN~G!*2?XCNLBdLi*7A8QqPMu26|TtwA1{2>aqY!nO+;vUG#L z7ku4EyvB@gGP#+DgHT+5%;+X{3$mtU|B0ssGUsDWWz#z&m*`Zz+9)$(|=-ni& zGNUNAtX(u&o>c1MEk$~j9zhq~*0qm9BoB#YjNYOa1>f*NKb7E1xGWturoPHKB4yVY z!M=AmHkUPy6;fZhQ6A-`80uTbUXr8owc9CVh_8I4@d?Z*(8Xpu&3u@ZV3A?>q+R86&>RaUW~$U>(I~VX-~Fz12DvkEoaAJQURaT`)bU z_c~Ltf4S$a!yLWlIP3L$idtPY(E`d0UJO9g>(d2l)9i1U>WwYq(7R{s-f361-H7AG z%~<7OUPl5E`6twLhh5t3y6ZWJ2(=5W7SLWM&yt}WBOcC$Rr(c<>)1!l9U%_=> zp|NPVWrEPH-;YLCjZd3s%zs*=-s0g{Dpz1+tJiDcgl1H^mCxFla7)0cF*GHNom5$Z zTDlA`>xrygO2*hb{e?pCB$sLpsSF&mpco#T$a!3hqz}<+4Npa)4xG`Ipwk9W6Iz3> zkghhN`@(H){G{LCDX>k34m-ID5)oIzd0 z2v*~5&8>%4yzvP$p=2b`Lz-(H^g0{fa0MitF<; znuK6veey)9V#No$pa77>5+uY=*GQ~!9z63N4o&D_Qkq@}zYh`uLd9F|p$_x)3YayJ z4cjDq$%CNQ+K6~;~3QiMofdb1oRi66W`B&_(o|>iGPZ7YNk^!7F zbj7;0+cYgD864v_tNt?EO*RZ!7`sd%F(Ut{kPq&=EhpITUd?T;gFH-b`m6RG_RWm^ z#JC#8PTW;J${ExMym+>YmF>y3Gf7G=dO=$QK0QJ6YAT4-WgQ~Uo$Pz50~bjM_&67* zsTo*3uTR+HiqkVT1XpGT$Wkj5EW0Pm(`ZeHhfkNB(@blE=0s>W8UjA~rVK#{$hfTM z%Z5}FH412XPDJDE`!A74t5wyZfw5O(iyxfr_YQOItZV9&j7Q~adkQPOaLQ)tt}S^_^z zvZwk5VeF1yh$uqcThC?#6GJeS-N<4aDJ_HQ-GRE+cT0FM>sM3``+s+v-b>)pvSTu6 zUjcAr5e27Ej6*5TNL;KczlG>2QgJhOQqT zCH{!774m)%PN3Dgly~;ZcMPRv@x@9k)dQMWLBRVk%BLDT$52)m_3uc*ll6C`5*Ugf zsZILz-n@3V`z4WXc`pj5eZ%h<1Y2(t84e@_4V_EvozusvI8XsgHy4?fJK?Lr{d$LJ zVI|kmh~s!<+N4?wSFyJx^|fRfWk1L5;4oFCOESF_pKQkJB(WDcp`E}_A3hf}5wBpg zBfdhqCLYRA@R@S403L&M;Jzc+qS*t1?ZDKcB0AEPRjcz8J^2JQr&OZ$t9mcC%v?Um zdr>E9NL|bk5j`&C89vI~Rc-@Q3Hyc_AT!O#cU|mc-LM@?AU3GzP(_) zNnB5OXi)v(`>xHVVs_UcCE802>VBK7OSpVSaAtH9yQ`OB&jI!lHGYNWm%eX7%4}tr zePYY#KR_sTJ;?FY8PLQ3X$y+S=uNQdg>5YBfW=3PlkrR9^l=%(4Vu}jak$RM z2IbSL$f3=QhDe-!Nden0UQgiges{S%bx)G!EE4d_4DAT~F^!$)yDPG0Cab9(Xe3rG z?!w|y^j{(mfmT4_3$(i;TVHJMmf(2d#djSGT&~yH;O&1G)^@`pwelyMEU7~|vz`&R zHkU0#*F%zCHfVDP&656U{!72&n+joC2I#+hz(ADpF#|o0|5I!eNMuHlTO0{+n*R$- zIh&H`f0N*FS9yLAqLv+MAcJVawv{_Y+7Mz=KqAW{cj@%8h^CSt};ff z0qL8zT6Y%!p`S!bAmL>lhy4Kd9>XMnHJgb!?!#X6&06j@?Wi{+XG`EY-$4orO$u&U zH3@TiM+YO(Qr$=UnH+~SqhyQ5^VZ6*r{_NT0Q;g;%wbsGKcx%sl)37xg8)!X*j8hf zVnUBV<`!E67oLU~7e3RBJ~sUPDNn6|%q^K+=&7iUkbYL)#7^Yce$EXs<4Up?>fU76 z+PJws->^CIFFMEFK+w4E%Bq$`Oc`PvcX17J4_SJ;>=Gw}|HwahPZdH<{kNpW|CHkY z-m(k+-vzw3<|@edOSCWuj?nY>vC!V9n4jOjWE0OB5cx9y!+p?l$F%snf8SKq76Yy zO4A_xNNSVrE=#|6GXWHwJ|2f>rH4&Ka)_tRDU}X(Bz(RFnU>Ucm*6xLiDi$H-6s;f zt(iWS&szk-KT)FGJSUIod$IrLpuBF}GgLo=A0{NygQBU^2`s$T*OaQ5*%2o>m-FR! zI4c^Ju+NNB0MfyWQWja^r<^it*pIHg6eKe_H~g{YiN<+{Pk7=i8#I6)zAj26`C8l` zhf+mzYQcd1yaAg_Z7Orr(4ihskKh>P&3&@U9aGL4a`{Or{8y?aT>7GKUszNTu76Gt zaAZmHu8jA42_X(<+l$H`&;?G}zCapQ4S|~KRWfyJCjbtZQTMT-%ep;5;7OccFoqh@ z2w#_13sY=-xW;R$En&*&c;WM!YR3rr)nA}S%`|5Q=)rVi*$Id*hc~38^iWKc z@+ZS=snAeF2JbXL>@H^jM$Y;Y;{uPHO8(F77Zq!hUdE;?NHEwzqxg5$QvS^{#k6$Z z3XV9c(sT{1hygF2f%Cs1LHQP6KRiCIG3K4{(^JY3CO1qDVy5(oIO2e zf{D7Np)ml1w;tP`^;;(iUU69EeC5TcRZ*68Dl4klNT$iM0apc1RE!fSqj z?_Ek4JzR%!sb@M|p+nKfvVof965$la-%F)~*%qm2lqdy&fQ#B(L86$?U-C_c)^wXZe=I{l$>=Beq)V{ec^Dw3rN3taeP! zq;aPp6b&*9?-QK`!KUX?{pKTj5z5nEr%h~3aQz;Jm%M)fZde0XQqR}=m~kVSmQ;e{ z{PGp49FFCP#TFws_R63%PA&T0bdIsQQ+dQ%H`f#L*z%AlsmA*7V~vsp!i<26xshY* z63E*5dVW`~k9nElu#5Yu)1?i)&m21!vsjHs3~>c848k;uzvt8SI)sOsCLPz)n|oV$ z#SQ&WiGeEFBtGMrcAM*y+SBWoSkfABDo3?(V}-%CqWbb1iPi?`;a_G6PMzjoFwRyo zQh%@BMpdDOh7IO*Pb&MdW()_$#s249E5i?lxFQ};#yfm@QJ&Txs3 z^${EN1GA4<96jxISqSchGGL^D;poKB?^L5WaoDB|y?JNxP3oBJT;}vdUmbxwfG7&y z@%Ls|C!Ip5p(ftATe_*bC6-R1UER1+$RbaASS`bVeg&YdU=pQS4ohnX$Qx*O7 z3T>J(OS^GWGWmdIA_eN6sj-_MYiahxi@*9ZC+aR%or>aDmV(DI7m7` za=u~~DFsU-Iq;Mas-lxL?5{Ud{=t#2RA+aex*a|%a)i_E&AfX5C?E-To0(=2SdHOO z8y_uB6K_AhS%cVM8FcyxWKQ!&HpaEYC@3Bb3j@kdiH8!-ma0%R((E33D3xct?uo^a z2tk@HsCYli!`A#(7Yq)!iE+ntDk4+O;_gg!y z>$Tr-ilWVKJaSh+xu?eTwyBPdu{MlrFdzapB_n}TjqDy%HBxK3{GGr!3Z+^jGB>Bp zxMwu22@A)>Hv5VZjEtJHa4Q-2!9S3L)AIS&0|@G_DTKk9ws*P5625*NrPULhM4)&0 zQZrS=s)?DPbU90lC~?1V&aU%!?_jF?z7=r_zq(T7^Y@$jhvopE*X>E#t5@`@M2~P? zwv6c8hSy2SRr9YTS?UWcj|j9enX2m<7cW?Tj3e#b7fK9bLDCE$$!dm21Kco_uJR z74Q=DmmC~=cHrBuB?Xw*kwdbH^W9HSXL7Ev(yYsp)2ZA=sn_na-$&C=7*H$OE|PI1 z67pOVn$drki~!GArbX8oko}^*Ppu+L$l$!hfB&7jQ3(Be{?)uX?Rx}PkiT7g?8ck~ zU~b}s&&x-#JX_4tH(-S?Nav`I5qhVo^5d{%-N&X`+AqpT)M4V{$NW{$p=Q)Mkg}};-FtfgxQ-Tbu}*?gSsOQ!1QXq$DtIS&bxRR zp9J+M_|$=R@79mBCOXN3b5RZ(+sbo_v#hospy;7}iogmPB+K4Nh70vouXZNd9^EQ8Xny7PdF$oDIA`n$|pI5Zh_lY}lZ0dA$SXh@D`&VAHF z2t$v-@@@MKb?CAZcZgKyX-74%-I=d0zHC(G&W5#|!$W+&+FasX#%2pkHxGibSkz|A zp=|))MJCoF?;vcib*RM)!`=f-P=^5vL|P?zB#k_5_k~_>(O{lEGhQzBE4da{qmD*k zi*2&#a*VS@`&6*lPt{SsyHLqnjhDZ0c=VHby9FOOEB?qHxl&xJNDU4h$pmRu3rw{t zW93@p+2G@gi4vAD2F+i+#C)O%XGhrS8AWC;<)3(snlvwqwL?_WIoo4qLT<6cc8~a; zSfo2rPoR=a=&J~^21Qp6;_s)f&dcGc$}{whjZ^P4(T==IGpAk`x3h+cKw8dMY>x#m zFQa&i6=^_WQ2GxvNP!V8hVCuEM*V3i-u=i<{TMFNB z-61c34jl4Z(WY}n;5?dfZoU-MJAP8jVvC-~&H3<%^U0ZXRDI11S`ZiwyW){I^)I-h zk-0&~wx_AfY9gMQ&RkUO*W8S!iZzhjzQaS;C<=zVFD?}t8{>4ntjJSzMm@k_os3qOe&rsqA5kR7h%N~1`Iw_4EB$8_K zq}ST0@M>O7$+3A%JZol+rDrt3}z?X58H>&{kSeY1*|DG-odT=Yv$D6jwGsN=F*XyEZaAi z?&ATnVsZ*;b4hoV70hzPk-BPUG~@K>4Q!%FA@2>X5`T$hv4|{$gS9vn@3$GLx%gJt zqE3ihMGyQ|B^)vqS=V3ATAco$)kLA#*hoo@Hj)NKd?N3V9>GIzJ@`+LSI)nx1cI!4 zCUv+BdENW(w^M{}xy%*7EAD!>j3uz|x~V37({6<#yZ7WvglxeS!6-uaW-}!_`}#X4 zxg^2XqPFe1klp>~mFI1tW)Zd_xx(vt$?-6^s?g^=b|=r@hNojZS#DwYCgG@_utpye z`DqmqQ}t%Np9D+-kY0J>{(fRk!o`l{OU zP5Hf(3z6U7zZ*96IveE($@HjZ9jHEsLUNs|cq!0oM~nuV8%$*}OJKO3@tCDYHyMOE z+JcH4+B?A>QFh9b2m#w35xfD;VF?!YX&nn+8n2D<&i_d@M|RN(xHr*KXc9H1bBcm? zUep0ihV%&xe7-BzTe!Vi;P8JF(_zedL;_&-B!aQRbX^yXbK)=RS`OV(ev@^I8W~cx zKbjMu-ReT2jJr@GL}qCbsdAJme5MhjCigJIDw8-N)w)u2-9fEO(;>vi!KzP~Ss4WGd(`8iAFlGPRRx$}+xfgIf?fj`XnJBb=V~)j zlg$6pH{8e1ihAI#HX8uDB-EkVZPD6fsq^WC`Wfzk;eY!V@m3jmY0n=Ifcp2!t2sR!0g7g(4%e&YfuB!KlQYP(RBytUDpG&W z`dYrJ0*q0lZaQ6sFntNUIn^-N% zmofYs-V9s1I!RD#lt*!ba+fi|fi4N%@u$6SY6^Rh2#M79FN{3>5aJ0tYrCX(KHRxT z$Pj_8pL{_9QSgbR>kdT80YH9-p>Sp!=#%MF$II zHBJ34{(OpK18wvna3+rkO3sb=%&Od&a9Wd#(FuYz9mQMdOz+euxdl9+n;r1!tuOr&+!DnZ?hl) zGP~BF%~3}HVJh{8gWEsW&5m#fGu@&Dpje_K(zV3&V;@g7;5aA@pT7I2y%{k?zhSKS zi8^w2Kr@%17cdFOjEH|OMdlF?D+{91Iu*dg)oq)-ON-hYgz!^K?~37|m}HOMUEQ); zmfok!Cn0@3yw~|!$KMHijNfR|Ph!S+k|=Z@p9}1Do~B#3DB;%y;e(%e;1`=o2?i_` z403T4NRS2mqV7qy{Y~g!l$VR*a%99IQ0xwCL$Jiu9!h+}<@xt^Ky&Y}_|jUFs#rO( zd{opb*dB^3t|>l?(X5EJC*0w{jba(C@T-Qi4@Hz;X<7HaU9#6wBi z%hqwS|I#!8c}HN_i;W9}d?bRjx=`Hd9mDr%;Ra^Yx-InhJ$b|%!2)i-`|?1Nhe5l^ zg~e#lZ@lX5kd@z-T6Y)kW1me83)CjZw_39UP@~bXx3^K1(Fu$hSx?8Gu#EfUD(OA& zMq~pXzIt+?{{247@TMIy)XbxIT`dC(x9QK*`_Y@+5`%6=gd!Gbo1m9DDi_w1rXn9c zw)C@kT2`CBlk^^`cYZI#!avnCZ(?7<(r$<&azheNy$oP+EXZxM={B=*;WyWiiIAj8 za8MW(AdQ}ziR_HLS?e7YR$Qt)5AiO0gXVi4K<(JK?Sj%y)6nDNH-=zS zVOx?NJd%JU$6uF{Nna{d!I3y_-Vdv-&VshP$#;VIg&ZFVToY7x&tC|i6Qr1Bw;q0R?Z4w zKboQ{#3f=B=7}U7>lQj}Yu@fL)SQULp=tn~#T}y-r9-BQV9j0xwz!2V4r!Mp8q-%n8*&+Ga*}e`EBiYmP1As}XWa8$ z#Xz=nD)rh{B@P%J=&NHZsxX8D6ipyFt<6I-bh_=xvFFgs2+}f{1jB8b6?tT?4)}p{5QeokH(;z}A$BG%xfA{d4H0a8|06AlqDlC*b*h@asCCP-EKG z*|$vA*z*_8-Y}k=HMmjNV|r{ytR)pbMW4Q#&}ai~-buvmH%26#Hy}!P78GOkD4m?? zmjlAjukQ#u<%kF^gJRIPi~$>I=R{RSs~Y@{wY)~orDE~XB@oBYd4e+l9_rUH+=gz4 zmBl4rEr-Q&pXzOnt1GkS&=8!(h%xwLbX*yNGIlhZPm0ojhd;sTXa2brXt5}j-!nK4-o!O*^5fU07pFiI^}`l}Q9T5odE z);C|r)2`oGKi-;AH*;S3f*^wVqB~jD2Ts^5 z9as_`Q)_g_+^S~DX!Xz1wg$mb<(5}*vo=R(?_8uHQv%IeqP9zEfV&|MHUU!=;W=Gn zXHqhE7gbc40T)z#OZs;{EUVc<*V?q{E^v%ZXycSNWJ^7-Bb65sQ-_whbp^dmP+!-h z%uEFxEq?hBQ|lSwtAdvG+wt&2YeS2@>uAt^d@){<6Vj_upCh-9Y0|r^h4o5A)|W+~E`jwtI53Ej&H6tKE8%{RN7NANm!^iYtleR) zF7h9FY|Wq!^Uh$9jxcxVJSg_-uu?)6>*2c>C0WpsPtrQ#k!!#bis$wd@rBH6v=T|U z4`0G8hXAuOr_V1lbS=E0;vm~NF5VOfF1z`46`*8;RKqretU%~~@ME(wu24=lNm?FJ zh6H`?q(q zxW7^^sbrmGCK0?A8KE*-NoG)Xydi7J=gg)>B;uXE3maol>6cD4-O8#lJH#{Z+7UW~ zZ)Qn!UP$0ayAW&>m8wMhYffdNe1fQK?bA#(K2lN#;ch3rAU=5};DGVdgxXlR_M|0_ z=kFqGOeKh^BC%vcNaebs2G$5BN>*|-IeaLPCW#rmM|$rAYQrmKWd8ty35>TRW>?=yQ#Hof?0?VrB)8B9fxKI)(%=t5n=C0 zr*vrjm} z8L|TaeD7w^)^f)7yQ2J{KdPZW24pmIc7B_SQfz%L~H96w-7IV>5 zLUBUr+^l3_DwC5f-K05M#atyEU9M8eK70Mq(zuO+M+}oZ4pmO@iLrapg=?KO2>+NX z7?-f+nelw08?{duMndUd2I-o116eW`zgu%Te+H7)oBVOTa}!yf>uyS0^l`h7;Ei&cK_GuXI=avx&HC0~hhelOsJdlE@?h!yn zE>XTBb5NQ~f(iT3X@p zHD)6BxY9Keut@k<)klHXd?8P22~Fy~QncM+&>J@Giy7UvIc)V^H7I7gNX0 zV<{0p+qKmm!LW5t_RNVmd-LS(u5MK$N5EMuPtpmijo~fcE!ZefUwQt*rjE0|?BZK? zP`BPWufvMAn)zGNlJ19IIx*2zto>2yN7mC;7QF0LkvLR|A1d#PJD@RQ`c(bae4QM@ z3D(*)y-FpuVktCbRXiRK{!vjxj!5lze`nTz8rQczZ-Jtalgta$66-=E0ngk8?R3Tm zUHstRULUVLZfi7EXuf_}@#xlGDT6DTNb24ZB{sy&?!uH7GlDD;M*~vS`Zs|a*Bl#z zYC=rOJNX_?7E$o6M0}C?p6TT*VhNj9wDR zL93u3v!TK*H{&(vpRMPc^T8@}rocef#qU@f?zH=aYKidDa5Kx7ZQ0z(hI;;XPJ$my zzY~ZPRkk~R*em8Rcq7dvz{X;g<8|Mg@uhFBx|W}-iWRyv4 zMi97h79>*nOq~-4Yws1FIc$fD4B0X37h*i);H}DLK8~1F9F$h=knF!Xlt&{%)VO&@ zGM-Gry}1~y!qKEb2`;V9ZqFb5z#^#4R9Bpu{W$tp36WJm=c1Jt z+lVX(cCLXA))#E+vRAPO0o;RBOCS#s0^u&=;$^U+SW+vSB6jQww`8)oYXqy#$F;5~ zm5UP-2{gLmws%lL0emB6?Pw((r*vQv|!*Ee?0Vj+x^krA0ApruNLu6 zV!`&_L#_{0(~L|!iYX^&I}fzFJxOt0{SP+-2nV&}p~N2x_HUZ)I6MQ%fKN=zWWtP# zQYZrkx$5l~OtfP8)zgRH>o!8FP}P{uPa6RJCJovT{00U>GM;_)ok=Kr>BY);5$FcN%rAmBQ*oMf5OchIrCM1o46cl`ZmGSS{ z3zWX-1M*|FqIXua5oLBH^L__lY%8n^E7JT+=z2mtULF;mqjYw&G!paA2}p7dhu8F- z!%~n1{xsWyWC)h-mI9*f-@)tgf7*Ka?tCra*QQ+KZ>S4j|Hys`<+~J?p8fm{3u7%r zIDFf>GMSpnDTnG~cifzfaQuZgmsxVx$XTMNgyXYIuDty$=7vgIWx#m2_8Fi<>e<)6 z>CUnqhr{IUzQ^c`eQ8tXc3g7ovM#T8MbGz(?QYuL4Qt~Lt+raQQ7IfRE+89z>;+Sn z%`w#Yi`*qT!3TIw!=tf%^7S3Oc{y90RO(>(=NIGf9s7Z+VS5m}GBXFfqh#=a&$9KK znZ9cwm@Ex>{3JmyI-abFAoui`&hfyqdY#iNFjAbGKf73-4E}gG2uITjmSxKSsnt&{ zO-zaT_vY^MG%2*Wp0W>4992PMlM}1}yR{Rf7hO2}0lU57-y?b7VwJk+1&$fb)#^7X z1HYjG4r&o!bO?JER#V~7X|j@&z)24R(5s0E3RbIxyXt393o?n9Eupq}JWO^4t=Iqy~ornAl>z zuJ{q8L*z1lEWh=B2lik$%YKiP^0l#spYzgF$(Zn@C@R5(50KAu7s6&v5-?tN4eEZm zlG7FOLEIf>Gr4(fj6ZAy*|J_08jeorZ3lf3iEao!#V7)YY%my}DcA;nl*~S)SPXPm zS^)3+a{m3rgu!fe0SSWeGbFJ|kbAV3wHA-DZW{(i$t6L27?X3z=(FP6LZyL~^SXv( zOpJCU+C)50eH+9B1SbFjBHO7vUUaKM1ZhcgCXgaBa#Vi}(s9U{h{A+Ilrzt{mn!b#+g4q zagx@28s#`C{w4-bh;H;0Q5Pw#NuNI*|2*sB;gIPEQgW%T4QCxwipY@3s0YUMDWRit(ee%6I2vKRX5q!dNaDI++Z!lt zev!ZxU1E5oM5GYt_!p2Su)@+}Nfj^kiM!<)-mOc$-JWfQ-4Tly(SF$#6$sFb>Q{?z z7p1?DwtK-eq1Ow_fnO#19P+3%)gLG{DuL&uRwUN?NmsTKKOCT2Hx(0<15p(8abgQp zVBtv8G7 zl+eNBCI?Ni;d0%VVwAR*C~@x^yTd?L$w1DkcL*+(ksP{-A*MVyTzwTMU^bQb!|4E* zM+0}R4PyVUaU7EJ=-5}kfn+NN{8pQ!Kk=*-#mZR+u=>U;2bo7oCJI5YD>8Wr^vugBvUxf>rn#;#f37zZ6{Inj>D=Y_WHH( z7rGDFf3TpR-@G|BZw`y*f7civI{V^{eG}htYS$Bjddt2LuSZOIaO&(U7PUgak@%}l zWxa}_{9UhuFY9!cy5G?f-Q&gX!U7gh0BHiXfr=hy!Bnd~y2rElCyV+J8KvF$CF_la zBhy)#a(v}mls~lTW(&E=;h>yhd7~e`2FAq=an~=Lk=>bZ7VlR*Az3P*f48%~q~l9` z0J~<3QcqFq$j?W1j zJ?11WrVw%W!4xq8+{~tvJ2SSxiaX>~5Mb8v70an7qULv240& zB};k_qwiF0r*93GFoH+uow!!0cAvqe2MBY#eSEU@qLGg>is%NOQ#86f<4xo&ed@&1 zz;Q`zw;i1D$sO_~fi%#<8_GA)sH!!cZy$ARGGXA_&jCoJFq))fS~de%%aguv0LILX zr$9-nYQ)WeM%j!J+;>Px;6BS?Ke0<5u(%ayJbjBSQ2)Z5g{^dfwcMcqlQ$zn9_Py2 z78}AaXV^yZ55Hy@!;tCLj-wpn*AmT9+bP~eYb`OaHY>6wGy)J;6UZm8loYvDUp5z% zR)BZK!YVC?d9iNg#4a7hbkGb8;*&R|yPtlST#m+JgJO&1!EW{QqAH}^KZzJ>~`U4ac z9_;3ZdpUYGP;xDe2ohu^(W!pTdbe;aq=}y63hqQH#i+1g@AD*Fog~jB&PWa1vzPT9 zce#3)uK5UF9=V@$DQ{>6Y4v zkFzV-L;0``7Fue8&6Xy&zu+l}OL% z0m9<=om(>U?Bu%6`m9pAk=vBE3CUf;td5n|P_V0{zWbs2zRye$1kE7;Sbe}QfAOXz zMmf(;^gQpJOT|Q!qB=|#*f)(8A*$|w7rWbjMv}Oeks5uTwldVsSL0XapdLlTuV`o^ z0e@VRO#8?(B^3Hjj~8ve8*VR3(O4RZR8Gh%6`0spiHb5`uI9S-t=RI_`>JkSwR1V>K?J{%S)j znz7H{A&&eU;v8shyLv=RL=ps@Z*q8PupSRGlHm)wkWg zQT=7tU>Cut8&SN#e0^qMb1>Lb?tmUjWn+Yl?u}~i^0<0E)l;yGB_|#``ayd{wT4bC zgvQy#bV7VE0GPaqpf`q}x_pCN<`)A8@zrkk8puk12xTWztF^+}$W9zodO}Ypb=_&u z?}YOqBAFdX?zjsMSE5Vi5&EP{j6-2CFO%X~Rpt_rnc>7jD7|fQBWKMW63vLGQ_z&oTV3 zZW*fkDlePS--sc3;a4nzRlqt+pD2_Nuc>5D{9EDn=>}o(G^I}#)T<>3=;Vh)b`vXO z7(}Jv7E2(HyK=>~GD2}uwC9I4@W(FGj`}#Lr%kX;$F0zg!EcLex0;fC7Q9SgNc3so z0e|F>oi$)ljexO5&USDNz0_0iBbrtSsT#Urz9yE$_ zHGuNWFTolM$g-?HkC3yTOfQ~OIimU)*?!B}k8cKGW2m1F$7rzg4DdwUuV&aVY$!(1 zM*Fb~ZME2@D_Ym3a-{Rr)fn}#SOH-G;5p4Y2s*9|?{o&lkh&SG+wxuXF{$Z#{1PwD zT5o;YrkMcLS8og(W~N)hM;!n{W|7q``MpN_5PNT^Wcp&V(FrW`xe%n-ZUc-SLR(L< zna|L*M##2aaI0Bfu4~}@Z1jOD+-~tAZSzTtP(w2g-QJ4=<|o4IQI`QV>oPD1MOM5@ zAS!WakSIowX-WqVYRobACRt0}uzmHtpAgRJ{WsijEA)WW_L$e<@LRs*D82e}$=+zP zqz$rXcYzL4YjuJ^M?E!@rWd`dvkoII+X3k~cWJpMn}(Iq*5;YrMfmp_7TezV*A$yj zYT}duL+yy{%2xx1Qdc$-CXKvnsI|)?HJSHzxJQqPiTbd%MOKec0j}~}HF_x|4kKtT z|8D?|>iMve)1G`+WamOLSUd=v6xA-i&VM$G5k17MD zmznPQy*N4OSrrdiEMncCMv>rXRUc<^m@2R5`o(1%-$S-@$+7T90i&zjylmHI{CJ#n zg_|3*YuE+HPSP7c{71NB`kD5 z};N9XQwhccDxps%x#2W zdUbt}@iAK&zB6BT+azf#eH4$Y65Hb39Yr^ECjL0J?~CeLqdyyA&C$o24*Pi0hM{V9 zALfKIJ^Z?yMI-C)+|)kC#i2X#`+N+4nX58ohti?bTjG=WR)9|iBl}2nkA$j2LCEH; zMzHV0nU;*UW2b53!ZzWY#p!0=j8X|Lqq$U(8xHTexu?O=cFI7gX5}stcS9}U^;}5l2H^Ue?Z*A2_1GPOcNNaGH|1>w8>6Gh8HU9P%}%HS#LxOV=>(y!CdT z4mO(0e&s*Vn!?_lTgd#qEOc!tTk&n3(`k~@W6W1E1M<$39-Rj&4f6-F>;X`ymn+fI z7+wcp-X6eIP;p7eTZ$dSMStGd6+=m-pZGp(*Gwt&z0D)(c6uW7UL)SL{ag|D3p4@rAVhJpSzIED9h5)}=OJ4)jV53#1$1+-DZ z^2FyF(f$;AQ6UW}EmWW=hrLhZ*JHQs&I=+HVwjv69*gT`E}_Q=Qy*(&3-kH~x1H?J zr5?M0cMly*D}nq&a1P-{c-SeZ%eV{ge`d3mD5#)JM=bnn_5GyxQ+S~iu2e*T_fLcC ze6i-TS>*$?D9G6%l-c&3PPD*DV8N?0qBZbK|7Uw6c#e`n#6`g9`ZY~mk&ON_uZQuO z=@_;%t07IYkq2qF5zT@k8!Px#dz#nwYw3xfC*}QJlm0!fq;QB%&O7x$L}OvZ2!-(D zHF}BeWCtM{>eXYCEpzYd3g|3#McM=*d)~{-&xTEKP}asv^er`XWM8DO>oZxPDJ$N0 zT)c;=3ewPT)vZx4ziKJnuGmE6MGcAymq?lWz;)aW<=7v6A{balX+c0s7xP^v-HjOzlMCtHh!0-1GY|pK zrhvW))X3hUVy`G&LW;ks&anAEte1OohZQ342oP^=)Q^%{7(UKr-$oRN#(LhG{*}o1 zjgm8DLuD52-6pYpD*5(UL|Et_0H-x<;xf55ivjJOc?kk3t*y`zwlXm_q=~Ta7}~cn z;H{a3*`i4U$pegqD==Rbr4HVYw<_Ewtr(FkYJaYw_M_omjtik0=fc-$e%z3yw>ms@ zEMPEkxFI@8@{m#^c3PSJ#^^mn`d8@Nadn-;1Zd?y-_RTBpOSWT$@i@sMD@gTx>bbc z%cDsNs2;ILZ52L%ci`G7aON*qPkh^N8r#vKH0Skm=EX6imr%jiEe<1pEogC#+dQ=F zf-Fy}Z`4Zk_L_(D0Ro}1?y-t_2Nql-c&VHqP%3sSze+{LNdR#UIf(G5#~PdC`qec7 zbiQ(3O|g%8u(`hqd_TZ(yO33}T7X|!s44-YV$|4Z$@k|;{+(wstF6ccAz_r`;O;0H z*P0lk%EK(pVed?R1G&>%J`|(yuDSoNc zn0&ycC3wTc7fVw4<4`RiCSX`BPu%r}9s3yQmF8&t2D{AG-Yv*5mhWmr56X+>C6;vp zSiw0hPGYM^xmYnA(;m=J`V_&!@_8(?O_;MzpTT(TmGgK1g z;ZI@WzvuN9bCM~1A{-;=zmkiz2|GwlkrgO#8{W7pm;6Ad28Q3uPXspBX@~pm9(}sJ z@9!iAre}X;IbT>u1<3-Er7{vi)mOkPtM=w?U)qJ7hh#wee8@60S>ULY1d_v=Ra!l( zeR2yi8C8qb0D~=rY~ONZlu?Z{|Fz-^jj@Gk8^GvSDIHVQiapKf8{w{&ldZ1KIX{x) ziT;X(pSh6txe}&NGE?8~%x|MxzL;`J{_!ytF~ZLutgi{@0CaRgN4|e@7@~~8Z>&JA zT9WY|+(H~u*)E)^ED2AegN#}c&D(c`sJ*=;%nglv>9pspMUf3YW_TDrhW80H@V?_4 zRM2MttQ44NcK>_&7CfAeKmxB+!i0?0imvYamBX-gU_aLtwfaLc*=*D%{psqhBK!@WkpEtGc|t4QwnRfd3krjL5Pd5}U;U|y zBY}CDLyO(0BUwC5eX;hL5X|R(>T^1&cG#l zG%Lo8TU%acAo6sPhOO|_{W~Z>VG4?j{M&3I?Oa^<{}bm45xWNe+xyg2KJpU%E}bu9 z9p>tHF$q0*ww^@3W|PARSBb(od^i)=Wl9{rQbfth#hT9J3iFaJAdl&H>OgSR@zom_fKD4sM)}5uu#fK{=^<+H23VD9Dz;0g5-sB!<$JWB9@^mM<(m zKD{#}GUJ>4Wo)#)7I5(KVjD7B?3UMXY;;_sw^=~FZm8zGv;l+v**yq8Yp4 zNJn+h$q3d}nFZD=R82b+O3%DH%}{h588B4*JV+Ky&)%##$7_PF!047?{; zSm1nTj5BPLI4`Y%53WkwqD$|KQJje%s_{oJM`V0&1yYV8b}!3LtBGUIxzrAal%=te zmLXRjnF_ZH3C1y_Kz2L`t)6=x3iZ4Lz^0=`#(ckFuP?us6Fgms@V{r9t3Ei?G=w{x z8K6xxt^v2p9@e?kk4J)ub?pXnu8Q9p_clWCAeT>|`^wo1ue~5KDsVETN;YU8egV^Z ztn1yVcpUqT%O$77B}E5Q7kMuqT5H80!xgy;2;D{ZJcxh_a>G27QvnpE5lwSTGF+C3 zf9_!p6i0dtwLfLWCG?eTJnM!Jm4M{aaC$jmacv!P&aS3Xyj-~|)KgO=iGuYD7sdpK;KQO+m}H zq($M@sT)uki@IG)UMIAGMX~P$XC6nH;x5JXatu8E zq9tz!41{njgEwkCEPF8CHULa}&Vul}e>Io9Y}iW=&`}7AsY(NiTC3F4k{TsQ3&4*( zi*4P-pIy31WZ&@$*WYY~I6Mi?z8}0Auij4O!KMSVqum~Mo7iTe(7lkQy;Pj?( ztaNiZ3C98q(~hVxvf0`X{Tc8o&6gVIg(j!mT{V*IgA&URq=#^?F{7tz#`{iVCx|ng z>#ddxM|HbrgO0dJc8JTd$IY)oSYS-^J==5W8yX590P|_yh=7WDWI0<#UH~`7xo|5D zJ66uLpWc|$Xn)Ny2{8fH)FaiR$0-z}StrVRb!%J=y*oc>h*-2VA3>FZ5Z>hCq~{lG z`l;~68wEi66h;JYL_@2_MdWed}Xx9iK~$?DyFJ? z*8zEAkddb2G{wOy6C$5jr{Ev4d%bZSAna`S=h>qR5^Wu2SRVjnqTNw&It%d+A#Pf+ zYsj4^J`9C#nd{kZ*n!sQ*8=@25Eb*`#FWv!~9DfZTYt zx1nhzrR?Ly>_A_n9jbq0G1A_o>baUE6T3dr(!O)WuEtn~VKlMfyTO5OyP9S4y|6bV zpgQQvE28ZFW(Qt}5I-AsxkvZRYp$;W4&bbg&S@XcVtFhSf++wx;LgYGB-Z<===66Z zN(=9WOr0t4c!UtNz#W+#WAfB@%AFy{D6^NLfBX;n#*WT}w+aQR&C5TK#4s)NlNBsU z-qvsxoZ8w-<(C}ZhATDJPkl|fKoV#li{p8Wh2u@Su_kBs@FF?vyoTGl&p20v^PyJ2 zVdEFRJpw4IF#R4KdWhqj)wzx088(Cr#lAdq%g~BNN20? zcWAVg8Z9P?ytBag(kfCk5)QuV;Ww0;My3LHMKcp z1OhB{>^kM4^)5(q*J3<~$txRxP=dej6nemWDWiS~3pM1GKG^k#V#f`F5Tr_{h zlZnYIT1e03M9sVq)JiZ*(4Nf(=Y(5YtbbN5g;+yNKdQg8m+q=}*AO?WUs`7QlV}5t zJr7k@J8Y${^f=zeJu_Mph4?B$cVzoyUfvK5<0|b)ogmF7>vfeE`DkRrAY?nfl{s-1 zzqoeb83e&(t?5?dET610GhBBeGkG~}z;PKS_zqi3k5NyQOWVo$-U%IQTp*)_6BSH| z6oD!Pu?_Z4#*LTb_X^-c*HFqkB<0Wu2oUI3amN4oN9Gqc{#-8K$~@bmnw^#7M)29sm2 z8!5PLIpjB!p!HsHSyMB#_Br^d{gC9G{av(*nVo&7l z^Nog=T6sym*ht)PHU^vq+4sY0I)|0%AVA>q>PgFxxltMNCBy@JwdCFw zWiN(r$w9R%Aq(3m;JJxiVNVtUxF~t^t={`wT=vLlLQFH+6NrcP{Rq)-aGl~!B%%LKdNR-j*{#AY<`IhXd|n zhIvRfl$o=wyiN7Muc@eqesv8zh-MA!?Sv*5Wzen#0RCKXCBdN7L+hd>#?=GS z;tmJQqbk&02;w-XE72>(FmjjIpN9zQNta$z5V^N;NJ-doa;;TeNWffUEHVx+h;CtP zyh6Iq-jlZM*loiAvZJfrZP8#NM1()e_CJ))oc=ysp4}9F-!Bd<4B@9>O}9;t2<>re zK)0D7<+Ixy;L#km5zxV9R0&?k60{eR={;x3LOf13?+}6ku5CaNeeU6WP z@|AKObAIDmX^9DB31|V37qyfpn)DLFYA5rJ(Ry>i1x=|=w=AW;9_fgf$~~wXOS&@D zf}%QaldGe|2o-DG=kPiNumjk9$HhRrBs2?2V#4aUw2j2t`-+wR*CrYSt1PVtx;S^Y@KUl5#1Cv#4v(2WG~P)@f423urBtYDf@HSEB6~vi~bzX z#S87vHUDSfSSbeYvfv_#f)GY5;1KE(&y~H>74=G4Z$5*%%>%o1Hw9(FAfV%^G#3oJ zTxj}YlVhmfPk{@l22CO~kH$_Ig{3%1=-<5bqYNpn(EBnFftm+>4k7bN?9A*DfuaFp z14}IG@X!&)@FN$Wse$@I4`8S|I-3mt^%R933ut^vz2sSNl11=T<0Y z)tna+lmVJJXu6_sD;1&)G@4~oy?(0CcIE(OvGDyArLnmbSJDmd-WNQl)41RPO5 zthSU>>aNZT41^LnHvhWeyC>=of(i=c(XQimV(oTHvYcH2GpkA7sR=@P#XZUdJ%?Qi z*9afAGf5N}O|I08*46Y60z$TI4$JQzv%ar(VHG)R{oCv{Z+th$-2!CRI9m|wONHTG z<5jr;19BKR+ixfu7-K;3j3}xmnd8m0gAv1m_5oFO+r)WEZH$MSa>;!+TM5K*aC%p_ zz?DD^Da38#0>0Egm5)s}k$VQHNNN|Ozj!GrI{xnNxa?>W&-@VP?`_yzzK^Zq(buP! zP`#Ct)L8+~HhnEXH`R(Ye$oTX@#ILiC9P>QQ;-`CIKs+^MCCN6?0~n?W1_Dak3wQ| zQu^{QNAl34vYhzhFV}I{p^?URk8qNW->GS)AV`J3ZfbC?2u2}BG(MQM;zzGX3&J+l z1iU|_=HD(o=5l9d7MFwYATS;8ah7Vuw!Ep4pWEhQP%9e;a4g_?t;7D*7D_Q zM0k+8XVO4jd3z6E-_?1QD2T0x4F$25zUn9C$cR}grt6a`z52Aq+?nmywsGQgVqFu3 zTXTI!0^ij8YquOvH2Ms$ltd;xM$>}eNfal@&L*x3%64iwIKQ-qz>F9QTepfu_>%yS z>mA_oMw7-8QZdiFvTE7y4WXaa;B5+nW@I>R;^s}TI=PQ7ILa}H(ugHEPh+=x$5z=} zkyIX$T<#Uzg*BEp=fhY3th7m*KO5kS=cVzIpNvf>j_YyL`aMb`Vh zG24ent{423N3}HWPHttVZacLU*3;_|OL@%(M^+HBP*g+#MZUMCenlvt#3FEP2A7Xm zW!4$=@)8xA32dhdksMk9&Cx1^P6<#b~!ZPDPSUAIC9;QN&oS`yC2PZ zYCn37h%RL?<4VG}xunpEhn6SORwk@PH`%i!$mXe8w(Cw!q@*#J=ByyIp$S`;6B*uD z=1wgkA*FvNOoT^d`0!-uUcg!td4O6Fy>d$@^?OPE(zY%BU9H+C^hf){y>1`4$sVgJ zJ95&#zJ<+0KFM?cuaE3z$_W)`%$VaHmvs`5(1D;C(qWFFb{9!j)KkpBjuC2;e5fl5 zJ*v0LGk`$HF4>vmhPyKQPqw*~1dqT}(0$qlfXJ!|Hot;YiGq*pB=>2~#FkW|y`j;h zk0O4+VpoQnQH?U_LnD3yR7u%AqEcV!0cwKc$78^o{AS%SKbLs9a7(1^QnH2u?JWwG zPv#YbwGK6)a#qhEo}}33r2UsY=5xhxRe3%$P}1h=nqBqz@$N!O9wN{lFg8kJmS;US9;PqwpmeLv<3X5PDmvP^nB zYku3?ZeBXjn&7;eYuTXKygq74{>mv?Bn>@(hFTbZ>{;Fn24dPZgJ3V`I$5~J%X{%<~y&3$&{)Ba(~k?kzMGF-p4A=f3xwo z>lp*53S7$mv68$ryjFc}V7G>a^%W_8M_av=s-(8XQp!s$7oFXmojCw09mc1TrIg6f zjlW}GsbeFQ?7?_M!W4pwsqr3dsyrol0oOlLxIrTWtY*$)^ak^T0XkGQ_$IXWr<%qy z%cz7^{f~RCDVQ{4jou>2w6KuumoW)Vh_W^hhqqb-Bm}tX=AJRtHS3}>PK0E>HL{Q*+ zmSvZfZZKh4~PGW-@#P7I<=^AEaV}`odo~Kx#BFcx6$^{8$udNHed|VU#Y9QoviSo`N zFIjuX)w5PW6S0XA^5z}D|AN$@zj^$!8UrbIJj*Gd%HPa#1On&qf>Ym91(6NEkwC-9 zpH%^{jA%4)C=;ae^`j5_Ga~L;KaxvcbV4vEGd<-BG#tXW^Z2BlR??vbiCi?6K%c#y zI;8Cq1sMUzKD17id*N_8?C%RA8mcmEG8IZ#8Sxz)D=8cN)g6$}h}B0h=A3h1dNA5O zOoezS9$KLWr5u+2S+){v$U+%+tK8mmObryEPvyOTnD#H2=k)LlB!NQtoxMZP4wlNw zsSUeOCd%gO(->$?b$Fw}T8W9y4;mGYX%MeKazik66+4O~{tw=0*mBGB0^kp>%tYJXF`P^Qw_}KF zRHyD&hs5KIne)ZYD88G2C1e6=1K@m1SZh&jO$Q)HYn@gw3);DAw{?70;XndrTsL+2 z@VQkCvPq06FtI;27lbW#3Q7gkxmycec=PIdZ*PRZP?TZbNOq)$K*tg%4DgaxS4m1+ zXqcRYhn=fd2F3*#*wzzXa@m=SY;VkTvvzAc0?_Wn zxDzAHPt(boAyJwif-K{hUik=U@#7n!C*LoY6_oD9vv#OMjFBwHiy-v<6<&fTd(|Lc zC`1h#1kg7YrqWU*6QRKfhM|5<0zaB(hA%CXgO$M0AboojSoGrOmvs6AXwC+>9He%R9YvI+6wZ`y0;YPw9o`+(fBd}T} z`UOP%j2LbudJbhtkAV^mQVMG-b!a~w#_Gt#1dQ-h>JbkQUr|zsUoq86#ga6e_X#`^$$UfX{Ck(}#O(C*FRuc~Fb`2sF0G4#= z(VqncX;Vt~gfDS^-vs1NaRWk0(dSr;bJF6We6DY+*w@Y#RGHWyeYG~*e%BTo66WCt zL1oR~Kn~h|9rm&;e#3(0E#eu;r!mK9PduZu;mLY)7z|~WWkyYpEu0m*dY{QlXgBd= zA|5_Hba)MO$fut7&B#9D$kU%b&-^gDyQe6is%Q~^Ttr#aBi@woXuuB1Lw_1|W%J(DX`iuv6&)kg^12 zNvm7zbSoN5?(<(?tZ_^qr5mC2FbOEvw)p#rjhs_EH1C@+2e6r{$Rp7+83uY-TSMwWn5#*EziiA^BF^f-FC zZk`HBu$#Ne&s5_N-hQ|99zM?jKGW_1M!dNKevfrSXrQKgVYBqfmWz!OLlOgN(k@{S zAg6qajAYab9h}rc@lUx}buI$gt!cyS!G1pI`dQREkRNil9XIoPRgqtgZlx31sI!dd zU!9M?G8e1dhL=RUFn}CA6`ms~GNfl zO1J#kLz%aH|HvZZG|Pcom_rzgK=-_5Yqa7cOc6LQC5`sBeeGn*U%6)|uNVNk^k3jE zyf@!_$ct5}99Nl_4QtEZ+=zN^?%7(+*g65Yh`#u30O5C1@`B(MZ9Q%_XRw6;-E@D0eU!W@y?hW;vM|gi&hY7)I#p5#q2N3xg!lZGX^fG-*l@lf zLRDuG`DWHZ!4n+otum#zjsfP{?_9d?59;tIjd)uW74T9N;K3^S?-Xvnx3MvkTtJzY z$7^5(Z2gKx4qPi|^-3SX?&O zlb~eKz<46V4!@EhnRcLndNC$^z1@R(-~;{t41<0ZSZ*Uw3e10jgJOsmLkd*Fqy!^>Dp%%T-g zCYol*DSp$DCJY^(psbDu-O9%4;{WuXV3F0#v;Pr@t(tb`fSPPlE*2y^UK0TLq$pnW zB)-&r85MoJ{c{R;090d~`KbU0yScwEpZFF#C`u+;1hbo9IzKQB`kMgP>P=nsCwx4a z4RqoFP(*0Ff|9t!I#2azB#RUt&54u7t9zqSt)J=|;hPt92i+`b_ov7QxUl2z^ zXxNLF0o%J8b)Fk&ChM<$ML54Q|w z0b63fg}&$2`grSBJ5O%mXbEpxg?QlwM*@Z`3arInNW|%~C}$Qj@#Ck^#D@a1V>jI# zDR=nIY>TUKKrB)fuK*a*svxp_k^bWgWgn@7KN-jZ1MsRD#Z}BnJVHN>{7n0cALr;q zmX8xUTH~!sfKTY|$GHHoa2yOK-DAhhO4TeqRll%=Z{0-~ysGxI)iL4xTq1TXiL%4< zu^^Uk$hCdh4We;@XgS>@1cCiw{D2q+WD8k#K!RE7K`j%p`82w6mbR^%dlch7D0CDq z-p}^gjZHiJcx6X^%C^ke*cXt%8mgSMwAbQ-=}cTbIw;GDY!6*IlGfy~g@}-b$*)dchkY3HlDFjS8AZan&VE(<_9$E3^Dc5h#h@g)lq$ra8c(NScZwuY$O=E)L- zlBoc#D$kKf5FDyF&Ew&6pc)L!X0B==O-4(NdLp%OhnJ}its-+HB=;354Yq^5@ovzE zs@hHW$lAb4J%v08Bs4(Wa^SJ=~!wySp~s<=D#iWn5* z7;RMK;~FgfXqo|gU^P2w!dr44DyiBaa$k%ZZH8$Xm#_W*UgHgZQ!fJet0ecQMo8G) zik@siUPldFPz;9`UP0s&=YGz|$~Si(gKJTH<|5kJwNk-6=8A|`-9D>)`6oM|TBio} zIDoBw1jb%IN8T5=%$;y&f_L@8`GMw%gp&37D4cb`TL)Ft88O4irz*R~*KfENT%+tD za>;IZhQ!?HjQB#-zeJwnIY}~odCf|RN1zq}sqj0g@j~63Q4i16D9Ah5)RNQ*i))H& ztM4-C-2WbV68Y+@#Zzx`Yp}_A$p5mM>>T258J8FyV@e9-;^6F*4&X&2;fd0ZAJH_v#p0b^?_d`B49^*w4>R6p(L?W zwAo6PftO>?dFExITQWm=(PI^pym8HdNdize09ZYy17 zG4h$f+_UDsD%ve-V`zN(pk;Tl->`}$aH~@I9{oDSb!Nr7D4Tu_#R*EX7(8zM1#&ya z7}LERLHk8Ib(F9FPJiGSW^eqr;@L&4`uQu3zP400qlGl3qUtX^bG8lr zA8FQ6s(sjMhxaUdsRhNy86V*r(^)8p{RZ&K9%Q{g`16WFw97RTP#jtmFZzD|TGyd( zx!RXOeeQHOhSt(OcLt9G2A`zoc;%?uV6B;qHPm{ZX|6;>XD~qd4ixa0Gv!g2o za~fp0vA!w~*jE&N$36R;K!A9lC#}bH>%wb`8r~uxWm&qkrBOy9Ly<+E4WPx2_WrIz zw%FOoQuZy(u8!gzmvtUr5q`#RD?4K~q(ha*RZ;W;MBRrhuGw_(Wk`~a!JxK6R5!@u z#ZH{=DTajaaepKu_K-R+;pnoNhGMvbWxIXSCX2^BAwazc?E5RS=VX4aj_z9`D0D=F zPa+Di*DWLb7!vd^r%p#F7vD5x3W`LjH35q>qSRspT;;l$9%}a5PDGwvNL)wXeQR_} zT%BAe|K#x+QO=atm}f!PGuP_YUgC(>HJp>B5^Be8vS_%5%pd0or6o_km*j#mS%%1n zisqrx58wsI>^Zg_+2;ljmimYhDuH^{3$I0xhVStVYkG0^9NFJZMtnyAJwU?0!s(j7 zLNvLesbO%Lxq*R+>7$l4?C|!$nnpkC8w~jq*14~`^}VLy_YvRTlY_KWGx+D*d;(rp zsAPAcP6`^b;cGj6J|0of`s?6)i}w)D;2HG5r|4#xVJ~VXdcQ96FUI%w?UGI`q|1BSk;!D>lQhq^i>$g(JC;V8*d!l7fh8LSEap>BK8s&=X3TTLx6KBNjC;tQ36(y84^h@BuRrqn z3e!$G_?E6K`S4%(-~B|!`B}I_O^Jt;_-VITRllT&$eqSLg1t%TcTfQVj}Tgb8C59U zk_4hvh?_vCpjyAkcDpa)xh44tF6tyaw7;WfZ z9)$FSuUOu`8GkzvW%FWc3DLFJir`=DxAl)^|2D}>+C%tsbHF)ZO`7HX?&_&vi6c=(~?bZy{1CyuN$emC>O32;=DNEKv2O@k| zsDAPSOz+w?_am!{=OxSkA%kPzdub>6eHN0{_mJ(O{hxvmRr!+Cr7>QYrBc)F$DSe( zNd~zbmUa0NI`FN8Knlz#8arIzdxj#lx)3!pOY`I_TIO}sMep}acH731Qtyx}?~!~M zeguz9`qjev`E#BBN@^^apzL+}^Zr@gZ;5zox51vW;xtwcOt`k9-?OC3gRI}Gr9Y#o z+MyZLg`mzXWTm?pd7Scopjy1hq%0-Sl0`Xj8V{M&q2P=aq$52w?MiD}`ZKHxpX3VS z^4DW)t^U^G;xx$ZAe0I#$*rSFAb{XzPpY$WzdMPH4+D$Wd(~4>mi0-EfwJp8I(RJa znV5+)CKW?(H3*CCIB#)&<`B~C9Z_Y2-lFYtrspF}LT{Nnke0zrNN7j4R6 zd>H`x3$fjV$5N(I%)bjafuS%vGMfJBLsfx4!Ql~N{(6s61ozg!lBXn&iPjwlJewWQ zy!mVmR2qt6PvG=VY#wKNG^^r}2M;r^id&Zl=KI|ww*8h!4D6yZ&iK|7$z~(%cpe8t|7jk~mgzBxf=0B!_1 zsr{1O8X&qura&QI_|_b&m651AuB$D;2PQ&t!5HQ$W-=eQ6p}uBWXY#&B+z8sxbaQl{ej7sbg=44Gge}QBDR(1S7o(`(&`hfjBBKzig8G!aIb)@`^pLsiy~K zTJiE4HqsrDieJrfm}HTB9X)80WR3{~*sg^O%*l-O>rqWy)k-`p{473xIeu=5Iv~gXNJub5{IN=ReFfI{V?5}pU~kqZRk=b4TVIE$FyOX# zq8^WWOG~qSf7;gP2?g2eO)DKS$x6W}O7ga5is#`1PbnY+&@Nb2EJ(>*@%{ufhln(n%7-02C6snB`Dig8mSA(!^&qQ}7xRCYyFi84!&3FB4dsVW5T z|MoON<&ZU^eFNyhly|@b_gp13gX^fA(%=a!N=%#~szlLG?kZxM;7B8YZIygGvwVXeYbP_zi-B5wQXq{g`U?awCLln;lJSJ>u1X}BFv+&wiB0HSFgld z)&p6>JebL4^@FCJFnl0~C)-qu@dX=h$!LU`z9NmEv$l{E|N6nk$`8<~d&*Ia4{&JU zDO2AoMsVX)kT^u+@{<})s^CN%K22jRV#{0*Cd6SDPI;cBvXfctlqDtmVi5U3XL7Tu z)VKCkx8IN_V+jG?B)QZ0pp8=G&?F=07Y{|h%t2|`@Vp?yOCJ)9>go!6UX7P5y#=xv zNHRRcrWth$P4DsMh@Y1{npp~WuhGw(#$Q2eWl0{T9DfAtD4z;;jiXKbkJv!IDN4dk z8}B~8QJgJFhM9lE(bWdc)fu?g`&IB7zhl)Gp*tb>T}8(w5qkszCYX#sjTGwk@gbb%eHQ!WT-e@vP`4xv&+kcT8SNS*|I z%ZA?~_eGtg1Cjt;j?aR(>fB!jhFMi#c4Wb*G?MphL@3EGu7c;OQ>hIJL1*##0~MgU z(6TXjINgz2xxp)hGnxIbSRLXomnh9`!q+lNR8 zDO)(IkE`@)tZKj-jm4}LaU;vU{LO!=gn!lCKnE%FO>?h{NUWdw?A;1m@sH# z>%Ly?cT@Cb@%N(8*K%zlu$;flI~cF~4)2U1lsGQGH}k!J0dL#M?U&-J1V4iYJ$Gt` zQa(uKgWPO=5)+WtT`5zV-gI?1fJPKRM^XFwhat|sQHB4t5Pn$TR?w7%8uO5A?Wgl3 zDK&kfm=sgX%Y)2^*{ zZ#;Vx3D64f`Dx~XpTC>cYE4l1>}DF@G0&kWbAWnfZ`v^(FVxxF`U0>7F^%9JAK+sw zY}U0uOS-O!zo%zq!G?Z&8{kKoV*k-M;Au#5cEa9#wot`#oVDlyMBx&l!W^PCdXsT^ z>N8ZXB@zC|Z*-q)++_UBXlZEJ84yTjkX|GdCNqQA21i)LAm-z7K%aLA>Xsg7fOee_ zL#*DRW%Z&Gp2})I_|}8l`7TljkY*IUKJ%Gc{Tn91uU}K?irMm-P#@m!)E&%b)4@8A z0)d?nXm!t|4EL!_j~w?zZ9Q?of&h-ZeZiIEfN|}+Bhp;SwQzb12(j8&X%muzrO(@g&YY_c$B19-yMGtVm2{`!;&X-T z7-Z0-WBY0M+Zw$JWSzkiSY!)nj@l%)1gu3AvS8@rJ@cO~1A-4UE$!=~De!JmmZ0Zq zY6E;!S7Gn7vr1OUWsD;P5PGP$Y?;LKbd5iYlJ`H70s!aFDzVRAe4jwo8FLkVqq?R-WynCM6=IO)y+L)X-|J0cdi}EdH`+xQ|^pZ*KY7ik1{^#9~g3v&ivpuKd=1#9fC%>>=vDIK;s}z9%^`_nvK5y+)N_ zXfgymem$2wOb5UVhR#|MMIts4O2 z<4N~w4uatpO2KqbraqWTG=th7=}2Vf|BPZaBeUKuGOqJ{YacWp+qPE0$}moFpOR`e zZ>=DG?&bCC_@9}w3AQ5Vj*fjGh!7Yq@d@pUM`aihk6vZ{D!p>@mQ_;W)fuNceX$`o zq0#^>0mpoV0qQE3!$o1mJh4?eXQ~I`=_(GpR>V4p!NNt?ew15T%|`|v_$Gf92)*C1 zm61yG0Imz8JYDpv&}?t7Z9Km3hvIO2*1TS~|KSQ!ELXSBT9oqa(|so+v|EWOas6u) zha=-7^!*_w(gSjW`3^z7noDJ-Qi`wcgqWU6l+V{9g_i$9KjQo$Yp&Pn&BWpb@^Sd| zJofA`Er5j?QBx}wL3ZAMz8@i4ajp`QVAs+gvg|4G*G^xER=Pr8G~I~c0%6VsTz^OK zKw}Az#O4Gxt?bj+Tt^`c8us@;crS~UiFHJ!2c>2zcLrfAW^~V4*zuBuwAMsxpYVgx&=#GO8D%mbLBi-oL_5K=dg`>pWgmM&{ zx9p#=>6Nl9?@EO?tz)@c0e>w7{~gk+F1$gDq)Xl9hrrj+r__G_@&U5ICGU;(NkYp%avaKO@r6m7?l zbv7H&hI(oWLcL@h?y_?rZ%V95dMLiD$2@f(;U|%{>^(rPfhp_9lR%X|f1z05rfdPL zdsZ^{xU1!4yWomJz!_%W7j%92VK{kgn<%;TR{Scgf3|J4&H1Om$C@MBF}2~4(lF+nFwCt&MG0MF25=`Ko@%(qFN}l%Q3;>A12)Z^tA6it(fRZC2VY2xb zU+80=eGWh7{Jw+B9^S~>*i^sg;|(BkOcA>5^5PC(l%oRz{6%_2_LC_XY~Z)6;g$Y8 z=8XRK_2Q(eMx90=GN@2mS)g91r=uajVX~#%x#402{y_%6c*`of6FmPA26&BR{22Z% zc?dncyY`i^`4Wt|s2tBQshlra^&s&3@P2|KKD$T}Lvt`FWem7i(>Wp*zub0 zw9+cXX?7q^D0OSeyI?SARid$TUcREG*Vt+hc&-enr+)*oM34-^G?630a` z2mvV~R#aq6w*rdWd4BrVi+pB@%`lK*KX&V&j~S5sLf5@u+<*s#rjCn#VPJYY;((CT zG!ikC$qN4c;PTi+!q5AV60P{NSl9i5bKt4)Oe(lW2m^9kSY=V<`nVQ8;_vkXbmx#Z zQZ~={B}M8u_Koh>tM8Hde5k~1QlSr#ENncc4r)M{d4d`uN43-_o9$Xto{<89Qz;2<+sVzytyJu-h+~S&Z2kis9DGhi)&Z5KRzSy5`Jtum z!1+Or6RQR(gXQS(2JF*23$>6H+~_@R?{T#7zOu7-muiIZBipD!MNE`+g8BDrW20s# z@&F9TWn>`+1!W%Wkh>}!iS`3)i3LikY_%uA5PdDEIA+MHUDQd*R;hTBaeDva4~SMO zhRvYa_fb^529xZEkX}K78?7|Iy=jV|d(8#VXM{X?fud=OhuGcUyVmbYmd2*dA-qDc zYUc^~q~c%GRo@2aKge^|3fo1tDCohdzv$od>z8|=)XA zw0RB3EW#cN6`DsN82lKRv^rX9QLgSrl$ibY|on{v$C~vxU>+tIV0Onu94t zE?P~`?BurYwoFLLyeGqBLFF6T_znMz8ZC#jD~Tj$I0zsGvXIg~mrZEsML&gZUPP9f z_f^0}%~b{`vwFB(81pJ$K(nC4qJ6z?SHd^cz@z$$@M)A#j7qQSmf0M;OH7@UX$f*9 zA&=}G?M;{%*B4C)=UYI4Tnh$f*q+X5HNF1w0;}YFxz0o40Dip{1r)Y-k&;5*5{0s? zqC0|K4beourA_>-3Z9G`#H!fwe<-MylmsHqwVupO*Yu;>B~q#BGSjL6mwkGp6*{MJ z>HrB5b71^aXvqLwTw)v~>dx$J)8Q-E+8*=h|7C+h^vVL-D@&6>2xU*%U`QiMfC$Z8 zewico-w&|~Fjk5RlmT-8!VG?n3#}!KJ0*{)S7r%2C)Cn7E_!{*ixpDHq4f@E&XVZ_ zKdbnM8_muX-0ifK4?H z3wIyh)?na|S8(<}Sce8oG{q0>?MLMw+bbptzaR!pVk9x*-Vz@ADcQflYriv6_o}I7 z6-=gs!!qirWoT>!Q1tm`ywnJ;{tSt)eb{`gU~V!Vw^-7SDBrLwaUYhZ^zvzxQXMT~ z>0oXz0!LPpZU?r#?);9h>-8hkWY{Ub3At1wu{Ha{o|0LRy}6%o%@rA;()(hFZYPyw zw?cHLEucM;Ash9F!Oo40kZK4a&>BK-y=jjfS?0}qKG0w-a_dkz?C*{a0LyK8)%


      S;EsKg#`*XGR_p<@Z)IC=+l&x*7Av^f$Y$7v?f* z&ydDjAetoDIOza9dT--#m#b}Qi5GU~@onQZE)F%K9k%ZKJ!S6T*_l@fTxOk7$Gx??nnD!hN zSm^zTOmYZ|Kf4~DFhmxjOrAd=&=3rVSV5J!)y^p|tc$+#L)U6V^!=%D#WmgY8r3!wTmVIyRln}sl zC=+AVl_k8kJze7Gdm{s`@~U{{b&vKl8=jyty)tj9Ppf5iM?(wT5QLV7V=1gf5A<2+ z80$fEOt>{zkjABENp>RsL1euoO zIq_n0><5CpLJC#MjvRBO-7b1itI)Z?dqtr2*~F#h2c#fEziYGAMNTLmDznM#rY!kB zSri+Gr&09T?g>qBr`e}AZ|7U2R6S7)j!(8^swvHO*26JsI`M^&>F14qhhS47%ijoU zga>5AYS^zOyNJtYg)kmDimC`>tsxKsO9F6wToy+aA{k03OF#9ArQ6Z*5;!%z^C1Eg zKjMulAG8kGpjpAvHfoayv@OQNH(Ta3_DL2Nt}*%c@S65|OU6koY1U|}IH+x`Dz~5T zr1%6kZ%sMJo2D49i;`i05&7MY&-y&|GM*m!h5P@13@-AM>%l#B+c>$Ivh&tV_{U#< z`K`CWaJQLNd(g>Ao9B~ro)`L?L;I)7#asrwLn7Ltd!@(}rU6xFx_q2S5J7YlKa9@@;lb zO9$H3ESRvYo?Qo+SPhd@m$0(84{qTHmpFvVJy~QGHEuJK2P+o>JFB%Ti|YY9=UFi6 z3?A5MA$PN2db)EK%nP~rhv33@L7qF&2?K~=zzu`Oy-CO!v-Ly??Tu)bGl2erRc!2P zXF7XV%dq))V+eMyU--~pgw3#*qsCW-J!L70B|22m+H1{ml+tH9$uUf@q3##~hFsm_ zw2ZuQ6#GCnNV7r*IvvzK*{X+UUg(TxN<#=W80phw$9_`&Gn^*N7FSL@%?2+Iisk_0 zRdJU)m97ds?vX^RB$`H@mLdHA{CYLs%j>3tdLlHW&6HW;giKSlz?HSL=wxRoYId>i zkA8N&aOB&ZUO;CBp{%^*;6a9-CQsVX&XiNw9dUoQg!6dndeCExCj=wOAEGntK4gHC z6CC*oPVr?x1FV0K60m5Y zOGOdnrZJ6R@GUi^_dWR}8VmVA#WwE7d0{A8*8_-DT#nlDMaZa0bDHRf0{dO;Lv>g? zj}&ZoI(-KU=jHD+GYppI2C8h}d~Zf2xk$qZTBO%S#T>u9n9)UW=B1O~t1~`kBfmE# zQC)QVZktD+i9PJ3fD)f7ue5J(`OQ1PgN7g84ex0jGBTO2r%58tDC8qaw#TE9v;>Bk z_D$~3=mhYI6DULTT&}$d|A3a&`8fE~)n0)8oCbKUxz~2-iSDmb8$QhUj6fKb}%>YXwRJeiX0|6)!$}AVQam>nc*>D;f zFku!fH%dJBf~io2$Uwm_09ei~6F`IJDsYG2o3eKOA*uQ{HV9BfdV03}rkT3GJw&)j zgvuT5_c&_{p60qi82j}w_Oef3YMAa3>xD}{afOo?FS0}pNo;+b3W!ynhgPxX8B=*N zut8Uf>7C}^hEGTgTtOuB%*)c_9<1-J=R(5~p2rGG|Ceb#}CWX-kO$z&zMU(@!P9w~L4B zY9iBw{at2>sMeOt*2Rk>(GH7~Mln@jwm5}z|MKb2IOF`9evHkKK)6Mw5nrWre=p4nl{)6|Qx4o8L1BGZ#-+i8pk0k7xmDmfs(ZybpNa?< zf}LjLL$1}kIl(q|aHrJs&`GeKF}Kapl3HCMy4E~bP`-R9;(X_jgVX0KJ$ly4HhTgj z4C6_dt#$!}!387A+=toWb1xRmknuFRKMf#7zh!=Ot*B^#ZEHY*F?j|*qJ)G>wVXMm zU=RonWf1jX_J>&M4KUU`w+9vg?$e!B50Z>RRLlW>D7~3GSGd78)>Cqu2ZO*5L((bH z#8r#@>oM20;OTg3z$cL%`VW=avBL9WEPth#)g0Lk1OOQ4_vo}WmoY1#N#52=T73R& zoFn{Fz7$JOpkwRp2)~<&zRj=vtg8|es&g>MZ{PNJVhR1@7-4{Ck3q2YiMT0yaqQ1q zlhCB_be0umCB56?3ysjD1M*w0cRMz2)+(_D8#kf_x9>YRy@J3gYhP$jZ2@9I$~1bV zkJ{}C_wR?q-{{wB!8u31q=}{pX;mZUQ&jp{EpWkK$~q%1lw7|2PQYf+5?@?+m!$kF zuquX)|CHIHAFGuwmzs_N&~R)lstmoKCBf8)-(H5}ZJo!0wr@9kdKJ$i&v&PLX%^7F zUIj5deH;bHZ3SpHSM)R43*wWR+#3p6#nAx>cR!2E(tZ{8hgo8swiTZ;sc73T<=77j zMcy!h1monLW1|O^rd!8x0L+t12H3HECj)wE6gyIVOo;V0ro{@m#X^xUDywNnMdif5@&2*KXtO3~7 z;cP1F!bQsNm3lK0(0ajO)^DTLXFDI91p2PvYm(QF+)A1(Fh3SOS+2EP0<|k|i0Asp zWhUa;bo*&fh}s{RSD>FcNaI+_*RQcQD-~kK-IKAq1CXvlG3CBNP+zRNS|_JRx$*4v zP}OK5+Us4eVGNd!XYw33&bapIsATxPF_PkUO5JLu)|1>9RwR8)A$gWOnmXNb42 zn1t!VZxy_rjPH%{{}|zK<4rmR%<3E(p2Az!l#>7<3AiOf_D}6dN8K;bwb@34F0Z^) zr)=r>Dcnq`U1w82=Q@xsSnO%Fe{Ad1$N(POjp#c+fx5JpMEe$)H#JIWF6_U6TRKc3f z0AyGq_OuF5gPJUqkjhqMB)B@7IlMI`oQHp`j#naRu1IG$UD7IzQJg?A^IybyKLJ>$ zb`eK$)}yYkMm61>0sRpa_mSIZdZ`LDr6M_4Fo>FIogaP}PJmH!KPSjf5dC=TyrMkg zN^nNjcOF+WI1jksfaYX#?v?M>IRABsl)aL}_WslI zd=lh!XGjO}hR#jode%kDGq#@uxx2|tCyo}JGeB<}1;z=pdX>T_LvG}-R-gr6ZR@c@K-W$ zZB7_z6lB8}y=&&U!6TCA&UYARK4}Mo84ROK(wZA?U0=+t#k{A9%alkhV~`_QK;X+w zIyGFnTtMp~TN4`rXZ@4AGH=;&{-(rHu>BL$EUM1nh@s&bi9p0E%-`6LTU#5p2o3Bl zwcpuR#p|b56KX+{3F@(SJ5-aP|DnB9xD$Z%X z5v8V_H;-5((h6i-_~HUdqIvWNz!^1nG~UJg(u#D?Y1}@qADGAY}?15WpQxCqNG`ytQ$CWNaDNK#3<`x%SW_(gIdoc}2cAf%9 z^J-lH_SrH~0T{?-rk!(cE`hLIM-R&0Gfz6XFgE!xPB_GFUOb^?x2J-_Ck-K^8E&h9 z;0bQZ<|(6F03Cy4%P5K?3|CHvVS}z2^DiSYm+J!EctjU0Pi$_fz0_=+GzU>Z1d}u$ zX*0N+TXy#8D^;FfKu`F#&1!wto3*-nv+Rr>P0uQ)`{g(CfPdN@kCQ{c%OI%H*#V`I zTq^z4!>!OBqK{@9uxhMX%Ib*T^cP$x3XCrR)tsK(y=@eEj$?mJd)B!YoE=uyQ}sOm zQsv1u%cj~a?p*XSOPZADewTWz)C2s(DiU%2Uc_9#9>tHHCJZa{ixGme{SxAC|M*G# z*Nx%KP>!~*0*OWDm`nIjPch6bs6MIEA}>V%WX}c0Z_MEko&{Pr9sSt2a;jNPCD~zg z78q5RNx;_~JBsY{^c6lb5Y^)BJ!%5SVaLHdXsC84%^N!C4g(vt=S0wsE60}Iyj}T& zu}&VxuUMoF8h{ajwtAl~s3BFa>T9u`Y<|qa4=cIU5a>sExM-d%mR6#qe>tRGK^agy z(Ur&hKC3;q#88@vG6fJHpkY&PCpjhBP&z*t42y15; zWQBCkGM0k%82=XUB6`5EHdJwvAsg_)KsfUCYmpOYlAiQNZyG>kDk6*efVx=I^og(5 z7ob)S$P86f#pFiEG}bjYcy7)d-AX0Q&E4D3J(=ruFklEre9*HhA89il85dfB!?imM zX=G)XLoIY`lkDl<=te8f!uu_N&@7z8jjuL4F((97is%TEd+e_(csu(dbAw~BE_m! zYrO{}#nq5n#HSfIyr=s@rD3J_fQfO&Fy*)-Rf;h4)^nj70CDw9mp}Iq2Hx0ovP@!ODWPJ1req(1+PEL}ELHqI-%Q`)4 znF}u;SyeQx)uka{)6Aq|Thqkop%vD5H->Zc?XfQI$LZC4R1b)dZen^DQOe9^ZuUUy zgDIE=1h0((D~CK(^oI%IHRJFLk)_HW^kdMc5>h83Q9yWX&ZJgyL%jMj*v+AjGZn9L z_6u7SBWilZe5MR0TiEftJEw6*L|>t~ZOU@aqptjE$aD312U>=Fem8FI%1Wzp^iQL1 z2)$(0tN0b1{VVd;2{_}SkDckvMPrbQW&(z-UD{PwXmVD#n}(qLrZHpZg2ia&l#JRJ zPz8kxlotB-3O>TFaK{d8+~b&43Z8>lwFr!Wd3r>Zxq+iH9Z6aMMu%~oE%NU~7C9x4 zzrpL}K4M)mG~JDA)6iX|M*~KCoxaTwhpL(oPxEkP^K?CD0}!qSFbqDcPqRBj^=~Mf z1+LREGQ$0TT33LWC!O4TnG~T0#x5mlX#6gm;x009GPJIUf(}T+;1l1-NaB$~?;b!f zYpOntjUj`>_yoap7=HY#(09)a2BeyG=cGLzJUfV)H`~&WB)33swW}v-dbpi)Z;n35 zB6}?0+~OF;$pOmoYI5tI={Ev1O$kBKd)=kJ=2F9wN67z1yYxKzrKgC4yMoxiF7ua* zrKF0Ok|^G>hoX5s>-=n4^l4);k#91iapb@+-||jP=zto89fZKI9WIEv*)r1b8?NVh z)_j69b~^I= zQR~r+RC@ICeY^0D3z%y-N-Y{cb?l$NF&(CuMeHjZR$S+~v3FZ><656|SP(UfnL^s4 zxK11BHr}i7nSy6CTIp9@K6lj%1fc?(-G3Sy|7DhN?WOv{DGgGB(Cw_ZA&1Xd@ zbR}_0yl(zO#7U6ijn>AHKIoZ96{_W*@tLCDczaJVIyc5ty7Hl=Uk8$E42B$7e12lG zy!<*|AB<6P)$-@9;;dfaG;^VVs6kr)Y?P(!C8i?ef9=~yP&J9Bk0Zqb(FQ#cULQtS zznD1wN*r?e@I_D^*$3JfXsm#+afqh<=R1MQ4mAQ*g;(R^`^?O1#pp)85`qjuS^Z)% z@Cm9X^)#d5h-N0nP8C(PA=ol23ZNS3pNeV^7u|zxkrgGU<{%LYZlc8b;Rtm4PHhN; z54FtUJ1anm;t;KOe@#Po0ND$*Qz?U0Sq~d`k)Qi}+69w6t$RIKBA30_1Ivr#oJ7o}Z7q;?`Jg={fhq6PvDD0dRA8UgA2Un5Fv318Ft<`N`@6%j>NvkB(UD{^C zU+GZM1Mu9dRs1SUAo2NoB~a$uDWbybUpnSZ)-4*`lHzbEj=!dI+p_;#mvzHdf&M85 zb5#ZgSvq7E7Sb-kB92DLg3E1chyvu|`<1NIFws9~et3*5cq+hA#R%6tHgQ4(@mL=M zu>>yI$mM7~kZDWTB>9UeMcE#sQwa}M zqDGfOR`m-a<75rzZP#G?k&}yn=Rwj*gshvvz^_Su(8@c14A1FpHB+_2%p*nv&<0z<4 zA=G}1;@)?olp3vM-RpSoTzT=WpIDk(x*hK|dA;9FWm=20S%o?q$7+fJny!i9y_%88 zlcj9w9SDYBxT?e3_E};&EgP~gpm8N}wm@JB?)i7{x#0I^CyZfsRDt5lAho)aIc2+G zKwzcCnTmcb=YYDm1SCpyt~U6jZ(WR`0u3$E?oB(M2-UwA@Zls8D6L{@tP+v-D>Q`N^^KBO(n*M#dEk;$KQvwzw z4|y60Nlw|FW{4AQAd&M}epYj{T=d5-1nt-~PWLeDV_qCnIRXcDRgA+n8qWK%cnK3FGK1c8i6E zbv7a+DHY@$poACSz)6fc#N7^c8CyGg+itL?Hys9#XLp1>y@COI*RDWwDA+CmdBoJN zo&O1R3(zTxY8-A)JA~QbhZr1Ugp6T{NYStzS%0IntjSj!ROGzUqb!&o$8%hgSYZ6P7aZ8MhzxW`x~tTxdq_fNDISe>5nC6Dg!; z!(2(`CI9Uht}5z2LB6>qCSacGo-2GO+75C374Ok+A6~-C=xQSR7m-(bh&Bo`xZq;C zFJbXMmpNWf@?Bfd`e=e*)yq;~b%z>sNK~P9Pr`GjUP?ODz^3W`L2w}*!Yi3884ODh zx7LoNE=?WWcioLJHWK59x+KenB*MY1B8^KW<)mV+r9IVzEn_N;%Q_qN~7C<6Y&(MnrZHy2PJCC|D$IgnE=!I+5R{Vxwc3}%`y!I)PfK#G0 zEM4Rb(dWqL4#$&r-+2lgGW(H822VcGN2>|%RX8lWFWnpI+IcfXYG8Liqb%?W3yel`s1E8# z;tOg{uD&VNI!Wi}IRSyb{%Ac=C$2AbLp3bzCnSppeO+OLrhJ?+IIwxf)C&e;V}&Bx zuNuSS}A=ErL8+o7Ttc_B3=?K;J*sL5(`}dFf~X|uMA3n;7x_! z)Uoq|S+x3S7t?#=@XME57r3-%#WiST=&J#~W(`ScP6oS)tS3S`BHmbSk--q; zl_z|Ms9h*r{n{C2men6Xj9rzxCxtQ4h zRXY0(K~T8V5LdLW!$mdqyq&Ot$60YG&t~@;{8wVdfn6e`=FZC0D2v9td0&H~IlQ!ffJwjBY99R>{sWZgn-$1W_&n{cS3e7ZW4c!S`Fy)5*x(RAL< zmIZ1CG+^#FXOBbcRpZ_j0cX=Py`f^aPq>8ex${sLQP%2)BPj702JbrF64L?^yl)9j>v7$i9VVSjIrJ>R zW{*m$ng#*^q2c+cDFR{Pf*aEVwnKyF8&;bw4;4_bd$<4E#iD+xdFU~`tn)52&<#qh zORWyM+FSwb0l9k{XJGWeh72uamky7Lpnro%}i!XS9dtXZZQr`y;JV?n6K z(ZTFyP7}FI)u}UJx6c^R+;4JYhvOzHKf9r*;db7(X5)xVEl#5EPYT%hOw^}tTK989 z4Glsy+M|(vOSe_#KxMao(};K<_G~s_8XIS%uBydoMHek|aXy!ghD& zI(^^yRI>8emjb;NlT#8Z5Ce|EmZ;j}zQ6z&bX>Q}H)$2|Ro-ttC}^8NYudaF z2K_*tfk7RF+Po7p;HRQH+dg9m2m9-z3^~~BjG|5=2lRz5Qo(bnO&UzrstBs@=%)2m zU7a3La~Kw`={TK%??G)@>w7blw~QzyEHXfJ-_I={?->_uWW_m(A$EuhlpT-wr%=KW z^k=2CAMbk$)QM^yZB+0XcDmRsn+7Te%_eT6G6{fCw!zM96`f;4viCCoefc+JbS$P^ z$8z6q(3$3KD(%0WZ#u#{9L}7tCTTM%XZgE-D3mPC$;Yhn_|dm~)+k7BbOW-z$gG}# zw&?(Z3}ztWTtxD_w5=Re3}HdEzA@*LNde+Z-#CG6#=6W?On0g=@w<%)mS@$`o*|-< z+2vPq4?U9HFecit{saKHR}muTVRL2NFhkM(xok-k1-B(pdPta5k1Io$s>S!kddNiv z*1OOFX|bABb$Ed~{kBBW^#4w$b4C({7asH&df2Jl+?%QxopVcX9Fp`(7bQYX5C2GP^H&c*l`RE@NT@Bz(hirQL zwugMnkaw*AQ`_TA+$^=PczxXmNCSq1$MrcVZc&&fi9hfVcDITymTXjPo~_)|x2$s| zhrMkO;g7*U-~sk83DBF7V3?P>Z8w)vV~5{5ziFdB0?G129lnBKW5!r}^1IJF(@YJk z(6cEM546NDuk039I%i4j+@ViJsIET9!bt3cq#HTO69kMSB7GMakrGw6X?zmn;(|>* zHr{1(Ks3Zr@laG+!wbe+{O?^!$P~}beFfrv5J`VGAy7>^V4bX8bY^}mm}&4QzB`=} zZf)l`|N2vIy{IKS%~d?pzQRtm*iP~Q`yoOhwUJ2LZl1M-{o6^?W@RW?qFjS1g+RdG zf*mWM;ViUPxbj7@(W3f{aFvZXQ-_aTHt@D2cI2f_m$vd~x#@^Sne5Z`OtESRN|-`j zmoc-3c;7#P@Uu3X3;@|79)}qvn9{(;-b_;c9qwI8pmvzO$*0b=aRsV^mlNZ~5TQr_ha=;R9{!)|_29a;ngoF+bK7>ohQXv!bg_`Yy!??8Nu&h(VR5(TqCt zl~mpz+<9f@*8!N9L#riYrwX&>GoR?}&?SZxM?=ELPN(KvBekP?r6gEP8SyWkHDS=G zPRQI&WjmJA3%x%M zwkRzfQ}t5edy(39cVH(;Xx?Yo#49{ROK!GOqdBis@bU;^<2ZhmefG=z-|5p=juhFT zh>wkw3-G#w_^ySM!k@nIz#66mib2Y)j$Z}@XzS)vE%DPOf({L=H3wb;4s!w7dt z<0x>7H_G3D#5|b9oye|}Z1w3Tl$puaGH1K`@ZJb^%WCCqb%ax#hvP75H zpE)Y+J2yP;q{+J9+b^GIC3&ZTr zIc(Pg4@CA?Bbw&?+9TxaiVS|{7Q7^Gz=%|}7}9|i(Ry~(q#no>DrQ%hgyjTKhLZOU z1#WTaH?=`eM|2@p^eKI!Z06(-tC$5ifI>c+4f)sRxZs$;Zd@N{oX(jN*E3>c+$ zyDnZnMZC6RD&F_U%Xbt?c4Rx5;`XA2G zU$u4FBaf1SSpPjJu&5RErGTZ}71}J@yI@HVo?l$)0C?>RI}v!G^O2X^eSDVnBujHj zA+EWfM}pSSdX*^UtS>X33;FtaRS`2&w%|KvHeI8^knM7Cn1jhV>B@Kk!{5?jhdcBI z_)unA@9Yn3Ge5{eehadxxDm>%JAQ+$v9jmFIXmVX+W+4bVpqJjZZ*-YEAKnHH6Pyx zPI#k9%v&>efHNw;nO@dKi2Y_2Y-X#H5C7eqqQ@dlLPU~Ja?Dkl@i3Sg{rLe|{QfW% z%9)3R;j(cOtkno{519z?G4G3y7*>loabffjjv=r@St14F6cQczbZQywKHf3vL^3vj z)P)N3po~C~vlX_OzfH1Cm4@cTfq>rmD)2#dVe9md!IkWIm4T+(mN#<^Gtmr%Q#zh0 z-NVpitH3{xv`QVXk;No6Mp|$ZmSDvUF z>Qi&?S){;uT7qzHNx{g2f}5vozGn&4ClBLm0TM8SKI!=}A90;TQI!J5DR3F9bQUk> zJjdD@_{YB?KP}N|v`+UjSu~aQwwt_(9M+P^9>T_a&~zp;=b~F1L1i*c zJojtd3@?0l2YSb?KjqeG1X*9Ei(R+s%HUbzLtik>X7{HRAJmqRMI=;s`1PrqOC{=n zf$Ampu}8BKU1}~7g${Xp_m2_Tc|f-xER1l4#cq*fo%u>V4%sXM_Q{5;Ku?KqAM=DE zI^tu7Fhhz<Dm`T?RO6)R{^%BvV~)# zjScP|w>UxL0pP7gvjwCb6_TMfGzryFnwRy1==T0ySWvFhWV3W?#;Xvz$-WG<_S@l& zVV7WIlR^b4>?6&^?+!YBu5o$1@Yo~ur)!rzS1hePiHG9}qv~`9R(ENtAU+ImvVshz zH#aExq|-yL)uHO}5I;2h#qW6?q7)BakBWbFg3>wGi;j^}uJ?dL4XW8d#i_I=4lct=PT?BG%%5~<06K>+U@!Wxu zz3~pfSMHA`4xe?p9VU8JB}oR!kxD&db`JE7J!11}gan}^p;rv8m4YE^@JMRlyA^?O z&m^S`2vO^Wf)D`$#dFzw;S8v1EzQ+kq)8dX%Si1PI-Z&PT(xi5%WCy@M~y0Nt!RbQuEs<*PK=^-dQJ z%EJ}EF_E}u2}4sI@_P#*pc7MgtLS$7*K?V+P0qwK&&n?q-@Q6jj5ObNq2~$ePh+(C z>wkI)h;24J)B>Y3*1keTE#0flDh%-Egs*qzHWLrOnd9%_~@ z2GL^nTW;*bo69kcLlJh4mGWRZTkl>ra3qo`Xxpr_L9C?J#UD!vPj8-N!m;*>z9`)dE zKjw#VdMu97i7DB~sjS0HLe)vlOh=yc-O1W7qc3PQXvTro!pT&$Qb6$g4>w2B4K@Yt zc4_jyMX!QF)al60a4M3{WC6(Lfh!&MyQopB@bk2l>U8Eb@ z$3tT5zcA}u?!E4B)ZTPocth)8DKM@vb~$^qqlQkxOSvID9lB2)Q(CFKq<&pPFcZ&z zOEikmskUanaJHH`BMb$nKuN$@hic;I!qs9Fh(pKo@_0fUejB6RY0xy@>1y8$<=u5UoKh_yrOVQ-uCZGhuOQ3uV^HHWPpbxaGQ#Vlc z1RT=%n-ld^&}p+Va}F%{0-|wq*sew36d;gWRXo^&vb)((aH^-VdAK=QW*eMy8?drs zV>+KpB|*V4v{V;hc98W(YA9%)&+?r}MlY0<8l;k$EL|&!|Hw9PkArST=d+yH*8R6( zWVhOfBD3~%+>yzB*}F@px!9spAiCmN7Ng=pn*VPR1yeFo&p<8WqBz+^e+Ow>M7haa z|MW$!cz%hrg;O6aQ!ZD({6A`RD%T@gM>wJwo-(Hs#0rzxgyqARJ<@0FgI7aoDKbST zsJ<-S+mq^#h~>Eu5GdV}lX*m^E%m%xzHBtMdM7h;$8^cI7+M&z!*t zL*C?cB|`A)Ts}Z~a}B+MFFil}`~g-hh*KL+zBYSFkFAs3WM1zEnGT_h;vNV-UQ=A# zgXNrfJ3@QxdO25YPzNyajZuPcNYg{hV>49-gDgWZ$cS^0TI|38to0D6VifL~>irFDf9IXJsZEvcQ;$`j$$$u<##elnH41c{?szjl^&D*|BTl$n=$FfMwOO{4 zDHrO$JG)7s{AG~r=)8{urK4u8HD!O~O|Px0u4TcITWZ6JWK@0log{&*kRnZZ zmH;{xAhh(DbAXC3E|t`c94GH|&JYQuhrOhwdAh=i!RWY&UIa|$Nx!6a9=MV1qt4$b z-A4A;=}0v9C>|b^y%`o}edP9LTFa{N(Mdko-%?7t=X$5<257N6QU#gJUiYtd#KcG( z&^?@fxIztMHe|~x6;BlRP$*bEpJzejRY`-otNblqg_lq+BW>-_aGAiw&9|5*@hU;E zQuG)i{H`^{Vfok=Akg7>H5)=2Iz6lM*W2ax7%A=NoASKKkG(4s*3VypQ)|e;Z;hPQ zP^4dBz946FPauu*)$#b80mRI+r%GENaCFU%D0TFo?7;bL+bfbSnzB=Tm1f)+5T`J1x?o9w(%7kyxEZI?SU zKpY+~ATTJ}3w#|Od`r+88bs2K&t2(t*O-0Sxj732HT7av57#=LKYA-6c)lofvxOpGv$ z#S0W^8=ukk8&rmTVMz^_{X!4YQ=zotFFl&$f!9RIGx^#mH$Gm-TtTfA&_jO>1+LfE za@ybZ?~k7T_@lz<MIxTNNYrkV{1s47RRBp||ZJln<5xnqrSTU{}*g zy?dGt)4lG#$EY_S{#)?A#xkh=rUY<2-McBAbZNlAcWhPV63XjRl|E%o1~fa#m^3oh zIq(|>wv#7zkY+*dqW}Q@#BCnVCoY<0+qO}BC%>l}2OTie93&vF!bfGeWqb#*PhIi^B?2O1aCbe%RV}e~Co{tOP$IM1z~so1TE_mnLBON7~j%0f-+48&-DKqiGdV3zFZXJO7uRWTLDm#@>Hbf zQfzIR5pP)74kN%61!1hgcDD32vu+@-4n_L-pnaDU9swLc0wV zt%gALOkUVqkM|`ak8PaD*TLJ@V*3)q>}7i#1#;Q7as2mMa-rv}?z=9M05k`%57E0= z)`k6_vaOV(j=P~|;u4HBNZJ^g;Tv`zZhCP$@RcM#OdOg96Qm+XXO(!c#=ECEfE7Rc zK$L+QqGqZu{R_(&7rDDlK1gvYPQByFyQg%2HRcyiKZNxNMv)#S@8bH|fi7r(!;Wy* z^dc6C11~Myg4kV>Dn|zdc>g@NTe+^IboCaAU@1b4LkgFtH!9vC^xId>yfQVt{;US zgW7o@ONy;gw)6}DmkMIo(yUoT`}MJOMFhN80JYj~NzNd>tV}!~m?xA~v?$5Q)KN(_ z?Tl>WTh!u-_K7NWfM45W^?85NkCQZqDQT;gaQGY%h04`h#lCc|{QrX#@$0H9X ze8MQFRy+3pMS1|A<5Q-}DnBgk`wP4FaSYA7Faa?A8$p_CNnni{8Vd{2YcErnJ&^-O zYj#3P>-~w<`%yKC7_L=lp+c~oKeyv8_RP+t43tUU(9(CN=m1pR zBUh<*BCVIAuED;c`1iD}Ew2x}CWU3t*N6Q!W>zQhd=hzbP7uuj!q_2Mw8KNBe96K( zqMT)|)`qsxlR@UVBFCSFUQUa?AT?h&|Kafa#!mJwM%xEz<-;X@c3lrMh9?;+Uzu$= z=mfYi-C8IWojstu@idIXx){Nr1NyyX73FT+63038hF{(#eF;)AXz4U=zCBu~j;m}& z`L}=B6Yw>WyL*1#mMKw^)71fAx(+FbmAG6pI59N#4dR+qZdbv|CyMprHOv?*#g*Rz zCrY>jVdPV$ut94Ni{fynjdCQV!ZC@Vtaq7l06ZqRzyc|(oC)bK!ZM(NzQtJU-mtd& z8$}#-rW+OtENfHPw01DA>YHV#2Ku6PWS6x z&Fb3(4V*^J=;|Xjx@ybXdv!#!uDv?d@8Iv8#EZm`DHDx1c8KTPvJ6$7r|zge4dMo? zY$O)5=VW{JbN%2Hb%Q;j@R0KhYah94G3-|zDBB3DAVe0&l5EZ|!Ur>yZzP@$+Di$A z0T8=?TkqxXKvjPw9~A<=n3}7Pon@}YD9o*suv1`@1V!Lf_N{pSZ460k@A;g5+C9~T zxUIVI@RM#P>VK>0AvUS{h0nc(NRde9T+Bbt&UVQKDK3wM2lEO|8xi{eOL*)gV-s9N zd?KmJ7S{{7Zae%Cgv`{2nf!EZp7d z3Pl=>MwW@E`5!V5@qfxfL|4pzje*q828UoA@a~K~h@xoP0NFO(94IiTJ$aC8Wm$RM zWNlKOp}h`=AL1Fq3?hID7i@i54v(nj9J|TUbY*;MN`;c^>cjGcL>z_A_nYBoPMWa- zB)}+;0XQvtw|y=V$KL|xykGrxSi7iOM0?k_H90d3qyf=5iv*|_EM4M~=daY&8&V~ybwM+F5DDsp?1tx5Dvk`3TDLcijv)+m{VyOoQ(mA{~9ZXYf* z^}6JMXnK{Sv1ZOTGodjwj7=SNwa1}kAw~)U0X<0E%R25>gaT;^`R%ha_y{5J9+^Gm zjHV2*DS&HX1Eppt9Lk7!B+6w3Q`I%5;Y!c}!i5no5P5+jvx%Cq-k>P5y&S@30i}N| ziVT0J1e5O(a(>9ZS#5rrOMz~ldH-Xd{Ah`u?{4U@&P+J)3i}SCd@pjhrU_uM)?&wB z`ciJ9x70Pz^y$Vzu!or((9Lra6Lq|OU3XQ)$SCRc5`{h!>GSgTs!9$)6&T0Ymmx{; z%xhzc&D0cNSa&YYPc7U8=~=dS5tB`k{4;QQyHn5xTU#66E!Vj2;P8|DgF-I6&TI)E z+csQ+v+9={Wbw2AZ|rns=gnGq1gWIxtxwxE1S={blRq_U{5m3ED6oJ1ZWn0zR;Y)J z#JGF-#aQsxU@aA}D!v&MRxs#1J#u>ZhJ3sa-_ihMZ=sRKCJ$q|KF^ZWOTgSA{5-b% zZg#xpZzaExEwgzKDaAN#mjg~){U^t!Iv+$fA$tAH45%=QmkLZ*XMC^&|7iJKc88!( zeh>t!@X2+|YNU6FPIYfDBPI6#JG#`ROEbo8h^nqnkv>yhOwAzPr@=&QVj;3t75_H` z4(lfJ=H%ia>YJe1q98WG)&SHQG))619M_ZPU6;Mc82Rl3Bk}SG>lUqT@-r+VdlgzX zsk6E}0~`4$k$^o@&)kn36(z2g@tqO|96vpRRB@O?DEf+f{`a{i|4Ycg2Fhtp82(w8ygcF$MD5dt$)n4D?D;Gki1`9g6oRUo$Z4ab=KZ4AJKJUq2hou$xJ|8j!>%1 zp9HctVNcKYif3r*K0y^SVv^Xr?3k4f@%yAXA&22njMFo7j_n=lpX;n;I06y$I#nMP z!9H+v(?#xyQ=>OH+x!S=GRTeA>y_zMpK)Z z4%mC_?g;wpiCXz+=8Y5ilJo^wiA3c`r6G_1H3rVv%lzx6%0wXWJV^zKG?>Fr<&2uq zBPX~XjEHpcHM5)#zAF(QAdELTb3ERJD(pZDT1a{;*3t^fXtLJ`)|G$hG zBd2Btn@o-gamPYyOoo``rkfTXgw## z+h;y^$6uC0(2=)mqIxhKvd%;OS)~A!-;F_e)))pR<(4y8KlgB%4d{4!zE$*F`>PgK z`M8sH_I0hTPVC#G!+IyJR7w2)nd#2CG2ENcmVcXT7--J{M-A*F`w53i{kQ!-)O9e6 z*&^TY-Fx;iBn4HMV4Yg``Jr_&Upd;IT>4u2YoqwJ)8ReQ=t=s5}7+5MzUO^Z}qp!u-QH1r*>e=Yl zqT%|NV0q=YLQ;+ePOPp5KsW3xta1q!D6N#5}_=1YE`! zupa~DK!JjTrws2vZpiq$$XX?SQRzWNEwmfp*G}n)~2oC84!@zVY@Po02 zwH{lxWPmAn)dbo>@3JZBEoChN9jR7@JTQeTS8Llo#B5s^c(*`a5kx_MTtuqh1+SX4 zbe(aiG*iOf;_yG3NdJGb6@4?>GTo>nLyI#>f z84hmS&OpeypuIcqmC2%)urtma=1b-C2M8C4MwXDg0gFSmN3C8g%*Z%++LyFY0yWL; zwhk-HN=)$S>NA{A4Xh$jsA5NcNQ%0PGE^V+--jSYs~peI1}cO_Ky!KFlstKQC<#*P zsf$+Z9^`Jf#N9cc#heJTw#%D(#3T-ah)&t}cx<3}9BuO;TgM!&0h4!&;G2Esm5nM% zmUs_-*;$$rd8KQH0TuapoBXR|9kUQ}5#3B11X@5A_>k}kWYw_TnxI-AE?)Ynz^55$QDPZ#95d!D)POZ%?8XinOru5 z%W_hS>bpa1Qe&~&H%uXLWp;T4U)C7(<3Ei^0t1>hRyVU!Z+n}<{Cf9?ePq+0`7crA z8urJ-Sc#ykYY;qnV2&PQl)z1j6~QE$Mmt}G?P*eE$@4-Jw1*%TAquJ#=5lz!6luf0 z)|7g6()N7nY)8wvSUjLw5%$+VCzamzTFD050hHs`Kk!|4TvMabwX&w7Z{`2Mf*!)% zf&cdgL~4tsV4?xufbnMZ&|ctB07H13GmFr{u!Y}{Qh_1!M8NE{?)BQ?Zy=pLWyf_K z$b#T0uHl_`{pIvOEdaz&E^wDwB46#|7sjjtJziu;zV>zg`ylhu zmMHWJXy^+(@N`L@j#AM*E$E1+U1@19?*$fEFta|$D21bH*AM&pr`%h!003T{ooLYo|GCi?i>brFfoAa7L2M#GKr_0juQPCGHx*52q zQoA&isnk7Bwvv-n&0&nwT+h;qn-f%-(F3lpbRpcY9(rH6tuF@?8+%eM9vC>VmhAlh zN(|;0F?hx&xP@-d9l_dYaWMJ%;{DAk?Nh*49HpM;O9IsT%@W~{ zJEmi1T;?o34}n2)I;8Pt80o8tIu;PFT#ZD8URVdzElu`y=izx5VT$X#?t%fxKuIt0 zbbMcyUG%ntbu}MmGa#ZppEl(e>F`1Sc1O6lnz$^za~OjSa??A$rUV|2VdgcB736Wd zRhhI-9bpqwftWcFok)8uNu%%Qj>|uR?i)4Q)^m`0CF%r7>|kGA=cZ*i6#{1{-rw2x zui14Jh^hV5m)BkC+=nSI`yF}ARL&E?-~fbB&ygM#%XKmox{mgtM# zgK-XkdyW>U>l=pFzyC3Sol&1yOMVmC)eRXJu~EblvAgSFSA$M_U%5&CX?sVJ_XGHY zw_pH>uim3qM(?qh?s<(%OWG>zaqs_5D7<&8>;I(`m7ZVe{l&Z$t<4?iQ2s-0k;-T@ z5S^r3`WJF0se!u~Q}9(p`42yy%g+epQKGA7#VvGLdDom+azcr$YC8S~>%CQ{8;f-PoXeoQWAdQN39 zZsr<-=E@vVeU0_oH=1`1!GTf?&ZJX<+_EJkC)*pcIbJM!#bG@+u7>Sc3wKQzXvYvh zmSz=P5!zO}7tH@An+FVRoneTps6#Umz#!0~tatm5K*u$y?^Z|QJB$Nz;Wqv3@Eec! z6h0YBR9~q;Lnz;HC-QW<7Gs6W39ey#1DsPg@8fNY1J3bb*ls%v$-MB++qz4J_`fcy z2+mcN{DsIG)MUc04?|zI=Zt8^hoRJxWWXQbpvh@m#?!*9`6IgQFF$8Euk!Oj*7>C- zeE1|Pd;%N{5I%=Jp7KAmu{H(YP#x*9zwW;J|)nk{&VOd3K z%4U#~F33P4?TLsov@MNrD>Va3&n?5X1d;x9FT8V9@YS#?N>X|!`#!}o`z?e*-wpl1 z_+yN?r5xiTLV&y#CP|#nYpDk}QE`>_JqMLYW5hJXvLKY<`W<&UvKA2#H77FT-bTMr zP4(5GKa=U4k)^Get>&=$#Sy2`;ANJAvzZknd&to_e1M7l+#CyMn<{i`x@{Os`$m1S zr9-g>h0AfTm?JZtW9KTeTqyOoajFkzMYg-|Q`V&`ZjX*OIxxV^u!dhSM2YUb{7J3T zFx=mIrQ>%_!}=kFMTrHcrV{}aH9V0mIk;=3sqI^hTs9qR@dAa?bdt|xhKqmH_YXV+ zX`w_+%2?jWsB_T4BS)(q4eJZ_>rAhg{Uzf*ia$i*o(q&~b9f$`jDjPwv-|HXn+y$Y zitQ!}WBOgP|30+3@p^}ZJR-Z|fAE|w^FB)P%Q??8UivTT{X0hv-77*B@1|%U*Th1T zoVY{oXDtNoW`! z8v*c3)RF04Cvm#MP=w71xCi3qEvN_1(0LMA>#_W$9$X<47iq*m0000k^PPB+ghYeh zU-?eDP~e^Dl8@piLQC3X`^M1{*3Jc#*f=W!POb01vx`V|?NnO1PUoSIuUMH6In`yq zXZ!I296S5IZn@Y118+Gp)*d#P7d)`NuHKrV(U*QR;N3QZ1N&S_Gokudm^c#wliKHT zLTa~9zkmP$1IOEp-pwRbUa3wxXz-JQPtj1xVEamUe0@^|3jSwqPgfC`&@@0eX)cDM zqc}udD$;0z35m#4tv;4K2OHv00A%a5NF1O4vBVJlkZ6B%dGe(yT6A)ha-&X_>~JnK zb`-!3X0Vg@x`$(k)tHsX+JRynh!LLS?M$jz^#fxfp3lYO)rtLwQ`ODzdiAq@*d7@Bo2I#SjsrX}6yeC{K${uqdg#nuy~6tH{VE+1GYXpiXAA z2#fl4WYj~i#8BBG_mcg2Ks=sHy#A|mSy}Jr^LIh#k$tiBSf( zAQ@@YXTyn*AtJ|O(#I0)7^v3h5S_<-|NHZ}%l!cBKK`0%b^EmPb=!wL+e`C~oBR6m zzn#%jg3IeCI4T@M`P;tjL@rFf%Lx}`g{mT{k%aB+ z2a6DCzs_@o*yZSwrR`7v8}C&lzT*~$u|1uKwU)0UGd7{&4)(va7VQiz%CHW;4kw1s z#G4roSHizb`??kNwXs%iifcndrv~{5-ojsF|8mIvuyzr$*R5UMWgqOs48B?b3m3b+ zgub^fzjmHZyKv{5X?}8hU!!_FcuLsgWa*DNo(KI}^A;Ywujs!;g#6(v{u+Hau)F`M z8bbcHcklSQe}{f;GkO84Kn9DhX%?eYEeSbh$Ifn=NmG>hL$0?rfkp~0mAPT8; zBsv1Z#XGM~m)}n!hR+v3tv;c)pbyo7;O9#jkV!9ND`)BJr}QtZTS22pYoz8lR)Qxi z`x!~ipGIij&z>twfSHrgjohvmSWep)#p$52uEu&}h9-B>3U|H0n3pJ0^_ySDsUEjA zIM|+n#>OBOfoeB8ZDJXw#`Q{oQaY60SZ!*dIwgiD$i(x=md9yhEL#6coL0+V@))RS zjN#0J(qwe%lUTJBI==0cfGg*W9ypoE))mMltEa&r;ipL2NWFD1?-!4ydPKAGqXw03 zgwPg4k3??64y;!q_L0qQKOB3WV@Bki`G+##Ez$Q7;1vnDC-@omKSH0f((4V@*U23w zn1{0gp*@K|C-m_hCb$RdKY`i5t=F>~QhoA(9_p4uiO@bLyC!u^2Yz=tz_U99WE($y zOo#n{4FL0aFeSAAf0_TEx$J*e=ZuG9@z4KB{3#E%Ivtw4Clq9UOgkc;HLE*csyg>a z0c0xTmNsu8S;&{R4RRIYw`j-V%JViyD313T0Rkbn_Pkk(R_{SYLK12l#6D%1&}0~$ z4mh6`$x7`QUVbI_{CZQN%AWye^pwB(%5+)BV9L6XTL#w9;N_-_g522JnhRFDhH#+f z2P{>{>tSs%2Jd=ak^x~_v?~y8Ppa(9Uo|q^rv1INOq^4SSzF1(zHn`xg|_wiOgVdo zj2k2AiEUN3dVO*Ph-^NoXq718H>Ynw^1Q8^VYjTN6Ui8%x=rrqX;J;5&Mp3#Ct}1s zth+YI0U}uK2Lgh>Ar{2?WPPz}P=d&4)JxKte7=4asM3h%i%7BvY7Yh|Tz*IZpAsGr zlg|PWfn|uv$1*nY)~kVvpGmH1iu{hm`hYFU=}kg{&pXZTaYr#2LQvn&iO?FE@R?vCZBtjYYyK>yD; zz*|KCeiZ`wwnaefF{ch{aQm|$A3WedySbU-+K~G}UlDq%8{l{*NJ)ylD+$cjy z7nUf9J>t{>J;d#CKi_uc|5naoeDL`H2(te>3XF|9>>^pWttlXgu({(ZaF6t(aj^)o zxe1$pOkqV61Rq+-dl(#MGu93TK}#rfyfm|7@-aC@(rauD1VBr~wyg4jLK9+l>^s%| zlqT5nG&uZ!2Q}G4XUB^d^KXn849#*U{X^2!kLTBo-#uVms7~iS*GL-T#*mnmTOSqS zN5==&&QGvYfzP2;g$-bEYS(%+Mjdbelw-g!a!k|}C^JjSoD1iaYWbH+#nD`UYd_yhv!j zgoKZL=O0pBT9vZaS6xfvMcQWszYkoVZ)bwgL%YCjJR;->~b6|d-@Cm!0V`*4zQe#u-y89+yW1RPPklHIVG_@>k^6G@(-D`vZTByfs4^sRox3=4 zzh)7qmS!G_UYdT_Bj2t_t2y0}dZx)bmxF+U)#R5J2X^#SByGAluQ0@K zdDx?|iMM^8Zau4e4bWQJk=GX@7McRuse9VL9=lc5+7lmE>31m~or)*gz)Y`U7!cRW zr0br4n6;+;y_eQ)I%mk7n)SkUEIgTPoG7gb85aDx{@zl!Wdla`Qp&ulH{Jj>AU+TsM`P*>7Et#3UMQ|4i# zAHR*Iw9=fg(RF#jv)DI59rU~-yzuxrJ@&A;yl0p40(sGvqzPT71f7gGcF zTSHebS(S~&I^;ty=SZXTE<``>aID9;!?%D6lc#H1f2XnTLN3Tij@mm4$ff)KK>_hZP# z;OkP$_3evy=&C${CIZrI^X=^Q;SvLHzJCM!md%AGaqmvz!M7gev69w~l$PejpLY?W z#~=kx|0>;e?hKYuFvL)6G`W&|ZTO2+5U$3xmQ!eBL=bPvxld{pw_O9NbkYkKo}S@< z$)|21l)9C=lXeDYhtK-hp#1U7+Sw39lBR^pYM>0#))-}~T680RpQS{Yd$YI03p1RW{S%?6Fqq|#n{;^UR}6s=QJ-#pTaL*4;; z=D*jN)a-nR{$}5)RV~jC`36H?0c#fi^>$69uEDOcg%7oQX z{9V7Jmc*s!Md4x9=0T~SbWj1`fYX}Q5q+Q>Elwch&ih%RbX3)On8HB(0P{J5K*I?UM#>I>lOsQlq3o$ zb}GFL8Lje^I>oYpV&(+&Z5PQy)Z4+{`F20pVS5c1LTwR(N2O|e^nXjoE-XINJ>d2l zJ@V!#P}USIG+fqOwNB*9F{hK!$%vY0q<18Ap7jT^E1*8;Tey?N*{k5B3K3Mv!u4R| zW^iscD^itM_W)Vz+7)JIQYN}wZVM#wH}HwtnY9Xhzw_u_Dohu6#&-@}$$)4RIWn`| zpD~l`Hbc{y_1r2N<*Zzhi*d!CBBSR!4mkOFUE6H?g~rp&5U}{6{~$O{-|wvd zUdxgf1#tM*c#V7b3&;kIA$o~BA`Aok_~!pMf75TbzePIloA3?)&i4ZG@&~|v6Mb2~ z|6Ak>V^-f3@EnNpZN6~q51atV0!P-EKh&0=av!X(^*4C2>;-MUIj_e4wza(4KOWte zd@Jbm;C*u@2*!OYe_MZyy$P-{*6LpYBz>0w*Fb_x$nT~PO5n{^FA!My9{d3M`SBfB z0eruC*S`d;0Y2Vf-aCMJpU|)NK;Y+hzhDYL6`1t~yhr%H0LEQIPt4x-y#hY_cKm=} zKLAMI9YD_KSzz0TU=7iSU^CI9pSfTap#3Ws*m8gIp$0tp0<=Q|fl5d~U%PMU&!RW` z1EQvm8W8E;{;q1Bh(KWAtLU@s3oxlzE;#7Wcht8C*#D|}R(t~-6Rr9w17p4_ zKlwlVz7$81#`Da8jdze=7aw(RNRxnDeSJl_Z^@Z=XkXv^zT3S0zAE4eQ2$-!&ie`Q z0wfj$2uOV@eh7Z;JPLN|p8$a0AVAn}=C7{zzE{OJ!7~65IQpjl!T6o`yzQI^4K)AA z_;7wC_!Rty#?4*cHDCvr2Lu8&?wdY|KK?nu6}a{V^F{P|^3nGIgxZ+`Rs-9J!2WCs%|DG#EtlJqrUpTcL5H9?L=Eh*U&HE9|8Z5j?2zd z(muyz@hQ8Zq!I6{UwB{xYnr@p(1r$=bOa$m_4RHTdF}3&|1AgZm{&ZvW3nJO3Yu?K zI$gc>7Oqlw?_HcLC2lOooRF&nT)O`ESi8X-CHxevuZ4ex0?F z1enHxjD$N?&`|>xe4^-#(~GVP65{9ov*h-vtX_3?Z9tSd7tQ4VTDvs!T;^8I+?WSE zec~I#V5{Ipib*g1b8nS?`J#&yuzvGrm6+fi3UX1G{hl@zkne+VIX)CQIHo+l7e|WXv$erolSwwwr z>n@Vb|r$G;Rg7tqf|2BR8;I;{UrUB6FdB7C|y zntAq)f(vsZ3A9>JdJK{H5N((U5EEbO*0*C(c+s=2F|64Va5eKL(V#M!D|PBrZ4}<@ zQC#M!;i4WTn%An;AU5S0GuOb?nk4avHP#p+JQ}QxJMEP-#J{!}2NvjKe9gY~@DOaLrjCc_4G$14AGX;y_37Xg=e?&M zWAUz6U+UZkju&AS;(|ZjPyW^^LZ6!632-yNJd!QWJ&}=%;0Vajwz$myIf7ATH`v~< zWz>tWgYHOzjBOl|$*oJq3TakK{hCJY^gW{Pnxg-qCB(gQ<`CN%&|{?Y!$ptp{UP+( zVrp(bM#Z{l)LChf&I<&P@MvIpOTK8M81zQ48z(~J>PYW0sCwNxrFz=JJZ2A6UxJ}@*0k;%b06C6g`J?z2B?Cv= z9~8L_b8_wq<@b$pbK#qidkJ|6$6qq&^RZ*G!Q?#(Me}~>f@JcO1YP*&+=ojo0oER| z^{r&ko5?vX-U}m5nzF!;HO}atDfb?<&fGZxp#q^BD3tpv7ro7Z4Z8HLjCrFhW<1nt zT1;&NM%aJ^jm=Tkb}P`@RLU!=>CtCxFCLY7a_WWH+3+FdxRDG73?qzgt*u6KRU~;b z@1Mk1gd8}l)g%>DiOp= zCP?m@Coet$Jzl^gB z4ZFyvWJ7f-z*{V`EmJp1ac+$$i)9n(g##OV<32@QZy7e%);cm7d`9}OX0m7`^vrwu z7xQejehcGjOCtT~APe7)=iiqwab{zmffB4;4}Gc9+z}}6e^N(9sAe&uJ|!z$L4-Ax z3QhG^O9%aVU&;1a(M0oMf8Ufs`ES+0~7vG#7r%#D7`eL~7-kmL7S4?rGH37a+s)9JMcK>N z)$7=)_lfO{$h}_-JwbvVDFmpWWFAequaNl?ek5td8Q01CP^~H=3 zdw=AK7CLM&y~gQq0xfx&JU_~{TPvRbr<+u$-9l3HsYd5PrEJ*@ zQWL-3=B+SW(!~!07HY32?}=~@mua%Sl|Y$%wq2j35wPgLJOf7$MnZ7eSDq&BeXfL5m+~cUp(3W`xTKi%{4W} z(y&XO!heR=5X}|>C8fmw3copRR3p$UDSnJM21JSCN#<57ALDZhIS@}n@HUU9f>jfS z(~TJ*eDP9VibPEVjfggnQlJC3SIS6D63g{D#dXlQo*;mCz0{RkAT2$pMeAaz@@P?w zFMnh$9y{y3%{+7Lpt1B9NrBFtw|3`=)Zk%ff*mDuu@6RGK5>pPDUsXajv1dXb=sGD zA06Q)%NT|4z(#}=z=95o%H*V5wSO zz*B7<#Q=UIb>lDn8qZFr*9?t&D3ChpB6XPrPYK!>ol;%sORm%b6*jbcX-S_S=a*1Y-Hm#1;H7f7jbkR0S7ii zw#LbdYC`TZI?`rpPt%78<;GcSuE78LTM z=c_j^rX#fNA;LsE8*K(Vh}_8QR04dvX`{-19g5`;yZz&{uZkqiOJkGq2OIk*d-aHQ z&k)7Sp%hTRa%OatUI=EEtC`7lQozhN&uQ}32)?x)d-<~Zg6H~QdT*@^r-QBc3QvCfG-799& zHNIfa&8grdBby{avC6AI6CmS@R6tM(%Z%YePfhL{EqBYk?MG`_xQfT7<7EWzQ+Rt6 zZzPyO=fAncWgU7-lYsM9)U&QxWP~2s=Z^M?B&rP3mor(OV4&2W)@H?#+Sw; z6C?9q5I?m-e4i9vASv2;PNQM%iC|u`X9(!|iJvy0a%QCd#7cx4hhXylpGGsQ%jyt4 z0S{sQgNR&lAp}tNXvFw__FucsQZs+LR_9E15_~&~FgUw*L?~(Ou&Msv6~jMVmSR2^ zaOQF*t<^cR|GNVDPbs4_r=tvh@ITnWL9R11J9R-j#WO>TQzW;d}74$6&|5m$d%_qgUY!8so^x!EA`I52^I^%g= zzoj>I9`jrF0KxUxVcDK8@!jPZM(d_G5RD!bfqpZJG$r{_6LUIoy-E9c?so>2PcR!W z{EK6emM|D-a;+q5tC8tAvT^3UJ38t%NO6JPNI0bUTG`!gm~P%L)AlBkI%jSR7C}=i zx>S}j?%c)Mkh{PF47ZmN_- zoYY6%CXzEIkc7GVwks{EVp{oLlIeLpZ>0_2!y2KcXJ$tId!19IvEhB z>U6bC%416vy0B_x04u&ig@R05xHO4%-D2>kabaTqZ~Qim`D3OKaLoR;egLD4h%gs+ z+|E-AQJA)f%_5?}ep23Ba+1!1dmX>cbu>*eNvn$FgVPAD+C49hc2)ZW{hQf8jhPx}5b`qub+wK4qyouFFB zIHZI6;gv)NyROY>l*sK}7N)oM!+oLdhNxDmcXUwa@Z@)&<2k1^NF6!~F}2c2(r{@a zni~Xl)G*gklYYsj^T}rmer6H?J(_;)AnsvF?C^Cpppe^v801oQZHKU{#1;6aH_^Lm zo#rE|i6Q60DG2SQ)keX(o{^JBk}fGnF8EEbIgf}r_6xKQjt`sf>-EbtSOF|FZd!5S zc9&VM*1WhjzA3cRv!!Qu%&@a)ZIYry{?uV#~-yTj#qlqIH@`1));vFoT%IDQ8wcQ zk6cmdA>m%?%u4}^L_cac`k5e8es74CCg0>Rx~EGc9TzrF%fT5$ZvWKjyS;L@f~JG* zm=la{eB^=nNn_$P8dTb_6)x^=UZt>aLEYnSdZ|_!Ocemh_Q;N)3wGL7skU`e1(+9c z43(jY+z|klw$yTVGP2~AFoQob1*8>a3;`Q8om@)*Y-n;2XoaKCBMZQu{(s;`#Hdn@{rYYxzK{~BSf_|ridl7EL# z!mD+w8MmZ4-booBP}9#sps2Vw4+u5RnxLc?)3Mi10w^X`D}OE8i?{MH>P|hEHyNC& z)$@&TZrT?m_r#Vw^doF@k#KTA#L`hg&>c6?+vCUQ5k2P0s=tb!QF!L!7fkv9(TQIJ znN?EeHTsl`#|I-AGzuK)li=I=6IW(CZP2NgAmpfgG|z7{5Rg!-6HrmLZh&nK;- z;LJok*{@GuQVu$X=hFZm|Ilg-@{bB5cNYZ;Y(AFSNR;0oCRM`HLmo~|jF%JP zAzA2spB{finVG3c9@90HXe!cyP8iYt?sy#-r56IgjNF2qU&78eRXEVt37#=D!j>#M z3wu8^4NM<4>%xm0@UM3w5jO0+F)w#({NFjoc|YLtag z<2uP|UqVX2)n+6V5p-mTs;7d*7*><95^6i=P0;27?UYi)9=*4EMIj0>)j8z|L^gw& z4l5y7T4|$sA2*Rkte&zrI@#AKKQlj2%ibbuBK7wJ1(nUix%CJh$r`aHVjkE-8tM1Y zPsCMQOom}GXy7pMhyu>~tdxCs%aKMk@hQ^T*O2c9MvfJM^j4Pq$7`MMp(0c!ABxWipo>n>5 zDti8tdIs z*EO>slz_ze=PJ}~xB;wjF~8jmyNl`@0+xjYo+x#wn>;8@Ef6DSSVvhrsZbTQMkV(D z5M-D5hDpt+MaETQg`X$OrZ4REhST53XOu8_y|U{H#&g;f{`y0jE~B#wP{K07hHnwK z%QFxP&6OzHiq8GnIeT+<`{Rxr51o?dihf{i<$()+vKEsm$5PmDH#vE4VN_akM=>9z z1)XGv%ENJ8cdGPC#oZgml|d)Zi{CZTZ6J`$w;ky*e63b{8HxM6${E5 zbt+8clr6rV_LvUhjl43<$%7kSI8g?7TsrF40zCd7uVl3cj#VqrV4?v5rA>KO!zzEY zQlAbMe&@*tPsDC7TeZ7?U}r)al~u`kS|LYe>09ZSUi;>_@fi{SLM&?gLVKo_zWKXX)FGP%=0u{!$y%bew6TgH_smanweN$SC$y8r;U}u zG0lc}RVUBHh@y3VkFeIy+Y2j&EqySJw{mBSfQK&fiHH<#!mut|W4^-m;Z0ge`k0Pm z%DIoLrMBpeis=WVZbZ9LR#bvRB~q?&ml3rP%+t3@Vfg)geFEGr)KR(t_Zrki-_B{@ z!}t*4T66>gN%&9^bJ*fo5~z|(X!|nAEHfk7?}eam>B?W1jn=FP4XQsQ0iCsfM!IHX z(S|gUU0hk2{IfR5JluMJ)%`)1TWJ7P<*{2@`LUvbd7BDOh|VcbAP_)Nv%b?r{osfE z`@01)hefFY`LIP7Q_c&oo^8tvnUQV%VIraB`sZ?uqm_h>+QY&iBGWT3jbyDpJHf|L zb^0E+iF>ib-hE5Smft1Q@Nx_A$^R6Zo#Vu!bOLKAC5{u!A?Ff965Wp(JPLD`JY5vPeFTpU#Ul>MIp0A(9P$Av5~~lsDshn6t&(#A zgRO$~{8qY=zHiQynL8}KNOWY#(M+8<3?yzF%Q3i2M1)grBJXF|bGQtHDADoZ9O6-9 zHVdJ?*r@J~nC5vJ@3a>abZuqsQ-`+|d4A%eqb%D(-TbbE-Na<5f|@@Js_oghcP0bU zC0?uW{gqf{X)~h*b0d3`?xQq}c$fnn6EIiv$}P~+V`x;-s~f#Jv=ck@BqH8_B~X$a zosNpj>eY5KE2`HppvSVIZzsqQpl*|~{U^q);`KQHRkvE!y?Z zTQ7~OzAx-V_U1uT=!j@hKK?t=dm|tgn#Gbu#sosaO{EhW#llRcY{CU?hO_3Kd!3e+ zZdThXCi#nlU*8Hi3cW*6H)`den49xl zQRra|oveU2ovfY;4KpI%+9#)%*VTPRno(p`#2yd+Tq8?P(eA0(~EV6s2 z|G<{HFf2wSSF$6me~`&wio(`_P=GSzG=G70jAMNEs`-iZ{IMM;UUsvIXczENM4q9X zXQ-`vtt84hs;beZ^9p_&!q9{&QAs)+Ffd|RUSKi!MS>)oC4d!ap)fTN9EFHhrc#^> zukd)L&DB@1^E>d zFgaQ8$2m+a_Veo4&XC1^XqI@Rm27Kzu2JgBSXk^u-De6Wl3#ASu9dxc@H^a_glBGP ztPCTep9cv#{8amey-jbi!pg;d*oMMLv{?|ltR;ddcCI6ymeb!H+i+BqIdmTCo1d8Z zbjTVjZfDau>+_wiAsDWT&jF1fRsP591!Quj3Cb!W^eN?Kk>b7J@|`My!5(BQ?b7lO8>C-&}YY8gSxMFg-8c^c4Fn_JKX_6 zrn!D@L!$PHXOQ4*tIcEl#tw0&-$(FJ9pxjiBy!Z?m_u^f10;2Pwl4_~=(EiC1)!BN z#z1g)9rqn5q)Ne@MrI6zt(x$(9MOgJ3~g+R(Tp_NLSsLxjl|%PGsDHgtqE(6aZ(-E zbde{&#FhX~5v$)?$?czuEk8V|D5Pp}Ox@%dJ|MqmSh)}$a8p`2PKt|? zel6;pf~3@TsUGqm>@&!ixQ=D2?Ssw{A}#(1O?d@ZdNrID5x{oVQPnGD78ZNE7SS~n zyuzv*8bwUJTfF(h=S0)1rkbaM?%)=TiWFSs49fqMqg{}*a3LAEN4LAxV+uA#kvcOa zUoEY>fMnC<0Zwo2HWv^XIt;PM(yw~5<@gC@yfIptlJyAvnEELZ@l;83tL+0n90Vnx z{2VDerfX_W!r{c62;9X^*dBBP=QR*>geeZ;4jnR;CW}@IHu=WYWv6xyBB7zkU6JGt z=`=B~EY@QQ`!%9G!ZlE3m}E4h1<$KFppfd-RJ}#yIqXZF{?(c~6khLBK|P8*DUrVl zX_ZS%2~t@}4l${}gXj6sDDsph*2Tp+aLyJR(31Ee!)<@JHSNK9!p_Wp$D&83;WTT7 zG3(tNMYa76xO+aSQZeWPEMh}bW1Cd|$nt^R=k{N<%VXf!c$|qOsF2dosg0 z4-kitz1@hn1cvs4uL|@auqu8zd=W)XGMCU%vAf|%=d`I&MB)aV66=@;87ZAh<9q4> zV*4x-F%tLVy`c8oU2OF|J7>@x@4j38>E+^(~+9lmF- zYg}@)uH%LaSwN7Ci8Dal&cPb}zf{`xmiy8}CtiaV#SUwUlo+kzwtAHs@MZ;+Z9YU3 zYr9w4oUCq40D?;GZG*N4JWbst?VaI-%+8yrLx-hb=pE5wrL_qhsr#NePoH;}@F-=p z2*nSIaAR^SrQ4}X<^qm4=2Ka^iBNQQ49*KSrR65zjZnl#Z*xwSew9iS>!-W*V1>7D zy2h}d5~;j>%o+@yCsXPFuI^p9TFBj8cC-X%qUYn7`&krxVKkX({J0(Wnuvx&c_JF_ z=0IToB{NOiU^6IYTP08}NJf6Z?jLu^ij(U01t0yEz)JZ|)TpXuX!SH%EOw`JERDmQ z@mQqw8DV#&fQAk?9>7U~=;RvWcG1f3%tZU1gSi)s<{_5E8_-cE!YcMzTV|Qbs^0^o z5}8(WgCGMySk5oOQkM{(9UV%T^X8guC5)^ph0R~uXKnG)p(*A)v1`DqR zAz(Gda?Na5Cx&(_GGt3!i+clw_+Sb&$(xRceUx=%eB6AGb@vWDmC`2V5~NCu5K3}X z$d2eb(KB)jij;XAc;P2Oa=XOPA055xXZKzA8oQD{X2K5@8=Ud-J@;B9SlQX_eR*ki zPD`>@A!Ub~;6_nxl5ajFANTs%m5d^PjSw(o0NtHnba8dG{;}rRXWKJ@Js*%04s4(d z6QS*i!2B6$KAUv*cJK!<8>NJ6$r508UiiU+Ad^P0lsy_tfC5(36pw(MguBBvpHiO+?e!OvaPQ%g0-w7OCyv&Ft#E}1KzGbRwyaEyWGK<#ud39zYhbd zo+cfjRMkv%QFk*ZtWJYK_a^@|P*Dphy1lcF=nkEgz4q6bPkhnVYJ;5gc!9dFv&xm@ zZZv0M2hTZo@KVS`ehU%8XuI-A_??r`UF71?r(T9r=(Z{r?`SJIA}dfJ(XXd(!8Zd_ zCO{KkHOwX!evE9=VY;%E9bexmk7l0M*bM?97FZB*FlNsC`4|~fuLeMwnPb2V$YSBI z=6kebO4E_*4PoH#^T51U67Y$@v_S9aaIUHDQG#?#_zNK7;u$r)f{SZwakBX}>qqSV z2DMuv6#sVfJ>U>3zfh(|@zM2(*7f?;`LKA_RA=KePOs;?MMaq~#Oo(jkDhs$_NVnV zJf9Mls}}4sYt|H2aXY?_i8x7P1(8E)Pdf?T!j&LYO72}zYR4Z|deuO*quM@uK>jGh8)*_CEA5F$EtL%XImRSApD# zWPSiGoib~BRz>@6bA*T$Uwb!Kizs;P7Wh~JYkgY9W@}{JM6#@}!+xfOM8P$Z^=FQ} zYH_4Sv_c>QMg0dj{E&$~(}zMPO9EoA*5Fygk3AdAoox(}>2j_~O3|OK%6c!ag3OYHXP9M=@aP+Bxy$P5mGuCioVWkYlCP$jsE)8mSVfTx6Bh6Iol$t-?v8hQh@ z2Sv&?G=cRu4;%9( zNu^B6^Mz7vnOVrbtQo+X_7i*D`+qL$WWl%tQmTOr z4k{60IO@avGG?&UPxR5X8^ylE6D!mBiwD7NCulC*2GeO?^z0l(hVVQ4Wy4WFyofM+p~&8 z3N9;xw(2q5MyJN=q)$yZ4+)dNX3kA8$?QV9@H9-md1H&@=NkUr;%?+>r>#Xn=4E8P zL``0AlXIKBw_6EnHuH#a_G*PY46Yx}clryuXBI37)8aSD z)+Jn)vsYmBvp6gMxz2pb$dl}Den>|29^wqWn_$ip`-E@%seCVF_UiSZlubtR;uPg! zZO4y0E|4Ec*ju&TP%r%9Y22|xdO$UpHdLnbK!BT5o3;3hCM!3BD7OrcT;K>2jNsIO zzUwts6k`lmbZ$A>j$K1<)+MZigQLKLy11m0iuI$kjWG$T2>M=Lu-2^vDzjD$oMXqC z#S9#yN*mP8$%~dy>*>n(z75Gj73-{7sjUJ1iinpEDn-wVf%S?^V@^ix6uoo$)0f_v zbwX>Vr@yRyWR(9BUV&36SPR>i1cIK~oqL?%#y!ueV#Tc1ae)xuwaHD=+7+~_L_yp4 zk;@o|#LQzE^nv@MgocnpJ)FsNzy1B@%?*%9MyOg+p|`;C%TFlfke$!PBbVt$4U!6X z0<_LN1D}_KP5V-`g<_GMvraHCYo#wZd8B{p74Z;olRij5@}_#r6;F=X<0sIa)&w}U z+-vXx={d~5{oKs1%9f#pco~HirWL(=o9PTTH?~-dDh>s8pi?>bwEA9p1~n8&XU)TD z8Kb^Jk6WacgvCFj|B7fE6`^9MDt8Fl_)Ko1@)s1{fR>c+QFMM{knDR@hnO3mzg5;H zWjO+Uv#oAP@B_D8K%auwUl(AdsY$9>?i7yU_CcbR;OOteN za&@Aq!hxek`ujC9`Slh_$g5Ps&K3<%1=cQtqK~SB^7}&Y@$epchTr^1qh&iqN5Qlr zehx@q6&6H2W%yuE!{dL+MmZ0`Wuhh{FJqfy)I9$-s%VY5!nd#vxx4t8fUOU8qE&01 zxv8Koz?t1{EL?1_rIK{tv~5>?X1*3u7&@hrKF>iaOY*Bymm$qxnm8})u`7A)^&NIJ zQ{Eh!Jms{oAywwc7;CNI7VE<-6{h0HHZ}~~2g`8s2lk@GkBgtej$}0g zn81-;p}6ZqMa?S?b1&xoITISj9pi(~l!YnY40qe`nd4hdmO8U0xc2zrF8|~YVB{)m z{N8z3YbFx&4tSJb#t?q2ocHL+2FX{lnM){Z8W z=)HnD@Rn6vYykH?8SBD_+jaD(4i2DZe?f{DC70ecfAV$}qoM&V$CRXbZ73xz!- z0#a?BYv6$i*IJZ5vd8(|Iwo1Q=;moU0fOmkEIGQ(Vh^lRM0A$C^aS#^$q~C2h1a0O zkW+7S_8(@tqcIx0r7#Bxq`@O0pdi%QWJ2!Sr4u}igYSlEt8O|U zhUQv4>j^gP3#QIS%Oct5a4CTUx7W|*zZ;^&8LASJX&Y-ee5PnN69>f)RzC4^kS?^m zTvU+o^R(tIVBW$YB-fCCO$DK)?*b&_pD0+_6eDdS-t`KEs^*kI@JiYDjv@Y3}fbhi9!pw332i@AdtFg zR#&4z5NP@&$;v-zK5qMr|DhPSD*pAs@>91BloEzOs}~9OkFrOk0Czv}`f>d6y0vhJ zP-(8re%I~8dQy~_GRNh%r475``Dp(;zVd=dADKH358a<<#ep=vB9Wi)*k)CC5R?ds zyb0OC1;6>6MK9xpeQ0D);d!3x#Ql>?-BDe0kd`IGd~lgs9EQ&nJ3X%8xZ&p~wDuTs z86AG8Adlr^TuyVySt7|qjSE^OGkCk4#OFwylWy=rR-0w8Z^FK?^KP^J)zNV`_UY)_ ze`sz1@TXw^;Xd~hILRleqptNdi^eeRg1Lk|aiP*iIE+yN1s>4W_RNZ$%g%+rmux8a zOj%H%5*Z?z0y%+ilHS`y9<~j;w0vcAW@*4|+dTc7r#I<>AF1U`j zB0oREoZKT@)SofKHF&S!_F92V`0{5c8mKxs;7-`Tzdlq6qg!ul+)Ixbcot9&AO&~S zD64W{z`6mc%I7HVD&}z0UKU`YUATL$j%a1wOAWevK{Loij9I%ne~P&NJC z$RScH{h}7^&PTpGiC1d-LiqjX2g1ICVnwQmVv-vbpEZK`eqar#gk}v|lJTvx{A*L! zs&C^s2JJSr92_V7ZCwIgSw$ILFNBNbsK1u(+2u|XM^86YfxxxKQSsO&Mjlo&oJzeN zf$CH!(tX32I*}RSx{YsmSj+H9r&QMvHe?- zyBPX2$p@My$*KAKS17MflOM)yUDtYu0!B1AMsd>!QW_&njAbCxERC~46FMC1IT-5X zwdtj;9~hAB*s*XUq6HB=%mF_*DB@4p+(|q_3H39qg!2;48mS1DLI1^g2}YmC0)`f_ zXw;VgtealkY9hOBcSzJoF?;i}il*%?>N;7x;oiPoJ?REha$s6H7PD@f^W)8>BXG4)4&_v6d+RdnwdN*LiT zOcRlw10|8DrTKdSxg>dV0D^6T>+{VNMNf1H)PAY1X#?Ng1K|qQ(Z0$8b=V*BLM4dv zf(dNVI{&(rrh5yPuXvqzP0Zl9Kvv%anJe<-ad*P-FN6`3{YO+#Z~CTpr6r21}yS1!x7DPmUJ zbDVB@3ld0!r8OC_MFvZr`58lrXa9u^4v??K<0^Out7c4QA2XvD?$$ZlmupmpI;?1@ z#?In-uaX_;2uN}CD<8G~<7s)3nOchq6DK+2q~cEC^rPymi34XpS5pliRz~(^b`+>H zMP#ISZe}~TW`vM#nqs_#m+FC0cwS2DO<1qj+?wdqoUhl{dBt-XKh8txO!1~BavT^B z+lq7=<0o85nKG(Y#4?u7i&VWgxD2R4r6pE7i1#{nyk%)5!8An&LPF!dae2L$iGtb^ z7Foa?cz{1Z6MtyBbI+i{Z}aY|eTBBF8*vmy->nZw71cvSk}Z=Vm{j}`onmw-xTC=V$iv?tONf`H#D#Z7P1I=5U z1fi}MClz}^Rl+kEDV7U4tv?GqLTbznXpAe)DNw!PH_X|1qkpg7h^UWzN=rVsi#t`; zp7PgO)%%G@+*>80L%P}zHdL7@O5`An;%{-NERnf&(^VB#PaAj=uAss`$;HP$tGJ$m zq+gGSJ|VGrpiIRLW%TcSRSR^gV)tD4a`sGj@bSq@zofW6OB)SrI>dR-+xaeKeX0*5 z0xFJ+e|n>4nC+2>;lo9TlVPRieDB0OdArfulyuQWi^f(BKSs-4d&+-?zJT%LqhQ;F zyz&7J*g#G8q!fO8xFYHo4{NfM6!1HgU41;pu+Ejgd529WU>*AHz(?@6F~=xMq?U|1 z``%zrl(eHl(Gj)Ve#(Tej8Wn_Cg9IlpdvGaP#Hxm!lRhQB)gOm&Wf=W*_>)i>hqe^ zXFSSc3#;^^5e=NLV@~TFwuDgntFO8sva1n0_%bnV9nxPW{)Li&OwCHp8@YZG*Qv2- z432qjOqht<#a@NbCuI^BQ!}V4Z!s&$eJblBYvLMjb|3wV=(2BfH`r|-%<}6PUTcf` zH6j|^8cX^w3TQsZaE>D}qZr|90S6xvI0x8GTjE6%0+EC5lGAjYJ6l7&0%!9m+Cnr$ zN*iPk0RHj|&FX@h6;)Wo9QtJN9&FDn!$ENu4}(yCW@xGA zlWXp?+MEnb^#q&%va}-b+{N6&RZ8d9!zOFeKv&9xj`YcJ9?3DP53bq2d`m1^vuki8oqF4dgBm%~?nN z0Y(w}S5V8Ix`4fd=jamODBE2UhDrw$Xq;x`wp9G~cYwTxuhlfLrM=G1_EI%nEILb9 z!4;!N>GBNjU`S9M?=0gqm_Mkw`m;ppL-%{cLXTtSrQomt^4X6DQX-K*qt@9gMJ
      (CwU4+6yNH7tcE z=06X$W@LH@2qBqPX6jLZTYf#dhEEdky^jj1ea0VF{}hQeG5mhc`|+X_%F4+4ukycN zV)OAdc2!$P1V{jYhc=!}`??|jkr&7sO z%>T2i1EVyN1C^p)vNzQ~4>L#xPU23xK+LYoKR@|#tGPk)C$LaUfgnmG=PxG9;*j#E zR}WOjfyHmO7B^JYd&X$J(R$H8Oilo()G!`c(mUAprE)R0fg9KYgx2Xic2~6%-_&ox z$UHF__!n_JfLE~E${~!+;{3`_{|ScF3|pfgRrQ%4vt_^_#=hM))c>&YIkUq?5ZF?b zuLq-_vkVr^oK~`EfmLuzQKgz1{2mGpQ9!ejfq}mZ`Od0kQq7zu&d9}hluFs7BpaTI zT4$}G_y)|Jdrp$4&%JE#MNOC1OBtuudBI7HtC=WJ4ebPEP`1sICE$yl7YH34Z_amd zAC=B7?dC~K#62nh`rO-c6|&p()K0I^=X0{xE&GWhBv62xD0xZVkuBT%Zy%vLfdle@ zf|ztQfaJoQ2g{GET*>xyQc)fw>vJi0ZjOW|f(#DI6UDVm6(06N@m?IXMxE^gi0s6( z<=d#2CrxSQ5;;!wY*_WTwW5y)BF+hwp-Ur<+I_oZUUSLI3?{}<*xQ536?KgT#!YA- zX7IjPwTp7E5ss{?99T)!MZRWhZ$7%gu zbZ}TQ{+z-_qHe}0*A=n~?u}?5sbAWxu2l=enPr?gh19DqOm8P~$W9#L?D6)-r%Ukm zvh9r5X;ZG%jPe|6){$+AzKv+_h}1y9E9hOu^vhL>0K~Y?CUk;73Lcn+#54hZ^l*r# z^hBWR>Eqi%;do=ZESkFUaCBmG=bX8;W?jyd;-L6n-8NOss=M~f(jAVF$a(-T|CnyP zj4*9&i>ak4MG%jW59jbxkTU~r+3px*R}~MxVP`(yrVik5$JMBgcj?284l9MKGG^Fx z2~8td5oIlJilD`wR=pJq2?*EB&!^g*jgj2!4+ut{!a!>%{V5Q`JYhg*1a6Fl{mm~` z;J`?EgQ8e1Irh?yeXQs*)Equ79<&TybDCrWVr-D+$uNk-wg9HeGkVdX?sW;Z^#!0S zY*+sdc{JTP>VXAa3#imcBSPyD2@-f^YtTvVuwVg7#nkKWuMq62~ zz#Q9~TrvLD;`w)sfV1m)hz0wF3gDknmni#o{HIdjHo9NJ6){mX&0g@z>q4Pyw@)E2 zi#-FxcgLZalK1h^Or|h;Q3qKfPs5}i3o%FPTUD`!Z%cOr4Y!k2mOnpaf8N>mDb!s zwl#Ks`JgaiQ@03HirO!5aq{9UB3ceFjNLeBqW^Q2GPAs+A?u+FWAt=n*cLmkyjLMK z;|sf_@hECXJoQ`lKnhOzUgzsFgLvCEMU3c|jOLhvqZvIZLa2ap)DuH5N z?T)XMSWNm~m#oM$@zY*N350g|wFJt)dWNw#E=#u6F3rS$3IeGlgxZpkiAde0pg6@y z77I$QpsfrOOH>+uq}BG--`Qs#E(I5~#>O8TX6eR%KAZF#dpF2gsz_)p8zsM~x*ov` z20k9nkemvk59YD8McpxICx`m?Yej>NoLp#I)<(16s(reOO((cwGAOYSylXcAdUq5T zRNZZXJhl)(5+|D;0#PQc(DrOnV_blwFIbgZJK{~jya~w*pKMDo|GO6ANv4uV*Wp3M z<{tr$&&(|C%3Ou%4^(2ys2~bRm>8pvY2+~vC(Q6Q>cqjJwazJhXJZ7Q0>$Gc6iKKy z=z_haM6yK2)UbLiv57gM_9C~B;$A+S3z{Ja=GSz)klA7Pkz7Li6pNtAD6%okAho^5IKXqF?E*6OYEE zgUj7@d#C*&$rOF3Mz#9?Y|Rt0*t7p(-`6wR2{xp z0@yjZTM_>8{p$NrpkHWn&NgOx2WkxAhz3&mCl~2=!r9J6aCv0%Qc)M6Kn~*3N5$#n z2_}~$&VM-6$^|%AFN7_vS3iiZqN=~7&dr-IPC1pST(hlQ-pN`W_#(g_CG@|a;!N=<+OuxR78GV68f(c354y#Q5 z)Fk`xYwcRwR+&c2cQd0YUFLaaUQAOo;(%IlEc%A=P>aeuVRfOuAVvIqV1Btj{o34x zw3iBHk=>-1t&RJ|yNOKh|0E_0S?&9lBu%`EAmo;kP}the=Jr~5JJb1g5<~n|0`CIu zO`K$R_2=dI`W?ZRl;EInq5}4vVIQFN`aM+oV)S+nA;3w7L!qreVX16TaS~5)Ni!gR z?2EhygKGx+!&?vI*wazZzk{K-c%Mr4}SZ9|L2BY|O-rR6ZNp*6e6m;WEi@ z^WiN*{dujU4a8vW!B2kc(`O$VNgQ_*=)|lvX2tj4DxENW4K^Y|n-h~}#LVlhB^ zV9fk|MRrV#NdOh7UuY~UPTQGA*#;kC4JUaxXvGjr$HNSr;$sIaWtyjs2V7`m4ODvO z{q%1rASDkAtUDcSTgV_`<|3nhb9%FM%G%tOBr_}T6YmT?D_G2Nr8dC{L;awdE zJxDw?UwE1FocOu&TKL9I^u95F0Q$_>rbkIuN#yyGm49#?RS;^WG?J+oL=h%r_Onv6 zZUZx?qE|SK_+84EANr^(ioLef?-|McMZQCXwN`bo&|&4(DATH2Bs;iZ(}%id5I#5? zJ;(aerH1qnzi_`mc;w?x2(Rx0K4UCr^44;k=Use238FJiqYM2S^1o{{9clB2V0%N* z&IaCSSNS$0nPw?L7LcF6C&iUD7PyEl$Wv%e#m?x|qlA5Ny(8cQIv_Bc1!AC12_M)7 zvGtE_yS8@8@(@3^PZDy>{n3-teks3*Eq*+MCfgB`sn;}>!ph2&{8zf);&d#!*@Ve` zTX4lf@J_&nlQ^NGY%Ne#`G8gOloKeLrjIPSpj;#zpo(=ANI>LasP&%haG5af*~};@ z+8O}O@wM5StqLL(8Xtb^ZeDQ2ZBK(Yt@4$GKf2_h8p=%Ty*E@cJLU=_H1hxGHffcS z-|_2w?u4&MU@G8NPZmxm>SBsUP|-s^V-?o*a9a?(wmCmps^AUorSv@8YLZ0fT`Nmp zZHO~dbXi}ShV;x;+w5ABsP)=QPA3@X;5V>|6#lsZZHsI%8k`|=sq@}pXm&L5+d2~= zC^^?7p~;fOGt;azBX@dPg?vJWLmr(JdhhR7O9R8E5!DjExPu0Io(^hI>IT7^<-T(Y zU#$gaC!`PHQo|U%ma41T-Iju-pd@QB{K+MpDQFndD8!>uEn6}g9?Rpz!Fxw zy-=mKzCM7-346 z>DXBHPKo zgK;TZ-na7V^}aE}?_O_v#0V*52FxpTb5F8iri(vE^&7X&1WUMY;T()D$tP3U9WZ^B zC(e4fc|BE7cX_yl(TUkqV$(>XM+YRdzkEs2s_6Eg>vj2d?y%4iPefEOaqr@73OXwD zR-a?Pia|+`UX&cpeG}HMw9oOT@uW%tqLllkZ34Km`}p28kxcS1n-4&V9i%Ic^rFTt z3tQEzsPWHOIXnVKFop2WTt*wztBtQWf0p0r#DH`+?cq7{NVY^h<%x;(1b;P@s$zA( zW{yoJbm{W;Fk^Y!Pp2Ht3hhcgJC#0eLicBG6}?UXoT6q;v7LY#dQgMu1il zBJ@V$QYo06e4S?X!_dyIljJ!^Nb(U=?l*KE2T5}1<+MiLa!TOkPC)gV!ZeRu?x3I~ z-v^&9W|LeW`q$rny7u^<;IZFt7bI90y8%IK9e*Vv=j0RhuS1!CuL-dmIn=WO0qXc6 zrK)n)aSTCApG~UIvgYSx*Ueuc>h58+(Olu6v3$>UQr6z-7O%QhE=y&fNP<4R`74Pc zXaCv1QGjZgam$45>%)PyZ_Yaj5A?5aRFXBErFdL~1ke@|`P!|j-9K2y&Z7gm_R?ie z@LvLPOJvgLI(R#+Xt~%2H1id(Cb-PmmISMw5x(SHg@h(%BgJkR4EXg34}@R6OQMCa zieqm{5sLwEkyCKP{>rP`*m-y(k4no_Kmgx=X(0Bx3}uH$8(q)ch}Qn1t0Ok9VuJkb zc7jRI|Epr(t{#M(qpnSGeWDMuI983Ky(K_tOXz1*m3j5Zk9X&xOeL}iqm|5me4D%RG(tgk8JdnK?#)inm!$ww`|!VA zJP(3>#^!_6QnLP`%l=>6_);#PI&zJZFZE>6gpMI(v6wJAx<=8bw&**dhmjJQLNP=1 zDX4y$Z3S8ht7-^W!Q?;&bP0Ri)V}R1)oc5usY$&mO$W~x)E_Q9`e89-n!{o1^6xy^ zK;HTL{~Q@WKOju#%-wQoA_tyQ>?&binY}UtD*}fTZ-L+I_JJlo-Ut>O&?*s&aQwe1 znzEkwi+&nyhH+srX%VqdE8M`R&1@8Qqa;zW(v2)+ z)9BsG)>cjU3c)3|zIt0e0wDvUq`Xu3(R?t+*m-)He{O!QDp<3I&kS0K!JIM+O`SEg!+(dK& z<1LgTq3-i1k-g2QX)=RtXA4dYSuUauRRwP!#?9sDko8ok?4*n>Ul(^j2ld@TI>pq_ z;M$Hz5FNW#i=R_KljSV+fPg;%*lEccFxN#Ilhi^Y41yHkp&cEOz`$puHQ(Bg+6s)& zB1;Es2d*scDYdEzjnt+w*x`z0Wwp_p@=ue7cB^$LTO+zowDT&|X8)jT(Bi1;0pGji zi#2M^y+Bq4&S?U3O`-^hM#Kd)vzvr;d`t6dmScap>%;t6&=G+H=2N^pB$do6<)0CI`+2aG&+r_G*Iif z5plev>D=AA z0LwR)2terkja1ARR!ZtWgdwtF;sZB8b8FP6Uia0)QcX#@byZ(~(XdH2h9B$5M_#fi z<^il zIiWP?>p_267bx#tC%D5wWWQ9}Q38-zV8k}&Uj=c(0y*^}zPa8x8XF>TV?ZPH$J#j+ z5A6hR{b(AZ`xxoNxv*+>WN6L_)eYcUUn4Z)^gk`%W|sJ=!NZyvb}w(`nc{NkFxvqI zmKTcq8u`vS5&B;Dd2bW`woGzwedF|}L}11Kj?m}rVK|J?knI~f&4NA5(7nO3a}5$7BM zIQ}G2Pkx`jdi0fRMF2Xyoqjse@XL_~j;K``#NE#Z3=GqK7~5FZv&tPvvK$mpTmT({ zMe-ftg+X!lN`^fj&fJ!50Rgv5fn#b56ztlD%|M?rnI-98;?%6ad*7mKHhNS6bxSU1 z{}uO+|9i3cMbGgOfG7X*z|oLY~z7`Xe?e=)HCz zPA^3w1Y)z7HT}*#NYCMDNx1|hjoI#n5?=-yn`UH)rSzV(RS3<*^&3@tE4+Jp$GSz{ z{fR6l@TI`vIcGv0Wxq{-ceS6d8ArPDUIHQRb31BX632W&bz1eh61rjG$e89jg)}jC zq9ccfBfdoC51J}{+1gj3t~DpUg)*Ts<(NQA4cPiGE7i}d0!kiAWWufep`zzOQX%4) zwg*a>(_BK`C*jo^0=}3fTx2bzZghxN==C8OEQQ@i|KV{ogu_ELwVsS&o=>WL60zCI zY!N1$HtsM{(hQk>Zaq3k1qHOuR%)m|N#mri-XN%atR(hWCcZNG{7^gJct3m5(SA&Z zixPQ*4Y)EA$*r^ue0f+T(Cpp06V*;9l&|HvP{z9Rwq9WgF?9}P8q%kM#p40vQB6X$33RFnfjR7~z_SywVF=ln_ z?x;UJkt9lWDm^b*uFGK5l-)m95x-*tZDEx1vOe#gfxV?eTkf8g`>nf+S$fb7iHpzW z6GUlEwP6-cXSjX_VjF;qXjuV~H&Ta~)%Jwy?ZlXhDxg8jHUxtNrg~U-#_3G2EXuT1TbmH z`C+2HewywGr^Y*@^SDQ)!_lZqDRG_Z-!^XG4JP8--VI#ozrL1eS^`-~g#c(3z=fyN$Pnq_(D{i^kVqqPNoQAfWmw{ZSiG2{DzaXRPTb1uiUGK zqvFaxuD(>0B3!VzL@Xu?;)$HJ?7Ld4roiDug#k4n-Q{ciCa0%(t zrai5CLfIpljt~F%OXrgCp4}eN=MfBnUMdpyu?c}P zK+qEZVsPFesPZ82S_;Z&(R^uneJkp-QS}~K_BDg8T-;~>cRg|a&2gJbIuT0x+#eMi zkE5*K9KR{HSnz|K@{#S^h;V~GnspEcDh#4L`I$CQH@gCJB#Q;WDsG!p2t2VR^piB+ z1Zw8yLtTN^`a$;}?_8jH+hUy%2a1ng;1QfCN? zkBkmb6w8yu+!jQ$k{N#2h_{8YN|=2>(R5*w#M{;R&OY81`EjQ~t+oI%l}G?%4HTq% z+|q$eV(g;SG6DKM)!Ir@P={Y9yode9PzOx*?*qV*O5mF{9n0EJ92EcDAd08|saTWO zSl6EqJu&DYg*R0@d#KTJS6d0R7pg))O;}U2O$Hg)iWk$-*CR9F6Z)7o3+0B=F*QWm z``0X~+ZOiIk>2VUAi7LF@9n1W`4_xt2~;YZ)k`g-d{{|NrojQ8BLUTPwOM_H3oD{}i#Y^`e4sHNEDShat%-C*IVH5XS!pT#cjI9j&^S0V$H}zh8x% zdzVXiKlXK525og2pVP$$yPd;tXOoB*!_~4@j_06UP1}jaWtzg97KOHo8**-l-zP`w zYGM8TYG_9oAos!bIj-I0U1v)|q6lygIIvUDoK&qGj6OeyN%r7RX(MGIev!0 z!m|~YHyH2Vw6`S2lf|8xyd5hIQFSgZW3O;J)mh{_!bvF%KVHmjp1(k-Gj;qixQr zJWgeY;8vdoKUfX)ZZpZT*fC~dRb50b$`phgfS-}BhNm|DX_Fteo#u2C1#dy=DxwrI z$S1!>f0KhR%w+JyNW1rwa{jFkS>CV2s1)yg)+`sq?{tIL(wi@0(m)Im$2{Z#sMKaP zyZLzn>N|*+2_36Dsj~}VaC-L1O`L!);e+3_50OTlus@P=bfAU8^o~-8< z?5Rnlxx2R99;Dx{vAmJEsq#id`smGKZm-C)6ULveD7?_ep~;lo&FW{sf0+$pC&cjo zVuHD(nXK<3`VZjHTm|dT-S{VYWam&z2t>-@GrWV7aDiiZElKsG)&$BgRZZ^{y zm#Oq0oH0sBg|a>7n^X@*(d>8GrFdIE{KkZ$=)3cJbczE-U!)-H54+C zMRL4QTDao4MM&D9>yM{4AecA&U~<#)Iug{4GhkE2 zpMsY-{6}Q&g(6#f6(&P8mKI0YCF!%tsSFtxO5q+6i3beaNbEU<>$mg8aV{v-{WPro zn4+z{8{$fVVbci~x1*!bLp5>`2x`fDw*6D}wR1WIOWrXAnHK=gBD&^}-BC_Jdd;ab z>|puEvXz|Ynf%W8mWYISznLxBUP+PsJa1yOP@=lE|@HoN(8Y8HxewriyM`V~*&WZ}*c9{$xcLdVDDB+B7W zj6Ltqpht!&*gXeW-NKwa{{4uGX*fg+Kpelal71O!( zHkBz_GlG9TtpB9!3#9G**w05$*$tE0h83lyw||{-AN2GzJ&fi@o-P2pCJtHqo1THb)*D zHW{ebVR=kHv$O?!H7cP7vf4ZQ!o!6I9{kf7-7Z-mpzze_67kw*%5>Swn}vAe)<{0r zSLzJygfJwxb()>DRLW9vINspZp-!;;j1HWpJVK**%WQvzTnY8*$%w0r?;z)RVY<4v zjX?|n2BKW-GUBWxBhf5q2}8#YCDnif1w3D$VI(oEf?6=8;;sGlghCF+*@v;MSk)0+ zr+0V+iguUbZ(0k1wCj4F1I%OL+7+9Yw0WWdl+x$1rjO~MD3#1YDPMT_FRVM}#Eu*S zT{J<>58gVHC*wVKz0r46_BX_AsKR^QspXv4MZB#Qrdt0mkgi28qnQDEPFO-tr#8_+ zRPJ?c8j}kF21gR8=@Kqj?WF>lvhwGE-Re<^Tzpw>40ZOIqfX0EUBW-l>BMjtFJ-9r z#)L~G%jyVEyDk zfn^Bp>ywHy0L2hx4dO!rrB6IsGmPB1?`ey%2a2^g$BgNR$lV0vm5T;7Uz|MG7?C`J zmO*sw)@l;3BVmAua?6E_e776^F--V2&W&azS|rc<8alJBewzUq&gGZU9^&lZkiaU} zMnW*SZ8T)#Bs)ymMqv!%dtm4|pb{ zsFL^lk{>F&6=Z|=d7r2(7njq1wI_0D z+^#1u*@)TzD1;2jHHeRj3bryIu08^$X^ET=J5QHcQgz(~CTpb2iU`Tqy zM`xL0bl%c2)NkQzk#-}E+%ynhS{*dXN0!3Ak)6sCtIZ>51fIeeO5iX`k?e=VLQL9+av(ra1k7k7Jmt?-NNQF5z^`sGZ}b`el=274-{0rj(m?Vp@dlP zBo7DZ7QHcM=;tv8oBL@o4>C}w!NZx%Vl2RF$SV*r_;c-{d}VDG6?ANSW)6oxz9{s5 ziEAf^V6J27i5;DhFb42uD584onz?fKW{iW zM2~MiM#vfX(P2x*%)~Pc2+k#UB9gwWujBOfMFbqZbSolyuE_hYc$2^BN|Kx-6$r@QxoiNFuJP9;_p}ydd z6ql~WUQ_iJ_5{t5waTAS86j%2yemJA#9=RvT6E|1&oLo5AtFRkNu6F9-rf3gGB(u5L44`H788Kq81?kup3 zl{K1vi15(=#lsBGWSubR){Tb)h$KGrU(;Oj{@_)#H%2)J5d+~qV$Mk7Q9}D2DBNHM z;+dsy`&JbJsuFth5{KwYo%eF;rVa{`+Y)ye5?^jbn{Emisg3%XgGsdpPsXBLZ_wVs z(t2nwML{{w;10#Tb`P$wFs>xXB&Vl35J)gkp=}L_!+w@lrGAd7D95=J9(Km#S_x=9 zL#egOwTASnoOWw@$jA{^o8R6RF`b9qo0biR)+*vc%RCo!*DPGt`SES)H@z5G_plLc!)N8%tnREl?*wpT|gP(H;h&%R#N$rmErBMs<>1?XZyt7k^e zk(5L!VPPEE>V`V^avz7?AE_@>N5H+l#l9Q330lkCdSs_`^4EAX#U4c+lO;Ex70$^i zsI=LP;?_^nl1G$&>t9BZD7?I(|e$J30}JFl5FBEy|M8rqkrV zO&?bbC(x_4$~Mpik@cgqot2i(5(r|i?A;5n`7d9_W!x*BB4ASMCVj~FVM>JLU9b5A zG@o0u)y^+;+K9c^ZvuBpc!s#qkj};UTs*6JF7gLdeSGDWmc5;L;sGg*7fWRR2O@H;&x?Gu9E47J3S^StZndKj8XEy_AU{1s4u>wy{`J|;JWNf|qE z&*cfJ>Ic$w%!N%=)Fz|(YZaKul%2=`Oij%S{_5<-)V}#+P2(>yb`XA|sE}?^PhteD7&YBG0|Q9L zzXY#0=*8S6G!R%(DW)kcobbEQyFf@IJ=wJQd!k?A!ur>EU%T*PZH&MP-OZRU-kurN z|Iyvtaqw1<2eZ0BT&F{)28B%k%QA<|ehSdO5cL`L`HM2g2(MN@d2sV0!)SB%IAVPIe(* z{%0&`t~fuONp@U+t4{g@$c_tvCTN=@1HyDxp14J&|Ib^g4S^`-U#qqPyE%^X#(?~T z53$=WE(~6hFU}i#Dm%VM6w`|t38i~Mpjp;W-ERRNdAk(Ku>~NLCxHtO(FI0Qcou!8 zzG>W_$s_g50OhTmW0o;qL^^IoyRpS4pewipe+H4UTv8l`dMag(S)dx*hH$LVllAVA zdij}gJQ_PglP4&(Al`@NxUPN_FHW-2A@1L)rQ0Mu6w%>Xl<3NQTkCAJ{RfzBhqOQ@ zI)XL1PY)^}2E^5SoI$2b#`ozGFODZ1T}2jjWL(}+u>g*3LK9##ITiK*T&}Wc8YmgT zaG^Sr%Z`*xe^u$?exw_DvtINNQ{&#El*vWIcmM!(%KbUVZYu`eeI*puqD5+%Ay)36 zxz2l{ExqvaZU&@@>;oo4it!Ycfxr}DeAKJ&c$n&(F69U7aqhF0{#ioTx#yb{wrF1q z!tEZM{2RWlAwxjB%c~usUJ=M59(U^0ouB!v&xWnSA2}xR7i`8#=+mfASW=R(>%0v8 zeP0LW#pA=t9^Zo?-=Ei$(L{Uy@ajieLWcWUL#tg^kpQP2lz!(QmiH7egP;{xIWlah53^V zDFk*h>f^E6b1F&UqxV^pX%?B7&1Zc0!83g+X{^nb5BYY-JeC= zwZ8Y@S$5Gr;hi@{it^!7Ykacq4+K5b=+jKY+_kanmu-SNXNz-uJL4op8r;OD;nW-J zcS=jr?bRX$D_?YE^!U3U(e3AQ^Uuku<%#@`dwwKXsc`zu>~25|vqdOsz2M`EWog*R zJZ_Ek8!I3*ET=Cg7V#};n0_d5kRsIG4^Mlro;||)K6bU$8m{AAc156X+)|6K$M4_J z)*-F48`nwCJhhAX`2}$J!q=Y-v9z~1WQ=e^wTWDkxm?o9C&}?zPJ`lT5>@~#=%JDg zu5=fqR{06yR?>2`xLHSpxn&cx#Xm9QQ=&3+LSfr}1az88t0(a-ooD@E#=0J{|K+Ull4N@4Cb3O zHbi~o=U!9g)opV1C=k6@@Rx-Tg-XhxX#^tkb(D@*RxG^)*xXtc#)+4lwlZh4JIdX4 z0fGUC_y4=VYUe?Z?>3!l5Lc4%iGqX1r(p{8R#Vpf4m`eo4g?;3E3jkkD^2U>YsyQ= z7tSn^gbhPuRN~I@G`y8IyCM$b)jcbGeC}Er7tp=L)9c%Ijt#5%P^c%npGFx?skh@I z$v`JKuCC2R8P+1s`w|jmZngH`JK)_V!;+hBmOcg+44@d*o z8~Fo}tYxJ2+_lD9a1pmA{2dlDN2 zy&Y?e!KZkSHWlY{ zoBHo>kvn^(Jz&cZ$5-QEi$~`0ybV%IKe_0t`yWO0IDGCB9~?b@wxT_AZ&Qb~1|Ok- zb>&HyR7^6XH?AHeiF@Yl#Sw^DPuMVOy}kX@=&0N-0ILxXWCef@p4-SW7MZQMcZLJa@kOcWWik83ivO|#=L%f^noe{{gLZ(devq`hY?(e<&h~Q)ld+?O)=6~^%P6&x#3aB z%>w(lI52X9wU^V58mvs79P$Y7)3@Vu6OxI(3}3o%W?eg#B6% zBbeNAezEvts=DzlT)pwV6L9yeNWRd1?lD63v0>DSN4=n$2$EKVR~|JNmidyg2{WWg z3Z;7_i2NjNduAFoMrw0gbTE_ujaW|;kSxs%NngJU4E%sem3Xz`_0oz(#po4+m_qG} zrV=~UX~g^GmsK$wJd>622>n7AVg$!9WSkuKl#WF=GQKO-Sm5pe?iikYyry z`kq^#BIr=P@bTih=NrLLo2lKjoc9|-T^T~Df7Iw{q}|6NjA@vZq_NV^p|%RLsDBcd zn!mF*q_dMO>0Lq_;?FM!M+DyE@hw`id7fZ)z7}#JG_fFMagV zR!^-?7&?raFDz%FHUFoSIPn0l0z$u#21DcXbijS)dhVE3^#+!iYQhqGyK9(@s~?!J z0>5nCK=owLCOAUdee zm3>kGiBNfD{InLfN4gF2V>QpEtEnfZQp8TN@q+Q$bP^j*9%rV!#t>*2-qMMNeR{O> zn@GpyWE&*kpOGoTB6HpG^?1o;N5`FOAs}yC$2JvpT*uqK__~dnq5e$MVl1j zu!At~1^qAjIawN*6tpPA%XP&n;dv$x1!J~r$%~B-rSid84nwe;T5Z6E&z}(1R`zkdk~&I}L?sD@OCBVUCQ+o|tTl9}pXZ+$R_3t!GK4hp zcf>>_UGql`!0Fliz1I$xnL3fEV2ZU|v&XT3v;6C^D>9f0QgQ$*U-f3{i)eg>>fetY z2-z=8hVyCvhv+im#b=x|J(SYMiXQ|-ZNC?%d}6RP*rw6B+ssD)OMJG{=T9XFgT$m3 z#EdMW>RfFb+xxwMd{F8`c_zwuJ&HfO$7hN`jF9Co`2%-F$uQ`t4^jE`NBV7qrF_1{ zdu%m@aBM)3`2&4=GD)sL0+bu@Gr*2>-e2(fh8b&=(JvXDAjM=DV~1lGkF1 zN@n_J{L(55^pM4g1!6MmyB!N-S|WHiFEmDOhb#tGSI_p(FV8JwxOoq>WKD zuV#M+xxpCVRW;}F$0l_1zd>It&@I&%`rMvwlj-RQ^XdY51|PMkB;xNUqFIFtcyl9| z3_9gTPup`NkN6*a%4>;TBs|!qCVQLT63V%Ae0mu`Hww;0_|vO9ri#!2%7-rs-0ns zi^6{0Fnev&##Gs<`h#RKTw!Q*T3Gdq40%C&pTNN6%Ij<~wi*lEg7;0p6jX1GyAE@_ zTu8Wj(%l2Pz%5*-n0v=tG#}t|b_KMl)H=OcPv9}~l&Q5tJvaY0+{Ck}D?A7bJ#IhW zZva(ijr_?Xk${m!>(!D;`0zX9vup@?3ey-0%ISIkK}tru`U^4|PH z`vn*bmijlXvZ6ky5%`WM)PSZ|Kj!tGazcByh_WMQcman2y~|{yMrI+W(_iz|%=#yAp6uJBlF_9L#TIW-GTqkB)Pvj>Gs`-Q zBB?py4@;-whVY=P+@A9;zs)p@pz(`T1Iq{f=q)^_S7QZTpcC94PJ-MZ>?zBM8Oa=o z<@cPsX``B8ggQcF=h~#XEuP)u$caXEFR(pGcAH*#(y*&f=G4j90ABTBJ%|dd^z=V5 zT-{q^?$!0!v7 z?aDlqszY`7cf&7kotFk6Mf0MHL)&0sKdv{cM1-}~_1{(v$9*Z;@8z4P;Kw{dxrCZ> z(wt9toQM3Y75;I~mXyfR4f7mH)uO$TS&+cM={nR*V%?8KihNr#)lJ!ohkut5tOP=anjT2mL_Z`WVvJqzrQwSaI>s60 zrscU0Qg4j1V^1vVSBy7mNN){Xl+7;=!~3hX2#7CbtCWP2FLvA9tfZm`h1+|+t)zOk z1Ii)ADo=tx#V;RlQm*f4l$^@3Ku5nNJar;_wL>F*SjrY9w58$!aBsyL3l{Lw%fS|n z`5&qG3%hX7_ChhD>iLtQZDoSZBLam3j>cgsoSKV!;^@d{W{v9wrIMmcqEYY7W`2h@ ztRA9gQQ1jCAWRYm-z30U2nr4uM0{O`#eQHBM5?BU>z(UN25QUSt|fpgdN?O3B*7MB zUa2RBjUVNGmmw&+^fSv;B9mnPJQn^J>TSvk{>c~ zq6~@>3Wl(cVViX45@7mA8a9gBN|E5}J}xej5gU0T!Eo})+xN8*W%UGh@Awt{OnpSa z!IxLhM-VEVC9M2#UKukx-le$Bx4?w(tO*S^b}q8y+1;&Hq8x>g1_$svs~Z_| zuAa$5vnif)v4H-yion(PzQTz8Q&Ud@V>zCr(vP)+=){g2!$>GrlM5mOL9M3X2A@iy zk^%U*GpHR*LU!1X6Z#_C0u|>-{3?e#uvM2f{&M5^_Ez&CR>S_il4PqEknrKA+JJ%u ziwg|;|1($<9ddxAXdx|sI^*Ii zb|YF-NRRYPf%_>O7X&_;gF-B}L%j-x!fOpxGk^%WXNz%6gD02QNW)2|Nq8>jC^=Zw zE~4D=PObv5t9AqNhW^l*iLQ#Qo1V{K^~|g{?^!QR<*$x!kUw_2Mch3l%#Ar;SCL*! z;bD`h^+oHT_NsrjCo@Lv`Fn75M(f*9weH-+rts^F1~Dj*MnxMxW^D?QO?wEU1saoy z3R}rF`(rn#j_ht)fnQ*$18mInKM+bwi~Q=mm!T>TG+MXjSg3?_%^zMQUE`1C34ONx z$Az&k{~LP6YV3O}=gk5AVV~@LiLXl|4M~O{W7&`~Sutpk;Zh647)x+`KLoUor~HQ6 za@M3W3XLOpisL%^EHB@lpekVj^ut_JGn;v~rD4Kz&XAVRP<+x6f$SUVc?Q;uH27eH zJ7*9$A)fUuR{-D~Y#)A)JwUJD!Q~^d{Ma_D`ZKs_r#FiXBDzAv3$=M#59A zZ_}8u#*E10DKmS$)ho9_1F_XBtD1@`C2zHPZYb&+j}3ThS0H{QpIai&i$R%dwH=ET z%$(RR?mwm-4Uwa-)gtCsfr|nkZ&GhW1)s0kS}~iamQ`U%`3ZxT#6hWn?rzCX98h&8 zto|_Ok#7VPTHbG2DfxP<(=BvS986TT+<_2R+wK%|Tgae1Q_-IXj0G+!2w%6)sA@rN zdEK!iWDyx8hyDqdjhckZ&2ivvk3t+caIvHl`#9@s&Elpw?D?&I$1 zpCT@6fhY^YIn*6d;(|t%b0xap$G_g2?jnN=D?*Nr+aYUyC^Y4y@T@tk36j!K?VH8{ zq$B>O@nLO1mW+q?l4!@4m!VrdiQM|vf^;)@1v~b8KnbnmvdMg7I!`^q`;(r45Slie z5Tl71;F2Y=U2#xm2nz#6H_Uzm@o0c$2Ezqf!w!B}RSJ4_Z?U%q;hU-LtmD8wZeLx! zEyoQN_CQiHf6h5)!z|X(RS@m=O~ji=w_6DeKcGOCNR2;c1_VZB6=Dl>w;|@rj8IyW zx`0Bi=d%)7rrG?pX15I^CoOk}t7IDzt8<>&vgfe=I0r&?t#BraZU7Yz%u8D&+xsws z(w`Xnh1|y0h6er0xOr;b#qOrWpFXyGfir;J`qg|Rbrd01ELlq-A$bsl9NJX&k^|;< z{T}fXs2C3~AED(ZSjAiYaZ-p5^&`S~S0=gi?Ndtpoa6mymA zOUtW7irrE?Y{4mknaLt#VLT6}An}}6q|Z(YDXMv+-p*oSXD&t~q^-1yAiIa6s^+P+R4D_ zl=|t%a#o}jUrI9u~yPsxZP|KVIi&#q-A9jx3YDV;$RI6t|G4>f6j{N&qq|OsDGzri^PvQ z6#i9eWaGGS!k+KV<_q%Wp>9y3 zVcj`J0eDSmhAdvixcVHsd@IS_pAVE4YCPiJzT)8g!5Yve3JA6TdFX;` zVqz(cJ->h--STfxmmseP392^^mrkFG%`zM9WwyM}kuRje+#Z93cMG1R_aNHXivt~y z5$(l#8D{or@-|%4AXk?}#vMmIjKH5W-t>8&3&giV@F7YEZrUi6Q+<|^n<$ZYTv%qd zg|vq)`i%i*gQZ#SK9@Cl?fr?ecYmoFx0@g<}f>eYOFJ>iq$&aoYwU1-!N|t}uV=NAu!WB3x7*YX& zB{qP2yxnIk(4R&&2AlrVQ8Edq3BSu=qL@n(iT}}@`QOb9C?ODehj07R=|g-?Bb)(u z14_Q6Q0G4qgB{*I$%5o8_hrUM&Q?^~J2 z^zZFlQL)N>`cTAWp}JDUNw~l2;-4R*ok! z&gKvb;Dq`+AfGbI!+j8&r8>#-61+x9b^D;GdX96nT*cgm?9ov_4b{YB>l=Ek9Un;) zfUw3&HM1ILRp&L+Gx0Oy@^JZd&@MWaarDH-tLjV+4VQ}Euv*Z``)6X7V5#yxHPQI=xyzQJ(j1APTnf!Dly3aM8HtPMTA4<)Q&5D{07 z>_sOh?aJ7$ayF_B{u|H6K9knQf<{&VAA|GH7ZR-({zu5kgQ!fkT4bzZ6`Wy|iH^8i z{i4*$vwves6)6p}Ol?`OXfD{b*F9W=OX!fmW(}tS4+-jXi)*rDD`U@(Q4hh==+(vO zJ>99rM!{c;9 zkfgXept{Nk>1i51L%$uj9)BGHxCLxMOg&{3OIc=vrNAegb&LOAJ1BO)vg~muccJ6n zHr1|)j#}isyPNwr&{r}N*5o>hmg1>3IMZ6YyH)Nj{Mr2Re^i+B1)PI5;9AtN^*NId zId^2eqT(f(38??j<&kCU;m}{7-J?AM(&Z;;dhx3LP1V}2hbPiyF8{)X)Pn9bu+pJf zDNe9Sru&^~{slOK;10!pgK3{>n!sUFL1RnWZ9Hnex|~Q+ktpdzdO15>PAMeEzwHqu zniJH5pz7T7Dz^o+i;AM0#Jd`6CR7)YPC33n;#1>|mR}=+zRiz?(yqWeW^uRRyDU4^ zg*wgAUi5bA@;>eE1Iv!=vjK0Yj#A0}UH)!=)9S>#g7%EOu%O-e+-G*LAM%o5`ox*G zECByD{k{>J{j_g$9GP7KA|_38f$BCh1idsLTj~LRYC7~EwrHpqiE5euYFmRHqDxSG zL#mcbSnd%%X35`Q;#Xi=%a_OLCD<$Czx=iT?X-+2sw8JTL6&<%w@1+ z$%L?{+S;_78`#hTUg}|auzGIoL_({EM3j1mWW0WF_~;|U^0IuRUlR0hO!a9pA4@mx z4^xTcx;Ixso}`+Y#6aI;VHW3mFGjEETVaxqNBAO=63YGD6jy6^A%c&<-A{hWHi>gl zL@Yi3q`cw;_UJi)nu*rE$0p(%4j{235*iFa-%QhkaPalNzu?8 z3A0`Kj(H>@YK|BnZ~>l5ML1$Xh3lh`ztUmj`qrS19MXMjQVH7DWPq65EZ<{XP17kl zHX;AlRAo+%M)_xw=N$?qW|cIAgN_cyZq7qTo}#kx_|x8bR%V44<;B@rPn$zWSGWp0 zNoUf(-v43`@Gn;#gYjlZPoUK2T(xhbN03f@ID}BY7b=sFDYpUA;(Ct{$Qyl{a**OP zj{J0g5X~!9EDwHKN<~egrS{}d`7U?OKVP^f)6H*{p1}*+2^IyI=#=5-gnx&q>i0Cj z@QGXxn(g?mK~X4dpoQO&E#=#e-_=gwX_s>UA`A~YLWIscDT$NQ*-v->myvez>*CY9 zn`h_$%xC}ezsHC=ZQoSIv?~ARb7%EDPN!@?5)XZuH@2Gn!KN~D^KSzC64YxbX|yGr zKB~5%xJ`M)89f4fv6g8bXG;u(kb0T$)C!~_DZrDxi1b@-s%0phxARYSA_k%+onmgX zwU~%`gJI;4o1fG-0jns)HW6`uNmIqaV>nL~%fgWag7Y64oy$;{I8k9_2HA^>pJyw2}CmB~3Kmr%zFxtNIl5e{()+La>#KmG~L}m0`=Ig2C_X9UUq6{A1Ih ztI{);Eikns$R~N=qI@V0b5J_mI6!bog=NJrb)CbTDv@PdkXYKzI2O4lCH;v z!c^oqxO%@D73x+S7a;_VVFMYVQcufO&1@ifx?SF`q>?#X_-~I1{go>`{|@!{UlE2G zG!`v_lyUR#X$~JM1~7Y~v% zU{6*>y8Fdw8+oqu?27U6aU(GoJ8ru=Q$)e|yiVZpVfJWc@3J5cCLm^!lJ0hvEomlK zc+Ipr{t0Ji%}y%r_2#J6O$f5QtyLkStC+p95;bj!=MG?PUZf10rwi-hXD-a|BsW_j zW+*>U1bsh$xt1=WEoqV&%159KOHrZ62P|#y^X!bqo0%R z#}HK&Bs0~_F-42UHPcBNjF<%~GpOXX)CDj{#E%Iv4k`ZU{|rmmnbgAl(_li1sxK;| zKHTBe;%vam%6px~k~m@XlX=)9`s2<=oV*Jz0=Jpy-o_sy>PL)r4V%D;IZ9@M8?1TK z_H2{g2s6@E7OEeZGw7|P?GGAf4jBaZP~>d^Ia_SSYgmKW(@|S)A68F!#5Q|VH8*IY zNXplM(5%x$ciNil55Cy9mwuXxR8-1=T$r{?I~t5gTXQYi<3&wK?9Mrh{@7NyG;NVV zl*qC~g$6RV@kc5z&a4%~1yzZHP$FbI3uWo9%QT&?B62|T=X2{TLCJb;L;YbXhcr4K z{U?G^zUrIzd=^q^$CqP%AGOes5ziiY^ydfjz-0;Lm&2vN2jqXWov(Z2YRqsbn0cw} zF7;KL9MP-wU=M!(S&-LOGvn}RQ(U*$3WWP9jLDW!z#4f?Bpl(Q6AvUn$79VrDLX|g z_>fosR6`{xV&65i4Kc$Qu{I=R-8kec z`HCL=wbrF~hplfpTKie@%^B^j19y@LRTfW6*{J8@rd;$^ zE(P;S4x360v2Ti(>a+Z*Umg6%qU=7nhCa^E%Xl<7iwaeim{KSmc7TOfvaj~(LGIs8 zDKuPMscHMzD$|d6aa+HE!a%mDLCrMIJ;Oc7XLD%ga(sT%#BYSsV#HFWe&|D7Db3gt zEl`-FP*#!NuxP;&C>|hc^zygH5UlFCCsfF>_Q(oxx!6fCnfFMsa_ylb5BV5EYl5Nq zlMwTy@?04VAc`dT7r9|URnVLZ7SZ--#jYrwG@;O1 zAg63WoJCDihZ1XVKh_Mju9%Q~dIKuRalp+oG$trC*-s@iIC`GOs`LMHhJIJu=9SJ| zKH-1*9<8rMtV563+$+tF>W7Ctp1!B=wfO`1pmm`8--cl=8X=Tt=~uuiO*WF!zlvuDDb-Lk@wjpA4;_ zuF$wUk^5A&GuSW#yd3N_C}BH%6ZEL*{Lw6rpzFYjqFCLGMeKaS*jE1&AuwPR^3ezP ztEPKWePcZ(zB>j+Q_mhKx+L%SJoI^{(I>JIv>SP89BVnMA%9M|VP%Vjzc#s5rre!H zRZb(5Ij)uNh5mWc33IImxar55C+U}VSj-Yl*yfV~z`S z0uK)CHC#ns>usy^G|!EBhgQ=r#jG0AfT$hk#)Mv3J58Ri9wBLFwH~*eOlLj;z#!<^ z%XzIk2=5EG`+UA4t>^z$H9uQBNP0jmv=oI#n&r>%_f+7A8Js4x-AOvV>tJ++iG3tP zWxeHcBg0sE7}LAMyAyLHcV5|}YM-Ak zgBP(!ltjO$k%zt29vtPHQE^dyc!Qu*fP5CaGUTtTV!z8|I3yA24!Z_Wzp8Bu^hox4 zRJ#KQZs2lp&b5s|QH}Y0u6*wPxab-DBg{G4%4QArOMi!5KI`;0J~p~Opa#v7t9fg- z3cJXz zUAS`nX;{Wu)Hh%eiH9qtXMULmEr2_K>^zrOlglvL?nd6U)~v<;KcLIw_8bk^~K=bMGt)SD|P z-vI|xTWe!>xS5jQjAmIUGa}5Aj>XbL>j}|IBi?I&fck^Yp0lmyBPisfdCREgkjAgs z#ylb6e!~Sx?KYwUskcFC_bR(@ zYtzkoZ|P4+R;UbWbU5MX4Jjv>^+u?({YSE?EPKT4BSaet;tJ-siJ}PYZ?5NnYdJUf zB#3tU-EC@I=aw0}WO~A~5T}1j6_x+VEKV0|gl%rQN^m{{&EmyQ2hL~kc@l|}5p6pE zB%aADZ+AzVBG;AorCI`7(#ZDWbjuN;f#tz@ zUsT`8AOo;EWXSPVw#nafN@xJ~8r3T-0ELcg&;cqywwFO|_rso?eyuOQPN&?{KShuV zkd0|=pHR~n1E7OEw`v0TPCWOOvS#b^jTA}_UeLBFvwt5`NUT{48>6LNiq{?rp+}wn zK|nwG1)wxR-bqTyhkMs*@b;_BNPr!>8YJdQ8~U9(`{^*DOM^Ou@-i!WHuSgZ0DwF) z`Y37KI4k_4rnkmY4|DJmt^K(MNi^`=ny;^;jrIRVrM@>ET9L`@`AZK$$LZ7I&j9Bw zG8R1JJ&xBMz7vy+noq#75&TZK`6bd$jrBZaiDWY>bR~cu?-ZQWuhlweCq$VK*J>+RlH^>%2oC{x^+ibEm%q zeDE9aZ;L~@t>1)&p4^*}h5CZ-Uu@D%5ORMi<(}egb)H#Cn;ZG4p zvHsUlzWZZOL@P{0`57Tmh$qO&3W-HeW+?@Hg0qj!z$|sN*i(tPgcKm*lZby7TgM}Y z+wO(MZu^mN)I9+84E8p(0?Jk4qS0u?QvZFqJk3wnW7voV+Z`zH&QjKX`8spzXXpq` z;@Y&(?uNrUeRhW#u&EyXYh`Wj)dSxfi7vhf71 z^grThR~@&Y>iz>Z+l+Qe_x3p<|E87cUX|>hHJ9bGY;XnGh@x&a3B_`i(&WBnEq-Xq zoG*xfD}e?C%ML6edzMVhPve^TNdT?!xf~K-`1E!S3rV7`lORmTVm~TVRGEQNg5i(R z63^ki5&?!cy`Bjuz^n&Ujofn79g@zC|BB?PsOMDrU%=m8bG+DDWPqj=@Eg@r(z~at z>?_k*h!mAjtYm4@2_LPqb*xb$p^J1Gw376kt#l#&s5{swDohwTmtve%>#5iQ(=75c zP`#{BKnXBYByXVw|2ld5f!SP0x%GF(d~h==t(Tze4j2QOe~G zr{xYAc`ehd4RD|f+zrv2l4PG=YB){RvPXtekQ*qK_tFbyNYz%9(pF!KHmsbrx>#w! z*>iYA}eKeaS8(3l)ZFtf}0`)(3JzVat7X;Ff~-c$)`73(LRLu_@$e!_{a z)gD6j#{+bE~&5*SobK^V!RHPsVM1jaxiAAN|CRiMkXWio_P7 za}d1{z<6ks*lEi7wd%`4n2s`;r75s5Qc&?k$CRdBF!wLSn;m)fc|6@s4i;^~pm7Gz zW`K`}ZUgR~+y?YM`3va~HwK_$$IVZvY+>79zY+z!=bH(DCxAo?Ds(*p$MX(3Oe7DQ zscI0iZSF7O!LSE-r=2qDKed>XQHNlt$1Uv$97c;;%I71d{pvxlffOw3M4;jV35qwz zYbsZ<%b9?m0z}F?qhYL{@1y{4VZeT(m)_&T;W=Ky!jHb4wayfC!!|7v1M-{+5mm6w zgOsL7(r5x~5T_-KwbWIv;a1^0u9tBMw3l?6x^XxFNP2v(k5Z}MBx)OLtQk1t4AC@b zg6?v9sYTXmVUX8SuY$n%&@>5u0eWpPu~=+*Y@v;lmZ~FpEBL>NLUoqwVM#`kI7@3Y z&Coz>$RCcrI!Xu$t5_dTQQGw@LM0}2@H^Tj4?*t1c>9a`wZ)0(J{RnhRthM?GMJSKJu z%T*ucjT1#(@1*QuR=^*>dXID+mzf@~+i%?M_G4H-#BNA;PEcoaCyvKkWwGVeHkVlm zFeI$3mld->p%65XGSp$+)l3g=wvvrWxUE_S%pjd&+h`Uv|J6aN63;<>$J+0x;K)%` z34v$5@Te>kpp>RDW6!GMlCI}zd1yLS8ht0k^?l!mUT$6rQ;iqVDOfLRBoWhoS3FX; zEcj>8VnbjSIqAXbFteiVMTt~N>QMt#Jl1jfkWVQZ|66l2DiykMm(+mP!nyt+M&k%! zgCLQs`CZR~o``>(l`k;+LzCt9zc{4{u1$Du)e8xHz%4{!x!F&yd>>G3U4(39V}EL1 z@$ytPO)!Uo$$CZY2$kffT#xz-4~02L;UmBluZPry*0$Yiyrb6~cq9O2yxYns%E(y2 z<%`pGop77dX0p>KVOFfTwE$5CsR`rvxRJ&k8=cB|(eP(99TJ4;0g3xzgrG(2K|^xR zC2i4Ku=<^Bj}!}Db5GlJ9@R3T>y;sM}zpd>27AUDL(r@2=JIDV6#irG zkthg1+g0jVd6kY>r=Un(`u^NolhZnxw z>z!vEpMZDp<}ys)$&%J=GBPs#wR_Z102mnK$jZBaCnBdls%LoyHQ?~L`3A#sZacul zfHDJ*8pd8vqO1Gxae$mg?#8PSp67H+AzMQq`q$}%UUt^JMLXzq5NxRAaSeQQinCV;)-A7k@7W2}oHd8*VQT#Yba0%ym$yF?wz8-tZ#m ztlwb!_6~)M$F=qV|Fl;^*7|4trUeL?*4@U(jdk^_`G#*T^PNzej$-y8! zdDo_ySJaO+O&U7}D4Owi!rKn?u+Ix_}p-eNX(ITgg;b*SsC38*^)$Hl2YosT94_QZDrdGaJCWya zkcNIKUSIF|r#uX4=7Bly4|4l%_`*F!)5ILcYE$PM4Y9uCq}BgHjfkJdrvggojVm*n z{^ecE%WQz|%h{qDnZ_aJc17vxe?Tru#TbIFrtcb}j`zCd%BB3Ks`p(Rry((S;9YC3 zod#}x`5SS!b+W>vQq~;rK;HGa@$kt3M=iavs5uM!f}oE0v{Hqc1-&(puFl z*@}bt0*uSzY&S?^jjcKT?iD4Vj?PVQh7l z<{v6K;L(j}hBrc2XJC3I>>~BRI0X8j_UZ1J9*R#pk|E?YK#-Z~L8xpdo(sWMdC0Pa zLdvpsFaiujQsP!AEhfWh;6Hb{CAi#hdxzjTa;xJK31uCYOk4U4CKRJ%lzk0)o3ExC z9)O!qV%k48j)FC$xaaS|wP2i(QJJU&+?~k{EJedvTao^Gv!zh<6ArzByN+Rux`2D0 zZ5UuE*?Jm|mX%xkqJSncrieowVj@RTq%SOvA;h#wm%clW&XzUrEn~*mYoSpuxV)8v z7LsP>H{t))x?I%T-XJt&dCSe=%HEZG^`UTwpZ`=PEv24LZFn4+g%<4Zwu_0(2#K5> z^Jz>?*GZHNFy#+suCr3mYjmQJhKsp!K5}`z5?sCOwbaGRqKR~e)+7U#EIle;md(xp zr3hRo0uGC$0U%V4bVR34OrMhqTCmCTR+-vFBDz#ky>BN{mE_MnGbONn9Ot7rGcn}c zt{RAz&ES-DG1*S&S z$6fn+jo6L0dYtLN5e`d3>e;0gg*N~%h*2Y)Y)a5uD1&tyTi^SXjc^Y(DhALl_@Z^Y z4A?MbYYPo$%Ll5_zzWhC8gL@fui+z!z5!{5v-;#^ z;Zal%TBa`p*`NxNT@dpxHOm{(xs5J8+L#pnZyMF;ruKzeu=!q4V-i0F#BoroxY=sK zrU~F2Er0+300M8`2q7QyI&c*VH3-eBBntuP9@r@W{En)SJ62?|Jx|TXl0RqcAJu{Z zcKHw<3NP9O5${{>f>Iv{Aq8eGE)epM3+fupjXXT}Ihjuv^BW{~jw{n8j74e`VYNm$X?_(G9v;(3`0YzQmahclWXvJ_HD0>Q0WL z#t<34<65!MvRM}cCpLq)NF8EhxcaIB;Y93o{!!w-J}WBkxZ4_-olz2&hYM#{K#92E zhW{=Txa5Y`r2qhV#m6PF61K%Nh_cV+0uCe4$j?7g#OmYJaHAdC6Opk+s<2Zza#aT( z*xsF%zyZMT%IgHx*_{eAk^)w{T4UN8YpPe8QDiQ!)cjQcqmU~QHtS6PKQVoUf#8JR}XV97ovc)DjCi>q z%r^7-Ic?A$3SXJ+N#yRc<@J67Df$xn1hq{Qb|~t-MJhD?o!9EFyQZ>Pb5TuIr7CFE z#HeRi4rIHdJxAz%Q2_1dJ6=SeAnhHtX&s$5g$NFu@3SB?*~lAIFNK(?xKf(>)r92g z+N!_KnOir5(|V5=dXLptfv<+b6w$RQKrPgXSx1t2edk~z`QhyWXTvEc-?^o@p9YlE z<%cIWgSbc=VmObno&oBRG}q{Eato$}iun`iy>z_mfc%^-!?(m(0LwT=jImG&PTB+1 zk8v3CI{%6rVK6nN=C}@rTY}lBxweJjmgMoG-9LXtE5>>%4Q|iIsTq?3E75U+D?AYO{6$U?BLet}$o*h`n%US*mZ5B-+8)c*YXb+yIx{#fvNp zsAx9oos8^A}jnIH`*YkJo32%|KjKJ#0yZzl|5wBdzPSHfFD=O+D-O0?CdU{2pOiYkSP!uAffXu>G@xy)X3BEb!=;f|Jzc@ygsCV72 z6L9QHBK$A0=lO8->nf6A8d{;>cDPN$vBs+pO%k``DXj88ebX@} zMtx(F8gpv|y}_rfa(M=qFNjgRJA6gR;i9E6WemMAXIq@-KeAOWV=eWn9PWZ zw;RfG;}G3B?c+3)ouqwCWcZ?THkbXEZ~|V@8yZg+r-qx)hLRIm@QkLM;)QZ^74AIJ z2+91X&F;2(Gm@ImDn`ULfBzr6k_vwxm6I)AG-a=Zoy)u$8fp4zQ#^tI5r3>=Bka-u zef@`a9|fQWU+JYz@(2I`0C0Vkzh}LW0Eqo#8$RkF0b%;V5qsGH2dCI}!Tzku-}O2G q000000Q>%`5P!}C06l-If&c&j1b_OdAOHXjkEe8i0000000000SSkJh literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/train-test.ead0cecbfc341921.webp b/translated_images/zh-CN/train-test.ead0cecbfc341921.webp new file mode 100644 index 0000000000000000000000000000000000000000..2f031577236d09bede28257ada5d7033143a28cf GIT binary patch literal 45268 zcmZ^}1yCkIvn_}-xVyvP?(Xg|I1KLYE+6jh?(XicgS#`hyE}Y4|9$uE-50wX(bdse zk(E_-G9%+;b^Vf-keI3m0nrc_QBqgp(u4&80YU!P!ofjM!9axNl%x(}KtMpzM{LQc zrGchItlgwWVAyLb)32;G+cN>4Kn9DhX%?eYEeSbh$Ifn=NmG>hL$0?rfkp~0mAPT8; zBsv1Z#XGM~m)}n!hR+v3tv;c)pbyo7;O9#jkV!9ND`)BJr}QtZTS22pYoz8lR)Qxi z`x!~ipGIij&z>twfSHrgjohvmSWep)#p$52uEu&}h9-B>3U|H0n3pJ0^_ySDsUEjA zIM|+n#>OBOfoeB8ZDJXw#`Q{oQaY60SZ!*dIwgiD$i(x=md9yhEL#6coL0+V@))RS zjN#0J(qwe%lUTJBI==0cfGg*W9ypoE))mMltEa&r;ipL2NWFD1?-!4ydPKAGqXw03 zgwPg4k3??64y;!q_L0qQKOB3WV@Bki`G+##Ez$Q7;1vnDC-@omKSH0f((4V@*U23w zn1{0gp*@K|C-m_hCb$RdKY`i5t=F>~QhoA(9_p4uiO@bLyC!u^2Yz=tz_U99WE($y zOo#n{4FL0aFeSAAf0_TEx$J*e=ZuG9@z4KB{3#E%Ivtw4Clq9UOgkc;HLE*csyg>a z0c0xTmNsu8S;&{R4RRIYw`j-V%JViyD313T0Rkbn_Pkk(R_{SYLK12l#6D%1&}0~$ z4mh6`$x7`QUVbI_{CZQN%AWye^pwB(%5+)BV9L6XTL#w9;N_-_g522JnhRFDhH#+f z2P{>{>tSs%2Jd=ak^x~_v?~y8Ppa(9Uo|q^rv1INOq^4SSzF1(zHn`xg|_wiOgVdo zj2k2AiEUN3dVO*Ph-^NoXq718H>Ynw^1Q8^VYjTN6Ui8%x=rrqX;J;5&Mp3#Ct}1s zth+YI0U}uK2Lgh>Ar{2?WPPz}P=d&4)JxKte7=4asM3h%i%7BvY7Yh|Tz*IZpAsGr zlg|PWfn|uv$1*nY)~kVvpGmH1iu{hm`hYFU=}kg{&pXZTaYr#2LQvn&iO?FE@R?vCZBtjYYyK>yD; zz*|KCeiZ`wwnaefF{ch{aQm|$A3WedySbU-+K~G}UlDq%8{l{*NJ)ylD+$cjy z7nUf9J>t{>J;d#CKi_uc|5naoeDL`H2(te>3XF|9>>^pWttlXgu({(ZaF6t(aj^)o zxe1$pOkqV61Rq+-dl(#MGu93TK}#rfyfm|7@-aC@(rauD1VBr~wyg4jLK9+l>^s%| zlqT5nG&uZ!2Q}G4XUB^d^KXn849#*U{X^2!kLTBo-#uVms7~iS*GL-T#*mnmTOSqS zN5==&&QGvYfzP2;g$-bEYS(%+Mjdbelw-g!a!k|}C^JjSoD1iaYWbH+#nD`UYd_yhv!j zgoKZL=O0pBT9vZaS6xfvMcQWszYkoVZ)bwgL%YCjJR;->~b6|d-@Cm!0V`*4zQe#u-y89+yW1RPPklHIVG_@>k^6G@(-D`vZTByfs4^sRox3=4 zzh)7qmS!G_UYdT_Bj2t_t2y0}dZx)bmxF+U)#R5J2X^#SByGAluQ0@K zdDx?|iMM^8Zau4e4bWQJk=GX@7McRuse9VL9=lc5+7lmE>31m~or)*gz)Y`U7!cRW zr0br4n6;+;y_eQ)I%mk7n)SkUEIgTPoG7gb85aDx{@zl!Wdla`Qp&ulH{Jj>AU+TsM`P*>7Et#3UMQ|4i# zAHR*Iw9=fg(RF#jv)DI59rU~-yzuxrJ@&A;yl0p40(sGvqzPT71f7gGcF zTSHebS(S~&I^;ty=SZXTE<``>aID9;!?%D6lc#H1f2XnTLN3Tij@mm4$ff)KK>_hZP# z;OkP$_3evy=&C${CIZrI^X=^Q;SvLHzJCM!md%AGaqmvz!M7gev69w~l$PejpLY?W z#~=kx|0>;e?hKYuFvL)6G`W&|ZTO2+5U$3xmQ!eBL=bPvxld{pw_O9NbkYkKo}S@< z$)|21l)9C=lXeDYhtK-hp#1U7+Sw39lBR^pYM>0#))-}~T680RpQS{Yd$YI03p1RW{S%?6Fqq|#n{;^UR}6s=QJ-#pTaL*4;; z=D*jN)a-nR{$}5)RV~jC`36H?0c#fi^>$69uEDOcg%7oQX z{9V7Jmc*s!Md4x9=0T~SbWj1`fYX}Q5q+Q>Elwch&ih%RbX3)On8HB(0P{J5K*I?UM#>I>lOsQlq3o$ zb}GFL8Lje^I>oYpV&(+&Z5PQy)Z4+{`F20pVS5c1LTwR(N2O|e^nXjoE-XINJ>d2l zJ@V!#P}USIG+fqOwNB*9F{hK!$%vY0q<18Ap7jT^E1*8;Tey?N*{k5B3K3Mv!u4R| zW^iscD^itM_W)Vz+7)JIQYN}wZVM#wH}HwtnY9Xhzw_u_Dohu6#&-@}$$)4RIWn`| zpD~l`Hbc{y_1r2N<*Zzhi*d!CBBSR!4mkOFUE6H?g~rp&5U}{6{~$O{-|wvd zUdxgf1#tM*c#V7b3&;kIA$o~BA`Aok_~!pMf75TbzePIloA3?)&i4ZG@&~|v6Mb2~ z|6Ak>V^-f3@EnNpZN6~q51atV0!P-EKh&0=av!X(^*4C2>;-MUIj_e4wza(4KOWte zd@Jbm;C*u@2*!OYe_MZyy$P-{*6LpYBz>0w*Fb_x$nT~PO5n{^FA!My9{d3M`SBfB z0eruC*S`d;0Y2Vf-aCMJpU|)NK;Y+hzhDYL6`1t~yhr%H0LEQIPt4x-y#hY_cKm=} zKLAMI9YD_KSzz0TU=7iSU^CI9pSfTap#3Ws*m8gIp$0tp0<=Q|fl5d~U%PMU&!RW` z1EQvm8W8E;{;q1Bh(KWAtLU@s3oxlzE;#7Wcht8C*#D|}R(t~-6Rr9w17p4_ zKlwlVz7$81#`Da8jdze=7aw(RNRxnDeSJl_Z^@Z=XkXv^zT3S0zAE4eQ2$-!&ie`Q z0wfj$2uOV@eh7Z;JPLN|p8$a0AVAn}=C7{zzE{OJ!7~65IQpjl!T6o`yzQI^4K)AA z_;7wC_!Rty#?4*cHDCvr2Lu8&?wdY|KK?nu6}a{V^F{P|^3nGIgxZ+`Rs-9J!2WCs%|DG#EtlJqrUpTcL5H9?L=Eh*U&HE9|8Z5j?2zd z(muyz@hQ8Zq!I6{UwB{xYnr@p(1r$=bOa$m_4RHTdF}3&|1AgZm{&ZvW3nJO3Yu?K zI$gc>7Oqlw?_HcLC2lOooRF&nT)O`ESi8X-CHxevuZ4ex0?F z1enHxjD$N?&`|>xe4^-#(~GVP65{9ov*h-vtX_3?Z9tSd7tQ4VTDvs!T;^8I+?WSE zec~I#V5{Ipib*g1b8nS?`J#&yuzvGrm6+fi3UX1G{hl@zkne+VIX)CQIHo+l7e|WXv$erolSwwwr z>n@Vb|r$G;Rg7tqf|2BR8;I;{UrUB6FdB7C|y zntAq)f(vsZ3A9>JdJK{H5N((U5EEbO*0*C(c+s=2F|64Va5eKL(V#M!D|PBrZ4}<@ zQC#M!;i4WTn%An;AU5S0GuOb?nk4avHP#p+JQ}QxJMEP-#J{!}2NvjKe9gY~@DOaLrjCc_4G$14AGX;y_37Xg=e?&M zWAUz6U+UZkju&AS;(|ZjPyW^^LZ6!632-yNJd!QWJ&}=%;0Vajwz$myIf7ATH`v~< zWz>tWgYHOzjBOl|$*oJq3TakK{hCJY^gW{Pnxg-qCB(gQ<`CN%&|{?Y!$ptp{UP+( zVrp(bM#Z{l)LChf&I<&P@MvIpOTK8M81zQ48z(~J>PYW0sCwNxrFz=JJZ2A6UxJ}@*0k;%b06C6g`J?z2B?Cv= z9~8L_b8_wq<@b$pbK#qidkJ|6$6qq&^RZ*G!Q?#(Me}~>f@JcO1YP*&+=ojo0oER| z^{r&ko5?vX-U}m5nzF!;HO}atDfb?<&fGZxp#q^BD3tpv7ro7Z4Z8HLjCrFhW<1nt zT1;&NM%aJ^jm=Tkb}P`@RLU!=>CtCxFCLY7a_WWH+3+FdxRDG73?qzgt*u6KRU~;b z@1Mk1gd8}l)g%>DiOp= zCP?m@Coet$Jzl^gB z4ZFyvWJ7f-z*{V`EmJp1ac+$$i)9n(g##OV<32@QZy7e%);cm7d`9}OX0m7`^vrwu z7xQejehcGjOCtT~APe7)=iiqwab{zmffB4;4}Gc9+z}}6e^N(9sAe&uJ|!z$L4-Ax z3QhG^O9%aVU&;1a(M0oMf8Ufs`ES+0~7vG#7r%#D7`eL~7-kmL7S4?rGH37a+s)9JMcK>N z)$7=)_lfO{$h}_-JwbvVDFmpWWFAequaNl?ek5td8Q01CP^~H=3 zdw=AK7CLM&y~gQq0xfx&JU_~{TPvRbr<+u$-9l3HsYd5PrEJ*@ zQWL-3=B+SW(!~!07HY32?}=~@mua%Sl|Y$%wq2j35wPgLJOf7$MnZ7eSDq&BeXfL5m+~cUp(3W`xTKi%{4W} z(y&XO!heR=5X}|>C8fmw3copRR3p$UDSnJM21JSCN#<57ALDZhIS@}n@HUU9f>jfS z(~TJ*eDP9VibPEVjfggnQlJC3SIS6D63g{D#dXlQo*;mCz0{RkAT2$pMeAaz@@P?w zFMnh$9y{y3%{+7Lpt1B9NrBFtw|3`=)Zk%ff*mDuu@6RGK5>pPDUsXajv1dXb=sGD zA06Q)%NT|4z(#}=z=95o%H*V5wSO zz*B7<#Q=UIb>lDn8qZFr*9?t&D3ChpB6XPrPYK!>ol;%sORm%b6*jbcX-S_S=a*1Y-Hm#1;H7f7jbkR0S7ii zw#LbdYC`TZI?`rpPt%78<;GcSuE78LTM z=c_j^rX#fNA;LsE8*K(Vh}_8QR04dvX`{-19g5`;yZz&{uZkqiOJkGq2OIk*d-aHQ z&k)7Sp%hTRa%OatUI=EEtC`7lQozhN&uQ}32)?x)d-<~Zg6H~QdT*@^r-QBc3QvCfG-799& zHNIfa&8grdBby{avC6AI6CmS@R6tM(%Z%YePfhL{EqBYk?MG`_xQfT7<7EWzQ+Rt6 zZzPyO=fAncWgU7-lYsM9)U&QxWP~2s=Z^M?B&rP3mor(OV4&2W)@H?#+Sw; z6C?9q5I?m-e4i9vASv2;PNQM%iC|u`X9(!|iJvy0a%QCd#7cx4hhXylpGGsQ%jyt4 z0S{sQgNR&lAp}tNXvFw__FucsQZs+LR_9E15_~&~FgUw*L?~(Ou&Msv6~jMVmSR2^ zaOQF*t<^cR|GNVDPbs4_r=tvh@ITnWL9R11J9R-j#WO>TQzW;d}74$6&|5m$d%_qgUY!8so^x!EA`I52^I^%g= zzoj>I9`jrF0KxUxVcDK8@!jPZM(d_G5RD!bfqpZJG$r{_6LUIoy-E9c?so>2PcR!W z{EK6emM|D-a;+q5tC8tAvT^3UJ38t%NO6JPNI0bUTG`!gm~P%L)AlBkI%jSR7C}=i zx>S}j?%c)Mkh{PF47ZmN_- zoYY6%CXzEIkc7GVwks{EVp{oLlIeLpZ>0_2!y2KcXJ$tId!19IvEhB z>U6bC%416vy0B_x04u&ig@R05xHO4%-D2>kabaTqZ~Qim`D3OKaLoR;egLD4h%gs+ z+|E-AQJA)f%_5?}ep23Ba+1!1dmX>cbu>*eNvn$FgVPAD+C49hc2)ZW{hQf8jhPx}5b`qub+wK4qyouFFB zIHZI6;gv)NyROY>l*sK}7N)oM!+oLdhNxDmcXUwa@Z@)&<2k1^NF6!~F}2c2(r{@a zni~Xl)G*gklYYsj^T}rmer6H?J(_;)AnsvF?C^Cpppe^v801oQZHKU{#1;6aH_^Lm zo#rE|i6Q60DG2SQ)keX(o{^JBk}fGnF8EEbIgf}r_6xKQjt`sf>-EbtSOF|FZd!5S zc9&VM*1WhjzA3cRv!!Qu%&@a)ZIYry{?uV#~-yTj#qlqIH@`1));vFoT%IDQ8wcQ zk6cmdA>m%?%u4}^L_cac`k5e8es74CCg0>Rx~EGc9TzrF%fT5$ZvWKjyS;L@f~JG* zm=la{eB^=nNn_$P8dTb_6)x^=UZt>aLEYnSdZ|_!Ocemh_Q;N)3wGL7skU`e1(+9c z43(jY+z|klw$yTVGP2~AFoQob1*8>a3;`Q8om@)*Y-n;2XoaKCBMZQu{(s;`#Hdn@{rYYxzK{~BSf_|ridl7EL# z!mD+w8MmZ4-booBP}9#sps2Vw4+u5RnxLc?)3Mi10w^X`D}OE8i?{MH>P|hEHyNC& z)$@&TZrT?m_r#Vw^doF@k#KTA#L`hg&>c6?+vCUQ5k2P0s=tb!QF!L!7fkv9(TQIJ znN?EeHTsl`#|I-AGzuK)li=I=6IW(CZP2NgAmpfgG|z7{5Rg!-6HrmLZh&nK;- z;LJok*{@GuQVu$X=hFZm|Ilg-@{bB5cNYZ;Y(AFSNR;0oCRM`HLmo~|jF%JP zAzA2spB{finVG3c9@90HXe!cyP8iYt?sy#-r56IgjNF2qU&78eRXEVt37#=D!j>#M z3wu8^4NM<4>%xm0@UM3w5jO0+F)w#({NFjoc|YLtag z<2uP|UqVX2)n+6V5p-mTs;7d*7*><95^6i=P0;27?UYi)9=*4EMIj0>)j8z|L^gw& z4l5y7T4|$sA2*Rkte&zrI@#AKKQlj2%ibbuBK7wJ1(nUix%CJh$r`aHVjkE-8tM1Y zPsCMQOom}GXy7pMhyu>~tdxCs%aKMk@hQ^T*O2c9MvfJM^j4Pq$7`MMp(0c!ABxWipo>n>5 zDti8tdIs z*EO>slz_ze=PJ}~xB;wjF~8jmyNl`@0+xjYo+x#wn>;8@Ef6DSSVvhrsZbTQMkV(D z5M-D5hDpt+MaETQg`X$OrZ4REhST53XOu8_y|U{H#&g;f{`y0jE~B#wP{K07hHnwK z%QFxP&6OzHiq8GnIeT+<`{Rxr51o?dihf{i<$()+vKEsm$5PmDH#vE4VN_akM=>9z z1)XGv%ENJ8cdGPC#oZgml|d)Zi{CZTZ6J`$w;ky*e63b{8HxM6${E5 zbt+8clr6rV_LvUhjl43<$%7kSI8g?7TsrF40zCd7uVl3cj#VqrV4?v5rA>KO!zzEY zQlAbMe&@*tPsDC7TeZ7?U}r)al~u`kS|LYe>09ZSUi;>_@fi{SLM&?gLVKo_zWKXX)FGP%=0u{!$y%bew6TgH_smanweN$SC$y8r;U}u zG0lc}RVUBHh@y3VkFeIy+Y2j&EqySJw{mBSfQK&fiHH<#!mut|W4^-m;Z0ge`k0Pm z%DIoLrMBpeis=WVZbZ9LR#bvRB~q?&ml3rP%+t3@Vfg)geFEGr)KR(t_Zrki-_B{@ z!}t*4T66>gN%&9^bJ*fo5~z|(X!|nAEHfk7?}eam>B?W1jn=FP4XQsQ0iCsfM!IHX z(S|gUU0hk2{IfR5JluMJ)%`)1TWJ7P<*{2@`LUvbd7BDOh|VcbAP_)Nv%b?r{osfE z`@01)hefFY`LIP7Q_c&oo^8tvnUQV%VIraB`sZ?uqm_h>+QY&iBGWT3jbyDpJHf|L zb^0E+iF>ib-hE5Smft1Q@Nx_A$^R6Zo#Vu!bOLKAC5{u!A?Ff965Wp(JPLD`JY5vPeFTpU#Ul>MIp0A(9P$Av5~~lsDshn6t&(#A zgRO$~{8qY=zHiQynL8}KNOWY#(M+8<3?yzF%Q3i2M1)grBJXF|bGQtHDADoZ9O6-9 zHVdJ?*r@J~nC5vJ@3a>abZuqsQ-`+|d4A%eqb%D(-TbbE-Na<5f|@@Js_oghcP0bU zC0?uW{gqf{X)~h*b0d3`?xQq}c$fnn6EIiv$}P~+V`x;-s~f#Jv=ck@BqH8_B~X$a zosNpj>eY5KE2`HppvSVIZzsqQpl*|~{U^q);`KQHRkvE!y?Z zTQ7~OzAx-V_U1uT=!j@hKK?t=dm|tgn#Gbu#sosaO{EhW#llRcY{CU?hO_3Kd!3e+ zZdThXCi#nlU*8Hi3cW*6H)`den49xl zQRra|oveU2ovfY;4KpI%+9#)%*VTPRno(p`#2yd+Tq8?P(eA0(~EV6s2 z|G<{HFf2wSSF$6me~`&wio(`_P=GSzG=G70jAMNEs`-iZ{IMM;UUsvIXczENM4q9X zXQ-`vtt84hs;beZ^9p_&!q9{&QAs)+Ffd|RUSKi!MS>)oC4d!ap)fTN9EFHhrc#^> zukd)L&DB@1^E>d zFgaQ8$2m+a_Veo4&XC1^XqI@Rm27Kzu2JgBSXk^u-De6Wl3#ASu9dxc@H^a_glBGP ztPCTep9cv#{8amey-jbi!pg;d*oMMLv{?|ltR;ddcCI6ymeb!H+i+BqIdmTCo1d8Z zbjTVjZfDau>+_wiAsDWT&jF1fRsP591!Quj3Cb!W^eN?Kk>b7J@|`My!5(BQ?b7lO8>C-&}YY8gSxMFg-8c^c4Fn_JKX_6 zrn!D@L!$PHXOQ4*tIcEl#tw0&-$(FJ9pxjiBy!Z?m_u^f10;2Pwl4_~=(EiC1)!BN z#z1g)9rqn5q)Ne@MrI6zt(x$(9MOgJ3~g+R(Tp_NLSsLxjl|%PGsDHgtqE(6aZ(-E zbde{&#FhX~5v$)?$?czuEk8V|D5Pp}Ox@%dJ|MqmSh)}$a8p`2PKt|? zel6;pf~3@TsUGqm>@&!ixQ=D2?Ssw{A}#(1O?d@ZdNrID5x{oVQPnGD78ZNE7SS~n zyuzv*8bwUJTfF(h=S0)1rkbaM?%)=TiWFSs49fqMqg{}*a3LAEN4LAxV+uA#kvcOa zUoEY>fMnC<0Zwo2HWv^XIt;PM(yw~5<@gC@yfIptlJyAvnEELZ@l;83tL+0n90Vnx z{2VDerfX_W!r{c62;9X^*dBBP=QR*>geeZ;4jnR;CW}@IHu=WYWv6xyBB7zkU6JGt z=`=B~EY@QQ`!%9G!ZlE3m}E4h1<$KFppfd-RJ}#yIqXZF{?(c~6khLBK|P8*DUrVl zX_ZS%2~t@}4l${}gXj6sDDsph*2Tp+aLyJR(31Ee!)<@JHSNK9!p_Wp$D&83;WTT7 zG3(tNMYa76xO+aSQZeWPEMh}bW1Cd|$nt^R=k{N<%VXf!c$|qOsF2dosg0 z4-kitz1@hn1cvs4uL|@auqu8zd=W)XGMCU%vAf|%=d`I&MB)aV66=@;87ZAh<9q4> zV*4x-F%tLVy`c8oU2OF|J7>@x@4j38>E+^(~+9lmF- zYg}@)uH%LaSwN7Ci8Dal&cPb}zf{`xmiy8}CtiaV#SUwUlo+kzwtAHs@MZ;+Z9YU3 zYr9w4oUCq40D?;GZG*N4JWbst?VaI-%+8yrLx-hb=pE5wrL_qhsr#NePoH;}@F-=p z2*nSIaAR^SrQ4}X<^qm4=2Ka^iBNQQ49*KSrR65zjZnl#Z*xwSew9iS>!-W*V1>7D zy2h}d5~;j>%o+@yCsXPFuI^p9TFBj8cC-X%qUYn7`&krxVKkX({J0(Wnuvx&c_JF_ z=0IToB{NOiU^6IYTP08}NJf6Z?jLu^ij(U01t0yEz)JZ|)TpXuX!SH%EOw`JERDmQ z@mQqw8DV#&fQAk?9>7U~=;RvWcG1f3%tZU1gSi)s<{_5E8_-cE!YcMzTV|Qbs^0^o z5}8(WgCGMySk5oOQkM{(9UV%T^X8guC5)^ph0R~uXKnG)p(*A)v1`DqR zAz(Gda?Na5Cx&(_GGt3!i+clw_+Sb&$(xRceUx=%eB6AGb@vWDmC`2V5~NCu5K3}X z$d2eb(KB)jij;XAc;P2Oa=XOPA055xXZKzA8oQD{X2K5@8=Ud-J@;B9SlQX_eR*ki zPD`>@A!Ub~;6_nxl5ajFANTs%m5d^PjSw(o0NtHnba8dG{;}rRXWKJ@Js*%04s4(d z6QS*i!2B6$KAUv*cJK!<8>NJ6$r508UiiU+Ad^P0lsy_tfC5(36pw(MguBBvpHiO+?e!OvaPQ%g0-w7OCyv&Ft#E}1KzGbRwyaEyWGK<#ud39zYhbd zo+cfjRMkv%QFk*ZtWJYK_a^@|P*Dphy1lcF=nkEgz4q6bPkhnVYJ;5gc!9dFv&xm@ zZZv0M2hTZo@KVS`ehU%8XuI-A_??r`UF71?r(T9r=(Z{r?`SJIA}dfJ(XXd(!8Zd_ zCO{KkHOwX!evE9=VY;%E9bexmk7l0M*bM?97FZB*FlNsC`4|~fuLeMwnPb2V$YSBI z=6kebO4E_*4PoH#^T51U67Y$@v_S9aaIUHDQG#?#_zNK7;u$r)f{SZwakBX}>qqSV z2DMuv6#sVfJ>U>3zfh(|@zM2(*7f?;`LKA_RA=KePOs;?MMaq~#Oo(jkDhs$_NVnV zJf9Mls}}4sYt|H2aXY?_i8x7P1(8E)Pdf?T!j&LYO72}zYR4Z|deuO*quM@uK>jGh8)*_CEA5F$EtL%XImRSApD# zWPSiGoib~BRz>@6bA*T$Uwb!Kizs;P7Wh~JYkgY9W@}{JM6#@}!+xfOM8P$Z^=FQ} zYH_4Sv_c>QMg0dj{E&$~(}zMPO9EoA*5Fygk3AdAoox(}>2j_~O3|OK%6c!ag3OYHXP9M=@aP+Bxy$P5mGuCioVWkYlCP$jsE)8mSVfTx6Bh6Iol$t-?v8hQh@ z2Sv&?G=cRu4;%9( zNu^B6^Mz7vnOVrbtQo+X_7i*D`+qL$WWl%tQmTOr z4k{60IO@avGG?&UPxR5X8^ylE6D!mBiwD7NCulC*2GeO?^z0l(hVVQ4Wy4WFyofM+p~&8 z3N9;xw(2q5MyJN=q)$yZ4+)dNX3kA8$?QV9@H9-md1H&@=NkUr;%?+>r>#Xn=4E8P zL``0AlXIKBw_6EnHuH#a_G*PY46Yx}clryuXBI37)8aSD z)+Jn)vsYmBvp6gMxz2pb$dl}Den>|29^wqWn_$ip`-E@%seCVF_UiSZlubtR;uPg! zZO4y0E|4Ec*ju&TP%r%9Y22|xdO$UpHdLnbK!BT5o3;3hCM!3BD7OrcT;K>2jNsIO zzUwts6k`lmbZ$A>j$K1<)+MZigQLKLy11m0iuI$kjWG$T2>M=Lu-2^vDzjD$oMXqC z#S9#yN*mP8$%~dy>*>n(z75Gj73-{7sjUJ1iinpEDn-wVf%S?^V@^ix6uoo$)0f_v zbwX>Vr@yRyWR(9BUV&36SPR>i1cIK~oqL?%#y!ueV#Tc1ae)xuwaHD=+7+~_L_yp4 zk;@o|#LQzE^nv@MgocnpJ)FsNzy1B@%?*%9MyOg+p|`;C%TFlfke$!PBbVt$4U!6X z0<_LN1D}_KP5V-`g<_GMvraHCYo#wZd8B{p74Z;olRij5@}_#r6;F=X<0sIa)&w}U z+-vXx={d~5{oKs1%9f#pco~HirWL(=o9PTTH?~-dDh>s8pi?>bwEA9p1~n8&XU)TD z8Kb^Jk6WacgvCFj|B7fE6`^9MDt8Fl_)Ko1@)s1{fR>c+QFMM{knDR@hnO3mzg5;H zWjO+Uv#oAP@B_D8K%auwUl(AdsY$9>?i7yU_CcbR;OOteN za&@Aq!hxek`ujC9`Slh_$g5Ps&K3<%1=cQtqK~SB^7}&Y@$epchTr^1qh&iqN5Qlr zehx@q6&6H2W%yuE!{dL+MmZ0`Wuhh{FJqfy)I9$-s%VY5!nd#vxx4t8fUOU8qE&01 zxv8Koz?t1{EL?1_rIK{tv~5>?X1*3u7&@hrKF>iaOY*Bymm$qxnm8})u`7A)^&NIJ zQ{Eh!Jms{oAywwc7;CNI7VE<-6{h0HHZ}~~2g`8s2lk@GkBgtej$}0g zn81-;p}6ZqMa?S?b1&xoITISj9pi(~l!YnY40qe`nd4hdmO8U0xc2zrF8|~YVB{)m z{N8z3YbFx&4tSJb#t?q2ocHL+2FX{lnM){Z8W z=)HnD@Rn6vYykH?8SBD_+jaD(4i2DZe?f{DC70ecfAV$}qoM&V$CRXbZ73xz!- z0#a?BYv6$i*IJZ5vd8(|Iwo1Q=;moU0fOmkEIGQ(Vh^lRM0A$C^aS#^$q~C2h1a0O zkW+7S_8(@tqcIx0r7#Bxq`@O0pdi%QWJ2!Sr4u}igYSlEt8O|U zhUQv4>j^gP3#QIS%Oct5a4CTUx7W|*zZ;^&8LASJX&Y-ee5PnN69>f)RzC4^kS?^m zTvU+o^R(tIVBW$YB-fCCO$DK)?*b&_pD0+_6eDdS-t`KEs^*kI@JiYDjv@Y3}fbhi9!pw332i@AdtFg zR#&4z5NP@&$;v-zK5qMr|DhPSD*pAs@>91BloEzOs}~9OkFrOk0Czv}`f>d6y0vhJ zP-(8re%I~8dQy~_GRNh%r475``Dp(;zVd=dADKH358a<<#ep=vB9Wi)*k)CC5R?ds zyb0OC1;6>6MK9xpeQ0D);d!3x#Ql>?-BDe0kd`IGd~lgs9EQ&nJ3X%8xZ&p~wDuTs z86AG8Adlr^TuyVySt7|qjSE^OGkCk4#OFwylWy=rR-0w8Z^FK?^KP^J)zNV`_UY)_ ze`sz1@TXw^;Xd~hILRleqptNdi^eeRg1Lk|aiP*iIE+yN1s>4W_RNZ$%g%+rmux8a zOj%H%5*Z?z0y%+ilHS`y9<~j;w0vcAW@*4|+dTc7r#I<>AF1U`j zB0oREoZKT@)SofKHF&S!_F92V`0{5c8mKxs;7-`Tzdlq6qg!ul+)Ixbcot9&AO&~S zD64W{z`6mc%I7HVD&}z0UKU`YUATL$j%a1wOAWevK{Loij9I%ne~P&NJC z$RScH{h}7^&PTpGiC1d-LiqjX2g1ICVnwQmVv-vbpEZK`eqar#gk}v|lJTvx{A*L! zs&C^s2JJSr92_V7ZCwIgSw$ILFNBNbsK1u(+2u|XM^86YfxxxKQSsO&Mjlo&oJzeN zf$CH!(tX32I*}RSx{YsmSj+H9r&QMvHe?- zyBPX2$p@My$*KAKS17MflOM)yUDtYu0!B1AMsd>!QW_&njAbCxERC~46FMC1IT-5X zwdtj;9~hAB*s*XUq6HB=%mF_*DB@4p+(|q_3H39qg!2;48mS1DLI1^g2}YmC0)`f_ zXw;VgtealkY9hOBcSzJoF?;i}il*%?>N;7x;oiPoJ?REha$s6H7PD@f^W)8>BXG4)4&_v6d+RdnwdN*LiT zOcRlw10|8DrTKdSxg>dV0D^6T>+{VNMNf1H)PAY1X#?Ng1K|qQ(Z0$8b=V*BLM4dv zf(dNVI{&(rrh5yPuXvqzP0Zl9Kvv%anJe<-ad*P-FN6`3{YO+#Z~CTpr6r21}yS1!x7DPmUJ zbDVB@3ld0!r8OC_MFvZr`58lrXa9u^4v??K<0^Out7c4QA2XvD?$$ZlmupmpI;?1@ z#?In-uaX_;2uN}CD<8G~<7s)3nOchq6DK+2q~cEC^rPymi34XpS5pliRz~(^b`+>H zMP#ISZe}~TW`vM#nqs_#m+FC0cwS2DO<1qj+?wdqoUhl{dBt-XKh8txO!1~BavT^B z+lq7=<0o85nKG(Y#4?u7i&VWgxD2R4r6pE7i1#{nyk%)5!8An&LPF!dae2L$iGtb^ z7Foa?cz{1Z6MtyBbI+i{Z}aY|eTBBF8*vmy->nZw71cvSk}Z=Vm{j}`onmw-xTC=V$iv?tONf`H#D#Z7P1I=5U z1fi}MClz}^Rl+kEDV7U4tv?GqLTbznXpAe)DNw!PH_X|1qkpg7h^UWzN=rVsi#t`; zp7PgO)%%G@+*>80L%P}zHdL7@O5`An;%{-NERnf&(^VB#PaAj=uAss`$;HP$tGJ$m zq+gGSJ|VGrpiIRLW%TcSRSR^gV)tD4a`sGj@bSq@zofW6OB)SrI>dR-+xaeKeX0*5 z0xFJ+e|n>4nC+2>;lo9TlVPRieDB0OdArfulyuQWi^f(BKSs-4d&+-?zJT%LqhQ;F zyz&7J*g#G8q!fO8xFYHo4{NfM6!1HgU41;pu+Ejgd529WU>*AHz(?@6F~=xMq?U|1 z``%zrl(eHl(Gj)Ve#(Tej8Wn_Cg9IlpdvGaP#Hxm!lRhQB)gOm&Wf=W*_>)i>hqe^ zXFSSc3#;^^5e=NLV@~TFwuDgntFO8sva1n0_%bnV9nxPW{)Li&OwCHp8@YZG*Qv2- z432qjOqht<#a@NbCuI^BQ!}V4Z!s&$eJblBYvLMjb|3wV=(2BfH`r|-%<}6PUTcf` zH6j|^8cX^w3TQsZaE>D}qZr|90S6xvI0x8GTjE6%0+EC5lGAjYJ6l7&0%!9m+Cnr$ zN*iPk0RHj|&FX@h6;)Wo9QtJN9&FDn!$ENu4}(yCW@xGA zlWXp?+MEnb^#q&%va}-b+{N6&RZ8d9!zOFeKv&9xj`YcJ9?3DP53bq2d`m1^vuki8oqF4dgBm%~?nN z0Y(w}S5V8Ix`4fd=jamODBE2UhDrw$Xq;x`wp9G~cYwTxuhlfLrM=G1_EI%nEILb9 z!4;!N>GBNjU`S9M?=0gqm_Mkw`m;ppL-%{cLXTtSrQomt^4X6DQX-K*qt@9gMJ
      (CwU4+6yNH7tcE z=06X$W@LH@2qBqPX6jLZTYf#dhEEdky^jj1ea0VF{}hQeG5mhc`|+X_%F4+4ukycN zV)OAdc2!$P1V{jYhc=!}`??|jkr&7sO z%>T2i1EVyN1C^p)vNzQ~4>L#xPU23xK+LYoKR@|#tGPk)C$LaUfgnmG=PxG9;*j#E zR}WOjfyHmO7B^JYd&X$J(R$H8Oilo()G!`c(mUAprE)R0fg9KYgx2Xic2~6%-_&ox z$UHF__!n_JfLE~E${~!+;{3`_{|ScF3|pfgRrQ%4vt_^_#=hM))c>&YIkUq?5ZF?b zuLq-_vkVr^oK~`EfmLuzQKgz1{2mGpQ9!ejfq}mZ`Od0kQq7zu&d9}hluFs7BpaTI zT4$}G_y)|Jdrp$4&%JE#MNOC1OBtuudBI7HtC=WJ4ebPEP`1sICE$yl7YH34Z_amd zAC=B7?dC~K#62nh`rO-c6|&p()K0I^=X0{xE&GWhBv62xD0xZVkuBT%Zy%vLfdle@ zf|ztQfaJoQ2g{GET*>xyQc)fw>vJi0ZjOW|f(#DI6UDVm6(06N@m?IXMxE^gi0s6( z<=d#2CrxSQ5;;!wY*_WTwW5y)BF+hwp-Ur<+I_oZUUSLI3?{}<*xQ536?KgT#!YA- zX7IjPwTp7E5ss{?99T)!MZRWhZ$7%gu zbZ}TQ{+z-_qHe}0*A=n~?u}?5sbAWxu2l=enPr?gh19DqOm8P~$W9#L?D6)-r%Ukm zvh9r5X;ZG%jPe|6){$+AzKv+_h}1y9E9hOu^vhL>0K~Y?CUk;73Lcn+#54hZ^l*r# z^hBWR>Eqi%;do=ZESkFUaCBmG=bX8;W?jyd;-L6n-8NOss=M~f(jAVF$a(-T|CnyP zj4*9&i>ak4MG%jW59jbxkTU~r+3px*R}~MxVP`(yrVik5$JMBgcj?284l9MKGG^Fx z2~8td5oIlJilD`wR=pJq2?*EB&!^g*jgj2!4+ut{!a!>%{V5Q`JYhg*1a6Fl{mm~` z;J`?EgQ8e1Irh?yeXQs*)Equ79<&TybDCrWVr-D+$uNk-wg9HeGkVdX?sW;Z^#!0S zY*+sdc{JTP>VXAa3#imcBSPyD2@-f^YtTvVuwVg7#nkKWuMq62~ zz#Q9~TrvLD;`w)sfV1m)hz0wF3gDknmni#o{HIdjHo9NJ6){mX&0g@z>q4Pyw@)E2 zi#-FxcgLZalK1h^Or|h;Q3qKfPs5}i3o%FPTUD`!Z%cOr4Y!k2mOnpaf8N>mDb!s zwl#Ks`JgaiQ@03HirO!5aq{9UB3ceFjNLeBqW^Q2GPAs+A?u+FWAt=n*cLmkyjLMK z;|sf_@hECXJoQ`lKnhOzUgzsFgLvCEMU3c|jOLhvqZvIZLa2ap)DuH5N z?T)XMSWNm~m#oM$@zY*N350g|wFJt)dWNw#E=#u6F3rS$3IeGlgxZpkiAde0pg6@y z77I$QpsfrOOH>+uq}BG--`Qs#E(I5~#>O8TX6eR%KAZF#dpF2gsz_)p8zsM~x*ov` z20k9nkemvk59YD8McpxICx`m?Yej>NoLp#I)<(16s(reOO((cwGAOYSylXcAdUq5T zRNZZXJhl)(5+|D;0#PQc(DrOnV_blwFIbgZJK{~jya~w*pKMDo|GO6ANv4uV*Wp3M z<{tr$&&(|C%3Ou%4^(2ys2~bRm>8pvY2+~vC(Q6Q>cqjJwazJhXJZ7Q0>$Gc6iKKy z=z_haM6yK2)UbLiv57gM_9C~B;$A+S3z{Ja=GSz)klA7Pkz7Li6pNtAD6%okAho^5IKXqF?E*6OYEE zgUj7@d#C*&$rOF3Mz#9?Y|Rt0*t7p(-`6wR2{xp z0@yjZTM_>8{p$NrpkHWn&NgOx2WkxAhz3&mCl~2=!r9J6aCv0%Qc)M6Kn~*3N5$#n z2_}~$&VM-6$^|%AFN7_vS3iiZqN=~7&dr-IPC1pST(hlQ-pN`W_#(g_CG@|a;!N=<+OuxR78GV68f(c354y#Q5 z)Fk`xYwcRwR+&c2cQd0YUFLaaUQAOo;(%IlEc%A=P>aeuVRfOuAVvIqV1Btj{o34x zw3iBHk=>-1t&RJ|yNOKh|0E_0S?&9lBu%`EAmo;kP}the=Jr~5JJb1g5<~n|0`CIu zO`K$R_2=dI`W?ZRl;EInq5}4vVIQFN`aM+oV)S+nA;3w7L!qreVX16TaS~5)Ni!gR z?2EhygKGx+!&?vI*wazZzk{K-c%Mr4}SZ9|L2BY|O-rR6ZNp*6e6m;WEi@ z^WiN*{dujU4a8vW!B2kc(`O$VNgQ_*=)|lvX2tj4DxENW4K^Y|n-h~}#LVlhB^ zV9fk|MRrV#NdOh7UuY~UPTQGA*#;kC4JUaxXvGjr$HNSr;$sIaWtyjs2V7`m4ODvO z{q%1rASDkAtUDcSTgV_`<|3nhb9%FM%G%tOBr_}T6YmT?D_G2Nr8dC{L;awdE zJxDw?UwE1FocOu&TKL9I^u95F0Q$_>rbkIuN#yyGm49#?RS;^WG?J+oL=h%r_Onv6 zZUZx?qE|SK_+84EANr^(ioLef?-|McMZQCXwN`bo&|&4(DATH2Bs;iZ(}%id5I#5? zJ;(aerH1qnzi_`mc;w?x2(Rx0K4UCr^44;k=Use238FJiqYM2S^1o{{9clB2V0%N* z&IaCSSNS$0nPw?L7LcF6C&iUD7PyEl$Wv%e#m?x|qlA5Ny(8cQIv_Bc1!AC12_M)7 zvGtE_yS8@8@(@3^PZDy>{n3-teks3*Eq*+MCfgB`sn;}>!ph2&{8zf);&d#!*@Ve` zTX4lf@J_&nlQ^NGY%Ne#`G8gOloKeLrjIPSpj;#zpo(=ANI>LasP&%haG5af*~};@ z+8O}O@wM5StqLL(8Xtb^ZeDQ2ZBK(Yt@4$GKf2_h8p=%Ty*E@cJLU=_H1hxGHffcS z-|_2w?u4&MU@G8NPZmxm>SBsUP|-s^V-?o*a9a?(wmCmps^AUorSv@8YLZ0fT`Nmp zZHO~dbXi}ShV;x;+w5ABsP)=QPA3@X;5V>|6#lsZZHsI%8k`|=sq@}pXm&L5+d2~= zC^^?7p~;fOGt;azBX@dPg?vJWLmr(JdhhR7O9R8E5!DjExPu0Io(^hI>IT7^<-T(Y zU#$gaC!`PHQo|U%ma41T-Iju-pd@QB{K+MpDQFndD8!>uEn6}g9?Rpz!Fxw zy-=mKzCM7-346 z>DXBHPKo zgK;TZ-na7V^}aE}?_O_v#0V*52FxpTb5F8iri(vE^&7X&1WUMY;T()D$tP3U9WZ^B zC(e4fc|BE7cX_yl(TUkqV$(>XM+YRdzkEs2s_6Eg>vj2d?y%4iPefEOaqr@73OXwD zR-a?Pia|+`UX&cpeG}HMw9oOT@uW%tqLllkZ34Km`}p28kxcS1n-4&V9i%Ic^rFTt z3tQEzsPWHOIXnVKFop2WTt*wztBtQWf0p0r#DH`+?cq7{NVY^h<%x;(1b;P@s$zA( zW{yoJbm{W;Fk^Y!Pp2Ht3hhcgJC#0eLicBG6}?UXoT6q;v7LY#dQgMu1il zBJ@V$QYo06e4S?X!_dyIljJ!^Nb(U=?l*KE2T5}1<+MiLa!TOkPC)gV!ZeRu?x3I~ z-v^&9W|LeW`q$rny7u^<;IZFt7bI90y8%IK9e*Vv=j0RhuS1!CuL-dmIn=WO0qXc6 zrK)n)aSTCApG~UIvgYSx*Ueuc>h58+(Olu6v3$>UQr6z-7O%QhE=y&fNP<4R`74Pc zXaCv1QGjZgam$45>%)PyZ_Yaj5A?5aRFXBErFdL~1ke@|`P!|j-9K2y&Z7gm_R?ie z@LvLPOJvgLI(R#+Xt~%2H1id(Cb-PmmISMw5x(SHg@h(%BgJkR4EXg34}@R6OQMCa zieqm{5sLwEkyCKP{>rP`*m-y(k4no_Kmgx=X(0Bx3}uH$8(q)ch}Qn1t0Ok9VuJkb zc7jRI|Epr(t{#M(qpnSGeWDMuI983Ky(K_tOXz1*m3j5Zk9X&xOeL}iqm|5me4D%RG(tgk8JdnK?#)inm!$ww`|!VA zJP(3>#^!_6QnLP`%l=>6_);#PI&zJZFZE>6gpMI(v6wJAx<=8bw&**dhmjJQLNP=1 zDX4y$Z3S8ht7-^W!Q?;&bP0Ri)V}R1)oc5usY$&mO$W~x)E_Q9`e89-n!{o1^6xy^ zK;HTL{~Q@WKOju#%-wQoA_tyQ>?&binY}UtD*}fTZ-L+I_JJlo-Ut>O&?*s&aQwe1 znzEkwi+&nyhH+srX%VqdE8M`R&1@8Qqa;zW(v2)+ z)9BsG)>cjU3c)3|zIt0e0wDvUq`Xu3(R?t+*m-)He{O!QDp<3I&kS0K!JIM+O`SEg!+(dK& z<1LgTq3-i1k-g2QX)=RtXA4dYSuUauRRwP!#?9sDko8ok?4*n>Ul(^j2ld@TI>pq_ z;M$Hz5FNW#i=R_KljSV+fPg;%*lEccFxN#Ilhi^Y41yHkp&cEOz`$puHQ(Bg+6s)& zB1;Es2d*scDYdEzjnt+w*x`z0Wwp_p@=ue7cB^$LTO+zowDT&|X8)jT(Bi1;0pGji zi#2M^y+Bq4&S?U3O`-^hM#Kd)vzvr;d`t6dmScap>%;t6&=G+H=2N^pB$do6<)0CI`+2aG&+r_G*Iif z5plev>D=AA z0LwR)2terkja1ARR!ZtWgdwtF;sZB8b8FP6Uia0)QcX#@byZ(~(XdH2h9B$5M_#fi z<^il zIiWP?>p_267bx#tC%D5wWWQ9}Q38-zV8k}&Uj=c(0y*^}zPa8x8XF>TV?ZPH$J#j+ z5A6hR{b(AZ`xxoNxv*+>WN6L_)eYcUUn4Z)^gk`%W|sJ=!NZyvb}w(`nc{NkFxvqI zmKTcq8u`vS5&B;Dd2bW`woGzwedF|}L}11Kj?m}rVK|J?knI~f&4NA5(7nO3a}5$7BM zIQ}G2Pkx`jdi0fRMF2Xyoqjse@XL_~j;K``#NE#Z3=GqK7~5FZv&tPvvK$mpTmT({ zMe-ftg+X!lN`^fj&fJ!50Rgv5fn#b56ztlD%|M?rnI-98;?%6ad*7mKHhNS6bxSU1 z{}uO+|9i3cMbGgOfG7X*z|oLY~z7`Xe?e=)HCz zPA^3w1Y)z7HT}*#NYCMDNx1|hjoI#n5?=-yn`UH)rSzV(RS3<*^&3@tE4+Jp$GSz{ z{fR6l@TI`vIcGv0Wxq{-ceS6d8ArPDUIHQRb31BX632W&bz1eh61rjG$e89jg)}jC zq9ccfBfdoC51J}{+1gj3t~DpUg)*Ts<(NQA4cPiGE7i}d0!kiAWWufep`zzOQX%4) zwg*a>(_BK`C*jo^0=}3fTx2bzZghxN==C8OEQQ@i|KV{ogu_ELwVsS&o=>WL60zCI zY!N1$HtsM{(hQk>Zaq3k1qHOuR%)m|N#mri-XN%atR(hWCcZNG{7^gJct3m5(SA&Z zixPQ*4Y)EA$*r^ue0f+T(Cpp06V*;9l&|HvP{z9Rwq9WgF?9}P8q%kM#p40vQB6X$33RFnfjR7~z_SywVF=ln_ z?x;UJkt9lWDm^b*uFGK5l-)m95x-*tZDEx1vOe#gfxV?eTkf8g`>nf+S$fb7iHpzW z6GUlEwP6-cXSjX_VjF;qXjuV~H&Ta~)%Jwy?ZlXhDxg8jHUxtNrg~U-#_3G2EXuT1TbmH z`C+2HewywGr^Y*@^SDQ)!_lZqDRG_Z-!^XG4JP8--VI#ozrL1eS^`-~g#c(3z=fyN$Pnq_(D{i^kVqqPNoQAfWmw{ZSiG2{DzaXRPTb1uiUGK zqvFaxuD(>0B3!VzL@Xu?;)$HJ?7Ld4roiDug#k4n-Q{ciCa0%(t zrai5CLfIpljt~F%OXrgCp4}eN=MfBnUMdpyu?c}P zK+qEZVsPFesPZ82S_;Z&(R^uneJkp-QS}~K_BDg8T-;~>cRg|a&2gJbIuT0x+#eMi zkE5*K9KR{HSnz|K@{#S^h;V~GnspEcDh#4L`I$CQH@gCJB#Q;WDsG!p2t2VR^piB+ z1Zw8yLtTN^`a$;}?_8jH+hUy%2a1ng;1QfCN? zkBkmb6w8yu+!jQ$k{N#2h_{8YN|=2>(R5*w#M{;R&OY81`EjQ~t+oI%l}G?%4HTq% z+|q$eV(g;SG6DKM)!Ir@P={Y9yode9PzOx*?*qV*O5mF{9n0EJ92EcDAd08|saTWO zSl6EqJu&DYg*R0@d#KTJS6d0R7pg))O;}U2O$Hg)iWk$-*CR9F6Z)7o3+0B=F*QWm z``0X~+ZOiIk>2VUAi7LF@9n1W`4_xt2~;YZ)k`g-d{{|NrojQ8BLUTPwOM_H3oD{}i#Y^`e4sHNEDShat%-C*IVH5XS!pT#cjI9j&^S0V$H}zh8x% zdzVXiKlXK525og2pVP$$yPd;tXOoB*!_~4@j_06UP1}jaWtzg97KOHo8**-l-zP`w zYGM8TYG_9oAos!bIj-I0U1v)|q6lygIIvUDoK&qGj6OeyN%r7RX(MGIev!0 z!m|~YHyH2Vw6`S2lf|8xyd5hIQFSgZW3O;J)mh{_!bvF%KVHmjp1(k-Gj;qixQr zJWgeY;8vdoKUfX)ZZpZT*fC~dRb50b$`phgfS-}BhNm|DX_Fteo#u2C1#dy=DxwrI z$S1!>f0KhR%w+JyNW1rwa{jFkS>CV2s1)yg)+`sq?{tIL(wi@0(m)Im$2{Z#sMKaP zyZLzn>N|*+2_36Dsj~}VaC-L1O`L!);e+3_50OTlus@P=bfAU8^o~-8< z?5Rnlxx2R99;Dx{vAmJEsq#id`smGKZm-C)6ULveD7?_ep~;lo&FW{sf0+$pC&cjo zVuHD(nXK<3`VZjHTm|dT-S{VYWam&z2t>-@GrWV7aDiiZElKsG)&$BgRZZ^{y zm#Oq0oH0sBg|a>7n^X@*(d>8GrFdIE{KkZ$=)3cJbczE-U!)-H54+C zMRL4QTDao4MM&D9>yM{4AecA&U~<#)Iug{4GhkE2 zpMsY-{6}Q&g(6#f6(&P8mKI0YCF!%tsSFtxO5q+6i3beaNbEU<>$mg8aV{v-{WPro zn4+z{8{$fVVbci~x1*!bLp5>`2x`fDw*6D}wR1WIOWrXAnHK=gBD&^}-BC_Jdd;ab z>|puEvXz|Ynf%W8mWYISznLxBUP+PsJa1yOP@=lE|@HoN(8Y8HxewriyM`V~*&WZ}*c9{$xcLdVDDB+B7W zj6Ltqpht!&*gXeW-NKwa{{4uGX*fg+Kpelal71O!( zHkBz_GlG9TtpB9!3#9G**w05$*$tE0h83lyw||{-AN2GzJ&fi@o-P2pCJtHqo1THb)*D zHW{ebVR=kHv$O?!H7cP7vf4ZQ!o!6I9{kf7-7Z-mpzze_67kw*%5>Swn}vAe)<{0r zSLzJygfJwxb()>DRLW9vINspZp-!;;j1HWpJVK**%WQvzTnY8*$%w0r?;z)RVY<4v zjX?|n2BKW-GUBWxBhf5q2}8#YCDnif1w3D$VI(oEf?6=8;;sGlghCF+*@v;MSk)0+ zr+0V+iguUbZ(0k1wCj4F1I%OL+7+9Yw0WWdl+x$1rjO~MD3#1YDPMT_FRVM}#Eu*S zT{J<>58gVHC*wVKz0r46_BX_AsKR^QspXv4MZB#Qrdt0mkgi28qnQDEPFO-tr#8_+ zRPJ?c8j}kF21gR8=@Kqj?WF>lvhwGE-Re<^Tzpw>40ZOIqfX0EUBW-l>BMjtFJ-9r z#)L~G%jyVEyDk zfn^Bp>ywHy0L2hx4dO!rrB6IsGmPB1?`ey%2a2^g$BgNR$lV0vm5T;7Uz|MG7?C`J zmO*sw)@l;3BVmAua?6E_e776^F--V2&W&azS|rc<8alJBewzUq&gGZU9^&lZkiaU} zMnW*SZ8T)#Bs)ymMqv!%dtm4|pb{ zsFL^lk{>F&6=Z|=d7r2(7njq1wI_0D z+^#1u*@)TzD1;2jHHeRj3bryIu08^$X^ET=J5QHcQgz(~CTpb2iU`Tqy zM`xL0bl%c2)NkQzk#-}E+%ynhS{*dXN0!3Ak)6sCtIZ>51fIeeO5iX`k?e=VLQL9+av(ra1k7k7Jmt?-NNQF5z^`sGZ}b`el=274-{0rj(m?Vp@dlP zBo7DZ7QHcM=;tv8oBL@o4>C}w!NZx%Vl2RF$SV*r_;c-{d}VDG6?ANSW)6oxz9{s5 ziEAf^V6J27i5;DhFb42uD584onz?fKW{iW zM2~MiM#vfX(P2x*%)~Pc2+k#UB9gwWujBOfMFbqZbSolyuE_hYc$2^BN|Kx-6$r@QxoiNFuJP9;_p}ydd z6ql~WUQ_iJ_5{t5waTAS86j%2yemJA#9=RvT6E|1&oLo5AtFRkNu6F9-rf3gGB(u5L44`H788Kq81?kup3 zl{K1vi15(=#lsBGWSubR){Tb)h$KGrU(;Oj{@_)#H%2)J5d+~qV$Mk7Q9}D2DBNHM z;+dsy`&JbJsuFth5{KwYo%eF;rVa{`+Y)ye5?^jbn{Emisg3%XgGsdpPsXBLZ_wVs z(t2nwML{{w;10#Tb`P$wFs>xXB&Vl35J)gkp=}L_!+w@lrGAd7D95=J9(Km#S_x=9 zL#egOwTASnoOWw@$jA{^o8R6RF`b9qo0biR)+*vc%RCo!*DPGt`SES)H@z5G_plLc!)N8%tnREl?*wpT|gP(H;h&%R#N$rmErBMs<>1?XZyt7k^e zk(5L!VPPEE>V`V^avz7?AE_@>N5H+l#l9Q330lkCdSs_`^4EAX#U4c+lO;Ex70$^i zsI=LP;?_^nl1G$&>t9BZD7?I(|e$J30}JFl5FBEy|M8rqkrV zO&?bbC(x_4$~Mpik@cgqot2i(5(r|i?A;5n`7d9_W!x*BB4ASMCVj~FVM>JLU9b5A zG@o0u)y^+;+K9c^ZvuBpc!s#qkj};UTs*6JF7gLdeSGDWmc5;L;sGg*7fWRR2O@H;&x?Gu9E47J3S^StZndKj8XEy_AU{1s4u>wy{`J|;JWNf|qE z&*cfJ>Ic$w%!N%=)Fz|(YZaKul%2=`Oij%S{_5<-)V}#+P2(>yb`XA|sE}?^PhteD7&YBG0|Q9L zzXY#0=*8S6G!R%(DW)kcobbEQyFf@IJ=wJQd!k?A!ur>EU%T*PZH&MP-OZRU-kurN z|Iyvtaqw1<2eZ0BT&F{)28B%k%QA<|ehSdO5cL`L`HM2g2(MN@d2sV0!)SB%IAVPIe(* z{%0&`t~fuONp@U+t4{g@$c_tvCTN=@1HyDxp14J&|Ib^g4S^`-U#qqPyE%^X#(?~T z53$=WE(~6hFU}i#Dm%VM6w`|t38i~Mpjp;W-ERRNdAk(Ku>~NLCxHtO(FI0Qcou!8 zzG>W_$s_g50OhTmW0o;qL^^IoyRpS4pewipe+H4UTv8l`dMag(S)dx*hH$LVllAVA zdij}gJQ_PglP4&(Al`@NxUPN_FHW-2A@1L)rQ0Mu6w%>Xl<3NQTkCAJ{RfzBhqOQ@ zI)XL1PY)^}2E^5SoI$2b#`ozGFODZ1T}2jjWL(}+u>g*3LK9##ITiK*T&}Wc8YmgT zaG^Sr%Z`*xe^u$?exw_DvtINNQ{&#El*vWIcmM!(%KbUVZYu`eeI*puqD5+%Ay)36 zxz2l{ExqvaZU&@@>;oo4it!Ycfxr}DeAKJ&c$n&(F69U7aqhF0{#ioTx#yb{wrF1q z!tEZM{2RWlAwxjB%c~usUJ=M59(U^0ouB!v&xWnSA2}xR7i`8#=+mfASW=R(>%0v8 zeP0LW#pA=t9^Zo?-=Ei$(L{Uy@ajieLWcWUL#tg^kpQP2lz!(QmiH7egP;{xIWlah53^V zDFk*h>f^E6b1F&UqxV^pX%?B7&1Zc0!83g+X{^nb5BYY-JeC= zwZ8Y@S$5Gr;hi@{it^!7Ykacq4+K5b=+jKY+_kanmu-SNXNz-uJL4op8r;OD;nW-J zcS=jr?bRX$D_?YE^!U3U(e3AQ^Uuku<%#@`dwwKXsc`zu>~25|vqdOsz2M`EWog*R zJZ_Ek8!I3*ET=Cg7V#};n0_d5kRsIG4^Mlro;||)K6bU$8m{AAc156X+)|6K$M4_J z)*-F48`nwCJhhAX`2}$J!q=Y-v9z~1WQ=e^wTWDkxm?o9C&}?zPJ`lT5>@~#=%JDg zu5=fqR{06yR?>2`xLHSpxn&cx#Xm9QQ=&3+LSfr}1az88t0(a-ooD@E#=0J{|K+Ull4N@4Cb3O zHbi~o=U!9g)opV1C=k6@@Rx-Tg-XhxX#^tkb(D@*RxG^)*xXtc#)+4lwlZh4JIdX4 z0fGUC_y4=VYUe?Z?>3!l5Lc4%iGqX1r(p{8R#Vpf4m`eo4g?;3E3jkkD^2U>YsyQ= z7tSn^gbhPuRN~I@G`y8IyCM$b)jcbGeC}Er7tp=L)9c%Ijt#5%P^c%npGFx?skh@I z$v`JKuCC2R8P+1s`w|jmZngH`JK)_V!;+hBmOcg+44@d*o z8~Fo}tYxJ2+_lD9a1pmA{2dlDN2 zy&Y?e!KZkSHWlY{ zoBHo>kvn^(Jz&cZ$5-QEi$~`0ybV%IKe_0t`yWO0IDGCB9~?b@wxT_AZ&Qb~1|Ok- zb>&HyR7^6XH?AHeiF@Yl#Sw^DPuMVOy}kX@=&0N-0ILxXWCef@p4-SW7MZQMcZLJa@kOcWWik83ivO|#=L%f^noe{{gLZ(devq`hY?(e<&h~Q)ld+?O)=6~^%P6&x#3aB z%>w(lI52X9wU^V58mvs79P$Y7)3@Vu6OxI(3}3o%W?eg#B6% zBbeNAezEvts=DzlT)pwV6L9yeNWRd1?lD63v0>DSN4=n$2$EKVR~|JNmidyg2{WWg z3Z;7_i2NjNduAFoMrw0gbTE_ujaW|;kSxs%NngJU4E%sem3Xz`_0oz(#po4+m_qG} zrV=~UX~g^GmsK$wJd>622>n7AVg$!9WSkuKl#WF=GQKO-Sm5pe?iikYyry z`kq^#BIr=P@bTih=NrLLo2lKjoc9|-T^T~Df7Iw{q}|6NjA@vZq_NV^p|%RLsDBcd zn!mF*q_dMO>0Lq_;?FM!M+DyE@hw`id7fZ)z7}#JG_fFMagV zR!^-?7&?raFDz%FHUFoSIPn0l0z$u#21DcXbijS)dhVE3^#+!iYQhqGyK9(@s~?!J z0>5nCK=owLCOAUdee zm3>kGiBNfD{InLfN4gF2V>QpEtEnfZQp8TN@q+Q$bP^j*9%rV!#t>*2-qMMNeR{O> zn@GpyWE&*kpOGoTB6HpG^?1o;N5`FOAs}yC$2JvpT*uqK__~dnq5e$MVl1j zu!At~1^qAjIawN*6tpPA%XP&n;dv$x1!J~r$%~B-rSid84nwe;T5Z6E&z}(1R`zkdk~&I}L?sD@OCBVUCQ+o|tTl9}pXZ+$R_3t!GK4hp zcf>>_UGql`!0Fliz1I$xnL3fEV2ZU|v&XT3v;6C^D>9f0QgQ$*U-f3{i)eg>>fetY z2-z=8hVyCvhv+im#b=x|J(SYMiXQ|-ZNC?%d}6RP*rw6B+ssD)OMJG{=T9XFgT$m3 z#EdMW>RfFb+xxwMd{F8`c_zwuJ&HfO$7hN`jF9Co`2%-F$uQ`t4^jE`NBV7qrF_1{ zdu%m@aBM)3`2&4=GD)sL0+bu@Gr*2>-e2(fh8b&=(JvXDAjM=DV~1lGkF1 zN@n_J{L(55^pM4g1!6MmyB!N-S|WHiFEmDOhb#tGSI_p(FV8JwxOoq>WKD zuV#M+xxpCVRW;}F$0l_1zd>It&@I&%`rMvwlj-RQ^XdY51|PMkB;xNUqFIFtcyl9| z3_9gTPup`NkN6*a%4>;TBs|!qCVQLT63V%Ae0mu`Hww;0_|vO9ri#!2%7-rs-0ns zi^6{0Fnev&##Gs<`h#RKTw!Q*T3Gdq40%C&pTNN6%Ij<~wi*lEg7;0p6jX1GyAE@_ zTu8Wj(%l2Pz%5*-n0v=tG#}t|b_KMl)H=OcPv9}~l&Q5tJvaY0+{Ck}D?A7bJ#IhW zZva(ijr_?Xk${m!>(!D;`0zX9vup@?3ey-0%ISIkK}tru`U^4|PH z`vn*bmijlXvZ6ky5%`WM)PSZ|Kj!tGazcByh_WMQcman2y~|{yMrI+W(_iz|%=#yAp6uJBlF_9L#TIW-GTqkB)Pvj>Gs`-Q zBB?py4@;-whVY=P+@A9;zs)p@pz(`T1Iq{f=q)^_S7QZTpcC94PJ-MZ>?zBM8Oa=o z<@cPsX``B8ggQcF=h~#XEuP)u$caXEFR(pGcAH*#(y*&f=G4j90ABTBJ%|dd^z=V5 zT-{q^?$!0!v7 z?aDlqszY`7cf&7kotFk6Mf0MHL)&0sKdv{cM1-}~_1{(v$9*Z;@8z4P;Kw{dxrCZ> z(wt9toQM3Y75;I~mXyfR4f7mH)uO$TS&+cM={nR*V%?8KihNr#)lJ!ohkut5tOP=anjT2mL_Z`WVvJqzrQwSaI>s60 zrscU0Qg4j1V^1vVSBy7mNN){Xl+7;=!~3hX2#7CbtCWP2FLvA9tfZm`h1+|+t)zOk z1Ii)ADo=tx#V;RlQm*f4l$^@3Ku5nNJar;_wL>F*SjrY9w58$!aBsyL3l{Lw%fS|n z`5&qG3%hX7_ChhD>iLtQZDoSZBLam3j>cgsoSKV!;^@d{W{v9wrIMmcqEYY7W`2h@ ztRA9gQQ1jCAWRYm-z30U2nr4uM0{O`#eQHBM5?BU>z(UN25QUSt|fpgdN?O3B*7MB zUa2RBjUVNGmmw&+^fSv;B9mnPJQn^J>TSvk{>c~ zq6~@>3Wl(cVViX45@7mA8a9gBN|E5}J}xej5gU0T!Eo})+xN8*W%UGh@Awt{OnpSa z!IxLhM-VEVC9M2#UKukx-le$Bx4?w(tO*S^b}q8y+1;&Hq8x>g1_$svs~Z_| zuAa$5vnif)v4H-yion(PzQTz8Q&Ud@V>zCr(vP)+=){g2!$>GrlM5mOL9M3X2A@iy zk^%U*GpHR*LU!1X6Z#_C0u|>-{3?e#uvM2f{&M5^_Ez&CR>S_il4PqEknrKA+JJ%u ziwg|;|1($<9ddxAXdx|sI^*Ii zb|YF-NRRYPf%_>O7X&_;gF-B}L%j-x!fOpxGk^%WXNz%6gD02QNW)2|Nq8>jC^=Zw zE~4D=PObv5t9AqNhW^l*iLQ#Qo1V{K^~|g{?^!QR<*$x!kUw_2Mch3l%#Ar;SCL*! z;bD`h^+oHT_NsrjCo@Lv`Fn75M(f*9weH-+rts^F1~Dj*MnxMxW^D?QO?wEU1saoy z3R}rF`(rn#j_ht)fnQ*$18mInKM+bwi~Q=mm!T>TG+MXjSg3?_%^zMQUE`1C34ONx z$Az&k{~LP6YV3O}=gk5AVV~@LiLXl|4M~O{W7&`~Sutpk;Zh647)x+`KLoUor~HQ6 za@M3W3XLOpisL%^EHB@lpekVj^ut_JGn;v~rD4Kz&XAVRP<+x6f$SUVc?Q;uH27eH zJ7*9$A)fUuR{-D~Y#)A)JwUJD!Q~^d{Ma_D`ZKs_r#FiXBDzAv3$=M#59A zZ_}8u#*E10DKmS$)ho9_1F_XBtD1@`C2zHPZYb&+j}3ThS0H{QpIai&i$R%dwH=ET z%$(RR?mwm-4Uwa-)gtCsfr|nkZ&GhW1)s0kS}~iamQ`U%`3ZxT#6hWn?rzCX98h&8 zto|_Ok#7VPTHbG2DfxP<(=BvS986TT+<_2R+wK%|Tgae1Q_-IXj0G+!2w%6)sA@rN zdEK!iWDyx8hyDqdjhckZ&2ivvk3t+caIvHl`#9@s&Elpw?D?&I$1 zpCT@6fhY^YIn*6d;(|t%b0xap$G_g2?jnN=D?*Nr+aYUyC^Y4y@T@tk36j!K?VH8{ zq$B>O@nLO1mW+q?l4!@4m!VrdiQM|vf^;)@1v~b8KnbnmvdMg7I!`^q`;(r45Slie z5Tl71;F2Y=U2#xm2nz#6H_Uzm@o0c$2Ezqf!w!B}RSJ4_Z?U%q;hU-LtmD8wZeLx! zEyoQN_CQiHf6h5)!z|X(RS@m=O~ji=w_6DeKcGOCNR2;c1_VZB6=Dl>w;|@rj8IyW zx`0Bi=d%)7rrG?pX15I^CoOk}t7IDzt8<>&vgfe=I0r&?t#BraZU7Yz%u8D&+xsws z(w`Xnh1|y0h6er0xOr;b#qOrWpFXyGfir;J`qg|Rbrd01ELlq-A$bsl9NJX&k^|;< z{T}fXs2C3~AED(ZSjAiYaZ-p5^&`S~S0=gi?Ndtpoa6mymA zOUtW7irrE?Y{4mknaLt#VLT6}An}}6q|Z(YDXMv+-p*oSXD&t~q^-1yAiIa6s^+P+R4D_ zl=|t%a#o}jUrI9u~yPsxZP|KVIi&#q-A9jx3YDV;$RI6t|G4>f6j{N&qq|OsDGzri^PvQ z6#i9eWaGGS!k+KV<_q%Wp>9y3 zVcj`J0eDSmhAdvixcVHsd@IS_pAVE4YCPiJzT)8g!5Yve3JA6TdFX;` zVqz(cJ->h--STfxmmseP392^^mrkFG%`zM9WwyM}kuRje+#Z93cMG1R_aNHXivt~y z5$(l#8D{or@-|%4AXk?}#vMmIjKH5W-t>8&3&giV@F7YEZrUi6Q+<|^n<$ZYTv%qd zg|vq)`i%i*gQZ#SK9@Cl?fr?ecYmoFx0@g<}f>eYOFJ>iq$&aoYwU1-!N|t}uV=NAu!WB3x7*YX& zB{qP2yxnIk(4R&&2AlrVQ8Edq3BSu=qL@n(iT}}@`QOb9C?ODehj07R=|g-?Bb)(u z14_Q6Q0G4qgB{*I$%5o8_hrUM&Q?^~J2 z^zZFlQL)N>`cTAWp}JDUNw~l2;-4R*ok! z&gKvb;Dq`+AfGbI!+j8&r8>#-61+x9b^D;GdX96nT*cgm?9ov_4b{YB>l=Ek9Un;) zfUw3&HM1ILRp&L+Gx0Oy@^JZd&@MWaarDH-tLjV+4VQ}Euv*Z``)6X7V5#yxHPQI=xyzQJ(j1APTnf!Dly3aM8HtPMTA4<)Q&5D{07 z>_sOh?aJ7$ayF_B{u|H6K9knQf<{&VAA|GH7ZR-({zu5kgQ!fkT4bzZ6`Wy|iH^8i z{i4*$vwves6)6p}Ol?`OXfD{b*F9W=OX!fmW(}tS4+-jXi)*rDD`U@(Q4hh==+(vO zJ>99rM!{c;9 zkfgXept{Nk>1i51L%$uj9)BGHxCLxMOg&{3OIc=vrNAegb&LOAJ1BO)vg~muccJ6n zHr1|)j#}isyPNwr&{r}N*5o>hmg1>3IMZ6YyH)Nj{Mr2Re^i+B1)PI5;9AtN^*NId zId^2eqT(f(38??j<&kCU;m}{7-J?AM(&Z;;dhx3LP1V}2hbPiyF8{)X)Pn9bu+pJf zDNe9Sru&^~{slOK;10!pgK3{>n!sUFL1RnWZ9Hnex|~Q+ktpdzdO15>PAMeEzwHqu zniJH5pz7T7Dz^o+i;AM0#Jd`6CR7)YPC33n;#1>|mR}=+zRiz?(yqWeW^uRRyDU4^ zg*wgAUi5bA@;>eE1Iv!=vjK0Yj#A0}UH)!=)9S>#g7%EOu%O-e+-G*LAM%o5`ox*G zECByD{k{>J{j_g$9GP7KA|_38f$BCh1idsLTj~LRYC7~EwrHpqiE5euYFmRHqDxSG zL#mcbSnd%%X35`Q;#Xi=%a_OLCD<$Czx=iT?X-+2sw8JTL6&<%w@1+ z$%L?{+S;_78`#hTUg}|auzGIoL_({EM3j1mWW0WF_~;|U^0IuRUlR0hO!a9pA4@mx z4^xTcx;Ixso}`+Y#6aI;VHW3mFGjEETVaxqNBAO=63YGD6jy6^A%c&<-A{hWHi>gl zL@Yi3q`cw;_UJi)nu*rE$0p(%4j{235*iFa-%QhkaPalNzu?8 z3A0`Kj(H>@YK|BnZ~>l5ML1$Xh3lh`ztUmj`qrS19MXMjQVH7DWPq65EZ<{XP17kl zHX;AlRAo+%M)_xw=N$?qW|cIAgN_cyZq7qTo}#kx_|x8bR%V44<;B@rPn$zWSGWp0 zNoUf(-v43`@Gn;#gYjlZPoUK2T(xhbN03f@ID}BY7b=sFDYpUA;(Ct{$Qyl{a**OP zj{J0g5X~!9EDwHKN<~egrS{}d`7U?OKVP^f)6H*{p1}*+2^IyI=#=5-gnx&q>i0Cj z@QGXxn(g?mK~X4dpoQO&E#=#e-_=gwX_s>UA`A~YLWIscDT$NQ*-v->myvez>*CY9 zn`h_$%xC}ezsHC=ZQoSIv?~ARb7%EDPN!@?5)XZuH@2Gn!KN~D^KSzC64YxbX|yGr zKB~5%xJ`M)89f4fv6g8bXG;u(kb0T$)C!~_DZrDxi1b@-s%0phxARYSA_k%+onmgX zwU~%`gJI;4o1fG-0jns)HW6`uNmIqaV>nL~%fgWag7Y64oy$;{I8k9_2HA^>pJyw2}CmB~3Kmr%zFxtNIl5e{()+La>#KmG~L}m0`=Ig2C_X9UUq6{A1Ih ztI{);Eikns$R~N=qI@V0b5J_mI6!bog=NJrb)CbTDv@PdkXYKzI2O4lCH;v z!c^oqxO%@D73x+S7a;_VVFMYVQcufO&1@ifx?SF`q>?#X_-~I1{go>`{|@!{UlE2G zG!`v_lyUR#X$~JM1~7Y~v% zU{6*>y8Fdw8+oqu?27U6aU(GoJ8ru=Q$)e|yiVZpVfJWc@3J5cCLm^!lJ0hvEomlK zc+Ipr{t0Ji%}y%r_2#J6O$f5QtyLkStC+p95;bj!=MG?PUZf10rwi-hXD-a|BsW_j zW+*>U1bsh$xt1=WEoqV&%159KOHrZ62P|#y^X!bqo0%R z#}HK&Bs0~_F-42UHPcBNjF<%~GpOXX)CDj{#E%Iv4k`ZU{|rmmnbgAl(_li1sxK;| zKHTBe;%vam%6px~k~m@XlX=)9`s2<=oV*Jz0=Jpy-o_sy>PL)r4V%D;IZ9@M8?1TK z_H2{g2s6@E7OEeZGw7|P?GGAf4jBaZP~>d^Ia_SSYgmKW(@|S)A68F!#5Q|VH8*IY zNXplM(5%x$ciNil55Cy9mwuXxR8-1=T$r{?I~t5gTXQYi<3&wK?9Mrh{@7NyG;NVV zl*qC~g$6RV@kc5z&a4%~1yzZHP$FbI3uWo9%QT&?B62|T=X2{TLCJb;L;YbXhcr4K z{U?G^zUrIzd=^q^$CqP%AGOes5ziiY^ydfjz-0;Lm&2vN2jqXWov(Z2YRqsbn0cw} zF7;KL9MP-wU=M!(S&-LOGvn}RQ(U*$3WWP9jLDW!z#4f?Bpl(Q6AvUn$79VrDLX|g z_>fosR6`{xV&65i4Kc$Qu{I=R-8kec z`HCL=wbrF~hplfpTKie@%^B^j19y@LRTfW6*{J8@rd;$^ zE(P;S4x360v2Ti(>a+Z*Umg6%qU=7nhCa^E%Xl<7iwaeim{KSmc7TOfvaj~(LGIs8 zDKuPMscHMzD$|d6aa+HE!a%mDLCrMIJ;Oc7XLD%ga(sT%#BYSsV#HFWe&|D7Db3gt zEl`-FP*#!NuxP;&C>|hc^zygH5UlFCCsfF>_Q(oxx!6fCnfFMsa_ylb5BV5EYl5Nq zlMwTy@?04VAc`dT7r9|URnVLZ7SZ--#jYrwG@;O1 zAg63WoJCDihZ1XVKh_Mju9%Q~dIKuRalp+oG$trC*-s@iIC`GOs`LMHhJIJu=9SJ| zKH-1*9<8rMtV563+$+tF>W7Ctp1!B=wfO`1pmm`8--cl=8X=Tt=~uuiO*WF!zlvuDDb-Lk@wjpA4;_ zuF$wUk^5A&GuSW#yd3N_C}BH%6ZEL*{Lw6rpzFYjqFCLGMeKaS*jE1&AuwPR^3ezP ztEPKWePcZ(zB>j+Q_mhKx+L%SJoI^{(I>JIv>SP89BVnMA%9M|VP%Vjzc#s5rre!H zRZb(5Ij)uNh5mWc33IImxar55C+U}VSj-Yl*yfV~z`S z0uK)CHC#ns>usy^G|!EBhgQ=r#jG0AfT$hk#)Mv3J58Ri9wBLFwH~*eOlLj;z#!<^ z%XzIk2=5EG`+UA4t>^z$H9uQBNP0jmv=oI#n&r>%_f+7A8Js4x-AOvV>tJ++iG3tP zWxeHcBg0sE7}LAMyAyLHcV5|}YM-Ak zgBP(!ltjO$k%zt29vtPHQE^dyc!Qu*fP5CaGUTtTV!z8|I3yA24!Z_Wzp8Bu^hox4 zRJ#KQZs2lp&b5s|QH}Y0u6*wPxab-DBg{G4%4QArOMi!5KI`;0J~p~Opa#v7t9fg- z3cJXz zUAS`nX;{Wu)Hh%eiH9qtXMULmEr2_K>^zrOlglvL?nd6U)~v<;KcLIw_8bk^~K=bMGt)SD|P z-vI|xTWe!>xS5jQjAmIUGa}5Aj>XbL>j}|IBi?I&fck^Yp0lmyBPisfdCREgkjAgs z#ylb6e!~Sx?KYwUskcFC_bR(@ zYtzkoZ|P4+R;UbWbU5MX4Jjv>^+u?({YSE?EPKT4BSaet;tJ-siJ}PYZ?5NnYdJUf zB#3tU-EC@I=aw0}WO~A~5T}1j6_x+VEKV0|gl%rQN^m{{&EmyQ2hL~kc@l|}5p6pE zB%aADZ+AzVBG;AorCI`7(#ZDWbjuN;f#tz@ zUsT`8AOo;EWXSPVw#nafN@xJ~8r3T-0ELcg&;cqywwFO|_rso?eyuOQPN&?{KShuV zkd0|=pHR~n1E7OEw`v0TPCWOOvS#b^jTA}_UeLBFvwt5`NUT{48>6LNiq{?rp+}wn zK|nwG1)wxR-bqTyhkMs*@b;_BNPr!>8YJdQ8~U9(`{^*DOM^Ou@-i!WHuSgZ0DwF) z`Y37KI4k_4rnkmY4|DJmt^K(MNi^`=ny;^;jrIRVrM@>ET9L`@`AZK$$LZ7I&j9Bw zG8R1JJ&xBMz7vy+noq#75&TZK`6bd$jrBZaiDWY>bR~cu?-ZQWuhlweCq$VK*J>+RlH^>%2oC{x^+ibEm%q zeDE9aZ;L~@t>1)&p4^*}h5CZ-Uu@D%5ORMi<(}egb)H#Cn;ZG4p zvHsUlzWZZOL@P{0`57Tmh$qO&3W-HeW+?@Hg0qj!z$|sN*i(tPgcKm*lZby7TgM}Y z+wO(MZu^mN)I9+84E8p(0?Jk4qS0u?QvZFqJk3wnW7voV+Z`zH&QjKX`8spzXXpq` z;@Y&(?uNrUeRhW#u&EyXYh`Wj)dSxfi7vhf71 z^grThR~@&Y>iz>Z+l+Qe_x3p<|E87cUX|>hHJ9bGY;XnGh@x&a3B_`i(&WBnEq-Xq zoG*xfD}e?C%ML6edzMVhPve^TNdT?!xf~K-`1E!S3rV7`lORmTVm~TVRGEQNg5i(R z63^ki5&?!cy`Bjuz^n&Ujofn79g@zC|BB?PsOMDrU%=m8bG+DDWPqj=@Eg@r(z~at z>?_k*h!mAjtYm4@2_LPqb*xb$p^J1Gw376kt#l#&s5{swDohwTmtve%>#5iQ(=75c zP`#{BKnXBYByXVw|2ld5f!SP0x%GF(d~h==t(Tze4j2QOe~G zr{xYAc`ehd4RD|f+zrv2l4PG=YB){RvPXtekQ*qK_tFbyNYz%9(pF!KHmsbrx>#w! z*>iYA}eKeaS8(3l)ZFtf}0`)(3JzVat7X;Ff~-c$)`73(LRLu_@$e!_{a z)gD6j#{+bE~&5*SobK^V!RHPsVM1jaxiAAN|CRiMkXWio_P7 za}d1{z<6ks*lEi7wd%`4n2s`;r75s5Qc&?k$CRdBF!wLSn;m)fc|6@s4i;^~pm7Gz zW`K`}ZUgR~+y?YM`3va~HwK_$$IVZvY+>79zY+z!=bH(DCxAo?Ds(*p$MX(3Oe7DQ zscI0iZSF7O!LSE-r=2qDKed>XQHNlt$1Uv$97c;;%I71d{pvxlffOw3M4;jV35qwz zYbsZ<%b9?m0z}F?qhYL{@1y{4VZeT(m)_&T;W=Ky!jHb4wayfC!!|7v1M-{+5mm6w zgOsL7(r5x~5T_-KwbWIv;a1^0u9tBMw3l?6x^XxFNP2v(k5Z}MBx)OLtQk1t4AC@b zg6?v9sYTXmVUX8SuY$n%&@>5u0eWpPu~=+*Y@v;lmZ~FpEBL>NLUoqwVM#`kI7@3Y z&Coz>$RCcrI!Xu$t5_dTQQGw@LM0}2@H^Tj4?*t1c>9a`wZ)0(J{RnhRthM?GMJSKJu z%T*ucjT1#(@1*QuR=^*>dXID+mzf@~+i%?M_G4H-#BNA;PEcoaCyvKkWwGVeHkVlm zFeI$3mld->p%65XGSp$+)l3g=wvvrWxUE_S%pjd&+h`Uv|J6aN63;<>$J+0x;K)%` z34v$5@Te>kpp>RDW6!GMlCI}zd1yLS8ht0k^?l!mUT$6rQ;iqVDOfLRBoWhoS3FX; zEcj>8VnbjSIqAXbFteiVMTt~N>QMt#Jl1jfkWVQZ|66l2DiykMm(+mP!nyt+M&k%! zgCLQs`CZR~o``>(l`k;+LzCt9zc{4{u1$Du)e8xHz%4{!x!F&yd>>G3U4(39V}EL1 z@$ytPO)!Uo$$CZY2$kffT#xz-4~02L;UmBluZPry*0$Yiyrb6~cq9O2yxYns%E(y2 z<%`pGop77dX0p>KVOFfTwE$5CsR`rvxRJ&k8=cB|(eP(99TJ4;0g3xzgrG(2K|^xR zC2i4Ku=<^Bj}!}Db5GlJ9@R3T>y;sM}zpd>27AUDL(r@2=JIDV6#irG zkthg1+g0jVd6kY>r=Un(`u^NolhZnxw z>z!vEpMZDp<}ys)$&%J=GBPs#wR_Z102mnK$jZBaCnBdls%LoyHQ?~L`3A#sZacul zfHDJ*8pd8vqO1Gxae$mg?#8PSp67H+AzMQq`q$}%UUt^JMLXzq5NxRAaSeQQinCV;)-A7k@7W2}oHd8*VQT#Yba0%ym$yF?wz8-tZ#m ztlwb!_6~)M$F=qV|Fl;^*7|4trUeL?*4@U(jdk^_`G#*T^PNzej$-y8! zdDo_ySJaO+O&U7}D4Owi!rKn?u+Ix_}p-eNX(ITgg;b*SsC38*^)$Hl2YosT94_QZDrdGaJCWya zkcNIKUSIF|r#uX4=7Bly4|4l%_`*F!)5ILcYE$PM4Y9uCq}BgHjfkJdrvggojVm*n z{^ecE%WQz|%h{qDnZ_aJc17vxe?Tru#TbIFrtcb}j`zCd%BB3Ks`p(Rry((S;9YC3 zod#}x`5SS!b+W>vQq~;rK;HGa@$kt3M=iavs5uM!f}oE0v{Hqc1-&(puFl z*@}bt0*uSzY&S?^jjcKT?iD4Vj?PVQh7l z<{v6K;L(j}hBrc2XJC3I>>~BRI0X8j_UZ1J9*R#pk|E?YK#-Z~L8xpdo(sWMdC0Pa zLdvpsFaiujQsP!AEhfWh;6Hb{CAi#hdxzjTa;xJK31uCYOk4U4CKRJ%lzk0)o3ExC z9)O!qV%k48j)FC$xaaS|wP2i(QJJU&+?~k{EJedvTao^Gv!zh<6ArzByN+Rux`2D0 zZ5UuE*?Jm|mX%xkqJSncrieowVj@RTq%SOvA;h#wm%clW&XzUrEn~*mYoSpuxV)8v z7LsP>H{t))x?I%T-XJt&dCSe=%HEZG^`UTwpZ`=PEv24LZFn4+g%<4Zwu_0(2#K5> z^Jz>?*GZHNFy#+suCr3mYjmQJhKsp!K5}`z5?sCOwbaGRqKR~e)+7U#EIle;md(xp zr3hRo0uGC$0U%V4bVR34OrMhqTCmCTR+-vFBDz#ky>BN{mE_MnGbONn9Ot7rGcn}c zt{RAz&ES-DG1*S&S z$6fn+jo6L0dYtLN5e`d3>e;0gg*N~%h*2Y)Y)a5uD1&tyTi^SXjc^Y(DhALl_@Z^Y z4A?MbYYPo$%Ll5_zzWhC8gL@fui+z!z5!{5v-;#^ z;Zal%TBa`p*`NxNT@dpxHOm{(xs5J8+L#pnZyMF;ruKzeu=!q4V-i0F#BoroxY=sK zrU~F2Er0+300M8`2q7QyI&c*VH3-eBBntuP9@r@W{En)SJ62?|Jx|TXl0RqcAJu{Z zcKHw<3NP9O5${{>f>Iv{Aq8eGE)epM3+fupjXXT}Ihjuv^BW{~jw{n8j74e`VYNm$X?_(G9v;(3`0YzQmahclWXvJ_HD0>Q0WL z#t<34<65!MvRM}cCpLq)NF8EhxcaIB;Y93o{!!w-J}WBkxZ4_-olz2&hYM#{K#92E zhW{=Txa5Y`r2qhV#m6PF61K%Nh_cV+0uCe4$j?7g#OmYJaHAdC6Opk+s<2Zza#aT( z*xsF%zyZMT%IgHx*_{eAk^)w{T4UN8YpPe8QDiQ!)cjQcqmU~QHtS6PKQVoUf#8JR}XV97ovc)DjCi>q z%r^7-Ic?A$3SXJ+N#yRc<@J67Df$xn1hq{Qb|~t-MJhD?o!9EFyQZ>Pb5TuIr7CFE z#HeRi4rIHdJxAz%Q2_1dJ6=SeAnhHtX&s$5g$NFu@3SB?*~lAIFNK(?xKf(>)r92g z+N!_KnOir5(|V5=dXLptfv<+b6w$RQKrPgXSx1t2edk~z`QhyWXTvEc-?^o@p9YlE z<%cIWgSbc=VmObno&oBRG}q{Eato$}iun`iy>z_mfc%^-!?(m(0LwT=jImG&PTB+1 zk8v3CI{%6rVK6nN=C}@rTY}lBxweJjmgMoG-9LXtE5>>%4Q|iIsTq?3E75U+D?AYO{6$U?BLet}$o*h`n%US*mZ5B-+8)c*YXb+yIx{#fvNp zsAx9oos8^A}jnIH`*YkJo32%|KjKJ#0yZzl|5wBdzPSHfFD=O+D-O0?CdU{2pOiYkSP!uAffXu>G@xy)X3BEb!=;f|Jzc@ygsCV72 z6L9QHBK$A0=lO8->nf6A8d{;>cDPN$vBs+pO%k``DXj88ebX@} zMtx(F8gpv|y}_rfa(M=qFNjgRJA6gR;i9E6WemMAXIq@-KeAOWV=eWn9PWZ zw;RfG;}G3B?c+3)ouqwCWcZ?THkbXEZ~|V@8yZg+r-qx)hLRIm@QkLM;)QZ^74AIJ z2+91X&F;2(Gm@ImDn`ULfBzr6k_vwxm6I)AG-a=Zoy)u$8fp4zQ#^tI5r3>=Bka-u zef@`a9|fQWU+JYz@(2I`0C0Vkzh}LW0Eqo#8$RkF0b%;V5qsGH2dCI}!Tzku-}O2G q000000Q>%`5P!}C06l-If&c&j1b_OdAOHXjkEe8i0000000000SSkJh literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/train_progress_raw.2adfdf2daea09c59.webp b/translated_images/zh-CN/train_progress_raw.2adfdf2daea09c59.webp new file mode 100644 index 0000000000000000000000000000000000000000..9cb93e6e51c980b5afde957f2c78b7f2356c982e GIT binary patch literal 9314 zcmZX3bxa(<)Ar%c;YEvEad!?V?(XjH1qzgd!=bplOOfJGph$5k?heJhxEyeAU-^<> z@@=wzY-Td^JhRE{&WxsltgIm&0H7x$rLL_&g-A*W6P+WLc%#oK}nCx z&;7Lr?A<4!(|Ss#k3I=hvA|MoMu2sTeew=1b}8C7${)CT3f!m`$c3nn1jYGQ+G&$E ze5`O!=qPAR{XeSokgLcmB{2Xoml9`kbiOTrD149_>gnE9w+W99erZPK8@r~dkzVE9 z_Z`@*V)-tY$PIG*`DzE9x-U2ft%1caan3IkIzZj5sWw0O0ej^#aQ0d(saBOo(ZUk1 z``YWCUq2N5h}i#Q!&_QL%uc|xapy&63S#t*&Z4hVw?HHvPUDp)H{q$?Bh)f)RB#_I zVSleGo6WduU#_dfld+3x8{UX{HLz@PknqkKw({2WzpjBIKU?8~F zwxwaNrs*9%ez2oM9VVhJz7D92WXVVev`_T#R8=sB`)!ca)AUXYoK~8u_iDZWvop1> z+$>0TtUBlq@sd?!7Ra>zKdq{J$;>**xbvZCno=SI#4;};!o6#Y_e zMggVtL44!Sf)Ilu@VQkaAXv?9EJeE@+VExOQ3#KDVaqNK_Wbj^%_R6IYwlI6`rw)r zxf_O~pGoS2m>>Vs_Uquln=AjmUeq=WS5i6Qv|BaUUTS169%n8r@s31UN8mr3Ba;;A7G}xZ>vR#YLpE1&v_;--U|xm4X<%}^chomlVv_FfnQ~`iz3{3jm^{! zvt*p^)>0#y7xWf-K`_lk#a_KgSwE?fK2~)2_mA*$-cloDcJ8=N-0s$!#eKyMoMMHZa)D5?Ejsv;%W`Kzbv5 zseZA$Pq>CX^$dMsdAov9z5w^^n(M}TCctwrnJ0?-cQ3=wdeFMR1zkOdJ+N1&0JYct zd#=|K*qdfo8(&5-FLfEz^P0=OqIJ;g+WfmQS_A|pLO3-FX?JHpyJrC+3(GDKy&XYE z5b!jJMH`G}iwripez0IEKyM?N={kgF{Y2=pBL9@6?wGXG&W{^XaH#)APY~x`Phv5H zTcpLRIt34_);9zleKqhrX5r=+4a?R=bY$4E^|Wu17IKL=z+d4wbg#jL&KW7%xNcJl zW8p(9GyBYWI~&cHQ$)+8m{@{D7IB|S7r3c-cILJo&)Zj*8d`U4dkF~Y8@@rpxr!v} zUynV?3d{6@n}MR|-y`mgE5}jcTh3hmTeHFHLnuwTek)VR=%J*99ab#Kr!b5=rsI&j zqCP-v0GX>#lU*ZV(RbuoHNgjH-_UyKWID8#_fJB^UCHHIC=2Fh%gx{=F@*3p*!`!~ zFeb>`ps&k2vw-;b%!lOt!!DDHU2$z9hW8%`t$#FgdF63033l77{6EBpPR7|lo&N56 z_v5JHy=~5w|8xHjX9WsRk%g3Mr&QrWwf*(~qWT~B6ZykuBxNS49(X4IZJ2-k+-Z5u zE8BvsH%{znxwGwm@c$oC^=i65uFPV!T1ShOT8-pX=>MYhKV0H+0IGR>Lvt*KF9C7M zh*DA~E}-52qgk{qQzkZ?VXFqCXd^%TH3?{S!4DSp&o<%Ru%I=}%1ZRiXH96&!2WST zLS@20vGrrXZq8%81OXYLp+g( zQQET;DzW-8fZhBLQ)Hfm3s`%rP%}LrOPXb>6 zfV@W98v9izB0WoyE!OAdVP;~E7QJIY+uu_$nQeLm|2hNBBsmwS5eu@tZ>H7Eba64H z`#zWP#|i>k%YrA>irhYSHJQ3 z)>%wq8y-gTE$*RumS3f5_B5bS(u}-I%EkW<5uVIf8yU7BI&#`?9+Pu7R0B6lSN9}) zQj%viGnSuL>rTavU=vePEty(ZcX8Ol)KR?fYCGjyWcJkP$I1C2i67Qja}Ev0Z9UM2 zHG>xy1y$FKld0|tn!SehgYajifJCqh^I`7nckUQgX&OKSQ(BI70#$&KXeKYIB@1EF zNeYbBNky~21M)y0jxsYU6glhHvq(G?pdlUI-3X?w_79=LVcWYL}Mh!R5*7k=R=b?vsMDSy%6P z)4triry)@eyaf}*+j2t#%l@#P2ncdGDlN9?RqHl*oW&JrO`70i&kxB?=^>7m6Bbqk zuqPg}>GO;r$T>2m5%m_U4N_A+oI?x)myb++@kj*GE*+#u(=0<87)Qnn{W_JuBGP7B6tylO+Hv-zX?ezLF(=-d|-g*gAW#bHPb#k2jsM^;MBrd|x%wZ79(mpk~ud`8sVbqmh{rk>8hrpqu$VA$m&wI%vYx%x06dpP>P|#nRY}`uI!tw&$e()Wtj#>wFu& z)1Cv-h~6RcGcbx;hbLreZob9WZqc1{cf)0d&HJbA4oydZ|I4Qo z&2P#UmCvv-uy{TJ^Ush z@z%R|?Q(UAH2>sCo#fQUk7XMkVmW`)b9n-x>;*uK z(jWk)eZ6>yLNT=e%-BZ$FHHrc1lMhQwDP4O(`y>_Sdrm!m6ffJ(r&Jq14KH|8M-`M zT$`W5PwT3Gnv!y_7~!?-IuK2^eS^6j+zu?&LgJ0SQI%|T#BjYeEafpIauIwN{>JFB z{d7C**KKP}hGY#xwwM?PB9*XkQLm9k)ve|in8|8&<%C6N?vRAovOUKtT~p|j|Me*Q zN>@xRL^JpnXvW2%YeX`bc3>#!#Z}aZ(XHb}-1ix6S#^oT(xKZd@ayF=dZE@40FD_? zMKIZen2dMr6O)p+w?VzvhP^8-m6z9iEqAXxnY-KCm+apfGv2dUM5iQsqWRaQbE7() zMj>K3<#l5z#K0lY-yR;JrCD2`pyb_=H`geWT+`; z9V40Wztq%itP5lGc+`G)t(w6Dc2iw@2wIcach*9irhQx`)+A?saSj4hqiGerZoLav zjSD&0ovT3dLO&;(lv5m>_Ia^6u&{MB;ps2kDX2}&z7HES>Ke{+kcWLw=C176PUUZ3 z`EbxqBWYuCG*<0L499f;`5iYpNuE&D+pm9#JOgAD4}Bjz4b#Gwi)83L@*9@b!+)j% zJQt;l=De;QGO29dMQTKU-Jh6504%Oa6PUTTvPPdner^&duuk^#0< zX2%t!{zqP<-p3%#tZzh=M33U1p-T!|tA7yi6w#Dq!bGw>cMvX>T?m<^jPaAvd0!#{ z@GoT-R>#A#ew`Ti1=m&e1eNwGrF{``CqjrhqquD}A{%?&68;(;l#62yEOLbdWe+Q( zFNny^Hr)z7<8&mskw@yNX=aGev#>F148B97trJi3BY=xeDoVtgq#J7gjHbL&8}yWO z;kq3cA!C%V4R0iV)T|7HCqbiL0Q4J94~rvU8@Vvu9Gg0KWh47uemJ;?m^CkwLB^e_ zpVegk)7Z4rVcb^zGyt)I`xsq>2>f*CUbcX$YTX!vhkr z5HBcK!}ONy6kxf9$Tw`}Mm=pi-G~X#Qhl5C(~%;X7kMXXjv8wN;rQCl%e;(a*F;{P ztrONKtJ_&oIGzz7)IF)4I4<1qTlQG`{3OP~-c+*ZKjXo2jao$Pb?gUW$2*Sz0Al}o zFPK19Fz))Bdg;$Ai9lv|OvjTiF<(&0GRPK{+R%EZ1144uY8zx_kTgfIY^_wcF)a3s zK#CFZH}G$pkxX3*#pMeKKg50sgsfM)GBCpXh_m)LC0~F33V?T(rt=W`w3B%a)p{IE z<_sVu4ZFQ@nf@?4rXRe#NE~M1IqB%+vhq$f(}%0hszf_>Qsa|*tn}JTBzJ_p$~=*M z*UAudLS&{A^K#uUv9O z7uvuARQu!Nbk%In| zHU0}62fmF$y@0(_s_-9qb+8{-Fqo$UzX0ibAe!$WwJZV3<_*+CJjmc_HkYm(AuIz zQiHtz$b=*+^olO%Azu$bNu8rZ;Vzs$Yw&FNsvOMgE)M-?8AelpDb`xh2-qDKTN*9_Ne$7QG%z*vi?O2;3tSV|ZeDi5iD zvUD?=rkYt}ljs5d4mou;gk%-4=XU^RlG>CY07NUNC;A)loFo?2I|O}_v0ITgNdm4K z6pq$gl#%?a&nFspb5;&Y$^{y~^4R!oYq$fyvo1ez|NVR2>YWwWt0gn|p~|Hvi;Q6g zQJLz=Az;bGI#HQ?!*&3U?Lhw{qfR%KkEKSzLs`o?Nao!s9JUC=dTZ_}&@dWDVOoqV!s=D2e%F|l@QQ~`;;?uSD4?!vj-eIMR zF+T3q?14X;BC~~5ETW?}L{h}@RfF{cLlWFs9)o((XUo%sAm;hrE)Re-R~`vcX=Dnd zTFv3={Dna7>jux}w|arcufd^&pwg%Ne8ax&ndyBMCG7c7&r_J4CB98{wk_8YSv~29 z-HRB-4CvOu3`j&_bo?vz9;+cQafsvR7T@23M&9d%n;OmHsk`RKP&Z2#DbnzWtd?cu z^lWDx!>mNo^v7=!+>zYK;UWYiUfY38e;kJjX>Yd={=QSZTY(%;$GYjSP%Pq30Fjp` zt3@1L(W!G2n!s2@QR4`Bn8(`RU3Zm0xeg@?>WnYOJ*@K>E%tkUlbCYN6PdO2%=;efVr)PuQQ#O+kf)MZ|7BS!COBzRwj751ld%IBe> z?N49B8==pw@`gN6UG-q(e?4=KvL@}$ivdJsI*^GDZ$jpqQov*NS~VW68?$j%8yZ1R z`^p_%(CZ`GyT^&!pml2)Jzw(@Oj2s(^wgQEOvg-xQnNw}a{iKbkk`7C@3A)oM8_JW}X@FF>C7k4y>#^Rgm{(3p&T0CZ-Ach`um=^L( zu?h@H8j^ukRGL?&4oO%>*6RpHYaY@5+p%`$#RE9Eh6_rrqg;<$-)l=a3x-sf+TjHW z(8kiF=MN%65yf?A1jLNaaF9p$S0IyFYddx|I5KVW1Fv61SvL@wk6Uxw2?bK!Ssq*P{8Wc7xXFt`oI*DQoGLUW4)7F)F%SK~=UcU#`5; z4~BjtU25acVG`~>27?&uKbENm2Jj%oZ-~2%6fgd1O#ZmKLPBEkR3le;sO_WqBO{sq zS2y$Jr$=AfmP<#q8iw7YYC#?Lb-0rLO1mK+a7h-TVx|gT^qN5WM8J5X91Y>($oZ^) z(3WP*0V4hm!am_k($$yzn~b|^)q=dxcJYKQ`ohETQ}-nfOuDNK5gQ>#DqoJ5e67tt zQhE9{lhpGnUHsCl^7aei^>l;=w*$>9fh-nX3Ie@#ErK&`NYhk13rEbc^Owqfi3>B0 zIdGIyGA2&%1t*`C!w$TCQRYlPW~xt8+KohFTq0H<=l}coBZxvp$v8L1^BlI(DV{6j z^%c>DMHMe(G-`(Og#{<_s|}LSTw=Q?*lM!Sv@V;6K)`MU7Q0p zZ|{*JE=)wi-K5KqQR=KBtq_|l$t-H)zGhDP{+RxE^U>Wc;LTZSTi$X>)UoE_$SF?g zv<>~(p}j)4CFk2E+XJku&7j6jRR`s{q9nLO%GH|d`y6KN_8U1PnZJ(VSz+No=Y5xHNey!akrbEG1OCDEU2putoBVxoswkP25Tb!R)w;<5 z+0nHw^C7XLotnHb)fm=?-#7Q!KRtNcNTch7i#(~Jd)M1B+iC8J@y^`N)FVXhxWM8K+*?v=1Oqer`cHF%Gi^#esr%#7V zi5}`qtQ*sGRvM7Ra9Or@$IHkbzzi<9bANuu;N<-`Bf5s{h0D!SoWvyvoV$jwERk~N zd@8Fz?Ivv<-V0sZV9Dw*aqnvM+B$Q}>;W>mR>ps(7;ae-DI4r);^$jOs(0a~#G1LN z)55h%hB#JZXPn>ncjf0q;f?>%hMzSF32$UTQSf zJ)#DOe#?uK_ReSgBi}x*F?w}FRzy5w_YWzZ1s3gU!zXSzSHy%b4q?8vi+|898_yzwg{EB*&*ClN{O)k@zJ()b| zW|*kI%I^GGE9nu=FT1nNl(y%#&WNRE_tQW{cYDVX^Nol&?jrffye)PSF})6w0^)q3 z^aIm?Q1cY}o$R|&a`>}K)34c*%w(S}fpr}ajvr#!yBWuV%F23hd%&akYPN}%ffgPY zI%37H@|jO9#aJxVoT|5F^M`1<$}*=E;*vzG^fBIj%j*a7TLu9gr_}5WlQD}k0MIdocw(xPF9u{u(b;MTWuk>b40y9 zPVK{2>AW=>G5DWJaKu_weOadEPGgiLE(Z5Sh@nl%Au!9U1w?sz_e&@%G~tD!UJGCd zH70O%*)f-tJZyF>Evb3+fuwudyg!dn$ai7BWW{k`iWiY*1Hhtr!aL&YXcuL?tDRTs z#dEWfP}O(8yC1wCUYT)%Rg{`~nqcty?}=d^hyyih3rE@xxGix7BE97C=lBiNBfhUa z)!{=-wsjSI>#f-0>{?{JY%M$}X6 zRD%c9cAs|QzjrhN)pE8a`nRorzgO_Nz^*7+@EmqGIGz1iClAG!&2>&HH2>g68~tFi z0AaPTQu?FA;-{(-U#CQfgXp7W8e<&gpb)ukqgKpr1>aRol5ZtWw_Uc`hZV=ZtUBPlyyTqe) zq`_~V8h;=wxI&3jntZsmXQ1QWLpy?pJuNd$wx?-rbFN7F|(Cf9FLBaIEa;G z=~=I)>6t7MHa8k=qFuF{KMd&4$^EFN0{_7IoaDItf!P0(7vGK4c??FR@=X3s6nU0h z94^w}!sRTYi8=xWHZu^}-Lo1)eoY=BEC|Vvl>)DV(AohhWVnd~e6@%2XEtP$4Q}_B z$v#2AE&Ifb)bGlVqvko-Dw->-p~n)b>b&!w;Rl}N!_d?JI_ z=S*hPs;v4m!`6E7(#^3J@lHkEACVjdOk(tQ`)x{W)2UXzj&(>%rkzo4y#mT`Wa1b4m z+W>hylsPs?=e@~B3BW$etc=Q)))s+^Chg^IgJ3L4Lsmz`QHBxnah`Y2F+f=o7qJz3a7@rY?EjrQ_*e z-mK(F|ddQ}4InC{RY{jkDZeYL8aII}m8{O)b(( z8SW2aps_tQkLmCCQYwTFC*f~@TQcW752ZtG_Xnr~3AkR+J(F-=BOMh(Xzc_#8JFW$ z2Nqbq#bFUyaDuPvT_kM2=&>KV>e8DM04`gfWS()DJe#ecX(^TzM7eLNaPL{G;t+|7 z7^?}CjN4CT^eX18hl3>LdLRvg#hha+93|~nSBuE7Q;vqQL*;7Y!WicW|3W!arCvuh_wXw3yFN6IC!=t zRrkA5fXAr5&b2fy8V<+Rb?w)yAHSVGi7YfViE7!F{OTXLC`9LDHZEJ+SuXrKk!fQ- zPyoU0T>Is&J6;bLRv0t+*h>mDdcRZ0e+4j=qY8#9ktuej@Ib)0`ulu!&*4xHSe7w( zUlkWSysgXsnBhUCPE=OrfK$92xn-N=;|@ukggiE#gj%Mt!sg$cT)Hm|bKw}aukJ=UCfBq~w5w&;c)H9fnJcM6Z} buqj8HDh_p$2F?CmmHdm%qksL^|6KnC$_OZk literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/train_progress_runav.c71694a8fa9ab359.webp b/translated_images/zh-CN/train_progress_runav.c71694a8fa9ab359.webp new file mode 100644 index 0000000000000000000000000000000000000000..46fb46ea56fe26b0eec4c79a7e67a058e717009f GIT binary patch literal 15810 zcmV;zJw3uwNk&GxJpce#MM6+kP&il$0000G0002_0RTz?06|PpNHhij00Cd1CIAQ~ zgiiluehDOzL6wLIpo`kcZ$?nw|Nm{;lvXL@v=o%|l%a%i>w^M@F8`#DWXrb% z%ix~MlvzybBNtF}Baf<&;EQ_Di@$Gg*|6L)nRX2OV@~&%wH6XY58~@`I z^1&f-@h%+dj}7ADtN-Ca%T9t93Kp~tonX?1O~xI^MEz)%`-H%BcF<5-*KCQ1yd<4}7iZ3FUxuc7#1IRU6ec@R6G7lu<)0#^`2 zo?zM^KC-HFXrXd+hhT2xK7+b;8&D^Rzo6>-Pu~;Nu{fX(0Mbp0sX8Cy_^D=~(y<9f z!l}h)wGli-p6303cG||eJcTyJjP03r7h&;1WIv|Uy|astVjwx(92O_(~#GfZJg&6g2`nkf!BF}Hx1%1sQUiX*Npp( zMes($#DiZff?3lm7QZ^i&>W4CoR-S9xe2IK$WonzFh371N%TgjZJig+Z7qcogY0}D z7I^`Hrf`1-#<4GnrD6e)ibUVh6#vWBDP%w|mB}&22bM?B9FGx9#&Jxy@t$=TSHxda z^!=x=89z98f!7-V_Y8_RKTdR$6TP-^KBthp|1WL3bf={PT$}WSWMv~L6`firP)iZJ z0Z9neqa$K@VIna7Bve{a*8yMR(LtPnUQTU5o8=>Th=&AIZ!}EoZyBh(v}s;e_okU9 z{(`FSKmAV_*CCIMG05{e!R#KGAiO9)nVX=zC_g{`qWp-a_MU0Isptr1V0onH&wx7} zdby-1KZ=oxgg@Lc*Chx;INOTA^TQg$Y2O*NMNN>ibV$6eO~8YMaFA})Y z!(5Ky4^oR{-yyvyKLF4M)}{&npmbw};lY6gqVLE$0G;>?s=ojHuNjZRA+I{U@rx5x z?0p|u2VXjo#p-XySZD~>5mkJFsKT`nRV*W_kP?V0S`1M|0RcfV8$tZlX;QyE7V)o$ zkZy+V7XvUF2UOjkv=+BQON_^XQ5{e}6<*ceyi{T|E{cAMM7SYR2LzlWqOxa)T!QZH z4TG;1p>{et_G=bSJ9k9cWIhSEvjA=7XW+cU1P7?I$ATrgR)Vx&UM3+rMDCUaoNpNd z&e7a1sY@X-)Q2dsithSKxYVZL!4pKQF`q;RZ5$h?1~++1jI<@OUhnGl* z4iP`G(Cw9gb0laH z*$F)p8(8->($oc>mcnygh!?uA*-;g=j4ZTdS;vy#e5|+33gDMW;JF?XZKQ?K4Yj99 zmKl~@8#|(uFB$>oNZ=+iVJD*nAdj?Ff;{L;T04Z2*qv>s_OL4EWWeoOiOzy;>4E?WZXy%n&Q)>ekiQ}dHp1Vcja}o|KXu2XCDEfaI##;tlkiZA zmzZn0wmc{(qNmMcLkp1bS&5wvLug+j(H$aDy1f!{jwG_VYatIxu~5MAX!8I z^%d;riV%z{LpGBQfHWIG)VL#hQ1yW{*VOCm}jST03ua zdnMu=&D|yoiQ_m>vopZa2Jj{y2lou&Ia>#B8ql&9khu=L6`kv(%=I3LrtXtav!6pO z?mJeG#9~)Mc!;>;SlwO;IRF2B09H^qAYeBD0MNkzodGKP0ZRcsF&K(NA|bz$$_2If z0|c?RY3g*NuY9NUU-X~a|H^*JeDMDv`s?mL`rr94U@z#O*gt4} z_WBC*0sG79WBu>_*ZA+>|B@fBpX|T6|CRs$^a1?W`~UwxWdHQP`Mt{jo`0zS;qDjw zclw|FU(f&gzdL`oU-o`b|FwV2{l)+7?|J|K{-^){fDixv*B`(?|MhqD&-+K?SDA0p z|FC~o{eAw`|3ldy#Xf)gr{qWX58CgGU+(<9b0_^2m1y2G4n@)KOS`j^>_F` z%CD0x0C;%m9$_BJ{V)Ch>*u70qH7pLjj~Mh@)}W z)gf#}8;-Fs-RBg9KfT@auo8?>q5MJ~4+n$6;P69pMRSEW2N&5v!L8NA(!Q&O%Ls~` z$_;L}TdlXG98<<@t1qW_r|x#vVMS^vRak`k-}76>AD(4B`K(`OeF8=2FlpeYdTqt5 z{WddF^%{*vp?_%bRClNxuyEqtd>R8Pc=&AR@Tg>2mebIC2OK13S2rf0z>;#LV~EmQ zfPE0Nlmwv-xf$q{VG7VS=q%EkF(0VHzl$UMyWjR8p`Ms2ZAvXA83cksAM>%63G1ce zh(Tp8>cCoU&~TA_0b$%z_(FEXO!bP8)(j&x0M*lXmM%6I`U>3RIy8ty4SFQEr@BD3 z?TB1J#oeGQh~~SHIVKK{tlXPuxO_F%>yY_bSgcj7!wQ}F=X7U*bqk^7je2Y^);v(6 z2+ioV(iUJVzH14HGvE3Q_*Y+16ehihHSfyxX-<>Kjm-Q~wR@i+l+q6`{?`r-*tZpFU*SuDO)9 zR&YIEd>=cigIb3MB}UeP^|OeO7I@ngaTCt}O$>3|Q^$Q%`fvV;&vPk_NnTcttTo@e zt@1bDETyQ`G{L%|vVzQ}Psi767W4Zc$k&WjV0mq9s%$rCb6x*1qt<#gR*Dia*I-06lcL1 z?4rXVAjJ{gCtu9MkwGy-pe~e2DW^zRwEKAC36H}ml*(l?nM|frDU`*l z-x-s6-&!=$WTq}>Gnvfhb2*&OXET|^SpDj#^|dY}iT-Nzy~g8lxZG|x8;!=}akr3G zc!Fa)qw0uZ64pd6#Nu%{oK7bbiNxY@H{frM8{5~lHNu54KB)^~+KIpRB8|sWp?bi_ zq7^lMD>n6&VQGrZy=7QhUmM!>i{;UPL(&$Lp0y#M6<(L)D}5OBJfGsST^H02o>RxG z(Xcbis_GEk${pabF$9*5H_W|`W?zU4r%i5B(KaWA)lN+f3?aG=(3GXe9nHU4&z&oX0=E=0h@(;$^~6nlMs< z%r3*8dWS%9iE?lwyQ%v`GF@wyWhEL?f?xm#kk4G5`3a+Yjs>8h3xrLyC729%(*UA$ zHfp}lPx4;(m`3dtd48&wJtUlnH1ls9P8m8Bejw9JHVv?c`V|IWI)HDl+S`0#sS8W( z?HQC8WoLjkH^>LL!b4H1tu;GkDeuC93dLJBNt8QweKX7BcJG&XK30Gy{EEe_1J(E_ ziPL5Sr^K`gwvIORx15pxQ^c}ifwh9R3s9n2PO?Pm<1Dts)C*Cob^TsJ!2e)g$ED6} z=&0Mh0z(^QD1f6-d9vE4n9P;0RUCi_*bw;% zl*H3!1Qt71QKq^yVHTTKQzsr3M%P` zXI~IT0thrbuT--Df|ZFck}`5ig<%?FPmt1j4Kw0$GXOLb-vdKy4@!9dtj9YF7aAg8 zqVU;5)8~=x!MyL!5v~@d#x?g6U~NOKAVCFoaf=E=1q@=ww}MO|2Vx;y+a2%zWKnHG z`A=fPd5^}K^e}zK6uC}Pg%tk)MC=bG9`Nqoe+4f*3@4ml{x3~PuFfO&cS~1yeEw3j zqK}J_6Ut<>#KJGZ6=(bpJ zNC8WcVlbrBPhA4|9CERnLeDm@LddLd7gLAJ_~vzCQ#uj797r|P8S5dF^MbP#NsXji zVrl*e*B>uKA5^@#Mz4q9#xqUk-CWv8$2P*Pnqmos&o_hCZ_DF2a&V8={Pk6B;bJD^I0~-F#`LY~TA;b_^!3ioB?{Z6gsXqsC29P0u#B>6Ds; zDV?zZOv6nduUx)LHAW8#>N#%oS;SvPiC92VoLLYz(7yH~dq!G@7F_0mbGAif4ofQs z#Yc1847xs(=;X5>iFBaiOoI7C@$s7w|HVy%PuNCpP7$)TK)dNo8Xx-#MbxM|ys9cT z=F}t48FtEyuXhXxdJORr^%%}pLT!BCu`;Zvyzq%{L}Qp=p*Akb%l1yTHWcY z*%`#@$lsRcH0#6Wz(KQnPEEag%%J?~rU>T;M)RJFC>b>aiVHl*HUaD9ee4Vf6m`2| z={hQqedjfTBN!HYZK*YRUn9;;gaMF2pJ;$Q)Z*j=!z4gKW9&pwc}@M?u?}v>{yD4R zjZTFJ)1_!4z*f>TN1rU=YOeH2|AD(onrq@$gfMgLFevP`(7{;EKw^nAsdM4Dt#zv- z7u_uKc5z=WpLVC2&BoVQy1qOJxCCLY`fuTQ<%aD43W3z)NTi&of=&J0`iSqJo@#Q9 zNlW1u*Xxw>=4qOH$@572=|kHJAKt=R=O3L&0yh~V6S;wmb#cLZI=UBhtfIEYlta?c zGF;=Az##^#h3B9{OA)M&C0_mMIFu-;b3J2}Mf`(tLKU`b38hr&e`%e3c#}G z7rjz1DGJCd7&$g>*kjC*@E-HEqXRu8tO3Qnz;I4_4@=W^sK4;0$S4fWQ{X%(4NKap z-}y0r@~NawF!T+|dVd(^l5QIRhuJjbZ2rbH0=?EBMM(!Qb>~$;aDUvhiX&e-tKf~p z^dy#G<`|*Qhk&AybwTpfW)w4ohZW`XlxsSC<7@NRv7i7+Vp2g@$bHHoZx^nyl&ehx zb-@HzY|f9>(hq=5xpYYY39o&?|B$h8^^iSf7qM?9(R&iJV7cMOydZ*d)deh&PT13y zJ5r&SXuS)yhl@yht-Y?2z-5cYeLi)CNhR@E7AnC|>69F5D*vmk`1)FSE zgs-Fh;mKsFl-{-Vn|2ax^V5cM7ixVDY2hWAyre{TNeV;%Se*-GoN81b)iDrk?G~cj z=z>#u7$q;bOGm#SRpw+T4G+FIGN0VaRkv`D&s14>S5tKj`vTVvqjN2bi$#1MKIfti zFA;f$-c~{Nz0cYF-gy_ z(O=j2?fZE&XM~lA>1zAlIZUPf>j*O#$`a^A&I((IoO+hOevsW+O`7EJl&G-&dYIa3*^Ku{fq5)EzntJ!wxm5P9Sbf#9QeEP``!9Ymm;(wmaA7vb(T^}_!H zteQp<)f-3aDnS{^Xss0cTSr_;T|YGpH+%Fj?#UMK$1E(Oi~MP>uSV*1BxA86)-)LWAzCY<*BnVZvr?UMiO=U>ybxZT z$VdT&HNoLnSPG!#Ke6QAe>4OQ^Z(9L!tq`TY@G$E^e>C=Hm9IyNEn>^3mCqJ)^kL~YIOG-*7a@u8Ur>{d{aDGB094fVt%WL5#D@;$s zd~u2F+*VM(xsozxy1^C9e2}bC6CpXlw)#|vjp8m7T=$KFyp5Y94)mG_o)DPI@n_Dj z=dLe!5t3&=%rgbX2R(_fS4`9n%~g1sjIL`AV3tpvim?{M#)CbwEC@~0s)42vb&%<1 zoQ`A^%g;UQM00s_M(wp7h?j!5e1r9WmcFqleLd1`yETfY&pfAE8!QJZ-EI{1zUh;BnZxbXEH-CceCL3PweCz_#VCb?h#cH{kCOt zk;PY&QZ zWfqtJ zD;QJ;P98q|Bo@e9ujaB2vo&=5Sw`+!RV9D4w5j&LVJ=!MQNh9XIPcF0=>Wi{QpMZn z_C$afT6oY*!?)Yik@3d&NVda!fq#m3C2exO7h6)+c-Ue)_u%bqPdR;|LN3p2*Pq7YOUGGwV=Tq&NOb- z0z19tg3k}cCsq?wm7Bf9FZ%|!#*Esj0DJmAc*q0^3;2Cy7Zd{5;6MM5UL&|t4<3;3 zCM(W@eytT`K34=bnoKs)s@Ea$j@qvrX>v9x#A`vWQ#3_$_&Arw)8?1kTD^>XBl6pmCs4r>J6QQ6!`^By z!}(>4nASStv}u2e{xR|NaWFCe40=1i8mq`{iLaCbue{JVHzFjVf;jkXG28jVB_w7X zGllUlLO@^M)Sx7w)!)z9l^3tplC} zKY?X^ioWs0kce9|CVvRd)KG!mft8WQz<7vNNbJKJLxvE}y+ zUDr5*%H3jPq_0)y*}=_W8DGxkbb48G<5f8_KgOu;ZM);Se*qPl)vtETFn&;)<@i~; zg!{dbh6 z%d(mY#q%)@JgU9yR~~cf0O!-kGH=pp`n_Yiqta*bSKi?%>Oh@j~- zzMe0a4s)(tP;!ljG$M4w!+C`;~-Pbp5Pq#_NhR zU=UzaD_*STiB2j@_efh0m8JTlN@G9O7P#M)rvk|*H~>Z08*dHqN+*^l4mA=E%(RD5 zWGJP6Ax>1B%tucjH!Rqd15Ye>X%47Dfmxt=Yq<7=LL!>JZmOyOF&?@4U3UEe{qxwk zY7;D!X5YY1)yCpMnR3Il!f!jkYb-UiTFrXuh;et-tyfR_5QG{#F#@uJ@8g5s4^3d` zTK<&3Llq{wt={hC@!c)N{>WThEaRv_jQz5%+Do-N-Ut7xFKMsWh|aMPw7q+3G!f>X zl!Y;8qqORQ0#%pAMQ{xWLD~LKOk~LW+Nt#Ep)qDaP-vIHhjfsd_gkn3!TY9T+>t=Z7ThQsc`%6Z_r9s)IPd%m#-`W9cGh#_FSO9 zCaC^bcqI#e!93Igk)TC$ssLtHo%x!Ne0H)4Q^9!8zS!zf$i9HQJ#1Lh9lw69s9EQo zCRSPk#&uaSA*^X1{e3U~L)$CH`E@=e-Xh##3O*SX9Du5bqsh!s$6!k&TphAIPpI*-8O{cC9P^?=_ zlw|(yL`UPbnj_L@GG{I4S+kHiIESOTE~}AWcMzhjA)$&7aCcByaud2^0XL3Ofx;YY+8cY%jx1F_bKr;xcEO zUukN94f#Y?K^H=d9FKH!bP7^Q9CrF=-SU|ip&3ugv&3S@4tp+hTi6xZ8>|P3O(jOx z{C@bBD+MVy4&4v<&&e&nJ|Ev-qEmKj0G_3DQ=aar5vBPg+93rjs1k4(CewVsE;#2) zp(BaaWOFP9vI9g&rJ&jI(ww@c#23)LMpJywHTy@xqB~4Yh`Y+(O5;;$-mXsz8NyRe zK~da6CKz?{2L@v^9CI$i&QLYLiZFCVWit0)JMrLM&Hb}j@N)NF(0){6BSZf=*ALAD z*+z#OLtn=iby2Ue?KbX?A#;9iuBVXbA=#EJS`Z@GCm1Nd5YyTixUO@!%Tv1+KXnwJ z@}rOIGJoZz+*7^jhrWW&<}S|pHk~p>i@K4JQ_u-#fhF?;(by&YhVhTNJ;N9E)FG+v zswV6~gYUC*`!&IA(lB+B&+OXSDZBs-Y(S}^y)Ygg810(U*AU%#bu-lUHCLw&Y@-vS zQSohOSaPm3M~DG4JPIMe9_!|kNT_%Xut zfUv4{jnwH0$BEpZCkgy-PJ2e*Mui-2vZ~aYqbY#*%cB&VpYA&i64_ zK$j^K6%foIg`a5o90E|@Jqi~|2Ib@TLa756)yJ+}9Z9hWOlhidJoGG>k8A(R1DLj9 zR0$(`1o&8;3rHeY*Eg^E<*_Z<4n}wLkrXKJgR6JXE*;J1;=(bo%TFzb+w=1G;=%Es zG7V7>RAjDNYV6`Ro3f7p@Q@6xRm8nj>R4kjv4AE<8RTbYGAoX~NXz3L%caNr^MpiW zRzT8-=Hzm;-!Z{aoT`6`v;5_UVf`=vDliSbGq{EGXBO~8eB=X2IwIxAVaKH>COo>CMUZTu#b1{YY}N=D zEFRdA4}7e=E73icte`Y?@dd-&yYY#KO?D8c)hl^3Ml6Tv7?ECfh+o$JVK{hnBND!4 zKQ8j0YFAT8ujYH7!;U{_HUp8RFjUG=yj;@>uiQANvCSk^Qz?)pC(4q?ycsmJ^-p%Q zp2qrC$)j>YQq=HGv87Js^FB6YuY`%=es`5=Os1mW#Vqs#pS0e3WLbpk%`clPaiOsE z!kw@7b3=xUS7Tc>0pg1;a!04zX*csjmw}A_;gSJsq6pcAKo1mo?S(k-+b6ovOO=Hx zaw}&OG=Cah-@Vo!#whT=cct%z*K%hqekv0hh%VMMGH)0k*`kD>@fbGALo}25 zk_8*MYnIQS1pE|@iiGyO(DU4D7a^f zT@*cZ8wLuqZ-1!nGNAypHQ3&;jOu!NdGX&{A>5tgEr$M0sXxF%E?n2XT#B^2d5Bs(Kb<`q+UuPst`F!X(eI|A|bLM?e{y8z_5BcaMzkR z>HX9M`e3}nwzt}~SEoWKRd^Ho6#kDG&-YlxiAIZH1i%~lJ<#P~U+(&PvY zC3*~9ZlbK0@sGj7^OOc8xi*UR0n)Nz79Z=vCXr8TInsENvT_K=ILN~8?Zh6R-IrXU zYYYXrZ9mcREyCrB$;j%H!HNKm#O!#a_-Y$nwbE>BT7xJU#tGE&*Qy?xCu2tpMp@kg zC`o@PB5AH@hfCS>BAG@1j$DQUAe%|*#Lh%1uM?GJBu_ocZyAV5+0M)fc2i|%v zs@YRuWHRizXhYKu6xZ2Y_IIB(zau%Gv|RM1E%C(cONjD1b+#6mV}t+!h#CPlXE!)u+{?VZ zDr$T#U07}En!yDTWI|mWm#vBNgD>R4 zVy111I*SLMHM@pd#xL-IPB%xIw$XPg^kDGuZT>(Jh_FX(yOh83QG6o0@1nnB<(_t% zIV+l}L$*!F;_XSiLC45?FfP7$Gn+FE62;C9%@iBLSZI=yZ_qCd(h*9QMGGAJdG`<5 z?v3ODq~`_wWD|V!BL#Q1<6!bY&JVun*ZGSB!$cj8I3BlE{sU2Ii4lhGIln@f#+PYB zUC|2$fyibl(p-ZaFlO&bxaVu%Lf4$S8lRQm(vkOb#fXC)v>FiENlmb4lkdSfJ@QV$ zzO=7X71Nt0fDga=>5+i)n~B0(;klqbAAWQy-$-A}>JnJ7!bKJQz-Zdq~)MYOWnYlQZL*^J%EZDkc-!8{wz79wI^3(u{aePj_|C96 z7F1OB*9GMgU?fY-4$-lhJh!FR%Mn~!Xq|Kml$O2BiM2jZBzo`tX+(UpZ#)g#a|*B7 zKhnm)Xa5vFngnkIUdl85dk7qn=HL{FT0sW=&=2-fvs!DwVXNwmHj3s^+`XRlN2gMi zny%!Q8TEoF&eM<4<`Se-l>3NCtaP;)5Ad#yRSCH^Ce%Wy(_SQFc<$qG*M_?vUc6ct z>V;Tk`{MjFX zla!|`W?b5{-0kI1p|5>LR9g+3=;3+E4go@12r06}fqIYc&An!F+WxeY-O(luTnT&@ zO%eH$EvZd%Mh!;D;bd80WZ!DuXufo&RdQrWyDg|mFpSdn;OeEY-SZZ$%xLWR7xX{i z5zP1KEi*1>3}iQ&OVI~^8v%7kA1CD)$H9jfMmnnK6jFZ>DUoD@?LM=Ag9mV@fDiyQ z{wuYn(g19@P&d{&C$x{`haL4!J&5T~$er8=)vaUco(ASd%>1bUIHhf1>o;!k1JVXr zWa^!5u*zN{HifnHb)8m3G_EwD<;eKU*9~ON*qgV(FHZsjl8_F7gV6aFWf{GMA)n0D zOlv0Rb0&^|R%rb3nMoRGM`#wR`J#pwJxLb>)lF7>fq)YEw1tPf(F9%#`0*Dn%1W9B z>T=}IJQ?R8zJj0PbXPl*O((+;$$b3%84!Z1ASMPn9h)Ox)e~hzt`H4E&>WJ;j%Q#N zPfIlC2&h8uM|KC%r3o&cr6e=(6-)4kw=%~`+dRda0VptZO*H;W1>I|EXt?jo6BbCr zO}db4?w*xhWI4FrYE+$<9b_|I_b4ZvM-g+(9O}xTE5h2n)DoB-{YaHr1c-0z@h^r0 z%#GXKm?!AFt-)41|G5l%r(9Ob+|{548uzB0(}`Nu<0Zp`BG&dWEu|Ou&v1sk;i0gb zCg+`(Csg*(y$Zj~NOOS)nNydtW3^dd{9Xw!UF{R$uQiQtj;XZ`4sJ?F->9Z-CR=}Z zYvjf)-zq4$1U7C{4B!YgQxmkFlw&?a&!<9wZ*qLdFJe&18i+S!nOB2QUq1)xT9w|O zjPTsmOuNj@7^Xw0e zuVY0P0>1b(au_OO^X;v4!a`u%sasU`89L{kw$1Or09zr}PJt@EojtLjp87*NRgt80z;?9!gbo2(CLSHv+T`cFqSAp$PtcGh z9IAyzQcA~TJ2bRWx*^{ngB@M~td1+`3t{<;w9e6T#M>XR0}C`!>d}1xmU-0TjDGSFO=$SI1gkD$JbS&~WFWdr!OEU1|_! zOTO^^^kPI8XCbi(;~Z12Jn4XEsKD>OU0p>tx`>5>F#{D8dV8vLCj;%*}J-q$R!QnNeWp_vU{T&jrl62wCrjd$%Ia;*AP3Mo>0H=<3b~a{K zG<$V>S4{N_M7^tyo(Xe-PzWCNXb78*pa~=^!fc`56GO3H8+l~*c3PFz8N!kOhGdUj z_qAv}F8EkcR!=08=8_y=tI|?Lu6P*dN=djozfjr) zPA1YxXUi}Lw0Bw!$Z1~4g>1`LJ1AaHxT8phB(Y%3Q}fd2#|bGVPoA*hq3SpmCHGRS z2HN@w>lM8KR|uyUO0>5#ulPf>3M}pSSsBQwqYCX=f)F!=!@XHKZU>)a>i==Ux9UyU z93ZAh+8h2UEOr*r#>siZY@x&_RnasgYso^kyReoXRW^81@2NfN z&E@iCzP&bCK)rr?@CA#l*=U8F4*xT)-V+8%Q~)xRmE;GDw0`J7%6tHl{kdI+O>Khb z!u^Q~k-nFX#l<^#u>!V@LO zHUi&$s$8d?8y{A{>-gzEbV|`B*y=YZje|LMfH^8#00002 zP#w3VNkcr+^|Is(KwP7&@{RJIw2M9e$J6^!|HRa{Vm$`FyR62Rw}Zb$_Gv2U_`bZp zV2k&;uQ~FbX4!Lm=lwz;d_^TU=x~*Hiq+uNLwK_z1Nf|>wJK4(YV~vwdj9hpiG_TE z3?x(vkx&ZrI&=0&hH{8S?89p(R4UWn_76N^@X8 z760RnPjmLl%$PYOSrQuVk7F>C*7Dat%||QV9~et+aT^r~hs3J_f@0O8!B%=FwoHd9 z4{$3VnD?S}mHcrYS8Uj3x;&Hiz5;vVrsi1-NUh9eQ{|`g=DE0400Wr`LMME5@#V9F zF~;-&7((Me1m%%+9$+l+4CqJ#KUdiK{k*ePHN?OGlOa!3uQTJ2<#fMfq_2PtX>)ao z6pE-zb#TH}OkemnMZ(=~2~P z1^a?`tB2WSA-DJk`%B5njzgbqJR$n%)HqnI9t%-GDwp9a|01`eVzyyTUlh*s^cbqa zKKzGugPAI1h4SXN>>;3jZh>O=kCZ?vR3VGw)L!jj1vH2>t*4Hv-=o4S*{Y87H+=WZ zSweH^2yx@RgA^FY(V2{?Rz-?Kfr+<$Blq-kkY&#e%7bfnaRxWN-*o^=2f%KC&oe|! zBTjmP#jiaT$13rvwUE`iSPxpK;$Gr*8F5M@5!z(}m0;5`7RfOeRW~;M=JKR9jCJpW z@*a_?4wQiSsTHK=T<{>WsXCg>im@q;F|!@@Omrr?i5u+@1L&{0#(~DszoRak%C-(`-eBqsj-1pj33M|Lo5Zw7xEstccmMzZBifwwY#%qdvQJnsaf^n9 zH9%QTqw0x&=Bz3efGLnalDZhslfh~vw}S__YHBogN*PCCe;sxH{=eHz5!?3N-uhaS zg&Kl>d4M+Mi0QZVzl0$+c*&Kl?<-&Do`0%DQW2Y*qIlJ~ca`So>?E7Aw!#DiKu?kI z^)PfkcBFX$_rGy7usSb!qzEO9zm^Q0bHv)YCpGUwe@;>>OCL z^se0JNN2`leJ(VNOtYb^m|6$?hoU{p3n6WfSpjfKF9@~~rbR>M@WZ*rBme*;IBtN1 zPG>qa_|7iPmf0W4FXqKS3vE5?hO(k@uSW<>vKB;r8!}I$1+6n@6NUN*<7d7#yGpLc z<3xsen&5Tlmd??OQH06u#ffoD!xXCv2&rE;UwWk%YE;cv?@wg z+~0N)Mq(R006+EuXA>DBiH#q$%w%f9PRVdAoXAV`sZeu4TCDnDC{@L6Kb>NVrP~8? z$)N`MN-`o_Cx`+e4Xv!l2BV}FAh(&esnS&NQqKJvZBD>6$}FFu(~o}2wu#d=Or}sx zkr{!UM)Q(S5=5?yjQ_ClOk4P8`o#qp{ehZYU?&52oKva-hF4^0E05EA7A~5W*5?Up{+wV=a+_tOI`Mp5yqduBD5kFAUy27J- z4WYFHj_mFRRT-R0D*+%hFK8jV$!_dt9o5AD^MXrNVAf%>{)NGeFP0E+AarDs!4?-m zl3xx($AP_VZLY9q_SOq-%^>I&zh|js-~YY*Q=<`oJPYq{5z4UuvhfjDF^r(EjpW{H z4H$F}>DPb)>(g?0t~rV<4@ZQHv!xk|)8P=W;%vT$UFvRQD6GzCb<_H7)8OWxaUrL< z5j7uDiIW=D^3Vx`*34*veqg$U2Dzhb_6dqywfufNm_JRb4>OT2kpO$`|L7`vtotDK>>gDodwjd z2%Q@_Yfx`x`XE;pLH%3JfU{=C-F;z(MP#+9xjwxZXf;DhBJ~}YtugDc^I*9VZ01FZ zWlR7iw=Y-w*z!`9eTI4iUy6ZB--&<#004`=)@^K;8LouGa}_0Nm_aonp%a7L9G=mg~V6^ngxZti5a5@?|Qk zQI#4``BCO;$#)zo_1Y8!LI0{h!M>Ht=pwT=_U@g-9*?n5G1 zK~Mky00E~5|NeJSFt6JG;E|erw#oVh;}{+yZ1rMjr7abrlFNS)aWG+Ye-bB+m=sXt zMm?8_@Po~x)ic$5Qszr96?7r=H#f@vZZQHh)eg4YEB48z-g6HI1wlO1m8`8Fgxr6! zU-2hL*}|HS&soa9vrWAjG5`PoQ=;CpXzdQjd`(_~h9$JEsmd>%`ji9Zb_YFy<&1L1 z5C8g6|NRDs|Ne(>Qpg<4k+iplHAa7^{w9(^&!EMs{A0pxfu%p_sBTHOsmKe zAqx=3<^HU~xL*~G+ z`;H~<@_sNGwOB}(jp+qw31p7YJ4o))}OKNPusIcHptIV-Eqej{O5oteTNwV zWB?~6466>>93Ksu11A%k5=s8C_#Q2zBnUAFjXttlMxur)5Am8Fj zrZtz&#sGQh~jC9wpXei2_ws3uqWlj zyP<>ImHS1sNw6*;XrMmM@uy4jZwE6?tA)9x`38xhu)X?rLqBf}@Z|Z>-Di$kTXl2; zJl7iz*}ZoQ>wcAPvbPK~S#8jA<&lX= zl@<>4@URlX_`9_qBp7&|3^^~U;e%WmR`<*_hzOVZw^Z(R->Hm%W!uhV`9_Rhn z_z&~n?|;Dl=Y76^m%GyWqyLrvm;GnIFXVsczwZB`{rUP1{Yd{| z{onkj{-5-J|NsB~3jfdhLGZ);2mL?He})yM zNq?~ay#LMZ=j%b}f%{?q|Jm37NA7R_pP2vK|J$GX-v*!KKlJ{8>>PYc|G%M6jsLmg z-?rUt{6uE%*1He&D)Acpr}|&}?@Jmx_7YaO>g2;&kN!^s??W%|-}T5HUvH^;7=HT$ zO`n1v_ff$BjjC61ha8yWKP+#$N-#pMcs(0hLQ2xQkUhOiPXQhXySI2?#36aFL2)=fUQ21*$1*E4S0 z?(IbZ*tCeI=zY2`^XPbhL{MTO*j~YgM<#*mR|f2DG(DHWaRvdSpg)8V+m??%#{$rf z#qrJ>cKJB3At~GySbdgMgY@*q=QF^nM9MOdlwN*O!(t%<-z_l99mK6@e)r$w&D<{I z!apXTkg>`IhSq;h$-=y-yBySnQegzeoj1AYude4WmeO@u@}r7F2>ht+DBd!t4~<8| zkWJ1^=P$KGobH}zvs1~Z9M|NuC)F59%Py=bg&t_<@o;jYDecj#e-?rz5s=uu%f5pQ z&)5-E&jT{4bh*NWD1hsPf!GdzDu&$D_l2O^Q$qHt5bBd9+qZn~Wx~Av8|5P~751&r ztxfbM6&zA8-aYXjX}Cc$AK5PAXflsx8l*F*Zl0=exly}>Fq@)r>>3f@nBXl#}FYGG5o5? z!qQ(#C06yEYtxZ~v^Kqe6{-qdbz${HeK7*pNC3W*(tENF8b#M``DWt8bS zL*Nu5y%ME(Y^2D3?{{~7ax8U5^9(K959S7@$1Y^6lpE|dK@Se0+$ zrUJ>rn_D&CvsKfuAw!FH<%E+VWDCji5~6`Iy^{AlqwTf^?n&%=u^xynuw1NDup?(& z>h-3jXLJNl3|@52GDI{upQBc@Lj+?;;W?;h{}(e(OoP0KMOi-0~v?)%AQ9ar;@M$P3L)M4$}I^0SGT zm#d-{3{Jafb*Xg>dXK1m#)BC@AIAf{b@(a_3_HcFbVItiGx~irnqLI~;M8J;)N<}m z3M525Grsl8bM+Ggj+~bWyD8c_!3@Kq`j5LZ4-DB>pyXmGw|783^@s?}Soc<5BBB00 z^X42*3N~v&>3j=R`|>fJjqK19oIBiZ)mP01*Aw zT*XVuMJh_8pu}lO8wzw#`>21TIOO|lNbW8Y=A2>EV_fluN_O_Rm)9a8%EyMmnamab zpCX^^ti<-Z!L#BRi73iW2`$9(|345e2CfzKI4>6wh@-HQ&5_YzP5t6qKt1jI)qHws zVv+fiQloa|1$SSI64E%HK}xA+Z$e$1K**_S5}BY3Lubj*!v%c0gC?kFGRNh2W7g0) z+6xT++D^wSVyG_|)f1)wZoF8My|zeKj(V062MqRJ*4(9xQEToZb3)%Tf@ z0Mm(qk8$TjR7M+Kb3RA12{pe}qc+mt5yF*i6;xZ1^5I!I&VYF!y0ME4ZcEig=PUZ5HU+PyO)VbuHGym5bvx0D+||{7!CYR?^S~&qmS?=@M5c7dU|>s*)wBVu#`9(#wOH zaj|*nPDm7mu8Q9a7jKji-32F!L68YiDKpgY`ek{;*JmvZow?s6$ORZ)ObPQQ`h{`3 zq8Q{aQ4z%*=4T#+c!8&j1fU`+-$lbbj8;fBv*pnO#3Zr%#Y@A0Zh6;Y{w8`hOt$Lz z3dRe@UmPXOtRSjc4F%$0Q|B%`2CJbs}n_z8+>Z&&4M>G^tE2v>zwaNQT&o`dWt~rj`3<*)Mi@0 zW~%)@gAV^4*()ci5FP=sw9TSN(i8Cmr}5jqiaq^3)ib49%$`n-hBGL@>+~N~9UF-i zpNBnkWKRxRHCw7c@gBP~ZWIR0f5CSgEk9+Y%Enm~%k=Y@4*yd;zKcS{^xPW{DWU;J z+J=rKRPO8Yl^C72_i*p;gt=Rbv*yFtQuj%iG5nu{@FnXSdznP!ID8@cdnv-@tkh|n z8*k8vOpZcwJqm@KVm90>M?=04yEREVUYTc+ofe?lQWf@3p(Wc_XppMsnANw-D&PL@ zpp)$8Ck5->Nbvd}+PSubuZjU-Alp3uZ@Gviy$xE9Bj7M$C|tq3*y|20WOAKckkrax z?4CiRdcCi;NY3ocl7Ok#E$usGGAN=y%egs)=K%z4EP6dK$JWpY(2};;lE{jAF0|=c z1Kkd&6_!ByQ?Qj8VnNu1Dvb|X1$Ke0GKe))-G~2G^aECe;3)0zvg?Q|jrW?1sb0qN zTYSU{U^uneMiWZ_R&I5h8iH%B0osd=evf}9;2RER+1-K_P zQ9Dk#oASb!iU`HEgJ|u;nhc}cI^>^As%*IkETpTFF!&=t7&-N52D|Y)JdVM;pdwm0 zsEDQJ4rD2?_p*b|s%?>7A5SX>Zs$r!5`C#xe+}^_48NY=fOWf;gS7zwEj~#n z8PX3bY<)})wD&#dP6u-C?#R0h_v4sHw%-^v&ch2QR%IMbb-vmz^95L1+jL>Bk zQSF;ttf#&csTcX5CUS5lXVeCme@kpaITB~-rj(d-g~Gf;h@$VZI~0ieNfQN|H+fK( zHlU4>Fi~7SW>h%uWUiY`hs5H0Xk--PgG{cFE
      #C{G=hcn%nX1+o(EKr`@OeTvX` zK9VeaBMwSuvmy~*Hx{B{CbBN{vglmv!tsV8g!XIv5hyWTgR&S=X{t8-IH$$yfi>Rg zUY1NIT)3CMfaclBsS+^m?dULtK%YBnVm)JVc(aBEq3Oy2PP{B_BO(c132gL8>$iR@ z;Pb|9lO3qG5>D~|BP)XZ%nVhn5TBfM$4TA=Eh_7s5}2&(yuguqc+96}QL`vkiwWASrAs4?Em45^89IKx zwxXqiG+MM0Rd-hM0pwlgXmkzV8;@gp8lPn3ZGixnlbT`||0 zHe1)GD&?D$2qC_+8|W_100nJDz&u5qA7CtuEZnu|*NTNTO_m6l#`17EQGeCXgK3E{ zbplEZ%=Qi|^Mp^?Mv50c#(@ddL-A=oQJWF|)MzyMfK+Ws6x?Oaq=Cwb`Ct-jE>`kD zo~|8L%)mI2EBi|>lppVmM2o~`RRxuC9ExHWq#u zgH4cg!)p>7Z`}RKEWZ!Oxt}_pTnn zu_R7^>ecGNtO+4pIg zAMgbvF3!6aF0iJygXII--H{;a4I=!%#Foudba}#X>m~iWrFw)BAqDBPpepb_KE}UU zx1909BrJf38_1U$Q{?<($1kU$RbQ&F{i4%ncue!;re}DD)pSD2%8O0DqvjW-yr@hh zG@(Er&a4|W*^~Ty#hNx3qL$&M%UH(_P}^?aw_Lb#YaMKpV<`XgtmpOGw(@R-NKP&E zTjdpo2C97rH25f|^_*UgE3s1qF|wfKK;&^_`eJO@<}RN__s#TM(Si6DwPV5>plpu3u6A{T$rB#SBB73`V>6 zOer|A(CHhcjGCTB5C21`Y_ilotF0DqE$8bEGBn&Gm|V-`Iq;rM+{bo^;O5t?KxA=n z)f`s7Pl`c0#7FdLm);yWNh|aZ+BDl{*>XODnm_~e#;5HPi^@g^i8n?d9zfG;i#9lr z%nuU`Axa`1T`~@RCYo&UM(8|`v^-caBaMEoVbEjTngg2ZVS@BSN-C1 z`8bs?aGnabo>ZyN<9_*-k<4rg`iuE3e~I_fOVivZoM7aD;P?JUIk9nMeb!g#S@a%h ztNZjo6jrK51(?sCp)OpDzwP5)%xyF_u8hH<&O_8$upj5*dR3bk^tSt)nE#6E9#&{E zV58z;zYw0J6JLp=$gOn+{Y$tvjF0#JilW(idlscaT(@>Nipd6tXXr0JH% z%GG2LX~gpT0{OSxgXsr4tOzOCTaW4ZE}`H&b56}@*o>6HE2>PhQ)Gv8_Am<@QVmO(O>U! z{1!UX?5w=D5tK%FJ^fc zTGa@-Wm@Rzy`yda%tnNwDvCD=;F{w19j@`N&Q>E#&}b5U)j5WgVv5-Dsvl=jtcF_S zE=SVL;g}}`LIjY$33|VKd_yARJm!Sx5c#@o{7ZDl+gbTdMwY-HI;(E;rRAsD3;5fE z`VXau{vUS2!zsS&?yiKk^0KFY&hdt+Ha^A-)5Ki8f}kE8G5L^ z5sHj?;d~KofY!l1$pYnA!Qo{^`wKD&Tb=WK+rwH{UVAgBTz*#hzo9yuhCuBCxY2*9 znNA}y$3MDQG)pq9)Qs~_EL9jMo~v289oha%tk*n-)7z;_!gvkr1x5}nIL3rXS#kUH z0Sv5eQUs+B8|wM%ThhSS!vyfW&v|?ze`Qg}uURXinDl5($AYjagd>`2WV=Vb?Jk*P z3z$>h%GL{a372cd&H;Y7NKP`}jJpa780T9cK;jDN06RNpbwoXhtM1VUyQ7j*k6~}5 z$Oln56V5vlbfXy+?>&K9tk~3`;#!JHkNbxzJfrU*P`Ar`W5Ikf(|CjO+Wm-{P=Cko z@ncr>40~lT_^}xG4^!6W*fKA{h!YjJS8Gulr-ZyqNDd?A|K3FXBnG*sPNdgtRlZ;nHu4vYpm;C1h}3T?*Y!|8mdRwONM*j)Gq zKR!-(L>iuYy}cu0IAxrwu5Qbh1O@da)oYCBxle>;h&6TRTZ~l~EL1S$#5gGhuXEh8 zTJsdThebVJu4W`D?NX&}O9c%pIeA27-Ox?wk%7O`v5_SH`GvaV`$Oh zlM}+W3&@r<_Fh6dC2kp=e0aRnAn9M#8tCJh`P{RhlZ3Zt`$4nc*Zd*9fK#>1oE-2U zckAAb+SC@Ljkg=~A^A+8=+DiV9*gykQCAIy#L%ax{*R! zdf$1h`{3qUX_MNy9JDM)Xjq4)my@VHz!$9#>_5DuQTbuf-V-tKJ3ngvn0kz=u~4&FzqdaIUHzS&llEjy9ve;lp0 zZ;a#2Uk5jZC3ZMfIrsg63|*BFHnV{{P1_~qg+a<=H3=M}J!Gb5(fT!}w^LKw+TimA56tJb!$%&5Etv&Osr*H`i3E390Xr< zb&>ADUnAYBrTUWL*f#k-m=G3S>e9v3~2~aDxByz7M zj;JOMcda61HYe&1$uXa@#5^hRZiz(ya4Z|L{!ddrKLS%QT-(X46B1wC{{rnwx8X!C z+83JeSX;3LJ+hwXoYHZ*Gfj?rLPXmhu%wfYeH+v7<|4pW4_}>cdk0jA-)ikwlZ7)_ zG9=j*Xj$aoxDVpBi{z~D|395+hSR)dhXv6D{|C3}a3{q|W$}ow(F`qKHk-T#`E-$l zzwb&gF0fYIMCiLmsK>8Zmp5zfTFcSv%hMs-=TsXTeP@AxFA4}LbV9PInC%$Jr{5Zn z8>OMdAs6f2PWnUTq@tV$sMon6Ad{DgCQl?X~X5yxVx{BtJ*_VW=&|Dg75%AF6y(cA7dt&hhMh zArl)$dpnKz=#iEBSMTE~yenWeV@57GaG)6#lqjqiGft9k8=CLb$%=|B?6uDP7l1=( z%)?rdc4bWA(J3Fcy@WDiiMk;^#GX!LohxUFKGwy_HFe>Es?`_*S0H$M!ct&H{tQJR zd@MNp#Mp2zM6}`o7WOKDClmu@(c4H@=vK%8{{FmRP6EFv9G>NE)LX$^NF!2%?ygtg zW^?g7rjYgySI~`0@twp3NNx+4m?Gjvp@b@aGF=MBCCcW|(8=b8_qD}r>L%klYqzBi zfF}d=S-A5zLZd0v@;D%@7Hou72#SZr2BzK(4o60|yKVr5)_rJrmR_Jk);?_-EX*O_T^Z ze{}U6w@i@*vHy~~OE)l^3?7yD;4_Z%y!1a=S}PSB@S!y4aIm2$jvG4JH|pCmJ2wf; z#%9Ko??8iIo{N5D)M1s)MmVc7T{de_#RgNhX(O=Jj9SI3VY}IvMiCbQ9rUy(19M<^ zLrjCYL+jF75hX$%uCPEmZl7VO$oV<*ehIo=7AVm{9+z@1poN(-h*w8Z8@i8$LqQ~K z>64;9K|LiXpXCx)`pxM$L20kUadkWGXP?t>`Cn@;O9z-*ezX2_V9SVGE%Dh3vNUk< zZ60l7OhJvZRM4S#P?mo$-SNoScHjg4%@2v8JxVxtMvR>m0KryXZFMr@K7;F#9ZLg$ zANrfR?0YS5+u!pjt3#1s7C61R%HD3K`s*;>2VUTX|{i(-PJ1%*nbc1?OBs z0G`NVe6*R*3uHZWZidff(rtUC$E#1~Jb!CwuHs}SsPdl#i&&WLZmapf@u=mHPiyMSt za#;LwdO#B6q$8QR4SlQt&Mr~H5ls@6_)@inO;<}Fkn~=;hfvFsGI_)KcveQhH5fbg zm8|5w*(}iS+Hr4EuCE~xk9d?}qx>syB~mmEe6^PRqHde$l2hMz`%v;NSy6GY#d$y< z^yV`mxeXbx1hlDXn>1~iBbadNBfq3t-TQWi{X9Ok_o8VD%pM#yG&wP-8i>HkR;mRW z12BlHD$HIVT5Y6*Br+3HaQ0x-&BM0t(jR-KC5rpVkiF?KOE}0KR!ZJ@1OZRo5s6da z^CECdf&8VWL_&rddi{hWBP%oNsI+=z`=aarmpQ*1yUKF$qCu*#)1=iuEx!1@f)SH( z(UYyGOf{rOUSj|f%{~&ZRu%7BtgBsdKO`YEy5o!>GpPvs)o7jBTBrcW=MMm^d?*&q z8Zztvb}pJ4gwh1Ub^^J58v*8boRkz7)uw#|??QJOWLhbhG}_&WTbPK3;zpey-}|>{ zcyqxocP-Ts{HfTsYpONKF;gp8ftHxb`VCBTtu#DoNNA|H1xAiv&88f0)QhuFEdws+Gx%Qk!ft7>iIE_ic&!;HG#kD z`=IOzrs@0)Wgfc}!{O#GXkjuN+7BP?^U(tRNv?%AtaG=OluA%cG`LswesaKCFUPMyfQ)=3st+TPF>xJDv z$Ey%~Q-(JYxQ%NFtP~f&p$2ZkYaZC@B2-3{f(lu-r@M9*dzO(q;k>H={4kXm-$!EQ znr(4JWFP~Us4b5|s?^6V_dnL~8Hg*RP^i>TjnXL623cO{S_xk}XoX&dyb*&}y!MdP z365h;kKC;w#F-QU(aLnAS$zfwaG@$vJRGbr^BpyTsy16ID!vdHiMicRdqA^i-jo-t zZUkr4`hK`>bb3r`Vh7ufsIyxwU)1zV&Q+berw+rQSOJ-|%bJ;m@p5Z%^H`?mI+~cAeVqFZ%<}aP>pJLxd^JL@bX(gb*X0l_+~?yW6{M>~?$b6JNX1 z@rjErYzE@1GWJAHD}^A8QzYf&d(x_ivBjw)ukHR(hR$wyOs2Wwu0pon|Ebx*+O}(N zFM`x>wQ7Wtk|iY0%pYNiq5?m=@IxXWrufGy@LQT9wNc29V0%wb2$<4Ayf>4w?G;Sv z5NpiPN2=G-19vFEe;)#4edsV)aa~4d&e|q=v{%!bhOw#RJ+q^sz|EB|80y*UG`qYtzwJvRd~L+#|zIduj(NvF$>`Ik(uhL z&y#+i$`d1AHwd`^7{Sa82K5%)n>HiUY8s`C!m?61Q8nBIniR7;EwZFrdgxpsZ-QQ$ zKmt^W(rVLfUujXwB_3{}u%%Z?RPSWMP3gHe;(i&HM}DdkS`zKK$2IC&o3B-6lbQ(fXfjObrIU0daogJP$_^ zD-XPyUKqgda8)u_$#D{#Y0^D+P;TE9q#!#8L>RJG`3DItA_2r&RZ@r8T1~J%vtUSb zzs|OFYL!1kSvfe3jlobq<6GjjGO+~l7gKWvOeE>JfWP26e=$cpi7b~zvaS=9D;rgA zNBfdT8-7g+rk5;et`22+oPmfTY6(4^o8gz&Z4DK2f>;%-utaTpqFF8Yl5-RdD{h2= z&V}!x71P_Z#A0ikxm_2_N@y54tQfd)A*^T$RSNcaH!-oh1uc-4Qp#SGe;ViZnYb8P zQ(liCWH(LkhkwhpAGv8XNoO>WN~lHkao{*rUaKTpu!x1bRt`jwC`faQSBvRcN~`y) z%y87nOcLpI;3po#>mSJ~jz0zS%`96X6>^(y-(#pQGNI`#rF?9%%e;&*V22nn=k1rN z*2$#y&}2-EdlI|&`4Y#euiNFgr{~CuUI+GPJYos4gtv)t&%So6hcssw+zPo>O6^iI zUI_Qp;X)GmpB4=XhTswrLz{g1Ct|08>bH~N=|cRZAAmcm;czwuHFYC(YQkb-K#+jb z5mE~Pj5NGVA;2!>)lU*r=_YK0kH8`rMXkxUA=#cP$cRo5tPqDQNE2tNh;NWTI2<ik$WG=KmE#M}M3!BYFTgGHAS(bB`{;gaQg zd`>ZvpCAu=QOX{Zde7du3b3;bw7!qy_z|Ilv8H0MjhHqA?Nl|dG0)|&_%Skaiv9}3 zk{HBN1bLO3H`6Q~l-UaVlta7b>p&Q^e(fB;F!4Ii*2W05{g`7Eg^xc2W3q0-CXn+s ze|KsX9|Z|AgHGVlLolx4Q}&)Bju7A1d8XFJz^QBhIHOZVw}WUZ2h4Rg6u=-@kxjs# z^&Ta(|LpXs58sOQ*tTRQ(iMrVnL5TbE11Oei>B~j`KtCG4GZ?I$?#V)ncj z1;NQi$D)TGrYn@=Fkbex`d109+Zqa*n3-v+zs8S6CgQZ7)5nB&q#qm9>(+i`2QhE{ ziq3Ota^VoTS!v_G1XOI3eAjH>k}WH~?@-D5HT{|eCH_s_gs;JHA~_wlQT&IJp#4se zCq}%q3)hO*9TT9~^mi|CfH{*d4+#`{<-c&{U+f?!CMZKNdl7W*@v9%oC-T0w1cLo^ z(7XUC0`N4wC<@9ac4`nUBp&k!+^G$@Ttf>E==g& zWhbL5C~5Jjyet$=MGwY$GA6jFQ-qGS4edyI#od-!ww==#U;?{5{4 z)}yj=+IN(6Ra~?fu;RV*(1Eo7h*jaeg_TYp+@qgUmAElRD;Ux8-By{4p&iG$^mIfyradbNxY;zG zBdpkb1G^KI7bjwZmJNR6s^JY#a31z@5MnACF>5@C)Y@wAK2K{PcIoZ75YlF9`R)qp zE@2j8Z%}9ZYfGuci&^E1&H~&EUt?aMSoTKrsJeR2o>b+uI3dL$kk-ikA|BE=HXEOI~iax0E zim9cH@%wjp16$l9!0O$?}`pCJJf;vek>>XG zpaVNi8K>!YbB<=*GweDu+rT5B6~W{76o5NstMbdO|0jPV&g2xVEYId!&s*h1fchZv zgQ?94Pw>qWSCMn)x9#;sIy}3NCG3UM^O~u7L5wkwy{v1o3f%tZua_3Rv@Yy1}grwqe&_JZ~}>0!hLg^s!?|j+&vrWGSX9ca}+!dl+ z(7WduymQ$n_Yha)`pv-)i0?2b*(q|(+w-Z<50daG;#$toQ@Jj4DLf`e7kd~$=jt{2 zdoyd-Lj%M+>hFdf3T-!JEG0f|+k7Zd+<&9&eQ|QcLUq)VFw5>DG?>UTMKA?FDQU}^ z>zV=k8VX=<>f*NGKE#lzpd<@A((%HU(MIA_o%etvwmcsY6l4(#QUWw7!h5 zuOUZ}bl!>&)7_iCngq|cZ5hro1{l8jqZ{Rc`H4;o6U=zjIN6ew!%CF*kQ%wXh!qu+ z7=M_CyMc<(jH_T_21;ZhuYuT+zu_#+==q^j?N{*k zX;g>9>-#(qZ5hzYQbG~F`>Boja^Hgw#O1^=RvAzx45%g=(z?%MBh!fa2tK`w8DRfL zAjvs1i48|kTh?1*r>~ok-t=Iu7?4?Q7(M&-NpAE`tnf1hix z&VOF$_oRM|`>=~O*NxGu0L`JY1n?if;8Lhce?W_D)8@Cc1=|NQcb#)M*1giC@Gy0} z7=hPqzSVh>)c5wpGJa)yzxNHzY8dKG6Xj(^FdB zma{-lTKi||gf55(ACyhs1GaQ)aAc{TDA6~%!<jr85UYh z1brWX3-rD*s-9JP4Z0bG&6Pcfm!HGl8cnboQbR2xCFU*-XxK;oX(oT|d>~7p&?! z8_mtom&FRL9dXrM*#@tKf$O^qWR{p0nzbxkcDtON{B?<0BQO!e5BWc)WC4wN|r7>_Sr#tjnd`o00+ zhB5KR$rf$3^`Bd6cn6Mxh3%vBPK|*Nk2+%H-MMRqHIiCQ#g%->8!#2kdHq?sAOsC~ zp;?t7&J>mt&2TRhKU5YVWfo1+W2BkgsEi6bjlh-{A#{Oi{TsaBVvL~Pu_v@EID%tB zLxKYqD>hf6OugoQ5CVz(L3_VXgT0v1mPMq$eIP@Me|wa{1N}( zWN>tV*Gpt_1P9N{5MF-H?>-W~a5XfsU_Ijcgr%?_!>F){zm`cs78a&;2k5{%@}hCc z>8y3@HwJu}P_?oJV}J38{TFK1Z!d$7M)A3n8Dm-1bia zh6$Xi(p5$MS^UYmdh9B&P>$F9#}rXG?RDPR*$0}2=IFbYMZP6Z|4?57mEFFRwC6PO z*}v$@Zjgsp&N*Gv!ZX$hXt?$>wu*^EhSxgBzD&>)dX+p2=KP~a3N^3eMM%-}u!pj#hWB;QGEtQVj=0>^|HQFX z>c!I_*)NJo(?=yZz$AR~IaPsl287_g^jc3g+3<$!U%Fekk~-@DM=y@=t`KEnYieM~ z540Nj=pM3SN|_!;`+1sGHDI8wndPW1RbgiY8wYhSUY%Z3c0>ulnFJ=gONzdRbUGn% z`#@_v4!Y`t1!6>;`v6c^I7qSW_{*9U&dzVXyfSIHROz}w3hGg01s&)BZV{q9ysbB2 zF-D2s`u;KaX09bke66vBdL9@Z)d4eIH$V*~3T~99d8A~%kpymw`PE`a{D%C+ns4xt zS}GxGPqc0d)j;7DSykUYmT_4v za{K*));oDnVK?H6mpJn}Nnwh^5tW#BlOG2#y z4_I3Gv^ANW_5p)sh@SfH*)T2aGGj)Zq^r<#;yAb0u9<;d%+q* z^O7xwmY*{vzqO#`W|tH`&HQbK`>5_0Xj6hoSH!jinRiOB%JfQ=h44-pbT>Ra?3#AO z@xHbsvWUV|<2KO=s$AWtw>y9BY_j}$%4^#|&7v2{@@UW@XS;V7*16h+t!aP5 zp%B?f*pNXEvE=!=rMjsQ9Q(vH*OAzqH$N0S-m}d67)kV5QU2WY_>v65G2*XMOSJqI z9GWp*NqTjj;X+$!wlSY3(Ou`<$5)+$w6p?-XP zu=tDflkHk}UE@Dfmi;Q@=~{P*w@7r~U(fotu3!-P(ev=D+NTA;n0~zX&%UkI|6+n{ zk1_mG*EYK@kgNCsJK@ZY)ThpGb+qH@?+Q6p(m-bu^S2MV*x`KkK)t?kov0sgEn44j z#!xt0{4qlme9jwRBF_QBTESq2Pte(KQ3e+5CWH-b?EXJ~PGA8UQT5Mny2J{REK~tD zP5CBB#!VNZ?7{+nT_*Hz&eCU(k+d->4_wTZq6g$aZ55}a^ajJq0#~a^3JWfu`m($2 zK;{A=PXS#~=HnndE^VquCrWL~x>M-V)NB?LP}sc~d`7i)BWEw-m{3O0X)$PCJ&(=K z@QdIb{VN6+Wki!knGcqcI{}8*^>GuHp>=qs%*J+n9lYV*DLKO}_k5q>-K5XE=mN$B zv}GMPQ(|qQIK1IQ*;5mpe^IjQ8`4{_#*vP z;~rsXzH(K6s!K!RV88BnWYSDeu`*Mprq=H^(9t$^r#0%z8-=v^GC^{Gh^!W**l)n3ZwOgdi0x#B5x{c#Mn%qoS3eu{kdd=!0nb%(m(LwRq&o zBwq+E4jg!O{5B3HtaWe6C#Z2cSjN_uuc{ORRwh6WkVuDiv%nyLy zoZ~Pf1-7}rF43s(7);~|h z&E_c)<~lq3#9=Oc81sT4z?ybA8od5g;tkRfRRc?sc%0G8)4Ot*hJ5#i7&>PYW(V*^ z&HeD+ZC?6Cd|o{?0>F3N8+tY6VXK$5RO<$Pa`}m;laca|AOOM^mdrl&VnZX ztDqx6`qX)8gq6yZfqoeMvqC2QxS?wteLt0FE+AnM4Otp%G^agWibdU4H7@o`5M07V zX|-OaMA@Otw4I!8?668ELCUri`0r`X5#El6bBKZmpU+v*aY6S4%&GXh^3=Wtc;QhV zG|6I8FHZUV;fLaJ^EZRv$ae50B51$|RaGcP1jgw=K|l`;Cj6DokPkn?k`y=Uc)g7q zeEy8;#9|C;uPNJ=XGrdSm9DAM-r`~FF*fE2&O)(0Eb@%Zq}fh{#t%8Z6}bqShSSO# zNL9H2S&m;XW^+F!IVa?0Q$)OsqadWeqnVa8HVEsUlxQ&$PAO9ntO_z?&ZY8~_s$3grv2vYQO9MJ$$YIjO>Rg+c-0=X}s?5K4M; zD)DpWuB7eHGT1P9J%lOc(r{Q(TIfF+RtII5H?XQvH{U&E4K-z)Zk?$Z+pkpav`#^% z;rNVV{nz&GW|JEUqdj4b$o5y-2mBLo0ZtBuBykF-g;bbF9K$@aUY5qWAqd4_(WI=M za~B?ps+Zh&P<_;r>p(CY25wt6dwc9{3RBICI5)z- zIr2d^4r9aPw&APbzEJmyKDP?zP^Yq`Bwa?pbZJa(vK&E3y=NpG^Frosw{;1g`oNpT zF}4piCZ?PiI%Uwt3zfeZglc)%zJB=8_D?A#r~T0Ep1nS9S;z^QmSyGFH42|KYsSW@;QTDr4%a z%`KInHWFU>0na?q)sBVzYu!ECar+bz#EeX3)`pMlF6gN#?<5r0&t&rHo$e3sjMmTm z`2J0NMeN}r4)5bh#$`}2Qyw^KFR2??r9lIv?dpBrZ3xtaEe&i09_61jAxH9c-VqWA4pC#Kx< z(6li^7q8NBc>VNXsw@EzM-BO)Wdh&nV{grqY!@W#>&A6^d=tnA=?ozmh_iQS!@2}d z^E2d$hiafyiq_f_`1kWp(ddMyx2<5G>i=M*A9iXUbjP5^RaW~vSmT3CAE!W&{Hq7d zc9%K=IfLzZwt*3DNRxqzUeNErVISbc|LQ1-aHL4cJvN4~TOChf)2ZwKS7PR|>2r$j z>9AaLFKE0YFi#xK_a6YPsR=}pJ8X^}3J{cXaPm|y> z9cNI6fVp2C4`Wm4`#Q01#ogRS6sG2MLcRl}%klG-3nzX>QUO z`8GUdOUD4Rl*tFvXas>`L3`0u$nx~CPZ6K^ATIU@-Ld{wl}a>CAF!Pd z3>K3oLJz6z;XwgBU#?$zC#_%+{MkL$7hC$v=m>_-w*>ebcNoDLycF?bIfpWrJgwW6 zyD`K z&Z*U+{3YCb>xA)0`#rb8Y?P>~Ar*pGR7;nZk$>ho>tJ#`rZ>JDDO8)nZ%8aZ<>)IW z=cAr(VjC4HqW~#?Ef3Nj4U9MFpJ$*yQ|N+l0{RKB5C1u}hZYgxu*#itQS<4% z${1k5b2Mx>+l%6S28VjX=sT0}CI&?bvLeix{FPGTC8xJ&$w>eXDc%d~*BaeRx+(1V z4m?`*wp&@9XhWlw6X7rpR*jABhWQ{%YIjcD^0lgd><4}6b-D9(Ip5Xwu?uBPP<9&4 zrJHnJuqgT3@e(yJ_Fu*KFyVhAmiM;z;q(1x?+@1OoAFk$@9b6k;CDyOc9J%$21afuBKc zF%{N1@aH{<%jXugH6nVv=4gln#tn&D3fB;&a+k+%+Lb4?%Z-nhflq#UqDyUf#9+TB zGYyLj26%u+Q+GM&K#l5 ziKTDItZJFs!FfZD78#oe;bo?Yw8LsUoaSG$3`l$A6+W~ckZNG)Z-@6NdiT>6-~k@TR?6?$}$4>U6vyUI|tVdT+R%Lz>d-6b(sbO_&|?ZmnmvoyH)CB zU8HuDBU9L~7zqeC5-QB-HFnGGzR_f_CyQyd+Qgx&ApXgh|KyaP3f6avsIuwVn8Lb^ zB!KHQl^!#;+oHKWJZW%9v*R~dSmdn?f58hXrHM26h_qY*QQJCSLDkTZM@Z7%=}SW( zJWgdkv?p}0Burr6Usbp^tK6X#%r12b)!KLMRDLeg?tG)mVD{3(@+6J=?JZ8{>hIV| z&K}T<3zJi!DpLv?jtyu;lfLZqM;k*Sw>zr$4f z_bn=FAk+kgEtuP9N`3!U`9W;D0;%h6mASuH+^m+9zl5U#uHz_N7;313vF%eBrjibFOr!B(was&c#yzF~>ux4mNn|)}cR_Y341gTpTgq$;fSL(8oIZ|kg7lN>L z10GYLZMKZ|{svvkG*a{7S70+>^Ckk1^?1#$w#TC>NmQY|@)9MlgDYkvr3r9s{O*ls z)5mqZDzdNRRI{~5^GC}_Gg>b68g9aef^RymZ5wId_&H7gk_$76{ujpZ%n$)df3B#ec(UU^RU(ELR5R9w9<4ac+1%!L*5(|sQdU)y!atjA zxio>=a#hRE*Qq@qT6sI~spdGYwHO(=m(^^OhulbyI&apexz77lC>tdnid!?B+}Zed z08-bgxUko7JOiFkHd~%|TA<7A#hUUox02sbq9?0}HzD7WNhR%axaNvQ>)S#S@HtNfIqF zI8a7)+c%Wa(x?O*wLE}+qWQ-jNP(qm#(lO2??6G?n)$xoa)%gR(;RrKF2%D{^KXm4 zHThmllI{Zk!x>7!6!+M&3{yux;K}2E0{j@}?{LcGP740%wm&9+?tAI}b=4v+&`J5Y z?}^n_u6Ik=MteX=!&u1mOo`zlPC*xFAiC}KgeO+oh-tMzlKyd!v-A?B8jU4L_!UKn zAhr_EB%BQQroZ7^RHf^+@(@CeKI@0Iut9jIZm>D2m6Wko0uJDid%v_W6dpgx7TvE` z)YAbGSUFErM}73HdPuE@TyI^%(Yrk3!CNq-6ByUX)TNTWE(Yq)59G-n4R4U`$0b#@ke>~raI9)g0{~_f}!W#xx z*mUX|3fP}~vO=+O6Q+7j&_1WS8gLp}%s;Nazsyn$Si?rN6`Wc)f@U>N4I_rSAK)5G z0P_Kr)OzL8-=lHxrDBilQkgT){E^qS%)%v+T&0yxn{nlZ3&34D@C8*Q8tC z-t%p2eqn?F?l`>yVk#yY8dGU5T7F;zIAVa+Gnp?R>5b^qPauxefTL5ARe5vG1ARTf zTD3Q=G9c%Y8h8+*9#7-PusuKmZ*EHsGhPaDqeBYrs;2$1zLudP+XwHnF-y=I84m9< zQnPZ*bcQ%5-lA(o2aT}mJDXN6%v@2D3$AueRcGzY^rvrqM&D)iDy1L=Ol*T8Hoo07 zmUlc^r28h)lcDaL==9l4RtS_rcxT;xd92D z<1Aw1e8^#u1CzRr*&J~h&|n>Y8nb-n(&`7&cHvMQ{+7X3?#@9H2>ySXlf5sLq3
      Z#Y>K@7I9^WE6*#D0Sd}QT=&if9coB1k^+(EDSqBOEH>? zPJO!9#XO|DI5q7FGeVfJDhIh`eg-fClXa-53$w?QMcN+bfzH_bJ)ZK6y;v}J*M1sQ z8((20Y(g-uQ{EZF1ct)2c=6=6?8u*q5L>d6*Z0z}6BoTmhf`7sZBb<-sp=yps$oHM zfPyH+RYzs)Qe7j%2BK1PoED@dO#o%_Eo$I`xrFYpPSLb{n~(` z#!5JivA+I177ONqoN}bP0z!Y6VLu8z#0?N$IUXQN!8D}U^Zy+MX^7UDsb3Y*PZ;$j zzQW2or!}81z|_kX`QU`Xg2g;VkIT>cYB3tzPfCN*TWW`jJ%19sqJdKqo}=00e_ln#ZTXUO4-aaeB`~c82No#FhVZh4`65QvGHEN z5(j9atHwmwPFXJrF08UrUIET8;&s?V%<|X^L)q*4q~Avkbj*T6T%K8`+BtwiXzqGP zN^oH+ECcl>rxu*sh1#shb(i<=aX9q4cfsFoJemC~d0~22&gNu@l14}hmk%8bOK9-? ztc}9lj-G$%&;0pg5dhljGrxvsfAmPh$4ZBPb@rjq-kNTLIt5eC7FSuNpl#}5kLi#mma1=|T-Jk-*qs4E7S-N+m%HbP{-L9DsB;a|_ zSfhl9z!El{Wy7Uu?*bhe59=j|NJc#5QK%|X_unuW2~-Y@B~W%`I+wTs60I78KEk)w zy}L`-M9WDJE$@EBJs`tp&0$y8dotp~Q*C92Q=IM|r@d}#a;De5u(yE*@1O4)bmd)9 zCbjwjAM@29YqWCDo>}u583+EywjVnXScM_szuMh8jFSF+MzMK2q!F-PrOF3|==Bvf zu;@8DS?o&UeD@>m<{mxX7eLcoQb7@hm&V})vgMtcgS!=3*LI(u* z55GU;*fl%)`^)BXBFr5qXwiLY^wgwF`wb)22UDi*dU2VDuRAoF#XC>7W+H51Hjl@9+Cc!VT+|eAqG?pjCSMxHS(yhl1;~!*>GgTRHMZEqzS>^%xut2+R3` zJ7OVt5(VHAJaOq`7%S@Gug@c~$$oTumLYJ6RGW?*afY>KR+$F=$fXD^$+B z05>0a8sraGRoD+(m;b~F0`Q_3w;}k}>=){f8?^rw95{f^B04X|agdH0X9j_ffy_bE z)~lshC(}XW!;c90zJXqoiK8X=b1N}gV0?s5Q`7iP+KxIGrBReu+ord!tcbTWRP70R z)^lXnXGHa&*p3T${xHzw;h?u%Io6h$8am~rWL00wcPhl(@mtjIj__iq$CWw&bN*0IG^<6A5Do|8pj|AVpv~xUA4YlB4xr?lQ(AmqV4F9Upq#>3TnTV&> z%K~I#ol{mTQ$T`npxtQ0P(PT@@YOW`kfAdQ8Tf_T9EUxCgX4P?^RU8FPW{V>C z!pHj-iJzFaPEZuAs`d3@#p#HHK^h#8K60pyUYg@{thsKag|-0mx$hZcPpsgu2HwuWzgciCrj!Ez3(AcTB1zGsioe8#gsh3`- z0T@3*9GE^uf!npuhs>O3P4cEm0~FL8RN_9swwbmu*1UC+ihAmi1q(C%tVC5hcYZIBJ)zm^YeIUgFt}t zqwMtN(vP=y=4hiOe8Z(ZMq{g?G5dfeQxGaH$ro#$Y2c!2y!`$`+e4rdfAl|&?<`0T z*H_X}i`O=DV&Sxfx4BSI#VKw`4JR$%;bBwX4g+CyJZgk9dMgv^Q5Pf`lGT37XfGxP*POi*j zpozVNKfzc0zcg2R5b9iYcut*3pP*mAlQlPLuz3Q|=C}wz%0gYscuMA`a$$AS#)PMy8s7u$UjlA2A56tz_qA&2)DI#(5&TpJ_Bw(a?eMEGe z;O;nc&+fdKjw9LhgmMQ!PTB^WItu6P1q5SA5U5rrte0yR{kB?_e9~C-2Mu#kd|?T$ zKGsqUWv49qxW?B~y6nhXHDAv5V;SH6Nx#iM5;L6f_3sT{s%Hm4%MgGw*# zx$U82SVi!j{nP5(!k#6IHhqpNcTdPJfjO{xMXwnHGZQ>1$tgcjPkMEd^87MG$Qvce zz`=(z2Bf@$c$Y0M-x7-xtNX*aG^@SI?b4vkS&J!CY`cPJX@_1qx<*8DymZ|7ZE8mM z;ZyY-1~kOxAz1HhmE*)~L@O;0%o~oTZk~C14|R2s!`%(;qj&iAVVi|KEn> zoJW%1j!;?MM=XSuf%s8;eE4v z43cNdCJ*@wzsM4}n!Qk$UE2N6POFT)!#;- z7joNbG9D{TZlsh2?IEZoyo4OOWZ?goU?;2_x3ko-7G`Xqu&K^yj>TI+n#375ymDj@ zOWXQN}M!@yUpgJ@y~gjj925`g4Opg^r48RzGKQM z$^4;+@5rGJkl!vni#2iS@VA9bg;VT5`8i+D_KW$d4Gtf}{+%8GNB{i_x&>RoztSR@ za$fr52_(WGLH4QG(z(E=bx8>_m$Rt2ET_?_-D6t!j)E-J!58=Dj3h;;Z50aCo9J~> zT#*eZgI8WwDI{ss?F%IxA<0RdcR+k_IB^yHi|J{9fHBpTIV(WSk+?(?(h8&-l;#?y zsD5x7x^jJi%>S@3Nr*&NY-&8YR}%Naj`LA@ZoP&%_A1~%O@W(m^(+k75~|Z(iO8awt(<6flCD@m@)#WZe*c>Rww4Ev4WSRro?6vM!w9*~?I^gl~bJ;B3&ySn`8H(1UI_N@G-BXgEt;O@t&zM%J<6Qp4u%GxZq zn1MHerTBjw(~_=Foj)R8=VF5nHN=){D8YzU zZ{+bKJ=R9Pn+kt7I7h!Er|Bn?<81m{GHNt)u8ky!RWIzkoakB;t1`^cXt`Sy_at|o zx$t~sb;2c+5H^S&bmza1u*_bG89O5pjkdg*|owpF35@aX%S(pev-Zb(kIR%zubZAql*e_ z?Qe$hm za@b&9t2D)~M()nf-$!OHP83sbycLTArYo`9=fWv`i0c z{fbuBTVqD45CA!=$Jrn#u4?HVLVtE<-?eR(!Q}@UOhHg9opHJ*@`K;lPSkgi$z&2M zYoeov5}HEfX^+nbw9#*{^ySixcq)5-?3C zMajb&54qXn!q@w`u1W%AMOF8xHNi1vZwPPhS9~bd`(Ijd3ogI{pR`}gqsLEjJ%m3m zp%1MYyohYMIvj$a9u1g$2j}HLbbf|E^puczNac~4nAI=V>DD6Ho_n@a+R+T(hem$b z2qiu}IQ}q^a2bNDSS#$5d%A%8TYm?uYErKxDqf9+_=uvd=6J0xS}mAGNRu_XF69cJ z?g}c1PN6E?i4(q+#Berx8xDgp9BriA3E`^Sfzu-n+5`BSeG|fF$zDKtmH8xFy^@uj^aLn ztH{%7_E?4ePE>T-?w`vopVTWWY2?&5bW;qfRvLQD<%?g@jO=|FB>sQ3f5SUl2O2Hr z4?fLUt z#Oqy1j8EtYy`KoJ8~mpCTJ$e`1+K6-?FQ$f2T?dn&kaM)XH3SgMwn0AcumNK` zFx&2a)a`iN&5w>=+1Wg^;wcZR&i<>|$6o&fWoRIT`2aOu2aKYz#&E*fts$o_iT%0K za3BzC*Bf+{t?8-%ptr=rvXV_v$Lc3$mvG)FQw@;q(kp?Mj$g?ur+pqg{Zfd6(t-A& zP%|_vK70X?T^;%3-ZrP}Cpp)dZW1qn=Cx2Bh@EySB43q{=n}g9fIl2CmKtd_jyEm; z6hS@iuM@WKJlA($R%SjyO@G0Qh2EDbTp@F~cG*+f@I4sCdztapu#)x1(fa-6nCfK5 zO-1kg#;nEtO?0i1vfxRDD62VI#rkA*WseHw7g%krcMQl)8qKpc+Gf~Z{GLEO&)Lw5 zy*XeE3F8<*X^CH877Qx!l0PNWJK~1+$fm;OIhhCrp8e+hPM zQqJ&vxa{Oo8ceVtEq#|@9Ab?L#w3X7<&P?oIc6C?`8t_2;eRqaQ$io(6=zCq?a>~4 zNvF;eWhSANF`)_l8JtAO(bXp@s~dIq!Wtsh_ZGup_m3iE5GQogfWhP&#Ld2c5r-AQ zP))DWFUhc~z6yuz@N9EhLpd_{aeeaQTC46&iy!;~M(DSZw7wlEWZgRBCu#Vc7Z_wq)dlw)%`n4ENs_Qls6;8gVlC(?dC z$BF8%pV!}a``F~VZk#&|I?{upBEjQT<{q#%LjSJ=jeH4g7c* z%*-whRf(9;4?{iE^Oo-&jRyQg#?O8sU;OO5n8cw}wU^KPdzGrilmh^bOp`IgpIX=f zR1cPw<6&pga^4Cv+WrhMe!FHqZPO>!Q|Y8)QRa(Xw6qe!nH&-mToFrK(_=rw>R567 z4VLisGtC;)p*DC-$rnAc$5p?zTDm>zj8+QRp#>fAV?HSrRM|&KC z&&T`vOw3odQ%b^;D2y3$Lap4Jfi=bHznqg{1NDj^CUz|TGM&U$DYx`6sP;d={9elc z_Ub6rm$_*HL>rR-6xmGaMJ$e`Il|hy8M1j5sE^ANbM&5rjIjU#q5RbiugigwaQ-P} z7!Gq++cG$9Z29XDAGliQTk&qSg5O{RMJa}X4NLmt@Z}kDzmJ1y2Pl){4Y;wQAM-pc zI}<&opoCYtpeK153*w|b4OkOEymH?2G=JP8!3z++mPJoVFN&>Bx(~6{jyz@y9o?|B z%Mz&t7>T%Q@frAXO*dG-jR_mi7AIH2@3kU!T={!wiV?MIGT=wJYXPQ2cIhLZAROF8 z`Pa47LKW{FQEyxLY}4wGh<>)!@ZO}AR!XmeLKZMYS3?6-7s?Q zW=vH78T(O)*zq2w3yY2X7W>6SRiX%f#z>}$RQTM1-6lp#gSp?AL867i?XrYpdHZJ= z(h(EaSf5JVN;dDoiSePMN?Gph1Z1>ioKrCGe&j}efY$^;lq1LL3kU}|<^#@ehEqsY zqZ_C3nq-!xKpWb#gE^Y1<}+af@`7fm*c@M}W{Dkqxj5@;WVJ0ILA{7HbVAEpND#Nv z3Wa{#pz~!-m;MJV@ED|pDCLwP(VphECung(`u7tb4O_Exe8)=GlM;?1maBJjs5RHv z*c`#wz<^lLFWC(aS@7kFQfTY4%uXB=|H@}`KM|$;xhB^&|1sVEK*I1KMpX@Hft2Ni z1`&5Y z44GLNLOYS#`l=N1RN3L%gpAn1KtG2m&d%W+VxIpUrc5-{9qn5aQSrca|L%hLvo;Ezx&LvPM=m^Y`enx#!QCWu9 z#_uF;mwt?XuJt@&cC7`67d1@|^uy04Azc-=R8{%_w{x8?Wl z-x|01U7n^ab%#J(h7Work$G;W(^`Lr7)0xJXw**M)#}uWw)ZcN*JzjerSyJ3(Rr}O zEJqz4_FjEhk((CyupqJVY_n{AXLV((427LC0*dMnNlS8UKPIl7=|i`t#}^GN|8G8( z%{a|9xSs-|tMYHV1{rN^Es@2o7Jsl*w;(F&vVZ-G6mBYUCKWfk=J}?%Z|Ed9c|~w& z&b=r)++9R!w;~pPMkGMb?S78%V<0-AN~SNSPJR`J%dYRY`Xj1dPtY9dL$pppKS9YT z#sy9pR(lN^u<$5Ry*}nyBN|nI3KsawE_~2@O-HS_os@Z8 zs^HYa)uq<8+3*w0M>IMuX2a!#n?u$I{%c>}j5t{75F<30ywfbweW4r!Wk-s_N&Uk+ zTNJtB1xxk!+Z+T_gA2=X7jW^y=b++2^?aC}iQ#wzg0vMSLmxKT$mK`~5-wjvXiYI# z0X4yKZCSlDIAV!y3KZC#Vbit(xSwTbD46Y>sid#C^saCT^Y--%tm^(hZErc!O>~~w z)wx~81Hs~o0Tq;+Z5=Aa7(}sNY9f7?Batc}0 z#V+)iOk(hOmXdTmZdM;3-IdtRSN}+N> z3SPRIUAIB->e$1nrWQS^fg;5!4VLxVv4TiiBp`YLeVw_Z3R83{faO`+79JiB44f41 zqA!Y_+0ms-^!iO1yLaurhsvQ3{?n`S<3On@t5h%;ym*`N#+8( z?dW;@fZUAn<+uQ+Ht7Iqxm`%L$8WrGtzXR#2-rDQk4R$dIjc84Tq2hC4MXu|p5Tjn zN(ozc$OzMDt40+}*JIrkBPIBeX;&S-uH+ki9b*T{tKrmEO z0CV((;{yiM^%FT_fboHeoFCE2&LZfK*y}i)ROP8VG^&aKwda^*&<0tPRv!XO1soi! zq4T=@&G@6)PgtK8CkYr&A5g5H)A`_!-wodY<9!BOqxi&gZ8}V+W<@baxpee5Kkh&K z)9c*ND8Fa1#&GvgVv91{;bywb`cP=};q$h`f1H22c}kBL7}$8^k}>`7{Ds7yCD0kE z*RH}&$Xkum3a70gx71C|fw&A7Cky%*f}h%AE^(owQ9^@CCrzEc796bgzMq0ggZmSq zttId>!PEPf#ZZ+?o1E**YKSf=2_^kxG#NU&F;SAkUXc|qdQN@?Q~X9eCp2;tA~S{Z zx-*B8Cb$29Cw599kHe-g3zhJQxGfJN$D4*J+jV&~vM9?LG0#*v@+thx$GCNO38*OT zp!3R1f5SMNsaA2SGJeic97jQxKTj`ISMyH(7b)1F=NgCgm)Q&I{}9cnI^4A! z+`3IZX|V@1S9K?;Zb{wJZ6K?A$==^SR5)p?uoR1|g%2|)E^-?KIN+L zS4{lU{YG0*OFPYV0ti40rzapH zRah3S!TSjw@j#qZi%)?cf9RpR%A4%04i>w!CR>r1s>5f3JY=GL#PdvRCocE1x1%xU z)*5>zM>*gkK4DTa%C6bx-0rJssNT~Q-Re6-2@Y9&$|@k~=cifwv#I#IlNRT*2OCxc z8`Ht5N&R7=I+CxO(Gt!880JHIUy(#hAE?291329-_rC`4iLV5E^tfJ`g}qD=w-RR+ zw=0<^-jhX-jqQ^rD9kIN<#sx8Iq@qqTC6vUi?5*Gd0HZcsk)=H7TBd+r?+?>;_183 z{GHBTl=R|jym`ss2gezy2#}@jFsyHBt#Rz$Rr9!`b%(b^qi{~FG=;+t z8Rh_F>arBEM_N)+V#bDrfxiiNIvZyT{mdaU%Bss?bzkwjXlj1mOZ(fNHKp7`)xRfOvvw?SID2iK2fs!<8Q;4bfm3!deEb%qzgN@2pS=YW zdK?Pl2HJw&8veJrQQmP_7?SPtqS_#ky^V(-Z5~bzTKNRuBZEdVVXj@~oHrDj)ib{c z$9QdQ%#wjewKV)wzG53E5byphEK4Sz?qCz_@$+3U(0a4vV1v$_hF(z=L}L1e)Vh=T zBcBXGiL$wHIih#NzscB3P(g`&2KtO}59hzP9!-ZQYNkhrA4-izM}GS))#R9!b3lfg zi#NW>I9knShfl4v!S@rB8{BK+50KW0TemfTI_p8mHV8E1IR-ie!s=$^Z#Ag$#32kk z3_JhE2|5szEbEQOb1>vrL(VOGM?l%I5H+xn{UQM+eLTyScgnQ(eAJ&zR%8N{!he6#IHf0lK{P=1+A6jMS zC#=H(3Ttakw6d|A8Dj1~63^@=vQ@lb?DKQ?J*vmxXE&P6PJVl)!nJ-r_Ql)076qQw zJt$+wM5{1QudnGusmW&7*~i&TZODM81&ZN8UWyW1GW@46`a=K+wEz`hUIVi~!yf^z+!MMs3F(&oI52xx`}E^S+dq^(mESE2ZFvR7W}EVA6fQpOHidoKrnFFCK*a zL0hc6o~@i70JZoyv;0aM)N|$A?Q98m(uPIY`+jb*a%;@6peB?V=0a8=$!GIaPpqy{ z1_j-EG=IU1u3Z3ZTD~sS>nS)Mv5qklB>m?w@4W!b*tk}?9DoNDrzLm$|y zI?v(Io(hXap#+CI?Y|H#>cA360Hoe3)prWXI>tu-hZ#nUX%>S>BRc4nx_&-h!1kQK zpW15AndL3G9aLimo%L`rvUu>u|9CuDjFd2!bb1TW9;3LRW~%bYt)|VUjZym~igr2d z#9Pt0ej0RDFYwP+NZ?a6H)E*UNQ-FZ$hK}!1BiSf1Auelt)1;(_KgOYR=b4mkj_ERf~PaW z?H7u-Ut}K^P)$YV+0U_TRgb7O8k%^dKQCglp0l-|N4WioIHyz z19+(Ud%_FLElucUlp(a+2eYBr5LL+=3V6Ml?_{0suOWwjm7e@zoYme{EsX=gvwl9m zRe`Lq5PYUZV~yvAmScJ3{HNem?(V9(L>tIQ&-s-iZRoU}Bb=1V1NA{@h~8ZJ1~PYg zzd|%o+8~2LZxoV=1VQcThr8};>|_S*TUA0qKT$;)gji69>b)51=DVKY4j$E`I1`_t ziM~gY(D)kmdzsEg$Y$sEBTt>P9UdV44%3l_xCbjAI)?0>qsutgZA*RK#53%=p1Yo< z_qr$6C{ z$HZqEv*4nY!@kIyMRBsHG8ymDtvB9TBpCIkvczFrE@Z6PV|ebgdqQbgA`nc zLqXZj6DZC0aarvI)Tpy~!ZeCho{YuI5sTm*;0X`2Bf@Hy{6$hOQg&rdcLK6fX--Dy!f|49>{rU z1=a!@Gd%kADo4+om&9GB>`t34l}ys}?JG-|+&>@L&798U@a@b?0&Qe07PNt4o{+A# z4o2paSx4jz$dv1n2?%CEUgw$U1cLJxMc$GkNYoFzrO|SYHe)vB>=?-v4BQ0z;AGXg|LNOD?|U z-(g`lZF&tv*n}Fp7m3)l4nOkK6;h_+G?sS}YD#Ltpy8SVxK}(F0`w$f6H$`(`GEIH zAbC#H!K+6d5-L1MDl!bc)BQRRhwi|zahhB~-vpF=%G=;#qAvFrl2cZHo=m;~RJRRH zxz?~axjIbSsv6&_Z8dpP7Th#Lp&MpuB%H?-_vf^Gj7Why_*9T;b+NHyiJ^&NRf;L~ zfaW2{1;Q&X$iSbQuJh#EI3+y3ZwPQ@@t|XbhpR#_OOb01Cty5@>6ZzLYuVsomrxK+ z+{n6@A3x>wHp!`}ej3z>c7=8sUb&Y5be`)L znBPyGw!paIX|uE*>Pp%W+&6Qtx7;CO5Ca9ymd}6T^<+~zgDsmta9Jd@g8l!AffNro zwxwNrm|0D+=*x=|mrPCqOL4Y2a^vLtyUe@{QqY`hII+27%h(tYmf*pKnW82Tjp3Rl zIi9!W?c0bA4y<ukm#$nz4MbbS!Y3J7AYj&Eihby&IX#!W1bhV zt%F$-l&I2C`B*?A*IL%_`yhBRel$32zbu9qrKG!j+EEci1hApHIQ4r5gPPfFrf@x zwn1{l83$|9eBM?4L;x-=NLO1cT<}VdEBcYi1B^9@ce#62w-+AX9$R8z?y3S+(|_`e z8MqDM;IP`EdyP`EP&fF?7!frb8iX6<(mD>dKz59bQsJ#U-vLWLfs;fOv?1mOkN{S% zlSIgvHn)k5Ig-sXX{84oTb0vctR6AZlT@Yp&i$b>i%DXD_v|-|wB*(LSbAZeo3>v^ z?wV&UVT`x)A^6rV`59J@<$U5S@A`b|kkwr#68D8?F=}4iOOt*Dw#_phjiTa4JhlkGd zGR`T5@rhn*kP%rU6p^^*NVo&=84Xnx{>CwBgX3CZOb*#?#PNRx)+KgrNVKzW{2#V` zeGKXM)Y4;NeVx?;t6&F23XUFx-DKqiDjTa!ii!UwR)IHkY46u&I}B$kp0Xw?XYcMy z(OO2n_97Nmq^5HN9L*4VTO!$W_b6?7SSnWT$e31mJfwt7fgtz>J}fR)`@~R;?L%3I zoCkPqJ_&PBv~f`;$q|94dDA}sl-#I`?V-wv#y+*4_YV0Eu;C2(lT+XRG@ey3$!Sa! zpB~>ftYWV%+1WKKihm5ecOn|11~&UQi3N|?M+zkkBa$`T^wUE0T_%$FWK9}`hkfQj z$^kQEI+-pGO{xp58#+pD1+H*U?O1}znDm-N^s2`9iWv;F$2YK}pn)OEZH@2Msdqiy z40&75iY-EGk6d28Q-gO&ViJja0K0eycT(2l+5+4Q03AmETFkeR&Y7;?`0NzBGZjIrSo(uR;(j9PB z=u1FOV~myvufB2;lGwrepRkJYp+YWXe;%OGa(L76w0$g{H(7VrIhbmS!YU$G?sIrM zPx>vI;uc~stv13=h*M@DnZ60|c}3eE=9q>l9a%CAy~k1^mu%WXpqmJP=n3e*4Bj24 zc!f=JleVjZuXiflT=Z9=&G~jPE{~w4XTWF<*SpQO(|J|skefVZsZ=|ThQe(1-*_iZ zn9WAJJNJrsp}mJ!_M}xx7Wfva>O*l0*Gm181tUO<#1cq=X~j*DJ`sO(JNfi(hwB=i zyYwASl$b^_0~sM;SO~DH0xhv?Y8W8+SNUk4bds{nR{Vs6e?oApz4y$5lCvoH=Z9F+ zymAyNV#DkYieuZH;JIUC9$XOwwC8l7;-5`{?soZoB5mr)huCj3BEpDWi>wcv-hz=$rY81cKyO z5(KH!w1tL_+=UOhOZsC0cN{e5q-UU|Cbv#vYsHc!3PuXVrcq8$HWzX2DOnpFf-=Ch z0;gM@lZ)4uKaL=EK1Q`!avGG?;3z?TVm^NMww9Tnc%ogofMC5hM~gxBs?Am<&>e00 zr80SXYvJm9-=ChSku71f$QDse* zn;W1`RPDQcJLQICNb>C9c|!gK(*8*wS`>1jo%gJZoxjW3M1sm#)Zh<1-lQn;PJEPb z9UYDVpX@gqpnF1I9tTuHHCMRpYN`2B#Whc2c*Fj3c~`@f8&8V{@1-=KTor5&gmafk zl^iJ~ZNC{OoqFqDqO6a$Zjw~<`OV-9o9p;DGROg*Ae|07Q(u<;wHo=GKZBP`U2M8d z3YIQv%w)5kBCu*(KidW#I%F=bLL@%t>4KSmei=vbDsJ}!!I}8G{O*9dpM#5Q zA5?5-nL4dyuOxu<&0TrUwETc!1|2-RrQ|jBEa#5a%6y=u?QSIc)D+)S-WtMcU3a1a zCnExgHMLgtR3!0(Wf5t(t6IRBoUk>-YPxgOymE+boj^~~o*=m%Vg#mu<}@N)9jkvy zA+XR^)1OASFjq5t?)OVAl?9L(6uLp-TNj9(fXitXj@bsZWJMQ%8A+7Mo+3QqwX`R5 zStIA-_U~c296>LSiQhWwyuMx+z->0sppoI^lz|}#r?50GlsR42N$|#vnQNITg$+^5f+EmGpb0T)grCr z4XpejW8g%wcNTFYbXeO?qf7I2@N|VmgkRmk-An>cL-@4HoIOL;`3&F z`c?uJ%*xz)Fj9#=g&WpLPqS5h82c}YW0B)7*z)$0&`Br*9ixKM4ri@>W8y(+CCF_H8E@+!(ZD zY5nZ1nf^-lir07ApMjoY-6jGT!R*DEMzQ*Udg=G`l?dZ09*bxVlg89^VVNlDg3L0# zh;_+m&PWqgeDOz9wBmsfeq4C?MZ4;WkWSGRR`G*P?c&6E=|DcL`4XlkH5BuQe~d@J z#gEQ`g-WeAed%(!8jLQTTx%^AgATHH(sE&ikl8G2+QM)QLYbWH6F$SFT1@#NpajDm zDS|0&?gBtd3@F--bKly)bfGnyH-h$(fNBIKgx{xGj(=_C?10JiC^yWtLkog$UPBms zTzF}eEe|UJb@9}zV7L4HK42H)fYrT1CVx0K(+#c}E}b4`gPxzNjqox@IJ*4Tx4Mj; zCdB;9qjP(+&;*#q4ZC-z`#uE86?qgh`1l3h#{`-zW4P7#J9SH9lt2ap4BkO7nymL| zfAFJzHKh40?y-h`Uxy{oi^Q%-#|mTr`WkSS#n?`1tWRd^PM9>0?Fm1g2{d1z7QCCD zU#{X?m}OUetrhi3X6^(tV}>`m4d~Um>#4V()xAZ1MB#SF)sHmr(wsGB_Qc%zHssg| zvx0M)4K2<8HCrcGCJ&b@Fc$cDd*o-z)R|~sKsP<`FVsuL-1|x zV)RtkmI#=}7N~(CovR|tR>%AEWY0A1{yHu5o3i8Tlt~s}55paoIcjhD*0n|)J2l%# z+2>l`ENHWOuvWH7cvN`|P;A57!Ii+)aqOeZAUdYEw_KI=TZen9OvvTVyo|mfn8Lo=NfMr>($YIV}{0*(15bo4@l_g!P}plNcpqP zpryP@`@ZBu7ddiFN|3q}FXO6D=-SXmK0RMlyLb+=x@vXC#WzBxneNpC(Spw4T2>nr z?;Ptk956$+l(-7s%Q}q zVv3Nl`Mrr}e2Si(t+D?UH^rqisbt4Fw04(OzZI6QD=4w0Xfly__qHu>!QNwie1`#c zDwDMAgo&rlyoJpj{Nv(N?>Whl^NcHWCb_OTP!O;vG$J#logxBsh+R3ok=H|Ty8i%l zp&4K7YQ3IJGlH@ffngbUKhA`6_LvB=lfB(korY2Bo6aemoKnaS(R5MRI|8t8p)c>)!>T-;)k(4uB>{H9ffL1Ir<$w zt&mF4ck09fVg9{1lYAjx2uf;&F*>%YM@Qpua=dXF#GBXRUMVl9SEe!w)Ovjmdkx~g z;g<{CH&I%ko)ohHYX3viH9H9AndG-)aHbD6xuXBTdhUd|W;KdZ(I-&uTX~bTj|sD) zcB@4wNJ$(jLiMeXUkKj$3O}j@>*X)&CW)j<*m^OU4Db-PsUX6Tdc)fs9n1d4^r5Ro@YQ9Y2)*$1R?c zf2ehGZ4$$wQml}3ug!H~VqAT*I|LVp<92kyHn*P6*AZ(HfVE(Z zc@rsj7kebr$y_CPl4aK}i8eRy;tA&e1&{WRB~XFfQ1VxGX*01V)SgHJ&*dzUu;f%w9E=E!x#qipOR z-x+Yk^Yp@e?w({I(ucf)q29dGchd9Kvp^~w&k%igkg0D9HW_}Tc)ohnq5cT|Mt=vH z(JvQo6g=0&{vcxMhM3W=pFlCZq08&0HSX|~cMynqw9qI2h0B9toCK#53ptYXUP+<# zSiHVGj46N}O}soMC^E(p)+p)1yY@grC4wT38{qaq9_sg255rjN1<|sb;~>A@!KC*_ z2(PjSZsm>#(P4n9LJ_N7v^?9G%k+QukClIyu}tJ_NAUS&R<@Zwb^4mbjmS^gVsF9CNxERZ;Cf- zBWCjk+n(0J5-yUC79KH~diibHsu-bR#L>K-Tn;!WfM*icU>P_xkoBX#LfA&iE>L*y z5SYJThj(zJ4*u=%(>QwiY|D~n-!WNPEU5OW?{eKOo?yV=@Vw?sK6JC3IzI!VqB$KDsF;l^7Y)-&f9q z>adeZQgv>I0B>{RPDK-!4u^b+P4TV7!%B_LqfighmNW1WZ z%SMjR<4kGDSCUnZiU4wb2M|&SL1z@ZC{%angQRHj25P<&npQ(m4U;*Bmj#5pjJIfi z^4b{l1OxGB@Rj}J6zilxcm$PTX@Cc0r=0skdV4{nIPp#8H*H3Wl5!-hp&o>@EXwDo zKqoeBC^yBJ(|>!!*^kiN-6#{W@10b?k%(!)FD-VlzqVkztT@i7dCpQV2clsdU)}MQ zTBFxH>eA~C^a5fUER-Gw`VI?_9Wnn)iZ{g!P8QmwV@sttmX9pOD>m)&X4=VxfLw~b z#DWmo{~M-no(`AMX~^BoP!;UHqpCK4wxJKDa~9X&+uu5(0jUcd{23QG13;np&qrQj zyXIX3RFF;cx!}V>^?vep+`S$#Go7 z+Ko3a3-jOwV|m9r-GMyD`j9jcGI`TLN`JQ4Fw2TcNo~gxRam6Ill6tv@Z#KYBRe=) z{p@!oh(q)odo4AoV8_8DsfL5LqpTY~BKC;|5-UO9MK?KuTnGVNEP{#-ZFQ`kJ7`We zU^vJj90sg3sziQrW9^fkg8&${ia-&~(fxAX6Jm+hHjm@|aMPFr?qR@cEt5{VlD}&N zBm|0ECjT}VG8F%Ktog5kLe=*Yf3#wLG#sX z`)6O;NDK8N`<1i2_hr9y0bS`Q80n`Tr)_FcK=lPanxD#rCkPD7127v;;5Lxu*AuM|tQt zVr5ympadh|3W0T}lv_G@GkHMF0et(N`&mbIEYo8orY1Z1)Ga_z2zywN_R2zXM_(9f zxq5VOf=tDY!UwLBGTw|_j=zlau6=GzSb^{3bfXUxVlbrCX1{NteG0dtT=UTvfFWO* zuHK_sc8>8#WKwJSE~SyB0HxEn_hSEj2Ygs=E|-KWA}fMu*`gA4b3}A-y38E%M~13h zz*bcKEOw^%q>pTq01sb+-*k0;C2w&Q!Vz_a)JA)V;MAI~%Up~=Z3&y1#0JyG^OW~_ zMixG| zxR-)%t_ZCovz`OrW3iH`$#o?|sCR945BKa6zYd)Joa8O@M8vwS!;@V9sMQTW6exg? zE1Y+UJp2KEY3v9xB&McZ&yWxAX==?mZ~~hzM+K(kZCQc+kSdTzkz=G^IamGW1JzkB zEw%wzZO0?dVN^8;4xh@va@i74978KmpM$i|QV}9-^O?OR0XcIU+t{z|3l-z_yXjI< zU{CFoR@IU&*H`vp#i(Agwcd{vKb18BKMPf-gTOY`X}{kGK!%>hP=NfO7i}_2JJrzK4z+Uo-Vx(iLS{K}X0d5#y*t zZIOS5md~zzvNIm(FWK!SWH)g%$+<*Ly2H6^Y9jd)MG@{9`YLMcU6}@Us1cyeJFdkDH)7B7 zbK(Be%8-zoE=+z9Y4Z?F9If&|)+@<&m{Qk?rwbFrf%+#SdaVG+fJDK6q%L9cj8x1IdXqo)Cr8>GAp^VN60nFd zayNmDH@B5n#ode{&v(RBG*GkWWICZ{XNJcRsxlb(6BEtYv$HJ zbWBlLzeeRM5T)w1|J%6xbBXv2`&n=WL6-zzIINtPee{19b9lmtCPauG$l1sp-`T^N zOA4`u1~6y4uIW<8TNRBQ5ISRB;LDHmy&86fV z#DD(v8~O$-grBDTPWweS;(ze{_7UFS zygt1DS^mfUug%}`|F|D#zxMsy{l5PP@sH+T_I~AiHU4k?v;Gg}zxc1+KgOT%^*r^z zdHrcVZTD02kNnTGZ}?U;3ZQZ?UiB-`IcWe}Df+|F``Q|Ns7t-0;u>{5{^HB?*XSADuSW^>5F~F zZ$pKl>}H^xh>`w0pn4boqSBzgNl8K`YpXf!+j1mRL{ z47{Dpv;O?Ww=*b%sK^6*b&uC|w>(A|=}HppFb;$-6Jo_HGORR*HrS&l4c;3wiuw~6 zSM<=_KT?6eB3^5Z9bbGd1i}((NAMT>72?}cHOIs^i*yC36dBBdE6)u$k51iDh7kue z&MA*CF-f18{XFwXJF9kVOMSz<{pbU6#5W|O)1TzF;PX}I{lvdPp)`+&-c@q${7>{v zFnHNC$u=<@ou6zeC`+Hhuj>28QZ-Eyya%9WFLbka;4iAUd;K*uo3!sd2* z7ZPc_=HP5v`;$WH&&AjItex&g>ByFq`FiRcakET*S|TnC+%E6Eq`#5P<{kCRnSdjy zCJ`8mCi-&5PV8g8eXc=>;5phvd_Xa;mV$z-mEg`8W$v6(Jugh8cNK(k{SpreXNc_h zCdN|e?~(@~p=9Vc;O0d3)A0*X6^nC;oyn`j>Vbp>5 zBC=%WYHaJQz8>a(PVtX9iA+-ZZY&Av$-QiR$bWn3TQsQVR!1QW!Sd^d zJvn>mW&HYjTU@Vl5Fy9`Tsb;HQ9T$usZCx0w+SgfFu+tIQ%H1gXXLBqmUhwzhiNEJ zh8s)t0Fi2!mT;n8N;% zoR5rCm%h3k`7-A9w%JN&WpN1@{U1L7q!%H{bsdI~?b#%n?HLSP^tZ)Q*Yw&)k=>cf z#$N}L$UjjE)&z0ZIi===OT^pslAm{MbS3A=K4}qEo3n6%>dB| zQ1^-(R8FU`&<;WP@d|Ybox4*Q$A-hs;8Djkk*zgX(-8fP+VqI^rSQSVX_?K)AxF!l zB_eXVl+l5cbCW{>MRr14H|adGX3PUEE)t)k7*6!*hB^Hi35m$-88=gY=*|%a%%Lki zL+$>#zo>D3;!H)1zm_^jaiN%_FbEv{uAcO zm@)OyNSrdg(b?}DZ_E8gqwu+%K@TcJFxryI9xE{h1p4=HwQ3EVA;afO4$ zv^x3rTnM1Z7~138qWY2FAo0$LpJXakbFv(|Sbj#3i-VzNh9kA!N($3GsM(GwP0Soy z6KpZF+iUKDYl?#4)q}YfOc(Ppb2NrS5>#ms+S5d6LHsbQ^i>l|=#-kn{1Pz+Lh7%l z9N2^J{FPv&471Cv8Wi_M#)Di~hjz z1@l^&(m}|8-2t8fM+XM!-r})RW0X$&-%Lf*Q2;3QdsUS?_?75!O~RIs+5Q;J014uj z?z)TrJt8GSHOi_%PeU*teM~!FToik*o`BdPHQekJEWWAKGdjD9~ua^uTcGaE8#ik>sfh(O0 z4#_n}Gw~m05kzwJGs5P>DSx|bV6Tplc{V;UQO~_@tJH^+|MY!>3Ek^Ia-uDkqb%79 z8S?}xb0i8R>0OHPDLjS|S=R7;Y~E?0A_zT~LxagfxLoVucglkn<@( z6bT=ZzHFS=@nz)3UI%J3MigkS0)=*4wZcwn^||wYw#wA46uB#_xN{Q7q6WAXhT>^U zD)%!vg;3J;4J%0D=tZaCZ`#0;K)etJUl~^nZ~L<{FY|>9R|ihsG{@293TWig4~$ZQ zd<=3uD3qG(Rm8lv38Q1(Nn}PJ6RM8J4FJEXST3dbu7Q5#UN%JW zj{0x-6`!Zco652S&o_cwIoj8=F0Htf516f70%gKc!T3-Qn7z8t?^?*wD5u=t?jTe; zSGen}9xf16-_qw{FcM|OPY`8SxTDu;0wY_2)ly`CNjCZY8h8W!^JST#a*gc^k*y|i zdYyg{AvUXf5pA|EF3dizrckw%ccQ^Ehjjw?h~OPjDeWDQ3^gbQA?Y!xU}3nUvdH?9 zK1iDWY9FPT)^m9SUmtkWNboCD+!jXlFF8OsHng~c*9a-IY>J!Jy|dKnA=Af?jt!%^ zNZ^uaDd5h4Pn4Nd%~n`5!*G*rI=<1DidkTQ0Km72ogbsFAZ}Ez<$>-JlJyKt4=&Kq zlY+w2fgXEn@mID5=($s}le*V_KBuf76Mrbjmz1pERV*~(J#)&e0vl9Sb2%V-%ti8? z{(Y%O`@`p2SqeVT<7j}Ry3fbqSx)++i3l~)=u6p-7c)5NyhFY(KgcAi*v#B9>SJt6 zAqp485#CthzZ636TW&$tta`Z=DYMB9jmo43pQ3h)%TFtSRVM2w@=JC0T`C|elU3yo$MJ`FppL=#40D_f+>J` zL~P)-sDPzz4A81~Z+QaFWPo8{Iy%-N&6-1&+p%%oVT41UWan3@uIUTQ4Z925ItIjT@Vw=fhzvEMwAY;}PLvRO_T_$~wOJ#K?xO zNFYY$owRH-KTAPsjZ!4ylV1)eh&{!@&g*e;$^cCaNqVx%)P>NY4~+s5`}M$pz`*#3 z?tlHj*a1#oBxpyEqNJt{jm&M~9ak*4&AX43>!TZ3s8Po8vT_yB7(4cqO@NC9e=7x+ z)6g84CL71E=a6n9a1aG7w;7~vTwc--fKEx(p~?|b1X3S zG9wEy#h+V*=3MJ3qlE}VOyYiBqz)ZEuF=zrUU`2wPNiDf*|y)w=GjK<>tLvCsudCkPsNc`QI5Enov>_{!F1B;M~8T;BWG42XE zv26Yl<}bAuJS2R2Pi(h#4qz0x1k6{aajR?+hDx3ihZnevxpqT0gOQf~+oRPa8*TWf zSHx}oef>sIWN>{+CVoPx<}QYvAxzDKnj)5jxplkEw@8QM0qxY%uV43yoqKD|4W~Ab zCA_%em=mR5(RHLrp5tP8RUWZ*EcH^lZ=mL&X0=ir2;e-l9slfj>-T#;_+7DtA`5K| zxT8DvPXMqpfHWan%1KrvH0vPY05~_)nVH=Bymh-G?cSsGOE+Y39-0Qd6)OJZ)pfQ~ zvwjejx6-nmhLF~5u@EygI0YOvS13Y-=}=0TzAk@GgQz2h$~x^VB(y2RDOc3&K_PV{ zf2gjhh_KgGZL0%xlez7;>V&ff2XD{5BkNYS?8jIX3YpuzlZp zoMg%6EOO6iB@J4eA)6_WJ)P;t256*}|}Akk(|-s{DWZ z)Y~~TR|xLOA(5Y zlsxYHG`uJoUIQfJ_K=gv?L)va+Hauh-72Kw{>4jV=t%R~7<{0UOo>^?9+2Fh+g~~*PIyaGZ?nbr@*T+Snf2K z^G&5Hd|!hmu*GJG1=HtNhLc2(+p!49%}~U39r4)sJ-RRR7$G2d!F)<;6{d0!U18&t zh%X^^2%dTpD7VDP&+3YD)WQRkE`Fu<7;qj=U^drbe4ypmGPtig0K@=(NgsyKznY6= zBH5vzVnse;vsx=}LD3S*oEsz?3y}Lg8hYl(%!{@-_2I{ZQs~VLqwD|scgXm*6O7M7 z;_sfVyfn6Fcsi=YDBem1&rn`HP;H}F@yc?ZhNWv=k_Emv7};q0GP$Zo0$04n*DUwp zKaEIu%8cp}cN0|Pa`aGC7iBAZ;&sbCVL`X!sM!5MLEv=bfS-R$lB%T3R_qmeVjQ+w zFmA4)glf6IAgoHMosfwR+;K|GFog^829)UayMGY@PO?%`3PA5UzG+;}0l1Z;Isi5U zGqKt;=~S$vpz<nwn#Xg*2hD!2KH~Dy8A%$^nJCSv?-g(Anz(NAG_SF7r2rPM zSISrKcd?7x*b;WY47aF|BAv9kQeBGk$P|QDH&jOeb`pOllix&8<_Syz1cm{&(@*r& z3YIQ^rFoKDhT;oSV*boz@>~#%DGML~JN|F(d$Ht##)t;AZSEIKJ^_A$x_6B42?8L; zhRLzNVLnDK*p@u(AcJ<$Um3JhjyEXvcPx5o0s`>6FnANmgim#}@emv^AI3SXF)846 z!jrRT=@RVsl?k(my3DuGr?$d#F}LxPdI;iKU78!ek|o6c_SA%*MleU`=m$AM-6=z{ zOQ99i=u%5>g19HD{a`nnr*LJ#?RIO65%C!yvF!^vj!pD~W~e#FeG?PYhITvh-y@bik4c_WDi09YOx z3iqH>t@v#4F`kTereVpy)hYTY{eqVAP}o@4;SD{y)wJ5 zBF?bi;k}0=c5PUf!b1WV#3xHnXK%97(BURrRv_SOOr#GvA z00fQrnS7Vmd~VQ}LdZLb9|c5-AP-{=bd3`SrJLA5ToB{wB+f-Mv6+C8^znFh*C{bz zz2m1+r<{Zh>4Qg5|9?&rWyPJL8@KVrz*s!Ywcr$vv^wJ1N>dG1sU$4FuR9* z1Oh9AcO=6|NnhPXNE%uyl@JHzukLkfjtACDS0+v_foVeq=g_@Vt|D)iA)L#PI>Z#4 z^Uhyz1OYG{N%o5Ds38sgg6WK0fF5EWuz>uQqe9L%rd;4aoZc3f8j92)w1uqiAdywo zr@##w>6wo#QNRc~daJS}fr+Vnn6t-&;w6;}0?@YI2fBV(O~*~Ig9`H-o$0Kz)eRyQ zyEhHoiSC5iD@Re{pH^rpVDThZN){-v#t;4jgueLa2mm4!k^;n?bUe~{z6;}ij2;5Cf~E{q+{LofHyrMKtgg#jbe z2aeGS*!yENTmW#roTHb8ndzZ&)}-Yuc2WaEa+K9c^P(hWGcNk&`HQ>Qq&d`xTp$Qp zt6($Fb=dN3Vz@>?(tS}Mt7b}Gti-Z71#vp+`n2m3%ZD~IFSVhpDh*Tp;7RH%;z2Yo zkZ|l{O0kqEO8nNvUAFSg$80hY``a+SmC996whxtvmhC#-icg&CHugCnsVRt1Rkltt zz@J&t=n;j_-a<<1fI&~2eGAm?>pltvj>AK$&8@CEHxI(UBSHYn6}8e=lZ7h(yHYC9L3h3ZqKXIoSjr*N z3&4^Qos!5n5nu^5jabwJw>fr&kip!2utwYqB_jtz)oLI0R$*#;JcU}^K53y@Z!yct zI~9R8L)|S2lV0jpYB+`B{rU(`*Y)GEl}5sZeL){txjw`O5O}msq3_tWz`QE%zsz*< zJdEyGPN|MAEPj(8|8K3WOej{-cC3^RQF#T9l!e$v(~{h#*cCBu5R|kThL@iw8f#Nx z$-E{-cs*Vd{(iw7|GcJjU}m|7E^o5^k+B+#`Zpe#<3|YcE;aReN6_S8p$iVY;mv(U zxrDLv=uQaWz0GR}js@%jR)ave!VTW)z|drL&QNNPj=+B(w7!)qbI5A0lglGQA&Y#A z)8aZcw^?AXSfpNk^5N9%? zgEO9>%o>(Q+PIK;P9NZ%Itu%}xKvEEDR~Ahn!ln)wMT~y%a>tu&po)XdAC@u1ECXP z`a{B4Z_vcN7Z0oGeSvW(gN-(3LWU*~u*K^{`_@j9)vocE+xa@aGLol)_U(zE-&cHE zbdXp^A@4w9nR5xH1_D}-nT7~X^S!R4ZCp|+&kYKwN1Az}f-48Abo;p}W}hxmW5QDf zYos>h?AE;(g@wgY%lF{@<}_z+>$`+-`-btv5s}prDUSWikJkxS8)JlF&0dZlgrFav zoa>XFFexb$ItxSgxI#kDlMVexc$ETS#_8v)r!#jT>LPmH00?vR?bQZ_9r^tODoT7y zZK<24>%NE7Ttp0w;I5Ml9R%Jd(xmsGG{CW}IeA0s;^wC=w76rAwceOa{mH;TY6vI| z|JdHhI?N3o&s8Y+OQ3Or0WO}xxHzUg*qpT18#>+wM5Duty$YZ7W?LtNJEuOf+cwZ?PZ;k?iHV45%%>Kkz_yTO%C76LM6;t(?-;$`{2MZ;?0p%Vv!VG`l4B9pG z9b`FG%?=J0Zh!kezHV(XvjDVClbsr4j*?Y-Bg)Cz9W~*}F zl$fA7@Sq07L&U;4X`Vujkz^udQ;odmz(%_vO>f!|Iv43#|S9Dk2cd( zH)KjIKnm;e68CIpzNJMjD!^f5!w{G)9{3m2ra7bjN858drZLnth(%jBgZ=z(lv7LQ ze;ejqtert&p1(T6vhI`p#IE^qxk%M6jJ#uh9G0E}#d?bPYK09AOy%SF;g;w#Mlgqe zHRVTW5p;=Tq1H!v5S^c}s+I>duy7SZS96bw(isnGuXFK%Ki&{3T#)a#Iyj4l`0;H; zL%t7jaJUT6gqKt6cJ{|W)+Ch0U}rNH2c>vM)Hh80EpEdCE^SAjt#)#u2V@ZWuV8zS zA$f(0U)iq9b0_wDB{8bD)Moox#1{3xf(hQgT?A9{>+3|a`f%K>zXPe8E=6v6hCFjO`m3M4IfO(j4RW`BSZ{>lPg2-PIrXUL~)9uX>6K}^QT zCe1fn6fzm1p`eia4m@1Hq3%c$@*pZ@1R1f=*PKCQ`F-Ah%0YCVH-z3Be}@id|5Jun zdzbY)UDNb{51$?}mldnatL#nfreeYXFq~`PHsQg{qy4$8=*CHVyd@DIUPPg$XvtN> zVJ39*Az_Wh$jJ7X%B=lv=zxJY${bH#v3%U=@~}NAY&PONXhB*>!ta@U$Am>8w6ePO zY06x-13~U3c-Oiup}qQCAzE*)nv@mLi4;zbe%a2j4hO(^LSe~PzHj@ zTxM7npK=g^!UmY}cc5Ky2Sg_#0(Jhu;;T%rA4O!z;G!Hn!IfM;J z$oM*C&PYzZ8fe4jc+>^KvRIh_Ub#v5v*R%P$n#%ttsp}&Ac?8k30oM`EPPzq@k!qgo0MUCY$AknIu?5&mn#OAs{+|z(0&ug?^~F)u zpZ-n8xBP(Tx*90yhaYJFTG-*E&v&adzC{QDlSe^M(&Yeb4{>tWQ0BdK(WD;B#@P90)@gjT6_EVDgZoc zfml&)MdR^UV-m%@yykwN8i=kMF-iqpY&sIWi-L75EfgU>RZ3mY=UJn#CDA465c5Ob zzN~75QW0|E@(mKm&51e+6r@a!>1obd)(@j?CMmH<7=3nO-y9P=kFrb=gkd{8)qSna$OQe-1m zR{Gq}iKWWuj`ktQVBHzS7`hy%T_>QJ{rVtx;37fCQ70;jm>~Zgw>6VEwRmhPMfgIE27eTIN z!jIIwz056J4P>V0zK@`125OO5>`aR1wd24%2A|=rz&zR7bF6SK-moNIke+wE#H-khVUiBT%UA^*&K2~D7$9MXvO1P4 zSVXr{FrG1dF~v8gMT$Aa@|4?LA%CqWQe<%%d?`-3AtZ@6HEQmRu76x)%h7#f|gnhjh(AaaXJ=?&Ct zo%kO-gYq3O4v0CEvu}uy+Bcw5`@9S`E`r|+NY;QX45SYwew47rI}A-`M?eFQDm&4< zps(g4k#e0jH#nUC?I&+*f6e1owH17gtT&Fk7*w)(Sf>UqT7Wxfq4TH^{AI=If!}jD znn+V|J+AQ7o-twV@f<|WISY5QtV-)KUPD^{hrV3QfCm+@YxF>UE4 zg^{a$MRIjwE+yGcWPu->96#6NvJ~7K`V!E{iuHAQel3MB& zPh^(&8JAhZ%p8QwTyPh8Th}RGR|(d35S|KJ7URf~=w-;UeDG?u&X|YBok@FTqR-@P zM$I&i)5V>n|5^qyCE4~MkGKdSRns=Z=S;W5rqmxVM%@C?j0TbyX@BO(h4){tWw59# z7-QeXwa5(c;g0twZ>4Ngrl;`A&9r9tCbY*SMcKn5WSApS(ciTn{9xx?4FKYCaLGk= ze4qh-Fqj?2>fINpMlk2{1y<}(E!XN;eY5pIGJor<7sHWTfh<(zkF`7~bEN!gJU%0_ zkdH>4C;;`^Ln5zN9x%}w*j81LYRQAIKI3w)Bx0K$k!2&p2Fy84vA3((9;ty5D#ub) zI^5zIl|uMfT4 zdC=AYd$Yje21G@01X4FyzNar80O;EU(w%G{-QH5+;?Xc#}acGM`gTCjDJqbu#bjHC5cA-16w3mu^ z!O&iH6gHXfQcFv8SegGsfN5{}s$H7}W{hy%jU5!A<+E;Pp>qL{_v_!?JF2H+;rFL!4J(t?V3JfhxS;>nyjA6%c2sp|x+jPG|LZZE56cb}b=J#UnRffC#$<^G^!>06%@Z9(c)p zLo5`2a=#ae79%H+E8AV#AR=4?3(4-oYC-?hTVZvO5A|u!pxvgH$FCCP>8xs-7l;g&JFK>U=?RQ zIcJOWst)@FB=*D>Qj;dDbIcKFb1)H#-;L(G>c z-`KHC*KqKl3K%ylk73&772VT#y ziG0pi(_rd#zTOa}?|S;)cyO`-;1FwtFQL$_|2dq;O*~0IA99>B=GhWj(nL8$<;bw1(%7O0Tr@b1db)$&gC+gDX;9wy(D?Dt< z8PoqyQoiisiv96;Vhm!$A)#+_u?GFU=d-OvZN>dbGtT~aK=8i4?p=XLHlJXg4k{$a zsk~*YJIcD^03^zc1>O+U-pNR_M;(aF8IRMB)}0f3>a)A|>i;{7ho5llw>>;y!yVM;eWD|6=V*=nM(?;l&@f2>4o2 zo<0_v$VCWmkib`0q+nldz^aCg+z-YYitLUjT%LucY_=7J?JbJV{f1V2RcDNCDU8m3 z7N^7j>cF32-wy1r1x}6qEhIgsGR5jZ_>8q4e?v!JhG^?!@{XnW?E=(x$G`D&>{7PWd;qza4E_^ zFO2bdsIV)jM|Z11&0W$P>Qh4+yjZ4>^ZZCGgvZ*1h04@9Yc!zx-r|9p21Tscmb_`L zPg}Dz3<83@DyKG?HkLV0dJNCAJDqH09&RlsQKD(vUMW3GNS}JxI9BrzB$F^9b$3`g z#FT~FR^vg2TCR8S#F7l6c(-LoR{&7ldoyi3`4+I^U zk(Lq}j2kMrjlDY5M=K?eXDUP9d$TMXc;->!o~Rw>+1R^v=j|EJ3mg^nJvK!0Xp9n8 zs*q7>fwjUOe*d3g)C9vDnM60z58*8dfMFw((qWly#e{nJxdZ!&=sfzOLTV3gP*_#2 zLm4^&@mv@ud_JKoJ4iq8@D7-<+(-p*Li>e4o!edr&T6el;u~i^=uT!kEQx8@y6UWQ zq?BdVHT)btf^6fM6o*Ps0v0X>$k*+AvlVXE9wdeK>rmWNy?(tH@vnycxYf5;!(Bl4 zisMlLwg!jj4gqVI+yCmPUqx}{vgR%wqwfdSYn3%Dwd`Gd6t|QC`oE4A%&ci7Yu^V8^TD5BetCn9r$u%;leH|afu)zM2eQ6o$}sowvwrlscu~RYY(7RSf(w0RiGL)F990U0`$|78dD#Q=4TS#vPS&g= z^Gw1oid5yLhWHZh^YdRq|Kn*lNe3beemR$pkjjSztLEv305$5DY()lQ_KJ;@H`io{ zgPE6<+g|fBOgj-WJa?YCDkFcTQOfw*_kft z;%^jpwTQ0FH>U;BJemVrmsHmXR0V`v?;?LEsWc<-ZZ@dhPC4R^O_J&z-Au@k4d4pE zzEG&s&n)!B*Nk%;Np@k0bzbem%qyuq-$-~!{A9zufuy(wZZ+dQ)y~n6J%|=rG%Vzl zk1$0C4;7)@6!p-(xhw;t7=9X4*a0baX<2+PvGln;I zi32S~3Q=s5tlVf*>{>N`)?Pp?GuF3kyQmw|JP7F&E)|NP0LzkBUhM?LtwB>EW3WCj z3@-}Yfdi)2+)@HSZI?kVZ1+;CCH7{mA=}Ww#MX%kVnvK*0T{C$2 z(uw=1>|ENIb4=bq9h4S6)k~cj6dB)k+$lKsh8#KB*D~U|L7f-x58q&6kQ7MSDGLM< zSx5bN3W2T;bK~k6X-88*e`fe!jQ!{8Yaw4W)F`{RS#Vp$xxw~$MI;zkX%ae|S zay+$@-vWcZ_*Ud+?&I04Y6O4ZN3jQQjUR&lg+2@_Zv25#v8B>NI4=O=rqRHU_XT{e zcfi}bZ&}8$AJVBp>Yzq{4QkDT&nGoKz#b`1)MEHkYLqrOrHXtn3<*o zm=0swBIzU)RNo7xy8354AUJ(oAi5OG)&Hr{CTg7{+*iKu@<_5Xn+Ds*|GtB4|3|#C z8~wf$5pa1#qi;qm^>OQW^Do(aZ_EvWk5K5}wnHU809`SKGy&=lx5FRxfx@i!JQkHM zPFY2&*{1wE-Bs@tq{Z;+EC*wH;Nc;JV1%-tk_Z5-f=#K1)XIaP-elq>4vmTPHoP_$ z3tOeg0;%!i_gt#Va*H5}q=fVQdd(Xk!wEd7A7K6~rCz+-m2BopOZy=fdl5v!*)U#z z6B79E;|WnXK@V3Ji<^R9_i|X(flc)t5YKcV{8t{H0Mjy}z^Gp-zp;&ny3ucQe0>Bb zSB)(@aAM@2NPdO`#4414n(5?rzX9o;zzQ>XNNcjY_;G80DZgR%hLFmK+6h9sp?)QF zx%;MYY~SEW|I^pZBcPQ_L8t{Jc;nP9pRQx2u{7z69PEgO+`D^+t+`Az%t5(|Rk(-j zUwvDS9QMm}#%Ky0cS{9i-8iIo&?IUqHx((d(MitI=|FLSF6AR4E@v*9F7oPwo~ zys`JEZ@)w@NpLwOL9e~kSK1Qi@m*4i#s2F92> zk5Inat%A3(g3AGQUaJ7f41`zTiW^}(%k7(&5LcC&xiqLu-CYGvazJn~&h4)7#&*U>Q7^s8^}X)V#q^^vJX}crCg$}d^FVNFE~RLI zFMa${p~zcVCv;qlBmoA{Lu2C)k7u8xTm#8@2(_hCYGxy=c74~>3;|WVd88)-$<27B zL6HRq=Z8&OsDBF(Yyo}99k$#qoD0qf%ma7)<$O}bzi?Ds3xQ74g_Qcdr^;D5rMk~; z2xesJU`Y36bus<)u+_Tk%F&LBxJl`fA_nQiA)@N|fJVQ0R_so5PPD?1(ZQ=&Xi$hi zQo`08X_3JCIJYW;ZfY7M0~O$FG!^~6>`E(k{0t6j1g5FCQ&Luh$FsAK3%X_NPhps4 zE-tgwARMvAXjJ3F=#Z^n1?HMUj_hhvMW;J%ERSgjOMZ?yb7~@l_z6=eoODguLP+7m ze`;BlM;HYczx$ME9h4$S5}5=xXT|{g`0j*OdN;Dp*vxi1wZYZP`Y9iY^G>cpI7P@W zG0(hqfLv$vJ+^iQDrL!_PUtCHB4zmXP$S{nKt*i(8~5pexak#bsJ9;Smz;tzTn3L3 zO7%EA*q(?!7{gee4Q!9+81ru?M}k>zoRGsVQI$e1p9-Im_zO-MmOLngzAu}DW??L% zg8Mho?W;ZJq-c_fG9Q<5TNA>x7FC}t%^aste9BYumOv+89u|N+RYU)lJuTMY`mnNM zv^BkJ0)t)=1M0g%ir4Z>w~K0;WMf(xY-ZE8e|QiH#!rywLJwO;GNvlkVAH^d6{1@3 zEHHoo@!b>FAxds-+P+PsZJt+Xl@P(Rmi`yKvZ#7LS(GZc$;6JahDtnM?X2!ZMd&!;Yf} z3N$BMlxE+++c71@XwuKf5Je$vdERb|p-A*kFX-s zSq!jS_|y)vA;m56>_7?C8L#ZIS{nymywk$Mg{}upM85K8eAGQMU?5ILuBW4G%cj$w za3Y$rc-O@i51_DA`~vOq1|2BRsdK|l&~(1$d6M^+ zCzBW)CV5?!1QMed@cNxP#84z<3_x9DE|8U+*`j2wb>ln2D4LQHpq9C6j!MfsJ`372YE;Uh#7J=79*vk5?J1rp)#k7jOe%R#_-%oo7%jbPG zRV151DgVwW!cByd$pP5uH<12oIkkeU<@ChVumT~?#DJh+5^#P}IW{3bfRznz!rk@3 zWN-fHG?&?zJE<%JCN?g00?`;2;~8*~ZyA?4zok#$Mp1ak)X225Mgzy0M8rkmdLyIT z9mO&<#+#j@OUn<`k8jb7V+3Qs3d+h5dcULKMWJAmw$ou8l0W<~MlPr|$E&=?A&A<~ zGHnJv?%!Rew(Nf&NJ|$X;)Zq|*jW~)@N(Hxz-v-+FD#j*4xc<#=XUfz%U?wKYhrA( zm4%4Q(TOw;hRenuBXru+vq22aA%u_fF4*R)<=z0Hh00q#qQ8pNvV%ZGLuVrs0nm*1 zOrvBNad(#5?ATYW7h*25pcdPhq*|zAHu$tiQzyE|xYXJtEbE^uobQdOi_DDQ zccY;f^hvo#sn&L8PUOD)XA15FI}h@8OlsPcUhhw~H4(RT(5+A>iVm}TQHA2G5pBTB zxOvxA-!mzskQlmtUGo5;JCjG4F>ccrks!~T`60fmm58HzTQJKIpj9!8g2ih=GI&I2C>eU{r!xi zk)FT`+248#Y%0@96x3{orbz;GgC``VbO)|8Vb~3@0|@RN>=6+FX=a+?W6}?=-SA?- zIf%p}kV^8Y=^0`0m(;-iM3m=&Gjkeo6$=oj-g29N?-1Hud}f#K7uY$&Pex6`rAFB? z=Vg4e_FFye+vytxIq^P^wa3rBp$JO`RW)nh&)l1GP2@{CyxBF6t8g1#d0JCDob%ZJ zzI_v%{+HG^AKTNO<_#A3IQ}^#Ba$~c1yLp6u0WBIG`Y&6no`;f+(NL-2}CK@^C>9m z2$iTo$D~#XVs+2_Ubc06Ocq7(Zj91Mlc97>%3UGb`|7{8Yt&(Uc@c8d7X4q0&I{c> z$Xo63mgGyodpCk3F*#ZuWuXFMl2+QEKP%0AZdY#O-Aj464VOnnE-``|nvr0QigB`2 zr){EJbVjZZ-ravC3N+S`tG0SUL_+M+8;ur(o=mOgn`O@qCb6}ON(;&UM5f5hb}lOf zigS%XJT!L>F%J=fQ-r>1TqR*AK2{B{ndCL87tau?F# zIt6u)UP3`hu5=0=7WB$~8atL*1gq9jj5y{PfCNcn#ZG~nECE}c4k1V8b3LvdYOlPy z*D%^ODB%bR(lZ|UVu&!+Vo!Xr0KhGuIDUD9d^)eYjMb*a$x<`vA+Docft1s(#sIJ1 zH=lZ_)W*q3$4(7Fb@aEBw~d=r9@E9fMB&a&vq+w(sKwJ3|D{{P;6dt2HTb6*`h|1? z78Afq;(h4s11pzQUV+Z`6?t?|nPWj|>`+DfY@RsEb#UOH* zw}{EVk)VA(GqBeb8jQJem?tv8_#Q%c^gN0CFVCKuVBG_A0MRWzrM`%+$P_k+H_m?a z0<-BWG}x_Q0-sE^R+HHkDU3So7vw3!%knNZYNmkQU)e+x9{wivap(twDMySqGiwIxfj-t>jw8+k8 zlxA*sr7}PtZb)+C-||8_|JmB~M}a3|1Z05}rJ`_BJ9IpqhPi#^j~F1(($7yGIiG1r zg{$Tpvu83R^Wd%UGVBAFhZg_xu}%mb;k#=f+AO4QS-nja>B}y`A90RE~>lR_J>~8fg|9<5^ld%jxs%&9}*crh4&(6ae(B zgQKmH>a;ELp3s@-p}T%WVfWo{P0n{!;L1lGX#Q4 z{mNlW;6jt4>mCtMx{cwRQ=@})u;b!gHx|Tk&WI*BT2~?R#v-e^-R#V6xQ&%bZ>Jwk zu*-rfEd;iq#a&V5-+@wV)xn&KvneqM4%|lOerl%WJB-97DA*d&M27Rt?+^T@X6{Tv z1T()gg4IM+uOg;M^)mz%3o#5uO_YYgON~ z*i}q);F!mh`ElG2i7lU$&M)Kh%?U^Snd~rb#zui>Cd%ZK{Nv03T&f^wAfx8t2X|| zrv{GB;AD^#JoX!=*G>^?jciS}m5T|fHu;<5QZ0quB==y#cl!Svn4c(Fz{4k)(p&k{ z$cZB>^JY-l3HJ>}Lj%qZl9sGk20OEGj{Ia-b^k7yfZU9GQd$hZe#Et84T<|;j$8c^ zw}iO!S7q=#xu7T?2tkEHpN@h*>K3GHl34v-)unpM6L@rnCF#M%P5ab2No#B%vTRPl z^#!vu6=dmsrJ$xCNHD>$_|M%_zt)slCA8`+|eVYn+Jm@k( z|HeXL_I}S4zftzeiteL+BDxB1-E~Oxvk4VAnr4broxClZp=(MG1P;FF~+F^uPH{RI0`tW{Jak9b+AP=cNKD>(l? zf&hVeeNRzA7_Y~0@r@Qg8OcDe1dw2q#HETWI#(B}zJ~*$9F#;QfCP$Co@ke9dVv1q zULd?%h7c!%H`lDFT{AiK!(M2a0=w!Zi$q+IucDcTW6#~vc%>km6LTJ5595R~c z^Z=1|G%9^SF*t2cMm~>XF$W+;^(i!1rj*J6d=o?lMeG zXaUMZw%j}vTcbd6csv9Gy^kNpMu?Pf;{6QGSMW3BM_P#L4BdaXX=4piW)T~g+YTGm z%ooC3B&A7SPqyr9_KbZug)OrAkzKLLh{=TAVR^VJ*wJBdtq-u4L8aBg!ZV{F13iYA9>pj`qe~UwE5^s!l{%cG$~YP zH2;zx76cPPMgz11QnK)I=CS6*-FW|ZbeYz>Dl%r7s;rN~9G=IVj)ySw7MG`d=+O%MT#~0Ik!h+vq1D*^uu|U+f3ekgxF1II8R6PKj?$6IsW3#f) zK?;IAu_D+hHA#6_N0%snhoDL_y@)5z@KbIp3LJUM+e@R0&cr2@+EBY#b#Um_)I%3V zRL4AfW~WmG17>@TfhK3t+VtSVcfq<<6a4H;T$A+&2xh_u0G~g(wn|f3-rP~+3@+mF zPighkTE(Dcv&4xaRa{=BrVw(L$!|@}?R|RDhp@9CVoX{no@E4ua)Bqlf_? zED`D&_(jM-l0zgGZ+DR}&fwRxOizPDZO2z(i6`(*bS5jLDm0uO z{6cYzQMIjw1Zb1Xd7N|_GuAfaXOEKZ+sie6HD$D?ErsC1fFV6NGa5quKSgmVRrCi- zin0=FIpieNXYDV)Ho+mR!T{XBSw$2qLKyL&7qXuY8WjsYd_i`3O6hfl_5L}|SHc6iwSx0Ymb?UF z8q37asg12=A}^Jyd?NiTLuhhdm6ok43U)CFr2y|t7i>VIAa3&v{+VX{>eo-PWI!^Z zR}|5DKU6S>31gNf)X2AQ%{d3)PTE4;06%PD2u&UDomjE0_5fIhsqX?W@s#60x$VrakkMVg*`+^%pFSH> zE#%??%o43IUsh9Oz?lo{!R_uQ=sR7t#4_H;a^5w1$-X? zEpZ3>iv&$s%P_qU0;|@%OG#Gt6j#Rie^xe#<3?*vY;<4GJw4OwRgv0uBppaFB1X2` z^AVPLAJfeG$Q4Grq5@Pr5qp~>puH1;vgd)k#6ul5m*hS|I2)ZmcOX_jF_k z6pl!GOC3yfSD_*c-zsBXN?)7A2Ral|%tSXV<8H9{8<~5irq-xzmUbHUh&bl?sjf6o zi|^=eV_sO}DpathUl6qgu~wbmA^3u5ecRG_Li@p0fND5^ zh^GepQ1UpT*%4CG0qxMnE?EUs2`f)lsqpi23CopjW`Dg!i0F?I^KRoCOkN<5Ef$aJ zD-@GiF(aMpMunFtKfsx(u((95>2ZW#jI}!V;$JM&gkk+|X*xMbxGjHA_5|!$!TB?K z%r%QHE97{KcsEfU%TDYOZaU!3_QpiXHjQQ5smhxOL=RJCz7aV=LL-vXq@a5xmd{F(h^a8)2KzS~h| ztmzZm+lIsip4MQ5uQF6RJ7mWP8qy;qAL5}&h|`K$HbGvV%xwVhqwkiO!8h(JpfR&M zCN&BOsjUiNBiw9hGdU9!zP~r(gc|+-X&K?!`8YR3{lShqoN18v!jOP6Q+uY9CoZKo zfid4)5a7&|idq?|C7MXR@?Z}%xM`irw$r(atVH*oxv^jsbRe2Pa3lk+2Hw$Y;*Sy#kdoc*hMcok2cA|_nym=?P2Zlr`wo^3uXf}b0=6PQ=^!?Y} zpA3bKD3?%MosZF>g8zElU8Ci+k z+&v&0N)WrLYA|Bo5-%jqlF$YdD)UQ)r!TW7nlo+L2T3?i^!w&Y+&Wa2F0P)@bF{6B zz=$Eh-NZ&2jiw2GJ*k*^rP~8iez4G37PPcQz^?zsyHLX(&e#y9Q2+FCEj61eG~Re?6zY7T6#Vt{@>#Sjn@I#2g_ zIQ!jgE80xb@LfT8^+O7?0*uXLJvRcU8Ch^A!4bN!7Fdnh=O8xUET4wCT##^%H&MQO zv;v>cKQ0h!6?jy|?6E%DjWHU^izy4Ke!Ata1P#F^uYg`W;}v0>FjXBN#b;&$_}IAl zm^1xOT~I-yP+mhgpwhU$(sB<$j7pDk$)z>gczlCqY{kl;v~rNg&9PGSX{jKCgD5ex z5eW5t|N03Z2Smy3xos2}?q6Z}pX5KMm>gQi%gjaqz(&T&Zd}25o_tAoudRQu5pYSN zE8+wg`bpsx){P=mn84m_`TYZpxn+CaFELVqQFBCfi1(;Rs8^+)|8qgC&7V)u%nnC+ z9cl8QPMFOtC~y~ah4{TLlLX{Iq@B$h)+-YN4KJqS*NpP)F#q;oClRs5!U(b_;c)LR zB`z0m{=+}psmPdFYqv@dK8U*Jo+Mr@jeT!-oluL+-ZV|_UlwIe?D+C9fv&x2e4O-Q zE#72dhmr75yblhXGRo$DMHQsqk`O%csMKyhu>+}K@SEI2ShX~Z)vMY|L`_-zRA{^nif;cAUH%B2SVVXv7UK0gKuVw`TMvmPGop36A z3gb2}C!e>+$ke`Ibl1bgr0J|LK1XErf2n%Qr~PRWv%-&F*qFDM}HW+LN_<-m)H(y_9PL>MYC z!Ag0ZQZ0#&0eEDH5pe;u%9LkW`9~xKpBx0Al~NCWOV~tusm)Nok18B+s$E%7Ruy&j zvhBnFUA9Z{nacdU1bP<-c+sOIjnRsdqRVI9Sw85AqEjD3t{|#CV&soL|Ck_A6h@9I z`HZHNUcw1^nF7u^h{UBWMIpJDF)kF46E}!3OV*BYUA(E>sGAwyt8xfUsgNruqg*7a zLAHt#LP6F zDmtlGDlK!?tH>a(4o^50I!V`-Kls*B)+wxs?{2(@Ma7N`xg8Z1att17+nhlK9JXG-su^W?)@oWAH|eov zav0{@k`#%yc-)q$K?I7e!V5C=7ZCpYvABL9+ewu9Wvn)|si{?dIeBeMs+PGGnwV;! zFa)E7jfKCF=5;fj zE(BhzG$45b`{1}81OvNg<7qg@;ygJC7&gibdyaj*q#b=@`Y6h?&E4qwmCHx2piarVO@pcA$==0V<#gL})II>6{knv>s#5?s;& zJPr)M9<-`(YN&2nz}JW$Gn!JG{(#>k$g)4Z3Jnpr!cDBFZl_TQlKoZWN?n075O#7R zH=fbk^pH~o3YZ}+!ojCy!wXVnz}dWTz8<#q+g5ou!3FB>m|U*AuCbJbSuTz}e*4&* zU~5#7XDE8v<$67}_}zr$+IatdtBJ0`Jy>|aOkp+mbYtVGF27#?|NET8b0TMVoPxF5zC;7$SuhkKp z=XThi1|}R-B-R9s2IBLN5?=QIfMkDTkfmKBXT7NReo2~1J*RF_L7Qn?#a9E=?eMzXLID(b8Rr=MQ#YZ58tn?%!qjEH1@kIGp+} z5vm&z1dsW69GUuSV&P@uZ_R!OC{PJkWbCA)1=|J89NE(F-HZkhi!lPr8%|ick0Y?l zGzySo$DDJOX@Qr-FSupzQc~xDn#Cu|>T=vasIdVLOM^La!-s2O6bw=;0@_9#mX-0Z zy+16;y?cOuqF^^p72SsuppBHc8P5TqfegJ{Q5ZWEhweG(cY`O% zI)U`1cjT&Q;PuEwEl%MDp0^sO)UjZgo@1@MioK`)hEh3bbXK;!Pf?C)XZeTmWP4q{ z49d5wnmcGHuxT|4_S88~NnmR((iW<&O|5lod7#zIQ_@J<7AV4sBtiKYLY##Crz<^P z3ueW8inNp}gTMU4hEb*3S5Kw=3&Al%=~m%x+v#FlyaGt!jDZAC7SsnT!r^316Gzw1 z43@VJBzIhb2+6jq(!IO)cf2C}IiKdXPlw*AF!sQ458IneN zF8Y>|Uk6LciGZ6bx_}~ZZ@}RkYN6aahi8GZ_F!(#KNwei|LUN_C{8uo<}<;plMM}? zSM1`6f+hqGMkq51Fo^+=9gF@WeEpA9R&?m>hB6mM!ERxYadx?$s~|ke4if|PFBA2} zWdywwc3Yx0Tg~u`@CO-)60Kvhwi}#_QPLw>PK}NSDY(%2SJisGc{IEoM9FCRk6Lso zv1B&$-d>iXD2Q#X}s5zbz=`t>8^3Xj=Rg@ z;q<4{ncF)}ptMdLL4}{ZJI&m93|npn{Twm{uG2{s5iFuo`EE7vjnvtw7|v1-I5BGC zGr^G|442wYI-us~DP|GOnoJ4@FH*GZIomqEN6?J#chX0@4Ch{OjJpitP~==8(PFAr zDtxQ$^e(@Rj=(9?t=cQww9#e^y!r2zDuUxWiyuRTMhnB*Q6B0o0&F*l?iVWaLkNjL zpffI@h1bdeF>tDyuoa?88tQh|i2686U#=KOM_q#$ots9zKWJh*JxyQh@!8Mrdn%>S zOf*JfT3~dmQGAV%#G&zNhYgfGOe8$z08EG#vPa6AB@zQrhOx*CPGp_B+O$l3 zLc2+Z#o>Qz1Q}zR2K;FU;tn4?%i2LFodj!iT=0J4$R*P-T_IR-8M0&4vUQC6UF|p2 zXLyj~=?g8EAh;Jw`1IgL5N{eifM5RX=SN!3^p+Rj-0ubrI-3*XuC>@4 z)jy&oVfdpIW^OKGAX%H2!JUS>LV*JIpaIavjINKONHTUYOu6P4>;8{*^q3?h(Ih>r zbkWx~YgI23Ie0ojrF+_t)4vMmOH6!se$fFTa|HSs*Mh*iK&}G*NvEL(+654zP_1duyJy{B;!(UOS z#;?C1vq&GrO+kky7kBJVC53u{Gbnhk_gU8rD`Oe04`|jtY>JGQ8HklR#)VVE$VZsi-19Te@j{H48-= z5+PBvOS3l#ak8azepsGAQ`~7-U#C|8pWaF)8yKd^`0EmECz$2Sa?-3jKp&}kNXayN zTQ=7d{?5dEC0v<_EM-PNw>;tNsQ6xzDJF8&-|nIe`!RDJTzdkli}y)9R3I zr!IuN@U~ya;e+O=bLME`T$aXhHWN{)q#&2&z;Z_*M1#>V5tKV}5v@ZY|K$_Gt#nG$ z!q^jSA^G)&tNUW9I!eTaTFDN$8Zh?B2|A+~K~SK{;InY`s4Xk@kp&*-o-G481ZhBYKTfNCUWU z52VS7r-#)F#=lT)1a5+uz=`8sITYc0NE-^+4F_O^E0r2;xBi$dXDI9G{ViW?7QUWBxbMaygWUQWALAlSKr z=?TO?f4oD+!QO1!>tG&<=ug>}#pG?7HInrMM07JNXF;zb+mLWi2)lMq!MeUCNt4CmMNkt zj3pIeWZDcY8Ist)P?iQKZk8-G{ZB66UCGb4!+D*k&Vx-MaWCN-7{UeWY#b)t3l2^~ zNK&T}r?r$RY5)`XJejsry!X0QYX8XeQExJVO_2>0seBp!x?f(eD|T%;>-Df~c(@_T zDHK78QCP`BD!v1?j6ZyiRV`>Qj82*ry z9mJFt^liSIXnH%=o1;ZV1m@l>GMj4l7v6YHFnnz}OWsMs1|X)GH!sTAA^-chTg0a3 z@uB*MKs9d{_87zo#1TiaNdw~H^T`0>INpqY!P}Np0QJH+HkxLwuwgtm#A&rj%(){v zR+inh)}S5Kd@yErcrxwp`}>1D6p`<>R6!H!azR&zH2g|LBPKJs9b)uR07W~1Er}N8 z-5ed%!V@W1*IcYg!9Phq@pOHt;07Udh5VW88jVM-QL^ddYLLw|0E!a;&;C_B(#urS zF@YK05NB9YErfJqDkk7hzl2)E6irRsY61zs+#9V3Le3J<^&YTS9#yn!;O1KPOCWoF zknNMuf`s84rO*%PFh6sqHO;y$O-+s1+yJ}Aw#2{A-SFoM&g#(-v<;IdX$O1-S1ug4 zu?K9us{uW|Ez(`p&T>XxyvGvc#cv>Cm2lcL?`L9|Lxo{+RC0OVXZRjAXmtrucA}9k z-bVRdz`z?o6P(a)6+3D^SW<(Um0 zu_evsi)e6?qa^55qYwM&c$JI8T^OtPv`M|xeb5OGNF&9)4?XzV&_3LNuG@aIzfGV$ zid064L7+?5aKrX(DTA!(p*9ZQ$?z~S^D6o>>;@g$=NDAPbkp&arI(q5Nu?wBwkVek zj?x7RiEl+BIN5*}2eeKQr@5J2zyqa!JpM;s6-VWi{e_s%S@_|Qt)jLhZn ztbRmr$gYp5lR>?84S7KVtWy)ji1RhPaF)lF)W(coj{<{hj~+U`*l8k0nZ@~%YKgNH z?Lm)Huo98=JC^P9!eG`4lUpA+2y8?$UkW17?mi9>k#t4@3#RkT4#o-*MiqnI12q`X^UbqenvdN> zU39rn)u1@MlWFXl+cg}^_Ck%;gXt)T!171f`{2^tXbjypmpf@I%xydZyn`A&sAEg*6Vni@T0}M0n#n zQMJY0y^bljAWfb2i(M}Jd<0n?D4qf}kz+Wlv=}%Uk0@+FTrqXflS~RJF~m#UV!5j+ zU_2)l4)I)1^~P*LCFqle5``t-#x`d~qU~{+?oqFfhC}d-p{<*C;dhwh;OMeYfUcmp z-*7Ss{W8g#PeFuFJE)ry1V=j7%wh3lieNdj{}%tJU8a5C-XTV_Sg-B8P@_G`RQ zv~IoVB}dI3{`zt!WG3v1R+YPRRg!ay-l`?Lx2#Bj0L%a#Bex>YJlB1usXP%ZJ};{LUzK&JXN*?2mei~2IJO_zlMh&&aLNFo}+etg~y3n z<`Nk)E5j5p3x(1`Q)kDSnscLf4KN~L^B_Grh(o@!Yj;%+$uI3fXZIJQ2-{L; zB0KOrZ#w~%kb&(u^=~9uA8|15KAaAz11+`|RheFmR{lDP<=cx1weZqOwZ1_>E#Z@n zOt3ZWuuEW0mGI}Uk1Sn;j8mTQ0@bJF>*-O*9G<> z<5MTI)I_-ZBJ|)fH8ov=)R$FW%WR01;JE1_Z3U3F6OBmurELnCiOl2Tfr^!of>3>q ztaC!SK51#r!!bD&fy$EDs=g4W$ps07Td#MzI5$k3w!*hc%THHJh3|6@VrnP4sw=Pd zigwW&59DCox_ICKGO^dQj_MN=iN(@0G9G}MvXsZM&6OgIAtK^o$i+3JS4dEib`6cU zqxFOe2xdaYWPd4bLgb4w1l%QObxnZW{uKp;E6fR;>`pjRGvC7>SiHRMi$3sqn*TJ> zNzLtCYvf4UA;U#K`P67uA>aI`5n?A06Ckg*F*3iufC>4%h1h0Ua@Q~q=zA|e8ucWt z&H+8ITrpLcYITh6|ED!2UU7M5J@5&FexK-66!HX!oc3HSVqa>NEiT+)B8Z3vxKx|l9F%g{9{I;LoEG{fA$v;J; z^EfQ;_XuQ&6|k7LqdzmyTYg*MlT^*waH8BJhOFof#oIUYFJ>9-%MB65q}$NxT6UBa zIjobg?fK#yl)l;)x|8dnTT3}O70j`8C~Fq6w2E*c3PS(apyXJ+vkUgFlkoMg0{)fZ z$|4v|GaWrhCR)Fq-oL);MO6&`G1=O3XYf~hIsnlqoh&;;iq0KKvNly7osm1?pe=st z)^ByZM=#^DX$;woW09z^?=IXE*DZag2yU_}dM}eC$TE5P{l4p6%Q(fHM!<5EU+G*& znpVVDWcmC|c5jIKdrNLcRNY#6e4v_mNm6np($QC%3XJKqn9+7yj&zMEp{}frjXrvY z4#Vp_jh;HRG0VM6+}Yc@>-t`hPWiXZ>(zt6hlO!6#*zx~nfoX4*kp+5XQG^s3HZm4K!Jx@o8DMqU3;l2Jz} zZr;PErfEJKJ9}Dx@x|aTDZF{2bX1-;A?X`X=VeiY=$6eqZq65$a}=6t#>3{f!5=;8 zaUgwLeiN}RvYZ3`nB#J&wp=-5f#{AFl^QXqlsD5WkNdH=QK0ggNpa2C1M)!x69}w? zSALn7{|qG!(ZTUkKTZ5#DfG@>G*Km?&@D`h&S*UgCXYNN7&f|OJ7Wg%V8rn`vhMpz zRQ&XViWtT!GR`%WHGcjRc_vi(B7Oy_xH#-m7A);x-Q^>RPztTN670vED)vWfk)2d(gT%Ma^5e8FpR5UMH$%YA9kHoQJZ5sG-Hx=RR9=X9CpDzn7z2g8!2t z0OpZHV`>^(ucV=CKS0&)L-!lM#zWa~?^Z~Bb;1_eqI~e)+GzJH^Mx>2p;BQ=C^0T= z+NaFS=VBXT&qx>q{zz+dEIXq(9}W2=YZdge!-MC#niPj4SIPsEp1FG7PjmafG_X&bNK+t)d zoq^WEgt_g@-9fDv^cng00WI8)Af(?iw$2o}6jD1&1kV6gmwsR^@(l?MW=KZEWybY> z5+0MF!jKI67-Z?mJwnhCp*&|Ny+ObCA^GpsQdQ&pxSi|>Ldg$HjMf4G6ZHqe{IKq*}@nM@u0RywcV)FrR6{(vg`k)sMSUn>Fz&^ z(t9PUGF9%$)r@siXjre6OH=xD72JWu`;*2_63|k`fgZ$#JOW(QqcE#1xy>~u>XA|+ zSMIlm4OF-*Tst<5-;IcShsz265ADY;(;0=E&H|rV;^0UA7n5R6WI-jRg0O%jumN-` z&lZjWYL*C!9YQnssVSKjHO$CLj!(GD>Fh4VorG*Dt`R$2)pd3M2)>MLqv*DT)o{y= zr&y3{Y3LA1rx^g)D4y+uDNj?yKe-&=CcARzWU*Vnz#X9i$~BCb8&1)hIK@V?ZcuNT zew9UZd6*E+ra$YJf1f$LESPL`{K4v=y9>u0J#{U+_4%XIN&Q{N@oO-x^gX@z`_350 zseY-E%2peoBxnDb023$t@|vc~stZXqrs!Knx@T6J^luv5`L~8~C9)*lDvR=I5KTss zN8(*t__}vuVpxfyl?h`tSyg7Ok^n-#!(Gx2vRM$N$ue}bjetpm_@Vq}rxj`Q%V|f4#y3#R#9nK<3mss?fAEwgV}_k=Pv-VeC&K6If#4PQI&F z4c7n`!Kc#gA3Ip8$dB4L*SznrK8+tOLK37wSPMQhv^020;;2$q!WhGi3lw05~4rP&@638;1O!m86Vy%i_*>G{>3ZHz43(GVch z?u>8ptJ?C6PhOU1UOCXKYKwjwrjIcC|BVEz{bj=hj}!{yg42uH7$*;7=p&VB@htXZ zn~aeO6*YU>bxR;N$yb6HLez1srgPEV)4x=m-poh0za-r0_o6mpg~JAbh22a48O2@! ztA5-bi)9bUK!tW^x!_N>(!K3S_Jid8{cU3%W|~f*8peuNcR&>QBCog86dztSt=UcR}=j`bLyv?WH?J;y1((%vGVF3 z2!=`KG)V}8;jEAXRc8w?`??`M3T#6RRKtL)I97VN8`5MNb?osw|2n2(bC@f?o0nWq zDh=1q;>6pkray^JA3ZK8L9-jgC*vc`$h0R=YVK|__;MvW6Kkix*VeYW2Yts)rY*cd6_! zqqOtQ7SN|&G`;xk#GWkd(Fnc5NeuVhTbLh`2rF*m52E$j0%A zu0>htxU}A1Hf31ooWreV)v2|qtRbFsV$;=chimx=vR>g&gbM@pO$#(l77-yO7&w=8 zXH5rTMY_h_uQpmWa5!^9t3FB1?|Ibb3&1qo|JonCLzaW0VtrUe7ICLA3C>%+GGeRBZ#r4^MB!gzS7K@SpX$_ho3ht1KY`SNrs4y+TYcI7$)=bp4$(p7J3CJK zj;x4JQFFu-!eJiWR_r=o%YJ#R8(ivPshNYC)8bn?a5;gG5;%0wVRXBV!>H`-SkM1}lMp;BA!&>Mvo*Dpba9-JArTw5bXM5j!IX!}qs_Ec~v3hT@_HHeJ5lmz=Z zUmH~wY=J44raxUP?OZAkjX@v=*>Ye%L?j3~alycQW6Tg=mR?DF@<5GjQKjs4TM)%U z$C;9Mj)qYEp#}*jOp+&PJ(MQ#Wh%`82wA1aWs6+mmS$E^uLaghsA-NmYApAgXbxu6 zKq7xp3s=M?Sa_lcUIfJ*htU*K%H_aYZZDptFPS4JgG9eOqcJ0U#e!M&kH%liUEd9z z3eqZ=X#R*Ibyr2Zpztx%{fuY?o|>X7TMZ|4udQ7l^KqJi8?uziR#;mtRE12b^O8jzgqGM9+Sx8vH`oi7=k4k_1CVm2OiW`Hw63raeh4P_7ehFQM!&UlqRsC% zV=O_<9l-Xk!n~L|)XrF7_L;_20u)z+xkXlM0%|5KtaZ0HV&gqj(ILbA(P4J+VVEA- zEb|)8bCgwxniY{hzM(YYH{R8&I&Yg-gYNzoQimX;H^Z12QeF$Gld>XkNLk@mA>Z<7 z(h?i3>H<@Jlt-Xxn#L=Y&v?yrr2A1U9bstA$1PbfQQqJo;p6ZO$hY^Bm?9llO^#(* zY+9r+B-NTYq~t}s5~P#-NKxqd%3IWCI4(lUuC57yT^mJkW-sTEfqZdM?*Xy}B&?lQ zgH&eV)ELRqs^$>#q|ThozE3_tM$U(6AWA2<=f`T&v&j+J&|?wA@?7(aE+qSJC|2m| ziR5Hce5s4*k_933oO2>iixOocy^0VN&uuZYG7+j9;SIOf?HVrs&iCm&KqB0b*}OW} zS_LFqIRS$IZQ1R7nGkNcg0o#+p`$;HG$gm=g$U80%`p5AIa;#2+B#0ZD|FNO`?V~I`&QuS3Oo44ap7I}yq z=u`GWxLdZG-$Jjb6|r>XMFYap#CMv$P$6`Dj*3NE71q_UW!oBHl{rTeJy!!orZYp* z#aLekz|aWr>_zE43Smo=ACKVS11|15!yf)Y2U?r%=yZ9z*$pB0#o&OG?;BT+9|;RN z3ISm~y)jsc_paXYMSj_Khj<{^pc=nwF2u_o<^-`K9Cf%mm)oI-a4Rn-6Jx)$Q85nZ zcQ^e)GEH`MXfJm<(pCpGnAA$0O8Sa`*#DnWEi$#{N$nUS69z%kYyzYkj682}Mqz1g zWj+?M`Y*r#$Qg}KCTX0)v6fmI!Lmzw6>)^{DETn&6k@f?lZrKzhqo+F4%iZByebzp zbbo|SZ}qM|P>Gx+9+GZP=~o~AcBs-Oe;hzniI-(o+Q@w8%^lnvbn8K!O^UV($ZE;u zZSkUCh>T4bXBv`~HN7jQ&GcgH8@ygTZqQbFNf~@1TZ6>EnDLEAZ&5pVw z_{P=sbpcIVhS<*fjw~1wz0y$7P^=?EJxOz}FJV!9XoYx=wDpd7uq+%8 zZvpZMj!CRTMw+VfyydyJMJRrMA+2`lF@wA?98`s(`*j z$K4<*dMGL#@7-q@4J*Y3fkQ@bfvDPuaziWglj={@Y`%8SNG;(kJ8~y^*u`VcaHY1p z#*T%L5P-38Z>A5|tDwBK345KU5qR2t{1c0GFEsJq&%^WgFlvh9H}>jeOD08j1Q)=r zPI6==CyO7b_fXU%0|hG&#_1+h1*VTC2OeZ0bZa4cA&7HvA}O%#BxlV@i56Sn`~!-W zeL-G0s$y$foWB2 zy$!!XbsEZC6%yS1#OP9$RzL3*|Fx;R^?D{ReLW{}VV%}t%8-d#f$@&YXMTzW7S7ur z`gTVmTvyma+Bj5LDGTyCLXUe28Cz0-p6&M({mZ^Z!agLzz1e5KdIZPW@JreBePm6E z7og|;*w=U1Aaj~N+e^Gy+cbbYz{C2 zMkKA&3R=}YoUBqnswb%e3APx=aN6S(7BS3z=3b0f_jK7JJ0~$iQl-axXGxW;MeNKc7sRvSr*uMCGBHiCW5B!rnlt>+} zus&Qv^};I(GF)n@E&BA5`N3^fNkYRMtptl&U)&`K@-?)8;2;onVT4`PqwushEF5@qfr+@ z%@7~x@OW*7xNspVmy9}#s!y{jzO$z%I|YU{9OiBUF`El67(%}FUBhZMo)iJ8e6=fP z!8~Zyvxh}1gpO?>#Sjq6Oo|HjAkd~6Z$=XAcrJi9JYkutxSh(fo->4jG>Z2cE&lpH zr8lLO;OR&=;S@l&A91eQwi>6-{D|PrqjXanseIS_m@cOd$2Ch>W6C3jSF1i0gbVGM z*|6XKAqc7&fJ7@kyTsk3x%>LCM1;pnXOE31@LT9=#AO1-g~A-7u97`)? z1`h9?oHOBK7=kIhKG`%f!qS9xTmZ!ml$^R$PLR{@d#e-+(hE%F3>}LKHB=nghl2cK zz-oWD$%MZN;M&O07&4w^UUI+c(F>WjXCX}B38w=KNWQHb(7e|gRNWtwSbE@^Q!Lo0 zeM!Tv0*|E`A{7O21ZwlHqM0S}SkeL|OkeBT(2{7S)q}=@MRtD0D|r6f_-1l5sJoW$ z68RMLXr9RYZ}BHdj$b&mHN3stEsbVeH={ZPN8tpxds*ch-0CaEFP?L}po>f=V@#&R zvHl)JUqKLRL)N%6*X-o;fp}5@6TIEWtC#!5{>1ojS1w1VXAMh$rj!uVy1`mV0fXA?EEr{;Fb^; zlfzn>c*`VA6pb%q5~<2%OvG{b$1R0gtrApL--fY--@26WV|w^%IX!Bb9HzD}x`4}R zKRFx|-#gm?mw^19gjZSlz+Cr*(hS!+E<7%Ra)=iENJ&naHAB78$xPbzU_uEV*}OBs zIVyBQy3eaeL_jUkAd;hJ7pwfsxsC@}L1~jZKbWWY4VU`={f)dpLew~oKpy`j)%(z_ zco)Gt$Wu(uqhE_Gep@C&YPU7ZMeHV#7=E(Rqk75wp=8OI%SWQ1cGgHr24c3n%^^M& zc|F&uU-#Pik6UeCa2sXK4;R4wM_e3qOf5Mx&h<;_U^m|!m69|%9%51RbGZ)9lc^DE zM5{Hs;-5>O4$3ban5280t6OtQcBm zjjO5?wVvqSNBzaMd#mXW4@1({I6uO>ug-1PND?G+H7z?aZa;-CE#%NSJ7oj47oA;& zR|f@ji&r8xK0&7E4&5s@xL>z27fw5jLPA%xig2vl9ED^}gqYh)vCLy1v}>8|7GOE= zm&W!3byVD>DeDD+v(89sTJgrjQYXO?9haVulps+m5jIr^7oYt(9~>o0bfl3)H-B zx@?Yww$D@!t;j!f5$ZSLmZ-3ww}WSDQsN~H7#F?{&ud*jH~jff9Fy=3&F~gupaXNS zcdK3ydvu16apKGt>9vlF5ngd7tvCiu0P|y2tNY!*08c=$zd;oF#&m0@?I(t1pQIoo z9t$1O(ts(jA7~$D2p{r7H}8|d5X0Go>w9CKq&orB=!)C9yqQ>6G>+iA7neORMCuD> zd9E@Ct?4#NSxJx>2oNEYrzR7?k5mCm{7CHUD*KyS2277!T46 zaCiL!WQIxcXFUR-qG_!_lpZk=c+8WEO?pukw#U40dPaKjtnbYwuek|UGJ}V064?5z zijT|l@lDlKuR-g%GKpb`#6aVVQ`g`Ar7n_HrJ&@_{%adFa%}gIAPU6AK|d5EQ*`Fr z(NEYgjl0cUgZtTkgez-tOvGupKo99Kw=s!)`_R~HumW_nyU4GIm}kjku7%! z#@ky7bjRxoA&jv>&UXqzfV;MAaf0w0##8>^!{x#9o>remAa<3j&DIKbOTXJCrqY#4E$w}W`N363u@E(|Wkyo3i9Yutmw z>W2hAuvt33g4zhd@K5RY`{CawVr;Ohna?BKh2LO;$wqDYrK*0uId6C^$`TluXky*Y3=LIv z4WY)c%AS`+(aost#US{eFbsEEAr^K)jm3;dm!4wF!H4}E-!yHjfn-YJ7#bNg7&Z*0 z#RWSPa4nv%93uTFKSGcRKy>F@*9Bsb^x z3f7Y=V*^|lK4Xc6rPcdmO$FuB(QPG+*GZZB20wf=-`6p27;k#8%znu6U)Vu}eV%C6;}J*+2VSDtNPLA;0#~H>m&7A#V#1dZ8GocfkXuSLdqFlLkcu; z_;ZrpBp$K`IV`9dzV|dST*9uyW0pmMit_%ONiylXL<8lVyRlr06%p1mjb@^2?Hl!R zZd{{yQsO9@sVm>bgmK+BI3UdfJfTeNZ|)ru>;XXaxiceexLj`or}*+w35r1HPS>N% zwUN5^io&1Kc|~{*)-qTJiXu;<)ac#-9>??$8ZED$W4oADs}=*TaJz0WY8w;=HwVj8 zhyE#D{;&ZD>CwN<+<^Y@0sK+xP=Am(+z%RE*?umf*@<%=+W!d^v148f#-0qL;#CP0 zA_K?g@CT9H!*)-S>1h%!7S}mDGJvAZADkK zG14oBx}DUxTFVJw@91at2(@-R_<$edCSVReu_pDsJYGbHz&|_14f+;Kcbu~eNji!@ zNdH9RwAPWI(RJ?hkFA5{PxuHwT6H)DcWe!43ypika)w=J`h+Kr%17A3wOr8$5h!GI zK45FHV$1uz+M$P1(aFYnAS5tfH)!Ztnqp-g zw=7nWX(qF8FQq7Cz=L{~`+6UG)HKkg0~ktmGo_esOZJhRK~l;!iS$?eNGGfLJ*W8h z>a4}q?k87loX2gsE?+Q*3DJ7)Wbznjrm)c7Tw)9U5NkQELbj5BH`KR&DaJtMgC%sr z+9jET5pbN$?X6sR&`}#Mef>@V2bWp^*-X#2}Jiw%rVchzK z#h*<6wteDc^Rk?C?}%X7E7?^GCUWfGp!422X!C`&XOlZc{P|$P=3q)e7d~Znuu%9f_ACQ$h z*va%8w4ox*H*$6m9>ai^1mhhvbhf_woVkHx;!NBDktBRM%3YlsS2~NZYz9h_<+0wS z2?g*g;1)sQ;2ET98`oq|=&!K;uRkU5Jptn+OsXm2&gHf_y4#SU1h~F2Vhz>pfe3vh zk)Bx!pd$Md_sk3j^(hb+{bPwwKBO#KeASj446i0!C9>s9%?&v;r+b2UOF{~Q_2wG! zX^Oo-go(dABrC+a$@7>Qh)_(g(+9;~U`5HM?30l@!0acOxokvpX($K6#;maBVhS-4hFC| z32(io_LX4=O0i%cBB`)oAB3IjGmFA80`Q!SzgfhJCt#xO+{fWZ-b||S-pQUe>HyX( z+r9RYV`DlPY)|JShV6Uqwzp*siere{1pG6}vsmUwQnLas0-&!p^lIKmZfvdPXezk5%|wS?qD zCo2_yn&TGD5r|*fntOpTU*h!N8}3QFQf76&j*nNRXMc*y33AMZESMYqNA7+UI9zF8 z#y^4`fl?2U=nn_a(}#xK@~dZxjV&>htqnj=@DkialE(J*bTTxa)$nk#VGL*TU66w>D2OZ%{;Fx}3+QB9fGLgkCWDy5|2LGc zi7X{>wx6xmDq1$PwE(+OJ8mRJ*zcba=E?|PyJ8&`1eOUX-@e8lS;F+>qin&*;9WqxCU97p{FFk*@C z+g0>ac=KeSD=2#?uFx^PTD56sAZ|&U0IP>=WEgRCa1Xs=9X3HID#1B+o1P$UOxYE7 zB{cH;0q7oRM8=Tn1>Iuf0ulL-RCc2Rri4#~>#TvnEA){DNv|bNf9Hkta9Q`k{n*ep zCle%*YRZu8hvKUJ84utKp_j;NgVKiZWXJK3-^Q!KMn{XHswCo&g68^s`*0QhI0%P& z?R`Fxlxs}cUCH_@FTjs6v9&scT(BoGP^Is}_4~+W`yGJZ5@qu7MB;gwMr9p_bQG#e zRWSF9@#^CE;-n?7J8@nRCh|v{wH-bC6S*N|Q;IZm#Q$ja?jjZEys?KP3;i61ErRjN z)u@kGQ!(sZI%>*3o&Gl>F>lrntB1l90U`9|FH3|eUtDIqR@7gOjw$_=IK5s&1g8-- zP8BQAi{Fv+cwh9Bej8IXv8K)3XTz?+x2;s&4qFJXHZ&7c5lTnkXy`m@3y3hlu4oaB z)o=87NpP7fhu%>|av^9-CSDT6V*m=)?zKGW_I=(4NyvqD%v5V|kO@KuFhw(5Q8&_- z&4Sc2I6vZfJYzBC8~q!#GZ`xnTCG-pR%SZ*+-^RzQ>RN&djgM;(tp@MpHe24upTUI zIO^cq0QzS(`XduJt_7Q#DJ7LM`6xlY16mnBm)KiR70iF z9pbaKw35L?Rx(mTX$7|)r7C>_*Nin{A36g`O74@DryT0+g4ea-vm(BhQ=I3n|ErPz zpeN^0c6P$aJpmzlrE1uX2?FSC*dw%ig!&Nf68{=Ucw~;kQ4ZSH3x6x$3Nv?{&4RG$ z#zZ|FGRFNKVha~aUs#k`F!upTJ#QqDI7cLNdJpfiaaCn&uJR7URW#OT30!HJN3VAF zWKrq3y*^4y*zKVTiP6%ka$`}%VJ!xKdt)#cqHRkd4IpP2Z^CxIu~MN1`W^I-G|q#lM8x z6t5v%@|Am*j%207R#e$UUwgh0eO5H=bR+q~n?Bmrz@=P(k|yP3R)YkUuxk>+mTDQfOV|K+Q{PNBe)X%bF}6di;mdXCe1 z*Nlf`h;Pf5}V(5&Y@?+5`f-n$u~d5kC- z<#R44(-CCq2l;l8OVhfj-clq?Gu<#F*x#^2J?3mjdOrp4DWGxrab>k~9TV@Xx@#bZ zK)2A43)-6Y?a&CFOir8g6ar<6q}Ddw_2R*m7=_`|1pE~Jxv=b%uN zWz0JXmU{NvPlpREMF$`MGiU*P!MuN<5T5DS*B6-qtREkan4{79dVWKVC^RVBEB(XE z?qucCcYlqOTCFrj5Av?8rNS*N7DdZFI-`{^?}%#G8@=8Ij~}2-Jf^G$O$F11%7B- zUhFYdp6d8HO@pvYbebCq^UC_a#C>ZBSFvyuojGMQbDH*tXih^|OglzoQy5RT^So++ zXx!W)MIiW?-y2Ta-=d z-Mgo*O;)z76NF*|&%vh9?Z@h`>ItQ(Wn8Ui5T8fx`uKGqsH5@zW*JHo6g?MG*P?twb4>mOcRehgL>I$X})gL!zh)SBOT&`IIVE;iNd}DqAY=$~vj4yw6^kD)&Pl z#$6dp{LYy*BKt-Iehs{W5*s~7oV8}?!wvEFRN29N0W4CJ?)8v8rm2#jw{;b=?7gZX}0^#c!?|92FcZHT2J8-$0vumpA7K3EjUfY8oPT+WT=G#v7T%ZSx(3+{f#LK}v z8Y#r1*(AhwsaS|Z6!IyixrL4A^q#bfbX&|3qNyCjE^DIxnOPy0jg~dnlRP4appuW5 z(|Wp<%XdBFr`t9QC!RN(Dq|CW+mA$qNR3`ssZ$xe5Q0sydRDNs06@L=6y`fF&{{>2sAY)6r0vpg| z*1HusUnsG0NQ#E|mf%>;YwWJ}ib3RQx6F3DzUWc~fKXh~>e}U|^XXz28U>Z#S09b} z`JFm^Qi}h0!X2q-U3 zk=j$~x%#OV!aKY$2H+6ZZB4$!fpoi|CuA>Tv9@kV+wI3j&KEss>L z4~1!cPog5kVvw{{9(qAecETMZ-n=n8NMleM)bjhvDmH-Ga}6JOQ{3JOK{JyevL1>= zoOy=>b*?+_Q}BH*jzeN_KepD11n<7V(CN4IyZC~|3c?PQWq)ooQV%SK*}}NPqYwLJN{wo z+^r&_jN8Hv7>hQOkADL)tTDz#pDV0i8uI)P=Xyjv`+>!F%Qn|uEfOM;CCa0_ojyEi z6hg)mx3SG-A{w`RGgAX@HUedx$)KPSkR1f`(DjI&xuT^5X z48Pw?KW}9sk}(t4q(@8X=;=%9{&ZmA(Nb79c8_HK#uxMonEf-}ftO zvz@T>pPSC%_pASfpAUy>zz#2rx#tvxuP6>69J-z~K@G*U3OGP44#Um#Ng<*m$-wVK zn&sQje&_YG#!4;)-AX||QAG$9sh$2DZJ1jIzjYM75zl@MO7lj!j6LZ74Rt?^U5$L6 zPSxOcYN&vOA&Ye~#J5F;LaXlcs+1N^oztLx8mbrIe$iLp*9$D!65U<_#eLc%Pymxf z3FPdA&+6-g=hwE>eAvnMY>88GSBQ!W-DiRY{&;o*OWxqVa?!`LrZ0msaG zZ7J4CbVxGtG+Yey-Cz29ZUz|Ni{6kpQr!!8<`E?lyiq1ofO%O5`TbqI&7-6%qmYQm zADac0IB>wp^hy_*- zs@wCF{K_l*=a&;nb{Bi{%Z;QRra9J(%um^E=ElKaj&AJz{P8R)tZE@2pqq5~gLFW^+^7Z;gS=oIn zAy^JM!MAGp2B*od)A$j}acNZpMICoT9-g6!^QnKm%k)EvKQgdC@HKaEp<0^_MI_SY zi6?A-s2}~UiS@m_6b2s}*&-10L_H{94qVq&u{!?z<(`sE!7<1FKjcdsk_ zAqB;pl;&an5J#6Lh`V()%5Dx5BJJt3qmes(t&we12zwb-$GmW2tK-=-#d7XW z=ZD9V#t?;!2jWje()IfQvXWSkCvNQD0nGjVULgYWe{xKHR8khv2n?YA- z`XXb4{V>^YYWO=Q9@2IW8D$<$OHosADc+YiGsrZSs!0f1Wn^;_E=`$D@}ED|2GCUl z)18i}nYnV)7j{Lujy+=%AwQv(nW>avG|bL+%@+BzW_d38I8+y*EHg?xs~EZm&YI)O zAn+b%A!7QP5DaoA;)dQ@0qH|n?*z+L>#K0&J(%P)>E4VGogFQO&d@k6(`(gH3`7>- z>;y8qjHMUBNZp2K%uZ$m>$;ggU3`tZJLim~&RX*Hc1VYFk}$+ZI!p8{xx280lDoQ~l6(rzB0806=lZ(el=BlfiknV20~H4E@zlme=u8nY^9 zVaY#jhWM;m3~;CbZjnB7SU%ecI(2ox`zMaQ2=D!Vpw3VO{`pJtFZmk(NO*bWk9*6PsD-&F>GDl!<_|!Z| z{=7H8=XO)tt+*BU8#J;uX{Y`0mV!-ePz%Wzq2p2n02incWRq3gS+3!nx80G=44WcA zToGjIv6k2E^mhYlZLG>Q5f`(lim21(TUO0y+MSHR1Wt^T=k%KIG_qOezo%hn#sE?C zBHERb`utLB60;LEkqHg1t0xXu@X+FhcO06!7b~ZtKX=EQ5|7%vyl8KqDC$_%Ik%&q zD?>jp5k$8hbRDRTuuL#$wz;3Qwzqd3}^Gt5NiIfz{bZ%H+U0qF- zB3Z}u+hXRv#AJqx3sg+6d?0*^%|Kv?sa_q6o_>#Oc*uBz_-h-Ld;^zEd&T6hrR^0c$2-0dq0$ECf_A9^N93Tph3@5g$b&U092i*P;wws?U!DF8dnwPP zsT!yS0h}N5gX;4&C?ZI#oN7B0|81qh0Dib}n7$a3bg8De7)_=tBY@rrJUz$Qf9rp= z<$@RIWiU!ZZ+_5Z_nEk;+a8R*tp%Whq}bv3H|O}bYWmjz-r2U0EY(iYE&xM zotBYIn5J9~o9Nc&0t7r|=+=1G4==Evk#8A1-v#3oYJB5f#L}c!*-v=xa=PmJ5MUs^ z`yUSQ9_<@zCJHb;pg*oGSAedjE~jHGDr06dJs;MbSDW`k4arglj8d@*hMedv5~k?H zlm2})Yjh7vx)n~SRrh`iqbvg6OOw<2sh~pGl{R^?VsK8PW=LGHq=90Mt#xQ0_XH1^ z?IsSATWN2gY@XLc&~(xfbJ?MkIk(~C&INx+e315^n}SzcisC*e46g#y?27yH1kB|c zv_^qOLY?dY6EE9WI0tjKD0^A=ywu=GXtYD5@LW8O#{(3kNGFR7f&HiHd2^XrW#XstJ&CaxeskfORrm66yKCE@RFz|+qwLF@Nv;E zq&kXFW}dqLU;&FKyj!*yGlJSk(2!G_*}N=!U5xbnd$F$OP!A1P7?FM8tz7n_$8zxY z<}{OX7^f6%rqkl+A1lTW5aVpk7Cj_8jS^!Xo(`C z?F4)Iku`@V*X}D62vAwxe7b@i0pi8-wMuZT1?Bh0Yv z`#%xr^OEz5!|K>ZfWfCPo#YulbLl-m_N3*Jq<%vvDW`b?Ixc+)gu#$j3vlp@ zHZOb#Xv=xsa)gD_#Sk1FkON|KN3>lH(jrn9*koapPl#bK3p^iMeA}ivgUAo17lrm63)z|GE#E;7Qk0+KvR*v^>nnHFTZwpo%Poe!!hn`IYN5s>G_+0H5juNND?Mzsg!+ut&lU>;8AicLfgt@*VId zrexlc1^dVhwURl{~w*7GtLEIHjVBwxp#o?+=3UL z2|(#3PMyuTBTN)}zs#NyN?L_Uut!lZ*dzMT zbnr8VM0W>p-4W2dQ{gAo#|9L|kO|`f3pp#u$G!>ZM6grAug~DMC@GhDHUY#Y;9^&+ z&$pzv;DBu)Nw*;Hf=|=AjVbsu+oH!Zn%tBHY+#YPNe!@~=F=^pi8egPUe<$ek*ISK zw|8$za?hj9n5sDcJR8znlz%Lc!2^LgnenD2py@60j9^;JP^9lKspXf^QXF7rRn8l9 zh!cV(Z8~<3-sOTI+34Ch?bfMMwY%?_X9=%vtulH3_O4${}33> z0!#BmlZ^Y1DSDf^sSCX9t0vtq%2FO~VYLS*V-2R^=Zx#qZgKGu$o4~SOCEgM*hcJ7 z14#45{(Aiv7xOkFrreBm7s?Vy|7oC?xOu(h&M_o4pXu>SmhhbE%6-n&7xZ-uQ8H_= zs++BX&GDaD?WRH&BM;@&eP&2rox!Hkc)cmpFjXo8h35sIWKi*2KzRuB=gn5&Nip2m znmGPI7GE0q3wGLe6HjU7CZbJ?W=y}SY zjQi{X9|Mjiep8tDuW2=~e3&%3Aa*6#AUQ$DrfRjWcXb|`?+SUm-G2n^8#H>Hjg!2_ z0CZ+BrHkU2DZ-kLANZS=<5BdkRQ%XLHLtSU&4darM7WjrmPKEJ-}x9w|M-~2|nDoCpr=L zDrop(2tgK*m(CjvSad2ei|$L%2BWE!xGW?qqIMCAvxD>FwNroAYvs zo*12?Acd&fpp+|4Ttll9c?gM2L`iSTF!N3l0|$f|)d1X*=I3Fb`bj++yvy-uH|)%s zH!*ui*Uv5R0v>Eu`8%9|OPi2!1V>2t03;|jyKd;3jU9A{)OL@aMxra!q23)x=Hxd< z6Xc4}FNl}Qb5l(#>H#?~?`&c8+R2C7IDaQ={Mv(L?lv4wo5S^xo-au`JdBQ^I*)P6 zr3CD%X;oZR>ed_G^ZC6RUbZ-YvpHeaI` zQy7BN@qHa2aZ%{_o@so~v{&E#%Feg0O)On57&fLLP&;o3B0>#SM5Xa05kOPyj7faD z`#FW0qFs~r)V;dXm0M=L&_9F{mEb5al6ii3sbB{4to)DUZJ+%5;P_MbpvvZIDyQ4o zEa@59orw&sj`8BVRgRY(s;=|iy!0L|fhuY1SjjK+A~tDjq?r2_A}-Re>uL;T=S#wf z>50g*3T54;gHrg`9WP4~5=fd3ht8@;qKvRw9$7-n5W(V|m^$VtQT>8Zq6_;t2_{Sj zEM9|K{d?19WI2;1qq&c9^F3BM?UE!e^Fd#f7ZUMRjG=gDGjgb@f-rAz(n|6Mp!-|} z$lJNdd~t;Z%e=riVkc9#7Lh4GEf_Ku{++=M@1xf#%dM|trkvH;bEP4^G(VtUg~FM^ zkys&Po_7PUJ*P1iuO0XTlvCG^Fd+AFw?y{No(MwMmZ_&~)4>+T2=gq;iWyLRlZanD z0;h??v@4mc>S{>l`E&jgdC=&9n1*3V0XAZhEKoQv!~)%T#8-CnNl$w$!&)a-&ZI_>`-I;sY4d`VdmwBf+fHKb^5-BVX$e&Go~;c+m7+R|TH|x0 zZKD-0?9W!JmV;%7erkWS6XwZO^?^s70-!d*8<)S69q!Ix>YZKvO1sxknd0|o?zjB` zSEIyha%=`b(<+HqA5NY{X<#SY9|VQ&czve1=1o*6-{j%0VZn_#!gk5RSQ7~;ImJ_$ z8q#Tr0fk|8;36d`9Lj_SNuX!Xnv{@%zo(CKn{MVuZeeUQp19)mckRp~sz=F*-zP{W zXBSyI2>iJB)L4j`W2-v3TIvcm0Jv*Cz?Q}7*t=2$STf$+mSB5~lqdK>85{h-s^j{v zUEC#y`7gF~@+SQt_m(&-P{*9!j!F{=4f-cX?)v2%_b!VgrYm6MYd80=8JMu@C`VYX^hlOaRT6m5G@S0p2k%z z+D@SOVFD*r7grsWShLEN*<3OzW|Gqm9BmRp9>&lwL>She-YHjV=e2&G;g;RWW@QzT zz8(4`lt*fciYtK$`DrgAsO9ZcGP*)6?e)kgYtGpRXts{_7cxuFQKRr|@`L($uAz9S zldgj-mOCw8MVu^zeKZUP)_o;^A)*W>?0c2(W$|+q<{T;QI;8SCpK3VqcyJ1w5(Zg; z3tI6%1D)T`imLfo8hDtmDRAzEdq^fMT51Jvk|(1DrC4Nuu;B=gPdN47xfcV$u+KI_ zwv?-cJNJvtZX~x*Ea+aghTgeszdAr>urN`#Km&M$Auc>FI!7_z4TGiB!}XZrx#OLMVh>`%rw(} zxP^UswVRO0X7=ljJkV(auMRRT=`mRMYo*?WoQ%<}gryJ85fuMs!#fk?P2|ugdF?=1 zyiy)@K`y$|Z&}9m2thTLeb!2n=J_*v^;qzCS|aLkeUQ;umzgLgVt8|T8_VDa1&|PP z;lDSqb(t!**CX1Lm`ajah!X_|v|Gi*Ns|h~<&nw?&ssES_}GA~xmu)}Y5oONVOF*0 zEi|slU`lrpAs-9TENw!A74+)88=KafsZ+_vn_QFEWR12fm9%93)(SiZGym`SW2Es_ zjF{E4V6Tr#73K_YUJQiu-K1P0_S$%?Exp2Th)_%MF9sJD=vk$hXf!Zexh8#}^wB|!zV_w1N$K4h%6z$^S4rKUb$WOYN?^SUaf*S33dZ&dkRW-|x zTPb2N&m-6W$KSg3*SIc|d+T$QLWa4q-?!mS@~%ec6h61{CXrOP3MH+E|J3-xp3+9) zhHDcFGvg*o+`L9_ErrnKhsjsh6Znz?=S&OhvLbx*5lfL$+%k5*fWK8Y8FkMNRj<#l zs2_CtNZ5NVhhQ4xw@0MK!xsG({pIf7M@5gb!{rL-y!*c9C?Mzbth}SV!m9Wg`#a?` z+6}vOy28HH^~U!k)h;?}Pdy-^DEjnj&0M0skVJbnZn3)6>oCYd_$ds*P`W&PB#xE& z3F$M3u|v4vz!I@I&D8Fwc$mjOht@P$*Kzp|l@u=MjdZGK?(iok86ie+?G=0BHrl!= z`Rk4bricc}$3a-!z*ua`@P&&I1%X>%H&miNT8i6+nJB%go~-lYx%3dwh&CdicUz_g zA>KOn%_;zHh(Fouu41d7<6#oT4J&ZgAmo?;>&9C+5U_7?G0^7~R)logO_e$!a1{YA82he5!&oFOcGX~ogdt{F+V(= zbZYH(;en+r2RUj0X@h6iH{<++n|;m;on#{*2Aa2`S6%knVg6M~UX+2cAdF$7a8?H5 zKCzTBZ}*o?2`CTX4Eg%VG_Y1V@&LO-(Xk~#Ur?#O&cVm3p`EI1*@J^%2Rgu6S9-mo zz!ZM2S8+IyDdUEy{JZYqjaG@<#}Jf`Fd@sRWdu!W*fG6v?+1uQXqlk*W+)3}8II5R zZV3i!Wus>4FPx;qw4m}VP9_Juuh)5-8>1>S#qqy+|0I$Fql2fUy23LYyRglL$j+yM ze;F8W`HFHTb!7u?UdJRmKCi%a1%;VvSQ^kchlZ8aMW=1sUM1qI8V^xzD8xfC)@5f! zv7+jLdtbtlsvYw+Z+;0}{pP6Qu3WmPDw#--Vh~OE6&OeUeP?5>teqq|IgmC{_CQ76 zMjeKs!>*4mYLVT~w+Ns~;8#m>*Y7CM!;!^-tLH>R%a!Bom~|xlB9W)s?aZl&Z$yOu zZ4?3YADC^qq$EhUE_K&Z;_ix7qA2v_X~sdmZ+cC-lop4-U~G>nYIrG;DwCLqFMA$h z6aGu=iyHbmwO{EQNE6j6DCAWZZrLMmyJ;@H4Uk4#XXFQ#;CM5RC>~;%Q;{@ABHWol zzUyKp&ncNmklT?*`$xiH?`9*5y50n_5WG0&d`y~9-$5RdfDpEgnv;n%=g=R>x-x2( z6Nj@K_iaIbL?fstS2yuZ@NB2>i<=?p{}g3a>rWzmLP@bHuozZmVJ)w9a+-%WW@7Hz zgjV6lv&)dX$=CUTL4x*SC9~tR@X5mK1dQD8MBKU|S@#LgL441(IYBNvbGaQMRV-TL zmO%ijc3@-m2KlIVfFIF#rM=7NcM$Gk~TFPPJ)o+A|*@aK6P5e`;%CE1p|HM zTf-1HOB|lK_WV-{8wvu#Ed_dG&J^JB@qXxre)v zwvz9D4m_!BasHVq4Cy)8Oyyknf>Am*V^&NSUo*LIH>Fu6bRx}aob_!sQxRxK_~puH zdb3cviZk?;-H~<(SC-iUzcE{r>=xF0|oXYT{Td{6%bcw&^ z^Q{rkI(XoUg4Z3;EFi7S05bkA@%VLlJl$26pXcAuk}i~A1*?-_5dTz*n^*=o8@BUv zV{pnIS_vz15;-hfDG<0_Z9IxdCdxhBfe(dxz@Vc0lUkAtD*!a?v4eCRE6s2YX}d8% zTrtukHWSqTDr4WAK||0&Xo5a_)%Kh@V2d<`zj~IjM95Hsn?kbJ2I*NYk;r1^l-rxM zn02eJ(h$1Ou8K^}(Ns@NPsCd}9nO>7t-?XM@;+aF!Aay1<}U_g@6KRH8Bm~e;ErQ( zPp@NoC^2AYlaT-c0)-&9a3Hf)kVZU#3w6O=dQ;ab&iwngTehcUan4dTK+ z(kkr{T8KU9jK(N`JS8$eS{h=PTPvqxMq$m4_kkH$3zzYSP@k&ZBXY|6AVv{J!7=3? zpN|`o2}W(-gp8Kw)Jo=V2}!vOM%QDTOvESg(I?Wpgy9W9n|EGXX|x<!m9$LoN0ilfc3yUX(T`xqOPglG{*<1I`MJ)lrms{@P!H_QW(a>W0X^$D9O86QD z&)$=tkAfXzI1AwlHmMK=AhN`_iKR{Sl=YevcnuE^Q=x4Y7G~(SUIi1gMl3eI+#Ck_ zw&{kH;f!+W#k{c(KHm#-U}e|GWr4%dS#@x;spIJ4LK#+3BP{#4q332D1`$z#athMp zz=qb{*tA9J+_;Ot!Nx?+yxZY@7NJOHH&H)}a1N2g)(4Y2CptUQG zP9NqC7{=be-Cx7B)dS%D_y?+TeQc(^y76?(WYWpGk?{(KT;dRusR<{Uo<}m-jB4BoPacX;8y9K(zov^~7VJYs ze~7AhBFCRycW`jR%fe^>>pDe6N=n+lk~)IvU(*p@s2W{=l`QI3j7ZR(B$aNr>4Xyn)1TBKQMHQ@Hrif@#(2-Y|+Xup;H7NcY7I7e%{Vkegz#(A`ZQOB~;1Vlx6CMy~bc4B|0>JbdDli;K+$R;WANZJ-=1Kgd2bCed= z|4%IGXt=C2QrMz{h2`3g&$MW*&YxDp1j9(z#{@$g?~B;zM&X+kBk=BFXrD}c=V~VV}r*LMmMRzL@Glj>)HNAQSddB*?dJY(b9b^u~aj2)N(o)vC zneoaK1N<#~gDj1nx(u(5DKvneops)%v{QI&pt-JtF{1(SEOO z-Pn@*F&g2R7Jj!cc9Mt4pW>X`YR~RLRv7js(d5%c>sc<<=p2*tth3*-9_nq5#AT{y zuU${i`7JCCb3$hFm-Q>v4+febi$9i1W0bwzS~eW7z~rV8@&naYSzFdSQnkEITp-acr-1Hp3Zr6>TL3{kJ`zmGVCYW4?CsI=zFyolMg}vCJBQM~%ifT{|O2HG+ zc+($3HteAu@3Zz$gMj|j)Y(a+9d%slpFpD6x~`B=z0&v3i;1GpdliM-LVr--eSmiq5V1V0F_RN>9;rpaVJ zi{=)Cc;Di*^gcIt0cTQ;2#nnM4&ybzx1~V*KKBaE=pvQ)SsDy~2oadplA1ZAlbb$Y z4!kAB4)5lKX#715y>j_~@LmySr889Ej{ehDypWwt&#v6Hf+5Cjw9Wpolz;wo&~6{G z4f%2CakDz$iO;Mh;Qi^4bQqmAD8E&Ey1|Iajl>Bj3)=!SZm851EU--}R4_GW_jP@o zR9i6mHTvh|9gGF!<#2>_vWR=(|Knkj6#dV=H2Hnh!SRBG3eJt_n49x>k7mnYM>U!P zXTmmzAiy=Hu0TGo1R@smaHBELm!#cCTN<0*EGOp@Udf%d@E9wOK`n(bzS`p z_P)9(+QEE%8}>Iez01Tez&183OiMKD6z(@hMInh^y%Hd>bk4~RiE!TOBOp|&sLxIp z$?%(;C`e8P%19qQH3Z2>x%C1XJ+dNf@hk7H3FBId}{m%ID5Ghw#j}LVUkvM zbJ&qiUge!cl=nCC$C^8zP(UQ!t;>z#xv<7+nH|s+aRr+bGA<016=WXVkq;L(Cnf4-jBz!d7FAyKrRs$uO+<`CH+J9p2$Xn zOeGX}u}M31eOS8EZ!L#45uVe}}dB70_CbI7Sr+so(x*s)M4V>+cx z{>D|^f?W<&Ih=z*{{$e%ZJ^06H<6w`8b~W)E8lZk!K#lu?-tK`2yLlD!OXLU-^m+t z6GJQ2krnmB+z9~XVoELju;D6*oLeRiiwjSBDGG)WCIv|z(r1cr z3+M*t(9Gn(4j|BP z61(jD4&}`NZ*UYr0M04909Zh$zvInxex|+{#cyVRxcd1K1yq^r?QUH;jTJymBm%0X z9gIi2K2yg2wkC8W4jg8&wW5GhVR>a2t4o2PwW3K>IoP?9#2QrmHw6fpB7sZS7?_%q znd?>iGcc~08lno};$UXPpZGR~+(*jj4QU^CLVyj9lb=BkqwcUs>Y`-nU%TZWa4A2D zwSsL3v+3f7QYYWh3Z*Wl=UI7@)7Z_=b+6_8m#eoau80AA0ZnmDGvJYP7hC_*E()uL z@@9rdVbGB7fBS19smID$_-4<{5R){k@KV;*2WYNL@jSUB5%PzT-m`Ta#E!$7Nlt`y4+&rIUON{ns7uKk5U>#VWU~SXjk*N)QV8Rc~r-xCR61v%J zYh>LYk7b8PUsy2@bv9>1mZ6;b?H-*)8+f9ncVf+CH0$akS|^}Yf~$Mnm__0H0#q#j z3&vnvac`S88c$x_3F~}lUtull2U>Ai$P{$%L)L`MY$bsJN!SAE7(pKZTGDI__Q5uZ z%h~x0#8^j%tsdRv(zd*@WXevWcQTmabN(DhE+xIaJnm`zkrv!r(-_)I3;4_gp8r0uzm^ z`{(N9%>!k3Cu@4fYW^pvS2;sJr7Uq7-gRh~+W=KJ>L?a{fXKR8 z$KzUBK-ZZ@R!u6hCFZt0g`O;=!XzZcqU@M9&)m-&+SJr#V1<<=z&K6X9RLWfe0pNy4`BEa!-<--WwY}b=+Gqj%fAhA z84DbUraB>gurxTh{tyhysvBFG*bc&~^i@58LaLYOYo-9744^`N`h_(j4nAIV*J1fi z87+&RJM+a|R>-rk-HVrfz<+x&C8V~(fiIn~q4%`UrB zFI*Nt`lE;u+_rO*4b!rg+%Nq@1Qm&Zu1v02SaSz+dE0YA;YhM7oRYP8`rtWnRuNLV z0$svt;QVRUz%wRwh6o*o94#2lH*;Kf(2kEEImDoq+1{^^;v?EbzF?jZ6M~51(Jb3X zMTVAalO56S+z_8Dw)}i)Mzo+9B=rM261CRP5M&ElpvsZXH6^vn(>3zSk*l$36ZX=RB(sdRy1aMG4eF|7FfENx+2JHeHgq=e3!+{gT8 zDv=_RvJ@q~0=n(5g^Lv zpBSrVBQ5}el8fGbjzQuw@qyknIH?7wki64MRKYM6WD-P65 z3iiUWifMT~O~8|=+Fw5P;Px@u`q~OlEgl_k3Jf5zRYJjy-gdT$ZD`HTg)!I`$3Kv7bg8*Kxt@PA0tbmU-EkuktJk0-Wm1B(I&2Rj^`=^#K59z~Nd z`T7uC>rvA5*AvI6%0K&0@{~B=?|#!0UH9HM;i5^)=+)&=Lc6^9;p%C|5f9jH5Olh2 z2GH5Vd2{)OWMRg;{tupJb zLaZm0+RIki#rP$LP9S=D;6Ib9TtGawI{sf0o<&QKVEcM~9fjFoC zz-k(j($f!_l&79-Z$k!!CN0frV=-cBQ-gE8;!!8E^TPAvsN&0WwYvll^&Pqq^;5r-a~|h&%IWp{xiCPgWuLhNaCFq096HJWwqG@4=-nn`sjWi3Lddw7i5oXl`c`X zvlrz9Gdx1+l3R@%XaZRO7)xZuT3p8e(Q zxmeSfN7cfV$&6g!Ewh-UOp1JzVI`>B!*MNx1dyPHbqti1HWZTseOUZR0!6a>-)qSm z8Rz9h`OMg^y2>B8Y8Cc9k%Q?iUg4IcS+vXW^I_OkF{)J|2-p{2V8*I!{0eW$V6rrTpXqf-PPHW@%6U+S+5dKZ<1B6Z4Ci0X$pAy9SZb}!) z;h|}aR+SAyTyGFA2N0O3h6oGeffrH>nNu3?f1WSo9~p3iHC&U*?64Z0-i}FgOTjCW zd>$&Hb!bk=`eKus@y+jZF>k2O-9>!|LUrC)awReZPuK40be}M&xNGk%g%W zv8JNXJ0)qE2xi5ye^Exn3gD-UFQ&%ywRn~UWVJ#_LBp0PaLc>y(id;9ZG8>hZ;=1V_--}Ir!Mvf%AITS8?{uz7EyV(vabwzY1xFe5|tH z*Z@TbugKI;=!4DRN$96b+M>0C{!_cb34cHlABMd4ay2)Lu9qrdFSm!pJX zC#8#1^@wcE|2dMJ^Qn_zY~u~RL90;y-QMoz_yxz>0_^MzIdE?IL>^Q%-%ugJeifm6 zi<5i|f`tY%o4ELYiN?H};>cwH!WE(&z5CoXq5tGI!t zxRJ9c;ubZzQtTtu(pvI8HpA1we0;ra(x1aGA@A~_%>1$FnW>Cd>L~R-eUToB1kmnj zNN@EUNf4dU3=W-q3umek0pIAl?j4SBjP(>OMtmgLs(D`lJO4E3Md``OSs#<5e#yP# zWH%PY$h^rYiN6bmB3_d!eC>8gc^jQFRUQ%;-TUFfi@8wk{=jZ|f>Z3E$sTn8w2%32AOMa$yaSR>o#6#s~o3 zgyn-xSx(x|5itdMGg-vdAu?}pjC!TAjM99`Lmnu~gcW_lgY;k`tQQA>u;CKvVA%Hp zDqndZrZIBO3nQr6F`XKXx%3jxLy+uh6m_P9c}ti0Y9{NfIdf%^31${`i($d|4&wJCPq8^ku}FMZR5P$Xv7& zwG!Y0b#zh-+CthllA=DUVFMRufb?If4{ibO$5PzXpL7Q+`7zZ0!y)PXu!{%bVZ#w}bfm%uIPf={ zXdnQ)z8LH6;Fu2(u`VV#M2&$>ec3=B$G%n@4m5Fv>G|eT7)he}Wx1mVzP}x^X9R%2 zFvA9Ds?kLuJD5rC*W8X^#yDG;ZzV;4CFE>>eAMozm^Qw`w=cY%yU(@1&=~^A)$yPF z`V>h&7(991Xg?9=3QxgS!8lzp+%JxfrL|&FGz2`C7FcL{)=sTAKu^YP2}R$UzEZ6q zxj2|L3`MIhUjKtMfDzV-mzW@Cc#f_&#vajyqxVbikB3Ba2Pq?E;Nq4RZR4$x!p&DR z53!>ALkv4BtJN1ydaart=%b7{t!?2{oV2B7W)s2X@m?_cV0kyB$-yEj0e5Sscq>{J zi=pRiK68=BCfxzw4$Ao}95igY(bzZ{$V;3T8YUp&A}k=7-Y!;}LY3g*Lp?lplu)^xmX zHF?)oOX#%rdvFDrh=XNF7Fqe6Fq`U9eyRxH`6;n^DfHkGr|(P{yZ;##WQ^RAEcJ2J zsX^`l;2bXZiB`#!creNlTC3p-%{RzIcwB_XjiA;nK+m60ls(Z8)TWp4`Z&gwf9ns6 zer{Dk^i8c|8FNQ|St&zkB24;dXjk+QJ;Cj*pjrOe;UzF6&_IZDeqwV}zJR_KN^+U( z_#C9#>~)KD=gyD#t3yk`_P)Y1tW>m`<)CB*9S$jFB6Q%JpRTN)nh16W{!#)s#a10U zNaf_P3`h zMLv(>LOy)taO);lNU30A=`&tBa}woBZUq}%Ag=-X?umXjad-o6O$xSoF9?RB)ZEv$ zBh}llXxQ(*lR^Na=3!UfgoW#qB(UtpO^hC#khw+f!G;M?>{&0AysANL=%BehH!<14 zzsXPx?;ye^&qnsdDF(o&Dc#u4oDuZ0kBJ_?E*KP&kT`h_d3dYFABWaD)eO1H57?Tq zmrE8kVKp@~$!K(+7FB3=L5zwENMQywLu63$x(`!ax7jwV?jLtkr(V6$rQ4Lm{&Jg~ z%(2laYfQT-As2na))umT z0NSh1%m}&KBXkFYj~=zx58#z&`?6N}4t)n#f7X$EOLqOqAfQJI%Fo)T{|Y#s!jnic zQm$DpFweoyA~$f`!XjFFT!;am*bs4~wp*C*@sXVp7H5Q(_fr-!_AJp5&MOYtif|_5 z)%4vSzU9u-1~dZZ;>}h?mlqKOi*|%;Mly-)<-`B31yB-IaOouQ0Yi>^j*Bk{$SemLLf2s7k#R zbITBa;%#M3LI?sFvFQ?{(%l!3nMm)e39MLh6Anu#w!mRK_p+0OnL&T8#?^i^8Zoib z&u2oFI{hop0}3@;HEL52Jz8x|mv<_qzb;A~`1ypFx>Cf_52twMuJ%gK=J@IjgwUd8 zp#^ICLB%Cc2N$?eYxXuD8C*vMR!E`zYBFvMChbiYmt<#)`mvAZa`rgvqT6wpE}|>| zH6OoIS;c(r9{>iNb@@V`hwp7J8&K4=5m$wxM?9nI?sRNFle!F^+CdkB8Yf`(K6wFFdxy*7a37(yF1gW}1AH^}jqC;Z)(N?y0C<-D*ff}{Q zc##G_r= z8P=MgEAQ+B&2B<&r5goAy^rcxAG1Azwvgu#cpIyYEAZt*c6ylxWhnrYHFT)7MsH$S z+Rw8z*`VML_$y^bGGX&d_2kR|sG?l$fhFQYy;Jn^sqH@Nm#&kxc}tYq9}`i9Hn>@x zgvdlhYur$|=RQ+lG;O=2^sWbDf+r*8OvW4T4zq;oW*Ko#Ej;0~)`h!vU`aV*$as4* zIfLbeA0vPp)dC6E#%ESz8eW3t2H-)Qv!uYF(H; z2k+06V*gp%?I!Z)w;T>_qP@T*iy-Z?m*oucrbYjc;9j6H^ zbiHalDyl(ek?IS#KP-DF4i+iAhmplRr*z7;LZi*pIq*c7T~lq?0aXN|d{`01*3|%C z&3**-4r-zxM8M;aNqkZ~;C&(VPOCtA6!GWz&xXxx+Y2eT9B(0!FG|aFXPlxKWUOYi zbpb{O73f8yNkh%4jU<}HPp~rF=dSEzy-{bU!@Sm!@QMdWAEi!nF_cZSpu?BXc#`f0 zV}Z;}`{or90lYP}s~)IfOSHgcp1Yegv3*jl;3OGL)y~Bwjk*hq61cB6E;70&dr~3f z?pq21N8&`L!rMoRfe31Z2K+)nWz+fIJ7O-AX|Ltc?TwQL>~@vjo&&>*U;;&24sqRm zj5|_&S*)=00j@noCbc$A!E3Fb9;dYM!f8$(@J4i`e-}(Y!5kGEliNG%r>qdG6F3)@ zeU6?J+&+=y`nHN1B9-zKq{4D6q&jvSGbN$G4nQATWeP6!=!h#y=L8gjy-}81@ZcLz zAZKi2air(?;6|UYVL)e)ok1%vUoKL9TppJj?n} zV|sSUg~e3duPCG6BgeFL{Y3?h)ja0HgQ-y?7(GDttpZhnRD`=K2vEe6x3JGbn2-z* z==;C6hjO^%*L8LSuy*N9-(BgIDvP2*Er0qF^q706=zi^N%YvVujTE z*DfeVTSb8iHqX)P8s&Q8s}|!})wrvr@$}2Mc zKaExvb{9oV8JY>aF09W`axNjbKw14asTI3`assyP?|W1xGsNHiHetc2o<;KiLR3_>Xcl zIItxPn#HoBVoW0VRoExmaD=a`EpVaqq4n{^U!c6$1kug7F-HeptTksh-Yr~{?>FQJ~_^(7z8Y{sS+0!_vv z;Pp`K`0xE2>zlks1snzlojXDtRZW!N;c@X)sgMiw{%%)9ASti1Shw&qZ3#_l=FX}N z|Hfc)(hiPtbI)(>YfW-*ld|B}Msxd2&O><1 zvuOA>FY2!u4g5yPwykkk4K_EU)Db790jWapVx~y6r zpz}|#aPyM46sC2$^Z21!>tHR~R9iJEneeeFHmYc7(86;LY#{-A&BYWPoA7eXMVrTm4aEk6oEvzRW-xp^Y485NQZY<_RP4I2dAvM$%{VN(r@zVsgEyE42~r^n<; zMA0v`qVBkqH9tbR>Dr7C1?b3?TI#2(;O2-JXfWkJhA~7#L?GDEHzc-Wh?V{t9ERnr z4S^_ldz^^w_xE^7vdNSQ0M|HOcDXJwrE1Us#~dzDlgE|oG&v7Q1U64-`Yc2*?ilpD zV?`J3P*SgBV4zoQAXqRCJ=*{EneIFCPCPb)=f?sE<8J!SkQC4>1+6&3FT=1!wC^K@G*ImzQsgN zZ4IBVVjGLW_h&D%p!T`Q8?KUL7?r1?ColR!Es6Fns>>9%6!~C_8PgqBm?p$RQSF&@ z@8G^mSz~`J{HJ3PDP^eXlyGBxWl?Q;_ zw;L1%ONI75mp;8;9!!@*eU#Z;?+1BeZkX#-du3FdXBE7&W2fBUe+1xIL~k{e_1$aZ z`L98}nHZAh3`)EOgm0GYXyQz;p=nnxXP94F&@EC?N&aIN^&pesQT;t+^~34@OXw+8 z9DZ@EdZDp-?S)ZM=io^SDjg{4V4t};_nWYvidy1LEy*UsO6u#~ZuJQQqS+!*~6OHxHntcHip!bwaObtvTy{X2r9e-K>4l)3c%{Smrt?(-*ny#}Hew!_Pb(SnW zM1xZqy?v1jkiE{p12~=g3{lJG)VAxSL=N55V}|8*EDPhVIBa)@y7E*bb_(6fgtkcv ziz>W;;~;j7mu!-wu~MwU}+u>5p(lw;=UnhLtjLILO35IT37BT!|tUuMPZaM8~0u0`5+4(()qtOo7PGRh&|~ z+=ngLCGSt493y9YV&A)-#dV;o9H_w|=0blitgm?EkfD`WTfZGOtP0c4Ml^GFlA?av zBD_3e%=u7p3C%&Vm5;(7H;lEulvQu;=$ZhhEpK-_y7U~xLtkc5-c-qVJOa!g3P%pC0XSLE9el$`F*$N;25|MotJZ)n?g)$o#5{ z8NDM|x#kT)0zf4^KP15CN@aeF7v)asQ9fT>UMmTzVM85@hQX{xGl^-n;a6>!*bC+i z`vmz%ZwMH-|(0sx-eVxi;eI>RsCK!9D zFX#nt?!vIESVz`~nv|;YAxevNbEyF_NKS47ksm~AKWdUfh7cQ*V0j|#1ANpzn5Uaa z-ja{`%peT+n}GWD&_gzdXG~mgS-KK4I1s9)ErSb#eVoKUd`552bVDEpWs10*pvlrO z*2!c;M;e8d-RzBCEp9^qSj-6djt~+=uu&+XmnRs1`$cEGlB?U`Rhh*#xNNpPK1pw( zXhH)qVEkyoKNI>vT2yqZEI!tG)xR z(p=k_qA<|#>oBNYW~ma}OfGznzb2Uzeoe4MAbUSalG5vVGI;LSwH1HtLdy2bv@9tZ zF*PPbVh$vF4a10{GChVYZFE2#XWAUZnhVpu*F%4`YuIPLI7Y|EH1}HKu`blOm$l5u z6-VhfUPT#&dXm;k4s$Hf{RwjXjgEi_8T(T?x(I4X#W z97Ph7aSd-TR z1!h8=7ZEaQ)MC1-p@#~ z>Ae|+5e&J&rzxN*2wh^`2vc&)dy;!hs&4g{>^yug+J-?QXclIK*(eEAu{vVM(zhr7 zc#Zt;eQW&k*aVGDNWwRA{X01?gLAf|welBOAbM261dseL(qiC(`(QCHH_{DDCl7+^ zMcjm6nV|4uBHSlX8BtG~=;(psYfmSfp3I2V57d4N*SyEYvhZ|1>0H1RCECn5S;Kzz zlYn+suP^0=V-CgM@naca+w6zX@;zM5gJ|1x1od0JWNV4-kE4ZCsqfJg$>|!O`mQ`6m zTcBLS;M%SCK5H$B9DvWfuJ*$bOKmUcKK=1}@=kz8hNcWOQY#iYxsx)j;YZP|3v9>7 zNfK)OYDRkkry#GpiS5Yf=3i0OL)bW)$sgF7hs{8}_%s)?fB)N?m%p4XB57H@JR z+a^-5sYl3`IQ>;l#~M!*0+$C9X>Q4Yy(wGNM2A)tugj_c+&|fWB%p$}E4PLg^y|u6 zh;M_-`aJKhY+QZ>2NnUWPA{RmzkVawxv7AwNfM#S8sc<9t|adnxM}&4VFt7Q69&W> zZ+pYM7_$ihatxk;Zg?8}yG+P4PZ!+7{|C+C@5$S|okIlyR5G-0nVFIn$efS5007GB z1OUDzbIyDTq+N;RzxHBREqO-_y#*N~Pg}aqQBbWQz8~^==l`G*JMp#?)try&SB3U& zM7xjV=;MB5r0A1&9lP8^)HH{m?==`N0ZE1AnZTeMJ{zNfcytqxzmoNEv-0M*9Q*n; z@L&4UyU-I0L;+G~Y948Mu*@1iqAAsw2KKX1!PE9yFB{D^?|Cdn55qI2?@i{*rT8Jc zH(P9#8p#aDrh$l-+P#Ag%--C}olh?o9)Ct2((vnn;RXlur~`Sy%Z#|z{wvGMO+R*F zD-}R;5zc7~R38)FSE9JdT5}n0L6+14)4F&#Vr0DE05{CnZ0~}lfw(d%_s)`G(T6aJ zoaJRBgaz5`bI~@E(V|}T(8RRRyu!iZIu#8d>j%A4dOk4?7M9EP>-JnvLp&UoizO#Q}RX6dZtipmHr|u%K&kC%SxI%=hzloyBF_`7`6}wrjgL2lQjHFk`3`*cvKu=bFS6+4E*{p-eb+v9T)I>z7 zdATX`iLeVf)`HRKU?qYo4-wU9fK+{J%^ZmVae{m3{GVe_kY;CvAMPZzfxn|SNyb<$ zSrosbrBz7H7g&QOJ$s)^E+H9a@FT^Cq}Wn15QR4@jcrsqpaWi~@iGCdw62O0=l<XQ};@XRLW{SqVu=%4+A@=>xR&e_6wve+Xz}y z^izerQ_UO!k}YOz%iijReah@_$p-M$=pX${Ppc$G*!dNqGh^w@?ymAvLgDGaZJkkBb_9;tUapDyioD~0pLwu9S?_}}%x0NQsPN6<#z50#|b5lxs4KV z`(7~^N+&n-coVqvYEJSANYjBTS(L?qs27j(*79*5<07Hd&nk=P)kkLgScQs3)@a7IM`(YCuP89g|di;`~O*Y!RINvO(doF zLf`YdVFI;mAj~a-`~HR;CRpKABVX8W=k(OaItk{i|CaOQrX-_e+2oaI*zWN}Bm>r$~Zr{g{z_qH+4RBoHr- z@7uBbRW>t(Uoc0ui1uV^kjMA3H=K`Sf?KM|#FM}{>6(x4s$n)+{?4$F!eXSkbmX%Uj;F6&@6(oKsDE6H0;PZnC7&U7 zVMDg>TQM|~Lp)dAj_5_%Bp|4A#No}r#Z}~2F=ZEX%LN9p`bTt#cVTN#yJDAAm7*Ab ztYYH)yhRJ$werPP)Sj4Cu=V!4qREhkrN8HTDFnF^m;jF&gEcQz1W_0c{~PUW0s~X%64GWa5!d!+1PC$b zyC8V>IE+i2;mJ}KPiR zl}K`24EWtizd@zw{2nN>zH(*?UWV1A#?n)`64FQ3#7MZ35saqYq2<6 ziu?>^A4dOFGd&dHLv9gyZ5Z0(+6CcKHJK4)6LFIJTr=4aK`7uY^udzE7eESbh%a)> zFpdq!!=68ws%xMGR)LPrWFN-BOWZ|_35vPP5~L0HCQWJxk6Q?`jfQOO$Tvyw?yi06sq7e z-DZ7Ydh3lO&anBBwf|CiwJO+4NNPrbl8GLbr6?HYi7%@~2Znu3wB}iT-&?mQGGVG= znc%!C`u8@4oY|NHt!US=1q>fn$w#NnQbms83gE3tO$S7~+s_%M3TZK{WS?FZS;rnc zRfs~-tl7~$o|^H;t*q;?hNQ3)C*jZQ89*bZU~0OsJJC~sg((!dsj0m$lG(^xx$t)Z z8SIE`akAr{oA-J~7Nv@dH&HeGOQ{e?-N%$~9n}^@fW93Hd&M^yuV(Hdw)h=kzD{ahtFBybZJqQ@&cSCbyTy=D zHX1oGcddhvB&le78ZD)cU)NdA5xz&L-vd+Z4Cxx+LSGnhE<1sl!M4j>)nl%#gg zQOU7ib7sdlSD6g9$Tox(pN{G3LdP)~*H9WJYbfs{Tj zntQF3ZZ;U5q1}pC>V%5MHNw>%@;kTCjwDts)xVlN7v0lM9SjR+v!~?Us&8mwE@kMa z$LnRXY)z?c*0PJBZZ&WWnjrTH$$<(_k*kZNNC;KS%9%Qv#=LzrK!J4F6+eFcp3uDD z&?n<39ces!s35$E?8e@n)?sIE1l;tX(P2yXz%D3I^H}azHoG%2_YueOU863w2k5_T z!TNvAAtX_VRl#7I+k#q!m_!AmtZel@jjb4v?8GnCcexk1elVxoZ0&Ch8RpP$)fCCz zqZC}8h9~(*DJq6d0r0E2h-Bt(yv@z&`2SMe-j+CEEnJMd3{z5=$mgR(lch;1#8WS% zyu7lNS&m7&C{IF#y_3jL_X#17lA$*gURm7i!u}G<8>--LM12AR^(s8a#+;7@@WYsb zlUXsEO@0|O5jN{La`LsYhPY!^$Nou|zBH@b;hKJ)7LqE?Zps!nmhIp+xjigE>f_!N zaK;5BsP<;eOmbxI=Ys@hd|r!I>T)?I!JW7uo=0^M%9yIFZj^s??V5_*{jHEK)$ALkOo zX%Bv&|AH;Pbcia!IEZ6y7fqJKcf?(HA->12_s%f^yM2Ux6CCy^|0J~QTt)(`3$e<5 zb#gFi>6*xfX!95Pp+MM8%=xrqQf^a4*Nj*fsr(qTF*rX_PXn)1!+h)58ej5db?)0h zKSY3lGO1q~Vq*XNc)>ZG_N^4(3LyCHdoc!%;pkk5tnBF<2Wzpz(cFRGWMN zf0MNRL%`8c@P-={0T^!3db0+?+X&Eddz0NB(-899uWe>QJ0_R9J0ax^E80W@!?;*P z$Oco9qcmQL|A3W-`EWy)1E%hRICB)Te=`tm7mz80GtSy@oWhsjgZUyL;y3T{DAm{8=HZBNgpenq%TIo-7kWTdyRzt(W&Qcr5VvorntB?gotZ~9PNmI?Rx+Ucyz&RpwO&JCz zosE`HCR9{W_c9rmrxS`?9boGMrzpJ@;mwNnKof9PVD! zPlL?osyjr27z>S+mZ&$WqF92Qfy6}c#kIY8lBRO!FRP z6_u0@0djFh8$(Rigj3GETfww*RO#B-Whu%%Ym8^rhnrUWF3qJ;u;#c5Q#QH-di&Es z`PW+MRBAkcEZfqc-`2zBcS@Out%(5D*{KgZYzS*ZKJGWcDpHF(2CkK2$)R)A{UsXI zRbMfJ7IY)CO1Dog6{d5+$o<}R070_bt&K?w&PzUzE&v79J%h?f=~0Bzqki$FK0RgXbbixI97PmnSDHV$JK^la>9#zv|iDB|uV$;qPQCnrZ zO=M92g$+1Fiz2w3w^o$HeN0Fgy^HNCh8M^O`t(5q7lvdYwpPzPAvk8~cmjJYd2WD0 z;KPioq$8uB61fI?qr)PhOh9LDy%Y;5d-98k4A^Qd_ZrDDtu{n zY*|rX6Xch+=fN4_PFsdPcG_!|_Kmu3lh&xU>yg09&u6^kiUq!B1jSrxoo6EBrNn!R z$HwhHQ2KhNkRqqjOunr!ELpKks-97H023#^)9haIkuwikwjM%TP)abbm5Ovpd{>i2 zy(t^Vyx>q1Z7(E?EHJaxS~|v$U0ZY;r^lPXOgF!ET28hMUua# zZdhMI7Dz>Fn3-Z9Dv3*d{7Zm)obG}|<~t*CQEa`cD0a1^TaqVbMHRtO= zugx>WqZgkmDSjLZh_TK^k+Vp33~bK?XF`V;%>bYzBi18%CD17wbpRz^wc7Pm(^5~) zU{fP1fgoHs6)Pe84x)-uuUD!v^lZ?8RuOP%BFtVKLatei5t}z{89-LV%Z^f|a@kc1 zH{xoRJs@fZxZZL3i?aZHkNSyD8h)e1e7cV>)ww$Ba_)*!~ zwJv>cg>#;E-nfJlhfG~UG3qI0m3)9%*QwT9*kJj0y6hG+|K)##@@-F1YXt57RQ~8d zOIlb7yV3{s82DP+*&M+zEp{j>CKgjN@pv0ThBYQ?l;)EU5_~mLM{oHrVmNnc=0L(1 z-%C;>k)!dv3n768{eWF!Fph0j7kA7#v-^6>1hSc)A8 zoMLa%_zo;PSA*k$y0okoCf2+^Fqxl)TeiSW(pL(KcY84|PPx6Ck;=vEboC%OHU^ol zRmkFhbp4HBp$BC$pAU3ua4k|;w>O-RLwwzo+YqO732rTe?x1&qup_A&#Jq)(PfQPj z*f>sqikE1o_Gd$YNF*=9anMJHX14UzKZgFvC9aIO)u6R!9n z2un8awFlUU@rAI0M&mUr?(}{HG!4i|2SlU`@v~oiWSv<6`$`-B{V!Owz@C&$x_PpALK|NIF`oFo%2cC~&(R?SW zWr1Fm$hm4)v6rv z+me1=qu;HPB8$=3$FVudMu+qhf9_O{KSduHN-avHF`y#LU5$+s86y}ihqTs?SkPQE zl=XYXYZb;Q?G-EL0af*kb!VUmB}^n;#b#Fi6+E^-OMPnGM2?_Bcx_dvK80xHd9QVu zyWVcM9R;Dn2uTf+6jZ3}xiRo%7ZnfEjxRu0Jpv@JRV@kn`oCGV85gQC+yw)xyvf#3^xlxNi3io`ETgp{a!1=_}j`V0qGz{uDs8KliAX`&$#-P)U~a< zBkxQ8OWZC3iINkZPMq1quCh=x#ALCp4h%MdUTffBi;gU*W3XfNDAY3FNo?l9DWJHh zRMv|3%0N}6iy=e@{i+hOm_!C)R^Pq2Q681GyVkAY%;cl?9qX30%Ss_(zq$M0#i>P( z0QL+8tCLNCH|O?pLqjIjb}_dPjGfX)GI5UyNjlbtoGk08x^s8&fSOBT9^NtM) zC3}?#@xRv(p)_%Drfz}&OAaqXpW1!PWI<+WAnohh51uF6hST{kVlCD|3n+tXiG{n5 zQ(WWJVK>#m6(7!*oY(3fB8^rcrR)Y=@hn>3m%XQtJz*)^U8hsLkRXOm3EYOKo zJ6+jNZDJ4kHaDl6o+R9{AY8$8e9A5a1D@38p!q{+EKm6BR(W!9={t@wa5y_WE*qna zmbkkd-Vtwemu|5@4N}ZKTh6v29x_(tZ2E@xwP-DP*Q2~GfRm6+E{?Z$BSRaTx^0mI z)UL2tLlTZE1&e8i`Ev?>BYwWW#CyqmZlJ!5kuP;p4ha#I*?pda0hDkt>75RA=&KMj zh2^~xTpV^%sY=)I2%Wg#>`}a@(+|6Y&sMGYmpZvA9TGSNARlIh+pHICnE?q;kT#Yp z(GT2vS%mX#Ha)R3EswMBlKdM0qC%s+D@P}6pd0E4EY;z@Br8cr`O@4OsBk>HLfdR= z3g=|2+gHn5MOP9G${A9nHw$sUub8oG7>{?pV9z^EuA-{Tybw0v2ku8l7 zIQ5#abd^w(^C=g2dZn&`9yciv*8+Bp<%kpN#W(%)xsi7fENUppGY4fsoSSC@E3*vx z@wY3Dp5rW@^byIV%$;hWs7_3PLB{{LzrEAE-wudpJsK9Z@GK(+i`L1qFkQ?ocWfH!gdEAsFL9TL)$&pl#Y%(+&1D|sD}8B;$`#UrL%Bwk zbyteB(H7%Ovhc>fA(h06fHoMCZr*9qbvE!nus29@Agb+rlF626^qs}~S0Bi^JPQpr z%HaKQnm?;#DWl&RhT541s6Yw*iid#z9S+i!jqQ%znwt2{^oyQ9q-ao{^snZk8st1M zUrLi`VjgAOq05wpjuy7DS!eqga8Nqs*sumnOBz$=hoiX)2R|`M4*6QZXQ(Trr#3!jh~zD%OHtURHrw+@kYFus;N&3@#N&T|_N z8hh7t!c%x6-hG;q;E`;}-SGY^t_LJGJGZpga4COd&GVFr z*?sjFmx+QxI%NY9_WLUWu(%B1&cQo{QmS!3ak#BLTV)kT3yrNPp=5+3V8U)mnf2@O zwBd7I$V7v}b~Tfzz>VbdIj4rorROSBm0hzANG*#tHBZu?xZ{g}Bd;vvAHK=RE`5tQ zw@Q9mPZsgoCdw%83YS%bsTyA&hm*~G8I`Zj=b>64+u+;R{0eLzSC5QxJNZL~sr-?s zQ=v|JqyYgwy`FGY@hI?UF02d3QpX9eP#-aCRD<>B8Zn|)I40r;(`7&l zW6I~D2D@n5Cvxz|clo+{^9rA!pyDfnBgMDyMr=Ax|nrWSC z%G6U5>03(uS%iuxZpY<*ZaSQ!l`5}$4bGIsf|`U!s}%#r2CG+W;cZdn@CWw@z#5h@ z=$z@aIrqjC3_LxKa^`>!%{LPa=Bzq3W1agfv$te>J^5lLzeh=U2UOhx>Hk9w@h;|K z3t}Fm6dC!*XEf9tK7^gFRG|8pv^V+HfYjlCoGLAJ+Cb8jm#{B86NNb>xD;P{PL3qp zV4=JIv$AM|>H}YDX3$;w^ieJDb3d7XFi1mWeZDKzXl}^k(<4!st2}Z=E5(F*i`UfOBMJi8IXvUS4om!ap< zNh$l!xVY#F!&7}?F7gZ+l3id?ky6cGieZo6F)=yu5+&xJ!BpCWZCqSWgt>efITk5# z+(7x_tFapKQ`F->B21;_+7nsbpxR<}#VM)R3x2u5Hh}8Hu4`=7Uiioenmgk*Q>bXaQrb{sB={sV+F5+=sAbf*hm7DiKo!Q3T+c2;Q zh|KI81ESkv7O6E~yM@U$8*$I6^R=ym(D^#rvc9Ql9@kiE?cEUS)iH!gsysI`c((G6 z1P_CM-xvr=3a?17pv<+M8XaPctL82Y?7*7cFnZlI=eHK_-=aK%z##6qEgfEo5B@8( zGh&N6QuGxE6!RLoX>-D~5su*OFJ{4l@)3*3Ce8IeENNWBCRZ&V6~Kdbq@3$~(71ZQ z9BN-UXHTB4>e{HL#`kioZHBvrnAD(W0|N#hbAaY!MNqp#(u6{9$5JV-TwFNt+bR1? zcK-s;Qb-U}a!wSGU_lcj;q`O*|33t(t?r9LT~X#HLIw5L^H3AaLE8HU zqJt7hvUT8qL-({|VWf?f6=z`C929e%PWH2x}v#-0wzJMzX+1|*O?)IB3)W0F2{lbEznoSE% z&6dS6@#L*liH5l)74y4~nBF4(=0_CQCvvB@gnVT?Y`3$pRuRZOFgc-AL+_x*;0pQ| zr#%{?z>hePFN&Xlc08em&8YZB9vsrxrn*$9yF*kPhw^;s!m|zBH%^}7SeBTWu~?L& znNJJ}Mw}fDfv6B0IIMjc<8;U-%u3t+byLw}fb?_Du57PPCj1J8ZMf4N_?5xUI znr$BzjSYx%;~&63)wGYvxufi?r1OE2rgpSId)Qzm#wvW)Tw6^q7t$rpLITEt_S)Nz zouTKaxdLxQtYpdo>@+F)UIgO9JYt8Dw^pJe5&=_OErv^FrDQl6N2OdKAScL&gcN>mW-aF-}{ zr87L-&ZeDkWzBV-zOmi;8zn}r8BH9g5ZParUDC*c3(j|@3J;>H$&4X1z1HdlO%&XmN6&O()BQYOYJhi1a(a=0DEw z*QbKBA9%M@CzH`VbxR*kI@6EY7K`s5X!fOmQWDLMa@1N*V9V{%tM%bXZYxJBW3I6} z_Q~fXvT8A#8gt$U5^-s8C?nIpecM8>?kK6T-pVtRF)oNUSYmAs(5Q)fVhMRjIJJ1= z7R+nQ-a{J9E-5E5G)Li4xpyu@rv2lYgn_O|T3Zs))Wo2AB&o_1vS_cR-bT6oqYH1d z#OW5C<5JdV*HzI2H=fqIt9QKw z8qU8^ANN1P)IFtjh;Fo-Y+^zV^X zDA)+|@^GqzLgWTSL9|vQT3Rur77emU;HZ%myrl5N-^E1N(ppL~Ty76J*!K`AxjSS} zLgJw$>VMFopu+M61_WQ6R0g}iwLj_sByg> zM7co6P<(D4LaYSHLdZ5noyx>5WD~BTGOkA<887Y}g+}-BP+W~uin$0YcQE7twlibI zcTUoVdzAsTlwE+X#RoOveUq!T8#ti;)_t@qD$%yuZT7Hh-*PZ63c9%J@Fn_l0>V{O zz@}wox2nnDmizl4zz-aaF34$TW~>F1VhB3|1OtWiJYN#>7Vz=_3xZD z-ZR=V(5C;1abT-D-xbjZo<{{wX1w({xN~8UIN@W3Ob5N!TSK26ecq=^zZ9j9fdiG>eqxCnJl%}sKNci^bEO8S>Rbj^;m@z!D&v+E(T5SiJ%EbHwN zt|0$q+N&?Z`@6q2B08%TLnXagkP03sWkj#UiZ%VXybW}{`~FMb`m$|+^-cXlK|iY4s0H) zWceP`z+v=&llyWF?~Tsm7WY`)C(qEQ0P{dy$@`ZKTRcSVKi`95qn1sYxMYi-m!{}(vZWT@}KRK1Hs+&bE?h&Ax0CJB(mQT~*`#)14>tyB2w&TqxSy$@<)$* zY|~@p6)yDP&#xUA_LnOoj8`cdbe&5#V-Y1JX>_;73;o)a-6mO;tUz>I@>1ZJg^2Z1 zzT&Hbhcxwa%wse++`~TV+Q!aahCo+?ehEXx6wa}JPd-3;%7E>qc9@C(&>z=c*3cd% zWquLuchsLRdc55#X&iVPSNpF_T$faZaXW&=S=8S1G||=oJy~ctYMNqv zBEq<0A6uS32bU|9WycXa=>7x1(_ zPlzR)_#Gugfg;SiuyQB{OG>U^Zb2HXY0~;GGv&naM-89Yq`>88g&2+1Smb7PU3cW9 zG3fg{5}JD{IqmN+{Y*t_!Px6vwpd^TJ?mTFalFSvXUhp{pUNW-RaQvC40!#TU0 z11%9(96kMZz7G{302#g)$b=X}tRWWs-)eD}zH4R!*{F66;V#QqV053mHl(yP9=Rro z?{}XOdF+~4sCF@1utdmaa*z=%!+~W;BEut0$#xQPe_e6CQgL5doZ>Aj-$Ks7T(#Uv zP)RgEbJG)r3gdkpd$76?)O8>0a&kQi#=au_&vmC7x|B-uNT3^mtITV>t+6xp%38&2 z;q0JILtN>4Dt+qC@3apWH&|%M1IuI*7(ziJ9@155FRbQ?a!Ia1DS`e#6b)Unk4G)N zscR4&1L7}g#cvRLxv|#bkWThf#C9jc6tAO+%g$tLxxl`Gza?CRPYhFm-&19 z-)Jvx_w3YJn@Jjsu(wxs-jY%wMQ=d6pP1e5EQM55ZSPVrvyVrq;%&Z~-A!5ZN4e*a zoQI?1F-rcwv*}zkb z4!dTClF^AN?8aa6J?*8zQV2oPTe%Uk4|87te!rP026muTUOyCUosD=suP#9;Ihog! zSyrWUQ@eGc+-nS3x{d0B>QbMG z1;k%HY|x#ErRnT1>%3?qx~vdX`;6U)#Pq(LoSC$O$xd6W9m0JB@G<`K}XB4E(5|BT<#4dv-zGyg`6iqh^*Mu+J< z%sFp)Xc%jGBGRy*BQ?MwJsyuYLmf5BjL2_SOO#Efs2K+1s=2>QtqX}M2a0L#kIAZ( zqi2I*(s5{pACCuV^_tFWGiwaNQX=+uEpF$oGmSBJ1gty9hD?wTCri#3qNO1T&{D|q z<(1A=)LySBW#WPRiM(!~B+jjB=`TfrX^yb`R)CcD~RXj%7q@VLkJCr$9rUU6;w^K~&Eidf8Vb1wb;x zUCg!52Ap!DD25j2CJlsy_DPMT`Z^~xFFUr^r{~NN&uv2d>`XdaBtv`u*lG!F!@jmC2Vsh7`M@iko9LbB zA&LI-bHpU6D0Q&M767zQlH17yrubGmwrVu;V${QrhPj*}y>)6}5&ZHFO^U1NlBSg? z9H4@Alv&Dm*dsEIV+_LnC}{SvfU48Q3rP<#wpi2*E=?^`jm1hQpP9l@AZV^+S7|97 z(0}JaVvbgDJh+M_N37793(%&!QDSiJiIIFH-_D#hx+T;ekgB;=eLmAZmgDoaMe=Hj zX@q~+N@U>Q)k*+z^pL%ZN69zmfs;?i3-Xrga1A7C(RQZ^IDTEHgir0=YZx6^&^FYC z^w_?37&CfHwe5B@g%p>m67Z_P64d+Sptv2G&g6f@IX8k^l^BneiLTuV1oS35pL{#p zB7MEZ`E@v5lHG$d9&ailohzglyu-S>o%Ke)!)9KNCVqyVi5%c3k1vzTzsdUfz^*XU z@6<0^luj6~==+lifA015A`Mg5;gdt|d}?xv%2D)|`*Q?j!>nsyQNgSCI|WoKy}Gr| zIc{)oahq(!W@emS9(<_D4wFMT@8wH+vhbpRieNs7C7NkW!f(Yl_p+5^e>(8S^x6}n zE@VbHMEms+_NY@lO+4bjZPEdDOZfOgmOh6}V(3!@H(!LaL-xx)K~n*1x=y;r6@9Hc zpl#qBSwxQ7x?dt#LOGQup?UQ>rKW6y)gze1P9F_eFa>V;!#rmIKTYO*2dD@BOe=Jm z$-TKhI@)a7a2ji7)z!Jzl%-%lSt7(({!JehmbimE9Q0nxW5w&BU_n!yvgWVen4Gm4 z@V%7aYpVlJ+96q^*F=xG3_aSa+XLYqa(bNY4h{N9EEaM$u2$^Lg)z3pdXPItg7R%7 zH3BvBBRpIq;qdSI>00h-0BTlENtsy$sXrde`p}^J)q9L}8vc?Y35@;sc*=q=SmtCW zv1*XE@`k0eNuYm#v5wrqe)tNcK=|4~FX*^8Bjyp%m;dBRn!Iz3gM^YA9U&Wm-#2dW zlb~_zp7BQXY+ik!@lxktER8oislJ#U@F_Pja&OkFp#WQ|uvt1o46YWDm=2rMzMQhv zZu3Rj_530x5_R;tN{nJ?ZzQJNOTLv%ujlrRzDZ^>I+nVVNt z`Z&@H*wx_zka)7p1Oefy?Ew3oLuU$UGs&@a$mmS)=g`J3b7dNyOr8!5m@u3!!i?46 z?K*qUo0x)0xW>?-@l6G4HTVcA#TWt$2-)FFj%9pmKh8g!R=%iajWksM=bf3;X0&`V z--`Ie-%FO~>VKTn4n_VN4bPT0WmFG9PwE?{5;lH@Kf98MY*P>fY2T*G?BJH#M7dz( z?iscfB+8)qQ07g8Km`_|#-T<&g8ig-Dm6<@7Muhz@z`peDYZYx-I48DFqQ)wcY&Zu z)u_R;#XG1rC2eU4W9a@yD{dSs4-Ld>M^LDBJndR+!6I5(e&h@HSu9fFm{(5f`c@0R z@rIoIs~d^Mr@ZnWB@D3aZr5(aPgoRSZptwsyRd$JYk~^MS~y=`$$;*VL5b)TjWe7r zhcsL(x3)lM({PGjIkO`r^9*qksa0aw+ZH9;evlqop#~!4RdxV1>Z$jQB1Mhcn=^)7 zYOZ?#zWS+#|G9pfRwjS6e-q~~Y$1{L@FsE2qpc^LG9k-=cFIy*$`HMURy2L>P!E`v zPBW=V7}2fhe};$G2bbG}_+cTqV~Fd;c?QTz8#S6Kj^J$R-2@}(?zIl9UUzPdAdXX} zFsf!-A@NS36E%>YEI@WKm}7*PLnAg75b__$a_VsAN@LK_XPuR!zSB->CWHPPiQ)Pv>P0^JT+$DYNA2_Wb7t@y+k!|*nF-Db*q@Rn1so^G^ zHm&PQe}er$3;`J8x}NJ)qc0n_>KNcET&RhU{+RbM`-N;A;Rr~~!~)p-#SBo52Qv@6 zuC!H%TcW&|9moqh=uR_@Au6>uF4J0MOwr;{VWJi6nwpIGUuA9gl-s)+3lo~zPu-9c zT?q`lxYO04o5gk%`ZAEgFEPTj4N>avI8M?6e9Hk3{&LhHXkDq9JyeJ$R1dN@V38cz zD)6HT-jLt46TWXf4N`KfAH*a01Q_zBnvqS6mcicoeRaZHTl&w6dhFXbrrAz{8ESkw zwwk|*7FFDgWS@Mls22M1zg*vx|CBHmC=`!Luc{C44a`8#JiwDwM-fLfwO4dv{yM=F z%c5LfGo%32w{**M2I0Z+6bdVOLqkdGC_4`B#QTaSthNp3+J|sbPEUI<<@<9QVZjLe zXP2>bz@gQ57@eAS4)4Z0_s5M+RA!h$2p~s(GzwjqP#R|b_p6E|+Nud20)VnZ(#a7r zC(ymT%mLCbL5es=JcT^5;tUwAl!}ey%zX_I3ax4(%q!v`m{ua96P$LVhsER8{8heQx#H4u9GU&VBRH31zIC^(i_HO6Yh(|RDy zX_FOI?0x8|PuO+oH+tl_zWjlTk9;c?OoRdNsznBku3p&XdYq3Bv8bfejUj{jS5?wCORmN<*I=tHQ? z*+MWPbc}?%E=smM3+z5nH3&r33HGR#X9jSjkmRSsj~Fn+GI8VUTJ2RXS4OB;Q^^OQaJ3X8!mxuVAosAz@Mrh_IWi7LM@l{PPlvsRR#jW?$-vC#b2MNAz z(^+eD!@{)E|CL3)J!(LrtrtpZNcnGITJY0#)n%1gj*q}k(_(??UmYK2UrPKXUK6Jo zK`;0kizicD5L8o7-ajydO)jC=H7Owx-EmCq(w z@&pvO1%QC%8ACFRjI}$HqUY5nHQ&*oiXn8u%(oA5a-J`tSa4O@v@|nA4|VW~Itg{H z7$%%D@)bx@)@;AY>=+5x3bxm3qQjyFwz#9Q6cn&rD@7HW~1sXM0G`o_i)ajiY zq?WT;vU7QS@dzu+5!gLwJVuzxZyiVjGD%m`z4$;D)S@`l+=iVPuG&sh*JFU%0xpJ7 zq@)WrM-qA7tHQU<>sC;nRDL=9@i%-=cmrct{b$yr2bcMTiR4k{I+;C=z6H8~5}R2$ zP>&?;%=|OR8BM1nPkP`)CO;qC@AV6u3JcH2?{tg@k@`ZN!FWz%QJ=rGn+$Wgbpk4P zSCs{zSNK~kR($TQnfRcyDC2hIZ@E{$m`hGQ7Ajv}t^o)^uDLJ~k@X+-q6L`BwlZ8q zC0qukcWM@Q)2g4c@go%k#+y6ZHSEzMZfj1J>^GGZLjrdw1aC;r#a|*C2sX)wZB*Xy zQpw@rkN7B8g>#ZV&hMI75clJ_B#~Y41H_4!2g}73IK&4$4v#JzRA^aIe3CQNcp&&< zy)q8dnt>?U6q`)>=FhTsblF|*C9lS64V2#EmE^s>Yc1(^K)E)ZSu|n6g3)J?X6$Pa z5`+CH&-F|WFQ2$D#5}4+E~Z0~r*_QIr?ME_;hqpTg+kfFmTbPc_5AyGA=G8gVUHYM zv8b)6rtDBJLX=LXfC!gZQQH`_jB6K?N{V5MM$Z(PR|Mh50TZ1dc5a!~g8YZ3Q@lO{ zmw)TWRDPBg3zv=2OuKhk7-a+~>b&PI8TpP2|H<@2OUFKccA8u^8#pfwp0QpjLIXSE zCQ_vz5~Pce3h9~>6+M7{8lNN4F95rX2doAFO2+VbdA^*SNo0njHzyyhNF{;c* z&sA~KBLvqQ@ikfmi^V$i=E?tOs3tuhQR%1*DYIW%oHPWj z{>*f(9Pt7?m$)Z$(FgrZ2d-;8Li=F5^c2yoy>gu&Dj%A3&f$WLYJBYxXDt#4i=ozC zF__GXxaGP$@zC0~tr`Bsgl7EdT6HIAaR(zb8`Xg%vE^g0Rlw?7N03s5LcdmD_H+5@ zI~nJkM5bEP)Hi^SN3&5*xFVlG!6v072QPnek;S$VN+zEOdu^+qYQ0(%EnsGwIV+` z?EV?)_K-1TZZNwert|LZE5Jt2NCIb=&rJz~#|KI4%gVAG1-jKl@@{b`a(gd;@5E9P zBvv|G5s~_VCLkDH7DXuN70*^M>b&>vehbhjbK`0WMMVS7wUJgg#5#=6WF)AI@sKV-8 zK%V1w`aL};UH;t`Y$Ly99Lx7&f=Xg$tNp1HDG;1z-z2Wr81_dKq6}VxR@8KN$By&dg zjYhoJCz-z_Y-#;|KS=S>elIWCedQ1dY7SFL{(fgZ2vi(mFSu49nkc`#^}o%+LRilP z^;_-LRJd?RzVp<^i*E6VcL^c|{C1-zF<4arY*55;R>wsc3n8CY5p^9)BH}$iTNyKl z;nmo2-pIh4TT|@=a5EFwNizt^xeKOqES*}1>kS{8toA?V?0!KMx&Dt?NJIZ&F`=?V zY6%t}HAdiLmU2r&F|G2B)BMcuZ!#p#&aKWcgPi%y7I{L?6lkb3e%;I5whC=1jOSW3 zFN|4$gdM3kzQ_}EeT{Z@;DYDoOr}l<&7!HndK*|=4@>z;f5CK@AT7Wwa!hAfSiMI) z54qA+;sFiV>={K4JrGq`{JjG?v~Hjp*W|IG&2h?$5&TM>$@VBpN#m-%eX5I2glmIR zkP7YpEMQfnm;i6QIZt9vAa5Gq2omT6qYysbV#t2!eoC?K%LxwQYSEys>%VjHhlnY% zO9`;1hGo_$NIVooJ8biLaS_vdQhRa6Oq1ZLIl^Aa;Sbd8{>V^FF#?eXDm)ml(-+kR zu>@I*q@C1X6m~@~5dhIyLR14y2Om-3D2jHDPsKmqO(~Rg5X&CP$uk}^UIxVa5t|fY zPuB5rN7wWxvXtV2YIjeS9`Fap z2?ki6-tpv{Hdjk!`cSfdE%o$4kY16HL6#SH1XrBWHdGiAIysZ-3x8jT(~U=)(7{Sp zY127sFwS!Dk;?WWalNj%%jDtNPj2uE7s&F#Q9UT>bIZ+G3l&Z~8*3xenuVLaR|2&p z_FiUDC!>i4Dl&&xC#@3D z`0FANx+or}mqJ_4^6fYV7-P-8YVOz#cUeC~8vxq#Ot>-wLCeh+@#fUW63#`Q_}GJ^*+Xq7GD3GEo~j z8SJwX=q8a&nJ#9qmOP89r zEtz6{92Y-s_dS5Vb9N8R?3#&!%o^kdY6}k&JW%$CJa(g9=>9%foHviR<~W8*Zs@VP z(>%9T9WToss8_z2%+fQuAQGdsf z_0S(TK>;(&3`r1Pae_{*t{4(LP|Mo#Ka|tHq!Gz8WO#*rxIMpJ)M+h~CeX6{(X_pu ztvzHNbQl8dp}8YyD&iICH>4dQKiCDMK{Cp`_*&RnNgIl0M<`hs!bxNd4{ynfIHlQO z2~yd9rRVltW3xjpOs$pc$sXue9V7^3;&*AQI!iL_I#Hh4LL% zh`rY|zH7hA8E?2B=SjS48@5q||Hl*yh?G00m$C&vbLzvaVGVGgkm}X}L|f1D6k}y+ z$>m;%fY9jiraYKRrYJSBZdA^efp z=Wb+wAfq!*34u1M^r~Gfh$YK}2F$4Lsrq9>&_$8bKXYpQGSJb? zYQ%YF2ljW0{}26kfy9qyW0;xU63T~*D44d9!i$VjR21)R|8by=ct+ydYgDB={ZMG&0Irq~P!t3xQ1;eiN^MiL zk$f%jv_4yv%uvaH0#kG%DDNXy`U1l8t)6uS+jrrXBwik)IwNW-xe>bN35mFpm;QrI zSro6zAY??>fQM~RlbqCVSqS-SCs3?ClmIQ)>Pl7K;>BMDW+N34s0hLphO;UsrD=1K zIjMu}Im}2zwa!WZE|Bef?p(st!xx(?KV{*;oUk768y2FxArvYQ@5d3Kfeeh&g1dVt zQzZ3vD6jQOU%7}1@d$t^fc&l%JUSZ1i)RVSNCZLGT&0NthK3mV7XS0}Li+*8Z;OMT zyJgiXYkze4C1V6!HcJ`E1$6<5p%O#dWOKW9*=Mw2lV7K#H)=At=XIFVpNiVlhpCUE zx26}-CFYhiu5h&b_vj+fkb3cH!>?mh*Cq>euqZKN!ntA?uSI!0{bzE$U8#FRV2(^# z86Re=xTO%pf~PABwsPkHAISBMd-J6)rGDJ0i+vZS5k~u=1M^Dsr$mv;I|w9eBodHd z|4iHg5^pYLzUjH5&2UyG0M3P&nb|Yltnjly1o$kTf}lawkB|@_sm}Ezm-ze=40%2= zh0>%E1RA#C-JI4XpmI-$n0l(H5}^#umOcn1znaCG>KBd;`J+?Hn`I)=T^q)K<>*PZ zCI5z@M$YOlmsYSP+5A;4hEOwMY@e^50I*xHz+~6X4?D(j#`y>k=RcUfwD%wp&TA64 zmp?}zB6K-F;-}!cSEw+!9tH}n3R>b#wcd}`#sJ+!x4v^~+H|L1J&K-6emVqi|OtsW8L8Lxi6rT2V&0nJ^QsAN^KhO;)~2H5}tH!AZ-+Cwj&7TV?? z$jz$^nTw2$a-!VNhRe3rx|h>UH|i~G8#5&JwTYkFC>#u6#WCxIdq2YLk*geVFBhum zyd01btIA^!SP?=q!U2VfR)O5I^aPO2b5oY6Nm}b@y*hbSayqY)-?jk|y*&`pci8k4RJ`xbPP$;xayw4U{=_YS6A5a!rr*#iv zA3rIcTMTuv!lqh)Zz|O7`6<~CR1CVRH;XLg;)a)2#|FDpw4`vXcjN-JQ37+9LICuZ zkg0p!llN|?r*+v$8Y++<=WJs{x8TA~@k2P%;{{WOh79_Hdq@4MGgoTuc!txIR!R-8 zPX08f*Br`J(#WgC2Ew$qCW0R&F$sR4rayJMFmHUl7xivqOJ=MGONwr&Nc7i`gfm+h zsO_K$P%i%f6Hzh>KB@^_(Ldz%?+pr3;@4S8^=NSdmfNM1L9L*6iIoih|EFr|_$m-C zBo#s%u~UcBLmnnmcMW%VAa^MxNl^`;5L$8mbFu@_Y7pr2>vg{QqZUuF#HPL9z|rwzN+DZ{H6a908$W zDWnFS?jF-S`nu8_Sjj+;=W>hT%UtgPymk`q%1VVOi%&pNl>#SZk%bjz&WL}FQxQ9B zB50{&NpqX>0uHB5!v21+U{o0*P=xO8XF9ARj+9hkg)_hyT}dP)Kf*Qg(_dd2#oR4s zBUxb3VtEt`KxKjQ389kXhfS21yxkUY-1>+r=bOTaYNe-5FfJznWP^7c@5$){#o^+U z9ak%Qg4~Dulnoq{@KQRxJ;)!*P&CaKo*8;)fX@e&3LLsqaX75RJ241+Et9s-)x~Hm zoDSGq!q*sP@vnLK&j<`v;%tjCoTg7pU{H18gwXR4xfz+Xi8SpBrhWAyYVo+V4!|jQ z$r2W0lH6~idacpN;F9m?hJ7-y=f}FLk!uAs9wedJ5hE zUJd!40)##Rvm~Hft-yK<@3+7?0~d@=H?~w31{?`j_LSWh+xreGi5+E*#a#|5s+wS9 zAcW)j)L?UbzNo1$j(@?J2P>sKfFB5iUXchbJ^4iwle^HvudF)E!wl?<$yF5xqEwn> z6LSl1rNmVYb&B!7F*vxSeWM`Nkv~66atEqDb#TXgQv%%lBgN!Lv;Tb^0oKK@u%SqbCPJtGKfDv{V_+eG^R#$|S9%jEQK;MQ4NWhoTg2EqhIWDSh^&2(_ShQ(Xj6e#NzEl4Da|DybOwCE)4s~o@5^B z+v0~Ga&ih`D5v$)J#8)hM#K}`*-6m>u=c_egkwuR7X0X}@q;0s1%xVFap~clS@?-vEVXG#)@-XRO((ZAkZnOD;-%oIH z6D~ZwmU)3t>+Y4Xy_5iL%Q&r`<^SyF6cEHC(ZZURevpiOy@W)r67y#datXgGt{bQ# zbb8pjKH5S`p1Ad)stJ^(TZub~YxVh+w+82#AE9`|IW|KA58AIR$JpUcg+wc56JnnU z-(601Iw@4bhc1)xWCJrSO&E?uSQwUHI)%sHpW60JgfJ*gL>>_v?O0R;C#iLQ5jYbw9&_hZYzM-fL&KacxT$ zKUwAwaY`NqU#k?KW?$?Tj$64!4~G_=q7JTq(Aj`D;L@fD!dR`)u^?hn|F==MKez+s78$Y=NMcd$20Vb6sUUCwSGW!nDYhUaiHaL1OF+L1=(I z+}pf)AO+90={kqhD}12aoJxMtx#Z))*RrC)DyHTZf@8QCfY2nAd=faRLgQX@%MkM% zBCA__-2c8R@kRg3E&3;x^t6^}>wPL7P~r(jiy|f9+wwzC35MeVfwooq=f4NJKKD&* z*J=9BNH&m7vPDh0>D>upIWcLZL2q4hC&$=(+xeS=7?7o>MI!O(0IAfq1K$8@YENE$ zkXc2=>2N9&T~HRm_QAE5)8;rmH=lTrjJAgq)j^5Co2u>F2J**_Mkl=4_#^~uHo9dq z!U$ljJRQe0$|DW-#ke2J(^)e^f{RNrN_S9G4Vato)w2Z_&i?hf%a3F3j`zd-*18@-*e`@y7eW&t8X1z{eh|B>5h9C72!U=AtA6F8ksI)yMo6?Rv!r*ALQshrqiCE zjbpe9^g$?N0|{?E@L2pfNx7Z(e3eVLLWv7!a>!rZ|1HiVytkY)L7q7xAmke)OTf5% z9u<_Pf@;DXUHWQ!@o?)YwNkCSdTnyTxS_8f911!W^CJ>(YQo7dz&uHBp6`xM{5)lJ z?8JI6udpB|{C6I2D)t z9xYMTVd}_HlL)3$RK;N-7g*gs@R{9Pg%h&0d6r>jP9`lFS`R=y_F_7JI!9yK{;K_k ze+E_iawkZtM%PDQ=~he$TZH{{3cjMevdq0q(!L$?Qb-7tDr#1M>OQ9&rofojut zxN#2i2Dr1Ba`rL7MoRA$`5#gwpkilA-_d zWU}X-WGmw;T<0A$B;n8p@e^L>a)e7h6$3>`p$?H-t8-WLdJg73tSm>b`(}lldgZ$% zV6tJ!gNHd3m%>EQYaA|{`Tl2}ruxF;^L56?;DQ+y&?Ug4;RA%Zm>^4&=BxKDk)+ja z&Q58>fw9p=<*~w&2`SvwF4RV{Y>_0bfT+>poa$8+~UtvnM-EFyZzQ}M$X zdxc749~|0MP79yMJBUGzDuV?kuT0SD*|03a5XR&tED;Mty_hnO}x3dx} zjz)VYz|^Q`O#EDAaRfhWA@~GWm6ZUo65m4m8&VKD%uPd6w5SD6*MLL;b&HSMJ8l3N zHA@MbcXcYwlKw!R2=i6C zGCB80S@8^c+fk6^TA~F-rfP82dSW8kKM~LTbAWY|O3UstAf!=1RColC%fNv+YE~eS z7g8bLO}_<<9(hwfXSm*EtcqKNE6>okTHnrMI8|Onl_geb46pMKYx8nv3aSo!eD_2Mgn&!b} zG?!Mjr$mm?sRyPE_dH$0G|{kD9_X~EF_-qnft!ERvyzbACL8J&_E!npTb1IM2)=*f z=V$@*w{{QJaxG1qe?Ak7R!?eVDNP?^L-UyD3FD6X>1+|+^-+tdRG5%O3=kXGXUDee z1%5V+n#JMi6;QDByk77a8Ota473VGNo`NtbcC;H7$=fr8;t_zLatA!JlW+}XtMRj5 zZroI_lUOb_vazjb%;*RjnH zRHxKicH`>Yji?ea^)=hPq9Z=Nn0|DN?54^E68e2!TRS7snpVk@izJ$Obd6~Bg1jfR zlSw0E&=-!Pf~nv64}{vXY^uXo(y8|dh{sKqfcaf`U}^_RZamG=Ha~+q3f2Z*z{6eP z>bzh5rg*;z@1135_hNp5(-PSE*o;?fR8WQ!2HT-@~=`?dY|IGY?hm&B~k>0kK`G8dh6 z!=3OxYjY)|_DnMj;Dz;iQDyrpi-F*qC%Bssb_WrMn$_m0Us(0LoVWPyrj7)j*}$pu zltRqhI5V8`)73i_{IR(LmYM?=D)ZdIn(a>Fu~=4}HF+81u*FcCI1K@wj5MNkWG^Xb zsyg67vW4x)pknYy9RZsTw)gdID=um5T=&Ak4j}%FSTNU~nOnuEhdret#ktJt?CI&z$MB zGj&mibYo`nn8SIqL%1R3>=15vb%fFVfu2+29E;=!Eu6Y)E-+vp#NK{ftXewTBavBF zbC>?B2Sm1kaqEI(8CYznz>bbY_%oeVoUm&LO@6d6$A&6L97_ft{AR%M8mhq5)*XA6 z3RMXkWdMlAauxuB*C@`R$Dzg+m3&?c{4CXGsyoY|!X0{*xMwvh$@cRr8Hdv2$ptFG zrL(x=mI1elPOSvN-f`{N>luzGiy_B84HotREVB^+*5;HfHsaa+kKmR`ewhP)@8hd& zQex_ssy69d2c`yJ1sn@6YSY4tU1a;fGB-ONW@sJWUZ_m40v@XB*=4B)KZ6zdo!sBX$ws5) zMQKulS$EL=LUgns4xZ_t^;M2C+1#hGF)e18*doF@S{P#8(?Kw*VId7x@ePJ^M?3-YwSIz zE<$MOV{{a^g@9+Dp|BJ=?lc%7kfY7}+ca(~8^g8R5pk*H1-19#o|82tB+dT)wCo|zYCEg{Op z=!rGtZUs$L%koDj6$T+Qcw~=^gSfI08uasWOOGQvB?-zwA-&JS1{AZeOqvlcqLyw#q zSDe_Zs^e@1Ts$8pB!2e}w~p=@O0&X(ac3cFHJbAU5f(WMAA#jAhrqg0H|@0`gzr%C z22i5E@_w|d3;x5DX6#){aTBp1+#{GNf%T!VB zWf?ash^M+K&uc%k18$(W;$x$E(f_d?{TO%EFD);K4^|X^+Qrj}Rd3+g^J3D_ukww=-w z>Okn-uhMquQ=eoIhHQ$Q`flr17qw#c3{aj&e2h!)BJ5Dl@UpEoo571`b~wjbAF{~J z?8%~pz65sPQYbTgL*x%Uhf&-$R|MjAl2zvae>9I?I!tPLg=?OBf5$UBO!PE)|Ll9Er8@tj# zcNo-_sNPQlLd+W5mnY=Vb0>vYyIOqI_AX0nTclqD@&6+HU*`1jPgFIq!b4q!tTZlgrjXdUG9`;EXQmrhKyKBCQB7AZF{S+K=b z$!fOF*xqx=fII5emXoS-a=39h0l-GaJ207U&gOdp15YRAJ^@|~J|8ljDT8j(!qmsU z{JsjO?S6A}gIfn4D#k1y;Ggh#zZ5JD z{c&SM0Uw4hmdSG^lnUhXQ&f_DfKm`Q;-_o{Bsz8WnsF}2jeCcCW4uB%Isx~yZj1EM zhG2J5(i!f7b#O9MPKi2RpOJtFyHW5X0@??hQUn!;!ZJYPg@NC|Oa0XttC|T5Se~a> zQaK&j005hxUd~P^q~1>7wc#(ftJZdhKEE$}rtqm~u&SP$(h;5&Kh*iqB+1>(tkfH! zVL|$;K~&)fhBWrlNF85#9>`f{j2@q;^B72bxPe{~zB0A8xRs)lXy`?^-d%Lf6}N@G zL==b8>AjyEf-(ufJl#Ovm*>czuB)QfO4uCgrfy&BM4M^s7^awCD1ozY`1E<&TVlLF zrPTD#BdhI7d;zUgU&N=(WjiBzWqS^u%*HXe`dAEWaQ24G;j-i?zDtD`asw5Y7BxWP z?i@;0<%p_d!MV-|=|qieU(OzZ0WulyJ2PYV9!5 zK<(r?JdHd<+J~!wmOViGGVMR)?!j!dehyr!fmn+Obf39& zUfeJD58QN&%hdpgc;kPFqa4(5n2nq`yv)20*Wx*Khnn`wtk?C%{J zij{Bf+<*=_;FaERn&xcvy=3&?3W@6lclb4+H#f`L6yQbyhvDz#=AkLo5^&SFA=#s&faowj_at3nZ(MJYtgNbrol+7RR8lH+^3ImK;q0xl?G7c)^+}o%5E&MP2 zLYFzn2n5EDEbMHhR;}1U!Kh~hwdNv^SIA+^`tP)-5qtL);MeDZS=?q&@(y13apFgz zU)w||9ruIUWu9T8totPeSJTIr)X7Z?| zNDosV_OCc@fmHJ&v;bas+lUhUA%|a;JpaSDc~>&ppw9Eu30lK;UoXLMC*EwGA~O7)AXNI1CgJ zMF6-f<;^|vx1}aoA4=ynpZxwkuzPB0J}aTmuEec@DC`q$3?E(hYpnB$B2TJLbMe+>WJ^6pxQDhO^TyFrVLfO5=YuBhJ;ZC@>l_g>(^9 zLZF5JJwPmIk1DjGG3=MBn#4oN)hK<0!jYbv&pZ0JBDGMJ+FI!G@V@wKcN3KUubwY{ zjzPj)d**E}+P@|-$p-c1KHE&r#!y04?6ui)tO$Bo@O|viT;Z}z9O?*8?xRE^ZKAoG zdVuc8oox&ugyT!S5rpN!T__>RWCCm7#0hjq-OY7Gqo54}40Tu=fC^M0jPxfqt)&FM zl)_qs)NhP-=|H5_0!TTnxAJwadG>ZTAst3Dup2V8zRxnIP77i}vkiW7)}f_HH|S?v z@u06ZdW%HUyQ6tof9kb!%B|wTYb9!^zAy4X<&;{KZU}_3?dXC%v&UHuj7TWB7za2b z=M-=@0?KsSuev*`v$rhVPjI#sF&`>|8f+Rl2gR~Rrk*Q!p^z0gY;hthARPA0YVY?a zYZ|hZ?Ms{<%<0eak|T|j6orE<(j6=-Cr2Y4|J-MPbpKc8IcN@06+AumR1RmrU_HEy zpiE&4eMv#Q zlprqwOb>Qu#bI?zCr)c6t1v-Fhkc(~%rDa4r-~xru6qM9j0w~bSZ zlW+Lb4zFGk&$A|6D-592M2ZQvhB@C^AXdLhyxB!QA`}j9w@qePi2}&QWK$;Hi~q8! zB)qLT7}<3}AqH$0lFzRvy@MRTO&nHKGa@oLb3k{Y7;XZ~45;2#){RUnX+k;iCMssn za-hKvdP+4NdOBhNu7zP0;)1G4s85|MTn)viWFHqrjq2k4{kZtt<0QRVUq8Z-&w^t? zLZtvUO<~9@vCt|SHkUX-s|Dr`E8KV0G{{S(eYIbwA3!2f5a|}nA+d$jtb0;5l?&(D zsOV*=qok)5fyGzyNwSl+vh+6HQzYUjkpEVC8}3pfU%rg?huR#z@{)b ze02->_pmPMBTjR)JkxOqG3?Dvibn-zaK(PdR`fDet6TVjh3;acnG~o*HM_@5qJD+9 zX2-=*Rw_YTy$mvc13=Btu>re#|Db%`ffl~zC|EclJp)of&?uq3Kz6&!tw7&-H7kF=$EH(UJb4TqALJbYjg#(@7Ao*cI6d)1BjDQHOrik zwpdsS$3-l7z{gQ>(zx)x?gLTv!O_b841YkC^yF<7aioq^k%;|nr*4haGwCyKPz`uY zS>979RFPb*`JAVy-J15%bklqK|0873u_wKF8y~Od7LaP;QrqoKPpl9hx5Lr*g-UhQ zEgMThzR=GZHAHqk9=$}s`E)}a(>6~FJ9}Ok1B9e##LbXr-ce)h{kOJo?Nuo9a;6^N z!XLp7swn@H+e|h-h~MhQjxxSh{2ESZP;Iy9Z=I5#FN?$<_#nTc$L@jiq4`Xq5v7a$ z&n?uP&C=cY4Aa+3`)&mg5;GTrcSm>mpz znz+2key*5@qe=zq)14@u7Tq?B#OK^Ycu*B<658o^dxV@a0PsgbM8vY($ zGFT}HT`oylbvgw%1wB%6TVRBT=y{6p;XD_B?XwhXMEU;jI`E&ms=iR$kF%4ZM!wCn zMHtIXJ6N2f45oBgePKq71P1e3@I7^p#&wW$ZT~kINK(+7;9CA$*j$E0P3sPVO$|8GxUzJaa?A^0-@H{y0y;q!W;w{d%NM$h$p3jH|q zRXZJ=^?rYR1k<my+3UQ#QRZF3g<7nd{MbD7vnP&8w z)_d0rC`~!usL?h?Vo+`B@1lOfkG#)B@!dcWJg}=IO+Az|e0Gb|U){PD<5z(`Ob9Dv z9??jj6}>2UfUn=)BsiJQA;oU>PHi!{IMO2WNphOZ{qVaE7j9H;)DAta(J%yHkuV>+$x_BP;juXC23)|ia6 z2_L2wYl{y;BuVc7qmn#^4M0|L9YBb5S3Mlu>9dj(T{`fEiAx4?87>;HR072E6t~)) z;P^TC?yuK?4K3k>9mb3BO#@g=oAMS9t8X>$zp@Vzk&+1P4pHfg%7Cqw;pj6c-G#O8 zA0md(Epw9IBho8FU1>;h`BsIzE$q~4K`|sZlyZueXuH?Y@rQfW%p0bmVchbn1=h*v z8mAk>h^X|c?@p6$Q@{|6ZDev_7^+j|A>o3fv$za` zWD}*3h1C^0p@&6WOJvfcLCj~LweyR7wTWtF0wPzV&p++f?>On;;KQ(XGA=iajBN^! z!MbeXEF4<2xy|SpXf1ybZVyUdhApmXkjmp7qFNA?1c^dO6r0oentyKq?5+wGCo?Mc zXhtck^_cO&@fx~d)Mt^qZKT5#=RwV*dj4EKqM9Nsd@b9n`?l?n#%$s~>}&zUdiJ+lIm9P@znmgy-3CXR5Bt8veRVl{{9!f0%N78m zn1M6T!*l8!l+qGK>@v)6rwge+(uT22lM-v71DTRw_5{`9_zGV-0U=4yr1ZvI*-#T- z6*ctAq#O}&5&B*M1sl%i8e-Ij<=~Okl^0N7`|&3uP=W2d_HAHZL@!XXRv2ZPiga>rkRjdJeHDzcZnW-*VO z(A%3lAUxy^Z+cFN4$%IOCpt0ZG@hVThtV25Vh~?hMua`P!$l9Cm|63>Wg|7+!gEi) z3_Ju*+a{++brs-UwdGLrX_=s=@f{duTZoQ0?i+-1)a^}cd+wPA0nhphH;yh1u0Lxk znHFtm%yFn?E6WI~Ej|xlxym5Py01IL^gQ|2uI9S9gP-q=!_-6Unjsr?4iYn0kw zQkkx^#hX*rF=cS69rm%ivk*Tkl$ z&Gq6TjTjD-A-%T5);h8~uN2~)oQ1zwz?o`ySt?WtT0k`(7HvX*dcSd~ruJ`OVr-3W z*bmZlEZOQASo+@M*^Nw6H z3yhYG4^TtnXvOubIl3Vc^NHlTH&HI9Tho-~1m_tINMY~r#kgh^mF+xHPP^Q^Y|fzC z%&pLmhKL)9HN&0rTfr$0t1lkn^??pBVzIdbC`0W*L@+m)63Kj%uDrvu0k3T43d|jA z5Q!zffS<+b9XBgghGYz8R)pdMOLo+C`_v;f&{fHxU8n)J-)amJOMZZm)U7#Xn`GGl zD;-*+$xri~kcbEN;gwS{_1W*gyNo%u+u$1!at&4-VUc+mbEr0m>=u}T>C*vz6O?sZ zqb^{I6e;>OIuaVAxVY|fLv15s9-4C_CH7ulqQkwaWFQ@n?n$6#lI*Gmj$q$VGe(hE ziTmDIp+!hr>4iw#_x2tS)~7?wwIOakCm@{)7~|`)Ld`o0+CsG={ECW|?77t{dxKkv z>wo@MvzpZVy)onadjBw=qCMz8p~c=_N_!|v_vH0PI5R4=OEDT+Lzh9@gm|2QRLHn? z?obgOsBTv}d5EBmlmVB$w>fi8ciAq-fpL{}%wLSGW`xU8qG)pzW=cj$j29u=}I}ZL3%Gok6oI6ylvJ$ z*wlM2y9?8gg%`0nz;mt>o|Y%@|E(`YS>lFIJ`tm3uP?VHYNH;AB+a| zQU%SNH?AV^WzX>reo)$S#HIkLXmq#0`~X14RDh~X7BkXVi_kIRs{#Jc@ zSt1Akp8V0#{})M?XY--G5*!9|r(bpxEOW_N9;LxPbIU4aZ!}OGqeRdve;W6}ZIoa^~KtW6u0*#l^6(+yIH3`g$b(Pv$kb zGGbz`5^v{Lw&rR?I6};;7G)&lV^lWjl3}X;Bl;E1nV_Kg9tC4!^?uzqZ#I8GVSJoN zzoZP)04eQUUUf$PR)-=s*DjaEi?x!tU@bhkII$jyhhU{Qr>xMw=uF7#Y@rk~cUxju z)r(^-P|oQ3T@suZOtfxQquvy~di-9=F{Qx63L`qXe%fteBg(?P?A?v;+r}=%+akZE zG~^-MyqznyX4iuyUNbJhQY}BF{vYE6XIcJ5If?U`au?Y5_Ap0soks@zoaf913$0}4 zfWU0poVG?ubwH#d${M zkV}SsR$Xgud775=hBLE+Zm_^(KMV>wkn$Y78oD&i(hnLa=%p^w2LQ5f4z-?yjzmJ2p}nh>q4W9~QXx`vDf zX|_>fE%Kg2I9UOK!Q%v{2_1+ z8IQx*!ERSpW$ppK3C?8eVvAD%PpHy6oC~3sNfm@)k$%%-e2sy&FPU^ z47ViiBXF&Xcg>X|!-IaM+SO97UWd2FkS zHhFTA7vm3{r;A`3p4m$7$lMhgQG=rMNuZBx79Qc;Z%lS%UO@$O-kuIh921xUmZ3$? z>_*dEc3gTpPXnPkqa1=(>?(r4*eh{yJ*j0SpWfF3$LpY|uovli6bj?+nubD|& z08W9%SIlJObbN38CZJ$DjfhHGLV15A?heoY}aZH_z7cn)t0Er|sEL*j#o zlXxb|e&QCaYn$T+mt?w3(E-9xC%R&lzRr&`&}K`z-QBN*x5GO9E(3k(r9m^wKwSaK zjf-Tt%9jt@o5)u%5{`E54Pt^T$9d}+yjKyWMh;aj%SCL891p$(%{qUWHgMmqBGo4& zD2N!442R3J`CYTJu3stbxbg+vTBxug8jGKnT<_{u5xk{$G0`X?U(Uk~K;bVP&s1tX z;NzZKDWmbv9)Dbx8BKe@lsV4PGWP&z6qyRdN3=5LHjrp`A?kWugEwIx@Q7N77iaj+K5o%k2Hnd~p}BMB@S`>|9ycV5iED zR-uDIf;=wlvp)~(^s;u5?s!7>MVJOKq{c}xPChSZv1vd716Hm7p`EV32__FPJpY51 z{+%j=;zRK4-X90AjXZWH=eAt;n4;pTU1;Vtlt|ufk#SG474Uj?qr61vmv=RT* zU@gO>4~Zi4#8oeM!0%djRLjVXVoK4{xI=z|#ki#lj&B_MY5SIUoU%1P9799Vy&1C! z*yX13RDrU4`vf)fRa<5n-u+l@9^BJ#-kMpv$YAte!SIIYw)k;SDaWtAqJR?|4k{C& zbu;yU7F+FHOx&HnmF)a5y3>vM^CFESzT6Ze%t_;+5ZV8WLT`&Y?VFUMkvPr$$KaaV z&^~c#jG;i>tixNxORYj zr(l>^ScdjiW4C`Afad}6wdHz^2SX#8u$>;I;@h`D<3kv-DQSZso2SMYj-E=MI>vlN z-&vAdo}bu})5PyBGX$FWU$nkqC!y9>4yi0Z&kKW7FJN5n>EP5-0RKKm)si*UU%H?VOfObq;PG!P|_}XbqCwF*j2wp7iQ7@Z9 z+Oh5g@q64C^G5U;k~P!GC5b52>6`C>zC9fqGydT)2hCSTHT5cCTuqJ2VUS&xg zWb}*X%)>CPk_~wZc|A`VqfBf;{c>e zdfgux?BXjrzi;$cHjL@|%^6%QPG`wCb2GlK?X={k>CWmv*KW2Z1ggd>A0A?+_PFwu zSkHRX&qfIORca3SzavAa^&NIY2I1Av4L1HG2SsvVySH}eIs{4)tE{`6NQ%I&-e??% z5~D3XmDG?xKmr?0mC|+gK{y0eg)18d$o{$wD`PV&5>%smn7fBrLx3QL&=7iCD8Bw} z`ZfxDOATx-6|^4(X1OcM7^9#6L&w!xDBtHRcrn{ZV+Tnj-SOhv>waoh2bY~C2K|gXAeTa~_vp+##eAP>uUs&<_!}`q>*Jg(aH0mOjOlvUPNm0Fa%b9X< zskd=IPR~)hRa-fAWm!I7}C5EtXkG()r#n+U&ct#Dbv$kxF!O-YY5q&8;|Sx zwm6Z&12rQtFu{%)UP1CxY^r26BEl3}Get^8knR2kFWGX|{Q zX{8D8TQHD>Fq&)a@iQ?@^R^l11j7b_j@t; z3g2Q)Gaa0FoAANq5n=Egfr}w&`mOLIwKa$=_my*$bm$hc9PMTGMFnMB$djaDcq7=z z<)F0iSd*f6=<{DE{UOo@msd*`Ft0tY6Y?Ya)-vjbsqgeh^yM=XMVz_l!WNZu{-B0- zcl-B9^i`od-EOow83v$)&HupOv;e7Km?l~yd3TlG=~w$*sl0S~pOttb%Cv8Oh;jjI z5&_p_bF$r9tCM}hqZN+hMU1`vyiJU(2;`NDHl>cUJ+Onk7^L|UV-spS+asLf9szZD zNlFRlmW>3#i}Rg5Pp1`c21`0-gnP<=%E=zKSd7lC0B5&l^KigyfgsN*s6HC3u zCtTaDu3)7ya`cb<|4O!6ZBUn(>|CcG3f4;fV3y%ABlVwzZAKL6a+ZRakq)2|xF`lS z#2lchow_)y&NN7FF><|xLyM6{|-LfLa+Mxtb{Pjg=pe>Ccl z8>8ri=6laDc3v0x^^i*d zr&j^oF~-9>f(3%bS4Fa`QUTaNOjnvzIz#1^4Woq);}ignc3I;oWkC-) z0sMiDPnvN0_;=j**n%4|Z()oE&c(?)5&u#^5OSg^dhxOe>q(Amramkp00(TCy58_D zUmR4c{2|dzwohW~{ULN=4f64Cuo%$p?U6TWYbh{#oCxrq2$CUq{tSCuE#oN1cznuW#dIH2I}BDkj8rmo&D#@3Q| zaTU+RJH+)0;6w$l?VtB%Fl+BBHN6a{ms3cR3lv6hu=2As+=|b;%7u z{-NvMesTTB-Nyn9&gGsKO*CY|_D-x`hiK!Lb|BU*K9)qObmRRfuo%MkV0q7DD(WPx zXV3=omdf_FMMc z-PiTmB?TDb0b=4J+F(fwUGmV5HGCGPzkb;dBK}1Mgl5{hR-(fZU-Lpps~sT-*0$4m zbaSRlfSN+A;yN7AgyoogjWP1349)ZbCFW) z?f^h*V1@qERTW{Q6V1g?08ANcz+opI^bvg>(yT0w%)^89>OBQps3Xb>S`Mjs+hZJ0 zOfgL(mCO9|AJ7GEYh822>C-D0#Sd6GQW;(!;lHdPk!rJ*ox8ycO{5kjdAG?b{Vc7( z8P-+eB?r84&lu)+`jUJjAK8xi{P{SXNT@v$?@To--dZH{MzIIeOfG#e14HL7q&+Sq$19_A;7WnVg7c z_yVt|GFYoT7@uTbFRA3XDLDWS#*8lR`bb7uc`U|&9XZho(LV;MX$lK_1eTFQ(wp5R zhOyOuZ0x{IQOVV$&$U2DkfyT3hZ1)|c^G`D1C1(mr^)&6thce*fa4Dd@6sU4tQMO{ zaRlE<#C{!``i_>jL3!^6WMLLQQ-oZ25tkPh@)_4@H>f@Ff^8aFuG`azvFrxMU zhL$^XIaN?@0>PPwf`u7g>7v2@Rd!W;DjZ=S0I7k)PjVc%s_1#j)jlso$i;!N8=C#Q zBA*nxZtjWX>f}9N zoLyO{O7Y2a`CzO}s5RFnrDuqVHBK)qebh*z>}tp+Q>r=jqh?xFhZamfoLtpO2Bpm* z{vT3S6ep)~X3CW2wN}&@?gcJnuDuNKkgLg*=jnue{E?`5P0*P=7yC!mURUwvw<+8rbtl7k}++)Zv#ON?3bmwi-1dkiLk zoxxpEWQTunde^~_LX(Z>F`xc-*DFV6(F+Bfa0TjHKcyK>UrM9lX6-^!l3%DxGEe|I--^ zJVZ9dnbItb-CYbfLok}lkPyG$Xx2JB_PtK{xyB$k|)Sdkj*28LDBXjk`jM%tQ$fBUPgyS`z zY{ZUl?#=AY(sq!QS)6aVcEMhs>jdygCTel6vfb`efQKs4vHvNrA;(xlP?&{+pIt&I z6cI*!V2n5+)xNG!(_ZdGK>6!4==ioD_sX0MmYzBc5<>)hRDNhNBDZ+6#}2g|@U4HM z21OYc6l^{|C_>dPrkXiJ-B~ahn+()mUO&FBTO*G$6=x@?bx4s?!mmsv zeymbb2&wA|ip-mxH(?9JgQ3~POSqvY##Pwq6RG{rgGQuxP%jScZpHqn+T+J`-&g@7 zcc*PD@Uf!(8(K<5;n2=Ad;3j1>GE`&NBVj_^JcNbbo+K7yWdV7X>so`e6rm8!%P|1 ze#uDy`z{mSl`7cLmlXg($Q%h3ugXHFV}CwksHezoxFaV2%ogqF$5ICe?TXfi!psO- zcS9kRK3i!6j81y@UGDV!nlo(CVIcA!J;PK`{#mH++=TDpS7gS_6rQs;Ko8oR-2%+~ z?dafC=RBFsweCv8T)MT=aC-#arI#lHNXz(Cgf=Q?-vB$|9j63fxU^CoAPegxdyALO zMC|VSkCZq1AHQz0stDsq3YypM|`ajmk88?QEPSC3RPcAq$}*ob>GLmo<_7(0{@f|Oj+V2G_@w=X6Nn-7qZ zF+5lB+A;G&V$6kgmf;O2YAa`&VH(S~C7|5lV+1 zPe)e45^`*L=UFYJTLxm?al)Z&6TbXp9Hpbup;;sHGJ7G!=rf{*@^P--m*YBC-j#~D zN)gGL&6MD#Gx!xIVx0&kW*~`4TsLSzyl>H)$fwLO2~Lnou}{vH^)Sk2nlYq=CDt7Q z$=L3^aMCl&3*qY%Q+t@TvG|)kugZ6Qxba5%ct@nsZH>oIKU@Nn9!SkC4at5TIW%V_ z`qAapBulVgL+!^uWRwjX9K9(r;9!8u zj->LFmLN$%4-_)>wg^H;|Bicm^}uOx$QWU#loZu)1|?E@SL>y4+hiXXlj^Cqgq`Ftl|O209x*iI)|ljXRx;c-q%=-+Bt|$_ zI!BrfVMr(xKyAM*Msy`lq-;Us-GJbVgT3KA3-(SDg0}%7! z7W^T8)dr!YBT5R*Uv9#Hl_rjA0gwETdJEa%U)owhv z@Z!b>&$^e18_JAzlQcf3l5j~*28p@uoN69Cb(ZyW3zNSCeEQ3rAjT6~P3tQ_oU3`0 zghj6%QnY94o-9!HoxCY}$G~EtVumXAlr5?|DQ^?Y)tWu1@!PzLV=WslsJg&d!KWij zliM6xaoO)s-*D27Vyd@3sRxtuoZ!wr5D>dQtchB{d-i|H>HWdcbO*f}6u?@D0qru- zD+?%XV}&A)z3TVw1xjf_^*KXrQJPcuk%=o%k4mrk@bWDUdI~l%78EeYXN;LtfkfF$ z)_>I#uPW*dE9dmL(*Z-jN7p{K+x2&XtSu{(EGpCpxz102Jiw(K#_Gmjb<3mm{SZFRMolBs z%OHsFxX)_nu2lb6k}KfgD@m?Xw*J6QSZOP*K%OM>T=&X!_E+iXLV^()j0`gv;|zR{ zdyGJWdtP4CRsPmHHfcuOu!AB)&k^kMe`Vi$Gx}7`Q%CT-5N#C~v&TV{$*iqlihh)x zjDr-9;hj-iaE7Zs1iOl09hGuhCyQp;$M)o2^jk*F1~*=@DnI`^)YF^?$)vpXf%xIIuI!DRxE5Se*5m|;oZPG4G)>esk{ zxs(DQ&O)AkwmCrtTNM;=+qD#Soelf*5}cJW!Nr2}exVhX-gO8-Gs0{El(*8$jZpDe zP}`yL#Bk&8M^G3e<9VULr7%#|do7Ln+!7jy6h6$CF*cH<<9BY!u=Hd}jy87))vto| zDYCA%Y9>Kg!K*0e0cv^Tj9hi$1^p5{Wbpbfr68ANP;&wKeBpqNn(6`x{sr8hqU(}gkE3Jk} zW-7=#pNqur86>h$=l+^C-ii0--);7FUf`+Zlk8Ej6rsP(1Ai7~8wQ?xpjtN9RU&7k z;%!ooomQI9XuC=~5o!7v3ZP1)mcYGRDYJYpf~Q!LcfSXr{G^-cG3x(*NfaU-Nt@fz+}{R5G3eWa8$?jEG~381alOAya4~Mxema4z*-4EDk_QR_>`0R zZ`IVXQKnlX6&|dh@OphnW4bWZg5=@hv!F9igj>W-Eq|GXYKE+JtQ8b|p_UGR2JSi! zutQK>2ehRG@zkUg3(+E7;)t3Z?h zJEWTix`MozmB@w3p|~xT2F;LH78k2REt4N-2x7g7JemJWUro{Z8+K-?P%61ZHvpQx z{bl((*a12bC!XMHz=-s_oxnVe#~xuixaY+&v7JFyJgG0sw1>wOm}E4}hI zh$xPRI3s(dhk-v+Su*i+H)ar9M56K2?{$o54r2?PPzY^g6}w=8FaZe7zIROvW<#jE zU#!7CDllvBE)efPaix+%>+}$d?TL;qLKj`!fvt)&>u#qH5RilQXX@d-nUZiFu=lD+ zs2=Pxm5!fdo`B}1>;-(^Y_iO{Q~>w5mSoj$GtITo*0-BQj+cSU4=c&;=ybBHqkh&~ zIMIe=7{(3d6CS#8+47R19tVz%m!5wsSQS44$Py^=DK1-K z2n8TOw85fhFYAftgiGcXNzU%L@SmCh+971cu*yN!=AfGu>uW-`@<6ym`UJ`t(FYiN{k5OBTe5eY%|mz<_Yh^;{(=AP3uv2SeD&j}MB>poEp>6b%-p8+D?!&w!2;5!@MOJLdnqSfgeH0Et=K zJ?dqAc8s^tOJ`m@z>XRJ81rQzz$7sx!D%W8&NIb4Q5Er(Sgv{8bTll9eC+gOKAy}4 zGQ-s?jlKdY3B4_B$^L{gj<9^qqL*AbeH3fWYR!C02}I{)izay^WC^C|&h*k?C%OxsBU${9*y^!rVEwBrQ^}7-rgFhu(w0E4=Te8}n7IDe{GO*@ z^s7$<;tG)0bu8Hm_dC?UYatM7k*x=gD;?cs2?r32R2pcs24}iaTT-tLz1@YLScShB zD_P@PD_Vz>{VZz~yQZ z-L?aLtt|ksV;#q{kLx-VBw8@_{uwtFJzwT<+z5HaiouFe}*?fT>~={3u_hgWQX z!NqWpXS)`I6m26@l9@=g`IlO`0o20lqT@hU`BYZi+eO&CM86N2V|ED~OW zeE$)H^Ap$zDfAQlzt_UeapihV6(NAR)#gay#)PC{5nL!}LdkG8X5kn}#qPqnrMud4iB7LR^%Z1fg+29w%HX$Yr zi0CZW>M5a*A~v%$yw{az!mrrbQ#E)jrjErs6Hk7#FfHhfDyJ? zKt+IxqQmy9n{+3CAao4;IV~#kcT|mvBgsK6_MeFQ(gk8-HF!JKioH#dOhlda-Om|g zNJRArioxW3($>PW-d?lUq)0c*;6=55Tv6yb9aaUh2&El`t-Vsptgl6Ye_T;SS{}ao zg?^!sk8!XWMa27dPotuILM2cMkyesjK+Nv(JVJJ?JN|oLOkhVCmG|x$zcb*JjG7_X zkVa<`<4*}3=`L<>dENada-=>*P*l+6*(FD-xDp~N>gi>6ba@{4n9I(u%brLFdWJ;nzgFwTpv~BeMo8X#bKsG!X`Ic@68^Rae|rnM#nVgGh>0f?QWU0d zZGf!TyAY+;vms|Jb)`yZ`epNA*dR0Gw$)t&OJW*nlk}`@t(NtcP^Y900#%rHxn(^BatwR?;Cp0W?rGeUse z2$g*c^r-LK^M)K*1AWe^4&QJu$(n;8sKef=dANmxQ_avM{h;s&k zv0#KNH8pEM-~A@Rc@k!%jxDtTPqq4!9yN4cmW^~v@a>W$eT@$bz~U??LZ+aI5DdNU z9;KcNl#C$Hj8Rp#fCZP`8OhGiXph=1KCy5B?Z$n7tn*eP$p4GC2=WKjFf|eH(Y9gO zBjSi{1Ii&r))w++cmckOgn-57cibGRSo|%F8ig?V;?0a?6h`YOjZxcIe%`NUkKJo* z#+YQgqGVtoS&k==@%3N_0G3SzfUI|go#o)zB!H0I)^h-5qMrAA*zh1mgN=cuV75zb zR_-FdxC&hLgKPBWFHlyE!ZgAET(>QTgF@f8Tn6)}DSDa>PZ_>eS0&58apr_@I zvy1Qu%3@kG*_ipQG$eg)-wwGQo(^WoBu8bamhdP`iv3L$AG#aZU}yEQO9F}OCmlrY zyq;7j9ORN#ihqhHtL^os>D}voDc@!@xFU5>?ihM2q88-DF&P&mOoY|^Be4~V4sHQ1 zbK(8Ik~7{AO(F-uv!|b(>8OYn;xsMPtNUIAKzP<3XuwAciK40RrmlISA}bBSIu6G3EIwgAPf@iM>CcuK;xO5-R>3hv z?LoDi6jnBKJF4-ub1~9Ag($8!0>374IU0sKvg)$!6)O*t5b8_fFKxjtc8;y8+8m>{ z0)1o4Rl2ITOxo*B;oiWEc@1@Gr1r1XRTX^K*zt5Et=b1q=o4yz`}NkySenyL_*Xg!!$C8IYA%Ke86(C-Xdg|H|4MPB?_Be zo4SPmY{DoZy<+in0^5$W6a(@P&2P!oKbJ!gNNxW8wgL4rkMZq-S2`dTl6vxdc%!KGay5=C?uB0z5t>-gYDFgqOv5hiS3U81 zNMssLr?{I1aJuIO8r08!YVV=JI1(-Mto?^BH?|%j3lRBw=j^7o2vy+(cnJ}m@!kTu z<&`tS6KI7`8r2#q5dOO>eK$v@deJW{wh5^X#9@0%r>^V{rHdmAl_~vCh`DSLg;Tg> zjm79-R|KGEyO?)*RHuV)oZgVNw6%u+OX*Z)T|Zma0(Xp|nbu^7)vJrO5?|*oG z-C6kyxfHFc1!bpli0w&kGg|hY2Um@QWz#kzg5b};Q|x&Jd&U8`~9DEN)PXmmnU<)(2T{j^<@3u>@^kx)Y&K~K*oy^4uRB8^X3#NcX(W%^s zK;h5A^+&x?9tK;n1MgnK_od`tJYRztn3XMI$;x=|x&=Kv;yXdbK=HW1rcPtoVRSE; zd2r2CL?cFW=FQ+7{LH^J{gyYBI{?nJ5%PnmvZ+8gdZtT0xJ_{7vT{s2b4RTF>Crl5 zvt4Y{Inu`TS9M*-u6xu^feK7Y^2;FpfYNxi+Ims};DyD3|LE|%$Z*m&*cc@fii5;y zL7f*iAX!oXfu})Bz7~~4m}>l3$!o`Jt0FWfnIgkAb|q?iL%AJErgJISEP@dgs8a?Q zVqjmg>dAyZjEsyq@&>Tig8*sw-Pg4v*lOQu%iagJu6mj%7O;$4XN6?ud2oiQf27O> z+AElNHZM$?7vxqsVT8l#!9>nI8fhdVk3JH4Hq?S2tl}MB6$BtY`1}zq%Db?&eaVmd z2#Yk2S{ex8x8`j(&!V269pH>}X{-O#p@%RDv(!LUwmiJz(y=C9S4bY1Z;arna581K zH?n%;^J)=s5leFyg8azkPXe}NsU@LBhv<4nn*${c^-vRLYt<&0n28$m@86|G!z09v zRF+8CaqpCcy$L;vf9~92AqeE9(CCwCV3qRv)w-iEPQw?JJLx`gw3Dxf#g4x40%srp zgK^1l@{DC^lB0ShQcigo2C2s|MP0aI9)@ok&f)EP4feAOYt*cqyiF9d%Y`^j^H9wZ)fxltl`MJY{p`}c18CFQ;n6y6=d9G!ZQxk!@tek zr)OV}Pi|KTPG4#9A#G!cf*ME4j}`8pu(HieJTPJJ&ua&8WmmkfDzGj_E(xGaCQr|h z8w|Bk**MxsX|Tac`2X@p)O2#$d~A(&irk!Y*vA+qUyv;SQU_B!Xx#r-5(~>4lQ+$u z6{YMN)Oa96f}yl;nJ$Re1e@wl>EbXf&5VgvhnSG}AGCat{KvccPKUo4%yG|Q@t#|F zTN^FK9_|nxQqnQ=YkLj z8syv=I+AO<6G;b7cVixckv!BRSgboEDpgZIrw}s(yyekKX@Oo9#Yn@=`@8Iu=-FV; z%DNgNiS}~%75S|le#Unleqp{B(`Kase8Xr&aWr#C%taa~6p)yBO`d`lqhqKlxa4l>_BBxOlFC7eI7nl_E%X_|Dcf#B? z7C$>xEnvDQYSAB9i$1}RAf9H=Qfbs$63;r)f;u9*U;}VU4k0PTG6g3ZG5BoCUEgeY z_hi~!eOjclloO6)!*?XTy1B>ynS!54wp^W?8YVesZq6{yh>^m)>otA8LU|vkOQu2E zB9;?VYsk3j4HdB50E&#>i>UNIBq|~TRqg|8FoCJk8Zv4eyke zQMyefMIb+jg5gtgC(rdttAH53*YNgd>!M2Qs<~{9uB@{($GDou8~k^;;C$UYm1xcP z=PpZSIsK6akN^l3@i_6(yBQ2yV}Q_L@P8rUN|%g8do&!n9HlKo7Q|^3=wUcV7VrVk z%+K#rDt{;TmkL*a%!#^JyVGO_Q+vczgMCc&xmB)2`(vNm5?hjg;@cCg2!D>N;yu>;a_QeVv#Fn6@r)&$>mVo8`>Yb8L=osC1rAcu7w~ z^Zv5yJ}0cIuFq(Ro!q)b^oa8#Ri~D0G)E`41XN*^e1hd66g5op(<~lNDA|X}xjFd6 z_STxZy|dc)TaQ@k5x6Q>4AcP5E#2$g+O9L#a~+adiP(jX_aU(W+NZS052iL1A2ugb zM$+!LzP4q_Kzy6;q6xwBGs@m=AZOHjCRb+aK{@8c8*c5`6%brtvAu6n<bXTr#^pZ*sBq1Eg^ zNX>S0%OItB^@a{V4+3xK0Y>i19GWhTfb&HWWbr|Mdt1R6XVr4Ecw(KOFWuz!Q;DPh z<1fB^Jp0K0^ICNLrJ?##UfgXi&bo?es;r}C$!UgGTOu^W%{_&3`1jg{d?@Tn5nCw| zq1c%Qx6TJj??4WqmK_tf{MVVhW>kJ8Z^>^2iPyb6tYnU4wu?N-m??h_E1W0>J0UxI zb*_ab3Ql+zZ@#1IaH5dLvO2?p{j8r87ngLQL{J7mvt z)wqkSp1wp^6dZ{M_u*=C**0^BY`;9M-2C&Vi zeG@NRUke+-T8>&O9Qw=7T^+(mld%bS-TU$LqrsNK-Gj%XweW~a`LRXYQ_&Zm%y%{Z zVZ}?OQ%7=4U5Tr&9BU^ft*W(5`YsLDlVoAiy$i0wgxIH>J4nAFnh9a}y3xdQ%{#LT z;*uv6U%rQ|>%0;bDv&jBA}5eacND1F%mU8kz)^d=cJ{H-AP2ciI1w|(S*W<8f38Ifj9Oizysk(RcD*B>9|qlpL^AryY?JOH+a%iR7Cb&N!fTl`)k z1U%+hT4LYBAlLd3a_|O?L?5?+iuCG<3Wf;d>aSc3PLA(i!#!~*=$zvdJ4%)C7~5W% zEN?^dhQu*A=TDjw&1NJjq&b``FX{UG*sPOV^h+$^Q6ejU@Kxr&eaj5`n(>=B7glD!w3AwE$6dJEiz75l+8ihe zSq$Ogyx9QzWyY^_Mf>KfZ5H;ib5DkY-V2g`fP)ajbZR&a8%9I?}_Eq?WS zk;d4GI;m=gBcN?sN{#CFAg`X?wcNR!IU^bzUPi}qLMJgT3w?~OnsY1}5aC6`yUxL~4{m3= z`QCzhfG0@8(4fvO1?g6eEw^oVt@7T`5l(q=`*8KT-MP(L%xc^_7_Xt{6p6v#LHsgJ zQXzKYg#ItT<#IfjW=E~K_3psQuUTR9zRIJ0&~0@aEyUJ0G60IpG{nK^U?x5Ue2&~f z!^NI{-Nyr#|2k|{z zRQ_+HNZ(#Tx+U=^>)6AzJ1ofFWR!GrIL6)4_!;l4Iu>GozM0jF$NCW_dG&N<3k-vS z(kGy6@u6yLe;+ZFY?ag9&*RH*W<)7tf~{@-VsC0H?}RH7?KDR}!>jhrxA>Bf2;wrg zch_xAe!n`&(15gs+l!EG^yzbSJPGY000z3SMU?4lHNd+OVA4x_P@bpN)&GBEUeY(b z`1y^ExAuLlPZfu&0Yp0rh&1NX)Pf97i>0)WwgTYoHWr}C5uFh$9&7u1O;KywF+jN zatI3SXI2FQC9Vw6HU=nyI7^rxno)qgeJ}2G=~5S|LRK9?N7+q>Y77^{n)Iygo`s99 zB?gre+v_297)=rb>63H&T@%Dawk@*v z>WrIh-rrd^yK<8n4+jVq5)%PuK|)Pe<;DUQnurd2NYunNz_S3=_!7M&p~h1zxf{)P zvpsVlv!#z=23E8uAHn_RR`#&S~(9OB~N<^fvZeufHGgn6A>w+ zoj?b%P&0FJ7*ynpn^t18qIeeB#^#c;JL4~%!A=DLIVtfIfU}OCQDJuASWG;q2jauR z35FEYs&1Y6v=%|~Wn&%Zl_{4U`fS>2`f>nKf_CiQRD#6^SL6b&GGsU~AY(6Ntp{{h z`fx{uRkCGlo}@w8Xmq`LdLGIRjabwXByBzQ!NG}TTkXNpbKOM8W-vf3(8$``robdoTQfY zSujG~m(}rJzHA%J4^r+IVu79Sd zT88j(W&z5TF@M<_wCze=QTCo9gfJr`D9KkCHRsgQgb}?uj^mmE`Y*9cCx&@dvGG@e zP1t`m`SaqBNI^vzEo39TXlUvH0N@bbXxhBDaCjD8#)P=xzr*&K8bMTeJiig94<04K zbhBtR#$`W8-DdnD9l=CC`M(B%%O!XEYIU zGlW{kVXUGfmbm*EqeEf(A^YBd`tk`@}pE+Gl)(5+<_dE;AsAE zQhDzwLRxO`Ry_8}q_s<66+(w$*NZfoO>5 zYarQN3u5+rY`&>jBKE#@o8`=ItgBk!LGSIwl7tgoszixh^YHoB>XDXYmkIMzv}Dx) zyWm&PtDR!(&E7>C1Yowbs z+33X-gfmru-T*;Z6OMPUPHcy8)l%`a(pg1~d{D~V?Co8N7vF57vQzsyfR7uwNv4X7 zvwi}SvBNBHIim&ATQfd0VrJgN(Qtz_mU`qVB%nQbFtu}tW&jSNy~d~1c78V6m}MnD zAk-M+uSjEWQv*%khTBFsaAsBH^}Gn=GbdeugExanK9W3^&8SD*RCZ68A;>Vau>9k3 zCk#jIU<9*(-Lv5Yq>dx}CzZ)b zW&#IOqZ`&A;$cKp2|T%0V%DvJAC!oy<7eD9w-~s|kvU!yCGvX5`5h>wp1fctogNay znSw9E=5=OqDBr4@oa0!)t}~R{vDT`T&KpXSg(jwyqpKfqC23iq*vUv%ft@pPIt5D7 zC`}}KVedTXyj)VOt1Is|uedVH^A)U;x#1)@ZM`=fk4Ad>wU?+ROB&Fw`#p02_2M z?&au|32b8?5sCIFHd0)^6LyVp{D#A3f!O#0A8?WmK~V=I1s9Ikofuu#hY?758IE^1ExZ$RYpsAwa`Z-MYw@#(34o$@ zd;r}aLUW*tF9xn?W=9Mm{b?1`c`R#DM&UU`5LFb3Ln{r7jDK`~-^^{Cdr(M2Yb! zLD~(TBaT=SCKwv*8q}xWayn88fvE-2Unl+ zvCbiS%%zjaYcF2WY8gdmWJ{S!HB|h0sqS(UNjG^!Y@k|jCL3{s#>x`|*Y=onLd#)( zwx}7r)RtedMNxOZGM$kgKCz>aV1A8m7={k3V+!|X`2lxJ)6Vnm<<*{Sw5TdN>B7$U zR{Ft>RmqNIP#2NM@Y}U95G=XpmQDLFgK#z5p1+AJ;G3jE8VuCgW@am0=~H^rKDPSg zn}eY+jPc^@P;CeAHly5fqsH0BI#!pPoG@2t4Dcq1Ovj?`pw-^k&KnhY?mkavZNl*~ z4;guEc3kE0TFU7R!i%d-(k@bL+%67@ro;Yw#09RIZRX~2D(u&%4YMH*7i|AzvP;b` zkX$Cg`}Ldv6!ic;tkW7ETVR+&N@%2p3N9ACoz`k`K4?D7^>o}1p@kJUEAlo@jL?m_d(hRz}VESbC z_fu@=3SpAmZQE9-L<(YTS~36I)d;z1W83GmtyY5H!sd=)ZNz96{CO!VM3EYS^Sme9 zmW{D2zZXM8*S}$eA0rXUb}*>zJ?d1)hM3fSA=j6i>t;O zcZKB&6l>Z?>azC4i1e}_YbhN_Tzm4iMKOXe z96tUf>VX8?re>w+CTCr)jXxz8#A=n_7PSc`X9yDrTvRx2{95m1>%UN+Ltt=B$gmnQ zWxXMrOv-5>;Ad44hxz33PoVQiCr(crVk_fLYj=%7cTB~2!3oq8c&hA0(X~M{0D6rx zRz}u%VDX=Y(WkX~jghAnrH1x}>uR_AUHVYOdlB4%Y9Hf`>U|ctZL#X>o409m@!?q$ zcn)$-Hsonq?VFXpl)E-`w5%Eh682e*c(ub?L&pdn;B7*8m!?^m;BKPpGF4*eqAb9L zm)>pbJkyt!H=dvC93-iA7&du%|HIAqiSAQWse8 zyJ@LiNbvjR=RAH#tE&b}cdeSDM;uo9ACs@lgRk$}9F8>z1Q@}oq5R1{ZhAEcFYt2( z8bqsF>%dxHrw-%ME_0x{L`Wjjcw29zJgInXc4e)BmQ%1{2}@;qaOjLrzztC{j2l4*tBmPqlUV z6_PlTsm<=+We*BaE^Ghq7VFZH@@+qr`4Uu>&gn#A?S}>lzsCK(GT@?i5-US+leK*x zeVHBPT2UyTp!qkKGNN>F!UGt!4PuZyR;hVV`Xr0ZK)+eXq{MDO`}8^xvpnJz8tc*2 zuom6AX!#iB8mPZrtAqF4+kTo+1*$Z!oTCj&uq({}C2@57i=!G5^o76YI>E!4n)6@v z$S7cT3I@WiHbkg!arsrGk!9ARj?(hT)Y7J3%jhLVIzu^|6gF*)6&xFUrSc*CPHNI1X3=}~Kv@y52Awk} z!}QMJbOf%V%llBL5@$UK|4Sxvp0)RrC>coH$Yc7DztM=Hn~|=27ysA6hp?R1H=J}O zZPPPT#+*y^ry$t?aU^EE;lXaam2aE40B@-^zNFB_{x~wYF`Z83b1{;Zh!vh2tzUgN zwr$13Q@G`d7td@5SZ61tE_^%J9UpAj1>uMP=q-bHCc}s_vVaLVUzY$V;_Sk_{D3m0 zvGG#Hua~UPESK>-f<&@H2=m*PgJP|7{D4MpsA7!!T#sLi14` z!hE&B)^~Z^r(P)-HbU-=2LDf&nZ-MkWBX4VY8KdhU)E!y|nzmQ0C23J@aA1!W zw}5*hsQ>61m$d)G*xrKZfA%vvBiM-Ib`#XuG|f=wKg@+Wr~2#W8V25UT8^hL(KJS| z4zf44CQ9i7#HH9|%y7jEvqEvGZ@Eq#qf<@?3V}rR;U;mgS;rPb1IKJ*cHlxy2I+iMl;||AXKCt)t zmMZOYr%&5=7x#Q#9>#P0C`A(%#buPO2- z^`D0`B7^JUa`As~Xvu{8s{g^NsDbuFwg+>l>pihR0fb?bMW`X!>cK_npC>3Z99DY9 zI4OWuqT->DdYW0PDdl&sk1D<}#F0eqN9W!Zg85u$V)Q+EfsoizQ6P#Ml4G ziNGb#&^gdN1!X0%t5}2DGQ@@z7nPWQImquXFTXc(xg?c0s$=S|UM764Oh?gEHNM0`2Hpk$!ZvB0w z`O^2VlAKHj(V+Ij!Pwhd9380_JgSJr%)^q4W@tv$2eyF>3lt_5x}PM1v6IqK9Qxlp4H3Vs7Ta%R{sO5nf7L?DM(QxDBxsZCJd?#93S?ok^=Gu zpg!0mjH4l`KW4Lp1}f?vi@WL7x~f^!$w zZV1@+N+p0|*a?LL$n;>66F3;6detRSMQS*s(JvSUq4V4#>enM*)X_vQ`?LNIP-#Vx<1$b{^^&9!q_-5-#f zNr+8R!}cJ@fM5BJPYkq<`3=WfN;o+t{!39KhJ=+?)YsfQ7Bu!DA8vc{8S%@Q9PG6S zCU%B!Z1Ka`=4$Nu=O^gklOkq}V+*aSRA)znQtP;9np3pu%JLZf9n^JgD4)JsZt+mh za&OgKbHO-Ve(Nzl^CQ9qSLICAG*Ym7PnN+-0gT+P_O<9$%7GEx9I;)7p7;<(!F~9J z##@S0A@$n6l%=k#pf+M?5-Y4(`y1|7q7hp81U@V}q<6b7uWvE&{=8m$8CXt#6#5hEs_Qc1?+@$kl$Q$QsIyI*zJMMlPb7patEv>>J zx*uu)@xaS#%u4%C=Ksyq=8QH4lulM$I=u)<+Lx^L;7YJDxETqM#89nbD@E~iA}Acm zA^pAkc_PqR;^EgXD-!t9VQYg?w0;5SLO)@xm~c+5ghv zu?pvagfK)Uc^zmK1FjH4N2_$4rJf&I!uNCcM&xQXE-D#(_fI$nYzA|2kDFeJA=jrvsVG%w=CJg~s4E_hs1zXCOGOJ@ANRIly`}bz6M58m)^~*yceb`{ z+fkh0s>?>d5jy@@whanjyFmahb1|r@Hb0oAlgz1OmzYDUkOrv#2Thtl`vL9OA6@RB z&G0ZzAV^?59AWVQdw!LG%mMb4)jwEjGfqJ4+J@G32C1|GzCx5|Y_qQ9 zdsw(zT2fDt0Rg^SfzKFMb!9jS^-DxriApCR=M2cZxX}iXX~hq@qePM#tP`0-R&@mw zaT?kk<8*bd@mswiLJ>wB>y}%cg)TdXVy;l|EHq|Jq^Hqye>ZG=b7|UAP0vYvfPf}l zc^WuG8_j#~;G^Sdk;urDhZs9!>>S%IcDVBkoQd4BJ#7{dlTNjov$x?0rt(3oyPv0)XCizi%5i|hgrEH+ny==18E6zh zuYHsLr(tr0$N0L~BwvFhE~DS`h`FHdXO1&SZO=Qarp$bh*G;owB9z&sFAnxwYWxkF zm|`NrOTJFR|9qw=K!_Iv-_%*lBAofTUsuA_2pFvnhI5qR>dR0Vb?-Qf-om$$YZdBC z+~9r@nMI8rBm`*sxiNBW^ds8F2f4zEp7?GgpRBuaaLyqS$+(cZcxswf$igQI(Q*91 zr9=_OxT{|gqHNHD3g&y(bmI?3JtIr+$~*?R&K*zR=CSnK#!c-n2G>_mw=&N0je(OG zLQn@j#L$9)p<`z;IqZ_xaTAV&$4yB@>ZLD*qK_#mPg+kgL){(J%^hj6c%CeB)!}{F z6!Lhy>^hBN zo05yqYsWT;=)3IguX*rq(N57BaM~s%|APm5u!#Ga8u1d$fZOwUmTJ|NE^(X5B_8#Z z?#&cg4|i-{0BQ;yT+L@WwZH`V>ojZJpn&L~irHeu##wZ3_MjiB#GpO?R)!TGAeAx4 zuZ{5yR~;|ms^Q>}`vuB=OY2t975Y?e#9>aS9uxv0n7HwHMJ#-6ci zkFF}5$=E;wer>4>@r!{h;r?*YA}49_!iT-ke&(QHDd@0UJioMc0OdTJs=|jikxlI( z)q{LaQn}%3$pJcWmhuE&96epc9OD8Y3Zsr6SW+iiw`W(NULzA`6h+nG0^_wFd|3w^ z>i^=kVz?eORqDGsI4V$S6=E3Kia78Ja7cRIL7Ypj;&_XZ0!>KGhWJ7@&;x2|{=1qH ziD&VfSl`5-VLqcfzE^^#CYeDZBzLEKB}H=jQ>a)>e%DHdbEtV*0z)iO{=ppp(tX$FC zg6M|uACx$&Tk|H#aE`V3z53KwmtV{deJE%L>z-4OwvE!kFJe-&Cov|Br;TOLhOOD4 zz}z}|j$5A{Iw`_hw0CnSQAPQCQKc^{(GVl2h+C5Gp#de86no^HE{3M7i7o3zeo|Rd ztV6JqKW}}A!z#~Cm!wa1lDaZWOIw=sSc5|yYlP{ z9=AXoO3rtvPAg``Bi_m6f26AE`lg046_ZzvLb8Q)u#cu%hH2EQKC1X%7wOF^(BMD>Gtg zOKCJdId`40ubtgc_|I68c^d*IPPoV&N;a6zk(0dFDZy8!1Oz2(-o}99tYoKtj=2=d zE20{Wtc>S+fk1YiOlNn@;8K#lECbRxY-^4%nF#$JlE-Qu$BXUoDiq)dnaxkqzZ>;) z3K2&{JkNTQ@Q`|f_svLLIt5+x2u{`M2G7~<3wv`qF$!t9bLocLSrMObVaeyGA9@sU z736I&ZVuYPCkKNdBzW7Sm;f>np2vH|uQivBt^^D z$2VksMz6}x!$)k~40w?0&>x0&l6kQf!Ml|u-w#N9lIg?b%F(xc-^10<4{Y7pDsf^hofc_ z!t)plu2Bo8?=6WD)ss{CooV{t2c|t{o)j%am82hOcvPGI{0or{kH*)qF<#_h_E1&= zqzN-n0Z5X#mL~_Ll?=a0kh$KAhx(1fa@np@}IxOi}T4@ z@SC|%{(E`^&unt9;y{lZ*4A5@UL@!wL$=p{{u4ZXUff5bP~r^ZvFA&d%9%Y$oSG{o zngkZg0idSBgxk7UZ`3~S@O3ltbElj;{@HxV;P9V-GWRe_+P(j;Bbfa4qOHSFYwhOx z2pEa+w2_x4EXAM*;TE?N6iBbNr6t!48=*Nir++iX_;$os_ob_bHA%#vk5Yk)&f*z+ zS?wreB8+Sa`5OKzJ>N(lh3{qI609pTKox`l>^=1=PSpSMghmAUzzy~H5ll65KK9fl z?A5h=i^ZaEmwsN`?a{{%3f?!V=t3u-BO?*r&L@DR;TeIec9)=k1H;>-(50-0G>_e373S*NPVk5g_w z*k8515Q*_Nzn=Niwr8=m8#H@y_r$T|JhupVD6i4R8VNeL(-7-ez;(b~S?X=sF9ugw zD1_QUU^3-2bVywdKivY#OHi8SNdSKzaX6K(L`HmCPbW}q{n4d+mIst6MtUVVELx^I zRz@hiMDc3VF=ryxQR7ijDw#MLiJFs%-t^2-5F7mcn5~>9AVa_L_S2c?K8d61^WF`Ksjh7w)LKC)rh6CA|98rR^v%W*x7b#BvQp(sb_-HHR zU-TUO*1&e$;Nf=Rh|SC7XzC|pAEo)xFEn7Z(Q&56?93|FfLMl|u9d!QNfo<7>2`K- z;BjN3Lr>@S*Z`?5d8cCONKriHrJ^7;UZ$<9O|mZlML@d0y0uE9%Imj`ozS8CPT~#- z<5^Q`_&}QmH4+O`q9+!hm_!FCUeaVCxMmoAQzdgpxd)$a7RbfK-BOv_+=>c zP3Go6GAciC!A!TuyvlBHzK@MZMhJge$nzv&#Q)jVcvMp&0^SrQWlMpRn8GPcm&Zf> z&F>qp=PHi?PkIKEO!(Oe2VCFsS|@-R!CL5cCmIN?QX(`)EtEgH-`(6sbYyAVxfDbz zJqle6$U2|OAdfRbfgu41EZ#P^sOyZ^+9l`8Dk>^mnO~u9S_*Xn?FSKWCF|e{(h14a z-bK$foXs^O+6T+mN*U=gS=BK)GP2jyUsMN3Oa5_C9wx*k~Q$p5@m_A{{; zxInFDd@QIZAX+~u=_T{14Xd3S)GL>wd?iA^QtbQAQC|7DBuLW)MDp16=F^ytUnYB8 z31;=$bFE?STYGVwR(jOt!V1;L=APsC2fAOgHr(lZ;49{rru_{!`EUxGNHg{&qeY0X z^^f_y5`P2|L1nkLYl>hkRJ74kz&n5$EuRe<^}*)plJvv5we|^!b{Vjra8M!iPn)PA z@6JJHXP)ITrWC#O`ixQ8oK71fxXOayd?r!iMeDyYlp>TpCbc0~88S){9x{xJjny>B zN3v(=+5$av{LdD97>2!O6CRmh{dJrqJ;;~)kvuy+?5_erx!2UN0o`tYkox`SiHws;!t_hAd0UCdh{L@1HzL(uBX zlKAwDyX>XP^{xT@BG>zbxjZuZ&jzb<0r}OLb3n2SJ1qzY#d2T!8^p>eXcNL}88p%t z<1}*pwQhYV_&ib3Jyz#pGQd;8t!Jsbvkg8om#;4Ff@mZ>Fn}FC&iE(y3oyGs8dyK;u+rO~T5@RbFl=_w&Nl^j4a(JcU zYGtwU%!p^}yB|XPT`F^Nits{9nlSDz&8b~W?k3+HarnuDYmCcI$bE9<4^y4OFt1{w zK7r!936?L1FUsgqZ`H3V-7uYfUgq%DzMY0CD19Yt=o$q@lko)0_hxpN9ds38>>^SM z-}sFOROkm+b!)m-4lhqf3U64NNSVOI0&~Dv5mJtUg@lBq<(wa`UAoF*y>Ssl|_xr+=w zlWVYN|MrmwTwD8Hw70=Mh4xQ{G$*x-SBzP5rz8S3kTM>wt|zlbc>T?J*7!m%$6IZc zCx&A4s1d>X>^WX`7?d_n(we?xi#9&94#W4FR-q8?}}m> z#=ZlU!veEi`(eyIFY`tQlxG7JbLNoiPu$&PP3TPI{DwIb3=;6(5@~VFS z?9fc!XJJ(4>mgu715g)uPd306N=$9px)!Lcwy0kyrt9yrih)JvuG(Nkrh6%cVB0I) zEi6cu6=nAWu`A_gRTXtqUc66|LI^TOdCPl_w63APrAHyYAPX?+L&02L2qQ0?t#&A< z>+4ttEf~N!b&ia?p$I!;Fo2{NyijVuZ__)mEGUp80bL4#enBDtlqK)Ud#C6jOfcCFX5QV~+hYy<_#?_v-M6Xy z22~1}_)YOciqd9Piv+Qa&eF+y&`K$>4RQ)h^2x@z3iwM07&kE`M9Z>@M#?7+}LoMkg)-H zf1tUhWhxoJ8l)c8pLG#B0OPe0Hq5h*f`Q-r%~?bCWV`>c?14I8Y(U~ zZvb<&dqXbVe39Sg>)Ai(atpzxYfR{oc~Df+<*y`iUO`!+EGC?oEXLcb9fcxgR*GYU zkQN#T3Q~?Jewe|JpF?Ra${mTnyWNW0a!GETZSB=9xz#`kmjTX$QJr!P_yb=g8?IUc z1es_{#uQ3yTBv#E!4VA_zv`ne^{mNYD`_TPh`ol?^ssbZ(xpfbd^dxkNc*n4IGPmf zboN9u))}G)YK_spwykL)7%T{fl+YY`|BjI7ZZIIsWqK6CKGAt@t1@7Y@o{CNlh@!q z#A4z|2XXFt0SYlAM%b*b1lukfmA+i!VU}cgKC5OecFDDCWk(0R+qdLWQpZxz@G4f% z4*D9HOmvhItpWcx#TdJSf9Mv?%x83NjZp`-Z5|b@Esw~dT@z1%?EIcC5C-Ca8+*ac ztLD_geKw(s7B-}B(6*53<4!GC&6HN0#5}7!3%J5$;7vgR)26vnY3$&4X7t|tWC(|f zs~?Y005uPot)!-MN_eUtO<49im{pRKm2fDJUVGSSZ7>`ZGX*_7p!Jc<-|9$}<>daW zq~8ufq|*6LCT_V(o|RY-8|`wWVeLQ@j$=7|aIRy-zB?z{Dj#(dYB2@jmdlKiyjk@) z7Ra)aaaZ62J~HdRmiRbw_}R0*k2=apJ%rmGHQQnf`6IZ!^LbToNQQl0G068Ml`9^_ zLVIgZO$-;ezzX;0u`I&IeI&@-QK-l$Kl)H?DXO7~YDnLGE;M1^rF4rd9$Y$|0tEBn zpNwgImh?foMQ*G?1WJz?l>@s?cCNTrFAokaRSdtPp1ZVa3m9E3%?MJQfzNKi^!S6#OP)b0S)Mz6OUVs z=uQjVf<2b*$vb~ueU$GE2`iMT+35+&z!4zBUmgoqDnnfn-k~D|-+?h5CpfQ@fNduo z8}kPZBU2Y27q&>W$IcNtS3HUVbrQiXp7j!n@tq2r>d*N*m1IBXg>%~j;h-ngq-D_O zb=GE+PaFx03uPxS7v0*S_Sd(!BNPR`uIo72C=>$9EV9ZdCg4AnfnVk*BnCsVK7}89 z+d_LPo2PO@q@DliBvPzC+VxH+PD@c542dmt;?2t} znyFZzu|7ORl_SKVW&iFa+QgBHye*DvI-WJ!5N{v*h0gn6bqffI^@Fj9$x;QZS#ORw z0uuvkA#o)Vo2th2J4E1=GMC;Ier9*21Dcuh+7=xg%RYI=>PA% zVd=1q3y&FnK`pATtLWk}O8XXPBeHdgr3LcKJw+cVs=7&ZC07qSp8yLKahcM=LQ`VDaWE^o3ILSh4=#$ zsLG`O0lWL$hf_ssy(8tmR41=Z@rMLlNf6@sbUkr_6{*Z4`z46^LuYx2N}78k7G{u+ z7!-?-4!Wom8x77FIdkIvy1(n(GYE&RP7YanS%0@5DR)os=%0AgciPPQQ;W_Bo$jAj z9o1f35bT#q9Mkw0WiZCrX+W)iEkn$vhVj+hz{b(}>}Uz~ey82QQ2BTcsJgOREfHUu zC2>4l@3?_NJ{mqVhSK9&=N~_cv*@J3tMJ7;8T_>Mk?L#*FE*ky`P;b$xW+5VJ#P~vE4^v%4YL{^-9K|cbu_hH!A?ukMgx|R)#xuiq4 z2JJI4^XUS4CAR@!+XB^H4SOM+d>OAoK6^%yLR=;hZ_Anc%S@u+3{Wn8!XI7uqIML52@ zk8u)Fq;7RZuZ$|e`7Y8!j;dxWqCmGHdg#u^Fr`C!9u-=PFM69YgqK-Cb@c2r-2Syi zJj3DCn^N{zF^_IIg)duRZ~b|-|IU6JrBht#+mrxxGQiT&;!eM;aBcYdgQpY8-;&za zXiCR{_hcRR>(ucT$9RnI#Z0g0g!wj{;sfObN_98GI0G}#D??ak9_DKGm8(0!Hse^8 za-9+lKJ_VC`n+{Bb$hNeSrW@19JhN#u+1-FHt7=wb7>pbe@dpT+f!&D?8y0R%>k#$bvgk zKBv57YD6h4EF01xv1mvlTz>@~>aV3XcrwbWphx%gQi5h!1O8j?(YS;Fj!p5}kp6Ms zf#}i4o*fe{Ql^{dnd+gFTDN{v*T1($bmY(BP?Ki@>yjLOaSas4o?LPD!fAqA`pj9zaeDIwxGla2Y%J#-lo#a(6} z;sNZ#J)U5zjHT>+N!i!$t1weNBPbFZ@~R8QwdecMs~sSPxeH4C9NCDGXvARGHs+AU zNkfI(J{X_?SRtj(eo_I=Z^RkxVS~5h3sY_`+fR;3+>MQbJx!$(w5hKlDDAB9WLYjR zs_{!+dNWRlEwC`e4@vQ#A9F6LoO^jpAgyXey@D?XVPPYX4us$JEr$qtG_Fb>{QP-_ zk-ebhEY=L9o$D?Cx(kF}g0qn3MGaDl+&I-dH*Iz|B(z4!zD8r6ByJ_{4k^P*Y{&Do zfwc1yQ@B+*e_xGf506!fD*^JW2HjG_&bCG!S5)=5$3;?Z zSr?3wgr`tNFCH;#+fS=U-S%tEqoqywN$bni#7Cy`zTG4G&kRwaP|4Z7Qgao9JQO|Q z)ysnBv5Z0#VIzq6U$G#e6PevR!X)kM&~n~ZviujbrBd{NBaZ}7)<5C>*X?OoeaVh*)yL$fUCF3noyGjgH$b8x_{;>lq*v z8dje+WAqPE!c_S71XKGL)@<=Ia6OcKfCfm@6DTODjkE(-CZ;lZ9^5DTtFl zovS~2cyvr`Jz7Q%;QtN)EF>~VhGeNe63z2}s_p5%cd|`*b45UeC{2FaCUJ?fpu^o{ z0YglMDt_Wb=0tLuOqbyK&FX2~)86q|1B|U7QVoU^*$Ni}|3Bh68$tm`9Ah7{w9|p2TEKu zw1_U9P_j1+J0t|xczC8#hw6q)w(_%tCFzMVepT^g#Z&LNUanunyngEoJedk9s38@Y z>7`49+A)OPwtYuff^3&0%fcbp#Y?Cdkqy49t1&0-xnzG1t`NDYlbhsmeiua=#^sqk z>F`;-Lbw&7KxKx46K3WO zg&|9Qz56+^vP5u>t^uqH9fupte_dIQ zdz{4pQ|Xk++pWcL7BymyR%BV4n6vBm;F9FtF1Q+o;iPnfVvqmvt#7Sh{q!!dNg$@V zt;-*;3u5fc2`w-OtbVSgWj>lR=dxJC4&!Rs5%dMM8EFyC{Wz*<&ItP7jpNP zNcpl~cUZbL+?i+dMrD64Mpy6f1oKAUDJ$3eqeJ$sQ?NKb!zG|?%Zbf!cT$yf&(jqnZ0AtrT{0TGI{ zu7*zYQPgH`_H@Fu_N8uHk^ABCe3U2Mlr)q$)?|J_ssO=?K5{Vrpx-qjIOkQ5XL7W$I2`zPT8cfet|$b-P5o(T zm$vLf71C$5i0?Z(^;J9@^|V1gP*MZdbWH1`|J=<;E!kes#H;P;t4q&~TW|NwOEm(= z2TfHPq0t&lT#6U0Tsgc24l+j8;kFhVgjf}$DV`)dBe1IJG@%Fw$4=>qb=MR4Bx>N8 zZXqdlm=D;kQ+DRRbDGdRuf0zu)77exZ?`KyY|?#nJoQ{;1|~7}D3u9o%K^erhyrfd z$Ib1zDoDlO{W;n4pWHXIB~!;^A1=DI$&{WO_<*-P@V`+~Y48L$!!_Z7yry*F{z_gM zEi*h$QzrlPq-~+*unOvhm&ilicK(0q~X0wC7oFuyGo6rlOu=W4x{+3Ir^t?jGqZI zyrj{u;C;(t-Pq}6II+=4LUDVNU!KN`b^oIkij!EuGL#(S`n7{zy6RRMLmyFUCvgBV7 z5P*;R_Husal*Pq z97Gb>mmB+-77c58+2hCliMz?}_0=2pDNpCV;Yd1qV8L%!B@hg~o_H{y+OWfTFFve6 zm~)#+1pmoU?v`5sX`10msP|$c?YNq;bJ{LgRc1UdEj>ifPpLzM){a~e%wt(TQYvvw zWUuez=G!{}p&6h$7Y$dR^A#r;+^0}>Sh83n_(cwYeb8qaa4}kR#V3w8HoB1;TikKD zc@~BN&wedeCYEmu-4l!{ZO#zBQy;H>EQZ#5t088LK=!JgPQ(}?G^rQBc!31B2>MFR z4v5AIy)>3YrS!yVb!#)jOI6b&mML2XS)RzqjF#6KIze0Dq+qa|G35o&0kE*&mCj?( z(ewBw7&@35x-EXR-p1eEQS^di?JFwOrOTUpRYe6E;r3Uzu;r@gtcq8#$PwiY@h%?0 zWr3gFkK_7X2IEVTW(L6{S6%icRw9eQ6w7;GH?&EoE<;vflenXeJ0jin;O>WIjvMfh3rwzn(ow>>f9^Di;wJiZz< zzE%K$A)o!d<_Eprjzph_Y9U)n#gI=T73g52*d9-*2t?B9nhl0L0($|y`li`sJKw#0 zddJ4oj_?HVSr+b;qN=W(BhQse`e}6$`+xDPd-3vq6ZRCF{|)nJH6wEgVIXRA>eap> zE+dQQMu~3odiT%-GTIvzj)Y(*HA+C?E@&mq{i$Hm#gj6K?RRk!KnjY$b({M9$49O; z!D&jYtU0yJQdMM(h0VI%59HXmFAMPAiR390YEuVAcsY6BZF$Eb8Ab)H8+8+tV3O9F za^l_OO6tSw&wg#6BbRANHBLI^RQ3R|Ki+f~LOt*ht~t_A!g5Ivy09}sL51Nq_v#We z04@vjS>O$b6{fAoEtIa1WHT=^*<2!^(ba$eFg6}NEdSdVz~9Ufj&CogApvyMpZ_~o zn4<*fmZj+p+jJ!a+fAYxlIkwsAxIckjydlFD30%0@NJ6m2d0fEe8 zAATOwNhISIlGBdJO2_Y|&)sRJRXA1XQ^Ej;JhnPuT%(bPs6Xzr@_IvRA>Io{<_5fO z$=a`w^xJf6KxJ#otwP3e%<)++)x1HEYLaE*)*o1qHv>;3-k!>B^LhwX2{|B?Ry7>+ zJqNGznogyA4j%hadz)Nq0{`YefNUlHAsy2R)tg7UeRTUZ6HslQSU1+BO+=y^)4G{3 zO{0=fDNUdCPm^fobT@3>I_J1K(E9(H2TH%!zfBD>sf2GBnz4PrE2`Ul+oeCnqzDm7 z*VXxM#$?d_N}Y7<-Ysv@(JtZX7@oz=Aa~C$mTa{!c^Zj~Mu{agwtDiXQx6mFa+`{7 zJVa@8nBsfkQbwUay^@H)S^hkbn$m>W3YZC}2-gh1gE859b^`0hTHp;~5|84QtNiqgyRLaSEFrhVmpU zodD^8cav4WAt%&BL%^2vBSKOWon>Is!%+H}m?sqj%FG;>Xxp&SL%^iHU>})63Aj$A zb$YMitthSzOLJ2@9)V|OB$e1#;X4AiQf5td*;m0yRzU(-g)iLfVu);;tZbmev%2GS z@daofZSsjC!yub^432#V{~6<2=_(e!jqN&Q&6Bz8tNezili4!@gJ#^9*!N!JYRfK# z9k!B3$c6?A8CMCj8{B}La@(1-fA;<{47^ju41Ze>eah1yO$o9k5mXB_m*T*vEwu?U zGZ~6jcs(c~Jip!8X8=yFOKU(nx9OxiIBoK09=;Jt-vc4G;+ukY6*_~#8L=iOJJ6?+ zj+fEc_P+0--tR0wn}-)Gf~6z{mh?{qq#4rg8Z~e7d=*)0!^0%1)FoAk;!_4cdaxK?JPaPJ7>#}X zQ7m~Bi1#|-oA2&dg+C&}XjL}XDs*jI@U}9!1U6%ovh}FQtKAm;ZDKHSGUTwmYg=}9 zZ;__YBT)CY71F7W-k%i_rIRj4y-wR6mOY_b)Q(BDBz)`DSuZ-{h(J`>rQcVjTf6dY zmP-%>z)*wr%fXWtxD&73zU|!URfz+=KW*D!!Rw~8_?u~jX<=E>`*pz z=}BRxB$W$TLJ0(f)ND4%Mkm$)UeG3Nm+U-ZU(9WXBSeI_2oCUG-P5JQen&jgZ`9GD zPJEy5oA=)kS0$j57p3Bb3ulk12)U+ScHT-uZL;ZHdHI%x?A_xb=q^CFRL``f^VVj1 zI}Kj8>Lz1H>G4+Sl{3xR^j1B;J;Dg<3pS*YiRJD1^ndmIyYU(~W!=S($`!@kpG1m)!Z}I)7r=B`9KkIjP?koQtRb2InVJ7cpSi37 z0~|;HQ|LvP6fSY1@?RsjzGH7vd+C$Qg2xP4pt)5( zxuKDzS$S$^J;cH|NI`=xd0>g*kH5v>tXk}h+*pmw~0_}Aodec89Lh+W~))1qS64z&rM>bBIV zxnW}4mS}Dm*tVGjwy^Gy^8!WWWiCOOd1b+|@3Eqb9fW=$k+tovU_cI-klr z)t|z~{bqr#Tf(9(pJ&`qhyoR1!&e6U9j)aBL6J2PeR4a>R$=ppP2uC`Tt3kV4`2= zPiP*n9;)Tv`PX|u*|AyxGoQ!+TgkRis?k#*k@e3!aSX!zr$nXv>3?;8f0fuWM&^-1P_ta^s)>0dWES`o(^{a~Lot z2pQA+{EepX%jXqZyq@M6xWYtbZ}%RepR-rl+ii&kPbEy|Gu&12p9dtfYXq^kc`d}U zcky5tZ#ix#pVr^iX)@wPb9ZL=r(iUkv;Nbwy8s9A#xkjp87{+zX=gjIU7<;QQwqXp0`am02s{YZPMjnIf8|Tu3HYR-3`LT-x|0; zAqSSQDs+Y%2Mp*Lg)R>Z@arA+v56?)knOIXM0JpFo^EPLL7SfX%S!3C=a-f@D2bfP z&s1tv`9P1-ftstNB(kz}z)_OiptRxy@O|RYZnRD*>Gr8*kEhle`-Cq!WA#he1jh7x z(z*;r?zk+`x?^BvR>r4y3iDdWNc5RgeT7Q&Wpn~Fd^PO;h~o>U&g~(4h}CwH`cxeN zOFWChg>lAgq+*&~$yz0Ot6chHWr`xjZmssqkA=zbxR2ka7FR+#FAJ9Z-HFM@$O|P_ zgxGdtEgxcaE--JoOGVjQXLAiIY)3O!ZgmxYPgkSndHa+v3V$d4M8(%~oPGcyPj`YG z*pU+QNeUE1l9pWs9-Pn?xk?L9e0tM<^0SLGwh-|gDZY%9$7Lgw3l%_x^dT@QZ+(X~ zvC)k{J09UrTrL-3#QWd%XpB08gux3V+g`t`FRWF8vKNJ$JGhp`DsgVui>bPI(-8@a zIeAq;d1idJbOZ)P@PJSnJxsi8AVH3r-;d39d?23%Cr$xajWDk8kzA*?g?W+TcV{r^ z9WFxeDeCU|#mL~PI_b=D?O9+q_Z}(;R4!f?h*Qt7@aruil`^DdP3y5k`6@sR1o6E9 zVr{nrzVLxV=(irZlwYmVBp2l^?P_6#KA8r)DRP{RG7ZK=OaSB6M7ijJz{bU*gc$Zv zqjI5SS)sI)vHoUix{>%FNQ|i||Bm7J5d46xE4cPllnPFlm0m`S%?$`!m_Cm`DDCsX z@WgI>+xV2;}`Xd z_SD4+TTw@x6?u=Dzb^7$eqzSLeCp(ny%vK;Gr3Fy=wBfVIuEE~@UQ?20tpP^{52e$ zuC=DiiSC_{zoO%`^LP=+?V{(%5`|-;AsPlPZOzJdT0iW^ma~<5jrBspBTh5!bn%at z+Micxg1#DPBBYa*pd4=<hwXYkt?Ej`Uv#m>*dI}kaL8#yB`-9+JI>eC_UxVa z(JZFpaV9Q375whL?!r_i2EJ5vQfCE9MCx$HLOc}1>Tz9grx>@v5z24mb*oCk0flNEFmyT}H1YGfD(@H`n#{`WY=M3`Si@LVn-3wa zehVd0L^*hdfif~l?~Kw>)wnR=n*#TQ-XMpq8R8fY?gtIi3rhK3#%YptXG2X8as)k{ zGdVU;*yejr4PHH0vVBF7u24r1mE5w!?PVOZMh&rY(Fr+lG3)N?b%6yBSq#x>fP8D1 zV2jTI>s%-W@+&JYP7|!i#VEur=RX~18ZDtT`fkHJD<_{tqBNFb)F_`Dp&%Oq@okjF zvT1%Vlz@lrr-tY0TxfacU*Y@9FI-xHiRc?>;})W>W_?AlW_DsuXTnV~G44|KQlSSX zFvh4cHVY$+FQ1a&WM8EQjsAm*0$Qo;5|w!c>f6(bg*-h`EwM(gpcsh>Wv^_#CN&kR zMRf_5mUN_{6sM1ZVRLK>mox5O^93&~Pp_twp6#&0$O3;2XNV$Sk2-ubbn2bl|3DTL zT4&2?9`GQuo0!j!L@4q$xdDDl0R(Mq!Efh*nFftBEG!GjQVQe)FHq-<%dXWBBQ|wY zl4b1bZ>*CQ!=b2>2a_xTjf+4_V53xxxrM=#DEuP7@<^mq3{*{$3!%{VN@ zpYeiX8BH%z28aOQ7;5p(aNyoc#G^!hy}xiq-n*~4c0a&req$aFKDyXN8=Ma_Ux&|` z(ft)76NB2~VChax0vLpA#fCp6nSsO~+*!G!i+ov#+F+RG^^B8+J$x3069N)p=`6fB zrx%l!AY0;z_Pd}`n=#0FFszWQR}AL6h}i4~nv4g4fODqtxS_?m=J0U@A$b9T0#ew#Rl88rb5Q;765;iNl(ixMv3gI-Y1k8kn;HyCD zoWPuXL7J7<4&Jx@itXxgz2F)FvIDftB2@GPdwMrn`4tgA za=ku%Dn2#Sia$g%t*!$F3o>hlA;yuugQm{r54o+hZtz`ho3|Oc!4%xk55zf%C$H4r z9THUXMu!PA^c<2v!a=3V@@_56J$A06myvkG5yv-q=0F5qGz=04tRX2Z9BF1=5Ca)G zbXPi)Bl>EoA$x8svR95c%Jx>V*3#zRYp1ymGxPE)l+bz@h&`FzFrir7}`a2vYWItqs+Ap}320K|Oh)#ta2Ow?d96>V3#$2(R(Y3@y+r&o zA8472J>LSYXl|@}Y@I|fORKn7WCO=&c~03w3Vbc?;96fa2w>Qg3YdTzyIrVwlT-$< z#(}2Kc?5rR`QBh>k+rg-B73%LZm$?xsDJ=8v;jTnK4C;ua+{nQBeMjk^-Lq#h0o*F zAJ>L5#^URKTR5por}GM4aKp1RHn=v$;vfc=p*W^D5GrXLEY9D5Wk`^GZd3h1HBk}n z;s;Ip*AY9Ei{p%0kJ>#Hf;vDe!X53kT~2#UEmdjgVjLXeHjv;4vRMQHn)CP=M4%ml`J%&Y3Pe}|7lnrDFz%9M5aCyzOcN}^#g#^nNQ@@xBhy5(VdArl*o;PcI&2~s_xQG8paqP%?Y@4wf%=q}mHUfBr?3$5 z`7UXduMMxA_h@p~$v8^30$O*ww04OX75Hp9d9~ZARdHCpkRy?w<25ALuF%*}_1fAi z>q> zKSmAMjy!)109V1ig^~#SgaN4fNm!HDVECr? z)5`&Red93-3Da&vxcR^?-gYL$S5D^_G_uz1yOgvS@qZKH#)68E=KYS-%{4pr#*E*; zlRJ;0#HvWj_ZJR%=jBzMOPr})=9@aQ_yog#^#~y{xqJ5a3pZ-3!t-rv=JA}9c`81+ z0M1rh-`xmxSP-Yw6f?I9VAvWdwQovwyXJBLip{Tb0u<3@2+hejNqLjxs{X2oE|&(>-l@`$iU5uL$<`C zjY@0CaHzIUqaMC(vC-AlR z{QZoBfpDEt{pDQ+4H^+9b7{o<%^Tu}J0%kjRuK<p!q920PIAB9{XV9%Nl(#@YcZ0nsM||@AR??9D|pUmbu?2& zcufgCGxc~aQL+%;B6i2KWucS6%%EPJEs+s7*7|frL=CLvc|TnBH{z;;<&8g7hg1^* zCOR*s7=ZL&2Yl=($jx_f(BS7M=F-MKUc%!TdnCo~{_V|p(g(DLZEfk+1{q#Gzhb!YlG$C8Q&fkNjM zslB7VZ9*lQ!2{ znHTh*+{=k8=?w7QjRRIXaK@@j^gjMehX~|~o)l1^zQC9Un4AjaZ=1ri*w=69c%_zN zh$-q%d8UPENNL*t1VO{2X&XQb}Az6Tby~SY`kq_(MvhEM*LC z-!s$s>Ytp~8_J+$iDKk3fAnS#P~(G6rLc_H`V(e%_lA#jTb>0xUMaAGj14Mhd`0oYQy!SQ-nb6lDPdBDx4_Jhq94zO-svQ=`H=7Va*3I>KzO*sOKTVeI)#ki9D0UEpB4ay*-H| z=~^RjPtCPR^paT%x4h6eF}NO%1$JRH?Wch{KPQ3`mCxtr!)m(dM5Om}*BxBL7lUB` zh0?q=Mm35sDUwQ9_msk~8lJ9FD%6A!o#yTGkQs(LAQr zlb?ln^#4q(;cc^4;p^P;k9xM%sZSJ6!+Y_QYs@e)1lJw(tlnYKhdwZTMxK;&dQ=Xm zt~f~TUS(4aOL@$#x$o66X^Ql^d&p2>b-$3H!s{oQrm%Q){4tWQ*~+1p!C`xa`}bTH zIo7m!yLZICy;tiFnlm}ujb(^R>#wm=)C!#7ogNrCVeA!DUV(pLRojpN4o97rSxCJB z4*Er5B#hU6RuZjYk3al;QpZ1+XBHG7c*sp`ma1+ez814i zhet7G#cY$DV003{^&Zxr$kN1b!lUIa0JjvI*oRyIjy6yr9vRKjPYwWpQCEsmEGARCIrlb7h- zv(5=Pwl|~jyLwz1RbfBvq_;!!EE{vEK=ldq9B@!HOfi2~qU-wob-k*)d6M?Dtp>4~ zg#&vEs~ugDv>2Qz@Z2TELsE5Zk+X!WRe}D5Ro>I`M&g~Ja`VZCe5)4=k0;EH1x z8|+iv&oiLGviVTmOPh4=KH!86E9Af!BV^Z4^k9x2h_A)Hkg2baJQ0!*A~MhsxuRg| z->nO1k|Zd-6LNi--kdqK4N3aSqsk5{&iKayjGBL(d){3pOk-4s{L_p!-8(cvL8aTp zK@uYFJELK@^>J+f)ma2f07m^@t!6605}yJAO7RC}cmE$NgKsZ#@YMx!C1ySXR`D`j zS;@iYocxmE&jL(Mj9j+l21q31{lFr{Br$N5TP-kdn^u@Ago+`NR*=Ar;``60nl7_5 zUqWGJ5#6fsDR)m*wxde)@RTfe9T$4)0SH8L+)UvTaES+QkAY%>7<=3S)9p-%UW;Wc zG}%UU@H3j4Km>s@{0Ki^*dE%ui|}}M+G$U`|7A8Ltj85yDzvH8Wo$UTKiKO#DJjGjjF zFA5;b3_9MeE#gQ|yS8L^-p(+|aS$ke*SYUt2t|R0>BVr9j9{ZFMAOiXfr+uz2UP7m zqhbJINi!Vnbp~{_nt+X)tGWArDq@QHUqijOj*Jf+fZ5@8rDrszD+Amp@;7{+;8ab3 z9qmSs%s4;JYsE*zLlY3EPq}%MaR7;SZwq+4@;XUd0Hu_*?4)EF9s~w+{$ec9B}JlfMQ|kGLsuad)VlCnofZM@8qQqCF%eo*6vtKxBNn_ zj{y<&8m$hnY;&aQN*< z^)_$&_M;2o?t#)PF3jqT@Uae8Xoo2(TeOzWb$RhnlZBi`#2)I;YeV85`r!XYJeL9= z*L6IPf!5Q;jdE;FnK6e!%Zj zc*~AWIN@SYk{Dp|>V~8g)r*1c1rcI;N$<bkVK1lq7jMx=0xG!%(1(hlG&Z4JpN^=&bnlIssyiwo+R5)MyTiiNe z1YbEhXJQ0lLS^x3)O5s)*QMRGZG&aN$&?fNRZJYszs}*?Y2kLr%m6flQ0tB=k98`H zGZ!Y?>l0aHyjy&g2u09|(6Z;&m-oqg&)-GHGC=Bk}=7u}q$+6Iu^m zT5cyQSFMq-Xnf&y-;rvI`O~f^rM}>Z65P+3u(L`*q3!+c`$8)g?w)alf(mdoe(i6j zBcAjLI^lR{Yd|ydGQYh6m^Sy2&+gR6nBvmgnQsG3d<0LvmtsSz&=mb!?sD}uFE>wA zXZSa3R{$|U&c9i;JIx-r3CwGTlEd}!OyC-k8|c1FTahk*h^^RFVdFAXB%hDMVp0%V zb^67yKs;64gJh$a+TsyOxxk?|M(FoS3w?*Jp~0yscny!Gs=j#3EPB{PNhtfQA*k=- zsHC_hZQS_E%}TCicCFNx0`OfoLA5&dD?azDyNmYi)^9=QDGw4jI^ay7y8e4%~IBcUM%C7XOdezdXK};oQiZ z8}IsJS=DN7=PIVDZ&9X)Q{m3tLYGwy1CI^DjvmRu-x{8)kHl<+^D0vQ=Q$c2Gx;7) zMS=;*=CL*Sr_g2`p%FFcWSHc)KZ-r_VsmP@vS&T=99iz3BJ^!fjKqPS60kmP*Zzbe z%B`on{KIX2A>i<_vs^nZ094Cjx~~FR1VIuC5F@32ZYxeB>6{ExtL)syifhjgRx?AX zOCSni<)j_YepMiUe3TdD%X{RfeF4#wV`=*_ zq`y9ar;fCO;U&6{MXq(N^(x~2p@Q}bYhfY=wN@u&0rC$V?nw~B6z)*228a*tB^70@ z(wRuev!4E#k~q?m}qj30bsNVO%1O8q%d$GU?Mxw9INv z*NGoiS%euDGhvf4Uo+gACLL={Z=GK%pr~u^>-d`mM6iwFWhPHg#_onz`oeScG5Que)cg5)`@E zcc;5X25;J=OTRO=$o>m%C$gZoneJ(Z?j?Kc)8OzIFuGQ=A7mbJ{Y8!`bSgNNynK;6 zNdq-UArUZH$aVdA8GZ}mD+_5{R;;)mH{d{) z>&2-ReIx2~&B@x#C^3uAWpE`%NasTnReC2@MeH3XU#C0#jkg4OS1#(?qb$L+!$i!| zAN!g@p|7Zhloy9IoIC2c)s4I>EPu$~f}UQlZfdghQ}07eBm zU2#;M@9#e|kL)%!PC-#d?5%X9*K-x?D{dpAijCj*#T)i0S5~O~#3{{lQV7<3>wegb zU_)2v9T!jl^83s(HmfqsLf^=)uGaQMukd#NXou~)BY zQm4j*7rmC2iX+DM3rA6oEl6|MGklJ$eqs(c*n#~Tugxm@hkG_}3zzyTAmr*R+t;fV zRaM5)Pt})N>p$sm*cfHuBjygoa|s*?k%Sln>=TA`9!7taE0VYJMPr2fPUh_4t2`2R z3#$1Meqa_gmd?$q&pEWB@^aZ8ri}GM?DI}{jR{ilVBv@$`TSy2iSK2x?PaJ0Wxq!F z;VE^MBACf6>*xJ_z&!A|~c2UI%F@I{PZEa*5t`hEVfbt6+zYJ zf;*ri)7g<;Zv)hkf^2%0kVVT=swz3kVS=i_*HYr)w&`Ky%4VAvNZ09a$!~rkKvQv} zo959(t0xT>MkVdwsg}TS@9AY58*O8N*DqT6m{47dVKnad06Rxx1!N`3H5Ht62J0z56zmVx31h&Bv#1%yb=)*=!8 z-;1wfvXNv-P>42N3tRPA+W~10?2m7YV*FkgVYr=8crS)u#x6yk8a)Rs&d25X|5@u0Z_ zT&zB~37@%1_NgvH%eZo7+5qnNdtOX9&QvP#Yoj?qMzU#lTtPE!+FIx2ES~anSwZi* z8^q$1*#OS!GQQ~0dvd7Z*f2DxRd#n>Y(6yB5P!4rx+bvFnu4%(84@}3I>NVDBn}$I z)_|=tPd!l$HR{vd6Djmpu>whO!ZrAmdIv&0!d(B$cDGI><2o?E3WE?K-w1g)8x}gD zw96Be-Q&zCFA;C8Lh-;M;oM^k9lKa|U2E=vXG_0gyKSl%XmE+|U1L;Ks#0MNV3%`kL|kY?j* z)S`iLXw6Yov{*^Iz5Qg!gTi4J0@qL{iV==YG*Z@sns7z^AH3!vR6#$;wWxEabo1NvHI=M(=}B#@=@@@o~99;ylw z1g+DzpO$Gch#|jR8jRs&ex3 zm9S4Wl~Lc95I6peY%UnKXp$aB9rVJB@n%xYp4@Xb6FO^Qsb$qL%fzvQP z_Sr-dgMmIa2sES8Q#*jxuzp!z5(KeYEn&)i_u>H$temdu8x0HacMI&M4--RNrYPeS z-1jkV@xn_t=hqlGYAMcCirU)?8;@PIu1_QVJ1(@A&@zo}HaoI?x>F&Yg8nCN>u=JG zJFmKMeG2ow&Q>EU$@3!w!lA4zt1{M)v1pKjK2dySFm;-iZIRsCbve9Gq4G(WM#QkT zwXr&0u@kQ8K=~jbX6JJjy_UMbktV6VX?x=Wey*>#j6JHnq0O+TQ9L|yC!$zh@+a!6 z4aZXy>fwCQf6ehA{yp5|)hQu2PM;XYCfdK>&6?+wcOvw>*`Ek+=xV4vgY5(GM7Xy- z1ElxP*PPGKETf^b0tt&lJK>5lb+`w6)f;XNt7ndUp(6zNjyDbL{fjik;Ne?lULhvRaD>Jj~Ko<&C6>UA_Cq#800(S9fZGEC5>QZ4YnDUrSCQWDyH} zY)Gtl(XD!?Wykdq?oG3=(eC{9mkG&u9F`po>&7N9g~u$qZb2rA%pg(TN|ul@$nFpU&Lw<14U_AFkSherF~ER-8mz)?schMSm-Bby zGbbmB2n|A-btT~PGO`!eQ;dCPGXcv-Uzs>3AAhmGcDhi+a^sr zB;uoXL>Y*c=i572B-fw{5B!-x&vYmC55B%j#O0?z@0g{Q$iqLiHET#M$%{20&&9^P zMR_LqoMhV%QM?~vT`!-j_XQe+g)R94xv$5NJBkr{XD}`-{cjA88P;0?hd$QwQ-yxh zZqp)pY-t>fjR>WKEoaY@V>n&XMpPGjJ$WlSP=96vz$+6p{}<37pPqJ?4wcsK!Xo|V znJ?s-Vw0H65P72crNMW_+7;&u^>HCNOZGO#WbKn!%BC~iXA_D-dW$vEc5F=ALif|1 z(c?9{>)ca<&XZGYyawQ@bV34~LskY2qMH3STB@^^pev}!&@#-yV!S;e ztzlZgk4dV!8V~3TnO%&3psPY{HaPTnd4k7wNhSgy&L_AzOFkr8;!UaC>qYmQ0-B!Q zL;=%{IK@5LcoYyF7<{v`-83&l=$=VHtQg*E6tty{wCFTK>IV26&m1)G+9ph4^SSSA zkhxQL6l8`;%wrL$d4GT;L0qA<_z{!SFt|i9ovRDS+lt8vEn^}buIH_V8-x`4wt}x@ zfU6YOw+dg#dcPIO^G`M_1h~&wndc&oU(8B$WaFwGCS3xOI{L$|KscUIM$f<-)>JC; z&8gvN5E;k+tz)4KoB<~Bt&T67HCD_Wku_oGPhGRQ6m05&=ib;MKwK9t&k|dyz^)|& z@^{76&4wb=MChJG+yuSduEK~;=32B=#+oT}=O$hl;&;*>*GclB0uH)UY9e@O?d@1a zBpem76Q{pA%Aa5qFKYnyQ+V4-HqeP| zURln$hR~C>2i@I*N}-Wi#p95ovGFwLM^XXhYmH>&Rv&@NTC?o4BI+7$nt2i?8-Ab( zeQXUYTBQeO8{`~`cd#DmKPDrZltye=ytLL6nck2i6w70T;ceQ!8TcsWkARX=u2Ha( zY(MK>1rL~wO&xm~FGI?m@iM*e96nu%*5uH}bO)%?m_^g;X}+1phI#3Q$$hJoEz7805(akr%kaR4HWi2 z+7t}fMu|xf3_LeN-3w>NWhrE8g%K2NZSvA;4{(ZhI(GtPyF9Q)!!#60~`Qv9Bh+ns#I(Wfcl z7r>%Z(?Kh>Q@!%Qv4M@M7cNY8Ll7jtv{hh#c*ig(P0oIvG zt%Q+4Wwo|y4-E!+{4qG>1#nYi;cXHwDcB}98WW$V8M}`;NTgK(#7df|#<`yG!l2p+ zb@+5%VEy<9yG@`mFOpAf^ZRPZ+~sVL8N{>U-PhJ(7eC??C?#Zok;@2eTzWI4t_&fTYHBRSepEOwKx5zg`zAD>`U!fXJ%>Q%4E09@9Z?Esh z%$4CCr)Vuh-ZB_(nTw?uVTg;8*RPK_Oac0E^)BBK55*{jg)zF_?9OUuBlz+97@ zw7n!XdQAQ&^z&O|m+UI3|EoHzKdLr!zY6C^6r4Lvu>pq{pHrq;8w!q*JcO3|2B{>EtR&~ekmDV>M)5&Z#KHqt^Ry3eRpAuWQ=~RuRo&w#P+!j3`UHF@A;2De z&2$1CvpkNuhKaH#CvKhAwKT(_u10NgCGc7`J5*j1mR?}_5`72}Ym6&f8!Ni=?C7NowSfRJ32 zI;p2f2 zGYTu3^tS7teJF>0J%>lj9<$~ke8gWpyKSoXIRT&~@!ceaAkv3qtV`pvx-H7F^Z%ro zL^&qBf+rYpyC5@zX~dI48Cm4w0{p@!jo#wIP{y58G}s0wMD6~9fq6#+@7a;o3b4-c zCPWguGd6-l{D~;CkNm8877Rmu>GzrM*J5fpvKYu3Nt2w(BoVENGrv13ZA+AK+hfF! z?4O3Wak%!eisNPgssjl3HH{zq6)z~kJ1C@ZCm~=(H=GA909*#{*R*T?)?eN z&*57R3AhN|`s<8kjz_qE6!R?Or%uERZDgoYYGph(bK2rSE8(A|e=~TBnds zy=uJ*UB5-aScAMXnr(3u`++G41)7x+F|s*BAl2Dz>cM+FU}hePr^61{42d_U0HjY>)}cye^&w;le8gR$#CWnf6! z={}e;+2wSlz?-BXt<{yRn^z^H%s0@4V9oa_-GFHp8x|X+HGDY_5?O{-RZh1sJiV8b z&*iQ6Hy~41R7CkfY`{IWy>axrWm_wY*+4u3TbM_$uW17?BwdCXT%LQ0xZ6=W9pR0mw158JOg4R;mb zAnP&v`1hQmqw;p?-3^%2M^=35TNklZu8rUpSbdzLOc@m>N_5WW^}6x6q2fF!ikTV+ zOGSx<{Zg26<_76)IyU3JROWQzr>OjXYm$ROb7W1ElLkB5(12QM0@#nMktvgT&Cj;* zt7fs_a)l7&3grslSDYM&N|@F{C!dZ);iu(>U7d@RZCSSdx=8O`Me^AbFb}P%`3kck zuMueDHcW2~2#%Ro$_7wdW?amVcE<&P?*2Gh3g}F;`-xJzK;q8>G@Kl;tL0la)CJX}L$F1t; zg=UZ1D#L4B5!oIFh+(Q}VFA?&1bw^V-wWUclWWtvO^Lw5Y?!hrYoxkMRpj{0%=>wH zFb=b(FH1F4a@8t-;d~%E1m8P1^OK2^!)vk|zAkC4H5kL7G}&dEjB>3PGdv@Uu*_9| zq1llJ3Wdy9AqIW)c0B)Rk(>`D7ve5iRs&__A=Mib<|>T&duB!xAtw$-7Ge#pH!_K#5BCqnvOe=FA(NTZ!R_~ez&FK)IN7b{I!^6U=L^1;skM&4`Xt8!`>GoLXlXHGr7dAKiA+CO5w@JyIC`6^%Y5(lTzXTMR>N;g-J729hf$zR$0r z@7Fb@vQp~+81fd7HOK#l?C|Ej*xV2sHkSs5cTdn%q4kDGxNvM_Z0$1jPQq!5_gnst zrq}QkY3gARa~|#a>~YgMhysMISznR@`uD+l@A4JB$yY)dj-ac0U1sgD`XV#WMWx=D z!){Y54*6cLWsB;>QKe1FV6Z{(#?ZwD;@o*_sD-Z+>4w>a5f0b$DFIOBt}D|Pv)q*ovHp36it;bDCN?JAOvJAC|Mu(ChQ=tw7&qV9I@Zn%Ame zk}hET6~?BlD0znb(<(DoN4{NK$NmHSr@^mPHq;hf@3g@!Om%$ zFN3PzM>(5Bb_Dxi!;xAbUOVmIWMY?Y-g6)cr}?7Z+$hK!!@$cjMnc1d|6S?n^QY6K z+L|S`?{<8Nk|%!Ov`R_|Os8KYt_7+^*hD*bDW%h*=835X;C&Iq#*x<1D@Qc3@BoIcez*nPP4fQ=}1jYhZieYO!J%4%v z3f%{W!^t0dbti}d3%c7B3ud9*gwV>iNZIGos3?y(@{zD>gZ4HJ8^qR4cLV2oohc8U z&b+wWy3lNC7gU>NGlNl@v-GN4-{uq&(1LY4iDHWJ6RpbFq8-#Pqu?bcL%?%EXoelI z&X)7zIRfsX4E({bU@{bxw^h(SM6wv@moRo_+gg+7>pSi<*Olu7Bz-TiVhp7ceNHVk zh*(0b@QTgQjncxC9Hmt`(l_blCx`=e15<-G=-?)` zz~y5N?j5x2SEc)p0qztyX}5cM>{=gO%W0HcMCXBSpJxDb|EyEHDrxR`_ve!eDXH5WG=|e5|yU^kfOXi=>ZH&M~Tg zsX3qzGP2SX&ah79EQp*ko=<=vB8>-5x3RTnYk&>TkL-QOGg`_W%IKMHg?-?UvlPf3`H_aBlnH2}8F;Lvs8!tcIhKIC(8oC#z5O56$aZKP3U z zaYe#{w7S;^wbP%f$6g z_pghPCy!o$N2)u7@KG~=b@=GhB$R;1ZTkGHc}dZfMLWH^5u>-)v?2!$#!B#2RVuzj zqnOYVuJ^Mzp3dm3YxvAV`3oE|rKAAh597IFzOI`Ou2Z9ayOH(c{6d0n|9CU@$o`xl zNJz0=4jY1SUlOi3>xc`cmL-yDa~~V&)Ime#siWnokcvWt9E9jV2Vea##IzkD>%HR7 z-#Aj_)uYMDJgnd$F*H(W|HONmT}p4H)f@@kQUp6Bzl@mELuGgk`DT;*0hh=kgc|*P zfxo&DOO)QpO(y}1XCHJtHE`u#vRp~7&^Ymy^ziVkT7aLW2;$8%q>%YjY7lC!Zg6P; z@u#G_WdXMTV0i14w`i5P`9U7C1(0zJ69O?KzfeeGi~#4|$D4q69dMlkxA`u_qurHJ zk?KTZNG>4s&mMgXJnjWQZBdmFVQqUA2%0bHC`uBj+FU-!5$r2{sIxuH4;d9|_%X!` z&Q!N(-Ptn$?QR69o*wPfT4O=Cj7F)HOOOsR#HiE!SHA|KA*#2Vd=%CQaPXF$?J=Z{CmzMs%Fr1_#t{L?NWnO_O0~na5Q& zPd+^9ZjoonqzLE5-aT=rZ|zl1X_WtllVJ#gA2>nDFanspg=YGl1^n%pm~z6q3D9~#IY%Y+OuJYH78m(rKXrqDn8 z6wJDsR&@(>8SOKLeyo{4ko>Sq3tLOEkXN6;4W;rZ>kIg}r&tg?{vM#bNG)f~_3Jr>SOV#& z^e(Wv5WnR+&~67*)I@82?gSjc@@m&q#oj*L|;U+cGsPtoHSe6 zE8E&nuXST>g{cWpPY653{u%YM#(G?97}S0k`xKe8ay0E$6b zbch8Opp>^_$OZM19vTkSU@1Xem(Oj`kTM~nNdZ~v4h4PZ)KK@c4D9$}CrhnwhlJX! z3yO#{%Tmr$IcBZuRP90e*9z0160<#OnE2lbVGplv9{u;yH=OqRO|Fu8`?n36ziuMN zH;%5_kCa`ol@s~6(hNY^?rGPb(+PK$nSi6!XSTEeSsu1m@rnmlrdT?}J=eNRt&CIN zkk=dl>-K6RGo?C!7ps729J_&unN@4w43t52WN}Z&BNiXH&~1a=O9^Wf!kiwC?qdv& zuX4}}J+BEU{GoAM*8LSe3;e)Xn#<-@7+blpcYK`z-*p)1@FjkjNEV?eW*GzM&xH1Z zIFJmJSJ!`tk`e@Aq2^0>a<)^!_RMhm>X>^e*t)j-k+li=Qm%t(`F`HBWHxAnybl~_ zmx+-^?X%;{Cr>?A5L>QL{Pj(FRrYi-;sNf1Qw?Nbe^p2!M(=k+ZmR+BShwGw&F@Gc>&+@XDz2{%Q5 z5mx&}`13B@g9zPji)2yzqwAq~-ImtPPxT%Kv1luhic}cDhU@{3aLrgM^$cx*fG-tv%liX`po@YdtuWd-^Sw`_dp!YNBgH%Z7J=7 z^J}A1!Nv6;SIP~LZD@O+1^2?MH#*`zuN#TZ>>-%$@+iIw7dmPnasKxgIk@z5C)iZV z!3-eW6g=o^?&yp*spb8p3o0VP=%i#RqK43SsdNp~%1uuKc#hZQvKV59l-C;SOI}r% z8hKDA(B&Z5V`sBy!%Mq@P8F5IjEl=f&(>m|6CZ4pTCmQi3zY7ke|LXtK?3%O@!kDH zTAQxqx>umaz7O`^#TV{m>UaRNY11KBus{Q}mhxrE&j-#QC{AB5mto;Hr~a zz=i+R#C^|3+Eay1GhA5>z$}YM_X%XIc}8Vz335C^NyZ_Xe4UtSxI>r99P`lSFMU8 zM&C^bb~rtLdI{GF^#Rund;#>T+q}l=wwnM;KGY7nsFYs7b`OD7a;jJ zqLjwfD3geNsFeE9`;h9 zja^2^8j_uH#L))LTw5I&;u$~fEZ!Hfuc_0Lu2qW(P=nAqNKdf*Vo^+H$$gXl(VD?S z3KXEEDiH%q&xvL7(XEx`2*<6!o(Q2GzSON^o*$T7{67<2xaeh;W<(+hIJ%|<@PZ2i zPRd4!5v`mFY0m~Bz3Q@)_6#52Fm$$ACExw=Wv4a zQyvfvI3$0%{>XpD*m>_)tN=rO-<11jhR~7gWnq|>zKw_NCcD_y z5@^s)%x6??-fnG9ul>!5JtYCDE^2I1rGEFVn39*4umX}rwAF&5k_-tZrD5rO^mn&^)3*xnxuHNC%^|SA0=n>=0XeOPnAcL(1S%6vZMRgIj9RVwX952gmUf41H zvQDq#*qFw@na*_^auvLPL*W*_=dt zp6V~03+ydtGFlE&LphYyAEa2p26-IElua6ZCrwLB*zM7kNG0!NwZoEdRYYwl#MTF5 zN$Bp0${vN=l z)Z*h@l0iYeaA9W_)p}seZQgIvH%F$0R;(77AXxqmP1Uk> zLznRfKNpA3J^ig!8*;{4OUWE3?fS8nlOr#BFEWVn)NH&kOB&wb(kq~@^I6nIQVx|h zStiPZh8&D#X^C%=+oaPtrt+1psOAdeFVrD)Fj-6A6do4Y$N?jpv)Q@Z_jv z%y3!)GzZtLAM3Ahj_u92#ROm{|9rWhGa*2oWdX<0R;4k*ug||zqu$Q!MH8l-KqDse znY?hs?@1ZpwV6bFg{$c3W=_wz#ZSM^P$U7m9WPPfU#fI$K3sMKUXmp@pe{kdO|kNi zFCpIX(f(id#qle0 z(*Dwo-<~Rw5L9M(;qLb`!77ArQtX@^eZH0h@IUeMx7c}>qTJuCi11q?1xv{$#_)b_ zjO=)*CJXuS7afvJ;(3jx;D+pn_g-LVU}PAbBC(fiW;A5sd>iz+qD7Oh!lR8tq0dF% zc9?aaC2tIvZ@`j-xC|Izy|cyVsNRt>^LIt`)^;l`MY2zQ-K^u%imPJ4Z|AOTaA=@f zaTTyjZmc%6W~J7n%Hy;NpgsU z5rqIJlQNyFwmHyd(uO1as+1UvmL~0@{d!(vuv$-^Ge2)nX>_$BWwJrAmwAd`ggB&D zR+8GPk|1|cXAmR|ZnZ^*@PD)WU%+5iRLkuO73t6Av5Pxf3TuO%PKkkkDN=9PT$A9{B|<`~|#Mmf*YK za}};B!`YxA^*3myo~CB0Ta0&buKuh6 z>wph&?5*Jsv8hdaJ?6)j&mt~!ug9lh*1Ps@l%B0J?xy~Ae1Ale!b9P0rGIZ2Y*L;_ zsHwY8nO0Y;nA6`87|(2elnq=^xI@jD`dWw;4Fs^``Gc_EiurO*@kt69t)* zlsDPmhYApqlUxYJ3r;YIGibWu{u=y(j$NyZmX1AWd$#7rjwv8_5QLn67W(G=GQDQ5 z%Q7S?>rfQe-^3ASWUN?+t=X6JT-+BvI}j0HrF?<~uRcq6w$oW#+55bb2}Bk2K0Nj|L4>v;jGL} zr9uWvc>W}U%W%cC@y0;RicDi8v8jMFL?>U)hqb3uQQBu?w};t1Fx8qHW;uNIgK_99 z8gj51-j-AI`T~u}(}kj(6SpE!w0>e_cZOW!VMDM>i$MDJ1>vkYY`RyEiXj3I^rvI7 zjC-nSaQ|T@Ef!Xj(?`H8d8U2-hXO!e^07F-e6d{jnVPL%g~D-{sPGW}8SLGZBleu6AWa?4o3O@IdeO3Q>BnuHF6Bjuwz+EduAw277&hTIacb^ zMuZaz4U+5NV~vH*^QY;oqV#x+Si+upCw?=DJ#WcslIrU-k38176)s74Fv3|-gwTa4 zZS`$>3rT1As``bv?F{%9>Z*2P+J%>m{FA`-g?oqHqNMlCDAYQgN4 zg&W+~o=v}QZyaQUuLlX{=kTr1*G-!k_mUDjjx}e6?%G%fSOz_SE#HHBJ!)tm_sO)L zbXN@-swVtQd7GxdwfdYeFoE5@HP!5OoB=&Mm!s=nz)Ficvd*9MSZW^cCA66pWg)qz zRIJk7W0PL)p3|pb2V*~5&c23Da&B%oo_q zI@>PCk8V3yE5OD)q~t-CjnYpxr($kYU+rdlT*bN=4;9MGd54SW4~t{YGsD9XwVA43 z#le4a27ur;f>wJjW&$jrM7B>eWOx^Cl2BK6EBO-(pHfXK493+>SL2|e?+&T;rnRyz ztmbyld+08KJpvR?uiiK)#v^5=b1y??a9exYE30`vDg86klJ@tWl?I5&a8yO1WbodA zc8^wV#5r~paetP`pAPE+(+x;APHd?NvYe~c1=+mkr=R6 z_+!Lm>7?_H*v9DDFpOIJHm_*rhG@_wcu$dWj}Q}@j|l)8NLdZ`xt78?w>^D43%VaK zD^ozn@@_Veg%P*e> z=H5s5TbKI_*GGL5ieLL+f7H>Q_C&1abXcoimHc@RNwBb?l>LeX8JExi)$0 z!TvM06I1n5b(7z_Sn`yKSoX?C>=bD>jfHSllT@NZRNN24l$UN5TDf(#zI~kvLGdgG)t42=C9;9Xo_|pKOGEd-8Zc5-0Iz~$4DsOZ zqd=s}kkuiAxA!tYx3_SbZE7o2By<$pv8KgONZb(TUeDiM&RP~GI63i1*P3GA^MBJc zt`!)d3cl zIdje@yz%Zft2_bszb>X)P7+T(PORuDD?&LzO9vu_Y(6i!iJA@io%s~#(9HWn7QCU+ z(*Xtc0J%*|m9{uZWSPAoQGylrxSuBy`X(VcWgARtYb7sK0C1iL&u2w~>u(y{Y=lvJ zsa|M^3rq#h^1HOo{U@~WU1Am#R%jPNsKuhp&x^3@2WdcMX?Hy@EBC(A+(&}artpp< z?6%*TXj-)j{X#*$1p`Hn5)K+_jQ=#C#cGo|M34 zXsnE9mIgrBFu3R7>yb51rUV2q^n(EQncy~Gitwiaf}f6cRnPE0$K?e~t?WiJFOyc- zP;>2r;MJ_CKDI9vJlSjCWu$8fO})<)dfTsrH0Xqt0kHN^yv&%FLyQ)|KEN_*oqw!t zyt))w)~uDRvvYK6NymP?IRQLVX;QXXUD<}dFwc?o_i)X5^)NOn&k4W*Rs_lR5th+$ ztVJQtmD?P|u5F$X4}|d2qMCV1!v1WUW!Q}fCA6}Gck){h$BUDu3+O|q1t%aGP+4(k zF+;kNg(--Q92;)Z)tLk#LF3UdO`eMFflQH>y4V_8X0v3EFL)vaN}E?y%Ec}tJv@8i zd$pXX2*hu=xuX{B8~K`|Hy0~d;o=UP5mTAwvqwPmf$&xTkHnExU@3kaUOP(t8O~l| z*R7aqP1SjHm5{?H7&lw9=OjG!vpFus-}w9xf+=n_Z{K9U(~>D%-Ohd~J0Q$wq^!qb z>FL9h5TbwsDKWWx8h0$KwwW0pYq*x_yNY$J@4l z${1%6zjeuTKFd{oe@v(#p4^1bic~n`jf~81N@_%xhc8C#UF#x4OA80Cb%c!q zeDG74RX@d(_Y4G}bX2Av0msW?dou-TD3j&c{WeCuQcM_|JQ>5OAu2_Nz?~*t4AwkV z%s(NDw_do}Qo3___9P^8YQ=F>Ras z6|)+vh&*@+J^FpOGmnYCxQ@{asul~~1D3?;fQT<~PqKKy)!k~YTa|;{dON0Ia%0^c zK}b5jh;UM-WFoNuIY7q0U863%PIdkt;W*nX$0Bf^j`nVl;ILZ#PLP~N*{SMG)Comz zUTnXxoZ0N-ciwP}mJmOvDE_lD4|1(8XCkJH$XPgQ%?IF*1Je)hk-D+`fgV*VTRvi$ zcp2G)2TXL%%yXC4wpx=SzOb3yaODf4SLc&WpF#(?=y4$c_;NwLtGu?K`Ehs6K$E^Rqv9uGKo68eA19-R`TKFFXMi-0 zgfa&Hhk!YHlz7hr-Mt7#n9zt>8t!BdUU`PX+nBlMqEPTi7ocNfhwUM7J(aemHSZnM z9&_}{laV30;uNnuPL`^D{=*Altv1(Bmf2fK`wlf*a>{=W0Q46G)2F!Jv*#Nv^WmWV zM{eTs7zl+JMvybM!lEDlnzccr;ruc47wbtM2}B#l?janc4&01PW8ijU>6Bf^)8Ex$ z-z@~>iGTBPeWx44g@5`0&571KXe|O2(R%R;AdHU_T$s0`3gc~yzlV~(4kd@w6K6?< zN)_Scl=Y;Rg&{u|D-7HJZ~p2A58+VF`)X7VI;&Z-j$PxDV6_*h2}-kRCT*B14Lc~D z7lx)$dzyZrQnG5!kQnVY;T)sq`9U$W%+My^v!vO3SqJApRRA~nps2I~3tdvrpT07^ zW2Idv#G$RufegV#p2%+7>mt$?n%Lztvv?;@R)M@OW&gj^#o?s~p_6iX@lYiD8<@pL zFXs9XBED}tS3puXM?RZxso)qXCQC^)wad`C;Hzs>`=Q7~w6uO1<|;`k==D*iBA%L( z)f=t5+}$$M^P19EGc}$StvED&H*Knx_vu^4T@S4HLUgiSJK2jS84k3hVf;zkuHG$r zEhCz;RP5D#J_hT?gm4)-A$uQs)RiQl-!$x}E=aCmz3(rWLZ4YD_E6aQI;r0 zHb){N-I<8oP%XOnr}djwj*hjxDB;!HiZl}Q<{cM4&AlMOtb%wUUtkM?he!z6hV57Q z0yEuGpU~t`i3z!yDT8(V%mx?@_SsuI@y6%gr5jE7KHI#SbX6FTnk)Q6+hnJTq!Kdz zk4L87i1OGe(FpSHd`t24&N9PBDfRsg@k+u2Gt3#*5HPk@(ih5A|7rX~P?FhYa(hc; z@$*Qq!O3lIRXu<2{K>mBD7ls(s#+mTd%^M5r_H9d3~KF@Wz|`7#^)CslJM%Pt4+%j z0XbvH)+80LYyqna?Iegc_1R(GrmM<>-C_GSsCpKTv|V-K2nCbepZGYmrnZtS0riH? zFV{>0$mVQ6ElYbsgB?Kt{mV>TJY&&t+syoU#>8+42eQfdo%Hx><$`>xcQK=)wdnxg z&QO(7eNns%O|I<}Ra4_Rb%&kNsX<=|x<;3`=`0nq@*om?M9CS&^oBMK@DHLvqxCzY z4?mUl?Z{Er5-^EG)3ZzoKdxHM*256uao9O9Wg!#zO|%^>CED5BkTM#T-`8l!oFd-m zawPT0l=D#0o1_^YQ>=JqaLcZO)#>>>gGJu7`z}t|B})%tS(xg;QT6C37>wILXc}^(_rm@Vy|d9MZw>p=vi>Ld4);r+cbb=dga*Dv_YtE9ZmWdK!(Z zIs$3um-4*PmLkz7c@~S|@Gq#T!n`uzqe!`7kaTu;B{ncwcyfjcor}QUSD1cn8cb=@)WgS8Lm)SI(iX}Mpqc* zmwo?Ih`AVmfPKO|q#I(?O_SyiltKsstVhcx9AQzsElBs$mGcjKTY5Qv0GwMl78KJ& zZu5>35WsR@%>hojAu}ZGJLQAbZqyugwTn^dCZ(Www@=(GXj6B=SodGOR63Q5z|w%& zGWf>sK~6%;koCY;lpMaC@C9B5eqd-1c?EKjp15Y~X8?R|OV<(abFM$Zt7C7YSwF!W zy}#L5lOW2$nL`Y{$jcSbF+OXCERZ3S#;;cXNs6%X?RvmvJ(h1`HGvza>55nya8TlU z{DT&3nYLc)d2I@Y_t~%kNj`}Y?XZ7JHc&C{hEYe?Ll^clNkomJnl!L*ebwHd$9sxW zHr~*hbf^S`%8Ct3VaTNEN=gpfv3tMpk*kve(D4XQP$x3dEg9t&x-+L zd-@EuG2V>MiF71b8?VA~y^7h!yA?2Q?exd9a3^dRU6bsOx_oeT_2DNlOVuwAPe({o zzE*DnGt?e*5Q80NHrQtlLp#7^RjqW|^D#ON0xIz=2ttqXFiOXmE3S9L3^cl5YtF!O z3Vh(@qgasv<(FYsk1~gHf^x)V&mDl7WNQBX-!?HDxlfV8{U+;$w^df;bn_6n(CzhX z6l@UN#<{!E{(a<||BRF~kO@V=M4cJI>8HnKkLlo(u0bKE>3OCY${xRU*vSa_js+h5 zN(=XZ6HG_|^x!#7bkZrHftA~kov(^~`pwSP7x);+oyeaDzt6H??M2dsSLd>#_^BjE zKXoTSAsQzjy^m2seZesv#+djiq(ur%&+Kt*&51A0RiAl(4p=tQ4S zKa-JrE%ES~qFkJ9)u8G>wyk^rxLv_{j$A}nu zx~Ba|mfwbtzvva^?9HEMZ91~Tbn=7iIoMHukF@N@!cZY5NzqziK#4G>#&%S^yugK| zo(`&cjVB0sr%mJ#-Q@gmmD@dXHLZ)Ee)$^Y7hPK;_QUi`phJ3!hAcr2+m8a z3?%^i|1U55|8nV)H(L-?{PR33`qdFqhl|E8qcM%ypb4y@o!j`)xRJ3aG-km*{MiQs z?P86Q0qyhm9_Ia(^B*^O9Q9HX*-1I5OQbGb6Dwf1;OKBo*P5-2{?WESIe9e3rR{Hw z!Tj9^%$X-R6U&;$%{XIOu|GTyBbLfX$nqP~uipb3@LD>X>v`}|4iP_Ch^)zYm0S&I z5LM3!Hf3md$MrUhYEFRtn>_)T-_d`Z8;&uwo*@+C4-Et{0ibRk?_vTyZq)9}ARamHNrv_cm=aO1yO6M%{y3+ixwfCo*+Uk>}nDX@fi^6u1)1Z|3B9sFd|!H%^g=ADGT zlEk`F1KT#2%s;VUO(3}W6awxi5T1SRX^n+jpWtbc8c|?BbCxlf7URdii&g(ssG_|1 z+}xS2nwW7XxAj7|4G8-q(taxMeCIA-#iKS&;nJ6>$~+F6g|oO48^p@Akv<>nHfamkyxJ0#p@8E z{bJGgm8|y~4`o%5O#IRp3DR8(?a`HJilp+eJ^ty^iG1H~(L3j2vw`~IH%mb8rbqBJ zp?{i$QVZcrl27uXNP#>>?%*Soe`h1jLeB2xZWPY91d(Y})PK07Yj|0}z!%{!D|04O zP{ND#F9#|X;oc)^c>+yV=WD8@n&EDYx&1hafIzfn!tUeaj_{t zh>q1kwn=*rDce9V*o=q4*RM}rSF!q0Z-n1<6LAKfl(v&a)&neR*GpAnhvn)`n7d?F ztPThXQ0MKOC{xMUZwN9FvnR$Y8D{4cG&i*otE0FkTw^eF*-)ihlKU;C08A!^N?!#v zb@@7bau^g!NeRY!fI{?1iRIt00t(klg~Op!37=PccfN@iMMPAAz`#el*Kh8Rbw)NK z9S(#2*Drz{kmES&4 zK58o+*OeRKL12y4W7NZMw6#L>HdnRl?2;Uzch1bOt>PgxL3i>J%Y99jz5;#u`?3W6 zn9&=pKg{y{f2g)?Nr!rtNin9*O=on|?uodyh9z93opT^*sS9%ft zFVjgj+*9#Fz8vM8aRXg#QP1GDG+EX-9@7NixEAGf z!T>^MdSVyWrF-_E&J`0ilQuO@5h_;sR;s5BpQh(D)G$r^_<<(#JHHzbVY19z|^l@rkyl z-1Vr3@{SOQI{gSNKdXF_zLHof28Dm4R^QtI#-eh&1AiUgN(gx+y&m8G4|$X~U!&xl z8AyOV@TZyRDGnXFY5th4uqQ772l3h9Z*?V;Si*{!YASyiRT!mX;MJk|#-%gC5T?r> zcpU?>7aL3#M{v=nxR5K*DW6FO@rVSqS~mR9dKKe4=+23gB7z<)$x6k&;atIxmR*CZ z*jLBLP;5~Zg`d-wKSFPF*&_AMZV&u5T4h6nB|HC$GKVMW9GR!ni>HriLm)Ub;5>|c z`ZYN9$Gyj?Ns5<(qk`O3x+>|f+8&<*9%o}sDqgD=VwFgVWjE;-rNv+;;;@!;8V7sC z_3F^E-`eiCO|=g^FpMWTM6)m{!3%UN9$-pv;Km5-O011bjj7T z-aaX9CqpZ&?ncO^U^&r9#;RyNa6J8~ho+=W82n;CF$%4x3`|ywdjc(T0L2w-@Oo5$ zHD21ist26yI%0@}(;@5ahW5_YQ%8`u!yAE9kR6PdSidR^dFgVXTd-+%rb_rIH-$=u zf@bjH-v-aTksY8d_*Eoa!UhIR2m@A`s0dQ0@Vx$tytdDR;CyQa12U%(J*46<)8QB>wk~{5IldivEq&aB?!8 zPsyrY@$2_W;pwOGh(BWgT{xR}mX&U2of3{5A_{4D0{qbR8R`y-OtkRg zjj%8i=O)ZkB-O60AE3ir)m>sW#|S0bdTppFQ&fm7;^C`nQ#d@y#59VZ8UgEmJ&Ncs zeeLFI#PtAImY^~CBD1z_Hu}qVJI|z0HmM~oZLg6rBffuMR97FPswH9G=v>&{5JgfR z&uTsVrkn%O9Af;KSt#1C4GjlC=&vkUpVE)cv}vjtKYY(`&C)HqJc!r(ncu230x1yQ z3}`VD+CBfLdDm1KHQjNU=71c_63Yl!?;x5HRe|GH3ho7BP^Dm=mzJ9JQ+n?G$+Ho; zFGciBFVB5-ncfMg#|u*LNUBikPNo6Ol1}1zbecuX>4i7TQD;*CFGI3*oyMv8KgATe zr}UjV33y8r^+4P&ba_q2%8~Hd>k#66k%IBk<;qw!^A1ZtfY&fA03LguC2G6s#Y7re z<{>%jRFpFQ2ts~C>EyHcqe|@YGfw;7N^H8=8?3dBLI8Kr!(joc`~wfplEe=LsxW0v{auzpM8r2aDHQN3aodAj+PCPMgB$cm-fUr2^gNy&q zu-u&2b}*`@-1ney2ttIQO3YIoKYR*KKP%Qqd+HSCdsoFYId;QXWMl2UuiK~Pmf|*! zp3V74ndKo8B5l~%c|kfqSS+1cc5vn&GE1uw*unI zeE!*L9`JlxIOVUieCH6mO=Lk5BX=OKBtBCXf;Utk;pzKlR&c@+acik`#0*2T9V=+iroI8f2# z&-bN*H+}V>p>nA@h4HWQXQ7{n^@o2sl~C9ENibb|J9E6O>GlC&(rllHP7!RH2wfm4 zl`HvW=80X+^(F!1F*I8=a))OW)OR24{CGWjfTYTf1I3MPB`a|Xr30Do-jq_%gIet% zJ>%$YpP0x{8@10P**rvDY=i$GbUZuI8fOASBHddV_P5m8N6?SP}J&HHEGm0 z$Yg?t{kJRig;m_w-;Pgy@EejwlEbuIbVZQ6~+ zCHV`J)WO7e5*LoR?}ZqseZGGWG?(ObW~hVGmV{pxWAIcwuZAzGK9?a91f?{) zi33>Lur|!&fU#dR!+Fww_SHFq_>9S45Supq0}x*$jj=^)=z^0s{~<~XG3;_51X=%s zTfh)-A(#ExF*ixJnkBmYoeH+n(U_k9a4b2Z#OL@Zq2cBO04&c)r$Mc?A%)%*p;tq+ zn{O49j5|)Ip%MhF8)CQOx~mxqk2stJ9te4xyjK%Y@|!+b-H0|KubQAeXiAnp`|nPlu9Ojwy%G*{63UnabS15gDt zsius~u6*Sfl`Igvc%W902xwH*+JYiNeWSILRl2|p5Ku&VvxNMfD#x6ykTRO9(XSNP zyGJO2Hr2~5leyy=xG{X>_h<~_twUFUII6xN2=B^7?|yFeC1utG!dKV*C)wRB{0^md z5P3*-Hm^dh094f2YpL$i4D*vx-*&9{AHpcl-X#CE&^H}FEa+~RVczV(Sgi!H>?jg< z*UFWFDt^EB4I-x%6IGXle z2?A~lbaY#N*wvVv*PDEba=WK9@sJHYxRE`hV%tgZaltwkTy^Sr^^eG^6iePYCjnm$ zFh_FJ`)us@AU3bckg0x6;ilRpv5)aygeBU1t)c?M{xy)x$Wh*2|Nna<&7;4SChLDp z>FJ@hb(Uy5|K|H8f2`O;432@?$>sF}>4N?HqH^|*zf1-zE9`iWcAXB~hmw1jx$iy$ zj02`E)}}Ku)H#Acr`xd#3rejghI-bWum;rus6v(3P?b)SlE>u!nbUR<&Q4IpZzjz> zpt?*Jb6Z9~V~R-(%^UsrIz@F7X+Y}~>_tfr;vlbIAs&g=(HJ-Apk~CN*oGrJYU0v5 zOvCbn#HM(SOs6j;j6ReC8I}vGDgmd!>FM87)3TjHQg>QO7mA^E=BQ*0c{E7Pzw;57OUU|GlVJN;^gftxLw^Vw-%K;9W0{QjF_v=!{N zddy0lKX&uF?^4wFg9@9ZH$kWJUa-fX@YMxJ_~9t?foi@+Bd5~ERc0zbaL^9>g6tGbXdrnI zenjLa>{l^ZFQ=B~;SNWAHQjFTEA|T<2Z~h}0$zRGkR+4g=P^^c2)_^0^_#34>SfV@ zas>MTo5Tg=bqJ)WS%*``+qHbKc+90CxCPgYzu}db z^#JfQ5!yDQX3^R2NbfWDhf&v{+gE|gSR+BL|Ex=ANG7##5e77wfQZ8tMcxQM-qdDT zmOJ95Y6eq!5pwF=IP)u0dEX>(p+4e3j=~^`T6v8nL_ZEft`E#qz#qF%+e^;YE`@ws zDLgHHXRl4hVEor%rHgDI{!x}RO2A{7U=STeF|pAYpX?<>NTGwuzYkH(R_hMuSZ?A z7qh3yAy7d{xzQdng<@UQRi+d@l`vrVeK=cdFV4dus0no!5JlHMbjbReiF(mb2blrb zi5U+?VpOj)Ej=RV*VzKb;bchQJ*2>_C*qylBgVwtRz1IaD1nCU-WxIlxL1Ep(k`*=3l4m%Z~Zle7$Kdoal2}duUPBqB%kyo)%oJwT>LZ@qtWyxKRrP0d52Wb+n1UT>GWFnsOUiX zf7BMhD@7P!4T;I0H=e>Wb8r1-RbUCU9dYySXD8d0Fd`AOx1rv6h2D6JpgF`}ZTWy? zY66Qj*v)7b^D zQ6_WLlSr=X*m~s>1d4<4z!S>Aoqr1GFwqV4^p2^bV?9U@(5?1_rjNZ{uo^HwDec?k|dBG@<6aY4_Y%R|KS0x})c;I4m(^w`t!MP2P&F?VC z3e=*0MZw`quox%k8+P=K8F$p8d=%PccD{b&@5b??MRWdam?}vC?mH=m?EtJ)n}~=@ z9CQl({oM}JzNyg!( zPTPyv0H{S9ra}v$i?sX?n}H_LPp%2dN55uxyz+~BRxOVt#+xuo=&y|Z_3h*Hk23E6 zjM}1#zzL{hiS`mtNk5yv_DVwn_udFapm}|QDRCR+`2bnZlmGJ;RN}t&>*?>%0il>m z#m?Xc?wXcrKO4QA=VJ*PgS5%wJP0fk)QJ><*35k6knbhau^ecsNeYjTt4uu3H!4B$ zPo3#~nj-8tjRc1GOwWrp3W!Q*`T0nxrJDwr38Y-G$}2HDxwl?Vu-lf zP*Ma3esw;5gn?vSdgOD$v7!`72x6E8jF5UD8%c(zQua0ps>6;~Tah}B=^oKn!* zwrRBi*x=mnF3ytDi(C0`d1Wji-RmdxqH+%<!x`!;*E`pDPp$n&lCVkz6Vx(~h2yI{GJaZOg7tV9gHwg__PdwR}3zw5b? zco5LFLd#_`i(Eby64J2MTjR2}HjpR+rtRZL{g4(Vv}l67pdd)o^U2~vo~= z(R@rHt{(y-(0$s^IlTmzv`n%O-_ou9}o6H2NA74uw_r^g_A@6@t$y+}( zv;w?{)RyzJ0b0CIm?1|480^L=qNsm<9l8*{B4>W}Ub9TfjkEN`Us8;x8vWcAe#3mo z_62HC{QR@q87|P)aWw)Avl*}05&4TM*zJr|lT0n}0o69dJ98=?3y`>ElA^Br6E4BW za4+MX8_O>!v%Y*@flA*a!k&4bln#+tk`n*?iDBcd;^2xF{^hA_8FnbxfSgw2y{H*< zg%pWEd}t`Lhca;>>c zD!BVV|JkP<>CP+iyc4CCh>wUK&M6`P-u#usRg8GLLtHWtS*=uh9mS?*d|=UKn64~^ z2V&Xx?`#1%nheVmUnIi~R};bcPK+nzmpx~bfuY_BN(H}-`N=}!NNArND{MQy{+i`U zM6Bh56vaV8IxKf=$x6X5g7dhnIHirBe&V2sk)T$I)%27e^xE}gP3fl{eIPzGY94k$ zO8ZIX_X)^aGKJBC*0 zmUv|jiH2KpP_jAc*S6!?+`nl24eaJx58GH?XKskf$eClrxgcoq7@t>5K5PYoP$FqQRkL8W&|6b^U8amVbl}LELq7lh>z@OAVnli|pDAF56k#E@7Kj=h{qy}b6ebJrB5(S;!>SeRq8q{{^F%gL{rKK z701N6&E1^o@>kkpVv3+sOL6YC{GXN-YokZ~h`zG*=-doE4(MJGY2wV+yk5}klYm&- zW{&iYy;$zOyNyQ+2B3sscv_)dbSL>ABMfU@Brq_9pV3Z6(A*mRZJ2HK@%j$k4?2n; zO9&HxL(nSHdi?8J3%MHgKl&T4Z@_BPX81!OwsMfB+E>Ou_jJH1$pNoJlQ zl?pi(#Zd@?j3XywMg`PwtY+}PFIi7#&Dn#ctOpfEkYk6b)a2P-qsS1!;gNA z(*)6329w>u4ej4WJ01K8bNg-WU+@qVWMM*W31V7Y2bOV*yRu~U%jYQMpW}3!zO4F7 zpBOUJ@sqbb1ZG-`uq}OppOPzk!O zP&VqApD`Pwzps6BFsVo!SolO3$X_aw6!(GdJVa{$?^FN`;7DD$Ohe+<>gQ&l zSu{w%1v%qNg27D+*%^>?{w}=gWG7l7%|Qm4Gk8At;d=_sMk$R(@{uEoA^ z;90wDZZJp7YLldNX-7`5H3_tqga1XDukS&5hO6bP9l1M(3 z<#m-VZR_=qcP>!hemOf!cw47yBR^6;a0rNgzJ)YfL!1=l#YFvDNQSF8YY^K)lQINb z49bXWI&4rN>|nZkO+rTD+zVE09Mv?Z`(qI6dfgvWi_JQ#T2$?zC62F^AEjmm=LUv- z)>eW3p)4bN@JEq9O0~IF_g}^T{}vZBc7O0||0bxFB@d~8ux;3vT`eP$>`PP{%K!P` zA}&+<^cCRn@v8ZS+9CqH72)EVhcb)Z0h;t>)#-5jBUyX>#bs%4Gvgy6tw0Z2(YA_N zZfNM2268XBm}_893se0Y34Lea(XYOR$B-1mnp!L1`~p1ap~|u)89*|hgC?~mxYN2a zGr8I*ZU8zAJ2Hwy#zm#{(N6hTMhI-@B>x)TK3P=u8vYcUwqAV%ny~SeBPY92Jmm$X-xW`uOP-{7sHsGl&4!|+pf zOoXO(?+({`R4z&k2aM$qDciR@WXm~_>fWhq|70!AN>Xcuv~PUdRZ};!vku4WaJQ0o zB75$>1>k^2l*r;LQDVgrZWk{4EXIxs%YgKNR8y-MS4MVnA z@Va)M8{C9v@`hC9h@6Zp6G7as)Ql6zVhvaG@> zLkyuFJ6=Q^=2*N~3}W}Z8n{Ta8~4wxI;$qKXA}cl8Pd9@uFz#DR%NE<1HiTBp%O7D zvj~XP5L|YU>KB?Swb;{wgT7-{9@4@uYP?5*Vh^Fzm>2kx=2HcQm;fhJPST%eF&L7& zvOo_H^~K!cZ1ALDOy(^?yAfo7HTfe#q_Bu1LXfpELSHmI!aH7Bo)JL@Q?6UzJoH~} zq}v}Do7Wi_<qvE{>?|6(8*-)@Q8u zMQP5*DVCnQFNVEd{hOI^-;?514P$_k_4rxz3ZPMi@HiK{Z{qv*ye(vc`(opt`XWOB3zIh9YHDO|w zw~!77GqXY(I_9U@MeB!hwLgABZ+KI>;AV`Y-F6PBmxi&hldlUIXYGH^ixe=J3l_8J3g8hJ7rYSi0Uhh)Yhhc8 zQ3xA05fj}kZQD4P`q6R(Vk|)V#NN~g+^PMmiX3%<6AoZMOk)g8=ld&jACM~Q3&3?K z!!+|2R&1JyDDcx6*WD0eTDw=kKz2ln@?KH4S}mO6dB75IF8=r~?Sw)ECFqO^IEDEU z-U`9E4Rh%S_T{99ltlCPW(qIj+mjL0duyuI+|Jf~Jv$>3IInQL+*fmtK+h0U5=Cqh2Cy?c=XQFBe2u4fMf?;bGw!A#t1+%3dGBY1X zYA0J{d0f0qBI zs=^qCa=J!=D>i}2dB)cmZVl6!dU-U9yBZvJqR;}tOf#h-fG*7f^6 zUtsA$oOKbQScK$L&6G4u9K0HJP1owwgHE2B-#tB!wB`H>`kmZ8BGFAh@pO zcf~7qc95~uDvv{=LeM7ZLZ&-&u`|m8U^5qmpLFOT0NuTB*Qaxl4hP7XxZptxr6d&U z1j?jmRXe)8lB+JgN7~>W0U^~3v^tb=@J4)SB(Lvb!p*1Av9sQBx8nUVXP)<`D@bGP zcO_OwyRYC!BBzR#3C2BGpI9S3rW%^uqj;7xkt+CmwK*UcS^ZL z{>0DjPtOgIw*!3h1e8}*s<{)cy$VnWV_4m#N^L#fRPOsOuI^W&`+t^MlJAXCIPA&n z?DmoOPYjQMYfdBu5$6oSU+fcNmI0aykeoV`*dD{cqVEBCwxMB3u?=cA41US!gdiy% zGqn;pVBp*)Yq}PibhaMlF(es&I>FCdUDi z*kxKEFSR4V(3)kZqLaJ_@oV=X%D{O`u`%+g9TN2C)dl?iPO1)AxBlL5&HT07)ETFF zo#;^j&@R~?euVX~7ku@y5>o5cii<`+!>Op^KQ5e9UpX>&_FG|EZxEAyQ<+wBun>`( z>SB^`pX?J2u%BF+1Ye+wN<3?rU zmh)9phQwR=ZxO)_)qL^wCD%_izoM}e^WN2wmDDoy z0N3%uSqD+H)M7#Ct6M-}6?$pB&PiT&TvaO$qRM?DohnyAqNB+W9v>lWt~!eH7G*;F z6w^t-XOqx*fDKn_cH1(53o^I zaQ5;F{AT^OV1`ca9t7S5%uZb-%gzK7ivI6_-u4{#to$ioD@3~`y~;JFVDX3PeJVd5K1rje? z2ke)71#>7NPKqW>?@wh|b>o9FZ5F_nqDO+k*gkQ9|EAM2Jcoxm?n+5nodG3uvNa8B zW8b(W)cWz%GnSFN>c0#yZJ+2m{Of_*m~>&RX`55~LhxNFTkXTq^!*vTIE~MpP(1e( z2oj(-xE+lVshFUAJ@sp_%Q}}?U&MqBvJQOIyM6xy8>}TBUIEUwFjEm$z9zb;LEVs&fmb`!Dei%eZUK*g^zV*REDkeY;E_UL5-Nc^1T_ zZ^A5=)TVDQ!uAOr+|<75&^h*Wa+#STGfd8A$m-v`9VL{+2)3C;*PHVcpL}5J*~J}@ zE4<6&!P*L30JxMPs&}OKq5MK23Q<&||FwS0&LEqqYYRCK&I1+BjJPzUv6|`;r4`4i zu>xHtBd_>ZD+b-(*g!=T&OA%1B}DjyE1S-B9y}2*-G{oWy>-?bKzcfVT+-7-Zj?O( zG+Qc$kYNZ{+O{l0I@B9q?NQcq4xwx7HqJiGAy9PJK>6zKwEVYAXBqz)QbpnjU zQ&D3D1i(TyPR7uNP-QpAfb9`9otT>or7ONzhwgx*?y&1IeU}dgpSu6e-GnhRPhYV@ zZ|qTO7g%)`#H(Uws5%T6~~Qo1+JNc>HEG`xy*d7)h`hc*))5}3juim zFF2g=X4~yufm6@po9w<_S;9^rSEugM>~L9i1>l8nSSZrKEL+`*Pf>}sr=k`hntmwb zyW|z6Qa;Su?jL|TJ%siOxzT;Hbw$5JX0BNP%xA4(OslpFP}+KfaC!q<@0NvOBb#E= zYSznSSs~dNGWuK;J-RC)&z&XBmYlH_NgBn>uzVUhJ^QLSadwKE&8|G7Sr)#31KwBO z3p*gTj%0#9bL;0StD6?Z(MMEyVfSedM=APZt~={&%1Fck_=X{JBfm?IHlzTqz>*{c z>bf@7`KyNywF=c{s3x5Y-Ji`sh4c=v7yvy$!oSGMAlN(XijXhGbha77LME% zcd*L<3~ zbILI>-Ano_CR%||)NEFs+bouVnZUx4H}BG{U$m4%k?vD(RsK(%tzlV?DaC!+CKYHg4-xE!|E zOefkaET+P>tLU@$;|jowp;cE`!MFPaO|_yHEwE+RJNa3Epd9i5M{;>A9VJ^}EQ0y8 z=TL~GETEvrI~$V(Gm%!lIF;WMpnF3>mUqU$Q6g_Aj$s60E~k&m6bIGz{Y&n$o3i!2 z-#)F!v~OxtWK0T-j?7DIayoC)?C!L2HLVjW+^u>>h$cXzUCsJbN^NzL{2c4sQ~$4t z?EI+UZEgwoX-ll8knRYt7{$BD>#;LCmVsI)!wm%y*f>Y%p6I8|10rN~3-sD_5B}N-+*VRE|25XeFu`u;?uVnaj7j?$ywKWCAs;AyMuS(n}zEe_C_u(JPo_3 z8{M;Bj^$lsJ0lXGokrg%)1}hv@PQ!^QVx^v^@&y=`a9dwGCB2u19pvHuTSjhyfM z;Vw;VN6ua_>EOc9<4pHb#Tu~$I4X_F9q#%EpmN(-n`P$8+`>=RRmwZF>6lI))kolFeJdt6VxizeCTU@fvgD3k4N zme5K`Hd!iwe{7$dH=PniaQgTADm`K!>g4eA2E*RJ7j$Dy20KcwN@F&Ylv?lSmtCwg zy=xM}v?!`r%rBQ3Q%Uh1Ttv!%p8BESIBfyrKQdhFkKndFs`r8U0_1=&&}+cb)1jF> zgw#8{Qk2IU3lWDlNjj^A#M)a!r3@Uo5d~EHaP$Z(V@R@#0_uesQO_|qtmKwUZeKr6 z;3fc@-YXEZj?!0z7}_nDdR@}*Y-P+=V>g+a z1)#aifP-YH=TC{`X2ygQ`|2rLxL=7>mpe_@PyT^j`7_?l&P1Z4KW4^M7P^@vHYqNK z0hA1n@PZdvwE(G^Ys(Y2e*1nNj=Yt2Zm6fwvMLRXGz=HqkfP@K{>pr6@VHn6FU&9I zkCK%s%i~FFgRI*_=uZVp7i{nk75mr9xlEDH`(wfO)z7Ja&gerf^&P5&UErFt53vV_ z_5kB<@7UD2zg#IVEkiwJTc0G|M7Zrjx^;wBUn*-H1!QRdp)d6Dc9&8_Q_FEW5}D-r z`*BhJqy$`m7fd>R6(C2O8IBs}XWVg@q0Zw|i!6*NeJWK~nG2!PL8y>RhDOJP;04#c zftzbP5bwCV{B)8^1HYGPAkJziauVAy;rF*-)PaH}SlUAPRh5mY11t8%h*$)y{V=IA z1orq*7Z0wfmh-J@UO$ZuAJnm}Tb$4i<%MK5jiA3*}7_cJ~NL$*@di$;yMJ0>405<^?L#&+` zF%#=R6A1|qAqHR@bBRXbeMkn}@(8p$(?^~PczjREC=6}r=Ohqhv&Ia?WJw0LR-&BV zyk*_np12$uKIz&b$VvFn(GP2Ge~leh{SuRu1oOYI!IirXlyXd11du0QEf2}cE$;Ti5EfTng-AV6qpH#}Fs zkc|-GWlRm@6cQ7!@RadTf0(7Yxt{{#dYhCY5R#zV(an$jXzo`sr{1q z>@l-{jncbRCk$2GHqdw}{VP$_^RZ7L;?1~+SyQ{7XJ;r^UjndzV=BO+3FJP$$BN%* z6IzZne*yfDgmPBt+%|afgqIzP;hx#kL*8Omcd6A%H1X_i|0cz|rTFQa4nwC#ChT0n zix9Jl$~oJ+?h~Go`|JtzY}^T5x>MPFjAHRg0^d9X6x~WmQflEyKW-V1@2fO+sunV~ zs?Jr$^+)D_P5P$k)kU%YGu83Im46qGl1D5L*JB>eL3JQ)%ogxB_Tyg}Gi$zu{5LtG zfPPWd?#^yQU$#IZ;n;qsKQbIte8FQURw)An%x2mMT!JR{C-~$Gp2B*73F+!Hy*ui* z?608MWcRaDK2sUJrQO()A-PqPQe8;QUhDOm{ON8%k++c$7jVSg8hF`^H&?_ho@zRm8jbn?f{}KFr!FMp4!fe z$(eE`*X@(xgQ~+?Q4K><%c2=Q-yH-lS6x774r2@#yqg zfUM*Fno)zq>`!lP#wEgkjG??U1B0z6j43DV*{9b7U_XF&U1*laxv{vyA%Rk{eG{`fK#3V&^V04Zv8m>u z&t*N}N8(+luZi!7>CC!N--!&^K2ege=<2|V%4`Eca5aFT z?Qk_5rP`*PvgYf?u~L$10HQeGijIFsgE@;Mo;V$hY8MAsjt2Q}W;3gS9$ljwhH>Lf zj0z^-i{!m6!sku|A%9k}t{6M*Z!BmVjQE^0cE~<)|M6% zT!{-Rkh`)$hptCQ8~n%(S=C*fNL7)J!IJk#dgmhp{T6fjeINd!d&Gvl9O(wu|EIbJ z>QHvsX+wMdoXD%ai=y*uK7u|4xc$TOo~iM*njYg6V&fDI&nSE$ymu zgqfcf>YqB(Mf6A2TxA#2*(r} zY#?mO7+!F@vCS9p*i^i&822w{*xXg7B~sLk*FaY2AwkZY8d0ca>)He`m&n$K8qHL5 zcBkpKa+cd|N6H8kg{HQ8)4z=a>R2))d##T$K9xvIEHO45s@NjF`h;^o9H5Exj-{c5 z`_t`P4pcvqM~3zQ`a)mKxC|A`TrN19XP!{1ky_bjS#xTaf7dAnhNirAsF4lN*@xRn z9Oh=o`0X~y^Ys$5|MI%UNMe!-V4yc8$+1w7rPY%USG@*{_XuqBHbNi;@(Jh3?sudu ztYwLDBnVUB`Sa250OrkQXUHI2AFaQ`E~f zyY-Gd*+vxI;y{el1r{A<=N4|ziK1jwBr096H7EN>f#=}^P4%m8zG^P{oUjf#NJ*{Ma$PJ9W)w8} zKLw-f>-8NfsXhwT!UyB#r7YNx%@L_T#OwqWj5E3JVt;Zbf!G?vpq#?3tbsR*j;H{} zNcjxZ$OmCH5`D7T<8zEu8<{8g^~klaJLT=jZ@0-x8Vb4*>wQq<{TCGop&;#OAhZAq z-1D-K_?V$#Dj38*{m&|;E#A{bY+#}1-x%Yc6WE5$suh2+FFc%koP+6>FLkRMeL>+h ztNj4xH@6CT^!!V!8M4@bL}qSG_)5y&XwKf3_-z4UfY7Ij3$zv^&*nt>Q*I2}6Ix6} zt+TYhnf(1s{Cd2truSiXEbS7Byu`M0o?Le`i?%d$Y{PfAz62otf{rxI(8v6OWnJ_+U<;GO!~CZs`M@+2?;f z<3`Ph2N#M5Hi0Lg$6VsnmW8b|fYc#v+MY6va<&P4&((;F)#d1G65om-L)EQr`f~Yo z*dX$%KOQH+8k#ofn3_FF8Ybl!oc9cNWQ8ejK<7Z1JSnMkrd-pwR#F30U zf{125<8CNU@6Sd*!cV1h3cOy6uYV4H@x1s1QP?^2eS-@zmsaG&wh47yP3^8*p<{gz zBe~T5(g#Q}&ujJ5btsfWI?#6pVxZwiWmUf6)D&*|$SzY}ev~IF$lyqcool%ewJ!7m zssXy)7{u(wzLQyk6&8&_TN^Rzb1Gn~{hVZWY~rLh3e^agDIr$}3&$n}$2&LP`jSeg zzp^`GmoD7;u{&^WIlC=An|D-{fxL&mpFy75EjC|BWVGaJ`cG@72EuirBixpy96`_L z^qbB#ESoT0HxZ~L6mQ1Pc$4|@%`-MQ=yr6d_r{8|9_??2WTJ>nGPJ68rg z;(lmC;@@OF)47&TK8HNjYG6-_nlkk~E#D$OD_npGsC6Uo#2qx`%Ob?s&rKZW;;S*u zC3i|VtK63mc?(}SF%HF38a+!5{hI43{ zVx3ZhHWX8DJ%@k+IG(_LGx(M=6z#x=6u#wXY7dfn-cmq@G>ew$q9uIHpi zlLHJ#)m;Fc*hfA)(lC$n5%a3Dq3=)W(lYmv2R#@Fsz~NMBlT|)#6RIzAzmZ7M^QNpr=8g3LbM>%y zvL&;7QFubD)Vy;9qOwZ&&<8f3kaRM0H?f%|!C+UG!p3V@hUUo?Kb#lcp=s9w)bl3* z4$UcMW_=o=A!yI#k^o=lMD25V<1LzzCr)K&qESX>wI)6L7}keFGzW0Z#T`Rjy60F% zlB(SLPK&Ca-^r#GEiZ1cb8{ zo+|K3uBDzNaO`lm02__E=HBj6Zj-+ucm4U}yKJfF_+Zi*K8}KYtlmDuxXiGlv5W%c`$*NP19rn7+?OE`~~9o>NvW*0{(TAlhLPJAqNFo|Jkb?lL}8^Mv5?u z<(-+=7b{GUNBnDR7Ofbc_?xNJlWCBW`&O2@8JfC>0qidC)qg&y3SHL(g6_OIRq+6^ zC7m9*0z86vMX#N(YU@qq&E154?>UZ?Fh2zgfV~!H-2T(<3b{t>VO80H&#Q%80J6Gz zW)e>~>y>sj-PyboI~Y~}ntSsKwbsvWT9eSB)cQ+UTN@}L^0&Hy(QmRTBL%!TcNM)E z=|>i`?=v}Z#MK(Y{b{rM>4gXcw@8F2AoM0W+BV1IzI3%3 z)^*>6c_Wy{t3UhODFYM(CLmFp#FX@A*<8_YB|>7dg%8HwFU_ z1iLz>`_?d>#fJO6P-n3`J>S4K#&II2rYn#-kZ(yqaoQdT9$rLmcGY}pts zTzSq*s5g=?{nR_6>bus@H6&}f_2k#!{&a;Z^x zt{0G4#a$E`M$^e)nARpa z1II?0;~l_fW>SB{tSLgi*D&-tCw9pCFi-m;MI!6C@YL&fMiMm^ajJhUYF<#4k_022=wG?RrSWE6&*RXQKp{ z23zTQf&9fvkaD{MXZvVs%w=W16O2OT1^07o-o_#PNJ;CpASC69@5jI}Xg+2z_;4R53izD}N*r9lL8bJFMBW21b|jeGubPUfGxy+d^bF-`MB>q9MD_)j-_@0r7K zL61s`U-zMF}X>%a{*z>A_k4RqH z7E)`M9T9^ZptHqnrMtlhNeKTfr{!swu1k*Ky#!-CVebv?Z24x20l#NUcfZ}sZqNBh zm_sv3v60BZW9&bO2JXKuu^BR{M0yKU$0uY z)I2C${8^$rDvmu(r35T{dR`kW1^6({JY@$YO_VrDUTiX?{$}@G%lUaeECGC+^*RCKf6uU8@-5}+^H2hJaP@fYo$BTL&xmXjoh7t>r49=)kI z>#W)fdqb8O?NnN7`QO?M$U=-x=3E+Y<7Q+(2PH<&h_fYZczIpU(m|6OsTe(9B`F+< zEgX@T(5kE0lxtgw7A$ZU`U5QYIA|;nzUs#5ZEGy7$6WdzZ)5601ytKU8j@R+VM_xB z-gz>w?vO8Xt`oW>ku~ygOa+X5-f1XH7H@(>fNQE59Nk^)+AeGp9S42L5b)b8 zBF`q$j`2bTRY|l?^$LX1lY03cD%y|y(B?Mg~EM` z%%Ng{u>(FFGuiqa<3`cC8=fR;%|Jq3)J-t^lm0@v36@ zIIWSp@RN#20f~E(Ui`?y9?2W;TyMXf=a7l;9U_A6FH?9F+RdWdS^mSV^;Fy6Tn!u2 zq3OXo+`{idHSsI-OFjmiK}ELE3qBkXOV}$;QPA~<=O}qGjPec6e`=zbzbuoIGcBTv zG+vcRN*LmKhiBjhNE&jibLnO8yQ+^e=ElEdzB_4>DMyKug5lKP!=A&l@Y^Tg%Nx#{ z`$r5{mmZsd0c4Ill}|___#>3ULqx#C2GsW3|3MC)Q${MdAkmS1(gd0Nb?in^eP96O zA%_RVuL2KA?j%RB#Vq0Kp+DByQ~QFRnP-d2c>sN+cQ@jloSC<=eZ0HHAQ^WK=-c4| zn5^y*w*IJ*pOIvh9p~;Ku&`h3tM-V59y)1*a9v0n;U2dt4axiwdBcXY&4v(c_0zU1 zfAZ2Z#S{S^Sp{-Pn_BAsz`S)i4tHr#SbL2_O<-aK6UOWduLr%&B9Y$jt=PFL%iQ+P zHTA40GE*fmgStsK#jv*JR>gyg>Xjqb`UF!DbT4f#3+Fn;3Dtx;!hq6BTxk*3t?W61 zfK_2OF*jcuNY<2$4o@CK(<>FZASD=ywuqi75Nb{Ut0e|qcLALR`Q%XEltzrVKnV2g z{O2)ZgRab%ji=mxx*$F)VUXGCdj}ZpVXf$yWL=_^m$Jyy77T5aylA#406%&`@KIJ{L3H}^f>Q`VwiH4K+$d9D60JP3%X)&I%6|3q}6c!`&dz(iI zsi1U(;zsTLvGXHL9d;AMI($w49$H>74d^LE7@ezHeRsv`_yOUE>f)-*Aa6ahm!kb7 zMk0Pt<%wYBfeZ($;_kBPQZBuWs^X~+db{YzNU_Gsy)SP41bV!RIZ`}Vgk-j@m# z{?6Vf$=;$a)lV7Qk+C)o3&+2emZLyP_usgC4f!|a6=POcI;Kb3eiOsukuHd4&j)AN0F6aEDVZe4#lac(!d069Qc=H?umvs7D z$rg)!8faLIo|VTkvf+dSv*Pyv>q1=X2qNqq`L(v@J*GYy*o`?mX}RmEIrA zpY-_dBv*Lv$hg1y|5E>X9v2_`g^G8jM>Y+R{#@YOKuSIVop_OT0&SC+i&0G9l>ETj zGzBk2du!Qg_om`x3_xHjcKT?KZJtlF_S_N6sSp?HsVLvIg?;J}j|$v4h5TvSfpV8z zJ-Fyjo}>qU^H!c#u`4C3ek&es5Qn1WSGmK-%)_A8;8e=x`|^YPo-J5kPJ9`;5BYGD zu6K9Ih*cgqcS1Vx?D5D9r-yzn?tq2kQ5H1&@8z}I=K<%$T@}I>u1rUxPu#Ov<<%Qm z!^nhPFQn~X`>FOpb~9}LR3?&(qqWfK*J>jwhQ#X%!u7)=q6;sKFCVd66mPUhS=IcA zQVCqm-OGB%=L6j5sd^Rco*=!F6Opx(f$8Aw#h7hg%xRH z1hP(=gqSr~yN$qjZpE@e;6Adbak0W$A57UTL>F>(k7xqtEGY6#II9tz>6GVBR^wa3 zX{9IVlm44Dgw+y=v)3rh^T5mBsobXTTNtWTmsLQ2{$RQo2FW$c7^x=B5VljbXIhYZ#4M$-@}1Zk+DlL8*x*7cNy1HLb> zFJ34Z@Y{1Q-enZg5uCwP@q*=K-)`I`=__)!nQZPc3sTQt&vG%(FXpSJNRkA9b6R9> zWOfYQJXS)3O*~@|c67R8svS2Pn!!xX!kvzGgw5$NQS1os?q*T(iehF9jjV{;in3Pp zPwf*{Bzhw6?)Jb+Ax^w%!%D54Dts|j@6i!r6wg1G)|@(aQYcTsi0P9)tuLMcGr`ef zBvdfUDt=+(ZEbEV8gsp;QqLu5;;d=xHg%6-|B(7rOAA=NU49M zmr2w&!9>QMtS+x!;;Kjq)e>crPUm=JQ!g$=e zWg@~;8?}@pso9@)kxnYlXd+pp$eB6qMU*v-R#prOI{adKss&5SFrL|GrcPUWZhWr-av!uGvKvDfM=X+zzK0p!k!@ce`>BltJF{0PUwIf~g) zN*~8z@mQZ_VU{0pIt2n#mx;C4w-fH{?We8h#4obrLI$Tq<9b^tX#=*+d|=KP%$I@T zhtT6;@qM(Sxge0+^cef#BA${ftyg!BQpEz%^hdA=j^li;1BvJVx@^YT^KyYq5+xz$oFfDZzZ1p6?Y#iZNR-#8biozV&j#1u5g$_GyOsp9sRJ^Im4 zpP^vvKh#e?UwDL{Ik*cag`J;X-v1)Ht#1dA{E> zCN=~pvDQlaCk5TEII#g9t<9Z9vlQ&oMNI@uJ9oirvwWE@43fq0x^9Do1FPPV+&4@3 z;gY_Hx>cD(?cY1^&iA6F17qv!gFi7Ht)f}f2#^Y1SE^vrHBf4T52@z~Tk3`e{Rse* zEg`A(NkvPUPe?uF`7aCH$~nF-lRCYDj1_~HYk>VhW`r|guyn!)f(eGUBWuwr6otbQ zPpl?`23`QmwPkS51i)m+f}#$Pm|bO`gY!ZSj@LjV{-TmEn1eyA8-^^zV> zPIs>5kKOgMNoBmhP~5_y_yk5;O21xLCLLh+g=Rxd6WF&Jts4{cARt9&A8ML=CVVHZlfk{|EsmMr}V=U{YMDaWg#RylT04O z*pU6Mtdo9CnpCyQLf}+YBQMd!^;2o&W^A-ZxaQ09!0-F)2(`v&Q!lc60;a8TNZ}~8 zeE1UHTuj4+Q@IFyAZ%#E=i3iV$DA&L##)fS?`;(>ABA^j`*42crZ@5 zh;tU3idaR=m0LiRDhe~l_4Jdr&8Ui43&{%2DVTw^g#bm;BZbfqIk$}(q?X<^=C7E` zvKmLbrMp2LiC)!@lpBa#lO;dm6y^Rxmy%kT+Ss$Qp}wSh!YXoATbPX(Y}Nk+O)3Df zn!ZNsT#O@Ob3LF_AB?U1Ug`hyUs_3oZFxeu2fvVixW#%-NgJ5jhZkQA$)i+c#H;KO z;*kH;%)$gX^?N1?bvcXA!I-dD5Q?e8lL*O5e;W08vX7Q1VPY;^qGEy|GR)cO(59;D zGSABZku_xFLlCroxlICS)=E$!aEeZ_i%?HTIVqc@U3Ue4iC@_%=@OtR09tK6t>mZL zB5)$XiRqWJBM4fFyFP}#I(~lc#J!R3XtH05cje9gH4QH);U-69J7hE1!@(tXuMGXb zohJZ6A9`OggqR}^jwk89I9lJ%UJ2L?jiq97p7R=xxrsT*nObMqdbknL8amSix2Bc_ z*+8GUJn!sitlnefO7bmKW3_is8fDS*KWh$Nibsg2t!AZyZ?|I|S!PqglT11j0_uwi zBGh{B!r2xL_{vom9(l(E@ynPqoyc;1S6vz15@WiYe3}8|vMh!D?Zg10>Qx4rs%{$Xv*fb1&waDiF|;$5SrGI(Bs$0ls$@=#`+#o z;PY1{XMz?Y1wT48)3fyL+o4oM-k->0Wv%zmAJ6d8xCi3G4_q&C&scUUTWodebLZ=3 z-IiBy2;0-%ZQsYhFE?WL*3gzzbq0*|uMt;XSxdy9{>ETh> ztly$Fpn7u)3^J5=zgC!jD{rn_=my^(vMqlSL8o3bcEqnxliVP&kt7@z1y5Et=7$aq>^ln|g^G^o)$n@)dWHbB=f{m(OYxmweY?=? zhW%Hkx7y5(C@#$Qt6#kLh5_Zg69HXpzDSyDo-^R zaO!ldj8I*)R+=DEM9q(tfL))$1gs-oz~gX1txYI-Z5U3|yD>!xouRMe>WYc(Q?56k zw4CYiu$a|elK%tqt|wYYe4}*}cE3E#DC=LBdDfogvmUEURUxmEJo&j-=cXW*J!~$l?U^)>0{A4N z_7b^xhO{;iSbamMvctrBp1-*i9H|*8$EZl4DkSDOZdrMS#*@=D%4|qQ=C-o*OSQT) z4;6e3Rftisgv|?do;FHuy7`rW8t!6U&@dK417Jdqi$B^zRoegmnG(kO1;?H`!hkXP zfib;nkMrmu_KGxtHPM)h>WMC9c}dfsh4|c&Xu}Q9ArGwGG@hidnx*790Z5==Vq|M&65ewO%XTHkY(=Zddam7Qnb(3b$%wq z-^WOm?lbEWM<#Gc@d9%-&2N>jhY6Ako$D}{Nc!9*TpowyPQ!%x2;;QkXkg9c^)9xE zzty8R7#lYG=Za>VQ)oy3?}58lH)h{VTM_!y3cJ1e4#73mD;0cbNbMJ&YToB-VD2-_ zVWqA;k-NqUU_Q8S$YDZ6mJC8feT z5ECP*jBF?K__9M3JDcDhsv)1Gq(vDg;Gaf~-#J$hBn4M0$wkFtw`-lX7v|{XDX+L@ z+EG3Q-^^IS&a$+HY|NooIC?R`)r;LD3|k2Ue<-8iOf^Ow#DJOXcq5++YR-jxr?iCl zc>bWB3!2`MN{dUA8s2-h<4s3Bc^aY;O=j;(0j^^Ox`ECaXqLEF6-+$`dr8(E%50{w z5G7$aj49nHE3KaJO&??4@Y4%3q?x*KDTe>8RCCz zKtHHmTy4I^5#_+Cou_;pD+8n09bNqsJ3}%?v7s^&!q6ztN-vxQJm6xLbeBRu@>2Z@ zI{u?Ac;uN9Vy3&!TUZhtJw4OmzU@R8#VcfA9yjPEZGSEEM7xf%r`&CKw57+xwcQx~ zd^R8H5*wc7+C{eSZ!_yBcOzK%gj7=8wzb?Bq(kYf3XbOXNbqmPEcG0oMF1_@`LDzh zY9iw-`P?Q*ZT=lXl z-j>nrNFhPi=58=o@p6GSuP1vXDN7*bvhrWuo~PEjZumFc>V?LkyyjI0W6*y5Q)oAz zw;xO8cBAylVco|DJ|XkJ$$OJX?#%m0X#-o(Sk*irU{;pg6>h=Zp6IF7T{`dO!Sbtzqq3IG4Q#0KU&hM%HUR*z3_Gp^83dnfnZ^YDiepR*|T4s)_Gr;NGOub6+` z?0s*vDqB`u$<8Gy2cf{HX5)pDw^f%W~z`Zp=>Cu3r|1af|K6>At-}R(DYZ+4v7$6>>@7oAq{6h z(Hhu~0mB-y_5)*v@FwOqpZ1UomA(~Ym+|GBp>hqNu8}$D0%|!wiaZcXXgkRWU@$`$V#m|!&%^_S5NIy=P4Ok4S$gVI%ztC}b`H*arA-0{qcnl@8$i<&^xT4u zZwv8Rbk^)VfsnFW-9n_ASqIZwK9Uhc8Y`6%WXjYIxtJ7mLH?uVsS=^eI=@r7xwJTH zNawl@4JB2ys>3mw%v-y<9x|NpDaeQ5TL{w;@S!6LA&O~OKy<}{MWq)Q^sR?EaIL#~ zxfgEuYY+|efDu0|?v^gXA>jP`v=aU4w8maX^()R5;%%4R0Vz+V6a*_@?394Gc+`!> zF@N+hhU$2}YRW)6|C|vH>l}PY8R?6pZF)LA7(7_<+Ace{V5B2tt9kUn%t&3gA%r5| zzC=l=Q=2)cwKo78fdHvKO-a+4o2jdQ8Y?Wb{s-RfhI9v9LP6+3i8CB)%fPBYTFKEh zRaK1loxEj~ka5Q{Kpls#um%yGJzn51fRSy|OyxBg{~gvncUG%8cU>=Gdjg{NtUyAQ zjqA5riEPbK(9A{XVP>QPs7Z3CX$?=wI$#$(Ficaw7NV=>zG<^(A-Dht+W)H4$NLO$ zdrht)j^La}1G+(6=mm-_jq$l6?5NMtL|G4BU9?(sV5FW#z|!FPO{#w)ONmFSZT}5w z!-+@&D(V9h@w>1M2G)thdgDpUr@5_AUIwJzZev^bH$ciYP#X|ZWoi|JFt!-d({j^i zgCuPwCoQ+Jm(=<$pQ$177$Xw?6JE^Pq2L$Q&!Jh8>e@Am%I53ruCUyU%KeoY> zaoDDV)V9&bjgzb|MQ1-5xAXKBArJhFA+frip?Ef2HQfx+m=ZmwCwDK|Y z@X<)PPoz&kzt<2xdKXr&Zl*4TB)s?c`Ie47ZBn92K{;)atUW^gm!sI?6~ynXd0z=b z@WlfnVl$QeqtsR0r6LMh4vvh_OZ1W?iU#l#kv!_!A&GL&GU_@W5~e>SS?% znsd@KjJhRjU)gM-AtA2YpBGcQ7|z;Q=LbMxsAt8}a9oMA&VGxO!kLXL$(u@AHC~VV zh9CBo7-OtO_d<)I%%i1J4oe(G=^^puMk7~45@Dr$H>x7EdEeC0C?5`E%>p-#<9ePR zo7(5M03)pI8qBPqLIo(I5~{6zQGV?8o0`qxPw1-Q;wZ zsKrS()p6WR3FOaT%EL7=nV@qk#vaxrTXg4=p`DujT}XJt8^DQS$3Q}z8 z+84#75_>{$r_W%ZrO<194Oh`x#LA=X*~?nN#_U&D%@z zQf{rp@{uUz3l9$FJDwXdCAz*QEj%h}s{$CB|04$tlO}Fs^WYxs5*dO#hse!9^^OwF zTQS|{2YecSpH@h0F8mY#hJokCBb`>!FnAgB* zc~G%3*<|2j9HW?;Cj$_dAbX}=3m~SdM<rX&gB(Sd1tolWU{RdGyEF*?Cvy z!^0BLmjF1d4LmS&UFpaO#9i#FN-jMrAT@Gj#$ghdyGa;2U`Cl(=*{vPKY_h8+rZ0h z^1W(=TznTemxpoUg%*(eOD6X*Y;CdrsLMBUZ_^>yn9rF`jSja=b39sXH3TW>n0L8Z z*+Kg7tA!hu4c1?UV><5aXog-smX;@UVuTMm10_SpCa`GM#HJma+f{fmKKT`RX_wi; zzUggQym1(D_s9NZJ`KvaWpx>xaQvRyIxS@Tu5LHQE7}Vj`PENt80b7B+4hU=AZQ88 zWyI^)Qm!$2aET3I4iF#T==?wLiYoJO2KTm$PQ;dK#5c+oZ@C-Xb3TLCpOow=N603# zOWXGS#J-}=|17byI_{Xlg4MrL>ljS7crMFGJ;|$8P7ky-w8Ud%M6{`&EP+%HYA*Y@ z;ilo7szLZi7?<_+R$f66OTsZk{#8_Ue>>-Q$h$aLBcr{6k{Cr1?+))Khzg}cq|+&5 zJ3Sr?c{3pz`F`Y+M&L8f;}Fg z+O=v$l*V0)SF;0ZBFpZ&P36XaCY9AWm%6nt54f@FQ}t4^nl5@&LcL^No1vsvD?wgH zI=QEMPy}lvYDN)`pmU;i?Tn}iO&R;jJ*<<)4`0)Ix2JJTwq+os%NB7 zD3{WKU`2=Ltk4yXO>Gywg5F0mDaHvmkL?&bSD-mdFd++@O!|I}N~rb13B|83H#C5_ z(HYN?Mn-#SZKVG;BRB@tLG_=6$r#&wvb(IO8Wq?-`J~r9KR<_*5}k6~-}Tk4Y;wOU z+^lx^?ScUlJI)&ZP_=|d2De7ZlRnyOtQN69V7<|zj*$xfmZ2@!U`R1$4pz}S*98`@ zG}+aaqwZx}QgQXcEf8j48&7JZBlv}|@CBV80-#z*w(UiBV51Kk&l6ABN2R4srHAID z776WkK33~)7b|)%>tY@v1ax8AXWY=mtKm;IC78;|1FOO1Cm27-q23bX^I0<^_nNud%kMXgV1Ja8z0nhTjQQK5TGq;kQdo~sOhAL?tNnYAWwzL$ zPPLS~XOA61v*}}v9m0XX9Em=&g#}+r9>cn`!<%rw(mLUbs11%R^l2hUZmyZkH3@x| z_se(#;ykOFz&&pUsaI@8p>qWIP{U|_lS*rhwh=^ou?OP^&PE}Nh<+4e+TBCW6XGP8iZ`{hDq z-Bzon5C0ax+x?4seg~}$T#!2DdCC_xU@oPzeGKs(?;E`8vpmtRiux1KA68g-q|<6G zE-&SM=tI>VQD~G*Umzox#hM7fo!^=gC6)O!lDow!#Dt~!4n$@EVa1DhsMVASGA-~u z`MeMMT)fb&#BI#`))L&F>z5eW1Z_C&UNWBl)!T!2QT#1gWhbk|RVBE3?*0?iNOt81 zX99qok1>E{dK_uVGBy2HS^y}_Ux2}?|J%gU( z&OJBj$J0E;IR3SR9Ob+qe0x^6z8`s?7tO(ig3Dbd%gTi{=nFAlXYsN$8>0| zZ^iuDkW`IYr%2`Rfbgfaorr(J$w+xyZ1a4%Xz+_5^cc!*=)9W~C?8?ot8V`_RQ=Y3 zK0Y5FA-I*oG7SyCjjN&jP-M{J1CZ|648Bby)ON#Sv5~3c?3&m-#j5RQ;XG0EY-b$H zVKDh}&W&!GQF=9PI>;#3!m6hkFF@+#=)_aW4-7e~;{~G!zEK1mgij-hvtfQ~ugGj# zy2C4)8s&7W(=4*^dq}Z7)i^AswL%L8ygP=QHHt8x!wLSj7h@1G@1a#zYZ*dJB#xyP zD-);bRn05jm603dFS&nphl&%yV@E;-X7#7Oc`! zpWO;q592#?`#r8v{gzhq6pByRBb8J?vls?3O#7)bh-bMdCmUQ_j7x0P52H6m5#rVA z1?eAC4N+(*BDBI<8eksw8ztqo1ODkWRV-IWE~^Nhn=rY>x5szm=rmTqNL)&g#@@Ck z-CpWMp}<%1%y>}^#ueX^V{}#sx=tkld1UmiCkw%HXPS6?0?8vrPHT=)>~DbLIoj`6+i8Lwd28HnP+1Z;#y|8n&~_E zm1GPlgBt2iCB7N$QsS_y;@fgki}SKy{Uq3>kz!b)keVj4*}(Jvj45nixKkGNzSM_L z)Oa;;2a1TbiFo9xF(8zEN7pFHI)19M-76-3!1U*i-$rT*wm&t|Kv!c3Q%ICbx8k`8<7W3hl0S{aNjiCKmS<5_%8b zk&8*?J~LbHRDv+N4%dd%Btl4rANaN1IS$-l3Kqvs6IUfI0YHk58tskKJYonnWhUnA)ie@uS# zpqa%2A3K(stEx<9@*)hmr5h4?1brpYg4Fm`O7DelC>e~388m=W_m_ooBN@nS+q>nW z_>Ox7&63H@tat0(;E|S80uPh*$uPICIYhhazUpgyC7_yo_ZTaGpDUy~ZSm`E)h4v$ z#Jk=Z>WZXj-|25FR#ntak!7V5ln?5%8`Kbp+MuH8iZb6t&z3*o)>}!AkhD z1t(#kuQL)))u;6klpIj7!DASwP^N~LPK(2()1qpnQ6$?AC-7N-5!}Wlb+FDFV#I@F zx;sAi_BLIeat#Kx$yNaG2-FWGFcLLD4ZD!24qJ|-D3L#k7bSL{WgH-n|2UjMpQ#XYU%vt&Y$vWljMj$H1o zb_BWY%3xQ}kqfZ>+Qp4XYxgKoWWA1RD)d45e>&XPyLi3o3>-V z&Q@%WUByw{#zf4CHvCdk0az1*n(0IHJMBR6Ln#aJv3xk!7ORu#MS>RSocmVk03(7Y zR7LU5mY5H6Iw;Yhm{_zSKL{$gTfebAq6r_Dxuls4l>HIFvaY;ei^6=Z|$@uS_$5o{gD@VTu%+3_&JTw;s z3B47r`hZ8c0bJwjdT{QY89-E--wmF(Y96X7@(64HQLn_U9K(X%fgj>@rwYutqKnoj z4NJu<4LF1Ah{!NCCUQx%DX3woQMRWvz8x?P;0b%egb-#Q@yTeJH=eK&%g1q0`Xo01 z_T_vEYS(#lgs*>22!MV>Bb6OaX9VIbHjLzG{OPJKl~oVEZ4Ls*f2EC*f1Z zZJ8(?WaxcjkD8O-bFMJ2PbHQ`nl=Ah%MCAynFd7;I+fSVsP*M#6@RuQ#^TEyTHU^78j|^H8zD6y zvgqTN`i^P*Y{7_)xz(xh9Jyk>YeaEVn9mM&p^b`O2CGnaKJXx@QPOI-NlP$v^Nx}v z9}Cif-w$8=h9MQY!OR4m|4=aN< zN0A6g5S~_77FW6xn&$@wCT@Zn)bF-e4ZqRVN!cwHBaV)fP#o_%bH<;C4~Ua-X#h6>dPgR>5o5vLVi zko}C{0BVCoG*pDI&yrOkUAvShgG3DI`?>+>~cJOJ5< zZwYaT+TE(2cC2DT+rFe)UR;!lmZu1`Srkg}UtMed1yXh|J#{J#?7!$P z#eY>lQk=|$Q*&K?b&@6VJaB?yw5Pqnd*i}&#e?&V%KFW%!@C&VA58rX*0eBxkxU#D zfHX9<(qzYBW6Uk*?dWJ;MF=|7A!V^R&&-Xal#$pPQqtfH>`60!GjO693wl28?nO&q zQ#{1qt;e#W8`*6cK%&_qxNWl zS6LsjOSbmtLONB8R9IG;tp=D~Q2k48=-a1ly2D$s(czi+1nj!j;Fga52TnBQ?)-`u zk0tr}h09uF=Vz$8lZK__497Q_>Xdz#9`EloO~B7-4~3U)lAU^z4ow&6p$2qG%2t}0 z2wnjnfE)I3!xCGqmwY<=8Q7TQZ!BjpZyo)G62 zqNSxb&E?SJkN3bq0qu%#U^K2Au)s+wRE3HPg8Jm%nsJv&@25Z(!|$Na`{!H zLWcD<2P&q{aLO??ZUVKeSd*}gkbC?#aMx8M!#QlI3=MlRn_R?&YY98}zClp=ep0kJ z)0pcBb;s@MJ8si78DFJJqFO-a)0keby(I4a6sbZXAuW2wCW9+p>$JEg)6MsIIR!N5 z*R>wx0-3bxy1mlznhlk1Rjs7=N}`c!-O%X)9QyXIZ1aqUKNg_eM~Sp2#}YF~&MBZw zed?F&JPqD97}Ask9fYG$bo-%1*4vQwY519KZ*yq6EHbf8v3f5wD$uO z>cLAxMg3h(Pvt&y?PO>v)?Od<-UrZ)zQiM4_EGq)G08>v%2}bs-hk?)4GCQi zPRPZHFHjFGl14`AHh24Qwf^}6b<((KPN)Op+R0_`Z6WU}(5w6wTPx4MlZx`p?FY~% zCi;F;0D(EA!sFqAA7vzZS=ICR9T(iiu8khTCi8W?K^tO%hdvPlZLt=_iLGAi7P|RT z=lKoKq73p7rw@z%9@|^t>zK1?JBn(GWrs%KSD0DP#D%DMUq3Tc-C%ng5JI&-F80s# zheGE_7ufMVAnMpr5HU2{EK6hJp0xuxR3(2;WTrEdcCT4III5IH7|UC<@CC=_LW^bA z-4d2rZKrr4YiAM)6AmHgq*{N)V+D!%3foS

      VXhF=j@*0x-}VgseFl=uU@6q0DuPF74$W|!JcbmXGrN{xw}L-p)%{WVBm+dUZ(bv*u*?0|yi&+z;cUc2e6sX0feIN_N2wfR~K`#-!6TQ{twn(N(3`?h|>_@Fk0Q_DDxwbgFq%AbT{ zZoc(_!T5y6HlCe|304@!X7b9;{k98hc&DI`I!E4>RqrrHER5c!IS^HQbTE zvilvU?VFc>@(_ftmYJK*Npiy!z*eR_=llUZ2w%&&6@Wn8g&a+z2(L;g+ra+x1{?bo z1XCL6%AyG(Hq~rGm>e%#mKQj{V}odyon~Xpjss3X;WL?H{tBLTZtKN$rT&>;TZOlE zCVBEUYB|)Z62gS&w-)RZSQ0GtjB%09Rf9GVZo2NOWgX)$N+R=ElcS2?Ks>5lF~+Gi zqE9$@HJR%Ki;?>*X%gvpl|pB*Z?)YaVylXHFZ_&V1qfFAk_Wi@rERQuV!O|*vT~4D zZMO9(dyVwvQc1ehavU5P8^cxah(rf_XXT)HpcemR;>wf)YjUb#dOXn$zLg&wLa1w1 zM^r8{Wa$12c$;s|rB~!?cX{M(V;jPo74vtz`Lj9qCuK!FPXD0Xr|%?jmA((v+rKBd z-3M)|SQpJyiRSx|2A{ng;7n9xqJD4eN&x7*xj1Q8!XIighuGyQ4jq1wSVwQQ92Cqd zef(tzA6c_C&~;@aUGxkZ)>gN7hPtGcOFw7Q?eTJk$_l~%IaH?hN*-y2CVrOeic*b< zN5)jivr2~MqzyLuzK?p}sS_c1B>>DTZwWfd`Ll+Cj!*?U?{xEOIvq5JCf)Ey4y;}A zw?_j|Kf@0+Qvsr8%vqqudOo%Fg``>9dF9R^ryPNuf)axbeZVa-;Mb1nR(0P14~=RDy73x99Q_Ovc_$cwE(48Jt;)MwYy zyk9+G)`UIL1VT%AjN9_Ct(00@y3s6f52H5p0^{aeG`U$l8wB-}jBM@n#w5 zX+_gH0~(pr!k@ftOIvNx#P0Brs>VY{qN2d1|?1y=mx<9tebr zsmC%8#(`{t0Y@DE`n7$7PdIKg~W%Jd9%UWy86xA!O@$|nuSkXg%{Z>QXCv} zgf$2zkpu(5ZObz%Uth6}83;;z@~}?$k?G(oouk_s7?xAju<@{z;J>-*@FDk;?2k~09uAlTeMSDWxTrW4-EBAX;Ji8McI%01@$7el?b+2 z(?7gm;vfVzBVTg5pDmgNhRH-NpSzw&2Yvs3)1`(L>x^176Oa%stSIuZKl~Ha)O*SP zMU}+c1{u8|B^aQU&s`b2&vg|NHSLjK)|S!L=I;V_Gg#;jUd(i)4!DT)He6IOA-H*x zH8H0){@3S33k>RY_#F-17Sh93OkDwY6I%l1{vY;Y`^GG~o}KpYo8a96iMnjV1vmC4 zyiOex>BYW^9VYllhwsngg?5WgE%1>Q7Zhodt90yJVYAWQ!xLDhutRW~N&|GkZVwfBGg61H|X1SACQvY13LkX=h>);I&!=f&06G>P6Gpnvxb`-V4sfM z>q{rqf4ov`CzS;v>!?!GZmpM0eOt&mre&XN&(?y0_J}c_%Jh`#&i47ibsPazip@)$)G5m>dLBj6ayyeEQ%voaCM^qD%3T-G%_Ho(Cq;<*4-A{ODHJ(2fmT|t zwjJGL)`X&HBjd=`;hO0|j_c(&IGK~{bEHlOkLMsRrq)Q8E_f}R!(Gr~2Iz#N8+!O= zV>E5g*e7lVHI!z(;6kly`ZuPUdy^NLzJL>$z8ygsb{Of=G^Y5;x@d5!5aqln5G+ys zevOedx9x5bm_~o%XPMT3hE^j3`+h>_ILQ~-$|m2C`~qH$BPc4Ar<& zDe?PY+rJ8+SwuqjVC%R76+ot0^(iFOl`D6T_@hw^-;Qv*{As=N3H@e2xFou0F2pgh zie_~w6_(#(F)zV&;mC}yzH@i&ybHnQ!F9pCM7xKoa=>+HMHQW_a9f^uSKQyu)9Yv5 z6LBVe^Y4fg^+fTn&3FGRVrp;ZPk8|jOJ3WdrlO`j-7WNyTdmJu>(ZH@6GIWcO6Vuz zVLna0<#Z~ePuV2@|Lf%^w;udSp|2SFQeoV4Z~vZxgy zcwoU80d?ML2*A?NZg6S2+>|J6Dd|6+U3TVN#W6&vUS%Tz2F=OG+4b3ZqvWvIDwzHt zI;uF>fX}X)qF7?Znc4fWDV=v9-rJq*$5HUK^y#5dkFiXzYGXIdV#v~8p|3tG$Aj=wg(tpql_&((LwQh4SXDSvg6A*@a>;)p^qTH4F9 zxqn8Vo`94~CetNLi6#eKag6-Oo<*@dxo%J_K}~9@4NFZ10pVZaA7?Q~*-)>=4nQn8 z0vJRvkDbZDBoZ!YJ-ElJ77LvnaV@_p#q%en(_U6c#?t;IR$h+TE=1Fel_b3KW_(fA z{39SEhWec`+a3b@ch%1ux>FM{=h`w5)N9(p*=Yg!AE-f~%7$1(#OH25TOm*_mDe^O zXiTNMdh8Cu-&Fg7XGExVOe3ki@JWTTxK9ID6!=ma16rVIN+uY#k1)hamzk#$#0A>_ zas!QlpCcAzb;yZ8i;Hr(zL8i;zCm|;tYXN?zxJ5K)4}Nt^jPJ6CECQIyO@I^mP*iq zQ(nF_s6Q#=6w6R!74-$7(uEOuPeD&5)KN!yWR*hn*(b(k!hVX0$cb{U4rEEGh!^v5 z+5@Mf2m*@cuwk$oK|t>>|LVDoW-%`HaYjc zz2f!5^1@3m+Zh%FA1&rd95~0 z-B9&IlO%!XIK>JC*h5rDwI&TO84fwhJqR*a6jk_`vc~YnKkf2xF@|FKgjB|-xO_Sm zy0)8}#`0As5za&SG(VVMvO$g;1mZ>F3Z2SMXlU{1RjqYaRS^_yf@0hjv&$7eN&l0L zGL$Q4ZLjXs<1xSL7}y!YUnU`uTaIs`>?SYxw)K>Jt-?0kq6Sg1E8S?LvH@sw3o4Z& zq-sT<8l5JNOB$-PR(@_0r%V_@H#;i0S=k`oVuG#pzXZtF8wPp6JyYz^AXylep2hM* z^)r?(cYj<3l4_+;084c7l;gVFPeF|M$I`@jtPD_V@!`;2UnUEx%H=ooy`w0@X+!VV z0&gZmT##W=@tHTFigVO>wtC+k1;(butUObpn_>rYRRyp9col3qy4?T1 zzdp94pl5)Jz8?@q$r(5htA<49rK4dLD->}r253%iYN8!_sm(OD`5FpvRLt3w+a)uh zI%93~3_p2&TZ8p+Y15yU#%y%rQ1Zwe?d6vbkt~!j8+z7s)uW++uwqI3@O*cLJDPJS zur%m8UJ4n)Il4#v@?%ItNWu;P=X!`tyS`_!#{?`&*6)Dx=8THIBX}Xm2j^$Z4gvoN zzifM2a`kXk;kWbowPr_a+2VvX^+sG&A9{ zA2G!)+DqgePFBHRTPAk<1w6fM^_pKgclA;t6BxaT<+1SeBz#3b$o+a533fSE6IG~G zh8`%_IrX0Trk3-2i~h0+iNeWU;!iTwHr@z21Jjyk9D#TEtn|?b;Yjtiw=z@gs7km? z8Fv&r*H_3Uqh9yk)AW-^lTQ@UPE8dSu3bp#VLWdKuEIOTE{!k84vnWPEciTtkbytv zsAtAWcEeqS*#~6El6U=uYw)%&pmV;3D}-M?tn!{k)XURLx)utnnKjT1$~qzqxQZ0( zMIwrkr@8B|3e83lKRj|6g@w|OOVTcfl8@n#eXs$d4%j7buqG}Glw7F}>={bU^4`=h z-I~JD(hb9vHBoP8Cc0EfmzS%bHasERkBTxmpeE24_8%@@JFNfmFK3#jiVw3ZSl(R1 zDENffusC71AJwAATpDIw4FJzS?lp20`4h^)&i`#NXP_4>9gW@AoafwypKYLt66ZT3 zd$E{mZ;Q{NepXmH80uk2-C*yJjZw{hDg(0QCQ>34{%XxzH8hdzw;!7SiNcvw-=Vyf|;b)lhWC0S!#{MJS9E8}8tw)^dK4 ze_lrRqUj3oR-rJSBO8mIeh&}oqIHnKH{&JnUs#-LQc|g=VN-}jEcFdiVpQ*4J$+$5 zfD5St@%YP!j^peDCvXLuryL1wujA{^w|QV9`_{9XV7884E}3!SB|f_1(mBoKoMD;7 z7KfA^C;n`_=@~vBN?QZ6i@y%#-Js6;TB7Nu&`wcbvG;O&t`sGNh(uuW>*Jum31*rY zQZt?FhFa~t@SF0g2a#FKR-e1eEip9>MM20^2<+)Je;)^_n0Pv3Cj@`V zhFB~-M-XF1g%kV%h4G;)l4%gm<6}uem`mOC_z)u4qiy+P&fC? zx`di759r?ch25#Z&I1cH*3xGSIkF9m~O^0Dt@Eh#q5Lr(gv(r7kA3xkH%A8H+JZ({sC(ppGRx%_5 zRvyw7Zz>okyd!G5^?6*Pnem2_|ZBWhWL0j5DA$|#(?xzYLO$DXU=|?qH%=zkQ01yc{8oeBu?tn?HEh$f30=>d;~`D5h@w!$dGu z!c0c^ie)&U{M11G_8lRq=QN%m>V@C7f-V`u?i@L+(3!82#1ehsQ?Ufi2!Eer;wJ=1 zHyF9J^loVF4iyS`L2--nLymea!Xc+qCL+@sdd?og+S%;1*^ zxF3{BgNRY!Ws2|FfBToxcDL5|&pj}E%z=d?D-<{BdQM;yQ2PH0K@yrG#NjiHiw`DY z16>pjkx|Dd(L0k87;u@Bs*({BmiYO5(1QX)Ms~a*5ffVY zA47JY_VeK|!oLambI2&wQ1bc-ywDODm5HhW29=`eA7YwUjTS%O5Vvb#(;wJl?{dSc z$1Zjq2w@zC>VaER%z-AWlI{-vW~svPdh; zfHc2JHah7h+P{m6IP+TL>RPc7ae`G6$3&4tg}1)T4^C*n#l>a6~PVD zTDoPnVWA&&zSFI!@q>=vT@+x7af`4$P-d3&jb&?I_fXB|#@+Dl6|QdJ{hLw>sIlp0 z_&h}Gi|!{|9x{U07G}ZB@IO%u4f&|+n;VXi${mihlH2Gt~XIS!)Cj6qr{&YAqZR z(;1@}5;xiVBc~&Bu)bE^9Y#juw4=UL>aHCa4_<7Fsr&IjPFX!d)>alVYh=W;vDpUU z)0+a7z@O7|TZzAl-FyL(vV%gD|8vCzunHA`AlF&^gFY;oCXSN;)}>+0zfHV0_e~5% z5YqHXEa=CI@nw4`{1VkRn%S(#3rX8UWE~eYCz3uMkbcH|JmL;-SlorR{J#YPmqxwP z^JRTRg35k|pLSHz1Hz9Y?$g0KLb%p(c+Id&-elMwf7uYi7)M>sx#G2y1O^+>% z&zURts;zC5a8+PoqD(8?hMxbXs)lEKry@+9FF}F$74D^t`!;>uPVVGJ;wj$&sZcyc zv8_On>IHolHw_}?ezBF~NwJ*SeoLqzVxqCiI;U0kVZmUnBSf>lcg7+?{IPr^MmX*s#7Whb_ zP}F;>Iig_oEwR6wm8jBc(ZpbZzcaiyc0Vg6g2gqm{-Xd1nXQE%NT=B@B`_1oP$=BHnDf5~GQnH%$^`?BA{*&_5nhl+d1Y_z@cBZ=49#!S`zr z{#8744KLuoNn@|2{L^(OCcHkgR7|j9Yr%2`IS$D&nkR*)FWx1N-3p5DviF5@6rd?1 zq#uJv4t5vt1EkeH&+;Iw2&*D{BVPSg18rc*d~4nzyx9f{q8Jiwd{;}VZyGEr&Q<>@ z^NcFev<3$m$8Z;Y=d2XMMehOao{gJ#0q$tm$?}=b4vmUtrfT_ zLdfT4!$U)R8j~ka^J1zi8v%Bu=n>)y>FLtd?CfMa{-fkrn9y`PRwD(sR%xfD24I5`KFBdK;OgnA1G=APDH@wI0$8!1hBzi2h4~ zcuyq=tEyCjvbvv%GkVU-NzvoYdsBT5v5B__8_Ou-nc((EMHop=w^AF!O27Sh8-*%Q zOoHu)RHbcQ*x~{QA7BzHi_+@{h9vDy=*$|_q~7?mY(O}bjbKIz)!tKw}U6QD`;Vv=Ot zoz8GXF|?*tC47%}q47|)d%oOmhBD32&hJIyvx)RaZ8-HI%o|Krl0FQQ`x-GydXy2E zJ5WA=O&h26g15ia`g~j-`I3y(Z^R!U*ll2OI-l0Ry!vB6mCuG(+`qi-dFyc+XYRfI z$$r>{~cF zqYxJ9=Z9M(#dbSA`&uHVD4=vdre>hsF>UP7#5g_t&+h|kxzU@;Jgx^R)O>~^ zTMil+dA&~rVO*{k?b%(x@1z4}^YHj~o2_SXzSmORWiXype<36Taqfb|WJ;iJMK(z1 zihcEC1*DTE>N&+!Lg}C8Il$xV6(&pjiyZ;V>2ka!;N2L8KnQGZwTFa-Vzj@CY2gd4 zS%!b(07q1=2ULC)5iI1SZH&HDygOo5hI`f^lO#IX^An2hyA)NKyq)^*Dd8TmBU>Fg zu{GT)LHe_0SolF?B&SBX;JKe?@T0*J`7jPo`5*aeV9L$`*l`fyseg) z9=K3o)*zaX%u;yX1SkTJu?D5Eq ztt9BD6NH!by@^Ip{@m(r=Mw>g`FikDyi9_bWjM*9*a_+<{X&%FwQWgr$X#jw5WrX` zW`2)ZCGr{T@9qA~eL6%`^{!;M?*jVvBHQUlY!cS?(JP zrnaO%n?5*$Xi;C@D5bn8&^1a0Kr?()giEPoq}M@Q6LLHn>epkq;9!8n;EX?eE5K(M zhx^p%&^K3kF;PM|6@8RbrMqAskW4C4um^!-9-`Mq*F85#;56edH;4_(LJ>L>E(ka= z=katWoY-rv&H?I#5KmqeiCsP@6sVzWa5+-FUA5HgmTOk zeX(yH!wk+@N&<^NycJ*GaV+y#Ic{{%%mtG<00yC&qZF(F{QS21&sF%LL(|4Ijq}QI zmnDoLne>)pkkL`jZiX;sNb_IVqK4eU;pHm)2?>C>sH+)}f!kqSAuu0fi(}~F-N>73 zQ&L+LmBUJpjg?xS8&Qm0Edf%tS{x@8dE8V+wPtu31op`aKs+x!MS`LbFngnul|rfJ zKg~F^>#~=eH?$0&XF;XL4*JK$VUnkr-Fi3nMrq<_x%A2UPjQ?w8G7=P_JmGrO?=pq zc)R+dibZIY{$miSo`n8Q&SQroLyhG^P&b@IJ^bu2PlITD%tmjlXx)!@o^9aY3p zFtw#N^xa8aCJ*vROvG;%E_dtO7$h3`tR{ zy<+GLk9y~iOUasAu4@$`5lRR@q!J)q?83$+2{m};-iH0Uj6p=T!sTq_O0c2r19#M! zR3dzLJ!w}fN@8OHY2xRG&cmz)Vl||iV7$YST%csB;SYFLFS(<)q-ktwJz5c1V67oM z9*VA^ISDXV&l$C@t;RGpyYb=D$09K%%Ma%w<@|@@e5L#b|9*0O4C{= z{m1CQ)6xZsVo;aBk#U*tZxTRS;4Aluj|YSXk9(W1nJr7EZu3}D;bIx5#~xW$WS%np zB)_E>?&8JJn72tS565wf%@z8W)0o_*ppu?W2@-=uZAR_Lt{vDjsw zPw`_abkB&2-ab}_COpkSWHw_ZYO=>~W5CEnK3{9M%G)eVhCLRX!})pdQb07yOH+M# z390%v=_PeH+EJLSQs}d**X97kFP{xH`e#+4j)b(5AvKhRm?vaGQpj}lAgZY64}RW? zheTV$-#cPuW+Q~fTXyPu9DF9w9}ZwU?%$V;Cb8fw-7>*^Fib=wk>6 zTNsltDmXO@aI4^fR2-7Ru0d-w?Ba6@I2=lr^8Aja4zBR~Wreg3!;HUywdVO&rln-| z5S-XgU;%ZGkw*Pq<^Ww%+$)mGkGqCiIo&fJ{= z!K!R~zER~s4%V$&8ihA9^uHzw;x!+_k9C5jN6^NuE}2<8sJymXoY-eU4%vsO>Wgg+ zp43U_iCLR8&yWEMfgD)S25f5<4!*~Cg+($>0fqLi!Gxprsc)CXyRt>(PAjyhxS?}R z%5WY(S$_b_`T<$}GvO@ttv@qpkG1pOJ2(kH^kR_g8jk>o&tI|t(k|mtgf$VD8flL; za1&>)`P7PRA6*?@17R4=#5%<9u5AL5l{{5QnN&ySP-aiKEhD&woGhH{bS*5YNq1IA zcXw}>fGm&EQ?=e|n7m@{S}Aa3fA*8b$!`X2b2=SrfE=TYVAeEB9N z#(vILl*tO9Sk9-H1uvWW(e zSqAUAqOwlsZ9CL{aU$PXum6z>K;LO;_C0C%@1c2q?ctxY`G^sUaovOCv!vj%G!|&|8a7Uiw3WhF1eO5dO=PmeLX}4|bgmk2yEEhXmU-A68Qa5(%3d*2lc3~J zEmwWf!lCLiJ04LS%Ml(E@@C~S7_`Iw2;&PTITjbD7r=H)zf4W}txU3c4n6pSb!jKPOTDAaFWl98Rp615jfjCkAbeUTj|4htQAXgm23w^#3FtftpaF>~vT zYY1jXN}<-UZb&~LoRKT#4(`iDjTFC*ms-^Tbm$ALH@8hyTMXc?@Y2oat!>5Hl=RA@ zV_mrHW$Wl^QnLr8jeJ?81-;;kLwo;KjU!_mhB7S)^slvZDvGuz{BrYp^+7R?gQmjhwztN*)QUjir#Tb_*fksH!IP0A$5-isV(9VWQ0)$Ck>vG z@gJ6Z3RFuIMw0z{HW@_{YQ4QuV#b`zeaOLaeT!tcGY#34XoDy-i(+Ld)WqQa&l&t= zk?Q6D1qW1Cj!&a-$^7M^0-U}&@DT9Ko99zGAyusC-*GTKn5;(5b$(x9Jxnq6xL|}v z)YFMC|GAG^{gdD>pd%a$E$|1twJO=>`$JVpq9P`#+KX zr5BwM{PCtBoyh_+2oSg`=F}x($riB9$aQ|LDntmh&#ESngXwFngRMxGCs`k|l z<(oKAjW%%s0+w_K(V!)Pq`>z)-7tD ztu?uF1d}}>i|B|6v7hs;J#`|hzN+eRgp~jN{^Q7cSwK*o>$fep9bSp`_lCk9aJNs~|OM{b1rF~Q$DBNb;=sN5Sd-UJ|^ET@tKp3*@s>!bR z`b88X`q|O%QCe2rZcVB&g7+WLg>{MrLSpT!joeFGlnGozs9(G3Gz({;A6GCa*G>)`s(ICHtFI&gZ4}^RE)_Y4UUm_jL2Yn4u8%2xjFc&ns6MAk_kw=;8vS5NM688H+3?}KYeW`&G?rhD?V|bbsfe4m>M94gnf;jF8~aK&a0tr(AU@(HW%x zQ#WJzT6xQs=av0`jNpV4KW}eGG?55GaEQ4gxTLFjxe=2M^N1BllyQ46-I$%UFJ9i#g z?|$~CF5`&aFI>1mp*-;fM4Tc-Wwn894Gch4SAnd!(slE`@2P{J^g;3IfASjck>}y! z`;kD^1FFHBT)hl9^YOS{6qFIc#OU|C``ZB*8J?U=_LH3eizUn(D$}yFI&m0$ODu_; z`S(R?^#Bddfi#yQLtdDolm28AMdx>Or)9_2D~V~?9N|M6#=*fd)Y0XzBDs0%^O#!Y z(V4RM!4z!`Pd=3(XP=@lIQ&A z&^p{^kp8N|R&jwJWN69V@c8^QK$_D=csL@2YQ-%tH)B5K;6I&xDB#}QU1gB1k6tP? z?5879?!%ku@MEnUOh3Z4er~vHGd6YzkuS<}-BdBcY=iE;w(KT^^sase7z()NvUFmv zBLo=o6GvCt{KldY&S#|w$!L+amjQ!b)-`|O@ovcXjLQBK!I^nOPIr%1>$=< zp|d=Vm5~RchJG(xqVv%(HoO%DE(|AaslW1oGRqhzc=N@>cKL`d zrl$5lsQ$B}G^TpbjU-Cw3@oQLxJ>yK_Nz8SH7czHtZnPOWkYofh@@F$Bi@&6M6E;T zj_k!R#RcIPb0YhQi>pseG4p9aRqe^K`TE%$^vSd2@b(tpktl9BpCR+AvzyJeL<y(f!zntYYcU%05!fRaiyhyXHa`Wh*JlW`N%u38I_F#Mxi27;R3sa*1 zNd@L7PeFRTs0*yMj5OP&*fTIR`0I{1nZ7tms6T}<>!5LSuzjKvT3iCi1NnX0vL|W# zRjKUv`NQ3@vi2XoJ_s@we>$yGs;>uG*}?x z9tck#M?slb@Gnob72mU{>r7MEJ{;Kf7U(M1dO8o9+eU0-lgF{8s z0puW2PY#YA$;OBIcdG&(6JniayJ3U{hOU^6@FCW2LHQLYW;r1=?E_K9z_l|DvT*IqNYlT9V&wR3q0R0JW^v#nUP+5wmPrc@B#QPZ}S#N0ihwZYddo@+zi{MBDjpTUMTN5&aWB9zB#nWq#(R||E0qI-8vUa8M0pJWah#717TcM zT=Ftt@Kbi#InGa0-RptMr6Lo|hyn&U#@foPNUP8n=(k@;M7jdPgF-rl_)z zQD9yuz1xmUMddDO)?3Nk`5aP&n8{C6W7sIRqA`1CuHyrx?!@RXc<;9?;G#RRf@jsp zO=%|gQ7Z-Zz(6;Oy4#&^- zWZJ{PF91bAy1$Yvg#An5uVSD}2C|ju@x|-YOYk#7<&%w?<-+&|Qp z{1u{|riKwgytimt;@7kmjvH_-eY75CkE{N8ZEu1b-Zu9LAUzfJb&l>|)W0c4rl+~w z!up(rhzOlz^jy3?X7dHS=Z&|+aL#lsV7LdC07V;si1J8qGg3xjOz`hkDnPt#1+5}-Egn`dvR zoojs%p@MsxhCFR0oZlMfn0WA11)Slx>1ZZQNZeHgSxL6D^Y{kZ%Rt08^eu`L@vy1= zCwD+jxehW)Q{Y7qh_oI|f;!KsA6?>U%Ir}t+d}e!EMuXq+x}tQz~>t3HBfF&=-WtX zGHz90C#LsN3RPUM7UK+IFB8au9-fCwEj5d1DhF5XPCU03nmQ{S;n2dn~FyK==_ zwFgdH%TVLke#}SbECFh&Uk_wndk`aXi3^eURZ3Dc?aq<4Ikn2O^iOZwDdC;eSMep+ z@%%VI_CWXutn()>E8R|X&W)5p#u~j2R3gb}Tp%YCb7s0r5h!YntZtD1GmrOLcwnM9 zkxxU^3wWpkEy`iZf5g=q5DM!-x#_my(k|R&LNi@Hsk?m4O@8o6~K>pQTW~l2s>rXsUQ${K=-ajR7P>axiKs&-fWkiqT70C~kZ%iV6P1B+%U8 zGUJ=U&X@!HPigkJ$(?e|)nix=VFhom6zlwq6)`z>Yje5N&z~HDu#upv&9|!)NVxQY zS4%WTQmB`x#xVI!w#BcczP-gqVE&MAvHX0L4Ixv_-jsQF+4b-jt(0=~Co34ChxM1X zEO`>qRHayHH>D z48B=v91(hnZR#V-JaocYp;~VM!c&(Y37n;AclU=D6*CIDK%g&KHH2+1@(yyjFk>n> zzi;+axxhL3knndJv3yk{@;+Q(7Vs9-sC`|{$?1!R&H|{x>tr~ngN^_*eX#5%tt5&L zxz!u%IlIyasFU6*R=hy+iuuFqRln?V%x42~a2{Co2J$#+CN^Es5#DCrjcP=TV$U99 z%pJJ}t!yXCDdjj+lepnddfB?wM%8Lqp^ECfvr<*OqkRSP35mivtOdakBDDH*O%tN2 zBdI@<31P^t@d^z12e> zHDUCc3QA5ulln*AzcWo|0g zhQ|0lg(Ks&oke!8&?4HS5UZeoFII`(TWNq$_9cWJXOOgG)-DM)!wp`7BC60(tUgb@#7E#iX@n98-c0Yoo+yawy3zd@W1Cp`kt)W*$}osa5HpKVSV zD%_n`Ak@R2ccY1CnM~=%U`R(A2!JodMhU4!*yY5hkxc&w4M;P0vVO8PNEKF zo1CpP6I=d*hnjfW;HRmAEa)#a*WS=`wkMhb zMA1b&BwD;t+Gu~nrUFoZzf3YE_1{9Ka4;+r2Ga7b?oeQ|HCY;_UU?Ly%{;i=9gB=n z`bS9x!48^4hJW(MZgk?B0!<6*#9NU>yNkx0e`_$0^Ogxw&t-Q`PPCf~e$F4rDKzo@ zv7_%lo}aFun5C4-C#C?%26OZyYsZNm%+n~3ISkkSmo`~^sri-V(ZoA_k@I!Hmg$`YHw-6EzyFc8e1xb2b@w5BgfThm#K_v<>hd}Q4e=q>!-((Q=d|iJdjv4OuZ`;sn_PuSoW3(U(-~FM zZ(Lbfs)KTrV^bcc%F8;q^xVyIV+b`Y6rAQm3E_NiD8XJLJbNiZ21CY7iZ^;_;_jRL z{Wlr!ASik(aWk~eaWapUceb*!);)QR~eL{sI_^@USLS|GH z2PtFc*7)`@;V~A{g-;NuR~8FU>QN_+3~^q4yvAA2q~MsGFsIj&w$joA z%=HFLp)1YN{!gARd%q1}WWnYSghu+&+zqx>=}e1Lcg+0^KUV#R7NxvX+XRsAJNrnt zKJcqpp%{$}IW)-)dl1ZOICh6U;a2to*mxhM1hs(yoU-@?0-o+RkD*nm#y((^iow3vJ{`yp&z%SM!`*F>fT z2Dh4xsDo6nig%NIDCVlPS8hSbqu6TT!AEGX{3tD3Ztv;7Ba<>mdn@{hx)xw6n z>OVa@ZmR(p`d(y9aD#jODWov&{_D<{C=`U0jhSWn1*}V$+bS!0a+A2-mhzuL;FEnh zDC>{+h*VoH1R(`QQg}Pbs_S%(s9}-3lPWEjSs*P&I6a)ni1Luk=eicKyj9+?rfG9h zb2bPb#E2)ONd+ndxgb4srrmZ2G@CJGGub2@Fa_byYvLyf5NN^wNA=Xe%7htUAArC+ zYG8$|pZYjyhr2r4?LBX0E z#IHoA^h*}bz3mw+eoBmFr2&0wX$W=Oyj=k<&I=Gw=@>)~oMDRSlKyhp%oQCEEjd77uG2tsDXt zMvH}BmFpRG_eHL=77bn)PxrQ39Fv9zgyC^k!sN_WU2ZXr zkZg+%xN?bbGiTxTB)yfOzA3_581-v7IgU4Kn$9rk6Pv!ZHBvdHW`?)#a#)ZG-pk;< z3|O9>Atl+|_AV&*5G(02PEcK6Td0f={YCvxmd5na4_#^Zoqil@FC&R@K z1Tq=R=>o!6qmtMCB;Kf&>&t>fy)#;WEjpD>+kVp;!$<$q%twn8Z&Sr27U546_!`fp zjuoHjc zK{F=f+3fHri$n9@xZ@F-$|t2;MMKG**1lZ-IXdzr+-mIrRq>Qj?^4_aLLzFmBuo1< zm32b_08;>=?9_cQN{*U9I%jT zswmlwr99xIfz)rFNNd!F^uV)EvuE?nIaZTa1=_&PT-{?^g)azTjHzifCgCBXpvflreS=%nyY>8Q<1Rhsxv%`a0 z1kw{Sd~t;jW#)>sFY}#!r8df{-;4sRO&H3R$1v**>nG+cY}z9+M4Y_E0$z1iiQ2=i zx=xj0TD0yLHczE7IM^}dqM{D7nk>8hWa{BaJ z?L2qwrZs`c8?K1Z6NZJ}u8{YTI%g=YBbTA3Fs~<6OF$SXPvYB z<&dl*V?Dx~E1_#w3UJlBR7pD^lbp+xz4PX> zOU%=(>Ft)Grlizd3@%|3umiZx>vDlVrQ3qdL&`Ba&?tgAd{B8sxVAtqA@l}@0 z3Y|}M5)TnMnD2dxv$ep>4ax&&T5|wfLD1!^)>+K|KdIL^$fkBy8upVC{>fhQ{(knb zxCT3~XF>f5YSEdZQxD7rQ}%gpRSS>-RdEE# z{!O)o6K_$^{2?Bn{u2P zdF9KLnvSSWojtB40PYK4TWM~E{fk)FUM-Y3aSZgYjnX)rCh_@QSnXoUE0cB>2fzvL z6oq2i})B!PChb`(Ea?Bp?2c$LMnh^T2G^f2@P_qB!LF z%`O%Kj|yI6ibb30NF-?gE=YAPH((*c=s$r7&jU_QoAYLl>t%~pMSG8t%4zw?xKvhw zt=~XNTmZOjr)p4tGtmmRgCoCc7bhD8FX^w`d9cqXekKjMp{C*{Y^4$nY;p{pDA(4D z4z{H4RHzW~)2)InXLHd}T;*S@KjDhb^;V$u&s?u`#ipf9fIRMw2DeJ-fHJ7UjZ0)! zWGXAxpKr2^EBUQeO)X41`NC=tO;7h8gDeTT?luQFx}J-**xfoJ8ECjhibOn;AD+hSI5_~W2C&xrJ#^HmHEusn=`+wxc0pksTYBKE99ljt zh2tWvNN{x=vfFU5dTWM^aqS5}UQ1jPRYwCz8Ra5)1&fVxtWp8A`>#9mdXp}9FT}XY z;p$Tqm#T{0Rdh9Rs2=dyrlB0CLSm6qFSuvjrse{>1BE+q2}w=Q-BhU;iFE&$K|;eR zh*6pGowS`U^4oC`Y~;iS4tE%V_|L}V9~Z-_*#bHbty7RJR`K!0s9=V$I}auTvq4NU zOXi9a=r0t6&M_=s-Ga;yCIQfk4ive%O<(=d zV_Nr-?uJd2G!EM9FAKuUJ7kJ+cS*OUJt6HUoZXa$83omt89|N(p#3J5%`c0wK(IL&Mci*)+y?oqN6EWS# zF~07tMgCz@{P7iA=2uq7Wq?xXNs*Ybg|H5@$1Av+14F5=PG2q{i9NrANh7c+ihD`k zU()5{sQy@Ml+Koo95#q&rN*AJck{xN+fp@!w&2Q5l|6{0c@F0->n8;szj4HZhq~L# zX2uW&C=%gFA7(&t`Kr$ID@ikX*C-s zIdOe*b+fF!r;i)EQ0B1o+@K8L;7102m8M*ArcbG}o#l0Im{7rO^N3>UpL_dB6^GYP zlAG#d9&JPtD)#u^nF}I9uhVU>HQb@FRKyU6&);^9Bzrf9FV21Tbd=&IL36n!+w}z@ zZH-y$Zdb=`EpyW=MOFC-oZyie2fG%g>WI+;rQfS)pZqW5_E8mSO@g{`ZK!ORGT!*X zU_U=4{xv~~GDVC&=?H28TmzL}3jJQ#22Y5}L<>H^7_B)aq~G zH4sq0kZd{h5Q56N%U=R=n?vN&FH!Em>@fp7_x|R$2elqh3-<;Q2L4y$p^=}QwQq3o zS4uPlj=jIO1ooQMu`$0v5rQ_noEoCOuwj%}O8p^8g6hxq3gndrV166+&y*~vbySs^ z3KQnz{*(a(xk0?d)?v)BNBs7IevW|UYqq290~SR@M2%$D$ii1$D9ZzK78I>1RMRu( zK%|@vnD`Dh2M#jC++og@v|+i4C4LHwrMnN+CA#0OgGNyj>}3^7(Zjbt;=!b-MElab zg6s1j6{4(CeX|P&T;y(;)KR&qSP?|bNLy0LCUu)Vu%B&x7}o;$dbFmgF>USf;@&Pb zkhF?>5X6gc3l=$85{O;B=+obj0C;br$#VaPU_QW{SvI(>ZMw-dZO1OTTQOnMMpJ7awTQNNzcr@C%H zNCS+3`S5L_+mZ`6d|wdUMGa0y{VGVrS z!!v&x#YBhm+A7Jq2G>{vz$zfAXsxZFZx>#pm$l{-LaLvcXmzo z*mT%&9Hcu8gDbBI9VG`rVHMpp-B=;de`e7>vCmjcdtGYLYo|Jb;t*v^Kt!`&m%Ba` zb2=#vfMYWK4+8N#gb%oy1N+a}1dZZ2iBz-U>Dp-3E>W+3-Omc_L87Abxys3Qs`12c zlyMESEDJTZ^Q#kqgt0d)%%8(W3?2_XZQ8?UYkh=UEp$CWMOXZ{c5K%8Lr_SCI4t|s zOfU}7{=OK)vXLW82bTF`Aa;&xpEI0jT9|2ij*kqc>Efzh;iuesg@_D6L|vHU>7B@* z1scS87Qj1jMz6@aw?Bj{o`b{F&Z`RqES<+`$p*Q5l3u53_oA>1+w=D(iufPEH*f?b zHqr9Yfb#lFGu#&}-Xurr$Q$0(aMQgk00n*&8&S;3WT@(MFoBNV0nYKz_{arBj z6hf|u_~G_!KOoXCyhco{$T8J}N{!V`%0V=z8zE%ylY?QXA7wic=!y1qgc*6sV3$+T1| zDCu_$fzKLk38DbE`5r0$F)@x&zUH)KxkIkucT zYBu!ozBuo(W-NQ%ajD=v2P3V${^01W&34K-+tkC;v|}-D>_4VOUu*8Acm?VQ$Qfd3YHf5ex2BSNj^lIm0K24O%G@Bm?&bD zw=^?GDFftTx3(U&(0B|1RS4t8a{jpk!o`f18CSX1*JD5MEvnfPBPW`t*{iJ4%Bzsi z8U5697Z^VIVVIn+!jj}KKREQShk5?@;T^!{Bar4UNTTSbg4f_Pc-_g5zG9 zi?keGVzHc+PwVP{UL=&_kbqqXRuF@_@2GH(v0fTg2pKpOFJ55C%CHECs#fr7 zvP8fHbL-)bO0$)5vU3|Tgm8`2;S==IeOpH637%8UEnfscLyQiXX?D^Pp%qa-yVb|1 zZtLmQvER^nP$PQ7A^9-ZOai7eUP6p3+u_UMY5=e>Dxdvoi+1Wx5cDn5^@N6s-{*IV zPSj)w}Djn#A_kx51-LxDUVVtmam0@_{ z`A#%)Y8~Z)_MpRUU}Z!=t0*n&6Wk}Xg62Q_rMy~gXz=_5&Vu7rbP}}0*oFX4bdwZ z7G)6%xK?y<;M4FqIv$Bv{9}L&g{B(xpRZX#<>qrJ^LfUAa`NSKcPeJKT=-rgw2jPC zjp@GYIQiSlp^|&a|NdxkX0m?9_u0C>(D=n`#^pHooY7b(o9_oaXRrUo^y=>?Sog}) z8)4JAdbbrY0Z4n924-8uopxR|L0FG60PXn`k7~U=AJO&ZO+a8}v!b-4Tpk;1+%B-q zjpxPdOi6Yq5!O%tyhSD-v<|dA&%{2%FwY40_m`}csUMTYm#P`pa%imeD@6ZyoE;1& zEXqpT?js{Eay?rCLD^shg|1!Y{c^hwKo|+6b5Y^CXyjzoBVxLN!! zGlO>sTW@Bftqwl~p$vN3auf)#X12&90FjE)Hj`GhzL%xO1pD6Y+UH|nDq-866efq# z-o4Ff$-?R0H!{?I7u zZVW!Pf7_(O`j+0JMElza{4Js%%0K^P$gn?9bK+dy)Q2k6bOX6lcr3KWIuIEyUS??x zlYdRAhN^v3a6wkJIX568Oxh&H>0?y|#y5b`XqZXjfI|AEbAO&XFRxMj21s^X`*HC< z*K>wH&;!daV4+;Se@q6|WIZZ|bO>g)R&K5fVvXtdl=OZoj`+VB-$KoHuqX(RGjOiF z{gX~eO=K3-vI!LRbcKCc8w<<8N6iBfR%c9nnuPddWD=}*)Zq_olY9`BRcbqh1;0@5 zLJkpKj5^qj#k4yRfHfp_DFJUO4Y2XFZzOeoKXgi_KlQ(I(rSF{COClV+g-Snle z3v@C3_fn)!*$cDfcLxeK797i_#X8yWj0*e{V9`8nx>P z(L3E|9=i>2dg26sE&d9X-a02cB@<^YixP25hKOd|KtfDxmA9b-D7L*)1W-&R=2lRx z$2Qe=q3v}1n$0vPFt{{6y*eh?lPh!V8=tv4^mMRm16Yi}a~6TE+~lP7N`HD!;00E( z;P(hdx6S|fA{r((o0|R0_x`2Bq|L+#}V&rp85o+VIx=9YGDbiVO&w=C^W z@BF3zrMAwTw{Hsn)P7w-9kdE?Zpw~(;<1|-Upb0)Hfzn7EnE?PdhUu&D&MSgR7Tb9 zl&we5@Q=bNN+a_PwUKVFk2bSOj2026?gY2svpLV>)2AZWM;=|6&uY!**ohu^V9lBB z9c^az#xcHHQfJAnZgnu9Etp=Eh==wf?x}^EH+}#KP32UX_qElU1>djDI`_NObI0{5S6JA>nX8 z3a5k>u*~NyJek;zP+!(|s>Zb+f%Y^^SNd&e9Hkx;#{gNp>T$Py{ExI4oXp%#CQGo| za@9dYTp8mtH#_rf3m>Y>3JCquJ2iuL0gDs^)KUj=_fy$YVw2_XK#x`aHO!Y)YgItD z^|*z{)FPZ*C_6N$)aKdTAuF}Hi|q=(X_$j*HS@;4G4?r?qr7i3EU$t$ zE?hMlG)^}Ch((=(4WDSVq{EeoKGgR2-z~Rl)|(d4N4q?*MP*TfT!iS8z(pg3&?!Y4 z%=R(Kq(xTS*qopO2Yuz%w=hV+UlmHxV!WMZLR%i{lAuh-!n|j!=;><_hboCr+;SKc zA90T%F`*{D;UyDqh(szM zeBTPxGO3&`HSq=krk8V;BM*tWZGu0=uzg7&HKeaFM)90W;4xsW8ZfFLdCz(L~@f zUX*2QvhX22ju+rPU7kzi6}Q1i-#^O5rGg+951L_%6!)COIx)rep#}Ir*W)XycFRD( z6@H*RY&Wzsl3HNgR%zW({rhpU9;K7w`rv5#N8D+;9Bdvu3#TAaT^EsA(Q`5=fTHwN3pg#195qq?se8@` z8nl8VatIJapxs&=Q3-<;EnV94y&3 ztXh4Q1|2K(DVF{iy_%;A9(s<6AhyVdgFQL&RFb4m;OR~+Pf7@;eucz#oy9gJTBC4qYcpj+_5!=YI0RN*Sj^g5DLGfL zTCEzLXx#FKn*-#G(f>;Z!dcohXd`S41QDD|*(^R;!(-$rfEuj7@GQ7@NOdy!xstc+SxRfGm^GM=ku{m_R z@CI;oS6dHWZ$$$ZP%4mQx$y=&7c~>t6QY(%VT_sd;3)Y2tbW_$ync+?*nIG~i4;=6 z5cbW3uJ;^$-&Jxu%-YZxifC3NvZ|JMyPa<;+(#qW=}Q7EFwOud5j_+rgenTZ`om>} zAB{;Pgbz;xs3SSGQ1*BUR>E5c0wSEJ19N=G1~U@R=!NFI=)hsvqa#HA=wzCe03_)F z)DFf>%#~N5?(&*7Z8%1gXoJRS*EQcO=A_|FOaYe#!=t?T@xw(9sKShjBOmm2MN9O^ zZ>1`n#G_;K)r@XAeQc@E$txyUM@Cov@2MgFLz?^&C5N!JOY^_L7TKD1oSgR62g^F@ z&i^luk4Cx5G7QE?)*YC$(AA%e=U!3H$cUsIkS8#Iuzjr2?8G@>%k%o^bO0R5s0BPc ziJv0CDSb{Au;oeX_Vl-6VdtLw;h)qchF|Ds%b&JdMbg;Kk zqn%mH_b(!2NkKXUjove%?PN_(=V$E>o>o?21e zVj8weavCrK94>{HaD+hZqKvajQ1G?wBdye62c{rG2?9Qf3)R>P_7tGyH+qV) zo^qK|u_6C)z#Ldm17X5-uCRpGoBkiR5xYIbI^ij4@>|gpkC4WbA6Y2d?t73}=wWo3 zl$<3|uRO!!tGp)E^U@Q6!=xwdk$D30H|rp$!ZX7F2vUw1BttXaG9i9l zUtQQ=YuRmzHNU`jDgt_6cebM$Np)qtEUXwplE)-RLf27404OkrT0JebqAuhLNad5e z#&%-Wg-_s|Bw@i_RQH4CG?>1?#qE3F(Csw%ec_QBW9_{gcK4Il%&_TqJfez&Q_c@jduXkeoiK}es4Dc*%Y*oqlRb! znXGgaUgM}{csfS&vASxQ5dE>ljs#Lb(hpqn`75CI=?;IP7(G<1Pas#DOA))nD?+CD zJJ4A2)ne@w9nhw3{}g@+9rs|`jFOV`OCf9j5_4}xG_h={zqvE!l{eQd0Vb2Bl@fW~ zhG5;ZUW7}#oQ$khA&4}uc#%1UZ}o<`S3yU$1CCwZ24RR|+Zaq?GQsGf%NcJKDNgeQ zKRK^DDiZHJAOJBAfJ3m?RWP1%a0eg_)AWA8tg>nfW+Hu*ej{5fZU<)*7JTAm^hkHYp5gUxr#+Pu-zZ_iWP{E$++P z^c}WP=p@bRx9!Lk`+tF&DzcF{Wur2; zb=Zl>83h9JWZWsjrgi()oWtxf;vc_5I~s;dCS`Jkzh_6|a}|z~0g(d!C$> zyRf$1!VkruYUo6~Alr8&SG(57;+A@@I zuuZRd9reioB#T9cMHuh)&7xQr>puB=yjo{zJ=O8)B$YB~O9JW(ND$|DQIJJxy~Rq* zv1Fp(8?g=oEe;KQ?YmP%yQyWOCuCx2NatL%gjh^T@dq?yhK2&>1PoVDf9Ig7#we)9 zC8$)~4(JV~duyLODi%5ysByGW3j&d5qg*Dnj!G9D7g)n>QIml)GG9r%iQv-W;)qDMP6m-M80>-}YXd=sqChAW(3?oFe~O(t zD3F`wq_cG3b#s%XLpBS%WRc2-R8Ke$*dc#lY{4k>^WYK{OwW-;`vIv4aGjX84FJi@ z*`B-@C^PBU_+qCu3<^eqaxqBsPN0OCXf&>0Ls6L7>4#n+l$r zY18+@B8p9%GUCPVUwzo&*I!TAJ=!TI8|{u7_KMn{a{WZ+Q~VqL$ZK}T$s;F+&1AFC zrA0vJ8vN0{K>lQX?6~QAlq_XnAlk<$rb?%|f>!N{&c>ivtU_s8$~W5oEM&3WXI&`o zuK#yIx26#sA3(Fef>D!xv;(->8f@Q+i7VTPObly<#j{Oeq1#v>9N-sYnAGbV3*3UZYlt($n6W+T`^&(LMrCtsm2^Z<(#%Uup zyCI3~C5Y%pQ|)wLr43ic55rj=TptD;q~?itpP!QQ6BjvYI5VhYYL@lVKjhv%iuW7u z-86NXRsKGIWZmZ-xXzv>k(qKxC#=H)2o&dr)kNdo$5KVZ77VzKDYC$mc!nvcmH*$#!$v#ds1Eg>#&+|(-DJ? zW~hZAe|L_&*3>x6G;0`fKN>MKIS)KNh+DCT>}yQHk-FPfck_fE%TQgQZIf{*lSSFfTcOEH>fG@vIQD6uVv zs7Rq?T3CAN!l!{vbGeT`6X?3!Dbp17#{C)Dkd-Y!dS^DBo$@~4$=>%mPt?!S|dUQdq}2W zX>aj)m}ZE@b(8K*U?yW8Bo>A>sZ1HS2OOw5tYt3>EgU~te z$t${c)qN_Zp0gGq<)Wx&EotAw;geEd9OEtolBf@PMA6)fO?BSg_9=j3W0vtknX3Xe z<6-=c(PdIT!O)ANQI!C(rYky>5)W2R^V(cUCj=QX%S96t%=b|5UV^yA&DJm~n7Q@K zl>~LA>6QfvhCwZPX<#7aDG7e87wN7fk0hJsQ+Q_AYe?+Ch-SWJB(vKTR58J9$h3a1 zNBOgXyb06C6p5NDn|~kBM~zku+J;o!N`Y@rNWa!=8zfVs`HL&^cDVXQnGQcY)3z6O z>^w21G%yEpG|H^SVJoF;gv?Tay%)}~k1aO%^jvuQg5V8`1i>C@2AKN(6OC&GHj0jn z(_Tu#C{44f415hzE_&sdch|&y9q{AoMHJaH+$?71a?+yJQc0yGGn@M*Gr$^{U5!K} zu2Q^deLHP+h**VKU)BA}vFQe5R{*8Yg|RPr8fpFgZM21}+b%|0SXsU=?(;9lwz_ zdzJwMK+EBlFR>v?rLQau3Dz2KSsEC3^)DDNTWski?mB=T`}H>{#oU?1BRQ5_3k?;6 zC!r$gg>Bp2F*Wn?%N@Ta_@MLgmw2@@f%V(Nc>*-2WBzw96CVOMz5;%-qR}OR^Z03v zu5RdzesRYcYBK#z?zG&REN4_s&%$92EP8L%Jfd=T4+C!iZQcGn!DZV=j;6TSR_J>a z|DQn3(b9gm*djg+d{ww{^(^frDz#SJRz`_;%WahYs~DT?Duwt}YEM3$gV&1OKOgIP z%b8iz%wzlz)g5d2O=WfPAfq0FO`wd;R3%}FoDUTS?*2>|v(i+mJubAK&D7Ud$c z(t!0nHtFlZyla$t>GG)YP-+`i{-fwzL>m!-Q_)48sma$&$rQe2l0o-)1k(ttSo;_z@`HlbuC1W z}RIxkM-GBN4 zX-!y4vz^e1fy*lFb3l==u1O-7psVBHvqh(5gj>}At#9ozw!2O^aA)_x8p9%pGY*ir zYCF{Bm6_8PPK%eZ^%Y7t0GxU9i4x8@7aHb3lf)l~z_iL#!mOVQv!yE{|jN1&+V$ztkjX(~~Rn zour?TmQf)+#u(jBhK7Aa@uClkpaF}l)B|T>w-Fp7sB>Mi zHPV98IK?IhgsQmyNjdBd$uf3`IKSR5kUZ>u?TbTNA`WD8hYB(;s<&p$L4cyH3;VtD zz!##}&LY0{KLdMmbPeY6i#5rHTDj}pJd~v>mx38_1xT7;`QR)HVqOxhk$Wj|{?=sK zFDcfIghq)o>tf0qslv^LC>+7f=W5vgcbD9;$`kBN&`!Em>7mD*25c7V3i8KGI$R#- zZa=!Jo4*lB?7<>g9)+eHY-yO?cR6@X8Se_1haEoT*yP3?#a~e&EJIFtX;jlJ?8OL& zDwLhP|73!K5kSf|5#o+kNM|lBxYL&%-a+k%S7XF@%ldQH>Sxg?gNMBii~i zmdyn$sRiU=W=xb-Lc5y?^u-yj@x1`fvuSm(^%>M1XzLE>1zHGJD!h*Dh(VFCs*n<2 z+}uPggE6ol3`)ohCsV<6>N?+$=y-qCeF1+HnjQXxcw5Fi?;Bop&r5Ndx){K>JI`pQ z&ImQfMK75K?;ykl=7V{?&M%jw2f1B{9V`xn3HD=QM?K;hg+|pqMS}Bq*}UordG=k1(9+Y~P%Oba_&_JFV0m1W<{5joGMIbG z9bcAER{IbOM=kZscVS!s<9qj#d1V?%3&e|?x{Y*knB%3dOrx%0){GcS3-xJl>_`^M zx=~!Kn#vMEewAw8BUP^)a&C`889%#F@ZxkO9n~o}1k-wBigU#|5o8}=7 zsdja5XI`kbDi196D#MHAQM$i+Is3+J@=6$LaFuD8{=kUA5_cG9Aq1$iAxw#GiC@Q* zGzAz_CoqyoZAiH$ZfEU5*dE-qFYw4!HLmjHp#N1T7FFrz%^8vlfF-qy7UKRZn&f-S z<3|mZlMV7=3RXDJzEUxm`w-U(!=vi0iDO=@!GN#!Tp8w zH+N(DE>tenfI-UeG$xD=>W)@E^F_3{Xsk`fWR<93@%0c-aF81Ty%9`r6?V#J<(7EJt5I6WrGSt z9En_eU+(+23u}}p#?$3}ds6$3?gAdkzKh!30`q@*35T19zjs$XPnIox?a9F*xJ5b_ zg%+0n@}8Y3`NN0hvysS+C@y$@l@jG~nNYh><-yzTCY%w~P!KXWM3x2+`H_Y0Cv{_b zE&Gv`r0`^@o7eXTg)8K&%rUX7Jami537(Q?Lo_<$)Er8#;x)NjsMgv(W?*R1U2elm ztu2my<4l#RC~|VWZer>{_QcN^l?~%LiFD5Tfv`6mreOg~!JO6L&RDaVHUw30~rMY;drRr{~q$u*PZ)65z{vnp0U>Aj^_vKc1 z2KL=38S?;ZKXbot!!l1-C{y6(MeNgTZ_j8}^46kbDJel1k-R8n*;5PmJ(w)d>m%?9 z?_r7)`?*(b|5h5#-j^Dlf<@Tb{^VI65A8O(PQnK(U(C0xdMf7V5Hft&S8li<&7mgAqa7lZ@TtR}(xk3hV{W6h)hjsI=qwe?81g{2KB{mU+gG}1okti~4Earas zGO*PYk#6)dXv85s#=x^zWOgY4Es*^-K@j4hst%nqU6v#vwWW~n9V^F6g>t2fEx{|7 zC1O7928=P=QPv9S^Ic%4Y^EQlfF-)37V7;$VH;jqgmbYqQp#T+-YGp;AMg`*>efTM zdda4PtK8BVQlKr7_fvJbovw`Xo(gFu2)a>MkA}RJcL}$q23crGFXVlPh(!Vg_q!*e z*T7YcE9JVYR<3i8cW;2nURH!MoXQAyQvGT`DG4kSXb6N~8o=Mf=VR9h*{IopqCS>o zBoQX=uxm4zUG&X*r-}@IvF^n^r~JRqG>n$AfuaGg?|o%1j0L(@3kfNXr7v$DjVWS3 z_`Yc3Be&|iYF*&lPf5E-SH>C0jkr4EpaJN5kWV9*3S8lsq=G?GQo8m{tb7sAHM@j- z28C1fF0iTWjGsO>Apy!s?{`o}r}7YH#(8Zs_;>zQlo+&r@scPoWD)HkpsE z7mjQ{R;5_plhAj$Y|{sytC(IOUT3NH2W;wa2r<+C>ZU&H2+is4^7Ks&{)sKY(qq5u z&!dg#M}k0+sRmM5df=Wk=R#{wN;vFXO1#y}$u(~au?n0{lVtsd#zURnSx`7rseIa0 zc=A)h$;&A+L#fxwxvn}Fgd^hcxadFs-T8Lcr?yIFPV3Rj^JG6}q74O_xJnWQX@099 z_qbqWDIh#-RWidUU*R3$Vp|e-kq~8Q%oF=VVDpBx!?Zp8lUU?_nn4f2yq7JzDvGnS zjf_Vo-xH;SnoA>U1O62??cvHt&v60D%2ZrfRe zJmwtRRqd4?fJy;z`q&FwG2dlDC|1uw<5;FK8_a4bo{{R|g)F0ZTY3ff#e!pqtrO}D z@3fh5%4^=ipqP>$AY!w^n;tZ!Rrn>ysaj4{$}6}{|E|{=_#KqeBi*AmUs$j(iRpWoW5NUTUc2)RP?{_HL;~pD6$V+a_N3t!r24!^M$s$QH zWWn=NUeh@cQrX@MP1?J2LDT>=c{$%z-cRY+s}jPqxDk3-zl`95tYJkib)UTBj%^9C zx|$s#&{QzP@-{x7HjqH>qC}|WLiOb}U2MVl{f*{1(Dh=R-Ko6UnB93pYyPK8<|KjD zzMIfo*m?ZnM4LEkPc)u7z~HwsXn(9mP5`8BU>Cv$Oqm1F=dL@8);&WIIW=ly4NrXT ziH%ffG%{cl_v%iDJXcHzd}>M+owqdrEx^crCL|tB0O|sf-LsPhXECw$hhC=3CU`d6 z1K03*5q@W@FM}ND;#$95`}okQA0MEsy+P6O7i?U0G$7ZeQna%qQ#%O2rH{?Cp!teN z%7!ONYuVH%Rb8Y3&(#lf#O}g(}<)+g*$0^cs#bAPhfF6%Gky@-0 z-9KM3>5V`( z)C@Y)En&T9qHEAFd7bs}C3L;h>0Id_D7wozOPRSSkF)vCcNnF$ud2#s%}w*_WUsBW zMwX)+a2+eCM_x+*D%;f8VM$A#h2-RFv9or7)fv?i3vT{M-V3p@bLK%~u%r;Yuh3&o z4n-~j04ncI@pL&YVAAA%CN;<);oBghCUsB_x=GmX2w9r^lbeuq0+T9}byirjv~VwA z@nP!|8j}>0O4r(tg~uYpbLESv$St-)o|U2|mZT;qz8OY5)+$`*h3L=;TgHoH*Hl+{ zx>bCRfyPg!o|{?XgF-M2TpJ9(!J5wHEYEe0>>e z2(qDV(0d}r;`2?#zH zakjlA!SyE^>rO%lQ%(Xg-UEAOJly&>V$t|;%(90^R%~8O_NKD4_so55O5SL+ z8^B|GK%FxGVLb{8ZtHuA*_huS3}JM@o6TU-qg(Mb>0qAM0t zsWs~GwR!GgIDC4GvYiYG=PvORi$-SboK`AdjGJ>%x#(@VM>48Y*mhO;J$25ppNjit zc|J{S7J_K3hlWvPe`pt#;WHX^012#P;+HUz2EQeuP!=R#ehsqY#sJ?N@P|m>JC|Yv zX}3uQwmk}38SMoWiG9qIj1Mj<#C)DzWGq_9<>;!`<7aS#b7swYE*%GBy=CFe|4e@~ zu*aLn>;v6XE-?E)70bvUjhv&vkJI?^3nXlx$T_u>Kk`yWU#f9rZ$x-Z4f zy@)nx_jH*=rH19EV%ZZP(OaQ+48Rg#MpX0=!$hRw_Z0lL(wy!^;7Au?urEgi#GMy28RG?dAPmmo!L*gBtL&Y?Jg7;4p|){pxtMh) z@GoK(%k91FTBv^MxxMHzPpp8Upo|R$Bkdd(#}Y@@D`)aZFc4jaCtEQ+tHe(ag^jMF z`eo8=LOPs|6bGIyvUydia&lxxbYKT$wnr&bXY{i8h*93QZP&Pj+HTQk;-*;?XZx3< zHi)2o@k+@XUQ|{85${=3Ph2p(3eir`&om6sa{}o$cbQ|(%08DJB12CpeFZTz+}-qT zISMMnj&^Zt2fJHLj>89k)GKFAvkOc`sas_gek9CTGqy-~F=gr^s97|a*C46D0^Ip9 zLm|;`<8&Twov@PjCznXhnzGJ>sOLx;Gv(aqqB7QhYnko~nON-=ShLDr0(3oE!1Fb| zRT7Tq!^6a%)KEBkB`@#cDL|~8)(rfEa%4=^x;MV`*3;9L1Mw}ozdbxb+8LyL(2-(x zW0$rcZJ*}2u~-owX7+tyf$0VKJ%a-QwWXP_jfGq*+QO7C z#X>q)!(BxcNcaiKISooE7XQ;a=6nRgaOTzSojMv~D`Wn6(DAIC_UA{tYpD{tc-w;D z)CTHK^Caa!2@k%87i=9M2mv_~q$zgw^hi9d?1mh;V{zCxlvDh%OOL*2k%RzpvJ7_A zyZRi+q`Rn(jp{?+ELKx}an}F&nT)9W^Q1oB?N5x&t3Ki738+OB8>txwKq<-vT$=UG z8g4kG3(8oWS;Iv-KKFOx`TUIfU5$IrLvBO;|9Ff86kps2(xUw@qo7;l?o>YLd>EV9 zlTM2@7-H%J|E9A--=lp=eaELIOpE=d>v}9^% zKJxA6fUILa%)|pT^p%8VgmYWJ)U*QEAc2v|CG>gCzc`mn;tvhPM6K*Ozdg!RyGni7 zl<|7>nu-pD=9-2c`G}fNr3{!4c=#w^pq`a#-NIJDv}<}SZ#|2!vO8(oC>EH~Fs&T_ z2`E95loE_q|LL`>bNDvZg)F$Vo#NNJAeR4VRF6Y0zd+W`lK%FHW;-ZMP33PLuw||4 zFE(Fut#=-b)nCwQfW3fQQPAj5aY_+2Doy!=tmi|Qx>$ruA-&>U0GWSK4NZpTWGZTL z>xVJliXHx!-b2^AOO|0I*B_O9;(kyM!r9Me#sukdb0)i=yv4A$K7oSvIU`{0x1*J} zps>T*=PDe-!4fh0#LOwjb_e@z`Hk&$a;N3@TGP{iHFxo%Uxb&)d7G6f=WuJt10k(M~(h2_4TJ`yjAtz#|;?qOPQ9^)zRhBWwn5q z(5PgD5}95*z@&B-dssQdC}Tuy=^XZP>jO6Eyedun`H8PvyD{mF)eL8fWVL9+dFOnu zN!^^Ah+k>>W&dx?3my4AgmejY?-|r|n7DtL+p%Q- z0~FG`N&d9~4)@j?iV7--_;{?hc&xO*+(^QgSrfG{gyQYT`*1;TRVK4- zbMNzQwxB2zVqr!q>tiKHxRX(X>wQ>-+-%&;fb~)hO98XKajDV*#b%3P6OKainj@KQy!JQoq^&~vUVfH|6 zrf}m?DSJgXcjuG7Yup42!dn;4{x#a`yzf7=OeP{)0^a}?2)mZF8g9uBbTFZNT=K|} zy)z5n_m(aQja~4Gnw!G>gmQfTph&Gv2(<6F#J@>IoIy#DNVrLgV-6y8XYOb#H#F!y z9E>(QEp2lh?ivH@hTHw0YR3kkotr)}j_cldcfcS||`c3oa-8hPrg-Px$of1BCM&1Q1R9PQRGtofO49G!d+G@xKcW!vip z*suJ7`kFJ?^~(1%J|PjD!=B{3O&)GZQJP37-)TNtf<$4wgu}f9>5VxZnu36%(>}za z8%KODXPYyL$UF~Zex zz$m|%e}beWi6>A;*P9gaLCWsIhh-zB4y^)9xGc;CP(K6HPIOQ}411KFeF-xcC7#(f zvA`5>QvuMk5A|sqF(qj89m^1XfS1HSbBN>l(Jf4KUO8R|ZE4*IGTVM=dXiQa4F1io5k=5`2JClpNWAAtW{T`3IPcz}5Op9e0k=1-dV z_d$vBc#yg^oIRgFQs}l*Sb}0r0F}bgJg?-il!rjECpAYcQeB4CyMPIpphh8vs?gje zcnqpYeE4skapK_!$a(Go&AFfwMOFu+HkLaK#f9l&_FT`kFV4Yf8l53#^Tnve^OHE4 z-hyFWKEXrK%C-}U%FF0NvwG4YWtlTbR?`W=KO7m`rCEt)L9$6as|aze?^~g^xs$Ng zJHzP;mkFSb{&5y!$(D8Tf0c_jH*$CkcdU~PS_ETUjs;w&d*~}{9=mv$u^mKr9-bxMYzEOvyoz!7kR?^_l_rCf6UsLZ z2lTwc*~eEAvSTk&kHP8eEZ8{m>XZ!UOW+7OjYM(6=93{}1iO<0l)JhoyNI39M`&27DqrGRJ1}3!)n6Y7*RXMH+y#_PSrH_ zQCUb>`p+7Q_bKntXO9aFEo5;=IUH)3Z>ZVVaA>MChTFZl?pX(1jr-WZp}pn-N$ohqa3PtucQUh;W2TN z!lA>uwgO46qC6Pkg}N!Tt7l z&c<0c7ql3i%|#7CU2K-4)!$MKhkH}5C^BIIrXx=jiC_=b#Keu)!pVioi`SqNHYHeE z6>8j+BOV!SF92&0d`xKlmx;dcyes|K{TQq+(fk0J?`isn7oyOhDY8>DeG)?#%~%Nq zi!yA_vBG!u=tFSc!jl_YLMr~65d!w?%0qCB6AoVMQ@WvZGPDvZx=C->EgR1Wx8hnDVQR4n$ zDTXesJ!`oAi>bN})i09Gm#9q|RKY~(LA1IOkg3U}(cbRVxLPEp2oVz*rgYLy%O8xx zOfh>tOVWZt%TVL1ov*To?;H7H5)al|9nSy^8_v?tsZ|x7w_%elVv_4SeQr5U5U%Rf z1P>LWW%zerP{tTNPO$7g>BVwVAMWVXc;N6C4MP9g2NQX$n|_q&{fE?beR<`C1S7O0 z#prpJhnUxnu9ETN=YRI2%I+y16IJjy7*gz@(ZK8DU!`q4C*_BG+!r`l#;}niNQ8kk z1P|Zg##kR~Yd?nN3hpDx!i&b5I(?=JHB3sUUIf}tDhDqxaY~HK?-v$gok9Y71;a|90OX5MkU)_x{T%?MkS8!q`pk z6T9v(n^&iLjD*X`E1F<+MxvCe4?r~lA--m_6(g;oYkZbsy+F--BPIV2? z`qLZ*8`>`PA60VH`JUF72E;ny03A-m^l)_8ol&27(~(V?ed6w2SozL76Za5A1c8j5 zhP~i!?xOUF4|w&gU%d${H}uIKeznhSN{JYDDtNtjqz18?E#Zc_?S9^Aj{G;7tLU?b zbE>rmZze4}R`zogbf?k%jyLHIok3F%Q;`79SLJnMPORmOC!2cjX)zm&4t5`Lr5o+X zR$*3f^Fhb2^)u1q^tFocT|Sfm=JbKKP{<(=Db#ZO=vOnEN(y%{A8CR_7uV_CNK>>bNSGMl8EU%gjuu_U1W}mi%)z+0tIzP4gxEH62b=c86Nzjf%%ySebD`3P1I!> z!M1H5H@LCnHsso2gxaZn(VD;y45YZRtsnF&H%=-R19tUm%<+1hk{b#unJ5Yxibip3dlY+oK0Q0pP zc6q`{O#-5sl;^GKp#Mh}!p|&a?<@50ACJz~2v-js3yc9OnKcc78*L~ zq{fRK*KVtE21Nr8(eR1PHLT+h?V062mKgi`*Y(Nk&^tijPTMV_Uih;Q9CAv4VR;OJ zbb?O@MPf#6Q_vnCxZ>~cRXZhtt$zuieg83|mWyvF<#Tm>&oT)&iN+wOD_K7#r&4M@ z%K&V3qO={}s=3fi$33NSNV92249X4PBF0|5;M1w<- zTjPXZE8X3qwPqr0*JSZ8RRbQYUUo6ozjiQ7(t3{*HEkrfD?qE5jLyM*6yX4(&mAzG>49^li@Y2Kl8$nGr4? z-N}~Dql02i@r_CozYgcJ1<=`-KT|W1&mJ|7N}2SDXySHWM9t$OjJ-0TPd|0n04y<# zif6I?Ic)$X9GZ#DC?0A`4$D`>+qI{(0z8=}R*{^F?ZcaRD1~S3`Zf2Pb3~lEw%J1R zZQT^d6%?UvIL|Ds4l+JEY6V+tL0ahGAUT!EQuEhcMxq?;A{SlASnL?Bh!9C<&`$>j6W+lz`KuDEE2B_R$zW`7RookS)@C3A09Fs8>Q==6;Bx* zM{<3sgOsi-Y29yOE=TjoqW4H``mC9Y9B85kimorWa0ntD&26}SbyV4 ze`sNT3Z2Xqe(~UFXm*NXDBw!%LaSDv#IT! zp%V7$IPxbBLjYijg?t@I1}81;t5ORyaeA%>X!3z3^Q$G`u1nt4MciX@D%x+Fnf{ST zT7$mBrQ903FO#Q=mZ;@gvR+gforzX<-ox1l0noBSgPa}GKgEoT`Mrf0fCdRF9-Y8-N^P*Cw7 zD)TnCceGXTWhk#Y3&~*1p0mo1C&)<{tLvF-iTuN02}3jMtL&In4uOEfv2`)&Xvo(Co zw+Azy4$U0Hk0Ph??*=5Uy)uK=)l`$zsd-BuBljadoM%&!!}WbN^ZsxOPkxOrYR@NF zhk}F1M)#X70q5k7Q9xnBAYhzxQmvWB=)@+A^Pv$0Zlijya#1ZYxD7dxNi0$i#KFxq zdfIFnc;a{SBF3`f=b<}lO^pB@4qy#^Q6|9ECAuW}YJ*vz!4M&RZ_3vm4@lzE7Hr^B zJkBiRf^o(m2MTv}gFka=BQBp{-yLS}WDzd{N!dk1!1je1M0)1hoM$0F1m1$c1)yLz zBN!NM7^K<>ZrwkH7()M|B&A?vY86hHY4%2!@+L4d|Gkxy%RF1w7CAp<;>C3+l;tVC zq6W zIB=VohJxJ7@0pc>NT+?gsg+lSm7N~3x_yiyIKGrM{dr#`Uvnp*aCuhLU$z zBR}Rau$7#r{7K0R+np#;H-oJ-Hkp5vV{dow0~kvSZ@*3b%Fd~^sLI0;)R&AFJT(FHqjq-2h}!mj(d zZ`LQK=#8padVLck#S=or&)I&0%2CL^vBe+rAYYyQ$O4EuhU?u>5!!X~=Er5Fw7B`F z?AxVov>>oMWeH=*PA3}NQP-HFGq3~?N)Yt$%RsUR{Iy{g*kpJN{BX_;!Lr5{KNvk} zb-}UT4@$-4K*mQkuWWJG;nngSKP)3k<+w;9K&NO80heIA(Y=JvN+^USR z;m_;{OEBPQ#6AX1-WpT{8l5nR4s)wx4Zp?~(3sNUEg`5CACwd;BgygOE113{SL7#0 zQL?1%OhXj$E#Dmn6K%`h?Fv0(pA;Csk9^2Zi324G&IcKWi)WL@RM=IM(;}7HTXk-w z8(--Rt@WO@=$Y-L5s5MqiOG?rQWiPYg7m_OROV0MDgi*C8vg8ZZ#tGL%c_`i%}=P! zZ6Zt$@B}Y8dZrh(j^cG(YK4n?uJ%Pex4XcaW$YDUn#yL)!=uPK*M%W~2BJ2OVa8y1 zy~;fg4RRAFnhnqAN;^1%2G1_%>d*sxyDgbdN6JP_IUEPGj>*H#SwVhn(t?VmvfR`t zj|RVv7)m<@22De6*+#M{x7DEuxXYv-T{wi)ihz=e(SaU1RY)@bad3!>J&~^2O5V@w zx8|^$-pP2$$!k~ZV1sVx_HA;;`J?7_7^#d!syWAbWPwjP`P8+*wZeEH`*hvONtW7r z^-bLyX}IR>f#toh!qB46jIbw2V_f2{{}c@A1zFzy>@p)u$nWc5J++;J6@B1_+-SH2 z4aK9Px`=emAf{CF98!!a!tF?p@c-YJ11(y&e~_s;G}`2FS<;*&L`|5@DN2g&uqblU z2-qHzsl;4CJtYd4ByfmOaTH^dekUKYX4jkcHPN|C!Zo^;LFzbx#Q!K@hvkXrKH#jT zXn8Y%G3&BY^=|xIFLFZ6QPdzXaQcJbAHPe=ae(VXw>DOAnUYdXRreh6MF zeHVp(-{h<;Ag&EXSOk#&sU|Ss=$pFW z*$S^JUw(8I^00!6siX)0;xpA;Uq9ebS)AU+4n8ZI0z2$Uzv7mrX;D0+EsMp>YB?(y zvfu%5)}p>17Rn)&oE?0aF&)cuolly-L>#s(3}g-VgvGdiPS%k|P;nQh8w&yExXGy+ z+@6vk*9DI#5BTVBz>8bKQJzzW#eAQev}GAFcK5L8b8s{%U8);jJo_x4)KY`(t$GHADUiyx zEnQ{Ka3QhU&hBx5;o>88ogI-a0>qudGUWE%wpP=rZaY=HxRyT#yvOWGY6*pQ3vt+w zT%|x6bR994r529W_2qBS+g zhts4yFk%!Pd#~+dr%#f>#!|Eft^0B1v;oQj%}Pu1>WQrx0ox~0Q5^vRoLy!pT|O(a zb{nX0?r&KGaj;puq>%qXuySijf|CO36K2p_W!3yr34$<3k`F?&7P+1Zpr@YWB0ngLg+&q|NE5$)@wzEAEO_;+z$YL{@!A>e4&+eyJ} z=i%~r(gqY@rsSU8sF5bFDS!;V?Qr;31ZPhx>5H&<#CT!U$?@*ylS!qE^Zgx|T05b` z?urRvpB3TfX(-{^E_>GX;|GUrwD6fjG#vu-LckQ^E1M)Z)qB-vW5<}}7qcQ3pJk0{ zc;IrEJQe~5d5n3^AppS!*{gb6uy}Y<-TWN=duAvfQ8EA!(no&x?VqfM#@UKu2ag=yrN-Yw`-*-3RJBgZ8BtFbYR%OLh3nkAL?^B*Fn{^*rDOs3~nW19s zG=e48>98jK@-Rfm&jKk6lsP31{4FW!N{X2S0ZV`#>>tDytr+vcc$`otmViJMNQiH?18*olM+80HWn=@^jZ`lP zd(}w{?1a1VFrCRh5v_3D5LuNY8%uLoaCj2jgD_MHb^k7f_<#K*(m0t|O7!cNGJ+pK z{HSpHMTD_vzjA|dS(uDL9Ru&($``Ohgklfh!U4lzq5*Dg3!%B>Rw?Ivu?)AXzaYr*mUuCBulEw7(N z3KfEqwcbSZ&_Fx597%BSG)Le-Ro_t)wwG`v=_QE^`miDdldcVczmOfahKqjbVCJx# zdHZsr;7^Oh^1GEHxt#%CQ0?;w{fHfffcvE(U4(X5M(2@9Oi*UilVdKkj7JqY1m__} zOY)flWppPVgnM$OcN}mzro6}6q@<2nYg~?lL`4*bM3k*asc8!x>&dzgu5>MBhbFtU z;9x@!J_clV&%m?S86oW9PN>ad%v_fFog4~BPrFfZVM{$fruNSavAU!9?dW?Y@DGiF zFGIM;t)Fx>CSKSCIL2rXJxg6|OeE|(C@Z5RB{p!jD6zctX@S-Yzk<-k6uW9r&$NL!H5)p3AJ9P)E`xXUdW1*_RhEDR?-wturX(VC^O_+ZREup*j zmMz6XD4b8D=`H%|`1C_Q6I$ye@1QW^V9@}cei~eF=QN1Npb?mVzBH|r{a~XjU1h99c)@>XQ zn$!>>_s^HVsL(iDTj@{*Mp=H*w<*I02Dr3r;>^N>40Q;&LMua@8$6mltDyi?f z=h(q;SmlI=(HY9J_Roe!J;tz`O#UC|SCSxbIU0$+M@oethH_1I+%Z2);v5*ta3Tg& zTG~@Kh!FPMnbJXE2{|li_X^vSO*ldzQaEnM7U1wbiW@|yj%i%gXGbKJB@K$Qj#5ezo?G)nzT`^|r&K=o0-80IY*iBptW&FNsYKJ*_QzrR6%%5pnJR|1yt)DNwKM z4IL<}%d_L%E##dhjfG^JciJ-ghc=dFtU=~w9@qqzPfH=_I^2fGj$if$IpldB8t*Bg z=Dg4OimFw7Mly)03|I}sy+&tNdJ(_Iccf~M4A;+(vZ=uhHy<`zJynL&su>uaOSzGk z?Sj_vDDD>$TzR>yZFpy2A~8DXbl$u5|6NTy8Xzsn;IuAkZ&Fl)NU`$A^5?zzj-&A= zz&FLavf;&Wfpa=5K5&^iqx(uBZ#b=PH2w#lS+HqhLXY(+^J)9<8`g4t^==jR(iO#p z$@V|M#4v~h){=XP#^j9oJ_yVTd^u878Qmnf-le#4nmn*9(KDOcn;H)yw)BzU`$42? zimsu>EkP)kIADJ;f`>W=9cK>M0kI_OVs|knGP~em6NqY~779KZ{9BqhHa2}An>$F7 zymNGFKe{IDnP8i-WEDv-y?F?CE-nr`&*e5V>)zRYJ=hV=1hVZb_vWq&sKXX;2nrwh z7tWLV$B*%6(*av+x}vYQq+0^*h}!C~?!wUm{ZZc4=^9v>0!I)-)>o10UVyGwNu4Ko z%#-Hq>5@cc-jxn~Nf$@;1$f@}ds%95h(!H<;_!k7d|4?oqV#v%+l{LocKk>my@*2I z$V*dN7N8C*-SwV!%as%I7UHC?_MNaxgNii6dJyPHe|+Vv&e+sKZUwM|U}#sE4pjEfTZA0+F=8r)@b#*3>`;f!WD*F3lX5*Z)eT z*kBKI8b~g|IVN#Kxf5q0348mc|L3^KSdlMuA&a>NuOc+U)wzv1hhL`KlK&R?$Bwfd z4*N902Uam;j^=tC(cC0^i$zvn? z0#qBHC5l3Z-bt+=b_6$){j;0*&F*ohRq5iU+>nHR`td-n>>SzhhI_N7hW+`VlsrYE zxiywfhl7>Q&Tgq|?9)gS)>n94W|mc3WF)eV>z%{~Gm;^7ACGz}4wwGx8Sbd{mym&DCmh6^d*n zvpY`jU|vRLXSXI`{Y0fNR@l|lHL?xY+^@fjamNAro#A^&XONyDKaIJfDb7ec7;_gY z{-PjDu3J1VaptY_N~(N2_Wd@H{G2MZ2B$Rw=Zk?@D`FiXT6cxknqp#Pi=ci}Dx%v; zwCQX5GTuIeD&f(NOkKn^K9Pc-)7*5h(VmQ?@G{r^xv#j86ck_-K?>o>#HkY?PVm~c z&i$j)GG?I?`~BgoL}XpY=qXffh!F4Nk3-a`9vFgJbv-vaU8Tr?imYMYYC#sZqvlv~}|ioPiN+b9MUi zCdJW9S+n$T!~imnj34s33D5r9qey$L+_E^sYJ#?Hr$SdppCPrhmDR@`_Pq24M-C#H z%7n=M_^lZTc{A^1Q(vzT1@g*my;Phpv{Iu+cGBEmkN{J05(7mB+{_0kS` zpk8b)eXD_HDe~UlR%$Id)`rOHHtW{Iha7)p#jXl%PIfba!(U|{)SS|c&&&BxHpWHP z6ERorH{rb|?#WJY;186IYk9#;>wUmDiY8LX%&MVtgKZoM8#Xo#t_nAhFa4kN@yX$E*`o*qu+Ri z{TD=p5^)mh9-885ul4|=i@dLMC{X`xY&#AiI&D{6xUnQ*CZ?h+mB3W2JozvzDk9@L zc!$|^q!{`}CS+bD8N5?IqhoOqwh;-%hPztLf&vkN8Ke4mfP4-$c zvfVX#xxAeA_uhW+nN%s?$M1BRieF_1p*O~s*scviUP(eCFm`qZE+BZG6**82fUSXv zD*LTVE1CO8rL-7V5U^|-V{}bV>-7{^to!?K;8=LhCKw@ncr)Kp< zj~%H@ua#*gsD_Bt$Y7RM2}n|qd<481DgUz=1W@DSx<4eK4j0>X-*#FYd#L>p5wdDZ zwV<_=Y;i-(!HrX}Jg^e;0x7@G-Tjv#-p44%7FoP^9cbq2=f`!=up~?eTM>%TIPoT! zDm-%5qlz{WXPNN4*lkZ4Fu6@XeF{q&AK zk28{A3zXjYYn#}`*3Ldd>&@&m2PV!wpuO0Gxqme^yDHctGwJfzJlW?CEqJflM4y~wfStkaLEQ?(@IS0l zQeCY$Yy0^kb;_rCbXVur{X&bZ@}V`VjLPSs9SlGhEy9bGgH}pDlCNk=i?f+UU3;OMIP929LZ#`I$xSzI0&A7d za3FKpj&s`88s;cUU!p-QM-D4)(Lk~-q4FZ1(mxG%`J|eB9`WZboNaZsv=kD!a7^%9 zVYXaJf)Jh=`MoamEHp211fT;eKQT7KB`PO##?+p2ygGOH2r<}ew0rCkn8bPhZ$3s| zFofydQS3)j;QuHTPc5+QYGV#$nS#!(Z!!G;)p15*7OnD`WY+kbyR{*|A2t1xMRJ)Q zqDU^ht)z>^A+Yf~Aa=V1a?byyMW{uANC8@^8#RWSR_x16rlQwQ0Xn!#=d6j&^DqyX zR0Auu4EfktFGZiFe9P*`;KnYqK2ak&pFsrAuc+3rvsx{-GPf9a&i7A|9|7dLYVxuo zD@ivcfhZsPo5G)cF*#F&?{zbC;1c`uyjo}1WDq`hR(mez0R22mZJq)x$y~@yX!Sl zX)eyl(_LIp^cGnJ*l~1F*^zL&ip_O0@!NM{Yur|63i+-twq@?{k|3&ctL>k!Q?pi8 z36SG4kX0bS5-{w?IMi~DzNU{@i~acQ4v1IQx=){Tp%cVP>M*GCiD1zl}l{#5H7%}uzZZJ-HLRm#5OtcXs;x$>)VStUEX+haV(&@zQ zOnUWqGq!6uuk+~Sa5-#^xBgxz5d9?t(?();j~Qu_Ljmu|LfDS|Hmy#b8dkkt|8Ws@ zLqdQ*f+MlIG_272mXD#QDZWR9Y?ild*Ua7ej1}@RNwbX1bNRl;Gh!cRG(6Vo-?}qc z!_^3YZNmB;uH?fhK#f*17S`FIKW52aL-EMoNmLP)Q7S!QUQrH-ifB}x_%v?iBshS_)9;@yu#0W$*yMa%@f-qAnN;zrFMf{e zrblzX&kHiw9-Y6HDKYuJE_S~Y+Oo=HF{RWMr ztc5%I+3)(Dh}*oOKI|(ZyEv<&ejTx0_F)lWna18iu*RA!Wl@$y2=OVk12F@8<&zlm zfj#R3*hmeZcFlg5nO-lsm=%YczMB4p_3pIf;}>h69hw#gr32kFo#cFgi}A08Q!`e0 z|4+-;e*)G{CSL?Jy~|x*yGhRv4KM<~PhNdL+JPh?Ihf|IJBTVO#ahZlt+UeoU|5{h zT~?J`|7kFjxAm=)k0p@N+1+;}hA>kAn_oNA z{ka}u-ss*GX1~8;i7m0mf^@*d;>wDYp3HjyVwVAYB&lLlWGy9)g;}T8M^5-I0W7LD zA^+?#Yp{7(rV#feESwuP&{ezS7J=;ldvs0f{cE>HlFFfJdVcDK{5&@T;s0So5uex} z3GfDvg2$w~^&Vu-FL!<#?&U=IV1>{Nnf+EDtIPiDx!X?gpi@qC1R0_RIzW#9v%EUV zb13%u7TedCyw}m|>`D~%cNymf(VQd0%vyiq@qN~KvOFx5Bkkp z=89V~s0iOJ)ilL8-5OEe?R&`HtIrrU1qdsvCly^naqfJ*P7erT@@}6?8N_jjUfDT` ztrJ?EJ?NbHx1@6ABD9WnGbe5<*bG0C(S*rW$U%_pkkGkS(_%m}r7AqIlzXR7gN84f7>Lz{JgH~jn3@uM` ziE~A>b%0G7h6RD;c5}?Il4J?;k=k3LsDora3saR9q#-LkreV)7S)2i%D)po9-sQ=g z3R7j47xb~`N<68aCl5cM;Ss^AY0zsCVek8Qa&FnaBnU0`M{)Z_-w=veKIXjwn>-e7 zEBP2UG4wX(a^3AicZs*F5oA^&RC%NKObn z%gJ%v+xwxHZqeqR0EbV7A|Taa#eE=j%8Y9uPs`bsP^M@Ft7eX`G#Z4LV@nXjXxS!7`sPG1ouIhO>AawiiC71? z$CwDwpa{I(^pcRY@!L4jj|eYY?VywdC3aw6ritVJ^$6*x`JI}W=OY^qyV0?4<(rf{ zz|f9!Y_HthKTu-N`?Z?lX+PGtLF^wfB~XvjW?UVP!79)?B&C~>bi>S;*7e#5<&116 z{Ut1>dbdNtZT-e_VIId!EzWYfyiAWXrA+A?6<7zP8*b%Fm&)&p6?TTO_BNI;>snUJ2^_u20#>GFaf@YtoUs`%) zno##KyTlY5W$(>y=Z0{ zZGZp?aU=7JAA0G^D-5t9h}0(_a4VzW+3CMtloU)$HM6 zQGahvp8GMg9gNr{jj}X1c*(yucoE5=VUbP%b(}k3OJKZioiSAu`o?cTFqD*Xy}LuA z4+B{Oy^z1$!^pVQh-h){rdhB&c=<}+m`_F68@|rdkR6FZwsWWUPjOtfSPMzvYDO~< zmPo!Xez=6FHJ@V4#~2uyxf)%hxRpA!bPB4No&v0uIb8oj#?a_&J4*U585;PgVj(vk z6u$Ms*$ktP(e&&)Ozb_-Wnpr8<@v@6MzHg$F!Fr8-}Vc$;)?H);3MU9!|EyUSAI#8 zVO{CGqriqf^eM4!>F4H9kKyI(_7O^&5aB4>`)`W7G_i1T?QKjd--Q>Y%6`ozr=c9( z+4q8Im>L>#Ptf->_EXursKu(QgceX@yrXM@?Kv8z_37QPw|Q9T8+V7m>COn{Imav1 zsI%8=XJcAy4iJ&BgGDN^PTz9x9=cG`HP_LgLpt&tPB!Ny6$vQ z2-b~N!d)v*T9G}HFuk(KG}?!iyC;3q^i%vm{M7la2~D?N(A%9W90xU4w5JieJIbyJ{S64Uv$ zVNMBP`oOa(C1Wh{?(j`_$Ck7T%LK};Je)*KvVnP;cZ%@~9?0gboGw6GOABM=isKy@ z4OYcfeN6{n1DIFhtEn>R_fx@}Y?jm3hBwkVv#)u0yr=6K($kXYgo7SM_?Yz(!HC3b(4l&DKY$XqiyPi(fRj94t8xfEUC|cP!ZYc>j)h z%*2aY%}MvW)}X*WqBT z#0&l^O+`>ZgCn!xdR`62z;6nZeMcC8TOzVGj{-Nqd4ljN;8L5!e>?E)PC?TbZCXD4 zCuH3?S(kegCm%PfoFExNV)~wPzeK5i(5st?C+h4`PaP#Bl6VFd?ftE%{QQe3HU*`< zdu8*?zgh7NlCKuVdB%UsvJE|Mq3!yum# zuVqgu@)d1rF9sH}kzhOLm8rV@qq$0QEU;vA&nk(%&I2184Z24w>6mf8*LiKiOtIS+ zA7^M8Xcgy0hw@6DUXX<&zUQoO*j}sVGO7p0UFR_;6P>_ub+)Xoi(04Yr1l($G)o|K z=r%DeUgTMz9^O7cz#xG^k2z2sc$^1NTqc(r9yMkTf~HMhN$EGty*@PAfV_}R;JOt^j1D}Ow^>=F&)F}OfMN=G-#S#2Q&{Y>1Xd)IoXz2|AN z3mQDRXgTWt1MEZi3=9;afv=1hr0H=^ddw9u*aKKzh+U(=cwL*&l7Jh+knbVY0mqww0sg6b=&on`y1rhV~&NhZ&8SIARdKc8(X|@JjJ-r0oV^f zE~xP=>?Uz|MsYgG5UG%gV-9%$(u6-u$>M!FoCkva$hE{H>l(1@$1vq_C%T}SJ|deY%5)6q8t+c^@pF2&kgOY}F4CaR)R+z%1Xi}L zNP(FC6kX8&mCuc!dF^bu>mmnYPpJE^4QUa{e$L8wK7iaA>>kQxJoziL`&})Hn1e78OWeAdf7-4mp7k6`nP4$OUWm&^G)G28WU0vq@v;lyo`Z` zqt+NH&v1z9BcCf4y*iP~6!rDq2TSR4qQj};eq62#@@uWLJl1+l(gbX#3M7aGblBbX=-Sna9+F*Pe$w3)WK6FO`xDdx4XeKL zMTPL;J1k-DzOR%7wN@=LA<9PT{!RH4+xO4&MCZWiwW2?|M*rlR)3O!lIIWCr)y;|2 zxl>c;-Epf4q6cT-N_}L9j%an;(<*?Pa7mU7qSq+$gH0rjCK_5v!#-F$`n1=ndDcW} z)*3Kl+H8|U&mbOk#=7ihB&vOJ6O>1)%n2IuE_5dHlH9bKq;5#OYw#{AA+{h&*kPfA zM~yb>ztz#yK<;xSX_JoQTSsB~c@?C1=xo9IVroxy7-A9UMU?iuEk9(MeM5RC-=!Q* z-<&<)f#iS!UPFULL}G$7&q|;8ovHnJ!m(E!Bx>U;B@n2NU;%&)|7>vbtk1uU=$SF= z<_LVqqoPExg4XYFg<22R5$b&zeIYSb7IW5N>Na6%*LP0N2#Q&qcxJYJFxp&7+$5r` zl#T+C$&>i=>{uJ~%_Pgz(8Wohb|1tdDLeuGr!tBt)OQuxWQ;hGC}l-r^G1W{tH`s? zY67By(C|hFyci5@C5wRuveh}g239(0E3P1P6?G(B@Xy%TMf@`J$Z9!YMS7s|9;nZ_ zD0&WYIK9BM3t;tL4HPhr##H(e_<^fry}nmX%RC19;#dBtu!T;G_;v?0Arv)&#>zS9 zs^bOO0IB@O-uyJm#376Rgu8t#QVC7yA=D~+T#^=Bv2*+lC*y<1+XJKa2i!hdS)CM! zCYtEA>g;5G5p;n~XTo87#g_KwX*6EQqm>2rx0;D9(wYEoHj*-r5g9YBr?UwfBzY(> z2J~%LM4&FSvMkC@dDAJ1Ze-^S8iqQ9q5}u3}<1X26lvpYl>^tz>RChUQRg)A7Q;FW{$t&kpoX40-Al-2oh| z=NmD@D%;0f8zEeIdOy4$ zf+&ew2`IPh?n%i9MGKoq_u|adpLP_w0)fhIwI@Ts;uVRxMEB`e7RfzoB7T?vX%e=u z9MVTEajiG&yvXsX-l?H!mxU&1i)$yP_UAn^E~nN-O!|@R{H0uFP+fm|jL|)#&07mf zlbp{e_jl{MkjeUu8XUr#ijO-28c5K!(P4C>p|(I6P1G+%!Hxt5_=~c6E^crWYa?IZ z46R}*j6xq#-LtT8UnqUwyU#$%ji05X&{eBtZnv2&G5I z^?F`_SAOLm>HzPey_DYrgU-2A1hr;i5(6Exf7W&s6xl-<< zN)D@f^^QNM?%TJGfPH!UmB#S!;dR`o#;^pt0%J{^XUt8P;-H|BWuiQo%}O%Mfof6} z@c`v&QO(VZOQ+!PIk>~(%t-?J9QE?!ZG&#^A5*_4(U|T-nJvulo~CDum!l9dgq9fc z#5)0gzoeflscl~4Y`BhGgP6p^!bR+%#7;LpcCw2HyBLZO_dR`74eI@e@5|(b+<%p2 zG~ov^qqcXOzVFD^y8_PhEzdcQ`@9dsm|p^jEUDg&v8A5}TSK(5!95Cg z$mk%LXMCR--De=Y&i0;_+e%XaOWi!EA_0sF^qRC9Ulpga-sGLkQtR#v_rvZpQHR$% zIz=&P21heI*N#0J@xFwIXW3X~crL>Bnu4}!YFt}mK*fK<$ufo}?9ptKD&ZAF7k>3D3OcpF>Dt}Eh_fG}d0Vo)H$gB@&z z(y~ZYjJ@&NhW*kUL>kmpm}>Tawk4~1Az=OPu+=uGtd5%N7QPl841*Q*W4-UI>R&S z)_hcb^XR*?zrflou-G1#njE2`dWCNP%%&Bn>g)0JeQoQ&OE~~JQe{MZ1i&81fnnf& z#T!WzWAGA0Q!cH@ldsGoKUixyaH?tTm*`Pz*mTDm=5MS$)|Ey#82#UHh84n9)8{dK zL?M&5$3iT2@;<;2gH$O)f3H0wezt8-8G8U8sxU7*QF6|-Y6d3Pgq)G)G4@_w%G~{t zhpsSBO0#>%kn0>3GkO}6sW81@1}sg<>49rASO}_=+aYeXjp>KzAWvF`<*Vsk6vd~= zkhi8WT8rLa5P}M($?X$9bhmlOYP!ab*90BPFA55E*M~9&r2_y$cZ&WgJPLySu4^3^ z=?bk(N=#qJBXI$w8~itR*ofKXS|mPl^5?x;Y0A**e13#Q=6+cb8`vT@HyMy?QKxf} zFx1n9Ah)>#UXMqQrscA@J??8I7Y_~5_pC^#(MkV781J=_{^GJ1#2;Zr$03y*r508( z0L&cP(YHG;-aYvn$7`x3H#9KHTxeA;SUZcLo4r>xyWT$|UY18O?1a4_1`x~$wsnK` z$4Xj)ZK?ztOuxMJBxi|Otp$`dhI+IPBKQUjYv^}k7?MM->+lh5;w6}y5970nU^jHM zc_I-NF(thmFSVKOYLuxE8`E5@@QZih9ZBBPJKivJvV^Wcb^tonr<*Sg+P**Y+vDU$ z-(0w9%FAJzfzf~Y!V~9Y`_w)kk^Hli#194uDD`2}rt95$_}e!wRK$yiU=>LQt&vvR z%~ks}%+7b8@X#l@{}xVVoa-E{)fsq!^;O`8R}?kj*%~S}z+?#*!MR58&9)r>XACPe zT#?(T-D<=k|BD-6f3m988YA{x=cf#Z85Km?^%kLYfls|q+>TQbC~~X?--DCBxURK~ zOwNkx2fzFR|KLyJSQ`L*;6Kyg9z7B?bi?7cvlNSMMU$Hd6ITF#6>j6`&q=cG0RZ+$ zW?Y+cycwD1SLCr(RKlaUxzQf7$kqlEKh@Wu|L9}A#ep^ncR4zFqs^Z_hQMOF@k17$n^%w( zIRD-@HNmN~%tre1DAEO9xg82xVgFXDSt?SVd+1tBERudr5ItA=RuWNDES(U(k$R+5 z?lTBhtWoqVrsV;>(yW*jP06Io@Me6IttMlV8(L{pD%f*DR?p48HD#U@6C#^z05~u} zayh&K-?;YbH{yL`Enh`Lrv6-sa#8c&lg_XAH4r)dCePcN;6Zn%*Ww@nthS`?R#4uu z0tes*JomVg$X`|Rm7eplKv^_d-fB>RuYr|Hy6wC0o)dT;1pHQ=Urqxlm*GZ{71mmF z6&?A!v_I42YCxM3;8D zTVX%w*4#YCF<;F1f!ByzAw_hj4#37orP9htN_$Caft4s%xRPGqKExc>{7JS=iufsn zUBVFUR|5CEeV(ELeGDk>($;FhD2qTRBgr3hUgHsyirq;R_8j4;*4`@D+E{eO3vlAL z_>mBcuLnCv5r6_1tX<-w39TSVH!r~{FFKcuAgQx!){oH08)v`Fnegy$rPm)Md*U2( zCDMx?vJ?CJRD`?cNA#98+f=luMrD(mBJ%u>sMYe|Jl#D3pZh<(CX`|S^IDZVGeE&5)5Q`GY3UW$WX+-vFzXHNB#(Yk zuULj58M|Ch?U_9rlrms5t8q_DhV}v~iWs^b3v97xsviu_C~sEVx_EphSyW+f0zNOp zT0&G=+qDKVBr{H6uthUED;_b=H){s$6G@d}uKv-trapTWLp$!_Xjf@Glr?rIhm5g^ zeGhF*`_Y)hS+rYR;LD=rzP(L`64Z|c%CVrnv5Yr5<^$xy%^6?nyb(s{k4}OC_R|oY z$$n)^T;ISt|9DrI5AMfPtpFv}=X?AV*lB$(fPh@{kOUush#KmTO1;q8u+JitYCekJ z>FgOI;|wCD)$)P43tgPed!{NPO?%(DSrGCub&YTJMT0Y4@yBY4)aA(`$3TOA$Wui~!>Hke>OlWTo7vPpo z3nf}5M^zx9=+i%{-sw&(dB|FrBe14Wf^gn@DvsY~I;^X-I&{&An!6PxV=@{?q7$)+ z$PhUz7>$C|#wJ!+{v*&0G9>c51z1?nD`c-`O!dD$Z1sj9_+%~J z9#|VaVIm{XGVV8^i>-izI1l~wSeE2h8_;i+-^9EZzF4S(`K~Nu#haQ33!ODPY2V^C z(>2B?XVlS>5pp6ghk_v7tKz1ERQS?RwJk{K3#}VN!6Ge5WC(jiQS~10*)DV!QNIwPSHKkN zdDM`?Im{FOW9VDOPnQgX(4^bB3fm?&JW|t`%^Fa=Mh~OxM)8x#$xtA_?5yYIMQgbo z_XNPho6&@lFcl-Yz~Ih3U_tv?#Yh5mvZQh2E~&!Z)oZ>vNYHn_%49vLxOmkTre#hu z2LUcxz73wiLOkUv>_`qA2#xuh{726924mPM9-MY(Z2;=eC=q80kSco;Za+s0Pl%Y8 zG&07ba{%|ckfo(twpspjTA`d4q^W`hjN5hVe>MO!XnWoQ|NE-wOHeAJWNL+&cd!~c zCiq^Bjcn0i%t(qHLXje1S_n?00MpDmqS+0@7Ndu}*{q+h8CcA?3b z=y*}I$@k7d^vpd*1_15F-bLUD$w_>#87}_yzgU!>sJ7g(6E|A60Nau5Z~$XBqvLl3 zw9W>dN)VozJs|pD08CjrEG6c>3gCDPucBQW);k40R_c!@?nvnJ823Fcxdc0kBZ`n@ zPC^|Z*Zyzo$TTdkZqI|~3Xl`@ioV^uW^=ZQTFsseoQc8xSEyDy&?YN*1bqn6fRXrR zQ;trp=<2PjCa2vOBBuDfGr>3Revexr!DR{@HN*Jv!Y-;Xaf77*v!AB(;{=KSQNfmK zJ7ya@1UMQ{sZU=koi<9_0syK{5$wsg^nj@hLh+voHYG`wjmJXGp@qvxRdLFk)@Iqb z^C-wpdyVr+A=2)-Ongf)do^saL0cbox419K$SUegnX(Bbt$&z4jaG&F4gvCUfj7LP z&R#@vGVJK_C!*;oV)3 z8|jSzBde4`i0m!(76+tWu(sT4m=Cad%t%(`nkl#1Z7O9FS)H4`Bb9brU3mA;d0kU& zTu^5F*BM-N;$CHZ8%Y82i3`PH1)sWTFbPl{PPNly#YSl>pRU2b03V4oF|(P-YA*!F zfSB~aM_u#hd6l(qZm^s0@}3j?GO;Z*i8TL;bDS*ct_a1s@%-(diBD-kP9p~;fC3@# z(@sT{*xx_zxaVR_#6Hd;Z?%-ZH+OV8$^t*Z0AmBn)d#_rPrHCr>CF^ZWN>ao9$-sB zB;S!>Nfyv7-VjE-q1942EBbFpFX`zzuGEoJW*-TTHfb}Kv;W&YlZKewcx0U1+nc|T zbA6jdQyL#Erqdq>&rb(v_8nAxp>hjUBu_k`%8%Y>Jde`zaK10-(LFI&?wh^FV{zYF z4y&|^E5{NNXqFvd30>#34^dNuie#q*0s?mmUE}c(`LrKz2L5gknUk%X!K)kENjH)> zno1B${orzoh5cS1!CLg&Ei^2NyINMwxZ*=pPn@4Nd-&7`2EsAChbY?@j}(z z2Sy8b40b6NufuD!W0tBh7~eaylrE={9g+?RJPMtGD8mv|nb3nr;cH<~=p4`R zMNCKF)k^+O!C!=LvxhK_zuzcG=%>Tm)6i;R4no@i`d)-*q(2;yD2EC#Iymto^b_4S za&dr{_GIZPwzNq?jtpC(Hdug;UJl{Wbxom?p0rLzpCCG0dmY%!;^g7gS30?U>Zijk zoe#~Gt8sA(Vy}i~b*8YvP{@4y7H{@xC1B+m9W#14Em!(6{K@bgV%lx-fI&|BBJx+Y zFI2ngk--K0N;$DS=P~n)U?sDg!0!`~x$QOB0M*}r4HCGC&|A)NsV${AodeGN&m^4M z;qbMk*Y`YkIS7_HfBp?zlTN>@7I4e@YO?UdFvjizKwI-O0W&e$2cFQeKpP?bYOyh=# zhn(MB#d2tlNwG-CTRBqNdX1yFW%+nNgQ(a#pWU4Qf-uCn(V+=vQ&YUu!h|tl47ZZv z0nO!2;LQS8L21nqD+eKl(NckSNVk(9!aoQOzft8;0G;mPT^^qKVrR)@h+}5S$`ZL? zZrS`v0^jYDip5+5i3tqb#<2MES}e_JIlsgd5NIkrc8RH>T3jBIL+?AZ#L&I%`<#zM-e<`PFDfz8!Uu;MXu|DMWrA$kA8rQtVfNV{-uizm7xr9% zwfnXXIiUv0V1wuW>{ZI|BjIQI#wWSb)B8gd>O~6=2ju{R`l^yq};{-a zE))kG(Z;7I=7S&bSU4s59ULK0ftXtkX#|N`g>GZF2FBS zuOpk7FTFRLDu5k-utk0-PF4n?G9or70~`ob-VRcQk99?=2v#m^L}4%DYo=n4(j+VH zmm^3kd!&~raIMR3ISmV*2#l~IEf-vtY|OH*!i2C~6O6x;-{83Ttp zw{|q5j}Pvz-tU36(MK;C5a|6*q)~aKUb)>_{tmnIn)9!hU(Hmdpedy>Yf+v#Gf~aT z&;@@jM`GD^l%vMX*j(il@)AHQ?{cbhM^gvqJ$t^|D>XxWf94Ed{HIIeh}k_rt?eYm zU)VXAb0UYg#C^cgS+wLQb8i8T+f+;V>E>7m!d^Fd{&tX*nsJs(<}1Cv7g6cTlc186 zWm&ekV#XONCsCME%PGb;Sl5?6(yfMwTiK|7p(nOfBv0wz2JR+yDcB~zr-hUo(MHtw z|4h>{E%SO>xcQs@>@ki>PX%2V<1z2{Ngd@iAeAviQLyahiZ-c55<2Oa$ zu?bK2HlI+%AfRG|BeL1(IoZ2wG^(XMam&@Emd0FLs&i*VM!c7@6H$Vd45hpXKyi$g zm&==Dtm;{T@Vb$??@Wm!D0c~j)uW=bid=p`J+$MhZtY&BrY`GycRn!JKabhZ$LtLY z6?xapcJ)gz!+4@j2xS^*wIGHWeFG)wVVeA!%BUs@i3F0X9Q|ZKQs>tQ2gE0LH1Q#= z6&9a);~6n!v@cXN^GDF(s%lPCUPsNx+4R+^BJdodP1PIkx5H;j zrQY9`l+4y1QIk(RN)2D*S~gb(+>`ytfVY&gk*OYD!D*5&aJ8K^H5hM(9@Fv5Li-L?cI*nA(r(ImHS0K-6JAYWI|XQt84 zg;C4t;86C#pd4a=fUbyxrR!!xEEl_BOiF%1CVB;JiOiC`{WZ`K0{*BwF5QUOanU9F zGhkYF;pyS-D_8~|r7Z_jnR3DWL8rJvp-})%JV7`?XgR$PM&Cx%!M8nyWlY}cGmi`m zcjAV4I&{&#CWtE-*w!x9lx zuYoqTOr!@$_OFn4u&`ltLxuQInh02_Bhys#piwA?WV%ATMYytRoRZggu3%e)Ul?a+ zfcY}T>@>^l`JkQjfgrpbx<76zQ_R$Zk0Fe9D>bfo0L#2jIc4dsasZ!z)p=ykP;sCg zDEZ-#(-9i3;-@OJa5&zid=51g_$>arlsH(`zbHN(48CZNq9bUxeiP(3Zr*83dSWTJ zV|?D%*Mb(NI&r>=rJ^ABEm5^u6Ma7;U@VFFUyg#N;rZ_RcF2~$I-z0#VW=_aMfrz~ zp5pInseFI5F181&`+!Tlgd;IZ_zE7@0Ts~KK%3$8xHXCZ?h*pA6pJdUQ@6Cg4A~CH zyJ*);f^P-VV<9MS<=72`%gz1N>NR)Qh6|R@!mD-Z#9o?|2o+CGmv%67M;}9ggxZ!j z5(?}j>gJavppKda7$0z@hSZ}U;>tGm%q0_eS4yN^2@~dCRCxDGmbrx+wo-ChNi`>@Bc0rd@X>9I`tzhM4 zDCoX_&B5e#(ow!J?zlBaPRIXVV-Dv?8uvp|lJ9U4ZBo|czT#$a2QAg=28TJ3zWOTA zQV2I%vT}9?irQWrB8m5EFDk2;%44V!+-fSnv;5RB7*@sMmYZLh2KCuZ1`Qv7#>x)N zWs`N+CnNl(Zhu55+noZ1d?yt{B+jqcUUF23v>F}qN*E|kjF=Ax`Il|#+hoB=)2p>6 zTFE`LJ8XX*4+?I5X3NRMfsnPW%tDNwxG`$bokfU8cfH-OD&)J~>?{d8CXVq>+UZSo za8l?Mhre{!kd2WZw!KO!nTTZ%QB-JjmQP-+v*hX*R|*ymKHbDcFun2b*M&@Pj~}uN zx{qcQ;&CB@=M&{P;KwHx=I7lCoXi4!1;f7<{juSa6cc5{bzACJtf8Hlm~oP=o(h2) z&AjmVTg;D)_by2v(6f;}!%6VYgJ{TpJAkh08-YhE>sUGBm*#)un{_fR_ucMT!uGW| zR@%d!V9kIqAde1hn8zE%IQ}8$ggB1RX4MvW?HIP*1f`iDWz}uU@_GRvb=NUeK6j2x z8wW@?H;eiMtd3|)iW)5xkDem`X>ut~wI1w^rp`K<(hIBj7Dbqq;AugF2nn>?(<+c- z)bNz~*DxKRhw%TvwLe+Os}XAsNDQvxhAHy+NZtNpO`J)UjNsw^IS4Y4Te`|Q;{45W z4Ss)t6~rtJyf>jF_a%RFFTr?qZXIXEs{rYWg@FxjGWYdwZJp7$UQo&)mB-l;kvk%keZz z10WJavefVfHt`un7eow?#Utx9M}02~C#tT`RlTCoZ*+0m&R5E0LrKo!pd9<~#ZONK zp51Lh3iHRPDG4Q3{@oWT;U4j)glQt=_sld9*jpYPk(vu@>Cv~U-{zzEq;>8bTa0@B2UG&i|>NWE#FA2(4G0ZeBqJYX>6Y-+1-<%k7R zht9d}z)fc${+qBW1e>im*l4>N21+goYTdNVpC~79tF*$$bb>Q?!9!&M+58U5XR-9O zAhENQCYhe{Z`l4mNXaYvKn{E3G90{H4hs`iL&ex{EQP-`60=xNBHA=qO)X-@oGd;}@>P+|=iIzTgF z3JZjJI5*_e@whp+e2GYy(`fU3zBsO~)K_4WJs(jQV0wEpFIBLMX}BFnnmHJK?*2r= zhM*YRKEil-y>2y9Dm+PrY3!JbkP=GPx-pHJKZxB8UM}a*f5;_C?H%gG$Ixw7F9fZ&b+~ zTM^YU%(l;d1Zk!sx4nBNZ0YLV_r!(oJg`cO+HH9>gNlEuV%j=19*lmS3l-4#X@=#b zt9wy)ZwP#_XOyD#JX}Qg_NNzj&QY4QusP5B0CWM50u3yz;jR=W7r9Kg!m722T4fbm zc0fKWrhM#=Y+z<-EVbUdWWMX|1h#3r#eJzJ2{q*3RbvF{I4XnsdM7_b1m=)D$>XxZ zC6?_@uu7I?p*7ZTpc~!4WjNNMj=}4ucM8Qb-s0qT{U?-hBS^%VQu)l(lS@gUloCoF>2)vP zSkYITG=r6Fnd_-C9KUaiHNWlWyKgvBy%m+8QDj`H#y21K``NAIf)L(P1k*$hf_7Lm z?Gt#N`H{W;Jtp$R*l)pnQpgzo2|VJju|3InyP&AA+uwCbC)Xr#?|JmY=W>%#sTSk0 zQ_vKs4Cczc(ZPded41{XS%G2x`3ZM1Bak$6xMn|y5|}FNuPKYl1i^wdlsW8|41X}Z z1tiFUhjHZ<4YH);ZVYb;a*k#@`-`~B1$h4J7wX@J|GbPMZa972S}HBI1nm|4!8Yd6D;7PQ{aS=^*$L@2P994a#HnUOdsAnVS9m)y?)35X}H zaT_YR=)&k#k9ojQzAhANDr!@%2d+UzMT42wH8W>t$=l{A+}x9?vdXdXRaNV-{q|E* z@uoz-j6e+R;FNwPiwM$kC(lRp`58bot9%VV@*CY``44_ENVo=%9JZvNt=64|r+99i zk_fdACyT$ORm&ANQ+islu zjeBV=1uhJQ)$i&q*muF`-&G%XSgc(W!)4WTfdps}B8xd3)FpJ9zL@;J zOVkgTz?S~xQ%&a+?lvr&uJgcnI6$7hp@0#4tM+FMtXx$RTeCF5`AgEL$9+uGk}!IB zKkDBf&c3c1*>4tEC|0L&ELwRiY76kz_A6O^QxUyVt|YJCsWu@s@J-u(>y^v9Oc0nx z5`Om?<0-pKnk0TM9Q;DjqK^1ZO2QGWcd(sz7|HcRuUJ3dXkwrD2^=+21`qO77)IopB~vI;9;8`^&QLD5a1$-un1q z8}@U8aVV7{tncMBe2;~6BGl?!YiM3<;5J>J-KEn%EM zJK??(TmRG!yp$!Z)Cz)p%a|DcSS`j;GHu)#_#dF~9MC-=$7nJ?ETg6&ZS`-87JA(r zeQA!EC#k%nQ`hu-9= z3SccP>r{ZqT;ItW?3LH#kks2gd84w{6bs80_{Jw_iP{0{k`8uZllKA$ZNYlxklR&B zo}cD)tG9bG?K6$;TCzfVZAu|(g`x6qh#z;XRQ6^;d}4Br)B;pgttU2jDa*)8p}RTH zti<%85k9XSUGR?cEYW-|MFp6M<8@b)7QU}nzC_lI57tk+N~Y%d3;K;A17A^~G+X98 zElhVX(GY7n1eQyw5#QhfK(G4OOGc%&ZV={xkSeoS)o4R?xCA4g-d2Oz>-4<)Xa#N` zg%rgLQ7W~n+k_OX-fpR(UV=^_pvUed0?BMG*ZmuF%Kf(e*Y{GJrV8^;4G2{bqU@|O z3}?=r+MV;j6Pmh$g6qoV99^eEjg@Tr|Iv9oVI+>woNC=J*hhh1Z7c3L8K zdg)@z!;bHY*s;2kX*n15HeqhPS^7V@EV~$*9EV2fM|DCjf1(i(^*J93x&1m6>3)fU z=W}Tuk9gkgJ?!X0k{*udV8!V0h|{cm4|pAU<;f7;{6{H$H1f*A z)nV<22Z0u!^%Q@rn*ad>IOL+-XO&9#twov19mpNiuV4h&0)jg4*mPG;^d{xyCZ8?n z4fG8dBNm=1T)tjw9rO(#<7No5`o>8?!FO2 zStOs9fc`}J`CxtPcr;Tg=FFlGv9e*Auc!&oic5`|hCtrgcwe)cq;7CR9Ae%&6j)&r zg@H0SfLo;`&1>m0dxzTspS4jaaE=Xi{y4+o{Ph&&1(5O4Qzc4aD2b=nnw(EMg)-$= zlQfzc+-o-8N zW498pZSsBu9g5H*Qb+LN9sqDPC%zr|8JrI(@2OKWT*!Gf&r`iZv13z&Xq>O=4$6b$QU~#-Ma6Vrz z^{|W@1uAS?+||ykJDUfoErW8B4W#E0TwnXh)E&cf5xFmwx5}z6-FQXpcfmXO=s@sw zYWTi_m=6PvAcVZ?25BJ*lllkpnFTLQM%CD@B4RRaty+W816ID5cx>DUBTqtlxU^#3 zm93`t$plC=fPT7(B)a0H5CT&)4>@Xbm<4FZduDJo z>2&8utb7aCZK06o`f%YM5=!McS!YF?uBcGz3B2^>*$gbR=MkLO|IGmX1|VLtz_R=oelX*hMix(^|To$yVSyv1%x?4lz0Y$Mar z!6X21?~I3}x#PUySyJ4TCm@!Qsmw5U{8*aFz~W@PpC`gA-K81JbmW(mq@q*Rc=^`B zR>TTCsvYn)S4QM%o{B%24TM0z0-4w}TC$J$v|_whQn4p$Iff19&$iM0=IIynYVm^( z#DzsQ-(-s9I^hl+pr@vaR z{j2BQUDG7=GBN}=S>JHLdtP3mgqU8k1so#&n`C|{MZJ9HTKYD&+LM1m$yHE!7Q3;C zZT|y7JRm&=EY^T?PaiL^j`CII&H%2>^ErZv|5#m3JOux$^pLI)=uu%NifTLf`D~Pa zcG+oFatw-Ki1u+fMxsIPgx^U}-xpSp0R7Du1_!^NBLAxAJ1s*1lBDXo12X1ep1deN z*~VpjF?z$2a7`Q3nGddUh{`hv+HdXH4CVJ0yQ7V8=NSJ)AeI#{BF1WrZQHtcSRrlvex z%lbEWpE3RP47t>By^?DQ1B%1xF()<0P)6M$LFCHJr=uxC4+fNU+Y^SRh(o#hNWmp* zPhE|4wM7Up3|h|`S30{~l_f-qY*9>d8z2USl<*j#(N-~62&m%MJ8QNoX6aMB(=eAR z0J~eyhxzX;s>6s;P3s*7y<8RMzy;e}>*J@cAA|PK%-x);qHp`F#LV(g%|dX7?-{4< zkampo;%?5Hs6OC zAo&~ZM-;TETVguJ#6s+21XLp~42%!P#w!Vc*Z+HSds%lnzje|4?Lrw*EghN^j~~&& zEG2~x0e35?QEw3Z0!VJKLo+rgmiQ4^C?Wuu-U3ur*tf%F*#SuWWT{BHtC26NTWQt2 z$Li7Bz&5*T14zSNY_&1~MDfh#6B^X%H5H#9ccuPe0lgs1=j0000000001--Q1? zypYX-<=?4ZAu>W*zxCJ+{;a1vgfjVvJj{c^djblrVNbGKNgr+zD3Hkn$BB& z_w-DHU0-rfuUUM^G*`YQ>~xZ0)$Lb%LJcVS_~BG9m&MU%scRhgb17I(IGA)awG-JH zd8kpw+SW9;o%lY9_pfEJ&o0!1@WY0{rcf)Q9dKnV@uzu40_+rVYgLMA7f&{EEVXv6 znyU+ZrU~|eH-s^^uv*#z3P+@Dt=rJY=ul2qH{&oe`wyV6MceX$Ac!=Z?*6m2NFNjt zw5g*=-f2ise1WT6i#UNO8F#m7Yk6A+9DE1t7CYjp!>qj5NqyvATKTe$H34b=uW)w zSb{<7+g$6Dzby%KXQx*!7sf(BKF@XBEt>Yn;b^}&N^?iC-J!e%j1 zoM-*9Yk1fg70DC&618EA=@(;+bFa^+AKN4KI}Ko717M9F6+4mpzbw29A`UV%atqPd z5seZj{S?k39LSTl6MoQp^xl7PC-===#Z~KU^C&m=UMihCM>W)McvNTCGMq+O+xG}g zM4FyeXVNW)4Fk*UmLCX+wbIz|`9JI#QLXmRGIVy#W9Q)Lmy0HM^Gm?@<+oCmMj%cm zk3M|Q!je-Gx?HPRy4$5rAx(p=is`OlpG;pV2pyHR-4G%4UFqY6!aE3>u<^ELE5&QG z0T=TGhei?m&{lFm>~r|KB8@vy9ODYA>avxsOmEE@yFd{};lKI&--4L%%_oAJ@w4Xz zHYRjL(&9~q0#-JbP7#=}yF?OAT_=kkvzPN1mx2HpcxfvtokRdp_IkXqe@A}6gK(Es ze)#E?g@@XLyN3eoSy^>32o1FvmHJ5*MaJ;iBs?sxf+XgO*F<6w)veJMh)8b&BoV=8 zBZdq2-A)-x3JMi%_^0108>Zd{OgHGxWEW2hz<}2@F0&*uq|eBi61e~31dfIU@m(h> z@}>Qjt)f;_2n0E%yRZ6^(aHC|Tdq-}8!qqq@Zvs~^r!`&)8LT5@AH-%{d(ORC!ZUe zauik_$l~UoO$7By87?Mw2P#Vu>BWX4PBem?Dm*l&U;0-cADz5HPiB8EwCxxcm+98^ zKaTc~VX~#*3jRm|M2klQXGAq-@+kdTOW5lcZjx!RVeJBV1QCrAd^6M#-&$oX%B}gK$VRh2A|XvX`_=w z%U8~;B{7)9ujP2t_PimjOpfFfW@t*%YaL$%1a7*i_W_1JX0d8P7zzfl)35sRQDkdX zQ9ezO9XU8Ar31>4Ni(f_Pn0rgUOHvG19D?78xgMjv_0iH5vt8SuG$_l@SQkkB^*dN=aY!`pf1|>{WYyll z@C?fy0LB)b&$k_O4+q@cQ*SpHLDB>gmUNT7RBKmO*}7-fj|w?;Y@=hNZ}TB9n$Az< zQucvuaWL%|$^r@4im26Fl@@oD401a^in9Z3E(wd7&U6u+b_hk0p4uZ6NBIY5rJD4) zcKI`~wOW&7bHTQ0`T1Ktd*1}r^hvdE*EPrbYRL()_s(_Q78ps&L=Fs_xmG%u03|3p zp1g5QFTw*Bmu>O4YE|b1em9iv)RwUo1{&@Lne&#={n+b+ko7c|Qb zp7mKyd#5RtZB5dU8J_BVK$GfOMrI#QPuuizi->2aW3Z)5t|H!(B z=Cgv5=Xx4O#BRG(UoW`pPC~-~XkavFXgqKdkskqmIM2w0##li{lNG<)-b{Z^AFudn zETVV6g;x}>&?KNd(#blxAxek9syT}h7i3HCaptmONHSmYdkYdQ*wgOS7zW8ikKPcE zVA1xF*t7e|B;IaDLpX!vXZ&gEn!Qs>SClGPo5oZK-xuCz#;epIQUotV0hF`3*+kW) zekWF_g?&vBd-}gOD8oyfUJVpA#b1-oTnEfT3C2#SR z28rX0_#N_bX`CBW)gW*~s!rB0?+r}E1C;{?|91G6(`xt(-SrSkJ ziVYjS*}cp;dRE({a0}#EC9{JVM=l$h%tvA@;t=XnU8sPbG!@mP&MD(8R%b)9#-;{- zOKGnM5hlKF6$g;B{G+opK=Z0bDGa7kImt4j->1`_u;fN-*eSA4%|xl{^!9W)J;yK@ zKw~;yrZaIA^|&p_G46s6iDhj7sjUxCm;Y=oKLL-c=Nmw_ewd$)y$(jUdOl9v4J*ko z^AzpJ{YxxZDdx*&GA8a;u?xg<;5HjF*@T)tpaA>Q?}bl1H{6 zJcOG-^}eRQ?EljdnBBSnEux1A5(?$MJc;Fn4za6xig3|O%v*zeoK(%(TWw1WL*!g< zV%xV-r`o+9Xxv$ER`|sM`2JP-->03WpiX>;2QEs?t}HC*UJF4}SpcLnsXx@m!~VPh zsyoFtP<{DIX8D@ARYQAdHI*wzYf;xrR5vRSCBEe~St;3Q9|G#Ttbl<#k)mw7zruk; zT0b&qKo$KcIJ##1!?`Ko)$$JXW(IAAScLpA_4)N&w?0*` zf|?TN|MiP|B<$ceGMK*;>oV_W>0Y=Gue^+X)?=YA@SW-WM|mJkpzL1uN95m>_)S1s z#R#95HUd8L!+Ne9xOD7Ykw)|NkI=_xzW^a-l1Uo(zd! z`8El@;eYP8r^`?lw707t&j3And&l#8fB*v5wSfP(-bdh?488&Ep&Ol(jx;_Osga8V zaDYyo_4>$yKB!N+2Ng)S1~h;%Q#XDbdwVlS3vGn{Y3h!U4VrO<`T=KVM@_vyP{9~_ z6eoSA>s)9D$tN2I=;INVxbf~?-Ji{4MH)bSv4n;Uy!erHIqV(nakvBCRe&=7bGTT8 z$|s(C+XRU5fWQ06S0NuzFf+x!-TZ|~10bE`5!54aWaUE*m3N>HLHK-gNPUBuU-;Zw zhUk{UHTSZamYnR=*(%U0`u?|0$8&-?ocOh(*PFQj4n}GZPV7bV45JC+!E=OOAvJ?N zL!Os@jIf0coVnCP0sJUG967W+5{z=0^80~xAj=PhdH5y5x(1q3993y-*D z^u6H_;?)PSc~I5cAOr@6<2w=8sY0o~Uga+OrLt+d9@aZ)!;<5CGe z=Fw}%H5!($YL}W*j{3;tP`y|Fzh%3{0pmdc){p^aTIIN<1tYA54 z0zb!wiQ94n%!eF?tV%{V6tD)DpeQ2WhJpr)&oPB6ZoFUhK_nS%K;}wO(728m)aJ9cMzumc?Y&PhxgsUcq$}*EB^eP8UCI*ja zMS(;EOc~TLb|rF%*ZPq1B&Ytm9n#QJ;0Dplu|L{TNXp;qmw^r)%jIEl_Rj4V!64-O zh)FiS#f(TIG_AF!Lp$iB*=yx<1iG#PxetYMBNn)A{#xwADVbF5{Bz;kN^FlWxg+g2ID^6mON%#|f^XfK6A*@4yuf`Wp z_(wVM!hsq0>{pe+v1gs3I7o(OxXY)QW(<((Vt@UF-eyd02GxFd=li_|+_>WyJ4=Fw zKGoRo59z2T6j?nFe3xX`0yI=<+-R-3^{D_hWq+s;vP$gIc%CT+2(B|wgjJHLGq-8>^S_h1Yheax3`{$!$G*UsG{w=7xi?>{r86;vQzMv zy=fx6Jt`KR97xBAzOx@R41LsW+vwPjin#caUz5SB=}MHZmJA;u-;?5#{iNQ*(gi@H zW~EA+7qgxbX~GjkYVW>Ui>X7YrF|@#wnf3Ba;ooB)2A+ikEhQA=8%EN)7`{%{v!;A zdBs+3BOK93&XTLzknc#98BIqskWq?XjS6^?wvsl+5>M*5OeWzE&dfO&k`JOX7T%mBVJzcA{jqWy)MSnXG~;+6f3vvRkjbPN7pU%CzQ0V0DrdsI{xGI!zHM1RLm z0bxGODu>~H)sPrtu~_~ZwCPB*xPXtML>&?8cN3AxDjd=i9(s{@Q*zWUL@0wu+0As! zs6WeqenG5m@Zzbj<-j*#r6O>L&eX&4D!AaeSLCE!t1YIgNp4;ZCoXy#!Lq!u zGLzQGpB!SEBGOLR0Yfde!^JZwH{A7z_HW`QU^m+en?5?P=Won*@^P;r-0{3Wy+WlH zec4>H+_^iayZwKZQ)}te1EDZf5TE_YA4YDKTbzfFhRKk#^AR8bZ3j^JRYUX5p*$F&~X&0F|5qnha6M52?Sp#5jTs)FXPwul>fGK4LcXyE-V zP0(0W&n_q)=amgB=^^IU41C{GJMQ>G7qU!Z2Tzr?@;+sApT^L~Aa4>?{EJt%<1IDU z*BkxiphPBrk^fMiQ6Sqwq2!ZLT(7fQ2bZV9`&X6v zzp9pNQ#~R!z8Et>1;DX;e|St?og*IBijn`|zc3zq&%1E%d|(=XXGdSfY8D#JSK6jV zw0X%ct>Jl96Pn0hA1s*mHOZ6s2)T5|s;>ImH^%r19!9`wuv=(JUD5ms6!n{;4Y1@g z4Jl{a_sR-74E{Z^IVOF+0x!|FV%a0`Tp|~4IQnN|RtXLj2iKU_oyTnQ$1q4C%NTSiGb%7CKg+H= z-iHalYE##rK3Gj+Ht}1;_&kUDm};diH8(#iy@b002Agg5K}{(of5WXke@uTt!T4M5 ztnGh~KrkD9#$|txKrm~2W>D15oeMQpBgx4t3j$Jz21L1XEj2G?h?Aawhw99`0pZV%lW82 znc;;8omKN3Y>;Q}0Jdz}diG7|k5TnlPT?zlzmv_L$_T32dI+sU#|6>-G4?*?F30%M zf`ibpX=PbgMFbuM3*o+^eNEqmobnCji`2$_h5nkd*IxDVG5^n>sJ`~>1)Do(tsD&{ z@y+AW{IrH9pZo1!bn+pzw7 z=yqu<0k{rWyHJ191f#=_AGHW9`OW0TKHKbI8LEa5559$y*aIi3Z`OOAmmnUoKAu?^ zoaP9AK=M8Vb(^{WAqqLs$#if9Ln*_Yd~uV-%#u|owOc=Uc?B36##;N8`S|YKTW+rr z4bz%mNsNT(+a`-4X>I{(r>ez$0{t28UZufDMF|E==sG`s&YM~P6C3e|aeqIZ`^%eU zZyonkfm{E^518`ze?9f{piyWX#N|g5-38Sj0yi{YCmz{vVVx;3P26kWJYaWZ8Qz(p zE+qF~TaUqDc+G#?ZkzRHTzG8#&5+0QJd-)r89ll!+<|1b+SydlHiXE+_2viW1pX!U zGSB7)yOudA3o_z~|2+@e;bL-t*Y(@A?jpv9!OUDSU^bKmDtY zfAT+_S!!#B-X$3RdmT3s_IuPb#@8XrT#cF7fBwZBla@63ls zVS3Gpq1}#YwvVMdH@qxuR7i~BqAcNK^d%KdR*q*E*2)b9FBFq6->tV95`NPCs0-@9 zH;|L|D|Lnp%x+xag7q6^YT3W}^ZrAnlex5bNZjPZ7v=-tD2}%_W%U5=_MprBjxW!X zA;0Tk9f$i*7ymoTX77XhI)DBQvP8}XIaaZifAk{vKiysaXqFkg6@9LVPL1oml zqPp4ncm(y}S;*FZ6^edmdT(spz9~)ta}jBk5dY$w+q;*1dbOU?EBr}v6cTBj$$-}p zwEzGB000A@=?m?nat3(7EpWE4%WOyvLHNR}Isi16RI@^WvqTn@vY*EOT-zHBHC{Ah z@RhI)U(8?LslnSVcOWM0eK`*R2vcczteq3eKU_f`rG&s=e>g(PH+deRy%rSA2!&u| zFG52Z@+_MbA_639cgoTI2P0JvT3>kYm1pjbk8jEBjmLx8fz(bqwV%6viCEQT2>F-K z-{x8s=|pOo!Ns(~PG4NEMc?=6ufziX@M-xK*y{U;FKE%XN8^RrbLA&6TdtaT5TpT( zE(BdHVOZ#|g3@F?Igv;)kn5wR4F6X`ntwB{6cOK44cQ=V8UHa|WDV+*%2`#zB}Pdg z>&Bb1R%kI0X@TLMp>X~V72$)MnL2o8s6obh(v#f46L}wl=NZ>-l`?y1?xNPRE5>nZ z`<>bKBEFu-p>33-JgtrYqmy?;rAq_UA4AsF1(&9Puvhq1+Lr}dTN3^(9GPQX7|R95 zZfob4JWw$q`lkzl(%enYJ^e^rD!T&-1K$l)CmFvN$7Mt2y1YpI*rUd<{0x7Af$D~h zy>mi*J7Bg6`V1ii#Xk#lL40?tk-YxU=@#r5q&vXU9Kg}LeS&T!hLf@p#4nTor>517P*0yOWM(&$=0@BP>Ogyw%F0BL)N=Pi-B`o zbK0o>#3#M2Q+);u!8ujAd8D<60mOFlbkf%9T#*lpTo?Sg3N$9bQI7ESq~bKfKHkfQqWpaF zU!%JWW)~5994~D61!@|Dy!0RiN5%~K(5J#nrj9;|-GHXD`77RIrAn7gtus4}h>T5% zXFxr&C*Gf`z8DrMDv%3k*fWQhN zffLg>ySi^Ev=``mRKB7=_yat@QlK5_fLdvfOq zEz8TXs-6n0nr2);hL0wHS^}9+*+d^JMiwc6UsPcaC`M<2sKEBZR}nL66R(* zi^Y`H!^b8Rnx5iO?2X&zh#-&r9?r5MwK;aOo(-k-H$wWoiJP?lAC7$2e(9W;IQfesx>zim&C`j37;RU25ukTswF-2K(bh~_e zY6+G@|EZGrXL$9O!LW~f8oVdp7HPepUba(8xI;BtFyI_EHHa-b7tFvsuNjKs(!=ij z+yx~654axDeks(wYZRv6}hEb;x-dcwXw@o^U8O@H->*?pU+NOMRpg?gfP1*sH-9Ij@>A zffa83UBUt=asFuIZP^zvOfE7!4Z>0F2EZV1BYWE4w_mws19o?$CM?>_$-qNcVD9J z8>ohKn71zqM>Y-6BeSFr)}>+nbbFWfjI=&*o$_y!82Ht4;`QrGRxh4gtIBmd%_`s8 z?deTLSF~~@nIBR~gjmXjYN`wQx%{6MyLY3~9P7gZ9W1RfgqWrbmJ%1G<_5aO;R11n zANGo|4M^+p7f>^~)~IKrHxm!Uhxu{_U<5{`34kfBV@s>2k`+Dx72+PF3l6y56)Evl zuT)=>xlYV6zdCo`3umj+c~(>KN_n|*Q5;@Q-A^3Rj^R@ndM#)IH8V5GMqwpB{nwo9 zm6tWe1+?krWz{p;XP&pvg}a578A5?>S4 zG(e1~oXhacHz5EHzM1?&x)8a%D8@+}j!?)o2E8=%THDAnfb{PMyvtmI?r4c9zEeCa zhd^LQj{zo^y3KFefD6S^2;dLY8U$MP8`FkFoMx4mjaf%?LOTDInzKaZONHu|O zP3LP8)kYfd{t?K&gDB4(^~KWnfm?zS*v!@&mq3kK_jvYLVWwNvM*ZK$Q~)nVBVo+d z$H}M@nHeRcu@6korAb)0JmvvL!Go%>;Ck|`a*2bd`QNVY1hsI(4DiAvEogR@Y8hKk zi1JC3TfwGTCx4tmdY*8$b&ge|H%q+o_5>p`jr7Vyr@3r!jY>5ZO!O!jk;!SZrFYtf zf0e%HK}DF|)ms)kLFh|fv_&4=J8HHC>O|4|y4pf#*E(X^MQ92>( zippul$LcxbA6ei(75r+Zxq@#fGO~Ws$8}pCEKAaj={VdY^zx6X4eLhUMu1VXC6rdK z0#s$|W!O!DS?337Py3oV`&jE7+3BKplH>M?4K+k9X9E3aw|c+IUL3UwV*>ClHG}%4 z++WL%M5RqS=++*Li)CdyXjvKmn+!*Mh7=Md!JzdIh?{)3|I)iybRhYh4JS^bo65IW z@&J<|c+low)PcwU{B}0qbyo5j+BETxIND%!Kr7s%ke&JTM%rGj+BUG>vHkO6fVG*w zY00U*QWfUyqM8F7Q7ak8CcMg7TttkB9)Jn0I^aBWb^?SDjntXd9XQgV39ybqp}+tD z001evg1HBBVh4?A|JB?Nx+eFAM$aKy_l>7+2y4uK4?O;x_BA;;4;h=zJ0B5+cvsd9 z-cvg*oZ60&{2$+gfclJg*(?w*U;Skn*=_cnpPE1tFmFB9=DT%3WkY_Qhh2h#gTZE9 zF@a7>j!>hFLN({-GWuNa29^NK$E0PD%pp+a5~VcuS26rM&Q_iIfU0(0&GhEF z(+Tsb>t4bsRC3qd`CXs?>U&SP*R0*n_0rj71E5}f6|H>dUU#(z{V`71dKWY5r~v0N z9ZTx38-P_O>vt;WAk{}qdiHYr``OSBLDiPhPh5bPuFhAYXJ+FTZ!h;)mFdH(CTf4B z6K{a8h=4}{W`^0sNB{gR3@cwX*IK{!3iwM(`22sZlUC*n=K4+f9y?#3Zl40}jOPE{ z-LCV~s^{!3TuU*6#2dhaU!6Ce+h6PD!@x)3tExTZZ|09nzitfm=XLLl z-w0T@O@2@Gb$VN2?)1*(BR^ODmnSera@{b>SicBV!&X5SImdta-2O%G&e30A%xZJ) zr@sG1O2f4n&IK+vnpQu#LqmJ}zCY$n0+O=-Ennul&yHLIP*U$5kPCP9T(E19TmG-- zBHf#*Dz!L$yo)}A@Bd^a{$vroUDf6H!{`mek568f+v@b%?D3$`jf zDP(=!o))TVI%r2P_(bd!3Tneal0trdX;}*{*BhDf(32DC$w>SE424PG+W#;UM_;n7 z$ggvTc-vicz>FN`m$^7{=*6-IgYpvKi)gC#H-BHRR)M*XuxQFA2yVvA?D-_LFx<*x z>{_*bq%Ussed!2trT(yae>HigkvZ^7Wi6`%qrvMdM7igIXVGE|quxaBT<}56d!!dN zQkBwn>C(*}e-)CpeWm(&EXDFkH)p{Jx9eiC#B7LX_%Jw!p`D;`Lr;&t$t*ohW|Kp; z_y0ub1lPcgW08e9JGblmHaaCnnJD;5s`&Rn?cbysc0eIjEUyKxW;58ggygHmmFY>| z|C;sx)@S~0=FsqNwo$)#mlGfz+%r(G@DS^d+>60+=w6y1#fSfKKmQB%DqsKkS6Ya7 zUk~pq8hZcrSP@3ZbpBg*by)KA^vg{Wz|=K=tXKDe%fROA6-cdRKC2DFKk#qOjFtPh zQ%ujwRSvhhttS|OF&S$QN|Tm!-<5r#HT{{?Jyzn7|N31l{0E~?JdQd@|8jqbj;JPw zcAyt-)h6$#YK~&FW8ojNJt$(9eOvWX!(YQ$53Xh;aMs((=ySOId8PSOHI3Ljhx(g8 zWx;m>9gHA*Ap*9?bN!zP@n@ZrSmPzDMRan$yDUX@dn$X)d28l{^P0o7Td>u(TEpn?KO`%5} zXoee4SCFMvV&Xo##lTQ<=P5ssZ%?lO~C6FX7FSkV_It-vd6|3#)F{Z^tGy|E8S9Nka!2V zA#@J?6-AN1`+w8t4gXj}K>EE{mD>b@Pq`5~0Pk)U#v#RcJCpntlcls^Qal67(wvXO zlhAR%Axp!)+4&W7m5*7hHk{3}{E5x!V`PvkCw3bS=M$-Mw1VJz7Ea#o z(ZIIi?-^AgpE&yl1OiHrtPHhDL0*OpynPt)0gu-Tvqu!o-!>~cy%h&@+k|ns+_7$` z$U-EO(aMU85afzwKEzCA*Wo}4pSjE7@DRjCb!Clp`ko23dnk%sy}=LCH| z3dpVdZsw#ttOzPY?`>9q&p%*b+;OjtfVy)IY;|zMVA;Er&VOux{JlKd1jYaH(%dW$ zHyuB>@#YRiy-%)jU1m|X%{A^Eo(#AJbJk z5IN_b8>cn`De#a&!Nw;A6a53cg1~Egr=t#C4+CJ)@@e`P zcHy=}u|fDNJosF?Ft2bh(FzA&%amv4(6Vgkd&lv+a!rxqKVLDur67Ag9-C#R4?xVd z=br|-HYo}D0!ol_Rlizan)Xira2pi!N_YUIKybD&3*03YjVUxx+j1lVAf+>a89uMu z*>#=Gdoe;@HwKvXM$?DxX4o;Ccr$Pqd2KTtcE?*6PwxI1FR~L@0kY~%74NR_c=Cu2 z>kAAOI;qH{U9hiJ?{@N6o-c*>tR}aSeu-`Gn7q~f=l0W_82GT4- zj{|e9SF$c2*`lOUwfs(s!s^YrO0casRnC#}2&^nQSV`Ih2r^c}K`683Z;yv_AM41w zP5tdk-A#|M2>F2J9s|JzYH(B8W1TU9)sSOnY5BdxCM zK;@uLX=*oK*p_sxuV&?oxZJ|%EKu;!`H!Tk9;rqpo^o{8kIvl?NJZ;~R5`)cZnLNg z)Ok31QH_cJ48+Y-Ko+E_A2o7R3bkK5IKMU6uiLN+O@~jK*OmJR8?=2@lrQLQy3ojq zKoSn!^~;9&ofdAh7Zb>=csi?$XneC!s6`kyFAfc!B@%CcV~rN-$4Db7*X4Z^JAPXZ zwzA3B@+$uhCUu!LV%X(deqs4}N;m09*J`#I)S7M*>i7LN$F+J}czaM8w&>F@i|1;H zOU#Mpb0g+_PYWDTNN01%bYsASzpgm}ziF-bTJE`C_|g1ld8gQ()>hL+R)F<}W)Dno zIQ|U)jSITb2G^*Cp_VN#Z$Q+f8+WX$DtMWWbX%T=Dz#2mz^IclxC80KAT3!nP8PGE zxc{)Clo3>9M2XAMI~FdI&R0|At6~(L#vFxpj6rl>x0|xudwpEB9T6a89^^fluVF!Cv9z)6rn$JMP%&MEm%V0_*3IuAyhceJ&|ju0n7UKb+|=|8;O*a9ueYCr*pzS z^6IALSqN+L3}1FXGfh>=q`Ge+R%tOKSh%im84hIaOp-V6gDjfavGqQPa?$4qgjMl! zvj?PvF_jb!m@fwijBKg9oGBaYS%Si?%B9EOA#ox6#KH3XDyrAPC$(p0^XY!n2ZA9C z&ye)JBMFQ11qf35s(w?xX-|Wg2M#p(KTqy`<#9Pko^Rc)oxH5U^N9KP`Q-OLsS@js_Z_E{|KQrnBR{aMKIMs3Z<0HprUFGw{H#{vs$a~H9H29du0 zDEk(lJiu8!&XV%H6UNEyloW}K+d-uQ)OGMz{xfzY!TPaB_r#1++EQ&xLzBhhZ2v^^ z6C;rkF-Q9M#@;M{Hq>aV$54|=Xp<>URlHG)J{ybL+M>wN7#R1J+ZuvoU?Mrn7iova z3!=p`K*nT2U7$l2GcF)H&_~X zOXXa=hdbV8IOu_ioqu$gE31XXid1Ck9Nxu<7b>3%zP_TckBG8#iTcu32>P&TR05&k zUK-9BEBrHDVCR-+wB~GqF-5dBCXQwdq-;Px-7wIkGZ;==@Zbb%rK{Q}^{;NY;ywfrBM_tR&! z2YCS-`TySwv47^{WYC^$hL+Pr^o-htUhkL(r8BX+gp>B$it1Ap>I02{!r!+C?^(W$ z*xCDm+JYW6dDqTa`%r?A2Ftug<$hi|f`Wzmhci2-a@YV4(b$L!0ydulsC}PoT;8R47II4G6<3j$6f|Pzh2A}`T z(>mz>=Gyv8{JvD4`ElX1FcSQ*<~;hlxbM{MZDs&Qu$F^`Ildyz0Uova+;R#Vpsy4% zHbXf#yxr|*IMv?O`t&2GM!Im7IG&gA-iw#O3MoUVkvy@>p!9ISa&76%}M-_ zApd`9kd093ZWktqZ(jT^K#Q_C<8p)efwJMR4SRK2x2sGh!_&G1D!m2zMtmdUp^6r9 zVA3xa>@1&P++{q8p=0XU_B0at;jXivWU7V=$N6-wmsu#!=cGL);TFdLQ4>{q_P;&2 z8;LJ)k+~(VNA4DVD!L2#3q96fyxt2&ep1U%AkY9u@CD&`YuA`Xx^NACp!~1*)3Y%c zrqY+1*e56eNkF#0^0E6BG)}%|py6J?Px#Aqb}i(+m}vf4zvxj+abp$#jGRDBo}Uo% z>S%nkgWjH;f`o>nwdEuK6;z1kRr3Fap8N-4%n!w(!-L|)UU!=}Tl{GYu2rtK6!=zx z&EtRp=HBLsAa*>`e=na@z5lth|A}Xh{kb3p@8lDll$vm%3<8?;fBrRhhez+Czj$p5 zMkH_B$G~X`JNXG!REu9gK=`+aWZ{x#D1@y9pJFV7=x<(C9T5}svJ>Bxm_LXvm|N|k zhb#Wr*o7axlwHyD+b?u%W>3lf{nr{liceOHW+DwDR=wpj@aVatSt)p}f9-4i_~f3W zeEPMw_D;3jypW!Q;b;A_Vd|W}HuWCgxF`69R5PTzgCQW$6$a(ZLjN?imz|f%7|scZ zht}Z}B3-%g)aKTtqc67|J4$~|ni!`O`rL~^AjJVyEmWEh*EcwP~^{UOgqkYi)%f#TBI3T6|Szzdweo++I_Q!HGx>!}Sl+?-`*I$0 zp}!VL4%M4GnvcihFLmWZ00000001D@lq9r|Xz0>kWwlOl9v3a*3M*ed>tXxTuaZC- zLasgqAki7Dil)*&GlD$*Mxlc3Rv&Rm1U6ggGt_CUoS7tiDt##Wi(!Xxi--6fZ&v#k z8%lb;L&34t!I}K(7&X1u)f2qR8;{n(9g9hE$34Lzah`5b~O_-T4c+ zz}ofV)qSA9swv3<*%DBnIZ-OQ(T917iJr|E?U1$zZ(9bCD5%Un2-|gtopX~ z=s>pMb_V4;Xtr&5sRsE?zpJ}Grkt0{klAF2yG7f92;U64 zaLt>7#DS)rv&OE9zGsv%cKl#8WasBU1+n3AP5XQw4M>36F)eb`soEI=l6FXwMGxz? z69f(Zo@R}=b}?ewgQFor$!Sa>HRPVd0ymXP4DvQb_|v3xi6UVA?5%SVDhF9(twqNg3deN{4-j-^| zipDdF(~&KQG8RWDRu1WK2|Zn&JUtx#9e`=(8AL}yA9$-q!3jk}pTY*zEU+1JcAkR; zfM4}oT#-J}Cg%>ZVM3#2l-ey!|AL2ca8XH1IUD`O>4t&!8P5V_p*d<7Cw?$7)2xh63HknYQoGo zpLU#>*>9y15u9&3D3!2zrFG3Gl8a4P2BH+Dzf=-4lCrz}exG}Q^1I{V$=_ira!VmL z4So?#ydFQX9$ybV>M@-TBq%-Pt_nke(Z9&VGrNC%4ZsBh0bz&`Cp>)xXI5F2s&4-6qLp9an=a;|_IjPnr;n z42Z=twhNGa`&1VwdL1ZD0LFKgK3~^;49RWX%e`fP-Uqo z*#INYJntS?0?0Sh-^dlin`ELA{+M^ks*1r2lkk)JOD`UhJ^*&hBky9$nA@H*3NSvb zrBNGJG$H%+!lz5IVro7EZqA%XOh6!U{8>FX(5tD@*TO zefb;KI3KFC`~gGprp8Cd3Qwgj1>z0Zv$0)p%-URaA@~H?w~jYB7!_LR%KH3Mlp`hK4BSW+I+9rZ|f+t@?|tlrgXb@Lhe=YwkW# zyF!WWJI`nE8}%u`In1YBy=0FUX>w)dD%UDbGOkQOPvdXs<6T9->t2%_7v+wJ=2&v4 z`61TkkSHA1KyHB7E54aoOqTlJ7BL=etAmlV@}dca{*``DI3anmgmfKFhi<||_J$0x z)*y)IN}l|xX2gPiT@^;_mWMfYj@u-F#FguK{E1HMB#p}!p0UC6+)wW}#WD!4ObzZy)!*X$-!mh8`8F6IuX?k<)YTRPERQ9IJTeoB^RkAeL16NYhh-dH_3= zr~dKZBcgH@)ZQ-B?GUPeqnH;WY1OQ5beRh}UH~I)&A;jBe$jpMbpwxu0_#JIEv{wB z$t&{UoLqcAmH|k~>z$55O0c@B$)O0-#)w|GgUmeW8P!thx$Y?OkXXQ{;PL>$%wLTw zuSDLUn}7hrSW-6DA921EX~g@}mcOVJAYyi2Y0j^jcBc&{;wD)DBQyUg;uF*LRawEH z^wUhh2VU)YI(p)<>ceX@1*7p}TY(Mn&w3=JhD_pCt2zONr({)cBm=2SYY)avHDyDB z-czH!=&5 z8eGMuJtcFNLejBN43eB+%(b>W;$KI!7~ibaWH|A))n<36plPR zoveGeh0wNM?sp?q6mdCbNSK~~Ncb*EM7-O0(d>)TQ2KOa3ked2&~7^{KHWRXD-35} ztLRa->Hm`fFX|B9&>vX!0@Zed@-CzTLzFVk>0r-UIQgLKf1jNf=jm6VVf*hV0L>p7 zFH~hA07VwS9fJPv)^-G0-va2`AZKz~<9SE$oW%sa&Ac?^3r4pZp<<6v28mxRZ{JKl zT%-W?+KmmyU~>)Bnk1;fHjR^;R`8JoHVP6J%9doD+En)j;5d<&d*Kt1Ye70Egh@!K$XyJkcEFa^|nwZ{0PM^-5qcyCMC%Z(ngH==-YF+MUNf$10)OoxuT627dXGr?F_(orNO_)>!nuwh=)YRXaO39v%mYbk1^Ai49iI_ni)$7GvukPf|WXLDs@Uv#0{MJBcb~Q zs;Zki8}8;S!}b0qjY>oG*0*oWIyBCefR0Lg>VQ@UcDrji)2X|jQO34?t?v;JA;FCB z=|BqIsA)*fUw3J~$+}QZEt{AB@7-nJTxXA>y^L0c@%Ti1#B>hK9LKNki^uOKB>vmC z1QjnPm9!@l{d@#heHJ?yq0xV!K@+mcBj_cfJ^9NVp~ZVMmH6UG=r}v!FSTaQ!XNAV zGb!PrP$(g~8ocG5YtV)wrP)5t?i^2D-Nw*-*!vi4{k5QN-ei1{@%g-BT{y{7a1a0h z0000F0)!u?M&m!!!ZjFY);O(c5b%e1PAgZ-n_v~$g}xud^y;YRo`R-xWBnEw2xU&! zHA^j{F=l|rYdQW=N;MHj_APLgD{vm(WG;Y&6HNAN=Z{1+2vn}_CmT4ZwB7Ms2DSu{ zqQ!wINBkDPQENrz_M#Zk@K@55-tC2%3(;n$qld_rD613USc`(rEi3i8 zaTl~h8?Wa%fOr#tX-?0lPNhS|R!@EjU#c@L5(CuIuL5t}WE8`32yt=Kq<+qb7$Kt= zs^|!$&C$9_k8pL0t;JjK{_{y6CPw2Do$=cw0VbA$TmnEuAM?ojvho4}%VQ^DE zV{buW3OL@%WEG@cmDEl`U>BRrxOT&$Rt_C%SR{dfy?!rh0-h6vE&8gb1qXT_4{k!I zq8>fH?NpZ%Ij%|coOso)?%XP>lDlAoe1G`u0s_I3O>YG|Ln&bgmutYJo{(YD4_KhK z^Qh=ozqGC)r(9-=C@l$~)>u9eh=;1CrqUB2k(-3z(59BaT~cs?22b}}Fmoy^#)jsG z>m=u}Id!Eu5f0!+s=b972Z*6W~(! zr5YB<6hmOzG6VcgDi)<_(AOgI6Vx9te`pNOV`1M@eyGyvlQ>&p)HjtoaU>iaS#lbG zQA7ZGX|SDpuQxPtY;5C%q~XjLw`<*~1Y@+-#^9N`gj<~ht_B6bmh%0D?r#)iMAH1l z3Nq51ktnk%kIoV4BvY?I)OyAu%gvXT!~6a4Qo@<}mON*W!*#_s;Q@&ptF}q>gP(cz zr?lzK*+v`hyw?WN8!9wSu6?lSI0V9wRg#b4O~lcumiE7_0bSKG)oY=jlI`Sj(8z zY%S5ev-2{iO(Kve=ioZ?8vRq;H_yR$v~Vux=@t8Ib_HJJ12HQk6;>@DJD$D#j#^7# zc{pLg&;F-{=Zl1FfFhIVYo z^B!e(RrLdl7s9BX?UktwiVS5KAMx@eb2K{0gyHO@&JDqFaRPPFP3cn!AHz<^6F}um zfl;9Ru=iXrQbWu3l{EFD^C$n5AwwRfhll_VFia9H{9t-mkuKEkVDgV zrRSqv+5;~Z(;@n1GwvaOVy+m6$#^Yc*Wv$SH z8ooBfFF{ti8Ib?Z?&YDIkFGb?4_eMCAkY*BvTXf=hA$T-V++*zPRxYoo`qY&JWt+m zS5zTkKVBT&nU(`W!&fJCk@xiC-58G8*u=Gvul=@`ks&H<#t($q&Yc0v-{t2(^(v`i z%^PW86EV5f6(B2x?Xm(0l}*GXFv+Dsbw56s0VeqjnAB={iHearmIfv94TL@AzY<=4 zQ?3slQNqfp+QV7t$ensGM1HR`L(h*zbgk6jSjhrT4dl4X!g(V#Dk}aynan+}q+v~) zX27_2AnHGejS$!|fq8J>AB~H|U$1*Y+pe0SFZ(>6if+4x&koZ*gVWvx261dHn8TdX zLiqjKJjNPA@X+ZCK@7pj#7Du8lnlId8E9_ET^VmLLYz3F?&J}DdcnHZatS@4#*&9L z%z?E$BWlUCXb+HGWs=PaU$7AH(`7I)eJs(6!+~1@7a`w`5s6{N3{1fJRbr^9KJ>4= zQnLUJ-O)Vm5!1m;KRLY#q44>f1(uKVQtihj+Y{7ChL|R_8!zgbaE)bj)uhjWeTJ`- zE8$QKFn<)Obecx37!G37)H%xB&_sv%<_X0A1vDxN4tQ-z%P%bJP~~vR0D+++zu4SI z7HSuA!j8HxMhFz3|yhBN`qfmDt2xNKl(fQvAm}L+QA9d1(6Q;Le5%Ew~w5&f8)!N36xmHals8WPN(X;ncaBMN! z_ee>`%AB;K_=p?;%pXfc@@45;klUaLWF}{@#|%D80&dSRQ%cSe((K!0ZI$D`{1H5y zlv`n`(zes~#%pYIur>c2rjM4es3KUpt$(x1=Sy{$FX;3*O#yT;j^XE^fKVL^@Uz~y zK9<`vaYAh}Jd_cn$tcI6Hx23kcYd1f)N4!kGs2iewdE9@^XrW1`f%yX2WpwR@mt9J z=`D=_pmXSjX*kJ_d9G73eJL$!5eKmWf|700XL*P48JJVwUf-E5v;g9^o)XbtJndr*mua`i+>^foLC@M9BeQ6_ol(I9y3R!U9uG8GNAT> z=5TD?gOy*^V5JD~dxs_vp!6lV>Lg>L$kDmhLLks(nJq%{ZWAa=?`JM6$Y>L88J2-$ z?r=^>S_J2PVL-|IoLm+B(XhnJCtvSYWH8ztT+jgbDRzG8a4~1YuPxN5*}Q3z*888t zPK#=Y75^`%ZtaM5jLD)`kg!xc3x4axY9PxN-}8eAQG?S)gKkqsv4-oQzT9D0R8uvl zKZ!-i!vs5|D~-O5go0B`Im-TMmVBBHF=Tosd*MvNUSG?6v<^tQN#96rC86dHHylTi zVh~iX5%=Zj^A;`AFC*m5DKKbngm1g6o=psTdq4t$?U1Eyjxwaq*$qhS#dO-)6U*hpqL~coo89Mf-_0&$0hK3H zI?HOo3-@w8xWpv`Pf)ebm(j#uh*j^w8_=pK3S2Y}qv!7Yllev5dILG9JY=dFYnA%7 zw(w#+p(N*U2B_<$i2_ocX!Un(0J*vu&w~2?n&bmGh!Uv&{LXaugM9=l0oLVx%o%cN z?-h?SA6ph}|!RU|;J3V)&m%t8H)0cIIh|3G%&dkJQ3KM3SVc;;Br8vF!8D zbS>r7zJT^+%i7PzSmLIWMXt|y-0=mfxe@z=oTd&r*VJg-AGQupI^5(wef^RB`ibc> zO~itAOpl6iM5>%4UmWLWJAPG*1xZ=~Wzvbi?>>By8ieBz#T^2DTOttVXQuYWR?dI2 zP$l$!_I}PD*3eyuYkac0n>XrZsGoKQvVOc*7)#B>w@000004}a+k z*+~!ee~;>pnUDVa0cn5u#VTi;<1r#bSC$*Ch!^U})YH9W61Q#R>K>_L6sR6Zd_)ri z-Lp6BXpBwAvvC-q_lP)1NI?B&@fL%JRastn4EpYxcbc? zZ~Za6q5BZL2+L7Jf5|k60SX>u5lRtW_0tTIPpxzQ+7!ck`gt!0ocQ1lKOOq8H;0kJ ztxX`#;0}z32=j@CK}seord{|gmFINMc%TQ4wi!S4msdTBG4Z9zAZG4Igq?<75;(f47~5=_KRxRX#>$t6m{ zPprA!znaVcIS4qQyro`24OnKPfG|J}Tb0a&RKf2AOwhBo{ErRcRH_hL7}5txi!uiT z&?zbkxghAfgYg{~gv#$JMCVZnVz4T}M}Vz%=^taCJeM1c|B75c7(Q3i=^Pu2TT6i? zS_*A%4N6~i9o1jN{<&E_(DM#bG1ddyCtcMqk7A{UY1{)rQ@T-#Uv{LALoaHSSJ>01 z8r^bpgVyg)+ofp?hdp+Mr&p%ag&i93 znnofKRTL8(?1iafC)sB`&n7l>2_%`BpM?I;ZEEIg+VL2g=(d zbY4>#@W}dsEHb`e;=I#-#L1W#9>*Z9@S)vX?CHOtMs&cv?{kIprXQoH81|GZv)7N3R_ObU7E=^m4H_|q^x zlQ|OkU%e1y(0|v=qYK=4Ki?y2 zlGG-IZHMq6ipU=u)(+pGb4OasmcYWFIueEp`UM}wGD2e)iG5Zshv4#0-|$XYxa!2_ zSwwV1h$6BM%Wm;&kI(Nf;B-a-lFBU+D{309_v|Rc$qcZvQg>^8-Ju4YF3f3y{9B{J z;FyvM!DmscAD?bK zEm-#sre$JiXJ0=hQRT^=>gJ5?Ms$VPB-YxM#bBs~Qi`yiQl<~-&XdweFJ480@4_HE zd7*FItC?iTeyp)OSiOK(pR*jyC8)l}A5UNItOTGybLf(EQtnDaS#8P$)-VfDcwlxB zvGlo~bX!1$8YB=J)!s0lMD(!yd6m;nZs; z?(4+HCOhPM_e5EmL>ie`;hC>ML^G(nqAc;hs&9<)jRj#dbx3Bf?k-Lp_5u0e${y~z z&aP>`I!q_TP4RmLK9FK|*kmMje7Fb z2V0k25$-J*wN{TSwE3`#!zwxdF(TEd$UyS%Sn6$wz!8)u7f6XmnomJ%nVNRXIw60p zXA6CMo~io7rT#CRpTvbJbZ4|5C6 zF^SK#b@Ne8qftpyu)JSBl!u3*KD-{yR|Yo&kMENNj*&pi-AolYOWI=tO9F(HGCcax z<`!t=tO(QB^u(Y&KZopl0^cI;#kox%3Pft=z5TN3s&`I?jd)wEgnLW%_;;``c>wZ1 zx1g5xmw_Y%#8&DHcNX*p)&#Xjq{5evzulS1~7iLhu2Lh8#$6~a})BrS1VFq1! z_w20<0rk>O(Vv7JJg?$>c`!e%i7?;OLjcbLvYA5@oKy96tyHd0W}r&eV#v9bdM6ZK zmiFMnNof-(^7yG#|MdZNV2)vdz~l+y_i&1pyUHBd5&VRFw$SdmB`i!N^h086C3w)2 z{l~@OsUr)k4RrM|g>0`9)yjx++jQz6qCn5cm-1!~FBkcWO`Y}iMh?}bo)6MTN1-Nw zK&YH1jlBp-f6n}A`cJ=k`3Ahe$$!;jjkJP0g2ABVcbWzIo1{_Bfb*#Kxsh(jy}L=; zV=S9PQhX!kw3+K*?!UOeTmnz!mEiD`-=Gr8PAzw6_kl%o(Yn=#s+|q)d}4!Y&MzlP z&7NA4%LVE7be?dZZ}_QBr%oL!(XGwqHXMFS$2utQ+QkehF5++2LoF^YNQ%oil^oK< zV<|kV7^#%iGv(5JQAsS?@d;!Z?6L(VEqtX0?6vbkMKtSy(9 zxV6@D;pT@Hg!QVbMc1^wF`=QP6vBDa5(k%hUGz*~hWlb6M;~H{f7CK2>6JINP$d>~_P^(LRFAd!%{v3s zREwY5m1m+!Tmn|3umuU$fQhZHIO)C~C~2@7+E0TCo0!iHoh~cs*gJb=&OiH$+cVqq z<$54{3~vZg2VvEyewodBgEcW+XNQDRCaf-CmfXhcYR2mYK+P&CZ}>-hE+^Eh|gp6?g%RK!fOhyHjMy30VEl+n>Eu%VMRv zIA*u6T3H!>*{rs8WWgP)$unaxRt(`}v&Zs{OwHWjS6yDcRA-h$euL({l1r4n!w0z5 ziPJn@1!l+;beBd|%2nk4AAHaz574Ct^`NxYVFi?wjy^l!;?z7Tm)QLnVN3oITa?a$ z0k+E&{RjT=P=~oA6SbZ8NB^C=0km~YxxdZ%_(!V0^nFiwn&r_+>xe8Ms< zqMMfCC|9g1p9&RQO8#`fTo9kulyY{PK<71*{y+UF_xhvj@O%=cEl=GhxB9T^_GGN& zcc*FIA|)u1EiD8_aBEXT)1@vRU+%q@(tv4Y2IlIReWzbx`yaJL3q>aD4)FPwqhu6` zDbmBVKd$st5%>59`f>%MTa8ekEgHVnPXhV0$8Dazy%1}isJ5v37{XM#mm1)!1HGqj zAKQk`TCn^&(Om#NDAC25zI#Vxxv1^${NYS|6tya+Sz}QC!aKVBPXxp2a(3ze;V1(C z#RcO8R&eKgVlsEgHJ0zQ5G2Oc7zSK2E~zr6N4|2cf}nEPn*ptk?ja84Cm<6e${nAD z!+AgoRXlL6@B3FA`~U*dH$WC~)7dk9c+`9M5i&Lc&;zq_R*;|vB2L3QlYuh?lg|Eb z&#tUmB3bJN8YrSIe-CMd{(@_=DiDmw&$2QQjN6?$*26MZQd4^8xarSwXt>agZj zf2qVs_q48l6`i&XFUuP#6dF^B(_OA!$9qL^GuYzd^0ee10Y)$l_y@mOUXP*^zTR<} zq5E0g6k3GgFNO%4-Vsq$6%<`69&iy9=)&sb?68>K%Y4XN2enuP37aKU#3xxVC$X3= z%)=~Du$_44a<~tWMRp;DM!yF$ zC78X7g0V`|3+-?NVRn8ek6JeQ{|3nh@E%A6DRTrynH@gl^Lcs$HS7Fy!%~j<(V27_ zQ_V&XrdGTx_!5zb7FdVan8yeMuR05i1c5I5dSC~@uoy;VdeV%}ZVBFX#DH0v`LLSt z8Idinf;y2p?Cz|JUDTY713DJs4F5D{G@l8F1H)A(3R=(JPW~!OwMMxd)3AzV;nx(j z3_qK&Y_^_2uuirngz)a=M>}WPLD3@geTDRv|Gs$mwT`?G`1X@3&NTULBSj*E|8Xe= z277Fo3YK4RtSK+bX8o=h42$uHtRYEni2!rR3$5YH;uFI@@Y03KOzE77{-sxNU?h~E zC2>Ozp`$~dm4Gs=E8~+E=m$S?QpSM%HtP+|RR&<*5~Bpjwv=8TWPEkeA;zn41&u%? zLMS8t)9y-)18su@RnP*>A+x4rQQl`tlXra4g#1`5KqSSt<4gfVl{ab|0gSfJTJ%Lr z3s7}d;hWi64J$=Sw8}FZ3w;AlJD~xI7a^SZ6r*9(xxJrOhe}&5Pxw31H}I4YD4gt} zCt5310Q!skn!pKB7zn?te1453}~u8$G@m)v-tAUf?WoGgNzbC0`rE& z`Pm1PJo>wbPsF`66{OAV@m;0Hh86Vp8-jWlc1OSWm`SEZsj%@QQYKd0>K>It;~hni zA$m^ze!-fH7Qs3Z!->%@Sh5XQN=4@)4xhif`W(bh8+FImbuK33aqi#Ln*Xyysj zGkeBH0`0#23u^a=D5vW>jFZDg)3S#|lT*|nzd>DS$38M=q4tOukSE!GLWoze*)K(= z@-Bi~P$Dm0-oXN7RDW_LL)2hH=P4n7%xw#r*Up>j z5>4S7hy7wjo9ZLP2mG0Ghmt1k*>`Pe*6DZ`0S3K!G#sn?$!)NkDGSXt8_MoxKkPAw zY$$O#t5STYBo{?fMhnzafflyWEpZ2;I)yV+7~rb(Zn;xoy)?#DL>k$^vZaHo#pXJr zX%G1;j(F{t{vp43-4XM&0@&kftBF=tmUE_U-V;#AtU;e#hhOudNvQ_?R=rRuT40`- z^c6NND9?D`q!Or5Q3cfRlWm>mG~c8f_x1xe7u4&+p=*8crKVagZhi|GM3jQl#>QMK z+^Y$`H7Luu+R93I+r|eYBXVwG*+nWWM~{_7w7m1c1mjc#2adQt)hbRQ<~CCn^<9i_ zyThTuesAa%j~}VNO-+a{x8$~4npXEKpUTE%MhD_3j_aSji^+V})(G%eY-k5+8%$|F z>)I(fH;s#J_i#85A$KX~fT+AwY&yBzod>(tZOOY$ZmOcW_F5ON;lSBJ9<1DjHz?8? zFMs+UM#$T1(Nx+Lh7z;U*ex(BJirSI#Wk|yK@r^-cN0@p9eLq{Pi)fvO~K--y@a7V zK*r4c@1%CODOJ6+?TL4I{9BGMaY_J4a)9Tm;qLay_@iGD zbGENq3!aYz#YLfiZ(Wz9!bwzo!Kf8X^}HLdV>=BKN!-WeK8KTd8n~v?gW*Pp|1d-M zG`yQ8AZUVtYy%K1wBP39NiDn`H)OW=eE&-QYJ5Ed)`jhe3dhM*wPfGnlVKLjq%C?x z%D25(L)okm%cOol~OnPmVd)}ksK2s|fi0OUtl~J7G^wrRiagAd+53ey?Vf*S} zii#LZTCB2h-Eh@<3xoY(uz7^Iyb*GDp@CBUA(`@m3C^y6btdk=iq^RhZWEm+T{5wK zI))zoA$+B}53B@$@*O63Va4mm{qKFK45P(0<0J@)bqyP+EKd4(14n}6JTjwLx`3Yozcq6~;*Oh@XikI6I9F~Y=#Vcj|tWwYXA0?A+;7 z?0k_wgE0lRqiD<%ZtviEiQJA-n={<#)t|90OxvGN=5NhU(L^Iv4Qf2Vy3i;&9<{23 zBPaX`p|3XfDm0*6P6O|Vo|HdhCZP~{7n;lj_kRoS)P?ErkL;;jb%}D|OhMqEn~P0x zKuXZN(Ub?2O)RYa5IiS-BNaxQIpO2v&P;}?n(m#P5%IZ@a!-<2a6&>2@D zE$!Wus-(b$lWyEw^%v-fES-XKeJRnHx5~IW*OnrR*_18E9%9KMAp;@%oQ3g4dh8C< z@ld&5fSVee=F_J~jJ!qz7t-v4@F{QL`=Jkc-Ry@P@MHFP)05GOk%1ka6~sJ!p+pi8 zbFdY2Y?|AVmFYxaJ2-*UMA99$#x@>h^I zSSA=HHn=oVb3N_gfOz-&ewSFEag`EBBt?P)1ko(}rfmmG!1atfO zN=7X0MbMthE57`7=xe-eX@bRRR0tmGQcSs>?YGalR6LqFMi*)n2T!LTy-^+)~b^%WM zWBmu$42N)Tc#BDx8nY{kx`)Ltl}1$I2Fk*#1z$3Y@WG|u#R!)4?gieHqHcG)8U9#@ z?nZ32xtUvO58W>A>fZM)c$9Wmcn2Mh*Nz=2Y6MRWlUU0FpO^pevn&6K=zuKa#5bSL zTOIsc=gHIezLA2Sx8KB5M$Jjx{JMC$JihGysr_QL_x=7Et}t`UDcY=^t(elKeChx9 zw{#MwV_BxDt^HrFmDT68TviX@Re!&poev6$C&2Cd7$k;kZOK-SxWx`?+4*%f2UJ-o zv>aW`T+s64j(dC+;7$r2hOHO3^ zzPk=HxW~8`(lJditJcE%vJ2g;Hd7U=8vC7o)3fgQOlgy;A8iC1jp103ED9&NB)FPXXxJ;k6Lrs-nOhF_ z@U$(&^`k@z&<)MV_thg~XvSqo2a$^`4|VB4?VW7GlN#_f@n}kr(nF}j?x=);=n56o zgq!MNy7>n|e-75~Z6RE}Msr$L1{2%{1=;%(*8Lvn9>vQ%%xgRzFX;=M6)cP2RB0_7 zSIB17W2iP`AAUTcm($pJQNP;Rmaf;;!K_#|=d>Nbayc|N5xx|bWNZ#AXfL`% zC!bOF>Tk?;+7mqwxd zIU-7y7)BL$>;pO#M<;>Vf_x#24!}nbi1i02-EfH9dINti3@oPpjXQpTEYHS{Rc-C< zUH)I2Dm8t)&^zms5OV8M8+CY+!6}%q8e40Z%y%ylo?0A}DwjY}PHn92lz%eYA}^i2 z7Hp%==T-g6bp=qB0TwtJV1N0YdQaz?;sj=n{LD?6Hw~mWK$iPqp{I5eFDFjMJVG!(;}q@s!%PMZR6(F7Y54p44{{ZF zmXNl8UbS}OrHvPA6Zda-75k3yo24j99B^~?9+tVPCh1>48 zUdM|SRUx{e(g#%t3*lS55+owl=i+6H-_se={$*|W zKpU!)n?@z#8C00LY?6L7GBG4QF-Ju9o-2ODs+=MKpO$Pr%>*mf8vxvn6ah^!$m!Z#Khgi}Z@N$7#eS55``>QZHzu0lqX|da6$`VV^P%e4q4JUgB;QD}t*XG#^8jDw z+4E-%TBw{bdDA+*_?)jz@OvQQ1-MB_F$(gKpTRcU2lX-F!xt->Xj%JIP(SbUptLk2wmtC&aQ4ZCjFc z@{m&xRk`P3*4HO3FdEjjbd1hEI!V;ZVc2-1eR(s7Tlfum0$0E=ZeOtqlg&lXmw~OD z7q`x|cb=v4Q5VFamu6GPwa*CkR<`TdM+wCv`O22GYTQe#i)RA31V~MKjyBTT@om)O zvp07+jVh$seTb=CsI+szbWwDN&Xq<~sTJS|{L@6+LcQ$RRQ|8b2rsS#3C5PI*G2Dr z9mL^W_u@2FY5VB*^+QGaWlT-Ow_*L$^IP>GB!7BcUnyMyX7Ulw{5s2@aenE}pvrEa zni}#~^NJbO8o}vFH+8!Sp24g&MN^N~Ko%eeR2?eBQ>3JQV5Lh$AqugecbA%o905K! zbJ%Zu#mH86rNu5Ma2gA8rX6(`V@Lsj;|0gaKT-z<|75CuV<8@Vxbi!wCJdrfIA!~` zA-G{OWSt8;D_Uc)=2u9eo1bjNkr^hx4*QE}I&?OYBwPelvT)zBDAW>BerTsVE#^c8 zhgtD43`x<8ugq3H%f8Q}qy-#{iO7UJ0B1h~xP*mJ(Rxjuc{hwCv`*K63Q&E&RU?7= zEM9;2-MCIEdsnN5X`+ddBaG%PRIa8>Awy%Zke6Njj1onu4?{L?Tij@a-|1I_7lC z)KOlLd09W;%_z_&Qtf9iPCX|(h+xom9IOR8gRPbQ?nixO{K`VW${WNU6iXuY{!?;p z17jgAy9(PR+>2Yubcn$Z^%kQ@+}yga<~jWDk+wk4jEA;_A|k$?GNLFQT&?LQty|xB zb&4AM!KzXmJqlc3Vx??;I^h#A5+k^{7a&@zjByS2=Qg9$8;?&`>=YHrq=LNAKHG7f zf6*<4Sv}jb)`Q?o&&J6DTZgdZo-2>2p|<8t^rbw5Hps0D*ZKE8YJ29~tq0<=kL$p( z+0G@7p9&rA$?89)SIRk32$E6s zi}&^Z3tNR%r{K#!ORNkdmY+O|FA{imx5u(~vs!7Dv<)TYyGK$yL9u^6Cx~GxBrqgo zRnz4;KOm1D&VEYiqr~>`CIeW_BI+!vJ(-G13^9oG=&ivM32tINYZy5h2B< zp?b+WXtk4zbo^BnCHt+|Th>yI9z)X`mo~Ic9GQjV5bFi^ea4P;b#U-5k7NMP1`H*K zOO~ypaS%_(yJj^;1Msj1@xk?n&{_42?F4}2TlhCR^{oog)0CoFBpBM%o4s(K?rq_m$$BPn*%%tBEr<o)z0}_MKAje2VMwFI?(IoWtObEt&vL=<~rcD>0VU(mvIi6!HnzJ zO9DExhDHeJ>Vp&oV^*?A^l}+WZ6x?4ZBww%842DRTwQR|G-%cY3XGH$kxO5Xh`7w6 zQ-2`=m5!-n-~pZ8%tpC{#H@{#g3$Cq%ST-7LuLq#L&lluC1PtdlJ88?^N|Xz{G$N~Y@q|C zQG^S(ad|uhqxM8_Et;^xE07jqMJ6=$MBaPU8s-o+x+S16ipZs5&zYDh&`ObdA8Y#I zsDe7d@S>Qxs4-*@&8 zN;!oj>CgYgin6MlC`r+}q2_eZ975h#9EuE#l{4q&fun7EW+AHZr9|P#KLaiD$ZLOv zxvRPkzyZT7qeT|WfH292lo~!IZ)?tk@weVi%`;kBMkZc%b? z783)bcG{v5_oIeNCQq_zp>}xS6_rYezTC)y(|N$A-y@C_^y|jXwza}X*00Z&^{GQnPfzPNZ4lT8^Q9DlsCTKk^Og(P{In@Ce z$0evF!BEPQqxY43jQ`^>srYx*RJx=53cAo91#1es<-WyRMY5!Hnmed!i7x^kCm~d@ znJ-czQ1M>0s;YgbUF@iVJ;Jh4o~v$_Mg&v33?nzhQLOc~;H&Ku?M&otA}DrBnI99M z>4&2o&?jIoPY@nJop~#}QCPr?FUMc43OTk8^F*i!qiTFEb5jab;J;}_ywn?1KSkge zfc)!LKGY>{ZS{vCRY-+{vtA(00cqrbp~yjUTTQKnd;d!ChyGVR%TKIh&9kYbP``D$ z!lLk0;%E%i%VlayvoFdUCW)+r!IFBdF}?@idMpT(gj%3=k~kbhg#EEyXy>Ha?LiWx zU?ky~Tp*|fiN_u1S)&$?XF-&Ym6C2I+&Y>$9yKvQux4_TXi<0@`;Q6Tu4cm%ggRB$U6O@2uj7TK`ye-Xnsg zOT8|qt8?C}lv~ReTUpU@QCL!l%OqCfgVz%oa}#6%Xr;nFKXl6BY0lX;{q)tP)bPqKmI{dqLH^xqGu&4q~7i zzM!XewgrnL>}TC;X{f-9>^7z_Q>EK>$=htG_UI01|TjXEZKF zGAT=D9hr9YDmJ^QHZ{LG?8~gNB?nOkfT29*3QK*?3iC1eY6B6>9d=9EC$y!Fg_?-B zI*$3#arRf)si{A>1GKbNKfBa%xNm%E3I^eBlb6F(Q%Py)?&wm5xzm5_{i5LqWx=1R z^sbF^(tcn9)%Na30F|C-{Zl)+ZO+_2gg^8C@COa)!SpsT7#tjKCOsqzQ$16i5&K+^ z>gXuPZ?sD|GUh89G8Rx|s+wYFu;!v}-53}KDGu1Wx`c@RZaf4eM1A9OshajV~_^mu!TS-`N+tW=XNajZG?;XKk&?0GJJ3A7c}@YzishkO$l-t$*6J`^<8fE9_k5^fmQI$;wQgNr{}xrO4-{xP|~qx3R{_ zj4Km9ctofqq)-56jcIL~oNnlY&USEmd>ofCYhsUX#*&-447<97`jG&)ayk zw%3DW?gRrJIL(Q}JWiv?Al9=?gnyrgRk7s-hsHAK=SFN?c$t{|U+>$><%de9dM|Qs zD0G|&(|SZ*4{At}zvV@l74dmV{b`iqru8f=qJJ1+nqKO*tso((&PfN1@{+H#qz~Wc zl56chgD#NE{SWeh3}CTTdo;miWBm#z*0>?VS<0cxKTEPnQT5!K2w2mg@m z*$ezGgiAw7{UK!P#J)h6Cf-2p_N<4DZB}}pdolGj(i{dp6KOvxjp=Ka@Hd7|4@9hN zL{xFQ++}+B{B5?WU5$H?k1uX@*^kU_#KAJj_dQCk@%oJw&{eb z<-{mVh^Ct*YJ$xB*Ou;3U5~yys3o{jEDwp3oJg(VKti{8tbnCU4M=r~Jjclx5q1y6 zSnvP<0RCm|@E-$0VMBdRtDv-FL>4&{F)QWMgx#z*HR$5g4ek!as>ul>~uTQ(b94=$RI>*X)$vxFJQStM+)p8Yon0Y6T` z>XW zRtvB_7TNZf*)s3zdpAB$2I_GbCh2jtSou` z`5`#VDA6>-`5BlH8A#cV@CkfI}lzhOdjoD**g{XP|Z?O+M`Y>_UpRDbM(8S4!7Q2_XFL-bmF zPJ4SC9a0@SVecPp&ip-*!x)G(flkr>ekGwA0j}QJUgF74TuR$a# znJLRN)Xr1>=b023C2Omb*V~*p0Az;v3g6M4%)gJxCr1B6fA3DaR+F9UOEa`0;!m)> zA~5RgZiMg8nB$wlo@j}m_j*K@6So}>c8?6XS3LbJ!ORWu7L40gCgcueFBI4RK zNyCB(`XR$twXn*NL@Q3xEOVPFb9rjAz0#CS8;q7f7hEj>0u3Lj#&Km5%8&bC@$nx! za?C0RBta}_-4BxSVYzsC-}34!8hBrVs4otOB88`sgds3A54|I=o9!z{i$40{u$Ca< zjh7V?1C>ceKe9WVZ+CR{kHpgFG8yFUJBcS`gLpBJ$&@FoVyIcjJ7eM4O&8LvFe-`R?Xr&v^^P z3mS`C8cYJ^I+Ne)Hr~sJ9i!GVx!iH$^(Q6*R?@A?!AY^|`8=2<%Og;3;N7Ivs+~C~ z@Yr4pgd++Gd^UDGBP)kgf&t~5evxQ##P@P|XOhZDi=D+)o@+m_j@UR)2=6(BW9|fW zLz8t+R@pu$6#j>M=pK?is;uI$se}V}SilQ>0fsAFQQD^8?M31v31qG|AX+rlcF9Q3^6 zdSS3QjA@VEVWa;frB7$Fge`e_WoMNC!AOpOX|k>1vB981D#SpESgmvo`tsP7yfz}Y zsKd;@*as`B#smzP3LxdN+-(70Y3={??MLlqlc%fmNcKtTR^h7q!#y`t^jJnL8L!{A zA}d2R%9))YU|f_cHFS4CwnY2mUi{u4vQ3cjdaWTF6(w?6w*wn>+Hnm!<*MukE^}|o z%yfF0Ls$VL<&z3C5dAR+XJq#mR~I%+Z(+I0=JwyHdRLttxE+281g-z#X59aa0zbxG z>Id_M#Zc>MiJb_VJQcesI^&-<3@eLV?ihN zCA-sQRjj=;3;bJnwb|it)9PQ2aH!Yy)cr+9BtI{}b2T^pj$)N}izor68o_(qcCm8MkbDzK@#o65e6v7 z*)>ndWMm)T#s*wID3}wcEcn03TDzYHAkd;hc%e~??-wiKyV@bfyCtj;||*+J|fgm;z))t9)L{O1ph<2y;b90 zlBn8*uNf8E&<}ia8`&2aS8S4E9D^Cbz(;$So@xu?t3Ky*1$!~5Q*wi|$Enu(UChir zYrNh3Vwu7^Qx57S{dZ|3?Z8t+a5_DP8=5w!;=qE6rpiHD$TaQCU;iXX@zLdXNqhe5 zqM)g5#Z_QbG2wm`kVci3=+G@hO?tda?!TwVeqA1Gmn(8EuOB?ClL@=xe+m+R58#yF zMwAW}Mo)5J#8-D;bgY-xo==xPP`)P#5G!4Twk!86++%-Lc z-Y^Dd)^cQG9lhw2%J1(WT<6aA3^)XFEQ@{0B=;ij3J3i9`mcK~>>@70+engxWZiRu za~6{*YtFia0?;G}X>R@9j{i4Ns5$De3wzrV9(r6#Z#qj-Hw45=nCIMx^OCIiYTEF+ZYdaJS7{7PhTftGFec zu(7nBppvp-{$=KySG1_84ZiZT-xKH>gYSE%+v~cJA%{W7$2wH^^k0iRIYI$QZLmtc zv*y*Cq8#7p7-S^N8Zywr(%U&#N>;Jg3MMa?Kb82rz~m(U2iu5C!E;019xKL0{>Z~N zqf4E=N!G3E8)oR$Z1a!6VtN9?;bdYjxjyFHZz~YOr=9@0-=Ivz8DpA<1fmyUcdk4o z#+9;@{90wAC8g@5L`xOeKoT@>1xd`eBtHYc@caegI1<~rLgBL&6JMP4)V-Y_34RQb zvJ74mQQ^sj*z#p-RYyG{bJXNF#ZkcpvQ4Lkdb&H=1&SRAi^0=bfgUbDU3@(vwAn|F zx$%7*1cmBM(LKm-CG5SxGuKIqr~{}|J`3&&pQMp7%f&wB(_*y!)&*2lB-}1Gd!0nH<%c&!7nHU9{EjVkcdd^B~PrC!_Vq*rYWKc>2P8M!-Y+dWsA7l#30~A!3v}; z5;FWTAF7`-_Oq&E8;|B+G`Z}jdU4iuyU#fNZsBRT80Elkejx^XA8b7B#JPy9c4JwV z;)4SDV2~5bb_jq@Xi&8+9PMI{T5Sb-mKb7Wh3#iM|DeP{qRL?Oisgr}^UMA#VsaCy zObe)~7?s26h29!7R6V{)GGP)cM|*lepyeq%yn1iSUj75agE{mW8a84Nqp*&ef2s1} z&Cs|7&Z49dr%*I;imk{T&Pw%Y<3J+gp~KXp1R6xU$w5i`x;kO^N_uS7UJ)$l=oA7S z;4%vw72JMhyQOBfnyr;N4w}ws&FKi&<=_wp+<*y+B^2+dgX-xTXa)^Yf*2~I0I;M) zezPM1pL0bvZOWgrEW@B@avK&>S-NzX195g~)^bUOR-p(a3{bI5`m~RCKG>dn9OUyM zpg)TP1jud(HP2cc31yejQU+Yx%xLYEKy_qbdW|n^fC8G5p+RMBQ*@$f%)vK zt3_Yv2zuUeaKO{5izUcWeTpjhQ!sNi__deU85VUf*@zO9S#Jgwquw(OPcq`AKINvb z%!7GnqbNxcxR=VHQoBmK`F!DybnOUN5ZLHgwiHh#=nl(_35nXiT&r}qI0MOH)^G2v zdPY|F6)gluC-&CO46;3HI@?D%<6Bd?YqRgp?VlSl9h39D;<0d2LDLZDi%QGp3wMN! z?n=A6R?khT(-|!1gG^d_F6?l2L7j5_&zoS#q3=HZbR3hCw@Zh zB*AW^D?SJ#}c8E^I%N=gqQu=A&cd>qzA&RBk3b8TD|=hYu>F%~atZT`J8oIfAwgqgX$q4rU;T_Gr^21fCuF_BbM9==m<2b?-N(XIsd}=MX1mIb8s$48rdJ(%G#X(wn*n?`v zwd$JN(H=L|#lhLEQoGgqrXfGjHn>PdVnvhJFA6gc`mo`oK{SXKaY}w`-5-^X2lm-D z6#a^8IqN;{nQbLv3GPn@6~`AHyl9cv4&6VpCfF|yeJDlFGA=Q`-Vi@Q7{m7D>qyaZ zi|8uPhcDaK(qhPOQCNM9vYA5g4rj2VeXz#K>kgmC@iP(TxPfBEXDM%9U9-RVs?xN_ zvz(9$6Jxg6Z`*cXWAcW+7$rumIig>IuOo%Tg`KC%KU$%xQvh$_ZR^29(*Fmbe zoSdRz-p9^pQiqEd^e#4jH!cTvUv4ohN(9v<=#RuNgdyNUkrU^NY~5;jmLQKwiHE(~ zD}xw8t~)fLj@!kkfo;GlULFwGPy|g5jOsMbikGnOPnRNKkzd{Yh3IBX;jx_ftlIt+ z(jB(Og7+kFD&sAYJxp>+pP$F%Wo)5;E`%8^ZBbhXg`psgsfao%_*a48Fm+SLAN)ex z_%z7;kZdSIz;k@(&xiKxFgd4- z=E|K%O8pyTu$3^5`$a?oKM+ji~@0Ce!= zD!kTjfnoQpqIj)y15~ZFVD=n})@}&6+6g2r-IgiinhT4>400O`gWNd8mrZ5hz`D%q zZ!4zNX04h!v#ySi_57TL*1&QTC_RcXKDgzFT`A1%@M|WGH?%^fmN0iVx*1cN3B!%|Wl%Yv6KTF@ocTpSvXUkwSoZ9kA%M zNUq-Xr#P-#;j*<8xRG{`HnTt?Sij9KaTe6enIZW%(xgX>q=Gvmj(k|V>0I$!n2RokS}!TZU&DT3Vf9nOVl&7F)IgRg_(Neo5}X!*QYa~_}6 zp#Ih`7U%p)`g>*RN~5r2v2#TAR$nHn)IS+?tBI&qQO7)RK8pd}3mZ$kgH&VFE0UVx za4!~JR(t6bSEy1L{$Su=#+iaDT5jy|@8dCd&#~eyB&G7yj?m2vL&O4Gvp9;4C-jI> z=i`vwXa_sbj5A7LSk49aivee*9fy6l=6plB89HKnnK&;NoiM}RV^F`CD|Z28S}+DX zqdQ_hgMDRag5%96H2+6zJO(HYAUzBzt>TqhX1=A2TJMVvqcWy^GspEntCZ>vXceiM zQ;S{dZILGw22UtqyWO6^OuuV1rekZppMjy&`z6VhRK@6~j zJlb=C6V*D#n*psx<84X&yH4VPc>DyKRvPWobp6SV^760o92V==T@so^v~k;*fhRfp zIIH$9%2GKjcQeZoG;*~26O$@=VL(P3IY;Az&+*=ag?0ce5*|_BP{prR0GD+6{coTk zm|>k3$vt_6>$k`WF{ZKPft!AOs*;!nX(AprXhRvNjJis?GGIEPuad zp?l6gC>a~(EbNf=O#PEw>x7y-xjK3u!+F@&^@s$pM==LbLqr;Yi+X^YmHYTSeA@DX zl~cVhG{2vXu%|dDvXHc?RxzTP8(}B_K+(Fk=0;1OQqvdc zIZ#x@lgG0I2iwOglhA`cZ#YpC1E)d3;@(XO{VMjAz}Z!k9nfK=;^ETUXIY+lW$JN9X{up) zrh{4Ytdepfzd(CW1W4QpolK2{`m-*qtp!||Y7s&Jy7gY)-dfX}ek``~Xm-NSm49-= z{;;595}`3Vq!Q1-j~<W`RaeCp&VfpryPMiaz zm$}rb5GnOvMJtQVvn^YKOGG8G`*@1thvU_?&a~{Kh7(7D$sP-H!oSgg0%|uFiOh1G z9jMMUv-SkfM$tISIc~&4XD7&l#Vbb&!WEtZhG_wo)#LAUFH>cm>wu|uhiDqz(fj3G zm52U3^^aKt$8tS}fKUPsDX<^^qKIiMowlv85&&SK@AnFvKdgN!mNI=VR={ne+ob_S zJ!cIHNfm-*PPlVbdj#=%p;2i{=BGC)NTCK`K;@WfJ>jmDM6uA=xtU1X#{te*^R~dd zCkhrk#tLY?-d-6XZyjDAuXb2;kgp$FqwCpr!eFiyr@)ZvBtVxJ0%KJ*zsp zc1SuwBfvDW(jd&S9Q{*;!S9sQ^f*8)nUbz7*nI(MNtlEyZ}s%+B8cblSnPW}wy7@` z%|EB(QF}o(;VqNx_LhIlgHg>LBv%2-W=~DF=TWu&5p)Ii@C4qwJB0HyY95MTfJn2s zf=~QW6ge+kKHw6HeOcXTKFqPj1s;;0PLPXnX2w_^IL4K^)C9T8LjSp{n7;;#_Y+Jd z)`-5)t@+iXB&6qGI=?Wi*<15p>LHWilECgIfmo&$d+LFyeFV&0 zZK8BhSdZp*4YHg#P2=V((v8@Js453BC~!%0!$B)bTZSpa~Fd1Nq!>=jC*3H5)! zjCOFf+epZMKwN3>y!}ZnHCYx2$sO&0h!V1RndbbnT7N*v=dnrSC%U7W0e-Hwp^e49 zLWt!s&fz{}7hB=}4vd%$EvN7D_%f8|bAd;6#+U#DLL&|!ktT!K0K7MZAl~o*URTAxzA4>2u4?#nr;2&t2k**-nAm>To zng5dpc1k4WHJ?t$--YTY*4<#a&?h-I<{ zBp}c+16J4tQU-MSW^ zv09tyd(gKU6f5d?PID8*r`5109ZVY1?#vqLa30IXege?Qw0?WB-Dh!ZM)Uqq2^FpZ zHYB!XyN66ke8t{46j%pEMq%SKs*8H9#wr?fIYNNQ#Cm*KW|!ctNfj`3fvA${*s83t zttbIE1_5mLcS)JnNO#ZTf_Rdp;tMe;N>@Ux?(+veG>Bk7%n)`Da4o=`!f|aWd?jfT z3)Zg$mF0djJqUaqCbwD`&RZo|w$QhnGU%PPqI`zP(dtQewo15Mygnl5GhImlKeFTD~3 zu;iHi;~Vu3CtUdgWj>dv))LlZ@$ZMf(z{3%A5?>;uPJgbL)j|LlJTQ88>Iv^gy05SBY2DrZV?qdRFulqf+@4*5q#ng|W> zRAEMgKqr_0o2Hj!73d+J8A!#m>mwaymSglQNNWimO)}+9ku~b=BinJ0lP@ZJJMqck zt>j-#x~&sx6yJ5HHlqJ-0W%pAPtnwie#=S*9nxNpO-E|6f(l8BnN~F1ZYaW*oUL2{#cF>`ql8J>kFL zIyBYdV-1-8STL~ST5`s@yI0`+hc4!!5G}vaP-c1VgU!D9710p?)g2I_5~Xf@5*{Md8*`hlFy6QoZ{bGb7^8=qQxKpm7YI>{jPp}+znS9tj}>O);r!o_RU*mq{P-=>IqQECF97^vTDPig$E`@}E zn`YiSB`86zM%LICUgRiE+Y`{v1cXW$Q4Lo(j$0TR(3<6(tOVpKU?^%^at#lSC^~BT z-$<3`gF<>Y(V@zAxa-u?-r9Z=wX!os_s+{P?lzw#(G^t%lU?ljJqIIGBz(dK4*lQXsH_4kYZ_h@Co-=VRBrm#_EWbvz#v;=OY{JW0)I$z zT&{89XqVMg*Lp=;Dz=WEBbiM38X(KJJll~+o~GHGQw_j;=m-eBpTPTVuaSXseo0vB z9A_x-ycje;hQ_Fj_`ubMj8d5#?#8N8kNcJ-8zrab-jr&SQwS&pp%V_6U$B&GI3%%) z^)yPfb87|z$i)&X$7v`G$i`1NdEt*sz-8Hay9#7}b0Du@5$-8q-=wv8>{5g}X{~K& zu9vpixnH9!5szE6f!wL#th=np50g-s)MCPH3 z|7)~=hLvCKDnyd~7u;u(yI-y-kHOv+gjgw;=9QBMk!em@Hq)4;z5~)*fatphQ#YY; z(WgmK(F+%>#qX@jQQm0GG)BNlawUfkyfl`15q&^o1{Efm|9IC@j9->v4y3WV8uSAAIR((ip&g$ZfYx%Ze@h{wOde_8Z*PsW zl#}ZU_a6f0__kGP_o9ce>{E?Jc0kr?aHBx=xrXMqAvI^sjKbAOs>=4~P86~GTF%XO1Ay&- z$`9Sf!-Qi=g_%=h-hAY7$gx2qSKbpF>uHFm<0GH%m>m6x8IzdDL$G5Xa!9oQiAQ16 zxU;vHMzFQBnP!k!HN9u_Aqde;VS?BIpJ>xrl!V-y_WLGdQ8w(gPcVu9W)GtRvrTbV zoVxTYb1^}74h%F|B?Qw^1U7bOu!W{%ThVkZmyZVNZqa3cgtD}YbU4wU0@Djs`*tTN zU0S*gx&@)Bo(s}a3n5=vznIC!-&9TIN!9yqVnnkNDT;@zw=+|>#z+5MK^m|q6gJ7C z^u3IB<{@B=@SRuR*Umk5FK=JL4eU_kH_Aliy0onLpE>CCS^!l`qR^U*-P7UPJml&0 ze(a8n0_<(YJAMX@Cr(YMw+d&gJUemvG1x05UWZ^K)v(qL=)y=-dqjTIz1(Km)-IpF zQ*l9At_Br4K6I2O2pw|WVDlb9fl>|xFm&-v3~PcOCVi@Uh7K_>jve+^V-Uq^r^pmH z9DG!XG4I%-yB;VoyT?=j79}q-9JKEfhv5pOYH|3zt*b+P{rc%U)^b$lI{EwPNAZq1 zT#SUcj2BEq6Y)OeWw_#02~Nrf>j1jbqDoU`-;mYq@OzZ^{Tr@Qmh@>?Bm@4zGh7}t4C?2X*^=YgZxoTy zV=d689=bm+!B47ZXxD=Jk`>g82AZx4jXE-l;I$LtqH60KD=kIt1M zd&_Kn6EpC}09nBu{=@I}p1tUO0QWNtZWUJp0p@AFL<<~JD6Ma!95ChG)AR2Y=&&P? zItU5z+5*y1)JqB$1i7p^!0|6wHqD9L(eL0|ske=14`80hy8B5`%FeUG} zIQQxeFNTT2pve~SQgQQ*TdO_bX zlDdZW#TnN^VumrdQ6Q(j()}!JH;U<-7kQ_yW95h&uz#T7I2m7PwX@S>)2$X0!P4qF z7R2@pX!P(`wYI+xKRW6j`LiXv+A+Xu1^^KQ-GNLAY8YrkBOB@7X&0F*Jy(F&d2M!l z6`z?P2sp*C^GT4pseO%vg_EQQ1V2%#{S6trM`O>p)z1Z)y^>dJN*9a+f!m)q1 zO`~0lVX-vk0}YLqvVuH_^ijLCj%>=U)LtgzZbA!4zA25rzD+bbE$6H*0~z={3l4k_ zcHfydP1C^0{>>!LN2`HPpZ^*cT@{#h1C^BTyG=r6uvFhVNXY;TJW#KVcr!eV%SqPn z$UjDQ^F1 zR;_N#YAPKEFWO+yvnInrDmn@ONa90Ltsxo!)5Jzi##(dPfv2(>ub8CB(b&W_oi13` zf2NT(NX4SnkKrCC9HV->(A0|m)}cJr?@xGb_ZnuHAdoe`kD#)^R|U&(F%(FBbsSNh z04!Wh4Q=HJ4C}->f)03qMDv(#Fs7;=Zg7rW%nwT>LI?miN~7c^R*^M6eHHUJXe){z zdHZ!XHu1oUw8zaCFayGexO4(Cry*E5LW8c?lHzkJ5~1!5`G^L;SSQ$9h?gpqYqS?6 z3y@hLto0FLo8TPRiym_eMomUPVTYdjbu%gIS&@#TNl*~(BU}|%PO65wXztAvF!nQB z;UKGrl=7O4iAPJ_e0X%9w=MmAt+cL}7p{kt+yma7D21=a844DWI>{D@{nF4|$@ ztr^CCQ`;a7J_59%0`&^*wLN!xMe*37Jy`aFq_PZEHt2J|yLbS3;rnFO+MW|vsH0N8 zAn8S70ih8%3v-wSPX>>(@7&EPAIFcS;N|aG1(Z@XgUS}oAxy7&fKeESD*2mODm@g9 zqSE^6nucrd$u1DqvWf~_mi7RNavX=cl{KtD!-#$ix70acFKozXj0IYB!(cauuq*5Y zxhNX3>3UYKJ#`()7QQjd(`3@9qCjN4-;EAHN}aH?su9&}X1hv$rT7TO#_Hn!9K5Jv zjtWi*t|zEh?p6Lx8Ce};{f5&m#1jkqQ%(liOTRoSXSU`T%J4jbH#YageDeS0G(<@n zrTi(W5ym-+yCepr0Z{LCELatc4QwRma}dlUPwS`Eii;wGrh5GO^lN%@Wu*TQbhZxs z&pD8UI(S)y`I1CELhue-qq}Y6$eE~LLW`>P7iEYfVsLbPsTJPB35WKZ5~yAIO_%?c z4;fh}I8cF&8nM`$hcZtBU*_eRzLJ)SN|&;yO$|dBr{manHU$x7%Fky~@|7dS-b|Tt zRgBn8dId+p1Mq<2#PYb;S*wT!fZruafAJ2F~J8=s%42Uwt}6a$Q!*& z3&XfGMpETgG?vE4nE?b>JC>wrv1V-}B=CNo=Rzg;%oqEN>37ua;m1X?_4T--Ncfl9 zwA1@jqwtE2=y180Nv#Ze^HJ|U_B8kvk3B9dUz!1@c-PA(-4cscG-F&kOTg=pr$hKE zm;j4OZBUgRHanlZXgW_HQF9AA>r~`b)ALuwyr^Z zBOU*qK%}fvYT9cT2Ur&cGYAjbrJZbWc^I%|-Ko)PAOIWHs<^6{Q09m)Xo??+(4#&k zH#!$0GjCDFQ>2>bX`r5A9~y&l_$*R(u1qPK-p~yULpyyDsqg>g?}+=0ap};9A}3Xt zLjg=GYVRcxAfjj)7rXB&szPq=DO%7nMsRqq0)e!2{qayZhgjb;$acUS{Xm~Nqr@rQ z5h?n&hq7wxjD2Vi+vJeH9sOPju6uA4g0+akoqGgJq%lh~!Mu3VWW<#KapYyI7B)zYaS|EYf~f z=fbyNBO9V;oRe>P{Hsg6#esFYk&QR;ZCm(Q@d8f%8hfW1qwzou`J>V+eyz7K&oZX) zTZkmWY?x>--7Ch``^6@BbWB8JbfCZ)dYe25p+gTQ5oUrytXvod@}Gr9(YxFD$cQIx zCFhSnLU5${)=_7GtCCs!TIYPa1A2im?j7y+?9DEGi!3zLlCMDLFM1G}3kM-sod!Wz z@9VgFB8C4khN+c-*>aR6+|K?Ea$x&FT7^!!I3Vxt5_ zlBza536u6;l;3db6)q}+J~#J3cuHKFL*H_pxV=08T|lBZ>cLJdUMCyIGW0qyMFahZ z=ti@tM(SMhh=&6KTTU_BXYzhiAH_hy>yhM!F#*Q#<}I zEv7V@kU z7z#q!{$%=(NOZTaD$Zw3IeZ94LOH2FExoF&&6L96hn3w=D-yaCFIy}u7;$=_r>0|| zL&F^J8}%`7A!?l=3gK5DRGZs(n0Z=l4hM3YBpxyL!JQRe0$Ig2$4X&8mMXZB468SA z(2Yj#LJz@p^(&12lFD~5$uf8ls7whbf|zp%5S(*iOHC^S<`#&s4a%g5lYaM^g@={Y zw8zgR2L=v4qh$Ul2Roe#l=>PKTg&sE|4L67IMN@O)@lRFIz0?plkBmS;vy|lyO6{QXo`oM)AkVvN2~kA*eL?zS1a$e+)J0 zi>&WU+ZvP0g?MyqSzCZz@<7a1o@fn{8e}q8p*q?;CV{b@Z=sk?@U>%!nrk;!mgQnT zZ>I|e%}~P9q!5L0bE6B&0Hcg5?umjexZJ2%7J{pbxVJgIlYqhyvp82Rl8p3!>vD-$ z|42O}I`F@4#U27YOQlGqyOT|&gG34mfBCTF*jt7y3;DOmsq*8BKqa}Q23@QYiVBtpQjJ@rUfVsUa3dNq5 zIDC^Yr?nar%9iQD>qX9=Ax#h&+cF;ZYNsRSv0YjwJQSiqhatR*V_-vV^u{iwJ|V5? zv@Z-Nu@ZpDQItof2Zh5|uT1D>2@vjN23KWw>~e#>_)IE?GgY-r)YK4cfN9*8(%Cx@ z8XeC4k4N^Umc)*zkQ5k-(FxzI6FNLQ_`{#%HtB%xY4u(`4TmOmEFLF0_GUB|193xk z0!DCasTqrP>AvN&DIYaf%ARiQEgH+QK3B)P-irCG9V6e*b0*4%LG^Zr%bUec3^dH4 zLy5=-wB+xLl8Eo>o#y&B%T$gao0D}aLbI;^?eTOZ6<|w__z$9wjp){qEBaU3=Y3iA zxuqN<$aG;7MxoYI8m;o{BD}Y$46%TqnZyW*FeNqQIQ6^(zS?PmNVXQey)-b{J{5rO zIytpB&r_(7O+M~&lRI0k3;==3Ej4kn9$7@F_O2fXCvwrc{pDQL<-d9KjzIgABT@%~ z6{4(QC63Mp`h5O3T8U8GINW$6es08qhfRx0IJWIc$mw%d<8QPEg<=(N?>r(#`lCWv zsPNv*=VK&=wPwInRgb#2gzcA6IME)9$nK#F26irW>Ao)h<>s=$SLj(+MUZ)BR7d9@ z|MX-pPHnjNeUdeoA=oUVQ@Dn9<;j03fYXvCdGd)Oh0k1*n*WVy>(`tBk_!#&|7dU8 zzJ%zNpOn^Cf14U<(N6l=nPUw9JSx@(po!rLD3m)!^b_vlTY%7{_Z(KLYza|fMEdmQ z=%~n56u`slIK?}bFUwOBRg*jI3rjHO5||=egWc+|@NVEJ0<12S<&lTRE#G2pS6haY zpScWn8`^qH> zx@3zV*vAFuJrwj6D<$rWkzU^}@{UkxQA0Ph*r z98tYBGm$3s-$}uZ7EKlqqYyquyoZrU#yeoY-?!FP^l+heR(g;iIt{UKQ#iw{xN_Ym{KG> zpO^$Q>LeohoEO!MKg5jdN4!e)aw=w3hkm(#?2qWRbQZ$g$*lLyi(cJ^`Vlf;0{h(+ zp|M%Ov1|_wO{O`YaICiiZS2NiImt`J)4gQWwa%rlkLT0d-N2$WyPBbb=G3Oj`}mzl zp$_ghZ6?B--JlS|J}gDb z5XP>QzbNpWc$h>;GUb_afjOJD6jI-x!?u zB%peG-HOs}by7L5_0m;Uf4`BUQGI3uA(U9Pifchz(K9qI%$6ZP`2&xnmzNtp30%JS zU0Ez=ZOu;5%RO^$2#M|gxVM+F-c`T$MBYox4XD7*2pVeLdYj=u(9Y{(^;KZzIlK+d8Q|r5doEE9sku3r*=tati8!QE1%JnW&tH zr&k(rxeFN3EuECnEkFU5=1SasoIMhjTJZL&z%O6<%Juei&=xdmAZ(4T+6Hxo343cW zPA=DeaTV!h_7rm&B@4GI^^s=|FFC{Zdc%1*jpVs-)7)w>fRntbB)p4;7$zB=m3hFn z4U*7$I6C@m0DAn=uj;Z_`PahsL6WPR5*f!X<-U!nvQ^qOc-aGQSvk1b*Nkzrr$>Nb zNQifdO6B_q7owA}kB#T$dt1gsTe@*lY@QJmZdzM@=fw4Z|GK8Xqx_O}+eNA5_qrv0 z|A5frS|=f+0S8zMZ`nV})&|rJ;{EUuyUo3L48>fvYw|%5Wi-)8CJ5lH>yq>FM`rdk zAJLmoCUK+OHy8oy1fMccGcR+~9ToOf?1UEx;C+$g#U*0jNA=n;vBYl?7@mN|qOWDf0YiwC9G_n^0op35z!L z+!IoYK!;CedR|5{7m_o2Wp&KI@q`i4p4@m5l33gd_$lSYJ5TyZ0|36FL)hURmXx;u z&yOUgjH6=mu^BeX`yCV&L)OGIOQ2x?{Sbk$tb@bfTZlOyVm>C!tl}c%7b=Rj2$_VOdr>iLfv11OkAPTNq2O>K zQO$^k`Wy?cOY3k~eTk9663nFX;r2M~eJoLhnm@ongvq_dEXwM1uFNjQy^TAoabI9k z?t=|Q7_9{7PH#b=z~jC~x+Jg!19+XqxDnEbCq&w>VSR8|56RVn*;(`_ePnDeJDm^{ zYkrW!N;PeP#>VIK(&02S1erbrx9W<1D?; z*O=SO8S|$hnr5s3fxR78XaLM%)jynrJ#xzUV1@@@Yh0w0=4B^QF%q1F)`*0X>jYn4 z?;mWGD3;=8{C})MWpL4{(Ck9#kyHWy6_^`f!^Q(fOwk!0pn*Y>Yo|DsX>+(!X@Q3x z#9!=3aC-k^MRfHtkY{8y8s?pP7J)Sqbppa}vf+gov6cl5X^;xDE$SAnq8eW~Q>j6? z-g??D9hiua$!a#>$UXl!u6ErqM*_@f*Uaw-_AohNI4h><5W#~2x}Dx#3{nbOaq2AH z**5`hOGl|;rVDQvtZ?ML#Q?=uWQyV3JLS2a-j4TZWTF3EjSk@g+S+OY{p*H{6UyNGZ(vrk?I)l7z=NoY64lb(-kX8 zn8B!)0`d#y(W+rkm8yAO zTVJLcv$`d7!kE6#5D{vouStqv!5Z9+8O^7HGvG?Iok>YYz2{E7W^?ijFv4g!u;96d z1OjOHrz(dr`E@6T$HaK!T;aFRm6$n60-q(46EQ9hNUZy600II;sq^6_E@0Od; z)*_$wn5FbW&rR~H;!#K!J8yz>U*)hyxg~ngTf+iMN+6a9t29G%;{}x~n6hE|S{a}@ zPFqQzI>xxxr2;y6V83P@Ew9u(%V-kPkUr5r=l++h=Af)(VuY}-4Oq5>H(nUfLft3i~ea<0a zyyeza0E#Pm>cA}7TB6?rXKX4Dg3Bth+GOWsXcKl0%Josh@n+9`fW+=VH?^D^8l`I6 zV)d_nY4-TdiX?k0qm+BYlHPB14DMJ8`kCO~aUq#L@{Dv}8Ai6QQbwhJ#n21om+D5a z(M48gWJ&d`K@rahAD$@BG7$@=(Tij=FxyYW76p>|WEZ(|;_xoHp9-FDlOHoX?;t?; zomk%39^9stIY#B_=setU<1gme+UW~FK$c-1=g9<1y8ge}_{+&71VbfHHj)BnKt->h zLeRd_?@wfFbzRZ&O!uoSyX=ccb5jSBUx-8ulmkA5dgwAEW=UKWlkICzzE(F!&fsnn zd1#G5k+)}K;o~MgMv?# z9EV3*@J!I+H*DYullSPL@?LucxmDe;r)<2&X~-t9hR#@$9|Od&vkAf&&+m?*h-kF> zII=BMT%jY)MHC0{YsR!(U0-1$Nk|+63p^vI>2I-?Rm=)8gv4}DCiGi`y8pae)Y?N8 z2MoET-9a__(lWTM0-vG}$d;1BSEt}<1jrIMgg}fmP zH|xGom>Bzg;CvFR%R1Q~Dj2ez6COE5w?g3%(oqQL7s#k>7n&n77-JWapopYiAH;if zCby#VlQ7FMTb&-QUcfp^hA{Zp#=bPsBgx6Zn@8-&X67WjV^$@Gkkcxz0!zTTlUMio z-ygZ1=2tfsW8VzoAG>1c{0oslY|7K~K<}A4@WtFV@~xtRgrW zAo3_$szS7Y4hebdh7HNl5(_Wo5@iv64Cxg?r;=wk;(j%)3ZruV5EYJnNB+U_L6POV zchbkX|L)NqR``p9X=F z(y=J5hQ&0{#0CC=i}O2$+Jln=Fvs`b+!A{0h)jS*nU|JrwUN+84o=ga8Y)Gd;uCx4 z--{rM_FYBm(F(euoG5-go<~9zk)Fh%uLIM~v;rCiJz3KS$HhmqZZ-PAc0j*)3qm{_ zi)tLasfL9Anj?bppWvw%3TtH1Js}~(jkr;G;gZUp-A%=m&mSw6fkG7qrLzV@vQD6s z!j$6UX1;azl-K?c6)oB(HandQ^pHKjkKu0eHPY5-1$BWO#T9@hAX|EFtaUm&RY2LV znrTkt6sCz@8*C{CF;h}Yrf40@wqUc$+b$}PlT?X~{`{AQ?&Xx%3JX}x9&()P!XZD+ ztj@;3CzJ#2NOLRHqoPsHN92F$ks$+v8-{PGquLmD7q%=Xwi^N%YESoxt&9p);yqp# zAzPXhL__-U$e7jdc>#FqGc+bCxPTQb8V*de9w71w4B|c}!pe{>{ISK_gqj{qNWx>) zs?{5iOdlvcd4Ak$u?AhgYBXysMZLgsa9f)-;;O-djc6csn@3!;Hlu5~4yE7RBe|mH zRe&EQiTxC}V!t7I-S~YTbX|WX5uoOB2H^7&Tu;(G~rWy3b0#eb2WqL`Xsrv4+B)-f_5%n*0-UIJeH@we)}s_ zW)gRwAJgBmw2R+pJ-CC~^9vw?m>3vRkl5=hx2@yv0wZQpEWs5wd4qP!uOd`%75WK)Spf@pu_QdcJmt6T)hrYpuS%#BxU=kc zHq){`hw8fk6Ux@$$#luh4K2MrEoVpE+tS|)NW&nDnenFOV}2VRV5rpNP|Vyim1kkV zR9`~d3n_@5t(0Du?Qe~cFTPXZMm-T&WgJDd`b>k{of&>Vl6bNKuDPLSqVXmnXbKVv zA*8z<5AR&Pd`KfUxDHwZkV*n`jG~thVQ|>U#HW|UyR`4P-H&b7feQ&%v6MV&)aQW$ z7-mYCfp!zPXk1F9W62|rONGp2FasUfi!R*N(JI#v*83?dMgG%X| zCP!6M*`ml4wjWy6A!Y_8G~Xv$SFA#u)hf~reNmk=R@aIQ!uh8mr92t}Jg@2~c_UBo z&F#!>=&<3tk=pH8Gu!96R5(uV`o*+w8eG|{lFMCV!d@^g4|}G!j_Ns zlSJOh*&WPqPM@fS4~!?}IM}>Y zO*yvAcIV+fs?Tg77iYhe$uo%T*vgefgg`H-hMjFzit)WZ6g)sQ4yM6gM`gUunnis_H@VLsiaabXn#%PQcJ zhm!P~7HI%*X^4_?w^8W;c<)A^(StLvpX+AOZ2}jaizG>~>` zl5_5I$8pwLi@TqNRKvoWqHbDI6XtC+rt|P8+9t#4BRffRFBg-7;s`4!5Oaj10Hdk8 zIf9vKD09FD2#`ojX^t-6<3p5r97UZ$^=PYRfz-zs!>q0pH^olZ@a?DCYOU*%Bdr_~ zq>6OSK1c5$xubvqr&A3`NxzQ&qu61I?cr}K52|{p^KL93??5_uX*@pnGaxF;nggZG z1O-Q{oo&m@GL*(zN-G=9J4@frV}@F7MBN$?TsGsitONKdrsMy`8d_X=5}29=7+n{n zv8d1cAOy=s#qu1&alfmXSN)=EY736u**4A@0og!Y%~RSV8!cj0CD_=O21bN;bp}fJ zo$}ji81->r1F;VsP zKZo_{%co+ISM~27Q>9gHk{rwIVa*xjdh=+?@oWL$S|xI*Bw52%Z5*|6US^K4^79Bp zP-*T{_}vPGvw>p-SQAUE{bPIcna3)SvN@I*&h=gsfk)+1P>tHBpFYSy%c{p|L5%I| zzPTk=AT~-?5uzCpkR*w@YB;gDlY;n4hMJDAJi%MzvzvkZ=aP=udjbcW9J<7EJK3E) z9a~5@nr3iN7IB15Ly2z0mvvoSoy%1QQ)503O|S!`%G!lH|BHLalvcu(KI6vSHuU*Q zcv{i3zZ@ph?61=56e#9Y|8-cZF&I2^MEHA{}D+mOOx z(Tfr8e|VBmQa~l2F1z0u@Cf(&ZD^nZudjepwZN5bg{NgMlY-~be{vRI@#d8HG7E+f zw7!|CniS~RM{9&2wpcwkP^o1j^{>+%jYkI=YCx4sY-}pc;Sr3tW319U)%rAzRmh%* z0Ap6Kl(1B?@))M!?q0O;6}{qrEmu2p=x%~_7)}h4v;Xi#k8ZCeU`Q^xfoRlY?UL2^ zdE2YQzLQ2jzjl|{L^h9Y&O)aqt}xEobQmMh9#>zMd)i35QNB3ixCDW)#Kf^r2n^sP zIX~u?LQx{XJm3{(mWMwy;RT=98n{KJXbAQc$M-J!7en_9c{5DWcudcogz-+5v}#Fh z;cia`7qceXHngDA5Mp2D0~wvmUfq`Ua`QI+*iq3&QZ|)T2rNedWJ7 zjGNT*(KQvYQ9r(mbMgt^jFAdU8JU2S69k)H1O@HhM5tir_rdikLa+6=7EL+~XPH&0 zER*o+&FZrp*!2_EA6DlV+Sp`w#i5Or^Q??M-n4;1j=6K&CS8AjUffr-2P5jz=ROA@ zEGUg)f^al~9mx@pBODtz@O96BL2h``2hCPOXt~55uS?rhJ-&rPR>sO;gFZA~@atY_ zRRTz8k`)exMdZ4go6SmQ)NpA|Ig6QQM`CZ<8As>0HAy!>ll)J}l+Am_#_v;0JR9Dk z!WdX!EEyKOC{UTlR!D$!PHQELf{&R#b^4Xu%_5NoB@BHM&^icifOHpIS}mpah@@Vj zZVd^_5HcJ3**=#h7{5?RI6UKg6Bt7Miv!?VJcElN2N&D8um-{`I7Nz$(ux<_--$Up z^#A`*km0D(6FIlcSy#{$aNh316M^un{XLY!DU!gO)&(u!rj@vU>GdK_l&%k{d|91TEz%fqKdun?i?VHSKt{SM56JE^n7IbEPZ#<6_2pY+WA9 zZY%?g18RX>p-pAu^*ENX<)PM{IQI zRr+aWP?@@^tdzQqQz0fYmq3^J-mShbD&}RnvKMcM6fj0CZiHqoq9>xZ+5W_Fvczo;4oo9+voT6f3iwiL02y?#I@rwFKyl6i+wR1mTY3Wx2Tu|(?vHS6`uS)$ z2Y7d44E`W_YA4~2jIv~6`r*&2IOMiHORq8)amwJ1Wn)#b-D0{Hj22|Iycnq|N)CAN zY_?B61F&KxvQw2XG=ZN|zo5J8(o!>9{0o2gLqpOy92o{b;3maFamFK?P+mXJ@YDN} zn9OCWH6N7P7VGhtyXm5fZn2yDZp0}Ej2uqO`R^nlQF>*Sn3>M|B;FNA)+eOA^%|4~ zGCqHCi3=Jq%cO1s@ca-R3$I*wPNR{a)bEjaZ8=B{d3o840rfU;9!p?Kzvs>2u=57Z zt3)zi)uD)X{WH3>GAjgcF>FYbM&j>OCPz;c&=Tn zVm912`5j|5VEpKod`ex(#8L-Gf=npb(EG`tYaDmz0J$qN3S4$rvZL2XO=6kmWJK#S zCR0r|gB>IEy|-+<4LqO~%1*B~Ko@TlHooS+lFUc+L+;5-W`#?Y$=bcru|Uee98^B~ z&lSj}a41$vuMa%Muj<Y1e7=lqCu z1|EpP7FL4LYUy`MTWfRLP_gh7W|5HUWCe$+ACsrwfg)oXHiEW<-ZZ^+9PYXVYKEYr2f4^3>r=WbXc7<%zCz*m|aFD+`Wg9W}kjv4|K# z*YqM#ch+2?gj|?W-av~`){fpZa35d<;ub6=r)&F8OChGIM2!_7W5~EolW$oMj_nuk zLuU1La6g>3BI5E1T7#_`fT6QdlbD2w8s0Rsb-TG5?W4&v-&~vLOhyoy?qS+TzRw-n13kJZTG1&i{-=izWG`}TQSE=F`_wTBti{`b# z_EqT$_a^`ac=z8~foQ@Q4A9MX>*GtU&k+s*PI@AD{_$dr1L9{;qkPs5M?``-Hv{CzbgHi$ z(D3(71LxaklGx#wH`*O4LuogHIgCks+PHV^A6mR<}@Ew-)i5_|4Vdu*CkQx8p5SS>*~1sJ#R;>g#EiJ>tJ-D^It(+}C)_6#cUo0>Jy-b*qh_?87#s9r53n+_AIw z=sUWTMuATkg5lQTcN_TyTe_H2;STvup>7~oSz$@3?gInladc32NY9N+iA&gFTNxm> zv-C`gbg1DF$zPAoJ)tgbN=%)W|Hs5|&})UPI~hcj9qhk-|Lev#{OjcS0~CCFG2wTX zCtQYR%y6E^JsMfCR>`Q6-8O1)_{H;zWLjJN0U5LqQ4%_GL+BpZrUlncj~93CToaa3 z^{RawW7u*RFE+)6*XD^p{-^flk-MdgCiPh;;OU0_;1^?=wc@1Vytmnqxcz`YWIz_Z zDLzXZ?w{5|Qh0R6c(z8Q?UyaIv-W|?8vClsd>fRv&SKNOKc)CL?YNOf11Q8u&Jv8y zWD)n*Qi?YF4D^a-NMi-n5C_p}v0$#}HSCN9R{wCH0BJrF?7X<8R49Pk6A*@N(gbt8 z`;<)^CLd}1s9PbPjOC)rNJ*z9m0O!j<96dKmV>5!XbX(%rBDD9a;tRzV!Gu8L_=r* z6U=eoG;~c;C!zocqVSbb2+Trb5H>l;NTi(M{V$3gvM!wiB0eoNZUh;3dO-2~Dx0-5 z%i~jrW;RJp5!3hxsX43r(lnBFZI%2CX+3$*991KivgzRBST1UD%6~UV0JR8kmJ{@CiN=~A zEgYo&PaPTKU~<^8>DqL06n+bQ@&KLO08s>8+Z@EwoP8|~Dq=&y$fm_Qt3F+#B)v2a}A1l-H_?Ti7@)9f+7-sk&Cd(~* zig_q@*+Q37xzrPb3rH3=n(e+~h71eJCnx?jS7(~pgmN6p7IKfQB^BuQK>IGUnsh4u z-6B4T)2fhlpf(~Pv*}1P^HAtuY!X(V|9cd6H^t5oeLI5DM4|Hk9!}`?14HE6V&T{r z44(!%NT37HIEa4eRf&T?3_(5Nk1$i>`#jGdEL9+741|^CYfUaeOn;QG?udw!T+(`9 zW2a&a(x6~3Z4@Cmsu*p+0}n+LBcbn6c|F6k6A=w6TX5#cRuI+*P7sf02q&>l$D*)p zCSp9}UMIjQj{j4Cs-{5KDoZ-;7lQsN>{ajv8GKG}+TOXd*S`b+h|gvYK^#3~DDAxa zl@%8*iWe#1RKeWZqeAO*C2_V2IdfD#e1t%y7Fj5*MfJaf1Z5FvH+V33b-J5+mooe9 zj^E(*rLcSw44OUT8;{MTK7pPKUdWQd7?#$ZP1Zblxfwm83e5_ z)hi~I?2%BI8Ne7rl1Zr(t5~fLkR@Q2Y)s&{;x?^y&;E+)3ZokSS`mrw?3LjQyhm&| z;4m?nmL9i{$ndxD%=AJ&28fRlFV^3De;A6(MufUjTsM0_jMkW z0ass?6G;Mm>35YHUOCutPSwW3qc|B3!Svxjks!==cyu>C8)_@}uo3!#d zp!lzlbH8H%V6_m(&LuxX>6yt`>H<;iQ_+Q)r#7vqt}%bz8kFxonCX|r)N3MmwCy>p z!s+63;3+HF;|HBsYf|QaEe8!^C_=@A&TgKPvc$q$pXwJR>HE06i7pjW=uC_SG0mB) z($X8jluq6R_7z>qbnJnPrN0J854E!3Z$SBs9H~A3C3Y23Vto5cHw5i3XuUQ;F(ZM% zd*9tA_ySzqHjhLV9ahq^fiM)arXa=n*RP`p5zVn7`%X5nOry|vWvnjhug$$2Qyq`hi)L9D~5AA&|dNHz&Ktmo% z5bbD;%*VKS*$-j2rgw5J7yF2omE?sa+NB&!HzUC)KPd*{E^Xyo@CA99qRFd_oC+ba-^)#`I|6r4UX%!}5p zD8u=?Hv1+u&FsccEs`g4<-4zu1%@i)OV=k%VE}*ZN4I4?%WKc zHATJ|w+tKVf_GF(M-1W>rHR_pFYKIUdW|Fgmdi*oA7y<&ri~q3f9<**`5D*u)}eva zhjDuPfYdKCj{ZYLz=ZV%+A2@u5a!UZ!-ks&+Ysd7oI3^v#lDinZLg(v=kjcA`Iwij z7nzIbLV)o0)b^64hyJyEt}UGZ&*s|hlba3-RoR0vXH>DFceR#@4%@d{0m@`P5_|!; zgWA`Uyc?f7JcyW>Dy^W4X)8M~*e*(w2F4MKVus?_Fq-X{g5@F&s?_@-x9tiQ%)Fu8 z^5vYqiIj4 zX!}pm#NHsR)m*?1LYT9P?=Dg?ou%7p&9@m#^`MU<6?M6%-O;z8{LN{>&w0Kkh|g2D zG}zl>bFEyzBlOoKPCAwMnx5PMmaEKbge8(Qbb;|BJDW1+jNG>X`(7MT2C>$sVsUo0 zB=`&4d|iH)LFpqcPsrAuVNZR*8{uXuEz@s+okirFT7x4w?^`H!ezC(F}@4` z(h8#y@nM;&z4AJ`%s@5quu0rHpu2D`MJi63JCp`XKfLpvm-Er_jw&e-&%jJ)?Rs5&+ai+}8cX!aNJlzCxA2%LYmj%O%^0!5&*qFnsVbq+RN*9ZWULNIVxKX8yoSS6hNW?+2 z$~Z{QXr2_u9lsI`WDG0O{`f4U4HHOrT&R)i4E>SBXGujjVXsAz5(t`THH_~vek5y( zsuSWwqY1K}-|J01w;1^Kjz&k|v=thpT2s@xVd)ImrbBBQg)k+Nyh8q(E(ZN;#!{!h$fv#n#;EAtsS$_v!L(~6UZk`Y$ zK``VleqW5M6WqDbEYHfF9U+WB^MzugwMMhJa=YZC|4Jmwuu+htP&bIwj^xo2 zSp!TyqytU z@Ell(pN*-QEfxmKPWW@Q$3veTackS=C(+b^qTS(1w@Cv$V_nqPc5|6~^rz4>|A8a1 zHj29)RI>ou+OEOm+Cx~!4IWiNdmCU9z4M$V*1;{Hg@x$483i>iw|BdfNONh#C-srG z#FQf2e1Qqc-0N82ARcjNo^1aE8QJ;KnZnMxXfeSJ#)uvdD`TV!yec@4Mw#K3L_QRC zH$Qb6(-cj)Wvc|+nTP+X`qBaz2I>_oPHI?dw@LV05ugC{9fePqOEf!Dpu&A)eu2qm z*-GFWy}VFszikf@P!eMNsFg{mvPlfJ2R-Jg7UeYH_Ke!26K3JQe}ityw)g$gcY4I` zI|M!kXK~Ajg_^=d@-O`fA}UDIk!v8AV`tJh{toWFO|qPU3%g1Z3wtWq1L|!u&vkG7 z%})(eyPASpvNn@rLZh(ijog2daqmcIHJ>KM9sEMJ{%F&*ZT|37#+H{j7#r*91r3i= zRYC9sHu?Q9q(eL?ZIGta@T`A){|dG~>CWpFWLgg&=5OV$fXVy2jG@e%J#s_da*7w9 z|38Yi@XO=ORvMTXmy4Dz18)H?1!TQ(J_}JQbFdA*rWA4(*1FZjGzSiUdD#yl+eg*d zPZ~6Dz{4&DjEOpoEHdAef`%FDIrWo&2u|!-Fm}#Mf6~r&oLaX10KTCWR3%`d-!PrE z5TRV^4@yDKx6EgBf;GoXwQyM^+!?`*xz0%S`P}Hz>lHpFegN~yHNlCKXeYJl1X&JC zbaU8eJ_IoNCg{ma){j`xh&W<%g*?dW{del|QfM}mosnXccov5M z9u}}bA$nn}Nv8-9s>Y2uHmgX`ueAYn0#q6qj?(?S zH9?s{m(&5ixht~yKrhuB5=@ruNTcjRzISWMUC@usHQRZ!W=QbGK@&2Wk{FkyEa#yZ zH^*{it?Li)!^_G$1L&0)=WXM_(*59vIkj}isYmoGLy%lIdI72g9BiOI=(xM}P;WOx>JOv8-TYZOUmWE;f9hLnIDzTw7vxJyzgOCwyH@RO&X=_`A|aNCk>Ig&f?Wnq6{-FZ+xmDe`;)|Hz$;`HIc8<2UL*oE9 zO1?InT-ZL-p3vq$+>z|@GC}|toP1Fj#wv~sw`N(ENcnGjx#c< zoHgg^bhQhPFLt*ktDdw3+?jUy$JJnos%1*IJ^0e;O%QuX#VV3=F9*=cQ!Illhii*$yq5Ss7OXXai)Fx=R+NRD=Py~d~8IRGh1o-ub zo~q~BAzg&+Xx$E|6)mxwt!M5Um5hvjl}8FURX2({1qv9xO85NU0?8;F|ShsDRa0#<4c>Ky4zZY3^*WQ;$aJ59Ec&uN-X;Cz8mDzdsJ4Jc;pjyyWA) zYjhDiy{9Qmu$I^;V{QD<(p@DW22Hh9M6L8j7d%PHs9^a7DBy5x5nC~B4vANI{mx5n zo&QG|ueF&tgRWo+U7>55Fj?^$U>h};(4<}k35%IGg)a_wsvBeCVz^Z{5wU4ZkuVn@ zO&@GH%C@$Lu3F-Aa$8xq__lLXbREV{?yMtDC~U?Xr_J5)u}2iUCqN9|(X^Nv>{4@; z!r7V#3?!&yiXz#AV(1U<9;%=cyk3G;5qg13>{|fTVP5WwMn)YRu7uGw5hif&Exi2Ra^XBhvRHU^j)Rz@Ug)LzH^L>pQZkwBxwzQUU*tKFY9izxo<&f}j3&Kf4 zI3mH>tZdORHeUSOsbB^d%O_7#EShc90(8>=@1I0Nmeuqe-m-NRcZO)b7LEPxwE>UW zOzB$4x z(HcrOOlc}6SnjT|q!R`5D$NGkXm$4&P2fQd0++u}6qKY8=vjvf853)0PT)v+?x3(F zF3IX6lR^f5A8~&9-`X}~s;y1WDD2gB1RjWhTkw35^)n%Ld&+9rj;-Cbhm*;qS8XRq zyTfdeu`)hMgfiE74Lbq!Zz(iMoD(@r2dUz1_0cJl*POmgl`O6HEToS^&5f}JwR-=2 z3eshJkC()Qu?|{-!Ebdmq-LQ;UZ?>uCgOPlA(z_!`jRC39~87i|k zNikZ(0pTaHUovUhJ#cT0;t&pAz;`s3{aJEeac%Biydyj!Vu6Ky#i}%*9mzm8K!>{2 zI}3n`5=XWtW4f(q3o7Ot+*&eX%s%^1gr7IgD<_XsN{WuF<7Qi*%oXcR- zcmBsr!6we+ZlPaf??KD5NSfirRfZJLt>=ysU7%M(Z#e}-@>zJr6 zri<8Jy$vSYpz``yo3^QTF=@{sT8UB1QGpndG%k9!Ds%cBjPWP~DvI7Qr73jQT+i&r zP;om&#P=?M#j^l};I9VQGWg+YoJsWd;@B2%48V+^0mpaVf%nf@@~G<0#;9t^Or-6( z1AKEun{3l4Ih$7&tJ|G+zLulywSi(1+MvMmxEY)n?uskY*}xDw-KV)Z=NXiBki=k( z3Mwj5;eDMl&s9YZ|5H1Vv!EpE0viRt?dA$WJLap^RQWptI{Y;Rch1)CoeliXAIT~; zANKiZW~op!(#r+sHMV**72+G_jzLtY-iXRmw$!%a0jC)8_q3)@<^#A~ei5I;MLA^s$3cK9Tb4%ui2`LjrI-}uhsDl{W1Y$`-4G!w z`j<3=TDHt;4R^E=m0JPQ5XTPtjmD_8Sqb~)aZ>L};bL^;rt#0?7}xilpl!y^@W4v* zDY^b$@}r4@Fq=*9thFHR+@YW{qnBGyeT9QdZW~ySuz4=#xgH zx9ikGa6mMqLfFU5sxHPz^78u3t?@lZ&RHt#8*>(Y*=)d}%Jn#=2ke7gkX znpq}>99VF5QaHWPwR**A+}n$_`GLOd9HG5XyarP{fbKji+I(&$U0zUp%9urk8ilDG92((|*4+b% z)X-ySkUA7Q_MOT;3u?|MPZ7kRbNc%1)#ip7Nnk=UR>Hz7ITF_XjG((KRil(#StpV-?@ie?2lDv$?xfDnPT-~}GA2KZRBbD4y4 ztekCuwgL#+(&sceZ5UM<2p??^qaqNaR=2P@W=lT+=)P(4E>)#@)Bh*jmqb0&n3-qk zzj8YJMx9I2QOWvlCl4V4_T^=sAfxnr>)hFdE>a)$eE(*P6<8lisb}D;Ie3@+RfT$0 zl+>3_#(Swwp@(*Sq`f68^mQRB+@`szPnDctlFSb($Y&IUv`-_!4W4~*dN~7MrpwFF z9EF(MCb89}mnPPXJkubVMj#zwL(i{cBXq|kH`5@~nm=r7rj zoY8Yyd1~QzSJhq(q0O+7y=`k5A+`&4o$4_T6heTcyT%EzDuPCai8N7Q$eF#%ehZ!Y zj~v{sj!;hVJ%#yGP0ni>Zm2*4XW-$~Pjehx9;ssHQEsq||YfD$ry zs(^=K6v+>7(LVy@u!yk(h+^#Qv!pErfC!_i;mN0=dgsk`T2%q=Un9DIFkE}(*fiLB z7~#X;vW-;WIbso8+wSj#f@lv+2Vk^;10l+hW(xA&^`TDjq@%x?9`_Yvs!qKo$2Rcd zwtrzaXM5Sg8*Xx?A#*leK?w6EbFAIDKSEhgr%J7$x)4e;mR+%G_3;kXi zEEN0kuIa=`r6245ca*wd+GPDwl zo;C|A_qHfFFs;ek8A!1wUZ%@A;3=1MVv#-U9^bm>f!FNjo`5S?L+iwxrwdf+Db!gJ z+2ENlLsj=!(X)zI2?j97C`#AjJ=@|G?_Bu z#bep!%9(#@T6cZ1?xvWmClXhTC1e(IGa!{~=dO`p_pF*P{a%ajX;+_6KNj z%c%cUevgB$_VA2XAo>j;bp3IGD9}IyYhQx6RXX_7m53Yd`0^Ud&(W;B2ZM!awsaE} z&fgZ<*&p-c+TQ6=j4|m5ek-RVIIw^BnAW8L(?V0t>$0DBFITG%is?Ceo3a}CEW5%X z8P`Nv7B0#)o!~|N+d6ssMufXw5JIYIRExrC--Vmo8%J$(s0Qa`9P%cSs2|{lKK#s}UwHjJToeHaA8*Figb}`RUAi{#0i zWz$xT6?W#!9-tBR+H#c6=ZV63K!#|}ocd6(>S{i#Ju4Vk+*IkjS`b^j{*ywJQG*@q z=;j?KjK3i8^GZ)ZgQ)eq3YKF;+|s*DoQ0DpIT^A5+`-*@}9J+I(sx_Yg3 zx)CkKD;Qu0Oo!Y;4(eW=C2QQM+&{7YHnqu74P=}Kf0Ao&R7BirhUnEfh z^YqAct17(WukQ}0zOjOlVt~b>iRAeYx)Nz?ZV3;#2O_;KC!dGD)vZHgc2H^-=;6R4 zjN zW#IoeQ#cerV*I+0c^0@sM|V|2N+H+~&}DBjZoy<073XLz0~$=u_C!phrjEW2?W!`l zRU7W(I=K_9)~s3c0oH@^vx;3Q~whM9@K7gYzfwvGK+{+b29r zWuZOE71-t)dmhuYZ5w@wo1WYx?Yki`6xxFRx;vZ-uF>?a7$hejlZ#O?(BmoM#Nxq zDX@<-WIH%2i@4@KeY-$1#{IYRCD{>4wKzjr!sW9AINlq{1fuFnVtd5VZ_!i8qC$LYCK zX+`076#Jwwnl{RuN`GdHrk_4)Vb*mMo?}p7)VTVtJSEi++2Rt%8t`wf{h58WG zi#q;B9H+S0zZvj69(>q6tILNfry+h+qY}!G>J~qa9<7YFZ>)^b#n;HXZ+$_IRg7G$ zksid1rU~c42$%~)@;*?Vzx_ui5^;ipcpfe2y$bftq5j%ElF=7jaTn#|3kP4{zqKpJ z1x#@cc4xn*-|6&0+8>V9#VKZpe7ylSPOVV`$9rKSQmi+|cfEd@Qcj^RGFiW;h|PTm zZsGy<+6Fo=Cjam3#4(KBJU)6M7|C0TaDY?M^iTK#*5DV#y~;T{^^SG$w$_x)x$=NKy@(pd4}>FgU5@LRBet- z4Yct1poj-iCWZTERz!kFX?1~XEp8tg8s+l+;{gttMZkdLik+!+w|>0!J+|aAMS0vo z-X%-g>PTSfFtheV1mtzC+94k#t$0O~{lwKogINNRZw05?@Fl~NF9oWI_?lg{6`ddC ze~onuB6c+MW-$6Q1~lvls(tW0Pa)FiY7Qye?St7%Y6hI>>@jg>CWh*ijD zPdz9zHymejl{|-ZA}gpJoPk@T=H2Sz;H|NQ#gEpBgwY`F2aeKbE43_`Yj-rtVqHI; zKY_j0Rqj9aXCug_D)$`GO_uS2?66cw)N-D>w^3(v)@)x&6&0h{uR+CjXn1jkT+%Px z&YmW6h``cWFvB0SGLl1P;Oi+`cpwbG@@k)1*rw3mY)Ddkog0kJa~?1Ocf!A%;KD#Z z+MH*sxQZG-qsnL?iph=k^~syY$>Y;AMIS(5v+1*bo0H_XKuhekG~jjGSgybY0t4(r zT?ZctG$X#8_<-k0TPAMvX(u>){iZxBVm0JpkZhE=_t{MY zmDgv#Zvab}u&UEfNI;(YA#}zH?q@wAS)uT|lIio0lN6&D@~rO##8{!@gjXT!l|F9J zm;{ok_`jm}~iP2{3XY{TZ?RB`QZ6I9=#E8=Qr3COrWOZe_tVwk?H9Ip(2#vx<%vRVcZKSEXE;2+w1XK%rf^D7GgQ#-n@QV~t8aEKUr7 zwYnaKTy@}<_3$S-yM_z;50@A|WpZ5a1ZzHHV#2)%KdAI|MZA$&Smh8l(G7`S)nvL}2pT zRP6IF(Y2u4D{fi|5ThB}hLMg&XWSXlQu-BV26yEI1jEtWzOEyX#WtD#^?30y`qmw_OE>#YTr{(dq;%U4bxOMhuwQLIY4q3l-v)N3F!;<4QhQsJ}>1WekJb$==Ys7mSJj-*gru zuO67q%+@PHrA7;(Th)E!h)m}cAe}a0GkSstRv4rNBs#}RTKvH?xF|U@dKr&Ik=W5? z=XiHo_Qbgte`e-M-VEadaQ;9TA~7iqGwr^;z)2ii-<Ynk;%C1tfBo4bsOPA}C43@RHMHsZCmBGU67)4ub5oIJ6}D|t-b zy!MR&bGS1gp+_JiT%hM&k`` zmzoYP9%D23rG6>F;%`k>(=_0JdY!IN{>sgPMEl519QMZ8a|pSHlUZZ7Zgl*#me31k zzQ7k-iT9@ZzAlR{_w`GLc^(Zr*o<-c(FB5G9-EEWi?Av04ETgIFE(vHNsUTFvJvt? zoLpqxGyoNwn5+nbW*|maD8p2DwI(QhqMwSMC4SQs39ZX#xx2y#FgLFv^(t48loe=C zT=#zd*&r15^x%DI+wr1>b&`5BYszmn_HpC#(F!B2D020vL=-zL(AF-&$u=W0kRH54 z>Fa~wouiW+aD^WlG|{5Tg1Clr7!rhS{FLf&U$FBRA57fsZh?Y^thR&a8n^I?GLJ6v z%iP1mzJpFC)<~1{#~TOX%ObBl0I*VSaLC7^%;43eOD;C=|Xd9;#=SaTk?^B{f@a=<>!cYl333vT6krvR^&x}2CYmq;o#^Np8ecK&kfHR*9 zwKM>#Uc8`A4Kz4DF0q=ZA2Y0XmB58_i?(`nElsw=aMcn`nLY0Ez4Sh6lawK)SIxru zTQFhH&TP6Gngs}+l?`@$IQw`i5s(@WAa{^IvGP(^-)Gb>9FtrRcQS&@=J(AQ_u-EQ z#Vt0$g>dvf$@#q&2YQt6r#0S0$*j+h(ck-YF<2M+{kIsElEL|)*jziz_Fm1j+YE=UqC>_UPom3<{4MU?Be+fcFQNuxlSK+%V4O%X*)mBbDwrb2H2h0c$AmudYaJ3?hgt$?htpZCzU9&e?oOeJe}YvbEHnWr$ZNT5?hP7ToZj< z?b^DpV+vGfQN?%~Wu;zALkx@a*uc!BI39_tW1R>xN9CLL03B-h2qv~`paWc=^Gaa- zKbf-eNF?jtvoYzoc0fOc%YcPrjhL6u*m4BWGPR&$q7lN510U>I&eC_{QNOGlfyJcM zmD1EfuG#4gY6Fw2PZCEt8FtHzO>#7HKE`7zP$FoAT+yWt=I2^q?W2UgOKYv=;FBDR zecgHpee>65hxtgS6{Pqta&fjMzUlD7dX`bOH0`cESsOqIaxqXl$QX#u1a0wbvL!v; zB_^K_*6%p3y1qwUxX?IPZkabY&oVid9~(?^=%|cLVE721M{+hUOUOEpbB;_^PZ;q5 z)$D19rur9%XSSU&xADOWBo?6{^j_dnm_}1V$#tp4&Aq_gJh(0)g*@5C@n@?9OOg%Jk}(z%fy;xd&OP>u)Q+zMFS1&skawYD zFQsSEk`k$K6P()PjDN}$WuuSod1LwJxI~j_Ijf%HbP9zOfCf$#*uVr!>xpSc7K@6# zp7k@eP}?mt)H=6h_Awcl`t;|;Ev`YG8HbRv9Savt-jg-kF+F(p|B}A_m&AV|b5??> z4Iv)te{-$*6A6Ohy?K1`=7MNFN;dcWAz~g)Yip2)vVXQq5EEt8$u)&IW2^ZbY-o26 zoFF5M37;h;5r4k>kxM+!!ajwHoqby%)Wk8*db|&$l}9iho9b~!7_e?w25AQzJ31xS z!Km#inJ%;V$$GF#ZQ7oU&Sk&&qBN;+`hjL$l#GX*bE45B-mbAwg3~Qga0WNqSbh^O z*IRfdk$O&^;GE;$_l1Kne4;ByE6)i_WoMc640)Gk@mGs(Hli+@IBp7!y^vze9O2AD zZcI0UcHgq6F+GZ>(=q~j0g6rJTx%>D7%N?<3yQRuEUeU8FdAapRE04f z1>Si98g4SnV2&SSO9PdJu90xn#O~<>8QuMyVpXbtQcl{kcZ^E;x$)^#YydMb2ki}L zQaRcA0u)13FN)^#ftw(!6cK1-%HFhkqw^9}{z)i{W!=RDZNVQ4oIJnj zR<%a#{Xr*d_z8=de~2<>fAM4fz?%FWB}QpV!N!1-cn=HjhtpLjj7 z71G|4@aJUT3F0)se`l*^NXri6A0Ea>+A8_cHhqvj(PEL5V5KLfR!p4o?egp&;Yqz^ zPlDKKN;aCKS)gp?aIY*R`8i<3jJn{Y1o-yv;e%z$6m$NZtOBK=P-I-^8ptId9W7qdmvDt-~ zP-MAB#g1%ts^gzjXRUnPkcT!*+8`o}v6G!dw09A`?;$|6~NgY67S_APL^Xb$OUNGByj54*aNdU z_E$?V_gpyv9v&AEjcSBrHQV-lh-h4$d#)c?eU01&gP6PPqo1+2{?Kg_U4-JbHDRBU zRawoBi;a?~27_2u|0lrmsbFz1)26qdLJZ59DvnypX5ETFIgsjec1P3DVAPq;h~~p2 zR51EKvfim~mbS01PMuK%yNRoqud&;Rjms4!6$(hPC>tl0qqNv_@`!m4z~(CN;!hsG zKJrCMoMQq{xho40dYYP<%M$)om+*wZHUP8Zy7C||+Vxi*l7V~QWNexCREYGw)U`9ctY3kk zB_T_R+2I;TfCD{EFN^%w!NP1cjHzowmBc%~a<<(?)-zwIp=f>5#z{i3K0JSdmz5fB zvST}lP&d?6cNwXsWAV{*$=M1~Ry|kzI?{@XCU75P!O!gr>@#Egn{52OWCuEkAGxfv4Bjgn z;!s-*`?bs#e7 z$V0nUVrqyfc^zev{!X7NF#GX`pgkM_k_=ta;)gjo>~?TV>>+eDK3|j#GDZ>bmI#+4 z@-oq)zW91*^Ty0Hn@JuhaS;67FY{cmL;YhBsAeVZlrQUE&(W^bJ!q53Sn%x#cj}!4 zP{@*96S_X>pI%vtMr6ZRyoBRvekYGdQU;?eWo?J!7velQ?em1;CBEhS!k)e$|cz)*JO=i)vAVhh=Nz$kmt9f`PPNEF~gd` zw^O~J0V(IScW5>sS6R64O`#(G{o~+VH{|lWm7|WIA+_Rv zPP;6hO@Y1DlkRzBe%!QT_6)}H1b>U5yj!U5HaCjytpEm;uDg7;{G={Y#4*V@9UXdc zcF4ATytKdQP(j_N8g+EOI;oW9U^*>{&g=499HbQ~Xk-K#;0I;~ktAdP;kq|XcM_o# z3Qq-RyzLit*&uVPzkrw|;|;vuo@GWv)KglT6E=R#>YKIAMy^$pkh!i?el(1?nm_`wUn3NIh6)pTQNEpE zRve`xcpwv(5aAVD{pLY>pbbk+TFC^{y#y_x@2qvsOT7WwpzxU*YyLHC% zIQEyxAW+m3@x&czFZ7cJ@VLld*nn^5gA92zkQr4D!-X@W#IVF?4L&(E)V4BvSieqe z$|&h+fqaI1q4&$G(CM8Zl_SK9n9NF`yV>W9o1QGXB+p#9R;I9^+CO(GA%Lf=M176D z;i$Uy8x$B|yr)4NI{osEA0J6IqNwc=VDw39#viqp6ZwK=sXR};D9N>^{c6v zOWl%GM1?u+3(gR_H7-BN@$>0p115Qs@^Y#@+R4V+&)P3~6z|}I^-n>w6l{gWdKIwo z_g8W;5{mR9&XuzBS#j#0CHYg@Sh%2RS^J3-0Y&FnfP`NJ7X`Otp3BX!kC}q3HtX*Y zVB{w}l9%(_RDTPW#mfKXcM+dQh#9bFhjT>sscikb;M`-vR;*;zeEo&QhEEv?|5M6$7=jFuEV|W#6kcZVK3_+A$3UV9M$c|k?H8FPOQ#E5w`nX z`Vq_nUkb}|_#RpZ&AO3gvlV*T?=}X~RXMYWsFjLLK5ZTBA$i?Qj!S#)02F6t5)K)` z3fqnhSR$n}7Nb0OYKr!U-P;e~P?;c!R`D7*;lc-7k_F%WJvxcZZd{0IxD=RY^Ct3B z-O&(;AAZWhd^f7yLpS1?YIh>Vyyu!VZ8l z?mF8@FI?}c+Fmk#Ey0|MpMAsjhUHuS1g&-wPqHgx#hLD^EM1dbnuc| z3G9A}U+6*XMF39hTtVpu3c2WOQ?MyEfHzd>qrLa|VCKL*U?r};-_bvpZ#eu}l0)o5 zJ&K2T0|!psQ5zMCZZ+ik_Mwk`c!2AR-+UBKf@>PW{y%S|u|O*uQ@6c!2YF9Nuh(xk zXs)coAs|XiE!T|=Nta1o)tY$<<}Rj%`a%Kd`jA}Mi)DaHW%|qTohHXqNtIZQ|!ba=i|Xo6g&c)h;ZcF?%VDOMU=v1atE(^33P3IBZ0?7 zDaw|8@#vIpWgBGV<*CquQ4HPaL@_{=ylP>5{(vPxh2=AGYpT*5s>Q9%LUk7HhdX$U0pFL{M^IHiGR=9tcab7UKefW;;kemUzaW#NIzPgqNJ3iP1Z z1_yyJ8xp*zOz_a^u_dtRO4BQ_`p=lLlMpaS3-IU23OM0gUhJ`YNe|}dSt-1n4tPh<$mf6t)+Go-MUiww+a!GBfQI3DsZ1 zysyDT?>mu(!r2>G0P0_?WyL{*@4p9qN#54aFz$cpE?|fv2be z+GMb2bl1eQGjS**D>f@Lr={i#+|e@{3;>mhbE|3YkGb)}5R27+EC0W{5H@&B@5QoT zS?j3E4mhnSAYse*2loMu3MK4+7Zzs7V2T+_|MOiX)yS)|ct;F`Mxmf=l3_~Xk!-|W zR2+bC7157%aYFTfX`x~H=Y0WJBk5a0+kWFFo;M3=jZ%+{ya>udjQ7HpeyxTi-`Fff z^rFFSZu>lZpnTR>qqAbOE2$nt_;{~~a8BQLwjG4bq_u6k+KL-HP0@e9HZ{Oono(`{ zVTO9OJ@+0J{Ro>K8n{3PZ-Tr69=E7F^opU3f|!N4(E^(PnXo|J@z4Pv8i+0DxBK?O zPH(fZ@Nuz;DiA-{^ z^dls$QthL|MG5;$rM@$$rpfm70mWvSJ>*s~CDESiIdK@Z>awg>HoSGE=Q7I;-ne>$ z%v-em1ODKYw zYtKf6V1Z4XP+XPH8{~UGr8skX?^{nF@crJvKIj(p-go5*4yv~X%Dq-Q4P;403`kBhh^55 z-JWp>r{!7GGP6XXgbjS?e$LOVBrUF7JY%Dc5=5SyBk`!kRu-V%M;Ub_s!5MkOnduF zdw8n=(1S$?!)6u|d;jKw@Vo;7Q~8yjcTZk7@^Fu2Ns0IE{#+mRQAmUZnLXj215PuJ zfV*`FX$?P9p*#oFLjT$NL2Z39GE@yUkEmu!R9xEP+EE~SW?dYhY%%+v+F}{fbZS-? zv$PQ9?;x;m*zzQ%(*vs`vM(EvL)HkvfpJa$|i%RG|fyIcpBX|R=(Rsrd z<^H{$e}$Jjqb^hZ_E4q9&{*bD@2)mGljen`jV|e2U(B^q#`yeUb?H2M`5D(KkL<2v zr>=UzXqCY>EPE`SC3s{rWQ*Yf!&d4>$Ik@*Ch-qRf1B5=m=}Aw?k1#>5AgCtNp<%v zgK~m>DHTku4ggB{0}0^ZRlRx4T?Q3h`kgI(<2hW9jhM5c%RXfwi|17{#L8w3O^XcJ3BV{_O7Yl%5zSx10LczKGr^jxTAa zCy`7}6&>6K9AXs-VhQK* z`m$1@%=mjZhtD+8c5r*od`iz0ZITH`WVc^{ilL+6iUd%?L8l=w0vY~cU8xF6C=C(h zfJh(yn8I;#X%N}87@lri?cgtf@uYW~RPs?Kmew_-J|d)gg5=5JXQ?gs!&#LD)5Dyk zF%We>O!Vly7#=$SY{4Gs#v zGPnh3h)s&GgM7M`g>vf}RJZC+X=!TY%wJ@^cL5y4;I6U$!nq?$9YtfchXmcNBdUVx z+C&|MTy3O#*SPpt!VL#1Z=zWfk_OxE!|TWaxP)pI+%nKdDAb_Cu3m_)3l@EHGf??W zFQde{y$UzQ<&B6bY@Y?Ir$fX;3z4)z-oI@OPsk5D>Lli~n%Sq!7Z`fv+y51{e*~ibcT)bMXnfQlDD*1(W`+bHf z+;%|E$^-Ky=@Wx1+2*7JbL{%(;vUP2(<=2kDE$#3mwGW_H@YORogPrJ#gUx3g;Dj~ z7o|>~vSVJU{hYqrfyX8DWDK)ZKGBA7O22AZkBf>rrc)v#zF&{mOV@T@@^^QLMG}E4 z=IBSheh~W#9f)HEib}x;{Xlej6@k5b9eRutwV(}=Gc#qf_83(j6h12{pTi|-WI=j` zth5^BLiq{+om?dr<V)`)9g^bdSz=e z1;(SnQ+dbem7?Ohkh%zXs6y$9Vv0>g>des~?~;Bc9xKJTUNoicpt3~fg^)S~2kXo5 zCmf)GYODqZCzfnM%!I>&B}CnMhdN9?kkO`e$sh*iWEUso+Q9Tx6vO`mq*#5|Ox{#a zr01}~t}bc-&VX>UgU-vfhO&2QSm{rhN@^yuJf<@#@NLR6&7d4VnJW8|1XD<@qSkw~ zF{P9e_OzN~OF}Si&usdDLWjeSxF2eE79^HMQ}))oBb61wSmre1g!y05r6^IgkCm<3 zn7$en0D=@;n`isF>(Uw_$@jgfSSuYREce-T0tiQ8cBqieMgv5tcV!>4R_yd#mh_)# zBo)wt%a|-#P=W4s?|*zrES*?D!10nju|pbnM|K<&(?{++gxmk4k*T!K;}5R0%L|y@ zy`2;xl(jbg?L>z1-dqVMK8GpCp{$KB3{OH1O1uh$$RB^O?ARbkh34bn)vs44v+H|< zd4>bbz97EGJuL;ZyW4?W*%$_I$y7xD_(6E^$BVohQziYp z9ZI`J)DDNHVmmK86*>Up!uZ=2)g!bWNf%bgCV*-C!mF;P>ob7!CXTDg%r7g)tb#71 zO9Y_+8c5q>%gdV2_0iP+K63ELU%>KS)+DIAN7IDM`$(YBtT+8K?%E-seHe5@Nd((I zvHphW5KTxvBlWN|JaCYqC(YI=;VC}M17D9daTKigek~cg5}|wy^&lk zXgUD7Gr!+-KtFg_xQ%qS!Mc_`!|r+9sJ1e-?r+C%cO{EePEn`!Z5u#5 z*^<;S-84~QpxR@3)=2F`nAT>Jc-K0jUFB&5GJ#I0_#Sus|d-akvF z8c+i754f-Mcc-N$LRjFXM()-u9dyI~hkrrTq$LiU?e2K-R^B*xvWCepl(Ux4Q`*YJ z<)TIWl-MHKC>s-!(T);|Wc;Py0}bYR`GpvJnlA2?R`^_BR@6R3TAOM8xB0V7P1XW3 za;`R#RP#S~?qIq$d3l)35)hyUY;P|sh&!r`O&T>gay6eb@0@U>VXqRPnARbK zulhq;0C}@XH6UW)S(2rgjT$$@d5p1<={ESV4uSvChsH_>i-qkdOT?~{z ze*k)|{s?n{QM=4QkkX%(T)Q0A@jVwBc71N|92~PJiEkCeh<*hHb1{{U4?3 ze{d>gPVF`>KHPwivr&DE;Tdn~E%Ia*k`vPy1o_{qo^&`1ThL%==%ol3|AZP+YZ4lD z4baJ>r!jbxg%OuYdVz@ymY|XN=j)7$)EVBG5Dg9-;KspTQ~)_dV#!Vdc}~L7)Vu=* zHxkpS0NEjGVSXu`!zqa8hCyH9K?IBL-D(cWnEUPAXCtSL-6Jl=e^Z@(wxvT`QnmZQ zOJ3n!65xG_gyaaOCFn8QcpIOdSa|gkf>>hJN`3d{KBSGhc}qCKzSAX?WnqEREjJ<4 zHL_+<1pwOC;;}-2D;LPj-r*MF3-fRXLfqQ!D8P4UHMRXG4bbA5fiBX>McX;2h@W4! zBm));=DDy?LU9PA-MV%y&}TUw=&4vvp8$77xRW(UPz4SdbbDkzMx9B8$*RsoSPjBsnulW{jo1acYKGb`;35y`Yn5#f=Ha(vw&e!I%)- zj$og_xg%TKp~eB|v@%W1m-|Y=)9m1_dtH5$u}A^kClz#01Gq*j@OXM`=3@oZ=R>HO zaSt@P>(PnF@D~#uQwiDr+jD!0b@pcSazt)Z^ktk*P0xdg8*Qha0haMkBdl+*?@g$T zx;`r7ULPK}XOxymr0|@D@!YmkCqQu#6*NauyXY#QTE9YPV(T9I@rTahKi-dtmJ3of zMqWvzN6{_^0xT@@Jdafnq-p%WDt^lbRF%FxxjVxg0Kvn-;4XZOVKbK_U7o3^ioR92 z^QN#RXQEMKl~)1*06iMwL5fc1-nC;6Lcjdd3x_MOL}LxL%qmDjY&%g=!y=~bd&_k< z((qLKJT9J4_`Y$GxC%wv51iQM{ zE|>pKsZr`%>&e9F@SzDm9#si{Q${|3*8Q-v)e*meOVGNJkuNn`Qbu%v=;dkRCmC{4 zFAZ_ep1U7Eevjt z%uT%W0hzSU329mAZ93(QBbqAwkq|PN5W5C1*-;M)kS`5(aI77o7sOphwPe!K3y>>*^eBy(DT zDBzcT0!VUSvGQ$>H3o}vC;205xWE~s5az7}?nx5~CkxYhC6flD*g=s!yW%GsH?kPP zgpgLLq}vCESu}CD>>RejUkRDo@!Sem3~TadNM)@ymNzd;5`uwEPCh9-=5fza8ddl! z+#w1e6IE4)3ti%($DuhcnGby+bk$5VwX9Cb>++Sj?z<~AlYLEoV0>P_pAVo9)C^-P zw4T*D#<~CeL=upUS8NexLK;yaWph8F1{8p1{sBxwfHL-4NT+p$AEVqqTy3#k0~#%mciVhDI&S{cG&X^hZY;acJU>O3qr`3eV!+KbUf@9$^t zjQm%^kBC-VuEJHYaU6oFnK7m4l^{j=f9YNfsSkG{C;Qnw1gC`D0N~cV2nmSUqzn16 z*n5q-TN8H_=sMUwnmtCwH@D2)E?H!tkU_>!K70~}udex9q5t}{wWl_0Us5V6{(efw z7*+RA~C<_foJ|3q0lFpGH`uC*Pz{+{#>c7yyuOzW53c{uOCFm3t9`dpW7d-hp#$`7J$eQR_{QtfKD;{ zm(7jcd>yr&D1dTeCu97r`=p0_n8hnw{I<%>YX1Q$wt0Cd>|s%wGWcrvNcO;1TQf}A z0BF8usH4~H2geW_q+x7n)NOg2nZ~dT>w#YNj-`^j#&o6YrobQu28e;Mz5sAdFS#v6 z`YCkn1BUYuD}Fs}7auGi9Rb`#X8w*ZOY@I5zP zuj)y|Fa^hr@!%PD!;^{<7%_hisUENL-F~iTh3>oL?BVy)TZ_*gMl#txR{2 zrjaVJOE4-1uJV7qJYLv|c)=wM|4^0s-lwgiU0lly-zQ*Ilwil)G-+b=8_arT$OoYQ z8$A=sK->vI%}fmO!HWii8hP$koP0Ri`;0> zoKZ*bcUCzcoY4XK^-FLNE_tv=c+qAImW36qhfV)tL~j zZFryZcJ?j0u0W@|T7t?D+>SvYI9i zx_tie2sr9@B=rqh5Ma-mC&J4N$$7*gk+d-fAGQ4|A2==ClO|lv4=|4N&*`VsA%b=8 zg@RKsX!`ECoI}HMO^_)`r z&AB&bMb^Ewi_u3_OUg}=3tqg6XMBz?bSPca`s#jRy~w$baPL&b2&%GBxup%DBqn}| zphV(VD<-FhTP&TaXM_>5B4L*>pMCtgf4PIWP~s*f z0*8xtebcvstsN(mymu!gD|xr$05UH|WCiNPddm3?D3!0tITt5x#w;*QHF=WM-mXB= zeNbM5oM5c}*X>2iradg!$)k3I;8L!Sua%E<-N`R4>;%|%Fr}+Z-Ai(te<peU%qp*I^daO+u;i{)*eP z9GSB2cacrodF0aO&KOhxl-1AI?j$T&+;gbD*G(>UJK*fqR885j*bCtz_F3sK7!P&T zlx+ll5*&PBGL<#^h54j1s82!efB)y`W#30i&srL>-}Qgj3UGRqJUMuQv5tL=&N%}G zTBzFy1uQq(DKfsy|y>I`%$b z;s_Zr@hgV#C1n!)>ozx9XKYjj_rv=Y!eU zvcF9o>UrQsa{VQmT_Wk5oDEdLvHs@51naDo2Xr-IV;F+Qr&8dxT=VJqF7{Yhu>&CK zDnA5`QIY`5)BHR@T2Ky&Jw(Sw>x z_-J{qhG3}@4;f3y)OVcw-JBt@t;)hoYCh@ldVXjb#5mi4JHzohe20XsYwH+ph{N=D z8fgnW9vlU?9{h{=K`PU;Tb!U>ivAOBXWYJ90|f;68eT1>JHjQ@A&gB%$gw0I2}7x%F4)eZY z{%7yY((?XC6ac2U(5Fc2VPWCGXA_7VS<)Hixt&H9;%;;rv|E}wSPY|~gSUKoZBp8* z{JZ{VZM}YC8ePl`9=0L5HEnztZ)DD(ad!kDKnT6dTD@F*RqZX1&XKW?!~;z5~SQqM}`g6wPlZMvy-b$PiL%DMx6N5ftTQ@PFTKM>;P--I zMU}KvlY+Mf?)dHwf-lylw4({t?6yW%6RLzx~z7lL}0)1YMbM8Q6!!lBH%Tw@_)QeSq^x+Y^@!e|O z{cb9Sq*N6L)aV+n5Q`k4)GV#;MwyRchUxT2xtk#u>YAGgtA%%p80a zV=G-=d_{%NxZip>_@#J~HV)UNMGBye&xl3nTAo?-F`qFdMARJ-sh6o~uy##m(DjMi zEi|Mq3#OSUawzt0&!{mz7f4r zdaD=;@iyoDq8BXcp!gS`B;qM8RB%ymi;%%~mr%^5)1?*yRL>-jFMD9eEvFOlhT$zT zq%iFyk-4*9o5DFLcuT|%Zh`A`%a*{GcU^{uMbJsU?>MP~@9pP!=J0&|744ue91h4~ zBLiAw$AhBU@TBg?QbJRP*iZ5@)aX@M&Ad9xWoqm8|6O%UJ{8Bp4$Ua>Djdg&+6dPz zr8!E|jvB0Z+i@*|JQCu=tLizVUg}Mwve4^%0y2zT+*Sm{4|KTz`kkf3bCTq0pWvPo zByXsq;!ui#MNTzznPcO15f}(Cc=J~Cf@cCYPQasHg$$z)AZGchR--rI@`%!*il*D< z*MGDjdIt>pIZa&)Bo6DqCxH&jBY(tP@MeA(&B#kuhck*lN3Q02fj^|I8ezr}0hCI+ zmd1wa}+U}gj zC4y5Kd#A7^hMnoUuluJu*sNU2LCn~xHjol$U<-4iaZEz+!my21#X0?iSZFzy4B`Jx zK3i}Y6Uy|APg4NK(M8aE@c=dA{N{8qec^T?=kcUEgD^HJzoC;};QF$JL?u%(wi%Ju z^2vPaW7lw1iLKPH>rlfrC@HutPoY^nH!bbz+nG)Mx?*ZZKwnjC&Ad(Y?WCl=u4(zq zihkAIs90<-rPbrhK$dG5*W+X)s<|K==(3KFzwlUKf#igr1cNZtNj#f8Im6y+ov!?& z>`*Y54Iru>j|436sc7)WrWGrvNJC}az3-&TU=;$F`j))Vb3cOR2byOyqi0Jw-5^p) zz0GyZ&SQQ+;>>SnAF-G~?xllBu~$csg=;M+-3mWT1INfr9jJaJO=pI3Z;L-6fLsC( z_$as5FwE_vF1Qa4B=jr>XBwp%L^{vbFXTMfbz+88iVGg9E!KW~Pvs~{ieMop$hC$Z zQ$hH?kZDC3s*F7_FW$t3ja30lVH()sL4q|#)?wCW%03U|wKa%z&9Xs(d6ScJYS@By zr%bx=+k!@3b4K~o=q2t1uEkN^&6Wm;E}Oy^K{3Wy^2NC(b)CyU+R6f=PTXiV^^CL= z5c=+TuL#gkr>xlXKS7VsH3zUm02u;cEStaHy>)N7L3*A4HWr{B~{;=(cu)AYu zRbb6Av$FF$MOkNiIU!pkOdIb;#*f9!<)<=NNILAE=-b`vXLz-Nv|D!Dw zxNY3m-%F7)7;d51e8N-#D@yrzj07)# z(I5R;Mce>T=wF-k&#kOqVbhXFK5DsndKClJ=%!nXLL-FC8|vuOqYRwSSGXVAUXU2# zmgJKjdDyB-jYf)6zpbI+tXdtm&Mp{oPh+6tt20@KpTC@=8%b1aem`0#_c=t~!y3ED z{$0At{@!CDy|x4(NyZm37D(TX;*%h+Vb{@$LjrdV=3h~N%t9Iw=tYZlO4>@yD}E89 z{-$5J;4M@~ic*E^JB95;)bcKYRzN>PBNrcSusUWRgX~oYeCgf7pbR^*;glB-n5}Yg z#@lTGyhRQDvFE;5iA$U=&P$v;iv@yFGYbBW=^-yPum-SvoMr371P{2YEZpzZt&JUv zTtF#Ytd)|jYu1cCN6&+Cks1be&bCl%;(b+Epj9Efh23mo@$n8k5jEf zSo&+j5_Oa6Bmj>@hEeBTj*3W;AWGtBK{+MqJcq|_f4HDYT+gsz;*Y;WcaUJ|iQEuw zp0LdW%3t01XJ7D022OHd(}+SR#I`p_5D`Be{}bGo)x19etCw0=54X^%8PbN%=j_p9 zF@wCCNv(R=dG^24g-tx58ix2c(E72a2S+{s*OEalaE8NW!FjLz+bZu~h}quw$rGc6{v)&BvlMMdDz_+ z2k~^+(uVDe8}+x)98*(HCTpDYV7fM`Ut)y;Y$A9D-)4@j5iNRxj&MRj$sJ80?awII zjF3UnlcoS)^N;T+Z&y2um;)mVz9heNv)dip5=ZYFuVvA4RzO1Mm+|N z?}{JpqsT9;0^SLWCrr{ca`a!I%MTN^5X8BL+cK9lT0AKjy)-K5QHr_fN<>kO?tLDx zL@lDr!A{sEfVJv>;me6~pJK~bp%t%w#-p4`woeyP%RWTov*g|OWIzD6;XJPM2O#%!+j{ozguqqp60BUwq;RKiZNa?*KViciDMT(m+DuWvA4kj6NBWG?@~|t68+@hWOHA#&LK-_jqv*0z}xt>8JPyu zS-M=OTQeaMoDHRex(BAwpw)QxA7#08#E=(_QEQp)c+$tDC z07$f1SdPvm+YLjD_0=2+vw$n`t0FG(=T!Ao*14U(i9`3*lh&(kn7mx58Ymsl4NTcadC#Fjyf)gkoz z?Sv#5el>;)Llg0m?7U-DC42u=cs*@r_A^K33v}*XrQ{8r<$wX}-oAqvnUHER=)XlU zd8R_DC2j>*^e2-}Us8tM^-@?Nf#{n+LH!g~vXz8Q;l^+JW`(LXsqvvLDZEaihR~TV zGl_rP0ft{BD%*88D`wnsBE-33%gI;t`^HjQ%Mu@7@|>onFq}J`uAC!yA^X*sZ&%P& ztGouH#e#3oDp+BD)C=OPpI&yx}?V`A|<1+ZHv1LYuV(Jf?5tiS_T_YKs zYjV2wL_KQ9uK0J$&Q-rsj|2dx=c$YA+`(jN{2lAedMuEvKW)xqMUyyLq}f$yKNlI~ zO6lqrZQ;U8mHRmIxy57X!WWs~_$~iq;z#0&XgOi_Lb{YHB*UcRb8A${Zb_R0srs6! zbT>gZ67d`%qh&YpGB??kB|oE%#=-YcR-f5PB^@NqAxL_k`Nce1lc=hM8+zAcT4iGu zkif9cdId@)C1egAw_IxsGm21V^<3(_zN-3$-s61Ck-ZIM!yu}91Ty5r9Zwp{{hNQc z?CGNNXaCDumS-e>Ha(%aak*y9n6#=sdv0E=Az#;%Z*VI&P|9w@ccj}tk1N0}H#rNn zb;8$$-ICtW7}05Q3Z)17COZb1JFT%47;y|`PdT1(Oy(Vnp@f)`z1YMW`xeplrg@_5yLNh+&r>_hF3d!}sp0<^w z0ZVqGC9-vnv!x5&ym;JdV(QhjE%Zqzg8p9SWWn$u$>8vU-nEI!IP2)t2|%p& z>*xB@ExHh0&0WRO=&VU1@59*MPV~8-n4CuA#_k_vD1@6rd#>zV#&K26bWQJ=Ap_Oalx zn^z_^@@#cIo0UfiW+Kxh>&NnStW7Vx?vszvV#RU6cp8q0$D7&rWIsnrhdjjW9-ehV z@mQ-=H{UZTScU}nlOKRx=Ik#<^R*(&-K(^yCYyv; zg93&^yR2<%mD%Fj0c8=`0O^U_8PAOqX*A3hOUx`7GLhv6o`;DrP3@4`eg5E~{Yvi3 z(+4DUQgT7i9dvLjFZowq(r%hQJ`bc!j6NoQR5>yvR~tqiG7PXPpqz3uQ_B z&};_mLsELmVs#knq*H}R=@ISx47V;rHk;)ia>@rW( z9`-a{{ypk5pLucPO2i#-aK%=LfYYjS(}*N6Y0Rx4t<|Wp4wHoLya`z3w~?)Irp$!{21sfVRM#vk!77FQtpqVv$LlJR4!*6plx1A*Bk~41)ir zr&n@|ySLt0yDw~*cy&x(0hqMpXWA|4O@0cz(5TO8FxUx=lI!Xu(0X~u@Ct#<6N$C9 z*TGp}mTq#)C=3pM*5uwM8=5x!aZ{orv+t^qiMX^%a*-T#FAw$B&g3_@x26LTDbw>S z5}T@4a&qn5U8SUAyW_6j0vK5aJjETHbfaL&+(t!}0<2Y6bUW(yTq;!6muUkPZ;cFn zUzQ#(ZYl=9`fBR|;_qBokqUxB8ekKwtViZ0-J9arjG)MMpH>x8B-=_Q6=#@^U>?dz zcreMW;u@7agV+~A*u^KVnaZhU+5ChWGTYTDCpK3EWWNd!&pGBw-Fa7t&FO@xyuiSJ zRo2PX^Xtebe8CO&;q+X#ci%QHU+Rj5Y#+#-T&BCald|(io%w+uwS5`Kv(V{c6ZQz% zSm!gYL{2U;A%mC~trcPKz`H_lXGv+oX)RCb7&gbSH4>Ph;BIq)^SXEe&6lN_({yr%&0d`F5l5E#_$0YzEt?%2FiLftM zQ(m!V+$;DcV67Lj#D=fX7-{ZMf?+!e^i{&Wyy8j@ITZff!jPX07R7;3;{;_Z7-GZX zi9qGhhO_-hhtaRrt^mt4PQO`E?ehbL0ECyGyZb zw{{UCtuhHlxouQgLDkLcT`OD;8Ro`g_7oAE0ToB_1jF*M>7`N%n49{d8}(I+Yi&I| zdE5weNmuS!5~Y7miBhdY2A!Qv^LkcVM&gbI@MSVda_6RJd1@WH)ohA=OGM(QunvMl z8f^k~O(1RWk~q&j3~qkkUZ@L!4XI_l0xdoK8cabDz$_#=QTx}4$(Vkx!I`&HEbwML z`7LdFo=YUU*=yg>TfzYo&17@5)<42tr}8mQI_2(=uo_b*{;)U*>}_FQ%&JS?~NTD;vIc0 zpgzoBeu{(WwNCnvmoWf*U zO`pGP1e{UMMsUAPNxso3`e`YSo6-=*SO!(+d4!=}f>K_KX$9!r zsW_j(4}ig4ZE5Dm!SAm*^ESGU=lUdUJ6j0^^U3nd_n2+^_PTmhlrafW4lgfx5DQxRVI2e z!L}+FJ{}!@P|fJ2@=D?BWTItpJns*C?=-qb!v&KEar#pG>5F?t>n-OkhW*8nlbGG5B48LdlmuDab51E6-I`8|gS zKmq1}2rj6`?T~HtInfPiL}=DAw3v!MUlY+kH3=@PhgQa*d3sZf@D39;-#+GB_*gxV zhS&I{dWVMT#QMs~C{B7&p@Hin%iMY+BWH5mnsd)i>ahczIy@PR!U8Ztv3^%E9&2tj z3%5-+Xms2Kt}Cb#cz;-T%q9iQyT!l{4(5IiGAP1U4#&+@x0iJ=W40Z-oAP z!Fkmc2FKLikCUk@H`6H6R0lO%*nL0F+4kSSUZ$=BPBLZDAVBWaX-u0( zEYBTvyZ7M$@;qd@?Fv4)HK$+DkQb7$-mPrT9_0pAm9 z1}<;iD0%JuIml(FuP&$W z2LmowxtpVPog;FjoA~|-ltGe8?mIZ=Tn~bmY3mllU9u| z0fF^2BI#Q)M{$nPg=bn)x(B9S>*=?Yjvp*|Ah&f}*T^#A3uLLqqok&+W{5 zc(7FdpUlPM-h-bwV9+mlRWeHW@}t>eg1N-{e(~tjx7u+)fN&PpvcEHC=}FK%c0_KN z;8j-+27WfG_qY~#{ZPY9_)wemko)?oy*5l)9?)l|G7tLD*MFV`Rbg}i$mA58pNnY4OOO??tTqu~^6TvcDxB*15Ha#u#(>BOt zqj_Wa9d@q~8TG`IsaDgg#xyT;9kcGB!+;$uKMc)khU&fiez%8L<-jK_$@Q-mS@ov& z4JbfF{uz3jBlI^BYf9z?d3`>*^=<+^0LTZ=3auHIGj-yq#p;hGFQjbqLr zGIxY#u&(QRgo~PLXdLR4V>XM(C<2~eA?%F9w_G4RrN|UkvRg*#+W8OjjSdW=e2Rk4 z0N=GAC(D|Vjke$-7h(9MZ@cNhi~CqIO5|%qr{(bS9(IJ%&F) zc?J~Ym9{x8x4WHxY}K11QRpVUL}yqM74G18bM9D@#B4g+8Lkr?x)#fE=cCQ7*Pq+< zwt;NV{VZ|O%6VJ)u3@$iOu?^NKdNIzEGUIP2SmtkBjo6zzP3cb{gl*V2p&dHBDcCo z`<$HSFR%%8x9N0`1mcyI-bkkTWIy*hc7N%cBgr7pbz4Z6PHCb^{%{72;wVUxGfM19 zg&n#knXYs#j4}i<(MBw)*|dNqRPkFF9FFxEkdKI8KtonfyZ;!c^Li~MIWp66Wu(I7 zyyf7dd+=WxSx=hYf>bR+dCwWjtFu~7;3(o`II(An{rHItNVjEfihlNrXtlT}0Lu>a zGill=iN)=Yu=fR2u3V`8053I|tkjEk{hNL)BzIY4I?{OYQvV)Uf_PxKZy!Z^JZF~M zw@|I|Fhy~fg?q*vpA=1-wk#>Gj7!oCuxr;UYUA0Z33yneM>e)+UHnI&$_|QyWd@i- z3j_-XW0aZFg>#F zWGX<_#I2<#nQ^`W8eEqN@4w3(j<38wLA?4r=h)lIEqKW_Bmhm@uu@Fh2phG~BZsP4-Mb3P(s4?nuAppPGsNioHI zwEnqAHxzkyaUHctdMOG^0z9wRxRAe1>PnTEARP&$! z|Bk5}gxA{lpe73~SH4VJalu>i^dsgJxRP6ifd?B!(kDnOGE!kDc?I(mDQVNACVC>G>>YpRA$*YB<9MRDm?^=G`J;zISVhU>Kw zQH$D`w~XC%9FXBuig9VbnR?=MP4(u-6lH1GxqlpDsW8XUZ%^*FW#efpa?(mW3hc_O zGi{Tp5fkSz(rm}%-bkA-i>ecQOQ(%u7%91ntEN!`{ZWSNOLlny3+2W!ZQNj|&y1-i z5ksC)8^x3m8i~=fgzh95`5|3vMElS4B>45W@p0AlbV{2Am0Hm(+vLpnUcCO((2XSY zP{{L_yc}mkVcCq^uKLQlMhwZn8sKr+^1Yh`Hb@7@%enU{Xji);_k8UGF|~Z)pNJ>x+&mEandv6V`dOSo8uRuPF$M!s#Dojj=FyA zCRBhVJXZ!`EvlMwjOk`21>jVfJ#+7Az*u^*dJb^BLnKqA0BLaZ@yN&cWv!{A55v@g zQCLJszNfkX`sR3)IcN1AkM zXE8WUep;z6)6JdZlyfEpw;%r09D2G{#0ehG&dL#l=j#A0RXPFox!aK+wPVLda!?HN zMnkz-)(l6iPr)JM5c19ZDzE2^W68(d7jcMqqgy*j#`+1VXx|7$^0dCov=%aU2s7%g zAOdD+V zb}n23181YywifA5c|CBM9MFil0}M!&VE5SuLPY+&2z^Ia*P&Sv-i537dpaKuC``wQ zjbji}L$?pXiU5?JO%EVML}Ghgm&8T9ko|in0M%mtEZuh4`@~|Za{4F97JaKvVSu?` z4Lab4w~Z>;3~!tdd_-r0_xEyDM?Wc{#h?~fKZ1K?V-qr0YwZa&yXFZFGsr5(;`11; zg_oMilYs+A3RN44Xof-aL5}fgvZK2wc(+z|j;Bo|fdkej{EN)JE*lgtg2C;}np2gB z+U>>RU(H0t3V5!LJKxYpd-&;hv`AQfj?QCd_51tS-EnaQsF8Ql_K=QB-@sfDh~UBL z#?wI}Z_;2IT(b|GLz{>r;`LOXc(ht$5sj1y(;3xqQ37xnU0RqB4BN5gU@YaOOPPZ< zWiwC%%yuB8e{Z2L%IMrkVEI|`E}U18EEaa1quazO(;`AG%q>yQ6xf! z@PjW%0?vwf$K*ZiUY_mbX>klTIR71Qq<=|XECU2aa+a*>&C!vyuBtL_HVm-zvL(zi z)A{%~KDRn48~I3`s>k-h3M++Qe!sC)WFv|7gZn4{scxYwx0M6=L<^ zcF$5ZgQ*-Cf1s9t4X|w!^M}tL02>7hYF!s%|8V7v^Z1#Xg>gr7u7&1o8#H6q;bd|)ZQG=B)WhbW%8$^NygSU5L+ab|^+ zH>vh9klqnkr}}$&EVw{Cq0B>WFpNsYd~#xS{hrogkbaU^sW6)!0ZYV=nW~+nWHITb zEJeB%si(J1OTsZMxzPr_t60Rbz+_?$)j{B>Tp%% zGF3*S-x!5pV_6VuCaEJJ4-m-4nLf z<0r6C1@ZLB8tEFzIvkg+mp`VrD8T1+3RP<)66=00I|t|xTfYswh`*mEGR_GbLF= z6Bb6}-$aGT*^2Y6$-gy8{%swxJkBtpzc1ocGW8R5KoOb6jdDJP2M+k_?gI$7w#7qu zv-Yht@-cLsFufv&WF-ltl|TE#6Lq30E2fo^aBhZ&G>X!xufC@0CII0wQP4aDkk`to zN*cl&Q~jxk7@mfVn6E&Bg_>Knt?R9|xNa>8|3wfO1(Kjbw8@L_D1nd;Qgt)V5`NL( zlga+~KXqor?#cs-aMy{ygMGRF3fgIbOA+k@e|%9(lFanMm)CQBQG(#y!07!^vOzLF z)4K*6l$rZ>(aiL%7xraXkZpymla)abR<2c6YfH#L7L3(ev1N~VXi=#<$ zNdWNLmjo&q`~wF`Q?q$7c3d?OhF!B01#7Qi9uxcckK_QD`F;OgKXmQHq?uWko2en+ zsYCzS+!C0mdX7_48LV%&WDClZC=D^C5~i#1UC6bSQgUwxobZ4(oU2DFmcuudu!rA1 zdW1pTG^H=Qi1hu60;+CfPi0+FuE_3j@Uaw9QzohXah-C@yZu2{*ioS8NKXB2WDpK0 zCi-IsJYVLuI4s4Fu{{R3pCklEXt$(x-lY~X+N1kzBLU)LP7N}3hKJAzC~u4j78i3l zdbp3o-*cEJNeY^f$K~4I6nhfEBu3<$l}7Hr0~FonrCBT+#=(*5uLc7F~mMp2<+(RjFTcWL0w;;*;3-bfso4C>cCfbT#x*GKpSrG z2sq`DUZILOsBX|(BMxrflzuvIO-B(Ny>z1Yh8)kIK*vpvpZCYGaw7B>Mp@vGbIpiS zyrlCKPxXk*#a5vuNDWw!6 zP;J%wvKxh1bXRcj61_~1bX8|ARPO6PiGfo_Mi++>MoBwM4?4!H$LlrlCdU1eR=hvYOW{p;|Ze__H|RbLw~*N6r1D<3+^n##%rVOBw~D{t6!l zY4~Vd^7Dayp4|IiZDq>1CAC8w8fk5~8dHzz-C9F{Je={ITJVs&#H{=jeF)CF!d}j) z>2z5dG*%}5i(YWivleRLsGTK&BWfFa2Jvm7Lo*?Mt1s_n6JeJxg))_p>9uQ@cz-mCSqn$M@jsQyZfEg{YDJ1N#V7 zP5>s`JLYna$1Z-+#)AIll&4{v z#@{--GqIPbT^oH8VKKM~B8}@&r;XksR{JD#oX-d67NPtU$TcbgG8FjrsYmT~Kl5-< z(z&C0(j!0bWCWFy`?>0J(N9?3OsCREFIi*`#kIxxFH3i$Q_p7K>)H7EQ82bx*>MBb z*p%wTZM6g1&)%=%-d``xuq!6fm@qViw7kI;tXWMVw(?~b9kW8i(vxxsFyALY?uliR z^WPpR7F$Z~v%1%p&y;=v8iY^cwE+D|tOhoCr8(N=O|Z$*@V}vR8>B(4tkCa{Y{f+gPw!U4u^yx%kdlmpyndJDkOU$zQ50(t(nt|9MX(uQo-NS^3)cff*`ul=wIgM!J8~knQFiD$AucU zv}T%A)z#&=orc&l=2-%TQMxRSTbtAS4PU6H@n2cUAZi)6V-{Kx{J#1%rLu^JnXc(z1Wrw1l;^y{4@ zLdf;F{Au-V&f2Sw9smj10HJ7Cggc}@*)-tJAEB(M33{#f%U5LTp&u?QvXZ7w`HqQg z8)p;5=N?Sobt%cNlyW*N-H=YM{G-xd9Uch;7@4SoWBY741~7%esCV%Ls`ViIQa@7jq91pjsezb7+W69cHOy%emYtt! z@XZZ-c3{g}cTW6IMI;dd=j2I!0XF)*1uSC=2(D}zKumQccf3Tenn$E-=hvRjs~goI zxZ+JGkD?y@H9{pYQq*998h>d+wNOZ6`Dz3GLRZ=ZCgx>2s8E(Hdf9>R+mEy8@e+@p z3!Ehp{Hb$v$wYG(Xq??5-j)8b0`wmHsk%dg3VnFiREMqMqy)!<`?8;GVptw7+33^3 zHR`X*UKn&6wl4!OwA)8A`Q1dEqGtwa-$iv2utJZ9DlRU8easU6ubl*=6;Z~-Vi#qx zVhm#83$V<_$wC(^WTNknvC5IZV0)Gip!tVDMKPbrNM?*tVnojV(HG<;Pet??|E-HsdP$CQ70Hn9K&{U@RFA=)GX)UDb zJrYV?o5`qrunZ)P{nQ2Wf~Y~q!$*KjhmKG5ty;$lNaQuwD{i07B&^}T7Hvh+t74Z> zLPS`rs&?L(c~ENJu<-;#TqTns5Yh?AE}6w5M0YsXXr~=NrO%vd`Z_EnKJ6}!SXGs& zQovVkiwQj7(4#i1@gVFR()SX}&msm?LY_Hp0;hb$#)>VAM7K3M3_oO)g|)5oMb}0m zTznm_WMlDd=hdI-LMypqp}D_;xRyC&$~pMVpMn=G8mR6N-AL-z%%3TAL#D$LF5h5q z?aDMN*nGp}9wqDTi<#p7hzl?&aPK*xhMj^y?BQ-NK(=R6OnxUjJ&bq|xt{emF_xM0 z?()A^-WV4LOpAZ0a>W!{LqYz<`oheeW=QtOm@j)kbnUhYHYRbOV0C9B<7~2VR_=3Z z$PE3MfZmy? zqXLq*W(wj7lH)Fs7V(Ro(LNhTizNbR3$w*sLDkdl1+=T#htTT+5*`MIGh4vK0vsSK z`zd&21%QRgYK}j!#8__Ea0c!&v8uQ7;7(2VQM!2Z9es%l(+a+jgyK$0KKGiQfcQA2 z((#=6+EtJ2D?fb}_?S`B&K}(|n05{qfXpfNY*6^CwqEz_lm{qUe)M?>Ld2~ft0{{G zMCa&>`0R0~{wG#9(p2NAPM|gs1TO`FRMvEvZU-h})JKT4Jt(A+Coe+W_FueXv!D7DrHhS_LOk3x9jr=`W?My@PZYXr&{j{iimBP14EU#+2^2m zR#$^3%qN84VAZH z*UIVdQX1URbSaMA?%wh{O5?UlQz@(Zw8$ct$7&V8`Ih;UjGC{MC3NB8J=_~r;@!5w zTT}nW3oDTq=8;I@9Y*Z6yf^rg0`7f%zWBYLtt4!vFY^dyg3AyYyD@j)d?f|IY(-DF zC=5$aFAeiK+yt6d0JND9#M$=BZ`m)J?0=u16Rqi*qmO5h=rnA1^yQRqK=qk9DGs(! zyNsASoT!&y{EC^XI{A)vBs^TZ1};3FQn(Ht7!?&N%)to1ZmjMFJ&@ds=QJE{_!^dU zEnnSv*vwDCyx;^ay_o-~wl(hjkR$B&g_Tz+eMaJgEw!WJ>ki2jtS%G(>iIq%PU8$C zwg#MP(Z0UT+jzzpuY0GiC&klC!n%{mz3yl1X%1!XYC^4yzse&up)bBuXOJ#AIduZ z%R6qUpgk1l5-C1mvT3;>+@^!UI9Xwa-khhKm1@o)yO@(p^=1@-nmZDpBRYH)E(bmR z!260X`GH49+-Z=?@vPV-rqxV#sUK}`QbYm6ve9DkEB9H6UTG)%0xx#`3Q)09j)gbS zTrqy}Fce(O@hBPSX-{^~vfDn0z|0-_obS5We!dFRTsif>uEaY2CIf$4B;4Z1@_q}mInDmAcf)S_2zPt+Xp16 ze1LFI11uLzqDVn^ugAK-^SWlxT1eK+ueC|S{DL;GEpWVRB-QpKl?~WGOZll;*+df` zxvUn5*dxXvyyT%r%G7GnRo7Q;+H9TyTRpn#{Bw7{m>Zj>cPHO#wD#Fi;uI95=k`C* z4RXrmluNfn(sDL)c|B4)G7npF#2d`sba-J~PhyY^d>UQBxa4|5Fz6{$^_2c4R0-A* z@(`rty%+V4Ck_}Vmg1t>n^=ts2)AwPsF%GiDmk4v4N>_#L}d`hqXOWk2;tauUgx7t zGh6H#0VJN<4_K4uOLVcf%%N|B-BuFCo__xKP#8MAF;|p^rgIi72JqI4`KmUql{I@w zt!HY#UQhM(R<~qJu6Kg~u!X$KhpX7!h)IpA+z=c)PyjTK!NKvotg(~FtlKbbx3|ow zzE6jX1(6jR27A#_d%)8<6z(kPO3fbVHMvBYE`FN&$?WmJXlT3p2U_?50Re%KJ6%iw z09>kYxS3AiguDPl_&rTJry2eh*1{eA!E2HZ*yTSB1d_q5Z2V0bD*>BivQc~OY+?Rb zs%VhNCnfHB$1h3Wf@x)u4)-zeCPu!){rR`o^i$crYu~z1ek~-@l*L&*6?HLx$@;bL zao!hP#+QYC7%RYnFh_vYpOFcQi`arWtV^tl-MT;%RbFL(V1*=BF;%G2_er+HjaY`< zzJW*K{~r$}O&ppYZfRsxQefZL32ao)@bj+FNg-HJ!JmO39G?q`P67+qlU>MJvvrcm z`6)UrJNP)7U0@ zL!=!Pf{CL6VE$~H?3MrOV6J*iTo4b)lfLt+D*5#`kZezQ>#WD|87`;@E|*@9Nc-;J ziErhU)ngD5!`}@vF*SbZKO;6T0MfAMP!?-;OoektB5Idiy|>699Trwja9a*64h!nh zEpM$Mk!(~YV007p&QZh+LqT8mGcj`bCxQ#nZ$mkK6raFaC^hoayr*1VUseWtiGXnm z6G2(;2+8hdJLc3Ghup?%Y;Mh3Lef_%AW^arBZ$LVk*&488OmauerIU_!S55M0uckI zfb`k3U9y{5n&%n!8PTYQ0_KR+AoYW~ z2b@s--AcJ`SL$5;a6ChwD|vDaQxYK{vuCEJa!4Gd;97OM%&`GMl3ZTyd;)Fy`9Le9 zmk%pA$swu+UyJC0=3RD)S~jM&h&X{U;$i}i19`p2^DA?tx|A{~Wyc(05-Yo_H>>~Z z66!vrLVFZ8f=dZ!VSY<7W0y#S<-~x%_+`9Z=;NewZ)sfrsF4VpwnhC>VYD>9CYyhg zi7ST#PcHu0cTWnm)_tTM6g9kq(XQs*9V}~~4wdlEe3GH|>J-ylL<8VEV4lhRlPw!x zkg`LDD8(fD0df8jPu;w*WJ&yqB{TvHeDMe5V*CdKUDFKgcCXBNCeH$5+I%ZV@%^9}>XY;?HZaSXs< z#PIf}CO5o`%+2DW>)BVVZq-?nV9Wpf{DF%gg5?M%X{ybkLI;&>)3eai?(WZ7FeWFh zjA_oXIU6ndOm@K)Rz>d;*lOT%((+ZTd69%#|D|Yg1ac`RQeJ|j)r})B{KY*M9~-@+ z`K<=e2!U$%f2NwtWKF!r zieC%Ij>q~UaBgcA&W}n6mCU%Zwr2|VzAGT-OZDDx+TYX;Vc+4VXSf6d0egivKy%}T zUQy)i1}d>^C)YOOP(dr{*Q|c5qfvKK(r8ad_SidvG5by1F|Cdy!9K~BeMqDlE<1EBPIhn*{jyE(I-=`s#msE%jL%V#k)}4;?#|? z=lCtkFt~ROn!^`TT#*uITZ1ufczhErWpdJ=|3H)3@XB)X4eME&~=zHSa}S&l^qXE1-sr7~Yx7nS;i}oLM0F-szOmPFt2L z^~@V#x2int-nvHy(X72}uen%ipvK@5@Fh`6k7|d!K@l2j6@Um~YceD3x!Y=Oas1G1jvFwuDzeY`VGtukZ>OG8Z ztK~S)kghj?2aJT3Kx!)mK7bHRbC+G*@KOe}sk?XD#=x=eN^xz>`n&aAXIPKmH?4Tk zTvC2N%(D`rN^kxi)iEx(RZcZM%vY~%4-;EV1mFop{7 zABvb`d}oM;b4%AozaKQ|A>5X3S&%$Qm=nmz1A5o;l53AEpq4m*ldY<(YxMq8;p3h@ zI7SBm6I-Za91U$`WtfnSy)f0cGiPy?%@MHyl0>v3vd7D({$JwPQsfYozn;oTP}8;JG;9)jb&%}c zLJV$tM(x1WZ{;lz%HFeHhc{o7y91vie0RuW1vugSpjiO8`p`r$#Ljy$1{Yb|+c7dX zIE{=OR$=<#==7}*A|4_;5#$t}SI~K1ONtWU0{yL=Pv78eR^S=rQ8P0L>Q4Y>cf6@oCQ5B?}C z?T9;;TeC^=Z6_y|=tfF;4VP6dE9HoM=)-|h4DPls6lPcu`FS zjsZI7+73zf+muR!M`sEVz6aq?%ujJcR2b5uP8aPA?A5(76)&$~4?R9&5A>H0$Njpt zc~n!PlhY@$RZg_%3bYIDi^(b?|CCL0pqH^U&HO6bBL-b=#rb#Fx`LJ&vFIZSELnsA z;pX{8IWZUEB>wjnf-h2J|JHI@hNf&t$FzO!aQ2i=Ues2Quw8q&t0HyeH~NVMMj3Dc zwo`1W?d5S7!hF8}Kt+}eo2J3tbv9+&v*f0+7vp)j0;4^~pO6PL=jD?0+WE%`aQUEg zBS~%b5OL8i-g1*-7j++|*i+Hzt+!f?B(MO~=!^Y7RhnWPZJb@lEc}hc z%oWrFnd`y=S9QBs4p!`ek@Z(>H*Z&6V^z;w)JJjyKE5PHOgWx{8KxtI+?P9DAw`dW zXVxRV7Rl}|MT^HGyv)$twX~u1|9b>HM5-?Is9f}}22AW{Jl6=k8bh(>HXG#7a z*6so2IN4L?+bnA4z*>%yrSK5S8bYoM-*#r=I5xc^sjBxWS$a=!mXDTf^+d*MsY^Fh zA#e2sM|{AL6ELjel4YIXOLQZoWG21XPa#+{*R=dJ^7fnGzr(Y$ySt6tL zDyovIo{L~x)7yNR<_c|=1MCU@?bL+aPhz-54Yt@uf*WJ0nn&g^nYlzrGsDX4!yd%= zu9?!Z_mJh)06xdg3G4Cnqlm|VgMNxD;2H*AIWB;#q{k~S+Ot1P@%VWE6U~RG@Fg3VQs?5-v25R%V>KfcY z`M4ArQBU?~b{1xgS9+zkCL%DQdw=8Q=?ctJh@ycMle#gbuENldkr z!LNY%YEW1v!(GemwSFHxpD*d5%Rd%wP;^MkA-Mn~I*F0%QkjYMVUQmAz#Be=G#+Io z^g$JD(73^rkXwHctmB=vMQkWxtNt3jp)wGT*j0ZNUin>~rMN^W`bfxsAMYU69H#t; zrc+DF(u8DSTEyV6#eg47I1g%F=uxC@sYoHbViDr%AC#|&`sM-yP_t`P5wjCwrmdcN zbXPLEmV$0@>9%^~g?5VWj0!F?>TELbLW^-*S@hsxI;J~400yGR`sJp6&(F*Xsd!tzpP!ACst=TI3PwTIz z6kjUtfDojYFk{AUEBp%)6g(}ZO6evtw~-m5POK!=tRAWj?L!>qYs)vn3#pA^QqNAs zugZmHxIo4U>Viy~=(M@LT&Fuyo1)J(Z#@o`&WLouMs)DR4g1|IKb=jjc}K zg%rMpIKErFX!_>?4Ze&TfBMISd8&WcF_G13brfDzKPhspa0PTeV{-8TK|sF0Gj^0} zmo0g3^?(%aJCOsfeb_;l6BhxhfV7$Q>7LE$*|>ktXsCini`pS-8H^&@f%ppN{9RQ4 zl7^a8QU^uamRQw)v@EJTm?I*8acNe(?_3zpqFb z00ws{@-E)a=T1M7mNy^y-ncZtCr=2w? zQ+|5Kiv!hZjn~l>U}DLt5gYfZY8BL+*4@9Opb34M|AGOC=gklStf1h>6^hTc8*?wz z{Lv!rtIIRpeN|j;^1A7x097&unOLxsl8Q^})D?E_X9}C~ zvg1_L-hePnh4CH3md2Q@FSVSfd%y6V;A~!Px;2_fw$wFjYUf%8WZ}=2 zxzWrI+?#04T)U^Ui|+h{d(cD7xqvvvogI6vSZhMCJ29Z}dTFq!+#Vh>OBFB;>Z8_m zjU*+~(JA(azy~&(!esoGE<2)gFMLv}Paw*3k#(s(DrWq(pTjuuO-lS219s7t2opSy zY>AGS%uPvBL?+4dfTrKYU_rRKxdFgl+F1cu)D@M+32N7TDN_C)L$@~&il%->Q8^|q zu}(@z298@k-v^B;mqq${T(BAS?ARqs^P8Eev)w#DPzZMlIA9U#Dsdc~*uhwbI}6Ia z;zwvM&hDG98d`wUfukmOta`dkR?K{3U}8q)?Mj$I;z9uT8G@%s`a)o57!xaN51{or zVE$_V$Zc<8HyB;J_~e*mHV_&KSl~G?NS(jkU}CoXPcH{ljsh&5N3w=1He;|s@q%zV zf#{6m{cZT8rHrS-x-h#9wDhb(C-+moBkAO-A{l0bh%D|VT%)-p_7K~SL&=n57ky>r zMlrXoZS>VoIk^BQXer-i*V+NTWX>Ia&UGw-{L%6Z9H0*Vc|t2EHl<<0iO{$j`_@m&Dz?Ud=_&?jY5C5s(*K0$0C z3lnGpLlxR7J`8YT4bbCD^Ihmsz7L*->!|ADgY{%u;Qnc5s`j4YOgEY){b)ajEj;o^ zLAq0M5R43{LOeUTM(VxNNtS@%yGC{{2u<2#xolLQXzi|<1yzU)(NtcR%A*g7P8#v6 z2KOg*i-OPN6}Vy?ooIy-$m11NU9NCi=fH^}HE*M-ma?e=241b(L=}zOgGv^GPVNiz zy>xQEPcXmC*T(HUC9#EH3`IN1+r9QH-VS)>MCb2P*G08vdexK_s%qj%fpc^Fd|j^r zpjmdtp;MTMT(a8{z5OvO!74|oLl;&H!hffbIZ5Px!kI#*Jv(i_kMA1=sNNTTP}iTE z!BDL0q_H7ktO-{eIA2rWkFD)G+$lj1>vcMOOa)~=cK=7pHQ?DtdK=8nfkOEO*^q5_ zJDJXso;!LreKDR4O0n4;uA|lMRd`0$F=DXPJC9PRBgiaXA zbUyGB= zt%vRNzhrw?FO9F}6Z6N_j5?;sXd?hSg%YGO1;B|ax@L8>K6XyTTjLv#um7q7Q|T8A zM9f??y{0kfvXmS(C{f%2$oPTdENAXvZqbKq5tQ3ZKiE&dqR*941ab3_t}}R4;i0YC<=LFmAL@7$7*dyD7q}WhOPJW9G#@pH9@LgCMm` zqGC4T0uN9Z9qpy)U;!~49p&~(u4P*(=49s~KvJ-=LV6RJt?7J@g73)5LYK#UY0(QQ?XstX=ydq~B3<}{{LgZ0LP z;Gcno{hO;x4k184^XBv!(ukW?Z2|So^_ye1f58|VmXbh{YYeqpbqVUIxVMp^nq8Rl zyzKxM5`fk9NgPja=*T=2SqNG*8H~(QaNG_aTYV9_IcEzAg*4W=$mJi%E85CXXJlyb z4;(+v;cS6v-#l9DFb2~jOvl3c42I?6lQxsDnF9?x9EMq~bN+_3Ls@Ov6=F`rEt3l+ z-5@}Kvr7A@YgNJdQS&GO^P%$@@wKe-0PUHjz-)ygQ=vTdl5I^O2X?RIV zgObIpt=PKhHku_bmzQ5ICz|hyJXU>*m)`jsEvAcAZJttDyz%2pe<;xCzM@dz+@eRy z(cP4RV_C5MZPGgp+A~)k5ma84yj-lIEnnqLX`ZQlEbVp93xy4m>6uYm1Af%-+y;Oy z#+|h1n1CD(5Ri>{J>e~3r?%;9>cgLBYWS719P#v{Vp&04i7SR>i=aAEmN+39Efo$U zEC6*udy8e7jK3Axc{J`#t?Wuvv*fG6pD5A&gTE@N-k^E^x&7FS6YN&4tR7x4jQZGK zAlZcv{DqnhH)N-2Lii@sLh}SQUDU4B*`6U~!l7#9%-g4Oa##abY7!P1UPe!6LnC|E zw|~3+s>G6$9Qze~fY4ME#)0m{5@L&F=hAqv9pMJg|D}WVj&J+o#D``uP^a`k}R28 zI_uV;y_J-3aWI*D%@0=E?t{8YLc~JMgTrFLU&}PV4&Xj8=q(Ywl1w zw^R^ui8pc8eyVftAaO0Q4m!p>B+1wOARdx)>d|SN-~zt6bEPS^?l7d$bjG05F6-rX zzj6qP9e>u+$b^8=k8b$Ps-&ycX0@SsXusg5T}&rSHc7O=Hjr5AnCc+Wt&;QECnAwS z4jt1cXm08@@4Iv2>(n8%OUz!hd8P3FdKqvzI%B`c3PG(^qN5c;=2=)s1;$9`t^3g9 z9nGD=51%^e2$p3bwfi3;gjhM2Omp?Sc6HfJWmhArqtCamD(*W%9Xj4x&cUFLU`8OT z=T1A#COX14-9^H5W=*BXKK+3?*&Q=XdUX((rmnEERLqNt@V!DHB2vimj|9`p7AtsG zEfxLT$v}y5d6l8;5bc0|4jfF0_#HCBaiN<|jhkJQBa4@C$uHwDrHcGlAI~kyV}RGa z`ow9HsZ#6?m#)CcxKa#cjos+{LH95rdNit|clg5~K zk@xYloNI>J_)sg5lCF=dSJM~t^t-jQpv0gnrE3V5MQE1`hv}z{_k9i3Yhd6z{ z(N<9vU)P0lSK2cV$`zi|lmaVTMtx$#OJ7O@m5fHD==kALvf~(saHmNo-b(Yg zS^b`L?+n5pxFU*>(ed3n-mm!i$M`@qG@3x(c0Mc%_$7|JJ3bf82I8pZ0>A&Q4eF;~mraMul$I(+*9xyOr#88DI{2>HaQJ|>2Mj=+0 z{=WLvuk2mP4u8wmLR#HE`JN?{@J#wl^sUlFN5CkwH3=$b6xTgR(k(wzN z%v>28k#%qm`hl%G+>+skXgD}v4u3gY!F2m(#n3ixs*(q+1>)#;MgVf|LI@k zs7bZEMo8;ph5@uD$yIh{!Lx3#&HhR{<=bw@hatfd4e?-EPX-uW24RFDFmay%o73}L z%ii)?E+jKTv;)jZUzeYpELM5xM0}4fbe~C45H^c$avOSnl^wUB;^WHG(rSAMs`;N# zqtm0UlR(4#<>Y7lUwLnKbc~GD8Cq*PRwt6707!$VS7E+u31&)|(r^peH0K7OjfFHF zg@6N?4Q`QCx``ahP)=w@AgW;3vQE!mt|{W#G|}!|Zr<34FiN3X+hKRMNq2id^y%kI zsQ~q>-U8@CBj_Wgv>4+7OiQ(EL38M7HOg zQGh6ZeQDqpD$<;Voe#YfI~;};(zq#*Gr}?fsD^KR(PwU`ivWluZTCIncf9F>yAOCB zuQ?6mftQ!t4y8bF|Ab9Hcv@z^_Q{h zQJCH>VL=d8CIt|8yYM4laZO+X^TfW4wj;akO;WD`Ol~@V-u-2)O)!2Tc6F`=z@QUF z3vdXMZC9NY&ZT7Qr&lNyTjd}t2w{zk=7X=TL}-i(&> z%Ekc3S5MsQu4EUs$J(G zWHz%pBD@u9Th7&6Z=l6H>V97?Le$WD?^Oz81G^$jchtKi5HRp}t^6*c=~m7Kalc0F zbjs#R)P^LeTij-aLgT9)-K6_MBpeBk;xLeX zme80m55Ak%v}#-;9nc;g*)E`v`t$#yw@ZwIHXxAquKQQCgnK{*q?J1f`oz!{SK;fJ zYbpX^a2N|fBI()KRrL~Tax@PTAw$*>bvUwy9`c%y3HxVyv?9R!&fB4mq5bcZms~U) z*R%VWn%qQ94&9L+_K6kK`x>rWO_r~2DpgGhQ$Y6;VIDH~DHLjAyXH|*!WFmi={`XU z#dh9SuoDMA53W1P2hQ=z7bzH7(-l~Av;g^nABTKK^sIgjV>d_kE}MtOy=z{8MRb_Y z+{XNPqmuw>t#=YrL3D=-x4PA+su@B%Pd;@;QjRIA@EUE%%Sjg}Y3A6v{N7q8_dnt2xNTi&4&a72M_8#Mqg>EJfgu;_ zYQm9p;mG|G1~)lsw#1Hoj?dhDM#`OHh;ZPF$Kz9^2OfAAe|bgwTANG|<$!+1dmPLn z7_Cg}7dB~_0VV;8uV@1!a+#?#ML~P#g@wqG$?9mg+7IaZ5+C$}@z98cL7|s~o|o7! zt`FP_v)Ng(sHPlj?V3r}zB<>>C_E6xT+XPvomtF0%)p&vQSVIOa#f*cP&>4035$kg zxT3}yxBGNW{E^Y5$ST*v^`8~C@2Uy%lb9o&k9Y^5oP2}DN{x8Y5Zo!NE)GC7;pCbm zbGg!_Gfg0SMS`5w(fdWd_Osv3NH_Z+OHtOQ+b^jC5{!lwc1(C1BO`(+U2bG8+|3&Q z5VY%w&|{oVO|9e;9$JmIq~8vI<~?kCbYc&Urt>FFR^PONSD1(59JPcbq*dwZ323~8 zkczx?GSXZJcANl$j-Wt{oO(l#S*|(;Rit3nq|z=i3sQ4-TD4ap+-GsZa)f)FuHiJ& zk-EmV+n1!uY*bc>VX>C6G=QB6-{37LhUXzZ6K)WT`8%5NokdOY1{Uzb69ea&rUgPp zBn7K@J|UCWHYDR7dXEJFwDJM7A#~}Zb9`>IvpiQ~5#v|N8_Bg9cgbJay*J&XcM*VK z*m7%JSAxHiVz=c@EgM3#D~*@vLZO0cj(}Q2qI`YkwGE=yu61L;_{-^rtsLJHuggU2 z0tk0$)c^yyJv(d*kzB@@AMt7PR~rttEkGA7DR4Mx>T8lE(=M&&&R`pbSMI_*uRcsO zzV)avpwO&m47HEJh1UZTxl=b6!zb%88p=L&KIV<(><~0%$nNWQr(*o9ldk*9DFTPz zo~j9rin$@+wTS>iIL^mp-xn^~Atq-Gs9=<&Ji;>*1Cn*>5W=_ZJ{uIiOyRFpvRIhB z;yK7^rk(FXJjxMenZq?NN4?p9E|*K_;H|COemi2nG3TT3ni$+OaD1b{dK6iS}92l5vBMddJe^%8YT4G z;l>`dTuQ6MCLG69oQ}w3_>Nuj_X7x+<^5c4C**@; zRIeQ-fz>nyr|Gwb1EhFW$1|$K2#AF9%(~dWPiGMR~A)drQi~P7gGm; z$sboKNs`6@8Oai$E2mqG5fnKw(QP18eLo%JAlY%zK=o^<3uhQygAbHJ20~ip5uFMa zS#ihSd)o=zImyHpi^P)9*~q*20!%7THvz7=b1ZUEZqzdgX2x?YzLB3^Hqzd!Za4W= zMG0e&ML@(js14{O`X~WwoNHuZX{wI8581-zG}9}2Wpw{kRyXOQF)mx>cd()-ETBNX zQ}}E3t;lp!5*0@EKYB@SOR1S^u+%4J1)P~{poUa^>#|_9CB~CP?LuK_1P)304B%Zr z#Yk>o&n&Ki;EOm@{~5PonU!Grdb*6ek_Kn4cH-)dDHkcS%&SsC zgvr1Q;G-kjCBiBqh_aHiYL_Bq@QoH0@&fXAnEk@;fJ*^4JP;v{cb3)pb25W(KKVUu z3|-tldbE;u?oD_RyUb7d1q?Zu)$1-2eT^{g5))}Q1^2|V7>D|0f&CRG zRQYnE9eMwY9IDrI$y36Q_4);K52?dS9*236>-!kURv-o%b^xuJ8R*m2peNJ*G`$rO zw_kBC&=W0sbRxxV+ba$QNJWZdOIfdrv{81z;-qXOy=geqb6f4X9m22{`q$~xAehS0 zPDtZFxIQXn+oM)4?SC0~1a&36fB>hDNfjcZ`iFY0^`ZCn79MfHny|EN-1{foKnq?z z=UDNruL&Lz6(vJr^?lxqL?^C8_m&5w3nX+7m!`K~G^P%(DD~#n{k!QxTyGiPyJ`?H zP)<4m=glm$u{UbGI&L2YIEofQW?9S&78~L)`` zgLRzEssX_Vzudp*!!GC(__i;yQr?5;MXZm1nnjzB%g#b;pEc1iK^qQQ`iiCOz@2u3 zJ=CXH#$aL5-bW!aLqP|c&Z&kea^N)lcmaZ14SzttNfQ2Q{#%CRZU%U@-_NZT9$Sh7 zM3UvhTaf~}4pDEln--ziTiRGHNmVi1UJabCR+!aSY1wJc1o4F>0Xa_K^(GW4JzIpi zQ0C%cQCRSDDq*@s>*g^vxBTY0W3lKd(EeOxABx}YVa>~~eGkAqr)kR6?ng{AEjv{i z4s1c^0(bBPuCt92AIrtSv!($_fHx0JK(H6njI&v zczRJPm#vH2KEe^zWgAg7h=e5bLJ}%iC(&FyBc+HoLGY({mpCWYts zpx4P}8E)1*5MxDfI!Nmllj+b7UojgbL&R9F=37AjxumDL=^xQ(JM>+Exx4v zW^wZul5-PN8F=?9cd)`4HmqLW-ZgOt16@SozgV435u$X9bbNudp)SUVrj+YL@B*=# z9}fQtZ**em4MWmoI>PdLqq_V!WMWHplB@xeg%=`UW7N9R_0tgn~IZp{6|%RsFms zpS;sIqk1D_d2ITmLm#6|G#v6rz=jFD;jtnpGhzubT%&@*|IqaAy%t``R-sz&9SI9_ zHp&hV*fYqlKc_^t_g9N(@oQsAqQN^5(ElQ2=xhY%4ZLqr(J>T9ii{7J4L^p6+R z?tlzPD8GKqHkT0M(bG>WEeEn@yG6V=R*{d*d|(+e-;zpvze|Nh&C%^2G8lr9_|!Mt zL7?`Al@tTuziNv`j370?l}!U``=jzO86*3N8_8TD48kzR1<)E>49FN+uYggoEx-4U zFE1p@C4VDoxEVabrp& z-!oM-MLea1HCOUmYUp&w91$=8>8A6`Ts?{j(~LeL{CPGt+-)Q?Hry?YR;*LH$dIw3 zd}d!sn+w28W%YoJ{4x06o5lz30s6w;>At_DBp1iZVo0@y(>Put8Evw<(f{wuFOQ6J z<5Xc^zI0qm=`>4IbiPA@2$f1?w`{Lf4dhJ<{67R&ehs(R@~eRE8r6Z>69ZvDx`(?FD5JxaI~3PMm6xKc&p*zt26?a6Wb5AH!}K%?gfkrU^#DZ* zd8YmQIXrOUqgqqL$H4L4O_RQp=L9c}ZrEITRJFeKZ2u!u7$yT_L-3E^rUo`M1hCbk z2{H=Wlv$QQZ&idaR?reAL(pq&%hKLDKK*a$mHeUX#>Oenuy>zK8#?F5X)wVf7c;)M zvv;L(UFv@x0yf}PB}m9C(n`t6E^OhOf< z+4R)>T6~PHz9%Sy&I(feK*a3~Udfl%EfOb|QVZ`mm#e=UI z$=w7ZZG&9y-D~4u27ERw?@Sff-M|A9jaSymOH!y*O<&0v(Dj^SLytQAbpYGdrM5Il zqbey)+hr2RZ}0t$vWcyFLMssw0hNAlKv#YFRTOFoW+243LEhz7q&;JX{8(aV2{Am*G4YI1W|c4W{WZT)k-uTaN;`- zC_rp5;5{ZDiD7Sl#cD*IGqoBo8ae?ow39grkV+Wx*JXNQOi4G|)Y_<`LN@6^pu_zu zCcJto`>olvSL1&opj520l1} z3axv6Q=$i&-)Url!ijVGDh{y;o!lkFRe4~ua(kiUgcEB%B@8atckS%7`VdVcB2y@p zNiMrS)&_5ZfN%)A5p$+XjLT$J>gT$pkZ7&ZTceR8N@pI`fU*-1>->dercMkO(QkGI zwN1TszYSu^+85M~!s8UQ0|K=S^B>p147>vJZ77fP!TDMotdDg44ZnB**(J~l+R_ew zeOad=mS9ydYKxM&Rgaks;CAr~SZ6+l8q@H&H0JQNW6Dpx0JkgQ;r-Xl4nh?EU!7iEe&_#><#}E}D+wO&#arJR>SWXr9)QX+vN+g%KLpjBWv|Y*0ZKmjiWjPraguMk58x1mGIaa$nZgCU8Yy&Vv{sG-WWY*hQ@u_q;1htQY0gYZ?^+atn)RjalJg|aQ( zEgO5%YC1W!R^-jQN4t$GsNq-}{4y!C-CY7Z1r*&q1i?d|`zWrbIZKTlAvhy;`c@zP zR~A#~b7_>zWCIe1@%}q(0zr9J=Kt%q#j%4b1@T{97Lez82|@LSBtwsQrX#&1Muh=! zO}8+*mrpIq$4=!A7(-I?_V5aaHqUe#m<{Yzg9cOc%Fi!8*vsz43Cisxep4AOUU;Ehyoe z9Iknn!Yxe%sa7qYXG z7VlladDl!YnI@9+8QWB)=`5eVP`_VcmmY2dqY;OvHt=+~9>tEpBHZ7vKV+}O&Qz4n z9J7`=;sN354a~|$Q`M~cy(vGR5G6Ci3HQKIbtO@}ml`Vr9T8W&Be;qhe=q8=#h`LF zZ!L5=9MmRl^}h!k&MAX5wN$VKwtf5wMV(0@UGM0Wl;lplaaVuo_GT@+N8!jPWL`Mu;wOQm>)sTQ@;|hK72|*blJSS}GbHJiSZc8V`5iXoG9gjP~02*w;Yq#_TC;#t52(3hW02LS2sHnF$#<|fI;id3hljCIzTr_r%MlZ z5`4H$qm9UC`1XL^7PD-xjzAL>PNQ&&y&{@OI}k`xm&kBJX$4c)}3(?j8Fpw zPzb=`F>BmO|0K--G0NW=@e@^IzZH@p8Z{syK&A}RK2FV7fEU2q4P%S8Uh^Tyi>6kH z#MO!^cM>Au)_iI2XdhUxg()X8B1hRm9F7N}6@Saiqsps`z>;V{uZ3rOcy8PVHUEW{ z>ms)^m~y{lhC;V!#8acYnd3Au)=&tdb4!%>5F!S(y&VQV71Sl2N-e)j1XiPih-g|D z2TnTTb2e1@%B5+a9M3#nf@81J!MfP5W;X$spXeaA*P13h=3LjfcZR@!A^{0FeEs-? z-^|r+X0fvkp2My`b1J~EqmPndP}w5QENdL;*_ zrJRZsH+$R`cF;v(L8FG4`#8=~MQuzhon_;OIIkIp7P=S68rFyDbwr7%Quplr-T|u=PDX|0N z!LyNETo^}oD9lK0d9Q8PL~CXfBRy61Bao0JnxtLaDK#~nS(MR6-d5Svnb4jpL}HU4x<39?mUi z@p(RNJ0lrt^xmp94O`(T7}yXVydf$Lxk=@i#tWBYk@C){A;g3x!s<|CJH`rK)6ZW2 z-YIvobj`Ha1d$FgIDhE3$#>6A@u5^ua>in2<0(}3cNc%-cS55~$xh?$`nGl^cfewz z5?G_VYw%NiP|H?gO`5w=^cpv3EwGu{qjMEQ{wz>Pj=>($ zqV4^$w^!j+Z;&aZ#|4XZG7)MJtFEHMzl!pioZ6{MI+l7(Lx#CUT~Yla!+bt1IqfD~ z@xPavA=|jvBQq}4eSI4GL@ze5jP3O*jG;F&!h_=+K4)75iaezDT zQ;j=CVY`u#QYFq^Q69UNUKG$WMeG(fYDeAK%Ra>JuvAKLI7$*L)A~8}q1L^6R@Uf~ z&;SJhB)eD04Sfyut9jvYeix^i zob7)$2f=J>_yje2G*((y2H(hpn>Vtam-v6Dl0bD%V-jTY{cj4C12(3txR`~oA64QW z`2&Q1Y>Ot2khCfux-f{FE)67IffG6Ex}|WHh8fvo^Le{`(=W zm(J62VY_!5sU$I_eS$E*#V(5Ek#;0Yp!=r{tu@Q>_1#xaJjdVJS0CA;ft9f`2~b5= zJHCW{Gu5WQ3jtSdDhSORg}ehu<@0&Sd-aV7)aRrY1bOwhac>4wU3qS;kv z(Z#5mXV=m14$^pix#dXG_ca)oVOz%k-^!foER&C2^1G{%_W*)Zw2FE{-L}4QWEcej z6Gh5NqZ5m7gd4dO0e<87yRPE@Z4MHumR5{Qe=BIjUy`}5ZO!91FvwtUPN5BSS4$h= zS{y(b_FUrZ+9wu5p1NO$LXX*#y^PV;pBeu}?!wNarEoZdG zLHxnvs{X0Gyb_))M_C#`Gph=`atwLID78eJ0!fZ%ly{)|K5ZBW|1*jCK#?I5)p0WM zc$gC13(xo-DxYaD2}H}G+DPEFiQ0_7bQujc7q)cm5vD-)VXTRW_tw1QZ3gKHNzSNd zarn0W#T>LoVg-U`x!`$5M_oLGN_-R~z0;i;H1z?5KAFMI@Q4Q*u$TUIad-+P4;4`S zPp1xx;Mh@mCX=2?Vg!Vd6Al=pZ|)eI{j`ihfaPd4b1$L9K5T#*d~K1wh#G{jGf#AE zP&*by9+6&QA$zNfIJegPA4>CCdq`*vPHH!38jRd2kRK_(hBHQvRYQO?%o{T(9zB`Y zYo^kbzpP~I+;8}U@lbw+x4X+qH6~jXLL*6~(%GbAFWEfj5}&ln!$ZDJjyXZC-dh2T zXzVV(Ug;Bh`D5eA5XXaRs%W$03T(D42gD|;kyFeP%nHp@qI`OwvU_HSXf|2OxeC>M%rSXf@$H-d015Zx<9ZLelN-AP>`HwC;udq zx~O$wiaFF{&Yw&MdFXeFq)hnOiAq_}j4;ce%uNTJxs`;S2b=p)58mg(HoWMpLMX|c zWIyx^^=&RX;40z9NLJ^@xy)CUpyh4U@$7j!S+@F0#rZtx=tsWBL6MK2Sn|rwUT?a`7j80#? zv!5=wcsPFLc3I#VC|9hk5{9vYRY1Zaxd##7hir+!8%?g%g2`rZYY76F%u;-;jiV2| zi}c$H;(>&Lz)Aa6Gm~q;s|VF9w7wdFVPx(fqz=}$t<2&qJhw0O@_~OiaM*dW;8V!> z3Trz*b0>~ej3y%)9HR))m_SYFl8yvH}Teo{baX>v<*2pRCrJ`0Eou?Xo6r zJ1aA_X0M#pzL(De~Gxk$eZ3 zhv)JH=PVPjw9qfhX6{-8;~_00|2tf`LtO@(9o3IJNX+@5u5>?r5Jkw8VM^^s5Kv~h zCym8WYvf&L6*WoJwOqPJBw+}za$Gw0xZ7hs_AA!by%Bk7XI81$xaZ{{au;jt`4n1c zfPU6_yoPfcL$d; zsr_UZRM@_K9;7P{%3qZUJ+L?Ghyi^jbmZ@(lo*iMGH$jA-Jlvkk`MKRE`*VU_#Pg@6vK zN;5LGJFMojt*SQ7lHk~0S3c<)c9=q{e0|Gd&kj>FFMKE+02nu*y%U?{JK6zqG^I16X%s@X97MgU?!A#fhx{$H|~D|GpbmkIuX zzTOKD<|u`D$vA>P`DN*A>G!$THvo?C{-t7%_cHm5B|0vJEn=^(h;@Q67?(nrtpUo` zPIwS$5M#apFrzVlY=c#Y8Vfw#kA^>FKhv00paTeU?Pl6Rh5twERNn~X2?(SNpSj!;Aez+62kj%=`JQwA^e(7-M zF$aI1yIDGmV_D?0J+vFNI9vg5_Zxp-nTfO~-;wz=q!RpDT!k?twu6nctK`Qpd2Dru z$2dEw%-IoN#M;!re>Tgn@_zAI z`eyH`J#&ZK*KT7eUvUUcrrIsdr}y?nnEYJ6;O5^t|K{ucT{VxGAfor@L@k3A&3g-Y zE&sCp{`v^Xlgzp2*d~}!c7Lnxhqv(LqX3}KZXafCvw8H2Htw4Ha!+S=yramP{5*=) zpxdmu+ZBEuh}ZD^C|EHV3qk-$>UscD#9k+vk_&#Fum5j&s&{i^1v;V2P z@~S*RqJoUM)4ximO7oe7zgeGmJn=By$(>1k?-|XX*4FYpjaaKfm0QrqPO68(R))H> zxU_&f&ffz#gHRL+ysK_+^G9GO8RkdGVmY2n?UpT|ERlZ=x)-7}pIsdfteerdMQky- z0}y3lRQ#%7k5npgwm8Nv z%}>rjK|!=)P3i(?*;~yFgat;6aug##%X;5IdobW8Rx1$hIg4XRDYs%mAPBcbMo7+k zPP+~c;{QOJEd7J@IT_+3@u^76cE{tR0dwa8s**HFtV4X+Fj+m?WQpdvSnV1znW-2L zLB>LpvU5T-KUSvIyS~i4{`{Vh#Ye<*aT2_2$;g z{j=8IpUyHZb;~T>gpxI_ zvvanza%6;}iaZtG#{R>E-b0yutuOZ9%f9!sya6{*HFH%p3!kC}W9NzcHv+8me)`Bz>VI>(H zQXOBdeRY$sVNDE`j-dJ0^;VTllhQ6&32vChM2YQ3ipdkR=oi;n1x*;<-@%r$Oy)s4 z;kbSi1}WyT;RV~3CN-#}CIpON#LSX>zn3K6pU*+f|Mt9eWJ}w3_wiE|M+K@5$IYbS zuXw*xY6-uvXK;vR1=GgTYfxeS>(vMeW~Fh8Bjh5<8q zO~(=cmk+;%A>eY~6+P6V_*GJ}0WKgKr!(<#vz-XUoln;A4>>6sJ{UChL=i@b-gW53 z<~79N*hL#<2aaClQFQ@Wyt%*sIe$jUgalGSR}gE0ZHDHj7`WhRi?Fu?Lz8{u7@V#a zN!p2{vltb7=J$IbTIiB{l7deprpnTKH)wW%DjFE4tB9&Gt7JI9kcJ>gpD+$zN%g3Yz3sreWp3v| zE1NX0m^!Jz6M*)FRf#n%_Q{7ZXNHxtgWiW#WbtI@7&t_w|Mo5f?$&g1GZCaPl>)z~Nu^h1bqDOvFX2~$CyNts zdrvjwsZs+AYF4&WTj7H+9`A|mgkS~R=hHmEFg$a!aZXf!*c+iK#3To))BtsaC?^?wL+LWOn*vyGYy~%Fk72!a_M^HSv2?10xbcC< z1KP?eb!8iwM6d*R*`c;3NyzF^Khj88VKU~TxM9g!KDSO8!O2~h>$7joDDZLzO1OWRuSz{OT+B zb0%alPPWWG=e>@U_Wqkuw(4gPr~{uL2Pi9GioDnS-Wm^!jv`)?o97d4JQ+3fSVyFU z9<3st{>OLX0Aho0}XpMAJCxYq^`otDPpY{l%6-Izwsy8~WdcM*y3#*13lSdmJOlno%;LtLm zOQ)XOHP*r}{MXwF=ETqC$Ysiy#MU?hxcwZg=a?gLK7H$BwBXf1^S)^4-()H(=Lsh~ zTCo^b?0rfda#WzKuVcv4O-PB6r~sFb?ta;*?5ViX+dfq}^X5S+A4t!2p%PW>#pElu z9dB-<%_|E&Vchy>5|@gq9y`Xc;W<4a$tJCp?90=a%?I-JpyX9+kWb)~I2TbsxD<$9 zQNd~k%apf7!*m;<7{VF4f@BcHB{C=EAH*M5~S`S)@xlKV4-8oB(8@`}Vu%B_qS zYte8=VV%l(#_>JxO|U)0g=IoU= zz}iDCIBvMlTxuBxAMHbEhYt5z*BRqUQ-(1;OSq%5yN0cKQM+`cKP@~#Cwq*CIVsL` zF@sql>!rgs9;xFPaWDw_aciW;p5=W_`Gh$Y|;?g^?~vi5gy4aSec8@c-DvKj7mT|dvcpD ziKG`hbOJ*Y5ge!obc~00jJ-GP3G7%;!AzvtLGwOdz<4maF~`g2rYn!~uT-!ycB-0T3QlIfGPZN zot^+_OLo~lFG(3O@Wv63nX_x2mhMhI1ID=aw30^)RuY29ZVVz3yMoj82;}sgL*di# z$6eKiCDpCQ`9Vd|j%NMt?WVK2bS@b;n`+qAR*PF*mH_pijJ>Jvmsd5|G!%cYh%qX?(F|l;vIVPo?75ke+H^6fxk7BoqF)oUndZum!Si~f$IYl}T$rBt( z+E%PcH2KglZ?|gNoAaDy_Qw}$c}#;05K4{Xgw@kPp2nLk%?sq5yn6~1j#VQQ5wfqz zb|8OVu4=eeft4k?2_@D*sXdiq&T0*^URRjow)43*1Cj(VTygceYO6OUma~bYS@S|F z)-Ka@--NWK(wX#beQcLk6qVsv&iugk!5*o`Q>OLC%*T^k69V73cNjy6R;bd!)DO7k z>4IN3Gn{*st2N_a&-S67pz&WnP}}sRr-A`5>*!DVoongizYB)!=J!q0>7 z9Se#mTFu?;P%|+ip!EuII`Vi@yfAk}Mo=+%hWOU!VI2z&9%sI9o$Qkq5;favoPfI+ zC@vgCc{WX(Q1P$@1(44-)VEAeoUmnZO{09S1+T+lW;X+U)30mzoh1CT(=gsQDY7KL zU{GIfkh>DStlcw&{+?~JP5@OK<>%WF+qvNPPwA-Amy_L6>6M6Oya8j5|C}#WUahtc zo`v?WEEJCGym$HEN`f>1pVAWzcNiWnLM8f1dgmqu{?-Wod#f}Mg9^x9t;RRXfviqj zYIjEQDmA$gNgh|$Ccll74p$-y&^R15$$g`XdcDie9L1oe*~7-+XyIaLFJm7+N)NOe z`i|Jo*PcF#z=gVjQ&zTlffLd6SI0dgm$8se|078CB_r>~qO*}qfTb^4D9V#3A5H2I z>4t2ZB*+*}BK#o4;NNMwRhtc5N-WZb9oRNrnf+BN$WN4?X_z^Ijh_fz>U9*@*?{$t zlJe8685BtX@~@M@G}QsHYGA;@{?2lkRZ+>x7NX2Jr3u_ofGiV@5NOCFjutoG7*M+x zuUd!QO~)T;59--r&id2kuS3dBP#_R!9b!S#lo5?FglVed@AoGA^$5z`R;USf={2?h z53O3}l;JUnMfsiY2MIl4obNGdhrvsvZ=(W`DfgT=#|=;su&(>55GosHW7IZND^%zH z$|Q>X@AA6XT^?8jf{_WG=z7mR?YD>0?qjsH@^nnaokKoIc(subthT6*l3OIsn*waB zO+dAE>(ih6-UjtaDVIAiltQs(kc3k$dSdo#SfG>nuSLBq#eyNaFlLXn1fzuUbaN?S zE2C4mG-4zHO3XrIeyLrQ5DkkerQ4rFb5RT8SSG&ckKNiaU3TCM5Y}w$Aut(xChdJy ziw?g-!QdrxBED;STpjHZ1QL}U!Hi1Qimqn4fSH2J$C><$Iz2I_TZ`?2Nh8DDH2CBA z-2}V9ccp1S)$4py2Z)5+%C84V<=WSL{pJ034{+V-B}1S9a+=t{higNmVv(IfZ*yLI zkW9v1hS?FBjdz{9`G2;Nbi$yQnHj+s1%X@O&MqB^`4RP}rxANg2_5{bdOL3=o;v&!7zyosjCiE02 zdIH?n-67Dzb_1tFV+@zL>_o-fMw^>zM#xrt__q*&#>40n4F-cMkfT0+7Z zZNxsR1nM_Zs+EjH@X7!!I3F*c3~W;g?{P;%OTjG|Vo9RI*MWR{e?~;sc^dH9XODFI;mv%8=>?pVL^Y#&DJo zhy+aS(eIMFt2>c>1cTm1CjS(A4(l0gN|JScmv@haG{DkSBa};39`-Y=j zR<tBK3Cd4N2prR(8<<@B4(^cn$u)Fg{$E&bDm*xxM?<%7#m-P>a*mVQ9EHLdxH zlrI9wf-rc1>NGgGWXK_sPn62D>1o?qp#<-fQdv~ zA#&Z}_vVg98F`s!BoSBwa9{oW`9U#eb|L3C8hVbEY7?}Zd_kj%a&kd~{%ELaC;%`2 zB^?jHL!6t@=~APJzC=jEJyN*@jQ;wyjyc&sftF|xV$xO+nV1Lw0)%4MD54e3vc?Sf zKgoEsAC|_PP+y0%U2TTo9gSOh3+u+9q44jM=|!$Q@K2KgJ^z0Q>(?X|MyggQU*5|< zw75zbF}}V1iuiq%>t3C0^eZ*=j(lX|Zv;T7DtV_HKW@7bP(MWuLW?q<=;ccsztN{& zUNfXj-qx0pcIE1+8iqILy*98zg6-Ka*`eNqw8D>6t1N z29Wh7HeFWeP~p2n$Z$cJ-8_%xi18|i68SBmvOM-sGzy~k87}#h`*vrpf8*Ig2jt|cqeLc3`RGzEW(zKL zDwgjOUI+mD$qM3!6VtFSAW^V&9XW`yu*{F!k&qW+DjxY-ymc(Ld-n!`oEp5`N8jQg z_6ONYQv%3dFdpaFectAL9+4@nY{YpMf6m=(#UK*bl-u%zEJRp+*ZfpF-kJPl?DoQ zVgzMGULhB|2XwT+RI`Pj3+}qs?prE3vwcmL{yySbN0uln+Q#XQQwmzX^qs~)Qa7sxJj!_oQwEoUuE&yJ@>U!Ha;#18rcrSg4C>XiX2P+C3D#f2dS3gW z^`lxK^fVfr#_jg^3Xn!<3d<7 z$taOx3wJHtenPQWz6KnNsX}O1HRk3KQhWZ9I)uK*v6q)N(;Z$5PemDB-)Tes|J{ZI zzUvIhMBi2vX+0b^i1ekdkAoXCXNWDpy}bN+J<067iDnC^aLmW~&kG8=bqt3vY-=B2 zY5K(jM$YQYhh>3+GI5dM7D`9PU#O3~Ewf}%(9am@3()-8>68IR3A5c~7dqiJ^Fg6oZv5+tGOzskCe>SSBOyRhqi28EppWhJss{Z<5$*V6!tn`jE zz{ZF%I61b=2I?gmyzu4(; z2UB@21Gv&}@@7;M!lbOv8R})b)of8^`z@K&<3fCya5wFM5Ep+a`QunF+Ci^Fr*k?q zTM5mQZd@XfULGh)s)}Babf&K zW~X}*qe0EK=f9CK==cM!N977SJ_RG%#M2L$NWAh|^veBK~TNuSH2mObbp^tG@7rpr^vi$ceCX<=CZ z>s)$Gh%_Ba?#Q-K<;*nevgdX9@R2CJ(`MG2qV4;LYD=A(4{1x(LDOS{_foK{<}(Bh z&pjpn2EmkRSM%86-W=DFw<6t15#sgmv8u{s_}vMMs6)h87wnl&_nKSsHS#Q3ZIb>a z6PBfZ23l5G+ExT1PIa632?)blUv2wF90bcC1*s7wjgmPZ!4)*lCz@7OS&DZDGh{k% z)@~Uu=~@u%-Vu(e3qm$4lpRmBkyq~TO z=QVUN-T-+g@+eSbVR+w@qpx`!$TkG%sp>!DzwT?`I!dWU&3mfNnVDu1Y(q&S#ZdIk zmDyk@7FAS&KI{&nfwjJvn$@DX&)SPL8S!&bUg(k3mNqkg6EI+0kuXpOtW4IL(P{xV zpK6hlFfzAxu6s%~q{mbhPQBb?$`rI|b|n{w$O4PVV{-F21cd7o>L~(Q{D;>P&N|dPZLr&0wEJ5bdFkd^ z@jw%F9Kbke>RvpSwW-}u-G@}%@SZEn+4`^s;%%C1YF^2cHX!YL`#Oh?eYoivhu-6q z(OIm}zlqBCC{Pj0Nhx5UxI<*r#caYnNIVHtKfQYRR_5E#d)AA#Um^zpa%P5RXze&o zXg2thtRr1O8jGjl@R$$&6@=u_*6Kr1$=|trPr6|0-fK6OT-7IVL|3EA1LK#P?@H_o^x z{5i$#A1r&FZ?Wv3MDG3D0$q{8H0jqbN*UVwwC%sjN5bb(JG*1-PHuTcp0puC1+{RY zG8cy{*y6})aN&=Y9;7C){ra(8F}UE=?P`AT8G`20&k_{%!%olQc<~H>vMM>#gKi|I z1}?#UUD^eFcxKIfkX)xE?E#PQIAUI*&q^^82ZauqSs&@iLO1Ldi1C%xovPk{R$^*< z@e7y_rCrJn#=xd8aG}Pf)a&n}`tj^D3@9Qnk@gT=DTJ6T&zm8rp!DAKor=+hu|C5& zsNi!rcP{VQc3{y-<`9iNX=a7xS%jF|-DW)aIR;E{g}0R0Fe2vfhgRJV0mKWdw$O4T z@dyNcfnGz&mH9Cd7(y_J!gA;L{&%`tIJ`cjDS>?b>a{oB=`8y$HkGs7+YHxYPYgz` z!>!jMsjyD~BtX92!Y;BSRk?5d4_l@l1=uT9~oSY746b`;E9;gw- zB}VwwAIaA;Y!54pM+qtt%Ryqe_`S`T0Dq($*(lu&7$$A1C}u9FyXwhO^lRKs8wb+J zITg8g(xyQ~X8mXYHCdRoSpF>x+x8qIrY1gtGKn6EGzIqSoSkTgfx+sS*%Zo&fZz4= zPna87niy)5&n?~ePzC2n7q^U8aRJ<%G=WQL?I**1oG9!vOlUA5NTWk?cB=tyRRX5Q^Wjb8!3LzqIANmiliSw~HFVnvBPU{jJ2UD9$th&NwC)O7z$ zxTsGgSxaJg7|4Cr{uGqB=Y| z<%~XMa6xOngbD2=L@EiwK;4jT_$ zfr{bi%%AmP`Ppc~^opFj+_@%HZxR7>S!}aBQe@a8gW@Qvg`fLgWb2c9C z=5C02*%f1#gxt~KZy`TlIZ7VdS@iI!NldO08U2dl7Pr$iKQ}mTzS^8FGj?n`l>)R? zul7Wt{(57#ClanAF19w68~*^d;TsEtd~D`oo$+uV$`mwyaR*P0zd}k=M(ZyZc26k9 z&+DAZ0H4yv2l(XJQeuX!ov5V+xTA|HdUs zucal?|50#qjEaHy)9oVJ!j`4ra0Z6-U>^LL&g}ZG3`h9DVnz|$29Gz)VYcgsWM$D5)N zWB9S8Q1+v@)ja6!lI-CV+mChFg8a*C^GJIfdMoHrHNwjip<;9o-yrjzxcJi~zTKEm zH|ZQ#1htZDd{BzOb|{@Ou#rovlcoFeY8GZ^Cxn69-RsD%7;)4AsNrN2j@ZSkTJ-8 zk@<8UMg#0Xo9m9Y170PR?{CHhYoV6FIA@4gK;PkMN=-J}fM9`yv$%WxdD%MiexfbP za|pVQ>OO5eg1;wzGoM1M+F1de69DvW1ET@1=RVT{tF%Fy^lHK8?Ab!Cs-(drH6$&e zMZvDW2kZ`V>vPRZqp?1L-zH(dt@R=PH>9sV(s6c0aOUt9eS)T8R&tlGD^jk&4Srz! z9crtoNhQgiW*zlxccyt+2MOQA|2Qe%GF^Z4`Y~WKVkm@{n*rIl zo(fbG+MdpqO5M^eNgkXu-(ains!m%V9R5wW=7-(5HI-W106py~1@va_A845)_^E`G zLzoHKigo3*!IbETui6Vtv#0}~LcIvFO*g?$9tMpCA4lv!*? zI%ZjZx6P$7*)$S;1{pi!Mv;3bb^v8>?HWmG$6bBPA*ttt;2u^Zi!|mbEL16Nz4(MV zPx)zwVMtpoN*d{_7yveh&$BHaw_aCvl0pYHes1qy2TGr7H@$!Ax!3P##XbybjFrk% zD4ar=_HEJgHZi{G6D>&8r@0l@(PX6>2;%*42|V4!S-X1ZU0uD6KxmWOdwI z#iZ)g0QkQuXl=_d287+K8XRXPAq4N+9HQ2!V*h)bJ2{;rrtxc2tqL5qMvF?6#gEJ-!8BY+?f6@KkqvsT%!T{}3^J)N5#8zWHAx+I3EcAib7 z4lUg46E-5aW0RALeu{8VYdgS%Wgp}Fo6=Jytp_w3PNI2ITp6Lc2|7Qu@k2i~p3?KA zYeUQ5j-}Sea=PJig*8RUs^k;qqc3kb>c{n}O6&)x5+w@#@L&2Hz4#h1DqEFDd5ZMp zZ-qp)6|OAcMwB!ctU#wf6^?uS0k>xrGQrf_h6+a$k+r8LrE4QFzG`L51bGmd9P*Xz zRTXD*jpaOWBtAQB+6rK#b26CFzRD@ z39E|;#y{4|A;6F7l@&rk=z+`dw(G8``w>G0qCLU{^Oc(IqAVpf^>Q*5*>`W z=fbkvIPSXIt?*9DOGf7Iabzu}EwE|1!$8$}kZ(w`jZtlFCR;SE|DL%}_<`N2Xtk;k zeQC|!5VqRk3LAE6%6Jj>^4~zi!iLab=|2s8G@`-OJ=^{un=5SYLKM5pP%1N zL_MC5&PW`CpHMT*N{=}&X?LeI0y6vrAEnxxU5UdZm^QP@b=RSzFoBh$=m4hZgev#WQip(- zm3pCCEy|Rb3QWgTUC_P{vgBRo9pa_?whV7GxQ_wyx4EbhY!mtfa%A3Cn%QV~Pk7)E zcQ=FQ_Bg}+onDP@H**B^XxLGixGblyCyyK+sGOS{7|1(W&-Yb4hTx#sn|?i%9(HlBFZ*e74NQsTmUsJN*kS3A1!j=RTa);*P3Hr*GG_tA*2bG&NZ9h|Kbk+{PMISzrKg zXP003!v{d5Xmgrac`?7;0(5k`oek>%2_$&pN# zl+P?6jwFM&WlEJL5O!C>Aao{uPrx7WYn9NjwLX1%IP$K6)#&g%S$+8iDnuWNQ0Xcu z(I;Cj>N!x0&Papk(nJ61@c%;_SzP3m*;1wyUhe)vK6Q8-+e!dPvA~&DeNF()U0`e_ z7O;I@DfN?>%y}`;YIN4R3NKzv51G)A)7c~f6XncoYrsmI2&@1^s;88=Y3$wI#RGpH zAp1c$m@bNDsyNSMp>&{-^hfg*({6>1Fqgsmi|!mXo;zV34onFaeCbn@K~jXm2UFEm z$zsoZFZA@ouEsiaITXNJQk6N|9R1J*p`hK)1v@@_Y=#R(4CN z`~cjU*~AM{C<_PAG{&autseQWa9p@@HvU;^f?X1mGM!#hIM6Jtb)AvkaTa54SUnRf zNIpSr=GVGsyuiUGtxJSJJa0zIw|!3qUWojC`!hUDG+=Ni`92cu#4z%wQ;#qx;rNyvHTnqxR0hOPUxFUFFwSEIE3oWo z-8ZFls>gUa^DJ=R$q<$$1%@!*21}5~Hc?c$s!pcRyN77#gd=Yhk$~h2Z#aHvbHASp z03``5ZP7Rn#pTA!Vd(ydRdKmfSgUtQb-KSJ9%y=3KYEJfG}TM1Q7mI`*Gc$~X+VV2 zJXvCFxbP6SH1lee+J)oqXtXruI9K5~a*?f-FJ)56#Rb^`Ie8mno(eK|G<0Q%P%8sM zSYiT{t3L^8pVuY3SufOPb9@*Y$z&Fx7h7VZGW}h{W4DlW%$=&ygm8)QcAf{jWYXf> zGOii6Yu_%es5Q<98%gfF1l|tFn+TA*&11}Kl>-VXL2$iCo!dju)CHnUhz;j!zgk1l zYdw0<+2kEc5@SU6x$Ves$(+UzokQr(Gr5vUnE-OqoB< z($!$F4$f5@wFIE<_m`4vO`hm~(R@@^Dqm{pg9#WO=tFiNP_{n7U&7QGQp*_%76CD_ zy%3oO`6&XwhEEseQP+h_&*%4Zu_%KLndZijyJlZikI(tEXmjahrd z8XhZpzZkHG(^|t%$gcSgY>9HmTM|kGnX5|*++5t zEuo@y0N*2R^|^h}g_By`qJLJA`PC*!!TmN#9$TD|iy2ujR2itQ zQOv4qR5it;LaWj!Np(tSgou7V6Zl4;s`#u~V@@e~PBX$g6kWY?1@@Q~!$aJW9mtH5 zWaPy8j;g#T*zocu{$G~W6|pbQft#3zyMUW#60pYGy`=YmYmv@F{ca0vx-B3|j5W+} zQ#!o7iz3N5^MD~oYc67v8LprXB}6VyAn&ABDUL@8^Oc?0)W&HiAVqumZp}Xot5Xx@2>{y6+X^92L#8sF*p(xh*v8OdlEqnm=d;7|IceRz`9!PrtGo{Vh} zC0!cr`do~G^0EDuT?Focoi8o03*|JqVcJGvRV_Y_8;KpNq`LZ^$KU;cF{x9GnW9qq zNtZ<28=#!N9)rAzzwuc{E%;s8pehvWEL9HpOEq{<8CObxS(eQQ#P$c^Ls1DaP{?o; z+tnNxM~Rw~5o*M`@QS2Ca=68(s@01(*KT9 zO$Wf%->Z(;?7r{?MP+;^crwB4&gC|e5d1`vofH83)~s(E*&_uVCugHFN(58fN+zib zEkg&;O+UIvV+yzh{nQ`!q;ggT%b3T+z9?X-IGzRPD#HEYv+NjFeXyWJ(QRbQvV@23 zXV7I;snZSx=%4cjj}^*9Vz0SuzN@HLUHCWmZe-Ys3xd=lh=7;qhHb^tvLe9zbv`Uf zEK1Fr8&3IS#!c|te$>!1oJnh^(O!9~5oawzl!1oU&6e^=x{}nf!1`HN^|bj9G_8XC z!O;errvod$*h%bW!5|jKOJ)CAvMS2B$AW91P7xLX`UOcXr8dV3ihlKu6b3D0jg zWd(a3EQv_H$G!=8rmgg&BvM5b4X&}W z2$~CZ$r|GHqfsaY@^Q6`xMiWTsJFvwr3-fr8B0aL9lT|e@MrsNL~z1wQS4jdf0f{x zN$cCjj3z8Y_L9@*CIEb;6gg=inj9bxAJ4*C$e4$)-sz1uzCvWN2zmhe$a2{H&$}n7 zk;G-6piy(v;I3Nmi>jQHW?5=~1o`EfLBCZT;)y=`EAmcBj4H|AHpZrMG(cNl-;{o6 z_hbKAS}btC>iD^;%J_vGH)3W1?`SdjpOSJb5(f-ppgAh-$@~D>Gm7Y581NSnV^a>6 zb-iL#iG|j)qhcihl{K{-OXo!$SpGKXiv&h3$&2eI{Uox+X{i6J-aqC8@jST-t} z!F~`m&v?jMul1#;$s7~hfK4aMDG&S{@!5yQzW<0el%w;|eMgs+$)K{V>+vLsUb?2>?ju z`Mtt^$jyK!A@vTNu5Im1$o6hrgLegR+?kh1ET^E{Z~GaF`D0{YM_VUs{l!$CW^tQA zph|$e&U?L?;7$=UZy=$Y;s*^3sO}l1C8(~4wP3=CNY*zcj7gQ)nf*2~-?3p{(jG)D zd)bo;BnUQ)!r9r4SEoY#S$0;wCZkZ(NIZ+40$+8?23;`8MNAs7%H^O0P*~|Z0`S)I z_PS$|fYiV-?)mFQ7Cb3bEPL0#|8c@=i@O8h0)XT;n zYaPZDOI=D2ZSf%jP=~a7)ar{bWOr2Hxl_e9KR4?{!a`cExLaU4ba@pHJJVgvV(5&o znz7;vJ^Rmyn5V^tS*PMc6jA>V=eptaT>JZ>+cOhlP zoHMJ(ukg#^?Q#u0>jS^@hSRC9ZU5Q}IuT(9`*#*VV$14(Zk~s4d_KNa<0Zt7gqt75 z!tEXa*1rM3djvK`-TIwYP7uu=aNL63Xgq2_`yM4@3FHBDItF>!M_ZZ8YgxS&9T<)WGFpMy<0)?vJpNp;)!6@3IUMp z{FbPx1UU~!>E1e@n`kL|(s7KNQ%6PctEr#z6PQ%5vDKvTRHVk<;Kn{}E@(&4rTFzl83d>Pc2{_7U@UbF zJikf%BdC?>RtP9*_G%j4!bQ2+3b{r`qRa{G6mg-R?d6LY{)uvhgAaOb ze24~cvaK$+ykQwl1*unn4PpHp*5(NOGjrXRXkjViDHSV*pGJvHJ{VU3y z`@lMe^ZZvoI~z*Os1#jV5!O%HYu5o$K=j#JM=`vac;J)2l&3)Vz(1cTIK2GB_s-4C zb6-$bt(9tZXx6*S5ez`)1PO&Pg7A#+O!A^IJ9t~ zgvBJKkrZ{91niioCz9xhtb3*Gx22%~d(?lC&}`Nur1DjYZwBaYK!cp5wR+%)tlbhG z8R74**5B$xRffi9BK-spQZ$G^<)+@dDC;alTN#{&A^xr%ADfN*$XSv}Oeg1lE; zL-yZz99)!>ovwVf0SKD2q{5!yIV37^+^|afX`jFs4_POsNg8BTXY?5QUo`rb#`44y z;|ZG~Ur9Tb9uF;zg!HKn0(N9yrz8i)KGgGU&wutaUp)%da}maueLKerPfUqu0tk!K z5q$MKOhMW^%2F1e!Io%H6#+@3PwxMDT)R@*i20~S4YS;{D!#L z>3V_ASsjK@#3g_V9Z=8!VFDlk3Grb8fKH+$|Va3QBfhCIm>?;dFtTpFoYcSI@ud zed>8S@yV+hF!_cLa*@YuQE+AWD$B{HP~8A%SOr$Wmyd#Y{P0TtLm=H2fW{}s+PnR< zfuHB?QDfOU&y2P#{SvKx7r{zgsNA6hfycDU@+J}ziWJvq+X#TP=MOEnq8+AUg&nWm zg_SYJ8*oTD=F7@qVWCPDWgxjF%vTQG8#zC*eAc%(ig6z8BXoYjfa{9M=-yO+*QsWz z^Srj14qNDhr2DEN3bO=@?tka%2Rsv47I&lRRO(c{gk!bp_O2X5i?DR&k~R2RxMjzU zSs6!^rhFN9=1}rL&g1@(W~rnBJXTbbs6DAh3yv*0sVK~0{&XcTu077~Y1e!KTEe8Q zWx_38C8UxxVPudnb2zCHvJTX%A3L6DLJOMtsKG)B3UW&g)Ta)+lqxCLjZT>0_P3kd>=`f18LNfW~A#F z&Z55bSI(6lDAscoL`Nc9RQLIzSn%nCfd~WmwL38sLCL)v+(JBe;%Sa9i19PM+v+Y) zV?PiLpBt>K1El;CAv+;hr4+(rQ+9k~l~7e+(1;i3=LRy$p3>vaZj*M9FlqROtKTpc zgPGes+ZZujWPamO(S$ChG9(FyP`{turxId*FpeUn47ASA$*bRSrfM5|(u6HlF_rqz zP3HN1q8G}t>UMmhIW1)du1#`W7TD%Or84Dk7X)BZzvmJe{VUkXjekmGrj{%VV9eAp zP9B+!GEsS*sdQj0^6!>4#mNZDr)^m0;VM9o*W=^0nMnHEwjHt?9O}YTlJ9uRGg@S` zjTZFGfLkrILiYkD2+wZIH<-q}#W6*&FGC+=w;yvEEXwX{+8#Nv*%mKMvHgJhbl6<6 zXpxhLy&QfviiR9N?+(KH9ps-Ycvmr$c*1X_UnIpaf14TMeCOe~E6M{#>Nw>V;yz9} z0ww2{n14$zzAV#fogj8o4=$34AclnATpkhMq>?0|g~KiUm;REer}}R_@JZ{dgdg4A zFKK?L_<~k7ws4BhlaGHG_+5t=arzHo5qARKz;f7J812W~t7|a!FTC1>w~ktO_6Y#X zk*mx}gS#2H8J%C}&~!#gg=&~MnMIteRLr2Vd)=PQPAB}cUu9Kr>Wf(Qc=QhZRY{Xo zr<^$^!GU~;>>- z;o8U?uurCjdNKsygCV6omfsq1~jR$I84z7}kZ_D8`F@OUx` za86XHtBPyvo_g!n3UJR;7~{N=DH@V6`Q=Uv9?9W$R)9YlKKY?V?$J~K1^qKma{&$l z?wSv5-W|`lU>$w|(8rwyz{OkvtfUKA*vCVSesM^WDM`sRI$Zo)*lM+9w+kK|ji#9k z6!zuI{T=zZXCV#$WuHF*yQ-@o^y)JBls_8go<42l8pK?%Y$v0uywX`ZTf3OjVx+?Z z)^Gpk`aX5o5+Gr#DZ#@7;UT`hXUoVfS19{}B)gY&QC&!>ThT9cG+@K*_Drt=n6B|g zl1^e6$kdJ*1}do3e+NCZLx52pBYB|+vsv_g(JD@o^5&`22>=z&EF7}{qwn-6@8Bft zB|hz&h8eq8=0IM6Uo+5v7R0eLcK7_n7&E^8gqVY-{C@_`j#bP_{X;axFT!A-{mXeF zqRnl@oF=)FZPdDw+3Xq%ZR+d(BgKt+x9tl`ISA?V+W81mpA&2^t<&bU8|~AVQrw5h zFv^9Ah&cqmvLq>%*F!|_6Yc`KzK0-{>am;be^3@E%b~%OAORzH38gyrT^XlOs8?5WhqpU=mn~Hl=?xk|UtG8Um@)zT)#^uH$uQ|C z@3#@xYZg$|4A_37_V2OZC5v>C{aLgqrf84Ae9(S~AK)0~9qkj{S4E5)+^K32<;_mp zgM%8=Fcv}bETjYM2F-397GBAOv%Q(Q_#>3-vl0mM$xz*w-&^6A55vxm*wpPt%Qs6> zpN(ZCCdtcDW=weWJ5T_g9lLFWNZHJ7NGAf(^Yiu;jIWRkd)1ov2~aDYyA=0nKnMA$ zX7!wTVoOg+SS^$!YhTPTADrFml2-;407k1T!uz1dC-MheSBK!zVFgX|_jdhGomDAc z&Ta{BJJ2X#ibBFAB(z|1oF74|^NK_a#MIyCWR>Qht&la_AOHsb3(t9G ztriPEi&q5JFIf6KPJ2YCGH+7-gXM}~(tI!I55*(Lf1VZv_%-2Y_?lL@l%0}_oRSpm zodiaDYU!ZKg47Jts5oYBF7*&$KKSeDrFVb^q{J+OPu%AEUcz#guK}izRlsBZ^B#Yn5^PL8da)Xk7v+YPz9B=3ZEkC)-hHwu{^QpBAVo=_Oh+r={sc z*Pl3P+tDivY0L2(Xh%e0EA^Hq?F1Q<&u3m}n=^;~YOJwdiYkAr_e$@Gla|{#W+6w0 zggzc-XR)of`8-nZg^0tL?`_pB9+vC-`aY=Ma@~;9Q9+Fy3fQ0iNE~^GRGgIvNf!a(ku4t2+9+j<1&2U}JRo$2_E*C;^5vypRAxLufOC`({_2{M z1=2<0FBG3d$TYr}s^P2+imIaazvunl(s;6%oS4m+W>z`ZR8mB2I~@sMCgvZJHm~WT z6Y)n@L|

      y4r0ZMI2Vl?1VLw!s-?eo$$9>xma_aYaoZgDj)J!z{+<%#(F$y*fugtt7 zmOLIms1x`(_DY6i{ACjXZY~xbCH1>!4`)3rO}KWgL0Fb+!`aqN1;qCGwq17gqtFq~ z_Px-TvCJeh3oZw!U?yip4jqE-o?>75;D*-L834RV^rkrb0D+!DeYEWCDQ497xGjLs zuvHtxHwl4KNxY6_aejN4819ytz%AHVK^!#CROEkWag$UM^XWKqGKLblF(Xq{V{QH6 zQSzRWeVvJbBKkYjEKzB)BaD2zZm39+0FCqCwx>|lEhnN5-+IFKV?p$gA1Yug;3c=O07I@F7e;F763&+y1#arhZ5w|vXp@9HVTlZs5`+J zD{4&<=j75oOs6U(VT$z{{(x4EU->6sVLMV};EUfIgE0X_Eivd<8^oANi% zOM{Mq_Z!G~1OV!Hwi1V~HYaEny1>7}B0NIA+s01}p`)B5Q{DzDe@85&i1}~56#W>( zN#KFQ5^>`?wJT=s2f*tGURh=@IoW}JAlb1ueqSX@o7|8-a5t7g{W;dXJ{&qIA8~cP z2se}f#aMNR3e{H`R&GyYCXsFGIh4oS%7J@6WxMW^*XJeI}W=>SnerKIvKirQ8TpB zj*_!KVZDp(NN@~&Y^i_$J zbFpxHG$65brBPX6+!q@oxOJ|b#@Sl+h}#jF^uiuiZu0#`nm1zKg8B8C{D2WHlh>x5 zwI6=_{(6G*;YSPU8Qp%W!3nCqg0kr;$OxevO>fLb54&h)Ez4Rm7g7-WO4WH(Q3|tdCmhgOf;w6l8;@EsE8%5<&lpwFn&T zCG=e>EhTjZSoeKW$7jDf9ISW0K*v&=gu7jr2j}esBMh=e0JO4&+6tYB0WK4{JTPc4ll9Q2$r4d%F zP(1yC{9~CCBEJ8CG=_X*NNt{U98-233OIMo;}MJ}flVC2?oGfY=2ln;d?TJ%7VXZ4 z-x^FIWncvFe>1zXKtVwZAPsj)wxyfD;yoTF{qFgN8)5_`F?1YSm?0xq=^|(p`#N~L5QvIziO((L6 zaIE$jUVP+;gwY)W3iKdLuhx#_;%B+NCt;S`@fjfH55v(apsZlBS$eGJn=400^8DZ{ z=ZUw;xbxGL1-hu}TPFB*Bp6mxG~jm3RGJ-xabKwn3FcFi@kx0|KwJFMUge^ieP5~8=tHtO2;#PHxo}GQ`vKC~?E3qPns)>^?IZz$1wsJdtmUWx6#GtE61R*)4(xNj2}krS z0n<(-s*TA+uFSfdkOGf5(a58;$3iql#7a1==Ln%lz@yr6YqYC}C_RHgVN&S=fTF+! z%Td?JsKV1vN@Vox2yscV|A=4g9K(&gw?l6Sb-$nVmCU3hvwkYI)|FxBY136BEB+Dx zQ|Bv=@1M*wn6Hrfk$jP4{aA;u5evmbsG6WJp8BV&Z^AJ8V2_FvGytkR&*f#wpEn$T zjhw-en?n;ys!P{TYI><+9Kdd;@kk5|h7JrcYItWWc_6D>`tAQ&kRNLJcwvdj^}m~I zn~zMCg7!`t2KcW?r|m2Ky7!v+vK8}5`=yOMB@L81b&e8M?^vBVy;+k^R9*ZVp=j~M z<^56sBa!89oyz@91=V|ld$xk$v*F5H@~8{9QkobFO#m1Wi*%mHoaY5JApfg@_b5OP zJ94_qaPRZ}*s(g=)UdFg?rOpyyU%wZ#tf2Cp(fb9C_m*^4 z!$7ny>Oj4EB&-U`==%$m{_U~^TxeYHKm?>tx!jE@4N`^vKq*HSAg-VB)*TOCQBL=j z;cv`3N6<_%Ng9P~kYf#ubF+^F~lyP!E(L-l1 z(^V=hk(@hR^Gk}QMBnpS;%KSBte=zs#uEk{OVgQZ!eiTW(NAPF`xU~h7TKa()=Hp44)Hl!wPlGJT|-$?66!Pl+*AwBi9 zG`Thv?*I!;OTG#yG3WrIqvt3|pa7YErq^)$tY2swi;nU4 zB8svewDy0wd?-IfZbvDybPFKF>8K*FD?yrY#%*WKOYD977b+NVYR&(i;!nSbHkz*$ zy8D4fCBCf$fqMp9nfALf2X0}=xC)x{%pQ6I<^B3TfxrMzmM@Qi z+iiWs#mt2_veX66y0PcKAjpJ z3+2fRcaJByKRi`2!I124V92t;9RN}P-?acX>85-QZ-IHgOO>9n1>qIQj@ zf^m#!82yh8XGnF+v2r}D>l@Gv9RbQYYHgrxDvSL7h+8+VX6vw=OqL;#-!7X0$plQb z6(I*fu2!G#xyw41j|CiGeX+Fy#E59%)e)adqZYrcXplK`sNxRl6kJ`66%Okv=JIJXMnD*{?aqm}DE5rG*$NI2 z^UB&fU7toI+F~onE3q!LB96%8l`K?3yc?C?7z_YA^hKRy2jxI_{pJi|)g%6rpwO(N z8R3BD;_s5tKQ~!$8i))TaIgX`iC=N%XeD3}x_XEN_JT2BEHqLyDq@hB62+@fA)Gr4KJga(XjMNRS8qDZDM!|hlU z$Y|;9=2@fVgYN&|&Hy!o-D1S&DIBB^lUSnej)lRSpepgj(J+a?53 zd{BQ^yyC;~P#{pKpcq}~fqScBAqYpXwTOprs0^+ms$97!RYGP)1rlf7U}92>zp_T@ zl|6dGBrG~5eSPSG=#)CZg0qy9U7 z43;3y5R}S((Sk}uxM5EH2d)DKfE3U~jQJ?=GbX4eHW;KJj&y|Qo(j&JVdhFqFxbQX zcg(lDrca&%6gyxOe0U066T0G51~_n$ydd;dFZK$I8_x?Q)F1N zGK|WM84j$PUF$qy zGNZbdY>}W-9y3YBmw55>EW>7X(ZH~3g^gPbd<@|hm>^3x9|9!9r*r@tSlu91?z35G zg$A}pfs%L;{{^)`^id~msX8B+k?AX@KxOwvp9^BEw^d8Nv*{587Y?!iPfHv74f9lm zd~Mks1@%ws#?a*QMGxEjHB=S z=aojk9o8I{JG&_$s*RMO|EA+p7QKUr+6VGrRV`KcEJ|fVXw|D7-E3?$46{o%xr{Q- zX@}lk+WKp$!pOtxJjEKoi-0qdSq+yd&Z(fNKY%5O^7zezUcWSg4PFOLI&YcsnvZLG zX29(?6Z}8o95^MI@S*fo{JsmyW`JzQJMPaTL|3h%^9VVdOn5vAk%|r4ZbXfF+{)PO zXI;08z$qKt+c=gQ>3yX4)$V#^Z8scqr65>i_DflB;sE0L{xJsma{^hcRm@o80x!d7 zx}Au2;Vo163jN(QyqnMyyDnr6G0D|@+k$XR9OCRmPT6RYjib(xK-1{#51{{I_h5at z_ih=Xc*F@nG44N;;P81&%yRSDb4ZWr8cTMSlUvDu8(fSAF{s{)&2oUVFgiQ~#M>;| zy?B+x(~lglz9nY20h_I)K6wD&I%;+MT51SvstR@fu2_)m6xZA%rNCl* zL&NEm)s0OOz=x71AJNPQ{8;&Voigh+u53dExrF`W%@XPeXL1>i`M2zX({jB-NOy^e zZPO#2Fpk%3ll*e_8$#Zf%VJg2&k}3DcEQZ)-kHxM|4A=SH%Mx^e+!Y0PdMa1=_Be} zeUhUINg$ede7)tav69(Afo+yD#9k%+4)P+zMw)gGXUlt5Xc22Rhn;gf)Z4Ju z=v|;68k{HBFZG9tMTkc@Sii7{L+4ZfyG>%M+v=b`Js&B;6~yGoi@ z;*!(yr7Gp5N*5=7^9VK2b+IlAc{l*ztC1r$2*a=Mal;(5p7@-NbegBv+e)9d!ra@- zQJYE+2R~iqzb>B+MVRUNXqBa1GnmggTab^l>tNil25h)Jt(ZWHi()D7eV9#QPsL$(U4=Bb%EK1q;1?kaJ%5dT&-pQm*->^WUdo;4YX7;C9uXt=%rOs1y;oe-gXQ&Oo~iaGn89j11MI&urvT}ySwkKc&9KKY_g>9X^ z?GS}s(@JdYy7H8CxrMdlklxRvk0?ssb8|P0Rh^;5B(I}eoQxcbV0vnVh0+z_&ywS2 z-GDvOs^>$J9*uqFaR1JyakfuAU%8cAl!e;Ue7KwaQD<=uEDw zU{|j$XHakKUSYlAgoDN*Ux&ZZ*W2o5;hB1dUSdEtKVe3p_)(GQu8nI}ARYS`#zouO zHy!YF1?YbRrJ~!6n)vkvpE+3#wQr=$#qUBD=(DN8fP(6faq0R!%SC{bO=;>10B!A1 zY6jaOY8D!VxPs}G&gqjx1EeCqWR>kEVBBN_K&4Zhz|Viw)x?z7QXBU7H#o=~s*QDed+B0A`wnc|~Hpn@RLL$%Je+)#1LM1OfTnmpGSGA12A#WZB^(^&PYS%lXguG}J3449_m;fs&uQ`!gsmA!8o;L(bs<*Sr zX6N+0>@6pT2D7OI#u80d0H7qla}G5=98*9q#4G(d)8Ls+A+(|%^@vG2Od8QGNlk_F z{C~AMhfA|zM`p7?bP&VvLG%ZsXiShuBKsT@*)sjrsnZVcJH+>aNb`iPu)`&2%cJqe zg$Hd#KN_sga}3kCX1KX9-UcZ!<>pi=L`{_5k8`A+0354nOiaGByFw#ABzd;#8c6@u zYl&BE!jZvSol@HAdISOclunGiku33~@((m{_xZ&l4^KqSF%a^lg*B7dO%`)k4Jo^{ zWMm0=vz5MR6|t&VttgLCVF&9o6&H4vSIgvXpb?Db{~hHGAkE>xjfORsLEShw&^#@W;< z_)fZTnSWH>VYC)1eSX82ksjCUcVg~Bdy7aQ@e=hXCevM~uRYZSM2fh=Lt%!jgVvWQ)6!(R0#`RF&XW{E zZi%`@ir!`Tgax=`tH=Ip6C6=1oUMou>-sZO}8$0)oKmIDl(RbSH)MtJ1MA7R2T01FF#sXh=!rTMjBNQ$32!P^ozVo>Uq ze?ZFMt)LytzvmK=foNgOj%zboe02TUuKa~)BSP-@ssm-VC2A|ffSDk2A%C8fqH32x zf_~v%Ink*jz<3b?eqd#~V+Dn%b=Y=oXHxs-AFH2ulq}zmd`@_LA2I>Z8Ue;?g=tIA zgll?}Gx3iXO`)PJ#SQNH6&;D!EX2g+uXolIg!cSrfubY5$?BmG^JhNPD(P-spOXv|NCH?xUh4>bv{SzIfp^;EkflFrt z_hs6Vo-R}3p^#9JLh@nfPo5;|8Y9H%Z!}0Gn1Dxi(VBx4?cQdA8x;5cMWZQ5xmTo- zn2Rx8rp<*-k8q0Il63i>WDrfxG4d8b6n5l9b`YanIBw&^kDX(FqF?ik1zE}tVCbe~ zXVgB2yIcK+$cp4~6myN8WUCB7!wnj$60B5K97JT3UKP5&Xb%ZP7D)4zH6oDHJ%P84 z-0kAYW3AOOav&^nqh(l;G97rF^M9QOKUKiq{lx7kP)az(1lb0FGE(am$6UW+W@`5% z!@hD@fh1l4SQi3^)SWev9K145au^i~9z3ExO;NeCm=3sd>;W?^XQz`s$wvri=16rL znCirb1E-=J1-1e4SO^I-hQoo5)%$ZnGnZHdgVqj!uR;4=jJdzt-TDty23k*6f0rRB z++_M82;vvyP2}JBwbFYkrY24L;kpcEdSMZ#LX6DE)By}AYTc5aEdt98SjmA1fRWg3 zQ{-Xa9pd=wwOwZ8Kd~-$rn}DK|LuNy0eWXgg;{L4tXFpGDs&>Y4p=|OrLtjbWx<%6 zr5ra>SO`(c%m1wjv=mU_3iiDV4ArScn2T_k;!d=fd`o>*=vCO1lok{lZs$`swSFhS zwJb3fQh^>@4Gk}G0jEnpIY`1z=DdO)xF>(4p?XD-`SaSXrqu_>Bascc-7p73BiTZQ@ABgDpMsjt=Rqp{<)Nz8GX^CQOif<(v4gU$*TE$sKN&UMdA_%q5CBF znGGa}oTGKOCyo^z0aHhs_@5|05=!)pvA`95J{=5;?~G;VNUuA<026Zl;lEk*0 z(!}ZBhk4ki-LjA9Ja}#(O5v0dNcFwrQAGm6d7P?b_KEi1sxM$ zJsw1IFcw=v~6l1~lqc2Qs{^Z!@p<3J(AiTs>qi?eq}R+_wg zCJ_k#e4c7N-|dPX9?!%}e$dfL(kYeCT~B%d6^>pdUr$DGW<7i#4Ij=?T1NL>-&sjkfw-rFX#MA-R8Mkn zlZ=NfQjsCdXJu@D3NOUSNgwL^Q*sg3bIBZlb4$C~rB(!$5^dg{ZI*eBTmRSuY`jTrzIBBa{0fc7NQ9+;v(t~_^x}y$Kj&nm7=(7J5*|UGZ)5|!I;*wm+H8f zBx3_V;6~e_9;Mru1qI)5hg)Z8tr?h;Y0#yGDhGM~i)2_ds-=JvsVZH*2!+W><@WO- z`QDQlN5YC_uk8=LU3O?UuH(&)aHL!O8;N5t#!rxQfw?Cl^aI1sB}O-99Or7DVv2iY zY5OfS*Ns`MAfy&!qBds5g}F~S8xF&4#mO5b{zBj-;4G1_cfM=tH ztOX7fRa&C#AXc!xemc9yJapH9HZXIwsWR~tFUKNrmaCuq99%&>*NZ@q&zo!DzEhPO z?T*Yazxmy8uxUSS4I=3st4D=aFZyiKRP)H)F91RS8gOBFF;)Xlt7-7@Dso(teR~-| z57K$2M2^53jEq!riBl#|3MIM9A9(Y~gx=HNT|~q0>3or16=ET_{uO?l7*u~$2Va-K zJ5KF|=pf-~Cp{8Ys-F_YiOH;$*C>l*j(Zp=-UvlNrZ{@M2%ZLN8J(>{NrYR8K}~rPfF=t@O<;~^;cuE46;@IAN=@;^mS8B>>8H=(?(!!# z+k;TCv3p=m1{XXLmPWWZ`$Fh_LJlR&>8x-Tz_p5ID_QozK*>HTP7<_%i-fqU)6j~81rDEtIEk;UJmbtppq=1ljotD zcI9Jn%Q(&w@)>Yhv-V`@H6wEpr_VZIDvrgJh8ptLbwM(onSP!nONe9Toc4svS9e_y zzeo97vx<7v%yf}cc_?sASfZZB^LfVXM%q1b!)HHwzexA(#Mk`@@Ao7`$!46Iou@2!nI-^AVgl$r%ee{@H~^~=E=#8oeT@3bfqj4Czt95ndvCK_s8Ql@5n z1TmYCuhesT&p~*noi!*xp^Ku8qd}5QIM34Q3~!3=g&i{&#DvhshV9EvmHk9`g6ZL* z4@m=<^rMO+KDS!~csj;P7jISRjYoAN*48StV@I96j1z%+dXl~uDGWlP*Hs^}0HF&- zFSV0WBxr*M<;)Ybi!~LJuSoEEa^D0l)UGZZQRM-4j}!qJ)F%6 zeQ6D{tbmkKnQ%KdX{JatByH|g zdy2Ac$$$aiz%5{nT!T(|(W+}cr-%Vr9>FFu-stMeCijeH{cWA|& zXGlc?u@4q7P&V(r$#TJcEq^tPL&o0oqsfD7Os}TyCw{TTA{fcImBy>Ecjc@h_<36u zyTwM%4HZj4e55aF!v>;gEZVVg?on7tei4BKs!3d>BJ|eiW{OON0Qm^8ws#z;28e~2 z1n6GlqT?ibjvI|}Aw1LTg1%!Gy6|AD14ssSoAXUo!)J^ET97h3dP*KcO$S@Lp*$VL zg~qcUob+)?TJ|b*WMl<%(v%4tPQ61-&h6Qenu(XHK%olRmMz4>Daut=^#Je_8xePg z7=peF;BU<;wV9|CHR^mB(dnBCbF(R*J49*3UJ?+!eT<&Wfii9z;us{s%TunWsZtB; z)qdzYktF{-jqw=#4S&>^OFcV;j4`a3-lNLe0|0BgK~juO1k$X%{D$3P+iK;|s=9*y zTK`ft(Dw7ZxWzZm9SQz#BdfpHEppxZz&DPT0E)&R1PVUHGVZG`G)|HcT;0y5H#F=x zE7p8ks{uF@xM(^Z#3Z)e*{JJuWi$)O$9dbTj#C~W*eOh^o@jAM=yCX)g@9q)qQ8Oo zQi^+33V}4EC@M~~9iqj_%**yaDH$exX9*NHV5b*5M29#xY7dTMb!j=d(q|HGod22! zAO+xS*M!}PoMj%)G&g3@<%b3{a5F-3WM&UwIWR1!f%7{E-BRSwNG;x1Qk8hwuoVhz z_0Sp1Qv!Nk{w3iPN4^(_jh0wK^)!qZ)nM4I1+h%v!Mu*m24sc2e7#%Dr{y#>W%Tcy z?0|^zAMc(4<>jySO+x2iM`D$?6~I$!P+irDVBnsf)LH|>Ipi<_*aM=&0N4_Uw6v3` zm2@!qXRH_889)oQoak{&If>+)1%CsG;uTPwop?tf%UGjqq{tZ*55PNWv9~k4O)=1w z^FVEUlf_4a$1dDEvEKwG%TE))s&m4YY-MzxrS^}KBG1` zF}gyt0!T`BHw)ft2H`OyFcTxP1<^T-jnLM!jCGSC&cAWOY3Ed=L+Vr{-yMR-5aA)4 zI@Vyl^L#ILYmrHfMib2^WQ73JZ=fSzO5usY)0H*e*tRcCzd)b-!wf8y5!SOEqzFkD zQxX50>2`w-{I*xz5}CB_KUqU)63>BKF6I?Q6!@i&JQXcIwSEy#gymxC$c7nT!E^S6MjP!t#T=KIYlh2F+v_pygkx`&jQy%kzBc4AzjjYf z@sWPsFkhpX^UMk}U8Q9Fo_>OmZIh@HGMH5%>?~rwmmo*Dz#y}V3SS?3?PS%KkkermZ-c7T_~mrC4~Aw%MqZ2aB5 z{SY3~V?rR=Td~jM-NzyGUmwTr;4`1eccj^>L^b(ULtofV|5g|c<3ciOq6@dWo^zpA z58keKqpq@IERTtG6aouY70|#n;nZn4DQ7*d<9hQ9q*K^?G98=9zz?jaBb`uc7LO(0 z_aeNV=z)EHbxxBYng1QbT12jG_rX#4BdlCI=3y_)lj8_FLoW~$?~iWsurLlgZ}rXe%OAUPvhhcT-7d6` zDuuuUHU9uP9KC|tn#q7>CH#Epv9sb5XaY>^mRi8tseSeDr3Ss^I` zcXe8KIZlxF%CanN8@>UZ2qr~xd{ttUt!PNHdG-qC8a4mi6cpX@}$%{XD} zsjV*5qMkCaKy~-ALxct1$kObQk`1Oe65tAEc6Y~8uBpb=et!1Y(k4w$`hy2BZqD7u z8~O5rhMlw^>dXp39M@}6@cD^KtkIt-Y~FIPb&84?Z4UUtgqy<;g4mg5h$hh7xIvatBaU;^)EJ?#Y#LWT|;<@qg#IZDAsK zZVG-uJc~&`kG%5=OK1$8FtKoNmB1$7g&AP0z56w$p+VtgiE-FXctI^xje3| ztU*|)OPB8A)@k-&kA+Cu#lFO8>H{d;9Xrqj)M-P~`pxms%+IXSUG%c_rvvLhYKh$E z<8D>MbT=`vs)rr+QHf*JbO0%%^Xb4;yqEccR;iYO2btgi1pV32KsJFCzU7VA7C%GC z@4(7R)^BnEF|`c%U*CiuI2h?e$T&e9skP zUqDl~5?hurN>Dr2B^`uK^;h6?+jXE*D|)4)X74eYGNL;;UxOf#C`sWk^+b;QdvBl} zj2Db375OK9AQXjiY&z)ztJ#ang{QlU`7O->^`LO@`cB9}A;x%%-eI8PrBenHKh;2v z8#1ol+ko-+@D0@|N!*chz-XQ(UcfOx((vRyX+M0OL99EpeNsyqM#2NBDEr-$5LiA}44u$1E2 ziYs9!`qLb$!&c&9ff_I1Sq+}tcOhM+_Ez^D1ki$j3)RdSRfS^PFKCoK0AQ(3|K!FF z0?UQ)e>C_>J@I^&svKAK&fYJ_<#l9ME)lBrZ}-+z{m+7o!Qkd&>8LP5_iEBf2r@DH zrGu9;q@Q=d@2uL?1mh@H9YqR?P_Fcl>HYw~*+)Z@AXpC-{`0lyCS+cC*{0yq=bl*r z&>^sgEffqHi%%hTq_<9{I1oY#BYz7(9&W&M+~9R>Xm|vvbUB6gvj8j~+{#J_gyS6X zfcoE+d7YRT(w=Bog|>AuFwAx{W@J60yW{={oU>_-WscR%x!Zcrs=fzp{9EyeJAn{C z>HgbHCE^062!AKESVF>e;=O`)XxocHw;C#eg*QpVB%%}H)F&|kWNw9?ua&Hi^)-Qppa2R2PuMg0NHTP(Qtc|$*H&)HGafIS@0N^%WlNzPy#NV{YT z7mETa16w-h^j)^U_T)Uh;;d8wAcGCx+?4RFxqDR17_r&fQaFdLVhIDlc9m^DyuV?< zsQo^9>=7~PC2m>-N&dP+g6y#oa7ix{Zf`fWd^VUzwp6HmKA~+~UrP8(%uSKaHiRQz zf{zZD zkarH91EKlZX)~vrSeYOa2i{4{|LuqXcSCAjBBZ3CL}Q09IdqGZ{y`v(ohJ2zWpe{V~r4^mc!q3OD$#RmTLw78$Ft;=p_*3`U_qwjY-5pI)a z*EfP6>aM9}oLn_=9;r3VUiC%wp02a|FX&0AKM6_$r7GZn!Scdp(u{ zL`O}>pZ9a0>Dad}%Cb}z!yY!!Iu|7Gy}8AvpL>N74bu`W4ZD26610jtfm15X`kPmo zrVWmX83CE|faP6w-}K(_vSs6zNJ0C>c)B^(Zk{a4u!WwL^cMjAibw<{ReeG0Y;C4- zs%vR!X}`r(BlB=3>GnAn>FjUS)zm92v{??0bdENa$7r zg?l6%OxxlT|GM-{mmn=H+S(Czznyzl?=^m_-nv{F@&|veZG69lE)ULUUC+?CiG8>t zTV0}GAXUh~xp?)K3K}-SaeMeG2jGcQobzd`l_X8JEoLQA&B><^ayYN*Gmq+~ud9^=U+425*AgqAF{DP_O&rvgyA56n>UqTn= zEvH~KxTw8bToo(GAEO-LeYsIXM8Fc>&HxE0U;|eZF~sGX+aT18W_nGQPS-1HwWgG9 z^nSSUm${&g(EhHXolc8WD_nei#&qW?tZ&}7 z=+FhJz*186xNSDi)RJ$_TNp0!(hnangoJ>9feH>d9EEi7y1hY-T5dEb~!kjtOT7(5n-IzvrRTiJ4S=(Qj zm?2wM^Xei&`e5h+-7g*3{J!`A8S?<;-zhrRQ9FX&9$2un;i+iK;b*s4he)%RgDe&0 zj2c`<#z}56Gp$ld_I!!vdTr#>Bu95~NBj<%kgRyS!3vp0=Vw;pk-*Z^UhU=m{$Lho z2#S&Z^{JazKP}+xaJI97^z(jv2KmD3d6EuPHL~p=?3+7Trr!GJhHC*Z#jR=)IXHOo zd|wS-jF6OaP;$+WAI(EkL$0~YU~1c))Wu{ouu75l6f2gZ!OzR?UVc#dXTfQp=c<&W*b5d3XS{YR-KV>if{h>Ypdw_468y>oDbiPC|CmA==Pfb3j9+{>82_%&!h;h zcc7UM$DuvTPxLJHycHyIl`iaGn2XChk*|?b4svcqtCK$N@^_Dy z)1Pf^ZzP&oK>v&C`|RW3yz~3EeR@OBrmszA18V?H_TVneCC#Y(p8I(jN;CkA*l|N* zK|@~xkck${IM&hoz#6Z38@RTBH3e((1AD6x-zaNnjFZ<*$yh(I0B)xxxg6%hJCVLd%|E_z7NuR4UtW?dyxG}Tk7^yU0LS~d zYe+IQlTs4Vw>bQIBTosgMGeY!y;&@GwvJt+@$$S&?af>dFyD>Yv|z|29eaR4bo`0W z^`^Un^rRHGNj7?`tKBL!o5#_PcLhd}yFQy1k@yY=ZL0-y4nTT9+Id0IZ5q5%mwH=} zff+2ffRzH_B^=)Vv}F;{pop+!3NwnATX&mEE_}c8BkPZ9GWEBeQh*!S9rio5gkw=8 zf<^C9u{-urb4-#P7!KeE#|Tn_GoOy%P>ts}=Owa13sJT6SR`D#TT<~)@jE^?xl$e^ zf}sIqiTL)s58fpCo++)^?xb_r(c~ZYJ93Lmhr;^i2$;fR5ELd`$GFor2?Xh8aeko$ zu7sjygn8OxoFd?3y`0J)iw~1*EVpl1a4|&GzhVb~ zBk&!Qes6v6o=WYPRy|?%6Ee?xrmthhbRtCFpw?72r+*~+JNGo*1ro>gorlX?&XJj9 z@A!apR7SP_N{rVZs+T!4qgJ^Qxz{nmJ~yw3jkpJCklX)Zh7*bw9-A)-^+B$0^8@9;vSG9$tX>gVy+pNr7v)`JM>*62NDk7@Ewe{ZS%*A{)+A&(Fde?W)abebxA1U|^9KX^T31*rtSLOi2?u$u zfaMhVwB00WpwPP^5U2oyHi#6w^B&xN>+Q-DkOkWJ2A%BY$@#N31Df>@!XM2ez&Ofp zpToCFp=6#tx=(Wlleeb-8cM^>QpfhjaK^(QnO=S9RH2-B{H6ZQoKw7JcYBw-NPVi$ zMLd=pUHF7A{rtpBtCB)EM|cyFY<@1D^{)^hC~C<@>0EJE_4V9#d-eZI;H`Zfec3KW zaLJen@O%>p8O>21z{zu+}I90$zfOQE>QSr#9RAZmbB8j^Y4;TcE)ElOniXgMC z3fr(6SY`&)#RQ#U`eH>IpEALl^T*@sYLNyM1oGAmD$(;YXWX)i`K5+upnZCyt2I!CMe2VH%T-qE{? z6}z2*12eLu6F{=q3&Y1!)1mKGJTwCa zMR243R!tJq6O2+!qxkP<91YcxSRJKC^^nVvhfAy{)H5oQZ~w{sE)LVlAe%27aQ<>8 zPz4-nnfCMJ8kLIjhzIJQ#45oWnnXmTGomDJYgY2pY^!60albh%=yGYqGVx9P&A!D7 zAC3>wP0F5h@R_~r3rTdaA4scZ#t8`+&8uxK2@EIY)*X87oKj`Tf5E}pW_p@EhJ?0- zZ3NLsqM!-=?OaGK$$TA+!IAy*WOqV4-t1I3@BnH6rFK;q=1ToGZV1fT?1Vod-~v z3WRZ)+M~W3NMy6|JMzYJ%7m~sS5fv$$zDLW>FN7*Bj5ZZ=_Xr^wxz}=Y8iBfg*@;s z6S^66dH3>LpzYJko8g=gBSiWOt3Ok@G*s@l@)}y&us--`&epMv8iiO6S~N3_g|F*m ze`oq!?tPpd_zFSfmP&ET4SucHH5|>ljz2vPSNYgbLq)O#ty(L}ZAu^bU$LzP08)oT zv+S}}wn=xs9v}5PWNE5I6pyR0=T>c}Uumd^ZUS|OB94Kdz~l^K>BQz1*mNYT6GxVA zSpBQpnVN|2xIunJ_Uef=#vjoT*iWa@CcMwr27U-~qfj_$vljpFtcJaWcq7CAQ2Q4& zE{QP8GLbE@p!N>t2^lYf%~qwiuyN{+mB_Z67Sm+-A$uX}gdLP=F_+8)ErB1)iPr#M?L3++iDZl&IfjhN?>pRuJ17nuD0A#UN zNPxy?Q4u5~n&+=bJq@SMU+fpdE*VwP%gaI*qr=*rSjRpaFxH*D#!bCR}+w zX`YK>V;#rQ^l|FdW26`3HH<1aQVblciC|y)?P?CLK0jMG!aX(b?TOdU5=M6&cfP9h z?byTsDL~f0XQ^@{mkf_3QRFHj?o40`g_e&$;?3{~CmL;=unu~`yQSE$yL6c5x!CkD zl8*%zmtS%}wa=DwOf6%svOG_xWpkg$r(A;5c0zNrUX-sYTp@08As zzNFUyXzl`chlWSGv&i*G#KL9C;5Go?|M_{8XaFf~x(}gw1ewu7o@_4XvOE8vhQuh3 z$I40JgTjTMT=rJJq&KCCp(SBNPwfG_D_wb!(c7|hwo5j7W)1I2hD*hdBefsOX`d}l zH4h;riN{Tr?YaG~hVrzd0t;O%f!kXqJWI7t#w%#rpFT(;#>*o z6z`Dn6n&2M#)qw^WHq@Molcx*@jqDD886S*^) zG<*wgigBE(QQqQOW-3@NbY=y|r{o|8=-yrtUVgl~0fZ3pF^Qnq*`zM8V@n+rmgSc$ z67gh7@Qw(ih_RDuF?(6vGcQ8o_1fijq%nL6!Mu(RD@26Y?HMuiG&h)XFOdK9*8R)!Oc9CE@TB{m^9~WNUvcEhDd$BJWM4ue_yD| z{-M;mEnv2b$~bCtbet4@ax0Q%=8r~y-WbbU$m<8KPi8%Ii54{p$=zjQerDUpR1#IH z#XLm!P4)}Pi?o1yEdEYj^(DukWR zIT?I0MGwZn>{5$Cmh7TW)K6$AtiU~^AQlCNe}`IHDqd1|p*c$9&uEozTh#qh_D&5I zJYn05??bidv}K^p4S|mo z<8un-Uk#W!;Nm=%iFl<9hFDZsiMGg$Z+a*`DWNSYwN2MX_j+90ZtC-xVPW~B2wp6ife;2 z+_*ahPjmOg5;i`k^?dKto17)3bu-@yMFOmlU;rzGfBKfioiqAhTu9(te zkQD=bH9_fAu`@-SkpV#LHVRymQuMUUfh-ab0R&t0R2uqhijZ}1wSUl}8a8-HD2I;| z2FFe(PEyjhuV4%fH9z#+9lq{V7qPa+nH=hr$IcKN0wDtUVUi(Mb0TMA~{D1jPO2ufF|nr zrjlx*OjysG7ya>y;1Z8GLQ~5FqI0VXVjY@`?q1eBaAIsozaA$~Eaxl}KElWj;Qg|4 zA-77L1VN)X5+>BuQZmO-k11m9ZFT3$-Ro~3;?MK~vR7^RNJfGB=M%$18i_rach<*t zcEf2V#bpD_v980R2?aBr_`p)fNFH))I5rh!-1&TC1-gqRh7k9r%@53LFon6C`aGHP z+f`q=d5%ZvQ(ctrN%Q8v#L>O!n(HJ4nh~j#C)#r~oM^bz-Sn^`E9n?L&Qj2YE~MZp zRB7&Cdh~sP&OT3GHt_+koNZMT)t5ij?K1w z75#p13|6A0RjB>R$8E6o9hWu9sJN14e=MJCy%f2R%H_4JcVugKhsr9%DI*G{yl(p4 zOa4?WWP)PN&0@%{N9}cVXpTsicJ0)JWeqvUaGqB>(=ydMe-)R|GE32CWJ?Ba<(1kM2mwyNnFKVmgvxT z63eeD?9Cmmd4s+^Zm!f4i4bgx_DUhZvh3JsBG?>e?AeHIxhbI-7*z2Ywxub0kLH;t%6IqMy9r4@`)`PykKCbp zBLzjK7Rsi{(%gNC-K$0)<=S`NkgP%T(i>D>)!(Nj=b8|T=e71;IB#5b{RT!%KARDg zuN=q`@-T=Qkr3lMRZlZ?0mic|1z%`@droN)<~J3ArDq=NJgIBR>05Yq5hm(PzT|L#1>4Ito7maT)3H6`2)f% z*FY}U8C2*TL{2rV-Psrovx z%HfM$F{C-9lTga$uaN_XE$M0%M7y3>$=SSlvR+8XOCim_J7MTvL)L@lc-m`ozPBG( znOoOY@}tl|@0cxv;Y70ou2pARTlWY#F%YZI6SNYq{e~P&ZhNNRSRbFtclBrg|3=B` zH|g9434034#4om}fKQMi4UUwdEzacZLb#1&`jWH+v?Cd~N+A3))a$Qzq1!Gb61JU3 zVXve%Cf2OA9NpA)qq?McK%k z=K%g-X)kel6bOecqMF^+FfR)Y3o{T2-Bz&nUdFdXL0TBGB>3;?aWwrk%bi?zg&C@U-IaOrZ z6%}bD^u;twLtl&gKm3)$-`Gwy%Wu+y+Pqu!gwk%7pB#XHNfwV-nAEeWybNPF1Yhd2f`^_cO1MD%GFuRxQ5xi7(Hqe z6E?tWf@Uk8eiF4Pxr<$YpF?Q@ZLn%IDjtrtpob~0*;&7Dm1Rl&a=oxSB3y}-03~;+ zl{S@l`X-v}0&E=nj%|XF#^*Li07RGsYraXl1g+VAZV`3s;k9*N)ATUSV8>n-5{`V5 zxzAMJ>T6&HQJqdyhlzF#|Dc}Lb^E}Qozk)j0Z8v=9dGd~ve`Vf4)kEsw!5=hZ6f zEO)-MszPWhK2bnzH&%JDJQ^IjJzb8kvbyRm9ME z?ELokTPTn)NtUF9Cm3K!-UZt_8wn4U%aU8erj(!A=C!j0`jp1YW{r0n8vKY!!tgZW zV?oMKruQH#siMn~uHm|Yb}|6)MZb}03I(_QbIbDg3#q#9Mr}grinC3fLC^#r zJ0hz;kwIx~BB%Bop?IR5vDY&_^J*_IzC>3)csyPE-omBET0*$rnQNb!d~AOkaCvCh zGH&0|Wut$2Z}ckgbRy?Bzhe$P&JP!G_ob)D z(}fTlEq+K>xnDg)e9K2b05+2_-0kt`?HL+4la-tz>a0p-~`|}$SI%kih*^dP3E4Rk@ME~Y>}`1SQy>3 zlI?6wsb*}EnFt%~1%DC8<)M?C-?Nv<`N4_4{~;vrc?ni0V37XlISlWHVT>|5w>hC7 zvQ1k@K68kww{BDM>%b8NLRa%anNi;vuegrSBn$1WQ`MGE|4Zjrw%g>9%7tXN&P&P1 zsPf68EGx`*5rgBvJxGPMR_j4eb^{0_FLjCRpxArM_zr3MBX-r($QEf_?a@F=ta2vr zGnroo9uB^Tdmf>z6B~!2UYyg9D1yMR#2aM0{`L#*K11#}J0sMnbH8$4s)RzL<#ie( z*m+#9V&DIkp#T3Cez2I3{Zyb2Tcy*z6|RDJRJC)QoQgW!={|bz6*uaYpSNQFeX=Db zKGS%aEy}p@*+$QqMp)>-?5;SWBzfvwwm2rsNufYIK!(9J`z_z_kFS<{2zR{gudu%Z zRpP8Rzv8VIKsyS&q`WxtjTi+t7)pV^I*al$ba|xA7Zqgc!sXG7!qSc~zls5CfYem? zQlr@uW3$P4QY&NRY&D%UoRGEvjKpFa`y<{pTErk<|BnSTO-v3$b z6aBNy@4cD$dY_(!tG5NrvlFuBl-r$J52<5wVN zfI;;zHd~wGGC4qFQiIqhSQA^khJq00+aO9*nX!gc3kcI!ZIt$9(0G7l_8O>g1g=(7 zjM5^cgr-nn0=-j_Yr*7|6fqzD%ru-Ix2b_|d&=wjLIz}&g;}%Q6O}dRNSDSd_fe3$ zu*tH3kB_Bzt%d;?YA~o)kp?V@Js8$s3wrN7e|hXG<=X~cy{WmM$Y6uI1y6k!I%)JY zg`4gMvbpGhK8-RSe6*+uiyF#{iN~!DK?~+l-K1IWNd@`IK5(Rp&AO`_=6Oh_dvcO0 zl81$ig`u)mJmwr^^e8Xsi)sMUngKEq#^!MjYh^8q04#(AC9g%+acKf0`6>vzk3&bN zjEOZ80gj8p?DWjNdX1Iru74#Ycg-G{uXdI2t-fY(~fv>yB+CX zl_7pIz#MX`YDuhs)@5WL>am5^A@K6qM4EUdeBCV7Bb%+O8QWAB+g!y@#djDDt#nB` ziX%T!+>f&~NJ|U3=-l=qm+HuLEn;@qf!rx+WOU<>OqoA2FSwFEq9>gWA(BEn2z!ab|bmgZ*cLcLG zk{Kw_um3Adr*0L7dHut^RsW@rr(0Ly~pf0nOR&bmClOhHbkf%q#tr|IXwmpg9Cn@&-mf!-- zzy$5Pl?;n^uh}GMVfZE#>_(Mb5?_&D{JC#4jmw4XSaKbQe~A()6zfMl8MH2?fcNy#mS_A;#A4MUy zVl)Y;i)ERTo(r`CoILzY`t{uFCBUzebU5e*(lM1(n^)^%Bk$?FwPEZ5I{#$su&t)8 z-l!)09N0LRC(-W7KbQJG+yL!87vB#fX!XE=O|Fw^++IYke@EO-(i*yGrm&6<6&PlD zfb3W@&{3ubC3&HmNgifsZ{kzVcnn4Wc|^}QlX(Q`TZywMX^OgX1w_DB4+E3)F|MJW zg4tPuZsjM}`mS-Rb-6L*;U`?(2N2Wg&^D;P) z@H>j<*__?8S4S!qaDqtVtVVi_N4Py<^o<<>P}G|<5(4|?W#}-o_gONKP2g8GeW{R{ z^kF1Jm92Qy6CNu>p+NOdv-*fgyBFN>zabeTa5TC#i0JoZ39@QMS9?s|+GvD?zXNH4 zBTt(I4NU)9=JhD38nZ^R^Y82&_?71->u7mjUW#{vwjP-8%Nt<`_deSKWNj+2g*BlD zuJ0f!CraaY@5n=&YjXjqR9LQz@%K5f6+16oXx#^9AQIcGOIR{XjgAp8<|(Is)NgK! z`8DF#yzn-ew@>ixB8ZH>?0`C_;#yVT(jt9QAF*oj!eY_rtygFmM;D`?5k~Jmu{slm zCAPCrWk02UL`!c;22-|ft;}pfKfi8}zmc;#l|ca$shnCzyH*&X7jY^mQ9}KC(mwVZ zxo+lzysK~(gI!Dhb=xvk&7S@p_|;xP++MEtQxK<)up=RIq{FFEk~cv3PrpD~^#L;l zxc;KcYU`4}B>@RMzm~v8z-xeTg54PzmKUtumV+Ju4R8ufcL%m28yV=kL6vzjSawUu zS7>zs*Re?YRVNO|q~nk~!!#f|X5s2LcS4=#tj``V0<%BE!OCjsN|DL`pHf&nmA(5u zj}vv)+d>I9*7P$+ODj^I>yG1d-TjQ2{BU%hN(Qcy3SgnlKDdch7oJ_u^x_M^glUY? zwG`x^XAIzQ7Vo6|8ex6xvV$~Gnk)!UJg)TM*m!shL*)^cKNGb+|F(c>cVbz|%D9^; zszgg;M|JsNn@1(BLrge0Juxg`nYV&(2fi{`OPP7#=Eu}Q*B$*p?HepcVl+(_%g6Fa z{4xO%w$B`V?8Yi-OMzOuy7@Op^N)@oD2lF+kNEZ)x zBLs)ZzKKN6m52<%em>Cu1Q()_MaZzSy4SSohc%CT6@u7CTox(e zbha?QG@wKq1G6GN`z!_XePFxQn@(uGOgNDsws-ej%pamM zM{7Gm|Af81rEf-d>!TxP2(v8J>_E7n#s&QXPL)#xt0wp$UD``{DQP-O49fu%{?+Et z@`h8BEDfFC;#V21E$vNSjO%O&GE|?*m;AKO>d3 zbnUq2=Qat}>QdmljJoWYY^r53LvtS?v?n}z= z$`uQ>5tUIPaybACM$`;~k&_ep2>jx9zea_$?>wtf_2quuVV@@tx(I%4d2;y_8_@Dh!$K$z1=@ zi4nreV-ML8Wnvo{@@xFxqNHfKVSR8HE&t``;G;;J6%#`w3n^~MeQ0-rtFI;98C{&6 z(5y{2EirX=)~l7^49z@ z9=znNJR8~ic967c!e?Y4aZ+gbwzl*}Oe2ZwkO*Lv=ukxeS6Bf2Zoj-8+6Tb}L#3mD z=l@@xNpY%OiU&K9ZtR`pXMqJS>{UT?vgkxm3)+G^1mmy0eff{4Q3&9zO~pYMONz}` znns?sh#&JT23SU`OeFBEWh@xOOXlB+r+bPAquOVNo9>RL222AYIT;(&aF(dhu?~zp zj>YV8XqvFrN*MMAkzC+t7nCQ761n)BDAaq*Kw-T9+%d9v@6LQtvE!WNiw3bDw4->) zz^b5A?RX4qdVBemZMgS0X#lf*+&3p`@R22w$}ApD$U*@B6@dA95yD=Ax;De$9}@aN zPd}`{v!=Be|9tovF1PS+^Wxse#L+#mhE>pye%80MMG)nJc98_;$txL*0VJT?+qujp z(?Jd18_mo7^uS3b(i~<+H03Zcq6LcyI39!-cRqqjdHY&Zzq`_HI z|99PZAPo)EC|^D#XC|qjf|H>5{C!Rmc+f<(9`K0aS9`dkH(iIcDOGrklyhYtWp`#w z=oWZd0(}>;^R)-rwC~hkLoRQ4#-R0K{n{S1E-UwKjte-shg=U&Jz^&PTFDm_EtiCv z6}}=wSCz@GZCC2Hf(Hs0e*GeYs)55?HJ|mUTmS_(L4jLL$+UT#lY`DY`=E#??b~TE zPwttCg~oSfSHhM()e*VMFCGAQIHrO2lg*IJB$3YK(gizzK;o*@k&{#8Bp2MtB|tyiPH~!*$PD^ z$gQkv0mln?wJce0Tak^ms{{X8?#9FzXnuGPhjN`swv|P&^+?>5p^K^~I&_$lQf__W z$zRNr`6PE3D~F#OuU2)PSb%jmY=vRSkJ9k=bEK(MuGeJ^3^!Lxms>k&*C#cZXD158_VMp#mMNEzy=q?U!W+-n12HSgB9|@|4TgolN9EvL-c!E5T^pid6 zHleBVq5g`W)42?Uz6gzccbSH8^Nz~qX1$xHrpGU$k|M15P9ov6tutO!-K z;9o`fu7JxAub2S~25W$%K0MQ&QXC*=Fg>Y{V=S>H8U8ymTaAdMmrrY7FWX@UO(Zuf zIYdh%?_9e=K&|OxvT4QoAeHfZ$sP^TZJvDQE0}Q6!Gq>Sz6g%^zrf}S8A9#cqEA6O z0x99x?6KHv#(JENm{VNdbSm1!na;qWL7Xj1*+ zBKMWi;UbY8Wp?>SQrZ_4;d{8}eT&fb${h9(^Dv41Tv@X^4x9$K{T!K@fjz~tpcMHw z7Hzve7hwQIn2RIf6@ zp&J1A7Mh%0LPFX#;YaHH{o_A|;V$#UIMicYhYQ3*p@w5ER0x_PLP&oyV{K}h&T7LwhH`2=iXl>V5S&Zb)C=Q8^b|??gKdqe^qEy1q*z?vf2{mL=^S3>v4I zLB7-i%%7;AU8(_d))8@aRKhxNR%QZdEzs2NSdF`%fA7G?xj@7$BWENSC}p1wK>W)$ zF`qzv>~;>8DU~!hx5DUfR7ve7IIE#sHY@xOK%=_43>&=O|LbEAM8NpI=&DipP!9Sz z$!0of0D^x%7V-OH53l?g-dI|u&h0xghLnEj)R@5TA)m!Uoe;PaI+*`r(3L^g6KD!t zTe!so`pI_^ay?hGMVGzQ3$H#>2`HC7?Bc3wuRVd;LP}{z z;_T^Q(J^cxe1t3p>EI>Ri(bA6+7a zbl+?BAmEyrpHQbzaMns5AZ^n-dMnd!o`yH8n3~S^`GVI4F zx*7lD*^1c=EE>Vpcxfrv1zvr`@EBN)p5hhFCTf8mJ--WYgoh)3TTfVCGA@;)pI#5V z#W)uO4-bVnkNQBBQyxlJ0Zf_~^N`et>EbZ1g*xg0PkDXNT$*^)vTH~9d>%f z_hqi|8?u9)gNoxKC8yiLiV2~=4ih)0f(Z|t0e7Y_=+%>yW%T!2A}R5xbO(m~dyKQR z(wvrMg?@@=jXFA}SovZs&xSTn(=jx_D(@YMIbayM|zr#+}bWe~* zHCI5~jb)a@_d)e)(*S_kxCkQ7f=Ot(F;J*LaM1|yD;qC!VwpfZSU{657=#L8dqrV3 z(yD;mz61wThd;OOM{yBS>l~b5dh#N^4>)wNrsNv}Qi-`%*m6(}&yLEoM^VG&@5C`f zGEPD?JAsPjQNgkwOP*GxpT-}T+isKit1tz7k*RcX$frjK3=vIU`(cOCI(<(%i>kY0 z4K<9p8wx(qJe^(Z0yRx)Z7V_hD>ZU^`&D#KbZS=j2(b^w_mn9&69LbZ2`#+a(kdNU zb=y#o%v);sI?1*OPN@u6YCo^PNU~n^vcf@LoC8C)2=&ufbQSVtHSyZ-PF`Y>KrwK; zKTdwuD1Z7_#qnlZdIFe|UD|piullyXNdNe%z)4QIpE?Le#r@DMSH*ez%b^2|5n%Ns zyF3s;d_=E}?W?OYZ3pCX03~9LX_x~)Js5##Q7QG!i$C?J-Sr|a0XXJLv}7qhU8VCyvB3i^pqIr@3oPX>K@Mk7YG$uQL^TqXIMX`-jy|b*C zO8{g5tG-QM#9@WwFP4D4GIEdWzUO|Hym3_=Uw@qo0gsnn7QuRtLvWt4jq0QAaLnFl zc}ST>4l?CcxZGFZIi{P;EX9Mp(THXQ-rMeOE6nQX z-@q`Hf*U!($utT;BVT6egnlpFc0O!DbHDPT|4V7wZe||4;H%hc;77qAD@3i%O?zFq zpob&)FfX46g<7q>SH5$W>3IVX*@4~^|Z$K^UId9pg&173iDilfgq3*=K2;&)LY30lWlznf5 z4oEn8f#!Qy;)aQL{m(Xi1s$pwXk#7VAb6*}`_GwIFRE)O6fjf6&SDYd6_jFJ#$z($20 zZk*8+0)hD5KIz`WSv~)d=(4Y8C`uxIIeng$@ui^>P!seb-B40*&X_7;iX5|J${7x! z&VzQGkI6o(qS}-T8x(k#jph?+NsV5Tw9*7gAeH`Jp4_pD^_DDcbA3q~q$_^PC6fFj zHM!jPRGN?P*MRjBY!Df|6=HGRP(bxU+Gc}Kwgzm_FA>iR+CL0!d1=PQkExklN za5e~J;+5LCY%h&oKR;9lb+g4IC^VR$bQ-DtW^(mZ>1H81mqJ{$A+VK|0is5oXJIG_ zxO$7|U_mu6^=AzzhTBx5B!!i+p)DC_L0FiC$DO(QUfU@+^XfBs_1Dd=wwqHxzI`_y z`M-1g2{)nY)+3>h24XttWq$S-4oTf6ol7byWs*Xy#=uxLP$k;!wU}JAG1jAc6aqF` zrbS0b!7P=0MS<(=xR&1uM%q9_31Kbf`|Sn;Y}-CG?{!=duFL)BC-KSp(9#<#hKFTL_#z|8s7=4N$BcTc*|}f!YuE4OL@`4 zWQW3sH0c1TElS4vH5;qZ|9uG6jvwn&61VIy^oMZN45I>ndVwr|>eJYT6@yq=T#Y6^>+c%HRb=+7H#7#ue5w=Kz;GBGqkmBjw zPE0v!o#AjGllRf;czxO;uZLckg2o%+9+5UysWsly%jn37#xt;F(MwWlR7HIBCGte# zRyPFp*N^ld@aCgMW&Ly(x5bmH}Z7)9PgY^=Og9>d?wK+5L4hy zcrYw-HE!$)+-7=pr}fCGRIPh)unBL1h#MaKoStD=HP4l2iPSqn-)F@)dBCk~aW@Wv zRihO?Btmgwl=6{LdOZepyrBFS9e_T zJL`)8bzvBkiZnu)6RxEhRME^#Zje3C(QN6f=+8*sv$8|q%WzK-NqEEj%pmB}4|MPSD>KrKTF* z&9(rK@UN2aj|o)UcTs(p>tu`L8zssedW`|!ZjO1Sz_t~^t8j{b&>%Fg_VRl}u9{_( z$-PGSaI*wa@`Br$x~4Ze?$NTHFUU`K$}71+QU(!EjAw<3L)+X}wZQD`X~q*U{Cm-1 zPVwB;eO97I_lOzhoMpVXz04kUN|uJ^xUR$y*|#Hg>MKIXG#IM+m!*sI{Ko zoSG2q;}bU;+ptd)oCVm>rI)MksA(7#FYN(gW)I`@Y7Df4o|{^!z(LA5t~e zl_AZ+0<%JJA2snVjyrv*@*5(8PO&ma!PK1NNds91i;!mk=qfttjd(8D(ysD-OYXKo zhVG<{bae01T|NY7hZC?EA{1LB*g!KNce)(R!a0J7@lx}IV-o{Gy2+O+V=n#(Ms?(Z z(Q&}aZT;%C`fhkeLEdUtE*4lwKpL2y_^}c68(STs+;^iHUHw!-!XS2QqE=TU8`ov` zz%p0?LpiYoL6|KM zq~NXEn)VqMgV9{)EnPmLXqhSqH=RHPj>*x8MMnL6O^`7jQ*(zG0031l+2$Y zf?^%|AaT*XDs&qFvT+P*23=@3SP6>3Sy|?#TOHMG+`k7yt(GM`NkCzrKBWu5-;n!! z#V1;V*&w8AFkRR@c{G~gU+RSZNqJ2OPb=pqBKZ z8iGye70a`Eg?e~vq%(6%!3-5}&*>r~YF^VsID8hw*u{|ez#pU45wF__dDFRxa=!nM z{oOKKpMH8cSqQimaBSBB&W$r!c+8j0#Dcl5x_X+yZ+BOP#a@aijvDO}I0?G7GwFxL z@Q2U`?E9P^KY8sLaGBCayr%jp#9k`tQSFgA!dZLOI(eWotESv(AaTo1CD#JDvP1E|B3N3W~vKn8@U^-3Uf6K3NzgmHXAKcQM8?+ZzbbAdVWp@y5sRrK4FLBQQ zgLTEDQ6Q5sVtqKni_`G| zeaJ~kgMCnL30~3kPWhT4sb(uH>=YF>)T^!gnbUwLbEijW2_Ip1^?$hWJOC&Cf>8|( zSk^_EDVm~L;e=^W89*>Kg{FMb;ZTi)JEe7lToj)ph4mG^IbmF*z#XaY3pxMVaOBZQ z#*D(=Av}cr{5Cg9Scgn zxmjDm-bk`hJb`@2ze}#6>xujM&Fwt@`(sA$XUXLjPDI$D*~-cm;%d{`zbW*mW9rQ+ z-uW^utUVG$Y+sPqumA9;oE8CPgNa}?dFKH~IRnB1aE%wyzPFY~2hLYIL!av$@irg) zYUSJhJ?W1iN+|@VQQC*B#3(Z%JWCk+I%}Pl1AXAxUX+;gjraw`S{K2}{f%mR)X=8w z`NVqesws59^|Ux|Y??>JFBPMycj^SGzE$Yy;O%gdr*`wzfX6*%8h#=?6bpj+*k%hOR}=kXr!t@{x5RP3y3=Q>wT(p z>6f;o*vFrtb`?v@X zH@%9=`nKX9qd=WXi-pk&ydN>Q5KV|fD&M-ga`TUS+1pywiV=#R?f&%Y7bWeAP45_7 zH1S!dGY*6l&vdC2{i06VP{jVHSB$yq3j$k3NOO^eLqLsql8T}7QYnI)_~T-mrtEv> z8|J7G*LSu+LzoYTgZzLkUccxrLr8!fEsZCj?Y3i)+p(SPho=EJf|3Z6H3+&fr!-tD zzFYttlLZ^}?DfcterE+ZUdtZ+UxVVro4JU*)#Z{hJ(lwm%$}^0(lc|d0OIbzSOD{f zbk_NIcP>VHG<)O<%zO$VqqVOcrQ0~ zvAy1{_p&d(Zqmz{o3!8PX(Q{ofsoVa<)Hv3CL-X4IgZoH#h@`oAm0H@R&Sm=I`-eH zK+*vZjQ^zW3+T+jLJ8aCyLO#(tZ>qniUaXaD!RHYv4L9q=eh`!@|-r)5IVBpMe?p| zUTqGwigj2W1J!6vbVso^!x_c^P-=5n|2qUlG%MZZO#3k?RU=fEmr!ZDVpFCV&AE4> zwvY(A|2W^+a7~z)yHns(^exA4{X5>g~1C!GNGq3=9}vNw^T)e1nyXFuFn_=1!@lqB7?2 zNrQ^kw&{_Sq8~r};I&d7hVzZ_$%ugV5iJE5r5EQO!aYnExq$Uh+22cia z8=zJinsv~em^Yr{b1gct(vk-0#1QuB?6ey2#(Rvde{YBPEIA0aZ>%wGfUL>btnJ{a z=5#Wp%$C9MuUnKK$CJf_UQs?PlWjzE7?yjysv35U zh#j8@P|=}t!=$f5>_%J3m=SweaV0~=oC;9ckqSN&pr1&8M&6LR(~xNEK0e$ zJO^uat<$3>fIBm=0mKxPQ+|46p9&+rKNb_kcCQO+M?8GIumhhUvAZoqqIE_2IO1o2 zpzLPaweWwOusv^6?&cmZyrmbEjrQOFf6(m+N2;!B*>;nt*^1?TN)oCT43l1XhFemaQ zJsF^>c0fnO1VCvZP)v$M_}g_)d+UzrrTOvAo+&&P@Lhr?iAh056hJu+nRLP_9h3u^ zgR-SB&{fB%XaaXJELNfac;iv&mKu^QIA*ID{2!(jtO93!&MxT1>3^b)@`^&S*2F>ZVIY5@>YoWmqa{vhc_O*6zs@MMj>PTC z$P`p$Q$(=G`EwetEGODRwYlEtpw7>3D2BYV6=W>yFE>BC3%Oa4n$R0`z=+3+t(plz zVS^@CgnoFmn1|RtQ9GIU8nfj-hA<9yA5Be9(&q5?> zsVZAtO7SP229M*M-AxZxw^ti5oZGWv2=;M6--h%AkNzNP(H(#^#_G^r0f~ME77Xbg znytI1o@M7m6UN0mLsgSHn#-URVO!@l>P&{`rpX%?Z;QO#{~~1JiZa2)^RNG{u@Dhb zPUv~`4*-!{zp`~>bbxrWny3`{{C5)N1zv~&ibWlaQg}V-i{LhX&ze|1ePm_r2=5uy zzFmKM4H>;;&wB|Mb*@8k69rW%+$t((%Wke)seO`fCT_eB;tcz->9iwb*pVbuN7adL zbF5FyNmrF$>MjY=HMvvc%)g&eQrqN_qhqp#4c1Jb|1bKx7^Y48`ml8R z1758k&oba)!<+Gngqw){uG|tshFk=Y7tv458-2v;yIH}f62{qd$WQ=7Gvm%;rvC}yi z65g62z9HT>x1LYpnwTcME)jLEtaz6yZ0ha{QunBxQTvR7y9xWrk#-rr)Aq$@Hr#bKRrJk ziP_nO(j*m&O{q~fF3w_8bORRa>`P>T)#-W52XEeW5eDi{5Zi@aoDLfdjkz~Tk~!hM(KI)DHW2O;SuK+TPJ z>#!7ycoh}PVa|pt_~m$7EtkX=604BC%KLtXTyq{%S;2++hVO(2rB&Y zr;vLWxCO+LeSQ%8h)5^X-Mk#k{HmalgyHFo1=<8~iK-p73duR&R8321)RrxlAQa+W zCFuC1v{{w(3OR+y0%Bdvx^Dxxcp{kmAIo=r-6QI%FfM`lk)ERb)|4?M6ZY*qWGdvu zMTE_Bt~A}4*M(KxHW0Em`)P8mFPJba0vm@eX+Se^`>>J3fwpAF>h4*>7QUM>Rpo>U zxJxEL!EkK*5COq}6}+LU^)e)T2Jv?0J%Fbr>D5+HB&^Q4D|Fq^1naR#|0#nGB`cO=Z`a>Y#Qte6=o<7V(1SMU{Wek*StB!A!Zfx6T z%Nb0RyVW6OIcVXa@sgX83Hy(<{vJ2l()o?(`r|=e;1_g%_MbTYVSfEIbDXW@w|>_| zUVUtnI`Dn*T}XYqS`zeSFg#SuukHsBh0hs*nw!4XuGr>GRt}@~cUDr~K|~|rI!z=W z{uwLD^&Lp&F__YtZm(TAP%ck!A(HaW=2k{)IAXDt zMFVg>ScUNuB;g57CWzGcnme4+mOfA=tK!ZN{#gF(yhuhOoGBP`n%cp2l59(0VIECW1K9=|>>VfrHnO%HVbcz+$M=qHyMD8WNN<>17 zy?Rx5yC^v`^UU_&daox8Jbw^QvYk1lwj1$SPN`}#$(QrA$-J&dR`YA~o;8r9IdStJ zlNWEKavNt)v`sHDdkS~}Y3-f7l=whZc+9}Gz`pFCPVb+hj$P%F58A*Cv2ZAKXm_1#1+~Cqh&5bb3v`_0XHA_6{akrVY;Dwp*%`*_GJVu<)br}z zDE1#1e@yZ1w$>DHbuBqR5oHNwlodAz^|BvaUX;eZAS^K0n?#s6C}6U%-8YOk`_9!l zS8X2|D}oZHodf)MF*6qnE@yTyq$fpdNcRBbI{oRPMBCZsTbm_JXb3kL5a;3Ng6*~`*phb}*8)=1d$QaEnCHx6 zpl9vuOsJz)6Q)gXz|clV9zL4xB=XD`pe-f&!@$L&oR>d=1W3itwmXxA+ZxOx)r` z%L$nnx9rNm$?ne*SFP&n)D4}d|kn-mRKLxgizO+3`LTb4kbOCsR_Zj$>4=}JeJ>NKktV|p@< zHMvV7n(uo)G-;Ps8ldvXG;Fl!jM(uBrG_Fo4%+7Fh_`ODUkLadr{=qlOS<(ns&d(t zQ=1r;#@AynrhduWcJLR*(&qm%j;2xsNk`E2%CSbhvs!jkRy+Chn&6q|*pQ%JS4a;B zLK4PKK#?~IMYSjLn-X@ur(!mEerjQVDhBPFRVE5DHPH=1QW#Z>mL0X;=VZF%=V!*R zD$Tlf{q}~ob!+H1Nz=%sYS-6YO3j>wGF=g)5=FCNCxpSNed(RCAH!B_WN5*W&))J~ z31A>HCgh=bLZF@6MS=1<|7h}?CyhPc%P(OdtxUC$(mqNOl@==R|CVp3KWN}70Eh9e zwD6R{v zQu-p;nsESLYe{LvCh}V;5@hCdCbBu?{I^9@44Dyw;DQ1|rOz&MG9uv3ctCSj+pHbc zuy?>llV+i|Y|rWTO4a-@bCd?}tisvy+k%=!9c88GG?B@*Z?Zg4e6N)JFGi38^Jc32B6xHsKzDhILaA@R{=8ey`FF*-a=ygC)i8=buX z;2rGX!GU)u%QGhpIBf84IAtF(-mn<`RXSS~M5lsDMR%jmGTC#GM+cd?lc&DtTgQh9 zET>>K^v%N1aTbP_ld?luf0>~kb;$fh{YDz#^mbr=03W#;O8)h&%Z@ec>G#xU@B`+X z*tne>y2WtQqYj!g=mlM>CuEmv>%k7F>^TR)_X$G(U^S5pYtEOrIdy+P*ZwU#ZRrJY zLn`S2rC=8O)My6SO48T-7k`*nJ&FxX#Mf9;MrUK&`wzKJDBpf#VWCjFCv%!*Kr*07 zn_Tpqa7J#YF-p%c|?RxqY*kBNPQ;`9K?`)JL zNL4wzBueSuFFEo~aL;fn_67Q-lPK6B?8Q&p{#&l- zlV0nX+4p-Mxb_^siCZe_u51_qdkK6ODl29QR|ptUBTqgW=`bFI`;*#159>_Y-NyAO zra!MMS~`fbc?ip+q%h*IMjVizGekbakbI8s6CLiQ>?%qt2Y1 z>?U2pRZ!jb`AIaKO{v?#&3+ooUFaEEz-+bEQape~GqfN=*!dkD5i>9C45`ww*zJ%J zh_yQW4#RDsh-uD7UtO}wyDqOOStw7}82(TL*fuKL5k6JG0*|gIzi#$m=ediD5Gn&1 zVa^+Yt^n$+PXK+@nv=zI(7Y%wY$TNPmbg1F7uCWPjAIk~NL;Hi$0!zuV=~k$^Fbi{ zzt&-o@GfRNts(wCr0aiT4sOEsmM_<%1q>GLL(BZS8v)rll;5(-&BPWCxLf&`1_C* zHJLzmRgtjRqP3h&!rEiT92TIQw+K?cC7OiW~kJd8)9O^@j@uUS@h{&exBt&sdap{7nw zrOd25wZXeXb56HfJ~uVRa=*E{a8gAC4RdU*m5eXv+wPCG9-BDO$71j;$v40A7z|FR zSY3x5t14ycH)#AduqR!g@QoHB2_&m`NwadEfs`#bRDbw+G#+1(ca^wc8W^I-UJy;V z)}{Uc*~DNtF0ygu&?_%Gwyn+wQ1|X~gz*%aF(UnMFx1s zfs0c+(2>v1l+)+G6eRQjN=vRb?7t8uDFyzq9-%wc{r8=Q2`uo^e8D1TOMG_v&u@kBNzPzJjf9utb*!6;iwiF&&+dxUK)%qt@ zj_EvjHC2wTTP&}`6^!FrZrsIlHh*fr1@^U?7`d1M(SJs9Lj;hW_yCkVfShMZIeDI7 z4gz3?U~*?;0_h=((nvutjhT6-?tO3)`Ew&*&(A=%(fe;m-D%^6#&&TwAEfDVZ>BkS zwP!%j`Jq#U%4}2ai`2(GvKZ_L$TKTS>^Y-dOcDa&*GWx@b5K6c7hH$;CK|3md4aS_ zWYJz$_NCh^5A}~4f~4EMVjgl9ad`gjnDpY7n}5Suqz|eNe6;BXuc|y=TS)#KV={J$ z#`iM>IJ&6k`IdiFD+h8=tm-?#7$4%YUCFCPi-ht<9x~4CqOquFcSX zCerjToe{8A#0ztl_4JveFp`nS>!lE^p7je>CAcg16{$G%l?!fR9b`-&m7Cf51%q(2UP3C>xYN*=+OZ;>5gdmY77x*lD+!hdf}RU>ZQpIvO51QnzZfEZm|`8 z0=$>I7mubfME_6hv30T4yIF^?_A5W}O2uGs_xh@37LQ3UGh)B~`yXM(WO_s}LQ@`J za-K(-_UnaR)Rf3sX-&`*d7A-*Z$OfqceSL_r2v{|1k^e}lLdlgt6IvGV~Q+Kgtn>V zp|eF@A$Br!ssXcn-M*&^1XI_PD3UAyqtt`P10KHDAw(t+C@vK7(M}TyzWEV5G@vP8p=JUJ49E820GxoN07VRgo}Mu?T|XE05d^HQdXK7Dow?ysyWYJ zEKz{4KBdWU87o88`cmxwTBH0=}WrcM?3o}0J$L^In*-TGANjOU9i;-eL90;y)__e`E zuCd{~mk4)p52VN(*v%TWV-uM-6-m!BkoRouzSi*F-7#0-w=*sz!pERPo-~JBi!yi!xy5()fjdCMJErz zH=WOP&Eg>V=9{Y{?K7f#?nSaMx1R|F61!hBj1cHMXs zphR&c1gTfoS5wfV8VMHIm%!(d#j&FKu_25w7%{7Yb0^+DF-gvf4Xiy^zzB`KpaTL> z1Z2U8TKkQxI?kMr&_=Z3w*-go(JNFNC|->afnI9YIbJFL9;Mf^@xHT#c~Q2akOam< z6Vkr4rBBjoTZBQrQ8Md8%@LXa{U@#cA-R4<04^#On(ktn-*M2&zNY-f6|nwUfCeBV z{=^Mg!sw8gXTn`#Zq!Ijf#l#vt>@O`Z$*CaQ55KiA>c8OFCtMuZEIm!DqOH{`qh9> z3Tcl)6mGn75m!&BYD0%Hw$D3%qdSU_n~&#-O=zG&aYcBymcg0D_HEmpI{KTYCf_4k zJse_cy54h>iAzc4YkjQH~)TA^y}APe`WRHc`#TU_TLr(nF_Pb zR!=z3-kO2{^AoM6Y2l%X4dp7|nc|-EYh-7>`xk^ih$)rMxBVbg*;^msclSGJWNJ0* z+{=;0!y)Fk3w4vzHR#T}VJ4#?1}D#FU~x3Zga$qD%ekX$yN(>L8|P_E!=(8BvG-+B zg@N!1*`^P^9p$hH_-E)m7NO$VA!Tze7th9UXFJ-NtXi2|o|a7LSm1sBTQZ@nVl*}4 z3A>oJ_i_~hK9MXD05y}Q;l_cEbkW792Y2m z)cAHH z%R#KIV}*C=mV@2O4j!pzI6Z2bm2t5?oGhoK<4x~+{qeT|wdKT5)-975QH1_(HR|eR zr*1$a#e$}ZSpoc0*2^0g0E9p}yDN_r3NqN}Mk+*P#OV)Kv*E!P&wMm)pt`_`=I6M? zJE#oKhW^6qFA>gObI<=NHy?~inV5oAq6mII-xh%8`zY_`f=Gmf@xgFd_i81l4Fovk zw6D#1G@_b@`@&~MXUd9B%sa$sHE#_?+|u?({NE&y?P|2mj(g64u!2o@oTZn#6mpwg zd1T3oxMpsGbM?-yXN9_;gW5$NU^fH)r=QeNP}K94<8@6P=1Q5FsZh2rG{k|Ic+You)yg18{r>6$#ea-2wZR9nK{$$=-S%o1 z^puKRLSMG}3r+bEBD=ANW=VKvMxb7@X8!t)h7ns2Z{M*-!WW+8<4~qpsmfq`rOHp#sl|9KcXdj3)8y*6B*Ry>C zTrL)7dwNp_l_g6IzyrHC%x>OGM9|FRDDQU0zNdS>3AJ~U41FkS7hDXW4W~vGX7Ji* zvhbi4+!D>;EH8Xs;=BXuVy`T1Pu6_)MX_%Bvpdbc3D0V|*n~ExUD##l;A2;M;(htT zQIL36bPSG~RRJR0)T7D1pvYVAxG0XI72Ywn<-szc_WmKq<2^q(1NO!}3AF{RD%eY~ zg_-)Gcy3*d^O-y|elQvT(g{Y7tDnZ9883P|N|N*zpmM0*M-=)IX9M@1f$yi9p^D8( z1q~=a*Twl~x(VQ8Q2osJMTZzYH zD=5(|0hBEb!m(5Is4a!UD>Z=GB5d$t{+VLs>Lb8iavqH_N}jQMO_TYjwdes%&=zj8 zFU!ncl;6p7d)fe~lQ3S=xdlcUJ@>OQ*zOAXt9WOK{K*RMG;6_(;M?uF!L~6&oN{7v zcAp(j(Ar)AncXIqyS42cLxxRMR24x0%Ih=w(Bu;>_|u&@y)ZXVQr3o43JY~5xlSSG z_@iNScKFpjkoYSHNzCbP6F^I`0)#t?1yiCrK3mO>aI^pl5>`!tK1V>iG3*|Ug#0PP zehRCiLNFqtZAN&a%}t1V6ATYutcwDB;u-jIzwH;NWFXfpd7bj1d5&*PpvkElWcdkH zy31)sV4xp~Ue~?P&1>eAm}9KuL!N z(Z^55uNv|`be5FsoTm7g)}pqARo!9<2+vLP8}*x-Edsds0PYIA^ta9hq_h}g)clm! zyrY+r#oesdPVX_JhcF1No2^wRio#>m zl0PS(KhD|P4eMQnzsB?k-zl_np0AL=x$f}U+}#F=#59=+w~}4@`TC~IK$%7X)6ap! z-0?xwiic_Rx+H~;k+S7piPmJk^cG0VNF$i|i`jFHD<1#|x`R2^0l|OeET&Yx6+JW4 z2td~@h2AE1VhBY_x5%qp<9>Z}w#ejY_`2BQ=k@BO(IeDxR+R!FS1zX6Lpp66IOMPO z%e2pyYmgnFvM9y4ZB5=Q@A$jI@$>HJ+D2H!vb|f6`@kglSj_s)^cZ{unr6b$4&XU} zi6Oe{6hkh7b<$u+q?yf=hA*4?>2~q&Y)yaszGl`ts1ms)TriNU?GtCray=Pas&oUM zwD@S!0(**h(_yii6dc>qG=J|eBb_uz`dtQF1Cac6;-TUI1jgM!OymGzxcO8=Kb78Jb$G4XzH@Mf+h(0`gBWHx|29t3r61%WWgCg&Ew86JnG4XuKgvapi#1s2Zrcn z-u)rI=-6z`%FrBNG_^1PFl026GG9nw=Y8}QtV&BjN&q#XU>v7;lZmToSS?q-x5&`s ze?r6{-OCgO;9Yfz^yJ0n1`3s9h3ry+qO8vE$1sBnVVVGh6%_oi5_Hz1Q{ zv9}_YYv(Z?CI0^W9t#3N3#xzs`w~k1KAB-rrXA{7aY^$c61NvFV+5oug?=i@jYEgN zY9HxgQ-Fb6!g8Dg%@Jb`3Am8mCc}tlLdi9fQNm{|dGN{A_NQl9Z$M+jVmF|K&4)*}m8E_hT6pA};_)&(H8LR7Xc zT3oKc_h`Cc&g(i#yk(iIO*$W6A`FHCkq0hmBp6Ho(g<@ODwsRGAN?+btB2$#ouPv) z&74&+96A9%&ye+klSCNlun={;I4%*OxXqr=zxd3|*3>QX65p=IXh@~#K!CJQ?&@RL z-KW=nNopW8y%Rhc$Dr!Ng*1f-oh&)4PmG2dEs(z>O-pHPw81=3#`oF!38oRz9wI_0 zNMJHOT3}r<7DK_VVftXMh!pWR-NfzyUOuL_^HU0v9%b_YJCK7kdt`4U zNlfOhWh{S#f1DMNF82Diird$rzpO@HzL5I&GO$OFB{3D7?jAsM|Nnf299;RgtVisC znRGBNXx;Z=aCQICl_+Ff`*OA?P29OSs|1Qub;!YbWUsqZqBI&>2y+J<^SMi-LNb5^ zydv4OMqYV6JDP~|C2evyNdgHfXXLCQK=}aR>G6CP(hh+H^ZyHCBTM%1-l~8Bodv!E@Tb$$m~Wt zn1}rt0M*~uL2*_{bdRRM4X)fc+gj6DJdNI_f2k^QpnS4xTo3uroDj?SI}pIhpzUVa zriYf)90A2MLKD^2=-IORaX>J`4=+m`7MFLTt66Iy7v{#z;OrzMTgNW+hYVj5=x3^oz*T(?`we$k4upeyl|nxQrq! z*PfT3KBiv;3)KX}O|XNENAt*AIB1-PwE=eqj3gURBTF3S%M$&Mvc;Y(_5D^&ur$9V5jo=(`gFp^h zyh2eluJdzImkizzI}uiHU}%hS@cZYrZTa;vWCJZi4LQpF_;_ZI#d3q-+XtG}G;4Rq z`k?_?RMp6CK#h`ts81&d+P+T=&?lve_U{713{{7ZYJI`X7wO(=)YJhju#r)Cu-^DC z!e8@8{ozD7&|Wa{qCy3YCuD5M9hQ~un>{;&ARY^K7bfR4P4AIf10_?=PlU zuz4C*hX3UtT3CIDiG>siU;ef#t!Go-d9#XdHS{_wgrBFxtiVh(MI0ZfyoQvLT}sDS z+(6|r?;-QpX@VzBkN>$w(ExW`(d7cWD*tW|)4*wqvgrHgqVXs*Ar~8C9e}Dh3vemg z`H5HIiV5@m+P?&ywokJs2v_Y{Z)kiz!ar_mnu`hoTU-DxZ!hzk*L^j!yTbk`u-s@x zfp>p}P6GWj&_YcO{csOG#<5x)TnQ4ZKICA06NAS1=O&wGna%*;dc)%+s)px#ZWnQQ z<5~xJNP6?XiB}i?;CI{PaY@xRqNR_!)n^prpA_xz(bHRO-ld>4%XXRHCQ zN~7+grHhBVN}Dg?#F=-~3Y{LR0zku`eI!5%*M;50EAdFO)3z3BG}FXJ5+0 zVFQCrXhlnRgT`anu+^RC08qiLb3J0+$5lH=XoLo6GicO|NkiG5S;d`TB`H5PT}g+& znbIsk#Ff!q=f;Z$p@Cz}z8iD-u@s@|)Pg6_g^KCS_-x~pG=VbJO{5gRMQ zBhO@dJ95LCwl-7O^Isfl?LtZUO%5Zo6gb^5*47E|u1h0pzUVmPEb8k3C7Do-;UKH$ zN`j-ypiBI~0b3)0GFvwZ=N!H&u?JIkz%a44=~<5g?`q54c#t*QK9SN~^0qZbr=w)A zUy?0~$WaE9!-t+W;=;eyp41Y2dvDUkucdGKNX|Sry<8T+HW6$agnKm%stf!$p>JC{I z>H^I^SyB(mqD!dRo2+m4@Fdi_hpR?gbJ+6c{fU6LY)An3_Le>xADW%orBXPqF_6ds zuVyyGJ=n)r6@!wa@nJA2!iV?IFckpX(Y8_r!nfT5$_JVbN!b>`{(`03wefVY1}#Po zKaXdx`~0BbBhR{Tm}H2~X@M~N&Z~I%Sn^eV!|L?np#b)Yd^iP{6rav9v= zKp11NWwEXTpP59Zj{iW&MUmSXKJo)?CbFjg_=l_>CC0Gt z`EtxTRc_@U3$wD*T9C5VB76)SuNH|sXRmZgELCA4dRKRN&|})R8dnN`TN;GMuSFm- z@&}UGR$sag@@|j`ST0wZs@sG4Npd(Cp{< zQis%~?K7OVTlhnAi7mbr%|;}3TS4u)TlPVyEEzHCQpZ>XhQwf=diAf!GTt*6VCdCe zuziTo5k>Dd2$*YYodk~ZV(P26Yw1FILz&%_oTmXc0eJ&58owv`y;Efa^}w!wdteC< zYN(8kLM4N*v4QUEa}uN;kqjw(4P4qplUZh6#d;48^r(ADftnhTdE)i_B{0&P)Vm$z z)X?a_$ltZB8b`L$cuCLN=sWbBe*7&IZl^Ao{Cv-{U(VQ>6rsfsSMU-)LoSq>+#GYo z>U>cTv!1yWU{4t9x%+BnXa^TKYTMeCADwjil!R%@_RnE4V3l^LH6Rr=I3~CaAw8eE zTKlB2)Pdd5xUZlhHFzVc)mp=lBNz_nHf2tCHjIgKA%ytcY|azlzX-5^I)?U5BSZl{ z%xRf?G^T;ZVbzLs$wxyi3xKy##5==Fsa?EIiN-v+h!Uh>G$@|u?thW;t$t*W9EHU` z?KT0S$?FC>X(-0P-IQ5Et_3y#_$nr^Df(^My<>#&Bn1Htc%wOh11!}f2e59C01XT( z$mQ}QO;SLGA+<{~L(juAHZ|~&!k2GW=|}2S-&;|>%Zz-88(CD7lJlnoo+;lg%|9Lg zi(>rOGcp7@Jr5rkK|uUE`pJ|*XJ~?2w=RKkuDA@sUS&rBkAMu$UQG*{j1 ziKqPkxXYXMgP|2J3MGinesoo&HXs=m5P*Mvpc{Bqt#qyoPS?8CEO~)QVFElQ3MKua z5lnWV>31XcI$A0QRr{lfhZh2B8U?Sd8N9C06o7<`7u+f4gNtmXf@AO2!Af>5#<%mU z=Il}c=$rXD6^lBDC)1U1SB#5*)#l9nIyHIuYUi*uEgqHX9D+^0y<;U-vrp0l8uXx3 zSxeF-Yr$lwUsJ-PwlLAoyuoOH0Tc^GO}=9X>HfXN(Y-E^pd)5M+O+Ba>nUxF&L+4QTJGAPyC zRI1Dfy7s1bufBz`nfa2W4!9~c!z&JYKCFOMN*Ne?SH)2bf3+(w%oXLKs{47l?0=c4*m3!hK65-2&!d5@Xn~6`uJE?%vJ} zNnn4n4^{A^8K0RtI!7A2hoKb8bAQDtmT#Xs8mBN>(N<3KPb^bq9PJg2_N@->Rl_y_ z7p9}|LGZ;99Y8krDXc23xtAVEYv*EcaR>~R^;=3k0-qUx0GjUelmOtadn#Lslm z*(>oGZyOq(5YH%2HWIya&%py8n*fuzo(g1RD4ycg>@kYN_Ni;3l|umDf@Ho(_b?lM z;#7h>WCtHvO$jHHF*y2fS0`8tU51dcPb{b~%P@5*;pc|9Vz5w}Qg`lMubt$0by#6H z!l)Ij{Yu+R(sdFiM^!)?iff*n8r)K`g1ounK7_u{6aN#SQl_Ep!w@Y)Cp{|Zx4+5J zCPhI6v5OeKgSPG@VdTex)koxH3=uBNw}8XyXD-JJ;*-j9nU|QCQgfm z!11m@8i>LQ4vaGuUWom?I=Tt|CycqQk3}z&u)fAkfp~{l%XIqoaO%T38(Dvf0&Fk zw`k)H!OO#Eh1}^3nsdPj8`T*r>6A6pOXxQl^AvwA=+Xz;bmF8*`*ju!6_RN+##x|j zqg45+WE1AoW8*mmJUfGL*}~<=*u2UUG@Pyyk{Qi&aQ4|wX#|QoH>jbu!{I{sx83Tu zvp^0U+Q4+avgN_g>gxgkJy2l!dsHkWE()pq%duexucy{YOuYIUZy{ufwD~-iM{8Fu zr^}`eH~pW$EMcA?#B5ycn1vSFf%f;veMWo*vypK*j@Tr=%LL}_l__7er+Opw1+6aC z0zQ{&$mMu!@ge?Ge*!g)XVYGfSimQ$is?d{lG)}z;Pycf1F_|KiDxKvmPsmmm}y(! z7F%_|@;a04L33g7S=EuvMnXaGjDp(ctiuUHO~Jd~vGCgv7*_jACA7a{HQ!X{g`ttp z|2xs-+Zt$aH%UfMU*d?$={|p+qziX@4cB^B#sUR7Ln`WEWt^;S8ioL_8z2JMDi-*s zU`6p(xV(zEH@D2Sg-GheLZbo{q|;r1gb#$WFp(2F0q(V%NJR;%=q#d^P$zHzwN}xe z0Hx9+8?8X07N0i<7@eh|@VYjR`LHnRLL!|NrXWjHqzBC59e3(3nnE4)(5LB<_ zVPt^W(UvFrwG)P^q30vTm!@tn-hdRtz9J1@G`pg}#?aps{TeZ2#ct6sDJV-e_uVuI z(fGxd7v@vj|B1~A}Pdi~)Faia?Sh6t?_#1`}A#(9IUq%C(1KsPMB z=geSm*&Z^n zVWyGB7$L8+t}jD1&1F~;|U24lAZQ0YYl0SHp;97 zm(uj1wl}fW?1T3i=Mx$+o^M}`qUj3o5V!RH3Z3uH$fB1BbAbph&dd6aEBr`>TXqBg zExkpVHry?0l*UU1s`!$C9kDQ>nsqQt-3@Q7KvAmv6xH^Uj`^Pi!%6KW-`*Lmh(ao- zHn3Fq6FGzeqBRD#P{{fWPlTT%!O?KDGs0duL~KM8OHGka3CcwidnQ9JxGo@aIO9^9 z5qtQBjI>XDLx~;J_G9$o>g*PrT*R?j|V;Z}zGl3i?Q!-9J zyJ9XP3xg|ppD$WvgD?by2gciyCQRZv;+F`-REaruUrcfeiC@CKMUA2F!0T_xx{Owdm}l1NS^ zu)MKaJqA#6)JmMVRPFox{2PpU9JKYB>Hs0xgbnWjgMQjU`ttifyl?H~p zJ+`stR;1;Nu>m!3FrZz0pP#nTYJ{dV#%Sf1TDDY6+ci!w$gR+PB91%1R+TEg~Gov#N!e=7471@#!B_A>8$(@+g(5=U?rrV*I+Dv z54HTx{3hNi!<7+OD?m&0l8ZpH@4b=m&CrOW)$LE#yqX9C0kzxYzjVWy53mpFa2!i) zPwSVxI&s7(JMAIC{zy?gcp(aKQNU^=^Jc%!vNLaX_Uc}krz*^GVf5MMc)+4s8v$?I3lxnTA};@j3G1;BGoZGFw$DnqmkM8&fSCbSgg44 z%zK#|>ulNWJyg~&kNr^T07Ih+Ga)UHXwgkk9l<1?%JuR()GXWvm`!GC7RAV!X~$H} z-Uauid1j=ol?fyCJ(uJka8FM66u=V)gxO+5eR33e#bB?jb^kpbwO#fiAz0#Ov+ljMcunAPOFLv(4TY^r4}s)D!AbQ<8A~ikX3m)NQU(_BLP(xr z!X}yxocqBKc?J2{Js)y#tLzs= zrlHjaoPt_CZldc3LnSbYHz`Mj`7D;FB4AJh7geKmt$$6ezvFiIHTT>}h?eQfx^%FQ zMR1lm{ENa{k%Q~!n4i-Xt_uR8DmqK+yQoL^$Y;9Y$5#_5#9d_I5s9uB9rayiO-3RB zXoSFUfVmK}h92>X)C5H~BKU>ES#ZKT(g+1BndU#sY}4GTDvf%N8?@rT197OCW<11< zeaAPZM;LyW&_>J4V*x?-SV#llmGR_N4fWG4T?lZ7#F=ATR-n|Q-+>iHGV0Wh!1%}J zNW0S~CU3%w61$PNOR-gA4m^FnaqgVKS>b`b#y_x=oY} zKN1$Uo(%8{(psJvNre+N`V(a5exdC__wVUs6l-^%w_0mh^$>Od2yGPa1CS==+w3f@ zg6WE1jIa#+)^PyazP%M)VeD7xcLh-a3`8XeyVPnj)+PA+l5lLkwL)w* z5JVQ}t;cMXqm5j>qKNCs!d-zN{f)Ygjv1;b^6u5Ru!^#Xfhm73iO`v3Tn|GVJHyoB zf9wKkZ4z$tI?O@9$R)swFJBdx`V0Ca{*| za6?qe53L3*Qdk6AgXXcMCR~gfNWk`2(-3XrMkH=14v((>jI}3zRudo!uWJaE=Ez)Q zHZ)8|{49i{fQR&ZyMW;@(>t*AmX8s$idX_uF@zsMS|d06%zBYRBHZ z*mTJ&Dpp>Ksjq3Q3s`#fr0tuaPCVNgUneI_8%!!PYO)86FqLrE#7{FC1g=;b;*;o) zlwzir?vZ7QdC?_=N| zO>hGRX{A{?Ygq??CFF62#?Dc{dYzhjWgY3=FB?5@7!H1H6n-7^{_Qhf+erffYZRXx zLb<&4gBmk*`Bfr=n-ZP8&W%GNhmut1f)S%)Dk9vsk}Z+%LZ&^xDX1?)`o}w&Yt7yw zS5Y!~TbU{i_Zn0zhSyBq71bL(by61YdVtg{7v) zyhN%+s>cuBR<^LI24GD1a_@2_J`Ga{v#l&2Ae1bTAx}YeD&ZuB)jT+i`WRnEkkdL`jBo(o1ZaJt17y-&y94oMai85&mXS827%g{0WO z_@SDv*R@c?dtnwkFG-S>R>ciDsO_WuuSS)^vk1<1Ci$RtLyiYuw}0FFe zhBT$}CYLyT9hm6WV=ykxN616W)4w!EH;6P%q%qQ!F4b^Gu*XeJeD!;6op?|>?He4F zA^8OU1$4c9V(aE3NZf}y{XVsqqksSbLcmqP7gkfCWc!G-t9h5)nWXR;fi4yj2;gID z7wrH+jREHA`T&Cp_F%Fnuph4=971}vyHSL^6i3P**d!xsi=aFL2?Q`~Z*knaSimUe zoCU+-K*86nM{4RTG1S+T-UM*FgwH`+2n%Y;M`EkN53C^v8lVz_2Dz|);KJWR_+sDy z{!Ey@`$Qkw!HCubN$L}McdS+R9S`BT&q;jJrv6y9hF2J06$5smZ zW_}lN?!E^B9!UViV5d_ks~rXZn_g@{;qpRy1kj@QR%f!oepy7JLL0{8XEhgt7AMs zS3SWA0M}ba(DS(CprsT9@tqu>$~Q#cc8Omklx)F^Ty9nu7M+Tjm8Fav`{V}IX!(&} z&D^r}(xsW#CRC9OMikY}p()8+CqQ=ADlCDiRv0FVa#JMDO6d^4xpS);N$W51k?Ge4E)h@y2a^a);*9a~Zy>#s=q201FU(?_yhjR;|JsD8c7xQ%9SZp04?#o+C#!%~KZcY=1 zr@>}ev?=Dgi&+R0TK70hq2|8#bZX-Cvz&f$fyUns_GAxuZg|fyf6{X5TYCZ*yd6i+ zWG*b5n6CP0Y|9FP0%G-kipqM^F6MX>McIFT?oW9i!ZU%z>A$w3hAcnZ3Mmim44UE8 zt>N%KVc8K+M1R$LQB61xAh3qcGh>(wQb)fkU>U!^)=u2p^?B;#Y(qJ0>ib^jo7xAh z4|NA!c9spn50fHlE$t+uxkFmS}`mQ6QN&D;)gXUjdm6kaC)^Q#|AH?A8!F zY91n$y-(U>AS4p{izv;W?J}PHOR6TWRf^-IXiqmk5@^;q0faD9C7S$bu~|hBFa=nY zBF?eX)Z3HQ$?eb%*?xkXT91DhDnzxJgV%aiab`4OXXHGWljtC6+962XA>HV4r2h5~ zn+&|3vo;Td2a&*4W(hPG9BrFw3O<^Lze8M?uxw8!(33my+HEv#y$9hY6QR}jUYCw? zI?;l`Z%7CEgXEy?E+h9qq}DL-695<^pd>NNBt8jX+GVdKW{i{+CG^5RNz<|jr!+)(dyOU%)}LiAYRmdcy%n! zLi!n5^{4M(Xzxw2f16@e&6x$N-cy9@mH%>LsjXGMcY6)drVv3LO_^yi}EEoKlc+Xk@EpXNZ+xXu zKO1?TWah6U@|R)i|M|J-zu5Ex^Et3hocX{UvXakP>qBD%QM3^|QUGfx+gi`TM+@bT z_jrw=rB0|YR$2dtx;lb{$XWn^3JktM%8p+#CKMMi1b|RV9?3aCxb3Jkdq3qbjTL}Y z%mke7e)~s+_ZMrp0ccxF!+1Ut2MEz9sESs~u*%$xFR#m`l$ctTcohtMeDj*d;h#zl z?I{SC)8Tuilwv!jBe^yiMSi$sSc7mOG;9@VdCus}WA}X>^xsF$U;mapo;#yqo|+t8 z%)jx<_@qbdV^!}wYi$f9;+$1pDRJNnVJ*!dz!nb?w5ee&-OI~d?|UZIUwgUD1x6gzbz!rKSVU@L$W1W?K6&PB}U*WuCg*z15kq>A$?Ddss58wtv=S0=}5JNzKRB_~l_`n3KziIg_%-2;p`dmyf%85@hU8;%eFquM|y zXugutKPAx((VWw0Maze!l9IVQsup(B(hQTv|r3|dobgvTy(M6fM z$ikPT_q-VSV|64JtU7@ZpPArbpz(bZd7tu7+j8-=k(`lMDixMO>=>5+fxC8p<-YnJ z1V+#A^yY9wGt{&u_h3;q2yOByL%_#zwl2FtUk}V-N*sX7G=o-}&d|s1$ey3C{x{ep za~3~;rDEkeOjvD?W^^3APwi73(G0p<7-p5opN&kcKcycUSN-L7njvH`3) zV0inFHj|0h{>1DR-8SlFzsufx|XXQYEmG;5-hSB+>)lu-_=S z9_qr1eP|gm02hX#7!y6~C!hmc&;npzyK<9Y6<8dOfFYfQFbYE;EFU8b#Q*Ws`^#5~ z?i96nsqUH=a9MBDgA!(1;|35K0@fvBh9A&D`7y8qJRgFrZDlUn*C}o%ksaS)SR7i* z?AMdriSK%|QlVv!2fd7{@11*cQ8+}wavK3m)(_l-{9`Rv$>hs9u#rHZdfS)RrE#Udy^R!zc z+43&ruUrJe2li0wtNMYoR+#If^r5^yZYVVr@G(q92QGM)`n4Tx$;*RNj2l_7u4r;^ zA7-1CMzyQ?%2R7|l)u*K(3T|%p$FiVlanu>}4DMNt`@dB24WXQEwr`T(C?qs2=D z>Z`x5J*k^HS#6{Iob^UG6dERR7eqj#zS=YV4?W!?T*Au{DU& z)aug_+Y0MJkFeb>rKnhJst_q*uz3YlNuo28f9^`DrSRh+r^}P4Sqwnz+~W2c9^vO# zT`JCIw$Th_5xFGys^FXw@yt!E)G{%5(;)^U1@y&eU=sercD0t6v9^`vifHPz-~*8Q zllg=fWge4w&OkS>cCi7O-K=zNCsU&@Yhk=!sV60If z^XeZj9mj)Q%}S6&4%};<$1s6f%B^F;W8^dlb$@6Yi4RSV2-6VDS=A?ZqCek$<@)!? zt-h*HYUrFjE9kpvc(4dtdo7o^VQ%vGY_2l(teQekFqKjAmeK96k;0 zG4d=JBNm@(SBbi5gm^HAM$y?dS!$_J?-T6JfMHTppppb6SVQMi6#@q*!&-z z4!#eE8ou-@=S^hjiW-J}->FH%^kt8LGuf7MAUc55Tw+)K@0e+vM< z`kC@vu~NBn%w|+0(|vHp`&6*=sE^~Ss8ak(LhxYHgLY@mp^~Bw)1MIM?-Cp2HHQ{b z%Ee9)zVi}N(9#q5T?q0LfrLC9$S|^2b;zTS`Man&yHHYrs6kRW>y;|CPEqA`T~Sb$ z@o8+;45Ix!OHFX^qW;evnz9Z^Bo~r^5n8AQuc*rRy#7PWFDbf9rLij zJ*%osed{tuAoBmXfWBoL^s;KJqDo1U`;FtcSKX#%Ly_Xu4=>g3=sPFD3sEXWf*s5? zzvjRMB-_2C=#d`5n7tkXN!*>X#Yy|9BCI+{00Af!z7OJ~wn0J4qvLfamP~Ss@#T3^ zlFFsWzfXotvwsk1S3ndRf(H`-tYI!vrb+1q#l#^CB`53f-tt0yt~ngSSy`8?!fJeU ztxY4_3L=vkm_x`QjQ?}oa_ z=-#TxTX!~~LWL_}oXSZBU*7eG+*~~-$ri(sV%tgGa2!^^VUL198qx#Z!@aVvo3N>7 znYA-jNtXoRMH~KU2)OP#qN5|74g(0>+&GwE5ez36Qca1~j*IwD+*l)}7^k_)!vw|s zFrAK9(mi9!>((`JP7R~k_Cc|~8O6^PU^h`Y+|;7I)oFyosMhJcO%oKOYj{x~*;CqX zl!IRyyQ@pE+#^V!4-k5eJoTT{8OOXmS6TIVGNmR-sKCh)DBff^ZTkdAijbrTX^*(G z?2SlI_Wi>%z0Tc4&LUh)=wf(rf%5=DLHAErivcSG@E!bsd2kThRJXCT46-%23JTAw zLz);YP~lIu@CU|`Q9%vR0%Q!3vg3!S3mY5tkeqOV!NSl4(*d%yh^&v)_#e?FbP#9OV1q~%t{m|T_z>U}03Fa1QY|CtHbw_X>p*77(2xq@!wffU2fT>_ zfHerkSLU_)>Q%pjnlt>i3JWV3h^=gS45V-pNbH842=CaC!?_$8)NC9(yUun6wH!(y zD$zN~ih_U{qmZO5YO9gH6~H2j7`MV1aRE-_R*+NWKI&j2j@AeNoi+<;xF95yt<^GD z7&zYj@h!&)m*0I$lmXgMMM+FFlJ^XmKubDDKM^XY_=ds;$h+_Yx2>9dlr^^xh6e4X z-kbNs&K`VPmOxLH(ljPQD*zQFfpq#y(%K`S?AtH?uHYpp*At1t?7u;TO>uvaju;o9 zl%JfLM;%3~E+1oeZ5n{x)1%opND{Q?x+63QdTuZQ!OtlK?(nS<3h(zxMBoq@^?JOI zHMVRxDve_#K@X>Uyv{^-Kit8c?=$HWQh{TH!ijA4yAN1`um%ae*so4XKSrb2G@3D@ zV)^AmOaVmoe)~fVdnf@3vzPleXZj1qVo*2&yUyG5`ZVCGuQ~)wdmJN=!YpqC$Ve2n+`!fOz`O=H!nOpKm0RqG5r$p48|?6WgfFY?E~H+gJ}Cvty|;7XA%` ztYIpO=x)|f9x}3&*D~&ebFd%|uc~lY5W|NCIFp_d=^!%(IMXoul3(1&^;8Z#JZuu0 zhF}$OdFnYn_%5`HwuH-ioB8`G+1WB>5R&>S)|7s39|6G zijz3~oEQ`l95K!ar>UjP!|sYrwl^hq!FV7cB{!IgbWnDO*5l%KSKy&$&p`fee3@wL z8-;u>g7*OGQxuC#8K&=h#cYY2U8lL{Go#b;xWTVv&w~ET;sGIG?Y}NqR}+ZR!imp# zgGiOT_^Mo zgRqDfLXw?ePSLW_uEJOV&j8@#1C(Q+whsZTnqd+{SSXdYJs13{mMvTq)>aR~?5@$v zz-`z^P=QK6S7o*4^!Z`0SwuL}S}1ny8RDM1XXd)t`BtO}Fsso9QdP?>FgcmwdGU5v z#+dCF1jF6n?&*AgxPzj~-CmZChVU|1Hv)6-`Rw80c5g&3f|gN)8YnLT=O=3LTrKsl zD!=E|sxlybi$h}oY(q$YrB`G03^cX}>aGaNA+U>u0FaTin*fet!S*at^<4(6biv+X zRr}dzD_F&AEp#hP_+~dVDd%dU7`&RcPC7$r7$Qm>T8?kGM^OjBQP;RS{X+QHs8G$M zm>|)BMnOu1VjKjuUVpTJwxl#7=7J<3(7(@QHa^HP5 z;|o_PpMbaGq9Wn$TBwaEU}{2r@+P0XJ(2t*9^CbVR;|(!n35*; zxAOyqb|k-yqYpo)J%n&$GW5Wg2>AK!%8HX%7rvpn>teoEbVr@mIKmtfe!8>r$54;m zI)#hLQOJGAJr_z_I@juQ+ip~^99By z0C1hcr(63sle6Fe7~ye%rTV(vKu$$O7(;&^g5PpNbZP;BlNmIN3IQGHO(Kg}fY=Oc z0vsxR3Ziq8dD^-243rYUo?am$sQ@?GHZW_8s$AIl#X9!Pgd-NrYU37A5tb?&82}B+ zWF6C-hX4tmaz}@uvB|;C3BWT!rU8VO&Y`wPxXTlpYVZLR@9{(1e%LVARl#e*?(+dl zy6nd!001mS$)>xe75Hy`+B(IkEdZsf4s{WUvE;k$ReM&IeAU|LDl6OJUn0vB@5HWUvuUQ0ffmm zu7pOnQBUjS5=?n6Uw@9S=wsBv1HM4Oru2;yJTPJIIHL5l1`LLS4sS*}dy7|*=f!wW z;=NFlJ+pXytcJttdgtSG6y)CJp|x{7h7Ar1@t&1+#i=_U+=7FD(!gGlWcye22>GGl z1|!mbVJ>?nlwQ!rPDkPa+!B`YwDW_J`_vz5k}>+z#3j&hSW#|bhWJmiHwdro%n}42 zgJV0ZPDq`0M#mK^|7hD5^p@5YObR{6>QzDea1e)Zb35S${?NN;2WyQ!2>d}1f_Ov}h0!$2rTEn{NDYQ^773sF=nu>ocI~3kB7tGfMB7Ie z-NbTrgBBukH)L@9faMh1ZtaF1=i6U^_cH^8Jb0hP5b;&2eZh4Ao}>T(3HKSNd$QE4 zxvL|JQljk|)};tVYeVD-VaKDrfAkYV7m=!N4V!!Tc98&-l<1#k))%|f-xLp6D`ryx zmoGF994a0ML(c`CHj}WC%1jgUC}Qrn_%5A92olf~UZ52Akw2V%e!z&JVK%M3#(rDR zMkF-hMz9bgrvDTrcBaMw>@|jIzljg`uGWPs`T&hMtpW25>cE&eTF3(BN3j3^9+9pO zAaMVHelPnYu#bVoao|1ujMaf)EXP4?l2yqX&yYErA`p2Dc;v}q0|Cv>y$*he&2tdE zsKMG_{lo9TE%{P7z0JjX_qVJJpPN!^3TuZbvV+%M?yYh|6J+u{;K<0N)7(ZwSXtFF z5XV4p7+wVR0i7);#AdH=ee<6Z5sU8o$U=v)&(Z5j@+#H1e>P*n1!V$Ufd+={0nUqv z&pX^|$$}H~xCKdr5tcY=-~^487zE0nPTiHru!Exf= zoOc1&2kin9fDsE^j8tfX1SXqtK>;y=v>on(S=seO`va1(spi`6SX}%O(GoOcUX68z z0tW<>9`e;~3CZ&S3^@hpGaN2W!Mnr=LHQHmt5aCRU^v`1PY912w?bd90LAX+p#Zv# Mk75Y!*vJ3?05VfKvj6}9 literal 0 HcmV?d00001 diff --git a/translated_images/zh-CN/unruly_data.0eedc7ced92d2d91.webp b/translated_images/zh-CN/unruly_data.0eedc7ced92d2d91.webp new file mode 100644 index 0000000000000000000000000000000000000000..877c8cb925852f8c58fb343017d5c42e972eb9bd GIT binary patch literal 104178 zcmaf)V|ZrUvbJN}HafO#+fF*RI(E`=(y?t@-LciNZM?CK_gj1Iwf4cc&pGqgysq(M zj!~m#)fi9Rr79ySd726eq9q}!tf|aRvh~ONOdV7XC@ly~KDZzYPLwzqX;EHl09)7{}?6~2WwZ(H0GTGw`WcrkPD+3BW3VCl2 z12dl7&K>)JJ;0_Xu4{$koN#E!x~pgt5=tC zz&f|OHOJ2)5*aJ?0ge=sTU|`%Nporb)KGag9aUt?0yTss^^mcD4g##k7e5w1Q4T>m z{c^{Xml(NlX`9#Y1ln<4ju2b`Xs)Sj+qHRuuL4j=3qelRGH03S;a4y0DBzh=9tYcpp$0lwN3h<}@U8}|*YJudg< zn9?jNKSZs;`K)p@3sKAZV(0%}Hg$9n9-Y!LK=)>_?ahDw^lL&j_NMw&j^D5gi{p9F zA_$zu*i$gH0vFt?b*AdWWV+_Ol5NBME9^%{elf@|3Zo(ZfjDb!s__1rpOd9&%`HFh zP77IkJ1M4`V= zA@>s*K|=2)WT#kMdz=|S8`R$SAS;8uvhMtEpZ;&3|J&g$Wckxy291X6!j6iF-QC5K&j$m?TY`yd1|6As!5nEV@Q5yP;ZJ zpWa+8!h8>e$>0*toe-gpPhy88j9#B7gsWz>M01@#bQK6)NfA@d-3*lX{ zy6hpYJSKNoa)6fq;LS9sT>o(>lL@6F5lA{@UJ79N&G@8)KM=cZQ*vvHW0r#=@jOj z?rme53Z(zfc))sH=PdJ{UUAKE_QN8JU4pZsNl~}M7Bpl6WMAv{nQ83tL6>P>C0f{~ z@aoOy({zE=YHj=|V-+QYaM3S!DSZeQfut1~h@IcZX2TzGX{(nrLAsJ>2}-Idz5_iw zRdIy8K+*^S^ABrn(A49^4?^nVCh z|9N}4PcV}@Tz?ZMD=@?z=-qN+2dpnFMijk_ItV{3w3fCTIoHm{f{qH_K^=m6>N?dI zCTEZ3F0fTShl5A0Xus#v_7YX)MORA@w|L%=Hpk1P)9}f=B0VyJyA`B@!eGil#Urg{ z1PaFrkj^P9F3^V6G`E$|#Xf3LGaQ*4YiB5K>%X{_z*O|$ndom!g?AKiadtAf`F-IC zgbq#7`1m{8{o7C&BNPuV>9heocVQX(rf{JkAK)Q1NFX$N8(x)k(nNz4aR$oHpT8ZHi@8z9+gB-O+;tKWHF7SVNT2^rLK$ zvB3J~)%!#2T2oPGO%NmYQrPriD!F-)Zm311Y;R?{qVU{fYTXa|T_-iIhddOY*9A?+ z`)yVjl>5kQHW0;5-7hu1nBu=g?0>h0VWDJ^md?HkZKq1PHl#JzG`D`dIZtrCW%R3t zVKImkmZ?t8saIi)gNT*zY=i^64cHViVYsr0#la9*KqG*s^Q)tpR{AXidZqU<78mEz zNJ=}D=$DH&^aJ9eid&?af%U}o6e7f$a4($dx(dnLAT7c!Qu z=w{HimA8qy#Q1$gkL{iAll4YYby5ZM8n{Tg!HNEFiSVDZHiJDh5lBgQaZ*QRnjEt| zk-*v`Sp9z4dY@WUR@I_WNb-`?$oRV`k z=?U)m%k@na0XxDOW0-5e3{Ls$p``|v3WNHWGb9~L7sTi|yg!0cl9&oAyw0X`lfNaw zbDYWLkFxxVFq{0(w64#2wYKozd0_j8f>oMjr>8gBAimA=i(`EU8ITY`i_CD}!x5|V@2qj-C#pwP zE1vPUh_|v=6J_jpF6q<9F-c4<4W-#bt!YtBY)13py=<$ve>H$ySMINR&7M2|Z14z* ze2PAVdd!+l+G)2f|5;1&=HEzM_A(W?PD~Cu+7Q@cHjGep#OGCs)QIGd=KeW=`M;VT z@GF)mYsh(EL@OtGQBR~h`qguRXmO;0^{2}6Dda+Bp~lA|BJbt;tWpML%`aSatlt;$ zqrCKqRtcpcxImwRqB`!SGTHazum@Sn56UX2>;j!W*YfC$PJ>=h0jEc+y0RyS4+*mD z>Q%G5yhC;}**W6Xg>6R=Y{j;F3uHrB+8*c&5k4A*$VQs72T%C@xcVK6*DIhg_1qcj zEBqdCoa=P)*~nQCYWRciNnisFoy@$1!mJB(#a6V(NGS6w`yFE=`t}Xyf4t=KVLee1c17Ri;Oki>Y0n{Y-eUAt+yLcB=Bn zeQ0~c(d`D}VH|)H+VWqMN6kL*L>aj5hKlznD{@E8&_5i9PWR=zuld?~#+S6gQtgOZRK z4_y?4T46!ZKl(q`la~R@+kGjx-fOd9c366H6F^QtQ=d+f#+CalzN;QpFJk zM^OBm98gHWRgiTe+>~U$s!GC?W#oEY$DRp_@w%QiG+pf=o#|=x%ZSXa>?L53sI+ozIvAW z9<&taeC?cZnk>y~<`3;BC+EM<{;upz%P|4Wrjw4$NAEix`-cv&>S{LMwY4@+$t{?7 zeozm1m?EIkL0muLsLufN_O zV@3Gj3&AVNyM6fNy#-sY{R9enf}%XlggAPgMP-b+IX!>l9;s_lu(bd7b2B2?M3NlS z_f4x_*s2`p11W6p6dZKIx%!~#XtCUpy|<8o_f2EUy~d5Uo0_eA8912+RBvKSFGFRa z#)L242%=snbU~=VGAX>i=)4ZyJVwYiW;r_{;5$kvK2$>d&&LBD72m$F=|J+(#jwaT zar;%dPH!v#c{B)aV8#WaQx@E05(Xs*YAevxZbA<@fAKQw% zp*b>m_7rxf9C#kI*+u_HKKwGi%q^u>-}k;U#c8rz2hA>k^n)v3blXm)qzYKz)end| z6G1~Q*^Sq)H?+9^^ZZT_u&NTA0}!)o7K0`8mW#{NxMdT(Ub}=Niiv-bD-=#Z$DWK) zj{4c}LqhFVM}(z`ZCuWnuU2jfO_UyW6wvzbAOy^Wm7;k zaZLYPDtt-zX#v?=CibHB&Z|7NC#8nEwPnXKf`Z#Z0cXc2?Z~Ev7ul|lB}R$)?zJO( z(A$`&Jm0fza?uzoE$F#y*y> zc(SgR%LgtrUd2_H&LOt=_yby#mtM0hWLe?HRDz^3VtHTz3f-GYR(g%w^pfD470jLg zx-%dSoChST8PH8vE*Y+%js0>lHsYmfcMGM9Nixxe`(nI(+526- zaPm&we3Kv;cF8q?x!%2FhV>Ror+N;YU|_o#jyQ~JXYWmKSVrxg_@ch5Tt&JAl}f6&PbG`a!&Ef89aWz9wxZqD-eiQI^(TqZ3s=PW z+4jGkDh(7jLdql~bTo`s)*gNAvQA&!)*J`913f$S0$AuW&IZ#r4*-p*gd~u&S<_b% z7sZ*%3H=N;56qLnKS)E29|ZjE=13c}iJOw!r^%b2kmk!wI!Kkre!jn1&i+(0yuQ zxO1{N*dCw}6-tuJ!!s{noVj0|Z*c?)px{OCwFo$}|6O41SAZcUGPt*@#Ci79%F+;ET)zhEYbeH{wQI+l`gljj8uu*-Hw#vbrg~ zq*xS#5$A$(I#gCK9alqu1xB)3;#sxY#p2>jUmu6|0E^E6uzIJqxDOixqT#22JrlFb z7ulM4YO#aKm%?vj25aJx-7m@~PusszQQr3lt~+x4Rgvy=#%7P?zRkfEQkt26V0#Dd zyc@Zo{Z|=?Vve6OF}!7G9vZ8^F&OQ1?_ybsXeBR$Ve{_1z~dJFpt17jqFBq>_WV4F zJY(*!V>NZf6YqBjfZP`!j_6fUwp@Wrm{x;I4$b-}g6_-LMc@)g0!1M9Bzj%lNt*H*LvT?}KTK`$ zk?g#=Ik>G+6uA9z7<^vO5@yn_@=*U!^gt9|U7}#V@2#s3ZGA-{KHa;Oac7SJsF1U= zS7A6Cw!l{C^II3BWsi%K|4RpAeJJ{%1z$bQoA8)+MI`uB{gP$pzRZzHrlAOA6F75YS zupV!}{UX1LSH1tI1ueDdsfn{Ij=^8w7kQQiPWkFyH`@JGJF-gj$P7qs=VZNw>vsvB zVq=M~X`h=R*Jpj^P#+x{N$zF#q#Oen2B3`G@MJZ9c;pdm5BBW^s;3>3=vfd_i^U7e z33B^ZlKjA;XUQl?@cr*QP)^+iY_oZ7JOe#eimOx*gSjW>E)h$v78A~!){OvVz+xt?k zE2|TDnXryE=Hm%q%Qd8Le?;EZKV;1OyI5kWBPeE?XxHSEI@dlf#L0fCNa8yVCkh*u z2KdYDC2LE9)st32^OgdU=QZnM=4(d-yMFzXRbgF@p|=Hj1DPk2mJSLJt1>;Il{eFj z_Qr`l@iqS~Y1q@W)MOfWQI=M4uMCF<@EDT1)mbKvIEZ2%2)3~;VY8@RPR522+c8;H zuNr-Aqm$L1VGG)E(I!je9#`~T=avlMo&dG-^#Vy2RUC4nxC49gEf@w&$fmd75-Gt#-ob!x!Rg^j5PT7A9?bs zwTJjZeoL$lNqFZg2=P}=dKEjMt{acEu4#tOI}}`nzxHeLwqSVk>B=ByT`#p4>D`Qv zX(B%uCF)2o{3-Q%?rrL|(w%E*CD^tvLxxlEI{>;rK3xjUF!lJ~9=?uhLP&uo;Es~d z6dr73Ys~bbqOgYx36Q$noPw)>u?20i5U^`{EVp!LUSWeq3q@J1M$%*FFGs4bw;9E) zoU+bX4Y=Fh@fRjS_*BIWu0fR6^L6CRs86EIiv$)hMfCY^hb`J;y4}dEgEmt8OY>Y? zEkA1Nz%Wi>QY{C+JZV?|PQ-GsCQ8w28pfTxh$Q8nQ`A5$FNX}S!i5dsg}h1m^P(kR z!^R-FAB}61lUQcb`yL&#J-0A^&9j09auP9)q};&5FQ?Z0QgvHw{` zUCh%wLM3uQbJg!*5k9k`UqCnag{u2f`Dq$rEd*amPVfT%Yg!nJr5=Z&U zjB!xd9C~2p>=1-po-mZK3oe(%F_!Js_J-JI}#-sT$% zb1RSKHyV7}XCUH-?ULX6SD<4!MBz>d%!}~NFW@cTH~#acPcuS?^6^_~Wz= zeB(p<{G$|*W?=~o_zC=kHj{&dt>$v%^Ckv+AkKb#^UQSQLzea^jdFBvXD`|vQ-L1m z;7Vu8M6va-l=}wF3r>632{Z|%;sBN1u;tZ7VeG>4AV|F+z)uM|8Erz-U;nGDFf8Vi zrjjccH1xLI2w_(rq#JSkRX%y5}`-%RO zXV^A-wF3G&@ujhANz+dOm>Cx)nM47*fs|0D-_4Uv+R8Ize)B&;P|;dR)M;R8Ub2z7 zIKTVbqYpUPQq++)XQakWtynR&j3myKUn`A1_Pm7^&g8CKJTBrHuQa^3V}9`_Hqfqf zg1B#ws;g)!rMZdNLU^99^PImjpSDNgK0zu0A(A@n>J{%)090@{p(fJ)p0&J`F>B5@ zi0k}1u%nmlKj5#HS#M-FK9&;W@|U2$VB%^yQ0pPC<`eG&0sbL!zKk_q^ev}@DI*I7 z49R7&q`v^|G7rv4=$%4lnIff>zm|F_oIJxWG)(i0lc6rq#l3nzjPlL5r+U1*8~b*_j9_NC zyu=v$vchnm%STRZP#=u)nVI)4m`lVA^!0fSbg`})hiZ-S+X7a2x!j~5_o2o4JylDK zD&E+R?neGhHw7;uC3wyS7P(0Kzz>FKoGJ}){P3GfmZ4ITk|~N#iyZM5k(AJ%8-rIVw4-d*({vi;ZZ>$_$;2R`*!p@r0gOV7;stg9&ln(DZz`4z$h2wLm@H zROj2;Xj1z^O46dY<%aOWIh%v=OvwFJL?Wg+YZ#$AHyoxUW7Gd2Z7?fHwYMY9QW4Qu);2nWU2=Sjo|hHyK8Ir&@bQoa#9tFj z%tbH^(&0JYdY*q`zS;HhkaeVfo(*Mf&XP+$)Z6dEGjiW3yX742uF6mN#az2*_&!jG zy^8&z8^Rzj>~osL!rOwHEw?9_O9jaYLbaNznIq|wW_wlQe72oF%%C)SG9r!j+s1L} zj-#lje1?13tEtv8)(pd+LZ#2kZdrlUSGo*|ne|hb zuLi3@2Icu?j>G^5Xz*gUPZKw#ukj)$%L-n*O;M>D)e-tD*wycj8ZMuB!W$^$i0}8i zwg#mq@}>b-d2QZ`F*ao^I2`&Q>XJyvdEVdSc7WEaK(laG=%4N{X(RC@va zZa1&t_jGH$wBvS%l=VDP4CneM@JB#<1tNfh?+nSFsYYArphoVoAGgECSo)!gc00Q| z*~Gbj;nV~G3B+{LjIx-GBu6-lOxAhJA3uxMN~^lh@jCxJhX^wu=3mN5zFo$?MO<+T zuP!t*&9tI>SEB3Zcrz)lZnT-|rh^mixz;F00%SC6s?f_$mLad|JNO=~ zmq%PZ8ti+r&866#;yZQ_f2s^j{AR3yz{d!P25q-N+q}tLI7U7_g-x{E%W|9mwvRG; zTiP&BR4N>M9I5s^*9(4SvU5fS4OdlAAyA~K2bHO(->5oP?cgo1i3 z<=uBAhoI0)BW$;FI-LvsD`)V#Uvtk#D>d+8&TjA1Jp=#P4a!NBCm^s2<-C_X!-8@Q zS<(=0%BeOHS0>-%m)=kNjGd}u;!iz%oExuW?SxL9hL`t8#^3M985fI!sG68)mQ(CN zpFJP0>Z~)~RF|N#RsXISI|l*n$Z?hMa%w2W5~x&`Hq4ZF14!YZmJcN5lt|1-30YnV zRzxt#xeij+5R6V-|31a=%s=j;HO@2d`;=mngpg_H;Fz*l@A4beAS^sX36#}35;)Ts zL*;}9TU>Iv{y(h4fPOSL0p+psNf}EIJ9T8wyk-z!QNoX)`$ZILl}jwO6Xff=zXnkt zG?0A0hAM9?bpKP_L)XWn(E-`!m(D=TpF;j4LIWIlJx(j+n6PTOt!JU#m9s@X9<0^` zXY>ePiWN$Lz&cql%VhJsv+9h8U9zq#8~*TQ%)DIzr^EA=0~HQgHy$Z0b(640*!q~L+2Jj znSkLFVxSAP9#$t)5YLWHR3s;|1ag87LMLRQipMG~t)T8xxj%nL&E!w$+bm@a)4=f} z&KokR(kTT2qvBc~S8SOAokZbuby?b7Q`$gtYwE zHy@>w4Qgr>3IN|KgyLn*1m>5(zG-XD3}H=+y4>pNUAqqx88)+j7F)^(E2svnXho*e zhkSbRNPIpp!Umm;$eXALd-|r=q-<+xFmXW}ZA3H|Y;FZuhU_bJ+h z#=Pu^nijr}t&-n)hEh=WC|))L)pOC!bB-9yS1*evoxztsY^Wg0IEAj3oHyMVmvX!w zSwl*%d@Bm90^N6WyKE-D#E+I45C)5Go)E*on4`iT-Cw~3go&f#gOEv7K-fet5XciGZI^J?75(1Bepi=M5Z)9LKV5?E{< z^f#zc-dOakZM^p^YBfk7)94H%#nAeTK(4=451l*EDM4}>18r2VJ+4%enp=#Y;Erv1 zwE_5CvD0z`LHV%$#JnaZ&VjzS!^ptQ;>y@Rq|UjF(e_y=i*;F5f+hko5NJ=+kkupL zz6^YWKR(Z~-gNX0?f%ScBtUaNVE2Rlh9imAz2l=sSfyN}&DF%*nt{XJr_ZR)93i7F znN>{$uFqn}{RDpCgVI}uY}@C-WS=%&fs|Yk988Dfy;Wn2o;*%n$jPD$3qv{bsN$g*L6jUKsi*WN7R#09sV@v!lgc#N(~H}K{rf+XD?=WHETONydURd_A`Am zUbloDYTo&6AN(-;FI_CT*ELO~RA~NP%y-r>_ZRC-Uq1{DE*;*e?^z$$ahlrVBCFp_HOQk%4bLr}Q2Ngd8I@C9U+X9qu=3%BSHCk6SiD5of7@rv|L>Yt^gFVehu2DX8KOa(S;>~Se} zZ$?sjSg@j-ik$kz#poEz2_yEOK{McwRy>CFQIotWlPS;t_;AH21!M-w@+#*v;ScCM9&8aSsO>g_O3^%OVAa*DROdV4^F(g{lvR_9W*VI=l6t7P0Bys@yDLLWUBW+QTH&T41r9t9g$GvGwNo}-W8;Y?ywKb4> zTvl}#$vX^bb({Pn)Kh!Ado~KCZ&|fI^iFZn;!G!pm-S*V@+2}Z{WWhM&s&a@b z#0&Q?jAp8%8f$!AWEVt;>Uw_w5*O0LzB4;lE$TUcDg`?Zzvkl*EPK*bUo;XC8Sg?W z6CdAJe~(4l7=-rLSxVrqfL8i#jk*6RIBTJ+lxh<`QRYL!Qr$)Ec)OED=~*y#0G*aQ zqLQ22ovdWZw|4BffY^It6Q{1?^;w3uhTW0n;0gic^@AP5^LBFYE65%BbpdfP->^kz zBT06+?yCFKeM^EAd)^zPWL3=Pp5e$zA3qGqwBF_hX5uSMpi_~pAD4j9P0adGaxo3U zhqK*sn32EqI=DSmh=9zN)>4u+-Qdh|wCU5yZVB7~p`cKX$&|G!t$s0iw!g)1N)D_- z3RO#JVxG|bPPG^A0#QhWUL@pOX^#ik56>$^^Z+|d#h5$0U+zi>P{$wD3G$^l-!f11 zQ-ju{+^^njDt|WxnZm;pBotu!;EMv*gY{OIRiHP>eLR zwUKI7ijqBrGb~Q-7YI=(z4a*ZY+>I_yzN#}bPBD-1;dUF&p`&mJ~^HXy|KEmw(_+{ z`z{`1>mcMso_9Ojcg6oMbr1{A_TO{?Li|PXJ+h-Nb;99@9PPl_tf1&W zRDV(eS}lBvZ_zZD8-GRyD&Ph>RF*YdQdg5MQ#pNHEf!yv7hpb^V<}0wI$0Lt>lbI7 z)-)+_m`}+4`KJfr&f%1QKh~>vWu@K4m@mj#Lp49n3Ej94U6(J!-z3x%awOK8X9!&08JL zNNX1yJd6#{yxGSJws_fc`;*sV40);|J?w9K?C83Is!)YFqDjlY6~G9N{8`9#7cKzS&3M=rJBMyH&B7(KQ`R*Ryae~8%k$N?+^LmtH zFDv5B>#n18-IFm1P)=Ev+C-P2+!ZMJX~99KBYHikK*KBZ{gG`n*#6bFXwJLzjJKucIphCbXQISCc$DOfhfB9C5o|+mQq{EtVxMJxJhPl=!X!!Qk!{x=b z>+BaIgvM8QM$#`UTBh1{WMR3S!Hod$VI}DS+-eU3e|@owfebbqo)j<{Ro#x#I}F(4 zn=m*=G}(gf9Ud#w3#GIpB=S-jB4$4;ucU7b9`zf&&!SE&37)I7nUnKW0pE$9WGW$L zX#(;-*fcvTEObvHM=*$T#S}hi*aD;usMgA zF@!Wr+2I1BkRy)U^-7uVzZH^!=0VdMz2-k}Nn0JU*~C*9DEd*=>~Q$UiWp->e?j9g zjy6M|VudU=?d7jWoNNPsk#D_teM0TK=RuJcSev_7%9HlcS!C=Maio^&Si4xfD%NFQ z3*2JbzE_FQk3W<7NIqA2fEHC`a%U6!Sw2;rx84gKnpA+<=Z#xUapCE zm#EJ=_liTypK^j8iHQh!HTj+nc8>I#wp`V~q8=upq0+a7L-k$QsoKGK~R6rPh}OGS)X;5NEkUht^_g2Hbc+7id%xA zLib9vINrV^Qgyw$cfjb1Ab$y&&@X+W}lI9oE7j_8s4>-Ve==%J=*pV zyk3t{4}w_}iICtD@?GQ&gy!2ROZy)xPk7ud(0FIfsnLG98HY2HUAnSo4~df)qpiFw zLF>oe80y{)KRo1I*;-Rl*^{*TlXEdWv>TG@km1*pk5s^zWDATP;O<}V8;s_zpt@H# z9ami^#6zSQ)oj%l9p7A#Sez2ZnvH+dI=@Tp6~R$O%Io(P$odYf75aulI3IW_#+20( zR(e7l|H|L7&ACkSLTsJuJtSMWd-xNr?pQnrn|ny$t<{=t|MB zt%8Kq#DnhsV{4rL#XXzD*s$cknHb4j!aP3_TNmFEl{^}mC&aTa94cQjpv9|CO0tQ-`zg}0jl)!0HM?C_Tg&_^#uSZvHUpxZ~8ac zo7IiBUvdNgWJmrT;P{_gBUF5>P6KE>Q(Q1F@%!aHjuz za*-z-s3c2R2AY;2yy&-COgkFlZbv0M56Aql#gzLG9_9aU+W3Rd`J3MQZkOOP-Vqz{ zU2FW*0f)}mygnROCjyRWd8hEE{mbPo9s#%0UMtEjmMggCtV43la{$S_w7L(rZ#s1ec6^;EM-X zR5IB4v*=03yKrP3kE%y-*$qMPzZ1B6!|F4LKJ5j~7`D|#hlT|4g>28qKGByV6OBwv zUB*Huww?yvzvI0_d5|qNC$M)U^tlqLFArJ2PFy%z!PnX6|FAFjU~J|}cc-|rr_iRMM{XjuZ76|z$M6VZc!?Y)-1vj$RQqVO|JY5L9o}?+DZCmi zU%6I&k8)Iz$C=5aR`VTWi4EzpNOY9Ey^MJNDG=&DQ$JhsxrE#;65lN#i@3#4uiFb z&K;-C0Fjd>0PtwqPqGehd$}jZ>4(1g9e_F@pyn3)Ok(l}3+Oi(*446jE&-e4s$h+ic|m7dHY*I69xr*4~9@ z2lR7dj03;Rh8G2U@}Suduhv4fJNd-t)`1oc7+KTJu<~Cr-Jl1=8@Lf2rm8TbMj^g> zx4G6}YUc~~zVqi?Rfu8$I(5|HJpB;LEa#&J}*x78q0N9~zfNMkBsuME>Im+5%4 z=<-gx#|4~65>z##6iQzOdk)rG)U*hv;R4LhXC{Zl8`>+A5;(#`OzuYT6^NMGoDSXm z)o&c=n?Qe63Oa{b|IDs9s88hpmmDuD^;qcEm4=?ui9lK2B~F$h@mQ1_uc?P^rSQF9XXij`R;7IjerRGUlK*8m-1AVOI9hp>v)0q+RS=p)ev)k0rjE*LEbjRHo; zj(#-BR-F8U;DV_0qAtL5e0^(zLH8ks>1qXy>N*aid}HNfJ2T8NI<&oe!gE(W$13fk za*8I!`b6U=SLLv3TIWoJy3r9Xeev$gmy$r*xSX%6?~o6mF{z0ayl&io*^%%UZo@5S z!@EbLnknLf95@Z!H@Dti?gIvk(wPJzk9Mb1myk+2`0km#1{#Lw=&%NsaQBUD<9w7t z{8Z@8C@Y;lVx%_zAP;d96Xw`O^;861xSxc{pqu!|H;$I%W2p}X}D7$oCobU8wn z(6-pn@#b56mxm|H`QR-#60it-&zT~$?727ji zc<)u%-;DK2;vNt?a_CDA90F40}NR#g@S)VPEj6Nmd}<9 zZNP?V?=vZ?b*3X;Ss;*CWcrGfJ;u`{j+M52BE-oQb6@GFX8Mg7ZdBi9I+U1hkks?v z{@eP&JjcPGP-GFk+b76w;hpeM>qJ+Q0$!)Fjfm(}VuZ=Gc(&+t{$qQW(V0vtD(uaS zOwpMv>oRea0#Z2osNkXfN4M1=VBIL;LSwVP5CfvSe?~g_16C<|HaqlNXj*lcoO@*< z-ukth^LY=Wx*qbH0QFlI?y7_x%GcHobUF4NW%p>#=af-^fx5o}jL(}sp4G~P86RxA zUQK3^7KSF9{dmq|wqQUDGKQ)v&UpEI25I>uBM3M&EtMyPn>b|r-XU`QeDeynGH^fp zx!cN~y-c8HLu_Qt87XvXr7b=UEDy^J(JU}q^~-{XZdT0(F&ha!qYeX*XK3%HN9%`- zWrJdIfy=@Tv5N6%+GSJdb}yka#-i;-MzO)^m>Wc#g_V-D07slDbt^SzUoHypuJgOO z&Ue1Awp?{+4b-hn^8>^)DTDEwid`XxRct4TZbYTUn(+`e=I*_jx@VIjwDaeoeHVS+ z3s5_c8_O&XB}6mSwy1{miJ(6MX`B2Lx7mjHm5X-*6}(P@Gh>KKGB8xWN}Lr~tV1W& zKqgUp85<)W@0$hv4*chq!L>|abB+`F)>|bl{|a5xeyxMr!&y=^8x~%W82@6_Y-RsF z{Q1gjVlv4Xfg+d4_ZL|xGJHZEh;+n)G1`)_RMS1z5?Qv9ku)?@VPzk{yPCaaaW!t& zo^3gaE$*8hx`UlYh272O&w*F(Y`}f#r0T`|LVT_tn9g`>+R`#5O#TTvmmF%!v`+jW zO^-eDYyKAF{FSa?zS`D}+^L}A>?s9hSD!qn!wF9Fj~wRUPY3W3{EUlDKQozQJs z^RGCf!fnHOm=NN!no7^C1vrL05`=`P&*f?p!!>MwWPQs�o$Z9}P($(xjF>k-e>z z{{4cM*QlswsA%u?S2~c`d5w}=X~@XPUHBq!rs&zKug+?2g0~6^KT0g(rX2JX&+M#y ziiJ$J7D$f~n20AG5TJF|T9^O+8M#!2;&2I`2FD`+Bf=tS<@##GI@c9+tXtvBA#b$r zQq6d>zHUB>TA@jC3HjpYq1?$B^c{ z%dnR7S5kp1)swl!Qj{8xE+84#?L303NuLC4m^U$5HdZo3tkuhukvWhH_SrE?Jxx~Q!!c#& z%OpARj?%Yie@k-TOg-M`AB6UiWyrW^Lul2rmM=9;N$jr*slFEV-Bz)W!U|JBNO>{1 z&pP-wBMU;gNkKKgknF$Hw!z8r8eA@nh6GaPrN!=^P38(wmLGTX3?%J;Zs_(;iYvx$N-^b#0Nw% z^gZH?t^SN-j;KJAK^oS9MhXag(jtotTlisT(%U!i%Bj%sQqz}5&l<#o?zbc;&QynH z@Ab*MVS*mBGW9j;@f{*=aUwrW0>MN2-Aq>Vue`hl87%wzwc6{fR`;992&7M;ZJOgD z97Sy{)g5l|>IoI>ixt_2r-h%%+`PWgjyF)!m&bPPO2vcST4F};r8E!kC;Kry6-pCy zNL<52NqWL+^TmC-Y}h5O2(c_{Ola1!pr6^s(+ll0q8V@l}$`ZgZZD?c8)0{MMx5`hAGMFU7k1$I^97M7$~Vk`pd zx~UsqJ~9Ow?ZPJ?$~g|}*oRU~!O{aN1J7RaJs&!LLxLw+^M>|hzN~~ zI(wtk1A>3K2@a_LcLY!Lb|^aR5J(yB-zkoDDLErXs}yKGL3N!csB0#?aGOKF9g2$r z6{pVC{n&8t$k=1)qEKDc2HPr^$Ht?J1_p~Wz;w|lp6Vz&&m+wV-Xr_kPnL>n5sBZnzAEi{Az7PqG=%fj&EXDqen)waW5`z)|ek z=O^<(3+c3MxE{BD9{IUT=6_!^HkO6mT|uOGT-NsO<6$JSUM8u)P0CBzaWBB#bmzyZ z5P8+6uK!(}yHyfY&~G1es$Mr+K8IeC0 zp4F`;(iBPH?(F{oYCx60TRVL>|2a`vIfU(z9wef*@>6&1^-qT}*!p`X>;tUuG`}h6 zdNzThe0Ni9pR5`NC(RbyvdQ59R4U(i9mmC)kisH6+; zsip)K>H$?7Og!=!%~%KU)vSD2_$T08%DtS?wV`JVjZS=E3NP!NKQAZMmR7f$f&haG zOBWe3f%D5(oAzvkmJ?DbQo@nbM4Yj5f$ZaEH2f`t)V{btmU;QgAo7R>s6N4#4NQt# zUG9IaQ7~L#KmY&$00000(}Gry#GB3Fo}Tl-PxrIsBKbTAL&x?NcYZ2c*jBol z^U)C3Nf(0T5c2GuLklw>D;_Jz(|Uak<{>(>vSOQGF-R3LAjT%2=+q6I$+r^x?JbV= znnF;Ky(k}=EUKMJNuIv@JO!kvXRS;9NBQo)zA1CERoC4<>7l(rA@Uy)e^)R`koVX3 zP1D9tJ7SCMX!1sSR?xgPxP&%htuI=?o-_LP2(`b>mCWJH5Un?tAnU_ios@%g##+6m zC~^2a-Z1?$k*hY-ee*(CvU(XvS|>d#+czdo;-p+twfV7kVWc-*nZUS(EtWu4G0bI{ zoP&xwCwcu>Ifx_8KC;R;MVjBz!yO`4V*_r@NdMp;?(cAu!_SA(w)yCrHWnL22|l_Q zh5akOBC87Man=zrTNGyC7*MP%D!r{mifS%xQ*YRxqJci5Br(l!ZV!RB&Lu;DH_0^8*-?K>{#Vh!c zGlFVw5zWq!kc<*WExLitw+#i`LVQI`iR>84*L+qan??ApV4KHw;}iGWY1xqA?L*Ej zPibOsIe$>pi+Dmaef^3D0^$fM?tSZ)L4ZGdTBE@4y-gm7NBhhHepv@pEQAi3U-}@= z(m%`bmULSvdU&F@N;I9oHQD^wD1C*Rtoil9=5=Y%*4QL@Z_%nO zt$4j>7}F^NlI)TOB8C#R;ojX1c@_m?5R+F$s)d&>Y4h{m1U%Xj+vl+~UFNK6EE?Lv`p8)rb19RI z*9y++)h5?jG}zq^KxY%2q3nOz7~wi*)1S^wS&n|QsEWgk$@(0R45XSC!2kdN00000 z6riheOtj{>tInH%;U?uSt=}Yr6LZJF8ua`~N*^Y{(_6xbh3E`*+*Es-L=yB-t0xPvSX7;~V z&*R^EF>s>0t!9%ciR6o+|8QII7Bk2; zTugDBaZa`vk5tY?H>!BLRXzL#`*oYm&fG_6(+OBEczqN2Kvjn{w3LV= zF6RRn&^IasvyYM>Ifr&efZaJq3(b&py zkgDlO0bIp^KRh?3dqMAY82G*;aXADEE)FG@15x9=HXlDh^f5_G2~oxD=n(Z&U~PGA z2fm(;k#Z^O95NZ9M%(}kmCutJ)$*x*Qt2gUs708rp9b0n?VAHWp1w(#>9#< zP?-ab)%b(FPg|?T&rbW=?ZwCpZ;}r0OS- zHI0JXUE4+>Jyva3Ab$5&&3mWa%u=you$!#20*Hl*({hhp#bH6zxZ}yo%{S zl4`>8!C_@T5%5OET8Y%Z6A*1wEH5limF3^pa0wCTTe^0(>^%XQbt#{XVR~j`H%pc6 zc#2d*INg9 zdV9v0?D69k)55Q=H!h|c);_KUK_ii6`o272N{oA^WuWuAuK%rbR!dwP?ZOCS(e>Uy z{0a|Tw__ZQobu9pClLVl)y`;IuFR?*y5p`#dIsh+djUOnOko$hn$zurQNfQnY>3v*IQ(`wi*ptB zTd*B_9q1wxCP1l;0)lO(>x@TPRcXj6`b^Of{i=?&>P>8k z@-O0Da-Oxk{9}b;Ba2ce0XzU^vnom3rzBkt^6)83w#O}*-y&L)&rweUIb%7#zx;u6 z7(C|A$i4TP;Sy7bH8{)l$sc-gtegWffq}H3QS8Py6hJ03=g@t7WF^E|deY(gqImJO zbM#R|QI$_jK~Un)wzd4bHK*_MaJT>f0000005;*1S)TdO+E};+6EJ}@b`VT>iKgQ0 zW0^M2Q&blC$g{Znz4z){quJ*|KwWqouZ@jZzm^Mv{w_jvso2f~83fJAmq~5`53uQs zH^dH6;HzKo6-E^}o}vF0W3Nx9%9=h<;hyz<#2WcSrmptR&2_x>I~Za1*WHeg-;Rnh z*L@)3&xe2H*l=oV48%6`<%|2#XS~;{RmgVjhXcn=VmyhM!M zVi+k%C_WI!Fq7dXK4o+7yhyqW&T1h2WITD?eBDe<5$;CG7$;_fE|3W-z!YzQHkrv+1pw%?=H%AnO z_<-Sr|0qt>X@~ScKI&*d@qf1~e%0Q4_^eDGgw_vyV~*>r^pXz=8x`=eA4PoDX!!vN z6YQU>$11P&dA#>yKP79EKhkquIUi)mm%YI=Gm}HqVzQL~QT>nW~UfvRvul(aIhsq4Y!lB>bofDhcsP{iJ!fvNa!z||) zwi0L?drZ6dNCQi3hs6@9T&NC#PV}!XwUeXqaK+qHX+~o3u>luZwmKGH4=&g%$chB* z4+RjrY`0Z!?A5pVkD$bn$^$jU?l%POPJHwjnuGy|akS%A$lUi!0@E{n6Y$qP3(Gl{ zonNDp4(PfXnB&!u#^_mnLb8qp_$$riKm+`Dv{ZNi00000000Di6In^;5}#F(Y-6Qe zh1O#gIHIl^SQa&^D^(BSha$V{DCPmU2ovZF+n7rE1~hbzMDDS7ihpApo)wTD_!icu zCO-H$yvsU=@R69GoQbM9ElvEr2la^xtMANx%iC_L5l4NyJpxX6?sET3GuNGk5%#t4 zi1=gq^^jLHb8EgjzeE*~)eypaV=av6~|N8%It3GnRKV zrkZ3XX%4080Ez(UeRC1Uu|a8iJYlXkWq~E0RfCppP;{I#DU`(bRmL@3JU&Q1a_}Lp z4?q{^r_Z0oalK`JD`CKe$>qX%U#Z6bmo`kD(8r&^K%?9{rJ`HBnV12n^_{g>9hXKR z5b@1}UE0BGd93X3Qf<9wV%je0|B7tiu0N=E*KNH4fCc1Lv3)vC%~i@k@K;)>S@D2t zEq*P)P&dO{fE<^%HpmrH%ioD65*xaWHNxS!H?UHPA2TK_6&!O3j)T3OIZub=RQudE zVQs$pxW`#q>$rNZSAr=NifepWt`t}Z{Pz0g0J*S-aPoE3LknRR6I0HB1HGm18RkP_ zpwt6BCys8~IjHsJjN(P!Sa28q&QR?P*)dz?y?Bk>WG{tnqXX9~ElAy^TFmqTl|KPj zbxEODW|gc?T7Wib+$Om!>Q)V9pPr}lWn^|B_VEV-G zE}GpPm3N_O!6<6r{67+zCMN)6!L)M_pZSIWQ_5XoWhV-{^@Dvz_zWntMphFt(lmjO zszpv)X~gnT4c}%pQE1s%5E2yI$fjNjic5+f*|~L9T1)>*ZXKjsi9Hpt>JQNRKI%*& zXs5==X{w1VB5j_IRW>p zV@a;(Z6!#udv+&`NR7W=u!o@YV*6eK=-M1@%>5<0eNAl{W1zcuHn|0h1*gV zAVDHdJl@4ggl+;am({1xYWafr{zN_nIvbVx^;70p5ks3~swlf8-S!znHPJ*lI+ZA|N(@WYYl;68X1`Ltpc>Opz5@RSmD)*FXd6 z3itp;w;cBwcGCh^Bd+(OdvdQy2M)hMmjL{zEAR?EV?G{!1JE=y;zdpI| zLvd#7pNa#_=w4X=!l{EHvuL7&g|Zi9+Ybg=7+(x>OW)Psrw0i zYfdgu^QJB1FWNJEqs51lf{K^E_^KI+@YVRlr!@iR3p-DwI{bhD7Sj`4`!!wdpfczO z={!@0Eb30%px><`FYWBF3gE!2l`HS>KgAMOm3e(_fP# z5*Q{+3$`X%9gK6oQY#Z(&osH95Np&`uJRAxlKifbQ5%I3W`s$kXy#Uc2zn(u-4@SkVvh-HB7hE7$bZJRzGYdm zN@;aMHy1_DJjWTSYp@~gUDa#l@0y2hPb=>+OjU{8z=j+=i??{fBdMaB*@X^pL30Xv z9Xw|O{z0QL%}1jS=wtxB==)zI*HbGXL>RiEyM)15E?d)nPHWAm zpcLVG7h*sF00000008t-e@Gn1sA@wo^wA}bZ`M=3?f^V-!8|(?N6knUVsntQ&9ae| zJK=y7Xttf*Aw8qdIg~J*R*NB%xV>mfqS0W;8+%o)iI3T3o&GhqcL0aTW8SA-FhG!a zU=8`oCl9#vI;&|dE8F)1WHW!uxGO}P$uUhcaUAE0Xi9-o4A(!7 zegF$U>++uZT%e@aBU2)QZ&ExV^o3X;)XWfK}Y0d*!rjM8}r1tN#2ht^aD%0c?=wU9S;`*)5QQ+rk&rF=UVh?MhB$C0&ddqTP$~RoY zengCm5uxQ;PSbW*P~^w_=qk`^j>yCfHFWUps*rIs=aD(atW@Q`*3%hgm~<6&i#*J& zP`c>+bqnxBkN8$AN@}poZzB>Xr^!8iS z{NGi^l|40^rIb5tYh~ZMJ+e#OP># zf3B^L4ZSKNM6k@ic;l|qQ5)*ikw5d3VVr@6!G)P;89+8mVrsSA8=g^+@_2Ulehi#A zTl{9GwPO<=-e)N0PA~t1vGQsdgVoHX77%M;BgfuU$0^PpDqcZyPmWrF#Yoa zEgkY7z2dl1#yP8h;q_*qe#;ZJ3_}D@XXVC!6>4~AtafJ-_FXyJ!Pn2qjdv$u2AtjQ z{GPvLU@w5bvw4(_%N(Rf7SM6Hr#a-#1#GK?TFKbz+D|2Um6+)n0?s+r4{bW2&qoJg z@QIBjSX&#Ix`F0ZFw4@a;or8~`_&vDVqGYVG-JbOtJ?uq<7}W| zDQy{~&o3n+nkYPHdO?DAwoy9BkqqB#$?4x$?2?|GlO5@;aQtpo6-{$Q;FqtAZL2XS+Gh%ltg48;4 zb@7l0ap$>6#iedvVl_6(U|<^An;BeNLHbXwzRQF#$sJyzXH6mT23|;&xYx?#ur#rT zS9W{=rM*$>@nqx&n7B321MeW6{=!=gR80wN7Pos)*!@c;4P;n5@??}G(=mn4!{QcZ8q)Fr0000000W2fOt4UAv3JkS!?n;K6DSqgqi5Po zcqjpAyO_ny>K>0?LInlXpnvheyBRK1dT$RtRbT&|xyfTC07g^pOA4A0K@Ei4@8Dti zw+x>5?%s0lcjN%uoNDb)iDRI8k&y$m1B{a0$oco{os8_@BleZY#f;8CEAh=ZF#&r9 z&C<6Y&ZT>uE-6tfAf0VundS>S6SUnTDqt5WtzdCJ>8kdmuT?EX_V9tAG^zzMNwvSa zCgwCn2i|n$e(JMDAl)~iKYyIeqpbRkV}7i`21RN9v#jLTy%{8ea9l*$asa1l7QlFt zE0p1ILpB*hN^S85c0d20l=ZhIgXEuZK--Y#5K0cb3cs$t<=@Q>V>~hOP?rhbS;afg zn~ax%&HdBd$7nJBWGZT}4|`iJV@PDF=a@5|aIfe3_L~4*FARWz25i^_b|zRv_<0EW zDqrb&Q$Ci54IGN+1;47Iw3rHi5ACGQ;K-#7Ac5!cO0C-+-&nzX>m%c6ZEY*2kAT)% zoI}SF*r$?ryd?sau7)VX073CM$7t)z@x~0>F}+Hw{S!MNoACiqStV1S*z*2Vp`n{& zwBkZ1}R@QCpTsvFMPjoZf({L>MQau+XZYbxRlRtGV^38%IVb z@ro3(;U2*YHj3gd9vLLPp1!rqTagr6iM5KwnD)WGSeR~Tjx(NL6~PjXT#s-erxq>| zUvE^d|J+pc9bbZ*{Fu5h3jqwD@x1MkdM*InspI8K zUMn?tbXOfx>hWTsO zDb)$*$xAXtkYe4b(&0MAhqtdrglNm><%!lQ%V$lg4QsFB%VgrChbYxn{I*0DVJGys zGhQS7UTI+`H76yZ5rn)Yjz$B#Qvd(dSjPs#w7-qXXVUrg^uv7EKZVwnK~c|wW{M8J z`e6fzV_7+eC&SxgQ{xit^^rh^O6k(UT*x6 z+N{)}AXF!O!SMt{In8_3;B-%kunWPoHI;4M7Ni8MZE`wS11L0ccXs_=p$#Xk+WP}e zY1E6JfMMIA!%%uc7URdJRLJr6JI-&i#Do2~Wd_5?9E2&NvW<|+V*}o6>7W%Z_x5BA@^HZ*wLv;2Z&~hqC*YV;i1Y0ye{nLD zMQJVuLz8orE-|`vLN{_}R-TgQbrv&iUx4}^kdc^6dtDM98>$L(8Z64T5+}r*Z3+U> z>dFTtCecUSq5Z^YvboJO!H(4q^E&oX%uzBc5I`TC>V z01l1iG0OC^&s70(9b1|8c5!&TbUXaP3BCI3pornJ>CVMEvYW6{r+QBn8`&``P)%e6Ypo#epqn73b<~;sU08pUMtU_70*Sl&M z3B*{D4>T|C5QfL^zL0%8bmsQ75A{T=Ws|~)RO$yNIQj0kbH$y*3M;Lh=(3g*So`TI z9QBLv_lxypr~ajC@4%%*>I*CoXx9qm3P zQ%}mc?i#{?WtJrwp!Kkfw8&d$+{wDb{~T z;TD9}O%Z63RpZ{1v-fiSW8NVH&)v2NF-{vH*tb}ti%LWCZmXy46bvlTF+dT{>4)YQ!H^;@jv3hw{DEfR} zV+~@c+wVA{X(6OGosL`^`N1+iUBv_m5q`eBSYaAw@S-*k)Ll6a6o^Oj9)r^hyS!fzut5IFP5#0y55TYY z*VUH8R=1ZniveonD`M+locUUX<3$4aF>Yjv{gqAO1T4l*ya#m-sPCwfkp4SmkHl2} z++uQxK61L!KRT@&*kbou=>ya>4&E&$fCy}vK>zyJUM07W3^u^^DgA{Xlv zrBcjXx#olh!xf|i|FS{+os!Yn+}^Ab9vxTAaPeQlD{A1iBA7tZ^Vqa;Ntw6O%Hmtg zLGVTz+sIJD0NEMAfB*^vcAzdfOvRCw*i2P1VjQD)>A`%=VSls2n>n=%&zZpWS%fTe zKGC4x-1-=4g$p}`mpSGaWTeIElpzOx0!~hD2r$1+yiMhh=lpXOVY8ESWXk+EcGlgE z9cdJz*;g`J`q@0y+`a+;yPv{>UR1}a!L-co?~DI?DyGBm3A63lH>GpfQH&P%UE9tf z1aQ<|&)i6t3zW@Mlcr&0P{|?%dYLysPNe4ImrVX8}y*5SDaPd)~_} zJrN{SMwlw^%)D5QDpS`%3@r zxl$a<%d{K@6AuldH7%=qz`o(XppxftPXLybZ7zAymsc`i13KrnR3EvqPG^dxUtQhm z=06ZnWh%Hsb|7x+o{n?3((d3c0P0pZ8b49x{;%A2J#Y@_OY6PPDJepYTblq^A82Hc z3Xk1pQlei$Zv+EkofhSrw7EA_-5IJcMQaH~NAYOHm9sOsokp7)z!;RHg%U6M1P54) z3%&pjz0br=MRZ11*^;M{b>_p{HJ8;Ng|dxzGyukAp+PPdQLHbk4D9Cj^hWRT7NM1ve>2E{3FMP#TEfvA z&N<@OEK4h@jaoH(yh29)3Cqp?5da~T=~}LvY%E+R-I$!F*P(vT3q{@XEMEVw`9<@; zOn%_m8w)`&GJ%bWOzZQ22TPqp9lo&+kge_fqK@!4*OyvF;x1_J7Py!@uy6ZHW&!Xj zSZc?@6HZ2UD|28Jk}D@ia8`#fiX&RRhtGGw>$k-Sm_e`?IjVbN>+g8u;7RL&mEE=3~!Ee_WD7&LKipb;x55rRy zpt1&)x!a1SxArgrz*M9+bpAs@TZ}Y`m;fp+_9>yPFFLI2{?mm2u0^S%JjjrVe{}{x z$#^=?VRfmR*$Z73*BfIB)0my}_hHp_^ON{dbKzgM19Z#8uJV3%Ttx!QiVV3fBpl7V z-8>;6zqn1T(9>o@jNE}@=zlV-767!uKm-!dzv!jcJY?J&Jv4$$p-%M{;1y0ott)xopb&$Z^QN=0@+T`L8aS?2EelXn6=bN`u)trQ})ZI2Wfb^vJGL^aUds zOny)g)6dGdVc`eqjRq{;)#le|QTQDM@G!FrY<;^16q-uhYi;MjY~<p>H9(jz0*CU}16z zZq#{ITt-_I>qcFpv==|ezkKd~VZ@2QG&ll9EiAq_%0*u3+x`f5V+yEU1ANwJXI$pE z-60I(o~z9Fnv3B){%)hIlE*LjRNC$o0G$h9L zUq8s=5&pLoQmkBC5+&Rrk4y72GaF~6^1b(0mRP2GUc~&)pJi^Cq7E&{Lrj|&{bj77 zmKUuDvljL@;2E_3gxjk;rq6sW{0%qAXR}F)R%k4aS}CEY3xUDS!IDkutfw``Eepm@ z7B5TH!^McfK-HOMiHL4ai+yar@ODz5Gls%D2!p0Mt^v6|=$HN?)aI3+x=>Jj+aZq? z>Mgdp*8GNsj*3bg-@lpo5E|h&nH~ z)nkYAD6JqNgy%k5jXh#oWV>KcoG-K^Em4qx4kyNgd%D_Dt(c43a}uQ$$yV*5~GqH&kBuK*XujscPR?xivozD;e ze_hj-E2F^=wtNk`&_meHh(b*9H>)fb0Yo&L#Vqzx)NUcml8)j1_)?-A zy{lF89qr8*>z;l;?7exh=8?@yfDmHMu5=Dlp;yAt%9px1ElCCb^4JJ}nnW+xgww~G zoN%eXgFhct$xGbfX$MdeZDlmQXt?psoBUZb_M-;EpIu4VCrKpCd?+aNI}q5N*W6m* zi&1a*=hAU?f;qfB*A7_9G}DN-wLns`P!MQP7`d_C!5oZ@=zAiq+r4faEl zzi(TuQw!_bGePHy$T!Y|*xE$i4|;WZFvw%*xf_CRMQL=2Epr;=r%XPdM>MNDsb?$Q zD7cP4Z@^$;Up86?7NCw7ys)N@kYqP_>N7674W$rSy?at#>D=ml=FI$md-S$-ZOvCxdN$s}Rgyoswm z7N{oxn=h<(jFl32W-tA-8tc=H0%lP37HO3a$GzvFCnpR=CHl0Lsqr^}#o@+YQAWzv z9U4JFS*$Y1+0{+Ag}ZQ1mslqW7j+1Ywb)CRGMgXB>e)*`ZBUf%mdSuv-ht$o{|YC= zl%DFOv})U{eVL%VC>U%mh6#BEnR}Zqb3cdlRbl%^(fIb#ZYhOR5am=+*DCnGwF8A| zqKmUIDwcPA`*0>|7OcX=_<(t(jtw-iZ+glFFHY}ddLhZC;IjAt000A*-?!aUcY@b> zbJNO0!D*+R{rl}P>fMloeodFX@g`tNH9`9s8xkL$O_ z)aThp(!ksKrf0xQcVtS#nZGwdc&+#ZC*ek(EJqgU=KPdXZBR5<50NlXBxBK!1s4h! zI)TMIc{Q^Y^UfSo=_PcrT_RFJF#@d@Ng3q~YQYRU3af@O63X+M44y8ZlfWoE>v&(f&z6%qJ=m`^8X>OL zu}Doz?sx{3Uft!BtNkll93+@H;_Crc@pm?2ZCA8 z)!^_ToTkwF)RI;YeOTdqfNoLcdU!A&D4^~pezuN_BX^MSxNze|9qXYrMbJp5YAlR4 zL7xEJ_qQ&u)h?|e4pKvcHrPu?9Wmq8pRV^2roObBQaSTS+ zrDCul!?lR4yfrs6lak6+S{h0-w5US!|KXT?-*p^xk}gV)Ku1l@ya9Sa&HKVRT>|oG z$yg!WMR)`@!Zl7q?dBE+QMd-ar8M27e+7|kGSlon0lacUGQ=%O%bS%m6J1iDQDm<7jk4_cotFO5IVsLkp*w`kYoo=8~Dv*1w0 z$xitleLpj3?$AHf1~6IT)Y2$?0nW_Y{bvM@^C1hf7EIZ}v(Q)5xA+L`bN|7xc&ZwO zw#>n?<$sCU;}D9PJ`L-?y*n*zJSd+@F_ZnqX+~0MB&G*5fE5twr0fQ{t|gwAB-zAgUd@^M4X>1FIZdOKOHF#rM%xWdw4)zLt# z4ZU8V|5-HT*RvcavHHEQCJ?CD!nDuq7F@Bkzm$N5{EEoPJM_Ex*@gAO69hdHf$aeWgk~1$X&O5|=1OVWSp~ zKf@&eQ|Z*uGy%|M*#)MjPq)=o5>UceIYxR0nG>V6E*_NNI`1M1o8exym>EP~$Ew{` z**18CZx~N(p!gwY9t}rq=P`yV@~v^B?f6jSAGy^jfinwsFnHbWGl|6qmMv0;mMoy(6Gm=lh0bfQfye{c9Rvy#? z&;=_CMoCrM1tx7XNCl~1o&^ml)$A_cF-k54|1)pH=;DJ7U;@cWF*?w z5Xvn8l%6BNZo3v zOR1Ibc)PW1G<|;V7qVtw@sEtL04w?L89&z9_0xr&&4{prj14WXhq8ihvWJi=qIxQP zl$vFP;7z8 z`w+A^5I6bXSq_&tTPT{cMUkFc*44=wlg;l^q7q+~@BZYO{=yVU5gg2S^?O7^4m8iz zK~>GvqF{zKqQP9(%od7ryK9JZsUr6_2%X1Z|5k-3G6PU%=&@a|=q8K!!FW~2l5)f; z3roAw_jh)d!YdO?=|s#m!ak%${46-rG}9saHSA=^&Y&z&jOdvY1759}`wwaa6Z?kE zRnq2T+1s&Q{(Wf?*lr3fJYBj%U})Z7kqu7JN`r2eh%M>SzfRPdh#0K z&Kkm!X;ua9!9duraU#!%w2)a~k)0PR+QA;~;3n>t7aKd73?9KazP3|)90L+><+4pK~yEzCtYzjPj6)y>t|Qapl})M~=E>K^{yR4~83 zJYvn=pxs8((;mkte}H2#+{h3ay=*R4f}YSmi=Y=N@Ml>w3rOU4BzI}#`sT|+Zkw9+ ziMr1L?7SxJJ7G194!}+aTx;gkNS+?_xBX=@>9cZ!Ts<$Q!=stKDhxm%qYRIh{Hz|4 z$&obo-1RppIEw1G^L#`V+wOvXf=X{Eg82{Rs~C3biEUq!QAfIabP~v?2*Fg~ezt@3 z;1tRx3MYe5oMcmuT3K;Nr5H-5mfZABt9yt5000hdCcCUsqz>T|pBvZO?UY)_;M=n( z;PI>vHasIzX4}j14coP(+c0@;FNMPRelDY1a#BB-EFo-Q#U#%o7|O$G3RRQl|Mh$U zl{$lHjK%=SwPZgoFnl|u!afRup0eQ>4#Cq6Nt1pVs018y5oh~6Ia=Of;T`mhXs#cKd zJ#hQlY5eFV159~fgbwnZz-lD%v8Sk^oeuSr2R^HXf>6TQdysUH7W>Oc!9({d)+WQd zRh=QDw@7bP*|+`gt5KAGxKvUHxo)K!xRki*9ZdM|J z57zpZ2TDlK>o5&=O&t;LUr=Yv3qw2z*Hj!Jbju5V~MrPBj6dDoVMKSPixEwbX}@$STY!rq#hh(BZQ8>rQX7K*rqV+auU< z49tMY4^`?MyA~mS?HR8PoAPGyY5e@!*PMFjf%l{zNlsin`C2Nm0uG;V#XOH58vL53cBRx6 zf2>2fni9K3=}iN%D+S3iXK9d#KsNZ~VM$TS7(idc(N~k?8UgJgwOnA@CNz+{O6hNs zA0Ov4=vX6fQ`Br2;pOVnDvy-PD`@9AJ`xE|e+`iSZ$` zoqH*+gDTp5GBGJZ&%Mp>HQMAo8JE@HMsP45?Xlt*yOi@t**>ov#aOg_d5!9YOk}9g z=SAY~Cv$|&1Ai^$*Sg;HR(y2+thR@DkWLG}|G4^*|5v_$04J+#-TvJ8ib zRkEG_)$=ChGQ8Z$(+bhL^R7=$iT{l*7XeT3l2vXauG-u2`^cf`W!w9tXS04tRrr|1 zcc_g`#7`S=szxHD^4D0klJ8r|-?pZ~xnBG&a*~f6G{N(EmK?H;!=78Oa-En2i2Hnl zDbzBpb{a7qC^LVS?+RSH6nduLR;+ic?GJNnC)NbxYyDUJJ@(?>YBr#{x=It}gdV=| zlS)>RL=hnl%rZuVwP6&3Dc1nlhD`~=_#0nJfzhLA|`iTH!K%2kzr?v}ctndH>I*Wwh1E7izg*)Xw<%r{)8^GttWgdP{*S|Sl|_I2h52K> z7mPuIjEQigMssV5b{VltGmo=?OSj3ulA0mlCEjfLPYNY@%7Z~AySw`Ld?Bs_YU`L< zOtDLfHSE7?^f-r%QY>ZNk#34ZZ7_akr$Vple0cD_r4=4pK@LElRG98;XVyjW`8rLL z7Fc!-toQL{J;J?A;Am$Hg#mn-j0+cU&uX_=o+W;2CK^4I?SDW2!~rTsqqG31V+t3o z`d-FIWJhxFF|i+4xfp*W+&SfOiIFIQ`kVU%t&5yvd_tyYVlTV8*9grzl6e=2wWI#K5AU8>1Qal;0l?(waGEt^7hVt#?Ri!12$~+)(;YZB& z%L53=yq~<9oVejdO*-ZO#1Yco@O~yn)Lr|X;1^PvE=Fp;-#gEAlH#S>^gW_P0#Ftm zG7)G-boQ39sZ|hA?BK04$Emrx9w;<`%{ILUv6qp8F<6M_w9k@IDyrA;&M?h=9MExg zDzU0)3vy=D#!|+0$p$m-ISFa%>_7dI_;0cI*{Og8LxOmp5JO>}F)!Icb2*8&!KTFy zTWjcd-d%?vg}Yp=OaT264Oo3K19_#QmKhmI0f5Mgn{%D@VC3SSkLunr*#>Tn#CA8| z5XmZy9D%^q8WN^2f_`htD8;B9B=Y_DTjT@Bjjl~8`$;OzCiuPr( zW06bBkp7Gefq=k4<5yLFpzTrg_-mKEdM$+hb(2*8Onk?a0!O4JZ`5+3$WB_5C)+k6 ze&nnzQQ)p?rNmt$!Y)&3ILTQfhU|2xp-^9YVoN7>6O)%uNkC6E$0RskIKz^FiBB=YyHmY1Z*m(&Fb{!8TIPwk`1Qa2XZ&3xT$RoMG&x$1zIt`u_-J1gWAagiW zEq|u^nHdS(Yu;$U2pa5$0@VO@j9E|5vYfDiLA47utkZ(v>T&qESY%;lG)rYsnLOp# z$(nE2k3co2Y6N~aJ~W0yKAihc@+ja29^A7O1B6G2L_7QzWaUF<(vS<7vOge|DCM;$ z-HhcSsbzqSM9fugz$Y^JP1AV}uZ&vfz8wJ`bmH(~Z1VVWv%SdINnK~wcZHI`ozHc~ zBQn05>&4uZ5~s0;A%dMCh0b3%LUbZ%%BH%a4u1Xcm?;sSZQ@@q&!|vJ8SidKH~ylH z2SpNvz~=Yl9#?q$Ol)g~(;qmrGx`WJo?_v271c~ZG>4DEOV~ck)8`cg2XwMovTfW&`*R8;aG?@+tV?8 z%jAKb*`xHg9;LQ-N8TEi$PE=iwJWO=n1e}4kx0yawXHP8(8{l0FD=B0grLytGWc?! z)aCuX09PGm4jaKDY7SeeUf|w%mE=gV6B^ccx6Ubv6P1)n9llPkbfX?v8>IzJ^r4%} zX+A?BRz%W;(jj=}WdUEqtr*&drK3xA>IV!A0m>A~+{W#{xrEobQUCw~?-F=ypxT4X zn1aW$71#|N-kb%^Ic)C0pxkE8J5eNFAcJbm1nshvIbX>o`+ft|ugw;$GgyFru`n1= zd``DZF`&LRPT_8g z%?!Cn&nMK0k442JSm}P$82d$vlTU?Q~APa<_ez%_AXdeGqpGmF3mM`^;W1XBba^bg}wGO<)eT|s6IuO zd#j7A=ns@1RgC2paGgKL-=_!M| z2v=5rj;X@{wcv?r6fV=Hj)_9kfUy_U{A8CfRPieBD50|FFmWmo#wcd;lO-Jc{+0LG;ka%w)vqvd6Z z^}%mztH4GGI3hxztyxv8J?~NZJN3bETez>#!B-5?tmwj9WmXA?;DjaFiZ&M@V^GidBmg zHUM4iFd9qx;;q+%9Ggu05*vsZq8|Na*F0m!2$0{8@`ofF`WU=?!3F*uPjUO*#x|Mo zll7;@%=FPsD7hRE0CQ`x0wquoCD0>O-5JWZ0*C4VWwML9lOInOd^{HDD_ zdRe$%I4a+K&t($1q_SRdzJscROpS-(DLFJS9-feP^q?88b7|^3pja0szj7(2oy)+a z>ZZh7n*CNX>n@#Ud=nlnNYnTRaqwsQE-UoM>GpnH4 zp>wL4OIziS29RAgIiG+LUUnnqKweIscba>rE{!@Mmd-YikZ?g>v{C0SuU(o3bN;8{ z5fmbI7~d<+CNaiNQ_oqMhRANu2qv=Gdv`u_%;%}Cg=g2T$T+*DpLJ{ce6c?zkjrad z=)Z5;ElqGO>G~)I$vj`60001MwT77@5Jvn4DF3_-ZZa9DX&JnL*Prh*z}I&da>yT* zho@;uGU3Vxb|7|uwweQgMq3$Yh{tdWAeQoFV|)J~-l_^{ghSx05w41hY2K-ISpE-H zX_t@xFOhxGC&M9UB6D?rGXlFQ@!vM&q zJJiBT)A@7nSnHgHZjZ^-8ddM2m@Shdi~wMt{uhCGETo~wvHofDvti!@ZjyeB1H0uK z;#5zuHbx?aLHM(J7(?I*8a#)@tdBZTGphgqL67~KAah3_>r4TbTw^*9o|e_BJ)nI? zrX1Zy(2OxB;c%3~2;lZEQbevRtkzLZq^ym&`cW6*DV{6w2HX(yGu^72*lOd3eT^{; zvlNLZ=)$~SyK5jJ7|GayK4JsiZVQVBSEm^FU+OzZe0niu&?=w>(ldcl#Dthd>o`Y- zrEQNon6x(K<*lG1ERm7JGVEr?uC^mWz`MQ}HuEwde``%r!k~Ie%5Yutbn3Sdsk&U= zOutDc%kLPFnA$#GtKV1ry+$*PnAOk_Ia$T9Fn~eYy6CoF>~}pdrmj?oXdMbCzBXDl zLy2_uTTC!%V=Mkk=o3&6!N@$)4=pa(4^t`AF*d_QvJ;8Hl`43%X@e? zPfX_N){ybk+*G?e=fs#%CjU0lUYQW8j}|}V2a7R+67yc+m!?jBMg+AW0I#tb9mxUm zrIJKCsq271T9GOZ(u*diRo^Y$Xj?;*zCCF6*F&@FWLx`aPPN#NoHw>N>Rj5mfyqFL zJG0%J%w@t6+dZeVWF9c5F_Mcn`5zZmCJt?K;7=YpQ=HP~Jw?LsZfCfe?tZjz@N?Vk zNu&h{zW^0-vRKXgkXVJea zt6eiEwOpnBD#lGl{G+RnI(OKf#9dF=p5?OI%$)y+jgC}S$+*z~>f*ReZ=qlftTGe^ z^j*D8nq0L0hnRj#hZNw?l{;}=^KsYs2pqVVJBM3#o-Kw%9Y(zxir`4gOQQQ{G8ifM zv5Ydmu|`9O&x$&0i(oC}h(I@R22d2DbZ$?Dsi11XxFu)tMf_dmVRBq?TCD!3&^PO2Vmw$ zf-T{I?&vTcVezT`s1A6$wu_}cs4WTAE#uyb?ch&wA#^wbY@YInx?XMt2ZJ5up(|J5 z7OESCnj(ge@z4v3Y}U3ksonmKN|2i2-5_3TrES-R|49Gh}m;y%BE7hgbtPm5O zVCh54zj!ucmIP#e8tE;}TgaYW)GW=%$I@P5bRz;jQOXcS zlOhn04YB9EYmxmK+xOt^od$jD_tYLEm#BO|kn1~Lh{yN}RXw{3sG3%1Z-Z;a~p0OQa%r~uD$XVY*C z$Tm{4y>(jFs+i+WHIz%HQwnyqW57)MX2qM2xA!|IFnWXhZ)&B$xE>V32$oP-E#Mm) zicU9-nIkt+mx2Vk&%1TYM9-Y660-dL`(I$$fQ&<=C18u&V*L`}fTJ`lD6vj#5d&6w z^bjSPWcYwQ^M4rr)iSqsT*q<<@V(1A7qB3I3|-_0O|!g4PJcn8G+w7x%o9h z!Yxudc)9oW-X>w8PZBDcj+)tfhIUb7(h@95=Q`!+Y z(_bXZZc0f7hns<%KN^R)5p5bjL<@Gd^8?Qcj0`9Hq?o5X8y6*Z78OSV)Pj*>qcw(a z0#Pn=LB_sa%>2@{(mckS_YQ_*G11C3+4((wQeiUwiJs^_gvz=eY}y$G%6bHL(t$A5 zhz^Tth0cO*Ds-L16ci1a=30JWZ+qDOFK~PGT7ad4hG-2pm`_r83f4y2;HK3dMVm;$ zoXzc_WGfzz@+;&-je&e@u(o6=^zpO5f~$-YAlZ#^XlQ1;yc+Yv(%DH_DkS~DrJp6G z@V&NuK@0pDtHaOy9o_aXXv$?3nZ`1${yK60Uv?g|N<7P*SV>7w^U23!F>_w#hR3TZ z!WeR{UclZ!B%as$Gra_yJIA&nEolc^rh)hG=3gb;H06wr-#+0mFFJ%Cu0a^8=4})^ zSm42@8p%ld+_G{2;jBOwo;|{zDYU18B%Gm=O}R21d+*p7mn`R9WwK(T{V>+w&9K@R z%z|<$Eyq{Na&8MK?`Fbh>=YFja1&mq=0)_ppu<0D(kG!f3FpiK6a>OQkajvw%^5KS zfx<_QwgTrJjPMt`Cs8M+CwcXUq4)xcAQFkJwx}ic*`lZQhV&b+{)$?2gmr4eDilPr zigSp>xH87?%R>ZSATwPwsE3ox9Gnx;xHRpstBuEJrq^C|FdAEqtyqf(B4Y^zcFZM6 za%jM7P*y-GrH{4?8-ZK| zJn1*?Cw-PgJLlJ`=O9r&-9x}jfq~h`gRo$%!3;0vNC}YFw#0pjR>){i9^!W^2%E~& zrihn?t+5X^RyfDAb(F`O{EclUXoz6_P zKjumAcI(kAVv&wwcabqgzc6qf#oo89FjT|XRzJ=QPYXAq6>9JS4bS*ac)`ZTSY%Rw zYw>IVN^6UeO`MtEtp#yEIZNQW9jf2}00000kFg;wL=lXpZ$gUkZY&kg#;O^dh5Rky zc6Ms2+JWBBm-YL;Yn%m3t~r{boM5XC^+^7OQBpgG?1S=(szFxQ};^b375+)6S< zs-P3ygZo60Zv52zzPH=tl_=TdpfFzYuqHJ5qx&z1x?!dhtQMNFWjK&f9pD4jR7f2P z$~<1C#KOr93N#m{C^F`6QU8GY@^}u~q*wnrlPe>?NgQXTsy|)b?q*J#d4mWtOB%j( z)*IG-{G1}ch90MuHChG;-t%KtF}QdlUL8C7Z-QYotA)q&VTrC3wK>-gj3@8Un@gL| zA`J(!PSJ$;uE+bY;4xiVVg4?|79aWXt{F2oY8`zr)r1kdc(?!n0fKrq&d?1=p2+Lu zYP`B78^FFpn1p-IHm*OAhUuMFI4EBF*y;_{lNV;7Ka++o2^5iKd@$b^$?`{7;+6JX zW4`T*;-hhs+p;-{RWWrd;9q!y?n~w%>C#RN0`s|xA0HW z7QS)trmfLdAISs40e>HslzKNuBcZEW4%GcGd=q|^9yB{N&d3<}Z{VM!@4CZAe5Q2H zE;5^L*iBv&f5R1Yo9Qznx9Wvbsk{_02zo~gEf>clJ(|cRoW|cHGukJhLkLFV1IbO7 zJ{|b!ZNuVUGN1rZsnIMyOS_yshLIDaI2&c##v?p)EN_aYGH|MIp8gwD{d+l54*d`S zGaTKP(8we{6&xCIqpa_Or=`%f`S?suBI~-+S5ZlifXyuzk$BrV3$3zI=_Y=NjMdO^ zO`GLnNx$I{ZKEEP*^aE)clXC=TuMZbze4%q4!33(u113}R9o=zfH9Jevy>-sj^?#V zu-jX|7;%@LWmAPLb>ANAc0yydWc>`G{5G`LL4}S3`ACw#{i#uNmyU8csc$G|V2O~^ z;%W-_{NTJnICu&@7(k_MkTQnvzwiodM>}wTjQA&`8wr17X$a84C3q2RT~%$(pjXTQ zeULG3_|`@pw%7eU?LA%B$nDKS?)7Zm{GiDhRpD68*W$V zP%BRZJ0F*-p|?>%I2{WXw7NvGSLu|3(1xovx5z^jII!yccAv7I`n4`9aI5Vsd| z^FGr|j!1yTN~Z4gz+%lza(#aftZ8b`$7t8Hz%1}3Z*g{Jo$bgiqxO-0(1^Xz6~xaM zy_Rc)eDeVaZoe(3v3j+Al#vK(Ue9U#GtykO?2Z$5_uILBT!cou_+Aqlxu$E`92Zv6 z%hg&jO`%zoMoTNXcT!F<3rlWi!uEBf8c~&{^;rgbEXg`**%`yk&w5s1^Bjq6DY67Em$N0$a4bo`Uj;IcYh<@ zVgBfqA{eeY9okw}`q76Ie*1`Ep*otCH%cHYnp3F8EQj&L(e>7U3@i^rmHRF6tPTy&?_0*($DZU5uRqe{V#lkbfz(*BHf~*KU6u3QU#OvVVq9fU< z;PGhJ3<78shGx>3!naAHG}kZHJUOOsX1(yApMy63**qUc_M~-2rGcrkFP@

      O4$^l(hdQf1*Q|B9R3Gj^wD}ZIED?g;P z|IHnoY(#Mo?O(&3-wUNj-&H{pwQCY9U7|)b zb8=LJo9G3_6KtLcW=GV*fX2@2^yFSByyucsbP$wFaGuO0JMMr z0BFIroj8Crg$$F!;$-%1nF;4kN6V2~wuO7;&Ww)na`s+XXbR!(9$hY=FY4I}Qpvl01WjHi0oLi@AA$83z}?kh~}ydcT{cAJXpq<`)0KG__H#8IK)dq&QGyhWsqo*lbY(5 z=J5OtSR#+Sy?|Hf`>hql&bwhJ3{@oP)yI^-1bP^9%73K?`C1;dQC$>@}B-L z0K74r_KVg7p$BiTf4G%xW%Yl|WQDpJ_ZT+z6%a%Q*yK<8C?x#jAEPu#=O#&>x4=rn zp=7E2PjzMl?d5!!V|+pdPdcs!`Au4ogI%`YlBo(647Mfu78kICjVI|DosTsFA@@I$ zXgoGV4c&3c;%faUIjPd4YAADkrPBj{DgNq)-dYWQJ~rCiKH&-}X%} z=`Gif{p#wAgsdW9d0_zMPZhfyAxE)T`0)n?&PzCWNWD;JORT(@JI_|W;5KX+EYDeJ zP}JPa$b}njk<6WoQbqzQDO_}5QXxj}b%T55$NADrfkh*$Bo7DNrwcpCj_6$mzBhZU z8jP1+BiJ;p!G%9mows4!B)O+6xJQ}itcJ;_aw<$D)G2-(G8avi!%ZO;1CP___)_u6 zumy{L#|(e@SjSDWArUs|dp$Dfpgw0fCHUd|&iqBw*#afs_}RpM0E@pSerN*4?n+DA zfUp##roY!~^D9aR$(f_Pn)dOAVs7?$@Q$OyL-H+fQXS%aCC# zqcK3OwUiz!jH!@&3rE6GN3`%=7Divwfk!hBTE8i%>&F=5oYEw$iJmRl2osjTGzd)7 zu)2I9L{q!zUo)tnAOWo}Guq=*H1!jg?M-~WlgA&0eT;77d<}hJ)4^6~##P9#7ZByz zw2_BZ!_5$dCzpUq*NNr=h*YJ$<0!QQU8~Ln=g`~eeqB>j4gID_l~mGC0!%%De?Mi~ z>MUv7ZE<*{H55h=IN==^e%Wc$udnnWZ@%(B(g}Gb)TMoP7BO$Ns|-HO!W*zlgSsuu zi{3S?z-aB|xipRpG<9~xCWQ$$X2yVy25Xw#Tq4F0`*WnCca#st{9w<+&(#mOt31}j zfhXMAQo5Eq{*VVW)5%`psPX-Pk15rzo%j07HtDm-r{GPDJ-en` zFZkF!ZQvIrwQWFw%|_3Q+SN~^E({BgC0=z_CgjRUb+WlS zv{9TRHjez5N_=)n08@rXgeEIBR<%d-Vrw&+jk+L7rq%Icb~UoD^!1IY&f3;TD`Q_0 zQXet2zr_|pIq}_guLfU4C=rqmMfb0b_mEv@ZU)Tb<{8+s`tG8j0U4JD%I~QTwqo)*FHfT_9`fy;mYLQ zRyqMY$Xox${a_tWmA!OpeOUk}SET6+Q;>}Q@H|(9@)3OcIr2aWE&ycqN^2oN+$5a2 zLiG*HeNl6j_yK~wKon_P03vcZi_Bk5YIHjs#;oVN7i0Iuzpxjjm9{9Gv|UH;JyQ7$B(_nL#)QcdG8nmxxSPmS84r%Pi9azAE) zc4i=zqG^~2o6!!@9Bi1uV;r#m50Q?T2f-+&3iQ@iNold{%9Rn34tDsW1i7go6BW1t zgQ4YU?`g7ickzz~;re*GZt{=6J^OB%gm*=n=Calx9~MZe0FHU*@{rvr2nh8$tA8r) ziVh~xEx!^V+6eF_`6s@~k=HnRBwE_N(;ma{VjxaJC~?zwIcX#0NGGV3pn6s|`82dc z-;~NOSmm;ABaZshDI61@MOaTt!4mAb%)V(*OVf02~BXly&g$c10GW6GOVd?5k-On)lkVh4(TD zvuiA~Oqlr=xzV#Xq40wsHZ5O-avT!eSeeuq3dk7c#oKY4#fR{t5;w=jt-g9monJ*b zfBmaHNN`|478?pfK^an32gG6R^03Oh}@#l z!u~#V0EL_cfdk9*<_r8HI-wOxC>G2RHDU^50Wx8aulkd?j{k25_7u$}-&EvH{k_g@ zfhP)?F=W*7JK9qjF&On|bM2XSLafx_X8Mi*iQrh1^%Tkga=hwJMW6!6!*4V%MO8LE z?!J zwGtv3BIRr9DU%btywA+NRv}7>rp&k@C*XDz03YlVg_R(-ap8JX))!fyi0*ko;CF?T zNcM9%uFcWtTVdPsCg(DA@msTCX(1KW6hb^bXh`PVeITYU62?*xh_Dkq&1U}e^~9gl z-^1~3C_BySGN7Xy3D(O;XANW?Rfk{qRj5@PFe9#P=L#jCG6O$!d#-oad7wLTw*sJ! zg`9=6rl4eJTtc6d-%=ld{6{9}UIr3@&^;p}_a|%$_bR51vb*}M!r;jy{9QdizIx~* zP*tb68oXK4mr5 zEksaaJ!fL$$RNdy$=4nlK0^`SxME~=6v2ZZO6aQHki@(L-pmkmG%cnya~yTcd9wrk zxpvfQT;uLEz_U+a&)Y%$PWmoI$WV=@xz)@PAqz!MJ;;#qINr}t=T|3b3-R9lRxD_} z&k#0Yj8_oic(L7P?%GWJ^a+c)UxdHnPf9g1Yw^y$ZsrmXtLD6M!{L5M<{75!P#*Gb zERkzLnD5vILayI;zW%khwHZEdF9-w8YH`zkKO_M7*8)s+AYv?~vR^2arBtaw`uWV9 zYcL~D6x~cWSqy?A!x&s$JH3TVz)Q5;exDbNNa%2iQ29%&9UahfaX-h*h(=<3u+I30 zYczZJX>0+B%JHjCt(l(|zwP&OP~4aOERSxzU3r{ltVAr;HTy&rF05=s3+>zDPY^0! z`q78exBj`%TQd(P97ml8OBu2Oxs!f3J(qA-_qPnGQ(=K>5AFi}v2P8Piu#aU%xol! zDiTd2Wg(5Xpc5`%{4(b0ia!Su-T<|sxSCN5aME^v%+)OBt1N7Y$IqH!41+}Dcu?wL zudm$3c)i{4DRZ$d`=cHX+@_G+1^O>V4Jf~~(jW%X0i4{8MrjD@n}dNh0=Z|YTogb| z)0>cZ(s~$HloZ*gA~xvip6Y&}PPiN(*W2YIlXQ@o#r7eO19en9IoVH0l$J4Rg(#Oz zn%fhBMZU|&inS{~YnJxx_kSf-hn#E0c8PRU;34#!x`Plb^@PO(rNS~S8S_X02ef62-x=unM|cY#{ROz<>kI;uMk1P~sHBKqi}aAD{hK9JnrwSkWi?*9 zo(Pk8Q1LR0a2&f3h)WXh3j-_9g_8W1<@^MZUXtwUTp^m%BQlGzGjg;Mq`_x<5Tc6c z1Z1S3ooLb*&S&;*_X;aEJ6(rbu00r}Vp%sjlGvOsZq;zsU8?K~5Sfzid5j9tI;MZ_ z7Razl1uLvi8PPcI5*rh$@!CL@DU45rP)uLN=lUfOAq4XZpfKQu%3T84D#latBH&{p zQzp~yyME+7C>H_^>`)%OQ>%op@MWPaC@TP5eUJ4rXwc$)3XHAEJ52kW*k;vz1uxDA z=Igb!m2FxE)WT{c0iJ+2dXYuI6SG#lH%q_UC!%O!8@d(nf1I<*9?-^M9o(!jYF{aJ zbd`^Qg}j@u-Kwl?*;b}_#4f#B)n5uA!oq_I^%SLr`DFemn)Rndd1$i}NoO9Yb}$Y{g=(Ujqii8nara-td;% z>=i!4BM6;rm*^uzvr(UFGp97#%0ol>%070KGno}d7wDbDL;9e?L)E8^zVT` z8&7pKJ+ghdd3r7uN?cI-U6;u75pgs_52eK-(WSYN%QdZZCZyQ=ociq8N1-S?*irhr-z@B+4n~oKGH-xyD7r zW!HvNm<}>$UZenl8gYd?#mu2f_ER%{W?zt!*Pe=wY!jyz^#GUaPF#X@m!)&!*C@m6 z+v#pH^yTL@8Py!5>;paTDk6Otqt!q|twCPA3%aK!D~MLD`A?QH4oW1@`cV76p@NUs zoh_h!3D5NtR4ny5A>cz?+o&-qdY->_Ju)~>!=Nay=ne-;4aWGRH~h-P^w!Vn(R(6x z>n`ue32C0c05j|^m>1b<iR4mHrmT&FGP1qE|W9^gBpcW<5tOAkHBo*)p;pMI3jHN9ah{+Eo$VBpsRm z;ivk4I5$ktutNzHaV{btklgFDEVW)|gwdgRLT>|grOdC!JfxZK?S=vH59@KNR%qTT z=kj&eurp5N6VZLM@ z;E0qbGcKl_snEax00000D$5OynF2Eez^@wx-Qc`n{*%-%53~sHe>yF;)YqSu{K_y0 zzGO_M&>wb!Jj8+WXN)RrA+2 z^+(%XqDgkBjhO(YN?c@#9wJcveq^O4y{`4o52H2hv)QE0p ztAi*=x8tc<3+9iY;JD`)l4{f@roTb`2ksFLu7!Oe@>5wl`DPye4pL&D@g<%!Tj22xX=}ZF*La-?!^& z8WjaiHl-g#&ev<;vO_Jwp}4@7S2ASa?qDVtMV!lgp>fb6aZdT-Rtrfpc0W@uXBxeo zN-sqyA-r8xpKv}oYg0m>3x-^%%!PPoXI4k2 zF~DEjOvh$f_tyuKub=>c4-LRd@!?kN()h|!uK~0h1cxAgwt0Jbc+$!hwdq?UG(-<2 zKJ>a^_eAoBhff*k>~v9w^tVsVXf~Xqs*swvDlHQ#<^QzJBG4}F6$a5%^#U5hKTLWQRibegftc4^-yX4(KN3Tnkd4qJY%=gZ z;Q&Sue$2Gk6&|+zyz6RQkVgZ_>{{Db4Vp9_6}iNTe>JYHZBBvBJjwz3cmKm?Av$o` zt{74Oz$2H*2g|P4EOhr^eg&yw1b6E9Ua`Dg|Dh6$_|vV%*vg;djNrx+atMJYCS5IO_FmdTX6Ktij*{d1<+{H3DdK)!yIQ^gR&((A$+W%m?zJ)xkzu<+mbJaU_|Xk2 z!rVNl=2S-E!l45g@06uLA^~C_D%qeeX(jFJ>~cM5cGK_==L)ApS;c?MqM9x6>n*-P z|D;pZ&x$TC07^SBR}FX|KNLaG?eA3j2F3Sd0B3@&&@M5xI|#?b6RSk9W^ZafgiB%$ z=sfd=!?TsAXa{Obk$^}chxoe4$!B}yDJi0fp+eqjk0p(^mO&LdB41kc89|R; zSd^{FfLOln~DP4t#<8RRu0e>*;F z?0MefTYm3e$V^Szl!g!YYMsC8H@vp&n;M***c>;9jE8k<343lF3y@VKMmyK&4`c4JF?5%TF}8OV?q8 zK4&<+(SA4`JjX8Mr^vWA&tS%LPffPKh#5QsM)w~X=5%pPLsup|9E)2Gcply~G)q0V z%E0$}i zKX^`qEnC}+3tr1Qp{wu$LCpaOeim692D5|CjtHuZ>g4BdkhSc3@}8JI1s|TmjrmC8 zzmUWZhulq!E=+n0W>xo9AR(^unnOohc%Jw!Z6l=s#h#JrSqw()9M~3fRt z>SXn}zI3Oqyi3GN2;z(wiHkq>Wz01mrjDG#sb+WLS49IUx_`uGkM#!haP3L)3(y6t7y(f;i^z~?nMsZ zu6C7b9~1?7>4GPP*}{y~6ZzEwAL5m8#oAGob+Fzzl6FRDrK+*U^$q`_M?aePYqgU( zeClY`1@MH>;v5B)5jU+3JkJPc0#8>ssN1kBbqsZmdSGrRHI|0@p?4vX&_o&9BxIvf z5y~*7FkujTf==bBEZ*ZN^R+g8sR7$}!wnqo<-#5}pTs}-6(~$^|EBGc`~+*;B%vCSJv=I%u+k;RN2(ZZ%4JkvEjGG=Rz*1Z8GssMtg)aXRXTcbdZP{3A3$V zFaQXMK|-}KHH(pif~}sxNN=UT+K^qjAG>Zg4kLWED)Jbn{ID z?XR(GDMe{{6A<0#000000A?PE}+J8(u9Z%EGo8)saqWEz>QMp+USM@>P)c#SS zHvB$0F*}w|1(mKXw-QO)Dhsm@*^vG2Ct;=1C24KEzODLJu9`NMDjw6i#}J@1qiLI8 z2zcWtIwOj7=D~a*QA*XMQ&pn8ayhyV3!ZYlAA^$Et`Eu{uDTxiE?LG`WYh{Uc|9Vz zP?5|+WR6K7AmML6_m;YKSL(3`1KW->QkVjfPv8&$1P4RB5>dR8I`wLL@s!7O>MQ>^ znyf}O`f}9gaw-oN9+$`OJVSs=`+}UJ>z#&MMrC{XPp3H zS)3fw(l>#}sz(TLV^`x7HQ>VyM zyOcIO^^td;b7ZUZvuJB73EmoMIS3>YzrS(z3+HanQVhvs7 zxn}(*fXVbMS6JNPuT$(3YUimOz2YJ0+dC`^2=ZN_RaFKR zb$Be=j^F)Un|9c&9A{D()e6lslx417f^U`>jGU^PHp=iB0#2LNKkjHA9U2tNR!4ew zPsn(I0+9oO#y3C3Q^(>~d{1>7-8iA__mO;QH@hFQqa}j6#zOXB7AK-tw@zOtypd{0 z!`jdQ01unHrwJ`5cK^!WFq<>nPfgvUZYeXzkPA}*D8gv(8xt4ZzwfjtKQxD{-RjR1 z&uOSAP-cgG1eeiQK3tLF!UTEhS3kY{Z|!NrAoT|m6qV)QXtTUlxC2zSbsQc(2RtGt zk*QpX8T(tH%0$cMrgU4tXb1nCNQ4a+a&-_tv0a~iUmK~dM>9Ddhs zYVS-@YV3sG!F6<%G*R0b&hx;{Q3o|v?r^J_Z4SU(eDFm~Z8tmY7yY1ylCU?m;3n^t zZZQC&avB*bvwCzqUOgjy5mTn}4p%KP_yFBHTINz9n;Dx(qI1(ZO4sdNU|wQ`)XnLw zJs~2DF{sn2S0b!wA7w*0j4YayNM^t6U@OhzUg$=2%Dh#-Tp~2d4=7~nB-K8S5T_Re z#rK8D`-nM_faoX{qmwewcBK-N4%IuZ1>$~Z1TZAJDReA}&su0b0yeUtTd3z77k>H; z5BOx0jZ2@cK z+v#7^dTgJ%`q8CUrrdf+b^ap9NysGU|(xhUnoApdF4n}Lg3H9)^5;M>EM=+zRpw;$pH~jqy4~O4Stm#V7bm)2ayjE*ABsZn&wsn?F27;bjCH1ygGo5 zZr=k`=G1IK1!bF2YHA_gg|SKKe!K-jAeeqsrfU99I*8kpfg?-|T(p(-;@#J;hiytz z`prj()gYtT?fhIWlDCPxpYns)6wUJ+z!Mb}fDIIFIJ@fpRNe~i3eW?^hu4kkghZvS z;a?~eK6vyZB_HT&HD|2>m^Dn<_|ydW4C&}DLWuLMhF=%NxyW>(Gz!Zn=dn-SU@58X zkDWvD^Wf^kt$WN1E*_OINdh+C%JR38be~{#b}8PQnl0<%{he6oNMRXvNoiJz`gV(! z?R|)H=}a)Hyvd&p(DF9^b;b#fM6CzeVqHCaMSg_Nq@P4N!)$I8eI{nfUIRmJjpu05 zX|48TV*n=i^*djhb|J4FSeEksZ!QzWkaEW}QMDwP~9Tq+Xv!tV91*TTX z#yog)$%T8#csC3Zw-i4&^wa5^+R-FTsI?c)2}tKhGI04r+pq#X1TuG-j}{u7?YYFA zeXwU5UM<03T|-RaT)ytUk@}^o6j)HH1X51x5572N0#B(|PY3ysE2aMBhCRQC#A}vB zz3;>e_liv8(t*VQ1Pke{JN%{j2&G_@{cpcV2_uBRSmKY*N#<6m*xrCQ_|AoOR^_= zOYAHhnNA_rzOhl$z=rjCAX=Nki^uSwz<~LF@-B%FHv;$SG=|YaA}pVjn=#kb`taAN zMzqdyaomE}snh2Xw&oNXSK4uK)clMT9G#y4Wk8z0Yx{p;cj?)v-(jY`3~YKG11E80 z+=J)(73oB@Q$8Pcg(=^~Ct!4dlB(o^!IqJf1G!JjtTDAlgGzf#OC57jFyS(CXN$-E zyd^AFsBZ5{bJek0SrGkaLa9Aq5S_-UAVZ%4h?;@^u{B0b^$JZXT(O<}Dl$sElU`zm z<>!MiE zjVaPCd?x;x;JEVAi1f-HX8whA2@@&wpemDP%JpXrWZ8Sqc?jf;CaqgC&DhCEqZ3v2 zqJ{PiE57qcdJ~$oNJ%}jkT8_CKVwLIQ)bP#{ia?)J#crJ_Y+yaESMA=1-y!;G>)CV z5t`^LrC;t|Rey;*Z5+W!D;CVUCZ%oeiI?)53}^2`o%obmBnqeLBulo;O2NF-lw=PzAdxBmJ2(ubi4gpP>ambMu z(wymTN8-6GV3hF44s72Z;yFmb=2aZ#ryshB$z&;lPgsQ)N124DP%OYt?^(FiMQtH+ z+v6~l`$F)c_1koUKydbY3~99M_BO}8B$2FR05|>Sf|cVK96v$;Bn_w2dY86XCC8pz zf;h*M5K(RTlDXpzhZPA?YeI8i;p2s>kLU=qa-Ipvg|7!iw~a&XG8d1$tK6Ch%ZCO$ z))J$*dCUed1;)yH#DjMBZ=yywl}=_JDo6P-abQqL?M+V(!5>Nn3I0m9Gx*YJz&2GL z=Kx)+=UmfuDP!mi(Pmfwl5`v$uC0$ev)_bJJkGe9V`2^%jhn(3wA9^OWhP7lt%ca~ zsAbkK3E4iywukHyv*FG$SFYNK%AEk%MW!Sr+4P?*nb6{K%@Gu(cJ8CU?}>N8*_Ddj z&9xRbaJc@GsyC{GX~@`#@u*VumN{pNS0xxh#-wz|2;DR;wvA9^QTG*#^K`QNN6FcQR*S6g z%{T2c>Jd+VJfwGLhN?jD^g?4!${PV%W3O(PrHu#WGVV2

      N@Wt|DjUnbT0sLoP*)#)sq`XMUJLClIFL0hz(2(^Ee4Lk#L3 zhGH$8oZxKYI9kr?ATTC_|=$ zMu}#6twV-X`#iCAbH+QIT?8QsVaHjn=T<;xY)958cNL*|1<6-RX6W} zJ+&feTeBKp?gX&gJTH^(#&(v{J7g6cabI-LeRhzWj(BRg0@0g0m#a7DY);AmO4+sE zwLiepz(Jy^bNhO2OsPeRUtH)y=RH?^p9}r=b-&zs2fb58LS|u4i;*Y-jM5|=w}JNb ztv(20$jh}rlu90aV_+-RXVr53$lC>O?`-1rlBAv41jzr&UeptlqF5=B((A~rBT5YF zjbnIp3-WClh#5G4FnB?uZltT)bt%{e294d!Zh88OJRN=LKYn35pq0rFr$;F`etGJ~iQaQPTnw?;Cjrw4U6 z|2vxS+bxtK;Jwf!Re&nvu=KaU9Mbg(=b{C;34?`&i)==ioZ=(Dw4SC9&*o8 zu7}JRZm&qqaCZ~v#$eN`3bu)jKjo%Nc^H}};(Lb>@Uc?^C@SfQKV7_SN8JJe{ZweS zXVM{mq1i$|ZSuyIh<+iXQWFSSw^1W-gbo274*M?hu*@gRh;*RLZy|dVvGgFY+c%N% zOmNuR&v*W|zo`^Vk`!jGH zJS6EG3EdH>umAL)X$hhoRqF;X`~cEqlO;C}xG}-uDI~_ZWACCyWF6IX2LWlzA|921 zg{CMSFM()^;6md-K;U5fGD)l#ElH1plaSfEZH#zQQHbH)P$b+Z5^>rAoXCp)ZEp+3 YL7#sX&ITTSxus?54`gB>l>h($0Hj0`-l8b&;R-VKpub}^Z)<*0Dt86m+Tk$KH2}$^7L(|bbCntUHB9D9(eb!^G{H} z$N#ARrQUbcKizr+dja*&_up~9Cm%)ThuL5Hp5PyuURQn!e}4a&>;?RT{2%7eomIZz!KFJUe((r0^6(efN+Bud8pqf1yMa_+6@b6@g!1Ta z=qF>S5ZKQ5oVa# zO)6YizbuduV|P)s5t?iu*=c*J%O^e!H?_s9+;Y{#v!MzcvPx9VpjFNNW|oS<80nL@ zwJ@^_+N1=)r>Q#+wxrq_jV4DPOdykIgdoXLm2SR zHGDF-+?N&$heR0;^MV!yMLxJ<_ zp%JWJ$+xS^W$aljg`AzpZ`BUk-01Lr_0(?ZoIAT9#(Bm>1gANg9w$&H6dPB9M(I}X zY~IREJ1oXGrN!H$mM_&^(r+`0yDBx%;#uB2lyL|gWfA_m5gNnbxj35GuS4Zoo=l*` zNcENSYXVr_Iv|YV#x!=`pEPwAzf9fFhnW;r!aX-2AW5j~U68 zCUM5MundN(G7jtVgaqv}0+lgdx3c#4u)#laV$H5AWvTzM7 z)!_g2N7dTA+P%e7YcRgtSLK;IGzd#rLsETgX8M9N)*Nc{YRCuNh_vIKt5*`vgn1lW zhY4Ibu0#Z2o~nnW*2jTX2@vV;WL@Y?2vRqfIdL5Gt$EqSLEgZlcZp{uGl^v%43vi& zyxOZn?Y|jY;o1TSH%Lzv%5_9cVP)f1$0KmN#5YuP;w5RC@*W3j;l(`Et4uQ>n9^sQ z&8y9-=my2g^BtX|MDspTQEIjm$cmu^yg1etfGi(%(#avY74Y{gzFcFnz0v%CIr-^W z8TKd5tGzDnr7~c%oaFTz(tGNo`+mGdVPq>3XAqeEE_qA!(2sz$VW)DoM%vT~zZ$&d zYlnDImk~)w_Ov(8$SO{v$ZuPTjvOW?y|GU+1{pT5HhH~fea5tqcTZA8pZoxG-?qSA zk-r#FlZ5Yv6*Nj;n| ztqFB#L?@1?NLTiOa@m5*tORdKhe@%8P&qjY5FmbCi1IaFZ2sl+>K`T0AXyzq1>*sz z3nOZc&Kxfee2kN~Mw(UCKviZ<6XmsDZB@Neh)Yrjkj9|d=`q4y+G>z9+q6e5v)A4QvP~172yyn7(bmXoibMO7Y378nZpvCZtSghWNS%{ z)PPYS|L>I?I}5@NTT|=IpqC}jz~ba3u0HmNMm+YVhJNR zpy#XaV$wKCP0Lj*FOkJNPEMfqq&njitNOmW5%3Zi-Qro$kARTI?-I^_fB^pg<%x~U z`;+t&|1pstiM$^_#i3nIbwFDv^LioiWu@g;X?p_8n7BYm5{++M@t~q-ZW6B39yN9B zcy^k$DpCVZ46rjeq`htI#Sam|ExAeR4%{_ksJHut9uT;4vA@6+lH}d*olznj9yl)f z|EkAa2ghhji-H3$#5Y#7F0T58uv6K)=#dU0wuL_<2P9acve~O%!b=o5))>?*FL8Z;dN&`?TaP1pEcN!Ye!xT7Z~7X3NB ztLa2acJ-I6$f||(r=%lyEuZ^y_3UmC^NQ%(Oe&(6{xb+l=8i$#?}XB{^ zSVONP4`E625=)+;gBVmtf9wg5j$U;`^SCHYT^0TCSj%^h3YBN!zoVM)@vPfX$@U+ zJdVc?XX!MV)rz$yJ(69oY)EIeoLT&Yf4fmfiq!;7AyYq3oQ8f*wME%`7-iSLv*EQ? zH(zlOTxA1SVb9hAs|Oq6+ZY!RER|4|mdXg%&5j7J%UZ#LgRG;-Q@KyG8*p4(#r7uQ_n`>RLMF zm{w)5&PL>UXT6thSx3|F7QMK`Ru7%8mHJHC;4fmN;@D1oSpfh3-90lsT%wFEV~6pV za+VkXl9&GGR^>mT>q7=WXZ`o1j>MvvOBCr2e$SrP4L=HV=+DN$jwvn0{ggy=x1)IW zLzJi;ST?ElSZK7rXOUgIL_*d!k$X&u$}BVKkUpyhV6HyL$LgTQjjQ2}(f-5tbnJ4& z^9Bsn)P4|Z#fi!gdfj>m0HGGss*29=CFWse#|EE;Iy%xo7X)Lr_UHa*O7vbf0ZxUE zU}8-*ouJSg@w0QZ?+0w--ZWt-?w-n@h1j8Jp`$w>vgjoj*HQ{WS}x;lfU-8sal7W) zjziiQ3);mQ__9tT7O3ucQw+vDg1FCTlWF}5J6FU%(V>wWq?qfEAENjBJ+*zi6_VVE z_}Xg13z|IZ{;`tkp!5S7wL4wo0d1YY^F06q97lpIEZ6XnhUG-9nJAV-I%$D|rFmxb zD@4w~KXghXa7>T#zc|;~nZs!mMfTC~kPiKMt;&kG@8HK?wjnXis$G~uFdICd^3TB% zoapY_xJUn=SpwZQ*Z{(--|^qjzf*opy-0~5CqV%r3Q;H|xYwppi26>Vw{auT7AR3$ ze?EVeO`DoTBN`O*g-<+T!Zt^y!n*6i(>MSXH zOWsgFdd&Px09>?bbBie&uA*&OP({+nE3C#8wuhy3M-;gKCSikGgP?>rIT$->&?Zo` zfXl~3po7D4mB$U!fbb8cBNi=g3l_Oh))E8;eQ(_ar{BT19Po#P3>1lxG~HeDnGE_u zWCOnG@dNFh!iiVBt?S{ezf&xNPSM&AQswv2hk*^k1DqSP z#Afj0bb(c;)fHW)zbl2FxUKvU8dtsDsIbo%EGekMWB=atkQLmeW#{4ilRHJI(QO}x z_BbS|)=rW8<(otiU*1Xb1rad3@X&hRO+BGrO!SwHiYzErd6 zR{6nT_umnm2?WJI@C#>$%VaN=J>NQr*Jpi@m@BR5O-Bg27!1?#(ybdy|#&!MvrUG>R9- z3bWxeAX`_h_#EK$oB&MZ71AngS{ZG-x8vB~wF~^K#q`FGMvuqFH3T+*aSGzN8&Lro zDL>#8WsnWASk}OYRB#-)xQ@>d04!=o8+uebUkNOs^}<#fQO^Lv8!ySXaR;5&Wvuf5 ze9Ta=*LIB0c$S!Vu$UQuBmPeBcC*Ab6A?zEz}nLX1AjOCv(MqV=;~SW=vJSL@-Us} z&X_s(fX~!{)V1NEQUss~Rh%>bk6_0m58MGRe+A_dfQXVqYeM>x0Pa3F5wM)Ce;bZmyb9!(`d0NPLOW91Tx6;l! zy4AZr5EiriCj2+8GD;8FKrs>nMnNa@c+(Kz69{v)VL4<4)b&P#QNSOuRBgM($&_7z z@DV`tN!-}8nbJ}?rfzJBXlQGg4|Z6*pn6@f-sVE0edsx&q;r9*A{jvjZP3~&x&??7 zpr*w-=rc(2QNWh#PK??+i@k+Hmxt0G>tsV$s>3?JtD?tAH)Uz>wZWqM6(|`gqm?Be zU-ODBmjN`Z>)Uy%mrWh_tu$wtkh5bbT>WVeIe<+NA*KfXMUCB;kzVvJEUpQ zYYpcBMe0Ps_?h6@r~PRVGIv7R3|K7b#ZUmXfC#-If5n@779k(4FpV{{k|OT5QqX|@ z^A=q+J&R;GY-jn6wuLf9AE^BY*Y8t79#=%;ddesWbUFh?pc+ewz7U-AbJK#sosv0h;DA*TM84 z%aOjYkE0ZMI=_jsK@jbHu8}3KD4kQVT^A0f&XkZD&%N{9qEIr0m0lX}7=U4qyngq> z($tLq^VC2!;A*#_VcmDUEuz0}JxBlC^#J^vD$#hj(Jr#4FPdmcPOv1-J2L33-73&i z(IWFK_<8SZyN{agrMJ3dD{8{S106+maP21=b}BHpQwQtYuoSXT`6Qr>sv@@~ll)rl zIUiwa{G2FVsy+cIFE&MDgV#f=rJ2Rr&?JjzLq$5+o+&(bvp^H>3{T6^+x~yE=176G zmUgN-$^rtZii0!=1BP<&Vm3>^Azd13EvkU4G*unLRX%CM#_)SKpCxkvCz8X#lyZ1O zhPX{n8=5F2dLGTs7lQC;F8{>Pz+{NFo`(AU%GbpPG2?@vmh$RYYhxIru4J$b>OZ)` z)$}h$GKtMh@@jSbwsUCsvkYRs^}}Dv8VuvgR-)#`7PM?lyf?8tp&B<#qKp`1P5t=h zCfCiq8wSCA`GTV&J^0>}qI)@5?-3;=JRN!CK1(fOU68D`8gP$0se)BSZr~T1D%SpH zZW?zbPNcKC!aF2c%pgDWd}e0i)n3XUng{u-I*E{zs#DD^Op zrO6%l8*XiKFrDJ+Ya!6(yK#Kta^sUN?dRqapS~6WxCiKrxwQhpV^eg8>}+7i56hyd;;#(7zJQ!K0w0#%oj6C=WwDWqaFA5moVr}fn(`WMd2`a4inw=;l(Z^1vfFpefp+qGxuO;F@}h^D_y9f8rauLl~EVaA1v#{b%cE4aUo{C>nV9P z5az^`Z#tXLWY2khO1zyoQROSLS!W+AZk}mB8*pQ+nOi=dX-`22wwOyag5A@Z_Q(Wv zBAnL&W!6w=1Ec3r9H?bR&xsF(f<~UoPAn6ogCdyd2wfpzg)({dgWQSBv(_s1tBoKq zY>fj6jOd(6E>k-?)03Ug{zjq`Pt{Td6#-{FaM-C=xrgecJcFy@7<5Mo9ZI}-F$uL@6O)bTkvgLMceiH)D6g68QP zl1iL9;{rNX5tRf(vib+i$k%^LSvj0pDkb*~1$Z>9^st|0>t(!G(+&@dP|kX49PR+* zmLbxE!K$302EcB33%wE`$7p}v6ZtmJL!de;w@&%V=$vYQ?85D7Xa(69Ln3lLIS%7< zIA~PIK!HapqA|&!nfh5V#IPCt%}U2=&>>skoy^~|e-GR^`Gz<(0(S1BOq~Bs@!JBQ8 z1WxC5&)q9@aL4DFH2tcELFx?u*;_aGaKTsVF=Ke$J*N>Q|q=9;oPL5GWT^| z)==H>PW+=$712c#{>ZvXH8}R&r%T0}B@mKFOf}#rW#Q5?1MNE~9X&0gdZVrFzAGyx&~(5*`z&E2@g`U-B#)tjG_>C`QNW5K-y_W1m< zjqEd}i$H2tnbY2v(u!Y#2=uFA`Pi)9Am;pgJRGk5_c>LIb`77Jb|WvZ6bul0b)9&K zGv3WvBwxMR6q24NLmf-F+>*+^0uN0iz}d3O`^GT`ck?mDR4h3aWGfV{t2k{$slSJq z(V(I4%Dx^R@%o{p->y`02RK{zJ85v<(+!3T_#v&=!JP*Rw&KXqN1BH7c_x zEp95JSpu4Mx|n*9VSk;so>#@ExtLrb%%VU$Xef_>ODt__fTu1k+P{#gu9pNL# zfGJKS9c2n^X+cKNO-IoTYrh?^`QiFlPxMq!zF>cdpB~Mq17ozTGaRufsXaYJG6Rs? zV}PeV032@SJa?&ajM>1wd97fHoJc_z%0)=(g32f*UcwQgc`MX(Q=a>yK34B8Gphiwn-iQW8coKid~;D>m<=@ z;1Q=BukJ@KT2<+J47@lbc=o2zxFAz~t`7fIS=2Hte9uX-b9siukK;3@CPK+uB}r*D zJzK~VTUFd5g%-UDGabLv>baL$=eGavftt#!0@N9T&DN#bxbO6`zCy&VgYgae@Nenx ztCNN94uaU;4}EqRfC=K44>UOes~zvoww!;8DM4^e$b=(UJU2(oj(fdI55{4uY1kWd z12DDR4So74`Of)|S(Li7B_{%row@1Us;_^UtU~JGuDTaO?EOgxY z_+AI_-tM>q3>1k-_^0E;7IgKB-z7jX^g>bXA7&j900$23v3z1KL$DX>>-T%^j7m_W zqrReg)!B-W0{jb;njP(C|F@@F=U1eIvT3y;i3Y3A@h&q;B@28GV=jd22`;MLb4JAi zAR?0T+jO?;^qIFy{U2!xQnvPV;*8Q3IfMVGpMhtVQUCU9HI0>)Y(_lFqVdr~%x5C0 z2cGU zvk1Y4tXTdiff7R8(h&LiCLwH}?Saq#)}79B67NJB=S`q1(w-(jx6y_@pljVGhFn=V zLF});5@8JCy(bqwD9#Rlsx9oRbD$&mA~d%noi`J4jt(!Wb8&u6PFm60%p_MTF8n^_ z1nCJAVXe{(Bh!6$<>K`Hv)OPST(o^qHp~2qxdu|_Z|yi3K{tn=?5whs@)cMbMr>H% zm?1GgEkD{2QOtB%f!r)qB>t>=xhzH!?Hgi>jo7@jib{V)sffn@tJhemT8tt9KFp4a zO3@+x1(8?A?0P)9*->9SKYn=kUxEd*%oOI^7JsuAn2YPVO8>_x92P$l*@for7P`kl z21$#pVr%gMSU@DqS+c@U5b%v{*^*p=7rd0SfQHhhq

      (Pyl#y+9=hsf^3obW&RAD z!vnqJJRC&#+0dB;0JgvZ`FE@KojddCg_^TN$+Ivjn*X=pGaWOTZsOzZctKxGkc? z@Gt}%DK_8_w^ZZe9wu)8FJ}&%3^j*GmX%_7w1x~L@1JR?F__hdM!JwoO4`TfsF;ze zToFM461=g*hC~flht4@|Pr!#j{hx!1PCvJp1i*WxH~X#)E8jh0n0$Sx%ESa^T( z@kl`X2mS0UEij0LeZTB#t_>2!Ez7VM;wLDqWI%?dkeM~50VMD&Yp#A_tvDwmmS(kE zT#ehXcrpN2c#`3Ddd?e(qgY}&UlUT0*eRTOJi z+qBnxr|7Q)A8>|E2RU(lFDS1d?LVULa-cc5+u7*ThGeg0|M!G?n#>KV!l|2P^-QZB z$g!C2vQp>U(^_B=LwqNGk1SLr8Az^$!A2zXc$ACR1x54Y1LcJ=ThUN8Y9WFdQWNC39s zlb^QZ;400emS}NuP0$}J|&OwXAx16MT-0@YaH4)XdGZOY@I47@|Dfr|m zYqy%YE;R+=h+ppDhq0O+=B(+pszr;XxEbiQ^>2mdu4h<@UjmBjjW)4{B zrA{cVlKp;ns;jXod@dK?6X}{#p0m_m;Y>c&W}^-ju3QC^v7(~+GB0B8W<>s%GP#xd zxI75id&?OTorDp!X$8L&Z7Fi~YW1f^L|l-NQy@oYceBM>U^$e5e~qyk-`Hcx@!P4C z0Ceui0F@IeT7=y_FSNU?K;#P7#S^6{eCjk~EMe5%^b)xP+^Gu97v;fZCFMymNm#^A z*LNjw19y^iLZdn?5g4f)ahzeU4L`LoM^KKQ)>uQ{_!ybo16dE`{$60Jk}FQ%Dqn}F zHbPO*%OSrUFbXE4u#5%ja&l*>6@4xiIpqjkx-=9s!0cgvgjciJ-B=VprG@F-xeNG9C8_NdncS+5+)^Kvjw^XM{<>aeJPc7 zm6}lD>6=?pORffLOHQl}G-WM&8nK7KIPG!Bm2Uct9L67CF1WI4aaa_%y*81<_U3K}L#gTw;Qjz2sDj(y;`eaR zhZ|J^c&Evwc{{;s?8bs3iaf^;6Zkz%JSCrh8A5o0YW{Gb;1bS&<@K%O{PvE+a3p3^ zGdwrKbkmbjSC)m6$K$4W9E})?F321?Pz;Z-OwxC0)&)vf8M0cNC<4H#$e!m^msLPYQ-T!~-Z)saXBs zq`2_QD7{+(nQkhl{-j-eS;Wy!I|Ua@l%Zc1@?6eu^Tt?7P^laMylq532%s*|8Qtgl zLaXK!@BenAtceay03}t-dS7gTCvvD?nuH&g@tJ1G2^=F_2qrAUJid2FhM>ctaKOJF z=AqNYaMgJD&Xm{?RmSNIqst9Z#Rk(3istxWaxFzjVQ8$`@)>N zsjGh<)kqQk8iUmE76XP$wkN58eVi-9?s81YKr9)uQ?QQ&FrRMY!j$e#cf&Lq~Pr&m?y1`gac^ROqpwl!<6||HZ^~) zi4n#dcj7vqj!?iwt;@@=1IzrX7O{W@B2$!QVhpqxau@g_*rV^IJO@72DIlE-hRz!T^( zH}bZO23M#vq5eSw5BYY+IJX@*g+U!f5b@+aqzR-3eVIKz-WxZ=Mn;ru2Kij@0j&(Q zcmMlt9|!gr2OnG7nb91~$A&n!me|=ihU=5H4Fnx~Ed6UW>M5(IbULZmhyYpE^O@d*B{HT(ri7CYOYV-eF26vn_# zm(0sTPC{Xv8&)E>_YP@!(pfM9;DYd0%NY@=D1U%kKExWJXJLJq{TH-?E2w9H^3UDN zLxWg>X$INO2cKsyVY&Pgie7zQXO2m*I3^H0+-a%-#`dgVLnxx2Wu#23?F}NxEWliN zJ|P-g9ua1d@I|7`IDK6d!T+{RM3o2TG%|>A$xh0z!_nQFR6FlA=YehnuGo z6I5brJ|DDDAqqk{^}hKYf+M05#pf}m|6U?9j(wR1Xo_T-Sb;UQ0g%OVuc5Zs@qm{2N4h4cTkSvk|)>JzIWNSp!+l%Y}; z46}rNH6ZNW{3y>tG+ zVw}FN#(LJb#g4cdjX01`?$uG?DfH>d4EN}YGe8i2W)i1=aRRPmE$eU`;0^T zr4Bbah(`b!LIZ??uI=Jq|20{YT;L>zo`X}$gooJr6A;{VVxn$3hPQQavDsC-WQi*i z$K(kPjaX)a*$;4U+N(>&@O`=*JV~0q5-pd?Tm~HR{}!Hs4up^gb_km*Lgk>h?-P1s z8TPSix&^NuB%#Um?8mitc_B_LL5gKc{8_vdUIB`V%?5U#j4KDDw6#dWxNe30$l>y2 zcWAy5+=6rOhYEU3A7S1L$ykbD0xL?~8^^v`*-fkH%{egbH4x6hQx?FK>#bBbPNGcj zEy}N^lf0(iJ-Yh=iuM zaHMlk>Z^c)-0^Z5+4c}KNB>W_ur(8FR3YGykb2z#5q9*2N4^@*SeuE@6fG)m9pSBg zoE_u9{6u{rMPMUw3kJ$5K)|0j18=pK8d6Egs-g*F0TWxTjZ$-nav0W@0G2TQz!#M? z?{8ZoB8>dS$rfd~qCwxM$T>gulaK=YO{fBM+4XmA%c;; zwj$4eSPCs6HTz{WyLIb2TtzaY{YcH#f@$;PrO?5aJN|@#^NwTiBj^*kKR<$FtZ2~~ z-JHgZJ1tk#{Y&pW8Vj!HLQeC&|MMS|e+OqVu4k?y{SE(4o@4sA$r4}x_V@W71ZklO=^52H#wa_(Ygz%L8{A@a$;l zDYzAeEe^YeF^xFvIKsu zB~LKqP+1ndhwVVsbe|+v;?R{l%={@@ z=n*U_z{(C#N@W`cI;pPwEKP{Gynrq>*+g@F_PTFLZzuP+ll$8z?>gGkfQcm|eY#Yu z{scLyWZMazdf0!8aD+M(&4MkBhPNi87pF@WQ`F}ph0)qTU*6)n4$VoIc#rAgl?h{U0 z^$Kkurwik!8W;Jsc5l*L0r$R)b4=I?&*kA1oAPsbx#SW3EOdhP^s#TkIk+poN;wFh zfJKXD8Z;QLPkgv4y5bGyo0+849|5owfF{jq4dw;Oqa+o0jRE-Ya*zboY5D(@4V1_H zLD2~E-4`(y6LqOX%bH_vjGw&A6?-h3mD7S(82rp8TnL8o$!0gd`{Yc=CO$hN0k-+Y z7B@r{C3=51=GObJrZsN9h>ecEpA)cFv5H!zaSWzc6%2Ri3gzFeF#&P>T1(k5FLbbW z9jw^u;x2|Tn4}nU7FkHio z3AIE5O>b|!e#3!3Uwtc??BiBxd19$1zhWc|YiToC>ufJgBJiiSjIEU8iZc_g=jWFJ?_X}0j%5!>Yp~*_@i4|m~HQ8iQ%=%OR zAa6_wwRos~v3Zn4)WFYpQ|CfSvaJ{AYe%@htMPn~A=a3qg93}>p_(iNm}mhls%fsR zTAnq|{EM3?Zo4oeR`fn^zT`Y6s-;EQS^uqs4c~D8>5Z`O#w9kXzWZUVs|k>p;CcMz z@;!Z-e#KxTH4>4wk+ehzY9LCJ@_AuRc@Fx&6mWIyJA;3rC$^1j@M-d;2^-3#wno-F za@vh2PsME3$BK|d`*m6^P9`5CFy*C74$f9g-A$aJ@QG;qG2X!vnWnoBd?Q^L`cho&Ze&M1WIck(GY>H2UZ~n-IDjD zMdKbq!<_CZ)prU~ zevKok6@h`d@GoPst5k_ye{z1viv9V&kU&4*obX)wF|ke+jD5QmS7;`h`Ow0S*fl)Z z*d$aeIU1~J5G+5{bF>`@;{nRZRij;pfB_5y3Ccf&DmJ7uO<-dktHYj#FR>2%K9SbhCcpw-)>QGVka z#)VHF)n$5|6NC>9{_k}0Hveh5k6oen??(C4Tar&S#$T;ae#+8;+#od?Tl z5VQx%_dfCybrAj8VRwHDQP=WT{U3U{b~hLp0lYHcMt*R`QEiXp*#|cZ7s302WW#xl zuU@;Jmg!2MtpF4%ny;jJAye|()_bXjKhYD^+<=62zvBhJ~ZWlvUmPIZq?*4`i|U zSzAD&sV$V|UM+@jwcRVC5swtJmD4QYLn#Ja8KOAcYdUY#4v zCzx%u-e={CA$8>UzYG!{&o3^{a9?mBaE5V}T!kIS#~r+W@(wp@wjJ+4H_KyqMADUx zF^L(RfE<3nGz-af1Wf@Lc4g34KZEB-B}Y3Db=OUs{i=dOXe|tM*gLr(i*xIF+lWjc zCjj68q~K^!b*@?lOLv2(5Xug($PXpYpf>twU?n8sztOEdz#b|HT6TAaz@P*5u9b=k@LY$dtw0 z|AeOCE3-vS{;YghfXoHwwb#ls@qE7KlXWs71 zT`wy#KYhxS6n{jdq%0*a{$>dTq#-7(sIJIKbo~cb)C9=^rZ$9l0^w)EiV`LMR#=+< z&<->Q0c~Y>1CFDPLAY=gH)+N9!NFxOhh#I&-={nG-L-(zcVzz8X4<&+Y6RDEB0NR(%*e3tZ-X`p%fedsldgd)iq6y!h9?%e>XS#NGM(f6e>5 z1C+j6Hz8kk?q_cdHhUKU698xc;7aCc_JMHQf7pNO3jlcjG8hI-^mYP%0${(KztUdo z0Du<(q22_4M!>hv){nT4y5GHk-uurb|J!Gt_wGxbw|4-?{Rd5wwQfc;LY!jlS}a92 zIU8~MB(}qbnw@ROYwelufQd3y%zC&)xyJWV)EQKq1X=S%Za(2obIx3c^u;I>_Ja9y z^bMw=`;d`h73_cNX1d(PE7Wbuk#~=&0&T=rq-g%5P2C@VyGwmDCYmv`N=hFhLSjlP z+*O-nR!UWfXvdQ+9Yx&|N6w~U!zPZ6_5s0o#SBi3y>oxbOWICMBCj=Hk`x6REJ%nb z{=Wm^@#}co{6+&)d4={aLNE{tlwe{IHuEiuW3)7<0qA#C$@WIn>4y;hRmJboGATWj z=PgZI5+gwk#dhqBG(}5&jdF5Eekbq(P7Eow)UdQXc$qNupM7d+i0J#NNj8E$;{zKL zc0GBpCE-3uDCA6n%8?NuRdUTDUzY)>k*cQGdY`skgamQ~F!Sh8{*7*S(`%g^=9gPp ze}x^=pakUVzz{d4`08_~PlVy8ff7JpB$}HA?F+<%bl}JkCaf)=%7$WPvyY+qH5QLj z(}hPG9MmBTqc&RANSP-!5RRy{y(G5RpYnmhx-Z2K5Y!%`Lm9^!53@!3mA6XdmYCSlToE;os;LXhEv1X=St|Nk9EV!B(p=aWM!7?%>VHhT zxLCTyPq3w&=ulU?!TSGN%SDKJa$QF=biz2j+_(k7gHcTUn9WK%G-FOMb!(NS4a-2}^^!)VbP>TB3 z&s~lc&>!)cvu83@3C{oaMm_EnGG*(qq(kXRD8{lp`@vAE&H`vqnzWiQ43#PWDKmfTD%cY;#K9>{eFgx>1qcr~tAO z4D=Lgk}DGGiye9(maEu=(kvjKe_AY}5<%Jq=Gd9jwMC$ca)rQ~UJG9E=v&X9tk9`I zvOS&*V=#BfTqvl{3Q*|=54l8)n=d7VFX%2LYsp3)xD=(IcvZKx+e<$l9!tEIJ35Hp z*A3mXZiAO#@_LkU3< zU1Vj}1Nop9)c?KW|931YodfafrMCH5s$;B{#V}-LH)%5yxF0(&mTAYr@Kt88yiz3Z zjG~cw80&YN!+i;nC+nt?28vDhQ3oux=&(zy=5!45q{kB-`Ik~#MV0&|e5!8sSE8hO z-l1i|FnOao*~yK!bC4fyW+nY2v>t=LloMw|;)WDF#RtuIK?t1t8*HIcg?JGHLn+`` zGxR+?MRS^TsxDF4yxHvjF~xC`zkzEIRRAM#Kb4X_R^NeH@OkixF@H$LGB&SOf7iq) zR)%asLj9jp^$mn!x`OwgR{f7^UDdXXG77aS_mUSDrfRB6wSR*s5XIx>EW!}Pi0;E; z8EzfKCKK6g?-eq_m7v2N6r$l-C7v8&EktZgXIP3ZZUW`b@Gb9X@FJ|PkxtO$gxr`d z8V6Dx@T0aYs0RTN66HD>JBKId1$neKh+td#T80uL?m{mAj{$nV6`(&Trq)JI+0#_HGtb-8jOvXI@{EndFeLl77Y?Rwj?4zNRVeL| zTdye<(T}I2J%sTC4|un=Wi$=iSbb06RVrgwFSJBM=hi+!R_d6^9p}2c%sK15OQkm$2i=+8B&r&S+`b^4T!Cyo(^4=BC-m#ZQ$~TI=s%?nP|e3-wGl zZN8-D)_Zf}4nP3E5$mZE8p8_`O9-r0J;kY7bcX!NMQCeslg}z8^>2&~N!MYhxk>|d>e@k&qz!TIktCS$krsfcr*P{{z9My0Hjnp-e0kHf?}neqcxY2(y7M7;1H zBmsI|>lHcC^xxPliRd z8XimdE`xHQS202Y+YSw^)8ukkz+5YBx1}Zg|K`HNx&V~x`nCW4gEjpq-$t+cSxgBp zf=4MV)SWc~qB#43>Yt=0PW%k)NzmPq8Clykqj?{H1Y~oXJBiJY=|;rw;_l2cg#g98 zZiFAoe(P^;JRrOD7;8#OW`x4Yw99<*JJNG1mKRqH|8CGq!vy~QSDET%GbF#7=>HYU zzY(&Ux4P5&37fl_D01cK*E}^Z>9oNgy0X*p(V+0UF$awzc2r@| zM;eX9JR2>=25h9i?maOU6=yWqF)9tE@Xt{ubu2^({=IIpq)^pEDzg{si8)L0@6Z{BW1>$uqE+cFvOa&YuXy|4|e`PL4>Fv z=i(wdKHHZl2)0jrg9@eaqqJ`7E5la4)<1Cf`RObHymO>P$1edRq@#+RA zArvS-2^ng4v|QZVM8=g^Er5Aq{5y&LYasX=&*Lq!p0GeAN%)Gy9D_Dcemm1T^_z|c zzdK4tRWttlLo*pium-VA{wAOQJ;W48J$kR^ta~@^r;Sc+_M@M2PrxIz{(Vv*`@ie~ z%lLHIqTWkuOEgjHC%}9A=lWA29nO0=a_toBfv$E8`%E3R%Kzgn{^2z#oxw<9a?jN0 ziT*SH{B5{@k3#z=5z89>q5{D%vTyy(b4ihuV>@?Q!%h@ETL z%=w2jIJ>p_ixz$r#TMNsmY#% z%y3`!^ZLvN;XY|8@bmm7P5-q(=&_E2==hnYW+S8c%j&F|+?Oy8e!Ejzhb8}(`hB9J zTpdc<<}n2`orX*}qpdxOu4gZ?4Pn_9l;lNc6PnmcRg6N5?~wL~mQB{98~nBNzgAzk za$S*B&V5%RQsVZJ8r$xTWE<#a4J=sf9~XPjbl0jY&gZsw|0~M=J#G9Coc{kC{6C7n zBmn5^f#4fhC78n|!FCIA5yZvYBG@eeR*pEznD!LQ!^Nqhx{Ntqv7rU^r0o~AE1SxyjYb@g;z~B7ZCr1oa4*`+kD(60dF8QfC_e+4Z9R z{FUkb6<`O*uoim^qnjR#Y#9snhO#t2=tFXU@T1?E_C+amTF`1 z9z=zsT19HY4JYyI-}6+1fkJ9hPh2ITO+TtM>YzD3b2Q*j>W%I8GV zW}r2GaN)XOhHn!DQ7v7E2F_)5_o*$Wj7X5ZeJ!t$Hzo0W8aylI0eg}TL+U) zZqGF)6xmRBW#l6{G;zzXTwiK}dKGNtbC2Yxx`?d$+zX7C$ytI`lSc`B_Q9T+Cvek*bHMIBwPSSoEW2R^=@^pmu-bII9&6#@ z?sML8vqc%P>|IZIipNVpg1qNy5=u1Wzpbs8(Qu`#NPndf4?Ys~4XO#Tp9lv?!a`8b z+t%WZP?DXIib}b9#0Dnxc{!T1!^I`VopJWnJ~?4un0bAkDBINZ4+D$CY~0CWN5^jN z+&R*JR@Kr5=Q@*ggE_$mJX&Bz+Kq2ifz#@X$`5ji#|zDdA4Ajn?bUtPZS1e79F}t- zeUqhY+lbQu;me^qo2>E|uowT$oFoVBFz&PTv`p79M0Sm~b>rql-!peSt%1vw>QF`< zgkxYk@-Bq?fG_-8ev)3M$E&|?$^gPzT-P|Pg!<(vN5wyUHu^iT#ZEaWJGVxwO+2N{ zd1s&n%+*dY6% zBygYsj*??wM_AyaQ|!GMM#2+rSVcqNipge) zdREWQ5qf(`8x&kKIv$QgzlW>124E&uuj6IdVZPi?NU_ZZz-K2;aSp2QM^?+Te@_s;=J`GV$60s_r3!vda3>6QtbwEOKnwa?>gn%py zAS_QH$ZV^a9syru5;VE39l06;EZfcGHgtHFRPRBT`SYW$JM_vf4|@v=8n&;BGL-BQ zdC4oge&V2*&)1dBvdz$s=DQ&ej5x8bk#bWehfSHBphlKZSj-lU)-fx=4OqPKy=@5# zrU%lc=j+K<#^$8ALu99CMd+?bBTJ;){VNg8w)G!LqWLB5EWm zdXdj65A4}ZMAUjJkeSJ3SOoHmx*2_!t38$U$_Hxy*sH5(?_&#tf~9TL>imOwWeN&( z9M_5t&s8GM{?@D0Orwt~eCcV}SzS*e_Ahqaou*ujN|zPR>1~!lOKyE{gOXtB*@bBf z_FOwE0TeUFs#RUg0hGA3XCadSt)mDTAy`3k+AZEJ=8-$2dvHjPZm;Ha8%F-rfO2<5 zM(7#*XV`YNLUFXxq*fknn=f63@YllK5%=i6kZ4~`qb49Ae5K94hE3J)-_|mBk;i5{ zaH@OBa06Ncr2xS?v6YuIdJF}pyIL2kKVtm8Ng*N>p-+aM*>mFF$)0A{*Z;NS_o%&id`>QL;x5Ng^jK} zdy{({ngDfht`Jr=p&4riqT|l$*M`xiWy{%^Gph=qBRsv2f^Q<0Ej-?XIL7qv>K=<` zYm>t`C83c;SVdIEQZ6s#LKj!5+p#OE&@76LR@sVPA8L%B0L9si%8#jqb}g@5teq@V zu8qg*Zp+v@kK3RRG(&QCWO9nsVS!NKA1~1*xP<7IoL5p24LD`8s3i$t2DaF|2k`;O zSgmF7`#uU7Qpw<=U-)99Bi311;tttk!w#3?=R&~-?<>dc^u8im+D9w=OZzcbW<8OJ zlcp%3eoyS?%KxaglK;waK}o}fsZv~6$zmI|;zrUi6<7U;_jWiJ0DIBq_J1$?fDDVY zL7G9aaYk+DemR0(7AU2*8%8^ruK0o7m*bV$5yCe+Q1OcPHZ6w*Q3>7cEM*VsL%~ zj##926h0*M(NCZUfk|Noqq*yP^V3dSHfS%Tq+sO=_bH9W;On+mmRGNZ?MlyhUk-ZYrb!d1 z7o3Nl-dtC>xLf@<@1XzWv$Y%iQ-&-3NRR72yO3|latS!|eo)bdUjIIO9^>nYfKL(4qbU+l91MMU z5 zfpB_1P^h`6k;J4x>AUM0ODzNtg5qF&#Lr*>joWXC85!gvj0b8jf<@VT%L4B^8hRZ| z6Dq%Q6x%rjapHx6Q_432s_d92UrE05pgJlM-aR!}3fWGzExYWT2`W~24mZx);<2ls za5joS*=4{!!oyzpP+b$Op)bDhfr`Sr`n*PUcd$3u^yn2~)asQ0*fj;sIl6_w1((aq zbrPMpd0>Qjx~Ob9yOp_J0{Br7qUM;pztfapD)KIGVM>A^4&8HTk2ui~1MI(3>yFUe zY>Q`lXxg*$yk4DzTc$h$9s}-EVPtyiHOR@z;k_hHxK!{_`T0oEr;BLJF#deNc!3{y zrGmPuC2O2Ckygd<*x_c?htV;?gcogiMahzQTqV$^XSBcao~3l}_S-FWdid?_ubF)! zj+|c-{EJDsHlqQBgtjr4ONXE&e*13>y$iuvRxPj$6GF{m-Fmi(aHY`cpj;kZ`V5%S z!~3^?0Q%1WPyqQ8M8~Zktmn2VvdY`XV`rnfrwJ&jW}ZAarq|xofr_1US9ZEx!~=I2 zsF%Dd6vHuV-O&cfFgKG1dp}7OVM+N5oLnmvD@FDgLCOW{)5fdUWt>!YCPQU zb@{wAisGWSb{%femhV8uQ)fZwy)aqIA7(Z`2>5?KUpd@{e!s=}Om5G3+V0nesz&R~ zpRswhh1D741p;#U@NLNnC{WDLb#d|k@}7mU}7~IG$+=H5NT_TK2hOkO13;N{92Npo7pe7 z+da!mUzN*U4aYR}dyOg;F~rug+0R>+bQG@sJl?Bv2m@Vg3zPLa z1-0~{@pKRG6`V7HfCnMVYg`=h)BYvYDBf9^<2ddlqeh zlqzQCwFA;PyhtHHY$3kLJGfrO(QvTT@p?cdA&1a8Ls}G(U^v~`RS5KU$w76O2?o8r z$V|99$8T=Ni-#_bVC^vDJ2S>|UKXg^$yrq?4<@3MU(t+8s;Pu}1Zyhlc3u!s=lh-) zZeN}@0X0d_rIJ_>h<*AgX1q0KnP%Y6PB`cKdCxHbqR%zl>4XNrP_;`T*bYy0q@nt{ zwuSpPqr5=>Qi8CX5fER?Lur{D0q6vzR<_#gr9$(+PF9VS4>yORU=Ai z0!{k4B>m(2^o#)fAvi!0EM7K!dwtJH6IwSvBC-!4tH;bsNjU%w+Z(;2DV%r$q65`; zg%+$2YT$7sw@+giStpJ>@$?`_-L4?|1xL|ce2Yu(e-)#?P$mZBxAR5OHV)sKZTUOD zYO$?Tc$uKwl4d{`N?qAmW>o$OTDShXrlMGA9?kwDXQ|!^6>zppi;^rM!!P0U-4H`> zJ+#n4I21-*ZttNF5tLsY&S>~Eyt{h5QfdVHt$F; z1{7zB&kJ~iS^;zNs2f8#-a>l=5VL#vUKI`mMJHc)I2!%UJ&}m1V zr1-5kH71?}QEv^U=81UbFswS{x#ab2(sT_kb2oU7FrgUjM>F7@&|WtZMXLZF56A(~ z@pB`h8XV@3O*5N7R#8$#RJ!2-|AtgB(D|~}=!k;V$H}J5r?eL4D~$Xg6ap<-HSjq- z%f+|JNAy)gZm=X5&NUl|CM(Ds`L?ml|HX3eR+V|!1A%TWg)3y2n{=miYUISvv{q_1 z*$g;XvMJ7-dyS@K^V_Cb7@x10hES1uI1>8rVT}%faVKlt4H?V{x;60l^o4`qE0+9X z2yQZ*sdS%YX%bNTTy@v-bPmn=IkAeM`&ft%T6dwRRZ53S&%lkau@Sxl>z390G1vx) zMQKq19F6l=8XK-tA;?dSIVuB$MOu9;uGMpFsg&DEc|eVw-4#F9_~q&-TpHUhrrvi)-r^ZZ z2A3PpqzE*{%h!o@pE_5UmpxDK%ime`WM!+et38T6)v?Be$EmA>7T-&ZA#ic(1cS{T zh_k=-!y=~rdgVmwHpYEMrLDU*p2_gFTpt_g4gJwsOgnoSB9nwN)dD9sTjTpg4zY*? znUT4J{OTwgFKQl0#0P_-WYt1^N6s#03#UyOruyqx;ON9^$^_!M?X$r(cWdOq@(2r= zN1eN#^OqshogdYdtirg-yKqXpNzTaJ-SG)1F4=|)5dj>Y6Q&Q7q8CN%9i5KU8)gVg z_vzFsb8c-NoMX7m4hhV|=W?#gq)i(deVHgq%$`wYxzg!L1w(Iw=MAdgM|-dCsAB^y z5^?L&;UiY<4Vs*mKmF1E{7hqQ#C1g^d_?)#>!qA5V4u#o;gR zMg*tpev$y~Z_?P)WK{RJ-l3*7q;&?%wf1%f`Ttj=!IHI2(fKRZFi zhQFdJ6FF3uWhd&b`br?-P8(4Cb_L!tLuaDR=F|nYmOd>THctHr zPgSIoP498B(N9e#FXdffhexKEDdUzk~95O`VRMmezDca-m*DoQER);#e9vzLp5?`|Sckq(ZFZ5hv! z1WJ=N-`%tB_l8fGqlNNa9*MGi`mrTZFPHsOiQk<0ZDL~3kz)L?dJ&gVe|(sq0vSlY zIpu6Geq^;zXm@cfPj`6mVW2(P2Gv(~+QecE2SQQGW50;5j+EeTc;(Nh*-0Pz4{< zE#!cnks0@FcZf&#G=q-p^}z=D~lzIO|> zG*LQGa1-T=Iwg6>CxXTPJZD{^ckrp{;k_$l!#7VFQm2{5UxTnX}i0s|Mp&3#5}YE;+*DFvm01mQu- z;Ll`|-1GPaSYombCl4e6&X8EDI&sc9%#_{q1j0+DQE(TOZ6=*!TYHzp+;q=EsQ@ zgtcC*1!5ca2&b((!k2&FO`_uY27U^7Ofd&u3^J`2Ys(<+_}W(-qssft;>IH{pY#Zr zd}6S)K(8sNf{F{-yK>F{Jcp$yhAT!SQYOu>f#%-{B;!M71wz=;{4KuCb< zJ7K6^6GHE*)VYSNqfjIDpKBZm$lSj%Kxaj6;q^npIlVE{o}CIi=+sBADfddMG)IC@Dav6&^HscbfZ)u8UL;&>?=7BJ|6z0GCbg%VV>y%8OIK&jX~5GceC=+;hX zv2`i~uz1Ch)0uAuFP{xY36_(S$uziJ_YwGnb)+`HHad9JDl|o!epcp{M4xMtW7J4} z^7ix>thrz&%}H~i{+Rau#d5hxYXgO*iZ=8lk^1p#dJ$^j@KV3VRk)@De!lW|OcYoy zwT3Vp(*{=rIeGCGgmCQdBleyrd}^V6OZ$VVUSeSxplZbLdBkzomRL=#xGgnD*z&c{ zT~Im5>9G2ip}oFxl}yPn3l-mHL9_REcLMtN6fDNFRZe!RUOWr|UWz+$YZ>}PIm<{y zTsUS{YdZC=rlBLJ@qO|Yd-h>EoBhnjO$?H-`jzgm5XN6(olWa9(&r&YKTPEP1w-~W zxGr@mQ>~SAQVR3Fc3R2|E2?Q?7ZoFwm1n5j)N3NkfuOj>xnhLsB~GxT9WsN{f6KOl z=-L*^cWLR_eY-&R=zI8wotwXH;oLOPr~SuH4g;>`f-1C|n0WOK5W+cveE|E67?E2& zm`y)5*i*>*XQ~+t&GaF|jwu^0o?LRWIuqGmRqN*loYG+T^REVdSjd67%3B_D9o&q? zde?PF2WmLKm#B43ya<23MnqA|F+?Yy58rRGyLee942rcK4xLSs1H##`L?%bALp9A# z#hulZ0v$xZfbp>(MlN{e!ay>ihX7Wam_=zfrGh4evXOG5pK`TZ=M;%OuLzP?Y%~Zf ztz)as!XKu_K zOvkN0P~m`xdFKSwFDhP+z{w!M`dbc(UTQN7h7u>;y;S*G>#BuYY{) zoF9gnT(4awgz42&QtQAeyL7wU_BdhM(hlbu!Qt}&sW!y-xjsa#>7=pYK}#Qe0cr=L z|2Rflp0N^&K#F5PVTL#IV)ZJ=98j@7KIVdMANfsf{_%?r%;*u}qlcZ9r^LkRZwQbg$ zK(`wKpB$@Mk{9?W$bicr!fdNVB=1(PCpfGBd?Ssq|NUSMan3m|mA_;Wf9f40vv6KG zcFLB>a2TJO*yzS-P#$a$Gv0bcXf=Rej(Je*eC4BQli1wR=-7V_{>Dgl&2rU1g#^J^ z{ zY%NgPLS|hWe99Z)lRtwOtejq#u#3LVE^~4hLNjXUIlNlAGKBW$5gTd}X*tG}IB-Gf zZa)a6CW@zMDZRAn!<~f_(e}AEM3J_=o3w~%P$&A~&}NR=Yz^4) zb{eO}a`7|`Xs0tm#rPkK(|(gFNlMM8Ehnw3RRcmadg3kIHR_VU&9|aLOb_RPV@zI* zO7JSb`+8t@0+qaa=NnnrF9=JHJT~smnCQ?-)~=de2)b9HQXp8Walg4)yCY1*fd9x}+LFr4sPc>Sy2<6SN?} zDK!8PeK~)(ni3?~MK{9X#$LC?VaTrfh`uEgJxwHVn;Ff@;{CRgiwnSVa#KZP-qN}7-q@TbrAn9*5ZB-Mx`rQBd%x6qRKDKs@J>XyRkw6a^q5JtDAJSrK z@*W-Idpj!3)R+-%9ThC30){4BnBG|AE1-I2q1W;Db)jdNU==Q(POj<<{!Q`jYHtxi zI|PkFQv(q)GFrR!*19XJnX7n#?l!)83D(biq=#q7=|X^Iq69q3uC_Mgwwb%o8{8}` z_2q?|2|Uv4PD9{5YwVXQzJ>2TFZ0A>OgMa4NC^7l-1737i4*k%Ae-sb(~29I$p)J` zF8EU{s3#}RzwFev`pZS{Y~a?it@&B_X$et$&nwI*PR3b+axOq03h>tLy^+}P142f4 zGZ%KVr2#PMPa2(E7PYJzZ$3faLxdjI7OnQ(S3t*Sw$>w-ZKlDnK3O-b$tZuC7Q8ks zs&}Z2H2iyo6@Mx$71t=a#JfiD=>Tn!x#)d4P7Sw&R-Ik_>J0OSLiQX^+|Dm?RPpZK z-~&YFuk0n4t0g6JIBl?o;brKcF3NOSBzQ4)ae8XHPMCC5(J%Tdq$9{OZVR(S24#}y z1Tq1y;Flf{_-XMX%WeHfuGq<;2HutlRbWceuRzd0a z<{R|Ihcj2a!7tF8;wk_1>1O!piS7_b^yCwENwo{PLT71s7ECgoIrB;O4<%A?vjhdH zxQpe7^Z1=bBINdbkmp~WzmVTHRs%8C3BNyqWPQaApCbUT8f$H-j_;Xn5@?-XYZRm% z2?Z5QAWe)Z6a9>Cws5Y>;*F`eI#Z z(1DTu;i4QGjhBbT76Mlo$z8q%xBTi+`B|j?lWt84kRO~=qRmr?#Gh$8F}ylk)o@}j zMbM_@%#4~41dBblW1iUx=;2Fz#s{PD@q+u<3P(P_e-0fUVMGwBNyQ1jCm2JdNPKaf zYuWwn7^!W+lh0o)7#>uyx-G59Qa{2C!WYXlVEO%L3{aZ2Ot*c&@k8_%HrI=iPU!jc z0V*XjRYuy7C^DI;3&d!yZIrB8EY~cC93?5F{cfDPMVG)WH_0xuZ;A@h(eYVXyC{SZ zBr$5R6~;;Zv-J32n`0->hHgP@l%TFQfqbJ-%;2cF=QodSR6jaNsI``&?-8_yHH#Th z!lVv+AxWvg@tPDyn`Dpi623Zp1&cUN*hpT;{)N;-E;Pb{D!bBgQH9+!M8EYnrl+0@ zX6drGINj%PhN^ZRvdyQg<7xEx7hvN<#8Yd@xSGj<7w8$lt95Da%{FVQvJyp|(_bdz z7Vl%gzV8vUn}NvPzbD+CmMqAz~sP(W#Aszd)Tsd;fFQ zQpZHdHv3~$)QJDFiu=?8kr6f^+pYQn)s#PT5J5kq6ON1E9frFnwmyYw%^SgY8etC8Vv4=Q#Py~8Ak3UVh4$y^9QAr<6T?JnS z-|n}%jsdHC>%=>mKr#?_-;VPcOtGP3(~VXtU@+OuF|BKX@IgU4*WCV-+nUE zx0hipJqO~lSDV@RY&?kdoe zA@-FNB$pCY4;u$$3Z!HVEq!l~C1W&%#P+k#07byQmzz>J{NqbN!(mDK7;-$%-F|9k zd%;k*8edzfoH>>5oghwO|&cS$By7A^p$xkC+1vgR91>9i<3VxvEn3DQWFmw{~YV@DozplDf(Rho2 zdgB?-quuu$YL*3LfN$Jw;agD-PQQEmk@5B;B2Jq{*g8U@W0f_TS$OExV^ zVpX?P;rJqETYJMXzPT}DC>RwX!H5e%V&r-Nj2UNJ+-`PmMT#F ztpfdvqIDx78h46?N&gBjh4;))EzszLrpnJ(x?-<=kdMJF4h*>L0~7` zkGmrWIg3ZatqWt+-q4LU%n(O++(uW=K)TN5M5o4lO&E%@c|P+u!a{TwA5=G?@0z_c zA{VoV0*ZPp1m?pr$|JaPc(u*xvYN-wT;a7-W|PISQNUf~4?I*&BR`BwMpJ2eYa2c1 zG+QZhr&D+gb|_#}2*vAyy&v3^P5#q*#%Bs=-}q`qvx?N*yF^7O(ZCR03xT2~qy0_y z$et1R%04rA5H#sS>buOw66Y}I4e8vqw#Y>p+w3bEJjjuO_B*}#{RQPY4YFF8VR1LR zs)#`be~CZ>5-rf+BH_S`2KpDNchcKWk9&*JU}}#}R1-6?-tNF**EMVez#yQ{H1MnS z9m_8-t8UI_XpEgvxLI$k_DE-RoB&xFoU}AQL8r4P%_f3=yjh)5!uj8vF>qMmzI6fs zOK658JZ#r9A+)ZEcbgk8{q6~3O|cv;`iAL>eKfsr{20$$rM*SWyQ|53a_Gl3Sjw#i zoYXV*$yy3Kk#=o-hD(}L^A9I)vNO*!Wi&dv3$mFG?53$3lVJ-+oe&&`0WVh;kbWGy z2Pd#f=zUvXQ`vVjEs5`3!Q*Y2(nv>YhV;2&S#&)vEZrEJcrmo~mmlN%r^ zM`$IrzlrhLk!aOOW1sEpR9^w`lE6iLEL~*I*VzU=Z)ZH*lz8XG+llQENbeQp&t`I! znDx~~Lpwk6&(o?yig3s-8Mq>uWl>6rgNEQ}t^Ey5nD&5NeoxmZ&Tn^=`2v#^y>aK1 znLcd2XY}XPyHbHwn$|RyTjyK7R2B-*TpYy8v~1oZlFc7bp`h03s>5ZGvOzmY40xtt zE5m}MRxd;HpZaxJMmzE#c!*PmZWd`DX)!opCLE}tMIOR%n9@cNSLvisdqRx-pmyG| zu}{xgUSx~;Nq_TY{xA%tVoDZc<=V)13U^=!f{QRG)>B_-$8iBcX*}B$<2FTNp8ok} z8;VT64Ubw97|6h6=(*YxdSCL}hZLbPRl_%U%y_C0<<2-?B6gH@sX4-qbXmbl4f>gG zW7>SLZn2Kx&O(q65Vg~7Nzx|5mi5qfwsL1nIlN+6%Z|Jg-DGA?Z05w5 zMVGhCZZF@}pG+KboLEt|#9c;5 zN0>rpBMBLqxGN~FH(=sa_%$9(A{38Upt@9IE3d#c%P!RkV~+e1BkCX^=GH(0>OF1p z8O&xC-^N0Cuv|cuJjcIZ3fPd%k2`njI`_VzIQq=gw+ke;htvI{nBO1k{>cWlV5Q#@ zZcVX0-)tQw;Hc{YT*rI~!JpRAdbnK1mbmu)g#U7VGk&UT8Tk&go?2R8ae-**>Bn=S z@u5;>M#$x5EGS4kuA}z)Zpa}R7Cj4dRA>Q{(bxs{K6jAgArS=6J?|;hlu2pOgXw_gCZ6a|@6DWAsMa-SC2Heh=5XVEno zBRB=qmOgZB&X27?ed7io9_vI)It6}w^G*!gz z3X$J{ML65BpCt5H5}${82{cdq4ha?SalN5b&wFnj%{x!rblb~APsP!KFY}U!iSO0) zf9)cQREAXIRq>DXrV6DT)Fs`{LhoChVhAi|^Ctu_k4?ty9MND~x|VqAn+I!#Oe_-D zC+vD|8X=?pbzBX2HZ8B2>RNoXeo?f3At)l`%oebKnG)F#3|VX0T^YM zMD737aaKWb08JiW+}$lK?(XjH?(Xgo2=4Cg7Tk4lf`#A^EJ$z`cPGG6S6BDF+|5(h zyiIl2^slS`-F2uSNJy$$-DGDIFMU zBc@@hBUsW5q?XadBBygG?Oc`J+#aqV=K3phrGC;}=dAzA{MV7qc5JfClhO>^c;Ze$ zz;~HS3?Hqt^rQ=E$SD&by4(H|DS^?cDQUs8h3n==$-7~`s zM_v8n(Im|-w5p(7GGFp&))JpzO4oGjZ&Ywu*L+NR9s+Ys!zeOP)57$^lNj32&-_|; zHV-!m_se+vmpi_w*$#n+EvV&Ee=^Zrv$bc&8Y_`ALX@cBY!ESgUzy6@)=0!;sQS@s zt%52--hi!0eX8LXo5sMug{e#n#n=iO?jqF|4uYRN#b)djd`r)`Av1*Y=(=+pNj|!D z8w?T>vJb6%} zh|%*ZpkQ$9#~mEenYmc%FE@4>rWwjZuh|&t*r`MMX_s|ADmJ#JSd)r@H5uktO3H0z zru+eI^&=MI8zw|!G2KbtuRrk|ZHa_iiz)WTGHfi@4ioBJuYQq%0W$F3gbz83HX@4> zrn0=d$2LE?*?4{+CM3<>#@S?dfEh`bWC=Hn#F9Hxxs-QnqJ^kK*Nd(7_&g zgvu)>izazj$2Cj<+X?Go*a8c9~jZ{Z4spxhxk+lvQ~t zm_;|X#dw}*`rBNlhj44ti$LT0yc_!UQ>?LrQIV-<1(`M+J>Nr-x1B+KwbM5so5bZk|zu4xaLzz})aT=a1>+Pz6JEJvU&iA4w zx)?6(55@28c=6}LFJtjD0f!^Rdnjd|f?v^(1XODBWsAg&ffM4Awj|q<2+_SO4C34Bh^Q$C^ReE z0LWstmt#%%+ScsboQ^K>333vYoOa>_jhi;nXi}dg81`tJr+L+oU2+D(zdC`w3Liz= zCi-Rx=25kWrk#*?f&jf(+}Uu_+x??Eeu;UW@ay2Q4kk7B<_?WRoR)qYBS?-5TzrU) zWp~m;l*C0>Rf@YH2gsaHEvN)#w3}T+g@=OMtR+!4Zzlrq+jBvp4CNfs_R1=b$Ca?C*2G+HbZ017V!fI3<=UI4_FeL z@DM)o#E3e;wG9;O999L>um{8f(L)L0eldl5iLl58S{`kBI9WHp_Mf5f#X1d*S2u6^ z^}EnxmJt3H=N;*#Avx4qW^&9rvUPtG&?CalY!JyAgoEWG=C`Y5*Vp-%SQb(_*C1nM znC-}dDOaUOZ;2UO)j|6Fqb;aROBZ87O!LZ93E5We>eZL43khTulk2#Bd*31x7`NY! zBsaQnCOk| zvdfBE!4&jQ^F7v#l~yWdEZVYL*S8$n$7EF^GE<&PJ-_q&ItaQrMcMNE^2w$#4F;9i zyRfiwoS)(QUPpN^7=fXD)-6c48|5}uwk|{f52%}e3tc}z$!^O%e)roA#A=+9LAXm^ z(LDgKN5%S&x;RI{E-tFECCfQ08VDjQ@%cf%Ka!}12uu|PNbQ?y$S{AH_TIro-fz`OZ#FR{8Z)r8-@1h6iEjvWd+T z-zst?3R&;kciF#Ke4hQzpWo8T*$hNI0h-&=A{o_KOxu4^A>)XT_9}d=p|#iLwVGg6 zSAb0vGaqZ$OWOfortUgzOVaTgk#&=qKV#7vMu}F%6>24x&q5XyFg3swsTArGdH%kOBcz94NiOJBOw+V6}1uO zL#o)AQp^p6a-;BYnh-PzWkOb7(1duK-hA?!q+-Hv0Er|He2q3}J#jTKl@bG{Q{{9T zlvO%abL;^R{7MXre4JARX8q=WqEsIiA zaWh(&4w2lMEVn^I-jaMxPs?k8cw&TTv$D1lZkw!kEJHCOFl)fxDW7$AQ7|9Pt6Jx2 zy_+kGq62Z^GMj(tIdoc)e%-ZA63=>}lu-2M1TvYFrl+ZEjy@=>es2PcqWne2sVR+X z6p-%K!Raf>tGMd&cf@A(m1DipvHPVe*iQlo!E2$pF`tp9Q93U$eON1c4Uu%7qihsF zFcN#tZQAuW5uT@l@lXAq4!llI&s)8gx;mcdt#4e8^Pl4kxF)fJThDhSU7%`*b7I+Z-h`w>@``&=1_`Vawn6K1XgUwj@gwx3U_y zcW=u@nCi)aRB*X{rW<|u4{S8;kF^ocX0<=zESnsdp^J-^_}lO%OVUW>FB1afLE%02 z74XX&wBO)qbW?{qVjZxJC~N{ut|^eKY^ua$5^{`Uy}>(PHKoa=o!%8)r!Y5`x2EIQ z%wm$a*=SaNp*4@FC+gw=CU(i#ayR^AOc8Qz{oC`+yDo}($7E>&G$SNRr0swO&;xvp5W~j@$|Cd zkCd0(0n-v#Ni;nYx_PN*TAy1}mMxp4+>KywYXg_Ep~l2K%iVgCj(^TfWqdhQAXY{H z>2nsjB!omqm_zytz@k~7O!*DBy0*dJq~ALDNX$MiD;MK+)D(4VAYp<`ZKwZf9J`VT zVmqpG*(YKkg79qm1>n|IdW(y2b&IIW&LpH{1EHAWZ&2@s4EH@@(Oy;u@uH6HAZ%Aa z`>U9lT-bn=D>KX>2oG}G5GmyUF`bCf(m1+$LAWY*YqhWq*KH({^0$ruOq@_>Njsu) z(Qv23iQ|~iHGhk-lgsYhPy79EL}?4pPCG3AR^Gs1KHNVqQbpFyol-!-Rjl9O#!Wge zLh%d+00f29`pW$#Nxp1YPezfy`W(yq_ghM-n7g`=OYzk4;jItIYaHB?(|^MX^Tnj= zGaK*Ud{HlA$-&TA%?E0dGQH7kn=*^2Uh9&p(#bnr1S&-T(;AfZtb7`o41XqT{ z#PK3THxYW4I1dDLg(1Zw^oJ+~SdHdt$kO3Jk@*j<{vopcM=sFPs4u;%o~5%b@fWdk zXIMr%I#+R?VZB$Lq=A213FL3?Yb4!!bMy0Rn5ard*1p5^WrBJf1J;LV-vIc=L2HshNTBbpaYiU@go@^()|mX9NJSTe3kDM?DPdD!#B4 z$o-E2uA4&|Q71u~o_|xYwRQi|TxX`>s zOnDmK{BV%Vr8{aw%nu@H*&n|0f5SAYQ&F9%ut?@4y(yVXB}s1i zq?6PnFWA$vgr)KPIn>($Zpyd|h@-&MD8cE$=L9J0X4P+1@LVDdQ(D~q4m18xGfi!t z-ARN=M5Cb7{6cFa#{P)whnY>>K^0mZ!BcT|y5Y&irFp0M%edRUCy|y5v$0!jF@n1 zslGR_Vb$KLjDrwE*s8koDc|JaEHTA|I|cU7a0Kg;p1=9ofIA$DJrh0-H+jcABL=lr z!zxl{FeE6cENP?F?4U_=D7B=H+H7Qb#>#T8@lMn=ZB1I)O&%O`UID>c7l;33_W_Xw zdLR4t(~Yc@aS#B2)co)x>;E&UA%@n+*I1+izBIG+t(>J)@nObqyj{NSyYu_WIIAKd zthRmoR$LlSsav}xgJ_PvyYvb9Ln!dnz@X<^VXtZ8OI-DgwgN;G=k#q3vt@m>fJ?VDO<6# z&UnZWZ{Z$No$ETxj(5V&`{=Qe*&lnA7rkbGm%;E7-Wk=_YERC()TE`)F&8ziN{dYZ z7O%#b?LOqf$@{-_tGolX+vBBJ2a_|9L8JfHR3?+eNm5qJs`wnG7|qVtzQbR)kLm&u7J?sd zibitlpYToj{~g-@)z1AEYVWi~FKb%aH{MTDEbu7J9@T15;9{*LwYi9;_&s*v>&U)a zY;~ns*a-xKZ-$q-Lr*Z%vyqG2j$V8K65 zm(lgKzk}Q9!tr}M{+*;MQR{OUHW^kGW9;0aye_!Bx$a}s;oKOib-@%!#*79WK7geK zn@{X}PDSf+3|duTCSRDmqdV>RxkgF_H1*F50b^A7fu=KHE8^nAuB&UvX@J@3fr4!=K)>aU;iVh;>2rvcAlMuNM~2X$@7BOScC~u- z5S0ynkKAE3ALo$N&?K56puT|Uei7|3wQ3p(*7kX!%`?oqo&>IStCWlrAeklxIR@A5 z$DrHuHl8J1>uo9(7X776eDpE?myxVs@FM)>jqr{~MXarN`fAFQhaL{2^%;)`$1AYi(}(+?<6%8z0HH84@YI1&0SulN~^WU9L|3EVnX=GNXuLA?d;fI^u#X0RbO2! z)sqAIBVX12ghv1|0y#k&hqYN)Mvh8)b;p;sUTC!x%NwwEmMo(CNJQhUg{O`{)JbCB zRs>(vX=EO^C>6vJ@xtED8R~>C_tD1;0afRx_5X$iTYrrOBCv z5*xiDGlS!5T@@n$plL?1P*su)06<--5YN@UMl}Wt#4jcr+38Q;uVF6aMTz+r;|2M1 z(+9?15CZ@Jd_D$rC7gKqreq~7i@K4~oC%>t?4_<)-LKFI+u|%Aek4GA?5`Eu=ESr! z!l4Az;SUWluHI{7Gp==$D>T2HeofszW)oD!E!Ftko`l96)%+b z$tkw~>O9fx|C}x2y;C1CnPeLVLbayei_rK|^660Nx-duCyHn!+dB3G+wO-OAU9y!7 zZ}_OL^H)%$Kh5rAW*bp*+c(iqct{?jj$RxF^v|&WH$3!Yf!+uU+qb?UQA`W_l7H)R z9sN}JQ=WOT@O}uI{D&npQosk(DzWagj+wR}Ck!OKZ=|Uls=VtJP=CPwiO2QGd4_ID z`O(^rM5C&V-o3J|s2ueDEaJ`t#lG0aN&kZ%O<1KM&RT7U5EXg+*A7881edkPYdh8P zws84D3Y&;0TIA_)j?;bfQQy5Qd62jN`mL858ff9M;bP{p9$VG_`z1?UDm1x#k`iK7 zNTnMeVdgn$ZIWBqzzqQ;EnJV4`Y1f=DR+9F(X=Wgr1V!zd+96|{iWGw;L1bNGU6IjFaVHD>SMS;1WSwGNQ)u}s&&PbNy52&fCuR2Xo8+pA;r~FqaA-ISJ#uc z#$u@XT(PxPKKcqA*punIgNfRG2SVpd@L7>Dhq6TDm1=T#kL*_e(ibJ3i$dL?+=VJR z=4p8vx%lZ}LQS&6xH_Pg^3m9C@`r_CnQ@6+xIdR5tTy;`3%Qm)FID_}PM-pWc#u~G z9s3d--8r8YQe6gHUst&bsV#0&+_L=!DAA7ReLh=Q_u`o zce%jZgF-r3)6x^^c8B8YYxNGrU@!h>f64s;a2(rMCE1nT?-)5?b2FaoEczE}+EJ)$ zd$Ci0%Wq1)#k`{Vv&OsXwm#T8U28T%Q}$$5Th;Jl;MBrDnv(p-Dh8x_vJ@8$TQ0q| zK~h|>Qovt4%bGI_UfELP311TY@S!>2U*Zlf$doq-zPy^KnrS#j|NJzdzb1wwkrBZY zP^T(5C2I*P&|7tTRej#~_>}29>)WhcrFzW7^t8y(hCfNT_R8kC${?H2lecRaTO0(H z8C_y_3|A_zX<0|2HLa6?T&|Fzbq1~>0T8fv`c-_NyGer7LVCJ&(moOi;#v^)@)D)B zaPx(u-eK{*cQ99QaUmxSjp$S=VFs~7DDvt^KRf(zod&t=3<|BeutfIHt*$mOc-+%h z(IkWgNgGCR==s$@bS*%b2Sn5xj&GQG6v&ZQoeYgD+TzY-8!vx%x_CvP!PBVn5RR0g zybOIeedA9_bu)o^b1DEa(Rkinl{!v41)jwP#FiwyUISVqB$=-Kg^XxeDTwWq#|)cA zb8G)=3(p1V;vj+b@7rw+F`a~U2YFq$k8ST==rgIV!rikVbIsjramH4x1`oo$R+%HZ zwFJismXZF0k&0KJFb`bixO2*Cb2s~)87jv_K^&;;yP1HCj~aIL$r4R-;83Qu)9=Fr z>f-{;3++e8QoBG<>%nA&%ae%(T%nk#y;0oOBLb(h8al-|+KNQ=ZZ4%`JJ|+&i(I-_ zkVHWz=KZikg*kiUk3$Q8@6&xV(gePJ{Wb4ukg!XNbdaUK?%K$#*Gg?`=ui;bd0utL zduNdwcJY+flULTcvi<0!YHbUYV!*|Qe(Ca z0+O618&o(K%^BbjH)yZ6mHGEe_3(Ff=ZXn?X)JP3wjyVbloRh>W`vWu&SnM4Gwz)E zFSj8_9ANsdBag@LC@h68D{f%ZI>Z4(O4V}6gYka9^b_%ozb0xX!`htD-6giGiY7bc zh`s0`Hu#u*!4CKpVRx$G2^gLXTwl&yQYaKdHuKmfBg9>yigD5o5)%s`)#ylQ0RTKs z($eB@qTmJ4Oob?Whw#shQ|P+XW^1?hZ1xOo(twRgK2@bxOyz&ypsocxTwQWq>l;9C3uPV zUI)m*=>4&qk{*p1+_0&s+aHHAb}w-DU2aFwk&M3}@R0+Wm4+AE-?yD33BU8B;jfUv zm#em3uv;r7d`$h}tyV}>O*y%DBu}vJ^$6o0Uw9LOQtTfq^LE3XYsuX6MI4@S_m)Hh zZ!sveX~qBUNG|(njDLcK%`lNrq=zuyAG$wkyNOk7isDKbj6AtHI;yV(D* zh=y(87p#!!Ir-apKwehUr%INBy?Xgq<;|)tl;gY`&ZQoNU5$)q)u;xuz1f_Ogq}U} zYi2wKOQX3q7UD$?8Xmmu{jd;Ts=)N+X`hNefX(gJ;4+eKtPNiA2cED9?&6xoQr*)^ zfg7Q}{bBRBw4f2k(40s78-j<3l9Ckv$m2wtTOL}?DpW+%j0Azh z2IPxJr*rAIk!Ld#@sfmw#aCmx`xKH-rFSTy)U(925YiB=G|9{+!EBjT z(4#i}_EkF##eTe!r2CIE%&KqQB|Nh&JIqi2DwI+OA*3bmIL=tGtTo*!gMS@!+>5Gs z6PV{{P_$YOhB1X43mLl(iUgm-FD?k`Go@LIEm8g;(3ACU#8zWRx~0ZSu&ATRen)U_ zpw8G!ti`m=qFkr%Qs#uIx{X3qYK>GYC*+$7I3D!Khg83Q5-ya>#XZp(D`&iP{W^;( z!d@T$dXa&hxfwfQ-9GyOnF+0+#-o*34`m1(cfNdVeRUu%0l^LJ+5)@5uvso1t{+qP}nM#Z*mRBTj|if!A*)Aina`}WtP|AZd%mwhzWp6iUW z_FQw1qbwyZZk+}Mq#-7(sIJIKsQ-8TM-wa;m^vOb9+aO6EmF9MhzNUvPLdE5tfk!- z`BLB&VjwTbAGj0{4hqOWg=~8gv>EtBOlZrgzS{{4yaD{DPRWYyui?}5MNJ8Mlq%RmM|_U!StGY^;ukpA8Sz&-@* zA-)j&4rqP;0yv$6e{kH@-x;Ls90XVgAd-SkCj5E?dFeYdxDjXzSO++L{W@Y94|oM2 z13myGn+mOc`vPnNjbDKQ&fmG;0rz7ceE`6BfGwcnmg6n`JKvCCKYyWb<9iA){(S%d z0Mhqgt_WTNx&z_>C*R3`PXHnUvH~gq`QPm?)t?c6j|GYi{sfc&ssOOxHUNs(*}p{n zKfda}XFlNln*sHoAJmfIKDPCnWeO|Vt*O6JaZ2|dg^JCItO~K8%rQxRARuM)-CS>+ z-*^VL`Px-bo3xH$i~3BxXNjw>PX)BuG!v_^pYi=tzoU%&tgU&3KobnQF2YfM0yh>X zj5U~{a>VZiLcJ{FJNl9%p|&&Y+hAKuqRMv7+p6|V5%pJJ_6CI^6ns&Fr}7SNBta5q zI6><`GysBrR>HskE=x*fZ`!%ax*SiL?ozN{>Xs%Jpt0ct4nrdJsR&Q$5zM?6H(q0hk$RH5)vW`wFj$82f zxOs*0xKLjwu#EedLkIPO(;}NNq^JNIU<67X4UoN3ujjbFp12x8S>mbPIV(JB;ga3d8@!m;;Bm-TUt);+#XrWi|X+Vj6IofcOjV3V$Nm_?T@NIzMm(sPL zR(}(s`NzEx>kaPl<-#=40V6@`TxfGHXvT16wKFuCY^hNpLqDaJ+$ zV^k(Xo$&#Atu1`IHsD*)7T=-wMz5hlhSLm1%wsyx?i6~vSd#K-`Ai;j-l+ZMB=8}veje?7Et8CN)Dh7zxt#LLzk}(7_I42 zM%76XZ1oJb*AaIpYc@N?Iw-kFAeRejR^b*@AYgO_4DA}&CP)tDRfH2={emaNJL)AW z_%&)Zy?u+cnt269qUZmI86G6{c6hJtpegQ6Z@N)npQ9Qn#xp$T-t5=BcrKI4yAyVp zRob>{v3O7O#-6WmZt!F;&ufusB2MSkrQ*?vrsc?r88((u%*k)|bWmbBFCoW|HL4}3 zD9pth>=%O;xR5h#Bb2Z|QN;d^@6o_>s9{^=?Ps|d@KMY=98dHPqu|X)1WQ*d*erE? zK0-xv+||FYiS%yD>XNktx=ehEq&x5KSF_j$xjO5Ou3Wd9(BKF}KO|%5FFY>;3v38f z`YLTGYdh)0?P~J3n0n^ObYI_W<$f69Zmu*ucR6UmKp+PGfn`mR@H4Ur$H{jK!+AAt=He0Yzpe%AAk6j8wlH zTgoyC`PdQ~q>lLv4%jE_K%4o{h=2!=OM;LOdlzH)mC!5#)jQl-`b(#AtK4dw4FL1l z+;`k~YB{hLEdDX+Q4`>d<61>8hxQpEkA&jy1j}rL9qHOO;60Eykps0PR^`vNA+3>h zh7vo5`w6A|;0+uC()^7Y%uB19B{cXT6-Y;q$&{eUHQTQiT6=yQWx89E~wAj3QqQ}&E0 zaY(cX3&dTKG2&X-UUcFOjr%H_n;_o7yQ3za!`N+X7j{1Y(#2#@XGZ~)F`x!*F`cE1 z9o`63vkkl?>C)^nIcj8m3W5Asl%N(~?=H=^v70i< z$O@AUbPq+>exy1HP4Kf1dPO`JPW;+7b@2=d9oorl64MbVK*&$3LqAn<_ z-7M%%A+7Odl78v2!92xf*wrC~=T?cF|8*;87tdwiDO9k$ilF+u^^NATRotp9!>yP+ zD*Uq}RlQ~FJD21U`Ln;{L-reliU+w)Q-Q6_(aBQ7uHXua=E+A`+Mb$TTDmc_ql{3I zP#!CYyeN{04u2&P_dQ>xyCpO{>oM#G5cdD6xAP4QtNmW>7cYe@=H!|cnwC{*+G-n@R!S@cL5!}#S-9t zoMd2RU?htuf0hFbppCXnLGiz!!QU21m<{-vWeQw;S!HUBFf?PK2o6lePujhXDeD-9SmC_|c zjHBa(>v?-`E60|4+Ya#Hz0*xM^z0VV^z-!d!%gyIr;F9}cs_=>bW|3>A{Vxg-HS#V$EU-Uk1yQsC{Ql%$T4|JMI6Gw@xp-WgR<6tHg{hKZbb!Uvc!mXd?z%f~WHKfeMKc7*;VJxRk2E z>j0eDB0_6O&Dz5z!L6uZE4~7b=~U-RxTMyGT--mk(@|zH&QGmojZmdR_aw^MxDrDK ztrJ}zL6od$Bb2>{>{yRz6BG}Jm{her?qB|c=T>jfKdCTDMZlHM#t;fcHoO_5L_R{u znK`t-`iyf(BR}oadxt@$$ZI?^f-ldZp;!fA>b47UD|hL8Hl)b&0JF@ICcPZYVY7Ik z3}hIIQ+$fpK|%>Y+EsW?wxefykK2Uj>X4F0UH?U=q3u#KAaka(7kY{#Oc2Ulr_wMn zXn!}ykW+Ue`2jm$N|8WVLz5qJ6r_h->+IAWzJj5szhCmf6U=X0KoO@9UgkN>DPUXQxTy_`~=D8rz zYpS=}|AyCQDs1JGx>1!zNq=9iBN+*(e;Qjae?@c~&*ZP--}gYhI^4|^U`78@Hn*oV zk=?)grVFg=P(~W^kwQ&{@f0e609nM~`5dcL*&%KnT*!B{-X&X9oFr%|?$HmT=OXZ% zAbus1wQuX3q7Fwl|Hb9{O(}Fm8@A6rB@J!w&c_`|3ZYV-2EUQm5sZ|tJSy4Lcf{6g zj!`v**O?8#Jn9yZO?Qu{5%n64s35h`%jr8>iUGru2z0%xjN#|)a@ zC2%I(owY_t+QX_&mC>DQyJU%WEFgL`M zL3j|fJInK!hA1Uwd1G^BH|NKqd0Du1XhzZ1zjbZ<<&%3Q^j!^fedaD}v@@wWSpr;~nmR zvw8Z?^Pl4T|AJyDvy(@uX8{h3$jI!R`Fz+Ep-WyQBT+BCWIW3&D={_ zvSXE{+-CT+Hr2;#b5pxDw)c%aL2mTzKE8XKJk%Q?Z~j62jvp4y_2T>F^_s+ND7oH( zA33ipR`%EE8iC4rJ5!lH0duN;aNS6hNaU4113qT_k|*rv0ypxHm{y2#Gn{>RmUynn ztTtz%yt~9_rwtV?H}g}Ul#wGuR6kU!kNSy>QsaI~b}rcvcpB1_{cAZoLavUSPT{2D z@!BJx{{)LpO;*uu*DVASK5w!K)vTU=YSe)PK_KGyCNOg-DW;@SkUMN&GjGc7W)x!Bv3*7K>-{5JxepRYX6qdE zxC^?=w3s*x#+-AWVr7T1=~W~z0UeV!L(~kiIjy(H7+S5hPlgHyRTS77gc8lI3G@qX zbFiQfvFuonD_huR<>acfL{^@V{64I{QSjc)=v;G~SH(+|RJA|TOL}K&XYxEXsI~!W z@&=a;Ws)eG*lj>j5Vu(3k0EN<#-Lz3(rY%}TMp7@~tU$24OfF;06xg&Xclpm8_F;Si@;yelQXzb_Ls zz0`a^yWK1J*=?n&C+5^S|HrDTH{0hL%pYaeGHnhoI)pQ`SPv$|GF^axN$c@>v_NROy%y@}+ zClvn*NZF$oPvPf-24%ey?C#LCm!C!Hfen!KPE>KVrIdLFViL=xTmEF`dGrO^#>{Fz z)U7LQvO969A;gy3b&Dh?myUCK^LyE!C7xio3c{`<_bXe+VfA&k8=eW#E?>p)?F&wmJ_Fb02lQQ4!;Na? zN+QAF-pS_RjU3ByIKSLKm#fvA|M=Sd1pnwdNqgA+^mbS+A0PrhmZR6#%D<_8^KL&# zF82)*Uk%YEO%_yiVVOq?0to`KVCujrD(FL>*{nZ9wh_VD(xNZ2bg{X90Ato>1%i62 z#z*C!^u7Gjn2vx<%u28No55bjG3mlYr+2NXZ0NRe1mGZMb@unw}OT z!z;NYteBJOr|Mg!zovmBYvld}H?Bn?-ED=0u*cv&zl8qLKU*4O#7_h@9?G4s2n=8q zh2?iB!t@{A@n_T_#HhrTZ32B;lsfVQIu3h_Casxow*dTkqy)I!eZB<=#47Ef^pPT`q$$e|ixcc&!%=9y3l zSyRU&gwX=NUJv`6k25uOqZ4$7C8I%P9bHqviw6ZzP6=r|U1n~ZW1_}Cgg^ofwRSHX zzkBgPs9_+M(8!Zj$+d zPolBoV@j$su;AVM2mM`1f=r6!^{ohk1ggBWnnkgDQ`)2NN(q!m_=#AJqU9FhRTzlEIP=?{|`cX_-Q$00KH{BA|{ubSy zEY;K$RR?y*Y>K?ofVlz_@fGf*OBKOJ|=6n#p!n&^oDtEQ>9QiLdb?$wT*_w|u&%x49G3FHzO|^=4km8|DWXkPGq4{VoMn)bqnnp9rJU8dQ0d6tfmY`AOI^ zxqOkfab;BY`kiq9JDVdbaN^ySPEgsAzR4%wCq4nFNOOs3tl6-#0a229T5z&B1t{`u z)epFa8>v8y3xSt>)luaj+FMO&kOyeJ&_X7CL_)mPd?sDha>;7J*I}@?kMscvaB)x7T;wm~Z)M<(Fc%XLOk4kC58ZbZhFr_4R1Rx?mkNhuXNO%xWd09jSyFXz6725oSF9TN>R< zd^u7UwGQmVeves(SX9b_j%qw+wp~i~gC|axIq=)kmuW@|q#6Z*N(y%%tr4lr**MuA>zqcE#cF` z70yES0TvR~pyA4lb=x7%0JT28>7Od9NI^!~hW=v<3Vnz*>iOlJWC^t^z0Ybd++r3g z@rc$=3~fy z<}t&cG{V~5z5PdgEihQ3{{*S`4glPOz)tok0m{=a zxY(@Y*jS2B?5uChuO|UoSdNungDWNsRVKj;a73%FhqN(s-Itc%<@G+8 zYagFh*^CFSr}6M6aqKQ0BoR7AO^jj*bmA5zKjSt}!mzwbgNTKqjJK|lNj0ix6Mr4R z15xVUMLzMZO7j!?GgAElMqlr#J|*tAG(g1_F;;Q&S>8_3cK55NgIoC)Nt#3j<>?ad z$0H!Q)m5NRw^_kdWH2Dt6_R4z$83djQYe$}sVWJvfTIh!?FEiRh8v;v4 zs)uVRHWhn$Imc>2#93k-d8;rco&|Y<14PCOH|}yl zD;gq!G~R>MvyU0f&v4|LGuSp!Ezs#-qP10KAFsYFY(lh}Q-bBNT2#J`oX@R~a~RuD z38vLC<(w?}IC~Rd(z~eyeYjeKcC+05Y7fC@EC<3Xixye~cudBV=zpKZ3_< zNUs&CexBT(TrTNr%qISB=Z9jr8`I!u1>vaweX_KEHQU;CMs9|r^!xrKBLnQz@Lf!3 zi2|}tG4P5H$jKNS_}3FA^_pETioZ!YA!vfr-baC?w`-|_lqiyhw#$^%+r`*gS6!4(RH9A{($-*V z>bWET1p5}}p8F-p0(Li_v+4FPqDCrWhRQ>9QoTOO4SDYu_g2z=U>>BGA~SR99PEPT zxn-@?S1q^j?$fR_%YCGHv5#rZiwAK2-QlLJfFUiS=@ZH1L;+hTbir{eHzF_ z?e@*-X@k59_FkeN(Ccx&OoA8Xh$|>0P~l7PEtO4;oB%}8@BAY1MX8aj-9_+eQ#V4i zQqm>{u@z;R5i1S|&3&X0pY1t$iY9uAu8M-*i~agN+0eFmk?Ed@XqT6NOCogBFU6E< z5@(%GtH?2XqfMN#xnL*b!6Pb9^@%rmk=fS>u4MJMKbwk0Uu5sE8Z3@uY;zvNgjj>6 zy>x*%Y<<<_fzCg}I{cky=N6}EL&i~Dt@>O}S9fdo+%a7a-U}KC%S4v`b>LsYrr_nU z+n#w9-l8$)f{^nQ(%9K3bwV`#{lErJsLx57vxQJ==8F3Qs-YViFBiG8PoBEL;t=Zg zy;9{8z)wXb&YXONk4{q%tFL&uHh6+;i54}7(1gKB_>A<7^fbn-t-jkQi|Y4hHo)T) zZsV-hf~PLjx2@c~?6;aCSKhm#^>_fYyc)QheRDFzppEnCyz%6juWb`qBu;|Gfztu< zsP$K(W&BiBM(r++D#o^vuyJ=h-~rfIB{JvRhaDy{D8m$HSFn=fI@8SWTQ<(u-T9e4 zw0E#KU9P`qtke{(iANRUN1W@)nIlAu8qGuF@8x)t@IP`wHj`737>vMbA|8As3b^7m zYk}?Ht9clR1eq>k|-{gwRJu+MgxJ$d#HbO~men1u*Ikvk2$%Exa<38zbzWfH*pfA(0OTRw#_Ix*KR7o-bXxCBf8W)?cK%l3j;8A_QJvte~Aln}z zOu4(Llo&)gLNqyJA2~jFc3!6bj6sJRo=x}r{3@7==&nM{0&V2Yw*a>;NptP=Rduyd zx4o^l5~mLpZm&uLb0^)KiC9%zFi7#gyypNsZw6+%I>>wktSaKy_12fLwjpANb%Q7P z?Ofv@4Fx9;HPss_e!z6u+$U_M68fukljX2>qQ+g?+ir+D$0VD;j5irYS&Lc&*P1Ip zZ4YuMbfzrg%pC_<4n{k^wUk}s9q`i@i?2O7n8jjT#J0KT4&*D5X~wA9_}WlUwEEjp zXUbOSZC`*gxFU&b{03s`w!gVi3OYi~^mvZShEkjYR9*_5dXGB=&I}+q*}VNfB)m_$ zlh?9-mxA@rV$q9gu8b!{3Rz$x37jufg8II@P_$g^+*zI)KdjI0KH+z}mGZWdnCS^d z>qyuYcT28LLVcHcvK4hpW^DBjg6QLYY!t$(*apy{dP4ZjzfqK>pOHti>`*&y_hn%= znG=@y*NG6|^NCvb&KGkdNSC3&z`sdSN7e+bDmkAGUpI1adu)mGd^@BFh}p#T+b3&&AfRu6 zimR=5*6O4d%l7*X7=bnmwSll}r!0K3mtwXrx;`JsI?I)h2S^eHPkmvWV0_H|9X~fm zjEhC-t3rDF-olyp-l?Sn5CskEpR!iqYJ<3um&qLysN3Id@-P~ZwbOa&d;I#_5elUj z5ru`_KpAoq(0qaRx7V-o&Dtx%Cg7D+No<03z3qN*pOas=_rTip>u{gjMM*`EVlmi|Tn9dP1_Q8@)>34Jf z`V?d0clNfAebD#MpWJ>7x_t2PyI@D=S!l}zY&Lfty>B{~M)=ri69dw_Po2&4pA=IY zf6g9z93NRZ0#Ttmi6|Q2xAAtMmu<99Wer=&n8_>9SC(%IQyxRj(ua8TV4}l*F;uj5 zV4ynV>P-@GbxEVeVA%CC4lN-%`&YO94(FuPYAGK!MGg_9{Vabg3&Wy6{TGoxQV7i7 z+zeC0uczB||4z)#e-o2avml(c2vO_Lfw@ED7fUk4yv9kTi{H-fZ4mnA}g3q)c=Pr0ad_kvT6hw&~Tvrcg<--Ruct1!T}(B&Jj3 zghNU=$#}Yb6wABtT4Bk3EpZIInmy$;Hki>8JU<1%`llFt>)%A6iAD{^#NIsf@qUc_ zCo#AGO-yQ*rHXdoQvK-u$B{#0sHeFO1vpK}^6{+9Z9ap8NcsHJ(4RlsK(geAp?Uor zo*upwTD3NXOu>sOW2-77I~6Jx)Jg6AonQ5ZybB>PS%1RSVSZwJMJSYzuXg7W9zIR$ z^$s6lmC;|{l1703)ScCCReJK^9+cE^M#Mg%ENiUNZHC(3 zZ+=LfO+x_7({VwGwvo|W$ll>h__YCwrq1OemG6t%Iu%@B=j7h9^C0TOGctLJ6Y;`9 zq`HRVL^AGfbD0T4(AWQbXBX9Q z=K1eQl?U$deTle(eSALsg6Bx!)|bd?RQi=+lYjiD9R=?tGY?PmqE_4LqfMc!gaAMD z^nj|Z@sBIYA^w=-xP1Pd$`9)|NFi=ZTEpY@wy=(v#)k8tynF#MM`=tuZaZ zvdxhv=+>bm$m>mzdTvKo-f`Hob=7qCjUSOxgHC6uwBaf$8k0 zi(8AtL$_|-Km`ViGrC-=LRjvmTMBH4DpWOho>*t*is@f#I><;iOVzE?$O|dPKdjP# zxL9WIjbf*x`6<0CxN*!zfPBnx%b2J z6fIn77tNAh+;bMHa|&CF-tZwfC=h9wu4lYU1q7pit1y4iHABZ2TGsbu3N}G@D16+6N7&M!~cIV(|ySYHtg#8tj0Vv8@;%X9*4uf7jJ_Gz*!x#&41t& z#*9XR6HS*r8{;Cp>@hzYo?xFMvf{7wZ|%50>8D=WRXiMXoPHPlW_z!?L1A!v@|h*Z z?_Gq%)N7a9;-kW0kI($d5+d><(m8MhR5p`M^+JSu~xY zod8$O73mI0X-<{B584f7q7G0{v&>*(fCs5Lpry_^AK1hEN#E6*&B=FB3#+a*hM-Hw_?XaNz>K;JB4OtgN26hi|fBr_?#v= ze>dDYL5AmXrkTZt`Pl^Ww3@o?@6rfPqb0l89-fH@k?NZe1~|Llv0loKIg**EIku+6 zLdXqvj8I$4;nDr5FiOW09Em0!!v|lg7R#K_!H|P0Srk;kb*cqkK$sr!=?ceoT7~eBwfv0GR7~v;(&2cZBQ%KV)A-uXvSxugSF2~N zOm%u{M{srw<2831&8{jqvBeBR!Trel;TG>rcRw$iHi7%(4@M8(&uEs6SYoj;Bx@p} z+PQpTBvOxH#Oh>WDmEmHFGqb-oK zJRDe2{q&{Jza`0HRHzKaI=Hg4cGNN|0@8=zzU5St{p4RvMp7Zi?lfd`OWm$36$h+bX=OKB+6%x*las z-cTXD`#AXU4Dfji`%RLlKF30YG=?4q9S>ipMMof!Tu(Fjk-$4Z6US_#=QKWIlp!N} z*?*4C6y9cRLW@p6U$^Po`5+OQOoSYY+boz0Pm6a#7a{g@D$g+}+ zPxibCeg3F?hU3<#w=wN`eV7&<9xW2$gkd@pbI$@1?zd)}INPa9pZQZjc^+!le*bAq zWB(4RI^55lfMfZacjSc`J&xX())+WiAdAXk#<+ z1uNw4j=Iu^qy0T|O>x!m-QzH{-6YutMz=0z{sbDrR@O5l;Hv@sD#5&-T%^w>Yy2xG zmi*U9#_f{F8Jv?S_sdA7GveC%A(t{bA%eBccywEH%zIJAk-Zby0)H+T*v(f^K~6DR zlI^vqX62Q+X@QeUa~6)GUimPA0S+93hx(e2#Y_w}Z@EZmj*(T)eno?oDK?g=KXgbOd$$X%3AjnJfu+IY8%Dj(wq zEBi!>Yjv1QeOh3~)>CN@IH`rhhNEU@(8v$(=mTP$MRJkj^@ zdmM~OdEOPuJC`q2VSpF4We@%|m=XzJGkaFxE^BZlq5%)cwy&8i=@~c2 z@DqbO2=B}`%uxet-!H5l(U2QxB?%Yj8l!s0TArMJ)sfohAFagyFRcWG4q+fea>>Ox z@Jj0j!ZW|R{|lN@cj2$bQvSL{9i+#bR#h1~%$Xx7%jRgCoCYZzDNZlmGleA66@h^x zeEm>PVrm--QbA>p-wyf%7caC81XRJ?L1Iirv57x1DPVVJXflvBHvQhNaYT62x$34Y zdosQP&c=i%vMlIGZ1l@@^HcsL9}e=tF{0F>Jtvduxo)$|N%5|&l3iIiqUyHIy92l{ z3`%h#h$2C+^26N{rxUg?|6{6+V22^c;o*MvmdUfOm^c23059d!)wo%|3hJ}WlGww7 zZ^uc}dqf=?!66}$3>%%^fAd|Pw4i$>4>yH?g`i@wVCC)4Ap3%|*GtLWE<1Z0` z&@)PGFv{`8j}1C0s0}%EvHx(@3Hdiyr+;yUS#)Y?_`cKa)aMtmz8u{0SQl2B`a!p` z8%{r{o7Qcahz~Dw)cieqgei_|&W1KFmwuZ?ubT|(6W`_{T7x9lFcdFzxCcfyD*nt| z72i_M^KqY=UhD}&5U)`6-80<7;8qx&m>H!F zZ77GW2Ocu9D|&mLs2)$$NpmkP0bg2-Px}N^a}FZ%x#v!1PCgt5Q`0pa5(*MVmr|rK zrRP-koR_`4dfbS7&^ITpn}LglkK&6hIIKn?*q z<=SgzR`arcif@ntrhh8e9tfsR47?&RqD~-X%W-qIM3w4>9=@h6vBk^}5~b9ZDhEmG zeu{RR=P$0_zox8TAe9#2{Gg(7&hyq$a>BofY13-EP$IKeo|Q3!vaa0IVy0(K`BX>y zl>ApCA7{^shhjFS$jW=O4}T-Rc&ivNS1h^TMf<|E-3L}GfzoSa&;gNt050g@&19f* z(h8F(kh^LbXNgQGOQ%?t=Pedd(XJE_a9QG=VK!tx{-3ekx^HVcBMF{dd%fC;3l zXisbgz?-|tl6hlTFxv$GLzgdGy**&(@@NSH7AB{rW{i4IvQThhEB~U_Nungw+rMW! zkT&_VTVkL*DuXB7_}E+Jq3_#G@mOw2z;rL?SI!nx)Z&6X{{+yF!WOHH(%7+w`6Ztp zCLyq6yW!gTd=;uepVvd8HiA(gM%G|>Lq-C=aw5Vg&D2o+LHli|7cJ1Z#9@m8Gk}(m zy*g?!l2xy7G!gL)@0m1GIxfu9`iW9FB;CzJ7<-k*K21?WkPEo78;Ytb_)TrId-!v9Gvl46 z#V*&GQPVQI`2^0%uwBHam7u6mvpiNQ%N4RoQiemRp?U+j>BHK(x7Oa1x$fwSi3fHs z6D`hUe@aFi|LHFciV!Gr+r$6yCQw{8aB3882J9AEIpzu^JlN};Qna`T^quyeig+{l z1g!`l86dj8{OoRP9I(12fUL+N9S2yFdNP#J;|%v>Z-$Oxp&|y)J7J~R zrX=G|TIRCR=@q8q+R7;UFA`)>fYekN>BJv9EMCXr)6rol%88sn-KQmZ_4Eo(G|??) zFmq3nqqt@qTU~^@xYI?+-=zr2+5DD^m_VnK_u{uoZIF{c*j|bE8-ByBodb7;3oK*&WAxwzH;PJ;~Xb=~lmW zgKin7fJDCurvY_{_Dc0Tr-V|~%qbNx6*C02yHvv@h^R)(<;*2jxmok4;qAjwA>Umr z{%0CDU8PEky9*}}Nt!xO?ZiMtXpp(Yl?7Ee`t|Y_JMsdfoDYrUsvS2Q_9_l*UO)u7 z!01J-NFm2O^pbdyrCqpG`|e7A{d!MrR>s=Qahi(wwsER9!ah6w%Zau}$`@stEyi$1 zR>-b7P!_8ZT_20=tyEh~lg149y!ZL;$RnFw_AHQ`T!xZjOHD3>YxpzS z*qjC&R~ib%=^QC}J{Hw(K_cHFZI^w1W=5!wh5(F(nwbbJ*v~FMeDHu7|0EdUsH?(= z?G{-@$oOL8QTtwdz~?%Lv;3aUfJoITrV=dxJP=2iXX)*r^bs7owp|={sx?XrFNR8O{^Uvt!ySn=DVlkQAR9<&)@!REm*o1}aisU}|2U!uw zb(6tLsGatjXrD-`>93qVFy3pwnT47+oM!-cq?|wSK6Oaj*x7eg?hf9 zsQrT5n(+Nve`hDn9a?H4$O4^0IoQvfbe(Fuqi`k$0_Ov_{b!X0Ao#guTL}*?s=-?8 z>?x7ORAgvh#Ctd+5G(DQtoYuyhTOd< z(k02y1-79j~rLlTXHou!LOtsEI~Gp#*!gbXMaau$3)1M4qZ zS)2HWQW^{wIIlr@)K-m`{CI^%7cYrv^^p9ElF4i2ZAzEM(+;(MUHa}izw9BFArw4D z8+!O9PiIhb~c7~3V#lv@ho&8UJ}=8_twCbuP8Ne zP98kvMH(J(Yf^5kU<3OZjp9=HHpPMX_-ic@XwFKole@owM7NR>DEsTmn1LAeuLb+0 zqTSaPOFx961k1g67Sw`DX9+FA-fd!RI~^#%h{zGTndBfnx3EF3iOc%L`l{_$^oKq2 zn<>I0JpC$C+4~cO5c+@$w;Myy3r}9Pkq8KqUotYz5z6vuqzxDQLWJk_KZp!*D=(4< zn^Y(3wm-Czwy$Aek}GyyyjAav=HDfM~&?&J;G5j>OFD>47a7bin1Czuc0nBNpVt!P4o$ z@74?aQltTHQX|(Ze5M$Q2o;?R>tt-X8-uXVKUdZQUyk{L)MlAzPBs|IsnuZk^UcY& z#gCMQ9{M~k*{AD@1*!i)Vo$3X7PIRXpFQbKX@5#`xI6**p2CC`!YHk`bUXv{G8Diw^85YBZZ7$dP33OfBUAFApMUDr{H7e=P}>V_f~wV}clRO^ z3!y=EE*Lj{$kCKY13KRt9)AmzrS4<9QrL}M+L25un$TUOW#cqQLS=K$0*+fEo)yJ^ zyl;X5Ez^f~M_6I2{9sM`HhOMA^j^J3sv#?vm#9WWfP7F!Fl>k>=f;RCE#DuC&D{!H ziUpA+A&J{s`O7qWKMCmNowkArOU%Jy>d`x}NGTALN| ziVOm|ak0&R`?7uQoO|EFR{SI(Bt*lb+6)O8P%D&9m3q$%6R@9PXGSm0j-86w!U6cd z*-#16Jh!{`GqHqy4H;wBDH-edeFR~pAx&;MJm9pxn^1lh`wRlee#986qbI#Zx3FqL z(9Do_Pk+AkZ(;WbNcyKLYe$7iI!R1iSiUwwNnYp0&E@g&T&XXcjm51Fvz(>RcN>+) zk^AMBuchv2Zc=>x#H@((`{m$}eq<**wM?QGdxIfPr7%2_XuZJo#CM6OnbB#8ZFJZ# z0(#uvnobtoJcx6SEyO$q(O{$MNP&%16Bwb!q#6WH{q9DVx8Yl&nQXkbdtS46ja}Vj z?rFc_1^k{sZw!Psq=tLtyzHbLsmQE}@jWo5!x)bSF;C`Pu7Afk3QY=S4xyn)pIjp3 zW44WW_YD&o?&?<&b3?zayqdn`L-z1ubGn*2D0f3u8XVH`o0e9N(G0hT;BQGXlFrM! zPXH=tdxcdEZCr%9k+bf>6;zT-Apw(M(`t9OMLlTl4%aPS$bE)EFy919>uvRTaVQ^td>$7G@1j5_!0!Ec1HrhRrnA0nh4~ zasISKS^rbD0KbBpwRD?FS0}Kw$|yyXZsmC{%C9Eu;+c#%p8yYpWE=|z=w$0EgN+I6 zjQihBvJFO)fq?S+q*-d*KRXK4!II*e$V7izz_%LB$IJ5<_LRfKfol-5ZWyW-3p()M z@5;qL{+ixY+vv%}2UH3pMvCaZS9e(d?BIbe>vMRXH}DgVI34dD2GzlmRt!1BPyMT7 z5P=&q`g;=`S=9F}(x+$(gPs#%+e6uoRxQ-n$O{E^W@<9eacFAiMR@+#Wp2Bf#?)|v zCFXkN%o$>tp~cFfQ<1jx@badTgC9u9Cq#fB3r2!zJbWBvi+r>WXm&H%Og{{RCpqtvZ9aBk4d!8kUP2oDKzcgbP7|y6ryn z^J=K;K*}vdXCSs5)KeBZ8V<17=?Hw^+A%&wQ*%6NuL8vj`Y<+-xlE{EECphq;oBdOgghF&bLAF7Jhg z#(;Z$HpMDG{E-dw6ihVpf0=>0=2l@oYUC%>Hskb;=e`%i%ITEnO6H+RseKv^R{6r?ooYV@RjVcX|5`F4G^C;K9k2|qg6 zA|eqaS4YvC1bVk7Ibv&D3M+@-{c7lz1+q<)%NJ{!y*7rbn2gO0y7ienOrA-ZxAxIl z`d@^-V{m0%7_FOhY}-ycwrv|7+Z{U{+qRRAZQHhO+dfHu2lv#iTle>_+Iy|NR@EHy z9nTmu!DV-=mo3Z;Kx2m-6#?uI@fxJS#qp&AJp!|o@`k0qq#Cduh*48T?#wY&gp9gA~6?W{h4><}1NLyJkM`Beq;@I|C z4iF}U!_}}Uisnuyu3}5`x(9c&@a$FdOFwMzzdITWJigE6?+vpo$5Cw6Au(aOeZcYt z-HybZ^LR+L>q!}xm?nM!CE$qGo_ z-BDi#T;}@5|5PJG|JaT^72UQfk5Xo(_-5n&B94+SW3iJzmlq8*b&?%X2_RiNzlU6H z9*~Z!F1yQ%(h58z(SvE2d!zns^g(%NYrg7Xh)kVt$NofiBD@oMm{9ayXbMrV*F>e@kwn)z#MV7@%GbZH;K}-c-FR*^QY{mU5R+J0YMDa9pJCq6UV_t z*O88L0OYz^kBZVRvST`ANR>q9F*a_R(_}1>NkIJ;F_(;$j?oc%(n&4QkE>b~T0p~S zF{PPy(@XJwGO;iX3(CimRfywugdz8+*|^i?<<&E;7C+ZaTMVMIS()X)!8a8$?uD0L zAP#omuJdF|0`H*5bV~PW|CPJOrN(~Df%dXCz^>nD1aXWb)pbdlYrN6w75=$8GrhAn$rrch^?}kbwHPoHe{X<1jIT4&sU4)I9 z#~MF@ldl`jK+ez*Fh%!-7St#{xb(B5OhujU;XI3}PijiF~)#X)6 zN{U7pFhLQbaqwW>63>ZX-z1wvM@ACETfciHb0{1t3I;VFCE*0ogHwNF6c^JNSS0D3 zCujH*s#jNshCU&1Oi63~6ZK)N3Ti|6(MC;uk5Ksc@2yITl8-vA`+iWAkw45bc|{8d zM0ZP@{6QdrlvO*@G6x1?+>xt-az2;tC=uR?F)OpqHa1CDk$jy7y?e>*7RCtt7(0^E zPI&}exxwB%84E@=sqrnTr zZ;VFQr_*1#-X=6Y7#96sWWOCo!0)h6c(t(Q0S8~Qr~eAFGDfS*n~m~Ftt=#AQv}PH z89>-0l4`~_i-*G-vR){lL-}TGL{Z{~3!Qv%E#S%Oaf~0`^VM5;>m8fJ4lqdt*a7{D z2I$}ODT9F4f_dU!58t9U6nqj<-J%`?Vjo!u5Z*|)7>Op3nYaSAH-6#3M3bYB5>`=O zS2@p>Hmg-fWY8sfRj(^q#5m@tCWV-4U$euMAbADYl40ly63W`Uj)1FL?(*00Aj%bw zr2e3JDwIM{DF83EH7tte0{|q2HtTX@+uxZT+=mxQ7x`0gVM%dlhzi^DC}LD4ux;q( zO$)4`<#(JP6%B(#3F2Y-uIrNA*`RRE?+5Cq;EeM955sVRdIqA!*u*8xz5<7YK+u&h zfuD}tP-`33Qb}W!-Uy(^thk)IjpRYFkD$x^jJ)z#9?zm!-odkeOGd|DPhB3V|KC?y zeEW@*G^|EmaC%S7=h6!kpVU#W} zDK0OKOzcPUu|Pru2sak_B++CYOF;B_&Q4>pFFU0l*NYu^gKEvVOVpdr6W^I>iJyth z9|jMdCCQd{(&*iE|1sLl}kz|dE)RF?wc14DZvKBJ;v{u zXxp6e9Lob6eh2yBk;4)Zhc%xX`zQyg=oaOSdy10F1gbyiz&(W!3M{>5(e#|KF3JNh z+L%nX*?|~Dk{-S(G{5H)b?&#I0bRZWqGRH5+tHpM5*#Krb^}(>C`|ez0bHRQ4tRB- z(l*OiyF*Os1fFLWI3X9*1wAoa4`&3(g{uO-M9G%-36;sj`^SGjW|tli$Zg&ldKpEp zmbyI{zi=bBgX!bDS-^@kzb63G)dSOT&fcnA5@C{C8AM|Ye79vz!U=YDeIgh$SKUaf z{5d51zb(^$ElZ6J0`4WriBGcsU}1rSu{mvOHi$-dZ)M-3K_FXuG35Fnf=j*@;L|DA z(nyQ{40j6EAiy8r`j}t|fLf-_Hqz3K5qR%I{fu((*LfpRK4U4eB*_OhO3K+$K z1x37(iScDtbxs`b9T+MwG=I2vAoc7E__OmwA6xFI!(+8}_rBZ-_ohHqyhC|i!LNFj zSH*azo)U>5bGyjJVcAu@wvu@o9%)^6Yb~bP54+VXwN;r%;`4)9Zx@Y+lLfLZQCdt# zCA*q64W?t)b3XO{OEjEZ7wYYUVd6*X`P`4r;!tWDP?Md}Hsm)B6UIHQ`i2h(O|3Th zq~7|RUW_?+XUfTV94tMx1c*d7jgu+Wmb)lz@KqOQN9OaiAJmoMyJI+u4`A5>v<{(S zd4yi20Bl6U{$-5L_dnjZ>6-At3J~=vRIhYO#1$*?=)L|nm1fJ@m*erG?blaOQK`FZ z716@@xKl4g5E<5Y0N(ygLUDk&uxE2(MkRY;3;)nFM16Sj@-S^Z4TYwRf3g^c%~KN! z|Dxw8Zb0;DHK~J=W8(iC%(sp)SUmln)crQu$87#cB0M)BwD-mL$=LQhsz2E&snbz= z^o5yEk}P}gr4N$kP7z)xTB$V2D|fy^DOY#%u@;5PU^eo2Pq}4ee=2bD@jwy~2Af0P33|BGV1IHt_eLY8f zo^^R*U&z2As(2q+@Dgbde{ze^Z*q71eUZE4ZJ#LA=Yl4(zE27cP4JlM0n#nYe~ESc z?W{#}s|c0~L~0DFVnZZa`d5CFaUc&@gZ@b2xa|5}HT#=i0$e4@JN=;sDnjj9)J>VQ z4^tNB)TOi<1rL@H_A>AwIjNK&rH0s9S;-l??H+81%f$J;8L?Q1oG0DjOyZ-H<~2hS z{4v#iI^;Hlq4Spg#x13NE=A=nFy%prGbTRZkZG+dO?B?g?h9L8;( zdqZ#uMiNSCo5H6DQ}Ia#^y%e?!xxJoF82*wgqxeSW0qvAQxwRGpb$>G=xI-+EL8&2 z(fmvkY{l+)ER0%UJP4~?XbquB>JT6oZ#Zm?p}B4LlOmEN&4;71&zA$o4>4K%BC6_I zVBJ;YKC2Qxs&F$z9hmE0ue(sai$95L)n zN6<_LA83PZ%;ODm0?Zf@`iH%oWT$kSjiJfW)vq3avSAE={=(B65fRFTcxfnxRnsG% zc-Eevb)3c3;01rdVRt7}(ig9Yi_96U-?{iG2XxxHC-!_c4FB!UJ#xLgGC4#{zQ=cRE>ZiS)#K@7JARP5yoU+i;Wr3H z(N@(E8y*6#c;-gng|`pk)Dy^qQ2bb=>JLp@#965RA>7dn;_R4Z7j1LTi%@x8DiFxQ zuTx%pKf?h_8o5>aF~0LvhyhZ|rivA?>NN`16a+VEgqE z$usZdg!+AIz|+L;!jnajXA5j5!mV>4eeGcS%zU1|LWV?fbx|RhfXO30BfX3(NpK4>Z_Lay05$j>dePk}iXwI6L@G=HQz*3j4EEA}r zd4x)_S_PA_KH~%Q7!9jx7rh~Eu}*2!`MKE}C-$NQkbTWc#cAP=16tufrvms(S93#L zKAgoL-o1hjicCm6jiBVZHKS^WHQM7~9wG1Y70HRuZFZ(8Z60ZOWDntN4_mJ$s&TDs z?~zXDNt1M8%^?AB<=`?HLp3b8|M@$`I+UnQ#|XxY@YGv$2rPLEm$cxXWKU%AipttQ z8Q_(eq4@O#bX+Q05h2=mZx>_fk@GU!vrYBl;k%;p|8&yI zntI=eZr{y;TeUAd905Zt-66sk*=tYKmvgK$$bEztQ=1Y4B#0N8r zxtEsqj#Qxh@GJpp>*4$zQaW&Zp}?pq?!}um!r=SSU-K5awhB5JVbXJu=2AFd`BUMU6|Fux1OrrATb8==^ew&?6$~l((mj z#PW+pQ^oNXP+7(N)J!w%g0kWTM?URppQg#WX0~asrXoQ^^YXWMoWFKZa-IrP2@2w z(G{3q#6kx6xDOYs6;{z<10q!>DqdazI}KB1H@F!n#N+swE@t zS1In|nsrX+tS)`u>KPJO6@)Z2^a=T5S3e;U+G&ozOX)C1{=UxxH(0y_ru%wRkmZkP zr8*2pPr!8-+~Cj3iLqOPcDz31V8+-}WLJND>we8_$6k zmdLploWOmfalWRXogW9!L@-8ZB5-i>`Z3)-Z_P~qTSGei(~v-4*awZXzkp;O%xP+i zDnI-K&1>IRl*6FQ^5{Wp>&=D69M_GrkP1#KCP6jnCvu7G7W0X^XJ7AgCQQh#M{6rU zn&(AJ;s+Sw0RuQo_iIN1alRT;6fV>t=F`Fg?ifdQgYlY_nw^{^pbnL zRsWAq=$DG1(`)6~t@gxG$kxOD*X9yuF-Tm^fTVx{kU5@n+FaI6d&O?Hu^IAMGqRc% zoH<@_(DpzI{KQfdx`H&C(VYd**XLRie^O+%SToyw{T~@1>FX`wbDXYroPff9%&a-U0mjnb7|M-0Z9V_Ju!b~ zG%?_z`3&uFSb5=D5fnQ{d6lO?QHs+bi;S8kzd&p2X_*u)$KJ#8=d;R z_ipiyFeR*k1pCW5f`Prm+k5Lz-)k*tfjfd_h^Dko2l+zWW{&u_E+z{}g^N|@q~j10 z6DZ9>gwQ%3>A1T%suzk5=ERhG)ybea;wLY0ddw;BBHWzQ&1L#ox?#Hgh{+4b(rnFO zf~{B*y6|=b*XK?nT>o(Uv9;hb07|6yxfikVa;qGZ2NI$eIPHqA&ZCG(fhU#IhS36N zIy%!?%S}*x7JpKl0WY&4YxOo~PdWfuL$J0LavN@n!XsbNd!A z*vGunl2zNX&bbGE1ZxG;d;uJh1ze}_c8B(e4fAc?-laSYd{22)A|ZFT{0V+v2v22G zj>o%zfHZb#AVPYWM%#3S_Im0_Dl{Q?)yh!S_Pe$1)R7Dcm{u z9nA6UgK0wrl}AyiR@B(G`vZdH9Wxd1(x1KrvbT%SHH;{q_P&O!bpLyVZE!z^IIM{?U@GcP*udbekilBz}Cdfmdz(vs^7l>!@^4#N5rF?5yg7J2{8TxT;V3=-tkkC!y+rh@EthvwSh zHdk1_k7wYWilm_0i5)5i5&|%DF4aPsp&0?o^H=;A>L!2%^;0(MG|H)6B{*a6C+ERF zA?};pm_376Yt7lCYIlbTkb~z_A9eM@&zSLztu?gYlX0fwezQe#)JfBTEW8TXgCgwW zBNUD+VpO`!EGYXdg<;3hN@x|!!1EjoS!^W&J_uKv4mCHqum&CNaq0Xb=CnX=67@6S z6KxBJRXVpf!=>|DfJ>#GVZjfCI${E8U_aGjM2$35zoxThNWWcQT;os6W`qxHMfpo+>yhkxjL(3iof9yw{k4hI5*WLz$D=;596XM2=I;pi_z%WP= zoU+cg^9sVY@PT)~u!J&*Ppz$%J@-8;g6$<*lSa@g<5I1mmtK@dF6~B`!lxLX_F54i zEk@m}ETW>)A;CH$v_B5!uiz_mvHj_Wvl@ejo0+1AX}N z&6VZeTljy2D_857U+CxsWs%XnmRRfd={ER#-y1O_i58?FPw z4W48BLUQ;#Zp3!3BdSzi2rJm5T^tGx-RQGiOGCfY*!L~X;AuwnmZ(#p`(&m{?Ft-Q z9gTt*s+3*eL2NFWvO{Zit$~zEUiy$2cXuEAa8aB9h}3WeRne8BN&-x$!)a*6c&c4m zeZikz4}^F$;F0+pzruarN@(`VL*JPMehGUo)Ps#cOKv zCl|Xw5&Htgrh;6c`Y>E&B3Sc+ziV29-bY;a*wi2p9>>16?dryc|Ix9tD^B^v*kLNJ z8Ko-I%_i8;ewoJ44C=RoOp&z2rrMps1l1V5E616uW4z%4Gs@5E9*q^?z2fxojoHtEEvvq{qN2js?;Af#NvslUhlcp;an zVs#;FyJN{5xG@W21A!>`LV-&?4;jOlhk~|>*VZhdh?H(pIe9tz95IS*gJf;#UE>+9>=?D~Rla?

      in;yrUN+qr=<~Uk<3q?k5&~P!r^S8)Y46D-)dCewp|ZLEB7fXa(}Q@rCV}!m z`Fz3Y2Q|Gu`7WM;YKE`?B2Ya5oC9-2i8wtv@1PhBv`gn`{TIxmj!k2 zYeoE+SA$=dSTpg{1&?(r?aw7bg~lu|^kwY}7pBjIDq7e(b?!pKILD-20vs1}f=>Rv zE?g6TEkmLPsCM_o5&X=utNl_Br&JIipl|!r=aQ|d&D`Vy2q?TI$UR513rkwqDnO!5f!xcW8&8ELHwAU3fCqMgPl-NKKERUubca{DkD7EVRcW-rD0`e!l2BB7!&I?h_bkhE%=cdsctH8CCZLN|^X20uM{=j|e<0W!7QJ@0dB%OSfM34wO9v7?B+H&a0C^9c#*P*l*6ZMB1wqs+2lJGviGB;-( zF!@2Pms*)H`6%t&z?1jb2QNq3cClUMb9uNKr~4tZW%OVC)?(O;={7V8ai&=iLiI0a zT|?s(S2l7R)aOO#jOqjg(qP4R;FH+K4oEkc-+rMKFGnzcsBRsJRxo~rZVNvAb%PJ= z6QIfI{N6a?PPqBvNp;%wKgrLKm!780#kyAByjH{MFWeuFOG`J5(XxeOZq?zI-!j$b zZmVUlsPicZVmG_2A4s6+Z$)g_0z{^|M|AYD54+4wwTDcZOMBT48)G{QiRb~0;HP14*m-i zbC&g|QU(7BJ`Oh{L;GN+lPTI>nn!%gagjJ5I7EPRH|Wak4Ctn~Y1p1H9Zhx%5H-TE zMBHb^!;rWMnmp0;BBx#tN+;HXiGl}O@pav5_Ub`cC)O>Y-{UFyn9EAX-4w>+9oq^Z z(vRcQ(m)#_sVsm5WP7(X*i}Dgqh5ZUfl5|5ehvET5+1A5x%>K)oav1UaEh(j+U#U{ zr4QWZvu>bSGNlUr8HS6ZE(luXTJ?BI3}8UmB{SPRVnSVA0+{llgY^gDQ+LPpU{TkGnVC z83=uoM7IGShv?xlgT0kByL~cZvP69qFp4@^s>ayPqth^MJhqXvlO+cax5{rltITu` zBj}>ZizbvYcE~_xyg*2ZDa;P6J~j-UA4-G>aCZ?E$k^NM@CN`QsQ}LUb{(En|cvNUft=w%-7)lcLG75y zA+VysM&XCX!0Ybhd(B@3fYh}YfuX7?8}whbxlY+Fz+%4*9(-3Jc5}PKNT4-FCFW{fSnPmP^4j&obCjJA~wBrrm+&wD`2 zMq)fsqc*v}Dy`=R@*lhFWBxwH}*yH!yjB#A?rrK5g9zTB1#d^<~+fb@Fyf``c7V<8#BfrX%P?GEF$!hNxh6 z6iwhX)jrjKyb9*k65#tAIjf_f$FY~y3x=#1ui7<%znwB$3*NshJ34S<b< zr`YDu34VdC;WLk}@s`GbJyn~H(v#@e%QN&7#EreJUS!}jxT3Un zUTZ#6eE?-YL~jZNR{3yhOOXcnu3XE?TWcCMa)P*W2Uj5*>iYx2JwPP|4L2N9U#pGU zwlL*f*zk|*6}wj9c+mfdM{JF``Ke{Udi3|E{K?F9*MMJ1`olu>q<$Sq zo|D&p{RoZAyj%6HNq)@qDTi}iyo}^&J0`EOS#Wc_p&8fw5ais`eBkxrV*N<&NpT)1 zoIQ~*Y)vM>G~^k+WO%kbXq>k!riNo1JPabP-LXBr~&AsuI#qL&v|b-gB) z@y2qYp|qgxzfi~rc8T+LZ>#;W;1_9l&UQWODOcjy=0eVw{5wosR=I=^ag8T5f+ug| zQH$@7DnWn`Y_ls%)BfR0e^@vey8XQKkX;3HR{n`?T>C8?D`kfuq2prnvnQMiOs~fp zr)9Yl2M6&a9De$+)nWFXW!uJXmI03M2)ZG`$yWruQ2`(4E5edwHo7OlRWC!bN z2(klrmv3t)b`TXMMWmh{1^yld&-0IRai=%S;?8yZ^u@U1;imZ<_~Cuidn(2;3{Y_1 z4ul0V(p}qhQPLX?FP zZ`eM4ee7?+vI7L(p6ds>d)Qb*OT4CSi%A9#FYvgcJNY0Z$`~|B&{9%M%=W zFehh`G7Q^j5*sFcOrQ5sn--4Lm5hTVIow|N$3f^E#eR*p@CBa-^r7cb+uV=4Cy*<@ zi)C?m`{p+%u5~t_BP9HDM0a6OqC^Hj@vXF5($b0upJ;E0+}CbSkwsYkNvt7nyS^o7 zdB!hOwO>NTv4Gvj0F2tQhn$E@+^k~GkStyv9+*GD_pembXy;dgUrH>iEQ>ve_!?X? z-IRSzJrOMiyqvEK7v*vCrV3Xr2@iQfAManU3;?7bjUfd&Ega4u(HgL%3$ps5?;=+D zcE`6kuH;ocpL8qsTTpQo98aAQJEJ-^UO5dY2o3Qn{MoCzIo1>^4${${eoU3Bk|jFW zX^C9a5ig<$FdB7xrw*0Q@^fde*=YS!Rv^__h^FZKWVF!iK?8A6xEWB|to__6DB}-^>abKqM#)r%tQ7RETb_#;zsYv5g zmX8%e%z#Tk2|h@H2s5lLie-0!|H9^5>fOTY`IU{dH!|Ph8^{bDm@j666 zv2$yb6XZ?qPlTmQzawa>&|wyq60VRuTCl8A7TuF9uKv{v=@x&YSGi>3Bi=VJObdc5 zvBM1=Civ-@>cUcVy73UGY@equnxfUv+b({}zd}jS@;bp0*JbCAd7B#r8IAYXDFtLh zU;!R?xV52dYXF^R40oMxy1Xo*iK0t(G0|WP&_dEZLbS=tEV{G9ULBpQ7=(xb^rzKR zJ$1>|$%Ej!YdK_Y+?YGb43&issu4`EDMW@*rLq^cGiShX!T`MMwb2IvCitnh9bPoK z2)L&^>c8pABF<~(8Eg+by|6mCTRRU$Z0*aqG^}fL3FpD*HcaRs;5T_?Q{_{7$w5Vn zn4SIldZTW_mkh3%e4?ucm#mo&z&!gR2;v|WGTl~c$pi#_f7uEwXXIz4C-0@>f%qZs z#D5-(u;NnupuO

    1. tww;W70HuTQz{H}i=-c;(x3N|d>bHB1G3??;>Yy|v2DkG~L# z_sC{A5snh{=%BD zQriF5tNwm4YtSZJ#YF61L!s9SM>}A|OtJGj(u_Jc5>U`Yc=-yvK5nK;xA?1@Gd+7pxi?I-{)glS+2bgdu(sgVK_ap=NZ#rdm#-p zk|!=w?!z^U8C&K|UKe|J;LIKi`R7yq@+Henz(MtL<_T>UjES^k?EHmrKeDCR0<7hX zj5n~2GeL8=&7b6?(a3Ff!xH>`A2CzTb+U#Kbc}wsl(A|a2mopy%K32{9>#k<-l6K( zCa8dj2Fe-%jsSEsIS)3P8#O6a(>(^n+f+TGc5A^-bTmDX(@QbJ(=r{seh)?LNxvB- z@G^~w=w3d0T`F6{8}$7EFT$;O)Nvyn=ezRsvckzYi+{>zZ4ae!cC|x)yS7-nA)G&8Y*c0W5K=-z z!P%lXVA+bc7g&xQ6Gp9wB}EpBi2-;^SOme2OrVF=ud zB#jILER$JP!2TBIMcS#}l<)07vHk^wo>)Y-pEh=nMd#uRX42+X{c)(38`N5pW>*F2 zVGUQoLIkpecm=DbN*2L56`a-IUQ6}kF~&2u?^6^ZYmCZwV-xNi+DNY!h5GOnbkLtO zy))O?<@TpNdkCX1>XI-EY8W|b&NW?^AyIq8lGh9_EV%o{V(v!MqnxfGII~JLIX~+I z*V^3Rj8P4_S&YIZ0qf*n9^)H|c{nsZR-kYxn{OyoqMbfL?>9|pVaI%|FACaWNYoOb z^JHet!^#`Kkw=H=3l4?>Ho*XrRML=+HFpT>8c58a@%YWZPr9fGWs%Tpk|Mt5I767E z9~rSFjh(Uy`8J0m&( zMgqB*OX;2Z*s&#bWCQ}v1t5E0_N!Qcq%QtD$e5y4rwXMvjCIfeb1Vl53FI+Jo{M{( z9aqrBMlx$y41klrMs=Yi90$177XBSCD*E-^RixcW=;d38^s|H1j*&#QRZT1}c@~nE zr&P5)4%kUqt<$MO9u5vJI^;DuP#$tH7!qBcV{X`UC0gEn$>T}gpw1qoeUX=Ovnbjj z+*z=WgsZ48lQ+Uj<*VkzeMReIW0s)*QUEEzJA2>A z8l7e>C^9s)i#y;HXblQgRMkEaepHWspR*}u!YG{~AgHA+`aAY7NT6TS>f7*tk z@$Ikl_{eOjBf*?4^`CGXK(Nw*sDnE^K?ouA)tMYH&4Rn_>s{&_)DnuXPg^yLZ-Ep9MnfVxh z$lSWbNeld%B!y<`QyP^0a5KeDBl5B74fPW*Pralw&6iIzFdB`?D(IWkL=~>MoQ)X` zMp0nz(`Re;gg}sOW#9i%ZN;EqCnee+XJS`0Vlm+)O=~EF1C&Zr>QN~606)n4aREhq zxBJXMsYKlbFP8ZT?}P5s+It5u#Y|6qoNZY&kqhzwhF}1~YSpC!LU`#Xn|e(V*B>z$ zl{@rgnKZJZ;JbcC)5!$W#IP^yP?&ctq$!=dFl3%!#ha))mk>P20emR`vvlzrc~E__ zv^-_bW*w;%jNGch0-~{#z$^&F`CVMjv7|I^2zvc1??4(sCCm>}C){qP_^iqOw0f82 zXYi|n!&)|b93#z^{wpdfWT?Oy2X)UTr{x!gs#5$xrgpFmhAgnU7VcbY_3x8smH#vY zj=eXcCb8o0`oo;?i)x`ME?S^mGl3Vw@$kyDma8pAz_et2{v3}1*dEQ*#UQYrv+$b{ z4Oz5VeB%Mt@eCK!nhj7?t&x!q{O)8GGUi_Tv&=f&X_eUw(24;YVZtsFkOT-IbThKX z#)gc;S_fC)Pep9oLj%PmjPe0CsMm!H4HI5Q>iOhVA(4Po!bgM zb6Q3*8Ew{#EKVfDz&|4GNb_BiX>M23g@*Tj@!Un$_=<;c`euu@xWcw{(Abc~v-Yp^ zzNO4L*vxW90}NHmp+UzR|1)*;e_=`F`KJy1%)(!P=67m+^(T&8)Az&WrE0OQZI3W>k8j^oFPTXyZ&z9Lg1&1a z?)TH+MxeX6e1EK-V#XdNtpfBMSF&+dA={83CWQfgqP%$(v6^ST-n=22dd)#pN_o4k z1b@aKZzyH;xi0@WzI^!;iPx^J9F~FLGMSY8R%eR<(0S1RO}qGGOs}H|6MiL)JXgde zN9%nS56@&B*pF0Lbo;Hj`>ng{qv-%33li=QLn#V!Hp^SCd4V1Y@}TXlijX|`q)S}q zmpzq0Tt+#xn{OgU-JV&~15n@|Aw?)ElHxCdR0|jfeL!S`11BB+OCdL`S#Ib2x3F7G#H~#S8LL36nhz34(OqQ6fw#oMWzI}XGu3X{ z;a3b{SzFDb(~kT{lISC2dv-2c9SE$_Wc#I*mWZL_3}u2rZC~=rgA; zq?JCLo{dTbFE>Y$Mkd)5B~L6IgN_}+7##e^7seM`+q7G*pIQkIwVk($*I69|>&_1_ zRWbMN&g@`Z@sI+lXvC5K3K!CTqg6TTl>(9!bfhwyvD5vO#ELGl)WV~S0Dl)Ok6JUB zgHZR<$}-WsG?Awd)|rMJ^oUadeV(4Di**_in&=m#+!}Xx7?}oQRIBv79BSTeSI#pj ziuXTAi4DyjF=F5&XG?H}l=n?s8ZZbTMiUD>141hNfhCaWWi2iV@OE@K&XZSk5@q~IRqD~CoTX`Y;wCq*?Z zMTULBRCspEL$D=58tThA^-8JODsN35Qnq7hhAh|HXfq{A>4v27iE_PO?oR z4bO4<GrZ@!Mdq&&Hif5*Y1FK$Q0AAxp-zL4@LhTk zH)B1o)c(FyV8`fX)|gZ-%uUf?4JHX6}4v=AsZP(8AV!p=t*vV-wE!_m~v|FgU%Uk;^Ryw&JvJ0790hrm^T zk0XcEszHVRB%%dCV;{g6#x+)jK9x1u2*x2wFebWTh*r@foFVvNdwD>LgXAUG_P#NR zD)E@mLOl(5TS(d#S3me(kWkEX0bFWs+PJj_8$GU~a8@VvawVWJRBAkqTCg5WMg02c zsl#dYTL37h#S`6Xr84e1>5anV)s#|tF_F%DMN^=EL>1}M4a0oah@YAz%PHSe5LTY0 z!UUxN@V8F~*EG&CPT8wa)E^Q^6&ExTb@G2fyb3kVpLVf5Xj{*lz6xm^Z}XekGO8@W zzvu64fK|P!@6g(pyOosBFVyyWdN6Ej2>2QQUne7da6i?nK;k{@dUZTjaD z7T0=BlC4onmVWjd5-~!I@4@FT#vW<0_(q~HNd!55O~WFzXbm3M6QL#GEj<)STC1xaFjjEm#@L$r;(~)TYUsXgL>UV%*elSYPiD#ZhwG`gP#r*M- z-CGKUI;x*K$3P>24G1Fz$qYA)B38g?bo{@J#qa+MPAeEc66mcyW?b*t|B^DJX~ncz z#UAvNDZt`iO3KN{Q3SApH|k1>kHQmwcewu8y4pIFIl?{t^(J}$1JQETU93#TswPy+ zDHaMH#ueYfx59h8Lc!F45+=FW)uz->X?|+X?(ZK#nZ3(tB=V%^%dm`l;{GW>|TU;NB)nY%PT_}>k> zB9t{=f&2F%|9xHS+VtIs3+0GSH~*(d1f^Jqug|g0w|%2zgNqh`_HW@z?{&MDwLHJ| zCQj!7MDP>vdpI3lM}TBaLl?IHIu)m=nwE_-Rk1A>hgU4ns^DOFXFZ2T+Wnen2XeE# z4PaJ|)LZ8OxHzwvYvblMhrWak6B%pXfikfd#7nScR}EU>+-MHb zqZ9#wn~6uksnsqR)~kCxx5vXrcAPUbsk5nyP;UCqFTiZ{r7|hpe8DA>;tzeAA8=L3 zdxi#1^&sXH0mJZOVBBu5RMQDWEX+RDr*+7_Bp;K{KeStm@fHLqFnGZS5k%chGX>i5 zA6l&{QtS!DkO_H{PWN3uDB(z(on7X69%4@BeIw4>?TAnqwP#{P_3UC*a>MTuPStL} zaqSI|Tw5qaSduHT_WV!uY#krlVaKR`?|_wuz{QeI@Nu`#NPv6({~s&AGe)za5Eo2R z?}u~W$8o{+q2#JKu`BHOpQ&fx)lv;Xi*uwAQi8ECnA=vGL?nU?CR94>Q2yWZ6$t)o zUkHt$%9#^}a4tS4$cU;O!yH>@ERv;~2IoS!W<{4_m2ow%(+H@^ectXYH@3;}IRXEt z;{RyutiPgK+%--P-8CRB4bpjNK^UY%Ktf_DDFNy38jzAk5KttfJ4RAM5e5W_L1Jh` z1Oy3*?`%A0t#j|XcdhRquxI}^`+c7Gc|Py1HfkZ~C-9;nVSs4=fby=}GZypU+F~tl zotozlkoU<<7f6 zx;c5AYN`{k#gxih+8*t3H9K_8&oN!kfylj@xVXP$ zm*C`NV&mf zLd#AIRWq4Dg+q@UT-jJ<5wwl?yD5+R2FVVq9mG5+EkPOJyJ~_o9_RqZsNY4U^t)B| z!rx0)*>9X24?sv8b9l`)?-MTn;5~hb;c#mI;}e_gGMrYwM9t4qVvTaBH_dcu=9d`9 zj*M62SF3P|KnK$Mbh0^i85udI!;%$?5mg^2CUX+%Uo{$s-_T=X?Dr6M+{^D2k~`Xl zLxkuT$HIPvbv`C(z&3h~91Q?dG7Q1kCq7P`y#BNIa3)>ZnIlj7sUiz|qEDLwY(sU8ZNCz>FB5CPs4YIs4Sk&4-TPSf!so4h}!m5gU zs$9hCY;wO2y=XxwY%lb}RY?ZHKr_3QXmmGO~9%cxOmuHJev2B}osasIUh6dliJiR;p`jPF9TZ z6tA?qGZ__3MuIf9uCF>$t{hECjYM#IEh17bP3bYXut#ON){@6=5hXUUID0O5(I@v% zUQ!*k^>U5erkEo!Lb*1qSNQpAiWtp~Yy>i%m!a0m__2+*U+VIq9(@=me|vu3Bz7R- zPb2f277`1qk^D?x@os_Ip;9`XvK&rL@?a_ck$~%{(Ij>kOC}+%A-&t3H=<+4D2*Iv zg>wu;>8*s~xz;s%-BIey@VMpnCGxn1j@9QEpSTd+*K5c#{r>gf?54t$>u=@P8$RLd zD&$%;!{F=bh*T_Vx&8*HMdVvcuxGMPtkPMKqzz8%5zLKPw2q_7*7*R=wZu&zA3*gv zmM~1z^W?8|-^$nl>skq%ofIZo|5uq6nL-qbl@7*QKLStZ_Mq@kg8R=naT1;fJ6B-& zmkkER!*3k51HDN(==)n#XJ>6zX)bIE)CtWKQPVt0|HFRFlo?wsp;Qzy`qHlKUxaj} zlZtUq2`G~!Nnsdw@!)NV+3A~MwRg7H9MIhXs7j0Q%0HEhHjqEnwclaxF^8?E-cA;C zLR<_5BX*;r3S%{kZAG6*FkFY?n-AEw&zTeL0b@0tU-(Kp=iU>w+T>Ky0L2Cw4UO8Bxj|$M^VVpG*dg6 z>86VL_)3S9h%tbq;i(diIml@!08K1+Tf^H?0M9$J1%?Z1Fsr!ckJhyiPh$Og+OE&` zoEBt)UKEd4{BYa!!=#c^8{?STa}bZ3{oW*j&wNsEI!o|a#78tKAhU_ve?lG5MuL_5 z99S&XRRiK29`kr@&iLB;-ggZeA&=DovH4F_X;7PVtd)otL&88lXljDo=c#zWWP zj@V|CuH;6KriQd-86f{$;?YjAmQryi#=v$@9D%ammn3j!BbGP9aP>q$15KrCqPc#u zPX7A5Iri*p0<@M&x_JLKA{35n_(Ax8VMB5iz>ox+z377GM*J6mk(pqp;*|vW$X|oL z`pB%El_Z+W1qqm`S>%bv%pF|9P>c*M6u?20aRXr5C281Z?ko9Vm)e-=^=~@*JFM|k z;Ga{19JfjaQ;pzewRRMK3fx&)+n6N6kMFEg<&SJTEz(VGIbq+@quKcKI%duTB{Xc2 zb{njjyaR)N9$?l4O1&fGp}o|$DHx^79+rus5(>Wpdjf1Nf(>QjgZo!g{lYQ$h~0op z=$Yi#-`ZVpXWmAqJrNlf@pf9S52a8Wg|oZYMkL|lis4{LQCmfBMAj?hbAn-BJBesc ze<5dcA&0c1b|Q^>y7fUzQnO^(y+O)u9PXuEc+F|)lz$97PZR@F-&37qaATO};Q8=x zBPSf=-c1e4>kfWyhiC{%z=Miyt3t$#p>CP}Y62|2wfmmaFfpZ=EWcuO@wBTC(ms@# zR;wYryX%80F+N#+hWmh6wLnXCCUfvaSlY~)g#eEA!%N$Xvf<@B7;uVVJf_xBW zz7Oe7YO(Z>DA0CX()-oN_Vvf+Hru_R%tv?P=&vKkf%Ie=KMybzK!$#p$S;q5JD&!F z+G=aj{N0CGNt?BSBjEvuDxw!PL-dJG#P$fS2}_T{wMJZYfy@1m}ibi41#aryAmyRTOQnyin4ytN-A6sjv5YU73NrxQNGIY(GQ zO<&m1Q@W&q@w(hmJK4ARn%j>6fV=uc^3br>h0o)khDDD!ERHjuePu1`HnEvCF33>p zh4!RYeSFP1z~H^nz<3l#Z335Sq)G{{EiNn4nbU*y}?Ls@-5^I&`9)T&4@ewZ4BDgD>u zdgrO>a=j_ry)D-wiaMU5vfUiVz@$0+wGid^ zHP;t1+&063P*#wN16)YJQB}B>Q8XHTo4b^~*}w4sXj%2l+PDgM-&Kza8d_e;W{_BD z9y`wp`_d(5MXks)Df!liY21>Ukp^fp51|j8 z6;nS4Y{PzspU4PmNY}uuSJ|IyE_5}t1K`1|OJR)^CkS|Z1{aB@me0g2i=E;Zcr)Vu zrt6LZOu$=e@{aWaaY|^&RVcZ}TN-wIM7o~9STH#a`oza0YYO>&uTqfU?@u?rBDi;n zXj34+@K(z@{Xn<08ZWG?t`1%4C}KgSuVMJcvvY06es6PdpQFdX6`mVEuW0VrTVi>v zkZ52<#3m0mYIIDvBk}D(PwE3t+#>C(sbjGkabq&;9oT0TcSkF$!~kDwgcijFaDgNs zdxMEN+aY#gtXsz=_VzYfz2(Om`?kAC*L-5z?d%A$C@=OEPqw-QqnxS@(1MQ1Mz=J|DC0ls^);UUr4 z1Q-9dqZV2J+cgyhTJ8wOU|LrkhytursPcSod_o(9>l_Oi#VG**tP6XT*n2{k>DCBc z2Sxp{``(>hGg0KiRq^d<$6)($;r=?Oxi>~sA=YLW{ns${tyK?F-!gy_!m&jSfUlEE zqgOaD=M+ttb=|V6o_$AGJZDx3F++X+IAfHyOKGG`0qXmjoH^o$RzGTg4cg{LjgpSB z#ehU{I*&Eb#@Q4TV{mmwm$1g!Q#Q7+P)xb)Z};vDp^e;hKH_he^)VQ|7=O4QE@9{v z=RZc-^e1#oU9ai-k5TJ+Z3YVQIU9_AdoQcp>KA>W)s-;I3rHN01ahk>O9d9N^rwcY z)UFTPWnRYG~Ye}Ox6-S!elI+nd+UnHsX6t5ISe0`1A-GuO+Ok2Ig{y^`$$fEScx0jE z=hi!!`=!?=pM6K~=$c>(x_#@9TJcp2u%~I%HgVq~>epG!g(_{sG@O)%4m{E9Q(6Pd zd@`A!{kYF~Mzt|4=kM}cY@7qz2%g@cv@@FyLPSBX_Q7*Aarlt}t+z+N8sUgH|DcP@ p!(xfa4%p#+Eqc+*yZL(9cj%?*^NC?DVkhXNK9ZN7RTKjQ<3AY@_@@8> literal 0 HcmV?d00001 diff --git a/translations/fa/.co-op-translator.json b/translations/fa/.co-op-translator.json new file mode 100644 index 000000000..fd435c73e --- /dev/null +++ b/translations/fa/.co-op-translator.json @@ -0,0 +1,596 @@ +{ + "1-Introduction/1-intro-to-ML/README.md": { + "original_hash": "69389392fa6346e0dfa30f664b7b6fec", + "translation_date": "2025-09-04T22:40:32+00:00", + "source_file": "1-Introduction/1-intro-to-ML/README.md", + "language_code": "fa" + }, + "1-Introduction/1-intro-to-ML/assignment.md": { + "original_hash": "4c4698044bb8af52cfb6388a4ee0e53b", + "translation_date": "2025-09-03T23:38:44+00:00", + "source_file": "1-Introduction/1-intro-to-ML/assignment.md", + "language_code": "fa" + }, + "1-Introduction/2-history-of-ML/README.md": { + "original_hash": "6a05fec147e734c3e6bfa54505648e2b", + "translation_date": "2025-09-04T22:41:05+00:00", + "source_file": "1-Introduction/2-history-of-ML/README.md", + "language_code": "fa" + }, + "1-Introduction/2-history-of-ML/assignment.md": { + "original_hash": "eb6e4d5afd1b21a57d2b9e6d0aac3969", + "translation_date": "2025-09-03T23:42:42+00:00", + "source_file": "1-Introduction/2-history-of-ML/assignment.md", + "language_code": "fa" + }, + "1-Introduction/3-fairness/README.md": { + "original_hash": "9a6b702d1437c0467e3c5c28d763dac2", + "translation_date": "2025-09-04T22:39:13+00:00", + "source_file": "1-Introduction/3-fairness/README.md", + "language_code": "fa" + }, + "1-Introduction/3-fairness/assignment.md": { + "original_hash": "dbda60e7b1fe5f18974e7858eff0004e", + "translation_date": "2025-09-03T23:31:31+00:00", + "source_file": "1-Introduction/3-fairness/assignment.md", + "language_code": "fa" + }, + "1-Introduction/4-techniques-of-ML/README.md": { + "original_hash": "9d91f3af3758fdd4569fb410575995ef", + "translation_date": "2025-09-04T22:40:01+00:00", + "source_file": "1-Introduction/4-techniques-of-ML/README.md", + "language_code": "fa" + }, + "1-Introduction/4-techniques-of-ML/assignment.md": { + "original_hash": "70d65aeddc06170bc1aed5b27805f930", + "translation_date": "2025-09-03T23:35:27+00:00", + "source_file": "1-Introduction/4-techniques-of-ML/assignment.md", + "language_code": "fa" + }, + "1-Introduction/README.md": { + "original_hash": "cf8ecc83f28e5b98051d2179eca08e08", + "translation_date": "2025-09-03T23:26:18+00:00", + "source_file": "1-Introduction/README.md", + "language_code": "fa" + }, + "2-Regression/1-Tools/README.md": { + "original_hash": "fa81d226c71d5af7a2cade31c1c92b88", + "translation_date": "2025-09-04T22:33:17+00:00", + "source_file": "2-Regression/1-Tools/README.md", + "language_code": "fa" + }, + "2-Regression/1-Tools/assignment.md": { + "original_hash": "74a5cf83e4ebc302afbcbc4f418afd0a", + "translation_date": "2025-09-03T22:36:30+00:00", + "source_file": "2-Regression/1-Tools/assignment.md", + "language_code": "fa" + }, + "2-Regression/1-Tools/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T22:36:53+00:00", + "source_file": "2-Regression/1-Tools/solution/Julia/README.md", + "language_code": "fa" + }, + "2-Regression/2-Data/README.md": { + "original_hash": "7c077988328ebfe33b24d07945f16eca", + "translation_date": "2025-09-04T22:33:56+00:00", + "source_file": "2-Regression/2-Data/README.md", + "language_code": "fa" + }, + "2-Regression/2-Data/assignment.md": { + "original_hash": "4485a1ed4dd1b5647365e3d87456515d", + "translation_date": "2025-09-03T22:40:35+00:00", + "source_file": "2-Regression/2-Data/assignment.md", + "language_code": "fa" + }, + "2-Regression/2-Data/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T22:40:56+00:00", + "source_file": "2-Regression/2-Data/solution/Julia/README.md", + "language_code": "fa" + }, + "2-Regression/3-Linear/README.md": { + "original_hash": "40e64f004f3cb50aa1d8661672d3cd92", + "translation_date": "2025-09-04T22:31:20+00:00", + "source_file": "2-Regression/3-Linear/README.md", + "language_code": "fa" + }, + "2-Regression/3-Linear/assignment.md": { + "original_hash": "cc471fa89c293bc735dd3a9a0fb79b1b", + "translation_date": "2025-09-03T22:22:20+00:00", + "source_file": "2-Regression/3-Linear/assignment.md", + "language_code": "fa" + }, + "2-Regression/3-Linear/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T22:22:42+00:00", + "source_file": "2-Regression/3-Linear/solution/Julia/README.md", + "language_code": "fa" + }, + "2-Regression/4-Logistic/README.md": { + "original_hash": "abf86d845c84330bce205a46b382ec88", + "translation_date": "2025-09-04T22:32:20+00:00", + "source_file": "2-Regression/4-Logistic/README.md", + "language_code": "fa" + }, + "2-Regression/4-Logistic/assignment.md": { + "original_hash": "8af40209a41494068c1f42b14c0b450d", + "translation_date": "2025-09-03T22:31:27+00:00", + "source_file": "2-Regression/4-Logistic/assignment.md", + "language_code": "fa" + }, + "2-Regression/4-Logistic/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T22:31:48+00:00", + "source_file": "2-Regression/4-Logistic/solution/Julia/README.md", + "language_code": "fa" + }, + "2-Regression/README.md": { + "original_hash": "508582278dbb8edd2a8a80ac96ef416c", + "translation_date": "2025-09-03T22:15:39+00:00", + "source_file": "2-Regression/README.md", + "language_code": "fa" + }, + "3-Web-App/1-Web-App/README.md": { + "original_hash": "e0b75f73e4a90d45181dc5581fe2ef5c", + "translation_date": "2025-09-04T22:41:40+00:00", + "source_file": "3-Web-App/1-Web-App/README.md", + "language_code": "fa" + }, + "3-Web-App/1-Web-App/assignment.md": { + "original_hash": "a8e8ae10be335cbc745b75ee552317ff", + "translation_date": "2025-09-03T23:47:27+00:00", + "source_file": "3-Web-App/1-Web-App/assignment.md", + "language_code": "fa" + }, + "3-Web-App/README.md": { + "original_hash": "9836ff53cfef716ddfd70e06c5f43436", + "translation_date": "2025-09-03T23:43:29+00:00", + "source_file": "3-Web-App/README.md", + "language_code": "fa" + }, + "4-Classification/1-Introduction/README.md": { + "original_hash": "aaf391d922bd6de5efba871d514c6d47", + "translation_date": "2025-09-04T22:43:49+00:00", + "source_file": "4-Classification/1-Introduction/README.md", + "language_code": "fa" + }, + "4-Classification/1-Introduction/assignment.md": { + "original_hash": "b2a01912beb24cfb0007f83594dba801", + "translation_date": "2025-09-04T00:04:16+00:00", + "source_file": "4-Classification/1-Introduction/assignment.md", + "language_code": "fa" + }, + "4-Classification/1-Introduction/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-04T00:04:41+00:00", + "source_file": "4-Classification/1-Introduction/solution/Julia/README.md", + "language_code": "fa" + }, + "4-Classification/2-Classifiers-1/README.md": { + "original_hash": "1a6e9e46b34a2e559fbbfc1f95397c7b", + "translation_date": "2025-09-04T22:42:21+00:00", + "source_file": "4-Classification/2-Classifiers-1/README.md", + "language_code": "fa" + }, + "4-Classification/2-Classifiers-1/assignment.md": { + "original_hash": "de6025f96841498b0577e9d1aee18d1f", + "translation_date": "2025-09-03T23:54:16+00:00", + "source_file": "4-Classification/2-Classifiers-1/assignment.md", + "language_code": "fa" + }, + "4-Classification/2-Classifiers-1/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T23:54:38+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/Julia/README.md", + "language_code": "fa" + }, + "4-Classification/3-Classifiers-2/README.md": { + "original_hash": "49047911108adc49d605cddfb455749c", + "translation_date": "2025-09-04T22:43:29+00:00", + "source_file": "4-Classification/3-Classifiers-2/README.md", + "language_code": "fa" + }, + "4-Classification/3-Classifiers-2/assignment.md": { + "original_hash": "58dfdaf79fb73f7d34b22bdbacf57329", + "translation_date": "2025-09-04T00:00:21+00:00", + "source_file": "4-Classification/3-Classifiers-2/assignment.md", + "language_code": "fa" + }, + "4-Classification/3-Classifiers-2/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-04T00:00:56+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/Julia/README.md", + "language_code": "fa" + }, + "4-Classification/4-Applied/README.md": { + "original_hash": "61bdec27ed2da8b098cd9065405d9bb0", + "translation_date": "2025-09-04T22:43:03+00:00", + "source_file": "4-Classification/4-Applied/README.md", + "language_code": "fa" + }, + "4-Classification/4-Applied/assignment.md": { + "original_hash": "799ed651e2af0a7cad17c6268db11578", + "translation_date": "2025-09-03T23:57:38+00:00", + "source_file": "4-Classification/4-Applied/assignment.md", + "language_code": "fa" + }, + "4-Classification/README.md": { + "original_hash": "74e809ffd1e613a1058bbc3e9600859e", + "translation_date": "2025-09-03T23:49:20+00:00", + "source_file": "4-Classification/README.md", + "language_code": "fa" + }, + "5-Clustering/1-Visualize/README.md": { + "original_hash": "730225ea274c9174fe688b21d421539d", + "translation_date": "2025-09-04T22:36:14+00:00", + "source_file": "5-Clustering/1-Visualize/README.md", + "language_code": "fa" + }, + "5-Clustering/1-Visualize/assignment.md": { + "original_hash": "589fa015a5e7d9e67bd629f7d47b53de", + "translation_date": "2025-09-03T23:09:26+00:00", + "source_file": "5-Clustering/1-Visualize/assignment.md", + "language_code": "fa" + }, + "5-Clustering/1-Visualize/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T23:09:51+00:00", + "source_file": "5-Clustering/1-Visualize/solution/Julia/README.md", + "language_code": "fa" + }, + "5-Clustering/2-K-Means/README.md": { + "original_hash": "7cdd17338d9bbd7e2171c2cd462eb081", + "translation_date": "2025-09-04T22:37:17+00:00", + "source_file": "5-Clustering/2-K-Means/README.md", + "language_code": "fa" + }, + "5-Clustering/2-K-Means/assignment.md": { + "original_hash": "b8e17eff34ad1680eba2a5d3cf9ffc41", + "translation_date": "2025-09-03T23:13:02+00:00", + "source_file": "5-Clustering/2-K-Means/assignment.md", + "language_code": "fa" + }, + "5-Clustering/2-K-Means/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T23:13:23+00:00", + "source_file": "5-Clustering/2-K-Means/solution/Julia/README.md", + "language_code": "fa" + }, + "5-Clustering/README.md": { + "original_hash": "b28a3a4911584062772c537b653ebbc7", + "translation_date": "2025-09-03T22:56:19+00:00", + "source_file": "5-Clustering/README.md", + "language_code": "fa" + }, + "6-NLP/1-Introduction-to-NLP/README.md": { + "original_hash": "1c2ec40cf55c98a028a359c27ef7e45a", + "translation_date": "2025-09-04T22:48:19+00:00", + "source_file": "6-NLP/1-Introduction-to-NLP/README.md", + "language_code": "fa" + }, + "6-NLP/1-Introduction-to-NLP/assignment.md": { + "original_hash": "1d7583e8046dacbb0c056d5ba0a71b16", + "translation_date": "2025-09-04T00:49:22+00:00", + "source_file": "6-NLP/1-Introduction-to-NLP/assignment.md", + "language_code": "fa" + }, + "6-NLP/2-Tasks/README.md": { + "original_hash": "5f3cb462e3122e1afe7ab0050ccf2bd3", + "translation_date": "2025-09-04T22:46:26+00:00", + "source_file": "6-NLP/2-Tasks/README.md", + "language_code": "fa" + }, + "6-NLP/2-Tasks/assignment.md": { + "original_hash": "2efc4c2aba5ed06c780c05539c492ae3", + "translation_date": "2025-09-04T00:37:31+00:00", + "source_file": "6-NLP/2-Tasks/assignment.md", + "language_code": "fa" + }, + "6-NLP/3-Translation-Sentiment/README.md": { + "original_hash": "be03c8182982b87ced155e4e9d1438e8", + "translation_date": "2025-09-04T22:48:48+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/README.md", + "language_code": "fa" + }, + "6-NLP/3-Translation-Sentiment/assignment.md": { + "original_hash": "9d2a734deb904caff310d1a999c6bd7a", + "translation_date": "2025-09-04T00:54:08+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/assignment.md", + "language_code": "fa" + }, + "6-NLP/3-Translation-Sentiment/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-04T00:54:52+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/Julia/README.md", + "language_code": "fa" + }, + "6-NLP/3-Translation-Sentiment/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-04T00:54:33+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/R/README.md", + "language_code": "fa" + }, + "6-NLP/4-Hotel-Reviews-1/README.md": { + "original_hash": "8d32dadeda93c6fb5c43619854882ab1", + "translation_date": "2025-09-04T22:46:59+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/README.md", + "language_code": "fa" + }, + "6-NLP/4-Hotel-Reviews-1/assignment.md": { + "original_hash": "bf39bceb833cd628f224941dca8041df", + "translation_date": "2025-09-04T00:44:37+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/assignment.md", + "language_code": "fa" + }, + "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-04T00:45:17+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md", + "language_code": "fa" + }, + "6-NLP/4-Hotel-Reviews-1/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-04T00:44:59+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/R/README.md", + "language_code": "fa" + }, + "6-NLP/5-Hotel-Reviews-2/README.md": { + "original_hash": "2c742993fe95d5bcbb2846eda3d442a1", + "translation_date": "2025-09-04T22:49:36+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/README.md", + "language_code": "fa" + }, + "6-NLP/5-Hotel-Reviews-2/assignment.md": { + "original_hash": "daf144daa552da6a7d442aff6f3e77d8", + "translation_date": "2025-09-04T00:59:59+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/assignment.md", + "language_code": "fa" + }, + "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-04T01:00:41+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md", + "language_code": "fa" + }, + "6-NLP/5-Hotel-Reviews-2/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-04T01:00:23+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/R/README.md", + "language_code": "fa" + }, + "6-NLP/README.md": { + "original_hash": "1eb379dc2d0c9940b320732d16083778", + "translation_date": "2025-09-04T00:33:30+00:00", + "source_file": "6-NLP/README.md", + "language_code": "fa" + }, + "6-NLP/data/README.md": { + "original_hash": "ee0670655c89e4719319764afb113624", + "translation_date": "2025-09-04T00:45:39+00:00", + "source_file": "6-NLP/data/README.md", + "language_code": "fa" + }, + "7-TimeSeries/1-Introduction/README.md": { + "original_hash": "662b509c39eee205687726636d0a8455", + "translation_date": "2025-09-04T22:35:08+00:00", + "source_file": "7-TimeSeries/1-Introduction/README.md", + "language_code": "fa" + }, + "7-TimeSeries/1-Introduction/assignment.md": { + "original_hash": "d1781b0b92568ea1d119d0a198b576b4", + "translation_date": "2025-09-03T22:51:03+00:00", + "source_file": "7-TimeSeries/1-Introduction/assignment.md", + "language_code": "fa" + }, + "7-TimeSeries/1-Introduction/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T22:51:45+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/Julia/README.md", + "language_code": "fa" + }, + "7-TimeSeries/1-Introduction/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-03T22:51:27+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/R/README.md", + "language_code": "fa" + }, + "7-TimeSeries/2-ARIMA/README.md": { + "original_hash": "917dbf890db71a322f306050cb284749", + "translation_date": "2025-09-04T22:34:29+00:00", + "source_file": "7-TimeSeries/2-ARIMA/README.md", + "language_code": "fa" + }, + "7-TimeSeries/2-ARIMA/assignment.md": { + "original_hash": "1c814013e10866dfd92cdb32caaae3ac", + "translation_date": "2025-09-03T22:46:36+00:00", + "source_file": "7-TimeSeries/2-ARIMA/assignment.md", + "language_code": "fa" + }, + "7-TimeSeries/2-ARIMA/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T22:47:16+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/Julia/README.md", + "language_code": "fa" + }, + "7-TimeSeries/2-ARIMA/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-03T22:46:58+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/R/README.md", + "language_code": "fa" + }, + "7-TimeSeries/3-SVR/README.md": { + "original_hash": "482bccabe1df958496ea71a3667995cd", + "translation_date": "2025-09-04T22:35:42+00:00", + "source_file": "7-TimeSeries/3-SVR/README.md", + "language_code": "fa" + }, + "7-TimeSeries/3-SVR/assignment.md": { + "original_hash": "94aa2fc6154252ae30a3f3740299707a", + "translation_date": "2025-09-03T22:55:17+00:00", + "source_file": "7-TimeSeries/3-SVR/assignment.md", + "language_code": "fa" + }, + "7-TimeSeries/README.md": { + "original_hash": "61342603bad8acadbc6b2e4e3aab3f66", + "translation_date": "2025-09-03T22:41:38+00:00", + "source_file": "7-TimeSeries/README.md", + "language_code": "fa" + }, + "8-Reinforcement/1-QLearning/README.md": { + "original_hash": "911efd5e595089000cb3c16fce1beab8", + "translation_date": "2025-09-04T22:45:00+00:00", + "source_file": "8-Reinforcement/1-QLearning/README.md", + "language_code": "fa" + }, + "8-Reinforcement/1-QLearning/assignment.md": { + "original_hash": "68394b2102d3503882e5e914bd0ff5c1", + "translation_date": "2025-09-04T00:24:37+00:00", + "source_file": "8-Reinforcement/1-QLearning/assignment.md", + "language_code": "fa" + }, + "8-Reinforcement/1-QLearning/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-04T00:25:39+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/Julia/README.md", + "language_code": "fa" + }, + "8-Reinforcement/1-QLearning/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-04T00:25:22+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/R/README.md", + "language_code": "fa" + }, + "8-Reinforcement/2-Gym/README.md": { + "original_hash": "107d5bb29da8a562e7ae72262d251a75", + "translation_date": "2025-09-04T22:45:37+00:00", + "source_file": "8-Reinforcement/2-Gym/README.md", + "language_code": "fa" + }, + "8-Reinforcement/2-Gym/assignment.md": { + "original_hash": "1f2b7441745eb52e25745423b247016b", + "translation_date": "2025-09-04T00:31:48+00:00", + "source_file": "8-Reinforcement/2-Gym/assignment.md", + "language_code": "fa" + }, + "8-Reinforcement/2-Gym/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-04T00:32:44+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/Julia/README.md", + "language_code": "fa" + }, + "8-Reinforcement/2-Gym/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-04T00:32:26+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/R/README.md", + "language_code": "fa" + }, + "8-Reinforcement/README.md": { + "original_hash": "20ca019012b1725de956681d036d8b18", + "translation_date": "2025-09-04T00:14:30+00:00", + "source_file": "8-Reinforcement/README.md", + "language_code": "fa" + }, + "9-Real-World/1-Applications/README.md": { + "original_hash": "83320d6b6994909e35d830cebf214039", + "translation_date": "2025-09-04T22:37:44+00:00", + "source_file": "9-Real-World/1-Applications/README.md", + "language_code": "fa" + }, + "9-Real-World/1-Applications/assignment.md": { + "original_hash": "fdebfcd0a3f12c9e2b436ded1aa79885", + "translation_date": "2025-09-03T23:19:47+00:00", + "source_file": "9-Real-World/1-Applications/assignment.md", + "language_code": "fa" + }, + "9-Real-World/2-Debugging-ML-Models/README.md": { + "original_hash": "df2b538e8fbb3e91cf0419ae2f858675", + "translation_date": "2025-09-04T22:38:26+00:00", + "source_file": "9-Real-World/2-Debugging-ML-Models/README.md", + "language_code": "fa" + }, + "9-Real-World/2-Debugging-ML-Models/assignment.md": { + "original_hash": "91c6a180ef08e20cc15acfd2d6d6e164", + "translation_date": "2025-09-03T23:25:34+00:00", + "source_file": "9-Real-World/2-Debugging-ML-Models/assignment.md", + "language_code": "fa" + }, + "9-Real-World/README.md": { + "original_hash": "5e069a0ac02a9606a69946c2b3c574a9", + "translation_date": "2025-09-03T23:14:55+00:00", + "source_file": "9-Real-World/README.md", + "language_code": "fa" + }, + "AGENTS.md": { + "original_hash": "93fdaa0fd38836e50c4793e2f2f25e8b", + "translation_date": "2025-10-03T10:58:53+00:00", + "source_file": "AGENTS.md", + "language_code": "fa" + }, + "CODE_OF_CONDUCT.md": { + "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56", + "translation_date": "2025-09-03T22:14:43+00:00", + "source_file": "CODE_OF_CONDUCT.md", + "language_code": "fa" + }, + "CONTRIBUTING.md": { + "original_hash": "977ec5266dfd78ad1ce2bd8d46fccbda", + "translation_date": "2025-09-03T22:12:02+00:00", + "source_file": "CONTRIBUTING.md", + "language_code": "fa" + }, + "README.md": { + "original_hash": "da2ceed62f16a0820259556e3a873c95", + "translation_date": "2026-01-29T17:41:26+00:00", + "source_file": "README.md", + "language_code": "fa" + }, + "SECURITY.md": { + "original_hash": "5e1b8da31aae9cca3d53ad243fa3365a", + "translation_date": "2025-09-03T22:13:05+00:00", + "source_file": "SECURITY.md", + "language_code": "fa" + }, + "SUPPORT.md": { + "original_hash": "09623d7343ff1c26ff4f198c1b2d3176", + "translation_date": "2025-10-03T11:39:50+00:00", + "source_file": "SUPPORT.md", + "language_code": "fa" + }, + "TROUBLESHOOTING.md": { + "original_hash": "134d8759f0e2ab886e9aa4f62362c201", + "translation_date": "2025-10-03T12:37:28+00:00", + "source_file": "TROUBLESHOOTING.md", + "language_code": "fa" + }, + "docs/_sidebar.md": { + "original_hash": "68dd06c685f6ce840e0acfa313352e7c", + "translation_date": "2025-09-03T23:14:07+00:00", + "source_file": "docs/_sidebar.md", + "language_code": "fa" + }, + "for-teachers.md": { + "original_hash": "b37de02054fa6c0438ede6fabe1fdfb8", + "translation_date": "2025-09-03T22:14:05+00:00", + "source_file": "for-teachers.md", + "language_code": "fa" + }, + "quiz-app/README.md": { + "original_hash": "6d130dffca5db70d7e615f926cb1ad4c", + "translation_date": "2025-09-03T23:48:23+00:00", + "source_file": "quiz-app/README.md", + "language_code": "fa" + }, + "sketchnotes/LICENSE.md": { + "original_hash": "fba3b94d88bfb9b81369b869a1e9a20f", + "translation_date": "2025-09-04T00:11:51+00:00", + "source_file": "sketchnotes/LICENSE.md", + "language_code": "fa" + }, + "sketchnotes/README.md": { + "original_hash": "a88d5918c1b9da69a40d917a0840c497", + "translation_date": "2025-09-04T00:05:08+00:00", + "source_file": "sketchnotes/README.md", + "language_code": "fa" + } +} \ No newline at end of file diff --git a/translations/ur/.co-op-translator.json b/translations/ur/.co-op-translator.json new file mode 100644 index 000000000..e08f95145 --- /dev/null +++ b/translations/ur/.co-op-translator.json @@ -0,0 +1,596 @@ +{ + "1-Introduction/1-intro-to-ML/README.md": { + "original_hash": "69389392fa6346e0dfa30f664b7b6fec", + "translation_date": "2025-09-06T08:53:11+00:00", + "source_file": "1-Introduction/1-intro-to-ML/README.md", + "language_code": "ur" + }, + "1-Introduction/1-intro-to-ML/assignment.md": { + "original_hash": "4c4698044bb8af52cfb6388a4ee0e53b", + "translation_date": "2025-08-29T13:44:16+00:00", + "source_file": "1-Introduction/1-intro-to-ML/assignment.md", + "language_code": "ur" + }, + "1-Introduction/2-history-of-ML/README.md": { + "original_hash": "6a05fec147e734c3e6bfa54505648e2b", + "translation_date": "2025-09-06T08:53:42+00:00", + "source_file": "1-Introduction/2-history-of-ML/README.md", + "language_code": "ur" + }, + "1-Introduction/2-history-of-ML/assignment.md": { + "original_hash": "eb6e4d5afd1b21a57d2b9e6d0aac3969", + "translation_date": "2025-08-29T13:47:20+00:00", + "source_file": "1-Introduction/2-history-of-ML/assignment.md", + "language_code": "ur" + }, + "1-Introduction/3-fairness/README.md": { + "original_hash": "9a6b702d1437c0467e3c5c28d763dac2", + "translation_date": "2025-09-06T08:51:44+00:00", + "source_file": "1-Introduction/3-fairness/README.md", + "language_code": "ur" + }, + "1-Introduction/3-fairness/assignment.md": { + "original_hash": "dbda60e7b1fe5f18974e7858eff0004e", + "translation_date": "2025-08-29T13:38:50+00:00", + "source_file": "1-Introduction/3-fairness/assignment.md", + "language_code": "ur" + }, + "1-Introduction/4-techniques-of-ML/README.md": { + "original_hash": "9d91f3af3758fdd4569fb410575995ef", + "translation_date": "2025-09-06T08:52:31+00:00", + "source_file": "1-Introduction/4-techniques-of-ML/README.md", + "language_code": "ur" + }, + "1-Introduction/4-techniques-of-ML/assignment.md": { + "original_hash": "70d65aeddc06170bc1aed5b27805f930", + "translation_date": "2025-08-29T13:42:01+00:00", + "source_file": "1-Introduction/4-techniques-of-ML/assignment.md", + "language_code": "ur" + }, + "1-Introduction/README.md": { + "original_hash": "cf8ecc83f28e5b98051d2179eca08e08", + "translation_date": "2025-08-29T13:35:37+00:00", + "source_file": "1-Introduction/README.md", + "language_code": "ur" + }, + "2-Regression/1-Tools/README.md": { + "original_hash": "fa81d226c71d5af7a2cade31c1c92b88", + "translation_date": "2025-09-06T08:45:16+00:00", + "source_file": "2-Regression/1-Tools/README.md", + "language_code": "ur" + }, + "2-Regression/1-Tools/assignment.md": { + "original_hash": "74a5cf83e4ebc302afbcbc4f418afd0a", + "translation_date": "2025-08-29T13:05:05+00:00", + "source_file": "2-Regression/1-Tools/assignment.md", + "language_code": "ur" + }, + "2-Regression/1-Tools/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T13:05:27+00:00", + "source_file": "2-Regression/1-Tools/solution/Julia/README.md", + "language_code": "ur" + }, + "2-Regression/2-Data/README.md": { + "original_hash": "7c077988328ebfe33b24d07945f16eca", + "translation_date": "2025-09-06T08:46:01+00:00", + "source_file": "2-Regression/2-Data/README.md", + "language_code": "ur" + }, + "2-Regression/2-Data/assignment.md": { + "original_hash": "4485a1ed4dd1b5647365e3d87456515d", + "translation_date": "2025-08-29T13:08:12+00:00", + "source_file": "2-Regression/2-Data/assignment.md", + "language_code": "ur" + }, + "2-Regression/2-Data/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T13:08:29+00:00", + "source_file": "2-Regression/2-Data/solution/Julia/README.md", + "language_code": "ur" + }, + "2-Regression/3-Linear/README.md": { + "original_hash": "40e64f004f3cb50aa1d8661672d3cd92", + "translation_date": "2025-09-06T08:43:17+00:00", + "source_file": "2-Regression/3-Linear/README.md", + "language_code": "ur" + }, + "2-Regression/3-Linear/assignment.md": { + "original_hash": "cc471fa89c293bc735dd3a9a0fb79b1b", + "translation_date": "2025-08-29T12:56:05+00:00", + "source_file": "2-Regression/3-Linear/assignment.md", + "language_code": "ur" + }, + "2-Regression/3-Linear/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T12:56:23+00:00", + "source_file": "2-Regression/3-Linear/solution/Julia/README.md", + "language_code": "ur" + }, + "2-Regression/4-Logistic/README.md": { + "original_hash": "abf86d845c84330bce205a46b382ec88", + "translation_date": "2025-09-06T08:44:16+00:00", + "source_file": "2-Regression/4-Logistic/README.md", + "language_code": "ur" + }, + "2-Regression/4-Logistic/assignment.md": { + "original_hash": "8af40209a41494068c1f42b14c0b450d", + "translation_date": "2025-08-29T13:01:20+00:00", + "source_file": "2-Regression/4-Logistic/assignment.md", + "language_code": "ur" + }, + "2-Regression/4-Logistic/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T13:01:38+00:00", + "source_file": "2-Regression/4-Logistic/solution/Julia/README.md", + "language_code": "ur" + }, + "2-Regression/README.md": { + "original_hash": "508582278dbb8edd2a8a80ac96ef416c", + "translation_date": "2025-08-29T12:51:42+00:00", + "source_file": "2-Regression/README.md", + "language_code": "ur" + }, + "3-Web-App/1-Web-App/README.md": { + "original_hash": "e0b75f73e4a90d45181dc5581fe2ef5c", + "translation_date": "2025-09-06T08:54:15+00:00", + "source_file": "3-Web-App/1-Web-App/README.md", + "language_code": "ur" + }, + "3-Web-App/1-Web-App/assignment.md": { + "original_hash": "a8e8ae10be335cbc745b75ee552317ff", + "translation_date": "2025-08-29T13:50:30+00:00", + "source_file": "3-Web-App/1-Web-App/assignment.md", + "language_code": "ur" + }, + "3-Web-App/README.md": { + "original_hash": "9836ff53cfef716ddfd70e06c5f43436", + "translation_date": "2025-08-29T13:47:43+00:00", + "source_file": "3-Web-App/README.md", + "language_code": "ur" + }, + "4-Classification/1-Introduction/README.md": { + "original_hash": "aaf391d922bd6de5efba871d514c6d47", + "translation_date": "2025-09-06T08:56:19+00:00", + "source_file": "4-Classification/1-Introduction/README.md", + "language_code": "ur" + }, + "4-Classification/1-Introduction/assignment.md": { + "original_hash": "b2a01912beb24cfb0007f83594dba801", + "translation_date": "2025-08-29T14:01:43+00:00", + "source_file": "4-Classification/1-Introduction/assignment.md", + "language_code": "ur" + }, + "4-Classification/1-Introduction/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T14:02:06+00:00", + "source_file": "4-Classification/1-Introduction/solution/Julia/README.md", + "language_code": "ur" + }, + "4-Classification/2-Classifiers-1/README.md": { + "original_hash": "1a6e9e46b34a2e559fbbfc1f95397c7b", + "translation_date": "2025-09-06T08:54:49+00:00", + "source_file": "4-Classification/2-Classifiers-1/README.md", + "language_code": "ur" + }, + "4-Classification/2-Classifiers-1/assignment.md": { + "original_hash": "de6025f96841498b0577e9d1aee18d1f", + "translation_date": "2025-08-29T13:55:24+00:00", + "source_file": "4-Classification/2-Classifiers-1/assignment.md", + "language_code": "ur" + }, + "4-Classification/2-Classifiers-1/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T13:55:44+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/Julia/README.md", + "language_code": "ur" + }, + "4-Classification/3-Classifiers-2/README.md": { + "original_hash": "49047911108adc49d605cddfb455749c", + "translation_date": "2025-09-06T08:55:57+00:00", + "source_file": "4-Classification/3-Classifiers-2/README.md", + "language_code": "ur" + }, + "4-Classification/3-Classifiers-2/assignment.md": { + "original_hash": "58dfdaf79fb73f7d34b22bdbacf57329", + "translation_date": "2025-08-29T13:59:19+00:00", + "source_file": "4-Classification/3-Classifiers-2/assignment.md", + "language_code": "ur" + }, + "4-Classification/3-Classifiers-2/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T13:59:38+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/Julia/README.md", + "language_code": "ur" + }, + "4-Classification/4-Applied/README.md": { + "original_hash": "61bdec27ed2da8b098cd9065405d9bb0", + "translation_date": "2025-09-06T08:55:31+00:00", + "source_file": "4-Classification/4-Applied/README.md", + "language_code": "ur" + }, + "4-Classification/4-Applied/assignment.md": { + "original_hash": "799ed651e2af0a7cad17c6268db11578", + "translation_date": "2025-08-29T13:57:35+00:00", + "source_file": "4-Classification/4-Applied/assignment.md", + "language_code": "ur" + }, + "4-Classification/README.md": { + "original_hash": "74e809ffd1e613a1058bbc3e9600859e", + "translation_date": "2025-08-29T13:51:45+00:00", + "source_file": "4-Classification/README.md", + "language_code": "ur" + }, + "5-Clustering/1-Visualize/README.md": { + "original_hash": "730225ea274c9174fe688b21d421539d", + "translation_date": "2025-09-06T08:48:36+00:00", + "source_file": "5-Clustering/1-Visualize/README.md", + "language_code": "ur" + }, + "5-Clustering/1-Visualize/assignment.md": { + "original_hash": "589fa015a5e7d9e67bd629f7d47b53de", + "translation_date": "2025-08-29T13:25:29+00:00", + "source_file": "5-Clustering/1-Visualize/assignment.md", + "language_code": "ur" + }, + "5-Clustering/1-Visualize/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T13:25:50+00:00", + "source_file": "5-Clustering/1-Visualize/solution/Julia/README.md", + "language_code": "ur" + }, + "5-Clustering/2-K-Means/README.md": { + "original_hash": "7cdd17338d9bbd7e2171c2cd462eb081", + "translation_date": "2025-09-06T08:49:43+00:00", + "source_file": "5-Clustering/2-K-Means/README.md", + "language_code": "ur" + }, + "5-Clustering/2-K-Means/assignment.md": { + "original_hash": "b8e17eff34ad1680eba2a5d3cf9ffc41", + "translation_date": "2025-08-29T13:27:54+00:00", + "source_file": "5-Clustering/2-K-Means/assignment.md", + "language_code": "ur" + }, + "5-Clustering/2-K-Means/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T13:28:12+00:00", + "source_file": "5-Clustering/2-K-Means/solution/Julia/README.md", + "language_code": "ur" + }, + "5-Clustering/README.md": { + "original_hash": "b28a3a4911584062772c537b653ebbc7", + "translation_date": "2025-08-29T13:18:41+00:00", + "source_file": "5-Clustering/README.md", + "language_code": "ur" + }, + "6-NLP/1-Introduction-to-NLP/README.md": { + "original_hash": "1c2ec40cf55c98a028a359c27ef7e45a", + "translation_date": "2025-09-06T09:01:56+00:00", + "source_file": "6-NLP/1-Introduction-to-NLP/README.md", + "language_code": "ur" + }, + "6-NLP/1-Introduction-to-NLP/assignment.md": { + "original_hash": "1d7583e8046dacbb0c056d5ba0a71b16", + "translation_date": "2025-08-29T14:32:08+00:00", + "source_file": "6-NLP/1-Introduction-to-NLP/assignment.md", + "language_code": "ur" + }, + "6-NLP/2-Tasks/README.md": { + "original_hash": "5f3cb462e3122e1afe7ab0050ccf2bd3", + "translation_date": "2025-09-06T08:58:58+00:00", + "source_file": "6-NLP/2-Tasks/README.md", + "language_code": "ur" + }, + "6-NLP/2-Tasks/assignment.md": { + "original_hash": "2efc4c2aba5ed06c780c05539c492ae3", + "translation_date": "2025-08-29T14:22:27+00:00", + "source_file": "6-NLP/2-Tasks/assignment.md", + "language_code": "ur" + }, + "6-NLP/3-Translation-Sentiment/README.md": { + "original_hash": "be03c8182982b87ced155e4e9d1438e8", + "translation_date": "2025-09-06T09:02:30+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/README.md", + "language_code": "ur" + }, + "6-NLP/3-Translation-Sentiment/assignment.md": { + "original_hash": "9d2a734deb904caff310d1a999c6bd7a", + "translation_date": "2025-08-29T14:35:10+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/assignment.md", + "language_code": "ur" + }, + "6-NLP/3-Translation-Sentiment/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T14:35:43+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/Julia/README.md", + "language_code": "ur" + }, + "6-NLP/3-Translation-Sentiment/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-08-29T14:35:30+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/R/README.md", + "language_code": "ur" + }, + "6-NLP/4-Hotel-Reviews-1/README.md": { + "original_hash": "8d32dadeda93c6fb5c43619854882ab1", + "translation_date": "2025-09-06T09:00:38+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/README.md", + "language_code": "ur" + }, + "6-NLP/4-Hotel-Reviews-1/assignment.md": { + "original_hash": "bf39bceb833cd628f224941dca8041df", + "translation_date": "2025-08-29T14:29:12+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/assignment.md", + "language_code": "ur" + }, + "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T14:29:40+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md", + "language_code": "ur" + }, + "6-NLP/4-Hotel-Reviews-1/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-08-29T14:29:27+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/R/README.md", + "language_code": "ur" + }, + "6-NLP/5-Hotel-Reviews-2/README.md": { + "original_hash": "2c742993fe95d5bcbb2846eda3d442a1", + "translation_date": "2025-09-06T09:03:36+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/README.md", + "language_code": "ur" + }, + "6-NLP/5-Hotel-Reviews-2/assignment.md": { + "original_hash": "daf144daa552da6a7d442aff6f3e77d8", + "translation_date": "2025-08-29T14:38:51+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/assignment.md", + "language_code": "ur" + }, + "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T14:39:24+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md", + "language_code": "ur" + }, + "6-NLP/5-Hotel-Reviews-2/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-08-29T14:39:09+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/R/README.md", + "language_code": "ur" + }, + "6-NLP/README.md": { + "original_hash": "1eb379dc2d0c9940b320732d16083778", + "translation_date": "2025-08-29T14:19:12+00:00", + "source_file": "6-NLP/README.md", + "language_code": "ur" + }, + "6-NLP/data/README.md": { + "original_hash": "ee0670655c89e4719319764afb113624", + "translation_date": "2025-08-29T14:29:53+00:00", + "source_file": "6-NLP/data/README.md", + "language_code": "ur" + }, + "7-TimeSeries/1-Introduction/README.md": { + "original_hash": "662b509c39eee205687726636d0a8455", + "translation_date": "2025-09-06T08:47:30+00:00", + "source_file": "7-TimeSeries/1-Introduction/README.md", + "language_code": "ur" + }, + "7-TimeSeries/1-Introduction/assignment.md": { + "original_hash": "d1781b0b92568ea1d119d0a198b576b4", + "translation_date": "2025-08-29T13:15:05+00:00", + "source_file": "7-TimeSeries/1-Introduction/assignment.md", + "language_code": "ur" + }, + "7-TimeSeries/1-Introduction/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T13:15:48+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/Julia/README.md", + "language_code": "ur" + }, + "7-TimeSeries/1-Introduction/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-08-29T13:15:32+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/R/README.md", + "language_code": "ur" + }, + "7-TimeSeries/2-ARIMA/README.md": { + "original_hash": "917dbf890db71a322f306050cb284749", + "translation_date": "2025-09-06T08:46:38+00:00", + "source_file": "7-TimeSeries/2-ARIMA/README.md", + "language_code": "ur" + }, + "7-TimeSeries/2-ARIMA/assignment.md": { + "original_hash": "1c814013e10866dfd92cdb32caaae3ac", + "translation_date": "2025-08-29T13:11:54+00:00", + "source_file": "7-TimeSeries/2-ARIMA/assignment.md", + "language_code": "ur" + }, + "7-TimeSeries/2-ARIMA/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T13:12:28+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/Julia/README.md", + "language_code": "ur" + }, + "7-TimeSeries/2-ARIMA/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-08-29T13:12:14+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/R/README.md", + "language_code": "ur" + }, + "7-TimeSeries/3-SVR/README.md": { + "original_hash": "482bccabe1df958496ea71a3667995cd", + "translation_date": "2025-09-06T08:48:05+00:00", + "source_file": "7-TimeSeries/3-SVR/README.md", + "language_code": "ur" + }, + "7-TimeSeries/3-SVR/assignment.md": { + "original_hash": "94aa2fc6154252ae30a3f3740299707a", + "translation_date": "2025-08-29T13:18:11+00:00", + "source_file": "7-TimeSeries/3-SVR/assignment.md", + "language_code": "ur" + }, + "7-TimeSeries/README.md": { + "original_hash": "61342603bad8acadbc6b2e4e3aab3f66", + "translation_date": "2025-08-29T13:08:50+00:00", + "source_file": "7-TimeSeries/README.md", + "language_code": "ur" + }, + "8-Reinforcement/1-QLearning/README.md": { + "original_hash": "911efd5e595089000cb3c16fce1beab8", + "translation_date": "2025-09-06T08:57:34+00:00", + "source_file": "8-Reinforcement/1-QLearning/README.md", + "language_code": "ur" + }, + "8-Reinforcement/1-QLearning/assignment.md": { + "original_hash": "68394b2102d3503882e5e914bd0ff5c1", + "translation_date": "2025-08-29T14:14:05+00:00", + "source_file": "8-Reinforcement/1-QLearning/assignment.md", + "language_code": "ur" + }, + "8-Reinforcement/1-QLearning/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T14:15:11+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/Julia/README.md", + "language_code": "ur" + }, + "8-Reinforcement/1-QLearning/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-08-29T14:14:57+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/R/README.md", + "language_code": "ur" + }, + "8-Reinforcement/2-Gym/README.md": { + "original_hash": "107d5bb29da8a562e7ae72262d251a75", + "translation_date": "2025-09-06T08:58:16+00:00", + "source_file": "8-Reinforcement/2-Gym/README.md", + "language_code": "ur" + }, + "8-Reinforcement/2-Gym/assignment.md": { + "original_hash": "1f2b7441745eb52e25745423b247016b", + "translation_date": "2025-08-29T14:18:07+00:00", + "source_file": "8-Reinforcement/2-Gym/assignment.md", + "language_code": "ur" + }, + "8-Reinforcement/2-Gym/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-08-29T14:18:51+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/Julia/README.md", + "language_code": "ur" + }, + "8-Reinforcement/2-Gym/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-08-29T14:18:37+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/R/README.md", + "language_code": "ur" + }, + "8-Reinforcement/README.md": { + "original_hash": "20ca019012b1725de956681d036d8b18", + "translation_date": "2025-08-29T14:07:54+00:00", + "source_file": "8-Reinforcement/README.md", + "language_code": "ur" + }, + "9-Real-World/1-Applications/README.md": { + "original_hash": "83320d6b6994909e35d830cebf214039", + "translation_date": "2025-09-06T08:50:10+00:00", + "source_file": "9-Real-World/1-Applications/README.md", + "language_code": "ur" + }, + "9-Real-World/1-Applications/assignment.md": { + "original_hash": "fdebfcd0a3f12c9e2b436ded1aa79885", + "translation_date": "2025-08-29T13:32:06+00:00", + "source_file": "9-Real-World/1-Applications/assignment.md", + "language_code": "ur" + }, + "9-Real-World/2-Debugging-ML-Models/README.md": { + "original_hash": "df2b538e8fbb3e91cf0419ae2f858675", + "translation_date": "2025-09-06T08:50:55+00:00", + "source_file": "9-Real-World/2-Debugging-ML-Models/README.md", + "language_code": "ur" + }, + "9-Real-World/2-Debugging-ML-Models/assignment.md": { + "original_hash": "91c6a180ef08e20cc15acfd2d6d6e164", + "translation_date": "2025-08-29T13:35:10+00:00", + "source_file": "9-Real-World/2-Debugging-ML-Models/assignment.md", + "language_code": "ur" + }, + "9-Real-World/README.md": { + "original_hash": "5e069a0ac02a9606a69946c2b3c574a9", + "translation_date": "2025-08-29T13:29:08+00:00", + "source_file": "9-Real-World/README.md", + "language_code": "ur" + }, + "AGENTS.md": { + "original_hash": "93fdaa0fd38836e50c4793e2f2f25e8b", + "translation_date": "2025-10-03T10:59:25+00:00", + "source_file": "AGENTS.md", + "language_code": "ur" + }, + "CODE_OF_CONDUCT.md": { + "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56", + "translation_date": "2025-08-29T12:51:12+00:00", + "source_file": "CODE_OF_CONDUCT.md", + "language_code": "ur" + }, + "CONTRIBUTING.md": { + "original_hash": "977ec5266dfd78ad1ce2bd8d46fccbda", + "translation_date": "2025-08-29T12:49:28+00:00", + "source_file": "CONTRIBUTING.md", + "language_code": "ur" + }, + "README.md": { + "original_hash": "da2ceed62f16a0820259556e3a873c95", + "translation_date": "2026-01-29T17:42:58+00:00", + "source_file": "README.md", + "language_code": "ur" + }, + "SECURITY.md": { + "original_hash": "5e1b8da31aae9cca3d53ad243fa3365a", + "translation_date": "2025-08-29T12:50:02+00:00", + "source_file": "SECURITY.md", + "language_code": "ur" + }, + "SUPPORT.md": { + "original_hash": "09623d7343ff1c26ff4f198c1b2d3176", + "translation_date": "2025-10-03T11:40:56+00:00", + "source_file": "SUPPORT.md", + "language_code": "ur" + }, + "TROUBLESHOOTING.md": { + "original_hash": "134d8759f0e2ab886e9aa4f62362c201", + "translation_date": "2025-10-03T12:37:51+00:00", + "source_file": "TROUBLESHOOTING.md", + "language_code": "ur" + }, + "docs/_sidebar.md": { + "original_hash": "68dd06c685f6ce840e0acfa313352e7c", + "translation_date": "2025-08-29T13:28:33+00:00", + "source_file": "docs/_sidebar.md", + "language_code": "ur" + }, + "for-teachers.md": { + "original_hash": "b37de02054fa6c0438ede6fabe1fdfb8", + "translation_date": "2025-08-29T12:50:43+00:00", + "source_file": "for-teachers.md", + "language_code": "ur" + }, + "quiz-app/README.md": { + "original_hash": "6d130dffca5db70d7e615f926cb1ad4c", + "translation_date": "2025-08-29T13:51:00+00:00", + "source_file": "quiz-app/README.md", + "language_code": "ur" + }, + "sketchnotes/LICENSE.md": { + "original_hash": "fba3b94d88bfb9b81369b869a1e9a20f", + "translation_date": "2025-08-29T14:04:44+00:00", + "source_file": "sketchnotes/LICENSE.md", + "language_code": "ur" + }, + "sketchnotes/README.md": { + "original_hash": "a88d5918c1b9da69a40d917a0840c497", + "translation_date": "2025-08-29T14:02:20+00:00", + "source_file": "sketchnotes/README.md", + "language_code": "ur" + } +} \ No newline at end of file diff --git a/translations/zh-CN/.co-op-translator.json b/translations/zh-CN/.co-op-translator.json new file mode 100644 index 000000000..02dd2ff9c --- /dev/null +++ b/translations/zh-CN/.co-op-translator.json @@ -0,0 +1,596 @@ +{ + "1-Introduction/1-intro-to-ML/README.md": { + "original_hash": "69389392fa6346e0dfa30f664b7b6fec", + "translation_date": "2025-09-05T09:05:11+00:00", + "source_file": "1-Introduction/1-intro-to-ML/README.md", + "language_code": "zh-CN" + }, + "1-Introduction/1-intro-to-ML/assignment.md": { + "original_hash": "4c4698044bb8af52cfb6388a4ee0e53b", + "translation_date": "2025-09-03T17:48:58+00:00", + "source_file": "1-Introduction/1-intro-to-ML/assignment.md", + "language_code": "zh-CN" + }, + "1-Introduction/2-history-of-ML/README.md": { + "original_hash": "6a05fec147e734c3e6bfa54505648e2b", + "translation_date": "2025-09-05T09:05:36+00:00", + "source_file": "1-Introduction/2-history-of-ML/README.md", + "language_code": "zh-CN" + }, + "1-Introduction/2-history-of-ML/assignment.md": { + "original_hash": "eb6e4d5afd1b21a57d2b9e6d0aac3969", + "translation_date": "2025-09-03T17:52:58+00:00", + "source_file": "1-Introduction/2-history-of-ML/assignment.md", + "language_code": "zh-CN" + }, + "1-Introduction/3-fairness/README.md": { + "original_hash": "9a6b702d1437c0467e3c5c28d763dac2", + "translation_date": "2025-09-05T09:04:06+00:00", + "source_file": "1-Introduction/3-fairness/README.md", + "language_code": "zh-CN" + }, + "1-Introduction/3-fairness/assignment.md": { + "original_hash": "dbda60e7b1fe5f18974e7858eff0004e", + "translation_date": "2025-09-03T17:41:11+00:00", + "source_file": "1-Introduction/3-fairness/assignment.md", + "language_code": "zh-CN" + }, + "1-Introduction/4-techniques-of-ML/README.md": { + "original_hash": "9d91f3af3758fdd4569fb410575995ef", + "translation_date": "2025-09-05T09:04:44+00:00", + "source_file": "1-Introduction/4-techniques-of-ML/README.md", + "language_code": "zh-CN" + }, + "1-Introduction/4-techniques-of-ML/assignment.md": { + "original_hash": "70d65aeddc06170bc1aed5b27805f930", + "translation_date": "2025-09-03T17:45:24+00:00", + "source_file": "1-Introduction/4-techniques-of-ML/assignment.md", + "language_code": "zh-CN" + }, + "1-Introduction/README.md": { + "original_hash": "cf8ecc83f28e5b98051d2179eca08e08", + "translation_date": "2025-09-03T17:33:58+00:00", + "source_file": "1-Introduction/README.md", + "language_code": "zh-CN" + }, + "2-Regression/1-Tools/README.md": { + "original_hash": "fa81d226c71d5af7a2cade31c1c92b88", + "translation_date": "2025-09-05T08:58:09+00:00", + "source_file": "2-Regression/1-Tools/README.md", + "language_code": "zh-CN" + }, + "2-Regression/1-Tools/assignment.md": { + "original_hash": "74a5cf83e4ebc302afbcbc4f418afd0a", + "translation_date": "2025-09-03T16:40:46+00:00", + "source_file": "2-Regression/1-Tools/assignment.md", + "language_code": "zh-CN" + }, + "2-Regression/1-Tools/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T16:41:15+00:00", + "source_file": "2-Regression/1-Tools/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "2-Regression/2-Data/README.md": { + "original_hash": "7c077988328ebfe33b24d07945f16eca", + "translation_date": "2025-09-05T08:58:47+00:00", + "source_file": "2-Regression/2-Data/README.md", + "language_code": "zh-CN" + }, + "2-Regression/2-Data/assignment.md": { + "original_hash": "4485a1ed4dd1b5647365e3d87456515d", + "translation_date": "2025-09-03T16:45:08+00:00", + "source_file": "2-Regression/2-Data/assignment.md", + "language_code": "zh-CN" + }, + "2-Regression/2-Data/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T16:45:35+00:00", + "source_file": "2-Regression/2-Data/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "2-Regression/3-Linear/README.md": { + "original_hash": "40e64f004f3cb50aa1d8661672d3cd92", + "translation_date": "2025-09-05T08:55:34+00:00", + "source_file": "2-Regression/3-Linear/README.md", + "language_code": "zh-CN" + }, + "2-Regression/3-Linear/assignment.md": { + "original_hash": "cc471fa89c293bc735dd3a9a0fb79b1b", + "translation_date": "2025-09-03T16:25:06+00:00", + "source_file": "2-Regression/3-Linear/assignment.md", + "language_code": "zh-CN" + }, + "2-Regression/3-Linear/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T16:25:33+00:00", + "source_file": "2-Regression/3-Linear/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "2-Regression/4-Logistic/README.md": { + "original_hash": "abf86d845c84330bce205a46b382ec88", + "translation_date": "2025-09-05T08:57:14+00:00", + "source_file": "2-Regression/4-Logistic/README.md", + "language_code": "zh-CN" + }, + "2-Regression/4-Logistic/assignment.md": { + "original_hash": "8af40209a41494068c1f42b14c0b450d", + "translation_date": "2025-09-03T16:35:04+00:00", + "source_file": "2-Regression/4-Logistic/assignment.md", + "language_code": "zh-CN" + }, + "2-Regression/4-Logistic/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T16:35:32+00:00", + "source_file": "2-Regression/4-Logistic/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "2-Regression/README.md": { + "original_hash": "508582278dbb8edd2a8a80ac96ef416c", + "translation_date": "2025-09-03T16:17:29+00:00", + "source_file": "2-Regression/README.md", + "language_code": "zh-CN" + }, + "3-Web-App/1-Web-App/README.md": { + "original_hash": "e0b75f73e4a90d45181dc5581fe2ef5c", + "translation_date": "2025-09-05T09:06:07+00:00", + "source_file": "3-Web-App/1-Web-App/README.md", + "language_code": "zh-CN" + }, + "3-Web-App/1-Web-App/assignment.md": { + "original_hash": "a8e8ae10be335cbc745b75ee552317ff", + "translation_date": "2025-09-03T17:57:46+00:00", + "source_file": "3-Web-App/1-Web-App/assignment.md", + "language_code": "zh-CN" + }, + "3-Web-App/README.md": { + "original_hash": "9836ff53cfef716ddfd70e06c5f43436", + "translation_date": "2025-09-03T17:53:39+00:00", + "source_file": "3-Web-App/README.md", + "language_code": "zh-CN" + }, + "4-Classification/1-Introduction/README.md": { + "original_hash": "aaf391d922bd6de5efba871d514c6d47", + "translation_date": "2025-09-05T09:08:05+00:00", + "source_file": "4-Classification/1-Introduction/README.md", + "language_code": "zh-CN" + }, + "4-Classification/1-Introduction/assignment.md": { + "original_hash": "b2a01912beb24cfb0007f83594dba801", + "translation_date": "2025-09-03T18:15:53+00:00", + "source_file": "4-Classification/1-Introduction/assignment.md", + "language_code": "zh-CN" + }, + "4-Classification/1-Introduction/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T18:16:22+00:00", + "source_file": "4-Classification/1-Introduction/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "4-Classification/2-Classifiers-1/README.md": { + "original_hash": "1a6e9e46b34a2e559fbbfc1f95397c7b", + "translation_date": "2025-09-05T09:06:37+00:00", + "source_file": "4-Classification/2-Classifiers-1/README.md", + "language_code": "zh-CN" + }, + "4-Classification/2-Classifiers-1/assignment.md": { + "original_hash": "de6025f96841498b0577e9d1aee18d1f", + "translation_date": "2025-09-03T18:05:14+00:00", + "source_file": "4-Classification/2-Classifiers-1/assignment.md", + "language_code": "zh-CN" + }, + "4-Classification/2-Classifiers-1/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T18:05:41+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "4-Classification/3-Classifiers-2/README.md": { + "original_hash": "49047911108adc49d605cddfb455749c", + "translation_date": "2025-09-05T09:07:46+00:00", + "source_file": "4-Classification/3-Classifiers-2/README.md", + "language_code": "zh-CN" + }, + "4-Classification/3-Classifiers-2/assignment.md": { + "original_hash": "58dfdaf79fb73f7d34b22bdbacf57329", + "translation_date": "2025-09-03T18:11:55+00:00", + "source_file": "4-Classification/3-Classifiers-2/assignment.md", + "language_code": "zh-CN" + }, + "4-Classification/3-Classifiers-2/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T18:12:23+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "4-Classification/4-Applied/README.md": { + "original_hash": "61bdec27ed2da8b098cd9065405d9bb0", + "translation_date": "2025-09-05T09:07:17+00:00", + "source_file": "4-Classification/4-Applied/README.md", + "language_code": "zh-CN" + }, + "4-Classification/4-Applied/assignment.md": { + "original_hash": "799ed651e2af0a7cad17c6268db11578", + "translation_date": "2025-09-03T18:09:03+00:00", + "source_file": "4-Classification/4-Applied/assignment.md", + "language_code": "zh-CN" + }, + "4-Classification/README.md": { + "original_hash": "74e809ffd1e613a1058bbc3e9600859e", + "translation_date": "2025-09-03T17:59:47+00:00", + "source_file": "4-Classification/README.md", + "language_code": "zh-CN" + }, + "5-Clustering/1-Visualize/README.md": { + "original_hash": "730225ea274c9174fe688b21d421539d", + "translation_date": "2025-09-05T09:00:51+00:00", + "source_file": "5-Clustering/1-Visualize/README.md", + "language_code": "zh-CN" + }, + "5-Clustering/1-Visualize/assignment.md": { + "original_hash": "589fa015a5e7d9e67bd629f7d47b53de", + "translation_date": "2025-09-03T17:16:31+00:00", + "source_file": "5-Clustering/1-Visualize/assignment.md", + "language_code": "zh-CN" + }, + "5-Clustering/1-Visualize/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T17:17:00+00:00", + "source_file": "5-Clustering/1-Visualize/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "5-Clustering/2-K-Means/README.md": { + "original_hash": "7cdd17338d9bbd7e2171c2cd462eb081", + "translation_date": "2025-09-05T09:02:01+00:00", + "source_file": "5-Clustering/2-K-Means/README.md", + "language_code": "zh-CN" + }, + "5-Clustering/2-K-Means/assignment.md": { + "original_hash": "b8e17eff34ad1680eba2a5d3cf9ffc41", + "translation_date": "2025-09-03T17:20:07+00:00", + "source_file": "5-Clustering/2-K-Means/assignment.md", + "language_code": "zh-CN" + }, + "5-Clustering/2-K-Means/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T17:20:32+00:00", + "source_file": "5-Clustering/2-K-Means/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "5-Clustering/README.md": { + "original_hash": "b28a3a4911584062772c537b653ebbc7", + "translation_date": "2025-09-03T17:02:10+00:00", + "source_file": "5-Clustering/README.md", + "language_code": "zh-CN" + }, + "6-NLP/1-Introduction-to-NLP/README.md": { + "original_hash": "1c2ec40cf55c98a028a359c27ef7e45a", + "translation_date": "2025-09-05T09:11:59+00:00", + "source_file": "6-NLP/1-Introduction-to-NLP/README.md", + "language_code": "zh-CN" + }, + "6-NLP/1-Introduction-to-NLP/assignment.md": { + "original_hash": "1d7583e8046dacbb0c056d5ba0a71b16", + "translation_date": "2025-09-03T19:02:50+00:00", + "source_file": "6-NLP/1-Introduction-to-NLP/assignment.md", + "language_code": "zh-CN" + }, + "6-NLP/2-Tasks/README.md": { + "original_hash": "5f3cb462e3122e1afe7ab0050ccf2bd3", + "translation_date": "2025-09-05T09:10:13+00:00", + "source_file": "6-NLP/2-Tasks/README.md", + "language_code": "zh-CN" + }, + "6-NLP/2-Tasks/assignment.md": { + "original_hash": "2efc4c2aba5ed06c780c05539c492ae3", + "translation_date": "2025-09-03T18:50:07+00:00", + "source_file": "6-NLP/2-Tasks/assignment.md", + "language_code": "zh-CN" + }, + "6-NLP/3-Translation-Sentiment/README.md": { + "original_hash": "be03c8182982b87ced155e4e9d1438e8", + "translation_date": "2025-09-05T09:12:24+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/README.md", + "language_code": "zh-CN" + }, + "6-NLP/3-Translation-Sentiment/assignment.md": { + "original_hash": "9d2a734deb904caff310d1a999c6bd7a", + "translation_date": "2025-09-03T19:08:10+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/assignment.md", + "language_code": "zh-CN" + }, + "6-NLP/3-Translation-Sentiment/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T19:08:59+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "6-NLP/3-Translation-Sentiment/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-03T19:08:36+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/R/README.md", + "language_code": "zh-CN" + }, + "6-NLP/4-Hotel-Reviews-1/README.md": { + "original_hash": "8d32dadeda93c6fb5c43619854882ab1", + "translation_date": "2025-09-05T09:10:44+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/README.md", + "language_code": "zh-CN" + }, + "6-NLP/4-Hotel-Reviews-1/assignment.md": { + "original_hash": "bf39bceb833cd628f224941dca8041df", + "translation_date": "2025-09-03T18:57:44+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/assignment.md", + "language_code": "zh-CN" + }, + "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T18:58:30+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "6-NLP/4-Hotel-Reviews-1/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-03T18:58:09+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/R/README.md", + "language_code": "zh-CN" + }, + "6-NLP/5-Hotel-Reviews-2/README.md": { + "original_hash": "2c742993fe95d5bcbb2846eda3d442a1", + "translation_date": "2025-09-05T09:13:02+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/README.md", + "language_code": "zh-CN" + }, + "6-NLP/5-Hotel-Reviews-2/assignment.md": { + "original_hash": "daf144daa552da6a7d442aff6f3e77d8", + "translation_date": "2025-09-03T19:14:24+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/assignment.md", + "language_code": "zh-CN" + }, + "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T19:15:08+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "6-NLP/5-Hotel-Reviews-2/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-03T19:14:49+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/R/README.md", + "language_code": "zh-CN" + }, + "6-NLP/README.md": { + "original_hash": "1eb379dc2d0c9940b320732d16083778", + "translation_date": "2025-09-03T18:45:55+00:00", + "source_file": "6-NLP/README.md", + "language_code": "zh-CN" + }, + "6-NLP/data/README.md": { + "original_hash": "ee0670655c89e4719319764afb113624", + "translation_date": "2025-09-03T18:58:52+00:00", + "source_file": "6-NLP/data/README.md", + "language_code": "zh-CN" + }, + "7-TimeSeries/1-Introduction/README.md": { + "original_hash": "662b509c39eee205687726636d0a8455", + "translation_date": "2025-09-05T08:59:54+00:00", + "source_file": "7-TimeSeries/1-Introduction/README.md", + "language_code": "zh-CN" + }, + "7-TimeSeries/1-Introduction/assignment.md": { + "original_hash": "d1781b0b92568ea1d119d0a198b576b4", + "translation_date": "2025-09-03T16:56:37+00:00", + "source_file": "7-TimeSeries/1-Introduction/assignment.md", + "language_code": "zh-CN" + }, + "7-TimeSeries/1-Introduction/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T16:57:26+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "7-TimeSeries/1-Introduction/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-03T16:57:06+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/R/README.md", + "language_code": "zh-CN" + }, + "7-TimeSeries/2-ARIMA/README.md": { + "original_hash": "917dbf890db71a322f306050cb284749", + "translation_date": "2025-09-05T08:59:15+00:00", + "source_file": "7-TimeSeries/2-ARIMA/README.md", + "language_code": "zh-CN" + }, + "7-TimeSeries/2-ARIMA/assignment.md": { + "original_hash": "1c814013e10866dfd92cdb32caaae3ac", + "translation_date": "2025-09-03T16:51:48+00:00", + "source_file": "7-TimeSeries/2-ARIMA/assignment.md", + "language_code": "zh-CN" + }, + "7-TimeSeries/2-ARIMA/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T16:52:35+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "7-TimeSeries/2-ARIMA/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-03T16:52:15+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/R/README.md", + "language_code": "zh-CN" + }, + "7-TimeSeries/3-SVR/README.md": { + "original_hash": "482bccabe1df958496ea71a3667995cd", + "translation_date": "2025-09-05T09:00:24+00:00", + "source_file": "7-TimeSeries/3-SVR/README.md", + "language_code": "zh-CN" + }, + "7-TimeSeries/3-SVR/assignment.md": { + "original_hash": "94aa2fc6154252ae30a3f3740299707a", + "translation_date": "2025-09-03T17:01:12+00:00", + "source_file": "7-TimeSeries/3-SVR/assignment.md", + "language_code": "zh-CN" + }, + "7-TimeSeries/README.md": { + "original_hash": "61342603bad8acadbc6b2e4e3aab3f66", + "translation_date": "2025-09-03T16:46:16+00:00", + "source_file": "7-TimeSeries/README.md", + "language_code": "zh-CN" + }, + "8-Reinforcement/1-QLearning/README.md": { + "original_hash": "911efd5e595089000cb3c16fce1beab8", + "translation_date": "2025-09-05T09:09:02+00:00", + "source_file": "8-Reinforcement/1-QLearning/README.md", + "language_code": "zh-CN" + }, + "8-Reinforcement/1-QLearning/assignment.md": { + "original_hash": "68394b2102d3503882e5e914bd0ff5c1", + "translation_date": "2025-09-03T18:37:16+00:00", + "source_file": "8-Reinforcement/1-QLearning/assignment.md", + "language_code": "zh-CN" + }, + "8-Reinforcement/1-QLearning/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T18:38:43+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "8-Reinforcement/1-QLearning/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-03T18:38:21+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/R/README.md", + "language_code": "zh-CN" + }, + "8-Reinforcement/2-Gym/README.md": { + "original_hash": "107d5bb29da8a562e7ae72262d251a75", + "translation_date": "2025-09-05T09:09:36+00:00", + "source_file": "8-Reinforcement/2-Gym/README.md", + "language_code": "zh-CN" + }, + "8-Reinforcement/2-Gym/assignment.md": { + "original_hash": "1f2b7441745eb52e25745423b247016b", + "translation_date": "2025-09-03T18:44:12+00:00", + "source_file": "8-Reinforcement/2-Gym/assignment.md", + "language_code": "zh-CN" + }, + "8-Reinforcement/2-Gym/solution/Julia/README.md": { + "original_hash": "a39c15d63f3b2795ee2284a82b986b93", + "translation_date": "2025-09-03T18:45:14+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/Julia/README.md", + "language_code": "zh-CN" + }, + "8-Reinforcement/2-Gym/solution/R/README.md": { + "original_hash": "81db6ff2cf6e62fbe2340b094bb9509e", + "translation_date": "2025-09-03T18:44:53+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/R/README.md", + "language_code": "zh-CN" + }, + "8-Reinforcement/README.md": { + "original_hash": "20ca019012b1725de956681d036d8b18", + "translation_date": "2025-09-03T18:26:49+00:00", + "source_file": "8-Reinforcement/README.md", + "language_code": "zh-CN" + }, + "9-Real-World/1-Applications/README.md": { + "original_hash": "83320d6b6994909e35d830cebf214039", + "translation_date": "2025-09-05T09:02:25+00:00", + "source_file": "9-Real-World/1-Applications/README.md", + "language_code": "zh-CN" + }, + "9-Real-World/1-Applications/assignment.md": { + "original_hash": "fdebfcd0a3f12c9e2b436ded1aa79885", + "translation_date": "2025-09-03T17:27:15+00:00", + "source_file": "9-Real-World/1-Applications/assignment.md", + "language_code": "zh-CN" + }, + "9-Real-World/2-Debugging-ML-Models/README.md": { + "original_hash": "df2b538e8fbb3e91cf0419ae2f858675", + "translation_date": "2025-09-05T09:03:02+00:00", + "source_file": "9-Real-World/2-Debugging-ML-Models/README.md", + "language_code": "zh-CN" + }, + "9-Real-World/2-Debugging-ML-Models/assignment.md": { + "original_hash": "91c6a180ef08e20cc15acfd2d6d6e164", + "translation_date": "2025-09-03T17:33:11+00:00", + "source_file": "9-Real-World/2-Debugging-ML-Models/assignment.md", + "language_code": "zh-CN" + }, + "9-Real-World/README.md": { + "original_hash": "5e069a0ac02a9606a69946c2b3c574a9", + "translation_date": "2025-09-03T17:22:09+00:00", + "source_file": "9-Real-World/README.md", + "language_code": "zh-CN" + }, + "AGENTS.md": { + "original_hash": "93fdaa0fd38836e50c4793e2f2f25e8b", + "translation_date": "2025-10-03T10:59:57+00:00", + "source_file": "AGENTS.md", + "language_code": "zh-CN" + }, + "CODE_OF_CONDUCT.md": { + "original_hash": "c06b12caf3c901eb3156e3dd5b0aea56", + "translation_date": "2025-09-03T16:16:28+00:00", + "source_file": "CODE_OF_CONDUCT.md", + "language_code": "zh-CN" + }, + "CONTRIBUTING.md": { + "original_hash": "977ec5266dfd78ad1ce2bd8d46fccbda", + "translation_date": "2025-09-03T16:13:40+00:00", + "source_file": "CONTRIBUTING.md", + "language_code": "zh-CN" + }, + "README.md": { + "original_hash": "da2ceed62f16a0820259556e3a873c95", + "translation_date": "2026-01-29T17:44:38+00:00", + "source_file": "README.md", + "language_code": "zh-CN" + }, + "SECURITY.md": { + "original_hash": "5e1b8da31aae9cca3d53ad243fa3365a", + "translation_date": "2025-09-03T16:14:39+00:00", + "source_file": "SECURITY.md", + "language_code": "zh-CN" + }, + "SUPPORT.md": { + "original_hash": "09623d7343ff1c26ff4f198c1b2d3176", + "translation_date": "2025-10-03T11:41:54+00:00", + "source_file": "SUPPORT.md", + "language_code": "zh-CN" + }, + "TROUBLESHOOTING.md": { + "original_hash": "134d8759f0e2ab886e9aa4f62362c201", + "translation_date": "2025-10-03T12:38:25+00:00", + "source_file": "TROUBLESHOOTING.md", + "language_code": "zh-CN" + }, + "docs/_sidebar.md": { + "original_hash": "68dd06c685f6ce840e0acfa313352e7c", + "translation_date": "2025-09-03T17:21:14+00:00", + "source_file": "docs/_sidebar.md", + "language_code": "zh-CN" + }, + "for-teachers.md": { + "original_hash": "b37de02054fa6c0438ede6fabe1fdfb8", + "translation_date": "2025-09-03T16:15:43+00:00", + "source_file": "for-teachers.md", + "language_code": "zh-CN" + }, + "quiz-app/README.md": { + "original_hash": "6d130dffca5db70d7e615f926cb1ad4c", + "translation_date": "2025-09-03T17:58:43+00:00", + "source_file": "quiz-app/README.md", + "language_code": "zh-CN" + }, + "sketchnotes/LICENSE.md": { + "original_hash": "fba3b94d88bfb9b81369b869a1e9a20f", + "translation_date": "2025-09-03T18:22:05+00:00", + "source_file": "sketchnotes/LICENSE.md", + "language_code": "zh-CN" + }, + "sketchnotes/README.md": { + "original_hash": "a88d5918c1b9da69a40d917a0840c497", + "translation_date": "2025-09-03T18:16:47+00:00", + "source_file": "sketchnotes/README.md", + "language_code": "zh-CN" + } +} \ No newline at end of file diff --git a/translations/zh-CN/1-Introduction/1-intro-to-ML/README.md b/translations/zh-CN/1-Introduction/1-intro-to-ML/README.md new file mode 100644 index 000000000..6c89ff76f --- /dev/null +++ b/translations/zh-CN/1-Introduction/1-intro-to-ML/README.md @@ -0,0 +1,150 @@ +# 机器学习简介 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +--- + +[![初学者的机器学习 - 机器学习入门](https://img.youtube.com/vi/6mSx_KJxcHI/0.jpg)](https://youtu.be/6mSx_KJxcHI "初学者的机器学习 - 机器学习入门") + +> 🎥 点击上方图片观看本课相关的短视频。 + +欢迎来到这门面向初学者的经典机器学习课程!无论你是完全新手,还是一位希望复习某些领域的经验丰富的机器学习从业者,我们都很高兴你能加入我们!我们希望为你的机器学习学习提供一个友好的起点,并欢迎你提供[反馈](https://github.com/microsoft/ML-For-Beginners/discussions),我们会评估、回应并融入你的建议。 + +[![机器学习简介](https://img.youtube.com/vi/h0e2HAPTGF4/0.jpg)](https://youtu.be/h0e2HAPTGF4 "机器学习简介") + +> 🎥 点击上方图片观看视频:麻省理工学院的 John Guttag 介绍机器学习 + +--- +## 开始学习机器学习 + +在开始学习本课程之前,你需要确保你的电脑已经设置好并可以本地运行笔记本。 + +- **通过以下视频配置你的电脑**。使用以下链接学习[如何安装 Python](https://youtu.be/CXZYvNRIAKM)以及[设置文本编辑器](https://youtu.be/EU8eayHWoZg)进行开发。 +- **学习 Python**。建议你对[Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott)有基本的了解,这是一种对数据科学家非常有用的编程语言,我们将在课程中使用它。 +- **学习 Node.js 和 JavaScript**。我们在课程中会使用 JavaScript 构建一些网页应用,因此你需要安装 [node](https://nodejs.org) 和 [npm](https://www.npmjs.com/),以及为 Python 和 JavaScript 开发准备好 [Visual Studio Code](https://code.visualstudio.com/)。 +- **创建 GitHub 账户**。既然你在 [GitHub](https://github.com) 找到了我们,你可能已经有一个账户了,但如果没有,请创建一个账户,然后 fork 本课程以供自己使用。(也可以给我们点个星星 😊) +- **探索 Scikit-learn**。熟悉 [Scikit-learn](https://scikit-learn.org/stable/user_guide.html),这是我们在课程中参考的一组机器学习库。 + +--- +## 什么是机器学习? + +“机器学习”是当今最流行和最常用的术语之一。如果你对技术有一定的了解,无论你从事哪个领域,都有很大可能至少听过一次这个术语。然而,机器学习的运作机制对大多数人来说仍然是一个谜。对于机器学习初学者来说,这个主题有时可能会让人感到不知所措。因此,了解机器学习的真正含义,并通过实际例子一步步学习它是非常重要的。 + +--- +## 热度曲线 + +![机器学习热度曲线](../../../../1-Introduction/1-intro-to-ML/images/hype.png) + +> Google Trends 显示了“机器学习”这一术语的近期热度曲线 + +--- +## 神秘的宇宙 + +我们生活在一个充满迷人奥秘的宇宙中。像斯蒂芬·霍金、阿尔伯特·爱因斯坦等伟大的科学家们,毕生致力于寻找有意义的信息,以揭示我们周围世界的奥秘。这是人类学习的本质:一个孩子通过逐年成长,学习新事物并揭示其世界的结构。 + +--- +## 孩子的大脑 + +孩子的大脑和感官感知周围环境的事实,并逐渐学习生活中隐藏的模式,这些模式帮助孩子制定逻辑规则以识别已学到的模式。人类大脑的学习过程使人类成为这个世界上最复杂的生物。通过发现隐藏模式并不断创新,我们能够在一生中不断提升自己。这种学习能力和进化能力与一个叫做[脑可塑性](https://www.simplypsychology.org/brain-plasticity.html)的概念有关。从表面上看,我们可以将人类大脑的学习过程与机器学习的概念进行一些激励性的类比。 + +--- +## 人类大脑 + +[人类大脑](https://www.livescience.com/29365-human-brain.html)从现实世界中感知事物,处理感知到的信息,做出理性决策,并根据情况采取某些行动。这就是我们所说的智能行为。当我们将智能行为过程的模拟编程到机器中时,这就被称为人工智能(AI)。 + +--- +## 一些术语 + +尽管这些术语可能会混淆,但机器学习(ML)是人工智能的重要子集。**机器学习关注的是使用专门的算法从感知到的数据中发现有意义的信息和隐藏模式,以支持理性决策过程**。 + +--- +## AI、ML、深度学习 + +![AI、ML、深度学习、数据科学](../../../../1-Introduction/1-intro-to-ML/images/ai-ml-ds.png) + +> 一张展示 AI、ML、深度学习和数据科学之间关系的图表。信息图由 [Jen Looper](https://twitter.com/jenlooper) 制作,灵感来源于[这张图](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining) + +--- +## 涵盖的概念 + +在本课程中,我们将仅涵盖机器学习的核心概念,这些是初学者必须了解的内容。我们主要使用 Scikit-learn,这是一款许多学生用来学习基础知识的优秀库,来讲解我们称之为“经典机器学习”的内容。要理解人工智能或深度学习的更广泛概念,扎实的机器学习基础知识是不可或缺的,因此我们希望在这里提供这些知识。 + +--- +## 在本课程中你将学习: + +- 机器学习的核心概念 +- 机器学习的历史 +- 机器学习与公平性 +- 回归机器学习技术 +- 分类机器学习技术 +- 聚类机器学习技术 +- 自然语言处理机器学习技术 +- 时间序列预测机器学习技术 +- 强化学习 +- 机器学习的实际应用 + +--- +## 我们不会涵盖的内容 + +- 深度学习 +- 神经网络 +- 人工智能 + +为了提供更好的学习体验,我们将避免涉及神经网络的复杂性、“深度学习”(使用神经网络构建多层模型)以及人工智能,这些内容将在另一门课程中讨论。我们还将提供即将推出的数据科学课程,以专注于这一更广泛领域的相关内容。 + +--- +## 为什么学习机器学习? + +从系统的角度来看,机器学习被定义为创建能够从数据中学习隐藏模式以帮助做出智能决策的自动化系统。 + +这种动机在一定程度上受到人类大脑如何根据外界感知的数据学习某些事物的启发。 + +✅ 思考一下,为什么企业会选择使用机器学习策略,而不是创建一个基于硬编码规则的引擎? + +--- +## 机器学习的应用 + +机器学习的应用几乎无处不在,就像我们社会中流动的数据一样,这些数据由智能手机、连接设备和其他系统生成。考虑到最先进的机器学习算法的巨大潜力,研究人员一直在探索其解决多维度和多学科现实问题的能力,并取得了非常积极的成果。 + +--- +## 应用机器学习的例子 + +**机器学习有许多用途**: + +- 根据患者的病史或报告预测疾病的可能性。 +- 利用天气数据预测天气事件。 +- 理解文本的情感。 +- 检测虚假新闻以阻止宣传的传播。 + +金融、经济、地球科学、太空探索、生物医学工程、认知科学,甚至人文学科都已经适应了机器学习,以解决其领域中繁重的数据处理问题。 + +--- +## 结论 + +机器学习通过从现实世界或生成的数据中发现有意义的洞察来自动化模式发现的过程。它已在商业、健康和金融等领域证明了其高度价值。 + +在不久的将来,由于机器学习的广泛应用,了解机器学习的基础知识将成为任何领域人士的必备技能。 + +--- +# 🚀 挑战 + +用纸或在线应用(如 [Excalidraw](https://excalidraw.com/))绘制你对 AI、ML、深度学习和数据科学之间差异的理解。添加一些关于每种技术擅长解决的问题的想法。 + +# [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +--- +# 复习与自学 + +要了解如何在云端使用机器学习算法,请参考此[学习路径](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-77952-leestott)。 + +学习机器学习基础知识,请参考此[学习路径](https://docs.microsoft.com/learn/modules/introduction-to-machine-learning/?WT.mc_id=academic-77952-leestott)。 + +--- +# 作业 + +[开始学习](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/1-Introduction/1-intro-to-ML/assignment.md b/translations/zh-CN/1-Introduction/1-intro-to-ML/assignment.md new file mode 100644 index 000000000..f3c95cb63 --- /dev/null +++ b/translations/zh-CN/1-Introduction/1-intro-to-ML/assignment.md @@ -0,0 +1,14 @@ +# 快速开始 + +## 说明 + +在这个非评分的任务中,你需要复习 Python 并设置好你的环境,以便能够运行笔记本。 + +请学习这个 [Python 学习路径](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-77952-leestott),然后通过以下入门视频设置你的系统: + +https://www.youtube.com/playlist?list=PLlrxD0HtieHhS8VzuMCfQD4uJ9yne1mE6 + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/1-Introduction/2-history-of-ML/README.md b/translations/zh-CN/1-Introduction/2-history-of-ML/README.md new file mode 100644 index 000000000..566741eb0 --- /dev/null +++ b/translations/zh-CN/1-Introduction/2-history-of-ML/README.md @@ -0,0 +1,155 @@ +# 机器学习的历史 + +![机器学习历史的概述草图](../../../../sketchnotes/ml-history.png) +> 草图由 [Tomomi Imura](https://www.twitter.com/girlie_mac) 绘制 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +--- + +[![机器学习初学者 - 机器学习的历史](https://img.youtube.com/vi/N6wxM4wZ7V0/0.jpg)](https://youtu.be/N6wxM4wZ7V0 "机器学习初学者 - 机器学习的历史") + +> 🎥 点击上方图片观看本课的简短视频。 + +在本课中,我们将回顾机器学习和人工智能历史上的重要里程碑。 + +人工智能(AI)作为一个领域的历史与机器学习的历史密不可分,因为支撑机器学习的算法和计算进步也推动了人工智能的发展。需要注意的是,尽管这些领域作为独立的研究方向在20世纪50年代开始成型,但重要的[算法、统计、数学、计算和技术发现](https://wikipedia.org/wiki/Timeline_of_machine_learning)早在这一时期之前就已经出现并有所交集。事实上,人们已经思考这些问题[数百年](https://wikipedia.org/wiki/History_of_artificial_intelligence):这篇文章探讨了“会思考的机器”这一理念的历史性思想基础。 + +--- +## 重要发现 + +- 1763年, 1812年 [贝叶斯定理](https://wikipedia.org/wiki/Bayes%27_theorem)及其前身。这一定理及其应用奠定了推断的基础,描述了基于先验知识事件发生的概率。 +- 1805年 [最小二乘法](https://wikipedia.org/wiki/Least_squares),由法国数学家Adrien-Marie Legendre提出。这一理论(你将在回归单元中学习)有助于数据拟合。 +- 1913年 [马尔可夫链](https://wikipedia.org/wiki/Markov_chain),以俄罗斯数学家Andrey Markov命名,用于描述基于前一状态的一系列可能事件。 +- 1957年 [感知机](https://wikipedia.org/wiki/Perceptron),一种由美国心理学家Frank Rosenblatt发明的线性分类器,是深度学习进步的基础。 + +--- + +- 1967年 [最近邻算法](https://wikipedia.org/wiki/Nearest_neighbor),最初设计用于路径规划。在机器学习中,它被用来检测模式。 +- 1970年 [反向传播算法](https://wikipedia.org/wiki/Backpropagation),用于训练[前馈神经网络](https://wikipedia.org/wiki/Feedforward_neural_network)。 +- 1982年 [循环神经网络](https://wikipedia.org/wiki/Recurrent_neural_network),从前馈神经网络衍生而来,用于创建时间序列图。 + +✅ 做一些研究。还有哪些年份在机器学习和人工智能的历史上具有重要意义? + +--- +## 1950年:会思考的机器 + +艾伦·图灵(Alan Turing)是一位真正杰出的人物,他在[2019年被公众评选](https://wikipedia.org/wiki/Icons:_The_Greatest_Person_of_the_20th_Century)为20世纪最伟大的科学家。他被认为奠定了“会思考的机器”这一概念的基础。他通过创建[图灵测试](https://www.bbc.com/news/technology-18475646)来应对质疑者以及自己对这一概念的实证需求,你将在自然语言处理课程中进一步探索这一测试。 + +--- +## 1956年:达特茅斯夏季研究项目 + +“达特茅斯夏季人工智能研究项目是人工智能领域的一个开创性事件”,在这里,“人工智能”这一术语首次被提出([来源](https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth))。 + +> 学习的每一个方面或智能的任何其他特征原则上都可以被如此精确地描述,以至于可以制造出模拟它的机器。 + +--- + +该项目的首席研究员、数学教授John McCarthy希望“基于这样的假设:学习的每一个方面或智能的任何其他特征原则上都可以被如此精确地描述,以至于可以制造出模拟它的机器。”参与者中还包括该领域的另一位杰出人物Marvin Minsky。 + +该研讨会被认为启动并推动了多项讨论,包括“符号方法的兴起、专注于有限领域的系统(早期专家系统)以及演绎系统与归纳系统的对比”([来源](https://wikipedia.org/wiki/Dartmouth_workshop))。 + +--- +## 1956 - 1974年:“黄金时代” + +从20世纪50年代到70年代中期,人们对人工智能能够解决许多问题充满乐观。1967年,Marvin Minsky自信地表示:“在一代人的时间内……创造‘人工智能’的问题将基本解决。”(Minsky, Marvin (1967), Computation: Finite and Infinite Machines, Englewood Cliffs, N.J.: Prentice-Hall) + +自然语言处理研究蓬勃发展,搜索技术得到了改进并变得更强大,“微观世界”的概念被提出,在这种环境下,简单任务可以通过简单的语言指令完成。 + +--- + +政府机构为研究提供了充足的资金,计算和算法取得了进展,智能机器的原型被制造出来。这些机器包括: + +* [Shakey机器人](https://wikipedia.org/wiki/Shakey_the_robot),它能够“智能地”移动并决定如何执行任务。 + + ![Shakey,一个智能机器人](../../../../1-Introduction/2-history-of-ML/images/shakey.jpg) + > 1972年的Shakey + +--- + +* Eliza,一个早期的“聊天机器人”,能够与人对话并充当一个原始的“治疗师”。你将在自然语言处理课程中进一步了解Eliza。 + + ![Eliza,一个机器人](../../../../1-Introduction/2-history-of-ML/images/eliza.png) + > Eliza的一个版本,一个聊天机器人 + +--- + +* “积木世界”是一个微观世界的例子,在这里积木可以被堆叠和排序,机器学习决策的实验可以在此进行。使用诸如[SHRDLU](https://wikipedia.org/wiki/SHRDLU)之类的库的进步推动了语言处理的发展。 + + [![SHRDLU的积木世界](https://img.youtube.com/vi/QAJz4YKUwqw/0.jpg)](https://www.youtube.com/watch?v=QAJz4YKUwqw "SHRDLU的积木世界") + + > 🎥 点击上方图片观看视频:SHRDLU的积木世界 + +--- +## 1974 - 1980年:“人工智能寒冬” + +到70年代中期,制造“智能机器”的复杂性被低估的事实变得显而易见,而其承诺在当时的计算能力下被过度夸大。资金枯竭,领域信心减弱。影响信心的一些问题包括: +--- +- **局限性**。计算能力过于有限。 +- **组合爆炸**。随着对计算机要求的增加,需要训练的参数数量呈指数增长,而计算能力和性能却没有相应提升。 +- **数据匮乏**。数据的匮乏阻碍了算法的测试、开发和优化过程。 +- **我们是否在问正确的问题?**。研究者开始质疑他们提出的问题: + - 图灵测试因“中文房间理论”等观点受到质疑,该理论认为,“编程数字计算机可能使其看似理解语言,但无法产生真正的理解。”([来源](https://plato.stanford.edu/entries/chinese-room/)) + - 将人工智能(如“治疗师”ELIZA)引入社会的伦理问题受到挑战。 + +--- + +与此同时,各种人工智能学派开始形成。“[粗放派](https://wikipedia.org/wiki/Neats_and_scruffies)”与“精确派”实践之间的二分法逐渐确立。_粗放派_实验室通过不断调整程序以获得所需结果,而_精确派_实验室则“专注于逻辑和形式化问题解决”。ELIZA和SHRDLU是著名的_粗放派_系统。到了80年代,随着对机器学习系统可重复性的需求增加,_精确派_方法逐渐占据主导地位,因为其结果更具可解释性。 + +--- +## 1980年代 专家系统 + +随着领域的发展,其对商业的益处变得更加明显,1980年代“专家系统”的普及也随之而来。“专家系统是最早真正成功的人工智能(AI)软件形式之一。”([来源](https://wikipedia.org/wiki/Expert_system)) + +这种系统实际上是_混合型_的,部分由定义业务需求的规则引擎组成,部分由利用规则系统推导新事实的推理引擎组成。 + +这一时期还出现了对神经网络的日益关注。 + +--- +## 1987 - 1993年:人工智能“冷却期” + +专用专家系统硬件的普及不幸导致其过于专用化。个人计算机的兴起也与这些大型、专用、集中化的系统形成了竞争。计算的民主化开始了,并最终为现代大数据的爆发铺平了道路。 + +--- +## 1993 - 2011年 + +这一时期见证了机器学习和人工智能能够解决早期因数据和计算能力不足而导致的问题。数据量开始迅速增加并变得更易获取,无论是好是坏,尤其是在2007年左右智能手机的出现之后。计算能力呈指数级增长,算法也随之演进。随着过去自由发展的日子逐渐凝聚成一个真正的学科,这一领域开始走向成熟。 + +--- +## 现在 + +如今,机器学习和人工智能几乎触及我们生活的每一个部分。这一时代需要我们仔细理解这些算法对人类生活的风险和潜在影响。正如微软的Brad Smith所说:“信息技术提出了一些问题,这些问题触及了隐私和言论自由等基本人权保护的核心。这些问题加重了创造这些产品的科技公司的责任。在我们看来,这也需要深思熟虑的政府监管以及围绕可接受用途的规范发展。”([来源](https://www.technologyreview.com/2019/12/18/102365/the-future-of-ais-impact-on-society/)) + +--- + +未来会如何发展仍未可知,但理解这些计算机系统及其运行的软件和算法是非常重要的。我们希望这门课程能帮助你更好地理解这些内容,从而让你自己做出判断。 + +[![深度学习的历史](https://img.youtube.com/vi/mTtDfKgLm54/0.jpg)](https://www.youtube.com/watch?v=mTtDfKgLm54 "深度学习的历史") +> 🎥 点击上方图片观看视频:Yann LeCun在这次讲座中讨论了深度学习的历史 + +--- +## 🚀挑战 + +深入研究这些历史时刻中的一个,了解背后的人物。这些人物非常有趣,没有任何科学发现是在文化真空中产生的。你发现了什么? + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +--- +## 复习与自学 + +以下是一些可以观看和收听的内容: + +[这期Amy Boyd讨论人工智能演变的播客](http://runasradio.com/Shows/Show/739) + +[![Amy Boyd讲述人工智能的历史](https://img.youtube.com/vi/EJt3_bFYKss/0.jpg)](https://www.youtube.com/watch?v=EJt3_bFYKss "Amy Boyd讲述人工智能的历史") + +--- + +## 作业 + +[创建一个时间线](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/1-Introduction/2-history-of-ML/assignment.md b/translations/zh-CN/1-Introduction/2-history-of-ML/assignment.md new file mode 100644 index 000000000..86b208eca --- /dev/null +++ b/translations/zh-CN/1-Introduction/2-history-of-ML/assignment.md @@ -0,0 +1,16 @@ +# 创建时间轴 + +## 说明 + +使用[这个仓库](https://github.com/Digital-Humanities-Toolkit/timeline-builder),创建一个关于算法、数学、统计学、人工智能或机器学习历史某一方面的时间轴,或者结合这些主题。你可以专注于一个人、一个想法,或者一个长时间跨度的思想发展。确保添加多媒体元素。 + +## 评分标准 + +| 标准 | 卓越表现 | 合格表现 | 需要改进 | +| -------- | ------------------------------------------------- | --------------------------------------- | ---------------------------------------------------------------- | +| | 时间轴已部署为一个GitHub页面 | 代码不完整且未部署 | 时间轴不完整,研究不充分且未部署 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/1-Introduction/3-fairness/README.md b/translations/zh-CN/1-Introduction/3-fairness/README.md new file mode 100644 index 000000000..d1c37b637 --- /dev/null +++ b/translations/zh-CN/1-Introduction/3-fairness/README.md @@ -0,0 +1,161 @@ +# 构建负责任的人工智能的机器学习解决方案 + +![机器学习中负责任人工智能的概要图](../../../../sketchnotes/ml-fairness.png) +> 由 [Tomomi Imura](https://www.twitter.com/girlie_mac) 绘制的概要图 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +## 简介 + +在本课程中,您将开始了解机器学习如何以及正在影响我们的日常生活。即使是现在,系统和模型已经参与了日常决策任务,例如医疗诊断、贷款审批或欺诈检测。因此,确保这些模型能够提供值得信赖的结果非常重要。与任何软件应用程序一样,人工智能系统可能会未达到预期或产生不理想的结果。这就是为什么理解和解释人工智能模型的行为至关重要。 + +想象一下,当您用于构建这些模型的数据缺乏某些人口统计信息(例如种族、性别、政治观点、宗教)或过度代表某些人口统计信息时会发生什么?如果模型的输出被解释为偏向某些人口统计信息,又会有什么后果?此外,当模型产生不良结果并对人们造成伤害时会发生什么?谁应该对人工智能系统的行为负责?这些是我们将在本课程中探讨的一些问题。 + +在本课中,您将: + +- 提高对机器学习公平性及相关危害重要性的认识。 +- 熟悉探索异常值和特殊场景以确保可靠性和安全性的实践。 +- 了解设计包容性系统以赋能所有人的必要性。 +- 探讨保护数据和个人隐私与安全的重要性。 +- 认识到采用透明化方法解释人工智能模型行为的重要性。 +- 意识到责任感对于建立人工智能系统信任的重要性。 + +## 前提条件 + +作为前提条件,请完成“负责任人工智能原则”学习路径并观看以下视频: + +通过以下 [学习路径](https://docs.microsoft.com/learn/modules/responsible-ai-principles/?WT.mc_id=academic-77952-leestott) 了解更多关于负责任人工智能的信息。 + +[![微软的负责任人工智能方法](https://img.youtube.com/vi/dnC8-uUZXSc/0.jpg)](https://youtu.be/dnC8-uUZXSc "微软的负责任人工智能方法") + +> 🎥 点击上方图片观看视频:微软的负责任人工智能方法 + +## 公平性 + +人工智能系统应公平对待每个人,避免对类似群体产生不同影响。例如,当人工智能系统提供医疗建议、贷款申请或就业指导时,它们应对具有类似症状、财务状况或专业资格的人做出相同的推荐。我们每个人作为人类,都携带着影响我们决策和行为的固有偏见。这些偏见可能会体现在我们用于训练人工智能系统的数据中。这种操控有时可能是无意的。通常很难有意识地知道何时在数据中引入了偏见。 + +**“不公平”** 包括对某些群体(例如按种族、性别、年龄或残疾状态定义的群体)造成的负面影响或“危害”。主要与公平性相关的危害可以分类为: + +- **分配**:例如,如果某个性别或种族被优待于另一个。 +- **服务质量**:如果您仅为一个特定场景训练数据,而现实情况更复杂,这会导致服务表现不佳。例如,一个无法识别深色皮肤的洗手液分配器。[参考](https://gizmodo.com/why-cant-this-soap-dispenser-identify-dark-skin-1797931773) +- **贬低**:不公平地批评或标记某事或某人。例如,一个图像标记技术曾错误地将深色皮肤人群的照片标记为猩猩。 +- **过度或不足代表**:某些群体在某些职业中未被看到,而任何继续推广这种现象的服务或功能都在助长危害。 +- **刻板印象**:将某个群体与预先分配的属性联系起来。例如,英语和土耳其语之间的语言翻译系统可能因与性别相关的刻板印象而出现不准确。 + +![翻译成土耳其语](../../../../1-Introduction/3-fairness/images/gender-bias-translate-en-tr.png) +> 翻译成土耳其语 + +![翻译回英语](../../../../1-Introduction/3-fairness/images/gender-bias-translate-tr-en.png) +> 翻译回英语 + +在设计和测试人工智能系统时,我们需要确保人工智能是公平的,并且不会被编程为做出偏见或歧视性的决策,这些决策也是人类被禁止做出的。确保人工智能和机器学习的公平性仍然是一个复杂的社会技术挑战。 + +### 可靠性与安全性 + +为了建立信任,人工智能系统需要在正常和意外情况下保持可靠、安全和一致。了解人工智能系统在各种情况下的行为尤其重要,特别是当它们处于异常值时。在构建人工智能解决方案时,需要重点关注如何处理人工智能解决方案可能遇到的各种情况。例如,一辆自动驾驶汽车需要将人的安全作为首要任务。因此,驱动汽车的人工智能需要考虑汽车可能遇到的所有可能场景,例如夜晚、雷暴或暴风雪、孩子跑过街道、宠物、道路施工等。人工智能系统在各种条件下可靠安全地处理问题的能力反映了数据科学家或人工智能开发人员在设计或测试系统时的预见水平。 + +> [🎥 点击此处观看视频:](https://www.microsoft.com/videoplayer/embed/RE4vvIl) + +### 包容性 + +人工智能系统应设计为能够吸引和赋能所有人。在设计和实施人工智能系统时,数据科学家和人工智能开发人员需要识别并解决系统中可能无意间排除某些人的潜在障碍。例如,全球有10亿残疾人。随着人工智能的进步,他们可以更轻松地获取广泛的信息和机会。通过解决这些障碍,可以创造创新机会,开发具有更好体验的人工智能产品,从而惠及所有人。 + +> [🎥 点击此处观看视频:人工智能中的包容性](https://www.microsoft.com/videoplayer/embed/RE4vl9v) + +### 安全与隐私 + +人工智能系统应安全并尊重个人隐私。人们对那些可能危及隐私、信息或生命的系统信任度较低。在训练机器学习模型时,我们依赖数据以获得最佳结果。在此过程中,必须考虑数据的来源和完整性。例如,数据是用户提交的还是公开可用的?接下来,在处理数据时,开发人工智能系统时必须能够保护机密信息并抵御攻击。随着人工智能的普及,保护隐私和确保重要的个人和商业信息的安全变得越来越重要和复杂。隐私和数据安全问题需要特别关注人工智能,因为数据访问对于人工智能系统做出准确和知情的预测以及关于人的决策至关重要。 + +> [🎥 点击此处观看视频:人工智能中的安全性](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- 在行业中,我们在隐私和安全方面取得了显著进展,这在很大程度上得益于像GDPR(通用数据保护条例)这样的法规。 +- 然而,对于人工智能系统,我们必须承认需要更多个人数据以使系统更个性化和有效——与隐私之间的紧张关系。 +- 就像互联网连接的计算机诞生一样,我们也看到了与人工智能相关的安全问题数量的巨大增长。 +- 同时,我们也看到人工智能被用于改善安全性。例如,大多数现代杀毒扫描器今天都由人工智能启发式驱动。 +- 我们需要确保我们的数据科学流程与最新的隐私和安全实践和谐融合。 + +### 透明性 + +人工智能系统应易于理解。透明性的一个关键部分是解释人工智能系统及其组件的行为。提高对人工智能系统的理解需要利益相关者能够理解它们的功能和原因,以便识别潜在的性能问题、安全和隐私问题、偏见、排他性实践或意外结果。我们还认为,使用人工智能系统的人应该诚实并坦率地说明何时、为何以及如何选择部署它们,以及所使用系统的局限性。例如,如果一家银行使用人工智能系统来支持其消费者贷款决策,那么审查结果并了解哪些数据影响系统的推荐是很重要的。政府开始对各行业的人工智能进行监管,因此数据科学家和组织必须解释人工智能系统是否符合监管要求,特别是在出现不理想结果时。 + +> [🎥 点击此处观看视频:人工智能中的透明性](https://www.microsoft.com/videoplayer/embed/RE4voJF) + +- 由于人工智能系统非常复杂,很难理解它们的工作原理并解释结果。 +- 这种理解的缺乏影响了这些系统的管理、操作化和文档化方式。 +- 更重要的是,这种理解的缺乏影响了使用这些系统产生的结果所做出的决策。 + +### 责任感 + +设计和部署人工智能系统的人必须对其系统的运行负责。责任感对于敏感技术的使用尤其重要,例如面部识别技术。最近,面部识别技术的需求不断增长,尤其是执法机构,他们看到了该技术在寻找失踪儿童等用途上的潜力。然而,这些技术可能会被政府用于威胁公民的基本自由,例如对特定个人进行持续监控。因此,数据科学家和组织需要对其人工智能系统对个人或社会的影响负责。 + +[![领先的人工智能研究人员警告面部识别可能导致大规模监控](../../../../1-Introduction/3-fairness/images/accountability.png)](https://www.youtube.com/watch?v=Wldt8P5V6D0 "微软的负责任人工智能方法") + +> 🎥 点击上方图片观看视频:面部识别可能导致大规模监控的警告 + +最终,对于我们这一代人来说,作为将人工智能引入社会的第一代人,最大的一个问题是如何确保计算机始终对人类负责,以及如何确保设计计算机的人对其他人负责。 + +## 影响评估 + +在训练机器学习模型之前,进行影响评估以了解人工智能系统的目的、预期用途、部署地点以及与系统交互的人非常重要。这些评估有助于评审者或测试人员在识别潜在风险和预期后果时知道需要考虑哪些因素。 + +以下是进行影响评估时的重点领域: + +* **对个人的不利影响**:意识到任何限制或要求、不支持的用途或任何已知限制影响系统性能至关重要,以确保系统不会以可能对个人造成伤害的方式使用。 +* **数据要求**:了解系统如何以及在哪里使用数据使评审者能够探索需要注意的任何数据要求(例如GDPR或HIPPA数据法规)。此外,检查数据的来源或数量是否足够用于训练。 +* **影响摘要**:收集使用系统可能产生的潜在危害列表。在机器学习生命周期中,审查是否解决或处理了识别的问题。 +* **六项核心原则的适用目标**:评估每项原则的目标是否达成,以及是否存在任何差距。 + +## 使用负责任人工智能进行调试 + +与调试软件应用程序类似,调试人工智能系统是识别和解决系统问题的必要过程。许多因素会影响模型未按预期或负责任地运行。大多数传统模型性能指标是模型性能的定量汇总,这不足以分析模型如何违反负责任人工智能原则。此外,机器学习模型是一个黑箱,难以理解其结果的驱动因素或在出现错误时提供解释。在本课程后续部分,我们将学习如何使用负责任人工智能仪表板来帮助调试人工智能系统。该仪表板为数据科学家和人工智能开发人员提供了一个全面的工具,用于执行以下操作: + +* **错误分析**:识别模型的错误分布,这可能影响系统的公平性或可靠性。 +* **模型概览**:发现模型在不同数据群体中的性能差异。 +* **数据分析**:了解数据分布并识别数据中可能导致公平性、包容性和可靠性问题的潜在偏见。 +* **模型可解释性**:了解影响或驱动模型预测的因素。这有助于解释模型的行为,这对透明性和责任感至关重要。 + +## 🚀 挑战 + +为了防止危害的引入,我们应该: + +- 确保参与系统开发的人员具有多样化的背景和观点 +- 投资于反映社会多样性的数据集 +- 在整个机器学习生命周期中开发更好的方法,以检测和纠正负责任人工智能问题 + +思考现实生活中模型在构建和使用过程中显现不可信的场景。我们还应该考虑什么? + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +在本课中,您已经学习了机器学习中公平性和不公平性概念的一些基础知识。 +观看此研讨会,深入了解相关主题: + +- 追求负责任的人工智能:将原则付诸实践,由 Besmira Nushi、Mehrnoosh Sameki 和 Amit Sharma 主讲 + +[![负责任的人工智能工具箱:构建负责任人工智能的开源框架](https://img.youtube.com/vi/tGgJCrA-MZU/0.jpg)](https://www.youtube.com/watch?v=tGgJCrA-MZU "RAI Toolbox: 构建负责任人工智能的开源框架") + +> 🎥 点击上方图片观看视频:RAI Toolbox: 构建负责任人工智能的开源框架,由 Besmira Nushi、Mehrnoosh Sameki 和 Amit Sharma 主讲 + +此外,阅读以下内容: + +- 微软的负责任人工智能资源中心:[负责任人工智能资源 – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- 微软的 FATE 研究团队:[FATE: 公平性、问责性、透明性和人工智能伦理 - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +RAI 工具箱: + +- [负责任人工智能工具箱 GitHub 仓库](https://github.com/microsoft/responsible-ai-toolbox) + +了解 Azure 机器学习工具如何确保公平性: + +- [Azure 机器学习](https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml?WT.mc_id=academic-77952-leestott) + +## 作业 + +[探索 RAI 工具箱](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。虽然我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/1-Introduction/3-fairness/assignment.md b/translations/zh-CN/1-Introduction/3-fairness/assignment.md new file mode 100644 index 000000000..47bffface --- /dev/null +++ b/translations/zh-CN/1-Introduction/3-fairness/assignment.md @@ -0,0 +1,16 @@ +# 探索负责任的AI工具箱 + +## 说明 + +在本课程中,您学习了负责任的AI工具箱,这是一个“开源的、社区驱动的项目,旨在帮助数据科学家分析和改进AI系统。” 在本次作业中,请探索RAI工具箱的一个[笔记本](https://github.com/microsoft/responsible-ai-toolbox/blob/main/notebooks/responsibleaidashboard/getting-started.ipynb),并在论文或演示文稿中报告您的发现。 + +## 评分标准 + +| 标准 | 卓越 | 合格 | 需要改进 | +| -------- | --------- | -------- | ----------------- | +| | 提交了一篇论文或PowerPoint演示文稿,讨论了Fairlearn的系统、运行的笔记本以及从中得出的结论 | 提交了一篇没有结论的论文 | 未提交论文 | + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/1-Introduction/4-techniques-of-ML/README.md b/translations/zh-CN/1-Introduction/4-techniques-of-ML/README.md new file mode 100644 index 000000000..181e5bf20 --- /dev/null +++ b/translations/zh-CN/1-Introduction/4-techniques-of-ML/README.md @@ -0,0 +1,123 @@ +# 机器学习技术 + +构建、使用和维护机器学习模型及其所需数据的过程,与许多其他开发工作流有很大的不同。在本课中,我们将揭开这一过程的神秘面纱,并概述您需要了解的主要技术。您将: + +- 从高层次理解机器学习的基本流程。 +- 探索诸如“模型”、“预测”和“训练数据”等基础概念。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +[![机器学习入门 - 机器学习技术](https://img.youtube.com/vi/4NGM0U2ZSHU/0.jpg)](https://youtu.be/4NGM0U2ZSHU "机器学习入门 - 机器学习技术") + +> 🎥 点击上方图片观看本课的简短视频。 + +## 介绍 + +从高层次来看,创建机器学习(ML)流程的过程包括以下几个步骤: + +1. **确定问题**。大多数机器学习流程从提出一个无法通过简单条件程序或基于规则的引擎回答的问题开始。这些问题通常围绕基于数据集合的预测展开。 +2. **收集和准备数据**。为了回答您的问题,您需要数据。数据的质量以及有时数据的数量将决定您能多好地回答最初的问题。可视化数据是这一阶段的重要部分。这一阶段还包括将数据分为训练集和测试集以构建模型。 +3. **选择训练方法**。根据您的问题和数据的性质,您需要选择一种训练模型的方法,以便最好地反映数据并对其进行准确预测。这是机器学习流程中需要特定专业知识的部分,通常需要大量的实验。 +4. **训练模型**。使用训练数据,您将使用各种算法训练模型以识别数据中的模式。模型可能会利用内部权重,这些权重可以调整以优先考虑数据的某些部分,从而构建更好的模型。 +5. **评估模型**。使用从未见过的数据(测试数据)来检查模型的表现。 +6. **参数调优**。根据模型的表现,您可以使用不同的参数或变量重新进行训练,这些参数或变量控制用于训练模型的算法的行为。 +7. **预测**。使用新的输入测试模型的准确性。 + +## 提出什么问题 + +计算机特别擅长发现数据中的隐藏模式。这种能力对研究人员来说非常有用,他们可能会提出一些无法通过条件规则引擎轻松回答的问题。例如,在精算任务中,数据科学家可能能够围绕吸烟者与非吸烟者的死亡率构建手工规则。 + +然而,当许多其他变量被纳入考虑时,机器学习模型可能更高效地根据过去的健康历史预测未来的死亡率。一个更令人愉快的例子可能是基于纬度、经度、气候变化、靠近海洋、喷流模式等数据预测某地四月份的天气。 + +✅ 这份[幻灯片](https://www2.cisl.ucar.edu/sites/default/files/2021-10/0900%20June%2024%20Haupt_0.pdf)提供了使用机器学习进行天气分析的历史视角。 + +## 构建前的任务 + +在开始构建模型之前,您需要完成几个任务。为了测试您的问题并根据模型的预测形成假设,您需要识别并配置几个要素。 + +### 数据 + +为了以任何确定性回答您的问题,您需要足够数量的正确类型的数据。在这一点上,您需要完成以下两件事: + +- **收集数据**。牢记上一课关于数据分析公平性的内容,谨慎收集数据。注意数据的来源、可能存在的内在偏见,并记录其来源。 +- **准备数据**。数据准备过程包括多个步骤。如果数据来自不同来源,您可能需要整理并规范化数据。您可以通过各种方法提高数据的质量和数量,例如将字符串转换为数字(如我们在[聚类](../../5-Clustering/1-Visualize/README.md)中所做的)。您还可以基于原始数据生成新数据(如我们在[分类](../../4-Classification/1-Introduction/README.md)中所做的)。您可以清理和编辑数据(如我们在[Web 应用](../../3-Web-App/README.md)课程之前所做的)。最后,根据您的训练技术,您可能还需要随机化和打乱数据。 + +✅ 在收集和处理数据后,花点时间检查其形状是否能帮助您解决预期问题。可能会发现数据在给定任务中表现不佳,就像我们在[聚类](../../5-Clustering/1-Visualize/README.md)课程中发现的那样! + +### 特征和目标 + +[特征](https://www.datasciencecentral.com/profiles/blogs/an-introduction-to-variable-and-feature-selection)是数据的可测量属性。在许多数据集中,它通常以列标题的形式表示,例如“日期”、“大小”或“颜色”。特征变量通常在代码中表示为`X`,代表用于训练模型的输入变量。 + +目标是您试图预测的内容。目标通常在代码中表示为`y`,代表您试图从数据中回答的问题:在十二月,哪种**颜色**的南瓜最便宜?在旧金山,哪些社区的房地产**价格**最好?有时目标也被称为标签属性。 + +### 选择特征变量 + +🎓 **特征选择和特征提取** 如何在构建模型时选择变量?您可能会经历特征选择或特征提取的过程,以选择最适合的变量来构建性能最佳的模型。然而,它们并不相同:“特征提取通过原始特征的函数创建新特征,而特征选择返回特征的子集。”([来源](https://wikipedia.org/wiki/Feature_selection)) + +### 可视化数据 + +数据科学家工具箱的重要组成部分是使用 Seaborn 或 MatPlotLib 等优秀库可视化数据的能力。通过可视化数据,您可能会发现可以利用的隐藏相关性。可视化还可能帮助您发现偏差或数据不平衡(如我们在[分类](../../4-Classification/2-Classifiers-1/README.md)中发现的那样)。 + +### 划分数据集 + +在训练之前,您需要将数据集划分为两个或更多不等大小的部分,同时确保它们能很好地代表数据。 + +- **训练集**。数据集的这一部分用于训练模型。它通常占原始数据集的大部分。 +- **测试集**。测试数据集是一个独立的数据组,通常从原始数据中提取,用于验证模型的性能。 +- **验证集**。验证集是一个较小的独立数据组,用于调整模型的超参数或架构以改进模型。根据数据的大小和您提出的问题,您可能不需要构建这个第三组(如我们在[时间序列预测](../../7-TimeSeries/1-Introduction/README.md)中提到的)。 + +## 构建模型 + +使用训练数据,您的目标是通过各种算法**训练**模型,构建数据的统计表示。训练模型使其接触数据,并让它对发现的模式进行假设、验证并接受或拒绝。 + +### 决定训练方法 + +根据您的问题和数据的性质,您将选择一种训练方法。通过浏览[Scikit-learn 的文档](https://scikit-learn.org/stable/user_guide.html)(我们在本课程中使用的工具),您可以探索多种训练模型的方法。根据您的经验,您可能需要尝试几种不同的方法来构建最佳模型。数据科学家通常会经历一个过程,通过向模型提供未见过的数据来评估其性能,检查准确性、偏差和其他质量问题,并选择最适合当前任务的训练方法。 + +### 训练模型 + +有了训练数据,您可以开始“拟合”数据以创建模型。您会注意到,在许多机器学习库中,代码中会出现“model.fit”——此时,您将特征变量作为值数组(通常是`X`)和目标变量(通常是`y`)传入。 + +### 评估模型 + +一旦训练过程完成(对于大型模型可能需要多次迭代或“周期”),您可以使用测试数据评估模型的质量,以衡量其性能。这些数据是模型之前未分析过的原始数据的子集。您可以打印出关于模型质量的指标表。 + +🎓 **模型拟合** + +在机器学习的背景下,模型拟合指的是模型底层函数在尝试分析未见过的数据时的准确性。 + +🎓 **欠拟合**和**过拟合**是常见问题,会降低模型质量。欠拟合的模型无法很好地分析训练数据或未见过的数据,而过拟合的模型过于贴合训练数据的细节和噪声。过拟合的模型对训练数据的预测过于精准,而欠拟合的模型则不够准确。 + +![过拟合模型](../../../../1-Introduction/4-techniques-of-ML/images/overfitting.png) +> 信息图由 [Jen Looper](https://twitter.com/jenlooper) 提供 + +## 参数调优 + +初步训练完成后,观察模型的质量,并通过调整其“超参数”来改进模型。阅读更多关于该过程的内容:[文档](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-tune-hyperparameters?WT.mc_id=academic-77952-leestott)。 + +## 预测 + +这是您可以使用全新数据测试模型准确性的时刻。在“应用”机器学习场景中,例如构建用于生产的 Web 应用程序,这一过程可能涉及收集用户输入(例如按钮点击)以设置变量并将其发送到模型进行推断或评估。 + +在这些课程中,您将学习如何使用这些步骤来准备、构建、测试、评估和预测——这些都是数据科学家的基本操作,同时也将帮助您在成为“全栈”机器学习工程师的旅程中不断进步。 + +--- + +## 🚀挑战 + +绘制一张流程图,反映机器学习从业者的步骤。您认为自己目前处于哪个阶段?您预测在哪些方面会遇到困难?哪些部分对您来说似乎很容易? + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +在线搜索数据科学家讨论日常工作的访谈。这里有一个[示例](https://www.youtube.com/watch?v=Z3IjgbbCEfs)。 + +## 作业 + +[采访一位数据科学家](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/1-Introduction/4-techniques-of-ML/assignment.md b/translations/zh-CN/1-Introduction/4-techniques-of-ML/assignment.md new file mode 100644 index 000000000..6a42463f7 --- /dev/null +++ b/translations/zh-CN/1-Introduction/4-techniques-of-ML/assignment.md @@ -0,0 +1,16 @@ +# 采访数据科学家 + +## 指导说明 + +在你的公司、用户组、朋友或同学中,找一位专业从事数据科学工作的人员进行交流。撰写一篇简短的文章(500字),描述他们的日常工作内容。他们是专攻某一领域,还是从事“全栈”工作? + +## 评分标准 + +| 标准 | 卓越表现 | 合格表现 | 需要改进 | +| -------- | ----------------------------------------------------------------------- | ------------------------------------------------------------- | -------------------- | +| | 提交一篇符合字数要求、带有明确来源的文章,并以 .doc 文件形式呈现 | 文章来源不明确或字数少于要求 | 未提交文章 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/1-Introduction/README.md b/translations/zh-CN/1-Introduction/README.md new file mode 100644 index 000000000..f56e93302 --- /dev/null +++ b/translations/zh-CN/1-Introduction/README.md @@ -0,0 +1,28 @@ +# 机器学习简介 + +在本课程部分中,您将了解机器学习领域的基本概念、它的定义,并学习它的历史以及研究人员使用的相关技术。让我们一起探索这个机器学习的新世界吧! + +![globe](../../../translated_images/zh-CN/globe.59f26379ceb40428.webp) +> 图片由 Bill Oxford 提供,来自 Unsplash + +### 课程 + +1. [机器学习简介](1-intro-to-ML/README.md) +1. [机器学习和人工智能的历史](2-history-of-ML/README.md) +1. [公平性与机器学习](3-fairness/README.md) +1. [机器学习的技术](4-techniques-of-ML/README.md) + +### 致谢 + +《机器学习简介》由包括 [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan)、[Ornella Altunyan](https://twitter.com/ornelladotcom) 和 [Jen Looper](https://twitter.com/jenlooper) 在内的团队倾情创作。 + +《机器学习的历史》由 [Jen Looper](https://twitter.com/jenlooper) 和 [Amy Boyd](https://twitter.com/AmyKateNicho) 倾情创作。 + +《公平性与机器学习》由 [Tomomi Imura](https://twitter.com/girliemac) 倾情创作。 + +《机器学习的技术》由 [Jen Looper](https://twitter.com/jenlooper) 和 [Chris Noring](https://twitter.com/softchris) 倾情创作。 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/1-Tools/README.md b/translations/zh-CN/2-Regression/1-Tools/README.md new file mode 100644 index 000000000..c076da040 --- /dev/null +++ b/translations/zh-CN/2-Regression/1-Tools/README.md @@ -0,0 +1,230 @@ +# 使用 Python 和 Scikit-learn 构建回归模型 + +![回归模型的简要概述](../../../../sketchnotes/ml-regression.png) + +> 由 [Tomomi Imura](https://www.twitter.com/girlie_mac) 绘制的手绘笔记 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +> ### [本课程也提供 R 版本!](../../../../2-Regression/1-Tools/solution/R/lesson_1.html) + +## 简介 + +在这四节课中,您将学习如何构建回归模型。我们很快会讨论这些模型的用途。但在开始之前,请确保您已准备好正确的工具来进行学习! + +在本课中,您将学习: + +- 配置您的计算机以进行本地机器学习任务。 +- 使用 Jupyter 笔记本。 +- 安装并使用 Scikit-learn。 +- 通过动手练习探索线性回归。 + +## 安装和配置 + +[![机器学习入门 - 配置工具以构建机器学习模型](https://img.youtube.com/vi/-DfeD2k2Kj0/0.jpg)](https://youtu.be/-DfeD2k2Kj0 "机器学习入门 - 配置工具以构建机器学习模型") + +> 🎥 点击上方图片观看短视频,了解如何配置您的计算机以进行机器学习。 + +1. **安装 Python**。确保您的计算机上已安装 [Python](https://www.python.org/downloads/)。您将使用 Python 来完成许多数据科学和机器学习任务。大多数计算机系统已经预装了 Python。此外,还有一些有用的 [Python 编码包](https://code.visualstudio.com/learn/educators/installers?WT.mc_id=academic-77952-leestott),可以简化某些用户的设置过程。 + + 不过,某些 Python 的使用场景可能需要不同版本的软件。因此,建议您使用 [虚拟环境](https://docs.python.org/3/library/venv.html)。 + +2. **安装 Visual Studio Code**。确保您的计算机上已安装 Visual Studio Code。按照这些说明完成 [Visual Studio Code 的安装](https://code.visualstudio.com/)。在本课程中,您将使用 Python 在 Visual Studio Code 中进行开发,因此您可能需要了解如何 [配置 Visual Studio Code](https://docs.microsoft.com/learn/modules/python-install-vscode?WT.mc_id=academic-77952-leestott) 以进行 Python 开发。 + + > 通过学习这组 [模块](https://docs.microsoft.com/users/jenlooper-2911/collections/mp1pagggd5qrq7?WT.mc_id=academic-77952-leestott),熟悉 Python。 + > + > [![使用 Visual Studio Code 设置 Python](https://img.youtube.com/vi/yyQM70vi7V8/0.jpg)](https://youtu.be/yyQM70vi7V8 "使用 Visual Studio Code 设置 Python") + > + > 🎥 点击上方图片观看视频:在 VS Code 中使用 Python。 + +3. **安装 Scikit-learn**,按照 [这些说明](https://scikit-learn.org/stable/install.html) 进行安装。由于需要确保使用 Python 3,建议您使用虚拟环境。如果您在 M1 Mac 上安装此库,请参考上述页面中的特殊说明。 + +4. **安装 Jupyter Notebook**。您需要 [安装 Jupyter 包](https://pypi.org/project/jupyter/)。 + +## 您的机器学习开发环境 + +您将使用 **笔记本** 来开发 Python 代码并创建机器学习模型。这种文件类型是数据科学家常用的工具,其文件后缀为 `.ipynb`。 + +笔记本是一种交互式环境,允许开发者编写代码并添加注释和文档,非常适合实验或研究项目。 + +[![机器学习入门 - 设置 Jupyter 笔记本以开始构建回归模型](https://img.youtube.com/vi/7E-jC8FLA2E/0.jpg)](https://youtu.be/7E-jC8FLA2E "机器学习入门 - 设置 Jupyter 笔记本以开始构建回归模型") + +> 🎥 点击上方图片观看短视频,了解如何完成此练习。 + +### 练习 - 使用笔记本 + +在此文件夹中,您会找到文件 _notebook.ipynb_。 + +1. 在 Visual Studio Code 中打开 _notebook.ipynb_。 + + 一个 Jupyter 服务器将启动,并使用 Python 3+。您会发现笔记本中可以运行的代码块。您可以通过选择播放按钮图标运行代码块。 + +2. 选择 `md` 图标并添加一些 markdown,输入以下文本 **# 欢迎来到您的笔记本**。 + + 接下来,添加一些 Python 代码。 + +3. 在代码块中输入 **print('hello notebook')**。 +4. 选择箭头运行代码。 + + 您应该会看到打印的结果: + + ```output + hello notebook + ``` + +![在 VS Code 中打开的笔记本](../../../../2-Regression/1-Tools/images/notebook.jpg) + +您可以在代码中插入注释,以便自我记录笔记本内容。 + +✅ 思考一下,网页开发者的工作环境与数据科学家的工作环境有何不同。 + +## 使用 Scikit-learn 入门 + +现在,Python 已在您的本地环境中设置完毕,并且您已经熟悉了 Jupyter 笔记本,接下来让我们熟悉一下 Scikit-learn(发音为 `sci`,像 `science`)。Scikit-learn 提供了一个 [广泛的 API](https://scikit-learn.org/stable/modules/classes.html#api-ref),帮助您完成机器学习任务。 + +根据其 [官网](https://scikit-learn.org/stable/getting_started.html) 的介绍,“Scikit-learn 是一个开源机器学习库,支持监督学习和无监督学习。它还提供了各种工具,用于模型拟合、数据预处理、模型选择和评估,以及许多其他实用功能。” + +在本课程中,您将使用 Scikit-learn 和其他工具构建机器学习模型,以完成我们称为“传统机器学习”的任务。我们特意避开了神经网络和深度学习,因为这些内容将在即将推出的“AI 入门”课程中详细介绍。 + +Scikit-learn 使构建模型并评估其使用变得简单。它主要专注于使用数值数据,并包含几个现成的数据集供学习使用。它还包括一些预构建的模型供学生尝试。让我们探索加载预打包数据并使用内置估算器构建第一个机器学习模型的过程。 + +## 练习 - 您的第一个 Scikit-learn 笔记本 + +> 本教程的灵感来源于 Scikit-learn 网站上的 [线性回归示例](https://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-examples-linear-model-plot-ols-py)。 + +[![机器学习入门 - 您的第一个 Python 线性回归项目](https://img.youtube.com/vi/2xkXL5EUpS0/0.jpg)](https://youtu.be/2xkXL5EUpS0 "机器学习入门 - 您的第一个 Python 线性回归项目") + +> 🎥 点击上方图片观看短视频,了解如何完成此练习。 + +在与本课相关的 _notebook.ipynb_ 文件中,按下“垃圾桶”图标清空所有单元格。 + +在本节中,您将使用 Scikit-learn 中内置的一个关于糖尿病的小型数据集进行学习。假设您想测试一种针对糖尿病患者的治疗方法。机器学习模型可能会帮助您根据变量的组合确定哪些患者对治疗的反应更好。即使是一个非常基础的回归模型,当可视化时,也可能显示有关变量的信息,帮助您组织理论临床试验。 + +✅ 回归方法有很多种,选择哪一种取决于您想要回答的问题。如果您想预测某个年龄段的人的可能身高,您可以使用线性回归,因为您在寻找一个 **数值**。如果您想确定某种菜肴是否应该被归类为素食,您在寻找一个 **类别分配**,因此您可以使用逻辑回归。稍后您将学习更多关于逻辑回归的内容。思考一下,您可以向数据提出哪些问题,以及哪种方法更适合回答这些问题。 + +让我们开始这个任务。 + +### 导入库 + +在此任务中,我们将导入一些库: + +- **matplotlib**。这是一个有用的 [绘图工具](https://matplotlib.org/),我们将用它来创建折线图。 +- **numpy**。 [numpy](https://numpy.org/doc/stable/user/whatisnumpy.html) 是一个处理 Python 数值数据的有用库。 +- **sklearn**。这是 [Scikit-learn](https://scikit-learn.org/stable/user_guide.html) 库。 + +导入一些库以帮助完成任务。 + +1. 通过输入以下代码添加导入: + + ```python + import matplotlib.pyplot as plt + import numpy as np + from sklearn import datasets, linear_model, model_selection + ``` + + 上述代码导入了 `matplotlib` 和 `numpy`,并从 `sklearn` 中导入了 `datasets`、`linear_model` 和 `model_selection`。`model_selection` 用于将数据分割为训练集和测试集。 + +### 糖尿病数据集 + +内置的 [糖尿病数据集](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) 包括 442 个关于糖尿病的数据样本,包含 10 个特征变量,其中一些包括: + +- age:年龄(以年为单位) +- bmi:身体质量指数 +- bp:平均血压 +- s1 tc:T 细胞(白细胞的一种) + +✅ 此数据集包含“性别”这一特征变量,这在糖尿病研究中很重要。许多医学数据集都包含这种二元分类。思考一下,这种分类可能会如何将某些群体排除在治疗之外。 + +现在,加载 X 和 y 数据。 + +> 🎓 请记住,这是监督学习,我们需要一个名为“y”的目标变量。 + +在新的代码单元中,通过调用 `load_diabetes()` 加载糖尿病数据集。输入参数 `return_X_y=True` 表示 `X` 将是数据矩阵,而 `y` 将是回归目标。 + +1. 添加一些打印命令以显示数据矩阵的形状及其第一个元素: + + ```python + X, y = datasets.load_diabetes(return_X_y=True) + print(X.shape) + print(X[0]) + ``` + + 您得到的响应是一个元组。您将元组的前两个值分别赋给 `X` 和 `y`。了解更多 [关于元组](https://wikipedia.org/wiki/Tuple)。 + + 您可以看到这些数据有 442 个项目,每个项目是包含 10 个元素的数组: + + ```text + (442, 10) + [ 0.03807591 0.05068012 0.06169621 0.02187235 -0.0442235 -0.03482076 + -0.04340085 -0.00259226 0.01990842 -0.01764613] + ``` + + ✅ 思考一下数据与回归目标之间的关系。线性回归预测特征 X 和目标变量 y 之间的关系。您能在文档中找到糖尿病数据集的 [目标](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) 吗?这个数据集展示了什么? + +2. 接下来,通过选择数据集的第 3 列来绘制部分数据。您可以使用 `:` 操作符选择所有行,然后使用索引(2)选择第 3 列。您还可以使用 `reshape(n_rows, n_columns)` 将数据重塑为二维数组(绘图所需)。如果其中一个参数为 -1,则对应的维度会自动计算。 + + ```python + X = X[:, 2] + X = X.reshape((-1,1)) + ``` + + ✅ 随时打印数据以检查其形状。 + +3. 现在您已经准备好绘制数据,可以看看机器是否能帮助确定数据集中的逻辑分割。为此,您需要将数据(X)和目标(y)分割为测试集和训练集。Scikit-learn 提供了一种简单的方法,您可以在给定点分割测试数据。 + + ```python + X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33) + ``` + +4. 现在您可以训练模型了!加载线性回归模型,并使用 `model.fit()` 用 X 和 y 训练集训练模型: + + ```python + model = linear_model.LinearRegression() + model.fit(X_train, y_train) + ``` + + ✅ `model.fit()` 是一个您会在许多机器学习库(如 TensorFlow)中看到的函数。 + +5. 然后,使用测试数据创建预测,使用 `predict()` 函数。这将用于绘制数据组之间的分割线。 + + ```python + y_pred = model.predict(X_test) + ``` + +6. 现在是时候用图表展示数据了。Matplotlib 是一个非常有用的工具。创建一个所有 X 和 y 测试数据的散点图,并使用预测结果在数据组之间绘制一条最合适的线。 + + ```python + plt.scatter(X_test, y_test, color='black') + plt.plot(X_test, y_pred, color='blue', linewidth=3) + plt.xlabel('Scaled BMIs') + plt.ylabel('Disease Progression') + plt.title('A Graph Plot Showing Diabetes Progression Against BMI') + plt.show() + ``` + + ![显示糖尿病数据点的散点图](../../../../2-Regression/1-Tools/images/scatterplot.png) +✅ 想一想这里发生了什么。一条直线穿过许多小数据点,但它究竟在做什么?你能看出如何利用这条线来预测一个新的、未见过的数据点在图表的 y 轴上的位置吗?试着用语言描述这个模型的实际用途。 + +恭喜你!你已经构建了第一个线性回归模型,用它进行了预测,并将结果显示在图表中! + +--- +## 🚀挑战 + +绘制该数据集中不同变量的图表。提示:编辑这行代码:`X = X[:,2]`。根据该数据集的目标,你能发现关于糖尿病作为一种疾病的进展的什么信息? + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +在本教程中,你使用了简单线性回归,而不是单变量或多变量线性回归。阅读一些关于这些方法之间差异的内容,或者观看[这个视频](https://www.coursera.org/lecture/quantifying-relationships-regression-models/linear-vs-nonlinear-categorical-variables-ai2Ef)。 + +阅读更多关于回归的概念,并思考这种技术可以回答哪些类型的问题。通过[这个教程](https://docs.microsoft.com/learn/modules/train-evaluate-regression-models?WT.mc_id=academic-77952-leestott)来加深你的理解。 + +## 作业 + +[一个不同的数据集](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/1-Tools/assignment.md b/translations/zh-CN/2-Regression/1-Tools/assignment.md new file mode 100644 index 000000000..50a58c181 --- /dev/null +++ b/translations/zh-CN/2-Regression/1-Tools/assignment.md @@ -0,0 +1,18 @@ +# 使用 Scikit-learn 进行回归分析 + +## 说明 + +查看 Scikit-learn 中的 [Linnerud 数据集](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_linnerud.html#sklearn.datasets.load_linnerud)。这个数据集包含多个[目标变量](https://scikit-learn.org/stable/datasets/toy_dataset.html#linnerrud-dataset):“它由三项运动(数据)和三项生理指标(目标变量)组成,这些数据是从一家健身俱乐部的二十名中年男性中收集的。” + +用你自己的话描述如何创建一个回归模型,以绘制腰围与完成仰卧起坐次数之间的关系。同样,针对该数据集中的其他数据点也进行类似的描述。 + +## 评分标准 + +| 标准 | 优秀 | 合格 | 需要改进 | +| ----------------------------- | --------------------------------- | ---------------------------- | ------------------------- | +| 提交描述性段落 | 提交了一段写得很好的描述性段落 | 提交了几句话 | 未提供任何描述 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/1-Tools/notebook.ipynb b/translations/zh-CN/2-Regression/1-Tools/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/zh-CN/2-Regression/1-Tools/solution/Julia/README.md b/translations/zh-CN/2-Regression/1-Tools/solution/Julia/README.md new file mode 100644 index 000000000..779236745 --- /dev/null +++ b/translations/zh-CN/2-Regression/1-Tools/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb b/translations/zh-CN/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb new file mode 100644 index 000000000..f7e1ee54c --- /dev/null +++ b/translations/zh-CN/2-Regression/1-Tools/solution/R/lesson_1-R.ipynb @@ -0,0 +1,447 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_1-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "c18d3bd0bd8ae3878597e89dcd1fa5c1", + "translation_date": "2025-09-03T19:43:03+00:00", + "source_file": "2-Regression/1-Tools/solution/R/lesson_1-R.ipynb", + "language_code": "zh" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "YJUHCXqK57yz" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 回归简介 - 第1课\n", + "\n", + "#### 放到实际情境中\n", + "\n", + "✅ 回归方法有很多种,选择哪一种取决于你想要得到的答案。如果你想预测某个年龄段的人可能的身高,你会使用 `线性回归`,因为你在寻找一个**数值结果**。如果你想知道某种菜肴是否应该被归类为素食,你是在寻找一个**类别分配**,因此你会使用 `逻辑回归`。稍后你会学习更多关于逻辑回归的内容。试着思考一些你可以从数据中提出的问题,以及哪种方法更适合这些问题。\n", + "\n", + "在本节中,你将使用一个[关于糖尿病的小型数据集](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)。假设你想测试一种针对糖尿病患者的治疗方法。机器学习模型可能会帮助你根据变量的组合确定哪些患者对治疗的反应更好。即使是一个非常基础的回归模型,在可视化时也可能显示出一些关于变量的信息,这些信息可以帮助你组织理论上的临床试验。\n", + "\n", + "话不多说,让我们开始这项任务吧!\n", + "\n", + "

      \n", + " \n", + "

      由 @allison_horst 创作的艺术作品
      \n", + "\n", + "\n" + ], + "metadata": { + "id": "LWNNzfqd6feZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. 加载工具集\n", + "\n", + "在这个任务中,我们需要以下软件包:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一个[由 R 软件包组成的集合](https://www.tidyverse.org/packages),旨在让数据科学更快速、更简单、更有趣!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 框架是一个[由软件包组成的集合](https://www.tidymodels.org/packages/),用于建模和机器学习。\n", + "\n", + "你可以通过以下命令安装它们:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\"))`\n", + "\n", + "下面的脚本会检查你是否拥有完成本模块所需的软件包,并在缺少某些软件包时为你安装它们。\n" + ], + "metadata": { + "id": "FIo2YhO26wI9" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse, tidymodels)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "id": "cIA9fz9v7Dss", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "2df7073b-86b2-4b32-cb86-0da605a0dc11" + } + }, + { + "cell_type": "markdown", + "source": [ + "现在,让我们加载这些超棒的包并使它们在我们当前的 R 会话中可用。(这只是为了说明,`pacman::p_load()` 已经为您完成了这一操作)\n" + ], + "metadata": { + "id": "gpO_P_6f9WUG" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# load the core Tidyverse packages\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# load the core Tidymodels packages\r\n", + "library(tidymodels)\r\n" + ], + "outputs": [], + "metadata": { + "id": "NLMycgG-9ezO" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. 糖尿病数据集\n", + "\n", + "在本次练习中,我们将通过对糖尿病数据集进行预测来展示我们的回归技能。[糖尿病数据集](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt) 包含 `442 个样本`,数据包括 10 个预测特征变量:`年龄`、`性别`、`身体质量指数`、`平均血压`以及 `六项血清测量值`,还有一个结果变量 `y`:衡量基线后一年疾病进展的定量指标。\n", + "\n", + "|观察数量|442|\n", + "|----------------------|:---|\n", + "|预测变量数量|前 10 列为数值型预测变量|\n", + "|结果/目标|第 11 列为基线后一年疾病进展的定量指标|\n", + "|预测变量信息|- 年龄(以年为单位)\n", + "||- 性别\n", + "||- bmi 身体质量指数\n", + "||- bp 平均血压\n", + "||- s1 tc,总血清胆固醇\n", + "||- s2 ldl,低密度脂蛋白\n", + "||- s3 hdl,高密度脂蛋白\n", + "||- s4 tch,总胆固醇 / HDL\n", + "||- s5 ltg,可能是血清甘油三酯水平的对数值\n", + "||- s6 glu,血糖水平|\n", + "\n", + "> 🎓 记住,这是监督学习,我们需要一个名为 'y' 的目标变量。\n", + "\n", + "在使用 R 操作数据之前,您需要将数据导入 R 的内存,或者建立一个 R 可以用来远程访问数据的连接。\n", + "\n", + "> [readr](https://readr.tidyverse.org/) 包是 Tidyverse 的一部分,它提供了一种快速且友好的方式将矩形数据读入 R。\n", + "\n", + "现在,让我们加载来源 URL 提供的糖尿病数据集:\n", + "\n", + "此外,我们将使用 `glimpse()` 对数据进行基本检查,并使用 `slice()` 显示前 5 行。\n", + "\n", + "在继续之前,让我们介绍一个您在 R 代码中经常会遇到的东西 🥁🥁:管道操作符 `%>%`\n", + "\n", + "管道操作符 (`%>%`) 按逻辑顺序执行操作,将一个对象传递到函数或表达式中。您可以将管道操作符理解为代码中的“然后”。\n" + ], + "metadata": { + "id": "KM6iXLH996Cl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import the data set\r\n", + "diabetes <- read_table2(file = \"https://www4.stat.ncsu.edu/~boos/var.select/diabetes.rwrite1.txt\")\r\n", + "\r\n", + "\r\n", + "# Get a glimpse and dimensions of the data\r\n", + "glimpse(diabetes)\r\n", + "\r\n", + "\r\n", + "# Select the first 5 rows of the data\r\n", + "diabetes %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "Z1geAMhM-bSP" + } + }, + { + "cell_type": "markdown", + "source": [ + "`glimpse()` 命令显示,这个数据集有 442 行和 11 列,所有列的数据类型均为 `double`。\n", + "\n", + "
      \n", + "\n", + "> `glimpse()` 和 `slice()` 是 [`dplyr`](https://dplyr.tidyverse.org/) 包中的函数。Dplyr 是 Tidyverse 的一部分,它是一种数据操作的语法,提供了一组一致的动词,帮助解决最常见的数据处理问题。\n", + "\n", + "
      \n", + "\n", + "现在我们已经有了数据,接下来让我们聚焦于一个特征(`bmi`),作为本次练习的目标。为此,我们需要选择所需的列。那么,我们该如何操作呢?\n", + "\n", + "[`dplyr::select()`](https://dplyr.tidyverse.org/reference/select.html) 函数允许我们在数据框中*选择*(并可选地重命名)列。\n" + ], + "metadata": { + "id": "UwjVT1Hz-c3Z" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select predictor feature `bmi` and outcome `y`\r\n", + "diabetes_select <- diabetes %>% \r\n", + " select(c(bmi, y))\r\n", + "\r\n", + "# Print the first 5 rows\r\n", + "diabetes_select %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "RDY1oAKI-m80" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. 训练和测试数据\n", + "\n", + "在监督学习中,通常的做法是将数据*分割*成两个子集:一个(通常较大的)用于训练模型的集合,以及一个较小的“保留”集合,用于查看模型的表现如何。\n", + "\n", + "现在我们已经准备好了数据,可以看看机器是否能够帮助我们在这个数据集中找到一个合理的分割方式。我们可以使用 [rsample](https://tidymodels.github.io/rsample/) 包,它是 Tidymodels 框架的一部分,用来创建一个包含数据分割信息的对象,然后使用另外两个 rsample 函数提取生成的训练集和测试集:\n" + ], + "metadata": { + "id": "SDk668xK-tc3" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\r\n", + "# Split 67% of the data for training and the rest for tesing\r\n", + "diabetes_split <- diabetes_select %>% \r\n", + " initial_split(prop = 0.67)\r\n", + "\r\n", + "# Extract the resulting train and test sets\r\n", + "diabetes_train <- training(diabetes_split)\r\n", + "diabetes_test <- testing(diabetes_split)\r\n", + "\r\n", + "# Print the first 3 rows of the training set\r\n", + "diabetes_train %>% \r\n", + " slice(1:10)" + ], + "outputs": [], + "metadata": { + "id": "EqtHx129-1h-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. 使用Tidymodels训练线性回归模型\n", + "\n", + "现在我们可以开始训练模型了!\n", + "\n", + "在Tidymodels中,你可以通过`parsnip()`指定模型,主要涉及以下三个概念:\n", + "\n", + "- 模型**类型**区分了不同的模型,例如线性回归、逻辑回归、决策树模型等。\n", + "\n", + "- 模型**模式**包括常见选项如回归和分类;某些模型类型支持这两种模式,而有些仅支持其中一种。\n", + "\n", + "- 模型**引擎**是用于拟合模型的计算工具。通常这些是R包,例如 **`\"lm\"`** 或 **`\"ranger\"`**。\n", + "\n", + "这些建模信息会被捕获到一个模型规范中,所以让我们来构建一个吧!\n" + ], + "metadata": { + "id": "sBOS-XhB-6v7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- \r\n", + " # Type\r\n", + " linear_reg() %>% \r\n", + " # Engine\r\n", + " set_engine(\"lm\") %>% \r\n", + " # Mode\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Print the model specification\r\n", + "lm_spec" + ], + "outputs": [], + "metadata": { + "id": "20OwEw20--t3" + } + }, + { + "cell_type": "markdown", + "source": [ + "在模型被*指定*之后,可以使用 [`fit()`](https://parsnip.tidymodels.org/reference/fit.html) 函数对模型进行`估计`或`训练`,通常使用公式和一些数据。\n", + "\n", + "`y ~ .` 表示我们将拟合 `y` 作为预测值/目标,由所有预测变量/特征解释,即 `.`(在这个例子中,我们只有一个预测变量:`bmi`)。\n" + ], + "metadata": { + "id": "_oDHs89k_CJj" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Build a linear model specification\r\n", + "lm_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>%\r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Train a linear regression model\r\n", + "lm_mod <- lm_spec %>% \r\n", + " fit(y ~ ., data = diabetes_train)\r\n", + "\r\n", + "# Print the model\r\n", + "lm_mod" + ], + "outputs": [], + "metadata": { + "id": "YlsHqd-q_GJQ" + } + }, + { + "cell_type": "markdown", + "source": [ + "从模型输出中,我们可以看到训练过程中学习到的系数。它们表示最佳拟合线的系数,该线使实际变量与预测变量之间的总体误差最小。\n", + "
      \n", + "\n", + "## 5. 在测试集上进行预测\n", + "\n", + "现在我们已经训练了一个模型,可以使用它通过 [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html) 来预测测试数据集中的疾病进展 y。这将用于绘制数据组之间的分界线。\n" + ], + "metadata": { + "id": "kGZ22RQj_Olu" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\r\n", + "predictions <- lm_mod %>% \r\n", + " predict(new_data = diabetes_test)\r\n", + "\r\n", + "# Print out some of the predictions\r\n", + "predictions %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "nXHbY7M2_aao" + } + }, + { + "cell_type": "markdown", + "source": [ + "哇哦!💃🕺 我们刚刚训练了一个模型,并用它进行了预测!\n", + "\n", + "在进行预测时,tidymodels 的惯例是始终生成一个带有标准化列名的 tibble/数据框结果。这使得将原始数据和预测结果结合在一个可用的格式中变得非常简单,方便后续操作,例如绘图。\n", + "\n", + "`dplyr::bind_cols()` 可以高效地将多个数据框按列绑定在一起。\n" + ], + "metadata": { + "id": "R_JstwUY_bIs" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Combine the predictions and the original test set\r\n", + "results <- diabetes_test %>% \r\n", + " bind_cols(predictions)\r\n", + "\r\n", + "\r\n", + "results %>% \r\n", + " slice(1:5)" + ], + "outputs": [], + "metadata": { + "id": "RybsMJR7_iI8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 6. 绘制模型结果\n", + "\n", + "现在是时候用视觉化方式来看结果了 📈。我们将创建一个散点图,展示测试集中的所有 `y` 和 `bmi` 值,然后使用预测结果绘制一条线,将模型的数据分组之间连接起来,放在最合适的位置。\n", + "\n", + "R 有多种绘图系统,但 `ggplot2` 是其中最优雅且最灵活的一个。它允许你通过**组合独立组件**来构建图表。\n" + ], + "metadata": { + "id": "XJbYbMZW_n_s" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plot\r\n", + "theme_set(theme_light())\r\n", + "# Create a scatter plot\r\n", + "results %>% \r\n", + " ggplot(aes(x = bmi)) +\r\n", + " # Add a scatter plot\r\n", + " geom_point(aes(y = y), size = 1.6) +\r\n", + " # Add a line plot\r\n", + " geom_line(aes(y = .pred), color = \"blue\", size = 1.5)" + ], + "outputs": [], + "metadata": { + "id": "R9tYp3VW_sTn" + } + }, + { + "cell_type": "markdown", + "source": [ + "✅ 想一想这里发生了什么。一条直线穿过了许多小数据点,但它究竟在做什么呢?你能看出如何利用这条直线来预测一个新的、未见过的数据点应该如何与图表的 y 轴相关联吗?试着用语言描述这个模型的实际用途。\n", + "\n", + "恭喜你!你已经构建了第一个线性回归模型,用它进行了预测,并在图表中展示了结果!\n" + ], + "metadata": { + "id": "zrPtHIxx_tNI" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/1-Tools/solution/notebook.ipynb b/translations/zh-CN/2-Regression/1-Tools/solution/notebook.ipynb new file mode 100644 index 000000000..def6e582b --- /dev/null +++ b/translations/zh-CN/2-Regression/1-Tools/solution/notebook.ipynb @@ -0,0 +1,677 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 糖尿病数据集的线性回归 - 第1课\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "导入所需的库\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from sklearn import datasets, linear_model, model_selection\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "加载糖尿病数据集,分为 `X` 数据和 `y` 特征\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 10)\n", + "[ 0.03807591 0.05068012 0.06169621 0.02187239 -0.0442235 -0.03482076\n", + " -0.04340085 -0.00259226 0.01990749 -0.01764613]\n" + ] + } + ], + "source": [ + "X, y = datasets.load_diabetes(return_X_y=True)\n", + "print(X.shape)\n", + "print(X[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "仅选择一个功能作为此练习的目标\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442,)\n" + ] + } + ], + "source": [ + "# Selecting the 3rd feature\n", + "X = X[:, 2]\n", + "print(X.shape)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 1)\n", + "[[ 0.06169621]\n", + " [-0.05147406]\n", + " [ 0.04445121]\n", + " [-0.01159501]\n", + " [-0.03638469]\n", + " [-0.04069594]\n", + " [-0.04716281]\n", + " [-0.00189471]\n", + " [ 0.06169621]\n", + " [ 0.03906215]\n", + " [-0.08380842]\n", + " [ 0.01750591]\n", + " [-0.02884001]\n", + " [-0.00189471]\n", + " [-0.02560657]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [ 0.01211685]\n", + " [-0.0105172 ]\n", + " [-0.01806189]\n", + " [-0.05686312]\n", + " [-0.02237314]\n", + " [-0.00405033]\n", + " [ 0.06061839]\n", + " [ 0.03582872]\n", + " [-0.01267283]\n", + " [-0.07734155]\n", + " [ 0.05954058]\n", + " [-0.02129532]\n", + " [-0.00620595]\n", + " [ 0.04445121]\n", + " [-0.06548562]\n", + " [ 0.12528712]\n", + " [-0.05039625]\n", + " [-0.06332999]\n", + " [-0.03099563]\n", + " [ 0.02289497]\n", + " [ 0.01103904]\n", + " [ 0.07139652]\n", + " [ 0.01427248]\n", + " [-0.00836158]\n", + " [-0.06764124]\n", + " [-0.0105172 ]\n", + " [-0.02345095]\n", + " [ 0.06816308]\n", + " [-0.03530688]\n", + " [-0.01159501]\n", + " [-0.0730303 ]\n", + " [-0.04177375]\n", + " [ 0.01427248]\n", + " [-0.00728377]\n", + " [ 0.0164281 ]\n", + " [-0.00943939]\n", + " [-0.01590626]\n", + " [ 0.0250506 ]\n", + " [-0.04931844]\n", + " [ 0.04121778]\n", + " [-0.06332999]\n", + " [-0.06440781]\n", + " [-0.02560657]\n", + " [-0.00405033]\n", + " [ 0.00457217]\n", + " [-0.00728377]\n", + " [-0.0374625 ]\n", + " [-0.02560657]\n", + " [-0.02452876]\n", + " [-0.01806189]\n", + " [-0.01482845]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [-0.06979687]\n", + " [ 0.03367309]\n", + " [-0.00405033]\n", + " [-0.02021751]\n", + " [ 0.00241654]\n", + " [-0.03099563]\n", + " [ 0.02828403]\n", + " [-0.03638469]\n", + " [-0.05794093]\n", + " [-0.0374625 ]\n", + " [ 0.01211685]\n", + " [-0.02237314]\n", + " [-0.03530688]\n", + " [ 0.00996123]\n", + " [-0.03961813]\n", + " [ 0.07139652]\n", + " [-0.07518593]\n", + " [-0.00620595]\n", + " [-0.04069594]\n", + " [-0.04824063]\n", + " [-0.02560657]\n", + " [ 0.0519959 ]\n", + " [ 0.00457217]\n", + " [-0.06440781]\n", + " [-0.01698407]\n", + " [-0.05794093]\n", + " [ 0.00996123]\n", + " [ 0.08864151]\n", + " [-0.00512814]\n", + " [-0.06440781]\n", + " [ 0.01750591]\n", + " [-0.04500719]\n", + " [ 0.02828403]\n", + " [ 0.04121778]\n", + " [ 0.06492964]\n", + " [-0.03207344]\n", + " [-0.07626374]\n", + " [ 0.04984027]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03207344]\n", + " [ 0.00457217]\n", + " [ 0.02073935]\n", + " [ 0.01427248]\n", + " [ 0.11019775]\n", + " [ 0.00133873]\n", + " [ 0.05846277]\n", + " [-0.02129532]\n", + " [-0.0105172 ]\n", + " [-0.04716281]\n", + " [ 0.00457217]\n", + " [ 0.01750591]\n", + " [ 0.08109682]\n", + " [ 0.0347509 ]\n", + " [ 0.02397278]\n", + " [-0.00836158]\n", + " [-0.06117437]\n", + " [-0.00189471]\n", + " [-0.06225218]\n", + " [ 0.0164281 ]\n", + " [ 0.09618619]\n", + " [-0.06979687]\n", + " [-0.02129532]\n", + " [-0.05362969]\n", + " [ 0.0433734 ]\n", + " [ 0.05630715]\n", + " [-0.0816528 ]\n", + " [ 0.04984027]\n", + " [ 0.11127556]\n", + " [ 0.06169621]\n", + " [ 0.01427248]\n", + " [ 0.04768465]\n", + " [ 0.01211685]\n", + " [ 0.00564998]\n", + " [ 0.04660684]\n", + " [ 0.12852056]\n", + " [ 0.05954058]\n", + " [ 0.09295276]\n", + " [ 0.01535029]\n", + " [-0.00512814]\n", + " [ 0.0703187 ]\n", + " [-0.00405033]\n", + " [-0.00081689]\n", + " [-0.04392938]\n", + " [ 0.02073935]\n", + " [ 0.06061839]\n", + " [-0.0105172 ]\n", + " [-0.03315126]\n", + " [-0.06548562]\n", + " [ 0.0433734 ]\n", + " [-0.06225218]\n", + " [ 0.06385183]\n", + " [ 0.03043966]\n", + " [ 0.07247433]\n", + " [-0.0191397 ]\n", + " [-0.06656343]\n", + " [-0.06009656]\n", + " [ 0.06924089]\n", + " [ 0.05954058]\n", + " [-0.02668438]\n", + " [-0.02021751]\n", + " [-0.046085 ]\n", + " [ 0.07139652]\n", + " [-0.07949718]\n", + " [ 0.00996123]\n", + " [-0.03854032]\n", + " [ 0.01966154]\n", + " [ 0.02720622]\n", + " [-0.00836158]\n", + " [-0.01590626]\n", + " [ 0.00457217]\n", + " [-0.04285156]\n", + " [ 0.00564998]\n", + " [-0.03530688]\n", + " [ 0.02397278]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [-0.0547075 ]\n", + " [-0.00297252]\n", + " [-0.06656343]\n", + " [-0.01267283]\n", + " [-0.04177375]\n", + " [-0.03099563]\n", + " [-0.00512814]\n", + " [-0.05901875]\n", + " [ 0.0250506 ]\n", + " [-0.046085 ]\n", + " [ 0.00349435]\n", + " [ 0.05415152]\n", + " [-0.04500719]\n", + " [-0.05794093]\n", + " [-0.05578531]\n", + " [ 0.00133873]\n", + " [ 0.03043966]\n", + " [ 0.00672779]\n", + " [ 0.04660684]\n", + " [ 0.02612841]\n", + " [ 0.04552903]\n", + " [ 0.04013997]\n", + " [-0.01806189]\n", + " [ 0.01427248]\n", + " [ 0.03690653]\n", + " [ 0.00349435]\n", + " [-0.07087468]\n", + " [-0.03315126]\n", + " [ 0.09403057]\n", + " [ 0.03582872]\n", + " [ 0.03151747]\n", + " [-0.06548562]\n", + " [-0.04177375]\n", + " [-0.03961813]\n", + " [-0.03854032]\n", + " [-0.02560657]\n", + " [-0.02345095]\n", + " [-0.06656343]\n", + " [ 0.03259528]\n", + " [-0.046085 ]\n", + " [-0.02991782]\n", + " [-0.01267283]\n", + " [-0.01590626]\n", + " [ 0.07139652]\n", + " [-0.03099563]\n", + " [ 0.00026092]\n", + " [ 0.03690653]\n", + " [ 0.03906215]\n", + " [-0.01482845]\n", + " [ 0.00672779]\n", + " [-0.06871905]\n", + " [-0.00943939]\n", + " [ 0.01966154]\n", + " [ 0.07462995]\n", + " [-0.00836158]\n", + " [-0.02345095]\n", + " [-0.046085 ]\n", + " [ 0.05415152]\n", + " [-0.03530688]\n", + " [-0.03207344]\n", + " [-0.0816528 ]\n", + " [ 0.04768465]\n", + " [ 0.06061839]\n", + " [ 0.05630715]\n", + " [ 0.09834182]\n", + " [ 0.05954058]\n", + " [ 0.03367309]\n", + " [ 0.05630715]\n", + " [-0.06548562]\n", + " [ 0.16085492]\n", + " [-0.05578531]\n", + " [-0.02452876]\n", + " [-0.03638469]\n", + " [-0.00836158]\n", + " [-0.04177375]\n", + " [ 0.12744274]\n", + " [-0.07734155]\n", + " [ 0.02828403]\n", + " [-0.02560657]\n", + " [-0.06225218]\n", + " [-0.00081689]\n", + " [ 0.08864151]\n", + " [-0.03207344]\n", + " [ 0.03043966]\n", + " [ 0.00888341]\n", + " [ 0.00672779]\n", + " [-0.02021751]\n", + " [-0.02452876]\n", + " [-0.01159501]\n", + " [ 0.02612841]\n", + " [-0.05901875]\n", + " [-0.03638469]\n", + " [-0.02452876]\n", + " [ 0.01858372]\n", + " [-0.0902753 ]\n", + " [-0.00512814]\n", + " [-0.05255187]\n", + " [-0.02237314]\n", + " [-0.02021751]\n", + " [-0.0547075 ]\n", + " [-0.00620595]\n", + " [-0.01698407]\n", + " [ 0.05522933]\n", + " [ 0.07678558]\n", + " [ 0.01858372]\n", + " [-0.02237314]\n", + " [ 0.09295276]\n", + " [-0.03099563]\n", + " [ 0.03906215]\n", + " [-0.06117437]\n", + " [-0.00836158]\n", + " [-0.0374625 ]\n", + " [-0.01375064]\n", + " [ 0.07355214]\n", + " [-0.02452876]\n", + " [ 0.03367309]\n", + " [ 0.0347509 ]\n", + " [-0.03854032]\n", + " [-0.03961813]\n", + " [-0.00189471]\n", + " [-0.03099563]\n", + " [-0.046085 ]\n", + " [ 0.00133873]\n", + " [ 0.06492964]\n", + " [ 0.04013997]\n", + " [-0.02345095]\n", + " [ 0.05307371]\n", + " [ 0.04013997]\n", + " [-0.02021751]\n", + " [ 0.01427248]\n", + " [-0.03422907]\n", + " [ 0.00672779]\n", + " [ 0.00457217]\n", + " [ 0.03043966]\n", + " [ 0.0519959 ]\n", + " [ 0.06169621]\n", + " [-0.00728377]\n", + " [ 0.00564998]\n", + " [ 0.05415152]\n", + " [-0.00836158]\n", + " [ 0.114509 ]\n", + " [ 0.06708527]\n", + " [-0.05578531]\n", + " [ 0.03043966]\n", + " [-0.02560657]\n", + " [ 0.10480869]\n", + " [-0.00620595]\n", + " [-0.04716281]\n", + " [-0.04824063]\n", + " [ 0.08540807]\n", + " [-0.01267283]\n", + " [-0.03315126]\n", + " [-0.00728377]\n", + " [-0.01375064]\n", + " [ 0.05954058]\n", + " [ 0.02181716]\n", + " [ 0.01858372]\n", + " [-0.01159501]\n", + " [-0.00297252]\n", + " [ 0.01750591]\n", + " [-0.02991782]\n", + " [-0.02021751]\n", + " [-0.05794093]\n", + " [ 0.06061839]\n", + " [-0.04069594]\n", + " [-0.07195249]\n", + " [-0.05578531]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03315126]\n", + " [ 0.04984027]\n", + " [-0.08488624]\n", + " [ 0.00564998]\n", + " [ 0.02073935]\n", + " [-0.00728377]\n", + " [ 0.10480869]\n", + " [-0.02452876]\n", + " [-0.00620595]\n", + " [-0.03854032]\n", + " [ 0.13714305]\n", + " [ 0.17055523]\n", + " [ 0.00241654]\n", + " [ 0.03798434]\n", + " [-0.05794093]\n", + " [-0.00943939]\n", + " [-0.02345095]\n", + " [-0.0105172 ]\n", + " [-0.03422907]\n", + " [-0.00297252]\n", + " [ 0.06816308]\n", + " [ 0.00996123]\n", + " [ 0.00241654]\n", + " [-0.03854032]\n", + " [ 0.02612841]\n", + " [-0.08919748]\n", + " [ 0.06061839]\n", + " [-0.02884001]\n", + " [-0.02991782]\n", + " [-0.0191397 ]\n", + " [-0.04069594]\n", + " [ 0.01535029]\n", + " [-0.02452876]\n", + " [ 0.00133873]\n", + " [ 0.06924089]\n", + " [-0.06979687]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [ 0.01858372]\n", + " [ 0.00133873]\n", + " [-0.03099563]\n", + " [-0.00405033]\n", + " [ 0.01535029]\n", + " [ 0.02289497]\n", + " [ 0.04552903]\n", + " [-0.04500719]\n", + " [-0.03315126]\n", + " [ 0.097264 ]\n", + " [ 0.05415152]\n", + " [ 0.12313149]\n", + " [-0.08057499]\n", + " [ 0.09295276]\n", + " [-0.05039625]\n", + " [-0.01159501]\n", + " [-0.0277622 ]\n", + " [ 0.05846277]\n", + " [ 0.08540807]\n", + " [-0.00081689]\n", + " [ 0.00672779]\n", + " [ 0.00888341]\n", + " [ 0.08001901]\n", + " [ 0.07139652]\n", + " [-0.02452876]\n", + " [-0.0547075 ]\n", + " [-0.03638469]\n", + " [ 0.0164281 ]\n", + " [ 0.07786339]\n", + " [-0.03961813]\n", + " [ 0.01103904]\n", + " [-0.04069594]\n", + " [-0.03422907]\n", + " [ 0.00564998]\n", + " [ 0.08864151]\n", + " [-0.03315126]\n", + " [-0.05686312]\n", + " [-0.03099563]\n", + " [ 0.05522933]\n", + " [-0.06009656]\n", + " [ 0.00133873]\n", + " [-0.02345095]\n", + " [-0.07410811]\n", + " [ 0.01966154]\n", + " [-0.01590626]\n", + " [-0.01590626]\n", + " [ 0.03906215]\n", + " [-0.0730303 ]]\n" + ] + } + ], + "source": [ + "#Reshaping to get a 2D array\n", + "X = X.reshape(-1, 1)\n", + "print(X.shape)\n", + "print(X)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "将训练和测试数据分别拆分为 `X` 和 `y`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.33)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "选择模型并用训练数据进行拟合\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      LinearRegression()
      In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
      On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
      " + ], + "text/plain": [ + "LinearRegression()" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model = linear_model.LinearRegression()\n", + "model.fit(X_train, y_train)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "使用测试数据预测一条线\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "显示结果在图中\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbmUlEQVR4nO3de3wU1f0//tcQIHIxiQmBALsQUdSigNYLxn6iSaECaj/5NKTawAfRWi2IbUBRS71gtIrKp5rUj5dqK7ZfXfwAWcVS8ALuYtCIQEERvAC/cAtJoCBJQAhkc35/rLtmk92dmd2Z2ZnZ1/Px2Edl92Tm7CTd894z7/M+khBCgIiIiMhEuiW6A0RERESdMUAhIiIi02GAQkRERKbDAIWIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHS6J7oDsWhvb8f+/ftx+umnQ5KkRHeHiIiIFBBCoKWlBYMGDUK3btHnSCwZoOzfvx9OpzPR3SAiIqIY7N27Fw6HI2obSwYop59+OgD/G0xLS0twb4iIiEiJ5uZmOJ3O4DgejSUDlMBtnbS0NAYoREREFqMkPYNJskRERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpqMqQHn++ecxatSo4OqZvLw8rFy5Mvh6QUEBJEkKeUyfPj3kGHv27MG1116L3r17o3///rj77rvR1tamzbshIiIiW1C1zNjhcODxxx/H8OHDIYTA3/72NxQVFWHTpk04//zzAQC33norHn744eDP9O7dO/jfPp8P1157LXJycvDRRx+hvr4eN954I3r06IHHHntMo7dEREREVicJIUQ8B8jMzMSCBQtwyy23oKCgABdeeCEqKirCtl25ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5m5ubkZ6ejqamJtZBISIisgg143fMOSg+nw+vv/46jh07hry8vODzr732Gvr164cLLrgAc+fOxbfffht8raamBiNHjgwGJwAwfvx4NDc3Y+vWrRHP1draiubm5pAHERERac/n88Hr9WLRokXwer3w+XwJ6YfqSrJbtmxBXl4eTpw4gb59++KNN97AiBEjAACTJ0/G0KFDMWjQIHz22We499578dVXX8HtdgMAGhoaQoITAMF/NzQ0RDzn/PnzUV5errarREREpILb7UZZWRn27dsXfM7hcKCyshLFxcWG9kX1LZ6TJ09iz549aGpqwtKlS/GXv/wFa9asCQYpHb3//vsYO3YsduzYgbPOOgu33XYbdu/ejXfeeSfY5ttvv0WfPn2wYsUKTJw4Mew5W1tb0draGvx3oJY/b/EQERFpw+12o6SkBJ3DgkBZ+qVLl8YdpOh6i6dnz544++yzcfHFF2P+/PkYPXo0Kisrw7YdM2YMAGDHjh0AgJycHDQ2Noa0Cfw7Jycn4jlTU1ODK4e4/w4REZG2fD4fysrKugQnAILPzZo1y9DbPXHXQWlvbw+Z3eho8+bNAICBAwcCAPLy8rBlyxYcOHAg2Oa9995DWlpa2BkYIiIi0l91dXXIbZ3OhBDYu3cvqqurDeuTqhyUuXPnYuLEiRgyZAhaWlrgcrng9XrxzjvvYOfOnXC5XLjmmmuQlZWFzz77DLNnz8aVV16JUaNGAQCuvvpqjBgxAlOnTsWTTz6JhoYG3H///Zg5cyZSU1N1eYNEREQUXX19vabttKAqQDlw4ABuvPFG1NfXIz09HaNGjcI777yDn/zkJ9i7dy9WrVqFiooKHDt2DE6nE5MmTcL9998f/PmUlBQsX74cM2bMQF5eHvr06YNp06aF1E0hIiIiYwXudGjVTgtx10FJBNZBISIi0o7P50Nubi7q6urC5qFIkgSHw4Ha2lqkpKTEfB5D6qAQERGRPaSkpAQXvARW7QQE/l1RURFXcKIWAxQiIiJCcXExli5disGDB4c873A4NFlirBZv8RAREVGQz+dDdXU16uvrMXDgQOTn52s2c6Jm/FZdSZaIiIjsKyUlBQUFBYnuBm/xEBERkfkwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREptM90R0gIjIzn8+H6upq1NfXY+DAgcjPz0dKSkqiu6W5ZHmfZB0MUIiIInC73SgrK8O+ffuCzzkcDlRWVqK4uDiBPdNWsrxPshbe4iEiCsPtdqOkpCRk0AaAuro6lJSUwO12J6hn2kqW90nWIwkhRKI7oVZzczPS09PR1NSEtLS0RHeHiGzG5/MhNze3y6AdIEkSHA4HamtrLX0bJFneJ5mHmvGbMyhERJ1UV1dHHLQBQAiBvXv3orq62sBeaS9Z3idZEwMUIqJO6uvrNW1nVsnyPsmaGKAQEXUycOBATduZVbK8T7ImBihERJ3k5+fD4XBAkqSwr0uSBKfTifz8fIN7pq1keZ+kzokTwMaNwPHjie0HAxQiok5SUlJQWVkJAF0G78C/KyoqLJ84mizvk5Q5dgzIzQV69QIuucT/37t2Ja4/DFCIiMIoLi7G0qVLMXjw4JDnHQ4Hli5dapv6IMnyPikyIYCbbgL69gV27/7++QMHgBdeSFi3uMyYiCiaZKmwmizvk0L95S/ArbdGfv2ZZ4A77tDufLotM37++ecxatQopKWlIS0tDXl5eVi5cmXw9RMnTmDmzJnIyspC3759MWnSJDQ2NoYcY8+ePbj22mvRu3dv9O/fH3fffTfa2trUdIOIyDApKSkoKChAaWkpCgoKbDtoJ8v7JL9PPgEkKXpw0rcvMGOGcX3qTFWA4nA48Pjjj2Pjxo3YsGEDfvzjH6OoqAhbt24FAMyePRv/+Mc/sGTJEqxZswb79+8PmR70+Xy49tprcfLkSXz00Uf429/+hldeeQUPPvigtu+KiIiIujh40B+YjBkTvd0f/wi0tACJjFPjvsWTmZmJBQsWoKSkBNnZ2XC5XCgpKQEAfPnll/jBD36AmpoaXH755Vi5ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5eYuHiIhIubY24OqrAY8neruiIsDtBrrplKFqSCVZn8+H119/HceOHUNeXh42btyIU6dOYdy4ccE25513HoYMGYKamhoAQE1NDUaOHBkMTgBg/PjxaG5uDs7CEBERkXbKy4EePaIHJ+npwOHDwJtv6hecqKV6N+MtW7YgLy8PJ06cQN++ffHGG29gxIgR2Lx5M3r27ImMjIyQ9gMGDEBDQwMAoKGhISQ4CbweeC2S1tZWtLa2Bv/d3NystttEZAJMxCQyzooVwLXXyrf79FNg1Cj9+6OW6gDl3HPPxebNm9HU1ISlS5di2rRpWLNmjR59C5o/fz7Ky8t1PQcR6cvtdqOsrCxk7xeHw4HKykouZf0OAzjSwv/3/wFnnSXfzuUCSkv170+sVE/k9OzZE2effTYuvvhizJ8/H6NHj0ZlZSVycnJw8uRJHDlyJKR9Y2MjcnJyAAA5OTldVvUE/h1oE87cuXPR1NQUfOzdu1dtt4kogdxuN0pKSrpsTFdXV4eSkhK43e4E9cw83G43cnNzUVhYiMmTJ6OwsBC5ubm8NqTYt98CZ58tH5z85jdAe7u5gxNAg0Jt7e3taG1txcUXX4wePXpg9erVwde++uor7NmzB3l5eQCAvLw8bNmyBQcOHAi2ee+995CWloYRI0ZEPEdqampwaXPgQUTW4PP5UFZWhnD5+IHnZs2aBZ/PZ3TXTIMBHMVDCOBXvwL69AF27ozcbuRIf/n6P/3Jv5LH7FSt4pk7dy4mTpyIIUOGoKWlBS6XC0888QTeeecd/OQnP8GMGTOwYsUKvPLKK0hLS8NvfvMbAMBHH30EwP9BdeGFF2LQoEF48skn0dDQgKlTp+JXv/oVHnvsMcWd5ioeSiROw6vj9XpRWFgo287j8aCgoED/DpmMz+dDbm5ul+AkQJIkOBwO1NbW8u+Muli4EPjlL+Xb7d4NDBmif3/kqBm/VeWgHDhwADfeeCPq6+uRnp6OUaNGBYMTAHj66afRrVs3TJo0Ca2trRg/fjyee+654M+npKRg+fLlmDFjBvLy8tCnTx9MmzYNDz/8cAxvk8h4zKNQr76+XtN2dlNdXR0xOAH8s0x79+5FdXV1UgZwFN7Gjf79cuSsWgWMHat/f/SgKkD561//GvX10047Dc8++yyeffbZiG2GDh2KFStWqDktkSkEpuE7TzoGpuG5b0l4AwcO1LSd3TCAIzX+/W9g4EB/XZNonngCuOceY/qkF5OsdiYyN+ZRxC4/Px8Oh6PLbrkBkiTB6XQiPz/f4J6ZAwM4UiJQaC07O3pwcu21/tetHpwADFCIFFEzDU+hUlJSUFlZCQBdgpTAvysqKpI2vyI/P7/LTsIdJXsAR8Cjj/oLrb33XuQ2ffoAhw4By5cntjy9lhigECnAafj4FBcXY+nSpV0GYofDkfS3xpYtW4YTJ06EfY0BXHJ75x3/apv774/ebtMm4OhRIDPTmH4ZRXWhNqJkxGn4+BUXF6OoqIgroDqIlNcUkJmZiRdffDGpA7hkVFsLDBsm3+7//T/gv/9b//4kStybBSYClxmT0QJLQevq6sIOJlwKSmrJLS8G/DNMu3bt4t9Ukvj2W+DCC4Ht26O3mzEDePZZa9Qy6cyQzQKJkgnzKEhrcnlNALBv3z7mNSUBIYDp0/15JNGCkx/8wB/EPPecNYMTtRigECnEPArSEvOaCAD+/nf/7sF//nP0drW1wLZtQK9exvTLDJiDQqSC2jwKVp2lSJjXlNw2bQJ++EP5du++C3xXCzXpMAeFSCesOkvRMK8pOR06BAweDLS2Rm/36KPA739vTJ+MxBwUogSz0+ZvPp8PXq8XixYtgtfrZTE6jTCvKbn4fMCECUC/ftGDk/Hj/YXW7BicqMUAhUhjdqo663a7kZubi8LCQkyePBmFhYXIzc21VIBlZsxrSg7z5wPdu/vrmkSSmuovY//22/YptBYv3uIh0phddu+NVKMj8O2eA6h2zJCrZIY+2M2qVcryRzZuVJaPYge67WZMRPLssDpDbhZIkiTMmjULRUVFHMQ0kJKSktBglflS2tq9G8jNlW+3cCFw001698a6eIuHSGNGrs7QKz+Eew8lDzvlSyXa8ePAiBHywcmttwLt7QxO5DBAIdKYUbv36pkfYodZIJJnp3ypRBICuP12oHdv4IsvIrcbPhw4dgx48cXkKLQWLwYoRBozYnWG3t96WaMjMjutauJMWfxcLn+hteefj95u507g66/9QQwpwwCFSAd6rs4w4luvUbNAVmO3VU1azJTZKWBT49NP/bMgU6ZEb7dypX+GRcnmfxSKAQqRToqLi7Fr1y54PB64XC54PB7U1tbGnXSo97fewGqOwAoe1ujws2OuRrwzZXYL2JQ4fBjo29e/qV80jzziD0wmTDCkW/YkLKipqUkAEE1NTYnuCpHhXC6XACD7cLlcqo9dVVUlHA5HyHFSUlJC/u10OkVVVZUO78y82traulyXjg9JkoTT6RRtbW2J7qoqgfclSZLq91VVVRX25yRJEpIk2e5vpK1NiGuvFcIfdkR+/OQnQpw6lejempea8ZszKEQWo1d+SKQZgsCU/axZszSbBbIau+ZqxJovlWzJtQsW+Aut/fOfkdukpAAHDvj3zunOAh6aYIBCZDF65IdEG3ACx6yqqkra4l12XtUUS76UXQO2zt5/359ncs890dutX+8vT5+dbUy/kgXjPCKLCXzrLSkpgSRJIUFFrPkhagYcM1e/1YvdVzWp3aVbq4DNrNVr9+wBhg6Vb/fXvwK//KX+/UlWnEEhsiCtVwnZeYZAC8mwqilQzba0tBQFBQVRAwUtAjYzJtieOAGMGiUfnNxyi7/QGoMTfTFAIbIoLVcJ2X2GIF7RcjUA/wzTH//4R1N8+zdCvAGb2VZECQH89rdAr17Ali2R2511FnD0KPCXv7DQmhG4WSARwefzITc3F3V1dWHzUCRJgsPhQG1tbdIMwuGE27MmINn2rgkEGQDC3maMNJMX+FuLdEvR6L+1118HSkvl2+3Y4Q9QKD5qxm/OoBCRIdVv7aC4uBhPP/102NesXA8lFrHeZjRLgu2WLf5ZELngZPly/wwLgxPjMUAhIgDfDziDBg0KeX7w4MEhA06yVg4F/O999uzZYV+z4/JaObHcZkx0vtORI0BGhj/XJJp58/yBybXX6tINUoCreIgoRKS8AiD8LY5kurXB1U5dBZJrlUpUvlN7O1BcDCxbFr1dYSFrmZgFZ1CICIB84uI999xjqsTGREj0t38ziHcGLRErop5+2l9ITS44aWz01z5hcGIODFCISLYyqBACTz31VNJUDo0k2Vc7abE02Mh8J6/Xn2dy553R261b57+d079/3KckDTFAISLZWxcAogYfdqkcKicZ6qFEouXSYD13+waAffv8gUlhYfR2L77oD0wuuyyu05FOGKAQkWa3JOx8awNI3tVOeuy9o8du362twA9/CDid0dtNm+bPSbn11phPRQbgnTYiE0lU6W+tbknY9dZGR4Fv/+GShSsqKmyZLKxXcrDaBNto7rzTn2sSzdChwOefA337qj++Wcvy2xkDFCKTCLdCJjMzE2VlZbjvvvt0/TAM3LqQu80TSaC4lh1vbYSjdu8aqzNzcvCSJcD118u3+/prYPjw2M6R7KvXEkZYUFNTkwAgmpqaEt0VIiGEEG1tbcLj8QiXyyU8Ho9oa2tT9fNVVVVCkiQBIOwjKytLVFVV6dT77/sQ6fzRHpIkCUmSdO8fyYv37zASj8ej6G/B4/Focj4lPv9cCH8GSfTHW2/Fd55I/9/k331s1IzfDFCI4lRVVSUcDkfIh5fD4VD8wdXW1tbl5yM99P4wLC8vVx2gOJ1OfkibQLx/h9EE/kYjBdGSJAmn06lZQBTNN98IccYZ8oHJ/ffHfy65/28a+b7tggEKkUG0+Hal9NtpIBjQ88NQyQeyw+EQq1at0vxbOsXOiG/5gXN0Po9RMwk+nxCTJskHJvn5Qpw8qc05zThzZHVqxm+u4iGKkVYrG9Tct9d7KW9glYokSRFXqVRWVmLs2LEoLS1FQUGBbfMurEKPFTbh6L00OJo//clfaK2qKnq7hgbggw+AHj20Oa+Zc2+SAQMUohhptemZ2pUven8YJnIgIvWM3HxPj6XB0VRX++uZlJVFb/fRR/75kwEDtD1/shfmSzSu4iGKkVbfrtSuoDHiwzDZVqlYmdHf8rVcGhxJXR3gcMi3e/55YPp0/foR+P9mXV1d2BmqZFu9ZjTOoBDFSKtvVx1vq0RjdJXSwEDEWznmZqdv+SdPApdeKh+cTJniL7SmZ3ACJG9hPrNggEIUIy3Lngduq2RlZUU8FsAPQ+rKLuX3Z80CUlOBDRsitxk8GGhuBl591X/rxwi85Zk4DFCIYqT1t6vi4mI0NjaivLwcmZmZIa/xw5Aisfq3/D/8wR9sfPcWIvryS/8eO6efbky/OjI694a+o2Z50GOPPSYuueQS0bdvX5GdnS2KiorEl19+GdLmqquu6rIE69e//nVIm927d4trrrlG9OrVS2RnZ4s5c+aIU6dOKe4HlxmTmYSrPxFvbRC9Cm6Rfenxd6inNWuUFVp7881E95S0pGb8loQIk/kTwYQJE/CLX/wCl156Kdra2vD73/8en3/+ObZt24Y+ffoAAAoKCnDOOefg4YcfDv5c7969kZaWBsC/JO7CCy9ETk4OFixYgPr6etx444249dZb8dhjjynqR3NzM9LT09HU1BQ8LlEicZ8OMgMr/B0ePAj07y/fbu5cQOGQQBaiZvxWFaB0dvDgQfTv3x9r1qzBlVdeCcAfoFx44YWoqKgI+zMrV67Eddddh/3792PAd2vCXnjhBdx77704ePAgevbsKXteBihERNbS3u6vT9LeHr3doEFAbS2gYCggC1IzfseVg9LU1AQAXe6Xv/baa+jXrx8uuOACzJ07F99++23wtZqaGowcOTIYnADA+PHj0dzcjK1bt4Y9T2trK5qbm0MeRERkDTfd5C+0JhecfP21f4kxgxMC4qiD0t7ejlmzZuFHP/oRLrjgguDzkydPxtChQzFo0CB89tlnuPfee/HVV1/B7XYDABoaGkKCEwDBfzc0NIQ91/z581FeXh5rV4mIKAFefx0oLVXW7oYb9O8PWUvMAcrMmTPx+eefY+3atSHP33bbbcH/HjlyJAYOHIixY8di586dOOuss2I619y5c3HnnXcG/93c3Ayn0xlbx4mISFdffw2ce658u5tuAhYu1L07ZFExBSh33HEHli9fjg8++AAOmYo6Y8aMAQDs2LEDZ511FnJycvDJJ5+EtGlsbAQA5OTkhD1GamoqUlNTY+kqEZGurJCYapQTJ4BeveTb9ejhb9uNhS4oClV/HkII3HHHHXjjjTfw/vvv48wzz5T9mc2bNwP4vophXl4etmzZggMHDgTbvPfee0hLS8OIESPUdIeIKKHcbjdyc3NRWFiIyZMno7CwEP3798fDDz8c9+Z8VnPZZcqCk4MH/RVjGZyQHFV/IjNnzsSrr74Kl8uF008/HQ0NDWhoaMDx48cBADt37sQjjzyCjRs3YteuXXjrrbdw44034sorr8SoUaMAAFdffTVGjBiBqVOn4tNPP8U777yD+++/HzNnzuQsCRFZhtvtRklJSZc9lA4fPox58+ZhwIABwdw7O3v8cX+htfXro7d75JE1EALo18+YfpENqCmwgk4F2AKPhQsXCiGE2LNnj7jyyitFZmamSE1NFWeffba4++67uxRk2bVrl5g4caLo1auX6Nevn7jrrrtYqI2ILKOtra1LUbRwD0mSTFsoLV5r1yortAb8XkiSJJxOJwsOkn6F2syCdVCIKJG8Xi8KCwsVtXU6naitrbVNXsqhQ0pnQf4F4OKQZzwej+47IZO5GVYHhYgoGdXX1ytuu3fvXlRXV+vYG2O0t/s381MWnPRC5+AEUHfdiBigEBGpFEj6V8rqA/Mtt/gLrZ08KdfyXAASgBNhX1V73Si5MUAhIlIpPz9ftsRCR1YdmBcv9ifAvvxy9HZ//3s7HA4nJGl72NclSYLT6UR+fr4OvSS7YoBCRKRSSkoKKisrZdtZdWDeudMfmMhVd50yxZ8GO3Vqt+D1kCQppE3g3xUVFbbJwyFjMEAhshmfzwev14tFixbB6/UmXT0OoxQXF6OqqgpZWVlhX7fiwNza6g9Mzj5bvq3PB7z66vf/Li4uxtKlSzF48OCQdg6HA0uXLkVxcbHGvSW74yoeIhtxu90oKysLqc3hcDhQWVnJAUInPp8Pjz76KCorK3H48OHg806nExUVFZa57ldcAdTUyLdrbAT694/8OivrUjRqxm8GKEQ2ESgc1vn/0oFv8vwWqy+rDswLFgD33CPfzuMBuEI4dlb9+9AaAxSiJOPz+ZCbm9ulqmmAJElwOBy2qscRDQcDeR9/DOTlybd76CFg3jzdu2NrnNn8HuugECWZ6urqiMEJ4N9Hyy71OOSE2x8nNzc3KcrOK3H4sD/PRC44ueACfwIsg5P4RNoSoa6uDiUlJfy7jIIBCpENKK2zYfV6HHJiGQySJalYCOD004EIOb0hjh0DtmzRv0925/P5UFZW1uW2K4Dgc7NmzbLt31y8GKAQmZDaQVNpnQ2r1uNQIpbBIFlmW6ZP9+8efPRo9HZbt/oDmd69jemX3XFmMz4MUIhMJpZBM1A4rHMNigCr1uNQQ+1gkAxT7263/3bOn/8cvd0rr/gDkxEjDOlW0uDMZnwYoBCZSKyDZsfCYclaKEvNYGD3qffaWn9gMmlS9HbXX+8PTKZNM6ZfyYYzm/FhgEJkEvEOmsleKEvNYGDXqfeTJ/2BybBh8m3b2oD/+z/9+5TMOLMZHwYoRCahxaBZXFyMXbt2wePxwOVywePxoLa21vbBCaBuMLDj1PtVV/l3G5ZTX++fNbHxZJppcGYzPgxQiExCq0EzJSUFBQUFKC0tRUFBQdJ8+KkZDOw09V5R4Z81+eCD6O1Wr/YHJjk5hnSLvpPsM5vxYIBCZBJ2GjQTRelgYIep9/Xr/YHJ7NnR2z3wgD8w+fGPjekXdZXMM5vxYCVZIpMIVIOtq6sLm4eSbNVg46GkkmwgIRlAyPU2+9YAR44AZ5wh3+7cc4Evv9S9O0SqsJIskQXxfrV2lNzmstrUuxD+ImtKgpOjRxmckPVxBoXIZMLt22G1nXGtxAr79vzmN8D//q98uy1b/CXqicyKmwUSWZwVBk0jJev1eOstoKhIvt3LLwM336x/f4jipWb87m5Qn4hIhcAtCkrOnWB37wZyc+XbFRcDVVW6d4coIRigEJFpBRJZO0/0BirrmjFXJB4nTyqrZQL4C60lwSQSJTEmyRKRKdm9HH1nP/mJsuCkro6F1ig5MEAhIlOyazn6zv73f/31TFatit7u3Xf9gcmgQcb0iyjReIuHiEzJKuXoY03g3bgRuOQS+ePPnQs89pgGHSWyGAYoFpSsKxoouVihsm4sCbxNTUBGhvyxhw0Dduzwz64QJSMuM7aYZFzRQMnJ7JV1IyXwRqpEG9gH58AB+WO3tAB9+2raXSJTYCVZmwp8IHa+Lx9Y0eB2uxPUM7Iyn88Hr9eLRYsWwev1mibp1MyVddUm8N55J9Ctm3xw8umn/kCGwQkRAxTLSLYVDWQMt9uN3NxcFBYWYvLkySgsLERubq5pgl2zlqNXmsD75JNbIUnA009HP96LL/oDk1GjNO4okYXxFo9FeL1eFBYWyrbzeDws8EWKqL1FkUhmy7tatGgRJk+eHKWFA8Be2eP89Kf+arFEyYKVZG3IKisaKPGUDOZyM3KSJGHWrFkoKioyRQK22SrrRk7M7Q7glKJjnDoFdOcnMFFEvMVjEVZY0UCJp/SWTbLUGNFLfn4+HA5Hp9yYf0JJcLJ3r/92DoMTougYoFhE+A/E70mSBKfTifz8fIN7RmahJok60TNyZk3MVapjAi8wHYAAcE3Un1m50h+YOBx6947IHhigWISZVzRQ4qlNok7kjJzZE3OVGjasGEK0A3g+ars5c/yByYQJxvSLyC6YJGsx4eqgOJ1OVFRUmCahUQmzJT3GwkzvQW0SdaJqjFgpMTeS5mYgPV2+3ZAhwK5dLLRG1JGq8VtYUFNTkwAgmpqaEt2VhGhraxMej0e4XC7h8XhEW1tborukSlVVlXA4HAL+eXEBQDgcDlFVVZXorilmtvfgcrlC+hLp4XK5Qt6DJElCkqSQNoHntH4vbW1tXa5Z5/M6nU7T/j23twsxeLAQ/vmQ6I8k/WgikqVm/GaAQoYKDIrhBic9BkU9mPE9eDweRQGKx+Pp8l46Bw1Op1OX9xBrH81gzhxlgcm//pXonhKZm5rxm7d4yDCB2wqRVo8kunS5EmZ9D/HcsjHqVpV87RA/l8uF0tJSzc8fi7ffBiZOlG/33HPAjBn694fI6ljqnkzJDktbzfoe4kmiDtQYKS0tRUFBgS7Bic/nQ2Njo6K2ZlgqX1fnzx2RC04mTPDPnTA4IdIeAxQyTKKXtmph2bJlitol4j2YtSx8YNXO7Nmzo7Yzw1L5tjZ/YKJkKfDJk/6lw0SkD5YKIsMYvbRV61sXbrcbFRUVitomahaguLgYRUVFplldFGnVTmdmWCpfVKSs7PyePYDTqX9/zMZMq9YoSahJbnnsscfEJZdcIvr27Suys7NFUVGR+PLLL0PaHD9+XNx+++0iMzNT9OnTRxQXF4uGhoaQNrt37xbXXHON6NWrl8jOzhZz5swRp06dUtwPJslaU2AVR7gEU2i4iqOtrU2Ul5eLzMxMzVbZyK1A0fo92IHSawYdE3OVeOklZQmwy5cnpHumYLZVa2Rduq3iGT9+vFi4cKH4/PPPxebNm8U111wjhgwZIo4ePRpsM336dOF0OsXq1avFhg0bxOWXXy6uuOKK4OttbW3iggsuEOPGjRObNm0SK1asEP369RNz587V5Q2Suei9tLWqqkpkZWVFDB5iPYfSFSgA+KH9HaXX7Omnn1Yd0Gmx1P7TT5UFJrNmqT60rZhx1RpZl2HLjA8cOCAAiDVr1gghhDhy5Ijo0aOHWLJkSbDNF198IQCImpoaIYQQK1asEN26dQuZVXn++edFWlqaaG1tVXReBijWptfS1qqqKt1mOJTWGZmV7KNZB7HUZlEi3m/zLS3KApOcHH/tk2Rm9do1ZD5qxu+4kmSbmpoAAJmZmQCAjRs34tSpUxg3blywzXnnnYchQ4agpqYGAFBTU4ORI0diwIABwTbjx49Hc3Mztm7dGvY8ra2taG5uDnmQdRUXF2PXrl3weDxwuVzweDyora2NK4kzUOpdjohxlY3SnJKioiJVx7UzPXKO1Ow31JkQwLBhwOmny5/nyBGgvp5VYM26ao2SQ8wBSnt7O2bNmoUf/ehHuOCCCwAADQ0N6NmzJzIyMkLaDhgwAA0NDcE2HYOTwOuB18KZP38+0tPTgw9nMmao2YzWS1vlPkg7U7vKhps1qqf1NVO731BHc+cC3boBtbXRz7Fhgz+QUVLKPhnYYeUdWVfMAcrMmTPx+eef4/XXX9eyP2HNnTsXTU1NwcfevXt1PydZi9oPSLWrbLhZo3paXzOl3+afeeaZYJDy7rv+WZDHH49+7Gee8QcmF1+sqCtJI5GbShLFFKDccccdWL58OTweDxwdCgbk5OTg5MmTOHLkSEj7xsZG5OTkBNt0LtgU+HegTWepqalIS0sLeRB1pOYDMtaZDrPWGTEzLa+Z0iB09uzZcDovgyQB48dHbzt2rD8wueMOxd1IKpw5pIRSk9zS3t4uZs6cKQYNGiS+/vrrLq8HkmSXLl0afO7LL78MmyTb2NgYbPPnP/9ZpKWliRMnTijqB5NkqTO5JczokNQXbzKu1TdrTAQtrpmyVUHdFCXAAkIozMlPekZvKkn2ptsqnhkzZoj09HTh9XpFfX198PHtt98G20yfPl0MGTJEvP/++2LDhg0iLy9P5OXlBV8PLDO++uqrxebNm8Xbb78tsrOzucyY4hbpgzTwyMrK4oephckHoUsVBSa7diX6nViPkZtKkr3pFqBE+taycOHCYJtAobYzzjhD9O7dW/zsZz8T9fX1IcfZtWuXmDhxoujVq5fo16+fuOuuu1iojTQR7oM0MzNTlJeX22KmI9lnb8IHoTcrCkyWLUt0760t2f/2SBvczZiSml1LcrvdbpSVlYUkijocDlRWViZV/sv31wEA5BPmf/KTr/Huu+fo3i8ikqdm/GaAQmQBkfa0CSQvJlOSbmsrMGaMwKefyhUpOQSgHzweDwoKCgzoGRHJUTN+czdjIpOLp/6H3cyaBZx2GhQEJxmQpGyuMCGyMAYoRCbHap7A//2fv57Jd2VVorgUgARJ8lebZm0aIutigEJkcslczXPLFn9g8otfRG+XlTUNgARgAwDWpiGyg+6J7gBRR3ZNcI1HMlbzPHIEyM0FvtvuK6J584CHHgJ8vpdRXX0z/26IbIRJsmQaXKUSns/nQ25uLurq6sLmoUiSBIfDgdraWssPyu3twKRJwJtvRm931VXAe+8BPXoY0i0i0giTZMly4tml1u6SZR+gigogJUU+OGlsBLxeBidEdscAhRKOq1TkmXkfIJ/PB6/Xi0WLFsHr9ar+Pa1Z488zmT07ert16/wl1/r3j6OzRGQZvMVDCef1elFYWCjbjvUszJejE89tuX37AKdT/hwvvgjcemu8PSUiM1AzfjNJlhIumVepqJWSkmKaIC1S8bjAbblIMzutrcAVVwD/+lf040+dCvztb/7ZFSJKPrzFQwmXjKtUrC7W23Jz5vgLrUULTpxOoKUF+PvfGZwQJTPOoFDC5efnw+FwyK5S6VwR1Cy3O8zSDyOpKR5XUFCApUuBn/9c/rhffQWcw21ziAicQSETiGWVitvtRm5uLgoLCzF58mQUFhYiNzfX8NU+ZumH0ZTeblu//hgkST44eestfwKslYKTeJODiUiGxjspG0LNds1kHVVVVcLhcAgAwYfT6RRVVVVd2kmSFNIOgJAkSUiS1KW9nv01Qz8SwePxdHnfoY80ARwU/rAj8uO++xL9TmIT7m/V4XDY+ndOpAU14zdX8ZCpyN0uCRQti3R7waiiZWbpR6JELh4nAXgdwPVRfz4/H1i92pq1TLizNFHs1IzfDFDIUsyyJNks/UikwEANBBJj7wDwjOzPNTQAAwbo2ze98oKSPTAlihcryZJtmWVJsln6kUiB4nH9+v0X/Hc5ogcnH33kv7Gjd3CiZ14Qd5YmMg4DFLIUsyxJNks/Emn/fmDSpGIcPBh94H/+eX9gkpenf5/03jKBgSmRcRigkKVcccUV6NevX8TXJUmC0+nssiRZa4Gl0Z1XHRndj0Q4eRK47DKgU9X9LqZM8W/+N326MStejNgygYEpkXEYoJBluN1unHXWWfj3v/8d9vV4N85TM4gmywZ+nd1zD5CaCqxfH7nN4MFAczPw6qv+QmtGLcU24vZLMgemRIbTaymRnrjM2K+trU14PB7hcrmEx+MRbW1tie6SbiIt6e34CCxJjuW6xLpsVOnSaKurqoq+XDjw+PLLzj9n3FJsl8sls/TZ/3C5XHGdJ/CeOr+vZFheThQvNeM3AxSLSqY6DG1tbV3ea+dHdna2aG1tjem6xDuI2jlQ/OILZYHJG290/Vm535skScLpdGp2veRrs/gfHo8n7nMlS2BKpDUGKDaXbAXClA485eXlqq+LFoOoHQOUpiYhBgyQD0x+97vIxzAyYBDi+99lpJk2rQMiO/7eifTGAMXGjP5WagZKp+4zMzNVX5d4B1G7zWS1twtxww3ygUlenhCtrdGPZdQtl454+4XI3NSM30yStZhkrMOgdEXE4cOHI74W6brEs2xU7yWtRnv2WaBbN+D//i96u/37/TVNevaM3i4RK14CtVkGd1pi5HA4WOGVyGIYoFhMMtZhULJyIisrS9GxOl+X/v37K/q5zu2MWNJqlA8/9K+2ueOO6O3WrvXPnyiNJxK14qW4uBi7du2Cx+OBy+WCx+NBbW0tgxMii2GAYjHJWIdByZLe3/72t4qOpdV1scNMVkODPzD5j/+I3u6ZZ/yByY9+pO74iVyKnZKSgoKCApSWlqKgoMB2y72JkgEDFItJ1joMclP39913X0zX5cCBA4rO37mdlWeyTp0CrrhCfibkhhsAn09+ZiUa3nIholh1T3QHSJ3At9KSkhJIkhRyi8HOBcIA/2BXVFQUcRO4WK5LrDNSVp3J+v3vgfnzo7cZMAD4+mtAq3045X5vZqHXBoNEFCM9s3X1ksyreAJiqcOQDMsi1V6XWJemGr2kNV5vvqmsnsm2bYnuaWLYbTUWkVlxmXGSUBNwJNMHsNpALNalqVZY0vrVV8oCk6VLE93TxEm2ukJEicQAhULwA1herJVBzVpRtLlZiMGD5QOTOXMS2s2ES8a6QkSJpGb8loQIs07S5Jqbm5Geno6mpiakaXWj3KZ8Ph9yc3MjrjiRJAkOhwO1tbVJf7891hwEM+UuCAFMnQq89lr0dpde6l82LFfLxO68Xi8KCwtl23k8HhQUFOjfISKbUzN+M0nWpLQa9NQsh032D+DA0lSjfk5rf/4zMH26fLu6OmDQIP37YwVWXo1FZHcMUEzI7XajrKwsJLBwOByorKxUvSyTH8D29/HHQF6efLsPPgBstvo8blZdjUWUDFgHxWS0Lp/OD2D7amz0F1qTC04qKvy3fhicdJWsdYWIrIABionoUT6dH8D2c+oUcOWVQE5O9HaTJvkLrZWVGdMvK0pktVsiio4BionoUT6dH8D28sAD/sTWaH8CWVnAkSPA0qX+zf8oOla7JTIn5qCYiNI8kLq6Oni9XsUJtIEP4HB5LRUVFfwAtoDly4Gf/lS+3eefA+efr39/7MYq1W6JkgmXGZuI0iWP2dnZOHjwYPDfShNozbQcVg92fH/btwPnnCPfbvFi4Oc/178/RETxUDN+M0AxkUDNkrq6urB5KJEEbtUk83S0liufzODoUeCCC4Ddu6O3u/NO4I9/DH3OjoGaFfC6E8lTNX7rVS1OT3auJBupfLrcI5krXtqpUm57uxDTpslXgL34YiFOnOj688m0pYGZ8LoTKaNrqfs1a9aI6667TgwcOFAAEG+88UbI69OmTesyUIwfPz6kzaFDh8TkyZPF6aefLtLT08Uvf/lL0dLSorgPdg5QhAj/YZedna0oUPF4PInuvqGUlCp3OBxi1apVsnvzJHozxZdeUrZvzt694X/eioFaoq+5Fqx43YkSRdcAZcWKFeK+++4Tbrc7YoAyYcIEUV9fH3wcPnw4pM2ECRPE6NGjxccffyyqq6vF2WefLUpLSxX3we4BihBdP7hfffVVRQGKy+VKdNcN5fF4VM00Rfpmm8hvwOvWKQtMvN7Ix7DinjJ2mHWw4nUnSiTDNguMFKAUFRVF/Jlt27YJAGL9+vXB51auXCkkSRJ1dXWKzpsMAUpnSgfiZJtBcblcqgOUzt9sE/UNuLFRWWDy1FPyx7La34ddZh2sdt2JEk3N+K1LlQSv14v+/fvj3HPPxYwZM3Do0KHgazU1NcjIyMAll1wSfG7cuHHo1q0b1q1bp0d3bIEF18KLpQKu6FD07uTJk5oXx5PT1gYUFAADBkRv97Of+QutzZ4tf0wrbWmgR0HCRLHSdSeyGs0DlAkTJuDvf/87Vq9ejSeeeAJr1qzBxIkTgx82DQ0N6N+/f8jPdO/eHZmZmWhoaAh7zNbWVjQ3N4c8kg0LroUnF7hFIr4revfcc89pXhwvmoceAnr0ANasidwmIwP45hvA7VZeaM1KWxroUZAwUax03YmsRvMA5Re/+AX+8z//EyNHjsR//dd/Yfny5Vi/fj28Xm/Mx5w/fz7S09ODD6fTqV2HLYQVL7uKFrgpsXPnTkXt4v0GvGKFf9+c8vLo7T77zB+cZGSoO76VZtjsNOtgpetOZDW6F8IeNmwY+vXrhx07dgAAcnJycODAgZA2bW1tOHz4MHIibC4yd+5cNDU1BR979+7Vu9umVVxcjF27dsHj8cDlcsHj8aC2tjYpg5OASIGbEmeddZaidrF+A9650x+YXHtt9HaLFvkzTkaOjOk0lpphs9Osg5WuO5HlxJPsgjBJsp3t3btXSJIkli1bJoT4Pkl2w4YNwTbvvPMOk2Qpbh1XPq1atSrq6goAwul0itbWVuFwOCLWnYl1FcbRo0KceaZ8AmxZmbbXINLKmPLyctMs5Q2sfNH6midSuOvudDotk+xLZBRdV/G0tLSITZs2iU2bNgkA4qmnnhKbNm0Su3fvFi0tLWLOnDmipqZG1NbWilWrVokf/vCHYvjw4eJEh6pSEyZMEBdddJFYt26dWLt2rRg+fDiXGZPm7r777qgByt133y2EiFwcL5YVJe3tQtx8s3xgMnq0EMeP6/O+OwZq5eXlYvDgwSHva/DgwQkPWLS85mZhh5ouRHrTNUCJtKxu2rRp4ttvvxVXX321yM7OFj169BBDhw4Vt956q2hoaAg5xqFDh0Rpaano27evSEtLEzfffDMLtZGm5OpTBL7hBgYRLb4Bv/yysmXDe/bo9a5DRVrK2/mRqNojesw6MEggMjc14zf34iFTindfE6UbL3o8HhQUFMR1zg0bgEsvle/T6tXAj38s304LgX2doq2WCUjkXk5a7l9jt/2YiOyIe/GQpWlRYVRpAbd4Ku8eOCBESor8jMmCBTGfImZqK+xaMe+jI7sUfiOyu4QXaiP78/l88Hq9WLRoEbxer2ZFtdxuN0pKSrp886+rq0NJSQncbrei4+i5UqStDRg3Dujf319ILZKf/tTfds4c1aeQJXf91S7RFRaqPdKZnQq/EVEHekdLeuAMSmLptYeKlvua6LVS5JFH5GdMTj9diE7bT2lKyfWPZY8ixDmjlCgsN09kHZxBId1oNcMRjpYVRrWuT/HOO/56Jg88EL3d5s1AczNwxhmKDqua0usfa4VdK9Qe6czowm96zR4SUSgGKKSY3lPpWg80WlTera31ByYTJkRv9+qr/vmT0aMVdS0maq6/2gq7Vq54amThN7fbjdzcXBQWFmLy5MkoLCxEbm5uXIE5EUWg72SOPniLRxtql2TqPZWu1/FjWXp67JgQw4fL386ZOdNf+8QIsVyfcLeDOj+snkhqVOE3JuISxU/XOihmwAAlfrHkkei9MsYMFUbb24W47Tb5wOT884X49lvduhFWrNe/c+E2O1Y81bvwm5b5UUTJjAEKRRXrN0EjkhETWWH0b39TVmht1y7duhCVVtffrsXM9Cw3z0RcIm0wQKGI4vkmaORUupHf8v/1L2WBybvv6nJ6xcwww2R2egVfRtTVIUoGasbv7qCkomalTKDCakAg8bKkpASSJIUka2q5c2txcTGKioo0qzDaWaB66ddfH8Idd/wMp05FzxWfPx/43e80OXVcjLr+VpaSktLl71YLRu/ArGWFXSLL0jta0gNnUGKnxTdBK+/cWlVVJQYPHiKAlbIzJhMnCmHGyQgrX3+rMnL2Sq86Q0RmwL14KKJY9qgJx4rf8NxuNyZN2gDgsajtevUC9u4FsrKM6VcsrHj9jaDndQnUoAEQdvZKi72MAufo/LGcyP2SiLTEvXgoomTNY1i5sk1Rnsn69fZ638nEiJkHPWevuFKIkgEryVJEWldYNbtdu/yF1iZOlHs/UwFIOHrUenvRdJSsVU71rHDcUXFxMXbt2gWPxwOXywWPx4Pa2lpNZjW0rKRMZAcMUJKQFhVWze74cWDECODMM+VaPgdAAvAqAO3KoSdCslY5NXqzwEAibmlpKQoKCjQL5o0u2U9kdgxQkpSe3wQTSQjg9tuB3r2BL76I1vJLAL0AzAx51op70QDGzSCYkV1mHoxeKURkdlxmnMT0WpKZKK++CkydqqTlmQB2hTwjSRIcDocl96KRm0GQJAmzZs1CUVGRbW7ddWSXmYfABo91dXVhf5dW/hsligVnUMjyNm/255nIBScPPLAWktQNkrQ75Hmr597YZQYhVnaZeUi2/DAiOQxQyLIOH/bfyrnooujtHn3Uf+vn4Yf/w5a5N4meQUh0Ym5g5iHSrs1W2qk5GfLDiJTiLR6yHJ8PKCoC/vnP6O2uvhpYsQLo+IVT7yq1iZDIGQS3242ysrKQGRyHw4HKykrDBlO7Vdi1498oUSxYqI0sZcEC4J57orfp0QPYvx/o18+YPiWaz+dDbm6ubO5CbW2tpoOc2YqKhQuWnE4nKioqOPNAZBJqxm8GKGQJq1cD48bJt9uwAbj4Yv37YzZGVDntKBAURcp90SsoUtIvzjwQmZea8Zs5KGRqe/b4E2DlgpOFC/15JskYnADG5y6YNTFXrxolRGQ85qCQKZ04AVx6KfD559HbFRbuwAMP7MOVV+YDSO7ByMjchUQn5hKR/TFAIVMRAigrA555Jnq77t1r0dZ2Pjye4/B4jE/MNCujatvYZWkvEZkXc1DINBYtAiZPVtLybAA7Q54x+26vdsuNSFRiLhFZG3NQyFI++8yfZyIXnPzjHz44HE50Dk4AffZc0Yod98hhUTEi0hsDFEqYI0eA9HRg9Ojo7crL/bd++vY1Z2JmNHbeI4dFxYhIT8xBIcO1twPFxcCyZdHbjR0LvP020P27v1KrJWaq2SMHgCVvAbGoGBHphQEKGeqpp4C77oreRpKAhgagf//Q562WmKl0Ke6jjz6Kl156KaHVWONht00nicgceIuHDOH1+gMPueDkk0/8MyydgxPAenuuKJ3JmTdvni1vARERxYMBCulq3z5/YFJYGL3dX/7izzO59NLIbayWmBnPTI6Zk34pvERvmkhkNwxQSBetrcAPfwg4ndHb3Xyzf8bklluUHddKiZlyMz5yzJj0S+HZcaUWUaIxQCHN3XkncNppwKZNkduceSZw9Cjw8sv+GRY1iouLsWvXLng8HrhcLng8HtTW1poqOAGUzfgoYZakXwrPziu1iBKJhdpIM4sXAzfcIN9u+3bg7LP1749ZhNtlNysrC4cOHVL08x6PJ5iEareCb1Zn1k0TicyKhdrIUFu3+mdB5IKTf/zDn2eSTMEJ0HXGZ9WqVejVq5fsz3VO+uVtBPMx66aJRHbAAIViduQIkJkJXHBB9HYPPugPTK67zpBumVLHXXZTUlKiDmoBQohg0i9vI5iT1WrzEFkJAxRSLVBo7YwzgG++idzuqquAkyf9lWDpe0oHq1mzZqG4uFi24FugLVeNGM9qtXmIrISF2jrg/X15FRXA7Nny7RoagAEDdO+OrvT6e1A6WHWsMKv0NgILphkrsFJLbtNEs9TmIbISzqB8h/f3o/vgA3+eiVxw8vHH/ts5geDEqrUh9Px7UFtwjrcRzMtqtXmILEVYUFNTkwAgmpqaNDleVVWVkCRJAAh5SJIkJEkSVVVVmpzHivbtE8IfckR/vPhi15+tqqoSDocj5Jo6HI6w17OtrU14PB7hcrmEx+MRbW1tBry78Iz4ewico/N5wp3D4/F06Uu4h8fjibtfFJtwf+tOpzOpPzuIwlEzfid9gNLW1tblg6XzgOF0OoMDppkGUj2dOCHExRfLByZTpwrR3t7159UM8moCGb2p/XuIh9JBLdCncNdT6z5R7JLls4EoHgxQVFDz7dRMA6me7rpLPjBxOoVoaQn/82oGebPNXhk9W6F0UFMz40JEZFZqxm/VOSgffPABfvrTn2LQoEGQJAlvvvlmyOtCCDz44IMYOHAgevXqhXHjxmH79u0hbQ4fPowpU6YgLS0NGRkZuOWWW3D06FG1XdGE0vv2y5Yts/0yz6VL/Xkmf/xj9HZffQXs2QP07Rv+daVJnV6v13SrU4zO9+i4/LigoCBiroKVSvybiVVzoIgohiTZY8eOYfTo0Xj22WfDvv7kk0/iT3/6E1544QWsW7cOffr0wfjx43HixIlgmylTpmDr1q147733sHz5cnzwwQe47bbbYn8XcVC6ouLVV1811UCqpS++8AcmP/959HbLlvnnT845J3o7pYO31+s1XZErMy8btUqJf7Ng4juRxcUzVQNAvPHGG8F/t7e3i5ycHLFgwYLgc0eOHBGpqali0aJFQgghtm3bJgCI9evXB9usXLlSSJIk6urqFJ1XjxyUaPf3s7OzbZmk2NQkRHa2/O2c++5Td1ylt0nuv/9+Re1cLpc+FyAMub8HfHdbr+OtGOYemI/Zbh0SkZ+ut3iiqa2tRUNDA8aNGxd8Lj09HWPGjEFNTQ0AoKamBhkZGbjkkkuCbcaNG4du3bph3bp1YY/b2tqK5ubmkIdWlCwTnDJliqJjGbXMMzBt/dprr6GiogKvvfaaqunr9nbg+uuB9HTg4MHI7X70I3+htT/8QV3/lC6jVVqzw8jZimh/DwHHjx/HsmXLAFj7W7pdb3+wsB2RTcQTCaHTDMqHH34oAIj9+/eHtPv5z38urr/+eiGEEI8++qg455xzuhwrOztbPPfcc2HPM2/evLDfZLVaZixE9BUVZlrmGa6f6PDNXu6b4TPPKFs2XF8ffz/lkjrNvDqlqqpKZGVlReyXJEni7rvvtuy3dDsnfJvp/69EFMqwVTxGBSgnTpwQTU1NwcfevXs1D1CEiDxVb5aBNNK0dee+hBtk1q5VFph89JG2/ZVbRmvW1SlKViKlpKREfd2sS3/tfvvD5XIpClCMvHVIRH4Ju8WTk5MDAGhsbAx5vrGxMfhaTk4ODhw4EPJ6W1sbDh8+HGzTWWpqKtLS0kIeeoi0osIM1SKjTVt31nH6ur7enwD7H/8R/Weef94fouTladFbv2hJnYHbC62trXjooYdMtzpFyUqkaLcIhEl3sU2G2x9mTnQmIhXiiYSA8Emy//M//xMSLYVLkt2wYUOwzTvvvJOwJFk1ElktUum0deDx7rteMWaM/IzJ5MnhC63pKdx1HDx4sCgvL9cl0TSWJFal38LlHoFv6WZJpE2G2x9mmfEkoq50vcXT0tIiNm3aJDZt2iQAiKeeekps2rRJ7N69WwghxOOPPy4yMjLEsmXLxGeffSaKiorEmWeeKY4fPx48xoQJE8RFF10k1q1bJ9auXSuGDx8uSktLdXmDWkvUQKNuwJwvG5gMHChEc7MhXQ9h9O2FWHMt1AaE0QZ6M+V7JMvtDyNuHZol6CSyEl0DlEgf3NOmTRNC+GdRHnjgATFgwACRmpoqxo4dK7766quQYxw6dEiUlpaKvn37irS0NHHzzTeLlkhlScNIZICSKMoGzP+SDUwAIb74IjHvwcgy8kLEFwwp+RauJAdlyZIlpsr3SIYZlAA9ZzzNFHQSWQlL3dtQ9MH9HEWBSYe7cbr0T+7bpJGDoxbBkNy38MAqnkivL1682NCATM11SZbbH3rMctg9yZhITwxQbKrrB2NfAdTJBia/+53+/VLybdLI2wtaBUNy38Ktsjy983sy48opKzB6FpDIbhig2FhVVZUYPNghgNdkA5MxY4Robf3+ZxP9bVLrATva+9EyGJK7bpFeN3O+RyITvq3MrEEnkVWoGb+7gyylsbEYdXXyS2/r6oBBg77/t9vtRllZWcjSWYfDgcrKypiX8sotWZUkCbNmzUJRURFSUlKCFWbr6urC/owkSXA4HMjPzw97rurqatTX12PgwIE4ePAg7rzzzojvR8ulpoHl52pfV9qHzptpGqG4uBhFRUUh1zQ/P1/XpfJ2YPRmkkRJTe9oSQ/JOIPy0UfKCq2tXdv1ZxcvXhxxOjqeKf1Yvk3GcnshWvXcSMcwQ66Fkn19Ag/OXFgDZ1CI4sNbPDZSX68sMHnmmfA/v2TJEt0qnsZ6C0PN7QUl1XMjvR8z5Foorf7LvAVrMEPgS2RlDFBs4ORJIX70I/nA5IYbhPD5wh+jqqpK8cAeyze+eL5NKsmHkUtIlDtnW1ubKC8vF5mZmYqCIb2Ul5fzW7eNmCHwJbIq5qBY3H33AY89Fr1Ndjawfbt/R+JwAvkhSsVyzzyenBK5vA5Avtx8NMuWLcPUqVNDfj4zMxNlZWW47777DM21GD58uKJ2zFuwhuLiYixdujRsTldFRUXCtmcgshsGKCby1ltAUZF8u61bgREjordRO7jHsi9JYI+ikpISSJIUEqRosUdRPAN2RUVFl+e++eYbPPTQQ7jgggsMHUS4N4z9MMmYSH+abhZIsfn6a/+GfnLBydKl/hs7csEJoG5wdzqdYWc5lAh8m9Rjs79YBmxJkiIOEoEAyujN8AIzTZ03mgyQJCmu3wElRqTNRYlIGwxQEujoUcDhAM49N3q7OXP8gcmkScqPrWZwj3cn5mi7FsdDbmDvLDCLY7Zdhs2wGzYRkdUwQEkAIYD//m/g9NP99UoiufRS4MQJYMEC9edQMrinpKRg8eLFmtzu0OPbZLSBPRyHw4FZs2YpOrbR+R56zjQREdmRJMJlN5pcc3Mz0tPT0dTUhLS0tER3R5UXXwR+/Wv5dvv2AZ3GMtXcbjdKSkoAIGwS65IlS4Kvm1mkInNPP/00+vXrF5IDUF1djcLCQtljejwe2SRdPXQuOMe8BSJKJmrGbybJGmTdOuDyy+XbffABoFUqQqTVBk6n03KrDToHWEIIdOvWrUuQEc/KIiMoWb1EREScQdFdYyOQkyPfrqICULEqWBUrf2sPzAJ1/jMN3PIJd3sk0sxRtJ8hIiL9qRm/GaDo5NQpYOxYQC4Xc9IkYPFioBuzgbrw+XzIzc2NuFw6MBtSW1vbJeAKd1vIijNHRER2wgAlwebNAx5+OHqbrCxg587IhdbsIp7ZG6/XG1c+iZVnjoiI7Ig5KAnyz38C110n3+7zz4Hzz9e/P0aIFgTEu4NyrDvHdu7T9ddfz8CEiMhiGKBoYMcOQEk188WLgZ//XP/+GCVaAAIgbO5IXV0dSkpKFOWBxFKBNd6giIiIzIG3eOJw7Jh/JmT37ujtZs8GnnrKmD51pOctjmjJq0IIZGVl4dChQ2F/NlruSOf+5+bmyq7ICRwnloRaIiIyjprxm6mZMRACuPlmoG/f6MHJRRf5C60lIjhxu93Izc1FYWEhJk+ejMLCQuTm5sLtdsd97MBGhOGChsBzkYKTQBsl1VzVVGCV65MQArfddhtWr15taJl7IiKKDQMUlf76V/+Km1deid5u717gX/8CUlMN6VaIwExC59Uvgdsr8QYp8ewy3JGSHBOlFViV9OnQoUMYN26cZoEa6cfn88Hr9WLRokXwer0MKomSEAMUhdav92/o96tfRW/n8fhnWBwOY/rVmZLZjXg3y9OqTLzSHBMle/2o6ZNWgRrpQ8/ZPyKyDibJyjh4EBgwwB90RPPHPwJ33mlMn6KRm0noeHsl1oqmsewy3FEs1VzlKrCq6ZMQApIkYdasWSgqKjJ0hQ+XPkcXKY9ITXK1Vvi7IkowYUFNTU0CgGhqatLtHKdOCfHjHwvhD00iP4qKhPD5dOuGai6XSwCQfbhcrpjP0dbWJhwOh5AkKeyxJUkSWVlZQpKkLm0Cz1VVVWn4ruX7FOnh8Xg07Uc0VVVVwuFwhJzf4XBofi2sKvA7jPS7kiRJOJ1O0dbWpntf+Lsi0oea8Zu3eMJ45BGgRw/g/fcjt0lPBw4fBt5801xVYGNZmquWkuTVF1980dDde9XufBxg1K7GeucF2YGa2T898XdFZBL6x0va02sGZe1a+RkTQIjPPtP0tJpSMruh1bfQcN8ynU5nyLfMtrY24fF4hMvlEh6PR7S2tob8W+tvw+H6FO1hxAyKmWYGzMyI2T85/F0R6UvN+M0A5Tv79wvRq1f0wGTRIs1Op6uqqqqwt1cCjyVLlmh2rs4BSOCDO9zzRk2bt7W1iVWrVonMzExTDDQej8c0wZKZmeE6maEPRHbGACUGr78eOTD5zW+EaG/X7FSKRBr4lYo2k5CZmSnKy8t1G5zDnTsrKytioKBHTkqgH0bmwURihpkBKzBy9i8S/q6I9MUAJQbbtgmRkhIamIwcKcTx45qdQjGtZhoWL14c9UM2KytL80E6EBQovcWi98Cj5DaU3vitXLlEB5X8XRHpiwFKjN59V4gbbxRi6lQhdu/W9NCKRRrg1X5Ay91L7/jQ6kNfzTmN/NCPdzZKi/MnembAShIZVPJ3RaQvNeM39+IxkcDeM5FWMijdwwYAvF4vCgsLFZ3X6XQqOqYcNecMx+VyobS0NK4+mFVgZQiAkBof3CcovETWIOHvikg/3IvHorRcZqlm+axWSzfjXbIbbwG4RJIrza60ZL9W57O6QGG+0tJSFBQUGFogTevfFRHFhpVkTUTpAF9XVwev1xv126XawV6LeiCxBhixVJY1E7fbjbKyspDg0uFwoLKyMmQwKy4uRlFRUVwzAz6fD48++igqKytx+PDhqOej2GnxuyKiOOl7t0kfRlSSTQSlCXr9+vWTTaBVmw+iRf5HLNVcjV5Ro7WqqipD8nsC50rEaigiIq0wB8WiAjkodXV1YTf7iyTSvfFI+5p0/lmleS1KRLt/L4RAVlYWDh06FHze6XSioqLCkt/8fT4fBgwYEPJ+OsvKykJjY2Pc19btdmPSpElR22j9uyQi0hpzUCxKSQn5cAKBQOddigP30rOyssL+XOCYFRUVmg1o0e7fV1VVobGxMequxFbi9XqjBicAcOjQIXi93rjOE9ihWo4wqBQ8EZERGKCYTKQBPlKQERBpcCouLkZjYyPKy8uRmZkZ8ppeSX/FxcXYtWtX2EAkkcmPWlMaeMQboMglT3dm1P5CRER6YpKsCXVO0Nu+fXtwZkVOuMEpJSUFDz74IO677z7Dkv4CgUi8uOW9+oDDyquhiIgCGKCYVGCAd7vdeOihhxTnpEQbnLQKGowSbnVMZmYmysrKcN999+keqMgFRwUFBfjDH/4ge5x4r7magMPpdFp2NRQRUUdMkjUxucJtHdklQTIQFCxbtgwVFRUR22VlZeHFF1/ULX9FydJho5JklSZPS5KU0DodnO0iIjmqxm99FhLpy0zLjPUso6502TG+W2Zq9SWm0TY4jPTQc5PBcNe483U2apmx3A7VeuyrpLZ/RuxUTUTWxr14DKL3h7LSnVUzMzMtPxDEsskgAM33RZGrHxNuL5aqqioxePBg3QfncH9veu9MrbRfWuwfRUT2l9AAZd68eV0+qM4999zg68ePHxe33367yMzMFH369BHFxcWioaFB1TnMEKAY8aGsdAZl1apVGryjxDHTJoOx7mZr1IaEid74MFx/1AZ0RJS81IzfuiwzPv/881FfXx98rF27Nvja7Nmz8Y9//ANLlizBmjVrsH//fsvVwQjUpRBh8gFEhJokscjPz4fD4YhYA0WSJDidTkslvoajdhltZ1ouq1V6rM7t7LR8Wg0t948iIupIl1U83bt3R05OTpfnm5qa8Ne//hUulws//vGPAQALFy7ED37wA3z88ce4/PLL9eiO5tR8KMcTPAQKt5WUlAQrsQboUWQtFlokRpppk0Glx0rEUl6le/4YKdaAjohIji4zKNu3b8egQYMwbNgwTJkyBXv27AEAbNy4EadOncK4ceOCbc877zwMGTIENTU1EY/X2tqK5ubmkEciGfmhbOadVd1uN3Jzc1FYWIjJkyejsLAQubm5cLvdqo4TzyaDWi+rVTprZfRS3sAWAp0D47q6OpSUlKi+5loxc0BHRBan9f2lFStWiMWLF4tPP/1UvP322yIvL08MGTJENDc3i9dee0307Nmzy89ceuml4p577ol4zHB5LUhgDkqseQrxMFvugZY5OGbbZDDSiplEJX2aOc9D7nfHHBQi6shUq3i++eYbkZaWJv7yl7/EHKCcOHFCNDU1BR979+5NaIBi1g9lIxM1tR4w5ZbR9u3bN+TfTqdT10Ah3IoZvc8ZSSICYjXMFtARkXklPEm2o4yMDJxzzjnYsWMHcnJycPLkSRw5ciSkTWNjY9iclYDU1FSkpaWFPBJJyaZ+RueGaHW7RQk9EiMj3cpyOp2oqqrCkSNHDN1kMNp+QkYze56HmW9DEpGF6R0ttbS0iDPOOENUVlaKI0eOiB49eoilS5cGX//yyy8FAFFTU6P4mGZYZiyEeb5lG12HQml9FpfLpfrYZruVZQZmn0EJ4O+OiOSoGb81L3U/Z84c/PSnP8XQoUOxf/9+zJs3D5s3b8a2bduQnZ2NGTNmYMWKFXjllVeQlpaG3/zmNwCAjz76SPE5zFTqPtHlveXK4Sspga/2PXi9XhQWFsr2zePxBFcxJfo6WZlcqXu7bHNARPaX0FL3N9xwgxg4cKDo2bOnGDx4sLjhhhvEjh07gq8HCrWdccYZonfv3uJnP/uZqK+vV3UOs8ygmEG8365jqYarNgeHZdDjxzwPIrIDUyXJ6oEByvfiud0Sz60hpQMmy6Brxyy3FImIYpXQWzxGMNMtnkSL5XYLoM2toXCFw5xOJyoqKlBcXKzJOSgUb5URkZWpGb8ZoFhcrPkJsQY24c4facDU6hxERGQPasZvXUrdk3FiLYev1dLVwB40sfys2nZERJQ8dK+DQvqLpQ6FESXKWQadiIhixVs8NqImP8GIpatcHktERB2pGb85g2IjgdstpaWlKCgoiDroG1EN14wVd4mIyBoYoCQxI0qUsww6ERHFgrd4yJClq1weS0REXGZMlCAMxIiIIuMyY6IECFe4zuFwoLKykreyiIhUYg4KkQbcbjdKSkq6VM2tq6tDSUkJ3G53gnpGRGRNDFCI4uTz+VBWVhZ2KXXguVmzZsHn8xndNSIiy2KAQhSn6urqiPsNAf4gZe/evaiurjawV0RE1sYAhShOLOlPRKQ9BihEcWJJfyIi7TFAIYpTfn4+HA5Hl2q5AZIkwel0Ij8/3+CeERFZFwMUojixpD8RkfYYoBBpgCX9iYi0xUqyRBpiJVkioshYSZYoQQI7ShMRUXx4i4eIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHQYoBAREZHpMEAhIiIi02GAQkRERKbDAIWIiIhMx5KVZAPV+ZubmxPcEyIiIlIqMG4r2WXHkgFKS0sLAMDpdCa4J0RERKRWS0sL0tPTo7ax5GaB7e3t2L9/P04//XS0tLTA6XRi79693DhQR83NzbzOBuB1Ng6vtTF4nY1hlesshEBLSwsGDRqEbt2iZ5lYcgalW7ducDgcAABJkgAAaWlppv6l2AWvszF4nY3Da20MXmdjWOE6y82cBDBJloiIiEyHAQoRERGZjuUDlNTUVMybNw+pqamJ7oqt8Tobg9fZOLzWxuB1NoYdr7Mlk2SJiIjI3iw/g0JERET2wwCFiIiITIcBChEREZkOAxQiIiIyHdMHKIcPH8aUKVOQlpaGjIwM3HLLLTh69GjUn3nxxRdRUFCAtLQ0SJKEI0eOaHJcu4vlmpw4cQIzZ85EVlYW+vbti0mTJqGxsTGkjSRJXR6vv/66nm/FVJ599lnk5ubitNNOw5gxY/DJJ59Ebb9kyRKcd955OO200zBy5EisWLEi5HUhBB588EEMHDgQvXr1wrhx47B9+3Y934IlaH2db7rppi5/txMmTNDzLViCmuu8detWTJo0Cbm5uZAkCRUVFXEfM1lofZ0feuihLn/P5513no7vQAPC5CZMmCBGjx4tPv74Y1FdXS3OPvtsUVpaGvVnnn76aTF//nwxf/58AUB88803mhzX7mK5JtOnTxdOp1OsXr1abNiwQVx++eXiiiuuCGkDQCxcuFDU19cHH8ePH9fzrZjG66+/Lnr27ClefvllsXXrVnHrrbeKjIwM0djYGLb9hx9+KFJSUsSTTz4ptm3bJu6//37Ro0cPsWXLlmCbxx9/XKSnp4s333xTfPrpp+I///M/xZlnnpk01zQcPa7ztGnTxIQJE0L+bg8fPmzUWzIltdf5k08+EXPmzBGLFi0SOTk54umnn477mMlAj+s8b948cf7554f8PR88eFDndxIfUwco27ZtEwDE+vXrg8+tXLlSSJIk6urqZH/e4/GEDVDiPa4dxXJNjhw5Inr06CGWLFkSfO6LL74QAERNTU3wOQDijTfe0K3vZnbZZZeJmTNnBv/t8/nEoEGDxPz588O2v/7668W1114b8tyYMWPEr3/9ayGEEO3t7SInJ0csWLAg+PqRI0dEamqqWLRokQ7vwBq0vs5C+AOUoqIiXfprVWqvc0dDhw4NO3DGc0y70uM6z5s3T4wePVrDXurP1Ld4ampqkJGRgUsuuST43Lhx49CtWzesW7fOdMe1sliuycaNG3Hq1CmMGzcu+Nx5552HIUOGoKamJqTtzJkz0a9fP1x22WV4+eWXFW21bXUnT57Exo0bQ65Pt27dMG7cuC7XJ6CmpiakPQCMHz8+2L62thYNDQ0hbdLT0zFmzJiIx7Q7Pa5zgNfrRf/+/XHuuedixowZOHTokPZvwCJiuc6JOKbV6XlNtm/fjkGDBmHYsGGYMmUK9uzZE293dWXqAKWhoQH9+/cPea579+7IzMxEQ0OD6Y5rZbFck4aGBvTs2RMZGRkhzw8YMCDkZx5++GEsXrwY7733HiZNmoTbb78dzzzzjObvwWz+/e9/w+fzYcCAASHPd74+HTU0NERtH/hfNce0Oz2uMwBMmDABf//737F69Wo88cQTWLNmDSZOnAifz6f9m7CAWK5zIo5pdXpdkzFjxuCVV17B22+/jeeffx61tbXIz89HS0tLvF3WTUJ2M/7d736HJ554ImqbL774wqDe2JsZrvUDDzwQ/O+LLroIx44dw4IFC/Db3/5W1/MSxeMXv/hF8L9HjhyJUaNG4ayzzoLX68XYsWMT2DMi9SZOnBj871GjRmHMmDEYOnQoFi9ejFtuuSWBPYssIQHKXXfdhZtuuilqm2HDhiEnJwcHDhwIeb6trQ2HDx9GTk5OzOfX67hmpOe1zsnJwcmTJ3HkyJGQWZTGxsao13HMmDF45JFH0Nraaqt9Izrr168fUlJSuqxqinZ9cnJyorYP/G9jYyMGDhwY0ubCCy/UsPfWocd1DmfYsGHo168fduzYkZQBSizXORHHtDqjrklGRgbOOecc7NixQ7Njai0ht3iys7Nx3nnnRX307NkTeXl5OHLkCDZu3Bj82ffffx/t7e0YM2ZMzOfX67hmpOe1vvjii9GjRw+sXr06+NxXX32FPXv2IC8vL2KfNm/ejDPOOMPWwQkA9OzZExdffHHI9Wlvb8fq1asjXp+8vLyQ9gDw3nvvBdufeeaZyMnJCWnT3NyMdevWRb3mdqbHdQ5n3759OHToUEhgmExiuc6JOKbVGXVNjh49ip07d5r77znRWbpyJkyYIC666CKxbt06sXbtWjF8+PCQpa/79u0T5557rli3bl3wufr6erFp0ybx0ksvCQDigw8+EJs2bRKHDh1SfNxkFMu1nj59uhgyZIh4//33xYYNG0ReXp7Iy8sLvv7WW2+Jl156SWzZskVs375dPPfcc6J3797iwQcfNPS9Jcrrr78uUlNTxSuvvCK2bdsmbrvtNpGRkSEaGhqEEEJMnTpV/O53vwu2//DDD0X37t3F//zP/4gvvvhCzJs3L+wy44yMDLFs2TLx2WefiaKiIi4z1vg6t7S0iDlz5oiamhpRW1srVq1aJX74wx+K4cOHixMnTiTkPZqB2uvc2toqNm3aJDZt2iQGDhwo5syZIzZt2iS2b9+u+JjJSI/rfNdddwmv1ytqa2vFhx9+KMaNGyf69esnDhw4YPj7U8r0AcqhQ4dEaWmp6Nu3r0hLSxM333yzaGlpCb5eW1srAAiPxxN8bt68eQJAl8fChQsVHzcZxXKtjx8/Lm6//XZxxhlniN69e4uf/exnor6+Pvj6ypUrxYUXXij69u0r+vTpI0aPHi1eeOEF4fP5jHxrCfXMM8+IIUOGiJ49e4rLLrtMfPzxx8HXrrrqKjFt2rSQ9osXLxbnnHOO6Nmzpzj//PPFP//5z5DX29vbxQMPPCAGDBggUlNTxdixY8VXX31lxFsxNS2v87fffiuuvvpqkZ2dLXr06CGGDh0qbr311qQeNAPUXOfAZ0bnx1VXXaX4mMlK6+t8ww03iIEDB4qePXuKwYMHixtuuEHs2LHDwHekniREEqz3JCIiIksx9TJjIiIiSk4MUIiIiMh0GKAQERGR6TBAISIiItNhgEJERESmwwCFiIiITIcBChEREZkOAxQiIiIyHQYoREREZDoMUIiIiMh0GKAQERGR6TBAISIiItP5/wEp1b8yUKjSwAAAAABJRU5ErkJggg==", + "text/plain": [ + "
      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test, y_test, color='black')\n", + "plt.plot(X_test, y_pred, color='blue', linewidth=3)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "16ff1a974f6e4348e869e4a7d366b86a", + "translation_date": "2025-09-03T19:39:45+00:00", + "source_file": "2-Regression/1-Tools/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/2-Data/README.md b/translations/zh-CN/2-Regression/2-Data/README.md new file mode 100644 index 000000000..1b56a35dd --- /dev/null +++ b/translations/zh-CN/2-Regression/2-Data/README.md @@ -0,0 +1,217 @@ +# 使用 Scikit-learn 构建回归模型:准备和可视化数据 + +![数据可视化信息图](../../../../2-Regression/2-Data/images/data-visualization.png) + +信息图作者:[Dasani Madipalli](https://twitter.com/dasani_decoded) + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +> ### [本课程也提供 R 版本!](../../../../2-Regression/2-Data/solution/R/lesson_2.html) + +## 简介 + +现在你已经准备好使用 Scikit-learn 开始构建机器学习模型,可以开始向数据提出问题了。在处理数据并应用机器学习解决方案时,了解如何提出正确的问题以充分挖掘数据的潜力非常重要。 + +在本课中,你将学习: + +- 如何为模型构建准备数据。 +- 如何使用 Matplotlib 进行数据可视化。 + +## 向数据提出正确的问题 + +你需要回答的问题将决定你使用哪种类型的机器学习算法。而你得到答案的质量将很大程度上取决于数据的性质。 + +看看为本课提供的[数据](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv)。你可以在 VS Code 中打开这个 .csv 文件。快速浏览会发现其中有空白值,还有字符串和数值数据的混合。此外,还有一个名为“Package”的奇怪列,其中的数据是“sacks”、“bins”和其他值的混合。事实上,这些数据有点混乱。 + +[![机器学习入门 - 如何分析和清理数据集](https://img.youtube.com/vi/5qGjczWTrDQ/0.jpg)](https://youtu.be/5qGjczWTrDQ "机器学习入门 - 如何分析和清理数据集") + +> 🎥 点击上方图片观看准备本课数据的简短视频。 + +事实上,很少会直接获得一个完全准备好用于创建机器学习模型的数据集。在本课中,你将学习如何使用标准 Python 库准备原始数据集。你还将学习各种数据可视化技术。 + +## 案例研究:“南瓜市场” + +在本文件夹中,你会发现根目录 `data` 文件夹中有一个名为 [US-pumpkins.csv](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv) 的 .csv 文件,其中包含关于南瓜市场的 1757 行数据,这些数据按城市分组。这是从美国农业部发布的[特种作物终端市场标准报告](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice)中提取的原始数据。 + +### 准备数据 + +这些数据属于公共领域。可以从 USDA 网站按城市下载多个单独的文件。为了避免过多的单独文件,我们将所有城市数据合并到一个电子表格中,因此我们已经对数据进行了部分_准备_。接下来,让我们仔细看看这些数据。 + +### 南瓜数据 - 初步结论 + +你对这些数据有什么发现?你可能已经注意到其中有字符串、数字、空白和一些需要理解的奇怪值。 + +使用回归技术,你可以向这些数据提出什么问题?比如“预测某个月份出售南瓜的价格”。再次查看数据,你需要进行一些更改以创建适合任务的数据结构。 + +## 练习 - 分析南瓜数据 + +让我们使用 [Pandas](https://pandas.pydata.org/)(名称代表 `Python Data Analysis`),一个非常有用的数据处理工具,来分析和准备这些南瓜数据。 + +### 首先,检查缺失日期 + +你首先需要采取步骤检查是否有缺失日期: + +1. 将日期转换为月份格式(这些是美国日期,格式为 `MM/DD/YYYY`)。 +2. 提取月份到一个新列。 + +在 Visual Studio Code 中打开 _notebook.ipynb_ 文件,并将电子表格导入到一个新的 Pandas 数据框中。 + +1. 使用 `head()` 函数查看前五行。 + + ```python + import pandas as pd + pumpkins = pd.read_csv('../data/US-pumpkins.csv') + pumpkins.head() + ``` + + ✅ 你会使用什么函数来查看最后五行? + +1. 检查当前数据框中是否有缺失数据: + + ```python + pumpkins.isnull().sum() + ``` + + 存在缺失数据,但可能对当前任务没有影响。 + +1. 为了让数据框更易于操作,使用 `loc` 函数选择你需要的列。`loc` 函数从原始数据框中提取一组行(作为第一个参数传递)和列(作为第二个参数传递)。下面的表达式 `:` 表示“所有行”。 + + ```python + columns_to_select = ['Package', 'Low Price', 'High Price', 'Date'] + pumpkins = pumpkins.loc[:, columns_to_select] + ``` + +### 其次,确定南瓜的平均价格 + +思考如何确定某个月份南瓜的平均价格。你会选择哪些列来完成这个任务?提示:你需要 3 列。 + +解决方案:取 `Low Price` 和 `High Price` 列的平均值来填充新的 Price 列,并将 Date 列转换为仅显示月份。幸运的是,根据上面的检查,日期和价格没有缺失数据。 + +1. 要计算平均值,添加以下代码: + + ```python + price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2 + + month = pd.DatetimeIndex(pumpkins['Date']).month + + ``` + + ✅ 随时使用 `print(month)` 打印任何数据以进行检查。 + +2. 现在,将转换后的数据复制到一个新的 Pandas 数据框中: + + ```python + new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price}) + ``` + + 打印出你的数据框会显示一个干净整洁的数据集,你可以用它来构建新的回归模型。 + +### 等等!这里有些奇怪的地方 + +如果你查看 `Package` 列,南瓜以许多不同的配置出售。有些以“1 1/9 bushel”计量,有些以“1/2 bushel”计量,有些按南瓜个数出售,有些按磅出售,还有些以不同宽度的大箱子出售。 + +> 南瓜似乎很难一致地称重 + +深入研究原始数据,发现 `Unit of Sale` 等于 'EACH' 或 'PER BIN' 的数据,其 `Package` 类型也为每英寸、每箱或“每个”。南瓜似乎很难一致地称重,因此我们通过选择 `Package` 列中包含字符串 'bushel' 的南瓜来进行过滤。 + +1. 在文件顶部的初始 .csv 导入下添加过滤器: + + ```python + pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)] + ``` + + 如果现在打印数据,你会发现只剩下约 415 行按 bushel 销售的南瓜数据。 + +### 等等!还有一件事要做 + +你是否注意到每行的 bushel 数量不同?你需要对价格进行标准化,以显示每 bushel 的价格,因此需要进行一些数学计算来统一标准。 + +1. 在创建 new_pumpkins 数据框的代码块后添加以下代码: + + ```python + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9) + + new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2) + ``` + +✅ 根据 [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308),bushel 的重量取决于农产品的类型,因为它是一个体积测量单位。“例如,一 bushel 的番茄应该重 56 磅……叶子和绿叶占据更多空间但重量较轻,因此一 bushel 的菠菜只有 20 磅。”这非常复杂!我们不必进行 bushel 到磅的转换,而是按 bushel 定价。然而,所有这些关于南瓜 bushel 的研究表明,了解数据的性质是多么重要! + +现在,你可以根据 bushel 测量分析每单位的定价。如果再打印一次数据,你会看到它已经标准化。 + +✅ 你是否注意到按半 bushel 销售的南瓜非常昂贵?你能找出原因吗?提示:小南瓜比大南瓜贵得多,可能是因为每 bushel 中小南瓜的数量更多,而大空心南瓜占据了更多未使用的空间。 + +## 可视化策略 + +数据科学家的部分职责是展示他们正在处理的数据的质量和性质。为此,他们通常会创建有趣的可视化,例如图表、图形和表格,展示数据的不同方面。通过这种方式,他们能够直观地展示关系和差距,这些关系和差距可能很难通过其他方式发现。 + +[![机器学习入门 - 如何使用 Matplotlib 可视化数据](https://img.youtube.com/vi/SbUkxH6IJo0/0.jpg)](https://youtu.be/SbUkxH6IJo0 "机器学习入门 - 如何使用 Matplotlib 可视化数据") + +> 🎥 点击上方图片观看本课数据可视化的简短视频。 + +可视化还可以帮助确定最适合数据的机器学习技术。例如,一个看起来沿着一条线分布的散点图表明数据非常适合线性回归练习。 + +一个在 Jupyter 笔记本中表现良好的数据可视化库是 [Matplotlib](https://matplotlib.org/)(你在上一课中也见过它)。 + +> 在[这些教程](https://docs.microsoft.com/learn/modules/explore-analyze-data-with-python?WT.mc_id=academic-77952-leestott)中获得更多数据可视化经验。 + +## 练习 - 试验 Matplotlib + +尝试创建一些基本图表来显示你刚刚创建的新数据框。基本折线图会显示什么? + +1. 在文件顶部的 Pandas 导入下导入 Matplotlib: + + ```python + import matplotlib.pyplot as plt + ``` + +1. 重新运行整个笔记本以刷新。 +1. 在笔记本底部添加一个单元格,将数据绘制为一个框图: + + ```python + price = new_pumpkins.Price + month = new_pumpkins.Month + plt.scatter(price, month) + plt.show() + ``` + + ![一个显示价格与月份关系的散点图](../../../../2-Regression/2-Data/images/scatterplot.png) + + 这是一个有用的图表吗?它是否让你感到惊讶? + + 它并不是特别有用,因为它只是显示了某个月份的数据点分布。 + +### 让它更有用 + +为了让图表显示有用的数据,你通常需要以某种方式对数据进行分组。让我们尝试创建一个图表,其中 y 轴显示月份,数据展示数据的分布。 + +1. 添加一个单元格以创建分组柱状图: + + ```python + new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar') + plt.ylabel("Pumpkin Price") + ``` + + ![一个显示价格与月份关系的柱状图](../../../../2-Regression/2-Data/images/barchart.png) + + 这是一个更有用的数据可视化!它似乎表明南瓜的最高价格出现在九月和十月。这符合你的预期吗?为什么? + +--- + +## 🚀挑战 + +探索 Matplotlib 提供的不同类型的可视化。哪些类型最适合回归问题? + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +看看可视化数据的各种方法。列出可用的各种库,并记录哪些库最适合特定类型的任务,例如 2D 可视化与 3D 可视化。你发现了什么? + +## 作业 + +[探索可视化](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/2-Data/assignment.md b/translations/zh-CN/2-Regression/2-Data/assignment.md new file mode 100644 index 000000000..aa863f272 --- /dev/null +++ b/translations/zh-CN/2-Regression/2-Data/assignment.md @@ -0,0 +1,14 @@ +# 探索可视化 + +有许多不同的库可用于数据可视化。在本课中使用南瓜数据,在示例笔记本中使用 matplotlib 和 seaborn 创建一些可视化。哪些库更容易使用? + +## 评分标准 + +| 标准 | 卓越 | 合格 | 需要改进 | +| -------- | --------- | -------- | ----------------- | +| | 提交的笔记本包含两个探索/可视化 | 提交的笔记本包含一个探索/可视化 | 未提交笔记本 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/2-Data/notebook.ipynb b/translations/zh-CN/2-Regression/2-Data/notebook.ipynb new file mode 100644 index 000000000..4746353e3 --- /dev/null +++ b/translations/zh-CN/2-Regression/2-Data/notebook.ipynb @@ -0,0 +1,46 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3", + "language": "python" + }, + "coopTranslator": { + "original_hash": "1b2ab303ac6c604a34c6ca7a49077fc7", + "translation_date": "2025-09-03T19:44:44+00:00", + "source_file": "2-Regression/2-Data/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/2-Data/solution/Julia/README.md b/translations/zh-CN/2-Regression/2-Data/solution/Julia/README.md new file mode 100644 index 000000000..f30fc4eeb --- /dev/null +++ b/translations/zh-CN/2-Regression/2-Data/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/2-Data/solution/R/lesson_2-R.ipynb b/translations/zh-CN/2-Regression/2-Data/solution/R/lesson_2-R.ipynb new file mode 100644 index 000000000..9cb696e33 --- /dev/null +++ b/translations/zh-CN/2-Regression/2-Data/solution/R/lesson_2-R.ipynb @@ -0,0 +1,670 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_2-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "f3c335f9940cfd76528b3ef918b9b342", + "translation_date": "2025-09-03T19:50:05+00:00", + "source_file": "2-Regression/2-Data/solution/R/lesson_2-R.ipynb", + "language_code": "zh" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# 构建回归模型:准备和可视化数据\n", + "\n", + "## **南瓜线性回归 - 第二课**\n", + "#### 介绍\n", + "\n", + "现在你已经准备好了使用Tidymodels和Tidyverse来构建机器学习模型的工具,可以开始对数据提出问题了。在处理数据并应用机器学习解决方案时,正确提出问题以充分挖掘数据的潜力是非常重要的。\n", + "\n", + "在本课中,你将学习:\n", + "\n", + "- 如何为模型构建准备数据。\n", + "\n", + "- 如何使用`ggplot2`进行数据可视化。\n", + "\n", + "你需要回答的问题将决定你使用哪种类型的机器学习算法。而你得到的答案质量将很大程度上取决于数据的性质。\n", + "\n", + "让我们通过一个实际练习来看看这一点。\n", + "\n", + "

      \n", + " \n", + "

      艺术作品由 @allison_horst 提供
      \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "Pg5aexcOPqAZ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. 导入南瓜数据并召唤 Tidyverse\n", + "\n", + "我们需要以下软件包来完成本课程的分析和处理:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一个 [R 软件包集合](https://www.tidyverse.org/packages),旨在让数据科学更快速、更简单、更有趣!\n", + "\n", + "你可以通过以下方式安装它们:\n", + "\n", + "`install.packages(c(\"tidyverse\"))`\n", + "\n", + "下面的脚本会检查你是否已经安装了完成本模块所需的软件包,并在缺少时为你安装它们。\n" + ], + "metadata": { + "id": "dc5WhyVdXAjR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "pacman::p_load(tidyverse)" + ], + "outputs": [], + "metadata": { + "id": "GqPYUZgfXOBt" + } + }, + { + "cell_type": "markdown", + "source": [ + "现在,让我们启动一些软件包并加载为本课程提供的[数据](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/data/US-pumpkins.csv)!\n" + ], + "metadata": { + "id": "kvjDTPDSXRr2" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n =50)" + ], + "outputs": [], + "metadata": { + "id": "VMri-t2zXqgD" + } + }, + { + "cell_type": "markdown", + "source": [ + "一个快速的 `glimpse()` 立即显示出数据中存在空值,并且混合了字符串 (`chr`) 和数值数据 (`dbl`)。`Date` 是字符类型,还有一个奇怪的列叫做 `Package`,其中数据是 `sacks`、`bins` 和其他值的混合。事实上,这些数据有点乱 😤。\n", + "\n", + "实际上,很少会直接获得一个完全准备好用于创建机器学习模型的数据集。但别担心,在本节课中,你将学习如何使用标准的 R 库来准备一个原始数据集 🧑‍🔧。你还将学习各种技术来可视化数据。📈📊\n", + "
      \n", + "\n", + "> 温故知新:管道操作符 (`%>%`) 按逻辑顺序执行操作,将一个对象向前传递到函数或调用表达式中。你可以将管道操作符理解为代码中的“然后”。\n" + ], + "metadata": { + "id": "REWcIv9yX29v" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. 检查缺失数据\n", + "\n", + "数据科学家经常需要处理的一个常见问题是数据不完整或缺失。R使用特殊的哨兵值`NA`(Not Available)来表示缺失或未知的值。\n", + "\n", + "那么我们如何知道数据框中是否包含缺失值呢?\n", + "
      \n", + "- 一个直接的方法是使用R的基础函数`anyNA`,它会返回逻辑对象`TRUE`或`FALSE`\n" + ], + "metadata": { + "id": "Zxfb3AM5YbUe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " anyNA()" + ], + "outputs": [], + "metadata": { + "id": "G--DQutAYltj" + } + }, + { + "cell_type": "markdown", + "source": [ + "太好了,看来有一些数据缺失!这是一个不错的起点。\n", + "\n", + "- 另一种方法是使用函数 `is.na()`,它通过逻辑值 `TRUE` 来指示哪些单个列元素是缺失的。\n" + ], + "metadata": { + "id": "mU-7-SB6YokF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "W-DxDOR4YxSW" + } + }, + { + "cell_type": "markdown", + "source": [ + "对于如此大的数据框,逐行逐列地检查显然效率低下,几乎不可能完成😴。\n", + "\n", + "- 更直观的方法是计算每列中缺失值的总和:\n" + ], + "metadata": { + "id": "xUWxipKYY0o7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "pumpkins %>% \n", + " is.na() %>% \n", + " colSums()" + ], + "outputs": [], + "metadata": { + "id": "ZRBWV6P9ZArL" + } + }, + { + "cell_type": "markdown", + "source": [ + "更棒了!虽然有些数据缺失,但可能对当前任务影响不大。让我们看看进一步的分析会带来什么结果。\n", + "\n", + "> 除了强大的包和函数集合,R 还拥有非常优秀的文档支持。例如,可以使用 `help(colSums)` 或 `?colSums` 来了解更多关于该函数的信息。\n" + ], + "metadata": { + "id": "9gv-crB6ZD1Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. Dplyr:数据操作的语法\n", + "\n", + "

      \n", + " \n", + "

      插图作者:@allison_horst
      \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "o4jLY5-VZO2C" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`dplyr`](https://dplyr.tidyverse.org/) 是 Tidyverse 中的一个包,它是一种数据操作的语法,提供了一组一致的动词,帮助你解决最常见的数据操作问题。在本节中,我们将探索一些 dplyr 的动词! \n", + "
      \n" + ], + "metadata": { + "id": "i5o33MQBZWWw" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::select()\n", + "\n", + "`select()` 是 `dplyr` 包中的一个函数,用于选择保留或排除特定的列。\n", + "\n", + "为了让数据框更易于操作,可以使用 `select()` 删除一些列,仅保留你需要的列。\n", + "\n", + "例如,在这个练习中,我们的分析将涉及 `Package`、`Low Price`、`High Price` 和 `Date` 这些列。让我们选择这些列吧。\n" + ], + "metadata": { + "id": "x3VGMAGBZiUr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(Package, `Low Price`, `High Price`, Date)\n", + "\n", + "\n", + "# Print data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "F_FgxQnVZnM0" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::mutate()\n", + "\n", + "`mutate()` 是 `dplyr` 包中的一个函数,用于创建或修改列,同时保留现有的列。\n", + "\n", + "`mutate` 的一般结构是:\n", + "\n", + "`data %>% mutate(new_column_name = what_it_contains)`\n", + "\n", + "让我们通过以下操作来尝试使用 `mutate` 对 `Date` 列进行处理:\n", + "\n", + "1. 将日期(目前是字符类型)转换为月份格式(这些是美国日期格式,因此格式为 `MM/DD/YYYY`)。\n", + "\n", + "2. 从日期中提取月份到一个新列。\n", + "\n", + "在 R 中,[lubridate](https://lubridate.tidyverse.org/) 包可以更轻松地处理日期时间数据。因此,让我们使用 `dplyr::mutate()`、`lubridate::mdy()` 和 `lubridate::month()` 来实现上述目标。我们可以删除 `Date` 列,因为在后续操作中不再需要它。\n" + ], + "metadata": { + "id": "2KKo0Ed9Z1VB" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load lubridate\n", + "library(lubridate)\n", + "\n", + "pumpkins <- pumpkins %>% \n", + " # Convert the Date column to a date object\n", + " mutate(Date = mdy(Date)) %>% \n", + " # Extract month from Date\n", + " mutate(Month = month(Date)) %>% \n", + " # Drop Date column\n", + " select(-Date)\n", + "\n", + "# View the first few rows\n", + "pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "5joszIVSZ6xe" + } + }, + { + "cell_type": "markdown", + "source": [ + "哇哦!🤩\n", + "\n", + "接下来,让我们创建一个新的列 `Price`,表示南瓜的平均价格。现在,我们将 `Low Price` 和 `High Price` 列的平均值计算出来,用来填充新的 Price 列。\n", + "
      \n" + ], + "metadata": { + "id": "nIgLjNMCZ-6Y" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new column Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(Price = (`Low Price` + `High Price`)/2)\n", + "\n", + "# View the first few rows of the data\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "Zo0BsqqtaJw2" + } + }, + { + "cell_type": "markdown", + "source": [ + "耶!💪\n", + "\n", + "“等等!”你可能会在用 `View(pumpkins)` 浏览整个数据集后说,“这里有点奇怪!”🤔\n", + "\n", + "如果你查看 `Package` 列,会发现南瓜是以多种不同的方式出售的。有些是按 `1 1/9 蒲式耳` 计量出售的,有些是按 `1/2 蒲式耳` 计量出售的,有些是按个数出售的,有些是按重量(磅)出售的,还有一些是装在宽度各异的大箱子里出售的。\n", + "\n", + "让我们来验证一下:\n" + ], + "metadata": { + "id": "p77WZr-9aQAR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Verify the distinct observations in Package column\n", + "pumpkins %>% \n", + " distinct(Package)" + ], + "outputs": [], + "metadata": { + "id": "XISGfh0IaUy6" + } + }, + { + "cell_type": "markdown", + "source": [ + "太棒了!👏\n", + "\n", + "南瓜似乎很难保持一致的称重,因此我们可以通过筛选 `Package` 列中包含字符串 *bushel* 的南瓜来过滤它们,并将结果放入一个新的数据框 `new_pumpkins` 中。\n" + ], + "metadata": { + "id": "7sMjiVujaZxY" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::filter() 和 stringr::str_detect()\n", + "\n", + "[`dplyr::filter()`](https://dplyr.tidyverse.org/reference/filter.html):创建一个数据子集,仅包含满足条件的**行**,在本例中是 `Package` 列中包含字符串 *bushel* 的南瓜。\n", + "\n", + "[stringr::str_detect()](https://stringr.tidyverse.org/reference/str_detect.html):检测字符串中是否存在某个模式。\n", + "\n", + "[`stringr`](https://github.com/tidyverse/stringr) 包提供了用于常见字符串操作的简单函数。\n" + ], + "metadata": { + "id": "L8Qfcs92ageF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Retain only pumpkins with \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(Package, \"bushel\"))\n", + "\n", + "# Get the dimensions of the new data\n", + "dim(new_pumpkins)\n", + "\n", + "# View a few rows of the new data\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "hy_SGYREampd" + } + }, + { + "cell_type": "markdown", + "source": [ + "你可以看到我们已经缩小到大约415行左右的数据,这些数据包含了按蒲式耳计算的南瓜。🤩 \n" + ], + "metadata": { + "id": "VrDwF031avlR" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### dplyr::case_when()\n", + "\n", + "**但等等!还有一件事要做**\n", + "\n", + "你是否注意到每行的蒲式耳数量是不同的?你需要将价格标准化,以显示每蒲式耳的价格,而不是每1 1/9或1/2蒲式耳的价格。是时候做一些数学运算来进行标准化了。\n", + "\n", + "我们将使用函数[`case_when()`](https://dplyr.tidyverse.org/reference/case_when.html)根据一些条件来*变更*价格列的值。`case_when`允许你将多个`if_else()`语句向量化处理。\n" + ], + "metadata": { + "id": "mLpw2jH4a0tx" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(Price = case_when(\n", + " str_detect(Package, \"1 1/9\") ~ Price/(1 + 1/9),\n", + " str_detect(Package, \"1/2\") ~ Price/(1/2),\n", + " TRUE ~ Price))\n", + "\n", + "# View the first few rows of the data\n", + "new_pumpkins %>% \n", + " slice_head(n = 30)" + ], + "outputs": [], + "metadata": { + "id": "P68kLVQmbM6I" + } + }, + { + "cell_type": "markdown", + "source": [ + "现在,我们可以根据蒲式耳的测量来分析每单位的定价。然而,所有这些关于南瓜蒲式耳的研究都表明,`了解数据的本质`是多么`重要`!\n", + "\n", + "> ✅ 根据 [The Spruce Eats](https://www.thespruceeats.com/how-much-is-a-bushel-1389308),蒲式耳的重量取决于农产品的类型,因为它是一种体积测量单位。“例如,一个番茄的蒲式耳应该重56磅……叶类和绿叶蔬菜占据更多空间但重量较轻,所以一个菠菜的蒲式耳只有20磅。”这真的很复杂!我们不必费心将蒲式耳转换为磅,而是直接按蒲式耳定价。然而,所有这些关于南瓜蒲式耳的研究都表明,了解数据的本质是多么重要!\n", + "\n", + "> ✅ 你注意到按半蒲式耳出售的南瓜非常贵吗?你能找出原因吗?提示:小南瓜比大南瓜贵得多,可能是因为每蒲式耳的小南瓜数量更多,而一个大的空心派南瓜占据了更多未使用的空间。\n" + ], + "metadata": { + "id": "pS2GNPagbSdb" + } + }, + { + "cell_type": "markdown", + "source": [ + "现在最后,为了冒险的乐趣 💁‍♀️,我们还将“Month”列移动到第一个位置,也就是在“Package”列之前。\n", + "\n", + "`dplyr::relocate()` 用于更改列的位置。\n" + ], + "metadata": { + "id": "qql1SowfbdnP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create a new data frame new_pumpkins\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(Month, .before = Package)\n", + "\n", + "new_pumpkins %>% \n", + " slice_head(n = 7)" + ], + "outputs": [], + "metadata": { + "id": "JJ1x6kw8bixF" + } + }, + { + "cell_type": "markdown", + "source": [ + "干得好!👌 现在你有一个干净整洁的数据集,可以用来构建新的回归模型! \n" + ], + "metadata": { + "id": "y8TJ0Za_bn5Y" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 4. 使用 ggplot2 进行数据可视化\n", + "\n", + "

      \n", + " \n", + "

      信息图表作者:Dasani Madipalli
      \n", + "\n", + "\n", + "\n", + "\n", + "有一句*智慧*的名言是这样说的:\n", + "\n", + "> “简单的图表比任何其他工具都能为数据分析师带来更多的信息。” --- John Tukey\n", + "\n", + "数据科学家的职责之一是展示他们所处理数据的质量和特性。为此,他们通常会创建有趣的可视化内容,比如图表、折线图和柱状图,来展示数据的不同方面。通过这种方式,他们能够直观地展示数据中的关系和差距,这些信息通常难以通过其他方式发现。\n", + "\n", + "可视化还可以帮助确定最适合数据的机器学习技术。例如,一个看起来沿着直线分布的散点图表明该数据非常适合线性回归分析。\n", + "\n", + "R 提供了多种绘图系统,而 [`ggplot2`](https://ggplot2.tidyverse.org/index.html) 是其中最优雅且最灵活的一个。`ggplot2` 允许你通过**组合独立组件**来构建图表。\n", + "\n", + "我们先从一个简单的散点图开始,展示 Price 和 Month 列的数据。\n", + "\n", + "在这个例子中,我们将从 [`ggplot()`](https://ggplot2.tidyverse.org/reference/ggplot.html) 开始,提供一个数据集和美学映射(使用 [`aes()`](https://ggplot2.tidyverse.org/reference/aes.html)),然后添加图层(例如用于散点图的 [`geom_point()`](https://ggplot2.tidyverse.org/reference/geom_point.html))。\n" + ], + "metadata": { + "id": "mYSH6-EtbvNa" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set a theme for the plots\n", + "theme_set(theme_light())\n", + "\n", + "# Create a scatter plot\n", + "p <- ggplot(data = new_pumpkins, aes(x = Price, y = Month))\n", + "p + geom_point()" + ], + "outputs": [], + "metadata": { + "id": "g2YjnGeOcLo4" + } + }, + { + "cell_type": "markdown", + "source": [ + "这个图表有用吗🤷?有没有什么让你感到惊讶的地方?\n", + "\n", + "它并不是特别有用,因为它只是将你的数据以某个月的点状分布显示出来。\n", + "
      \n" + ], + "metadata": { + "id": "Ml7SDCLQcPvE" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **如何让它更有用?**\n", + "\n", + "为了让图表显示有用的数据,通常需要以某种方式对数据进行分组。例如,在我们的案例中,计算每个月南瓜的平均价格可以为数据中的潜在模式提供更多洞察。这引导我们了解另一个 **dplyr** 的功能:\n", + "\n", + "#### `dplyr::group_by() %>% summarize()`\n", + "\n", + "在 R 中可以轻松计算分组聚合:\n", + "\n", + "`dplyr::group_by() %>% summarize()`\n", + "\n", + "- `dplyr::group_by()` 将分析单位从整个数据集更改为单个组,例如按月分组。\n", + "\n", + "- `dplyr::summarize()` 创建一个新的数据框,其中每个分组变量有一列,以及每个指定的汇总统计量有一列。\n", + "\n", + "例如,我们可以使用 `dplyr::group_by() %>% summarize()` 将南瓜按 **Month** 列分组,然后计算每个月的 **平均价格**。\n" + ], + "metadata": { + "id": "jMakvJZIcVkh" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price))" + ], + "outputs": [], + "metadata": { + "id": "6kVSUa2Bcilf" + } + }, + { + "cell_type": "markdown", + "source": [ + "简洁明了!✨\n", + "\n", + "像月份这样的分类特征更适合用柱状图来表示 📊。负责绘制柱状图的图层是 `geom_bar()` 和 `geom_col()`。查看 `?geom_bar` 以了解更多信息。\n", + "\n", + "让我们来试试吧!\n" + ], + "metadata": { + "id": "Kds48GUBcj3W" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the average price of pumpkins per month then plot a bar chart\r\n", + "new_pumpkins %>%\r\n", + " group_by(Month) %>% \r\n", + " summarise(mean_price = mean(Price)) %>% \r\n", + " ggplot(aes(x = Month, y = mean_price)) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"Pumpkin Price\")" + ], + "outputs": [], + "metadata": { + "id": "VNbU1S3BcrxO" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩这是一个更有用的数据可视化!它似乎表明南瓜的最高价格出现在九月和十月。这符合你的预期吗?为什么符合或不符合?\n", + "\n", + "恭喜你完成了第二课 👏!你已经为模型构建准备好了数据,并通过可视化发现了更多的洞察!\n" + ], + "metadata": { + "id": "zDm0VOzzcuzR" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/2-Data/solution/notebook.ipynb b/translations/zh-CN/2-Regression/2-Data/solution/notebook.ipynb new file mode 100644 index 000000000..3e189f692 --- /dev/null +++ b/translations/zh-CN/2-Regression/2-Data/solution/notebook.ipynb @@ -0,0 +1,437 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
      70BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      71BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN9/24/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      72BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1618.018.018.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      73BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/1/1617.017.017.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      74BALTIMORENaN1 1/9 bushel cartonsPIE TYPENaNNaN10/8/1615.015.015.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      \n", + "

      5 rows × 26 columns

      \n", + "
      " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade \\\n", + "70 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "71 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "72 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "73 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "74 BALTIMORE NaN 1 1/9 bushel cartons PIE TYPE NaN NaN \n", + "\n", + " Date Low Price High Price Mostly Low ... Unit of Sale Quality \\\n", + "70 9/24/16 15.0 15.0 15.0 ... NaN NaN \n", + "71 9/24/16 18.0 18.0 18.0 ... NaN NaN \n", + "72 10/1/16 18.0 18.0 18.0 ... NaN NaN \n", + "73 10/1/16 17.0 17.0 17.0 ... NaN NaN \n", + "74 10/8/16 15.0 15.0 15.0 ... NaN NaN \n", + "\n", + " Condition Appearance Storage Crop Repack Trans Mode Unnamed: 24 \\\n", + "70 NaN NaN NaN NaN N NaN NaN \n", + "71 NaN NaN NaN NaN N NaN NaN \n", + "72 NaN NaN NaN NaN N NaN NaN \n", + "73 NaN NaN NaN NaN N NaN NaN \n", + "74 NaN NaN NaN NaN N NaN NaN \n", + "\n", + " Unnamed: 25 \n", + "70 NaN \n", + "71 NaN \n", + "72 NaN \n", + "73 NaN \n", + "74 NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "City Name 0\n", + "Type 406\n", + "Package 0\n", + "Variety 0\n", + "Sub Variety 167\n", + "Grade 415\n", + "Date 0\n", + "Low Price 0\n", + "High Price 0\n", + "Mostly Low 24\n", + "Mostly High 24\n", + "Origin 0\n", + "Origin District 396\n", + "Item Size 114\n", + "Color 145\n", + "Environment 415\n", + "Unit of Sale 404\n", + "Quality 415\n", + "Condition 415\n", + "Appearance 415\n", + "Storage 415\n", + "Crop 415\n", + "Repack 0\n", + "Trans Mode 415\n", + "Unnamed: 24 415\n", + "Unnamed: 25 391\n", + "dtype: int64" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins.isnull().sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Month Package Low Price High Price Price\n", + "70 9 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "71 9 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "72 10 1 1/9 bushel cartons 18.00 18.0 16.20\n", + "73 10 1 1/9 bushel cartons 17.00 17.0 15.30\n", + "74 10 1 1/9 bushel cartons 15.00 15.0 13.50\n", + "... ... ... ... ... ...\n", + "1738 9 1/2 bushel cartons 15.00 15.0 30.00\n", + "1739 9 1/2 bushel cartons 13.75 15.0 28.75\n", + "1740 9 1/2 bushel cartons 10.75 15.0 25.75\n", + "1741 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "1742 9 1/2 bushel cartons 12.00 12.0 24.00\n", + "\n", + "[415 rows x 5 columns]\n" + ] + } + ], + "source": [ + "\n", + "# A set of new columns for a new dataframe. Filter out nonmatching columns\n", + "columns_to_select = ['Package', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Get an average between low and high price for the base pumpkin price\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "# Convert the date to its month only\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "\n", + "# Create a new dataframe with this basic data\n", + "new_pumpkins = pd.DataFrame({'Month': month, 'Package': pumpkins['Package'], 'Low Price': pumpkins['Low Price'],'High Price': pumpkins['High Price'], 'Price': price})\n", + "\n", + "# Convert the price if the Package contains fractional bushel values\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/(1 + 1/9)\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price/(1/2)\n", + "\n", + "print(new_pumpkins)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcXklEQVR4nO3dfZRcdZ3n8fdnKg80GbAJdLKkSQyTycnoEodoLQlGOXE0JiauZNiZFRbOoqPkuIddnWE3M7BwxmEOOcTJLOJZ96wbkBFHJjrjYGTFMWRRhlkXohUTCYoRkAh0kPQY4gO2Etrv/lG3YqW6bj3d7qrum8/rnD5d9btP3/u7v/p09a3bfRURmJlZfv1arwswM7OJ5aA3M8s5B72ZWc456M3Mcs5Bb2aWc9N6XUA9Z511VixcuLDXZZiZTRl79uz554gYqDdtUgb9woULKZVKvS7DzGzKkPT9tGk+dWNmlnMOejOznHPQm5nlnIPezCznHPRmZjnX9KobSXcAbwcOR8R5SdtW4F8DLwFPAu+OiKN1ll0LfAQoALdHxJbxK717Lr/tIb765JHjz1cums1dV104Zr7VtzzA44dfPP588ZxZ7LpmVTdKTLVj7xBbdx7g0NER5vX3sWnNEjYsG+xpTWbWXa28o/8EsLambRdwXkS8BvgucF3tQpIKwP8A3ga8GrhM0qszVdsDtSEP8NUnj3D5bQ+d0FYb8gCPH36R1bc8MNElptqxd4jr7t7P0NERAhg6OsJ1d+9nx96hntVkZt3XNOgj4kHgSE3bfRHxcvL0YeCcOoteADwREd+LiJeATwMXZ6y362pDPq29NuSbtXfD1p0HGDk2ekLbyLFRtu480KOKzKwXxuMc/R8A/1CnfRB4pur5s0lbXZI2SipJKg0PD49DWXbo6Ehb7WaWT5mCXtL1wMvAXVkLiYhtEVGMiOLAQN2/4rU2zevva6vdzPKp46CX9C7KH9JeHvVvUzUEzK96fk7SNqWsXDS7pfbFc2bVnS+tvRs2rVlC3/TCCW190wtsWrOkRxWZWS90FPTJ1TR/DLwjIn6WMtvXgcWSzpU0A7gUuKezMnvnrqsuHBPq9a662XXNqjGh3uurbjYsG+TmS5Yy2N+HgMH+Pm6+ZKmvujE7yajZPWMlbQdWAWcBzwMfpHyVzUzgh8lsD0fE+yTNo3wZ5bpk2XXArZQvr7wjIja3UlSxWAz/UzMzs9ZJ2hMRxbrTJuPNwR30ZmbtaRT0/stYM7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzTYNe0h2SDkt6tKrt9yV9S9IvJdX9R/fJfAcl7Ze0T5LvJGJm1gOtvKP/BLC2pu1R4BLgwRaWf1NEnJ925xMzM5tY05rNEBEPSlpY0/YYgKQJKsvMzMbLRJ+jD+A+SXskbWw0o6SNkkqSSsPDwxNclpnZyWOig/4NEfFa4G3A1ZIuSpsxIrZFRDEiigMDAxNclpnZyWNCgz4ihpLvh4HPARdM5PbMzGysCQt6SbMknVZ5DLyV8oe4ZmbWRa1cXrkdeAhYIulZSe+R9LuSngUuBO6VtDOZd56kLyaLzgX+r6RvAl8D7o2IL03MbpiZWZpWrrq5LGXS5+rMewhYlzz+HvDbmaozM7PM/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznmt54RNIdwNuBwxFxXtL2+8CfAa8CLoiIUsqya4GPAAXg9ojYMk51j7Fj7xBbdx7g0NER5vX3sWnNEjYsG2x7PatveYDHD794/PniObN4avhFXo5fzTNN8MTN68csu/Dae8e0Hdwydr5qN+zYz/bdzzAaQUHisuXzuWnD0pZqbWWf6+3PrmtWtbR+K8tyjJZv3sXzP3np+PO5p81g9/WrgebjpdF2x2u8t6vR/jSTpR+b6VV/TBWKiMYzSBcBPwU+WRX0rwJ+Cfwv4L/UC3pJBeC7wGrgWeDrwGUR8e1mRRWLxSiV6v7sqGvH3iGuu3s/I8dGj7f1TS9w8yVL2zrYtaHYSG3Y13vRVqSF/Q079vOph58e037FigVNXwCt7HPa/jjsW5flGNWGYsXc02bUba84uGV9w+0WXzl7XMZ7uxrtT7Owz9KPzYzX63+qk7QnIor1pjU9dRMRDwJHatoei4gDTRa9AHgiIr4XES8BnwYubrHmtmzdeeCEgwwwcmyUrTublXiiVkMeOOEdfqe2736mrfZqrexz2v60s58nuyzHKC3MG4V8K9sdr/Heronan6x61R9TyUSeox8Eqo/is0lbXZI2SipJKg0PD7e1oUNHR9pqnyxGU36bSmuvNlX3earJcowmartT8dhPZD9Oxf7otknzYWxEbIuIYkQUBwYG2lp2Xn9fW+2TRUFqq73aVN3nqSbLMZqo7U7FYz+R/TgV+6PbJjLoh4D5Vc/PSdrG3aY1S+ibXjihrW96gU1rlrS1nsVzZrU877RxeJ1ftnx+W+3VWtnntP1pZz9PdlmO0dzTZrTV3up2x2u8t2ui9ierXvXHVDKRQf91YLGkcyXNAC4F7pmIDW1YNsjNlyxlsL8PAYP9fR19ELPrmlVjQnDxnFljQr3eVTdpH7g2uurmpg1LuWLFguPvagpSyx9OtbLPafvjD2Jbl+UY7b5+9ZgQrHxw2Wy8NNrueI33djXan2ay9GMzveqPqaSVq262A6uAs4DngQ9S/nD2vwMDwFFgX0SskTSP8mWU65Jl1wG3Ur688o6I2NxKUe1edWNmdrJrdNVN06DvBQe9mVl7Ml1eaWZmU5uD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnNNg17SHZIOS3q0qm22pF2SHk++n5Gy7KikfcnXhNxdyszMGmvlHf0ngLU1bdcC90fEYuD+5Hk9IxFxfvL1js7LNDOzTjUN+oh4kPKtA6tdDNyZPL4T2DC+ZZmZ2Xjp9Bz93Ih4Lnn8A2BuynynSCpJeljShkYrlLQxmbc0PDzcYVlmZlYr84exUb7pbNqNZ1+Z3MPw3wG3SlrUYD3bIqIYEcWBgYGsZZmZWaLToH9e0tkAyffD9WaKiKHk+/eAB4BlHW7PzMw61GnQ3wNcmTy+Evh87QySzpA0M3l8FrAS+HaH2zMzsw61cnnlduAhYImkZyW9B9gCrJb0OPCW5DmSipJuTxZ9FVCS9E3gK8CWiHDQm5l12bRmM0TEZSmT3lxn3hLw3uTx/wOWZqrOzMwy81/GmpnlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Oca3rjEQBJdwBvBw5HxHlJ22zgM8BC4CDwbyPihTrLXgnckDy9KSLuzF72WKtveYDHD794/PniObPYdc0qAHbsHWLrzgMcOjrCvP4+Nq1ZwoZlg22tr9bBLevHrDvtDun1TBM8cfN6Lr/tIb765JHj7SsXzeauqy5saR3LN+/i+Z+8dPz53NNmsPv61Q33o7pf8mThtfeOaasco6zLvuaDX+LHvxg9/vz0mQUeuXEt0HxsNVp3s+22u+xgf19LY/yGHfvZvvsZRiMoSFy2fD43bWjtHkHnXnvvCeNcwFPj1M/dcrK8Jqoponk8SboI+Cnwyaqg/wvgSERskXQtcEZE/EnNcrOBElAEAtgDvK7eD4RqxWIxSqVSyzuRFsqL58zi6jct5rq79zNy7Fcv1L7pBW6+ZGnqC6FZyFfc+s7zx6x7PLQS9rUhX1Ed9o36JU8Du16AVDQLkmbL1oZ8xekzC/z5hqUNx1ajdTdycMv6jpetV0e1G3bs51MPPz1m/itWLGga9rUhX9FK2Gc5RuMpz68JSXsiolhvWkunbiLiQeBITfPFQOXd+Z3AhjqLrgF2RcSRJNx3AWtb2WY70kL58cMvsnXngTFBPHJslK07D7S9vlr11j0eqt/hp6kX8rXtjfrFWlMv5CvtnYytbkmrY/vuZ+rOn9ZeLe0tYTu/yfbayfqayHKOfm5EPJc8/gEwt848g0D1CHo2aRtD0kZJJUml4eHhDGWd6NDRkbbax2PddnKYyLE1HurVMZryG3xau+XDuHwYG+XzP5lGSkRsi4hiRBQHBgbGoywA5vX3tdU+Huu2k8NEjq3xUK+OglR33rR2y4csQf+8pLMBku+H68wzBMyven5O0jauFs+Zldq+ac0S+qYXTmjvm15g05olba+vVr11j4eVi2Y3nWfuaTOatjfqF2vN6TPrH9/TZxY6GlvdklbHZcvn15k7vb1a2o+CqfQj4mR9TWQJ+nuAK5PHVwKfrzPPTuCtks6QdAbw1qRtXO26ZtWYA1X5cGXDskFuvmQpg/19iPKVCY0+iE1bX62DW9aPWXc7pqm8jtpQb/Wqm93Xrx4T9rVX3TTqlzxJ+zCvlQ/5mi37yI1rx4R95aqbZmOr0bqbbbeTZVsZ4zdtWMoVKxYcfwdfkFr6IBbKH7jWjvNWr7rJcozG08nymqjV6lU324FVwFnA88AHgR3A3wILgO9TvrzyiKQi8L6IeG+y7B8A/zVZ1eaI+Ktm22v3qhszs5Ndo6tuWgr6bnPQm5m1J/PllWZmNnU56M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczy7lMQS/pA5IelfQtSX9YZ/oqST+StC/5+tMs2zMzs/ZN63RBSecBVwEXAC8BX5L0hYh4ombWf4qIt2eo0czMMsjyjv5VwO6I+FlEvAz8I3DJ+JRlZmbjJUvQPwq8UdKZkk4F1gHz68x3oaRvSvoHSf8ybWWSNkoqSSoNDw9nKMvMzKp1fOomIh6T9CHgPuBFYB8wWjPbN4BXRsRPJa0DdgCLU9a3DdgG5ZuDd1qXmZmdKNOHsRHx8Yh4XURcBLwAfLdm+o8j4qfJ4y8C0yWdlWWbZmbWnqxX3cxJvi+gfH7+b2qm/wtJSh5fkGzvh1m2aWZm7en41E3i7yWdCRwDro6Io5LeBxARHwN+D/gPkl4GRoBLI8KnZczMuihT0EfEG+u0fazq8UeBj2bZhpmZZeO/jDUzyzkHvZlZzjnozcxyzkFvZpZzDnozs5xz0JuZ5ZyD3sws5xz0ZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcy/T96SR8ArgIE3BYRt9ZMF/ARyjcO/xnwroj4RpZtdssNO/azffczjEYgoHK3lILErBm/xo9/8avb4y6eM4td16zi8tse4qtPHmlp/QKe2rIeYMxyKxfN5q6rLgTgt67/Ij8f/dW9Wk4piO9sXgfA8s27eP4nLx2fNve0Gey+fvUJtVcM9vexac0SNiwbbHv/CxKXLZ/PTRuWtrTs6lse4PHDLx5/XukfgB17h9i68wCHjo4wr6qmTrbX6BhVlm9lvQuvvXfMug9uWV+3HwsSK37jDA7+cIRDR0c4dUaBn700StRst+I1H/zSCWPl9JkFHrlxbcPtVjQaF82WbaTRmGom7fhN9LJZNBsDjepqdAza1Wg7E9036vSGT5LOAz4NXAC8BHwJeF9EPFE1zzrgP1EO+uXARyJiebN1F4vFKJVKHdU1Hm7YsZ9PPfx0W8ucUtAJL55WCHj9otl1fzisXDSbPQdfqLvOUwriFadOPyHkW6mjb3qBmy9Z2nQApe3/FSsWNA3f2pCvWDxnFle/aTHX3b2fkWO/Cr6+6QVeu+AVdfug0fZaOUaL58yqW0v1eusFZlaV9deGfMXpMwt12ysOblmf+qZhZcp4qV62kdqQr2gl7HfsHap7/FoZU1mWzaLZWG5U19+Vnk49Bu2GfaPtAOPSN5L2RESx3rQsp25eBeyOiJ9FxMvAP1K+b2y1i4FPRtnDQL+kszNssyu2736m7WXaDXkovwNNe9F+9ckjqev8+WjUDflmdYwcG2XrzgNN60rb/1b6pV6wVtq37jxwwmCu1JTWB422l6WWTo5vOyrrTwvzRiFf0WhcZNFoTDWTdvxaGVNZls2i2VhuVNd4HoNG2+lG32QJ+keBN0o6U9KplN+1z6+ZZxCo7ulnk7YxJG2UVJJUGh4ezlBWdqM5vq3toaMjTedJ2/+s/dLKtlvdXpZaJvr45nX8pB2/Vo5rlmWzaDaWu1VXo+10o4aOgz4iHgM+BNxH+bTNPqD5W5X09W2LiGJEFAcGBjpdzbgoSD3d/kSa19/XdJ60/c/aL61su9XtZalloo9vXsdP2vFr5bhmWTaLZmO5W3U12k43ash01U1EfDwiXhcRFwEvAN+tmWWIE9/ln5O0TWqXLa/9xaS5Uwrtv7hF+XxfPSsXzU5d5ykFMfe0GW3X0Te9wKY1S5rWlbb/rfTL4jmzUts3rVlC3/TCmJrS+qDR9rLU0snxbUdl/afPLNSdntZerdG4yKLRmGom7fi1MqayLJtFs7HcqK7xPAaNttONvskU9JLmJN8XUD4//zc1s9wD/HuVrQB+FBHPZdlmN9y0YSlXrFhw/Kd+9UugII15oS6eM4vvbF7X1gCoXHVz11UXjlmu8mHPdzavG/MCrHxotvv61WPCfu5pM/jO5nUn1F4x2N/X8oc7tftfkFr6IBZg1zWrxgRs5aqbDcsGufmSpQz296Gqmu666sK2t9fsGF2xYgG7rlnVdL1pH14e3LK+bj8WJFYumn18H2bNKBzfdu36H7lx7ZixUrnqptF2gYbjotmyjTQaU82kHb9WxlSWZbNoNpYb1dXoGLSr0Xa60TcdX3UDIOmfgDOBY8A1EXG/pPcBRMTHkssrPwqspXx55bsjounlNL2+6sbMbKppdNVNpuvoI+KNddo+VvU4gKuzbMPMzLLxX8aameWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzjnozcxyzkFvZpZzDnozs5zLeivBP5L0LUmPStou6ZSa6e+SNCxpX/L13mzlmplZuzoOekmDwPuBYkScBxSAS+vM+pmIOD/5ur3T7ZmZWWeynrqZBvRJmgacChzKXpKZmY2njoM+IoaAvwSeBp4DfhQR99WZ9d9IekTSZyXNT1ufpI2SSpJKw8PDnZZlZmY1spy6OQO4GDgXmAfMknRFzWz/G1gYEa8BdgF3pq0vIrZFRDEiigMDA52WZWZmNbKcunkL8FREDEfEMeBu4PXVM0TEDyPiF8nT24HXZdiemZl1IEvQPw2skHSqJAFvBh6rnkHS2VVP31E73czMJt60TheMiN2SPgt8A3gZ2Atsk/TnQCki7gHeL+kdyfQjwLuyl2xmZu1QRPS6hjGKxWKUSqVel2FmNmVI2hMRxXrT/JexZmY556A3M8s5B72ZWc456M3Mcs5Bb2aWcw56M7Occ9CbmeWcg97MLOcc9GZmOeegNzPLOQe9mVnOOejNzHLOQW9mlnMOejOznHPQm5nlnIPezCznOr7DFICkPwLeCwSwH3h3RPy8avpM4JOU7xX7Q+CdEXEwyzbzaMfeIbbuPMChoyPM6+9j05olbFg22HSaWSc8pk4+HQe9pEHg/cCrI2JE0t8ClwKfqJrtPcALEfGbki4FPgS8M0O9ubNj7xDX3b2fkWOjAAwdHeG6u/cfn542zS9M60Sj8eYxlV9ZT91MA/okTQNOBQ7VTL8YuDN5/FngzcmNxC2xdeeB4y+6ipFjo2zdeaDhNLNOeEydnDoO+ogYAv4SeBp4DvhRRNxXM9sg8Ewy/8vAj4Az661P0kZJJUml4eHhTsuacg4dHUltbzTNrBMeUyenjoNe0hmU37GfC8wDZkm6otP1RcS2iChGRHFgYKDT1Uw58/r7UtsbTTPrhMfUySnLqZu3AE9FxHBEHAPuBl5fM88QMB8gOb3zCsofylpi05ol9E0vnNDWN73ApjVLGk4z64TH1Mkpy1U3TwMrJJ0KjABvBko189wDXAk8BPwe8OWIiAzbzJ3KB2CNroLwFRI2XloZb5Y/ypK7km6kfBXNy8BeypdaXg+UIuIeSacAfw0sA44Al0bE95qtt1gsRqlU+zPDzMzSSNoTEcW60ybjG2wHvZlZexoFvf8y1sws5xz0ZmY556A3M8s5B72ZWc5Nyg9jJQ0D328y21nAP3ehnHZMxppgctblmlo3GeuajDXB5KyrWzW9MiLq/rXppAz6VkgqpX3C3CuTsSaYnHW5ptZNxromY00wOeuaDDX51I2ZWc456M3Mcm4qB/22XhdQx2SsCSZnXa6pdZOxrslYE0zOunpe05Q9R29mZq2Zyu/ozcysBQ56M7OcmxJBL+kOSYclPVrVNlvSLkmPJ9/PmAQ1/ZmkIUn7kq91Xa5pvqSvSPq2pG9J+kDS3rO+alBTr/vqFElfk/TNpK4bk/ZzJe2W9ISkz0iaMQlq+oSkp6r66vxu1VRVW0HSXklfSJ73rJ+a1NXTvpJ0UNL+ZNulpK2nWQVTJOgp33B8bU3btcD9EbEYuD953uuaAD4cEecnX1/sck0vA/85Il4NrACulvRqettXaTVBb/vqF8DvRMRvA+cDayWtoHwD+w9HxG8CL1C+wX2vawLYVNVX+7pYU8UHgMeqnveyn6rV1gW976s3JduuXDvf66yaGkEfEQ9S/n/21apvPH4nsGES1NRTEfFcRHwjefwTyi+AQXrYVw1q6qko+2nydHryFcDvUL6RPXS/r9Jq6ilJ5wDrgduT56KH/ZRW1yTW06yCKRL0KeZGxHPJ4x8Ac3tZTJX/KOmR5NRO139Fq5C0kPINX3YzSfqqpibocV8lv/bvAw4Du4AngaPJjewBnqXLP5Rqa4qISl9tTvrqw5JmdrMm4Fbgj4FfJs/PpMf9lFJXRS/7KoD7JO2RtDFp6/nrbyoH/XHJ7Ql7/s4H+J/AIsq/dj8H/LdeFCHp14G/B/4wIn5cPa1XfVWnpp73VUSMRsT5wDnABcBvdbuGWrU1SToPuI5ybf8KmA38SbfqkfR24HBE7OnWNlvRoK6e9VXiDRHxWuBtlE9TXlQ9sVevv6kc9M9LOhsg+X64x/UQEc8nL9RfArdRDo+ukjSdcqDeFRF3J8097at6NU2GvqqIiKPAV4ALgX6Vb2QP5bAd6nFNa5PTXxERvwD+iu721UrgHZIOAp+mfMrmI/S+n8bUJelTPe4rImIo+X4Y+Fyy/Z5n1VQO+sqNx0m+f76HtQDHD2LF7wKPps07QdsX8HHgsYi4pWpSz/oqraZJ0FcDkvqTx33AasqfH3yF8o3soft9Va+m71SFhCif3+1aX0XEdRFxTkQsBC4FvhwRl9PDfmpQ1xW97CtJsySdVnkMvDXZfu+zKiIm/RewnfKv98conw98D+XzhPcDjwP/B5g9CWr6a2A/8Ajlg3t2l2t6A+VfCx8B9iVf63rZVw1q6nVfvYbyDe0fofxi/NOk/TeArwFPAH8HzJwENX056atHgU8Bv97NvqqqbxXwhV73U5O6etZXSZ98M/n6FnB90t7TrIoI/wsEM7O8m8qnbszMrAUOejOznHPQm5nlnIPezCznHPRmZjnnoDczyzkHvZlZzv1/N8s9l//aWz4AAAAASUVORK5CYII=", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "price = new_pumpkins.Price\n", + "month = new_pumpkins.Month\n", + "plt.scatter(price, month)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Pumpkin Price')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEJCAYAAACT/UyFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAARAElEQVR4nO3de5AlZX3G8e8joKigiIwbVNYVQ6ErwcVaiRW0CgUNikEQKxFTijHJahlUSsvUqknE/LVE0KoYNVkDigloNCoQLt5AxUuCLrrhIhqUQgMiLBGE0goR+OWP0+sMszOzZ8ft0zO830/VqTndfc7phwae6XlPX1JVSJLa8aChA0iSJsvil6TGWPyS1BiLX5IaY/FLUmMsfklqzK5DBxjHPvvsU6tWrRo6hiQtK1dcccVtVTU1e/6yKP5Vq1axadOmoWNI0rKS5IdzzXeoR5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYZXECl3auVesvHDoCN2w4eugIUrMsfjXNX4JqkUM9ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqTG/Fn2S/JF9M8p0k1yR5Yzf/lCQ3JdncPV7YVwZJ0rZ27fGz7wHeXFXfSrIncEWSz3fL3lNVp/W4bknSPHor/qq6Gbi5e35XkmuBx/W1PknSePrc4/+VJKuAQ4DLgcOAk5K8EtjE6K+C2yeRQ9L8Vq2/cOgI3LDh6KEjNKH3L3eT7AF8Eji5qu4EPgA8CVjD6C+C0+d537okm5Js2rJlS98xJakZvRZ/kt0Ylf7ZVfUpgKq6parurar7gA8Ch8713qraWFVrq2rt1NRUnzElqSl9HtUT4Azg2qp694z5+8542XHA1X1lkCRtq88x/sOAVwBXJdnczXsbcEKSNUABNwCv6TGDJGmWPo/q+SqQORZd1Nc6F+IXV5I04pm7ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JakxvxZ9kvyRfTPKdJNckeWM3f+8kn09yXffzUX1lkCRtq889/nuAN1fVauCZwJ8lWQ2sBy6pqgOAS7ppSdKE9Fb8VXVzVX2re34XcC3wOODFwFndy84Cju0rgyRpWxMZ40+yCjgEuBxYUVU3d4t+AqyY5z3rkmxKsmnLli2TiClJTei9+JPsAXwSOLmq7py5rKoKqLneV1Ubq2ptVa2dmprqO6YkNWOs4k/y0CQH7uiHJ9mNUemfXVWf6mbfkmTfbvm+wK07+rmSpMXbbvEn+T1gM/CZbnpNkvPHeF+AM4Brq+rdMxadD5zYPT8ROG8HM0uSfg3j7PGfAhwK3AFQVZuBJ47xvsOAVwDPTbK5e7wQ2AA8L8l1wJHdtCRpQnYd4zW/rKqfjXbgf2XOcfn7vaDqq0DmWXzEGOuVJPVgnOK/JsnLgV2SHAC8Afh6v7EkSX0ZZ6jn9cBTgbuBc4CfASf3mEmS1KPt7vFX1S+At3cPSdIyN85RPZ9PsteM6Ucl+WyvqSRJvRlnqGefqrpj60RV3Q48prdEkqRejVP89yVZuXUiyRMY46geSdLSNM5RPW8Hvprky4wOz3w2sK7XVJKk3ozz5e5nkjyd0aWVYXTNndv6jSVJ6su8Qz1Jntz9fDqwEvhx91jZzZMkLUML7fG/idGQzulzLCvgub0kkiT1at7ir6p1SR4E/EVVfW2CmSRJPVrwqJ6qug/4uwllkSRNwDiHc16S5PjMukqbJGl5Gqf4XwN8Arg7yZ1J7kpy5/beJElamsY5nHPPSQSRJE3GQodzHpDkvCRXJzknyeMmGUyS1I+FhnrOBC4Ajge+Dbx3IokkSb1aaKhnz6r6YPf8XUm+NYlAkqR+LVT8uyc5hOnbJz505nRV+YtAkpahhYr/ZuDdM6Z/MmPaM3claZla6Mzd50wyiCRpMsY5jl+S9ABi8UtSYyx+SWrMOHfgojt56wkzX19Vl/UVSpLUn+0Wf5JTgT8AvgPc280uwOKXpGVonD3+Y4EDq+runrNIkiZgnOK/HtgN2KHiT3Im8CLg1qo6qJt3CvCnwJbuZW+rqot25HMlqW+r1l84dARu2HB0b589TvH/Atic5BJmlH9VvWE77/swo5u4fGTW/PdU1Wk7ElKStPOMU/znd48dUlWXJVm1w4kkSb0a53r8Z+3kdZ6U5JXAJuDNVXX7XC9Kso7Rzd5ZuXLlTo4gSe1a6Hr8H+9+XpXkytmPRa7vA8CTgDWMrgV0+nwvrKqNVbW2qtZOTU0tcnWSpNkW2uN/Y/fzRTtrZVV1y9bnST7I6Hr/kqQJmnePv6pu7p6urqofznwAL1jMypLsO2PyOODqxXyOJGnxxvly9y+T3F1VlwIk+XPgOcDfL/SmJB8FDgf2SXIj8A7g8CRrGJ0AdgOjG7lLkiZonOI/BrggyVuAo4AnAy/e3puq6oQ5Zp+xY/EkSTvbOEf13JbkGOALwBXAS6uqek8mSerFvMWf5C5GQzJbPRjYH3hpkqqqR/QdTpK08y10B649JxlEkjQZ416W+SXAsxj9BfCVqjq3z1CSpP5s90YsSd4PvBa4itHhl69N8r6+g0mS+jHOHv9zgads/UI3yVnANb2mkiT1ZpxbL34fmHmxnP26eZKkZWicPf49gWuTfKObfgawKcn5AFV1TF/hJEk73zjF/1e9p5AkTcw4J3B9GSDJI7j/zdZ/2mMuSVJPxrnZ+jrgr4H/Be4Dwuiwzv37jSZJ6sM4Qz1vAQ6qqtv6DiNJ6t84R/X8gNF9dyVJDwDj7PG/Ffh6ksvZsZutS5KWoHGK/x+ASxmduXtfv3EkSX0bp/h3q6o39Z5EkjQR44zxX5xkXZJ9k+y99dF7MklSL8bZ4996J623zpjn4ZyStEyNcwLXEycRRJI0GeOcwPXKueZX1Ud2fhxJUt/GGep5xoznuwNHAN8CLH5JWobGGep5/czpJHsBH+srkCSpX+Mc1TPbzwHH/SVpmRpnjP/fGB3FA6NfFKuBj/cZSpLUn3HG+E+b8fwe4IdVdWNPeSRJPZu3+JPszugm67/J6HINZ1TVPZMKJknqx0Jj/GcBaxmV/guA0yeSSJLUq4WGelZX1W8BJDkD+MYCr91GkjOBFwG3VtVB3by9gX8BVgE3AL9fVbfveGxJ0mIttMf/y61PFjnE82HgqFnz1gOXVNUBwCXdtCRpghYq/qclubN73AUcvPV5kju398FVdRkw+768L2Y0hET389jFhJYkLd68Qz1VtUsP61tRVTd3z38CrOhhHZKkBSzmBK6doqqK6fMDttFdCnpTkk1btmyZYDJJemCbdPHfkmRfgO7nrfO9sKo2VtXaqlo7NTU1sYCS9EA36eI/Hzixe34icN6E1y9Jzeut+JN8FPh34MAkNyb5Y2AD8Lwk1wFHdtOSpAka55INi1JVJ8yz6Ii+1ilJ2r7BvtyVJA3D4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktSYXYdYaZIbgLuAe4F7qmrtEDkkqUWDFH/nOVV124Drl6QmOdQjSY0ZqvgL+FySK5KsGyiDJDVpqKGeZ1XVTUkeA3w+yXer6rKZL+h+IawDWLly5RAZJekBaZA9/qq6qft5K/Bp4NA5XrOxqtZW1dqpqalJR5SkB6yJF3+ShyfZc+tz4PnA1ZPOIUmtGmKoZwXw6SRb139OVX1mgByS1KSJF39VXQ88bdLrlSSNeDinJDXG4pekxlj8ktQYi1+SGmPxS1JjLH5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSYyx+SWqMxS9JjbH4JakxFr8kNcbil6TGWPyS1BiLX5IaY/FLUmMsfklqjMUvSY2x+CWpMRa/JDXG4pekxlj8ktQYi1+SGjNI8Sc5Ksn3knw/yfohMkhSqyZe/El2Ad4HvABYDZyQZPWkc0hSq4bY4z8U+H5VXV9V/wd8DHjxADkkqUmpqsmuMHkpcFRV/Uk3/Qrgt6vqpFmvWwes6yYPBL430aDb2ge4beAMS4XbYprbYprbYtpS2RZPqKqp2TN3HSLJOKpqI7Bx6BxbJdlUVWuHzrEUuC2muS2muS2mLfVtMcRQz03AfjOmH9/NkyRNwBDF/03ggCRPTPJg4GXA+QPkkKQmTXyop6ruSXIS8FlgF+DMqrpm0jkWYckMOy0BbotpbotpbotpS3pbTPzLXUnSsDxzV5IaY/FLUmMsfklqzJI9jn9IM442+nFVfSHJy4HfAa4FNlbVLwcNOGFJ9gdewugw3HuB/wLOqao7Bw0maVH8cncOSc5m9EvxYcAdwB7Ap4AjGG2zE4dLN1lJ3gC8CLgMeCHwbUbb5DjgdVX1pcHCSVoUi38OSa6sqoOT7Mro5LLHVtW9SQL8Z1UdPHDEiUlyFbCm++d/GHBRVR2eZCVwXlUdMnDEiUnySOCtwLHAY4ACbgXOAzZU1R2DhVtCklxcVS8YOsekJHkEo/8uHg9cXFXnzFj2/qp63WDh5uFQz9we1A33PJzRXv8jgZ8CDwF2GzLYQHZlNMTzEEZ//VBVP0rS2rb4OHApcHhV/QQgyW8AJ3bLnj9gtolK8vT5FgFrJhhlKfgQcB3wSeDVSY4HXl5VdwPPHDTZPCz+uZ0BfJfRCWZvBz6R5HpG/xI/NmSwAfwj8M0klwPPBk4FSDLF6JdhS1ZV1akzZ3S/AE5N8uqBMg3lm8CXGRX9bHtNNsrgnlRVx3fPz03yduDSJMcMGWohDvXMI8ljAarqx0n2Ao4EflRV3xg02ACSPBV4CnB1VX136DxDSfI54AvAWVV1SzdvBfAq4HlVdeSA8SYqydXAcVV13RzL/ruq9pvjbQ9ISa4FnlpV982Y9yrgLcAeVfWEobLNx+KXxpTkUcB6RvePeEw3+xZG15raUFW3D5Vt0rrLq19VVdtcLj3JsVV17uRTDSPJ3wCfq6ovzJp/FPDeqjpgmGTzs/ilnSDJH1XVh4bOsRS4LaYt1W1h8Us7QZIfVdXKoXMsBW6LaUt1W/jlrjSmJFfOtwhYMcksQ3NbTFuO28Lil8a3AvhdYPZYfoCvTz7OoNwW05bdtrD4pfFdwOgojc2zFyT50sTTDMttMW3ZbQvH+CWpMV6dU5IaY/FLUmMsfglIUkn+ecb0rkm2JLlgkZ+3V5LXzZg+fLGfJe1sFr808nPgoCQP7aafx+jKrIu1F7DkrsoogcUvzXQRcHT3/ATgo1sXJNk7yblJrkzyH0kO7uafkuTMJF9Kcn13/wKADcCTkmxO8q5u3h5J/jXJd5Oc3V3mW5o4i1+a9jHgZUl2Bw4GLp+x7J3At7t7MbwN+MiMZU9mdBz3ocA7ustVrwd+UFVrquot3esOAU4GVgP7A4f1+M8izcvilzpVdSWwitHe/kWzFj8L+KfudZcCj+5uwAFwYVXdXVW3Mboxy3xna36jqm7sruK4uVuXNHGewCXd3/nAacDhwKPHfM/dM57fy/z/X437OqlX7vFL93cm8M6qumrW/K8AfwijI3SA27Zzs/m7gD37CCj9utzjkGaoqhuBv51j0SnAmd0FuX7B6HaLC33O/yT5WnfDkouBC3d2VmmxvGSDJDXGoR5JaozFL0mNsfglqTEWvyQ1xuKXpMZY/JLUGItfkhpj8UtSY/4fZDFW+b6+4WkAAAAASUVORK5CYII=", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "new_pumpkins.groupby(['Month'])['Price'].mean().plot(kind='bar')\n", + "plt.ylabel(\"Pumpkin Price\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "95726f0b8283628d5356a4f8eb8b4b76", + "translation_date": "2025-09-03T19:45:01+00:00", + "source_file": "2-Regression/2-Data/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/3-Linear/README.md b/translations/zh-CN/2-Regression/3-Linear/README.md new file mode 100644 index 000000000..607e1e518 --- /dev/null +++ b/translations/zh-CN/2-Regression/3-Linear/README.md @@ -0,0 +1,373 @@ +# 使用 Scikit-learn 构建回归模型:四种回归方法 + +![线性回归与多项式回归信息图](../../../../2-Regression/3-Linear/images/linear-polynomial.png) +> 信息图由 [Dasani Madipalli](https://twitter.com/dasani_decoded) 提供 +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +> ### [本课程也提供 R 版本!](../../../../2-Regression/3-Linear/solution/R/lesson_3.html) +### 介绍 + +到目前为止,您已经通过南瓜定价数据集的样本数据了解了什么是回归,并使用 Matplotlib 对其进行了可视化。 + +现在,您可以深入学习机器学习中的回归。虽然可视化可以帮助您理解数据,但机器学习的真正力量在于_训练模型_。模型通过历史数据进行训练,自动捕捉数据之间的依赖关系,并能够预测模型未见过的新数据的结果。 + +在本课程中,您将进一步了解两种回归类型:_基本线性回归_和_多项式回归_,以及这些技术背后的部分数学原理。这些模型将帮助我们根据不同的输入数据预测南瓜价格。 + +[![机器学习入门 - 理解线性回归](https://img.youtube.com/vi/CRxFT8oTDMg/0.jpg)](https://youtu.be/CRxFT8oTDMg "机器学习入门 - 理解线性回归") + +> 🎥 点击上方图片观看关于线性回归的简短视频概述。 + +> 在整个课程中,我们假设学生的数学知识较少,并努力使内容对来自其他领域的学生更易理解,因此请注意笔记、🧮 数学提示、图表和其他学习工具,以帮助理解。 + +### 前置知识 + +到目前为止,您应该已经熟悉我们正在研究的南瓜数据的结构。您可以在本课程的_notebook.ipynb_文件中找到预加载和预清理的数据。在文件中,南瓜价格以蒲式耳为单位显示在一个新的数据框中。确保您可以在 Visual Studio Code 的内核中运行这些笔记本。 + +### 准备工作 + +提醒一下,您正在加载这些数据以便提出问题: + +- 什么时候是购买南瓜的最佳时机? +- 我可以预期一箱迷你南瓜的价格是多少? +- 我应该购买半蒲式耳篮子还是 1 1/9 蒲式耳箱? + +让我们继续深入挖掘这些数据。 + +在上一课中,您创建了一个 Pandas 数据框,并用原始数据集的一部分填充它,将价格标准化为蒲式耳单位。然而,通过这样做,您只能收集到大约 400 个数据点,并且仅限于秋季月份。 + +查看本课程附带笔记本中预加载的数据。数据已预加载,并绘制了初始散点图以显示月份数据。也许通过进一步清理数据,我们可以更详细地了解数据的性质。 + +## 线性回归线 + +正如您在第一课中所学,线性回归的目标是绘制一条线以: + +- **显示变量关系**。展示变量之间的关系 +- **进行预测**。准确预测新数据点在该线上的位置 + +通常使用**最小二乘回归**来绘制这种类型的线。“最小二乘”意味着围绕回归线的所有数据点的误差平方后相加。理想情况下,最终的总和越小越好,因为我们希望误差较少,即`最小二乘`。 + +我们这样做是因为我们希望建模一条与所有数据点的累计距离最小的线。我们在相加之前对误差进行平方,因为我们关心的是误差的大小而不是方向。 + +> **🧮 数学展示** +> +> 这条线,称为_最佳拟合线_,可以通过[一个公式](https://en.wikipedia.org/wiki/Simple_linear_regression)表示: +> +> ``` +> Y = a + bX +> ``` +> +> `X` 是“解释变量”。`Y` 是“因变量”。线的斜率是 `b`,而 `a` 是 y 截距,表示当 `X = 0` 时 `Y` 的值。 +> +>![计算斜率](../../../../2-Regression/3-Linear/images/slope.png) +> +> 首先,计算斜率 `b`。信息图由 [Jen Looper](https://twitter.com/jenlooper) 提供 +> +> 换句话说,参考我们南瓜数据的原始问题:“根据月份预测每蒲式耳南瓜的价格”,`X` 表示价格,`Y` 表示销售月份。 +> +>![完成公式](../../../../2-Regression/3-Linear/images/calculation.png) +> +> 计算 `Y` 的值。如果您支付大约 $4,那一定是四月!信息图由 [Jen Looper](https://twitter.com/jenlooper) 提供 +> +> 计算线的数学公式必须展示线的斜率,这也取决于截距,即当 `X = 0` 时 `Y` 的位置。 +> +> 您可以在 [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html) 网站上观察这些值的计算方法。还可以访问[最小二乘计算器](https://www.mathsisfun.com/data/least-squares-calculator.html),观察数值如何影响线的形状。 + +## 相关性 + +另一个需要理解的术语是给定 X 和 Y 变量之间的**相关系数**。使用散点图,您可以快速可视化该系数。数据点整齐排列成一条线的图具有高相关性,而数据点在 X 和 Y 之间随意分布的图具有低相关性。 + +一个好的线性回归模型应该是使用最小二乘回归方法和回归线时,相关系数接近 1(而不是 0)。 + +✅ 运行本课程附带的笔记本,查看月份与价格的散点图。根据您对散点图的视觉解释,南瓜销售的月份与价格之间的数据相关性是高还是低?如果您使用更细化的度量(例如*一年中的天数*,即从年初开始的天数),相关性是否会发生变化? + +在下面的代码中,我们假设已经清理了数据,并获得了一个名为 `new_pumpkins` 的数据框,类似于以下内容: + +ID | Month | DayOfYear | Variety | City | Package | Low Price | High Price | Price +---|-------|-----------|---------|------|---------|-----------|------------|------- +70 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364 +71 | 9 | 267 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636 +72 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 18.0 | 18.0 | 16.363636 +73 | 10 | 274 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 17.0 | 17.0 | 15.454545 +74 | 10 | 281 | PIE TYPE | BALTIMORE | 1 1/9 bushel cartons | 15.0 | 15.0 | 13.636364 + +> 清理数据的代码可在 [`notebook.ipynb`](../../../../2-Regression/3-Linear/notebook.ipynb) 中找到。我们执行了与上一课相同的清理步骤,并使用以下表达式计算了 `DayOfYear` 列: + +```python +day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days) +``` + +现在您已经了解了线性回归背后的数学原理,让我们创建一个回归模型,看看是否可以预测哪种南瓜包装的价格最优。为节日南瓜园购买南瓜的人可能需要这些信息,以优化南瓜包装的购买。 + +## 寻找相关性 + +[![机器学习入门 - 寻找相关性:线性回归的关键](https://img.youtube.com/vi/uoRq-lW2eQo/0.jpg)](https://youtu.be/uoRq-lW2eQo "机器学习入门 - 寻找相关性:线性回归的关键") + +> 🎥 点击上方图片观看关于相关性的简短视频概述。 + +从上一课中,您可能已经看到不同月份的平均价格如下所示: + +按月份的平均价格 + +这表明可能存在某种相关性,我们可以尝试训练线性回归模型来预测 `Month` 与 `Price` 或 `DayOfYear` 与 `Price` 之间的关系。以下是显示后者关系的散点图: + +价格与一年中的天数的散点图 + +让我们使用 `corr` 函数查看是否存在相关性: + +```python +print(new_pumpkins['Month'].corr(new_pumpkins['Price'])) +print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price'])) +``` + +看起来相关性很小,`Month` 的相关性为 -0.15,`DayOfYear` 的相关性为 -0.17,但可能存在另一个重要关系。看起来不同南瓜品种对应的价格存在不同的聚类。为了验证这一假设,让我们为每种南瓜类别绘制不同颜色的点。通过向 `scatter` 绘图函数传递 `ax` 参数,我们可以将所有点绘制在同一个图上: + +```python +ax=None +colors = ['red','blue','green','yellow'] +for i,var in enumerate(new_pumpkins['Variety'].unique()): + df = new_pumpkins[new_pumpkins['Variety']==var] + ax = df.plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var) +``` + +价格与一年中的天数的散点图 + +我们的调查表明,品种对整体价格的影响比实际销售日期更大。我们可以通过柱状图看到这一点: + +```python +new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar') +``` + +价格与品种的柱状图 + +让我们暂时专注于一种南瓜品种——“馅饼型”,看看日期对价格的影响: + +```python +pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE'] +pie_pumpkins.plot.scatter('DayOfYear','Price') +``` +价格与一年中的天数的散点图 + +如果我们现在使用 `corr` 函数计算 `Price` 与 `DayOfYear` 之间的相关性,我们会得到类似 `-0.27` 的结果——这意味着训练预测模型是有意义的。 + +> 在训练线性回归模型之前,确保数据清洁非常重要。线性回归对缺失值的处理效果不好,因此清除所有空单元格是有意义的: + +```python +pie_pumpkins.dropna(inplace=True) +pie_pumpkins.info() +``` + +另一种方法是用对应列的平均值填充这些空值。 + +## 简单线性回归 + +[![机器学习入门 - 使用 Scikit-learn 进行线性和多项式回归](https://img.youtube.com/vi/e4c_UP2fSjg/0.jpg)](https://youtu.be/e4c_UP2fSjg "机器学习入门 - 使用 Scikit-learn 进行线性和多项式回归") + +> 🎥 点击上方图片观看关于线性和多项式回归的简短视频概述。 + +为了训练我们的线性回归模型,我们将使用 **Scikit-learn** 库。 + +```python +from sklearn.linear_model import LinearRegression +from sklearn.metrics import mean_squared_error +from sklearn.model_selection import train_test_split +``` + +我们首先将输入值(特征)和预期输出(标签)分离到单独的 numpy 数组中: + +```python +X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1) +y = pie_pumpkins['Price'] +``` + +> 请注意,我们必须对输入数据执行 `reshape`,以便线性回归包能够正确理解它。线性回归需要一个二维数组作为输入,其中数组的每一行对应于输入特征的向量。在我们的例子中,由于我们只有一个输入——我们需要一个形状为 N×1 的数组,其中 N 是数据集的大小。 + +然后,我们需要将数据分为训练集和测试集,以便在训练后验证我们的模型: + +```python +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) +``` + +最后,训练实际的线性回归模型只需要两行代码。我们定义 `LinearRegression` 对象,并使用 `fit` 方法将其拟合到我们的数据: + +```python +lin_reg = LinearRegression() +lin_reg.fit(X_train,y_train) +``` + +`LinearRegression` 对象在 `fit` 后包含所有回归系数,可以通过 `.coef_` 属性访问。在我们的例子中,只有一个系数,大约是 `-0.017`。这意味着价格似乎随着时间略有下降,但幅度不大,每天大约下降 2 美分。我们还可以通过 `lin_reg.intercept_` 访问回归线与 Y 轴的交点——在我们的例子中,大约是 `21`,表示年初的价格。 + +为了查看我们的模型有多准确,我们可以预测测试数据集上的价格,然后测量预测值与预期值的接近程度。这可以通过均方误差(MSE)指标完成,它是所有预期值与预测值之间平方差的平均值。 + +```python +pred = lin_reg.predict(X_test) + +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') +``` +我们的错误似乎集中在两个点上,大约是 17%。表现不太理想。另一个衡量模型质量的指标是 **决定系数**,可以通过以下方式获得: + +```python +score = lin_reg.score(X_train,y_train) +print('Model determination: ', score) +``` +如果值为 0,意味着模型没有考虑输入数据,表现为*最差的线性预测器*,即结果的平均值。值为 1 表示我们可以完美预测所有期望的输出。在我们的案例中,决定系数约为 0.06,较低。 + +我们还可以将测试数据与回归线一起绘制,以更好地观察回归在我们案例中的表现: + +```python +plt.scatter(X_test,y_test) +plt.plot(X_test,pred) +``` + +线性回归 + +## 多项式回归 + +线性回归的另一种形式是多项式回归。有时变量之间存在线性关系——例如南瓜的体积越大,价格越高——但有时这些关系无法用平面或直线来表示。 + +✅ 这里有一些[更多示例](https://online.stat.psu.edu/stat501/lesson/9/9.8),展示了可以使用多项式回归的数据。 + +再看看日期和价格之间的关系。这个散点图看起来是否一定要用直线来分析?价格难道不会波动吗?在这种情况下,可以尝试使用多项式回归。 + +✅ 多项式是可能包含一个或多个变量和系数的数学表达式。 + +多项式回归会创建一条曲线,以更好地拟合非线性数据。在我们的案例中,如果将平方的 `DayOfYear` 变量包含在输入数据中,我们应该能够用抛物线拟合数据,该抛物线在一年中的某个点达到最低值。 + +Scikit-learn 提供了一个非常有用的 [pipeline API](https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.make_pipeline.html?highlight=pipeline#sklearn.pipeline.make_pipeline),可以将数据处理的不同步骤组合在一起。**管道**是**估计器**的链条。在我们的案例中,我们将创建一个管道,首先向模型添加多项式特征,然后训练回归: + +```python +from sklearn.preprocessing import PolynomialFeatures +from sklearn.pipeline import make_pipeline + +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) + +pipeline.fit(X_train,y_train) +``` + +使用 `PolynomialFeatures(2)` 表示我们将包含输入数据中的所有二次多项式。在我们的案例中,这仅意味着 `DayOfYear`2,但如果有两个输入变量 X 和 Y,这将添加 X2、XY 和 Y2。如果需要,我们也可以使用更高次的多项式。 + +管道可以像原始的 `LinearRegression` 对象一样使用,例如我们可以 `fit` 管道,然后使用 `predict` 获取预测结果。以下是显示测试数据和拟合曲线的图表: + +多项式回归 + +使用多项式回归,我们可以获得稍低的 MSE 和稍高的决定系数,但提升并不显著。我们需要考虑其他特征! + +> 可以看到南瓜价格最低点大约出现在万圣节附近。你如何解释这一现象? + +🎃 恭喜你!你刚刚创建了一个可以帮助预测南瓜派价格的模型。你可能可以对所有南瓜类型重复相同的过程,但这会很繁琐。现在让我们学习如何在模型中考虑南瓜品种! + +## 分类特征 + +在理想情况下,我们希望能够使用同一个模型预测不同南瓜品种的价格。然而,`Variety` 列与 `Month` 等列有所不同,因为它包含非数值值。这类列被称为**分类特征**。 + +[![机器学习入门 - 使用线性回归预测分类特征](https://img.youtube.com/vi/DYGliioIAE0/0.jpg)](https://youtu.be/DYGliioIAE0 "机器学习入门 - 使用线性回归预测分类特征") + +> 🎥 点击上方图片观看关于使用分类特征的简短视频概述。 + +以下是品种与平均价格的关系: + +按品种划分的平均价格 + +为了考虑品种,我们首先需要将其转换为数值形式,或者说**编码**。有几种方法可以实现: + +* 简单的**数值编码**会构建一个不同品种的表格,然后用表格中的索引替换品种名称。这对线性回归来说不是最好的选择,因为线性回归会将索引的实际数值考虑在内,并通过某个系数与结果相乘。在我们的案例中,索引号与价格之间的关系显然是非线性的,即使我们确保索引按某种特定方式排序。 +* **独热编码**会将 `Variety` 列替换为 4 个不同的列,每个品种对应一个列。如果某行属于某个品种,该列值为 `1`,否则为 `0`。这意味着线性回归中会有四个系数,每个南瓜品种对应一个,负责该品种的“起始价格”(或“附加价格”)。 + +以下代码展示了如何对品种进行独热编码: + +```python +pd.get_dummies(new_pumpkins['Variety']) +``` + + ID | FAIRYTALE | MINIATURE | MIXED HEIRLOOM VARIETIES | PIE TYPE +----|-----------|-----------|--------------------------|---------- +70 | 0 | 0 | 0 | 1 +71 | 0 | 0 | 0 | 1 +... | ... | ... | ... | ... +1738 | 0 | 1 | 0 | 0 +1739 | 0 | 1 | 0 | 0 +1740 | 0 | 1 | 0 | 0 +1741 | 0 | 1 | 0 | 0 +1742 | 0 | 1 | 0 | 0 + +为了使用独热编码的品种作为输入训练线性回归,我们只需正确初始化 `X` 和 `y` 数据: + +```python +X = pd.get_dummies(new_pumpkins['Variety']) +y = new_pumpkins['Price'] +``` + +其余代码与我们之前用于训练线性回归的代码相同。如果尝试,你会发现均方误差差不多,但决定系数显著提高(约 77%)。为了获得更准确的预测,我们可以考虑更多分类特征以及数值特征,例如 `Month` 或 `DayOfYear`。为了获得一个大的特征数组,我们可以使用 `join`: + +```python +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] +``` + +这里我们还考虑了 `City` 和 `Package` 类型,这使得 MSE 降至 2.84(10%),决定系数提高到 0.94! + +## 综合起来 + +为了构建最佳模型,我们可以将上述示例中的组合数据(独热编码分类特征 + 数值特征)与多项式回归一起使用。以下是完整代码供参考: + +```python +# set up training data +X = pd.get_dummies(new_pumpkins['Variety']) \ + .join(new_pumpkins['Month']) \ + .join(pd.get_dummies(new_pumpkins['City'])) \ + .join(pd.get_dummies(new_pumpkins['Package'])) +y = new_pumpkins['Price'] + +# make train-test split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + +# setup and train the pipeline +pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression()) +pipeline.fit(X_train,y_train) + +# predict results for test data +pred = pipeline.predict(X_test) + +# calculate MSE and determination +mse = np.sqrt(mean_squared_error(y_test,pred)) +print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)') + +score = pipeline.score(X_train,y_train) +print('Model determination: ', score) +``` + +这应该能让我们获得接近 97% 的决定系数,以及 MSE=2.23(约 8% 的预测误差)。 + +| 模型 | MSE | 决定系数 | +|-------|-----|---------------| +| `DayOfYear` 线性 | 2.77 (17.2%) | 0.07 | +| `DayOfYear` 多项式 | 2.73 (17.0%) | 0.08 | +| `Variety` 线性 | 5.24 (19.7%) | 0.77 | +| 所有特征线性 | 2.84 (10.5%) | 0.94 | +| 所有特征多项式 | 2.23 (8.25%) | 0.97 | + +🏆 做得好!你在一节课中创建了四个回归模型,并将模型质量提升至 97%。在回归的最后一部分中,你将学习如何使用逻辑回归来确定类别。 + +--- + +## 🚀挑战 + +在此笔记本中测试几个不同的变量,观察相关性如何影响模型准确性。 + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +在本课中我们学习了线性回归。还有其他重要的回归类型。阅读关于逐步回归、岭回归、套索回归和弹性网络技术的内容。一个不错的学习课程是 [斯坦福统计学习课程](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning)。 + +## 作业 + +[构建一个模型](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/3-Linear/assignment.md b/translations/zh-CN/2-Regression/3-Linear/assignment.md new file mode 100644 index 000000000..f97ad3678 --- /dev/null +++ b/translations/zh-CN/2-Regression/3-Linear/assignment.md @@ -0,0 +1,16 @@ +# 创建回归模型 + +## 说明 + +在本课中,你学习了如何使用线性回归和多项式回归来构建模型。利用这些知识,找到一个数据集或使用 Scikit-learn 内置的数据集来构建一个新的模型。在你的笔记本中解释你选择该技术的原因,并展示你的模型的准确性。如果模型不够准确,请解释原因。 + +## 评分标准 + +| 标准 | 卓越表现 | 合格表现 | 需要改进 | +| -------- | ------------------------------------------------------------ | -------------------------- | ------------------------------- | +| | 提供一个完整的笔记本,并包含详细记录的解决方案 | 解决方案不完整 | 解决方案存在缺陷或错误 | + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/3-Linear/notebook.ipynb b/translations/zh-CN/2-Regression/3-Linear/notebook.ipynb new file mode 100644 index 000000000..d90c9df81 --- /dev/null +++ b/translations/zh-CN/2-Regression/3-Linear/notebook.ipynb @@ -0,0 +1,128 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 南瓜定价\n", + "\n", + "加载所需的库和数据集。将数据转换为一个包含数据子集的数据框:\n", + "\n", + "- 仅获取按蒲式耳定价的南瓜\n", + "- 将日期转换为月份\n", + "- 计算价格为高价和低价的平均值\n", + "- 将价格转换为反映按蒲式耳数量定价\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "一个基本的散点图提醒我们,我们只有从八月到十二月的月度数据。我们可能需要更多数据才能以线性方式得出结论。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.scatter('Month','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "plt.scatter('DayOfYear','Price',data=new_pumpkins)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3-final" + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "b032d371c75279373507f003439a577e", + "translation_date": "2025-09-03T19:16:27+00:00", + "source_file": "2-Regression/3-Linear/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/3-Linear/solution/Julia/README.md b/translations/zh-CN/2-Regression/3-Linear/solution/Julia/README.md new file mode 100644 index 000000000..acfece51f --- /dev/null +++ b/translations/zh-CN/2-Regression/3-Linear/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb b/translations/zh-CN/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb new file mode 100644 index 000000000..57f669a57 --- /dev/null +++ b/translations/zh-CN/2-Regression/3-Linear/solution/R/lesson_3-R.ipynb @@ -0,0 +1,1088 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_3-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "5015d65d61ba75a223bfc56c273aa174", + "translation_date": "2025-09-03T19:26:15+00:00", + "source_file": "2-Regression/3-Linear/solution/R/lesson_3-R.ipynb", + "language_code": "zh" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# 构建回归模型:线性回归和多项式回归模型\n" + ], + "metadata": { + "id": "EgQw8osnsUV-" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 南瓜定价的线性回归和多项式回归 - 第三课\n", + "

      \n", + " \n", + "

      信息图作者:Dasani Madipalli
      \n", + "\n", + "\n", + "\n", + "\n", + "#### 介绍\n", + "\n", + "到目前为止,你已经通过南瓜定价数据集的样本数据了解了什么是回归,并将在整个课程中使用该数据集。你还使用了 `ggplot2` 进行了可视化。💪\n", + "\n", + "现在你已经准备好深入学习机器学习中的回归。在本课中,你将进一步了解两种回归类型:*基本线性回归* 和 *多项式回归*,以及这些技术背后的一些数学原理。\n", + "\n", + "> 在整个课程中,我们假设学生的数学知识较少,并努力使内容对来自其他领域的学生更易理解,因此请注意笔记、🧮 数学提示、图表以及其他学习工具,这些都将帮助你更好地理解。\n", + "\n", + "#### 准备工作\n", + "\n", + "提醒一下,你正在加载这些数据以便对其进行分析。\n", + "\n", + "- 什么时候是购买南瓜的最佳时间?\n", + "\n", + "- 一箱迷你南瓜的价格大概是多少?\n", + "\n", + "- 我应该选择半蒲式耳篮子还是 1 1/9 蒲式耳箱来购买?让我们继续深入挖掘这些数据。\n", + "\n", + "在上一课中,你创建了一个 `tibble`(数据框的一种现代化形式),并用原始数据集的一部分填充它,同时将价格标准化为以蒲式耳为单位。然而,通过这种方式,你只能收集到大约 400 个数据点,并且仅限于秋季月份。也许通过进一步清理数据,我们可以获得更多细节?我们拭目以待... 🕵️‍♀️\n", + "\n", + "完成此任务需要以下包:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一个 [R 包集合](https://www.tidyverse.org/packages),旨在让数据科学更快、更简单、更有趣!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 框架是一个 [包集合](https://www.tidymodels.org/packages),用于建模和机器学习。\n", + "\n", + "- `janitor`: [janitor 包](https://github.com/sfirke/janitor) 提供了一些简单的小工具,用于检查和清理脏数据。\n", + "\n", + "- `corrplot`: [corrplot 包](https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html) 提供了一个可视化的相关矩阵探索工具,支持自动变量重新排序,以帮助发现变量之间隐藏的模式。\n", + "\n", + "你可以通过以下命令安装这些包:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"corrplot\"))`\n", + "\n", + "下面的脚本会检查你是否安装了完成本模块所需的包,并在缺少时为你安装它们。\n" + ], + "metadata": { + "id": "WqQPS1OAsg3H" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, corrplot)" + ], + "outputs": [], + "metadata": { + "id": "tA4C2WN3skCf", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "c06cd805-5534-4edc-f72b-d0d1dab96ac0" + } + }, + { + "cell_type": "markdown", + "source": [ + "我们稍后会加载这些很棒的包,并将它们在当前的 R 会话中可用。(这只是为了说明,`pacman::p_load()` 已经帮你完成了这一步)\n", + "\n", + "## 1. 线性回归线\n", + "\n", + "正如你在第一课中学到的,线性回归的目标是能够绘制一条*最佳拟合线*,以便:\n", + "\n", + "- **展示变量关系**。展示变量之间的关系\n", + "\n", + "- **进行预测**。准确预测新数据点在这条线上的位置\n", + "\n", + "为了绘制这种类型的线,我们使用一种统计技术,称为**最小二乘回归**。`最小二乘`的意思是回归线周围的所有数据点的误差平方后相加。理想情况下,这个最终的总和应该尽可能小,因为我们希望误差数量较低,也就是`最小二乘`。因此,最佳拟合线就是使误差平方和最小的那条线——这就是*最小二乘回归*的名称由来。\n", + "\n", + "我们这样做是因为我们希望拟合一条与所有数据点的累计距离最小的线。在加总之前,我们会对误差进行平方,因为我们关心的是误差的大小,而不是方向。\n", + "\n", + "> **🧮 数学公式**\n", + ">\n", + "> 这条线,称为*最佳拟合线*,可以用[一个公式](https://en.wikipedia.org/wiki/Simple_linear_regression)表示:\n", + ">\n", + "> Y = a + bX\n", + ">\n", + "> `X` 是`解释变量`或`预测变量`,`Y` 是`因变量`或`结果变量`。线的斜率是 `b`,而 `a` 是 y 截距,指的是当 `X = 0` 时 `Y` 的值。\n", + ">\n", + "\n", + "> ![](../../../../../../2-Regression/3-Linear/solution/images/slope.png \"slope = $y/x$\")\n", + " 信息图由 Jen Looper 制作\n", + ">\n", + "> 首先,计算斜率 `b`。\n", + ">\n", + "> 换句话说,参考我们的南瓜数据的原始问题:“按月份预测每蒲式耳南瓜的价格”,`X` 表示价格,`Y` 表示销售月份。\n", + ">\n", + "> ![](../../../../../../translated_images/zh-CN/calculation.989aa7822020d9d0ba9fc781f1ab5192f3421be86ebb88026528aef33c37b0d8.png)\n", + " 信息图由 Jen Looper 制作\n", + "> \n", + "> 计算 Y 的值。如果你支付大约 \\$4,那一定是四月!\n", + ">\n", + "> 计算这条线的数学公式必须展示线的斜率,这也取决于截距,即当 `X = 0` 时 `Y` 的位置。\n", + ">\n", + "> 你可以在 [Math is Fun](https://www.mathsisfun.com/data/least-squares-regression.html) 网站上观察这些值的计算方法。也可以访问[这个最小二乘计算器](https://www.mathsisfun.com/data/least-squares-calculator.html),看看数值如何影响这条线。\n", + "\n", + "是不是没那么可怕?🤓\n", + "\n", + "#### 相关性\n", + "\n", + "还有一个需要理解的术语是给定 X 和 Y 变量之间的**相关系数**。使用散点图,你可以快速可视化这个系数。数据点整齐排列成一条线的图表具有高相关性,而数据点在 X 和 Y 之间随意分布的图表则相关性较低。\n", + "\n", + "一个好的线性回归模型应该是使用最小二乘回归方法和回归线时,相关系数较高(接近 1 而不是 0)的模型。\n" + ], + "metadata": { + "id": "cdX5FRpvsoP5" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **2. 与数据共舞:创建用于建模的数据框**\n", + "\n", + "

      \n", + " \n", + "

      插画作者:@allison_horst
      \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "WdUKXk7Bs8-V" + } + }, + { + "cell_type": "markdown", + "source": [ + "加载所需的库和数据集。将数据转换为包含数据子集的数据框:\n", + "\n", + "- 仅获取按蒲式耳定价的南瓜数据\n", + "\n", + "- 将日期转换为月份\n", + "\n", + "- 计算价格为高价和低价的平均值\n", + "\n", + "- 将价格转换为反映按蒲式耳数量定价的形式\n", + "\n", + "> 我们在[上一课](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/2-Data/solution/lesson_2-R.ipynb)中已经涵盖了这些步骤。\n" + ], + "metadata": { + "id": "fMCtu2G2s-p8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core Tidyverse packages\n", + "library(tidyverse)\n", + "library(lubridate)\n", + "\n", + "# Import the pumpkins data\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\")\n", + "\n", + "\n", + "# Get a glimpse and dimensions of the data\n", + "glimpse(pumpkins)\n", + "\n", + "\n", + "# Print the first 50 rows of the data set\n", + "pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "ryMVZEEPtERn" + } + }, + { + "cell_type": "markdown", + "source": [ + "出于纯粹冒险的精神,让我们探索 [`janitor package`](../../../../../../2-Regression/3-Linear/solution/R/github.com/sfirke/janitor),它提供了简单的函数来检查和清理脏数据。例如,让我们看看我们数据的列名:\n" + ], + "metadata": { + "id": "xcNxM70EtJjb" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "5XtpaIigtPfW" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤔 我们可以做得更好。让我们通过使用 `janitor::clean_names` 将这些列名转换为 [snake_case](https://en.wikipedia.org/wiki/Snake_case) 约定来使它们成为 `friendR`。要了解有关此函数的更多信息:`?clean_names`\n" + ], + "metadata": { + "id": "IbIqrMINtSHe" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Clean names to the snake_case convention\n", + "pumpkins <- pumpkins %>% \n", + " clean_names(case = \"snake\")\n", + "\n", + "# Return column names\n", + "pumpkins %>% \n", + " names()" + ], + "outputs": [], + "metadata": { + "id": "a2uYvclYtWvX" + } + }, + { + "cell_type": "markdown", + "source": [ + "非常整洁 🧹!现在,像上一节课一样,用 `dplyr` 来与数据共舞吧!💃\n" + ], + "metadata": { + "id": "HfhnuzDDtaDd" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Select desired columns\n", + "pumpkins <- pumpkins %>% \n", + " select(variety, city_name, package, low_price, high_price, date)\n", + "\n", + "\n", + "\n", + "# Extract the month from the dates to a new column\n", + "pumpkins <- pumpkins %>%\n", + " mutate(date = mdy(date),\n", + " month = month(date)) %>% \n", + " select(-date)\n", + "\n", + "\n", + "\n", + "# Create a new column for average Price\n", + "pumpkins <- pumpkins %>% \n", + " mutate(price = (low_price + high_price)/2)\n", + "\n", + "\n", + "# Retain only pumpkins with the string \"bushel\"\n", + "new_pumpkins <- pumpkins %>% \n", + " filter(str_detect(string = package, pattern = \"bushel\"))\n", + "\n", + "\n", + "# Normalize the pricing so that you show the pricing per bushel, not per 1 1/9 or 1/2 bushel\n", + "new_pumpkins <- new_pumpkins %>% \n", + " mutate(price = case_when(\n", + " str_detect(package, \"1 1/9\") ~ price/(1.1),\n", + " str_detect(package, \"1/2\") ~ price*2,\n", + " TRUE ~ price))\n", + "\n", + "# Relocate column positions\n", + "new_pumpkins <- new_pumpkins %>% \n", + " relocate(month, .before = variety)\n", + "\n", + "\n", + "# Display the first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "X0wU3gQvtd9f" + } + }, + { + "cell_type": "markdown", + "source": [ + "干得好!👌 你现在拥有一个干净整洁的数据集,可以用来构建新的回归模型!\n", + "\n", + "画个散点图怎么样?\n" + ], + "metadata": { + "id": "UpaIwaxqth82" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Set theme\n", + "theme_set(theme_light())\n", + "\n", + "# Make a scatter plot of month and price\n", + "new_pumpkins %>% \n", + " ggplot(mapping = aes(x = month, y = price)) +\n", + " geom_point(size = 1.6)\n" + ], + "outputs": [], + "metadata": { + "id": "DXgU-j37tl5K" + } + }, + { + "cell_type": "markdown", + "source": [ + "散点图提醒我们,我们只有从八月到十二月的月度数据。我们可能需要更多的数据才能以线性方式得出结论。\n", + "\n", + "让我们再看看我们的建模数据:\n" + ], + "metadata": { + "id": "Ve64wVbwtobI" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Display first 5 rows\n", + "new_pumpkins %>% \n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "HFQX2ng1tuSJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "如果我们想根据`city`或`package`列(它们是字符类型)来预测南瓜的`price`,该怎么办?或者更简单地说,我们如何找到`package`和`price`之间的相关性(这要求两个输入都为数值类型)呢?🤷🤷\n", + "\n", + "机器学习模型在处理数值特征时效果最佳,而不是文本值,因此通常需要将分类特征转换为数值表示。\n", + "\n", + "这意味着我们需要找到一种方法来重新格式化我们的预测变量,使其更容易被模型有效利用,这个过程被称为`特征工程`。\n" + ], + "metadata": { + "id": "7hsHoxsStyjJ" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 3. 为建模预处理数据,使用 recipes 👩‍🍳👨‍🍳\n", + "\n", + "将预测变量重新格式化以便模型更有效使用的活动被称为`特征工程`。\n", + "\n", + "不同的模型对数据预处理有不同的要求。例如,最小二乘法需要对`分类变量`(如月份、品种和城市名称)进行`编码`。这通常涉及将包含`分类值`的列`转换`为一个或多个`数值列`,以替代原始列。\n", + "\n", + "例如,假设你的数据包含以下分类特征:\n", + "\n", + "| city |\n", + "|:-------:|\n", + "| Denver |\n", + "| Nairobi |\n", + "| Tokyo |\n", + "\n", + "你可以应用*序数编码*,为每个类别替换一个唯一的整数值,如下所示:\n", + "\n", + "| city |\n", + "|:----:|\n", + "| 0 |\n", + "| 1 |\n", + "| 2 |\n", + "\n", + "这就是我们将对数据进行的操作!\n", + "\n", + "在本节中,我们将探索另一个令人惊叹的 Tidymodels 包:[recipes](https://tidymodels.github.io/recipes/) - 它专为在训练模型**之前**帮助你预处理数据而设计。本质上,recipe 是一个对象,用于定义对数据集应用哪些步骤,以使其为建模做好准备。\n", + "\n", + "现在,让我们创建一个 recipe,通过为预测变量列中的所有观测值替换唯一整数,来为建模准备数据:\n" + ], + "metadata": { + "id": "AD5kQbcvt3Xl" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\n", + "pumpkins_recipe <- recipe(price ~ ., data = new_pumpkins) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "# Print out the recipe\n", + "pumpkins_recipe" + ], + "outputs": [], + "metadata": { + "id": "BNaFKXfRt9TU" + } + }, + { + "cell_type": "markdown", + "source": [ + "太棒了!👏 我们刚刚创建了第一个配方,它指定了一个结果(价格)及其对应的预测变量,并且所有预测变量列都被编码为一组整数 🙌!让我们快速分解一下:\n", + "\n", + "- 调用 `recipe()` 并使用公式告诉配方变量的*角色*,以 `new_pumpkins` 数据作为参考。例如,`price` 列被分配了 `outcome` 角色,而其余列被分配了 `predictor` 角色。\n", + "\n", + "- `step_integer(all_predictors(), zero_based = TRUE)` 指定所有预测变量都应转换为一组整数,编号从 0 开始。\n", + "\n", + "我们相信你可能会有这样的想法:“这太酷了!!但如果我需要确认这些配方确实按照我的预期在工作怎么办?🤔”\n", + "\n", + "这是一个很棒的想法!你看,一旦定义了配方,你可以估算实际预处理数据所需的参数,然后提取处理后的数据。通常在使用 Tidymodels 时不需要这样做(我们稍后会看到常规方法 -> `workflows`),但当你想进行某种合理性检查以确认配方是否按预期工作时,这会非常有用。\n", + "\n", + "为此,你需要两个额外的动词:`prep()` 和 `bake()`。一如既往,我们的小 R 朋友由 [`Allison Horst`](https://github.com/allisonhorst/stats-illustrations) 创作,帮助你更好地理解这一点!\n", + "\n", + "

      \n", + " \n", + "

      插图作者:@allison_horst
      \n" + ], + "metadata": { + "id": "KEiO0v7kuC9O" + } + }, + { + "cell_type": "markdown", + "source": [ + "[`prep()`](https://recipes.tidymodels.org/reference/prep.html):从训练集估算所需参数,这些参数可以稍后应用于其他数据集。例如,对于给定的预测变量列,哪个观测值会被分配为整数 0、1、2 等。\n", + "\n", + "[`bake()`](https://recipes.tidymodels.org/reference/bake.html):使用已准备好的配方并将操作应用于任何数据集。\n", + "\n", + "话虽如此,让我们准备并应用配方,真正确认在底层,预测变量列会先被编码,然后再拟合模型。\n" + ], + "metadata": { + "id": "Q1xtzebuuTCP" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep the recipe\n", + "pumpkins_prep <- prep(pumpkins_recipe)\n", + "\n", + "# Bake the recipe to extract a preprocessed new_pumpkins data\n", + "baked_pumpkins <- bake(pumpkins_prep, new_data = NULL)\n", + "\n", + "# Print out the baked data set\n", + "baked_pumpkins %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "FGBbJbP_uUUn" + } + }, + { + "cell_type": "markdown", + "source": [ + "哇哦!🥳 处理后的数据 `baked_pumpkins` 的所有预测变量都已编码,这确认了我们定义的预处理步骤(作为我们的配方)确实可以如预期般工作。这虽然让数据更难阅读,但对 Tidymodels 来说却更加易于理解!花点时间找出哪些观测值已被映射到对应的整数。\n", + "\n", + "另外值得一提的是,`baked_pumpkins` 是一个数据框,我们可以在其上进行计算。\n", + "\n", + "例如,我们可以尝试在数据中的两个点之间找到一个良好的相关性,以便可能构建一个优秀的预测模型。我们将使用函数 `cor()` 来完成此操作。输入 `?cor()` 以了解更多关于该函数的信息。\n" + ], + "metadata": { + "id": "1dvP0LBUueAW" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Find the correlation between the city_name and the price\n", + "cor(baked_pumpkins$city_name, baked_pumpkins$price)\n", + "\n", + "# Find the correlation between the package and the price\n", + "cor(baked_pumpkins$package, baked_pumpkins$price)\n" + ], + "outputs": [], + "metadata": { + "id": "3bQzXCjFuiSV" + } + }, + { + "cell_type": "markdown", + "source": [ + "事实证明,城市和价格之间的相关性较弱。然而,套餐和价格之间的相关性稍强一些。这很合理,对吧?通常来说,生产箱越大,价格越高。\n", + "\n", + "既然如此,我们也可以尝试使用 `corrplot` 包来可视化所有列的相关性矩阵。\n" + ], + "metadata": { + "id": "BToPWbgjuoZw" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the corrplot package\n", + "library(corrplot)\n", + "\n", + "# Obtain correlation matrix\n", + "corr_mat <- cor(baked_pumpkins %>% \n", + " # Drop columns that are not really informative\n", + " select(-c(low_price, high_price)))\n", + "\n", + "# Make a correlation plot between the variables\n", + "corrplot(corr_mat, method = \"shade\", shade.col = NA, tl.col = \"black\", tl.srt = 45, addCoef.col = \"black\", cl.pos = \"n\", order = \"original\")" + ], + "outputs": [], + "metadata": { + "id": "ZwAL3ksmutVR" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 好得多。\n", + "\n", + "现在可以问这个数据的一个好问题是:'`给定一个南瓜包,我可以预期它的价格是多少?`' 让我们直接开始吧!\n", + "\n", + "> 注意:当你使用 **`new_data = NULL`** 对预处理过的配方 **`pumpkins_prep`** 进行 **`bake()`** 时,你会提取处理过的(即编码后的)训练数据。如果你有另一个数据集,例如测试集,并希望查看配方如何对其进行预处理,你只需使用 **`new_data = test_set`** 对 **`pumpkins_prep`** 进行 bake。\n", + "\n", + "## 4. 构建线性回归模型\n", + "\n", + "

      \n", + " \n", + "

      Dasani Madipalli 制作的信息图
      \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "YqXjLuWavNxW" + } + }, + { + "cell_type": "markdown", + "source": [ + "现在我们已经构建了一个配方,并确认数据将被适当预处理,接下来让我们构建一个回归模型来回答这个问题:`我可以预期某个南瓜包装的价格是多少?`\n", + "\n", + "#### 使用训练集训练线性回归模型\n", + "\n", + "正如你可能已经猜到的,*price* 列是 `结果` 变量,而 *package* 列是 `预测` 变量。\n", + "\n", + "为此,我们首先将数据分割为训练集(占80%)和测试集(占20%),然后定义一个配方,将预测变量列编码为一组整数,接着构建一个模型规范。我们不会准备和烘焙配方,因为我们已经知道它会按预期预处理数据。\n" + ], + "metadata": { + "id": "Pq0bSzCevW-h" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "set.seed(2056)\n", + "# Split the data into training and test sets\n", + "pumpkins_split <- new_pumpkins %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "\n", + "# Extract training and test data\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "\n", + "\n", + "# Create a recipe for preprocessing the data\n", + "lm_pumpkins_recipe <- recipe(price ~ package, data = pumpkins_train) %>% \n", + " step_integer(all_predictors(), zero_based = TRUE)\n", + "\n", + "\n", + "\n", + "# Create a linear model specification\n", + "lm_spec <- linear_reg() %>% \n", + " set_engine(\"lm\") %>% \n", + " set_mode(\"regression\")" + ], + "outputs": [], + "metadata": { + "id": "CyoEh_wuvcLv" + } + }, + { + "cell_type": "markdown", + "source": [ + "干得好!现在我们已经有了一个配方和模型规范,我们需要找到一种方法将它们打包成一个对象,该对象将首先对数据进行预处理(幕后完成prep+bake),然后在预处理后的数据上拟合模型,同时还支持潜在的后处理活动。这是不是让你更安心了!🤩\n", + "\n", + "在Tidymodels中,这个方便的对象叫做[`workflow`](https://workflows.tidymodels.org/),它可以方便地包含你的建模组件!这在*Python*中我们称之为*管道*。\n", + "\n", + "那么,让我们把所有东西打包到一个workflow中吧!📦\n" + ], + "metadata": { + "id": "G3zF_3DqviFJ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Hold modelling components in a workflow\n", + "lm_wf <- workflow() %>% \n", + " add_recipe(lm_pumpkins_recipe) %>% \n", + " add_model(lm_spec)\n", + "\n", + "# Print out the workflow\n", + "lm_wf" + ], + "outputs": [], + "metadata": { + "id": "T3olroU3v-WX" + } + }, + { + "cell_type": "markdown", + "source": [ + "顺便提一下,工作流程可以像模型一样进行适配或训练。\n" + ], + "metadata": { + "id": "zd1A5tgOwEPX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Train the model\n", + "lm_wf_fit <- lm_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the model coefficients learned \n", + "lm_wf_fit" + ], + "outputs": [], + "metadata": { + "id": "NhJagFumwFHf" + } + }, + { + "cell_type": "markdown", + "source": [ + "从模型输出中,我们可以看到训练过程中学习到的系数。它们表示最佳拟合线的系数,该线使实际变量与预测变量之间的总体误差最小化。\n", + "\n", + "#### 使用测试集评估模型性能\n", + "\n", + "是时候看看模型的表现了 📏!我们该怎么做呢?\n", + "\n", + "现在我们已经训练了模型,可以使用 `parsnip::predict()` 对测试集进行预测。然后,我们可以将这些预测值与实际标签值进行比较,以评估模型的效果(好或不好)。\n", + "\n", + "让我们从对测试集进行预测开始,然后将预测结果与测试集绑定在一起。\n" + ], + "metadata": { + "id": "_4QkGtBTwItF" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make predictions for the test set\n", + "predictions <- lm_wf_fit %>% \n", + " predict(new_data = pumpkins_test)\n", + "\n", + "\n", + "# Bind predictions to the test set\n", + "lm_results <- pumpkins_test %>% \n", + " select(c(package, price)) %>% \n", + " bind_cols(predictions)\n", + "\n", + "\n", + "# Print the first ten rows of the tibble\n", + "lm_results %>% \n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "UFZzTG0gwTs9" + } + }, + { + "cell_type": "markdown", + "source": [ + "是的,你刚刚训练了一个模型并用它进行了预测!🔮 它表现如何呢?让我们来评估模型的性能吧!\n", + "\n", + "在Tidymodels中,我们使用 `yardstick::metrics()` 来完成这一任务!对于线性回归,我们重点关注以下指标:\n", + "\n", + "- `均方根误差 (RMSE)`:即[均方误差 (MSE)](https://en.wikipedia.org/wiki/Mean_squared_error)的平方根。它提供了一个绝对指标,单位与标签一致(在这个例子中是南瓜的价格)。值越小,模型越好(简单来说,它表示预测值平均偏差的价格范围)。\n", + "\n", + "- `决定系数(通常称为R平方或R2)`:一个相对指标,值越高,模型拟合效果越好。实际上,这个指标表示模型能够解释预测值与实际标签值之间方差的程度。\n" + ], + "metadata": { + "id": "0A5MjzM7wW9M" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Evaluate performance of linear regression\n", + "metrics(data = lm_results,\n", + " truth = price,\n", + " estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "reJ0UIhQwcEH" + } + }, + { + "cell_type": "markdown", + "source": [ + "模型性能下降了。让我们通过可视化包裹和价格的散点图来看看是否能获得更好的指示,然后使用预测结果叠加一条最佳拟合线。\n", + "\n", + "这意味着我们需要准备并处理测试集,以便对包裹列进行编码,然后将其与模型生成的预测结果绑定在一起。\n" + ], + "metadata": { + "id": "fdgjzjkBwfWt" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Encode package column\n", + "package_encode <- lm_pumpkins_recipe %>% \n", + " prep() %>% \n", + " bake(new_data = pumpkins_test) %>% \n", + " select(package)\n", + "\n", + "\n", + "# Bind encoded package column to the results\n", + "lm_results <- lm_results %>% \n", + " bind_cols(package_encode %>% \n", + " rename(package_integer = package)) %>% \n", + " relocate(package_integer, .after = package)\n", + "\n", + "\n", + "# Print new results data frame\n", + "lm_results %>% \n", + " slice_head(n = 5)\n", + "\n", + "\n", + "# Make a scatter plot\n", + "lm_results %>% \n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\n", + " geom_point(size = 1.6) +\n", + " # Overlay a line of best fit\n", + " geom_line(aes(y = .pred), color = \"orange\", size = 1.2) +\n", + " xlab(\"package\")\n", + " \n" + ], + "outputs": [], + "metadata": { + "id": "R0nw719lwkHE" + } + }, + { + "cell_type": "markdown", + "source": [ + "很棒!正如你所看到的,线性回归模型并不能很好地概括包裹与其对应价格之间的关系。\n", + "\n", + "🎃 恭喜你,你刚刚创建了一个可以帮助预测几种南瓜价格的模型。你的节日南瓜田会非常漂亮。但你可能可以创建一个更好的模型!\n", + "\n", + "## 5. 构建一个多项式回归模型\n", + "\n", + "

      \n", + " \n", + "

      信息图由 Dasani Madipalli 制作
      \n", + "\n", + "\n", + "\n" + ], + "metadata": { + "id": "HOCqJXLTwtWI" + } + }, + { + "cell_type": "markdown", + "source": [ + "有时候,我们的数据可能并不存在线性关系,但我们仍然希望预测结果。这时,多项式回归可以帮助我们对更复杂的非线性关系进行预测。\n", + "\n", + "以我们的南瓜数据集中的包装和价格关系为例。虽然有时变量之间存在线性关系——比如南瓜的体积越大,价格越高——但有时这些关系无法用一个平面或直线来表示。\n", + "\n", + "> ✅ 这里有[更多使用多项式回归的数据示例](https://online.stat.psu.edu/stat501/lesson/9/9.8)\n", + ">\n", + "> 再次看看之前图中品种与价格的关系。这个散点图看起来是否一定应该用一条直线来分析?可能并不是。在这种情况下,你可以尝试使用多项式回归。\n", + ">\n", + "> ✅ 多项式是可能包含一个或多个变量和系数的数学表达式\n", + "\n", + "#### 使用训练集训练一个多项式回归模型\n", + "\n", + "多项式回归会创建一条*曲线*,以更好地拟合非线性数据。\n", + "\n", + "让我们看看多项式模型是否能在预测中表现得更好。我们将遵循与之前类似的步骤:\n", + "\n", + "- 创建一个配方,指定对数据进行建模前需要执行的预处理步骤,例如:对预测变量进行编码并计算次数为 *n* 的多项式\n", + "\n", + "- 构建一个模型规范\n", + "\n", + "- 将配方和模型规范打包到一个工作流中\n", + "\n", + "- 通过拟合工作流来创建模型\n", + "\n", + "- 评估模型在测试数据上的表现\n", + "\n", + "让我们开始吧!\n" + ], + "metadata": { + "id": "VcEIpRV9wzYr" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Specify a recipe\r\n", + "poly_pumpkins_recipe <-\r\n", + " recipe(price ~ package, data = pumpkins_train) %>%\r\n", + " step_integer(all_predictors(), zero_based = TRUE) %>% \r\n", + " step_poly(all_predictors(), degree = 4)\r\n", + "\r\n", + "\r\n", + "# Create a model specification\r\n", + "poly_spec <- linear_reg() %>% \r\n", + " set_engine(\"lm\") %>% \r\n", + " set_mode(\"regression\")\r\n", + "\r\n", + "\r\n", + "# Bundle recipe and model spec into a workflow\r\n", + "poly_wf <- workflow() %>% \r\n", + " add_recipe(poly_pumpkins_recipe) %>% \r\n", + " add_model(poly_spec)\r\n", + "\r\n", + "\r\n", + "# Create a model\r\n", + "poly_wf_fit <- poly_wf %>% \r\n", + " fit(data = pumpkins_train)\r\n", + "\r\n", + "\r\n", + "# Print learned model coefficients\r\n", + "poly_wf_fit\r\n", + "\r\n", + " " + ], + "outputs": [], + "metadata": { + "id": "63n_YyRXw3CC" + } + }, + { + "cell_type": "markdown", + "source": [ + "#### 评估模型性能\n", + "\n", + "👏👏你已经构建了一个多项式模型,现在让我们在测试集上进行预测吧!\n" + ], + "metadata": { + "id": "-LHZtztSxDP0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make price predictions on test data\r\n", + "poly_results <- poly_wf_fit %>% predict(new_data = pumpkins_test) %>% \r\n", + " bind_cols(pumpkins_test %>% select(c(package, price))) %>% \r\n", + " relocate(.pred, .after = last_col())\r\n", + "\r\n", + "\r\n", + "# Print the results\r\n", + "poly_results %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "YUFpQ_dKxJGx" + } + }, + { + "cell_type": "markdown", + "source": [ + "Woo-hoo,让我们使用 `yardstick::metrics()` 来评估模型在 test_set 上的表现。\n" + ], + "metadata": { + "id": "qxdyj86bxNGZ" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "metrics(data = poly_results, truth = price, estimate = .pred)" + ], + "outputs": [], + "metadata": { + "id": "8AW5ltkBxXDm" + } + }, + { + "cell_type": "markdown", + "source": [ + "🤩🤩 表现更出色。\n", + "\n", + "`rmse` 从大约 7 降至大约 3,这表明实际价格与预测价格之间的误差减少了。你可以*粗略地*理解为平均而言,错误预测的误差大约为 \\$3。`rsq` 从大约 0.4 增加到 0.8。\n", + "\n", + "所有这些指标都表明多项式模型的表现远优于线性模型。干得好!\n", + "\n", + "让我们看看是否可以将其可视化!\n" + ], + "metadata": { + "id": "6gLHNZDwxYaS" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Bind encoded package column to the results\r\n", + "poly_results <- poly_results %>% \r\n", + " bind_cols(package_encode %>% \r\n", + " rename(package_integer = package)) %>% \r\n", + " relocate(package_integer, .after = package)\r\n", + "\r\n", + "\r\n", + "# Print new results data frame\r\n", + "poly_results %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_line(aes(y = .pred), color = \"midnightblue\", size = 1.2) +\r\n", + " xlab(\"package\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "A83U16frxdF1" + } + }, + { + "cell_type": "markdown", + "source": [ + "您可以看到一条更符合您数据的曲线!🤩\n", + "\n", + "您可以通过向 `geom_smooth` 传递一个多项式公式,使其更加平滑,如下所示:\n" + ], + "metadata": { + "id": "4U-7aHOVxlGU" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a scatter plot\r\n", + "poly_results %>% \r\n", + " ggplot(mapping = aes(x = package_integer, y = price)) +\r\n", + " geom_point(size = 1.6) +\r\n", + " # Overlay a line of best fit\r\n", + " geom_smooth(method = lm, formula = y ~ poly(x, degree = 4), color = \"midnightblue\", size = 1.2, se = FALSE) +\r\n", + " xlab(\"package\")" + ], + "outputs": [], + "metadata": { + "id": "5vzNT0Uexm-w" + } + }, + { + "cell_type": "markdown", + "source": [ + "就像一条平滑的曲线!🤩\n", + "\n", + "以下是如何进行新的预测:\n" + ], + "metadata": { + "id": "v9u-wwyLxq4G" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a hypothetical data frame\r\n", + "hypo_tibble <- tibble(package = \"bushel baskets\")\r\n", + "\r\n", + "# Make predictions using linear model\r\n", + "lm_pred <- lm_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Make predictions using polynomial model\r\n", + "poly_pred <- poly_wf_fit %>% predict(new_data = hypo_tibble)\r\n", + "\r\n", + "# Return predictions in a list\r\n", + "list(\"linear model prediction\" = lm_pred, \r\n", + " \"polynomial model prediction\" = poly_pred)\r\n" + ], + "outputs": [], + "metadata": { + "id": "jRPSyfQGxuQv" + } + }, + { + "cell_type": "markdown", + "source": [ + "`多项式模型`的预测是合理的,结合`价格`和`包装`的散点图来看确实如此!而且,如果这个模型比之前的模型更好,那么根据相同的数据,你需要为这些更贵的南瓜做好预算!\n", + "\n", + "🏆 干得好!你在一节课中创建了两个回归模型。在回归的最后一部分,你将学习逻辑回归以确定类别。\n", + "\n", + "## **🚀挑战**\n", + "\n", + "在这个笔记本中测试几个不同的变量,看看相关性如何影响模型的准确性。\n", + "\n", + "## [**课后测验**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/14/)\n", + "\n", + "## **复习与自学**\n", + "\n", + "在本课中我们学习了线性回归。还有其他重要的回归类型。阅读关于逐步回归、岭回归、套索回归和弹性网络技术的内容。一个很好的课程是[斯坦福统计学习课程](https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning)。\n", + "\n", + "如果你想了解更多关于如何使用出色的Tidymodels框架,请查看以下资源:\n", + "\n", + "- Tidymodels官网:[Tidymodels入门](https://www.tidymodels.org/start/)\n", + "\n", + "- Max Kuhn 和 Julia Silge,[*Tidy Modeling with R*](https://www.tmwr.org/)*.*\n", + "\n", + "###### **特别感谢:**\n", + "\n", + "[Allison Horst](https://twitter.com/allison_horst?lang=en) 创作了令人惊叹的插图,使R语言更加友好和吸引人。可以在她的[画廊](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)中找到更多插图。\n" + ], + "metadata": { + "id": "8zOLOWqMxzk5" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/3-Linear/solution/notebook.ipynb b/translations/zh-CN/2-Regression/3-Linear/solution/notebook.ipynb new file mode 100644 index 000000000..5577a3185 --- /dev/null +++ b/translations/zh-CN/2-Regression/3-Linear/solution/notebook.ipynb @@ -0,0 +1,1113 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 南瓜定价的线性和多项式回归 - 第三课\n", + "\n", + "加载所需的库和数据集。将数据转换为包含数据子集的数据框:\n", + "\n", + "- 仅获取按蒲式耳定价的南瓜\n", + "- 将日期转换为月份\n", + "- 计算价格为高价和低价的平均值\n", + "- 将价格转换为按蒲式耳数量定价\n" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
      0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
      1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
      2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      \n", + "

      5 rows × 26 columns

      \n", + "
      " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 167, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from datetime import datetime\n", + "\n", + "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      MonthDayOfYearVarietyCityPackageLow PriceHigh PricePrice
      709267PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
      719267PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
      7210274PIE TYPEBALTIMORE1 1/9 bushel cartons18.018.016.363636
      7310274PIE TYPEBALTIMORE1 1/9 bushel cartons17.017.015.454545
      7410281PIE TYPEBALTIMORE1 1/9 bushel cartons15.015.013.636364
      \n", + "
      " + ], + "text/plain": [ + " Month DayOfYear Variety City Package Low Price \\\n", + "70 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "71 9 267 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "72 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 18.0 \n", + "73 10 274 PIE TYPE BALTIMORE 1 1/9 bushel cartons 17.0 \n", + "74 10 281 PIE TYPE BALTIMORE 1 1/9 bushel cartons 15.0 \n", + "\n", + " High Price Price \n", + "70 15.0 13.636364 \n", + "71 18.0 16.363636 \n", + "72 18.0 16.363636 \n", + "73 17.0 15.454545 \n", + "74 15.0 13.636364 " + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", + "\n", + "new_columns = ['Package', 'Variety', 'City Name', 'Month', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", + "\n", + "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", + "\n", + "month = pd.DatetimeIndex(pumpkins['Date']).month\n", + "day_of_year = pd.to_datetime(pumpkins['Date']).apply(lambda dt: (dt-datetime(dt.year,1,1)).days)\n", + "\n", + "new_pumpkins = pd.DataFrame(\n", + " {'Month': month, \n", + " 'DayOfYear' : day_of_year, \n", + " 'Variety': pumpkins['Variety'], \n", + " 'City': pumpkins['City Name'], \n", + " 'Package': pumpkins['Package'], \n", + " 'Low Price': pumpkins['Low Price'],\n", + " 'High Price': pumpkins['High Price'], \n", + " 'Price': price})\n", + "\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1 1/9'), 'Price'] = price/1.1\n", + "new_pumpkins.loc[new_pumpkins['Package'].str.contains('1/2'), 'Price'] = price*2\n", + "\n", + "new_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "散点图提醒我们,我们只有从八月到十二月的月度数据。我们可能需要更多数据才能以线性方式得出结论。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 169, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkT0lEQVR4nO3dfXRV9Z3v8fc3EB7kYcAQA+Wh0IZSUWLqzWVARi+W+lQdodXOtHcQZ41dOGumc1tn5graXqc67Ywybe2009Urtb3F2mnrkhYVtEIj1NoRNTAQEFQyhRpoCBihgEJIyPf+cXZiHs5Jzsbss0/O/rzWOivnfM/Z53zdhm9+57d/D+buiIhIchTFnYCIiOSWCr+ISMKo8IuIJIwKv4hIwqjwi4gkzOC4E8jGuHHjfOrUqXGnISIyoGzZsuUNdy/tHh8QhX/q1KnU1NTEnYaIyIBiZr9NF1dXj4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EuHphPNbK8/StOJ5rhTEZEIDYjhnBK9x7YdYNnqWoqLimhpa2PFDRVcXzkx7rREJAJq8QtNJ5pZtrqWUy1tHG9u5VRLG7evrlXLX6RAqfAL+4+cpLio669CcVER+4+cjCkjEYmSCr8waexwWtrausRa2tqYNHZ4TBmJSJRU+IWSkUNZcUMFQwcb5xQPYuhgY8UNFZSMHBp3aiISARV+ASC1AaeBBT9FpGBFWvjNbJ+Z7TCzbWZWE8TONbMNZrYn+Dk2yhykb+0Xd5tb23j79BmaW3VxV6SQ5aLFf7m7V7p7VfB4OVDt7tOB6uCxxEgXd0WSJY6unoXAquD+KmBRDDlIJ7q4K5IsURd+B9ab2RYzWxrEyty9ASD4eV7EOUgf2i/uDisuYtTQwQwrLtLFXZECFvXM3Xnu/jszOw/YYGavZHtg8IdiKcCUKVOiyk8C11dOZF75OPYfOcmkscNV9EUKWKQtfnf/XfDzEPAzYDbQaGYTAIKfhzIcu9Ldq9y9qrS0x85hEoGSkUO5aPIYFX2RAhdZ4TezEWY2qv0+cCWwE3gcuDl42c3AY1HlICIiPUXZ1VMG/MzM2j/n393952b2EvCImd0CvA58IsIcRESkm8gKv7v/BrgoTbwJWBDV54qISO80c1dEJGFU+KVDzd4mvrb+VWr2NsWdiohESBuxCACLH9zMc3Wpgv+NZ+q4tLyEH3x6TsxZiUgU1OIXavY2dRT9dr+qa1LLX6RAqfALz+55I1RcRAY2FX7hsunjQsVFZGBT4ReqppVwaXlJl9il5SVUTSvJcISIDGQq/ALAjVWTGTKoiCGDjCGDivhE1eS4UxKRiKjwS8dGLKfPtHH6jHP6jDZiESlkKvyijVjOUvWugyx7dDvVuw7GnYpIKBrHL9qI5Sxcef8mXmt8C4Cf1OxnRtkInr5tfqw5iWRLLX7p2IhlyCBj6OBUP782YsmsetfBjqLf7tXGt9TylwFDhV8AqNn3JqfPOM2tqX7+mt++GXdKeWv9rsZQcZF8o8Iv1DUe56HNr3eJPfT869Q1Ho8po/x25cyyUHGRfKPCL2yrPxoqnnQLZo5nRtmILrEZZSNYMHN8TBmJhKOLu0Ll5DGh4gJP3zaf6l0HWb+rkStnlqnoy4ASeYvfzAaZ2X+a2drg8RfN7ICZbQtuH406B+ldedkolsztuqH9krlTKC8bFVNGA8OCmeO578aLVPSz1HSime31RzU/JA/kosX/WWA3MLpT7H53/0oOPluydM/CWSyZM5Vt9UepnDxGRV/61WPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaiRVpi9/MJgHXAg9G+TnSP8rLRnFj1WQVfelX7TPDT7W0cby5lVMtmhket6i7er4O3A60dYt/xsxqzex7ZjY23YFmttTMasys5vDhwxGnKSJR0czw/BNZ4Tez64BD7r6l21PfBt4PVAINwFfTHe/uK929yt2rSktLo0pTRCKmmeH5J8oW/zzgejPbB/wY+LCZPezuje5+xt3bgO8AsyPMQURi1j4zfFhxEaOGDmZYcZFmhscssou77n4HcAeAmc0H/t7dF5vZBHdvCF72MWBnVDmISH64vnIi88rHsf/ISSaNHa6iH7M4xvGvMLNKwIF9wK0x5CAiOVYycqgKfp7ISeF3903ApuD+Tbn4TBERSU9LNoiIJIwKv4hIwqjwi4gkjAq/iEjCqPCLiCSMCr+ISMKo8EsHLZsbztLvv8AHv/AkS7//QtypDAh1jcd5tKZeO7vlAW3EIoCWzQ1r6vJ1HffXv/IGU5evY9+918aYUX67a82OLtt7Lpk7hXsWzooxo2RTi1+0bG5ImVr4avmnpz2d848Kv2jZ3JCerWsKFU867emcf1T4RcvmhnRZeUmoeNJpT+f8o8IvWjY3pJV//oeh4kmnPZ3zj7l73Dn0qaqqymtqauJOo+A1nWjWsrkhLP3+Czxb18Rl5SUq+lmoazyuPZ1zzMy2uHtVj7gKv4hIYcpU+NXVIyKSMJEXfjMbZGb/aWZrg8fnmtkGM9sT/Ey72brkniZwhfPlJ3Yy959/wZef0CZy2ViztZ5Pr3qJNVvr404l8SLv6jGzvwWqgNHufp2ZrQDedPd7zWw5MNbdl/X2HurqiZ4mcIXzvuXr6DwOqgj4jSZwZTTnnzZw8NjpjscTRg/h+TuviDGjZIilq8fMJgHXAg92Ci8EVgX3VwGLosxB+qYJXOF8+YmdtHWLtQVx6WnN1vouRR+g4dhptfxjFHVXz9eB26HLv5Oy9s3Wg5/npTvQzJaaWY2Z1Rw+fDjiNJNNE7jCWbvzYKh40q3dkeF8ZYhL9CIr/GZ2HXDI3beczfHuvtLdq9y9qrS0tJ+zk840gSuc6y4cHyqedNfNynC+MsQlelG2+OcB15vZPuDHwIfN7GGg0cwmAAQ/D0WYg2RBE7jC+fwfX9jjH05REJeeFl08mQmjh3SJTRg9hEUXT44pI8nJOH4zmw/8fXBx91+Apk4Xd89199t7O14Xd3NDE7jC+fITO1m78yDXXTheRT8La7bWs3bHQa6bNV5FP0dincDVrfCXAI8AU4DXgU+4+5u9Ha/CLyISXqbCn5P1+N19E7ApuN8ELMjF54qISE+auSsikjAFXfg1EzWcBzbu4Zp/fZYHNu6JO5UBQVsJykBVsFsvaiZqOOd/4UlOtqau9+xuOM7Xq/ew+0sfjTmr/KWtBGUgK8gWv2aihvPAxj0dRb/dyVZXyz8DbSUoA11BFn7NRA1nTW1DqHjSaStBGegKsvBrJmo4iyomhIonnbYSlIGuIAu/ZqKGc+vl0xk+2LrEhg82br18ekwZ5TdtJSgDXUHvwKWZqOE8sHEPa2obWFQxQUU/C9pKUPKdtl4U6WdqWEi+i3Xmrkih0XBhGcgKso9fJEoaLiwDnQq/dFj0zV/yvuXrWPTNX8adSl7TcOGzo5n0+UNdPQLA1OXrOu5vO3CCqcvXsU97yKY1aexwjje3dokdb27VcOFeqGssv6jFLxlb+Gr5p/dnK/8jVDzp1DWWf1T4hdoDJ0LFk+6VQ2+HiiedusbyT5R77g4zsxfNbLuZvWxmdwfxL5rZATPbFty0EljMKiaODBVPug+ed06oeNJpJn3+ibLF3wx82N0vAiqBq81sTvDc/e5eGdyejDAHycKav/kfoeJJ9/O/vTxUPOnaZ9IPHVzUcdNM+nhFVvg9pb2voDi45f9ssYT6o/KSLo8v7fZY5N2o2fcmza1tHbea3/a626pELNI+fjMbZGbbgEPABnd/IXjqM2ZWa2bfM7OxUeYgfavZ28RzdU1dYr+qa6Jmb1OGI5Jt6fdfCBVPOi1jnX8iLfzufsbdK4FJwGwzuxD4NvB+Ut0/DcBX0x1rZkvNrMbMag4fPhxlmon37J43QsWT7tm69H8QM8WTTstY55+cjOpx96OkNlu/2t0bgz8IbcB3gNkZjlnp7lXuXlVaWpqLNBPrsunjQsWT7rIM3WCZ4kmnZazzT5SjekrNbExwfzjwEeAVM+u8yPvHgJ1R5SDZqZqWvmBliifdyj//w1DxpMu0cqlWNI1PlC3+CcBGM6sFXiLVx78WWGFmO4L45cBtEeYgWfj7n2wNFU+6//nAr0PFk06/X/knsiUb3L0W+FCa+E1RfaacnQ27D4WKJ92Lvz0aKp50+v3KP5q5K1xx/nmh4kk3+71jQsWTTr9f+UeFX/jKn14cKp50/37rvFDxpNPvV/5R4RcA/mDYoF4fi7wb40cP6fJ4QrfHklsq/MLD/7GX35860yX2+1NnePg/9saUUX6r+Id1oeJJt2ZrPQePne4Sazh2mjVb62PKSLIq/Gb2ATOrNrOdweMKM/tCtKlJrjxW2xAqnnTHMqwmnCmedGt3HAwVl+hl2+L/DnAH0AIdI3Y+GVVSklsLKyaEiifd6Axri2WKJ911s8aHikv0si3857j7i91irWlfKQPO4kumpe3jX3zJtJgyym+1d6ffmSxTPOkWXTy5R5/+hNFDWHTx5JgykmwL/xtm9n6C1TXN7EZS6+xIgVjYbRu8hR/Stni9+ddPVnZ5/I1uj6Wr5++8gq//SQUfOf88vv4nFTx/5xVxp5Ro5t73Sslm9j5gJXAJcATYCyx2932RZheoqqrympqaXHxUItU1Hucj9z/bI/6L2y7TtPo0mk40M+++ZzjV8s7mIsOKi/j1sg9rjXnJK2a2xd2rusezmrnr7r8BPmJmI4Aid9d6qgWkt9UTVfh7at9K8BTvFP72rQRV+GUgyHZUzz+Z2Rh3f8vdj5vZWDP7UtTJSW5o9cRwtJWgDHTZ9vFfEyytDIC7HwG0V26BGDtiCIOKrEtsUJExdoQm2aTTvpVgEWCk/hFpK8G+1TUe59Gaem3AkgeyXaRtkJkNdfdm6FhmWb/lBWL/kZMUGXSewlVkqOuiF/9nzY6Ojh4PHl9fqQvimdy1ZkeXXbiWzJ3CPQtnxZhRsmXb4n8YqDazW8zsL4ANwKro0pJcamk9Q8uZrhf5W844La1nMhyRbJrpHI62Xsw/WRV+d18BfBk4H7gA+McgJgXghb3pN77OFE86zXQOR1sv5p+s1+N396eApyLMRWRAWFgxgZf2HUkbl540eCD/9NriN7Pngp/HzexYp9txMzvWx7HDzOxFM9tuZi+b2d1B/Fwz22Bme4KfY/vvP0fOxlUXpJ86nymedJrpHE552SiWzJ3SJbZk7hQNFY5Rry1+d/+j4OfZ/B9qBj7s7ifMrBh4zsyeAj4OVLv7vWa2HFgOLDuL95d+oj1Rw0vXxy+Z3bNwFkvmTGVb/VEqJ4/R71bM+uzjN7Oi9lU5w/CUE8HD4uDmwELeuTC8ClgU9r2lf12+ojpUPOm05+7ZKS8bxY1Vk1X080Cfhd/d24DtZjalr9d2Z2aDzGwbcIjUZusvAGXu3hC8dwOQdv81M1tqZjVmVnP48OGwHy0h7H3zVKh40mnPXRnosh3OOQF4OViT//H2W18HufsZd68EJgGzzezCbBNz95XuXuXuVaWlpdkeJmdh2rnDQsWTTnvuykCX7aieu9/Nh7j7UTPbBFwNNJrZBHdvMLMJpL4NSIw23r6Aqct77h618fYFMWST//791nlpz5f23JWBoq9RPcPM7HPAJ4APAr9291+23/o4ttTMxgT3hwMfAV4BHgduDl52M/DYu/ovkH6x795rmRismT5x9BD23au15Xuz795ruWTaGAYXwSXTxuh8yYDSV4t/Faldt34FXAPMBD6b5XtPAFaZ2SBSf2Aecfe1ZvY88IiZ3QK8TuqPisTsrjU7OBDsi3rg2GnuemyHptT3QS18Gaj6Kvwz3X0WgJl9F+i+C1dGwfaMH0oTbwLUh5BHMk2pXzJnqkZgiBSgvi7utrTfcXdttVigNKVeJFn6avFf1GmGrgHDg8dGaqj+6Eizk5zQlPqz84Wfbueplxu55oIyvvTxi+JORyRrfc3cHdTb81IYystGMaNsBK82vtURm1E2Qt08veg8qufhF/fz8Iv7dYFXBoxsx/FLAatrPN6l6AO82viWls3N4As/3R4qLpJvVPhFffwhPfVyY6i4SL5R4RfGnlMcKp5011xQFioukm9U+IUjb7eEiiddpgu5usArA4UKv2hUz1nYd++1LJ49iZIRxSyePUkXdmVAyXoHLilc7RtlPPR8182wNaqnd1/6+EV86eNxZyESngq/ANooQyRJVPilQ3nZKBV8kQRQH7+ISMKo8EuHusbjPFpTr4lbIgVOXT0CpJZl7rxC55K5U7Qss0iBUotfMi7LrJa/SGGKrPCb2WQz22hmu83sZTP7bBD/opkdMLNtwe2jUeUg2dGSDSLJEmVXTyvwd+6+1cxGAVvMbEPw3P3u/pUIP1tC0AQukWSJrPC7ewPQENw/bma7gYlRfZ6cvbEjhqQ2WOgUsyAuIoUnJ338ZjaV1DaMLwShz5hZrZl9z8zGZjhmqZnVmFnN4cOHc5FmYu0/cpKRQ7u2AUYOHcz+IydjykhEohR54TezkcBq4HPufgz4NvB+oJLUN4KvpjvO3Ve6e5W7V5WWlkadZqJNGjuclra2LrGWtjYmjR0eU0YiEqVIC7+ZFZMq+j90958CuHuju59x9zbgO8DsKHOQvpWMHMqKGyoYbDDIYLDBihsqKBk5NO7URCQCUY7qMeC7wG53/1qn+IROL/sYsDOqHCR7/7ZxD60OZxxaHb61cU/cKYlIRKIc1TMPuAnYYWbbgtidwKfMrJLUtcR9wK0R5iBZqN51kNfSbL1YvesgC2aOjykrEYlKlKN6niM1OKS7J6P6TDk763el3zJw/a5GFX6RAqSZu8KVM9NvGZgpLiIDmwq/sGDmeGaUjegSm1E2Qq19kQKlRdoEgKdvm0/1roOs39XIlTPLVPRFCpgKv3RYMHO8Cr5IAqirR0QkYVT4RUQSRoVfOmgHLpFkUB+/ANqBSyRJ1OIX7cAlkjAq/KIduEQSRoVftAOXSMKo8AvlZaNYMndKl9iSuVMoLxsVU0YiEiVd3BUA7lk4iyVzprKt/iiVk8eo6IsUMBV+6VBeNkoFPwQtcRGOzld4TSea2X/kJJPGDu/XjZFU+EXOwpX3b+rYw+AnNfuZUTaCp2+bH2tO+UznK7zHth1g2epaiouKaGlrY8UNFVxfObFf3jvKHbgmm9lGM9ttZi+b2WeD+LlmtsHM9gQ/0262LpKvetu4RnrS+Qqv6UQzy1bXcqqljePNrZxqaeP21bU0nWjul/eP8uJuK/B37n4+MAf4azObCSwHqt19OlAdPJY8ULO3ia+tf5WavU1xp5LXetu4RnrS+Qpv/5GTFBd1Lc/FRUXsP3KyX94/ssLv7g3uvjW4fxzYDUwEFgKrgpetAhZFlYNkb/GDm7nxgc1845k6bnxgMzc9uDnulPKWNq4JR+crvEljh9PS1tYl1tLWxqSxw/vl/XMynNPMpgIfAl4Ayty9AVJ/HIDzcpGDZFazt4nn6rq28n9V16SWfwbauCYcna/wSkYOZcUNFQwrLmLU0MEMKy5ixQ0V/XaBN/KLu2Y2ElgNfM7dj5ml24Y37XFLgaUAU6ZM6ePV8m48u+eNjPGqaSU5zmZg0MY14eh8hXd95UTmlY+LZFSPuXu/vVmPNzcrBtYCT7v714LYq8B8d28wswnAJnef0dv7VFVVeU1NTWR5Jl3N3iZufKBn186jt85R4RcZwMxsi7tXdY9HOarHgO8Cu9uLfuBx4Obg/s3AY1HlINmpmlbCpeVdC/yl5SUq+n1Ys7WeT696iTVb6+NOZUBoOtHM9vqj/TYyRc5elF0984CbgB1mti2I3QncCzxiZrcArwOfiDAHydKeQ11X4qw7pJU5ezPnnzZw8NhpAH6x+xD3/fwVnr/zipizyl9RjkmX8KIc1fOcu5u7V7h7ZXB70t2b3H2Bu08Pfr4ZVQ6SnTVb6zuKWLuGY6fVks1A5yucqMekS3gFvUibvlpmZ+2O9BNpMsWTTucrnKjHpEt4BVv4H9t2gHn3PcPiB19g3n3P8Pi2A3GnlLeum5V+hEWmeNLpfIUT9Zh0Ca8gC7++WobT+PtToeJJt+jiyUwYPaRLbMLoISy6eHJMGeW3qMekS3gFuUhb+1fLU7zTymj/aqlftp7W1DZkjN96+fQcZzMwPH/nFazZWs/aHQe5btZ4Ff0+RDkmXcIryMKvr5bhLKqYwO6GnqN4FlVMiCGbgWPRxZNV8EMoGTlUBT9PFGRXT/tXy6GDjXOKBzF0sOmrZS9uvXw6wwd3nVE9fLCptS9SoAqy8AOk5iMbWPBTevXfpp7b5XFVt8fSk1YzDaeu8TiP1tRT16g5InEryK6e9ou7za3vdPfcvrqWeeXj1OpPo7dF2jR7N73FD27uOGffeKaOS8tL+MGn58ScVf66a80OHtr8esfjJXOncM/CWTFmlGwF2eLXuOFwelukTXrSaqbh1DUe71L0AR56/nW1/GNUkIVfF3fDuWz6uFDxpNMfynC21R8NFZfoFWTh17jhcDJ156ibJz39oQyncvKYUHGJXkH28YPGDYfx5Sd2Zox//o8vzHE2+e9Xrx3KGNcfy57Ky0axZO4UHnq+ax9/edmoGLNKtoIt/KBxw9lauzPD2jM7D6rwp/HIlv0Z47dddX6OsxkY7lk4iyVzprKt/iiVk8eo6MesILt6JJzrLsyw9kyGeNJNGnNOqLiklJeN4saqySr6eUCFX/jT2e8NFU+68d3W6ekrLil/8/BLXHDXU/zNwy/FncqAUb3rIMse3U71rv5d+bWgu3okO8/VHc4YV+usp5r634eKC0xdvq7j/hM7D/HE8nXsu/faGDPKf1fev4nXGt8C4Cc1+5lRNoKnb5vfL+8d5daL3zOzQ2a2s1Psi2Z2wMy2BbePRvX5kr2jb7eEiifdmdYzoeJJl6mFr5Z/ZtW7DnYU/XavNr7Vby3/KLt6vg9cnSZ+f+cduSL8fMnSW6dbQ8WTrunt9OclUzzpnnkt/fyGTHGB9bsaQ8XDinLrxWcBbas4AFw1M/1F3EzxpJv1npGh4kn34Q+kn9+QKS5w5cyyUPGw4ri4+xkzqw26gsZmepGZLTWzGjOrOXw4fR+09I+qaSVpV+fUmPT07l50Uah40n1z8X8PFRdYMHM8M8pGdInNKBvBgn5qjOW68H8beD9QCTQAX830Qndf6e5V7l5VWlqao/SSqXrXQU62epfYyVbv95EEhWLS2OEMK+76T2dYcZGWBOnFvnuvpXxc6vyUjxuuC7tZePq2+dxx1Qc4f8Io7rjqA/12YRdyXPjdvdHdz7h7G/AdYHYuP1/Si7o/sdCUjBzKqZaua0GdamnTZMFeTL9jHXVvpBZJrHvjJNPvWNfHEbL4wc3889OvsbvhOP/89Gvc9ODmfnvvnBZ+M+u8pdPHgPRrBUhOzXrP6FDxpPvCT7eHiifd/U/vpqXrF0paPBWX9KJeATbK4Zw/Ap4HZpjZfjO7BVhhZjvMrBa4HLgtqs+X7A0bkn46R6Z40j31cvpvQpniSfdYbfouw0xxiX4F2ChH9XzK3Se4e7G7T3L377r7Te4+y90r3P16d0+/y7fklFZPDOeaC9KPrMgUT7qFFekvSGaKS/QrwGrJBpGQLv9g+gKfKZ50mRau04J2mVVNK+HS8q6j6i4tL+m3kXb6Li+9bpShJRt66u1ieH8NtyskmUaHVe86qPPVix98eg41e5t4ds8bXDZ9XL8Or1aLX9TVE1LUk2sKjUaNnb2qaSX87ZUz+n1OjQq/dGyU0Zk2ysgs6sk1hUZ/KPOPuXvfr4pZVVWV19TUxJ1GwatrPK6NMkKo3nWQ9bsauXJmmYp+H666fxOvdlp0rD9XmpTMzGyLu1f1iKvwi0gu6A9l7mUq/Lq4K3KWmk40a0/nEBbMHK+CnydU+EXOwmPbDrBsdS3FRUW0tLWx4oYKrq+cGHdaIlnRxV2RkJpONLNsdS2nWto43tzKqZY2bl9dS9OJ5rhTE8mKCr9ISPuPnKS4qOs/neKiIvYfORlTRiLhqPCLhDRp7HBa2rquztnS1qZlmWXAUOEXCalk5FBW3FBBcREMKoLiIlhxQ4Uu8Pah6UQz2+uPqkssD+jirshZ+LeNe2hfkv8M8K2Ne3Rxtxe6GJ5f1OIXCal610Fe6zQZCeDVxre0Y1kGuhief1T4RULS2jPh6GJ4/olyI5bvmdkhM9vZKXaumW0wsz3Bz4ybrYvkK609E44uhuefKFv83weu7hZbDlS7+3SgOngsMqBokbZw2i+GDysuYtTQwQwrLtLF8JhFulaPmU0F1rr7hcHjV4H57t4Q7L+7yd1n9PU+WqtH8pHWnglHS1zkXr6s1VPWvt1iUPzPy/RCM1sKLAWYMmVKppeJxEZrz4RTMnKoCn6eyNuLu+6+0t2r3L2qtLQ07nRERApGrgt/Y9DFQ/DzUI4/X0Qk8XJd+B8Hbg7u3ww8luPPFxFJvCiHc/4IeB6YYWb7zewW4F7gCjPbA1wRPBYRkRyK7OKuu38qw1MLovpMERHp24DYetHMDgO/PcvDxwFv9GM6/UV5haO8wlFe4eRrXvDucnuvu/cYHTMgCv+7YWY16caxxk15haO8wlFe4eRrXhBNbnk7nFNERKKhwi8ikjBJKPwr404gA+UVjvIKR3mFk695QQS5FXwfv4iIdJWEFr+IiHSiwi8ikjAFU/jN7DYze9nMdprZj8xsWLfnzcy+YWZ1ZlZrZhfnSV7zzez3ZrYtuN2Vo7w+G+T0spl9Ls3zcZ2vvvLKyfl6NxsJmdnVZvZqcO76dc+Jd5nXPjPbEZy3fl3nPENenwj+P7aZWcbhiDGcr2zzyvX5+hczeyX49/YzMxuT4dh3f77cfcDfgInAXmB48PgR4M+7veajwFOAAXOAF/Ikr/mk9izI5fm6ENgJnENq9vYvgOl5cL6yySsn5wu4DLgY2NkptgJYHtxfDtyX5rhBwH8B7wOGANuBmXHnFTy3DxiXw/N1PjAD2ARUZTgujvPVZ14xna8rgcHB/fui/P0qmBY/qUIx3MwGkyocv+v2/ELgIU/ZDIxpXyk05rzicD6w2d3fdvdW4JfAx7q9Jo7zlU1eOeHuzwJvdgsvBFYF91cBi9IcOhuoc/ffuPtp4MfBcXHnFal0ebn7bnd/tY9Dc36+sswrUhnyWh/83gNsBialObRfzldBFH53PwB8BXgdaAB+7+7ru71sIlDf6fH+IBZ3XgBzzWy7mT1lZhdEmVNgJ3CZmZWY2TmkWveTu70m5+cry7wg9+erXZeNhIB0GwnFcd6yyQvAgfVmtsVSGx3lgzjOV7biPF9/Qeobd3f9cr4KovAHfZoLgWnAe4ARZra4+8vSHBrpWNYs89pKaj2Ni4BvAmuizAlSLR5SXyU3AD8n9XWxtdvLcn6+sswr5+crpJyftxDmufvFwDXAX5vZZXEnhM5XD2b2eVK/9z9M93SaWOjzVRCFH/gIsNfdD7t7C/BT4JJur9lP19bjJKLvdukzL3c/5u4ngvtPAsVmNi7ivHD377r7xe5+GamvnHu6vSSO89VnXnGdr0A2GwnFcd6y2uDI3X8X/DwE/IxUt0HcYvk9y0Yc58vMbgauA/7Mg079bvrlfBVK4X8dmGNm55iZkVr6eXe31zwOLAlGq8wh1e3SEHdeZjY+eA4zm03q/0lTxHlhwX7HZjYF+Djwo24vieN89ZlXXOcrkM1GQi8B081smpkNAT4ZHBdrXmY2wsxGtd8ndSFxZ/fXxSCO89WnOM6XmV0NLAOud/e3M7ysf85XFFes47gBdwOvkPqf8wNgKPCXwF8GzxvwLVJXxHfQy9X8HOf1GeBlUt0am4FLcpTXr4BdwecuCGL5cL76yisn54vUH5wGoIVUK+sWoASoJvUtpBo4N3jte4AnOx37UeC14Nx9Ph/yIjUKZHtwezlHeX0suN8MNAJP58n56jOvmM5XHan++23B7f9Gdb60ZIOISMIUSlePiIhkSYVfRCRhVPhFRBJGhV9EJGFU+EVEEkaFXwQwMzezH3R6PNjMDpvZ2rN8vzFm9ledHs8/2/cS6W8q/CIpbwEXmtnw4PEVwIF38X5jgL/q60UicVDhF3nHU8C1wf1P0WnWsKXWvF8TrJW+2cwqgvgXg7XVN5nZb8zsfwWH3Au8P1jL/V+C2EgzezRYc/2H7TOQRXJNhV/kHT8GPmmpzXIqgBc6PXc38J/uXgHcCTzU6bkPAleRWsvlH8ysmNS6+P/l7pXu/r+D130I+Bwwk9TM0HkR/reIZKTCLxJw91pgKqnW/pPdnv4jUktu4O7PACVm9gfBc+vcvdnd3yC1QFpZho940d33u3sbqSn5U/v1P0AkS4PjTkAkzzxOag+F+aTWwGnX23K4zZ1iZ8j87yrb14lESi1+ka6+B9zj7ju6xZ8F/gxSI3SAN9z9WC/vcxwYFUWCIu+WWhwinbj7fuBf0zz1ReD/mVkt8DbvLIOc6X2azOzXwWbaTwHr+jtXkbOl1TlFRBJGXT0iIgmjwi8ikjAq/CIiCaPCLyKSMCr8IiIJo8IvIpIwKvwiIgnz/wEDeg/76NO6rgAAAABJRU5ErkJggg==", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('Month','Price')" + ] + }, + { + "cell_type": "code", + "execution_count": 170, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAshElEQVR4nO3dfZyU5Xno8d+1y7IgiwLLunJkV2xWSangRreKIVoVQ03qEdKon74YTKMlzan9pCatmLTHGtvaiE3M6UlOq4k59SVNJJiA9ZgIEqxRwThQXhQ0bAOyGFhwBd01sO7Ldf6YZ5aZ3ZndmWfuZ+aemev7+Sw7c+8z19zP7HDtM/erqCrGGGMqR1WxK2CMMaawLPEbY0yFscRvjDEVxhK/McZUGEv8xhhTYcYVuwLZmD59us6aNavY1TDGmJKyefPmN1W1YXh5SST+WbNmEYvFil0NY4wpKSLyerpya+oxxpgKY4nfGGMqjCV+Y4ypMJb4jTGmwljiN8aYCmOJ32TU1dPLto6jdPX0FrsqxhiHSmI4pym8NVvfYPlj26mpqqJvcJAVH5/H1a2nF7taxhgH7IrfjNDV08vyx7ZzvG+Q7t5+jvcNcutj2+3K35gyYYnfjLD/yDFqqlLfGjVVVew/cqxINTLGuGSJ34wwc+pE+gYHU8r6BgeZOXVikWpkjHHJEr8Zob6ulhUfn8eEmiom145jQk0VKz4+j/q62rziWmexMX6wzl2T1tWtp7OgZTr7jxxj5tSJeSd96yw2xh+RJn4R2Qt0AwNAv6q2icg04FFgFrAXuE5Vj0RZDxNOfV1t3gkfUjuLjxNvQrr1se0saJnuJL4xJjeFaOq5TFVbVbUtuH8bsF5VzwLWB/dNGbPOYmP8Uow2/sXAg8HtB4ElRaiDKSDrLDbGL1EnfgXWishmEVkWlDWq6gGA4PupEdfBFFlUncXGmHCi7txdoKq/FJFTgXUi8mq2Dwz+UCwDaG5ujqp+pkBcdxYbY8KL9IpfVX8ZfD8E/BC4AOgUkRkAwfdDGR57v6q2qWpbQ8OIncNMCaqvq+XcpimW9I0pssgSv4hMEpHJidvAIuBl4HHghuCwG4A1UdXBGGPMSFE29TQCPxSRxPP8m6r+WEReAlaKyI3APuDaCOtgjDFmmMgSv6r+Ajg3TXkXsDCq5zXGGDM6W7LBGGMqjCX+InK9do3v8YwxfrC1eorE9do1vsczxvjDrviLwPVGJ77HM8b4xRJ/Ebheu8b3eMYYv1jiLwLXa9f4Hs8Y4xdL/EXgeu0a3+MlWGexMX4QVS12HcbU1tamsVis2NVwrqun1+naNT7Hs85iYwpPRDYnLYk/xEb1FJGrjU58j2cbsRjjF2vqMZEr5c5i181T7Z3drIp10N7Z7SSeNZ+ZMOyK30SuVDuLXTdP3b56Bw9t2jd0f+lFzdy5eK439TOVw674Tc5yvWotxY1YXM9laO/sTkn6AA9t3Bf6yt/mWph82BW/yUnYq9ZS24gl0TyV6JOAE81TYeq+teNoxvKWxslFr5+pLHbFb7KW71VrKW3E4rp5qrVpSk7lYynV5jPjB0v8JmujXbWWG9fNUy2Nk1l6UeoWoksvag51tR9F/UxlsaYekzXXV62+c908defiuSydP4utHUdpbZoSOulHVT9TOSJP/CJSDcSAN1T1KhG5A/hj4HBwyBdV9cmo62Hyl7hqfWhjaht/vgnMZ67nRrQ0Tnb6ermun+tJgMZPhbji/yywCzg5qexeVf3HAjy3ccz1Vavxhw0PrRyRtvGLyEzgd4BvRfk8prBaGidzTVuTJf0yYsNDK0vUnbtfA24FBoeV3ywi20Xk2yIyNd0DRWSZiMREJHb48OF0hxhjHCnl2dUmd5ElfhG5CjikqpuH/eifgfcBrcAB4CvpHq+q96tqm6q2NTQ0RFVNYww2PLTSRHnFvwC4WkT2At8DLheRR1S1U1UHVHUQ+CZwQYR1MMZkwYaHVpbIOndV9QvAFwBE5FLgL1T1ehGZoaoHgsM+BrwcVR2MMdmz4aGVoxjj+FeISCugwF7g00WogzEmDdfDQ42fCpL4VfUZ4Jng9icK8ZzGGGPSsyUbjDGmwljiN8aYCmOJ3xhjKowlfmOMqTCW+I0xpsJY4jfGmApjid8UTFdPL9s6jka68Nf6nQdZvmob63cerIh4rl9T3+MZN0RVi12HMbW1tWksFit2NUweCrHk76J7n+Hnne8O3Z/dOImnbrm0bOO5fk19j2dyJyKbVbVteLld8ZvIFWLJ3/U7D6YkVYDXOt8NfWXtezzXr6nv8YxblvhN5Aqx5O/anZ05lZd6PNevqe/xjFuW+E3kCrHk76I5jTmVl3o816+p7/GMW5b4TeQKseTvwjmnMbtxUkrZ7MZJLJxzWlnGc/2a+h7PuGWdu6ZgCrGR9/qdB1m7s5NFcxpDJ9VSiuf6NfU9nslNps5dS/zGGFOmbFSPMcYYoACJX0SqReQ/ReSJ4P40EVknIruD72k3Wzf+cjkpZ/WWDm568CVWb+lwULPKmzAU29PFV9e+RmxPl5fx2ju7WRXroL2z20k840bkTT0i8jmgDThZVa8SkRXAW6r6ZRG5DZiqqstHi2FNPf5wOSln/l3rOPjOe0P3Z5w8no1f/LAXdSsF139rE8+1n0jQF7fU8/BN872Jd/vqHTy0ad/Q/aUXNXPn4rmh45ncFaWpR0RmAr8DfCupeDHwYHD7QWBJlHUw7riclLN6S0dK0gc48M57oa/8K23CUGxPV0qSBvhpe1foK3XX8do7u1OSPsBDG/fZlb8nom7q+RpwK5A8oLcxsdl68P3UdA8UkWUiEhOR2OHDhyOupsmGy0k5T+xIP2M1U3kh61YKnt39Zk7lhY63teNoTuWmsCJL/CJyFXBIVTeHebyq3q+qbara1tDQ4Lh2JgyXk3Kumpt+KGOm8kLWrRRcctb0nMoLHa+1aUpO5aaworziXwBcLSJ7ge8Bl4vII0CniMwACL4firAOxiGXk3KWnNfEjJPHp5TNOHk8S85rKnrdSkHbmfVc3FKfUnZxSz1tZ9ZneERh47U0TmbpRc0pZUsvaqalcXKoeMatgozjF5FLgb8IOnfvAbqSOnenqeqtoz3eOnf94nJSzuotHTyx4yBXzT0tdNKPqm6lILani2d3v8klZ00PnaSjjNfe2c3WjqO0Nk2xpF8ERZ3ANSzx1wMrgWZgH3Ctqr412uMt8RtjTO4yJf5xhXhyVX0GeCa43QUsLMTzGmOMGclm7hpjTIUp68Tv+yxO1/VzPUvS93iFYFsRmnJUkKaeYvB9Fqfr+rmeJel7vEKwrQhNuSrLK37fZ3G6rp/rWZK+xysE24rQlLOyTPy+z+J0XT/XsyR9j1cIthWhKWdlmfh9n8Xpun6uZ0n6Hq8QbCtCU87KMvH7PovTdf1cz5L0PV4h2FaEppyV9Q5cvs/idF0/17MkfY9XCLYVoSlltvWiqQiWWI05oagzd40pBBsuaUx2yrKN31QeGy5pTPYs8ReR61mc63ceZPmqbazfGW4zk2zjhX2edI9zteduVMMlfd/T1vXv3GYWVwZr4y8S180Si+59hp93vjt0f3bjJJ665VLn8cI+T7rHvX2sz9meu109vbT93dMkv5sFiP31FaHb+n3f09b179yayspPUfbcNem5bpZYv/NgSgIAeK3z3dBXgZni3fvUrlDPkymeyz13t+47wvBLGA3Kw/B9T1vXv3NrKqsslviLwHWzxNqdnTmVh423Znv6pDLW8+RSj7B77rp+DXzf09b1+drM4soS5Z67E0TkZyKyTUReEZEvBeV3iMgbIrI1+PpoVHXwletZnIvmNOZUHjbe4nnp98Md63lyqUfYPXddvwa+72nr+nxtZnFlifKKvxe4XFXPBVqBK0Uk0aB5r6q2Bl9PRlgHL7mexblwzmnMbpyUUja7cRIL54RLopni3fLbvx7qeTLFc7nnruvXwPc9bV2fb1Qzi21Zaz9FNo5f473GPcHdmuDL/57kArm69XQWtEx3NtnoqVsuZf3Og6zd2cmiOY2hE8BY8RomT+C1pLblUydPCB1v/l3r8qrjcK7fXJ3dx1PuHxp2P1cP3zTf6Z62rn/nrt+Ttqy1vyId1SMi1cBmoAX4hqouF5E7gE8C7wAx4POqOmoPXDmO6ilFsT1dXHPfphHlqz49P+cktnpLB3++cvuI8q9dNy/UVf/6nQe58aHNI8ofWHp+qIToOl6l6erpZcHdP+F434nmowk1VTy//PJQf1Bcx6sURRnVo6oDqtoKzAQuEJFzgH8G3ke8+ecA8JV0jxWRZSISE5HY4cOHo6ymyZLLDspMnbi+dO66jldpbFlrvxVkVI+qHiW+2fqVqtoZ/EEYBL4JXJDhMferapuqtjU0NBSimmPyfTKPa8PbU/PtoEyOl6kT15fOXdfxEh55YQ/X/ssLPPLCnrziRBXP1YQ6W9bab5G18YtIA9CnqkdFZCJwBXC3iMxQ1QPBYR8DXo6qDi4lT775p5+0O53M4yKea5naU0+ZUM3bxweGjjtlQnVWzTzp4qWLlU/n7oyTx3Ng2ISwfDq4XcYDOPeOHw+d70t7j3DP2tfYdseV3sSbf9e6obkVT+86xN0/fjX0hLr6ulrOmDYxpT/ojGnh+w3q62ppnjYxZe5CPvEqXZRX/DOADSKyHXgJWKeqTwArRGRHUH4ZcEuEdXDC98k8rmWazLN+58GURA3w9vGBMeudLt5frtrO8f7UK7jeAc1ra8Mjx/pTyo4c6/cm3iMv7En72oW9Uncdb/WWDqcT6mJ7ulKSPsQnmOXzfybdhDVf/s+UmsgSv6puV9UPqOo8VT1HVe8Myj+hqnOD8quTrv695ftkHtcytadmat8eq97p4lVXCdXibxuw63hrtqd/m2cqL3Q8130ulfZ/ptTYzN0s+D6Zx7VM7amZ2rfHqne6eAODyoD62wbsOt7ieTNyKi90PNd9LpX2f6bUWOLPgu+TeVzLNJln4ZzTQtU7Ea92nHBSTTW144R7rpnHPdecSzXxN2E1ONnasJr44myu4klwX/KMd/0Hz+SUCdUpZadMqOb6D57pRbwl5zU5nVBXaf9nSo1txJIl15NvXMdzLdNknt2HulOOax92P5P4bBGJZ1CNp9O7ntxJciv1Pzy5M68JOf9z9Y6heAPB/XziLV+1bWhSmAb3fZowNHF8auf4SeOrRzl6bK5n9FTa/5lSYlf8OWg7s57PLZrt7A3nOp5r9XW1nNs0ZSjph+0ATHTu9vYP8qv3BujtH+Tz39/mtDPRdWfnfRt2c6w/NRUe61fu27Dbi/q57ox1HS+h0v7PlIqsEr+InC0i60Xk5eD+PBH562irZnwTtgMwXUfpYIbLy7Cdia47O1dneFym8rH43hnrOp7xW7ZX/N8EvgD0QXzEDvB7UVXK+ClsB2C6jtIqSX9s2M5E152dSzI8LlP5WHzvjHUdz/gt28R/kqr+bFhZf9ojTdZKbeXCsB2A6TqLv3LtuU47E113dn76srOYOC71r9PEccKnLzvLi/q57ox1Hc/4LatF2kTkR8DNwPdV9TwRuQa4UVU/EnUFoTwXaSvllQtXb+ngiR0HuWruaTklhq6e3hGdxWFjZfLIC3tYs/0Ai+fNCJ1Uk923YTertx9gybwZoZN+VPVbs/UNPve9rSjxPvN7f68179+569+HKa5Mi7Rlm/h/Dbgf+CBwBNgDXK+qex3XM61yS/y2cqHJl/3OTTbyWp1TVX+hqlcADcD7VfVDhUr65cj3WaZh2AYZheXD79yUrqzG8YvIXcCKYJVNRGQq8XX0bWRPCL7PMs2VbZBReMX+nZvSlm3n7kcSSR8g2Dil4vbKdcX1NneF3jYvuTzTgm7ZXvn73sHta7zE73x8NdRWVzG+Or+ZxQntnd2sinXQ3pndxDxTmrKduVstIrWq2gsQLLNsDYl5cL3NXaG2zRte/qeXtlBTVcVxTlx9Vouw4dVDXPb+UwEy1sn3Dm7f48X2vsV7A0Dw2sdefyuveLev3sFDm/YN3V96UTN3Lp4bOp7xV7adu7cCVwP/l/jM7k8Bj6vqimirF1dunbu+y9Rx+MTNH+Kqrz+XUl47TgChd9gSy3W11RzvG0BEmDCuekSi872D2/d47Z3dXHHvsyPKn77lEloaJxc9nvFDvp27K4C/B34d+A3gbwuV9E3hZeo43NpxdET5+Opqbr6shQk1VUxKWiump3eA/kHoG9C0TUC+d3D7Hm9rx9Gcygsdz/gt60XaVPVHwI8irIvxRKaOw9amKWnL/+DCZv7gwmY2vHqIO/79FXp6U9ekSUgkuvq6Wu87uH2P19o0JafyQsczfhv1il9Engu+d4vIO0lf3SLyzhiPnSAiPxORbSLyioh8KSifJiLrRGR38H2qu9OpbK728D3RcVjF+GphfHW8s7ilcXKwvHLV0FeiQ/HIu+/R09tP30DmpsNj7/XzlbWvsXpLB0fefY+Pf2Am4wRqqoXx1eKkg7umCqqroKbKzbLM46vFaf1cxWtpnMzSi5pTypZe1By6WcZ1POO3Ua/4VfVDwfcwv/1e4HJV7RGRGuC5YAbw7wLrVfXLInIbcBuwPER8k8T1Hr4rYx28N5C4QlW+H+vg6tbTie19K6U9P/b6W8T2vpXSKZhJv8Z3TBqxa1LwxyLxHGF9fcNuEk3oA8A3NuzOK178NTjxhyzf+rmO53od5TsXz2Xp/Fls7ThKa9MUS/plbMw2fhGpSqzKmQuN6wnu1gRfCiwGHgzKHwSW5BrbpCrUnsCrt3SMSPAPbdyXVdLPRj51Xr/zYNo9WdfvDLe6pO/7LLd3dqf9XeQ7DLOlcTLXtDVZ0i9zYyZ+VR0EtolI81jHDici1SKyFThEfLP1F4HGxD67wfdTMzx2mYjERCR2+PDhXJ+6ohRqf9NCLNEbts6Z9gPOVB62Hr7sGWudsSYf2U7gmgG8EqzJ/3jia6wHqeqAqrYCM4ELROScbCumqverapuqtjU0NGT7sIpUqP1NC7FEb9g6Z9oPOFN52Hr4smesdcaafGSb+L8EXAXcCXwl6SsrwazfZ4ArgU4RmQEQfD+UfXVNOoXa33TJeU1pOwCHl4WVT50XzjmN2Y2TUspmN05i4Zxwf6x83zPWOmNNPkadwCUiE4A/AVqAHcADqprVOvwi0gD0qerRYKbvWuBu4LeArqTO3WmqeutosWwCV3Zc70eaKV57Z/eIDsDkMiDt7U3/9ebQksTvn3Eyz+5+k1PrxnOo5z1ndV6/8yBrd3ayaE5j6KSfrFCvaVjpfhfGJIRalllEHiW+69ZPgY8Ar6vqZ7N8wnnEO2+riX+yWKmqd4pIPbASaAb2Adeq6lujxbLEX/qSlys41tefcUavMcadTIl/rAlcc1R1bhDgAWD4LlwZBdszfiBNeRewMNs4pvQlL+R2Yk0fpW8g/uHx1se2s6Bluq0jb0yBjNXG35e4kW0TjzHDpVuuIJmtI29MYY2V+M9Nnq0LzMt25q4pX7ku3ZtuuYJkx/sH6OtPv8xD1HWzeKYSjTVzt3q0n5vKE2bp3sRyBbcOa+OH+CJufQPKNfdtynsZYNfLCldaPFM5sh3OaUzWs0WHb9SyreMoC1qm8/zyy3nkpgt58YtX8N2bLhyxrk8+M09dz2SttHimsmS9Oqcxo80WTQwlzHb0zoZX00/fSI7lum4Wz5g4u+I3WRtrtujwbRhHW4/f92WFKy2eqSyW+E3WxpotmsvoHd+XFa60eKayZLX1YrHZBC6/ZJotmm57wWTpthp0PfPU4hlzQqiZu76wxF86Ht/6xojROzZD15jiCDtz15icXN16OgtaprP/yLGhbQUTt21mrjF+sMRvnKuvq01J8pbwjfGLde4aY0yFsSt+UzBdPb3WBGSMByzxm4KwZZmN8Yc19ZjI5TKxyxgTvcgSv4g0icgGEdklIq+IyGeD8jtE5A0R2Rp8fTSqOpjCSV6fZzhbltkYv0TZ1NMPfF5Vt4jIZGCziKwLfnavqv5jhM9tCii5GSdd081YyzL3DQ4OtfsbY6IX2RW/qh5Q1S3B7W5gF2ANuWVmeDNOuqabxLLME2qqmFw7jnFVUFMtTK4dx4SaKlZ8fJ518BpTQAXp3BWRWcS3YXwRWADcLCJLgRjxTwVH0jxmGbAMoLm5efiPjScSzTgntlQ80XSTnMxtYpcx/oi8c1dE6oDHgD9X1XeAfwbeB7QCB4CvpHucqt6vqm2q2tbQ0BB1NU1I6ZpxMjXd1NfVcm7TlKEJXonbxpjCijTxi0gN8aT/HVX9AYCqdqrqgKoOAt8ELoiyDiZaw5txRmu6Sd4m0LYMNKZ4Imvqkfjeeg8Au1T1q0nlM1T1QHD3Y8DLUdXBFMbwZpx0SX/4NoHJbMtAYworyjb+BcAngB0isjUo+yLw+yLSCiiwF/h0hHUwBTJ8fZ5k6bYJTPbQxn0snT/LlhU2pkAiS/yq+hwgaX70ZFTPafyUaZvA4cdY4jemMGzmrolcNtsB2paBxhSOJX4TuXTbBCazLQONKSxbpM0UxJ2L57J0/qyhbQIB2zLQmCKxxG8KpqVxckqSt4RvTHFYU48xxlQYS/zGGFNhLPGbjEZbatmHeMaYcKyN36Q11lLLxY5njAnPrvjNCNkstVzMeMaY/FjiNyOk2zErn12yXMczxuTHEr8ZIZellosRzxiTH0v8ZoRcllouRjxjTH5EVYtdhzG1tbVpLBYrdjUqTldPr9NdslzHM8aMTkQ2q2rb8HIb1WMyGm2pZR/ipeP7HyuLZ/F8YInflA3fh6BaPIvni8ja+EWkSUQ2iMguEXlFRD4blE8TkXUisjv4PjWqOpjK4fsQVItn8XwSZeduP/B5Vf11YD7wpyIyB7gNWK+qZwHrg/sVyfeZsaU009b3IagWz+L5JModuA4AB4Lb3SKyCzgdWAxcGhz2IPAMsDyqevjK94+ZpfSxFfwfgmrxLJ5PCjKcU0RmAR8AXgQaE5utB99PLUQdfOL7x8xS+9gK/g9BtXgWzyeRD+cUkTrgP4C/V9UfiMhRVZ2S9PMjqjqinV9ElgHLAJqbm89//fXXI61nIW3rOMr133qR7t7+obLJteN45KYLOTfEFoS+xysk30dpWDyLV0hFGc4pIjXAY8B3VPUHQXGniMxQ1QMiMgM4lO6xqno/cD/Ex/FHWc9C8/1jZql9bE3m+xBUi2fxfBDlqB4BHgB2qepXk370OHBDcPsGYE1UdfBV4mNh7bgqThpfTe04Nx8z3ccTTqqppnacpMQL2+mb7nG+d0hbPFOOorziXwB8AtghIluDsi8CXwZWisiNwD7g2gjr4C1N/KsydM+/eAJCEDMubKdvuscpeN0hbfH87tA34dmSDUXQ1dPLgrt/wvG+E80pE2qqeH755aGu0gsV74mbP8RVX38u5+dJF692XBWg9PafeP+Vwmtg8UwpydTGX9aLtPn6Mdj3McSZ4m3tOBrqedLFq64SqqX0XgOLZ8pB2S7Z4PPH4JlTJ3K8fyCl7Hj/QF6dsT1JI3AAenr7ncdrbZoSqtM33fn2DQxSJanH+dQhbfFKp0Pf5K4sr/hLYVz78Ca2fJrcjrz73ohWfQ3KXcYDQo9VTne+t//33/B2HLXF83scuslPWV7xJz62HufEFUziY2uYN3IU8SbWjEsZJz+xZlzoeFs7jmYsb2mc7DTeNW1NLGiZntNY5Uzne85/O4Xnl1/ubNzz1a2n51w3ixddPOOvskz8vn8Mdh2vNcOkqkzl+cbLdazyaOfr+zhqi2fKUVk29Yw1Dj1sPF8/Vrc0TmbpRc0pZUsvag51tR9FPNfzDIwx+SnLK37IPA49LN8/Vp9/xjS+97N9CFUog7SdMc2reK7nGRSK71P6Ky2ecaMsx/FX2phk38d0l+rvw+eRYZUYz+SuosbxV9qYZN/HdJfi78P3kWGVFs+4VZaJP6oxyb5OCCt053Ou9R4tnuvXdPWWDm568CVWb+nIK47vf/wqLZ5xqyzb+BOdibcO+5iZT7OCzx+D6+tqaZ42kZ93vjtUdsa08G2q9XW1tJ0xlefau4bKfvOMqdTX1Yaqd31dLdedP5OHNu0bKruubSbPtb/p9DWdf9c6Dr4Tn7vw9K5D3P3jV9n4xQ+HijVz6kR+1Zc66exXfflNsvN5ZJjv8YxbZXnFD/HO0+eXX84jN13I88svzyuh+P4xOLanKyXpA7zW+S6xPV0ZHjG69s7ulKQP8NP2LmJ7ukLVu6unl5Wb96eUPfrSfm5dtc3Za7B6S8dQ0k848M57oa/8j7z7HgODqf1fA4MaelJcfV0t17XNTCm7rm2mNyPDfI9n3CrLK/4EV2OSfZ8Q9uzuNzOWt51Zn3O8TBO4nt39Zqh6pzvf6ioJRvicuKrO5zX44dZfZixfcl5TzvGeaz+csTzMsNaunl5WxlL/+K2M7eezC88O/R71faSZTQjzV9le8bvk+8fgS86anlP5WDJN4LrkrOkc60tdw+dY39hrAqU734FBHdGU0p3H+kIfyFDnTOVjmV43IafysUTV5l1fV8u5TVOcJVXf4xk3LPFnwfePwW1n1nNxS+qV/cUt9aGu9gGmThofvyJPUl0lTDlpPPH9dU4Yfj+ddM0cl53dkPbYPYd7cqxt3NzTT8mpfCwTa9L/18hUPpao2rxddWYnrN95kOWrtrF+50En8WJ7uvjq2tdCNztGHa+9s5tVsQ7aO7srIl5CWTf1uOT7x+CHb5pPbE8Xz+5+k0vOmh466UP86vSkmuqUtXVOqqlma8fRtO3eYzXPpGvmWLerM+2xYZuntu1/O2P5wjmnFT1efV0ttdXC8b4TZbXVktfv3WVnNsCie58Z6it6NLaf2Y2TeOqWS0PHu/5bm4b6iv7pJ+1c3FLPwzfN9ybe7at3pAw4WHpRM3cunlu28ZJFufXit0XkkIi8nFR2h4i8ISJbg6+PRvX8UfD9Y3DbmfV8btHsvJI+ZL46HVcFw/I+gwpvdh8fNV66Zo5xGd55vzb9pJzrO9rjfIm3eksHbx9Pbdp6+/hA6Ct1153Z63ceTDtAIOyVf2xPV8YBAj7Ea+/sTkmqAA9t3Bf6ytr3eMNF2dTzr8CVacrvVdXW4OvJCJ/fhJSpKeoXb/4q7fGZro4T0rbxk76JqH8wbfGYMj3Ol3hP7EifQDOVFzre2p3pP4FlKh/LaAMOfIg32gq05RhvuMgSv6o+C7wVVXwTratbT+eRT13AHy2YxSOfuoCrW08P3YmcvEhb4uvW356d9tioVhQtdryr5qZvHspUPpZLM7zmmcrHsmhOY07lY3E94KBQAxh8eb+4jjdcMTp3bxaR7UFT0NRMB4nIMhGJiUjs8OH0Q+tMdG5fvYNr7tvEP/2knWvu28Tta3bk1Ykc2/sWvf2DQ1/7j/zK6xVFXcdbcl4TM04en1I24+TxoYaaAsxtSv9fJ1P5WBbOOY3ZjZNSymY3TgrVnwHuBxy4juf7+8V1vOEiXaRNRGYBT6jqOcH9RuBN4ssz/i0wQ1U/NVacctts3Xftnd1cce+zI8qfvuUSWhons3pLB0/sOMhVc0/LKnGNFu/1rndZu7OTRXMaQyeZZOt3HvQ63n0bdrN6+wGWzJvBpy87K3ScqBa+e+SFPazZfoDF82Zw/QfPDB0nIdf3SqHj+f5+yXfARqZF2go6qkdVhxoMReSbwBOFfH6TndHaFx/auHeo0+npXYfY0nF0zJEGmeLdvuZlXvhFvDXw0dh+p6MgfI+360A3b7xzPHS80ZbVcFG/l/Ye4eeHe5ydb7bvlWLF8/H9krw8yv0//YXT1U0L2tQjIjOS7n4MeDnTsaZ4MrUjTj2pJtRIg0zxEkk/l1iZ+D6qIop46Ua5+FQ/ixc+XtSrm0Y5nPO7wEZgtojsF5EbgRUiskNEtgOXAbdE9fwmvEzti0d+1Zf2+LFGGqSL98H3pd/YxZdREBbP4hUzXtSrm0bW1KOqv5+m+IGons+4defiuSydP4utHUdpbZpCS+PkjFcv2Yw0OP+MaTz60n4S+29devapvPBfIwd9+TIKwuJZvGLGi3p1U1uywWTU0jiZa9qahkYSTJ00fsToewnKR5P42NrbP8jxYFTPV5/+Ode1pbZX5jNqIWzdLF5cS+PktKNm8hmVUmnxotinOqrVTW3JBpO1/UeOUVc7LmUph7racaFW56ypquIPL5zFsovfl/KpotB1s3hxXT29vPT6kZSyl14/QldPr8XLUrpPyfmIcnVTS/wma2E/fo72uPq6Widjk31fQdX3eL4vPe57vISWxsnOxtqDu6Xlh7OmHpO1sB8/C7Eph+8rqPoez/c/TL7HKzWRTuByxSZw+aWrpzfUx8+wjytE3SwePL71jRHbleYzbrzS4vko0wQuS/zGmCE+/2EqhXi+8WLmrjGlptwTw3Cu25QrLV6psMRvTAbJU+bLtSnAVCbr3DUmjainzBtTTJb4jUkj6inzxhSTJX5j0qj04X6mvFniNyaNqOYetHd2syrW4WzvVNfxunp62dZx1Jq0ypx17hqTgesp88nrtQNO1393Ec86syuHXfEbM4r6ulrObZri5Eq/ktd/N36xxG9MAVT6+u/GL1FuxPJtETkkIi8nlU0TkXUisjv4Hm5naGNKTKWv/278EuUV/78CVw4ruw1Yr6pnAeuD+8aUPdfrtZfa+u/GL5Gu1SMis4AnVPWc4P5rwKWqeiDYf/cZVZ09Vhxbq8eUi/bObmfrtUcRr9KWqCh3vqzV06iqBwCC5H9qpgNFZBmwDKC5uTnTYcaUFNfrtZfK+u/GL9527qrq/arapqptDQ0Nxa6OMcaUjUIn/s6giYfg+6ECP78xxlS8Qif+x4Ebgts3AGsK/PzGGFPxohzO+V1gIzBbRPaLyI3Al4EPi8hu4MPBfWOMMQUUWeeuqv5+hh8tjOo5jTHGjK0ktl4UkcPA6xE+xXTgzQjj+6Dcz7Hczw/sHMtFIc/xDFUdMTqmJBJ/1EQklm6sazkp93Ms9/MDO8dy4cM5ejuc0xhjTDQs8RtjTIWxxB93f7ErUADlfo7lfn5g51guin6O1sZvjDEVxq74jTGmwljiN8aYClP2iV9EmkRkg4jsEpFXROSzw37+FyKiIjI9qewLItIuIq+JyG8Xvta5Ge0cReTPgvN4RURWJJWXxTmKSKuIbBKRrSISE5ELkh5Tauc4QUR+JiLbgnP8UlCecQOjUjrHUc7vHhF5VUS2i8gPRWRK0mNK5vwg8zkm/dyPfKOqZf0FzADOC25PBn4OzAnuNwFPEZ8cNj0omwNsA2qBM4H/AqqLfR5hzhG4DHgaqA1+dmoZnuNa4CNB+UeJ7/FQqucoQF1wuwZ4EZgPrABuC8pvA+4uxXMc5fwWAeOC8rtL9fxGO8fgvjf5puyv+FX1gKpuCW53A7uA04Mf3wvcCiT3cC8Gvqeqvaq6B2gHLsBjo5zjZ4Avq2pv8LPEaqjldI4KnBwcdgrwy+B2KZ6jqmpPcLcm+FLi5/JgUP4gsCS4XVLnmOn8VHWtqvYH5ZuAmcHtkjo/GPV3CB7lm7JP/MmCHcE+ALwoIlcDb6jqtmGHnQ50JN3fz4k/FN5LPkfgbOBiEXlRRP5DRH4zOKyczvHPgXtEpAP4R+ALwWEleY4iUi0iW4kvWb5OVV9k2AZGQGIDo5I7xwznl+xTwI+C2yV3fpD+HH3LNxWT+EWkDniMeKLoB/4KuD3doWnKSmLMa/I5quo7xBfhm0r84/RfAitFRCivc/wMcIuqNgG3AA8kDk3zcO/PUVUHVLWV+FXvBSJyziiHl9w5jnZ+IvJXxP9vfidRlC5E5JXMU5pznIdn+aYiEr+I1BBPFt9R1R8A7yPenrZNRPYS/wVtEZHTiP/FbUp6+ExONB94K805QvxcfhB8/PwZMEh8gahyOscbgMTt73PiY3JJnmOCqh4FngGuJPMGRiV7jsPODxG5AbgK+EMNGr8p4fODlHNcjG/5ppgdIYX4Iv4X9SHga6Mcs5cTnS2/QWpnyy8ojQ6lEecI/AlwZ3D7bOIfKaXMznEXcGlweyGwuYR/jw3AlOD2ROCnxJPhPaR27q4oxXMc5fyuBHYCDcOOL6nzG+0chx1T9HxT6M3Wi2EB8AlgR9DuBvBFVX0y3cGq+oqIrCT+RuwH/lRVBwpS0/DSniPwbeDbIvIy8B5wg8bfbeV0jn8M/C8RGQccB5ZByf4eZwAPikg18U/jK1X1CRHZSLyZ7kZgH3AtlOQ5Zjq/duKJb128JZJNqvonJXh+kOEcMx1crHO0JRuMMabCVEQbvzHGmBMs8RtjTIWxxG+MMRXGEr8xxlQYS/zGGFNhLPGbsiUiA8Gqna8EqyV+TkRCv+dF5EPByouvBl/Lkn7WECyN8Z8SX0X0M0k/uzBYebIShk+bEmBvRFPOjml86jwicirwb8QXcvubXAMFsyz/DViiqluCZXWfEpE3VPX/EZ889qqq3iAijcBGEVkFdAFfB/6HnliILNfnFuJDrwfDPN6Y4WwcvylbItKjqnVJ938NeIn4shVnAA8Dk4If36yqL4jIw8AqVV0TPOY7wKPAbxJffPH2pHgLgTuAPwMeJz5T8w3gIuCPgse8BJxPfGLZl4FLiU9W+oaq3hesPbSG+JpKNcBfq+qaYCG6HwEbgnhLVPV1l6+PqVyW+E3ZGp74g7IjwPuBbmBQVY+LyFnAd1W1TUR+i/iib0tE5BRgK3AWsBJ4MPEHIYh1CrBHVaeJyCeBNlW9OfhZFbCR+EqabcDHie+H8HciUgs8T3wGbgdwkqq+E3yK2BQ83xnEp+9/UFU3RfICmYplTT2m0iRWQ6wBvi4ircAA8bWMUNX/EJFvBE1Dvws8pqr9QXNLuquktFdOqjooIvcR/2PQJSKLgHkick1wyCnEE/x+4C4RuYT4InqnA43BMa9b0jdRsMRvKkbQ1DNAfHXLvwE6gXOJD3I4nnTow8AfAr9HfH14gFeIX7k/nnTc+cTXWMlkMPiC+B+cP1PVp4bV6ZPEF/Y6X1X7gtUbJwQ/fjf7szMmezaqx1QEEWkA/gX4erBQ3SnAgaDD9BNAddLh/0p83wZU9ZWg7BvAJ4NPCIhIPfFtAleQnaeAzwRLSyMiZ4vIpKAeh4KkfxnxJh5jImVX/KacTQxW8qwhvvLhw8BXg5/9H+AxEbmWeAfq0NW1qnaKyC5gdVLZARG5HvimiEwmfgX/NVX99yzr8i1gFvF12AU4THwLxe8A/y4iMeL9Ca+GOVFjcmGdu8YMIyInATuIb+7+drHrY4xr1tRjTBIRuYL4Vff/tqRvypVd8RtjTIWxK35jjKkwlviNMabCWOI3xpgKY4nfGGMqjCV+Y4ypMP8fFF03YlhPduQAAAAASUVORK5CYII=", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 171, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.14878293554077535\n", + "-0.16673322492745407\n" + ] + } + ], + "source": [ + "print(new_pumpkins['Month'].corr(new_pumpkins['Price']))\n", + "print(new_pumpkins['DayOfYear'].corr(new_pumpkins['Price']))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "看起来相关性很小,但存在一些其他更重要的关系——因为上面图中的价格点似乎有几个不同的聚类。让我们制作一个图表来显示不同的南瓜品种:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 172, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA7VklEQVR4nO2deXxU5fX/34cQzACyR6WyBEEpyBIlYF3rAlQtAi61Rtx+xq9tNZbar1q7iHxb7FdxrVr7VZt+QYGIS12wdcMvtmqtLIoIRFHbhCKUhMhO2M/vj3uTzCQzSWbmzsydmfN+ve7rzj1z7+c+T2Zy5rnneZ7ziKpiGIZhZA/tUl0AwzAMI7mY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFlG+1QXoC306tVLCwoKUl0MwzCMtGLZsmWbVDW/qT0tHH9BQQFLly5NdTEMwzDSChGpCme3UI9hGEaWYY7fMAwjyzDHbxiGkWWkRYzfMBLJvn37WLduHbt37051UQwjJvLy8ujTpw+5ubltOt8cv5H1rFu3jkMPPZSCggJEJNXFMYyoUFVqa2tZt24dAwYMaNM1FuoxIlJTA0uWOPtMZvfu3fTs2dOcvpGWiAg9e/aM6onVHL8RlvJy6N8fxo1z9uXlqS5RYjGnb6Qz0X5/zfEbzaipgZISqKuDrVudfUlJ5rf8DSNbMMdvNKOyEjp0CLXl5jp2IzHk5ORQWFjIsGHD+M53vsOuXbsA6Ny5MwCVlZUEAgEKCwsbtieeeCJE4/zzz6ewsJBBgwbRtWvXhvPOPPNMfvKTnzScV1VVxVFHHcWWLVs4/fTTGTx4MCNHjuTkk0/m008/BWiw12tcdNFFSfpLGElBVX2/jRo1So3kUV2tGgioQuMWCDj2TGT16tWpLoJ26tSp4fWll16q9957b4j9n//8px577LFt0lq0aJF++9vfbjjetWuXDh48uKGekyZN0jlz5qiq6je/+U1dsmSJqqo++uijet555zWzG+lBuO8xsFTD+FRr8RvNyM+HsjIIBKBLF2dfVubY4yGjOosTWJlTTz2Vzz//3DO9QCDAfffdx3XXXccrr7zC9u3bmTJlSrPzTjvtNE/va/gXc/xGWIqLoaoKFi509sXF8ellVGdxAiuzf/9+XnnlFYYPH97svS+++CIk1PP222+3Wffcc8+lR48eXHHFFTzyyCNhz1mwYEHIfadMmdJwr5tvvjn6yhi+JaHj+EWkEtgOHAD2q2qRiPQA5gMFQCVwsapuTmQ5jNjIz4+/lQ+hncV1dY6tpATGjvVGP6kkqDJ1dXUUFhYCTou/pKSk2TkDBw5k+fLlMd/j+uuvp66ujsGDB4fYp0yZQiAQoKCggIceeqjBPnfuXIqKimK+n+FfkjGB6wxV3RR0fCvwpqreKSK3usc/CX+pkQnUdxbX+0lo7CxOO8efoMoEAoG4nHpbaNeuHe3aNX/INweffaQi1DMJmO2+ng1MTkEZjCRSUAB794ba9u1z7GlHRlXGyFYS7fgVeF1ElonIta7tcFXdAODuD0twGYwUk6jO4pSQwso0jfE/+OCDCb1fcIx/7NixCb2XkVzEGfGTIHGRr6nqehE5DHgDuAF4SVW7BZ2zWVW7h7n2WuBagH79+o2qqgq7noCRRtTUOBGRggJ/Of2KigqGDBkS3UV+rYyRtYT7HovIMlVtFsdLaIxfVde7+2oReR4YA2wUkd6qukFEegPVEa59DHgMoKioKHG/TkbS8Kqz2BdkVGWMbCNhoR4R6SQih9a/BsYDK4GXgCvd064EXkxUGQzDMIzmJLLFfzjwvJs8qD0wT1VfFZElwNMiUgKsBb6TwDIYhmEYTUiY41fVfwAjw9hrgbMSdV/DMAyjZWzmrmEYRpZhjj+FeJ3uxe96hmH4A3P8KcLrdC9+1zNaRkS4/PLLG473799Pfn4+EyZMAGDWrFmUlpYCMH36dDp27Eh1deOAuPr0zU1fA9x///3k5eWxdetWamtrG8bmH3HEERx55JENx2vWrGHYsGEh106fPp177rkHgKuuuooBAwZQWFjIyJEjefPNNxvOszTO6YU5/hTg9UInftczWqdTp06sXLmSOjcVxBtvvMGRRx4Z8fxevXpx7733tkm7vLyc0aNH8/zzz9OzZ0+WL1/O8uXL+f73v8+NN97YcNyh6SIMYbj77rtZvnw5DzzwAN///vdD3ps7d26D1rPPPtumshmpwRx/CvB6oRO/62UiiQiDnXPOOfzpT38CHGdd3EJK1Kuvvpr58+fz1Vdftaj5xRdfsGPHDmbMmEG5h49tJ554Il9++aVnekZyMcefArxO9+J3vUwjUWGwSy65hKeeeordu3ezYsUKTjjhhIjndu7cmauvvprf/OY3rZTV+QE59dRT+fTTT0PCQ/Hw6quvMnny5BCbpXFOH8zxpwCv0734Xa+eTOgsTmQYbMSIEVRWVlJeXs65557b6vk//OEPmT17Ntu2bYt4zlNPPcUll1xCu3btuOCCC3jmmWcinhtpwe5g+80338xRRx3FZZddxs9+9rOQ84JDPXfffXer5TdSRzLSMhthKC52Urh7le7F73rl5Y6D7NDBeZooK4t/cZdUkOgU0xMnTuSmm27irbfeora2tsVzu3XrxqWXXhpxYZUVK1bw2WefMW7cOAD27t3LUUcdxfXXXx/2/J49e7J5c+jSGF999RUDBgxoOL777ru54IILePDBB7nyyitZtmxZNNUzfIK1+FNIfj6MHu1dyhe/6mVSZ3Giw2BXX30106ZNC7sCVzh+/OMf8+ijj7J///5m75WXlzN9+nQqKyuprKxk/fr1fPnll0RKeNi5c2d69+7dMFrnq6++4tVXX+WUU04JOa9du3ZMnTqVgwcP8tprr0VZQ8MPmOM3Ek46dxbv2wc7dzp7iD8MVlcHmzaFPjEE06dPH6ZOndrm8nXt2osJE85nz549zd576qmnOP/880Ns559/Pk899VREvSeeeIIZM2ZQWFjImWeeye23387AgQObnSci/OIXv2DmzJkNNkvjnD4kNC2zVxQVFenSpUtTXQwjRmpqnE7QYGcXCDhr+fohwWWktMy1tU4ZRUDVqUPPns57sWRlXrsWgvtWDzsM+vWLvdwtlc/IPqJJy2wtfiNqKipg9mxn3xbScSGWffscp3rwIBw44OyrqkJb/tGEwerqQp0+OMeRWv7xls8wWsI6d42ouOEGePjhxuPSUghanzsiXncWJ5q9e52WdDAijj03N3q9nTsj2wOB1JfPyC6sxW+0mYqKUKcPznE0LX8vO58TSYcOTvgkGNXmfRVtpVOn6Oyt4XX5jOzCHL/RZhYvjs6ezuTmOjHzdu0gJ8fZ9+8fe2s6EHBi+sEcdlhsrf1ElM/ILizUY7SZMWOis6c7PXs6fRJ79zot6Xidar9+ztPOzp1OSz9Wp5+o8hnZQ8Jb/CKSIyIfisjL7vF0EflSRJa7W+tTFA1fMGSIE9MPprTUsWcqubmOk/bKqQYC0KtX/E6/Hq/L13T4qpGZJCPUMxVoGgW+X1UL3e3PSSiD4REPPQSrV8OsWc6+LR27Ruvk5OQ0jIEvLCyk0p3kEJxSuZ633norJF1zfn4+hYWFfP3rX+f+++9n9+7dfP3rX+fjjz9uuGbmzJmcddZZDfo9evRoSLFcP+Z+0aIP6dBBmDXrNT7+2BkuCs3TPIOTrjk4pXNhYSFbtmxJzB/H8JyEhnpEpA/wbeAO4MeJvJeRPIYMyexWfioIBAIsX768mT04pfJVV10V9trvfve7PPzww9TW1jJ48GAuuugiHnjgAa677jr++te/sn79eh599FGWLl1K9+7dASe3/oQJExry5u/bB7NmlVNYeAqvvFLOCSd8i6oqJ5QUiRtvvJGbbrop3qobKSDRLf4HgFuAg03spSKyQkT+ICLdw10oIteKyFIRWVqTjnP7jYymZmcNS75cQs3OxH03o02p3LNnTwYNGsSGDRs4++yz6d27N0888QQ33ngj06dPb3D64dizR3nzzWe5/fZZvP/+6+zZs7theKiReSTM8YvIBKBaVZtmcfodMBAoBDYAYVeTUNXHVLVIVYvy02H8n5E1lH9cTv8H+jPuyXH0f6A/5Svjz8tcV1fXEDKpT7MQbUrltWvXsnv3bkaMGAHAAw88wM9//nNqampCVvcKx9Kl7/K1rw2gT5+BjBp1Ou++++dWh4fef//9DWU+44wzoquwkVIS2eI/GZgoIpXAU8CZIjJHVTeq6gFVPQg8DmTomBAjE6nZWUPJSyXU7a9j656t1O2vo+TFkrhb/vWhnuXLl/P8888DbU+pPH/+fI499liOOuoopk6dSl5eHgBf+9rXOPPMM/nBD37Q6v2feaac4uJLaNcOzj77El5/vbzV4aHBq3ctWrQo+kobKSNhMX5V/SnwUwAROR24SVUvE5HeqrrBPe18YGWiymAYXlO5pZIOOR2o29+YayE3J5fKLZXkd/LuyTSalMr1Mf733nuPb3/725xzzjkcccQRgJNJs127ltt3Bw4c4LnnniM39yV+85s7OHhQ+eqrWjp02A4c6lmdDP+QiglcM0XkYxFZAZwB3JiCMhhGTBR0K2DvgdDA974D+yjoVuDpfaJNqQzOcoiXX355q6tyNWXhwoWMHDmSf/3rX1RWVrJ2bRUXXnghL7zwQpy1MPxKUhy/qr6lqhPc15er6nBVHaGqE4Na/4bhe/I75VM2qYxA+wBdDulCoH2Askllnrb2IbaUygA/+clP+N///V+2b9/e5nuVl5c3u9eFF17IvHnzANi1axd9+vRp2O677z4gNMYfPATV8D+WltnIeiKlZW6Jmp01VG6ppKBbgedO3zBiIZq0zJaywTBiIL9Tvjl8I22xJG2GYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvJI2aGliyxNknipdfhmuucfZesGWLs1ykV4knvdbzOo2y3/UMbzDHbySF8nJnhahx45x9G3KORc3w4XDeec5C7uedB27KmphZtQo+/xw2bXL2q1YlTk9EQvLp7N+/n/z8/JD0y6XuYgg//OEP+dWvfkVtLXz8Mdxyyx1MmXI9tbVO1s36dMuFhYWcdNJJDdfn5+dz3HHHcfTRR/Otb32Lv/3tbyHlq9f78Y+nc/PN9zSkZQYoKChg06ZNQPMU0nfeeScAp59+OvXDrgsKChg6dDhDh47gtNO+yeuvV7WY5nnr1q1cccUVDBw4kIEDB3LFFVeEpKJetWoVZ555JscccwxHH300v/rVr6gfij5r1ixEhDfffLPh/Oeffx4R4dlnnw25z6xZsyguLg6xbdq0ifz8fPbs2QPApEmTOPHEE0POCU5DPXTo0JCkeVdddVXDfU4//XQGDx7c8Le56KKLuOOOOxqOg/92Dz74INOnT+eee+5p0An32W3cuJEJEyYwcuRIhg4dyrnnxr+EiQ3nNBJOTQ2UlEBdnbOBczx2rHfr7778Mqxskvzj448du+s7o2LLlsay1lNX59i7dfNer1OnTqxcuZK6ujoCgQBvvPEGRx55ZFitGTNmUFhYyMiRU1AVXnjh98yZ8yFVVXDwINx9990N6ZaDqU/tALBo0SIuuOACFi1axJAhQ9i3j4brVZ2tPi1z03w9kVJIN+WhhxbRtWsvHn30dh5/fAa9ez8eMc1zSUkJw4YN44knngDg9ttv55prruGZZ56hrq6OiRMn8rvf/Y7x48eza9cuLrzwQh555JGGFBbDhw+nvLycs846C3AmwI0cObLZfS644AJuuukmdu3aRceOHQF49tlnmThxIocccghbtmzhgw8+oHPnzvzzn/9kwIABDdfWp6H+7LPPGDVqFBdddBG5YZIZzZ07l6Ki0KHzP//5zwHnRy/4bzd9+vSQ88J9dtOmTWPcuHFMnToVcNJ5xIu1+I2EU1nZPMtjbq5j94pI2QVizToQKRTTaK8Blrh7L/TgnHPO4U9/+hPQmJkzHF26dOG22+5g5sxSZs68nu9975ccemg3RBzH3RbOOOMMrr32Wh577DHASb8sEnpOPGmZVRv1hg8/kZqaLyPqff755yxbtozbbrutwTZt2jSWLl3KF198wbx58zj55JMZP348AB07duThhx9ueNIAOPXUU1m8eDH79u1jx44dfP755xQWFja7V5cuXTjttNNYsGBBg+2pp55q+Fs/99xznHfeeVxyySURZ0kfffTRdOzYkc2bN0f7Z4mJDRs20KdPn4bjEfE+ymKO30gCBQXN/+H37XPsXjF5cnT21ojUqnfs5UB/YJy7bz1u1bKeQ72z2b17NytWrOCEE06IqHfZZcVs27aZnTu3ce65TohI1Vl0/eabb24IF0yZMiWixvHHH88nn3wCOD/MwZP4y8vv55JLCjnpJEdn/fr1De8Fp5AuLCxk/vz5zbRFGvXee+9VvvnNyRHTPK9evbohDFJPfUhk1apVrFq1ilGjRoVcM3DgQHbs2MG2bdvc+wljx47ltdde48UXX2TixIkR611cXNzg1NevX8+aNWsa0krX/+AWFxdHXAPhgw8+4Oijj+awww4L+/6UKVMa/jY333xzxHKEI9xnd/3111NSUsIZZ5zBHXfcEfJZxIqFeoyEk5/vxN1LSpyW/r59zrGXyyxMmODE+INWG2T48NjCPOA45EAgNDwTCEC3bjVACVDnbrjHY4HIFYqs13g8YsQIKisrKS8vbzWOu3HjOrZu/TcHDgh79uwgEOhM//6O448U6mlKcLqW3Fyn76WqynHal156I7fddhM9ezrvFwT9Src11HPDDWfw739vpEePw7j++hkR0zyrKtL0cSPIHul9IMR+ySWX8OCDD7J161buvfdefv3rX4e9ZsKECVx33XVs27aNp59+mosuuoicnBw2btzI559/zimnnIKI0L59e1auXMmwYcMAJzfR448/zj/+8Q9effXViPUOF+ppK+E+u29961sN93zllVc47rjjWLlyJfGsU2ItfiMpFBc7TmXhQmcfIYoRFytWwIIFzg/MggXOcTwceywMGuQsjj5okHMMlUDTZmuua49FL5SJEydy0003RQzz1DN16lR++cvpFBdfzDPP/BfDh9PgpNvKhx9+GJLbpWdPGnR6945eryl//esiKiurGDnyWJ59dlpEvWOPPZYPP/yQg0FxqoMHD/LRRx8xZMgQjj32WJrm6vrHP/5B586dOfTQxrTRY8aMYeXKlWzatIljjjkmYrkCgQBnn302zz//fEiYZ/78+WzevJkBAwZQUFBAZWVlSLjnxhtv5NNPP2X+/PlcccUV7N69O5Y/S0z06NGDSy+9lCeffJLRo0fz17/+NS49c/xG0sjPh9GjvW3pN2XCBPj972Nv6TelWzcnJNXYMi8Amgaq97n2WPRCufrqq5k2bRrDhw+PqPHKK69QXV3NFVdcwfTpt/Hyy8/z2Wer23T/ev7yl7/w2GOP8R//8R8h9txcJxwTFHWJiy5dAjz88APMmfMEX331VdhzBg0axHHHHceMGTMabDNmzOD4449n0KBBTJkyhXfeeYeFCxcCTqjphz/8Ibfcckszrf/+7/+O2NIPpri4mPvuu4+NGzfyjW98A3DCPK+++mpDKuxly5aFjfNfcMEFFBUVMXv27Db9DeLl//7v/9i1axcA27dv54svvqBfv35xaZrjN4yoyAfKgADQxd2X0VKYJxr69OnTMHojHLt37+ZHP/oRjzzyCCJCp06dmDlzZsNQTwiNExcWFrLX7WCZP38+hYWFHHPMMfz617/mueeeizorKTSP8d96660tnt+7d2+Ki4v57W9/C4RP81xWVsaaNWsYNGgQAwcOZM2aNZSVlQFOC/3FF19kxowZDB48mOHDhzN69OiQOtdzzjnntGkZyPHjx7N+/Xq++93vIiLuOgRrG34EAAYMGECXLl14//33m10/bdo07rvvvpCnlHqCY/xjx45ttSzBhPvsli1bRlFRESNGjODEE0/kmmuuYfTo0VHpNiXhaZlFJAdYCnypqhNEpAcwH6eJVAlcrKotdo9bWmZ/UVPjjMgpKIi/9T53Ljz9NFx8MbTQD5nQssWSltkZzVOJ8zVOXZbOHTtg61bo2hXCDI9PuV5dnTOBq1Mnp0/DSBzRpGVORot/KlARdHwr8KaqHg286R4baYKXE7H69oXLLoOXXnL2cT69JmWSWCP5wGhS6fTXrIFPPoENG5z9mjX+0lu71pmkVlnp7NeujU/P8I6EOn4R6QN8G/h9kHkSUB8cmw1MTmQZDO8Inoi1dauzLymJLQXD3Lmwbl2o7V//cuypLls6sGMHuCMZG9i2zbH7Qa+uDqqrQ23V1c0nsRmpIdEt/geAW4DgQNjh9cstuvuwg2FF5FoRWSoiS2sy9b83zfByItbTT0dnb414y5YOK9EFE5TNoE32ZOvt3Bmd3YiPaL+/CXP8IjIBqFbVZbFcr6qPqWqRqhbFM17V8A4vJ2JdfHF09taIp2x5eXnU1tamlfPv2jU6e7L1OnWKzm7EjqpSW1tLXl5em69J5ASuk4GJInIukAd0EZE5wEYR6a2qG0SkN1DdoorhG7yciDVlCvz0p054p56+fWPv4I2nbH369GHdunWk25Pljh0QPJQ8Ly/075lqvT17IHjN90MP9TZNh9FIXl5eSFqH1kjKYusicjpwkzuq526gVlXvFJFbgR6q2nxAbhA2qsdfZNqonnTm3Xfh9ddh/Hg4+WT/6VVUwOLFMGYMxDBy1IiTSKN6UuH4ewJPA/2AtcB3VDX8zA4Xc/yGYRjRE8nxJyVXj6q+Bbzlvq4FzkrGfQ3DMIzm2MxdwzCMLCOjHX8ylvqLB6/LV1EBs2c7+2zQSwZef0Z+/04aWYKq+n4bNWqURsu8eaqBgGrXrs5+3ryoJRKK1+UrLa1fN8nZSkszWy8ZeP0Z+f07aWQewFIN41OT0rkbL9F27tbUOFP2m+Y+r6ryx0gPr8tXUQFDhza3r14d20gKv+slA68/I79/J43MJJW5epJOMpb6iwevy7d4cXT2dNdLBl5/Rn7/ThrZRUY6/mQs9RcPXpdvzJjo7Omulwy8/oz8/p00souMdPz1szgDAejSxdl7vdRfPHhdviFDoGlq8tLS2MMoftdLBl5/Rn7/ThrZRUbG+Ovx+yxOr8vn9SxJv+slA68/I79/J43MIqUzd+PFZu4abcUcq2E0klWdu0Z2ktyFWAwjfTHHb2QE2bYQi2HEgzn+FOL1LM6XX4ZrrnH2idSL9T7hrps7FyZNin3lrXoSNVzy3Xfh9tudvRd4ref1Z24zi7OEcLO6/LbFMnPX73g9i3PYsNCZscOHJ0Yv1vuEu65Pn1Bb376xl7e6WlUkVE/EscfKuHGheuPHx66VCD2vP3ObWZx5EGHmbsqdelu2THP81dXOP1bwP20gELuTWrAgVKt+W7DAW73bbovtPpH0wm1z5nhb5lj/Bu+8E17vnXf8oed1fb3+Thr+IJLjt1BPCvA6LPHCC9HZY9WbPz+2+0RTjljX3PX6b/D669HZk63ndX1tZnF2kcg1d/NEZLGIfCQiq0Tkv1z7dBH5UkSWu9u5iSqDX/F6FufkydHZY9X77ndju0805Yh1zV2v/wbjx0dnT7ae1/W1mcVZRrjHAC82QIDO7utc4H3gG8B0nNW4sjbUo9oYT+3SxZt46vDhoY/p8cZ7I+nFep9w1/XtG2qLJ8YfT9kiMX58qF68MXmv9byur9ffSVUnVLR4sXchI6/1Mh2SHepx77vDPcx1N//PFksSxcVOZsaFC519cXF8eitWwIIFzhDGBQuc40ToHXFE6Hm9e8eupx5/G7zWW78+9HjDhvj0XnsN3nkHpk1z9q+9Fp+e15+5199Jr+dV2DwNDwn3a+DVBuQAy4EdwF2ubTpQCawA/gB0b00nE1v86YiXHZRz5oTX8kvnrtd62YbXncXW+RwbpKJzV1UPqGoh0AcYIyLDgN8BA4FCYANwb7hrReRaEVkqIktrbFCxL/CygzJSJ65fOne91ss2LK21v0nKqB5V3YKz2PrZqrrR/UE4CDwOhE3Oq6qPqWqRqhbl+yTpit8n83hN08k88XZQButF6sT1S+eu13r1/O53cNppzt4LvNbzakKdpbX2OeEeA7zYgHygm/s6ALwNTAB6B51zI/BUa1p+CPX4fTKP10SazNO9e2i5e/SIXa9Hj9i0IuF1Z7HXerH+7ZKl5+WEOlXvO5+9nrCWDZDsCVzACOBDnFj+SmCaa38S+Ni1vxT8QxBpS7Xj9/tkHq+JFE+NFPdurdyR9PLymtv8EgP2Wu+RR8L/7R55xB96Xve5ZNv/jF+J5PgTOapnhaoep6ojVHWYqv7StV+uqsNd+0RVjXOsROLx+2Qer4kUT40U326t3OH02rWDnJzm9/BLDNhrvUgjUGIdmeK1ntd9Ltn2P5Nu2MzdNuD3yTxeEymeGim+3Vq5w+kdPAgHDjS/h19iwF7rRRoaGeuQSa/1vO5zybb/mbQj3GOA37ZUh3pU/T+Zx2siTeaJtdzz5jmhnU6dnP28ec7Wvr1qTo6zj3fCUL1eu3be6eXkOMnecnLi1/O6T8PvfSTZ9j/jR4gQ6rEVuKLg3XedR8vx4+Hkk/2n5zXhVrPq2xfWrWs8p29fWLu2da3ycmeiUbt2Tmu/rAxuuSU2rUj06AGbN4ce19bGrtepE+zaFXq8Y0fk85Ndvlg/i2TpQfb9z/iNSCtwpbw135bNDy1+I/YOwHAdpR06xKYVCa87O++6K7zeXXf5o3xed8Z6rWf4A+Lp3BWRY0TkTRFZ6R6PEJFfePvbZPidWDsAw3WUHjwYm1Yk/N556vfOWK/1DH/T1s7dx4GfAvvAGbEDXJKoQhn+JNYOwHAdpe0ifPNi7Uz0e+ep3ztjvdYzfE64x4CmG7DE3X8YZFvelmu92DI11JOOmQtj7QAM11nsdWei152dnTqF6nXq5K/y+X3CmpF6iHMc/yYRGQhOdk0RuQgnz44RI+mauXDtWpgzByZOdPZt7fwLl/kxVq1I1NbCI4/Aqac6+3g6TsHpyL3rLigsdPbxdOwmonx33QXt2zvzIdq3d47jwevPw/AvbRrVIyJHAY8BJwGbgX8Cl6lqZUJL5+KXUT1eUVPjOOe6ukZbIOA4xFjSEnmtZ/gf+8yNthBpVE+bWvyq+g9VHYuTf+frqnpKspx+JuL3Waax0DShm5FY/PCZG+lLW0f1/FpEuqnqTlXdLiLdRWRGoguXqfh9lmm02AIZySfVn7mR3rQ1xn+OOqmVAVDVzUDWrZXrFfn5zgSmQAC6dHH2ZWWxP6J7rVdPpFZ8zc4alny5hJqdNdTUOBOz6upg61ZnX1LS9pZ/sJYXZIte/Wd+SPca8gYu4ZDuNZ585hVra5j9xhIq1tqjWybTvo3n5YjIIaq6B0BEAsAhiStW5lNcDGPHNp8Z6xe9+pm2HTo4LcuyMuce5R+XU/JSCR1yOrD3wF5+NqyMDh2KQ2LNOTnw5z/DuW7TIFKZmmqVTSqjeFjs6/1lm97ftpWz57oSONABcvbyt21lFBO73g2PlvPwv0rgYAf4y15K+5bx0PfiXH/R8CVt7dy9BZgI/C/OyJ6rgZdUdWZii+eQaZ27fidSx+GyT2oY9WR/6vY3vhFoH0Dvq2L3V6Fe/dBDYfduEHGuDf7xAKfl2/+B5lpVP6oiv1P0v1rZplextoahj/WH3KAPaV+A1ddWMaRf6vUMfxBv5+5M4A5gCHAs8KtkOX0j+UTqOFz8aSUdckLfyM3J5ef3VBIIQOfOjfbt252Y89694UNAlVvCa1VuqYytzFmmt/jTSqdlHszBXMfuAz3D37Q5LbOqvqKqN6nqf6rqa4kslJFaInUcjhlcwN4DoW/sO7CP711cQFUVPPyw09KPRPCok4Ju4bUKuhXEVuYs0xszuADaNZ0Ovc+x+0DP8DctOn4RecfdbxeRbUHbdhHZ1sq1eSKyWEQ+EpFVIvJfrr2HiLwhIp+5++7eVSe78WoN34aOw0Mat7IyGNIvn7JJZeTlBAhIF/JyApRNKiO/Uz6bNsG2bc4PRCTq6mDaNGc9101r87myWxkdJMAh2oVD2jVqxVTmTk7ZOkiA3INd6CDe6B3SztvyeaU3pF8+pX3LYF8AdneBfQFK+5bFHJYJ0dsTv57hc8JN5/ViAwTo7L7OBd4HvgHMBG517bcCd7WmlakpG7wkWWsCl5aq0rFa+dpipWO1lpa6tjCZHdu0BWnFW+Zhw0L14l2Tddw4b8vntV64zyJeVldV66zXF+vqqgTm/TCSBrGuuYvzVLCytfNa0egIfACcAHyKu84u0Bv4tLXrzfG3TLLWN42UutfLLdYyR1oPeMECb/8GflkzdvXq8HqrV8emZ2QmkRx/qzF+VT0IfCQi/aJ9mhCRHBFZDlQDb6jq+8Dh6q6z6+4Pi3DttSKyVESW1th00BZJ1vqmyUjRG2uZI60HHMkeazn8smbs4sXR2Q0jmLZ27vYGVrk5+V+q31q7SFUPqGoh0AcYIyLD2lowVX1MVYtUtSjfko+0SLLWN01Git5YyxxpPeBI9ljL4Zc1Y8eMic5uGCGEewxougHfDLe15dogjduBm7BQT0JI1vqmTeP5ccf4PSzz8OGhevHG+P2+Zmy4z8IwgiGWNXdFJA/4PjAI+BgoU9X9bflBEZF8YJ+qbnFn+r4O3OX+aNSq6p0icivQQ1VvaUnLJnC1jWStb1pR4YQUxoyBIUOa2yD867fecmYEFxfDiBGO9hFHwL//7V2ZX37ZCe9MngwTJsSv5/c1Y8N9FoZRT6QJXK05/vk4q269DZwDVKnq1DbecAQwG8jBCSk9raq/FJGewNNAP2At8B1V/aolLXP86U9wCohduyLP6DUMwztidfwfq+pw93V7YLGqHp+4YobHHH96Ey4FRDCWR94wEkOsKRsapuO0NcRjGE0JlwIiGMsjbxjJpTXHPzJ4ti4woq0zd43MpaICZs929m0hXAqIYHbvbvn9aIi2bKZnZCXhenz9ttmoHv8Q60iS4MXWc3NVO3RwNi9HpXg9yiXb9IzMg1hG9fgFi/H7g4oKGDq0uX316tARJTU1jTn4IfzrNWvglFNa1/K6bKZnZBNxpWU2DGjbbNHgZRiPPBL69GlcknHhQhg92unE/fzz6O7hRdlMzzAczPEbbaa12aJNl2FsKR+/1zNPTS8+PSO7MMdvtJkhQ6C0NNRWWtoYWohm9E5rWl6XzfQMoxGL8RtRE2m2aCzj9b2eeWp6htFITBO4/II5/vShfoZubq7zAyACeXlO2Mdm6BpGconk+NunojBG5lJcDGPHhh/JYzNzDcMfmOM3PCc/P9TJm8M3DH9hnbuGYRhZhrX4jaQRaWKXPREYRnIxx28kBUvLbBj+wUI9RsKJZmKXYRiJJ2GOX0T6isgiEakQkVUiMtW1TxeRL0Vkubudm6gyGMmjpgaWLAnvwC0ts2H4i0S2+PcD/6mqQ4BvANeLSH1aqftVtdDd/pzAMhhJIDg/T//+znEwraVl3revMe5vGEbiSZjjV9UNqvqB+3o7UAEcmaj7GamhaRgnXOgmP9+J4wcC0KWL08Lv0MF5HQg471kHr2Ekj6TE+EWkADgOeN81lYrIChH5g4h0j3DNtSKyVESW1lgA2LeEC+OEC90UFzvpGhYuhC+/hHXrnNdVVdaxaxjJJuEpG0SkM/AX4A5V/aOIHA5sAhT4FdBbVa9uScNSNviXcPl5bA1dw/AHKcnHLyK5wHPAXFX9I4CqblTVA6p6EHgcsESyaUzTME5LoZvgZQJtyUDDSB0JG8cvIgKUARWqel+QvbeqbnAPzwdWJqoMRnJomp8nnNO/4QZ4+OHw15eWwkMPJbKEhmEEk7BQj4icArwNfAwcdM0/A4qBQpxQTyXwvaAfgrBYqCe9ibRMYDC2ZKBheE/Ss3Oq6juAhHnLhm9mGW1ZDnDxYnP8hpEsbOaukXDashygLRloGMnDHL+RcMItExiMLRloGMnFkrQZSeGhh+C66xqXCQRbMtAwUoU5fiNpDBkS6uTN4RtGarBQj2EYRpZhjt8wDCPLMMdvRKalXMt+0DMMIybM8RvhaS3Xcqr1DMOImYQnafMCm7mbZLzOvGaZ3AwjJaQkSZuRprQ113Kq9AzDiAtz/EZzwi2ZFc8yWV7rGYYRF+b4jeZEk2s5FXqGYcSFxfiNyNTUtJxrOdV6hmG0SNKzcxoZQH6+tw7aa71w+P3HyvRMzw+oqu+3UaNGqWG0yrx5qoGAateuzn7ePNMzvfTV8wBgqYbxqQlz1kBfYBFQAawCprr2HsAbwGfuvntrWub4jVaprnb+2aBxCwQcu+mZXrrpeUQkx5/Izt39wH+q6hDgG8D1IjIUuBV4U1WPBt50j7MTv8+MTaeZtn4fgmp6pucjEub4VXWDqn7gvt6O0/I/EpgEzHZPmw1MTlQZfI3fZ8am20xbvw9BNT3T8xPhHgO83oACYC3QBdjS5L3NrV2fcaEevz9m+vSxtVXqY6xdungbszU900uFngcQIdST8OGcItIZ+Atwh6r+UUS2qGq3oPc3q2r3MNddC1wL0K9fv1FVVVUJLWdSWbLEaUlv3dpo69IFFi6E0aMzTy+Z+H2UhumZXhKJNJwzoY5fRHKBl4HXVPU+1/YpcLqqbhCR3sBbqjq4JZ2MG8fv91w4llvHMDKCpOfqEREByoCKeqfv8hJwpfv6SuDFRJXBtwTPZO3UyduZsV7q5eU5enl5oXqxdvqGu87vHdKmZ2QgiRzVczJwOXCmiCx3t3OBO4FxIvIZMM49zk7qn7a8euryWk8kdA+xd/qGu87vHdKmF5+e4V/CBf79tlnnrk/0Vq+O7T6R9PLy0u9vYHpGGkEKxvGnHr8+BidqDHEvoAhnnwi9xYtjK3e4+rZrBzk50WtFcw/TS52e4Wsy1/H7+TG4oCC04xRg9+74xhBP2A5VOHOhq4AJO7zXGzMmtrHK4eq7dy8cOBC9Vkv38PO47GzTM/xNuMcAv21Rh3r8/hhcXa2amxuql5sbu17NatWdTf5sO3HsXuvFMlY5Un3/53/8PY7a9OLTM1IOEUI9mZmds/6xNbiVWf/YGstIl0TodewYOk4+EIhdr3qxMyc6mH2uvdcQb/WKr4SxY6Mbqxypvscf7wwR9Wrcc3Fx9GUzvcTpGb4lMx2/3x+DvdY7bAzkNrHluvZE6EWbXrml+vo99bPpGRlIZsb4WxuHHqueX1ek6jUEPiyFXcBWnP2HpbG19hOh5/U8A8Mw4iIzHX894cahx0pxsROWWLjQ2RcX+0tv7Ukw+BA4L8/Zrz3JX3rg/TyDZODXkWHZqmd4Q7jAv9+2lHfu+p106MxOx8/D7wt1ZJueETUkeyEWL7eoHf/ixc6XLdjRdOni2DMRr+vrd71k4Pcfv2zTM2IikuPPzFBPosYk+/UxONmdz9GWuyU9j/+mL8/dzDWTqnl57ub4hNyRXBUMZjZXUMFgf02QyjY9w1vC/Rr4bYspZUOixjj79TF42LDQ1tXw4fHpjRsXqjd+fHzlLi0N1Sst9fxvMKxPrcLBhm1439rYxaqrtbTdb0P0Sts97J8WcLbpGTFBVoV66qmudsIJ8X7Z/P5P8c47oVr12zvvxKa3enVkPZ/m6lkw5yvXQQdLHtQFc76KSc/5EzTXWx3jnDhVDf/jFw9+n8BlE8JSTiTHn5mhnnry852FQ+IdNuj3x+DXX4/O3hqLF0fW82munhfm7IjK3hqLF26Lyt4qNTXOENZgysriC3H5faSZ13qGZ2S24/cKv0/gGj8+OntrjIkw8Wv8eNi1K9RWV9e2XD1791JDL5ZQRA294OBB2Lkz9Lxt22L+G0w+aWNU9tYYc3j4Fd8i2VslUTFvrxo36aJneII5/rbg9wlcJ5/c3MmPH+/YY6FXL2jfZFJ3+/bQo0fzORFtmSORn095yRv0p4pxLKQ/VZSf+0T4c9esianIE477N8NZDmjDNpzlTDju3zHpDelYRSkPhuiV8iBDOsbo+BM14GDuXJg0ydl7wcsvwzXXOHsvePdduP12Z+9HvYoKmD3b2WeDXj3h4j9+23yTj9+rPoNE6b3zjuq0abHH9uuJNPxy1izVnJxQe05Oq8Myw4b42+/Rano170eYNi22Mk+bpgq6gLO1hEd1AWd7oreawTqLK3Q1g+PTU1Xt3j20rj16xK6lqtqnT6he377x6SVrgIBf9Lzuc/GhHsnu3AX+AFQDK4Ns04EvgeXudm5btHzj+LOFSJ2xc+Y0d9SgumBBi3Jhf0cCe3QxRc215syJrcyRymZ6bWPBgpg+24h4PeAgWQMYYu2996leJMefyFDPLODsMPb7VbXQ3f6cwPsbsRIpFBUpDLNkSYtyYaMcB9pRQGXzk/fvj6nIEa/zi97TT0dnT7beCy9EZ28NrwccJGsAQyR7uus1IWGOX1X/CnyVKH0jwRQXwxtvwI9+5OyLi2PuRG74Hck7SJfAXgJ5Bym749/ks6n5yZE6llsj0nV+0bv44ujsrXF2uDZVC/bWmDw5OntreD3gIFkDGPzyffFarynhHgO82oACmod6KoEVOKGg7i1cey2wFFjar1+/6B6TjPiJFF8cPz7U3tY4a2mpVtNLF1PkxPZLS30ZE02oXt++oXrxxOQXLw4fCognDcbw4aFa8cb4Y/2uJEvP79+XdIzxa3jHfziQg/OkcQfwh7boWIw/ybQWX5wzR3XixLbHk1vSW7BAtaQk9lhyU/yud9ddqoWFzj4eEjUz9pFHVE891dl7QbTflWTr+f37EueADV84/ra+13Qzx59kZs0K76hnzYqtFRJJ76yzfNdCSis9G+WS2XoepDTxheMHege9vhF4qi065viTTKQWeqSRH62NNIik58NREKZner7Q8+iJLpLjT1jnroiUA+8Bg0VknYiUADNF5GMRWQGc4Tp/w28MGQKlpaG20lKorQ1/fmsjDcLpnXVWbFqR8PuoCtMzvWhIcHbThK25q6rhEnOUhbEZfuShh+C665wv7pgxjvOONHuwLSMNTjoJfv97Z6avqjP65M03Y9OKpgymZ3rpqJeomd71hHsM8NtmoR6fUF2t2q5d6ONnu3axZ+csKQm1xRMTjbVspteI30fh+F3Ph9lXycrsnIa3VFbCoYeG2jp3ji07Z24ufO97sHo1zJrl7B96KPllMz2Hmhp4++1Q29tvx549NNv0wPn+evV9hoRmN01YqMfIQGJ9/Gzpuvx8J4yUqrKZnkP9j3NdXaOtPqYcS/LAbNOrZ8gQb77P9eTnJySzqbX4jbYTa1ZRr7ORJuMe2abn9x8mv+ulG+HiP37bLMbvM2LNKup1NtJk3COb9Py+Apff9XwIEWL84rznb4qKinTp0qWpLoZhZD41NU64oz4MZ3ppjYgsU9WipnaL8RtGS2S4Y2iG1zHlbNNLEyzGbxiRKC+H/v1h3DhnX16e6hIZhieY4zeMcNTUQEmJM+pj61ZnX1IS33A/w/AJ5vgNIxwJnjJvGKnEHL9hhCPbh/sZGY05fsMIR6LmHlRUwOzZkfMepVqvpsZZStNCWhmNOX7DiITXU+ZvuAGGDoWrrnL2N9zgLz3rzM4abBy/YSSDigrHOTdl9erYpvh7rVdT4zj74BQGgYDzg5eFwx0zhUjj+K3FbxjJIMvzvxv+IpELsfxBRKpFZGWQrYeIvCEin7n77om6v2H4imzP/274ikS2+GcBZzex3Qq8qapHA2+6x4aR+URa1SzWTI5e6yUjkZ7hGxIa4xeRAuBlVR3mHn8KnK6qG0SkN/CWqg5uTcdi/EbGUFERuqqZ3/SyLUVFhhMpxp9sx79FVbsFvb9ZVcOGe0TkWuBagH79+o2qqqpKWDkNwzAykbTr3FXVx1S1SFWL8q3lYRiG4RnJdvwb3RAP7r46yfc3DMPIepLt+F8CrnRfXwm8mOT7G4ZhZD2JHM5ZDrwHDBaRdSJSAtwJjBORz4Bx7rFhGIaRRBK2EIuqRprfflai7mkYhmG0TlqkbBCRGiCRw3p6AZsSqO8HMr2OmV4/sDpmCsmsY39VbTY6Ji0cf6IRkaXhhjxlEplex0yvH1gdMwU/1NG3wzkNwzCMxGCO3zAMI8swx+/wWKoLkAQyvY6ZXj+wOmYKKa+jxfgNwzCyDGvxG4ZhZBnm+A3DMLKMjHf8ItJXRBaJSIWIrBKRqU3ev0lEVER6Bdl+KiKfi8inIvKt5Jc6Olqqo4jc4NZjlYjMDLJnRB1FpFBE/i4iy0VkqYiMCbom3eqYJyKLReQjt47/5dojLmCUTnVsoX53i8gnIrJCRJ4XkW5B16RN/SByHYPe94e/UdWM3oDewPHu60OBNcBQ97gv8BrO5LBerm0o8BFwCDAA+ALISXU9YqkjcAawEDjEfe+wDKzj68A5rv1cnDUe0rWOAnR2X+cC7wPfAGYCt7r2W4G70rGOLdRvPNDetd+VrvVrqY7usW/8Tca3+FV1g6p+4L7eDlQAR7pv3w/cAgT3cE8CnlLVPar6T+BzIMb17JJDC3X8AXCnqu5x36vPhppJdVSgi3taV2C9+zod66iqusM9zHU3xanLbNc+G5jsvk6rOkaqn6q+rqr7XfvfgT7u67SqH7T4GYKP/E3GO/5g3IVhjgPeF5GJwJeq+lGT044E/hV0vI7GHwrfE1xH4BjgVBF5X0T+IiKj3dMyqY4/Au4WkX8B9wA/dU9LyzqKSI6ILMdJWf6Gqr4PHK6qG8D5AQQOc09PuzpGqF8wVwOvuK/Trn4Qvo5+8zdZ4/hFpDPwHI6j2A/8HJgW7tQwtrQY8xpcR1XdhpOErzvO4/TNwNMiImRWHX8A3KiqfYEbgbL6U8Nc7vs6quoBVS3EafWOEZFhLZyednVsqX4i8nOc/8259aZwEgkvZJyEqeMIfOZvssLxi0gujrOYq6p/BAbixNM+EpFKnA/oAxE5AucXt2/Q5X1oDB/4ljB1BKcuf3QfPxcDB3ESRGVSHa8E6l8/Q+NjclrWsR5V3QK8BZxN5AWM0raOTeqHiFwJTACmqBv8Jo3rByF1nITf/E0qO0KSseH8oj4BPNDCOZU0drYcS2hnyz9Ijw6lZnUEvg/80n19DM4jpWRYHSuA093XZwHL0vhzzAe6ua8DwNs4zvBuQjt3Z6ZjHVuo39nAaiC/yflpVb+W6tjknJT7m4Tl4/cRJwOXAx+7cTeAn6nqn8OdrKqrRORpnC/ifuB6VT2QlJLGTtg6An8A/iAiK4G9wJXqfNsyqY7/AfxGRNoDu4FrIW0/x97AbBHJwXkaf1pVXxaR93DCdCXAWuA7kJZ1jFS/z3Ec3xtOJJK/q+r307B+EKGOkU5OVR0tZYNhGEaWkRUxfsMwDKMRc/yGYRhZhjl+wzCMLMMcv2EYRpZhjt8wDCPLMMdvZCwicsDN2rnKzZb4YxGJ+TsvIqe4mRc/cbdrg97Ld1NjfChOFtEfBL13gpt5MhuGTxtpgH0RjUymTp2p84jIYcA8nERut0cr5M6ynAdMVtUP3LS6r4nIl6r6J5zJY5+o6pUicjjwnog8C9QCDwPXaWMismjvLThDrw/Gcr1hNMXG8RsZi4jsUNXOQcdHAUtw0lb0B54EOrlvl6rq30TkSeBZVX3RvWYuMB8YjZN8cVqQ3lnAdOAG4CWcmZpfAicC/8+9ZgkwCmdi2Z3A6TiTlX6rqo+6uYdexMmplAv8QlVfdBPRvQIscvUmq2qVl38fI3sxx29kLE0dv2vbDHwd2A4cVNXdInI0UK6qRSLyTZykb5NFpCuwHDgaeBqYXf+D4Gp1Bf6pqj1E5CqgSFVL3ffaAe/hZNIsAi7EWQ9hhogcAryLMwP3X0BHVd3mPkX83b1ff5zp+yep6t8T8gcyshYL9RjZRn02xFzgYREpBA7g5DJCVf8iIr91Q0MXAM+p6n433BKulRS25aSqB0XkUZwfg1oRGQ+MEJGL3FO64jj4dcCvReQ0nCR6RwKHu+dUmdM3EoE5fiNrcEM9B3CyW94ObARG4gxy2B106pPAFOASnPzwAKtwWu4vBZ03CifHSiQOuhs4Pzg3qOprTcp0FU5ir1Gqus/N3pjnvr2z7bUzjLZjo3qMrEBE8oH/AR52E9V1BTa4HaaXAzlBp8/CWbcBVV3l2n4LXOU+ISAiPXGWCZxJ23gN+IGbWhoROUZEOrnlqHad/hk4IR7DSCjW4jcymYCbyTMXJ/Phk8B97nuPAM+JyHdwOlAbWtequlFEKoAXgmwbROQy4HERORSnBf+Aqi5oY1l+DxTg5GEXoAZnCcW5wAIRWYrTn/BJLBU1jGiwzl3DaIKIdAQ+xlncfWuqy2MYXmOhHsMIQkTG4rS6HzKnb2Qq1uI3DMPIMqzFbxiGkWWY4zcMw8gyzPEbhmFkGeb4DcMwsgxz/IZhGFnG/wfSVo6szTyIxgAAAABJRU5ErkJggg==", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "ax=None\n", + "colors = ['red','blue','green','yellow']\n", + "for i,var in enumerate(new_pumpkins['Variety'].unique()):\n", + " ax = new_pumpkins[new_pumpkins['Variety']==var].plot.scatter('DayOfYear','Price',ax=ax,c=colors[i],label=var)" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAGKCAYAAAAVEBpAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcxklEQVR4nO3df5h3dV3n8ecrwEBEARm4bhW8UxEDfwDekqztpiiFmiGGCW5GZhduLRVpJaX5a7e9bP25musurAiRgqaopGEiF+TiKnrzQ4SQIEMSEG615BbzB/DeP8538sswv+c7c85n5vm4rrnm/PjOzIvx/r488znnfE6qCklSe36s7wCSpOWxwCWpURa4JDXKApekRlngktSoHdfyh+211161efPmtfyRktS8yy677BtVNTVz+5oW+ObNm9m6deta/khJal6Sr862fcEhlCQ7J/l8ki8muSbJ60bbX5vk5iRXjj6eNenQkqS5LeYI/PvAEVX1nSQ7AZckOX+0761V9abViydJmsuCBV7drZrfGa3uNPrw9k1J6tmirkJJskOSK4HbgQuq6tLRrpOSXJXk9CR7rFZISdJ9LarAq+ruqjoYeBhwWJLHAu8CHgkcDNwKvHm2r01yYpKtSbZu27ZtIqElSUu8Dryq/gW4GDiqqm4bFfs9wGnAYXN8zalVtaWqtkxN3ecqGEnSMi3mKpSpJLuPlncBngF8OcmmsZcdA1y9KgklSbNazFUom4Azk+xAV/gfqKqPJTkrycF0JzRvBF66aiklSfexmKtQrgIOmWX7i1YlkSRpUdb0TkwN3+ZTPt53hAXd+IZn9x1BGgQns5KkRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1KjmH6nWwiPAwMeASZo8j8AlqVEWuCQ1asECT7Jzks8n+WKSa5K8brR9zyQXJLl+9HmP1Y8rSZq2mCPw7wNHVNUTgIOBo5I8GTgFuLCq9gcuHK1LktbIggVene+MVncafRRwNHDmaPuZwHNXI6AkaXaLGgNPskOSK4HbgQuq6lJgn6q6FWD0ee85vvbEJFuTbN22bduEYkuSFlXgVXV3VR0MPAw4LMljF/sDqurUqtpSVVumpqaWGVOSNNOSrkKpqn8BLgaOAm5Lsglg9Pn2SYeTJM1tMVehTCXZfbS8C/AM4MvAecAJo5edAHx0lTJKkmaxmDsxNwFnJtmBrvA/UFUfS/JZ4ANJXgLcBDx/FXNKkmZYsMCr6irgkFm2fxN4+mqEkiQtzDsxJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhq1YIEn2TfJRUmuTXJNkt8ZbX9tkpuTXDn6eNbqx5UkTdtxEa+5C3h5VV2eZDfgsiQXjPa9taretHrxJElzWbDAq+pW4NbR8vYk1wIPXe1gkqT5LWkMPMlm4BDg0tGmk5JcleT0JHvM8TUnJtmaZOu2bdtWllaS9G8WXeBJHgB8CDi5qu4A3gU8EjiY7gj9zbN9XVWdWlVbqmrL1NTUyhNLkoBFFniSnejK+71VdS5AVd1WVXdX1T3AacBhqxdTkjTTYq5CCfBu4NqqesvY9k1jLzsGuHry8SRJc1nMVShPAV4EfCnJlaNtfwQcn+RgoIAbgZeuQj5J0hwWcxXKJUBm2fXXk48jSVos78SUpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJatSCBZ5k3yQXJbk2yTVJfme0fc8kFyS5fvR5j9WPK0matpgj8LuAl1fVTwJPBv5zkgOBU4ALq2p/4MLRuiRpjSxY4FV1a1VdPlreDlwLPBQ4Gjhz9LIzgeeuUkZJ0iyWNAaeZDNwCHApsE9V3QpdyQN7TzydJGlOiy7wJA8APgScXFV3LOHrTkyyNcnWbdu2LSejJGkWiyrwJDvRlfd7q+rc0ebbkmwa7d8E3D7b11bVqVW1paq2TE1NTSKzJInFXYUS4N3AtVX1lrFd5wEnjJZPAD46+XiSpLnsuIjXPAV4EfClJFeOtv0R8AbgA0leAtwEPH9VEkqSZrVggVfVJUDm2P30ycaRJC2Wd2JKUqMscElqlAUuSY2ywCWpURa4JDXKApekRi3mOnBJy7D5lI/3HWFRbnzDs/uOoGXyCFySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjXIyK0lNcHKw+/IIXJIaZYFLUqMWLPAkpye5PcnVY9tem+TmJFeOPp61ujElSTMt5gj8DOCoWba/taoOHn389WRjSZIWsmCBV9WngW+tQRZJ0hKsZAz8pCRXjYZY9pjrRUlOTLI1ydZt27at4MdJksYtt8DfBTwSOBi4FXjzXC+sqlOraktVbZmamlrmj5MkzbSsAq+q26rq7qq6BzgNOGyysSRJC1lWgSfZNLZ6DHD1XK+VJK2OBe/ETHI28FRgryRfA14DPDXJwUABNwIvXb2IkqTZLFjgVXX8LJvfvQpZJElL4J2YktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY1asMCTnJ7k9iRXj23bM8kFSa4ffd5jdWNKkmZazBH4GcBRM7adAlxYVfsDF47WJUlraMECr6pPA9+asflo4MzR8pnAcycbS5K0kOWOge9TVbcCjD7vPdcLk5yYZGuSrdu2bVvmj5MkzbTqJzGr6tSq2lJVW6amplb7x0nShrHcAr8tySaA0efbJxdJkrQYyy3w84ATRssnAB+dTBxJ0mIt5jLCs4HPAgck+VqSlwBvAI5Mcj1w5GhdkrSGdlzoBVV1/By7nj7hLJKkJfBOTElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1ygKXpEZZ4JLUKAtckhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGLfhU+vkkuRHYDtwN3FVVWyYRSpK0sBUV+MjTquobE/g+kqQlcAhFkhq10gIv4JNJLkty4iQCSZIWZ6VDKE+pqluS7A1ckOTLVfXp8ReMiv1EgP3222+FP06SNG1FR+BVdcvo8+3Ah4HDZnnNqVW1paq2TE1NreTHSZLGLLvAk+yaZLfpZeBngasnFUySNL+VDKHsA3w4yfT3eV9VfWIiqSRJC1p2gVfVV4AnTDCLJGkJvIxQkhplgUtSoyxwSWqUBS5JjbLAJalRFrgkNcoCl6RGWeCS1CgLXJIaZYFLUqMscElqlAUuSY2ywCWpURa4JDXKApekRlngktQoC1ySGmWBS1KjLHBJapQFLkmNssAlqVEWuCQ1akUFnuSoJNcluSHJKZMKJUla2LILPMkOwDuBZwIHAscnOXBSwSRJ81vJEfhhwA1V9ZWq+gFwDnD0ZGJJkhaSqlreFybHAkdV1a+P1l8E/FRVnTTjdScCJ45WDwCuW37cNbMX8I2+Q6wj/j4nx9/lZLXy+3x4VU3N3LjjCr5hZtl2n/83qKpTgVNX8HPWXJKtVbWl7xzrhb/PyfF3OVmt/z5XMoTyNWDfsfWHAbesLI4kabFWUuBfAPZP8hNJ7gccB5w3mViSpIUsewilqu5KchLwN8AOwOlVdc3EkvWrqSGfBvj7nBx/l5PV9O9z2ScxJUn98k5MSWqUBS5JjbLAJalRG77Akzxwnn37rWUWaS5JHpzkmCRP7DtLi5J8YGz5T2fs++TaJ5qMDV/gwMXTC0kunLHvI2uapHHr9U3ShyQfS/LY0fIm4Grg14CzkpzcZ7ZG7T+2fOSMffe5w7EVFvi97yjdc559Wti6fJP05Ceq6urR8ouBC6rqOcBP0RW5lma+y+2avRRvJbfSrxc1x/Js65rfunyT9OSHY8tPB04DqKrtSe7pJ1LT7p/kELqD1l1Gyxl97NJrshWwwGHvJC+j+x9yepnRukeNS7Mu3yQ9+ackv0U3ZcWhwCcAkuwC7NRnsEZ9HXjLLMvT603a8DfyJHnNfPur6nVrlaV1SS6ab39VPW2tsrQuyd7A64FNwDur6pOj7U8DnlhVb+ozn4Zhwxf4fJKcXFVv6zuHNC7JjlV1V985WpJkf+CNwKOALwG/V1U395tq5TyJOb+XLfwSLSTJkUku6DtHS5JcMrZ81ozdn1/jOOvB6cDHgV8ELgfe0W+cybDA5+dVKEuQ5Igkf5/kO0n+IsmBSbYCbwDe1Xe+xuw6tnzQjH3+u1y63arqtKq6rqreCGzuO9AkeBJzfo4vLc2b6Z6+9Fm6Z6V+DvjjqvofvaZqk1f0TNbOYyfV4d4n2amqy3tLtgIbvsCTbGf2N0SA+69xnNZVVV08Wv5Ikm2W97LtnuQYur+Sd0/yvNH2AA/qL1azZrvyZHq9gCPWPNEEeBJTE5PkK8DvjW160/h6VZ275qEaleQ98+2vqhevVZb1IMkDq+qOvnNMmgU+iyS7As8FXlhVz+45TjMWKJ2qKu8gVC+S/APwyqo6p+8sk2SBj4weC/cs4IXAUcCHgHOr6q96DaYNaeyGsllV1Vvm2697S/Jw4G3AA4DfqKob+k00GY6BJ0cCxwM/B1wEnAUc5p+oSzdL6RTwDeCSqvrHHiK1bLe+A6wnVfVV4JgkRwGfSfIF4J6x/b/QW7gV2PAFTvdMz/8L/PR0ySTxxNvyzFY6m4FXJnntevvzdZV9s6r+rO8Q60mSA4A/oHu/v5OxAm/Vhh9CGV1KdBxwLPAV4Bzg1VX18F6DrSNJ9gQ+VVWH9p2lFUku9/c1OUneAPwC8PKqOr/vPJOy4W/kqaorquoVVfVI4LXAIcD9kpyf5MR+060PVfUtvPlE/doCHLqeyhss8Hs9aKCqPlNVJwEPpTvhcXhfudaTJEcA/9x3jsY8Pskds3xsT7LuLodbA3tW1ff6DjFpjoHPMmVsVd1DNzb+N2sfp11JvsR9b4raE7gF+JW1T9S0L1XVIX2H0LBZ4PCgsbvc7sObT5bkecAPxtaL7mTcnT3lkaY9Isl5c+30KpR2PQj4eWYfoy3AAl+893vibWL+su8A68w2url61hULHG7yDsGJ8UTl5Bw8vZDkT6vqFWPrn6yqn+0lVbu2V9Xf9h1i0ixwZ3abpKn57iD07sEledTY8pHAK8bWfdTf0t3Yd4DVYIHDt9brRDc92IHuVmWPxFeXBx1LVFVznudqmQUOnwQuS/Kaqnpf32Ead2tVvb7vEOuED4jWgjb8nZgASR5KNzfwXnRPjhmfI8GTmIuU5IrZLn1Lsi9w3OhJKFqEJBczz5G2D4gWeAQOQFXdnOTjwJ8Az+FHBe5VKEvz9OmFJHsBz6ebKOxh+Htckqp6at8Z1pMkv1xVfzFafkpVfWZs30mtzjuz4Y/AkxxEd9R9C/C7VXVrz5GalWQ34Bi6KXkfDXwYeEFVPazXYA2a794E8C/DpRqfW2bmPDMtzzvjETh8EDi5qu5z12WSXb0JZUlup3ti+qvoppCt0WPBtHTPmWeffxkuXeZYnm29GRZ4d73tXkm2AFdV1Q+S7A2cDPwq8JD+ojXnj+hmdnwX8L4k7+85T7Ocj37iao7l2dabseEnswL+E3Al8A7gc0lOAK6lO9P/xB5zNaeq3lpVP0U3bWeAjwAPSfKKJI/uNVyDkuwwOpcwvX6/JCcmubbPXI16TJKrRvP1TC9Prx/Qd7jlcgw8+Tu6hzl8K8l+wA3Af6iqz/UcbV1I8ji6MfFfGk3Zq0VIchzwv4E7gevppjo+C/gC8F+q6vL+0rVn9Ei1OY2e2NMcC/y+JzSurqrH9plJSnI18NyquiHJocBn6S7F/HDP0TQgFnhyO91TeKYdN75eVb+95qEalWQ7s48nhu6p9A9c40jNmuXA4stV9Zg+M7Vs7N/m9AnL6X+nTf/b9CQm/P6M9ct6SbEOVJUP4p2cvWfMK/OA8XXnlVma9fpvc8MfgUtDlOQ18+wupyxYmiQ7012w8CjgKuD0qrqr31Qrt+ELPMlfMf8ty01O9N6HWf5MZbS+I3C/qvIvvglI8qSq+kLfOVoyuqT1h3RPpH8m8NWq+p1+U62cbyh4U98B1ouZf6aO7sz8TeCldHdlapmSHEh3fuZ44Nt0D+nV4h1YVY8DSPJuuhvOmrfhC3yuSd6nJ2AC1t0k8Kstye50N0L9CvA+4ElV9c0+M7VodOnb8aOPu4CHA1uq6sY+czXqh9MLVXVX0uzNl/ey4Qt83IwJmB6KR41LMvr9vRx4AXA6cEhVfbvfVG1K8v/oHvd3DnBsVV2f5B8t72V7QpLpOf9DN0XvHXgVStvmmIDpEU7AtCxfpXv24HuA7wIvGT/S8cqJJdlGN4vjPnRP4Lmehm/57ltV7dB3htWw4QscJ2CapDfyo5JZl5dtrZWqOjrJg4BfBF6X5FHA7kkOq6p1MX6rlfMqlOR36ca6d6Ubr30/cEFVPaLXYNrQkuxUVT8cW9+bbmjqeGDfqtq3t3AajA1f4NOSPILuzXEcsD/wGuDDVfX3vQZrSJK3z7ffu1oXb3SH8EeBs4GLauyNmuThrc7docna8AWeZL+qumnGtsfRlfkLnIBp8UYzOc6pqs5cqyytS/Jg4Fh+dEDxQeDsqrq012AaFAv83k/q+FBV/WLfmaRxSR5Cd3XUccDewDlV9cp+U2kILPCxB/HO9VBeLU6S8+bb712ty5fkAcDzgJcBm6pqn54jaQC8CmX+J3VoaQ4H/olu3PZSGn5U1RCM5u94Dt1w3lOATwB/CHyyz1waDo/Ak7vpJs0P3VN4vju9i4Yv8O9Dkh2AI+kK5/HAx+nGba/pNViDkrwPeAbwabqbeT5WVd/rN5WGZsMXuFZHkh+nK/I3Aq+vqnf0HKkpoxPC51bV9r6zaLgscE3UqLifTVfem4Hz6KbuvLnPXNJ6ZIFrYpKcCTwWOJ/uSomre44krWsWuCYmyT105xPg3ieEPZ8grQILXBqgJM+bb39VnbtWWTRcFrg0QKO/Zq4cfcCMpxxV1a+tdSYNjwUuDdBoRswX0D3D8aN0l2Pe0G8qDY0FLg1Ykl2Bo+nK/MHAK+d6ipQ2nh/rO4CkeX2P7hmYd9BNebxzv3E0JB6BSwOU5Gl019IfBnyK7rLMrf2m0tBY4NIAjU5iXgVcQndJ5r3eqM6tLnAyK2moXtx3AA2fR+DSwI2mkq2qunPBF2tD8SSmNFBJfiPJTcBXgZuSfDXJb/adS8NhgUsDlORVdHOBP7WqHlxVDwaeBjxztE9yCEUaoiTXAU+YOQd4kl2AL1bVo/tJpiHxCFwaqNke4FBV/wrc00McDZAFLg3T15I8febGJEcAt/aQRwPkEIo0QEkOopsD5RLgMrrrwJ9E92zMo31MncAClwZr9FDjFwIH0c1GeA3wXp+NqWneyCMNVFV9L8lFwO10R+DXWt4a5xG4NEBJHgj8H+CJdHOC/xjwBLrhlJdU1R39pdNQWODSACU5A7gReH1V3TPaFuCPgUdV1a/0l05DYYFLA5Tk+qraf6n7tLF4GaE0TFn4JdroLHBpmD6T5NWjYZN/k+SPgc/1lEkD4xCKNECjk5jvBg6lO4lZwCHAFXQnMb/dXzoNhQUuDViSRwIHMroOvKr+IcnJVfW2fpNpCCxwqTFJbqqq/frOof45Bi61xxOcAixwqUX+2SzAW+mlQUqyndmLOsAuaxxHA+UYuCQ1yiEUqSFJdk/yyr5zaBgscGmAkuyb5NQkH0vy60nun+TNwPXA3n3n0zA4Bi4N058Dfwt8CDiK7u7La4DHVdXX+wym4XAMXBqgJF+sqieMrd8G7FdV3+8xlgbGI3BpoJLswY+u+f46cP8kuwJU1bd6C6bB8AhcGqAkN9I9fX62m3aqqh6xtok0RBa4JDXKIRRpgJIcOt/+qrp8rbJouDwClwZo9DDjuVRVHbFmYTRYFrgkNcobeaQBSvIHY8vPn7Hvv619Ig2RBS4N03Fjy384Y99RaxlEw2WBS8OUOZZnW9cGZYFLw1RzLM+2rg3Kk5jSACW5G7iTH83//d3pXcDOVbVTX9k0HBa4JDXKG3mkAUqy53z7nQtF4BG4NEhJ/pFurDvAJuAWfnTy0rlQBFjg0uAluaKqDuk7h4bHq1Ck4fMoS7OywCWpUZ7ElAYoycvGVveesU5VvWWNI2mALHBpmHYbWz5txroEeBJTkprlGLgkNcoCl6RGWeCS1ChPYkoDleQA4ETgMaNN1wKnVdV1/aXSkHgELg1QksOBi4HtwKl0V6LcCVyU5Mk9RtOAeBWKNEBJzgf+tKounrH9Z4BTquqZvQTToFjg0gAl+fuqevQc+66rqgPWOpOGxyEUaZi2z7PvzjVLoUHzJKY0TPsmefss2wM8dK3DaJgscGmYfn+efVvXLIUGzTFwqTFJdqyqu/rOof45Bi4NUJJLxpbPmrH782scRwNlgUvDtOvY8kEz9gUJC1waqvnGNh33FOBJTGmodk9yDN1B1u5JnjfaHuBB/cXSkHgSUxqgJGcwz5F2Vb147dJoqCxwSWqUY+DSACV5R5L7PEYtyWOSfKqPTBoeC1wapq8DVyZ5IUCS+yf578B5wDt7TabBcAhFGqgkPwH8Gd0DjR8CfAD4r1X13V6DaTA8ApeGa/roake69+q1lrfGWeDSACV5FfAp4M+r6t8B/x44OsnfJjmw33QaCq8Dl4ZpCjikqrYDVNXNwLFJngl8CPjJPsNpGBwDlxqT5Mer6vt951D/PAKXBmiOucDH/faaBNGgWeDSMF3WdwANn0MoktQoj8ClAUpy3nz7q+oX1iqLhssCl4bpcOCfgLOBS3EOcM3CIRRpgJLsABwJHA88Hvg4cHZVXdNrMA2KN/JIA1RVd1fVJ6rqBODJwA3AxUl+q+doGhCHUKSBSvLjwLPpjsI3A28Hzu0zk4bFIRRpgJKcCTwWOB84p6qu7jmSBsgClwYoyT3AnaPV8TdpgKqqB659Kg2NBS5JjfIkpiQ1ygKXpEZZ4JLUKAtczUtycZKfm7Ht5CT/c5Ff//okz1jgNb+a5CErySlNmgWu9eBs4LgZ244bbZ9Xkh2q6tVVtdCT3n+V7rmU0mBY4FoPPgj8/OjGF5JspivbFybZmuSaJK+bfnGSG5O8OsklwPOTnJHk2NG+J44eW3ZZkr9Jsmm0bwvw3iRXJnl2kg+Pfb8jk3iDjdacBa7mVdU3gc8DR402HQe8H3hlVW2hm0vkZ5I8fuzLvldVP11V50xvSLIT8A7g2Kp6InA68CdV9UFgK/Afq+pg4K+Bn0wyNfrSFwPvWbX/QGkOFrjWi/FhlOnhk19KcjlwBXAQMP4w4PfP8j0OoLv78YIkVwKvAh4280XV3TxxFvDLSXanmznw/In8V0hL4FwoWi8+ArwlyaHALsA/A78HPKmq/jnJGcDOY6+/8z7fobvL8ZqqOnwRP+89wF8B3wP+sqruWkF2aVk8Ate6UFXfAS6mG/Y4G3ggXUl/O8k+wDMX8W2uA6aSHA7dkEqSg0b7tgO7jf28W4Bb6I7Sz5jMf4W0NB6Baz05m262vuOq6stJrgCuAb4CfGahL66qH4xOWL49yYPo3h9vG32PM4D/leRfgcOr6l+B9wJTVfV3q/EfIy3EuVCkZUryZ8AVVfXuvrNoY7LApWVIchndEM2RVfX9vvNoY7LAJalRnsSUpEZZ4JLUKAtckhplgUtSoyxwSWrU/wdO32Yxjk19aAAAAABJRU5ErkJggg==", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "new_pumpkins.groupby('Variety')['Price'].mean().plot(kind='bar')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 174, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-0.2669192282197318\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 174, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcL0lEQVR4nO3df5RcZZ3n8fenSduJJJDQCTEnPwxOhFkWYpSWhYkogsPiHA5wNuiZOSK4OpOVHT3i6iaic3D1zHpMMqszLu4ZGWUJLMMsQxAcZjiQBZTBJUCTyQ9+KdlBSCKE0CRDtyZth/7uH3U7qW6qOl3Vdavurft5ndMnVU9Vfe/zVFe+dfu5z/1eRQRmZlYcHa3ugJmZNZcTv5lZwTjxm5kVjBO/mVnBOPGbmRXMlFZ3YCJmz54dixcvbnU3zMxy5Yknnng1IuaMbc9F4l+8eDG9vb2t7oaZWa5IeqFSu6d6zMwKxonfzKxgnPjNzArGid/MrGCc+M3MCia1xC9poaQHJT0j6SlJn0va10l6VtI2ST+UNDOtPtjk9A0MsnXnfvoGBjMZz8zqk+ZyzkPAFyJis6QZwBOSNgIbgWsi4pCkNcA1wOoU+2F1uGvLblZv2EZnRwdDw8OsXbGUi5fNz0w8M6tfanv8EfFSRGxObvcDzwDzI+K+iDiUPG0TsCCtPlh9+gYGWb1hGweHhukfPMTBoWFWbdhW9556o+OZ2eQ0ZY5f0mLg3cCjYx76JHBPldeslNQrqXfv3r0p99DK7dp3gM6O0R+Nzo4Odu07kIl4ZjY5qSd+SdOBDcDVEfF6WftXKE0H3VLpdRFxfUT0RETPnDlvOuPYUrRg1jSGhodHtQ0ND7Ng1rRMxDOzyUk18UvqpJT0b4mIO8rarwQuAj4WvgRY5nRP72LtiqVM7exgRtcUpnZ2sHbFUrqnd2UinplNjtLKu5IErAdei4iry9ovBL4FfCAiJjSH09PTE67V03x9A4Ps2neABbOmNSRJNzqemY1P0hMR0TO2Pc1VPcuBjwPbJW1J2r4MfAfoAjaWvhvYFBGfTrEfVqfu6V0NTdCNjmdm9Ukt8UfEw4AqPPQPaW3TzMyOzmfumpkVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBO/tZW+gUG27txP38Cg4zle7uOlJbWLrZs1211bdrN6wzY6OzoYGh5m7YqlXLxsvuM5Xi7jpcl7/NYW+gYGWb1hGweHhukfPMTBoWFWbdhW956X4zleK+OlzYnf2sKufQfo7Bj9ce7s6GDXvgOO53i5i5c2J35rCwtmTWNoeHhU29DwMAtmTXM8x8tdvLQ58Vtb6J7exdoVS5na2cGMrilM7exg7YqldE/vcjzHy128tCkiWt2Ho+rp6Yne3t5Wd8NyoG9gkF37DrBg1rSG/KdzPMdrZbzJkvRERPS8qd2J38ysPVVL/KlN9UhaKOlBSc9IekrS55L2EyRtlPRc8u+stPqQdVlfQ5yXNclmVps01/EfAr4QEZslzQCekLQR+ARwf0R8U9KXgC8Bq1PsRyZlfQ1xntYkm1ltUtvjj4iXImJzcrsfeAaYD1wCrE+eth64NK0+ZFXW1xDnbU2ymdWmKat6JC0G3g08CsyNiJeg9OUAnFjlNSsl9Urq3bt3bzO62TRZX0OctzXJZlab1BO/pOnABuDqiHh9oq+LiOsjoicieubMmZNeB1sg62uI87Ym2cxqk2ril9RJKenfEhF3JM17JM1LHp8HvJJmH7Io62uI87Ym2cxqk9pyTkmiNIf/WkRcXda+DugrO7h7QkSsGi9Wuy7nzPoa4qytSTaz2lRbzpnmqp7lwMeB7ZK2JG1fBr4J3CbpU8CLwEdS7EOmdU/vamhCzXo8M8uG1BJ/RDwMqMrD56e1XTMzG59r9ZiZFYwTv5lZwTjxm5kVjBO/mVnBOPGbmRWME7+ZWcE48ZuZFYwTv5lZwTjxm5kVjBN/C2X9ilnV4tW7nUqvy+t74HiWZ2nW6rFxZP2KWdXi1budSq8LyOV74HiWd77Yegv0DQyyfM0DHBw6UvN+amcHP119Xl1F0ZoV7+7PvI+Lrnu45u1Uitc1pQMIBg8d+fzl4T1wPMuTpl9s3arL+hWzqsXbsnN/XdupFO+YDnGM8vceOJ61A0/1tEDWr5hVLd6yhTPr2k6leG8MBzD6r808vAeOZ+3Ae/wtkPUrZlWLt2TujLq2UyneusuWsu6yd+XuPXA8awee42+hrF8xq1q8erdT6XV5fQ8cz/Kg2hy/E7+ZWZvywV0zMwOc+M3MCseJ38ysYJz4zcwKxonfzKxgnPjNzAqmrRN/1isXOp6ZtULblmzIeuVCx3PlR7NWacs9/r6BQVZv2MbBoWH6Bw9xcGiYVRu21b2n6XjZimdmk5Na4pd0g6RXJD1Z1rZM0iZJWyT1SjozjW1nvXKh47nyo1krpbnHfyNw4Zi2tcDXImIZcG1yv+GyXrnQ8Vz50ayVUkv8EfEQ8NrYZuC45PbxwC/T2HbWKxc6nis/mrVSqkXaJC0G7o6I05L7/wq4FxClL53fiYgXjhan3iJtWa9c6HhmlqaWVOeskPi/A/wkIjZI+iiwMiI+VOW1K4GVAIsWLTrjhReO+v1gZmZlslKd80rgjuT23wJVD+5GxPUR0RMRPXPmzGlK58zMiqDZif+XwAeS2+cBzzV5+2ZmhZfaCVySbgXOBWZL2gV8Ffgj4C8kTQEOkkzlmJlZ86SW+CPiD6o8dEZa2zQzs6NryzN3zcysOid+M7OCceI3MysYJ34zs4Jp68RftPrvWa+fX7Tfh1lWuR5/m8h6/fyi/T7Msqwt9/iLVv896/Xzi/b7MMu6tkz8Rav/nvX6+UX7fZhlXVsm/qLVf896/fyi/T7Msq4tE3/R6r9nvX5+nn8fWT/AXbR41hiplmVulKzU48+6rNfPz9vvI+sHuIsWz2rXknr8jVJv4jerV9/AIMvXPMDBoSNTVFM7O/jp6vPq+tJyvMnFs/pkpR6/WS5k/QB30eJZY00o8Us6WdL9kp5M7i+V9Cfpds2sdbJ+gLto8ayxJrrH/1fANcAQQERsA34/rU6ZtVrWD3AXLZ411oTm+CU9HhHvlfRPEfHupG1LRCxLu4PgOX5rnawf4C5aPKtNtTn+iZZseFXSbwGRBLsMeKmB/TPLpO7pXQ1NWI5nWTDRxP/HwPXAb0vaDTwPXJ5ar8zMLDUTSvwR8c/AhyQdC3RERH+63TIzs7RMdFXPNyTNjIhfRUS/pFmS/jTtzpmZWeNNdFXPhyNi/8idiNgH/F4qPTIzs1RNNPEfI+nwERpJ04DCHbHJeh2T3uf7+NZ9P6P3+b6GxNuxp5/be3eyY8/omb16+13pdVl/T83a0UQP7v4v4H5J/5PSyp5PAutT61UGZb2OyeXf38TDO0oJ/zsP7OCcJd3c/Idn1R3v2ju3c9OmFw/fv+LsRXz9ktPr7nel1wVk+j01a1cTrtUj6cPA+YCA+yLi3jQ7Vq7V6/izXsek9/k+Lvvepje13/4fzqLnpO6a4+3Y08+Hvv1QxXiX3/BYzf2uNN6uKR1AMHjoyOcvS++pWTuYdK2eiLgnIr4YEV9oZtLPgqzXMXnouVdraj+aLTv3V41XT78rjfeYDnGMsvuemrWzcRO/pIeTf/slvV720y/p9eZ0sfWyXsfk/e+cXVP70SxbOLNqvHr6XWm8bwwHb0R239MRPgZh7WjcxB8R70v+nRERx5X9zIiI45rTxdbLeh2TnpO6OWfJ6Cmdc5Z01zXNA7Bk7gyuOHvRqLYrzl5Ez0nddfW70njXXbaUdZe9q6Hv6UfPWDCq7aM9CyY1zXPXlt0sX/MAl3//UZaveYAfbdldd6w04pnV66hz/JI6gG0RcVpNgaUbgIuAV8pfK+mzwGeAQ8DfR8Sqo8Vq9Rz/iKzXMel9vo+HnnuV979zdt1Jv9yOPf1s2bmfZQtnsmTujMPt9fa70usa9R5k/TiMj0FYK9RdqycihiVtlbQoIl482vPL3AhcB9xU1okPApcASyNiUNKJNcRruazXMek5qf69/EqWzJ0xKuGPqLfflV7XqPdgZI7/IEcS68gcfz3xsx7PbDImupxzHvCUpMeAX400RsTF1V4QEQ9JWjym+SrgmxExmDznldq6a81UbW+8kX+pNOqvlKwfh3F9esuSiSb+rzVoeycD50j6r8BB4IsR8XilJ0paCawEWLRoUaWnWIqqrYlv5Fr5Rp570D29i0UnTOPnew7vl/D2E+r/Ykoj3toVS1k15r3z3r61wriJX9JU4NPAEmA78IOIODTJ7c0CzgLeC9wm6R1R4UBDRFxPqSIoPT092b8wcBvpGxhk9YZtHBwaPjw1sWrDNk6dd1zF9uVLZtecwHqf7zuc9Ef8444+ep/vq2vPv/f5vlFJGuBne36VmXgAFy+bz/Ils12f3lruaOv41wM9lJL+h4H/Nsnt7QLuiJLHgGGgvjWHlppqa+K37NzfsLXyjT73IOvxRnRP7+JdC2c66VtLHS3xnxoRl0fE94DLgHMmub07gfOgdB1f4C3A5P4nWcNVm49etnBmw+apG33uQdbjmWXJ0RL/0MiNWqd4JN0KPAKcImmXpE8BNwDvSC7a/jfAlZWmeay1qp1nsGTujIadf9Docw+yHs8sS8Zdxy/pDY6s4hEwDfh1cjuadRJXVtbxF02eVvXkJZ5ZM1Vbxz/hIm2t5MRvZla7SRdpMxvRyLr/1Wr+t2u8Ozfv5A/XP86dm3dmMt79T7/M6tu3cv/TLzckXqOvEdGsa060a7wR3uO3mpSvvQcmtfa+Ws3/emU93lnf2MjLr//m8P15x72FR778u5mJd8G3fzxqCespc4/l3s+fW3e8Rn5W0oiX9c9LI+J5j98mbby197Xasad/1Ica4KZHXqx7zybr8e7cvHNUkgZ46fXf1L2n3uh49z/9csXzFurd82/kZyWNeFn/vDQ63lhO/DZhjVzbXq3mf7X2vMe7e3vlBFqtvdnx7nt6T03tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9q7XmPd9Hpb6upvdnxLjh1bk3tR5P18yqy/nlpdLyxnPhtwhq5tr1azf9K1UDbId6l71nIvOPeMqpt3nFv4dL3LMxEvPNPfRunzD12VNspc4/l/FPr+yLJ+nkVWf+8NDreWD64azVr5Nr2ajX/2zXenZt3cvf2l7no9LfVnaTTjHf/0y9z39N7uODUuXUn/XJZP68i65+XycbzOn4zs4Lxqh6zNuRr+Fo9JlqP38wyppHXRrBi8R6/WQ6VXzOhf/AQB4eGWbVhm/f8bUKc+M1yqNo1E+q5NoIVjxO/WQ75Gr42GU78ZjlU7ZoJvrKXTYQP7prllK/ha/Vy4jfLse7pXU74VjNP9VhVeaktbma18R6/VZTF2uJm1hje47c3yVttcTOrjRO/vUneaoubWW2c+O1N8lZb3Mxq48Rvb5K32uJmVhuXZbaqslZb3MxqU60ss1f1WFVL5s5oaIJudDwzq4+neqxmjVyPn/VzBRzP8VoZL63rLXiP32rSyPX4WT9XwPEcr5Xx0rzeQmp7/JJukPSKpCcrPPZFSSFpdlrbt8Zr5Hr8rJ8r4HiO18p4aV9vIc2pnhuBC8c2SloI/C7w4tjHLNsauR4/6+cKOJ7jtTJe2tdbSC3xR8RDwGsVHvo2sArI/nIiG6WR6/Gzfq6A4zleK+Olfb2Fph7clXQxsDsitk7guSsl9Urq3bt3bxN6Z0fTyPX4WT9XwPEcr5Xx0r7eQqrr+CUtBu6OiNMkvRV4ELggIv5F0i+Anoh49WhxvI4/Wxq5Hj/r5wo4nuO1Ml7fwOCkrrdQbR1/MxP/6cD9wK+ThxcAvwTOjIiXx4vjxG9mVrtqib9pUz0RsT0iToyIxRGxGNgFvOdoSd+yp961xWmtSU5zG0WLZ8WQ2jp+SbcC5wKzJe0CvhoRP0hre9Yc9a4tTnNNclrbKFo8Kw7X6rEJ6xsYZPmaBzg4dGS1wdTODn66+rxx5x/rfV0z+uZ41s5aPtVj+Vfv2uK01ySnsY2ixbNiceK3Cat3bXHaa5LT2EbR4o3I+jGIrMfLCyd+m7B61xanvSY5jW0ULR6UjhksX/MAl3//UZaveYAfbdldd6wixssTz/FbzepdWzzZNcmt2EZR4mX9GETW42WV6/Fbw3RP76rrP0e9r2vlNooSb+SYwUGOJMKRYwb1xC9avLzxVI+ZZf4YRNbj5Y0Tv5ll/hhE1uPljef4zeywrB6DyEu8rPEcv5kdVVaPQeQlXl54qsfMrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCsaJ38ysYJz4zcwKxonfzKxgUkv8km6Q9IqkJ8va1kl6VtI2ST+UNDOt7ZuZWWVp7vHfCFw4pm0jcFpELAV+DlyT4vbNzKyC1BJ/RDwEvDam7b6IOJTc3QQsSGv7ZmZWWSvn+D8J3FPtQUkrJfVK6t27d28Tu2Vm1t5akvglfQU4BNxS7TkRcX1E9EREz5w5c5rXObMyfQODbN25n76BwVZ3xaxhpjR7g5KuBC4Czo+IaPb2zSbqri27Wb1hG50dHQwND7N2xVIuXja/1d0ym7Sm7vFLuhBYDVwcEb9u5rbNatE3MMjqDds4ODRM/+AhDg4Ns2rDNu/5W1tIcznnrcAjwCmSdkn6FHAdMAPYKGmLpL9Ma/tmk7Fr3wE6O0b/9+js6GDXvgMt6pFZ46Q21RMRf1Ch+Qdpbc+skRbMmsbQ8PCotqHhYRbMmtaiHpk1js/cNauge3oXa1csZWpnBzO6pjC1s4O1K5bSPb2r1V0zm7SmH9w1y4uLl81n+ZLZ7Np3gAWzpjnpW9tw4jcbR/f0Lid8azue6jEzKxgnfjOzgnHiNzMrGCd+M7OCceI3MysYJ34zs4Jx4jczKxgnfjOzgnHiN2uiHXv6ub13Jzv29Gcynq8/UAw+c9esSa69czs3bXrx8P0rzl7E1y85PTPxfP2B4vAev1kT7NjTPypJA9z0yIt176k3Op6vP1AsTvxmTbBl5/6a2psdz9cfKBYnfrMmWLZwZk3tzY7n6w8UixO/WRMsmTuDK85eNKrtirMXsWTujEzE8/UHikV5uN55T09P9Pb2trobZpO2Y08/W3buZ9nCmXUn6TTj9Q0M+voDbUTSExHRM7bdq3rMmmjJ3BkNSdBpxfP1B4rBUz1mZgXjxG9mVjBO/GZmBePEb2ZWME78ZmYFk4vlnJL2Ai+kuInZwKspxs+Cdh9ju48PPMZ20cwxvj0i5oxtzEXiT5uk3kprXdtJu4+x3ccHHmO7yMIYPdVjZlYwTvxmZgXjxF9yfas70ATtPsZ2Hx94jO2i5WP0HL+ZWcF4j9/MrGCc+M3MCqbtE7+khZIelPSMpKckfW7M41+UFJJml7VdI2mHpJ9J+rfN73VtxhujpM8m43hK0tqy9rYYo6RlkjZJ2iKpV9KZZa/J2xinSnpM0tZkjF9L2k+QtFHSc8m/s8pek5sxjjO+dZKelbRN0g8lzSx7TW7GB9XHWPZ4NvJNRLT1DzAPeE9yewbwc+DU5P5C4F5KJ4fNTtpOBbYCXcBJwP8Djmn1OOoZI/BB4P8AXcljJ7bhGO8DPpy0/x7w4xyPUcD05HYn8ChwFrAW+FLS/iVgTR7HOM74LgCmJO1r8jq+8caY3M9Mvmn7Pf6IeCkiNie3+4FngPnJw98GVgHlR7gvAf4mIgYj4nlgB3AmGTbOGK8CvhkRg8ljryQvaacxBnBc8rTjgV8mt/M4xoiIgeRuZ/ITlMayPmlfD1ya3M7VGKuNLyLui4hDSfsmYEFyO1fjg3F/h5ChfNP2ib+cpMXAu4FHJV0M7I6IrWOeNh/YWXZ/F0e+KDKvfIzAycA5kh6V9BNJ702e1k5jvBpYJ2kn8GfANcnTcjlGScdI2gK8AmyMiEeBuRHxEpS+AIETk6fnboxVxlfuk8A9ye3cjQ8qjzFr+aYwiV/SdGADpURxCPgKcG2lp1Zoy8Wa1/IxRsTrlK6wNovSn9P/GbhNkmivMV4FfD4iFgKfB34w8tQKL8/8GCPijYhYRmmv90xJp43z9NyNcbzxSfoKpf+bt4w0VQqReicnqcIYl5KxfFOIxC+pk1KyuCUi7gB+i9J82lZJv6D0C9os6W2UvnEXlr18AUemDzKrwhihNJY7kj8/HwOGKRWIaqcxXgmM3P5bjvyZnMsxjoiI/cCPgQuBPZLmAST/jkzZ5XaMY8aHpCuBi4CPRTL5TY7HB6PGeAlZyzetPBDSjB9K36g3AX8+znN+wZGDLf+a0Qdb/pl8HFB60xiBTwNfT26fTOlPSrXZGJ8Bzk1unw88kePf4xxgZnJ7GvCPlJLhOkYf3F2bxzGOM74LgaeBOWOen6vxjTfGMc9peb4pwsXWlwMfB7Yn824AX46If6j05Ih4StJtlD6Ih4A/jog3mtLT+lUcI3ADcIOkJ4HfAFdG6dPWTmP8I+AvJE0BDgIrIbe/x3nAeknHUPpr/LaIuFvSI5Sm6T4FvAh8BHI5xmrj20Ep8W0szUSyKSI+ncPxQZUxVntyq8bokg1mZgVTiDl+MzM7wonfzKxgnPjNzArGid/MrGCc+M3MCsaJ39qWpDeSqp1PJdUS/5Okuj/zkt6XVF58NvlZWfbYnKQ0xj+pVEX0qrLH/k1SebIIy6ctB/xBtHZ2IEqnziPpROCvKRVy+2qtgZKzLP8auDQiNidlde+VtDsi/p7SyWPPRsSVkuYCj0i6HegDrgP+YxwpRFbrtkVp6fVwPa83G8vr+K1tSRqIiOll998BPE6pbMXbgZuBY5OHPxMR/1fSzcDtEXFX8ppbgP8NvJdS8cVry+KdD/wX4LPAjyidqbkbOBv498lrHgfOoHRi2TeBcymdrPTdiPheUnvoLko1lTqBP4mIu5JCdPcADybxLo2IFxr5/lhxOfFb2xqb+JO2fcBvA/3AcEQclPRO4NaI6JH0AUpF3y6VdDywBXgncBuwfuQLIYl1PPB8RJwg6RNAT0R8JnmsA3iEUiXNHmAFpesh/KmkLuCnlM7A3Qm8NSJeT/6K2JRs7+2UTt//nYjYlMobZIXlqR4rmpFqiJ3AdZKWAW9QqmVERPxE0neTqaF/B2yIiEPJdEulvaSKe04RMSzpe5S+DPokXQAslXRZ8pTjKSX4XcA3JL2fUhG9+cDc5DkvOOlbGpz4rTCSqZ43KFW3/CqwB3gXpUUOB8ueejPwMeD3KdWHB3iK0p77j8qedwalGivVDCc/UPrC+WxE3DumT5+gVNjrjIgYSqo3Tk0e/tXER2c2cV7VY4UgaQ7wl8B1SaG644GXkgOmHweOKXv6jZSu20BEPJW0fRf4RPIXApK6KV0mcC0Tcy9wVVJaGkknSzo26ccrSdL/IKUpHrNUeY/f2tm0pJJnJ6XKhzcD30oe+x/ABkkfoXQA9fDedUTskfQMcGdZ20uSLgf+StIMSnvwfx4RfzfBvnwfWEypDruAvZQuoXgL8HeSeikdT3i2noGa1cIHd83GkPRWYDuli7v/S6v7Y9ZonuoxKyPpQ5T2uv+7k761K+/xm5kVjPf4zcwKxonfzKxgnPjNzArGid/MrGCc+M3MCub/A2eoKqxqO9IQAAAAAElFTkSuQmCC", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pie_pumpkins = new_pumpkins[new_pumpkins['Variety']=='PIE TYPE']\n", + "print(pie_pumpkins['DayOfYear'].corr(pie_pumpkins['Price']))\n", + "pie_pumpkins.plot.scatter('DayOfYear','Price')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 线性回归\n", + "\n", + "我们将使用 Scikit Learn 来训练线性回归模型:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 175, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n", + "from sklearn.model_selection import train_test_split" + ] + }, + { + "cell_type": "code", + "execution_count": 176, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.77 (17.2%)\n" + ] + } + ], + "source": [ + "X = pie_pumpkins['DayOfYear'].to_numpy().reshape(-1,1)\n", + "y = pie_pumpkins['Price']\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "lin_reg = LinearRegression()\n", + "lin_reg.fit(X_train,y_train)\n", + "\n", + "pred = lin_reg.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 177, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXXElEQVR4nO3df3BV5Z3H8feXEDGKEF0QTYCmdTEtv4R6tW5/rL+qYVerjF21bmeHrW5ZXWvXtmJFO63tdEdrnFY722mHGRl1a9mqpGzX1kZrtdqtQC+gBtBYLYgkKFGM+CMCCd/9495gSHJzf+Se3HuefF4zjDfPPfecJ1/hc899znOfY+6OiIiEYUypOyAiIsWjUBcRCYhCXUQkIAp1EZGAKNRFRAIydiQPNmnSJK+rqxvJQ4qIxN66detec/fJuWw7oqFeV1dHMpkcyUOKiMSemb2U67YafhERCYhCXUQkIAp1EZGAKNRFRAKiUBcRCUjW2S9mNg24GzgG2A8sc/fbzawR+AywF3gR+IK7d0bYVxkBqza00djcSntnFzXVVSxpqGfh/NpSd0tEcpTLmXo38DV3/whwCnClmc0EHgZmu/tc4HlgaXTdlJGwakMbS5taaOvswoG2zi6WNrWwakNbqbsmIjnKGuruvsPd16cfvwU8C9S6+0Pu3p3ebDUwNbpuykhobG6la1/PQW1d+3pobG4tUY9EJF95jambWR0wH1jT76lLgQczvGaxmSXNLNnR0VFQJ2VktHd25dUuIuUn51A3s/HASuBqd9/dp/0GUkM09wz2Ondf5u4Jd09MnpzTt1ylRGqqq/JqF5Hyk1Oom1klqUC/x92b+rQvAs4FPu+6hVLsLWmop6qy4qC2qsoKljTUl6hHIpKvXGa/GHAH8Ky7f79P+wLg68Cp7v5udF2UkdI7y0WzX0Tiy7KdYJvZJ4EngBZSUxoBrgd+CIwDXk+3rXb3y4faVyKRcC3oJSKSHzNb5+6JXLbNeqbu7n8AbJCnfp1vx0REJFr6RqmISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gEJOs9SkWitmpDG43NrbR3dlFTXcWShnoWzq8t+33LQKp36SnUpaRWbWhjaVMLXft6AGjr7GJpUwvAsMMgyn3LQKp3edDwi5RUY3PrgRDo1bWvh8bm1rLetwykepcHhbqUVHtnV17t5bJvGUj1Lg8KdSmpmuqqvNrLZd8ykOpdHhTqUlJLGuqpqqw4qK2qsoIlDfVlvW8ZSPUuD7pQKiXVewEtihkTUe5bBlK9y4O5+4gdLJFIeDKZHLHjiYiEwMzWuXsil22znqmb2TTgbuAYYD+wzN1vN7OjgJ8DdcBW4CJ3f6PQTpeC5tSKSGhyGVPvBr7m7h8BTgGuNLOZwHXAI+4+A3gk/XNs9M6pbevswnl/Tu2qDW2l7pqISMGyhrq773D39enHbwHPArXA+cBd6c3uAhZG1MdIaE6tiIQor9kvZlYHzAfWAFPcfQekgh84OsNrFptZ0sySHR0dw+xu8WhOrYiEKOdQN7PxwErganffnevr3H2ZuyfcPTF58uRC+hgJzakVkRDlFOpmVkkq0O9x96Z086tmdmz6+WOBndF0MRqaUysiIcoa6mZmwB3As+7+/T5P/RJYlH68CPif4ncvOgvn13LTBXOora7CgNrqKm66YI5mv4hIrGWdp25mnwSeAFpITWkEuJ7UuPq9wHRgG3Chu+8aal+apy4ikr+izlN39z8AluHpM/PpmIiIREtrv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBET3KBUpkO6cJeVIoS5SgN47Z/XeaKX3zlmAgl1KSsMvIgXQnbOkXCnURQqgO2dJuVKoixRAd86ScqVQFymA7pwl5UoXSkUK0HsxVLNfpNwo1EUKtHB+rUJcyo6GX0REAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJSNlPaYzrSnhx7beIxFtZh3pcV8KLa79FJP7KevglrivhxbXfIhJ/WUPdzJab2U4z29inbZ6ZrTazp8wsaWYnR9G5uK6EF9d+i0j85XKmfiewoF/bLcC33X0e8M30z0UX15Xw4tpvEYm/rKHu7o8Du/o3AxPSjycC7UXuFxDflfDi2m8Rib9CL5ReDTSb2a2k3hg+XrQe9RHXlfDi2m8RiT9z9+wbmdUBD7j77PTPPwR+7+4rzewiYLG7fzrDaxcDiwGmT59+4ksvvVSsvouIjApmts7dE7lsW+jsl0VAU/rxfUDGC6XuvszdE+6emDx5coGHExGRXBQa6u3AqenHZwB/Lk53RERkOLKOqZvZCuA0YJKZbQe+BXwRuN3MxgLvkR5eERGR0soa6u5+SYanTixyX0REZJjK+hulIiKSH4W6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhACr1H6Yhq3vQK//pf6w5qO/yQCmbVTGRmzQRm1UxgVs1EZkwZT2WF3qdEZPSKRahPPbJqQNs7e3tYu3UXa7fuyvr6D006nJk1E9JvABOZVTOBSePHRdFVEZGSyunG08WSSCQ8mUwWZV9vvLOXzTt2s6n9TTa172ZT+25e2Pl2Ufbd6/JTj+NLZ/w148fF4r1PRAKVz42nYxvqueru2c+LHe+wecebbGrbnX4DeJPd73UX7Rizaydw42dmkag7qmj7FBHppVAv0Notu/jOA5vY2LY7smM0zJrCrReewBGHVkZ2DBEJi0I9Ym/v6ebHj73Ajx59MdLj3PmFkzit/uhIjyEi5U+hXkb+9+l2rlqxIdJjfOaEGm6+YA6Ha+xfJEgK9Ryt2tBGY3Mr7Z1d1FRXsaShnoXza0vSl9ff3sPVP3+KJ/78WqTH+d5n53DxSdMjPYaIFJdCPQerNrSxtKmFrn09B9qqKiu46YI5JQv2XK1ct52v3fd0pMeoPqySJ649XWP/ImVAoZ6DT9z8O9o6uwa011ZX8X/XnVGCHhXfltfe4fRbH4v8OLd/bh7nzyvvN0KROFOo5+CD1/2KwX5zA7bcfM5Id6fkbvzlJu7849ZIj3HMhEP53TWnctghGvsXyUc+oT5q/3XVVFcNeqZeUz3w26ujwY3nzeLG82Zl3e75V9/i7B88XtAxXtn9HjO/2ZzTtj+8ZD7nnVBT0HFERrNRe6Ye5zH1OHB3rr3/Ge5btz3S4xx1+CH88bozOLSyItLjiJRSUYdfzGw5cC6w091n92m/CvgS0A38yt2vzXawcgp1KK/ZL6NVpmsbUfj+RSdwwUenjsixRIqp2KH+t8DbwN29oW5mpwM3AOe4+x4zO9rdd2Y7WLmFupRePtc29u93/vnOP/H48x2R96v1uwsYN1Zn/1Ieijqm7u6Pm1ldv+YrgJvdfU96m6yBLtGL4yePfK5tjBlj3H3pyTntN7l1F//wkycL7lf9N36T03Y/+sePcs7cYws+jkixFXqh9HjgU2b2H8B7wDXu/qfBNjSzxcBigOnT9aWXqPS/RtDW2cXSphaAsg720z88mZ+u3jZo+3Ak6o7itovnZb1u0t2zn0/d8ig73nyvoONc+bP1XPmz7NtVVVbwzI1na71/iVyhoT4WOBI4BTgJuNfMPuSDjOW4+zJgGaSGXwrtqAytsbn1oPAC6NrXQ2Nza1mH+qPPDT6Ukqk9H7nUZGzFGJ5cemZO+/vt5lf5l7sLGz7s2tfDjBsezGnbOxYlOPMjUwo6jkihob4daEqH+Foz2w9MAqIf7JRBtWe42JipvVxE2e9i7/vTM6ewNYfvMOzt3s+J332Ytwpc3vmyu3J745g/vZr7L/84FWOsoONImAoN9VXAGcBjZnY8cAgQ7aIlMqS4zruPst+lqskhY8fQcmNDTts+8Ew7X/pZYQu+bdjWyXHX/zqnbVde8Tec+AGt9z8aZA11M1sBnAZMMrPtwLeA5cByM9sI7AUWDTb0IiNnSUP9oOPHSxrqS9ir7KLsdxxqcu7cGs6dm/1LVnu6e1hw2xNsee2dgo7z2R/ndtH4ytOP45qz6zHT2X9cjdovH4UojrNfINp+x7Umw/GbjTu4/KfrIz1G9WGVrPq3T1A36fBIjyMpWvtFRLLa093D9U0bWbk+mm/9jh1jXJiYxkWJqcybVq2z/2HQ2i+jVFzPSuPa7yiN5KeX2y6el3Xfa/7yOhcvW53Xcbr3OyvWbmPF2oFTVvubP72aixLTOHfusVrueZh0ph6IuK5lE9d+RynKmkRd7/f29XDzg8/x3Cu7Wf2XXcPeX3/jxo7hosQ0LkpMY3bthFFz9q/hl1EoruvDx7XfUYqyJuVU7+1vvEvT+jbuTb7M9jeKP/U28YEjuTAxlXPm1jA+5rd61PDLKKR56uGI09z94Zh65GF8+cwZfPnMGUNut69nP4+1dnBf8mUe2vxqzvtPvvQGyZfe4OsrW4bc7vBDKrgwMY3PnTyNDx8zIef9lyuFeiA0Tz0cIc7dH47KijGcNXMKZ83M/i3bba+/y/3rt3N/8mXac1z64Z29Pdz5x60ZbxIzftxYZtZMYFbNBGYeO4FZNROZMWV82S75oFAPRBzmZA8mrv2O0mifuz8c0//qML561vF89azjh9xub/d+fvfcTu5Lvswjzw29HuHbe7pZu2UXa7dkv0bwoUmHp98AJqbeBGomMGn8uLx+h+HSmHpA4jqLJK79jpLm7pePznf3snnHbja372ZT+242tb/J86++nfd+Hrjqk8yunVhQH3ShVERkhHX37GfLa+8cCP7NO1JvAp3v7gPgD18/nalHHlbQvnWhVERkhI2tGMOMKUcwY8oRJf3kU54j/SIiUhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIB0Tx1OYi+bSgSbwp1OaD/WtttnV0sbUqtcKdgF4kHDb/IAY3NrQct9ATQta+HxubWEvVIRPKlUJcDymmtbREpjEJdDsi0pnY5r7UtIgdTqMsBSxrqqaqsOKgtpLW2RUYDXSiVA3ovhmr2i0h8KdTlIAvn1yrERWJMoS4lp7nxA8X1zkf6fznQSNdEoS4lpbnxA0VZk7juO65KUZOsF0rNbLmZ7TSzjYM8d42ZuZlNiqR3EjzNjR8oyprEdd9xVYqa5DL75U5gQf9GM5sGnAVsK3KfZBTR3PiBoqxJXPcdV6WoSdZQd/fHgV2DPPUD4Fpg5O5cLcHR3PiBoqxJXPcdV6WoSUHz1M3sPKDN3Z/OYdvFZpY0s2RHR0chh5OAaW78QFHWJK77jqtS1CTvC6VmdhhwA3B2Ltu7+zJgGUAikdBZvRxEc+MHirImcd13XJWiJuaePWfNrA54wN1nm9kc4BHg3fTTU4F24GR3f2Wo/SQSCU8mk8PrsYjIKGNm69w9kcu2eZ+pu3sLcHSfg20FEu7+Wr77Eoma5k3LaJPLlMYVwJNAvZltN7PLou+WyPD1zhFu6+zCeX+O8KoNbaXumkhksp6pu/slWZ6vK1pvRIpoqDnCOluXUGmVRgmW5k3LaKRlAiRYNdVVtA0S4KN53nTU4noNI679HozO1CVYmjc9suJ6DSOu/c5EoS7BWji/lpsumENtdRUG1FZXcdMFc2J7Blbu4rr2S1z7nYmGXyRoWh9+5MT1GkZc+52JztRFpCjiuvZLXPudiUJdRIoirtcw4trvTDT8IiJFEde1X+La70xyWvulWLT2i4hI/vJZ+0XDLyIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAVGoi4gERKEuIhIQhbqISEAU6iIiAcka6ma23Mx2mtnGPm2NZvacmT1jZr8ws+pIeykiIjnJ5Uz9TmBBv7aHgdnuPhd4Hlha5H6JiEgBsoa6uz8O7OrX9pC7d6d/XA1MjaBvIiKSp2KMqV8KPJjpSTNbbGZJM0t2dHQU4XAiIpLJsELdzG4AuoF7Mm3j7svcPeHuicmTJw/ncCIiksXYQl9oZouAc4Ez3d2L1yURESlUQaFuZguArwOnuvu7xe2SiIgUKpcpjSuAJ4F6M9tuZpcB/wkcATxsZk+Z2U8i7qeIiOQg65m6u18ySPMdEfRFRESGSd8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAUvPSuiETnG6taWLHmZXrcqTDjko9N47sL5xRl36s2tNHY3Ep7Zxc11VUsaahn4fzaouxbSk+hLlJmvrGqhZ+u3nbg5x73Az8PN9hXbWhjaVMLXft6AGjr7GJpUwuAgj0QGn4RKTMr1rycV3s+GptbDwR6r659PTQ2tw5731IeFOoiZaYnw43EMrXno72zK692iR+FukiZqTDLqz0fNdVVebVL/CjURcrMJR+blld7PpY01FNVWXFQW1VlBUsa6oe9bykPulAqUmZ6L4ZGMful92KoZr+Ey7wI43S5SiQSnkwmR+x4IiIhMLN17p7IZVsNv4iIBEShLiISEIW6iEhAFOoiIgFRqIuIBGREZ7+YWQfwEjAJeG3EDly+VAfVAFSDXqpD5hp8wN0n57KDEQ31Awc1S+Y6PSdkqoNqAKpBL9WhODXQ8IuISEAU6iIiASlVqC8r0XHLjeqgGoBq0Et1KEINSjKmLiIi0dDwi4hIQBTqIiIBKXqom9k0M3vUzJ41s01m9u/9nr/GzNzMJvVpW2pmL5hZq5k1FLtPpTBUHczsqvTvusnMbunTHlQdMtXAzOaZ2Woze8rMkmZ2cp/XBFUDADM71MzWmtnT6Tp8O91+lJk9bGZ/Tv/3yD6vCaoOQ9Sg0cyeM7NnzOwXZlbd5zVB1QAy16HP88PPR3cv6h/gWOCj6cdHAM8DM9M/TwOaSX8BKd02E3gaGAd8EHgRqCh2v0b6T6Y6AKcDvwXGpZ87OtQ6DFGDh4C/S7f/PfBYqDVI/14GjE8/rgTWAKcAtwDXpduvA74Xah2GqMHZwNh0+/dCrsFQdUj/XJR8LPqZurvvcPf16cdvAc8CvSvw/wC4Fuh7dfZ84L/dfY+7bwFeAE4m5oaowxXAze6+J/3czvRLgqvDEDVwYEJ6s4lAe/pxcDUA8JS30z9Wpv84qd/3rnT7XcDC9OPg6pCpBu7+kLt3p9tXA1PTj4OrAQz5dwGKlI+RjqmbWR0wH1hjZucBbe7+dL/NaoG+t0nfzvtvAkHoWwfgeOBTZrbGzH5vZielNwu6Dv1qcDXQaGYvA7cCS9ObBVsDM6sws6eAncDD7r4GmOLuOyD1Bggcnd48yDpkqEFflwIPph8HWQMYvA7FzMfIQt3MxgMrSf0D7gZuAL452KaDtAUzz7JvHdx9N6lbCB5J6qPnEuBeMzMCrsMgNbgC+Iq7TwO+AtzRu+kgLw+iBu7e4+7zSJ2Jnmxms4fYPMg6DFUDM7uBVE7c09s02C4i7+QIGKQOcyliPkYS6mZWSeof8T3u3gQcR2o86Gkz20rql1lvZseQeufpe0fdqbz/cTzWBqkDpH7fpvTHsLXAflKL+ARZhww1WAT0Pr6P9z9OBlmDvty9E3gMWAC8ambHAqT/2zsUF3Qd+tUAM1sEnAt83tMDyQReAzioDudTzHyM6ELA3cBtQ2yzlfcvBMzi4AsBfyGcCyID6gBcDnwn/fh4Uh+tLMQ6DFGDZ4HT0o/PBNYF/ndhMlCdflwFPEEqxBo5+ELpLaHWYYgaLAA2A5P7bR9cDYaqQ79thpWPY4fI+0J9AvgnoCU9bgRwvbv/erCN3X2Tmd1L6n9sN3Clu/dE0K+RNmgdgOXAcjPbCOwFFnnq/16IdchUgy8Ct5vZWOA9YDEE/XfhWOAuM6sg9en4Xnd/wMyeJDX8dhmwDbgQgq1Dphq8QCqwHk6NQrLa3S8PtAaQoQ6ZNi6kDlomQEQkIPpGqYhIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiATk/wHell9jjLoNCQAAAABJRU5ErkJggg==", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.scatter(X_test,y_test)\n", + "plt.plot(X_test,pred)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "线的斜率可以通过线性回归系数确定:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 178, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([-0.01751876]), 21.133734359909326)" + ] + }, + "execution_count": 178, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lin_reg.coef_, lin_reg.intercept_" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们可以使用训练好的模型来预测价格:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 179, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([16.64893156])" + ] + }, + "execution_count": 179, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Pumpkin price on programmer's day\n", + "\n", + "lin_reg.predict([[256]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 多项式回归\n", + "\n", + "有时,特征与结果之间的关系本质上是非线性的。例如,南瓜的价格可能在冬季(月份=1,2)较高,然后在夏季(月份=5-7)下降,之后再次上涨。线性回归无法准确捕捉这种关系。\n", + "\n", + "在这种情况下,我们可以考虑添加额外的特征。一种简单的方法是从输入特征中生成多项式,这样就形成了**多项式回归**。在 Scikit Learn 中,我们可以使用管道自动预计算多项式特征:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 180, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.73 (17.0%)\n", + "Model determination: 0.07639977655280217\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 180, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD4CAYAAAATpHZ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbw0lEQVR4nO3de3Cc1Znn8e+jm93ClmRb8kWyjYBgDb6ATQQhFwIhFzu7meBQNVOVyu5Sm9RQSWWnJlMTZ3BIZWq2dpcMnprZzM5WTbEDFVLDsJOZOM4USTAEkkBYMJExjOwYY8AXkGRLsi35otb92T+6JbfurXa3ut+j36eqS2+ffvvto0f2T6/Oe/q0uTsiIhKGonx3QEREskehLiISEIW6iEhAFOoiIgFRqIuIBKRkLl+surra6+vr5/IlRUQib//+/Z3uXpPOvnMa6vX19TQ1Nc3lS4qIRJ6ZnUh3Xw2/iIgERKEuIhIQhbqISEAU6iIiAVGoi4gEZMbZL2a2Bvg+sBIYBh529++a2S7gd4F+4G3gP7t7Vw77KnNgz4EWdu09QmtXnNqqGDu2NrB9S12+uyUiaUrnTH0Q+BN3vwG4Dfiqma0HngE2uvuNwJvAztx1U+bCngMt7NzdTEtXHAdauuLs3N3MngMt+e6aiKRpxlB39zZ3fzW5fQE4DNS5+9PuPpjc7WVgde66KXNh194jxAeGxrTFB4bYtfdInnokIrM1qzF1M6sHtgD7xj30ReBnUzznPjNrMrOmjo6OjDopc6O1Kz6rdhEpPGmHupktAn4IfM3dz6e0P0BiiObxyZ7n7g+7e6O7N9bUpPUuV8mT2qrYrNpFpPCkFepmVkoi0B93990p7fcCnwG+4PoIpcjbsbWBWGnxmLZYaTE7tjbkqUciMlvpzH4x4BHgsLv/VUr7NuBPgTvcvSd3XZS5MjLLRbNfRKLLZjrBNrOPAC8AzSSmNAJ8E/gbYAFwJtn2srt/ebpjNTY2uhb0EhGZHTPb7+6N6ew745m6u/8asEke+ulsOyYiIrmld5SKiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQGb8jFKRXNtzoIVde4/Q2hWntirGjq0NbN9SV/DHlolU7/xTqEte7TnQws7dzcQHhgBo6Yqzc3czwBWHQS6PLROp3oVBwy+SV7v2HhkNgRHxgSF27T1S0MeWiVTvwqBQl7xq7YrPqr1Qji0Tqd6FQaEueVVbFZtVe6EcWyZSvQuDQl3yasfWBmKlxWPaYqXF7NjaUNDHlolU78KgC6WSVyMX0HIxYyKXx5aJVO/CYO4+Zy/W2NjoTU1Nc/Z6IiIhMLP97t6Yzr4znqmb2Rrg+8BKYBh42N2/a2ZLgX8C6oHjwO+7+7lMO50PmlMrIqFJZ0x9EPgTd78BuA34qpmtB+4HnnX364Fnk/cjY2RObUtXHOfynNo9B1ry3TURkYzNGOru3uburya3LwCHgTrgbuCx5G6PAdtz1Mec0JxaEQnRrGa/mFk9sAXYB6xw9zZIBD+wfIrn3GdmTWbW1NHRcYXdzR7NqRWREKUd6ma2CPgh8DV3P5/u89z9YXdvdPfGmpqaTPqYE5pTKyIhSivUzayURKA/7u67k82nzWxV8vFVQHtuupgbmlMrIiGaMdTNzIBHgMPu/lcpD/0rcG9y+17gx9nvXu5s31LHg/dsoq4qhgF1VTEevGeTZr+ISKTNOE/dzD4CvAA0k5jSCPBNEuPqPwDWAieB33P3s9MdS/PURURmL6vz1N3914BN8fDHZ9MxERHJLa39IiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgFRqIuIBEShLiISEH1GqUiG9MlZUogU6iIZGPnkrJEPWhn55CxAwS55peEXkQzok7OkUCnURTKgT86SQqVQF8mAPjlLCpVCXSQD+uQsKVS6UCqSgZGLoZr9IoVGoS6Soe1b6hTiUnA0/CIiEhCFuohIQBTqIiIBUaiLiAREoS4iEhCFuohIQAp+SmNUV8KLar9FJNoKOtSjuhJeVPstItFX0MMvUV0JL6r9FpHomzHUzexRM2s3s4MpbZvN7GUze83Mmszs1lx0Lqor4UW13yISfemcqX8P2Dau7SHgz919M/Dt5P2si+pKeFHtt4hE34yh7u7PA2fHNwMVye1KoDXL/QKiuxJeVPstItGX6YXSrwF7zewvSfxi+FDWepQiqivhRbXfIhJ95u4z72RWDzzp7huT9/8G+JW7/9DMfh+4z90/McVz7wPuA1i7du37T5w4ka2+i4jMC2a2390b09k309kv9wK7k9v/DEx5odTdH3b3RndvrKmpyejFuuMD9A8OZ/RcEZH5JNNQbwXuSG7fBRzNTncm97+ePcqt/+PnfGtPM/tPnCWdvy5EROajGcfUzewJ4E6g2szeA/4M+APgu2ZWAvSSHF7JlbtuWE77hT7+Zf97/MPLJ1m7tDzxAQWba7m2ZlEuX1pEJFLSGlPPlsbGRm9qasr4+Rf7Btl78BR7Xmvhxbc6GXa4aU0Vn9tcy+/eVMuyRQuy2FsRkcIwmzH1SIV6qtPne/nX11r50YEWftt2nuIi4451NWzfUscnb1hBrKx45oOIiETAvAj1VEdOXWDPay38+EALrd29XFVWzLaNq/jcljo+eN0yioss668pIjJX5l2ojxgedvYdO8ueAy38tLmNC32DrKhYwN2b69i+uY4bVi3GTAEvItEyb0M9Ve/AEM+90c6PDrTwyyPtDAw5DSsWs31LHXdvrtVb9kUkMhTq45y71M+TzW3sOdDC/hPnMIPbrlnG57bUsW3TSioWls55n0RE0qVQn8aJM5f4cfIC67HOS5SVFHFXw3I+vWklH/ud5Qp4ESk4CvU0uDuvv9c9Ov7efqGP0mLjw++rZtuGlXxi/QqqNUVSRAqAQn2WhoedA+92sffQKZ46eIqTZ3soMrilfinbNq5k64aVGoMXkbxRqF8Bd+dw2wWeOnSKvQdPceT0BQBuWl3JpzasZNvGlVynd7GKyBxSqGfROx0X2XvoNE8dOsXr73YBcP3yRaNn8BtqKzRNUkRySqGeI23dcZ4+dJqnDp5i37EzDDusXhJjW/IM/ua1SyjSG51EJMsU6nPgzMU+nj3czlOHTvHro530Dw1Ts3gBn1q/gm0bV3LbtcsoLS7oz/UWkYhQqM+xC70D/OJIB3sPnuIXR9rp6R+iYmEJn7hhBZ9Yv4IPX1dNZbmmSopIZhTqedQ7MMQLRzt56uApfn74NN3xAYossZrk7dfX8NHrq9m8pooSncWLSJoU6gVicGiY197t4vmjnbxwtIPX3+1i2GHxghI+9L5lyZCvYe2y8nx3VUQKmEK9QHX3DPDi24mAf/7NTlq64gBcvaycj15fw+3XV/PB65axWO9qFZEUCvUIcHeOdV7ihaOdPP9mBy+9c4ae/iGKi4yb11YlQn5dDZvqKrV0sMg8p1CPoP7BYV49eY4XjnbwwtFOmlu6cYfKWCkfeV81t19fze3raqjTO1tF5h2FegDOXOzjxbfP8MKbiZA/db4XgOtqrkqMxa+r5rZrl1FeNuPHzIpIxCnUA+PuvNV+kV8lA37fsTP0DgxTWmw0Xr2U29dV89Hra1i/qkJvfhIJkEI9cL0DQ+w/cY7nkxdcD7edB2DpVWWjQzUfuGYZa5bGtISBSAAU6mnac6CFXXuP0NoVp7Yqxo6tDWzfUpfvbs1a+4VeXnyrkxfe7OT5o510XuwDYPniBdxSv5TG+iXcUr+U31m5WPPjRSJIoZ6GPQda2Lm7mfjA0GhbrLSYB+/ZFMlgHzE87LzZfoGm4+doOn6W3xw/Nzp18qqyYm6+egmNVyeCfvOaKq5aoDF5kUKnUE/Dh7/z3GjYpaqrivHi/XfloUe509oVp+nE5ZB/49R53KG4yNhQW0Hj1Uu5pX4J769fwvLFC/PdXREZZzahPm9P01onCfTp2qOstirGZ6tifPamWgDO9w5w4GRXMuTP8o+vnODRF48BUL+snMb6pdy0poqNtRXcsKqChaXF+ey+iMzCvA312qrYpGfq8+ETjioWlnLHuhruWFcDJObIH2rtpun4OX5z/CzPvdHOv+x/D4Aig/ctX8TG2krW11awsS7xNZuf5RrKtQ2RQjBvh19CHVPPBnentbuXgy3dHGrp5lDreQ62dnP6fN/oPlcvK2djbSUb6irYUFvJxtoKlmXwma76OYjMLKvDL2b2KPAZoN3dN6a0/yHwX4BB4Cfu/o0M+5sXI4GhM8SJzIy6qhh1VTG2blg52t5xoY9DrcmQb+mmuaWbnzS3jT6+qnIhG2qTIV9XyYbaClZVLpx2WuWuvUfGBDpAfGCIXXuP6GchkoF0hl++B/wt8P2RBjP7GHA3cKO795nZ8tx0L7e2b6lTcMxCzeIF3NmwnDsbLv+4u3sGONTWzW+TQX+w9TzPvdHOcPIPwKVXlaUEfeLr1UvLR98kNZ+ubYjMhRlD3d2fN7P6cc1fAb7j7n3Jfdpz0DeZpXyMTVeWl/Kh66r50HXVo209/YMcbruQOKtvSQzdPPLrdxgYSiT9ogUlrK+tYENtBVXlpZzrGZhw3Gxd29B4vcw3mV4oXQfcbmb/HegFvu7uv5lsRzO7D7gPYO3atRm+nMxk/Nh0S1ecnbubAeY8xMrLSnj/1Ut4/9VLRtv6Boc4evoih1q7OZgM+ideOUnvwPCkx7imupyDLd3UV1/Fogzn0hdSTUTmSloXSpNn6k+OjKmb2UHgOeCPgFuAfwKu9RkOVkgXSkMTxXn3Q8POBx98lvYLfdPut3zxAq6pvmrM7dqaq1iztJwFJVNPt4xiTSQcQ8NOW3eck2d7ePdsDx9rWM7yiszeBzIX89TfA3YnQ/wVMxsGqoGODI8nVyiKY9PFRUbHNIH+d//hZt7pvMSxjksc67zEM789zZlL/aOPFxmsXlI+JuhHtmsrY5GsiUTL+d4BTp5JhPbJlNu7Z3to6YqPDjkC/J//1Mgn1+f+zX2Zhvoe4C7gl2a2DigDOrPVKZm9qM67n6rfdVUxtm1cNaG9u2eAY2cucazzIsc6LvFO5yWOn7lE0/GzXOq/PIumrKSI4iJjcHjiH48rKxbi7lrsTGY0MDRMW1fv5bA+dzm0T57toWvc9aCq8lLWLi1nQ10ln960irVLy0dvqyrn5t3a6UxpfAK4E6g2s/eAPwMeBR5NDsP0A/fONPQiubVja8Ok8713bG3IY69mNtt+V5aXsrm8is1rqsa0uzsdF/oSZ/bJ2/97q5NDrecZ/w+z7Xwv67+9l5WVC1lZsZBVlQtZUZn4urJiYaK9ciHVVy3QUsaBcncu9Q/R1dNPV88AXT0DnO3p571zY8+6W7t6GUo5MSgtNlYvKWfN0nJuXF05GthrkrdsvikvU/P2zUchiupMj1z2e8+BFh566g1au3upXlTGv9+0ijVLyznV3Uvb+V5OdSdup8/3TjirLykyVqSE/MgvgJUp4b988ULKSrTyZT71Dgxxrqefc5cG6IpfDulzPf10xwc4d6mfrvjAaICf6xmgO94/ZmgkVfWiskRILykfE9prl5WzsmJhXj5eUgt6iczS8LDTeamP0919tHXHOZUS+G3J0G/tjk+YrWMGVbFSqsrLqIiVUhUrpTJ5qyq/vH25rWz0Ma2pM1b/4HAieKcJ4smCu29w8hlUAAtLi6iKlVFVnqj5kvKR7TKqYon7lcn2JeWl1FbFCnLlUi3oNU/pTD1zRUXG8sWJM+9Nqysn3cfdOR8fpO18fEzgd17sozs+kDgr7Onn+JlLo/enO2cqKylKBHzKL4GK5HZbdy8vvX2G7vgAS8pL2b6ljtuvr6asuJiykqLErTjxdUHylto+3br5uaq3uzM07Ay5c7F3cFwQpwb05cA+d+ly3Xr6h6Y8dmmxjQnixPBHMpxHwjo27v48/cWpM/VARHUNlaj2Ox3Dw86FvkG6ewZGQ74r3j+6PdLelfJ4d3yAzot90559pqPIGA34BaXFia8lRcQHhjh1vnfMLxszWF0VY/HCUoZHgjkZzkPDzvDoNqOPj7QNpmynEyVFxmjwTnamXJn8Ov7suryseF5f2NaZ+jwU1TVUotrvdBQV2eiwy2xMNb++ZtEC/vcXbqZ/cJj+oSH6BobpHxqmb3A40TaYuJ+63TcwNGafnx8+PSF83aH9Qh8NKxdTZEZxUcrNjKLUr0WMaSsuTn4tsjHPXbSgZNJhjsULSnTxOccU6oGI6pzsqPY7l6b63jsv9nHrNUuv6NjX3P+TSdv7B4f5+3tvuaJjS2HQZftATDUfPQrz1GfTPh/ksiaqd/gU6oHYsbWB2LiLQlGZpx7FfudSLmuieodPwy+BiOr68FHtdy7lsiaqd/g0+0VEpMDNZvaLhl9ERAKiUBcRCYhCXUQkIAp1EZGAKNRFRAKiUBcRCYhCXUQkIAp1EZGA6B2lMkYhrG0uIplTqMuo8Wubt3TF2bm7GUDBLhIRGn6RUdOtbS4i0aBQl1Fa21wk+hTqMkprbYtEn0JdRmmtbZHo04VSGaW1tkWiT6EuY2zfUqcQF4kwhbrknebGT5TLmkT12FE11zVRqEteaW78RLmsSVSPHVX5qMmMF0rN7FEzazezg5M89nUzczOrzknvJHiaGz9RLmsS1WNHVT5qks7sl+8B28Y3mtka4JPAySz3SeYRzY2fKJc1ieqxoyofNZkx1N39eeDsJA/9NfANYO4+uVqCo7nxE+WyJlE9dlTloyYZzVM3s88CLe7+ehr73mdmTWbW1NHRkcnLScA0N36iXNYkqseOqnzUZNYXSs2sHHgA+FQ6+7v7w8DDAI2NjTqrlzE0N36iXNYkqseOqnzUxNxnzlkzqweedPeNZrYJeBboST68GmgFbnX3U9Mdp7Gx0Zuamq6sxyIi84yZ7Xf3xnT2nfWZurs3A8tTXuw40OjunbM9lkiuad60zDfpTGl8AngJaDCz98zsS7nvlsiVG5kj3NIVx7k8R3jPgZZ8d00kZ2Y8U3f3z8/weH3WeiOSRdPNEdbZuoRKqzRKsDRvWuYjLRMgwaqtitEySYDP53nTuRbVaxhR7fdkdKYuwdK86bkV1WsYUe33VBTqEqztW+p48J5N1FXFMKCuKsaD92yK7BlYoYvq2i9R7fdUNPwiQdP68HMnqtcwotrvqehMXUSyIqprv0S131NRqItIVkT1GkZU+z0VDb+ISFZEde2XqPZ7Kmmt/ZItWvtFRGT2ZrP2i4ZfREQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQColAXEQmIQl1EJCAKdRGRgCjURUQCMmOom9mjZtZuZgdT2naZ2Rtm9m9m9iMzq8ppL0VEJC3pnKl/D9g2ru0ZYKO73wi8CezMcr9ERCQDM4a6uz8PnB3X9rS7DybvvgyszkHfRERklrIxpv5F4GdTPWhm95lZk5k1dXR0ZOHlRERkKlcU6mb2ADAIPD7VPu7+sLs3untjTU3NlbyciIjMoCTTJ5rZvcBngI+7u2evSyIikqmMQt3MtgF/Ctzh7j3Z7ZKIiGQqnSmNTwAvAQ1m9p6ZfQn4W2Ax8IyZvWZmf5fjfoqISBpmPFN3989P0vxIDvoiIiJXSO8oFREJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYAo1EVEAqJQFxEJiEJdRCQgCnURkYBkvPSuiOTOt/Y088S+dxlyp9iMz39gDf9t+6asHHvPgRZ27T1Ca1ec2qoYO7Y2sH1LXVaOLfmnUBcpMN/a08w/vHxy9P6Q++j9Kw32PQda2Lm7mfjAEAAtXXF27m4GULAHQsMvIgXmiX3vzqp9NnbtPTIa6CPiA0Ps2nvkio8thUGhLlJghqb4ILGp2mejtSs+q3aJHoW6SIEpNptV+2zUVsVm1S7Ro1AXKTCf/8CaWbXPxo6tDcRKi8e0xUqL2bG14YqPLYVBF0pFCszIxdBczH4ZuRiq2S/hMs/COF26Ghsbvampac5eT0QkBGa2390b09lXwy8iIgFRqIuIBEShLiISEIW6iEhAFOoiIgGZ09kvZtYBnACqgc45e+HCpTqoBqAajFAdpq7B1e5ek84B5jTUR1/UrCnd6TkhUx1UA1ANRqgO2amBhl9ERAKiUBcRCUi+Qv3hPL1uoVEdVANQDUaoDlmoQV7G1EVEJDc0/CIiEhCFuohIQLIe6ma2xsx+YWaHzeyQmf3RuMe/bmZuZtUpbTvN7C0zO2JmW7Pdp3yYrg5m9ofJ7/WQmT2U0h5UHaaqgZltNrOXzew1M2sys1tTnhNUDQDMbKGZvWJmryfr8OfJ9qVm9oyZHU1+XZLynKDqME0NdpnZG2b2b2b2IzOrSnlOUDWAqeuQ8viV56O7Z/UGrAJuTm4vBt4E1ifvrwH2knwDUrJtPfA6sAC4BngbKM52v+b6NlUdgI8BPwcWJB9bHmodpqnB08Cnk+3/DvhlqDVIfl8GLEpulwL7gNuAh4D7k+33A38Rah2mqcGngJJk+1+EXIPp6pC8n5V8zPqZuru3ufurye0LwGFgZAX+vwa+AaRenb0b+L/u3ufux4C3gFuJuGnq8BXgO+7el3ysPfmU4OowTQ0cqEjuVgm0JreDqwGAJ1xM3i1N3pzE9/tYsv0xYHtyO7g6TFUDd3/a3QeT7S8Dq5PbwdUApv23AFnKx5yOqZtZPbAF2GdmnwVa3P31cbvVAakfk/4el38JBCG1DsA64HYz22dmvzKzW5K7BV2HcTX4GrDLzN4F/hLYmdwt2BqYWbGZvQa0A8+4+z5ghbu3QeIXILA8uXuQdZiiBqm+CPwsuR1kDWDyOmQzH3MW6ma2CPghif/Ag8ADwLcn23WStmDmWabWwd3Pk/gIwSUk/vTcAfzAzIyA6zBJDb4C/LG7rwH+GHhkZNdJnh5EDdx9yN03kzgTvdXMNk6ze5B1mK4GZvYAiZx4fKRpskPkvJNzYJI63EgW8zEnoW5mpST+Ez/u7ruB60iMB71uZsdJfDOvmtlKEr95Uj9RdzWX/xyPtEnqAInvd3fyz7BXgGESi/gEWYcpanAvMLL9z1z+czLIGqRy9y7gl8A24LSZrQJIfh0Zigu6DuNqgJndC3wG+IInB5IJvAYwpg53k818zNGFgO8D/3OafY5z+ULABsZeCHiHcC6ITKgD8GXgvya315H408pCrMM0NTgM3Jnc/jiwP/B/CzVAVXI7BrxAIsR2MfZC6UOh1mGaGmwDfgvUjNs/uBpMV4dx+1xRPpZMk/eZ+jDwH4Hm5LgRwDfd/aeT7ezuh8zsByR+sIPAV919KAf9mmuT1gF4FHjUzA4C/cC9nvjphViHqWrwB8B3zawE6AXug6D/LawCHjOzYhJ/Hf/A3Z80s5dIDL99CTgJ/B4EW4epavAWicB6JjEKycvu/uVAawBT1GGqnTOpg5YJEBEJiN5RKiISEIW6iEhAFOoiIgFRqIuIBEShLiISEIW6iEhAFOoiIgH5/+EaqS+WjFbpAAAAAElFTkSuQmCC", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)\n", + "\n", + "plt.scatter(X_test,y_test)\n", + "plt.plot(sorted(X_test),pipeline.predict(sorted(X_test)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 编码品种\n", + "\n", + "在理想情况下,我们希望能够使用同一个模型预测不同南瓜品种的价格。为了考虑品种因素,我们首先需要将其转换为数值形式,也就是**编码**。有几种方法可以实现:\n", + "\n", + "* 简单的数值编码,这种方法会构建一个不同品种的表格,然后用表中的索引替换品种名称。这对于线性回归来说并不是最好的选择,因为线性回归会考虑索引的数值,而这些数值可能与价格没有直接的数值相关性。\n", + "* 独热编码(One-hot encoding),这种方法会将`Variety`列替换为4个不同的列,每个品种对应一个列。如果某一行属于某个品种,该列的值为1,否则为0。\n", + "\n", + "下面的代码展示了如何对品种进行独热编码:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 181, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      FAIRYTALEMINIATUREMIXED HEIRLOOM VARIETIESPIE TYPE
      700001
      710001
      720001
      730001
      740001
      ...............
      17380100
      17390100
      17400100
      17410100
      17420100
      \n", + "

      415 rows × 4 columns

      \n", + "
      " + ], + "text/plain": [ + " FAIRYTALE MINIATURE MIXED HEIRLOOM VARIETIES PIE TYPE\n", + "70 0 0 0 1\n", + "71 0 0 0 1\n", + "72 0 0 0 1\n", + "73 0 0 0 1\n", + "74 0 0 0 1\n", + "... ... ... ... ...\n", + "1738 0 1 0 0\n", + "1739 0 1 0 0\n", + "1740 0 1 0 0\n", + "1741 0 1 0 0\n", + "1742 0 1 0 0\n", + "\n", + "[415 rows x 4 columns]" + ] + }, + "execution_count": 181, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.get_dummies(new_pumpkins['Variety'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 品种的线性回归\n", + "\n", + "我们现在将使用与上面相同的代码,但输入将从 `DayOfYear` 改为我们经过独热编码的品种:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 182, + "metadata": {}, + "outputs": [], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety'])\n", + "y = new_pumpkins['Price']" + ] + }, + { + "cell_type": "code", + "execution_count": 183, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 5.24 (19.7%)\n", + "Model determination: 0.774085281105197\n" + ] + } + ], + "source": [ + "def run_linear_regression(X,y):\n", + " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + " lin_reg = LinearRegression()\n", + " lin_reg.fit(X_train,y_train)\n", + "\n", + " pred = lin_reg.predict(X_test)\n", + "\n", + " mse = np.sqrt(mean_squared_error(y_test,pred))\n", + " print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + " score = lin_reg.score(X_train,y_train)\n", + " print('Model determination: ', score)\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们也可以以同样的方式尝试使用其他特征,并将它们与数值特征结合,例如 `Month` 或 `DayOfYear`:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 184, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.84 (10.5%)\n", + "Model determination: 0.9401096672643048\n" + ] + } + ], + "source": [ + "X = pd.get_dummies(new_pumpkins['Variety']) \\\n", + " .join(new_pumpkins['Month']) \\\n", + " .join(pd.get_dummies(new_pumpkins['City'])) \\\n", + " .join(pd.get_dummies(new_pumpkins['Package']))\n", + "y = new_pumpkins['Price']\n", + "\n", + "run_linear_regression(X,y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 多项式回归\n", + "\n", + "多项式回归同样可以用于经过独热编码的分类特征。训练多项式回归的代码基本上与我们之前看到的代码相同。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 185, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean error: 2.23 (8.25%)\n", + "Model determination: 0.9652870784724543\n" + ] + } + ], + "source": [ + "from sklearn.preprocessing import PolynomialFeatures\n", + "from sklearn.pipeline import make_pipeline\n", + "\n", + "pipeline = make_pipeline(PolynomialFeatures(2), LinearRegression())\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n", + "\n", + "pipeline.fit(X_train,y_train)\n", + "\n", + "pred = pipeline.predict(X_test)\n", + "\n", + "mse = np.sqrt(mean_squared_error(y_test,pred))\n", + "print(f'Mean error: {mse:3.3} ({mse/np.mean(pred)*100:3.3}%)')\n", + "\n", + "score = pipeline.score(X_train,y_train)\n", + "print('Model determination: ', score)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.5" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d77bd89ae7e79780c68c58bab91f13f8", + "translation_date": "2025-09-03T19:18:23+00:00", + "source_file": "2-Regression/3-Linear/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/4-Logistic/README.md b/translations/zh-CN/2-Regression/4-Logistic/README.md new file mode 100644 index 000000000..5fdcd816a --- /dev/null +++ b/translations/zh-CN/2-Regression/4-Logistic/README.md @@ -0,0 +1,414 @@ +# 使用逻辑回归预测类别 + +![逻辑回归与线性回归信息图](../../../../2-Regression/4-Logistic/images/linear-vs-logistic.png) + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +> ### [本课程也提供 R 版本!](../../../../2-Regression/4-Logistic/solution/R/lesson_4.html) + +## 简介 + +在本课程中,我们将学习逻辑回归,这是经典机器学习技术之一。你可以使用这种技术发现模式以预测二元类别。例如,这颗糖果是巧克力还是不是巧克力?这种疾病是否具有传染性?这个顾客会选择这个产品还是不会? + +在本课程中,你将学习: + +- 一个新的数据可视化库 +- 逻辑回归的技术 + +✅ 在这个 [学习模块](https://docs.microsoft.com/learn/modules/train-evaluate-classification-models?WT.mc_id=academic-77952-leestott) 中深入了解如何使用这种回归方法。 + +## 前置知识 + +通过之前的南瓜数据集练习,我们已经足够熟悉它,并意识到其中有一个可以处理的二元类别:`Color`。 + +让我们构建一个逻辑回归模型来预测给定一些变量时,_某个南瓜可能的颜色_(橙色 🎃 或白色 👻)。 + +> 为什么在回归课程中讨论二元分类?仅仅是为了语言上的方便,因为逻辑回归实际上是[一种分类方法](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression),尽管它是基于线性的。在下一组课程中,你将学习其他分类数据的方法。 + +## 定义问题 + +对于我们的目的,我们将问题表达为一个二元类别:“白色”或“非白色”。数据集中还有一个“条纹”类别,但实例较少,因此我们不会使用它。实际上,在移除数据集中的空值后,它也会消失。 + +> 🎃 有趣的事实:我们有时称白色南瓜为“幽灵”南瓜。它们不太容易雕刻,因此不像橙色南瓜那么受欢迎,但它们看起来很酷!所以我们也可以将问题重新表述为:“幽灵”或“非幽灵”。👻 + +## 关于逻辑回归 + +逻辑回归与之前学习的线性回归有几个重要的不同点。 + +[![机器学习初学者 - 理解逻辑回归用于分类](https://img.youtube.com/vi/KpeCT6nEpBY/0.jpg)](https://youtu.be/KpeCT6nEpBY "机器学习初学者 - 理解逻辑回归用于分类") + +> 🎥 点击上方图片观看关于逻辑回归的简短视频概述。 + +### 二元分类 + +逻辑回归与线性回归的功能不同。前者预测二元类别(例如“白色或非白色”),而后者能够预测连续值,例如根据南瓜的产地和收获时间,_价格将上涨多少_。 + +![南瓜分类模型](../../../../2-Regression/4-Logistic/images/pumpkin-classifier.png) +> 信息图由 [Dasani Madipalli](https://twitter.com/dasani_decoded) 提供 + +### 其他分类 + +逻辑回归还有其他类型,包括多项式和有序分类: + +- **多项式分类**:涉及多个类别,例如“橙色、白色和条纹”。 +- **有序分类**:涉及有序类别,适用于逻辑排序的结果,例如按有限大小排序的南瓜(迷你、小、中、大、特大、超大)。 + +![多项式分类与有序分类](../../../../2-Regression/4-Logistic/images/multinomial-vs-ordinal.png) + +### 变量不需要相关 + +还记得线性回归在变量相关性较高时效果更好吗?逻辑回归正好相反——变量不需要相关性。这适用于数据中相关性较弱的情况。 + +### 需要大量干净数据 + +逻辑回归在使用更多数据时会给出更准确的结果;我们的数据集较小,因此并不理想。 + +[![机器学习初学者 - 数据分析与准备用于逻辑回归](https://img.youtube.com/vi/B2X4H9vcXTs/0.jpg)](https://youtu.be/B2X4H9vcXTs "机器学习初学者 - 数据分析与准备用于逻辑回归") + +> 🎥 点击上方图片观看关于准备线性回归数据的简短视频概述。 + +✅ 思考哪些类型的数据适合逻辑回归。 + +## 练习 - 整理数据 + +首先,清理数据,删除空值并选择部分列: + +1. 添加以下代码: + + ```python + + columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color'] + pumpkins = full_pumpkins.loc[:, columns_to_select] + + pumpkins.dropna(inplace=True) + ``` + + 你可以随时查看新的数据框: + + ```python + pumpkins.info + ``` + +### 可视化 - 分类图 + +现在你已经加载了[起始笔记本](../../../../2-Regression/4-Logistic/notebook.ipynb),其中包含南瓜数据,并清理了数据以保留一些变量,包括 `Color`。让我们使用一个不同的库 [Seaborn](https://seaborn.pydata.org/index.html) 在笔记本中可视化数据框。Seaborn 是基于我们之前使用的 Matplotlib 构建的。 + +Seaborn 提供了一些很棒的方式来可视化数据。例如,你可以在分类图中比较 `Variety` 和 `Color` 数据的分布。 + +1. 使用 `catplot` 函数创建这样的图,使用南瓜数据 `pumpkins`,并为每个南瓜类别(橙色或白色)指定颜色映射: + + ```python + import seaborn as sns + + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + + sns.catplot( + data=pumpkins, y="Variety", hue="Color", kind="count", + palette=palette, + ) + ``` + + ![数据可视化网格](../../../../2-Regression/4-Logistic/images/pumpkins_catplot_1.png) + + 通过观察数据,你可以看到 `Color` 数据与 `Variety` 的关系。 + + ✅ 根据这个分类图,你能想到哪些有趣的探索? + +### 数据预处理:特征和标签编码 + +我们的南瓜数据集的所有列都包含字符串值。处理分类数据对人类来说很直观,但对机器来说却不然。机器学习算法更适合处理数字数据。这就是为什么编码是数据预处理阶段非常重要的一步,它使我们能够将分类数据转换为数值数据,而不会丢失任何信息。良好的编码有助于构建良好的模型。 + +对于特征编码,主要有两种编码器: + +1. **有序编码器**:适用于有序变量,即数据具有逻辑顺序的分类变量,例如数据集中的 `Item Size` 列。它创建一个映射,使每个类别由一个数字表示,该数字是列中类别的顺序。 + + ```python + from sklearn.preprocessing import OrdinalEncoder + + item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']] + ordinal_features = ['Item Size'] + ordinal_encoder = OrdinalEncoder(categories=item_size_categories) + ``` + +2. **分类编码器**:适用于无序变量,即数据没有逻辑顺序的分类变量,例如数据集中除 `Item Size` 之外的所有特征。它是一种独热编码,这意味着每个类别由一个二进制列表示:如果南瓜属于该类别,则编码变量为 1,否则为 0。 + + ```python + from sklearn.preprocessing import OneHotEncoder + + categorical_features = ['City Name', 'Package', 'Variety', 'Origin'] + categorical_encoder = OneHotEncoder(sparse_output=False) + ``` + +然后,使用 `ColumnTransformer` 将多个编码器合并为一个步骤,并将其应用于适当的列。 + +```python + from sklearn.compose import ColumnTransformer + + ct = ColumnTransformer(transformers=[ + ('ord', ordinal_encoder, ordinal_features), + ('cat', categorical_encoder, categorical_features) + ]) + + ct.set_output(transform='pandas') + encoded_features = ct.fit_transform(pumpkins) +``` + +另一方面,为了编码标签,我们使用 scikit-learn 的 `LabelEncoder` 类,这是一个实用类,用于将标签标准化,使其仅包含 0 到 n_classes-1(这里是 0 和 1)之间的值。 + +```python + from sklearn.preprocessing import LabelEncoder + + label_encoder = LabelEncoder() + encoded_label = label_encoder.fit_transform(pumpkins['Color']) +``` + +完成特征和标签编码后,我们可以将它们合并为一个新的数据框 `encoded_pumpkins`。 + +```python + encoded_pumpkins = encoded_features.assign(Color=encoded_label) +``` + +✅ 使用有序编码器处理 `Item Size` 列有哪些优势? + +### 分析变量之间的关系 + +现在我们已经对数据进行了预处理,可以分析特征和标签之间的关系,以了解模型在给定特征的情况下预测标签的能力。 + +分析这种关系的最佳方式是绘制数据。我们将再次使用 Seaborn 的 `catplot` 函数,以分类图的形式可视化 `Item Size`、`Variety` 和 `Color` 之间的关系。为了更好地绘制数据,我们将使用编码后的 `Item Size` 列和未编码的 `Variety` 列。 + +```python + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size'] + + g = sns.catplot( + data=pumpkins, + x="Item Size", y="Color", row='Variety', + kind="box", orient="h", + sharex=False, margin_titles=True, + height=1.8, aspect=4, palette=palette, + ) + g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6)) + g.set_titles(row_template="{row_name}") +``` + +![数据分类图](../../../../2-Regression/4-Logistic/images/pumpkins_catplot_2.png) + +### 使用蜂群图 + +由于 `Color` 是一个二元类别(白色或非白色),它需要“[一种专门的方法](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar)来可视化”。还有其他方法可以可视化此类别与其他变量的关系。 + +你可以使用 Seaborn 图表并排可视化变量。 + +1. 尝试使用“蜂群图”来显示值的分布: + + ```python + palette = { + 0: 'orange', + 1: 'wheat' + } + sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette) + ``` + + ![数据蜂群图](../../../../2-Regression/4-Logistic/images/swarm_2.png) + +**注意**:上述代码可能会生成警告,因为 Seaborn 无法在蜂群图中表示如此多的数据点。一个可能的解决方案是通过使用 `size` 参数减小标记的大小。然而,请注意,这会影响图表的可读性。 + +> **🧮 数学原理** +> +> 逻辑回归依赖于“最大似然”概念,使用[Sigmoid 函数](https://wikipedia.org/wiki/Sigmoid_function)。在图表上,Sigmoid 函数看起来像一个“S”形。它将一个值映射到 0 和 1 之间的某个位置。它的曲线也被称为“逻辑曲线”。其公式如下: +> +> ![逻辑函数](../../../../2-Regression/4-Logistic/images/sigmoid.png) +> +> 其中,Sigmoid 的中点位于 x 的 0 点,L 是曲线的最大值,k 是曲线的陡度。如果函数的结果大于 0.5,则该标签将被归类为二元选择中的“1”。否则,将被归类为“0”。 + +## 构建模型 + +在 Scikit-learn 中构建一个用于二元分类的模型非常简单。 + +[![机器学习初学者 - 用逻辑回归进行数据分类](https://img.youtube.com/vi/MmZS2otPrQ8/0.jpg)](https://youtu.be/MmZS2otPrQ8 "机器学习初学者 - 用逻辑回归进行数据分类") + +> 🎥 点击上方图片观看关于构建线性回归模型的简短视频概述。 + +1. 选择你想在分类模型中使用的变量,并调用 `train_test_split()` 分割训练集和测试集: + + ```python + from sklearn.model_selection import train_test_split + + X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])] + y = encoded_pumpkins['Color'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + + ``` + +2. 现在你可以通过调用 `fit()` 使用训练数据训练模型,并打印结果: + + ```python + from sklearn.metrics import f1_score, classification_report + from sklearn.linear_model import LogisticRegression + + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('F1-score: ', f1_score(y_test, predictions)) + ``` + + 查看模型的评分。考虑到数据只有大约 1000 行,结果还不错: + + ```output + precision recall f1-score support + + 0 0.94 0.98 0.96 166 + 1 0.85 0.67 0.75 33 + + accuracy 0.92 199 + macro avg 0.89 0.82 0.85 199 + weighted avg 0.92 0.92 0.92 199 + + Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 + 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 + 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 + 0 0 0 1 0 0 0 0 0 0 0 0 1 1] + F1-score: 0.7457627118644068 + ``` + +## 使用混淆矩阵更好地理解模型 + +虽然你可以通过打印上述项获得评分报告[术语](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html?highlight=classification_report#sklearn.metrics.classification_report),但使用[混淆矩阵](https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix)可能更容易理解模型的表现。 + +> 🎓 “[混淆矩阵](https://wikipedia.org/wiki/Confusion_matrix)”(或“误差矩阵”)是一个表格,用于表达模型的真实与预测的正负情况,从而评估预测的准确性。 + +1. 要使用混淆矩阵,调用 `confusion_matrix()`: + + ```python + from sklearn.metrics import confusion_matrix + confusion_matrix(y_test, predictions) + ``` + + 查看模型的混淆矩阵: + + ```output + array([[162, 4], + [ 11, 22]]) + ``` + +在 Scikit-learn 中,混淆矩阵的行(轴 0)是实际标签,列(轴 1)是预测标签。 + +| | 0 | 1 | +| :---: | :---: | :---: | +| 0 | TN | FP | +| 1 | FN | TP | + +这里发生了什么?假设我们的模型被要求在两个二元类别之间对南瓜进行分类,“白色”和“非白色”。 + +- 如果模型预测南瓜为非白色,而实际上属于“非白色”类别,我们称之为真负(True Negative),显示在左上角。 +- 如果模型预测南瓜为白色,而实际上属于“非白色”类别,我们称之为假负(False Negative),显示在左下角。 +- 如果模型预测南瓜为非白色,而实际上属于“白色”类别,我们称之为假正(False Positive),显示在右上角。 +- 如果模型预测南瓜为白色,而实际上属于“白色”类别,我们称之为真正(True Positive),显示在右下角。 + +正如你可能猜到的,较多的真正和真负以及较少的假正和假负表明模型表现更好。 +混淆矩阵如何与精确率和召回率相关联?请记住,上面打印的分类报告显示精确率为 0.85,召回率为 0.67。 + +精确率 = tp / (tp + fp) = 22 / (22 + 4) = 0.8461538461538461 + +召回率 = tp / (tp + fn) = 22 / (22 + 11) = 0.6666666666666666 + +✅ 问:根据混淆矩阵,模型表现如何? +答:还不错;有相当多的真正例,但也有一些假负例。 + +让我们通过混淆矩阵中 TP/TN 和 FP/FN 的映射,重新回顾之前提到的术语: + +🎓 精确率(Precision):TP/(TP + FP) +检索到的实例中,相关实例的比例(例如,哪些标签被正确标记)。 + +🎓 召回率(Recall):TP/(TP + FN) +相关实例中被检索到的比例,无论是否被正确标记。 + +🎓 F1 分数(f1-score):(2 * precision * recall)/(precision + recall) +精确率和召回率的加权平均值,最佳值为 1,最差值为 0。 + +🎓 支持度(Support): +每个标签被检索到的次数。 + +🎓 准确率(Accuracy):(TP + TN)/(TP + TN + FP + FN) +样本中标签被正确预测的百分比。 + +🎓 宏平均(Macro Avg): +对每个标签的指标进行无权重平均的计算,不考虑标签的不平衡。 + +🎓 加权平均(Weighted Avg): +对每个标签的指标进行加权平均的计算,权重由支持度(每个标签的真实实例数)决定。 + +✅ 你能想到如果想减少假负例的数量,应该关注哪个指标吗? + +## 可视化该模型的 ROC 曲线 + +[![机器学习入门 - 使用 ROC 曲线分析逻辑回归性能](https://img.youtube.com/vi/GApO575jTA0/0.jpg)](https://youtu.be/GApO575jTA0 "机器学习入门 - 使用 ROC 曲线分析逻辑回归性能") + +> 🎥 点击上方图片观看关于 ROC 曲线的简短视频概述 + +让我们再做一个可视化,看看所谓的“ROC”曲线: + +```python +from sklearn.metrics import roc_curve, roc_auc_score +import matplotlib +import matplotlib.pyplot as plt +%matplotlib inline + +y_scores = model.predict_proba(X_test) +fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1]) + +fig = plt.figure(figsize=(6, 6)) +plt.plot([0, 1], [0, 1], 'k--') +plt.plot(fpr, tpr) +plt.xlabel('False Positive Rate') +plt.ylabel('True Positive Rate') +plt.title('ROC Curve') +plt.show() +``` + +使用 Matplotlib 绘制模型的 [接收者操作特性曲线(ROC)](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc)。ROC 曲线通常用于查看分类器输出的真阳性与假阳性之间的关系。“ROC 曲线通常以真阳性率为 Y 轴,假阳性率为 X 轴。”因此,曲线的陡峭程度以及曲线与中线之间的空间很重要:你希望曲线迅速向上并越过中线。在我们的例子中,起初有一些假阳性,然后曲线正确地向上并越过中线: + +![ROC](../../../../2-Regression/4-Logistic/images/ROC_2.png) + +最后,使用 Scikit-learn 的 [`roc_auc_score` API](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score) 计算实际的“曲线下面积”(AUC): + +```python +auc = roc_auc_score(y_test,y_scores[:,1]) +print(auc) +``` +结果是 `0.9749908725812341`。由于 AUC 的范围是 0 到 1,你希望分数越大越好,因为一个 100% 正确预测的模型的 AUC 为 1;在这种情况下,该模型表现“相当不错”。 + +在未来的分类课程中,你将学习如何迭代以提高模型的分数。但现在,恭喜你!你已经完成了这些回归课程! + +--- + +## 🚀挑战 + +关于逻辑回归还有很多内容可以深入探讨!但最好的学习方式是动手实践。找到一个适合这种分析的数据集,并用它构建一个模型。你学到了什么?提示:试试 [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) 上的一些有趣数据集。 + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +阅读 [斯坦福大学的这篇论文](https://web.stanford.edu/~jurafsky/slp3/5.pdf) 的前几页,了解逻辑回归的一些实际应用。思考哪些任务更适合我们到目前为止学习的回归类型。哪种方法效果更好? + +## 作业 + +[重试这个回归任务](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/4-Logistic/assignment.md b/translations/zh-CN/2-Regression/4-Logistic/assignment.md new file mode 100644 index 000000000..88dafe245 --- /dev/null +++ b/translations/zh-CN/2-Regression/4-Logistic/assignment.md @@ -0,0 +1,16 @@ +# 重试一些回归 + +## 说明 + +在课程中,你使用了南瓜数据的一个子集。现在,请回到原始数据,尝试使用全部数据(经过清理和标准化)来构建一个逻辑回归模型。 + +## 评分标准 + +| 标准 | 卓越表现 | 合格表现 | 需要改进 | +| -------- | --------------------------------------------------------------------- | ------------------------------------------------------------ | ---------------------------------------------------------- | +| | 提交的笔记本包含一个解释清晰且表现良好的模型 | 提交的笔记本包含一个表现最低限度的模型 | 提交的笔记本包含一个表现不佳的模型或未提交模型 | + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于重要信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/4-Logistic/notebook.ipynb b/translations/zh-CN/2-Regression/4-Logistic/notebook.ipynb new file mode 100644 index 000000000..e63e7e00d --- /dev/null +++ b/translations/zh-CN/2-Regression/4-Logistic/notebook.ipynb @@ -0,0 +1,269 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 南瓜品种与颜色\n", + "\n", + "加载所需的库和数据集。将数据转换为包含数据子集的数据框:\n", + "\n", + "让我们来看看颜色与品种之间的关系\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
      0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
      1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
      2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      \n", + "

      5 rows × 26 columns

      \n", + "
      " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \\\n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "dee08c2b49057b0de8b6752c4dbca368", + "translation_date": "2025-09-03T19:30:06+00:00", + "source_file": "2-Regression/4-Logistic/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/4-Logistic/solution/Julia/README.md b/translations/zh-CN/2-Regression/4-Logistic/solution/Julia/README.md new file mode 100644 index 000000000..f30fc4eeb --- /dev/null +++ b/translations/zh-CN/2-Regression/4-Logistic/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb b/translations/zh-CN/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb new file mode 100644 index 000000000..6a61a9f92 --- /dev/null +++ b/translations/zh-CN/2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb @@ -0,0 +1,685 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 构建逻辑回归模型 - 第4课\n", + "\n", + "![逻辑回归与线性回归信息图](../../../../../../translated_images/zh-CN/linear-vs-logistic.ba180bf95e7ee667.webp)\n", + "\n", + "#### **[课前测验](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/)**\n", + "\n", + "#### 介绍\n", + "\n", + "在关于回归的最后一课中,我们将学习一种经典的机器学习技术——逻辑回归。你可以使用这种技术发现模式来预测二元分类。例如,这颗糖果是巧克力还是不是?这种疾病是否具有传染性?这个顾客是否会选择这个产品?\n", + "\n", + "在本课中,你将学习:\n", + "\n", + "- 逻辑回归的技术\n", + "\n", + "✅ 在这个 [学习模块](https://learn.microsoft.com/training/modules/introduction-classification-models/?WT.mc_id=academic-77952-leestott) 中深入了解如何使用这种回归方法。\n", + "\n", + "## 前置知识\n", + "\n", + "在之前使用南瓜数据的过程中,我们已经足够熟悉它,并意识到其中有一个可以使用的二元分类:`Color`。\n", + "\n", + "让我们构建一个逻辑回归模型,根据一些变量来预测*某个南瓜可能的颜色*(橙色 🎃 或白色 👻)。\n", + "\n", + "> 为什么我们在关于回归的课程中讨论二元分类?仅仅是为了语言上的方便,因为逻辑回归实际上是[一种分类方法](https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression),尽管它是基于线性的方法。在下一组课程中,你将学习其他分类数据的方法。\n", + "\n", + "在本课中,我们需要以下软件包:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一个 [R 包集合](https://www.tidyverse.org/packages),旨在让数据科学更快、更简单、更有趣!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 框架是一个 [包集合](https://www.tidymodels.org/packages),用于建模和机器学习。\n", + "\n", + "- `janitor`: [janitor 包](https://github.com/sfirke/janitor) 提供了一些简单的小工具,用于检查和清理脏数据。\n", + "\n", + "- `ggbeeswarm`: [ggbeeswarm 包](https://github.com/eclarke/ggbeeswarm) 提供了使用 ggplot2 创建蜜蜂群图的方法。\n", + "\n", + "你可以通过以下方式安装它们:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"janitor\", \"ggbeeswarm\"))`\n", + "\n", + "或者,下面的脚本会检查你是否已经安装了完成本模块所需的软件包,并在缺少时为你安装它们。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, janitor, ggbeeswarm)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **定义问题**\n", + "\n", + "在我们的场景中,我们将问题定义为一个二元分类:“白色”或“非白色”。我们的数据集中还有一个“条纹”类别,但它的样本数量很少,因此我们不会使用它。实际上,当我们从数据集中移除空值后,这个类别也会消失。\n", + "\n", + "> 🎃 有趣的事实:我们有时会把白色南瓜称为“幽灵”南瓜。它们不太容易雕刻,因此不像橙色南瓜那么受欢迎,但它们看起来很酷!所以我们也可以将问题重新表述为:“幽灵”或“非幽灵”。👻\n", + "\n", + "## **关于逻辑回归**\n", + "\n", + "逻辑回归与之前学习的线性回归在几个重要方面有所不同。\n", + "\n", + "#### **二元分类**\n", + "\n", + "逻辑回归不具备线性回归的相同功能。前者提供关于`二元类别`(例如“橙色或非橙色”)的预测,而后者能够预测`连续值`,例如根据南瓜的产地和收获时间,*预测其价格将上涨多少*。\n", + "\n", + "![Dasani Madipalli制作的信息图](../../../../../../translated_images/zh-CN/pumpkin-classifier.562771f104ad5436.webp)\n", + "\n", + "### 其他分类方式\n", + "\n", + "逻辑回归还有其他类型,包括多项式和有序分类:\n", + "\n", + "- **多项式分类**,涉及多个类别——例如“橙色、白色和条纹”。\n", + "\n", + "- **有序分类**,涉及有序的类别,这在我们需要逻辑地排列结果时很有用,例如按南瓜的有限尺寸(迷你、小、中、大、特大、超大)进行排序。\n", + "\n", + "![多项式分类 vs 有序分类](../../../../../../translated_images/zh-CN/multinomial-vs-ordinal.36701b4850e37d86.webp)\n", + "\n", + "#### **变量不需要相关**\n", + "\n", + "还记得线性回归在变量相关性较强时效果更好吗?逻辑回归正好相反——变量不需要相关性。这非常适合我们的数据,因为它的相关性较弱。\n", + "\n", + "#### **需要大量干净的数据**\n", + "\n", + "如果使用更多数据,逻辑回归会提供更准确的结果;我们的数据集较小,因此并不是完成这项任务的最佳选择,请记住这一点。\n", + "\n", + "✅ 思考哪些类型的数据适合逻辑回归\n", + "\n", + "## 练习 - 整理数据\n", + "\n", + "首先,稍微清理一下数据,删除空值并选择部分列:\n", + "\n", + "1. 添加以下代码:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Load the core tidyverse packages\n", + "library(tidyverse)\n", + "\n", + "# Import the data and clean column names\n", + "pumpkins <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/2-Regression/data/US-pumpkins.csv\") %>% \n", + " clean_names()\n", + "\n", + "# Select desired columns\n", + "pumpkins_select <- pumpkins %>% \n", + " select(c(city_name, package, variety, origin, item_size, color)) \n", + "\n", + "# Drop rows containing missing values and encode color as factor (category)\n", + "pumpkins_select <- pumpkins_select %>% \n", + " drop_na() %>% \n", + " mutate(color = factor(color))\n", + "\n", + "# View the first few rows\n", + "pumpkins_select %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "您可以随时使用 [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) 函数来快速查看新的数据框,如下所示:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "pumpkins_select %>% \n", + " glimpse()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "让我们确认一下,我们实际上是在处理一个二分类问题:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Subset distinct observations in outcome column\n", + "pumpkins_select %>% \n", + " distinct(color)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 可视化 - 分类图\n", + "到目前为止,您已经再次加载了南瓜数据并进行了清理,以保留包含一些变量(包括颜色)的数据集。现在让我们使用 ggplot 库在笔记本中可视化这个数据框。\n", + "\n", + "ggplot 库提供了一些很棒的方法来可视化您的数据。例如,您可以在分类图中比较每种品种和颜色的数据分布。\n", + "\n", + "1. 使用 geombar 函数创建这样的图表,使用我们的南瓜数据,并为每种南瓜类别(橙色或白色)指定颜色映射:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "python" + } + }, + "outputs": [], + "source": [ + "# Specify colors for each value of the hue variable\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# Create the bar plot\n", + "ggplot(pumpkins_select, aes(y = variety, fill = color)) +\n", + " geom_bar(position = \"dodge\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(y = \"Variety\", fill = \"Color\") +\n", + " theme_minimal()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "通过观察数据,可以看到颜色数据与品种之间的关系。\n", + "\n", + "✅ 根据这个分类图,你能想到哪些有趣的探索方向?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 数据预处理:特征编码\n", + "\n", + "我们的南瓜数据集的所有列都包含字符串值。处理分类数据对人类来说很直观,但对机器来说却不是这样。机器学习算法更擅长处理数字数据。这就是为什么编码是数据预处理阶段中非常重要的一步,因为它使我们能够将分类数据转换为数值数据,同时不丢失任何信息。良好的编码能够帮助我们构建一个优秀的模型。\n", + "\n", + "对于特征编码,主要有两种类型的编码器:\n", + "\n", + "1. **序数编码器(Ordinal encoder)**:适用于序数变量,这类变量是具有逻辑顺序的分类变量,比如我们数据集中的 `item_size` 列。它会创建一个映射,使每个类别用一个数字表示,这个数字对应类别在列中的顺序。\n", + "\n", + "2. **分类编码器(Categorical encoder)**:适用于名义变量,这类变量是没有逻辑顺序的分类变量,比如我们数据集中除了 `item_size` 以外的所有特征。这是一种独热编码(one-hot encoding),意味着每个类别都会用一个二进制列表示:如果南瓜属于该类别,则编码变量等于1,否则为0。\n", + "\n", + "Tidymodels 提供了另一个非常实用的包:[recipes](https://recipes.tidymodels.org/),这是一个用于数据预处理的包。我们将定义一个 `recipe`,指定所有预测列都应该被编码为一组整数,然后通过 `prep` 来估算任何操作所需的量和统计数据,最后通过 `bake` 将这些计算应用到新数据上。\n", + "\n", + "> 通常情况下,recipes 通常用作建模的预处理器,它定义了为了让数据集适合建模需要应用哪些步骤。在这种情况下,**强烈建议** 使用 `workflow()`,而不是手动通过 prep 和 bake 来估算 recipe。我们稍后会详细讲解这一点。\n", + ">\n", + "> 不过目前,我们使用 recipes + prep + bake 来指定对数据集需要应用哪些步骤,以便让数据集准备好进行数据分析,然后提取应用了这些步骤的预处理数据。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Preprocess and extract data to allow some data analysis\n", + "baked_pumpkins <- recipe(color ~ ., data = pumpkins_select) %>%\n", + " # Define ordering for item_size column\n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " # Convert factors to numbers using the order defined above (Ordinal encoding)\n", + " step_integer(item_size, zero_based = F) %>%\n", + " # Encode all other predictors using one hot encoding\n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE) %>%\n", + " prep(data = pumpkin_select) %>%\n", + " bake(new_data = NULL)\n", + "\n", + "# Display the first few rows of preprocessed data\n", + "baked_pumpkins %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "✅ 使用序数编码器对 Item Size 列进行编码有哪些优势?\n", + "\n", + "### 分析变量之间的关系\n", + "\n", + "现在我们已经对数据进行了预处理,可以分析特征与标签之间的关系,以了解模型在给定特征的情况下预测标签的能力。这类分析的最佳方式是对数据进行可视化。 \n", + "我们将再次使用 ggplot 的 geom_boxplot_ 函数,以分类图的形式展示 Item Size、Variety 和 Color 之间的关系。为了更好地绘制数据,我们将使用编码后的 Item Size 列和未编码的 Variety 列。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Define the color palette\n", + "palette <- c(ORANGE = \"orange\", WHITE = \"wheat\")\n", + "\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins_select_plot<-pumpkins_select\n", + "pumpkins_select_plot$item_size <- baked_pumpkins$item_size\n", + "\n", + "# Create the grouped box plot\n", + "ggplot(pumpkins_select_plot, aes(x = `item_size`, y = color, fill = color)) +\n", + " geom_boxplot() +\n", + " facet_grid(variety ~ ., scales = \"free_x\") +\n", + " scale_fill_manual(values = palette) +\n", + " labs(x = \"Item Size\", y = \"\") +\n", + " theme_minimal() +\n", + " theme(strip.text = element_text(size = 12)) +\n", + " theme(axis.text.x = element_text(size = 10)) +\n", + " theme(axis.title.x = element_text(size = 12)) +\n", + " theme(axis.title.y = element_blank()) +\n", + " theme(legend.position = \"bottom\") +\n", + " guides(fill = guide_legend(title = \"Color\")) +\n", + " theme(panel.spacing = unit(0.5, \"lines\"))+\n", + " theme(strip.text.y = element_text(size = 4, hjust = 0)) \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### 使用群集图\n", + "\n", + "由于颜色是一个二元类别(白色或非白色),它需要一种“[专门的方法](https://github.com/rstudio/cheatsheets/blob/main/data-visualization.pdf)”来进行可视化。\n", + "\n", + "尝试使用`群集图`来展示颜色相对于item_size的分布。\n", + "\n", + "我们将使用[ggbeeswarm包](https://github.com/eclarke/ggbeeswarm),该包提供了使用ggplot2创建蜂群式图的方法。蜂群图是一种将通常会重叠的点排列在彼此旁边的绘图方式。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create beeswarm plots of color and item_size\n", + "baked_pumpkins %>% \n", + " mutate(color = factor(color)) %>% \n", + " ggplot(mapping = aes(x = color, y = item_size, color = color)) +\n", + " geom_quasirandom() +\n", + " scale_color_brewer(palette = \"Dark2\", direction = -1) +\n", + " theme(legend.position = \"none\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "现在我们已经了解了颜色的二元分类与更大尺寸类别之间的关系,接下来让我们探索逻辑回归,以确定某个南瓜可能的颜色。\n", + "\n", + "## 构建模型\n", + "\n", + "选择您想在分类模型中使用的变量,并将数据分为训练集和测试集。[rsample](https://rsample.tidymodels.org/) 是 Tidymodels 中的一个包,它提供了高效的数据分割和重采样的基础设施:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Split data into 80% for training and 20% for testing\n", + "set.seed(2056)\n", + "pumpkins_split <- pumpkins_select %>% \n", + " initial_split(prop = 0.8)\n", + "\n", + "# Extract the data in each split\n", + "pumpkins_train <- training(pumpkins_split)\n", + "pumpkins_test <- testing(pumpkins_split)\n", + "\n", + "# Print out the first 5 rows of the training set\n", + "pumpkins_train %>% \n", + " slice_head(n = 5)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "🙌 我们现在准备通过将训练特征与训练标签(颜色)进行拟合来训练模型。\n", + "\n", + "我们将首先创建一个配方,用于指定对数据进行建模前的预处理步骤,例如:将分类变量编码为一组整数。就像 `baked_pumpkins` 一样,我们创建了一个 `pumpkins_recipe`,但不会立即 `prep` 和 `bake`,因为这些步骤会被整合到一个工作流中,稍后您会看到具体操作。\n", + "\n", + "在 Tidymodels 中,有很多方法可以指定逻辑回归模型。请参阅 `?logistic_reg()`。目前,我们将通过默认的 `stats::glm()` 引擎来指定一个逻辑回归模型。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Create a recipe that specifies preprocessing steps for modelling\n", + "pumpkins_recipe <- recipe(color ~ ., data = pumpkins_train) %>% \n", + " step_mutate(item_size = ordered(item_size, levels = c('sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo'))) %>%\n", + " step_integer(item_size, zero_based = F) %>% \n", + " step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE)\n", + "\n", + "# Create a logistic model specification\n", + "log_reg <- logistic_reg() %>% \n", + " set_engine(\"glm\") %>% \n", + " set_mode(\"classification\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "现在我们已经有了一个配方和一个模型规范,我们需要找到一种方法将它们打包成一个对象。这个对象将首先对数据进行预处理(在幕后完成 prep 和 bake 操作),然后在预处理后的数据上拟合模型,同时还支持潜在的后处理操作。\n", + "\n", + "在 Tidymodels 中,这个方便的对象被称为 [`workflow`](https://workflows.tidymodels.org/),它能够方便地容纳你的建模组件。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Bundle modelling components in a workflow\n", + "log_reg_wf <- workflow() %>% \n", + " add_recipe(pumpkins_recipe) %>% \n", + " add_model(log_reg)\n", + "\n", + "# Print out the workflow\n", + "log_reg_wf\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "在*指定*工作流程后,可以使用[`fit()`](https://tidymodels.github.io/parsnip/reference/fit.html)函数对模型进行`训练`。工作流程会估算配方并在训练前对数据进行预处理,因此我们无需手动使用prep和bake来完成这些步骤。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Train the model\n", + "wf_fit <- log_reg_wf %>% \n", + " fit(data = pumpkins_train)\n", + "\n", + "# Print the trained workflow\n", + "wf_fit\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "模型训练期间打印出的内容显示了学习到的系数。\n", + "\n", + "现在我们已经使用训练数据训练了模型,可以使用 [parsnip::predict()](https://parsnip.tidymodels.org/reference/predict.model_fit.html) 对测试数据进行预测。让我们从使用模型预测测试集的标签以及每个标签的概率开始。当概率大于 0.5 时,预测类别为 `WHITE`,否则为 `ORANGE`。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make predictions for color and corresponding probabilities\n", + "results <- pumpkins_test %>% select(color) %>% \n", + " bind_cols(wf_fit %>% \n", + " predict(new_data = pumpkins_test)) %>%\n", + " bind_cols(wf_fit %>%\n", + " predict(new_data = pumpkins_test, type = \"prob\"))\n", + "\n", + "# Compare predictions\n", + "results %>% \n", + " slice_head(n = 10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "非常好!这为我们提供了更多关于逻辑回归工作原理的见解。\n", + "\n", + "### 通过混淆矩阵更好地理解\n", + "\n", + "将每个预测值与其对应的“真实值”进行比较,并不是评估模型预测效果的高效方法。幸运的是,Tidymodels 还有一些其他的技巧:[`yardstick`](https://yardstick.tidymodels.org/)——一个通过性能指标来衡量模型效果的工具包。\n", + "\n", + "与分类问题相关的一个性能指标是[`混淆矩阵`](https://wikipedia.org/wiki/Confusion_matrix)。混淆矩阵描述了分类模型的表现情况。它统计了模型对每个类别正确分类的样本数量。在我们的例子中,它会显示有多少橙色南瓜被正确分类为橙色,有多少白色南瓜被正确分类为白色;同时,混淆矩阵还会显示有多少样本被错误分类到**其他类别**。\n", + "\n", + "来自 yardstick 的 [**`conf_mat()`**](https://tidymodels.github.io/yardstick/reference/conf_mat.html) 函数可以计算观察值和预测值的交叉分类表。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Confusion matrix for prediction results\n", + "conf_mat(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "让我们来解读混淆矩阵。我们的模型需要将南瓜分类为两个二元类别:类别 `white` 和类别 `not-white`。\n", + "\n", + "- 如果你的模型预测南瓜为白色,并且它实际上属于类别 'white',我们称之为 `true positive`,显示在左上角的数字。\n", + "\n", + "- 如果你的模型预测南瓜为非白色,并且它实际上属于类别 'white',我们称之为 `false negative`,显示在左下角的数字。\n", + "\n", + "- 如果你的模型预测南瓜为白色,并且它实际上属于类别 'not-white',我们称之为 `false positive`,显示在右上角的数字。\n", + "\n", + "- 如果你的模型预测南瓜为非白色,并且它实际上属于类别 'not-white',我们称之为 `true negative`,显示在右下角的数字。\n", + "\n", + "| 实际情况 |\n", + "|:-----:|\n", + "\n", + "| | | |\n", + "|---------------|--------|-------|\n", + "| **预测结果** | WHITE | ORANGE |\n", + "| WHITE | TP | FP |\n", + "| ORANGE | FN | TN |\n", + "\n", + "正如你可能猜到的,理想情况下我们希望有更多的 `true positive` 和 `true negative`,以及更少的 `false positive` 和 `false negative`,这意味着模型表现更好。\n", + "\n", + "混淆矩阵非常有用,因为它可以衍生出其他指标,帮助我们更好地评估分类模型的性能。让我们来看看其中的一些指标:\n", + "\n", + "🎓 精确率(Precision):`TP/(TP + FP)`,定义为预测为正的样本中实际为正的比例。也称为[正预测值](https://en.wikipedia.org/wiki/Positive_predictive_value \"Positive predictive value\")。\n", + "\n", + "🎓 召回率(Recall):`TP/(TP + FN)`,定义为实际为正的样本中被正确预测为正的比例。也称为 `敏感性`。\n", + "\n", + "🎓 特异性(Specificity):`TN/(TN + FP)`,定义为实际为负的样本中被正确预测为负的比例。\n", + "\n", + "🎓 准确率(Accuracy):`TP + TN/(TP + TN + FP + FN)`,表示样本中预测正确的标签所占的百分比。\n", + "\n", + "🎓 F值(F Measure):精确率和召回率的加权平均值,最佳值为1,最差值为0。\n", + "\n", + "让我们来计算这些指标吧!\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Combine metric functions and calculate them all at once\n", + "eval_metrics <- metric_set(ppv, recall, spec, f_meas, accuracy)\n", + "eval_metrics(data = results, truth = color, estimate = .pred_class)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 可视化该模型的ROC曲线\n", + "\n", + "让我们进行另一个可视化操作,来查看所谓的[`ROC曲线`](https://en.wikipedia.org/wiki/Receiver_operating_characteristic):\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Make a roc_curve\n", + "results %>% \n", + " roc_curve(color, .pred_ORANGE) %>% \n", + " autoplot()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "ROC 曲线通常用于查看分类器输出的真阳性与假阳性之间的关系。ROC 曲线通常在 Y 轴上显示 `True Positive Rate`(真阳性率)/敏感性,在 X 轴上显示 `False Positive Rate`(假阳性率)/1-特异性。因此,曲线的陡峭程度以及曲线与对角线之间的空间很重要:你希望看到一条快速上升并越过对角线的曲线。在我们的例子中,起初存在一些假阳性,然后曲线正确地上升并越过对角线。\n", + "\n", + "最后,我们使用 `yardstick::roc_auc()` 来计算实际的曲线下面积(AUC)。AUC 的一种解释方式是:模型将一个随机正例排在一个随机负例之前的概率。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "r" + } + }, + "outputs": [], + "source": [ + "# Calculate area under curve\n", + "results %>% \n", + " roc_auc(color, .pred_ORANGE)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "结果约为 `0.975`。由于 AUC 的范围是 0 到 1,你希望分数越大越好,因为一个模型如果能 100% 准确预测,其 AUC 将达到 1;在这个例子中,模型表现*相当不错*。\n", + "\n", + "在后续关于分类的课程中,你将学习如何提高模型的分数(例如在这种情况下处理数据不平衡的问题)。\n", + "\n", + "## 🚀挑战\n", + "\n", + "关于逻辑回归还有很多内容可以深入探讨!但学习的最佳方式是通过实践。寻找一个适合这种分析的数据集,并用它构建一个模型。你学到了什么?提示:可以尝试 [Kaggle](https://www.kaggle.com/search?q=logistic+regression+datasets) 上的有趣数据集。\n", + "\n", + "## 复习与自学\n", + "\n", + "阅读 [斯坦福大学这篇论文](https://web.stanford.edu/~jurafsky/slp3/5.pdf) 的前几页,了解逻辑回归的一些实际应用。思考哪些任务更适合我们到目前为止学习的不同回归类型。哪种方法效果最好?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "langauge": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "feaf125f481a89c468fa115bf2aed580", + "translation_date": "2025-09-03T19:36:22+00:00", + "source_file": "2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/4-Logistic/solution/notebook.ipynb b/translations/zh-CN/2-Regression/4-Logistic/solution/notebook.ipynb new file mode 100644 index 000000000..eb3605031 --- /dev/null +++ b/translations/zh-CN/2-Regression/4-Logistic/solution/notebook.ipynb @@ -0,0 +1,1259 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 逻辑回归 - 第4课\n", + "\n", + "加载所需的库和数据集。将数据转换为包含数据子集的数据框:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
      0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
      1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
      2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
      \n", + "

      5 rows × 26 columns

      \n", + "
      " + ], + "text/plain": [ + " City Name Type Package Variety Sub Variety Grade Date \n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \\\n", + "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", + "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", + "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", + "\n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \\\n", + "1 270.0 280.0 270.0 ... NaN NaN NaN \n", + "2 160.0 160.0 160.0 ... NaN NaN NaN \n", + "3 160.0 160.0 160.0 ... NaN NaN NaN \n", + "4 90.0 100.0 90.0 ... NaN NaN NaN \n", + "\n", + " Appearance Storage Crop Repack Trans Mode Unnamed: 24 Unnamed: 25 \n", + "0 NaN NaN NaN E NaN NaN NaN \n", + "1 NaN NaN NaN E NaN NaN NaN \n", + "2 NaN NaN NaN N NaN NaN NaN \n", + "3 NaN NaN NaN N NaN NaN NaN \n", + "4 NaN NaN NaN N NaN NaN NaN \n", + "\n", + "[5 rows x 26 columns]" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "full_pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "\n", + "full_pumpkins.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      City NamePackageVarietyOriginItem SizeColor
      2BALTIMORE24 inch binsHOWDEN TYPEDELAWAREmedORANGE
      3BALTIMORE24 inch binsHOWDEN TYPEVIRGINIAmedORANGE
      4BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
      5BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
      6BALTIMORE36 inch binsHOWDEN TYPEMARYLANDmedORANGE
      \n", + "
      " + ], + "text/plain": [ + " City Name Package Variety Origin Item Size Color\n", + "2 BALTIMORE 24 inch bins HOWDEN TYPE DELAWARE med ORANGE\n", + "3 BALTIMORE 24 inch bins HOWDEN TYPE VIRGINIA med ORANGE\n", + "4 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "5 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "6 BALTIMORE 36 inch bins HOWDEN TYPE MARYLAND med ORANGE" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Select the columns we want to use\n", + "columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color']\n", + "pumpkins = full_pumpkins.loc[:, columns_to_select]\n", + "\n", + "# Drop rows with missing values\n", + "pumpkins.dropna(inplace=True)\n", + "\n", + "pumpkins.head()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 来看看我们的数据吧!\n", + "\n", + "通过使用 Seaborn 进行可视化\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHpCAYAAACVw6ZvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3klEQVR4nO3deVRU5f8H8PeFkQFZZXNQ2RQBwy3NNRVGMTCz3JW0JJcyjdwXLJcwBSszTcU0wKxccl9KyoVxS0VTEhXXRM1A+7qwmOz394eH+/M6A7IKV9+vc+7Jee6zfO7IkXfP3JkRRFEUQURERKRgRlVdABEREVF5MdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdDQc0sURaSnp4MfxUREpHwMNPTcysjIgLW1NTIyMqq6FCIiKicGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8VVUXQFTVrq5qAkszZnsipXIbdqWqS6BqgP+KExERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdCUU3BwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp8PPz8/g/MWHo0bN4ZGo8HcuXP1xvbv3x9t27ZFfn4+Zs2aJY1RqVRwc3PDuHHjkJmZKavP0PH4c0dERM8+BpqnRBRFDBw4EGFhYRgzZgySkpKg0+ng7OwMPz8/bNmyBQDg7e0NjUYDnU4njc3IyMCJEyfg4OAg+2V9+PBhZGdno3PnzlJbYGAgUlJSkJycjJ07d0Kr1WLMmDF47bXXkJeXJ6spLCwMKSkpsiMkJETWJyMjA1988UWJr3PTpk3SXPHx8QCA3bt3S2379+/H8uXL8cknnyAxMVEat379euzYsQPfffcdjI2NAQA+Pj7StcybNw/Lly/HhAkTZOs9Onfh0bJlyxLXS0REzwZVVRfwvPjpp5+wYcMGbNu2DT169JDaly9fjtu3b2P48OHo2rUrzM3NodVqodPpMHXqVADAwYMH4enpiU6dOkGn08HPzw/Aw10gV1dXuLu7S/Op1WpoNBoAQN26ddGiRQu0bdsWXbp0wcqVKzF8+HCpr6WlpdS3KCEhIfjyyy8xevRoODo6PvE6bW1tpT8X7ibZ2dnJ1nn99dfx5ptvYsiQITh69Cju3buH0aNHIyIiAl5eXlI/lUoljRswYAD27NmDbdu24ZtvvpH6PD43ERE9n7hD85SsXr0anp6esjBTaMKECbh9+zZ27doFANBqtTh48KC0oxIXFwc/Pz/4+voiLi5OGhcXFwetVvvEtTt37oxmzZph06ZNpa47KCgIHh4eCAsLK/XY4ixcuBC3b9/G7NmzMWrUKDRu3Fhvd+hxZmZmyMnJKfOa2dnZSE9Plx1ERPRs4A5NBdixYwcsLCxkbfn5+bLHFy5cQKNGjQyOL2y/cOECgIeB5v79+zh27BjatWsHnU6HSZMmoUOHDhgyZAiysrIgiiLi4+NlOy7F8fb2xqlTp2RtU6ZMwccffyxr27lzJzp27Cg9LryvpkePHhg3bhwaNGhQovWexMrKCjExMXjllVdgbm6OU6dOQRCEIvv/8ccfWL16tezlNQBo3749jIzkubzwPpvHhYeH45NPPtFrd307EVZWVmW4CiIiqi4YaCqAVqtFZGSkrO3o0aMYPHiwrE0UxRLN5+HhgXr16kGn08HHxwcnT56Er68vHB0d4eLigsOHD0MURWRnZ5doh6Zw7ccDw6RJkxAcHCxrq1u3rt7YgIAAdOjQAdOnT8fq1atLtF5JdO7cGW3btkXz5s3h6uqqdz4xMREWFhbIz89HTk4OunfvjsWLF8v6rFu3rsig+LjQ0FCMHz9eepyeng5nZ+fyXQQREVULDDQVwNzcHB4eHrK2v//+W/bY09MTSUlJBscXtnt6ekptfn5+iIuLQ9OmTdGwYUPp/pXCl51EUYSHh0eJfyEnJSXJ7rUBAHt7e726ixIREYF27dph0qRJJepfUiqVCiqV4R9DLy8vbNu2DSqVCnXq1IGJiYleH2dn5xJfg1qthlqtLle9RERUPfEemqdk4MCBuHjxIrZv3653bv78+bCzs0PXrl2lNq1Wi99//x27du2SbgIGIN0YrNPpSrw7s3fvXiQmJqJPnz5lrr9169bo3bu3dKPy02BiYgIPDw+4ubkZDDNERESFuEPzlAwcOBDr16/HkCFD8Pnnn6NLly5IT0/HkiVLsG3bNqxfvx7m5uZS/8L7aKKjo7FixQqp3dfXV7pvZtSoUXrrZGdnIzU1Ffn5+bh58yZiY2MRHh6O1157DW+//basb0ZGBlJTU2VtNWvWLPJ+kjlz5sDHx6fIHZWqcPv2bb1rsLGxgampaRVVREREVYE7NE+JIAj46aefMG3aNCxYsABeXl7o2LEjrl69Cp1Op/fhfO7u7nB1dUVGRgZ8fX2ldhcXF9SpUwc5OTmynZtCsbGxcHJygpubGwIDAxEXF4dFixZh69at0ue7FJoxYwacnJxkx+TJk4u8Bk9PTwwdOlT24X5Vzd/fX+8aCj/Th4iInh+CWNI7VYmeMenp6bC2tkZaWhrf5UREpHDcoSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVTVXUBRFXt6qomsDRjtq8obsOuVHUJRPQc4r/iREREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0z5ng4GAIggBBEGBiYgIPDw+EhYUhLy8PAKDT6SAIAu7duyd7bOhITU3Vm3/WrFlF9i88/P39ERAQoDd26dKlsLGxwd9//623bu3atdGnTx/89ddfUn83NzeD80dERFTOk0dERNWWqqoLoKcvMDAQMTExyM7Oxi+//ILRo0ejRo0aCA0NLXLM+fPnYWVlJWtzdHTU6zdx4kSMHDlSetyqVSu8++67GDFihNSWm5uLJk2a4JtvvsF7770HALhy5QomT56MyMhI1KtXD5cuXZLWtbS0xMWLF/Huu++iR48eOHXqFIyNjQEAYWFhsrkBwNLSspTPCBERKR0DzXNIrVZDo9EAAN5//31s3rwZ27ZtKzbQODo6wsbG5olzW1hYwMLCQnpsbGwMS0tLab1CCxcuxAcffIBXXnkFbm5uGDZsGF555RW89dZbBtd1cnLCjBkzMGjQIFy6dAleXl4AYHDuomRnZyM7O1t6nJ6eXqJxRERU/THQEMzMzHD79u2nuuaQIUOwefNmDB06FL1798bp06dx5syZYseYmZkBAHJycsq0Znh4OD755BO9dssOi2BlaQ7bBv5lmpeIiKoe76F5jomiiN27d+PXX39F586di+1br149affFwsICPj4+5V5/+fLlOH36NMaOHYvly5fDwcGhyL4pKSn44osvULduXWl3BgCmTJkiq8vCwgIHDhwwOEdoaCjS0tKk4/r16+W+BiIiqh64Q/Mc2rFjBywsLJCbm4uCggK8+eabmDVrVrFjDhw4ILs3pUaNGuWuw9HREe+99x62bNmCnj17GuxTr149iKKI//77D82aNcPGjRthYmIinZ80aRKCg4NlY+rWrWtwLrVaDbVaXe66iYio+mGgeQ5ptVpERkbCxMQEderUgUr15B8Dd3f3Et1DU1oqlarY9Q8cOAArKys4OjoavNnX3t4eHh4eFV4XEREpCwPNc8jc3FwxIaCyghQRET1bGGioRG7duoWsrCxZm52dXYW89FQeGRkZep+HU7NmTb23mBMR0bONNwVTiXh5ecHJyUl2/PHHH1VdFmbMmKFX1+TJk6u6LCIiesoEURTFqi6CqCqkp6fD2toaV05u4du2iYgUjjs0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/LZteu7Z1tfy27mJiBSOOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmYlz/Zuw65UYjVERFQW3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCml4OBgCIIgHXZ2dggMDMSpU6dk/QRBwJYtW2RtcXFxeO211+Dg4ABTU1M0aNAAAwYMwP79+4td083NDYIgYO3atXrnfHx8IAgCVq5cqXcuPDwcxsbG+Pzzzw3Om5qaipCQENSvXx9qtRrOzs7o0aMH9uzZI1v7q6++kh6LooiJEyfCysoKOp2uyFqLOt58803UrFkTq1evlo0rKChA+/bt0bdvXwDy59nExAQeHh4ICwtDXl4eAECn0xW5RmpqarHPJxERPXsYaMogMDAQKSkpSElJwZ49e6BSqfDaa68VO2bp0qXo0qUL7OzssG7dOpw/fx6bN29G+/btMW7cuCeu6ezsjJiYGFnbkSNHkJqaCnNzc4NjoqOjMXnyZERHR+udS05ORsuWLbF37158/vnnSExMRGxsLLRaLUaPHm1wvvz8fAwbNgyrVq1CXFwc/Pz89PocO3ZMem42btwIADh//rzUFhkZiYiICISEhCAlJUUaN3/+fPz1119YtmyZ1Fb4PF+8eBETJkzArFmz9MLZo3MXHo6OjoafRCIiemapqroAJVKr1dBoNAAAjUaDqVOnomPHjvj333/h4OCg1//atWsYO3Ysxo4diy+//FJ2rmnTpvjwww+fuOagQYOwYMECXL9+Hc7OzgAeBpZBgwZh1apVev337duHBw8eICwsDKtWrcLvv/+O9u3bS+dHjRoFQRAQHx8vC0Q+Pj4YOnSo3nzZ2dkICgrC8ePHceDAAXh5eRms89Hrt7W1BQA4OjrCxsZGag8JCcGWLVswYsQI7NixA+fOncOMGTOwbt062NvbS/0efZ7ff/99bN68Gdu2bUNoaKjU5/G5iYjo+cQdmnLKzMzEDz/8AA8PD9jZ2Rnss3HjRuTm5mLy5MkGzwuC8MR1ateujYCAAHz33XcAgP/++w/r1q0zGD4AICoqCkFBQahRowaCgoIQFRUlnbtz5w5iY2MxevRog7s7jweEzMxMdO/eHWfPnsWhQ4eKDDMlJQgCYmJicODAAaxYsQLBwcEYOHAgXn/99WLHmZmZIScnp8zrZmdnIz09XXYQEdGzgTs0ZbBjxw5YWFgAAO7fvw8nJyfs2LEDRkaG8+GFCxdgZWUl7TYAD0POkCFDpMeHDx9GkyZNil136NChmDBhAj766CNs2LABDRo0QPPmzfX6paenY8OGDTh8+DAAYPDgwejYsSMWLlwICwsLXLp0CaIowtvbu0TXO3v2bFhaWiIpKcngDlRZuLq64quvvsLw4cNRr149/Pbbb0X2FUURe/bswa+//oqQkBDZuXr16unNe+bMGYPzhIeH45NPPtFrt+ywCFaW+sHOtoF/SS6FiIiqAe7QlIFWq0VCQgISEhIQHx+PgIAAdOvWDVevXi1yzOO7MAEBAUhISMDPP/+M+/fvIz8//4nrdu/eHZmZmdi/fz+io6OL3J1Zs2YNGjRogGbNmgEAmjdvDldXV6xbtw7Aw4BQGq+88gru37+PuXPnlmrck7zzzjtwcnJCSEgIrKys9M4XBkdTU1N069YNAwYMwKxZs2R9Dhw4IP1dJCQk4JdffilyvdDQUKSlpUnH9evXK/R6iIio6nCHpgzMzc3h4eEhPf72229hbW2NFStW4NNPP9Xr37BhQ6SlpSE1NVXapbGwsICHhwdUqpL/FahUKrz11luYOXMmjh49is2bNxvsFxUVhTNnzsjmLigoQHR0NIYNG4aGDRtCEAScO3euROt26dIFISEheOONN1BQUICFCxeWuOYnUalURT4HWq0WkZGRMDExQZ06dQz2c3d3L/E9NGq1Gmq1ujzlEhFRNcUdmgogCAKMjIzw4MEDg+f79u2LGjVqYN68eeVea+jQodi3bx/eeOMN1KpVS+98YmIijh8/Dp1OJ9u50Ol0OHz4MM6dOwdbW1sEBARgyZIluH//vt4c9+7d02t75ZVXsH37dqxYsaJENzFXhMLg6OLiUqrgR0REzx/+liiD7Oxs6bNO7t69i8WLFyMzMxM9evQw2N/FxQXz58/HmDFjcOfOHQQHB8Pd3R137tzBDz/8AAAwNjYu0dqNGjXC//73P9SsWdPg+aioKLRu3RqdOnXSO9eqVStERUXh888/x5IlS/Dyyy+jdevWCAsLQ9OmTZGXl4ddu3YhMjISSUlJeuP9/f2xY8cO9OjRAwUFBVi8eHGJaq5Mt27dQlZWlqzNzs4ONWrUqKKKiIioKnCHpgxiY2Ph5OQEJycntGnTBseOHcP69esNfi5LoZCQEPz222/4999/0bdvXzRs2BCvvvoqrly5gtjY2CfeEPwoOzs7mJmZ6bXn5OTghx9+QJ8+fQyO69OnD1atWoXc3FzUr18fJ06cgFarxYQJE9C4cWN07doVe/bsQWRkZJFrd+7cGT///DNWrlyJ0aNHl/p+nIrm5eUl/V0UHn/88UeV1kRERE+fIFb1bySiKpKeng5ra2tcObmF73IiIlI47tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeLx27bpuWdbXwsrK6uqLoOIiMqBOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmaVl+3dhl2ptLmJiOgh7tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0ChMcHAwBEHAyJEj9c6NHj0agiAgODhY6tuzZ0+9sREREbJxW7ZsgSAI0mOdTgdBEHDv3j29Nby9vaFWq5GamirrW9yh0+kwa9YsNG/eXG++5ORkCIKAhIQEg/M5ODjg1VdfRWJiosHn4fEjMDCwBM8iERE9axhoFMjZ2Rlr167FgwcPpLasrCysXr0aLi4uxY41NTXFvHnzcPfu3VKve/DgQTx48AB9+/bFd999BwBo3749UlJSpKN///4IDAyUtbVv377Ua50/fx4pKSn49ddfkZ2dje7duyMnJ0fW5/F1UlJSsGbNmlKvRUREysdAo0AtWrSAs7MzNm3aJLVt2rQJLi4uePHFF4sd6+/vD41Gg/Dw8FKvGxUVhTfffBNvvfUWoqOjAQAmJibQaDTSYWZmBrVaLWszMTEp9VqOjo7QaDRo0aIFxo4di+vXr+PcuXOyPo+vo9FoUKtWrVKvRUREysdAo1BDhw5FTEyM9Dg6OhrvvPPOE8cZGxtj7ty5+Prrr/H333+XeL2MjAysX78egwcPRteuXZGWloYDBw6UqfbSSEtLw9q1awGgTMHoUdnZ2UhPT5cdRET0bFBVdQFUNoMHD0ZoaCiuXr0KADh06BDWrl0LnU73xLG9evVC8+bNMXPmTERFRZVovbVr16Jhw4bw8fEBAAwcOBBRUVHo2LFjma+hOPXq1QMA3L9/HwDw+uuvw9vbW9Znx44dsLCwkLVNmzYN06ZNMzhneHg4PvnkE712yw6LYGVpXhFlG3Tn8u4n9rFt4F9p6xMRPQ8YaBTKwcEB3bt3x8qVKyGKIrp37w57e/sSj583bx46d+6MiRMnlqh/dHQ0Bg8eLD0ePHgwfH198fXXX8PS0rLU9T/JgQMHULNmTRw5cgRz587FsmXL9PpotVpERkbK2mxtbYucMzQ0FOPHj5cep6enw9nZueKKJiKiKsNAo2BDhw7FBx98AABYsmRJqcZ26tQJAQEBCA0Nld4VVZSzZ8/iyJEjiI+Px5QpU6T2/Px8rF27FiNGjHjielZWVkhLS9NrL3wnlbW1tazd3d0dNjY28PLywq1btzBgwADs379f1sfc3BweHh5PXLuQWq2GWq0ucX8iIlIO3kOjYIGBgcjJyUFubi4CAgJKPT4iIgLbt2/H4cOHi+0XFRWFTp064c8//0RCQoJ0jB8/vsQvWXl5eeHvv//GzZs3Ze0nTpyAqalpse/OGj16NE6fPo3NmzeXaC0iInr+cIdGwYyNjZGUlCT9ubSaNGmCQYMGYdGiRUX2yc3Nxffff4+wsDA0btxYdm748OH48ssvcebMGenemqIEBATAy8sLQUFB+PTTT6HRaHDixAl8/PHHGDNmTLH116xZEyNGjMDMmTPRs2dP6TNzsrOzpc/DKaRSqUr10hsRET0buEOjcFZWVrCysirz+LCwMBQUFBR5ftu2bbh9+zZ69eqld65Ro0Zo1KhRiXZpVCoVfvvtN7i4uCAoKAiNGzfGzJkzMWbMGMyePfuJ4z/44AMkJSVh/fr1UltsbCycnJxkR4cOHZ44FxERPXsEURTFqi6CqCqkp6fD2toaV05uqdR3OZUE3+VERFQ+3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFU1V1AURVzba+tlzfWE5ERFWPOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4pQ40cXFxlVEHERERUZmVOtAEBgaiQYMG+PTTT3H9+vXKqImIiIioVEodaG7cuIEPPvgAGzZsQP369REQEICffvoJOTk5lVEfUaW7uqoJkqPcq7oMIiIqh1IHGnt7e4wbNw4JCQk4evQoPD09MWrUKNSpUwcffvgh/vzzz8qok4iIiKhI5bopuEWLFggNDcUHH3yAzMxMREdHo2XLlujYsSPOnDlTUTUSERERFatMgSY3NxcbNmzAq6++CldXV/z6669YvHgxbt68iUuXLsHV1RX9+vWr6FqJiIiIDCr1l1OGhIRgzZo1EEURb731Fj777DM0btxYOm9ubo4vvvgCderUqdBCiYiIiIpS6kBz9uxZfP311+jduzfUarXBPvb29nx7NxERET01pX7JaebMmejXr59emMnLy8P+/fsBACqVCr6+vhVTIREREdETlDrQaLVa3LlzR689LS0NWq22QooiIiIiKo1SBxpRFCEIgl777du3YW5uXiFFEREREZVGie+h6d27NwBAEAQEBwfLXnLKz8/HqVOn0L59+4qvkIiIiOgJShxorK2tATzcobG0tISZmZl0zsTEBG3btsWIESMqvkIiIiKiJyhxoImJiQEAuLm5YeLEiXx5iYiIiKqNMr3LSa1WY/fu3fjmm2+QkZEBAPjnn3+QmZlZ4QUSERERPUmpP4fm6tWrCAwMxLVr15CdnY2uXbvC0tIS8+bNQ3Z2NpYtW1YZdRIREREVqdQ7NGPGjMFLL72Eu3fvyu6j6dWrF/bs2VOhxREREVHpzZo1C82bN6/qMp6qUgeaAwcO4OOPP4aJiYms3c3NDTdu3KiwwoiIiJ5XqampCAkJQf369aFWq+Hs7IwePXpw46AYpQ40BQUFyM/P12v/+++/YWlpWSFFPY+e9MPr5uaGr776Surv5uYGQRBw5MgR2Txjx46Fn5+f9HjWrFkQBAGCIEClUsHe3h6dOnXCV199hezsbNlYPz8/qe+jx8iRI6U+j7ZbWVmhVatW2Lp1q2yelStXGpzH1NRU6hMcHIyePXsW+Xw8fr1FWbNmDYyNjTF69Ogn9iUiUoLk5GS0bNkSe/fuxeeff47ExETExsZCq9U+1X/rcnNzn9paFaHUgeaVV16R/aIRBAGZmZmYOXMmXn311Yqs7blR1h9eU1NTTJky5Ynz+/j4ICUlBdeuXUNcXBz69euH8PBwtG/fXrqpu9CIESOQkpIiOz777DNZn5iYGKSkpOD48eN4+eWX0bdvXyQmJsr6WFlZ6c1z9erVUjwrJRMVFYXJkydjzZo1yMrKqvD5iYietlGjRkEQBMTHx6NPnz7w9PSEj48Pxo8fL/1P7LVr1/DGG2/AwsICVlZW6N+/P27evFnknAUFBQgLC0O9evWgVqvRvHlzxMbGSueTk5MhCALWrVsHX19fmJqa4scff6z0a61IpQ408+fPx6FDh/DCCy8gKysLb775pvRy07x58yqjxmdeSX54DXn33Xdx5MgR/PLLL8XOr1KpoNFoUKdOHTRp0gQhISHYt28fTp8+rfd3VrNmTWg0GtlhZWUl62NjYwONRgNPT0/Mnj0beXl5el9GKgiC3jy1a9cu5TNTvCtXruD333/H1KlT4enpiU2bNhXbPzs7G+np6bKDiKg6uXPnDmJjYzF69GiDH49iY2ODgoICvPHGG7hz5w727duHXbt24a+//sKAAQOKnHfhwoWYP38+vvjiC5w6dQoBAQF4/fXXcfHiRVm/qVOnYsyYMUhKSkJAQECFX19lKnWgqVevHv78809MmzYN48aNw4svvoiIiAicPHkSjo6OlVHjM60kP7xFcXd3x8iRIxEaGoqCgoJSrevt7Y1u3bo9MQQUJy8vD1FRUQCgd0/V0xATE4Pu3bvD2toagwcPlmopSnh4OKytraXD2dkZAGDZYRGs/FY8jZKJiIp16dIliKIIb2/vIvvs2bMHiYmJWL16NVq2bIk2bdpg1apV2LdvH44dO2ZwzBdffIEpU6Zg4MCB8PLywrx589C8eXO9l/bHjh2L3r17w93dHU5OThV5aZWu1IEGePh//IMHD8Znn32GpUuXYvjw4bJ3PFHJleSHtzgff/wxrly5UqatQW9vbyQnJ8vali5dCgsLC9nx+NxBQUGwsLCAWq3GuHHj4Obmhv79+8v6pKWl6c3TrVu3UtdYlIKCAqxcuRKDBw8GAAwcOBAHDx7ElStXihwTGhqKtLQ06bh+/XqF1UNEVBFEUXxin6SkJDg7O0v/UwYAL7zwAmxsbJCUlKTXPz09Hf/88w9efvllWfvLL7+s1/+ll14qY+VVr0SfQ7Nt2zZ069YNNWrUwLZt24rt+/rrr1dIYc+LkvzwFsfBwQETJ07EjBkzit1uLGrtx79odNCgQfjoo49kbY+/VLRgwQL4+/vjr7/+wrhx47Bo0SLY2trK+lhaWuLEiROytooMvbt27cL9+/el+7bs7e3RtWtXREdHY/bs2QbHqNVq2XeQERFVNw0bNoQgCDh37lyVrK/kbwEoUaDp2bMnUlNT4ejoWOw7UwRBMPgOKCpaRfzwjh8/HkuXLsXSpUtLNS4pKQnu7u6yNmtra3h4eBQ7TqPRwMPDAx4eHoiJicGrr76Ks2fPyl5yNDIyeuI85REVFYU7d+7IQlJBQQFOnTqFTz75BEZGZdp8JCKqUra2tggICMCSJUvw4Ycf6gWMe/fuoVGjRrh+/TquX78u7dKcPXsW9+7dwwsvvKA3p5WVFerUqYNDhw7B19dXaj906BBat25duRf0FJXoX/2CggLpl1VBQUGRB8NM6T36w3v//n298/fu3XviHBYWFpg+fTrmzJmj966lopw7dw6xsbHo06dPaUuWad26NVq2bIk5c+aUa57SuH37NrZu3Yq1a9ciISFBOk6ePIm7d+/it99+e2q1EBFVtCVLliA/Px+tW7fGxo0bcfHiRSQlJWHRokVo164d/P390aRJEwwaNAgnTpxAfHw83n77bfj6+hb5ktGkSZMwb948rFu3DufPn8fUqVORkJCAMWPGPOWrqzyl+uqD3NxcBAYGYtmyZWjYsGFl1fTcWbJkCV5++WW0bt0aYWFhaNq0KfLy8rBr1y5ERkYafE30ce+++y4WLFiA1atXo02bNrJzeXl5SE1NRUFBAW7fvg2dTodPP/0UzZs3x6RJk2R9//vvP6Smpsra1Go1atWqVeTaY8eORa9evTB58mTUrVsXwMOXsx6fBwAcHR2l3ZO0tDQkJCTIztvZ2Un/x3Hjxg29866urvj+++9hZ2eH/v37671k9uqrryIqKgqBgYFF1ktEVJ3Vr18fJ06cwJw5czBhwgSkpKTAwcEBLVu2RGRkJARBwNatWxESEoJOnTrByMgIgYGB+Prrr4uc88MPP0RaWhomTJiAW7du4YUXXsC2bduerd/lYinZ29uLFy5cKO0weoJ//vlHHD16tOjq6iqamJiIdevWFV9//XUxLi5OFEVRdHV1FRcsWCD1f/yxKIri6tWrRQCir6+v1DZz5kwRgAhANDY2Fm1tbcUOHTqICxYsELOysmTjfX19pb6PHgEBAVIfAOLmzZtl4woKCkRvb2/x/fffF0VRFGNiYgzOA0BMSUkRRVEUhwwZYvD8sGHDpOszdP77778XmzRpIo4aNcrg87hu3TrRxMRE/Pfff5/4nKelpYkAxCsnt4i3L+16Yn8iIqq+BFEs3V2p48aNg1qtRkRERPmSFFEVS09Ph7W1Na6c3AIrS3PYNvCv6pKIiKiMSv1t23l5eYiOjsbu3bvRsmVLvRuWvvzyyworjoiIiKgkSh1oTp8+jRYtWgAALly4IDv3+P0MRERERE9DqQPN4x9xT0RERFTV+GEdREREpHil3qEBgOPHj+Onn37CtWvXkJOTIztXnu8GIiIiIiqLUu/QrF27Fu3bt0dSUhI2b96M3NxcnDlzBnv37oW1tXVl1EhERERUrFIHmrlz52LBggXYvn07TExMsHDhQpw7dw79+/eHi4tLZdRIREREVKxSB5rLly+je/fuAAATExPcv38fgiBg3LhxWL58eYUXSERERPQkpb6HplatWtL3BdWtWxenT59GkyZNcO/ePfz3338VXiAREdHTlBzl/uROFcRt2JWnttazrsQ7NKdPnwYAdOrUCbt27QIA9OvXD2PGjMGIESMQFBSELl26VE6VREREJLl+/TqGDh2KOnXqwMTEBK6urhgzZgxu374t9fHz84MgCBAEAaampvD09ER4eDgMfUHA4cOHYWxsLL0C86jk5GQIggBHR0e9L0Bu3rw5Zs2aJWu7dOkShg4dChcXF6jVatStWxddunTBjz/+iLy8PKlfYW2PH2vXri3Tc1LiQNO0aVO0adMGTZo0Qb9+/QAAH330EcaPH4+bN2+iT58+iIqKKlMRREREVDJ//fUXXnrpJVy8eBFr1qzBpUuXsGzZMuzZswft2rXDnTt3pL4jRoxASkoKzp8/j9DQUMyYMQPLli3TmzMqKgohISHYv38//vnnH4PrZmRk4Isvvii2tvj4eLRo0QJJSUlYsmQJTp8+DZ1Oh+HDhyMyMhJnzpyR9Y+JiUFKSors6NmzZ+mfFAAl/i6nAwcOICYmBhs2bEBBQQH69OmD4cOHo2PHjmVamKiqFX6XU1paGqysrKq6HCKqJqr7S07dunXD6dOnceHCBZiZmUntqampaNCgAd5++21ERkbCz88PzZs3x1dffSX1admyJVxdXWUfsZKZmQknJyccP34cM2fORNOmTTFt2jTpfHJyMtzd3TFp0iRERkbi8uXLcHR0BPBwh6Znz56YNWsWRFGEj48Patasifj4eBgZ6e+ZiKIofauAIAjYvHlzmQPM40q8Q9OxY0dER0cjJSUFX3/9NZKTk+Hr6wtPT0/MmzcPqampFVIQERERGXbnzh38+uuvGDVqlCzMAIBGo8GgQYOwbt06vZeVRFHEgQMHcO7cOZiYmMjO/fTTT/D29oaXlxcGDx6M6Ohogy9LBQUFwcPDA2FhYQZrS0hIQFJSEiZOnGgwzACV+xVJpX6Xk7m5Od555x3s27cPFy5cQL9+/bBkyRK4uLjg9ddfr4waiYiICMDFixchiiIaNWpk8HyjRo1w9+5d/PvvvwCApUuXwsLCAmq1Gp06dUJBQQE+/PBD2ZioqCgMHjwYABAYGIi0tDTs27dPb25BEBAREYHly5fj8uXLeucLv9/Ry8tLart16xYsLCykY+nSpbIxQUFBsvMWFha4du1aKZ6R/1eurz7w8PDAtGnT8PHHH8PS0hI///xzeaYjIiKiEijh3SIYNGgQEhIScOjQIXTr1g0fffQR2rdvL50/f/484uPjERQUBABQqVQYMGBAkffEBgQEoEOHDpg+fXqJ1rezs0NCQgISEhJgY2Oj9+0CCxYskM4XHnXq1CnR3I8r01cfAMD+/fsRHR2NjRs3wsjICP3798ewYcPKOh0RERE9gYeHBwRBQFJSEnr16qV3PikpCbVq1YKDgwMAwNraGh4eHgAevrTk4eGBtm3bwt/fH8DD3Zm8vDxZiBBFEWq1GosXLzb4DQARERFo164dJk2aJGtv2LAhgIch6cUXXwQAGBsbS+urVPqRQ6PRSOfLq1Q7NP/88w/mzp0LT09P+Pn54dKlS1i0aBH++ecfrFixAm3btq2QooiIiEifnZ0dunbtiqVLl+LBgweyc6mpqfjxxx8xYMAAg/eqWFhYYMyYMZg4cSJEUUReXh5WrVqF+fPny3ZI/vzzT9SpUwdr1qwxWEPr1q3Ru3dvTJ06Vdb+4osvwtvbG1988QUKCgoq7qJLqMQ7NN26dcPu3bthb2+Pt99+G0OHDpW9TkZERESVb/HixWjfvj0CAgLw6aefwt3dHWfOnMGkSZNQt25dzJkzp8ix7733HmbPno2NGzdCpVLh7t27GDZsmN5OTOFHsYwcOdLgPHPmzIGPj49s10UQBMTExKBr1654+eWXERoaikaNGiE3Nxf79+/Hv//+C2NjY9k89+7d03tTkaWlJczNzUv7tABiCfXo0UPcsmWLmJeXV9IhRNVaWlqaCEBMS0ur6lKIiEolOTlZHDJkiFi7dm2xRo0aorOzsxgSEiL+73//k/r4+vqKY8aM0Rv73nvviT4+PuJrr70mvvrqqwbnP3r0qAhA/PPPP8UrV66IAMSTJ0/K+rz77rsiAHHmzJmy9vPnz4tDhgwR69WrJ6pUKtHa2lrs1KmT+M0334i5ublSPwAGj/Dw8DI9JyX+HBqiZw0/h4aI6NlRrnc5EREREVUHZX6XE9Gz4uqqJrA008/2/NI4IiLl4A4NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/h4aIiOgRdy7vfmpr2Tbwf2prPeu4Q0NERKQQy5Ytg6WlJfLy8qS2zMxM1KhRA35+frK+Op0OgiDg8uXLcHNzw1dffaU336xZs9C8eXODj93c3CAIQpFHcHAwABR5fu3atRV89cXjDg0REZFCaLVaZGZm4vjx42jbti0A4MCBA9BoNDh69CiysrJgamoKAIiLi4OLiwsaNGhQprWOHTuG/Px8AMDvv/+OPn364Pz589J335mZmUl9Y2JiEBgYKBtvY2NTpnXLioGGiIhIIby8vODk5ASdTicFGp1OhzfeeAN79+7FkSNHpJ0anU4HrVZb5rUcHBykP9va2gIAHB0dDQYVGxsbaDSaMq9VEfiSExERkYJotVrExcVJj+Pi4uDn5wdfX1+p/cGDBzh69Gi5Ao3SMNAQEREpiFarxaFDh5CXl4eMjAycPHkSvr6+6NSpE3Q6HQDg8OHDyM7OlgWaKVOmwMLCQnbMnTu3QmoKCgrSm/vatWsVMndJ8SUnIiIiBfHz88P9+/dx7Ngx3L17F56ennBwcICvry/eeecdZGVlQafToX79+nBxcZHGTZo0SbqRt9CiRYuwf//+cte0YMEC+PvL37FVp06dcs9bGtyheQYEBwcbvMP80qVLAIDw8HAYGxvj888/1xu7cuVK2euhK1eulMYbGRnByckJAwYMwLVr1yCKIvz9/REQEKA3z9KlS2FjYwN/f/9i74p3c3OTxpSmrpJe8+M3pRERPWs8PDxQr149xMXFIS4uDr6+vgAeBghnZ2f8/vvviIuLQ+fOnWXj7O3t4eHhITsK740pL41Goze3SvV090wYaJ4RgYGBSElJkR3u7u4AgOjoaEyePBnR0dElmsvKygopKSm4ceMGNm7ciPPnz6Nfv34QBAExMTE4evQovvnmG6n/lStXMHnyZHz99dfYuHGjrAbg4d3vhY+PHTsmjSttXSW55jVr1pRpLiIiJdFqtdDpdNDpdLK3a3fq1Ak7d+5EfHz8c3X/DMBA88xQq9XQaDSyw9jYGPv27cODBw8QFhaG9PR0/P7770+cSxAEaDQaODk5oX379hg2bBji4+ORnp4OZ2dnLFy4EBMnTsSVK1cgiiKGDRuGV155BW+99Rasra1lNQD/f/e7RqOR7povS10lueZatWqVeh4iIqXRarU4ePAgEhISpB0aAPD19cU333yDnJycpxpo7t27h9TUVNlx//79p7Y+wHtonnlRUVEICgpCjRo1EBQUhKioKLRv377E42/duoXNmzfD2NgYxsbGAIAhQ4Zg8+bNGDp0KHr37o3Tp0/jzJkzT7WussjOzkZ2drb0OD09vVLXIyJlUsKn92q1Wjx48ADe3t6oXbu21O7r64uMjAzp7d1PyzvvvKPXFh4ejqlTpz61GiCS4g0ZMkQ0NjYWzc3NpaNv375iWlqaaGZmJiYkJIiiKIonT54ULSwsxIyMDGlsTEyMaG1tLXsMQDQ3Nxdr1qwpAhABiB9++KFszZs3b4r29vaikZGRuHnz5iJrA6B3vix1leSazc3NxTlz5hQ5ZubMmdL1PHpcOblFvH1pV5HjiIio+uMOzTNCq9UiMjJSemxubo41a9agQYMGaNasGQCgefPmcHV1xbp16zBs2LAi57K0tMSJEyeQm5uLnTt34scff8ScOXNkfRwdHfHee+9hy5Yt6NmzZ6lqLWtdj3v8mgEUe4NbaGgoxo8fLz0ufAmNiIiUj4HmGWFubg4PDw9ZW1RUFM6cOSO707ygoADR0dHFBgcjIyNprkaNGuHy5ct4//338f3338v6qVSqMt3FXta6HmfomoujVquhVqtLVSsRESkDA80zKjExEcePH4dOp5PtWty5cwd+fn44d+4cvL29SzTX1KlT0aBBA4wbNw4tWrSoNnUREREVYqB5RkVFRaF169bo1KmT3rlWrVohKirK4Oe/GOLs7IxevXphxowZ2LFjx1OrKz8/HwkJCbI+arUajRo1AvDwJt/U1FTZeZVKBXt7+3LVSEREysO3bT+DcnJy8MMPP6BPnz4Gz/fp0werVq1Cbm5uieccN24cfv75Z8THxz+1ujIzM/Hiiy/Kjh49ekj9Y2Nj4eTkJDs6dOhQ5vqIiEi5BFEUxaougqgqpKenw9raGldOboGVpbki3qpJRESGcYeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUT1XVBRBVNdv6WlhZWVV1GUREVA7coSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgoefe1VVNkBzlXtVlEBFROTDQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQKFRwcDAEQZAOOzs7BAYG4tSpU7J+giBgy5YteuOTk5MhCAISEhL0zvn5+WHs2LHSYzc3N9lahUdERESR8xZ3zJ49G+bm5rh06ZJs7D///INatWph8eLFeuuam5ujRYsWWL9+vdR/1qxZBuf39vYuxTNJRETPAgYaBQsMDERKSgpSUlKwZ88eqFQqvPbaa5WyVlhYmLRW4RESEqLXz9nZWdZnwoQJ8PHxkbVNnDgRAQEBCA4ORkFBgTR2xIgRaNmyJUaPHq237smTJ9GqVSsMGDAAv//+u3T+8blTUlJw8ODBSnkOiIio+lJVdQFUdmq1GhqNBgCg0WgwdepUdOzYEf/++y8cHBwqdC1LS0tpreIYGxvL+llYWEClUumN/eabb+Dj44Mvv/wSEydOxMqVK3Ho0CEkJiZCEAS9dTUaDZYsWYIffvgB27dvR/v27QHA4NxFyc7ORnZ2tvQ4PT29ROOIiKj6Y6B5RmRmZuKHH36Ah4cH7OzsqrqcJ3JwcMDy5csRFBSEZs2aYdy4cVi4cCGcnZ2LHKNSqVCjRg3k5OSUac3w8HB88skneu2ubyfCysqqTHMSEVH1wJecFGzHjh2wsLCAhYUFLC0tsW3bNqxbtw5GRhX/1zplyhRprcLjwIED5ZqzZ8+e6N+/PwIDA+Hr64shQ4YU2TcnJwfh4eFIS0tD586dpfbExES9ukaOHGlwjtDQUKSlpUnH9evXy1U/ERFVH9yhUTCtVovIyEgAwN27d7F06VJ069YN8fHxcHV1rdC1Jk2ahODgYFlb3bp1yz3v9OnTsWrVKnz88ccGz0+ZMgUff/wxsrKyYGFhgYiICHTv3l067+XlhW3btsnGFLXbolaroVary10zERFVPww0CmZubg4PDw/p8bfffgtra2usWLECn376abFjC3/pp6Wl6Z27d+8erK2tZW329vaytSqKSqWS/fdxhUHKwsICtWvXlt1fAwAmJiaVUhcRESkLX3J6hgiCACMjIzx48OCJfW1tbWFvb48//vhD1p6eno5Lly7B09OzssoslcIgpdFo9MIMERFRIe7QKFh2djZSU1MBPHzJafHixcjMzESPHj1k/a5cuaL3eTMNGzbE+PHjMXfuXNSuXRtt27bF7du3MXv2bDg4OKB3796y/hkZGdJahWrWrFnlN9Pm5eXp1SUIAmrXrl1FFRERUVVgoFGw2NhYODk5AXj49mZvb2+sX78efn5+sn7jx4/XG3vgwAFMnjwZFhYWmDdvHi5fvgxbW1u8/PLLiIuLg5mZmaz/jBkzMGPGDFnbe++9h2XLllXsRZXSmTNnpOegkFqtRlZWVhVVREREVUEQRVGs6iKIqkJ6ejqsra2RlpZW5TtNRERUPryHhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+Bhp57V1c1QXKUe1WXQURE5cBAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BTCsHBwejZs6esbcOGDTA1NcX8+fOlPoIgICIiQtZvy5YtEARBerxy5UrY2NgYXEcQBGzZskXWtnHjRvj5+cHa2hoWFhZo2rQpwsLCcOfOnSLnS0pKgrOzM/r164ecnJxi13y09sePwMDAIsfMmjULzZs312tPTk6GIAhISEiQPTZ0HDlyRDb2wYMHsLW1hb29PbKzs/XmdnNzk8aamZnBzc0N/fv3x969e4usk4iInm0MNOXw7bffYtCgQYiMjMSECROkdlNTU8ybNw93796tkHU++ugjDBgwAK1atcLOnTtx+vRpzJ8/H3/++Se+//57g2OOHTuGjh07IjAwEOvWrYOJiUmJ1goMDERKSorsWLNmTYVcBwDs3r1bb/6WLVvK+mzcuBE+Pj7w9vbWC3aFwsLCkJKSgvPnz2PVqlWwsbGBv78/5syZU2G1EhGRcqiqugCl+uyzzzBz5kysXbsWvXr1kp3z9/fHpUuXEB4ejs8++6xc68THx2Pu3Ln46quvMGbMGKndzc0NXbt2xb179/TG7N27F2+88QZGjRqFefPmlWo9tVoNjUZTrpqLY2dn98T5o6KiMHjwYIiiiKioKAwYMECvj6WlpTSPi4sLOnXqBCcnJ8yYMQN9+/aFl5dXpdRPRETVE3doymDKlCmYPXs2duzYoRdmAMDY2Bhz587F119/jb///rtca/3444+wsLDAqFGjDJ5//CWkzZs3o3v37vj4449LHWaqg8uXL+Pw4cPo378/+vfvjwMHDuDq1aslGjtmzBiIooitW7caPJ+dnY309HTZQUREzwYGmlLauXMnPvvsM2zduhVdunQpsl+vXr3QvHlzzJw5s1zrXbx4EfXr10eNGjWe2DczMxP9+vXDpEmTMGXKlDKtt2PHDlhYWMiOuXPnFjsmMTFRb4yPj4/Bvu3bt9fr+6jo6Gh069YNtWrVgq2tLQICAhATE1Oi2m1tbeHo6Ijk5GSD58PDw2FtbS0dzs7OAADXtxPhNuxKidYgIqLqiS85lVLTpk3xv//9DzNnzkTr1q31fiE/at68eejcuTMmTpxY5vVEUSxxXzMzM3To0AErVqxAUFAQGjVqVOr1tFotIiMjZW22trbFjvHy8sK2bdtkbTdu3ICfn59e33Xr1hVZV35+Pr777jssXLhQahs8eDAmTpyIGTNmwMjoyflbFEXZzdePCg0Nxfjx46XH6enpUqghIiJlY6Appbp162LDhg3QarUIDAzEzp07YWlpabBvp06dEBAQgNDQUAQHB8vOWVlZ4f79+ygoKJD9oi68J8ba2hoA4OnpiYMHDyI3N/eJuzTGxsbYsmULevfuDa1Wi7i4uFKHGnNzc3h4eJRqjImJid4Ylcrwj5azs3OR8//666+4ceOG3j0z+fn52LNnD7p27VpsHbdv38a///4Ld3d3g+fVajXUanWxcxARkTLxJacycHV1xb59+5CamorAwEBkZGQU2TciIgLbt2/H4cOHZe1eXl7Iy8uT3tZc6MSJEwAeBhkAePPNN5GZmYmlS5canP/xm4LVajU2bdqEVq1aQavV4uzZs6W8uqoTFRWFgQMHIiEhQXYMHDgQUVFRTxy/cOFCGBkZ6b21noiInn3coSkjZ2dn6HQ6aLVaBAQEIDY2FlZWVnr9mjRpgkGDBmHRokWydh8fH7zyyisYOnQo5s+fj/r16+P8+fMYO3YsBgwYgLp16wIA2rRpg8mTJ2PChAm4ceMGevXqhTp16uDSpUtYtmwZOnToIHv3E/Aw1GzcuBH9+vWDVqvF3r17pXta8vPz9UKUWq2WdnKys7ORmpoqO69SqWBvb1+u56vQ7du39ea3sbFBRkYGtm/fjm3btqFx48ay82+//TZ69eqFO3fuSC9/ZWRkIDU1Fbm5ubhy5Qp++OEHfPvttwgPDy/1DhMRESkfA0051KtXTxZqfv31V4P9wsLCsG7dOr32devWYebMmXjvvffwzz//oF69eujVqxemT58u6zdv3jy0bNkSS5YswbJly1BQUIAGDRqgb9++GDJkiME1TUxMsGHDBvTv318KNcDDG4dffPFFWd8GDRrg0qVLAIDY2Fg4OTnJznt5eeHcuXMle1KewN/fX69tzZo1uHHjBszNzQ3eaN2lSxeYmZnhhx9+wIcffggAmDFjBmbMmAETExNoNBq0bdsWe/bsgVarrZA6iYhIWQSxNHedEj1D0tPTYW1tjbS0NIO7a0REpBy8h4aIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUr0oDTXBwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp+P8tZfkufy0cePXrOhw83NDQDg5+dn8PzIkSMNXkdxcwqCAK1Wixo1auDgwYOycffv30f9+vUxceJEvXVNTU3xwgsvYOnSpVL/lStXGpzf1NTUYF1ERPTsUsQOjSiKGDhwIMLCwjBmzBgkJSVBp9PB2dkZfn5+2LJlCwDA29sbGo0GOp1OGpuRkYETJ07AwcFBFhQOHz6M7OxsdO7cWWoLDAxESkoKkpOTsXPnTmi1WowZMwavvfYa8vLyZDWFhYUhJSVFdoSEhMj6ZGRk4IsvvijxdZa3/tJauHChrH4AiImJkR4fO3ZM6jtixAi96/3ss88Mzvton6+++gpWVlaytu3btyMkJATBwcG4f/++NG7y5MkwMzPDp59+qrfu2bNn0b9/f4wePRpr1qyRzj8+d0pKCq5evVrm54SIiJRJEYHmp59+woYNG7Bq1SoMHz4c7u7uaNasGZYvX47XX38dw4cPl34xarVaWSA4ePAgPD090aNHD1m7TqeDq6sr3N3dpTa1Wg2NRoO6deuiRYsWmDZtGrZu3YqdO3di5cqVsposLS2h0Whkh7m5uaxPSEgIvvzyS9y6davE11qe+kvL2tpaVj8A2NjYSI8dHBykvjVr1tS7XisrK4PzPtrH2toagiDI2iwsLDB37lyYmJhgypQpAIC4uDh8++23WLVqlWyHpXDd+vXrY9asWWjYsCG2bdsmnX98bo1Gg9q1axusKzs7G+np6bKDiIieDYoINKtXr5Z+qT9uwoQJuH37Nnbt2gXgYSA4ePCgtKMSFxcHPz8/+Pr6Ii4uThoXFxcHrVb7xLU7d+6MZs2aYdOmTaWuOygoCB4eHggLCyvxmIquv7oyNTXFqlWrsHz5cmzduhVDhw7FtGnT0LJly2LHmZmZIScnp0xrhoeHw9raWjqcnZ0BAHf+isOdy7sr9CAioqerygPNjh07YGFhITu6desm63PhwgU0atTI4PjC9gsXLgB4GAju378vvVyi0+ng6+uLTp064ejRo8jKysKDBw8QHx9f4kDg7e2N5ORkWduUKVP06j5w4ICsT+F9NcuXL8fly5dLtFZ56i/Jc1lWS5cu1Zv7xx9/LNecL730EkJDQ9G7d2/Y2dnho48+KrJvfn4+fvjhB5w6dUr2MltaWlqJrzk0NBRpaWnScf369XLVT0RE1YeqqgvQarWIjIyUtR09ehSDBw+WtYmiWKL5PDw8UK9ePeh0Ovj4+ODkyZPw9fWFo6MjXFxccPjwYYiiiOzs7BIHGlEUIQiCrG3SpEkIDg6WtdWtW1dvbEBAADp06IDp06dj9erVlVp/SZ/Lshg0aJBe4CjqpZ3SmD59OsLCwjB16lSoVPo/jkuXLsW3336LnJwcGBsbY9y4cXj//fel85aWljhx4oRsjJmZmcG11Go11Gp1uWsmIqLqp8oDjbm5OTw8PGRtf//9t+yxp6cnkpKSDI4vbPf09JTa/Pz8EBcXh6ZNm6Jhw4ZwdHQEAOllG1EU4eHhIb3k8CRJSUl696rY29vr1V2UiIgItGvXDpMmTSpR/7LWX5Lnsqysra1LfL2lURhiDIUZ4P+DlJmZGZycnGBkJN9UNDIyqpS6iIhIWar8JaeSGDhwIC5evIjt27frnZs/fz7s7OzQtWtXqU2r1eL333/Hrl274OfnJ7V36tQJOp0OOp2uxLsze/fuRWJiIvr06VPm+lu3bo3evXtj6tSpJepfkfUrXWGQqlu3rl6YISIiKlTlOzQlMXDgQKxfvx5DhgzB559/ji5duiA9PR1LlizBtm3bsH79etk7jArvQ4mOjsaKFSukdl9fXwwfPhwAMGrUKL11srOzkZqaivz8fNy8eROxsbEIDw/Ha6+9hrffflvWNyMjA6mpqbK2mjVrFvnOnzlz5sDHx6fInYhHlbX+yvTff//pXa9arUatWrWeah2PE0VRry4AcHR0ZAAiInqOKOJffEEQ8NNPP2HatGlYsGABvLy80LFjR1y9ehU6nU7vA+Xc3d3h6uqKjIwM+Pr6Su0uLi6oU6cOcnJyZDsfhWJjY+Hk5AQ3NzcEBgYiLi4OixYtwtatW2FsbCzrO2PGDDg5OcmOyZMnF3kNnp6eGDp0qOzD8YpS1vor04oVK/SuNygo6KnWYEh6erpeXU5OTqV6qzwRESmfIJb0bluiZ0x6ejqsra1x5eQWWFmaP3lAKdg28K/Q+YiIqHiK2KEhIiIiKg4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESmeIr5tm6gy2dbXFvkt6UREpAzcoSEiIiLFY6AhIiIixWOgISIiIsXjPTT03BJFEQCQnp5exZUQ0dNmaWkJQRCqugyqQAw09Ny6ffs2AMDZ2bmKKyGipy0tLY1vBnjGMNDQc8vW1hYAcO3aNVhbW1dxNSWXnp4OZ2dnXL9+XTH/ICuxZkCZdSuxZuDp121paVnpa9DTxUBDzy0jo4e3kFlbWyvqH/5CVlZWiqtbiTUDyqxbiTUDyq2bqh5vCiYiIiLFY6AhIiIixWOgoeeWWq3GzJkzoVarq7qUUlFi3UqsGVBm3UqsGVBu3VR9CGLhe1eJiIiIFIo7NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDT03FqyZAnc3NxgamqKNm3aID4+vspq2b9/P3r06IE6depAEARs2bJFdl4URcyYMQNOTk4wMzODv78/Ll68KOtz584dDBo0CFZWVrCxscGwYcOQmZlZaTWHh4ejVatWsLS0hKOjI3r27Inz58/L+mRlZWH06NGws7ODhYUF+vTpg5s3b8r6XLt2Dd27d0fNmjXh6OiISZMmIS8vr9LqjoyMRNOmTaUPcGvXrh127txZrWt+XEREBARBwNixY6t13bNmzYIgCLLD29u7WtdMCiYSPYfWrl0rmpiYiNHR0eKZM2fEESNGiDY2NuLNmzerpJ5ffvlF/Oijj8RNmzaJAMTNmzfLzkdERIjW1tbili1bxD///FN8/fXXRXd3d/HBgwdSn8DAQLFZs2bikSNHxAMHDogeHh5iUFBQpdUcEBAgxsTEiKdPnxYTEhLEV199VXRxcREzMzOlPiNHjhSdnZ3FPXv2iMePHxfbtm0rtm/fXjqfl5cnNm7cWPT39xdPnjwp/vLLL6K9vb0YGhpaaXVv27ZN/Pnnn8ULFy6I58+fF6dNmybWqFFDPH36dLWt+VHx8fGim5ub2LRpU3HMmDFSe3Wse+bMmaKPj4+YkpIiHf/++2+1rpmUi4GGnkutW7cWR48eLT3Oz88X69SpI4aHh1dhVQ89HmgKCgpEjUYjfv7551LbvXv3RLVaLa5Zs0YURVE8e/asCEA8duyY1Gfnzp2iIAjijRs3nkrdt27dEgGI+/btk2qsUaOGuH79eqlPUlKSCEA8fPiwKIoPg5yRkZGYmpoq9YmMjBStrKzE7Ozsp1K3KIpirVq1xG+//bba15yRkSE2bNhQ3LVrl+jr6ysFmupa98yZM8VmzZoZPFddaybl4ktO9NzJycnBH3/8AX9/f6nNyMgI/v7+OHz4cBVWZtiVK1eQmpoqq9fa2hpt2rSR6j18+DBsbGzw0ksvSX38/f1hZGSEo0ePPpU609LSAPz/l37+8ccfyM3NldXt7e0NFxcXWd1NmjRB7dq1pT4BAQFIT0/HmTNnKr3m/Px8rF27Fvfv30e7du2qfc2jR49G9+7dZfUB1fu5vnjxIurUqYP69etj0KBBuHbtWrWvmZSJX05Jz53//e9/yM/Pl/0jCQC1a9fGuXPnqqiqoqWmpgKAwXoLz6WmpsLR0VF2XqVSwdbWVupTmQoKCjB27Fi8/PLLaNy4sVSTiYkJbGxsiq3b0HUVnqssiYmJaNeuHbKysmBhYYHNmzfjhRdeQEJCQrWtee3atThx4gSOHTumd666Ptdt2rTBypUr4eXlhZSUFHzyySfo2LEjTp8+XW1rJuVioCGichs9ejROnz6NgwcPVnUpJeLl5YWEhASkpaVhw4YNGDJkCPbt21fVZRXp+vXrGDNmDHbt2gVTU9OqLqfEunXrJv25adOmaNOmDVxdXfHTTz/BzMysCiujZxFfcqLnjr29PYyNjfXeTXHz5k1oNJoqqqpohTUVV69Go8GtW7dk5/Py8nDnzp1Kv6YPPvgAO3bsQFxcHOrVqyerOycnB/fu3Su2bkPXVXiuspiYmMDDwwMtW7ZEeHg4mjVrhoULF1bbmv/44w/cunULLVq0gEqlgkqlwr59+7Bo0SKoVCrUrl27Wtb9OBsbG3h6euLSpUvV9rkm5WKgoeeOiYkJWrZsiT179khtBQUF2LNnD9q1a1eFlRnm7u4OjUYjqzc9PR1Hjx6V6m3Xrh3u3buHP/74Q+qzd+9eFBQUoE2bNpVSlyiK+OCDD7B582bs3bsX7u7usvMtW7ZEjRo1ZHWfP38e165dk9WdmJgoC2O7du2ClZUVXnjhhUqp25CCggJkZ2dX25q7dOmCxMREJCQkSMdLL72EQYMGSX+ujnU/LjMzE5cvX4aTk1O1fa5Jwar6rmSiqrB27VpRrVaLK1euFM+ePSu+++67oo2NjezdFE9TRkaGePLkSfHkyZMiAPHLL78UT548KV69elUUxYdv27axsRG3bt0qnjp1SnzjjTcMvm37xRdfFI8ePSoePHhQbNiwYaW+bfv9998Xra2tRZ1OJ3tb7n///Sf1GTlypOji4iLu3btXPH78uNiuXTuxXbt20vnCt+W+8sorYkJCghgbGys6ODhU6ttyp06dKu7bt0+8cuWKeOrUKXHq1KmiIAjib7/9Vm1rNuTRdzlV17onTJgg6nQ68cqVK+KhQ4dEf39/0d7eXrx161a1rZmUi4GGnltff/216OLiIpqYmIitW7cWjxw5UmW1xMXFiQD0jiFDhoii+PCt29OnTxdr164tqtVqsUuXLuL58+dlc9y+fVsMCgoSLSwsRCsrK/Gdd94RMzIyKq1mQ/UCEGNiYqQ+Dx48EEeNGiXWqlVLrFmzptirVy8xJSVFNk9ycrLYrVs30czMTLS3txcnTJgg5ubmVlrdQ4cOFV1dXUUTExPRwcFB7NKlixRmqmvNhjweaKpj3QMGDBCdnJxEExMTsW7duuKAAQPES5cuVeuaSbkEURTFqtkbIiIiIqoYvIeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiKgUkpOTIQgCEhISqroUInoEAw0REREpHgMNESlKQUEBPvvsM3h4eECtVsPFxQVz5swBACQmJqJz584wMzODnZ0d3n33XWRmZkpj/fz8MHbsWNl8PXv2RHBwsPTYzc0Nc+fOxdChQ2FpaQkXFxcsX75cOu/u7g4AePHFFyEIAvz8/CrtWomo5BhoiEhRQkNDERERgenTp+Ps2bNYvXo1ateujfv37yMgIAC1atXCsWPHsH79euzevRsffPBBqdeYP38+XnrpJZw8eRKjRo3C+++/j/PnzwMA4uPjAQC7d+9GSkoKNm3aVKHXR0Rlo6rqAoiISiojIwMLFy7E4sWLMWTIEABAgwYN0KFDB6xYsQJZWVlYtWoVzM3NAQCLFy9Gjx49MG/ePNSuXbvE67z66qsYNWoUAGDKlClYsGAB4uLi4OXlBQcHBwCAnZ0dNBpNBV8hEZUVd2iISDGSkpKQnZ2NLl26GDzXrFkzKcwAwMsvv4yCggJpd6WkmjZtKv1ZEARoNBrcunWr7IUTUaVjoCEixTAzMyvXeCMjI4iiKGvLzc3V61ejRg3ZY0EQUFBQUK61iahyMdAQkWI0bNgQZmZm2LNnj965Ro0a4c8//8T9+/eltkOHDsHIyAheXl4AAAcHB6SkpEjn8/Pzcfr06VLVYGJiIo0louqDgYaIFMPU1BRTpkzB5MmTsWrVKly+fBlHjhxBVFQUBg0aBFNTUwwZMgSnT59GXFwcQkJC8NZbb0n3z3Tu3Bk///wzfv75Z5w7dw7vv/8+7t27V6oaHB0dYWZmhtjYWNy8eRNpaWmVcKVEVFoMNESkKNOnT8eECRMwY8YMNGrUCAMGDMCtW7dQs2ZN/Prrr7hz5w5atWqFvn37okuXLli8eLE0dujQoRgyZAjefvtt+Pr6on79+tBqtaVaX6VSYdGiRfjmm29Qp04dvPHGGxV9iURUBoL4+AvKRERERArDHRoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUrz/A+sUfVTiRBWAAAAAAElFTkSuQmCC", + "text/plain": [ + "
      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "# Specify colors for each values of the hue variable\n", + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# Plot a bar plot to visualize how many pumpkins of each variety are orange or white\n", + "sns.catplot(\n", + " data=pumpkins, y=\"Variety\", hue=\"Color\", kind=\"count\",\n", + " palette=palette, \n", + ")" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 数据预处理\n", + "\n", + "让我们对特征和标签进行编码,以便更好地绘制数据并训练模型\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['med', 'lge', 'sml', 'xlge', 'med-lge', 'jbo', 'exjbo'],\n", + " dtype=object)" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the different values of the 'Item Size' column\n", + "pumpkins['Item Size'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OrdinalEncoder\n", + "# Encode the 'Item Size' column using ordinal encoding\n", + "item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']]\n", + "ordinal_features = ['Item Size']\n", + "ordinal_encoder = OrdinalEncoder(categories=item_size_categories)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "# Encode all the other features using one-hot encoding\n", + "categorical_features = ['City Name', 'Package', 'Variety', 'Origin']\n", + "categorical_encoder = OneHotEncoder(sparse_output=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_MICHIGANcat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIA
      21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
      31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.01.0
      43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
      53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
      61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
      \n", + "

      5 rows × 48 columns

      \n", + "
      " + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_MICHIGAN cat__Origin_NEW JERSEY \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NEW YORK cat__Origin_NORTH CAROLINA cat__Origin_OHIO \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_PENNSYLVANIA cat__Origin_TENNESSEE cat__Origin_TEXAS \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VERMONT cat__Origin_VIRGINIA \n", + "2 0.0 0.0 \n", + "3 0.0 1.0 \n", + "4 0.0 0.0 \n", + "5 0.0 0.0 \n", + "6 0.0 0.0 \n", + "\n", + "[5 rows x 48 columns]" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.compose import ColumnTransformer\n", + "ct = ColumnTransformer(transformers=[\n", + " ('ord', ordinal_encoder, ordinal_features),\n", + " ('cat', categorical_encoder, categorical_features)\n", + " ])\n", + "# Get the encoded features as a pandas DataFrame\n", + "ct.set_output(transform='pandas')\n", + "encoded_features = ct.fit_transform(pumpkins)\n", + "encoded_features.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIAColor
      21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
      31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.01.00
      43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
      53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
      61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
      \n", + "

      5 rows × 49 columns

      \n", + "
      " + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_NEW JERSEY cat__Origin_NEW YORK \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NORTH CAROLINA cat__Origin_OHIO cat__Origin_PENNSYLVANIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_TENNESSEE cat__Origin_TEXAS cat__Origin_VERMONT \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VIRGINIA Color \n", + "2 0.0 0 \n", + "3 1.0 0 \n", + "4 0.0 0 \n", + "5 0.0 0 \n", + "6 0.0 0 \n", + "\n", + "[5 rows x 49 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "# Encode the 'Color' column using label encoding\n", + "label_encoder = LabelEncoder()\n", + "encoded_label = label_encoder.fit_transform(pumpkins['Color'])\n", + "encoded_pumpkins = encoded_features.assign(Color=encoded_label)\n", + "encoded_pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['ORANGE', 'WHITE']" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the mapping between the encoded values and the original values\n", + "list(label_encoder.inverse_transform([0, 1]))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 分析特征与标签之间的关系\n" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAYpCAYAAABBoEQQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxVdf7H8ff1IuAI4oqAIqiIuORS5lqCpqnTkE2NOo6ZYlk5uOVYaf1m1MbCpkUrNbMhW8a0Tdtm1FwAzTRFpVxJDVMTRBNZHEGB8/vDh3e8gXpZT6f7ej4e5zH3nu853/vhjMGbL9/zPTbDMAwBAAAAFlLD7AIAAACAsiLEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcD7MLAAAAwK9fTEyMS8ctWbLEpeMIsQAAAKhy2dnZTu/PnTunDRs2KDo6ulz92QzDMCqjMAAAAMBVaWlp6tChg3Jzc8t1PnNiAQAAUO0qOo5KiAUAAIDlEGIBAABgOdzYBQAAgCqXlJTk9P7HH39UUVGREhMTZbPZHPsjIyNd6o8buwAAAFDl7Ha7DMNwCqw/ZxiGiouLXeqPkVgAAABUuaysrErtj5FYAAAAWA43dgEAAKDaLF++XHfddZfatm2rtm3b6q677tJ7771X5n4YiQUAAECVKy4u1pAhQ/Txxx+rVatWatOmjWw2m/bv36/U1FTdc889eu+991SjhmtjrMyJBQAAQJWbN2+ekpKS9Omnn+qOO+5wavvPf/6jkSNH6qWXXtIjjzziUn+MxAIAAKDKdejQQZMnT9aYMWNKbV+yZInmzp2rb7/91qX+CLEAAACocrVq1dKBAwcUEhJSavsPP/ygiIgInT9/3qX+uLELAAAAVc7b21vZ2dlXbc/JyVGtWrVc7o8QCwAAgCrXo0cPLViw4Krt8+fPV/fu3V3ujxu7AAAAUOX+9re/KTIyUqdPn9Zf/vIXtW3bVpK0f/9+vfDCC/r000+VmJjocn/MiQUAAEC1+Oyzz3T//ffr9OnTTvsbNmyof/7zn7rzzjtd7osQCwAAgGpz/vx5rV27Vt99950kKTw8XP379y/TfFiJEAsAAIBfiNTUVLVu3dqlY5kTCwAAAFMcPnxYCQkJji0jI0PFxcUunUuIBQAAQLU4cuSII7AmJibq+PHj8vHx0S233KLJkycrKirK5b6YTgAAAIAq17x5c/3www+qXbu2evXqpT59+igqKko333yzatQo+6qvhFgAAABUOQ8PD/n4+CgmJkb9+/fXrbfeKl9f33L3R4gFAABAlcvMzFRSUpKSkpKUmJio7777Tp07d1ZUVJT69OmjW265RT4+Pi73R4gtJ8MwlJubK19fX9lsNrPLAQAAsJSffvpJiYmJjlCbmpqqzp07a+vWrS6dz41d5ZSbmys/Pz9lZ2erTp06ZpfjVgzDUEFBgdllAKa48t+/l5cXv0SbhGsPVFyDBg3Uq1cvFRcXq7i4WNnZ2frmm29cPp8QC8spKCjQkCFDzC4DgBv74IMP5O3tbXYZgOUcO3ZMSUlJ2rhxozZu3KgffvhB3bp1U9++ffXOO++oe/fuLvdFiAUAAECVa9GihU6cOKFu3bopKipKr732mnr06CFPT89y9UeIhaU9M2i/PO2uLYoM/BoUFNr05Oq2kqSnB+6Tlwe3NVSXC0U19MSqNmaXAVjW0aNHVbNmTRmGIcMwHNMIyosQC0vztBfzQxxuy8vD4N9/teIXZqAifvzxRyUmJiohIUHvvfeenn76aXl6eqpr167q06ePIiMj1bNnT3l5ebnUHyG2gljcAQAA/Npdvqm0InPBGzdurGHDhmnYsGGSLoXay0/vevvtt/X3v/9dnp6eOn/+vEv9EWIriLvkAQDAr93lm6o/++yzSuuzSZMmuvfee3XvvfdKujTdYP369S6fX/ZnfOnSnWVjxoxRUFCQPD09FRISokmTJumnn35yHBMVFSWbzSabzSZvb2+Fh4crLi6u1JHLLVu2yG6364477ijRduTIEdlsNvn7+ys3N9eprVOnTpo5c6bTvkOHDmnMmDFq1qyZvLy81KRJE912221aunSpCgsLHcddru3n2/Lly8tzSQAAAFABzZo1U0xMjMvHl3kk9vvvv1ePHj0UHh6uZcuWqXnz5tq7d68effRRrVq1Slu3blX9+vUlSWPHjtVTTz2lgoICbdiwQQ8++KDq1q2rcePGOfUZHx+vCRMmKD4+XidOnFBQUFCJz83NzdXzzz+vWbNmXbW2bdu2qV+/fmrXrp0WLFigiIgISVJycrIWLFig9u3bq2PHjo7jlyxZooEDBzr1Ubdu3bJeEgAAAFyHKwHVMAy9+eabLvVX5hAbGxsrT09PffHFF6pVq5akS8m5c+fOatmypZ588km9+uqrkqTf/OY3CggIcBQ+f/58rV271inE5uXl6b333lNycrIyMjL05ptv6oknnijxuRMmTNCLL76o2NhY+fv7l/pFjx49WuHh4dq8ebNq1PjfIHOrVq00fPjwEqPAdevWddRXXvn5+crPz69QHyibK683U5IBVJcrv9/wfR/upjL+zb/99tsaOHDgVW/cKigo0KpVq6omxJ45c0Zr1qzR008/7QiwlwUEBGjEiBF67733tHDhQqc2wzD05Zdf6sCBA2rVqpVT2/vvv6+IiAi1bt1a9957ryZPnqzp06eXeBLK8OHDtXbtWj311FOaP39+idpSUlK0f/9+LVu2zCnAXqkiT1cpKChwmv+ak5MjSXrwwQdVs2bNcveLirlQZJN3TZIsgKp3oeh/P0NGjhxpYiWAdb3xxhtq3LhxqW2nTp0q0+BimebEHjx4UIZhqE2b0tfJa9OmjbKysnTq1ClJ0sKFC+Xj4yMvLy/17t1bxcXFmjhxotM58fHxjgm9AwcOVHZ2tpKSkkr0bbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAAA/4+HhoaKioqu2FxYWym63u95feYpwdVmpESNG6Mknn1RWVpZmzJihnj17qmfPno721NRUbdu2TStXrrxUjIeHhg0bpvj4eEVFRZXob8CAAbrlllv017/+Ve++++51P79BgwZKSUmRdOlGswsXLji1z507V/369XPaV9p8XEmaPn26pkyZ4nifk5Oj4OBgLV68uNTpDag6+fn5jlEQTzujsACqx5Xfb9555x0eOwu3cuXP3vKqV6+eTp48edWsdfLkScd9Va4oU4gNCwuTzWbT/v379fvf/75E+/79+1WvXj01atRIkuTn56ewsDBJl6YNhIWFqXv37o7gGB8fr8LCQqcvxjAMeXl5af78+fLz8yvxGXPmzFGPHj306KOPOu2/PE0hNTVVnTt3liTZ7XbH53t4lPxSAwICHO3X4+XlVeocDm9vb76RmagCM0QAoEyu/H7D936g7Dp27KhVq1Y5ctrPrV69Wh06dHC5vzJNJ2jQoIH69++vhQsXlliINiMjQ0uXLtWwYcNKnXvq4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/++Qo9wgwAAACVb8SIEZozZ442bNhQoi0hIUHPPPOMhg8f7nJ/ZZ5OMH/+fPXs2VMDBgzQ7NmznZbYatKkiZ5++umrnvvQQw/p73//uz766CN5eHgoKytL999/f4kR13vuuUfx8fF6+OGHS+3n6aefVrt27ZxGV202m5YsWaL+/furV69emj59utq0aaOLFy9q48aNOnXqVIl5FmfPnlVGRobTPl9fX9WuXbuslwUAAADXcN9992nFihXq16+fbrjhBrVp00Y2m00HDhzQN998o9/+9rcaPXq0y/2V+WEHrVq1UnJyslq0aKGhQ4eqZcuWevDBB9WnTx9t2bLlmnMZ6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMKbHcQ/fu3bVjxw61bt1asbGxatu2rXr27Klly5Zp7ty5JdanjYmJUWBgoNP2yiuvlPWSAAAAwAUrV67Um2++qZCQEO3du1e7d+9WkyZN9M9//lOffvppmVaSshmu3qUFJzk5OfLz89PZs2dLDeKoOvn5+RoyZIgk6fnf7ZWXB/+E4T4KCm2a+nk7Sfz7r25XXvsPPviAObFwK4ZhqKCg4Bf1775cqxPgfyqy9iwq7kJRDUnMgYb7KCi0lfoaVe/S9xvAPdlstl9UgJUIsbC4J1aVvmYx4A6eXN3W7BIAwGXNmze/7jGGYejIkSMu9UeIBQAAQJU7evSonnrqKfn6+kqSTp8+reeee07PPvusJCkvL0//93//53J/zIktp8tzYrOzs1WnTh2zy3Erl+flAO7oyn//Xl5eTGkyCdceKDu73a4TJ044Hjv7/fffq2PHjsrNzZV06UmrAQEBLi+VykgsLOeXOC8HqE61atUyuwQAMB2z1AEAAGA5hFgAAACY4ufTcsoyTYcQCwAAgCr30EMP6Te/+Y3jfZMmTbRq1SrHe19fX8XFxbncHzd2lRM3dgEAAJiHG7sAAABQ5X744QeXjgsJCXHpOEIsAAAAqlyLFi1kGIZsNpuunAjw8/euLrFV5XNiFy1aJF9fXxUWFjr25eXlqWbNmoqKinI6NjExUTabTYcPH1ZoaKjmzZtXor+ZM2eqU6dOpb4PDQ2VzWa76jZ69GhJumr78uXLK/mrBwAAgCTt2rVLKSkpjv+9vO3cuVOPPfaYatWqJX9/f5f7q/KR2D59+igvL0/Jycnq3r27JGnTpk0KCAjQ119/rfz8fMeanwkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjrmrF65tuKSJUs0cOBAp/Pr1q1brs8FAADAtXXo0KHEvi+++ELTp0/XoUOH9Nhjj2nq1Kku91flIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFA+27dv17Rp0/Tll1/qwQcf1Jo1a9SwYcMy9VEtS2z16dNHCQkJjvcJCQmKiopSZGSkY//58+f19ddfVyjEAgAA4Jfr4MGDGjZsmHr27KnAwEAdOHBAr7zySpkDrFSNIXbz5s0qLCxUbm6udu3apcjISPXu3VuJiYmSpC1btqigoMApxD7++OPy8fFx2p555plKqWn48OEl+j569OhVjy8oKFBOTo7TBgAAANc8/PDDateunbKzs7V9+3b961//UvPmzcvdX7WsThAVFaVz585p+/btysrKUnh4uBo1aqTIyEjFxMQoPz9fiYmJatGihZo1a+Y479FHH3XcjHXZyy+/rI0bN1a4prlz56pfv35O+4KCgq56fFxcnGbNmlXhzwUAAHBHr7/+ury9vZWZmamYmJirHrdr1y6X+quWEBsWFqamTZsqISFBWVlZioyMlHQpNAYHB+urr75SQkKC+vbt63Rew4YNFRYW5rTv8lzXigoICCjR97VMnz5dU6ZMcbzPyclRcHBwpdQCAADwazdjxoxK7a/a1ont06ePEhMTlZWVpUcffdSxv3fv3lq1apW2bdumcePGVVc5Zebl5SUvLy+zywAAALCkv/3tb5XaX7WG2NjYWF28eNExEitJkZGRGj9+vC5cuFCtN3WdPXtWGRkZTvt8fX1Vu3btaqsBAAAA5VMtN3ZJl0Ls+fPnFRYWpsaNGzv2R0ZGKjc317EUV3WJiYlRYGCg0/bKK69U2+cDAACg/GzGlc/5gstycnLk5+en7Oxsx8MUAAAAUD2qbSQWAAAAqCyEWAAAAJju7NmzZbo/ihALAAAA0124cEFJSUkuH0+IBQAAgOVU2xJbvzaX74fj8bMAAMCd+Pr6ymazlfm8H3744Zrtp06dKlN/rE5QTt9//71atmxpdhkAAADVKjMzU40aNSrzeXa7XYZhyGazqbT4eXl/cXGxS/0xEltOlx9/e/ToUfn5+Zlcjfu5/NjfY8eOscSZCbj+5uL6m4drby6uv7kuX39PT89ynb9r165rtp85c0Z9+/Z1uT9CbDnVqHFpOrGfnx//IZmoTp06XH8Tcf3NxfU3D9feXFx/c5VnKoEkdejQ4ZrtmZmZZeqPG7sAAADwi1CWgEyIBQAAgOk8PT3Vtm1bl48nxJaTl5eXZsyYIS8vL7NLcUtcf3Nx/c3F9TcP195cXH9zVfX137Rpk06fPu3y8axOAAAAANPk5uZq0qRJevfddzVjxgxNnz7dpfO4sQsAAACmSEhI0JgxY1S/fn3t2LFD7dq1c/lcQiwAAACqXN++fZ3Why0sLNTWrVv1xBNP6G9/+5vsdnuZ+iPEAgAAoMp16tTJ6X1hYaH27Nmj/fv368yZM2V+gAJzYgEAAGCK48ePKyYmRt9++63mz5+vIUOGuHwuqxOU04IFCxQaGipvb29169ZN27ZtM7skt7Bx40ZFR0crKChINptNH3/8sdkluY24uDjdfPPN8vX1lb+/v+666y6lpqaaXZbbePXVV9WhQwfHIu89evTQqlWrzC7Lbc2ZM0c2m02TJ082uxS3MHPmTNlsNqctIiLC7LLcyo8//qh7771XDRo0UK1atXTDDTcoOTm5wv02bdpUa9eu1d/+9jfFxMRo6NChLp9LiC2H9957T1OmTNGMGTO0c+dOdezYUQMGDCjzkyZQdufOnVPHjh21YMECs0txO0lJSYqNjdXWrVu1du1aXbx4UbfffrvOnTtndmluoWnTppozZ4527Nih5ORk9e3bV4MHD9bevXvNLs3tbN++Xa+99tp1nz6EytWuXTulp6c7ti+//NLsktxGVlaWevXqpZo1a2rVqlXat2+fXnjhBdWrV6/SPiM2NlYpKSk6fvy4y+cwnaAcunXrpptvvlnz58+XJBUXFys4OFgTJkzQtGnTTK7OfdhsNq1cuVJ33XWX2aW4pVOnTsnf319JSUnq3bu32eW4pfr16+u5557T/fffb3YpbiMvL0833nijFi5cqNmzZ6tTp06aN2+e2WX96s2cOVMff/yxUlJSzC7FLU2bNk2bN2/Wpk2bqvyzDMNw+ald3NhVRhcuXNCOHTuc1jCrUaOG+vXrpy1btphYGVC9srOzJV0KUqheRUVF+uCDD3Tu3Dn16NHD7HLcSmxsrO644w7169dPs2fPNrsct3Lw4EEFBQXJ29tbPXr0UFxcnJo1a2Z2WW7h008/1YABAzRkyBAlJSWpSZMm+vOf/6yxY8eWqZ9Zs2Zd9xjDMDRz5kyX+iPEltHp06dVVFSkxo0bO+1v3LixDhw4YFJVQPUqLi7W5MmT1atXL7Vv397sctzG7t271aNHD+Xn58vHx0crV64s0yMaUTHLly/Xzp07tX37drNLcTvdunXTm2++qdatWys9PV2zZs3Srbfeqj179sjX19fs8n71vv/+e7366quaMmWKnnjiCW3fvl0TJ06Up6enRo0a5XI/n3zyieP1hQsXdODAAadpOZdXKyDEAqgysbGx2rNnD3PSqlnr1q2VkpKi7Oxsffjhhxo1apSSkpIIstXg2LFjmjRpktauXStvb2+zy3E7gwYNcrzu0KGDunXrppCQEL3//vtMp6kGxcXF6tKli5555hlJUufOnbVnzx4tWrSoTCF2586djtdpaWnq2LGj075Tp04pICDA5f64sauMGjZsKLvdrpMnTzrtP3nyZJkuPGBV48eP1+eff66EhAQ1bdrU7HLciqenp8LCwnTTTTcpLi5OHTt21EsvvWR2WW5hx44dyszM1I033igPDw95eHgoKSlJL7/8sjw8PFRUVGR2iW6lbt26Cg8P16FDh8wuxS0EBgaW+GW5TZs2Onr0aLn7tNvtKiwsdNp38eJF1ajhejQlxJaRp6enbrrpJq1fv96xr7i4WOvXr2duGn7VDMPQ+PHjtXLlSm3YsEHNmzc3uyS3V1xcrIKCArPLcAu33Xabdu/erZSUFMfWpUsXjRgxQikpKWV+0hAqJi8vT4cPH1ZgYKDZpbiFXr16lVhS8bvvvlNISEi5+wwKCtLFixe1Y8cOx77NmzeXaXCE6QTlMGXKFI0aNUpdunRR165dNW/ePJ07d04xMTFml/arl5eX5/Sbd1pamlJSUlS/fn0m+Fex2NhYvfvuu/rkk0/k6+urjIwMSZKfn59q1aplcnW/ftOnT9egQYPUrFkz5ebm6t1331ViYqLWrFljdmluwdfXt8T879q1a6tBgwbMC68GU6dOVXR0tEJCQnTixAnNmDFDdrtdw4cPN7s0t/DII4+oZ8+eeuaZZzR06FBt27ZNixcv1uLFi8vdp4eHh373u99p0KBBGj58uPLz87V06VI9+OCDrndioFxeeeUVo1mzZoanp6fRtWtXY+vWrWaX5BYSEhIMSSW2UaNGmV3ar15p112SsWTJErNLcwtjxowxQkJCDE9PT6NRo0bGbbfdZnzxxRdml+XWIiMjjUmTJpldhlsYNmyYERgYaHh6ehpNmjQxhg0bZhw6dMjsstzKZ599ZrRv397w8vIyIiIijMWLF1e4z8zMTGPYsGFGw4YNjaCgIOPhhx828vLyXD6fdWIBAABgOUwnAAAAQJX74YcfXDrO1bm2jMQCAACgytntdscTuUqLn5f3FxcXu9QfI7EAAACoFuvWrVPDhg0lScePH9fQoUP11VdfSZLOnDmjvn37utwXIRYAAADVol27do6nnvr4+Mhmszme2pWZmVmmvlgnFgAAAJZDiAUAAECVq+zbsAixAAAAqHI2m+26+0o75moIsQDgBo4cOSKbzaaUlBSzSwHgppYtW6a6des63rdo0UI5OTmO9w0aNNCWLVtc7o8QCwDlMHr0aN11112O91FRUZo8ebJp9aSlpelPf/qTgoKC5O3traZNm2rw4ME6cOCAJCk4OFjp6ek8IhWAaYYOHSovL6+rttvtdnXt2tXl/lidAAAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZd+OAQEBJhbKABUIkZiAaCCRo8eraSkJL300kuy2Wyy2Ww6cuSIJGnPnj0aNGiQfHx81LhxY40cOVKnT592nBsVFaUJEyZo8uTJqlevnho3bqzXX39d586dU0xMjHx9fRUWFqZVq1Zd9fP37t2rw4cPa+HCherevbtCQkLUq1cvzZ49W927d5dUcjrB6NGjHbVeuSUmJkqSCgoKNHXqVDVp0kS1a9dWt27dHG0A8EtAiAWACnrppZfUo0cPjR07Vunp6UpPT1dwcLDOnj2rvn37qnPnzkpOTtbq1at18uRJDR061On8t956Sw0bNtS2bds0YcIEjRs3TkOGDFHPnj21c+dO3X777Ro5cqT++9//lvr5jRo1Uo0aNfThhx+qqKjI5Zov15qenq5JkybJ399fERERkqTx48dry5YtWr58ub799lsNGTJEAwcO1MGDByt2sQCgkvDYWQAoh9GjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxl59WI12au9qgQQPdcMMNjn2Xn25zrafZxMbGKiMjQ0uXLlWPHj30wQcfqF27dlq7du01a9y1a5dGjhyp+fPnq1evXpKk3bt3q6ioSOHh4U61JyUlOdUNAGbixi4AqCJ5eXmKjo7Ws88+W6ItMDDQ8bpmzZpObTabzWnf5XUTi4uLr/l5vr6+io6OVnR0tGbPnq0BAwZo9uzZ6t+/f6nHZ2Rk6M4779QDDzyg+++/36luu92uHTt2yG63O53j4+NzzRoAoLoQYgGgEnh6epaYj3rjjTfqo48+UmhoqDw8qvfbrc1mU0REhL766qtS2/Pz8zV48GBFREToxRdfdGrr3LmzioqKlJmZqVtvvbU6ygWAMmM6AQBUgtDQUH399dc6cuSITp8+reLiYsXGxurMmTMaPny4tm/frsOHD2vNmjWKiYlx+QYsV6SkpGjw4MH68MMPtW/fPh06dEjx8fF64403NHjw4FLPeeihh3Ts2DG9/PLLOnXqlDIyMpSRkaELFy4oPDxcI0aM0H333acVK1YoLS1N27ZtU1xcnP79739XWt0AUBGMxAJAJZg6dapGjRqltm3b6vz580pLS1NoaKg2b96sxx9/XLfffrsKCgoUEhKigQMHqkaNyhtDaNq0qUJDQzVr1izHUlqX3z/yyCOlnpOUlKT09HS1bdvWaX9CQoKioqK0ZMkSzZ49W3/5y1/0448/qmHDhurevbt+97vfVVrdAFARrE4AAAAAy2E6AQAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBwPswsAAADAr19MTIxLxy1ZssSl42yGYRgVKQgAAAC4nrvvvtvx+ty5c9qwYYOio6Md+woKCrRq1SoVFxe71B8hFgAAANUqLS1NHTp0UG5urmPfqVOnFBAQoKKiIpf6YE4sAAAAqlXNmjV18eJFp335+fny8HB9pishtpwMw1BOTo4YyAYAACiboKAgGYahdevWOfb95z//UbNmzVzugxu7yik3N1d+fn46efKk6tSpY3Y5bsUwDBUUFEiSvLy8ZLPZTK7IfXH9AQDlUaNGDY0YMULR0dEaMGCAzp8/r3Xr1mnmzJku98Gc2HLKycmRn5+fBgwYoJo1a5pdDmCKDz74QN7e3maXAQCwoPPnz2vWrFlav369PD09deedd+rRRx9VjRquTRRgJBYAAADVrlatWpozZ065zyfEVtCM/t+pvo/ZVbiXgkKbnlzdVpL09MB98vLgjwnV6UJRDT2xqo3ZZQAALCYpKcml4yIjI106jhBbQTVrFMvLgzmBZvHyMAix1c619fuAXxvm4wMV07dvXxmGcc3/dgzDcHmdWEJsBV0o4psYALiDgoICDRkyRBLzwYHyyMrKqtT+CLEAAACocpW9mlO51ok9duyYxowZo6CgIHl6eiokJESTJk3STz/95DgmKipKNptNNptN3t7eCg8PV1xcXKnrqm7ZskV2u1133HFHibYjR47IZrPJ39/f6akOktSpU6cSSzEcOnRIY8aMUbNmzeTl5aUmTZrotttu09KlS1VYWOg47nJtP9+WL19enksCAACAa0hKSnJpc1WZR2K///579ejRQ+Hh4Vq2bJmaN2+uvXv36tFHH9WqVau0detW1a9fX5I0duxYPfXUUyooKNCGDRv04IMPqm7duho3bpxTn/Hx8ZowYYLi4+N14sQJBQUFlfjc3NxcPf/885o1a9ZVa9u2bZv69eundu3aacGCBYqIiJAkJScna8GCBWrfvr06duzoOH7JkiUaOHCgUx9169Yt6yUBAADAdZQ2J7a091U2JzY2Nlaenp764osvVKtWLUlSs2bN1LlzZ7Vs2VJPPvmkXn31VUnSb37zGwUEBEiSYmJiNH/+fK1du9YpxObl5em9995TcnKyMjIy9Oabb+qJJ54o8bkTJkzQiy++qNjYWPn7+5doNwxDo0ePVnh4uDZv3uy0xlirVq00fPjwEqPAdevWddQHwDVX/meUn59vXiFANbvy3ztLrAPlk5qaqsaNG0u69Nf2W265RceOHZPNZtOpU6cUHh7ucl9lCrFnzpzRmjVr9PTTTzsC7GUBAQEaMWKE3nvvPS1cuNCpzTAMffnllzpw4IBatWrl1Pb+++8rIiJCrVu31r333qvJkydr+vTpJe5cGz58uNauXaunnnpK8+fPL1FbSkqK9u/fr2XLll11kdyK3ElaUFDguCtVuvSwA8AdXXkz48iRI02sBDBPQUFBiZ+DAK6vTp06jrmxPj4+MgxDfn5+ki79oliWXxDLNCf24MGDMgxDbdqUvkZkmzZtlJWVpVOnTkmSFi5cKB8fH3l5eal3794qLi7WxIkTnc6Jj4/XvffeK0kaOHCgsrOzS50PYbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAABVrFyrE7iakkeMGKEnn3xSWVlZmjFjhnr27KmePXs62lNTU7Vt2zatXLnyUjEeHho2bJji4+MVFRVVor8BAwbolltu0V//+le9++671/38Bg0aKCUlRdKlG80uXLjg1D537lz169fPaV9p83Elafr06ZoyZYrjfU5ODkEWbsnT/r///t955x2WGYLbyM/Pd/z1wcvLy+RqAOup7Gk4ZQqxYWFhstls2r9/v37/+9+XaN+/f7/q1aunRo0aSZL8/PwUFhYm6dK0gbCwMHXv3t0RHOPj41VYWOgUHA3DkJeXl+bPn+8YXr7SnDlz1KNHDz366KNO+y9PU0hNTVXnzp0lSXa73fH5Hh4lv9SAgABH+/V4eXnxTQuQdOWsHG9vb0Is3BIPOgDK7uf/3dSsWVOhoaHXPOZayjSdoEGDBurfv78WLlyo8+fPO7VlZGRo6dKlGjZsWKkF+Pj4aNKkSZo6daoMw1BhYaHefvttvfDCC0pJSXFs33zzjYKCgrRs2bJSa+jatavuvvtuTZs2zWl/586dFRERoeeff97lu9oAAABQPbZs2aIGDRo43gcHB2v37t2O9/7+/kpPT3e5vzJPJ5g/f7569uypAQMGaPbs2U5LbDVp0kRPP/30Vc996KGH9Pe//10fffSRPDw8lJWVpfvvv7/EiOs999yj+Ph4Pfzww6X28/TTT6tdu3ZOo6s2m01LlixR//791atXL02fPl1t2rTRxYsXtXHjRp06dUp2u92pn7NnzyojI8Npn6+vr2rXrl3WywIAAIBr6Nq163WPKW0Fqqsp88MOWrVqpeTkZLVo0UJDhw5Vy5Yt9eCDD6pPnz7asmWLY43Y0tSvX1/33XefZs6cqfj4ePXr16/UKQP33HOPkpOT9e2335baT3h4uMaMGVNieZ/u3btrx44dat26tWJjY9W2bVv17NlTy5Yt09y5c0usTxsTE6PAwECn7ZVXXinT9bhyfiAA4NfLy8tLH3zwgT744AOmlwG/ADaDxe7KJScnR35+fkqeG6IGvsyNqk4FhTZN/bydJOn53+2Vlwf/hKvTldef58cDAMxSrtUJ8D8XimqooPD6x6HyFBTaSn2N6nGhqFxPqwYAoFIRYito1tpw1axZ0+wy3NaTq9uaXQIAAKgE//3vf/Xcc89pxowZLh3PkAoAAABMl5eXp1mzZrl8PCOxFfT22287Hp+G6mEYhuMRwF5eXqzXaCJubgEAVKay/EwnxFYQi72bg2eWm+fKXyIAAKhMZVlvgBALoEwKCgo0ZMgQSaxOAABwXYsWLa4ZUouKisrUHyEWQJlcuT5zfn4+IRYA4JLJkydfsz0vL0//93//53J/hFgAAABUuYkTJ16zPTMzs0whltUJAAAAYDmEWABlUlxcXOprAAAqqiyrExBiAZRJbm5uqa8BAKiICxcuqG/fvi4fX+UhdtGiRfL19VVh4f+ezZqXl6eaNWsqKirK6djExETZbDYdPnxYoaGhmjdvXon+Zs6cqU6dOpX6PjQ0VDab7arb6NGjJemq7cuXL6/krx4AAADX8/bbb6tDhw6y2+0un1PlN3b16dNHeXl5Sk5OVvfu3SVJmzZtUkBAgL7++munu5sTEhLUrFkztWzZslyftX37dsfyDF999ZXuuecepaamOh5GcOXaokuWLNHAgQOdzq9bt265PhcAAABld+rUKT300ENat26dXnjhBY0dO9blc6s8xLZu3VqBgYFKTEx0hNjExEQNHjxYGzZs0NatWx0jsomJierTp0+5P6tRo0aO1/Xr15ck+fv7lxpO69atq4CAgHJ/FgAAAFz380fKFhYW6rXXXlP79u21e/duhYSElKm/alliq0+fPkpISNC0adMkXRpxfeyxx1RUVKSEhARFRUXp/Pnz+vrrrzVmzJjqKKnMCgoKnJ5SlJOTY2I1AAAA1vLJJ584vS8sLFRWVpbuvvvuMgdYqRpD7OTJk1VYWKjz589r165dioyM1MWLF7Vo0SJJ0pYtW1RQUOA0Evv444+XWC/swoULatu2bYVrGj58eIl5F/v27VOzZs1KPT4uLq7EbxAAAABwzc6dO0vs++yzzzR27FitWLFC8fHxat68ucv9VcvqBFFRUTp37py2b9+uTZs2KTw8XI0aNVJkZKRjXmxiYqJatGjhFCIfffRRpaSkOG0PP/xwpdQ0d+7cEn0HBQVd9fjp06crOzvbsR07dqxS6gAAAHBX0dHR2rt3rxo0aKAOHTpo4cKFLp9bLSOxYWFhatq0qRISEpSVlaXIyEhJUlBQkIKDg/XVV18pISGhxLIKDRs2VFhYmNO+y3NdKyogIKBE39fi5eUlLy+vSvlsAAAAXNKgQQN98MEHevfddxUbG6s///nPLp1XbevE9unTR4mJiUpMTHRaWqt3795atWqVtm3bVqGbugAAAGBdf/rTn7R3716Xj6+WkVjpUoiNjY3VxYsXHSOxkhQZGanx48frwoUL1Rpiz549q4yMDKd9vr6+ql27drXVAAAA4C6SkpJcOu5a0zuvVK0h9vz584qIiFDjxo0d+yMjI5Wbm+tYiqu6xMTElNgXFxfnWEEBAAAAladv374yDMPxaNkrX19mGIbLjzS3GYZhVHqVbiAnJ0d+fn7Kzs52PEwBcAdnzpzRqFGjJElvvfVWpc1TBwD8ul25POmRI0d0yy236Pjx4459p06dUnh4uOPBVddTbSOxAH4datSoUeprAACu5cpBP19fXxUXFzvtO3/+vMoytspPIAAAAFQrf39/nT9/Xunp6Y59Bw8elL+/v8t9MBILoEy8vb1LfQ0AgKtq166tTp066Q9/+IOmTp2q/Px8PfXUU7rllltc7oM5seXEnFi4K8MwHI9g9vLyKjEpHwAAV2zfvl333HOPfvzxR0lS27Zt9emnn7r81C5CbDllZ2erbt26OnbsGCEWAAC4DV9f30obwCgsLFRqaqo8PT0VFhZWpn4JseX0/fffq2XLlmaXAQAAUK0yMzPVqFEjs8tgTmx5XV5W6OjRo/Lz8zO5GveTk5Oj4OBgRsJNwvU3F9ffPFx7c3H9zXX5+nt6epbrfFemCRiGoSNHjrjUHyG2nC4vLeTn58d/SCaqU6cO199EXH9zcf3Nw7U3F9ffXOWdSnD06FE99dRT8vX1lSSdPn1azz33nJ599llJUl5env7v//7P5f4IsQAAAKgWDzzwgOPJrd9//73mzp2riRMnSro0TaEsIZZ1YgEAAGA5hNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrl/a9Wd1AgAAAFQ5u92uEydOOE0n6NSpk3JyciRdmk4QGBiooqIil/pjJBYAAABV7qGHHtJvfvMbx/smTZpo1apVjve+vr6Ki4tzuT9GYgEAAGA5jMQCAADAcgix5bRgwQKFhobK29tb3bp107Zt28wuyS1s3LhR0dHRCgoKks1m08cff2x2SW4jLi5ON998s3x9feXv76+77rpLqampZpflNl599VV16NDBsT5mjx49nP4Mh+o1Z84c2Ww2TZ482exS3MLMmTNls9mctoiICLPLcis//vij7r33XjVo0EC1atXSDTfcoOTkZFNrIsSWw3vvvacpU6ZoxowZ2rlzpzp27KgBAwYoMzPT7NJ+9c6dO6eOHTtqwYIFZpfidpKSkhQbG6utW7dq7dq1unjxom6//XadO3fO7NLcQtOmTTVnzhzt2LFDycnJ6tu3rwYPHqy9e/eaXZrb2b59u1577TV16NDB7FLcSrt27ZSenu7YvvzyS7NLchtZWVnq1auXatasqVWrVmnfvn164YUXVK9ePVPrYk5sOXTr1k0333yz5s+fL0kqLi5WcHCwJkyYoGnTpplcnfuw2WxauXKl7rrrLrNLcUunTp2Sv7+/kpKS1Lt3b7PLcUv169fXc889p/vvv9/sUtxGXl6ebrzxRi1cuFCzZ89Wp06dNG/ePLPL+tWbOXOmPv74Y6WkpJhdiluaNm2aNm/erE2bNpldihNGYsvowoUL2rFjh/r16+fYV6NGDfXr109btmwxsTKgemVnZ0u6FKRQvYqKirR8+XKdO3dOPXr0MLsctxIbG6s77rjD6WcAqsfBgwcVFBSkFi1aaMSIETp69KjZJbmNTz/9VF26dNGQIUPk7++vzp076/XXXze7LEJsWZ0+fVpFRUWONc4ua9y4sTIyMkyqCqhexcXFmjx5snr16qX27dubXY7b2L17t3x8fOTl5aWHH35YK1euVNu2bc0uy20sX75cO3fuLNMSQKgc3bp105tvvqnVq1fr1VdfVVpamm699Vbl5uaaXZpb+P777/Xqq6+qVatWWrNmjcaNG6eJEyfqrbfeMrUuD1M/HYAlxcbGas+ePcxJq2atW7dWSkqKsrOz9eGHH2rUqFFKSkoiyFaDY8eOadKkSVq7dq28vb3NLsftDBo0yPG6Q4cO6tatm0JCQvT+++8znaYaFBcXq0uXLnrmmWckSZ07d9aePXu0aNEijRo1yrS6GIkto4YNG8put+vkyZNO+0+ePKmAgACTqgKqz/jx4/X5558rISFBTZs2Nbsct+Lp6amwsDDddNNNiouLU8eOHfXSSy+ZXZZb2LFjhzIzM3XjjTfKw8NDHh4eSkpK0ssvvywPDw+XnzCEylG3bl2Fh4fr0KFDZpfiFgIDA0v8stymTRvTp3QQYsvI09NTN910k9avX+/YV1xcrPXr1zM3Db9qhmFo/PjxWrlypTZs2KDmzZubXZLbKy4uVkFBgdlluIXbbrtNu3fvVkpKimPr0qWLRowYoZSUFNntdrNLdCt5eXk6fPiwAgMDzS7FLfTq1avEkorfffedQkJCTKroEqYTlMOUKVM0atQodenSRV27dtW8efN07tw5xcTEmF3ar15eXp7Tb95paWlKSUlR/fr11axZMxMr+/WLjY3Vu+++q08++US+vr6OOeB+fn6qVauWydX9+k2fPl2DBg1Ss2bNlJubq3fffVeJiYlas2aN2aW5BV9f3xLzv2vXrq0GDRowL7waTJ06VdHR0QoJCdGJEyc0Y8YM2e12DR8+3OzS3MIjjzyinj176plnntHQoUO1bds2LV68WIsXLza3MAPl8sorrxjNmjUzPD09ja5duxpbt241uyS3kJCQYEgqsY0aNcrs0n71SrvukowlS5aYXZpbGDNmjBESEmJ4enoajRo1Mm677Tbjiy++MLsstxYZGWlMmjTJ7DLcwrBhw4zAwEDD09PTaNKkiTFs2DDj0KFDZpflVj777DOjffv2hpeXlxEREWEsXrzY7JIM1okFAACA5TAnFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgDcwJEjR2Sz2ZSSkmJ2KQBQKQixAFAOo0eP1l133eV4HxUVpcmTJ5tWT1pamv70pz8pKChI3t7eatq0qQYPHqwDBw5IkoKDg5Wenq727dubViMAVCYPswsAAFTMxYsX1b9/f7Vu3VorVqxQYGCgjh8/rlWrVuns2bOSJLvdroCAAHMLBYBKxEgsAFTQ6NGjlZSUpJdeekk2m002m01HjhyRJO3Zs0eDBg2Sj4+PGjdurJEjR+r06dOOc6OiojRhwgRNnjxZ9erVU+PGjfX666/r3LlziomJka+vr8LCwrRq1aqrfv7evXt1+PBhLVy4UN27d1dISIh69eql2bNnq3v37pJKTicYPXq0o9Yrt8TERElSQUGBpk6dqiZNmqh27drq1q2bow0AfgkIsQBQQS+99JJ69OihsWPHKj09Xenp6QoODtbZs2fVt29fde7cWcnJyVq9erVOnjypoUOHOp3/1ltvqWHDhtq2bZsmTJigcePGaciQIerZs6d27typ22+/XSNHjtR///vfUj+/UaNGqlGjhj788EMVFRW5XPPlWtPT0zVp0iT5+/srIiJCkjR+/Hht2bJFy5cv17fffqshQ4Zo4MCBOnjwYMUuFgBUEpthGIbZRQCA1YwePVpnz57Vxx9/LOnSiGqnTp00b948xzGzZ8/Wpk2btGbNGse+48ePKzg4WKmpqQoPD1dUVJSKioq0adMmSVJRUZH8/Px099136+2335YkZWRkKDAwUFu2bHGMrP7cggUL9Nhjj8lut6tLly7q06ePRowYoRYtWki6NBLbvHlz7dq1S506dXI6d8WKFRoxYoTWrVunXr166ejRo2rRooWOHj2qoKAgx3H9+vVT165d9cwzz1T08gFAhTESCwBV5JtvvlFCQoJ8fHwc2+WRzsOHDzuO69Chg+O13W5XgwYNdMMNNzj2NW7cWJKUmZl51c+KjY1VRkaGli5dqh49euiDDz5Qu3bttHbt2mvWuGvXLo0cOVLz589Xr169JEm7d+9WUVGRwsPDnWpPSkpyqhsAzMSNXQBQRfLy8hQdHa1nn322RFtgYKDjdc2aNZ3abDab0z6bzSZJKi4uvubn+fr6Kjo6WtHR0Zo9e7YGDBig2bNnq3///qUen5GRoTvvvFMPPPCA7r//fqe67Xa7duzYIbvd7nSOj4/PNWsAgOpCiAWASuDp6VliPuqNN96ojz76SKGhofLwqN5vtzabTREREfrqq69Kbc/Pz9fgwYMVERGhF1980amtc+fOKioqUmZmpm699dbqKBcAyozpBABQCUJDQ/X111/ryJEjOn36tIqLixUbG6szZ85o+PDh2r59uw4fPqw1a9YoJibG5RuwXJGSkqLBgwfrww8/1L59+3To0CHFx8frjTfe0ODBg0s956GHHtKxY8f08ssv69SpU8rIyFBGRoYuXLig8PBwjRgxQvfdd59WrFihtLQ0bdu2TXFxcfr3v/9daXUDQEUwEgsAlWDq1KkaNWqU2rZtq/PnzystLU2hoaHavHmzHn/8cd1+++0qKChQSEiIBg4cqBo1Km8MoWnTpgoNDdWsWbMcS2ldfv/II4+Uek5SUpLS09PVtm1bp/0JCQmKiorSkiVLNHv2bP3lL3/Rjz/+qIYNG6p79+763e9+V2l1A0BFsDoBAAAALIfpBAAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAy/EwuwAAAAD8+sXExLh03JIlS1w6zmYYhlGRggAAAIDrsdvtGjhwoLy8vCRJ586d04YNGxQdHS1JKigo0KpVq1RcXOxSf4RYAAAAVDm73a4TJ06ocePGkqS0tDR16NBBubm5kqRTp06pcePGLodY5sQCAACg2v18HLWs46qEWAAAAFQ5X19fZWVlOd5nZWXp3LlzysvLkyRlZGSofv36LvdHiAUAAECVi4iI0CuvvKLi4mIVFxdr4cKFCgoK0tSpU7V582Y9+eSTuvnmm13ujzmxAAAAqHIff/yx/vCHP6h27doqLi5W7dq1tXr1av3xj3/UwYMHFRwcrM8++0w33HCDS/0RYgEAAFAtNm7cqM8++0y1atXS2LFjFRwcLEn66aef1KBBgzL1RYgFAACA5TAnFgAAAJbDE7sAAABQ5ex2u0vLaLm6TiwhFgAAAFVu5cqVldofc2IBAABgOYzEAgAAoNocO3ZMH374oQ4ePChJatWqlf7whz84VipwFSOxAAAAqBbz58/XX/7yFxUWFsrPz0+GYSgnJ0ceHh6aO3eu/vznP7vcF6sTAAAAoMpt2LBBkydP1vjx45Wenq4zZ84oKytL6enpmjhxoiZMmKCEhASX+2MkFgAAAFXud7/7nRo2bKg333yz1PYxY8bo1KlT+uyzz1zqj5FYAAAAVLmvv/5ao0ePvmr7fffdp6+//trl/gixAAAAqHI5OTlq3ry54/1///tfrVixwvG+ZcuWys3Ndbk/QiwAAACqXIMGDXTmzBnH+4yMDI0aNcrxPjs7W02bNnW5P5bYAgAAQJXr0aOH3nnnHdWrV082m03Hjx93at+wYYO6dOnicn/c2AUAAIAqt27dOg0YMMDx6Fmbzabf/OY3jikEN998s1588UXdeuutLvVHiAUAAEC12Lt3r4qKihzv7Xa72rVrV66+CLEAAACwHG7sAgAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOILSfDMJSTkyPuiwMAAKh+POygnHJzc+Xn56fs7GzVqVPH7HIAAAB+0Vq0aHHdwT/DMHTkyBGX+iPEAoCFGIahgoICs8twS1de+zp16qhGDf6YCZTF5MmTr9p28uRJLV26VEePHnW5P0IsAFhIQUGBhgwZYnYZbu+dd95R3bp1zS4DsJSJEyc6vS8qKtK///1vLVmyRGvWrFFkZKT+8Y9/uNwfIRYAAADV5sCBA3rjjTf0r3/9S7Vr11ZMTIzmz5+vJk2alKkfQiwAWNQzg/bL015sdhluI6/ArplrI8wuA7C0rKwstWvXTr1799by5cvVu3fvcvdFiAUAC7nypoiaNYrl5cEKKdWloJBfGMx05ZxkLy8v2Ww2kytCefzmN7/RH//4R3388ceaMWOGYmJiNGTIENWqVavMfTErHQAs5Mqbui4U8UMc7uPyfPAhQ4Zwc6OFeXl5aenSpUpPT9fQoUP18ssvKzAwUA899JC+/vrrMvVVrhB77NgxjRkzRkFBQfL09FRISIgmTZqkn376yXFMVFSUbDabbDabvL29FR4erri4uFKXVtiyZYvsdrvuuOOOEm1HjhyRzWaTv7+/cnNzndo6deqkmTNnOu07dOiQxowZo2bNmsnLy0tNmjTRbbfdpqVLl6qwsNBx3OXafr4tX768TNdi7ty5ZToelePZZ59VdHS0nn32WbNLAQAAZVSnTh2NGzdOycnJ2rhxo2rVqqU77rhD7dq1c7mPMofY77//Xl26dNHBgwe1bNkyHTp0SIsWLdL69evVo0cPnTlzxnHs2LFjlZ6ertTUVE2fPl1/+9vftGjRohJ9xsfHa8KECdq4caNOnDhR6ufm5ubq+eefv2Zt27Zt04033qj9+/drwYIF2rNnjxITE/XAAw/o1Vdf1d69e52OX7JkidLT0522u+66q0zXY8uWLcrMzCzTOaiYzMxMffnll5KkL7/8kusPAIAF1K9fX/Xq1SuxRUZG6u2339aFCxe0f/9+l/sr85zY2NhYeXp66osvvnDMX2jWrJk6d+6sli1b6sknn9Srr74q6dK8h4CAAEly3Hm2du1ajRs3ztFfXl6e3nvvPSUnJysjI0NvvvmmnnjiiRKfO2HCBL344ouKjY2Vv79/iXbDMDR69GiFh4dr8+bNTuv3tWrVSsOHDy8xCly3bl1HfRXx+OOPa8mSJRXuB655/PHHS7zn+gMA8Mv20ksvVeqTTssUYs+cOaM1a9bo6aefLjEBNyAgQCNGjNB7772nhQsXOrUZhqEvv/xSBw4cUKtWrZza3n//fUVERKh169a69957NXnyZE2fPr3EhO3hw4dr7dq1euqppzR//vwStaWkpGj//v1atmzZVRegrqpJ4KdPn9b69et12223VUn/+J/169fr9OnTTvu4/gCqxRU/e/Pz85Wfn29eLW7oyuvNI9+t6Y9//KNq1qxZaf2VKcQePHhQhmGoTZs2pba3adNGWVlZOnXqlCRp4cKF+uc//6kLFy7o4sWL8vb2LrHQbXx8vO69915J0sCBA5Wdna2kpCRFRUU5HWez2TRnzhxFR0frkUceUcuWLZ3av/vuO0lS69atHfsyMzPVokULx/t//OMf+vOf/+x4P3z4cNntdqd+9u3bp2bNmpX42goKCpwmkufk5Di1v/LKK4qKiirRHypPUVGRXnnllVLbuP4AqtqVN9KNHTvWxEpQUFBQrrvZYa4mTZroT3/6k+6//37dcMMNFe6vXDd2ufob0IgRI5SSkqLNmzdr0KBBevLJJ9WzZ09He2pqqrZt26bhw4dLkjw8PDRs2DDFx8eX2t+AAQN0yy236K9//atLn9+gQQOlpKQoJSVFdevW1YULF5za586d62i/vAUFBZXaV1xcnPz8/BxbcHCwU3tRUZFWr17tUl0on9WrV6uoqKjUNq4/AAC/bNOmTdO2bdvUuXNndevWTa+99lqJm/bLokwjsWFhYbLZbNq/f79+//vfl2jfv3+/6tWrp0aNGkmS/Pz8FBYWJunStIGwsDB1795d/fr1k3RpFLawsNApOBqGIS8vL82fP19+fn4lPmPOnDnq0aOHHn30Uaf9l6cppKamqnPnzpIku93u+HwPj5JfakBAgKP9eqZPn64pU6Y43ufk5DgFWbvdroEDB7rUF8pn4MCBev3110sNslx/AFXN0/6/AZzXX3+dx85Ws/z8fI0cOVLSpWWaYD1TpkzRlClTtHnzZkVGRio/P19TpkzRH/7wB40ZM0aRkZFl6q9MIbZBgwbq37+/Fi5cqEceecRpKD8jI0NLly7VfffdV+rcUx8fH02aNElTp07Vrl27VFRUpLffflsvvPCCbr/9dqdj77rrLi1btkwPP/xwiX66du2qu+++W9OmTXPa37lzZ0VEROj555/X0KFDrzovtry8vLyu+R/NxIkT+VN2FbPb7ZowYYLmzZtXoo3rD6DKXfGjzdvbW97e3ubV4uZ40IG11atXTzabTd9884327Nmjd955RyNHjpS3t7diYmI0ffp0l/opc9KbP3++CgoKNGDAAG3cuFHHjh3T6tWr1b9/fzVp0kRPP/30Vc996KGH9N133+mjjz7S559/rqysLN1///1q376903bPPfdcdUqBJD399NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJkHP27FllZGQ4befOnSvrJVHDhg3Vt2/fMp+HsrvtttvUsGFDp31cfwAArKl9+/Z69tlnlZaWpiFDhrg8ZVQqR4ht1aqVkpOT1aJFCw0dOlQtW7bUgw8+qD59+mjLli2qX7/+Vc+tX7++7rvvPs2cOVPx8fHq169fqVMG7rnnHiUnJ+vbb78ttZ/w8HCNGTOmxJ2h3bt3144dO9S6dWvFxsaqbdu26tmzp5YtW6a5c+c6Le0lXVr2KzAw0Gm72o1D18KC+9Xr59eb6w8AgDV98803evTRRxUSEqKPP/64TD/Ty7xOrCSFhITozTffvOYxiYmJpe4v7WEHP9e1a1enm8dKu5Hstdde02uvvVZif3h4+HVru1qf5dGjR49S161F1fH399ctt9yiL7/8UrfccgvXH27lymlNV87RBH7tvLy89MEHHzhew7p++uknGYahG264QUePHtWQIUP04Ycfqnv37mXqp1whFv/zyCOPmF2CW3r88cdLPPQAcAdXzgVkWiDcyeXH2MO6nnvuOX300UdKTk5Wjx49NGbMGA0bNky/+c1vytUfIRYALOpCUQ1JxWaX4TYuFlXuDcOAu3nxxRc1cuRIvf322woPD69wf4RYALCoJ1aV/uAZAPglOn78uOMm+6ysLB08eFA2m01hYWGqV69emfvj10oAAABUObvdrrS0NP32t79Vw4YN1b17d3Xr1k0NGzbUb3/7W/3www9l6s9m8ADicsnJyZGfn5+ys7NVp04ds8sB4CYMw3B6BDaqz5XXvk6dOpW+Hjnwa3fy5EndeOONstvtio2NVUREhKRLD6qaP3++ioqKtHPnTjVu3Nil/gix5USIBWAGQizcFb9EWN/EiROVkJCgbdu2OT0wS7r0RLabb75ZUVFRLi93SogtJ0IsADPk5+dryJAhZpcBmOqdd97hsb8W1KJFCz3//PO6++67S23/+OOP9Ze//EWHDx92qT9+jQEAAECVS09PV4cOHa7a3r59e/34448u98fqBABgUa/8fay8PGuaXQZQLXLy/qupf3/T7DJQAY0aNVJhYeFV2y9evOjyfFiJEAsLunJelJeXl9Pi74A78fKsKS8vQizcg2fB/yILMyGt6aabbtIXX3zhuKHr51avXq2OHTu63B/TCWA5BQUFGjJkiIYMGcINLgDgJi5c/N8IHt/7remRRx7Ra6+9puzs7BJtOTk5ev311zV58mSX+2MkFgAAAFWud+/e2rt3b6ltderU0b59+8rUX5WPxC5atEi+vr5OcyDy8vJUs2ZNRUVFOR2bmJgom82mw4cPKzQ0VPPmzSvR38yZM9WpU6dS34eGhspms111Gz16tCRdtX358uWV/NUDAACgKlT5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr68vb0lSQkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjqWwLpyTbIlS5Zo4MCBTuezXAcAAEDVaNGihUvzmdPS0lzqr8pDbOvWrRUYGKjExERHiE1MTNTgwYO1YcMGbd261TEim5iYqD59+pT7sxo1auR4Xb9+fUmSv79/qeG0bt26CggIKPdnwTxX/geQn59vYiVA9bvy3zw3twCwkp/Pd12/fr3WrFmjv/71r/L19S1zf9UyJ7ZPnz5KSEjQtGnTJF0acX3sscdUVFSkhIQERUVF6fz58/r66681ZsyY6iipzAoKCpwmkufk5JhYjXu78v+HkSNHmlgJYK4LFwvl7e1pdhkA4JKJEyc6Xq9bt07Tp09XnTp1lJiYqH//+9/y9Czb97NqWZ2gT58+2rx5swoLC5Wbm6tdu3YpMjJSvXv3VmJioiRpy5YtKigocBqJffzxx+Xj4+O0PfPMM5VS0/Dhw0v0ffTo0aseHxcXJz8/P8cWHBxcKXUAAAC4k/Xr1+vOO+/UQw89pP379+vHH3/UH//4RxUXF5epn2oZiY2KitK5c+e0fft2ZWVlKTw8XI0aNVJkZKRiYmKUn5+vxMREtWjRQs2aNXOc9+ijjzpuxrrs5Zdf1saNGytc09y5c9WvXz+nfUFBQVc9fvr06ZoyZYrjfU5ODkHWJF5eXo7X77zzjmNONeAO8vPzHX+B8KzJAjMArCUhIUF33nmnHnzwQb344ouSLo3K9uzZUw888IDeeOMNl/uqlu+AYWFhatq0qRISEpSVlaXIyEhJl0JjcHCwvvrqKyUkJKhv375O5zVs2FBhYWFO+y7Pda2ogICAEn1fi5eXl1N4gnmufLiBt7c3IRZuiwd9ALCSpKQkRUdH64EHHnBagSooKEjr1q3TLbfcoqlTp+r55593qb9qe9hBnz59lJiYqMTERKeltXr37q1Vq1Zp27ZtFbqpCwAAAL9c0dHRiomJ0UsvvVSiLSwsTKtXr9Y///lPl/urtr9F9enTR7Gxsbp48aJjJFaSIiMjNX78eF24cKFaQ+zZs2eVkZHhtM/X11e1a9euthoAAADcxahRo/TKK69ctb1Tp0769NNPXe6vWkPs+fPnFRERocaNGzv2R0ZGKjc317EUV3WJiYkpsS8uLs6xggJ+uby8vPTBBx84XgMAfv2unAPO935rulaAvax3794u92czWGiwXHJycuTn56fs7GzHwxQAoKrl5+dryJAhkqTFz/5ZXl41Ta4IqB45uf/VhL++LunSTb08oAjc2goAFlVw4aLZJQDVhn/v+DlCLABY1OVRKQBwR9W2OgEAAABwNT/99JOaN2/u8vHMiS2n7Oxs1a1bV8eOHWNOLIBqYxiG06OXAXdx5b/9OnXqqEYNxuHM4uvrWyXrVGdmZiogIMDlJ3cxnaCcfvrpJ0niqV0AAMCtZGZmqlGjRmaXQYgtr8tPDjt69Kj8/PxMrsb9XH7sLyPh5uD6m4vrbx6uvbm4/ua6fP09PT3LdX5SUtI128+cOVOm/gix5XT5zxh+fn78h2SiOnXqcP1NxPU3F9ffPFx7c3H9zVXeqQR9+/aVYRiVNhWBEAsAAIAql5WVdc32U6dOqVWrVi73R4gFAABAlbve6Hl+fn6Z+uPWvnLy8vLSjBkzePSdSbj+5uL6m4vrbx6uvbm4/uaqjutflqkGLLEFAAAA0+Xm5urhhx/W0qVLXTqekVgAAACY7q233tLHH3/s8vHMiQUAAIBpjh49qjFjxiglJUXx8fEun8dILAAAAEzx1ltvqWPHjqpVq5b27t2rP/7xjy6fy0gsAAAAqlyLFi105a1YhYWFSk9P16JFi/TAAw+UuT9GYstpwYIFCg0Nlbe3t7p166Zt27aZXZJb2Lhxo6KjoxUUFCSbzVamuTOomLi4ON18883y9fWVv7+/7rrrLqWmpppdltt49dVX1aFDB8ci7z169NCqVavMLsttzZkzRzabTZMnTza7FLcwc+ZM2Ww2py0iIsLsstzKjz/+qHvvvVcNGjRQrVq1dMMNNyg5OblMfUyePFmPPPKI0xYcHKz4+HgdOHCgzDUxElsO7733nqZMmaJFixapW7dumjdvngYMGKDU1FT5+/ubXd6v2rlz59SxY0eNGTNGd999t9nluJWkpCTFxsbq5ptvVmFhoZ544gndfvvt2rdvn2rXrm12eb96TZs21Zw5c9SqVSsZhqG33npLgwcP1q5du9SuXTuzy3Mr27dv12uvvaYOHTqYXYpbadeundatW+d47+FBhKkuWVlZ6tWrl/r06aNVq1apUaNGOnjwoOrVq1emfiZOnFhi34MPPqjJkyfrxhtv1KxZszR16lSXl9liia1y6Natm26++WbNnz9fklRcXKzg4GBNmDBB06ZNM7k692Gz2bRy5UrdddddZpfilk6dOiV/f38lJSWpd+/eZpfjlurXr6/nnntO999/v9mluI28vDzdeOONWrhwoWbPnq1OnTpp3rx5Zpf1qzdz5kx9/PHHSklJMbsUtzRt2jRt3rxZmzZtqrLP+Pe//62xY8cqNDRUX331lUvnMJ2gjC5cuKAdO3aoX79+jn01atRQv379tGXLFhMrA6pXdna2pEtBCtWrqKhIy5cv17lz59SjRw+zy3ErsbGxuuOOO5x+BqB6HDx4UEFBQWrRooVGjBiho0ePml2S2/j000/VpUsXDRkyRP7+/urcubNef/31Sv2MO+64Q3v37lXTpk1dPocQW0anT59WUVGRGjdu7LS/cePGysjIMKkqoHoVFxdr8uTJ6tWrl9q3b292OW5j9+7d8vHxkZeXlx5++GGtXLlSbdu2Nbsst7F8+XLt3LlTcXFxZpfidrp166Y333xTq1ev1quvvqq0tDTdeuutys3NNbs0t/D999/r1VdfVatWrbRmzRqNGzdOEydO1FtvvVWpn1OvXj29//77Lh/PhBIAZRYbG6s9e/boyy+/NLsUt9K6dWulpKQoOztbH374oUaNGqWkpCSCbDU4duyYJk2apLVr18rb29vsctzOoEGDHK87dOigbt26KSQkRO+//z7TaapBcXGxunTpomeeeUaS1LlzZ+3Zs0eLFi3SqFGjXO4nJibmuscYhqE333zTpf4YiS2jhg0bym636+TJk077T548qYCAAJOqAqrP+PHj9fnnnyshIaFMf/ZBxXl6eiosLEw33XST4uLi1LFjR7300ktml+UWduzYoczMTN14443y8PCQh4eHkpKS9PLLL8vDw0NFRUVml+hW6tatq/DwcB06dMjsUtxCYGBgiV+W27RpU+YpHdnZ2Y7txIkT+te//uW0LzMzU2+//bbL/TESW0aenp666aabtH79escNRcXFxVq/fr3Gjx9vbnFAFTIMQxMmTNDKlSuVmJio5s2bm12S2ysuLlZBQYHZZbiF2267Tbt373baFxMTo4iICD3++OOy2+0mVeae8vLydPjwYY0cOdLsUtxCr169Siyp+N133ykkJKRM/axYscLxOi0tTR06dHDad+rUqTINCBJiy2HKlCkaNWqUunTpoq5du2revHk6d+6cS8PkqJi8vDyn37zT0tKUkpKi+vXrq1mzZiZW9usXGxurd999V5988ol8fX0dc8D9/PxUq1Ytk6v79Zs+fboGDRqkZs2aKTc3V++++64SExO1Zs0as0tzC76+viXmf9euXVsNGjRgXng1mDp1qqKjoxUSEqITJ05oxowZstvtGj58uNmluYVHHnlEPXv21DPPPKOhQ4dq27ZtWrx4sRYvXlzuPmvWrKmLFy867cvPzy/b0mkGyuWVV14xmjVrZnh6ehpdu3Y1tm7danZJbiEhIcGQVGIbNWqU2aX96pV23SUZS5YsMbs0tzBmzBgjJCTE8PT0NBo1amTcdtttxhdffGF2WW4tMjLSmDRpktlluIVhw4YZgYGBhqenp9GkSRNj2LBhxqFDh8wuy6189tlnRvv27Q0vLy8jIiLCWLx4cYX6KyoqMjw9PY21a9c69i1atMgICwtzuQ/WiQUAAEC1GzNmjJYtW6YBAwbo/PnzWrdunWbOnKm//vWvLp1PiAUAAEC1O3/+vGbNmqX169fL09NTd955px599FHVqOHaugOEWAAAAFgON3YBAACgyiUlJbl0XGRkpEvHMRILAACAKme322UYhmw2m2Nfae+Li4td6o+HHQAAAKBapKamKisrS1lZWdq1a5d8fHx05swZZWVl6bvvvnMKtNfDdAIAAABUizp16qhOnTqSJB8fHxmGIT8/P0mX1oktywQBRmIBAABgOYRYAAAAVLnKvg2LEAsAbuDIkSOy2WxKSUkxuxQAburn811r1qyp0NDQax5zLYRYACiH0aNH66677nK8j4qK0uTJk02rJy0tTX/6058UFBQkb29vNW3aVIMHD9aBAwckScHBwUpPT1f79u1NqxGAe9uyZYsaNGjgeB8cHKzdu3c73vv7+ys9Pd3l/rixCwAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZeWtgkICDC3UABurWvXrtc9xt/f3+X+GIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKwhO7AKAcRo8erbNnz+rjjz+WdGlEtVOnTpo3b57jmNmzZ2vTpk1as2aNY9/x48cVHBys1NRUhYeHKyoqSkVFRdq0aZMkqaioSH5+frr77rv19ttvS5IyMjIUGBioLVu2OEZWf27BggV67LHHZLfb1aVLF/Xp00cjRoxQixYtJF0aiW3evLl27dqlTp06OZ27YsUKjRgxQuvWrVOvXr109OhRtWjRQkePHlVQUJDjuH79+qlr16565plnKnr5AKDCGIkFgCryzTffKCEhQT4+Po7t8kjn4cOHHcd16NDB8dput6tBgwa64YYbHPsaN24sScrMzLzqZ8XGxiojI0NLly5Vjx499MEHH6hdu3Zau3btNWvctWuXRo4cqfnz56tXr16SpN27d6uoqEjh4eFOtSclJTnVDQBm4sYuAKgieXl5io6O1rPPPluiLTAw0PG6Zs2aTm02m81p3+UlZ673PHFfX19FR0crOjpas2fP1oABAzR79mz179+/1OMzMjJ055136oEHHtD999/vVLfdbteOHTtkt9udzvHx8blmDQBQXQixAFAJPD09S8xHvfHGG/XRRx8pNDRUHh7V++3WZrMpIiJCX331Vant+fn5Gjx4sCIiIvTiiy86tXXu3FlFRUXKzMzUrbfeWh3lAkCZMZ0AACpBaGiovv76ax05ckSnT59WcXGxYmNjdebMGQ0fPlzbt2/X4cOHtWbNGsXExLh8A5YrUlJSNHjwYH344Yfat2+fDh06pPj4eL3xxhsaPHhwqec89NBDOnbsmF5++WWdOnVKGRkZysjI0IULFxQeHq4RI0bovvvu04oVK5SWlqZt27YpLi5O//73vyutbgCoCEZiAaASTJ06VaNGjVLbtm11/vx5paWlKTQ0VJs3b9bjjz+u22+/XQUFBQoJCdHAgQNVo0bljSE0bdpUoaGhmjVrlmMprcvvH3nkkVLPSUpKUnp6utq2beu0PyEhQVFRUVqyZIlmz56tv/zlL/rxxx/VsGFDde/eXb/73e8qrW4AqAhWJwAAAIDlMJ0AAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOV4mF0AAAAA3EdMTMx1jzEMQ2+++eY1j7EZhmFUUk0AAADANd19991XbTMMQ7t27dLRo0dVXFx8zX4YiQUAAEC1WbFiRYl9p0+f1tKlS/XGG28oJydHDz/88HX7YSQWAAAA1a64uFirV6/WkiVL9Pnnn+uWW27RmDFjdPfdd8vLy+u65xNiAQAAUK3y8vIUEREhT09PjR49WjExMQoODi5TH6xOAAAAgGpnt9tls9lkGMZ157+WhhALAACAauXj46MjR45o4cKF2rt3r9q2bav+/ftr2bJlKigocKkPphMAAADAVGfOnNG//vUvLVmyRD/88IOGDx+uBQsWXPMcQiwAAACqze9///urttlsNu3atUs//PADS2wBAADgl6N+/fq61hhqnz59XOqHkVgAAABYDiOxAAAAqDauPHZWkpYsWXLNdkIsAAAAqk12dnal9MN0gnIyDEO5ubny9fWVzWYzuxwAAAC3wjqx5ZSbmys/Pz/l5OSYXQoAAIDbYTpBBbm6IC8AAABcmxNrGIbefPPNax5DiK2g/Px8s0sAAACwjGvNiS0qKtK6det0/vx5QiwAAAB+OVasWFHq/k8++URPPPGEvL29NWPGjOv2w5xYAAAAmGbTpk3q2bOnhg8frt/97nf6/vvv9dhjj133PEJsBV3vkWgAAAAoac+ePYqOjtZtt92mdu3a6dChQ3r22Wfl5+fn0vmE2ArKy8szuwQAbmbcuHGKjo7WuHHjzC4FAMrshx9+0KhRo9SpUyd5eHho9+7dev311xUUFFSmfsoVYo8dO6YxY8YoKChInp6eCgkJ0aRJk/TTTz85jomKipLNZpPNZpO3t7fCw8MVFxdX6rNyt2zZIrvdrjvuuKNE25EjR2Sz2eTv76/c3Fyntk6dOmnmzJlO+w4dOqQxY8aoWbNm8vLyUpMmTXTbbbdp6dKlKiwsdBx3ubafb8uXLy/PJQGAanH48GEdP35cknT8+HEdPnzY5IoAoGxat26tDz74QFOnTtXo0aN14MABffLJJyW26ynzjV3ff/+9evToofDwcC1btkzNmzfX3r179eijj2rVqlXaunWr6tevL0kaO3asnnrqKRUUFGjDhg168MEHVbdu3RKjB/Hx8ZowYYLi4+N14sSJUpN4bm6unn/+ec2aNeuqtW3btk39+vVTu3bttGDBAkVEREiSkpOTtWDBArVv314dO3Z0HL9kyRINHDjQqY+6deuW9ZIAQLWZOnVqifcrV640qRoAKLvCwkIZhqHnnnvuqscYhnHdKZtlHomNjY2Vp6envvjiC0VGRqpZs2YaNGiQ1q1bpx9//FFPPvmk49jf/OY3CggIUEhIiGJiYtShQwetXbvWqb+8vDy99957GjdunO64446rLqcwYcIEvfjii8rMzCy13TAMjR49WuHh4dq8ebOio6PVqlUrtWrVSsOHD9eXX36pDh06OJ1Tt25dBQQEOG3e3t5lvSQAUC2WLFni9Bcl6dIPg+s9XxwAfkkKCwtVVFR0zc2Ve47KFGLPnDmjNWvW6M9//rNq1arl1BYQEKARI0bovffeKzFlwDAMbdq0SQcOHJCnp6dT2/vvv6+IiAi1bt1a9957r954441SpxwMHz5cYWFheuqpp0qtLSUlRfv379fUqVNVo0bpX1ZFHg9bUFCgnJwcpw0AqsvFixevuizNihUrdPHixWquCADMVabpBAcPHpRhGGrTpk2p7W3atFFWVpZOnTolSVq4cKH++c9/6sKFC7p48aK8vb01ceJEp3Pi4+N17733SpIGDhyo7OxsJSUlKSoqyuk4m82mOXPmKDo6Wo888ohatmzp1P7dd99JujTP4rLMzEy1aNHC8f4f//iH/vznPzveDx8+XHa73amfffv2qVmzZiW+tri4uGtOZQCAqvT6669ft/3K728A8EuVlJTk0nGRkZHXbC/Xww5KGyktzYgRI/Tkk08qKytLM2bMUM+ePdWzZ09He2pqqrZt2+aYz+Xh4aFhw4YpPj6+RIiVpAEDBuiWW27RX//6V7377rvX/fwGDRooJSVF0qUbzS5cuODUPnfuXPXr189p39XujJs+fbqmTJnieJ+Tk6Pg4ODr1gAAlWHs2LFatWrVNdsBwAr69u0rwzCu+RdyV+bElinEhoWFyWazaf/+/fr9739fon3//v2qV6+eGjVqJEny8/NTWFiYpEvTBsLCwtS9e3dHcIyPj1dhYaFTcDQMQ15eXpo/f36p64TNmTNHPXr00KOPPuq0v1WrVpIuBePOnTtLkux2u+PzPTxKfqkBAQGO9uvx8vKSl5eXS8cCQGWrWbOm7r777lKnFNxzzz2qWbOmCVUBQNllZWVVSj9lmhPboEED9e/fXwsXLtT58+ed2jIyMrR06VINGzas1GTt4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/+eR5AAOBXKSYmpsQv5B4eHho9erQ5BQFAOaxbt061atVSnTp1rrldT5lXJ5g/f74KCgo0YMAAbdy4UceOHdPq1avVv39/NWnSRE8//fRVz33ooYf03Xff6aOPPtLnn3+urKws3X///Wrfvr3Tds899yg+Pv6q/Tz99NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJ+a9nz55VRkaG03bu3LmyXhIAqDbPP//8Nd8DwC/dsGHD1LRpU02dOlX79+8vdz9lDrGtWrVScnKyWrRooaFDh6ply5Z68MEH1adPH23ZssWxRmxp6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMUX5+vtP+7t27a8eOHWrdurViY2PVtm1b9ezZU8uWLdPcuXNLrE8bExOjwMBAp+2VV14p6yUBgGrTsmVLNW3aVJLUtGnTEje5AsAv3YkTJzR79mzt2LFD7dq1U8+ePfX666+X+SmoNsPVu7TgJCcnR35+fkpLS1NoaKjZ5QAAAFjK/v371aFDB/3jH//Qv/71L3333XcaMmSI7r//fvXq1eu655frsbP4n6utSQsAAICruzyO+sgjj2jHjh3avn27AgMDde+99zqeunotJDAAAACYLjw8XL1799Ytt9yiH3744brHE2IriMfUAgAAlF9ycrKmTJmiJk2aaNKkSbrhhhtcCrHletgB/oe1YwEAAMrmwIEDeuONN1RcXKyoqCgNHTpUH374oUtzYS8jxFbQtZ42AQAAAGft27fXvn371L17dy1evFh//OMfVbt2bUd7YWGhNm/eXDWPncX/sLgDAACA6wYOHKgPPvhAbdq0KbX9zJkz6tOnT+U+dhYlFRQUmF0CAACAZbjykBZX/tLNjV0V9PMHLgAAAKBiXPlLNyOxAAAAqDYxMTHXbD9//rxL/RBiK+h68zUAAADwP9nZ2ddsd3WqJiG2gsr6nF8AAAB3tmLFimu2nzp1So0bN75uP1U+J3bRokXy9fVVYWGhY19eXp5q1qypqKgop2MTExNls9l0+PBhhYaGat68eSX6mzlzpjp16lTq+9DQUNlstqtuo0ePlqSrti9fvrySv3oAAACUhasrP1X5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr7jqVcJCQlq1qyZWrZsWa7P2r59u4qKiiRJX331le655x6lpqaqTp06kqRatWo5jl2yZIkGDhzodH7dunXL9bkAAACoPK6sTlDlIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFD56tevr4SEhOseVy1zYvv06aOEhARNmzZN0qUR18cee0xFRUVKSEhQVFSUzp8/r6+//lpjxoypjpIAAABgkqKiIq1Zs0apqanKyckp9ZjevXtfs49qC7GTJ09WYWGhzp8/r127dikyMlIXL17UokWLJElbtmxRQUGB00js448/rv/7v/9z6uvChQtq27ZthWsaPny47Ha70759+/apWbNmpR5fUFDgdLfc1S44AAAAri4jI0O33367UlNT1bRpU/n5+ZU4xjAMzZgx45r9VEuIjYqK0rlz57R9+3ZlZWUpPDxcjRo1UmRkpGJiYpSfn6/ExES1aNHCKUQ++uijjpuxLnv55Ze1cePGCtc0d+5c9evXz2lfUFDQVY+Pi4vTrFmzKvy5AAAA7uyJJ56Qv7+/1q9f7zQVtKyqJcSGhYWpadOmSkhIUFZWliIjIyVdCo3BwcH66quvlJCQoL59+zqd17BhQ4WFhTntuzzXtaICAgJK9H0t06dP15QpUxzvc3JyFBwcXCm1AAAAuIuEhAS9++67FQqwUjWuE9unTx8lJiYqKytLjz76qGN/7969tWrVKm3btk3jxo2rrnLKzMvLS15eXmaXAQAAYGmnTp2qlJvrqzXExsbG6uLFi46RWEmKjIzU+PHjdeHChQqtTFBWZ8+eVUZGhtM+X19f1a5du9pqAAAAcDfNmzfXjh071Lx58wr1U60h9vz584qIiHB6CkNkZKRyc3MdS3FVl9Ke2xsXF+dYQQEAAACVb9SoUZo0aZJycnJ00003XXWd/pCQkGv2YzNcfSwCnOTk5MjPz09paWkKDQ01uxwAAABLKCoq0t/+9jfNmzdP+fn5JZ7QZbPZZBiGiouLr9kPIbacLofYH3744arLcgEAAKB0hmHo6NGjys7OLrW9Q4cO1zy/2qYTAAAAAJfZbLbrThm4FkIsAAAAqk1SUpJLx125EEBpCLEV5O3tbXYJAAAAltG3b18ZhiGbzebYV9r7682JJcSW0+WpxAUFBTyCFgAAuA1fX1+nwFlWWVlZTu+PHDmiW265RceOHZPNZtOpU6cUHh5+3X4IseX0008/SRI3dQEAALeSmZlZoadt1alTx+l9rVq1ZBiG/Pz8JKnUFQtKQ4gtp8uPvz169KjjoqP6XH7s77Fjx0r8x4Cqx/U3F9ffPFx7c3H9zXX5+nt6elZqv1u3btW5c+eUnZ0tPz8/nThxQg0bNrzueYTYcqpRo4Ykyc/Pj/+QTFSnTh2uv4m4/ubi+puHa28urr+5KjKV4Ernz5/XggULFB8fL0n685//rOHDh2vevHm6+eabr3t+jUqpAgAAAHDB8ePHNW3aNDVt2lSfffaZEhMTddddd2n58uUaPHiwDh06pGefffa6/TASCwAAgGrTsmVLRURE6I033tDgwYMlSStWrNB3332nCxcuKCIiQh4e14+ohNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrsq6/kuXLtUf/vCHEvtdWZHgSjx2FgAAAJbDSCwAAACqTUxMjEvHLVmy5JrtjMQCAACg2tjtdg0cONAxLeHcuXPasGGDoqOjJV16kNSqVauu+8QuQiwAAACqjd1u14kTJ9S4cWNJUlpamjp06KDc3FxJ0qlTpxQQEKCioqJr9sMSWwAAADDNz8dTDcNw6YldhNhyWrBggUJDQ+Xt7a1u3bpp27ZtZpfkFjZu3Kjo6GgFBQXJZrPp448/NrsktxEXF6ebb75Zvr6+8vf311133aXU1FSzy3Ibr776qjp06OBY5L1Hjx5atWqV2WW5rTlz5shms2ny5Mlml+IWZs6cKZvN5rRFRESYXZZb+fHHH3XvvfeqQYMGqlWrlm644QYlJyebWhMhthzee+89TZkyRTNmzNDOnTvVsWNHDRgwQJmZmWaX9qt37tw5dezYUQsWLDC7FLeTlJSk2NhYbd26VWvXrtXFixd1++2369y5c2aX5haaNm2qOXPmaMeOHUpOTlbfvn01ePBg7d271+zS3M727dv12muvqUOHDmaX4lbatWun9PR0x/bll1+aXZLbyMrKUq9evVSzZk2tWrVK+/bt0wsvvKB69epV2mf8/ClgLj0VzECZde3a1YiNjXW8LyoqMoKCgoy4uDgTq3I/koyVK1eaXYbbyszMNCQZSUlJZpfiturVq2f885//NLsMt5Kbm2u0atXKWLt2rREZGWlMmjTJ7JLcwowZM4yOHTuaXYbbevzxx41bbrml0vpr06aNcfr0acf7rKwspwx19uxZY9CgQdfth5HYMrpw4YJ27Nihfv36OfbVqFFD/fr105YtW0ysDKhe2dnZkqT69eubXIn7KSoq0vLly3Xu3Dn16NHD7HLcSmxsrO644w6nnwGoHgcPHlRQUJBatGihESNG6OjRo2aX5DY+/fRTdenSRUOGDJG/v786d+6s119/vdz97du3Tw0aNHC8r1u3rqZNm+Z47+fnp//85z/X7YcQW0anT59WUVGR4466yxo3bqyMjAyTqgKqV3FxsSZPnqxevXqpffv2ZpfjNnbv3i0fHx95eXnp4Ycf1sqVK9W2bVuzy3Iby5cv186dOxUXF2d2KW6nW7duevPNN7V69Wq9+uqrSktL06233uq4mx1V6/vvv9err76qVq1aac2aNRo3bpwmTpyot956y9S6eNgBgDKLjY3Vnj17mJNWzVq3bq2UlBRlZ2frww8/1KhRo5SUlESQrQbHjh3TpEmTtHbtWnl7e5tdjtsZNGiQ43WHDh3UrVs3hYSE6P3339f9999vYmXuobi4WF26dNEzzzwjSercubP27NmjRYsWadSoUabVxUhsGTVs2FB2u10nT5502n/y5EkFBASYVBVQfcaPH6/PP/9cCQkJatq0qdnluBVPT0+FhYXppptuUlxcnDp27KiXXnrJ7LLcwo4dO5SZmakbb7xRHh4e8vDwUFJSkl5++WV5eHhcdz1LVK66desqPDxchw4dMrsUtxAYGFjil+U2bdqYPqWDEFtGnp6euummm7R+/XrHvuLiYq1fv565afhVMwxD48eP18qVK7VhwwY1b97c7JLcXnFxsQoKCswuwy3cdttt2r17t1JSUhxbly5dNGLECKWkpMhut5tdolvJy8vT4cOHFRgYaHYpbqFXr14lllT87rvvFBISYlJFlzCdoBymTJmiUaNGqUuXLuratavmzZunc+fOufwsYJRfXl6e02/eaWlpSklJUf369dWsWTMTK/v1i42N1bvvvqtPPvlEvr6+jjngfn5+qlWrlsnV/fpNnz5dgwYNUrNmzZSbm6t3331XiYmJWrNmjdmluQVfX98S879r166tBg0aMC+8GkydOlXR0dEKCQnRiRMnNGPGDNntdg0fPtzs0tzCI488op49e+qZZ57R0KFDtW3bNi1evFiLFy82t7BKWy/BzbzyyitGs2bNDE9PT6Nr167G1q1bzS7JLSQkJBiSSmyjRo0yu7RfvdKuuyRjyZIlZpfmFsaMGWOEhIQYnp6eRqNGjYzbbrvN+OKLL8wuy62xxFb1GTZsmBEYGGh4enoaTZo0MYYNG2YcOnTI7LLcymeffWa0b9/e8PLyMiIiIozFixebXZJhMwwXnusFAAAA/IIwJxYAAACWQ4gFAACA5RBiAQAAYDmEWAAAAFgOIRYAAACWQ4gFAACA5RBiAQAAYDmEWABwA0eOHJHNZlNKSorZpQBApSDEAkA5jB49WnfddZfjfVRUlCZPnmxaPWlpafrTn/6koKAgeXt7q2nTpho8eLAOHDggSQoODlZ6ejqPSAXwq+FhdgEAgIq5ePGi+vfvr9atW2vFihUKDAzU8ePHtWrVKp09e1aSZLfbFRAQYG6hAFCJGIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKYjMMwzC7CACwmtGjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxHTp0cLy22+1q0KCBbrjhBse+xo0bS5IyMzOv+lmxsbHKyMjQ0qVL1aNHD33wwQdq166d1q5de80ad+3apZEjR2r+/Pnq1auXJGn37t0qKipSeHi4U+1JSUlOdQOAmbixCwCqSF5enqKjo/Xss8+WaAsMDHS8rlmzplObzWZz2mez2SRJxcXF1/w8X19fRUdHKzo6WrNnz9aAAQM0e/Zs9e/fv9TjMzIydOedd+qBBx7Q/fff71S33W7Xjh07ZLfbnc7x8fG5Zg0AUF0IsQBQCTw9PUvMR73xxhv10UcfKTQ0VB4e1fvt1mazKSIiQl999VWp7fn5+Ro8eLAiIiL04osvOrV17txZRUVFyszM1K233lod5QJAmTGdAAAqQWhoqL7++msdOXJEp0+fVnFxsWJjY3XmzBkNHz5c27dv1+HDh7VmzRrFxMS4fAOWK1JSUjR48GB9+OGH2rdvnw4dOqT4+Hi98cYbGjx4cKnnPPTQQzp27JhefvllnTp1ShkZGcrIyNCFCxcUHh6uESNG6L777tOKFSuUlpambdu2KS4uTv/+978rrW4AqAhGYgGgEkydOlWjRo1S27Ztdf78eaWlpSk0NFSbN2/W448/rttvv10FBQUKCQnRwIEDVaNG5Y0hNG3aVKGhoZo1a5ZjKa3L7x955JFSz0lKSlJ6erratm3rtD8hIUFRUVFasmSJZs+erb/85S/68ccf1bBhQ3Xv3l2/+93vKq1uAKgIVicAAACA5TCdAAAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWI6H2QUAAADA/WRlZengwYOy2WwKCwtTvXr1ynQ+I7EAAACoNmlpafrtb3+rhg0bqnv37urWrZsaNmyo3/72t/rhhx9c7sdmGIZRhXUCAAAAkqSTJ0/qxhtvlN1uV2xsrCIiIiRJqampmj9/voqKirRz5041btz4un0RYgEAAFAtJk6cqISEBG3btk21atVyasvPz9fNN9+sqKgovfLKK9fti+kEAAAAqBaff/65Zs2aVSLASpK3t7f+/ve/6z//+Y9LfRFiAQAAUC3S09PVoUOHq7a3b99eP/74o0t9EWIBAABQLRo1aqTCwsKrtl+8eNGl+bASIRYAAADV5KabbtIXX3xx1fbVq1erY8eOLvVFiAUAAEC1mDJlil577TVlZ2eXaMvJydHrr7+uyZMnu9QXqxMAAADAcnhiFwAAAKpFixYt5Mr4aVpa2nWPIcQCAACgWrg6VcAVTCcAAACA5XBjFwAAACyH6QQAAACoFq7MiTUMQ0eOHLluX4RYAAAAVItrzYlNS0vT4sWLdf78eZf6Yk4sAAAATHP69Gk9/fTTWrRokbp3765nn31WXbt2ve55jMQCAACg2p07d04vvviinn/+eTVv3lwrV67UwIEDXT6fEAsAAIBqU1hYqMWLF2v27NmqVauWFi5cqBEjRpS5H0IsAAAAqsXy5cv117/+VdnZ2XryyScVGxsrD4/yxVHmxJaTYRjKzc2Vr6+vbDab2eUAAAD84tntdnl5eelPf/qTfH19r3rc3Llzr9sXI7HllJubKz8/P2VnZ6tOnTpmlwMAqGKGYaigoECS5OXlxQAGUA5RUVEyDEPff//9VY9xdXyVkdhyysnJIcQCgBvJz8/XkCFDJEkffPCBvL29Ta4IcG88sQsAABfk5+eX+hqAOZhOAAAAgGoxa9Ysl46bMWPGdY8hxAIA4ILi4uJSXwNw3VNPPaV27dpddUWCwsJC7dmzhxALAEBlyc3NdXpdv359E6sBrGvt2rVq3LhxqW2nTp1SQECAS/2Ua07ssWPHNGbMGAUFBcnT01MhISGaNGmSfvrpJ8cxUVFRstlsstls8vb2Vnh4uOLi4kq942zLli2y2+264447SrQdOXJENptN/v7+Tt9AJKlTp06aOXOm075Dhw5pzJgxatasmby8vNSkSRPddtttWrp0qQoLCx3HXa7t59vy5cvLc0kAAABwHXa7/Zp/ySgqKlKNGq7F0zKH2O+//15dunTRwYMHtWzZMh06dEiLFi3S+vXr1aNHD505c8Zx7NixY5Wenq7U1FRNnz5df/vb37Ro0aISfcbHx2vChAnauHGjTpw4Uern5ubm/j979x5WVZX/cfxzPAiaECpeAC8gIuAlFTMVKQHT1CnTLHMYNEQrc9DUxkprJq1UbKaL5TUbMptKLc2aZgbNFNBMRUzM+y1MTRCvXBxFgf37w8fz6wTqAYEzp/N+Pc9+Ovu2zpf9mH5crr2WXn/99RvWlpaWpk6dOmnv3r2aO3eudu3apZSUFD3++OOaP3++du/ebXX9okWLlJWVZbUNHDiwvI8EAAAANvD09LTq9Py1M2fOqG7duja1Ve7hBPHx8XJ1ddXXX3+t2rVrS5KaN2+u0NBQtWzZUi+++KLmz58vSbrtttssXcJxcXGaM2eO1qxZo9GjR1vaKygo0LJly5Senq7s7Gx98MEHeuGFF0p979ixY/Xmm28qPj5ejRo1KnXeMAwNHz5cQUFB2rhxo1WKb9WqlaKjo0v1AtetW9fmLmsAAADcmjZt2ig5OVnt2rUr83xKSoratGljU1vl6ok9e/asVq9erT/+8Y+WAHuNt7e3YmJitGzZslJh0TAMbdiwQfv27ZOrq6vVuU8//VQhISEKDg7W0KFD9f7775c55CA6OlqBgYF65ZVXyqwtIyNDe/fu1cSJE6/bDc3E1AAAAPbzyCOPaPr06dq3b1+pc/v379err76qQYMG2dRWuULswYMHZRiGWrduXeb51q1b69y5czp16pQkad68eXJ3d5ebm5t69OihkpISPf3001b3JCYmaujQoZKkvn37Kjc3V6mpqaXaNplMmjlzphYuXKjDhw+XOn/gwAFJUnBwsOVYTk6O3N3dLdu8efOs7omOjrY67+7urqNHj5b5sxUWFiovL89qAwAAgO2eeuoptWjRQh06dNCAAQM0adIkTZ48WQ899JA6dOigpk2bWv2L/Y1U6MUuWxf5iomJUUZGhjZu3Kh+/frpxRdfVPfu3S3n9+/fr7S0NEVHR0uSXFxcNGTIECUmJpbZXp8+fXT33XfrL3/5i03f7+XlpYyMDGVkZKhu3bq6fPmy1fm33nrLcv7a5uvrW2ZbCQkJ8vT0tGzNmjWzqQYAAABcVbNmTa1du1YvvviiMjMzNXfuXM2ePVsHDx7Uc889p9TU1FL/an895RoTGxgYKJPJpL179+qhhx4qdX7v3r2qV6+eGjZsKOnq4N3AwEBJV4cNBAYGqlu3burVq5ekq72wRUVFVsHRMAy5ublpzpw58vT0LPUdM2fOVFhYmJ599lmr461atZJ0NRiHhoZKuvoG3LXvL2s+Mm9vb8v5m5k8ebKeeeYZy35eXh5BFgAAoJxuu+02vfTSS3rppZduqZ1y9cR6eXmpd+/emjdvni5evGh1Ljs7Wx9//LGGDBlS5thTd3d3jRs3ThMnTpRhGCoqKtKHH36oN954w6ondMeOHfL19dWSJUvKrKFLly4aNGiQJk2aZHU8NDRUISEhev3116tkEmo3NzfdfvvtVhsAAADso9yzE8yZM0fdu3dXnz59NG3aNLVo0UK7d+/Ws88+qyZNmmj69OnXvXfUqFF69dVXtWLFCrm4uOjcuXMaOXJkqR7Xhx9+WImJiXrqqafKbGf69OmlVnswmUxatGiRevfurfDwcE2ePFmtW7fWlStXtH79ep06dUpms9mqnfPnzys7O9vqmIeHh+rUqVPexwIAAICbiIqKuuk1hmEoJSXlpteVe0xsq1atlJ6eroCAAD366KNq2bKlnnzySUVFRWnTpk03XMGkfv36euyxxzR16lQlJiaqV69eZQ4ZePjhh5Wenq4ffvihzHaCgoI0YsQIXbp0yep4t27dtG3bNgUHBys+Pl5t2rRR9+7dtWTJEr311lulBgrHxcXJx8fHaps9e3Z5HwkAAABssH79egUHBys0NFShoaEKCAjQd999Z9kPDg7W+vXrbWrLZNj6lhas5OXlydPTU7m5uQwtAAAncPbsWcXGxkqSFi9ezLKzQAWYzWadOHHCsuzsjz/+qA4dOlhWZc3JyZG3t7dNQ0MrNDsBAADO5pdzkNu6LCaAqsP/hQAAAHA4hFgAAADYza9ntbJ1hVVCLAAANqhVq1aZnwHYrk+fPnJzc7PsN27cWO+++65l/7bbbtOoUaNsaosXuyqIF7sAwLkYhqHCwkJJV+cOt7W3CEDVoCcWAAAADqfcix0AAOCMCgsLNXjwYEnSZ599xpACoALMZrNsGQRgyxRbhFgAAGzwywV2Ll26RIgFKmDlypVW+ydPntT48eO1ZMkSSVJubq5lPuabIcQCAACgWjz44INW+z/++KNq1KhhOZ6Tk2NzW4yJBQAAgF38+OOPunjxooqLiyVdfXHew8PDpnsJsQAA2OCXY/RsGa8H4Ma2bt2qCRMmqKSkRLNnz1ZBQYHmzp2r4OBgm+4nxAIAYINra7v/+jOA8lm1apX69u2r3/3ud3rnnXcUEBCgZ555Rrfffrvmzp2rP//5zza1U+UhdsGCBfLw8FBRUZHlWEFBgWrWrKnIyEira1NSUmQymXT48GH5+/tr1qxZpdqbOnWqOnbsWOa+v7+/TCbTdbfhw4dL0nXPL126tJJ/egAAAFzTtm1bPfTQQ2rdurX27t2rqKgopaena8GCBXrnnXe0ffv2UuNmr6fKX+yKiopSQUGB0tPT1a1bN0nShg0b5O3trS1btli94ZmcnKzmzZurZcuWFfqurVu3WsZUfPfdd3r44Ye1f/9+y2IEtWvXtly7aNEi9e3b1+r+unXrVuh7AQAAcHNRUVH65ptv5OPjYzlWt25dPfnkk+Vuq8pDbHBwsHx8fJSSkmIJsSkpKRowYIDWrVunzZs3W3pkU1JSFBUVVeHvatiwoeVz/fr1JUmNGjUqM5zWrVtX3t7eFf4uAAAAlM+cOXMqra1qmWIrKipKycnJmjRpkqSrPa7PPfeciouLlZycrMjISF28eFFbtmzRiBEjqqOkcissLLQsNyhdfXsOAAAAtlu8eLFN19kyV2y1hdjx48erqKhIFy9e1Pbt2xUREaErV65owYIFkqRNmzapsLDQqif2+eefLzW49/Lly2rTps0t1xQdHS2z2Wx1bM+ePWrevHmZ1yckJOjll1++5e8FAABwViNGjNDtt98uk8kk6epMH3l5eZZ/NTcMw+YFD6olxEZGRurChQvaunWrzp07p6CgIDVs2FARERGKi4vTpUuXlJKSooCAAKsQ+eyzz1pexrrmnXfe0fr162+5prfeeku9evWyOubr63vd6ydPnqxnnnnGsp+Xl6dmzZrdch0AAADOZN++fWrcuLEkKTMzUx06dNDZs2clSadOnbJ5uGe1hNjAwEA1bdpUycnJOnfunCIiIiRdDY3NmjXTd999p+TkZPXs2dPqvgYNGigwMNDq2LWxrrfK29u7VNs34ubmJjc3t0r5bgAAAFzteTUM47r7N1Jt88RGRUUpJSVFKSkpVlNr9ejRQ0lJSUpLS7ull7oAAADgPKqlJ1a6GmLj4+N15coVS0+sJEVERGjMmDG6fPlytYbY8+fPKzs72+qYh4eH6tSpU201AAAAOBNbe1ltUa09sRcvXlRgYKBlHIR0NcTm5+dbpuKqLnFxcfLx8bHaZs+eXW3fDwAA4GyuvdB1Te3atdWjRw+r89fWD7hpW0ZlRmInkpeXJ09PT+Xm5loWUwAA/HadPXvW8sb04sWLK+0dDcCZ5OTkqFGjRpXSVrX1xAIA4Mhq1KhR5mcAtqusACtV45hYAAAAOLe4uDibrlu0aNFNryHEAgBgg1+O07N1zB4Aax9++KEiIiIsixvcCsbEVlBubq7q1q2rY8eOMSYWAJyAYRiW5cfd3NxKvaACOAsPD48K//o3m836/vvv1aFDh1uug57YCjpz5owksWoXAABwKjk5OWrYsKG9yyDEVtS1t1KPHj0qT09PO1fjfK4t+0tPuH3w/O2L528/PHv74vnb17Xn7+rqau9SJBFiK+zam6menp78j2RHt99+O8/fjnj+9sXztx+evX3x/O3rf2UoDXOEAAAAoFqMHDlSXl5eldIWPbEAAACoFgsXLqy0tgixFeTm5qYpU6bIzc3N3qU4JZ6/ffH87Yvnbz88e/vi+dtXZTz/Fi1a2HRdZmbmTa9hii0AAABUC7PZrIkTJ6pJkyY3vO7pp5++aVuEWAAAAFSLypwnlhe7AAAA4HAIsQAAAHA4hFgAAAA4HEJsBc2dO1f+/v6qVauWunbtqrS0NHuX5BTWr1+v/v37y9fXVyaTSV988YW9S3IaCQkJuuuuu+Th4aFGjRpp4MCB2r9/v73Lchrz589X+/btLZO8h4WFKSkpyd5lOa2ZM2fKZDJp/Pjx9i7FKUydOlUmk8lqCwkJsXdZTuXnn3/W0KFD5eXlpdq1a+uOO+5Qenp6udv5xz/+IT8/v0qpiRBbAcuWLdMzzzyjKVOmWAYn9+nTRzk5OfYu7TfvwoUL6tChg+bOnWvvUpxOamqq4uPjtXnzZq1Zs0ZXrlzRfffdpwsXLti7NKfQtGlTzZw5U9u2bVN6erp69uypAQMGaPfu3fYuzels3bpV7777rtq3b2/vUpxK27ZtlZWVZdm+/fZbe5fkNM6dO6fw8HDVrFlTSUlJ2rNnj9544w3Vq1ev3G399a9/1QcffKCzZ8/eemEGyq1Lly5GfHy8Zb+4uNjw9fU1EhIS7FiV85FkrFy50t5lOK2cnBxDkpGammrvUpxWvXr1jL///e/2LsOp5OfnG61atTLWrFljREREGOPGjbN3SU5hypQpRocOHexdhtN6/vnnjbvvvrtS2ho7dqzRpEkTw83NzRg8eLCxatUqo6SkpEJt0RNbTpcvX9a2bdvUq1cvy7EaNWqoV69e2rRpkx0rA6pXbm6uJKl+/fp2rsT5FBcXa+nSpbpw4YLCwsLsXY5TiY+P1/3332/1ZwCqx8GDB+Xr66uAgADFxMTo6NGj9i7Jafzzn/9U586dNXjwYDVq1EihoaF67733KtTWO++8o+PHj+ujjz7SihUrNHToUPn7+2vKlCk2LXDwS4TYcjp9+rSKi4vVuHFjq+ONGzdWdna2naoCqldJSYnGjx+v8PBwtWvXzt7lOI2dO3fK3d1dbm5ueuqpp7Ry5Uq1adPG3mU5jaVLl+r7779XQkKCvUtxOl27dtUHH3ygVatWaf78+crMzNQ999yj/Px8e5fmFH788UfNnz9frVq10urVqzV69Gg9/fTTWrx4cYXbbNOmjWrUqKHs7GzNnTtX+/bt0x133KHevXtryZIlNrXBsrMAyi0+Pl67du1iTFo1Cw4OVkZGhnJzc7V8+XLFxsYqNTWVIFsNjh07pnHjxmnNmjWqVauWvctxOv369bN8bt++vbp27So/Pz99+umnGjlypB0rcw4lJSXq3LmzZsyYIUkKDQ3Vrl27tGDBAsXGxt5S22azWQ888IAeeOAB5efna+bMmRo2bJiio6Nvei8htpwaNGggs9mskydPWh0/efKkvL297VQVUH3GjBmjf/3rX1q/fr2aNm1q73KciqurqwIDAyVJd955p7Zu3aq3335b7777rp0r++3btm2bcnJy1KlTJ8ux4uJirV+/XnPmzFFhYaHMZrMdK3QudevWVVBQkA4dOmTvUpyCj49Pqb8st27dWitWrKiU9s+cOaOlS5fqo48+0sGDBzV69Gib7mM4QTm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIIMBWs4KCAh0+fFg+Pj72LsUphIeHl5pS8cCBA7c0VVZxcbEMw1D//v3VtGlTrVy5UuPGjdOJEyc0e/Zsm9qgJ7YCnnnmGcXGxqpz587q0qWLZs2apQsXLiguLs7epf3mFRQUWP3NOzMzUxkZGapfv76aN29ux8p+++Lj4/XJJ5/oyy+/lIeHh2UMuKenp2rXrm3n6n77Jk+erH79+ql58+bKz8/XJ598opSUFK1evdrepTkFDw+PUuO/69SpIy8vL8aFV4OJEyeqf//+8vPz04kTJzRlyhSZzWab/skZt27ChAnq3r27ZsyYoUcffVRpaWlauHChFi5cWO62PvvsM61YsUJJSUlq2rSpOnXqpDlz5lQsEFfKfAlOaPbs2Ubz5s0NV1dXo0uXLsbmzZvtXZJTSE5ONiSV2mJjY+1d2m9eWc9dkrFo0SJ7l+YURowYYfj5+Rmurq5Gw4YNjXvvvdf4+uuv7V2WU2OKreozZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXFihdmrVqmUMHjzYWL169S3XZDIMwyh/9AUAAADK5+zZs5U2NSMhFgAAAA6HF7sAAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCgBM4cuSITCaTMjIy7F0KAFQKQiwAVMDw4cM1cOBAy35kZKTGjx9vt3oyMzP1hz/8Qb6+vqpVq5aaNm2qAQMGaN++fZKkZs2aKSsrS+3atbNbjQBQmVzsXQAA4NZcuXJFvXv3VnBwsD7//HP5+Pjo+PHjSkpK0vnz5yVJZrNZ3t7e9i0UACoRPbEAcIuGDx+u1NRUvf322zKZTDKZTDpy5IgkadeuXerXr5/c3d3VuHFjDRs2TKdPn7bcGxkZqbFjx2r8+PGqV6+eGjdurPfee08XLlxQXFycPDw8FBgYqKSkpOt+/+7du3X48GHNmzdP3bp1k5+fn8LDwzVt2jR169ZNUunhBMOHD7fU+sstJSVFklRYWKiJEyeqSZMmqlOnjrp27Wo5BwD/CwixAHCL3n77bYWFhemJJ55QVlaWsrKy1KxZM50/f149e/ZUaGio0tPTtWrVKp08eVKPPvqo1f2LFy9WgwYNlJaWprFjx2r06NEaPHiwunfvru+//1733Xefhg0bpv/+979lfn/Dhg1Vo0YNLV++XMXFxTbXfK3WrKwsjRs3To0aNVJISIgkacyYMdq0aZOWLl2qH374QYMHD1bfvn118ODBW3tYAFBJTIZhGPYuAgAczfDhw3X+/Hl98cUXkq72qHbs2FGzZs2yXDNt2jRt2LBBq1evthw7fvy4mjVrpv379ysoKEiRkZEqLi7Whg0bJEnFxcXy9PTUoEGD9OGHH0qSsrOz5ePjo02bNll6Vn9t7ty5eu6552Q2m9W5c2dFRUUpJiZGAQEBkq72xLZo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYflWOPGjSVJOTk51/2u+Ph4ZWdn6+OPP1ZYWJg+++wztW3bVmvWrLlhjdu3b9ewYcM0Z84chYeHS5J27typ4uJiBQUFWdWemppqVTcA2BMvdgFAFSkoKFD//v312muvlTrn4+Nj+VyzZk2rcyaTyeqYyWSSJJWUlNzw+zw8PNS/f3/1799f06ZNU58+fTRt2jT17t27zOuzs7P14IMP6vHHH9fIkSOt6jabzdq2bZvMZrPVPe7u7jesAQCqCyEWACqBq6trqfGonTp10ooVK+Tv7y8Xl+r97dZkMikkJETfffddmecvXbqkAQMGKCQkRG+++abVudDQUBUXFysnJ0f33HNPdZQLAOXGcAIAqAT+/v7asmWLjhw5otOnT6ukpETx8fE6e/asoqOjtXXrVh0+fFirV69WXFyczS9g2SIjI0MDBgzQ8uXLtWfPHh06dEiJiYl6//33NWDAgDLvGTVqlI4dO6Z33nlHp06dUnZ2trKzs3X58mUFBQUpJiZGjz32mD7//HNlZmYqLS1NCQkJ+ve//11pdQPAraAnFgAqwcSJExUbG6s2bdro4sWLyszMlL+/vzZu3Kjnn39e9913nwoLC+Xn56e+ffuqRo3K60No2rSp/P399fLLL1um0rq2P2HChDLvSU1NVVZWltq0aWN1PDk5WZGRkVq0aJGmTZumP/3pT/r555/VoEEDdevWTQ888ECl1Q0At4LZCQAAAOBwGE4AAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADsfF3gUAAADAecTFxdl03aJFi2543mQYhlEZBQEAAAA3M2jQIKv9CxcuaN26derfv78kqbCwUElJSSopKblhO4RYAAAA2E1mZqbat2+v/Px8SdKpU6fk7e2t4uLiG97HmFgAAADYza/7Uw3DKHWsLIRYAAAAVJsrV65USjuEWAAAAFSbJk2aaPz48dq5c6ckqU6dOvrd735ndY3JZLppO4RYAAAAVJtJkyYpLS1NoaGh6tq1q7744gv9/e9/t5xv2LChDh48eNN2eLELAAAA1W7jxo2KiIhQ27ZtdejQIT3yyCMaMWKEIiIibLqfnlgAAABUu3r16slkMmnHjh3asmWLvL29NWzYMAUFBSkhIeGm99MTCwAAgGq3Z88edejQwepFr+LiYr300kt67bXXVFRUdMP7WbELAAAAdrVjxw599NFHWrJkiTw9PfXaa6/d9B5CbAUZhqH8/Hx5eHjY9AYdAAAA/t+ZM2dkGIbuuOMOHT16VIMHD9by5cvVrVs3m+4nxFZQfn6+PD09dfLkSd1+++32LgeoNoZhqLCwUJLk5ubGX+LglPi1D1Tc3/72N61YsULp6ekKCwvTiBEjNGTIEN12223laocxsRWUl5cnT09P9enTRzVr1rR3OQCAavTZZ5+pVq1a9i4DcEg+Pj567LHHNHLkSAUFBVW4HXpiAQAAUG2OHz8us9l8y+0QYm/RlN4HVN/d3lUA1aewyKQXV7WRJE3vu0duLvxjDpzD5eIaeiGptb3LABzeRx99ZNN1sbGxNzxPiL1FruYSubkwLgrOyc3FIMTCiZTYuwDgN2HChAk3vcYwDEJsVWNEMQA4h1/+fs/rJEDFnT17tlLaYcWuW3S5mF5YAHAGv/z9/toMHQDsp0Ih9tixYxoxYoR8fX3l6uoqPz8/jRs3TmfOnLFcExkZKZPJJJPJpFq1almWECvrb6+bNm2S2WzW/fffX+rckSNHZDKZ1KhRI+Xn51ud69ixo6ZOnWp17NChQxoxYoSaN28uNzc3NWnSRPfee68+/vhjq5UfrtX2623p0qUVeSQAAACwweLFi23abqbcwwl+/PFHhYWFKSgoSEuWLFGLFi20e/duPfvss0pKStLmzZtVv359SdITTzyhV155RYWFhVq3bp2efPJJ1a1bV6NHj7ZqMzExUWPHjlViYqJOnDghX1/fUt+bn5+v119/XS+//PJ1a0tLS1OvXr3Utm1bzZ07VyEhIZKk9PR0zZ07V+3atVOHDh0s1y9atEh9+/a1aqNu3brlfSQAAACw0a/HxJaUlCgvL8+SwQzDUG5ubuWPiY2Pj5erq6u+/vpr1a5dW5LUvHlzhYaGqmXLlnrxxRc1f/58SdJtt90mb29vSVJcXJzmzJmjNWvWWIXYgoICLVu2TOnp6crOztYHH3ygF154odT3jh07Vm+++abi4+PVqFGjUucNw9Dw4cMVFBSkjRs3qkaN/+9kbtWqlaKjo0v1AtetW9dSHwAAAKrer8fEZmZmqkOHDpbjp06dsimflWs4wdmzZ7V69Wr98Y9/tATYa7y9vRUTE6Nly5aVCouGYWjDhg3at2+fXF1drc59+umnCgkJUXBwsIYOHar333+/zCEH0dHRCgwM1CuvvFJmbRkZGdq7d68mTpxoFWB/6VZWVyksLFReXp7VBgAAgFtz+fJllZT8/+wfv/x8I+UKsQcPHpRhGGrduux58lq3bq1z587p1KlTkqR58+bJ3d1dbm5u6tGjh0pKSvT0009b3ZOYmKihQ4dKkvr27avc3FylpqaWattkMmnmzJlauHChDh8+XOr8gQMHJEnBwcGWYzk5OXJ3d7ds8+bNs7onOjra6ry7u7uOHj1a5s+WkJAgT09Py9asWbPrPSYAAADYKCkpSf/973+Vk5Mj6WrPbOPGjW96X4Ve7LJ1apGYmBhlZGRo48aN6tevn1588UV1797dcn7//v1KS0tTdHS0JMnFxUVDhgxRYmJime316dNHd999t/7yl7/Y9P1eXl7KyMhQRkaG6tatq8uXL1udf+uttyznr21ljceVpMmTJys3N9eyHTt2zKYaAAAAUNrx48c1ZswYffzxxzKZTPr973+vOXPmaPTo0erRo8dN7y9XiA0MDJTJZNLevXvLPL93717Vq1dPDRs2lCR5enoqMDBQd911lz799FPNmTNH33zzjeX6xMREFRUVydfXVy4uLnJxcdH8+fO1YsUK5ebmlvkdM2fO1LJly7R9+3ar461atZJ0NRhfYzabFRgYqMDAQLm4lB7+6+3tbTl/o+skyc3NTbfffrvVBgAAgPLZsmWLfv/736tly5bKy8tTamqqxo0bp2+//Vbjxo1TrVq19Prrr9+0nXKFWC8vL/Xu3Vvz5s3TxYsXrc5lZ2fr448/1pAhQ8oce+ru7q5x48Zp4sSJMgxDRUVF+vDDD/XGG29Y9YTu2LFDvr6+WrJkSZk1dOnSRYMGDdKkSZOsjoeGhiokJESvv/66zWMpAAAAUL26d++uCxcuaMuWLfrwww9122236c0337T8a/emTZvUtGnTm7ZT7tkJ5syZo+7du6tPnz6aNm2a1RRbTZo00fTp069776hRo/Tqq69qxYoVcnFx0blz5zRy5Eh5enpaXffwww8rMTFRTz31VJntTJ8+XW3btrXqNTWZTFq0aJF69+6t8PBwTZ48Wa1bt9aVK1e0fv16nTp1Smaz2aqd8+fPKzs72+qYh4eH6tSpU97HAgAAABts2bJFnTt3LnX82qQBx48fV1xcnNasWXPDdso9JrZVq1ZKT09XQECAHn30UbVs2VJPPvmkoqKitGnTJsscsWWpX7++HnvsMU2dOlWJiYnq1atXqQArXQ2x6enp+uGHH8psJygoSCNGjNClS5esjnfr1k3btm1TcHCw4uPj1aZNG3Xv3l1LlizRW2+9VWp+2ri4OPn4+Fhts2fPLu8jAQAAgI3KCrDXfPjhh2rfvn2pjseymAwWgK6QvLw8eXp6auubfmpwO0vPwnkUFpk08V9tJUmvP7Bbbi78FgLncOmKSc/+++qv/U8//bTUVJMAKu7UqVMaNWqUvvnmG73xxht64oknbnpPuYcTwNqVkhoqLLr5dcBvRWGRqczPwG/dlZL//8fLW5l3HHB2v159taioSO+++67atWunnTt3ys/Pz6Z2CLG36OU1QapZs6a9ywDs4sVVbexdAgDAwXz55ZdW+0VFRTp37pwGDRpkc4CVCLEAAACoRt9//32pY1999ZWeeOIJff7550pMTFSLFi1u2g5jYivo2pjYkydPMmcsnIphGCosLJR0df5k/lkVzohf+0DlO3v2rEaNGqVVq1bptdde0x//+McbXk+IraBrITY3N5cQCwAAUEk++eQTxcfH69y5cze8rkLLzgIA4GwMw9ClS5d06dIlm5dfB1B+/fv3v+E0XNcQYgEAsEFhYaEGDx6swYMHW4bUAKh8Fy9e1Nq1a296HSEWAAAb/HKBnV8vtgOg+hFiAQAA4HCYYgsAABuUlJSU+RlA+ZjN5koZV06IBQDABvn5+Vaf69evb8dqAMe1cuXKG57Pzc1VbGzsTdup8uEECxYskIeHh4qK/n9t1oKCAtWsWVORkZFW16akpMhkMunw4cPy9/fXrFmzSrU3depUdezYscx9f39/mUym627Dhw+XpOueX7p0aSX/9AAAAPilBx988IZbnz59bGqnyntio6KiVFBQoPT0dHXr1k2StGHDBnl7e2vLli26dOmSatWqJUlKTk5W8+bN1bJlywp919atW1VcXCxJ+u677/Twww9r//79lnlca9eubbl20aJF6tu3r9X9devWrdD3AgAAwDZXrlxRzZo1b7mdKu+JDQ4Olo+Pj1JSUizHUlJSNGDAALVo0UKbN2+2Oh4VFVXh72rYsKG8vb3l7e1t+WeeRo0aWY55enparq1bt67l+LXtWpgGAABA1WjSpInGjx+vnTt3lnnebDbL39//pu1Uy+wEUVFRSk5OtuwnJycrMjJSERERluMXL17Uli1bbinEAgAA4H/bpEmTlJaWptDQUHXt2lXvvvuu1ZhzLy8v/fjjjzdtp9pC7MaNG1VUVKT8/Hxt375dERER6tGjh6WHdtOmTSosLLQKsc8//7zc3d2tthkzZlRKTdHR0aXaPnr06HWvLywsVF5entUGAACA8nnmmWf03XffKTU1Vdu2bdO8efPk7e2t2NhYpaam2txOtYTYyMhIXbhwQVu3btWGDRsUFBSkhg0bKiIiwjIuNiUlRQEBAWrevLnlvmeffVYZGRlW21NPPVUpNb311lul2vb19b3u9QkJCfL09LRszZo1q5Q6AAAAnFG9evVkMpm0Y8cObdmyRd7e3ho2bJiCgoKUkJBw0/urJcQGBgaqadOmSk5OVnJysiIiIiRJvr6+atasmb777jslJyerZ8+eVvc1aNBAgYGBVltlTWni7e1dqm0Xl+u/5zZ58mTl5uZatmPHjlVKHQAAAM6uXbt2eu2115SZmanBgwfrL3/5y03vqbZ5YqOiopSSkqJz587p2WeftRzv0aOHkpKSlJaWptGjR1dXOeXm5uYmNzc3e5cBAADwm7Njxw599NFHWrJkiTw9PfXaa6/d9J5qDbHx8fG6cuWKpSdWkiIiIjRmzBhdvny5Wl/qOn/+vLKzs62OeXh4qE6dOtVWAwAAgLM6c+aMDMPQHXfcoaNHj2rw4MFavny5ZUrWm6nWEHvx4kWFhISocePGluMRERHKz8+3TMVVXeLi4kodS0hI0KRJk6qtBgAAAGfzt7/9TStWrFB6errCwsI0YsQIDRkyRLfddlu52jEZlbF4rRPKy8uTp6encnNzLYspAAB+u86ePWtZCnPx4sUsOwtUkI+Pjx577DGNHDlSQUFBFW6n2npiAQBwZDVq1CjzM4DyOX78uMxm8y23Q4gFAABAtfnoo49suu7av3xcDyEWAAAA1WbEiBGqU6fODac2NQyDEAsAQGWoVatWmZ8BlN+GDRvUoUOHW2qDEFtB196HY/lZAHAOhmEoMTFR0tWlyC9fvmznigD78PDwkMlksncZhNiKOnPmjCSx/CwAAHAqOTk5atiwob3LIMRW1LWpVY4ePSpPT087V+N88vLy1KxZMx07dowpzuyA529fPH/74dnbF8/fvq49f1dXV3uXIokQW2HXplfx9PTkfyQ7uv3223n+dsTzty+ev/3w7O2L529ftzqUoGXLlnJzc7vlOgixAAAAqDYHDhyolHYIsQAAAKg2cXFxNl23aNGiG55nyZEKcnNz05QpUyqlOxzlx/O3L56/ffH87Ydnb188f/uqrOf/4YcfKicnR7m5ucrNzdWJEyf00UcfWfZzcnK0ePHim7ZjMq7NFQUAAABUMbPZrBMnTqhx48aSpMzMTLVv3175+fmSpFOnTsnb21vFxcU3bIeeWAAAANjNr/tTDcModawshFgAAAA4HEIsAAAA7OrX03bZMo0XIRYAAADVJjg4WC4u/z9BVv369fXCCy9Y9t3c3NSnT5+btkOIraC5c+fK399ftWrVUteuXZWWlmbvkpzC+vXr1b9/f/n6+spkMumLL76wd0lOIyEhQXfddZc8PDzUqFEjDRw4UPv377d3WU5j/vz5at++vWWS97CwMCUlJdm7LKc1c+ZMmUwmjR8/3t6lOIWpU6fKZDJZbSEhIfYuy6n8/PPPGjp0qLy8vFS7dm3dcccdSk9Pr1Bbe/bskZeXl2W/bt26mjRpkmXf09NT//nPf27aDiG2ApYtW6ZnnnlGU6ZM0ffff68OHTqoT58+ysnJsXdpv3kXLlxQhw4dNHfuXHuX4nRSU1MVHx+vzZs3a82aNbpy5Yruu+8+Xbhwwd6lOYWmTZtq5syZ2rZtm9LT09WzZ08NGDBAu3fvtndpTmfr1q1699131b59e3uX4lTatm2rrKwsy/btt9/auySnce7cOYWHh6tmzZpKSkrSnj179MYbb6hevXp2rYsptiqga9euuuuuuzRnzhxJUklJiZo1a6axY8da/U0CVctkMmnlypUaOHCgvUtxSqdOnVKjRo2UmpqqHj162Lscp1S/fn397W9/08iRI+1ditMoKChQp06dNG/ePE2bNk0dO3bUrFmz7F3Wb97UqVP1xRdfKCMjw96lOKVJkyZp48aN2rBhg71LsUJPbDldvnxZ27ZtU69evSzHatSooV69emnTpk12rAyoXrm5uZKuBilUr+LiYi1dulQXLlxQWFiYvctxKvHx8br//vut/gxA9Th48KB8fX0VEBCgmJgYHT161N4lOY1//vOf6ty5swYPHqxGjRopNDRU7733nr3LIsSW1+nTp1VcXGyZoPeaxo0bKzs7205VAdWrpKRE48ePV3h4uNq1a2fvcpzGzp075e7uLjc3Nz311FNauXKl2rRpY++ynMbSpUv1/fffKyEhwd6lOJ2uXbvqgw8+0KpVqzR//nxlZmbqnnvusUyOj6r1448/av78+WrVqpVWr16t0aNH6+mnn7ZpVa2q5HLzSwDAWnx8vHbt2sWYtGoWHBysjIwM5ebmavny5YqNjVVqaipBthocO3ZM48aN05o1a1SrVi17l+N0+vXrZ/ncvn17de3aVX5+fvr0008ZTlMNSkpK1LlzZ82YMUOSFBoaql27dmnBggWKjY21W130xJZTgwYNZDabdfLkSavjJ0+elLe3t52qAqrPmDFj9K9//UvJyclq2rSpvctxKq6urgoMDNSdd96phIQEdejQQW+//ba9y3IK27ZtU05Ojjp16iQXFxe5uLgoNTVV77zzjlxcXG66PCYqV926dRUUFKRDhw7ZuxSn4OPjU+ovy61bt7b7kA5CbDm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIkNlstneJTqWgoECHDx+Wj4+PvUtxCuHh4aWmVDxw4ID8/PzsVNFVDCeogGeeeUaxsbHq3LmzunTpolmzZunChQuKi4uzd2m/eQUFBVZ/887MzFRGRobq16+v5s2b27Gy3774+Hh98skn+vLLL+Xh4WEZA+7p6anatWvbubrfvsmTJ6tfv35q3ry58vPz9cknnyglJUWrV6+2d2lOwcPDo9T47zp16sjLy4tx4dVg4sSJ6t+/v/z8/HTixAlNmTJFZrNZ0dHR9i7NKUyYMEHdu3fXjBkz9OijjyotLU0LFy7UwoUL7VuYgQqZPXu20bx5c8PV1dXo0qWLsXnzZnuX5BSSk5MNSaW22NhYe5f2m1fWc5dkLFq0yN6lOYURI0YYfn5+hqurq9GwYUPj3nvvNb7++mt7l+XUIiIijHHjxtm7DKcwZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXGjvkgzmiQUAAIDDYUwsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAHACR44ckclkUkZGhr1LAYBKQYgFgAoYPny4Bg4caNmPjIzU+PHj7VZPZmam/vCHP8jX11e1atVS06ZNNWDAAO3bt0+S1KxZM2VlZbFEKoDfDBd7FwAAuDVXrlxR7969FRwcrM8//1w+Pj46fvy4kpKSdP78eUmS2WyWt7e3fQsFgEpETywA3KLhw4crNTVVb7/9tkwmk0wmk44cOSJJ2rVrl/r16yd3d3c1btxYw4YN0+nTpy33RkZGauzYsRo/frzq1aunxo0b67333tOFCxcUFxcnDw8PBQYGKikp6brfv3v3bh0+fFjz5s1Tt27d5Ofnp/DwcE2bNk3dunWTVHo4wfDhwy21/nJLSUmRJBUWFmrixIlq0qSJ6tSpo65du1rOAcD/AkIsANyit99+W2FhYXriiSeUlZWlrKwsNWvWTOfPn1fPnj0VGhqq9PR0rVq1SidPntSjjz5qdf/ixYvVoEEDpaWlaezYsRo9erQGDx6s7t276/vvv9d9992nYcOG6b///W+Z39+wYUPVqFFDy5cvV3Fxsc01X6s1KytL48aNU6NGjRQSEiJJGjNmjDZt2qSlS5fqhx9+0ODBg9W3b18dPHjw1h4WAFQSk2EYhr2LAABHM3z4cJ0/f15ffPGFpKs9qh07dtSsWbMs10ybNk0bNmzQ6tWrLceOHz+uZs2aaf/+/QoKClJkZKSKi4u1YcMGSVJxcbE8PT01aNAgffjhh5Kk7Oxs+fj4aNOmTZae1V+bO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKs9sS1atND27dvVsWNHq3s///xzxcTE6JtvvlF4eLiOHj2qgIAAHT16VL6+vpbrevXqpS5dumjGjBm3+vgA4JbREwsAVWTHjh1KTk6Wu7u7ZbvW03n48GHLde3bt7d8NpvN8vLy0h133GE51rhxY0lSTk7Odb8rPj5e2dnZ+vjjjxUWFqbPPvtMbdu21Zo1a25Y4/bt2zVs2DDNmTNH4eHhkqSdO3equLhYQUFBVrWnpqZa1Q0A9sSLXQBQRQoKCtS/f3+99tprpc75+PhYPtesWdPqnMlksjpmMpkkSSUlJTf8Pg8PD/Xv31/9+/fXtGnT1KdPH02bNk29e/cu8/rs7Gw9+OCDevzxxzVy5Eirus1ms7Zt2yaz2Wx1j7u7+w1rAIDqQogFgErg6upaajxqp06dtGLFCvn7+8vFpXp/uzWZTAoJCdF3331X5vlLly5pwIABCgkJ0Ztvvml1LjQ0VMXFxcrJydE999xTHeUCQLkxnAAAKoG/v7+2bNmiI0eO6PTp0yopKVF8fLzOnj2r6Ohobd26VYcPH9bq1asVFxdn8wtYtsjIyNCAAQO0fPly7dmzR4cOHVJiYqLef/99DRgwoMx7Ro0apWPHjumdd97RqVOnlJ2drezsbF2+fFlBQUGKiYnRY489ps8//1yZmZlKS0tTQkKC/v3vf1da3QBwK+iJBYBKMHHiRMXGxqpNmza6ePGiMjMz5e/vr40bN+r555/Xfffdp8LCQvn5+alv376qUaPy+hCaNm0qf39/vfzyy5aptK7tT5gwocx7UlNTlZWVpTZt2lgdT05OVmRkpBYtWqRp06bpT3/6k37++Wc1aNBA3bp10wMPPFBpdQPArWB2AgAAADgchhMAAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAw3GxdwEAAAD47YuLi7PpukWLFtl0nckwDONWCgIAAABuxmw2q2/fvnJzc5MkXbhwQevWrVP//v0lSYWFhUpKSlJJSYlN7RFiAQAAUOXMZrNOnDihxo0bS5IyMzPVvn175efnS5JOnTqlxo0b2xxiGRMLAACAavfrftTy9qsSYgEAAFDlPDw8dO7cOcv+uXPndOHCBRUUFEiSsrOzVb9+fZvbI8QCAACgyoWEhGj27NkqKSlRSUmJ5s2bJ19fX02cOFEbN27Uiy++qLvuusvm9hgTCwAAgCr3xRdf6JFHHlGdOnVUUlKiOnXqaNWqVfr973+vgwcPqlmzZvrqq690xx132NQeIRYAAADVYv369frqq69Uu3ZtPfHEE2rWrJkk6cyZM/Ly8ipXW4RYAAAAOBzGxAIAAMDhsGIXAAAAqpzZbLZpGi1b54klxAIAAKBavPXWW2rRokWltMWY2AoyDEP5+fny8PCQyWSydzkAAAD/08xms77//nt16NChUtpjTGwF5efny9PT07JUGgDgt80wDF26dEmXLl0q98pCACofIRYAABsUFhZq8ODBGjx4sAoLC+1dDuD0CLEAANjg0qVLZX4GYB+82AUAAIAqt2HDBrVq1UqSdO7cOeXl5ZV5nZ+fn03tEWIBAABQ5cLCwvTaa6/pzTff1OnTp0udN5lMMgyDKbYAAKhMv/yD1dY/ZAH8v3nz5unNN9/UCy+8oDvvvFOenp631B4hFgAAG/xyNpr8/HzVr1/fjtUAjue9997TrFmz9Ic//KFS2qvQi13Hjh3TiBEj5OvrK1dXV/n5+WncuHE6c+aM5ZrIyEiZTCaZTCbVqlVLQUFBSkhIKHNakk2bNslsNuv+++8vde7IkSMymUxq1KhRqemsOnbsqKlTp1odO3TokEaMGKHmzZvLzc1NTZo00b333quPP/5YRUVFluuu1fbrbenSpRV5JAAAALiBw4cPq1u3bpXWXrlD7I8//qjOnTvr4MGDWrJkiQ4dOqQFCxZo7dq1CgsL09mzZy3XPvHEE8rKytL+/fs1efJkvfTSS1qwYEGpNhMTEzV27FitX79eJ06cKPN78/Pz9frrr9+wtrS0NHXq1El79+7V3LlztWvXLqWkpOjxxx/X/PnztXv3bqvrFy1apKysLKtt4MCB5X0kAAAAuIn69euXORa2osodYuPj4+Xq6qqvv/5aERERat68ufr166dvvvlGP//8s1588UXLtbfddpu8vb3l5+enuLg4tW/fXmvWrLFqr6CgQMuWLdPo0aN1//3364MPPijze8eOHas333xTOTk5ZZ43DEPDhw9XUFCQNm7cqP79+6tVq1Zq1aqVoqOj9e2336p9+/ZW99StW1fe3t5WW61atcr7SAAAAHAT4eHhevXVV687K0F5lSvEnj17VqtXr9Yf//hH1a5d2+qct7e3YmJitGzZslJDBgzD0IYNG7Rv3z65urpanfv0008VEhKi4OBgDR06VO+//36ZQw6io6MVGBioV155pczaMjIytHfvXk2cOFE1apT9Y93K8rCFhYXKy8uz2gAAAGCbmTNnau/evWrSpIlCQ0MVFRVV5marcoXYgwcPyjAMtW7duszzrVu31rlz53Tq1ClJV99Cc3d3l5ubm3r06KGSkhI9/fTTVvckJiZq6NChkqS+ffsqNzdXqamppdo2mUyaOXOmFi5cqMOHD5c6f+DAAUlScHCw5VhOTo7c3d0t27x586zuiY6Otjrv7u6uo0ePlvmzJSQkyNPT07I1a9bseo8JAAAAv9K8eXPt3r1bCxcu1MCBAxUaGlrmZqsKzU5g65rRMTExevHFF3Xu3DlNmTJF3bt3V/fu3S3n9+/fr7S0NK1cufJqMS4uGjJkiBITExUZGVmqvT59+ujuu+/WX/7yF33yySc3/X4vLy9lZGRIuvqi2eXLl63Ov/XWW+rVq5fVMV9f3zLbmjx5sp555hnLfl5eHkEWAACgHNzc3BQdHV0pbZUrxAYGBspkMmnv3r166KGHSp3fu3ev6tWrp4YNG0qSPD09FRgYKOnqsIHAwEB169bNEhwTExNVVFRkFRwNw5Cbm5vmzJlT5vxhM2fOVFhYmJ599lmr49dWgNi/f78lxZvNZsv3u7iU/lG9vb0t52/Gzc1Nbm5uNl0LAACAqlWu4QReXl7q3bu35s2bp4sXL1qdy87O1scff6whQ4aUOfbU3d1d48aN08SJE2UYhoqKivThhx/qjTfeUEZGhmXbsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/11JqEGAAD4H9OiRYubbv7+/ja3V+7hBHPmzFH37t3Vp08fTZs2TS1atNDu3bv17LPPqkmTJpo+ffp17x01apReffVVrVixQi4uLjp37pxGjhxZqsf14YcfVmJiop566qky25k+fbratm1r1btqMpm0aNEi9e7dW+Hh4Zo8ebJat26tK1euaP369Tp16pTMZrNVO+fPn1d2drbVMQ8PD9WpU6e8jwUAAAA3cPToUb3yyivy8PCQJJ0+fVp/+9vf9Nprr0m6OmPVn//8Z9sbNCrgyJEjRmxsrNG4cWOjZs2aRrNmzYyxY8cap0+ftlwTERFhjBs3rtS9o0aNMtq2bWs88MADxu9+97sy29+yZYshydixY4eRmZlpSDK2b99udc2TTz5pSDKmTJlidXz//v1GbGys0bRpU8PFxcXw9PQ0evToYbz77rvGlStXLNdJKnNLSEiw6Rnk5uYakozc3FybrgcAOLYjR44YDzzwgPHAAw8YR44csXc5gMOpUaOGkZ2dbdk/fPiw4e7ubtk/efKkYTKZbG7PZBg2vqUFK3l5efL09FRubq5uv/12e5cDAKhiZ8+eVWxsrCRp8eLFLDsLlJPZbNaJEyfUuHFjSVcX0OrQoYNlRdacnBx5e3vbPCy0QsvOAgDgbH45B/n15iMHUH34vxAAAAB28evJAMqzMBUhFgAAG/xyWXKWKAfKb9SoUbrtttss+02aNFFSUpJl38PDQwkJCTa3x5jYCmJMLAA4F8MwVFhYKOnq3OG3spQ5gFtXoRW7AABwNiaTiR5Y4H8IwwkAAADgcAixAAAAcDiEWAAAANidYRj66aefbL6eEAsAAAC7O3XqlFq0aGHz9YRYAAAA/E9gnlgAAAA4nPLM/FrlU2wtWLBAzz77rM6dOycXl6tfV1BQoHr16ik8PFwpKSmWa1NSUhQVFaVDhw7p3nvv1fjx4zV+/Hir9qZOnaovvvhCGRkZpfb9/f1vOJYiNjZWH3zwwXVT/pIlS/T73//+ln5eAAAAlPbyyy/f8HxBQUG52qvyEBsVFaWCggKlp6erW7dukqQNGzbI29tbW7Zs0aVLlyzz7iUnJ6t58+Zq2bJlhb5r69atKi4uliR99913evjhh7V//37LYgS1a9e2XLto0SL17dvX6v66detW6HsBAABwY19++eUNzxcVFZWrvSoPscHBwfLx8VFKSoolxKakpGjAgAFat26dNm/erMjISMvxqKioCn9Xw4YNLZ/r168vSWrUqFGZ4bRu3bry9vau8HcBAADAdt9///0Nz586dUqNGze2ub1qGRMbFRWl5ORky35ycrIiIyMVERFhOX7x4kVt2bLllkJsVSosLFReXp7VBgAAgMpRnvGwUjWG2I0bN6qoqEj5+fnavn27IiIi1KNHD8uY2E2bNqmwsNAqxD7//PNyd3e32mbMmFEpNUVHR5dq++jRo9e9PiEhQZ6enpatWbNmlVIHAAAArirP7ARVPpxAkiIjI3XhwgVt3bpV586dU1BQkBo2bKiIiAjFxcXp0qVLSklJUUBAgJo3b26579lnn9Xw4cOt2nrnnXe0fv36W67prbfeUq9evayO+fr6Xvf6yZMn65lnnrHs5+XlEWQBAAAqiaen501f/vqlagmxgYGBatq0qZKTk3Xu3DlFRERIuhoamzVrpu+++07Jycnq2bOn1X0NGjRQYGCg1bFrY11vlbe3d6m2b8TNzU1ubm6V8t0AAAD4f6dPn9ZTTz2lVatW6c9//rNN91TbPLFRUVFKSUlRSkqK5UUuSerRo4eSkpKUlpb2PzseFgAAAFXjyy+/VLt27XTy5En98MMPNt9XLT2x0tUQGx8frytXrlh6YiUpIiJCY8aM0eXLl6s1xJ4/f17Z2dlWxzw8PFSnTp1qqwEAAMBZ/Hou/6KiIr366qv67LPP9Oqrr1oN27RFtYbYixcvKiQkxGr6hIiICOXn51um4qoucXFxpY4lJCRo0qRJ1VYDAACAswgICJBhGDKZTJb/mkwmrVq1qtR7SrYwGeWdzwCSrr7Y5enpqdzcXMtiCgAAACjbr4cKFBUVafr06UpOTtabb75Z6mX+myHEVhAhFgAA4NZ99NFHevrppxUWFqb33nvvhrNF/VK1vdgFAAAA/NrQoUO1a9cuFRUVqV27djbfV21jYgEAAICy+Pr6avXq1Zo3b57N9zCcoIIYTgAAAGA/9MRW0LXsn5eXZ+dKAAAAqo+Hh0e5loe95trsBDdiGIaOHDliU3uE2Ao6c+aMJLH0LAAAcCo5OTlq2LBhue8bP3685fPp06f1t7/9Ta+99prlWEFBgc2rdUkMJ6iw8+fPq169ejp69Kg8PT3tXY7TycvLU7NmzXTs2DGGc9gBz9++eP72w7O3L56/fV17/ufPn7/l7PPjjz+qQ4cOys/PtxzLycmRt7e3SkpKbGqDntgKqlHj6sQOnp6e/I9kR7fffjvP3454/vbF87cfnr198fztqyJDCX7N3d1dly5d0uXLl+Xq6irpaki+7bbbbG6DKbYAAABQrRo1aiQPDw+98cYbkqTi4mK9/vrrCg4OtrkNemIBAABQ7V544QU9//zz+utf/6orV67o4sWLWrZsmc33E2IryM3NTVOmTJGbm5u9S3FKPH/74vnbF8/ffnj29sXzt6/Kfv4TJ05Uu3bttHbtWrm6uqp///7q1q2bzffzYhcAAAAcDj2xAAAAqHIvv/yyTddNmTLFpuvoiQUAAECVM5vNatu2rVxcrvahXr58Wfv27VP79u0lSUVFRdq1a5fNU2wRYgEAAFDlzGazTpw4ocaNG0uSMjMz1b59e8tcsadOnZK3t7eKi4ttao8ptgAAAFDtft2PahjGTZel/SVCbAXNnTtX/v7+qlWrlrp27aq0tDR7l+QU1q9fr/79+8vX11cmk0lffPGFvUtyGgkJCbrrrrvk4eGhRo0aaeDAgdq/f7+9y3Ia8+fPV/v27S2TvIeFhSkpKcneZTmtmTNnymQyWS2jiaozdepUmUwmqy0kJMTeZTmVn3/+WUOHDpWXl5dq166tO+64Q+np6XatiRBbAcuWLdMzzzyjKVOm6Pvvv1eHDh3Up08f5eTk2Lu037wLFy6oQ4cOmjt3rr1LcTqpqamKj4/X5s2btWbNGl25ckX33XefLly4YO/SnELTpk01c+ZMbdu2Tenp6erZs6cGDBig3bt327s0p7N161a9++67lnF8qB5t27ZVVlaWZfv222/tXZLTOHfunMLDw1WzZk0lJSVpz549euONN1SvXr1ytVNWL+strf5loNy6dOlixMfHW/aLi4sNX19fIyEhwY5VOR9JxsqVK+1dhtPKyckxJBmpqan2LsVp1atXz/j73/9u7zKcSn5+vtGqVStjzZo1RkREhDFu3Dh7l+QUpkyZYnTo0MHeZTit559/3rj77rtvuZ3atWsbJ0+etOyfOnXKGD16tGX/zJkzRuvWrW1uj57Ycrp8+bK2bdumXr16WY7VqFFDvXr10qZNm+xYGVC9cnNzJUn169e3cyXOp7i4WEuXLtWFCxcUFhZm73KcSnx8vO6//36rPwNQPQ4ePChfX18FBAQoJiZGR48etXdJTuOf//ynOnfurMGDB6tRo0YKDQ3Ve++9V+52/vvf/6pRo0aW/QYNGmjevHmW/fr162vPnj02t0eILafTp0+ruLjY8mbdNY0bN1Z2dradqgKqV0lJicaPH6/w8HC1a9fO3uU4jZ07d8rd3V1ubm566qmntHLlSrVp08beZTmNpUuX6vvvv1dCQoK9S3E6Xbt21QcffKBVq1Zp/vz5yszM1D333GN5qx1V68cff9T8+fPVqlUrrV69WqNHj9bTTz+txYsX27UuFjsAUG7x8fHatWsXY9KqWXBwsDIyMpSbm6vly5crNjZWqampBNlqcOzYMY0bN05r1qxRrVq17F2O0+nXr5/lc/v27dW1a1f5+fnp008/1ciRI+1YmXMoKSlR586dNWPGDElSaGiodu3apQULFig2NtZuddETW04NGjSQ2WzWyZMnrY6fPHlS3t7edqoKqD5jxozRv/71LyUnJ6tp06b2LsepuLq6KjAwUHfeeacSEhLUoUMHvf322/Yuyyls27ZNOTk56tSpk1xcXOTi4qLU1FS98847cnFxsXleS1SOunXrKigoSIcOHbJ3KU7Bx8en1F+WW7dubfchHYTYcnJ1ddWdd96ptWvXWo6VlJRo7dq1jE3Db5phGBozZoxWrlypdevWqUWLFvYuyemVlJSosLDQ3mU4hXvvvVc7d+5URkaGZevcubNiYmKUkZEhs9ls7xKdSkFBgQ4fPiwfHx97l+IUwsPDS02peODAAfn5+dmpoqsYTlABzzzzjGJjY9W5c2d16dJFs2bN0oULFxQXF2fv0n7zCgoKrP7mnZmZqYyMDNWvX1/Nmze3Y2W/ffHx8frkk0/05ZdfysPDwzIG3NPTU7Vr17Zzdb99kydPVr9+/dS8eXPl5+frk08+UUpKilavXm3v0pyCh4dHqfHfderUkZeXF+PCq8HEiRPVv39/+fn56cSJE5oyZYrMZrOio6PtXZpTmDBhgrp3764ZM2bo0UcfVVpamhYuXKiFCxfat7Bbni/BSc2ePdto3ry54erqanTp0sXYvHmzvUtyCsnJyYakUltsbKy9S/vNK+u5SzIWLVpk79KcwogRIww/Pz/D1dXVaNiwoXHvvfcaX3/9tb3LcmpMsVV9hgwZYvj4+Biurq5GkyZNjCFDhhiHDh2yd1lO5auvvjLatWtnuLm5GSEhIcbChQvtXZJhMoxyrO8FAAAA/A9gTCwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAcAJHjhyRyWRSRkaGvUsBgEpBiAWAChg+fLgGDhxo2Y+MjNT48ePtVk9mZqb+8Ic/yNfXV7Vq1VLTpk01YMAA7du3T5LUrFkzZWVlsUQqgN8MF3sXAAC4NVeuXFHv3r0VHByszz//XD4+Pjp+/LiSkpJ0/vx5SZLZbJa3t7d9CwWASkRPLADcouHDhys1NVVvv/22TCaTTCaTjhw5IknatWuX+vXrJ3d3dzVu3FjDhg3T6dOnLfdGRkZq7NixGj9+vOrVq6fGjRvrvffe04ULFxQXFycPDw8FBgYqKSnput+/e/duHT58WPPmzVO3bt3k5+en8PBwTZs2Td26dZNUejjB8OHDLbX+cktJSZEkFRYWauLEiWrSpInq1Kmjrl27Ws4BwP8CQiwA3KK3335bYWFheuKJJ5SVlaWsrCw1a9ZM58+fV8+ePRUaGqr09HStWrVKJ0+e1KOPPmp1/+LFi9WgQQOlpaVp7NixGj16tAYPHqzu3bvr+++/13333adhw4bpv//9b5nf37BhQ9WoUUPLly9XcXGxzTVfqzUrK0vjxo1To0aNFBISIkkaM2aMNm3apKVLl+qHH37Q4MGD1bdvXx08ePDWHhYAVBKTYRiGvYsAAEczfPhwnT9/Xl988YWkqz2qHTt21KxZsyzXTJs2TRs2bNDq1astx44fP65mzZpp//79CgoKUmRkpIqLi7VhwwZJUnFxsTw9PTVo0CB9+OGHkqTs7Gz5+Pho06ZNlp7VX5s7d66ee+45mc1mde7cWVFRUYqJiVFAQICkqz2xLVq00Pbt29WxY0erez///HPFxMTom2++UXh4uI4ePaqAgAAdPXpUvr6+lut69eqlLl26aMaMGbf6+ADgltETCwBVZMeOHUpOTpa7u7tlu9bTefjwYct17du3t3w2m83y8vLSHXfcYTnWuHFjSVJOTs51vys+Pl7Z2dn6+OOPFRYWps8++0xt27bVmjVrbljj9u3bNWzYMM2ZM0fh4eGSpJ07d6q4uFhBQUFWtaemplrVDQD2xItdAFBFCgoK1L9/f7322mulzvn4+Fg+16xZ0+qcyWSyOmYymSRJJSUlN/w+Dw8P9e/fX/3799e0adPUp08fTZs2Tb179y7z+uzsbD344IN6/PHHNXLkSKu6zWaztm3bJrPZbHWPu7v7DWsAgOpCiAWASuDq6lpqPGqnTp20YsUK+fv7y8Wlen+7NZlMCgkJ0XfffVfm+UuXLmnAgAEKCQnRm2++aXUuNDRUxcXFysnJ0T333FMd5QJAuTGcAAAqgb+/v7Zs2aIjR47o9OnTKikpUXx8vM6ePavo6Ght3bpVhw8f1urVqxUXF2fzC1i2yMjI0IABA7R8+XLt2bNHhw4dUmJiot5//30NGDCgzHtGjRqlY8eO6Z133tGpU6eUnZ2t7OxsXb58WUFBQYqJidFjjz2mzz//XJmZmUpLS1NCQoL+/e9/V1rdAHAr6IkFgEowceJExcbGqk2bNrp48aIyMzPl7++vjRs36vnnn9d9992nwsJC+fn5qW/fvqpRo/L6EJo2bSp/f3+9/PLLlqm0ru1PmDChzHtSU1OVlZWlNm3aWB1PTk5WZGSkFi1apGnTpulPf/qTfv75ZzVo0EDdunXTAw88UGl1A8CtYHYCAAAAOByGEwAAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACH42LvAgAAAPDbFxcXZ9N1ixYtsuk6QiwAAACqXG5urtX+zz//rB07duh3v/tdhdojxAIAAKDKff7555bPx44dU2RkpK5cuaKgoCDNnDmz3O0xJhYAAADV5vjx44qMjFSTJk20du1azZ8/X3/961/L3Q49sQAAAKgWJ06cUFRUlHx9fZWUlKQ6deroyy+/1P3336/69evr8ccft7ktQiwAAACqXFZWliIjI9W4cWOtWrVKderUkSRFRkZqyZIlGjJkiOrWratHHnnEpvZMhmEYVVkwAAAAEBISIi8vL61evVru7u6lzn/44YcaNWqULl68aFN79MQCAACgynl5eWnVqlVlBlhJeuyxx3TmzBmb26MnFgAAAFWuoKDgugG2IgixAAAAqHK2LHZgGIY++OADm9ojxAIAAKDKDRo06LrniouL9c033+jixYsqKSmxqT3GxAIAAKDK/XKxg1/68ssv9cILL6hWrVqaMmWKze2x2AEAAACq3YYNG9S9e3dFR0frgQce0I8//qjnnnvO5vsJsQAAAKg2u3btUv/+/XXvvfeqbdu2OnTokF577TV5enqWqx1CLAAAAKrcTz/9pNjYWHXs2FEuLi7auXOn3nvvPfn6+laoPV7sAgAAQJWrVauWatSooaefflphYWHXvW7AgAE2tUeIBQAAQJVzcXHRzWKnYRg2z05AiAUAAIDDYUwsAAAAHA7zxAIAAKDa7NmzR/v371deXl6Z52NjY21qh+EEAAAAqHJ5eXl69NFHtWbNGrm4uKhOnTqlrjEMQ+fOnbOpPXpiAQAAUOWmTJminJwcbdu2TR07drzl9uiJBQAAQJULCgrSggUL1LNnz0ppjxe7AAAAUOVOnDihgICASmuPEAsAAIAq17RpU+3bt6/S2mNMLAAAAKrcoEGDNGHCBLm6uurOO++Up6fnLbXHmFgAAABUuf/+97964okntHTp0huu3MWKXQAAAPifk5WVpQMHDig3N7fM8w8++KBN7RBiK8gwDOXn58vDw0Mmk8ne5QAAADgVxsRWUH5+vjw9PZWbm6vbb7/d3uUAAAA4hLS0NH3yySc6cOCATCaTAgMDFRMToy5dupSrHWYnAADABoZh6NKlS7p06dINx/MBuL5JkyYpLCxMixYtUlZWlk6cOKEPPvhA3bp104svvliutgixAADYoLCwUIMHD9bgwYNVWFho73IAh7N8+XK9+eabmjVrls6ePavt27dr+/btOnv2rN555x399a9/1YoVK2xujxALAIANLl26VOZnALaZO3euJkyYoLFjx8psNluOm81mjRkzRn/60580Z84cm9sjxAIAAKDKbd++XQ899NB1zw8cOFDbt2+3uT1CLAAANvjl3JW2zmMJ4P+VlJTI19f3uud9fX1VXFxsc3uEWAAAbJCfn1/mZwC2admypQ4ePHjd8wcPHlTLli1tbq9CIfbYsWMaMWKEfH195erqKj8/P40bN05nzpyxXBMZGSmTySSTyaRatWopKChICQkJZb7RuWnTJpnNZt1///2lzh05ckQmk0mNGjUq9ZtGx44dNXXqVKtjhw4d0ogRI9S8eXO5ubmpSZMmuvfee/Xxxx+rqKjIct212n69LV26tCKPBAAAADfwyCOP6N13373u+QULFujhhx+2ub1yh9gff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W11+b3uGX28CBA8v7SAAAAHATY8eO1T333FPmSl15eXnq0aOHxowZY3N75V7sID4+Xq6urvr6669Vu3ZtSVLz5s0VGhqqli1b6sUXX9T8+fMlSbfddpu8vb0lSXFxcZozZ47WrFmj0aNHW9orKCjQsmXLlJ6eruzsbH3wwQd64YUXSn3v2LFj9eabbyo+Pl6NGjUqdd4wDA0fPlxBQUHauHGjatT4/3zeqlUrRUdHl+oFrlu3rqU+AAAAVJ3bb79dY8eOLfe56ylXiD179qxWr16t6dOnWwLsNd7e3oqJidGyZcs0b948q3OGYejbb7/Vvn371KpVK6tzn376qUJCQhQcHKyhQ4dq/Pjxmjx5cqmlXKOjo7VmzRq98sorZU6/kJGRob1792rJkiVWAfaXWB4WAADAPhYvXmzTdbGxsTZdV64Qe/DgQRmGodatW5d5vnXr1jp37pxOnTolSZo3b57+/ve/6/Lly7py5Ypq1aqlp59+2uqexMREDR06VJLUt29f5ebmKjU1VZGRkVbXmUwmzZw5U/3799eECRNKDfw9cOCAJCk4ONhyLCcnRwEBAZb9v/71r/rjH/9o2Y+Ojraap0yS9uzZo+bNm5f62QoLC60mt87LyyvzGQAAAKC0CRMmWO0XFRXp4sWL8vDwsBwzDMPmEFuhF7tsXW4vJiZGGRkZ2rhxo/r166cXX3xR3bt3t5zfv3+/0tLSFB0dLUlycXHRkCFDlJiYWGZ7ffr00d13362//OUvNn2/l5eXMjIylJGRobp16+ry5ctW59966y3L+Wvb9aZ+SEhIkKenp2Vr1qyZTTUAAADg6r/oX9tOnjype+65R5L0/vvvW46fO3fO5vbKFWIDAwNlMpm0d+/eMs/v3btX9erVU8OGDSVJnp6eCgwM1F133aVPP/1Uc+bM0TfffGO5PjExUUVFRfL19ZWLi4tcXFw0f/58rVixosxBv5I0c+ZMLVu2rNRkuNeGKezfv99yzGw2KzAwUIGBgXJxKd3p7O3tbTl/o+skafLkycrNzbVsx44du8GTAgAAQFkuX76shx56SBkZGXrxxRf1hz/8QevWrSt3O+UKsV5eXurdu7fmzZunixcvWp3Lzs7Wxx9/rCFDhpQ59tTd3V3jxo3TxIkTZRiGioqK9OGHH+qNN96w6gndsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/31KpmE2s3NTbfffrvVBgAAANsVFRXpkUce0bZt27R27VpNnTpVr7zyigYOHKitW7eWq61yz04wZ84cde/eXX369NG0adPUokUL7d69W88++6yaNGmi6dOnX/feUaNG6dVXX9WKFSvk4uKic+fOaeTIkfL09LS67uGHH1ZiYqKeeuqpMtuZPn262rZta9VrajKZtGjRIvXu3Vvh4eGaPHmyWrdurStXrmj9+vU6depUqfGv58+fV3Z2ttUxDw8P1alTp7yPBQAAADdQXFysRx55RFu3blVycrJCQkIkSRMnTtTZs2f1u9/9TuvXr7/uu1e/Vu4xsa1atVJ6eroCAgL06KOPqmXLlnryyScVFRWlTZs2qX79+te9t379+nrsscc0depUJSYmqlevXqUCrHQ1xKanp+uHH34os52goCCNGDFCly5dsjrerVs3bdu2TcHBwYqPj1ebNm3UvXt3LVmyRG+99ZbV1F7S1Wm/fHx8rLbZs2eX95EAAADgJgYPHqzNmzdr3bp1lgB7zYwZM/Twww+rT58+NrdnMmx9SwtW8vLy5OnpqdzcXIYWAIATOHv2rOWt6cWLF9+w0wZAad7e3lq3bp3atGlz3WuGDBmiZcuW2dRehWYnAADA2fxyDvLrzUcO4PpuFmAl6eOPP7a5vXKPiQUAAADKa+vWrTd9eevaCqy2IMQCAACgyo0YMUJ16tS57nSmEiEWAIBKV6tWrTI/A7Ddhg0b1KFDh0ppixALAIAN3Nzc9Nlnn1k+A7AvQiwAADYwmUz0wAL/Q3i9EgAAAA6HEAsAAIAq17Jly0odisNwAgAAAFS5AwcOVGp7hFgAAABUubi4OJuuW7RokU3XsexsBbHsLAAAgO3MZrP69u1rGVJw4cIFrVu3Tv3795ckFRYWKikpSSUlJTa1R4itIEIsAACA7cxms06cOKHGjRtLkjIzM9W+fXvl5+dLkk6dOiVvb28VFxfb1F6Vv9i1YMECeXh4qKioyHKsoKBANWvWVGRkpNW1KSkpMplMOnz4sPz9/TVr1qxS7U2dOlUdO3Ysc9/f318mk+m627UVIK53funSpZX80wMAAKAsv+5HNQyj1LEbqfIxsVFRUSooKFB6erq6desm6epqDd7e3tqyZYsuXbpkmXcvOTlZzZs3V8uWLSv0XVu3brWk9++++04PP/yw9u/fb+kprV27tuXaRYsWqW/fvlb3161bt0LfCwAAgOpV5SE2ODhYPj4+SklJsYTYlJQUDRgwQOvWrdPmzZstPbIpKSmKioqq8Hc1bNjQ8rl+/fqSpEaNGpUZTuvWrStvb+8KfxcAAABujclkuuH+jVTLPLFRUVFKTk627CcnJysyMlIRERGW4xcvXtSWLVtuKcRWpcLCQuXl5VltAAAAsE1wcLBcXP6//7R+/fp64YUXLPtubm7q06ePze1VW4jduHGjioqKlJ+fr+3btysiIkI9evRQSkqKJGnTpk0qLCy0CrHPP/+83N3drbYZM2ZUSk3R0dGl2j569Oh1r09ISJCnp6dla9asWaXUAQAA4Az27NkjLy8vy37dunU1adIky76np6f+85//2NxetcwTGxkZqQsXLmjr1q06d+6cgoKC1LBhQ0VERCguLk6XLl1SSkqKAgIC1Lx5c8t9zz77rOVlrGveeecdrV+//pZreuutt9SrVy+rY76+vte9fvLkyXrmmWcs+3l5eQRZAAAAO6mWEBsYGKimTZsqOTlZ586dU0REhKSrobFZs2b67rvvlJycrJ49e1rd16BBAwUGBloduzbW9VZ5e3uXavtG3NzcKnWpNAAAAFRctQwnkK4OKUhJSVFKSorV1Fo9evRQUlKS0tLS/mfHwwIAAOB/S7UtOxsVFaX4+HhduXLF0hMrSRERERozZowuX75crSH2/Pnzys7Otjrm4eGhOnXqVFsNAAAAqJhq7Ym9ePGiAgMDLSs1SFdDbH5+vmUqruoSFxcnHx8fq2327NnV9v0AAACoOJadrSCWnQUAALDdyy+/bNN1U6ZMsek6QmwFEWIBAABs16lTJ6v9y5cva9++fWrfvr3lmGEY2r59u03tEWIriBALAABQcZmZmWrfvr3y8/MrdH+1jYkFAAAArrnVftRqm53gt+bag2f5WQAA4Ew8PDxkMpnsXQYhtqLOnDkjSazaBQAAnEpOTo4aNmxo7zIIsRV1beWwo0ePytPT087VOJ9ry/4eO3aMMcl2wPO3L56//fDs7Yvnb1/Xnr+rq2uF7v/pp5+s9o8fPy7DMHTkyBGrnl0/Pz+b2iPEVlCNGleHE3t6evI/kh3dfvvtPH874vnbF8/ffnj29sXzt6+KDiUICAiwGgd7rZ2AgADLvmEYKikpsak9QiwAAACqnK1TZ9mKEAsAAIAq98v5YCsDIbaC3NzcNGXKFLm5udm7FKfE87cvnr998fzth2dvXzx/+7rV5//rMbHXY+uYWBY7AAAAQJUzm80yDMMy9vXXGBMLAACA/0nffPONGjRoIOnq7ASPPvqovvvuO0nS2bNn1bNnT5vbIsQCAACgWrRt21aNGzeWJLm7u8tkMlnGyubk5JSrLZadBQAAgMMhxAIAAKDKVfZrWITYCpo7d678/f1Vq1Ytde3aVWlpafYuySmsX79e/fv3l6+vr0wmk7744gt7l+Q0EhISdNddd8nDw0ONGjXSwIEDtX//fnuX5TTmz5+v9u3bWyZ5DwsLU1JSkr3LclozZ86UyWTS+PHj7V2KU5g6dapMJpPVFhISYu+ynMrPP/+soUOHysvLS7Vr19Ydd9yh9PT0crVR1iIJvz5WnoUUCLEVsGzZMj3zzDOaMmWKvv/+e3Xo0EF9+vQp91gOlN+FCxfUoUMHzZ07196lOJ3U1FTFx8dr8+bNWrNmja5cuaL77rtPFy5csHdpTqFp06aaOXOmtm3bpvT0dPXs2VMDBgzQ7t277V2a09m6davefffdSp/zEjfWtm1bZWVlWbZvv/3W3iU5jXPnzik8PFw1a9ZUUlKS9uzZozfeeEP16tUrVztLlixR3bp1LfsBAQHKy8uz7Ht5eWnTpk02t8cUWxXQtWtX3XXXXZozZ44kqaSkRM2aNdPYsWM1adIkO1fnPEwmk1auXKmBAwfauxSndOrUKTVq1Eipqanq0aOHvctxSvXr19ff/vY3jRw50t6lOI2CggJ16tRJ8+bN07Rp09SxY0fNmjXL3mX95k2dOlVffPGFMjIy7F2KU5o0aZI2btyoDRs23FI7b775poYNG6aGDRtWSl30xJbT5cuXtW3bNvXq1ctyrEaNGurVq1e5/vYAOLrc3FxJV4MUqldxcbGWLl2qCxcuKCwszN7lOJX4+Hjdf//9Vn8GoHocPHhQvr6+CggIUExMjI4ePWrvkpzGP//5T3Xu3FmDBw9Wo0aNFBoaqvfee6/c7UyfPl1NmzbVI488oqSkJJvng70eQmw5nT59WsXFxZbpIa5p3LixsrOz7VQVUL1KSko0fvx4hYeHq127dvYux2ns3LlT7u7ucnNz01NPPaWVK1eqTZs29i7LaSxdulTff/+9EhIS7F2K0+natas++OADrVq1SvPnz1dmZqbuuece5efn27s0p/Djjz9q/vz5atWqlVavXq3Ro0fr6aef1uLFi8vVTk5Ojv71r3/Jzc1N999/v/z8/PTnP/9Zhw8frlBdzBMLoNzi4+O1a9cuxqRVs+DgYGVkZCg3N1fLly9XbGysUlNTCbLV4NixYxo3bpzWrFmjWrVq2bscp9OvXz/L5/bt26tr167y8/PTp59+ynCaalBSUqLOnTtrxowZkqTQ0FDt2rVLCxYsUGxsrM3tmM1m9e7dW02aNNFnn32md955Rx999JHuuOMOdevWTSNHjtTDDz9s8/9j9MSWU4MGDWQ2m3Xy5Emr4ydPnpS3t7edqgKqz5gxY/Svf/1LycnJatq0qb3LcSqurq4KDAzUnXfeqYSEBHXo0EFvv/22vctyCtu2bVNOTo46deokFxcXubi4KDU1Ve+8845cXFxUXFxs7xKdSt26dRUUFKRDhw7ZuxSn4OPjU+ovy61bt76lIR2GYeihhx7SihUrlJ2drejoaC1cuFC+vr42t0GILSdXV1fdeeedWrt2reVYSUmJ1q5dy9g0/KYZhqExY8Zo5cqVWrdunVq0aGHvkpxeSUmJCgsL7V2GU7j33nu1c+dOZWRkWLbOnTsrJiZGGRkZMpvN9i7RqRQUFOjw4cPy8fGxdylOITw8vNSUigcOHJCfn1+ltF9cXCzDMGQYhlxcbB8kwHCCCnjmmWcUGxurzp07q0uXLpo1a5YuXLiguLg4e5f2m1dQUGD1N+/MzExlZGSofv36at68uR0r++2Lj4/XJ598oi+//FIeHh6WMeCenp6qXbu2nav77Zs8ebL69eun5s2bKz8/X5988olSUlK0evVqe5fmFDw8PEqN/65Tp468vLwYF14NJk6cqP79+8vPz08nTpzQlClTZDabFR0dbe/SnMKECRPUvXt3zZgxQ48++qjS0tK0cOFCLVy48JbaXb58uT755BOtWrVK99xzj8aOHVu+GYcMVMjs2bON5s2bG66urkaXLl2MzZs327skp5CcnGxIKrXFxsbau7TfvLKeuyRj0aJF9i7NKYwYMcLw8/MzXF1djYYNGxr33nuv8fXXX9u7LKcWERFhjBs3zt5lOIUhQ4YYPj4+hqurq9GkSRNjyJAhxqFDh+xdllP56quvjHbt2hlubm5GSEiIsXDhwnK3cfnyZSMpKcn4wx/+YNSoUcPw9/c3Xn75ZePo0aMVqol5YgEAAFDlvLy89N///lcPPfSQRo4cqXvvvfeW2iPEAgAAoMrNmTNHQ4cOtVq161YQYgEAAOBweLELAAAAVc6WWW0Mw9CRI0dsao+eWAAAAFQ5s9msV155RR4eHmWeLygo0J///Gebl6MlxAIAAKDKmc1mnThxQo0bNy7zfE5Ojry9vW0OsSx2AAAAgCrn6uqqK1euXPf85cuXy7WsMyEWAAAAVc7b21uZmZnXPX/kyJHr9tKWhRALAACAKtetWzf94x//uO75f/zjH+rSpYvN7RFiAcAJHDlyRCaTSRkZGfYuBYCTGj16tN5//3299NJLOnv2rOX4uXPnNHXqVP3973/XU089ZXN7hFgAqIDhw4dbrfEdGRmp8ePH262ezMxM/eEPf5Cvr69q1aqlpk2basCAAdq3b58kqVmzZsrKylK7du3sViMA59ajRw/NnDlTM2fOVMOGDeXt7S0fHx81aNBA06dP17Rp0xQVFWVze8wTCwAO7sqVK+rdu7eCg4P1+eefy8fHR8ePH1dSUpLOnz8v6epbwd7e3vYtFIDTmzhxogYNGqQvvvhCmZmZMgxD/v7+GjBggFq1alW+xgwAQLnFxsYaAwYMsHyWZLVlZmYahmEYO3fuNPr27WvUqVPHaNSokTF06FDj1KlTlnYiIiKMMWPGGOPGjTPq1q1rNGrUyFi4cKFRUFBgDB8+3HB3dzdatmxp/Oc//7luLdu3bzckGUeOHLnuNZmZmYYkY/v27detWZKRnJxsGIZhXLp0yfjTn/5k+Pr6GrfddpvRpUsXyzkA+F/AcAIAuEVvv/22wsLC9MQTTygrK0tZWVlq1qyZzp8/r549eyo0NFTp6elatWqVTp48qUcffdTq/sWLF6tBgwZKS0vT2LFjNXr0aA0ePFjdu3fX999/r/vuu0/Dhg3Tf//73zK/v2HDhqpRo4aWL1+u4uJim2u+VmtWVpbGjRunRo0aKSQkRJI0ZswYbdq0SUuXLtUPP/ygwYMHq2/fvjp48OCtPSwAqCQsdgAAFTB8+HCdP39eX3zxhaSrY2I7duyoWbNmWa6ZNm2aNmzYoNWrV1uOHT9+XM2aNdP+/fsVFBSkyMhIFRcXa8OGDZKk4uJieXp6atCgQfrwww8lSdnZ2fLx8dGmTZvUrVu3MuuZO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKsvdrVo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYfl2LV5E3Nycq77XfHx8crOztbHH3+ssLAwffbZZ2rbtq3WrFlzwxq3b9+uYcOGac6cOQoPD5ck7dy5U8XFxQoKCrKqPTU11apuALAnXuwCgCpSUFCg/v3767XXXit1zsfHx/K5Zs2aVudMJpPVMZPJJEk3XYrRw8ND/fv3V//+/TVt2jT16dNH06ZNU+/evcu8Pjs7Ww8++KAef/xxjRw50qpus9msbdu2yWw2W93j7u5+wxoAoLoQYgGgEri6upYaj9qpUyetWLFC/v7+cnGp3t9uTSaTQkJC9N1335V5/tKlSxowYIBCQkL05ptvWp0LDQ1VcXGxcnJydM8991RHuQBQbgwnAIBK4O/vry1btujIkSM6ffq0SkpKFB8fr7Nnzyo6Olpbt27V4cOHtXr1asXFxdn8ApYtMjIyNGDAAC1fvlx79uzRoUOHlJiYqPfff18DBgwo855Ro0bp2LFjeuedd3Tq1CllZ2crOztbly9fVlBQkGJiYvTYY4/p888/V2ZmptLS0pSQkKB///vflVY3ANwKemIBoBJMnDhRsbGxatOmjS5evKjMzEz5+/tr48aNev7553XfffepsLBQfn5+6tu3r2rUqLw+hKZNm8rf318vv/yyZWWua/sTJkwo857U1FRlZWWpTZs2VseTk5MVGRmpRYsWadq0afrTn/6kn3/+WQ0aNFC3bt30wAMPVFrdAHArmJ0AAAAADofhBAAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcFzsXQAAAAB+++Li4my6btGiRTZdR4gFAABAlcvNzbXav3DhgtatW6f+/ftXqD2TYRhGZRQGAAAA2CozM1Pt27dXfn5+he5nTCwAAACq3a32oxJiAQAA4HAIsQAAAHA4vNgFAACAKpeammq1//PPP6u4uFgpKSkymUyW4xERETa1x4tdAAAAqHJms1mGYVgF1l8zDEMlJSU2tUdPLAAAAKrcuXPnKrU9emIBAADgcHixCwAAANVm6dKlGjhwoNq0aaM2bdpo4MCBWrZsWbnboScWAAAAVa6kpESDBw/WF198oVatWql169YymUzau3ev9u/fr4cffljLli1TjRq29bEyJhYAAABVbtasWUpNTdU///lP3X///Vbn/vOf/2jYsGF6++23NWHCBJvaoycWAAAAVa59+/YaP368RowYUeb5RYsW6a233tIPP/xgU3uEWAAAAFS52rVra9++ffLz8yvz/E8//aSQkBBdvHjRpvZ4sQsAAABVrlatWsrNzb3u+by8PNWuXdvm9gixAAAAqHJhYWGaO3fudc/PmTNH3bp1s7k9XuwCAABAlXvppZcUERGh06dP609/+pPatGkjSdq7d6/eeOMN/fOf/1RKSorN7TEmFgAAANXiq6++0siRI3X69Gmr4w0aNNDf//53Pfjggza3RYgFAABAtbl48aLWrFmjAwcOSJKCgoLUu3fvco2HlQixAAAA+B+xf/9+BQcH23QtY2IBAABgF4cPH1ZycrJly87OVklJiU33EmIBAABQLY4cOWIJrCkpKTp+/Ljc3d119913a/z48YqMjLS5LYYTAAAAoMq1aNFCP/30k+rUqaPw8HBFRUUpMjJSd911l2rUKP+sr4RYAAAAVDkXFxe5u7srLi5OvXv31j333CMPD48Kt0eIBQAAQJXLyclRamqqUlNTlZKSogMHDig0NFSRkZGKiorS3XffLXd3d5vbI8QCAACg2p05c0YpKSmWULt//36FhoZq8+bNNt3Pi10AAACodl5eXgoPD1dJSYlKSkqUm5urHTt22Hw/PbEAAACoFseOHVNqaqrWr1+v9evX66efflLXrl3Vs2dPRUZGqlu3bnJ1dbWpLUIsAAAAqlxAQIBOnDihrl27KjIyUj179lRYWJjNofXXyj+fAQAAAFBOR48elclkkmEYMgzDMoygouiJBQAAQJU7efKkUlJSLIsdHDp0SK6ururSpYuioqIUERGh7t27y83Nzab2CLEAAACodj///LPVkrM//fSTXF1ddfHiRZvuJ8QCAADA7o4ePaq1a9cqLi7OpusJsQAAAHA4zBMLAACAKmdLD6thGPrggw9sao+eWAAAAFQ5s9msvn37XvfFrcLCQiUlJdk8YwEhFgAAAFXObDbrxIkTaty4cZnnT506JW9vbxUXF9vUHvPEAgAAoMq5uLjcMKAWFRXJbDbb3B4hFgAAAFWuXr16Onny5HXPnzx5UvXr17e5PUIsAAAAqlyHDh2UlJR03fOrVq1S+/btbW6PEAsAAIAqFxMTo5kzZ2rdunWlziUnJ2vGjBmKjo62uT1e7AIAAEC1GDhwoP75z3/qjjvuUOvWrWUymbRv3z7t2LFDv/vd7/TVV1/JZDLZ1BYhFgAAANXCMAz94x//0PLly5WZmSnDMOTv769BgwZp+PDhqlHD9kEChFgAAAA4HMbEAgAAwOGw7CwAAACqXIsWLW56jWEYOnLkiE3tMZwAAAAAVc5sNuuVV16Rh4eHJOn06dP629/+ptdee02SVFBQoD//+c8sOwsAAID/Hb9edvbHH39Uhw4dlJ+fL0nKycmRt7e3zSGWMbEAAABwOIRYAAAAOBxCbAUZhqG8vDwxGgMAAKBifr2wga0LHUiE2ArLz8+Xp6enZRwHAAAArm/UqFG67bbbLPtNmjRRUlKSZd/Dw0MJCQk2t8eLXRWUl5cnT09P5ebm6vbbb7d3OQAAAE6FeWIBAABQ5X766SebrvPz87PpOkIsAAAAqlxAQIAMw5DJZLJ6p+jX+7ZOsUWIBQAAQJXbvn17mccNw9CSJUs0e/Zsy0IItiDEAgAAoMq1b9++1LGvv/5akydP1qFDh/Tcc89p4sSJNrdHiAUAAEC12rp1qyZNmqRvv/1WTz75pFavXq0GDRqUq40KTbF17NgxjRgxQr6+vnJ1dZWfn5/GjRunM2fOWK6JjIyUyWSSyWRSrVq1FBQUpISEhDLnVd20aZPMZrPuv//+UueOHDkik8mkRo0alZrOqmPHjpo6darVsUOHDmnEiBFq3ry53Nzc1KRJE9177736+OOPVVRUZLnuWm2/3pYuXVqRRwIAAICbOHjwoIYMGaLu3bvLx8dH+/bt0+zZs8sdYKUKhNgff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W1y9atEhZWVlW28CBA8v7SAAAAHATTz31lNq2bavc3Fxt3bpVH330kVq0aFHh9so9T2y/fv20a9cuHThwQLVr17Ycz87OVsuWLfXYY49p/vz5ioyMVMeOHTVr1izLNXfeeaf8/Pz0+eefW44VFBTIx8dH6enpmjJlitq3b68XXnjBcv7IkSNq0aKFnn32Wc2fP1+HDx9Wo0aNJF3tiR04cKCmTp0qwzDUtm1b3XbbbUpLS1ONGqXz+bU34qSrPbErV66scGhlnlgAAADbmc1m1apVS8HBwTdc8fR6L4D9WrnGxJ49e1arV6/W9OnTrQKsJHl7eysmJkbLli3TvHnzrM4ZhqFvv/1W+/btU6tWrazOffrppwoJCVFwcLCGDh2q8ePHa/LkyaWWHYuOjtaaNWv0yiuvaM6cOaVqy8jI0N69e7VkyZIyA6xUvqXMfq2wsFCFhYWW/by8vAq3BQAA4GymTJlSqe2VK8QePHhQhmGodevWZZ5v3bq1zp07p1OnTkmS5s2bp7///e+6fPmyrly5olq1aunpp5+2uicxMVFDhw6VJPXt21e5ublKTU1VZGSk1XUmk0kzZ85U//79NWHCBLVs2dLq/IEDByRJwcHBlmM5OTkKCAiw7P/1r3/VH//4R8t+dHS0zGazVTt79uxR8+bNS/1sCQkJevnll8v8uQEAAHBjL730UqW2V6EXu2wdgRATE6OMjAxt3LhR/fr104svvqju3btbzu/fv19paWmKjo6WJLm4uGjIkCFKTEwss70+ffro7rvv1l/+8hebvt/Ly0sZGRnKyMhQ3bp1dfnyZavzb731luX8tc3X17fMtiZPnqzc3FzLduzYMZtqAAAAQOUrV09sYGCgTCaT9u7dq4ceeqjU+b1796pevXpq2LChJMnT01OBgYGSrg4bCAwMVLdu3dSrVy9JV3thi4qKrIKjYRhyc3PTnDlz5OnpWeo7Zs6cqbCwMD377LNWx68NU9i/f79CQ0MlXR17ce37XVxK/6je3t6W8zfj5uYmNzc3m64FAABA1SpXT6yXl5d69+6tefPm6eLFi1bnsrOz9fHHH2vIkCFljj11d3fXuHHjNHHiRBmGoaKiIn344Yd64403rHpCd+zYIV9fXy1ZsqTMGrp06aJBgwZp0qRJVsdDQ0MVEhKi119/3eblygAAAOCYyr3YwZw5c9S9e3f16dNH06ZNU4sWLbR79249++yzatKkiaZPn37de0eNGqVXX31VK1askIuLi86dO6eRI0eW6nF9+OGHlZiYqKeeeqrMdqZPn662bdta9a6aTCYtWrRIvXv3Vnh4uCZPnqzWrVvrypUrWr9+vU6dOlVq/Ov58+eVnZ1tdczDw0N16tQp72MBAABANSr3mNhWrVopPT1dAQEBevTRR9WyZUs9+eSTioqK0qZNm1S/fv3r3lu/fn099thjmjp1qhITE9WrV68yhww8/PDDSk9P1w8//FBmO0FBQRoxYoQuXbpkdbxbt27atm2bgoODFR8frzZt2qh79+5asmSJ3nrrLY0ePdrq+ri4OPn4+Fhts2fPLu8jAQAAQCXYv3+/zdeWe55YXMU8sQAAALfm8OHDSk5OtmzZ2dk2Dwst93ACAAAAoCKOHDliCawpKSk6fvy43N3ddffdd2v8+PGlpli9EUIsAAAAqlyLFi30008/qU6dOgoPD1d8fLwiIyN11113XXehqhshxAIAAKDKHTt2TLfffrvi4uLUu3dv3XPPPfLw8KhwexVa7AAAAAAojxMnTui9997TlStX9Nxzz8nLy0tdu3bV888/r1WrVqmgoKBc7fFiVwXxYhcAAEDFnTlzRikpKUpNTVVKSoplwarNmzfbdD/DCeBwDMNQYWGhvcsA7OKXv/7d3NzKXFwG+K3j1/5vg5eXl8LDw1VSUqKSkhLl5uZqx44dNt9PiIXDKSws1ODBg+1dBgDATj777DPVqlXL3mWgAo4dO6bU1FStX79e69ev108//aSuXbuqZ8+e+sc//qFu3brZ3BYhFgAAAFUuICBAJ06cUNeuXRUZGal3331XYWFhcnV1rVB7hFg4tNmvPiE315r2LgOoNoWXr2jsX96TxK9/OJdf/tqHYzp69Khq1qwpwzBkGIZlGEFFEWJvEe/F2Zeba025ufGHOJwTv/7hTH755y1/9jqmn3/+WSkpKUpOTtayZcs0ffp0ubq6qkuXLoqKilJERIS6d+8uNzc3m9ojxN4iXjACAKDqXb5SZPlcWFio2rVr27EaVETjxo01ZMgQ/V97dx7U1PX2AfwbAgEUBBcIIEtcitQqoKKojLKIWyvitKOORQxorbVxQes6OhV/MmBra9W64liq4zhWrVq7oLWa4C6KUrepVcBxA8EphkUIGPL+4ZDXFNSwJLeY72cmM7kn9548nkmbJ4fnnjN+/HgAz5Pa2t27duzYgRUrVkAikaCiosKo/ky+TuzmzZvh6OiIZ8/+/8NXVlYGGxubOluLqVQqiEQi5OTkQCaTYc2aNXX6S0xMRGBgYL3HMpkMIpHopY+4uDgAeOnru3fvbuZ/PRERERHVp2PHjpg4cSK2bduG3Nxc5OXlYePGjUZfb/KZ2PDwcJSVleHixYv6O85OnjwJNzc3nD9/HpWVlfo7DJVKJby9vdGlS5dGvdeFCxeg1WoBAGfOnMEHH3yAmzdv6tdxffFXW1paGkaMGGFwvbOzc6Pel4iIiIiaxtvbG/Hx8Uafb/Iktlu3bnB3d4dKpdInsSqVCtHR0Th+/DjOnTunn5FVqVQIDw9v9Hu5uLjon7dr1w4A4OrqWm9y6uzsDDc3t0a/B2svWgAAEfNJREFUFxEREREZz9gENS0tzajzzFITGx4eDqVSiUWLFgF4PuO6YMECaLVaKJVKhIWFoaKiAufPn8fkyZPNEVKzqaysRGVlpdBhWJQXx5vF/URERC2DWq02OC4vL8fx48cRFRXVqP7MlsQmJCTg2bNnqKiowOXLlxEaGorq6mps3rwZAHD27FloNBqDmdiFCxdi6dKlBn1VVVWhe/fuTY5pwoQJEIvFBm03btyAt7d3vedrNBqDm7hKSkoAAB9//DFsbHh3sFCqqp/Bzq5x68sRERGR+ezfv9/gOC8vD/7+/nXajWWWJDYsLAzl5eW4cOECiouL4evrCxcXF4SGhiI+Ph6VlZVQqVTo3LmzQRI5f/58/c1YtdatW4cTJ040OaZvvvkGkZGRBm0eHh4vPT8lJQXLly9v8vsSERERUdP/mmqWJLZr167w9PSEUqlEcXExQkNDATxPGr28vHDmzBkolUpEREQYXNehQwd07drVoK221rWp3Nzc6vT9KosXL8bcuXP1xyUlJfDy8kJqaipcXV2bJSYyTmVlJWJjYwEAEhuuEkdERGSJzJYBhIeHQ6VSobi4GPPnz9e3Dx48GOnp6cjMzMT06dPNFU6D2dra1rv4rp2dHfdvFpBIJBI6BCIiIhKAWZNYhUKB6upq/UwsAISGhmLGjBmoqqpq0soEDfXkyRMUFBQYtDk6OqJ169Zmi4GIiIjIUmRkZBgcP3jwAFqtVr9PQK0X88RXMWsSW1FRAT8/P0ilUn17aGgoSktL9UtxmUt9yzykpKToV1AgIiIiouYTEREBnU5X56+oQ4YM0T/X6XSoqakxqj+zJbEymazeAl4fH5962+/cuVNvP4mJiUhMTHzpca2wsLCXFgw357JMxu7vS0RERI334j0Q/O5tmYqLi5u1P94V00SsySQiIjK9F79v+d3bMtXuoNpcmMRSi6apqhY6BCKzevEzz88/WRJ+3lu+f9fEvoyxNbEiHbc8apSSkhI4OTlBrVY3+y8LerXKykqMHTtW6DCIiEgge/fu5cpALZBYLK63JvZF/8maWCIiIiKyXM1dE8uZ2EZSq9VwdnbGvXv3OBNrZjqdzmALYCJL8uLn39bWlrWBZJH42ReWo6OjSca/tLQUs2bNQlpamlHnM4ltpNzcXHTp0kXoMIiIiIjMqrCwEC4uLibp183NjeUEpla7/e3du3fh5OQkcDSWp3bbX86EC4PjLyyOv3A49sLi+AurdvwlEonJ3qMhM7xMYhvJysoKAODk5MT/kATUpk0bjr+AOP7C4vgLh2MvLI6/sExZytGQAgEmsURERERkcrWrEzQXJrFEREREZHIHDhx45etqtRpyudzo/pjENpKtrS2WLVvGre8EwvEXFsdfWBx/4XDshcXxF1ZTx3/06NGvfL2wsLBB/XF1AiIiIiISXENXJ7AycTxERERERK8lFoshk8mMPp8zsURERETU4rAmloiIiIhMLjw8/LXn6HQ6qFQqo/rjTCwRERERmZxYLMbUqVPRqlUrAM9XI9i5cycUCgUA4OnTp0hNTWVNrKlt2LABMpkMdnZ2CA4ORmZmptAhWYQTJ04gKioKHh4eEIlEOHjwoNAhWYyUlBT07dsXjo6OcHV1xZgxY3Dz5k2hw7IYmzZtgr+/v36R9wEDBiA9PV3osCzWypUrIRKJkJCQIHQoFiExMREikcjg4efnJ3RYFuXBgweYOHEi2rdvD3t7e/Ts2RMXL15scD/Lly/H6tWrsXr1aixZsgQSiUR//L///a9BfTGJbYQffvgBc+fOxbJly3Dp0iUEBARg+PDhDV4aghquvLwcAQEB2LBhg9ChWJyMjAwoFAqcO3cOR48eRXV1NYYNG4by8nKhQ7MInp6eWLlyJbKysnDx4kVEREQgOjoa169fFzo0i3PhwgVs2bIF/v7+QodiUd555x3k5+frH6dOnRI6JItRXFyMkJAQ2NjYID09HTdu3MDXX3+Ntm3bChoXywkaITg4GH379sX69esBADU1NfDy8sLMmTOxaNEigaOzHCKRCAcOHMCYMWOEDsUiFRUVwdXVFRkZGRg8eLDQ4Vikdu3aYdWqVZgyZYrQoViMsrIy9O7dGxs3bkRSUhICAwOxZs0aocN64yUmJuLgwYPIzs4WOhSLtGjRIpw+fRonT55sUj9isRgPHz6EVCoFAOTm5iIgIAClpaUAuMSWyVVVVSErKwuRkZH6NisrK0RGRuLs2bMCRkZkXmq1GsDzRIrMS6vVYvfu3SgvL8eAAQOEDseiKBQKvPfeewbfAWQet27dgoeHBzp37oyYmBjcvXtX6JAsxqFDhxAUFISxY8fC1dUVvXr1wtatW5ulb5FI9MrjV2ES20CPHz+GVqvV/4qoJZVKUVBQIFBUROZVU1ODhIQEhISEoEePHkKHYzGuXr0KBwcH2Nra4pNPPsGBAwfQvXt3ocOyGLt378alS5eQkpIidCgWJzg4GN9//z0OHz6MTZs2IS8vD4MGDdLP4JFp5ebmYtOmTXjrrbdw5MgRTJ8+HbNmzcL27dsb1M/w4cMNdvuSSqXYsmWL/rhVq1aYNm2a0f1xiS0iajCFQoFr166xJs3MunXrhuzsbKjVauzbtw9yuRwZGRlMZM3g3r17mD17No4ePQo7Ozuhw7E4I0eO1D/39/dHcHAwfHx8sGfPHpbTmEFNTQ2CgoKQnJwMAOjVqxeuXbuGzZs3Qy6XG93Pb7/9ZnDcunVrTJgwQX/s4OCAjRs3Gt0fZ2IbqEOHDhCLxXj06JFB+6NHj+Dm5iZQVETmM2PGDPzyyy9QKpXw9PQUOhyLIpFI0LVrV/Tp0wcpKSkICAjA2rVrhQ7LImRlZaGwsBC9e/eGtbU1rK2tkZGRgXXr1sHa2hparVboEC2Ks7MzfH19cfv2baFDsQju7u51fiy//fbbgpd0MIltIIlEgj59+uDYsWP6tpqaGhw7doy1afRG0+l0mDFjBg4cOIDjx4+jU6dOQodk8WpqaqDRaIQOwyIMGTIEV69eRXZ2tv4RFBSEmJgYZGdnQywWCx2iRSkrK0NOTg7c3d2FDsUihISE1FlS8e+//4aPj49AET3HcoJGmDt3LuRyOYKCgtCvXz+sWbMG5eXliI+PFzq0N15ZWZnBL++8vDxkZ2ejXbt28Pb2FjCyN59CocCuXbvw008/wdHRUV8D7uTkBHt7e4Gje/MtXrwYI0eOhLe3N0pLS7Fr1y6oVCocOXJE6NAsgqOjY53679atW6N9+/asCzeDefPmISoqCj4+Pnj48CGWLVsGsVhs8KdoMp05c+Zg4MCBSE5Oxrhx45CZmYnU1FSkpqYKG5iOGuXbb7/VeXt76yQSia5fv366c+fOCR2SRVAqlToAdR5yuVzo0N549Y07AF1aWprQoVmEyZMn63x8fHQSiUTn4uKiGzJkiO73338XOiyLFhoaqps9e7bQYViE8ePH69zd3XUSiUTXsWNH3fjx43W3b98WOiyL8vPPP+t69Oihs7W11fn5+elSU1OFDknHdWKJiIiISHBcJ5aIiIiIWiSuE0tERERELU5DCgR4YxcRERERmdzrNkeo3QnSWKyJJSIiIiKTe9025TqdDmq12uiaWCaxRERERCS4oqIiSKVS3thFRERERC1HQ+dVmcQSERER0X8CVycgIiIDd+7cgUgkQnZ2ttChEBHVy8HBAaGhoUafzySWiKgR4uLiMGbMGP1xWFgYEhISBIsnLy8PH374ITw8PGBnZwdPT09ER0fjr7/+AgB4eXkhPz+fW6QS0X+SRqPB559/jlOnThl9DZfYIiJq4aqrqzF06FB069YN+/fvh7u7O+7fv4/09HQ8efIEACAWi+Hm5iZsoERE9cjKyoJcLodGo4FKpTL6Os7EEhE1UVxcHDIyMrB27VqIRCKIRCLcuXMHAHDt2jWMHDkSDg4OkEqliI2NxePHj/XXhoWFYebMmUhISEDbtm0hlUqxdetWlJeXIz4+Ho6OjujatSvS09Nf+v7Xr19HTk4ONm7ciP79+8PHxwchISFISkpC//79AdQtJ4iLi9PH+uKj9gtEo9Fg3rx56NixI1q3bo3g4OAGfbkQEb2OVqvF8uXLERISgoiICFy5cgUDBw40+nomsURETbR27VoMGDAAU6dORX5+PvLz8+Hl5YUnT54gIiICvXr1wsWLF3H48GE8evQI48aNM7h++/bt6NChAzIzMzFz5kxMnz4dY8eOxcCBA3Hp0iUMGzYMsbGxePr0ab3v7+LiAisrK+zbtw9ardbomGtjzc/Px+zZs+Hq6go/Pz8AwIwZM3D27Fns3r0bV65cwdixYzFixAjcunWraYNFRBZLLBbDyspK/7CxscGKFSuwZ88erFu3Dvb29g3qj+vEEhE1QlxcHJ48eYKDBw8CeD6jGhgYiDVr1ujPSUpKwsmTJ3HkyBF92/379+Hl5YWbN2/C19cXYWFh0Gq1OHnyJIDnMxNOTk54//33sWPHDgBAQUEB3N3dcfbsWf3M6r9t2LABCxYsgFgsRlBQEMLDwxETE4POnTsDeD4T26lTJ1y+fBmBgYEG1+7fvx8xMTH4448/EBISgrt376Jz5864e/cuPDw89OdFRkaiX79+SE5OburwEZEFOnTokMGxVqvFypUrUVRUhG3btiE8PLxB/bEmlojIRP78808olUo4ODjUeS0nJwe+vr4AAH9/f327WCxG+/bt0bNnT32bVCoFABQWFr70vRQKBSZNmgSVSoVz585h7969SE5OxqFDhzB06NCXXnf58mXExsZi/fr1CAkJAQBcvXoVWq1WH18tjUaD9u3bG/EvJyKqa/To0XXaoqOjkZycjHfffReTJ0/GqlWr0KpVK6P6YxJLRGQiZWVliIqKwhdffFHnNXd3d/1zGxsbg9dEIpFBW+26ia/bxcbR0RFRUVGIiopCUlIShg8fjqSkpJcmsQUFBRg9ejQ++ugjTJkyxSBusViMrKwsiMVig2vqS8iJiBrLysoKS5cuxahRoxAbG4sePXogNzfXqGuZxBIRNQOJRFKnHrV379748ccfIZPJYG1t3v/dikQi+Pn54cyZM/W+XllZiejoaPj5+WH16tUGr/Xq1QtarRaFhYUYNGiQOcIlIgsXGBiIS5cuYcmSJUZfwxu7iIiagUwmw/nz53Hnzh08fvwYNTU1UCgU+OeffzBhwgRcuHABOTk5OHLkCOLj442+AcsY2dnZiI6Oxr59+3Djxg3cvn0b27Ztw3fffYfo6Oh6r5k2bRru3buHdevWoaioCAUFBSgoKEBVVRV8fX0RExODSZMmYf/+/cjLy0NmZiZSUlLw66+/NlvcREQvsrGxwZdffmn0+ZyJJSJqBvPmzYNcLkf37t1RUVGBvLw8yGQynD59GgsXLsSwYcOg0Wjg4+ODESNGwMqq+eYQPD09IZPJsHz5cv1SWrXHc+bMqfeajIwM5Ofno3v37gbtSqUSYWFhSEtLQ1JSEj777DM8ePAAHTp0QP/+/TFq1Khmi5uILEtERARet56ATqczejk/rk5ARERERCY3d+5c/XO1Wo2dO3dCoVDo254+fYrU1NTX1v/XYhJLRERERGaVm5uLgIAAlJaW6tuKiooglUqNTmJZE0tEREREZmVvb4+qqiqDhLW8vBy2trZG98EkloiIiIjMyt3dHdbW1ti1a5e+bfv27foNWozBG7uIiIiIyOw+/fRTyOVyfPXVV6ioqMCtW7ewYcMGo69nTSwRERERCWLz5s04duwYJBIJRo8ejfHjxxt9LZNYIiIiImpxWE5ARERERCa3fft2o86Ty+VGnceZWCIiIiIyObFYjDZt2kAkEgEAampqUFJSAmdnZwDPNzpQq9VcJ5aIiIiI/jvEYjEePnwIqVQKAMjLy0NAQABKSkoAPF8n1s3NzehtubnEFhERERGZnU6nM9iG9t/Hr8MkloiIiIhaHCaxRERERGRyzV3ByiSWiIiIiEyu9oauWvb29hg8eLDB63Z2dsb3xxu7iIiIiMjUCgsL4eLiUieZbSwmsURERETU4rCcgIiIiIhaHCaxRERERNTiMIklIiIiohaHSSwRERERtThMYomIiIioxWESS0REREQtDpNYIiIiImpxmMQSERERUYvzf6ZZxmSdoxyiAAAAAElFTkSuQmCC", + "text/plain": [ + "
      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size']\n", + "\n", + "g = sns.catplot(\n", + " data=pumpkins,\n", + " x=\"Item Size\", y=\"Color\", row='Variety',\n", + " kind=\"box\", orient=\"h\",\n", + " sharex=False, margin_titles=True,\n", + " height=1.8, aspect=4, palette=palette,\n", + ")\n", + "# Defining axis labels \n", + "g.set(xlabel=\"Item Size\", ylabel=\"\").set(xlim=(0,6))\n", + "g.set_titles(row_template=\"{row_name}\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9+0lEQVR4nO3deXQc1Z33/3dV9aatZcnaF1tesTEYL3gLdmzAxDAOkEDCPgES8jwTiJMZMkxgzu8MhFmAMUlIgkOWYSDJQIAwLE54MAEvbLHBbGFzAjZeZFuLV+1qqZffH1dSd6m7Zcu2UBs+r3N0wP3tunVv1e263666V7JisVgMERERkQxkD3cFRERERNJRoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLM9wV+BoRKNRdu/eTV5eHpZlDXd1RERE5DDEYjFaWlqoqKjAtge+Z3JcJyq7d++murp6uKshIiIiR6C2tpaqqqoB33NcJyp5eXmAaWgwGBzm2oiIiMjhaG5uprq6um8cH8hxnaj0Pu4JBoNKVERERI4zhzNtQ5NpRUREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0J/165dfPe73+Xpp5+mvb2d8ePHc99993HqqacOd9U+2SIhqP1fOPg25E2E0ZeAJzseb3wR6laBNwg1l0N2wh+Nat0G238L4Tao/DwUzY3HultNrHULFMyA6i+C7TWxWBR2r4I9L0KgDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHoKMOihdAxdlg9eTZ0W6ofRwOvAG542D0peDNjW+7dwPs+gN4ckwstyYea99pyu1uhvKzoWRBPBZuh+0PQ8tfYcRUqL4QHH9PW2JQ/xw0rAF/sWlLoGSwZ0FERA7BisViseHa+YEDB5g+fTqnn3463/jGNyguLubDDz9k3LhxjBs37pDbNzc3k5+fT1NTk/7Wz2B07oXVi6DpvfhrOTWweB1kj4JXroGP/jses31w2sNQ/QXY9hCs/1uIhePxCdfBrLuhZTM8twg6dsVjBdPhzNXg5MAL55vkp5c3HxY9DcXzYNOd8OYN7npO+0848QaTaKw9G7qb4rHyJfDZlRBph9VnmiSlV1YlnLkWghPgtWXwwd3xmOWBeb+Gmkth55Pw0kUQ7YrHx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kUpD7mIiMQNZvwe1kTlxhtv5OWXX+bFF188ou2VqByhjd+ED1ckvz7qyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4dzM8f647qep16gqTSGxanhyrWGr2u3pRcsyTB+dtgacmmzs1/S18CrbeDzt+lxybcB2MnAUbrkqO5Y6Fcz+M3+kREZGUBjN+D+sVdeXKlZx66ql8+ctfpqSkhOnTp/PLX/4y7ftDoRDNzc2uHzkCiXcCXK8/CbueTB0L7YMP70mdpIB5jFT3dPr97UxTbtN7sOW/k5MUMK9tvjd1knKocuuehh3/mzoWbjFtSZWk9JW7Mk3s8fT7bP0IDr6TOiYiIkdkWBOVjz76iHvuuYcJEybwzDPP8I1vfINvfetb/OpXv0r5/ttuu438/Py+n+rq6o+5xp8QvfMs+rP95iftdtkDxAJgedPH0u0TwMlKH/McYp/pyrW84AkMsO0hyrV9g4/BwMdPREQGbVgTlWg0yowZM/iP//gPpk+fzv/5P/+Hr3/96/zsZz9L+f6bbrqJpqamvp/a2tqPucafEDWXp3n9MvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7rJgHoz/abWPGC5Nihyh11EdRcYerWX6DMtCWnJvW2NQOUW3N5+ljBDMiflDomIiJHZFgTlfLyck488UTXa5MnT2bHjh0p3+/3+wkGg64fOQJT/hkqPu9+rXgBTLvDrOCZdkd8pQ6YgX3+I+YOxYJHwV8Uj9k+mHkXFJwCM38II+e4y62+ECZdD6MvhonLcCUOeRNg3v0QKIbPPGAmpPby5JjXAsXmPXkTEwq1TKJRc4kpu/pL7n2OnGPqUjAVZv7IfQfEXwTzf2faMv937sTL8sC023uOwe3JCVLFUnPsqs6Fyf/knouSU2PqKyIix9SwTqa97LLLqK2tdU2m/Yd/+AdeeeUV/vSnPx1ye02mPUr73+hZnnyCWXmTqKPOLL/1BqH8HHASBvtIJ+x+2ixPLv9c8rLcxpegdbO5w1Aw1R1r2QJ7XoKscihb7B7su5tNuQAV55h994pFTX066qB4PuT1WxV24O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrHL3tnvWx5cnF85wx1q3QePzpv1lZ4E97Kv9RUSOC8fNqp+NGzfymc98hu9973tcdNFFvPrqq3z961/nF7/4BZdfnub2egIlKiIiIsef42bVz6xZs3j88cf57W9/y0knncS//uu/ctdddx1WkiIiIiKffMN6R+Vo6Y6KiIjI8ee4uaMiIiIiMhAlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3Du/JZbbuF73/ue67UTTjiBv/zlL8NUo34e9ANd8X9f3AHbH4Gm9yB/Coy+CJxAPN6wFuqeBX8h1FwOWeXxWMsW2P4QRDqh+gtQODMe626GbQ9C2zYYORsqzwO759TEorDrKdj7MmRVwZjLwVcQ3/bAn6H2MbAcGH0xBE+IxzobYev/QGgPlJ4OZWeBZZlYJAS1/wsH34a8iTD6EvBkx7dtfBHqVoE3aNqSXRWPtW6D7b+FcBtUfh6K5ia0pdXEWrdAwQyo/iLY3nhbdq+CPS9CoAzGXAH+kfFtD74HtY+a/6/+EoyYEo+F9sG2B6CjDooXQMXZYPXk2dFuqH0cDrwBueNg9KXgzY1vu3cD7PoDeHJMLLcmHmvfacrtbobys6FkQTwWboftD0PLX2HEVKi+EBx/T1tiUP8cNKwBf7FpS6Akvm3zX822sQhUXwAFp8RjXQdg6wPQsROKPmOOYV9bwrBrJex7FXJqoOYycw567X8dap8w9Rh9KeSNi8c66kxbQvuh/CxzzntFOo9d3930X7D9Z/H4uO/AnDv5pIt07CXSsRfL8eLJqcTyxI9ftLuNSNtuYrEonuxSbP+Ivlgs2k24dTexcDu2fwROdilWz/mOxWJEOhqJdu7H8gRMuY4vXm6omXB7HRYWTk4Fti/er2OREOHWXcQiIZxAEXZWEVbP5zsWixBpqyfa1YztzcHJqcSynXhbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7bUEe1uwfbm4eSUu8738c6KxWKx4dr5LbfcwqOPPspzzz3X95rH46GoqGiAreKam5vJz8+nqamJYDB46A0G40Hr0O/JmwBnroOsMvjTFWaA7uVkwYLHzIC65T549etm0Oo1+Z9g+h1mcF5zJnQ2xGMj58IZfwTLA+v+BhrXxWP+kXD6H6FwBrxzK7xzc0KFLDj1JzDxOmhYB8+fC+HWeLjqfJj/KHQdhNWLzKDVK6cGFq+D7FHwyjXw0X/HY7YPTnvYDFLbHoL1fwuxcDw+4TqYdTe0bIbnFkHHrnisYDqcuRqcHHjhfJP89PLmw6KnoXgebLoT3rzBfXyn/SeceINJNNaeDd1N8Vj5EvjsSoi0w+ozTZLSK6sSzlwLwQnw2jL44O6EQ+SBeb+Gmkth55Pw0kUQTUhGx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kXwwU/htW8CCR+tk2+Bk2+G/W/C2rNM4tWrZKE5DrEIrDkL9m2IxwIlcMYak7S9dSO8f0dCW2yY/UsY91XY/Qy8+EWIdMTjoy+Bzzxg+tZzC6Hlw3jsaPpuKp6RcNHegd9znIrFYnTteZNI2+74i5aNv+RUnOwSwi21dO19m8Tz7ckfh69wMtGuFjrrN5gvBj1s/wj8ZXMBi1DDq0Q7E/qC7SVQNhfbn0/3gQ/oPviBqy7ekSfhDdYQ6dhLqGGj67w42aX4SmZCNExn3Xpi3S3x6nqy8JfNw/Jk0bX3bSKttQml2vhKZuDJKSPcuouuPW+525I3Gl/RyUS72wjVrScW6YyX6wsSKJsLtodQw0aiHXsSivXgL52DEyigu2kL3fs3udtSMBnviHFEOg8QanjFJOm9m2YV4y+dBdEInfUbiHXFP/uWE8BfPhfbm0vXvncJN29LKNXCVzwNT24l4bZ6uhrfAKLxY5Rbja9oKrFwB6H69cTC8c+L5c0jUD4XbC9dja8TaU+4JlsO/tJZOFlFdDdvo3vfu+62jJiIt2Ai0VCTOd/R7nhbAoX4S+cAMUL1G4iGDiYcIx+B8nnYvjy69m8i3LTFVa6vaCqevFFE2hsJNb5mvuz1tiWnAl/xdIiEzPkOt8Wr68nBXz4POyGZzjSDGb+HPVF54okneOutt45o+yFLVH4/HVoOs05jr4KKpWbg6i+rAs5+E1aONt9G+1uy0QzOiYlIr5NvMYNf/8EboHAWzLsfnpqSHLO9cN5WeO6z0PpRcnzu/bBvI3y4Ijk26ssw5ip4fmlyzD8Slm6CleMg3JIcP3MdbFoOu59Kjk2+wSRCr12XHMufAgt/D78f7/oQAmYgPnezSbgSk6pep64wicSm5cmxiqVmv6sXJcc8eXDeFnhqsjth6LXwKdh6P+z4XXJswnUwchZsuCo5ljsWFr8AK8e4LlR9lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpnLZsF1KhlS4bXfPgOdmOX78FQvo3Lkmue8C/or5dO/f5E5EenhHTATbSRq8AWxfPr7iaXTuej5FbSwCVWf0DLLtSVFf0SnmW3nL9qSYk1OOJ7fKJDhJO/USqFpEZ+1a95eQ3raUzaO7aQvRjsakmCd/LJYnO2nwBjP4+0tnmWOUQqDqDEING11JVS/vyJOIhdsJNyVfx+ysErz54wjVr08u1PIQqDqdzl3rUn4O/aWzCLfu7Lu742pL3mhs/wi69v45RbHZ+Mvm9bQlua8HKhfStectoglJVV9bCidDNJKUeALYgZF4CycT2v1SirbY5hjtfpFYQrLby1cyg0h7I5HWnUkxJ7cKf/G05DIzxGDG72F99APw4YcfUlFRQSAQYN68edx2222MGjUq5XtDoRChUPxkNTc3D02lDjdJAXMbPtWgBGbg+PCe9Bf67b9NnaSA+bbuyUkd278Rtv4mdSzaDZt/kTpJ6S13X4oLFZg7DImPlRKF9pm2pEpSwDxGqns6/T5zxqSONb0HW+5NeaEnFoXN96ZOUnrLbUu+IAOmLjljU8fCLaYtqZKU3nJ3rkwTezx1QgDmmG/+Rfr+sPXXqZMUMI+uEu+GJGpcZx69pBLphM33pK9T7ePpz8vR9N1PkUhbQ8rXY5GQSQhS9V0g0ro7ZZICEG6v73vM0F+0q4lwioGnZ6+EW7anTFIAIu31REPJAyWYdiQ+ZnDvtNvcmUiRpACE2+pSJil95SY8bnHVtruFcMuO1PsEwi07UiYpptx6Ymk+E9GORsKe1PskFibcsi1t3w63N7jvliTus70+ZUJgim0n3LqDVEkKQLh1Z8okBXrakuauZLRzH+HWXSljxKLmGKWpU6StnkjiXazEWJo2Ho+GdTLtnDlzuP/++1m1ahX33HMPW7duZcGCBbS0pO64t912G/n5+X0/1dXVH3ONU3D8YPvTx9MlGwBOtplbkoo9ULmW2TbtPgeI2f74PItB7ZOB9+kEwEpzEXQC6fd5qHIHastA5VpeGOi256HaYvsGH4ND1DcHSPNIcaByLcc8jkm7z4H62EBtOcT59g5Q7qeJlf4yaVkDfNezbNKdb8uyByw37XXhkPt00pd7iH0esi0DlGsdYVsYYB6FmWNxpG0Z6PjZA5Q7wPEDLAZoy0DtHPAYWQPWd+ByD3G+PyGGtSXnnHMOX/7yl5k6dSpLlizh//2//8fBgwd55JFHUr7/pptuoqmpqe+ntrY25fuO2ui/O/z31lxuflIJTjLzRXyFyTHLhjFfMfNGBltu+edg3NVmvkV/nlwY/3dmIutgy625zPykklMDE79pJsEmsUyZoy5Kve3oy9Lvs3gBjP+6e2JnL9tvYsULkmOHKnfURVBzBSkHikCZaUtOTeptawYod6DjVzDDHHtPbnLM8phzVr5k8OVWnQ9jr0x94fEVwIRrITh58OUequ9OSNN3P2U8uZUpX7e8uXiCNfHJ4v23y6vCyS5NGXNyKtOWa2cV48mrJmXftRw8+aOxfPmpy82txElTrie3AicnTVs8WTjBmrSJvze3CienPGXMk1uZtlzbX4g3OCp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntTJ/UDHfqDjZ/ny8eSPTpM4WHjyqrGzilNuO9AxcrJLe853CrYXb7AGy5vimtJTridNuelePx5lVMo1YsQIJk6cyObNm1PG/X4/wWDQ9TMkTrvn8N5Xthim3gplZ5g5JYkdOLsKTnsIPFkw/xH3IxXbD7N+biZ7nrrCTDhNVHO5GXzGXg3jrsF1wcqfYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt3hvvgGykwbPAFY8Cj4EyY72z6YeZdZ1TLzhzByjrvc6gth0vVmRdLEZe625E0wc20Cxaa+iXcGPDnmtUCxeU/exIRCLZNo1Fxiyq7+knufI+eYuhRMhZk/ct9R8BeZeRuegPlvYuJleWDa7T3H4PbkBKliqTl2VeeaydCJF9+cGlNfX76ZeJy4UsfJgrn3mXM2+xfmHCa2Zdw15lxPuLYnuUpQMM30kbzxps8k3gHxFfS0Jduc98SVWZYDJ91s+ubUW01fTXSkfTfdHaHyNEnqJ4CTVWTmlCS03XIC+ItnYNkO/pKZ7s+LZeMrmortzcU38iQsn/s65eRU4gnW4ORW4+S6ByjLm2e29WThKz7F3ccsD/6SGVi2F3/xdKx+d+88+WPxZJfizR+PnVXiitn+QryFk3ECBXgLJrnaguPHVzITu68tiXfgbLyFU7D9QXyFU1yrmQCc7DKz39wKk7QltsWTg6/4FCzHbyZ9JvYxy8FXPL0ndgpWv7t3nmCNGYTzx+JkuxMk2z/C1MUXxFs4BdcwZvvw97TFVzKzX+Jl4S2YZI5B4aSkBMnMexmPJ7sUT/44V8zyZJljbnvxl8xwf0m0bHzFp5hzVjQVy5vn2rb3PHuCNUnJiuUL4ht5ErY3B1/RVPf5tr34S2b29LEZWK4vcxaeERNM3yyYiB1wL0CxA+b1T4phnUzbX2trK6NGjeKWW27hW9/61iHfP6SrfgBeuBJ2/tr8f9YY+OJHsPdVaH4fgidC0Wz3+9t3Qv0as8SzfIn74hVuh91Pm2f+FWe7l+XGYtD4vJkYWjjLvSwXzFLXvRvMAFJ6RnyJMZilrrtXmeXM5ee4l+VGw1D/rFmmXLLQvSwXYP8bPcuTTzArbxJ11Jnlt96gKTdhmSGRTtOWcJu5uxNwXxRpfAlaN5s7DAVT3bGWLbDnJbP8tWyx+4PZ3WzKBag4xz3Yx6KmPh11UDzfvSwX4MDb8eXJJf0SjM5GqPujSX4qznHfvYl0mZVI3U2mPln9vjXuWR9fnlzY7y5V6zZz3gIlZul3wpJJulvN3JBo2JzvxME+FjPLmttroWiee0k5QNP78eXJJQvd5zu0z5xvJ2DakjhYRbuh7hmzPLnsDHfiAse27yauivuETqLtLxruINqxD8vxYmcVu27lx6IRIh2NEIvgZJW4luWapa77iIU7sP0jXMtywSx1jYYOYHmysAMj+5ayglnqGunYA5Zlyk3oY7FYlGjHXmKREHZgpGtZLkA01ES0qxnLm+taYgxmqWukYy/YHpzskgHaUuxalgsQ6dxPrLsN25+P3S8Ji3a3maXWTsC1XNqU202k3cyncLKLXfNlzNLmvcQindiBQteyXHOMmomGmrC82a4lxuYYhXqOkdNzjJyEcqNE2hshGsbJKnItKTdtOUCsZ3my7XffpYp2txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHiIQOEOtqxfLl4vjTzDXMIMfNqp9//Md/5Nxzz2X06NHs3r2bm2++mbfeeov333+f4uLUt9ASDXmiIiIiIsfccbPqZ+fOnVx66aXs27eP4uJi5s+fz4YNGw4rSREREZFPvmFNVB56KM2SSxEREREybDKtiIiISCIlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3BXINHtt9/OTTfdxLe//W3uuuuu4a4OPGi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qolwL54nHK4bDcyeLFYjEhHI9HO/VieAJ6cSizH1xePhpoJt9dhYeHkVGD74v06FgkRbt1FLBLCCRRhZxVh9Xy+Y7EIkbZ6ol3N2N4cnJxKLNvp2zbSuY9I+x4s24OTW4ntyYrvs7udSNtuYtEwTnYpTiB+vYlFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW+VuS1cLkbY6AJyccmxfXkJbunra0okTKMTOKkloS7SnLU3Ynmyc3EosOz50RToPEGlvMG3JqcD2xq9j0XAHkdZdPW0pxgnErzexaIRI226i3a3YvmBPW5x4Wzr3EunY29OWSqzezz4Q7Wo1x4gYnuxybH/8MxqLdBFu20Us3IntL8DJLnW3pb2BaOgglicbT24FVu/1EYiGDhJub8DCxsmtwPbmpOw3nzZWLBaLDXclADZu3MhFF11EMBjk9NNPP6xEpbm5mfz8fJqamggGg4d8/6D0T1JSyZsAZ66DrDL40xVmgO7lZMGCx8yAuuU+ePXrZtDqNfmfYPodZnBecyZ0NsRjI+fCGX8EywPr/gYa18Vj/pFw+h+hcAa8cyu8c3NChSw49Scw8TpoWAfPnwvh1ni46nyY/yh0HYTVi8yg1SunBhavg+xR8Mo18NF/x2O2D0572AxS2x6C9X8LsXA8PuE6mHU3tGyG5xZBx654rGA6nLkanBx44XyT/PTy5sOip6F4Hmy6E968wX18p/0nnHiDSTTWng3dTfFY+RL47EqItMPqM02S0iurEs5cC8EJ8Noy+ODuhEPkgXm/hppLYeeT8NJFEO2Kx8deDXPuhfYdpi1t2+Kx/CmmXF8BvPRl2PlEPObJgYV/gNJF8MFP4bVvAgkfrZNvgZNvhv1vwtqzTOLVq2ShOQ6xCKw5C/ZtiMcCJXDGGpO0vXUjvH9HQltsmP1LGPdV2P0MvPhFiHTE46Mvgc88YPrWcwuh5cN47Gj6bjqXZcSl5LgRi0YINbxKtDOhL9heAmVzsf35dB/4gO6DH7i28Y48CW+whkjHXkING13nxckuxVcyE6JhOuvWE+tu6YtZniz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPWyT2XU/eaHxFJxPtbiNUt55YpDNeri9IoGwu2B5CDRuJduxJKNaDv3QOTqCA7qYtdO/f5G5LwWS8I8YR6TxAqOEVk6T3bppVjL90FkQjdNZvINYV/+xbTgB/+Vxsby5d+94l3LwtoVQLX/E0PLmVhNvq6Wp8A4jGj1FuNb6iqcTCHYTq1xMLxz8vljePQPlcsL10Nb5OpD3hmmw5+Etn4WQV0d28je5977rbMmIi3oKJRENNdNZvMF+eetsSKMRfOgeIEarfQDR0MOEY+QiUz8P25dG1fxPhpi2ucn1FU/HkjeKTaDDjd0YkKq2trcyYMYOf/vSn/Nu//RvTpk0b3kTlcJKUXmOvgoqlZuDqL6sCzn4TVo4230b7W7LRDM6JiUivk28xg1//wRugcBbMux+empIcs71w3lZ47rPQ+lFyfO79sG8jfLgiOTbqyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4d7NJuBKTql6nrjCJxKblybGKpWa/qxclxzx5cN4WeGqyO2HotfAp2Ho/7PhdcmzCdTByFmy4KjmWOxYWvwArx7guVH2Wvgfrr4L9G5Nj05ebO1Tv3JIcK1lk4s/MSo45AThvO6yaDh0p7mrM/505Jx/dnxw7mr6bihKVQUk1eAPYvnx8xdPo3PV8iq0sAlVn9Ayy7UlRX9Ep5lt5y/akmJNTjie3yiQ4STv1EqhaRGftWveXkB7+snl0N20h2tGYFPPkj8XyZCcN3mAGf3/pLDp3rknRFkxbGja6kqpe3pEnEQu3E25Kvo7ZWSV488cRql+fXKjlIVB1Op271qX8HPpLZxFu3dl3d8fVlrzR2P4RdO39c4pis/GXzetpS3JfD1QupGvPW0QTkqq+thROhmgkKfEEsAMj8RZOJrT7pRRtscmqXuy6M/VJMZjxOyMe/Vx33XUsXbqUxYsX82//9m9p3xcKhQiFQn3/bm5u/jiqN7DaJ1IPSmAGjg/vSX+h3/7b1EkKmG/rnjS3/fZvhK2/SR2LdsPmX6ROUnrL3ZfiQgXmDkPiY6VEoX2mLamSFDCPkeqeTr/PnDGpY03vwZZ7k5MUMK9tvjd1ktJbblvyBRkwdckZmzoWbjFtSZWk9Ja7c2Wa2OOpEwIwx3zzL9L3h62/SZ2kgHl0lXg3JFHjOvPoJZVIp2lLujrVPp7+vBxN35WjFmmrT/l6tKuJcOvONFvFCLfuSJmkAETa64mGkgdKs78G12MG9067zZ2JFEkKQLitLmWS0lduwuMWV227Wwi37Ei9TyDcsiNlkmLKrSeW5jMR7Wgk7Em9T2Jhwi3b0vbtcHuD+25J4j7b64lFQiljsXB7T1tSJ+Th1p0pkxToaUuau5LRzn1EWtN8fmNRIh178ORWpo5/Sgx7ovLQQw/xxhtvsHFjmgt4gttuu43vfe97H0OtBsHxg+1PH0+XbAA42WZuSaoObA9UrmW2HajcdGx/fJ7FoPZ5iHKdAFheiKX4kDuB9Ps8VLnpLkaHKtfygieQOnaofToB87grmqYt9gDfbg55XixSXuicQPrHK5YD9gBtGbCPDVDfo+m7cvSsAdYyWE760AAxLCd9uZY94D4ta4DhoHfbVF8oLLtvnkraOqVjD9BO2yEWOdK2DHT8bMw6klRtGeD49dQpfXCgmI1FLE2KYx2iL2jNy7AegdraWr797W/zwAMPEAgMcCHucdNNN9HU1NT3U1tbe8htjszIQ7+lV83l5ieV4CQzX8RXmByzbBjzFTNvZLDlln8Oxl1t5lv058mFCX9nJrIOttyay8xPKjk1MPGbZhJsEsuUOeqi1NuOviz9PosXwPivuyd29rL9Jla8IDl2qHJHXQQ1V5i69RcoM23JqUm9bc0A5Q50/ApmmGPvyU2OWR5zzsqXDL7cqvNh3FWpL1i+Aph4LQQnD77cI+27ckyk+5ZsZxXjyasmZd+1HDzB0Vi+/JTbOrmVOGnK9eRW4OSkjlmeLJxgTdrE35tbhZNTnjLmya1MW67tL8QbHJW671o23rxR2P7UfczJqUh7jJyccrx5VSljOH6c4BishAnC7m0r05c7wPGzfPl4gqPTJCQWnrxq7KzilNsOdIyc7NKe852C7cXJKkkd+xQZ1kTl9ddfp7GxkRkzZuDxePB4PDz//PP8+Mc/xuPxEIm4v2H6/X6CwaDrZ0hctvfw3le2GKbeCmVnmDkliR04uwpOewg8WTD/EfcjFdsPs35uJnueusJMOE1UczlMuNZM7Bx3Da4LVv4UM4Eyu8rMN3ESPozeoNmnL99Mokx83GLZZs5G1bkw5Z+h4vPufRYvgGl3mBU80+6Ir9QBM7DPf8TcoVjwKPiLEtrig5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVSY+SP3HQV/kZm34QmY/yYmXpYHpt3ecwxuT06QKpaaY1d1rpkMnXjxzakx9fXlm4nHiSt1nCyYe585Z7N/Yc5hYlvGXWPO9YRre5KrBAXTTB/JG2/6TOIdEF9BT1uyzXlPXJllOXDSzaZvTr3V9NVER9p300o9KEh6Tm41Tq57gLK8efiKpmJ7svAVn+LuY5YHf8kMLNuLv3g6Vr+7jZ78sXiyS/Hmj8fuN7jZ/kK8hZNxAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPcbcguM/vNrcATrHG3xZODr/gULMePr3i6u49ZDr7i6T2xU7D6rW7xBGvw5FbiyR+Lk+1OkGz/CFMXXxBv4RRcw5jtw9/TFl/JzH6Jl4W3YJI5BoWTkhIkM+9lPJ7sUjz541wxy5NljrntxV8yw/0l0bLxFZ9izlnRVCxvnmvb3vPsCdYkJSuWL4hv5EnY3hx8RVPd59v24i+ZOfBdnE+JYZ1M29LSwvbt7jkGV199NZMmTeK73/0uJ5100oDbD+mqH4AHg0DC89PLYrD3VWh+H4InQtFs9/vbd0L9GrPEs3yJe7APt8Pup80z/4qz3ctyYzFofN5MDC2c5V6WC2ap694NZgApPSO+xBjMUtfdq8xy5vJz3Mtyo2Gof9YsUy5Z6F6WC7D/jZ7lySeYlTeJOurM8ltv0JSbOJkr0mnaEm4zd3cC/TL+xpegdbO5w1Aw1R1r2QJ7XjLLX8sWuz+Y3c2mXICKc9yDfSxq6tNRB8Xz3ctyAQ68HV+eXNIvwehshLo/muSn4hz33ZtIl1mJ1N1k6pPV71vjnvXx5cmF/e5StW4z5y1QYpZ+JyyZpLvVzA2Jhs35ThzsYzGzrLm9FormuZeUAzS9H1+eXLLQfb5D+8z5dgKmLYmDVbQb6p4xy5PLznAnLnBs+27ihHNNoj0q0a5WoqEDWJ4s7MDIvqWsYJa6Rjr2gGXhZJW4luXGYlGiHXuJRULYgZGuZbkA0VAT0a5mLG+ua4kxQCzcSaRjL9genOwS16ObWDRCpKMRYhGcrGLXslyASOd+Yt1t2P58bJ/7uhvtbjNLrZ2Aa7m0KbebSLtZFeRkF7vmy5ilzXuJRTqxA4VJy3KjXc1EQ01Y3mzXEmNzjEI9x8jpOUZOQrlRIu2NEA3jZBVh9XscHOk8QKxnebLtd9+lina3E+3ch+X4e9qSeIzCPcco1nOM4tdHs7R5H7FwB7a/wLWk3LSlpWd5crrz3ZiyLZ80x92qn0SLFi0a/lU/IiIiMmQGM35rlo6IiIhkrGFf9dPfunXrhrsKIiIikiGO6I7KwYMH+a//+i9uuukm9u/fD8Abb7zBrl27DrGliIiIyOEb9B2Vt99+m8WLF5Ofn8+2bdv4+te/TmFhIY899hg7duzg17/+9VDUU0RERD6FBn1H5frrr+eqq67iww8/dP3uk7/5m7/hhRdeOKaVExERkU+3QScqGzdu5P/+3/+b9HplZSX19al/JbSIiIjIkRh0ouL3+1P+jZ0PPviA4uLUv5VPRERE5EgMOlE577zzuPXWW+nuNn/wybIsduzYwXe/+10uvPDCY15BERER+fQadKLy/e9/n9bWVkpKSujo6GDhwoWMHz+evLw8/v3f/30o6igiIiKfUoNe9ZOfn8+zzz7LSy+9xNtvv01rayszZsxg8eLFh95YREREZBAGnajs2LGD0tJS5s+fz/z58/tej8Vi1NbWMmrUqGNaQREREfn0GvSjn5qaGmbMmMGWLVtcrzc2NjJmzJg0W4mIiIgM3hH9ZtrJkycze/ZsVq9e7Xo9w/6+oYiIiBznBp2oWJbFT3/6U/6//+//Y+nSpfz4xz92xURERESOlUHPUem9a/IP//APTJo0iUsvvZR33nmHf/mXfznmlRMREZFPt6P668nnnHMOf/rTnzjvvPN49dVXj1WdRERERIAjSFQWLlyIz+fr+/eJJ57IK6+8wgUXXKA5KiIiIocpEon0/fLUTyKfz4dtH9FUWBcrdhxnF83NzeTn59PU1EQwGBzu6oiIiBxSLBajvr6egwcPDndVhpRt24wZM8Z1c6PXYMbvw7qj0tzc3FdQqr/zk0gJg4iISHq9SUpJSQnZ2dmfyIUo0WiU3bt3U1dXx6hRo46qjYeVqBQUFFBXV0dJSQkjRoxIucNYLIZlWUQikSOujIiIyCdZJBLpS1JGjhw53NUZUsXFxezevZtwOIzX6z3icg4rUVmzZg2FhYUArF279oh3JiIi8mnWOyclOzt7mGsy9Hof+UQikaFPVBYuXJjy/0VERGTwPomPe/o7Vm087Om4e/fuZfv27a7X3nvvPa6++mouuugiHnzwwWNSIREREZFeh52oLFu2zPVbaBsbG1mwYAEbN24kFApx1VVX8Zvf/GZIKikiIiKfToedqGzYsIHzzjuv79+//vWvKSws5K233uLJJ5/kP/7jP1ixYsWQVFJERESOzi233MK0adOGuxqDdtiJSn19PTU1NX3/XrNmDRdccAEej5nmct555/Hhhx8e8wqKiIiIGYeXLVvG2LFj8fv9VFdXc+655yb9geBPmsNOVILBoOuX07z66qvMmTOn79+WZREKhY5p5URERAS2bdvGzJkzWbNmDcuXL+edd95h1apVnH766Vx33XUfWz2G4zfpHnaiMnfuXH784x8TjUZ59NFHaWlp4YwzzuiLf/DBB1RXVw9JJUVERD7Nrr32WizL4tVXX+XCCy9k4sSJTJkyheuvv54NGzYAsGPHDs4//3xyc3MJBoNcdNFFNDQ0pC0zGo1y6623UlVVhd/vZ9q0aaxataovvm3bNizL4uGHH2bhwoUEAgEeeOCBIW9rf4edqPzrv/4rK1euJCsri4svvph/+qd/oqCgoC/+0EMPaemyiIjIMbZ//35WrVrFddddR05OTlJ8xIgRRKNRzj//fPbv38/zzz/Ps88+y0cffcTFF1+cttwf/ehHfP/73+fOO+/k7bffZsmSJSmncdx44418+9vfZtOmTSxZsuSYt+9QDvuPEk6dOpVNmzbx8ssvU1ZW5nrsA3DJJZdw4oknHvMKioiIfJpt3ryZWCzGpEmT0r5n9erVvPPOO2zdurXv6cavf/1rpkyZwsaNG5k1a1bSNnfeeSff/e53ueSSSwC44447WLt2LXfddZdrcczf//3fc8EFFxzjVh2+Qf315KKiIs4///yUsaVLlx6TComIiEjc4fzt4E2bNlFdXe2agnHiiScyYsQINm3alJSoNDc3s3v3bk477TTX66eddhp//vOfXa+deuqpR1H7o3f0f39ZREREhsyECROwLIu//OUvw7L/VI+bPk5KVERERDJYYWEhS5YsYcWKFbS1tSXFDx48yOTJk6mtraW2trbv9ffff5+DBw+mnJYRDAapqKjg5Zdfdr3+8ssvZ9w0jkE9+hEREZGP34oVKzjttNOYPXs2t956K1OnTiUcDvPss89yzz338P7773PyySdz+eWXc9dddxEOh7n22mtZuHBh2kc3N9xwAzfffDPjxo1j2rRp3Hfffbz11lvDsrJnIEpUREREMtzYsWN54403+Pd//3e+853vUFdXR3FxMTNnzuSee+7BsiyefPJJli1bxmc/+1ls2+bss8/mJz/5Sdoyv/Wtb9HU1MR3vvMdGhsbOfHEE1m5ciUTJkz4GFt2aFbscGbppNDY2EhjYyPRaNT1+tSpU49JxQ5Hc3Mz+fn5NDU1EQwGP7b9ioiIHInOzk62bt3KmDFjCAQCw12dITVQWwczfg/6jsrrr7/OlVdeyaZNm/pmIluWRSwWw7IsIpHIYIsUERERSWnQicpXv/pVJk6cyL333ktpaSmWZQ1FvUREREQGn6h89NFH/O///i/jx48fivqIiIiI9Bn08uQzzzwz6ZfBiIiIiAyFQd9R+a//+i+uvPJK3n33XU466SS8Xq8rft555x2zyomIiMin26ATlfXr1/Pyyy/z9NNPJ8U0mVZERESOpUE/+lm2bBlXXHEFdXV1RKNR14+SFBERETmWBp2o7Nu3j3/4h3+gtLR0KOojIiIi0mfQicoFF1zA2rVrh6IuIiIiIi6DnqMyceJEbrrpJl566SVOPvnkpMm03/rWt45Z5UREROTT7YhW/eTm5vL888/z/PPPu2KWZSlRERER+ThEI7DnReiog6xyKF4AtjPku12xYgXLly+nvr6eU045hZ/85CfMnj17yPY36ERl69atx2zn99xzD/fccw/btm0DYMqUKfzLv/wL55xzzjHbx1F5sN9v3b24A7Y/Ak3vQf4UGH0ROAl/v6BhLdQ9C/5CqLncdJxeLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQW9v0k4EoLa/4WDb0PeRBh9CXiy49s2vgh1q8AbNG3JrorHWrfB9t9CuA0qPw9FcxPa0mpirVugYAZUfxFsb7wtu1eZD1agDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHzAeyeAFUnA1Wz5PLaDfUPg4H3oDccTD6UvDmxrfduwF2/QE8OSaWWxOPte805XY3Q/nZULIgHgu3w/aHoeWvMGIqVF8Ijr+nLTGofw4a1oC/2LQlUBLftvmvZttYBKovgIJT4rGuA7D1AejYCUWfMcewry1h2LUS9r0KOTVQc5k5B732vw61T5h6jL4U8sbFYx11pi2h/VB+ljnnvSKdx67vrur/l1i9cFkXcvyIdO4j0r4Hy/bg5FZie7L6YtHudiJtu4lFwzjZpTiB+PUmFg0Tad1FNNyO7cvHySnD6um7sViMaEcjkc79WI4fT24VluOLl9vVQqStDgAnpxzblxcvN9JFuHUXsUgnTqAQO6uk77eex2JRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3mDaklOB7Y1fx6LhDiKtu3raUowTiF9vYtEIkbbdRLtbsX3BnrY48bZ07iXSsbenLZVYvZ/9TFH7GLz+bXMN65VdBTN/ZK45Q+Thhx/m+uuv52c/+xlz5szhrrvuYsmSJfz1r3+lpKTk0AUcgSP+o4RdXV1s3bqVcePG4fEc2R9h/v3vf4/jOEyYMIFYLMavfvUrli9fzptvvsmUKVMOuf2Q/lHC/klKKnkT4Mx1kFUGf7rCDNC9nCxY8JgZULfcB69+3QxavSb/E0y/wwzOa86EzoZ4bORcOOOPYHlg3d9A47p4zD8STv8jFM6Ad26Fd25OqJAFp/4EJl4HDevg+XMh3BoPV50P8x+FroOwepEZtHrl1MDidZA9Cl65Bj7673jM9sFpD5tBattDsP5vIRaOxydcB7PuhpbN8Nwi6NgVjxVMhzNXg5MDL5xvkp9e3nxY9DQUz4NNd8KbN7iP77T/hBNvMInG2rOhuykeK18Cn10JkXZYfaZJUnplVcKZayE4AV5bBh/cnXCIPDDv11BzKex8El66CKIJg+zYq2HOvdC+w7SlbVs8lj/FlOsrgJe+DDufiMc8ObDwD1C6CD74Kbz2TSDho3XyLXDyzbD/TVh7lkm8epUsNMchFoE1Z8G+DfFYoATOWGOStrduhPfvSGiLDbN/CeO+CrufgRe/CJGOeHz0JfCZB0zfem4htHwYjx1N303nsiO6lMjHKBaL0bX3bSKttQmv2vhKZuDJKSPcuouuPW+R2Hc9eaPxFZ1MtLuNUN16YpHOvpjlCxIomwu2h1DDRqIdexKK9eAvnYMTKKC7aQvd+ze56uItmIx3xDginQcINbxikvTeTbOK8ZfOgmiEzvoNxLrin33LCeAvn4vtzaVr37uEm7cllGrhK56GJ7eScFs9XY1vAPE/nOvkVuMrmkos3EGofj2xcPzzYnnzCJTPBdtLV+PrRNoTrsmWg790Fk5W0WEe6fSOyR8lrH0MXvwSrmsMAD3j1oJHhyxZmTNnDrNmzeLuu811NRqNUl1dzbJly7jxxhtd7z1Wf5Rw0IlKe3s7y5Yt41e/+hUAH3zwAWPHjmXZsmVUVlYmVXSwCgsLWb58OV/72tcO+d4hS1QOJ0npNfYqqFhqBq7+sirg7Ddh5WjzbbS/JRvN4JyYiPQ6+RYz+PUfvAEKZ8G8++GpFMmc7YXztsJzn4XWj5Ljc++HfRvhwxXJsVFfhjFXwfNLk2P+kbB0E6wcB+GW5PiZ62DTctj9VHJs8g0mEXrtuuRY/hRY+Hv4/XhzxyWRZcO5m03ClZhU9Tp1hUkkNi1PjlUsNftdvSg55smD87bAU5PdCUOvhU/B1vthx++SYxOug5GzYMNVybHcsbD4BVg5xtzl6W/pe7D+Kti/MTk2fbm5Q/XOLcmxkkUm/sys5JgTgPO2w6rp0LE7OT7/d+acfHR/cuxo+m4qSlQyXqS9gVBDiv5newlULaKzdq37S0gPf9k8upu2EO1oTIp58sdiebLp3vduUszy5uEvnUXnzjUp6xOoOoNQw0Zi3cnXFO/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoOp3OXetSfg79pbMIt+7su7vjakveaGz/CLr2Jv/2dcuTTaDq9KP++3ZHnahEI7Cyxn0nxcUyd1bO23rMHwN1dXWRnZ3No48+yhe+8IW+16+88koOHjzIk08+6Xr/sP315Jtuuok///nPrFu3jrPPPrvv9cWLF3PLLbcccaISiUT43e9+R1tbG/PmzUv5nlAoRCgU6vt3c3PzEe3rmKp9IvWgBGbg+PCe9Bf67Q+lTlLAfFv35KSO7d8IW3+TOhbths2/SJ2k9Ja7L8WFCswdhsTHSolC+0xbUiUpYB4j1SX/EsC+feaMSR1reg+23JucpIB5bfO9qZOU3nLbtqeO1T1tHgOlEm4xbUmVpPSWu3NlmtjjqRMCMMd88y/S94etv06dpIB5dJV4NyRR4zrTV1KJdJq2pKtT7ePpz8vR9F05LrnuEiSKdps7EymSFIBwe13KJAUg0taAlfC4JVGsu4Vwy4609Qm37EiZpJhy64ml+UxEOxoJe1Lvk1iYcMu2tH073N6Q9jhE2uuJRUIpY7FwO7GuFiz/Mb57P1h7XhwgSQGIQXuteV/pomO667179xKJRJJ+PUlpaSl/+ctfjum+Eg06UXniiSd4+OGHmTt3riuznDJlClu2bBl0Bd555x3mzZtHZ2cnubm5PP7445x44okp33vbbbfxve99b9D7GFKOH+wBnl160yQbYG6xW07q2+r2QOVa4KT5kMLAMdsfn2cxqH0eolwnAJYXYik+5E4g/T4PVW66i9GhyrW8R75PJ2Aed0XTtMX2Jb/ea8D65mBuzaa48+AE0j9esRzTV9Luc6A+NkB9D9V3BypXjk9W+t9IYVnphwML22yb6guFZffNU0m98QDf6geIWbZDLJKmXMs+RFsGKNeyMb+ZI1VbnAHLHTD2celIvhN0VO87Dgz6qO/ZsyflhJm2trYjuiV2wgkn8NZbb/HKK6/wjW98gyuvvJL3338/5Xtvuukmmpqa+n5qa2tTvu9jVXO5+UklOMk8KvAVJscsG8Z8xcwbGWy55Z+DcVeb+Rb9eXJhwt+ZiayDLbfmMvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7r7omdvWy/iRUvSI4dqtxRF0HNFfQ9s00UKDNtyalJvW3NAOUOdPwKZsD4vzPnoD/LY85Z+ZLBl1t1Poy9MvVF0lcAE6+F4OTBl3uovjsxTd+V45aTU5nydcuThROsSZvce3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV4clOX6+SU482rShnD8eMEx2B5Uif3Tk5l+nJzK3HSxCxfPrYvxWf745aV+jwc8fsGoaioCMdxaGhw35FqaGigrCzV2HBsDDpROfXUU3nqqfg8hN7k5L/+67/SPrIZiM/nY/z48cycOZPbbruNU045hR/96Ecp3+v3+wkGg66fIXG4z9rLFsPUW6HsDDOnJDGLz66C0x4CTxbMf8T9SMX2w6yfm8mep64wE04T1VwOE641EzvHXYNrsM2fYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt0RX6kDZmCf/wh4AmaSlj9hQpntg5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVQzAz7xjoK/yMzb8ATMfxMTL8sD027vOQa3JydIFUvNsas610yGTrz45tSY+vryzcTjxJU6ThbMvc+cs9m/MOcwsS3jrjHnesK1PclVgoJppo/kjTd9JvEOiK+gpy3Z5rwnrsyyHDjpZtM3p95q+mqiI+27clxzAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPc5WWX4ckfiye3Ak+wxhWzPDn4ik/Bcvz4iqe7+5jl4Cue3hM7BavfnWdPsAZPbiWe/LE42e4B1/aPMHXxBfEWTsE1jNk+/D1t8ZXM7Jd4WXgLJpljUDgpKUEy817G48kuxZPvfmxsebLwF/e7Tg+X4gU9n/V0NwYsyK5O/wXvKPh8PmbOnMnq1av7XotGo6xevfqIxv/DNejJtC+99BLnnHMOV1xxBffffz//9//+X95//33+9Kc/8fzzzzNz5sxDFzKAM844g1GjRnH//fcf8r1DuuoHkifVXhaDva9C8/sQPBGK+q0bb98J9WvMEs/yJe7BPtwOu582z/wrznYvy43FoPF5MzG0cJZ7WS6Ypa57N5jOWXpGfIkxmKWuu1eZ5czl57iX5UbDUP+sWaZcstC9LBdg/xs9y5NPMCtvEnXUmeW33qApN2GZIZFO05Zwm7m7E+h3h63xJWjdbO4wFEx1x1q2wJ6XTLZfttg92Hc3m3IBKs5xD/axqKlPRx0Uz3cvywU48HZ8eXJJvw9oZyPU/dEkPxXnuO/eRLrMSqTuJlOf/t9C9qyPL08u7HeXqnWbOW+BErP0O2HJJN2tZm5INGzOd+JgH4uZZc3ttVA0z72kHKDp/fjy5JKF7vMd2mfOtxMwbUl81BTthrpnzPLksjPciQsc276b+NnQJNrjTizcSaRjL9genOwS16ObWDRCpKMRYhGcrOKkZbmRzv3Eutuw/fnYPvd1N9rdRrRzP5YTwM4qct1lj0W7ibSbVUFOdjFWQh8zS5v3Eot0YgcKsfslLtGuZqKhJixvtmuJMUAsEiLSsQcsByerBCthAmksFiXS3gjRME5WEZbHfec20nmAWM/yZNuf368t7UQ792E5/p62HJvHPsd21Q+4HyUP/aqfhx9+mCuvvJKf//znzJ49m7vuuotHHnmEv/zlL0lzV4Zt1Q/Ali1buP322/nzn/9Ma2srM2bM4Lvf/S4nn3zyoMq56aabOOeccxg1ahQtLS08+OCD3HHHHTzzzDOcddZZh9x+yBMVERGRY+iYJCqQ5veoVJs73EP4e1QA7r777r5f+DZt2jR+/OMfM2fOnKT3DWuicqx87WtfY/Xq1dTV1ZGfn8/UqVP57ne/e1hJCihRERGR48sxS1Rg2H4z7eEatuXJjuNQV1eXNKF23759lJSUEIkcxi+G6nHvvfcOdvciIiICJik5xkuQM9GgH7qluwETCoXw+QZYtikiIiIySId9R+XHP/4xYFb59P5hwl6RSIQXXniBSZMmHfsaioiIyKfWYScqP/zhDwFzR+VnP/sZjhN/Dubz+aipqeFnP/vZsa+hiIiIfGoddqLS+1eTTz/9dB577DEKCvS7FURERGRoDXoy7dq1a4eiHiIiIiJJDjtRuf766w/rfT/4wQ+OuDIiIiIiiQ47UXnzzTcP+Z6j/fPXIiIiIokOO1HRIx8RERH5uA3Z36wOBoN89NFHQ1W8iIiIfAoMWaIyjL+ZX0RE5BMvFosR6dhLuHUXkY69Qz7uvvDCC5x77rlUVFRgWRZPPPHEkO6v16BX/YiIiMjwCrfV0b3vPWKRzr7XLCeAd+QUPDnlA2x55Nra2jjllFP46le/ygUXDO0fPkykREVEROQ4Em6ro6vx9aTXY5FO83rJzCFJVs455xzOOeecY17uoQzZox8RERE5tmKxGN373hvwPd373vtETb9QoiIiInKciHbucz3uSSUW6STaue9jqtHQU6IiIiJynIhFQsf0fceDIUtUOjo66OjoGKriRUREPnUsx39M33c8GLJEJSsri6ysrKEqXkRE5FPHDozEcgIDvsdyAtiBkR9TjYaeVv2IiIgcJyzLwjtySspVP728I6cMyZ+0aW1tZfPmzX3/3rp1K2+99RaFhYWMGjXqmO+vlxIVERGR44gnpxxKZn7sv0fltdde4/TTT+/7d+8fK77yyiu5//77h2SfoERFRETkuOPJKcfJLutZBRTCcvzmsdAQ/nHgRYsWDcuy5yFLVPSXlEVERIaOZVk4WUXDXY0hp7/1IyIiIhlryBKVp59+msrKyqEqXkRERD4FDuvRT++EmcPxgx/8AID58+cfWY1EREREehxWovLmm2+6/v3GG28QDoc54YQTAPjggw9wHIeZM2ce+xqKiIh8wkSj0eGuwpA7VlNADitRWbt2bd///+AHPyAvL49f/epXFBQUAHDgwAGuvvpqFixYcEwqJSIi8knk8/mwbZvdu3dTXFyMz+f7RC4+icVi7Nmzx/zeF6/3qMqyYoNMeSorK/njH//IlClTXK+/++67fO5zn2P37t1HVaHBaG5uJj8/n6amJoLB4Me2XxERkSPV1dVFXV0d7e3tw12VIWVZFlVVVeTm5ibFBjN+D3p5cnNzM3v27El6fc+ePbS0tAy2OBERkU8Vn8/HqFGjCIfDRCKR4a7OkPF6vTiOc9TlDDpR+eIXv8jVV1/N97//fWbPng3AK6+8wg033MAFF1xw1BUSERH5pOt9JHK0j0U+DQadqPzsZz/jH//xH7nsssvo7u42hXg8fO1rX2P58uXHvIIiIiLy6TWoOSqRSISXX36Zk08+GZ/Px5YtWwAYN24cOTk5Q1bJdDRHRURE5PgzZHNUHMfhc5/7HJs2bWLMmDFMnTr1qCoqIiIiMpBB/2bak046iY8++mgo6iIiIiLiMuhE5d/+7d/4x3/8R/7whz9QV1dHc3Oz60dERETkWBn071Gx7Xhuk/hLamKxGJZlfaxLrTRHRURE5PgzpL9HJfG31IqIiIgMpUEnKgsXLhyKeoiIiIgkGXSiAnDw4EHuvfdeNm3aBMCUKVP46le/Sn5+/jGtnIiIiHy6DXoy7Wuvvca4ceP44Q9/yP79+9m/fz8/+MEPGDduHG+88cZQ1FFEREQ+pQY9mXbBggWMHz+eX/7yl3g85oZMOBzmmmuu4aOPPuKFF14Ykoqmosm0IiIix5/BjN+DTlSysrJ48803mTRpkuv1999/n1NPPfVj/WuQSlRERESOP4MZvwf96CcYDLJjx46k12tra8nLyxtscSIiIiJpDTpRufjii/na177Gww8/TG1tLbW1tTz00ENcc801XHrppUNRRxEREfmUGvSqnzvvvBPLsvjKV75COBwGwOv18o1vfIPbb7/9mFdQREREPr0GPUelV3t7u+uvJ2dnZx/Tih0OzVERERE5/gzpb6btlZ2dzcknn3ykmwNw22238dhjj/GXv/yFrKwsPvOZz3DHHXdwwgknHFW5x8yDlvvfF3fA9keg6T3InwKjLwInEI83rIW6Z8FfCDWXQ1Z5PNayBbY/BJFOqP4CFM6Mx7qbYduD0LYNRs6GyvPA7jk1sSjsegr2vgxZVTDmcvAVxLc98GeofQwsB0ZfDMGEY9fZCFv/B0J7oPR0KDsLev/sQSQEtf8LB9+GvIkw+hLwJCSbjS9C3SrwBk1bsqvisdZtsP23EG6Dys9D0dyEtrSaWOsWKJgB1V8E2xtvy+5VsOdFCJTBmCvAPzK+7cH3oPZR8//VX4IRU+Kx0D7Y9gB01EHxAqg4G6yeJ5fRbqh9HA68AbnjYPSl4M2Nb7t3A+z6A3hyTCy3Jh5r32nK7W6G8rOhZEE8Fm6H7Q9Dy19hxFSovhAcf09bYlD/HDSsAX+xaUugJL5t81/NtrEIVF8ABafEY10HYOsD0LETij5jjmFfW8KwayXsexVyaqDmMnMOeu1/HWqfMPUYfSnkjYvHOupMW0L7ofwsc857RTqPXd9941ZoXBmPV1wKix5EMkcsFiHSVk+0qxnbm4OTU4llO33xSOc+Iu17sGwPTm4ltierLxbtbifStptYNIyTXYoTiF9vYtEwkdZdRMPt2L58nJwyrJ6+G4vFiHY0Euncj+X48eRWYTm+eLldLUTa6gBwcsqxffE5jbFIF+HWXcQinTiBQuyskr4/0RKLRXva0oTtycbJrcSy40NXpPMAkfYG05acCmxv/DoWDXcQad3V05ZinED8ehOLRoi07Sba3YrtC/a0xYm3pXMvkY69PW2pxOr97MvH7ojvqBwLZ599NpdccgmzZs0iHA7zz//8z7z77ru8//775OTkHHL7Ib2j0j9JSSVvApy5DrLK4E9XmAG6l5MFCx4zA+qW++DVr5tBq9fkf4Lpd5jBec2Z0NkQj42cC2f8ESwPrPsbaFwXj/lHwul/hMIZ8M6t8M7NCRWy4NSfwMTroGEdPH8uhFvj4arzYf6j0HUQVi8yg1avnBpYvA6yR8Er18BH/x2P2T447WEzSG17CNb/LcTC8fiE62DW3dCyGZ5bBB274rGC6XDmanBy4IXzTfLTy5sPi56G4nmw6U548wb38Z32n3DiDSbRWHs2dDfFY+VL4LMrIdIOq880SUqvrEo4cy0EJ8Bry+CDuxMOkQfm/RpqLoWdT8JLF0G0Kx4fezXMuRfad5i2tG2Lx/KnmHJ9BfDSl2HnE/GYJwcW/gFKF8EHP4XXvgkkfLROvgVOvhn2vwlrzzKJV6+SheY4xCKw5izYtyEeC5TAGWtM0vbWjfD+HQltsWH2L2HcV2H3M/DiFyHSEY+PvgQ+84DpW88thJYP47Gj6bsp+eGyzkO8Rz4OsUgXnXXriXW39L1mebLwl83D8mTRtfdtIq21CVvY+Epm4MkpI9y6i649b5HYdz15o/EVnUy0u41Q3Xpikfh5tnxBAmVzwfYQathItGNPQrEe/KVzcAIFdDdtoXv/Jlc9vQWT8Y4YR6TzAKGGV0yS3rtpVjH+0lkQjdBZv4FYV/yzbzkB/OVzsb25dO17l3DztoRSLXzF0/DkVhJuq6er8Q0g2hd1cqvxFU0lFu4gVL+eWDj+ebG8eQTK54LtpavxdSLtCddky8FfOgsnq+hQh18O05AuTx5Ke/bsoaSkhOeff57Pfvazh3z/kCUqv6uA7rrDe+/Yq6BiqRm4+suqgLPfhJWjzbfR/pZsNINzYiLS6+RbzODXf/AGKJwF8+6Hp6Ykx2wvnLcVnvsstH6UHJ97P+zbCB+uSI6N+jKMuQqeX5oc84+EpZtg5TgItyTHz1wHm5bD7qeSY5NvMInQa9clx/KnwMLfw+/HmzsuiSwbzt1sEq7EpKrXqStMIrFpeXKsYqnZ7+pFyTFPHpy3BZ6a7E4Yei18CrbeDzt+lxybcB2MnAUbrkqO5Y6FxS/AyjHmLk9/S9+D9VfB/o3JsenLzR2qd25JjpUsMvFnZiXHnACctx1WTYeO3cnx+b8z5+Sj+5NjR9N3U7ksYy4ln2pde98h3LI96XUnpxxPbhWhhhT9z/YSqFxE58617i8hPfxl8+hu2kK0ozEp5skfi+XJpnvfu0kxy5uHv3QWnTvXpKxroOoMQg0bXUlVL+/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoPp3OnetSfg79pbMIt+7su7vjakveaGz/CLr2/jlFsdkEqk53/TFeOXIfy6OfodDUZLLmwsLClPFQKEQoFOr7d3Nz89BU5HCTFDC34VMNSmAGjg/vSX+h3/5Q6iQFzLd1T5q7Svs3wtbfpI5Fu2HzL1InKb3l7ktxoQJzhyHxsVKi0D7TllRJCpjHSHVPp99nzpjUsab3YMt/JycpYF7bcm/qJKW33LbkCzJg6pIzNnUs3GLakipJ6S1358o0scdTJwRgjvnmX6TvD1t/kzpJAfPoKvFuSKLGdaavpBLpNG1JV6fax9Ofl6Ppu5KxXHcCEl9va8DqfQzbX7TbJDcpkhSAcHtdyiSlr1xv6jmKse4Wwi3Jv86ir9yWHSmTFFNuPbE0n4loRyPhNPskFibcvD1t3w63N6Q/Ru31xCKhlLFYuJ1YVwuWX/MhP26DXp48VKLRKH//93/PaaedxkknnZTyPbfddhv5+fl9P9XV1R9zLVNw/GAP8OwyXbIB5ha75aSO2QOVa4EzwORlzwAx2x+fZzGofTLwPp0AWGkugk4g/T7BHIcj3We6ci0veAKpY4dTru0bfOyQ5WYDab6NDVSu5YA9QFsG7GMDteUo+q5kLivNZd2y08egb65JyhgDbGvZA26b9hp3iJiZUzPAPgcYvqyByrXsAcp1BjxGA8ZkyGTMUb/uuut49913eeihNN8cgZtuuommpqa+n9ra2rTvPSrFKR59pFNzuflJJTjJzBfxpbhDZNkw5itm3shgyy3/HIy72sy36M+TC+P/zkxkHWy5NZeZn1RyamDiN80k2CSWKXPURam3HX1Z+n0WL4DxX3dP7Oxl+02seEFy7FDljroIaq4gZWIQKDNtyalJvW3NAOUOdPwKZsCEvzPnoD/LY85Z+ZLBl1t1Poy7KvVF0lcAE6+F4OTBl3ukfVcympNbmfJ1T24FTk7qmOXJwgmOSZv4e3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV40rTFySnHk1eVMobjxwnWYHlSfwFycirTl5tbmfb4Wb58bF+Kz7YMuYxIVL75zW/yhz/8gbVr11JVlabzAX6/n2Aw6PoZEmf94fDeV7YYpt4KZWeYOSWJWXx2FZz2EHiyYP4j7kcqth9m/dxM9jx1hZlwmqjmcphwrZnYOe4aXINt/hQzgTK7ysw3Sbwb4Q2affryzSTKxMctlm3mbFSdC1P+GSo+795n8QKYdodZwTPtjvhKHTAD+/xHzB2KBY+CP2FCme2DmXeZVS0zfwgj57jLrb4QJl1vViRNXOZuS94EM9cmUGzqm/gN3pNjXgsUm/fkTUwo1DKJRs0lpuzqL7n3OXKOqUvBVJj5I/cdBX+RmbfhCZj/JiZelgem3d5zDG5PTpAqlppjV3WumQydePHNqTH19eWbiceJK3WcLJh7nzlns39hzmFiW8ZdY871hGt7kqsEBdNMH8kbb/pM4h0QX0FPW7LNeU9cmWU5cNLNpm9OvdX01URH2nfTKZh/6PfIx8KbPx47q8T1mu0vxFs4GSdQgLdgEq7PoePHVzIT23bwl8zsdwfOxls4BdsfxFc4Bds/wlWuk12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wULK/77p0nWIMntxJP/licbHeCZPtHmLr4gngLp+Aaxmwf/p62+Epm9ku8LLwFk8wxKJyUlCCZeS/j8WSX4skf54pZniz8xf2u0/KxGdbJtLFYjGXLlvH444+zbt06JkyYMKjth/z3qKw6A/avNf9vBeHSJtj7KjS/D8EToWi2+/3tO6F+jVniWb7EPdiH22H30+aZf8XZ7mW5sRg0Pm8mhhbOci/LBbPUde8GM4CUnhFfYgxmqevuVWY5c/k57mW50TDUP2uWKZcsdC/LBdj/Rs/y5BPMyptEHXVm+a03aMpNWGZIpNO0Jdxm7u4E3BdFGl+C1s3mDkPBVHesZQvsecksfy1b7B7su5tNuQAV57gH+1jU1KejDornu5flAhx4O748uaRfgtHZCHV/NMlPxTnuuzeRLrMSqbvJ1Cer37fGPevjy5ML+92lat1mzlugxCz9TlgySXermRsSDZvznTjYx2JmWXN7LRTNcy8pB2h6P748uWSh+3yH9pnz7QRMWxIf80W7oe4Zszy57Ax34gLHtu8mrorTJNqMFA01Ee1qxvLmupYYA8TCnUQ69oLtwckucT26iUUjRDoaIRbBySpOWpYb6dxPrLsN25+P7XNfd6PdbUQ792M5AeysItfE01i0m0i7WRXkZBe75suYpc17iUU6sQOF2P0Sl2hXM9FQE5Y327XEGCAWCRHp2AOWg5NV4lqGHYtFibQ3QjSMk1WE1e9xcKTzALGe5cm2P79fW9qJdu7Dcvw9bcmI7/WfGMfNqp9rr72WBx98kCeffNL1u1Py8/PJyhpg3kIP/cI3ERGR489xk6ikW+Z13333cdVVVx1yeyUqIiIix5/jZnlyBv0KFxEREclAeugmIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhnLM5w7f+GFF1i+fDmvv/46dXV1PP7443zhC18Yziq5PWi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qqlQEM8TjVctgP55ItFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW4Xl+Pq2jXa1EGmrA8DJKcf25cXLjXQRbt1FLNKJEyjEzirB6rlWxWJRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3oBle3ByKrC98etYNNxBpHUXsWgYJ7sYJ5BwvZHjhhWLxWLDtfOnn36al19+mZkzZ3LBBRcMOlFpbm4mPz+fpqYmgsHgoTcYjP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6EC//IuXDGH8HywLq/gcZ18Zh/JJz+RyicAe/cCu/cnFAhC079CUy8DhrWwfPnQrg1Hq46H+Y/Cl0HYfUiM2j1yqmBxesgexS8cg189N/xmO2D0x42g9S2h2D930IsHI9PuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDdimRj0G0u41Q3Xpikc6+1yxfkEDZXLA9hBo2Eu3YE9/A9uAvnYMTKKC7aQvd+ze5yvMWTMY7YhyRzgOEGl4xSXrvplnF+EtnQTRCZ/0GYl3xz77lBPCXz8X25tK1713CzdsSSrXwFU/Dk1tJuK2ersY3gGhf1Mmtxlc0tS8JkuEzmPF7WBOVRJZlZU6icjhJSq+xV0HFUjNw9ZdVAWe/CStHm2+j/S3ZaAbnxESk18m3mMGv/+ANUDgL5t0PT01JjtleOG8rPPdZaP0oOT73fti3ET5ckRwb9WUYcxU8vzQ55h8JSzfBynEQbkmOn7kONi2H3U8lxybfYBKh165LjuVPgYW/h9+PN3dcElk2nLvZJFyJSVWvU1eYRGLT8uRYxVKz39WLkmOePDhvCzw12Z0w9Fr4FGy9H3b8Ljk24ToYOQs2XJUcyx0Li1+AlWPMXZ7+lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpqJE5ROts/5Voh2NSa978sdiebLp3vduUszy5uEvnUXnzjUpywxUnUGoYSOx7uRrinfkScTC7YSbkq9jdlYJ3vxxhOrXJxdqeQhUnU7nrnUpP4f+0lk42aUp6yMfn8GM38P66GewQqEQoVCo79/Nzc3DWJsetU+kHpTADBwf3pP+Qr/9odRJCphv656c1LH9G2Hrb1LHot2w+Repk5TecvelGCjB3GFIfKyUKLTPtCVVkgLmMVLd0+n3mTMmdazpPdhyb3KSAua1zfemTlJ6y23bnjpW97R5DJRKuMW0JVWS0lvuzpVpYo+nTgjAHPPNv0jfH7b+JnWSAubRVeLdkESN60xfSSXSCZvvSV+n2sfTn5ej6bvyqRKLRVMmKQCRtgashMctru26Wwi3pH8sGG7ZkTJJMeXWE0vzmYh2NBJOs09iYcIt29L27XB7gxKV48xxNZn2tttuIz8/v++nurp6uKtk5grY/vRxb5pkA8wtdstJHbMHKtcCJ82HFAaO2f74PItB7fMQ5ToBsLzpY+n2eahyPYfYZ7pyLe+R79MJmMddg40dstxsIM3duoHKtRywA6ljkD6hPVS5h+q7A5Urnz5WmuHCsvvmqaSOp7nGAdjpY5btkHaIsmysAYYva4B9DlhXyUjH1Rm76aabaGpq6vupra0doj0NItuuudz8pBKcZB4V+AqTY5YNY75i5o0Mttzyz8G4q818i/48uTDh78xE1sGWW3OZ+UklpwYmftNMgk1imTJHXZR629GXpd9n8QIY/3X3xM5ett/Eihckxw5V7qiLoOYKUiYGgTLTlpya1NvWDFDuQMevYIY59p7c5JjlMeesfMngy606H8ZdlXqg8BXAhGshOHnw5R6q705M03flU8eybJyc8pQxT24lTk5lypjtL8QbHJW671o23rxR2P7UfczJqcCTm7pcJ6ccT15VyhiOHyc4BsuTlWbb1GVK5jquEhW/308wGHT9DInL6g/vfWWLYeqtUHaGmVOSmMVnV8FpD4EnC+Y/4n6kYvth1s/NZM9TV5gJp4lqLjeDz9irYdw1uAbb/ClmAmV2lZlv4iR8GL1Bs09fvplEmfi4xbLNnI2qc2HKP0PF5937LF4A0+4wK3im3RFfqQNmYJ//CHgCsOBR8BcltMUHM+8yq1pm/hBGznGXW30hTLrerEiauMzdlrwJZq5NoNjUN/EbvCfHvBYoNu/Jm5hQqGUSjZpLTNnVX3Lvc+QcU5eCqTDzR+47Cv4iM2/DEzD/TUy8LA9Mu73nGNyenCBVLDXHrupcMxk68eKbU2Pq68s3E48TV+o4WTD3PnPOZv/CnMPEtoy7xpzrCdf2JFcJCqaZPpI33vSZxDsgvoKetmSb8564Msty4KSbTd+ceqvpq4mOtO+mlXfot8hxzVc4Bds/wvWak12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wUrH53nj3BGjy5lXjyx+JkuxMk2z/C1MUXxFs4BdcwZvvwl8zEth18JTP73VW18BZMwgkcTn+WTKLJtAN5sBA4EP/3ZTHY+yo0vw/BE6Fotvv97Tuhfo1Z4lm+xD3Yh9th99PmmX/F2e5lubEYND5vJoYWznIvywWz1HXvBjOAlJ4RX2IMZqnr7lVmOXP5Oe5ludEw1D9rlimXLHQvywXY/0bP8uQTzMqbRB11ZvmtN2jKTVhmSKTTtCXcZu7uJC7LBWh8CVo3mzsMBVPdsZYtsOcls/y1bLF7sO9uNuUCVJzjHuxjUVOfjjoonu9elgtw4O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrH7fGvesjy9PLux3l6p1mzlvgRKz9DthySTdrWZuSDRsznfiYB+LmWXN7bVQNM+9pByg6f348uSShe7zHdpnzrcTMG1JfDQW7Ya6Z8zy5LIz3IkLHNu+mzjhXJNoP1UinfuJdbdh+/Oxfe7rbrS7jWjnfiwngJ1V5FpdE4t2E2k3q4Kc7GKshD5mljbvJRbpxA4UYvdLXKJdzURDTVje7KQlxrFIiEjHHrAcnKySnkdGveVGibQ3QjSMk1WE5RngEap8rI6bVT+tra1s3rwZgOnTp/ODH/yA008/ncLCQkaNGnXI7Yc8UREREZFj7rhZ9fPaa69x+unxX0p1/fXXA3DllVdy//33D1OtREREJFMMa6KyaNEiMuTJk4iIiGSg42oyrYiIiHy6KFERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkY3mGuwIAK1asYPny5dTX13PKKafwk5/8hNmzZw93teBBy/3viztg+yPQ9B7kT4HRF4ETiMcb1kLds+AvhJrLIas8HmvZAtsfgkgnVH8BCmfGY93NsO1BaNsGI2dD5Xlg95yaWBR2PQV7X4asKhhzOfgK4tse+DPUPgaWA6MvhuAJ8VhnI2z9HwjtgdLToewssHraFAlB7f/CwbchbyKMvgQ82fFtG1+EulXgDZq2ZFfFY63bYPtvIdwGlZ+HorkJbWk1sdYtUDADqr8Itjfelt2rYM+LECiDMVeAf2R824PvQe2j5v+rvwQjpsRjoX2w7QHoqIPiBVBxNlg9eXa0G2ofhwNvQO44GH0peHPj2+7dALv+AJ4cE8uticfad5pyu5uh/GwoWRCPhdth+8PQ8lcYMRWqLwTH39OWGNQ/Bw1rwF9s2hIoiW/b/FezbSwC1RdAwSnxWNcB2PoAdOyEos+YY9jXljDsWgn7XoWcGqi5zJyDXvtfh9onTD1GXwp54+KxjjrTltB+KD/LnPNekc5j13dXnYqbA5eFOd60b/2D699Zo88h0lZHtLsF25uHk1OOZTt98UjHXiIde7EcL56cSixP/PhFu9uItO0mFoviyS7F9o/oi8Wi3YRbdxMLt2P7R+Bkl2L1nO9YLEako5Fo534sT8CU6/ji5YaaCbfXYWHh5FRg++L9OhYJEW7dRSwSwgkUYWcVYfV8vmOxCJG2eqJdzdjeHJycSndbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7Ycm77bWf8XiO7ti+MpJbt6FsPJisViseGswMMPP8xXvvIVfvaznzFnzhzuuusufve73/HXv/6VkpKSAbdtbm4mPz+fpqYmgsHggO8dtP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6GeGzkXDjjj2B5YN3fQOO6eMw/Ek7/IxTOgHduhXduTqiQBaf+BCZeBw3r4PlzIdwaD1edD/Mfha6DsHqRGbR65dTA4nWQPQpeuQY++u94zPbBaQ+bQWrbQ7D+byGWMDBNuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDeikZlP5JSiqWJwd/+Twsx0/XnjeJtO1OCNr4S07FyS4h3FJL1963STzfnvxx+AonE+1qobN+g/li0MP2j8BfNhewCDW8SrQzoS/YXgJlc7H9+XQf+IDugx+46uQdeRLeYA2Rjr2EGja6zouTXYqvZCZEw3TWrSfW3ZLQliz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPW+625I3GV3Qy0e42QnXriUU64+X6ggTK5oLtIdSwkWjHnoRiPfhL5+AECuhu2kL3/k3uthRMxjtiHJHOA4QaXjFJeu+mWcX4S2dBNEJn/QZiXfHPvuUE8JfPxfbm0rXvXcLN2xLPGr7iaXhyKwm31dPV+AYQjR+j3Gp8RVOJhTsI1a8nFo5/XixvHoHyuWB76Wp8nUh7wjXZcvCXzsLJKqK7eRvd+951t2XERLwFE4mGmsz5jnbH2xIoxF86B4gRqt9ANHQw4Rj5CJTPw/bl0bV/E+GmLa5yfUVT8eSNItLeSKjxNfNlr7ctORX4iqdDJGTOd7gtXt2j6LvpZI/5/CHfMxiDGb+HPVGZM2cOs2bN4u67zWASjUaprq5m2bJl3HjjjQNuO2SJyuEkKb3GXgUVS83A1V9WBZz9Jqwcbb6N9rdkoxmcExORXiffYga//oM3QOEsmHc/PDUlOWZ74byt8NxnofWj5Pjc+2HfRvhwRXJs1JdhzFXw/NLkmH8kLN0EK8dBuCU5fuY62LQcdj+VHJt8g0mEXrsuOZY/BRb+Hn4/3vUhBMxAfO5mk3AlJlW9Tl1hEolNy5NjFUvNflcvSo558uC8LfDUZHfC0GvhU7D1ftjxu+TYhOtg5CzYcFVyLHcsLH4BVo5xXaj6LH0P1l8F+zcmx6YvN3eo3rklOVayyMSfSfGtxgnAedth1XTo2J0cn/87c04+uj85djR9N5XjJFFp3/pHoOuQ7wNwcqtwskt6Bjw3y/Hjr1hA5841yX0X8FfMp3v/Jnci0sM7YiLYTtLgDWD78vEVT6Nz1/MpamQRqDqjZ5BtT4r6ik4x38pbtie3JaccT26VSXCSduolULmIzp1r3V9CettSNo/upi1EOxqTYp78sVie7KTBG8zg7y+dZY5RCoGqMwg1bHQlVb28I08iFm4n3JR8HbOzSvDmjyNUvz65UMtDoOp0OnetS/k59JfOIty6s+/ujqsteaOx/SPo2vvnFMVm4y+b19OW5L4eqFxI1563iCYkVX1tKZwM0UhS4glgB0biLZxMaPdLKdpim2O0+0ViCcluL1/JDCLtjURadybFjqbvpjKcicqwPvrp6uri9ddf56abbup7zbZtFi9ezPr1yR0wFAoRCsVPVnNz88dSzwHVPpF6UAIzcHx4T/oL/fbfpk5SwHxb9+Skju3fCFt/kzoW7YbNv0idpPSWuy/FhQrMHYbEx0qJQvtMW1IlKWAeI9U9nX6fOWNSx5regy3/nfrDEovClntTJym95bYlX5ABU5ecsalj4RbTllRJSm+5O1emiT2eOiEAc8w3/yJ9f9j6m9RJCphHV4l3QxI1rjOPXlKJdJq2pKtT7ePpz8vR9N3j2uElKYD5Vp3mu1wsEjIJQZoLfbh1V8okBSDcXt/3mKG/aFcT4RQDT89eCbfuSJmkmPrWEw0lD5QAkbYG12MG9067e9qS+hFeuL0uZZLSV27C4xZXbbtbCLfsSL1PINyyI2WSYsqtJ5bmMxHtaCTsSb1PYmHCLdvS9u1we4P7bkniPtvrUyYEpth2wq07SHf3Idy6M2WSAj1tSXNXMtq5j3DrrpQxYlFzjNLUKdJWTyTxLlZi7Cj6bqYZ1sm0e/fuJRKJUFpa6nq9tLSU+vr6pPffdttt5Ofn9/1UV1d/XFVNz/GD7U8fT5dsADjZZm5JKvZA5Vpm27T7HCBm++PzLAa1TwbepxMAK81F0Amk3yeYRw1Hus905VpeSHgOO+hybd/gYzDwsXeygTR36wYq13LAHqAtA/axgdpyiPPtHaDcTwvLjs8fShlP/13PJCKpz7d1yHLTXBf6yh1gu3TlHmKf1kAxBtjWsgfcFnuA+g4QM3MsjrQtAx0/e4ByBzh+gMUhjn3a2EDHyDpEfYfqfGfEFNXDclyt+rnppptoamrq+6mtrT30RkOt5nLzk0pwkpkv4itMjlk2jPmKmTcy2HLLPwfjrk59kfTkwvi/MxNZB1tuzWXmJ5WcGpj4TTMJNollyhx1UeptR1+Wfp/FC2D8190TO3vZfhMrXpAcO1S5oy6CmitIOVAEykxbcmpSb1szQLkDHb+CGebYe3KTY5bHnLPyJYMvt+p8GHdV6ouOrwAmXgvByYMv91B9d0Kavnu8s4sO/Z4enpxKPLmVKWOWNxdvsCY+Wbz/tnlVONmlKWPOAOXaWcV48qpJ2XctB09wNJYvP3W5uZU4acr15Fbg5KRpiycLJzgmbeLvya3CySlPE6tMW67tL8SbNyp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntRfgAY69gMdP8uXjyd/dJqExMKTV42dVZxy24GOkZNd2nO+U7C9eII1WN4U15Secj1pyj1U3/UM0HczzbAmKkVFRTiOQ0OD+zZcQ0MDZWXJA6Lf7ycYDLp+hsThPmsvWwxTb4WyM8ycksQOnF0Fpz0EniyY/4j7kYrth1k/N5M9T11hJpwmqrkcJlxrJnaOuwbXBSt/iplAmV1l5psk3o3wBs0+fflmEmXi4xbLNnM2qs6FKf8MFf2eNxYvgGl3mBU80+5wd+BAmWmDJwALHgV/woXe9sHMu8yqlpk/hJFz3OVWXwiTrjcrkiYuc7clb4KZaxMoNvVNvDPgyTGvBYrNe/ImJhRqmUSj5hJTdvWX3PscOcfUpWAqzPyR+46Cv8jM2/AEzH8TEy/LA9Nu7zkGtycnSBVLzbGrOtdMhk68+ObUmPr68s3E48SVOk4WzL3PnLPZvzDnMLEt464x53rCtT3JVYKCaaaP5I03fSbxDoivoKct2ea8J67Mshw46WbTN6feavpqoiPtu58A2aPnHvpNgB0owlswESeryMwpSei7lhPAXzwDy3bwl8x0f14sG1/RVGxvLr6RJ2H53NcpJ6cST7AGJ7caJ9c9QFnePLOtJwtf8SnuPmZ58JfMwLK9+IunY/W7e+fJH4snuxRv/njsLPdCBNtfiLdwMk6gAG/BJFdbcPz4SmZi97Ul8Q6cjbdwCrY/iK9wims1E4CTXWb2m1thBr7Etnhy8BWfguX4zaTPxD5mOfiKp/fETsHqd/fOE6wxg3D+WJxsd4Jk+0eYuviCeAun4BrGbB/+nrb4Smb2S7wsvAWTzDEonJSUIJl5L+PxZJfiyR/nilmeLHPMbS/+khnuL4mWja/4FHPOiqZiefNc2/aeZ0+wJilZsXxBfCNPwvbm4Cua6j7fthd/ycyePjYDy/VlzsIzYoLpmwUTsQPu5PuI+25aqRPjj0tGTKadPXs2P/nJTwAzmXbUqFF885vfHL7JtL36T6q9LAZ7X4Xm9yF4IhT1W0LdvhPq15glnuVL3B0g3A67nzbP/CvOdi/LjcWg8XkzMbRwlntZLpilrns3mAGk9Iz4EmMwS113rzLLmcvPcS/LjYah/lmzTLlkoXtZLsD+N3qWJ59gVt4k6qgzy2+9QVNuwjJDIp2mLeE2c3cn4L4o0vgStG42dxgKprpjLVtgz0tm+WvZYvcHs7vZlAtQcY57sI9FTX066qB4vntZLsCBt+PLk0v6JRidjVD3R5P8VJzjvnsT6TIrkbqbTH2y+n1r3LM+vjy5sN9dqtZt5rwFSszS74Qlk3S3mrkh0bA534mDfSxmljW310LRPPeScoCm9+PLk0sWus93aJ85307AtCVxsIp2Q90zZnly2RnuxAWObd9N/GwcJ5No+2vf9ieI7e/5l032mL8hEjpArKsVy5eL43cnaNFwB9GOfViOFzur2HUrPxaNEOlohFgEJ6vEtSzXLHXdRyzcge0f4VqWC2apazR0AMuThR0Y2beUFcxS10jHHrAsU25CH4vFokQ79hKLhLADI13LcgGioSaiXc1Y3lzXEmMwS10jHXvB9uBklwzQlmLXslyASOd+Yt1t2P587H5JWLS7zSy1dgKu5dKm3G4i7WY+hZNd7JovY5Y27yUW6cQOFLqW5Zpj1Ew01ITlzXYtMTbHKNRzjJyeY+QklBsl0t4I0TBOVpFrWa5pywFiPcuTbb97MI52txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHjmnfTVwVd6wn0fY6rlb9PPzww1x55ZX8/Oc/Z/bs2dx111088sgj/OUvf0mau9LfkCcqIiIicswdN6t+AC6++GL27NnDv/zLv1BfX8+0adNYtWrVIZMUERER+eQb9jsqR0N3VERERI4/gxm/j6tVPyIiIvLpokRFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0L/aPT+Ut3m5uZhromIiIgcrt5x+3B+Of5xnai0tLQAUF1dfYh3ioiISKZpaWkhPz9/wPcc13/rJxqNsnv3bvLy8lx/Kls+mZqbm6murqa2tlZ/20nkE0af70+XWCxGS0sLFRUV2PbAs1CO6zsqtm1TVVU13NWQj1kwGNSFTOQTSp/vT49D3Unppcm0IiIikrGUqIiIiEjGUqIixw2/38/NN9+M3+8f7qqIyDGmz7ekc1xPphUREZFPNt1RERERkYylREVEREQylhIVERERyVhKVERERCRjKVGR48aKFSuoqakhEAgwZ84cXn311eGukogcpRdeeIFzzz2XiooKLMviiSeeGO4qSYZRoiLHhYcffpjrr7+em2++mTfeeINTTjmFJUuW0NjYONxVE5Gj0NbWximnnMKKFSuGuyqSobQ8WY4Lc+bMYdasWdx9992A+TtP1dXVLFu2jBtvvHGYaycix4JlWTz++ON84QtfGO6qSAbRHRXJeF1dXbz++ussXry47zXbtlm8eDHr168fxpqJiMhQU6IiGW/v3r1EIhFKS0tdr5eWllJfXz9MtRIRkY+DEhURERHJWEpUJOMVFRXhOA4NDQ2u1xsaGigrKxumWomIyMdBiYpkPJ/Px8yZM1m9enXfa9FolNWrVzNv3rxhrJmIiAw1z3BXQORwXH/99Vx55ZWceuqpzJ49m7vuuou2tjauvvrq4a6aiByF1tZWNm/e3PfvrVu38tZbb1FYWMioUaOGsWaSKbQ8WY4bd999N8uXL6e+vp5p06bx4x//mDlz5gx3tUTkKKxbt47TTz896fUrr7yS+++//+OvkGQcJSoiIiKSsTRHRURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEMtott9zCtGnThrsaIjJMlKiIyJCqr69n2bJljB07Fr/fT3V1Neeee67rj0yKiKSjP0ooIkNm27ZtnHbaaYwYMYLly5dz8skn093dzTPPPMN1113HX/7yl4+lHt3d3Xi93o9lXyJybOmOiogMmWuvvRbLsnj11Ve58MILmThxIlOmTOH6669nw4YNAOzYsYPzzz+f3NxcgsEgF110EQ0NDWnLjEaj3HrrrVRVVeH3+5k2bRqrVq3qi2/btg3Lsnj44YdZuHAhgUCABx54YMjbKiJDQ4mKiAyJ/fv3s2rVKq677jpycnKS4iNGjCAajXL++eezf/9+nn/+eZ599lk++ugjLr744rTl/uhHP+L73/8+d955J2+//TZLlizhvPPO48MPP3S978Ybb+Tb3/42mzZtYsmSJce8fSLy8dCjHxEZEps3byYWizFp0qS071m9ejXvvPMOW7dupbq6GoBf//rXTJkyhY0bNzJr1qykbe68806++93vcskllwBwxx13sHbtWu666y5WrFjR976///u/54ILLjjGrRKRj5vuqIjIkIjFYod8z6ZNm6iuru5LUgBOPPFERowYwaZNm5Le39zczO7duznttNNcr5922mlJ7z/11FOPsOYikkmUqIjIkJgwYQKWZX1sE2b7S/W4SUSOP0pURGRIFBYWsmTJElasWEFbW1tS/ODBg0yePJna2lpqa2v7Xn///fc5ePAgJ554YtI2wWCQiooKXn75ZdfrL7/8csr3i8jxT3NURGTIrFixgtNOO43Zs2dz6623MnXqVMLhMM8++yz33HMP77//PieffDKXX345d911F+FwmGuvvZaFCxemfXRzww03cPPNNzNu3DimTZvGfffdx1tvvaWVPSKfUEpURGTIjB07ljfeeIN///d/5zvf+Q51dXUUFxczc+ZM7rnnHizL4sknn2TZsmV89rOfxbZtzj77bH7yk5+kLfNb3/oWTU1NfOc736GxsZETTzyRlStXMmHChI+xZSLycbFihzPjTURERGQYaI6KiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMb6/wHCnL2DXQSZ/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Suppressing warning message claiming that a portion of points cannot be placed into the plot due to the high number of data points\n", + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')\n", + "\n", + "palette = {\n", + " 0: 'orange',\n", + " 1: 'wheat'\n", + "}\n", + "sns.swarmplot(x=\"Color\", y=\"ord__Item Size\", hue=\"Color\", data=encoded_pumpkins, palette=palette)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**注意**:忽视警告并不是一种最佳实践,应尽可能避免。警告通常包含有用的信息,可以帮助我们改进代码并解决问题。 \n", + "我们忽略这个特定警告的原因是为了保证图表的可读性。在保持调色板颜色一致的同时,用较小的标记尺寸绘制所有数据点会导致图表的可视化效果不清晰。\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 构建您的模型\n" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "# X is the encoded features\n", + "X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])]\n", + "# y is the encoded label\n", + "y = encoded_pumpkins['Color']\n", + "\n", + "# Split the data into training and test sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " precision recall f1-score support\n", + "\n", + " 0 0.94 0.98 0.96 166\n", + " 1 0.85 0.67 0.75 33\n", + "\n", + " accuracy 0.92 199\n", + " macro avg 0.89 0.82 0.85 199\n", + "weighted avg 0.92 0.92 0.92 199\n", + "\n", + "Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0\n", + " 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0\n", + " 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n", + " 0 0 0 1 0 0 0 0 0 0 0 0 1 1]\n", + "F1-score: 0.7457627118644068\n" + ] + } + ], + "source": [ + "from sklearn.metrics import f1_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "# Train a logistic regression model on the pumpkin dataset\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "# Evaluate the model and print the results\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('F1-score: ', f1_score(y_test, predictions))" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[162, 4],\n", + " [ 11, 22]])" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.metrics import confusion_matrix\n", + "confusion_matrix(y_test, predictions)" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIjCAYAAABBOWJ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgUElEQVR4nO3dd1gUV8MF8LOUZelqsItBjTV2jcYKKgoWFDWKJUKIvUc0tqjYoibWxKDGFqwRNGqMjQiC3WhE7CX2BiixgHR27/eHL/tJBGVxl9lyfs/DE3aY2T07ETjcuTMjE0IIEBEREWmRmdQBiIiIyPiwYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBCZgODgYMhkMvWHhYUFypYtiy+++AIPHz7MdRshBDZs2ICWLVuiSJEisLGxQa1atTBz5kwkJyfn+Vo7duxA+/bt4eTkBLlcjjJlyqBnz544ePBgvrKmpaVh8eLFaNy4MRwdHaFQKFClShWMGDEC169fL9D7J6LCJ+O9SIiMX3BwMPz9/TFz5kxUqFABaWlpOHnyJIKDg+Hi4oKLFy9CoVCo11cqlejTpw9CQ0PRokULdOvWDTY2Njhy5Ag2b96MGjVqIDw8HCVLllRvI4TAl19+ieDgYNSrVw+fffYZSpUqhdjYWOzYsQNnzpzBsWPH0LRp0zxzJiQkwNPTE2fOnEGnTp3g7u4OOzs7XLt2DVu2bEFcXBwyMjJ0uq+ISEsEERm9X375RQAQp0+fzrF8woQJAoAICQnJsXzOnDkCgBg3btwbz7Vr1y5hZmYmPD09cyyfP3++ACC++uoroVKp3thu/fr14q+//nprzo4dOwozMzOxbdu2N76WlpYmxo4d+9bt8yszM1Okp6dr5bmIKHcsGEQmIK+CsXv3bgFAzJkzR70sJSVFFC1aVFSpUkVkZmbm+nz+/v4CgDhx4oR6m2LFiolq1aqJrKysAmU8efKkACAGDhyYr/VdXV2Fq6vrG8v9/PzEhx9+qH58+/ZtAUDMnz9fLF68WFSsWFGYmZmJkydPCnNzczF9+vQ3nuPq1asCgFi6dKl62bNnz8To0aNFuXLlhFwuF5UqVRLz5s0TSqVS4/dKZAo4B4PIhN25cwcAULRoUfWyo0eP4tmzZ+jTpw8sLCxy3c7X1xcAsHv3bvU2T58+RZ8+fWBubl6gLLt27QIA9OvXr0Dbv8svv/yCpUuXYtCgQVi4cCFKly4NV1dXhIaGvrFuSEgIzM3N0aNHDwBASkoKXF1dsXHjRvj6+uLHH39Es2bNMGnSJAQEBOgkL5Ghy/2nBxEZpRcvXiAhIQFpaWn466+/MGPGDFhZWaFTp07qdS5fvgwAqFOnTp7Pk/21K1eu5PhvrVq1CpxNG8/xNg8ePMCNGzdQvHhx9TIfHx8MHjwYFy9eRM2aNdXLQ0JC4Orqqp5jsmjRIty8eRNnz55F5cqVAQCDBw9GmTJlMH/+fIwdOxbOzs46yU1kqDiCQWRC3N3dUbx4cTg7O+Ozzz6Dra0tdu3ahXLlyqnXSUpKAgDY29vn+TzZX0tMTMzx37dt8y7aeI636d69e45yAQDdunWDhYUFQkJC1MsuXryIy5cvw8fHR71s69ataNGiBYoWLYqEhAT1h7u7O5RKJQ4fPqyTzESGjCMYRCYkKCgIVapUwYsXL7B27VocPnwYVlZWOdbJ/gWfXTRy898S4uDg8M5t3uX15yhSpEiBnycvFSpUeGOZk5MT2rRpg9DQUMyaNQvAq9ELCwsLdOvWTb3eP//8g/Pnz79RULI9fvxY63mJDB0LBpEJadSoERo2bAgA8Pb2RvPmzdGnTx9cu3YNdnZ2AIDq1asDAM6fPw9vb+9cn+f8+fMAgBo1agAAqlWrBgC4cOFCntu8y+vP0aJFi3euL5PJIHI5y16pVOa6vrW1da7Le/XqBX9/f8TExKBu3boIDQ1FmzZt4OTkpF5HpVKhbdu2GD9+fK7PUaVKlXfmJTI1PERCZKLMzc0xd+5cPHr0CD/99JN6efPmzVGkSBFs3rw5z1/W69evBwD13I3mzZujaNGi+PXXX/Pc5l28vLwAABs3bszX+kWLFsXz58/fWH737l2NXtfb2xtyuRwhISGIiYnB9evX0atXrxzrVKpUCS9fvoS7u3uuH+XLl9foNYlMAQsGkQlzc3NDo0aNsGTJEqSlpQEAbGxsMG7cOFy7dg3ffPPNG9vs2bMHwcHB8PDwwKeffqreZsKECbhy5QomTJiQ68jCxo0bcerUqTyzNGnSBJ6enli9ejV27tz5xtczMjIwbtw49eNKlSrh6tWrePLkiXrZuXPncOzYsXy/fwAoUqQIPDw8EBoaii1btkAul78xCtOzZ0+cOHECYWFhb2z//PlzZGVlafSaRKaAV/IkMgHZV/I8ffq0+hBJtm3btqFHjx5Yvnw5hgwZAuDVYQYfHx/89ttvaNmyJbp37w5ra2scPXoUGzduRPXq1REREZHjSp4qlQpffPEFNmzYgPr166uv5BkXF4edO3fi1KlTOH78OJo0aZJnzidPnqBdu3Y4d+4cvLy80KZNG9ja2uKff/7Bli1bEBsbi/T0dACvzjqpWbMm6tSpg/79++Px48dYsWIFSpYsicTERPUpuHfu3EGFChUwf/78HAXldZs2bcLnn38Oe3t7uLm5qU+ZzZaSkoIWLVrg/Pnz+OKLL9CgQQMkJyfjwoUL2LZtG+7cuZPjkAoRgVfyJDIFeV1oSwghlEqlqFSpkqhUqVKOi2QplUrxyy+/iGbNmgkHBwehUCjExx9/LGbMmCFevnyZ52tt27ZNtGvXThQrVkxYWFiI0qVLCx8fHxEVFZWvrCkpKWLBggXik08+EXZ2dkIul4vKlSuLkSNHihs3buRYd+PGjaJixYpCLpeLunXrirCwsLdeaCsviYmJwtraWgAQGzduzHWdpKQkMWnSJPHRRx8JuVwunJycRNOmTcWCBQtERkZGvt4bkSnhCAYRERFpHedgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1pncvUhUKhUePXoEe3t7yGQyqeMQEREZDCEEkpKSUKZMGZiZvX2MwuQKxqNHj+Ds7Cx1DCIiIoN1//59lCtX7q3rmFzByL699P3799W3hyYiIqJ3S0xMhLOzs/p36duYXMHIPizi4ODAgkFERFQA+ZliwEmeREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1khaMw4cPw8vLC2XKlIFMJsPOnTvfuU1UVBTq168PKysrfPTRRwgODtZ5TiIiItKMpAUjOTkZderUQVBQUL7Wv337Njp27IhWrVohJiYGX331FQYMGICwsDAdJyUiIiJNWEj54u3bt0f79u3zvf6KFStQoUIFLFy4EABQvXp1HD16FIsXL4aHh4euYhoVIQSi7z3Dk6R0qaMQEVEhaFLJCY7WloX+upIWDE2dOHEC7u7uOZZ5eHjgq6++ynOb9PR0pKf//y/TxMREXcUzCCdvPUXvVSeljkFERIVk76gWLBjvEhcXh5IlS+ZYVrJkSSQmJiI1NRXW1tZvbDN37lzMmDGjsCLqvQsPnwMAnOys4PKBjbRhiIhI52zk5pK8rkEVjIKYNGkSAgIC1I8TExPh7OwsYSJp3XuaAgDo9YkzxnlUlTgNERFp05kzZ/DTTz9h5cqVsLQs/FGL1xlUwShVqhTi4+NzLIuPj4eDg0OuoxcAYGVlBSsrq8KIZxDuPU0FAJQvxtELIiJjcvr0abRr1w7Pnz9H+fLlJR+9N6jrYDRp0gQRERE5lh04cABNmjSRKJHhuf+/EQxnFgwiIqNx6tQptG3bFs+fP0ezZs0wbtw4qSNJWzBevnyJmJgYxMTEAHh1GmpMTAzu3bsH4NXhDV9fX/X6Q4YMwa1btzB+/HhcvXoVy5YtQ2hoKMaMGSNFfIOjVAk8ePaqYJTn/AsiIqPw119/oW3btnjx4gWaN2+Offv2wd7eXupY0haMv//+G/Xq1UO9evUAAAEBAahXrx6mTZsGAIiNjVWXDQCoUKEC9uzZgwMHDqBOnTpYuHAhVq9ezVNU8yn2RSoylQKW5jKUclBIHYeIiN7TyZMn0a5dOyQmJqJFixZ6Uy4AQCaEEFKHKEyJiYlwdHTEixcv4ODgIHWcQnX8ZgL6rPoLFZxsETnOTeo4RET0HlJTU1GpUiXExsbC1dUVu3fvhp2dnU5fU5PfoQY1B4PeD+dfEBEZD2tra2zevBkdO3bEnj17dF4uNGVQZ5HQ+8k+RfVDFgwiIoOVmZmpPgXVzc0Nbm5u0gbKA0cwTAhPUSUiMmxHjx5FtWrVcPHiRamjvBMLhgm5x0MkREQG68iRI/D09MStW7fw7bffSh3nnVgwTEj2HAyOYBARGZbDhw+jffv2SE5Ohru7O9auXSt1pHdiwTARSWmZeJqcAQBwLpb7VU+JiEj/HDp0SF0u2rZti127duV59Wp9woJhIrIPjxSzlcNeIe316YmIKH8iIyPRoUMHpKSkwMPDA7///rtBlAuABcNk8BRVIiLDIoTA3LlzkZKSAk9PT+zcudNgygXAgmEyeIoqEZFhkclk2LZtGyZMmIAdO3ZAoTCsKzCzYJiIe5zgSURkEO7evav+3MHBAfPmzTO4cgGwYJgMXgODiEj/HThwANWqVcO8efOkjvLeWDBMBOdgEBHptz///BNeXl5IS0vD8ePHoVQqpY70XlgwTABv005EpN/CwsLQuXNnpKeno0uXLti2bRvMzc2ljvVeWDBMAG/TTkSkv/bt24cuXbogPT0d3t7eCA0NhVwulzrWe2PBMAHZEzzLFbWBuZlM4jRERJRt79698Pb2Rnp6Orp27YqQkBCjKBcAC4ZJ4CXCiYj0040bN5CRkYHu3bsbVbkAeLt2k8BTVImI9NOoUaNQoUIFeHp6qm/Bbiw4gmECeIoqEZH+OHjwIJ49e6Z+7OXlZXTlAmDBMAn3/k0GwFNUiYik9vvvv8PT0xPt2rVDYmKi1HF0igXDBPAQCRGR9Hbs2IHPPvsMmZmZqFy5MmxsjPtnMguGkUtMy8SzlEwAvAYGEZFUtm/fjp49eyIrKwt9+vTB+vXrYWFh3NMgWTCMXPYZJB/YymFnZdz/mImI9NFvv/0GHx8fZGVloW/fviZRLgAWDKPHS4QTEUln586d6nLRr18/rFu3zuCv0Jlfxl+hTBznXxARSad69eooUaIE2rZti7Vr15pMuQBYMIweCwYRkXSqVq2KU6dOoXTp0iZVLgAeIjF6d/9lwSAiKky//vor/vzzT/XjcuXKmVy5ADiCYfQ4B4OIqPBs2rQJvr6+kMvlOHXqFGrVqiV1JMlwBMOIvbpN+/+u4slTVImIdGrjxo3w9fWFSqXC559/jo8//ljqSJJiwTBisS9SkaUSkJub8TbtREQ6tGHDBnW5GDhwIH7++WeYmZn2r1geIjEiT5LSkZKRpX4cc/85AKBcUWvepp2ISEfWrVsHf39/CCEwaNAgLF++3OTLBcCCYTR2n3+EEZvP5vo1zr8gItKNqKgodbkYMmQIgoKCWC7+hwXDSFx+9OqmOZbmMlhZ/P9sZbmFGbrVLytVLCIio9a8eXP4+PigaNGiCAoKgkzG0eJsLBhG5vNPP0Sgl2lPLCIiKiwWFhbYsGEDzM3NWS7+g+M4REREGli9ejUGDBgAlUoF4FXJYLl4E0cwiIiI8mnlypUYPHgwAMDd3R29evWSOJH+4ggGERFRPvz888/qcjF69Gj4+PhInEi/sWAQERG9w/LlyzFkyBAAwJgxY7B48WIeFnkHFgwiIqK3CAoKwrBhwwAAY8eOxcKFC1ku8oEFg4iIKA93795FQEAAAGDcuHGYP38+y0U+cZInERFRHj788EOEhobi1KlTmD17NsuFBlgwiIiI/iMpKQn29vYAgC5duqBLly4SJzI8PERCRET0msWLF6NmzZq4ffu21FEMGgsGERHR/yxatAgBAQG4d+8efvvtN6njGDQWDCIiIgALFy7E2LFjAQBTp05Vf04Fw4JBREQmb/78+Rg3bhwAYNq0aZgxYwYndL4nFgwiIjJp33//PcaPHw8AmD59OsuFlvAsEiIiMllpaWnYtGkTAGDGjBmYNm2axImMBwsGERGZLIVCgfDwcGzfvl19nxHSDh4iISIik3P27Fn158WLF2e50AEWDCIiMimzZs1C/fr1sXLlSqmjGDUWDCIiMhmvz7N4+vSpxGmMG+dgEBGRScg+QwQA5s2bhwkTJkicyLixYBARkVETQmD69OmYOXMmgFenpX799dcSpzJ+LBhERGS0hBCYNm0aZs+eDQBYsGABr9BZSFgwiIjIJCxatAhjxoyROobJYMEgIiKjJZPJMHPmTLRv3x5NmzaVOo5J4VkkRERkVIQQWLVqFVJSUgC8KhksF4WPBYOIiIyGEAITJkzAoEGD0LlzZyiVSqkjmSweIiEiIqMghMD48eOxYMECAEDXrl1hbm4ucSrTxYJBREQGTwiBcePGYdGiRQCAoKAgDBs2TOJUpo0Fg4iIDJoQAgEBAViyZAkAYPny5RgyZIi0oYgFg4iIDNvUqVPV5WLFihW8cZme4CRPIiIyaN26dUOxYsXw888/s1zoEY5gEBGRQatfvz7++ecfFCtWTOoo9BqOYBARkUHJPlvk5MmT6mUsF/qHBYOIiAyGSqXC8OHDMX/+fLRv3563XNdjPERCREQGQaVSYdiwYfj5558hk8mwZMkSjlzoMRYMIiLSeyqVCkOHDsXKlSshk8kQHBwMX19fqWPRW7BgGAkhdQAiIh1RqVQYPHgwVq9eDTMzM6xbtw6ff/651LHoHVgwjMSp26+OQ5Z2VEichIhIu4KCgtTlYv369ejbt6/UkSgfWDCMwLW4JJy5+wwWZjJ41ysrdRwiIq0aOHAgwsLC0KdPH/Tp00fqOJRPLBhG4NdT9wAA7tVLooQ9RzCIyPCpVCrIZDLIZDIoFAr88ccfkMlkUsciDfA0VQOXmqHEb9EPAAC9G5eXOA0R0ftTKpXw9/fH119/DSFezTBjuTA8kheMoKAguLi4QKFQoHHjxjh16tRb11+yZAmqVq0Ka2trODs7Y8yYMUhLSyuktPpnz4VYJKVloVxRa7T4yEnqOERE7yW7XKxfvx5LlizB+fPnpY5EBSRpwQgJCUFAQAACAwMRHR2NOnXqwMPDA48fP851/c2bN2PixIkIDAzElStXsGbNGoSEhGDy5MmFnFx/ZB8e6d2oPMzM2PCJyHAplUr4+flhw4YNMDc3x5YtW1CnTh2pY1EBSVowFi1ahIEDB8Lf3x81atTAihUrYGNjg7Vr1+a6/vHjx9GsWTP06dMHLi4uaNeuHXr37v3OUQ9j9frkzh4Ny0kdh4iowLKysuDr64tNmzbBwsICISEh+Oyzz6SORe9BsoKRkZGBM2fOwN3d/f/DmJnB3d0dJ06cyHWbpk2b4syZM+pCcevWLezduxcdOnTI83XS09ORmJiY48NYcHInERmD7HKxefNmWFhYIDQ0FN27d5c6Fr0nyc4iSUhIgFKpRMmSJXMsL1myJK5evZrrNn369EFCQgKaN28OIQSysrIwZMiQtx4imTt3LmbMmKHV7Prg9cmdfTi5k4gM2LFjx7BlyxZYWFhg69at8Pb2ljoSaYHkkzw1ERUVhTlz5mDZsmWIjo7G9u3bsWfPHsyaNSvPbSZNmoQXL16oP+7fv1+IiXUne3KnczFrNOfkTiIyYK6urggODsa2bdtYLoyIZCMYTk5OMDc3R3x8fI7l8fHxKFWqVK7bTJ06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZmb/YlKysrWFlZaf8NSCz78EivTzi5k4gMT2ZmJp4/f47ixYsDAO8rYoQkG8GQy+Vo0KABIiIi1MtUKhUiIiLQpEmTXLdJSUl5o0SYm5sDgPpcaVPAyZ1EZMgyMzPRu3dvtGzZEnFxcVLHIR2R9EqeAQEB8PPzQ8OGDdGoUSMsWbIEycnJ8Pf3B/Cq0ZYtWxZz584FAHh5eWHRokWoV68eGjdujBs3bmDq1Knw8vJSFw1TsO3Mq8M8bWtwcicRGZbMzEz06tUL27dvh1wux8WLF/MctSbDJmnB8PHxwZMnTzBt2jTExcWhbt262L9/v3ri571793KMWEyZMgUymQxTpkzBw4cPUbx4cXh5eeHbb7+V6i1I4u+7zwAAHh/zm5KIDEdGRgZ69eqFHTt2QC6XY8eOHTnOJCTjIhOmdGwBQGJiIhwdHfHixQs4ODhIHUdjWUoVak4PQ1qmChFjXVGpuJ3UkYiI3ikjIwM9e/bE77//DisrK+zcuROenp5SxyINafI7lDc7MzA3nrxEWqYKdlYWqPCBrdRxiIjeKSMjAz169MCuXbtgZWWF33//HR4eHlLHIh0zqNNUCbjw4AUA4OMyDjx7hIgMwtOnT3Hp0iUoFArs2rWL5cJEcATDwFx8+Kpg1CrrKHESIqL8KVWqFCIjI3Hjxg20atVK6jhUSDiCYWDOZxeMciwYRKS/0tPTERUVpX7s7OzMcmFiWDAMSJZShSuxr+6lUpMjGESkp9LS0tCtWze4u7tj69atUschibBgGBBO8CQifZeWloauXbti7969kMvl+OCDD6SORBLhHAwDwgmeRKTPUlNT4e3tjT///BM2NjbYs2cP3NzcpI5FEmHBMCAXOMGTiPRUamoqunTpggMHDsDGxgZ79+6Fq6ur1LFIQiwYBuQCJ3gSkR5KT09H586dER4eDltbW+zduxctW7aUOhZJjHMwDAQneBKRvpLL5ahcuTJsbW2xb98+lgsCwIJhMDjBk4j0lUwmw08//YTo6Gi0aNFC6jikJ1gwDAQneBKRPklOTsbMmTORmZkJADAzM0OVKlUkTkX6hHMwDAQneBKRvkhOTkbHjh1x6NAh3Lp1C8HBwVJHIj3EEQwDwQmeRKQPXr58iQ4dOuDQoUNwcHDAkCFDpI5EeoojGAbg9QmeHMEgIqlkl4sjR47AwcEBf/75Jxo3bix1LNJTHMEwAK9P8HThBE8ikkBSUhLat2+PI0eOwNHREQcOHGC5oLfiCIYBOM8JnkQkISEEevTogaNHj6JIkSI4cOAAGjZsKHUs0nMcwTAAvEU7EUlJJpNh0qRJKFu2LMLDw1kuKF84gmEAOMGTiKTm6uqKGzduQKFQSB2FDARHMPQcJ3gSkRRevHgBLy8vXLx4Ub2M5YI0wREMPccJnkRU2J4/fw4PDw+cOnUKN27cwMWLF2Fubi51LDIwLBh6jhM8iagwPX/+HO3atcPp06fxwQcfYMuWLSwXVCA8RKLnOMGTiArLs2fP0LZtW5w+fRpOTk44ePAg6tSpI3UsMlAcwdBjSpVAxJXHAIB65YtKnIaIjNnTp0/Rtm1bREdHq8tFrVq1pI5FBowjGHrs8D9P8PB5KhytLdGmegmp4xCREZs8eTKio6NRvHhxREZGslzQe2PB0GO//nUPANCtflkoLHkMlIh0Z/78+fD29sbBgwdRs2ZNqeOQEeAhEj0Vn5iGiKuvDo/0aVRe4jREZIxSU1NhbW0NALC3t8eOHTskTkTGhCMYeir09H0oVQKfuBRF5ZL2UschIiOTkJCATz/9FHPnzpU6ChkpFgw9pFQJbDl9HwDQpzFHL4hIu548eYLWrVvj/Pnz+OGHH/D06VOpI5ERYsHQQ69P7mxfs7TUcYjIiDx+/BitW7fGhQsXUKpUKURFRaFYsWJSxyIjxDkYeoiTO4lIF7LLxaVLl1C6dGlERkaiatWqUsciI8URDD3DyZ1EpAvx8fFo1aoVLl26hDJlyiAqKorlgnSKIxh6hpM7iUgXwsLCcPnyZXW5qFy5stSRyMixYOgRTu4kIl3x9fVFWloaWrVqxXJBhYIFQ49wcicRaVNcXBysrKxQtOirWw0MGjRI4kRkSjgHQ49s/t/kzu71y3FyJxG9l9jYWLi5uaFdu3Z4/vy51HHIBLFg6Im4F2k4mD25s7GzxGmIyJA9evQIbm5uuHbtGuLj4/Hs2TOpI5EJYsHQE6F/v5rc2cilGD4qwcmdRFQwDx8+hJubG65fv44PP/wQhw4dQoUKFaSORSaIczD0gFIlEPK/yZ29OXpBRAX04MEDtGrVCjdu3MCHH36IqKgouLi4SB2LTBRHMPTA4euc3ElE7+f+/ftwc3PDjRs34OLiwnJBkmPB0AObT3FyJxG9n9TUVKSkpKBChQosF6QXeIhEYpzcSUTaUKVKFURGRsLa2hrly/M6OiQ9jmBIjJM7iaig7t69i4iICPXjqlWrslyQ3mDBkNDrkzt55U4i0sSdO3fg5uaGjh074uDBg1LHIXoDC4aEXp/c6VmzlNRxiMhAZJeLO3fuwNnZmTctI73EgiEhTu4kIk3dvn0brq6uuHv3LipXroyoqCiULVtW6lhEb2DBkAgndxKRpm7dugU3Nzfcu3cPVapUYbkgvcazSAqRSiVw/Oa/eJmeicirTzi5k4jyLfvy3/fv30fVqlURGRmJ0qV53RzSXywYhWjTX3cx9fdLOZZxcicR5UeJEiXQrFkzxMTE4ODBgywXpPdYMAqJEALrTtwFAFQpaQcHhSVcnGzRoRZ/SBDRu1lYWGDDhg14/vw5nJycpI5D9E4sGIXk77vPcOPxS1hbmuO3oU1hr7CUOhIR6bnr169j1apV+O6772BmZgYLCwuWCzIYLBiFZPNfr84Y6VynDMsFEb3TtWvX0KpVK8TGxsLOzg6BgYFSRyLSCM8iKQTPUzKw50IsAKA351wQ0TtcvXpVXS5q1qyJoUOHSh2JSGMcwSgEv0U/REaWCjVKO6BOOUep4xCRHssuF3FxcahVqxYiIiJQvHhxqWMRaYwjGDomhMCv/7ugVu/G5SGTySRORET66sqVK3Bzc0NcXBxq166NgwcPslyQwWLB0LHTd/5/cqd33TJSxyEiPZWWlgYPDw/Ex8ejbt26OHjwICd0kkFjwdCx7NELTu4kordRKBQICgpC48aNER4ejg8++EDqSETvhQVDh54lc3InEb2dEEL9uZeXF44fP85yQUbhvQpGWlqatnIYpe1nObmTiPJ2/vx5NGzYELdu3VIvMzPj331kHDT+l6xSqTBr1iyULVsWdnZ26m+MqVOnYs2aNVoPaKiEENj816srd3JyJxH917lz59C6dWtER0dj3LhxUsch0jqNC8bs2bMRHByM77//HnK5XL28Zs2aWL16tVbDGbLTd57h5pNkTu4kojfExMSgTZs2+Pfff9GwYUP+cUZGSeOCsX79eqxcuRJ9+/aFubm5enmdOnVw9epVrYYzZNmjF5zcSUSvO3v2rLpcfPLJJzhw4ACKFi0qdSwirdO4YDx8+BAfffTRG8tVKhUyMzO1EsrQPUvOwN6LcQB4t1Qi+n/R0dFo06YNnj59ikaNGuHAgQMoUqSI1LGIdELjglGjRg0cOXLkjeXbtm1DvXr1tBLK0L0+ubM2J3cSEV7Nyxo7diyePXuGxo0b488//4SjI38+kPHS+FLh06ZNg5+fHx4+fAiVSoXt27fj2rVrWL9+PXbv3q2LjAaFkzuJKDcymQxbt27FhAkTsHjxYjg4OEgdiUinNB7B6NKlC/744w+Eh4fD1tYW06ZNw5UrV/DHH3+gbdu2ushoUDi5k4he9++//6o/d3Jywpo1a1guyCQU6GZnLVq0wIEDB7SdxShwcicRZTt9+jQ8PDwwb948DBo0SOo4RIVK4xGMihUr5mjk2Z4/f46KFStqJZSh4uROIsp26tQpuLu749mzZ9i0aROUSqXUkYgKlcYF486dO7l+o6Snp+Phw4daCWWofot+wMmdRIS//voLbdu2RWJiIlq0aIE9e/bkOK2fyBTk+xDJrl271J+HhYXlmP2sVCoREREBFxcXrYYzJK/flr0PJ3cSmawTJ07Aw8MDSUlJaNmyJfbs2QM7OzupYxEVunwXDG9vbwCvZkL7+fnl+JqlpSVcXFywcOFCrYYzJKduP1VP7uzCyZ1EJun48ePw9PREUlIS3NzcsHv3btja2kodi0gS+S4YKpUKAFChQgWcPn0aTk5OOgtliHhbdiKKjIxEUlISWrVqhT/++IPlgkyaxmeR3L59Wxc5DBondxIRAEyePBllypSBj48PbGxspI5DJKkC3Rc4OTkZe/fuxYoVK/Djjz/m+NBUUFAQXFxcoFAo0LhxY5w6deqt6z9//hzDhw9H6dKlYWVlhSpVqmDv3r0FeRtawyt3Epmu6OhoJCcnA3h1CNnf35/lgggFGME4e/YsOnTogJSUFCQnJ6NYsWJISEiAjY0NSpQogVGjRuX7uUJCQhAQEIAVK1agcePGWLJkCTw8PHDt2jWUKFHijfUzMjLQtm1blChRAtu2bUPZsmVx9+5dya/lf+nRCwCAZ81SnNxJZEIOHz6MDh06oFGjRti9ezeLBdFrNB7BGDNmDLy8vPDs2TNYW1vj5MmTuHv3Lho0aIAFCxZo9FyLFi3CwIED4e/vjxo1amDFihWwsbHB2rVrc11/7dq1ePr0KXbu3IlmzZrBxcUFrq6uqFOnjqZvQyesLAo0IEREBujQoUNo3749kpOTYWlpyT8uiP5D49+IMTExGDt2LMzMzGBubo709HQ4Ozvj+++/x+TJk/P9PBkZGThz5gzc3d3/P4yZGdzd3XHixIlct9m1axeaNGmC4cOHo2TJkqhZsybmzJnz1gvYpKenIzExMccHEdH7iIqKUo/kenh4YOfOnbC2tpY6FpFe0bhgWFpawszs1WYlSpTAvXuvzp5wdHTE/fv38/08CQkJUCqVKFmyZI7lJUuWRFxcXK7b3Lp1C9u2bYNSqcTevXsxdepULFy4ELNnz87zdebOnQtHR0f1h7Ozc74zEhH918GDB9XlwtPTk+WCKA8az8GoV68eTp8+jcqVK8PV1RXTpk1DQkICNmzYgJo1a+oio5pKpUKJEiWwcuVKmJubo0GDBnj48CHmz5+PwMDAXLeZNGkSAgIC1I8TExNZMoioQA4ePIhOnTohNTUV7du3x/bt26FQKKSORaSXNC4Yc+bMQVJSEgDg22+/ha+vL4YOHYrKlStjzZo1+X4eJycnmJubIz4+Psfy+Ph4lCpVKtdtSpcuDUtLyxyX3K1evTri4uKQkZEBuVz+xjZWVlawsrLKdy4iorwUKVIECoUCrVu3xm+//cafLURvoXHBaNiwofrzEiVKYP/+/QV6YblcjgYNGiAiIkJ9lVCVSoWIiAiMGDEi122aNWuGzZs3Q6VSqQ/TXL9+HaVLl861XBARaVP9+vVx/PhxVKhQgeWC6B20dtpDdHQ0OnXqpNE2AQEBWLVqFdatW4crV65g6NChSE5Ohr+/PwDA19cXkyZNUq8/dOhQPH36FKNHj8b169exZ88ezJkzB8OHD9fW2yAiyuHPP//E8ePH1Y+rVavGckGUDxqNYISFheHAgQOQy+UYMGAAKlasiKtXr2LixIn4448/4OHhodGL+/j44MmTJ5g2bRri4uJQt25d7N+/Xz3x8969e+qRCgBwdnZGWFgYxowZg9q1a6Ns2bIYPXo0JkyYoNHrEhHlx/79++Ht7Q25XI4TJ07g448/ljoSkcHId8FYs2YNBg4ciGLFiuHZs2dYvXo1Fi1ahJEjR8LHxwcXL15E9erVNQ4wYsSIPA+JREVFvbGsSZMmOHnypMavQ0SkiX379qFr165IT09H+/btUblyZakjERmUfB8i+eGHH/Ddd98hISEBoaGhSEhIwLJly3DhwgWsWLGiQOWCiEgf7d27F97e3khPT0fXrl0RGhrKeV5EGsp3wbh58yZ69OgBAOjWrRssLCwwf/58lCtXTmfhiIgK2+7du9G1a1dkZGSge/fuCAkJgaUl75BMpKl8F4zU1FT1dfZlMhmsrKxQunRpnQUjIipsx48fR7du3ZCRkYHPPvsMv/76K8sFUQFpNMlz9erVsLOzAwBkZWUhODgYTk5OOdbR5GZnRET6pH79+nB3d4ednR02bdrEckH0HvJdMMqXL49Vq1apH5cqVQobNmzIsY5MJmPBICKDpVAosH37dlhYWMDCQuPLBBHRa/L9HXTnzh0dxiAiksaOHTtw8uRJzJs3DzKZjJf+JtISVnQiMlnbt2+Hj48PsrKyULduXfTu3VvqSERGQ2tX8iQiMiTbtm1Dz549kZWVhb59+6rPkiMi7WDBICKTs3XrVvTq1QtKpRL9+vXDunXrOOeCSMtYMIjIpISEhKB3795QKpXw9fXFL7/8kuMOzUSkHSwYRGQy7t+/j379+kGpVMLPzw9r165luSDSkQIVjJs3b2LKlCno3bs3Hj9+DODVdfsvXbqk1XBERNrk7OyM1atXo3///lizZg3LBZEOaVwwDh06hFq1auGvv/7C9u3b8fLlSwDAuXPnEBgYqPWARETvKzMzU/25r68vVq9ezXJBpGMaF4yJEydi9uzZ6tu2Z2vdujXvckpEemfjxo2oV68e4uLipI5CZFI0LhgXLlxA165d31heokQJJCQkaCUUEZE2bNiwAX5+frh06RJWrlwpdRwik6JxwShSpAhiY2PfWH727FmULVtWK6GIiN7XunXr4OfnB5VKhcGDB2PKlClSRyIyKRoXjF69emHChAmIi4uDTCaDSqXCsWPHMG7cOPj6+uoiIxGRRoKDg+Hv7w8hBIYMGYJly5bBzIwnzREVJo2/4+bMmYNq1arB2dkZL1++RI0aNdCyZUs0bdqUfyEQkeR++eUXfPnllxBCYNiwYSwXRBLR+NJ1crkcq1atwtSpU3Hx4kW8fPkS9erVQ+XKlXWRj4go39LS0jB37lwIITB8+HAsXboUMplM6lhEJknjgnH06FE0b94c5cuXR/ny5XWRiYioQBQKBSIiIrBu3Tp88803LBdEEtJ43LB169aoUKECJk+ejMuXL+siExGRRm7fvq3+3NnZGVOmTGG5IJKYxgXj0aNHGDt2LA4dOoSaNWuibt26mD9/Ph48eKCLfEREb/Xzzz+jSpUqCA0NlToKEb1G44Lh5OSEESNG4NixY7h58yZ69OiBdevWwcXFBa1bt9ZFRiKiXC1fvhxDhgxBVlYWTp8+LXUcInrNe02trlChAiZOnIh58+ahVq1aOHTokLZyERG91bJlyzBs2DAAwNixY/H9999LnIiIXlfggnHs2DEMGzYMpUuXRp8+fVCzZk3s2bNHm9mIiHL1008/Yfjw4QCAr7/+GvPnz+ecCyI9o/FZJJMmTcKWLVvw6NEjtG3bFj/88AO6dOkCGxsbXeQjIsph6dKlGDVqFABg/PjxmDdvHssFkR7SuGAcPnwYX3/9NXr27AknJyddZCIiytO1a9cAvLrx4pw5c1guiPSUxgXj2LFjushBRJQvS5cuRbt27eDl5cVyQaTH8lUwdu3ahfbt28PS0hK7du1667qdO3fWSjAiomy///472rdvD7lcDplMxp8zRAYgXwXD29sbcXFxKFGiBLy9vfNcTyaTQalUaisbEREWLlyIcePGwdvbG9u2bYO5ubnUkYgoH/JVMFQqVa6fExHp0vz58zF+/HgAQO3atXnTMiIDovF36/r165Genv7G8oyMDKxfv14roYiIvvvuO3W5CAwMxIwZMzjngsiAaFww/P398eLFizeWJyUlwd/fXyuhiMi0zZs3DxMnTgQATJ8+HdOnT5c2EBFpTOOzSIQQuf4V8eDBAzg6OmolFBGZrvnz52PSpEkAgJkzZ2Lq1KkSJyKigsh3wahXrx5kMhlkMhnatGkDC4v/31SpVOL27dvw9PTUSUgiMh2NGjWCjY0NJk2ahClTpkgdh4gKKN8FI/vskZiYGHh4eMDOzk79NblcDhcXF3Tv3l3rAYnItLi6uuLKlSsoX7681FGI6D3ku2AEBgYCAFxcXODj4wOFQqGzUERkWhYsWABPT0/UrFkTAFguiIyAxpM8/fz8WC6ISGumT5+Or7/+Gq1bt8a///4rdRwi0pJ8jWAUK1YM169fh5OTE4oWLfrWU8WePn2qtXBEZLyEEJg+fTpmzpwJ4NWNyz744AOJUxGRtuSrYCxevBj29vbqz3kuOhG9DyEEpk2bhtmzZwN4dYhk7NixEqciIm3KV8Hw8/NTf/7FF1/oKgsRmQAhBKZOnYpvv/0WALBo0SKMGTNG4lREpG0az8GIjo7GhQsX1I9///13eHt7Y/LkycjIyNBqOCIyPqtXr1aXi8WLF7NcEBkpjQvG4MGDcf36dQDArVu34OPjAxsbG2zdulV9WV8iorz06tULzZo1w5IlS/DVV19JHYeIdETjK3lev34ddevWBQBs3boVrq6u2Lx5M44dO4ZevXphyZIlWo5IRIbu9SsA29vbIyoqKsfF+ojI+Gg8giGEUN9RNTw8HB06dAAAODs7IyEhQbvpiMjgCSHw9ddfY+7cueplLBdExk/j7/KGDRti9uzZcHd3x6FDh7B8+XIAwO3bt1GyZEmtByQiwyWEwLhx47Bo0SIAgKenJ+rVqydxKiIqDBqPYCxZsgTR0dEYMWIEvvnmG3z00UcAgG3btqFp06ZaD0hEhkkIgYCAAHW5WL58OcsFkQnReASjdu3aOc4iyTZ//nyYm5trJRQRGTYhBMaMGYMffvgBAPDzzz9j0KBBEqciosJU4AOhZ86cwZUrVwAANWrUQP369bUWiogMlxACo0ePxtKlSwEAK1euxMCBAyVORUSFTeOC8fjxY/j4+ODQoUMoUqQIAOD58+do1aoVtmzZguLFi2s7IxEZkEOHDmHp0qWQyWRYtWoV+vfvL3UkIpKAxnMwRo4ciZcvX+LSpUt4+vQpnj59iosXLyIxMRGjRo3SRUYiMiBubm5YsmQJVq9ezXJBZMI0HsHYv38/wsPDUb16dfWyGjVqICgoCO3atdNqOCIyDCqVCsnJyep7Fo0ePVriREQkNY1HMFQqFSwtLd9Ybmlpqb4+BhGZDpVKhWHDhqFVq1Z4/vy51HGISE9oXDBat26N0aNH49GjR+plDx8+xJgxY9CmTRuthiMi/aZSqTBkyBD8/PPPiI6OxuHDh6WORER6QuOC8dNPPyExMREuLi6oVKkSKlWqhAoVKiAxMVE9a5yIjJ9KpcLgwYOxatUqmJmZYf369ejcubPUsYhIT2g8B8PZ2RnR0dGIiIhQn6ZavXp1uLu7az0cEeknlUqFgQMHYu3atepy0bdvX6ljEZEe0ahghISEYNeuXcjIyECbNm0wcuRIXeUiIj2lUqkwYMAA/PLLLzAzM8OGDRvQp08fqWMRkZ7Jd8FYvnw5hg8fjsqVK8Pa2hrbt2/HzZs3MX/+fF3mIyI9Exsbi/3798PMzAybNm1Cr169pI5ERHoo33MwfvrpJwQGBuLatWuIiYnBunXrsGzZMl1mIyI9VLZsWURGRmLr1q0sF0SUp3wXjFu3bsHPz0/9uE+fPsjKykJsbKxOghGR/lAqlYiJiVE/rlq1Krp16yZdICLSe/kuGOnp6bC1tf3/Dc3MIJfLkZqaqpNgRKQflEolvvjiC3z66acICwuTOg4RGQiNJnlOnToVNjY26scZGRn49ttv4ejoqF6WfWtmIjJ8WVlZ8PPzw+bNm2FhYYGXL19KHYmIDES+C0bLli1x7dq1HMuaNm2KW7duqR/LZDLtJSMiSWVlZcHX1xe//vorLCwsEBISwsMiRJRv+S4YUVFROoxBRPokKysLn3/+OUJCQmBhYYHQ0FB07dpV6lhEZEA0vtAWERm3rKws9O3bF6GhobC0tMTWrVvRpUsXqWMRkYFhwSCiN5ibm8PS0hLbtm3j5b+JqEA0vhcJERk3CwsLrF+/HseOHWO5IKICY8EgImRmZmLZsmVQKpUAXpWMTz75ROJURGTIWDCITFxGRgZ8fHwwfPhwDB8+XOo4RGQkClQwjhw5gs8//xxNmjTBw4cPAQAbNmzA0aNHtRqOiHQru1zs2LEDVlZWnMxJRFqjccH47bff4OHhAWtra5w9exbp6ekAgBcvXmDOnDlaD0hEupGRkYEePXpg586dsLKyws6dO9G+fXupYxGRkdC4YMyePRsrVqzAqlWrYGlpqV7erFkzREdHazUcEelGeno6PvvsM+zatQsKhQK7du2Cp6en1LGIyIhofJrqtWvX0LJlyzeWOzo64vnz59rIREQ61rdvX/zxxx/qctG2bVupIxGRkdF4BKNUqVK4cePGG8uPHj2KihUrFihEUFAQXFxcoFAo0LhxY5w6dSpf223ZsgUymQze3t4Fel0iU+Xn5wdHR0f88ccfLBdEpBMaF4yBAwdi9OjR+OuvvyCTyfDo0SNs2rQJ48aNw9ChQzUOEBISgoCAAAQGBiI6Ohp16tSBh4cHHj9+/Nbt7ty5g3HjxqFFixYavyaRqfPy8sKdO3fg7u4udRQiMlIaF4yJEyeiT58+aNOmDV6+fImWLVtiwIABGDx4MEaOHKlxgEWLFmHgwIHw9/dHjRo1sGLFCtjY2GDt2rV5bqNUKtG3b1/MmDGjwKMmRKYkLS0N/fv3z3FzwiJFikgXiIiMnsYFQyaT4ZtvvsHTp09x8eJFnDx5Ek+ePMGsWbM0fvGMjAycOXMmx19RZmZmcHd3x4kTJ/LcbubMmShRogT69+//ztdIT09HYmJijg8iU5KamoouXbpg7dq16NSpk/piWkREulTge5HI5XLUqFHjvV48ISEBSqUSJUuWzLG8ZMmSuHr1aq7bHD16FGvWrEFMTEy+XmPu3LmYMWPGe+UkMlTZ5eLAgQOwtbXFihUrYG5uLnUsIjIBGheMVq1aQSaT5fn1gwcPvlegt0lKSkK/fv2watUqODk55WubSZMmISAgQP04MTERzs7OuopIpDdSUlLQpUsXhIeHw9bWFvv27eOcJSIqNBoXjLp16+Z4nJmZiZiYGFy8eBF+fn4aPZeTkxPMzc0RHx+fY3l8fDxKlSr1xvo3b97EnTt34OXlpV6mUqkAvLp3wrVr11CpUqUc21hZWcHKykqjXESGLiUlBZ07d0ZERATs7Oywb98+NG/eXOpYRGRCNC4YixcvznX59OnT8fLlS42eSy6Xo0GDBoiIiFCfaqpSqRAREYERI0a8sX61atVw4cKFHMumTJmCpKQk/PDDDxyZIPqf8ePHq8vF/v370axZM6kjEZGJKfAcjP/6/PPP0ahRIyxYsECj7QICAuDn54eGDRuiUaNGWLJkCZKTk+Hv7w8A8PX1RdmyZTF37lwoFArUrFkzx/bZM+H/u5zIlE2fPh3nzp3Dd999h6ZNm0odh4hMkNYKxokTJ6BQKDTezsfHB0+ePMG0adMQFxeHunXrYv/+/eqJn/fu3YOZGW/6SvQuSqVSPYHTyckJhw8ffut8KSIiXdK4YHTr1i3HYyEEYmNj8ffff2Pq1KkFCjFixIhcD4kAQFRU1Fu3DQ4OLtBrEhmTly9folOnTujduzcGDx4MACwXRCQpjQuGo6NjjsdmZmaoWrUqZs6ciXbt2mktGBHlT1JSEjp06ICjR4/i3Llz6N69e77PsiIi0hWNCoZSqYS/vz9q1aqFokWL6ioTEeVTUlIS2rdvj2PHjsHR0RFhYWEsF0SkFzSa3GBubo527drxrqlEeiAxMRGenp7qcnHgwAE0atRI6lhERAAKcKnwmjVr5rifAREVvuxycfz4cRQpUgTh4eH45JNPpI5FRKSmccGYPXs2xo0bh927dyM2Npb3+SCSQGhoKE6cOIGiRYsiPDwcDRs2lDoSEVEO+Z6DMXPmTIwdOxYdOnQAAHTu3DnHLHUhBGQyGW+kRFQI+vfvjydPnsDDwwP169eXOg4R0RvyXTBmzJiBIUOGIDIyUpd5iCgPL168gIWFBWxtbSGTyTBp0iSpIxER5SnfBUMIAQBwdXXVWRgiyt3z58/Rrl072NnZYffu3bCxsZE6EhHRW2k0B4MX7iEqfM+ePUPbtm1x+vRpnD9/Hvfu3ZM6EhHRO2l0HYwqVaq8s2Q8ffr0vQIR0f97+vQp2rZti+joaDg5OSEiIgLVqlWTOhYR0TtpVDBmzJjxxpU8iUg3nj59Cnd3d5w9exZOTk44ePAgatWqJXUsIqJ80ahg9OrVCyVKlNBVFiL6n3///Rfu7u6IiYlB8eLFcfDgQd4xmIgMSr7nYHD+BVHhefToEe7evYsSJUogMjKS5YKIDI7GZ5EQke7VqlUL4eHhUCgUqFGjhtRxiIg0lu+CoVKpdJmDyOQlJCTg9u3b6kt+8wJaRGTINL5UOBFp35MnT9C6dWu0adMGJ0+elDoOEdF7Y8Egktjjx4/RunVrXLhwAXZ2dihatKjUkYiI3ptGZ5EQkXZll4tLly6hTJkyiIyMRJUqVaSORUT03jiCQSSR+Ph4tGrVCpcuXULZsmURFRXFckFERoMjGEQSePLkCVq1aoUrV66oy8VHH30kdSwiIq1hwSCSgL29PVxcXJCUlITIyEiWCyIyOiwYRBJQKBTYvn07Hj9+jPLly0sdh4hI6zgHg6iQPHr0CN999536onUKhYLlgoiMFkcwiArBw4cP0apVK/zzzz9QqVSYNGmS1JGIiHSKIxhEOvbgwQO4ubnhn3/+wYcffojevXtLHYmISOdYMIh06P79+3Bzc8ONGzfg4uKCQ4cOwcXFRepYREQ6x4JBpCPZ5eLmzZuoUKECoqKi8OGHH0odi4ioULBgEOlAeno62rRpg1u3bqFixYosF0RkclgwiHTAysoK06ZNQ5UqVRAVFcWzRYjI5LBgEOnI559/jvPnz8PZ2VnqKEREhY4Fg0hLbt++DU9PT8TGxqqXWVlZSZiIiEg6LBhEWnDr1i24ubkhLCwMQ4YMkToOEZHkWDCI3tPNmzfh5uaGe/fuoUqVKli+fLnUkYiIJMcreRK9h+xy8eDBA1StWhWRkZEoXbq01LGIiCTHEQyiArpx4wZcXV3x4MEDVKtWDVFRUSwXRET/w4JBVEADBgzAw4cPUb16dURGRqJUqVJSRyIi0hssGEQFtGHDBnh5ebFcEBHlgnMwiDSQmpoKa2trAICzszN27dolcSIiIv3EEQyifLp27RqqVq2K0NBQqaMQEek9FgyifLh69Src3Nxw//59zJs3D1lZWVJHIiLSaywYRO9w5coVuLm5IS4uDrVr18aff/4JCwseXSQiehsWDKK3uHz5Mtzc3BAfH486deogIiICTk5OUsciItJ7LBhEebh06RJatWqFx48fo27duiwXREQaYMEgysPmzZvx+PFj1KtXDxEREfjggw+kjkREZDB4IJkoD7Nnz0aRIkXQv39/FCtWTOo4REQGhSMYRK+5ceMGMjIyAAAymQxff/01ywURUQGwYBD9z7lz5/Dpp5+iZ8+e6pJBREQFw4JBBCAmJgatW7fGv//+i0ePHiE1NVXqSEREBo0Fg0ze2bNn0aZNGzx9+hSNGzfGgQMH4OjoKHUsIiKDxoJBJi06OlpdLj799FOEhYWxXBARaQELBpmsM2fOoE2bNnj27BmaNGnCckFEpEUsGGSykpOTkZGRgaZNm2L//v1wcHCQOhIRkdHgdTDIZLVs2RKRkZGoXr067O3tpY5DRGRUWDDIpJw6dQoKhQK1a9cGADRq1EjiRERExomHSMhknDx5Em3btkWbNm1w9epVqeMQERk1FgwyCSdOnEC7du2QmJiIGjVqoFy5clJHIiIyaiwYZPSOHz8ODw8PJCUlwdXVFXv37oWdnZ3UsYiIjBoLBhm1Y8eOqcuFm5sb9uzZA1tbW6ljEREZPRYMMlpnzpyBp6cnXr58idatW7NcEBEVIp5FQkarSpUqqFOnDhQKBXbt2gUbGxupIxERmQwWDDJa9vb22LdvH8zNzVkuiIgKGQ+RkFE5dOgQ5s+fr35sb2/PckFEJAGOYJDRiIyMRKdOnZCSkoLy5cvDx8dH6khERCaLIxhkFA4ePIiOHTsiJSUFnp6e6NKli9SRiIhMGgsGGbyIiAh06tQJqamp6NChA3bs2AGFQiF1LCIik8ZDJGTQwsPD4eXlhbS0NHTo0AHbt2+HlZWV1LGIiEweRzDIYD18+BCdO3dGWloaOnbsyHJBRKRHOIJBBqts2bKYN28ewsPDsXXrVpYLIiI9whEMMjhCCPXno0aNws6dO1kuiIj0DAsGGZR9+/ahRYsWePbsmXqZmRn/GRMR6Rv+ZCaDsXfvXnh7e+PYsWM5LqZFRET6hwWDDMLu3bvRtWtXZGRkoHv37pgxY4bUkYiI6C1YMEjv/fHHH+jWrRsyMjLw2Wef4ddff4WlpaXUsYiI6C30omAEBQXBxcUFCoUCjRs3xqlTp/Jcd9WqVWjRogWKFi2KokWLwt3d/a3rk2HbtWsXunfvjszMTPTo0QObN29muSAiMgCSF4yQkBAEBAQgMDAQ0dHRqFOnDjw8PPD48eNc14+KikLv3r0RGRmJEydOwNnZGe3atcPDhw8LOTnpWnp6OkaPHo3MzEz4+PiwXBARGRDJC8aiRYswcOBA+Pv7o0aNGlixYgVsbGywdu3aXNfftGkThg0bhrp166JatWpYvXo1VCoVIiIiCjk56ZqVlRXCwsIwcuRIbNy4ERYWvGwLEZGhkLRgZGRk4MyZM3B3d1cvMzMzg7u7O06cOJGv50hJSUFmZiaKFSuW69fT09ORmJiY44P0W0JCgvrzKlWq4Mcff2S5ICIyMJIWjISEBCiVSpQsWTLH8pIlSyIuLi5fzzFhwgSUKVMmR0l53dy5c+Ho6Kj+cHZ2fu/cpDvbtm1DhQoVEBYWJnUUIiJ6D5IfInkf8+bNw5YtW95698xJkybhxYsX6o/79+8XckrKr61bt6JXr154+fIltm3bJnUcIiJ6D5KOOzs5OcHc3Bzx8fE5lsfHx6NUqVJv3XbBggXq+1DUrl07z/WsrKx4GWkDEBoaij59+kCpVMLX1xcrVqyQOhIREb0HSUcw5HI5GjRokGOCZvaEzSZNmuS53ffff49Zs2Zh//79aNiwYWFEJR3asmWLulz4+flh7dq1MDc3lzoWERG9B8lnzgUEBMDPzw8NGzZEo0aNsGTJEiQnJ8Pf3x8A4Ovri7Jly2Lu3LkAgO+++w7Tpk3D5s2b4eLiop6rYWdnBzs7O8neBxXMr7/+is8//xwqlQr+/v5YtWoVywURkRGQvGD4+PjgyZMnmDZtGuLi4lC3bl3s379fPfHz3r17OW5mtXz5cvUVHV8XGBiI6dOnF2Z00oJ9+/ZBpVLhyy+/xKpVq3jjMiIiIyF5wQCAESNGYMSIEbl+LSoqKsfjO3fu6D4QFZq1a9fC1dUV/v7+LBdEREaEP9Gp0B09ehRKpRIAYGFhgf79+7NcEBEZGf5Up0K1bt06tGzZEv3791eXDCIiMj4sGFRogoOD4e/vDyEErK2tIZPJpI5EREQ6woJBhWLt2rX48ssvIYTA0KFDERQUxMMiRERGjD/hSefWrFmDAQMGQAiBYcOGsVwQEZkA/pQnnXq9XIwYMQI//fQTD40QEZkAvThNlYxXiRIlYGlpiaFDh2LJkiUsF0REJoIFg3TKy8sLZ86cQc2aNVkuiIhMCA+RkNatW7cON2/eVD+uVasWywURkYlhwSCtWrZsGb744gu0atUKCQkJUschIiKJsGCQ1gQFBWH48OEAXt1j5oMPPpA4ERERSYUFg7Ri6dKl6vvJjB8/Ht9//z0PixARmTAWDHpvP/74I0aNGgUAmDBhAubNm8dyQURk4lgw6L1s3LgRo0ePBgBMmjQJc+fOZbkgIiKepkrvx9PTE7Vr14aXlxdmzZrFckFERABYMOg9OTk54fjx47CxsWG5ICIiNR4iIY3Nnz8fK1asUD+2tbVluSAiohw4gkEa+e677zBx4kQAwCeffIIGDRpInIiIiPQRRzAo3+bNm6cuFzNmzGC5ICKiPLFgUL7MmTMHkyZNAgDMmjUL06ZNkzgRERHpMx4ioXf69ttvMWXKFPXnkydPljgRERHpOxYMeqvDhw+ry8XroxhERERvw4JBb9WyZUtMmzYNNjY2mDBhgtRxiIjIQLBg0BuEEMjMzIRcLgfwakInERGRJjjJk3IQQiAwMBAeHh5ISUmROg4RERkoFgxSE0Jg2rRpmDVrFqKiorB7926pIxERkYHiIRIC8KpcTJkyBXPmzAEALFq0CD179pQ4FRERGSoWDIIQApMnT8a8efMAAIsXL8ZXX30lbSgiIjJoLBgmTgiBSZMm4bvvvgMA/PDDDxg1apTEqYiIyNCxYJi4R48eYeXKlQCApUuXYsSIERInIiIiY8CCYeLKli2LiIgI/P333xg4cKDUcYiIyEiwYJggIQTu3LmDChUqAADq1auHevXqSZyKiIiMCU9TNTFCCIwdOxZ16tTBiRMnpI5DRERGigXDhAghMGbMGCxevBhJSUm4dOmS1JGIiMhI8RCJiRBCYPTo0Vi6dCkAYOXKlRgwYIDEqYiIyFixYJgAIQRGjhyJoKAgAMCqVatYLoiISKdYMIycEAIjRozAsmXLIJPJsHr1anz55ZdSxyIiIiPHgmHkMjMzcefOHchkMqxZswb+/v5SRyIiIhPAgmHk5HI5fvvtNxw6dAgeHh5SxyEiIhPBs0iMkEqlwtatWyGEAAAoFAqWCyIiKlQsGEZGpVJhyJAh6NmzJ8aPHy91HCIiMlE8RGJEVCoVBg0ahDVr1sDMzAx169aVOhIREZkoFgwjoVKpMHDgQKxduxZmZmbYsGED+vTpI3UsIiIyUSwYRkCpVGLAgAEIDg6GmZkZNm3ahF69ekkdi4iITBjnYBiBQYMGITg4GObm5ti8eTPLBRERSY4Fwwi0atUKcrkcmzdvho+Pj9RxiIiIeIjEGHz++edwdXWFs7Oz1FGIiIgAcATDIGVlZWHixImIjY1VL2O5ICIifcKCYWCysrLg6+uL7777Dh4eHsjKypI6EhER0Rt4iMSAZGVloV+/ftiyZQssLCwwc+ZMWFjwfyEREekf/nYyEFlZWejbty9CQ0NhaWmJrVu3okuXLlLHIiIiyhULhgHIzMxE3759sXXrVlhaWuK3336Dl5eX1LGIiIjyxDkYBmDChAnYunUr5HI5tm/fznJBRER6jwXDAAQEBODjjz/G9u3b0alTJ6njEBERvRMPkegpIQRkMhkAoFy5coiJieGETiIiMhgcwdBDGRkZ6NGjB0JCQtTLWC6IiMiQsGDomfT0dHz22Wf47bff0L9/fzx58kTqSERERBrjn8V6JLtc7N69GwqFAtu3b0fx4sWljkVERKQxFgw9kZ6eju7du2PPnj1QKBTYtWsX2rZtK3UsIiKiAmHB0ANpaWno3r079u7dC4VCgT/++APu7u5SxyIiIiowzsHQA+vWrcPevXthbW2N3bt3s1wQEZHB4wiGHhg0aBCuX7+Ojh07onXr1lLHISIiem8sGBJJTU2Fubk55HI5ZDIZFi5cKHUkIiIireEhEgmkpqaiS5cu6NmzJzIyMqSOQ0REpHUcwShkKSkp6NKlC8LDw2Fra4urV6+idu3aUsciIiLSKhaMQpSSkgIvLy8cPHgQtra22LdvH8sFEREZJR4iKSTJycno1KkTDh48CDs7O+zfvx8tWrSQOhYREZFOcASjEGSXi6ioKNjb22P//v1o2rSp1LGIiIh0hgWjEFy9ehWnT5+Gvb09wsLC0KRJE6kjERER6RQLRiFo0KAB9uzZA7lcznJBREQmgQVDR16+fIkHDx6gWrVqAABXV1eJExERERUeTvLUgaSkJLRv3x4tWrTAhQsXpI5DRERU6FgwtCwxMRGenp44evQoMjMzkZaWJnUkIiKiQqcXBSMoKAguLi5QKBRo3LgxTp069db1t27dimrVqkGhUKBWrVrYu3dvISV9u7T0dHh6euL48eMoUqQIwsPD8cknn0gdi4iIqNBJXjBCQkIQEBCAwMBAREdHo06dOvDw8MDjx49zXf/48ePo3bs3+vfvj7Nnz8Lb2xve3t64ePFiISd/0+pVq3DixAkULVoU4eHhaNiwodSRiIiIJCETQggpAzRu3BiffPIJfvrpJwCASqWCs7MzRo4ciYkTJ76xvo+PD5KTk7F79271sk8//RR169bFihUr3vl6iYmJcHR0xIsXL+Dg4KCV9zBy42n8cfExnkWuhfk/kQgPD0f9+vW18txERET6QpPfoZKOYGRkZODMmTNwd3dXLzMzM4O7uztOnDiR6zYnTpzIsT4AeHh45Ll+eno6EhMTc3xom0z26r/WNjaIiIhguSAiIpMnacFISEiAUqlEyZIlcywvWbIk4uLict0mLi5Oo/Xnzp0LR0dH9Yezs7N2wr+mcqkiqFfOAVPHjkS9evW0/vxERESGxuivgzFp0iQEBASoHycmJmq9ZIxsUxkj21TW6nMSEREZMkkLhpOTE8zNzREfH59jeXx8PEqVKpXrNqVKldJofSsrK1hZWWknMBEREeWLpIdI5HI5GjRogIiICPUylUqFiIiIPC+p3aRJkxzrA8CBAwd4CW4iIiI9IvkhkoCAAPj5+aFhw4Zo1KgRlixZguTkZPj7+wMAfH19UbZsWcydOxcAMHr0aLi6umLhwoXo2LEjtmzZgr///hsrV66U8m0QERHRayQvGD4+Pnjy5AmmTZuGuLg41K1bF/v371dP5Lx37x7MzP5/oKVp06bYvHkzpkyZgsmTJ6Ny5crYuXMnatasKdVbICIiov+Q/DoYhU0X18EgIiIyBQZzHQwiIiIyTiwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdZLfrr2wZd88NjExUeIkREREhiX7d2d+bsRucgUjKSkJAODs7CxxEiIiIsOUlJQER0fHt64jE/mpIUZEpVLh0aNHsLe3h0wm08pzJiYmwtnZGffv34eDg4NWntPUcZ9qH/epdnF/ah/3qXbpYn8KIZCUlIQyZcrAzOztsyxMbgTDzMwM5cqV08lzOzg48JtCy7hPtY/7VLu4P7WP+1S7tL0/3zVykY2TPImIiEjrWDCIiIhI61gwtMDKygqBgYGwsrKSOorR4D7VPu5T7eL+1D7uU+2Sen+a3CRPIiIi0j2OYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWDkU1BQEFxcXKBQKNC4cWOcOnXqretv3boV1apVg0KhQK1atbB3795CSmo4NNmnq1atQosWLVC0aFEULVoU7u7u7/x/YGo0/TeabcuWLZDJZPD29tZtQAOk6T59/vw5hg8fjtKlS8PKygpVqlTh9/5rNN2fS5YsQdWqVWFtbQ1nZ2eMGTMGaWlphZRW/x0+fBheXl4oU6YMZDIZdu7c+c5toqKiUL9+fVhZWeGjjz5CcHCw7gIKeqctW7YIuVwu1q5dKy5duiQGDhwoihQpIuLj43Nd/9ixY8Lc3Fx8//334vLly2LKlCnC0tJSXLhwoZCT6y9N92mfPn1EUFCQOHv2rLhy5Yr44osvhKOjo3jw4EEhJ9dPmu7PbLdv3xZly5YVLVq0EF26dCmcsAZC032anp4uGjZsKDp06CCOHj0qbt++LaKiokRMTEwhJ9dPmu7PTZs2CSsrK7Fp0yZx+/ZtERYWJkqXLi3GjBlTyMn11969e8U333wjtm/fLgCIHTt2vHX9W7duCRsbGxEQECAuX74sli5dKszNzcX+/ft1ko8FIx8aNWokhg8frn6sVCpFmTJlxNy5c3Ndv2fPnqJjx445ljVu3FgMHjxYpzkNiab79L+ysrKEvb29WLduna4iGpSC7M+srCzRtGlTsXr1auHn58eC8R+a7tPly5eLihUrioyMjMKKaFA03Z/Dhw8XrVu3zrEsICBANGvWTKc5DVV+Csb48ePFxx9/nGOZj4+P8PDw0EkmHiJ5h4yMDJw5cwbu7u7qZWZmZnB3d8eJEydy3ebEiRM51gcADw+PPNc3NQXZp/+VkpKCzMxMFCtWTFcxDUZB9+fMmTNRokQJ9O/fvzBiGpSC7NNdu3ahSZMmGD58OEqWLImaNWtizpw5UCqVhRVbbxVkfzZt2hRnzpxRH0a5desW9u7diw4dOhRKZmNU2L+bTO5mZ5pKSEiAUqlEyZIlcywvWbIkrl69mus2cXFxua4fFxens5yGpCD79L8mTJiAMmXKvPHNYooKsj+PHj2KNWvWICYmphASGp6C7NNbt27h4MGD6Nu3L/bu3YsbN25g2LBhyMzMRGBgYGHE1lsF2Z99+vRBQkICmjdvDiEEsrKyMGTIEEyePLkwIhulvH43JSYmIjU1FdbW1lp9PY5gkMGZN28etmzZgh07dkChUEgdx+AkJSWhX79+WLVqFZycnKSOYzRUKhVKlCiBlStXokGDBvDx8cE333yDFStWSB3NIEVFRWHOnDlYtmwZoqOjsX37duzZswezZs2SOhrlE0cw3sHJyQnm5uaIj4/PsTw+Ph6lSpXKdZtSpUpptL6pKcg+zbZgwQLMmzcP4eHhqF27ti5jGgxN9+fNmzdx584deHl5qZepVCoAgIWFBa5du4ZKlSrpNrSeK8i/0dKlS8PS0hLm5ubqZdWrV0dcXBwyMjIgl8t1mlmfFWR/Tp06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZm/PtYU3n9bnJwcND66AXAEYx3ksvlaNCgASIiItTLVCoVIiIi0KRJk1y3adKkSY71AeDAgQN5rm9qCrJPAeD777/HrFmzsH//fjRs2LAwohoETfdntWrVcOHCBcTExKg/OnfujFatWiEmJgbOzs6FGV8vFeTfaLNmzXDjxg11WQOA69evo3Tp0iZdLoCC7c+UlJQ3SkR2eRO8hVaBFPrvJp1MHTUyW7ZsEVZWViI4OFhcvnxZDBo0SBQpUkTExcUJIYTo16+fmDhxonr9Y8eOCQsLC7FgwQJx5coVERgYyNNU/0PTfTpv3jwhl8vFtm3bRGxsrPojKSlJqregVzTdn//Fs0jepOk+vXfvnrC3txcjRowQ165dE7t37xYlSpQQs2fPluot6BVN92dgYKCwt7cXv/76q7h165b4888/RaVKlUTPnj2legt6JykpSZw9e1acPXtWABCLFi0SZ8+eFXfv3hVCCDFx4kTRr18/9frZp6l+/fXX4sqVKyIoKIinqeqDpUuXivLlywu5XC4aNWokTp48qf6aq6ur8PPzy7F+aGioqFKlipDL5eLjjz8We/bsKeTE+k+Tffrhhx8KAG98BAYGFn5wPaXpv9HXsWDkTtN9evz4cdG4cWNhZWUlKlasKL799luRlZVVyKn1lyb7MzMzU0yfPl1UqlRJKBQK4ezsLIYNGyaePXtW+MH1VGRkZK4/F7P3o5+fn3B1dX1jm7p16wq5XC4qVqwofvnlF53l4+3aiYiISOs4B4OIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg8jIBAcHo0iRIlLHKDCZTIadO3e+dZ0vvvgC3t7ehZKHiAqGBYNID33xxReQyWRvfNy4cUPqaAgODlbnMTMzQ7ly5eDv74/Hjx9r5fljY2PRvn17AMCdO3cgk8kQExOTY50ffvgBwcHBWnm9vEyfPl39Ps3NzeHs7IxBgwbh6dOnGj0PyxCZKt6unUhPeXp64pdffsmxrHjx4hKlycnBwQHXrl2DSqXCuXPn4O/vj0ePHiEsLOy9nzuv23e/ztHR8b1fJz8+/vhjhIeHQ6lU4sqVK/jyyy/x4sULhISEFMrrExkyjmAQ6SkrKyuUKlUqx4e5uTkWLVqEWrVqwdbWFs7Ozhg2bBhevnyZ5/OcO3cOrVq1gr29PRwcHNCgQQP8/fff6q8fPXoULVq0gLW1NZydnTFq1CgkJye/NZtMJkOpUqVQpkwZtG/fHqNGjUJ4eDhSU1OhUqkwc+ZMlCtXDlZWVqhbty7279+v3jYjIwMjRoxA6dKloVAo8OGHH2Lu3Lk5njv7EEmFChUAAPXq1YNMJoObmxuAnKMCK1euRJkyZXLcJh0AunTpgi+//FL9+Pfff0f9+vWhUChQsWJFzJgxA1lZWW99nxYWFihVqhTKli0Ld3d39OjRAwcOHFB/XalUon///qhQoQKsra1RtWpV/PDDD+qvT58+HevWrcPvv/+uHg2JiooCANy/fx89e/ZEkSJFUKxYMXTp0gV37tx5ax4iQ8KCQWRgzMzM8OOPP+LSpUtYt24dDh48iPHjx+e5ft++fVGuXDmcPn0aZ86cwcSJE2FpaQkAuHnzJjw9PdG9e3ecP38eISEhOHr0KEaMGKFRJmtra6hUKmRlZeGHH37AwoULsWDBApw/fx4eHh7o3Lkz/vnnHwDAjz/+iF27diE0NBTXrl3Dpk2b4OLikuvznjp1CgAQHh6O2NhYbN++/Y11evTogX///ReRkZHqZU+fPsX+/fvRt29fAMCRI0fg6+uL0aNH4/Lly/j5558RHByMb7/9Nt/v8c6dOwgLC4NcLlcvU6lUKFeuHLZu3YrLly9j2rRpmDx5MkJDQwEA48aNQ8+ePeHp6YnY2FjExsaiadOmyMzMhIeHB+zt7XHkyBEcO3YMdnZ28PT0REZGRr4zEek1nd2nlYgKzM/PT5ibmwtbW1v1x2effZbrulu3bhUffPCB+vEvv/wiHB0d1Y/t7e1FcHBwrtv2799fDBo0KMeyI0eOCDMzM5GamprrNv99/uvXr4sqVaqIhg0bCiGEKFOmjPj2229zbPPJJ5+IYcOGCSGEGDlypGjdurVQqVS5Pj8AsWPHDiGEELdv3xYAxNmzZ3Os89/by3fp0kV8+eWX6sc///yzKFOmjFAqlUIIIdq0aSPmzJmT4zk2bNggSpcunWsGIYQIDAwUZmZmwtbWVigUCvWtsBctWpTnNkIIMXz4cNG9e/c8s2a/dtWqVXPsg/T0dGFtbS3CwsLe+vxEhoJzMIj0VKtWrbB8+XL1Y1tbWwCv/pqfO3curl69isTERGRlZSEtLQ0pKSmwsbF543kCAgIwYMAAbNiwQT3MX6lSJQCvDp+cP38emzZtUq8vhIBKpcLt27dRvXr1XLO9ePECdnZ2UKlUSEtLQ/PmzbF69WokJibi0aNHaNasWY71mzVrhnPnzgF4dXijbdu2qFq1Kjw9PdGpUye0a9fuvfZV3759MXDgQCxbtgxWVlbYtGkTevXqBTMzM/X7PHbsWI4RC6VS+db9BgBVq1bFrl27kJaWho0bNyImJgYjR47MsU5QUBDWrl2Le/fuITU1FRkZGahbt+5b8547dw43btyAvb19juVpaWm4efNmAfYAkf5hwSDSU7a2tvjoo49yLLtz5w46deqEoUOH4ttvv0WxYsVw9OhR9O/fHxkZGbn+opw+fTr69OmDPXv2YN++fQgMDMSWLVvQtWtXvHz5EoMHD8aoUaPe2K58+fJ5ZrO3t0d0dDTMzMxQunRpWFtbAwASExPf+b7q16+P27dvY9++fQgPD0fPnj3h7u6Obdu2vXPbvHh5eUEIgT179uCTTz7BkSNHsHjxYvXXX758iRkzZqBbt25vbKtQKPJ8Xrlcrv5/MG/ePHTs2BEzZszArFmzAABbtmzBuHHjsHDhQjRp0gT29vaYP38+/vrrr7fmffnyJRo0aJCj2GXTl4m8RO+LBYPIgJw5cwYqlQoLFy5U/3Wefbz/bapUqYIqVapgzJgx6N27N3755Rd07doV9evXx+XLl98oMu9iZmaW6zYODg4oU6YMjh07BldXV/XyY8eOoVGjRjnW8/HxgY+PDz777DN4enri6dOnKFasWI7ny57voFQq35pHoVCgW7du2LRpE27cuIGqVauifv366q/Xr18f165d0/h9/teUKVPQunVrDB06VP0+mzZtimHDhqnX+e8IhFwufyN//fr1ERISghIlSsDBweG9MhHpK07yJDIgH330ETIzM7F06VLcunULGzZswIoVK/JcPzU1FSNGjEBUVBTu3r2LY8eO4fTp0+pDHxMmTMDx48cxYsQIxMTE4J9//sHvv/+u8STP13399df47rvvEBISgmvXrmHixImIiYnB6NGjAQCLFi3Cr7/+iqtXr+L69evYunUrSpUqlevFwUqUKAFra2vs378f8fHxePHiRZ6v27dvX+zZswdr165VT+7MNm3aNKxfvx4zZszApUuXcOXKFWzZsgVTpkzR6L01adIEtWvXxpw5cwAAlStXxt9//42wsDBcv34dU6dOxenTp3Ns4+LigvPnz+PatWtISEhAZmYm+vbtCycnJ3Tp0gVHjhzB7du3ERUVhVGjRuHBgwcaZSLSW1JPAiGiN+U2MTDbokWLROnSpYW1tbXw8PAQ69evFwDEs2fPhBA5J2Gmp6eLXr16CWdnZyGXy0WZMmXEiBEjckzgPHXqlGjbtq2ws7MTtra2onbt2m9M0nzdfyd5/pdSqRTTp08XZcuWFZaWlqJOnTpi37596q+vXLlS1K1bV9ja2goHBwfRpk0bER0drf46XpvkKYQQq1atEs7OzsLMzEy4urrmuX+USqUoXbq0ACBu3rz5Rq79+/eLpk2bCmtra+Hg4CAaNWokVq5cmef7CAwMFHXq1Hlj+a+//iqsrKzEvXv3RFpamvjiiy+Eo6OjKFKkiBg6dKiYOHFiju0eP36s3r8ARGRkpBBCiNjYWOHr6yucnJyElZWVqFixohg4cKB48eJFnpmIDIlMCCGkrThERERkbHiIhIiIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi07v8A1k+hWenkwRsAAAAASUVORK5CYII=", + "text/plain": [ + "
      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.metrics import roc_curve, roc_auc_score\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "y_scores = model.predict_proba(X_test)\n", + "# calculate ROC curve\n", + "fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])\n", + "\n", + "# plot ROC curve\n", + "fig = plt.figure(figsize=(6, 6))\n", + "# Plot the diagonal 50% line\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "# Plot the FPR and TPR achieved by our model\n", + "plt.plot(fpr, tpr)\n", + "plt.xlabel('False Positive Rate')\n", + "plt.ylabel('True Positive Rate')\n", + "plt.title('ROC Curve')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.9749908725812341\n" + ] + } + ], + "source": [ + "# Calculate AUC score\n", + "auc = roc_auc_score(y_test,y_scores[:,1])\n", + "print(auc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.16" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "vscode": { + "interpreter": { + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" + } + }, + "coopTranslator": { + "original_hash": "ef50cc584e0b79412610cc7da15e1f86", + "translation_date": "2025-09-03T19:31:02+00:00", + "source_file": "2-Regression/4-Logistic/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/zh-CN/2-Regression/README.md b/translations/zh-CN/2-Regression/README.md new file mode 100644 index 000000000..a2df49779 --- /dev/null +++ b/translations/zh-CN/2-Regression/README.md @@ -0,0 +1,45 @@ +# 机器学习中的回归模型 +## 区域主题:北美地区南瓜价格的回归模型 🎃 + +在北美,南瓜常被雕刻成恐怖的面孔用于庆祝万圣节。让我们一起来探索这些迷人的蔬菜吧! + +![jack-o-lanterns](../../../translated_images/zh-CN/jack-o-lanterns.181c661a9212457d.webp) +> 图片由 Beth Teutschmann 提供,来自 Unsplash + +## 你将学到什么 + +[![回归简介](https://img.youtube.com/vi/5QnJtDad4iQ/0.jpg)](https://youtu.be/5QnJtDad4iQ "回归简介视频 - 点击观看!") +> 🎥 点击上方图片观看本课的快速介绍视频 + +本节课程涵盖了机器学习中回归的类型。回归模型可以帮助确定变量之间的_关系_。这种模型可以预测诸如长度、温度或年龄等值,从而在分析数据点时揭示变量之间的关系。 + +在这一系列课程中,你将了解线性回归和逻辑回归的区别,以及在什么情况下应该选择其中一种。 + +[![机器学习初学者 - 回归模型简介](https://img.youtube.com/vi/XA3OaoW86R8/0.jpg)](https://youtu.be/XA3OaoW86R8 "机器学习初学者 - 回归模型简介") + +> 🎥 点击上方图片观看关于回归模型的简短介绍视频。 + +在这一组课程中,你将准备开始机器学习任务,包括配置 Visual Studio Code 来管理笔记本,这是数据科学家常用的环境。你将了解 Scikit-learn,一个用于机器学习的库,并在本章中构建你的第一个模型,重点是回归模型。 + +> 有一些实用的低代码工具可以帮助你学习如何使用回归模型。试试 [Azure ML 来完成这个任务](https://docs.microsoft.com/learn/modules/create-regression-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +### 课程 + +1. [工具介绍](1-Tools/README.md) +2. [数据管理](2-Data/README.md) +3. [线性回归和多项式回归](3-Linear/README.md) +4. [逻辑回归](4-Logistic/README.md) + +--- +### 致谢 + +"回归中的机器学习" 由 [Jen Looper](https://twitter.com/jenlooper) ♥️ 编写 + +♥️ 测验贡献者包括:[Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan) 和 [Ornella Altunyan](https://twitter.com/ornelladotcom) + +南瓜数据集由 [Kaggle 上的这个项目](https://www.kaggle.com/usda/a-year-of-pumpkin-prices) 提供,其数据来源于美国农业部发布的 [Specialty Crops Terminal Markets Standard Reports](https://www.marketnews.usda.gov/mnp/fv-report-config-step1?type=termPrice)。我们根据品种添加了一些关于颜色的点以规范分布。这些数据属于公共领域。 + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/3-Web-App/1-Web-App/README.md b/translations/zh-CN/3-Web-App/1-Web-App/README.md new file mode 100644 index 000000000..e37631e25 --- /dev/null +++ b/translations/zh-CN/3-Web-App/1-Web-App/README.md @@ -0,0 +1,350 @@ +# 构建一个使用机器学习模型的网页应用 + +在本课中,你将使用一个非常特别的数据集来训练一个机器学习模型:_过去一个世纪的UFO目击事件_,数据来源于NUFORC的数据库。 + +你将学习: + +- 如何对训练好的模型进行“pickle”处理 +- 如何在Flask应用中使用该模型 + +我们将继续使用notebook来清理数据并训练模型,但你可以更进一步,尝试在“真实世界”中使用模型,也就是在一个网页应用中。 + +为此,你需要使用Flask构建一个网页应用。 + +## [课前小测验](https://ff-quizzes.netlify.app/en/ml/) + +## 构建一个应用 + +有多种方法可以构建网页应用来使用机器学习模型。你的网页架构可能会影响模型的训练方式。想象一下,你正在一个企业中工作,数据科学团队已经训练了一个模型,他们希望你在应用中使用它。 + +### 需要考虑的问题 + +你需要问自己许多问题: + +- **这是一个网页应用还是一个移动应用?** 如果你正在构建一个移动应用,或者需要在物联网环境中使用模型,你可以使用 [TensorFlow Lite](https://www.tensorflow.org/lite/) 并在Android或iOS应用中使用该模型。 +- **模型将存储在哪里?** 是在云端还是本地? +- **是否需要离线支持?** 应用是否需要在离线状态下运行? +- **训练模型使用了什么技术?** 所选技术可能会影响你需要使用的工具。 + - **使用TensorFlow。** 如果你使用TensorFlow训练模型,该生态系统提供了将TensorFlow模型转换为网页应用中使用的能力,例如通过 [TensorFlow.js](https://www.tensorflow.org/js/)。 + - **使用PyTorch。** 如果你使用 [PyTorch](https://pytorch.org/) 等库构建模型,你可以选择将其导出为 [ONNX](https://onnx.ai/)(开放神经网络交换)格式,用于支持JavaScript网页应用的 [Onnx Runtime](https://www.onnxruntime.ai/)。在未来的课程中,我们将探索如何将Scikit-learn训练的模型导出为ONNX格式。 + - **使用Lobe.ai或Azure Custom Vision。** 如果你使用 [Lobe.ai](https://lobe.ai/) 或 [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-77952-leestott) 等机器学习SaaS(软件即服务)系统来训练模型,这类软件提供了多平台导出模型的方法,包括构建一个定制的API,通过云端供在线应用查询。 + +你还可以选择构建一个完整的Flask网页应用,该应用能够在网页浏览器中自行训练模型。这也可以通过JavaScript环境中的TensorFlow.js实现。 + +对于我们的目的,由于我们一直在使用基于Python的notebook,让我们来探索将训练好的模型从notebook导出为Python构建的网页应用可读取的格式所需的步骤。 + +## 工具 + +完成此任务,你需要两个工具:Flask和Pickle,它们都运行在Python上。 + +✅ 什么是 [Flask](https://palletsprojects.com/p/flask/)?Flask被其创建者定义为一个“微框架”,它使用Python和模板引擎来构建网页,提供了网页框架的基本功能。可以参考 [这个学习模块](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-77952-leestott) 来练习使用Flask构建应用。 + +✅ 什么是 [Pickle](https://docs.python.org/3/library/pickle.html)?Pickle 🥒 是一个Python模块,用于序列化和反序列化Python对象结构。当你对模型进行“pickle”处理时,你会将其结构序列化或扁平化,以便在网页上使用。需要注意的是:Pickle本身并不安全,因此在被提示“un-pickle”文件时要小心。Pickle文件的后缀为`.pkl`。 + +## 练习 - 清理数据 + +在本课中,你将使用来自 [NUFORC](https://nuforc.org)(国家UFO报告中心)的80,000条UFO目击数据。这些数据中包含一些有趣的UFO目击描述,例如: + +- **长描述示例。** “一个人从夜晚草地上的一道光束中出现,跑向德州仪器的停车场。” +- **短描述示例。** “灯光追逐我们。” + +[ufos.csv](../../../../3-Web-App/1-Web-App/data/ufos.csv) 表格包含关于目击发生的 `city`(城市)、`state`(州)和 `country`(国家),物体的 `shape`(形状),以及其 `latitude`(纬度)和 `longitude`(经度)的列。 + +在本课提供的空白 [notebook](../../../../3-Web-App/1-Web-App/notebook.ipynb) 中: + +1. 像之前的课程一样,导入 `pandas`、`matplotlib` 和 `numpy`,并导入ufos表格。你可以查看数据集的样本: + + ```python + import pandas as pd + import numpy as np + + ufos = pd.read_csv('./data/ufos.csv') + ufos.head() + ``` + +1. 将ufos数据转换为一个小型数据框,并重新命名列标题。检查 `Country` 字段中的唯一值。 + + ```python + ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']}) + + ufos.Country.unique() + ``` + +1. 现在,你可以通过删除任何空值并仅导入1-60秒之间的目击事件来减少需要处理的数据量: + + ```python + ufos.dropna(inplace=True) + + ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)] + + ufos.info() + ``` + +1. 导入Scikit-learn的 `LabelEncoder` 库,将国家的文本值转换为数字: + + ✅ LabelEncoder 按字母顺序对数据进行编码 + + ```python + from sklearn.preprocessing import LabelEncoder + + ufos['Country'] = LabelEncoder().fit_transform(ufos['Country']) + + ufos.head() + ``` + + 你的数据应如下所示: + + ```output + Seconds Country Latitude Longitude + 2 20.0 3 53.200000 -2.916667 + 3 20.0 4 28.978333 -96.645833 + 14 30.0 4 35.823889 -80.253611 + 23 60.0 4 45.582778 -122.352222 + 24 3.0 3 51.783333 -0.783333 + ``` + +## 练习 - 构建模型 + +现在你可以准备通过将数据分为训练组和测试组来训练模型。 + +1. 选择三个特征作为你的X向量,y向量将是 `Country`。你希望能够输入 `Seconds`、`Latitude` 和 `Longitude`,并返回一个国家ID。 + + ```python + from sklearn.model_selection import train_test_split + + Selected_features = ['Seconds','Latitude','Longitude'] + + X = ufos[Selected_features] + y = ufos['Country'] + + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) + ``` + +1. 使用逻辑回归训练模型: + + ```python + from sklearn.metrics import accuracy_score, classification_report + from sklearn.linear_model import LogisticRegression + model = LogisticRegression() + model.fit(X_train, y_train) + predictions = model.predict(X_test) + + print(classification_report(y_test, predictions)) + print('Predicted labels: ', predictions) + print('Accuracy: ', accuracy_score(y_test, predictions)) + ``` + +模型的准确率还不错 **(大约95%)**,这并不奇怪,因为 `Country` 和 `Latitude/Longitude` 是相关的。 + +你创建的模型并不是非常具有革命性,因为你应该能够从 `Latitude` 和 `Longitude` 推断出 `Country`,但这是一个很好的练习,可以尝试从清理过的原始数据中训练模型,导出模型,然后在网页应用中使用它。 + +## 练习 - 对模型进行“pickle”处理 + +现在,是时候对你的模型进行“pickle”处理了!你可以用几行代码完成这一步。一旦完成“pickle”处理,加载你的Pickle模型,并用一个包含秒数、纬度和经度值的样本数据数组进行测试, + +```python +import pickle +model_filename = 'ufo-model.pkl' +pickle.dump(model, open(model_filename,'wb')) + +model = pickle.load(open('ufo-model.pkl','rb')) +print(model.predict([[50,44,-12]])) +``` + +模型返回了 **'3'**,这是英国的国家代码。太神奇了!👽 + +## 练习 - 构建一个Flask应用 + +现在你可以构建一个Flask应用来调用你的模型,并以更直观的方式返回类似的结果。 + +1. 首先,在 _notebook.ipynb_ 文件旁边创建一个名为 **web-app** 的文件夹,其中存放你的 _ufo-model.pkl_ 文件。 + +1. 在该文件夹中再创建三个文件夹:**static**(其中包含一个名为 **css** 的文件夹)和 **templates**。你现在应该有以下文件和目录: + + ```output + web-app/ + static/ + css/ + templates/ + notebook.ipynb + ufo-model.pkl + ``` + + ✅ 参考解决方案文件夹以查看完成的应用 + +1. 在 _web-app_ 文件夹中创建第一个文件 **requirements.txt**。像JavaScript应用中的 _package.json_ 一样,此文件列出了应用所需的依赖项。在 **requirements.txt** 中添加以下内容: + + ```text + scikit-learn + pandas + numpy + flask + ``` + +1. 现在,通过导航到 _web-app_ 运行此文件: + + ```bash + cd web-app + ``` + +1. 在终端中输入 `pip install`,以安装 _requirements.txt_ 中列出的库: + + ```bash + pip install -r requirements.txt + ``` + +1. 现在,你可以创建另外三个文件来完成应用: + + 1. 在根目录创建 **app.py**。 + 2. 在 _templates_ 目录中创建 **index.html**。 + 3. 在 _static/css_ 目录中创建 **styles.css**。 + +1. 在 _styles.css_ 文件中添加一些样式: + + ```css + body { + width: 100%; + height: 100%; + font-family: 'Helvetica'; + background: black; + color: #fff; + text-align: center; + letter-spacing: 1.4px; + font-size: 30px; + } + + input { + min-width: 150px; + } + + .grid { + width: 300px; + border: 1px solid #2d2d2d; + display: grid; + justify-content: center; + margin: 20px auto; + } + + .box { + color: #fff; + background: #2d2d2d; + padding: 12px; + display: inline-block; + } + ``` + +1. 接下来,构建 _index.html_ 文件: + + ```html + + + + + 🛸 UFO Appearance Prediction! 👽 + + + + +
      + +
      + +

      According to the number of seconds, latitude and longitude, which country is likely to have reported seeing a UFO?

      + +
      + + + + +
      + +

      {{ prediction_text }}

      + +
      + +
      + + + + ``` + + 查看此文件中的模板语法。注意变量周围的“大括号”语法,例如预测文本:`{{}}`。还有一个表单会将预测结果发布到 `/predict` 路由。 + + 最后,你已经准备好构建驱动模型使用和预测显示的Python文件: + +1. 在 `app.py` 中添加: + + ```python + import numpy as np + from flask import Flask, request, render_template + import pickle + + app = Flask(__name__) + + model = pickle.load(open("./ufo-model.pkl", "rb")) + + + @app.route("/") + def home(): + return render_template("index.html") + + + @app.route("/predict", methods=["POST"]) + def predict(): + + int_features = [int(x) for x in request.form.values()] + final_features = [np.array(int_features)] + prediction = model.predict(final_features) + + output = prediction[0] + + countries = ["Australia", "Canada", "Germany", "UK", "US"] + + return render_template( + "index.html", prediction_text="Likely country: {}".format(countries[output]) + ) + + + if __name__ == "__main__": + app.run(debug=True) + ``` + + > 💡 提示:当你在使用Flask运行网页应用时添加 [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode),任何对应用的更改都会立即反映出来,而无需重启服务器。但要小心!不要在生产应用中启用此模式。 + +如果你运行 `python app.py` 或 `python3 app.py`,你的网页服务器会在本地启动,你可以填写一个简短的表单,获取关于UFO目击地点的答案! + +在此之前,先看看 `app.py` 的各个部分: + +1. 首先,加载依赖项并启动应用。 +1. 然后,导入模型。 +1. 接着,在主页路由上渲染 index.html。 + +在 `/predict` 路由上,当表单被提交时,会发生以下几件事: + +1. 表单变量被收集并转换为一个numpy数组。然后将其发送到模型,并返回一个预测结果。 +2. 我们希望显示的国家代码被重新渲染为可读的文本值,并将该值发送回 index.html,在模板中渲染。 + +通过Flask和Pickle模型以这种方式使用模型是相对简单的。最难的部分是理解必须发送到模型的数据形状,以获得预测结果。这完全取决于模型的训练方式。这个模型需要输入三个数据点才能获得预测。 + +在专业环境中,你可以看到训练模型的团队和在网页或移动应用中使用模型的团队之间良好沟通的重要性。在我们的案例中,只有一个人,那就是你! + +--- + +## 🚀 挑战 + +与其在notebook中工作并将模型导入Flask应用,你可以直接在Flask应用中训练模型!尝试将notebook中的Python代码转换为在应用中的 `train` 路由上训练模型。尝试这种方法的优缺点是什么? + +## [课后小测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +构建一个使用机器学习模型的网页应用有很多方法。列出你可以使用JavaScript或Python构建网页应用以利用机器学习的方法。考虑架构:模型应该保留在应用中还是存储在云端?如果是后者,你将如何访问它?绘制一个应用机器学习网页解决方案的架构模型。 + +## 作业 + +[尝试一个不同的模型](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/3-Web-App/1-Web-App/assignment.md b/translations/zh-CN/3-Web-App/1-Web-App/assignment.md new file mode 100644 index 000000000..1a2226af9 --- /dev/null +++ b/translations/zh-CN/3-Web-App/1-Web-App/assignment.md @@ -0,0 +1,16 @@ +# 尝试不同的模型 + +## 说明 + +现在您已经使用训练好的回归模型构建了一个网页应用,请使用之前回归课程中的一个模型重新制作这个网页应用。您可以保持原有的风格,也可以设计不同的样式以体现南瓜数据。请注意更改输入以匹配您模型的训练方法。 + +## 评分标准 + +| 标准 | 卓越表现 | 合格表现 | 需要改进 | +| -------------------------- | ------------------------------------------------------- | ------------------------------------------------------- | ------------------------------------- | +| | 网页应用运行正常并成功部署到云端 | 网页应用存在缺陷或表现出意外结果 | 网页应用无法正常运行 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/3-Web-App/1-Web-App/notebook.ipynb b/translations/zh-CN/3-Web-App/1-Web-App/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/zh-CN/3-Web-App/1-Web-App/solution/notebook.ipynb b/translations/zh-CN/3-Web-App/1-Web-App/solution/notebook.ipynb new file mode 100644 index 000000000..7ea590937 --- /dev/null +++ b/translations/zh-CN/3-Web-App/1-Web-App/solution/notebook.ipynb @@ -0,0 +1,267 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5fa2e8f4584c78250ca9729b46562ceb", + "translation_date": "2025-09-03T20:19:40+00:00", + "source_file": "3-Web-App/1-Web-App/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " datetime city state country shape \\\n", + "0 10/10/1949 20:30 san marcos tx us cylinder \n", + "1 10/10/1949 21:00 lackland afb tx NaN light \n", + "2 10/10/1955 17:00 chester (uk/england) NaN gb circle \n", + "3 10/10/1956 21:00 edna tx us circle \n", + "4 10/10/1960 20:00 kaneohe hi us light \n", + "\n", + " duration (seconds) duration (hours/min) \\\n", + "0 2700.0 45 minutes \n", + "1 7200.0 1-2 hrs \n", + "2 20.0 20 seconds \n", + "3 20.0 1/2 hour \n", + "4 900.0 15 minutes \n", + "\n", + " comments date posted latitude \\\n", + "0 This event took place in early fall around 194... 4/27/2004 29.883056 \n", + "1 1949 Lackland AFB, TX. Lights racing acros... 12/16/2005 29.384210 \n", + "2 Green/Orange circular disc over Chester, En... 1/21/2008 53.200000 \n", + "3 My older brother and twin sister were leaving ... 1/17/2004 28.978333 \n", + "4 AS a Marine 1st Lt. flying an FJ4B fighter/att... 1/22/2004 21.418056 \n", + "\n", + " longitude \n", + "0 -97.941111 \n", + "1 -98.581082 \n", + "2 -2.916667 \n", + "3 -96.645833 \n", + "4 -157.803611 " + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      datetimecitystatecountryshapeduration (seconds)duration (hours/min)commentsdate postedlatitudelongitude
      010/10/1949 20:30san marcostxuscylinder2700.045 minutesThis event took place in early fall around 194...4/27/200429.883056-97.941111
      110/10/1949 21:00lackland afbtxNaNlight7200.01-2 hrs1949 Lackland AFB&#44 TX. Lights racing acros...12/16/200529.384210-98.581082
      210/10/1955 17:00chester (uk/england)NaNgbcircle20.020 secondsGreen/Orange circular disc over Chester&#44 En...1/21/200853.200000-2.916667
      310/10/1956 21:00ednatxuscircle20.01/2 hourMy older brother and twin sister were leaving ...1/17/200428.978333-96.645833
      410/10/1960 20:00kaneohehiuslight900.015 minutesAS a Marine 1st Lt. flying an FJ4B fighter/att...1/22/200421.418056-157.803611
      \n
      " + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "\n", + "ufos = pd.read_csv('../data/ufos.csv')\n", + "ufos.head()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array(['us', nan, 'gb', 'ca', 'au', 'de'], dtype=object)" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ], + "source": [ + "\n", + "ufos = pd.DataFrame({'Seconds': ufos['duration (seconds)'], 'Country': ufos['country'],'Latitude': ufos['latitude'],'Longitude': ufos['longitude']})\n", + "\n", + "ufos.Country.unique()\n", + "\n", + "# 0 au, 1 ca, 2 de, 3 gb, 4 us" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nInt64Index: 25863 entries, 2 to 80330\nData columns (total 4 columns):\n # Column Non-Null Count Dtype \n--- ------ -------------- ----- \n 0 Seconds 25863 non-null float64\n 1 Country 25863 non-null object \n 2 Latitude 25863 non-null float64\n 3 Longitude 25863 non-null float64\ndtypes: float64(3), object(1)\nmemory usage: 1010.3+ KB\n" + ] + } + ], + "source": [ + "ufos.dropna(inplace=True)\n", + "\n", + "ufos = ufos[(ufos['Seconds'] >= 1) & (ufos['Seconds'] <= 60)]\n", + "\n", + "ufos.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Seconds Country Latitude Longitude\n", + "2 20.0 3 53.200000 -2.916667\n", + "3 20.0 4 28.978333 -96.645833\n", + "14 30.0 4 35.823889 -80.253611\n", + "23 60.0 4 45.582778 -122.352222\n", + "24 3.0 3 51.783333 -0.783333" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      SecondsCountryLatitudeLongitude
      220.0353.200000-2.916667
      320.0428.978333-96.645833
      1430.0435.823889-80.253611
      2360.0445.582778-122.352222
      243.0351.783333-0.783333
      \n
      " + }, + "metadata": {}, + "execution_count": 26 + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "\n", + "ufos['Country'] = LabelEncoder().fit_transform(ufos['Country'])\n", + "\n", + "ufos.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "\n", + "Selected_features = ['Seconds','Latitude','Longitude']\n", + "\n", + "X = ufos[Selected_features]\n", + "y = ufos['Country']\n", + "\n", + "\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", + " FutureWarning)\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", + " \"this warning.\", FutureWarning)\n", + " precision recall f1-score support\n", + "\n", + " 0 1.00 1.00 1.00 41\n", + " 1 1.00 0.02 0.05 250\n", + " 2 0.00 0.00 0.00 8\n", + " 3 0.94 1.00 0.97 131\n", + " 4 0.95 1.00 0.97 4743\n", + "\n", + " accuracy 0.95 5173\n", + " macro avg 0.78 0.60 0.60 5173\n", + "weighted avg 0.95 0.95 0.93 5173\n", + "\n", + "Predicted labels: [4 4 4 ... 3 4 4]\n", + "Accuracy: 0.9512855209742895\n", + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/metrics/classification.py:1437: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.\n", + " 'precision', 'predicted', average, warn_for)\n" + ] + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.metrics import accuracy_score, classification_report \n", + "from sklearn.linear_model import LogisticRegression\n", + "model = LogisticRegression()\n", + "model.fit(X_train, y_train)\n", + "predictions = model.predict(X_test)\n", + "\n", + "print(classification_report(y_test, predictions))\n", + "print('Predicted labels: ', predictions)\n", + "print('Accuracy: ', accuracy_score(y_test, predictions))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[3]\n" + ] + } + ], + "source": [ + "import pickle\n", + "model_filename = 'ufo-model.pkl'\n", + "pickle.dump(model, open(model_filename,'wb'))\n", + "\n", + "model = pickle.load(open('ufo-model.pkl','rb'))\n", + "print(model.predict([[50,44,-12]]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/3-Web-App/README.md b/translations/zh-CN/3-Web-App/README.md new file mode 100644 index 000000000..09dc6f96b --- /dev/null +++ b/translations/zh-CN/3-Web-App/README.md @@ -0,0 +1,26 @@ +# 构建一个使用您的机器学习模型的网页应用 + +在本课程的这一部分,您将学习一个应用型的机器学习主题:如何将您的 Scikit-learn 模型保存为一个文件,以便在网页应用中进行预测。一旦模型保存完成,您将学习如何在使用 Flask 构建的网页应用中使用它。您将首先使用一些关于 UFO 目击事件的数据创建一个模型!然后,您将构建一个网页应用,允许用户输入持续时间(秒数)、纬度和经度值,以预测哪个国家报告了看到 UFO。 + +![UFO 停车场](../../../translated_images/zh-CN/ufo.9e787f5161da9d4d.webp) + +照片由 Michael Herren 提供,来自 Unsplash + +## 课程 + +1. [构建一个网页应用](1-Web-App/README.md) + +## 致谢 + +“构建一个网页应用”由 [Jen Looper](https://twitter.com/jenlooper) 倾情撰写。 + +♥️ 测验由 Rohan Raj 编写。 + +数据集来源于 [Kaggle](https://www.kaggle.com/NUFORC/ufo-sightings)。 + +网页应用架构部分参考了 [这篇文章](https://towardsdatascience.com/how-to-easily-deploy-machine-learning-models-using-flask-b95af8fe34d4) 和 [这个仓库](https://github.com/abhinavsagar/machine-learning-deployment),作者为 Abhinav Sagar。 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/1-Introduction/README.md b/translations/zh-CN/4-Classification/1-Introduction/README.md new file mode 100644 index 000000000..62bc1e4f3 --- /dev/null +++ b/translations/zh-CN/4-Classification/1-Introduction/README.md @@ -0,0 +1,304 @@ +# 分类简介 + +在这四节课中,你将探索经典机器学习的一个核心主题——_分类_。我们将使用一个关于亚洲和印度各种美食的数据集,逐步学习如何使用不同的分类算法。希望你已经准备好大快朵颐了! + +![just a pinch!](../../../../4-Classification/1-Introduction/images/pinch.png) + +> 在这些课程中,庆祝泛亚洲美食吧!图片由 [Jen Looper](https://twitter.com/jenlooper) 提供 + +分类是一种[监督学习](https://wikipedia.org/wiki/Supervised_learning)方法,与回归技术有许多相似之处。如果说机器学习的核心是通过数据集预测值或名称,那么分类通常分为两类:_二元分类_和_多类分类_。 + +[![分类简介](https://img.youtube.com/vi/eg8DJYwdMyg/0.jpg)](https://youtu.be/eg8DJYwdMyg "分类简介") + +> 🎥 点击上方图片观看视频:MIT 的 John Guttag 介绍分类 + +请记住: + +- **线性回归** 帮助你预测变量之间的关系,并准确预测新数据点在这条线上的位置。例如,你可以预测_南瓜在九月和十二月的价格_。 +- **逻辑回归** 帮助你发现“二元类别”:在这个价格点上,_这个南瓜是橙色还是非橙色_? + +分类使用各种算法来确定数据点的标签或类别。让我们通过这个美食数据集来看看,是否可以通过观察一组食材来确定它的美食来源。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +> ### [本课程也提供 R 版本!](../../../../4-Classification/1-Introduction/solution/R/lesson_10.html) + +### 简介 + +分类是机器学习研究者和数据科学家的基本活动之一。从简单的二元值分类(“这封邮件是垃圾邮件吗?”)到使用计算机视觉进行复杂的图像分类和分割,能够将数据分类并提出问题总是很有用的。 + +用更科学的方式表述,你的分类方法会创建一个预测模型,使你能够将输入变量与输出变量之间的关系映射出来。 + +![二元分类 vs. 多类分类](../../../../4-Classification/1-Introduction/images/binary-multiclass.png) + +> 分类算法处理二元问题和多类问题的对比。信息图由 [Jen Looper](https://twitter.com/jenlooper) 提供 + +在开始清理数据、可视化数据并为机器学习任务做准备之前,让我们先了解一下机器学习分类数据的各种方式。 + +分类源自[统计学](https://wikipedia.org/wiki/Statistical_classification),使用经典机器学习进行分类时,会利用特征(如 `smoker`、`weight` 和 `age`)来确定_患某种疾病的可能性_。作为一种类似于之前回归练习的监督学习技术,你的数据是带标签的,机器学习算法使用这些标签来分类和预测数据集的类别(或“特征”),并将其分配到某个组或结果中。 + +✅ 花点时间想象一个关于美食的数据集。一个多类模型可以回答什么问题?一个二元模型可以回答什么问题?如果你想确定某种美食是否可能使用葫芦巴呢?如果你想知道,给你一袋装满八角、洋蓟、花椰菜和辣根的杂货,你是否可以做出一道典型的印度菜呢? + +[![疯狂的神秘篮子](https://img.youtube.com/vi/GuTeDbaNoEU/0.jpg)](https://youtu.be/GuTeDbaNoEU "疯狂的神秘篮子") + +> 🎥 点击上方图片观看视频。节目《Chopped》的核心是“神秘篮子”,厨师们必须用随机选择的食材制作一道菜。机器学习模型肯定能帮上忙! + +## 你好,“分类器” + +我们想要从这个美食数据集中提出的问题实际上是一个**多类问题**,因为我们有多个潜在的国家美食类别可供选择。给定一组食材,这些数据会属于哪一类? + +Scikit-learn 提供了多种算法来分类数据,具体取决于你想解决的问题类型。在接下来的两节课中,你将学习其中几种算法。 + +## 练习 - 清理并平衡数据 + +在开始这个项目之前,第一项任务是清理并**平衡**数据,以获得更好的结果。从本文件夹根目录中的空白 _notebook.ipynb_ 文件开始。 + +首先需要安装 [imblearn](https://imbalanced-learn.org/stable/)。这是一个 Scikit-learn 的扩展包,可以帮助你更好地平衡数据(稍后你会了解更多关于这个任务的内容)。 + +1. 安装 `imblearn`,运行以下命令: + + ```python + pip install imblearn + ``` + +1. 导入所需的包以导入数据并进行可视化,同时从 `imblearn` 中导入 `SMOTE`。 + + ```python + import pandas as pd + import matplotlib.pyplot as plt + import matplotlib as mpl + import numpy as np + from imblearn.over_sampling import SMOTE + ``` + + 现在你已经准备好导入数据了。 + +1. 接下来导入数据: + + ```python + df = pd.read_csv('../data/cuisines.csv') + ``` + + 使用 `read_csv()` 将 _cusines.csv_ 文件的内容读取到变量 `df` 中。 + +1. 检查数据的形状: + + ```python + df.head() + ``` + + 前五行数据如下所示: + + ```output + | | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | + | --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | + | 0 | 65 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 1 | 66 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 2 | 67 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 3 | 68 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + | 4 | 69 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + ``` + +1. 调用 `info()` 获取数据的信息: + + ```python + df.info() + ``` + + 输出类似于: + + ```output + + RangeIndex: 2448 entries, 0 to 2447 + Columns: 385 entries, Unnamed: 0 to zucchini + dtypes: int64(384), object(1) + memory usage: 7.2+ MB + ``` + +## 练习 - 了解美食 + +现在工作开始变得有趣了。让我们发现每种美食的数据分布情况。 + +1. 调用 `barh()` 将数据绘制为条形图: + + ```python + df.cuisine.value_counts().plot.barh() + ``` + + ![美食数据分布](../../../../4-Classification/1-Introduction/images/cuisine-dist.png) + + 美食的种类是有限的,但数据分布不均匀。你可以解决这个问题!在此之前,先多探索一下。 + +1. 找出每种美食的数据量并打印出来: + + ```python + thai_df = df[(df.cuisine == "thai")] + japanese_df = df[(df.cuisine == "japanese")] + chinese_df = df[(df.cuisine == "chinese")] + indian_df = df[(df.cuisine == "indian")] + korean_df = df[(df.cuisine == "korean")] + + print(f'thai df: {thai_df.shape}') + print(f'japanese df: {japanese_df.shape}') + print(f'chinese df: {chinese_df.shape}') + print(f'indian df: {indian_df.shape}') + print(f'korean df: {korean_df.shape}') + ``` + + 输出如下所示: + + ```output + thai df: (289, 385) + japanese df: (320, 385) + chinese df: (442, 385) + indian df: (598, 385) + korean df: (799, 385) + ``` + +## 探索食材 + +现在你可以更深入地挖掘数据,了解每种美食的典型食材。你需要清理那些在不同美食之间造成混淆的重复数据,因此让我们了解这个问题。 + +1. 在 Python 中创建一个函数 `create_ingredient()`,用于创建一个食材数据框。这个函数会先删除无用的列,然后按食材的数量进行排序: + + ```python + def create_ingredient_df(df): + ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value') + ingredient_df = ingredient_df[(ingredient_df.T != 0).any()] + ingredient_df = ingredient_df.sort_values(by='value', ascending=False, + inplace=False) + return ingredient_df + ``` + + 现在你可以使用这个函数来了解每种美食中最受欢迎的前十种食材。 + +1. 调用 `create_ingredient()` 并通过调用 `barh()` 绘制图表: + + ```python + thai_ingredient_df = create_ingredient_df(thai_df) + thai_ingredient_df.head(10).plot.barh() + ``` + + ![泰国](../../../../4-Classification/1-Introduction/images/thai.png) + +1. 对日本美食数据做同样的操作: + + ```python + japanese_ingredient_df = create_ingredient_df(japanese_df) + japanese_ingredient_df.head(10).plot.barh() + ``` + + ![日本](../../../../4-Classification/1-Introduction/images/japanese.png) + +1. 接下来是中国美食的食材: + + ```python + chinese_ingredient_df = create_ingredient_df(chinese_df) + chinese_ingredient_df.head(10).plot.barh() + ``` + + ![中国](../../../../4-Classification/1-Introduction/images/chinese.png) + +1. 绘制印度美食的食材: + + ```python + indian_ingredient_df = create_ingredient_df(indian_df) + indian_ingredient_df.head(10).plot.barh() + ``` + + ![印度](../../../../4-Classification/1-Introduction/images/indian.png) + +1. 最后,绘制韩国美食的食材: + + ```python + korean_ingredient_df = create_ingredient_df(korean_df) + korean_ingredient_df.head(10).plot.barh() + ``` + + ![韩国](../../../../4-Classification/1-Introduction/images/korean.png) + +1. 现在,通过调用 `drop()` 删除那些在不同美食之间造成混淆的最常见食材: + + 每个人都喜欢米饭、大蒜和生姜! + + ```python + feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1) + labels_df = df.cuisine #.unique() + feature_df.head() + ``` + +## 平衡数据集 + +现在你已经清理了数据,使用 [SMOTE](https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html)(“合成少数类过采样技术”)来平衡数据。 + +1. 调用 `fit_resample()`,这种策略通过插值生成新样本。 + + ```python + oversample = SMOTE() + transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df) + ``` + + 通过平衡数据,你在分类时会获得更好的结果。想象一个二元分类问题。如果你的大部分数据属于一个类别,机器学习模型会更频繁地预测这个类别,仅仅因为它的数据更多。平衡数据可以消除这种不平衡。 + +1. 现在你可以检查每种食材的标签数量: + + ```python + print(f'new label count: {transformed_label_df.value_counts()}') + print(f'old label count: {df.cuisine.value_counts()}') + ``` + + 输出如下所示: + + ```output + new label count: korean 799 + chinese 799 + indian 799 + japanese 799 + thai 799 + Name: cuisine, dtype: int64 + old label count: korean 799 + indian 598 + chinese 442 + japanese 320 + thai 289 + Name: cuisine, dtype: int64 + ``` + + 数据现在干净、平衡,而且非常诱人! + +1. 最后一步是将平衡后的数据(包括标签和特征)保存到一个新的数据框中,并导出到文件中: + + ```python + transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer') + ``` + +1. 你可以通过调用 `transformed_df.head()` 和 `transformed_df.info()` 再次查看数据。保存一份数据副本以供后续课程使用: + + ```python + transformed_df.head() + transformed_df.info() + transformed_df.to_csv("../data/cleaned_cuisines.csv") + ``` + + 这个新的 CSV 文件现在可以在根数据文件夹中找到。 + +--- + +## 🚀挑战 + +本课程包含多个有趣的数据集。浏览 `data` 文件夹,看看是否有适合二元或多类分类的数据集?你会对这个数据集提出什么问题? + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +探索 SMOTE 的 API。它最适合哪些用例?它解决了哪些问题? + +## 作业 + +[探索分类方法](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/1-Introduction/assignment.md b/translations/zh-CN/4-Classification/1-Introduction/assignment.md new file mode 100644 index 000000000..9d2600722 --- /dev/null +++ b/translations/zh-CN/4-Classification/1-Introduction/assignment.md @@ -0,0 +1,16 @@ +# 探索分类方法 + +## 说明 + +在 [Scikit-learn 文档](https://scikit-learn.org/stable/supervised_learning.html) 中,你会发现大量用于分类数据的方法。请在这些文档中进行一次小型寻宝活动:你的目标是寻找分类方法,并将其与本课程中的一个数据集、一种可以提出的问题以及一种分类技术进行匹配。创建一个电子表格或 .doc 文件中的表格,并解释该数据集如何与分类算法配合使用。 + +## 评分标准 + +| 标准 | 卓越 | 合格 | 需要改进 | +| -------- | ----------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- | +| | 提交的文档概述了 5 种算法及其分类技术。概述解释清晰且详细。 | 提交的文档概述了 3 种算法及其分类技术。概述解释清晰且详细。 | 提交的文档概述了少于 3 种算法及其分类技术,且概述既不清晰也不详细。 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/1-Introduction/notebook.ipynb b/translations/zh-CN/4-Classification/1-Introduction/notebook.ipynb new file mode 100644 index 000000000..ca6f5befb --- /dev/null +++ b/translations/zh-CN/4-Classification/1-Introduction/notebook.ipynb @@ -0,0 +1,39 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "d544ef384b7ba73757d830a72372a7f2", + "translation_date": "2025-09-03T20:33:39+00:00", + "source_file": "4-Classification/1-Introduction/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/1-Introduction/solution/Julia/README.md b/translations/zh-CN/4-Classification/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..b411dd85f --- /dev/null +++ b/translations/zh-CN/4-Classification/1-Introduction/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb b/translations/zh-CN/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb new file mode 100644 index 000000000..37faa8081 --- /dev/null +++ b/translations/zh-CN/4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb @@ -0,0 +1,722 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_10-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "2621e24705e8100893c9bf84e0fc8aef", + "translation_date": "2025-09-03T20:40:23+00:00", + "source_file": "4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb", + "language_code": "zh" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# 构建分类模型:美味的亚洲和印度美食\n" + ], + "metadata": { + "id": "ItETB4tSFprR" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 分类简介:清理、准备和可视化数据\n", + "\n", + "在这四节课中,您将探索经典机器学习的一个核心主题——*分类*。我们将使用一个关于亚洲和印度美食的数据集,逐步学习各种分类算法的应用。希望您已经准备好大快朵颐!\n", + "\n", + "

      \n", + " \n", + "

      在这些课程中庆祝泛亚洲美食!图片由 Jen Looper 提供
      \n", + "\n", + "分类是一种[监督学习](https://wikipedia.org/wiki/Supervised_learning)形式,与回归技术有许多相似之处。在分类中,您训练一个模型来预测某个项目属于哪个`类别`。如果机器学习的核心是通过数据集预测事物的值或名称,那么分类通常分为两类:*二元分类*和*多类分类*。\n", + "\n", + "请记住:\n", + "\n", + "- **线性回归**帮助您预测变量之间的关系,并准确预测新数据点在该关系线上的位置。例如,您可以预测数值,比如*南瓜在九月和十二月的价格*。\n", + "\n", + "- **逻辑回归**帮助您发现“二元类别”:在这个价格点,*这个南瓜是橙色还是非橙色*?\n", + "\n", + "分类使用各种算法来确定数据点的标签或类别。让我们使用这个美食数据集,看看通过观察一组食材,是否可以确定其美食的来源。\n", + "\n", + "### [**课前测验**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/19/)\n", + "\n", + "### **简介**\n", + "\n", + "分类是机器学习研究人员和数据科学家的基本活动之一。从简单的二元值分类(“这封邮件是垃圾邮件还是不是?”),到使用计算机视觉进行复杂的图像分类和分割,能够将数据分类并提出问题总是非常有用。\n", + "\n", + "用更科学的方式来说,您的分类方法会创建一个预测模型,使您能够将输入变量与输出变量之间的关系进行映射。\n", + "\n", + "

      \n", + " \n", + "

      分类算法处理二元问题与多类问题。信息图由 Jen Looper 提供
      \n", + "\n", + "在开始清理数据、可视化数据以及为机器学习任务准备数据之前,让我们先了解一下机器学习如何用于分类数据的各种方式。\n", + "\n", + "分类源自[统计学](https://wikipedia.org/wiki/Statistical_classification),使用经典机器学习进行分类时,会利用特征,例如`吸烟者`、`体重`和`年龄`,来确定*患某种疾病的可能性*。作为一种类似于您之前进行的回归练习的监督学习技术,您的数据是带标签的,机器学习算法使用这些标签来分类和预测数据集的类别(或“特征”),并将其分配到某个组或结果中。\n", + "\n", + "✅ 花点时间想象一个关于美食的数据集。多类模型可以回答什么问题?二元模型可以回答什么问题?如果您想确定某种美食是否可能使用葫芦巴怎么办?如果您想知道,假如收到一袋包含八角、洋蓟、花椰菜和辣根的杂货,是否可以制作一道典型的印度菜呢?\n", + "\n", + "### **你好,‘分类器’**\n", + "\n", + "我们想要从这个美食数据集中提出的问题实际上是一个**多类问题**,因为我们有多个潜在的国家美食类别可以选择。给定一组食材,这些数据会属于哪一个类别?\n", + "\n", + "Tidymodels 提供了几种不同的算法来分类数据,具体取决于您想解决的问题类型。在接下来的两节课中,您将学习其中几种算法。\n", + "\n", + "#### **前提条件**\n", + "\n", + "在本课程中,我们需要以下包来清理、准备和可视化数据:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一个[集合的 R 包](https://www.tidyverse.org/packages),旨在让数据科学更快、更简单、更有趣!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 框架是一个[建模和机器学习的包集合](https://www.tidymodels.org/packages/)。\n", + "\n", + "- `DataExplorer`: [DataExplorer 包](https://cran.r-project.org/web/packages/DataExplorer/vignettes/dataexplorer-intro.html)旨在简化和自动化探索性数据分析过程和报告生成。\n", + "\n", + "- `themis`: [themis 包](https://themis.tidymodels.org/)提供了处理不平衡数据的额外配方步骤。\n", + "\n", + "您可以通过以下方式安装它们:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "或者,下面的脚本会检查您是否安装了完成本模块所需的包,并在缺少时为您安装。\n" + ], + "metadata": { + "id": "ri5bQxZ-Fz_0" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, DataExplorer, themis, here)" + ], + "outputs": [], + "metadata": { + "id": "KIPxa4elGAPI" + } + }, + { + "cell_type": "markdown", + "source": [ + "我们稍后会加载这些很棒的包,并使它们在我们当前的 R 会话中可用。(这只是为了说明,`pacman::p_load()` 已经为您完成了这一操作)\n" + ], + "metadata": { + "id": "YkKAxOJvGD4C" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 练习 - 清理并平衡数据\n", + "\n", + "在开始这个项目之前,首要任务是清理并**平衡**你的数据,以获得更好的结果。\n", + "\n", + "让我们来看看数据吧!🕵️\n" + ], + "metadata": { + "id": "PFkQDlk0GN5O" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Import data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# View the first 5 rows\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": { + "id": "Qccw7okxGT0S" + } + }, + { + "cell_type": "markdown", + "source": [ + "有趣!从表面上看,第一列是一种`id`列。让我们获取一些关于数据的更多信息。\n" + ], + "metadata": { + "id": "XrWnlgSrGVmR" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Basic information about the data\r\n", + "df %>%\r\n", + " introduce()\r\n", + "\r\n", + "# Visualize basic information above\r\n", + "df %>% \r\n", + " plot_intro(ggtheme = theme_light())" + ], + "outputs": [], + "metadata": { + "id": "4UcGmxRxGieA" + } + }, + { + "cell_type": "markdown", + "source": [ + "从输出中我们可以直接看到,我们有 `2448` 行和 `385` 列,并且没有缺失值。此外,我们还有一个离散列,*cuisine*。\n", + "\n", + "## 练习 - 了解菜系\n", + "\n", + "现在工作开始变得更有趣了。让我们探索每种菜系的数据分布。\n" + ], + "metadata": { + "id": "AaPubl__GmH5" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Count observations per cuisine\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(n)\r\n", + "\r\n", + "# Plot the distribution\r\n", + "theme_set(theme_light())\r\n", + "df %>% \r\n", + " count(cuisine) %>% \r\n", + " ggplot(mapping = aes(x = n, y = reorder(cuisine, -n))) +\r\n", + " geom_col(fill = \"midnightblue\", alpha = 0.7) +\r\n", + " ylab(\"cuisine\")" + ], + "outputs": [], + "metadata": { + "id": "FRsBVy5eGrrv" + } + }, + { + "cell_type": "markdown", + "source": [ + "世界上的菜系种类有限,但数据分布却不均衡。你可以改变这一点!在此之前,先多探索一下吧。\n", + "\n", + "接下来,让我们将每种菜系分配到各自的 tibble 中,并找出每种菜系的数据量(行数和列数)。\n", + "\n", + "> [tibble](https://tibble.tidyverse.org/) 是一种现代化的数据框。\n", + "\n", + "

      \n", + " \n", + "

      由 @allison_horst 创作的艺术作品
      \n" + ], + "metadata": { + "id": "vVvyDb1kG2in" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Create individual tibble for the cuisines\r\n", + "thai_df <- df %>% \r\n", + " filter(cuisine == \"thai\")\r\n", + "japanese_df <- df %>% \r\n", + " filter(cuisine == \"japanese\")\r\n", + "chinese_df <- df %>% \r\n", + " filter(cuisine == \"chinese\")\r\n", + "indian_df <- df %>% \r\n", + " filter(cuisine == \"indian\")\r\n", + "korean_df <- df %>% \r\n", + " filter(cuisine == \"korean\")\r\n", + "\r\n", + "\r\n", + "# Find out how much data is available per cuisine\r\n", + "cat(\" thai df:\", dim(thai_df), \"\\n\",\r\n", + " \"japanese df:\", dim(japanese_df), \"\\n\",\r\n", + " \"chinese_df:\", dim(chinese_df), \"\\n\",\r\n", + " \"indian_df:\", dim(indian_df), \"\\n\",\r\n", + " \"korean_df:\", dim(korean_df))" + ], + "outputs": [], + "metadata": { + "id": "0TvXUxD3G8Bk" + } + }, + { + "cell_type": "markdown", + "source": [ + "## **练习 - 使用 dplyr 探索不同菜系的主要食材**\n", + "\n", + "现在你可以更深入地挖掘数据,了解每种菜系的典型食材。你需要清理一些会在菜系之间引起混淆的重复数据,所以让我们来学习如何解决这个问题。\n", + "\n", + "在 R 中创建一个名为 `create_ingredient()` 的函数,该函数返回一个食材数据框。这个函数将从删除一个无用的列开始,并根据食材的数量对其进行排序。\n", + "\n", + "R 中函数的基本结构如下:\n", + "\n", + "`myFunction <- function(arglist){`\n", + "\n", + "**`...`**\n", + "\n", + "**`return`**`(value)`\n", + "\n", + "`}`\n", + "\n", + "关于 R 函数的简洁介绍可以在[这里](https://skirmer.github.io/presentations/functions_with_r.html#1)找到。\n", + "\n", + "让我们直接开始吧!我们将使用之前课程中学习过的 [dplyr 动词](https://dplyr.tidyverse.org/)。回顾一下:\n", + "\n", + "- `dplyr::select()`:帮助你选择要保留或排除的**列**。\n", + "\n", + "- `dplyr::pivot_longer()`:帮助你“拉长”数据,增加行数并减少列数。\n", + "\n", + "- `dplyr::group_by()` 和 `dplyr::summarise()`:帮助你为不同组计算汇总统计数据,并将其整理成一个漂亮的表格。\n", + "\n", + "- `dplyr::filter()`:创建一个仅包含满足条件的行的数据子集。\n", + "\n", + "- `dplyr::mutate()`:帮助你创建或修改列。\n", + "\n", + "查看 Allison Horst 的这个充满[*艺术*](https://allisonhorst.shinyapps.io/dplyr-learnr/#section-welcome)的 learnr 教程,它介绍了一些 dplyr(Tidyverse 的一部分)中有用的数据整理函数。\n" + ], + "metadata": { + "id": "K3RF5bSCHC76" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Creates a functions that returns the top ingredients by class\r\n", + "\r\n", + "create_ingredient <- function(df){\r\n", + " \r\n", + " # Drop the id column which is the first colum\r\n", + " ingredient_df = df %>% select(-1) %>% \r\n", + " # Transpose data to a long format\r\n", + " pivot_longer(!cuisine, names_to = \"ingredients\", values_to = \"count\") %>% \r\n", + " # Find the top most ingredients for a particular cuisine\r\n", + " group_by(ingredients) %>% \r\n", + " summarise(n_instances = sum(count)) %>% \r\n", + " filter(n_instances != 0) %>% \r\n", + " # Arrange by descending order\r\n", + " arrange(desc(n_instances)) %>% \r\n", + " mutate(ingredients = factor(ingredients) %>% fct_inorder())\r\n", + " \r\n", + " \r\n", + " return(ingredient_df)\r\n", + "} # End of function" + ], + "outputs": [], + "metadata": { + "id": "uB_0JR82HTPa" + } + }, + { + "cell_type": "markdown", + "source": [ + "现在我们可以使用这个函数来了解每种菜系中最受欢迎的前十种食材。让我们用 `thai_df` 来试试吧。\n" + ], + "metadata": { + "id": "h9794WF8HWmc" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Call create_ingredient and display popular ingredients\r\n", + "thai_ingredient_df <- create_ingredient(df = thai_df)\r\n", + "\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10)" + ], + "outputs": [], + "metadata": { + "id": "agQ-1HrcHaEA" + } + }, + { + "cell_type": "markdown", + "source": [ + "在上一节中,我们使用了`geom_col()`,现在让我们看看如何使用`geom_bar`来创建条形图。使用`?geom_bar`了解更多信息。\n" + ], + "metadata": { + "id": "kHu9ffGjHdcX" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Make a bar chart for popular thai cuisines\r\n", + "thai_ingredient_df %>% \r\n", + " slice_head(n = 10) %>% \r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"steelblue\") +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "fb3Bx_3DHj6e" + } + }, + { + "cell_type": "markdown", + "source": [ + "让我们对日语数据做同样的事情\n" + ], + "metadata": { + "id": "RHP_xgdkHnvM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Japanese cuisines and make bar chart\r\n", + "create_ingredient(df = japanese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"darkorange\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")\r\n" + ], + "outputs": [], + "metadata": { + "id": "019v8F0XHrRU" + } + }, + { + "cell_type": "markdown", + "source": [ + "关于中国菜肴呢?\n" + ], + "metadata": { + "id": "iIGM7vO8Hu3v" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Chinese cuisines and make bar chart\r\n", + "create_ingredient(df = chinese_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"cyan4\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lHd9_gd2HyzU" + } + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "ir8qyQbNH1c7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Indian cuisines and make bar chart\r\n", + "create_ingredient(df = indian_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#041E42FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "ApukQtKjH5FO" + } + }, + { + "cell_type": "markdown", + "source": [ + "最后,绘制韩国食材。\n" + ], + "metadata": { + "id": "qv30cwY1H-FM" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Get popular ingredients for Korean cuisines and make bar chart\r\n", + "create_ingredient(df = korean_df) %>% \r\n", + " slice_head(n = 10) %>%\r\n", + " ggplot(aes(x = n_instances, y = ingredients)) +\r\n", + " geom_bar(stat = \"identity\", width = 0.5, fill = \"#852419FF\", alpha = 0.8) +\r\n", + " xlab(\"\") + ylab(\"\")" + ], + "outputs": [], + "metadata": { + "id": "lumgk9cHIBie" + } + }, + { + "cell_type": "markdown", + "source": [ + "从数据可视化中,我们现在可以使用 `dplyr::select()` 删除那些在不同菜系之间容易引起混淆的常见食材。\n", + "\n", + "大家都喜欢米饭、大蒜和姜!\n" + ], + "metadata": { + "id": "iO4veMXuIEta" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)" + ], + "outputs": [], + "metadata": { + "id": "iHJPiG6rIUcK" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 使用配方预处理数据 👩‍🍳👨‍🍳 - 处理数据不平衡 ⚖️\n", + "\n", + "

      \n", + " \n", + "

      图片由 @allison_horst 提供
      \n", + "\n", + "既然这节课是关于美食的,我们就需要将`recipes`放到具体的情境中。\n", + "\n", + "Tidymodels 提供了另一个非常实用的包:`recipes`——一个用于数据预处理的包。\n" + ], + "metadata": { + "id": "kkFd-JxdIaL6" + } + }, + { + "cell_type": "markdown", + "source": [ + "让我们再来看看我们菜肴的分布情况。\n" + ], + "metadata": { + "id": "6l2ubtTPJAhY" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "old_label_count <- df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "old_label_count" + ], + "outputs": [], + "metadata": { + "id": "1e-E9cb7JDVi" + } + }, + { + "cell_type": "markdown", + "source": [ + "如你所见,各种菜系的数量分布非常不均衡。韩国菜的数量几乎是泰国菜的三倍。不平衡的数据通常会对模型性能产生负面影响。想象一个二分类问题,如果你的数据大部分属于一个类别,机器学习模型可能会更频繁地预测这个类别,仅仅因为它的数据更多。平衡数据可以处理任何偏斜的数据,帮助消除这种不平衡。许多模型在观察数量相等时表现最佳,因此在处理不平衡数据时往往会遇到困难。\n", + "\n", + "处理不平衡数据集主要有两种方法:\n", + "\n", + "- 为少数类别添加观察值:`过采样`,例如使用 SMOTE 算法\n", + "\n", + "- 从多数类别中移除观察值:`欠采样`\n", + "\n", + "现在我们来演示如何使用一个`配方`来处理不平衡数据集。配方可以被看作是一个蓝图,描述了应该对数据集应用哪些步骤,以使其准备好进行数据分析。\n" + ], + "metadata": { + "id": "soAw6826JKx9" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = df_select) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "cuisines_recipe" + ], + "outputs": [], + "metadata": { + "id": "HS41brUIJVJy" + } + }, + { + "cell_type": "markdown", + "source": [ + "让我们分解预处理步骤。\n", + "\n", + "- 使用公式调用 `recipe()` 告诉配方变量的*角色*,并以 `df_select` 数据作为参考。例如,`cuisine` 列被分配了 `outcome` 角色,而其他列则被分配了 `predictor` 角色。\n", + "\n", + "- [`step_smote(cuisine)`](https://themis.tidymodels.org/reference/step_smote.html) 创建了一个配方步骤的*规范*,通过使用这些案例的最近邻合成生成少数类的新样本。\n", + "\n", + "现在,如果我们想查看预处理后的数据,我们需要使用 [**`prep()`**](https://recipes.tidymodels.org/reference/prep.html) 和 [**`bake()`**](https://recipes.tidymodels.org/reference/bake.html) 来处理我们的配方。\n", + "\n", + "`prep()`:从训练集估算所需参数,这些参数可以稍后应用于其他数据集。\n", + "\n", + "`bake()`:将预处理过的配方应用于任何数据集。\n" + ], + "metadata": { + "id": "Yb-7t7XcJaC8" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Prep and bake the recipe\r\n", + "preprocessed_df <- cuisines_recipe %>% \r\n", + " prep() %>% \r\n", + " bake(new_data = NULL) %>% \r\n", + " relocate(cuisine)\r\n", + "\r\n", + "# Display data\r\n", + "preprocessed_df %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Quick summary stats\r\n", + "preprocessed_df %>% \r\n", + " introduce()" + ], + "outputs": [], + "metadata": { + "id": "9QhSgdpxJl44" + } + }, + { + "cell_type": "markdown", + "source": [ + "现在让我们检查我们的菜系分布,并将其与不平衡数据进行比较。\n" + ], + "metadata": { + "id": "dmidELh_LdV7" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Distribution of cuisines\r\n", + "new_label_count <- preprocessed_df %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))\r\n", + "\r\n", + "list(new_label_count = new_label_count,\r\n", + " old_label_count = old_label_count)" + ], + "outputs": [], + "metadata": { + "id": "aSh23klBLwDz" + } + }, + { + "cell_type": "markdown", + "source": [ + "嗯!数据干净整洁、平衡且非常棒,简直美味 😋!\n", + "\n", + "> 通常情况下,配方(recipe)通常被用作建模的预处理器,它定义了需要对数据集应用哪些步骤以使其为建模做好准备。在这种情况下,通常会使用 `workflow()`(正如我们在之前的课程中已经看到的),而不是手动估算配方。\n", + ">\n", + "> 因此,当你使用 tidymodels 时,通常不需要手动调用 **`prep()`** 和 **`bake()`** 来处理配方,但这些函数是非常有用的工具,可以用来确认配方是否按照你的预期运行,就像我们现在的情况一样。\n", + ">\n", + "> 当你使用 **`new_data = NULL`** 来 **`bake()`** 一个已经预处理好的配方时,你会得到定义配方时提供的数据,但这些数据已经经过了预处理步骤。\n", + "\n", + "现在,让我们保存一份这个数据的副本,以便在后续课程中使用:\n" + ], + "metadata": { + "id": "HEu80HZ8L7ae" + } + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Save preprocessed data\r\n", + "write_csv(preprocessed_df, \"../../../data/cleaned_cuisines_R.csv\")" + ], + "outputs": [], + "metadata": { + "id": "cBmCbIgrMOI6" + } + }, + { + "cell_type": "markdown", + "source": [ + "这个新的 CSV文件现在可以在根数据文件夹中找到。\n", + "\n", + "**🚀挑战**\n", + "\n", + "这个课程包含了几个有趣的数据集。浏览 `data` 文件夹,看看是否有适合二分类或多分类的数据集?你会对这个数据集提出哪些问题?\n", + "\n", + "## [**课后测验**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/20/)\n", + "\n", + "## **复习与自学**\n", + "\n", + "- 查看 [themis 包](https://github.com/tidymodels/themis)。我们还能使用哪些技术来处理数据不平衡问题?\n", + "\n", + "- Tidy models [参考网站](https://www.tidymodels.org/start/)。\n", + "\n", + "- H. Wickham 和 G. Grolemund, [*R for Data Science: 数据的可视化、建模、转换、整理和导入*](https://r4ds.had.co.nz/)。\n", + "\n", + "#### 感谢:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) 创作了令人惊叹的插图,使 R 更加友好和吸引人。可以在她的 [画廊](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) 中找到更多插图。\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) 和 [Jen Looper](https://www.twitter.com/jenlooper) 创作了这个模块的原始 Python 版本 ♥️\n", + "\n", + "

      \n", + " \n", + "

      插图作者 @allison_horst
      \n" + ], + "metadata": { + "id": "WQs5621pMGwf" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/1-Introduction/solution/notebook.ipynb b/translations/zh-CN/4-Classification/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..0a9db550a --- /dev/null +++ b/translations/zh-CN/4-Classification/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,706 @@ +{ + "cells": [ + { + "source": [ + "# 美味的亚洲和印度菜肴\n", + "\n", + "## 简介\n", + "亚洲和印度菜肴以其丰富的风味和多样的食材而闻名。无论是辛辣的咖喱还是清淡的蒸点心,这些菜肴都能满足各种口味。\n", + "\n", + "## 常见食材\n", + "以下是一些在亚洲和印度菜肴中常见的食材:\n", + "- 大米:许多菜肴的主食。\n", + "- 香料:如姜黄、孜然、香菜和辣椒。\n", + "- 豆类:如扁豆和鹰嘴豆。\n", + "- 蔬菜:如茄子、菠菜和花椰菜。\n", + "- 酱料:如酱油、鱼露和椰奶。\n", + "\n", + "## 经典菜肴\n", + "### 亚洲菜肴\n", + "- **寿司**:一种日本料理,由醋饭和生鱼片组成。\n", + "- **炒面**:一种中式料理,通常搭配蔬菜和肉类。\n", + "- **越南春卷**:用米纸包裹新鲜蔬菜和肉类的健康选择。\n", + "\n", + "### 印度菜肴\n", + "- **黄油鸡**:一种奶油味浓郁的咖喱鸡。\n", + "- **印度薄饼(Naan)**:一种用烤炉烤制的软面饼。\n", + "- **豆子咖喱(Dal)**:用扁豆制作的传统菜肴。\n", + "\n", + "## 烹饪技巧\n", + "- 使用新鲜的食材以确保最佳风味。\n", + "- 适量使用香料,避免过度。\n", + "- 慢炖咖喱以释放香料的全部风味。\n", + "\n", + "## 健康益处\n", + "亚洲和印度菜肴通常富含蔬菜和豆类,提供丰富的纤维和营养。此外,许多菜肴使用健康的烹饪方法,如蒸和炖。\n", + "\n", + "## 总结\n", + "无论是亚洲还是印度菜肴,它们都以独特的风味和多样性吸引着全球的美食爱好者。尝试这些菜肴不仅是一种味觉享受,也是一种文化体验。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "安装 Imblearn,它将启用 SMOTE。这是一个 Scikit-learn 包,可帮助在执行分类时处理不平衡数据。(https://imbalanced-learn.org/stable/)\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: imblearn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.0)\n", + "Requirement already satisfied: imbalanced-learn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imblearn) (0.8.0)\n", + "Requirement already satisfied: numpy>=1.13.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.19.2)\n", + "Requirement already satisfied: scipy>=0.19.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (1.4.1)\n", + "Requirement already satisfied: scikit-learn>=0.24 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.24.2)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from imbalanced-learn->imblearn) (0.16.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.24->imbalanced-learn->imblearn) (2.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install imblearn" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib as mpl\n", + "import numpy as np\n", + "from imblearn.over_sampling import SMOTE" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "df = pd.read_csv('../../data/cuisines.csv')" + ] + }, + { + "source": [ + "该数据集包括385列,表示给定菜系中各种菜系的所有种类的成分。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 65 indian 0 0 0 0 0 \n", + "1 66 indian 1 0 0 0 0 \n", + "2 67 indian 0 0 0 0 0 \n", + "3 68 indian 0 0 0 0 0 \n", + "4 69 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 385 columns]" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      065indian00000000...0000000000
      166indian10000000...0000000000
      267indian00000000...0000000000
      368indian00000000...0000000000
      469indian00000000...0000000010
      \n

      5 rows × 385 columns

      \n
      " + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 2448 entries, 0 to 2447\nColumns: 385 entries, Unnamed: 0 to zucchini\ndtypes: int64(384), object(1)\nmemory usage: 7.2+ MB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "korean 799\n", + "indian 598\n", + "chinese 442\n", + "japanese 320\n", + "thai 289\n", + "Name: cuisine, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "df.cuisine.value_counts()" + ] + }, + { + "source": [ + "在条形图中显示菜系\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD4CAYAAAAtrdtxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAASY0lEQVR4nO3df7TldV3v8eerGZkRRoeAiXtE5UgNIkUCjlwQIzAiC7NscdcSbcmsfkxl5SXX0juuyzK9d3UvlXnpplajma0kMtCUhluImNcr8msGBmb4pZaTQCFQOYom0fi+f+zPkd14hpnzOWefvYfzfKy113z35/vde7/22fvMa3++3733SVUhSVKPbxt3AEnSgcsSkSR1s0QkSd0sEUlSN0tEktRt+bgDLKYjjjiipqenxx1Dkg4oW7dufbiq1sy2bkmVyPT0NFu2bBl3DEk6oCT5u72tc3eWJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqduS+sT69vt3Mb3xqnHH0ALZefG5444gLXnORCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktRtIkokyaFJXtuWz0yyeY6X/29Jzh5NOknS3kxEiQCHAq/tvXBVvbmqPraAeSRJ+2FSSuRi4DuTbAN+E1iV5Iokdye5NEkAkrw5yc1JdiTZNDT+viTnjTG/JC1Jk1IiG4G/qaoTgTcAJwEXAscDxwCnt+3eUVUvrKrvAZ4KvGxfV5xkQ5ItSbbs/tqu0aSXpCVqUkpkTzdV1X1V9Q1gGzDdxs9KcmOS7cBLgO/e1xVV1aaqWldV65YdvHp0iSVpCZrUL2B8dGh5N7A8yUrgXcC6qro3yVuAleMIJ0kamJSZyFeAp+1jm5nCeDjJKsBjIJI0ZhMxE6mqf0xyXZIdwL8AX5xlmy8leTewA3gAuHmRY0qS9jARJQJQVa/ay/gvDS1fBFw0yzbrR5dMkrQ3k7I7S5J0ALJEJEndLBFJUjdLRJLUzRKRJHWbmHdnLYYTjlrNlovPHXcMSXrScCYiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6rZ83AEW0/b7dzG98apxx9CY7Lz43HFHkJ50nIlIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG77VSJJPj3qIJKkA89+lUhVvWjUQSRJB579nYk8kmRVkmuT3JJke5Ifa+umk9yd5NIkdyW5IsnBbd2bk9ycZEeSTUnSxj+R5NeT3JTkM0m+r40vS/Kb7TK3J/m5Nj6V5JNJtrXrmtn+nCTXt0yXJ1k1ih+SJGl2czkm8nXgFVV1MnAW8FszpQA8F3hXVT0P+DLw2jb+jqp6YVV9D/BU4GVD17e8qk4BLgR+tY39NLCrql4IvBD42STPAV4FXF1VJwLPB7YlOQK4CDi7ZdoCvH4ud16SND9z+dqTAP8jyRnAN4CjgCPbunur6rq2/H7gdcDbgLOSvBE4GDgMuAP4i7bdh9q/W4HptnwO8L1JzmvnVwNrgZuB9yZ5CvDhqtqW5PuB44HrWpcdBFz/LaGTDcAGgGVPXzOHuytJ2pe5lMirgTXAC6rqsSQ7gZVtXe2xbSVZCbwLWFdV9yZ5y9D2AI+2f3cP5Qjwy1V19Z433srrXOB9Sd4O/DNwTVWd/0Shq2oTsAlgxdTaPXNKkuZhLruzVgMPtgI5Czh6aN2zk5zWll8FfIrHC+PhdqziPPbtauAX2oyDJMcmOSTJ0cAXq+rdwHuAk4EbgNOTfFfb9pAkx87h/kiS5ml/ZyIFXAr8RZLtDI4/3D20/h7gF5O8F7gT+N2q+lqSdwM7gAcY7JLal/cw2LV1Szve8hDw48CZwBuSPAY8Arymqh5Ksh64LMmKdvmLgM/s532SJM1Tqp54D0+Sw4FbqurovayfBja3g+cTbcXU2pq64JJxx9CY+FXwUp8kW6tq3WzrnnB3VpJnMDhY/bZRBJMkHdiecHdWVf098ITHGapqJzDxsxBJ0sLzu7MkSd0sEUlSN0tEktRtLh82POCdcNRqtvgOHUlaMM5EJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd0sEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd2WjzvAYtp+/y6mN1417hhSt50XnzvuCNK/40xEktTNEpEkdbNEJEndLBFJUjdLRJLUzRKRJHWzRCRJ3Ra0RJK8L8l5s4w/I8kVC3lbkqTxW5QPG1bV3wPfUi6SpAPbvGYiSV6T5PYktyX54zZ8RpJPJ/nbmVlJkukkO9ry+iQfSvJXST6b5DeGru+cJNcnuSXJ5UlWtfGLk9zZbuttbWxNkg8mubmdTp/PfZEkzV33TCTJdwMXAS+qqoeTHAa8HZgCXgwcB1wJzLYb60TgJOBR4J4kvwP8S7u+s6vqq0n+C/D6JO8EXgEcV1WV5NB2Hb8N/K+q+lSSZwNXA8+bJecGYAPAsqev6b27kqRZzGd31kuAy6vqYYCq+qckAB+uqm8AdyY5ci+XvbaqdgEkuRM4GjgUOB64rl3PQcD1wC7g68AfJNkMbG7XcTZwfNsW4OlJVlXVI8M3VFWbgE0AK6bW1jzuryRpD6M4JvLo0HL2Y5vdLUeAa6rq/D03TnIK8AMMjqv8EoMC+zbg1Kr6+kKEliTN3XyOiXwc+E9JDgdou7Pm4wbg9CTf1a7vkCTHtuMiq6vq/wC/Ajy/bf9R4JdnLpzkxHneviRpjrpnIlV1R5JfA/5vkt3ArfMJUlUPJVkPXJZkRRu+CPgK8JEkKxnMVl7f1r0OeGeS2xncj08CPz+fDJKkuUnV0jlMsGJqbU1dcMm4Y0jd/HsiGockW6tq3Wzr/MS6JKmbJSJJ6maJSJK6WSKSpG6WiCSp26J8AeOkOOGo1Wzx3S2StGCciUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6LR93gMW0/f5dTG+8atwxJM3RzovPHXcE7YUzEUlSN0tEktTNEpEkdbNEJEndLBFJUjdLRJLUbWQlkuTTc9z+zCSb2/LLk2wcTTJJ0kIZ2edEqupF87jslcCVCxhHkjQCo5yJPNL+PTPJJ5JckeTuJJcmSVv30jZ2C/ATQ5ddn+QdbflHk9yY5NYkH0tyZBt/S5L3tuv+2ySvG9V9kSTNbrGOiZwEXAgcDxwDnJ5kJfBu4EeBFwD/YS+X/RRwalWdBPwp8MahdccBPwScAvxqkqeMJr4kaTaL9bUnN1XVfQBJtgHTwCPA56vqs238/cCGWS77TOADSaaAg4DPD627qqoeBR5N8iBwJHDf8IWTbJi53mVPX7OQ90mSlrzFmok8OrS8m7mV1+8A76iqE4CfA1bO5XqralNVrauqdcsOXj2Hm5Uk7cs43+J7NzCd5Dvb+fP3st1q4P62fMHIU0mS9tvYSqSqvs5gN9NV7cD6g3vZ9C3A5Um2Ag8vUjxJ0n5IVY07w6JZMbW2pi64ZNwxJM2RXwU/Xkm2VtW62db5iXVJUjdLRJLUzRKRJHWzRCRJ3SwRSVK3xfrE+kQ44ajVbPFdHpK0YJyJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrpZIpKkbpaIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqZolIkrotH3eAxbT9/l1Mb7xq3DEkaVHtvPjckV23MxFJUjdLRJLUzRKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1W9ASSTKdZMdCXqckaXJNxEwkyZL60KMkPVmMrESSHJPk1iTfl+QPk2xv589q69cnuTLJx4Fr29gbktyc5PYkbx26rg8n2ZrkjiQbhsYfSfJrSW5LckOSI0d1fyRJ32okJZLkucAHgfXAKUBV1QnA+cAfJVnZNj0ZOK+qvj/JOcDatv2JwAuSnNG2+6mqegGwDnhdksPb+CHADVX1fOCTwM/OkmVDki1Jtuz+2q5R3F1JWrJGUSJrgI8Ar66q24AXA+8HqKq7gb8Djm3bXlNV/9SWz2mnW4FbgOMYlAoMiuM24AbgWUPj/wpsbstbgek9w1TVpqpaV1Xrlh28eqHuoySJ0XwB4y7gCwzK4859bPvVoeUA/7Oqfn94gyRnAmcDp1XV15J8ApiZyTxWVdWWd7PEvlBSksZtFDORfwVeAbwmyauA/we8GiDJscCzgXtmudzVwE8lWdW2PSrJdwCrgX9uBXIccOoIMkuSOozklXtVfTXJy4BrgP8OnJBkO/BvwPqqejTJnpf5aJLnAde3dY8APwn8FfDzSe5iUD43jCKzJGnu8vjeoCe/FVNra+qCS8YdQ5IW1Xz/nkiSrVW1brZ1E/E5EUnSgckSkSR1s0QkSd0sEUlSN0tEktRtSX0474SjVrNlnu9SkCQ9zpmIJKmbJSJJ6maJSJK6WSKSpG6WiCSpmyUiSepmiUiSulkikqRulogkqZslIknqtqT+KFWSrzD7n+adFEcAD487xBMw3/yYb37MNz/zyXd0Va2ZbcWS+u4s4J69/XWuSZBki/n6mW9+zDc/SzWfu7MkSd0sEUlSt6VWIpvGHWAfzDc/5psf883Pksy3pA6sS5IW1lKbiUiSFpAlIknqtmRKJMlLk9yT5HNJNo4pw3uTPJhkx9DYYUmuSfLZ9u+3t/Ek+d8t7+1JTl6EfM9K8tdJ7kxyR5L/PEkZk6xMclOS21q+t7bx5yS5seX4QJKD2viKdv5zbf30KPO121yW5NYkmycw284k25NsS7KljU3EY9tu89AkVyS5O8ldSU6blHxJntt+bjOnLye5cFLytdv8lfZ7sSPJZe33ZfTPv6p60p+AZcDfAMcABwG3AcePIccZwMnAjqGx3wA2tuWNwK+35R8B/hIIcCpw4yLkmwJObstPAz4DHD8pGdvtrGrLTwFubLf7Z8Ar2/jvAb/Qll8L/F5bfiXwgUX4Gb4e+BNgczs/Sdl2AkfsMTYRj227zT8CfqYtHwQcOkn5hnIuAx4Ajp6UfMBRwOeBpw4979YvxvNvUX7o4z4BpwFXD51/E/CmMWWZ5t+XyD3AVFueYvCBSIDfB86fbbtFzPoR4AcnMSNwMHAL8B8ZfAp3+Z6PNXA1cFpbXt62ywgzPRO4FngJsLn9BzIR2drt7ORbS2QiHltgdftPMJOYb49M5wDXTVI+BiVyL3BYez5tBn5oMZ5/S2V31swPeMZ9bWwSHFlV/9CWHwCObMtjzdymtycxeLU/MRnb7qJtwIPANQxmmF+qqn+bJcM387X1u4DDRxjvEuCNwDfa+cMnKBtAAR9NsjXJhjY2KY/tc4CHgD9suwPfk+SQCco37JXAZW15IvJV1f3A24AvAP/A4Pm0lUV4/i2VEjkg1OBlwdjfc51kFfBB4MKq+vLwunFnrKrdVXUig1f9pwDHjSvLsCQvAx6sqq3jzvIEXlxVJwM/DPxikjOGV475sV3OYFfv71bVScBXGewe+qZxP/cA2jGFlwOX77lunPnasZgfY1DGzwAOAV66GLe9VErkfuBZQ+ef2cYmwReTTAG0fx9s42PJnOQpDArk0qr60CRmBKiqLwF/zWCKfmiSme+BG87wzXxt/WrgH0cU6XTg5Ul2An/KYJfWb09INuCbr1apqgeBP2dQwpPy2N4H3FdVN7bzVzAolUnJN+OHgVuq6ovt/KTkOxv4fFU9VFWPAR9i8Jwc+fNvqZTIzcDa9k6FgxhMR68cc6YZVwIXtOULGByHmBl/TXuXx6nArqFp80gkCfAHwF1V9fZJy5hkTZJD2/JTGRyvuYtBmZy3l3wzuc8DPt5eLS64qnpTVT2zqqYZPL8+XlWvnoRsAEkOSfK0mWUG+/V3MCGPbVU9ANyb5Llt6AeAOycl35DzeXxX1kyOScj3BeDUJAe33+OZn9/on3+LcSBqEk4M3i3xGQb70P/rmDJcxmB/5WMMXnn9NIP9kNcCnwU+BhzWtg3wzpZ3O7BuEfK9mMF0/HZgWzv9yKRkBL4XuLXl2wG8uY0fA9wEfI7BboYVbXxlO/+5tv6YRXqcz+Txd2dNRLaW47Z2umPmd2BSHtt2mycCW9rj+2Hg2ycs3yEMXq2vHhqbpHxvBe5uvxt/DKxYjOefX3siSeq2VHZnSZJGwBKRJHWzRCRJ3SwRSVI3S0SS1M0SkSR1s0QkSd3+PxNFbW14TY8fAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df.cuisine.value_counts().plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "thai df: (289, 385)\njapanese df: (320, 385)\nchinese df: (442, 385)\nindian df: (598, 385)\nkorean df: (799, 385)\n" + ] + } + ], + "source": [ + "\n", + "thai_df = df[(df.cuisine == \"thai\")]\n", + "japanese_df = df[(df.cuisine == \"japanese\")]\n", + "chinese_df = df[(df.cuisine == \"chinese\")]\n", + "indian_df = df[(df.cuisine == \"indian\")]\n", + "korean_df = df[(df.cuisine == \"korean\")]\n", + "\n", + "print(f'thai df: {thai_df.shape}')\n", + "print(f'japanese df: {japanese_df.shape}')\n", + "print(f'chinese df: {chinese_df.shape}')\n", + "print(f'indian df: {indian_df.shape}')\n", + "print(f'korean df: {korean_df.shape}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def create_ingredient_df(df):\n", + " # transpose df, drop cuisine and unnamed rows, sum the row to get total for ingredient and add value header to new df\n", + " ingredient_df = df.T.drop(['cuisine','Unnamed: 0']).sum(axis=1).to_frame('value')\n", + " # drop ingredients that have a 0 sum\n", + " ingredient_df = ingredient_df[(ingredient_df.T != 0).any()]\n", + " # sort df\n", + " ingredient_df = ingredient_df.sort_values(by='value', ascending=False, inplace=False)\n", + " return ingredient_df\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 10 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAeAklEQVR4nO3de7RVdb338fcHRFAhTPBCeNnogzckQJcdb11ES01QSxGLUtNHjl1EM2twhmbUo+PY5dhN07DHII+nuKSPFKe0FPEasTcCG1TUEk8QCmjuJIRg+33+WL+ti82+AWvvORfr8xpjjT3Xb/7mnN85x2J/+M0595qKCMzMzPKiW9YFmJmZlXIwmZlZrjiYzMwsVxxMZmaWKw4mMzPLlV2yLmBn0L9//6ipqcm6DDOzitG/f3/uv//++yPi9ObzHExlUFNTQ21tbdZlmJlVFEn9W2r3qTwzM8sVB5OZmeWKg8nMzHLF15jMzLrApk2bWLFiBRs2bMi6lC7Xq1cv9t9/f3r06NGh/g6mMqhf2UDNxNlZl2G2Q5bfdGbWJezUVqxYQZ8+faipqUFS1uV0mYjg1VdfZcWKFQwaNKhDy/hUnplZF9iwYQP9+vWrqlACkES/fv22aaRYEcEkaYqk81pof4+kme0su7y1WxLNzLpStYVSk23d74o+lRcRfwW2CiwzM6tcuQwmSRcC1wABLAYagQ9IuhrYD/hKRMyUVAP8OiKOktQd+CZwOvAWcEdE/LBknbsB9wD3RMQdkj4FTAB2BeYBn4uIRknrgO8Do4A3gbMj4pWu2G8zqx7lvi5d7muEvXv3Zt26dWVdZ0fl7lSepCHAdcDIiBgGXJlmDQBOohgYN7Ww6HigBhgeEe8F7i6Z1xv4FfDzFEpHAGOBEyNiOMXgG5f67gH8IW37EeCyVuocL6lWUm3j+obt3l8zM9tS7oIJGAnMiIi1ABHxWmr/fxHxVkQ8DezbwnKnAj+OiM3NlgO4D/hpRPwsvT8FOAaYL2lhen9wmvdP4Ndpuo5i2G0lIiZHRCEiCt1377sdu2lm1nUmTpzIrbfe+vb7SZMmccMNN3DKKadw9NFHM3ToUO67776tlnv44YcZNWrU2++/8IUvMGXKFADq6ur44Ac/yDHHHMNpp53GqlWrylJrHoOpNRtLprf1CuLjwOl65wqcgKkRMTy9DouISWnepnjnefON5PR0p5nZthg7dizTp09/+/306dO56KKLuPfee1mwYAFz5szhS1/6Eu/8+mvbpk2buOKKK5g5cyZ1dXVccsklXHvttWWpNY+/dB8C7pV0c0S8KmmvDi73O+BfJc2JiM2S9ioZNV2fXrcCnwMeBO6T9N2IWJ220SciXir3zpiZ5cGIESNYvXo1f/3rX1mzZg3vfve72W+//fjiF7/II488Qrdu3Vi5ciWvvPIK++23X7vrW7ZsGUuWLOHDH/4wAI2NjQwYMKAsteYumCJiqaQbgbmSGoGnOrjoT4BDgcWSNgF3ALeUzL8SuFPStyLiK5KuAx6Q1A3YBHwecDCZ2U5rzJgxzJw5k5dffpmxY8dy9913s2bNGurq6ujRowc1NTVb/b3RLrvswltvvfX2+6b5EcGQIUN48skny15n7oIJICKmAlPbmN87/VwOHJWmNwNXp1dp35qSt58paZ8GTGtt3Wl6JtDm30mZmVWKsWPHctlll7F27Vrmzp3L9OnT2WeffejRowdz5szhpZe2/r/5QQcdxNNPP83GjRt58803efDBBznppJM47LDDWLNmDU8++STHH388mzZt4rnnnmPIkCE7XGcug6nSDB3Yl1p/nYuZbYMsvgJqyJAhvPHGGwwcOJABAwYwbtw4Ro8ezdChQykUChx++OFbLXPAAQdw/vnnc9RRRzFo0CBGjBgBwK677srMmTOZMGECDQ0NbN68mauuuqoswaSOXuiy1hUKhfCDAs2sLc888wxHHHFE1mVkpqX9l1QXEYXmfSvprjwzM6sCDiYzM8sVB5OZWRep1ksn27rfDiYzsy7Qq1cvXn311aoLp6bnMfXq1avDy/iuPDOzLrD//vuzYsUK1qxZk3UpXa7pCbYd5WAyM+sCPXr06PATXKudT+WZmVmuOJjMzCxXHExmZpYrvsZUBvUrG8r+NEqzvMriq3SsunjEZGZmuVJ1wSTpvyXtmXUdZmbWsqo6lZeeYDsqIt5qt7OZmWVipx8xSaqRtEzSz4AlQKOk/mnehZIWS1ok6a7UtrekX0qan14nZlm/mVm1qZYR02Dgooj4g6TlAJKGANcBJ0TE2pJHuH8f+G5EPCbpQOB+YKvvqpc0HhgP0P1de3fBLpiZVYdqCaaXIuIPzdpGAjMiYi1ARLyW2k8Fjiye9QPgXZJ6R8S60oUjYjIwGaDngMHV9eVXZmadqFqC6R/b0LcbcFxEbGi3p5mZld1Of42pDQ8BYyT1Ayg5lfcAcEVTJ0nDM6jNzKxqVW0wRcRS4EZgrqRFwM1p1gSgkG6KeBq4PKsazcyqkart2SCdoVAoRG1tbdZlmJlVFEl1EVFo3l61IyYzM8snB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Uq1fLt4p6pf2UDNxNlZl2GWmeU3nZl1CbYT8YjJzMxyxcFkZma5UjHBJOksSRPLtK5Jkq4px7rMzKy8KuIak6RdImIWMCvD7W/OYttmZtWmy0dMki5MD+FbJOkuSTWSHkptD0o6MPWbIul2SfOAb0m6WNItad5oSfMkPSXp95L2Te2TJN0p6WFJf5Y0oWS710p6TtJjwGEl7YdI+q2kOkmPSjq8pe134SEyM6tqXTpikjQEuA44ISLWpseZTwWmRsRUSZcAPwDOSYvsn/o2Srq4ZFWPAcdFREj638BXgC+leYcDJwN9gGWSbgPeC1wADKe4zwuAutR/MnB5RDwv6V+AHwEjm2+/hX0ZD4wH6P6uvXfksJiZWYmuPpU3EpgREWsBIuI1SccDH0/z72LL0cmMlkKBYmBMkzQA2BV4sWTe7IjYCGyUtBrYF3g/cG9ErAeQNCv97A2cAMyQ1LR8zw5sn4iYTDHU6DlgsB8DbGZWJnm/xvSPVtp/CNwcEbMkfQiYVDJvY8l0I23vYzfg9YgYvo3bNzOzTtLV15geAsZI6geQTuU9QfE0G8A44NEOrKcvsDJNX9SB/o8A50jaTVIfYDRARPwdeFHSmFSPJA3r6M6YmVn5demIKSKWSroRmCupEXgKuAL4qaQvA2uAz3RgVZMonn77G8WwG9TOdhdImgYsAlYD80tmjwNuk3Qd0AP4RepnZmYZUIQvj+yoQqEQtbW1WZdhZlZRJNVFRKF5e8X8ga2ZmVUHB5OZmeWKg8nMzHLFwWRmZrniYDIzs1xxMJmZWa44mMzMLFccTGZmlisOJjMzyxUHk5mZ5Urev128ItSvbKBm4uysyzDL3PKbzsy6BNsJeMRkZma54mAyM7NcyTSYJJ0j6cgO9Jsi6bwW2j8k6ddlrKcg6Qdp+mJJt5Rr3WZm1jFZj5jOAdoNpq4SEbURMSHrOszMqlmbwSTpJkmfL3k/SdI1kr4sab6kxZK+XjL/q5KWSXpM0s8lXZPaD5H0W0l1kh6VdLikE4CzgG9LWpj6XJbWu0jSLyXtXlLOqZJqJT0naVQLte4h6U5Jf5T0lKSz29ivXpJ+Kqk+9T05tXd4BCZpfKqntnF9Q0cWMTOzDmhvxDQNOL/k/fkUnzI7GHgfMBw4RtIHJB0LnAsMA84ASh/+NBm4IiKOAa4BfhQRTwCzgC9HxPCI+BNwT0QcGxHDgGeAS0vWUZO2eSZwu6RezWq9FngoIt4HnEwx8PZoZb8+D0REDAU+AUxtYX1tiojJEVGIiEL33ftuy6JmZtaGNm8Xj4inJO0j6T3A3sDfgKHARyg+Fh2gN8Wg6gPcFxEbgA2SfgUgqTdwAsVHoTetumcrmzxK0g3Anmm995fMmx4RbwHPS/ozcHizZT8CnNU0SgN6AQdSDLjmTgJ+mPbxWUkvAYe2dSzMzKxrdOTvmGYA5wH7URxBHQT8e0T8uLSTpKtaWb4b8HpEDO/AtqYA50TEIkkXAx8qmdf8GfDN3ws4NyKWdWA7ZmaWUx25+WEacAHFcJpBcRRzSRoJIWmgpH2Ax4HR6fpNb2AUQET8HXhR0pjUX5KGpXW/QXGk1aQPsEpSD2BcszrGSOom6RDgYKB5AN0PXKE0LJM0oo19erRp/ZIOpTiycqCZmeVAu8EUEUspBsbKiFgVEQ8A/wU8KakemAn0iYj5FK8ZLQZ+A9QDTXcFjAMulbQIWAo03ZjwC+DL6QaEQ4CvAvMohtyzzUr5H+CPad2Xp1OGpf4P0ANYLGlpet+aHwHdUv3TgIsjYmN7x8LMzDqfIpqfEduBlUm9I2JdupvuEWB8RCwo2wZyqlAoRG1tbdZlmJlVFEl1EVFo3l7u78qbnP5gthcwtRpCyczMyquswRQRnyzn+naUpNOAbzZrfjEiPpZFPWZm1r6d+tvFI+J+trzl3MzMci7rryQyMzPbgoPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrO/XfMXWV+pUN1EycnXUZZhVh+U1nZl2C5ZxHTGZmlisOplZIGi7po1nXYWZWbRxMrRsOOJjMzLpY7oJJ0oWSFktaJOkuSTWSHkptD0o6MPXbV9K9qd8iSSek9qslLUmvq1JbjaRnJN0haamkByTtluY9LKmQpvtLWi5pV+AbwFhJCyWNzeZomJlVn1wFk6QhwHXAyIgYBlwJ/JDiIzTeC9wN/CB1/wEwN/U7Glgq6RjgM8C/AMcBl5U8yXYwcGtEDAFeB85trY6I+CdwPTAtIoZHxLQWah0vqVZSbeP6hq1XYmZm2yVXwQSMBGZExFqAiHgNOJ7iE3MB7gJOKul7W+rXGBENad69EfGPiFgH3AO8P/V/MSIWpuk6oGZHCo2IyRFRiIhC99377siqzMysRN6CqTOVPjq9kXduld/MO8ehV5dWZGZmW8lbMD0EjJHUD0DSXsATwAVp/jjg0TT9IPDZ1K+7pL5p3jmSdpe0B/Cxkv6tWQ4ck6bPK2l/A+izQ3tjZmbbLFfBFBFLgRuBuZIWATcDVwCfkbQY+DTF606knydLqqd4au7I9Cj3KcAfgXnATyLiqXY2+x3gs5KeAvqXtM8BjvTND2ZmXUsRkXUNFa/ngMEx4KLvZV2GWUXwNz9YE0l1EVFo3u6vJCqDoQP7Uut/bGZmZZGrU3lmZmYOJjMzyxUHk5mZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFX8lURnUr2ygZuLsrMswq2j+Dj1r4hGTmZnlSsUHk6RvSDo16zrMzKw8Kv5UXkRc39nbkNQ9Iho7eztmZlZhIyZJX5W0TNJjkn4u6RpJUySdl+Yvl/R1SQsk1Us6PLXvLel3kpZK+omklyT1T/M+JemP6YGAP5bUPbWvk/Qf6YGFx2e202ZmVaZigknSscC5wDDgDGCrh0slayPiaOA24JrU9jXgoYgYAswEDkzrPAIYC5wYEcOBRoqPbwfYA5gXEcMi4rEW6hkvqVZSbeP6hrLso5mZVdapvBOB+yJiA7BB0q9a6XdP+lkHfDxNnwR8DCAifivpb6n9FOAYYL4kgN2A1WleI/DL1oqJiMnAZCg+wXZ7dsjMzLZWScHUURvTz0ba3z8BUyPi31qYt8HXlczMul7FnMoDHgdGS+olqTcwahuXPR9A0keAd6f2B4HzJO2T5u0l6aAy1mxmZtuoYkZMETFf0ixgMfAKUA909OLO14GfS/o08CTwMvBGRKyVdB3wgKRuwCbg88BLZd8BMzPrEEVUzuURSb0jYp2k3YFHgPERsaADy/UEGiNis6TjgdvSzQ5lUSgUora2tlyrMzOrCpLqImKrG9kqZsSUTJZ0JNCL4rWhdkMpORCYnkZF/wQu66wCzcxsx1RUMEXEJ7dzueeBEWUux8zMOkEl3fxgZmZVwMFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeVKRf2BbV7Vr2ygZuLsrMswqzrLbzoz6xKsE3jEZGZmueJgMjOzXKmIYJJ0uaQL0/QUSedt53qGS/poeaszM7NyqohrTBFxe5lWNRwoAP/dfIakXSJic5m2Y2Zm2ymXwZRGR9cAQfHBgH8C1kXEd5r1ux4YDewGPAH8a0SEpIeBecDJwJ7Apen9N4DdJJ0E/DtwBHAIcDDwP5I+A9xGMbw2A1dHxJzO3VszMyuVu1N5koYA1wEjI2IYcGUb3W+JiGMj4iiK4VT6uPVdIuJ9wFXA1yLin8D1wLSIGB4R01K/I4FTI+ITFJ9eGxExFPgEMFVSr1bqHC+pVlJt4/qOPkjXzMzak7tgAkYCMyJiLUBEvNZG35MlzZNUn5YbUjLvnvSzDqhpYx2zIuLNNH0S8J9pu89SfMT6oS0tFBGTI6IQEYXuu/dtZ5fMzKyjcnkqryPSSOZHQCEi/iJpEsUn2zbZmH420vZ+/qNzKjQzs+2RxxHTQ8AYSf0AJO3VSr+mEForqTfQkTv13gD6tDH/UWBc2u6hFB/JvqwjRZuZWXnkLpgiYilwIzBX0iLg5lb6vQ7cASwB7gfmd2D1c4AjJS2UNLaF+T8CuqVTg9OAiyNiYwv9zMyskygisq6h4hUKhaitrc26DDOziiKpLiIKzdtzN2IyM7Pq5mAyM7NccTCZmVmuOJjMzCxXHExmZpYrDiYzM8sVB5OZmeWKg8nMzHLFwWRmZrniYDIzs1yp2G8Xz5P6lQ3UTJyddRlm1omW33Rm1iVUDY+YzMwsVxxMZmaWKw4mMzPLlVwEk6QLJS2WtEjSXZJGp0emPyXp95L2ldRN0vOS9k7LdJP0gqS90+uXkuan14mpzyRJd0p6WNKfJU1I7TWSnpF0h6Slkh6QtFuad4ik30qqk/SopMOzOzJmZtUn82CSNAS4DhgZEcOAK4HHgOMiYgTwC+ArEfEW8J+kJ8wCpwKLImIN8H3guxFxLHAu8JOSTRwOnAa8D/iapB6pfTBwa0QMAV5PywFMBq6IiGOAayg+PLClusdLqpVU27i+YYePg5mZFeXhrryRwIyIWAsQEa9JGgpMkzQA2BV4MfW9E7gP+B5wCfDT1H4qxSfTNq3zXelx6wCz01NoN0paDeyb2l+MiIVpug6oScucAMwoWVfPloqOiMkUQ4yeAwb7aYtmZmWSh2BqyQ+BmyNilqQPAZMAIuIvkl6RNJLiCKhp9NSN4ghrQ+lKUriUPhq9kXf2uXn7bmk9r0fE8LLujZmZdVjmp/KAh4AxkvoBSNoL6AusTPMvatb/JxRP6c2IiMbU9gBwRVMHSdsVLBHxd+BFSWPSeiRp2Pasy8zMtk/mwRQRS4EbgbmSFgE3UxwhzZBUB6xttsgsoDfvnMYDmAAU0g0UTwOX70BJ44BLUy1LgbN3YF1mZraNFFFZl0ckFSje6PD+rGtp0nPA4Bhw0feyLsPMOpG/+aH8JNVFRKF5e16vMbVI0kTgs7xzbSkXhg7sS60/tGZmZZH5qbxtERE3RcRBEfFY1rWYmVnnqKhgMjOznZ+DyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWKw4mMzPLFQeTmZnlSkV9JVFe1a9soGbi7KzLMLOdWDV9V59HTGZmlitVEUySJkh6RtLf0hfBttbvYkm3dGVtZma2pWo5lfc54NSIWJF1IWZm1radfsQk6XbgYOA3kr7YNCKSNEbSEkmLJD1Sssh7JP1W0vOSvpVJ0WZmVWynD6aIuBz4K3Ay8LeSWdcDp0XEMOCskvbhwFhgKDBW0gEtrVfSeEm1kmob1zd0TvFmZlVopw+mNjwOTJF0GdC9pP3BiGiIiA3A08BBLS0cEZMjohARhe679+2Ccs3MqkPVBlMaSV0HHADUSeqXZm0s6dZI9VyHMzPLhar9pSvpkIiYB8yTdAbFgDIzs4xV7YgJ+LakeklLgCeARVkXZGZmVTJiioiaNDklvYiIj7fQ9e35qc+oTi3MzMy2UhXB1NmGDuxLbRV9XYiZWWeq5lN5ZmaWQw4mMzPLFQeTmZnlioPJzMxyxcFkZma54mAyM7NccTCZmVmuOJjMzCxXHExmZpYr/uaHMqhf2UDNxNlZl2Fm1qWWd9I33njEZGZmueJgMjOzXKnaYJJ0saRb0vTlki7MuiYzM6vSa0ySttjviLg9q1rMzGxLFR1Mkr4KfApYA/wFqAMagPHArsALwKcjYr2kKcAGYATwOLC4ZD2TgHUR8R1J/wu4Hdib4qPVx0TEn7pqn8zMql3FnsqTdCxwLjAMOAMopFn3RMSxETEMeAa4tGSx/YETIuLqNlZ9N3BrWv4EYFUr2x8vqVZSbeP6hh3cGzMza1LJI6YTgfsiYgOwQdKvUvtRkm4A9gR6A/eXLDMjIhpbW6GkPsDAiLgXIK27RRExGZgM0HPA4NihPTEzs7dV7IipDVOAL0TEUODrQK+Sef/IpCIzM+uwSg6mx4HRknpJ6g2MSu19gFWSegDjtmWFEfEGsELSOQCSekravZxFm5lZ2yo2mCJiPjCL4k0MvwHqKd748FVgHsXgenY7Vv1pYIKkxcATwH5lKdjMzDpEEZV7eURS74hYl0Y1jwDjI2JBV9dRKBSitra2qzdrZlbRJNVFRKF5eyXf/AAwWdKRFK8jTc0ilMzMrLwqOpgi4pNZ12BmZuVVsdeYzMxs5+RgMjOzXHEwmZlZrlT0XXl5IekNYFnWdWyH/sDarIvYDq67a7nurlUtda8FiIjTm8+o6JsfcmRZS7c85p2kWtfddVx313LdXaucdftUnpmZ5YqDyczMcsXBVB6Tsy5gO7nuruW6u5br7lplq9s3P5iZWa54xGRmZrniYDIzs1xxMO0ASadLWibpBUkTs66nNZIOkDRH0tOSlkq6MrVPkrRS0sL0+mjWtTYnabmk+lRfbWrbS9LvJD2ffr476zpLSTqs5JgulPR3SVfl9XhLulPSaklLStpaPMYq+kH6zC+WdHTO6v62pGdTbfdK2jO110h6s+TY356zulv9bEj6t3S8l0k6LZuqW617WknNyyUtTO07drwjwq/teAHdgT8BBwO7AouAI7Ouq5VaBwBHp+k+wHPAkcAk4Jqs62un9uVA/2Zt3wImpumJwDezrrOdz8nLwEF5Pd7AB4CjgSXtHWPgoxSffybgOGBezur+CLBLmv5mSd01pf1yeLxb/Gykf6eLgJ7AoPQ7p3te6m42/z+A68txvD1i2n7vA16IiD9HxD+BXwBnZ1xTiyJiVaRHgkTxKb3PAAOzrWqHnA1MTdNTgXMyrKU9pwB/ioiXsi6kNRHxCPBas+bWjvHZwM+i6A/AnpIGdE2lW2qp7oh4ICI2p7d/APbv8sLa0crxbs3ZwC8iYmNEvAi8QPF3T5drq25JAs4Hfl6ObTmYtt9A4C8l71dQAb/sJdUAIyg+5RfgC+m0x515OyWWBPCApDpJ41PbvhGxKk2/DOybTWkdcgFb/mPN+/Fu0toxrqTP/SUUR3dNBkl6StJcSe/Pqqg2tPTZqJTj/X7glYh4vqRtu4+3g6mKSOoN/BK4KiL+DtwGHAIMB1ZRHIrnzUkRcTRwBvB5SR8onRnF8wa5/JsHSbsCZwEzUlMlHO+t5PkYt0bStcBm4O7UtAo4MCJGAFcD/yXpXVnV14KK/GyU+ARb/gdsh463g2n7rQQOKHm/f2rLJUk9KIbS3RFxD0BEvBIRjRHxFnAHGZ0iaEtErEw/VwP3UqzxlabTR+nn6uwqbNMZwIKIeAUq43iXaO0Y5/5zL+liYBQwLoUq6VTYq2m6juK1mkMzK7KZNj4blXC8dwE+DkxratvR4+1g2n7zgcGSBqX/GV8AzMq4phal87//F3gmIm4uaS+9NvAxYEnzZbMkaQ9JfZqmKV7YXkLxOF+Uul0E3JdNhe3a4n+ReT/ezbR2jGcBF6a7844DGkpO+WVO0unAV4CzImJ9Sfvekrqn6YOBwcCfs6lya218NmYBF0jqKWkQxbr/2NX1teNU4NmIWNHUsMPHO4u7O3aWF8U7lJ6j+L+Ba7Oup406T6J4KmYxsDC9PgrcBdSn9lnAgKxrbVb3wRTvSFoELG06xkA/4EHgeeD3wF5Z19pC7XsArwJ9S9pyebwphucqYBPFaxiXtnaMKd6Nd2v6zNcDhZzV/QLFazJNn/PbU99z02doIbAAGJ2zulv9bADXpuO9DDgjT3Wn9inA5c367tDx9lcSmZlZrvhUnpmZ5YqDyczMcsXBZGZmueJgMjOzXHEwmZlZrjiYzMwsVxxMZmaWK/8fnSxrKwF+wYgAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "thai_ingredient_df = create_ingredient_df(thai_df)\r\n", + "thai_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 11 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAdqUlEQVR4nO3de5xXdb3v8dcbREhBvICJeBkvKAocbmN57eb9btsLFpmkD3nUMT1mdg4dtWNnu/fW3NXOtHQ6JewyE1DTorwcNDVF5TfcBi9gKZ5AVLAaRcQQP+eP9Z36McwMg/5m1vrN7/18PObBWt91+X3WmoE337XWrK8iAjMzs6LolXcBZmZm5RxMZmZWKA4mMzMrFAeTmZkVioPJzMwKZau8C+gJBg0aFHV1dXmXYWZWNQYNGsR99913X0Qc13qZg6kC6urqKJVKeZdhZlZVJA1qq92X8szMrFAcTGZmVigOJjMzKxTfYzIz6wbr169n+fLlrFu3Lu9Sul2/fv3Ybbfd6NOnT6fWdzBVQNOKZuqmzMq7DHufll1zYt4lWA1Yvnw5AwYMoK6uDkl5l9NtIoLXX3+d5cuXs9dee3VqG1/KMzPrBuvWrWOnnXaqqVACkMROO+20RT3FmgomSb+RtH3edZhZbaq1UGqxpcddU5fyIuKEvGswM7OO9ahgkvQ14J2IuF7Sd4HREfEpSZ8CzgcOA+qB/sBvgd8DhwIrgFMj4m1J+wA3AoOBtcAFEfFcDodjZj1Ype9LV/peaf/+/VmzZk1F99lZPe1S3qPAEWm6HugvqU9qe6TVusOAGyNiBPBX4PTU3gBcFBHjgcuAH7T1QZImSypJKm1Y21zhwzAzq109LZgagfGStgPeAeaQBdQRZKFV7sWIWFC2XZ2k/mQ9qBmSFgA3A0Pa+qCIaIiI+oio773NwC44FDOzypkyZQo33njj3+evuuoqrr76ao488kjGjRvHqFGjuPvuuzfZ7ne/+x0nnXTS3+e//OUvM3XqVAAaGxv5+Mc/zvjx4zn22GNZuXJlRWrtUcEUEeuBF4FJwONkYfRJYF/g2Varv1M2vYHssmYv4K8RMabs64AuL9zMrItNmDCB6dOn/31++vTpnHvuudx1113MmzePhx56iK9+9atERKf2t379ei666CJmzpxJY2Mj5513HpdffnlFau1R95iSR8kuwZ0HNAHfARojIjb3ZEhEvCHpRUlnRsQMZRv8l4hY2OVVm5l1obFjx/Laa6/x8ssvs2rVKnbYYQd22WUXvvKVr/DII4/Qq1cvVqxYwauvvsouu+yy2f0tWbKExYsXc/TRRwOwYcMGhgxp8wLTFuupwXQ5MCci3pK0jk0v43VkIvBDSVcAfYBfAA4mM6t6Z555JjNnzuSVV15hwoQJ3HrrraxatYrGxkb69OlDXV3dJr9vtNVWW/Hee+/9fb5leUQwYsQI5syZU/E6e1wwRcRsskBpmd+vbLouTa4GRpa1/3vZ9IvAJuODmJlVuwkTJnDBBRewevVqHn74YaZPn87OO+9Mnz59eOihh3jppZc22WbPPffkmWee4Z133uHtt99m9uzZHH744ey///6sWrWKOXPmcMghh7B+/XqWLl3KiBEjPnCdPS6Y8jBq6EBKfq2NmW2BPF6FNWLECN58802GDh3KkCFDmDhxIieffDKjRo2ivr6e4cOHb7LN7rvvzllnncXIkSPZa6+9GDt2LABbb701M2fO5OKLL6a5uZl3332XSy65pCLBpM7e6LL21dfXhwcKNLOOPPvssxxwQO0+S9XW8UtqjIj61uv2qKfyzMys+jmYzMysUBxMZmbdpFZvnWzpcTuYzMy6Qb9+/Xj99ddrLpxaxmPq169fp7fxU3lmZt1gt912Y/ny5axatSrvUrpdywi2neVgMjPrBn369On0CK61zpfyzMysUBxMZmZWKA4mMzMrFN9jqoCmFc0VH43SiiuPV8mY1RL3mMzMrFBqNpgkTZJ0Q5r+oqTP512TmZnV6KU8SRsdd0TclFctZma2saoOJklXAp8DVgF/AhqBZmAysDXwB+CciFgraSqwDhgLPAYsKtvPVcCaiPh3SfsCNwGDyYZcPzMi/thdx2RmVuuq9lKepIOA04HRwPFAy6vT74yIgyJiNPAscH7ZZrsBh0bEpR3s+lbgxrT9ocDKdj5/sqSSpNKGtc0f8GjMzKxFNfeYDgPujoh1wDpJv0rtIyVdDWwP9AfuK9tmRkRsaG+HkgYAQyPiLoC07zZFRAPQANB3yLDaevmVmVkXqtoeUwemAl+OiFHAN4HyNwe+lUtFZmbWadUcTI8BJ0vqJ6k/cFJqHwCslNQHmLglO4yIN4Hlkk4DkNRX0jaVLNrMzDpWtcEUEXOBe8geYvgt0ET24MOVwJNkwfXc+9j1OcDFkhYBjwO7VKRgMzPrFFXz2CCS+kfEmtSreQSYHBHzuruO+vr6KJVK3f2xZmZVTVJjRNS3bq/mhx8AGiQdSHYfaVoeoWRmZpVV1cEUEZ/NuwYzM6usqr3HZGZmPZODyczMCsXBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrlKr+BduiaFrRTN2UWXmXYVVo2TUn5l2CWeG4x2RmZoXiYDIzs0Kp+mCS9L8lHZV3HWZmVhlVf48pIr7R1Z8hqXdHQ7KbmVnlVFWPSdKVkpZI+r2k2yRdJmmqpDPS8mWSvilpnqQmScNT+2BJD0h6WtL/kfSSpEFp2eckPSVpgaSbJfVO7WskfVvSQuCQ3A7azKzGVE0wSToIOB0YDRwPbDK4VLI6IsYBPwQuS23/C3gwIkYAM4E90j4PACYAh0XEGGAD/xiOfVvgyYgYHRG/b6OeyZJKkkob1jZX5BjNzKy6LuUdBtwdEeuAdZJ+1c56d6Y/G4F/StOHA58GiIh7Jf0ltR8JjAfmSgL4EPBaWrYBuKO9YiKiAWgA6DtkWPUOA2xmVjDVFEyd9U76cwObPz6RjXz79TaWrfN9JTOz7lc1l/KAx4CTJfWT1B84aQu3PQtA0jHADql9NnCGpJ3Tsh0l7VnBms3MbAtVTY8pIuZKugdYBLwKNAGdvbnzTeA2SecAc4BXgDcjYrWkK4D7JfUC1gMXAi9V/ADMzKxTFFE9t0ck9Y+INZK2AR4BJkfEvE5s1xfYEBHvSjoE+GF62KEi6uvro1QqVWp3ZmY1QVJjRGzyIFvV9JiSBkkHAv3I7g1tNpSSPYDpqVf0N+CCrirQzMw+mKoKpoj47Pvc7nlgbIXLMTOzLlBNDz+YmVkNcDCZmVmhOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoVSVb9gW1RNK5qpmzIr7zKsB1l2zYl5l2CWG/eYzMysUHpcMEmqk7Q4TX9C0q/T9CmSpuRbnZmZbU7NXMqLiHuAe/Kuw8zMOla4HpOkbSXNkrRQ0mJJEyQdJOnx1PaUpAGpZ/SopHnp69DN7HeSpBvSdJ2kByUtkjRb0h6pfaqk69NnvSDpjO44ZjMz+4ci9piOA16OiBMBJA0E5gMT0mCB2wFvA68BR0fEOknDgNuATcb1aMf3yYbNmCbpPOB64LS0bAhwODCcrIc1s60dSJoMTAbovd3gLT9KMzNrU+F6TGQj0x4t6VpJR5CNpbQyIuYCRMQbEfEu0Af4kaQmYAZw4BZ8xiHAz9P0T8mCqMUvI+K9iHgG+HB7O4iIhoioj4j63tsM3IKPNjOzjhSuxxQRSyWNA04ArgYebGfVr5ANsT6aLGDXVaiEd8qmVaF9mplZJxWuxyRpV2BtRPwMuA74KDBE0kFp+QBJWwEDyXpS7wHnAL234GMeB85O0xOBRytVv5mZfTCF6zEBo4DrJL0HrAe+RNZz+b6kD5HdXzoK+AFwh6TPA/cCb23BZ1wE3CLpa8Aq4AsVrN/MzD4ARUTeNVS9vkOGxZBz/yPvMqwH8ZsfrBZIaoyITR5aK2KPqeqMGjqQkv8hMTOriMLdYzIzs9rmYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxQHk5mZFYqDyczMCsXBZGZmheJgMjOzQvEriSqgaUUzdVNm5V2G9XB+f57VCveYzMysUBxMZmZWKA4mMzMrlB4fTJI+J+kpSQsk3Sypt6TzJS1N7T+SdENadx9JT0hqknS1pDV5129mVmt6dDBJOgCYABwWEWOADWRDqV8JHAwcBgwv2+R7wPciYhSwfDP7niypJKm0YW1zl9RvZlaLenQwAUcC44G5khak+UuBhyPizxGxHphRtv4hZfM/72jHEdEQEfURUd97m4FdULqZWW3q6cEkYFpEjElf+wNX5VyTmZl1oKcH02zgDEk7A0jaEZgPfFzSDpK2Ak4vW/+Jsvmzu7VSMzMDengwRcQzwBXA/ZIWAQ8AQ4B/BZ4CHgOWAS03iS4BLk3r7lvWbmZm3aTHv/khIm4Hbi9vk7Q4IhpSj+ku4Jdp0Qrg4IgISWcD+3dvtWZm1uODqR1XSToK6Afczz+CaTxwgyQBfwXO68zORg0dSMmvizEzq4iaDKaIuKyd9keB0d1cjpmZlenR95jMzKz6OJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaHU5JsfKq1pRTN1U2blXYbViGV+/ZX1cO4xmZlZodRsMEn6naT6vOswM7ON1WwwmZlZMfWoYJK0raRZkhZKWixpgqRvSJqb5hvSkBbl2/SSNFXS1Wn+GElzJM2TNENS/3yOxsysNvWoYAKOA16OiNERMRK4F7ghIg5K8x8CTipbfyvgVuD5iLhC0iCyEW+PiohxQAm4tK0PkjRZUklSacNaD3RrZlYpPS2YmoCjJV0r6YiIaAY+KelJSU3Ap4ARZevfDCyOiH9J8wcDBwKPSVoAnAvs2dYHRURDRNRHRH3vbQZ22QGZmdWaHvW4eEQslTQOOAG4WtJs4EKgPiL+JOkqslFrWzxOFlzfjoh1gIAHIuIz3V27mZllelSPSdKuwNqI+BlwHTAuLVqd7hWd0WqTHwO/AaZL2gp4AjhM0r5pf9tK2q97qjczM+hhPSZgFHCdpPeA9cCXgNOAxcArwNzWG0TEdyQNBH4KTAQmAbdJ6ptWuQJY2vWlm5kZgCIi7xqqXn19fZRKpbzLMDOrKpIaI2KT3yftUZfyzMys+jmYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKxcFkZmaF4mAyM7NCcTCZmVmhOJjMzKxQetq78nLRtKKZuimz8i7DrBCWXXNi3iVYlXOPyczMCsXBZGZmhZJrMEk6TdKBnVhvqqTWYykh6ROSfl3BeuolXZ+mJ0m6oVL7NjOzzsm7x3Qa2VDmhRARpYi4OO86zMxqWYfBJOkaSReWzV8l6TJJX5M0V9IiSd8sW36lpCWSfi/pNkmXpfZ9JN0rqVHSo5KGSzoUOIVsYL8FaZ0L0n4XSrpD0jZl5RwlqSRpqaST2qh1W0k/kfSUpPmSTu3guPpJukVSU1r3k6m9oj0wMzPbcpvrMd0OnFU2fxawChgGfAQYA4yX9DFJBwGnA6OB44HywZ8agIsiYjxwGfCDiHgcuAf4WkSMiYg/AndGxEERMRp4Fji/bB916TNPBG6S1K9VrZcDD0bER4BPkgXetu0c14VARMQo4DPAtDb21yFJk1NQljasbd6STc3MrAMdPi4eEfMl7SxpV2Aw8Bey4cuPAean1fqTBdUA4O6IWAesk/QrAEn9gUOBGZJadt2Xto2UdDWwfdrvfWXLpkfEe8Dzkl4Ahrfa9hjglJZeGtAP2IMs4Fo7HPh+OsbnJL0E7NfRuWgtIhrIApe+Q4Z5GGAzswrpzO8xzQDOAHYh60HtCfxbRNxcvpKkS9rZvhfw14gY04nPmgqcFhELJU0CPlG2rPU//q3nBZweEUs68TlmZlZQnXn44XbgbLJwmkHWizkv9YSQNFTSzsBjwMnp/k1/4CSAiHgDeFHSmWl9SRqd9v0mWU+rxQBgpaQ+wMRWdZwpqZekfYC9gdYBdB9wkVK3TNLYDo7p0Zb9S9qPrGflQDMzK4DNBlNEPE0WGCsiYmVE3A/8HJgjqQmYCQyIiLlk94wWAb8FmoCWmy8TgfMlLQSeBloeTPgF8LX0AMI+wJXAk2Qh91yrUv4f8FTa9xfTJcNy/wz0ARZJejrNt+cHQK9U/+3ApIh4Z3PnwszMup4iKnd7RFL/iFiTnqZ7BJgcEfMq9gEFVV9fH6VSKe8yzMyqiqTGiKhv3V7pd+U1pF+Y7QdMq4VQMjOzyqpoMEXEZyu5vw9K0rHAta2aX4yIT+dRj5mZbV6Pfrt4RNzHxo+cm5lZweX9SiIzM7ONOJjMzKxQHExmZlYoDiYzMysUB5OZmRWKg8nMzArFwWRmZoXSo3+Pqbs0rWimbsqsvMswqyrLrjkx7xKsoNxjMjOzQqmKYJK0q6SZeddhZmZdryqCKSJejogz8vhsSb7caWbWjQoXTJKukXRh2fxVki6TtDjNT5J0p6R7JT0v6Vtl6x4jaY6keZJmlA1meIKk5yQ1Srpe0q9T+0fS+vMlPS5p/7LPuEfSg8Dsbj0BZmY1rnDBRDZw31ll82eRDR5YbgwwARgFTJC0u6RBwBXAURExDigBl0rqB9wMHB8R44HBZft5DjgiIsYC3wD+tWzZOOCMiPh4W0VKmiypJKm0YW1zW6uYmdn7ULjLVBExX9LOknYlC5G/AH9qtdrsiGgGkPQMsCewPXAg8FgaXX1rYA4wHHghIl5M294GTE7TA4FpkoYBQTYCbosHIuLPHdTZADQA9B0yrHKjLZqZ1bjCBVMyAzgD2IWsB9Va+TDoG8iOQ2Rh8pnyFSWN6eBz/hl4KCI+LakO+F3Zsre2uGozM/vAingpD7IwOpssnGZ0cpsngMMk7QsgaVtJ+wFLgL1T8EB2CbDFQGBFmp70wUo2M7NKKGQwRcTTwABgRUSs7OQ2q8jC5TZJi0iX8SLibeC/AvdKagTeBFpuCn0L+DdJ8ylu79HMrKYoouffHpHUPyLWKLv5dCPwfER8t1L77ztkWAw59z8qtTuzmuA3P5ikxoiob91eK72ECySdS/ZAxHyyp/QqZtTQgZT8l8zMrCJqIphS76hiPSQzM+s6hbzHZGZmtcvBZGZmheJgMjOzQnEwmZlZoTiYzMysUBxMZmZWKA4mMzMrFAeTmZkVioPJzMwKpSbe/NDVmlY0UzdlVt5lmFkX8Dv9up97TGZmVig1F0ySfiNp+7zrMDOzttXUpbw07MVJEfFe3rWYmVnbenyPSVKdpCWS/hNYDGyQNCgt+7ykRZIWSvppahss6Q5Jc9PXYXnWb2ZWa2qlxzQMODcinpC0DEDSCOAK4NCIWC1px7Tu94DvRsTvJe0B3Acc0HqHkiYDkwF6bze4Gw7BzKw21EowvRQRT7Rq+xQwIyJWA0TEn1P7UcCB2VU/ALZrGQG3fOOIaAAaIBvBtssqNzOrMbUSTG9twbq9gIMjYl1XFWNmZu3r8feYOvAgcKaknQDKLuXdD1zUspKkMTnUZmZWs2o2mCLiaeBfgIclLQS+kxZdDNSnhyKeAb6YV41mZrWox1/Ki4hlwMiy+bqy6WnAtFbrrwYmdFN5ZmbWSo8Ppu4wauhASn5tiZlZRdTspTwzMysmB5OZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVigOJjMzKxS/+aECmlY0UzdlVt5lmJl1q2Vd9MYb95jMzKxQHExmZlYoDiYzMysUB5OZmRVKlwaTpG0lzZK0UNJiSRMkHSlpvqQmST+R1FfSpyT9smy7oyXd1c4+e0uamvbXJOkrqf0CSXPTZ90haZvUPlXSGWXbrymb/h9pHwslXZPa9pF0r6RGSY9KGt5V58fMzDbV1T2m44CXI2J0RIwE7gWmAhMiYhTZU4FfAh4ChksanLb7AvCTdvY5BhgaESPTPm5J7XdGxEERMRp4Fji/o8IkHQ+cCnw0bfOttKgBuCgixgOXAT9oZ/vJkkqSShvWNnd8FszMrNO6OpiagKMlXSvpCKAOeDEilqbl04CPRUQAPwU+J2l74BDgt+3s8wVgb0nfl3Qc8EZqH5l6OE3ARGDEZmo7CrglItYCRMSfJfUHDgVmSFoA3AwMaWvjiGiIiPqIqO+9zcDNnQczM+ukLv09pohYKmkccAJwNfBgB6vfAvwKWAfMiIh329nnXySNBo4FvgicBZxH1hM7LSIWSpoEfCJt8i4pgCX1ArbuoIZewF8jYkxnjs/MzCqvq+8x7QqsjYifAdeR9YTqJO2bVjkHeBggIl4GXgau4B+X59ra5yCgV0TckdYdlxYNAFZK6kPWY2qxDBifpk8B+qTpB4AvlN2L2jEi3gBelHRmalMKQTMz6yZd/eaHUcB1kt4D1pPdTxpIdqlsK2AucFPZ+rcCgyPi2Q72ORS4JfV+AL6e/rwSeBJYlf4ckNp/BNwtaSHZPa63ACLiXkljgJKkvwG/Af4nWaj9UNIVZCH2C2Dh+zx+MzPbQspu7xSDpBuA+RHx47xr2RL19fVRKpXyLsPMrKpIaoyI+tbthXlXnqRGst7MV/OuxczM8lOYYEqPZ29E0pNA31bN50REU/dUZWZm3a0wwdSWiPho3jWYmVn38iuJzMysUBxMZmZWKIV6Kq9aSXoTWJJ3HZ00CFiddxFbwPV2LdfbdaqpVuj+elcDRMRxrRcU+h5TFVnS1iOPRSSpVC21guvtaq6361RTrVCsen0pz8zMCsXBZGZmheJgqoyGvAvYAtVUK7jeruZ6u0411QoFqtcPP5iZWaG4x2RmZoXiYDIzs0JxMH0Ako6TtETSHyRNybue1iTtLukhSc9IelrSf0vtV0laIWlB+joh71pbSFomqSnVVUptO0p6QNLz6c8d8q4TQNL+ZedwgaQ3JF1SpPMr6SeSXpO0uKytzfOZxh+7Pv08L0qDfOZd63WSnkv13JVGuEZSnaS3y87xTe3vuVvrbfd7L+nr6dwukXRsQeq9vazWZWnk7vzPb0T46318Ab2BPwJ7k42KuxA4MO+6WtU4BBiXpgcAS4EDgauAy/Kur52alwGDWrV9C5iSpqcA1+ZdZzs/D68Aexbp/AIfIxtMc/HmzifZSNO/BQQcDDxZgFqPAbZK09eW1VpXvl6Bzm2b3/v0924h2Uup90r/dvTOu95Wy78NfKMI59c9pvfvI8AfIuKFiPgb2YCCp+Zc00YiYmVEzEvTbwLPkg20WG1OBaal6WnAaTnW0p4jgT9GxEt5F1IuIh4B/tyqub3zeSrwn5F5Athe0pDuqbTtWiPi/oh4N80+AezWXfVsTjvntj2nAr+IiHci4kXgD2T/hnSbjuqVJOAs4LburKk9Dqb3byjwp7L55RT4H31JdcBYstF9Ab6cLo/8pCiXxpIA7pfUKGlyavtwRKxM068AH86ntA6dzcZ/qYt6fqH981n0n+nzyHp0LfaSNF/Sw5KOyKuoNrT1vS/6uT0CeDUini9ry+38OphqgKT+wB3AJRHxBvBDYB9gDLCSrAtfFIdHxDjgeOBCSR8rXxjZdYZC/Y6DpK2BU4AZqanI53cjRTyfbZF0OfAucGtqWgnsERFjgUuBn0vaLq/6ylTN976Vz7Dxf6xyPb8OpvdvBbB72fxuqa1QJPUhC6VbI+JOgIh4NSI2RMR7wI/o5ksKHYmIFenP14C7yGp7teWSUvrztfwqbNPxwLyIeBWKfX6T9s5nIX+mJU0CTgImpiAlXRJ7PU03kt2z2S+3IpMOvveFPLcAkrYC/gm4vaUt7/PrYHr/5gLDJO2V/sd8NnBPzjVtJF03/jHwbER8p6y9/L7Bp4HFrbfNg6RtJQ1omSa78b2Y7Lyem1Y7F7g7nwrbtdH/Not6fsu0dz7vAT6fns47GGguu+SXC0nHAf8dOCUi1pa1D5bUO03vDQwDXsinyn/o4Ht/D3C2pL6S9iKr96nurq8dRwHPRcTylobcz29eT130hC+yp5iWkv1v4vK862mjvsPJLtMsAhakrxOAnwJNqf0eYEjetaZ69yZ7cmkh8HTLOQV2AmYDzwP/F9gx71rLat4WeB0YWNZWmPNLFpgrgfVk9zXOb+98kj2Nd2P6eW4C6gtQ6x/I7s20/PzelNY9Pf2MLADmAScX5Ny2+70HLk/ndglwfBHqTe1TgS+2WjfX8+tXEpmZWaH4Up6ZmRWKg8nMzArFwWRmZoXiYDIzs0JxMJmZWaE4mMzMrFAcTGZmVij/H6ovFeU7ywQTAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "japanese_ingredient_df = create_ingredient_df(japanese_df)\r\n", + "japanese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfeElEQVR4nO3deZwV1Z338c8XbCEKYlSMiEurISECsl1NULO5xD2aCYgT4hLzkkcn4pgEnyGPJoMTM+OSbTRGJRmFUUcF1GjCqHGUuBL1NggNKmgiPmGJ4tZiEILwmz/qtN603U033O5bl/6+X69+dd1Tp079Thfxl3Oqbh1FBGZmZnnRrdIBmJmZlXJiMjOzXHFiMjOzXHFiMjOzXHFiMjOzXNmm0gFsDXbZZZeora2tdBhmZlWlrq7u1Yjo27TciakMamtrKRaLlQ7DzKyqSHqpuXJP5ZmZWa44MZmZWa44MZmZWa74HpOZWSdYv349y5YtY+3atZUOpdP17NmTPfbYg5qamjbVd2Iqg/rlDdROmlXpMKyDLb30uEqHYFVs2bJl9O7dm9raWiRVOpxOExG89tprLFu2jH322adNx3gqz8ysE6xdu5add965SyUlAEnsvPPO7RopOjGZmXWSrpaUGrW3305MZmaWK7m4xyTpNGAiEMACYDpwEbAt8BowDlgFLAYOjohVkroBS4BRqZlrgb3S9vkR8Zikyals3/T7pxFxpaRa4B7gUeBgYDlwYkS8I2k/4GqgL7AGOCsinuu43ptZV1Tu+9Llvgfaq1cv3n777bK22VYVHzFJGkSWhA6LiKHAP5IljE9FxHDgVuD/RsRG4CayJAVwBDA/IlYB/w78JCIOBL4M/LLkFAOBo4CDgH+W1PhYyADg6ogYBLyZjgOYAkyIiJFkyfLnLcQ9XlJRUnHDmoYt/juYmVmm4okJOAyYERGvAkTE68AewH2S6oELgEGp7vXAaWn7TOCGtH0E8DNJTwN3AztI6pX2zYqIdan9V4CPpPIXI+LptF0H1KZjDgZmpLauA/o1F3RETImIQkQUum/XZwv/BGZmHWvSpElcffXV732ePHkyl1xyCYcffjgjRoxgyJAh3HXXXR847ne/+x3HH3/8e5/PPfdcpk6dCkBdXR2f/exnGTlyJEcddRQrV64sS6x5SEzNuQr4WUQMAf4P0BMgIv4EvCzpMLIR0D2pfjeyEdaw9NM/IhrHoOtK2t3A+9OXzZV3A94saWdYRHyiIzpoZtaZxo4dy/Tp09/7PH36dE4//XTuvPNO5s6dy+zZs/n2t79NRLSpvfXr1zNhwgRmzpxJXV0dZ555JhdeeGFZYs3DPaYHgTsl/TgiXpO0E9CH7L4PwOlN6v+SbErvxojYkMp+C0wArgCQNKxkNNRmEfGWpBcljYmIGcoeJTkgIuZvRr/MzHJj+PDhvPLKK6xYsYJVq1bx4Q9/mN12241vfvObPPzww3Tr1o3ly5fz8ssvs9tuu22yvcWLF7Nw4UKOPPJIADZs2EC/fs1OMLVbxRNTRCyS9APgIUkbgHnAZLLptDfIElfpt7LuJpvCu6Gk7DzgakkLyPr0MHD2ZoY0DrhG0kVADdk9LicmM6t6Y8aMYebMmfz5z39m7Nix3HzzzaxatYq6ujpqamqora39wPeNttlmGzZu3Pje58b9EcGgQYOYM2dO2eOseGICiIhpwLQmxR+c7MwMJXvo4b0n5dL9o7HNtDu5yefBJR8Hl5T/sGT7ReDotsZuZlYtxo4dy1lnncWrr77KQw89xPTp09l1112pqalh9uzZvPTSB1eh2HvvvXnmmWdYt24d77zzDg888ACHHnooH//4x1m1ahVz5sxh1KhRrF+/niVLljBo0KBmztw+uUhMbSVpEnAO7z+ZlwtD+veh6NfVmFk7VOIVV4MGDWL16tX079+ffv36MW7cOE444QSGDBlCoVBg4MCBHzhmzz335OSTT2bw4MHss88+DB8+HIBtt92WmTNnct5559HQ0MC7777L+eefX5bEpLbe6LKWFQqF8EKBZtaaZ599lk98ous+S9Vc/yXVRUShad28PpVnZmZdlBOTmZnlihOTmVkn6aq3TtrbbycmM7NO0LNnT1577bUul5wa12Pq2bNnm4+pqqfyzMyq1R577MGyZctYtWpVpUPpdI0r2LaVE5OZWSeoqalp8wquXZ2n8szMLFecmMzMLFecmMzMLFd8j6kM6pc3lH01SsuvSrxKxqwr8YjJzMxypcslJkn/LWnHSsdhZmbN61JTeWnhv+MjYuMmK5uZWUVs9SMmSbWSFkv6T2AhsEHSLmnfaZIWSJov6cZU1lfS7ZKeSj+HVDJ+M7OupquMmAYAp0fE7yUtBZA0CLgIODgiXk1LugP8O/CTiHhU0l7AfcAH3lUvaTwwHqD7Dn07oQtmZl1DV0lML0XE75uUHQbMSKvfEhGvp/IjgP2zWT8AdpDUKyLeLj04IqYAUwB69BvQtV5+ZWbWgbpKYvpLO+p2Az4VEWs3WdPMzMpuq7/H1IoHgTGSdgYomcr7LTChsZKkYRWIzcysy+qyiSkiFgE/AB6SNB/4cdp1HlBID0U8A5xdqRjNzLoidbW1QTpCoVCIYrFY6TDMzKqKpLqIKDQt77IjJjMzyycnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzyxUnJjMzy5Wu8nbxDlW/vIHaSbMqHYblxNJLj6t0CGZVzSMmMzPLFScmMzPLlapITJJ2lzSz0nGYmVnHq4rEFBErImJ0Jc4tyffhzMw6Ue4Sk6RLJX2j5PNkSRMlLUyfz5B0h6R7JT0v6fKSul+QNEfSXEkzJPVK5cdKek5SnaQrJf0mlR+U6s+T9Likj5ec425JDwIPdOofwMysi8tdYgJuA04u+Xwy8ESTOsOAscAQYKykPSXtAlwEHBERI4Ai8C1JPYHrgGMiYiTQt6Sd54BPR8Rw4HvAv5bsGwGMjojPNhekpPGSipKKG9Y0bG5fzcysidxNU0XEPEm7StqdLIm8AfypSbUHIqIBIC1/vjewI7A/8JgkgG2BOcBA4I8R8WI69hZgfNruA0yTNAAIoKbkHPdHxOutxDkFmALQo98ALwNsZlYmuUtMyQxgNLAb2QiqqXUl2xvI+iGyZPL3pRUlDWvlPN8HZkfElyTVAr8r2feXdkdtZmZbLI9TeZAlo1PIktOMNh7ze+AQSR8FkLS9pI8Bi4F9U+KBbAqwUR9gedo+Y8tCNjOzcshlYoqIRUBvYHlErGzjMavIksstkhaQpvEi4h3gH4B7JdUBq4HGm0KXA/8maR75HT2amXUpitj6b49I6hURbyu7+XQ18HxE/KRc7RcKhSgWi+VqzsysS5BUFxGFpuW5HDF1gLMkPQ0sIpu+u67C8ZiZWQu6xPRVGh2VbYRkZmYdp6uMmMzMrEo4MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa44MZmZWa50iS/YdrT65Q3UTppV6TDM2mTppcdVOgSzVnnEZGZmuVL1iUnS+ZK2K1Nbn2tcdt3MzCqj6hMTcD7QrsQkqXsHxWJmZluoqhJTWvxvlqT5khZK+mdgd2C2pNmpzjWSipIWSbq45Nilki6TNBcYI+mjkv4ntTVX0n6pai9JMyU9J+nmtFSGmZl1kmp7+OFoYEVEHAcgqQ/wNeDzEfFqqnNhRLyeRkUPSDogIhakfa9FxIh07BPApRFxp6SeZEl6T2A4MAhYATwGHAI82jQQSeOB8QDdd+jbMb01M+uCqmrEBNQDR6aRz6cjoqGZOienUdE8sgSzf8m+2wAk9Qb6R8SdABGxNiLWpDpPRsSyiNgIPA3UNhdIREyJiEJEFLpv16csnTMzsyobMUXEEkkjgGOBSyQ9ULpf0j7ARODAiHhD0lSgZ0mVv7ThNOtKtjdQZX8jM7NqV1UjJkm7A2si4ibgCmAEsBronarsQJZ8GiR9BDimuXYiYjWwTNJJqd0e5Xqyz8zMtky1jQaGAFdI2gisB84BRgH3SloREZ+XNA94DvgT2T2ilpwKXCfpX1JbYzo2dDMzawtFRKVjqHo9+g2Ifqf/tNJhmLWJ3/xgeSGpLiIKTcurbcSUS0P696Ho/7GbmZVFVd1jMjOzrZ8Tk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YoTk5mZ5YpfSVQG9csbqJ00q9JhmLWL35lneeURk5mZ5YoTk5mZ5UpFE5OkkyTt34Z6UyWNbqb8c5J+U8Z4CpKuTNtnSPpZudo2M7O2qfSI6SRgk4mps0REMSLOq3QcZmZdWauJSdKlkr5R8nmypImSLpD0lKQFki4u2f9dSYslPSrpFkkTU/l+ku6VVCfpEUkDJR0MfJFsRdqnU52zUrvzJd3eZLnzIyQVJS2RdHwzsW4v6XpJT0qaJ+nEVvrVU9INkupT3c+n8jaPwCSNT/EUN6xpaMshZmbWBpsaMd0GnFzy+WRgFTAAOAgYBoyU9BlJBwJfBoYCxwClqxJOASZExEhgIvDziHgcuBu4ICKGRcQfgDsi4sCIGAo8C3y9pI3adM7jgGsl9WwS64XAgxFxEPB5soS3fQv9+gYQETEE+HtgWjPttSoipkREISIK3bfr055DzcysFa0+Lh4R8yTtKml3oC/wBjAE+AIwL1XrRZaoegN3RcRaYK2kXwNI6gUcDMyQ1Nh0jxZOOVjSJcCOqd37SvZNj4iNwPOS/ggMbHLsF4AvNo7SgJ7AXmQJrqlDgatSH5+T9BLwsdb+FmZm1jna8j2mGcBoYDeyEdTewL9FxHWllSSd38Lx3YA3I2JYG841FTgpIuZLOgP4XMm+aFK36WcBX46IxW04j5mZ5VRbHn64DTiFLDnNIBvFnJlGQkjqL2lX4DHghHT/phdwPEBEvAW8KGlMqi9JQ1Pbq8lGWo16Aysl1QDjmsQxRlI3SfsB+wJNE9B9wASlYZmk4a306ZHG9iV9jGxk5YRmZpYDm0xMEbGILGEsj4iVEfFb4L+AOZLqgZlA74h4iuye0QLgHqAeaHwqYBzwdUnzgUVA44MJtwIXpAcQ9gO+CzxBluSeaxLK/weeTG2fnaYMS30fqAEWSFqUPrfk50C3FP9twBkRsW5TfwszM+t4img6I7YFjUm9IuLt9DTdw8D4iJhbthPkVKFQiGKxWOkwzMyqiqS6iCg0LS/3u/KmpC/M9gSmdYWkZGZm5VXWxBQRXylne1tK0lHAZU2KX4yIL1UiHjMz27St+u3iEXEff/vIuZmZ5VylX0lkZmb2N5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV5yYzMwsV7bq7zF1lvrlDdROmlXpMMw6xNJLj6t0CNbFeMRkZma54sRkZma54sTUhKSzJZ2WtqdKGl3pmMzMuhLfY2oiIq6tdAxmZl1ZWUdMkraXNEvSfEkLJY2VNFLSQ5LqJN0nqV+qe56kZyQtkHRrKjtI0py0cODjkj6eys+Q9CtJ90taKulcSd9K9X4vaadUbz9J96ZzPSJpYCux1kp6MJ3/AUl7pfLJkia2oa/jJRUlFTesadhUdTMza6NyT+UdDayIiKERMRi4F7gKGB0RI4HrgR+kupOA4RFxAHB2KnsO+HREDAe+B/xrSduDgb8DDkxtrEn15gCnpTpTgAnpXBPJVqptyVVka0YdANwMXNmejkbElIgoRESh+3Z92nOomZm1otxTefXAjyRdBvwGeIMsodwvCaA7sDLVXQDcLOlXwK9SWR9gmqQBQJAtld5odkSsBlZLagB+XXLOAyT1Ag4GZqRzAfRoJdZRZIkO4Ebg8vZ318zMyq3cCwUukTQCOBa4BHgQWBQRo5qpfhzwGeAE4EJJQ4DvkyWgL0mqBX5XUn9dyfbGks8byfrRDXgzIoaVrUNmZtbpyn2PaXeyKbabgCuATwJ9JY1K+2skDZLUDdgzImYD/0Q2UuqVfi9PzZ3RnnNHxFvAi5LGpHNJ0tBWDnkcOCVtjwMeac/5zMysY5R7Km8IcIWkjcB64BzgXeBKSX3S+X4KLAFuSmUCroyINyVdTjaVdxGwOa9SGAdck46vAW4F5rdQdwJwg6QLgFXA1zbjfAAM6d+Hor8db2ZWFoqISsdQ9QqFQhSLxUqHYWZWVSTVRUShabm/YGtmZrmy1X/BVtKFwJgmxTMi4gfN1Tczs8ra6hNTSkBOQmZmVcJTeWZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitOTGZmlitb/ePinaF+eQO1kzbnDUpmtqWW+nVgWx2PmMzMLFecmMzMLFe2usSUlkxfmLY/J+k3afuLkiZVNjozM9uULnOPKSLuBu6udBxmZta63I2YJG0vaZak+ZIWShor6UBJj6eyJyX1TiOjRyTNTT8Hb6LdMyT9LG3XSnpQ0gJJD0jaK5VPlXRlOtcfJY3ujD6bmdn78jhiOhpYERHHAaTFBOcBYyPiKUk7AO8ArwBHRsRaSQOAW4APrOvRgquAaRExTdKZwJXASWlfP+BQYCDZCGtmcw1IGg+MB+i+Q9/299LMzJqVuxETUA8cKekySZ8G9gJWRsRTkC2hHhHvkq1Q+wtJ9cAMYP92nGMU8F9p+0ayRNToVxGxMSKeAT7SUgMRMSUiChFR6L5dn3ac2szMWpO7EVNELJE0AjgWuAR4sIWq3wReBoaSJdi1ZQphXcm2ytSmmZm1Ue5GTJJ2B9ZExE3AFcAngX6SDkz7e0vaBuhDNpLaCJwKdG/HaR4HTknb44BHyhW/mZltmdyNmIAhwBWSNgLrgXPIRi5XSfoQ2f2lI4CfA7dLOg24F/hLO84xAbhB0gXAKuBrZYzfzMy2gCKi0jFUvUKhEMVisdJhmJlVFUl1EfGBh9ZyN5VnZmZdmxOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlihOTmZnlSh7flVd16pc3UDtpVqXDMLMyWnrpcZUOocvyiMnMzHKlyyamJkutn53eUm5mZhXWJafy0npO74mIaysVi5mZ/a2qTkySvgt8lWxNpT8BdUADMB7YFngBODUi1kiaSrbK7XDgMWBBSTuTgbcj4oeSPgpcC/QFNgBjIuIPndUnM7Ourmqn8tKKtl8mW1r9GKBxTY87IuLAiBgKPAt8veSwPYCDI+JbrTR9M3B1Ov5gYGUL5x8vqSipuGFNwxb2xszMGlXziOkQ4K6IWAuslfTrVD5Y0iXAjkAv4L6SY2ZExIaWGpTUG+gfEXcCpLabFRFTgCkAPfoN8GqLZmZlUrUjplZMBc6NiCHAxUDPkn3tWX7dzMwqoJoT02PACZJ6SuoFHJ/KewMrJdUA49rTYESsBpZJOglAUg9J25UzaDMza13VJqaIeAq4m+whhnuAerIHH74LPEGWuJ7bjKZPBc6TtAB4HNitLAGbmVmbKKJ6b49I6hURb6dRzcPA+IiY29lx9Og3IPqd/tPOPq2ZdSC/+aHjSaqLiELT8mp++AFgiqT9ye4jTatEUgIY0r8PRf8jNjMri6pOTBHxlUrHYGZm5VW195jMzGzr5MRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma54sRkZma5UtVvfsiL+uUN1E6aVekwzKwD+J15nc8jJjMzy5WqT0yS/kXSEZWOw8zMyqPqp/Ii4nsdfQ5J3Vtbkt3MzMqnqkZMkr4rabGkRyXdImmipKmSRqf9SyVdLGmupHpJA1N5X0n3S1ok6ZeSXpK0S9r3VUlPSnpa0nWSuqfytyX9SNJ8YFTFOm1m1sVUTWKSdCDwZWAocAzwgcWlklcjYgRwDTAxlf0z8GBEDAJmAnulNj8BjAUOiYhhwAbeX459e+CJiBgaEY82E894SUVJxQ1rGsrSRzMzq66pvEOAuyJiLbBW0q9bqHdH+l0H/F3aPhT4EkBE3CvpjVR+ODASeEoSwIeAV9K+DcDtLQUTEVOAKZCtYLs5HTIzsw+qpsTUVuvS7w1sun8iW/n2O83sW+v7SmZmna9qpvKAx4ATJPWU1As4vp3Hngwg6QvAh1P5A8BoSbumfTtJ2ruMMZuZWTtVzYgpIp6SdDewAHgZqAfaenPnYuAWSacCc4A/A6sj4lVJFwG/ldQNWA98A3ip7B0wM7M2qZrElPwwIiZL2g54GKiLiF807oyI2pLtIvC59LEBOCoi3pU0CjgwItalercBtzU9UUT06rBemJlZi6otMU2RtD/Qk+ze0Nw2HrcXMD2Niv4KnFXOoIb070PRry0xMyuLqkpMEfGVzTzueWB4mcMxM7MOUE0PP5iZWRfgxGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrnixGRmZrlSVV+wzav65Q3UTppV6TDMzDrV0g56441HTGZmlitOTGZmlitOTGZmlitOTGZmlisdmpgkbS9plqT5khZKGivpcEnzJNVLul5SD0mHSfpVyXFHSrqzhTa7S5qa2quX9M1Ufpakp9K5bk9rNpHqji45/u2S7X9KbcyXdGkq20/SvZLqJD0iaWBH/X3MzOyDOnrEdDSwIiKGRsRg4F5gKjA2IoaQPRV4DjAbGCipbzrua8D1LbQ5DOgfEYNTGzek8jsi4sCIGAo8C3y9tcAkHQOcCHwyHXN52jUFmBARI4GJwM9bOH68pKKk4oY1bV1I18zMNqWjE1M9cKSkyyR9GqgFXoyIJWn/NOAzERHAjcBXJe0IjALuaaHNPwL7SrpK0tHAW6l8cBrh1APjgEGbiO0I4IaIWAMQEa9L6gUcDMyQ9DRwHdCvuYMjYkpEFCKi0H27Ppv6O5iZWRt16PeYImKJpBHAscAlwIOtVL8B+DWwFpgREe+20OYbkoYCRwFnAycDZ5KNxE6KiPmSzuD9ZdXfJSXgtILttq3E0A14MyKGtaV/ZmZWfh19j2l3YE1E3ARcQTYSqpX00VTlVOAhgIhYAawALuL96bnm2twF6BYRt6e6I9Ku3sBKSTVkI6ZGS4GRafuLQE3avh/4Wsm9qJ0i4i3gRUljUplSEjQzs07S0W9+GAJcIWkjsJ7sflIfsqmybYCngGtL6t8M9I2IZ1tpsz9wQxr9AHwn/f4u8ASwKv3uncp/AdwlaT7ZPa6/AETEvZKGAUVJfwX+G/h/ZEntGkkXkSWxW4H5m9l/MzNrJ2W3d/JB0s+AeRHxH5WOpT0KhUIUi8VKh2FmVlUk1UVEoWl5bt6VJ6mObDTz7UrHYmZmlZObxJQez/4bkp4AejQpPjUi6jsnKjMz62y5SUzNiYhPVjoGMzPrXH4lkZmZ5YoTk5mZ5UqunsqrVpJWA4srHUcZ7QK8Wukgysx9yr+trT+w9fWp3P3ZOyL6Ni3M9T2mKrK4uUceq5Wk4tbUH3CfqsHW1h/Y+vrUWf3xVJ6ZmeWKE5OZmeWKE1N5TKl0AGW2tfUH3KdqsLX1B7a+PnVKf/zwg5mZ5YpHTGZmlitOTGZmlitOTFtA0tGSFkt6QdKkSsezuSQtlVQv6WlJxVS2k6T7JT2ffn+40nG2RtL1kl6RtLCkrNk+pHW2rkzXbUFazDJXWujPZEnL03V6WtKxJfu+k/qzWNJRlYm6ZZL2lDRb0jOSFkn6x1RezdeopT5V83XqKelJSfNTny5O5ftIeiLFfpukbVN5j/T5hbS/tiyBRIR/NuMH6A78AdiXbFXc+cD+lY5rM/uyFNilSdnlwKS0PQm4rNJxbqIPnyFbNHLhpvpAtqLyPYCATwFPVDr+NvZnMjCxmbr7p39/PYB90r/L7pXuQ5MY+wEj0nZvYEmKu5qvUUt9qubrJKBX2q4hW9vuU8B04JRUfi1wTtr+B+DatH0KcFs54vCIafMdBLwQEX+MiL+SLSh4YoVjKqcTgWlpexpwUgVj2aSIeBh4vUlxS304EfjPyPwe2FFSv86JtG1a6E9LTgRujYh1EfEi8ALZv8/ciIiVETE3ba8GniVb9LOar1FLfWpJNVyniIi308ea9BPAYcDMVN70OjVev5nA4ZK0pXE4MW2+/sCfSj4vo/V/lHkWwG8l1Ukan8o+EhEr0/afgY9UJrQt0lIfqvnanZumtq4vmV6tqv6k6Z7hZP9vfKu4Rk36BFV8nSR1l/Q08ApwP9nI7s2IeDdVKY37vT6l/Q3AzlsagxOTARwaESOAY4BvSPpM6c7IxulV/b2CraEPwDXAfsAwYCXwo8qG036SegG3A+dHxFul+6r1GjXTp6q+ThGxISKGAXuQjegGdnYMTkybbzmwZ8nnPVJZ1YmI5en3K8CdZP8YX26cOkm/X6lchJutpT5U5bWLiJfTfzQ2Ar/g/WmgquiPpBqy/4DfHBF3pOKqvkbN9anar1OjiHgTmA2MIptKbXy3amnc7/Up7e8DvLal53Zi2nxPAQPS0yrbkt34u7vCMbWbpO0l9W7cBr4ALCTry+mp2unAXZWJcIu01Ie7gdPSk1+fAhpKppNyq8k9li+RXSfI+nNKekJqH2AA8GRnx9eadN/hP4BnI+LHJbuq9hq11Kcqv059Je2Ytj8EHEl272w2MDpVa3qdGq/faODBNPLdMpV+CqSaf8ieHFpCNgd7YaXj2cw+7Ev2pNB8YFFjP8jmiR8Angf+B9ip0rFuoh+3kE2brCebA/96S30ge/Lo6nTd6oFCpeNvY39uTPEuSP9B6FdS/8LUn8XAMZWOv5n+HEo2TbcAeDr9HFvl16ilPlXzdToAmJdiXwh8L5XvS5ZEXwBmAD1Sec/0+YW0f99yxOFXEpmZWa54Ks/MzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLFicnMzHLlfwHH5sUVMquziAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "chinese_ingredient_df = create_ingredient_df(chinese_df)\r\n", + "chinese_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAD4CAYAAACngkIwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAfTElEQVR4nO3de5RXdb3/8ecLHEEdQkU0fngZNBRFBGH0eMtMTSs17QjiL0tMj/ws01ylHUrr4MnWsU4Xu1iGHsPMo1zSBcVKLe+aF2ZAbhJqggWSgOUkGoTj+/fH/ox8HecK35m9v8zrsdZ3zd6f/dmf/d6f9WXefPbesz+KCMzMzIqiV94BmJmZlXJiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtku7wC2BbvttlvU1NTkHYaZWUWpr69fFxEDm5c7MZVBTU0NdXV1eYdhZlZRJL3YUrkv5ZmZWaE4MZmZWaE4MZmZWaH4HpOZWTfYtGkTK1euZMOGDXmH0u369u3LnnvuSVVVVYfqOzGVwaJVDdRMmpN3GLaNWnHtKXmHYGWwcuVK+vXrR01NDZLyDqfbRASvvPIKK1euZMiQIR3ax5fyzMy6wYYNGxgwYECPSkoAkhgwYECnRopdnpgkXSppqaTbuvpY5SBphaTd8o7DzLY9PS0pNenseXfHpbzPAidGxMpuONbbJG0XEW925zHNzGzrdWliknQDsC/wG0l3APsBBwNVwOSImCXpPOBjwI5p+10R8aW0//qIqE7LY4FTI+I8SfsBtwE7AbOAyyKiWtJxwNeBvwHDgP0lfRK4FNgeeBL4bEQ0SjoJuBroA/wR+HRErC+JfQfgTuDOiLixyzrJzHqkct+XLve9yOrqatavX99+xS7QpZfyIuIi4CXgg2RJ5P6IODyt/7eknVLVUcB4YAQwXtJe7TT9feD7ETECaD4SGw18PiL2l3RgavfoiBgFNALnpEt1V5GN5EYDdcAXStqoBn4F3N5aUpI0UVKdpLrGNxra7wwzM+uQ7nz44SRgkqSngQeBvsDeadt9EdEQERuAZ4B92mnrSGBGWv7fZtueiojlafkEYAwwNx33BLIR3BHAQcBjqXxCs2POAn4WET9vLYCImBIRtRFR23vH/u2Ea2aWr0mTJnH99de/vT558mSuueYaTjjhBEaPHs2IESOYNWvWu/Z78MEHOfXUU99e/9znPsfUqVMBqK+v5wMf+ABjxozh5JNPZvXq1WWJtTsTk4AzI2JU+uwdEUvTto0l9RrZfImxdN73vh08zuvNjnlLyTEPiIjJqfy3JeUHRcQFJfs9BnxYPfVOpZltc8aPH8/06dPfXp8+fToTJkzgrrvuYt68eTzwwAN88YtfJCLaaGWzTZs2cckllzBz5kzq6+s5//zzufLKK8sSa3cmpnuAS5p+2Us6tAP7vCzpQEm9gI+XlD8BnJmWz25j//uAsZJ2T8fcVdI+af+jJb0vle8kaf+S/b5Gdp/q+uYNmplVokMPPZQ1a9bw0ksvsWDBAnbZZRfe+9738pWvfIVDDjmEE088kVWrVvHyyy93qL1ly5axePFiPvShDzFq1CiuueYaVq4szzNu3fkHtl8HrgMWpkSzHDi17V2YBPwaWEt2H6g6lV8G/ELSlcDdQIs3eSLiGUlXAfemY24CLo6IJ9JDF7dL6pOqXwU8W7L754GbJX2r6WEMM7NKNm7cOGbOnMlf/vIXxo8fz2233cbatWupr6+nqqqKmpqad/290Xbbbcdbb7319nrT9ohg+PDhPP7442WPs8sTU0TUlKz+vxa2TwWmlqyfWrI8E5jZQrOrgCMiIiSdDRyQ6j9Idv+qtP1pwLQWjns/cFg78X66hWObmVWk8ePHc+GFF7Ju3Toeeughpk+fzu67705VVRUPPPAAL7747lko9tlnH5555hk2btzIP/7xD+677z6OOeYYDjjgANauXcvjjz/OkUceyaZNm3j22WcZPnz4VsdZqa8kGgP8KF0WfBU4P89gRgzuT51fG2NmnZDHq6aGDx/Oa6+9xuDBgxk0aBDnnHMOp512GiNGjKC2tpZhw4a9a5+99tqLs846i4MPPpghQ4Zw6KHZXZjtt9+emTNncumll9LQ0MCbb77JZZddVpbEpI7e6LLW1dbWhicKNLO2LF26lAMPPDDvMHLT0vlLqo+I2uZ1/a48MzMrFCcmMzMrFCcmM7Nu0lNvnXT2vJ2YzMy6Qd++fXnllVd6XHJqmo+pb9+OviOhcp/KMzOrKHvuuScrV65k7dq1eYfS7ZpmsO0oJyYzs25QVVXV4RlcezpfyjMzs0JxYjIzs0JxYjIzs0LxPaYyWLSqoeyzUZptiTxec2NWbh4xmZlZoTgxmZlZoTgxtUMZ95OZWTcp9C9cSTWS/iDpNklLJc2UtKOkMZIeklQv6R5Jg1L9ByV9X9LTkhZLOjyVT5Z0q6THJT0n6cKSY1whaa6khZKuLjnuMkk/BxYDe+Vx/mZmPVElPPxwAHBBRDwm6WbgYrJp1k+PiLWSxgPfYPOcTDtGxChJxwI3Awen8kOAI4CdgPmS5qRtQ4HDAQGz035/SuUTIuKJloKSNBGYCND7PQPLfc5mZj1WJSSmP0fEY2n5F8BXyBLKb7N5AukNrC6pfztARDws6T2Sdk7lsyLiH8A/JD1AloyOAU4C5qc61WQJ6U/Ai60lpdT+FGAKQJ9BQ3vWy6/MzLpQJSSm5r/0XwOWRMSRHawfbZQL+K+I+GnpBkk1wOudjtTMzLZaoe8xJXtLakpCnwCeAAY2lUmqklQ6l+/4VH4M0BARDan8dEl9JQ0AjgPmAvcA50uqTvsMlrR7l5+RmZm1qhJGTMuAi9P9pWeAH5IllB9I6k92DtcBS1L9DZLmA1Vsvu8EsBB4ANgN+HpEvAS8JOlA4PF0WXA98EmgscvPyszMWqQizw2SLqn9OiIObqdqU/0Hgcsjoq5Z+WRgfUR8u8whAlBbWxt1dXXtVzQzs7dJqo+I2ubllXApz8zMepBCX8qLiBVsfty7I/WPa6V8cnkiMjOzruYRk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFYoTk5mZFUqh/8C2Uixa1UDNpDl5h2HWI6y49pS8Q7Au5hGTmZkVihOTmZkVSq6JSdIZkg7qQL2pksa2UH6cpF+XMZ5aST9Iy+dJ+lG52jYzs47Je8R0BtBuYuouEVEXEZfmHYeZWU/WZmKSdK2ki0vWJ0u6XNIVkuZKWijp6pLtX5W0TNKjkm6XdHkq30/S3ZLqJT0iaZiko4CPAf8t6elU58LU7gJJv5S0Y0k4J0qqk/SspFNbiHUnSTdLekrSfEmnt3FefSX9TNKiVPeDqbysIzAzM+u89kZM04CzStbPAtYCQ4HDgVHAGEnHSjoMOBMYCXwEKJ38aQpwSUSMAS4HfhwRvwdmA1dExKiI+CNwZ0QcFhEjgaXABSVt1KRjngLcIKlvs1ivBO6PiMOBD5IlvJ1aOa+LgYiIEcD/BW5pob02SZqYEmVd4xsN7e9gZmYd0ubj4hExX9Lukv4PMBD4GzACOAmYn6pVkyWqfsCsiNhANr35rwAkVQNHATPS9OUAfVo55MGSrgF2Tu3eU7JtekS8BTwn6QVgWLN9TwI+1jRKA/oCe5MluOaOIZuinYj4g6QXgf3b6ovmImIKWcKlz6ChxZ0G2MyswnTk75hmAGOB95KNoPYB/isiflpaSdJlrezfC3g1IkZ14FhTgTMiYoGk84DjSrY1/+XffF3AmRGxrAPHMTOzgurIww/TgLPJktMMslHM+WkkhKTBknYHHgNOS/dvqoFTASLi78BySeNSfUkamdp+jWyk1aQfsFpSFXBOszjGSeolaT9gX6B5AroHuERpWCbp0DbO6ZGm9iXtTzayckIzMyuAdhNTRCwhSxirImJ1RNwL/C/wuKRFwEygX0TMJbtntBD4DbAIaLr5cg5wgaQFwBKg6cGEO4Ar0gMI+wFfBZ4kS3J/aBbKn4CnUtsXpUuGpb4OVAELJS1J6635MdArxT8NOC8iNrbXF2Zm1vUUUb7bI5KqI2J9epruYWBiRMwr2wEKqra2Nurq6vIOw8ysokiqj4ja5uXlflfelPQHs32BW3pCUjIzs/Iqa2KKiE+Us72tJelk4JvNipdHxMfziMfMzNq3Tb9dPCLu4Z2PnJuZWcHl/UoiMzOzd3BiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQtmm/46puyxa1UDNpDl5h2HWY6y49pS8Q7Au5BGTmZkVSsUnJkn/KenEvOMwM7PyqPhLeRHxta4+hqTeEdHY1ccxM7MKGzFJ+qqkZZIelXS7pMslTZU0Nm1fIelqSfMkLZI0LJUPlPRbSUsk3STpRUm7pW2flPSUpKcl/VRS71S+XtJ30hxSR+Z20mZmPUzFJCZJhwFnAiOBjwDvmsMjWRcRo4GfAJensv8A7o+I4WQTG+6d2jwQGA8cnaZ+b2TzzLk7AU9GxMiIeLSFeCZKqpNU1/hGQ/PNZma2hSrpUt7RwKw0c+0GSb9qpd6d6Wc98K9p+Rjg4wARcbekv6XyE4AxwNw0I/sOwJq0rRH4ZWvBRMQUYApAn0FDyzfboplZD1dJiamjmqZIb6T98xPZhIZfbmHbBt9XMjPrfhVzKQ94DDhNUl9J1cCpndz3LABJJwG7pPL7gLGSdk/bdpW0TxljNjOzTqqYEVNEzJU0G1gIvAwsAjp6c+dq4HZJnwIeB/4CvBYR6yRdBdwrqRewCbgYeLHsJ2BmZh1SMYkp+XZETJa0I/AwUB8RNzZtjIiakuU64Li02gCcHBFvSjoSOCwiNqZ604BpzQ8UEdVddhZmZtaqSktMUyQdBPQluzc0r4P77Q1MT6OifwIXljOoEYP7U+dXpJiZlUVFJaaI+MQW7vcccGiZwzEzsy5QSQ8/mJlZD+DEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmheLEZGZmhVJRb34oqkWrGqiZNCfvMMxsK63wq8UKwSMmMzMrlB6bmCSdJ+lHafkiSefmHZOZmfXQS3mS3nHeEXFDXrGYmdk7VXRikvRV4JPAWuDPQD3Z3EsTge2B54FPRcQbkqYCG8jeMv4Y2YSDTe1MBtZHxLclvQ+4ARhINj37uIj4Y3edk5lZT1exl/IkHQacCYwEPgLUpk13RsRhETESWApcULLbnsBREfGFNpq+Dbg+7X8UsLqV40+UVCeprvGNjk6ka2Zm7ankEdPRwKyI2ABskPSrVH6wpGuAnYFq4J6SfWZERGNrDUrqBwyOiLsAUtstiogpwBSAPoOGxladiZmZva1iR0xtmAp8LiJGAFeTzXbb5PVcIjIzsw6r5MT0GHCapL6SqoFTU3k/YLWkKuCczjQYEa8BKyWdASCpj6Qdyxm0mZm1rWITU0TMBWaTPcTwG2AR2YMPXwWeJEtcf9iCpj8FXCppIfB74L1lCdjMzDpEEZV7e0RSdUSsT6Oah4GJETGvu+PoM2hoDJpwXXcf1szKzG9+6F6S6iOitnl5JT/8ADBF0kFk95FuySMpAYwY3J86f6HNzMqiohNTRHwi7xjMzKy8KvYek5mZbZucmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFCcmMzMrFAq+s0PRbFoVQM1k+bkHYaZdTG/S697eMRkZmaF4sRkZmaF4sRkZmaFUojEJOlcSQslLZB0q6TTJD0pab6k30naQ1IvSc9JGpj26SXpeUkD0+eXkuamz9GpzmRJN0t6UNILki5N5TWSlkq6UdISSfdK2iFt20/S3ZLqJT0iaVh+PWNm1vPknpgkDQeuAo6PiJHA54FHgSMi4lDgDuBLEfEW8As2T5d+IrAgItYC3we+FxGHAWcCN5UcYhhwMnA48B9pynWAocD1ETEceDXtBzAFuCQixgCXAz9uJe6Jkuok1TW+0bDV/WBmZpkiPJV3PDAjItYBRMRfJY0ApkkaBGwPLE91bwZmAdcB5wM/S+UnAgdJamrzPZKq0/KciNgIbJS0BtgjlS+PiKfTcj1Qk/Y5CphR0lafloKOiClkSYw+g4ZW7jTAZmYFU4TE1JIfAt+NiNmSjgMmA0TEnyW9LOl4shFQ0+ipF9kIa0NpIym5bCwpamTzOTcv3yG182pEjCrr2ZiZWYflfikPuB8YJ2kAgKRdgf7AqrR9QrP6N5Fd0psREY2p7F7gkqYKkrYosUTE34HlksaldiRp5Ja0ZWZmWyb3xBQRS4BvAA9JWgB8l2yENENSPbCu2S6zgWo2X8YDuBSoTQ9QPANctBUhnQNckGJZApy+FW2ZmVknKaKybo9IqiV70OH9ecfSpLa2Nurq6vIOw8ysokiqj4ja5uVFvcfUIkmTgM+w+d6SmZltY3K/lNcZEXFtROwTEY/mHYuZmXWNikpMZma27XNiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQnFiMjOzQqmoNz8U1aJVDdRMmpN3GGbWDVZce0reIWzzPGIyM7NCcWIyM7NCqZjEJOlj6SWu5WhrsqTLy9GWmZmVV0XcY5K0XUTMJpuLKa/jv5nHsc3MeppuHzFJOjdN6LdA0q2SaiTdn8ruk7R3qjdV0g2SngS+Jek8ST9K206T9KSk+ZJ+J2mPVD5Z0s2SHpT0gqRLS457paRnJT0KHFBSvp+kuyXVS3pE0rCWjt+NXWRm1qN164hJ0nDgKuCoiFiXplG/BbglIm6RdD7wA+CMtMueqW6jpPNKmnoUOCIiQtK/AV8Cvpi2DQM+CPQDlkn6CXAIcDYwiuyc5wH1qf4U4KKIeE7SvwA/Bo5vfvwWzmUiMBGg93sGbk23mJlZie6+lHc8MCMi1gFExF8lHQn8a9p+K+8cncxoKSmQJYxpkgYB2wPLS7bNiYiNwEZJa4A9gPcDd0XEGwCSZqef1cBRZNO4N+3fpwPHJyKmkCU1+gwaWlnTAJuZFVjR7zG93kr5D4HvRsRsSccBk0u2bSxZbqTtc+wFvBoRozp5fDMz6yLdfY/pfmCcpAEA6VLe78kus0E2ZfojHWinP7AqLU/oQP2HgTMk7SCpH3AaQET8HVguaVyKR5JGdvRkzMys/Lp1xBQRSyR9A3hIUiMwH7gE+JmkK4C1wKc70NRksstvfyNLdkPaOe48SdOABcAaYG7J5nOAn0i6CqgC7kj1zMwsB4rw7ZGtVVtbG3V1dXmHYWZWUSTVR0Rt8/KK+QNbMzPrGZyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUJyYzMysUIr+dvGKsGhVAzWT5uQdhpkVzIprT8k7hIrkEZOZmRVKj0pMkv5T0ol5x2FmZq3rUZfyIuJrecdgZmZtq/gRk6QvSFqcPpdJqpG0VNKNkpZIulfSDqnuVElj0/IJkuZLWiTpZkl9UvkKSVdLmpe2Dcvz/MzMepqKTkySxpBNLPgvwBHAhcAuwFDg+ogYDrwKnNlsv77AVGB8RIwgGzl+pqTKuogYDfwEuLyVY0+UVCeprvGNhrKel5lZT1bRiQk4BrgrIl6PiPXAncD7geUR8XSqUw/UNNvvgFTn2bR+C3BsyfY729gXgIiYEhG1EVHbe8f+W30iZmaWqfTE1JqNJcuNdP5eWtP+W7KvmZlthUpPTI8AZ0jaUdJOwMdTWXuWATWS3pfWPwU81EUxmplZJ1T0aCAi5kmaCjyVim4C/taB/TZI+jQwQ9J2wFzghi4L1MzMOkwRkXcMFa/PoKExaMJ1eYdhZgXjNz+0TVJ9RNQ2L6/oEVNRjBjcnzp/Ac3MyqLS7zGZmdk2xonJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxYnJzMwKxa8kKoNFqxqomTQn7zDMrAL4/Xnt84jJzMwKJdfEJGlnSZ/NM4YUx02SDso7DjMzy3/EtDPQqcQkqXc5A5DUOyL+LSKeKWe7Zma2ZfJOTNcC+0l6WtJcSb9u2iDpR5LOS8srJH1T0jxgnKQHJX1PUp2kpZIOk3SnpOckXVPSxiclPZXa/2lTUpO0XtJ3JC0Ajkzt1aZtH5Y0T9ICSfd1Z2eYmVn+iWkS8MeIGAVc0U7dVyJidETckdb/mSaYugGYBVwMHAycJ2mApAOB8cDRqf1G4Jy0707AkxExMiIebTqApIHAjcCZETESGNdaMJImpsRY1/hGQ2fP28zMWlFJT+VNa7Y+O/1cBCyJiNUAkl4A9gKOAcYAcyUB7ACsSfs0Ar9s4RhHAA9HxHKAiPhra8FExBRgCmQz2G7B+ZiZWQuKlJje5J0juL7Ntr/ebH1j+vlWyXLT+naAgFsi4sstHGtDRDRuRaxmZtZF8r6U9xrQLy2/CBwkqY+knYETtrLt+4CxknYHkLSrpH3a2ecJ4FhJQ5r22coYzMysk3IdMUXEK5Iek7QY+A0wHVgMLAfmb2Xbz0i6CrhXUi9gE9l9qBfb2GetpInAnWmfNcCHtiYOMzPrHEX49sjW6jNoaAyacF3eYZhZBfCbHzaTVJ8eYnuHIt1jqlgjBvenzl82M7OyyPsek5mZ2Ts4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4zQ9lsGhVAzWT5uQdhplZt+qq1yt5xGRmZoXixGRmZoXS4xOTpIsknZt3HGZmlunx95gi4oa8YzAzs80qbsQk6VxJCyUtkHSrpKmSxpZsX59+HifpIUmzJL0g6VpJ50h6StIiSfulepMlXZ6WH5T0zVTnWUnvz+cszcx6ropKTJKGA1cBx0fESODz7ewyErgIOBD4FLB/RBwO3ARc0so+26U6lwH/0UYsEyXVSaprfKOhk2diZmatqajEBBwPzIiIdQAR8dd26s+NiNURsRH4I3BvKl8E1LSyz53pZ30bdYiIKRFRGxG1vXfs38HwzcysPZWWmFryJuk8JPUCti/ZtrFk+a2S9bdo/f5aU53GNuqYmVkXqbTEdD8wTtIAAEm7AiuAMWn7x4CqfEIzM7NyqKgRQUQskfQN4CFJjcB84N+BWZIWAHcDr+cZo5mZbR1FRN4xVLza2tqoq6vLOwwzs4oiqT4iapuXV9qlPDMz28Y5MZmZWaE4MZmZWaE4MZmZWaE4MZmZWaH4qbwykPQasCzvODphN2Bd3kF0guPtWpUWL1RezI63ZftExMDmhRX1d0wFtqylRx6LSlKd4+06jrfrVVrMjrdzfCnPzMwKxYnJzMwKxYmpPKbkHUAnOd6u5Xi7XqXF7Hg7wQ8/mJlZoXjEZGZmheLEZGZmheLEtBUkfVjSMknPS5qUdzwtkbRC0iJJT0uqS2W7SvqtpOfSz11yjvFmSWskLS4pazFGZX6Q+nyhpNEFiXeypFWpn5+W9NGSbV9O8S6TdHIO8e4l6QFJz0haIunzqbyQfdxGvIXsY0l9JT0laUGK9+pUPkTSkymuaZK2T+V90vrzaXtNQeKdKml5Sf+OSuXd/32ICH+24AP0JpuufV+yWXMXAAflHVcLca4AdmtW9i1gUlqeBHwz5xiPBUYDi9uLEfgo8BtAwBHAkwWJdzJweQt1D0rfjT7AkPSd6d3N8Q4CRqflfsCzKa5C9nEb8Rayj1M/VaflKuDJ1G/TgbNT+Q3AZ9LyZ4Eb0vLZwLRu7t/W4p0KjG2hfrd/Hzxi2nKHA89HxAsR8U/gDuD0nGPqqNOBW9LyLcAZOcZCRDwM/LVZcWsxng78PDJPADtLGtQ9kWZaibc1pwN3RMTGiFgOPE/23ek2EbE6Iual5deApcBgCtrHbcTbmlz7OPXT+rRalT4BHA/MTOXN+7ep32cCJ0hSN4XbVryt6fbvgxPTlhsM/LlkfSVt/+PJSwD3SqqXNDGV7RERq9PyX4A98gmtTa3FWOR+/1y61HFzyeXRQsWbLhsdSva/5ML3cbN4oaB9LKm3pKeBNcBvyUZtr0bEmy3E9Ha8aXsDMCDPeCOiqX+/kfr3e5L6NI836fL+dWLa9h0TEaOBjwAXSzq2dGNkY/VC/81AJcQI/ATYDxgFrAa+k2847yapGvglcFlE/L10WxH7uIV4C9vHEdEYEaOAPclGa8NyDqlNzeOVdDDwZbK4DwN2Bf49r/icmLbcKmCvkvU9U1mhRMSq9HMNcBfZP5qXm4bi6eea/CJsVWsxFrLfI+Ll9I/9LeBGNl9KKkS8kqrIfsnfFhF3puLC9nFL8Ra9jwEi4lXgAeBIskteTe8jLY3p7XjT9v7AK90cKvCOeD+cLqFGRGwEfkaO/evEtOXmAkPTkzfbk93EnJ1zTO8gaSdJ/ZqWgZOAxWRxTkjVJgCz8omwTa3FOBs4Nz0pdATQUHI5KjfNrrl/nKyfIYv37PQk1hBgKPBUN8cm4H+ApRHx3ZJNhezj1uItah9LGihp57S8A/AhsvtiDwBjU7Xm/dvU72OB+9OINc94/1DynxSR3Q8r7d/u/T509dMV2/KH7GmVZ8muJ1+ZdzwtxLcv2dNKC4AlTTGSXc++D3gO+B2wa85x3k52aWYT2fXrC1qLkezJoOtTny8CagsS760pnoVk/5AHldS/MsW7DPhIDvEeQ3aZbiHwdPp8tKh93Ea8hexj4BBgfoprMfC1VL4vWYJ8HpgB9EnlfdP682n7vgWJ9/7Uv4uBX7D5yb1u/z74lURmZlYovpRnZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF4sRkZmaF8v8BEBScEicaSW4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "indian_ingredient_df = create_ingredient_df(indian_df)\r\n", + "indian_ingredient_df.head(10).plot.barh()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAD4CAYAAABYIGfSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5xXVb3/8dcbHCEFp1SyCbQho0hAQAYTNPV4KfOSdhTpRF7SXxz9HbFOWnHSftFJfz/NfuZdo1JILQXKS3KCTPBOyowIwyWsRI8gKd5GkSCEz/ljr5Ev48www56ZLzPf9/PxmMfs79prr/XZCx58WGvv796KCMzMzGz7dCt2AGZmZp2ZE6mZmVkOTqRmZmY5OJGamZnl4ERqZmaWw07FDsA61p577hmVlZXFDsPMrFOpqal5JSL6NLbPibTEVFZWUl1dXewwzMw6FUnPN7XPS7tmZmY5OJGamZnl4ERqZmaWg6+RmpnZe2zcuJGVK1eyfv36YofSoXr27Em/fv0oKytr8TFOpCWmdlUdlRNnFjsM68Keu+y4YodgbWDlypX07t2byspKJBU7nA4REbz66qusXLmS/v37t/g4L+2amdl7rF+/nj322KNkkiiAJPbYY49Wz8KdSDuYpJMk7deCelMkndJI+eGS7muf6MzMtiilJFpve87ZibTjnQRsM5GamVnn4GukDUi6DHghIq5PnycBawEBpwI9gLsi4ntp/3eBLwNrgBeAmoj4kaR9geuBPsA64KvA7sDngcMkXQycDBwBjAd2Bv4CnBYR61I4R0maCOwGfCMitpqJStoVuBYYDJQBkyLinjYfFDMreW19b0VbX0vv1asXa9eubdM2W8oz0ve6kyxh1juVLEkOAA4EhgEjJB0qaSRZMhwKfA6oKjhuMjAhIkYAFwI3RMTjwL3ANyNiWET8FfhNRIyMiKHAMuDsgjYqU5/HATdJ6tkg1ouAORFxIPBPwBUpuW5F0nhJ1ZKqN62r244hMTOzpjiRNhARC4APSvqwpKHA68AQ4DPAAuApYCBZYj0YuCci1kfEW8BvAST1AkYD0yU9DfwEqGiiy8GSHpFUC4wDBhXsmxYRmyPiz8Czqd9CnwEmpj4eBHoC+zRyTpMjoioiqrrvUt7KETEz63gTJ07k+uuvf/fzpEmTuOSSSzjyyCM54IADGDJkCPfc894FuAcffJDjjz/+3c/nnXceU6ZMAaCmpobDDjuMESNG8NnPfpbVq1e3SaxOpI2bDpwCjCWboQr4f2kWOSwiPhYRP2/m+G7AGwX1h0XEJ5uoOwU4LyKGAN8nS4b1okHdhp8FnFzQxz4Rsaxlp2hmtuMaO3Ys06ZNe/fztGnTOOOMM7jrrrt46qmnmDt3LhdccAERDf9ZbNzGjRuZMGECM2bMoKamhrPOOouLLrqoTWJ1Im3cncAXyZLpdGA2cFaaaSKpr6QPAo8BJ0jqmfYdDxARbwIrJI1J9ZVmtwBvAb0L+uoNrJZURjYjLTRGUrd0vfWjwPIG+2cDE5RuM5M0vA3O3cys6IYPH87LL7/Miy++yMKFC/nABz7Ahz70Ib7zne+w//77c9RRR7Fq1SpeeumlFrW3fPlyFi9ezNFHH82wYcO45JJLWLlyZZvE6puNGhERSyT1BlZFxGqyRPdJYF7KWWuBL0fEfEn3AouAl4BaoP4i5DjgxnRTURlwB7Aw/f6ppPPJEvV3gSfIrsM+wdZJ9r+BJ8luNjonItY3uDX7B8BVwCJJ3YAVpGRuZtbZjRkzhhkzZvC3v/2NsWPHcvvtt7NmzRpqamooKyujsrLyPd/53Gmnndi8efO7n+v3RwSDBg1i3rx5bR6nE2kT0lJr4eergasbqfqjiJgkaRfgYaAm1V8BHNNIu4+x9ddfbkw/Deud2URcD5JdDyUi/g786zZPxsysExo7dixf/epXeeWVV3jooYeYNm0aH/zgBykrK2Pu3Lk8//x732z2kY98hKVLl7Jhwwb+/ve/88ADD3DIIYfwiU98gjVr1jBv3jxGjRrFxo0beeaZZxg0aFAjPbeOE2l+k9MDFnoCUyPiqWIH1Jwhfcup9iPczKyVivHox0GDBvHWW2/Rt29fKioqGDduHCeccAJDhgyhqqqKgQMb3n8Je++9N6eeeiqDBw+mf//+DB+eXfHaeeedmTFjBueffz51dXW88847fP3rX2+TRKqWXqi1rqGqqir8Ym8z25Zly5bxyU82dY9k19bYuUuqiYiqxur7ZiMzM7McnEjNzMxycCI1M7NGleKlv+05ZydSMzN7j549e/Lqq6+WVDKtfx9pz54Nn8baPN+1a2Zm79GvXz9WrlzJmjVrih1Kh+rZsyf9+vVr1TFOpGZm9h5lZWX079+/2GF0Cl7aNTMzy8GJ1MzMLAcnUjMzsxx8jbTE1K6qa/M33Zu1VDEeM2fW3jwjNTMzy8GJ1MzMLIeiJFJJJ6U3prT2uLXtEU9XIWmKpFOKHYeZWSlpVSJVpi2S70ls/U5OMzOzTmmbSVFSpaTlkn4BLAZOk1QrabGkywvq3SipWtISSd8vKL9M0lJJiyT9SNJo4PPAFZKelrRv+pklqUbSI5IGpmP7S5qX+rtkG3FWSHo4tblY0qdT+WdSG09Jmi6pV2NxpbITJD0haYGkP0jaK5VPkjQ1xfa8pH+W9MMU1yxJZaneCEkPpfOYLamimXjPL+j/jlS2q6SbJT2ZYjgxlXeXdIWk+an+v6ZySbou/fn8AfhgE32NT3821ZvW1TX7521mZq3T0rt2BwBnAP8N/BEYAbwO/F7SSRFxN3BRRLwmqTvwgKT9gVXAF4CBERGS3h8Rb0i6F7gvImYASHoAOCci/izpU8ANwBHA1cCNEfELSf+2jRi/BMyOiEtTDLtI2hO4GDgqIt6W9G3gG5KubxhXauNR4KBU9r+AbwEXpH37Av9ENpOeB5wcEd+SdBdwnKSZwLXAiRGxRtJY4FLgrCbinQj0j4gNBf1fBMyJiLNS2ZMpQY4D6iJipKQewGOSfg8MBz6RYtoLWArc3LCjiJgMTAboUTGgdB6caWbWAVqaSJ+PiD+mGdKDEbEGQNLtwKHA3cCpksanNivI/nFfCqwHfi7pPuC+hg2nGeJoYLqk+uIe6ffBwMlp+1bgcpo2H7g5zQ7vjoinJR2W4ngstb0zWRKsayKufsCdaSa5M7CioP3fRcRGSbVAd2BWKq8FKskS2mDg/tRXd2B1M/EuAm6XdDfZ+AF8Bvi8pAvT557APql8f225/llO9p+bQ4FfRcQm4EVJc5rpz8zM2kFLE+nbze2U1B+4EBgZEa9LmgL0jIh3JB0IHAmcApxHNtMs1A14IyKGNdF8i2ZQEfGwpEOB44Apkq4kmzXfHxH/0kjMjcV1LXBlRNwr6XBgUsEhG1I/myVtjC2vRNhMNo4ClkTEqJbEm+I8FDgBuEjSkNTGyRGxvEGsAiZExOwG5ce2sC8zM2snrb1x6EngMEl7puXTfwEeAnYjS7Z16bri5+Dd2WZ5RPwX8O/A0NTOW0BvgIh4E1ghaUw6RpLq6z0GfDFtj2suMEkfAV6KiJ8CPwMOIFuGPljSx1KdXSV9vJm4ysmWoyFbym6N5UAfSaNSX2WSBjURazdg74iYC3w79dsLmA1MSIkTScPTIbOBcwuuxX5c0q7Aw8DYdA21gmzp2czMOlCrnmwUEaslTQTmks2eZkbEPQCSFgB/Al4gS4CQJct7JPVM9b+Ryu8AfirpfLIZ4TjgRkkXA2Vp/0Lga8Av07XNe7YR3uHANyVtBNYCp6drlWcCv0rXFiG7ZvpWE3FNIltifh2YA7T41QcR8Y+09HqNpHKysb0KWNJI9e7AbamegGvSteMfpGMWpWS7Ajie7D8GlcBTKcmuIbvz+S6ymfRSsuvX87YV55C+5VT76TJmZm1GpfTSVoOqqqqorq4udhhmZp2KpJqIqGpsn59sZGZmlkOne2h9uinn1gbFGyLiU8WIZ1vSV20OblB8dUTcUox4zMysbXW6RBoRtUBTd/jucCJiW99/NTOzTsxLu2ZmZjk4kZqZmeXgRGpmZpaDE6mZmVkOTqRmZmY5OJGamZnl0Om+/mL51K6qo3LizGKHYbaV5/zYSuvEPCM1MzPLwYnUzMwsByfSIpC0ttgxmJlZ23AiNTMzy8GJtJXSy8FnSlooabGksZKOlLRAUq2kmyX1kHSEpLsLjjta0l0Fn38saYmkByT1SWX7SpolqUbSI5IGpvITJD2R+vhDenk6kial/h6U9Gx6v6uZmXUgJ9LWOwZ4MSKGRsRgYBYwBRgbEUPI7oQ+l+zl5wPrkyTwFeDmtL0rUB0Rg4CHgO+l8snAhIgYAVwI3JDKHwUOiojhZC89/1ZBPAOBzwIHAt+TVNYwYEnjJVVLqt60ri73AJiZ2RZOpK1XCxwt6XJJnwYqgRUR8UzaPxU4NLI3pt8KfFnS+4FRwO9Snc3AnWn7NuAQSb2A0cB0SU8DPwEqUp1+wGxJtcA3gUEF8cyMiA0R8QrwMrBXw4AjYnJEVEVEVfddyttgCMzMrJ6/R9pKEfGMpAOAY4FLgDnNVL8F+C2wHpgeEe801SzZf2reiIjGXhF3LXBlRNwr6XBgUsG+DQXbm/CfqZlZh/KMtJUkfRhYFxG3AVeQzTQrJX0sVTmNbLmWiHgReBG4mCyp1usGnJK2vwQ8GhFvAiskjUn9SNLQVKccWJW2z2iXEzMzs+3i2UvrDQGukLQZ2Eh2PbScbEl2J2A+cFNB/duBPhGxrKDsbeBASReTLceOTeXjgBtTeRnZ9dCFZDPQ6ZJeJ5sB92+nczMzs1ZSdinP2ouk64AFEfHzYscCUFVVFdXV1cUOw8ysU5FUExFVje3zjLQdSaohm31eUOxYzMysfTiRtqP0NRYzM+vCfLORmZlZDk6kZmZmOTiRmpmZ5eBEamZmloMTqZmZWQ5OpGZmZjk4kZqZmeXgRGpmZpaDH8hQYmpX1VE5cWaxwzBrV89ddlyxQ7AS4hmpmZlZDk6kOzhJ/5VeDG5mZjsgL+3uwCQJOD4iNhc7FjMza5xnpDsYSZWSlkv6BbAY2CRpz7TvdEmLJC2UdGsq6yPp15Lmp5+Dixm/mVmp8Yx0xzQAOCMi/ijpOQBJg4CLgdER8Yqk3VPdq4EfR8SjkvYBZgOfLGxM0nhgPED33fp00CmYmZUGJ9Id0/MR8ccGZUcA0yPiFYCIeC2VHwXsl60CA7CbpF4Rsba+ICImA5MBelQM8JvczczakBPpjuntVtTtBhwUEevbKxgzM2uar5F2HnOAMZL2AChY2v09MKG+kqRhRYjNzKxkOZF2EhGxBLgUeEjSQuDKtOt8oCrdhLQUOKdYMZqZlSIv7e5gIuI5YHDB58qC7anA1Ab1XwHGdlB4ZmbWgBNpiRnSt5xqPz7NzKzNeGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7Mc/IjAElO7qo7KiTOLHYZZUT3nx2RaG/KM1MzMLAcnUjMzsxy6XCKVVClpcSPlD0qq2o72zpR0XdtEZ2ZmXU2XS6QGknzt28ysg3TVRLqTpNslLZM0Q9IuhTsl3SipWtISSd8vKB8p6XFJCyU9Kal3g+OOkzRP0p6NdSppiqSbUtvPSDo+lXeXdIWk+ZIWSfrXVH64pIclzZS0PB3bLe1bK+nHKcYHJPVJ5ftKmiWpRtIjkgY26PsJ4IcN4hqfYqretK4u9+CamdkWXTWRfgK4ISI+CbwJ/O8G+y+KiCpgf+AwSftL2hm4E/haRAwFjgL+Xn+ApC8AE4FjI+KVZvquBA4EjgNuktQTOBuoi4iRwEjgq5L6p/oHAhOA/YB9gX9O5bsC1RExCHgI+F4qnwxMiIgRwIXADQV99wNGR8Q3CgOKiMkRURURVd13KW8mdDMza62uugT4QkQ8lrZvA85vsP9USePJzr+CLIkFsDoi5gNExJsAkgCOAKqAz9SXN2NaRGwG/izpWWAg8Blgf0mnpDrlwADgH8CTEfFs6utXwCHADGAzWWKvP4ffSOoFjAamp7gAehT0PT0iNm0jPjMza0NdNZFGU5/TTPBCYGREvC5pCtBzG+39Ffgo8HGgejv6FtkscnbhDkmHNxdrI+XdgDciYlgTdd7eRmxmZtbGuurS7j6SRqXtLwGPFuzbjSzh1EnaC/hcKl8OVEgaCSCpd8FNO88DJwO/kDRoG32PkdRN0r5kyXc5MBs4V1JZavvjknZN9Q+U1D9dGx1bEGs3oH4G+yXg0TQbXiFpTGpHkoa2dFDMzKztddVEuhz4N0nLgA8AN9bviIiFwALgT8AvgcdS+T/IEtm1khYC91MwU42IPwHjyJZV922m7/8GngR+B5wTEeuBnwFLgafSV3N+wpbVgPnAdcAyYAVwVyp/myzJLiZbWv7PVD4OODvFuAQ4sVUjY2ZmbUoRTa0kWmulZeL7ImJGC+sfDlwYEcc3sm9tRPRq2wihqqoqqqu3tTptZmaFJNWkm1Tfo6vOSM3MzDpEV73ZqF1JuggY06B4ekSc2Zp2IuJB4MEm9rX5bNTMzNqeE+l2iIhLgUuLHYeZmRWfl3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWbNeO6y44odgrWCZ6RmZmY5OJGamZnl4ETayUk6R9LpaXuKpFO2dYyZmbUdXyPt5CLipmLHYGZWykp6RippV0kzJS2UtFjSWEkjJD0kqUbSbEkVqe75kpZKWiTpjlR2oKR5khZIelzSJ1L5mZLulnS/pOcknSfpG6neHyXtnurtK2lW6usRSQObibVS0pzU/wOS9knlkyRduI3zHC+pWlL1pnV1bTV8ZmZGiSdS4BjgxYgYGhGDgVnAtcApETECuJktb3mZCAyPiP2Bc1LZn4BPR8Rw4P8A/7eg7cHAPwMjUxvrUr15wOmpzmRgQurrQuCGZmK9Fpia+r8duKalJxkRkyOiKiKquu9S3tLDzMysBUp9abcW+P+SLgfuA14nS4D3SwLoDqxOdRcBt0u6G7g7lZUDUyUNAAIoK2h7bkS8BbwlqQ74bUGf+0vqBYwGpqe+AHo0E+sossQMcCvww9afrpmZtbWSTqQR8YykA4BjgUuAOcCSiBjVSPXjgEOBE4CLJA0BfkCWML8gqZKtX9K9oWB7c8HnzWTj3g14IyKGtdkJmZlZhyvppV1JHyZbcr0NuAL4FNBH0qi0v0zSIEndgL0jYi7wbbKZaK/0e1Vq7szW9B0RbwIrJI1JfUnS0GYOeRz4YtoeBzzSmv7MzKx9lPSMFBgCXCFpM7AROBd4B7hGUjnZ+FwFPAPclsoEXBMRb0j6IdnS7sXA9jwuaBxwYzq+DLgDWNhE3QnALZK+CawBvrId/TGkbznVfmqKmVmbUUQUOwbrQFVVVVFdXV3sMMzMOhVJNRFR1di+kl7aNTMzy6vUl3Z3OJIuAsY0KJ4eEZc2Vt/MzIrLiXQHkxKmk6aZWSfhpV0zM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvDXX0pM7ao6Kiduz9MMzayUPOdHibaYZ6RmZmY5OJGamZnl4ERqZmaWgxOpmZlZDk6kBSTtKmmmpIWSFksaK+lISQsk1Uq6WVIPSUdIurvguKMl3dVEm90lTUnt1Ur691T+VUnzU1+/lrRLKp8i6ZSC49cWbH87tbFQ0mWpbF9JsyTVSHpE0sD2Gh8zM3svJ9KtHQO8GBFDI2IwMAuYAoyNiCFkdzmfC8wFBkrqk477CnBzE20OA/pGxODUxi2p/DcRMTIihgLLgLObC0zS54ATgU+lY36Ydk0GJkTECOBC4IZGjh0vqVpS9aZ1ddseBTMzazEn0q3VAkdLulzSp4FKYEVEPJP2TwUOjext6LcCX5b0fmAU8Lsm2nwW+KikayUdA7yZygenGWQtMA4YtI3YjgJuiYh1ABHxmqRewGhguqSngZ8AFQ0PjIjJEVEVEVXddylvyTiYmVkL+XukBSLiGUkHAMcClwBzmql+C/BbYD3Z+0LfaaLN1yUNBT4LnAOcCpxFNtM9KSIWSjoTODwd8g7pPziSugE7NxNDN+CNiBjWkvMzM7O25xlpAUkfBtZFxG3AFWQzzUpJH0tVTgMeAoiIF4EXgYvZslzbWJt7At0i4tep7gFpV29gtaQyshlpveeAEWn780BZ2r4f+ErBtdTdI+JNYIWkMalMKWmbmVkH8Yx0a0OAKyRtBjaSXQ8tJ1s63QmYD9xUUP92oE9ELGumzb7ALWl2CfAf6fd3gSeANel371T+U+AeSQvJrtG+DRARsyQNA6ol/QP4L+A7ZEn4RkkXkyXdO4CF23n+ZmbWSsou99n2kHQdsCAifl7sWFqqqqoqqqurix2GmVmnIqkmIqoa2+cZ6XaSVEM2W7yg2LGYmVnxOJFup/R1k61IegLo0aD4tIio7ZiozMysozmRtqGI+FSxYzAzs47lu3bNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAd/j7TE1K6qo3LizGKHYWZdzHOXHVfsEIrGM1IzM7McnEjNzMxycCI1MzPLwYm0lSSdLmmRpIWSbpV0gqQnJC2Q9AdJe0nqJunPkvqkY7pJ+oukPunn15Lmp5+DU51Jkm6W9KCkZyWdn8orJS2T9FNJSyT9XtL70r59Jc2SVCPpEUkDizcyZmalyYm0FSQNAi4GjoiIocDXgEeBgyJiONlLtb8VEZuB28heug1wFLAwItYAVwM/joiRwMnAzwq6GAh8FjgQ+J6kslQ+ALg+IgYBb6TjACYDE9KbaC4Ebmgi7vGSqiVVb1pXl3sczMxsC9+12zpHANMj4hWAiHhN0hDgTkkVwM7AilT3ZuAe4CrgLOCWVH4UsJ+k+jZ3k9Qrbc+MiA3ABkkvA3ul8hUR8XTargEq0zGjgekFbTV8hRspzslkSZceFQP8JnczszbkRJrftcCVEXGvpMOBSQAR8YKklyQdQTbDrJ+ddiObwa4vbCQlww0FRZvY8ufTsPx9qZ03ImJYm56NmZm1ipd2W2cOMEbSHgCSdgfKgVVp/xkN6v+MbIl3ekRsSmW/BybUV5C0XYkwIt4EVkgak9qRpKHb05aZmW0/J9JWiIglwKXAQ5IWAleSzUCnS6oBXmlwyL1AL7Ys6wKcD1SlG5aWAufkCGkccHaKZQlwYo62zMxsOyjCl8zai6QqshuLPl3sWOr1qBgQFWdcVewwzKyL6epPNpJUExFVje3zNdJ2ImkicC5bro3uEIb0Lae6i/+FNzPrSF7abScRcVlEfCQiHi12LGZm1n6cSM3MzHJwIjUzM8vBidTMzCwHJ1IzM7McnEjNzMxycCI1MzPLwYnUzMwsBydSMzOzHJxIzczMcvAjAktM7ao6KifOLHYYZlYCuvrzd+t5RmpmZpaDE2mRSaqUtDhtHy7pvrT9+fTgezMz24F5aXcHFRH3kr3P1MzMdmCekeYkaVdJMyUtlLRY0lhJIyU9nsqelNQ7zTwfkfRU+hm9jXbPlHRd2q6UNCe9DPwBSfuk8imSrkl9PSvplI44ZzMz28Iz0vyOAV6MiOMAJJUDC4CxETFf0m7A34GXgaMjYr2kAcCvgEZfEtuIa4GpETFV0lnANcBJaV8FcAgwkGwGO6PhwZLGA+MBuu/WZ/vO0szMGuUZaX61wNGSLpf0aWAfYHVEzAeIiDcj4h2gDPippFpgOrBfK/oYBfwybd9Kljjr3R0RmyNiKbBXYwdHxOSIqIqIqu67lLfq5MzMrHmekeYUEc9IOgA4FrgEmNNE1X8HXgKGkv0HZn0bhbChYFtt1KaZmbWQZ6Q5SfowsC4ibgOuAD4FVEgamfb3lrQTUE42U90MnAZ0b0U3jwNfTNvjgEfaKn4zM8vHM9L8hgBXSNoMbATOJZsZXivpfWTXR48CbgB+Lel0YBbwdiv6mADcIumbwBrgK20Yv5mZ5aCIKHYM1oF6VAyIijOuKnYYZlYCutKTjSTVRESjN4h6RlpihvQtp7oL/eU2Mys2XyM1MzPLwYnUzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHJwIjUzM8vBTzYqMbWr6qicOLPYYZiZdaj2fFyhZ6RmZmY5OJGamZnl4ETaSUg6U9J1afuc9Do2MzMrMl8j7QTSi8HfFRE3FSsWMzPbmhNpB5L0XeDLZC/nfgGoAeqA8cDOwF+A0yJinaQpwHpgOPAYsKignUnA2oj4kaSPATcBfYBNwJiI+GtHnZOZWanz0m4HkTQSOBkYCnwOqH9B7G8iYmREDAWWAWcXHNYPGB0R32im6duB69Pxo4HVjfQ9XlK1pOpN6+ra4GzMzKyeZ6Qd52DgnohYD6yX9NtUPljSJcD7gV7A7IJjpkfEpqYalNQb6BsRdwGktt8jIiYDkwF6VAyI3GdiZmbv8oy0+KYA50XEEOD7QM+CfW8XJSIzM2sxJ9KO8xhwgqSeknoBx6fy3sBqSWXAuNY0GBFvASslnQQgqYekXdoyaDMza54TaQeJiPnAvWQ3Df0OqCW70ei7wBNkifZP29H0acD5khYBjwMfapOAzcysRRThS2YdRVKviFibZo0PA+Mj4qmOjKGqqiqqq6s7skszs05PUk1EVDW2zzcbdazJkvYjuw46taOTqJmZtT0n0g4UEV8qdgxmZta2fI3UzMwsBydSMzOzHJxIzczMcvBduyVG0lvA8mLHsQPZE3il2EHsQDweW3gstlbq4/GRiOjT2A7fbFR6ljd1C3cpklTt8djC47GFx2JrHo+meWnXzMwsBydSMzOzHJxIS8/kYgewg/F4bM3jsYXHYmsejyb4ZiMzM7McPCM1MzPLwYnUzMwsByfSEiLpGEnLJf1F0sRix9MRJN0s6WVJiwvKdpd0v6Q/p98fSOWSdE0an0WSDihe5G1P0t6S5kpaKmmJpK+l8pIbj/Re4CclLUxj8f1U3l/SE+mc75S0cyrvkT7/Je2vLLtjiJIAAALmSURBVGb87UVSd0kLJN2XPpf0eLSUE2mJkNQduB74HLAf8C/pTTRd3RTgmAZlE4EHImIA8ED6DNnYDEg/44EbOyjGjvIOcEFE7AccBPxb+jtQiuOxATgiIoYCw4BjJB0EXA78OCI+BrwOnJ3qnw28nsp/nOp1RV8DlhV8LvXxaBEn0tJxIPCXiHg2Iv4B3AGcWOSY2l1EPAy81qD4RGBq2p4KnFRQ/ovI/BF4v6SKjom0/UXE6vpX90XEW2T/YPalBMcjndPa9LEs/QRwBDAjlTcci/oxmgEcKUkdFG6HkNQPOA74WfosSng8WsOJtHT0BV4o+LwylZWivSJiddr+G7BX2i6ZMUpLccOBJyjR8UjLmE8DLwP3A38F3oiId1KVwvN9dyzS/jpgj46NuN1dBXwL2Jw+70Fpj0eLOZFaSYvs+18l9R0wSb2AXwNfj4g3C/eV0nhExKaIGAb0I1uxGVjkkIpG0vHAyxFRU+xYOiMn0tKxCti74HO/VFaKXqpfoky/X07lXX6MJJWRJdHbI+I3qbhkxwMgIt4A5gKjyJav659BXni+745F2l8OvNrBobang4HPS3qO7LLPEcDVlO54tIoTaemYDwxId+HtDHwRuLfIMRXLvcAZafsM4J6C8tPT3aoHAXUFS56dXrqG9XNgWURcWbCr5MZDUh9J70/b7wOOJrtmPBc4JVVrOBb1Y3QKMCe60NNsIuI/IqJfRFSS/dswJyLGUaLj0Vp+slEJkXQs2XWQ7sDNEXFpkUNqd5J+BRxO9gqol4DvAXcD04B9gOeBUyPitZRoriO7y3cd8JWIqC5G3O1B0iHAI0AtW66DfYfsOmlJjYek/clululONqGYFhH/KemjZDOy3YEFwJcjYoOknsCtZNeVXwO+GBHPFif69iXpcODCiDje49EyTqRmZmY5eGnXzMwsBydSMzOzHJxIzczMcnAiNTMzy8GJ1MzMLAcnUjMzsxycSM3MzHL4Hx9S2FkSapv/AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "korean_ingredient_df = create_ingredient_df(korean_df)\r\n", + "korean_ingredient_df.head(10).plot.barh()" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      00000000000...0000000000
      11000000000...0000000000
      20000000000...0000000000
      30000000000...0000000000
      40000000000...0000000010
      \n

      5 rows × 380 columns

      \n
      " + }, + "metadata": {}, + "execution_count": 15 + } + ], + "source": [ + "feature_df= df.drop(['cuisine','Unnamed: 0','rice','garlic','ginger'], axis=1)\n", + "labels_df = df.cuisine #.unique()\n", + "feature_df.head()\n" + ] + }, + { + "source": [ + "使用SMOTE过采样平衡数据到最高类别。阅读更多内容:https://imbalanced-learn.org/dev/references/generated/imblearn.over_sampling.SMOTE.html\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "oversample = SMOTE()\n", + "transformed_feature_df, transformed_label_df = oversample.fit_resample(feature_df, labels_df)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "new label count: korean 799\nchinese 799\njapanese 799\nindian 799\nthai 799\nName: cuisine, dtype: int64\nold label count: korean 799\nindian 598\nchinese 442\njapanese 320\nthai 289\nName: cuisine, dtype: int64\n" + ] + } + ], + "source": [ + "print(f'new label count: {transformed_label_df.value_counts()}')\r\n", + "print(f'old label count: {df.cuisine.value_counts()}')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      00000000000...0000000000
      11000000000...0000000000
      20000000000...0000000000
      30000000000...0000000000
      40000000000...0000000010
      \n

      5 rows × 380 columns

      \n
      " + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "transformed_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy \\\n", + "0 indian 0 0 0 0 0 0 \n", + "1 indian 1 0 0 0 0 0 \n", + "2 indian 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 thai 0 0 0 0 0 0 \n", + "3991 thai 0 0 0 0 0 0 \n", + "3992 thai 0 0 0 0 0 0 \n", + "3993 thai 0 0 0 0 0 0 \n", + "3994 thai 0 0 0 0 0 0 \n", + "\n", + " apricot armagnac artemisia ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 ... 0 0 0 \n", + "3991 0 0 0 ... 0 0 0 \n", + "3992 0 0 0 ... 0 0 0 \n", + "3993 0 0 0 ... 0 0 0 \n", + "3994 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "... ... ... ... ... ... ... ... \n", + "3990 0 0 0 0 0 0 0 \n", + "3991 0 0 0 0 0 0 0 \n", + "3992 0 0 0 0 0 0 0 \n", + "3993 0 0 0 0 0 0 0 \n", + "3994 0 0 0 0 0 0 0 \n", + "\n", + "[3995 rows x 381 columns]" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisia...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      0indian000000000...0000000000
      1indian100000000...0000000000
      2indian000000000...0000000000
      3indian000000000...0000000000
      4indian000000000...0000000010
      ..................................................................
      3990thai000000000...0000000000
      3991thai000000000...0000000000
      3992thai000000000...0000000000
      3993thai000000000...0000000000
      3994thai000000000...0000000000
      \n

      3995 rows × 381 columns

      \n
      " + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "# export transformed data to new df for classification\n", + "transformed_df = pd.concat([transformed_label_df,transformed_feature_df],axis=1, join='outer')\n", + "transformed_df" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\nRangeIndex: 3995 entries, 0 to 3994\nColumns: 381 entries, cuisine to zucchini\ndtypes: int64(380), object(1)\nmemory usage: 11.6+ MB\n" + ] + } + ], + "source": [ + "transformed_df.info()" + ] + }, + { + "source": [ + "保存文件以供将来使用\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "transformed_df.to_csv(\"../../data/cleaned_cuisines.csv\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "1da12ed6d238756959b8de9cac2a35a2", + "translation_date": "2025-09-03T20:34:56+00:00", + "source_file": "4-Classification/1-Introduction/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/2-Classifiers-1/README.md b/translations/zh-CN/4-Classification/2-Classifiers-1/README.md new file mode 100644 index 000000000..10d610013 --- /dev/null +++ b/translations/zh-CN/4-Classification/2-Classifiers-1/README.md @@ -0,0 +1,244 @@ +# 美食分类器 1 + +在本课中,您将使用上一课保存的数据集,该数据集包含关于美食的平衡且干净的数据。 + +您将使用这个数据集和多种分类器来_根据一组食材预测某种国家美食_。在此过程中,您将进一步了解算法如何用于分类任务。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) +# 准备工作 + +假设您已完成[第1课](../1-Introduction/README.md),请确保在根目录的`/data`文件夹中存在一个名为_cleaned_cuisines.csv_的文件,以供这四节课使用。 + +## 练习 - 预测国家美食 + +1. 在本课的_notebook.ipynb_文件夹中,导入该文件以及Pandas库: + + ```python + import pandas as pd + cuisines_df = pd.read_csv("../data/cleaned_cuisines.csv") + cuisines_df.head() + ``` + + 数据看起来如下: + +| | Unnamed: 0 | cuisine | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| --- | ---------- | ------- | ------ | -------- | ----- | ---------- | ----- | ------------ | ------- | -------- | --- | ------- | ----------- | ---------- | ----------------------- | ---- | ---- | --- | ----- | ------ | -------- | +| 0 | 0 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 2 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 3 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 4 | indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | + + +1. 现在,导入更多的库: + + ```python + from sklearn.linear_model import LogisticRegression + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + from sklearn.svm import SVC + import numpy as np + ``` + +1. 将X和y坐标分成两个数据框用于训练。`cuisine`可以作为标签数据框: + + ```python + cuisines_label_df = cuisines_df['cuisine'] + cuisines_label_df.head() + ``` + + 它看起来如下: + + ```output + 0 indian + 1 indian + 2 indian + 3 indian + 4 indian + Name: cuisine, dtype: object + ``` + +1. 使用`drop()`方法删除`Unnamed: 0`列和`cuisine`列,并将剩余的数据保存为可训练的特征: + + ```python + cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1) + cuisines_feature_df.head() + ``` + + 您的特征看起来如下: + +| | almond | angelica | anise | anise_seed | apple | apple_brandy | apricot | armagnac | artemisia | artichoke | ... | whiskey | white_bread | white_wine | whole_grain_wheat_flour | wine | wood | yam | yeast | yogurt | zucchini | +| ---: | -----: | -------: | ----: | ---------: | ----: | -----------: | ------: | -------: | --------: | --------: | ---: | ------: | ----------: | ---------: | ----------------------: | ---: | ---: | ---: | ----: | -----: | -------: | +| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | +| 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | + +现在您可以开始训练模型了! + +## 选择分类器 + +现在数据已经清理完毕并准备好训练,您需要决定使用哪种算法来完成任务。 + +Scikit-learn将分类归类为监督学习,在这一类别中,您会发现许多分类方法。[种类繁多](https://scikit-learn.org/stable/supervised_learning.html),初看可能会让人眼花缭乱。以下方法都包含分类技术: + +- 线性模型 +- 支持向量机 +- 随机梯度下降 +- 最近邻 +- 高斯过程 +- 决策树 +- 集成方法(投票分类器) +- 多分类和多输出算法(多分类和多标签分类,多分类-多输出分类) + +> 您也可以使用[神经网络进行数据分类](https://scikit-learn.org/stable/modules/neural_networks_supervised.html#classification),但这超出了本课的范围。 + +### 选择哪个分类器? + +那么,应该选择哪个分类器呢?通常,可以尝试多个分类器并寻找效果较好的结果。Scikit-learn提供了一个[并排比较](https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html),在一个创建的数据集上比较了KNeighbors、SVC两种方式、GaussianProcessClassifier、DecisionTreeClassifier、RandomForestClassifier、MLPClassifier、AdaBoostClassifier、GaussianNB和QuadraticDiscrinationAnalysis,并以可视化方式展示结果: + +![分类器比较](../../../../4-Classification/2-Classifiers-1/images/comparison.png) +> 图表来自Scikit-learn文档 + +> AutoML可以通过在云端运行这些比较来轻松解决这个问题,帮助您选择最适合数据的算法。试试[这里](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott) + +### 更好的方法 + +比盲目猜测更好的方法是参考这个可下载的[机器学习备忘单](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott)。在这里,我们发现对于我们的多分类问题,有一些选择: + +![多分类问题备忘单](../../../../4-Classification/2-Classifiers-1/images/cheatsheet.png) +> 微软算法备忘单的一部分,详细说明了多分类选项 + +✅ 下载这个备忘单,打印出来,挂在墙上! + +### 推理 + +让我们看看是否可以根据现有约束推理出不同的解决方法: + +- **神经网络过于复杂**。考虑到我们的数据集虽然干净但规模较小,并且我们通过本地笔记本运行训练,神经网络对于这个任务来说过于复杂。 +- **不使用二分类器**。我们不使用二分类器,因此排除了一对多(one-vs-all)。 +- **决策树或逻辑回归可能有效**。决策树可能有效,或者逻辑回归适用于多分类数据。 +- **多分类增强决策树解决不同问题**。多分类增强决策树最适合非参数任务,例如设计排名任务,因此对我们来说没有用。 + +### 使用Scikit-learn + +我们将使用Scikit-learn来分析数据。然而,在Scikit-learn中有许多方法可以使用逻辑回归。查看[可传递的参数](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression)。 + +基本上有两个重要参数——`multi_class`和`solver`——需要指定,当我们要求Scikit-learn执行逻辑回归时。`multi_class`值应用某种行为。`solver`值决定使用哪种算法。并非所有的`solver`都可以与所有的`multi_class`值配对。 + +根据文档,在多分类情况下,训练算法: + +- **使用一对多(OvR)方案**,如果`multi_class`选项设置为`ovr` +- **使用交叉熵损失**,如果`multi_class`选项设置为`multinomial`。(目前`multinomial`选项仅支持‘lbfgs’、‘sag’、‘saga’和‘newton-cg’求解器。) + +> 🎓 这里的“方案”可以是“ovr”(一对多)或“multinomial”。由于逻辑回归实际上是为支持二分类设计的,这些方案使其能够更好地处理多分类任务。[来源](https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/) + +> 🎓 “求解器”定义为“用于优化问题的算法”。[来源](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html?highlight=logistic%20regressio#sklearn.linear_model.LogisticRegression)。 + +Scikit-learn提供了这个表格来解释求解器如何处理不同数据结构带来的挑战: + +![求解器](../../../../4-Classification/2-Classifiers-1/images/solvers.png) + +## 练习 - 划分数据 + +我们可以专注于逻辑回归作为我们的第一次训练尝试,因为您在上一课中刚刚学习了它。 +通过调用`train_test_split()`将数据划分为训练组和测试组: + +```python +X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) +``` + +## 练习 - 应用逻辑回归 + +由于您使用的是多分类情况,您需要选择使用什么_方案_以及设置什么_求解器_。使用LogisticRegression并设置多分类选项和**liblinear**求解器进行训练。 + +1. 创建一个逻辑回归,multi_class设置为`ovr`,solver设置为`liblinear`: + + ```python + lr = LogisticRegression(multi_class='ovr',solver='liblinear') + model = lr.fit(X_train, np.ravel(y_train)) + + accuracy = model.score(X_test, y_test) + print ("Accuracy is {}".format(accuracy)) + ``` + + ✅ 尝试使用其他求解器,例如默认设置的`lbfgs` +> 注意,在需要时可以使用 Pandas [`ravel`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.ravel.html) 函数来展平数据。 +准确率超过 **80%**! + +1. 你可以通过测试一行数据(#50)来查看此模型的实际效果: + + ```python + print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}') + print(f'cuisine: {y_test.iloc[50]}') + ``` + + 结果打印如下: + + ```output + ingredients: Index(['cilantro', 'onion', 'pea', 'potato', 'tomato', 'vegetable_oil'], dtype='object') + cuisine: indian + ``` + + ✅ 尝试不同的行号并检查结果 + +1. 更深入地分析,你可以检查此预测的准确性: + + ```python + test= X_test.iloc[50].values.reshape(-1, 1).T + proba = model.predict_proba(test) + classes = model.classes_ + resultdf = pd.DataFrame(data=proba, columns=classes) + + topPrediction = resultdf.T.sort_values(by=[0], ascending = [False]) + topPrediction.head() + ``` + + 结果打印如下 - 印度菜是模型的最佳猜测,且概率较高: + + | | 0 | + | -------: | -------: | + | indian | 0.715851 | + | chinese | 0.229475 | + | japanese | 0.029763 | + | korean | 0.017277 | + | thai | 0.007634 | + + ✅ 你能解释为什么模型非常确定这是印度菜吗? + +1. 通过打印分类报告获取更多细节,就像你在回归课程中所做的一样: + + ```python + y_pred = model.predict(X_test) + print(classification_report(y_test,y_pred)) + ``` + + | | precision | recall | f1-score | support | + | ------------ | --------- | ------ | -------- | ------- | + | chinese | 0.73 | 0.71 | 0.72 | 229 | + | indian | 0.91 | 0.93 | 0.92 | 254 | + | japanese | 0.70 | 0.75 | 0.72 | 220 | + | korean | 0.86 | 0.76 | 0.81 | 242 | + | thai | 0.79 | 0.85 | 0.82 | 254 | + | accuracy | 0.80 | 1199 | | | + | macro avg | 0.80 | 0.80 | 0.80 | 1199 | + | weighted avg | 0.80 | 0.80 | 0.80 | 1199 | + +## 🚀挑战 + +在本课中,你使用清理后的数据构建了一个机器学习模型,可以根据一系列食材预测国家菜系。花点时间阅读 Scikit-learn 提供的多种分类数据选项。深入了解“solver”的概念,理解其背后的工作原理。 + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +深入学习逻辑回归背后的数学原理:[这篇课件](https://people.eecs.berkeley.edu/~russell/classes/cs194/f11/lectures/CS194%20Fall%202011%20Lecture%2006.pdf) +## 作业 + +[研究 solvers](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。虽然我们尽力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/2-Classifiers-1/assignment.md b/translations/zh-CN/4-Classification/2-Classifiers-1/assignment.md new file mode 100644 index 000000000..686cb40d3 --- /dev/null +++ b/translations/zh-CN/4-Classification/2-Classifiers-1/assignment.md @@ -0,0 +1,15 @@ +# 研究求解器 +## 说明 + +在本课中,你学习了将算法与机器学习过程相结合以创建准确模型的各种求解器。浏览课程中列出的求解器,并选择两个。在你自己的话中,比较和对比这两个求解器。它们解决什么样的问题?它们如何与各种数据结构协作?为什么你会选择其中一个而不是另一个? + +## 评分标准 + +| 标准 | 卓越 | 合格 | 需要改进 | +| -------- | ---------------------------------------------------------------------------------------------- | ---------------------------------------------- | ---------------------------- | +| | 提交的 .doc 文件包含两段文字,每段分别对一个求解器进行深思熟虑的比较。 | 提交的 .doc 文件仅包含一段文字 | 作业未完成 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/2-Classifiers-1/notebook.ipynb b/translations/zh-CN/4-Classification/2-Classifiers-1/notebook.ipynb new file mode 100644 index 000000000..bbf8c89b7 --- /dev/null +++ b/translations/zh-CN/4-Classification/2-Classifiers-1/notebook.ipynb @@ -0,0 +1,41 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "68829b06b4dcd512d3327849191f4d7f", + "translation_date": "2025-09-03T20:20:02+00:00", + "source_file": "4-Classification/2-Classifiers-1/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# 构建分类模型\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/2-Classifiers-1/solution/Julia/README.md b/translations/zh-CN/4-Classification/2-Classifiers-1/solution/Julia/README.md new file mode 100644 index 000000000..779236745 --- /dev/null +++ b/translations/zh-CN/4-Classification/2-Classifiers-1/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb b/translations/zh-CN/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb new file mode 100644 index 000000000..29cfa2fc6 --- /dev/null +++ b/translations/zh-CN/4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb @@ -0,0 +1,1298 @@ +{ + "nbformat": 4, + "nbformat_minor": 2, + "metadata": { + "colab": { + "name": "lesson_11-R.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "6ea6a5171b1b99b7b5a55f7469c048d2", + "translation_date": "2025-09-03T20:24:29+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/R/lesson_11-R.ipynb", + "language_code": "zh" + } + }, + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# 构建分类模型:美味的亚洲和印度美食\n" + ], + "metadata": { + "id": "zs2woWv_HoE8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 美食分类器 1\n", + "\n", + "在本课中,我们将探索多种分类器来*根据一组食材预测某种国家美食*。同时,我们将深入了解算法在分类任务中的一些应用方式。\n", + "\n", + "### [**课前测验**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/21/)\n", + "\n", + "### **准备工作**\n", + "\n", + "本课基于我们[上一课](https://github.com/microsoft/ML-For-Beginners/blob/main/4-Classification/1-Introduction/solution/lesson_10-R.ipynb),其中我们:\n", + "\n", + "- 使用一个关于亚洲和印度各种美食的数据集进行了分类的简单介绍 😋。\n", + "\n", + "- 探索了一些 [dplyr 动词](https://dplyr.tidyverse.org/) 来准备和清理数据。\n", + "\n", + "- 使用 ggplot2 创建了漂亮的可视化图表。\n", + "\n", + "- 演示了如何通过使用 [recipes](https://recipes.tidymodels.org/articles/Simple_Example.html) 预处理数据来处理不平衡数据。\n", + "\n", + "- 演示了如何 `prep` 和 `bake` 我们的配方,以确认其能够正常工作。\n", + "\n", + "#### **前置条件**\n", + "\n", + "在本课中,我们需要以下包来清理、准备和可视化数据:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一个 [R 包集合](https://www.tidyverse.org/packages),旨在让数据科学更快、更简单、更有趣!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 框架是一个 [包集合](https://www.tidymodels.org/packages),用于建模和机器学习。\n", + "\n", + "- `themis`: [themis 包](https://themis.tidymodels.org/) 提供了额外的配方步骤,用于处理不平衡数据。\n", + "\n", + "- `nnet`: [nnet 包](https://cran.r-project.org/web/packages/nnet/nnet.pdf) 提供了用于估计具有单个隐藏层的前馈神经网络以及多项逻辑回归模型的函数。\n", + "\n", + "您可以通过以下方式安装这些包:\n" + ], + "metadata": { + "id": "iDFOb3ebHwQC" + } + }, + { + "cell_type": "markdown", + "source": [ + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"DataExplorer\", \"here\"))`\n", + "\n", + "或者,下面的脚本会检查您是否已安装完成本模块所需的包,并在缺少时为您安装。\n" + ], + "metadata": { + "id": "4V85BGCjII7F" + } + }, + { + "cell_type": "code", + "execution_count": 2, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load(tidyverse, tidymodels, themis, here)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Loading required package: pacman\n", + "\n" + ] + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "an5NPyyKIKNR", + "outputId": "834d5e74-f4b8-49f9-8ab5-4c52ff2d7bc8" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 1. 将数据分为训练集和测试集\n", + "\n", + "我们将从上一节课中选择几个步骤开始。\n", + "\n", + "### 使用 `dplyr::select()` 删除最常见的食材,这些食材容易在不同菜系之间造成混淆。\n", + "\n", + "谁不喜欢米饭、大蒜和姜呢!\n" + ], + "metadata": { + "id": "0ax9GQLBINVv" + } + }, + { + "cell_type": "code", + "execution_count": 3, + "source": [ + "# Load the original cuisines data\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\r\n", + "\r\n", + "# Drop id column, rice, garlic and ginger from our original data set\r\n", + "df_select <- df %>% \r\n", + " select(-c(1, rice, garlic, ginger)) %>%\r\n", + " # Encode cuisine column as categorical\r\n", + " mutate(cuisine = factor(cuisine))\r\n", + "\r\n", + "# Display new data set\r\n", + "df_select %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "# Display distribution of cuisines\r\n", + "df_select %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "New names:\n", + "* `` -> ...1\n", + "\n", + "\u001b[1m\u001b[1mRows: \u001b[1m\u001b[22m\u001b[34m\u001b[34m2448\u001b[34m\u001b[39m \u001b[1m\u001b[1mColumns: \u001b[1m\u001b[22m\u001b[34m\u001b[34m385\u001b[34m\u001b[39m\n", + "\n", + "\u001b[36m──\u001b[39m \u001b[1m\u001b[1mColumn specification\u001b[1m\u001b[22m \u001b[36m────────────────────────────────────────────────────────\u001b[39m\n", + "\u001b[1mDelimiter:\u001b[22m \",\"\n", + "\u001b[31mchr\u001b[39m (1): cuisine\n", + "\u001b[32mdbl\u001b[39m (384): ...1, almond, angelica, anise, anise_seed, apple, apple_brandy, a...\n", + "\n", + "\n", + "\u001b[36mℹ\u001b[39m Use \u001b[30m\u001b[47m\u001b[30m\u001b[47m`spec()`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to retrieve the full column specification for this data.\n", + "\u001b[36mℹ\u001b[39m Specify the column types or set \u001b[30m\u001b[47m\u001b[30m\u001b[47m`show_col_types = FALSE`\u001b[47m\u001b[30m\u001b[49m\u001b[39m to quiet this message.\n", + "\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 indian 0 0 0 0 0 0 0 0 \n", + "2 indian 1 0 0 0 0 0 0 0 \n", + "3 indian 0 0 0 0 0 0 0 0 \n", + "4 indian 0 0 0 0 0 0 0 0 \n", + "5 indian 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 0 0 \n", + "2 0 ⋯ 0 0 0 0 0 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 1 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| indian | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t indian & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
      A tibble: 5 × 381
      cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      <fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
      indian0000000000000000000
      indian1000000000000000000
      indian0000000000000000000
      indian0000000000000000000
      indian0000000000000000010
      \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 799\n", + "2 indian 598\n", + "3 chinese 442\n", + "4 japanese 320\n", + "5 thai 289" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 799 |\n", + "| indian | 598 |\n", + "| chinese | 442 |\n", + "| japanese | 320 |\n", + "| thai | 289 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 799\\\\\n", + "\t indian & 598\\\\\n", + "\t chinese & 442\\\\\n", + "\t japanese & 320\\\\\n", + "\t thai & 289\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
      A tibble: 5 × 2
      cuisinen
      <fct><int>
      korean 799
      indian 598
      chinese 442
      japanese320
      thai 289
      \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 735 + }, + "id": "jhCrrH22IWVR", + "outputId": "d444a85c-1d8b-485f-bc4f-8be2e8f8217c" + } + }, + { + "cell_type": "markdown", + "source": [ + "太棒了!现在是时候将数据分割为70%用于训练,30%用于测试。我们还将应用一种`分层`技术,在分割数据时`保持每种菜系的比例`在训练和验证数据集中。\n", + "\n", + "[rsample](https://rsample.tidymodels.org/)是Tidymodels中的一个包,它提供了高效的数据分割和重采样的基础设施:\n" + ], + "metadata": { + "id": "AYTjVyajIdny" + } + }, + { + "cell_type": "code", + "execution_count": 4, + "source": [ + "# Load the core Tidymodels packages into R session\r\n", + "library(tidymodels)\r\n", + "\r\n", + "# Create split specification\r\n", + "set.seed(2056)\r\n", + "cuisines_split <- initial_split(data = df_select,\r\n", + " strata = cuisine,\r\n", + " prop = 0.7)\r\n", + "\r\n", + "# Extract the data in each split\r\n", + "cuisines_train <- training(cuisines_split)\r\n", + "cuisines_test <- testing(cuisines_split)\r\n", + "\r\n", + "# Print the number of cases in each split\r\n", + "cat(\"Training cases: \", nrow(cuisines_train), \"\\n\",\r\n", + " \"Test cases: \", nrow(cuisines_test), sep = \"\")\r\n", + "\r\n", + "# Display the first few rows of the training set\r\n", + "cuisines_train %>% \r\n", + " slice_head(n = 5)\r\n", + "\r\n", + "\r\n", + "# Display distribution of cuisines in the training set\r\n", + "cuisines_train %>% \r\n", + " count(cuisine) %>% \r\n", + " arrange(desc(n))" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training cases: 1712\n", + "Test cases: 736" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine almond angelica anise anise_seed apple apple_brandy apricot armagnac\n", + "1 chinese 0 0 0 0 0 0 0 0 \n", + "2 chinese 0 0 0 0 0 0 0 0 \n", + "3 chinese 0 0 0 0 0 0 0 0 \n", + "4 chinese 0 0 0 0 0 0 0 0 \n", + "5 chinese 0 0 0 0 0 0 0 0 \n", + " artemisia ⋯ whiskey white_bread white_wine whole_grain_wheat_flour wine wood\n", + "1 0 ⋯ 0 0 0 0 1 0 \n", + "2 0 ⋯ 0 0 0 0 1 0 \n", + "3 0 ⋯ 0 0 0 0 0 0 \n", + "4 0 ⋯ 0 0 0 0 0 0 \n", + "5 0 ⋯ 0 0 0 0 0 0 \n", + " yam yeast yogurt zucchini\n", + "1 0 0 0 0 \n", + "2 0 0 0 0 \n", + "3 0 0 0 0 \n", + "4 0 0 0 0 \n", + "5 0 0 0 0 " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 381\n", + "\n", + "| cuisine <fct> | almond <dbl> | angelica <dbl> | anise <dbl> | anise_seed <dbl> | apple <dbl> | apple_brandy <dbl> | apricot <dbl> | armagnac <dbl> | artemisia <dbl> | ⋯ ⋯ | whiskey <dbl> | white_bread <dbl> | white_wine <dbl> | whole_grain_wheat_flour <dbl> | wine <dbl> | wood <dbl> | yam <dbl> | yeast <dbl> | yogurt <dbl> | zucchini <dbl> |\n", + "|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "| chinese | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ⋯ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 381\n", + "\\begin{tabular}{lllllllllllllllllllll}\n", + " cuisine & almond & angelica & anise & anise\\_seed & apple & apple\\_brandy & apricot & armagnac & artemisia & ⋯ & whiskey & white\\_bread & white\\_wine & whole\\_grain\\_wheat\\_flour & wine & wood & yam & yeast & yogurt & zucchini\\\\\n", + " & & & & & & & & & & ⋯ & & & & & & & & & & \\\\\n", + "\\hline\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\t chinese & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ⋯ & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
      A tibble: 5 × 381
      cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiawhiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      <fct><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl><dbl>
      chinese0000000000000100000
      chinese0000000000000100000
      chinese0000000000000000000
      chinese0000000000000000000
      chinese0000000000000000000
      \n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine n \n", + "1 korean 559\n", + "2 indian 418\n", + "3 chinese 309\n", + "4 japanese 224\n", + "5 thai 202" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | n <int> |\n", + "|---|---|\n", + "| korean | 559 |\n", + "| indian | 418 |\n", + "| chinese | 309 |\n", + "| japanese | 224 |\n", + "| thai | 202 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & n\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t korean & 559\\\\\n", + "\t indian & 418\\\\\n", + "\t chinese & 309\\\\\n", + "\t japanese & 224\\\\\n", + "\t thai & 202\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
      A tibble: 5 × 2
      cuisinen
      <fct><int>
      korean 559
      indian 418
      chinese 309
      japanese224
      thai 202
      \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 535 + }, + "id": "w5FWIkEiIjdN", + "outputId": "2e195fd9-1a8f-4b91-9573-cce5582242df" + } + }, + { + "cell_type": "markdown", + "source": [ + "## 2. 处理数据不平衡\n", + "\n", + "正如你可能在原始数据集以及我们的训练集里注意到的,菜系的数量分布非常不均衡。韩餐的数量几乎是泰餐的*三倍*。数据不平衡通常会对模型性能产生负面影响。许多模型在观察数量相等时表现最佳,因此在处理不平衡数据时往往会遇到困难。\n", + "\n", + "处理数据不平衡主要有两种方法:\n", + "\n", + "- 为少数类别增加观察值:`过采样`,例如使用 SMOTE 算法,该算法通过少数类别的邻近样本合成生成新的样本。\n", + "\n", + "- 从多数类别中移除观察值:`欠采样`\n", + "\n", + "在之前的课程中,我们演示了如何使用 `recipe` 来处理数据不平衡问题。`recipe` 可以被看作是一个蓝图,描述了应该对数据集应用哪些步骤以使其准备好进行数据分析。在我们的案例中,我们希望在 `训练集` 中实现菜系数量的均衡分布。让我们直接开始吧。\n" + ], + "metadata": { + "id": "daBi9qJNIwqW" + } + }, + { + "cell_type": "code", + "execution_count": 5, + "source": [ + "# Load themis package for dealing with imbalanced data\r\n", + "library(themis)\r\n", + "\r\n", + "# Create a recipe for preprocessing training data\r\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>% \r\n", + " step_smote(cuisine)\r\n", + "\r\n", + "# Print recipe\r\n", + "cuisines_recipe" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Data Recipe\n", + "\n", + "Inputs:\n", + "\n", + " role #variables\n", + " outcome 1\n", + " predictor 380\n", + "\n", + "Operations:\n", + "\n", + "SMOTE based on cuisine" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 200 + }, + "id": "Az6LFBGxI1X0", + "outputId": "29d71d85-64b0-4e62-871e-bcd5398573b6" + } + }, + { + "cell_type": "markdown", + "source": [ + "您当然可以通过准备和烘焙来确认这份配方是否如预期般有效——所有标有“559”观察值的菜系标签。\n", + "\n", + "由于我们将使用这份配方作为建模的预处理器,`workflow()`将为我们完成所有的准备和烘焙工作,因此我们无需手动估算配方。\n", + "\n", + "现在我们准备开始训练模型了 👩‍💻👨‍💻!\n", + "\n", + "## 3. 选择您的分类器\n", + "\n", + "

      \n", + " \n", + "

      插画作者:@allison_horst
      \n" + ], + "metadata": { + "id": "NBL3PqIWJBBB" + } + }, + { + "cell_type": "markdown", + "source": [ + "现在我们需要决定使用哪种算法来完成任务 🤔。\n", + "\n", + "在 Tidymodels 中,[`parsnip package`](https://parsnip.tidymodels.org/index.html) 提供了一个一致的接口,用于跨不同引擎(包)处理模型。请参阅 parsnip 文档,探索[模型类型和引擎](https://www.tidymodels.org/find/parsnip/#models)及其对应的[模型参数](https://www.tidymodels.org/find/parsnip/#model-args)。乍一看,种类繁多令人眼花缭乱。例如,以下方法都包括分类技术:\n", + "\n", + "- C5.0规则分类模型\n", + "\n", + "- 灵活判别模型\n", + "\n", + "- 线性判别模型\n", + "\n", + "- 正则化判别模型\n", + "\n", + "- 逻辑回归模型\n", + "\n", + "- 多项式回归模型\n", + "\n", + "- 朴素贝叶斯模型\n", + "\n", + "- 支持向量机\n", + "\n", + "- 最近邻算法\n", + "\n", + "- 决策树\n", + "\n", + "- 集成方法\n", + "\n", + "- 神经网络\n", + "\n", + "这个列表还在继续!\n", + "\n", + "### **选择哪种分类器?**\n", + "\n", + "那么,应该选择哪种分类器呢?通常,通过尝试多个分类器并寻找效果较好的结果是一种测试方法。\n", + "\n", + "> AutoML 通过在云端运行这些比较,巧妙地解决了这个问题,让你可以选择最适合数据的算法。试试 [这里](https://docs.microsoft.com/learn/modules/automate-model-selection-with-azure-automl/?WT.mc_id=academic-77952-leestott)\n", + "\n", + "此外,分类器的选择取决于我们的问题。例如,当结果可以被分类为`多于两个类别`时,就像我们的情况一样,你必须使用`多分类算法`而不是`二分类算法`。\n", + "\n", + "### **更好的方法**\n", + "\n", + "比盲目猜测更好的方法是参考这个可下载的[机器学习速查表](https://docs.microsoft.com/azure/machine-learning/algorithm-cheat-sheet?WT.mc_id=academic-77952-leestott)。在这里,我们发现,对于我们的多分类问题,我们有一些选择:\n", + "\n", + "

      \n", + " \n", + "

      微软算法速查表的一部分,详细介绍了多分类选项
      \n" + ], + "metadata": { + "id": "a6DLAZ3vJZ14" + } + }, + { + "cell_type": "markdown", + "source": [ + "### **推理**\n", + "\n", + "让我们根据现有的约束条件来分析不同的方法:\n", + "\n", + "- **深度神经网络过于复杂**。考虑到我们数据集虽然干净但规模较小,并且我们是在本地通过笔记本运行训练,深度神经网络对于这个任务来说过于笨重。\n", + "\n", + "- **不使用二分类分类器**。我们不使用二分类分类器,因此排除了“一对多”的方法。\n", + "\n", + "- **决策树或逻辑回归可能适用**。决策树可能有效,或者可以使用多项式回归/多分类逻辑回归来处理多分类数据。\n", + "\n", + "- **多分类提升决策树解决的是不同的问题**。多分类提升决策树最适合非参数任务,例如用于构建排名的任务,因此对我们来说并不适用。\n", + "\n", + "此外,通常在尝试更复杂的机器学习模型(例如集成方法)之前,构建一个最简单的模型来了解数据情况是一个好主意。因此,在本课程中,我们将从一个`多项式回归`模型开始。\n", + "\n", + "> 逻辑回归是一种用于结果变量是分类(或名义)时的技术。对于二元逻辑回归,结果变量的数量是两个,而对于多项式逻辑回归,结果变量的数量超过两个。有关更多信息,请参阅[高级回归方法](https://bookdown.org/chua/ber642_advanced_regression/multinomial-logistic-regression.html)。\n", + "\n", + "## 4. 训练并评估一个多项式逻辑回归模型\n", + "\n", + "在Tidymodels中,`parsnip::multinom_reg()`定义了一个使用线性预测器通过多项式分布预测多分类数据的模型。有关使用此模型的不同方法/引擎,请参阅`?multinom_reg()`。\n", + "\n", + "在这个示例中,我们将通过默认的[nnet](https://cran.r-project.org/web/packages/nnet/nnet.pdf)引擎来拟合一个多项式回归模型。\n", + "\n", + "> 我随机选择了一个`penalty`值。实际上有更好的方法来选择这个值,例如通过`重采样`和`调参`模型,这些内容我们稍后会讨论。\n", + ">\n", + "> 如果您想了解更多关于如何调节模型超参数的信息,请参阅[Tidymodels: 入门](https://www.tidymodels.org/start/tuning/)。\n" + ], + "metadata": { + "id": "gWMsVcbBJemu" + } + }, + { + "cell_type": "code", + "execution_count": 6, + "source": [ + "# Create a multinomial regression model specification\r\n", + "mr_spec <- multinom_reg(penalty = 1) %>% \r\n", + " set_engine(\"nnet\", MaxNWts = 2086) %>% \r\n", + " set_mode(\"classification\")\r\n", + "\r\n", + "# Print model specification\r\n", + "mr_spec" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 166 + }, + "id": "Wq_fcyQiJvfG", + "outputId": "c30449c7-3864-4be7-f810-72a003743e2d" + } + }, + { + "cell_type": "markdown", + "source": [ + "干得好 🥳!现在我们已经有了一个配方和一个模型规范,我们需要找到一种方法将它们打包到一个对象中,这个对象首先会对数据进行预处理,然后将模型拟合到预处理后的数据上,同时还允许进行潜在的后处理操作。在 Tidymodels 中,这个方便的对象叫做 [`workflow`](https://workflows.tidymodels.org/),它可以方便地保存你的建模组件!这在 *Python* 中我们称之为 *pipelines*。\n", + "\n", + "那么,让我们把所有内容打包到一个 workflow 中吧!📦\n" + ], + "metadata": { + "id": "NlSbzDfgJ0zh" + } + }, + { + "cell_type": "code", + "execution_count": 7, + "source": [ + "# Bundle recipe and model specification\r\n", + "mr_wf <- workflow() %>% \r\n", + " add_recipe(cuisines_recipe) %>% \r\n", + " add_model(mr_spec)\r\n", + "\r\n", + "# Print out workflow\r\n", + "mr_wf" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow ════════════════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Multinomial Regression Model Specification (classification)\n", + "\n", + "Main Arguments:\n", + " penalty = 1\n", + "\n", + "Engine-Specific Arguments:\n", + " MaxNWts = 2086\n", + "\n", + "Computational engine: nnet \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 333 + }, + "id": "Sc1TfPA4Ke3_", + "outputId": "82c70013-e431-4e7e-cef6-9fcf8aad4a6c" + } + }, + { + "cell_type": "markdown", + "source": [ + "工作流 👌👌!一个 **`workflow()`** 可以像模型一样进行拟合。所以,是时候训练一个模型了!\n" + ], + "metadata": { + "id": "TNQ8i85aKf9L" + } + }, + { + "cell_type": "code", + "execution_count": 8, + "source": [ + "# Train a multinomial regression model\n", + "mr_fit <- fit(object = mr_wf, data = cuisines_train)\n", + "\n", + "mr_fit" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "══ Workflow [trained] ══════════════════════════════════════════════════════════\n", + "\u001b[3mPreprocessor:\u001b[23m Recipe\n", + "\u001b[3mModel:\u001b[23m multinom_reg()\n", + "\n", + "── Preprocessor ────────────────────────────────────────────────────────────────\n", + "1 Recipe Step\n", + "\n", + "• step_smote()\n", + "\n", + "── Model ───────────────────────────────────────────────────────────────────────\n", + "Call:\n", + "nnet::multinom(formula = ..y ~ ., data = data, decay = ~1, MaxNWts = ~2086, \n", + " trace = FALSE)\n", + "\n", + "Coefficients:\n", + " (Intercept) almond angelica anise anise_seed apple\n", + "indian 0.19723325 0.2409661 0 -5.004955e-05 -0.1657635 -0.05769734\n", + "japanese 0.13961959 -0.6262400 0 -1.169155e-04 -0.4893596 -0.08585717\n", + "korean 0.22377347 -0.1833485 0 -5.560395e-05 -0.2489401 -0.15657804\n", + "thai -0.04336577 -0.6106258 0 4.903828e-04 -0.5782866 0.63451105\n", + " apple_brandy apricot armagnac artemisia artichoke asparagus\n", + "indian 0 0.37042636 0 -0.09122797 0 -0.27181970\n", + "japanese 0 0.28895643 0 -0.12651100 0 0.14054037\n", + "korean 0 -0.07981259 0 0.55756709 0 -0.66979948\n", + "thai 0 -0.33160904 0 -0.10725182 0 -0.02602152\n", + " avocado bacon baked_potato balm banana barley\n", + "indian -0.46624197 0.16008055 0 0 -0.2838796 0.2230625\n", + "japanese 0.90341344 0.02932727 0 0 -0.4142787 2.0953906\n", + "korean -0.06925382 -0.35804134 0 0 -0.2686963 -0.7233404\n", + "thai -0.21473955 -0.75594439 0 0 0.6784880 -0.4363320\n", + " bartlett_pear basil bay bean beech\n", + "indian 0 -0.7128756 0.1011587 -0.8777275 -0.0004380795\n", + "japanese 0 0.1288697 0.9425626 -0.2380748 0.3373437611\n", + "korean 0 -0.2445193 -0.4744318 -0.8957870 -0.0048784496\n", + "thai 0 1.5365848 0.1333256 0.2196970 -0.0113078024\n", + " beef beef_broth beef_liver beer beet\n", + "indian -0.7985278 0.2430186 -0.035598065 -0.002173738 0.01005813\n", + "japanese 0.2241875 -0.3653020 -0.139551027 0.128905553 0.04923911\n", + "korean 0.5366515 -0.6153237 0.213455197 -0.010828645 0.27325423\n", + "thai 0.1570012 -0.9364154 -0.008032213 -0.035063746 -0.28279823\n", + " bell_pepper bergamot berry bitter_orange black_bean\n", + "indian 0.49074330 0 0.58947607 0.191256164 -0.1945233\n", + "japanese 0.09074167 0 -0.25917977 -0.118915977 -0.3442400\n", + "korean -0.57876763 0 -0.07874180 -0.007729435 -0.5220672\n", + "thai 0.92554006 0 -0.07210196 -0.002983296 -0.4614426\n", + " black_currant black_mustard_seed_oil black_pepper black_raspberry\n", + "indian 0 0.38935801 -0.4453495 0\n", + "japanese 0 -0.05452887 -0.5440869 0\n", + "korean 0 -0.03929970 0.8025454 0\n", + "thai 0 -0.21498372 -0.9854806 0\n", + " black_sesame_seed black_tea blackberry blackberry_brandy\n", + "indian -0.2759246 0.3079977 0.191256164 0\n", + "japanese -0.6101687 -0.1671913 -0.118915977 0\n", + "korean 1.5197674 -0.3036261 -0.007729435 0\n", + "thai -0.1755656 -0.1487033 -0.002983296 0\n", + " blue_cheese blueberry bone_oil bourbon_whiskey brandy\n", + "indian 0 0.216164294 -0.2276744 0 0.22427587\n", + "japanese 0 -0.119186087 0.3913019 0 -0.15595599\n", + "korean 0 -0.007821986 0.2854487 0 -0.02562342\n", + "thai 0 -0.004947048 -0.0253658 0 -0.05715244\n", + "\n", + "...\n", + "and 308 more lines." + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "GMbdfVmTKkJI", + "outputId": "adf9ebdf-d69d-4a64-e9fd-e06e5322292e" + } + }, + { + "cell_type": "markdown", + "source": [ + "输出显示了模型在训练过程中学习到的系数。\n", + "\n", + "### 评估训练好的模型\n", + "\n", + "现在是时候通过在测试集上评估模型来看看它的表现了 📏!让我们从对测试集进行预测开始吧。\n" + ], + "metadata": { + "id": "tt2BfOxrKmcJ" + } + }, + { + "cell_type": "code", + "execution_count": 9, + "source": [ + "# Make predictions on the test set\n", + "results <- cuisines_test %>% select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test))\n", + "\n", + "# Print out results\n", + "results %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class\n", + "1 indian thai \n", + "2 indian indian \n", + "3 indian indian \n", + "4 indian indian \n", + "5 indian indian " + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 2\n", + "\n", + "| cuisine <fct> | .pred_class <fct> |\n", + "|---|---|\n", + "| indian | thai |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "| indian | indian |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 2\n", + "\\begin{tabular}{ll}\n", + " cuisine & .pred\\_class\\\\\n", + " & \\\\\n", + "\\hline\n", + "\t indian & thai \\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\t indian & indian\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
      A tibble: 5 × 2
      cuisine.pred_class
      <fct><fct>
      indianthai
      indianindian
      indianindian
      indianindian
      indianindian
      \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "CqtckvtsKqax", + "outputId": "e57fe557-6a68-4217-fe82-173328c5436d" + } + }, + { + "cell_type": "markdown", + "source": [ + "干得好!在Tidymodels中,可以使用[yardstick](https://yardstick.tidymodels.org/)评估模型性能——这是一个通过性能指标来衡量模型效果的工具包。正如我们在逻辑回归课程中所做的那样,让我们从计算混淆矩阵开始。\n" + ], + "metadata": { + "id": "8w5N6XsBKss7" + } + }, + { + "cell_type": "code", + "execution_count": 10, + "source": [ + "# Confusion matrix for categorical data\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class)\n" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " Truth\n", + "Prediction chinese indian japanese korean thai\n", + " chinese 83 1 8 15 10\n", + " indian 4 163 1 2 6\n", + " japanese 21 5 73 25 1\n", + " korean 15 0 11 191 0\n", + " thai 10 11 3 7 70" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 133 + }, + "id": "YvODvsLkK0iG", + "outputId": "bb69da84-1266-47ad-b174-d43b88ca2988" + } + }, + { + "cell_type": "markdown", + "source": [ + "当处理多个类别时,通常更直观的方式是将其可视化为热图,如下所示:\n" + ], + "metadata": { + "id": "c0HfPL16Lr6U" + } + }, + { + "cell_type": "code", + "execution_count": 11, + "source": [ + "update_geom_defaults(geom = \"tile\", new = list(color = \"black\", alpha = 0.7))\n", + "# Visualize confusion matrix\n", + "results %>% \n", + " conf_mat(cuisine, .pred_class) %>% \n", + " autoplot(type = \"heatmap\")" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "plot without title" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAMAAADKOT/pAAADAFBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcICAgJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkaGhobGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgpKSkqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEyMjIzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7////isF19AAAACXBIWXMAABJ0AAASdAHeZh94AAAgAElEQVR4nO3deWBU9b3//0+ibApWrbYuvYorXaxoaatWvVqpqG2HsCmLBAqoVXBDjCKbKMqOQUDFFVxKqyhVFLUqWKJsxg3Lz2IFGilLiEqptMX0hpzvnJkMCbx5/W5vz5k5Z+D5/OOc85nEz3w8Mw9mMjmo84gocC7qBRDtCQGJKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQijHkLb+NUZVRb2Ahn26OeoVNCxWpyZWi/mbeGbnGNJl42PUmbNiVM+7nohRlz4ao/o/HqOuFc/sHEMasShGdfwsRt3+1qYYNXJ9jLq9MkZNE89sIMUkIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSbI+EVLQktatJvB8FpNGtv9LoqMteTx7d/f2vND6h5M3oIS07xT0XxjyhQJpx+sGNj79pbfCJgkJ6o7V72t/f4FKdFSmkRa3dnNTBgnYHNPneY7GCVPvB1ggg3ezaTZraq+C8RYvGF7a64cbW7rLIIU1sdmR8IE1ynX4957qC9pFDGtvsiDSkywsn+D0eJaRxycWkIC1pcdzYSecUzIwTpP+0YJBOONJ/CTqncP6iI49YsGjRwqMOjhrSS03GTY0PpJNaVia3P92nImJIc5vcWZqG1LVFoInCgPRCkzF3pyF1bLa8snLdd1pGC+nTOy8uvvdLr+iVEZ2KF/hv7WoTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZgHS8cf624sKF5RdO84/+plbEDGk8oWfxQjSt7/pb7vu80ngmYJBWvTa+jpIPz0ickhLFlSmIa1vVuSPR7lXI4V0w9jN6wdM94qu+fCfj3XZ5v+MVDRwi/dKl23eoPFfVD/es3pj+/e3b7xudmaYDUjD3C+fmz+6aee64Zsnfz3QdOF82BAjSFPckOV/nrFfv+AzBf6woQ7SWa3Wr18dLaRkaUiL3FB/MMdNjhLS6sTG5KbcK3ra8zYmKlKQ5nrepsQnqxKbkz8zdStblVjtedu9zDD5zyxpn+wPIUJadFsz5wp7pz5i+P1vH2i372gg7dT9+yfPz/WVwScKC1Lrlh0PdAddvyYOkJ5zd/mDN9ywKCG92b42tS9anHwvl/g4BSl9WJZINbv2ng4ls9Z7mWHye9/4cbL3QoR0T/MzRt91SWHqI4bJzh0+KdBsex6kZw/4yYzfXL7PzfGB1LKw20P3F7mL4gDpSTfVHyxzN0YJaVH77WlIS+ohpQ+XJjJv4zbNG9mhrH64uwJBeuPwE/0Xo66FTya3L44f2ragF5AatPGo7/ovRlcULo0NpLff87dd3ZwYQHrOTfIHZW54lJDWJCo876MXdgNpbWJl8usbvZotyd30wZlhFiA97VJwJrjMLL9wDwGpvrfddf7uCXdPbCCle8IFmi8kSEvcLf7gqfQLU1SQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpgVSD383Wg3+PkbHkyTugVI9ZW7/v7uEXdXbCCtXOlv73fjYgBpQ4uf+4MhrixSSFvu6NJz2rbdQdo8ruslJSu82ll9Ova6+++ZYRYgvdH8mDeSuw7usRcLT/WPLnGTgVTfxq+02pjc9Xa/jwukdwsv9AfnFbwRA0iVlzZ5p7Jy7bHfDjTXHnGt3UB32qgJFxe2XbSo2H332pLzC77zRsSQ5pWW9nADSkvfiQOkTXe6Hz/wxOWFRcFnCgbp2QkTurorJ0xYvL6Paztu1OmuX6DpgkGaO2lSN9d/0qRlle8dfPTQO37QaA6QFo06qWmjlleWLVr0Zkmrps2O7fFqoNlCgNQ7fS2ZezAWkDY9+P39Gp8wZH3wiYJB6ll3Vu5dv3ZM6xZNT5kYaLaAkHrVLWZ6ZeWiC1s0Pe2ZQLPtIZDCjau/ZVz9rQKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEgqINmAJAOSCkg2IMmApAKSDUgyIKmAZAOSDEiqmEDqOSJGnXJfjOpw+z0xqtOUGNU76rPRsMvEMzvHkEa+GqMuHBajznv8tRg1IOoFNGzgKzFqiHhm5xjSvZ/GqF/MjFHd3on6zWXD7ox6AQ27oypG3Sue2UCKSUCSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyhQTpraYHhzDLL/7zp/3YY9zg1MFDHQ7Z92sXz0ge3fTt5o2O6j0jWkjLTnHPhTFPGJDmt23e/OTSquAThQFpXcl/NW45bFPwiUKEVJN4f6fxpkTFrjdlGVLVmS5aSL0bH1wH6QeFF155puswc+b1BUf37HWi6xQppInNjowNpJcbtbx90jnuluAzhQEpsc9V0y9xJcEnChFS7Qdbd4W0601ZhjSp8bmRQhrWqPiyNKQS1y25/f43Z8z82qEPzJz58GEHRAnppSbjpsYG0o8O+ONnn1V9Z7+NgWcKAdJsd1ty+/Mzg78kZfGtXRLSv/29oUD6wwEll0YKadyomXWQftT0ofRND/e4zt+d7R6IEFL5ws/iA2nydH/bx/0p8EwhQOrSfF3wSVKF+9auNrFwRP++8z1v9aAuVy9Mv7WrGN6964gN3o4vZQ/SRSeujxZSsjpIh540c2aDH4tmnPDV/3TCkD5siA+kdOceGnyOECAdfW5VVWXwaapC/xmpaOAW75Uu22r7lW6rGpKGdGXptn+MKfEyX8oepIcK5n0aE0gzCs7t8/WC/S9KvQw9dNfw0/e5BkgNe9jdHnyS4JA2FfaadEzBQf0/iR+kuf5buk/+mNjoeUvSkLZ+6XmLO9RmvpT8xgVtkr0dNqQ/HdL307hAut8deuxVN15Y0Ma/qcS5Q274jyfcIyH9utlFsfjUrsId9b0Hnrqq8Gfxg7TY8zYnPi5rv93zPklDWj6kuLhboibzpeQ3lvdM9mHYkLoeviY2kB50zacndz9xtya3U6+/7LSCBJDqG7dPpw0hTBMc0l/cQWuSu8vcK7GDtCSlZX77Ws9bk4K0odPsam+pD2lJBtJuCg7pqYKHKyoquh1csS4GkGY2+6a/HeT61N3cPkUKSKmudIM+DWOeEH5GanGmv/2NuyvwTNmBtDxR6XllKUhlRTWe92j2IfVzdZ0fB0itDvO317orphQP948Gur5AqmtgQWkIs3wWCqQzjve3j7l7As+UHUjVPUq3rrs5BWllYsW/Fg5OVGUb0tsv+LU74IU34wCplytJbs8oHD+14Jv+p3ftUmMgJXvahfWJRQiQxrunk9su+7wVeKbsQPI+ur7z1e8k/uzfNKN7jylbB3bblGVI6aL9GWlonz5nu4v69Jkw86GWTdr3+6E7f+bMn7nju/c+veC4//QaoTAgzSst7eEGlJYGnyq4gcrjDipN9V7gqUKAtK71foPuLnKXB59pz7rWLmJIP657d3nVzJn3tv3KPocVJ/XM6H1046bfuGj6fzpnGJB6163rwcAzBYf0UeYt+GOBpwrjEqGP+3yt0XFj43WtXZC4+lvF1d8yrv62AUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAckGJBWQZECyAUkFJBmQbEBSAUkGJBuQVECSAcl28S9jVKt2Mer4blGfjob9KOoFNOxnV8Soi8QzO8eQ7loVo7r/JUYNf/KNGDXkTzFq1PoYNU08s3MMafLaGNUz6rcJDbvtmWUxanhFjIrV+8z7xDMbSDEJSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIs/yBt6n1EoUsFpFwHJFn+Qbp437a9+6UCUq4Dkiz/IH312WwBAtL/FpBk+QdpvyogRRWQZPkH6ezXgRRVQJLlH6S3f7gYSBEFJFn+QTrzv9x+R6cCUq4Dkiz/IJ3dNhOQch2QZPkHKfsBSQUkWT5C+uyFBx56+Qsg5T4gyfIP0vZBjfzLGvYfD6ScByRZ/kEa7zo+/OIL91/gHgVSrgOSLP8gfeuG9P6K7wEp1wFJln+QmsxP7+c1A1KuA5Is/yDt/3x6/2xzIOU6IMnyD9JZP672d9vanQukXAckWf5Bmldw1JWjbr/8iMJXgZTrgCTLP0jeb7/pf/z93XnZcgQkGZBkeQjJ89a/VV6ZNUZA0gFJlpeQshyQVECS5RmkVqO9VjsCUq4DkizPIJ1W6p22IyDlOiDJ8gxSTgKSCkiy/IPU5sP0/ulvASnXAUmWf5BceWr3P7c1BlKuA5Is3yC5+rhoNecBSZZvkN6/2xWl/uuQl434C5ByHZBk+QbJ8y74U7YAAel/C0iy/IPkbZyS3FTdtglIOQ9IsvyDtPIw/1OGCnfYaiDlOiDJ8g9Sh+Pf8ncfHt8JSLkOSLL8g3ToI+n9/S2AlOuAJMs/SM2eSO9/tV9MIc07t3nzk8ZW+Ie/P9k9GT2kkvSvC86OGtJrmV9cjF+2bNoPvtL4xMFLo4T0/Dn773/SmDUVFdenV3Vm9JCWneKeC2OefwvSjy6o8Xdf/ODMzC01ifdjBOnZfY8eNuYsd2PycHSzI+IA6ZeFd/n9OmpIbw5JdX7Br5ZNKmx1402nuCsihPTbfY8eOvosN6iiom/hWL+ZkUOa2OzIHEJ6ueDYASNH9Dm08OXMLbUfbI0RpNNbvLt2bcW391uz9rdNRk2KA6TuBwSfI10Yb+1eP7TDsmXfOLJs2bJFRx8cIaTTWrxdUbHmW/utqri4RaCJQoP0UpNxU3MIyXuljf9CfHJc/4bs+Lv9bbFbvrbsd2tjAelnRwafI10YkC458NVliwdO9A9/7sqigzRusr/t6d6ruPDweEAqX/hZTiF53mcf/H8N/4vF/lu7iuHdu47Y4FUnXh7cr+9SLzOuTSwc0b/vfM/bPL5Xl8GrPO+1qzoX31u9Y5gFSOnOPiS1iwWks1tVVa0NPk1VKJCeLCzJHC5tfVigqcL4sOHsQyoqzjyxomJlDCAlyzGkXfIhXVm67R9jSpKH1/3Ve7XDlszYKxq4xXulyzZv0Pgvqh/vWb2x/fvbN143OzNM/sP/XJfsy7Ah3eeGxQfSKcd0PsgdNOgvsYB0/qFvpPZvzH34gn3HRg3pHje0ouLklkUHuoOu/WhvgrTbvyHrQ9qatLC4Q21N4jnP2971lczYK5rreZsSn6xKbE7+LNWtbFVidfLrXmaY/IcXtEn2dsiQZjZrVxEfSMcU9pj5UEf30+AzBYf0ZOGg9MFU5w4vDTZXcEiPNDt/TUVFy8JL7r8n4S7YmyDt9m/I+pCWDyku7paoqUksS95w1azM2CtanHxbl/i4LJFqdu09HUpmrfcyw+T3rrg52c4XSQSGNGqfotVr4wPp/RX+trubG3im4JC6Nn49ffC7icPPL/hFtJBu36f9x8ndknJ/cLF7ai+CtNuSkDZ0ml3tLfUh+f9fzCt+nRl7RUtSkJYmquu+edO8kR3K6oe7Kyikfu7aT9bGCFK637hRgecIDGnp13/UYNTXzYgSUl93zZ/rR4+6EUB6v6yoxvMe9SE97XnVnV/LjDOQ1iZWJr9xo1ezJbmbPjgzzAqkqwvG7jiOBaTVq/3tQ25i4JkCQ3rE3eLvXip5xN/d5YZGCGlAwZj0wYoV/vYeN3ovgrR/g3b8DdkkpJWJFf9aODhRVZMYUFE9q+PfMuMMJG9oSVXNi10+f7XPx7Wbh0zJDLMB6VduZP0gDpA+KLzI37UtWBI9pKvdr/zd7wq/tyS56+qmRgfp8cwr0LLCdv7u3ILX9yJIXZO1anRG5w6nFLS5ugEkb0b3HlO2Duy2IfHiTZ37lXuZ8aYMpM3jul5SssKrndWnY6+7/54ZZgHSmmMPHDvOb8naOePGXeJ+OW7cm9FCqurnzp8w+gx3efCZAkP6uft9at/bnXz9ze0KTloSGaRVxxw4JnVBw6KK3u680SN/6PoEmS4MSPNKS3u4AaWl7+QAUrLZJ23wdyu/ObchpB2H74g5/g8FgvR+5oKyB9deWnc0LWJIG8efckDTU0uDTxQc0tmF6f3Swa2aNjuu5+uBJgsE6d3M4/RAxeo7Tm7RtPW4QI7CgNQ788zJDaSTnkrv72tdd8P2jxI7PnWLHlLYcfW3jKu/Vf8WpMavpfezm9TdsLDDqFog5SQgyfIP0hGXpna1XQ8PTgZI/7eAJMs/SLe67147atSAb7nBQMp1QJLlH6TacYf7P5EdMrwGSLkOSLL8g5Sk9Mmypau3Z4sRkHRAkuUjpG1vzfnU+x8g5T4gyfIQ0sQWzi3xhvwia5SApAKSLP8gPeDaT09CenTf8UDKdUCS5R+kk6/0tiUhebecCKRcByRZ/kFq+moa0u8aASnXAUmWf5C+9nwa0lMHACnXAUmWf5B+cs4/fUifn9QOSLkOSLL8g/T6Psdf5/r2PqDRm0DKdUCS5R8k77VT/Ssbfvj7bDkCkgxIsjyE5Hmb3ntvc9YYAUkHJFn+QToje/+JVSD9LwFJln+QvjEJSFEFJFn+QXruW7/9F5CiCUiy/IN09ndd4yOO9gNSrgOSLP8gnXle27qAlOuAJMs/SNkPSCogyfIO0rZlb24BUkQBSZZvkCa3cK5R/y/FNwIpuwFJlmeQnnEtbxh2lrtafCOQshuQZHkG6eyW/v8utm+jvwEpioAkyzNIzYf727dc1i5YBdL/X0CS5Rkkd7+/3eBeFt8JpKwGJFm+QXrQ3250LwEpioAkAxKQ/v2AJMs3SLcsSTbPlfo7IOU6IMnyDVLDgJTrgCTLM0i3NgxIuQ5IsjyDlJOApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZAOSCkgyINmApAKSDEg2IKmAJAOSDUgqIMmAZOvQM0Yd/4sYdWq7TjHqB5fGqJ/2iVEXimd2jiFNWR+jij+PUaOWboxRiWkxanTUj03DYvKKBCQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiQbkFRAkgHJBiQVkGRAsgFJBSQZkGxAUgFJBiRbUEhvtHZP+/sbXKqzIodUduEBTdr8KoSJAkNa1No9s+tRFJBGHOWuSx1cf3zjxifcsPNtkUEK7XEKBVJN4p1oIY1tdkQa0uWFE/wejxrS2y2OmzD53IIngs8UFNK45Kl5ZpejKCB1a3xQGs2V7shLLj1s35sa3hYZpPAepz0C0twmd5amIXVtEWii0CB1bvbh559vOumY4DMFhPR8k9GT03zqj6KANKjRJT3TaA498K5p0ya0aNXwtsgghfc47RGQFr22vg7ST4+IBaSqZh393Wj3euCpAkJaPH9jHZ/6oygg3XrLtDSaMe4sf9y2YHz9bZFBCvFxCg1SzbCRNX8d36tzyYfe9sTv+k32No/v1WXwKs+rGN6964gNXm1i4Yj+fednBVKyOkhntVq/fnX0kJa54f5urpsaeKrgHzbU84kQUrI0mjvcef6gixtYf1tkkEJ8nEKDVFrypTfo1i1fPtz1b17RwFX/9AaN/6L68Z7V3pWl2/4xpsRL3rjFe6XLtuS3f74s2d+yAql1y44HuoOuXxMxpBfc3f5uiRsReKo9DdLU/Y7yB23cZTGAFOLjFBakJ/p/4a1OrPW86osXeEVPet6qxGbPq+1W5m390vMWd6j1iuZ63qbEJ8lvX9Am2dtZgdSysNtD9xe5iyKG9Iy7z9+9424KPNWeBmlawv33yNsuaOH6xgBSiI9TSJDGJv7geW+2r00O+v/GKyrzvLJEqtne8iHFxd0SNV7RYs/bnPcB240AABDoSURBVPg4+R2rpyRblxVIb7/nb7u6OdFCmucm+7vF7tbAU+1xkO4+r8C5b13qrowBpBAfp5Ag9RsxsKYO0lVPeEVLPG9pojr1tQ2dZlcnBzWpG9OQdlNYkNI94UZGC+ltN8zfzUn/gReoPQ7StGljS+5M/ow0LAaQQnycQoJUvrXPI94a/43bts7zU2bWJlYmv7LRKyuq8bxHcwVp5Up/e78bFy2kT1sk/N1wtzjwVHsgJL/v7jclBpBCfJxC+7BhRYd3vZKRX2y7r+c/Uma8oSVVNS92+XxlYsW/Fg5OVOUE0ruFF/qD8wreiBbS58VNln/++YZjvxN8pj0O0umHTp42bXDhORZX7iGF+DiF93ukx4u3VN3R89Lbkj/8pCBtHtf1kpIVnjeje48pWwd225RFSM9OmNDVXTlhwuL1fVzbcaNOd/0CTRcCpD98teXwMT9sNDf4TAEhzZ04sZu7auLEpQ2OooB0Q48ep7u2PXqMnHZFwQnFHZp/dWzD2yKDFN7jtEdca9czfYWdu3f92jGtWzQ9ZWKg2UK51m7ZRS2anvFcCBMFhFRcd2rua3AUBaSz6u69z7Rpfb7RqPlpd+58W1SQwnuc9ghIIcfV3zKu/lYByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSRUTSB2LY9SJfWJUm469Y1TLs2NUIurHpmEXimd2jiFNq4xRvaP+c79ht77zWYwatSlGXV8eo24Xz2wgxSQgyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSDYgqYAkA5INSCogyYBkA5IKSDIg2YCkApIMSLagkBa1dnNSBwvaHdDke49FCym5mGd2PYoW0pz/PrjJSZM+DT5RcEh/cnXNjBbSgsw6JpSXzzq7eeOT7oo1pKIlOw1rEu9nBdK4ZkekIS1pcdzYSecUzIwSkr+YZ3Y5ihbSrMKTx0443Q2OA6R1d6UqKng9WkiLh6Y6v2BW+Zz9j7p56GkFE+MKafnHBlLtB1uzAemFJmPuTkPq2Gx5ZeW677SMENLzTUZPTvOpP4oYUsuj13322cbjD40DpHSrDy8OPkkIb+0WHtqxvPyCpi+Vly894RtxhXTbiwaSLBikJQsq05DWNyvyx6Pcq9FBWjx/Yx2f+qNoIVXe8YS/6+HWxQbSZQd/FHySECB1PXB++bKm5/uHg9wT8YQ0pH2n672iV0Z0Kl7geRXDu3cdsSFrb+0q6yAtckP9wRw3OTpIyer5xAJSuk9P+0bwSUKC9Gbh2BBmCQ5pduHN5eVPuwH+8XQ3Ip6QvH7+K9I1H/7zsS7bvCtLt/1jTEkdpPXPJKvKBqTn3F3+4A03DEg7tWH5y50bzQw+T0iQOhz+lxBmCQ6p3aGLyssfcMP846fc1XGG9LTnbUxUeFu/9LzFHWrTkBa0SfZ2NiA96ab6g2XuRiDt1DPOHfWbEOYJB9KbhXeGMU1gSLMLb0xup7nb/MGz7vI4Q1rseZsTH3vLhxQXd0vUZP8VaZI/KHPDgbRTH/1qaseCgcHnCQfS5Y1XhzFNYEjdGi9Mbh90Q/3BU+6aOENakoK0odPsam9pBtJuCgnSEneLP3gq/cIEpJ0a5F4NPEcokCqP+EkY0wSG9NbXz/R3c1x/f3dP+oUp3pDKimo879HsQ9rQ4uf+YIgrA1J9fxz3O3/3azc5HpBecpPCmCYwpBnpl6Jl+5/n7wa4p2IKqf/Df89AWplY8a+FgxNV2YZUeWmTdyor1x777UBz7WmQPio8syq5+6V7Jh6Qhrvgv4z1CwrpGjcrte/Q+Pny8kX/dUKgybIIaW7nPhlI3ozuPaZsHdhtQ3YgzZ00qZvrP2nSssr3Dj566B0/aDQnQkhzJ07s5q6aOHFpg6NoIX12nfvhqImdCr5fFQ9I3d2aMKYJDCnhFqb28w48csCgk/edHldI/5eCQepVd9nU9MrKRRe2aHraM4FmCwipuG4x9zU4ihjSp5NObrb/t66uCD5TKJAuKAxjluCQ/ruw7uDpc/Zvcup9wSbbIyCFHFd/y7j6WwUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkFZBsQJIBSQUkG5BkQFIByQYkGZBUQLIBSQYkVUwgzXg8Rg2MegENGzY16hU07NqoF9CwWD1O08QzO8eQiPbMgEQUQkAiCiEgEYUQkIhCCEhEIQQkohACElEIAYkohIBEFEJAIgohIBGFEJCIQghIRCGUl5CmTY56BQ2ad+emqJdQ34d3Lo16CfV9eeesqJfQoBl3ZnX6vISUaBf1Chp0R5uPo15Cfa+2eTzqJdS3tc3VUS+hQb2/n9XpgRQ0IKmAFPeApAKSDEg2IKmAJAMSUfwDElEIAYkohPIDUtGS1K4m8X7ECzFL2JSoyPmqYnAaTDWJd6Jegq7u6ZMpK+cvryDVfrA14oWYJSQh5XxVMTgNpthCWv6xgZSV85dXkGJYElLUS4hFsYV024u5efrEHNKnd15cfO+XXtErIzoVL/Bfk2sTC0f07zvf8zaP79Vl8CrPe+2qzsX3Vu8YZruGS1g9qMvVC9Nv7SqGd+86YoO340vZXkPmDqsTLw/u13epZxaQ69PjQ6oZNrLmr+N7dS750Nue+F2/yTvuNadnZ+eGtO90febpk1nH3vjW7oaxm9cPmO4VXfPhPx/rss0/A0UDt3ivdNnmDRr/RfXjPas3tn9/+8brZmeGWV9QgyXU9ivdVjUkDenK0m3/GFPi7Vhd1tdQd4c1iev+6r3aYYtZQK5Pjw+ptORLb9CtW758uOvfkutY9c8d95rTs7NL/fxXpPTTp/6k7XWQVic2JjflXtHTnrcx/ZQtmuu/n/pkVWJz8s1ut7JVidWet93LDLO+ogZL+KO/uCXpVW390vMWd6jNfCn7a6i7w5rEc8l//a6v7LqAnJ+eJKQn+n+RfMDWel71xQu8oie9+nvN6dnZpRSk9NOn/qTtdZDebF+b2hctTr5ZSXycehanD8sSqWbX3tOhZNZ6LzPM+ooaLqH9ds/7JA1p+ZDi4m6JmsyXsr+GujusSSxL3nDVrF0XkPPTU5MYm/hD5gHr/xuvKIl2x73m9OzsUgpS3f3uOGl7HaRF/nPVS/+0mIGUPlyayLxP2TRvZIey+mGWa7CE+f6TZk0K0oZOs6u9pf5TZUluIGXusCaRfI54V/x61wXk/PTUJPqNGFhTB+mqJ1LryNxrbs/OLvV7ccfTp/6k7XWQ1vifiX30wm4grU2sTH59o1ezJbmbPjgzzHoNlrA8Uen/qetDKiuq8bxHcwgpc4c1ieS7lurOr+26gJyfnppE+dY+jyQfsOQbt22d56fWkbnX3J6dXWoAqf6k7XWQvEEjKtddd+9uIHlDS6pqXuzy+at9Pq7dPGRKZpj1BTVYQnWP0q3rbk5BWplY8a+FgxNVOYOUucOaxICK6lkd/2YWkOvT43/YsKLDu17JyC+23dfzH+lPnOvuNbdnZ5f6P/z3zP3Wn7S9D9KWO7r0nLZtd5A2j+t6SckKr3ZWn4697v57Zpj1Gi7ho+s7X/1O4s/+TTO695iydWC3TbmClLnDDYkXb+rcr9wzC8j16Un9Hunx4i1Vd/S89LZ1db+6ydxrTs/OLs3t3GfHA7bjpO19kGg3NfgTNba/B93rAlLetf0j/zPtdECKS0DKuxZ2GFWbOQZSXAISUQgBiSiEgEQUQkAiCiEgEYUQkPK3X7pMp+32622Pzu169uqAlL+9PnXq1Gtd5+TWXNb9nv+4AimHASm/e92V7u7mKUDKcUDK7+ognXn28984w2vd2j8u+qp3QfLtXhuv7XFrLmze/JLsX8lLQMr36iCdd/I373mhHtKfilz5h17blq1HP3tjwS+iXeFeEpDyuzpIbd2c5HYHJK+f23Hjj74W4fL2noCU32UgNf6XZyE19a/J61UY4fL2noCU32UgHeFvd4V0tD/sx0OcizjL+V0G0tH+FkjRxVnO73aCdOpJ/vY0IEUQZzm/2wnSeYckfyja1CwJ6TL3P0DKaZzl/G4nSJPdmMp3f/ydJKQR7rangZTLOMv53U6Qqm84sknr5we08Ly/nNqoFZByGWeZKISARBRCQCIKISARhRCQiEIISEQhBCSiEAISUQgBiSiEgEQUQkAiCiEgEYXQ/wMhANIDIZLX1QAAAABJRU5ErkJggg==" + }, + "metadata": { + "image/png": { + "width": 420, + "height": 420 + } + } + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 436 + }, + "id": "HsAtwukyLsvt", + "outputId": "3032a224-a2c8-4270-b4f2-7bb620317400" + } + }, + { + "cell_type": "markdown", + "source": [ + "混淆矩阵图中较深的方块表示案例数量较多,希望你能看到一条较深方块组成的对角线,表明预测标签与实际标签一致的情况。\n", + "\n", + "现在让我们计算混淆矩阵的汇总统计数据。\n" + ], + "metadata": { + "id": "oOJC87dkLwPr" + } + }, + { + "cell_type": "code", + "execution_count": 12, + "source": [ + "# Summary stats for confusion matrix\n", + "conf_mat(data = results, truth = cuisine, estimate = .pred_class) %>% \n", + "summary()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " .metric .estimator .estimate\n", + "1 accuracy multiclass 0.7880435\n", + "2 kap multiclass 0.7276583\n", + "3 sens macro 0.7780927\n", + "4 spec macro 0.9477598\n", + "5 ppv macro 0.7585583\n", + "6 npv macro 0.9460080\n", + "7 mcc multiclass 0.7292724\n", + "8 j_index macro 0.7258524\n", + "9 bal_accuracy macro 0.8629262\n", + "10 detection_prevalence macro 0.2000000\n", + "11 precision macro 0.7585583\n", + "12 recall macro 0.7780927\n", + "13 f_meas macro 0.7641862" + ], + "text/markdown": [ + "\n", + "A tibble: 13 × 3\n", + "\n", + "| .metric <chr> | .estimator <chr> | .estimate <dbl> |\n", + "|---|---|---|\n", + "| accuracy | multiclass | 0.7880435 |\n", + "| kap | multiclass | 0.7276583 |\n", + "| sens | macro | 0.7780927 |\n", + "| spec | macro | 0.9477598 |\n", + "| ppv | macro | 0.7585583 |\n", + "| npv | macro | 0.9460080 |\n", + "| mcc | multiclass | 0.7292724 |\n", + "| j_index | macro | 0.7258524 |\n", + "| bal_accuracy | macro | 0.8629262 |\n", + "| detection_prevalence | macro | 0.2000000 |\n", + "| precision | macro | 0.7585583 |\n", + "| recall | macro | 0.7780927 |\n", + "| f_meas | macro | 0.7641862 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 13 × 3\n", + "\\begin{tabular}{lll}\n", + " .metric & .estimator & .estimate\\\\\n", + " & & \\\\\n", + "\\hline\n", + "\t accuracy & multiclass & 0.7880435\\\\\n", + "\t kap & multiclass & 0.7276583\\\\\n", + "\t sens & macro & 0.7780927\\\\\n", + "\t spec & macro & 0.9477598\\\\\n", + "\t ppv & macro & 0.7585583\\\\\n", + "\t npv & macro & 0.9460080\\\\\n", + "\t mcc & multiclass & 0.7292724\\\\\n", + "\t j\\_index & macro & 0.7258524\\\\\n", + "\t bal\\_accuracy & macro & 0.8629262\\\\\n", + "\t detection\\_prevalence & macro & 0.2000000\\\\\n", + "\t precision & macro & 0.7585583\\\\\n", + "\t recall & macro & 0.7780927\\\\\n", + "\t f\\_meas & macro & 0.7641862\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
      A tibble: 13 × 3
      .metric.estimator.estimate
      <chr><chr><dbl>
      accuracy multiclass0.7880435
      kap multiclass0.7276583
      sens macro 0.7780927
      spec macro 0.9477598
      ppv macro 0.7585583
      npv macro 0.9460080
      mcc multiclass0.7292724
      j_index macro 0.7258524
      bal_accuracy macro 0.8629262
      detection_prevalencemacro 0.2000000
      precision macro 0.7585583
      recall macro 0.7780927
      f_meas macro 0.7641862
      \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 494 + }, + "id": "OYqetUyzL5Wz", + "outputId": "6a84d65e-113d-4281-dfc1-16e8b70f37e6" + } + }, + { + "cell_type": "markdown", + "source": [ + "如果我们仅关注一些指标,比如准确率、敏感性、PPV,作为开始,我们的表现还不错 🥳!\n", + "\n", + "## 4. 深入探讨\n", + "\n", + "让我们问一个微妙的问题:选择某种菜系作为预测结果的标准是什么?\n", + "\n", + "实际上,统计机器学习算法,比如逻辑回归,是基于`概率`的;分类器真正预测的是一组可能结果的概率分布。然后,概率最高的类别会被选为给定观察数据中最可能的结果。\n", + "\n", + "让我们通过同时进行硬分类预测和概率预测来看看实际效果。\n" + ], + "metadata": { + "id": "43t7vz8vMJtW" + } + }, + { + "cell_type": "code", + "execution_count": 13, + "source": [ + "# Make hard class prediction and probabilities\n", + "results_prob <- cuisines_test %>%\n", + " select(cuisine) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test)) %>% \n", + " bind_cols(mr_fit %>% predict(new_data = cuisines_test, type = \"prob\"))\n", + "\n", + "# Print out results\n", + "results_prob %>% \n", + " slice_head(n = 5)" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " cuisine .pred_class .pred_chinese .pred_indian .pred_japanese .pred_korean\n", + "1 indian thai 1.551259e-03 0.4587877 5.988039e-04 2.428503e-04\n", + "2 indian indian 2.637133e-05 0.9999488 6.648651e-07 2.259993e-05\n", + "3 indian indian 1.049433e-03 0.9909982 1.060937e-03 1.644947e-05\n", + "4 indian indian 6.237482e-02 0.4763035 9.136702e-02 3.660913e-01\n", + "5 indian indian 1.431745e-02 0.9418551 2.945239e-02 8.721782e-03\n", + " .pred_thai \n", + "1 5.388194e-01\n", + "2 1.577948e-06\n", + "3 6.874989e-03\n", + "4 3.863391e-03\n", + "5 5.653283e-03" + ], + "text/markdown": [ + "\n", + "A tibble: 5 × 7\n", + "\n", + "| cuisine <fct> | .pred_class <fct> | .pred_chinese <dbl> | .pred_indian <dbl> | .pred_japanese <dbl> | .pred_korean <dbl> | .pred_thai <dbl> |\n", + "|---|---|---|---|---|---|---|\n", + "| indian | thai | 1.551259e-03 | 0.4587877 | 5.988039e-04 | 2.428503e-04 | 5.388194e-01 |\n", + "| indian | indian | 2.637133e-05 | 0.9999488 | 6.648651e-07 | 2.259993e-05 | 1.577948e-06 |\n", + "| indian | indian | 1.049433e-03 | 0.9909982 | 1.060937e-03 | 1.644947e-05 | 6.874989e-03 |\n", + "| indian | indian | 6.237482e-02 | 0.4763035 | 9.136702e-02 | 3.660913e-01 | 3.863391e-03 |\n", + "| indian | indian | 1.431745e-02 | 0.9418551 | 2.945239e-02 | 8.721782e-03 | 5.653283e-03 |\n", + "\n" + ], + "text/latex": [ + "A tibble: 5 × 7\n", + "\\begin{tabular}{lllllll}\n", + " cuisine & .pred\\_class & .pred\\_chinese & .pred\\_indian & .pred\\_japanese & .pred\\_korean & .pred\\_thai\\\\\n", + " & & & & & & \\\\\n", + "\\hline\n", + "\t indian & thai & 1.551259e-03 & 0.4587877 & 5.988039e-04 & 2.428503e-04 & 5.388194e-01\\\\\n", + "\t indian & indian & 2.637133e-05 & 0.9999488 & 6.648651e-07 & 2.259993e-05 & 1.577948e-06\\\\\n", + "\t indian & indian & 1.049433e-03 & 0.9909982 & 1.060937e-03 & 1.644947e-05 & 6.874989e-03\\\\\n", + "\t indian & indian & 6.237482e-02 & 0.4763035 & 9.136702e-02 & 3.660913e-01 & 3.863391e-03\\\\\n", + "\t indian & indian & 1.431745e-02 & 0.9418551 & 2.945239e-02 & 8.721782e-03 & 5.653283e-03\\\\\n", + "\\end{tabular}\n" + ], + "text/html": [ + "\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\n", + "\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\t\n", + "\n", + "
      A tibble: 5 × 7
      cuisine.pred_class.pred_chinese.pred_indian.pred_japanese.pred_korean.pred_thai
      <fct><fct><dbl><dbl><dbl><dbl><dbl>
      indianthai 1.551259e-030.45878775.988039e-042.428503e-045.388194e-01
      indianindian2.637133e-050.99994886.648651e-072.259993e-051.577948e-06
      indianindian1.049433e-030.99099821.060937e-031.644947e-056.874989e-03
      indianindian6.237482e-020.47630359.136702e-023.660913e-013.863391e-03
      indianindian1.431745e-020.94185512.945239e-028.721782e-035.653283e-03
      \n" + ] + }, + "metadata": {} + } + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 248 + }, + "id": "xdKNs-ZPMTJL", + "outputId": "68f6ac5a-725a-4eff-9ea6-481fef00e008" + } + }, + { + "cell_type": "markdown", + "source": [ + "为什么模型非常确定第一条观察是泰国菜?\n", + "\n", + "## **🚀挑战**\n", + "\n", + "在本课中,你使用清理后的数据构建了一个机器学习模型,可以根据一系列食材预测国家菜系。花点时间阅读 [Tidymodels 提供的多种选项](https://www.tidymodels.org/find/parsnip/#models) 来分类数据,以及 [其他方法](https://parsnip.tidymodels.org/articles/articles/Examples.html#multinom_reg-models) 来拟合多项式回归。\n", + "\n", + "#### 感谢:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) 创作了令人惊叹的插图,使 R 更加友好和吸引人。可以在她的 [画廊](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM) 中找到更多插图。\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) 和 [Jen Looper](https://www.twitter.com/jenlooper) 创作了本模块的原始 Python 版本 ♥️\n", + "\n", + "
      \n", + "本来想加点笑话,但我对食物的双关语一窍不通 😅。\n", + "\n", + "
      \n", + "\n", + "祝学习愉快,\n", + "\n", + "[Eric](https://twitter.com/ericntay),微软金牌学习学生大使\n" + ], + "metadata": { + "id": "2tWVHMeLMYdM" + } + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/2-Classifiers-1/solution/notebook.ipynb b/translations/zh-CN/4-Classification/2-Classifiers-1/solution/notebook.ipynb new file mode 100644 index 000000000..943f3d608 --- /dev/null +++ b/translations/zh-CN/4-Classification/2-Classifiers-1/solution/notebook.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "source": [ + "# 构建分类模型\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      00indian00000000...0000000000
      11indian10000000...0000000000
      22indian00000000...0000000000
      33indian00000000...0000000000
      44indian00000000...0000000010
      \n

      5 rows × 382 columns

      \n
      " + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "from sklearn.svm import SVC\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      00000000000...0000000000
      11000000000...0000000000
      20000000000...0000000000
      30000000000...0000000000
      40000000000...0000000010
      \n

      5 rows × 380 columns

      \n
      " + }, + "metadata": {}, + "execution_count": 4 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy is 0.8181818181818182\n" + ] + } + ], + "source": [ + "lr = LogisticRegression(multi_class='ovr',solver='liblinear')\n", + "model = lr.fit(X_train, np.ravel(y_train))\n", + "\n", + "accuracy = model.score(X_test, y_test)\n", + "print (\"Accuracy is {}\".format(accuracy))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ingredients: Index(['artemisia', 'black_pepper', 'mushroom', 'shiitake', 'soy_sauce',\n 'vegetable_oil'],\n dtype='object')\ncuisine: korean\n" + ] + } + ], + "source": [ + "# test an item\n", + "print(f'ingredients: {X_test.iloc[50][X_test.iloc[50]!=0].keys()}')\n", + "print(f'cuisine: {y_test.iloc[50]}')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " 0\n", + "korean 0.392231\n", + "chinese 0.372872\n", + "japanese 0.218825\n", + "thai 0.013427\n", + "indian 0.002645" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      0
      korean0.392231
      chinese0.372872
      japanese0.218825
      thai0.013427
      indian0.002645
      \n
      " + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "#rehsape to 2d array and transpose\n", + "test= X_test.iloc[50].values.reshape(-1, 1).T\n", + "# predict with score\n", + "proba = model.predict_proba(test)\n", + "classes = model.classes_\n", + "# create df with classes and scores\n", + "resultdf = pd.DataFrame(data=proba, columns=classes)\n", + "\n", + "# create df to show results\n", + "topPrediction = resultdf.T.sort_values(by=[0], ascending = [False])\n", + "topPrediction.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.75 0.73 0.74 223\n indian 0.93 0.88 0.90 255\n japanese 0.78 0.78 0.78 253\n korean 0.87 0.86 0.86 236\n thai 0.76 0.84 0.80 232\n\n accuracy 0.82 1199\n macro avg 0.82 0.82 0.82 1199\nweighted avg 0.82 0.82 0.82 1199\n\n" + ] + } + ], + "source": [ + "y_pred = model.predict(X_test)\r\n", + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "9408506dd864f2b6e334c62f80c0cfcc", + "translation_date": "2025-09-03T20:20:25+00:00", + "source_file": "4-Classification/2-Classifiers-1/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/3-Classifiers-2/README.md b/translations/zh-CN/4-Classification/3-Classifiers-2/README.md new file mode 100644 index 000000000..fd95c847e --- /dev/null +++ b/translations/zh-CN/4-Classification/3-Classifiers-2/README.md @@ -0,0 +1,240 @@ +# 美食分类器 2 + +在第二节分类课程中,您将探索更多分类数值数据的方法。同时,您还将了解选择不同分类器的影响。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +### 前提条件 + +我们假设您已经完成了之前的课程,并在本四节课程的根目录中的 `data` 文件夹中准备了一个名为 _cleaned_cuisines.csv_ 的清理过的数据集。 + +### 准备工作 + +我们已经将清理过的数据集加载到您的 _notebook.ipynb_ 文件中,并将其分为 X 和 y 数据框,准备进行模型构建。 + +## 分类地图 + +之前,您已经了解了使用微软的速查表对数据进行分类的各种选项。Scikit-learn 提供了一个类似但更详细的速查表,可以进一步帮助您缩小选择范围(分类器的另一种说法是估计器): + +![Scikit-learn 的机器学习地图](../../../../4-Classification/3-Classifiers-2/images/map.png) +> 提示:[在线访问此地图](https://scikit-learn.org/stable/tutorial/machine_learning_map/),点击路径以阅读相关文档。 + +### 计划 + +一旦您对数据有了清晰的理解,这张地图就非常有用,您可以沿着它的路径做出决策: + +- 我们有 >50 个样本 +- 我们希望预测一个类别 +- 我们有标记数据 +- 我们的样本少于 100K +- ✨ 我们可以选择一个线性 SVC +- 如果这不起作用,因为我们有数值数据 + - 我们可以尝试 ✨ KNeighbors 分类器 + - 如果这不起作用,可以尝试 ✨ SVC 和 ✨ 集成分类器 + +这是一条非常有帮助的路径。 + +## 练习 - 划分数据 + +按照这条路径,我们应该先导入一些需要使用的库。 + +1. 导入所需的库: + + ```python + from sklearn.neighbors import KNeighborsClassifier + from sklearn.linear_model import LogisticRegression + from sklearn.svm import SVC + from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier + from sklearn.model_selection import train_test_split, cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve + import numpy as np + ``` + +1. 划分训练数据和测试数据: + + ```python + X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3) + ``` + +## 线性 SVC 分类器 + +支持向量聚类(SVC)是支持向量机(SVM)机器学习技术家族的一部分(下面可以了解更多)。在这种方法中,您可以选择一个“核函数”来决定如何聚类标签。“C”参数指的是“正则化”,用于调节参数的影响。核函数可以是[多种选项](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC)之一;这里我们将其设置为“线性”,以确保我们使用线性 SVC。概率默认值为“false”;这里我们将其设置为“true”,以获取概率估计。我们将随机状态设置为“0”,以打乱数据以获取概率。 + +### 练习 - 应用线性 SVC + +首先创建一个分类器数组。随着测试的进行,您将逐步向该数组添加内容。 + +1. 从线性 SVC 开始: + + ```python + C = 10 + # Create different classifiers. + classifiers = { + 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0) + } + ``` + +2. 使用线性 SVC 训练您的模型并打印报告: + + ```python + n_classifiers = len(classifiers) + + for index, (name, classifier) in enumerate(classifiers.items()): + classifier.fit(X_train, np.ravel(y_train)) + + y_pred = classifier.predict(X_test) + accuracy = accuracy_score(y_test, y_pred) + print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100)) + print(classification_report(y_test,y_pred)) + ``` + + 结果相当不错: + + ```output + Accuracy (train) for Linear SVC: 78.6% + precision recall f1-score support + + chinese 0.71 0.67 0.69 242 + indian 0.88 0.86 0.87 234 + japanese 0.79 0.74 0.76 254 + korean 0.85 0.81 0.83 242 + thai 0.71 0.86 0.78 227 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +## K-Neighbors 分类器 + +K-Neighbors 是机器学习方法中“邻居”家族的一部分,可用于监督学习和非监督学习。在这种方法中,创建了预定义数量的点,并围绕这些点收集数据,以便预测数据的通用标签。 + +### 练习 - 应用 K-Neighbors 分类器 + +之前的分类器表现不错,适合数据,但也许我们可以获得更好的准确性。尝试使用 K-Neighbors 分类器。 + +1. 在分类器数组中添加一行(在线性 SVC 项目后添加逗号): + + ```python + 'KNN classifier': KNeighborsClassifier(C), + ``` + + 结果稍差一些: + + ```output + Accuracy (train) for KNN classifier: 73.8% + precision recall f1-score support + + chinese 0.64 0.67 0.66 242 + indian 0.86 0.78 0.82 234 + japanese 0.66 0.83 0.74 254 + korean 0.94 0.58 0.72 242 + thai 0.71 0.82 0.76 227 + + accuracy 0.74 1199 + macro avg 0.76 0.74 0.74 1199 + weighted avg 0.76 0.74 0.74 1199 + ``` + + ✅ 了解 [K-Neighbors](https://scikit-learn.org/stable/modules/neighbors.html#neighbors) + +## 支持向量分类器 + +支持向量分类器是[支持向量机](https://wikipedia.org/wiki/Support-vector_machine)机器学习方法家族的一部分,可用于分类和回归任务。SVM 将“训练样本映射到空间中的点”,以最大化两个类别之间的距离。后续数据被映射到该空间,以预测其类别。 + +### 练习 - 应用支持向量分类器 + +让我们尝试使用支持向量分类器获得更好的准确性。 + +1. 在 K-Neighbors 项目后添加逗号,然后添加以下行: + + ```python + 'SVC': SVC(), + ``` + + 结果非常好! + + ```output + Accuracy (train) for SVC: 83.2% + precision recall f1-score support + + chinese 0.79 0.74 0.76 242 + indian 0.88 0.90 0.89 234 + japanese 0.87 0.81 0.84 254 + korean 0.91 0.82 0.86 242 + thai 0.74 0.90 0.81 227 + + accuracy 0.83 1199 + macro avg 0.84 0.83 0.83 1199 + weighted avg 0.84 0.83 0.83 1199 + ``` + + ✅ 了解 [支持向量](https://scikit-learn.org/stable/modules/svm.html#svm) + +## 集成分类器 + +让我们沿着路径走到最后,尽管之前的测试结果已经非常好。尝试一些“集成分类器”,特别是随机森林和 AdaBoost: + +```python + 'RFST': RandomForestClassifier(n_estimators=100), + 'ADA': AdaBoostClassifier(n_estimators=100) +``` + +结果非常好,尤其是随机森林: + +```output +Accuracy (train) for RFST: 84.5% + precision recall f1-score support + + chinese 0.80 0.77 0.78 242 + indian 0.89 0.92 0.90 234 + japanese 0.86 0.84 0.85 254 + korean 0.88 0.83 0.85 242 + thai 0.80 0.87 0.83 227 + + accuracy 0.84 1199 + macro avg 0.85 0.85 0.84 1199 +weighted avg 0.85 0.84 0.84 1199 + +Accuracy (train) for ADA: 72.4% + precision recall f1-score support + + chinese 0.64 0.49 0.56 242 + indian 0.91 0.83 0.87 234 + japanese 0.68 0.69 0.69 254 + korean 0.73 0.79 0.76 242 + thai 0.67 0.83 0.74 227 + + accuracy 0.72 1199 + macro avg 0.73 0.73 0.72 1199 +weighted avg 0.73 0.72 0.72 1199 +``` + +✅ 了解 [集成分类器](https://scikit-learn.org/stable/modules/ensemble.html) + +这种机器学习方法“结合多个基础估计器的预测”,以提高模型质量。在我们的示例中,我们使用了随机森林和 AdaBoost。 + +- [随机森林](https://scikit-learn.org/stable/modules/ensemble.html#forest),一种平均方法,构建了一个随机性注入的“决策树森林”,以避免过拟合。n_estimators 参数设置为树的数量。 + +- [AdaBoost](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html) 将分类器拟合到数据集,然后将该分类器的副本拟合到同一数据集。它关注错误分类项的权重,并调整下一分类器的拟合以进行纠正。 + +--- + +## 🚀挑战 + +每种技术都有大量参数可以调整。研究每种技术的默认参数,并思考调整这些参数对模型质量的影响。 + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +这些课程中有很多术语,因此花点时间复习[这个术语表](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott),非常有用! + +## 作业 + +[参数调整](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/3-Classifiers-2/assignment.md b/translations/zh-CN/4-Classification/3-Classifiers-2/assignment.md new file mode 100644 index 000000000..1b6bd7806 --- /dev/null +++ b/translations/zh-CN/4-Classification/3-Classifiers-2/assignment.md @@ -0,0 +1,16 @@ +# 参数探索 + +## 说明 + +在使用这些分类器时,有许多参数是默认设置的。可以使用 VS Code 中的智能感知功能深入了解这些参数。在本课中选择一种机器学习分类技术,并通过调整各种参数值重新训练模型。创建一个笔记本,详细解释为什么某些更改可以提高模型质量,而其他更改则会降低质量。请详细说明您的答案。 + +## 评分标准 + +| 标准 | 卓越表现 | 合格表现 | 需要改进 | +| -------- | ---------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------- | ----------------------------- | +| | 提交的笔记本展示了一个完整构建的分类器,并通过文本框解释了参数调整及其变化 | 提交的笔记本部分完成或解释不充分 | 提交的笔记本存在问题或缺陷 | + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/3-Classifiers-2/notebook.ipynb b/translations/zh-CN/4-Classification/3-Classifiers-2/notebook.ipynb new file mode 100644 index 000000000..cb14fc7aa --- /dev/null +++ b/translations/zh-CN/4-Classification/3-Classifiers-2/notebook.ipynb @@ -0,0 +1,165 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "构建分类模型\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      00indian00000000...0000000000
      11indian10000000...0000000000
      22indian00000000...0000000000
      33indian00000000...0000000000
      44indian00000000...0000000010
      \n

      5 rows × 382 columns

      \n
      " + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      00000000000...0000000000
      11000000000...0000000000
      20000000000...0000000000
      30000000000...0000000000
      40000000000...0000000010
      \n

      5 rows × 380 columns

      \n
      " + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。虽然我们尽力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "15a83277036572e0773229b5f21c1e12", + "translation_date": "2025-09-03T20:27:20+00:00", + "source_file": "4-Classification/3-Classifiers-2/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/3-Classifiers-2/solution/Julia/README.md b/translations/zh-CN/4-Classification/3-Classifiers-2/solution/Julia/README.md new file mode 100644 index 000000000..f30fc4eeb --- /dev/null +++ b/translations/zh-CN/4-Classification/3-Classifiers-2/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb b/translations/zh-CN/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb new file mode 100644 index 000000000..97a1c66b1 --- /dev/null +++ b/translations/zh-CN/4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb @@ -0,0 +1,650 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "lesson_12-R.ipynb", + "provenance": [], + "collapsed_sections": [] + }, + "kernelspec": { + "name": "ir", + "display_name": "R" + }, + "language_info": { + "name": "R" + }, + "coopTranslator": { + "original_hash": "fab50046ca413a38939d579f8432274f", + "translation_date": "2025-09-03T20:31:31+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/R/lesson_12-R.ipynb", + "language_code": "zh" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "jsFutf_ygqSx" + }, + "source": [ + "# 构建分类模型:美味的亚洲和印度美食\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HD54bEefgtNO" + }, + "source": [ + "## 美食分类器 2\n", + "\n", + "在第二节分类课程中,我们将探索`更多方法`来分类类别数据。同时,我们还会学习选择不同分类器所带来的影响。\n", + "\n", + "### [**课前测验**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/23/)\n", + "\n", + "### **前置知识**\n", + "\n", + "我们假设你已经完成了之前的课程,因为我们会继续使用之前学到的一些概念。\n", + "\n", + "在本课程中,我们需要以下软件包:\n", + "\n", + "- `tidyverse`: [tidyverse](https://www.tidyverse.org/) 是一个[由 R 包组成的集合](https://www.tidyverse.org/packages),旨在让数据科学更快、更简单、更有趣!\n", + "\n", + "- `tidymodels`: [tidymodels](https://www.tidymodels.org/) 框架是一个[由 R 包组成的集合](https://www.tidymodels.org/packages),用于建模和机器学习。\n", + "\n", + "- `themis`: [themis 包](https://themis.tidymodels.org/) 提供了额外的配方步骤,用于处理不平衡数据。\n", + "\n", + "你可以通过以下命令安装它们:\n", + "\n", + "`install.packages(c(\"tidyverse\", \"tidymodels\", \"kernlab\", \"themis\", \"ranger\", \"xgboost\", \"kknn\"))`\n", + "\n", + "或者,下面的脚本会检查你是否已经安装了完成本模块所需的软件包,并在缺少时为你安装它们。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vZ57IuUxgyQt" + }, + "source": [ + "suppressWarnings(if (!require(\"pacman\"))install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load(tidyverse, tidymodels, themis, kernlab, ranger, xgboost, kknn)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "z22M-pj4g07x" + }, + "source": [ + "## **1. 分类图**\n", + "\n", + "在我们[上一节课](https://github.com/microsoft/ML-For-Beginners/tree/main/4-Classification/2-Classifiers-1)中,我们尝试解决一个问题:如何在多个模型之间进行选择?在很大程度上,这取决于数据的特性以及我们想要解决的问题类型(例如分类或回归)。\n", + "\n", + "之前,我们学习了使用微软的速查表对数据进行分类的各种选项。Python的机器学习框架Scikit-learn提供了一个类似但更细化的速查表,可以进一步帮助缩小你的估算器(分类器的另一种说法)的选择范围:\n", + "\n", + "

      \n", + " \n", + "

      \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u1i3xRIVg7vG" + }, + "source": [ + "> 提示:[在线查看这张地图](https://scikit-learn.org/stable/tutorial/machine_learning_map/),并沿着路径点击以阅读相关文档。\n", + ">\n", + "> [Tidymodels参考网站](https://www.tidymodels.org/find/parsnip/#models)也提供了关于不同模型类型的优秀文档。\n", + "\n", + "### **计划** 🗺️\n", + "\n", + "这张地图在你清楚了解数据后非常有用,因为你可以沿着路径“走”到一个决策:\n", + "\n", + "- 我们有超过50个样本\n", + "\n", + "- 我们想预测一个类别\n", + "\n", + "- 我们有标注数据\n", + "\n", + "- 我们的样本少于10万\n", + "\n", + "- ✨ 我们可以选择线性SVC\n", + "\n", + "- 如果这不起作用,因为我们有数值数据\n", + "\n", + " - 我们可以尝试 ✨ KNeighbors分类器\n", + "\n", + " - 如果这不起作用,尝试 ✨ SVC 和 ✨ 集成分类器\n", + "\n", + "这是一条非常有用的路径。现在,让我们使用 [tidymodels](https://www.tidymodels.org/) 建模框架直接开始吧:一个一致且灵活的R包集合,旨在鼓励良好的统计实践 😊。\n", + "\n", + "## 2. 划分数据并处理不平衡数据集\n", + "\n", + "从之前的课程中,我们了解到不同菜系之间有一组常见的成分。此外,菜系的数量分布也非常不均衡。\n", + "\n", + "我们将通过以下方式处理这些问题:\n", + "\n", + "- 使用 `dplyr::select()` 删除那些在不同菜系之间造成混淆的最常见成分。\n", + "\n", + "- 使用一个 `recipe` 来预处理数据,使其通过应用 `过采样` 算法为建模做好准备。\n", + "\n", + "我们在之前的课程中已经看过这些内容,所以这应该会很轻松 🥳!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "6tj_rN00hClA" + }, + "source": [ + "# Load the core Tidyverse and Tidymodels packages\n", + "library(tidyverse)\n", + "library(tidymodels)\n", + "\n", + "# Load the original cuisines data\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/4-Classification/data/cuisines.csv\")\n", + "\n", + "# Drop id column, rice, garlic and ginger from our original data set\n", + "df_select <- df %>% \n", + " select(-c(1, rice, garlic, ginger)) %>%\n", + " # Encode cuisine column as categorical\n", + " mutate(cuisine = factor(cuisine))\n", + "\n", + "\n", + "# Create data split specification\n", + "set.seed(2056)\n", + "cuisines_split <- initial_split(data = df_select,\n", + " strata = cuisine,\n", + " prop = 0.7)\n", + "\n", + "# Extract the data in each split\n", + "cuisines_train <- training(cuisines_split)\n", + "cuisines_test <- testing(cuisines_split)\n", + "\n", + "# Display distribution of cuisines in the training set\n", + "cuisines_train %>% \n", + " count(cuisine) %>% \n", + " arrange(desc(n))" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zFin5yw3hHb1" + }, + "source": [ + "### 处理数据不平衡问题\n", + "\n", + "数据不平衡通常会对模型性能产生负面影响。许多模型在观察数量相等时表现最佳,因此在处理不平衡数据时往往会遇到困难。\n", + "\n", + "处理数据不平衡问题主要有两种方法:\n", + "\n", + "- 为少数类别添加观察值:`过采样`,例如使用 SMOTE 算法,该算法通过少数类别的近邻合成生成新的样本。\n", + "\n", + "- 从多数类别中移除观察值:`欠采样`\n", + "\n", + "在之前的课程中,我们演示了如何使用 `recipe` 来处理数据不平衡问题。`recipe` 可以被看作是一个蓝图,描述了应该对数据集应用哪些步骤以使其准备好进行数据分析。在我们的案例中,我们希望在 `训练集` 中实现菜系数量的均匀分布。让我们直接开始吧。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "cRzTnHolhLWd" + }, + "source": [ + "# Load themis package for dealing with imbalanced data\n", + "library(themis)\n", + "\n", + "# Create a recipe for preprocessing training data\n", + "cuisines_recipe <- recipe(cuisine ~ ., data = cuisines_train) %>%\n", + " step_smote(cuisine) \n", + "\n", + "# Print recipe\n", + "cuisines_recipe" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KxOQ2ORhhO81" + }, + "source": [ + "现在我们准备开始训练模型了 👩‍💻👨‍💻!\n", + "\n", + "## 3. 超越多项式回归模型\n", + "\n", + "在之前的课程中,我们学习了多项式回归模型。现在让我们探索一些更灵活的分类模型。\n", + "\n", + "### 支持向量机\n", + "\n", + "在分类的背景下,`支持向量机`是一种机器学习技术,它试图找到一个*超平面*来“最佳”地分隔不同的类别。让我们来看一个简单的例子:\n", + "\n", + "

      \n", + " \n", + "

      https://commons.wikimedia.org/w/index.php?curid=22877598
      \n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C4Wsd0vZhXYu" + }, + "source": [ + "H1~ 不会分隔类。H2~ 会分隔类,但仅有小的间距。H3~ 会以最大间距分隔类。\n", + "\n", + "#### 线性支持向量分类器\n", + "\n", + "支持向量聚类(SVC)是支持向量机(SVM)机器学习技术家族中的一种方法。在 SVC 中,超平面被选择为正确分隔`大多数`训练样本,但`可能会错误分类`一些样本。通过允许某些点位于错误的一侧,SVM 对异常值的鲁棒性更强,因此对新数据的泛化能力更好。调节这种违反规则的参数称为`cost`,其默认值为 1(参见 `help(\"svm_poly\")`)。\n", + "\n", + "让我们通过在多项式 SVM 模型中设置 `degree = 1` 来创建一个线性 SVC。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "vJpp6nuChlBz" + }, + "source": [ + "# Make a linear SVC specification\n", + "svc_linear_spec <- svm_poly(degree = 1) %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svc_linear_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svc_linear_spec)\n", + "\n", + "# Print out workflow\n", + "svc_linear_wf" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rDs8cWNkhoqu" + }, + "source": [ + "现在我们已经将预处理步骤和模型规范整合到一个*工作流*中,可以继续训练线性SVC并在此过程中评估结果。对于性能指标,我们可以创建一个指标集来评估:`准确率`、`敏感性`、`正预测值`和`F值`。\n", + "\n", + "> `augment()` 会向给定数据添加预测结果的列。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "81wiqcwuhrnq" + }, + "source": [ + "# Train a linear SVC model\n", + "svc_linear_fit <- svc_linear_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svc_linear_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0UFQvHf-huo3" + }, + "source": [ + "#### 支持向量机\n", + "\n", + "支持向量机(SVM)是支持向量分类器的扩展,用于处理类别之间的非线性边界。本质上,SVM通过使用*核技巧*来扩大特征空间,以适应类别之间的非线性关系。SVM使用的一种流行且极其灵活的核函数是*径向基函数*。让我们看看它在我们的数据上表现如何。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-KX4S8mzhzmp" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Make an RBF SVM specification\n", + "svm_rbf_spec <- svm_rbf() %>% \n", + " set_engine(\"kernlab\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle specification and recipe into a worklow\n", + "svm_rbf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(svm_rbf_spec)\n", + "\n", + "\n", + "# Train an RBF model\n", + "svm_rbf_fit <- svm_rbf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "svm_rbf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QBFSa7WSh4HQ" + }, + "source": [ + "太棒了 🤩!\n", + "\n", + "> ✅ 请参阅:\n", + ">\n", + "> - [*支持向量机*](https://bradleyboehmke.github.io/HOML/svm.html),《Hands-on Machine Learning with R》\n", + ">\n", + "> - [*支持向量机*](https://www.statlearning.com/),《An Introduction to Statistical Learning with Applications in R》\n", + ">\n", + "> 了解更多内容。\n", + "\n", + "### 最近邻分类器\n", + "\n", + "*K*-最近邻(KNN)是一种算法,根据每个观测值与其他观测值的*相似性*来进行预测。\n", + "\n", + "让我们将其应用到我们的数据中。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "k4BxxBcdh9Ka" + }, + "source": [ + "# Make a KNN specification\n", + "knn_spec <- nearest_neighbor() %>% \n", + " set_engine(\"kknn\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "knn_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(knn_spec)\n", + "\n", + "# Train a boosted tree model\n", + "knn_wf_fit <- knn_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "knn_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HaegQseriAcj" + }, + "source": [ + "看起来这个模型的表现不是很好。可能通过更改模型的参数(请参阅 `help(\"nearest_neighbor\")`)可以提升模型的性能。一定要尝试一下。\n", + "\n", + "> ✅ 请参考:\n", + ">\n", + "> - [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [An Introduction to Statistical Learning with Applications in R](https://www.statlearning.com/)\n", + ">\n", + "> 了解更多关于 *K*-最近邻分类器的信息。\n", + "\n", + "### 集成分类器\n", + "\n", + "集成算法通过结合多个基础估计器来构建一个优化模型,其方法包括:\n", + "\n", + "`bagging`:对一组基础模型应用*平均函数*\n", + "\n", + "`boosting`:构建一系列模型,彼此之间相互依赖,以提升预测性能。\n", + "\n", + "我们先尝试一个随机森林模型,它通过构建大量决策树并应用平均函数来生成一个更优的整体模型。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "49DPoVs6iK1M" + }, + "source": [ + "# Make a random forest specification\n", + "rf_spec <- rand_forest() %>% \n", + " set_engine(\"ranger\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "rf_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(rf_spec)\n", + "\n", + "# Train a random forest model\n", + "rf_wf_fit <- rf_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "rf_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RGVYwC_aiUWc" + }, + "source": [ + "干得好 👏!\n", + "\n", + "我们也来尝试一下提升树模型。\n", + "\n", + "提升树是一种集成方法,它通过创建一系列连续的决策树,每棵树都依赖于前一棵树的结果,试图逐步减少误差。它重点关注被错误分类的项目的权重,并调整下一分类器的拟合以进行纠正。\n", + "\n", + "有多种方法可以拟合此模型(参见 `help(\"boost_tree\")`)。在这个例子中,我们将通过 `xgboost` 引擎来拟合提升树。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Py1YWo-micWs" + }, + "source": [ + "# Make a boosted tree specification\n", + "boost_spec <- boost_tree(trees = 200) %>% \n", + " set_engine(\"xgboost\") %>% \n", + " set_mode(\"classification\")\n", + "\n", + "# Bundle recipe and model specification into a workflow\n", + "boost_wf <- workflow() %>% \n", + " add_recipe(cuisines_recipe) %>% \n", + " add_model(boost_spec)\n", + "\n", + "# Train a boosted tree model\n", + "boost_wf_fit <- boost_wf %>% \n", + " fit(data = cuisines_train)\n", + "\n", + "\n", + "# Make predictions and Evaluate model performance\n", + "boost_wf_fit %>% \n", + " augment(new_data = cuisines_test) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zNQnbuejigZM" + }, + "source": [ + "> ✅ 请参阅:\n", + ">\n", + "> - [社会科学中的机器学习](https://cimentadaj.github.io/ml_socsci/tree-based-methods.html#random-forests)\n", + ">\n", + "> - [R语言实践中的机器学习](https://bradleyboehmke.github.io/HOML/)\n", + ">\n", + "> - [统计学习导论:R语言应用](https://www.statlearning.com/)\n", + ">\n", + "> - - 探讨了AdaBoost模型,这是xgboost的一个不错替代方案。\n", + ">\n", + "> 了解更多关于集成分类器的信息。\n", + "\n", + "## 4. 额外内容 - 比较多个模型\n", + "\n", + "在本次实验中,我们已经拟合了相当多的模型 🙌。如果需要从不同的预处理器和/或模型规格中创建大量工作流,然后逐一计算性能指标,这可能会变得繁琐或费力。\n", + "\n", + "让我们看看是否可以通过创建一个函数来解决这个问题,该函数可以在训练集上拟合一组工作流,并根据测试集返回性能指标。我们将使用 [purrr](https://purrr.tidyverse.org/) 包中的 `map()` 和 `map_dfr()` 来对列表中的每个元素应用函数。\n", + "\n", + "> [`map()`](https://purrr.tidyverse.org/reference/map.html) 函数允许您用更简洁且更易读的代码替代许多for循环。学习 [`map()`](https://purrr.tidyverse.org/reference/map.html) 函数的最佳地方是《R语言数据科学》中的[迭代章节](http://r4ds.had.co.nz/iteration.html)。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Qzb7LyZnimd2" + }, + "source": [ + "set.seed(2056)\n", + "\n", + "# Create a metric set\n", + "eval_metrics <- metric_set(ppv, sens, accuracy, f_meas)\n", + "\n", + "# Define a function that returns performance metrics\n", + "compare_models <- function(workflow_list, train_set, test_set){\n", + " \n", + " suppressWarnings(\n", + " # Fit each model to the train_set\n", + " map(workflow_list, fit, data = train_set) %>% \n", + " # Make predictions on the test set\n", + " map_dfr(augment, new_data = test_set, .id = \"model\") %>%\n", + " # Select desired columns\n", + " select(model, cuisine, .pred_class) %>% \n", + " # Evaluate model performance\n", + " group_by(model) %>% \n", + " eval_metrics(truth = cuisine, estimate = .pred_class) %>% \n", + " ungroup()\n", + " )\n", + " \n", + "} # End of function" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Fwa712sNisDA" + }, + "source": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "3i4VJOi2iu-a" + }, + "source": [ + "# Make a list of workflows\n", + "workflow_list <- list(\n", + " \"svc\" = svc_linear_wf,\n", + " \"svm\" = svm_rbf_wf,\n", + " \"knn\" = knn_wf,\n", + " \"random_forest\" = rf_wf,\n", + " \"xgboost\" = boost_wf)\n", + "\n", + "# Call the function\n", + "set.seed(2056)\n", + "perf_metrics <- compare_models(workflow_list = workflow_list, train_set = cuisines_train, test_set = cuisines_test)\n", + "\n", + "# Print out performance metrics\n", + "perf_metrics %>% \n", + " group_by(.metric) %>% \n", + " arrange(desc(.estimate)) %>% \n", + " slice_head(n=7)\n", + "\n", + "# Compare accuracy\n", + "perf_metrics %>% \n", + " filter(.metric == \"accuracy\") %>% \n", + " arrange(desc(.estimate))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KuWK_lEli4nW" + }, + "source": [ + "[**workflowset**](https://workflowsets.tidymodels.org/) 包允许用户创建并轻松拟合大量模型,但主要设计用于与诸如 `交叉验证` 之类的重采样技术配合使用,这是一种我们尚未涉及的方法。\n", + "\n", + "## **🚀挑战**\n", + "\n", + "每种技术都有许多参数可以调整,例如 SVM 中的 `cost`,KNN 中的 `neighbors`,随机森林中的 `mtry`(随机选择的预测变量)。\n", + "\n", + "研究每种模型的默认参数,并思考调整这些参数对模型质量的影响。\n", + "\n", + "要了解特定模型及其参数的更多信息,请使用:`help(\"model\")`,例如 `help(\"rand_forest\")`\n", + "\n", + "> 实际中,我们通常通过在一个 `模拟数据集` 上训练多个模型并测量这些模型的表现来*估计*这些参数的*最佳值*。这个过程称为 **调参**。\n", + "\n", + "### [**课后测验**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/24/)\n", + "\n", + "### **复习与自学**\n", + "\n", + "这些课程中有很多术语,因此花点时间查看[这个列表](https://docs.microsoft.com/dotnet/machine-learning/resources/glossary?WT.mc_id=academic-77952-leestott)中的有用术语!\n", + "\n", + "#### 特别感谢:\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) 创作了令人惊叹的插图,使 R 更加友好和吸引人。可以在她的[画廊](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)中找到更多插图。\n", + "\n", + "[Cassie Breviu](https://www.twitter.com/cassieview) 和 [Jen Looper](https://www.twitter.com/jenlooper) 创作了本模块的原始 Python 版本 ♥️\n", + "\n", + "祝学习愉快,\n", + "\n", + "[Eric](https://twitter.com/ericntay),微软金牌学习学生大使。\n", + "\n", + "

      \n", + " \n", + "

      插图作者 @allison_horst
      \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/3-Classifiers-2/solution/notebook.ipynb b/translations/zh-CN/4-Classification/3-Classifiers-2/solution/notebook.ipynb new file mode 100644 index 000000000..59bf6f5f0 --- /dev/null +++ b/translations/zh-CN/4-Classification/3-Classifiers-2/solution/notebook.ipynb @@ -0,0 +1,304 @@ +{ + "cells": [ + { + "source": [ + "# 构建更多分类模型\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      00indian00000000...0000000000
      11indian10000000...0000000000
      22indian00000000...0000000000
      33indian00000000...0000000000
      44indian00000000...0000000010
      \n

      5 rows × 382 columns

      \n
      " + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import pandas as pd\n", + "cuisines_df = pd.read_csv(\"../../data/cleaned_cuisines.csv\")\n", + "cuisines_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian\n", + "Name: cuisine, dtype: object" + ] + }, + "metadata": {}, + "execution_count": 2 + } + ], + "source": [ + "cuisines_label_df = cuisines_df['cuisine']\n", + "cuisines_label_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      00000000000...0000000000
      11000000000...0000000000
      20000000000...0000000000
      30000000000...0000000000
      40000000000...0000000010
      \n

      5 rows × 380 columns

      \n
      " + }, + "metadata": {}, + "execution_count": 3 + } + ], + "source": [ + "cuisines_feature_df = cuisines_df.drop(['Unnamed: 0', 'cuisine'], axis=1)\n", + "cuisines_feature_df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 尝试不同的分类器\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.svm import SVC\n", + "from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\n", + "from sklearn.model_selection import train_test_split, cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report, precision_recall_curve\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(cuisines_feature_df, cuisines_label_df, test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "C = 10\n", + "# Create different classifiers.\n", + "classifiers = {\n", + " 'Linear SVC': SVC(kernel='linear', C=C, probability=True,random_state=0),\n", + " 'KNN classifier': KNeighborsClassifier(C),\n", + " 'SVC': SVC(),\n", + " 'RFST': RandomForestClassifier(n_estimators=100),\n", + " 'ADA': AdaBoostClassifier(n_estimators=100)\n", + " \n", + "}\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Accuracy (train) for Linear SVC: 76.4% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.64 0.66 0.65 242\n", + " indian 0.91 0.86 0.89 236\n", + " japanese 0.72 0.73 0.73 245\n", + " korean 0.83 0.75 0.79 234\n", + " thai 0.75 0.82 0.78 242\n", + "\n", + " accuracy 0.76 1199\n", + " macro avg 0.77 0.76 0.77 1199\n", + "weighted avg 0.77 0.76 0.77 1199\n", + "\n", + "Accuracy (train) for KNN classifier: 70.7% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.65 0.63 0.64 242\n", + " indian 0.84 0.81 0.82 236\n", + " japanese 0.60 0.81 0.69 245\n", + " korean 0.89 0.53 0.67 234\n", + " thai 0.69 0.75 0.72 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.73 0.71 0.71 1199\n", + "weighted avg 0.73 0.71 0.71 1199\n", + "\n", + "Accuracy (train) for SVC: 80.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.71 0.69 0.70 242\n", + " indian 0.92 0.92 0.92 236\n", + " japanese 0.77 0.78 0.77 245\n", + " korean 0.87 0.77 0.82 234\n", + " thai 0.75 0.86 0.80 242\n", + "\n", + " accuracy 0.80 1199\n", + " macro avg 0.80 0.80 0.80 1199\n", + "weighted avg 0.80 0.80 0.80 1199\n", + "\n", + "Accuracy (train) for RFST: 82.8% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.80 0.75 0.77 242\n", + " indian 0.90 0.91 0.90 236\n", + " japanese 0.82 0.78 0.80 245\n", + " korean 0.85 0.82 0.83 234\n", + " thai 0.78 0.89 0.83 242\n", + "\n", + " accuracy 0.83 1199\n", + " macro avg 0.83 0.83 0.83 1199\n", + "weighted avg 0.83 0.83 0.83 1199\n", + "\n", + "Accuracy (train) for ADA: 71.1% \n", + " precision recall f1-score support\n", + "\n", + " chinese 0.60 0.57 0.58 242\n", + " indian 0.87 0.84 0.86 236\n", + " japanese 0.71 0.60 0.65 245\n", + " korean 0.68 0.78 0.72 234\n", + " thai 0.70 0.78 0.74 242\n", + "\n", + " accuracy 0.71 1199\n", + " macro avg 0.71 0.71 0.71 1199\n", + "weighted avg 0.71 0.71 0.71 1199\n", + "\n" + ] + } + ], + "source": [ + "n_classifiers = len(classifiers)\n", + "\n", + "for index, (name, classifier) in enumerate(classifiers.items()):\n", + " classifier.fit(X_train, np.ravel(y_train))\n", + "\n", + " y_pred = classifier.predict(X_test)\n", + " accuracy = accuracy_score(y_test, y_pred)\n", + " print(\"Accuracy (train) for %s: %0.1f%% \" % (name, accuracy * 100))\n", + " print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "7ea2b714669c823a596d986ba2d5739f", + "translation_date": "2025-09-03T20:27:44+00:00", + "source_file": "4-Classification/3-Classifiers-2/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/4-Applied/README.md b/translations/zh-CN/4-Classification/4-Applied/README.md new file mode 100644 index 000000000..16e114d3b --- /dev/null +++ b/translations/zh-CN/4-Classification/4-Applied/README.md @@ -0,0 +1,320 @@ +# 构建一个美食推荐网页应用 + +在本课中,您将使用之前课程中学到的一些技术以及贯穿整个系列的美食数据集,构建一个分类模型。此外,您还将构建一个小型网页应用来使用保存的模型,并利用 Onnx 的网页运行时。 + +机器学习最实用的用途之一是构建推荐系统,今天您可以迈出这一方向的第一步! + +[![展示此网页应用](https://img.youtube.com/vi/17wdM9AHMfg/0.jpg)](https://youtu.be/17wdM9AHMfg "应用机器学习") + +> 🎥 点击上方图片观看视频:Jen Looper 使用分类美食数据构建网页应用 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +在本课中,您将学习: + +- 如何构建模型并将其保存为 Onnx 模型 +- 如何使用 Netron 检查模型 +- 如何在网页应用中使用您的模型进行推理 + +## 构建您的模型 + +构建应用型机器学习系统是将这些技术应用于业务系统的重要部分。通过使用 Onnx,您可以在网页应用中使用模型(因此在需要时也可以离线使用)。 + +在[之前的课程](../../3-Web-App/1-Web-App/README.md)中,您构建了一个关于 UFO 目击事件的回归模型,将其“pickle”保存,并在 Flask 应用中使用。虽然这种架构非常有用,但它是一个全栈 Python 应用,而您的需求可能包括使用 JavaScript 应用。 + +在本课中,您可以构建一个基于 JavaScript 的基础推理系统。不过,首先需要训练一个模型并将其转换为 Onnx 格式。 + +## 练习 - 训练分类模型 + +首先,使用我们之前清理过的美食数据集训练一个分类模型。 + +1. 首先导入有用的库: + + ```python + !pip install skl2onnx + import pandas as pd + ``` + + 您需要 '[skl2onnx](https://onnx.ai/sklearn-onnx/)' 来帮助将 Scikit-learn 模型转换为 Onnx 格式。 + +1. 然后,像之前课程中一样使用 `read_csv()` 读取 CSV 文件来处理数据: + + ```python + data = pd.read_csv('../data/cleaned_cuisines.csv') + data.head() + ``` + +1. 删除前两列不必要的数据,并将剩余数据保存为 'X': + + ```python + X = data.iloc[:,2:] + X.head() + ``` + +1. 将标签保存为 'y': + + ```python + y = data[['cuisine']] + y.head() + + ``` + +### 开始训练流程 + +我们将使用具有良好准确性的 'SVC' 库。 + +1. 从 Scikit-learn 导入相关库: + + ```python + from sklearn.model_selection import train_test_split + from sklearn.svm import SVC + from sklearn.model_selection import cross_val_score + from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report + ``` + +1. 分离训练集和测试集: + + ```python + X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3) + ``` + +1. 像之前课程中一样构建一个 SVC 分类模型: + + ```python + model = SVC(kernel='linear', C=10, probability=True,random_state=0) + model.fit(X_train,y_train.values.ravel()) + ``` + +1. 现在,测试您的模型,调用 `predict()`: + + ```python + y_pred = model.predict(X_test) + ``` + +1. 打印分类报告以检查模型质量: + + ```python + print(classification_report(y_test,y_pred)) + ``` + + 如我们之前所见,准确性很好: + + ```output + precision recall f1-score support + + chinese 0.72 0.69 0.70 257 + indian 0.91 0.87 0.89 243 + japanese 0.79 0.77 0.78 239 + korean 0.83 0.79 0.81 236 + thai 0.72 0.84 0.78 224 + + accuracy 0.79 1199 + macro avg 0.79 0.79 0.79 1199 + weighted avg 0.79 0.79 0.79 1199 + ``` + +### 将模型转换为 Onnx + +确保使用正确的张量数量进行转换。此数据集列出了 380 种食材,因此您需要在 `FloatTensorType` 中注明该数量: + +1. 使用张量数量 380 进行转换。 + + ```python + from skl2onnx import convert_sklearn + from skl2onnx.common.data_types import FloatTensorType + + initial_type = [('float_input', FloatTensorType([None, 380]))] + options = {id(model): {'nocl': True, 'zipmap': False}} + ``` + +1. 创建 onx 并保存为文件 **model.onnx**: + + ```python + onx = convert_sklearn(model, initial_types=initial_type, options=options) + with open("./model.onnx", "wb") as f: + f.write(onx.SerializeToString()) + ``` + + > 注意,您可以在转换脚本中传递[选项](https://onnx.ai/sklearn-onnx/parameterized.html)。在本例中,我们将 'nocl' 设置为 True,将 'zipmap' 设置为 False。由于这是一个分类模型,您可以选择移除 ZipMap,它会生成一个字典列表(不必要)。`nocl` 指的是模型中是否包含类别信息。通过将 `nocl` 设置为 'True' 来减小模型的大小。 + +运行整个笔记本后,您将构建一个 Onnx 模型并将其保存到此文件夹中。 + +## 查看您的模型 + +Onnx 模型在 Visual Studio Code 中不太直观,但有一个非常好的免费软件,许多研究人员使用它来可视化模型,以确保模型构建正确。下载 [Netron](https://github.com/lutzroeder/Netron) 并打开您的 model.onnx 文件。您可以看到您的简单模型被可视化,包含 380 个输入和分类器: + +![Netron 可视化](../../../../4-Classification/4-Applied/images/netron.png) + +Netron 是一个查看模型的有用工具。 + +现在您可以在网页应用中使用这个简洁的模型了。让我们构建一个应用,当您查看冰箱并试图决定如何利用剩余食材制作某种美食时,它会派上用场。 + +## 构建推荐网页应用 + +您可以直接在网页应用中使用您的模型。这种架构还允许您在本地运行,甚至在需要时离线运行。首先,在存储 `model.onnx` 文件的同一文件夹中创建一个 `index.html` 文件。 + +1. 在此文件 _index.html_ 中,添加以下标记: + + ```html + + +
      + Cuisine Matcher +
      + + ... + + + ``` + +1. 现在,在 `body` 标签内添加一些标记以显示一些食材的复选框列表: + + ```html +

      Check your refrigerator. What can you create?

      +
      +
      + + +
      + +
      + + +
      + +
      + + +
      + +
      + + +
      + +
      + + +
      + +
      + + +
      + +
      + + +
      +
      +
      + +
      + ``` + + 注意,每个复选框都被赋予了一个值。这反映了食材在数据集中的索引位置。例如,苹果在这个按字母顺序排列的列表中占据第五列,因此其值为 '4'(因为我们从 0 开始计数)。您可以查阅 [ingredients spreadsheet](../../../../4-Classification/data/ingredient_indexes.csv) 来找到某个食材的索引。 + + 继续在 index.html 文件中工作,在最后一个关闭的 `` 后添加一个脚本块,其中调用了模型。 + +1. 首先,导入 [Onnx Runtime](https://www.onnxruntime.ai/): + + ```html + + ``` + + > Onnx Runtime 用于支持在广泛的硬件平台上运行您的 Onnx 模型,包括优化和使用的 API。 + +1. 一旦 Runtime 就位,您可以调用它: + + ```html + + ``` + +在此代码中,发生了以下几件事: + +1. 您创建了一个包含 380 个可能值(1 或 0)的数组,用于根据食材复选框是否被选中来设置并发送到模型进行推理。 +2. 您创建了一个复选框数组以及一个在应用启动时确定它们是否被选中的 `init` 函数。当复选框被选中时,`ingredients` 数组会被修改以反映所选食材。 +3. 您创建了一个 `testCheckboxes` 函数,用于检查是否有复选框被选中。 +4. 您使用 `startInference` 函数,当按钮被按下时,如果有复选框被选中,您就开始推理。 +5. 推理流程包括: + 1. 设置模型的异步加载 + 2. 创建一个发送到模型的张量结构 + 3. 创建反映您在训练模型时创建的 `float_input` 输入的 'feeds'(您可以使用 Netron 验证该名称) + 4. 将这些 'feeds' 发送到模型并等待响应 + +## 测试您的应用 + +在存放 index.html 文件的文件夹中打开 Visual Studio Code 的终端会话。确保您已全局安装 [http-server](https://www.npmjs.com/package/http-server),然后在提示符下输入 `http-server`。一个本地主机将打开,您可以查看您的网页应用。根据各种食材检查推荐的美食: + +![食材网页应用](../../../../4-Classification/4-Applied/images/web-app.png) + +恭喜,您已经创建了一个带有几个字段的“推荐”网页应用。花点时间完善这个系统吧! + +## 🚀挑战 + +您的网页应用非常简约,因此请继续使用 [ingredient_indexes](../../../../4-Classification/data/ingredient_indexes.csv) 数据中的食材及其索引来完善它。哪些风味组合可以制作出某种国家菜肴? + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +虽然本课只是简单介绍了创建食材推荐系统的实用性,但这一领域的机器学习应用有许多丰富的示例。阅读更多关于这些系统如何构建的内容: + +- https://www.sciencedirect.com/topics/computer-science/recommendation-engine +- https://www.technologyreview.com/2014/08/25/171547/the-ultimate-challenge-for-recommendation-engines/ +- https://www.technologyreview.com/2015/03/23/168831/everything-is-a-recommendation/ + +## 作业 + +[构建一个新的推荐系统](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/4-Applied/assignment.md b/translations/zh-CN/4-Classification/4-Applied/assignment.md new file mode 100644 index 000000000..4598f7bf1 --- /dev/null +++ b/translations/zh-CN/4-Classification/4-Applied/assignment.md @@ -0,0 +1,16 @@ +# 构建推荐系统 + +## 说明 + +通过本课的练习,你已经了解了如何使用 Onnx Runtime 和转换后的 Onnx 模型来构建基于 JavaScript 的网页应用程序。尝试使用本课中的数据或其他来源的数据(请注明来源)来构建一个新的推荐系统。你可以根据不同的性格特征创建一个宠物推荐系统,或者根据一个人的心情创建一个音乐类型推荐系统。发挥你的创造力吧! + +## 评分标准 + +| 标准 | 杰出表现 | 合格表现 | 有待改进 | +| -------- | --------------------------------------------------------------------- | ------------------------------------- | --------------------------------- | +| | 提供了一个网页应用程序和笔记本,两者均有良好的文档记录且运行正常 | 两者之一缺失或存在缺陷 | 两者均缺失或存在缺陷 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/4-Applied/notebook.ipynb b/translations/zh-CN/4-Classification/4-Applied/notebook.ipynb new file mode 100644 index 000000000..8180ade04 --- /dev/null +++ b/translations/zh-CN/4-Classification/4-Applied/notebook.ipynb @@ -0,0 +1,41 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2f3e0d9e9ac5c301558fb8bf733ac0cb", + "translation_date": "2025-09-03T20:26:38+00:00", + "source_file": "4-Classification/4-Applied/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# 建立一个美食推荐系统\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/4-Applied/solution/notebook.ipynb b/translations/zh-CN/4-Classification/4-Applied/solution/notebook.ipynb new file mode 100644 index 000000000..d59351614 --- /dev/null +++ b/translations/zh-CN/4-Classification/4-Applied/solution/notebook.ipynb @@ -0,0 +1,292 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "49325d6dd12a3628fc64fa7ccb1a80ff", + "translation_date": "2025-09-03T20:26:59+00:00", + "source_file": "4-Classification/4-Applied/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# 建立一个美食推荐系统\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: skl2onnx in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (1.8.0)\n", + "Requirement already satisfied: protobuf in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (3.8.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.19.2)\n", + "Requirement already satisfied: onnx>=1.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.9.0)\n", + "Requirement already satisfied: six in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from skl2onnx) (1.12.0)\n", + "Requirement already satisfied: onnxconverter-common<1.9,>=1.6.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.8.1)\n", + "Requirement already satisfied: scikit-learn>=0.19 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (0.24.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from skl2onnx) (1.4.1)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from protobuf->skl2onnx) (45.1.0)\n", + "Requirement already satisfied: typing-extensions>=3.6.2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from onnx>=1.2.1->skl2onnx) (3.10.0.0)\n", + "Requirement already satisfied: threadpoolctl>=2.0.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (2.1.0)\n", + "Requirement already satisfied: joblib>=0.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from scikit-learn>=0.19->skl2onnx) (0.16.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install skl2onnx" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd \n" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Unnamed: 0 cuisine almond angelica anise anise_seed apple \\\n", + "0 0 indian 0 0 0 0 0 \n", + "1 1 indian 1 0 0 0 0 \n", + "2 2 indian 0 0 0 0 0 \n", + "3 3 indian 0 0 0 0 0 \n", + "4 4 indian 0 0 0 0 0 \n", + "\n", + " apple_brandy apricot armagnac ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 382 columns]" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      Unnamed: 0cuisinealmondangelicaaniseanise_seedappleapple_brandyapricotarmagnac...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      00indian00000000...0000000000
      11indian10000000...0000000000
      22indian00000000...0000000000
      33indian00000000...0000000000
      44indian00000000...0000000010
      \n

      5 rows × 382 columns

      \n
      " + }, + "metadata": {}, + "execution_count": 60 + } + ], + "source": [ + "data = pd.read_csv('../../data/cleaned_cuisines.csv')\n", + "data.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " almond angelica anise anise_seed apple apple_brandy apricot \\\n", + "0 0 0 0 0 0 0 0 \n", + "1 1 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 0 0 \n", + "\n", + " armagnac artemisia artichoke ... whiskey white_bread white_wine \\\n", + "0 0 0 0 ... 0 0 0 \n", + "1 0 0 0 ... 0 0 0 \n", + "2 0 0 0 ... 0 0 0 \n", + "3 0 0 0 ... 0 0 0 \n", + "4 0 0 0 ... 0 0 0 \n", + "\n", + " whole_grain_wheat_flour wine wood yam yeast yogurt zucchini \n", + "0 0 0 0 0 0 0 0 \n", + "1 0 0 0 0 0 0 0 \n", + "2 0 0 0 0 0 0 0 \n", + "3 0 0 0 0 0 0 0 \n", + "4 0 0 0 0 0 1 0 \n", + "\n", + "[5 rows x 380 columns]" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      almondangelicaaniseanise_seedappleapple_brandyapricotarmagnacartemisiaartichoke...whiskeywhite_breadwhite_winewhole_grain_wheat_flourwinewoodyamyeastyogurtzucchini
      00000000000...0000000000
      11000000000...0000000000
      20000000000...0000000000
      30000000000...0000000000
      40000000000...0000000010
      \n

      5 rows × 380 columns

      \n
      " + }, + "metadata": {}, + "execution_count": 61 + } + ], + "source": [ + "X = data.iloc[:,2:]\n", + "X.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " cuisine\n", + "0 indian\n", + "1 indian\n", + "2 indian\n", + "3 indian\n", + "4 indian" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      cuisine
      0indian
      1indian
      2indian
      3indian
      4indian
      \n
      " + }, + "metadata": {}, + "execution_count": 62 + } + ], + "source": [ + "y = data[['cuisine']]\n", + "y.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "from sklearn.svm import SVC\n", + "from sklearn.model_selection import cross_val_score\n", + "from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_report" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVC(C=10, kernel='linear', probability=True, random_state=0)" + ] + }, + "metadata": {}, + "execution_count": 65 + } + ], + "source": [ + "model = SVC(kernel='linear', C=10, probability=True,random_state=0)\n", + "model.fit(X_train,y_train.values.ravel())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "y_pred = model.predict(X_test)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " precision recall f1-score support\n\n chinese 0.72 0.70 0.71 236\n indian 0.91 0.88 0.89 243\n japanese 0.80 0.75 0.77 240\n korean 0.80 0.81 0.81 230\n thai 0.76 0.85 0.80 250\n\n accuracy 0.80 1199\n macro avg 0.80 0.80 0.80 1199\nweighted avg 0.80 0.80 0.80 1199\n\n" + ] + } + ], + "source": [ + "print(classification_report(y_test,y_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from skl2onnx import convert_sklearn\n", + "from skl2onnx.common.data_types import FloatTensorType\n", + "\n", + "initial_type = [('float_input', FloatTensorType([None, 380]))]\n", + "options = {id(model): {'nocl': True, 'zipmap': False}}\n", + "onx = convert_sklearn(model, initial_types=initial_type, options=options)\n", + "with open(\"./model.onnx\", \"wb\") as f:\n", + " f.write(onx.SerializeToString())\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/4-Classification/README.md b/translations/zh-CN/4-Classification/README.md new file mode 100644 index 000000000..62bdfc90f --- /dev/null +++ b/translations/zh-CN/4-Classification/README.md @@ -0,0 +1,32 @@ +# 开始学习分类 + +## 地区主题:美味的亚洲和印度美食 🍜 + +在亚洲和印度,饮食文化极其多样化,而且非常美味!让我们来看看有关地区美食的数据,试着了解它们的食材。 + +![泰国小吃摊](../../../translated_images/zh-CN/thai-food.c47a7a7f9f05c218.webp) +> 图片由 Lisheng Chang 提供,发布在 Unsplash + +## 你将学到什么 + +在本节中,你将基于之前对回归的学习,进一步了解其他分类器,这些分类器可以帮助你更好地理解数据。 + +> 有一些非常实用的低代码工具可以帮助你学习如何使用分类模型。试试 [Azure ML 完成这个任务](https://docs.microsoft.com/learn/modules/create-classification-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) + +## 课程 + +1. [分类简介](1-Introduction/README.md) +2. [更多分类器](2-Classifiers-1/README.md) +3. [其他分类器](3-Classifiers-2/README.md) +4. [应用机器学习:构建一个网络应用](4-Applied/README.md) + +## 致谢 + +"开始学习分类" 由 [Cassie Breviu](https://www.twitter.com/cassiebreviu) 和 [Jen Looper](https://www.twitter.com/jenlooper) 倾情创作。 + +美味的美食数据集来源于 [Kaggle](https://www.kaggle.com/hoandan/asian-and-indian-cuisines)。 + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/1-Visualize/README.md b/translations/zh-CN/5-Clustering/1-Visualize/README.md new file mode 100644 index 000000000..61ddc776b --- /dev/null +++ b/translations/zh-CN/5-Clustering/1-Visualize/README.md @@ -0,0 +1,338 @@ +# 聚类简介 + +聚类是一种[无监督学习](https://wikipedia.org/wiki/Unsupervised_learning)方法,假设数据集是未标记的,或者其输入未与预定义的输出匹配。它使用各种算法对未标记的数据进行分类,并根据数据中识别出的模式提供分组。 + +[![PSquare的《No One Like You》](https://img.youtube.com/vi/ty2advRiWJM/0.jpg)](https://youtu.be/ty2advRiWJM "PSquare的《No One Like You》") + +> 🎥 点击上方图片观看视频。在学习聚类机器学习时,欣赏一些尼日利亚舞厅音乐——这是PSquare在2014年发布的一首高评价歌曲。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +### 简介 + +[聚类](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124)在数据探索中非常有用。让我们看看它是否能帮助发现尼日利亚观众消费音乐的趋势和模式。 + +✅ 花一分钟思考聚类的用途。在现实生活中,聚类发生在你有一堆洗好的衣物并需要将家人衣物分类时 🧦👕👖🩲。在数据科学中,聚类发生在试图分析用户偏好或确定任何未标记数据集的特征时。某种程度上,聚类帮助我们从混乱中找到秩序,比如整理袜子抽屉。 + +[![机器学习简介](https://img.youtube.com/vi/esmzYhuFnds/0.jpg)](https://youtu.be/esmzYhuFnds "聚类简介") + +> 🎥 点击上方图片观看视频:麻省理工学院的John Guttag介绍聚类 + +在专业环境中,聚类可以用于确定市场细分,例如确定哪些年龄段购买哪些商品。另一个用途是异常检测,比如从信用卡交易数据集中检测欺诈行为。或者你可以用聚类来识别一批医学扫描中的肿瘤。 + +✅ 花一分钟思考你可能在银行、电子商务或商业环境中遇到过的聚类应用。 + +> 🎓 有趣的是,聚类分析起源于20世纪30年代的人类学和心理学领域。你能想象它可能是如何被使用的吗? + +另外,你可以用它来对搜索结果进行分组——例如按购物链接、图片或评论分组。当你有一个大型数据集需要简化并进行更细致的分析时,聚类技术非常有用,因此它可以在构建其他模型之前帮助了解数据。 + +✅ 一旦你的数据被组织成簇,你可以为其分配一个簇ID。这种技术在保护数据集隐私时非常有用;你可以通过簇ID而不是更具识别性的详细数据来引用数据点。你能想到其他使用簇ID而不是簇内元素来标识数据的原因吗? + +通过这个[学习模块](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott)深入了解聚类技术。 + +## 聚类入门 + +[Scikit-learn提供了大量方法](https://scikit-learn.org/stable/modules/clustering.html)来执行聚类。你选择的方法将取决于你的使用场景。根据文档,每种方法都有不同的优势。以下是Scikit-learn支持的方法及其适用场景的简化表格: + +| 方法名称 | 使用场景 | +| :--------------------------- | :--------------------------------------------------------------------- | +| K-Means | 通用目的,归纳式 | +| Affinity propagation | 多个、不均匀簇,归纳式 | +| Mean-shift | 多个、不均匀簇,归纳式 | +| Spectral clustering | 少量、均匀簇,推断式 | +| Ward hierarchical clustering | 多个、受约束簇,推断式 | +| Agglomerative clustering | 多个、受约束、非欧几里得距离,推断式 | +| DBSCAN | 非平面几何、不均匀簇,推断式 | +| OPTICS | 非平面几何、不均匀簇且密度可变,推断式 | +| Gaussian mixtures | 平面几何,归纳式 | +| BIRCH | 大型数据集且有异常值,归纳式 | + +> 🎓 我们如何创建簇与我们如何将数据点分组到簇中有很大关系。让我们解读一些术语: +> +> 🎓 ['推断式' vs. '归纳式'](https://wikipedia.org/wiki/Transduction_(machine_learning)) +> +> 推断式推理基于观察到的训练案例映射到特定测试案例。归纳式推理基于训练案例映射到一般规则,然后应用于测试案例。 +> +> 举个例子:假设你有一个部分标记的数据集。一些是“唱片”,一些是“CD”,还有一些是空白的。你的任务是为空白数据提供标签。如果你选择归纳式方法,你会训练一个模型寻找“唱片”和“CD”,并将这些标签应用于未标记数据。这种方法可能难以分类实际上是“磁带”的东西。而推断式方法则更有效地处理这些未知数据,因为它会努力将相似的项目分组,然后为整个组应用标签。在这种情况下,簇可能反映“圆形音乐物品”和“方形音乐物品”。 +> +> 🎓 ['非平面' vs. '平面几何'](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering) +> +> 源自数学术语,非平面与平面几何指的是通过“平面”([欧几里得](https://wikipedia.org/wiki/Euclidean_geometry))或“非平面”(非欧几里得)几何方法测量点之间的距离。 +> +>'平面'在此上下文中指的是欧几里得几何(部分内容被称为“平面”几何),而非平面指的是非欧几里得几何。几何与机器学习有什么关系?作为两个都根植于数学的领域,必须有一种通用方法来测量簇中点之间的距离,这可以根据数据的性质以“平面”或“非平面”的方式完成。[欧几里得距离](https://wikipedia.org/wiki/Euclidean_distance)是通过两点之间线段的长度来测量的。[非欧几里得距离](https://wikipedia.org/wiki/Non-Euclidean_geometry)则沿曲线测量。如果你的数据在可视化时似乎不在平面上,你可能需要使用专门的算法来处理它。 +> +![平面与非平面几何信息图](../../../../5-Clustering/1-Visualize/images/flat-nonflat.png) +> 信息图由[Dasani Madipalli](https://twitter.com/dasani_decoded)制作 +> +> 🎓 ['距离'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf) +> +> 簇由其距离矩阵定义,例如点之间的距离。这种距离可以通过几种方式测量。欧几里得簇由点值的平均值定义,并包含一个“质心”或中心点。因此距离是通过到质心的距离来测量的。非欧几里得距离指的是“簇心”,即最接近其他点的点。簇心可以通过多种方式定义。 +> +> 🎓 ['受约束'](https://wikipedia.org/wiki/Constrained_clustering) +> +> [受约束聚类](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf)在这种无监督方法中引入了“半监督”学习。点之间的关系被标记为“不能链接”或“必须链接”,因此对数据集施加了一些规则。 +> +>举个例子:如果一个算法在一批未标记或半标记数据上自由运行,它生成的簇可能质量较差。在上述例子中,簇可能会将“圆形音乐物品”、“方形音乐物品”、“三角形物品”和“饼干”分组。如果给出一些约束或规则(“物品必须是塑料制成的”,“物品需要能够产生音乐”),这可以帮助“约束”算法做出更好的选择。 +> +> 🎓 '密度' +> +> 数据“噪声”被认为是“密集”的。每个簇中点之间的距离在检查时可能会更密集或更稀疏,因此需要使用适当的聚类方法来分析这些数据。[这篇文章](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html)展示了使用K-Means聚类与HDBSCAN算法探索具有不均匀簇密度的噪声数据集的区别。 + +## 聚类算法 + +有超过100种聚类算法,其使用取决于手头数据的性质。让我们讨论一些主要的算法: + +- **层次聚类**。如果一个对象根据其与附近对象的接近程度而被分类,而不是与更远的对象,簇是基于其成员与其他对象的距离形成的。Scikit-learn的凝聚聚类是层次聚类。 + + ![层次聚类信息图](../../../../5-Clustering/1-Visualize/images/hierarchical.png) + > 信息图由[Dasani Madipalli](https://twitter.com/dasani_decoded)制作 + +- **质心聚类**。这种流行的算法需要选择“k”,即要形成的簇数量,然后算法确定簇的中心点并围绕该点收集数据。[K均值聚类](https://wikipedia.org/wiki/K-means_clustering)是质心聚类的一种流行版本。中心点由最近的平均值确定,因此得名。簇的平方距离被最小化。 + + ![质心聚类信息图](../../../../5-Clustering/1-Visualize/images/centroid.png) + > 信息图由[Dasani Madipalli](https://twitter.com/dasani_decoded)制作 + +- **基于分布的聚类**。基于统计建模,分布式聚类的核心是确定数据点属于某个簇的概率,并据此分配。高斯混合方法属于这一类型。 + +- **基于密度的聚类**。数据点根据其密度或围绕彼此的分组被分配到簇中。远离组的数据点被认为是异常值或噪声。DBSCAN、Mean-shift和OPTICS属于这一类型的聚类。 + +- **基于网格的聚类**。对于多维数据集,创建一个网格并将数据分配到网格的单元中,从而形成簇。 + +## 练习 - 聚类你的数据 + +聚类作为一种技术在适当的可视化帮助下效果更好,因此让我们通过可视化我们的音乐数据开始。这项练习将帮助我们决定针对这些数据的性质最有效使用哪种聚类方法。 + +1. 打开此文件夹中的[_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/notebook.ipynb)。 + +1. 导入`Seaborn`包以实现良好的数据可视化。 + + ```python + !pip install seaborn + ``` + +1. 从[_nigerian-songs.csv_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/data/nigerian-songs.csv)中追加歌曲数据。加载一个包含歌曲数据的数据框。通过导入库并输出数据准备探索这些数据: + + ```python + import matplotlib.pyplot as plt + import pandas as pd + + df = pd.read_csv("../data/nigerian-songs.csv") + df.head() + ``` + + 检查数据的前几行: + + | | 名称 | 专辑 | 艺术家 | 艺术家主要风格 | 发行日期 | 时长 | 热度 | 舞蹈性 | 声学性 | 能量 | 器乐性 | 现场感 | 响度 | 语音性 | 节奏 | 拍号 | + | --- | ------------------------ | ---------------------------- | ------------------- | ---------------- | ------------ | ------ | ---------- | ------------ | ------------ | ------ | ---------------- | -------- | -------- | ----------- | ------- | -------------- | + | 0 | Sparky | Mandy & The Jungle | Cruel Santino | alternative r&b | 2019 | 144000 | 48 | 0.666 | 0.851 | 0.42 | 0.534 | 0.11 | -6.699 | 0.0829 | 133.015 | 5 | + | 1 | shuga rush | EVERYTHING YOU HEARD IS TRUE | Odunsi (The Engine) | afropop | 2020 | 89488 | 30 | 0.71 | 0.0822 | 0.683 | 0.000169 | 0.101 | -5.64 | 0.36 | 129.993 | 3 | +| 2 | LITT! | LITT! | AYLØ | 独立R&B | 2018 | 207758 | 40 | 0.836 | 0.272 | 0.564 | 0.000537 | 0.11 | -7.127 | 0.0424 | 130.005 | 4 | +| 3 | Confident / Feeling Cool | Enjoy Your Life | Lady Donli | 尼日利亚流行 | 2019 | 175135 | 14 | 0.894 | 0.798 | 0.611 | 0.000187 | 0.0964 | -4.961 | 0.113 | 111.087 | 4 | +| 4 | wanted you | rare. | Odunsi (The Engine) | 非洲流行 | 2018 | 152049 | 25 | 0.702 | 0.116 | 0.833 | 0.91 | 0.348 | -6.044 | 0.0447 | 105.115 | 4 | + +1. 获取数据框的一些信息,调用 `info()`: + + ```python + df.info() + ``` + + 输出如下所示: + + ```output + + RangeIndex: 530 entries, 0 to 529 + Data columns (total 16 columns): + # Column Non-Null Count Dtype + --- ------ -------------- ----- + 0 name 530 non-null object + 1 album 530 non-null object + 2 artist 530 non-null object + 3 artist_top_genre 530 non-null object + 4 release_date 530 non-null int64 + 5 length 530 non-null int64 + 6 popularity 530 non-null int64 + 7 danceability 530 non-null float64 + 8 acousticness 530 non-null float64 + 9 energy 530 non-null float64 + 10 instrumentalness 530 non-null float64 + 11 liveness 530 non-null float64 + 12 loudness 530 non-null float64 + 13 speechiness 530 non-null float64 + 14 tempo 530 non-null float64 + 15 time_signature 530 non-null int64 + dtypes: float64(8), int64(4), object(4) + memory usage: 66.4+ KB + ``` + +1. 通过调用 `isnull()` 并验证总和为 0 来仔细检查是否有空值: + + ```python + df.isnull().sum() + ``` + + 看起来不错: + + ```output + name 0 + album 0 + artist 0 + artist_top_genre 0 + release_date 0 + length 0 + popularity 0 + danceability 0 + acousticness 0 + energy 0 + instrumentalness 0 + liveness 0 + loudness 0 + speechiness 0 + tempo 0 + time_signature 0 + dtype: int64 + ``` + +1. 描述数据: + + ```python + df.describe() + ``` + + | | release_date | length | popularity | danceability | acousticness | energy | instrumentalness | liveness | loudness | speechiness | tempo | time_signature | + | ----- | ------------ | ----------- | ---------- | ------------ | ------------ | -------- | ---------------- | -------- | --------- | ----------- | ---------- | -------------- | + | count | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | 530 | + | mean | 2015.390566 | 222298.1698 | 17.507547 | 0.741619 | 0.265412 | 0.760623 | 0.016305 | 0.147308 | -4.953011 | 0.130748 | 116.487864 | 3.986792 | + | std | 3.131688 | 39696.82226 | 18.992212 | 0.117522 | 0.208342 | 0.148533 | 0.090321 | 0.123588 | 2.464186 | 0.092939 | 23.518601 | 0.333701 | + | min | 1998 | 89488 | 0 | 0.255 | 0.000665 | 0.111 | 0 | 0.0283 | -19.362 | 0.0278 | 61.695 | 3 | + | 25% | 2014 | 199305 | 0 | 0.681 | 0.089525 | 0.669 | 0 | 0.07565 | -6.29875 | 0.0591 | 102.96125 | 4 | + | 50% | 2016 | 218509 | 13 | 0.761 | 0.2205 | 0.7845 | 0.000004 | 0.1035 | -4.5585 | 0.09795 | 112.7145 | 4 | + | 75% | 2017 | 242098.5 | 31 | 0.8295 | 0.403 | 0.87575 | 0.000234 | 0.164 | -3.331 | 0.177 | 125.03925 | 4 | + | max | 2020 | 511738 | 73 | 0.966 | 0.954 | 0.995 | 0.91 | 0.811 | 0.582 | 0.514 | 206.007 | 5 | + +> 🤔 如果我们正在使用聚类算法,这是一种不需要标签数据的无监督方法,为什么我们要展示带标签的数据?在数据探索阶段,这些标签很有用,但对于聚类算法来说并不是必要的。你完全可以移除列标题,并通过列号来引用数据。 + +观察数据的一般值。注意,流行度可以为“0”,这表明歌曲没有排名。我们稍后会移除这些数据。 + +1. 使用柱状图找出最受欢迎的音乐类型: + + ```python + import seaborn as sns + + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top[:5].index,y=top[:5].values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + ![最受欢迎](../../../../5-Clustering/1-Visualize/images/popular.png) + +✅ 如果你想看到更多的前几项,可以将 `[:5]` 改为更大的值,或者移除它以查看全部。 + +注意,当最受欢迎的音乐类型被描述为“Missing”时,这意味着 Spotify 没有对其进行分类,因此我们需要移除它。 + +1. 通过过滤移除缺失数据 + + ```python + df = df[df['artist_top_genre'] != 'Missing'] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + + 现在重新检查音乐类型: + + ![所有音乐类型](../../../../5-Clustering/1-Visualize/images/all-genres.png) + +1. 显然,前三种音乐类型在这个数据集中占据主导地位。让我们专注于 `afro dancehall`、`afropop` 和 `nigerian pop`,并进一步过滤数据,移除流行度为 0 的数据(这意味着它在数据集中没有被分类为流行度,可以被视为噪声): + + ```python + df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')] + df = df[(df['popularity'] > 0)] + top = df['artist_top_genre'].value_counts() + plt.figure(figsize=(10,7)) + sns.barplot(x=top.index,y=top.values) + plt.xticks(rotation=45) + plt.title('Top genres',color = 'blue') + ``` + +1. 快速测试数据是否有特别强的相关性: + + ```python + corrmat = df.corr(numeric_only=True) + f, ax = plt.subplots(figsize=(12, 9)) + sns.heatmap(corrmat, vmax=.8, square=True) + ``` + + ![相关性](../../../../5-Clustering/1-Visualize/images/correlation.png) + + 唯一强相关的是 `energy` 和 `loudness`,这并不令人惊讶,因为响亮的音乐通常很有活力。除此之外,相关性相对较弱。看看聚类算法如何处理这些数据会很有趣。 + + > 🎓 注意,相关性并不意味着因果关系!我们有相关性的证据,但没有因果关系的证据。一个[有趣的网站](https://tylervigen.com/spurious-correlations)提供了一些视觉效果来强调这一点。 + +在这个数据集中,歌曲的流行度和舞蹈性是否有任何收敛?一个 FacetGrid 显示出无论音乐类型如何,都有一些同心圆排列。是否可能尼日利亚的音乐品味在某种程度上对这一类型的舞蹈性趋于一致? + +✅ 尝试不同的数据点(如 energy、loudness、speechiness)以及更多或不同的音乐类型。你能发现什么?查看 `df.describe()` 表格以了解数据点的一般分布。 + +### 练习 - 数据分布 + +这三种音乐类型在舞蹈性和流行度的感知上是否显著不同? + +1. 检查我们前三种音乐类型在给定 x 和 y 轴上的流行度和舞蹈性数据分布。 + + ```python + sns.set_theme(style="ticks") + + g = sns.jointplot( + data=df, + x="popularity", y="danceability", hue="artist_top_genre", + kind="kde", + ) + ``` + + 你可以发现围绕一个一般收敛点的同心圆,显示数据点的分布。 + + > 🎓 注意,这个例子使用了一个 KDE(核密度估计)图,它通过连续概率密度曲线来表示数据。这使我们能够在处理多个分布时解释数据。 + + 总体而言,这三种音乐类型在流行度和舞蹈性方面大致对齐。确定这些松散对齐数据中的聚类将是一个挑战: + + ![分布](../../../../5-Clustering/1-Visualize/images/distribution.png) + +1. 创建一个散点图: + + ```python + sns.FacetGrid(df, hue="artist_top_genre", height=5) \ + .map(plt.scatter, "popularity", "danceability") \ + .add_legend() + ``` + + 同一轴上的散点图显示了类似的收敛模式 + + ![Facetgrid](../../../../5-Clustering/1-Visualize/images/facetgrid.png) + +通常,对于聚类,你可以使用散点图来显示数据的聚类,因此掌握这种可视化类型非常有用。在下一课中,我们将使用 k-means 聚类来探索这些数据中有趣的重叠群组。 + +--- + +## 🚀挑战 + +为下一课做准备,制作一个关于你可能发现并在生产环境中使用的各种聚类算法的图表。聚类试图解决什么样的问题? + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +在应用聚类算法之前,正如我们所学,了解数据集的性质是一个好主意。阅读更多相关内容[这里](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html) + +[这篇有用的文章](https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/)带你了解不同聚类算法在不同数据形状下的表现。 + +## 作业 + +[研究其他用于聚类的可视化方法](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/1-Visualize/assignment.md b/translations/zh-CN/5-Clustering/1-Visualize/assignment.md new file mode 100644 index 000000000..8500d5c5f --- /dev/null +++ b/translations/zh-CN/5-Clustering/1-Visualize/assignment.md @@ -0,0 +1,16 @@ +# 研究其他用于聚类的可视化方法 + +## 说明 + +在本课中,你已经学习了一些可视化技术,以便在进行聚类之前对数据进行绘图。散点图尤其适合用于发现对象的分组。研究创建散点图的不同方法和不同库,并在笔记本中记录你的研究成果。你可以使用本课的数据、其他课程的数据,或者自己找到的数据(不过,请在笔记本中注明数据来源)。使用散点图绘制一些数据,并解释你的发现。 + +## 评分标准 + +| 标准 | 卓越表现 | 合格表现 | 需要改进 | +| -------- | -------------------------------------------------------------- | ---------------------------------------------------------------------------------------- | ----------------------------------- | +| | 提交的笔记本包含五个记录详尽的散点图 | 提交的笔记本包含少于五个散点图,且记录不够详尽 | 提交的笔记本不完整 | + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/1-Visualize/notebook.ipynb b/translations/zh-CN/5-Clustering/1-Visualize/notebook.ipynb new file mode 100644 index 000000000..0b6a5b659 --- /dev/null +++ b/translations/zh-CN/5-Clustering/1-Visualize/notebook.ipynb @@ -0,0 +1,50 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python383jvsc74a57bd0e134e05457d34029b6460cd73bbf1ed73f339b5b6d98c95be70b69eba114fe95", + "display_name": "Python 3.8.3 64-bit (conda)" + }, + "coopTranslator": { + "original_hash": "40e0707e96b3e1899a912776006264f9", + "translation_date": "2025-09-03T20:01:48+00:00", + "source_file": "5-Clustering/1-Visualize/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/1-Visualize/solution/Julia/README.md b/translations/zh-CN/5-Clustering/1-Visualize/solution/Julia/README.md new file mode 100644 index 000000000..779236745 --- /dev/null +++ b/translations/zh-CN/5-Clustering/1-Visualize/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb b/translations/zh-CN/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb new file mode 100644 index 000000000..5a0a7b638 --- /dev/null +++ b/translations/zh-CN/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb @@ -0,0 +1,493 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "## **从Spotify抓取的尼日利亚音乐分析**\n", + "\n", + "聚类是一种[无监督学习](https://wikipedia.org/wiki/Unsupervised_learning)方法,假设数据集是未标记的,或者其输入未与预定义的输出匹配。它使用各种算法对未标记的数据进行分类,并根据数据中识别出的模式提供分组。\n", + "\n", + "[**课前测验**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/27/)\n", + "\n", + "### **简介**\n", + "\n", + "[聚类](https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_124)在数据探索中非常有用。让我们看看它是否能帮助发现尼日利亚观众消费音乐的趋势和模式。\n", + "\n", + "> ✅ 花一分钟思考一下聚类的用途。在现实生活中,聚类就像你有一堆洗好的衣服,需要将家人各自的衣物分类🧦👕👖🩲。在数据科学中,聚类发生在分析用户偏好或确定任何未标记数据集的特征时。聚类在某种程度上帮助我们从混乱中找到秩序,比如整理袜子抽屉。\n", + "\n", + "在专业环境中,聚类可以用于市场细分,例如确定哪些年龄段购买哪些商品。另一个用途是异常检测,比如从信用卡交易数据集中检测欺诈行为。或者,你可以用聚类来识别一批医学扫描中的肿瘤。\n", + "\n", + "✅ 花一分钟思考一下你在银行、电子商务或商业环境中可能遇到过的聚类应用。\n", + "\n", + "> 🎓 有趣的是,聚类分析起源于20世纪30年代的人类学和心理学领域。你能想象它可能是如何被使用的吗?\n", + "\n", + "另外,你可以用它来对搜索结果进行分组——例如按购物链接、图片或评论分组。当你有一个大型数据集需要简化并进行更细致的分析时,聚类技术非常有用,因此它可以在构建其他模型之前帮助了解数据。\n", + "\n", + "✅ 一旦你的数据被组织成聚类,你可以为其分配一个聚类ID。这种技术在保护数据集隐私时非常有用;你可以用聚类ID来引用数据点,而不是使用更具识别性的详细数据。你能想到其他使用聚类ID而不是聚类中其他元素来标识数据点的原因吗?\n", + "\n", + "### 开始学习聚类\n", + "\n", + "> 🎓 我们如何创建聚类与我们如何将数据点分组密切相关。让我们来解读一些术语:\n", + ">\n", + "> 🎓 ['传导性' vs. '归纳性'](https://wikipedia.org/wiki/Transduction_(machine_learning))\n", + ">\n", + "> 传导性推理是从观察到的训练案例中得出的,这些案例映射到特定的测试案例。归纳性推理是从训练案例中得出的,这些案例映射到一般规则,然后才应用于测试案例。\n", + ">\n", + "> 举个例子:假设你有一个部分标记的数据集。一些是“唱片”,一些是“CD”,还有一些是空白的。你的任务是为空白部分提供标签。如果你选择归纳方法,你会训练一个模型寻找“唱片”和“CD”,并将这些标签应用于未标记的数据。这种方法可能难以分类实际上是“磁带”的东西。而传导方法则更有效地处理这些未知数据,因为它会将相似的项目分组,然后为整个组应用一个标签。在这种情况下,聚类可能反映“圆形音乐物品”和“方形音乐物品”。\n", + ">\n", + "> 🎓 ['非平面' vs. '平面'几何](https://datascience.stackexchange.com/questions/52260/terminology-flat-geometry-in-the-context-of-clustering)\n", + ">\n", + "> 源于数学术语,非平面与平面几何指的是通过“平面”([欧几里得](https://wikipedia.org/wiki/Euclidean_geometry))或“非平面”(非欧几里得)几何方法测量点之间的距离。\n", + ">\n", + "> 在此上下文中,“平面”指的是欧几里得几何(部分被称为“平面”几何),而“非平面”指的是非欧几里得几何。几何与机器学习有什么关系?作为两个都以数学为基础的领域,必须有一种通用的方法来测量聚类中点之间的距离,这可以根据数据的性质以“平面”或“非平面”的方式进行。[欧几里得距离](https://wikipedia.org/wiki/Euclidean_distance)是通过两点之间线段的长度来测量的。[非欧几里得距离](https://wikipedia.org/wiki/Non-Euclidean_geometry)则沿曲线测量。如果你的数据在可视化时似乎不在一个平面上,你可能需要使用专门的算法来处理它。\n", + "\n", + "

      \n", + " \n", + "

      Dasani Madipalli制作的信息图
      \n", + "\n", + "> 🎓 ['距离'](https://web.stanford.edu/class/cs345a/slides/12-clustering.pdf)\n", + ">\n", + "> 聚类由其距离矩阵定义,例如点之间的距离。这种距离可以通过几种方式测量。欧几里得聚类由点值的平均值定义,并包含一个“质心”或中心点。因此,距离是通过到质心的距离来测量的。非欧几里得距离指的是“聚心”,即最接近其他点的点。聚心可以通过多种方式定义。\n", + ">\n", + "> 🎓 ['约束'](https://wikipedia.org/wiki/Constrained_clustering)\n", + ">\n", + "> [约束聚类](https://web.cs.ucdavis.edu/~davidson/Publications/ICDMTutorial.pdf)在这种无监督方法中引入了“半监督”学习。点之间的关系被标记为“不能链接”或“必须链接”,因此对数据集施加了一些规则。\n", + ">\n", + "> 举个例子:如果一个算法在一批未标记或半标记的数据上自由运行,它生成的聚类可能质量较差。在上面的例子中,聚类可能会将“圆形音乐物品”、“方形音乐物品”、“三角形物品”和“饼干”分组。如果给出一些约束或规则(“物品必须是塑料制成的”,“物品需要能够产生音乐”),这可以帮助“约束”算法做出更好的选择。\n", + ">\n", + "> 🎓 '密度'\n", + ">\n", + "> 数据“噪声”被认为是“密集”的。每个聚类中点之间的距离可能在检查时表现为更密集或更稀疏,因此需要使用适当的聚类方法进行分析。[这篇文章](https://www.kdnuggets.com/2020/02/understanding-density-based-clustering.html)展示了使用K均值聚类与HDBSCAN算法探索具有不均匀聚类密度的噪声数据集的区别。\n", + "\n", + "通过这个[学习模块](https://docs.microsoft.com/learn/modules/train-evaluate-cluster-models?WT.mc_id=academic-77952-leestott)加深对聚类技术的理解。\n", + "\n", + "### **聚类算法**\n", + "\n", + "有超过100种聚类算法,其使用取决于手头数据的性质。让我们讨论一些主要的算法:\n", + "\n", + "- **层次聚类**。如果一个对象根据其与附近对象的接近程度而被分类,而不是与更远的对象,聚类是根据其成员与其他对象的距离形成的。层次聚类的特点是反复合并两个聚类。\n", + "\n", + "

      \n", + " \n", + "

      Dasani Madipalli制作的信息图
      \n", + "\n", + "- **质心聚类**。这种流行的算法需要选择“k”,即要形成的聚类数量,然后算法确定聚类的中心点并围绕该点收集数据。[K均值聚类](https://wikipedia.org/wiki/K-means_clustering)是质心聚类的一种流行版本,它将数据集分为预定义的K组。中心点由最近的平均值确定,因此得名。聚类的平方距离被最小化。\n", + "\n", + "

      \n", + " \n", + "

      Dasani Madipalli制作的信息图
      \n", + "\n", + "- **基于分布的聚类**。基于统计建模,分布式聚类的核心是确定数据点属于某个聚类的概率,并据此分配。高斯混合方法属于这一类型。\n", + "\n", + "- **基于密度的聚类**。数据点根据其密度或围绕彼此的分组被分配到聚类中。远离组的数据点被认为是异常值或噪声。DBSCAN、Mean-shift和OPTICS属于这一类型的聚类。\n", + "\n", + "- **基于网格的聚类**。对于多维数据集,创建一个网格并将数据分配到网格的单元中,从而形成聚类。\n", + "\n", + "学习聚类的最佳方法是亲自尝试,这正是你将在本练习中做的。\n", + "\n", + "我们需要一些包来完成这个模块。你可以通过以下方式安装它们:`install.packages(c('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork'))`\n", + "\n", + "或者,下面的脚本会检查你是否拥有完成此模块所需的包,并在缺少时为你安装它们。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\r\n", + "\r\n", + "pacman::p_load('tidyverse', 'tidymodels', 'DataExplorer', 'summarytools', 'plotly', 'paletteer', 'corrplot', 'patchwork')\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## 练习 - 对数据进行聚类\n", + "\n", + "聚类作为一种技术,通过适当的可视化可以大大提高效果,因此让我们从可视化音乐数据开始。这项练习将帮助我们决定哪种聚类方法最适合用于处理这些数据的特性。\n", + "\n", + "让我们立即开始,导入数据。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Load the core tidyverse and make it available in your current R session\r\n", + "library(tidyverse)\r\n", + "\r\n", + "# Import the data into a tibble\r\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\")\r\n", + "\r\n", + "# View the first 5 rows of the data set\r\n", + "df %>% \r\n", + " slice_head(n = 5)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "有时候,我们可能希望对数据有更多的了解。我们可以通过使用 [*glimpse()*](https://pillar.r-lib.org/reference/glimpse.html) 函数来查看 `数据` 和 `其结构`:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Glimpse into the data set\r\n", + "df %>% \r\n", + " glimpse()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "干得好!💪\n", + "\n", + "我们可以看到,`glimpse()` 会显示数据集的总行数(观测值)和列数(变量),然后在变量名称后按行显示每个变量的前几个条目。此外,变量的*数据类型*会紧跟在每个变量名称后面,用 `< >` 表示。\n", + "\n", + "`DataExplorer::introduce()` 可以将这些信息整齐地总结出来:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe basic information for our data\r\n", + "df %>% \r\n", + " introduce()\r\n", + "\r\n", + "# A visual display of the same\r\n", + "df %>% \r\n", + " plot_intro()\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "太棒了!我们刚刚了解到我们的数据没有缺失值。\n", + "\n", + "既然如此,我们可以使用 `summarytools::descr()` 来探索常见的集中趋势统计(例如 [均值](https://en.wikipedia.org/wiki/Arithmetic_mean) 和 [中位数](https://en.wikipedia.org/wiki/Median))以及离散程度的度量(例如 [标准差](https://en.wikipedia.org/wiki/Standard_deviation))。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Describe common statistics\r\n", + "df %>% \r\n", + " descr(stats = \"common\")\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "让我们来看一下数据的总体值。请注意,流行度可以为 `0`,这表示没有排名的歌曲。我们稍后会将这些移除。\n", + "\n", + "> 🤔 如果我们正在使用聚类,这是一种不需要标签数据的无监督方法,为什么我们还要展示带有标签的数据呢?在数据探索阶段,这些标签非常有用,但它们并不是聚类算法运行所必需的。\n", + "\n", + "### 1. 探索流行的音乐类型\n", + "\n", + "让我们继续找出最流行的音乐类型 🎶,通过统计它出现的次数来实现。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Popular genres\r\n", + "top_genres <- df %>% \r\n", + " count(artist_top_genre, sort = TRUE) %>% \r\n", + "# Encode to categorical and reorder the according to count\r\n", + " mutate(artist_top_genre = factor(artist_top_genre) %>% fct_inorder())\r\n", + "\r\n", + "# Print the top genres\r\n", + "top_genres\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "那很顺利!人们常说“一张图片胜过千行数据框”(其实没人这么说过 😅)。但你明白我的意思,对吧?\n", + "\n", + "可视化分类数据(字符或因子变量)的一种方法是使用柱状图。让我们绘制一个前10大流派的柱状图:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Change the default gray theme\r\n", + "theme_set(theme_light())\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "现在更容易发现我们有`缺失`的音乐类型了 🧐!\n", + "\n", + "> 一个好的可视化能够展示你意想不到的内容,或者引发你对数据的新疑问 —— Hadley Wickham 和 Garrett Grolemund,《R For Data Science》(https://r4ds.had.co.nz/introduction.html)\n", + "\n", + "注意,当主要音乐类型被描述为`缺失`时,这意味着Spotify没有对其进行分类,所以我们需要将其去除。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Visualize popular genres\r\n", + "top_genres %>%\r\n", + " filter(artist_top_genre != \"Missing\") %>% \r\n", + " slice(1:10) %>% \r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"rcartocolor::Vivid\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5),\r\n", + " # Rotates the X markers (so we can read them)\r\n", + " axis.text.x = element_text(angle = 90))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "通过初步的数据探索,我们了解到前三大音乐类型在这个数据集中占据主导地位。让我们专注于 `afro dancehall`、`afropop` 和 `nigerian pop`,并进一步过滤数据集,去除任何流行度值为 0 的条目(这意味着这些条目在数据集中未被分类为流行,且对于我们的目的来说可以视为噪声):\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "nigerian_songs <- df %>% \r\n", + " # Concentrate on top 3 genres\r\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \r\n", + " # Remove unclassified observations\r\n", + " filter(popularity != 0)\r\n", + "\r\n", + "\r\n", + "\r\n", + "# Visualize popular genres\r\n", + "nigerian_songs %>%\r\n", + " count(artist_top_genre) %>%\r\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\r\n", + " fill = artist_top_genre)) +\r\n", + " geom_col(alpha = 0.8) +\r\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\r\n", + " ggtitle(\"Top genres\") +\r\n", + " theme(plot.title = element_text(hjust = 0.5))\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "让我们看看数据集中数值变量之间是否存在明显的线性关系。这种关系可以通过[相关统计量](https://en.wikipedia.org/wiki/Correlation)在数学上进行量化。\n", + "\n", + "相关统计量是一个介于 -1 和 1 之间的值,用于表示关系的强度。大于 0 的值表示*正相关*(一个变量的高值往往与另一个变量的高值同时出现),而小于 0 的值表示*负相关*(一个变量的高值往往与另一个变量的低值同时出现)。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Narrow down to numeric variables and fid correlation\r\n", + "corr_mat <- nigerian_songs %>% \r\n", + " select(where(is.numeric)) %>% \r\n", + " cor()\r\n", + "\r\n", + "# Visualize correlation matrix\r\n", + "corrplot(corr_mat, order = 'AOE', col = c('white', 'black'), bg = 'gold2') \r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "数据之间的相关性并不强,除了 `energy` 和 `loudness` 之间的关系,这很合理,因为响亮的音乐通常充满活力。`Popularity` 与 `release date` 也有一定的对应关系,这也合乎逻辑,因为较新的歌曲可能更受欢迎。长度和能量似乎也存在一定的相关性。\n", + "\n", + "看看聚类算法如何处理这些数据会很有趣!\n", + "\n", + "> 🎓 请注意,相关性并不意味着因果关系!我们有相关性的证据,但没有因果关系的证明。一个[有趣的网站](https://tylervigen.com/spurious-correlations)提供了一些视觉化内容来强调这一点。\n", + "\n", + "### 2. 探索数据分布\n", + "\n", + "让我们提出一些更微妙的问题。基于流行度,不同的音乐类型在舞蹈性上的感知是否有显著差异?让我们使用[密度图](https://www.khanacademy.org/math/ap-statistics/density-curves-normal-distribution-ap/density-curves/v/density-curves)沿着给定的 x 和 y 轴来检查我们前三大音乐类型在流行度和舞蹈性上的数据分布。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# Perform 2D kernel density estimation\r\n", + "density_estimate_2d <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre)) +\r\n", + " geom_density_2d(bins = 5, size = 1) +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " xlim(-20, 80) +\r\n", + " ylim(0, 1.2)\r\n", + "\r\n", + "# Density plot based on the popularity\r\n", + "density_estimate_pop <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " theme(legend.position = \"none\")\r\n", + "\r\n", + "# Density plot based on the danceability\r\n", + "density_estimate_dance <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = danceability, fill = artist_top_genre, color = artist_top_genre)) +\r\n", + " geom_density(size = 1, alpha = 0.5) +\r\n", + " paletteer::scale_fill_paletteer_d(\"RSkittleBrewer::wildberry\") +\r\n", + " paletteer::scale_color_paletteer_d(\"RSkittleBrewer::wildberry\")\r\n", + "\r\n", + "\r\n", + "# Patch everything together\r\n", + "library(patchwork)\r\n", + "density_estimate_2d / (density_estimate_pop + density_estimate_dance)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "我们发现,无论是哪种类型,都有同心圆对齐的现象。难道尼日利亚人的品味在这个类型的某种舞蹈性水平上趋于一致?\n", + "\n", + "总体来说,这三种类型在受欢迎程度和舞蹈性方面是相符的。在这种松散对齐的数据中确定聚类将是一个挑战。让我们看看散点图是否能对此提供支持。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [ + "# A scatter plot of popularity and danceability\r\n", + "scatter_plot <- nigerian_songs %>% \r\n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = artist_top_genre, shape = artist_top_genre)) +\r\n", + " geom_point(size = 2, alpha = 0.8) +\r\n", + " paletteer::scale_color_paletteer_d(\"futurevisions::mars\")\r\n", + "\r\n", + "# Add a touch of interactivity\r\n", + "ggplotly(scatter_plot)\r\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "同一坐标轴的散点图显示了类似的收敛模式。\n", + "\n", + "通常来说,在聚类分析中,你可以使用散点图来展示数据的聚类情况,因此掌握这种可视化方法非常有用。在下一节课中,我们将使用过滤后的数据,并通过 k-means 聚类来发现数据中以有趣方式重叠的群组。\n", + "\n", + "## **🚀 挑战**\n", + "\n", + "为下一节课做准备,制作一张关于各种聚类算法的图表,这些算法可能会在生产环境中被发现和使用。聚类试图解决哪些类型的问题?\n", + "\n", + "## [**课后测验**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/28/)\n", + "\n", + "## **复习与自学**\n", + "\n", + "在应用聚类算法之前,正如我们所学的,了解数据集的性质是一个好主意。你可以在[这里](https://www.kdnuggets.com/2019/10/right-clustering-algorithm.html)阅读更多相关内容。\n", + "\n", + "加深对聚类技术的理解:\n", + "\n", + "- [使用 Tidymodels 和相关工具训练和评估聚类模型](https://rpubs.com/eR_ic/clustering)\n", + "\n", + "- Bradley Boehmke 和 Brandon Greenwell 的[*Hands-On Machine Learning with R*](https://bradleyboehmke.github.io/HOML/)*.*\n", + "\n", + "## **作业**\n", + "\n", + "[研究其他用于聚类的可视化方法](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/assignment.md)\n", + "\n", + "## 特别感谢:\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) 创建了本模块的原始 Python 版本 ♥️\n", + "\n", + "[`Dasani Madipalli`](https://twitter.com/dasani_decoded) 创作了精彩的插图,使机器学习概念更易于理解和解释。\n", + "\n", + "祝学习愉快,\n", + "\n", + "[Eric](https://twitter.com/ericntay),Gold Microsoft Learn 学生大使。\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ], + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "coopTranslator": { + "original_hash": "99c36449cad3708a435f6798cfa39972", + "translation_date": "2025-09-03T20:07:40+00:00", + "source_file": "5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/1-Visualize/solution/notebook.ipynb b/translations/zh-CN/5-Clustering/1-Visualize/solution/notebook.ipynb new file mode 100644 index 000000000..ed5ece885 --- /dev/null +++ b/translations/zh-CN/5-Clustering/1-Visualize/solution/notebook.ipynb @@ -0,0 +1,853 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Defaulting to user installation because normal site-packages is not writeable\n", + "Requirement already satisfied: seaborn in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (0.11.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (3.5.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.21.4)\n", + "Requirement already satisfied: pandas>=0.23 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.3.4)\n", + "Requirement already satisfied: scipy>=1.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from seaborn) (1.7.2)\n", + "Requirement already satisfied: fonttools>=4.22.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (4.28.1)\n", + "Requirement already satisfied: pyparsing>=2.2.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.4.7)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (1.3.2)\n", + "Requirement already satisfied: pillow>=6.2.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (8.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (0.11.0)\n", + "Requirement already satisfied: packaging>=20.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (21.2)\n", + "Requirement already satisfied: setuptools-scm>=4 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (6.3.2)\n", + "Requirement already satisfied: python-dateutil>=2.7 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from matplotlib>=2.2->seaborn) (2.8.2)\n", + "Requirement already satisfied: pytz>=2017.3 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from pandas>=0.23->seaborn) (2021.3)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from python-dateutil>=2.7->matplotlib>=2.2->seaborn) (1.16.0)\n", + "Requirement already satisfied: tomli>=1.0.0 in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (1.2.2)\n", + "Requirement already satisfied: setuptools in /Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages (from setuptools-scm>=4->matplotlib>=2.2->seaborn) (59.1.1)\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "!pip install seaborn" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
      0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
      2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
      \n", + "
      " + ], + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "获取有关数据框的信息\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 530 entries, 0 to 529\n", + "Data columns (total 16 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 name 530 non-null object \n", + " 1 album 530 non-null object \n", + " 2 artist 530 non-null object \n", + " 3 artist_top_genre 530 non-null object \n", + " 4 release_date 530 non-null int64 \n", + " 5 length 530 non-null int64 \n", + " 6 popularity 530 non-null int64 \n", + " 7 danceability 530 non-null float64\n", + " 8 acousticness 530 non-null float64\n", + " 9 energy 530 non-null float64\n", + " 10 instrumentalness 530 non-null float64\n", + " 11 liveness 530 non-null float64\n", + " 12 loudness 530 non-null float64\n", + " 13 speechiness 530 non-null float64\n", + " 14 tempo 530 non-null float64\n", + " 15 time_signature 530 non-null int64 \n", + "dtypes: float64(8), int64(4), object(4)\n", + "memory usage: 66.4+ KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "name 0\n", + "album 0\n", + "artist 0\n", + "artist_top_genre 0\n", + "release_date 0\n", + "length 0\n", + "popularity 0\n", + "danceability 0\n", + "acousticness 0\n", + "energy 0\n", + "instrumentalness 0\n", + "liveness 0\n", + "loudness 0\n", + "speechiness 0\n", + "tempo 0\n", + "time_signature 0\n", + "dtype: int64" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "查看数据的一般值。注意,受欢迎度可以是“0”——并且有许多行具有该值。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      release_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
      count530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000530.000000
      mean2015.390566222298.16981117.5075470.7416190.2654120.7606230.0163050.147308-4.9530110.130748116.4878643.986792
      std3.13168839696.82225918.9922120.1175220.2083420.1485330.0903210.1235882.4641860.09293923.5186010.333701
      min1998.00000089488.0000000.0000000.2550000.0006650.1110000.0000000.028300-19.3620000.02780061.6950003.000000
      25%2014.000000199305.0000000.0000000.6810000.0895250.6690000.0000000.075650-6.2987500.059100102.9612504.000000
      50%2016.000000218509.00000013.0000000.7610000.2205000.7845000.0000040.103500-4.5585000.097950112.7145004.000000
      75%2017.000000242098.50000031.0000000.8295000.4030000.8757500.0002340.164000-3.3310000.177000125.0392504.000000
      max2020.000000511738.00000073.0000000.9660000.9540000.9950000.9100000.8110000.5820000.514000206.0070005.000000
      \n", + "
      " + ], + "text/plain": [ + " release_date length popularity danceability acousticness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 2015.390566 222298.169811 17.507547 0.741619 0.265412 \n", + "std 3.131688 39696.822259 18.992212 0.117522 0.208342 \n", + "min 1998.000000 89488.000000 0.000000 0.255000 0.000665 \n", + "25% 2014.000000 199305.000000 0.000000 0.681000 0.089525 \n", + "50% 2016.000000 218509.000000 13.000000 0.761000 0.220500 \n", + "75% 2017.000000 242098.500000 31.000000 0.829500 0.403000 \n", + "max 2020.000000 511738.000000 73.000000 0.966000 0.954000 \n", + "\n", + " energy instrumentalness liveness loudness speechiness \\\n", + "count 530.000000 530.000000 530.000000 530.000000 530.000000 \n", + "mean 0.760623 0.016305 0.147308 -4.953011 0.130748 \n", + "std 0.148533 0.090321 0.123588 2.464186 0.092939 \n", + "min 0.111000 0.000000 0.028300 -19.362000 0.027800 \n", + "25% 0.669000 0.000000 0.075650 -6.298750 0.059100 \n", + "50% 0.784500 0.000004 0.103500 -4.558500 0.097950 \n", + "75% 0.875750 0.000234 0.164000 -3.331000 0.177000 \n", + "max 0.995000 0.910000 0.811000 0.582000 0.514000 \n", + "\n", + " tempo time_signature \n", + "count 530.000000 530.000000 \n", + "mean 116.487864 3.986792 \n", + "std 23.518601 0.333701 \n", + "min 61.695000 3.000000 \n", + "25% 102.961250 4.000000 \n", + "50% 112.714500 4.000000 \n", + "75% 125.039250 4.000000 \n", + "max 206.007000 5.000000 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "让我们来研究这些类型。有相当一部分被列为“缺失”,这意味着它们在数据集中没有被归类为某种类型。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsIElEQVR4nO3debyt9dz/8ddbpzI20EETGRKZwpHMGVJyU6ZUJN25C0Uh81CmW4RkCLmLTCXTLXT/lFA3bkPSQETRdKSOBkMpOn1+f3yvzXKcOtN3t9Y++/V8PPbjrH2ta639qWvvtd7rO6aqkCRJ0oq72bgLkCRJWlkYrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJ0ybhzyNf1yf8ZeT7Z4+7PknqLS4QKummkHAe8PwqvjHuWpZHwpwqrht3HZImmy1Wkm5yCasnvDfht8PXexNWH+7bMuGihNcm/D7hvBtr3Uq4S8LJCX9K+EbCBxM+NXL/FgnfS7gy4fSELUfu+3bCWxK+Ozz++IR1hvs2SqiE3RMuAL45HP/3hJ8nXJHw9YQ7D8eTcHDCpQl/TDgz4T7T839Q0qQyWEkah9cBWwCbAfcHNgdeP3L/HYF1gPWBXYHDEja5gef6DPBD4HbAAcAuU3ckrA98DXgrcFtgP+ALCXNHHr8zsBtwe2C14ZxRjwbuBWydsB3wWuBpwFzgf4GjhvOeADwKuAewJrADcNkS/j9IWskYrCSNw7OBN1dxaRULgDcxEogGb6ji2ipOooWjHRZ9koQ7AQ8G3ljFX6v4DnDsyCnPAY6r4rgqrq/iBOAUYNuRcz5WxS+r+AtwDC3sjTqgiquG+18AvL2Knw/dgv8JbDa0Wv0NuA1wTyDDORcv+/8aSTOZwUrSOKwHnD/y/fnDsSlXVHHVjdw/+jyXV3H1yLELR27fGXjm0A14ZcKVwCOAdUfO+d3I7auBWy/yMxZ9vkNGnutyIMD6VXwT+ADwQeDShMMS1lhMzZJWYgYrSePwW1pImXKn4diUtRNudSP3T7kYuG3CLUeObThy+0Lgk1WsNfJ1qyoOXIZaR2f4XAjsucjz3aKK7wFU8b4qHgRsSusSfMUy/BxJKwGDlaRxOAp4fcLcYbD4G+EfA84Hb0pYLeGRwL8Bn1v0Sao4n9a1d8Bw7kOBJ4+c8ingyQlbJ6yScPNhcPwGy1n3h4HXJNwbIGHNhGcOtx+c8JCEVYGrgGuA65fz50iaoeaMuwBJs9JbgTWAM4bvPzccm/I74ApaK9XVwAuq+MUNPNezgY/TBor/EPgssApAFRcOA87fSQtzC4dzXrg8RVfxpYRbA0cP46r+AJww1L8GcDBwV1qo+jpw0PL8HEkzl+tYSZoow3IIn6pavlalhM8Cv6hi/66FSdJSsCtQ0ow2dMHdLeFmCdsA2wH/PeayJM1SdgVKmunuCHyRto7VRcALq/jJeEuSNFvZFShJktSJXYGSJEmdGKwkSZI6mYgxVuuss05ttNFG4y5DkiRpiX784x//vqrmLu6+iQhWG220Eaeccsq4y5AkSVqiJOff0H12BUqSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpkz7gKW1YNe8YlxlzAr/Pig5467BEmSZhxbrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHWyxGCV5OZJfpjk9CQ/S/Km4fhdkvwgyTlJPptkteH46sP35wz3bzTN/w2SJEkTYWlarK4FHltV9wc2A7ZJsgXwDuDgqro7cAWw+3D+7sAVw/GDh/MkSZJWeksMVtX8efh21eGrgMcCnx+OHwlsP9zebvie4f7HJUmvgiVJkibVUo2xSrJKktOAS4ETgHOBK6vquuGUi4D1h9vrAxcCDPf/Abhdx5olSZIm0lIFq6paWFWbARsAmwP3XNEfnGSPJKckOWXBggUr+nSSJEljt0yzAqvqSuBbwEOBtZLMGe7aAJg/3J4PbAgw3L8mcNlinuuwqppXVfPmzp27fNVLkiRNkKWZFTg3yVrD7VsAWwE/pwWsZwyn7Qp8ebh97PA9w/3frKrqWLMkSdJEmrPkU1gXODLJKrQgdkxVfTXJWcDRSd4K/AQ4fDj/cOCTSc4BLgd2nIa6JUmSJs4Sg1VVnQE8YDHHf00bb7Xo8WuAZ3apTpIkaQZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKmTJQarJBsm+VaSs5L8LMk+w/EDksxPctrwte3IY16T5JwkZyfZejr/AyRJkibFnKU45zrg5VV1apLbAD9OcsJw38FV9a7Rk5NsCuwI3BtYD/hGkntU1cKehUuSJE2aJbZYVdXFVXXqcPtPwM+B9W/kIdsBR1fVtVX1G+AcYPMexUqSJE2yZRpjlWQj4AHAD4ZDeyc5I8kRSdYejq0PXDjysItYTBBLskeSU5KcsmDBgmWvXJIkacIsdbBKcmvgC8C+VfVH4EPA3YDNgIuBdy/LD66qw6pqXlXNmzt37rI8VJIkaSItVbBKsiotVH26qr4IUFWXVNXCqroe+Cj/6O6bD2w48vANhmOSJEkrtaWZFRjgcODnVfWekePrjpz2VOCnw+1jgR2TrJ7kLsDGwA/7lSxJkjSZlmZW4MOBXYAzk5w2HHstsFOSzYACzgP2BKiqnyU5BjiLNqNwL2cESpKk2WCJwaqqvgNkMXcddyOPeRvwthWoS5IkacZx5XVJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktTJEoNVkg2TfCvJWUl+lmSf4fhtk5yQ5FfDv2sPx5PkfUnOSXJGkgdO93+EJEnSJFiaFqvrgJdX1abAFsBeSTYFXg2cWFUbAycO3wM8Edh4+NoD+FD3qiVJkibQEoNVVV1cVacOt/8E/BxYH9gOOHI47Uhg++H2dsAnqvk+sFaSdXsXLkmSNGmWaYxVko2ABwA/AO5QVRcPd/0OuMNwe33gwpGHXTQcW/S59khySpJTFixYsKx1S5IkTZylDlZJbg18Adi3qv44el9VFVDL8oOr6rCqmldV8+bOnbssD5UkSZpISxWskqxKC1WfrqovDocvmeriG/69dDg+H9hw5OEbDMckSZJWakszKzDA4cDPq+o9I3cdC+w63N4V+PLI8ecOswO3AP4w0mUoSZK00pqzFOc8HNgFODPJacOx1wIHAsck2R04H9hhuO84YFvgHOBqYLeeBUuSJE2qJQarqvoOkBu4+3GLOb+AvVawLkmSpBnHldclSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInSwxWSY5IcmmSn44cOyDJ/CSnDV/bjtz3miTnJDk7ydbTVbgkSdKkWZoWq48D2yzm+MFVtdnwdRxAkk2BHYF7D485NMkqvYqVJEmaZEsMVlV1MnD5Uj7fdsDRVXVtVf0GOAfYfAXqkyRJmjFWZIzV3knOGLoK1x6OrQ9cOHLORcOxf5FkjySnJDllwYIFK1CGJEnSZFjeYPUh4G7AZsDFwLuX9Qmq6rCqmldV8+bOnbucZUiSJE2O5QpWVXVJVS2squuBj/KP7r75wIYjp24wHJMkSVrpLVewSrLuyLdPBaZmDB4L7Jhk9SR3ATYGfrhiJUqSJM0Mc5Z0QpKjgC2BdZJcBOwPbJlkM6CA84A9AarqZ0mOAc4CrgP2qqqF01K5JEnShFlisKqqnRZz+PAbOf9twNtWpChJkqSZyJXXJUmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJ0sMVkmOSHJpkp+OHLttkhOS/Gr4d+3heJK8L8k5Sc5I8sDpLF6SJGmSLE2L1ceBbRY59mrgxKraGDhx+B7gicDGw9cewIf6lClJkjT5lhisqupk4PJFDm8HHDncPhLYfuT4J6r5PrBWknU71SpJkjTRlneM1R2q6uLh9u+AOwy31wcuHDnvouGYJEnSSm+FB69XVQG1rI9LskeSU5KcsmDBghUtQ5IkaeyWN1hdMtXFN/x76XB8PrDhyHkbDMf+RVUdVlXzqmre3Llzl7MMSZKkybG8wepYYNfh9q7Al0eOP3eYHbgF8IeRLkNJkqSV2pwlnZDkKGBLYJ0kFwH7AwcCxyTZHTgf2GE4/ThgW+Ac4Gpgt2moWZIkaSItMVhV1U43cNfjFnNuAXutaFGSJEkzkSuvS5IkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE6WuNyC1NMFb77vuEtY6d3pjWeOuwRJmrVssZIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUicFKkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOpmzIg9Och7wJ2AhcF1VzUtyW+CzwEbAecAOVXXFipUpSZI0+VYoWA0eU1W/H/n+1cCJVXVgklcP37+qw8+RNGYPf//Dx13CSu+7L/7uuEuQtAKmoytwO+DI4faRwPbT8DMkSZImzooGqwKOT/LjJHsMx+5QVRcPt38H3GEFf4YkSdKMsKJdgY+oqvlJbg+ckOQXo3dWVSWpxT1wCGJ7ANzpTndawTIkSZLGb4VarKpq/vDvpcCXgM2BS5KsCzD8e+kNPPawqppXVfPmzp27ImVIkiRNhOUOVkluleQ2U7eBJwA/BY4Fdh1O2xX48ooWKUmSNBOsSFfgHYAvJZl6ns9U1f9L8iPgmCS7A+cDO6x4mZIkSZNvuYNVVf0auP9ijl8GPG5FipIkSZqJXHldkiSpE4OVJElSJwYrSZKkTgxWkiRJnRisJEmSOjFYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqxGAlSZLUyZxxFyBJmn4nPerR4y5hpffok08adwmaALZYSZIkdWKwkiRJ6sRgJUmS1InBSpIkqRODlSRJUicGK0mSpE4MVpIkSZ0YrCRJkjoxWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRODFaSJEmdGKwkSZI6mTPuAiRJ0o37wMu/Mu4SVnp7v/vJXZ7HFitJkqRODFaSJEmdGKwkSZI6MVhJkiR1YrCSJEnqZNqCVZJtkpyd5Jwkr56unyNJkjQppiVYJVkF+CDwRGBTYKckm07Hz5IkSZoU09VitTlwTlX9uqr+ChwNbDdNP0uSJGkipKr6P2nyDGCbqnr+8P0uwEOqau+Rc/YA9hi+3QQ4u3shk2Md4PfjLkLLzes3c3ntZjav38y1sl+7O1fV3MXdMbaV16vqMOCwcf38m1KSU6pq3rjr0PLx+s1cXruZzes3c83mazddXYHzgQ1Hvt9gOCZJkrTSmq5g9SNg4yR3SbIasCNw7DT9LEmSpIkwLV2BVXVdkr2BrwOrAEdU1c+m42fNELOiy3Ml5vWbubx2M5vXb+aatdduWgavS5IkzUauvC5JktSJwUqSJKkTg9UMlOSuSVYfdx2SJOmfGaxmmCRrA/sBrzNcSdINS5Jx16DZx2A1gyTZqKquAL4ArAnsZ7iaPL6YzyxJHpTELbdWMklSVZXk4Ul2T/K4YfkfzQCjr6PD/sMzhsFqhkiyFvCuJK+rqhOBLwLrYbgam6k//CT3HV681wcYXswNVxNs5NrNo22t9YYk2463KvU0/B0+BvgkcHfgvcBLktx9rIVpiaZC8XD7ecATZlIoNljNHFcB7wPunWS/qjoJOAbD1ViMfBp+PO06vAV4S5KXj74oaDIN1+6JwFHA6bRFjV+U5OnjrUy9JNkEeAGwb1W9BtgV2BjYaqyFaYlGQtVewD7A2VX11/FWtfQMVhNu6pN1Vf0N+D7wQWCLRcLV7YE3Gq5uOsMb8wOBVwDbV9Vjgc/RtnKyW2lmmAe8vqoOBfanhay9kmwz3rK0IjIAHgXcDdg6ya2q6lTaNd5jGKuqCZbk9sAutJ1bzkvy9CQvGFqZJ5rBaoIt0hy6JkBVfRd4D/DQkXD1VWA14NZjK3aWGZqlHw08Blh/OPwd4I/Ag8dVl27YYrpnbwk8D6CqLgV+APwV+I8km9+01WlFjVzfdYA5VfVR4G1AaG/OAL8D/jQc0wRJMjfJFsPtbYA7AicABwMfB3YANgMeO6YSl9q0bGmjPkZC1UuAxwGXJTm+qo4eXkP2SfLGqnpzku9U1V/GWe/KbqT7b1Xgb7TWw7WBVyW5oqp+kuQ0YOcktwT+Ypfg5Biu3YNpQfjrwH8C705ySFXtA9yK1uW+ALgr8MOxFatlNlzfbYE3A/OTXAXsTruuuybZmfae986qunyMpWrxVgVen6RoDQU7AF8BzgVOrqpfD1vlzUtys6q6foy13iiD1YRL8gLg6cCzgYNobwS3q6oPJpkD7J7ktr5QTL/hhfvJwFNp3a8H0bpiLwOOTXIErQXroKq6enyVatRIIN4S+DBwKfAU4LO0cYsHJDkJWJfWjfsU4N7jqVbLK8m9gLcCewOnAZ8BPlZVOya5BtgaOLOqvjqc71jICVJVv03yf7ThFR+oqj/QPtz8EP4+iP35wM6THKrArsCJluTmwLW0N/JnALcAngO8PMkLq+pkYE9D1U0jyYOAdwD/Rev22wW4P23W0adorYofqaqvzLTpwSujoWVxKhBvRlv/7UlV9SjgPOAJwDpV9Qza39UjaIF5N+DT46hZK+Ra4Czg1Kq6uqq2B9YdBkD/N62r9/5JdjRUTYbFdM9/lfa3+Pgk+42c93DgzsBzquqsm7DE5WKL1QRZtHmzqq4BPpZkQ2AbYPeqmp/kdNoMpqOq6soxlTsb3Qv4YVV9D/hekmcArwK+BbwbuJjWgnh6Vf10jHXOekluBxyd5ClDF/lDgS2B+9G6Ft4N7As8J8lqVXV8krsAzwSeUVW/GE/lWlojLZGr0BoJLqe1Os6jffABOJqWra9LciStC/9bhqrxW2QM8bNoYx5/VVVfTXI5cMjQnXsu7UPQW2fK+53BakIk2aCqLhpuvxi4C/Bb4DD+MeDyLkmeBFwC7DFTfslmqpEX7qnAexawbZJ5VXVKVX0+bWHJjavqpCSfA64H/jDWwkVVXZbk+cBGSf5aVR9KchvawPTLh+t1MK3b4aLhMb9J8qqqumqctWvpDH+b2wHPpQ1GP4g27vH9SQ4HrqF1C+4znP834MgxlatFjISqvWmtVB8AvpFkt6o6Ksmew7E5wPNm0vtdDO7jNTSFrkEbE/B24AzauI//on26Xoe2/sqewAOBBwHPrqozxlHvbJO2TtVDgStpM1ReQGuZmg+cTZu+/bSp65FklapaOJ5qBf98DZK8DngjcK+Rwa9bAe+rqhOnQvOkD4bVv0pyT9rr5Ntpr5MH0Lrn/0YbT7UB8PmqOn5cNerGJbk/beHW7WnhandgLdoEgw8Pk4BuPtOGuxisJkSShwGH01pFPlhV30yyHq2raQ1gr6q6Osmaw6A+TbOhX/8IWrfRc2n9/+cDc4GH0WYbfbSqjnXMxmQYaWXcArh0CFOvAl4KPLyqzk3yclq42hm40kA18yS5D+3v8uyqeslwbGvatPxHVtU5YyxPN2Bxr5NJ1qGNb9y3qrZMshvtvfAZVfXFcdS5ohy8PkZTA/eGX7bv0RL7vYFtoc2SAA4EFgIfHD5VG6puAknuAbyI1rJxGO0T1e2A+1XV+6pqR1rztKFqggyhampF9aktht5BW/vt5CT3qKp3M0z6MFTNWL+kDZG4V5KNk6xeVV+n7aM6d7ylaXEWGVP16CTbJlm7qn4PrE7rAYC2FuBngZ+MqdQVZovVmCzyS/Z42to582nrIv0Pbcr+R4b770h7z7hkXPXONsOb80toM41eOoy/WQM4CXhWVf1yrAVqsYYB6F+hhd5TktwXWLWqTh1arl4JbFCu+TZjTXX1DrM+Dwf+AnyDtozGUcB2VfWjcdaoG5bkpbQlhM4AtqB1/60B/DttketNgCdX1W/GVuQKMliN2fBLtj1tZtmjaYui3ZU2yPLDVfXesRU3i4x0Id0VuJo2w2gT2ti2C2ifhEPb/PpJVXXh2IrVP1nkQ8qtaAtEXk5ruXgALRx/oqo+leTudhPNXCN/p3OGmX6r0QasP5j2oedrwwxPW5EnUJL7AW+qqqcm2Qf4t6raKm1NxvsA96XNvD77Rp9owtkVOEZJNgW2rqpHA2sCV9DGfPyANqZnlyRrjbHEWWOkC+mrtG6jH9Fm9x1Fm779OdoL+KsMVZNj5I122yT701ovLqBNuz+etv3F12gTPwBm7Kfg2WhkuMTGQ8s9AEOomlNtY94XAafQpuufaqiaHFPXb8TFwOlJPkob8vLE4fh2wFlV9cmZHqrAYHWTWswv2V+BC5K8FrgHbUXZvyXZrqp+CDxsJk0xncmGF+23Av9RVTvTgtSxwK9os46+B3yb1rK4uGupMRhC1VNoe8KdWlXXV9UhVbV3VR1HC1TPA/7fcL4zNmeIkdC8Ne1v8b9pm2TfHf4pXP2NFq5uD7wGlxGaCEOX7VRL8m2HQeqXAxsBdwd2Ha7hc2kzd283tmI7syvwJrJId8V2tDFV3we+RFt4ctPhl+z5tOUVtq+qy8ZW8CwwMtX+wbSVuA8E9q9/rCf2fmBhVe2btn7YU2kDKj9SVdeNq+7ZLsm6wAOq6rhhnM0RwDtprVEPoW1JczBwW2B/4Iiq+vK46tXySzKPNjP6NcAdaBN8zgX+e6pLd2TM1Wq0lfR/O7aCBfy9N+YOVfWtJC+j/U3eHngTrUHhubT3wKLNsN6xqn42rnp7M1jdxIZ1dPagrX10TpLH0nZevz0taO1IW7bflbunSZJbTA1eTvII4FDaIoL7AseNTBp4FrBZVb1m+P4JwOlOIhivtI12zwN+W1VXJvkEbbunWwA/o6319uuq2iPJetX2ILN7aIZJW9D1QGCbqrrbcOyRwE60iT6fm5pEEtchmyhJ3kRbR+y7tOu1A631+OXAx2jbC92b9r538kweqL44Bqub0NCEfTiw09SnquET91q0T2JXAP+3MvQxT6ph/Zv3Av9GG4fzYdoigh8dWq4Ooy0EeiXwLOC1VfW18VSrUUnuDMwdZvutCRwCfBn4Ou1anVZVP0myCW2R3R2r6orxVaxltWgAHrmW5wAvHlqYt6RtSv+fK9sb8kw30n17M+B1tMkjfx2WpyFtfbkv0Qat/3iMpU4rx1hNo8WMw/k9bfDeaklWG34J/0ZbaPK9VfVxQ9X0GULsvrQ1UtYCHklbM+VZSdYfpmjvDPyaNgPwpVX1NcdTjVeaNWifcj+d5PHV1nP7X1pAfmJVfWwIVU8HPg8caqiaWUbelLdKsnuS5w+vhy+mtUa+Z2iZ+jbwSkPVZBkNxUPr4duAE4G1kzw2yS2r6vu0D0NrjLHUaWeL1TRZZEzVOsBVwHXAMcDxVfWh4b6dacssvKzco2xaDcHq9cDdaDul7wmsQhvTdh1wSFVdPL4KdWOSvJ02Q/M64AND6N2F9vfz7WE5hXcOt4+z+2/mGBnv+CTaZJFX0LqMPlNV+w2t/W8FLq+qF9n1N1kWeb/bmfbB9dqqOjzJvsBmtO7b3wBvALZcmYOxsyemwSK/ZC+j9TGfTpvVsjfwuaHb6Tpgc2AXQ9X0mmodTPIdWqD6dlWdNdz3JVrLx6uT/KdjqCZHklWHVl1oszLXoi2g+/wkVNUnk1wPPCnJVVX1yuFxhqoZIG1B15tV22poHdrr4w60WdLnAc9MW51797TlNFaHv7eIaEKMvN+9ENgN+BSwXZKnV9W2aRsq70UbZrHVyhyqwK7AaTHyS/Zg2oC9F9PW0tmX9on7CbSWq/+jDWI/czyVzg4jXQx3pS0a+TTgZkneOrxofxc4jhZ01xpjqRqRtsnu4UkeMxw6nrbe2xa0BXRflGSbqvo0bZzVuVOPNVTNGA8Dbpe2Jc3vaRN7VqPNHnsE8BhgtyQfqKqzy83nJ8owlmrq9hxa6/FLq237tTWwMMn7hwlBnwTeVbNg1wpbrKbJMNvsi7Tupe8nuQXwJ1oT93pTXYGafkOoegptRe5zaGOoPkKbofKSJO+rqv9Ncma5btgkuT3D/plJPgxcT5t2vxNtvNXNaa2MN6uqI8dXppZXVX06ya2BHyV5TlWdkbb5/I+HrsE70hbs/fp4K9Wi0havXg84a2hEuBj4G21ZjCmvoDUoUFUH3cQljo0tVp0sOsC5qr5DS+g7JFlnmN5/Mm0m01ZJ1nZQ9E1jmInyBmBr2oyUF9FaDd9F+4T18rSFBq8cW5H6F1V1MvAo4J7Ab2lbPR1Nu34b0AapH0ZbD0czyNRrX9rin/ehvVZ+dJi1ex6wZpJDaVtJfbmqTvD1cuJsAvxbkiNpYx4voi3E+5Ekmw/nPBS4e5Jbzqbr5+D1DhYZU/U44DbACVV1VZKDaV0X21XVpcMA6lWr6uoxljyrJNmAtrTC2rQBsDvTllm4HPg4sKDctHViDW++7wXuR5u+vQ3w3ao6cQjELtY6Aw1vvofQuo6+P4xH3Zm2dyq0631VVZ00phJ1I4b3so/RFv98bVV9YDi+J//YZuhBwLNrJVr8c2kYrDrKP3bt/hWtOfQdVXVSkoNog6MfVVV+uh6TJG8DLq2qQ9K2UXgJ8PSqOn/MpWkJhtli7wK2qKo/LDKoXTNMkg1pq+NfXlV7jBx/GfAfwDPLRZInzqKzMZM8ENiK9qH1TODoaqvgP5C2vNB1NQtXwneM1QoY+v+vqKprk2xFm+3wiCSvpg3K3G1ozHpFkmtp61UZrMbnTGDP4ZPW04B9DFUzw7C0wkLgl0nu6RpVM951wBm0mWPbVNXUXo7vSbIKTiKZSFOhKsmuwKrABVX1jiQvoPXM/CnJ2rRemw/O1kkktlgth6GveC5tjMd/0aaWrg3cmjaTZVda8+jHaJtNvrKqvjWeajUlbZHJp9KuzRHliuozztByddWwSKRmiJGZuQ+lvXZeQJtE8jza1ibHVNWJYyxRS2mYCPRu4NO0rr5vVtXBafvcPgR4HPDk2db9N8oWq+WTYbzUW4CX0RZC+yxwWZJ/B/6nqq5J8l3aJpM2aU+AqvojcGSST1fb8Nq1jmaYqTDstZtZhlD1BNqYqvcwbGsCHAssBJ6Xtpny8WMsU0uQtiDv5sBTqurnSR4EvGn4c3xvkk8Ca8z2IS8Gq+Uw0sd8S9pWC0ekLdf/MeB7wKFJ7kGbEfHM2f5LNoEWgmsdzWReu5ljWOtoLdrCvE8FbgucBZxaVZck+Rxt4U93PZgwIy2NUx9k7kSbYPBt4OfAacD+wMFJVquqd+JwF7sCl1eSZwGvAp5Im8XyXOBQ2j50D6cN6PtUVf1iXDVK0qRI8iraAq+Ppc0UOzfJ82jL0JznauqTZZHZ7hvTxlNdO/TK7EdrNPjZsDDofYDLqurCMZY8MWyxWn63A06utv3JR5JcRltT55ZV9VHAKcKSZrUkm9GWmnkTbfLOLsBjhlB1f9qH03Oq6tdjLFOLMRKqprYZujTJfFoL1RzgqCS7VNXptJYrDQxWy+8CYLNhjaT5VfX5YQr/k5McXVV/GnN9knSTG+k+eiTwTGDrJJdW1RvTtinaP8l1tI15XzUspqwJlLaDyJ60HpiNaLPdP0TrDlwP+FCSLavqr2MrcgIZrJbf/wLPpm0a+pMkt6QNVN/HUCVptpkKVEOoehRt1tjewHzgMWn7Ae4wvFmvTVut+8dORJgci7kWC4HTqup3SS6h7YDwAOAhVXVA2h6OhqpFGKxuxA39wQ+rPf8hyV60NP8IYGNgv6o67yYuU5LGKm1/v3sl+XZVLaQNcv5AVX05yYm01ql3DC+ph4w+1lA1GRYZU/Vi4I7AQbSemd2GyVkXJLmetp3N94HLxlbwBDNY3YBFfsm2AwJcX1XHDlP151TV5UneUW2z0FtV1VXjrVqSxuLBtB0nbjV08/0BOCDJMVX1myTfo61b9egkC6rqM+MsVv9q5P3uP2gb1J9aVVcm2Q/YL8kmwC+B+wMHjD5G/8xNmG/AyC/ZC4C30BL6B5K8crj/umEa8dQvlnv/SZqVqurLwO9oM6O3B46n7cd5yDCu6n60/Tp/Baw/pjK1BMOMvxfQZrkvTHJ74ERgX9qMzk2AXarqN2MrcgawxWoRi7RU3Zw2G2LXqvpJkmOAryf5c1UdOjo92OQuabYZfb0cWvBPAp4A/JW2CGiAT9K2sNkdeCCw1bCt1HW+bo7XIu9369AaCJ5SVfOTvAK4ZmhE+HNVvXCsxc4gBqsbMLRUnU1r+rxF2uaTvxmmnu443uokafyGgeqPBu5L29rko0n+TNs26vqqOijJocPpmwNvBJ5abqA9douEqr2Bu9IC8BeHU64Cbj0MhdknybZVdel4qp1ZDFaDJJtU1dnDC8XTaNOEd6INznspbXbLJcCGwC2H7RcWjq9iSRqPkSUVHkLr/jsLmJfku0O4Wgg8Z1g88gu0ldcfRlvT6udjK1x/NxKqXkTrmdkJOBVYL8mBwDXA+2nLKjzXULX0XHkdSLI1bW2OB9LGAbwbOLeqXjzcfwRtevBVtD7m3arK/f8kzVpJNgfeTNtk/owkO9LC05lDuNoJOGtYQJJhyxOn5k+QtI3p3wO8gdaYsC1tS5pbA2fSWh53rqqzxlbkDDTrW6yGT1Sb036xNqVNC/4WsF2SJ1fVV6rq34dPZqvQFgM9f2wFS9JkWAt4PG3xyDOAzwPXM4yhqqpD4Z/WtzJUTZiq+uOwbNA9aV20j0kS4FLgN8ATbKladrM+WA0D884FXk9bDO0xtCbQv9BWUV9YVcdV1Q/GWackTZKqOn4YNvH2JL+tqqOSfJ72AfT0kfPsFplg1fb/uxqYk+S+tBXWvwkcbKhaPrM+WA3OoM2G+COwZlX9PskXaZ++dklybVWdONYKJWnCVNWxw7pVbxm6+o4Ejhp3XVpmFwBfpXULrkfbYNkNlZfTrBxjtchsiNWAhVW1cFgI7bHA/lX1o2EfwCcCX62qi8dYsiRNrCRPAQ6kdQ3+bnQpGs0MwxIYd6TN5pw/7npmslkXrBYzxXRTWkvVAVV1TZLXAg8BDqyq/3P2nyQtWZK5VbVg3HVI4zbrgtWUYYrps2i7dJ8KfAN4Y1Wdm+StwN2B51XVNWMsU5IkzSCzMljdwBTTS2lLLbywqs5JcruqcoNJSZK01GZlsAJIsjptiul7R6aYLgA+QusWdGVgSZK0TGbtrMDFTDG9M22zyY8YqiRJ0vKYtS1W8PdWq31pM1mmppi6wqwkSVouszpYgVNMJUlSP7M+WEmSJPVys3EXIEmStLIwWEmSJHVisJIkSerEYCVJktSJwUqSJKkTg5UkSVInBitJkqRO/j/0nFv+UbvkvAAAAABJRU5ErkJggg==", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import seaborn as sns\n", + "\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top[:5].index,y=top[:5].values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "删除“缺失”类型,因为它未在 Spotify 中分类\n", + "\n", + "## 音乐类型分类\n", + "\n", + "在处理音乐类型时,确保以下几点:\n", + "\n", + "1. **准确性**:尽量使用 Spotify 提供的官方类型名称。\n", + "2. **一致性**:避免使用不一致或模糊的类型标签。\n", + "3. **清晰性**:确保类型标签易于理解,并能准确反映音乐的风格。\n", + "\n", + "### 常见问题\n", + "\n", + "#### 为什么要删除“缺失”类型?\n", + "“缺失”类型并不是 Spotify 官方分类的一部分,因此保留它可能会导致数据不准确或混乱。通过删除这一类型,可以确保分类的准确性和一致性。\n", + "\n", + "#### 如何处理未分类的音乐?\n", + "对于未分类的音乐,可以尝试以下方法:\n", + "- 使用更广泛的类型标签,例如“流行”或“电子”。\n", + "- 如果无法确定类型,可以暂时标记为“待分类”,并在后续进行更新。\n", + "\n", + "### 示例\n", + "\n", + "以下是一些常见类型的示例:\n", + "\n", + "- 流行\n", + "- 摇滚\n", + "- 电子\n", + "- 嘻哈\n", + "- 古典\n", + "\n", + "通过删除“缺失”类型并使用更准确的标签,可以提高音乐分类的质量和用户体验。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAHuCAYAAADELJsvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZdklEQVR4nO3debytc9n48c/lHENmcsxzREqGjBkbRMgYGRJShqg0e2gQ9aSJRkoTqUilqJSkNOjXQElFnlQkKZ4iPWnC9fvj+q72sjucs89ea6/7nPN5v177tde613B/73vdw/WdIzORJElStyww6gRIkiTpPxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSRqaCP6v7++BCP7W9/zgUadPkrosHMxW0lSI4GbgeZl8ddRpmRMRTM/kvlGnQ9L8w5I0SVMugoUjeEcEv2t/74hg4fbajhH8NoITI/jfCG5+uFK3CNaK4JsR/CWCr0bw3gg+1vf6VhF8J4K7I/hxBDv2vXZlBKdGcFX7/FciWK69tmYEGcEREfwG+Fpb/twIbojgrggui2CNtjwiOCOCOyK4J4KfRPC44exBSfMDgzRJo3ASsBWwMbARsAXw6r7XVwSWA1YBDgXOjmC9h/iuTwDfBx4JnAwc0nshglWALwJvAJYFXg58JoIZfZ8/CDgcWB5YqL2n3w7AY4CdI9gTOBHYB5gBfAs4v73vacD2wKOBpYD9gT/OYj9I0kMySJM0CgcDp2RyRyZ3Aq+nL7hqXpPJPzL5BhVo7T/+SyJYHdgceG0m/8zk28AlfW95NnBpJpdm8kAmlwNXA7v2vecjmfxPJn8DLqQCx34nZ/LX9vrRwJsyuaFVff43sHErTfsXsASwPhDtPbdPfNdIUjFIkzQKKwO39D2/pS3ruSuTvz7M6/3f86dM7u1bdmvf4zWA/VpV590R3A1sC6zU957f9z2+F1h83DrGf987+77rT0AAq2TyNeA9wHuBOyI4O4IlZ5JmSZotBmmSRuF3VMDTs3pb1rNMBIs9zOs9twPLRrBo37LV+h7fCpyXydJ9f4tlctoE0trfu+pW4Khx3/eITL4DkMm7MnkCsAFV7fmKCaxHkh7EIE3SKJwPvDqCGa2h/mthrLF/8/oIFopgO2B34FPjvySTW6jqy5Pbe7cGntH3lo8Bz4hg5wimRbBI65iw6hym+33Af0XwWIAIlopgv/Z48wi2jGBB4K/A34EH5nA9ksT0USdA0nzpDcCSwHXt+afasp7fA3dRpWf3Akdn8vOH+K6DgXOoRvrfBz4JTAPI5NbW2P8tVGB4f3vPMXOS6Ew+G8HiwAWtHdqfgctb+pcEzgDWpgK0y4C3zsl6JAkcJ01Sx7QhMj6WOWelXRF8Evh5Jq8baMIkaYpZ3SlprtaqGR8VwQIR7ALsCXxuxMmSpEmzulPS3G5F4CJqnLTfAsdk8qPRJkmSJs/qTkmSpA6yulOSJKmDOlHdudxyy+Waa6456mRIkiTN0jXXXPO/mTlj1u+cnE4EaWuuuSZXX331qJMhSZI0SxFxy6zfNXlWd0qSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB00fdQLGu/Osjw19HTOOefbQ1yFJkjQZlqRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkddAsg7SIWCQivh8RP46In0XE69vytSLiexFxU0R8MiIWassXbs9vaq+vOeRtkCRJmufMTknaP4AnZ+ZGwMbALhGxFfBm4IzMXAe4Cziivf8I4K62/Iz2PkmSJE3ALIO0LP/Xni7Y/hJ4MvDptvxcYK/2eM/2nPb6UyIiBpVgSZKk+cFstUmLiGkRcS1wB3A58Evg7sy8r73lt8Aq7fEqwK0A7fU/A4+cyXceGRFXR8TVd95556Q2QpIkaV4zW0FaZt6fmRsDqwJbAOtPdsWZeXZmbpaZm82YMWOyXydJkjRPmVDvzsy8G/g6sDWwdERMby+tCtzWHt8GrAbQXl8K+OMgEitJkjS/mJ3enTMiYun2+BHATsANVLD2zPa2Q4GL2+NL2nPa61/LzBxgmiVJkuZ502f9FlYCzo2IaVRQd2FmfiEirgcuiIg3AD8CPtTe/yHgvIi4CfgTcMAQ0i1JkjRPm2WQlpnXAZvMZPmvqPZp45f/HdhvIKmTJEmaTznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSB80ySIuI1SLi6xFxfUT8LCJe3JafHBG3RcS17W/Xvs/8V0TcFBE3RsTOw9wASZKkedH02XjPfcDLMvOHEbEEcE1EXN5eOyMz39b/5ojYADgAeCywMvDViHh0Zt4/yIRLkiTNy2ZZkpaZt2fmD9vjvwA3AKs8zEf2BC7IzH9k5q+Bm4AtBpFYSZKk+cWE2qRFxJrAJsD32qLjIuK6iPhwRCzTlq0C3Nr3sd8yk6AuIo6MiKsj4uo777xz4imXJEmah812kBYRiwOfAY7PzHuAs4BHARsDtwNvn8iKM/PszNwsMzebMWPGRD4qSZI0z5utIC0iFqQCtI9n5kUAmfmHzLw/Mx8APsBYleZtwGp9H1+1LZMkSdJsmp3enQF8CLghM0/vW75S39v2Bn7aHl8CHBARC0fEWsC6wPcHl2RJkqR53+z07twGOAT4SURc25adCBwYERsDCdwMHAWQmT+LiAuB66meocfas1OSJGliZhmkZea3gZjJS5c+zGfeCLxxEumSJEmarznjgCRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR1kEGaJElSBxmkSZIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10CyDtIhYLSK+HhHXR8TPIuLFbfmyEXF5RPyi/V+mLY+IeFdE3BQR10XEpsPeCEmSpHnN7JSk3Qe8LDM3ALYCjo2IDYATgCsyc13givYc4OnAuu3vSOCsgadakiRpHjfLIC0zb8/MH7bHfwFuAFYB9gTObW87F9irPd4T+GiW7wJLR8RKg064JEnSvGxCbdIiYk1gE+B7wAqZeXt76ffACu3xKsCtfR/7bVs2/ruOjIirI+LqO++8c6LpliRJmqfNdpAWEYsDnwGOz8x7+l/LzARyIivOzLMzc7PM3GzGjBkT+agkSdI8b7aCtIhYkArQPp6ZF7XFf+hVY7b/d7TltwGr9X181bZMkiRJs2l2encG8CHghsw8ve+lS4BD2+NDgYv7lj+n9fLcCvhzX7WoJEmSZsP02XjPNsAhwE8i4tq27ETgNODCiDgCuAXYv712KbArcBNwL3D4IBMsSZI0P5hlkJaZ3wbiIV5+ykzen8Cxk0yXJEnSfM0ZByRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOsggTZIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpg2YZpEXEhyPijoj4ad+ykyPitoi4tv3t2vfaf0XETRFxY0TsPKyES5IkzctmpyTtHGCXmSw/IzM3bn+XAkTEBsABwGPbZ86MiGmDSqwkSdL8YpZBWmZ+E/jTbH7fnsAFmfmPzPw1cBOwxSTSJ0mSNF+aTJu04yLiulYdukxbtgpwa997ftuW/YeIODIiro6Iq++8885JJEOSJGneM6dB2lnAo4CNgduBt0/0CzLz7MzcLDM3mzFjxhwmQ5Ikad40R0FaZv4hM+/PzAeADzBWpXkbsFrfW1dtyyRJkjQBcxSkRcRKfU/3Bno9Py8BDoiIhSNiLWBd4PuTS6IkSdL8Z/qs3hAR5wM7AstFxG+B1wE7RsTGQAI3A0cBZObPIuJC4HrgPuDYzLx/KCmXJEmah80ySMvMA2ey+EMP8/43Am+cTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdNMsgLSI+HBF3RMRP+5YtGxGXR8Qv2v9l2vKIiHdFxE0RcV1EbDrMxEuSJM2rZqck7Rxgl3HLTgCuyMx1gSvac4CnA+u2vyOBswaTTEmSpPnLLIO0zPwm8Kdxi/cEzm2PzwX26lv+0SzfBZaOiJUGlFZJkqT5xpy2SVshM29vj38PrNAerwLc2ve+37Zl/yEijoyIqyPi6jvvvHMOkyFJkjRvmnTHgcxMIOfgc2dn5maZudmMGTMmmwxJkqR5ypwGaX/oVWO2/3e05bcBq/W9b9W2TJIkSRMwp0HaJcCh7fGhwMV9y5/TenluBfy5r1pUkiRJs2n6rN4QEecDOwLLRcRvgdcBpwEXRsQRwC3A/u3tlwK7AjcB9wKHDyHNkiRJ87xZBmmZeeBDvPSUmbw3gWMnmyhJkqT5nTMOSJIkdZBBmiRJUgcZpEmSJHWQQZokSVIHGaRJkiR10Cx7d85Pfn/m64a+jhVf8Pqhr0OSJM39LEmTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA6aPpkPR8TNwF+A+4H7MnOziFgW+CSwJnAzsH9m3jW5ZEqSJM1fBlGS9qTM3DgzN2vPTwCuyMx1gSvac0mSJE3AMKo79wTObY/PBfYawjokSZLmaZMN0hL4SkRcExFHtmUrZObt7fHvgRVm9sGIODIiro6Iq++8885JJkOSJGneMqk2acC2mXlbRCwPXB4RP+9/MTMzInJmH8zMs4GzATbbbLOZvkeSJGl+NamStMy8rf2/A/gssAXwh4hYCaD9v2OyiZQkSZrfzHGQFhGLRcQSvcfA04CfApcAh7a3HQpcPNlESpIkzW8mU925AvDZiOh9zycy88sR8QPgwog4ArgF2H/yyZQkSZq/zHGQlpm/AjaayfI/Ak+ZTKIkSZLmd844IEmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQQZpkiRJHWSQJkmS1EEGaZIkSR1kkCZJktRBBmmSJEkdZJAmSZLUQdNHnQCV687aY+jrePwxlwx9HZIkaTAsSZMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6iCDNEmSpA4ySJMkSeoggzRJkqQOMkiTJEnqIIM0SZKkDjJIkyRJ6qDpo06ARu+yD+069HXsfMSlQ1+HJEnzEoM0jdR55+w89HUccthlQ1+HJEmDZnWnJElSBxmkSZIkdZDVnZpvvf384Ve1vuxAq1olSXPGIE0agcM/u8vQ1/GRvb880+W7fu41Q1/3pXudOvR1SNK8bmjVnRGxS0TcGBE3RcQJw1qPJEnSvGgoQVpETAPeCzwd2AA4MCI2GMa6JEmS5kXDqu7cArgpM38FEBEXAHsC1w9pfZLmArtddObQ1/HFfV4w0+W7f/rjQ1/3F5558EyX7/HpLwx93Zc8c/eZLt/nM98d+rov2nermS5/0WdvHfq637X3ajNdfv5n7hz6ug/cd8ZMl1/10eGve5vnzHzdN7/j90Nf95rHrzjT5X8447qhr3uFlzx+psvvePdXh77u5V/41KGvY7zIzMF/acQzgV0y83nt+SHAlpl5XN97jgSObE/XA26cxCqXA/53Ep+fDNftul2363bdrtt1z1/rXiMzZx4pD9DIOg5k5tnA2YP4roi4OjM3G8R3uW7X7bpdt+t23a7bdXfBsDoO3Ab0l0Gv2pZJkiRpNgwrSPsBsG5ErBURCwEHAJcMaV2SJEnznKFUd2bmfRFxHHAZMA34cGb+bBjragZSbeq6Xbfrdt2u23W7btfdFUPpOCBJkqTJce5OSZKkDjJIkyRJ6iCDtJmIiLUjYuFRp0OSJM2/DNLGiYhlgJcDJ83rgVpExKjT0AUz2w+T3TcRMeXnlr9nt4ziGJhbeex2X//x3EZt0GyIiKUiYpX2eJ2IWHRCn7fjwJiIWDMzb46IpwB7AHcAb8vMfwxwHZEd2Om9dETENsD6wM3AtzLzn1O17vZ4WmbeP+x1PkxaFsjMB9rjVYH7M/P2SX7nv7cpItYD7s3Moc2P0ztu2+ODqd/z+8CPM/M3w1rvIIw7FnrH5L9/kzn5nlGLiMcBv83Mu+dkWya57t4+3A5YjLrGf2mq1j9Z7fh9NHAtcG1m/rotf9DvO4rfu2/fLgzcN8rr1ihFxHOAv2TmZ0ew7ik9nyYrIqYD2wOPBdYB1gSelZl/n93vMKfXRMTSwNsi4qTMvAK4CFgZePmclKj1coYRsWFEbNOLpNtJPvJcY0vHk4DzqIPnHcCLImKdYa533E35MOBpo8qVRcQTqBOIiHgp8Hnggog4u+89E/qtImJ94IT2+Bhq/34hIl7dbpwDFREzgFdGxEsj4lDgpcC9wPOA50fEJoNe5yC14/AZbZ+fGxGPz8wHZrXfI2LbiNi1BUQjP6/6zvfHAKcA74qIpdq2TNl1tu2H3YEzqevXmyLiJVO1/slo58sxwI+p69GT2/L+a8a67ca34BSnrReg7QZcALw3Io4d9jrb/8dGxNYRsdyISui3jIjP9y16AnBPfxqHuO6DIuKoiHghwFSfT5OVmfcBvwD2AZ4FnDORAA0M0vr9FXgX8NiIeHlmfgO4kDkI1PpO6Ke27zgVODUiXtaVHH8r4TkaOD4z/ws4FFgX2GmY6+272B4LvBi4cSpK7x7CtsApLWf4RGBX6mR6dC9Qm4Pfam1gzYh4O7BX+97DgH9SAenyg0n6v/0FuII6Tg8FnpeZbwJeQ41RuDV0tzopIh4LvB74CnAT8JmI2LJXovYQn9kS+Ci1X49rwf5IA7W27r2AjwC/A2ZQgdoyU3ljaaXBLwf2BP5GHXdHRMRrpmL9cyLKMsDjgN2BxYH/Ac5p+22h9r7jgfdR1+lDh3AuzSxtK0bE6u333ZE6Vl9DZYQOjYhFhrXuts49gXOBw4EP0zKVUykzv0dd0y5uixYDHtFL47DW24L244GFgadHxDfbOmeZiRu1/vS1WpSPAp+m4ovt+t4368xGZs7Xf7Qq3/Z4IWCbtjNf3pbtALwTeCOw8AS+d1NqMN/12vOnU7nDvUa9ve3v+cDVwHuBxdprOwI/ApYZchqWB74LrEdlFPalAsbNRrA/jgb+X/vNF+87Dq4D9puD75sO7AKc1fZlr0nBBsC3gKcOYRsWpqrnvwt8CJjWlu8MfA1YdJTH3MOkexPgc8CpfcuOpKreV3qIzywNHAVs354fBLwfOHTE27IQ8BngiX2/9+nAB4Gl2rIYchpWpCaMXgfYgiqRWrIdG/8HnDzq37wvrf+xL4BXA98GLutbdhwVmBwEXNnOry+1xycByw8xjesAVwGPbc/3oDJdu7Vrxhpt+doDXOfjgEPa41Xbti4GHAz8EFh22MdR/2/Uu5a059+mgo3XAvu3ffHYdqytPMhjov3OFwDb9C37HDUw/siP3wlsx07tWrAqsBTwJuA0qknKrlRc8LC/53xdkjauGH0pgMy8irq4bt1XovYF6iK8+Gx+70JUcPckYJW2+NtUEfHmA92I2dQX2S8HTM/MD1CBZ1DTdgH8niqZGWguJSJmRMRW7fEu1M3kcuAM4BzqhN+YVr0xTFE9d/+dA8/M9wEfoE6iJ0TEElkle18B/jWb37lhb/9mFW9/FfgUNV/tqyNikcy8nrpprjuAbdglIl7fHk/LajP5ZerieT9wYnvrQu35tMmuc0juoC7Gm0TEqm1bzga+Tt2MHqSVKnwceAmwYVv8ZeqG/ZSIOGJKUj1z04BlGPt9f0FNj7chcHJELNa71gxaK4laHvgksHpm3kRlhC7JzHuA+6jqzyuHsf6JGnfdfUlEvKZVYf4a+AdVAhkRcQAVkN8OJPBs4AXUvn4nlQl5UUSsNOj0tYf7Ar8C7oiInan5qM8FXgXslpm3RMTTWhqWGMB6l6Wa2fTaQN8BXE+VJh0LPDMz/wRsFxFLTnZ9s0hLZLk/InaPave6LbAScDKVET2Kqtp/HXWdmcz6plOBCxGxOXWP+BewQt/bTqBKMDut79h+EfAGqnbmfcAawFuo7TqVysD9cpbXhVFHnV34A14EXEwVJx/Qlj2Ruui9tj1/xOxEz1RbiaBukKdQpWmbtNf2oUpsFmWKckPj0rgrVXp2MfAJqsj62VTAdAXwDWD3Iax3ZSrQ/XzbH0tRua/DaLlQKsd8DrDAELd/b6pk6YlUoNr/2qFUcPVm6oL4S1op6Cy+8+nAz4Anz+S17akA8ItUW5ufAetOchueRpXy7dm/DcDefen5ZnvPl4HHT/Vx9jBp750jGwNbtovWI6gSqNOoIH1rKrjdcNxnN6EC582pavKfA5u315Ztx/HjRrAt69JK/ahc82XArn2//wep0ocnTEGaXgV8FliCuoleQd1QbwO27k93F/7a7/gtYP32fEkqg3Fu+61/QAVlm/S9fj5jJcVfAN4GLDfgdPVK1BcEfgPcDazVln2Kuk5Op66n1wNPH9B6l2vb84J27q5G1b5c1zt+qIz/z3r7bAp+oxdRNQLr9S27FPhc3/MlBrCezYFXtt/+e23ZwcCdwBbt+eHUNbqTNQPjtucpVGZzOlXo85123PSO5fWpDNWsv2vUGzPqP6q66xtUScr57YJ2bHtt+3bQLDub3/UMKtD7AlWS9rh2IbqVasvwTeAZI9rOx1DF5U+kgsTPARe0155JBRMv6nv/QC/mVNXE3cAbZvLaYVRvrg2GuP0rUwHq5uOW7wq8uj0+isrNv6l3UZ7Fd67SLphP6d9n7SL70fZ4h/a7n88kA7T2fScCr5jJ8h+03zGoAO7NwKqjONZmkf7d2kW/dyM+ngrULgSuoarfe0FOb3+u0I7PK/u+5/i273vVi9OncBt66doZuIGqZn4RVWq2N1Vd+17gt1Szhw8Aew4pLWsDS7bHi7b1rtue7wc8F3jaqH/3/v3WHi8EfKxdl9YCjmCss8AMqhrt1VQv5XX7PvND4K1U6fu3gVUGmT4qEPwkVZKzOFWSdgPVdrf3vgupYO3y3rE6yfXO6NvGD1JtCY9vz59CNWH4YDv3b2AIGemHSNfj2j5errf/+177OXBhezzpjDUVEH+Mqm06rm/5UVQNxIeoe8RjR30cz+rYbs/Xp4Ls51LB2lJtG35Ga6oxu39DmWB9btEaff6DurA+h7GSpQ9FxAOZeVZEfD9nozdGVE/BN1O96rYHDqF+nPOoE/4pwFmZ+fkYzbAT/6ByfT9s27NXRHyjNeB/P9XWZ+tWxfDJbEfanJpJB4kvUCfbqyPi7sx8W3vfNlSJyrOzqgSHZWHqInzTuP3/QHuNzHx/RNxJ7aObZ+M776EC/L9GxHLAn6hqmfOAx7Qi/O9SDY2vz8w75zTxffvzLmDTiHgVddFajLqRfIS62G9O3Ty+mpl/ndP1DUNELE41an9hZn47ItaiSk9/T7VFO4dqO3UFPKhR8l1UKeyxEfGyzHx7Zr6jNbr9WFQP1numajsyMyNiM+pcfwYVRB5M5ZrPB55KBU/voEpHtgT+e5BpiIhp1HH7QeD6iPgzFdTcR+3jozLzU33vH3mHpd76I2KjzPxxRNxLNbl4BBUMrEyVSn2tnU9PBXbOzLsiYnpm/jMi9qVKJjagMtO3DTCJ0zPznqjesEtSbc7WjoiVgc9FxJKZeUpm7h811tX0rOrkOdaqVg+jeoAvRF0v/gqsERFPyswrIuL3VEnyMsCRmfmtYfyeM/nOu6iMBhGxcLahqFqTkPUjYg2ohvyTXV9m/isiTgd+AqwaNRTLBe2a/APgf6lhT343xxs4JOOq7x8D3J2ZP2/P16ba3P45In5D3SNumdAKRh2BTuUfDxHxUxHvl2m5MqrK4CfA0hP47mdT3Wt7z59JlW6sTF2oX0RVtU1JlQxjuf1pVC5laermt23fe44Bjm6PF6Sq/FYY1Lrb42dRxdTbtudPbPvlGKrq7m0T2c+TTMvJVEBwAxUQXNx+63uoXNzJzEYJYt++DaptwUVUCdwXqRLK71HF9BcA75md75zANizU9t33qRKFi6kq9Cup3O236EgJ2vjtpkomvgCsM+74eEt7vGpL/4ntuH0SFbwdAyxCNRd4N/Divs+vOUXbsjZwSnu8GNXG5Jd9r29Ptft6bS9NVCna54GNBr1PGeuM8AiqBO8CKkB8PnVj3XZQ6xzwflyJaoz/XCrIfFL73VelArUvU9W1q1LVamvx4Mbry7f/A63yoqrMfw48pj0/hKrqfEZ7vklL9xsHuM7lGOtYtmK7lmzanv8XVfKyA7DgFPwu/deYRdu5uhBV2r1H32sHU22JB5YmWq90WokvVbv1bqqjxqFUU5jOVNM/zHYcR2Xa3w1c3pa9E7iEak93/Zxcm0e+YVO4A1fte/xCKjf2cirHtCBVfL1tuym8D5gxi+/rXSwXaP83pdp5bdb3nvOAHdrjldqPuNoUbvOeVHufi6i2PvtQVU3HtZPiZwyht2Hf+o+jcobPBv4OHNi3r75DBRpDq+Icl5Zem5w9aUOttAvgZlSQ81pmo43AuItZ7zuf2o6ZRalSlc2Bs9tF5lED3IaXAC9oj99KNV7uvXYEVZIy2z2Qp/A47D/3Tmm/e69H8f5t/y/anq9MZZqeRA3JcRRVDfoWapDT3ak2Xi9r7x9aG8Zx2zAd2Kq3LVTPv8uo6sXeNWBHqmqz185yKQbYXqrvmrMbFZSPD1iPoNqlPUC72Xftj7rW7kD1Wjy2b/kLqJvYv6tn2++8B2MB6cHt3H3Y9sGTSNupVHOXR7fnB1CZ9d3b802pJhOPYvIZrwWpzMi72jVoaapU9C19638FdQ/ZidYrfwp+nxdRGYsrqYKGbdr5987291MGWNDQft9fUBnkzzNWzfv8di79io5WcY7bjp2pQpAlqNLhy/teezlVkj5H7YNHvnFTsPOiXSx/TQVgW1E3iSOpUo4LqBzdi6jSlZ/M7s6kbs6voYK+9anqjVdRQcnm1E3m8X3vnzaMbXyItK1P5Ux3o3Ijv6aC0C2pgORshthWBdiIsbr4Y6m2JL9irORuUWazrd8A0rI/Yx0WNqVubou0155GlaYtPcHvPJgqEVySCswuogW8bX1fZYDDA1Bt575EK+mkep6dTpVSPrul5dFTdXzNIq1rAM9tj3cBbqQyMIdTpVBvbMteSZVe7NLeu0D7m0YFvUe15QtTN6v3tOf7MLWdBPo7aPwI+HR7vC7VBvUdjAVqy7T/A7uhjlv/U6mG5Bu1/fgHalaU/vevOOpjYCbbsB9jJYwLUiXql1FV31ABy7btWP4fqnRwK6qk+CNUgHAjQ7hh0xfoUxmdOxgLlA5qv/le7fmkG8n3ras3RuCbqeGIlqSCtrcx1kbtxGEe6zw407lPu46sw1gm6ZlUxukAqn31OgNc9yHUtbhXevkEqqT9+PZ8YWZRWDLC43l8LcFWbV8dT5U+LtSWbzPpdY16Y6dwpz6Rqub6DK0nXjv43tkuAr2c/FKz+X3btIvGkVQwdAJwIBXsXUDlCvaY2Q86Bdv6uHYBfFffsp2pruwDO8nGrXNm4x4tRw3oemV7fjiVy99nCvfF3lTw3QsEprcLwReoG/8PmWAOhwp0v9M7Aalc8KsYG3rjhkHeTKipRD5G6/XUlq1PlT58hhqWYsNBrW8A6d2Cajx/MlVls027IJ9OzYgQVA76mYxrRNt3Hr6SygAt0Z4vTlWFLsEUlZ6NS9djqEB5OnXT/nBbvg5VzXhmez7QtFEZi48wVjr3rHZ+P713DFIl4m/q+0z0/x/RMRDj/r+XKoVZoz1fuB0fd1IlJgdRwe6CVGnadVQQs2K7hhzLAEulZ5Lexfsejw/UDm3n9IxB/L48ODBajwq239rO6aWo6sT3MORM17h0LEe1mz6tb9lGVKe3gV5b+o6Jk4A/Avu259OoQO2bwCtHdezO5jb0MmW9bdmQasP3g773HEZ1MllyUusa9cYOeUeOv1A8gcq5v63vPStRxcwfmd0TkKp2+ThjvUCXaydZ/4Xykf3rnuLtXojqPXc5ldtfuC1/D62Kbhj7uT3egbqZ9UoUngW8vz3el7qhzbLn5ADTdnS7ObyMVk1Cldb0BhKcUFqoAGNXxjqF9KrtZrSL7JMZcJuw9nvuQrV3exVjQxD0jutFpvoYm400b0UN+HlJ37K9qEDtBGYyYDLweKo932rt85+jcvRLU4HJ9xjwcAsT2J79gXf2/R7XA2e3549mCEOdtO99BjXW0vm06njqRv5Z4Ent+QepxshdKUntvx6s2ff4BCpTtGZ7/jzg7dQMDbfz4EDpue29TxpSGpdjbAiX3lRP/QNan0BVffZKeWY6uPKc7huqjdvjqVLnXhXZW6mgbWkqqJ2qYTaOou4Vh1All4v2vfbeQR/bPPie9Nx2LvUGDJ5ODdEzZc2CJpj2Tfsev7idl2+mqqyf1I7lA6kS0B8ygFLQkW/0EHdm/4XiqVSuYLl2gNxEq0ppr6/IBBrMUzf3L7WbSG/8nCWpHPZIL5SM3cAXpNp0vJ+qatihHUCbD3HdL6FKFc9sB+gmbb3nUiU+P2UKA7S+dB1KFUE/hQEENFSQtyNVCvsahjhuT99FfUGqPda7qTYOU1Z1Pom0b0dVx/V3qX9m229rj3vvLlRJyk+pDjbLUaWg51MByfdpY8FN8TZs1C6+C7UbWC9jthAVGJ07pPWuQjVR2IkqSX05lStfo73+ESro3ZkKMCY9vMsQtuFYqm3TJ6lx8Bah2ll9l5qR41dUoHJh+31PGPf5I6jG+osywBLKdi79VzveDmrpeQpVJX85LUCgBmm9a1DrZ6z05cntWvxBqmp3H6oDyClUdef6U3V+t+vYlYy1+/tk+9udCt6uZzbH85rN9R1HlZR9ul0HlqZqo65jgB1shri//h9VS7VF+79vO85/0n7XHaiMx9sYUJA98o2egp36EqrHxclU6ccMqrrq5/SNfTOL7+jdKNemArqFqOLN91DVMo+iqj2uY4Q5gL50Tm//F6KqEq5tJ8TT+t834HU/Hvhse/xixnq39HJGhzAbg8MOYNsfNLVI3+OjqcD66bN7AZzZfmIsCJ5GtWd7OzWu2iCCv5n+Ln3rXIgqxfsIfWPadfmPamd0Da3DQ1u2wrj3rEvdtLajgqLXUVV5M6gb5GNoHUyGcew+TNqXpIL729tNa5t2ju/YXl+QCY55NIF1b0kF5Nu1C/56VMP2C4FHUm2EPtZuDvuO+neeSfp3bGlbrT1+TTtugwo896cC85XaflyRanj9hvb5HdrvvviQ0rch1R7sQ8Bb+5a/h7r59kotJ13FSl9nHqqE+DTGpjXbmhpeYicqMH8TU1eCtgR1/7odOKhv+SktHZ9hgB272rXgJ+233opq+nB+OyZObuf8QoNa34D3Vf995fJ2vTqwb9nuVO/+gWfYR77xQ96xGwBfbo/PoBp3L9ieb9FuHkvP5nc9ncpVfIIa72v1dtG+kCo1uowBjTw90QOHusmtyEwClHYB/CAVrC3HgG5y47+HuqGe3NZzWd/69x32iTduu1ejAqherrU/UDu+HQOzPJHGfefy9AUWfd89rZ2cb2KS1XDj1rcnVUqyx0zWuRBVetK5xuEPc2w8kWq/+R+BJXWT3gh4X287qfZKF1E57kfN7DunYBt6zRW2pHLPX6HGUvwaVQKzTN97h5HpCap6957edYUaluJUqpq9N8DojFHsn4f6zfv+P50aF7J3DVqbaiLSG3H9lVSp+7VUELozVb17DZWZ+gGt1HBI6ZxOBbuntd92+773fJAqXVqESZagUZ2KXsTYgMOfpNq7bdeXlkMY6xQzlKD0YdK3IhUsfYDWbrfvtYH2FKcC0vN6vwN1Dz0P2KotG0lThgkcM/3X6CuAH/c9X5JqjzzwuWRHvgOGsTP7nq9D9WI8kYpyez369mz/Z+sgbAfyNYw1FH91u7gsT1XpvYcqPl9kZukY8oHTP+r5cTx4DKr+ErWLqVKfSY9vw4PHLVqWCv6mUQ30v04LIKib2o8ZUHuO2UjXC6gA8b+pm1kvsOnvvbX0BL/zJe3YuYIHTwTePw7dYgPchqOp0ppXUeM0vbLvtc5Vcfbth02ogHWmVSNULnrbccseT/XifBXV/ueIvteOb8fsd5iikoW+dS9P3ahfS5UCb0vdaHdox/hfh3lMM1Zy+h4qUD2BsaBsFart0meoIKIT40f1nWu9tkZrtevS/r3jhMrg7kt1CPgWFZCvQvWOf3PfteRlDKGDU9+xuj4VmG1Cte97Y7tm9I8hOZCOP1R13npUJ7Vej82Pt9+v10b2QKr6b9qwfk8e3M5s8XGvrd5+g7Pom81gUGlp3/3Gti9+Ahze99q5wKGDXN8wjpn2eFuq9mTZ9vwbVKbtUVSV9Y3DuC6MfCcMaWfuSeXeF2gX+v9hLGB5XrtAPHIW39e76GxOlRJ9iAeP9/Ru4B3t8W7URf1YpnZ6ms2o6H0dqlTvLKrtSn+g1l9VtvIA1rkBYw2WX0rlOK+nOgjsTbUfOptqC/eTQV3sZiNd+7STZoWWhg+Oe312qzj7A7r92sV8ASqYuOyh3jug43aRdtL3ShvWasfuCya7niHt8945shPVfuoTVGbmUGaRo6QaxH+DylycSzWOv4XKUD2Tat/5OCpQuoI2J+4Qt6V3A9+eKt3bmirhuJpqPH0KY5mwKQsaqerez1NBRO/msCodaYNGBVy9HrnHUCWgz6MC3V2oHs8ntmPih1Sv3idTJWVLtc+tQmXunj0Fv+/uVOnN96nBcjejgsNTqNqWgVVf05chppqbvJuxQO3iloYT2zk/tB7vVM/op1FVjAdRvQ7Hz128OlW6+Q4GWGVHjXd2M3BRe74zVV14GtVp4FpG0E55Drbjle1a9SWqrffz2/KvMjZh+lCa84x844ewM4+jSiLWac+fTAUNn6NypNfyMD0u6BsokYqcr6MaDl/MgzsbPIsH9+Z8GgMYrX8C27lEu3n0j3q+HdVo/yT6OjAw2Ea3vXYcz20n2zJUo9tLqaBmdaqq49CpPPnaunenhvnoH6dmowl8xwbjfuPdqdKTV1EldL2q8o0HmO7ezePodpy9j5bB6DuuPjxV+3E207xk3+P1qFKB3hyae1MZlt6YcTNr17cCVdXVm1j7uHbMnky1UXk7fTctpqgahGrv9ytam7O2bMt2bP8L+ERb9qDetUNIx787/7T/K1MZj7czRWMLzmY6F6VK+86lSoMub+ffRdRNbSOqtOoj1M3/KKrqeEbf814J4cmMDdQ8yDHm+tuDrd1+301buo6hSskf347JgbQHo28stXZOH0AFrO+ngsHe0B7nUTUNvZ6NAy8ppzKvZ1LB8dVUwNTreb/AuPeuykx6XU9i3c+lMm3b06oCqWrmx1IFCm+mQ0MHjUt7f+Z5RSo4691TntL2aa938GcY0tBWmfNYkEaVKH2DvhIjKgc+g6q2OoyHiXapnPtXqRKNtagbcy9i3pzK3b+Fyv38mL4R36f6wGnP1+OhRz0faIDEWDCxANUI+CLaBO1t+VZUA9QnTPE+2Zu6uW5Jjbl0Vd9rx1DtXWa3Wvtx7WL9GCr3uRdVuvOpvvccSTXYnlRus/84bBfSK9pF7I3tgtYbtPYIqvdeJ6o62345o124plHV/DcCL+97z4vbeTTTUmUqsO8fZ67XbvJzVLA95eN8UaVnP2JsWp4N+9L3SKrqflidBHrbuyTjmiMwFrCtQgWLnRhmoy99j6GCm+8xNv7k5u2adCJjPSUPbtfMXin8gVS17ZfaMfRrBlw6yFh7sN6wGo8CvtT3+spUoHQZbaiNAaxzUaqK+plUW+Hr27XydCqD+xGqY0yvI8xFVEnpwGtg2vXkGirzvjfwSyoTtOMUHBfLUcFpb6rFzzPWLm+NUR+3E9iO3ahCh5/3XRsWpXrhvnoq0rAAc7E2OW2//6UChYUiYqE28em/qFHO35GZ52TmjQ/xXQtS7WA+SdWdb0c12n1WRKySmT+giop/RbWveElmfnEmaRiK3iSuEbFTRBwREc9r2/JCqvv26RGxQGZeSbVj+vWg1w3/nkz3jVRQsUxEPDkiFs3M71KljUsOar0PlZa+xwtQAfgTqKqU9wM3R8S2EXEEVdR+TraJgR/mOx8fEa/LzJ9SE3y/AnhpZn6ONuxBRGwdES+j9vebMvPeSWzDzsCXImLpNiHv86gJ2O/IzJOAvwDvi4iPUSVsb8ixCeFH7T7q91+EqrI8jSqpXj0i9mjvuYrahoVn9gWZeRdtUOmIeFw7Rz/F2DAji7T35RC3Y7z7qVLzbSPi/VQu/8yIOCgz/wh8PDO/OYzzvZ3Xz6BmL/hCRDw7Ih7dXrs/IqZlTSS+V2b+z6DXPxmZeQNVknY7cFJELNaulR+i2n49KyKWp6qK1qNuemTm+dRx82ngH9RE6r8YcPL+QQVgS0TEJpn5S2CRiHh9S8PvqCDmd8CREbFUu6bMsXZdOIO6hryL6gG4T1vPA1Q708dQ9xLaa/dSmZ5B+yd1nT6gre8Z1DX62RGxN9SE4BExY5ArjYjjqAB9UyrjDNWOc/GIOAT4TDsmOiciVo6IRdrj7akMxJepY/XQiNig/cY3Ufe/6UOPAUYdqU4iwh0/WvIjqIv8Z4Fj+l47iLp5P2zj7vbZ11OlJN+iqr42pEpiTmOKGr8/RNp6pWS7UTeSnakLy9va8nWo0paBj3o+bj8fRDXOP6I9P55qSP1GKtC4hSluX0BVZ19FlYQsTZWefZ66ccxyIEGqZHBL6mbx6rZsO9rwKu35Ce04+AiTzHFTxf2voUoWntj25yuo6r9n9L1vy/b6GqM67h7umKBKCr5JXfgXbPvom+38+S59PVMf4jt6PRW/xNg0UVtQkxFvNBXb0P6vRZVSTWvH9xnAru21o6lqmaHOm0hV/9xA3dQOo9qfnci42U+GmYYBbMOjqHZXH2RsgOeNGLvJvZAqXfsbcNIUpGd8e7DefL2bUG0nz2vH7vVUKem5DLYt1k7UGGuvaM+nU6WHb2IS8zjOQTreTmU8j2/Pl6NqAz5Mta26nMHOL/uCdh1YhRoj8WNUDcU5VMbs/zFF8zXPQdp3owpplqXatf8YOLK9tjFjtQZvpUp+p2aolFHvmDncmf2Bw0upRqgfpHLhq1BVKR+mot9rmUW9d98Feyfg9zy4Gm+bdmK9kylsc9bWvRZjQxAsR93Q1qfaF3yHCoo+1F5fb5gnPhX8fJ+qPrgMuLQtP4oKHN/OEKtiqNzn49vj7YHT+147kQqger2l/j0ExwSOowOoXOeL2vMnUjfoVzDWY20gVRJUMHA91bFiOaoK8bh2vO46lcfYHKT93z0KqZ56l7bjcYG2r84Bnjeb37Uk1VbnVVSGaMt2LE3JecbYsDrnU1Wda/W9tnX7fXaagnTsTBtjsD3flqou7lR7HWYSJPLgjjbrUUHuJ6kqob2oG/YyjE2dtx6VwTx5SGl8uPZgJ1HNMlZo5/YZVND2xJbOh+1MNgdp2YuasuvA9nwaNTfp0Dp9jP+NqEzsoVTJ5nOowoylqHZV72ewk6UvSd2HV6LuE1+mguHPUm3xrqWDARqVCXsE1T7xudQsEOtRhTWf63vftLY/n8FUtrce9Q6a5M7dnIrUt6Lq3L9KRcCLtxPzcMaNbD6zH6j9X5u6eT6RquJ6A2MNLLejgpChDcb6EGk7mCpd6AUJq1GNXH9E3RTXporQ3zOEdfdffKdTJXXb9C37PPDu9vgVDHlIAqrUbjmqncX2VK7sc1SQuAcVqM3RyNhUj9hLqZv11xkrUduaCjpOYIClKVTO8mpa9+22bGUqF3o+8JSpPM5mkdYVaL2a28Xp0nYh3q4t248q/XpmO05eRd0AJ7QN1A31u0zRqOP857A6J1E31FXbefZ5+ko2h5SGNdv/lagbRP+4eO8HnjXq378vPf0ZmpXoC2h48JA8G9BqHqjgYB+qdPArjPUC3YuqLnrkoM6p9r0P1x7sFCoj92r6AhOqDe/QRrun2steQxtmYgp/o31718b2fOd2bTmICQ5DNME0LEyVoH69lyaqyvN0hjCG2IDTvlO7Bvyh73j6Lq2GamTpGvWOmcQO3ZYaFPCk9vwR1PRPl9FX3Tmb37UHFeV/muoY0Out+DrGArWlR7Sdi7eLSK8UaUva8BJUQPk2Bpzbp6oNew1bN283rvN4cI+79WkDkA55+/sHo30c1aum14BzT6oX2U3A34H/noPvX4GqLl2KsarPTwEv7tvfkyrZGXfxXIixxuC94LDXS2hVqh3dyKrWZ5L2M6mqoG2pksZntjT+ggc3Av8K1eN4Nap0e0IXZOqmvsaQt2VWw+q8k7H5OXuB6UCrGBnLFG5MteM6oz1/IVWN8moqc3ATU9wJZ1Zpbo9fRmUwLuHB0331B2q9Xqk7UI3VvzXu88czvJkE9qY6MXyJFnhRmd3XUc1ZLmj/l2qv7cSQS0Wo+8v1VEZsYE1RHmZ9x7d98FYqQ3U+Vcq1K9UmbT+GOybbulQp1IZUxu6TdHQuznHp3o0KKK9gbBikJalS4KFM/zZb6Rr1jpnADpxZUfvbqXrjXjfu3rQ5F1FF7LM8CKlSuB9QN+uDqfr7N1PFml+jStSmbOyz/m2lcj9bUSVV32Os9+GnqJvn7YyVaAwyR7olFfycC3yvLTu4HcBbtOeHUyWXiw7xZF+GsWBxR6rdyzuom+kT+t63PZVTm2VR+vi0UoHRzxgbDmIxKtf9P7RAbVDHLVWleSZtHsO27MR24dy6Pe9EL86+NC9Ma9DOgwfzPbDto53a8xX7XuvaNszRsDpDTM9ubd1vBP5EBRBLUKX/57fz7mHb9I1oP/YyMI+mmoH8jOpANdPfncpgnk5lJHekqtuuYYBVbA+Rzk60BxuXphlTtJ7pVO1Sr1ftiu16dmJ7vj8DGC9zFmlYmCpRv7wdI52r4mzpHH8vWICqqTmIyjz3hhFaqm3LSGZ5GfmOmujOpEq59mKsceoZVGPE5dvzBZlAA1DqJr05NR7V96lG+F+lqjx3ZYgTks8iXVu07epNmfFSKge7avvbFdhhSOtesJ3o9/Dg3PJRVFD8IarkcagD1VLtRU6jqil+0ZYtSuUQ30GVOPRKpWYZSI87jjZgrBr5lVTV6dp92/kG+kpZBrAtL6CGh+k1qP04Y1Wdb6By+JOe/3PA+79/IOT3U21M1mAsE3EocCsdGrtrJtvQmWF1qKqfxaic+n5t2YpUadOb+963xPjjddR/VID2Q+Bdfcs2pdrtnfgwn1upnU9fpBqqT0k7O0bQHmxEv0v/NW3pdox9h74p2Kiqzw9McboWpErVVxn1PpqN/XYkVbr6YqrTwALten0xY52IRnYujnxnTXDHvoQqevwIFenu0Ja/leodNce5FSpX++L2+DlUQLTGiLZzNarq9exxy1/atnPgOVH+c2DDTanc0GlUKdq0vuWrM+TcWF863kqVbvb32F2ipesDwJYT3T6qROtnVBXdvlSnhJdRHTHe1v4PbHBCZt6gttezqjfo8kAbLQ8w7f2B2nlUSeDqfa9PyXEwh2nvjb/2fCoYeg5VEvRVxsZvegzVi/Mkxsb5GuoFmcpg7NL3fDtquIRXDnO9E0zjzGoueqPjb9h3XGxBlfIv+3D7rf0Wk56SboLbMGXtwUb9G1FBxQnt8Q7t/nhIe34w1Xh/sWEf23PbH1U1/DWq0+E3qMzyyu21lzLWCWbo1dQPmcZR76RZ7MAVGSvt2ImxHoUnUF1hz6ENMEmVRqw5iXUdQDUafzl9A22OaLtXoqbDuYb/nPT2FYybA3HA6z6UGk7jae350dR0Jnu0144b5ok+/rupzhHPo3o+HsDYxNcrUqOUT6i9GJXD/gSV63w+NSzAYVQR/Q5UVdQw5g2cWYPa/6UyB1N685rob8GD54D9SDvv1hh1+mYj/SMfVqdvHz6Kagc3rZ1TX2FswOJNWxpv7p13Xfjd2+M923nXK2V+NVXqvBFjgdpAJ+Ie8LZMaXuwEW3jUVSg3KviXJyqcfpFO65uZIqm55ub/qjCkHe3a/MrqHaMb6Mycr35p5cedTp7F5BOaYPDzaBKkz5IHWjLUAfftlSwsAd1w1iHyoF+fZLrXJJqdLoHNQ3PFyfzfRNcd2+g2q2p7f4NNWjuYdTYPhdm5hVTkI49qHZ+H6cGiP1aZp4REc+jqjueQvV4+9mQ1v/vQXMj4tlUidnNmfmliNiPumFcSO2TacBbMvOfs/jOp1EjXX86IlalSrDuzczd2+uHUMfUj4DzM/PPw9i2tq51qfZdL6CqDQ+h2s38ZljrnIi+43BdajDaP/T9HtMz876IWJg67/47a/DfTuof/JkqAbwyMw9or21D5ZwXpbbjD0NOyy5UE4ErqIFLj6XGytuKOtd3okp99gW+nTUg9chFxEuo3pnfpc65j2bmBRFxAtVe9kWZ+ZNRpnF2RMSMzLxz1u+c+0TEI6h2jGdRtT/7UQH0t6nOHSsBf8nM20eWyI5qA9gvS8UQp1Ht0LeiCgR+CDwnOzCI+PRRJ+AhRGbeERGnUkWO/8jMTwJ/jIjnUlN7/D0irgISmPTNIjPvAc6NiI+3m9G/A4ZhazeTp1EN4k+niqZ3p06y+4HD2qjjXxlWGlqwsgXVYPmGiHgC8Pq2G94REedRwc7QLnZ9AcFLqIDsU8CrImJLqsTpASpQ3JoaZPBhA7Tmt8DfImL1zPxNRLwVODUiXpyZ78zM81rgseEwtmmc31AN8E+ncvb7dTBA25mqjvsz8LGI+HJm3tTOiemZ+Y+IOHiqzo050bcta1OZnn2A4yPiDcDbM/OqNrL8XlSJ6tCCtIjYkGo0fyD1+7+I6hhwONUAf3WqTdxqVMeFC4aVlologex2mbldRJxI3eyfGhFk5mkR8U/g7pEmcjbNqwEaQGb+LSIupYKMWxkbf3E74JPZsRkquiRrppM/RMQGwHWZ+a+IWIu6/767CwEa0Pnqzj2BK6kpJQ5vy3amGtqeRTVeH/R8b1NaZ081UlyWGvdrfWpYjZ8wVhWyPBWoDrTBLWPVML3/JwF/BPZtz6dRpWnfZArbylANvT9KVQe+kqqmOouqtuoNVrvkBL9zaSrAO6Y934mqsulvXDuh75zE9nW2QS2wGRUYr0P13juLqv4f2uTBQ9yWkQ6r086fJakqpyupWoAFqGDn7dQ4bL2q+3WpUpAp73XYl97+Ks7F29/q1JArV1Dtmd5JlTAcNOrf178H/XaLUJ1glm3Pe013BjaDwtz8N6t7OmM9/D8K3EbHeqOOPAEPs+Oe1S4IK1B17ldRDSCnU22H3sAUTcswRdv7Kqp7+HcZ6/V3GNUma6BtKcZdkNdlrN3fc6mc2GPb8+nUeE5DG+Nm/AlEVXGuQlX/XEm1gzq6nUSnzum+YGwC9ue1509tF7KjR/3bd+Gv7ff3Ar/sW7Yd1VHgJDo2sfcstmVkw+rwn5mfx1GZrhf2vWdlqld6b7y/abTAcdR/VE+3kxnrPf8KxoayeAEVuHd6UNL59Y/KBBzRjrehDnMyt/yNu9dt0869pfuW9dpVLk8VSnRuPLeuVndCjUb9zaz2Iu+PiD9SdcWLZuYHqJ4Yc7WI2BjYMzNfT+VUD6EGCP1lRGxEBW43ZeavBrne7B29NRHu/sAdEXEbVcowHTg/Ig7JzB9TpRFDMa4N2s5UQ/rfZuZtbXLb72fmP1vVypepmRUemJN1Zeb3ImJX4CsR8UBmfjgi7qdKOuZL/fs/M/8SEe8C1omI91JBxbciYhoV6PxrlGmdoN9SAcVGVLf6jYH3UUNwvA24MzPvG/RK+6pZdwT2joibqKBwD+DL7bh7b2b+LiJela26Pqta5a5Bp2cC6V4gMx+IiF7HoD0z86/t5e9T58w61Nhyu2fmHaNKqx7WIlSNwf5ZE9/P18bdX46keif/BPhuRFyUmTdk5v2tKdEd1OD4ndPJjgMAEbE7dXE7BbitXfwuaS8fnJl/GV3q5lzfhXw7qpHnzsA7MvOsiLgQ+AdwH3VjeV1mXvLQ3zapdGxL5Yp3Atakqlk3pwbyex01btyOOXvtviablsOpXmM3UifRp6kT5gaqGnhHatDUnw9gXZtRN55DM/O8yX7f3Gpcw/rVqWvBByPi0VTv6XuAl7ab9zKZObIgYk5FxBuBOzLznRHxHKo92L6ZecsQ1/kU6rw6k8qdb0iVmt1KNR14Y2a+Z1jrn4jWUennmXlXa0T9XuDzmfn59vz+9vtvSpVCXJa2ceq0qWxLPbdonc6eRBV6PJ665y4AfGwQ95Rh63JJ2reoHPxxwI8iYlGqk8CL58YArXfytBvj9lQPyuOoOvAnRcTCmbl/C56WoUqNrhnUSTeT77kfuDYzfx8Rf6AmPd6EGnfs5Ih4z7ACtHE5nGdRN4DHUu11nkX97qdTweMWVLA6kNLEzLy6dYq4dxDfNzfqKznZjRqF/RXARyJi/cx8eUT8N1Ul+B6qRGpoPV6H7CfAUS3g2Ie6dgwtQGs2oAKxcyNiKSrzc3hmHhIRe1HT13XF5sAtEfG3rI5YdwKPjoiFeud+K+H+aWa+e6Qp1WwxQHuwiFiMai6zYosbrooIqNk9joqIs7qe8VhglCuPtrdmsnx61lAIx1I3iG2pm/dJmXnz1KVwMCJiZeDJreoIquTiPZl5MZV7fRewX+tx+O3M/HxmXgODOenGBUUvbCUMNwAbR8ThLXb8DVVUvl772B8nu97ZSEuvCmUfarT9X1OjPP+BGidutcz8whCqe3+UmTcO8jvnBhGxVkQ8qgVoy1GZhP2pcYJupo7BD2XmTVRp6vsA5rSKuQMupcZ025oKnK4a9Ar6zumeRal2XbRr2LXAUhGxVmZ+LzOvfKjr3lTprT8z30W1+bwmIh5JtQHdCtgmIpZtJRCvoa4LUueNP7datf1zgL9GxFlt2VVUZ5g/MsJmBrNrZNWd427We1K9+R7oVe/F2LhMvVz/Yn3tJOYqbft+QbWVuY/qaXYGVYX366jhAM6l2qV9OjM/MaR0PJ9qBP7DzNyn5ZJfTg2a+z9UddDeLVgaqlb9dAhV5ft+quH6Xllt0DakqmE/nkMew2p+EhEHU8fhj7OG0liNKrU9l2o0uyY1sfeZmXncyBI6YH3XkoFVBUXEEr0S/dZ0YR3g59T+fTk1n/DzIuKx1Bhpzxl1jr2virv3/zCq6v+5VLXs3lSGaWeqTfDi1LRw140qzdLsGhdTPJe6tv25NeNYhToPf5mZx7b3PCIz/za6FM+ekZWk9e3Mo6lee+sB74mIV7bX72vBS++iOtdWT7USs99T7VT2okYbfx/wzohYn6onX4m6wK8yjDS0g/ZoKldxf0QsT+UmjqcmkF2PmkZkKgK0/akqzRdk5t3UjAK3AZ9uVS0/oUoaDdAGKDM/TvXe/UFEPD4zb6Wq365ppWUrUtXMF48wmcNwPwyuKqg1vfhiROzbzt+zqXaTR1NjzF0EPBAR36C69b951AFaszr8e1zG/ajg7O7MfDk16fwlwCWZeQhwDLCPAZrmIgH/7hB3BDULw1kR8ZrMvI063jeNiNOhxpgbWUonYMrbpI2LdhehqlsOzcwfRTWcvywi/i8zz+yvZpkb69r7tzUz/9Qu2k+j5un7LHVQnUeVrh1BTQ+zU2tDc99ktnncfl6OCnL3yOo5+Qrg7y0Q/r/MPGYSmzmhtDSLUyVlG1MTp/8lIo5nbHaJ/Zm7ehN2Wl/Jyc5U84HzgA9ExBFUNedSEXEmVZKyf1avznmmAfKgtyMz742IM6gOFn8FjsjM70QNhHk4NZXbkVEzXPwrM/8w6v3Z2h++JSI2p4b1eQHwxayepgtQPd9OBb4VETvl8NvuSQMREU+iaof+3M7BpwPPoDrBfRt4VkQsm5kviYh9qLEq5xoj6zjQStBupKrZHtGqNX/douADRpWuQWo3xh2oqoSvZeYHIuL/qF6rD2TmW9vNEaqB/Gup6sZJBSjjArTjqIvyfVQOH+rGsnirhn1xROyaQ+pWP5M2aHfm2PAXp0TEHZn5jcz8awsaloK5MyjvqnYcbkGNf/WSdtzdT7XX2gt4CVWa+8nM/FbvM6NJ7dwhMz8bEX+heh8/mZrv91Yq975fe89v+94/ygBtIaqJxaupDjobUYPn7hYRX8vMH1Alf68B/ka1q5PmFpsCv4zqAPPrqKFknkBlOLePmrHm/0XEL7MjPasnYsqCtIhYLzNvbDeMfagL2YFU472XUI2Y/0CNxr5o1Ngl3ZiWYYL6Si62pKo4rwc2i4irWqB2P/DsiJhOXeSXpnqB7ZkDGN+mLyh6AVUqdSA1MPDKEXEa8HdqYtmVqbYyQxsfpi8tL6c6CdwTET8EPkCVJJ4RNWbU5Zl5L3NxtXZXtbZnrwR+kpnfBcjM06Pa2F5OTU916QiTOFfKzK+2dl1vbTeA81smbIPWnODOLgS7We08f0O1R02qZ9uCVKnfc6PGb7umZQ5fP8KkShOWmW+Pmm/4TxGxRmb+b1SHntvaW1ai5hueK69xU9ImrVWzfCkilo6Ix1BtkK7PzDsy8yRqMuf3RcTHqHYdb5hbAzR4UMnF64EDM3M/ajDWDSPi+Zl5ITX9zo2ZeX9m/hF46yACtJ6oCeM3pXrF7ktNIJ5UlcZvgEdR1TTXD2qdD5OWnakqoN2oDgKPpRp0nkO1zXtdRDwiYrS93uZh91Ftjp4QNdk3UIEaNeH70iNK11wvMz9LZTLfGxEXU9WIp7Zr28gDtD5XU80MfkeV4v+eyiD+GnhJRGwyysRJExERK0V1MCMinpGZv6CuZd+N6qn8I2rO5oup2UbelAMeJWCqDL13Zyst+i/gV9QFYWOqF+OeVIPaz7f3bUlNj3LbvNAeImrC9EuBV7VIfzrVc2on4EeZeWZ739DaqkRNHL4+NVjuk1oQdAfVJum0IVZxLthfZdv2xQZUkPh0qsTwHxGxQWZeHxFLZQ1XoAHoK8ndmppg/DfU+XcYFSBfmJlXjDCJ85xWO3AK8PzM/H8daIPW38xgAaqDyDSqynsl4DWZeVPLNO8CnN8CN6nzImJNqgPeD6jOdvtm5h9bW9HdqQKKB6gaql9l5i9HldbJGnp1Z1bj9F9S7SHup6q8/k61fXhGRNyfmZdm5veGnZaplJlfaRfuN0XE71pVyKepC+WP+943tAt5C4TuBaa3XMea1DQ1ZwwxQFsSODAiPk7Nj7k0VYrzTNrvnzWkyvHA1hFxqAHaYLUA7WnUhNinU51Udqd6790PHNaaE3xlhMmcp2TmRRFxZWb+qT3vSoB2JFVqflvWuGgvjYh3A6+NiDdm5g0RcdNk28FKU6F3bGfmzRFxLjWO36tagBZZnQMWoDKm62Tm5aNN8eRNVZu066i2RvcAS7U644uoSPeQiPjHvJizz8xLIuI+4NSooSXOBc6f4mT8BvgCdbNemWp/dOswVtRK0O6JiAeokpvfUyWnC1ETx98HvCAi/kGV6jw7M/8+jLTMr9oFamngKKq35rJUm8gfZvUy/BQ1eO3tI0vkPKoXoI3auDapBwEvBK6MiLWBUzLzhRFxDvCyiDjWAE1zg3GZj0dTVfgHAOdGxF2Z+VGAzHxxRPyOuvYNZVD2qTSU6s5xO3Mhag64+1vj8SdT0/z8IKqL+tOBL2TmPHvTiIg9gNOokqXf5xSP4B41pMeKVFuU22b1/jlcxwbUEBp7tXVdQA2j8eSWy1mTGs18a6rDwPsz82fDSIsgIl5F9ZR9MjXX7S9bI/dvAjdP9TGoqdOaNaxAzWRyLNV56JlU298/Ay/MzLsjYoV0LEJ1XK+tcl9M8TJqwOXDs4aUego1csEhVMHT9pl5/IiSO3ADD9LGBWjHUW2R7gFOzpof7kRgS6pN1P+LubgX50RExIzMvHPU6RimljtfhepN+meqx+5B1CC5P48aQPW6aLNIjDCp86SI2Jhq7/f6iDiF6r33pNb2aCMqcH5+Zn57lOnU1Iiat3BDqtH0kyJidWpWhNcDb5sfrrua+8WD55I9kJoZZ+dWa7N6Zv4mavy/s6lY44U5Dw3CPPDqznFF7ftRN+kfAqtFxGsz878j4g3U+Fw/ml+qu+blAK0XaGfmYRHxQSpXs29mnhE1OvtnonruPjkiDsjqzaoB6OsksB11vu0cNfbca6NGw39dq3LfmGq7YYA2n8gae/ABYIGoyd4fB3we+IQBmrqulaA9GnhHROzWMvYJfAnYKyLWAPaIiJ9TPayfRg0effeo0jwMw6ruXJJqA/Ua6saxK9WrcCXgmJazf6Q367nbuFLT/rkMz6LNBZiZd0bEUcD21CTXQx/yY34wbt9vD3ycKrlcnxrI8TuZ+Y6I2Jaaw+53mXnNqHsdarBm9nv2105EzTbySmBzqgp0n8z8+dSnVJozETGDOn5/TLWnfTGV4Xg78L/UFIMfycxrR5XGYRraEBwx8+Ef7qQm0z7Zxqpzt5lUa69H9dp9bWb+LSLeQwVq+7cG6/8ustbkRMTKwGOAK1tbz2cDq2TmmyNicarU7M3UUBvvHGFSNUQRsUivJiIingAskDV7wL8nlW+Pl6Z6dt+V88DwRpr39bdDa4U+L6bGIHxca+P8iHaf2ZMaVmbvzLx5ZAkeoqENZpuZ/6B6dPaGf9iNmtD7/QZoc7+ZVGufRk3e/qGIWDszj6Pmhfxo63Hobz44m1O9Mxdr1cl/Bp4fEWtl5v9RUxT9CtghIg4aYTo1JO2aenhELN7OwQuA0yLiUvj30EcLtsd3Z+a1BmiaW2QTNX3klzLzVGp8zx9FxEotQHsWFaAdMq8GaDD8IThmNvzDb4a8Tk2RGJvV4AAqUPsRNczG+yPiqMw8NCJWtJPAYGXmxRGxLDXl2KXUyPHvA94ZEa8EFqGaFlxDdeTQvGcVqrf4otQ5uHnrsfmNiLg0M3fNzH/NLx2zNO+JiKcz1q6dzHxla2P57Yh4IvBV4NvDGrGgK4YapGUNpno68AmGOPyDRqP1rjmWqtbee1y19vMi4nXpKOYD01/FnJl/iohvUI1l/0kNWBtUbvM+4Ajq5r1TK1G5z7Zoc7+IWDQz783ML0fEItTwGstTQfndmblDRHw9ap7gbQzQNLcY14RmYWAtasaAJwC3AGTmCa1Jx1eATeaHAoCpmHHgX8BQBk/V6OV/zmqwBlWt/T6rtQerFf/vQLX1+1pmfiBqQu89qEzQWyPizPb2LYDXUsGzv8M8oN2cto2Iu4GNgD9QYxMeDWwTEfdm5i0ts3RpRKyWQxq4WhqkcQHaUsDfMvPMqHFWnx8Rd2fm1wAy87iIWH5+CNBg6mYc0LzNau0h6htmY0uqivN6YLNWWvKBiLgfeHbU/LCfoWYceCI1ZtoNI0u4Bu0+ai7WU4BHAjtm5q3tRnYwMC0iLs/MX2XmrqNMqDS7omYPWAK4JiJeSg1Uu0hEHN16qP+dGrJrwcy8rH1snh3SajyDNE2a1drD1QK0LahBSA/MGhD4AOCJEfH8FqhNA25s1Vt/jIi32pt23pI1GPi3qZ5u3wbWjYjbW9XnfdQQLP+IiN9Qs7xYva1Oa00xXgT8K2rWml2B51Nt0b4RETtk5vsi4hHAcyPiW626f745tg3SNBBWaw/d0lRD8Z2ouXA/Tc19u1PLYZ4JD5qA2ABtHhM1vdx61NRqz6HmZl2aGjz6WmqsvKt6Q29IXRY188y/IuJU4BXA7sDVmflr4C2tk8AVEfG0rIHRl87Me0ea6BEY2hAckgYnM78C7EPlJg9sN+JPA18Drux733yTw5zX9caK6nt8D1XScEhmfgj4BTXMyieoXr5fzczfjSSx0gS0zGSvTdk04NVU54C1ImIzgMx8G3AW8Lk2zubdI0nsiA1tMFtJgxcRuwKnAu/KzHNHnR4NX0Qsnpn/16qGtqRmcvl0q+beCXgy8PHM/OlIEypNUEQcQ3V82ocaTuZ1wN+o47s3MPOymfmn0aVytAzSpLlMq/Y6jar+/P380stpftNKz54InAPslJk3t0Bte+CNwLmZedYIkyjNsXYdOxXYozfQctQUUCdS0z99MDN/2N/zc35kdac0l8nMS4AdMvN3Bmjzlv4qzta28CrgQuDTEbFGa/t5FfBr4BkRscyIkipN1srAJzPzlohYqA28fCfVQeou4LdgEw47DkhzoXYx0zxk3FhRe1Pzbd5Itde5G7goIp5PDVL8AHBoZt41mtRKk3YLsFdEfCYzbwSIiMOAWzLzpJGmrEOs7pSkDomI44EDgW8AywKPAJ5LDVq7KfAY4HmZed2o0ihNVptW8BVUYdFV1FhpLwUOysxfjDJtXWKQJkkd0QYkPgf4rzZQ7YrAscBfM/O0NutAZuZfR5lOaRAiYiVgT6rzwJ+BN5n5eDCDNEkakXFVnEtTN6qrgAsy811t+b7Azpl55MgSKg1RmzUDx3f8T3YckKQRGBegvQA4uj3/L2CXiDikvXURYEZELNbfsUCaV2TmPw3QZs6SNEkaoYg4impz9sxWxbk4NR7a+4DvAZsD+2Tmz0aYTEkjYO9OSRqRNifh04HXAvdGxNHARtTcnJsCKwF/yczbR5dKSaNiSZokjVBEHAkcQ819ez3wG+DxwHHOwynN3yxJk6TR+ijwI+CXmfmniDiAmkh9IcAgTZqPWZImSR0QEQsAhwPHAwc6F6ckS9IkqRsWoWYS2D8zbxh1YiSNniVpktQR8/tk0pIezCBNkiSpgxzMVpIkqYMM0iRJkjrIIE2SJKmDDNIkSZI6yCBNkiSpgwzSJEmSOuj/A/TuAEmJ9MDRAAAAAElFTkSuQmCC", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[df['artist_top_genre'] != 'Missing']\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlmklEQVR4nO3de9yt9Zz/8de7tqLofEsqEokGs7El50PoMNgxv9JBysSWKeeQzISGwaQQid2InFKK0dCMkpQzu6SSoiiVXXuriE46fH5/XNc9Ldve7cP9vVvrvvfr+Xjcj73W97rWWp96rPte7/U9XakqJEmSNHGrDLsASZKk6cJgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmaNAl/Hvi5M+Hmgft7DLs+SWotbhAq6Z6QcBnwiiq+OexaVkTCjCpuH3YdkkabPVaS7nEJqyd8KOF3/c+HElbvjz0z4cqEgxJ+n3DZ3fVuJTwk4ayEPyV8M+HIhM8NHN8m4fsJf0j4WcIzB459O+HfEr7XP/7UhA36Y5slVMI+Cb8FvtW3/1PCLxKuT/hGwoP79iR8MGFBwg0J5yc8anL+D0oaVQYrScPwdmAbYCbw98DWwL8MHH8AsAGwMbAXMDdhyyU81xeAHwPrA+8E9hw/kLAx8HXg3cB6wAHASQljA4/fHXg5cH9gtf6cQc8AHglslzAbOAh4MTAGfAc4rj/vecDTgYcDawO7ANcu5f+DpGnGYCVpGPYADqliQRULgXcxEIh6/1rFrVWcSReOdln0SRIeBDwBOLiKv1TxXeDkgVNeCpxSxSlV3FnFacA8YMeBcz5VxS+ruBk4gS7sDXpnFTf2x/cF3lvFL/phwX8HZva9VrcB9wMeAaQ/Z/7y/6+RNJUZrCQNwwOBywfuX963jbu+ihvv5vjg81xXxU0DbVcM3H4wsHM/DPiHhD8ATwU2Gjjn6oHbNwH3XeQ1Fn2+Dw8813VAgI2r+BbwUeBIYEHC3IS1FlOzpGnMYCVpGH5HF1LGPahvG7duwpp3c3zcfGC9hDUG2jYduH0F8Nkq1hn4WbOK9y1HrYMrfK4AXrXI892niu8DVHFEFY8HtqIbEnzzcryOpGnAYCVpGI4D/iVhrJ8sfjDcNeG8966E1RKeBjwf+NKiT1LF5XRDe+/sz30S8IKBUz4HvCBhu4RVE+7dT47fZAXr/jjwtoS/A0hYO2Hn/vYTEp6YcC/gRuAW4M4VfB1JU9SMYRcgaaX0bmAt4Lz+/pf6tnFXA9fT9VLdBOxbxUVLeK49gE/TTRT/MXA8sCpAFVf0E87/gy7M3dGf8+oVKbqKryTcF/hiP6/qj8Bpff1rAR8ENqcLVd8ADl2R15E0dbmPlaSR0m+H8LmqFetVSjgeuKiKdzQtTJKWgUOBkqa0fgjuoQmrJGwPzAb+a8hlSVpJORQoaap7APBlun2srgReXcVPh1uSpJWVQ4GSJEmNOBQoSZLUiMFKkiSpkZGYY7XBBhvUZpttNuwyJEmSlurss8/+fVWNLe7YSASrzTbbjHnz5g27DEmSpKVKcvmSjjkUKEmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqZMawC2jt8W/+zLBL0DRz9qEvG3YJkqQpwh4rSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1MhSg1WSTZOckeTCJD9P8rq+fb0kpyX5Vf/vun17khyR5JIk5yV53GT/R0iSJI2CZemxuh14U1VtBWwD7JdkK+BA4PSq2gI4vb8PsAOwRf8zBziqedWSJEkjaKnBqqrmV9U5/e0/Ab8ANgZmA8f2px0L7NTfng18pjo/BNZJslHrwiVJkkbNcs2xSrIZ8FjgR8CGVTW/P3Q1sGF/e2PgioGHXdm3Lfpcc5LMSzJv4cKFy1u3JEnSyFnmYJXkvsBJwOur6obBY1VVQC3PC1fV3KqaVVWzxsbGluehkiRJI2mZglWSe9GFqs9X1Zf75mvGh/j6fxf07VcBmw48fJO+TZIkaVpbllWBAT4J/KKqDh84dDKwV397L+CrA+0v61cHbgP8cWDIUJIkadqasQznPAXYEzg/ybl920HA+4ATkuwDXA7s0h87BdgRuAS4CXh5y4IlSZJG1VKDVVV9F8gSDm+7mPML2G+CdUmSJE057rwuSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiNLDVZJjkmyIMkFA23HJzm3/7ksybl9+2ZJbh449vFJrF2SJGmkzFiGcz4NfBT4zHhDVb1k/HaSw4A/Dpx/aVXNbFSfJEnSlLHUYFVVZyXZbHHHkgTYBXh247okSZKmnInOsXoacE1V/Wqg7SFJfprkzCRPW9IDk8xJMi/JvIULF06wDEmSpOGbaLDaDThu4P584EFV9VjgjcAXkqy1uAdW1dyqmlVVs8bGxiZYhiRJ0vCtcLBKMgN4MXD8eFtV3VpV1/a3zwYuBR4+0SIlSZKmgon0WD0HuKiqrhxvSDKWZNX+9ubAFsCvJ1aiJEnS1LAs2y0cB/wA2DLJlUn26Q/tyl8PAwI8HTiv337hRGDfqrquYb2SJEkja1lWBe62hPa9F9N2EnDSxMuSJEmaetx5XZIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGlhqskhyTZEGSCwba3pnkqiTn9j87Dhx7W5JLklycZLvJKlySJGnULEuP1aeB7RfT/sGqmtn/nAKQZCtgV+Dv+sd8LMmqrYqVJEkaZUsNVlV1FnDdMj7fbOCLVXVrVf0GuATYegL1SZIkTRkTmWO1f5Lz+qHCdfu2jYErBs65sm/7G0nmJJmXZN7ChQsnUIYkSdJoWNFgdRTwUGAmMB84bHmfoKrmVtWsqpo1Nja2gmVIkiSNjhUKVlV1TVXdUVV3Akdz13DfVcCmA6du0rdJkiRNeysUrJJsNHD3RcD4isGTgV2TrJ7kIcAWwI8nVqIkSdLUMGNpJyQ5DngmsEGSK4F3AM9MMhMo4DLgVQBV9fMkJwAXArcD+1XVHZNSuSRJ0ohZarCqqt0W0/zJuzn/PcB7JlKUJEnSVOTO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1stRgleSYJAuSXDDQdmiSi5Kcl+QrSdbp2zdLcnOSc/ufj09i7ZIkSSNlWXqsPg1sv0jbacCjquoxwC+Btw0cu7SqZvY/+7YpU5IkafQtNVhV1VnAdYu0nVpVt/d3fwhsMgm1SZIkTSkt5lj9E/A/A/cfkuSnSc5M8rQlPSjJnCTzksxbuHBhgzIkSZKGa0LBKsnbgduBz/dN84EHVdVjgTcCX0iy1uIeW1Vzq2pWVc0aGxubSBmSJEkjYYWDVZK9gecDe1RVAVTVrVV1bX/7bOBS4OEN6pQkSRp5KxSskmwPvAV4YVXdNNA+lmTV/vbmwBbAr1sUKkmSNOpmLO2EJMcBzwQ2SHIl8A66VYCrA6clAfhhvwLw6cAhSW4D7gT2rarrFvvEkiRJ08xSg1VV7baY5k8u4dyTgJMmWpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDWyTMEqyTFJFiS5YKBtvSSnJflV/++6fXuSHJHkkiTnJXncZBUvSZI0Spa1x+rTwPaLtB0InF5VWwCn9/cBdgC26H/mAEdNvExJkqTRt0zBqqrOAq5bpHk2cGx/+1hgp4H2z1Tnh8A6STZqUKskSdJIm8gcqw2ran5/+2pgw/72xsAVA+dd2bf9lSRzksxLMm/hwoUTKEOSJGk0NJm8XlUF1HI+Zm5VzaqqWWNjYy3KkCRJGqqJBKtrxof4+n8X9O1XAZsOnLdJ3yZJkjStTSRYnQzs1d/eC/jqQPvL+tWB2wB/HBgylCRJmrZmLMtJSY4DnglskORK4B3A+4ATkuwDXA7s0p9+CrAjcAlwE/DyxjVLkiSNpGUKVlW12xIObbuYcwvYbyJFSZIkTUXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzNW9IFJtgSOH2jaHDgYWAd4JbCwbz+oqk5Z0deRJEmaKlY4WFXVxcBMgCSrAlcBXwFeDnywqj7QokBJkqSpotVQ4LbApVV1eaPnkyRJmnJaBatdgeMG7u+f5LwkxyRZd3EPSDInybwk8xYuXLi4UyRJkqaUCQerJKsBLwS+1DcdBTyUbphwPnDY4h5XVXOralZVzRobG5toGZIkSUPXosdqB+CcqroGoKquqao7qupO4Ghg6wavIUmSNPJaBKvdGBgGTLLRwLEXARc0eA1JkqSRt8KrAgGSrAk8F3jVQPN/JJkJFHDZIsckSZKmrQkFq6q6EVh/kbY9J1SRJEnSFOXO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNTJj2AVIWn6/PeTRwy5B08yDDj5/2CVI04I9VpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIzMm+gRJLgP+BNwB3F5Vs5KsBxwPbAZcBuxSVddP9LUkSZJGWaseq2dV1cyqmtXfPxA4vaq2AE7v70uSJE1rkzUUOBs4tr99LLDTJL2OJEnSyGgRrAo4NcnZSeb0bRtW1fz+9tXAhos+KMmcJPOSzFu4cGGDMiRJkoZrwnOsgKdW1VVJ7g+cluSiwYNVVUlq0QdV1VxgLsCsWbP+5rgkSdJUM+Eeq6q6qv93AfAVYGvgmiQbAfT/Lpjo60iSJI26CQWrJGsmud/4beB5wAXAycBe/Wl7AV+dyOtIkiRNBRMdCtwQ+EqS8ef6QlX9b5KfACck2Qe4HNhlgq8jSZI08iYUrKrq18DfL6b9WmDbiTy3JEnSVOPO65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1ssLBKsmmSc5IcmGSnyd5Xd/+ziRXJTm3/9mxXbmSJEmja8YEHns78KaqOifJ/YCzk5zWH/tgVX1g4uVJkiRNHSscrKpqPjC/v/2nJL8ANm5VmCRJ0lTTZI5Vks2AxwI/6pv2T3JekmOSrLuEx8xJMi/JvIULF7YoQ5IkaagmHKyS3Bc4CXh9Vd0AHAU8FJhJ16N12OIeV1Vzq2pWVc0aGxubaBmSJElDN6FgleRedKHq81X1ZYCquqaq7qiqO4Gjga0nXqYkSdLom8iqwACfBH5RVYcPtG80cNqLgAtWvDxJkqSpYyKrAp8C7Amcn+Tcvu0gYLckM4ECLgNeNYHXkCRJmjImsirwu0AWc+iUFS9HkiRp6nLndUmSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpkItstSJI0aZ7ykacMuwRNM997zfcm/TXssZIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGJi1YJdk+ycVJLkly4GS9jiRJ0qiYlGCVZFXgSGAHYCtgtyRbTcZrSZIkjYrJ6rHaGrikqn5dVX8BvgjMnqTXkiRJGgmpqvZPmvw/YPuqekV/f0/giVW1/8A5c4A5/d0tgYubF6K7swHw+2EXIU0y3+daGfg+v+c9uKrGFndgxj1dybiqmgvMHdbrr+ySzKuqWcOuQ5pMvs+1MvB9PlomayjwKmDTgfub9G2SJEnT1mQFq58AWyR5SJLVgF2BkyfptSRJkkbCpAwFVtXtSfYHvgGsChxTVT+fjNfSCnMYVisD3+daGfg+HyGTMnldkiRpZeTO65IkSY0YrCRJkhoxWKmJJJsnWX3YdUiSNEwGK01YknWBA4C3G64kaepJkmHXMF0YrDQhSTarquuBk4C1gQMMV5rK/IDRyiZJqqqSPCXJPkm27bdK0gowWGmFJVkH+ECSt1fV6cCXgQdiuNIUMB6gkjy6/0DZGKD/gDFcaaXRv+efBXwWeBjwIeC1SR421MKmKLdb0ApLci/gScC+wDlV9YEkzwB2AX4HfKCqbh1mjdLiDHxDfw7wEWA+cBnwc+Dw8g+jViJJtgQOAT5fVScneRzwKuDcqjpquNVNPfZYabmNf5uvqtuAHwJHAtskOaCqzgROAO4PHGzPlUZRH6oeB7wZ2Kmqng18ie5SXLOHWpx0D0kPeDrwUGC7JGtW1TnAccCcfg6tloPBSstl/Jt+f3ttgKr6HnA48KSBcPU1YDXgvkMrVlqCfv7IM4BnARv3zd8FbgCeMKy6pHvCwFD3BsCMqjoaeA8QukvQAVwN/Klv03KYlEvaaPoaCFWvBbYFrk1yalV9sf9dfV2Sg6vqkCTfraqbh1mvNG5g+O9ewG10Pa3rAm9Ncn1V/TTJucDuSdYAbnZIUNNR/3uwI93w31VJbgT2AdYE9kqyO10++I+qum6IpU5JBisttyT7Av8I7AEcChyWZP2qOjLJDGCfJOv5C6lR0n+YvAB4Ed1Q9aF0w9bXAicnOYauB+vQqrppeJVKkyvJI4F3A/sD5wJfAD5VVbsmuQXYDji/qr7Wnx+/ZCw7g5WWS5J7A7fSfTi9DLgP8FLgk0nurKqjkvy4qm4ZZp3SopI8Hng/8Aq6OSV7AmfQrYR6AF0P7FFV9d9JVq2qO4ZWrDS5bgUupFt0dAuwU5Izk+wHfAJYh25qx67A8Yaq5eMcK92tJH/1HqmqW6rqU3RdxtsD+1XVGcDPgH9Oso6hSiPqkcCPq+r7VfU+4H+B1wP3Bg6j673aJ8mjDFWaTga2Flm1Hwq/DtgImDVw2heBO6rqduBY4CzgDEPV8jNYaYmSbFJVd/a3X5Pk8CQHJFmLuyY2PiTJHOAa4NlV9YfhVSzdZeDDZPzv3IXAaklmAVTVicBFwBZV9Xu6VYFfBv44hHKlSdMPg8+m+/JwPN2XjCOBjyTZP8kr6IYFL+nPv62qjq2qa4ZW9BTmPlb6G/0H0lp0Y+/vBc4DjgD+E3gM3UqSvej2OXkc8Hhgj6o6bxj1SkvS71P1JOAPwGl0e67NB64CLqZbUv7i8feuQ4CajpI8gu7v93vp/n6/k24o/Da6+VSbACdW1anDqnE6MVhpiZI8Gfgk3Tf9I6vqW0keCLyVLnjtV1U3JVm7qvyWr5GS5CnAMXTDfC+j2wLkcmAMeDLdcPbR/YaITs7VtJTkUXS/AxdX1Wv7tu2ATwNPq6pLhljetORQoP7KwPBJqur7dBPT/w7YEaCqfge8D7gDODLJKoYqjZokDwf+GTiiquYCOwHrA4+pqiOqaldgb0OVVgK/pJu68cgkWyRZvaq+QXd917HhljY92WOl/7PI5p/PARbSDZmsC/wP3TL0T/THH0A3dO8YvEZOkh2A19KtfnpDVf2mnxt4JvCSqvrlUAuU7gHjQ9v9hPVPAjcD3wQW0A2Dz66qnwyzxunIYKW/keQNdN/wz6DbnXoXYHO6lSIfr6oPDa04aTEGNv/cHLiJbtXTlnTzAH9L9+08dJPT/6GqrhhasdI9YOB3YkZV3d5fbeBIuisLnAl8vapOtce2PYcC9VeSbAVsV1XPANYGrgf+UFU/opunsmeSdYZYovQ3+g+QHejmUR0O/IRudd9xdEvKv0T3ofJWQ5Wmo4FpHFv0IwoA9KFqRlX9hW54fB6wBnCOoWpyGKxWcgPXjBr3F+C3SQ4CHg7sXlW3JZldVT8GnuyWCho1/QfJu4FXVtXudEHqZOBXdCuhvg98m64XdnHve2nKGuid2o7uff9fwH5JHgZ/Fa5uowtX9wfehpuETwqD1UpskTlVs/tVgL8GNgT2pht/v6Xf4+SA/rI1tw6vYuku4/tTJXkC3WKKc+lW/VFV7wa+AxxUVT+lmyP4ULoNQGf4LV3TSR+qZtFdVeAFwJvoFh3ttEi4WrXvudoZOKwPWmrMYLUSGwhV+wP/BizoNwT9MN23+xOTHEi3cdyrq+raYdUqjUtyH4CqujPJU+km5T6Kbn+efxg49bt0k3Wpqq/TbY54Yr+ztDRtJLkf8HLgcVV1SVV9j+76f5sDL+lXydJPZF+lqv7Sr/DWJLAbcCXXf5vZGdh+4BftO8D5dFstXE+3iuriIZUo/Z9+T54PJXk+3SU5/hX4SFWdkeTPwNwkD6XbEPQlwEHjj3XzQ00ngyMOVfWnJEcAD0tyJPCaqvpOklWBPeg2AqU/987hVLzycFXgSmbRyYr9RPSPAwcCvwNu67uVNwMud8hEo6JfMn4U8CPgv4Hn0Q17rAvsVVVXJXkk3UrW9YEf9JvaOkFX08rAnKrnAg+i+yz/z75n6kDgBuCNfa/uulV1/VALXsk4FLgSWWRO1Qb9kMqNwOrADn33cCXZnW5i4xpDLFdanKvogtOX6FY3HUI3t+o1STaqql9U1cer6j1V9S24a8hbmg76obxK8g90O6pfCRyS5AP9/mz/DjwA+Gj/EDdwvofZY7WSWCRUvRHYDfgZ3eqRn9J9UF0E3A5sDexZVecPp1rpry3yDf2zwLf73dPHL13zfLovAv/uprWajpI8BFilqi5NsgHd78Eb6FZvHwhsDHyzqvZJsiWwenn91qGwx2olMRCqnkB34eTXAF8HXk+3z8/z6Cb3/oDuorSGKo2ERTb/HANeDKyS5N39MMf3gFPovhSsM8RSpcn0ZGD9/pI0vwfmAKsB7wKeCjwLeHmSj1bVxYaq4XHy+kqkX0H1ZeDDVfXDfijwT8CbgQdW1VFDLVBajD5UvZBu2O8Sui1BPkG3pPy1SY7oJ+qe7x5rmq6q6vNJ7gv8JMlLq+q8JA8Ezu7nUj2AbnPcbwy3UtljNY0tugliVX2Xrvt4lyQbVNXNwFl02ys8N8m6bpyoUZNkG7rVf9sBX6Hb4PB5wAfo5lu9qd+b6g9DK1KaJAM7qm9Ht63IZ4Gj+xWylwFrJ/kY3WWbvlpVp/l3fLicYzVNLTKnalvgfsBpVXVjkg8C29BtALqgX211r6q6aYglS4uVZBO6rRXWpdtdfXe6lazXAZ8GFpYXktU0lmRrui/Ab+hHG95I93uwU3/KY4Abq+rMIZWoAQaraS7dBZX/ke7SHhsC76+qM5McSjfh9+lVtXCYNUrLIsl76Dax/XCSlwGvBf6xqi4fcmnSpEmyKfBB4LqqmjPQ/kbglcDOVXXBsOrT33KO1TTTj7NfX1W39iuonltVT+13UH8y3eTGqqo3J7kVWBMwWGkqOB94Vd/D+mLgdYYqrQRuB84DZifZvqr+F6CqDu83AF1nmMXpb9ljNU30Y+pjwInAfwKfoxs6uS/dipG9gBcCnwIeBrylqs4YTrXS8kuyFvAiuvfxMf1laqRpZWAV7JPo/qb/lm7Bxt501/87oapOH2KJWgonr08fqaoFdNf8242ue/ja/hv9w4H/qapbgO/RDQvadawppapuqKpj6S6x9HUn6Go66kPV84Bj6KZvnA08BTiZrudq7/64RpRDgdPEwPWf1gDuAxyTZI2q+hTwfeBj/eUOnkQXuhz+01R1B7ijuqafJKvQDe29iq53dj3gQuCcqromyZforpQxf2hFaqkcCpxGkrwEeCuwA91qkZcBHwOOp/vG81zgc1V10bBqlCTdvSRvBdYGng3s0e+2vjfd9jiXeSHl0WaP1fSyPnBWf0mPTyS5FpgLrFFVRwMuxZWkEZRkJt0WOO+iW1S0J/CsPlT9Pd2X5kuq6tdDLFPLwGA1vfwWmNnv+3NVVZ3YL0t/QZIvVtWfhlyfJKk3MFH9acDOwHZJFlTVwUkeAbwjye3ATOCt/SbPGnEOBU4jSdam2zjxcroLK69BNyT4uqq6bHiVSZLGLbKB89OBzwP7A48AHg98v6o+1F+GbF3gd1V19uDjNLoMVlPMkn6x+kt63J5kPbqJjw8EtgAOcPM4SRoN/fX9Hgl8u6ruSPJSYOOqen9/LcCZwPvptlX48BBL1QoyWE0hi3zLmQ0EuLOqTu7bxsPVKv1FOdesqhuHWbMk6S793+5fAVfSbf65Ld3O6s+tqt/0KwOPpZtndWJVfWFoxWqFuI/VFDIQqval269qS+CjSd7SH7+9/6UcT8te+0+SRkhVfRW4mm7F9k7AqXRTOD7cz6t6DN21MX8FbDykMjUBTl6fAhbpqbo3sAuwV1X9NMkJwDeS/LmqPja4DNexeEkaDYN/x6vquiRnAs8D/gJ8hW4E4rN0vVj7AI8Dnttfwul2/55PHQarKaTvqboY+CVwn37I7zdJ9gd2HW51kqQl6Vf/PQN4NPCtqjo6yZ/pLtF0Z1UdmuRj/elbAwcDL6qq24ZUslaQQ4EjLMmW8H+/kC+mW477c+Ba4A1015EC2BRYo78gpyRpRIxfeinJE+mG/54BvCXJK6vqOOBrwEuT7ALcAtwbeDLdnlY/H1LZmgAnr4+oJNsBR9F1B28EHAZcWlWv6Y8fQ7cM90a6uVYvd/WfJI2eJFsDhwBvqarzkuxKF57O73uudgMurKqf9eevVlV/GWLJmgCHAkdQkhl0XcH/CmxFt/z2DGB2khdU1X9X1T/134BWpdsM9PKhFSxJujvrAM+hu6zYecCJwJ30c6iq6mNw1zwsQ9XUZrAaQf3qvkuBf6G74Oyz6LqIb6bbRf2Oqjqlqn40zDolSUtXVaf20znem+R3VXVckhPpvhj/bOA8h5CmAYPV6DqPbruEG4C1q+r3Sb5M9y1nzyS3VtXpQ61QkrRMqurk/vI0/9YP9R0LHDfsutSec6xGxCJbKqwG3NHvynsA3RXO31FVP+mvA7gD8LWqmj/EkiVJyynJC4H30Q0NXj24RY6mB4PVCFgkVO1PN6/qBuCdVXVLkoOAJwLvq6ofJFm1qu4YYsmSpBWUZKyqFg67Dk0Og9UISfLPwEuA3YFzgG8CB1fVpUneDTwM2LuqbhlimZIkaQkMViMiyVrA4XQrAXcGdgQW0G218OqquiTJ+lV17RDLlCRJd8NgNUKSrA48AvhQVT2r31huIfAJumFBd+CVJGmEuSpwhFTVrUluAmYkeTTwYOB04BOGKkmSRp89ViOm77V6Pd2KkQcCO1fVhUMtSpIkLROD1Qjqr2b+ALoLc1417HokSdKyMVhJkiQ1ssqwC5AkSZouDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpkf8PwQ8MlHUQ3OMAAAAASUVORK5CYII=", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "数据之间没有强相关性,除了能量和响度之间的相关性,这很合理。流行度与发行数据有对应关系,这也很合理,因为较新的歌曲可能更受欢迎。长度和能量似乎有相关性——也许较短的歌曲更有活力?\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq4AAAJZCAYAAABoaLenAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABZx0lEQVR4nO3dd5glZZn///eHIUnWBROCIKKAIAMiomJGZA1gQFFxlTVgWuMuij8UEXXFtGv265gwoCIYQEXAVRFFEIY0BFFYxFVRMIEgkmbu3x9VDWd6eronNVXV/X5d17m6znPqVN3ndLrPXU9IVSFJkiT13WpdByBJkiQtCxNXSZIkDYKJqyRJkgbBxFWSJEmDYOIqSZKkQTBxlSRJ0iCYuEqSJGm5JdkryS+SXJbk4Ake3zzJD5Ocm2RBkieu9Dmdx1WSJEnLI8kc4JfA44HfAmcBz6mqi0f2mQecW1UfT7IdcEJVbbEy57XiKkmSpOW1K3BZVV1eVTcDXwH2GbdPARu02xsCV67sSVdf2QNIkiRp1tkU+M3I/d8CDxm3z2HAyUleBawL7LGyJzVx7aFb/nR57/tv3Omej+g6hCmdd6+dug5hUlf9fd2uQ5jSGlnUdQhT+vfVruo6hCm9aM7mXYcwqSvn9P5PDldxc9chTOletWbXIUzprgvTdQhT+t3q/f55PPyKo3rxJk53rrDmJlu9FDhwpGleVc1bzsM8Bziyqt6f5KHAF5JsX1Ur/M/FxFWSJEmLaZPUyRLV3wGbjdy/V9s26kXAXu3xTk+yNrAxcPWKxmUfV0mSpKFZtHB6b1M7C9g6yZZJ1gSeDRw/bp//Ax4HkGRbYG3gjyvzsk1cJUmStFyq6lbg34CTgJ8DX62qi5IcnmTvdrd/B16S5Hzgy8ABtZLTWdlVQJIkaWhWvJvoqguh6gTghHFth45sXww8fFWe08RVkiRpaBZ1n7h2wa4CkiRJGgQrrpIkSQOzEjNKDZoVV0mSJA2CFVdJkqShsY+rJEmS1F9WXCVJkobGPq6SJElSf1lxlSRJGpplW5Z1xrHiKkmSpEGw4ipJkjQ09nHtryTXdx3DmKliSbJRklfcUfFIkiTNFr1JXNPoTTwrYSPAxFWSJE2fRYum99ZTnSaKSbZI8osknwcuBN6S5KwkC5K8bSnPOWiifZJ8M8nZSS5KcmDbNifJkUkuTHJBkte17VslObHd/8dJtpkkxi2TnN4+/x0j7esl+X6Sc9rH9mkfOgLYKsl5Sd47WcySJEladn3o47o18AJgA2BfYFcgwPFJHllVp47tmGTPdv+J9nlhVf0lyZ2As5J8DdgC2LSqtm+fv1F7qHnAy6rq0iQPAT4GPHYp8X0Q+HhVfT7JK0fabwSeVlV/S7IxcEaS44GDge2rau4yxCxJkrTcyj6unfl1VZ0B7NnezgXOAbahSfhGTbbPq5OcD5wBbNa2Xw7cJ8mHk+wF/C3JesDDgGOSnAd8ArjHJPE9HPhyu/2FkfYA/5lkAfA/wKbA3SZ4/rK8LpIcmGR+kvmf+vyXxz8sSZI06/Wh4vr39muAd1XVJybZd8J9kjwa2AN4aFXdkOQUYO2q+muSHYEnAC8DngW8FrhmrCK6jGqCtv2BTYAHVdUtSa4A1l7WmJc4QdU8mkowt/zp8onOJ0mS1OhxP9Tp1IeK65iTgBe2FVGSbJrkrsu4z4bAX9ukdRtgt/bxjYHVquprwJuBnavqb8Cvkjyz3Sdtcrs0pwHPbrf3H2nfELi6TVofA9y7bb8OWH85X5ckSZKm0IeKKwBVdXKSbYHTkwBcDzwPuHoZ9jkReFmSnwO/oOkuAM3l+8+OzFbwpvbr/sDHk7wZWAP4CnD+UkJ7DfClJG8EjhtpPwr4VpILgPnAJW2Mf05yWpILge9W1UFTvS5JkqTlMkv7uKbKq9J9M4SuAne65yO6DmFK591rp65DmNRVf1+36xCmtEb6/4fx31e7qusQpvSiOZt3HcKkrpzT+z85XMXNXYcwpXvVml2HMKW7LkzXIUzpd6v3++fx8CuO6sWbeNMvfzKtb9Ra99u9F69zvN5UXCVJkrSMFi3sOoJOmLi2khwCPHNc8zFV9c4u4pEkSVqqWdpVwMS11SaoJqmSJEk9ZeIqSZI0NE6HJUmSJPWXFVdJkqShmaV9XK24SpIkaRCsuEqSJA2NfVwlSZKk/rLiKkmSNDBVs3MBAiuukiRJGgQrrpIkSUPjrAKSJElSf1lxlSRJGhpnFZAkSZL6y4prD93pno/oOoQp/ePKH3cdwpQO2eWQrkOY1KVrXd91CFN6OBt2HcKUPr/Wel2HMKUP3HJT1yFMaoeFa3UdwpSecEt1HcIy6Pf3GeD0NdfuOoQpbXlLug5hGOzjKkmSJPWXFVdJkqShWeQ8rpIkSVJvWXGVJEkaGvu4SpIkSf1lxVWSJGloZuk8riaukiRJQ2NXAUmSJKm/rLhKkiQNzSztKmDFVZIkSYNgxVWSJGlorLhKkiRJ/WXFVZIkaWCqXPJVkiRJ6i0rrpIkSUNjH9fZJ8n103DMuUmeOHL/sCT/sarPI0mSNNtYcV315gK7ACd0HIckSZqpXDlrdktyUJKzkixI8ra2bYskP0/yySQXJTk5yZ3axx7c7ntekvcmuTDJmsDhwH5t+37t4bdLckqSy5O8uqOXKEmSNGgmrkCSPYGtgV1pKqYPSvLI9uGtgY9W1QOAa4BntO2fBV5aVXOBhQBVdTNwKHB0Vc2tqqPbfbcBntAe/61J1pju1yRJkmawRYum99ZTJq6NPdvbucA5NInm1u1jv6qq89rts4EtkmwErF9Vp7ftX5ri+N+pqpuq6k/A1cDdVmHskiRJs4J9XBsB3lVVn1isMdkCuGmkaSFwpxU4/vhjLPG+JzkQOBAgczZktdXWXYHTSJKkWcE+rrPaScALk6wHkGTTJHdd2s5VdQ1wXZKHtE3PHnn4OmD95Q2gquZV1S5VtYtJqyRJ0pKsuAJVdXKSbYHTkwBcDzyPtu/qUrwI+GSSRcCPgGvb9h8CByc5D3jXtAUtSZJmrx73Q51Oszpxrar1RrY/CHxwgt22H9nnfSPtF1XVAwGSHAzMb/f5C/DgSc65/dIekyRJ0tLN6sR1JT0pyZto3sNfAwd0G44kSZo1ZmkfVxPXFdROdXX0lDtKkiRplTBxlSRJGhr7uEqSJGkQZmni6nRYkiRJGgQrrpIkSUMzSwdnWXGVJEnSIFhxlSRJGhr7uEqSJEn9ZeIqSZI0NLVoem/LIMleSX6R5LJ2FdGJ9nlWkouTXJTkSyv7su0qIEmSpOWSZA7wUeDxwG+Bs5IcX1UXj+yzNfAm4OFV9dckd13Z85q4SpIkDU33fVx3BS6rqssBknwF2Ae4eGSflwAfraq/AlTV1St7UrsKSJIkaTFJDkwyf+R24LhdNgV+M3L/t23bqPsB90tyWpIzkuy1snFZcZUkSRqaaZ7HtarmAfNW8jCrA1sDjwbuBZyaZIequmZFD2jFVZIkScvrd8BmI/fv1baN+i1wfFXdUlW/An5Jk8iuMBNXSZKkoVm0aHpvUzsL2DrJlknWBJ4NHD9un2/SVFtJsjFN14HLV+Zl21Wgh867105dhzClQ3Y5pOsQpvTO+e/sOoRJfXOHt3QdwpT+PIC/EK+9sboOYUpPzFpdhzCphek6gqkdvfacrkOY0gb0P8bNbu06gqltWzd0HYKWQVXdmuTfgJOAOcBnquqiJIcD86vq+PaxPZNcDCwEDqqqP6/MeQfwb0mSJEmL6X5WAarqBOCEcW2HjmwX8Pr2tkrYVUCSJEmDYMVVkiRpaKr/3aSmgxVXSZIkDYIVV0mSpKHpQR/XLlhxlSRJ0iBYcZUkSRoaK66SJElSf1lxlSRJGpqanRVXE1dJkqShsauAJEmS1F9WXCVJkobGBQgkSZKk/rLiKkmSNDT2cZUkSZL6y8R1nCRbJLlwBZ7305HnP3fVRyZJktRatGh6bz1l4rqSkqwOUFUPa5u2AExcJUmSVrHBJa5tRfOSJEcl+XmSY5Osk+RxSc5NckGSzyRZq93/iiTvadvPTHLftv3IJPuOHPf6pZzrx0nOaW8Pa9sf3bYfD1w87vlHAI9Icl6S1yU5NcnckWP+JMmO0/X+SJKkWaAWTe+tpwaXuLbuD3ysqrYF/ga8HjgS2K+qdqAZdPbykf2vbds/AnxgOc5zNfD4qtoZ2A/40MhjOwOvqar7jXvOwcCPq2puVf038GngAIAk9wPWrqrzlyMGSZIkMdzE9TdVdVq7/UXgccCvquqXbdvngEeO7P/lka8PXY7zrAF8MskFwDHAdiOPnVlVv1qGYxwDPDnJGsALaRJsSZKkFVaLalpvfTXUxHX8O3rNcuw/tn0r7etPshqw5gTPex1wFbAjsMu4ff6+TIFW3QB8D9gHeBZw1ET7JTkwyfwk84/52/8ty6ElSZJmlaEmrpsnGaucPheYD2wx1n8V+BfgRyP77zfy9fR2+wrgQe323jTV1fE2BH5fVYvaY85ZhtiuA9Yf1/Ypmm4GZ1XVXyd6UlXNq6pdqmqXZ26w+TKcRpIkzVrOKjAovwBemeTnwJ2B/wb+FTimvay/CPh/I/vfOckC4DU0VVSATwKPSnI+TfeBiSqoHwNe0O6zzVL2GW8BsDDJ+UleB1BVZ9P0xf3s8r1MSZIkjRnqylm3VtXzxrV9H9hpKfu/t6reONpQVVcBu400vbFtvwLYvt2+FHjgBPucApwy7njrtV9vAR47+liSe9J8SDh50lclSZK0LHo88n86DbXiOhhJng/8DDik7XIgSZKkFTC4iutoRXQZ999i2oJZtvN/Hvh8lzFIkqQZpscj/6eTFVdJkiQNwuAqrpIkSbNej0f+TycrrpIkSRoEK66SJElDM0srriaukiRJQ1MOzpIkSZJ6y4qrJEnS0MzSrgJWXCVJkjQIVlwlSZKGxgUIJEmSpP6y4ipJkjQ0ZR9XSZIkqbesuEqSJA2NfVwlSZKk/rLi2kNX/X3drkOY0qVrXd91CFP65g5v6TqEST31grd3HcKU3v+gQ7sOYUo7585dhzClW3reFe2S1W7sOoQpbV5rdR3ClM6qa7sOYUq/Wb3/7+Oat6zTdQiT2q3rAFrlPK6SJElSf1lxlSRJGhr7uEqSJEn9ZcVVkiRpaJzHVZIkSeovK66SJElDYx9XSZIkqb+suEqSJA2N87hKkiRJ/WXFVZIkaWhmaR9XE1dJkqShcTosSZIkqb+suEqSJA3NLO0qYMVVkiRJg2DFVZIkaWDK6bD6I8lhSf6jb+dPcs8kx7bbj07y7XZ77yQHt9tPTbLdHRuxJEnSzGfFdTlU1ZXAvhO0Hw8c3959KvBt4OI7LjJJkjSr2Me1W0kOSfLLJD8B7t+2vSTJWUnOT/K1JOu07Ucm+VCSnya5PMm+I8d5Y5IL2ucc0bZtleTEJGcn+XGSbdr2pyT5WZJzk/xPkruNhLRjktOTXJrkJe3+WyS5cILYD0jykSQPA/YG3pvkvPa854zst/XofUmSJC27XlRckzwIeDYwlyamc4Czga9X1Sfbfd4BvAj4cPu0ewC7A9vQVDuPTfLPwD7AQ6rqhiR3afedB7ysqi5N8hDgY8BjgZ8Au1VVJXkx8Abg39vnPBDYDVgXODfJd6Z6HVX10yTHA9+uqrEuBdcmmVtV5wH/Cnx2Rd4jSZKk28zSimsvElfgEcA3quoGgDb5A9i+TVg3AtYDThp5zjerahFw8UildA/gs2PHqaq/JFkPeBhwTJKx567Vfr0XcHSSewBrAr8aOf5xVfUP4B9JfgjsCpy3Aq/tU8C/Jnk9sF97nCUkORA4EOC16z+IJ99pqxU4lSRJ0szVm64CS3Ek8G9VtQPwNmDtkcduGtkOS7cacE1VzR25bds+9mHgI+3xXzru+OM/yqzoR5uvAf8MPBk4u6r+PNFOVTWvqnapql1MWiVJ0qRq0fTeeqovieupwFOT3CnJ+sBT2vb1gd8nWQPYfxmO8z2a6uZYX9i7VNXfgF8leWbbliQ7tvtvCPyu3X7BuGPtk2TtJP8EPBo4axlfy3Vt3ABU1Y00leKPYzcBSZKkFdaLxLWqzgGOBs4HvsvtSeJbgJ8BpwGXLMNxTqTp7zo/yXnA2JRW+wMvSnI+cBFNP1iAw2i6EJwN/Gnc4RYAPwTOAN7eziiwLL4CHNQO+BornR4FLAJOXsZjSJIkLd2imt5bT/WljytV9U7gnRM89PEJ9j1g3P31RraPAI4Y9/ivgL0mOM5xwHETtB+2lBivALZvt08BTmm3j6Tp1kBVnQaMn8d1d5q+twsnOq4kSZKm1pvEdaZK8g1gK5pZDCRJklZa9bgqOp1MXKdZVT2t6xgkSZJmAhNXSZKkoZmlFddeDM6SJEmSpmLiKkmSNDSLFk3vbRkk2SvJL5JcluTgSfZ7RpJKssvKvmwTV0mSJC2XJHOAj9IssrQd8Jwk42dVop2f/zU005uuNBNXSZKkoel+Htddgcuq6vKquplmHvt9Jtjv7cC7gRtXxcs2cZUkSRqa7hPXTYHfjNz/bdt2myQ7A5tV1XdW1cs2cZUkSdJikhyYZP7I7cDlfP5qwH8B/74q43I6LEmSpIGpmt7psKpqHjBvkl1+B2w2cv9ebduY9WlWGz0lCcDdgeOT7F1V81c0LiuukiRJWl5nAVsn2TLJmsCzgePHHqyqa6tq46raoqq2AM4AVippBSuukiRJw9PxAgRVdWuSfwNOAuYAn6mqi5IcDsyvquMnP8KKMXGVJEnScquqE4ATxrUdupR9H70qzmniKkmSNDQu+SpJkiT1lxVXSZKkgalZWnE1ce2hNbJsawR36eFs2HUIU/pzz3+63/+gCbsB9cq/n3141yFM6SE7PL/rEKb0+LU2m3qnDj38lrW7DmFKp62xShbdmVbPvaX/fxdPXfOWrkOY0mVr9P9/oLrT83/tkiRJWsIsrbjax1WSJEmDYMVVkiRpaGZpjworrpIkSRoEK66SJEkDM1tnFbDiKkmSpEGw4ipJkjQ0VlwlSZKk/rLiKkmSNDTOKiBJkiT1lxVXSZKkgXFWAUmSJKnHrLhKkiQNzSzt42riKkmSNDB2FZAkSZJ6bFYlrklem2SdkfsnJNmow5AkSZKW36JpvvXUrEpcgdcCtyWuVfXEqrqms2gkSZK0zDpNXJN8M8nZSS5KcmDbtleSc5Kcn+T7bdtd2n0XJDkjyQPb9sOS/MfI8S5MskWSdZN8pz3GhUn2S/Jq4J7AD5P8sN3/iiQbt9vPb49/fpIvtG1HJvlQkp8muTzJviPnOijJWe1z3ta2LXHetv2IJBe3+77vjnhvJUnSzFWLpvfWV10PznphVf0lyZ2As5IcB3wSeGRV/SrJXdr93gacW1VPTfJY4PPA3EmOuxdwZVU9CSDJhlV1bZLXA4+pqj+N7pzkAcCbgYdV1Z9GzgtwD2B3YBvgeODYJHsCWwO7AgGOT/JIYJPx503yT8DTgG2qquyaIEmStGK67irw6iTnA2cAmwEHAqdW1a8Aquov7X67A19o234A/FOSDSY57gXA45O8O8kjquraKeJ4LHDMWEI7cl6Ab1bVoqq6GLhb27ZnezsXOIcmqd16Kee9FrgR+HSSpwM3TBRAkgOTzE8y//gbLp8iXEmSNKvZx/WOleTRwB7AQ6tqR5ok8LzlPMytLP4a1gaoql8CO9Mkku9IcuhKhHrTyHZGvr6rqua2t/tW1acnOm9V3UpTmT0WeDJw4kQnqap5VbVLVe2y9zr3WYlwJUmSZqYuK64bAn+tqhuSbAPsRpN4PjLJltD0bW33/TGwf9v2aOBPVfU34AqaRJEkOwNjz7sncENVfRF479g+wHXA+hPE8gPgme1lfcZ1FZjIScALk6zX7r9pkrtOdN52nw2r6gTgdcCOy/b2SJIkTcw+rne8E4GXJfk58Aua7gJ/pOku8PUkqwFXA48HDgM+k2QBzaX2F7TH+Brw/CQXAT8Dftm27wC8N8ki4Bbg5W37PODEJFdW1WPGAqmqi5K8E/hRkoU01d8DlhZ4VZ2cZFvg9CQA1wPPA+47wXnXB45LsjZNpfb1K/BeSZIkzXqdJa5VdRPwz0t5+Lvj9v0L8NQJjvEPmr6m411BUxUdv/+HgQ+P3N9iZPtzwOfG7X/AuPvrjWx/EPjguFP870TnpekqIEmStGr0uCo6nboenCVJkiQtk66nw5IkSdJy6nM/1OlkxVWSJEmDYMVVkiRpYKy4SpIkST1mxVWSJGlgrLhKkiRJPWbFVZIkaWgqU+8zA1lxlSRJ0iBYcZUkSRqY2drH1cRVkiRpYGqRXQUkSZKk3rLiKkmSNDCztauAFVdJkiQNghVXSZKkgSmnw5IkSZL6y4prD/37ald1HcKUPr/Wel2HMKXX3lhdhzCpnXPnrkOY0kN2eH7XIUzpZxd8vusQpvT1Hd7SdQiTunKNriOY2ke/8/KuQ5jSB5/42a5DmNITb5zTdQhTWrDW7KwkLi/7uEqSJEk9ZsVVkiRpYJzHVZIkSeoxK66SJEkDU/0exjFtrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQwziogSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqdlZcTVwlSZIGphZ1HUE37CqwCiTxA4AkSdI0m5WJa5LnJTkzyXlJPpFkTpLrk7wzyflJzkhyt3bfTZJ8LclZ7e3hbfthSb6Q5DTgC+1+30tyUZJPJfl1ko2THJ7ktSPnfmeS13TzyiVJ0kywqDKtt76adYlrkm2B/YCHV9VcYCGwP7AucEZV7QicCrykfcoHgf+uqgcDzwA+NXK47YA9quo5wFuBH1TVA4Bjgc3bfT4DPL8992rAs4EvTtsLlCRJmqFm4yXuxwEPAs5KAnAn4GrgZuDb7T5nA49vt/cAtmv3BdggyXrt9vFV9Y92e3fgaQBVdWKSv7bbVyT5c5KdgLsB51bVn6frxUmSpJnPwVmzR4DPVdWbFmtM/qPqtnUoFnL7e7MasFtV3Thuf4C/L+M5PwUcANydpgK7ZFDJgcCBAPfe8L5sss49lvHQkiRJs8Os6yoAfB/YN8ldAZLcJcm9J9n/ZOBVY3eSzF3KfqcBz2r32RO488hj3wD2Ah4MnDTRk6tqXlXtUlW7mLRKkqTJ1KJM662vZl3iWlUXA28GTk6yAPgeMFmm+GpglyQLklwMvGwp+70N2DPJhcAzgT8A17XnvBn4IfDVqlq4al6JJEnS7DIbuwpQVUcDR49rXm/k8WNpBlhRVX+iGcw1/hiHjWu6FnhCVd2a5KHAg6vqJrhtUNZuNAmtJEnSSrmtc+MsMysT12myOfDVNkm9mXZWgiTb0Qz6+kZVXdphfJIkSYNm4rqKtEnpThO0Xwzc546PSJIkzVR96IeaZC+aaUPnAJ+qqiPGPf564MXArcAfgRdW1a9X5pyzro+rJEmSVk6SOcBHgX+mmdf+Oe1V5lHnArtU1QNpumC+Z2XPa8VVkiRpYHqwutWuwGVVdTlAkq8A+wAXj+1QVT8c2f8M4Hkre1IrrpIkSVpemwK/Gbn/27ZtaV4EfHdlT2rFVZIkaWCme+Ws0YWRWvOqat4KHut5wC7Ao1Y2LhNXSZIkLaZNUidLVH8HbDZy/15t22KS7AEcAjxqbJrQlWHiKkmSNDA9mMf1LGDrJFvSJKzPBp47ukOSnYBPAHtV1dWr4qT2cZUkSdJyqapbgX+jWcr+5zSrg16U5PAke7e7vZdmgadjkpyX5PiVPa8VV0mSpIHpwawCVNUJwAnj2g4d2d5jVZ/TiqskSZIGwYqrJEnSwEz3rAJ9ZeIqSZI0MD0YnNUJuwpIkiRpEKy4SpIkDUwfBmd1wYqrJEmSBsGKaw+9aM7mXYcwpQ/cstKLX0y7J2atrkOY1C2Luo5gao9fa7Opd+rY13d4S9chTOnpF7y96xAm9dUHHjr1Th37ryd+tusQpvSP9L/T4W/WmNN1CFPaYAB/G/tgtg7OsuIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwPS/R/X0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGZrYuMGbFVZIkSYNgxVWSJGlgCvu4SpIkSb1lxVWSJGlgFs3SpbOsuEqSJGkQpkxck/x0RQ6c5KlJtluR506HJBslecUy7nv9dMcjSZK0ohaRab311ZSJa1U9bAWP/VRgwsQ1SRddFDYClilxlSRJUv8sS8X1+vbro5OckuTYJJckOSpJ2seOSHJxkgVJ3pfkYcDewHuTnJdkq/a5H0gyH3hNkiOT7LuU8/woyXFJLm+PvX+SM5NckGSrdr9NknwtyVnt7eFt+2FJPtOe7/Ikr25PcQSwVRvPe5Osl+T7Sc5pj7vPBK99stf8oDbOs5OclOQebfurR96Lr7Rtj2rPe16Sc5Osv4LfL0mSJIpM662vlrfyuRPwAOBK4DTg4Ul+DjwN2KaqKslGVXVNkuOBb1fVsQBtvrdmVe3S3j9ykvPsCGwL/AW4HPhUVe2a5DXAq4DXAh8E/ruqfpJkc+Ck9jkA2wCPAdYHfpHk48DBwPZVNbc9/+rA06rqb0k2Bs5IcnxVje/uPNFr/hnwYWCfqvpjkv2AdwIvbM+zZVXdlGSj9hj/Abyyqk5Lsh5w49RvtSRJ0sRm6wIEy5u4nllVvwVIch6wBXAGTSL26STfBr49yfOPXsbznFVVv2/P87/AyW37BTQJKcAewHZtQgywQZsUAnynqm4CbkpyNXC3Cc4R4D+TPJLm+79pu98fxu030Wu+Btge+F57/jnA79v9FwBHJfkm8M227TTgv5IcBXx97HiSJEladss7q8BNI9sLgdWr6lZgV+BY4MnAiZM8/+8j27eOnT/JasCaSznPopH7i7g92V4N2K2q5ra3Tavq+gmev5CJE/T9gU2AB7VV2KuAtSfYb6JjBbho5Nw7VNWe7T5PAj4K7AyclWT1qjoCeDFwJ+C0JNuMP0mSA5PMTzL/x9dfOkEYkiRJjdnaVWClp8Nqq5wbVtUJwOtoLvMDXEdzqX5prgAe1G7vDayxnKc+mabbwFgcc6fYf3w8GwJXV9UtSR4D3Hs5zv0LYJMkD23PvUaSB7QJ+GZV9UPgje051kuyVVVdUFXvBs6i6cqwmKqaV1W7VNUuj1hv6+UIRZIkaXZYFaP71weOS7I2TSXy9W37V4BPtoOj9p3geZ9sn3c+TZX27xPsM5lXAx9NsoDmdZwKvGxpO1fVn5OcluRC4LvAu4FvJbkAmA9csqwnrqqb24FlH0qyYXv+DwC/BL7YtgX4UNvf9+1tcrwIuKg9vyRJ0gqZrX1cs+RYJHXt/232vN5/U86dc9PUO3Vsu0VrdR3CpG7pOoBl8MfVFnYdwpR2vqn/66g8/YK3dx3CpL76wEO7DmFK/7e81+Q68I/0/k83d1/Y30vAY/r+V+dVv/liL97EE+/27Gn9gdvrqq/04nWO55KvkiRJAzNbK679L1VIkiRJWHGVJEkanD6P/J9OVlwlSZI0CFZcJUmSBmbR7Cy4WnGVJEnSMFhxlSRJGphF9nGVJEmS+suKqyRJ0sD0f7mL6WHFVZIkSYNgxVWSJGlgXDlLkiRJ6jErrpIkSQOzKM4qIEmSJPWWFVdJkqSBma2zCpi4SpIkDcxsHZxl4tpDV87p/+eoHRau1XUIU1rY8+4/l6x2Y9chTOnht6zddQhTunKNriOY2lcfeGjXIUzqWQsO7zqEKR2yyyFdhzClHW+e03UIU7pijf7/f7l73/94q1MmrpIkSQOzaJbm9w7OkiRJ0iBYcZUkSRqYRczOkqsVV0mSJA2CFVdJkqSB6f8wu+lhxVWSJEmDYMVVkiRpYJxVQJIkSeoxK66SJEkDM1tXzrLiKkmSpEGw4ipJkjQwziogSZIk9ZgVV0mSpIFxVgFJkiSpx6y4SpIkDYyzCswwSa5vv94zybFdxyNJkqSVM+MrrlV1JbBv13FIkiStKlZcZ6gkWyS5sN0+I8kDRh47JckuSdZN8pkkZyY5N8k+7eMHJPl6khOTXJrkPSPP3TPJ6UnOSXJMkvXa9iOSXJxkQZL3tW3PTHJhkvOTnHrHvgOSJEkzw4yvuI5zNPAs4K1J7gHco6rmJ/lP4AdV9cIkGwFnJvmf9jlzgZ2Am4BfJPkw8A/gzcAeVfX3JG8EXp/ko8DTgG2qqtpjARwKPKGqfjfSJkmStELKWQVmha9ye7eBZwFjfV/3BA5Och5wCrA2sHn72Per6tqquhG4GLg3sBuwHXBa+5wXtO3XAjcCn07ydOCG9hinAUcmeQkwZ6LAkhyYZH6S+edcd9mqebWSJGlGWjTNt76aVYlrVf0O+HOSBwL70VRgAQI8o6rmtrfNq+rn7WM3jRxiIU2VOsD3RvbfrqpeVFW3ArvSJMRPBk5sz/symgrtZsDZSf5pgtjmVdUuVbXLzuvfd5W/dkmSpKGbVYlr62jgDcCGVbWgbTsJeFWSACTZaYpjnAE8PMl92/3XTXK/tp/rhlV1AvA6YMf28a2q6mdVdSjwR5oEVpIkaYX0oeKaZK8kv0hyWZKDJ3h8rSRHt4//LMkWK/hybzMbE9djgWfTdBsY83ZgDWBBkova+0tVVX8EDgC+nGQBcDqwDbA+8O227SfA69unvDfJBe0gsZ8C56+6lyNJknTHSjIH+CjwzzTdJ5+TZLtxu70I+GtV3Rf4b+DdK3veGTs4q6rWa79eAWw/0n4V4153Vf0DeOkExzgSOHLk/pNHtn8APHiCU+86wXGevpzhS5IkLVV1HUCT71xWVZcDJPkKsA/NeKAx+wCHtdvHAh9Jkqpa4fBnY8VVkiRJkxgdNN7eDhy3y6bAb0bu/7Ztm3CfdhzQtcAS43yWx4ytuEqSJM1Ui6Z5OqyqmgfMm96zLD8rrpIkSVpev2Pxweb3atsm3CfJ6sCGwJ9X5qQmrpIkSQPTg1kFzgK2TrJlkjVpBr4fP26f42nmuodmHv0frEz/VrCrgCRJkpZTVd2a5N9ophSdA3ymqi5Kcjgwv6qOBz4NfCHJZcBfaJLblWLiKkmSNDB9WN2qnbf+hHFth45s3wg8c1We064CkiRJGgQrrpIkSQPTg3lcO2HFVZIkSYNgxVWSJGlgpnse176y4ipJkqRBsOIqSZI0MH2YVaALVlwlSZI0CFZcJUmSBsZZBSRJkqQes+IqSZI0MItmac3VxLWHruLmrkOY0hNu6f8vzNFrz+k6hEltXmt1HcKUTlvjxq5DmNJHv/PyrkOY0n898bNdhzCpQ3Y5pOsQpvTO+e/sOoQpHfGgt3QdwpTm3tT/IT2Xrdnvv9190f/v5PSwq4AkSZIGwYqrJEnSwPT/uuf0sOIqSZKkQbDiKkmSNDD2cZUkSZJ6zIqrJEnSwCxK1xF0w4qrJEmSBsGKqyRJ0sDM1gUIrLhKkiRpEKy4SpIkDczsrLdacZUkSdJAWHGVJEkaGOdxlSRJknrMiqskSdLAOKuAJEmS1GMzJnFNcv0qOs6jk3x7VRxLkiRpOtQ03/pqxiSukiRJmtlmXOKaxnuTXJjkgiT7te2LVVKTfCTJAe32XkkuSXIO8PSRfQ5L8pkkpyS5PMmrRx57XpIzk5yX5BNJ5rS3I0fO/bp231cnuTjJgiRfuaPeC0mSNDMtmuZbX83EwVlPB+YCOwIbA2clOXVpOydZG/gk8FjgMuDocbtsAzwGWB/4RZKPA/cF9gMeXlW3JPkYsD9wEbBpVW3fHnuj9hgHA1tW1U0jbZIkSVoOM67iCuwOfLmqFlbVVcCPgAdPsv82wK+q6tKqKuCL4x7/TlXdVFV/Aq4G7gY8DngQTVJ8Xnv/PsDlwH2SfDjJXsDf2mMsAI5K8jzg1omCSHJgkvlJ5v/8ustX4GVLkqTZYhE1rbe+momJ69LcyuKvd+1lfN5NI9sLaarUAT5XVXPb2/2r6rCq+itNpfcU4GXAp9rnPQn4KLAzTbK7RKW7quZV1S5Vtcu2699neV6XJEnSrDATE9cfA/u1/U03AR4JnAn8GtguyVrt5frHtftfAmyRZKv2/nOW4RzfB/ZNcleAJHdJcu8kGwOrVdXXgDcDOydZDdisqn4IvBHYEFhvlbxSSZI0K83WWQVmYh/XbwAPBc6nee/fUFV/AEjyVeBC4FfAuQBVdWOSA4HvJLmBJvFdf7ITVNXFSd4MnNwmprcArwT+AXy2bQN4EzAH+GKSDWkqtR+qqmtW4euVJEmzTJ8HUE2nGZO4VtV67dcCDmpv4/d5A/CGCdpPpOnrOr79sHH3tx/ZPpolB3JB0x1gvN0nj16SJElTmTGJqyRJ0mxRvb6gP31mYh9XSZIkzUBWXCVJkgZmtvZxteIqSZKkQbDiKkmSNDB9XiRgOllxlSRJ0iBYcZUkSRqY2VlvteIqSZKkgbDiKkmSNDD2cZUkSZJ6zIqrJEnSwDiPqyRJktRjVlwlSZIGpuzjKkmSJPWXFVdJkqSBsY+rJEmS1GNWXHvoXrVm1yEsg5u6DmBKGzCn6xAmdVZd23UIU3ruLRt2HcKUPvjEz3YdwpT+kX73Rdvx5n7/rgAc8aC3dB3ClA4+++1dhzClo3Y8tOsQprTebC0lLif7uEqSJEk9ZsVVkiRpYGZrYdrEVZIkaWAWlV0FJEmSpN6y4ipJkjQws7PeasVVkiRJA2HFVZIkaWAWzdKaqxVXSZIkDYIVV0mSpIFxAQJJkiSpx6y4SpIkDcxsXYDAiqskSZIGwYqrJEnSwDirgCRJktRjVlwlSZIGxlkFZpkkVyTZeIL2vZMc3EVMkiRJWrpZm7guTVUdX1VHdB2HJEnS0iya5tvKSHKXJN9Lcmn79c4T7DM3yelJLkqyIMl+y3LsXiSuSdZN8p0k5ye5MMl+bUX0PUkuSHJmkvu2+26S5GtJzmpvDx85xmfafc9Nsk/bPifJ+9rjLkjyqpFTvyrJOe05tmn3PyDJR9rtI5N8KMlPk1yeZN+RmA9qz78gyduW9jra9iOSXNzu+7475E2VJEnqxsHA96tqa+D77f3xbgCeX1UPAPYCPpBko6kO3Jc+rnsBV1bVkwCSbAi8G7i2qnZI8nzgA8CTgQ8C/11VP0myOXASsC1wCPCDqnph+8LPTPI/wPOBLYC5VXVrkruMnPdPVbVzklcA/wG8eILY7gHsDmwDHA8cm2RPYGtgVyDA8UkeCWwy/nUk+SfgacA2VVXL8k2RJEmaTFWv+7juAzy63f4ccArwxtEdquqXI9tXJrmaJo+6ZrID96LiClwAPD7Ju5M8oqqubdu/PPL1oe32HsBHkpxHk0hukGQ9YE/g4Lb9FGBtYPN2/09U1a0AVfWXkfN+vf16Nk1yO5FvVtWiqroYuFvbtmd7Oxc4hyap3Xopr+Na4Ebg00meTvMJYwlJDkwyP8n8+ddftvR3SpIkqd/uVlW/b7f/wO3504SS7AqsCfzvVAfuRcW1qn6ZZGfgicA7knx/7KHR3dqvqwG7VdWNo8dIEuAZVfWLce2Tnfqm9utClv5e3DSynZGv76qqT4zfefzrqKrD22/I44B9gX8DHjv+eVU1D5gH8PZ779/rj1GSJKlb0z2Pa5IDgQNHmua1ucrY4/8D3H2Cpx4yeqe92rzUYJPcA/gC8IKqmrJ7bS8qrknuCdxQVV8E3gvs3D6038jX09vtk4FXjTx3brt5Ek2f1bTtO7Xt3wNemmT1tn20q8CKOgl4YVvpJcmmSe460eto99mwqk4AXgfsuArOL0mSNG2qal5V7TJymzfu8T2qavsJbscBV7UJ6VhievVE50iyAfAd4JCqOmNZ4upFxRXYAXhvkkXALcDLgWOBOydZQFP1fE6776uBj7btqwOnAi8D3k7TD3ZBktWAX9H0if0UcL+2/Rbgk8BHVibYqjo5ybbA6W2efD3wPOC+E7yO9YHjkqxNU6l9/cqcW5IkaWVH/k+z44EXAEe0X48bv0OSNYFvAJ+vqmOX9cC9SFyr6iSaKuZt2oTwvVU1vjPvn7i9Ejva/g/gpRO030qTLL5+XPsWI9vzaTsRV9WRwJHt9gHjnrPeyPYHaQaKjfrf8a+jtesEbZIkSSuk5wsQHAF8NcmLgF8DzwJIsgvwsqp6cdv2SOCfkhzQPu+AqjpvsgP3InGVJEnSzFBVf6YZ2zO+fT7tDE5tt8ovLu+xe5u4jlZEJUmSdLvpHpzVV70YnCVJkiRNpbcVV0mSJE2s5wsQTBsrrpIkSRoEK66SJEkD0/PpsKaNFVdJkiQNghVXSZKkgen5PK7TxoqrJEmSBsGKqyRJ0sA4j6skSZLUY1ZcJUmSBsZ5XCVJkqQes+IqSZI0MPZxlSRJknrMimsP3XVhug5hSqevuXbXIUxps1u7jmByv1l9ra5DmNKpa97SdQhTeuKNc7oOYUq/WaPfMV6xRv8rN3Nv6v86QUfteGjXIUxp//MP7zqEKX19h7d0HcIgOI+rJEmS1GNWXCVJkgZmkbMKSJIkSf1lxVWSJGlgZme91cRVkiRpcJwOS5IkSeoxK66SJEkDY8VVkiRJ6jErrpIkSQNTToclSZIk9ZcVV0mSpIGxj6skSZLUY1ZcJUmSBqasuEqSJEn9ZcVVkiRpYJxVYJZJslGSV3QdhyRJkpbNrE1cgY0AE1dJkjQ4i6hpvfXVbE5cjwC2SnJekvcmOSjJWUkWJHkbQJItklyS5Mgkv0xyVJI9kpyW5NIku7b7HZbkC0lOb9tf0ranPfaFSS5Isl+Hr1eSJGnQZnMf14OB7atqbpI9gX2BXYEAxyd5JPB/wH2BZwIvBM4CngvsDuwN/H/AU9vjPRDYDVgXODfJd4CHAnOBHYGNgbOSnFpVv78jXqAkSZqZ7OM6u+3Z3s4FzgG2AbZuH/tVVV1QVYuAi4DvV/PTcgGwxcgxjquqf1TVn4Af0iTBuwNfrqqFVXUV8CPgwXfEC5IkSZppZnPFdVSAd1XVJxZrTLYAbhppWjRyfxGLv3/jP/os10ehJAcCBwLsv9GuPGLdrad4hiRJmq363A91Os3miut1wPrt9knAC5OsB5Bk0yR3Xc7j7ZNk7ST/BDyaplvBj4H9ksxJsgnwSODMiZ5cVfOqapeq2sWkVZIkaUmztuJaVX9uB1ldCHwX+BJwehKA64HnAQuX45ALaLoIbAy8vaquTPINmn6u59NUYN9QVX9YhS9DkiTNQrN15axZm7gCVNVzxzV9cILdth/Z/4CR7StGHwMWVNXzxx2/gIPamyRJklbCrE5cJUmShmjRLJ1VwMR1Faiqw7qOQZIkaaYzcZUkSRoY+7hKkiRpEGZrV4HZPB2WJEmSBsSKqyRJ0sDM1q4CVlwlSZI0CFZcJUmSBsY+rpIkSVKPWXGVJEkaGPu4SpIkST1mxVWSJGlg7OMqSZIk9ZgVV0mSpIGxj6skSZLUY1ZcJUmSBqZqUdchdMLEtYd+t3r/y/9b3pKuQ5jStnVD1yFMas1b1uk6hCldtkb//zAuWKv/P4sb9PxtvPvC/r+Hl605p+sQprRez7/PAF/f4S1dhzClp1/w9q5DUI+ZuEqSJA3MIvu4SpIkSf1lxVWSJGlgynlcJUmSpP6y4ipJkjQw9nGVJEmSesyKqyRJ0sDM1j6uJq6SJEkDs2iWJq52FZAkSdIgWHGVJEkamHJwliRJktRfVlwlSZIGZrYOzrLiKkmSpEEwcZUkSRqYRdS03lZGkrsk+V6SS9uvd55k3w2S/DbJR5bl2CaukiRJWpUOBr5fVVsD32/vL83bgVOX9cAmrpIkSQNTVdN6W0n7AJ9rtz8HPHWinZI8CLgbcPKyHniVJ65JNkryinb7nkmOXdXnmOL8uyT50DQc96lJtlvVx5UkSZph7lZVv2+3/0CTnC4myWrA+4H/WJ4DT8esAhsBrwA+VlVXAvtOwzmWqqrmA/On4dBPBb4NXLysT0iyelXdOg2xSJKkWWy6V85KciBw4EjTvKqaN/L4/wB3n+Cph4zeqapKMlGwrwBOqKrfJlnmuKYjcT0C2CrJecClwLZVtX2SA2iSv3WBrYH3AWsC/wLcBDyxqv6SZCvgo8AmwA3AS6rqkolOlOSZwFuBhcC1VfXIJI8G/qOqnpxkE+BLwD2B04HHAw8C1gO+C/wEeBjwO2CfqvpHkpfQfKPWBC5r45sL7A08KsmbgWcAn27PMz/JxsD8qtqifZ1Pb88xJ8kTgQ8D2wNrAIdV1XEr/O5KkiRNszZJnTfJ43ss7bEkVyW5R1X9Psk9gKsn2O2hwCPaq/TrAWsmub6qJusPOy19XA8G/req5gIHjXtse5qk7sHAO4EbqmonmqTy+e0+84BXVdWDaMrHH5vkXIcCT6iqHWkSy/HeCvygqh4AHAtsPvLY1sBH28euoUlGAb5eVQ9uj/lz4EVV9VPgeOCgqppbVf87xXuwM7BvVT2K5pPHD6pqV+AxwHuTrDvF8yVJkpaq531cjwde0G6/AFiiYFdV+1fV5lW1BU2+9/mpkla44wdn/bCqrquqPwLXAt9q2y8AtkiyHk0F9Ji2YvsJ4B6THO804Mi2Sjpngsd3B74CUFUnAn8deexXVXVeu302sEW7vX2SHye5ANgfeMByvcLG96rqL+32nsDB7es5BVibxRNooCnJJ5mfZP451122AqeUJEnqhSOAxye5FNijvT82DulTK3PgO3rlrJtGtheN3F/UxrIacE1brZ1SVb0syUOAJwFnt6PTViSWhcCd2u0jgadW1fntZf9HL+X5t3J74r/2uMf+PrId4BlV9YvJghktyR+6xf6zczkMSZK0TFZ2rtXpVFV/Bh43Qft84MUTtB9Jk39NaToqrtcB66/IE6vqb8Cv2r6rpLHj0vZPslVV/ayqDgX+CGw2bpfTgGe1++4JLHUC3BHrA79PsgZNxXXM+Nd1BU1/WZh8ANpJwKvS9jxOstMyxCBJkqRxVnni2mbZpyW5EHjvChxif+BFSc4HLqKZC2xp3pvkgvZcPwXOH/f424A928efSTMlw3VTnP8twM9okt7RQWFfAQ5Kcm47gOx9wMuTnAtsPMnx3k4zKGtBkova+5IkSSus531cp036HNzKSrIWsLCqbk3yUODjy9oNoUtD6Cqw5S3LPnVFV7atG7oOYVI/zzpdhzCly9ZY1HUIU1qn+v+zuMGifse4Tu//4sDfBrBcznr9/3Vhg4X9/2Y//YJ+13fW2Pg+vfiF3mDd+0zrN/Nvf7+8F69zvDu6j+sdbXPgq+0ktzcDL+k4HkmSpJU23fO49tUgEtckh9Bc6h91TFW9c7LnVdWlgH1KJUmSZoBBJK5tgjppkipJkjRbVI9nFZhOg0hcJUmSdLvZ2lVgAN3dJUmSJCuukiRJgzOTZ4WajBVXSZIkDYIVV0mSpIGZrYOzrLhKkiRpEKy4SpIkDYx9XCVJkqQes+IqSZI0MFZcJUmSpB6z4ipJkjQws7PeasVVkiRJA5HZ2kdiNklyYFXN6zqOyRjjqmGMK6/v8YExrip9j7Hv8YEx6o5nxXV2OLDrAJaBMa4axrjy+h4fGOOq0vcY+x4fGKPuYCaukiRJGgQTV0mSJA2CievsMIS+Pca4ahjjyut7fGCMq0rfY+x7fGCMuoM5OEuSJEmDYMVVkiRJg2DiKkmSpEEwcZUkSdIgmLjOcEl2T/Kv7fYmSbbsOqZRSeYkuWeSzcduXcc0KskOXceg6ZfkVUnu3HUck0mybpLV2u37Jdk7yRpdx7U0Se6c5IFdxzGZJKsl2aDrOIYmyd2SPLm93bXreJYmyZ2S3L/rOLRqmbjOYEneCrwReFPbtAbwxe4iWlySVwFXAd8DvtPevt1pUEv6WJIzk7wiyYZdBzNekrOTvLLPSVeS9yTZIMkaSb6f5I9Jntd1XOPcDTgryVeT7JUkXQc0gVOBtZNsCpwM/AtwZKcRjZPklPZ7fRfgHOCTSf6r67hGJflSG+O6wIXAxUkO6jquMX3/fUnyLOBM4JnAs4CfJdm326iWlOQpwHnAie39uUmO7zQorRImrjPb04C9gb8DVNWVwPqdRrS41wD3r6oHVNUO7a1XFZqqegSwP7AZcHb7T+/xHYc1aj/gnjRJ11eSPKGHSdeeVfU34MnAFcB9gd4kCgBV9WZga+DTwAHApUn+M8lWnQa2uFTVDcDTgY9V1TOBB3Qc03gbtt/rpwOfr6qHAHt0HNN427UxPhX4LrAlzYeAvuj778shwIOr6gVV9XxgV+AtHcc0kcNoYrsGoKrOo/lea+BMXGe2m6uZ76ygudTYcTzj/Qa4tusgplJVlwJvpqlePwr4UJJLkjy928igqi6rqkOA+wFfAj4D/DrJ29qqVx+s3n59EnBMVfXye97+rvyhvd0K3Bk4Nsl7Og3sdknyUJoPUt9p2+Z0GM9EVk9yD5pKXN+unoxZo+1i8VTg+Kq6hfZvZE/0/fdltaq6euT+n+lnLnHLBO9dn77PWkGrT72LBuyrST4BbJTkJcALgU91HBNJXt9uXg6ckuQ7wE1jj1dVby4ttn30/pXmn8j3gKdU1TlJ7gmcDny9y/hgsRifCHwNOArYHfgBMLe7yG7z7SSXAP8AXp5kE+DGjmNaTJLXAM8H/kTzO3JQVd3S9im9FHhDl/G1XkvT7ecbVXVRkvsAP+w2pCUcDpwE/KSqzmpjvLTjmMb7BE0l83zg1CT3Bv7WaUSL6/vvy4lJTgK+3N7fDzihw3iW5qIkzwXmJNkaeDXw045j0irgAgQzXHtZe08gwElV9b2OQxrre7s0VVWH32HBTCHJj2gSmWOr6h/jHvuXqvpCN5HdFsPZNJfCPg18rapuGnns61XVeVUYoK3+XltVC5OsA2xQVX/oOq4xSd4GfKaqfj3BY9tW1c87CGup2oR6vfaSslZSktWr6tau4xgzgN+Xp9N8OAb4cVV9o8t4JtK+b4fQ/P+D5gPVO6qqTx8CtAJMXGewJO+uqjdO1daVJM+sqmOmautSktdW1QfGtb2mqj7YUUiLSXKfqrp8XNuWVfWrrmIaL8kzgROr6rokbwZ2pvkHck7Hod1mKd0qrmsvI/dCki8BLwMWAmcBGwAfrKr3dhrYiLZbxTtoqoUnAg8EXldVfRoU+hrgs8B1NB9KdwIOrqqTOw2sNZDfl7sDDwEWAWf1KamGZrYa4H+q6jFdx6JVr4/9UrTqTDSI6J/v8CiW7k3L2Nal50/QdsAdHcQkjl3Gti69pf0nvDvNQJ1PAx/vOKbxzgH+CPyS5tL2H4ErkpyT5EGdRna7vg8qgv4PLAJ4YRvjnjT9mP8FOKLbkBbT69+XJC+mmVXgacC+wBlJXthtVIurqoXAoj7OBKOVZx/XGSjJy4FXAPdJsmDkofWB07qJ6nZJ/pmmP+amST408tAGNINiOpfkOcBzgS3HTaGyPvCXbqK6XZJtaEaUbzhukNgGwNrdRLVUC9uvTwLmVdV3kryjy4Am8D2a7iAnASTZE3gGTWXuYzTVpa6NDir6SNsHt2+XzJYYWNS/SS4YC+iJwBfa/sJ9CrLvvy8HATtV1Z8BkvwTTd/Rz3Qa1ZKuBy5I8j3amXUAqurV3YWkVcHEdWb6Ek1F5l3AwSPt11VV50kXcCUwn2aqrrNH2q8DXtdJREv6KfB7YGPg/SPt1wELJnzGHev+NFWtjYCnjLRfB7yki4Am8bt2kODjgXcnWYv+Xe3Zrapue9+q6uQk76uql7bx9kHfBxVB/wcWQTOt3ck0Fes3JVmf5pJ3X/T99+XPNH9nxlzXtvXN1+nB4FmtevZxnQXSrGxyWxWuqv6vw3Buk2SNPvUhHKIkD62q07uOYzLtIIm9gAuq6tJ2uqQd+tKnEKBNZL4PfKVt2o8mcdiLpg/fzl3FNpm+DSqCJQYWrQus36c+kO3AtrnA5VV1TVsx3LSq+vCBtPe/L0k+D+wAHEczvdQ+NB/mF0C/ZoXRzGTFdQZrVw75L5oJ6q8G7g38nP5MWn7OBJc6r6Wpxr5j7FJUF5L8pKp2T3Idi8/9F5qZDzpdJjLJG6rqPcBz224Ni+nT5bCquiHJ1TSjkC+l6Q7StymSngu8Ffgmzff7tLZtDs2cpJ1LcjfgP4F7VtU/J9kOeChNH8heaJOuVwCbAwfS/O25P/2a07WA7WiuWBwOrEuPutcM4Pflf9vbmOPar31a3IYkv2KCeVur6j4dhKNVyIrrDJbkfOCxNKMrd0ryGOB5VfWijkMDbhuBvJCmawPAs4F1aCaA372qnrK05852SZ5SVd9K8oKJHq+qz93RMS1NO/3ZLjSrpN2vnQP3mKp6eMehAbeNQP58Ve3fdSyTSfJdmj63h1TVjklWB86tqh06Du02SY6m6f7z/Kravk1kf1pVc7uN7HZJPk7TNeCxVbVtmuWST66qB3ccGtD/35ehaCvpY9amWaL2LlV1aEchaRWx4jqz3VJVf06yWpLVquqHST7QdVAj9hh3CfaCJOdU1c7pwdrcbUJzUVVt03Us41XVt9qvvUlQJ/E0mimHzoFm6eG2X2EvtJe0751kzaq6uet4JrFxVX01yZsAqurWJAunetIdbKuq2m/sKkBbPezTwCeAh7R/Y84FqKq/Jlmz66BG9Pr3JckuNPOj3puRHKL6t1z3+Ct2H0gz77WJ68CZuM5s1yRZDzgVOKq9/PT3KZ5zR5qTZNeqOhMgyYO5fQnLzvvttQnNL5Js3pd+wWOSfItJli+sqr3vwHCmcnNV1Vi3kPRv6WFoVnE7rZ1BYnQEcp/66/29rSKNvY+70b8lk29Ociduj3ErRlbF64lb2g+lYzFuQr8GZ/X99+UompkFLqBf79tikowWRVajqWKb88wAfhNntn1oRvS+jmZ98w1p+nT1xYuBz7TJdWhGSL+4/UP9rk4ju92daZYOPJPFE5quE8P3dXz+5THR0sOf7Dim8cb67a1Gz/rqjXg9cDywVZLTgE1o5tHsk7fSLDywWZKjgIfTr3mPAT4EfAO4a5J30ryHb+42pMX0/fflj1V1/NS7dW50NphbgV/Rk/7qWjn2cVXnxiaJrqq+VY9I8qiJ2qvqR3d0LEOWHi49PJEk61TVDV3HsTRtv9b707yPv+jjrBxtVXg3mhjPqKo/dRzSEtp5kB9HE+P3e7ikb29/X5I8DngOzSwct1XTq6pXU09lAKsKasWYuM5AE4yEX0zXI+LHtPMTPgPYgsX7SvWpKtxLSb5aVc9KcgETz3rQq/5mfZdkbHT+elW1eZIdgZdW1Ss6Dm0xSR7Gkr8vn+8soAkk2ZQl+z+e2l1ES2q7CtyNxWPsVXegvkryRWAb4CJu7ypQVdWr1bPGxkuMazu7qvqyEp5WkF0FZqCqWh8gydtpJtH/Ak1Csz9wjw5DG+84mj56Z9O/fnDAbf0IPwxsC6xJ0wf37z1I/l/Tfn1yp1EsgzQre70buCvNz2EvphQb5wPAE2guxVNV5yd5ZKcRjZPkC8BWwHncvrpSAb1JXJO8m2YO3MWSGpp+9r2Q5FU0XRquonkfQxNjLz7sDeD35cFVdf+ug1iaDGtVQa0AE9eZbe+q2nHk/sfbKbL6MqryXlW1V9dBTOEjNNN0HUPTuf/5wP06jQioqt+3X3+d5O7ArjT/fM/q02TvrfcAT+nb5djxquo34wbA923E/i7AdtXvy2RPpZnGqZcfRFuvoYmxj6s9Qf9/X36aZLuqurjrQJZiSKsKagWYuM5sf0+yP81qQEXTL6lPswr8NMkOVXVB14FMpqouSzKnqhYCn22n0XlT13EBJHkxzQeRH9BUZj6c5PCq6tO64Vf1+J/wmN+0l+EryRo0yU3fYr4QuDvNVZS+uhxYg55eQWn9hv7NxjCq778vuwHntRP830TPuidV1XHAcRnAqoJaMSauM9tzgQ+2t9HVgPpid+CAvv4BbN3QzvF4Xrtgwu/p17rhBwE7jVWP2oExPwX6lLjObyem/yb9HczxMprfk02B3wEnA6/sNKIlbQxc3M5wMfo+dj3DxagbaH5Xxg/c6c1KbjTJ9SlJvsPiMfZl6rO+/770/SrZmHOTvJKm28Dokue96our5WfiOoNV1RU0U2JNKMmbqqrLaaf+ucNzL6t/oenX+m8004ptRjOgrC/+THMJbMx1bVufbECT0Ow50lZAX/4R04587/XKWcBhXQewDI5vb332f+1tzfbWN73+fWm7J+0ObF1Vn23nwV2v67gm8AXgEpq+64fT/H73uZKtZeSsArPYRKMuO4hhiT+ATlcytSSvbzfnAjvQDHQrmg8qC6rqgG4iG6b2Z+8lLDli3+rMcmoXINi8qn7RdSxa9YayJG2Sc6tZ6nxBVT2w7QL046rarevYtHKsuM5unS7FOPoHkGYN9jWAL9JMWt6pCaaZWkwPujOMTZI/NnH+mOM6iGVSST4HvKaqrmnv3xl4f8+SwuOAHwP/Q88GZU0yvV3fRpuT5Ck0i2OsCWyZZC5weB+6M/R9tbkkb6iq9yT5MBPE2aPuFr1eknbE2BzH1yTZHvgDzUwNGjgT19mt63J7n/8A9nqaqap6W9cxLIcHjiWtcNva8Dt1GM9E1qmqN3YdxETGprcbiMNoZrg4BaCqzktyny4DGjG22tzTaQa5fbG9/xyaqbG6NnYZe36nUUyt70vSjpnXfkh+C033lfXoz4w6WgkmrrNbpxVXevwHsKp+3XUMy6K9xP0GlhyA8NjOglrSaknuXFV/BUhyF/r3t+fbSZ5YVSd0HchUktyVxb/XfZo4/5aqunbctGK9WM9+bLW7JO+vql1GHvpWks6Txar6Vvv1c13HMoW+L0kLQFV9qt38EdCXD09aBfr2z0N3rGM6Pn/v/wCOu0y7Jk13hj4sQDDmKOBomgrxy4AXAH/sNKIlvR84PckxNB+W9gXe2W1IS3gN8KYkN9NcYuzjZfi9ad7LewJX06xO9XOaDy19cVGS5wJzkmwNvJpmlos+WXd0OdAkWwK9+dCc5H7Af7Bkf+u+fBjdBDgW+BtNN69DgT06jWgCrsw4czk4awZr/wB+HLhbVW2f5IE0ixK8o+PQbtPnNbnHS1NG2gfYraoO7joeuH0Jw7EBCG3bWVX14K5jG5VkO2DsH+8P+jZ5eZLVaEYdb1lVhyfZHLhHVf2s49Bu0y4e8ljgf9pBJ48BnldVL+o4tNskWQc4hNtHxJ8EvKOqbuwuqsUl2QuYRzMtVmg+ALy0qk7qNLBW+33+fzQrCt7W37qqzu4sqBFLWUr1tr8/fZHkRG5fmXH0fXx/Z0FplTBxncGS/Ihmns9PVNVObduFVbV9t5EN29ho1a7jAEhyRlXtluQk4EPAlcCxVbVVx6GRZIOq+lvbNWAJVfWXOzqmpUnycZpL2o+tqm3bvnEn9+kDQJL5VbVLm9jsVFWLkpw/bnW8TiXZuarO6TqOqbTVuG3au5f0aaWvsQ+jXccxXpKXA6+guew+OiB0feC0qnpeJ4Ethf/rZi67Csxs61TVmeP6m93aVTBjBjZKenSt69VoZkHoTfUIeEeSDYF/Bz5MMwfk67oN6TZfounCcDaLf7/H1obvU7+zh1TVzu2qaGMDyPo2x+c1SdYDTgWOSnI1/VoJD+D9aZYgPhY4uqou7Dqg8ZI8f1zTjkmoqs93ElBr5APet5K8AvgGiy9A0PUHvS8B3wXeBYxecbquB7FNZBArM2r5WXGdwZJ8l2bi/GPaf8r7Ai+qqiFM/N8LST47cvdW4Argk1V1dTcRaTok+RnwMOCs9ndlE5qKay8q63Db4MV/0HyA2h/YEPhi35KGNnF9FrAfzQepo3vWPenDI3fXBh4HnFNV+3YUEgBpVhAsJh40W1XVpw96vZfkYuC+QJ9XZtQKMHGdwdppaObR/EP+K80v8PPaFbU0AwykH/P3q+pxU7V1Kcn+NInWzsDnaAaQvbmquh7AeJsk7x4/ZddEbX2RZAeaGS/2q6q+Va9vk2Qj4CtVNZSlTLUMktx7ovahzBijpevTmutaxarq8qrag2YU6DZVtbtJ6/JJcp8k30ryxyRXJzmuR/NSQjMLw5toJ9uuqgXAszuNqJVk7fby58ZJ7pzkLu1tC2DTjsNbTFUdRZNkvQv4PfDUPiWtrcdP0NarqydJtk1yWJoFPD5MM6PAvToOayp/B7bsOogxSV7ZJtNj9+/cdh3Q8rlugtuVnUakVcI+rjNYktfQrEh1HfDJJDsDB1fVyd1GNihfAj5Ks1gCNEnhl4GHdBbR4nrZj7n1UuC1NNM3nc3tl0D/Bnyko5iWqqouoVnbvFdGB8UkWTDy0PrAad1EtVSfoZme7QlV1cskIYuvoDUH2Bb4ancRLeElVfXRsTttf+uXAB/rMKYhOgfYjOZqY4CNgD8kuYrmPe7FLA1afiauM9sLq+qDSZ4A/BPwL8AXABPXZbdOVX1h5P4XkxzUWTRL+lOSrWj/Ebf9mH/fbUiNqvog8MEkr6qqD0/5BC3NYAbFVNVDu45hGbxvZPtW4NdV9duugpnAnCSpth9fkjk0c0hr+XyPZoaVkwCS7Ekzr+tnaT4E9KX4oOVkV4GZbazC9UTg81V1ERN3/NfSfTfJwUm2SHLvJG8AThi77N11cMArgU8A2yT5HU2F8+WdRrSkP6RdyjfJm5N8va3+axlU1bVVdUVVPQf4LU23kALWa+eb7VySr7ZfL0iyYOR2wbgqcefaFbQuoalY3xm4uduIlnAicHSSxyV5HM0VnhM7jmmIdhudm7e90vjQqjoDWKu7sLSyHJw1g7Uj4jel6b+1I81lsVP6OEdgX7UjfZemNyN92xHnq1XVdV3HMt7Y5ORJdgfeAbwXOLSqrHgshyT/BhwGXMXty6j2YpR0kntU1e+HMCAmybNofgZPofkg/wjgoKo6tsu4xqRZDOOlNLMdQFM5/FRVLVz6szRekpOB7wNfaZv2o+knvhft7CFdxaaVY+I6g7V/AOcCl1fVNUn+Cdi0HcCjGSDJfwLvqapr2vt3Bv69qt7caWAjxhZsSPIu4IKq+lJ6tIjDUCS5jGa+2T93HcuQtQs4PH5sSrt26rP/6dlCDncCNq+qX3Qdy1Al2Rh4K7B723Qa8Daa1bQ2r6rLuopNK8fEdYZrE5mtaeYrBKCqTu0uomFJsgbNpfdHtk2n0KxEdktnQY2YKAHMBEsydinJt4Hf0VQ7dqaZi/TMPiUKQ5DkhzQJV18G391mYIuKXFBVO4zcXw04f7StS0n2pqkIr1lVWyaZCxxeVXt3G5nUDw7OmsGSvBh4Dc10NOcBuwGnc/ua8Zrax4E1uH1E77+0bS/uLKLFzUmy1tiSlW2lpm/9t55Fc3nufW3l/x40SxFr+VwOnJLkOyy+otJ/dRfSbTGs33UMy+HENEskf7m9vx9wQofxjPdWYFeaD8lU1XlJejNdV98l+UBVvXbc7BG38QPA8Jm4zmyvAR4MnFFVj0myDfCfHcc0NA8eVxn8QXupsS+OAr6f21f4+leaCfT7ZGNgPsDIYKLeTTs1AP/X3tbEUeYrrKoOSvIM4OFt07yq+kaXMY1zS1VdO26KOy+NLruxWWDeN+leGiwT15ntxqq6MQltVe6SJPfvOqiBWZhkq6r6X7htNbLeDJKoqne3o7bHBnK8fXQkbU98h9uXslybZrDgL4AHdBnU0FTV2wCSrFNVN3Qdz5BV1deAr3Udx1JclOS5NFdTtgZeTbOQg5bB2Pys7ewRwG1d5jZzfMfMYOI6s/22XYHlm8D3kvwV6M3o3oE4CPhhksvb+1vQVDV7o6q+SzPPZy+N7zvYToXlSkDLKclDgU8D6wGbJ9kReGlV+V4ugwH1w30VcAhNd5AvASfRzMah5ZDkFGBvmjznbODqJKdV1es7DUwrzcFZs0SSRwEbAidWVd/mLeytJGsD/05T0bwGOAv476q6scu4xiR5OvBu4K40/4D79k94QuMHyGhqSX4G7AscPzYgL8mFVbV9t5FpOlhZXzkjs5m8mKba+taxqfm6jk0rx4rrDNfOnbl1VX22nfZlU2CyuUm1uM/TLFH69vb+c2n6UD2zs4gW9x7gKVX1864DWZokoxWO1WhmFujlcqB9V1W/Gdf3sTfdVrRqJHkY8CmsrK+s1duBoM+iqWBrhjBxncGSvBXYBbg/zTJ3awBf5PZBCZra9lW13cj9Hya5uLNolnRVn5PW1uiI81tp+rz2tX9hn/2mTWqqnabtNUDfv/dafv8NPAE4HqCqzk/yyMmfogkcTtPN4idVdVY7PuHSjmPSKmDiOrM9DdgJOAegqq4cW3pTy+ycJLu1ywSS5CG0I+R7Yn6So2n6MY9OkfT1ziIaZ2RQ0Xrt/eu7jWiwXgZ8kOaqye+Ak2mW/NUMY2V95VXVMcAxI/cvB54xdj/Jm6rqXV3EppVj4jqz3VxVlaTgtmVBtXweBPw0yf+19zcHfpHkAvqx3OYGwA3AniNtBfQmcU2yPU33iru09/8EvKCqLuw0sIGpqj8B+3cdh6adlfU7xjMBE9cBMnGd2b6a5BPARkleArwQ+GTHMQ3NXl0HMJmq6tUMB0sxD3h9Vf0QIMmj27aHdRjT4LST0L+KZmaL2/52O6H6jDNaWb+S5nK3lfVVL1Pvoj5yVoEZLsnjaapxAU6qqu91HJJWoXbWgxfRzIk6uqzvCzsLapwk549f3nWiNk2uXfji08AFwKKx9tH5KiUtm74tja1lZ8V1hmsTVZPVmesLNKtQPYFmMML+9O+y4uVJ3sLtK9o8j2b5Ui2fG6vqQ10HoenVDiL6IM0S3UWzTPfr2j6aWnWsuA6UFdcZaEATbWsljcxVuKCqHtj2iftxVe3WdWxj2lVr3gbsTvNz+WPgbVX1104DG5h2NaWtaQZljQ7EO6ezoLTKJTkD+Cjw5bbp2cCrquoh3UU18yT5/6rKJdAHyMRVGrAkZ1bVrklOpVmN6g/AmVV1n45D0yqW5F3AvwD/y+1dBaqqHttdVFrVJpok3641yy/J/YCPA3erqu2TPBDYu6pchWzgVus6AE2vJLsn+dd2e+N2gIdmjnltRfPNNPM+XkyzklZvJPleu/Tw2P07Jzmpw5CG6pnAfarqUVX1mPZm0jrzfDfJwUm2SHLvJG8ATkhylyR36Tq4Afkk8CbgFoCqWkBTvdbA2cd1BptgAYI1cQGCGWHcalRjMwt8tP3at2nPNq6qa8buVNVfk9y1w3iG6kJgI+DqjuPQ9HpW+/Wl3N7lKzRJVwFeTVk261TVmePmw721q2C06pi4zmwuQDBzjX0f7w88mHaVHeApwJmdRLR0i5JsXlX/B5BkCybug63JbQRckuQsFu/j6nRYM8sbgROr6m/toMadgbfbl3m5/SnJVrR/a5LsC/y+25C0Kpi4zmwuQDBDjaxGdSqwc1Vd194/jGZJ1T45BPhJkh/RVI4eARzYbUiD9NauA9Ad4s1V9dUkuwOPBd5H01fTwVnL55U080Vvk+R3wK9oZjTRwJm4zlBpro982wUIZry7ATeP3L+5beuNqjoxyS40yeq5NMvT/qPToAbI+VpnjbHlXZ8EfLKqvpPEAUXLqZ0+bI+2YLPa2Id7DZ+J6wzVVlqfCbwe+BvNJeVDXYBgxvk8cGaSb7T3nwoc2Vk0E0jyYpplK+8FnEczP+XpNNUkLaNx09ytCawB/N3p7Wac37UFh8cD706yFg6kXm7tgNDn0640N9bXtape3V1UWhWcDmsGS/I54CNVdVbXsWj6JNmZ5vI7wKlVdW6X8YyX5AKafrhnVNXcJNsA/1lVT+84tMFqr6jsA+xWVQd3HY9WnSTr0Cw1fUFVXZrkHsAOVXVyx6ENSpKfAmew5Epzn+ssKK0SJq4zWJJLgPsCvwb+PtY+fo5AaTolOauqHpzkPOAhVXVTkouq6gFdxzZ0YwtQdB2H1Dcu6Tpz2VVgZntC1wFIwG/by3bfBL6X5K80H6a0HJKMVqhXo5nq7saOwpH67gvt2I5vs/gsHH/pLiStClZcJd1hkjwK2JBmup+bp9pft0vy2ZG7twJX0AzecV5XaZwkrwTeCVzD7X3Dy1UFh8/EVZJ6Lskc4NVV9d9dxyINQZLLgV2r6k9dx6JVy5GKktRzVbUQeE7XcUgDchlwQ9dBaNWzj6skDcNpST4CHM3igy1dUUla0t+B85L8kMX7uDod1sDZVUCSBqD9BzxeVZXz4UrjJHnBRO1OhzV8Jq6SNABJ7tOuBjRpmyTNZCaukjQAE81LmeTsqnpQVzFJfZPkq1X1rHbhk/EJTlXVjl3EpVXHPq6S1GPtSmMPADYcN5frBsDa3UQl9dZr2q8/Bw4aaQ/wnjs+HK1qJq6S1G/3B54MbAQ8ZaT9OuAlXQQk9VVV/b7dvG9VLbbQSfshUANnVwFJGoAkD62q07uOQ+qzJC8HXgHcB/jfkYfWB06rqud1EphWGRNXSRqAJO8B3gH8AzgReCDwuqr6YqeBST2SZEPgzsC7gINHHrrO5V5nBhNXSRqAJOdV1dwkT6PpOvB64FQHm0iaTVw5S5KGYY3265OAY6rq2i6DkaQuODhLkobhW0kuoekq8PIkmwA3dhyTJN2h7CogSQOR5C7AtVW1MMk6wAZV9Yeu45KkO4oVV0kajm2ALZKM/u3+fFfBSNIdzcRVkgYgyReArYDzgIVtc2HiKmkWsauAJA1Akp8D25V/tCXNYs4qIEnDcCFw966DkKQu2VVAkoZhY+DiJGcCN401VtXe3YUkSXcsE1dJGobDug5AkrpmH1dJkiQNghVXSeqxJD+pqt2TXEczi8BtDwFVVRt0FJok3eGsuEqSJGkQnFVAkiRJg2DiKkmSpEEwcZUkSdIgmLhKkiRpEExcJUmSNAj/Px/6v9Jq3TQTAAAAAElFTkSuQmCC", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "corrmat = df.corr()\n", + "f, ax = plt.subplots(figsize=(12, 9))\n", + "sns.heatmap(corrmat, vmax=.8, square=True);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGkCAYAAAB+TFE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dWH39m+q9Xuqvde3eTeG7bBdAwm9A6BBEJJvtASSggJCYQk1IQSCBBIqKaYjgvuvTfZktV71/Y+8/2x0tpCkrst28z7PPvM7MydmbNl7m/uveeeI0iSJCEjIyMjIzPAKAbaABkZGRkZGZAFSUZGRkbmJEEWJBkZGRmZkwJZkGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMC1UAbICNzuIiSiD8YwBf04Q368AX9+AKhZfd7b8CHL9j98qNRqjFpIzHrIkmOTMCkjUQQhIH+KDIyMvshC5LMgODyuWlyttLhttLpsdLhtuL0uXAHvLgDHjx+D+6AF4/fgyfg3U9sQgJztBg1EeREZzAsoZCihEFkWFJkgZKRGWAEOVKDzPGm1dXO7pa9lLZVUmtroNbWQIfb2qucVqVFr9KiV+nQqbXoVDr0Ki06lRaNSoNWqUGjVKNVadB0rytD6z22qfbbp9KgUajxBX3YvA7a3Vbq7Y3UWBvY3bqXOlsjAKmmJM7ImsD0zAmYdaYT/RXJyMggC5LMccDld7O1cReb6newq6WUFmcbEBKc1MhEUsyJpJqSSDTGEa23YNGbsehMaJTqE25ru6uTjfXbWVq5hpK2ctRKNWflTGVO4Wyi9OYTbo+MzI8ZWZBkjgl2r4PVNZtYX7eVHc17CIpBIjURDI7PZ1BcLoWxuWRaUlEoTl4/mlpbA/OLF7Csai1KhZI5hbO5uHA2GpVmoE2TkflRIAuSzBHjC/rZVL+dZZVr2dywg6AkkmSMZ0xKEWNThpMfk31SC1B/NDpaeG/7fFZVbyAhIpZbRl/FiKTBA22WjMxpjyxIMoeFJEkUt+xledU6VtdsxOV3E6UzMyVjLFMzxp9WzgE7mnbz+sb3qbM3MjtnGteNuBSt3FqSkTluyIIkc0jYvA6WVqxhYflyGuzNaFVaxqeOYFrGeIbGF5ySLaFDwR/08972+Xy+ZyHJkQn8cuJPyYxKHWizZGROS2RBkukXSZLY3bqXBWUrWFOziYAYoCA2h7NypjIudQQ6lXagTTxh7GjazQtr38Tpc/GzMdcyNXPcQJskI3PaIQuSTC9EUWRt3WY+Lf6Wio4aDGo90zLGc2bOFNItKQNt3oDR6bHxzKrXKG4p5by8GVw74lJUCuVAmyUjc9ogC5JMmIAYZFnlGj7b/R0N9maSjPFcWHgWUzLG/qhaQwciIAZ5Z+vHfFWymEFxufxq0q1Y5HlLMjLHBFmQZJAkic0NO3h7y8fU2RvJikrjkkHnMC5lxGk7NnS0rKhax8vr3yFSY+S+KT8jOzpjoE2SkTnlkQXpR06rs51XN/yXLY27SIqM57rhcxmdXHTaeModTyo6anh6xctYvXZuH3stUzLkcSUZmaNBFqQfKZIk8X3FKt7a/BEiElcOvZCzc6ejUsrhDQ8Hq8fG31f9i+KWvVxUeBZXD7tYblXKyBwhsiD9CPEEvLy07m1W12xkSHw+t4+9jnhj7ECbdcoSCAZ4c/OHfFe2jBGJg7l74s0YNREDbZaMzCmHLEg/MhrtzTy98hVqbQ1cNWwOFxWehUKQn+iPBQvLlvP6pveJM0Rz/5TbSTUnDbRJMjKnFLIg/YjY21bJn5a9CMAvJ95CUeKgAbbo9GN3y17+tvJVfEE/d064kbEpwwfaJBmZUwZZkH4k7GjazV9WvIxJa+ThM+4h0Rg30CadtrS62vnrilco76jmnLwzuHb43AGJZC4jc6ohC9KPgE31O/jbyldIjIznoel3Ea23DLRJpz2+oJ//bfuUr0oWk25O4c7xN5AZlTbQZsnInNTIgnSas6u5hCeWvUiqKZFHpt+DUSsPtp9INjfs4J/r3sbudXBR4Vn8ZPB5cjoLGZl+kAXpNKasvYrHv3+WaIOF38/8NSatcaBN+lHi8Dp5e+vHfF+xiviIGK4ZfgkTUkfJc71kZH6ALEinKY2OFh5a+Bd0Ki1/mHkv0QbLQJv0o2dH0x7e3Pwh1dY68mOyuXLYhQyJL5CFSUamC1mQTkOcPhcPL3waq9fOE2feT1Jk/ECbJNOFKIosqVzD+9vn0+GxkhudycWDzmZ08jCUcqBWmR85siCdZgTEIE8u+wc7W0p4ZPrdDI7PH2iTZPrAF/SzpGI183d/R7OzjWi9hZnZk5iZNZnYiOiBNk9GZkCQBek049+b3ueb0iXcPvY6ZmRPGmhzZA5CUAyysX47i8pXsKVhFwgwInEw0zLHMzZ5uOwAIfOjQhak04hllWt5ce2bnJ8/ixtG/mSgzZE5TFqcbSwqX8nSyjW0uTrQq3VMSB3F9MzxFMblyhE1ZE57ZEE6TajsqOXhRX8hNzqTR864Rx6POIURJZHilr0srVzDmppNeAJe4gzRTM0cx7SM8SSbEgfaRBmZ44IsSKcBDp+T33z3JD7Rz1OzfysnjDuN8AZ8rK/bwrLKtWxtKkaSJPKiM5maOZ7J6WOIlF35ZU4jZEE6xRElkaeWv8S2pmJ+P+P/yI/NHmiTZI4THW4rK6rWs6xyDVXWOtQKFVMzxnF+wSzSzMkDbZ6MzFEjC9Ipzkc7v+SDHV9w86grOCfvjIE2R+YEUdlRy4KyZSytXIMv6Gd44mAuLDiTYQmF8rwmmVMWWZBOYbY07OTPy/7BlIyx3Dn+Rrki+hFi9zpYULacb0qX0OmxURibw2VDL2CoPOFW5hREFqRTlGZnGw989ydi9VH88cz70cruwT9q/EE/i8tX8UnxN7S7OxkUl8tlQy5gaELBQJsmI3PIyIJ0CuIL+nl00V9pdLTw5FkPkihHYpDpwhf0s7h8JZ8Uf0OH28qQ+HyuGHoRhXE5A22ajMxBkQXpFOTl9e+wuHwl90/5OWPkBHAyfeAL+llYtpxPir/F6rExMmkIVwy9iOzo9IE2TUamX2RBOsVYXL6Kl9e/zSWDzuGqojkDbY7MSY4n4OWb0iV8tvs7nD4X41NHcsXQC+X06jInJbIgnUKUt1fxyKK/UhiXy0PT7kKhkGfuyxwaLp+bL0oW8sWeRXiDPqZmjOOyIeeTIGcOljmJkAXpFKHd1clvFj6JUlDy5OzfyLmNZI4Im9fBZ8Xf8s3epYhikJnZk7l08HlyehKZkwJZkE4BPAEvv1v8Nxrszfxx1n2kW1IG2iSZU5x2dycf7/qaReUrUQgKzs6ZxsWDzsakixxo02R+xMiCdJIjiiJ/X/0v1tdt5YEptzMqedhAmyRzGtHsaOWjnV+xtGoNWqWGM7OncF7BTGINcgoMmROPLEgnMZIk8eqG/7GofAU3jryM8/JnDrRJMqcpdbZG5u38ilU1GxGAieljuLDgTLKi0gbaNJkfEbIgnaRIksQ7Wz/m8z0LmTv4HK4cdnw86oJBkU6Hlzarh3abhw6bB5vLh9sTwOUN4PYG8PqCiKLUZReIXX8ZhSCgUSvQqJVdLwUaVWhd27Vdq1ai1SjD65qu99of7NOolSgVB48sIIoSgaCIPyASCIrh9e6XLxDE7xfx+oP4A0F8fhGfP4gvIPZ+7w92lQsd173PH+h5vD8QRBQP7ftUKEClVIReqtBSHV4Xwvu6P7tOq0Kn6VrXdK+r0He912qV6DUqIvRqjHo1Wo3yuEZgaHW281XJYhaWr8AT8DIsoYBz8mYwKmmoHEFe5rgjC9JJiCRJfLDjC+bt+oqzc6dz86grjroS8ngDVDbYqGiwUd/ioLbZQX2Lg8Z2V1hs9ketUqDXqtBrVWg1ShSCgCCA0L0ERJEeFXf3eiB4ZH8phUIgpEn7rkHX9QACAZFgH7YeLoIAalVINNUq5T5RVSm6titRh8U1tO1QxBJCYr2/WAYCUg/h3CegQTy+rpc3cMifS6UUwuJk1GuIMITWTREaok06oiK1RJl0REXqiDJpMUVoD9n2/XH6XCwsW8HXpd/T7u4kRh/FrJzJzMyeTLTectjnk5E5FGRBOskQJZE3N33IN3uXMDNrEreNveawE7OJokRVo40dZW2UVHdQVtdJXbOD7jpPo1aSEhdBcpyR5NgI4qIMxJh0oQqtqxJTq47cpTwoSqFWiD+I1xdqhXi71n1d6/vv6173B8Ww/RBqjUmEBBpCItnd2lB3tz66liqlIiwePxQUjSr0XqtWolYpUSmFky7Omz8g4vUF8PiC4VapZ7/3Trcfh9uPw+XD4fbve+/243T5sTq9uDyBXudVKASiIrXERxlIiDGQEG0gMTqChBgDybERRJt0B/wuujPaLihbxtbGYhSCgjEpRczMmszwxEFyq0nmmCIL0kmEL+jn5XVvs6J6PRcWnMm1w+ceUsUZFCUq6q3sKGtjR1kruyrasLv8AMSYdeSkWMhJNZOTYiYr2UysRY/iCJ6aZU5uPL4AnXYvHTYvHfZQ92uH3Uur1U1Tu4umdhdtnW72b4xF6NWkJ0SS1vVKT4wkPSGSGHNvoWq0N7OwfAXfl6/C7nNi1pmYkj6WaZnjybSknnQiL3PqIQvSSUKzs42/r3yV8o5qri66mDmFs/u9wYNBkbI6KzvKWtle1kZxRRvOrqfjpJgIhubEhF7ZscRHG07kx5A5yfEHRFo6XTS1uahvcVDVZKemyU51ox2b0xcuF6FTkZNqITvFTE6qhdxUM8mxRhQKgUAwwObGnSytXMPG+u0ExSBp5mSmZ45ncvpYYgxRA/gJZU5lZEE6CVhft5WX1r2NKIncOf6GXvHp/AGRvTWd7ChvZUdZG8WVbbi9QQBS4oxdAhTLsJwYYsz6gfgIB0QK+Am6bIg+N5Lfi+j3IPm6lx5EvxcpGABJBFFE+sESQFAoQaEILZXK0FJQIigUoFCiUGsR1FoUGl1o2fU+tK5DUGtCx8j0i9XhpbpLnCobbJTVdlLZYMMfCP0Geq2SrOSQQOWkmMlNtWA2w7r6zSyrXEdJWzkAeTFZjE8dyfjUEXIkCJnDQhakAaTd1cm/N7/PutotZFhS+fWkW0mMjMfl8bO7qoNdFW3sKm9nT3UHPn9IgNITIxmaHRKgodkxRJl0A2K7JEmIHicBa0voZWshYG0l6LKFxMdlI+gOrUs+z1FcqbuVeAycGdRaFFoDCl0ECm0ECp0h/F7Zva17v26/dW2onKDW/ui6pQJBkZomO2W1VspqOymrs1Jeb8XrC/0fNSoFWclmslPNxMYo6FRUU+raRpW1GoBMSyrjUkcwPHEwOVEZcrgrmQMiC9IAYPPY+aJkEd+ULiEgipybcS7p6qGUVHWys6KNijorogQKAbJTzAzOimFIduhlNmpPiI2SJCG6bPg7m7vEpuvV9d5vbUXyunocI6g0KCPMKPQmlIZIlAYTCoMJpcGEUh+JQqtHUOtCrReNLtRy0YRaMChVCIIi1ArqWiIowgIQai0FkcTuZTDUihKDSMEAUsC3r7Xl94aXkt+D6PeFlj43oseF6HEieruXToIeJ6LHBWJvp4AeKJQotPougdonVGFh2/8VFrKe5QXNgZ0ITgWCokRds53yOitldVb21nZSXmcNO1WolAIp8Qb0Ji92ZR2tVCAYbBh1OoYlFDI8YRDDEgcRZ4g+5b8LmWOLLEgnCEmS2NNcwVc717G2pByf3UBkMAWvw4DLHbqRNWolhRlRDM6KYXBWNAUZURh06uNjjxgkaG8nYGsjYG3Bb23eJzrWZgLWVqSAr8cxgtaA2hyHyhyHyhzftYwLb1MYTKdsBSNJElLAFxIs736C1f3yunq++trmdYe6HQ+EoAh1K2r0IbHqWu57b0Ch0XWJlx6FVhfa1lVW2P8Y9ckjbqIo0dju7NGSKqvtDDvXAOgjgohaG0FNJ4LegckE+alxDE7KJD8mi+zoDHSqE/PAJXNyIgvSMUSSJJxuP21WD21WD9XNneysqaOisZO2Dh8Bt5buLiiVUiAzOeT51t0nn51iRqU8ui4NSZKQfO5Q15nTSsDRTtDWRsDW2vUKrQcdnb0qT4XBhMoUh9oSFxab/YVHqYs4KttOd0LfvacPofqhgLlD42k+d3hd9LoQfZ7wtoMKGwBCl0CFBEyhCa0L3evdIvYD8eu9zYCg0YZapsf4+2jpdFNWa6Wy3kpNs4OaJju1zfaec9VUXgStG4XWQ0SERKxFR3KMiYz4WLLj48mMjSc2wiJ39/0IkAWJru4pKfSUFwyK4TkzP1x6fAEcbj82p5dOhwery4PN6cXqCLna2hwBAj/s9VEEUOjcWCwK8pJjGZOVQ0F6LGkJkaiUitAcGzGIFPQjBQKhZdDf1Q3lD73CFZerRwUmda13j9sEnVZElw0p6O/1GQWVBpUpBqUpFpUpBlVk19IUGxYchWZgxqNkehJurXldXb+9p8dvL4X/A/uWkq/7/+HpKhMSONHrOkRxIyRS+7XKBK0ehUoTcghR7XspfvBeUGtQqLTh9X371AgKJYJSCQpV17qKIAKtNj+1rW5qW11UNlmpbu6gpcONwyEhin20+pR+VJoAWp2EwaAkQq/AoFMTodNg1GswGbSY9AZMBi1GvQa9Roteo+5aatCp1aE5a11z2eRpDycnp6QgBQIBGhsbD1jG6vDywgdbcHr8BEWJYFBCEiWCkoQohl5BUULsen+4CIjoFD50gh+d4MOocBOpcGNUeDEpvZiVXqJUoaU6/OQpgtQ10VOSIBgAMcgRDdgLyq6nYy1KnRFBF4nSYAyN1eiMoTEcfSQKgxlVZBSCNuKk6d6ROXFIkgRBf2hczedG9HlDLTG/p2tczbOvZeb3dnk/uhG9XiS/e99DUdCHFPAjBvwQ8IMUPIZWCiAoQBnynHQKejoDeqyiDoeowhnU4BA1OEUNrqAGp6TBJWrwSWpEjrDVJIihCCDCfvde13r39q6gISgEAZPOiFJQ7BetZN+91L3avWV4fhxzz8g9qAmJiYmoVKojs/805ZQUpNraWmbNmjXQZsjIyMgcMYsWLSI1NXWgzTipOCUF6VBaSEdKY2Mj11xzDf/9739JTEw8Ltc4Xsi2Dwyy7QPDqWw7yC2kvjglvw2VSnXcnywSExNP2acX2faBQbZ9YDiVbZfpiey2IiMjIyNzUiALkoyMjIzMSYEsSDIyMjIyJwWyIP0Ak8nEnXfeiclkGmhTDhvZ9oFBtn1gOJVtl+mbU9LLTkZGRkbm9ENuIcnIyMjInBTIgiQjIyMjc1JwSgpSIBCgtraWQK/AcTIyMjKnDz+2uu6UFKTGxkZmzZp13KI1yMjIyJwM/NjquuMuSA6HgwsuuIDa2tpe+xYuXMicOXO46KKLuOOOO7BarcfbHBkZGRmZk5TjKkhbt27lqquuorKystc+h8PBY489xquvvsr8+fMpKCjghRdeOJ7myMjIyMicxBzXWHYffPABv/vd77j//vt77fP7/Tz22GMkJCQAUFBQwOeff96rnM1mw2az9dj2Y2m+ysjI/HiQ67rjLEhPPPFEv/uioqI488wzAfB4PLz66qtcd911vcq99dZbvPjii8fNRhkZGZmTAbmuOwmifdvtdu644w4KCwu55JJLeu2/4YYbem3vDjsvI/Njw+/3U1tbi8fjGWhTZA4BnU5HamoqarX6oGXlum6ABam5uZlbbrmFCRMm8Nvf/rbPMiaTSQ4NIiPTRW1tLZGRkWRmZsoZgE9yJEmira2N2tpasrKyDlperusG0O07GAzy85//nHPPPZeHHnpIvrlkZA4Bj8dDTEyMfL+cAgiCQExMjNyaPQxOeAvp1ltv5e6776axsZFdu3YRDAb59ttvARg6dOgBx51kZGSQxegUQv6tDo8TIkiLFy8Or//rX/8CYNiwYezevftEXF5GRkZG5hTglIzUICMjc+zYtm0bjz76KADbt2/n7rvvPuTyx6KcjEw3siDJyPzI2bt3L01NTUCo5+L5558/5PLHopyMTDcD7vYtIyNzfBBFkT/96U9s3boVp9OJJEn88Y9/5MMPP6Szs5OamhqGDx/OqlWrsNvt/OY3v+Hiiy/mD3/4A1988QUbNmzgySefRBRFAH72s59RVFTE888/Hy7/5z//uc9rNzQ09Cr3/vvv8/bbb6NQKIiNjeWRRx4hKyuLBx98EEEQKCsro729ncmTJ/Pwww8f0FU6GAzyl7/8hcWLFxMZGUlRURFlZWW8/fbb2O12nnjiCUpKSvD7/UycOJH7778flUrFsGHDuO2221i5ciXNzc1cf/313HjjjXz88cd89NFHuN1ujEYjb7/9Nh9++CHvvvsuoihisVh45JFHyMnJOS6/lUwX0ilITU2NlJ+fL9XU1Ay0KTIyJ5Rdu3YdctlNmzZJd911lxQMBiVJkqRXXnlF+tnPfiY98MAD0g033BAuN2/ePOm2226TJEmS1qxZI51//vmSJEnS9ddfL33xxReSJElScXGx9Nhjj/UqfyD2L7dq1SrpzDPPlNra2sL7zj33XEkURemBBx6QLr74YsnhcEher1e65pprpLfffvuA53733Xela665RvJ4PJLX65Vuvvlm6dprr5UkSZIefPBB6T//+Y8kSZIUCASke++9V3r11VclSZKk/Pz88Lm3b98uDR06VPJ4PNK8efOksWPHSna7XZIkSVq7dq109dVXSy6XS5IkSVq+fLl07rnnHvQz98Xh/GY/5MdW18ktJBmZ05SRI0diNpt57733qKmpYe3atURERGCxWBg9evRBjz/33HN5/PHHWbx4MZMmTeL//u//jtiW5cuXc9555xEdHQ3A3LlzeeKJJ8JBly+55BIiIiIAmDNnDosWLeLaa6/t93xLly5lzpw5aLVaAK644grefvttAJYsWcL27dv56KOPAHq5Xc+aNQuAIUOG4PP5cLlcQCh8mdFoDJ+jqqqKK6+8Mnyc1Wqls7MTi8VyxN+DzIGRBUlG5jRlyZIlPPHEE9x0003MmjWL7Oxs5s+fD4DBYDjo8VdeeSUzZsxg5cqVLF++nBdffDF8/OEiSVKf27rz/CiVyh7bFYoDD2+rVD2rrv3Li6LIc889F+5es9lsPdyvu0Wse1u3bft/J6IoMmfOHO67777w++bmZsxm80E+qczRIDs1yMicpqxcuZIZM2Zw9dVXM2zYMBYuXEgwGOxVTqlU9pkA7sorr6S4uJi5c+fyhz/8AZvNhtVq7bf8gc47ZcoUvvrqK9rb2wGYN28eFouFjIwMAL7++mt8Ph9er5dPPvmEGTNmHPDc06dPZ/78+fh8PgKBAJ988kl435QpU3jzzTeRJAmfz8ftt9/OO++8c1B792fy5Ml8+eWXNDc3A/Duu+9yww03HNY5ZA4fWZBkZE5TrrzyStavX8+FF17IFVdcQVpaGrW1tWEnhW5GjhxJeXk5v/jFL3psv/fee3n++ee5+OKLuf7667nzzjtJTU3tt/wP2b/c5MmTufHGG7nhhhs4//zz+fTTT3nllVfCLRudTsfVV1/NhRdeyJgxY7j00ksPeO65c+dSVFTExRdfzJVXXolarUav1wPw0EMP4XK5uPDCC7nwwgvJz8/npz/96WF9d1OnTuXWW2/l5ptv5sILL+SLL77gxRdflCe6HmcEqa+29ElObW0ts2bNYtGiRaSmpg60OTIyJ4zi4mIGDRo00GYcUx588EHy8vK45ZZbDvmYFStW0NbWxpw5cwD44x//iFarDXexnUwczW/2Y6vr5DEkGRmZI6K8vJxf/epXfe7Lysri2WefParzX3311Tidzj73/fOf/+T111/n9ddfJxgMUlhYyGOPPXZU15MZeGRBkpGROSKys7P57LPPjvo8Tz75ZJ/b//e//x3wuDfeeOOory1zciGPIcnIyMjInBTIgiQjIyMjc1IgC5KMjIyMzEmBLEgyMjIyMicFsiDJyMjIyJwUyIIkIyNzTHn++eeZNWuW7AUnc9jIbt8yMjLHlM8++4zXXnuNrKysgTZF5hRDFiQZmVOUxRuqWbCu+ric+6xx6cwck37AMoFAgMcee4zS0lJaW1vJysoiOTmZpqYmfvGLX/C3v/2Nm266iSFDhtDa2spHH33E66+/zvz581EqlUyePJn77ruPhoYGbr/9dtLS0qiqqiI5OZmnn34ai8XC999/z7PPPosoiqSlpfH4448TGxvLzJkzmTlzJhs2bADgT3/6E4MHDz4u34XMiUPuspORkTkiNm/ejFqt5v3332fBggV4vV4mT55MfHw8r776KoMGDaKjo4PbbruNzz77jFWrVrF48WI+/vhjPvnkE6qqqnjvvfcAKCkp4YYbbuDLL78kJyeHF198kba2Nh599FH+8Y9/8PnnnzNq1Cgef/zx8PUtFguffvopd999Nw888MBAfQ0yxxC5hSQjc4oyc8zBWzHHk7Fjx2KxWPjvf/9LeXk5lZWV4dxC+zN8+HAA1qxZw/nnn49OpwPg0ksv5dNPP2X69OlkZmYyfvx4AC6++GLuvfdeJk+eTFFRUTiG2xVXXMGrr74aPu/ll18OwMyZM3nwwQdpb28P51uSOTWRW0gyMjJHxKJFi7j33nvR6XTMnTuXsWPH9pn3qFuAfhhlHAinp9g/v5EkSSiVyl7l98+f9MNjRFHskVNJ5tREFiQZGZkjYvXq1Zx77rlceumlxMbGsn79+j7zLXUzYcIEvvzySzweD4FAgHnz5jFhwgQAKioqKC4uBkK5kqZNm8bw4cPZunVrOKvs+++/H25FAXz55ZcALFiwgJycHDl53mmA3GUnIyNzRFx22WXce++9fPPNN2g0GkaMGBEWj76YMWMGxcXFXHrppQQCAaZOncq1115LY2MjZrOZ559/nurqagoKCvjjH/+IwWDg8ccf584778Tv95OcnMwTTzwRPt+mTZv46KOP0Ov1/QZolTm1kAVJRkbmiCgoKODzzz/vtX3/lBR79uzpse+OO+7gjjvu6HWMXq/npZde6rW925uuL37961//KHIE/ZiQu+xkZGRkZE4K5BaSjIzMgJKamsrixYsP65jDLS9zaiC3kGRkZGRkTgpkQZKRkZGROSmQBUlGRkZG5qRAFiQZGRkZmZMCWZBkZGSOKU1NTdx6663H5FzPPfccixYtOibnkjn5kb3sZGRkjikJCQn861//Oibnuueee47JeWRODWRBkpGROSLWrl3LK6+8gk6no6ysjIKCAv7617/S3NzM9ddfz+LFi2lsbOTee+/FarWSn5/P+vXrWbZsGU6nk8cff5zS0lKCwSC33norF1xwQTgSeGdnJzNmzKC5uZlx48Yxd+5cnnnmGVavXo3VaiUqKooXXniBuLg4pkyZwtlnn83GjRtRKpU8++yzpKWl9bC1v3QVFRUVPProo3R2dmIwGHjooYcoKiriwQcfRBAESkpKcDgc3H777Vx88cUD8C3/uJAFSUbmFMW+bQn2rcdnPk7k8JlEFp1x0HKbN2/m66+/Jj4+nssvv5wVK1aQn58f3v/EE09w7rnncs0117BgwQK++OILAF566SWGDBnCU089hcPh4MorrwxHBW9qauKrr75CpVLx4IMPAlBVVUV5eTnvvfceCoWC+++/n88//5ybb76ZlpYWJk6cyCOPPMKTTz7Jf//73/Bx+9OdrmLx4sU88MADfP7559x3333cdtttzJ49my1btnDPPffw7bffhu147733aGtrY+7cuUyePJm4uLij/WqPiL6C1p6OyGNIMjIyR0xeXh6JiYkoFApycnKwWq099q9cuZI5c+YAcNZZZ2EymQBYtWoV7733HnPmzOGaa67B5XJRWloKwODBg3tE8gbIyMjggQce4MMPP+TJJ59ky5YtPVJdTJ06NWzPD23oZv90FU1NTTQ2NlJdXc3s2bMBGDFiBGazmfLycgDmzp2LWq0mMTGRUaNGsXHjxqP6ro6OH4cgyS0kGZlTlMiiMw6pFXM80Wq14XVBEHo9ySuVyj6f7kVR5Omnn2bIkCEAtLa2Yjab+fzzz8PpKvZnx44d/PrXv+bGG2/k7LPPRqFQ9Dhvtx192dDND9NVBIPBXmUlSQpHLN8/nYUoir1E8oQS8A/ctU8gcgtJRkbmuDFp0qRwANalS5dis9mAUCqKd999F4Dm5mYuuugiGhoa+j3P+vXrGTduHFdddRW5ubmsXLnygKku+uKH6SpSUlJIS0vju+++A2DLli20traSl5cHwNdff40kSdTV1bFt2zZGjx59eB/+GCIGfxyCJLeQZGRkjhu//e1veeCBB/jggw8oLCwMd9ndeeedPPbYY1xwwQUEg0Huu+8+0tPTw04HP+S8887jzjvv5MILL0StVlNQUHDAVBd90Ve6iqeffprHHnuMF154AbVazQsvvIBGowHA4/Fw6aWX4vP5ePzxx4mKijqKb+LocDl6Z+I9LZFOQWpqaqT8/HyppqZmoE2RkTmh7Nq1a6BNOCzeeustqbS0VJIkSdqxY4d0ySWXDIgdM2bMOKz64oEHHpDmzZt3TK59NL9Zd123esnSY2LLyc5xbyF1e9C8/PLLvXKXFBcX8/DDD+NwOBgzZgy///3vB7afVua0R5IkvAEvLr8HT8CDN+jHH/QTlLrHEwRUCiUqhRKNSoNepSNCrUer0iIIwkCbf8qRkZHB//3f/6FQKNBqtfzhD38YaJNOSaxW50CbcEI4rrX/1q1befjhh6msrOxz/3333ccf//hHRowYwW9/+1s++OADrr766uNpksxpjCRJWD02Gh2tNDtbaXW10+7qpNXdQYe7k06PDbvXSUAMHPa51QoVJl0k0XoLcYZo4o2xxEfEkhwZT4opEbPOdBw+0anP9OnTmT59+kCbcdjpKk62DLStVvtAm3BCOK6C9MEHH/C73/2O+++/v9e+uro6PB4PI0aMAEIuls8//3wvQbLZbOGB0G4aGxuPm80yJz+iKNLkbKXGWk+drZE6eyN11kbq7U24A54eZY2aCGIMUUTrzWRYUjFpI4nURBCh0aNTadEoNWiUahSCAoUgIAFBUSQg+vEGfbj9Xlx+Fzavg063jXZ3J+Ud1ayt3UxQEsPXMetMZEelkR2VQU50OnkxWSdUpCRJQpQkRDG0HnrtcxYWAEEIeaEpFAKKrqXMycOB6rqmDlmQjponnnii333Nzc09JpnFxcXR1NTUq9xbb73Fiy++eFzskzn56fTYqLHWU2Otp9paT1VnLTXWenz7eR1F6c2kmpKYnjmBpMh4kiLjiYuIIdYQjValOS52iaJIq7uDelsTtbYGqjprKe+oZkvjrrArcVJkPIPi8hgcl8fg+DxiDdFHdC2vP0hjm5Omdhcqb4DWTjeBoEgwKBEQQ0tRlA57pooggEohoFIqUKkUqLteGpUSjVopC9YJ5kB1XWOnp8/tpxsDNmAj9TFXoK8++htuuIFLLrmkx7bGxkauueaa42abzIlFlETa3Z002JuptzVRbw9V8tWddVi9+54MIzURZFhSOStnGmnmZNLNySSbEjCo9SfcZoVCQXxEDPERMYxIGhze7g34qOiopqStnF0te1lTs4nF5SsBSDTGMTShkCHxeQyJy8eiN4ePkySJDruX6kYb1U126pod1LU4qGt20GrdVxnde2kqnQ4vKoWAUhkSD6VGQKEUUO7X+uluDe1PqBXVNddG7HoFRQJBCY8viMPl79GiUqsV6DQq9BolOq0KjVqJzPHjQHVdu0Ps56jTiwETpISEBFpbW8PvW1paiI+P71XOZDKFXUVlTi0CwQBOvwunz4Xd58TudWD12On02OhwW2l1d9DiaKXJ2dqjxaNVaUmNTGRk8lDSzSlkWFJIMydj1kae9I4FWpWGwrhcCuNyuahwNqIkUt1Zz87mPWxv3sPK6vUsLFsOgEUdQ0QwgYDVQmu9DodVTUgKIEKnIiXeyNDcWFLijCTFRJAQYyDoaCQnxXxcvgdJkvAHRHz+IF5/EK8viNPtx+b0AaBWKYjQqYjQq9FrVSf9b3GqcaC6rsP943gYGDBBSklJQavVsnHjRkaPHs2nn37KtGnTBsocmX5w+z20uTpod3di9dixee04fC6cfhcuvxtPwIs34MXj9+IJeHEHPKGl34P/AM4DkZoIovUWEoxxDE8cTGJXV1tyZALRestpU9lZHT7amtS46tJQ1pvR1+fT6axHEdlGm6mdzsgSiAxAAUQpDKQaU8mPyyQ/PpF0SzKJxnhUin2VUXFx03H7bgRBQKMOddcZu7ZJkoQvIOL2BHB5/FidPjodPpQKgUiDmsgIDTqN7Bl7vHEGdDTZOkkwWQbalOPKCf8n3Xrrrdx9990MGzaMv/71rzz88MM4nU4GDx7M9ddff6LNkemi022lvKOGamsdtbYGGuzNNDpasHsdvcoKCOjVIXdonUqLTqVFq9Ji0kWiU2nRq3To1DoMah0GtZ4ItYFIbQSRWiMmrRGLzoRaqT7un0mSJFx+Nx0eKzaPHbvPidPnxhPw4Au7e4uAhEJQoFKo0Cg16FVaIjSGkK16MzH6qIOORYmiRGO7k/I6K+V1VirqbZTXWWm37etui4/Sk5VsZtqIcWQlm8hKNhNr0VFra6CkrYyS1grKOqr4unwBX5WFOs+UgoJEY3yXV18MI9T5OLzOLtd0FUqF8riKtyAIaNVKtGollkgtoijh8vixu/aJk06jxGzUEmlQh215/vnn+eyzz7j22mu56aabjsqGF154AYC77rrrqD/PgaitrQ1HKT9UZs6cyX/+8x/WrVvHunXrjqN3nsCCbdu4dsrp/dB+QgRp/x94/zwphYWFfPTRRyfCBJn9kCSJBnsTO5r3UNyyl5LWclpc7eH90XoLSZHxjE8ZQbwxllhDNNF6MxadCZM2EoNGj0LoHXVKCvrxNlXha64i0N5AwF6D6HYgBkJdPoJShag1YI0wozLForYkoo5NQR2dhKA4si4JURJpcbZRZ2uk3t5Mo6OZFmcbLc52WlzteAPeAx4vIIBw8GjKJq2RRGOoFZcYkYA2GIXfbqSpOUhFfUiA3N5Qi1CpEEiNN1KUF0tOioWcFDNZKWaM+r5FODMqlcyoVGbnhtyjfQEftbZGam0N1NoaqLc10eRspaS1jLz0VJqc+7q6BUClUIUFSqVQoVaqUCvUqJUhwTqWKBQCRoMGo0FDMCh2CZOXpnYXbVaBqEgdpggNn332Ga+99hpZWVnH9Po/Zlbu2SsLkszpQSAYYEfzHjbUbWNL406anW1AyEOtICaHc/NnkB2VQYYlhQiN4ZDPG3TZcBavxlmyHk/1TqQu8UGhQmW0oNBHIqhDk0pFr4tARyMBpxXJuy8UiqDSoEnMRpeSjy5tELr0wSj1xl7XcvicVHbUUNlZR3VnHTW2emqtDXiDvnAZg1pPQkQsyZEJFCUOIkYfRZTejKmrdWbQGDCodGhUGlQKZVhYQwP9wZCrd8CDw+ui02OnqrWZypYmaq0t1De3Utq0BUm1n8eTT48hMo68kWkMSchnTGYumUnmo3IA0Kg0ZEenkx2d3mvfzl27SDUlERCDLK9cy/LqdSEXb6Twcn8EBBSCIuTu3eXaLnDwFtWMrElMz5pwwDKSJPLXp/5ASUkJra1tJKem8+Cjf+b1l5+lsbGRX/ziF/ztb3/jpptuYsiQIbS2tvLRRx/x+uuvM3/+fJRKJZMnT+a+++7rEcgU4LXXXuODDz4gKioKk8lEUVERAO+88w6fffYZbrcbQRB49tlnycnJYebMmVx00UWsWLECt9vNU089xdChQykuLubRRx/F4/FgNpv561//SmJiIq+++ipff/01wWCQKVOmcN999wGhcEG/+tWvKC0txWQy8Y9//IOoqKh+r3uiMCq9NDRCVWctGZbUgx9wiiIL0mmMKInsbC5hedU61tdtxelzoVVpGRZfwEWFsylKHERCROxBu3yCotTlZizS3ZAINFfg2vgF7j1rQQygjk4icsSZ6NIHoU3IQmWJP2CrJ+hxEmhvwNdag7epEm9dKdYNX2FdOx9JUOBJzqI5KZ0mk4maoIvKzlpaukQUQvN+0s1JzMqeTJo5mRRTEsmmBCI1EYfdheUPiDS2OalttlPT5KCm2U5NU2jd5w8CWgQhlcToAoqSIkmO1hIR5SKg6aDRXc/e9kpKXSspbVjJgjYDQ+LyGZpQQFFCIUmRCce0S00hCGhVGrSAXq1Dreh9C4thgRJD65JEUNoXiFSBAoVCgVJQ9NnSPVQ2b96MWq3mgw8+QBRFrr/+esp3b+L/7nuIDevW8Ps/PUN2Tg4dHR3cdtttjB8/nqVLl7J48WI+/vhjVCoVd911F++9914Pr9nt27czb948PvnkEwRB4IorrqCoqAiHw8HChQt5++230el0PPfcc/zvf//jkUceAUL5jj766CPefvttXnnlFV544QXuvfde7r33XmbMmMH//vc/3nrrLSZOnMiOHTv46KOPEASB++67j/nz5zN69Gja29u56aabKCoq4u677+arr75izpw5B7zuiSBbZ2W3LZt5O7/h/yb/9IRd90QjC9JpSKurncXlK1lSsYZWVzt6tY4xyUVMTBtNUeIgxKBAU5uL6ioXGzsqaLN56LR76XR4sTt9ONx+XJ4AHl8Ary9IUNz31B2jsHORYSMjNNV4JDVrvbms9+fR5opF16xCu8mFXrsHg66MCJ2aCL2aSIOGSIMao0GDKWLfy2xMRR2dgjU1m+qcAio7qqlqKaPG3oRdtEPnToQOidggpOksTE8eQ172WLJjMg866VSURGweO+1uK50eG802Ky02G+1OJ1anC7vLg8Ptx+H243QHkYIKpKAKAipMWiNJ5mhmZSWSlxRHRpKJ9IRIdNr+b5dWZzu7WkrZ0byHnU17WFe3BYBYQ3RYnIYmFGI5hpNlp2dNOGgrphtREvEGQq2/bgcUCQmloCBCY8CoiUB3mOGRxo4di8Vi4b///S/l5eVUVVUR9HtJjTeiVAgEgiI1TaExyGFdLZw1a9Zw/vnnh1NMXHrppXz66ac9BGndunVMnz6diIgIAM455xxEUcRoNPK3v/2NL7/8ksrKSpYvX86gQYPCx+2fE+m7776jvb2dlpYWZsyYARCedP/UU0+xbds25s6dC4RaRcnJyYwePZr4+Phwayw3N5eOjo6DXvdEkK1ppdhbyKqSPZyXX0Zh3IlrnZ1IZEE6TZAkieKWvXxVupgNdduQJImhCYWclXY2OncKNY0uPtti5x/Ni3vMa4HQuIDFqMVi1GKK0BBj1mPQqdBrVWg1StQqJWqlRGL9chJrFiIpFDQkn0ljwmR0aBjf5Srs8QXx+AK4vQFcngBN7S7sbh8unwsPDgSNG4XOhaB1I+icoZfGQ3cdKIhKNKKZCDLJVsYRrzST57WR5CjDXLMH5e5SxJWLqIwZhDN+GPaofDokL62eFjp8LXT627EHOnGLdrw4QTjA3A1JAK0AWglVVM9uLg9QAVR4YUN9BAm2WFLqE0kzJ5MVlUZ2VDpGbUSPY2IjopkWMZ5pmeMBaHK0sLWxmG1Nxayv28qSitUApJqSGBSXS0FsDvmx2YfUQj0WKAQFerUOvVoH+tDEXlfAHXbJt3kdqJWqrkgWRpSKg7ecFi1axPPPP8/111/P3Llz6ejoQJKkcDSIlDgjWkNo3KzVFiBRFUQUe/8mgUBPb0xBEHqUU6lU+Hw+GhoauO6667j22muZNm0asbGxFBcXh8vtnxMJQK3uOWbn9Xppbm4mGAxyww03hJ0tbDYbSqWSjo6OHrE0u3MrHey6J4IsQqk5dO40Xtv4Ln8+64ET4hh0opEF6RRHlEQ21G3jk+JvKGuvQqfUk6Ecga8xlS2bAqwLdAAd6DRK0hIiGZYbS3KckeTYCBKiDcRFGbAYtQeclR+wt9P8yd/x1BQTUTiRmLNuIivCTKfXRqfbRqfHhtVjw+q1d63bET023B4rQbcVAl72T7mmVeowq6OIUMSjk8yo/WYErwm/S4fLHcTh9tPo8VPhDbDUG4kojUCpGEx6ZCWxhgZUUiVtnVU0uVT49rNb8msQfBGoRTNGIRWjMhKT1kS0wUy8yUJSlJnkKDMpcWZMhn2J5URJxB8M4Pa7cfhd2DwOOj1WWl3tNDlaaXS0sKN5D8uq1oaPSTTGkR+bzaDYXIbE55NgjOshLAnGOGbnxjE7dxqiKFLRWcP2pt0Ut5Syono9C7rmIkVqIsiMSiPdnEKaOYkUUyJJkUfW9Xg4KBQKjJoIjJoIREnE6QuFR2pzddDhtoa9IQ/kFLF69WrOPfdcLr30Upqamli/fj0TJ07c7xoCCTEh4Q4ERGqa7YwYNYY3Xv8XV1xxBSqVinnz5jFhQs9W3sSJE7nnnnu466670Gg0LFiwgOnTp7N9+3YyMjK48cYb8fl8vPzyy0RH9x/9IjIyksTERFauXMnkyZP57LPPWLduHeeddx7PP/88l19+OVqtll/84hdccskljBs3rs/zHO51jwcmyUp6QiR48qm2fsb/tn3GDSN/ckJtOBHIgnSKIkoiq6s38v62L2l0NaEKGPHXDcHdnIxdoSY3NYJzJ0WTl2YhN81CUkzEYYWCCYpBGh0tVFZtYe+aebQJIs4Rw7EpPbQvfrJPd3AIjWtYtCYsehOZljRGJg0lWm8hPiKGuK7IBsaDVLa+gI/KzlrK2qsoa6+ivKOaensTjZJIIxChtpCssTDeFyC+vZmEznbi/EHM8VkYcoZhyB2FOikbp9+D1WvH7nXi9Lvw+DtoCDZTUx+K7B1y9VaiVWkxqPVEaiOw6Ewkxcb3WRF3O1Xsba+itK2CrQ27WFYZEql9XXODKEochEm7zylDoVCQE51BTnQGFw86G1EUqbbWU9JWTnlHNZUdNXxXtgz/fpOD9SodsYaoUBw+QxTReksosGswEm/AF3bIOBaipRAURGqNRGqNeANeOj1dDxleOxatCbPO1GeL6bLLLuPee+/lm2++QaPRMGLEiH5zFKUlGGloc5E7eCzjJxZz6aWXEggEmDp1Ktdee22PsoMGDeKGG27gJz/5CSaTieTkZAAmT57Mu+++y3nnnYdGo6GoqCic9rw/uvMd/eUvfyEqKoq//OUvxMfHs3v3bi6//HKCwSBTp07lkksuoa6urs9zHMl1jwfTiuJ4Z0E5s0fP4MuSRRTEZjMhbdQJt+N4IkgH83c9CamtrWXWrFksWrSoV0qL0x1RFPlqxzo+2f0FdqkN0R1BoD6HTEMho/ITGJEfR0FGNNrD8PIKikGqOmspaatgb3slVR211NmbekTFjlDpiDfGEW0IVYxRejMWXcgV3KIzYdZFYtZGojnM2HEun5vKzhoqOmqo6FrW2RoRuwKXmnUmcqLSyezqKsuOTidGHxXu1mmwN1NZt4Pq6q3UtdfQ4nPQqVJgUykIHmFlLQgC0ToLCcZYkk2JpJuTybCkkGVJQ6fe19aTJIl6exM7mvawozn0cvpcCAhkRqWGxakgNgfNQbpXRFGk2dlKvb2JenvIdb3V1R6KWO4OzaOSkLgz5xpSstNCdnanylCqUCtUqJVqNEo1GqWmx2TaI8EX9NPh7sThc6EUlEQbLEfdahNFiaZ2Fw63H4tRQ6xFf9pMgD4QxcXFRzzm1F3XvTk3n/TbXuTnL27hytl5FCu/pKKzht+d8UvyY7OPscUDh9xCOkWwOrzMW72JRXXf4Nc3I3kMpElTmV0wifGXJhIVqTv4SbqQJIk6WyObGnawvWk3e1rL8HTN1+mOWj3EEI9x2wqS9FEMveQBzNHJR2W/w+ekwd5MXdf8mhprA9XWOtpcHeEyFp2JrKh0xqYUdUXNzghHbfAEvFR21LKudgsVHTVUd4Ym8O4fDcISYSIhLokCEYwOB4b2ZiJcdiKCIgatEVNiNsakPAzJ+Wjj0pAUCgLBAJ6u/Eh2376I3i2uNprsLayu2RgO9SMgkGZOJj8mi0FxeQyJzyfFlEiKKZGz86YjiiLlHdVsbdzFtqbdfLFnIZ/t/g61QkVe1zGFcTnkRWdh0PSMv6dQKEiMjCcxMp6+nnkDYpBOj5X68joSjLEExCBBMYhfDBAQAzh8rrCIA6GWn1KDTq1Dr9KhUaoPq/LXKNUkGOMwB7y0uTpocbZh9zqIi4g5qLj2h0IhkBhjoNXqptPuQ5IgLurHIUrHglh9kKE5MSzbVM9ffvkzHl78V55c/k8eOeMesqLSBtq8Y4IsSCc5e2s7mbdsJ+valqGIq0ap1TA+6kxunnQeUcZDDyoqSRKlbRWsqtnI+rqtYRfqFFMi0zLHUxibS2FsDjGGKHxNFdS//QgqcxzJVz2O0nBwzzBPV8XV6mqnxdlGs7ON5q44dU2OVhy+fQnGVAoVKaZEBsXmkmZOJjMqlSxLWjjYaCAYoNpax8b6bextq6KsvZJae2N48qpZG0lmVCrnJJxBmjmZ1C6X7x8GWZUkiUBHA+7KHXhqivFU7yKweyMuwK3SoEnMQpuUQ1RSDolJuaiTMnu5qkuSRIfbSkVnDWVdXXWrajaysHwFEIroPSyhkOGJgxkSn09uTCa5MZlcOuQ83H4PxS2lbG/aw66WEj4u/hppV1ckcGM8GVGpZJhDcfqSIxOIj4jpt4WpUiiJNUTTomzCqInos0xQDOIL+vAG/XgDPrwBL06/O3y8Qa0nQmNAr9IdsgjoVFqSIxOw+5y0uzqotTZ0tY5NRyQkgiAQaw6JUIfNiyDwo2kpHS2i18WM0Wm88MEWGpsDPDz9Lh77/hkeX/Isj0y/m+zojIE28aiRu+xOQiRJYntZKx8sLGFH+1Y0GXsQVH4mp0zi5rGX9PLwOhBNjha+r1jN8sq1tLjaUSlUFCUOYnTSMEYmD+mVEiHg6KDu3/eDoCDlxj+jigzt9/g9NDpaaXK20ORo3a9LKSRCTp+rx3mUgoLYrjGjBGMcica4rmR2ScRHxITHaERRpN7eFB4vKmuvpLKzNtzyMWmN5ERnkhOd3tVll0GU7siDiwZsrXjqSvDW7sFTvxdfY3l4Mq+g1qFJyESbmI02KQdtUjbqmJReIiWKIpWdtexsLmFH8x52tZTiDXhRCgryYrIoShxMUUIhOdEZPcaiXH43e9sqKW2roLyjmqrO2vAE5W4sOhMxhihi9FHhrtHwS2fGUW+lsLAQhUKxX86j0C0s0DvKdyAYwBXw4PK7cfndSJKESqEMhXHSGFEpD/2ZNCAGw7+1TqUlPiLmiD29JEkKt5RizTqiTIfewj+VkCSJ3bt3H5Muu6IbH4b0UVz/2DfMHp/Bz+YW0exo5fffP4Pd5+T/Jt3WI/L8qYgsSCcZu6va+c+XxeyoqcGQuwvR2EJOVCY/H3fNIc/QFkWRDfXb+HbvErY37UEQBIoSBjElfSxjU4f3m65BEoPU/Pd3VLdW4ppxOXWiJ5QEz95Ih9vao6xBrSfOEE1MRDSx+tDge6whmtiIKOIMMUTrLSh+MBDuCXiptYZyB1V21nZFXagNR1rQqrRkR6WTE51BbnQmudEZxEXEHNenZ0kM4m+tw9tYjrexDG9DOb6mCiR/qAtTUGtDApWShy6lAG1qASpjVI9zBIIB9rSVh7rqGoup6KhBQkKv0jEoLpfB8XkUxuaSFZXWqwL3+D3U2ZuotzXR7GylxdlOg72FVkcHNp8dr9jTRf/y1HMoTM5HZ4wAlCAqQFKAqETqWlcoQKlQoFKGch2pVUq0agUajQJf0Ivd58TldyMQSmBo0ZsPuRtOkiQcPhetrnYkJGIN0Uc8tiRJoTElu8tPcmwEEf2EVjpVkSSJtrY27Hb7EYdQ2l+Qhl71f0QWzeCp/6xn295W3vrd2aiUCtpdnfx5+T+osdbz09FXcmbO1GP8SU4ccpfdSUJLh5s3vtjJ8i21RKY2EzlyJwoFXDP8CmbnTjukGfWegJfF5Sv5qmQxzc42YgxRXD70QmZkTSTGENXnMaFupb3sailhR9laqlVWAsmRsOdrtCotaaYkihIGhWK4GeNJNMYSb4ztt9tIkiTsXgel7RXU25qoszdSa2ukztpAs7Mt/DSvV+nIsKQwM3syWVFp5ERnkBKZ2EvEDgdPwEurqz3sumzzOnD6XLj9HnxBH4GuaAUKQYFGoUan1mLURGDSGomKiyUuoyD01K9Q4m+r7xKoMrz1e7Gu/wrrmvkAqKOT0WUMQZ9VhD5zGCp9JEPi8xkSn8/VRRdj8zrY0bSbHU2h1tOmhh0AKBVKMswpZEalkRaZjE6KwufQ0dEGdS0KalsMNLSKuL2R+z6UIojBGMBkEdFFBNlQY0VHExatDoRQNIb9wwUJKFCgROgSK1Gkx8RmpSIU0VutEgjgoy5QiyRJ6FRaItSGQ/7+g6KI3eegNliNVqXBqIk4oqgP3XmgGmolok3aQ5r/dCqh0+mO2UOz2BVua8aYNFZsrWfT7mbGDUkk2mDh8Zm/5tnVr/Hqhv+xt62Sm0dfecRjfQOJLEgDTFCU+Hx5Ge98sxsJH7mTq6jzlzAoNpdfjLuBeGPsQc/hCXj5tnQp8/cswO51UBCbw7XD5zI2ZXif7sv19ibW125lU8N2SlrLCUoiKkFJitvDFH0cKYXnEqNORC+Y8AdCidzwA53Q5lBgUznwCy24JSsO0UqHt51mZyuNjmaaHK24usYtIDRelBQZT050BtOzJpBmTibDnEK8MfaIw9aEPPNqqbbWUd2VxrzB3kSnx9arbPeEUI1SjUro6iaUJHyiH08/KTLiDNGkmpPJtKSSM3g0uVMvJVkdgbepAk/1LjzVu3DsWol98wIQFOhSCzDkjyNi0ATU5nhMWiOT0scwKX0MAFWtLazcu4Pi5nIa2uqpaF2PpNwXf08SFSiJQJ8QSXKamRiDhURzDKmWGNJj4kg0R2PWmfr0nJMkCavHRrW1nsrOGva2VbGntYwOT6hFm25OYWzyCNK1hbQ0CWwva2VraT1ubxCzUcPUMbFIcWUsq1iJUqHkJ4PP4/yCWYfkpSeKIvP3LOD97e9i1pm4c/wNDE0oPLQfcT8a25zc8/clZCaZ+NMdU1DKmWr7RPSEBGlUQTymCA2LN9YwbkgiEJpu8cCUO/hg5+d8vOsbKjpquGfizSSbEgfS5MNG7rIbQOpbHPz93U3sqepg6BA1ttjVtHnauXzoBVxcePZBn1YDYpCFZcuZt+trrB4bwxMHc+ngcymMy+1VttnZxoqqdaysWk+NLTTr26KKI8KfjNgZxcVt3xMlOviz9SJcUtekUUFE0DlR6B0IekdoqXMi6FwIin0eXZIooAgY0EkmIlUW4gyxpEclUpiYzrD0NIx6bS97DhV/0E9FRw2lXS7p5e3VNDiaw/sj1HpSTUkkmRJINMYRHxFDjCGKKJ0Zky7yoAP43oAPm9dOm6uTVlcbjY5W6m2NVFnrqLc1dqWnCIlUYVxoEuzQ+ALiDFF46/fiKtuEq2QDvuZKAJRJ+XTEj2aXkEtpg4fyuk7abfsijsda9GQmR5IYr8Rg8aDUu/EKNto87bQ622lzd4ZdvPdHQMCsiyTGEEVcREzXmFwCqaYk0szJPdJjdHtRbm7Yyfq6LexuLQNgWEIB5+bNZFj8YLaWtLJwfTVrdzSgUCiYPiEKZ/RWtjbtIMOcwu3jrjvkQfLy9iqeW/NvGuzNnJ8/i6uGXXTY7v+LN1TzzLubue3iYVw49fRxYz5awl12lw8jf/oFxJx5IwCvfLyNb9dW8Z/HzukVRX5j/XZeXPsm/qCfa4fPPeQelpMBWZAGiO831vDPj7aiUiqYdZaapS1fYFDr+eWkWxgUl3fQ4zfV7+CtLR/SYG9mSHw+Vw67iILYnvGtAsEA6+q28vWepexpD03kU7qjcTfHI3YkIPn0REVqmWkqZ6p7EWszzqc5Lgar1ESrr5FWT3M4KKeAQIw+hhhdLFGaaIxKC1rJjDIQgd+lpdPuo7XTTVO7i5YOF/v1EoXzAOWkmMlJs5CfFoUlsm+Rsnkd7GktC71ayijrqA7Ph4rWW8iNziQ7Op1MSyoZltTjmszPF/RT2SWGe1rLKW4pDadUj4+IYXBsATHKNALWaNoqGzA0bGawVEKi0opHUlGsHERL8mQSM7PJSTWTlWTCaDh4Rd3t4h2KgmGlw22jw9NJu6uT1i4X7GZXG0Gx67cRBFJNSRTE5jA0Pp9hCYVE7jcxt9XZztLKNSwsW0Gbu4NUUxI/GXIeE9JG0drh4YNFJSxYV41Rr+asszSsbl+AzWvn0iHnc8mgsw8phYUn4OWdrR/z3d5lJEcmcMe46w9rfowkSfzu1dXsqe7glQfP7Pf/8WOju677z7XjyB45kbgL7gCgpLqDXz+3jDsvG8HZE3o/OLS7O3l53dtsadxFUcIgbh93Xb/d9icTsiCdYAJBkdc/28EXKysYnB3NsImdzC/9ioKYbH49+baw63N/tLk6+Pem91lft5WkyHiuH/ETRiUN7VEpO3xOPtq6kMUVy/BILkSvnmBLChGeLIamplGQEUVumgWLRWRP207WrnqXMp0KhxD6KxjUenKiM8iKSg+7JaeYEg7Zo8ofEGlqd4YiZzfZqWywUVFvpa7FEY4WHh9toCDDQkqKgMrUSXuwgZLWcursjUCoqy87Kp382GwKYrPJi84i2mA5/C/8GNE9AL+qZA+baoupdlbgVjchqAJIEqh8FuJUaQyKzWOiyUBCw3rce1ZDMEjE4ElETbkMTdyxmysSFIM0OVuptTZ0ddVVsqetHLffg4BAYVwOE9NGMyl9TDhqRFAMsrpmI5/s+oYaWwPZUencOPJyCuNyqGqw8cIHW9hT3cGZE5OQkrezqmYDhbE53D3x5l7emP2xrbGYl9a/Tburk3PyzuDKYReF4ucdAjVNdu786/ecNzGTn80tOuLv5nSiu65755ZppOcUkHDpvUDo/3j7U4uwROp48hdT+jxWkiQWlC3n7S3zUCqUXDnsIs7KmXrMc2QdS2RBOoG4PH6e+s8GNu1p5qKpWUgp21lYvoIpGeO4fey1B6zwJUliUflK3t4yj6AU5CdDzueC/Fk93HbbnFZeWfEpW9s3ICkCBK2xJElDmJ47krGDk8hIjKTJ0cKqmo2sq91CeUc1AKZAkKFJQxiWMZqCuBySIxOOSxO/3WFnZWkxW+tLqbJWYZWaQNU1lhJQEyHFk2XKZHT6IKYVDiFSN3CuwMGgSEW9jV0VbRRXtlNc2U5bV1BavVZJXloUBRkWTHEunKpGSjpKKWkrJygGEQSBTEsqeaYUUtrbiN6zmRi3B3PRGURNvxpV5PF5UhVFkbKOKjY37GBtzWZqbA2oFCompo3i/PxZ4fxKoiiyono97277jDZ3BzOzJ3Pt8EvQK/W8/XUx877fy5hBCUybAW9seQ+VQsWd429kVPLQQ7LD5Xfz7rbP+G7vMqL0Zm4Y+RMmpI46pJbsix9uYdH6Gl5/+CyiT1NX8MOhu6773+3nkBwfTdLVvwvve3/BHt75ZjevP3QW8dH95zBrtDfz6ob/saN5D2nmZG4aeTlDEwpOhPmHjSxIJwib08fv/rWa8jort186lGJxMatrNnLxoLO5aticA96sVo+Nl9a/w6b67QyNL+BnY68hwRi3b7/TyXPfz2OHbT2SIoDGmcaMtDOYM3YkcVF63H4PK6rW833FKva2VwKQF5PFmITBJH7/EZkJeSRd8dAx/bwev4fKzjoqOqop66iivL2aOltjeGwkOTKB/Jhskgyp4Iiivk6guKKd6iZ7qMWhFMhNtTAoK4aCjCgKM6KIMR/aRGBvwIfVa+/ysHPjFwOIktgVakcV8ijTGDBrI9GrQ2NMHXYPJVUd7KnuYE9VByXVHXh8oS6xuCg9gzKiGZwVzaCsGDKSTH0OvHsCXkpayylu2cvu1r3sbasMu7SrUZDg8REfEElPHUpG4WQSjPHERURj0kYel27Hqs5aFpWvZGnFGtwBDyMSB3PlsDlhYfIEvHy080u+2LMIi87EHeOupyhxEF+vquCf87YxqSiJ6y5O57k1r1PVWcvcwedw+ZALD9kTr6S1nNc2vktlZy1D4vO5YcRlZEYd+H6tb3Xw8ycXccWZBVxzzuE7SJxudNd1795zCQk6iZSbnwrva2xzcuufFnLTBUOYO6P3uPH+SJLEurot/GfzR7S42pmQNorrh19KbMSJDRJ7MGRBOgE43H4eemklNU127r9+NCs7v2Bt7WauHX4JFxXOPuCxxS2lPLvqdRw+J9cMv4Rz8s4It14CgSAvL/mWZY0LQO3B6EvnimEXMnv4EARBoN7exFcli1lWuRZPwEuaOZnpmROYlD6aWEM01nVf0LbgDZJv/DO6lPwj+mzdKcSrrfVUd9ZRZa2jqqOWRkdLWHzMOlMouGhUOnkxWeRGZ/Y7udfh8rGrop2d5aGWSWlNJ4FgyLEgxqwjJ8VCVrKJtEQjmkgXLtppcjVRb2+iydFKq7MtHJ3gUFBIKiSfnoBLj+iOQPBEkmRMYmhKJoMzYxmcFUNc1KFHxNifoBikztYYCqDaWUt1awU1bdVYhWCPcmqFiii9uWsirCW8HmOwEKMPOTFE6c1H5ZX4XdkyPt+9ALvPyRmZE7lm+MXhnFJl7VW8uPZN6myNXFR4FlcOm8MXyyt4ff5Orjt3EBefkcnrm97n+4pVDEso5J4JN2PSRR7kqiFEUWRh+Qre3z4fh8/FjKyJXD7sQqL1ln6Peexfq6lssPH6w7N/9B533XXd+/dfTYyvlbTbX+ix/5fPLEGpEPjbPdMP6Xy+gI/5exbwSfG3CMDFg87mooKzDtsJ5XghC9JxxusP8ugrqyip7uChm8ay1vYdSyvXcP2In3BBwawDHvtN6RLe2vwh8RGx/GrSrT2eLteVlvP8qv/g0zWh8Udz3fCfcPawkUDoyXjezq9ZW7sZpULJlPSxzM6dRk50RvhJXBKD1PzzTlSmGJKv/+MhfRarx0ZVZx011nqqrfXUWOupsTXgDezzIkuIiCXDkkpmVCqZllBA1Cj9kUdW8AeClNVZ2VJRw7b6Emqd1bgUrQgG2z5PP0lAGTCilUwYFJHoBCMaQY9S1CIGlXi94HIHsDq8uHxeUAYRlH4UGh9GcxCd0Y+kduAQO8NOHBqlumsMK4fC2BwK43L6nXt1OEiSRNv2JZQueYs2gviHTsYRHUeH20q7uzO83D8tO4REK9EYR4o5iQxzCjnRGeTFZB1WunmXz83Hxd/wZcki9CodN468jKkZ4xAEAV/Ax5tbPmJh2XIKYnP45cRbeH1eGau21fPMr6aTlWxmcflKXt/4HiZtJL+a9NPDclpw+Jx8vPNrvt67BJWg5IKCM7mo8Kw+x5eWba7l6Xc28uc7JjM05+DTHk5nuuu6Dx+5BXPrbjJ++e8e+z9cVMJ/vio+aLfdD2lxtvH21o9ZU7OJOEM014/8CeNSRgx4CCdZkI4jkiTxt/9uYunmWu6/bgxVwjrm7/6Oy4acz2VDL+j3OFEUeXPLh3xTuoRRycO4e/xN4WCcgaDI0199yib7YgQEzkg+k59NvQClUkmzo5X/bf+MVdUb0Kt1nJN7Bufmz+gzS6mrdCONH/yJ+Ln3Yhw0sdf+dlcne9srKWuvCkfj3n+eT6TWGHZ4SDMnk9710h3iAPbB6PTYwlG0dzWX0OhoAUJCkWVJJ06bhEGMQXKbcNu02BwBbE4fTo8ff0AkKEooBQGtRoleqyLSoCHarCPOoicpNoKUOCOp8UY0+0VFD4pBGuzNVHTUUNZeSWl7JeUd1aFxIQTSLSkMictjcHw+g+PzjkqgAvYOWj5/HnfFNoxFZxB77s9QdD2lSpKE2++h3d1Jq6udZmcbTY4W6u1N1FobaHK2AoSjio9MGsK4lJFkRaUdUoVSa2vglXXvsKetnAlpo/jZmGvCwraiaj2vbPgvepWWn4+6mb/9q5ysZBN//PlkACo6avj7yldpdbVz7fC5nJc/87AqsUZHC//b9ilrajZh0hq5dPB5nJUztcdYqMvj5+pHvubi6TnceMGQQz736Uh3XTfvj3cSUbaSrAff67G/odXJbX9eyK1zhnLRtMPPIruzuYQ3Nn1AtbWOYQkF3DjyctLMRxdI+WiQBek4Mn9ZGf/6bAfXnltIfHYbL61/m9k507hl9JX93sQBMciLa95gVc1Gzs+fxXXD54b77Fttdh747J/YNZWYxCQenv0zMmMS8AV8fFL8LfN3f4cgCJyfP4sLC888YIXZ+OGTeOtKSb/rFVAoQ0nomvaws7mE3a1ltLtDUbgVKIg3xJNmSiE7Oo3c2HQyo1IOmkL8cPEEvOxu2cu2xmK2Ne2m2hrKTWNQ6xkcl8eguDwGxeWSGZV21KkVDgdfwMfe9ip2tZSyq7mEPW3l+IN+BAQyLCkh2+LzKIjNOez05JIk0rHsAzpXfIg2JZ+EnzyAymg56HEuv5vy9iqKW/ayvWk3JW0ViJJIcmQCM7MnMTN78kHFct+k1vnEGqL5v8m3hSNGV3fW8fTKV2hzdTDGOIvvFwo8fddUCjND4w1On4t/rPsPG+q2MjZlOLePu+6wxXlvWyX/3fYJO5tLSDTGcXXRxYxPHRm+L+5/YTmSJPH03dMO67ynG9113cd/uQ/9jq/JeuA9BFVP56efP7mQpFgjv/vpoaWz/yFBMciCsuW8v+Nz3H4P5+RO57KhFxxW6/tYIQvScaKqwcYvn1nKqIJ4rro4gUcX/41Bcbn8dtqd/bpdBsQgz61+vc/xpd31tfx+0QsE1DbGRE3jvtlXoBAU7G4p46X1/6HB3syU9LFcO3zuQd2jg04r5c/fSvOIKawzWNjesgtHsCtWnV9LwBaF6LAgOixIrkiQ9tmrUgrERRlIiTOSlWyiID2KIdkxhzS/Zn+6UzVsayruSoFRTkAMoFaoKIjNoShxEEPjC8iOSj+qcELHGn/Qz972SnY2l7CzuYSStopwYr0EYxx50ZnkRGeQHZ1Ohjm1V5qJvnDuXkPzZ8+hjIwm6apHUEcd3ux6u9fButotLK1cw+7WMrRKDWflTuPiwtkHHespaS3nmVWvYfc5uGPc9eHoEg6vk2dW/4vtTXugOZvxMTP49dVjwsdJksSXJYv479ZPiNZbuGfiLYedl0eSJLY07uSdLR9TY2tgcFweN468nMyoVP716Xa+WVPFh386/7ASS55udNd1nz77CNpNn5Dxy3+jjOg5NeSf87by/YYa3v3jeaiUR36v2LwO3t8+n4VlKzBqI7h62BxmZE06ofefLEjHgaAocd/zy2jucPH0PZP406q/EpCC/GX2b3tMWNwfURJ5ce1brKhaxw0jfsL5+40vbaou4anl/0RC5OpBV3PxqAmIoshHu75k3q6viTVE87Mx11CUePCIwhUdNXy69B22OytxqBRIogLRGoPel0x6RBaZ0UnEWgyYIjTotSqUSgFRlPD4gjhcPtptHpraXdQ2O6husiOKEoIA+elRTByaxPRRqcRaelfCoiRSY63vipBdwq7mknCIoQxLKkUJhRQlDmJQbO5RD7D6gn46PTZsHjvugAdf0B/2stMo1ejVulBQUZ3pkOfI9EcgGKC8o5rdrXspaQ1Fk2h3d4b3xxqiSTMnkRSZQHJXPMD4iBhiDdE9uqk8dSU0vv8EglJD0rWPoYlJOSJ7Kjtq+WLPQpZXr0On0nLZkPM5N2/GAeeedHps/H3lq+xuLePyoRdy6eBzEQSBgBjkjU3vh9Ktdybw+vUPEKnv+duWtlXw3OrXaXV1cMXQC5kzaPZhO18ExSCLy1fx3o75OHxOzs6dTqx7BP/6eDevP3wW8VEn/kn9ZKG7rpv/0p9Rr/4vqT9/AU1Mzy61lVvrefI/6/nr3VMpyDh6r7mKjhre2PQ+u1vLyI5K56ZRl/eadH+8kAXpOPDtmipe/HALv75mNMWB71lSuZrHZ/76gD/qf7d+wme7v+PKYRcxd/C54e2b63bz5LJ/IPnV3D3uZ0wpLMDudfDs6tfZ3rSb6ZkTuHnUFQesWEVRZE3tJt7f8i0N7loUIuQ4g4i6s5hRMJrR+UmH7FK9P15/kJLqDraVtrJhdxN7azoRhFCsrQumZhAZ42ZPWzm7W/ZS3Lo3nKIiISKWoQmFDE0IheE50u6/7lTn3V5sddYGGh0t4WgKh4JBrSc+IoakyATSzElkWEK5mWIMUUc8wNvptlLeUUNVZ23Y8aPB3oRvvxTlAgIWvYlYQzRxhmhiI2KIFgWUaz4nNigw5KrH0cUceV9+ra2Bt7fMY3PDTrKj0rlrwk2kHCCumT/o55X1/2VZ1VpmZk/m1tFXoVQokSSJV5Z/xqL6b0mOSOH3Z97Va/K2y+fm1Q3/ZVXNRobGF3DnhBsP6EXXHw6vk/d2zGfB3uVEqI207cjnz9ddwuCsmMM+1+lCd133xevPolz6Gsk3PYUuuaeLd1O7i58+sYA7Li3i3ElHFlX8h0iSxMrqDbyz9WPa3Z1MyxjPNcMvIeogE/ePFlmQjjE+f5Db/ryQWIue6y6P44mlzzOncDbXDL+k32NWVK3n+TX/5sycqdw6+qpwRbintZzfLXyGgEfLXaN/zvRhuTQ5WvjT0hdpcbXz09FXMTN7Ur/nFSWRlVUbeHfb57S6WxE9BizOLO6xLSN+9AUknHX9MfnMoiTS5GhlQ9UeVpTupNJajajtRFDsS0ZXGJfLoK5YcHERR1bBePweilv3sqNpD8Ute6noqA7HmovURJBqTibJGNflJm3BpDViUOvRqjQoBAWiJOIP+nH5PTh8Tjrc1i6ngdau9A/7opGbtEZyozPJj82mMDaH3OjMo2q5iZJIh9tKk6OVJkcLLa5Q7LruNOWtro4eKeOVUmiuVmZMKHNuYWwOmZa0w+o+kSSJNbWbeG3je/gCPm4dczXTMscfsPz7O+bz8a5vGJcygnsm3oxaqcbl8XPNX99Al7edaIOJ30y7k1RzUq9jv69YzRub3kejVPOL8TcwKnnY4X9RdLW6Vr5Js7uZ4dGjuW/G9SeNW/KJpruu+/LtV1AseIHEqx7FkD28RxlJkrj6ka+ZPDyZOy8bcUyv7/F7+HT3t8zfvRCVQsllQy7g3PwZx20cV472fYxZtL6aNquHu68czr83vUSiMe6AHnV1tkZeWf8OhbE53DzqirAY1dub+OP3LxLwargo5WqmD8ul1tbA498/S0AM8ugZv6Qwrv8WV0lrOa9vei+Um8cVibptDDdMmcnEyHpaP/0ec+G4I/p8oiTS6GihoqOa8vZqyjuqqeioCXe/aZRq8tPSUXvzKNkN1uYIskfkcf3MoYed70aSJKo6a9ncsJMtjbvCkRBUChV5MZlcWHhWV96kzKNyLe/GE/BS3VnX5WUXyg67f+qInKgMBsXlMiguj4LY7MMa9FUIilDiPUMUg+N7xyoUJZFOt41mZys1NTso3TCf5mArOwJulletA0K5i0YkDmZS+mhGJA09aKUgCAIT00ZTEJvD86v/zYtr36TaWs/VRXP67FYTBIErh83BpI3kzc0f8pcVL3Hv5J9j0GlI0eZidKbQplvGw4ue5v4pt/f4HIIgMDN7EgWx2Ty7+nWeXP5PLsifxdXDLznsyisvJotfjb6Hez/8F1vZyMOLmrh/yu0n3STOE4lCE+oBEX+QCBNC331GkomapkPvGThUdGodVw6bwxlZk3hz0we8vXUeSyvX8NPRVx2w/jlSZEE6hkiSxBcrK8hNNdNEMQ32Zh6ceke/eUmCYpAX176JRqnml5N+Gr5xXT43Ty79J15fkBTHbK6ZNZJGRwuPf/8sAI/P/HWvJ9RuvAEf/9v2KV+Xfo+WCHxlRYyIH8Gvfj4Ks1FLy5ffoNAa0KYcPICrJEm0uToo6Yq0XdZeRWVHDe5AKISOWqEi3ZLCpPQx5EZnkB2VQZo5KTxe4Z4V4P0Fe/hkyV62lbXymxvGkptqOeA1nT4X25t2s6lhB1sadoZdzTMtqZyfP4uihEIKYnN6RLc+VuhUWvJjs3sMztu9DkraKkLdji17+aJkEZ/t/g4BgTRzMoWxORTE5pAXk0mCMe6IRVEhKIg2WIg2WCiMy2VyZBqNHz6JIX8sqgvuZ3drGVsbi9lUv50V1esx60zMzpnKufkzDurhFq238PAZ9/DGpveZv/s7Oj1Wbh97Xb/jSuflz0Sv0vHy+nd4cvk/eHDqL8hMMrOzIsBfrrifPy17kT8ufZ67J9zEhLRRPY5NMSXyxJn38/aWeXxRsojStgp+NfnWw+7CUylUBGoKuWTMeBY1f8ZvFjzJb6bdGY4y8WNDodEhApK370nfCdEGtpW2HLfrJxrjeGDqHayv28obmz/g0cV/ZWbWJK4efkk4VuKxQBakY0hZrZXqRjs/u3QQH+96jSHx+YxM6j/+15cliyhrr+KXE38avmElSeLlDe/Q5GzBWzqWO2+ZhNPv5ImlLxAUg/z+AGJUZ2vkbytfpdbWQLZ2BDtXxnLBxDx+evGw8Ix3d9UOdOlDeqXl7qbZ0cq2pt3saN7DnpYy2rrcv9UKFZmWVKZmjiM7KoPsqHRSzUkHfPrVa1XceMEQJgxN4qm3N/DAiyt44PoxjBu8bywjKAYpa69iW1MxWxt2UdJegSRJRKj1FCUOZmTSEIYnDj7ufdf9Eak1Mjp5GKO7up+8AR+lbRXsbt3L7pYyllWt5buyZUCoBZMTHcp4m2lJI8OSSkJE7BF5KRnyRhM963raF75JVFIuUybPZUrGOAJikK2Nu1hQtpwPd37JFyWL+Mng8zkv/8COCyqFkp+OvooovYUPdnyOKEncOf6Gfh0QZmRPQqVQ8eK6N3lq+T/JTTiLpZvdRKrM/GHmvTy14iWeWfUat465qleGUo1SzS2jr2RQXB4vrX+bB7/7M/dN+Tl5MYc+vuELhCYoF1gKmFl0P39a+iK/X/IMD0+/+7DOc7rQLUiiz9Pn/oRoA202D/6AiFp1fLziBEFgXOoIihIK+WjX13y5ZyEb67dz29hrGJsy/OAnOARkQTqGrNhah1IhEDTXYK2x8+uht/X7xNzpsfHRzq8YlTyMifs9Za6oWs+amk0omwYxKnUQOSlmnlj2PO2uDn4341f9itG2xmL+tvJV1EoVV+Vcz7/fbWbmmDRuu2RY2IaAvYNARyOm0WeHjwt1i9WxqmYD6+u2UmcLRduO0pkZFJ9HYWwOeTFZZJhTeniFHQ6FmdH8/ZfTePz1tfzpzTXceFkqisgOdjWXUNyyF3cgFKE6OyqdSwadw4jEIeTFZJ6UUYm1Kg1DEwrCwSmDYpBaW0NXvqYqytqr+LT4O8SusS21Uk1aV86iVFMSKaZEUk2JxB+CUJnHXYC3vpSOpe+iTx+ELm0QKoUyLJBVnbX8b9tnvL11HquqN3DPxJtJjIzv93yCIPCTIeehEATe2z4fo8bAzaOu6Lf81MxxSEi8uPZNnEYJyKShzUlWspmHp9/N31f9i1c3/A9f0M95+TN7HT8pfTSppkT+suIlHvv+GX458ZZDrrhc7tB4WoReTaoplj/MupfHvn+GPy19gT+eef8BHTRORwR1d5dd3y0ks1GLJIHT7T/uqTt0ah3XDr+EaRnj+Mfat3h6xctMyxzPzSOvOKRpDgdCFqRjyMbdzQzOjub7qoXkRmf2mSivm492fok/6OeGET8JC4bD6+TNLR+SpE+hvCqd83+axae7v2V70x5+Pva6fud5rKnZxHOrXyfFlMT9k2/n4Rc3kxIXwR0/Gd5DEL11ewDQpRbi8XtYUrmGRWUrqLLWoRAUDInP48zsKQxPGkxKZOIxCSNi8zrY21ZJSVs5pmFlaBPK+V95qLJJioxnSsbYUAUfX9CvS/yR4Al4aXa00ubuwOoJBVr1Bf1ISCgFZTjtdpTeTKwhihhD9BEN1CoVSjK6cjN1txR8QT811vpwmKUaaz3bGotZWrkmfJxaoSLVnESWJY3s6HRyozPJsKT2EGFBEIg77+d4G8po/vRZUm/9Owrdvu65DEsqv5n2C9bUbOKVDf/lwQVP9hrb6YtLBp2Dw+vki5JFpEQmcnZe/3HQpmWOx+V38+9N76POdFHXPI6sZDNalYb7Jv+MZ9e8zpubP0QhKDgn74xex6dbUvjTmQ/w5PJ/8reVr3Ln+BuZkjH2oN9rpyMUjsoUEeqajTFE8cgZ9/DbBU/y9IqXefKsB49ZVJBTAUGpAoUqnMb8h+g0of+NxxcATkwuqXRLCk+ceT/zdn3NJ8XfUNpawa8n30a65cimLIAsSMcMp9tPVaONM2caWGFv4s7xN/Zbtt3dyeLyVczInkzSfk+0H+36CofPSZ50Dk06D7GJAf628EsmpY1mRlbv8D4Amxt28Nzq18mJzuS30+5kU3E7Da1OfnvjOLTqnhWst6EMr1LJ5+17+Grtyzj9brKi0vjp6CuZkDb6qPuCXX43lR01lLWHInyXtVWGw9woBAUZ5hTOyJrImrVeJHs0j//yHMzGo795XD43e9sr9wt1VEuLs+2wzqFUKEmNTCSrSxwKYrNJMycfUUBTjVIdCib7g4yrTp+LOlsjtbZGam0NVHfWsb5uK4srVgGhMayihEGMSx3BmJQiDGo9Cq2B+Dn3UP/WQ7QtfJO4C37R63oT0kaRHZ3Bn5e9yBNLn+eh6XcxOL7/YLmCIHDt8LnU25t4c8uH5ERnkBuT2W/5c/LOoMXRyed8y5KaZUwZcRUAKqWKX078KX9f9S/+vel9jJqIPsXGpIvk0TPu4cnl/+SFtW+gU2kYc5CWUoc91DW1fwqK+IgYfjXpVh7//lne2foJPx1z1QHPcbqh0OqQ+umy02lDVbnbG+hz//FCpVRxxbALKUos5JlVr/HQwr9w+7jrmZQ++sjOd4zt+9FSXm9FksCqKkev0jEhdWS/ZReWLScoBrmo8KzwtnZ3Jwv2LuOMzIls+x6GZMfy9taP0Km0Pbzv9qfGWs/fV71GujmF306/E4Naz7LNdUSbdIwf0rNLQ5IkVjTt5LOMGOy7vmJMchEXDzr7sGfXd+P2e0KpJbrEp6Kjmgb7vtTisYZosqPTmZUzhfyYLLKjM9CpQuJzdpqVXz+3jH98tJXf3DD2sFpioiTSaG+mtCsh3Z7WMmqtDWF37SRjPHnRmczMmkRiZByxhmgsOhMRGgMapQYFAkFJxB3w4PA66fBYaXG202Bvoqqzlo3121lSsRoIjQkNTxzEqKRhDE8afNSCHaEx9HKakCSJFlc7e9sq2NFcwqb67ayr24JWqeHMnKnMKTwLS0o+lolz6Fz1Ccah09Bn9nanjo+I4fGZv+bRxX/jLyte5snZvyFxvxQlP0ShUHDnhBu579sneGHtGzw9+6EDulZfM+Iivtq4nW3ScopbxoSzGqsUSn458RaeWPoCL637D4nGuD7FTafW8eDUO/j9kmd5bvW/eeLM+w/4JN3a6UGjVvbyzBwSn885eWfwTekSZudOO6qn8VMNhcbQb5edXhOqyj3eYJ/7jzeD4vJ4avZv+fvKV3lu9es4fA5m5x5aBPL9kQXpGFHf4gQkKhyljE4p6vfmFkWRReUrGZE0uEeF8VXJ9wSkIBcVzOabD9eSPzjI6qbd3Djysj7Dv/gCPv6+8l/oVFoemHoHBnWo73ZXRRtjBiX0CLdi9zp4ad3bbBA6yFTo+M2sew74RPxDJEmi3t7E7pa97GkrZ29bZY/cRjGGKLKj0pmWMZ7s6HSyo9IPONk1O8XMdecW8sYXu1i5rZ4pw/uuVDwBL/W2RmqsDVRZQ7mV9ncx16t05MdmMTFtNPkxWeREZxySK7aK0FiQRWfqcz5Nk7OVPS1lbG/ezdaGXays3oBCUDA8cRBT0scxNqXomHUXCYJAfEQM8RExTEofgyiJlLZVsKBsOV+Xfs/i8pX8dPRVTJ5yGY7i1bR+/Sqpt/0doQ/PzUitkd9Mu5MHvn2CF9e8yeOzfn3AFp5RE8Ed467nD0ue49Pd33L50Av7LasQFOSI0ykLfs7za97g7+c8Gp6MrVGquXfybTz43Z95ZtW/ePqch8P/x/3RqXU8MOV27vvuTzy35t88ddZv+h2XbOl0EWfR9/mwctmQ81lSsZpPir/hnom39Gvz6YZCq0Psx8tO26PLbmCI0pt55Ix7+Pvq10Jz34J+Lig487DOIQvSMaLd6kaIsOLwOxl1AM+6nS0ldLit3DTy8vC2QDDA9+UrGZsyHK1kQhQlKoObiNKbe3kwdfPBzi+oszfy8PS7w7HrPL4AVoePlLh9T/K1tgaeWvZP2twdnN9i54LhM4k5BDFy+JxsadjJpoadbG/ajbXL/TpSE0FeTBaT0keHYrYdRHz6Y860HJZuruPV+ZuITvBi83fS7Gyl0dFKk6OZenszba6OcHm1QkW6eZ+LeW50JqmmpGMeZ0sQBBKNcSQa45ieNQFREilvr2Zd3RZWVK3nhbVvoFfrmJU9hXPyziD+CCf59odCUFDQ5Up+6eDzeHn927yw9g06hs/lzNm30Pj+E1jXf4Vlwpw+j4+PiOGGkZfxz3X/YVX1xoOO1wxLKGRS2mjm717A7NzpBwwQm5MUw65Nw2gvXMOHO77g+pE/Ce+L1Bq5Z+ItPLL4r7y3bT43j+7bWcKiN/OzMdfwlxUv8XXpEi4s7LvCau5wE99PHiqjNoIzsiayoGw5Lr+7T/E7HRE0+v5bSF1ddgMpSAAalYZ7J/+M59f8m/9smUdcRAzjD9Bb9ENkQTpGONx+dNGdABQl9J/pcn3dVtRKdQ938K1Nxdh9TmZmTcLtDSDoHDR4q7hq2Jw+5zDV25v4cs8iZmZN6hG/LhgMtVi63T6rO+v4/ZJnUSDw0PCr0H/4d7QHCEfjD/pZX7eNpZVr2Na4i6AkEqk1UpRQyJD4AgbH5ZIUmXBYXWxBMUirq51GRwtNjpZQpAJnK82OVjrSW/EEPTy29Ktw+UhNBInGOIbE5ZMUGR/ySjMnkWSMHxCvO4WgIDcmk9yYTK4cdhF7Wsv4bu8yvipZzNel33N+/ix+Mvjc4zLAnhQZz6Nn/JLn17zBO1s/Jn/mvZhzRtK5ch6Rw2ei1PcdOHVa5ng+2/0dX5YsOiQHgiuGXcTq2k18XfI9VxX1LXQAeekW/EvMTIgfzdd7l3Bu/oweUTfyY7M5K2cq35Ut47z8Gf16/I1JKaIoYRDzd3/HuXln9NlKam53kTOsb49SgPGpI/i69Ht2NpccM5fjkx2FSoMY8PW5T6ftmvs3QF12+6NSKLlz/I20Odt5cc2bpM5OOmSvSFmQjhG+gIjC2ElSZOIBIyzvbNrD4LjcHhM719duQa/WUZQwiKZ2D8qYhlCuo34cGebt/AqVQsWVP6g89FoVKqVAp91Lq6udPy59HrVCxWMzfkVkfSVNgMqS0Ot8br+Hb/cu5auSxXR6bMQYoji/YBbjU0eSE51xSAP7/qCfOlsj1dZ6am0N1NoaabA10ehsISjuu0nUSjXxhhjijbEUxOawu9TD3jIf910xjRHpGUftNno8UQiKrjQYeVwz/BI+2P4F83d/x9bGXTx6xj3H1EuwG6VCyR3jrmdXSylf7FnIXTOupe61e+lc/SkxM6/r184ZWRN5Z+sntLk6iDFEHfAaSZHxjEwaypLK1Vwx7MJ+f++C9FCkhDRGsVnaxNelS7h+xKU9ylw6+DwWl6/im71LuXHkZf1e89z8GTy1/J9sayruFWLI4w3ltjpQUNWc6EwEBKo6a380goRSjeTp28suPIY0wC2kbjRKNfdO+Tn/9/XveX3jezxyxj2H9CArC9IxQgBEnZWsqP6765w+F7W2xnCIfwiNWWxtKqYoYRAqpQqjXo0yqok4TUqfk0E73FZWVW/g7LwzenWvKBQC6QkmSmvbeWblF3gDPp44834SI+Ox2jcBoDLte6KVJIklFav537ZPsXrtDE8cxB3511OUMOiAXWGiKFJtraekrZy97ZWUt1dTZ2sIx5VTCgoSI+NJNiUwJqWIpK4o14nGOCx6U48Kz1rg5fanFvHxV82Mv7PgwF/ySUSsIZo7xoe8iZ5e8TJvb/2YO8YdXmxASZJweUKZbO0uH15/EFGUUCoUGHQqTBFaok1atCoNg+PyKO+oRpuQiXHIFGwbvsEy/qJeqQi6KYwNTTmo6Kg5qCABTE4bw6b67VR01PTyDuwmLkpPfLSB8kofI3OHsrJ6PdcNn9ujoonSmxmZNIQ1NZt6TGn4IcMSClEr1exo2tNLkFo6Q91S/XXZQWgMMFIbQbvbetDPdrogqNRI+wXo3Z/wGNJJ0ELqJkpv5qqiOby28T021m9nTErRQY+RBekYoVKLEHQfsGla0VGDhNTDoaDN3UGbq4M5XbmPRIUbhcGBWew7MOXyqrUEJZHZuX0nLivKi+WrvQtQtlfyq0k/DQ/aBx0dIChQGkIiZvM6+MfaN9ncsJOC2Bzun3r7AWfAt7ra2VS/nS2NxT1SR0RqjeREpTM6eRjplmQyzKkkRsYf8pwes1HLbZcU8bf/buSdr4u54fzBh3TcycKIpCHkx2ZT1lbZbxlJkmjpdFNWa6WiPhTNo67FQVO786BdLAqFQFJMBL6MWrRaJTVNduInX4pj5wqsG74ienrfrs/mrla6w+c8pM8xKD4kYHvbKvsVJIDhubGs2t7ALVOHsaF+Gw32JpJ/8J8fnjiY9XVbaXG2EW/sOwW5RqkmOTKBentTr32tXYIUd5C0EwpBgSiePBXw8UZQqqAfQdJ1tZBc3r73DxSzsqcwb9fXLChbLgvSiUTQecADUbr+n0ZrbQ0APVIEV3bUAJAdFYrRVdpeCYC7ve/B5bU1m8mJyiA5snfXG8CooWa+cZSRpstjYtq+uQBBtw2F3oigUNJgb+aPS5+n023l5lFXMDt3Wp/dNE6fi+VV61hetY7StgoA4iJimJA2isFxoSgOcRExRz2B9oxRqewoa+WjxaUkxhg4e0LmUZ3vRLKudgu7Wko5P29fpAKXx09JdQfFlR3sqWqntKYTmzPU9y8IkBgTSqE+LDeWWLMeS6QWU4QGrUaJQhAIBEVcngCdDi8tHS52teyhXNFER3ked6xcTFJMBLeaC2H911gmzUWh7j2XqzvVx6Hme4rRR6FSqGhxtR+w3Ij8OBasq0bpDbXMam2NvQSp+6GsydnaryBBKPWHJ+Dttb3NGhKkGPOBU6o4fC6Mx6Gb9GRFUKqRgn13ySkUAnqt6oTPQzoYSoWS6ZkT+Gz3dzh8zoPGXTyugvT555/z0ksv4ff7ufHGG7nmmmt67N+5cyePPvoofr+fpKQknn76aUymY5sa+0Sh1YWe1BTB/m+iFmcbaqWaKN2+bpb6rrk73Tdxd+rumkp6xaVy+Jzsba/i0iHn9XuNnfb1CAqRll0ZeM4JhCfMiR4nSl0EzY5WHvv+7+G4eH25f3e4rXy2+zsWla/EG/CSYU7hqmFzGJ864rCdGkRRxOl34faHEuV1p1hQCAq0Kg0GtZ4IjYGfXVJEa6ebFz/cSpvVwxVnFYTj752MBMUgnxR/y4c7vyA9Mo143whe/HALuyvbqW6yI0kh8UlLiGTc4ERy0yzkpJrJTDKFn2YPhZLWcr5ftpwUfSL/d8PNbC/tYPW2Bv5Xmc5dkcW8+/JbjDj/UoZk9/T229NaDoSiORwKgiCgVqh6pMDoi+F5cQgCVNSEhMTudfQqo1WGxkd9/TzNd+PyuYjpI4J3m7X3pNgf0uhoJiAGSD5AqKTTDUGpQgr0/50adCrcnpNLkACGxhfwafG3lLdXHzSJ6HETpKamJp555hk+/vhjNBoNV155JePHjyc3d184nSeeeIK7776b6dOn8+STT/L666/zq1/96niZdFyJMIY83Jy9788wnR4bFp2pR4Xe5upAr9KF58802luIVJto9gjsKm9jeP6+uUpl7VVISAzqJySRP+hncfkqBkcPYeN6Fe8t2MONFwwBQPJ58Ku1PLviJXxBP7+f8X+9JhUGxSCf71nIvJ1fERADTE4fy3n5M8g+QBcOhFKv11obqOysoc7WSIO9mRZnG+3uTmxeR3i+Un8IgoBFayI2M5r0SBUfbqtgZfk2fn7ONIZlnTwxyyRJorXTw5q9u5lf+SlWsRmhI4Xd6/PZLe4kQqeiICOayUXJFGREU5ARddgpN7oJBAPM37OAD3d8QWxEDL+ddidxERbS4iycNymL1s4RNPx7C+mdG3nwHwmMyIvjpguHkJ1iRpREFpavIMOccsDJsfvjC/hwBzwHfYI1G7XkplrYXtYEsfTp+ej0h1pnhgO0zgLBAA2OZob24ZHabvNg1KvRqPvv9t3RXAJwwjKZngyExpD6FxyDToXrJBSkzK6Holpbw8AJ0qpVq5gwYQIWiwWAs88+m2+++YY777wzXEYURZzOUB+32+3GbO49QGuz2bDZbD22NTY2Hi+zjxhTZOjmaW7t2y0TwOl3Y1T37Be3ee09vPI6PJ3EG6OxapQs31rXQ5CqO+sByLKk9Xn+7U27cficXDR+OtEdfj5ZspdxQxIZnBWDFPTzpT5IjbWe3067q5cYtbk6+Puqf1HaVsHYlOFcN3xuv267kiRR0VHD5oYd7GjeQ2lbRfhpWKVQkWCMJT4ilpzoDMw6E5HaCAxqPRqlGqVCiYBAUAriDfhw+d3YvA463Faana0EDE2o0620sIfH1yxBvzKGooQhXDJiKjlxJ25Wvs3po67ZQU2znaoGG5UNNsob2/FG70SZUAUBDVG2iQyLHUb+iGgKM6NIi4/sMSH5SAiIQVZVb+DDnV/S5GhhQtoobht9NUZtT6GItRhQTz2fiO/+zS9mRvGfNZ386pklXDAlm/i8Jmqs9fzyMCaNVnbWApDWT/De/RlVEM9H68rQxNKnw0StNdQ1nWTsv/VS0vWf6SunTofdS9QBWkcAK6s3kGSM77fr+lTkYHXdgbrsAAw6NU73yTWGBIQftp195HL6IcdNkJqbm4mL21eZxsfHs23bth5lHnzwQW666Sb+9Kc/odfr+eCDD3qd56233uLFF188XmYeMzTqrrk/jf03kfxBX695RW6/B4Nq383n8LqIMliYOCyJFVvq+OlFQ8Pdbk3OFiI0hl6VUzebG3aiVWkZllBA4RzYUdbGU/9Zz99/OZ0G0csKlZezc6czIqmn40CdrZE/LHkOl9/NLyfe0sMLcH9aXe0sKlvJ8qq1NDvbEBDItKQyK3sKeTFZZEWlkWiMO+r5Qjavg12NZXyzbRO720tY176UdYuXovHFkBcxgklpY8hIMBMXpcccoT0sEZAkCY8viM3pw+rw0m7z0NbppqXTTXOHm4Y2J42tThz73dhajZL4NAeqwRsJ4mBM/DhuGXspMcZj171s9dj4vmI135Yupc3dQYYlld9Ou5MRSUP6PcY4ZBptC99irK6SKb+5kv98XcyXW9ej8WygIKqgxxjiwVhXtxWFoGBw3MHzZA3Pj2Pezk5g39Pv/uxo3kN8REyvVOf7s6ZmE2qFiqKE3k/MnXYvUQeIWF3ZUUtxSynXFF1yTAIAnywcrK4TlKp+vewg1MVZ23zsk/QdLYIgdD2Eigcte9wEqa/M6Pv/eTweDw899BBvvfUWRUVFvPHGGzzwwAO8+uqrPY654YYbuOSSnum/Gxsbe41HDTTdn620phNJkvq8UURJ6uVOHRCDPSYGeoJetEoNsydksmRjLd9vquXciZkAdLptROv6v8n3tJaRH5OFWqlGrYSHbhrHfS8s4/evrSElyYUaemWvbXd18sclzxOURP4w694+xxxanG18sOMLVlStQ5QkihILuXTweYxKHnpEURoOhklrZELGcCZkDEcUJdaVVvJN8SpKA9vY6V/E9uJVBBbmEGxNQaFQYIrQEKFTo9cqUauUKBQCCkFAlCQCARFfIIjHF8TtCeBw+wkEe98YKqVAXJSBhGgDU0ekkBxnJDkuguRYAwtrv+Wr0qWkmBK5feztRxz/74cExSBbG4v5vmIVG+q2EpREhsTnc8voKxmVPPSg87+UhkgM2SNw7lpJ9MzrGDsBVgQ3I3oi2f59Gt+aqjin679zIDwBL9+Xr2RU8rBDmktVkB6FKqqFSCG2V3mX3822pt3Myprc7/Fuv4elVWsYnzqyT6eLdpuHQZn9Z4edt+sr9CodZ+ZMOaitpxKHVNf1Ua92E2fRs6Wkud/6Z6Bw+z1ISBgPMazXcSEhIYENGzaE3zc3NxMfv68JX1JSglarpago5Ap4xRVX8Nxzz/U6j8lkOiUcHZRdQmNzeahuspOR2NtmhSDg/0FlKAj0+JOJkoRSUDA4K5rcVDOfLNnL7PEZKBUCTr+r31htoihSa2vkvPwZ4W0ZSSYevH4cf3hrOc0pXiYGND0ChIqSyPNr/o3T7+Lxmb/uJUaiJPL57oV8sPMLBODs3OmcVzDrmIfLORAKhcCEgiwmFGQhSVezoW477237ghrtDmIKWhmingmeSJxuPx5fEH8gSFCUQuIvCBh0KixqLVqNEoNOTYROhdGgwRyhwWzUEmXSEmPWYzH2bml5Az7+uvJltjYWc07eGVw7fG6/2X8Ph0Z7M4srVrG0Yg0dHiuRWiPn5s1gZs5kUk0H7zLbn4jCCVjLNvLWqjf4qnY9OVEZ3DX2Nl7x7uEfH22lucPFdecOOmAF9Vnxd9h9Ti7umnpwMFrcLQjGTlT2Eb32rahahz/oZ2rmuH6P/3bvUtx+D+cXzOq1T5Ik2m2efrvsdrfsZW3tZi4bcv5hpZA/FTikuu4Av2OsRY/bG8Tp9mM0HPuMykdKd1ddhHoABWnSpEm88MILtLe3o9fr+e677/jDH/4Q3p+RkUFjYyPl5eVkZ2ezaNEihg3re+7NqYBW2dXFoAyyeU9zn4KkVmqwe3vOC1EqVAT2m0uhFBSIkoggCFw2K58/v7WepZtqmDkmHX8w0G/q7nZ3JwExQOIP+u1HFcZz4XkRfFMPGc0ebE5fOMfM9+Wr2NVSyu1jryMzque4lMfv4ZnVr7O5YQfjUkZw46jLiDX0/9R6IhAEgbGpRYxJGcbyqnW8vWUeqzwfcMOInzA7d9oxfSoUJZFnV7/Gtsbd/HzstczM7v+J/1DPt6l+B1+Xfs/2pt0IgsDIpKHcnDWR0UnDjij5oSRJlJgjeT0tmtba9ZyZM5UbR16GRqnm0ZvH89LH2/hwUSkA15/X9/yu/2fvvMOjKtM+fJ9pmZmUmfTeeyAJCaH3KoioKApi1/WzrH11i72srrruuq517b03RJDeWyChJJCekN57Mpk+5/tjkkBIIaEISO7r8pLMnHPmzWTmPO/7vM/z+xU1lvBTzhomB40Z9MpvRe56JEhpLPbAZhO7A7nNZmNl7kbCXO0WHn3RYdLzc846knxH9Nnv1NZhxmyx9VnybbFZeS/9K9zVriw8Rin/wkHE3oLfN56djcR1zfpzKiDVdlrQePRRUXk8Z3SF9MADD3DDDTdgNptZvHgxCQkJ3Hbbbdx7773Ex8fzj3/8g/vvvx9RFHF3d+f5558/U8M543QJPHp7yNlzuIbLp/WuhFPLVZSZK3s8ppQ5oLcc9ThRSOUYrfbCiPEjfQkP0PD56px+FbG7aO4UP+1L3cHkUIdSlOCr0/PXN7bx1B8m4KZ14LusVUS5h/WSKDJaTDy/9XXyGo7wh9FLmRN+em/2p4ogCEwNGcconzje2PMJ7+/7ipKWCv6QvPS0ia2uyd9CemUmtyQvOaVgZLPZ2FGaxg9Zv1LRVo27ypUlIxcyI3RityjuUBFFkey6fL49vJLDtXl4yBTcYVQzM2VZ9zFSqYQ/LrZL6ny7IR8vV3Wv9F2zoZWXd7yD1sGFm5OvZjBUt9ex5cguopwS2d8ho6HF0H0j3FmWRlV7LQ9OvK3fz8uP2atpN+lY0o+yeF2TfTbtoe2t0vBT9hpKWyp4ePId3VYmFxKiKA4Uj7rfs/pmPaF+/af2f2sqWu3Nz/7OJ66YPaN9SAsXLmThwp4fvHfffbf739OmTWPatKF7ZpyLOHcWGkSEqNm5tZ7mNmMvK2EXhSPtx62QnOTqHtUnKrmKDrM9QEkkAjcvGMFj/9vJ8q2FyCTSfvtEuoKaStZ7ZnmkuYwQuSMeylYamw089N+tLF6koaGjiZuTru5183h/31fk1Bdy/4Q/nLTR1m+Bi9KZv0y5ky8zlrM8Zy06Uwf3jL/5pJxfj8VsNfND1q/Ee0dz0Ul4unSRW1/Ie+lfUdJcTrDGn3vH38L4wOSTHp/VZmVPxQF+yd1AfsMRNEoXbk66mtHl5bSnrsBm1CNxOHojFwSBO69MpK5Jzzs/ZRIT4kaI71Gljr9v/i9txnaenvngoHX4PjnwPTKpnFlBM9nPYbtNhKsKi9XC15krCNb4MzZgVJ/n1uoaWJW3sdOmpO9WgupG+3fB261neqe4qZzvD69kYlDKhaNd1wfCQCsk7dEV0rlERVs1SplDn5Pl4zm92v0XMF2b+wF+CmwibD9Y0ecxeosB4zGKvS5KZ9pNHd1pO2cHxx7NholRnowb4cM36/OQIEdv7tsx0mqz7031dbOraa/HR+GCYOrgxbsmIJdL+WT7JhQSh146YhnV2Ww+sotFsfPO6WDUhUSQcG3iIq5LvIJdZem8uecTbIOo5hmI3PoiWoxtzIuccVIrQ6vNyucHf+SJDf+i3aTj3vG38OJFjzA5eMxJBaNmQys/ZP3K3b88zis736PV0MatyUt5Y8GzzI+agVPwSLBZMVbm9zpXKhF4cFkyjko5r39zAFEUqdU18OTGf1HVXsvDk+84YZ9ZF3srDpJWcZAr4+bj72pXYOhSoFhTsIUaXT3LEi/vtxjj84M/IgjCgIrilXX2z76fx9FKUrPVzOupH+Hk4MStyX3bWlwQdHVb94PWWYlUInRLL50rVLbW4O/sM6jv0nBAOk04KdTIJDJEuYFQPxc2ppX1OsZNpQWg4Rh5FjeVBhGRZoNdJFKrdKHJ0FMw8rbL47GJUFFlpK0fbbKuogrLcdpeFquFDrO+uwTX38nKv++bioO2BX2DC9+sy+9REfnd4ZV4qt1YPIAaxLnIpTFzWBp/KdtL9vB15opTulZFq733o799kIEwWky8sO1NluesZVbYJP497wkmB485KSv0goZi/rv7Q+5c8QhfZf6Mn4s3f558B69e/DQXRU7rNoF08LfblRsq8vq8jsbJgesvjiW3tInv9uzkb+teoFnfwqNT7z5ho2IXbcZ23k37gmCNP5dEz0bRqSBiNttoM7bz3eGVJHjH9rBVOZacugJ2laVzWczcAcVeS6vb8NAoUSuPFo98e3glpS0V3DnmujOiqH7+MHCDuVQi4K5VnZMrJD+XwfWLDWvZnSYkggR3lZb6jkZmjI7ngxWHKatpI9D7aNNrl3dMXUdjt/5X15ezXteEh9oNd5UrOlMHBouxO0/u7aZm6ZwovsjIQilvxSbaet3guo49Xhusq2FVpbKv4Cyt9Tj5u2GVtxOkDePLtblU1LZz39IkmoyN5NQXcm3CIuSnoZrst2ZR7DzqdI38mL2aUNdAxgcmn9R1zDb7ezbUijqrzcrLO/5HRk02t6dcy6yTKEsWRZF9VYf4KXsNufWFqGRK5oRPYV7EtF6acV1IlY7IXH0w1RT3e93JSd58lJ7Pt0dWE6Dx5aFJ/9fv9foa09t7P6PNpOORqXfbU8ed3ltSqcDXmSvQW4zceIxh3/Hnf37wR1yVmhMWIxSUNxPmr+3+uaixlJ9z1jE9dEKv1fwFh8iAKySwp+3qms6dgGQwG2joaBq0H9LwCuk04uXkTl17PdOTA5BIBDbsLe3xvHen0GRNe93Rcxztj3VVonQHLV1Dj3MXTY/ATaXFKlqpbm7ieJw7JV9ajcc1xnV+fgWVfWZpbqxCZ+rAJtqYkxzJjQvi2Hqggife2UV6eTbAoFR5z0UEQeDW5CVEuoXw1t5PqT3uPRwsLg72SUSXS+5g+T5rFQers7ht9LKTCkYZ1dn8dd0/eHHbmzR2NHFT0lW8fek/uCV5yQmDh8IrGFNtSZ/PHag6zF/WPY/FvRBbfRBPT3940MEIYFXeRvZWHOTahMu7qzHbOlN1HTSyrmgbcyOm9hANPpb9VYfJbShi8YgFAxYjtOpMlNe2Ex1sn6TZRBvvpn2Bi4NTL9+lC5OBq+wAPDSqcypl16XVOVhFjeGAdBrxcvSkWlePq4uSsXHebNhbhtlydD/DVaVBLpVT1XZsQHJHQKC63f6H69Ieqz4maAHIpBIun2APFB+vT+N4XDvTgY365h6PKzvL0Y0yGUhkmBoqutN6CqmcxTMjefi60eSWNPLN9n3IJLLzWo5FJpVx38Q/gAhv7fmkzwbtExHQebMubu69D9gf1W21/Ji9hinBY4fcsNmob+al7W/z9y3/RWfq4K6xN/Dqgme4OGrmoNW6Fe7+mJtrekjLlDSX84+tr/P81teRCAKXB1yL8UgcdY39y1sdz+HaPD49+ANj/BNZEHW0b6iqQQeIbK5Zg6NczdUjLun3Gj9mr8ZT7caMsIkDvlZGgf0zPzLcPinbXrKXwqYSrk+88oQaexcCNrMRQT5wObenq4qGFj0229A/92eCyjZ7+nvYMfYs4OvsSZuxHZ2pg4vGh7D7UDWph6u6S7YlggQfR48eKyS5VI6noxuVnaWRvp36cZWtNXBcpXdKWBif5kBqQQFZR1KICz3aoOogU6BxcKa2vb7HORKJBBcHJ5qN7cjd/TDXleEks6eiDJ3FFVOTAnBSKXh+wyFkZhk6gwWnkxQFPRfwcnTnusQreDf9C7YWpzItdPyQzg/U+KOQKjhQmUO4UywmsxWzxYbFasMmit0TValEQCaVIJdJ+LFgDQIC1yYsOuH1jyWt4iBvpH6M2WZhWcLlLIiaeVLpUpnWG2xWLG2N1EisfHd4FbtK01HLlVyfeCXzIqeRX9rKl2ynua235UNfVLXV8q8d7+Dr7MUfx93YY1O6oLwZtVcjeY0F3JK8pF85q6LGEnLrC7kp6aoTFnSkZ9fiqJITHeSK1Wblm0MrCHUNZFJw31JWFxqi2YjkBBMUd40Si1WkrcOExunsl8ZXtNYgCMKgRX6HA9JpxLdzZVHVVktSdDAeWhXrUkt79BD5OHt1B58u/F18Ke/cSHdUqNEqXbq9k47Fy9EduUSG3NXAG98d5NUHpyOTHl3k+rn4dG/IH4u3owfV7bU4eIegLz6Et1yNXCrvsZpKjvEipdyX9JoqXvx4L0/dNh6p9PxdQM8Kn8SmIzv5IvMnJgQmIyCjoUVPXZOe+hY9jS0GmtqMNLcZadHZHVvbOszo9Gb0BjOySBc2tu/j128HsYku2FAm7cHa7MUtT25F46TAzUWJl5saf08ngnxciArU4uvh2H1TF0WRn7LX8GXmcsJdg7l3wi3dk5GTQabxoFoh5ce0z9jTUIBCpuCy2LlcGjOne3Vh7Zw1D8bWo8XQyvNbX0cQBP4y5a7uPruusR/Ir0ERmoe7szezw6f0e50NRTtQSOVMD5nQ7zEAVquNPVnVjI7xQiqVkFq+n1pdAw+NWnxSBSG/R2wmA4Ji4IDUZdnR0GI4RwJSNd6OHoOeZA0HpNNIV6qrsq2GCPcQZo0J5Jv1edQ2deDV6X7p6+zNvqpDWG3WbhHSABcfMmtysNlsSCQSAjV+3YrJxyKVSAlw8cWmspGzqY2ftxZxxYyjDbhBGj+2FO/uVfQQqPFjb8VBFH7TaD+0FWtbI35OXpS39GzSjQvwZ1/DHg4UVfD5mpx+u/vPZdo6TBRX2tW5HZvjKbCt4Na3PqClxLeXDJiDQoqrswMaRwdcnZUEejvjpJSjUsootxk4oNvMLVeE4q52Qy6TIJVKkAgCgmCvwO3SyitoKeCXSgszw8fhEhpAc5uRhhYDJVVtpB6q7g4EWmcHkqI8mZYcQIF5D99nrWJy0BjuGHv9KUkSFTWW8m3RRtKD3HFoOsJlsXO5JGpWDxV5gJoGe4WmxwDW4GD33Xpuy2s06Zt5Yvr9vWa3RRUt1AsFKCQtXJOwpN+Vj81mY3f5flL8E1ErBn7N9NxaWnUmpo6yT962FKfiqtSQ4nd+7meeCUSzAcmJAlKnwkVjq4Ew/7PfHFvcXEaQZvAq/cMB6TTi7ejRYz9o9pggvl6Xx4a9ZVwzNxoAf2dvrDYrtbqG7hmxv4svFpuFWl09Ps5eBGn8WVe4tTtAHUuwawD7KjMZHTuZr9blMjMlsLsBN8w1iDUFW6hsq+mhiRbuFsLGIztpcbcHTENFLuFuwaSW7+/xGl2utaNHy/l+Yz4T4n2JDOy/RPdsI4oiFXXtZBTUc7iogdySJmoajzYZq1Uy5DGuSD3LWRI5HW83NZ5aFe5aJW4uPUuLj6e0WcOBNZtx8+tgaujAN8UjB1ORVkn4w+xpvTbtzRYb5bVt5JU2kVnQwN6sGraW7EYRdohIx3juGnsjMunJNcqWNJfzdeYK0iozUMuUzGrUsXDsUvwS+i7ZP1TUgJNKjo97//sx7UYdz219jfLWav48+Y4+5YR+3VWE3L+QEE0gY/1H9XutI81ltBnbSRlEddyvO4vROjswOtYbk9XMweosZoVOOm3KG78HbCZDn+7Ax3LsCuls027SUd1e10sJZiCGA9JpRCaV4a52pbpzH8fH3ZGECA82pZWxdE4UgiB0b+5VtFZ3B6SuTfTy1qrOgOSHyWqmRlffK40T5hrE5iO7uHJuAPtfq+PrdbncfoX9hhndefPIrSvsEZDivOyWArliB5FyJYaSw8THjWLjkZ3kNRzp9qSJ9ghHJVPi6tuES7Yv7y0/xAt/nHxOyQaJokhuSRNb9peTeri6u8TVzUVJbIgb8yaEEOanIdjXGTcXJSty5Xx28EcWTPdDOwRl8gAXXxykCo40lzGNgfegcuoKCHML7rOCTC6TEOqnIdRPw0XjQ8irO8KTm1YhN/iQsceXx0t38bcbx3brCw6GRn0zX2YsZ2txKiq5kiUjFzI3IIW61+/EsZ/NbKPZyu5D1YyJ8+43Zdesb+G5ra9T0VrNgxNv69P6oqnVwOaiVCQhepYkLBzws5FbXwhAnGfUgL9PWU0badk1XDM3GplUQnZdIWarmQSf3uZ9FzKiyYCgHvgz3GXb0dI+uH3CM0lho73qsy/Nwv4YDkinGW8njx6FBTNGB/Dq1wfIL2smKsi1R0DqKq8O6DRFK2upIsU/sds8r6S5vFdA6vrjdkjqmTM2iNW7S7hyZiQeWhW+zt5olC4crs3rUXbs5+yNl6M76VWHiQ+KRX8kg6RZ1yGXyNhRurc7IMmlciYGpbCtJJVFs8bw0U+FZBTUkxg5uA3JM4nRbGVdagkrthVRWa9DIZOQFO3FVbOiSIz0wNfdsc+bY1cpcnVb3ZACkkQiwcvRvVf5/fGYLCYKmkpYEDXzhNc0WUy8ufdjtEoXXrz0QfbENPHm9wd55M3tvHzf1BNam9tsNn7N38RXh1ZgtVlZGDOby2MvwknhiM2gow4QbX2rVKxPLUGnN3PRuL5vDmUtlbyw9Q1aje38ZcqdJPr0na79Yk0OeBfh6+hDcj9NsF2UtlTi7OB0Qs2+7zbmo5BLuXhiKAAlndWNg1WQuFCwmY1ITpD6lMukyKQCeuPZd449UJWFXCIbkqvv8Hr4NOPp6N7dUwR2gVSpRGBnhn2/pqtooaLtaPGBWq7CXe1KWWchQ6CLL4IgUNrSu+w4RBuATCIjr76Iq2dFYRNFlm+1z0QFQSDeO4aMmuwe8jmCIDAuIMn+eHAc5sZK5O0tjAtIYmtxKh2mo30LC6NnYbFZaVBmoHFS8Mv2otP7Bg0RURTZsLeU255bx/9+zMTZUcF9S5L49Ol5PHbLOOZPCMHPw6nfmbrebJ8pnswejVLmgMk6cIl0Vl0BVpuVEV4DrwLArjhQ2VbDnWOvx0XpzOyxQTx681hKqtv4bkNv2Z9jqW6v44mN/+LjA98R5xnBK/Of4LrEK7oLFrrK2/t6H3R6M1+tzyMu1I0RYb2tQ3aX7ePR9S9htll4auaD/Qaj/LIm1mWnIVG1c8WIi064cq7T1Z+wuqq4qpVN6WVcPDGkO/Vcq2tAIZXjOoD314WIaDIgnCBlB6BykJ31gGSz2dhTvp8RXlFDEsIdDkinGS9HD5oNrd0KCU5qBfERHuw+dLRIwc/Zu1elXaCLb3eRgUKmwM/Ju88+GLlUTphrEHn1RXi5qZmU4Me6PaUYTPYPYLLvCFqN7RQ0FPc4b2rIOKw2K+lK+02kIz+NS6Jno7cYWJW/8ejYXHy4KGIaG4q2kzhKQlp2DW0dg+9bOZ3o9Gae/SCV/3y1Hy83Nf+4axIv3zuV2WODBtz/6UIURTYf2YmTwpGgfpo2B6LVpDuhh0taxUEUUvkJ01LFTeWsyF3PjNCJPeR6Rsd4M26ED+v2lPbbM7W7bB9/WfM85a1V3DPuZv465Y94H3ejFztL+IU+7Ek+/OUwre1G/nDZyJ4mmWYD7+z9nH/vfJdAjR8vzPlbv+kVo9nKK1/uR+lfjouDM5P6cRU+lmZ964BBRRRF3v0pEyeVnKtnH33/Wg1taBycz6lU8bmAbRBFDXBuBKQD1VnUdTSesPfseIYD0mnGs9MzqKHjqJrCmDhvKup0VHdWOfk6e1PVWfjQRYDGj4q2GmydKZdgrT8lTb318ABiPMMpbCrFZDExf0IIOr2Z3Zn2gJfkOxKpRMru8v09zgnWBhDlHsa6in1IPAPR5ewmzC2Isf6jWJ6zjvpj9PWuib8UX2cvsmzrsMraST3Uu5T8TNNhMPPImzvYl1PLbZeP5KW7pzAy3GPQ59tEG58e+J4D1VlcGTd/yH5DTfoWatrr+nTQ7cJoMbGjLI0Uv4R+farAPlt8J+1znBRqrk+8otfzsSFuNLYaet1EbKKNrzNX8O+d7xLg4sPLFz3GlJCxfbsRG+yipBJlz4KF7QcrWLO7hEXTI3oUqByszuJPa/7OhqIdXBozl6dnPNhvak0URf73QwblTTXYnGqZHT55UO9n+wCGkgCb0svIKKjn+vmxOB/j39NhMaD+nZnvnSqiKCKajINaIUkkdrfks4VNtPH94ZW4qbSMGaDopS+GA9Jpxr3zS32sgOqozj2YjAJ7Ks/byYM2Y3sP5e4AF1/MVnN3ui/ENZC6jkba+xBTjfWMxGKzkN9YzIgwdzw0SrYfPJoSTPSOZVdpei/V60tj5lCjqycrOAxDWTaW1nq7JIso8vaez7qPV8qV/HnKnUgkoIpLY2t2zml6dwbPf77aT0l1K4/dMo5Lp4T3cnMdiIKGYh5f/09+ydvAvIjpzD/GRXewrM7fDMC4fqwUADYUbbc3QUcObFHxS94GChqLuSnp6j4bSHUGMxIBFPKj1XYWq4XXd3/E91mrmBE6kadn/mlAgzNLu30CJHXUdj9WVNHCq1/tJzrYlWvn2Vdlte31/GvHOzy35TVkgpSnZj7AdYmLBgwwK3ccYd2eUkaMbUciCMwZoO/oWI7VYzye+mY97/x0iNgQNy4aH9LjOZPFhIP03DGYOyewmADxhHtIYO83G0yv2Zlie8le8huLWRp/6ZDV7YcD0mmmS9G7SX9UBy3Q2xknlZzcEvtNw7PzxnLshrl/pxpuRZs9lRfcWdhQ2kfaLsYjHEEQOFybZ7f4HunL/rw6TGa7JNDUkHE06Js4VJPb47wU/wTCXINYYajEJED7oW14OXlwY9JiMmqy+ebQL93H+jl78/j0+5DJIUe+gu3FveWKzhQ5xY3syqxi2UUxpMQOTsbIYDawtTiVJzf+i0fWv0htRyN3j7uJm5OvHnJj5ZGmMn7JXc/EoJR+Nd9aDW18f3gVI7yiiPHobcbYhb00+2dS/BP7THOJokhadg2Rga7dTc4Gi5EXt7/J9tK9LI2/lDvGXHfCFYml2b7ilmk6pacadDz93m6c1Ar+duMYDNYOPjnwPff/+jT7qw5x9ciF/HPeY8R6Rg543V2Zlbz7UyYpI9ypFrMZGzBqQLXuY3+v/gKS1Sby7y/2YbXauP+apF6TDZPVhPwkHHR/z3SnZAchJWW1ikjOUrqzur2O9/d9RaRbCFNDxg35/OGAdJrp8kVqMR4NSIIgEBGgpaiiGQBPtX1juf6YtN6xKg9Ad6qopI+A5KhQE6YN4lCNfeWSFO2FyWztDnhj/BNxVjiytmBrj/MkgoQbkxbTYGhhY3AQbQc3Ioois8ImMzN0Ij9k/cqqvKP7SSGugdwQeRs2vSP/TX2ff25/u5fG3plgZ2YVMqmEhVMGttSu1TWwvnAbL2x7k1uX/5nXUz+iUd/CdYlX8OrFTzE1ZNyQ9yFKmyt4fuvrODs4cXPSVX0eYxNtvLX3UzosBm5JXtLva3SY9byy8z0cFWpuT1nW53F7s2s4UtnKnHH2HjCdqYPnNv+XjJoc7hhzPVfEzR/U72CqK0OQOyDTeFDb1MFjb+/EZLby15uS2Fy+ibtXPs7KvA1MDhrDqxc/zeIRF5+w0GNfTi0vfZpOVJArCWN16Mx6LjlGz24gjFYToij2qcX3+epsMgvruX1RAn4evZUwjFYTiuEVUg9spk7TTsWJU3YWq62HgstvRYdZz793vIMEgfsm/uGkFDYGNQ1ZtGgRy5Yt45JLLkGlOvGS8UJGLVchFSS0HmOyBxDk68zqXSXYbGJ3rv7YfSZnhSOOclV3U62rUoOTwpHS49QUuoj3iWFFzjo6zHriQu0rrqziBuIj7DIds8InszxnLdXtdT0qnWI9I5kTPoX1hdsI1zfhUXoYVfBI/pCyjHZzBx/t/5YmfQvXxF+GRCJh2ohI3vlmAuGjG8moPsD9q55iQmAyF0VMI7pzpXa6aWjR46FVonI4+vG02KyUt1SR33CE7PoCcuoKuve9PB3dmR02mXEBo4jxjDipL4JNtLH5yC4+3P8tarmSx6bf2z25OBZRFPki4yfSKzO5KemqfhWurTYr/9n5nr06bvr9fV6rpd3IW99nEOjtxMyUIJoNrTy35TXKW6t4YMIfhmSfYawqQOEVQlVDB4+/vZN2g4F5lwi8lP6SvTnVP5GlIxd2txSciLTsGp7/aA9B3s48eEM8j216jnjvmD4bZfui1WBXndc49FSL2La/gm835HPR+GBmjw3q81y92dA9QRvGTvcK6QRFDVabSHuHaUh9bacDg8XIP7a+QVlLJX+ecidejr2rOQfDoALS448/ztdff82rr77K3Llzueaaa4iMHHipf6EiCAKOCjXtx9iSA/h7OmEyW2lqM+DqrEFA6KElJwgC3k6e3cKrgiAQpPHrs/QbYJRPHD9lr+FQTS5jA0bh7+lIfunR682PnMHK3A38mLWaO8de3+Pc60ddSXZdPl/YRHz2LicxeCQyiZQHJvyBD/Z9zfKcteQ1HOGusdfj7eTJ6Bhfsg858O+HL2N1wSbWF25nR2kaHmo3UvwTSPCOIco9rJdUzckgiiJqZyuN1gp+ydlIZVsVR5rLKG2uwNxp365RuhDrEcGlMXMY4RVFQGeZ/Mlgs9k4UH2Ybw+tpLCphJFe0fxx3I19pqVsoo3PD/7Iitz1zI2YyvzIvvembDYbb+z5hAPVWfxfyrXdjcnHYjRb+cfHe2lpN/LITZNpMjTy9y3/pVHfzF8m38Uo38HLNtlMeoyVhYixc3jy9a1YXEpwHlHMryWtxHvHsDT+UiLdQwd9va37y3nly30E+7rw9G0T+Pzw1+jM+iFZQHTthR6775V9pJFXvtpHbIgbty/qX72h1diOywVtxNcbm9mIACcUV23vMGET+U117FqN7by8/W3yGoq4f8Kt/Zo0DoZBBaTk5GSSk5NpbW1lxYoV3HnnnXh5eXH99dczf/78k37x3ytquYoOc09Pki4tu7omPe4aFS5K517OsD5OnhQ2HfVQCtL6s/nIrj4N+aI8wlHLVaRXZjI2YBRh/lpyS44WUriqNMwJn8KvBZtZEDWzx8xYKXPgr1P+yCOrnuG/xhIeL8skJDAeqUTKH0ZfQ5R7GB/s+5oHf7VbIExMTmRXZhXZ+R1cn3QlV41YwO7y/aSW72dj0Y7uAgB3lSsBGh+8HT1xU2vRODjjqFCjkCq6Nzdtog2T1YzBYkRn6qDN1E6zvpUGfTP1ugZqdQ0YrSakUfDJwVQcFWpCtYFcFDmdMNcgItyC8XbyPKWVmdVmpaiplL0VB9lRspe6jkY81G7cNfYGpoaM63OF1W7S8WbqJ6RVZnBRxDRuTr66zzFYrBZe3/MxO0vTuCb+sj6tKDoMZp7/aA9ZRxp46NrRSBxbeXTDm1hsFp6Yfv+gVyHd1yvcj2iz8O/cZszhuYiKdnycw3gg4dZB9Ud1IXb2tH2w4jBxoe48dss4dpTvZHPxLq6Imz9gxeHxFDeXA/Z2BoDS6lae/WA3nloVj948Frms783uDpOeDrMej0HsU11IiF0B6QQrpC4vpC5NuzNNZWs1/+j077pv/K1MCBx9Stcb9M5ha2sry5cv57vvvsPZ2Zn58+ezfPlyNm3axEsvvXRKg/i9oZIpMZh7akl1SXo0ttofd1W60HycAZyXkwe7y/d3C68Ga/wxWIzU6hp6NRjKJFKSfEeQVpmBzWYj1M+FbQcq0OnNOHZaR1w54mK2lKTywb6veWLG/T1utF5OHjw26Q6e2fwqT+38H/dPtc/KBUFgWuh44r1j+CLjJ37OWYdcuglNrD+fbTMyIf4KlHIl00MnMD10AiarmYKGYgoaiylpLqeitZqCxhJ0x60Q+0NAwNnBETeVFm8nT+K9Y/B28mT99kZKim389dZZRAf3X102EFablWZDK3W6Bqrb6yhvraKosZSCxmIMFiMSQUKCdwzXJi5irP+oPgsHRFEkrTKD99K/pNXQxs1JVzMvcnqfwajdqONfO9/hcG0e1yYs4rLYub2OqarX8fxHeyitaeP+pcnIPWp4cuPHaByceXLG/T0knwaDzSayeevPbPJzo05diI+jF9cnXUeKX8KQgrbFauPtHzJYs7uESQl+PLAsmW2lO/lg/9ck+8UP6HfUF5k1uXg7eaJVaaiq1/H4/3Yhk0p4+v8mDDh7L2u1p6jPZ0+uM4HY2eB9oqKGslr7VkGA55lfYe4sTeN/aZ8jl8h4csYDQ55I9cWgAtKf/vQntm7dyvTp03nqqadISkoC4JprrmHixKE1Pl0IOMgUGI/r8O/qQm/pdNrUKF16OZL6OHlhE23UdzTi7eTZ7c5Z3FTWZ8f7uIAkdpSmcag2lxBf+4yyuKq1uxvf2cGJ6xOv4O29n7EqbyOXRM/ucX6IfxwPu8TyVvNhnt/6GvMiprM04VLUchVuai13j7+Jy+MuYmXuRrbYUml2LubWH/cwPjiBkV7RRLmH4u3kSZxXZK+0lMliotXYjs7cgdFiwipaERAQBAG5RI5S7oCTXI2jQt2ten4s430MPPzaNp58Zxd/vXEMo6K8MFnNtBrbaDPqaDO202psp91k/3ebUUebyf7/FmMbLYZWWoxtPZpNZRIZQRo/poWMJ9YzgnjvGJwHSA0VNpbwRcZPZNbkEKjx4y+T7+xXzqagoZhXdr5Lk6GVu8fd1KvCyK44Uca7yzORSgQeu3UMucZd/LxzHdHuYTw0+fY+95kGorShhhdWvUe9tgWlzYGbR13F3MjJfb6fA9HcZuTFT/dyqLCBxTMjWTw7lI8PfMX6ou0k+Y7ggQl/GJLIaauhjYyabOZHTKemsYNH396B2WLjH3dNGlDYFSC/4QgwLBt0PDazESknLmoor2lDIoCf55kzNDRYjHy8/zs2FG0nyj2M+ybc0u10faoMKiBFRkby6KOP4ubWc6Yqk8n48ssvT8tAfk8opAr0lp4rJKfOxr/2jq6A5NzL86gr6FS11eHt5Emgxg+pIKGoqbTPDe5k35Go5Sq2FO9mWexSAAormnvIw8wInci+ykN8fvBHQrSBjPSO7nGNiMlLuet/97IxOoY1BVvYUZbGZTFzmR02GbVCRYCLL7ePuZbrE6/g8S9/oqQjn93CfjYf2QXYV4MBLj74Onvj6eiOm0qLRumMk8IRtVyFUqawBx1BigDYELHZbJhtFpoMLVS116I3G+kw69GZOtCZO7oDTOD4ZnIranhu1wZk+y1YMff7njvKVTg5OOGicMRD7Uq4axBalQY3lRYvR3e8nDzwdvQ44c3aarOyv+oQq/I2cag2FyeFIzclXcXciGl99lRYrBZ+zF7N91m/4qbS8szMPxHhHtLjmNLqVv73YyYZBfWMCHPnhstD+CL7M/IaipgbPpUbkxYPyZTPYDbw3u7lbC3fikRmY3qTnmuveg6N++Bl/rvIKWnkhY/30tZh5v5rEhHcKnlwzdM061u5LGYuS+MvHXKAW12wGavNyki3JP725nb0Bgt/v2Miwb4nDrgHqrLwd/bpbp8Yxs7Rsu+Bi8ryy5sJ8HbuNyV6quyrPMT76V9S39HE5bEXcfXIhUPuNRqIQQWktLQ07rjjjh6PXX311XzzzTeEhw9eOO9CQS6V0WrsefNUyCTIpAI6vf1xrVJDi8E+g+9KrXQJqVa11TDKNw6FVE6Q1p/CxuI+X0chUzApKIXNxbu5cdRiXJ0dyC9r7nGMIAjcNfYGHtvwT17a/haPTbu3x9Ja7uqDe8Is5h3cyOxlf+GbI9v57OAPfHd4JRODUpgclEKMZyRqhYqnrrqSP726ldYKI/dcF4ZZ0ciRpjLKW6s4XJdHY2nzSVmG937/5LgonHBxcCI6wJO6OiuV1WaUUjVjo4MYGxWEm9oFJwdHnBWOOCkch3zTPBaL1UJOfSF7Kw6ysyydFkMrrioN1yYsYk7ElB7mdMeSVZvHe+lfUd5axeTgsdyavKSHMkFVvY6v1+eyKa0MlVLO7YviUfpW8sLulxEEgfsm3MKkoDGDHqfVZmVj4S4+2f8jRrEDrc6d2xtyCR17+ZCDkSiK/LytiI9+OYyrG1w818Z3le/QUNhEhFsIf5r4fyeVgqnTNbAiZz0JnvG8+lE+ZovI3++YSHiA9oTnthraOFyb22slPwzYTPaU3UB7SFabSG5xI1OSBr/XN1ia9S18uP9bdpWlE+Diy9MzHyTGs//+u5NlwIB07733cuTIEcrKyli4cGH34xaLZdinZADkEnl3RVgXgiCgcpDT0SkPo1W6YLFZaDfputNGWqULarmqh+trpFso20r29OmNBHBRxDTWFW5jbeE24kI9OVTY0CPIAagVKh6bdi9Pbvo3z25+lXvG38zYYxQIXKdcRXvmZjT7NvPYogcpbCxhdf5mdpSmsbFoB2q5ihFeUcR6RnDj1T6893UJr31SyAPXjObW0ZO6r2OxWe2pMkMb7SYdBosRg8WI2WrGeoxqhEwiRS6RI5fKUMocUMmVqOUqHDtTeH3J8GQdaeCjX7LYsLqR9B21zJ+gZs5YLRrl0NoQRFGkQd9EaXMlR5pKya0vJLu+EKPFiFwiI8lvJNNCxpPkO7LfmV9FazVfZi5nT/kBPNVu/GXKXYzu9Pyx2UQyC+tZueMIuw9VIZdKWDglnGnjtXyV/T2ZaTmM8IrirrE3DDrNIYoi+6oO8WH699R21GBr1zBGOYcl7auQanzRTl48pPegpd3Iy99sI7P+MK6jmtBJa1lTIjLCK4o/pFxDsu/IkyoasdisvJ76MaIIWTu8kYrwjz9OIthncKnIjUd2YhVtTAkeO+TX/r1zdA+p/3Lu0upWdAYLsSEnt+faFzbRxsaiHXx+8EdMVjNLRi7kspi5Q5biGiwDXvXPf/4zFRUVPP744zz++OPdj0ul0uGy7wGQS2WYrb3TS04qOR16e0A6KjHU3B2QBEEgwMW3RyovxjOctYVbKW4u6zOvHqT1J9kvnpV5G7gs4jZ2ZFRSWtPW6ybgptby7KyHeGnbW7y843/MjZjKsoTLUctVyJzd0Iy/jObt32JImU94YCx/HHcjt45eSkZ1NvuqDnG4Jpe9FQftFwsHqVXFy7t34ZflybioULyd3bpTdY4KFT5OnihlDsilcuQSGVKJtNdNThRFRFHEIlqx2uz/6c162oztWGwWLDZr9/+lzlZuXOJNXqmCnZkVfJ26nW/2bCfQx4m4EFfCAjQ4OUqx2uxVfCarCb3ZQIdZT5tRR5OhhcaOpu4qvi4CXHyZFjKOBO9YErxjUA6waVzeWsVPWWvYVroHhVTBkpELuSR6NgqpnMLyZnZkVLJlXzm1TXqc1XIWz4xkznh/tlVu5amta5FJZPxh9FJmh08ZdK9UVm0enx9cTn5jEaJBjUPDGO6ZMhG/fW9hMenxuuaxE5q2gb1p8XBtHpty9pNeeQjRUYfCEVxdfLk48GKmBI/F5xQs1G2ijXfTviC7Lh9KRuEsOPPsHyfiN8jNdYPFyMrcDcR7xwy6V+pCQrQYEWQKhAEyAXuz7CoviZGD13wciPKWKt5J+5yc+kJGeEVxW8qyM15sMmBACggIICAggDVr1gwr7w4BB6kCYx8ByVEtp11vvxm6q+xFCI36JkJcjy6xg7T+7CpN617ljPSy7/lk1OT0u9G7dOSl/GXt81RJ9yERHNmyr7xP+3Gt0oWnZj7IlxnLWZW3kdSy/SyKm8essMloJy6iLWMT9avfxf/WfyJIpChlDowNGNW9mmrWt1DUVEpxczllLVUcLi+j2lDMz7m5MIiPhyAICJ0Hiognn95Tg0PnVlgNUNMImxr7PrQr/adROuPt7EWCTxy+zl4EuPgSog04obW2TbRxqCaXVfmb2FeZiUIqZ0HkTCZ4T6G8ysTb3x1mf14tDS0GJAKMivLi+vmxjIv3YW/lPp7Z/iIN+iYmBaVww6jFuKoGZ6mQU1fIt4d+IbM2B8xKTOVxzAqfxHVTHWlb+R8sumZ8lj6Gg3dIn+dbbVbyG4rJqMkiozqHgsZibKIN0SpBYfHiougZzI0dc0pB6NjXejf9SzYd2Ym1MgJvInn2ngm4awa/el2evZYWYxtLRi488cEXIKLJeMKm2D1Z1UQGaof0vveFyWrmx6zV/JSzBpVMyV1jb2BayPjfJAYMGJCuueYavvzyS5KTk3sMputmuW/fvjM+wPMRpcyhV9k3gIujorvKritdU3ucAVyYaxDrC7dR3V6Hr7MXWpWGMNcg9lYc5PLYi/p8vRDXAOZGTGVtwVaiR8xlXWopS+dE9xDr7EIhlXNj0mImB4/hkwPf89H+b/nu8CqmBo8leeIlqFd/RMuelWjHX9rrXK1KQ7IqnuRjLKmPVLbw7vIMMksq0Whg/Cg34iI0CFILRqsJk9XUudKx2m+Ix/j2SAQBiSBBKkiRSqTIuv+TIZPIkEokR/8tSJFKJJ3H2/8vdJ5f26gnt7iZ3JImCsta0RsAmwS1QkmAj5ZAb2f8XZzwclbjrlWidXLAxVGBSt7/x7+ypY5NhbvZXpZKg6EBB4maUEkK1IXw6wEj3+p3A/ZVb2KkJymx3qTEeqNxUrC/6hBPbPqEkuZywlyDuG/CLYPKt4uiyKHaXH7I+tWuU2h1wFwRTbA8njuujMarYitNXy1H6qjB97qnUfr37DFqNrSyv/IQ+6oOkVmTQ4dZb3cpdvTHoTmK5kpn5o4cxa2LE05oBjhYWg1t/Hf3h2TUZGOpDCNUksJTd0/ood59IkqbK/gpZw2Tg8acltLh3yM2i2nAptj6Zj15pU0su+jUXHYP1+bxTtrnVLXVMjV4HDeMuvK0NLwPlgE/la+++ioAv/zyy0CHDXMcaoUaY+eN+Nh9CFdnB0qq7KXeWqULSplDt3ZdFzGd7orZdfndRQ7jA5P5IuMnatrrevngdHFtwuUcrM6iXraDZmMKq3Ye4fJp/d8Ew92CeXrmg+TUFbAqfxNrC7exymbBOcKHiMPLGaUWiA5IIFDjN2AFWKifhufumExGQT3fb8xnzfo6NmwyMDHBl9ljIkiI9EB6hnW1wt1gQuevarXaOFLVSkFZM0UVLZRUt7Izo6pPTyeJAA4KGXKZxC7ZL2vH4liNzaUSwcku62RtdcVal4C+0QejQkGQj5xJie5EBGiJDnYlyMcFqURAFEUya3L4JvUX8hqK8Hb04L4JtzAhcPQJ03M20UZaRQbLs9eQ31iM1KbCVBaDxhjBH6d4EWvJpv3nj2k26HAaORX3OTcjVbsgiiIVbdXsLT9IWsVB8juLX9xUWsYHJjPCM4acTIFfNlfg5uzAk9ckkRx96iuiLtIqMng37QtaDO2YikaS4JbEIzeNRekw+GBnMBt4ddf73dWMw/SNzWwYcIW0fm8pogjTk0+uoEFn6uDTgz+wsWgH3o4ePDbt3h6+Xb8VA35yDhw4MODJ/v7Dud6+cO508WwztvdI0XhoVTS1GjBbbMhlEgJcfHtJA/m7+OCq1HCgOouZYfaCgcnBY/gyczkbi3ZyTcJlfb6mUq7koUm38/iGl9EmHOCLDTImxvvh5Tawr0yMZwQxnhHoTB2kV2ayr3QfGeUH2J+9CrJXIREkeDt54OvkhZejBx6ObriptLiqNGgcnHF2sFe5JUZ6khjpSUlVK6t3F7MpvZyt+yvQOjkwMcGXiQl+jAhzP+Oij1KphIgALRHHVXW1d5iobdLT0KKnuc1IW4eZxo4WaozlNFjKaRDLMdIMgLPgRrBqIrGakQTEeuOhVeGpVaF1duhzH2xfZSbfZ/1KfsMR3FWu3DZ6GTPCJp6wHNZkNbO1eDcrctdT1VaLzOqEvDyMOL2SOYFmfExrsOyooFWQ4Bg9Fu3EK1H4hFLUVEpqwUb2lB+gslMdPtwtmCUjFzLaL55gbQCHihp446sDVNTpmDM2iFsuHYmTauiuuX1R3VbLpwd/YG/FQZwl7nRkjmNSVAwPLhuNXDb4v6/NZuP11I8pb6vm0an3/KYz8fMN0WxEoup7r9BmE1mXWsKoSM8T9nn1xd6Kg7yX9iUtxjYujZnLVSMWDOjvdSYZMCB9+umn/T4nCAJz5/buRB8GtCp7QUFzZ/lwF77ujthEuzVAoLczoa6BbC/d20MaSBAEkv3i2VG6F5PVjEIqt2vG+SWwrnAbi2Iv6nfjPUjrz8OT7+CFrW9CxE6e/ULOv25f0Gfq7ngcFWqmhoxjasg4Wg9sIHfN27SkzKbBy4/y1iqq22rJrivo1V/VxbGVcioXJfGzHejogMZmMxsqD7K2RIJCqiDQU0u4rzuR/h64OTmilDngIHOwV9vJlJ0/K06pjPt4DBYjjaZ66sRaysUqSiwVFOlKutOlCqmcWM8IRvnMZrRf/KD2VSw2K7vL0lmes46S5nI81W7cNnoZ00PH91hRilYzNkMHVoMOm7EDm0FHS3s9G6sPsbG5kDbRjIdBYF6DhfEdJSiFIpCBUKdAHhSLJnku6piJHDE1s6ZsH6lp71PX0YhEkDDCK5L5kTMY45/YLdjb0m7kv18fYP3eUrzd1Dx7+wRGRZ2eVVFNex3Ls9ey6chOZFI5kbLxZOxyYe7YUO5anDgkDx5RFHl/31fsqTjATUlXnZXZ+PmEaDYh0Wj7fO5gfh21TXpuWjBiSNdsMbTywb5v2FWWTrA2gL9M6b/x+7fipAPSMP3joT7qdxTaqbYAdFe+lVS3EujtTLRHOOsKt1HaXNGtygAwITCZDUXbSavIYGKQXRtqUew89la8yC95G1g8YkG/rz3SO5onZtzH85vfpFq2loe/aOTFa65FqRj87Ng5cSaBBem479nIlJuexyHevtEsiiJ6s4FGfTPNhhZajG20GtppM+nQmTroMNt1yPRmA+0mHXoM2JwMODrYy79FREqB0lrYVDvwGORSOapjgpRS3hmspAoUUjlyqRyZRNodyLuq9UxWMwazAZ25g1ZjO82G1l4yRt6OHoS6BjE3YirRHuGEuQYNujG1w6xnY9FOVuVtpL6jEV+llpu9kkgRVYhZ+6nfswmrrgWrvg2bob27XBegXi5lm1ZFurMKi0QgWmdkTKMZb7MaR3dfPEZOROkZiIN3CHKvIIpaKllXmsauLS/T0NGETCIjwTuGxSMWMMY/sYfZn9VqY01qCZ+uykZvtHDljAiWzo0+5b0iURTJqS/g1/zNpJbvRypImR0+BUNZKKu3VXPJpFBuuzx+SAaKNpuN9/d9xbrCbVwWM5eLo2ae0hgvBESzsV/ZoLWpJTir5YyP79u7qy8OVB3mjdSP0Zn1LI2/lEtj5p7WBteTZcBP63PPPcejjz7aqym2i7fffvuMDOp856jiQs+7brCvMzKphNySJiYn+nerJhyozuoRkEZ6ReOhdmNd4dbugBThHsL4gGR+yl7DlOCx/e4lAUR5hPHvBY/x9Jq3qTKmctu3+dw+4SomhSYOqlJGEAQ8F9xJ+XsPUfPjvwm45SUkSkcEQUCtUNkVHDRD01wTRRGzzUKHyUBeeR0ZRdVkldRRXNOIFQsSmRUvdzleHg64aWU4O0uwCRYMZgMGixGj1UiHqYNGSxMmqxmzzYLFZum2ahYEAZkgRSGVo5QrcZSr8HfxYaRXNO5qVzwd3fBx8sLf2XvA0u7+qGyqYNXB5WytzcIgWgk1WLm4sY2Yjlok5NEmkSJzckXq5IrMxR2FTyhSlTMSpSNFNgPLGwrIMdYgiAKyBk/UjaH4xMQTOyesh7V4aXMF20v3smPfR9TpGpBKpIzyieOa+MsY7RffpyX4gbxa3lt+iJLqNhIiPLh9UTxBg+z96Y9mQyvbS/awqWgnZa1VOMpVLIyezcVRM1m1uYqftuWxcEoYt102tJ4lo8XEG6kfs7t8H5fFzGVZwuWnNM4LBZvF2GdTbEu7kd2Hqrh4Uuig1BksVgufZ/zEyrwNBGr8eHz6fedUmf2AAWnChAkAXHRR39Vdw/SNo0KNm0pLyXH7Q3KZlJgQVzLy7dL8biqtvYKu/ECPCjqJRML8yBl8evB78uqLuiuPbkxazMGaLF5P/ZgnZzww4IzGTaXlP5f9hXe3rGFd6Rr+u/d/fJnpxYLYaUwMSkF7At00qcoZ78sfoPLTx6ld8Treix9GOAmfoS4EQUAhlaNQyRkb6czYSPvvZDBZyC1uIrOwnszCeg7tbsZitTfR+rq7ER3iSlyQK5GhWkL9NINKP54urGYje/b9zNriXWSJHQhAQruJGTJXIr2jUYwMRu4RgNzVB6mTtkePSE2jjuUZqWwv20q7pAbRIkesi2CkJplZk6MYE+fdvXpp0rewvWQvW4p3U9pSgUSQEO8dw1WdK6G+ghBAYXkzn6zKZl9uLV5uav56wxgmJpy8FYfO1GFXQC9NI7MmB5toI9IthDvGXMfEoBSUMgdWbi/i6/V5zB0XPORgVK9r5F873qGoqZQbRl05rMgwBPor+96UXobFKjJ37IlTbS2GVv69812y6wqYFzGd6xIXoThLe0X9MWBAmjnTvpRetGgRTU1NHDhwAJlMRmJiIi4upzYD+70T7hZMQadQ5LGMjvHm45VZ1DZ14OWq7q6gq2qr7a6qA5gTPpmfc9by2cEfeHrmnxAEAXe1K/+XsoxXd33AR/u+4dbRSwe8IQiCwP9Nn8eM8jH8Y/mP1Kjy+Wj/t3y8/zsi3EOI944hxiOCcLegPkVGlYExuM++kYZ1H9K8/Xtcp5z+KiilQkZilCeJUfYVn8lsJb+smZziRnJKGjmYV8fmdLuVgVQiEOjtTJi/hlA/DSG+zgT5uODaR7HBqdDUVMnqnZ+xpbmQRpkEJ6vIfLUfc6Jm4BuRguS43iWj2UpReSv5pU1klzaQUXuIDk02EnUbWFWEMIGLR0xlbIw/aqU9NWi1WUmrOMj6oh3srzqEKIpEuoVwS/ISJgQmDyi0WlzVyldrc9mRUYmTSs6tl47g4omhJxWsW43tpFVkkFq+n4yabKw2K56O7lwaM4epweN6rIT35dTyzk+ZjBvhw11XDk1NfF/lId7Y8zEWm4WHJ99Oin/ikMd6IWMv++5Z1CCKImtTS4gOdj2hTmBpcwX/2PYGbcZ27h1/C5ODBy9Z9VsyqATz5s2b+ctf/kJkZCQ2m43S0lJeeeUVxow5N3+pc4FYzwj2VhykoaOph9nbpAQ/Pl6ZxZZ95Vw1K4ppIeP5OvNn1hRs6VH2qpQrWRJ/Ke+kfc7mI7uYEWZXVZ8UNIYjTWX8nLMOR4WapfGXnvDGEBngzv9uv4UfNxfw3c50TE6VVNhaKGhYg8ivwFEvIx8nL7ydPPBQ26vptHHjcajMp2nrVyg8A3GMGX8G3q2jKORSRoS5dwvEiqJIfbOBgvIm8suaKaxoYX9uLRvTyrrPcVTJCfB0wtfTET93R7zd1Xi6qvHQqHDTKHEYxI3aJtrIrDzM6vTvONBRg1UQCJepuDpsElOSLkMQZDS2Gsgu76C6oY6qeh3lte2UVLdSWa/DZrMhdavGIbAQ0bcdrdSNeeFXc1nCFOTHyKy0GtpYX7SdtQVbadQ3o1W6cFnMXKaHjMfPZeA9gLzSJr7dkMfuQ9WoHGQsmRPF5dMihlw9V9tez96Kg+ypOEhOfQGiKOKpdmN+5AwmBCYT4RbS6zNV16Tn5c/TCPJx4U/Xjh50Kb/RYuKLjJ/4NX8TQRp/Hpx027C1xMlg7r1CyiluoqymnXuuHjXgqXn1Rfxj6+s4yBx4ZuZDhLn17dR7LjCogPTqq6/y2WefdcsFHT58mMcff5wffvjhjA7ufKZLYSGzJofpoRO6H/f1cGREmDtrU0u4YkYkrioNE4NS2FC0gyvi5vdwypwZNpFtJXv4aP+3xHhGdK+gliVcjs6k58fs1bSZdNySvOSEG5JymYSrZ0dx0fhglm8tZNXOYjqMejz8jASF2VA6d9BibCCvIRV9H0296nBvHPd+gPuRDbhpvNEqXdCqNLgqNbirtbir3XBXu6IYgmr1YBAEAU9XFZ6uKibEH7ULb24zUlLdSml1G2W1bVTWtXO4qIEt+8o5XgBCrZShcXTASS3HUSVH5SBDqZCikEsxCW3UkE+N5RAdgh6V1Ua8XgXWcbSYAviuxMT7KzbQ1mHqcV2JAN7ujgR6OxEea6TIlkq9sRZ/F18Wj1jK+ICkHtqDNe11rMhZz6biXZitZhK8Y7kleQnJfvED/u0sVhu7D1Xx89YisosbcVTJWTInisumhg+6+VQURY40lZFWeZC95Qe7U8mBLr5cETufsQGjCNEG9DuxEUWR177Zj9li4283julhLT8QOXUFvLX3U6raapkXOZ3rEq847Z+PCwex1wpp3Z4SVA5Spozqfw8op66Q57a+hlbpwuPT7ztpa/HfikF9sgRB6KFdN2LEiNOi6vx7Jkjrj5tKy96Kgz0CEsDCyWG88MledmZUMmWUP4vi5rG9dC8/Zq3mxqSjQpkSQcI9427iL2uf5+Xtb/PMrIdwVKiRCBJuS7kGZwdHfspeQ1lLJfeMuwkvpxNrWGmcHLjh4jiunhXFjoxKNqaVcWBbPTbRGXdNMImRHkSFOOHpBTKlkRZjG036Fhrb6qjJ201rXSmF5g5azHbx1ONxU2nxcfLEz8WHABcfgjR+BGkDTrsltdbZAa2zvffpWMwWK3XNemobO6hvNtDUZqCpzUhLu5H2DjM6vZm61jY6HEoxOZVic6wHEcL1JuJaRIraJlAiC0XpIMNJJSHAy5mRYQ5onR1w1yjxdFXj7abGy1VNaWsZnxz4jj11Bfg4eXJv0i1MDBzdIxDV6Rr49vBKthTvRipImRoyjkuiZp2wKKSmsYN1e0pYl1pKY6sBbzc1t102ktljg7rTfgNhsVrIqssnrTKje6UuCALR7mHcMOpKUvwT+/TY6ovdh6rYn1fH/10ePyhtug6zni8yfmJdwTY8HN14fPp9xHufmoLAMD3N+QxGC9sPVjA50b/fCUJ5SxUvbn8TN5WGp2Y8OGjZqrPJgAGpubkZgJEjR/L++++zdOlSJBIJP/zwA+PHn9nUzfmORJAwPiCJtYXbaDO299ijGR/vS6C3E5+vzmFCvC8BLr7MCJ3I6vxNzAid0KPqxcPRjQcm/oHntr7Oi9ve5JGpd6OUK5EIEpYlXE6Qxp9307/gT2v+zlUjLubiyJmDUuJVOsiYNSaIWWOCaG4zsjermvScWtKyatmUZt+zcVTJCffXEOoXRKjvCKaOGoNi3UtI2xrxu/7vWNRONOlbaOhooqGjibqORmra66hqq2VXWXqPcmtPtRsR7qFEuYcS7RFOiGvgGSkzlcuk+Hk44efR88ZpsBg5UHWYHaWZ7KvMxGyz4OPkSYrBkxEF2QREjMNz2V1IHAZuJAb75vB7+z5n05GdaByc+cPoa5gZNqnH76M3G/gxezW/5G5AAOZHzuDSmDkD+vy0683szKhkc3o5mYX1CAIkR3vxx8WJjI71PmGfT4dZz8HqLPZWZLCvMpMOsx65VE6idyxLRi4k2XfkkJtPRVHkq3V5+Hs6cfHEkBMeu7t8Hx/t+5ZmQyvzIqdzTfylJ1XVOExvjlX63plZhd5oZdaYvtNv7UYd/9j6OnKJjEen3nNeBCMAQRxgqRMTE4MgCH2uhgRBIDs7+4wOrj/Ky8uZNWsWGzZsICDg9Ht/nC5Kmyt4aM3fuS7xCi6NmdPjuT2Hq3n2g1RuWTiCRdMjaDW288CvT+OhduW5WX/uFVR2laXz6q4PCHcN4i9T/9hjxVGna+D9fV+zrzITT0d3roybz5TgsUMyfevCZhMpq20jp7iJgvJmCsqbKa1uw2S2AhAkredul3XopM6kBt6Am5cXvu5qvN3sezddBQaiKNJiaKW0pZLi5nIKGospaCimvsOuguogcyDWI5wRXtGM8Ioi1DXwtDbDgn2/5kB1FnsrDrK/6hAmqxmN0oUJgclMDkjGecsP6PP24Dp1CdrJV51wL04URTYf2cUnB77DYDGyIHoWV8TN7+WXtK/yEO+mfUGDvompweNYmnBpd2/a8TS3GdmTVc2uzCoO5NVisYr4eTgyMyWQGSmBeLkOHCCb9C2kV2ayt+IgmTU5WGwWnBWOjPZLYExAIgnesafUdV9S1crdL2/ijkXxLJjcv85cTXsd76d/xYHqLEK1gdyWsqyXUeEwQ6frXvfRFVHEX/dnnEZMAeCxt3dQ09jBO3+b3ad6yD+3v83+6sM8O/Oh8+rvMOBUOicn55QuvmLFCt566y3MZjM33XQT1157bY/ni4qKePLJJ2lpacHT05N///vfaDTnRyQfDEFaf2I8wllbsIUFUTN73HDHxHkzJs6bz1bnMHaED/6eTtyeci0v7/gfnx38gZuSr+5xrQmBo5EKUl7d/QGPrHuBhybd3t275Onozl+n3MWBqiy+ylzO23s/48uM5UwPncC0kPFD6hmSSASCfVwI9nHhIuylpFabSE2DjtKaNipq29lX6sGYis9JLv6EVw/MRicenQErZBI8XdX4ejji46bG290RH/eRJISOw2e0mg5bOzl1hWTV5XG4No/PM34E7M6zMZ4RxHpGEOkeSphrEKohzqxbDW0UNJaQU19AZnUORU2liIi4KjVMD53A+IBk4jwjEQSoXf4qurw9uM+9Bc2Y/huNu2jsaOatvZ9ysDqLGI9w/m/MtQS49HxfzVYznxz4njUFWwhw8eXvEx/uJRZqtdrIL29mf04t6Tm15JU1IYrg5aZm4ZRwJif6ERmoHTA41ukaSC0/QGr5fvLqixAR8XJ0Z17ENMYEJBLlHnbagvuhIruaxZi4vgsuLFYLv+Rt4NvDK5EKEm5KuoqLIqad9snFMCDI7HtITW0GMgrqWTonus/PyeYju0irzODGUYvPq2AEg9xDMplMbNmyBZ1OB4DVaqW0tJQHHnig33Nqamp45ZVX+OGHH1AoFCxdupRx48YREWFXwRRFkTvvvJNHH32UqVOn8vLLL/POO+/w8MMPn4Zf69xhYcwc/rn9bbaV7OmxlyQIAn9cnMjd/9zEy5+l8eLdUxgbMIr5kTNYlb+JQI0fs8In97jW2IBRPDXjAf614x0eXf8S1yRcxsVRM7vVCkb5xpHoE0tmTQ6r8zezInc9y3PWEujiy2j/BEb5xBHlHjZkcy2pRMDP0+mY/YNIOo6EIP/mBV6K3AVzH6LWIKemQUd1Ywc1jR3UNHSQfaQBnaGnUaGrswO+Ho74ekQzwWM02gjokFVTZSglr6GQ/VWH7O8PAl5OHvi7+OCldkercsFJoUYukSMCJqsJnamDJn0LNbp6yluqaNDbBVGlgoQItxCuGrmAJN+RhLoG9hA4bdz0GbrD23Gbce2ggtH+qkO8vvsjTFYztyQvYW7E1F6CqW3Gdv65/W1y6gtZEDWLZQmXIZfKMVusFFa0kFXUSGZhPVlHGugwWBAEiAzUsuyiGMbG+RDq5zJgEDJYjOwqTWdL8W6y6vIBCNL4c9XISxjrn0igxu+M2AM0tRoQBPB07W1pUNRYwlt7PqWkpYKxAaO4JWlJt4TRMKcfobOoIS2rBlGECfG9J5rtJh2fZfxItEf4eamAMag70wMPPEBZWRl1dXXExcVx8OBBxo4d2NVx586djB8/Hq1WC9iba1evXs3dd98N2Cv11Go1U6dOBeCOO+6gtbW113VaW1t7PV5dXd3ruHOV0X7xhLsG882hX5gYlNKjyshdo+L+pUn8/cM9vPV9BvcuGcX1o66ksq2Gd9O/xMnBkXEBST2uF+keyotz/8b/9n7OJwe+Z0dpGrcmL+2eCQmCQIJPLAk+sTTrW9hVto89FQf4OWcdP2WvQS6VE+kWQpRHGGGuQYS5BuHp6D7km5k6NBGfq/9G9bcvIFv9IqOWPYEstndKp73DRFWDjur6DqobdVTV66is17E/t5YNe8uOOdIZd814wrxkOLrrENStGKVNVLXUkV2b36+GnqNCjbejB7GeEYS4BhDhFkK4W0i/aar2nF007/wR56Q5aCYsGvB3FEWRH7NX81XmzwRr/Hmgn5LldpOOZza/SkVrNctiluFiDubDFTnklTZRWN7S3ejr7+nIlFH+jIryJCHCExfHE6fSDGYDq/I3sTJ3A20mHb5OXiyNv5SJgaNPi5fRiVArZYiifX+rq6rParPyU/Yavj28Eo2DMw9PvoMxw31Fp8yJ7nVdVXaph6vxdFUR0kfv0c8562g36rh12pLz0sNuUAEpOzubtWvX8tRTT3HzzTcjiiJPP/30gOfU1tbi6Xm0isfLy4uMjIzun0tLS/Hw8OAvf/kLWVlZREVF9XCl7eLjjz/m9ddfH+zvc84hESRcm3g5z2x+lRU567hyxMU9nh830pelc6L5al0uvh6OXD07ij9NvI2/b3mN/+x8j/sm3Mr4wOQe52iULjw8+Q52lO7l4wPf88j6F5kYOJrFIxf0SCNpVRrmR81gftQMdKYOsuryOVybR05dASty1nXbijvKVQRpA+wVcRp/grR+BGsDUMoGdiJVhSbge83jVH/9PBUfP4rvNY+h8Oy5yeqkVhCpVvSQx+lCb7RQWddOZb2Oyrp2Kjr/O3xAis7gDDgDQUgkAl5uDnh6yvB0dcDLVY2PqzMB7q74urvgrJYP6stnbq6l7pc3cfCLxGPurQOeY7PZeCf9CzYW7WBy0BjuGHMdCpkCURRp6zBT0xlcy2vb2Nj4Ha1CNZb8ZN7f3Qg04qCQEhGg5ZLJocSEuBEX4oary9BSkEWNJbyy631q2utI8h3J5bFzifGI+E1vNNHB9r2vtOwaZowOpNXQxqu73yezJpeJQSn8YfRSnBRDV5gepjcnutcJcgVGs5X9eXXMGRvU63OgM3WwpmAL4wOTe0iRnU8MKiB5eXkhk8kICQkhLy+P+fPno9frBzynv0KILiwWC3v27OGzzz4jPj6e//znP7zwwgu88MILPc658cYbWbSo50y2urq6137UucxI7xjGBybzQ9avTAhM7tUAec3caKobdXz6azZOajkXTwzlkal3849tb/DKzve4Kekq5kfN6HGOIAhMDh5Lsl88P+esZWXuRnaV7SPFP4EFUTOJ9Yzs8X47KtSM8U/snsmarGZKmysobi6jqKmM0uYKthandq9EBAT8XLwJdw0mwj2EGI9wgrT+vVJVysBYfK9/luovn6Xyk8fwXvxnVMEjB/W+qBxkhAdoCT/OKkIURVp1JirrdFTUtVPVoOsOXEVHWtAZepoaKuRS3DVK3DVKXJ2VaJwUuDg64NLZd6RWyVHJJKi2/BuJzYZl8v9R0WhAEIzYbCI2m4jZasNktmIwWekwmFlV9iMFusOEy1KwFCfybEYaDS0G6ps70But3a8t8ypFHlKJn2ECo5JGE+LrQpi/Bn8v5yGpXx9PZVsNT2/+D2q5iqdmPECcV9SJTzoDxIS4EeDlxLcb8ggPk/LPHW/RaGjhjjHXM7OzWXuY08OJ7nWC3IG80iZMZmufvlbbS/aiNxu47LgCqvOJQQUktVrNihUriImJ4ZtvviEsLKy7JLw/vL29SUtL6/65trYWL6+jb6KnpyfBwcHEx9vdRy+55BLuvffeXtdxcXH5XcgU3ZJ0NZnV2byR+jHPzHqox6avRCJw35IkOvQW3vo+A0EQmD8hhMem3curu97nw/3fUNZSyc3JV/eqnFPLVSyNv4yLo2axKm8Dawu2sbfiYHcp+ZTgMWj7KPlUSOVEuIf02PQURZH6jkZKmsspairjSFMpGTXZbC1JBcDZwYkE7xhG+9ldY7uqyxy8Q/C7+R9Uf/UcVV88i+fFt+OcePL5a0EQ0Dg5oHFyIDa0Z3WaKIq0683UNHRQ29RBXbOe+mY9DS0GGlsNFJY309Ju7LV3Nc0hmysc8/msfRJ7384c8PVlgbnIfY9gLo8kt9aLGucGXJ0dCPByYlSUJ16uqs6qQiUv7H0BP+dInpxx/WlduXxy4HukgpRnZv6p2134bCCVCNx66Uie+WwDj6xdidJBytMzHjzvNsvPB050r5PIHcgpse+TRgf3zjhsK9lDoMbvrFtInAqDCkhPPPEE33zzDQ8//DDfffcd1113HQ8++OCA50ycOJHXXnuNxsZGVCoVa9eu5dlnn+1+PikpicbGRnJycoiJiWHjxo2MGDE0P4/zCa1Kw20py/jPrvf55tAvvYz2ZFIJf70xhec/2sub3x1Eb7BwxYwIHpp0O18d+pmfstdQ1FTK/RNu7XPvwMXBiaXxl7Eodj47S9NYX7iNTw9+z2cZP5DgHcP4gGTGBozqU7OuC0EQ8HR0x9PRvVtrrCtIZdXmk1mTw8HqLHaUpiGXyhnjl8CMsInEe8cg13jhd+Pz1P7wMnW/vIGptgS3WTf0EBw9HQiCgLNagbNaQUSgtt/jLFYbbR0mOgwWdLWVSFd8hclzJLNTljDDBlZRBFG0q4RLJUilAgq5lIK2LL4rPMKUwInccukS1Mr+04E5dYU0G1q5Ofnq0xqMrDYrB6oOc3HkjLMajLqICXfCNeEgHWYr872Hy7nPFoLMgZziRnw9HNE49Uyn17TXkddQdN6rpw8qIIWEhPDnP/+Z1tZW/vOf/wzqwt7e3jzwwAPccMMNmM1mFi9eTEJCArfddhv33nsv8fHxvPHGGzz22GPo9Xp8fHx46aWXTuV3OeeZGJRCRnU2P2avJtI9lBT/hB7Py2VSHrlpLK98uY8PfzlMc7uRmxbEsSzhciLdQ3kz9WMeXvs8N41azMywSX3eBB1kCmaETWRG2EQqWqvZWpzKztI0/pf2Oe+mf8kIryjG+CcyNmDUgE2aXXQFqWmh7kwLHY9NtJHfcITtJXvZUZrGzrJ0/Jy9uThqJtNDJ+Cz9DEa1n1Ey55fMNYcwevyB5E5nfh1TjcyqQRXZyVaJ5Hq9V9jkEqIuOoeZC79q1k0G1p57dcVRLqHcuf4ZSds3O1yaw1zPb3aYHqzAZto66GBeDb5eP93mIR2ws3z+PqXCnydvJiZcu7qof1eEeQK8suaeqmTAByszgLoVQR1vjGogFRUVMQ999xDa2sr3333HTfddBOvv/464eHhA563cOFCFi5c2OOxd999t/vfiYmJfPfddycx7POXW5KXUNxczmu7P+S5OX/u1csil0n407WjcXFU8OPmAuqb9dy/NIkx/on8c95jvJH6Mf9L+5w9FQe4bfQyPBz7brgEux36NQmXsTT+Uo40lbG7fB+p5fv5YN/XfLjvGyLdQxkXkMSEoOR+GzePRyJIiPYIJ9ojnBtGXUlq+X5W5m7kvfQv+f7wKi6Lncvs2Tfg4BtO/a//o+L9h/C6/P5B7yudbnTZO9EXHcB97i0DBiOAbzJXYLAYuWvsDYNSkZB27qdZbdYTHDk0lHIlAgI688D7tL8F5S1VbCnezWUxc1kcdzHPvr+b/3y1H4lEwvTkc7cp/feIzizQ2GrsNvo8lqza/G7ZrvOZQUn2/v3vf+eRRx7B3d0db29vrrvuOp544okzPbbfJQqZgocm345CpuCFrW/QYuhd6i6VCNy+KJ6bFsSx7UAFj729k5Z2Ix5quy7YLclLyKrN50+rn2VN/hZsndVy/SEIAmFuQSxLuJxXL36af89/gqtGXoLJauLTg9/zxxWP8dTGf7OxaEef+nT9IZfKmRw8lufn/IUnpt+Pn4s3H+3/lvtWPkmqowzvG55DolBR9dlTNG7+AtFqOfFFTyNWfRsNa9/HwTccl9HzBjy2Sd/CpiM7mRU2Cf8TqG53Edwp8ZTXh83IqSCTSHFVaajTNZz44DPM9tI9SAQJC6Nn4yCX8tgt4xgZ5sErX6SzM6PybA/vwkGmoKre3gfal55gdl1BZ9P3+VfqfSyDCkjNzc1MmjSp++drr72W9vb2Mzao3zseajf+MvlOmg2tvLjtLYwWU69jBEHgypmR/PWGMRSWN/Pwf7dRUdeORJAwL3I6/5r3OBHuIby/7yue3vQKla2D780KcPFl8YiLeemiR/nvgme4auQlNBtaeXvvZ9z+81/5YN/X1LbXD/p6giAw0juaJ2c8wBPT78NNreWdtM/5276PKbnoGtTx02ne8T0VH/0NU23poK97qjSs+whrRxseC+464V7WluLdWEUbl0TNGvT1g7UBeDt6sK5w22kXG/ZUu3XLLJ1NipsrCHDx7dbAUypkPH7rOCKDXPnnZ+lkHTn7QfNCQJApqOwMSP6ePcvsWwytNBlaCD+Pixm6GLQFqNFo7I6+dXV12GwDz8qHGZgI9xDuHX8LhY0lvLrr/X7TPpMS/XjurknoDGYe/u9Wso/Yb1JeTh48Nu1e7hxzPaUtlTy89nlW5Kw/4WrpeHycPFk84mJemf8kz8x8iNF+Cawr3Ma9q57kjdSPhxSYwF7i/vdZD/PnyXcgl8r5795PeVnRTNmsqzC11lP+wcM0bf8O0Woe0nWHii5nN+2Zm9FOvAIH75ATHp9emUm4a/CQmk0FQeDSmLnkNxwhtXz/yQ+2D1yUzrQZdaf1mieDVJBgsfVc2aocZDxx63i8XFU8/9EeGlrOfmrx944gtSuhAPi49wxIpS32lWqgxq/XeecbgwpIy5Yt49Zbb6WhoYF//etfLFmyhGuuueZMj+13z9iAUdycfDVplRl8uO+bfmfZMcFuvHzvVJzUCh57ewd7s+yrIUEQmBE2kX/Pe4JEnzg+Pfg9z25+lSZ9y5DHIggCMZ7h3Dv+Zt5Y8HfmR85gZ1k69//6NJ8d/AFDHx5JA10rxT+Rl+Y+wr3jb8FsM/NGyRbeiA4mKyKW+i1fUv7un9AXD1x+fbKYm2uoW/UWCp/wQbnc2mw2ihpLiPWMGPJrzQybSLA2gA/3fUO76fQFEJlE1isQnA1iPSOobKshr76ox+Mujgoeu2UcBpOV1789OGxHc4YRZDKa242olbJezsAVndmRoWhWnqsMKiAtXryY++67j4ULF2KxWHj22WdZtmzZmR7bBcG8yOlcGjOXtYVb+TV/U7/H+Xo48s97phDk48xzH+5hx8Gj+XtXlYaHJ93OHWOuo6ChmL+u/QcFDcUnPSY3tZYbkxbz2sXPMDloDD/nrOOBX58hrSLjxCcfg0QiYXLwGF6Z9yT3jLsZBAmfWGt4OTaE9Qoz+V8+Tc33/8TcePr2ImxGPTXfvgiiiPeiBxAGodvXZGjBbLPgexJOplKJlDvHXE+rsY330r86mSH3icFiOCWV7tPFrLDJuKm0/HPH/yhqLOnxXKC3M9fPjyUtu4a07JqzNMILA0EipbXdhMaxt3pKi6ENAQGtw/nfrzmogNTe3s6+fft4+OGHue6669i8eTMdHR0nPnGYQbEs4TLG+CfyyYHvOVST2+9xGicHnrtzElFBrrz0WRq7D1V1PycIAjPDJvHc7D8jl8p4evN/yKw5NbV2N7WWu8bdwLOzHkKtUPHS9rd4ffdHQ14JSCQSpoSM5Z/zHuOvU+4iwC2QXx3hH2FevNuSy/pPHqZm5dtYWupOabw2k57qr5/DVFeG1+UPIHcb3IyxyyHXUdFbQHQwhLkFsXjEAnaWprGzNP2krnE89bpG3FVnv+xbJVfy+PT7kAlSHln/Eu+lf9kjjbtgUihebmp+2FxwFkf5+0eQymnRGXFx6j1JaTG04uzg2MMY8nxlUL/B3/72t25lBhcXuypxX7pzw5wcEkHC3eNuwsfJk9d2f0ibsf+CEbVSzlO3jSciQMNLn6Z17yl1EaT15++zHsbL0Z2Xtr9NcVP5KY8v2iOcF+f8jSvjLmZ76V4eXv1cd9/DUJAIEpL94nl8+v38e94TXBQ5nSKtCx/6uvBI837e+Pphdv/4AvqK/CFf29xUTeXHj2Eoz8Xr8vtRhw++H6Pri2w5hfLty2MvItw1mA/3fX3KqTuDxUhFWw1B2nNjT8DfxYd/znuU2WGT2VC4nXtWPcFL294irSIDQRCZPSaIQ4UNtLQPvkJzmKEhSGW09LdCMrahcRia8eK5yqD6kIqLi3nttdcAcHZ25pFHHuHSSy89owO70FDJldw/4Vb+tu4FPj3wA3eNu6HfY9VKOU/cOp6HX9vG8x/t4ZUHpuGhPTq716o0PDrtHv627gX+s+s9Xrro0R4q4yeDTCpjSfxCUvwTeD31I57b8hpzwqdwXeIVQ/YtAnu++6bkq7k2cRHplZlsK9xOak0OO0wluGz+JyNtDozxTyRx5FwcPQP7LWe16lpoSVtFy+6fEWQKfJY8MqRgBODcKQ460ERgIAxGC01tRub4XcLbh9/glQ3fEOcwGZ3BjN5gwWCyYrJYsVhtiCIIgr1xV6mQ4aSSo3FywNNVRaC3M/6eTuTUFWATbcR4RJ7UeM4ETgpH/pByDVfEzWdNwRY2HtlJWmUGrkoNI7SjQC5wpLKFUVFnXoH8QkSQymltMRLZhzpJq6ENjfL8T9fBIAOSxWKhvb0dJyd7/btOpxvexDwDhLgGsiB6Fity1nNJ9KweVubHo3Fy4PFbxvGnV7fw8ufpPHfnpB5inm4qLXeOuYHnt77GuoKtLIgefDnzQIS7BfPinL/x1aEVrMzdwP6qw9w6eimj/eJP6npyqZzxgcmMD0ymw6xnb/FeduVuJq29ip116cg3pBFphpFKDxJcg/Fy8gRRxKprxlh9BEN5DtisOMZOwH32zchchi6146RwxEHmQO1xfT8ms5XGVoNdJ6/FQEPrUc28xlYDTa0GGluN6I1Hiw/kYX5kWNPZc8AZiahA7SBDqZAil0uRSSVIBLCJdmkjg9FCu96M2XK0MlIuk6CNzUWqkqM0eSJ2yhudK7iptVyTcBlXjbyE/VWH2FC4nR1VW1Emwk9FzQQGXH3OKEz8rpBIadWZ+rQsaTG2ndf6dccyqIB0+eWXc9VVVzFv3jwEQWDdunVcccUVZ3psFySXx1zEmvwtrMrbyB1jrx/w2EBvZ25flMB/vtrPyu1FXDq1p3LGKN84oj3CWV+4/bQFJLA3994w6krGBYzinb2f8+K2N0nxS+CGUVeekkePWq5iWuRUpkVOxWQxcfBIKnsLdpLRWk6W2MA3jQ14VFuI7DARZRKJVnvjOm4hzgkzUHgMXjXAbLHS2GqkscVAY5s92ChsTuzOK6A4bVd3EGrr6N0fppBLcXNxwM1FSaifhtExSrTO9p+1zg60ieG8mfEGd93qybyoqYOyRe8wWKht6qC0uo2csjo2dqzDUu/Jw//dSYivC/MmhDBrTCBKxdCMFc8kMom0Wz1+Y0YOr2/+kVxpJvetOszS+Et7GEcOc+oYkWOxir007MBe1KC9kFJ2t99+OxEREezatQuZTMZDDz3EtGnTzvTYLkicHBwZF5hEavl+bktZdkIr6JkpgWw7UMFnq7OZPMoft+M8dyYEJvPR/m9p6Gg67TPXaI9wXpz7CCvzNvJ91ioe+PVpZodPYVHcvEHp5A2EQqZgTOQUxkROQRRFqtpq2F91mIyqLPbVF7DLakIqdBBFLaNqD5EkFQnWBmA0Walt6qC2SU9dpxp4V4Bp6lzZtHX07oFSREmRKVtQd5jwdlMTG+qGm4sSdxcl7hqV3d5Cq8JRKRswyIiiF1/nu5LTkM984cTfEUEQcFTJCVVpCPXTYHQpREw388ilV1Fb5sDaPaW8/UMGX63N5erZUcybEIJcdm7d6EtLrVjLRvD8spv5NvtHPjnwPVl1Bdw/4dZTThUPY0cn2gOR5riiBpPFhN5i6G5cPt8Z9JRrypQppKSkdKfqmpubu91ghzm9JHjHsrU4laq22hP2FgiCwP8tiuePL23k89U53HP1qB7PdzXLVbfXnZFUikwq47LYuUwLGce3h1eyvnAbG4t2MCtsMpfGzBlQa2+wCIKAn4sPfi4+LIiehdlqZl9ZLjuLD5LdkEt23XK+zFwOZgcsTZ5Ym7yxtbqBKEUiEXB1dsBdo8TXw5G4MHfcXZS4uijtAafTQ+nDzDqKm8t45cZTm2gJgkCoWxDlLUMvZbfarKzI3UC4WzDJAdEIgQLzJ4ZyuKiBz1fn8M5PmazccYT/WxTfpx/O2aCtw8Sa3SWMifUm1MOHhyffwaq8jXx84Dv+s+t9Hpr0f8MrpdNAh80eiFyOK2po7dz3vKCKGj7++GP+9a9/YTbbZ5Zdee3s7OwzOrgLlS6BxLqOhkE1u/l5ODF/YigrtxexaHo4AV5HP5xyiX2Gaj7DOnJd9hqXxszhh6zVrCvcytrCrUwMHM2C6FmnJGsiiiJV9ToO5NdxuKiB3JImaho7ACdgNBqtiMa3BZtzDS1e5Vi8ylFIFIz0imNKSAqj/UagHKDwQhRFKttqTnlV14WLgxMFJ6Fvt61kDzXtdVw/6fYeq7ARYe48d+dE0rJreHf5IZ58ZxeTE/34w2UjcdecXKn66UAURV7/9gB6o4Vr58UA9oDclR7++MB3bCrayazwyWdtjL8X2q327/HxK6QWY5v98QupqOHTTz/lyy+//F37FZ1LdKU5hhJErp4VxbrUEr5ck8vD16d0P95uss+gnBTq0zvIfvB28uTOsddz1YgFrMzbyMaiHWwv3Uu0RzjzI2cwNmDUoJS0bTaRnJJGdmRUsudwNdUN9r43NxclsSFuXDwxhHB/LSF+Lj3y6marmUO1ueytyGBP+X72VR9ALpWT6BNHil88CT6xPZTNbaKNX/M2UdJczi3JS07Le2Cz2U6Yaj0ek9XMN4d+Idw1uNvV91gEQWBMnA+jojz5YVMBX6/PIz2nhmvmxnDJ5LDfPI1ns4m8+1MmOzOquPmSOEL9eppAXhw1kx2laazIXT8ckE4DXQFJ69RzYtUlzqy5kFJ2np6ew8HoN6Sj03ZgKOXUWmcHFk4J47uN+SyeFdl9gyjvlBX5rWXpPRzduDFpMVeNXMCmop2szt/Mf3a9h6tKw9zwqcwOn9znrK6uSc/a1BI2ppVS26RHLpOQGOnJ5dMiSIryxNfDccA9HLlUTpLvSJJ8R/KH5KVk1xeQWr6fvRUHSas4CICrUoOPsycyiZTKtloaOppI9IllVtikfq87FOo7GnFT9nbpHYhf8zZR39HInWMHdp6Vy6QsmRPN1KQA3vkpkw9WHGb1rmJuWBDHhJG+SE7BNn2wtLQb+e/XB9iTVc3l08JZNL235JIgCEwOHsNH+7+lSd+Cax+uxcMMHp3FfqvWOh+3QjJ0rpAupJTdpEmT+OKLL5g1axYODkdno8N7SGeGms5O+MF6FHVxxfQIft1ZzAc/H+aZ2ycgCAL5DUfwdvTAycHxxBc4A6jlKhZEz2J+5Az2Vx9mdf4mvj60gu+zfmVSUAoXR80k1DWQrCMN/LSlkNRDVYhAYqQn186LZfxIH9TKk9sYl0gkjPCKYoRXFDcnXU1ZSyWHanM50lRGna4Bg8VEtHsYKQkJTAoac1rKq202G0eayxgfkDzoc5r1LfyQ9SvJfvHEe8cM6hxfD0eeuHUc6Tm1fLDiEC98vJcwPw1XzIhgUqIfMunpXzGZLTbW7y3ls1+z6TBYuH1RPAsmhfb7vjl19nfpLQZcGQ5Ip0KbRYqTSo5c1nPl3dy9QrqAUnbvvPMOJpOJZ555pvux4T2kM8eR5jIcpAq8HQc2lDseJ7WCay6K5t2fDrEjo5KJCb7k1BUw2i/hxCefYSQSCaP94hntF09FazW/5m9iS3EqW4p342DyorU4ALXJj0XTI5g/MRRvt9ObYhQEgSCt/4C9XaeDgsZidKYORngNvqn184yfMNnM3Dhq8ZBeSxAEUmK9SYr2Yuv+cr5el8vLn6fz/s+HmDUmiKlJ/oT4upxyoG1o0bMpvZxVO49Q16QnNsSNP16V2KdR3LEUNBYjk8iGPLEapjdtZila594l3436ZhzlqnNC9/B0MKiAlJExNFHNYU6N7LoCIt1DT0qbasHEUDallfHW9xk4uXXQZtIx0jv6DIzy5PFz9ibeYTqZZe6UmrMQfEtxiNqHt3MlIbFuuGt7f/HOF7aX7kUmkZHkOziH3Oy6fLYU7+by2IvwPckeLqlEYMboQKYlBZCWU8PqXcX8sLmA7zbl4uZrxC/QjMrZhEJpw1Elx1Xlgr+zDzGeEb1eUxRFmtuMFFa0kFPSyMG8OnJKmgAYGe7OXVcmMjrG64RBrrGjmS3Fuxnrnzhc+n0aaDcLuDr3TuE36Jtx+x01Ig8qIJlMJrZs2YJOZ9foslqtlJaW8sADD5zRwV2ItBhaKWkuZ2n8yUkzSaUSHlw2mgf/s4U3Vm8EF86ZgGSziew+VMXX6/MoqmjBx13NXbMWMSXZj7TK/SzPWcebez7h20O/cFnsXGaETkR+Ht3MOkx6thTvZlzAKBwHUURisVl5L/0rPNRuXBE3/5RfXyIRSIn1QuHaiCoqgwNVh9GLJgpFEJukiBY5AiDITSCxq0MorC64mMNQd4TS0SalvlmP3mjX9JMIEB6g5bp5MUwZ5d+nU2lftJt0vLT9LWyiyJKT/BwP05N2o0BoHyukpo7m01Ydei4wqID0wAMPUFZWRl1dHXFxcRw8eJCxY8ee6bFdkHQpdCd4x570NQK9nXlw2Whe3rEXpdUZpXB29o+6sFhtbDtQwXcb8ymtbsPXw5H7lyYxPTkAaedex+TgsUwKGsP+qsP8kPUr76V/xY9Za1gUN4+ZoRORDcJG4myzKn8TerOBhdGzB3X8L7nrKWup5M+T70ApO7VVoc1mY3vpXn7MWk1FWzVOCkemho4lyXcE4a4htLcKFFe1UVbbZm8cbq+lyVaBzqGMeuUBcDiIRhPAqPAERniOIMxfS7i/Zsj7d7n1hbye+jENHU08NOn2k171DdOTNpPQZ8quQd90xtPQvyWD+pZnZ2ezdu1annrqKW6++WZEUeTpp58+02O7IDlYnY2zwpEw16BTus6EeF+0eSaaa5346xvb+fP1KT36k34LWnUm1qWW8MuOI9Q36wnyceZP145myij/Hrp7XQiCQLLfSJJ8R5BZk8O3h37hvfQv+TlnLVePXMjkoDHnrMR+Y0czP+esZYx/4qB0xarbavn28ErGBowipY8y76GQXZfP++lfU9pSQbA2gHvG3cz4wKQeq0t3Rwj27buwoKa9jg1FO9hYtIMDxpWUNe9kkiYFpS6JcEXwCd9zq83Kodpcfs3fzL7KTDwd3Xl8+r3Eep474rDnOwYLvVRYOkx6mg2tv3kF7ZlkUAHJy8sLmUxGSEgIeXl5zJ8/H71+2Lb4dCOKIpk1OYzwjj7lG68oinRYW5kUM5K0jXru+/cWls6J4rKp4b0cJ08nVpvIocJ6NuwtZcfBSkwWG/HhHtx1ZQKjY7wHVZYsCAIJPrHEe8dwoPowX2X8zOupH/FzzjqWJVxGku/Ic0pwVBRF3k3/Aqto44ZRV57weJto439pnyOTSE+p98lgMfLZwR9YW7AVD7Ub90+4lfGByUNWRvB28mRZwuVcNWIBeysOsqU4lZW5G/g5Zx1quYpwtyACXPzwdHTDUa5GEAT0ZgMN+mbKWirIqS9EbzbgrHBkyciFXBw186QU4IcZGHdNz/e0vNXuh/Z7sC7vYlABSa1Ws2LFCmJiYvjmm28ICwvr9kca5vRR015Ho76ZkV6nvucjImIVbQR4arjxoRm89X0Gn6zKZuWOI1wyOYzZY4L6TAGcDGaLlcNFDaQermZXZhUNLQbUShmzxgRx8aRQQnxPriRVEASSfEeS6BPH7rJ9fJn5My9se5MRXlFcn3jFOaNwvKZgC+mVmdwwajHeg5itri/czuHaPG5Pufak8//lrVX8a8c7VLbWsCBqFkvjLz3lSiu5VM7EoBQmBqXQbtRxoDqLrLp8ihpL2HhkJ0ZLT78jmUSGn7M3k4LGkOgTS7LvyPNqz+984/iAVNopTxX4O7Au72JQAemJJ57g22+/5eGHH+b777/n+uuvHy5oOAPkdcrNxHiEn+DIEyMRJDg7OFHf0Yi7RsVjt4wjo6COr9fl8fHKLD79NZuECA+SoryIC3MjzE8zqJWTKIrUNesprmqloKyZ7OJGsosbMZqsKGQSkqK9uHVhAGNH+uBwmlZiEkHCxKAUxvqPYn3Rdr49vJK/rnuByUFjWJpwGV6OQ7ecOF1k1uTw8f5vSfYdycVRM054fE17HZ8d/IEE71hmnmQj7v6qQ7yy8z0cpAoen34vIwfZuzQUnBwcmRw8hsnBYwD7311n7qDDbABRxEGmwFnhdM6mUH+PHC8TVdJcjoPMAc+z+Pk/3QwYkK6/vmfX+A033IAoikRHR/Prr79yzTXXnPEBXkiUNJcjl8jwd/E5LdeL84xkX2UmJosJhUxBQoQnCRGelFS3sjm9nNTDVXz4y2HAXlHl4arGQ6NE4+SAykGGRBCwiSJGk5W2DhNNbQZqm/QYTfYqLEGAYB8X5owJIinGi4RwD5QOZ674QCaVMS9yOlNDxrE8ey0r8zawu3w/8yKmsShuHs4Og6sCO13k1BXw0va38XP25t7xt5wwVWaz2Xg99WMEQeCOsdedVNpxU9FO3k77jBBNAH+Zchduau1Jjn5oCIKAk8Kxu9l1mN8e9+P2kHLqC4lyD/ldidcOePe47rrrAFi3bh3t7e1ceeWVSKVSli9fjovL76Mz+FyiRlePl6PHkHXQ+mN+5HRSy/fzZebP3DDqyu4bYLCPCzcuiOPGBXE0tOjJK22iqKKVqnodDa16ymvbMZos2GwigkRAqZDipFIQ4OVMcrQ3fp6OBPu4EOrnctIqCqeCWq7imoTLmBsxla8PrWBl/kY2FO1gYcxsLo6aiVp+5gVH95Qf4LXdH+Km1vLY9PtQK078mt9lrSK3vpB7xt18Us2iq/M388G+r0n0ieVPE/9vQMHYYX5fKOVCj8leh0lPaXMFi0dcfBZHdfoZMCBddNFFALz//vt89dVX3cvz6dOns2TJ6RGiHOYobcZ2tKrTF+jjvKK4KGIaK/M20GHWc/2oK3rNcN01KibEq5gQf/5tjLqrXblr7A0sjJ7NV5k/882hX1iVt4kFUTOZFzl9UL1AQ8VsNfP1oRX8nLOOCLcQ/jzlTrSDkG3JqM7m+8OrmBoyjikhQ2+ZWFewjQ/2fU2KfyIPTLh1eK/mAkPr2PNWndtQiIhIjGdvHcHzmUHlV5qamjAajahU9lmgTqejpaXljA7sQsRitQxqpj0Ubk6+GkeFmh+yfmVXWTpTg8cxyncEYa5BaFUufS73bTYbbaZ2WgxtNBlaaNK30GxopVnfQrOxjTZjO+0mHQazEaPVhMVmVyWXSqQopArUciUuDk64KrV4OLrh6+RFgMYXfxefM9K1H6jx4+HJd1DYWMK3h1fy9aEV/JSzlpmhE5kbMfW0pEBFUWR/1WE+OfAdlW01zA6fwk2jFqMYRCFBra6BV3e9j7+LD38YPfQ0987SdN5L/5Jkv3genPCH86Ina5jTi1bd829+sCoLuURGpHvoWRrRmWFQn+xLLrmEq6++mjlz5iCKIqtXr+bqq68+02O74FDIFBjMxhMfOAQkgoSl8ZcyITCZ5Tnr2FK8m7WFWwF7lZSzgyMOUvtN1Wy1oLcY0JsNiIi9rqWSKdEonXFxcEar1KByVuIgVXTbSVhFGyaLCZ1ZT6uxjbKWKpr0Ld3XkgoSgjT+RHmEEecVyQivaFxO475PuFswf51yF8VNZfySu4G1hVv5NX8T0R7hTAkeQ4p/4pCr2vRmA6nl+/k1fxNHmsrwdfLikan3MMo3blDn60wdvLD1DWyijYdPogE2qzaP11M/ItojbDgYXcBonY7+3UVRJK0yg3jvmFNuqD7XGNSn+7777mPEiBHs3r0bgL/+9a/DFuZnAHeVK5m1OWfk2sHaAO4dfzMmi4nCphJKmiuo72ik3ajDaDUB9rJfpcwBJ4UaFwdnNEpntEoXXJUatEqXk9qzMFnN1LTXUdZSRXFzGYWNxWwu3s2agi0ICIS7BZPin8BY/1GDMiMcDCGugdw9/iauG3UFm4/sYmtxKu+lf8V76V8RqPEjxiOcUNcg/Jy9cVNpUMtVSCVSzDYLrYY2anX1lLZUkl2Xz+HafCw2C37O3twx5jqmBo8bdFAwWky8tP0tqtpreXTq3UNWLShvreKf29/G28mDP0+5c1CrsWF+n2jVRzMLZS2V1OoauDz2orM4ojPDoKdbs2fPZvbswUmiDHNyhLgGsrUklYaOpjNiNw72VVisZ+Rv1kWvkMoJ1PgRqPFjYtBowK7hVtRYQkZNNvsqD/FV5s98lfkzgS6+TA4ey5SQsadFIVqrdOHy2Iu4LGYuFa3VpFVmcKgml+2le1lXuO2E5we4+DIvYhpjA5KI9ggbUlWcwWLkn9vfIqeukHsn3Dzk0uxWYzsvbn0TmUTG36bePVzddoHjfExA2tvp63UuqPifbobX/+cQo3zi+ARILd/PxVEzz/ZwzhgyiZQojzCiPMJYPGIBjfpm9pQfYEdpGl9mLuerzJ9J8IlldvhkRvslDMphdiAEQSBA40uAxpfLYy/CJtqo1zVS1V5Lk74FvdmAVbQil8hxdnDCQ+1KgIvvSe/ntRnbeXHbW+Q3HuGusTcwKWjMkM43W828vP1tGvXNPDnjgbPaZzXMuYGz6uitOq0yg0i3kN+l6eFwQDqHCND4Eu4azJqCLcyLmH7BNB26qbTMi5zOvMjp1LTXsaV4N5uKdvGvHe/gqtIwJ3wKs8OnDKqabTBIBAleTh54OQ3Nb2owlDZX8M/OYPLAhD8wPnDwRn1g3x/4X9rn5NQXcv+EW4nyCDvtYxzm/EOttqdrG/XNFDaWnLQbwLnOhXHHO4+4LHYuVW21g0op/R7xdvLk6pELeeOSv/PnyXcSpPHnm0O/cNeKR3kj9WOKm8rO9hD7RBRF1hdu55H1L2KwmnhyxgNDDkYA3x1eydbiVK4eeQkTg1LOwEiHOR9xUtlTdukVmQCMOUVB3nOV4RXSOca4gCTivWP47OAPxHlF/q6EE4eCRCIhxT+BFP8EKttq+DVvE5uLd7OleDcjvKKYHzmDFL+Ec2IVWdlWwwfpX5NRk028dwz3jLsJ7UmkU9YX2mWRpodM4Mq431fD4zCnhrPKvkJKqzyIt6MHAS6/H/26Yzn73+ZheiAIAn8ceyMquZJ/bH2DWl3D2R7SWcfP2ZtbRy/l7YXPc13iFdS01/Pyjv9xz6on+Cl7DS2G1rMyrmZ9Cx/u+4Y/rX6W/IYj3Jq8lEen3XNSwWh32T7eTf+CJN8R/N+Ya88pNfNhzj5OjgoMZgOZNbmk+Cf+bj8fwyukcxA3tZa/Tb2bZza9wuMb/smfJ99J+DmibH02cVSouTRmDguiZrK34iBrCrbwRcZPfH1oBSl+CUwLGcconxFnvFfnSFMZawq2sK04FatoY0boRJbELzzpPa69FQd5ddf7RLqF8sDE2065iGOY3x9KBzkZNTlYbBZG+8Wf7eGcMYYD0jlKqGsgT8/8Ey9se5PHNvyTJSMXcknUrOHGSOyKEOMDkxkfmEx5axUbC3ewtSSV1PL9OMpVjPZLYLR/PPFeMTg5nHq5tCiKlLZUkF6Zya7SdEpaKpBL5UwLGc+lMXPwOQVX1J2laby2+0PCXIN4ZOrdv7tGx2FOD4JExr7KdFRy5e9OLuhYhu9u5zBBWn9enPs33kn7gi8yfmLTkZ0sjlvAxKDRp02A9XwnwMWXG5IWsyxxERnVWewsS2df5SG2lqQiIBCk8SPCPZRQ1wACXHzxcvJAq9T0uwoxWIzUdzRS3VZHaUsFRY2l5NYX0mJsAyDKPYxbkpcwOXjMKfcG/Zq3iY/2f0uMZzh/mXLXbyIKO8x5iiBhf9VhEr3jftcr6OGAdI7j7ODEnyb9H/sqD/H5wR94LfVDvsj8iRmhE5gQOJoAF98zmk82Wc006ptp7GimxdhKi6ENnakDvcWAyWrGZrMBdmsIlUyJs4MjWqULHmo3/Jy9T8sKZTDIJFKS/eJJ9ovHarNS2FhCRk0OOXUF7C5LZ0PR9h7HO8pVKOVKZBIZomjDbLPQYdJ3q1Z04ePkSYJPLCO8oknyHXFaej8sNisf7/+WNQVbSPFP5P7xtwyrMAwzIBW6WpoMLST7jTzbQzmjnNGAtGLFCt566y3MZjM33XQT1157bZ/Hbd68mWeeeYaNGzeeyeGc1yT7jWSUbxz7KjNZU7CF7w//yneHV+Hp6M4Irygi3UIJ1vrj6+yFk8JxUEHKJtpoN+po1LfQqG+ivqOROl0jdboG6nQN1OoaulcGxyOXyFDIFN3irGarGaPF1EsDT6t0IcwtmGj3MEZ4RRHuFnzGV3fSYxpvwZ5ya9A3UdlaQ62uniZ9C21GHQaLEYvNgiAIyCUy1HIVLkpn3FRafJw8T6k5tj/qOxp5ddcH5NYXckn0bK5LWHROVAoOc26TVV8IwCjfEWd5JGeWMxaQampqeOWVV/jhhx9QKBQsXbqUcePGERHRM/9ZX1/Piy++eKaG8btCIkhI8U8kxT+RJn0LeysOcKA6m/SKDDYf2dV9nIPMAa3SBSe5GgeZAqlEioCAxWbBZDWjNxtoN+loM+mwibYeryGVSPFQu+Hl6MZo/wQ81G54qF1xU2nRKl1wcXDCSeHY516WTbShM3XQpG+hVtdAVVstJS3lFDaUsK/S3j+hkitJ8h3JuIBRJPmO/E32TARB6Pw9Tl2O6GQRRZFtJXv4cN/XWEUb90+4dbjPaJhBk99QTJDG/7Q1h5+rnLGAtHPnTsaPH49WqwXs3kqrV6/m7rvv7nHcY489xt13382//vWvPq/T2tpKa2vPst7q6uozMubzCVeVhrkR05gbMQ1RFKnV1VPWUkl1ez0NHU00G1rQmTowHbNykUmkOCrUeKjd7AKqSic0Di64qjS4qexWEVoHl5OesXfZpjs7OBGk9e/xXKuxnazaPPZXHSa9MoOdpWk4yBwY5z+K6aHjifOK+l05Xx5LdVstH+7/hv1Vh4lyD+Pu8Tfh4+R5toc1zDnGQPe6Iy1lzAmbcTaG9ZtyxgJSbW0tnp5Hv3ReXl5kZGT0OOaTTz4hLi6OxMT+u44//vhjXn/99TM1zN8FgiDg7eSJ9zl8k3NxcOqujLPZbGTV5bO9dC+7ytLZWpKKl6M7s8ImMyN0wkn18ZyLtBnb+TF7DavzNyOTSLkp6aoLShJqmKEx0L3OaDER4/H7ra7r4owFJFHs7adz7L5GXl4ea9eu5aOPPhpwxXPjjTeyaNGiHo9VV1f3ux81zLmPRCJhpHc0I72juSXpavZUHGB94Xa+zFzON4dWMDYgibkRU4nzjDwvGwBbDK2sytvE6vzNGCxGpoWM55qEy36XYpjDnD5OdK+L8Qg/G8P6TTljAcnb25u0tLTun2tra/HyOtqvsXr1aurq6rjyyisxm83U1taybNkyvvjiix7XcXFxwcXl9503vZBRyBRMDh7L5OCxVLZWs65wO5uLd7GrLB0/Z29mhk1iasi4cz53LooihY0lrCvcxvaSPVhsVsYFJrE47uJe6cthhumLge51KrnqjFnSnEucsYA0ceJEXnvtNRobG1GpVKxdu5Znn322+/l7772Xe++9F4Dy8nJuuOGGXsFomAsLPxcfbkxazDXxl7KrbB/ri7bz2cEf+DLjJ0b5jmBK8FiS/eLPqebRmvY6dpXtY1vJHspaKnGQOTA9dAILombidxqs04cZBuzfjfMxWzBUzugK6YEHHuCGG27AbDazePFiEhISuO2227j33nuJj//9yl8Mc2ooZAqmhY5nWuh4ylur2HxkN9tKUkmvzEQhlZPoE8dovwRG+cYN2ZL8VDFZTOQ2FJFZk8O+ykOUtlQA9obZ20YvY1JQymkvFR9mGP9TUAM5nxDEvjZ7znHKy8uZNWsWGzZsICAg4GwPZ5jfAJvNRk59ATvL0kmryKBR3wyAv4sPsR4RRLiHEuYaRICLz2mTVzJbzVS21VDSXEFRUymFDcUUNpVisVmQChKiPcJJ8U9kbMCoYRO9Yc4IXfe6J95/jmsnLz7bwznjDCs1DHNeIJFIiPOKIs4riluTl1LaUsHB6mwO1+ayqyyd9Z1KDFJBgreTJz5Onnio3dCqNLg4OOKoUOMgdUAhlSMRBETo0ZelM3XQamynydBCQ0cjte0N1HY0dBfnyKVywrSBXBw1g7hOC3iVXHkW35FhLiR+60zA2WI4IA1z3iEIAsHa/2/vTmOjKhs2jl8DbdlKKYUuPKC8AbENYYuC7CU8ULpRdkNZLAqCgCyWSNjEQMSASFKIJGyi4UNRSkGwBAHZZGmDghrW+kLCIn0ZSi1SaEs7Mz3vBx4m1hateRznHvr/JU2Yc8+cueZOOdec6cw9rdQ6uJWGRMWowqqQ/X6+rv76s278+n/Ku29X/oMC/e8vV/WgvLjG+61jq6Mm9RurWYOmatvsf9Sn9Ut6pkkLPdvk0QoYrB8Ib2lav3a8Q5NCgs+rY6ujfwVF6F9BEer9bOUxp8up++XFKnaUqMxZLofLoYr/nPX41amrgLoBauBfT438G6phQIOn9sO58G215SMDFBKean51/dS0QZNa8x8aT6fashI8TwcBwHC14S3fEoUEADAEhQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMAKFBAAwAoUEADAChQQAMIJHCykrK0sJCQmKiYlRenp6lfGDBw9q6NChGjJkiKZPn6579+55Mg4AwGAeK6Tbt28rLS1NW7du1e7du7VtEpZtFQAADjxJREFU2zZduXLFPf7gwQMtWbJEGzdu1JdffqnIyEh99NFHnooDADCcn6d2nJ2drR49eig4OFiSFBsbq3379mnGjBmSJIfDoSVLlig8PFySFBkZqaysrCr7KSoqUlFRUaVtdrvdU7EBwCs41nmwkPLz8xUaGuq+HBYWprNnz7ovN23aVAMHDpQkPXz4UBs3btQrr7xSZT9btmzR2rVrPRUTAIzAsc6DhWRZVpVtNputyrb79+9r+vTpioqK0vDhw6uMT5gwocp2u92ucePG/X1hAcDLONZ5sJDCw8N1+vRp9+X8/HyFhYVVuk5+fr4mTZqkHj16aOHChdXuJygoSEFBQZ6KCQBG4FjnwTc19OrVSzk5OSosLFRpaakOHDig6Oho97jL5dLUqVMVHx+vRYsWVXv2BACoPTx6hpSamqqUlBQ5HA6NGjVKnTp10uTJkzVr1izZ7XZdvHhRLpdL+/fvlyR16NBB77//vqciAQAM5rFCkqSkpCQlJSVV2rZp0yZJUseOHZWbm+vJuwcA+BBWagAAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAgAYgUICABiBQgIAGMGjhZSVlaWEhATFxMQoPT29yvilS5c0cuRIxcbGatGiRXI6nZ6MAwAwmMcK6fbt20pLS9PWrVu1e/dubdu2TVeuXKl0nblz52rx4sXav3+/LMtSRkaGp+IAAAznsULKzs5Wjx49FBwcrIYNGyo2Nlb79u1zj+fl5enhw4fq0qWLJGnEiBGVxh8rKirSzZs3K/3Y7XZPxQYAr+BYJ/l5asf5+fkKDQ11Xw4LC9PZs2efOB4aGqrbt29X2c+WLVu0du1aT8UEACNwrPNgIVmWVWWbzWar8fhjEyZM0PDhwytts9vtGjdu3N+QEgDMwLHOg4UUHh6u06dPuy/n5+crLCys0nhBQYH78p07dyqNPxYUFKSgoCBPxQQAI3Cs8+DfkHr16qWcnBwVFhaqtLRUBw4cUHR0tHu8ZcuWqlevns6cOSNJ2rVrV6VxAEDt4rFCCg8PV2pqqlJSUjRs2DANHjxYnTp10uTJk3Xu3DlJ0qpVq7R8+XLFx8ertLRUKSkpnooDADCcx16yk6SkpCQlJSVV2rZp0yb3v6OiopSZmenJCAAAH8FKDQAAI1BIAAAjUEgAACN49G9InuJyuSSp1n2KGcDTIyIiQn5+PnkI9hifnI07d+5IUq36wBiAp8uhQ4fUqlUrb8cwis2qbskEwz18+FDnz59XaGio6tat+7fu+/Eno9PT0xUREfG37tvTyO4dZPcOX84u1ewMyel0ym6315qzKZ98hPXr11fXrl09eh8RERE+++yF7N5Bdu/w5ex/xs/P76l9bNXhTQ0AACNQSAAAI1BIAAAjUEi/ExQUpBkzZvjkqrtk9w6ye4cvZ0f1fPJddgCApw9nSAAAI1BIAAAjUEj/cebMGY0cOVJDhw7VhAkTlJeXJ0kqKirSlClTFB8fr3HjxrlXiTBNVlaWEhISFBMTo/T0dG/H+VNr165VYmKiEhMTtXLlSklSdna2kpKSNGjQIKWlpXk54Z/74IMPNH/+fEnSpUuXNHLkSMXGxmrRokVyOp1eTle9w4cPa8SIEYqLi9OyZcsk+c6879692/0788EHH0jynXlHDVmwLMuy+vfvb126dMmyLMvavn27NXXqVMuyLGvp0qXWhg0bLMuyrC+++MKaPXu2tyI+kd1ut/r372/dvXvXKi4utpKSkqzLly97O9YTnTx50ho9erRVVlZmlZeXWykpKVZWVpbVr18/68aNG5bD4bAmTpxoHT161NtRnyg7O9vq3r27NW/ePMuyLCsxMdH64YcfLMuyrAULFljp6eleTFe9GzduWH369LFu3bpllZeXW2PGjLGOHj3qE/NeUlJidevWzfrll18sh8NhjRo1yjp58qRPzDtqjjMkSeXl5Zo9e7aioqIkSZGRkbp165Yk6ejRo+4vGRw8eLCOHTsmh8PhtazVyc7OVo8ePRQcHKyGDRsqNjZW+/bt83asJwoNDdX8+fMVEBAgf39/tW3bVteuXVPr1q31zDPPyM/PT0lJScY+hl9//VVpaWmaOnWqJCkvL08PHz5Uly5dJEkjRowwMvvXX3+thIQERUREyN/fX2lpaWrQoIFPzLvL5VJFRYVKS0vldDrldDrl5+fnE/OOmqOQJAUEBGjo0KGSpIqKCq1du1YDBw6UJOXn5ys0NFTSo2U8AgMDVVhY6LWs1fltRkkKCwvT7du3vZjoj7Vr1859ELl27Zr27t0rm83mM4/h3XffVWpqqvvtxr+f/9DQUCOzX79+XS6XS5MmTdKQIUO0detWn/ndCQwM1OzZsxUfH6/o6Gi1bNlS/v7+PjHvqLlaV0hfffWVoqOjK/28+uqrkh6dKb399ttyOp164403nriPOnXMmjarmnfu22w2LyT5ay5fvqyJEydq3rx5evbZZ6uMm/gYtm/frhYtWqhnz57ubb4y/y6XSzk5Ofrwww+VkZGhc+fO6ebNm1WuZ2L23Nxc7dixQ0eOHNGJEydUp04dnTx5ssr1TMyOmvPJxVX/G/Hx8YqPj6+yvbi4WNOmTVNwcLDWrVsnf39/SY+eMRYUFCgiIkJOp1MPHjxQcHDwP5z6j4WHh+v06dPuy/n5+QoLC/Nioj935swZzZo1SwsXLlRiYqK+/fZbFRQUuMdNfQx79+7VnTt3NHToUN27d08lJSWy2WyVst+5c8fI7M2bN1fPnj0VEhIiSRowYID27dtXacV8U+f9xIkT6tmzp5o1aybp0ctzmzdv9ol5R82Z9VTfi+bOnavWrVtrzZo1CggIcG/v16+fdu3aJenRwahr167usjJFr169lJOTo8LCQpWWlurAgQOKjo72dqwnunXrlt58802tWrVKiYmJkqTOnTvr6tWr7peV9uzZY+Rj+PTTT7Vnzx7t3r1bs2bN0r///W8tX75c9erV05kzZyRJu3btMjJ7//79deLECRUVFcnlcun48eOKi4vziXmPiopSdna2SkpKZFmWDh8+rJdeeskn5h01V+vOkKpz8eJFHTp0SM8995yGDRsm6dGZ0aZNmzR79mzNnz9fiYmJaty4sVatWuXdsNUIDw9XamqqUlJS5HA4NGrUKHXq1MnbsZ5o8+bNKisr04oVK9zbkpOTtWLFCs2cOVNlZWXq16+f4uLivJjyr1m1apXeeecdFRcXq3379kpJSfF2pCo6d+6s119/XWPHjpXD4VDv3r01ZswYtWnTxvh579Onjy5evKgRI0bI399fHTt21JQpUxQTE2P8vKPmWDoIAGAEXrIDABiBQgIAGIFCAgAYgUICABiBQgIAGIFCAp5g/vz52rx581+6zaFDh9yraB89elRr1qzxRDTgqcTnkIC/0YABAzRgwABJ0rlz53Tv3j0vJwJ8B4UEn3Pq1CmtXLlS4eHh+vnnn1W/fn2tWLFCYWFhWrp0qXJzc2Wz2dS3b1/NmTNHfn5+at++vSZMmKBTp06ppKREc+bM0aBBg7Rz507t379fGzZskKQqlx/LzMzUtm3b5HA4dO/ePU2ePFljx47Vzp07lZmZqdLSUgUGBmr48OHav3+/pk+frs8//1wul0uNGzfW2bNnFRcXp9GjR0uS1q1bp7t372rhwoX/+PwBpqKQ4JMuXryoBQsWqGvXrvrss880d+5ctWvXTsHBwcrKypLD4dC0adP0ySefaMqUKXK5XGrSpIl27typ3NxcjR8/Xl27dq3RfRUXF2v79u3auHGjmjZtqh9//FGvvfaaxo4dK0m6cuWKDh8+rMDAQO3cuVPSo1URkpOTdffuXaWmpurgwYNav369Ro8erYqKCm3fvl0ff/yxx+YH8EX8DQk+KSoqyl0oI0eO1KVLl7Rnzx6NHz9eNptNAQEBSk5O1rFjx9y3GT9+vPu2zz//vL777rsa3VejRo20fv16ffPNN1q9erXWr1+vkpIS93hkZKQCAwP/cB/9+/dXQUGBcnNzdfz4cbVq1Upt2rT5qw8beKpRSPBJv12hWnr0FRC/XwWroqKi0lda//Y2FRUVqlu3rmw2W6XbVffli3a7XcOGDVNeXp5efPFFvfXWW5XGGzZsWKO8ycnJyszM1I4dO5ScnPyntwFqGwoJPik3N1e5ubmSpG3btumFF15QfHy80tPTZVmWysvLlZGRoV69erlv83jV9gsXLujq1avq1q2bQkJCdPnyZZWVlcnpdOrIkSNV7uv8+fMKCQnR9OnT1bdvX/d1XC7XH2asW7dupUJ8+eWXdfDgQV24cEExMTH/7RQATx3+hgSf1Lx5c61evVp5eXkKCQnRypUr1ahRIy1btkxJSUlyOBzq27ev+2vGJen7779XRkaGKioqlJaWpiZNmqh3797q1q2b4uPjFRoaqu7du+unn36qdF+9e/dWZmam4uLi1KBBA3Xq1EkhISG6fv36H2bs2bOnZs6cKX9/fy1evFjNmjVThw4d1LZtW+O+wgQwAat9w+ecOnVK7733nvbs2VPj20RGRionJ8f95XTeUFhYqFGjRik9PV0tWrTwWg7AVLxkB/wDMjIylJCQoJSUFMoIeALOkAAARuAMCQBgBAoJAGAECgkAYAQKCQBgBAoJAGAECgkAYIT/B5VRJ992K6JTAAAAAElFTkSuQmCC", + "text/plain": [ + "
      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.set_theme(style=\"ticks\")\n", + "\n", + "# Show the joint distribution using kernel density estimation\n", + "g = sns.jointplot(\n", + " data=df,\n", + " x=\"popularity\", y=\"danceability\", hue=\"artist_top_genre\",\n", + " kind=\"kde\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "总体而言,这三种类型在受欢迎程度和舞蹈性方面保持一致。相同轴的散点图显示了类似的收敛模式。尝试使用散点图检查每种类型的数据分布。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/jenniferlooper/Library/Python/3.8/lib/python/site-packages/seaborn/axisgrid.py:337: UserWarning: The `size` parameter has been renamed to `height`; please update your code.\n", + " warnings.warn(msg, UserWarning)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFcCAYAAACwQwV1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABcRklEQVR4nO3deVxU5f4H8M9hZlgVAQGXNHPLLMXSVNxDVEQk1xKXcCkry+v90c2iTK/XpcXqmkm5lNfMSFFEDc1dSVNzqyS8erVMxRIQQUcRmO38/qAZZzlz5szMObN+369Xr3vnzPbMDJ7veZ7n+3wfhmVZFoQQQogfCnB3AwghhBB3oSBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4La8MghqNBlevXoVGo3F3UwghhHgxrwyCJSUlSExMRElJibubQgghxIt5ZRAkhBBCxEBBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL8ld3cDCCGepeBUMb7ccRblldWIjgxBenJ7PNGlububRYgkKAgSQgwKThUja+Np1Kq1AIDrldXI2ngaACgQEp9Ew6GEEIMvd5w1BEC9WrUWX+4466YWESItCoKEEIPyymq7jhPi7SgIEkIMoiND7DpOiLejIEgIMUhPbo8ghczkWJBChvTk9m5qESHSosQY4lcOXT6OdYVbceNuBRqGRmFs3DD0adHN3c3yGPrkF8oOJf6CgiDxG4cuH8eKE9lQaVUAgPK7FVhxIhsAKBAaeaJLcwp6xG9QECQeSYoe27rCrYYAqKfSqrCucCsFQUL8FAVBidCwm+Ok6rHduFth13FiH1pkT7wRJcZIQH8SL79bARb3TuKHLh93d9O8Al+PzRkNQ6PsOk6E0y+yv15ZDRb3FtkXnCp2d9MI4UVBUAJSncT9hVQ9trFxwxAoCzQ5FigLxNi4YU69LqFF9sR70XCoBDxl2O120UFUHsiGRnkD8vCGiEwYj/od+rq0DY5oGBqFco7vytkem34olYapxUeL7Im3oiAoAalO4va4XXQQ5duXg9XUAgA0ynKUb18OAB4fCMfGDTOZEwTE67H1adHN7UHPF+fOoiNDcJ0j4NEie+LpaDhUAp4w7FZ5INsQAPVYTS0qD2Q7/dqHLh/HS/mzMCZnGl7KnyX6XGefFt3wQtfxiA6NAgMgOjQKL3Qd7/bgJQZfnTujRfbEW1FPUAKeMOymUd6w67hQUq6184eMWr65M2/uDdIie+KtKAhKxN3DbvLwhtAoyzmPO0OqtXb+spDdl+fOaJE98UY0HOqjIhPGg5EHmRxj5EGITBjv1OtKlfTjCRm1Ug/zAlSgmhBPQ0HQR9Xv0BfRKS9CHh4NgIE8PBrRKS86nRQj1Vo7d2fUumptJ82dEeJZaDjUh9Xv0Ff0TFCpMjfdnVHrqpJqNHdGiGeRNAjm5+dj2bJlUKvVmDRpEsaPNx2K++677/DBBx8AAB588EHMmzcPYWFhUjaJOEmqpB8pl0UI4cqeqBRzZ7aSivwh6YgQR0gWBEtLS7F48WLk5eUhMDAQaWlp6N69O9q0aQMAUCqVyMzMxNq1a9GmTRt89tlnWLx4Md566y2pmkREIkXSj7szat3dE3WGraQif0k6IsQRks0JHjlyBPHx8YiIiEBoaCiSkpKwc+dOw/2XLl1C06ZNDUExISEBe/futXgdpVKJq1evmvxXUlIiVbOJG/Vp0Q2fpi5Ezphl+DR1oUtP0J6wttNRtpKKPCHpiBBPJVlPsKysDDExMYbbsbGxKCwsNNx+4IEHUFJSgnPnzuGhhx7Cjh07UF5umdK/Zs0aZGVlSdVMr+Ct5c+8ibt7os6wNZTr7qQjQjyZZEGQZVmLYwzDGP5/eHg43nvvPcyePRs6nQ5PP/00FAqFxXMmTpyIESNGmBwrKSmxmF/0Vd5c/sxeUsxbmZcoi++lxc93vud8D3ev7XSUraFcbx7qJURqkgXBRo0a4eTJk4bbZWVliI2NNdzWarVo3LgxNm7cCAA4c+YMmje3TBYIDw9HeHi4VM2UjFgndL7yZ74UBKWYt9KXKNNXaKlgfsOea2fAyLSivYcnsJVU5O6kI0I8mWRBsGfPnli6dCkqKioQEhKC3bt3Y/78+Yb7GYbBlClTsHHjRsTGxuI///kPhgwZIlVzJGGtEDLXCX3ZsbVYufkX3CqOtistXqryZ7aIVeSZ72LA+D6GCYCO1Zk8V+gSBWttNS9RJm9+3hAA7X0PT2ZrKNebh3oJkZqkPcGMjAykp6dDrVZj9OjRiIuLw9SpUzFjxgx07NgR8+bNw3PPPQeVSoUePXrg2Weflao5JsTopZn3MvSFkAFgw5+WiQgaVgNVVBHY4idMHmsrsDhT/szRz8n32ewJhHy9OwAm97FmAVDP1rwVX1vNS5ExgTUOvYc3sDWU661DvYRITdJ1gqmpqUhNTTU59tlnnxn+/xNPPIEnnnhCyiZYEGvYja8QclVb7pOq8UlYaNHkyITxJnOCgLDyZ858TmeKPAvt3en/vy225q342mq+vQ+rCgYTZBkIaW6MEP/ldxVjxKoMwlcIuZmVRARWFSzoNYzp5/3szQ515nM6WuTZPPA62rvTEzJvxdfWV8Z1NuklaoofhKLlGZMhUXvmxnxlwbkv7mdIiKP8LghyBSe+49bwbSLKlYjAagOgKX7Q4rFC8JU/s3ZiduZzOrpBKlfg5aLveXG1JYAJAMvqBAcZvraalyiLYlsjvskDVrND+Xj7gnP930n53QqwqhCombZg0dThoW5CfIXfBUFGHQJWYXnSZNT2VfFPT25v0ssA7hVC7tOi7mSiD05h8nAoL7WCtqKxxWOdwXdiDuAYitQfd+az8RHSwzPueXFlLNq7ea6ttnKXKEsW/Pp6rqotKhbji6N6gWG4q66Blq37jpjAaihaFgEAtBVNeYe6qddIfJ3fBcHay22haFkERnYvQLDaAKgut7XrdWwVQjZPRJDiZMJ3YuYKgACsHjfmaJFna+vR+Hp3zg4vuqogtTctODe/OLqtqrJ4DCPTQd78PLQVTQFwDyuLlSBFiCfzuyAYxbZGxe9/pcsH1oBVBUNT/CCi2NZ2v5Y9hZClKJrMd2KOthKQogUmgTjSXmvr0az17sTKWHTFZq7etOBc6LC0caIW11C3MwlSrkI9VeIsvwuCdcNnKtSebmo4FqSQIf0pcfdzc0USBd+J2R0LpH15PZoz36ery94J7Z3qE7WsDXU7miDlKtRTJWLwuyDoiuEzVyVR8J2YxQxIvpIV6QxHv093lL2zdnFkQieDpvhBxPD8/TuaIOUq3tBTJZ7P74Ig4PjwmdBg4KokCiGVQpx9P3sCursyKF0VpPm+T2vDcu4oe8d1cSQPkCFYFowqddW972gs/3fkaIKUq3h6T5V4B78Mgo6w5wTvyiQKqSuB2BPQ7Q3+YgQvT1i6wDcsd78byt6JNQrgqqQjR3l6T5V4BwqCAtlzgrc6HKUOwZP/2OpxJxPAekCyJ6Db81ixgpcnLF3gG5ab24C/7J0zFwJ8z/WmpCNHeXpPlXgHCoIC2XOCf7Reb+y5vd2kMol+GQYLz5vA5wtI9mRF2vNYsYKXrd/FFUOlfMNykcOtl71z5kLAE3rA7ubpPVXiHSgICmTPCf6HwzKomUcslmHo12QBnjWBzxeQ7MmKtOexYg0Z8/0u9gYKRwMm37AcX9m7dfmzHL4Q8IQesCfw5J4q8Q5+EQTF6A3Yc4Ivr6wGi6YmQY+Lvgfh7p3j+QKSPfNL9jzW3nV31n5Dvt/FnkDhTM/K1rCctbJ3zlwIeNPifUI8mc8HQbH29rPnBG+tZ8D1OE/YOd5WQLJnfknoY+25qBASoLh+l6wfVnO+N1egcKZnJXaFHSEL8L1p8T4hnszngyDXyc3Rvf2EnuC5egbm9D2FygMLLFLofwwGdhV+jVtn1rlkXZ6rFtab9+aeeCAeP14rcnrJibXfJUoRihvqu5zHzTnbsxKzwo6Q793Wc2ltJyHC+HwQtHYSc2RvP6G4egZdH4rFiXNlFj2Fiztv4Kd6QdjVsB5uygMQomWhCmCgDWAAuCbhwRWVXrh6cwWXfhBUMNveAGUIAPqamQxjuE+hYzGo/I7Fc9zRs3Lme+d7rjcmzVDQJu7i80GwXmAYZwFhaBQmN8VeYMvVM5jG8bjTMQ2RV5+B+q+gVy1nLB4jRcID10nn09SFor2+OWeGG+0JUCYBQB/8WBYAEKHRIenGHXS6Y1lXs3OTDtj920HO41JyZimDted6W9KMNwZt4jt8Pgj+df6zPA7TO9y1wHZ3dD2oOYbszAkZlhN6Ne2Ok44zw432DBtyFo9mGESotci8XLdAXR4ebfG8H68Vcb63teOu8vnJddh78XvoWB0CmAAMaNUbzz0+lvc53pY0421Bm/gWnw+Cd9QcvUAAjFxj+P/uXGBbISAAAraH5ewJbO446Tgz3GjPsKG1E/1NeQDebdEQSTdrMeiJ8YKfZ3zc1UN2n59cZ9I71bE6w+3nHh9rtT3eljTjbUGb+BafD4LWNtGFKhgM4PYFtkKKHQtJlrAnsLnjpOPscKPQYUOr3yfD4KZChs2x9RFbPxh9BD5PHzjc0Xvee/F7q8fbxbS22h537CDiDG8L2sS32N5m3MvVXm4LVmc6z8bqGKiLH8Q3Hw7Df94a5NbFtmPjhiFQFmhyTMbIUD8wrC5Ih0aJnjxi7eQi5UnHVcONXN+nMRWrxbrCrYKeZxw4+C4ypMK3MbKti54Xuo5HdGiUXX9D7mLruydESj7fE6wfFogamE8Msqgfxn2idPWQl1iZmUKupvWfjetxUp90HM7wdCJr0loPm+s9+7Tohv9d/81k/u2JB+INrydm71noZwtgAjgDYQATYLM9UhdWF5Mv70NJPJ/PB0FF8/Oo1ZgeYwLqjptzV5aarROWkN2zhawbM79fL9oFJx2HMzxh/++g/z5fyp9l13sWXPrBEHR0rA4Fl35Au5jWgubZpEhKGtCqN+cQ8oBWvfHjtSKfGkL0pqBNfIvPD4dWaZSCj7tjyMsW/TY91yurTYpvF5wqNnmcrSEwzqzJvx73aepC0U5Ahy4fx0v5szAmZxpeyp+FQ5ePA7BvyEus30HM9+R7LX1gK79bARb3Apv+sxecKsaUBbvx5D+2IuvQesGf7bnHx2JQ674IYIz+mWpl2PXrQZQr74CB6TA/DSESYj+f7wlau4JnmACMyZnm8LZBgGuGTu3ZPZvvatoVyTD2ljcbHtkOLb5ZhYvKRSY1U8VqqxhZpcbDi9Ze6yWeQtja8iYm1YN08mpYrgS1/v7PPT4Wzz0+FisP7MCea3U7kzAAIFdBp2MQLAuGiq2hIUQH0AJ9AvhBEOQaJgTuJR2U363AsuNfAnDtkJ1QYu2e7YoMPHvKm+lrpmo4aqaK2VZns0qN39Paa/EFUPOLGFYVDCaoxuKxtj7bvj/2gFGYXgwxASxUKgY5E5bxPldMvhI4aIE+0fP54VDzYULzISQA0Oi0+OLHDW4ZsrPF2iJ+IYv7jYcma9S1kAfITO4Xe/jMnh5c5YFsi5qprKYWlQey7c4WtDYEaw9nMhT5sm3NL1Y0xQ/CPNdFxshsvo9Ozn3RY+24OTG+I1vDvt7EE6c+iHv4fBAE6gLhp6kLkTNmmUWlGL3bqiq7UstdtdYuPbk9ghSmwUvI4n7zE9YddRVYFnYvvbCHPUsvNMobnI/VKG/Y9TuIdWIW8p6OzHdyX6yYXogxXOOjZgI03Bc91o4bO3T5OJYd/9LkO1p2/Eu7vyNfChy0QJ/o+fxwqL34hs+MszRDHgsBOBbhizG8aD7kNCipN344HGjXNj1cJywtq0WQPAirRnzgdBu5cA09yxk5bv/WCk/+Y6tJ2+XhDaFRllu8hjy8IQDhw5hiVr/he09Ht3PSJhebzAnKm58HE2B6IabRaW22N/G+gYY5QT1WK8OA+wba/Fxf/LgBGp3pUKp+9MOe78hagCi/W2Exv+7paIE+0aMgKJA+S1N/Mqu93BaKlmdMTkpiDC9ynWwP1u7EC8+MR58WgwS/jjuudPu06Ibq4nPIvXIENwOABlog/M8YnC+pq9VpvG1Vl4TxJvsoAgAjD0JkgmVJMz6u+pyObudkvqNIQKDlfCBfe40viILlwahVy8DKVAjQhGDAfQPxfEKyzbZzFpDnOW4NX3Uj41444Pnzat5WVYdIR9IgmJ+fj2XLlkGtVmPSpEkYP970BHfmzBnMmTMHarUaTZo0wfvvv4/w8HApm4T6VnaVqB8Yxvs88wQH/a7xQS0uAIpq0a6CxerZuONK93bRQbQ9vBOZRoFNxVZgfWB9nFK1AmCU2fpWXUCvPJANjfKGSXaoPVz1OZ0JtsY7iryUf9zh5KtatgaBQYF4oetktwQZa0lmxryl8DUt0Cd6kgXB0tJSLF68GHl5eQgMDERaWhq6d++ONm3aGB6zcOFCzJgxA/369cO7776LVatWISMjQ6omAQAmdX4ay45/aTI8JA+QYVLnp3mfx5WNqa1oiuqKpvjmQ/ckl/Bxx5UuV7JLIKPF0JCfDEEQuPdd1u/Q1+6gZ85Vm8uKFWzHxg3j/PuzN/nKns9QTxHGWUi+noL/ws+ceeCwskGLpFV0xEQL9AkgYWLMkSNHEB8fj4iICISGhiIpKQk7d+40eYxOp0NVVd0/zurqagQHB0vVHIM+LbphWrd0kwSIad3Sbf5jcCZL0x5i1fV0Vf1I42SRBZEsfqoXZPGYyADTE7CY3xnf5xQzm1HM+pbm23tZ2+5LrAuiyV2ehowxTa6SMTJM7sJ/4cfFOMksWqS/VV/KOiXeR7KeYFlZGWJiYgy3Y2NjUVhYaPKYzMxMTJ48GW+//TZCQkKwYcMGi9dRKpVQKk2ru5SUlDjVNkeuANOT25vMCQLSbMEkZg9O6itd8+G6mwoZ8mLDASjx2J17PcJK3b0ehxTfmSs2lxVr+Gxd4VZoWdMkFS3LnRgjVu9TqqE/sf5WaT9B4k6SBUGW4/KWMcoFr6mpwaxZs7BmzRrExcVh9erVeP3117Fy5UqT56xZswZZWVlSNVMw8wQHqbZg8qa5Cq6TlzqAwa6G9QxBUBegwHdsd7u3rRJjeEzspBkxLirsaZOnXxCJ9bdKyxWIO0kWBBs1aoSTJ08abpeVlSE2NtZw+/z58wgKCkJcXBwAYMyYMViyZInF60ycOBEjRowwOVZSUmKRZOMKxgkOUpKqByf2vAvfBrYAY0h2+UeHvviHne0Uo5qHJ6bB29MmqS6IxPw7EONv1RN/J+I/JAuCPXv2xNKlS1FRUYGQkBDs3r0b8+fPN9zfokULlJSU4OLFi2jVqhX27duHjh07WrxOeHi45Bmjnk6Mk5YUZaKsnbyiwxqi1azlDr0mIN7wmCemwdvbJrEviDyxXJgn/k7Ef0jaE8zIyEB6ejrUajVGjx6NuLg4TJ06FTNmzEDHjh3xzjvv4P/+7//AsiwaNmyIt99+W6rmCMYXcFyVwWa8KL9B83Jom/4MDVu3H5T5SUtom6SYd5Hq5OWOAtqu4u42eeL8m7u/E+LfGJZr8s7DXb16FYmJidi3bx+aNWsm2uty7bkXKAvEC13rhl6t3SfmP9aCU8XI2vst0OQcmL8WVnOV1dLvASi0TWNypnGmtDMAcsY4XoBZigsDa/sA6rd9Io4T++9AyF6XhHgyqhhjxFZtRFdcQa86tBtM80IwMssdxY3duFth11W9VPMuUsxf0vCYdMT8OzCvomRcEYgCIfEWFASNODIMJ3YGW3VUEQJsBECg7qRlq73GvbQwRRjkATKTRdruDizmvcjOTTrgx2tFuHG3AvUCwxAYoECVuspmD1OqYerbRQedrmjjaexZrG+Ltb0uP/z6R3y54yz1ColXoCBoxNZVsisy2KzVljSmD17rCrdabdOhy8ex4tiXUP21Ju2OugoyMKgfGIY7KtuBRWpcCRq7fztouP+2qgqBskBMj+cvESZVood+v0OWY79Dbw+EQhfr28K3pyX1Com38IsgKLSnYOsq2RVDdMGyENTouE4uDBiwFu231qavT+UYAqCeFiwCWdapOUBzjvbCuIZyzQkZbrY30UNoe/n2O/TmIGjPYn1boiNDcJ0nEBrqxFIQJB7M54PgocvHsezYWpPsymXH1gLg7ilYu0qWMoPN+MRs7aK8niIU/xlpugUSX5uWHv0PZ0bNDSs7BzgSzJzphQkdRrb1OHuGsO1pL99+h1KSOtFEzIXpXFWUzPH1FgnxBD4fBFef3GQIgHoaVoPVJzdZnPhsXSVLkQTClZHKpYqjADJgPTElQqPDTbPNePXHbbVBaDBzJt2eb1se88c58jpcz7OnvVz7Hf5ULwi7YsJxS6K981yRaCJmYoxxFSVrPUKxa+sSIjafD4J31ErzjbwNx803AhXzKtlWz0p/v5BAANh/kkq+yyC3Pgt1wL0Pr9CxSL7LWLSPYQKgY02Do5Bg5sz3JWRbHiHDzfZkktrT3kiz/Q5/qheEvNhww/cpxSJzrkQTTf1iLDu7H8t+FWe7LrEzb/VVlMwDOCBNnVhCxObzQVCnCkZAEEeyCWO5EWg9K3sN1rOy16C17EFbPSuhvT89GSNDraYWY3KmIUwRBoaBzeSWAT3HQ1ewCrsignBTHoAIjQ5JN2sx4IlnLd6fZbmzUW0FM2d6FVxDucbZoUJP+LaGqY2HF0MeCwEUlj0Wrvbq5/30v++umHCTCwpA/CUy5kOHsqg/oWhZBPavbGExAq9Uw/quqq1LiNh8PgiGVHRATeyPvOvu9CczlZW5Da7jfNmD637fxTvsJiQpJIAJAMvqEKYIQ422xhCcjfeF4zsp1u/QF4MAdD2QDY2y/K8g/Szqd+iLdfmzBAVgW8HM2V6FWMPL1l7HvHdSe7ktFC3PgJEJWybyc/1grHsgGjfuBoi6d5415okm8ubnLf5uxQi8UtWmdVVtXULE5PNB8Nk+g5C1VwPWRgWWG3cr6pJgOO6r1Vn2JPmyB2/Ecm/TqD9h2jpxGld9eSl/FueGqHp8J0Vrm9YKOXELCWauLHflSMKI+fCitqIpACCoxQVAwT+8KLS3LuYSGfNEE8bKchlX7q7w+cl12Hvxe+hYHQKYAAxo1RvPPT7WZe9PiNR8PgjWnSiH4MsdLf8aEvsOrJUhsbLKu5xDpzqV5Wa/fNmDDR9oxztMyJcUEm12YhZywrP3pGjt/fW9T3uCmSt253Y0YYQrM1Fb0RTVFU3xzYf8AV5Ib13sJTLmQ4oBmhCrf6uu8PnJdSZrN3WsznCbAiHxFT4fBAHTYZpDl5tYHcJbufkXi6FTVhuAkIoOFq/JlT2oP25rmNCemp9CsijtPSkKeX/9jvGeUNDYWmUSW2vQrK1jE5KxyHdhwQCSfSdC/1ZdYe/F760epyBIfIVfBEFjfEN42j5NTIZOWVUwcO0hPDtgkMXrmGcPAgAjD0Jkwnjcb2OY0J5hxLFxw5D1wxdgrcxKOXJStPX+QhJ7XFnx39paM1tr0LjWsQnNWLS6TZQLi3i7e3cF84xhruNUQJt4O78LgoD1ITzzoVO+f9Tm2YPmtSVtDRMKHUY8e/EGdDqAMZpmZNm6eU3zoVN78L2/rULirt6PztEenTMZi55SxJvvd5K6tmkAx9IZ/XGACmgT3+CXQZCPeYZb3bDgcs4rcWuJJ2La98ceMArTXiDDAIw6xKkeCV9vjm89nTv2o3OmR+doxqK7e2G2uKK26YBWvU3mBI2PA44PUxPiSSgI8vCEXbh18mquhFXo5I6Xo7JVSs7aUKB+XSUXsTMWjXs5rcIb4rVeg7H8dJjdPTpnhm5dlfTjSE/VFbVN9fN+1rJDHR2mJsSTUBDk4Qm7cFvLEAzQOF6OylYpOSHVXMw5krFoLUBx9XJi/rsRS4a/iPodLOdn+V7f3RcxfJwZTnRVbdPnHh9rNQnGmcQjQjwFBUEeriyjZk3ifQOx59p2kwXerFaGAfcNtLsNenyl5ADToUAhZd0cmSvjC1AtROrluOsiRmjvzpkyaXzZya7izDA1IZ6CgqAZ85qaXCXFWAAv5c8SHMic6ZE8n5AMHKibG9TJ69aODbhvYN1xB1krJWe8HlI/FDgmZ5rVainOLBXgC1CvitTLsfciRoysV3t6d86USePLTnYVKpVGfAEFQSNCa2oC9gUyZ3skzyck43lwBz1HTtxcpeSsrYeUaqkAX4ASq5djT21TsYZO7UkWcaZMmq3sZFehUmnE23HX9/JT1qqEBDDcX5PxsgE+jvRIXsqfhTE50/BS/iwcunzc6uNWnMhG+V/7EOpP3NYer/dsn0Fgi+Ogqw0Gy6Luf4vj8Gwfy/m2sXHDECgLNDkmxlIBa3OIDUOjEJkwHow8yOS4I70ce9pua1mIUPYki6Qnt0eQ0XZX9pZJq9+hL+7/2wq0mpWL+/+2wqs3+yXEXagnaMTayYZldWAAzmFBIfODUvVIHO1hClkPaTyv1aB5HOo1P48qjRINQ6PQuF4MPjm2Bkt/WO1wPcnOTTpwpt93btJBtF6OPcscxJr/tSdZxNPKpBHijygIGrEVrBzdNsiehdf2BDZnTtx8w1jm81o3i6MRVNII05/qhF/Z70WpJ/njtSLe42KtwRS6zEHIhYqQoWd7k0U8qUwaIf7IL4dDrQ038g2fOTMs2KdFN7zQdTyiQ6PAoG4+jatOKGBfYOMbUnQG37wWXz1Je4iZeSsGW7+v0KHnJ7o0x/SnOiEmMgQMgJjIELzWS41WRxbg4sLRuLL0BdwusuwBA/b9nRBCxOF3PUEhw418V/tSL7wOU4Rxbp0UprDc2Nfe0l7GPRm+zXn55rWCBdSTFMKZDXmlYOu3t6eHbty7q1vz+AU0Aiu7uGKBPiHkHr8LgrZOZuYnIVfspmAcnDgX8IF7D0QhhbD199ULDMNddQ20bF0Pj29zXr55rbs26kkKJWVtTkeXOvAFIEd7rq6o7GIve6rUUIFs4uv8LgjaczJzRcURy81buVfl3VFxb6xr7cRt/rq3rTxfz/hCgG9e61f2Bm89SaHsrc3JF9hMk3jKoW36s0lJODF+M0d7rq6q7CKUPesYqUA28Qd+FwTtOZm5ouKIkM1brbVPjNc1pr8Q4FsE/QT460nawzyAF5wqxpS1uw3BTPFXRmqYIgw12hpodHUnY+PApi1vYnKiro4qQoBZSTjj38zRXqKjPVdPqOxizJ51jFQgm/gDvwuC9pzMXJG8IeS1HBkmdKSNxoGWL3uUr56ko4x7HbKoP1ETW4RaTd2wK9ccqT6w1ZzuZ3Ki5ltr50zP3tFdJTyhsosxe9Yxilkg29V7UBIilN8FQXtOZq5I3rD2HgF/lWzjm+dzpO3WuHs+zrjXwVU5hcuNuxWoNjshs6pgMBwl4RqGRjnds3ckacVTKrvo2bOOUawC2Z5eyJz4N0mDYH5+PpYtWwa1Wo1JkyZh/Ph7V79nz55FZmam4XZFRQUaNGiAbdu2SdkkAJYnM2vJL67YWNXae3Clxtuz43u9wDDIGJkhEQYA5AEyBMuCUaWuQmBAIFQ6NViwCGAC8MQD8Q6dkMSajzPuXVjrzZlrGBqFGrMTtab4QShaFpkEUf1vlvXDas7XkXpZhiv2nRTKnnWMYhXI9oTdWAixRrIgWFpaisWLFyMvLw+BgYFIS0tD9+7d0aZNGwBA+/btsXVrXUmq6upqPPXUU5g7d65UzbHK2SUTzhLyHvrgxtWzs7bj+21VFeQBMtSTh6FKbboMQv+Z2b+ScHSsDgWXfkC7mNZ2fTbzxAlb83F8jHsd1npzxvSBTdu0CbL2fgs0OQcmsAasKhhsRTPUb3LTUOFG/7mtfYcME4AxOdP8YpjOnqLXYhXI9rQ1oYQYkywIHjlyBPHx8YiIiAAAJCUlYefOnZg+fbrFY1esWIGuXbvi8ccfl6o5Vtm7ZEIKfO9hmT1qydqO7xqdFsHBQfjPyA9Mjot1ZW6eOGFv7Utjxr0OTfGDULT6BUzAvUxZBgzqBYZarGs8hOMIbFlk6H0yQTWQx/6JyY8/Y9I7zvphNWfvGLi3xtH8Akis5QGfn1wnSiKRWOwpei1GgWxPWxNKiDHJgmBZWRliYmIMt2NjY1FYWGjxOKVSiQ0bNiA/P5/zdZRKJZRKpcmxkpIS0drp6VepQrI8G4ZG2fU5xPrM5gkSfPNxthj3OqyvlrS0rnAr5wbBQnrHDMeaR/3FgHnWqaPLAz4/uU6UMnPezBXTCoQ4SrIgyLKW690YjhXf+fn5GDBgABo25E4ZX7NmDbKyskRvn56nX6XaCkzyABlq1LVW9/yrF2hZacbez2wt2cU8cYJvPk4Ifa/jpfxZKL9r+olYsIa1jsY9Nr6Abqt3PCZnmtXnirU8gK/MnL8EQVdMKxDiKMmCYKNGjXDy5EnD7bKyMsTGxlo8bu/evXjhhResvs7EiRMxYsQIk2MlJSUmSTbO8PSrVL4sz/p/VYHhWkKgx3EtYtdn5pszNU+c0FY0hVwegPptLlrMx9lDSI9U32PjC+i2erx8z70q0vIAa+Xk7C0z5+2oHBzxVJIFwZ49e2Lp0qWoqKhASEgIdu/ejfnz55s8hmVZnDlzBo899pjV1wkPD0d4eLhUzfT4q9Thke2w5s4RqAPu9aIVOhYTm/fElsr/2awEU8URIO35zHzzh/pNdU3mzQYMkWwOydyNuxWYHj/ZakC3lgij7/HyXQysPn2Td3mA0PnCAJHKzAH+s9bOXz4n8QyS9gQzMjKQnp4OtVqN0aNHIy4uDlOnTsWMGTPQsWNHVFRUQKFQICgoyPYLSsiTr1If+ukwRupuY1fDergpD0CERoekG3fwUPlh3Ii1fSK1NsQp9DPb6k1JsbM4V3Di0jA0ymZA5+vx8j1Xm1xsdXkAZzmxvd/iy0uWPeABrXqLUmbOX9ba+cvnJJ6DYbkm7zzc1atXkZiYiH379qFZs2bubo6BFFewFxeOBnc9UQYfxLXj7TFZW29oj7r5OY5lBeoQVP/UT7KiyuY7XhiXTQP4P5vQ3TJssdbbm7Jgt0kvURb1J+dcqL59YmSHWvsdokOjDD1yX+Avn5N4Dr+rGCMVqa5g+WpP8vWYokUKwlzvwWplUF1uCxbSFVXmKmhgfIHRuUkHw9IHrjWQ+vbeUVchUBaI6fGT7f4urPVyzecFuSrcGC85EaPMnKdnMYvFXz4n8RwUBJ1gfGLmS7d3JhDx1Z683w2L+aEOgepyW2grmhoe44qiysZBke+CwxXVScyzYp1ZHymUp2cxi8VfPifxHH65s7wYDl0+jmXH1hp2GreW7WdP/U4u9Tv0RXTKi5CHRwNgIA+PRnTKiy4tw9WnRTd8mroQOWOWofqnfiYBUM+RosqO4gt0ruhJpCe3R5BCZrjNqoI5HyfmiXtsHP/O977CXz4n8RzUE3TQ6pObLBZpc3EkC9CctdqT7kgiEKuosi182Zd8gc4VPQnzcmIhFR1MaqYC4p+4PT2L2Rah8+Xe/jmJ9xEUBEeMGIFx48Zh6NChCAkR92TnDmKUw7qjVgoqayLlejB3FCZOT26PJTk/QaO9l6wjlzF2F1XmY2szV75A56p1n+bzha5I6/fkLGY+9l6seevnJN5JUBCcPXs2cnJysGTJEgwaNAhjx45F27ZtpW6bJMTaLVunCkaAjSLPQF2CilTclURgnk/saH6xtcBhq1pL5yYdOJcddG7SwW09CTpxW0e7SBBPJigIdu7cGZ07d4ZSqUR+fj6mTZuG2NhYPPPMM0hOTpa6jU4zPtlCHQJN/baAk4kdIRUdUBP7o0lWIMsCxpXh5AEySecyrPWIGqi1uLL0BUn2rftyx1lodaZRT6tj7f7++HoHtjZz/fFaEef9+uPeHJDEKtrtSSjjk3gywXOCSqUSW7duRW5uLurXr4/k5GRs3boVBw4cwKJFi6Rso1MsdmFQVEPRsu5kaZzgYW9ix7N9BiFrrwasfgsfjRyMTGMyRCrFCkzjk2RY2wZApNmJhGXxUFUtNMo7KN++HABEDYTlldWQRf1Ztyzgr62LNMUPopwjWYYPX+8gOrIf77yjr55UxRql8DSU8Uk8maCsjX/84x9ITExEYWEh5s6di82bN+OZZ55BVlYWCgoKJG6ic7hOtoxMB3nz8ybH7E3seKJLc0wfMAThV5JRe2IwZFDAPAdGy2oNuxmIQX+SvF5ZDRaAOvSa5YMYBufC6irwsJpaVB7IFu39AaBB83IoWhYhIKgGDAMEBNVA0bIIDZpbrmXkwxfIzLMvAdPNXK2dPPXHC04VY8qC3XjyH1sxZcFuFJwqtqtt7sI3DOzNKOOTeDJBPcG2bdti1qxZiIoyPfnI5XKsW7dOkoaJxdrJ1nhtlyO7ZQOmyRFP5+zkfIyzSySMCd2/76b8XjTWKG+I9v4AoGh+HrUa02QfRqaDwuyiwha+3oGtzVz5kl+8uTdlaxjYW1HGJ/FkgoLgyZMn8eKLL5oce/rpp7Fhwwa0bt1akoaJxdrJNkATAgYQbd6FUYeAVVierBi1eNm0QvfvizAKUvJw7i2qHFWlUdp13BpbWZx8NUn5TqpT1u4WZQskW/jm7hyd13PV8hN38OZ5WuLbeIPgjBkz8Pvvv6O4uBipqamG4xqNBgEB3rHO3lom4cCHuuK5CeINx9RebmtRP5LVBkB1WbwsWiH79yl0LJJu3AFwr7KMmMSa33G2d2DtpOqK3hRfbxOAwz1R862pAMdHKQghwvAGwddeew1//PEHZs+ejdmzZxuOy2Qyr1kiYSuTUCxRbGtU/A6LhJEoVryesq39+6IUoRhUfged7qggD4+WJDtUzHV49vQOhK7Dc0VvytbcnaM9UVvDwIQQ8fEGwWbNmqFZs2bYtWsX567w3sDanJyYc3WAPkCpUHv6XpZkkEKG9KfEu4rnPEmKsH+fPdwxv2PPYmtX9KYc6W0K7YlKsTUVIcQ63iA4duxYrFu3Dp07dzYJgizLgmEY/Pjjj5I30FlibmrKx1VX8Z5wknT1/I49i61d8TvY6m16+rwebVpLyD28QXDJkiUAgG3btrmkMVKwVrZMinJmnhCgfJG96wKl/h1s9TY9eV6PNq0lxBRvEPz55595n3zfffeJ2RZJRFtJ5JCynBkRl6ctthbS2/TUeT0qYUaIKd4guHbtWqv3MQyDQYMGid4gsbmqoDKRjif+hny9TU8eEfDVajuEOMrhIOgthCRy0ByJZ6PF1uLxtF41Ie7GGwQXLlyIWbNmWSyU11u+fLkkjRIbXyIHzZF4B1u/IQVIYTyxV02IO/EGwR49egAAkpKSXNIYd6A5Eu9GFzH2oV41IaZ4g2D//v0B1G2qW1lZiZ9//hlyuRydOnVCeHi4SxooNZojEZere2V0EWM/KmFGyD2CFssVFBRg8ODBWLVqFZYtW4YhQ4bgxIkTUrfNJWztSECE0/fKyu9WgMW9Xtmhy8c5Hy/Gbg90EUN8SWFhIebMmQMA+OWXXzBjxgzBjxfjcf5IUBBcsmQJvvrqK3z11Vf4+uuvsWLFCrzzzjtSt80laJsX8fD1ysyZbwulr7FpbyCkixjiS3799VeUlpYCADp27IiPP/5Y8OPFeJw/ErSLBMMwJrVCH3nkEbBS7BjrBlLNkfhjsoY9vTK++pv2LC+gRA/iDXQ6Hd5++22cPn0aVVVVYFkWCxYswMaNG3Hz5k0UFxejU6dOOHLkCG7fvo033ngDw4cPx/z587Ft2zacPHkS7777LnS6uiIfL7zwAuLi4vDxxx8bHm+tY3Lt2jWLx+Xk5GDt2rUICAhAdHQ0Zs+ejZYtWyIzMxMMw+C3335DRUUFevXqhbfeegsKhcLqZ9NqtVi0aBH279+P+vXrIy4uDr/99hvWrl2L27dvY+HChTh//jzUajV69OiB1157DXK5HB07dsTzzz+Pw4cPo6ysDOnp6Zg0aRLy8vKQm5uL6upq1KtXD2vXrsXGjRuxbt066HQ6REREYPbs2aLtYMQbBG/evAkA6NChA1atWoW0tDQEBAQgLy8P8fHxojTAE4g9R+ILyRqOBHF70u/F2u2BEj2INzh9+jTKysqQk5ODgIAArFy5Ep999hkiIiJQU1OD7du3AwDy8vKwa9cuvPPOOzh27Jjh+UuXLsXkyZORkpKCc+fOIScnB0lJSZgxY4bh8dY0adLE5HFHjx7F559/jpycHERFRSEvLw8vv/yyoQ3nzp3DV199BYVCgSlTpiAnJwcTJkyw+vobN27EmTNnsG3bNjAMg2nTphnue/vtt/HII4/g3XffhVarRWZmJlavXo2pU6dCpVIhMjIS69evR1FREcaOHYuxY8cCqOu57t+/H/Xq1cPx48exZcsWZGdnIyQkBN9//z3+9re/4dtvv3XqN9HjDYLx8fFgGMbQ63v//fcN9zEMg9dff12URvgab0/WsCeIGwfLeoFhkDEyaNl7PTxrvTIxd3ugRA/i6R577DE0aNAA69evR3FxMY4dO4awsDBERESgS5cuNp+fnJyMefPmYf/+/ejZsydeeeUVh9ty6NAhDBkyxLBJ+siRI7Fw4UJcvXoVQF0iZFhYGABg2LBh2LdvH28Q/O677zBs2DAEBQUBAMaMGWNYY15QUIBffvkFubm5AICaGtP9TxMTEwHUjS6qVCrcvXsXANCuXTvUq1fP8BqXL19GWlqa4Xm3bt3CzZs3ERER4fD3oMcbBM+dO+f0G/gjb0/WEBrEzYPlbVUV5AEy1JOHoUpdxdsro73ziD8pKCjAwoULMXnyZCQmJqJVq1b45ptvAAChoaE2n5+WloaEhAQcPnwYhw4dQlZWluH59uKaymJZFhqNBkDdVnnGx23tHSuXm4YR48frdDosWbLEMHSpVCpNNmPQB079MX3bjL8TnU6HYcOGYebMmYbbZWVlaNCggY1PKoygxBiVSoU9e/Zgy5Yt2LJlCzZt2oTFixeL0gBXECML0R7enqwhNIhzBUuNTotgRRByxizDp6kLrfbQnujSHNOf6oSYyBAwAGIiQzD9qU4eW26MEGccPnwYCQkJGDduHDp27Ii9e/dCq9VaPE4mkxmCkbG0tDScPXsWI0eOxPz586FUKnHr1i2rj+d73d69e+Pbb79FRUXdv+dNmzYhIiICLVq0AADs2LEDKpUKtbW12Lx5MxISEnhfu1+/fvjmm2+gUqmg0WiwefNmw329e/fGF198AZZloVKpMG3aNHz11Vc222usV69e2L59O8rKygAA69atw8SJE+16DT6CEmMyMjJQXFyM69ev4+GHH8bp06fRrZt3DD/x7QIu1QnX25M1hM7tOdvj9eQam4SIKS0tDa+++ipSU1Mhk8nw+OOPY/fu3WjWrJnJ4x577DF89NFHePnll5Genm44/uqrr+Ltt9/GRx99hICAAEyfPh3NmjWDTqczPP6TTz6x+v7Gr/vJJ59g0qRJmDhxInQ6HaKiorBixQpDDy44OBjjxo2DUqlEUlISRo0axfvZRo4cid9//x3Dhw9HaGgomjVrhpCQummNWbNmYeHChUhNTYVarUbPnj3x3HPP2fXd9enTB1OnTsWUKVPAMAzq1auHrKws0fa4ZVgBaZ79+/fH7t27MXfuXEyePBksy+Jf//qX22qLXr16FYmJidi3b5/FH5G5KQt2c849xUSG4D9vSVcA3JuzQ82HOYG6IP5C1/Emn+Gl/FlWd+j4NHWhS9pKCBFPZmYm2rZti2effVbwc77//nvcuHEDw4bVXeQvWLAAQUFBhuFLTyeoJxgbGwu5XI4HHngA58+fR3JyMqqrbWfx5efnY9myZVCr1Zg0aRLGjx9vcv/Fixfxz3/+E7du3UJMTAz+/e9/izbOqydWFqK9vDlZQ2jGpbf3eAnxFRcvXkRGRgbnfS1btsRHH33k1OuPGzcOVVVVnPd9+umnWLVqFVatWgWtVouHHnoIc+fOder9XElQEAwNDUV+fj4eeughbNiwAa1atTIsn7CmtLQUixcvRl5eHgIDA5GWlobu3bujTZs2AOomQKdNm4ZZs2ahb9+++OCDD7By5UrRrx7EzEL0Np+fXIe9F7+HjtUhgAnAgFa98dzjYwU9V0gQp+UJhHiGVq1aYetWy6IU9nr33Xc5j3/99de8z1u9erXT7+0ugoLgnDlzsGHDBsycORO5ubmYMGGCzRTdI0eOID4+3pDCmpSUhJ07d2L69OkAgDNnziA0NBR9+/YFALz44otQKpUWr6NUKi2Ol5SUCGk2gL+yEPd+CzQ5ByawBqwqGLj2ENIHDBH8Gt7o85PrsPu3g4bbOlZnuC00EArhzT1eQggRFAQfeOABvPbaa1AqlYK71WVlZYiJiTHcjo2NRWFhoeH2lStXEB0djddffx3//e9/8eCDD2L27NkWr7NmzRpkZWUJek8usuhrCGxZBA1blxnFBNVA3rIIsujHAPhuUsbei99bPS5mECSEEG8maInExYsXkZKSgpSUFJSWliI5ORm//fYb73O48m2Ms3k0Gg2OHz+OCRMmID8/H82bN+fsik+cOBH79u0z+S87O1tIswHUDdXpA6DhvVkNZz1LX6JjdXYdJ4QQfyQoCC5YsABvvvkmGjZsiEaNGmHChAk2K5I3atQI5eXlhttlZWWIjY013I6JiUGLFi3QsWNHAMDQoUNNeop64eHhaNasmcl/jRs3FvThAO9fuO6oAIb7p7V2nBBC/JGgM+LNmzfRq1cvw+3x48fjzp07vM/p2bMnjh49ioqKClRXV2P37t2G+T+gbt1KRUWFoSrN/v378cgjjzjyGXh5+8J1Rw1o1duu44QQ4o8Edwtqa2sNw5nXr183VDO3plGjRsjIyEB6ejqGDx+OoUOHIi4uDlOnTsUvv/yC4OBgfPLJJ3jrrbeQkpKCY8eOITMz07lPw8Fft0p67vGxGNS6r6HnF8AEYFDrvg7NB94uOogrS1/AxYWjcWXpC7hddND2kwghbvfxxx8jMTHRq7M3pSZosXxubi62bNmCK1euYNiwYdi+fTuee+45jBs3zhVttGDPYnnAuxeuu9vtooMo374crKbWcIyRByE65UXU79DX4vH0XbsHfe/eoeBUMb7ccRblldWIjgxBenJ7SasmJSYm4vPPP0fLli0lew9vJygIAsCJEydQUFAAnU6H3r17mwyPupq9QZA47srSF6BRllscl4dH4/6/rTA5JrTSDBEXfe/ewbyEI1BXNF6MmrkajQZz587FhQsXUF5ejpYtW6Jp06bIy8vD/fffjw8//BCTJ0/GI488gvLycuTm5mLVqlX45ptvIJPJ0KtXL8ycORPXrl3DtGnT0Lx5c1y+fBlNmzbF+++/j4iICBw4cAAfffQRdDodmjdvjnnz5iE6Ohr9+/dH//79cfLkSQB12yc9/PDDTn0eVxI0HHrnzh38+OOPmDlzJiZMmICCggLDlhfEt2mUNwQft2dneWe5uii6J3Pl904cx7eRtLN++uknKBQK5OTkYM+ePaitrUWvXr0QGxuLlStXon379qisrMTzzz+PrVu34siRI9i/fz/y8vKwefNmXL58GevXrwcAnD9/HhMnTsT27dvRunVrZGVl4caNG5gzZw4++eQT5Ofno3Pnzpg3b57h/SMiIrBlyxbMmDHD67bYExQE33jjDUOFmPDwcDAMw7mmj/geeXhDwcddlYmrv6K+XlkNFveKovtrIPTXDGhvI2UJx65du2LcuHHIzs7GwoULcenSJc6OSqdOnQAAP/zwA1JSUhAcHAy5XI5Ro0bh6NGjAOrWhXfv3h0AMHz4cPzwww8oLCxEXFycYeRtzJgx+OGHHwyv+/TTTwOoqzNdWlpq2KHCGwgKgpcuXTJE9/r16+PNN9/EhQsXJG0Y8QyRCePByINMjjHyIEQmjLd4rKsycaW8ovZG/poB7W2slWoUo4Tjvn378OqrryI4OBgjR45E165dOddqBwcHAwBnYqN+qyXj/QFZloVMJrN4vPH+g+bP0el0JnsSejpBQVCj0ZgsiaiqquL8gonvqd+hL6JTXoQ8PBoAA3l4tNWkmLFxwyBjTP/4ZYxM9ExcdxVF91TuzICmzGHh0pPbI0hh+u9DrI2kjx49iuTkZIwaNQrR0dE4ceIE536FevHx8di+fTtqamqg0WiwadMmxMfHAwB+//13nD1bd0G5adMm9O3bF506dcLp06cNu8/n5OQYeosAsH37dgDAnj170Lp1a9E3QpCSoLJpw4cPx1NPPYXBgweDYRjs2bMHI0eOlLptxEPU79CXM+hxYRgArNltkflzUXQu7ipkbp45rFGWo3z7cgAQ/PfiT/TJL1Jkhz711FN49dVXsXPnTgQGBuLRRx81BCwuCQkJOHv2LEaNGgWNRoM+ffpgwoQJKCkpQYMGDfDxxx/jypUraNeuHRYsWIDQ0FDMmzcP06dPh1qtRtOmTbFw4b3t0n788Ufk5uYiJCTEahFuTyU4O3Tfvn04evQo5HI5evTogX79+kndNqsoO9QzuWp/QSmz7Ihw9mQOE+9w9epVpKenY//+/YKf079/f3z55Zdeey4W1BME6nb3ffzxxw3DoDdv3jTsEEGk5S1rwFyVoGHritpbvi9vZ0/mMCGeSlAQXLNmDT788EOo1WoAdZOiDMMYxo2JdMzXgJXfrcCKE3UFxD3txN4wNIqzJyhFgsYTXZpz9vq86fvydvLwhlZ6gtwZxcTzNWvWzK5eIAC7H+9pBCXGrF27FuvWrcPZs2dx9uxZnDt3jgKgi3jTGjBPKFHnTd+Xt7Mnc5gQTyWoJxgTEyNJcWtimzetAfOEnea96fvydvU79MXZ329AfnoLGuAObqEeNA8PR0tKiiFeRFAQ7NWrF77++mskJiYiKOjelR/NCUrPlUOMYnD3TvPe9n15s4JTxcg6rECt+l6meNBhGaY3LaYEJeI1BA2Hrly5EvPmzUO/fv0QHx+P+Ph49OjRQ+q2EXjGEKM3oe/LdahoAfEFgnqCXJvdEtfwhCFGb2Lv90WZpI6jogWer7S0FG+99RY+++wzp19ryZIl6NChAxITE0VomecQtE5QpVLhu+++Q1VVFQBAq9XiypUryMjIkLyBXGidIBED7b7gnCkLdnMWLYiJDMF/3hrkhhYRYj9BPcGMjAwUFxfj+vXrePjhh3H69Gl060YnCeLd+DJJKQjalp7cnrNogRhlwHzV7aKDqDyQDY3yBuThDRGZMF6U6jrHjh3DihUrEBwcjN9++w3t2rXDBx98gLKyMsPi95KSErz66qu4desWHnzwQZw4cQIHDx5EVVUV5s2bhwsXLkCr1WLq1KkYOnSoYYeJmzdvIiEhAWVlZejWrRtGjhyJxYsX4+jRo7h16xYiIyOxdOlSxMTEoHfv3khKSsKpU6cgk8nw0UcfoXlz0/lha1sv/f7775gzZw5u3ryJ0NBQzJo1C3FxccjMzATDMDh//jzu3LmDadOmYfjw4U5/Z3qC5gTPnj2LvLw8JCYm4s0338T69etx+/Zt0RpBiDtQJqlznujSHNOf6oSYyBAwqOsBUtUe6/Rl5urWVrKGMnNi1Vv96aefMGfOHOzYsQN//vknvv/+e5P7Fy5ciOTkZOTn52Pw4MEoLS0FACxbtgyPPPII8vLykJ2djeXLl6O4uG5HltLSUmzevBmvvPKK4XUuX76MixcvYv369di1axfuv/9+5OfnAwCuX7+OHj16YMuWLejatSuys7M528q19dLMmTPxzDPPID8/H2+88Qb+/ve/Q6VSGdqxfv16rFmzBosWLcL169dF+c4AgT3B2NhYyOVyPPDAAzh//jySk5NRXU3j/v7KV+bR3JVJ6ivfH2C9aAGxVHkg21BnVY/V1KLyQLYovcG2bduicePGAIDWrVvj1q1bJvcfPnwY77zzDgBg4MCBCA8PBwAcOXIENTU12LRpEwDg7t27hl2CHn74YZMdIgCgRYsWeP3117Fx40b8/vvv+Pnnn3H//fcb7u/Tp4+hPfrenjnjrZcyMzNRUlKCK1euYNCgumH0Rx99FA0aNMDFixcBACNHjoRCoUDjxo3RuXNnnDp1CoMHD3bwmzIlKAiGhoYiPz8fDz30EDZs2IBWrVoZ9hck/sWXKrKMjRvGOScoZSapL31/xD5Sl5kzXr7GMIzFTj8ymYxz9x+dTof333/fsBa8vLwcDRo0QH5+vmHrJWNFRUX4xz/+gUmTJiEpKQkBAQEmr6tvB1cb9My3XtJqtRaPZVnWsBOG8dZMOp3OIjA7Q9Bw6Jw5c3Du3Dn07t0bMpkMzzzzDJ599lnRGkG8hy9VZOnTohte6Doe0aFRYFBX6FvqpBhf+v6IfezZoFoKPXv2NAxbfvfdd1AqlQDqtlVat24dAKCsrAxPPvkkrl27ZvV1Tpw4gW7dumHs2LFo06YNDh8+zLttExfzrZfuu+8+NG/eHLt37wYA/PzzzygvL0fbtm0BADt27ADLsvjjjz9QWFiILl262PfhefCG02eeeQaM0V446enpYFkW7dq1w44dOzB27FjRGuINXDWMVXCqWJLtVsTga/Norl7c72vfHxEuMmG8ydZTgGvLzL355pt4/fXXsWHDBjz00EOG4dDp06dj7ty5GDp0KLRaLWbOnIn777/f6lDmkCFDMH36dKSmpkKhUKBdu3a82zZx4dp66f3338fcuXOxdOlSKBQKLF26FIGBdWt+a2pqMGrUKKhUKsybNw+RkZFOfBOmeJdI7Nq1C0BdtL5z5w5GjRoFmUyGrVu3Ijw8HPPnzxetIfZwxxIJV6XTe/o2Qa7aLslX0ffn36TKDhXiyy+/RM+ePdGmTRucOXMGs2fPRl5enkve25i9Wy9lZmYaslKlwNsTTEpKAgCsWrUK69evR0BA3ejpE088gTFjxkjSIE/lqnR6viocnhAE3TGP5kvo+/Nv9mxQLbYWLVrglVdeQUBAAIKCgtzWifE0gmYXKysrUVtbi5CQup27q6qqLDKPfJ2rhrE8vQoHVbBxji9/f548jE+Afv36uXUzdD17t16Seqd6QUFw6NChePrppzFw4ECwLIudO3caUlz9havS6aMjQzircERHhoj6Ps5wd5Fsb+eL35/5MP71ympkbTwNABQIiUcTlB3697//HX//+9+hVCpx+/ZtZGZm4rnnnpO6bR7FVYWZ05PbI0ghMznmL1U4Dl0+jpfyZ2FMzjS8lD8Lhy4fd3eTiEBUTJt4K8GLLQYMGIABAwZI2RaP5qphLP1Vs78NK9H6Oe8m5jC+LxUTIJ5PvBWHfsBVw1j+WIWD6nh6N7GG8eliiLiaoOFQQqTmTOIRDaO6n1jD+FRMgLgaBUHiEawlGNlKPNL3HMrvVoDFvZ4DBULXEquYNhUTEN/HH3+MxMRErF692unXWrp0KZYuXSpCq/hdvXoV/fv3t+s5/fv3x9WrV5GXl4fMzEzBz5N0ODQ/Px/Lli2DWq3GpEmTMH68aWWErKwsbNq0yVC54Omnn7Z4DPEPjq6fo2FUzyHGML67ipq7ijvmO7du3YrPP/8cLVu2lPR9vJVkQbC0tBSLFy9GXl4eAgMDkZaWhu7du6NNmzaGxxQVFeHf//43HnvsMamaQbyEo4lH1HPwLb5cTEDK+U6NRoO5c+fiwoULKC8vR8uWLZGVlYW3334bpaWlePnll/Hhhx9i8uTJeOSRR1BeXo7c3FysWrUK33zzDWQyGXr16oWZM2eaFKsGgM8//xwbNmxAZGQkwsPDERcXBwD46quvsHXrVlRXV4NhGHz00Udo3bo1+vfvjyeffBLff/89qqur8d5776FDhw44e/Ys5syZg5qaGjRo0AAffPABGjdujJUrV2LHjh3QarXo3bs3Zs6cCaCuVFpGRgYuXLiA8PBwfPLJJ4iMjLT6vo6SbDj0yJEjiI+PR0REBEJDQ5GUlISdO3eaPKaoqAifffYZUlNTMW/ePNTW1lq8jlKpxNWrV03+KykpkarZxI36tOiGT1MXImfMMnyaulDQicHRYVTimdxR1NxVpJzv/Omnn6BQKJCTk4M9e/agtrYW3333HebNm4fY2FisXLkS7du3R2VlJZ5//nls3boVR44cwf79+w2b516+fBnr1683ed1ffvkFmzZtwubNm7F69WrDuffOnTvYu3cv1q5di23btmHAgAH4+uuvDc+LiIhAbm4u0tLSsGLFCgDAq6++ipdeegn5+fkYMmQI1qxZg4MHD6KoqAi5ubnYsmULSktL8c033wAAKioqMHnyZGzbtg3R0dH49ttvbb6vIyTrCZaVlSEmJsZwOzY2FoWFhYbbVVVVaN++PV5//XXcd999yMzMxKeffoqMjAyT11mzZg2ysrKkaibxcr7cc/BXvlhMAJB21KJr166IiIhAdnY2Ll68iEuXLuHu3bucj+3UqRMA4IcffkBKSophu6RRo0Zhy5YtJlNSx48fR79+/RAWFgYAGDx4MHQ6HerVq4cPP/wQ27dvx6VLl3Do0CG0b38vCcp4T8Hdu3ejoqIC169fR0JCAgBg3LhxAID33nsPhYWFhrqgNTU1aNq0Kbp06YLY2FhDr7NNmzaorKy0+b6OkCwIctXlNt6RIiwsDJ999pnh9pQpU/Dmm29aBMGJEydixIgRJsdKSkrcMndIZaE8jy+XISO+Rcr5zn379uHjjz9Geno6Ro4cicrKSqt7+emDnk6ns7hPo9GY3GYYxuRxcrkcKpUK165dwzPPPIMJEyagb9++iI6Oxtmz9wojGO8pCAAKhcLkdWtra1FWVgatVouJEydi8uTJAOpG/mQyGSorK032DNTvTWjrfR0h2XBoo0aNUF5ebrhdVlaG2NhYw+0///wTubm5htssy3JulBgeHo5mzZqZ/KffPdmV9GWhrldWg8W9slAFp4pd3hZiypFhVEJcTcqqU0ePHkVycjJGjRqF6OhonDhxwuYef/Hx8di+fTtqamqg0WiwadMmxMfHmzymR48eKCgowO3bt1FbW4s9e/YAqBsmbdGiBSZNmoROnTrh4MGDvO9Xv359NG7cGIcPHwZQl6yzZMkSxMfHY+vWraiqqoJGo8HLL79s2L2Ii73vK4RkPcGePXti6dKlqKioQEhICHbv3m1StTw4OBjvv/8+unfvjmbNmiE7OxsDBw6UqjlO85TdHaiaBiHeScpRi6eeegqvvvoqdu7cicDAQDz66KM29/hLSEjA2bNnMWrUKGg0GvTp0wcTJkwweUz79u0xceJEjB49GuHh4WjatCkAoFevXli3bh2GDBmCwMBAxMXF4cKFC7zvp98vcNGiRYiMjMSiRYsQGxuLc+fO4emnn4ZWq0WfPn0wYsQI/PHHH5yv4cj72sK7n6Cz8vPzsWLFCqjVaowePRpTp07F1KlTMWPGDHTs2BG7du3C0qVLoVar0blzZ/zrX/8ybKLIxx37CT75j63g+qIYAN986Jr5J1ftaUgIIf5C0nWCqampSE1NNTlmPA+YlJRk2LPQ03nC7g6+vibOnRuOAtTLJsQfUe1QG/QnxjttKxCsCoH6SltoK+qGBFy9u4Mvr4m7XXQQ5duXg9XULZPRKMtRvn05ALgkEFLNSkL8E5VN42FckgsAmMBqBLY6A1nUnw6XhXKGL6+JqzyQbQiAeqymFpUHsl3y/lSzkhD/RD1BHlwnRgRo0TTuKj5Nneby9vjymjiN8oZdx42JMYzpy71sQoh1FAR5eNqJ0ZVr4lw9PyYPbwiNspzzOB+xhjF9vWYlIYQbBUEennhidEU1DXfMj0UmjDeZEwQARh6EyAT+oghiJQv5ci+bEGIdzQnykHJxqydzx/xY/Q59EZ3yIuTh0QAYyMOjEZ3yos2kGLF6675cs5IQYh31BHn4a0kudw0D1+/Q1+5MUDF7675as5IQYh0FQRv88cToicPA1tAwJiHEGTQcSix40zAwDWMSQpxBPUFiwduGgf2xt04IEYdfBEEqh2U/CiyEEH/g80GQymERQgixxufnBKkcFiGEEGt8Pgh6WtUXQgghnsPng6AvF50mhBDiHJ8Pgt6U7k8IIcS1fD4xxtvS/QkhhLiOzwdBgNL9CSGEcPOLIEiINbSGlBD/RkGQ+C1aQ0oI8fnEGEKsoTWkhBAKgsRv0RpSQggNhxK3cfd8nDdtGUUIkQb1BIlb6Ofjyu9WgMW9+bhDl4+7rA20hpQQQkGQuIUnzMfRXoSEEBoOJW7hKfNxtIaUEP9GPUHiFlTTlRDiCSgIEreg+ThCiCeg4VDiFlTTlRDiCSgIEreh+ThCiLtJOhyan5+PIUOGYODAgcjOzrb6uIKCAvTv31/KphBCCCEWJOsJlpaWYvHixcjLy0NgYCDS0tLQvXt3tGnTxuRx5eXleO+996RqBiGEEGKVZD3BI0eOID4+HhEREQgNDUVSUhJ27txp8bi33noL06dPl6oZhBBCiFWS9QTLysoQExNjuB0bG4vCwkKTx3z55Zd4+OGH0alTJ6uvo1QqoVQqTY6VlJSI21hCCCF+SbIgyLKsxTGGYQz///z589i9eze++OIL3qC2Zs0aZGVlSdJGQggh/k2yINioUSOcPHnScLusrAyxsbGG2zt37sT169cxatQoqNVqlJWVYdy4cfj6669NXmfixIkYMWKEybGSkhKMHz9eqqYTQgjxEwzL1WUTQWlpKcaOHYvc3FyEhIQgLS0N8+fPR1xcnMVjr169ivT0dOzfv1/Qa1+9ehWJiYnYt28fmjVrJnbTCSGE+AnJEmMaNWqEjIwMpKenY/jw4Rg6dCji4uIwdepU/PLLL1K9LSGEECKYZD1BKVFPkBBCiBiodighhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8FgVBQgghfouCICGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiAhhBC/RUGQEEKI36IgSAghxG9RECSEEOK3KAgSQgjxWxQECSGE+C1Jg2B+fj6GDBmCgQMHIjs72+L+PXv2IDU1FSkpKcjMzIRKpZKyOYQQQogJyYJgaWkpFi9ejK+//hpbt25FTk4Ofv31V8P9d+/exbx587B69Wps374dtbW12Lx5s1TNIYQQQixIFgSPHDmC+Ph4REREIDQ0FElJSdi5c6fh/tDQUOzfvx/R0dG4e/cubty4gfDwcKmaQwghhFiQS/XCZWVliImJMdyOjY1FYWGhyWMUCgW+++47vPbaa4iNjUXv3r0tXkepVEKpVJocKykpkabRhBBC/IpkQZBlWYtjDMNYHOvXrx+OHTuGf//735g7dy4+/PBDk/vXrFmDrKwsqZpJCCHEj0kWBBs1aoSTJ08abpeVlSE2NtZw++bNmygqKjL0/lJTU5GRkWHxOhMnTsSIESNMjpWUlGD8+PEStZwQQoi/kGxOsGfPnjh69CgqKipQXV2N3bt3o2/fvob7WZbFzJkz8eeffwIAduzYgc6dO1u8Tnh4OJo1a2byX+PGjaVqNiGEED8iaU8wIyMD6enpUKvVGD16NOLi4jB16lTMmDEDHTt2xPz58/HCCy+AYRi0adMG//rXv6RqDiGEEGKBYbkm7zzc1atXkZiYiH379qFZs2bubg4hhBAvRRVjCCGE+C0KgoQQQvwWBUFCCCF+i4IgIYQQv0VBkBBCiN+iIEgIIcRvURAkhBDitygIEkII8VsUBAkhhPgtCoKEEEL8lmS1Qwkxd7voICoPZEOjvAF5eENEJoxH/Q59bT+REEIkQkGQuMTtooMo374crKYWAKBRlqN8+3IAoEBICHEbGg4lLlF5INsQAPVYTS0qD2S7qUWEEEJBkLiIRnnDruOEEOIKFASJS8jDG9p1nBBCXIGCIHGJyITxYORBJscYeRAiE8a7qUWEEEKJMcRF9MkvlB1KCPEkFASJy9Tv0JeCHiHEo9BwKCGEEL9FQZAQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/JZXrhPUarUAgJKSEje3hBDirxo3bgy53CtPocSIV/6C169fBwCMH08ltwgh7rFv3z40a9bM3c0gTmJYlmXd3Qh71dTUoKioCDExMZDJZFYfV1JSgvHjxyM7OxuNGzd2YQupPY7ytDZRe2zztDa5qj3UE/QNXvkLBgcH4/HHHxf8+MaNG3vUFRu1xzZPaxO1xzZPa5OntYd4JkqMIYQQ4rcoCBJCCPFbFAQJIYT4LZ8OguHh4Zg+fTrCw8Pd3RQA1B4hPK1N1B7bPK1NntYe4tm8MjuUEEIIEYNP9wQJIYQQPhQECSGE+C2fDYL5+fkYMmQIBg4ciOzsbLe1486dOxg6dCiuXr0KADhy5AhSU1MxaNAgLF682KVtycrKQkpKClJSUrBo0SK3twcAlixZgiFDhiAlJQWrV6/2iDYBwHvvvYfMzEwAwNmzZzFq1CgkJSVh1qxZ0Gg0Lm1Leno6UlJSMGzYMAwbNgynT59269/3/v37MXLkSAwePBgLFiwA4L7fbOPGjYbvZdiwYejSpQvmzZvnEX9DxEuwPqikpIRNSEhgKysr2aqqKjY1NZW9cOGCy9vx888/s0OHDmUfeeQRtri4mK2urmb79evHXrlyhVWr1eyUKVPYgoICl7Tl8OHD7JgxY9ja2lpWpVKx6enpbH5+vtvaw7Ise+zYMTYtLY1Vq9VsdXU1m5CQwJ49e9atbWJZlj1y5AjbvXt39vXXX2dZlmVTUlLYn376iWVZln3jjTfY7Oxsl7VFp9OxvXr1YtVqteGYO/++r1y5wvbu3Zu9du0aq1Kp2LFjx7IFBQVu/81YlmXPnz/PDhw4kP3zzz89oj3EO/hkT/DIkSOIj49HREQEQkNDkZSUhJ07d7q8HRs2bMA///lPxMbGAgAKCwvRokULNG/eHHK5HKmpqS5rV0xMDDIzMxEYGAiFQoHWrVvj0qVLbmsPAHTr1g1ffvkl5HI5bty4Aa1WC6VS6dY23bx5E4sXL8aLL74IAPjjjz9QU1ODRx99FAAwcuRIl7bn4sWLYBgGU6dOxZNPPomvvvrKrX/fe/bswZAhQ9C4cWMoFAosXrwYISEhbv3N9ObOnYuMjAwUFxd7RHuId/DJIFhWVoaYmBjD7djYWJSWlrq8HQsXLjQp7+bOdrVt29ZwIr906RK+/fZbMAzj9u9JoVDg448/RkpKCnr06OH2327OnDnIyMgwpNebtycmJsal7VEqlejRowc++eQTfPHFF1i/fj3+/PNPt31Hly9fhlarxbPPPosnn3wSX3/9tdt/M6DuwrempgbJycke0R7iPXwyCLIcqz4YhnFDS0x5QrsuXLiAKVOm4PXXX8f999/v9vYAwIwZM3D06FFcu3YNly5dclubNm7ciCZNmqBHjx6GY+7+zR577DEsWrQIoaGhiIqKwujRo/Hxxx+7rU1arRZHjx7F+++/jw0bNuCXX34xzHe7oz1669evx+TJkwG4/zcj3sUrC2jb0qhRI5w8edJwu6yszDAk6U6NGjVCeXm54bar23Xq1CnMmDEDb775JlJSUnD8+HG3tue3336DSqVC+/btERISgkGDBmHnzp0mO4O4sk3ffvstrl+/jmHDhuHWrVu4e/cuGIYx+Y6uX7/u0u/o5MmTUKvVhsDMsizuu+8+t/1u0dHR6NGjB6KiogAAiYmJbv3NAEClUuHEiRN49913Abj/3xnxLj7ZE+zZsyeOHj2KiooKVFdXY/fu3ejbt6+7m4VOnTrh999/Nwwpbdu2zWXtunbtGl5++WV88MEHSElJcXt7AODq1at46623oFKpoFKpsG/fPqSlpbmtTatXr8a2bduwdetWzJgxA/3798c777yDoKAgnDp1CgCwZcsWl35Ht2/fxqJFi1BbW4s7d+5g8+bNeP/99932952QkIDvv/8eSqUSWq0Whw4dwuDBg936d/S///0PDzzwAEJDQwG4/++aeBef7QlmZGQgPT0darUao0ePRlxcnLubhaCgILz77rv429/+htraWvTr1w+DBw92yXuvWrUKtbW1hqtlAEhLS3NbewCgX79+OH36NIYPHw6ZTIZBgwYhJSUFUVFRbmsTlw8++ABvvfUWqqqq8PDDDyM9Pd1l752QkGD4jnQ6HcaNG4cuXbq47e+7U6dOeO655zBu3Dio1Wr06tULY8eORatWrdz2mxUXF5vsG+jOf2fE+1DZNEIIIX7LJ4dDCSGEECEoCBJCCPFbFAQJIYT4LQqChBBC/BYFQUIIIX6LgiDxW5mZmVi1apVdz9m3b59h54SCggIsWbJEiqYRQlzEJ9cJEiKVxMREJCYmAgB++eUX3Lp1y80tIoQ4g4Ig8TjHjh3DokWL0KhRIxQXFyM4OBjvvvsuYmNj8a9//Qvnzp0DwzDo06cPXnnlFcjlcjz88MOYOHEijh07hrt37+KVV17BoEGDkJeXh127dmHFihUAYHFbLzc3Fzk5OVCr1bh16xamTp2KcePGIS8vD7m5uaiurka9evUwYsQI7Nq1Cy+99BLWr18PrVaL+vXro7CwEIMHD8aYMWMAAMuWLUNlZSXefPNNl39/hBDhKAgSj/Tf//4Xb7zxBh5//HGsW7cOM2fORNu2bREREYH8/Hyo1WpMmzYN//nPf/D8889Dq9WiQYMGyMvLw7lz5zBhwgSTHTz4VFVVYePGjVi5ciUiIyPx888/Y/LkyRg3bhwA4Ndff8X+/ftRr1495OXlAairnJKWlobKykpkZGRg7969WL58OcaMGQOdToeNGzfi888/l+z7IYSIg+YEiUd66KGHDEFs1KhROHv2LLZt24YJEyaAYRgEBgYiLS0NBw8eNDxnwoQJhuc++OCDOHHihKD3CgsLw/Lly/Hdd9/ho48+wvLly3H37l3D/e3atUO9evV4XyMhIQHl5eU4d+4cDh06hGbNmqFVq1b2fmxCiItRECQeyXhXAqBu9wTzCn86nQ4ajYbzOTqdDjKZDAzDmDxPrVZbvFdJSQmGDx+OP/74A126dMH//d//mdyvL8xsq71paWnIzc3Fpk2bkJaWZvM5hBD3oyBIPNK5c+dw7tw5AEBOTg46d+6M5ORkZGdng2VZqFQqbNiwAT179jQ8Z8uWLQCAM2fO4Pfff0fXrl0RFRWFCxcuoLa2FhqNBgcOHLB4r6KiIkRFReGll15Cnz59DI/RarW8bZTJZCZB+KmnnsLevXtx5swZDBw40NmvgBDiAjQnSDxSdHQ0PvroI/zxxx+IiorCokWLEBYWhgULFiA1NRVqtRp9+vTBiy++aHjOjz/+iA0bNkCn02Hx4sVo0KABevXqha5duyI5ORkxMTHo3r07/ve//5m8V69evZCbm4vBgwcjJCQEcXFxiIqKwuXLl3nb2KNHD/ztb3+DQqHA7Nmz0bBhQ3To0AGtW7eGQqGQ5HshhIiLdpEgHufYsWOYP38+tm3bJvg57dq1w9GjRw2bvbpDRUUFRo8ejezsbDRp0sRt7SCECEfDoYSIYMOGDRgyZAjS09MpABLiRagnSAghxG9RT5AQQojfoiBICCHEb1EQJIQQ4rcoCBJCCPFbFAQJIYT4LQqChBBC/Nb/AzTNtGFHfP2fAAAAAElFTkSuQmCC", + "text/plain": [ + "
      " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.FacetGrid(df, hue=\"artist_top_genre\", size=5) \\\n", + " .map(plt.scatter, \"popularity\", \"danceability\") \\\n", + " .add_legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" + }, + "kernelspec": { + "display_name": "Python 3.7.0 64-bit ('3.7')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.9" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "c61deff2839902ac8cb4ed411eb10fee", + "translation_date": "2025-09-03T20:02:50+00:00", + "source_file": "5-Clustering/1-Visualize/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/2-K-Means/README.md b/translations/zh-CN/5-Clustering/2-K-Means/README.md new file mode 100644 index 000000000..f7de2e097 --- /dev/null +++ b/translations/zh-CN/5-Clustering/2-K-Means/README.md @@ -0,0 +1,252 @@ +# K-Means 聚类 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +在本课中,您将学习如何使用 Scikit-learn 和之前导入的尼日利亚音乐数据集创建聚类。我们将介绍 K-Means 聚类的基础知识。请记住,正如您在之前的课程中学到的那样,有许多方法可以处理聚类,您使用的方法取决于您的数据。我们将尝试 K-Means,因为它是最常见的聚类技术。让我们开始吧! + +您将学习的术语: + +- Silhouette评分 +- 肘部法则 +- 惯性 +- 方差 + +## 简介 + +[K-Means 聚类](https://wikipedia.org/wiki/K-means_clustering) 是一种源自信号处理领域的方法。它用于通过一系列观察将数据分组并划分为“k”个聚类。每次观察都将数据点分配到离其最近的“均值”或聚类中心点。 + +这些聚类可以通过 [Voronoi 图](https://wikipedia.org/wiki/Voronoi_diagram) 来可视化,其中包括一个点(或“种子”)及其对应的区域。 + +![voronoi diagram](../../../../5-Clustering/2-K-Means/images/voronoi.png) + +> 信息图由 [Jen Looper](https://twitter.com/jenlooper) 提供 + +K-Means 聚类过程[通过三步流程执行](https://scikit-learn.org/stable/modules/clustering.html#k-means): + +1. 算法通过从数据集中采样选择 k 个中心点。之后进入循环: + 1. 将每个样本分配到最近的质心。 + 2. 通过计算分配到之前质心的所有样本的平均值来创建新的质心。 + 3. 然后计算新旧质心之间的差异,并重复直到质心稳定。 + +使用 K-Means 的一个缺点是您需要确定“k”,即质心的数量。幸运的是,“肘部法则”可以帮助估算一个好的起始值。您马上就会尝试。 + +## 前提条件 + +您将在本课的 [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/notebook.ipynb) 文件中工作,其中包括您在上一课中完成的数据导入和初步清理。 + +## 练习 - 准备工作 + +首先再次查看歌曲数据。 + +1. 为每一列调用 `boxplot()` 创建一个箱线图: + + ```python + plt.figure(figsize=(20,20), dpi=200) + + plt.subplot(4,3,1) + sns.boxplot(x = 'popularity', data = df) + + plt.subplot(4,3,2) + sns.boxplot(x = 'acousticness', data = df) + + plt.subplot(4,3,3) + sns.boxplot(x = 'energy', data = df) + + plt.subplot(4,3,4) + sns.boxplot(x = 'instrumentalness', data = df) + + plt.subplot(4,3,5) + sns.boxplot(x = 'liveness', data = df) + + plt.subplot(4,3,6) + sns.boxplot(x = 'loudness', data = df) + + plt.subplot(4,3,7) + sns.boxplot(x = 'speechiness', data = df) + + plt.subplot(4,3,8) + sns.boxplot(x = 'tempo', data = df) + + plt.subplot(4,3,9) + sns.boxplot(x = 'time_signature', data = df) + + plt.subplot(4,3,10) + sns.boxplot(x = 'danceability', data = df) + + plt.subplot(4,3,11) + sns.boxplot(x = 'length', data = df) + + plt.subplot(4,3,12) + sns.boxplot(x = 'release_date', data = df) + ``` + + 这些数据有点噪声:通过观察每一列的箱线图,您可以看到异常值。 + + ![outliers](../../../../5-Clustering/2-K-Means/images/boxplots.png) + +您可以遍历数据集并删除这些异常值,但这样会使数据变得非常有限。 + +1. 目前,选择您将用于聚类练习的列。选择范围相似的列,并将 `artist_top_genre` 列编码为数值数据: + + ```python + from sklearn.preprocessing import LabelEncoder + le = LabelEncoder() + + X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')] + + y = df['artist_top_genre'] + + X['artist_top_genre'] = le.fit_transform(X['artist_top_genre']) + + y = le.transform(y) + ``` + +1. 现在您需要选择目标聚类的数量。您知道数据集中有 3 个歌曲流派,因此我们尝试 3: + + ```python + from sklearn.cluster import KMeans + + nclusters = 3 + seed = 0 + + km = KMeans(n_clusters=nclusters, random_state=seed) + km.fit(X) + + # Predict the cluster for each data point + + y_cluster_kmeans = km.predict(X) + y_cluster_kmeans + ``` + +您会看到一个数组打印出来,其中包含数据框每一行的预测聚类(0、1 或 2)。 + +1. 使用此数组计算“Silhouette评分”: + + ```python + from sklearn import metrics + score = metrics.silhouette_score(X, y_cluster_kmeans) + score + ``` + +## Silhouette评分 + +寻找接近 1 的 Silhouette评分。此评分范围从 -1 到 1,如果评分为 1,则聚类密集且与其他聚类分离良好。接近 0 的值表示聚类重叠,样本非常接近邻近聚类的决策边界。[(来源)](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam) + +我们的评分是 **0.53**,处于中间位置。这表明我们的数据不太适合这种类型的聚类,但我们继续。 + +### 练习 - 构建模型 + +1. 导入 `KMeans` 并开始聚类过程。 + + ```python + from sklearn.cluster import KMeans + wcss = [] + + for i in range(1, 11): + kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42) + kmeans.fit(X) + wcss.append(kmeans.inertia_) + + ``` + + 这里有几个部分需要解释。 + + > 🎓 range:这些是聚类过程的迭代次数 + + > 🎓 random_state:“确定质心初始化的随机数生成。”[来源](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans) + + > 🎓 WCSS:“聚类内平方和”衡量聚类内所有点到质心的平均平方距离。[来源](https://medium.com/@ODSC/unsupervised-learning-evaluating-clusters-bd47eed175ce) + + > 🎓 惯性:K-Means 算法尝试选择质心以最小化“惯性”,“惯性是衡量聚类内部一致性的一种方法。”[来源](https://scikit-learn.org/stable/modules/clustering.html)。该值在每次迭代中附加到 wcss 变量。 + + > 🎓 k-means++:在 [Scikit-learn](https://scikit-learn.org/stable/modules/clustering.html#k-means) 中,您可以使用“k-means++”优化,“初始化质心使其(通常)彼此距离较远,从而可能比随机初始化获得更好的结果。” + +### 肘部法则 + +之前,您推测因为您针对 3 个歌曲流派,所以应该选择 3 个聚类。但真的是这样吗? + +1. 使用“肘部法则”确认。 + + ```python + plt.figure(figsize=(10,5)) + sns.lineplot(x=range(1, 11), y=wcss, marker='o', color='red') + plt.title('Elbow') + plt.xlabel('Number of clusters') + plt.ylabel('WCSS') + plt.show() + ``` + + 使用您在上一步中构建的 `wcss` 变量创建一个图表,显示肘部的“弯曲”位置,这表明最佳聚类数量。也许确实是 **3**! + + ![elbow method](../../../../5-Clustering/2-K-Means/images/elbow.png) + +## 练习 - 显示聚类 + +1. 再次尝试该过程,这次设置三个聚类,并将聚类显示为散点图: + + ```python + from sklearn.cluster import KMeans + kmeans = KMeans(n_clusters = 3) + kmeans.fit(X) + labels = kmeans.predict(X) + plt.scatter(df['popularity'],df['danceability'],c = labels) + plt.xlabel('popularity') + plt.ylabel('danceability') + plt.show() + ``` + +1. 检查模型的准确性: + + ```python + labels = kmeans.labels_ + + correct_labels = sum(y == labels) + + print("Result: %d out of %d samples were correctly labeled." % (correct_labels, y.size)) + + print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size))) + ``` + + 该模型的准确性不太高,聚类的形状给了您一个提示原因。 + + ![clusters](../../../../5-Clustering/2-K-Means/images/clusters.png) + + 这些数据过于不平衡,相关性太低,并且列值之间的方差太大,无法很好地聚类。事实上,形成的聚类可能受到我们上面定义的三个流派类别的严重影响或偏斜。这是一个学习过程! + + 在 Scikit-learn 的文档中,您可以看到像这样的模型,聚类划分不太清晰,存在“方差”问题: + + ![problem models](../../../../5-Clustering/2-K-Means/images/problems.png) + > 信息图来自 Scikit-learn + +## 方差 + +方差定义为“与均值的平方差的平均值”[(来源)](https://www.mathsisfun.com/data/standard-deviation.html)。在此聚类问题的背景下,它指的是数据集中数值偏离均值的程度。 + +✅ 这是一个很好的时机来思考所有可能的解决方法。进一步调整数据?使用不同的列?使用不同的算法?提示:尝试[缩放数据](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/)以进行归一化并测试其他列。 + +> 尝试这个“[方差计算器](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)”来更好地理解这个概念。 + +--- + +## 🚀挑战 + +花一些时间在这个 notebook 上,调整参数。通过进一步清理数据(例如删除异常值),您能否提高模型的准确性?您可以使用权重为某些数据样本赋予更大的权重。还有什么方法可以创建更好的聚类? + +提示:尝试缩放数据。notebook 中有注释代码,添加了标准缩放以使数据列在范围上更接近。您会发现虽然 Silhouette评分下降了,但肘部图中的“弯曲”变得更平滑。这是因为未缩放的数据允许方差较小的数据具有更大的权重。阅读更多关于此问题的内容[这里](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226)。 + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +查看一个 K-Means 模拟器[例如这个](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/)。您可以使用此工具可视化样本数据点并确定其质心。您可以编辑数据的随机性、聚类数量和质心数量。这是否帮助您更好地理解数据如何分组? + +此外,查看 [斯坦福的 K-Means 手册](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html)。 + +## 作业 + +[尝试不同的聚类方法](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/2-K-Means/assignment.md b/translations/zh-CN/5-Clustering/2-K-Means/assignment.md new file mode 100644 index 000000000..925481561 --- /dev/null +++ b/translations/zh-CN/5-Clustering/2-K-Means/assignment.md @@ -0,0 +1,16 @@ +# 尝试不同的聚类方法 + +## 说明 + +在本课中,你学习了 K-Means 聚类。有时 K-Means 并不适合你的数据。创建一个笔记本,使用本课中的数据或其他来源的数据(注明来源),并展示一种不同的聚类方法,而不是使用 K-Means。你学到了什么? + +## 评分标准 + +| 标准 | 卓越 | 合格 | 需要改进 | +| -------- | ------------------------------------------------------------ | ------------------------------------------------------------ | -------------------------- | +| | 提交了一个包含详细文档的聚类模型的笔记本 | 提交了一个笔记本,但文档不够完善和/或内容不完整 | 提交的工作不完整 | + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/2-K-Means/notebook.ipynb b/translations/zh-CN/5-Clustering/2-K-Means/notebook.ipynb new file mode 100644 index 000000000..25ed95875 --- /dev/null +++ b/translations/zh-CN/5-Clustering/2-K-Means/notebook.ipynb @@ -0,0 +1,231 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "3e5c8ab363e8d88f566d4365efc7e0bd", + "translation_date": "2025-09-03T20:10:14+00:00", + "source_file": "5-Clustering/2-K-Means/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "从我们上节课结束的地方开始,导入并过滤数据。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
      0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
      2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
      \n
      " + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "我们将只关注三个类型。也许我们可以建立三个集群!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 7 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
      5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
      6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
      \n
      " + }, + "metadata": {}, + "execution_count": 8 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/2-K-Means/solution/Julia/README.md b/translations/zh-CN/5-Clustering/2-K-Means/solution/Julia/README.md new file mode 100644 index 000000000..f30fc4eeb --- /dev/null +++ b/translations/zh-CN/5-Clustering/2-K-Means/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb b/translations/zh-CN/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb new file mode 100644 index 000000000..d60c3460e --- /dev/null +++ b/translations/zh-CN/5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb @@ -0,0 +1,637 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "anaconda-cloud": "", + "kernelspec": { + "display_name": "R", + "language": "R", + "name": "ir" + }, + "language_info": { + "codemirror_mode": "r", + "file_extension": ".r", + "mimetype": "text/x-r-source", + "name": "R", + "pygments_lexer": "r", + "version": "3.4.1" + }, + "colab": { + "name": "lesson_14.ipynb", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "coopTranslator": { + "original_hash": "ad65fb4aad0a156b42216e4929f490fc", + "translation_date": "2025-09-03T20:17:16+00:00", + "source_file": "5-Clustering/2-K-Means/solution/R/lesson_15-R.ipynb", + "language_code": "zh" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "GULATlQXLXyR" + }, + "source": [ + "## 使用 R 和 Tidy 数据原则探索 K-Means 聚类\n", + "\n", + "### [**课前测验**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/29/)\n", + "\n", + "在本课中,您将学习如何使用 Tidymodels 包以及 R 生态系统中的其他包(我们称它们为朋友 🧑‍🤝‍🧑)创建聚类,并使用您之前导入的尼日利亚音乐数据集。我们将介绍 K-Means 聚类的基础知识。请记住,正如您在之前的课程中学到的那样,有许多方法可以处理聚类,您使用的方法取决于您的数据。我们将尝试 K-Means,因为它是最常见的聚类技术。让我们开始吧!\n", + "\n", + "您将学习的术语:\n", + "\n", + "- Silhouette评分\n", + "\n", + "- 肘部法则\n", + "\n", + "- 惯性\n", + "\n", + "- 方差\n", + "\n", + "### **简介**\n", + "\n", + "[K-Means 聚类](https://wikipedia.org/wiki/K-means_clustering) 是一种源自信号处理领域的方法。它用于根据特征的相似性将数据分成 `k 个聚类`。\n", + "\n", + "这些聚类可以通过 [Voronoi 图](https://wikipedia.org/wiki/Voronoi_diagram) 可视化,其中包括一个点(或“种子”)及其对应的区域。\n", + "\n", + "

      \n", + " \n", + "

      Jen Looper 制作的信息图
      \n", + "\n", + "K-Means 聚类的步骤如下:\n", + "\n", + "1. 数据科学家首先指定要创建的聚类数量。\n", + "\n", + "2. 接下来,算法从数据集中随机选择 K 个观测值作为聚类的初始中心(即质心)。\n", + "\n", + "3. 然后,将其余的观测值分配到距离最近的质心。\n", + "\n", + "4. 接下来,计算每个聚类的新均值,并将质心移动到均值位置。\n", + "\n", + "5. 现在质心已经重新计算,每个观测值再次被检查是否更接近其他聚类。所有对象再次使用更新后的聚类均值重新分配。聚类分配和质心更新步骤会迭代重复,直到聚类分配不再变化(即达到收敛)。通常,当每次新迭代导致质心的移动微乎其微且聚类变得静态时,算法会终止。\n", + "\n", + "
      \n", + "\n", + "> 请注意,由于初始 k 个观测值的随机化,作为起始质心,每次应用该过程时可能会得到略有不同的结果。因此,大多数算法会使用多个 *随机起点* 并选择具有最低 WCSS 的迭代。因此,强烈建议始终使用多个 *nstart* 值运行 K-Means,以避免 *不理想的局部最优解*。\n", + "\n", + "
      \n", + "\n", + "以下短动画使用 Allison Horst 的 [插画](https://github.com/allisonhorst/stats-illustrations) 解释了聚类过程:\n", + "\n", + "

      \n", + " \n", + "

      @allison_horst 的插画
      \n", + "\n", + "聚类中一个基本问题是:如何确定将数据分成多少个聚类?使用 K-Means 的一个缺点是您需要确定 `k`,即 `质心` 的数量。幸运的是,`肘部法则` 可以帮助估算一个好的起始值。您马上就会尝试。\n", + "\n", + "### \n", + "\n", + "**前提条件**\n", + "\n", + "我们将从 [上一课](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb) 停止的地方继续,在那里我们分析了数据集,进行了大量可视化,并过滤了感兴趣的观测值。一定要查看!\n", + "\n", + "我们需要一些包来完成本模块。您可以通过以下方式安装它们:`install.packages(c('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork'))`\n", + "\n", + "或者,下面的脚本会检查您是否拥有完成本模块所需的包,并在缺少某些包时为您安装它们。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "ah_tBi58LXyi" + }, + "source": [ + "suppressWarnings(if(!require(\"pacman\")) install.packages(\"pacman\"))\n", + "\n", + "pacman::p_load('tidyverse', 'tidymodels', 'cluster', 'summarytools', 'plotly', 'paletteer', 'factoextra', 'patchwork')\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7e--UCUTLXym" + }, + "source": [ + "让我们开始吧!\n", + "\n", + "## 1. 与数据共舞:缩小到最受欢迎的三个音乐类型\n", + "\n", + "这是我们上一节课所做内容的回顾。让我们来分析一些数据吧!\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Ycamx7GGLXyn" + }, + "source": [ + "# Load the core tidyverse and make it available in your current R session\n", + "library(tidyverse)\n", + "\n", + "# Import the data into a tibble\n", + "df <- read_csv(file = \"https://raw.githubusercontent.com/microsoft/ML-For-Beginners/main/5-Clustering/data/nigerian-songs.csv\", show_col_types = FALSE)\n", + "\n", + "# Narrow down to top 3 popular genres\n", + "nigerian_songs <- df %>% \n", + " # Concentrate on top 3 genres\n", + " filter(artist_top_genre %in% c(\"afro dancehall\", \"afropop\",\"nigerian pop\")) %>% \n", + " # Remove unclassified observations\n", + " filter(popularity != 0)\n", + "\n", + "\n", + "\n", + "# Visualize popular genres using bar plots\n", + "theme_set(theme_light())\n", + "nigerian_songs %>%\n", + " count(artist_top_genre) %>%\n", + " ggplot(mapping = aes(x = artist_top_genre, y = n,\n", + " fill = artist_top_genre)) +\n", + " geom_col(alpha = 0.8) +\n", + " paletteer::scale_fill_paletteer_d(\"ggsci::category10_d3\") +\n", + " ggtitle(\"Top genres\") +\n", + " theme(plot.title = element_text(hjust = 0.5))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b5h5zmkPLXyp" + }, + "source": [ + "🤩 这进展得很顺利!\n", + "\n", + "## 2. 更多数据探索\n", + "\n", + "这些数据有多干净?让我们使用箱线图检查异常值。我们将专注于异常值较少的数值列(尽管你也可以清理异常值)。箱线图可以显示数据的范围,并帮助选择要使用的列。注意,箱线图并不显示方差,而方差是良好可聚类数据的重要元素。请参阅[这个讨论](https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot)以了解更多信息。\n", + "\n", + "[箱线图](https://en.wikipedia.org/wiki/Box_plot)用于以图形方式描述`数值`数据的分布,因此我们先从*选择*所有数值列以及流行音乐流派开始。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HhNreJKLLXyq" + }, + "source": [ + "# Select top genre column and all other numeric columns\n", + "df_numeric <- nigerian_songs %>% \n", + " select(artist_top_genre, where(is.numeric)) \n", + "\n", + "# Display the data\n", + "df_numeric %>% \n", + " slice_head(n = 5)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uYXrwJRaLXyq" + }, + "source": [ + "看看选择助手 `where` 是如何让这一切变得简单的 💁?可以在[这里](https://tidyselect.r-lib.org/)探索其他类似的函数。\n", + "\n", + "由于我们将为每个数值特征制作箱线图,并且希望避免使用循环,让我们将数据重新格式化为*更长*的格式,这样就可以利用 `facets`——每个子图分别显示数据的一个子集。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "gd5bR3f8LXys" + }, + "source": [ + "# Pivot data from wide to long\n", + "df_numeric_long <- df_numeric %>% \n", + " pivot_longer(!artist_top_genre, names_to = \"feature_names\", values_to = \"values\") \n", + "\n", + "# Print out data\n", + "df_numeric_long %>% \n", + " slice_head(n = 15)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-7tE1swnLXyv" + }, + "source": [ + "更长了!现在是时候使用一些 `ggplots` 了!那么我们会用什么 `geom` 呢?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "r88bIsyuLXyy" + }, + "source": [ + "# Make a box plot\n", + "df_numeric_long %>% \n", + " ggplot(mapping = aes(x = feature_names, y = values, fill = feature_names)) +\n", + " geom_boxplot() +\n", + " facet_wrap(~ feature_names, ncol = 4, scales = \"free\") +\n", + " theme(legend.position = \"none\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EYVyKIUELXyz" + }, + "source": [ + "现在我们可以看到这些数据有些杂乱:通过观察每一列的箱线图,可以发现存在异常值。你可以遍历整个数据集并移除这些异常值,但这样会使数据变得非常少。\n", + "\n", + "目前,我们来选择用于聚类练习的列。我们选择范围相似的数值列。我们可以将 `artist_top_genre` 编码为数值,但暂时先舍弃它。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-wkpINyZLXy0" + }, + "source": [ + "# Select variables with similar ranges\n", + "df_numeric_select <- df_numeric %>% \n", + " select(popularity, danceability, acousticness, loudness, energy) \n", + "\n", + "# Normalize data\n", + "# df_numeric_select <- scale(df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "D7dLzgpqLXy1" + }, + "source": [ + "## 3. 在 R 中计算 k-means 聚类\n", + "\n", + "我们可以使用 R 中内置的 `kmeans` 函数计算 k-means,参见 `help(\"kmeans()\")`。`kmeans()` 函数的主要参数是一个包含所有数值型列的数据框。\n", + "\n", + "使用 k-means 聚类的第一步是指定最终解决方案中要生成的聚类数量(k)。我们知道从数据集中划分出了 3 种歌曲类型,因此我们可以尝试设置为 3:\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "uC4EQ5w7LXy5" + }, + "source": [ + "set.seed(2056)\n", + "# Kmeans clustering for 3 clusters\n", + "kclust <- kmeans(\n", + " df_numeric_select,\n", + " # Specify the number of clusters\n", + " centers = 3,\n", + " # How many random initial configurations\n", + " nstart = 25\n", + ")\n", + "\n", + "# Display clustering object\n", + "kclust\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hzfhscWrLXy-" + }, + "source": [ + "kmeans对象包含了许多信息,这些信息在`help(\"kmeans()\")`中有详细说明。现在,我们先关注几个关键点。我们可以看到数据被分成了3个簇,分别包含65、110和111个样本。输出还包括了这3个簇在5个变量上的簇中心(均值)。\n", + "\n", + "聚类向量是每个观测值的簇分配。我们可以使用`augment`函数将簇分配添加到原始数据集中。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "0XwwpFGQLXy_" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "augment(kclust, df_numeric_select) %>% \n", + " relocate(.cluster) %>% \n", + " slice_head(n = 10)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NXIVXXACLXzA" + }, + "source": [ + "太好了,我们刚刚将数据集划分成了三个组。那么我们的聚类效果如何呢🤷?让我们来看看 `Silhouette score`。\n", + "\n", + "### **轮廓系数**\n", + "\n", + "[轮廓分析](https://en.wikipedia.org/wiki/Silhouette_(clustering))可以用来研究生成的聚类之间的分离距离。这个分数范围从 -1 到 1,如果分数接近 1,说明聚类紧密且与其他聚类分离良好。接近 0 的值表示聚类之间有重叠,样本非常接近邻近聚类的决策边界。[来源](https://dzone.com/articles/kmeans-silhouette-score-explained-with-python-exam)。\n", + "\n", + "平均轮廓方法计算不同 *k* 值下观测点的平均轮廓分数。较高的平均轮廓分数表明聚类效果较好。\n", + "\n", + "使用 cluster 包中的 `silhouette` 函数可以计算平均轮廓宽度。\n", + "\n", + "> 轮廓分数可以使用任何[距离](https://en.wikipedia.org/wiki/Distance \"Distance\")度量来计算,例如我们在[上一课](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/1-Visualize/solution/R/lesson_14-R.ipynb)中讨论过的[欧几里得距离](https://en.wikipedia.org/wiki/Euclidean_distance \"Euclidean distance\")或[曼哈顿距离](https://en.wikipedia.org/wiki/Manhattan_distance \"Manhattan distance\")。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Jn0McL28LXzB" + }, + "source": [ + "# Load cluster package\n", + "library(cluster)\n", + "\n", + "# Compute average silhouette score\n", + "ss <- silhouette(kclust$cluster,\n", + " # Compute euclidean distance\n", + " dist = dist(df_numeric_select))\n", + "mean(ss[, 3])\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QyQRn97nLXzC" + }, + "source": [ + "我们的得分是 **.549**,正好处于中间位置。这表明我们的数据并不特别适合这种类型的聚类。让我们看看是否可以通过可视化来验证这个猜测。[factoextra 包](https://rpkgs.datanovia.com/factoextra/index.html) 提供了用于可视化聚类的函数(`fviz_cluster()`)。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "7a6Km1_FLXzD" + }, + "source": [ + "library(factoextra)\n", + "\n", + "# Visualize clustering results\n", + "fviz_cluster(kclust, df_numeric_select)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IBwCWt-0LXzD" + }, + "source": [ + "聚类之间的重叠表明我们的数据并不特别适合这种类型的聚类,但我们继续进行。\n", + "\n", + "## 4. 确定最佳聚类数\n", + "\n", + "在 K-Means 聚类中经常出现的一个基本问题是——在没有已知类别标签的情况下,如何确定将数据分成多少个聚类?\n", + "\n", + "我们可以尝试的一种方法是使用一个数据样本来`创建一系列聚类模型`,逐步增加聚类的数量(例如从 1 到 10),并评估聚类指标,例如 **Silhouette 分数**。\n", + "\n", + "让我们通过对不同的 *k* 值计算聚类算法,并评估 **聚类内平方和**(WCSS),来确定最佳的聚类数。聚类内平方和(WCSS)总量衡量了聚类的紧凑性,我们希望它尽可能小,较低的值意味着数据点更接近。\n", + "\n", + "让我们探索不同的 `k` 值(从 1 到 10)对聚类结果的影响。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "hSeIiylDLXzE" + }, + "source": [ + "# Create a series of clustering models\n", + "kclusts <- tibble(k = 1:10) %>% \n", + " # Perform kmeans clustering for 1,2,3 ... ,10 clusters\n", + " mutate(model = map(k, ~ kmeans(df_numeric_select, centers = .x, nstart = 25)),\n", + " # Farm out clustering metrics eg WCSS\n", + " glanced = map(model, ~ glance(.x))) %>% \n", + " unnest(cols = glanced)\n", + " \n", + "\n", + "# View clustering rsulsts\n", + "kclusts\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m7rS2U1eLXzE" + }, + "source": [ + "现在我们已经获得了每个聚类算法在中心 *k* 时的总簇内平方和 (tot.withinss),接下来我们使用[肘部法则](https://en.wikipedia.org/wiki/Elbow_method_(clustering))来确定最佳的聚类数量。该方法的核心是将簇内平方和 (WCSS) 作为聚类数量的函数进行绘图,并选择[曲线的肘部](https://en.wikipedia.org/wiki/Elbow_of_the_curve \"曲线的肘部\")作为要使用的聚类数量。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "o_DjHGItLXzF" + }, + "source": [ + "set.seed(2056)\n", + "# Use elbow method to determine optimum number of clusters\n", + "kclusts %>% \n", + " ggplot(mapping = aes(x = k, y = tot.withinss)) +\n", + " geom_line(size = 1.2, alpha = 0.8, color = \"#FF7F0EFF\") +\n", + " geom_point(size = 2, color = \"#FF7F0EFF\")\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pLYyt5XSLXzG" + }, + "source": [ + "图表显示,当聚类数量从一个增加到两个时,WCSS显著减少(即更高的*紧密度*),从两个增加到三个聚类时也有进一步明显的减少。之后,减少的幅度变得不那么显著,在图表中大约三个聚类处形成一个`肘部` 💪。这表明数据点可以合理地分为两到三个较为独立的聚类。\n", + "\n", + "现在我们可以继续提取聚类模型,其中`k = 3`:\n", + "\n", + "> `pull()`: 用于提取单列\n", + ">\n", + "> `pluck()`: 用于索引数据结构,例如列表\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "JP_JPKBILXzG" + }, + "source": [ + "# Extract k = 3 clustering\n", + "final_kmeans <- kclusts %>% \n", + " filter(k == 3) %>% \n", + " pull(model) %>% \n", + " pluck(1)\n", + "\n", + "\n", + "final_kmeans\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "l_PDTu8tLXzI" + }, + "source": [ + "太好了!让我们来可视化获得的聚类。想用 `plotly` 增加一些互动性吗?\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "dNcleFe-LXzJ" + }, + "source": [ + "# Add predicted cluster assignment to data set\n", + "results <- augment(final_kmeans, df_numeric_select) %>% \n", + " bind_cols(df_numeric %>% select(artist_top_genre)) \n", + "\n", + "# Plot cluster assignments\n", + "clust_plt <- results %>% \n", + " ggplot(mapping = aes(x = popularity, y = danceability, color = .cluster, shape = artist_top_genre)) +\n", + " geom_point(size = 2, alpha = 0.8) +\n", + " paletteer::scale_color_paletteer_d(\"ggthemes::Tableau_10\")\n", + "\n", + "ggplotly(clust_plt)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6JUM_51VLXzK" + }, + "source": [ + "也许我们会预期每个聚类(用不同颜色表示)会有明显不同的类型(用不同形状表示)。\n", + "\n", + "让我们来看看模型的准确性。\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "HdIMUGq7LXzL" + }, + "source": [ + "# Assign genres to predefined integers\n", + "label_count <- results %>% \n", + " group_by(artist_top_genre) %>% \n", + " mutate(id = cur_group_id()) %>% \n", + " ungroup() %>% \n", + " summarise(correct_labels = sum(.cluster == id))\n", + "\n", + "\n", + "# Print results \n", + "cat(\"Result:\", label_count$correct_labels, \"out of\", nrow(results), \"samples were correctly labeled.\")\n", + "\n", + "cat(\"\\nAccuracy score:\", label_count$correct_labels/nrow(results))\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "C50wvaAOLXzM" + }, + "source": [ + "这个模型的准确性还可以,但并不算优秀。这可能是因为数据本身不太适合使用 K-Means 聚类。这些数据过于不平衡,相关性较低,并且列值之间的差异太大,导致聚类效果不佳。实际上,形成的聚类可能会受到我们之前定义的三个类别的强烈影响或偏斜。\n", + "\n", + "尽管如此,这仍然是一个很好的学习过程!\n", + "\n", + "在 Scikit-learn 的文档中,你可以看到像这样的模型,聚类边界不太清晰,存在“方差”问题:\n", + "\n", + "

      \n", + " \n", + "

      来自 Scikit-learn 的信息图
      \n", + "\n", + "\n", + "\n", + "## **方差**\n", + "\n", + "方差被定义为“与平均值的平方差的平均值” [来源](https://www.mathsisfun.com/data/standard-deviation.html)。在这个聚类问题的背景下,它指的是数据集中数值偏离平均值的程度过大。\n", + "\n", + "✅ 这是一个很好的时机来思考如何解决这个问题。稍微调整数据?使用不同的列?尝试不同的算法?提示:试试[对数据进行缩放](https://www.mygreatlearning.com/blog/learning-data-science-with-k-means-clustering/)以进行归一化,并测试其他列。\n", + "\n", + "> 试试这个‘[方差计算器](https://www.calculatorsoup.com/calculators/statistics/variance-calculator.php)’来更好地理解这个概念。\n", + "\n", + "------------------------------------------------------------------------\n", + "\n", + "## **🚀挑战**\n", + "\n", + "花些时间研究这个笔记本,调整参数。通过进一步清理数据(例如删除异常值),你能否提高模型的准确性?你可以使用权重为某些数据样本赋予更大的权重。还有什么方法可以创建更好的聚类?\n", + "\n", + "提示:试试对数据进行缩放。笔记本中有注释代码,可以添加标准化缩放,使数据列在范围上更接近。你会发现虽然轮廓分数下降了,但肘部图中的“折点”变得更加平滑。这是因为未缩放的数据允许方差较小的数据权重更大。可以在[这里](https://stats.stackexchange.com/questions/21222/are-mean-normalization-and-feature-scaling-needed-for-k-means-clustering/21226#21226)阅读更多相关问题。\n", + "\n", + "## [**课后测验**](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/30/)\n", + "\n", + "## **复习与自学**\n", + "\n", + "- 看看一个 K-Means 模拟器 [例如这个](https://user.ceng.metu.edu.tr/~akifakkus/courses/ceng574/k-means/)。你可以使用这个工具可视化样本数据点并确定其质心。你可以编辑数据的随机性、聚类数量和质心数量。这是否帮助你更好地理解数据如何分组?\n", + "\n", + "- 另外,看看斯坦福的[这份 K-Means 手册](https://stanford.edu/~cpiech/cs221/handouts/kmeans.html)。\n", + "\n", + "想尝试将你新学到的聚类技能应用到适合 K-Means 聚类的数据集上?请参考以下内容:\n", + "\n", + "- [训练和评估聚类模型](https://rpubs.com/eR_ic/clustering),使用 Tidymodels 和相关工具\n", + "\n", + "- [K-Means 聚类分析](https://uc-r.github.io/kmeans_clustering),UC 商业分析 R 编程指南\n", + "\n", + "- [使用整洁数据原则进行 K-Means 聚类](https://www.tidymodels.org/learn/statistics/k-means/)\n", + "\n", + "## **作业**\n", + "\n", + "[尝试不同的聚类方法](https://github.com/microsoft/ML-For-Beginners/blob/main/5-Clustering/2-K-Means/assignment.md)\n", + "\n", + "## 特别感谢:\n", + "\n", + "[Jen Looper](https://www.twitter.com/jenlooper) 创建了这个模块的原始 Python 版本 ♥️\n", + "\n", + "[`Allison Horst`](https://twitter.com/allison_horst/) 创作了令人惊叹的插图,使 R 更加友好和吸引人。可以在她的[画廊](https://www.google.com/url?q=https://github.com/allisonhorst/stats-illustrations&sa=D&source=editors&ust=1626380772530000&usg=AOvVaw3zcfyCizFQZpkSLzxiiQEM)中找到更多插图。\n", + "\n", + "祝学习愉快,\n", + "\n", + "[Eric](https://twitter.com/ericntay),Gold Microsoft Learn 学生大使。\n", + "\n", + "

      \n", + " \n", + "

      由 @allison_horst 创作的艺术作品
      \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/2-K-Means/solution/notebook.ipynb b/translations/zh-CN/5-Clustering/2-K-Means/solution/notebook.ipynb new file mode 100644 index 000000000..5bcd2b1e8 --- /dev/null +++ b/translations/zh-CN/5-Clustering/2-K-Means/solution/notebook.ipynb @@ -0,0 +1,550 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "e867e87e3129c8875423a82945f4ad5e", + "translation_date": "2025-09-03T20:11:32+00:00", + "source_file": "5-Clustering/2-K-Means/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "从我们上节课结束的地方开始,导入并过滤数据。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
      0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
      2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
      \n
      " + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "我们将只专注于三个类型。也许我们可以建立三个集群!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
      5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
      6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
      \n
      " + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "df.head()" + ] + }, + { + "source": [ + "这数据有多干净?使用箱线图检查异常值。我们将集中在异常值较少的列(尽管你可以清除异常值)。箱线图可以显示数据范围,并帮助选择使用哪些列。注意,箱线图不显示方差,这是良好聚类数据的重要元素(https://stats.stackexchange.com/questions/91536/deduce-variance-from-boxplot)。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 14 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADFQAAAxLCAYAAAAjUVg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdsU5bZxiA4R/XFalaEEsHS1xCOpbroL3Qluug3Zp7YGAzqdRIwe7QMBAlEBrsY/w+z2QfWfgbLMv/d/SKg/V6PQAAAAAAAAAAAAAAAEpmUw8AAAAAAAAAAAAAAACwbYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyJlv+w0PDg4Oxxg/fXh6Pca43fYMAAAA7Lxvxhg/fnj813q9fjflMPBc7EUAAAD4QnYj7B17EQAAAL7QVvciWw8qxn+H4z8meF8AAABepp/HGH9OPQQ8E3sRAAAAnspuhH1hLwIAAMBTbXwvMtvkHwcAAAAAAAAAAAAAANhFU/yHiuu7B5eXl2OxWEwwAgAAALvs6upqnJ2d3T29fui18MLYiwAAAPAouxH2lL0IAAAAj9r2XmSKoOL27sFisRinp6cTjAAAAMALcvv4S+DFsBcBAADgqexG2Bf2IgAAADzVxvcis02/AQAAAAAAAAAAAAAAwK4RVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5MynHgAKVqvVWC6XU49BwGq1Gjc3N/euHR0djdlMP8fmHB8f+4wBAMAn2AfwMed2do0zPQAAAAB8PfcDdoc9/PbYL7NPBBWwBcvlcpyfn089BsBGXFxcjJOTk6nHAACAnWMfAOw6Z3oAAAAA+HruB1Bkv8w+kQYBAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx4Aqv5+/etYzw+nHoN98/6f8cOb3+9devv6lzHmryYaiH1z8P7d+P7Nb1OPAQAAL5Z9QJxzOxNypgcAAACA7XE/YCL28Bthv8y+E1TARNbzw7H+9rupx2DPHHzq4vyVzxoAAMCOsA9oc24HAAAAAGhwP2Aa9vDA/zGbegAAAAAAAAAAAAAAAIBtE1QAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOTMpx5g16xWq7FcLu9dOz4+HrOZ9gQAAHj5nHmAh/iOAAAAdo1zCgCwLX53AAD7zG+dzxNUfGS5XI7z8/N71y4uLsbJyclEEwEAADwfZx7gIb4jAACAXeOcAgBsi98dAMA+81vn8yQlAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAwL/s3bFOXGcax+FvWMJqdtcYuYi3MJeQckpzEUlBJJB8AUikyAXkCtIQcQGRQApFvO7T2SVlcgVhG9NZFLMmxLNFtljHY3xsw5x3zv95JDdnBnhlffqY8838bAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAACiXF5e9j0CUJg9gq4qr5XKswEAQCWCCgAAAAAAAABiTKfT9vXXX7fpdNr3KEBB9gi6qrxWKs8GAADVCCoAAAAAAAAAiHF0dNR+/vnndnx83PcoQEH2CLqqvFYqzwYAANUIKgAAAAAAAACIcHZ21k5OTlprrZ2cnLSzs7OeJwIqsUfQVeW1Unk2AACoSFABAAAAAAAAwODNZrN2cHDQrq6uWmut/fbbb+3g4KDNZrOeJwMqsEfQVeW1Unk2AACoSlABAAAAAAAAwOA9ffq0nZ6evnbt9PS0PXv2rKeJgErsEXRVea1Ung0AAKoSVAAAAAAAAAAwaNPptB0eHs597PDwsE2n0wVPBFRij6Crymul8mwAAFCZoAIAAAAAAACAQTs6Omrn5+dzH3v+/Hk7Pj5e8ERAJfYIuqq8VirPBgAAlQkqAAAAAAAAABisX3/9tZ2cnFz7nB9++KGdnZ0taCKgEnsEXVVeK5VnAwCA6gQVAAAAAAAAAAzSbDZr3333Xbu6urr2eVdXV+3g4KDNZrMFTQZUYI+gq8prpfJsAACwDFb7HqCaV69evXHtxYsXPUzCkMxdQ25QgWU0Z+/yexJguczbt+fdBwGZnIvcLOcBQCnu6QFYUh97lvH06dN2enra6bmnp6ft2bNnbWtrq/P3B5abPYKuKq+VyrMtG+ejwIfyfgCD53x5EHxe5O1uPKgYjUYP3vGUf970z7xJFxcXb1x79OhRD5MweL+/bK39re8pAN7P7y/fuOT3JMDyu7i4aPfu3et7DBgE5yK8k/MAoC/u6QEYkK5nGdPptB0eHr7X9z48PGyTyaSNx+MPHQ9iLdu5iD2CriqvlcqzLSPno8CN8n4AQ+J8ebB8XuQPK7fwPc/e8adbEg0AAACwfJyLAAAAFHF0dNTOz8/f62ueP3/ejo+Pb2kiGLylOhexR9BV5bVSeTYAAFgWtxFUAAAAAAAAAEBvLi8v2+PHjz/oa3/88cd2eXl5wxMBldgj6KryWqk8GwAALJPbCCo23/Fncgs/EwAAAKAC5yIAAAAFrK2ttc8///yDvvaLL75oa2trNzwRRFiacxF7BF1VXiuVZwMAgGWyetPfcDab/fu6x0ej0U3/yBt1586dN659//337e7duz1Mw1C8ePGiPXr06PWLf/lrP8MAfIw5e5ffkwDLZd5r03n3QcCHcS7C/3MeAJTinh6AJfUxZxm7u7vtp59+aufn551/3v3799vOzs57zQj8YdnORewRdFV5rVSebRk5HwU+lPcDGDzny4Pg8yJvd+NBxbJbWXnzP+24e/du29jY6GEaBq3YYRFAJ3P2Lr8nAZbfvPsgIJNzkQVwHgD0xT09AAPS9SxjPB63vb299s0333T+3nt7e208Hn/oaMASsUfQVeW1Unm2ZeR8FLhR3g9gSJwvD5bPi/zB3wIAAAAAAAAAg7S1tdUmk0mn504mk/bw4cNbngioxB5BV5XXSuXZAABgGQgqAAAAAAAAABik0WjU9vf32+rq6rXPW11dbfv7+23kX5GFKPYIuqq8VirPBgAAy0BQAQAAAAAAAMBgbW5utu3t7Wuf8+WXX7bNzc0FTQRUYo+gq8prpfJsAABQnaACAAAAAAAAgEHb3d1tn3766dzH7t+/33Z2dhY8EVCJPYKuKq+VyrMBAEBlggoAAAAAAAAABm08Hre9vb25j+3t7bXxeLzgiYBK7BF0VXmtVJ4NAAAqE1QAAAAAAAAAMHhbW1ttMpm8dm0ymbSHDx/2NBFQiT2CriqvlcqzAQBAVYIKAAAAAAAAAAZvNBq1/f39trq62lpr7ZNPPmlfffVVG41GPU8GVGCPoKvKa6XybAAAUJWgAgAAAAAAAIAIm5ubbXt7u7XW2vb2dnvw4EHPEwGV2CPoqvJaqTwbAABUJKgAAAAAAAAAIMbu7m777LPP2s7OTt+jAAXZI+iq8lqpPBsAAFSz2vcAAAAAAAAAALAo4/G4ffvtt21tba3vUYCC7BF0VXmtVJ4NAACq8T9UAAAAAAAAABDFB0yB69gj6KryWqk8GwAAVCKoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAKrtqYAAACAASURBVAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDirfQ9Qzfr6envy5Mkb1wAAAIbAPQ9wHXsEAABQjfsUAGBRvO4AAIbMa523E1T8ycrKStvY2Oh7DAAAgFvhnge4jj0CAACoxn0KALAoXncAAEPmtc7brfQ9AAAAAAAAAAAAAAAAwKIJKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiCOoAAAAAAAAAAAAAAAA4ggqAAAAAAAAAAAAAACAOIIKAAAAAAAAAAAAAAAgjqACAAAAAAAAAAAAAACII6gAAAAAAAAAAAAAAADiCCoAAAAAAAAAAAAAAIA4ggoAAAAAAAAAAAAAACCOoAIAAAAAAAAAAAAAAIgjqAAAAAAAAAAAAAAAAOIIKgAAAAAAAAAAAAAAgDiCCgAAAAAAAAAAAAAAII6gAgAAAAAAAAAAAAAAiLPa9wCQanT1su8RGKKr/8y9Nlr8JAyUvQsAAD6O19Th3LfTI/sPAAAAACyO87ieOIe/FdYzQyeogJ78/ZfHfY9AiH/88q++RwAAAOB/nAfwZ+7bAQAAAACGx/sBdTiHB95lpe8BAAAAAAAAAAAAAAAAFk1QAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcVb7HgASrK+vtydPnvQ9BgFevXrVLi4uXrt2586dtrKin+P2rK+v9z0CAACU5DyAP3PfTjXu6QEAAADg43k/oA7n8IvjfJkhEVTAAqysrLSNjY2+xyDEvXv3+h4BAACA5jyA+dy3AwAAAAAMi/cDanEOD7wvyRUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAAAAAAABxBBUAAAAAAAAAAAAAAEAcQQUAAAAAAAAAAAAAABBHUAEAAAAAAAAAAAAAAMQRVAAAAAAAAAAAAAAAAHEEFQAAAAAAAAAAAAAAQBxBBQAAAAAAAAAAAAAAEEdQAQAAAAAAAAAAAAAAxBFUAAAAAAAAAAAAAAAAcQQVAAAAAAAAAAAAAABAHEEFAAAAAAAAAAAAAAAQR1ABAAAAAAAAAAAAAADEEVQAAAAAAAAAwH/Zu+8w6YoyYeP3Qw4CgqCIqAQjgooCKyDyIqYFQWFFQFExYVhZw+oiqyzgmpVVVIwgQQwogih8JhAMyC6goIgiBkBQkIwE4SU83x9V7RyaDjPzdvf0TN+/6zpXn9OnzjnVXWd6uqrrqZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNnGXm4JpLt1auvPLKObi8JEmSJGnctdUXl+6WTpqHbBeRJEmSJPVl24gWKNtFJEmSJEl9jbpdJDJz2Ne49wUjNgPOGelFJUmSJEnz2eaZee5cZ0IaBNtFJEmSJEmzYNuIFgTbRSRJkiRJszD0dpGlhnlySZIkSZIkSZIkSZIkSZIkSZKkcTQXM1QsD2xSN68B7h7RpddmaqSDzYGrRnRdDZ5luXBYlguHZblwWJYLh2W5cFiWC4vlOX1LA2vV9Qsy8465zIw0KHPYLjITflZpEnnfa1J572sSed9rUnnvzz+2jWjBmSftIhos//9oUniva5J4v2tSeK9rkozj/T7SdpFlhnnyTuoLGvl0pBHR3LwqM68YdR40GJblwmFZLhyW5cJhWS4cluXCYVkuLJbnjF021xmQBm2u2kVmws8qTSLve00q731NIu97TSrv/XnLthEtKPOhXUSD5f8fTQrvdU0S73dNCu91TZIxvt9H1i6y1KguJEmSJEmSJEmSJEmSJEmSJEmSNC4MqJAkSZIkSZIkSZIkSZIkSZIkSRPHgApJkiRJkiRJkiRJkiRJkiRJkjRxDKiQJEmSJEmSJEmSJEmSJEmSJEkTx4AKSZIkSZIkSZIkSZIkSZIkSZI0cQyokCRJkiRJkiRJkiRJkiRJkiRJE8eACkmSJEmSJEmSJEmSJEmSJEmSNHEiM+c6D5IkSZIkSZIkSZIkSZIkSZIkSSPlDBWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJs5EBFRExMMj4pCIuCgibo2I6yPinIh4W0SsNNf5m2QR8cCIeG5EvCsivh0R10ZE1uWoWZzvnyPixIi4IiLuqI8nRsQ/DyH7aoiIzSLivyLie433/5aIuDgijoyIp87wfJblHIiIVSNij/qZ+cOI+H1E3BQRiyPi6og4IyL+IyIeMM3zbRURx0bEZRFxe0RcFRHfjYg9h/1a1FtEfKDxeZsRsWgax/h3OYfayqvXcsY0zmVZjpGIeFhEHBwR50bENfXz8vKI+HH9jrRxn+MtzzlQ/ydO9++y72et5Shp0EbVFuLnl8bNMO/9iFgpInaNiE/Vc94QEXdGxHURcVZEHBQRaw/qtUjTNarP/LZrrhQRf2x81710GNeRehnlvR8Rz4iIo6K0l94apc304og4PiJeFxH3G+T1pG5Gcd9HxHpR2o9/FhE31u8710fET6P8DvTAQVxHkjS/WN/WpLCOrUlivVqTwrq0FroYcD/saV5zzyh9ha+K0s/psij9RLccxvVGITJzrvMwVBGxE3AssGqXJBcDO2bm70eXK7VERK8b8OjM3Hua51kK+Czwyh7JDgdek5n3TD+Hmo6I+BGwzTSSHgO8OjMX9ziXZTmHIuIZwPenkfRaYK/M/G6Pcx0EHED34L1TgBdk5u0zzaeWTEQ8ETgHWKbx9HaZeUaX9P5djoE+/zObfpiZi7qcw7IcMxGxL/A+YOUeyQ7NzDd1ONbynENRgpe2ncEh9wAPy8w/t53HcpQ0cKNoC/HzS+NomPd+RDweOBPo98Pe34B9MvO4mV5Dmo25av+OiA8D/9546rLMXG+Q15B6GdW9HxGrA0cCz+uTdNPMPH9JriX1M6Lv+S8BPgOs2CPZ9cAemTmd3xIkSQuA9W1NCuvYmiTWqzUprEtrEgyqH/Y0r7UicDywQ5ck9wDvysyDB3XNUVnQM1RExKbAcZQPw1uAdwBbAdsDn6vJHgWcEhGrzEkm1fQn4HuzPPY9THXiOA/YE9iiPp5Xn38V8O4lyaC6Wqc+/gU4FHgB5f3fEngL0Oo4+FLgqD7nsizn3uWU4Jc3ArtSynFrYHfga8DdwJrANyPiCZ1OEBGvAQ6k/J/5A6VMtwCeD5xek+0IfH5or0IdNTq+LQNcPc3D/LscL58CNumxvLzHsZblGImIdwIfowRTXAy8DVgEbAo8o27/lFLZ6MTynFsvp/ff4iaU/50tp7UHU1SWo6SBGmFbiJ9fGisjuPdXZapzx5nA/sAzgScBz6b8WHJPTffFcJYWjcBctX/X674JuB24eVDnlaZrVPd+RKxGGXym1enjRODFwFOAzSltp4cCV8z2GtJ0jeK+j4itKb/hrEj5XnMkpU1/C8rvPt+qSdcAToqIDWZzHUnS/GJ9W5PCOrYmifVqTQrr0ppQS9IPezo+z1QwxelM3e+vpPQTXQo4KCL2GWIehiMzF+wC/AhI4E5gyw7731b3J3DQXOd3EhfgYOC5wIPq9nqNMjlqmud4VC3jpIy4vmLb/pXq86174RFz/boX2gKcDLwQWLrL/jWB3zbK9mmW5Xgu3cqwLc3zG2V5Qof9awA31v2XAWu2XwP4ZuMci+b6dU/SQmmMSeA3wHv7lYN/l+OzLOl3FstyvBZKBb1VpkcDy/ZIu5zlOT8X4AONct7LcnRxcRnFwgjaQvz8chnHZdj3PuVHluOAjXqkeR7lB5MEfk+dHdjFZVjLKD7zO5xzaeDces4DgEvr+qVz/X64TM4yqnufMuhMUjo27dwjXQDLzPX74rKwlxF9zz+5cY7Xd0lzSCPNJ+b6fXFxcXFxGf5ifdtlUhbr2C6TtFivdpmUxbq0y6QsDKAf9jSv8/TGeb9JW19TSj/hy+r+G4DV5/q9mcmyYGeoiIgtgG3q5hGZeVaHZIdQOpQCvDEilh1J5vQPmXlgZp6cmX9dgtO8iTLSOsC+mfn3tmvcBuxbN5cB3rwE11IHmfnczPxqZt7dZf+13Ht6whd0OZVlOce6lWFbmm9QAmRg6nO26VXAanV9v1r+7dd4PWWmCyhfTjUCEfEw4L/r5muBxdM4zL/LhcOyHBN1pphP1c1fAK/MzDu7pc/MTn+rlueYq+X84rp5C3BCh2SWo6SBGmFbiJ9fGiujuPcz86eZuXtm/rpHmpOY+p+/IWXmMWko5rD9+43AkyltQx8YwPmkGRnVvR8RTwVeUjffmZnf7JY2i7tmeg1pukb4mb9VfbwuMz/ZJc27GutbzuIakqR5xPq2JoV1bE0S69WaFNalNUkG1A97Ot5aH++iBBDdq69p7Se6X928P6Uf6byxYAMqKCOotxzZKUFm3kOJhIRSeNsNO1MarIgIpqYFuygz/7dTuvp8qwP48+pxGq3TG+sbtu+0LOed1lSTK3TY1/r8/RudO4+SmVcAp9bN7Qc5JaZ6OowyZe7RmfnDfon9u1w4LMux8yzgkXX9AzNtHLI8543tgYfU9eNr5+J/sBwlDcnQ20L8/NKYGqd2wJ7tH9IAjfy+j4iHM/Xj32u7BH9Lwzaqe/8N9fEm4BOzOF4apFHd98vVx0u6JcjMm4DWIErLdUsnSVowrG9rUljH1iSxXq1JYV1aGqDav3P7unlq7f/ZyQmUfqMAuww9YwO0kAMqnlofbwV+1iNds0Pp1sPLjoZkfWCdut6vc3Br/0MoU9potJZvrHeaBcGynCci4tHAE+vmRW37lgO2qJtn9an0t8pxeWCzgWZS9xERL6RM7XU9U9Gi/fh3uXBYluNlt/qYlOkfAYiINSLikRGxRp/jLc/54aWN9WM67LccJQ3DKNpC/PzSOBqndsB+7R/SoMzFff9JYGXgC5l5xhKeS5qtod/7tY2zFUD6/cy8vT6/dEQ8NCLWi4hOA81IwzKqz/xWQPT63RJExKrAmm3pJUkLl/VtTQrr2Jok1qs1KaxLS4O1OVMBQV1/I679RVsD8m0+oFm9RmIhB1Q8tj7+vs+ov83OwI/tmkrjaqPG+kVdU913v2U9ets21n/TYb9lOcYiYqXayfctlH+Iy9RdH21L+ihg6bpuOY6JiLg/cGjd3K9OrzUd/l2Op90i4tcRcVtE3BwRv4uIoyOiV6S8ZTlenlIfL83MmyPiRRFxAXAdcDFwXUT8NiLeGhHLdzje8hxzEXE/piLtLwPO6JDMcpQ0DKNoC/HzS+NonNoB+7V/SIMy0vs+IvYAdgBuAP59tueRBmAU9/4TmJqZ94KIWDUiPkoZSfBPlBEHb4qI70fEohmeW5qNUX3mf7o+PiAiXtslzQEd0kuSFi7r25oU1rE1SaxXa1JYl5YGaza/ES8DPHI42Rm8BRlQUSMYWxFd3aYVASAzb6BEoQE8dJj50lCs21jvWdbA5Y11y3qEImIp4O2Np77aIZllOWYiYu+IyIhIyufkxcAhwINqkvcDX2o7zHIcTx8E1gbOBI6YwXGW53jaiFKJWxG4H/AIykj4P4iIEyNitQ7HWJZjov5PfEzdvDYiDgW+CGzclvRRwIco5Xr/tn2W5/j7F8qoQgDHZmZ2SGM5ShqoEbaF+PmlsTJO7YAR8QRgx7p5QWbawUNDMer7PiJWZ2pQjbdn5jWzOY+0pEZ47zd/HFwKOBd4I9Csny8HPINSb99vhueXpm3En/mfZ2qWzcMi4nMRsVNEbBYRu0bEiUzNfvyezDx1FteQJM0T1rc1Kaxja5JYr9aksC4tDcWC/414QQZUAKs01m+ZRvrWB+L9hpAXDddMyvrWxrplPVpvBrao6ydkZqdptCzL+eN8YIvM3L9DB1HLccxExDbAq4C7gNd26dTbjeU5Xm4DvgK8GtgG2BR4FvAeyswGAM8HTuowXZplOT5WY+o7+CbAvwFXAnsBawArUUZZak1/txWlAt5keY6/lzbWj+mSxnKUNGijagvx80vjZizaAevMYoczNWvjOwZ5fqnNqO/7D1EG2DgL+NwszyENwqju/TUa6/tRRlH7DqWNewXggcDrgJuAAN4fEc+b4TWk6RrZZ35m3p2ZLwN2A35BaVf+JnAO8HVK2+PpwDMz850zPb8kad6xvq1JYR1bk8R6tSaFdWlp8Bb8b8QLNaBihcb64mmkv6M+rjiEvGi4ZlLWdzTWLesRiYhtKTMZAFxN+ULciWU5fr5B6ey7CaVSsydwIvBE4MsR8dwOx1iOYyQilgM+S6mAfiQzfzXDU1ie4+UhmblnZh6emT/JzPMz8/u1wvU44Lyablvu+1lrWY6PlRvrK1ACZbbLzC9m5g2Z+ffM/BHwdEplG2CXiPintuNaLM8xExHrAovq5v9m5sVdklqOkgZtVG0hfn5p3IxLO+AngM3q+tGZ+a0Bn19qGtl9HxFPA17B7AZqkAZtVPd+e939+8BzM/OczLwjM6/JzE8DzwXuqeneFxExw+tI0zHS7zoR8VjKQBGbdEmyJfDKiHjIbM4vSZpXrG9rUljH1iSxXq1JYV1aGrwF/xvxQg2ouL2xvtw00i9fH/8+hLxouGZS1ss31i3rEYiIx1E64C9DKavdMvPqLsktyzGTmTdm5q/qck5mfiUzd6V8AdyAMgr+3m2HWY7j5T+BxwB/Ag6exfGW5xjJzBt77Psr8ALgzvrUvm1JLMvxcXvb9uGZ+dv2RJn5d+49ytLuXc5heY6fvZiqZx3dI53lKGnQRtUW4ueXxs2ctwNGxP6UUaegjDr1r4M6t9TFSO77OhJsa6CGQzPzguXcewAAIABJREFUlzM5XhqCufi+A7BfZt7dnigzfwKcUDcfS/cfzaUlMbLvOnW247OAnYA/Ay8B1q7XfSjlO85twB7A2fU3IEnSwmV9W5PCOrYmifVqTQrr0tLgLfjfiBdqQMXNjfXpTBfSioqczvQ+Gi8zKetm9KtlPWQRsT7wPWB14G5gjzridjeW5TyRmV8Avkb5H/KJiGhO1Wc5jomIeAywf93cNzNv7ZW+C8tzHsnMP1JGdgB4RESs09htWY6Pm9u2v9cj7WmUEWoANu9yDstz/LykPt4BHNcjneUoadBG1Rbi55fGzZy2A0bEa4D31s2LgB1mWf+SZmJU9/07gEcDlwMHzvBYaRjm4vvONZl5XteU8N3G+uZdU0mzN5L7vnbw+zKwGnAV8JTMPDYz/5qZd2bmFZn5SeBplB/Q16H3QBKSpPnP+rYmhXVsTRLr1ZoU1qWlwVvwvxEvM9cZGIbMvD0irgMeAKzbK21ErM5U4V0+7Lxp4K5orPcsa0rEX4tlPUS1E++plC8BCbwiM0/qc5hlOb+cBLyQ8vn5HOBL9XnLcXy8mRIN+kdgpYjYo0OajRvrT4+Itev6t2qDpOU5//wa2KGuPwT4S123LMdEZt4REdcAa9Wnur7H9TvttZTRC9Zq7LI8x1REbAZsVDdPzswbeiS3HCUN1AjbQvz80liZy3bAiNgT+GTdvAx4ZmZeu6TnlfoZ4X2/X308FdgpIjqlaZ175Ubbw9WZ+YMZXkvqa4T3fjP9FV1T3TftWl1TSbM0wvv+OZT2RICPZ+ZVXfJzYUQcSxkt/MkR8YTM/MUMryVJmgesb2tSWMfWJLFerUlhXVoaivbfiM/tkXZe/ka8IAMqql8D21BGaF4mM+/qku4xjfXfDD9bGrBfN9Yf0zXVffdb1kMSEWtSRkjfoD61b2YeM41DLcv55ZrG+sMb6xdTZiRZGstxrrWmztqAEg3dzwGN9fWBW/Hvcj7KLs9bluPlQmBRXV+6T9rW/uZ3WctzfL20sd5vZAnLUdIwjKItxM8vjaORtwNGxM7AMZTZG68Ets/Mfj8OSoM0ivu+NW33y+vSy5pMtT/8ELCzh4ZlFPf+hY316dbb4d51d2mQRnHfP7ax/vM+aX9G6QTSuqadQCRp4bK+rUlhHVuTxHq1JoV1aWmwZvMb8V3A74aTncFbaq4zMEQ/qY8rA0/ukW7bxvqZw8uOhuQSpkbf3rZXQsrUSQB/Bi4dVoYmWUSsRpmKrTUy89sz87BpHm5Zzi8Paaz/Y1qmzFwMnF03t4yI5eiuVc530DtiUXPHv8v5Z6PG+l8a65blePlRY32DbokiYlVKgymU8mixPMdQRCwLtEYLugb4dp9DLEdJwzCKthA/vzSORtoOGBHbA1+lDFZzHWWkzD/M9nzSLNn+rUk19Hs/My8D/lQ314suQ8dWGzbW/9w1lbRkRvGZ3+xY0m9AvmW7HCdJWnisb2tSWMfWJLFerUlhXVoarHOAxXW962/Etb/oU1rHZOadw87YoCzkgIpvNNY7RvZGxFJMjSJ7I3D6sDOlwcrMBE6qm4+JiKd0Slefb0U9nVSP0wBFxErAKcCT6lPvycwPTPd4y3Le2a2xfkHbvtbn76rArp0Ojoh1gWfUzdMy8+bBZk+ZuXdmRq8FOLhxyHaNfZfWc/h3OY9ExPrAM+vmHzLzH40NluXY+XpjfZce6XYBWo1LP249aXmOrX9mahraL/UY4QKwHCUNzdDbQvz80pgaWTtgRGxF+RtYHrgJeHZmXtj7KGkoRvGZ37NdobYtXFaTX9Z4ftEMX4s0E6P6zG/V3VcFtu+Rrtn++ZOuqaQlM4r7/pLG+jZ90jZ/NL+kaypJ0kJgfVuTwjq2Jon1ak0K69LSANX+nafVzWfU/p+d7Er57Ac4cegZG6AFG1CRmWcz1fHslRGxZYdk/87UtDuHzqdIGN3LR4G76/rHI2LF5s66/fG6eVdNrwGqUWUnAlvXpw7NzHfO4lSW5RyLiL0jYoU+ad4M7FA3L6HRybc6nNLIBfD+iHhA2/FLA59katq+Dy1RpjVs/l2OgYjYKSK6RrNHxIMoDRKtWWE+2SGZZTkmMvOXTM1esGcdceleImJt4N11czFwZFsSy3P8vLSxfsw0j7EcJQ3UINpCImJRRGRdjupyKT+/NFZGde9HxBMpg0msDNwK7JiZPxvEa5BmaoSf+dJYGfH3ndvr+v/UWSTvJSL2AhbVzVMy8/LpvxJp+kZ0358G3FbXXxcRm3TKS0T8M1MDhPwZOH/6r0SSNN9Y39aksI6tSWK9WpPCurQ0M7XfaOt+P6hLsg/Xx2WAw2o/0OY51gRag7DfSOlHOm/0m2ZmvnsjZRqeFYHvRcR7KVFkKwJ7APvUdBcDh8xJDidcRDwVeETjqTUb64+IiL2b6TPzqPZzZObFEfEh4O3AZsCZEfEB4A+UacH2AzatyT+Umb8b2AtQy5eBZ9X1HwBHRMTGPdIvzsyL25+0LMfCQcAhEfF1SuT3H4BbgFWATYAXMxU4sxjYJzPvbp4gM6+PiP2ATwMPB/4vIt5DmcliHeBNwHY1+Zcz84xhviAtGf8ux8bHgWXr3+ZZwKXA3yn/NxcBr2Hqf+hPgMPaT2BZjp03AVsC9wdOjoiPAv+PUq5bAPsDrWjuA5ozjoDlOW4iYnXguXXzV5n58+kcZzlKGpKht4X4+aUxNdR7PyI2BL5L+f4G8E7gpj7tH1dn5tUzvZY0A7Z/a1KN4vvOnyLiv4APUtpFz67fd37J1My8r6vJ/wa8eXYvRZq2od73mXljRLwfeBfl94CfRsTHge8DNwAPAp4HvJqpAfvenpn3zPoVSZLmC+vbmhTWsTVJrFdrUliX1kQYRD/s6cjMH0TEVyh/PzsD36/9nf5C+ax/B/Cwmny/zLxhNteZK5GZc52HoYqInYBjmZpCpN3FlOj2348uV2qpkXsvm276OsVdp/MsBXwOeEWPw4+gdP72H9KARcRMP0guy8z1upzLspxDEXEpJQiinyuAV2Tm93uc62DgAKDj3y2l4/C/ZObtXfZryGo06YF1c7tuwS3+Xc69Gfxtfh14VWbe2OU8luUYqRWa4ymV6E4SeE9mHtDleMtzTETEa4FP1c3/yMxpz75kOUoahiVpC4mIRUxNaXx0Zu7d5Rp+fmnsDPPer43N7bOG9XNwZh40w2OkGRnFZ36f619Kqa92be+ThmFU935EvI8SLNqtjfNq4PmZedb0ci7N3rDv+4gI4H8oHU663fMAdwL/mZkf7pFGkrSAWN/WpLCOrUlivVqTwrq0JsEg+mG3fS/v+n07Ilak9HXaocvp7wH+ez5+X1+qf5L5LTO/BTwe+Ajlw+82ylQi51JHTDSYYv7LzHsy85XAjsBJlIinxfXxJGCHzHyVnTjGn2U5555Nmc7sBEpU+F+Bu4CbKaPNfh14OfDoXsEUAJl5IPBU4EvA5ZRyvJoShfuizNzRYIr5wb/LsfAySvDLdyjfZ66n/G3eSJn95TPAVpn5gm7BFGBZjpvM/AnwOOBg4BeUkTduBy6hVFKe3C2Yoh5veY6Pl9THu4EvzuRAy1HSMIyiLcTPL40j2wE1ibzvNalGde9n5v6UGXu/QJkx9A7gJuAcymAyj7LTh0Zl2Pd9Fm8GNqfMQP0rym8Dd1Pu+59ROolsbAcQSZos1js0KbzXNUmsV2tSWJeWBisz/56ZOwIvpvQDvZryG/HllH6iT52PwRQwATNUSJIkSZIkSZIkSZIkSZIkSZIktVvwM1RIkiRJkiRJkiRJkiRJkiRJkiS1M6BCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSJEmSJEmSJEmSJEmSJEmSJE0cAyokSZIkSZIkSZIkSZIkSZIkSdLEMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEmSJEmSJEmSJEmSJEmSJEnSxDGgQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJGjMRcVREZERcOtd5AYiIvWt+MiLWm+v8SJIkSZKkyRARixptEovmOj+SJEmSJEmSJGnhMaBCkiRJkiRJkiRJkiRJkiRJkiRNHAMqJEnSEhm3GTUkSZIkSdL4ioj1GrNO7D3X+ZEkSZIkSZIkSZNtmbnOgCRJGm+ZeRRw1BxnQ5IkSZIkTZjMPAOIuc6HJEmSJEmSJElauJyhQpIkSZIkSZIkSZIkSZIkSZIkTRwDKiRJkiRJkiRJkiRJkiRJkiRJ0sQxoEKSNKci4qCIyIjIun3/iDg4Ii6MiFsi4vqIOD0i9pzGudaLiI/UY2+OiNsi4ncR8ZmI2KTPsVmXg+r2MyLimxFxZUTcHhF/jIhPRMRDpvtaeqRb1Ljeon6vq8PxK0fE7hFxeEScHxE3RcSdEXFNRPwwIt4aEfeb4et9ekR8LSIur+e6tJF270b69dpfL/Cy+tTDG+n+sdS0Ozee22Mar/GQmvauiFhnpu+RJEmSJEnDFBEbR8Q7I+K7EXFFRNxR2zF+FxFHR8RTpnmerWv9/rcR8beIWFzPd3JE/GtE3L/HsTtFxPGN618XEWdFxNt7tQsMsv0iIp4cEUdExMURcWttQ7k8In4WEYfV9oBopE/gksYpjuzQlnDQTPLQSLtDRBxb23BaebkkIr5e2zZWakt/r/aOiFgqIvaJiJ9GxA31HL+MiHe0H9vl+ktHxMtq2f2lUSY/iYi3RMSKfY6f0XvZOG6FiPi3iDgjStvQnVHa034bEd+u116vX/4lSZIkSVqIImK72lbzxyh9SP4WERdExIe69UVobzupde+3RcTPo/RFuTkizo6IN0TEMtPIwwo17WkRcVVt/7k6Ik6NiFf2OkdEXFrzclTdfnJEHFXbPO7o1L4TEStFxAG1XePWRvvEK6Lo2N4SEY9vPP/2abyufRvpt+iXXpKkcdb3H7okSaMSEesD3wc2bDy9MrAIWBQRzwdenJl3dTj2pcBngeXbdj2iLq+MiAMy833TyMeBwEFtT68P/CuwV0TslJk/ntaLGo5TgG07PL8m8LS6vD4idsjMi/qdLCLeA/znYLN4H6cAVwIPBvYGvtIjP8sAe9XN72TmX4acN0mSJEmSpq3+0Hx6h13LMdUO8dKIeH9m7t/lHCsCRwCdBpB4SF12BNairY0iIlYAvgTs0nbcGsBT6rJvROyYmedP71XNXES8Gfgw9x24ad26PAl4PbAKcMsQ8/EA4Dhg+w6716vLrnX7qC6nWQn4XodzbFKXnSPi6Zl5a5c8PAz4JvCEtl1rAFvX5XW1TC7ucPys3suIeDBwKrBR23Gr1+VRwHOAdYC3dsq7JEmSJEkLUW0/ORLoNODjxnV5XUTsmZnf6nGeBwHfAZ7YtmvzujwrIp6fmfd0Of4JwEnAw9t2rUVph9geeE3th/LXPq/ptcDH6dHnMyLWBX4APLLx9EpMtU/sAnys07GZ+cuIOKe+rpcB7++VH+Dl9fHCzDy7T1pJksaaARWSpHFyHCVw4dPA8cBNwOOB/Sg/AL8Q+Avw5uZBEbEj5QfxoPyofAjlx+S7gK2A/SnBBu+NiBsz81M98rAjsBnwW+CDwC+B1YDdgFfX9ZMjYuPMvHyJX/HsLANcQPmh/lzKexKUCvgulPdpfeAbEfHEzLy9x7l2pXQMuAD4CPArYEXu2xjQyScp5fRu4Hk1H8/ulDAz764jJuwPPDMi1s3MK7qcd0fggXX989PIhyRJkiRJo7QMcCtl8IAfABcBf6PUZR8H/Buljv72iLg4M49sHhwRS1F+SH9mfep3lDr2ucBtlMEItqLU7zs5mqlgil9Q2kF+Q+m8vwdlIIN1gNMi4vGZ+ecle7n3FRGPZyoA4BLgE8D5wPWUTv+PBrajtBc0bVLz9t26/U7Ke9F09QzysRIluKU1M+nPKANu/Aq4A3goZeCJ3fuc6nOUQJSjga8CVwEPA/4D2BLYoub1PgEyNaDjJ/Vad9Rz/RC4FLgf8CzgjZRAm29HxJMy86bG8bN9L6F0omgFUxwLnEBpn7mbch9t1uU4SZIkSZIWrDrD4/GUvgcA36LU9/8I3EOp5/87pe5/fERsnZnndjndCZS698fqea6n1NUPAB4L7ETpS/KZDvl4BKWNYDVK29FhwNnA5cADgJ2B11ACGE6KiG0y884u+dicMjDl5ZR2hHMpbVTbNK63LKW9qhVMcQqlneIKyoAN+wDPpQRzdHN4vdZjImLLzDyrU6IaKLJp3bRfhyRp3ovMnrN6S5I0VBFxEHBg46kXZeaX29KsAvyYMsrfPcATMvNXdd+ylB+o16EEU2zTPvpiRDwcOIvyQ/JtwMMz89q2NM1/iD8Hts3MW9rSvAQ4pm5+LTNf2Lb/H68lM6PHa17E1EiW22XmGW37j6JE+1+Wmet1OP6Rmfm7Hud/BqVjwlLAqzLziA5pmq/3NGDHzLyjy/n2pozcALB+Zl46k/w20m1I6SQSwDsy871d0p1EaTi4BnhIjwYDSZIkSZJGLiLWBO7KzBu77F8OOJkSMHEZsGFm3t3Y/2/AoXXzRGDPTnXyGnjx4GZARB1U4uS6eRqwQ2Yubjvu1ZSgAoCvZububfsPYgnbLyLiXZSOA7fW19dxBMWIWA24uTlKY0SsRwkcAHh5Zh41mzzU/f/D1MAbhwH7ZocfPWqZrN7MZ1t7B8BLMvPYtuOWp3RQ2Bi4Dli7febUiPgi8CJKWW+XmZfQJiI2pbRtrQy8NzPf0dg3q/eyjrT5N2BZ4JDM7DoDRUSskZnXd9svSZIkSdJC0mgbuRPYOTO/0yHN6pS6+uOAMzPzqY19BzHVj+VO4Fkd2iTWAH4NPAj4ZWa2z1pJRJxJGTTjvHqOazukeQ4l8GEpYJ/M/Fzb/kuZmt3iAuBpPdqk3gh8tG5+NDPf3CHNx4E3NJ5qb/NZBbiS0obxuczcp8u1DqUMKnInpV/HNZ3SSZI0X7RPHy1J0lw6uT2YAiAzb6ZEykP53/Xaxu5dKMEUAO9uD6aox18GvK1ursTUtIPd7NMeTFHP8wXg263rRsTafc4zFL2CKer+UymzVwA8v8/p7qEEXXQMphikzPwDcEbd3LtTmjpd5g5181iDKSRJkiRJ4yYzr+32w3Xdv5ipdoiH05gFsgZJtPZdAby0W508M+/pMLvEv9bHOynBCIvb9lN/eD+1bu4aEQ/u85Jmo9UmcnG3AICal5uawRSDFBH3p4ziCGVmijd2Cqao+VjcK5/ACe3BFPW4OygzRkAZOXKj5v4aHNIKWHlDp2CKep7zKAEfcN82kdm+l2tQgikAftTtuHqswRSSJEmSpIlQZ6fYr25+rFMwBUBm3sBUG83WEfHITumAj7cHU9Tjr2dqoIZN6kAIzXxsQwmmAHhZp2CKep7vUGbTgC79KBr+tVebFFN9aa4A3t4lzX9QZrfsqPbP+Wrd3D0iVmxPUweueHHdPNlgCknSQmBAhSRpnBzZbUdmng1cWDef0djVWk96TyP4NeCmDse3uyAzf9Zjf+saywCLeqQbmYhYKyIeGREbtxbK7A5QZvXo5cz2GSeG7PD6+MiIeGqH/XtR3ltwWkhJkiRJ0jwQEctHxMMiYqNGvbw580Ozbv5EYN26/rlOAzr0uM4ywLZ183uZeXmP5K3RDIfVfnFlfdwoIrYYwvmn4+mUgTOgdJC4u1fiPr7YY1+znWiDtn07AktTZkT9Nr21gh7WiYiHNZ6f7Xt5HdAKqHlJvT8kSZIkSZp0GwEb1vXjeyXk3gMUbNklzXTaDAJYv23fzvXxt5l5wTTzsXmP+v3lmfnjbieIiIcAj6mbX+sxgMffKf1nemn161gV+JcO+3eiDDwB9uuQJC0QBlRIksbJOX32n10fH1Uj3gE2ro+X9Ip6ryM2ntd2zJLkAWCTPmmHJiK2jojjIuI64GrgYsr0jq3l1TXpmn1O9cvh5bKjE4Ab6nqnmUJaz52Tmb8aTZYkSZIkSZqZiFg5IvaPiF8AtwKXUQaCaNXLz2skb9bNN22sd/0RvIsNmAog+L8+aZv7e7WDzNaXKbNkLA+cGRHfiojX1oCS6HPsoCzJe9nuoh77mrM7rNK2b7P6uBJwV0RktwU4uXFcc9bTWb2XtWPEcXXzBcDvI+KDEbFDnb1DkiRJkqRJtFlj/aw+dfXmQBdr09mSthk8ulceaj5as2MuS5mRspN+fTua7T+9BhEFOLfXzsz8KfDrutmrX8eV9B9gQpKkecGACknSOLm6z/6/1scAVq/rrcpkv2MBrmo7Zkny0O88QxMRBwE/AV44jTzcZ/rFNjf02T9QmXk7cGzdfGFErNzaV0dhfFzddBQDSZIkSdJYioj1KEET7wUeT5mhoJdm3bwZXHFle8I+mm0A/dovrmqsD7z9IjMvAvaktCssAzwX+BTlfbk6Ir4QEdsM+rptluS9bHdbj333NNbby/qBs7xeKzBmSd/LNwDfqusPB94GnAJcFxHnRMTbImK1WeZRkiRJkqT5aInr6k2ZOWdtBm369e1YvbHedTDSae4HOKI+blfbwgCIiAcDz6mbxyzhjKGSJI0Np4CWJI2TnKNjh3GeoYiI7YED6+YfgQ9Tgiv+BNyamXfVdO8CDpjGKeeicns4sC9wP8oIikfX51ujGPydMjqjJEmSJEnj6AvA+pQ2hCOBrwC/ofwYvTgzMyKWYqrOPYwZG+a8/SIzvx4RpwK7A88GtgHWogQ67AXsFRFHA6/IzHu6n2lea3WWuBbYbgbHXdLcmO17mZl/A3aug1S8EFgEPLHma7O6vDUinp+ZZ8385UmSJEmSNO80Axt2Ai6d5nHTGcRzNvn4BaVuP11/7vL8qPt2HAO8D1gOeBlwcH3+pUy9NgfKlCQtGAZUSJLGyYOAy/vsh9JpoBV9f33bvl5aUzRe3yNNv/M097ef5x8/aEfEUj06C6zc5fnpeHV9vAF4SmZ2GzlgTmbPmI7M/GVEnANsTgmiODoiVgD2qElOyMyb5iyDkiRJkiR1ERGPAZ5aN9+bme/skrRbvfzaxvqDgYtmcPlmO0S/9ou1G+tDa7+o9ffP1oWIeCzwPMpACutQfnA/Dzi037lmof29vKRbwiG6rj6uAvxmSUZlXJL3MjPPBs6ux61CCazYG9iVMiLm1yNiw8z8+2zzJ0mSJEnSPHFdY/3GzPzVHOfjfiPKQ3MGi7X6pO23n8y8NiJOAnYDXhYR78rMpLQ3AJyZmRfPKqeSJI2hpeY6A5IkNWw+zf2/y8zFdb1V8Vw/IrpW+iJiWWDTtmOWJA+dznNzY311untUn2v08rj6eHqPYAooIxCOymxGxTy8Pj4tIjag/MB///qcoxhIkiRJksbV4xrrx/VI161e/vPG+tNmeO0/ArfV9X/qk3aLxvrI2i8y8zeZ+X7gKcCt9ekXtieb6Xm7WJL3clDOq4/LM+C2mGm+l52Ouzkzv5WZ/wJ8rD79YKYCgSRJkiRJWsjOa6xvPWe5mMrHBhGxds+Ug3FhY/3JfdJOtw2j1a9jfWBRRGwFPKY+Z78OSdKCYkCFJGmcvKzbjojYHNi4bp7a2NVaD8psB928AFitw/HtNomITXvsf0V9vBs4o21fcyTEXhXQPXrs66c1u1TXUSJr/vt1rBik2+vj8jM45suUzgBBGcGgVXaXAKcPLGeSJEmSJA1Wc9bnXjM4vLbL879ganbOV0XE/aZ74cy8C/hh3XxmRKzbI/mr6uNdzEH7RWZeDrRGKVyzbfftjfWZtCW0O52pQIN9I2LpJTjXbH2LqQCRNw3jAn3ey35Oa6zP9FhJkiRJkuajnwNX1PV9ImKFOcrHN+tjAG8c9sUy8wqm2g92i4iObS71/dhtmqc9Fbisrr+cqX4dtwBfnWVWJUkaSwZUSJLGyc4RcZ+R9mrngs/UzXsa6wDfAP5S198REZt0OP6hwIfr5m3AkX3y8dmIuE+niIh4EbBD67qZeWVbkp9SOioAvDkiosM53sa9R4mcqd/Vx6dGxCM6nH8t4AtLcP7ZaL0PD4yIVaZzQGbezFQF+zXA0+v6UXWaSEmSJEmSxtHvGut7d0oQEa8DntdpX2beA3yobq4LHBMRy3U5z1IRsU7b04fVx+WAI+qMnO3HvQJ4Vt08YRjtFxHx/Ii4f4/9D2VqxMJL2nZfB7RmHt2w2zn6ycwbmWojejLw0U6vpeZn2Yh44Gyv1SMPvwW+Vjf3iIi39EofEetHxJ5tz83qvYyIDSJi2z5ZfFZjvb0cJEmSJElacGrby3vr5gaUtpeuAzpExKoR8YYh5ON7wNl1822d+sK05WOTiNhpCS/baidZF3h/lzQfAtrbmzqq72VrJop/AXav61/LzFtmm0lJksbRMv2TSJI0MucCX6o/Bh8P/A14PLAf8Oia5rDM/GXrgMxcHBH7UEYEXBU4MyI+RBmB725gK+DtQOtH87dm5rV98rAZcG5EfAC4gDKzxQsoHf8Bbgbe2n5gZl4dEV8D9gSeDXwzIg4D/go8DHgJpZL505qv2TgG2IkyCuYPI+L9wM/qvq2AtwBrA2cBW87yGjP10/q4FPDpiPg48I/3ODN/3+W4wykjGLTK5h7gqCHlUZIkSZKkQTgP+BVlFs3XRMTqlIENrqT8WL0XpQ3hTGDrLuc4jFK3fyawC3BBRHyS0iZxG6Ve/xRK+8KXgINaB2bmKbXtYTdKZ/n/jYj/AS4CVqfMKtGaXfN6SjvBvQwiEvFtAAAgAElEQVSo/eJNwBcj4hTgB8BvgJtqHjYD9gVWrGk/3Xb9uyLinPr+vCIizgPOB+5s5Tszr+9y3XYHUN7HTYA3AFtGxGco7TmLKWWyTX2t72Q47Q6vo7zmDYBDIuJ5lPabC4E7gAcATwCeQxlQ4kTKzJ0ts30vHwacHhG/ruc8F/hz3fdQSieHVmeN84H/G8zLlSRJkiRp7H2aqXaX3YAn1faCsyl17lUpgxcsAnamzKb5iSHk40X1mmsAx0XEXsBxlAE77qb0ldiU0k70FOAQSt+X2foEpQ/GxsCb6iCdn6PM2LEusA+wY81TayCNfgNefh44EFip7TlJkhYUAyokSePkhZRAiNfXpd3X6dwR4JSIeDkl2n4V4F11abobOCAzP9UnD6fU5UA6z2TxN2DnzLy0y/FvpvzY/UjguXVp+golkODUPvnoKDOPj4gjKZXgdYCPtSW5u+ZhdUYXUPED4H8pFfwX1aWp4+iQmfnT+qP/RvWp0zLzT0PLpSRJkiRJSygzMyJeQqkLr05py2gfYfACyo/1f6GDzLwnIp4PHE0JvngU8NEZZOOllLb9XYAnAcd2SPMXYMfM/HOHfTCY9ouVKK9zty777wEOzMxvdNj3PkoHgQdQgkaaDqYRRNJLZt4WEU+ntBk9jTJTxWenc+ygZOb1EbE1ZSbObWo+ntbjkL91eG5J3suNmGpb6eQiYFdnBJUkSZIkTYrafrM7cCjwWsoMmR/sccjVQ8rHHyJiS0q7xcaUwIles1B0ajOYyfUWR8SOlHarDenc5vM94CPAt+v27X3OeUVEfBf45/rUxZn5kyXJpyRJ42ipuc6AJEktmXkJ5Yfv91JG47uNMjrAj4C9MvMFmXlXl2OPpowgcGg99lbg78AfKBH3m2bm+6aZj4MoowaeQhmdcTFwKfBJ4HGZ+cMex/4V+CfgA5RRBe6gjAjZeg17UoIeZi0zX0EZLfLHlNky7gAuo4yIuVVmHrok559Ffu6hjIr5buAXwC30H8Wgpdnpw1EMJEmSJEljLzPPB55IGe3wMsrMCtdTRvd7K7BFZl7Z5xy3ZeZulBkLvgBcQmnHWAxcTgk2eA1lZML2Y2/PzF0pIyieQAmeWAzcQJmFYH/g0TWf3a6/pO0Xe1JGNfwSZfaDq4C7KG0CFwKforTFvLvL9U8BtgdOqvm/s1O66cjMazNzW2BXyoynV9TXczvwR+BrwIu596wQA5WZV2Xm0yidFL5Yr3sb5XVdQ5nt4xBg29qu0zTb9/LHlJE03wecDvye0k50J6U963uUTiNPrG1ukiRJkiRNjMy8MzNfT5k18uOUATBuorR33ESpgx9BGezisUPMx8WUdqQXUQIr/sRUG9CVwBmUvhZPzsz2gUNnc70/UV7zgZRZVv8O3EgZJPP1lMCIFRqH3DSN036hsd5pYFJJkua9cFAiSdJcioiDKBU5MrPjTAYjykfrH+LBNaBCIxARX6Q0HNwAPDgz75jjLEmSJEmSJEmSJEmSJC1IEfFO4L8pAzqskpk9Z6mIiPcA/0kJRnlov4FEJEmaj5yhQpIkzYmIuD+wS938osEUkiRJkiRJkiRJkiRJwxERAexeN8+fRjDF0sBL6+a3DaaQJC1UBlRIkqS58m/AinX903OZEUmSJEmSJEmSJEmSpPksItaLiGV6JHkXsHFdP3oap3wxsG5dt1+HJGnB6vXPU5IkaWBqpX09YHlgO8qUkADfzMwL5ypfkiRJkiRJkiRJkiRJC8DewMsj4kvAmcBfgGWBxwIvAxbVdL8GPtfpBBHxiHrMZsBH6tO/AP7fsDItSdJcM6BCkiSNyrrA79qeuwl4yxzkRZIkSZIkSZIkSZIkaaF5GPD2HvsvAnbMzDu67G/v13En8LrMzEFkTpKkcWRAhSRJmgtXA2cB78jMP8x1ZiRJkiRJkiRJkiRJkua5IygDWz4LeASwFrAScD1llokTgc9n5uJpnOsG4OfAf2XmWcPJriRJ4yEMHJQkSZIkSZIkSZIkSZIkSZIkSZNmqbnOgCRJkiRJkiRJkiRJkiRJkiRJ0qgZUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZIkSZImjgEVkiRJkiRJkiRJkiRJkiRJkiRp4hhQIUmSJEmSJEmSJEmSJEmSJEmSJo4BFZIkSZIkSZIkSZIkSZIkSZIkaeIYUCFJkiRJkiRJkiRJkiRJkiRJkiaOARWSJEmSJEmSJEmSJEmSJEmSJGniGFAhSZIkSZIkSZIkSZIkSZL+P3t3kNPWFQZQ+OK6IlUbxKQDpGQH6bCsg3Yj7KxlHbSzZg8ZZBIMlRopmA6aSIWQAk3ws32+b2SuLN4/ssV/dQQAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmq37gzs7O7hjjh/c/vh5jXK56BgAAANbeV2OM79+//uPq6urtlMPAl2IvAgAAwD3ZjbB17EUAAAC4p5XuRVYeVIx//jj+bYLnAgAAsJl+HGP8PvUQ8IXYiwAAAPBQdiNsC3sRAAAAHurR9yKzx/zlAAAAAAAAAAAAAAAA62iK/1Dx+sOL09PTcXBwMMEIAAAArLNXr16Nw8PDDz++/q/3woaxFwEAAOBOdiNsKXsRAAAA7rTqvcgUQcXlhxcHBwfj2bNnE4wAAADABrm8+y2wMexFAAAAeCi7EbaFvQgAAAAP9eh7kdljPwAAAAAAAAAAAAAAAGDdCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHIEFQAAAAAAAAAAAAAAQI6gAgAAAAAAAAAAAAAAyBFUAAAAAAAAAAAAAAAAOYIKAAAAAAAAAAAAAAAgR1ABAAAAAAAAAAAAAADkCCoAAAAAAAAAAAAAAIAcQQUAAAAAAAAAAAAAAJAjqAAAAAAAAAAAAAAAAHLmUw+wbpbL5VgsFtfO9vb2xmymPQEAAADYNrftgqa2XC7H+fn5tbOnT5/aT30G+z0AAAAAAFjPe5FVK93DuB+B+xFU3LBYLMbR0dG1s5OTk7G/vz/RRAAAAAA8ltt2QWwf+z0AAAAAAHAvUuN+BO5HdgQAAAAAAAAAAAAAAOQIKm44Ozu71xkAAAAAAAAAAAAAALC5BBUAAAAAAAAAAAAAAEDOfOoBAAAAAGCd/Pni53E1351ugHd/je9e/nrt6OLFT2PMn0w00GbZefd2fPvyl6nHAAAAAACAjTD5vciqbek9jPsR+P8EFQAAAADwL1fz3XH19TeTPX/ntsP5k0lnAgAAAAAAttPU9yKr5h4GuGk29QAAAAAAAAAAAAAAAACrJqgAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMgRVAAAAAAAAAAAAAAAADmCCgAAAAAAAAAAAAAAIEdQAQAAAAAAAAAAAAAA5AgqAAAAAAAAAAAAAACAHEEFAAAAAAAAAAAAAACQI6gAAAAAAAAAAAAAAAByBBUAAAAAAAAAAAAAAECOoAIAAAAAAAAAAAAAAMiZTz3Aulkulx+dvXnzZjx//nzMZvoTAAAAYHstl8uxWCyune3t7dmJAHwmn68AAAAA28W+B4BN47vr0wQVN1xcXHx0dnx8PE5OTsb+/v4EEwEAAACsxmKxGEdHR9fO7EQAPp/PVwAAAIDtYt8DwKbx3fVpkhIAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAAAAAAAAAAAAAAAAcgQVAAAAAAAAAAAAAABAjqACAAAAAAAAAAAAAADIEVQAAAAAAAAAAAAAAAA5ggoAAAAAAAAAAAAAACBHUAEAAAAAAAAAAAAAAOQIKgAAAAAAAAAAAAAAgBxBBQAAAAAAAAAAAAAAkCOoAPibvfuJjeuq/wZ87Lj5ya/SNEZq+6LWYovUIL1ITXYNKxYsQIioiaNEqhDQFJImFFg6RaLuFikhEW1ZISVK0qqoArGhK9JVky4imggQC6SGqmoiZJpatX6uY78bbDnj8Z07M/fM3Lnf55EQ9vjc8+/eOb33jD8xAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQAUAAAAAAAAAAAAAABCOQEVJH330UfrHP/6RlpaW0sLCwvrrCwsLaWlpKS0tLa2/tvZ962vtbCy3VZnW8v0oe3y/7Qyr7rrJMdatrqvWtiLNM0TlfQ5EYb3Lx9wCADRT0X1eu591W77b9te+n5+f37L8Vsd02mevuu/dau1n0++xo4wzl17nzXx3VsUc1WWec/UjR70bPzMdRXU550A9WSMgJu/9wSrz+3WDOied2nFtAECzCVSU9MMf/jD94Ac/SN/97nfTgQMH0vz8fJqfn08HDhxIzz//fHrhhRfS4uJiWlxcTC+88EI6efLkfa/99Kc/TYuLi/fVuVb2hRdeSPPz823LtJbvVKZI2eP7bWdYdddNjrFurHOrr3O1DdSL9zkQhfUuH3MLANBMRfd57X7Wbflu21/7/p///Gfav39/+uijjzaVX9snbz1m4775IPrerdZ+ltnnH2Xtzgvl9XpNenbrrIo5qss85+pHjnrXPifdKixXd3U550A9WSMgJu/9wWrdD+j2ub/qvhS149oAgOYTqOjShx9+mD777LN06tSpNDs7mz777LP097//Pd28eTNduHAhnT9/Pt28eTP99a9/ve+1999/P124cOG+utbK3rx5M83OzrYt01q+U5kiZY/vt51h1V03Oca6sc6tvs7VNlAv3udAFNa7fMwtAEAzFd3ntftZt+W7bX/t+x/96EdpZWUlnThxYlP5tX3y1mM27psPou/dau1nmX3+UdbuvFBer9ekZ7fOqpijusxzrn7kqHftc9JTp05VVucg1eWcA/VkjYCYvPcHq3U/oNvn/qr7UtSOawMAmk+gokc3btxIN2/evO+1ixcvposXL2567dKlSymllC5fvpxu3bqVUkrp1q1b66+nlNbr2lhmo1u3bqXLly8XlilS9vh+26miD02QY6wb67x06dL69bPx68uXL6erV6+GmWeIKtJ6CsRmvcvH3AIANFPRfV67n3Vbvtv2N+5Vrv0rjnfu3El//OMf18tv3Ce/dOnSfT3bnlAAACAASURBVMes7Zu37oHm6Hu3Nrax1s9O+/yjrN14mzjOXHq9Jj27dVbFHNVlnnP1I0e9V69eXV8Lbty4ka5evdp3nYNUl3MO1JM1AmLy3h+s1v2Adr9fN6hz0qkd1wYAxCBQUaF79+6llZWVTa/du3cvpZTS559/ns6cOZNWVlbS6dOn11/faK3M6urq+murq6vpzJkzaXl5ecsyRcoe3287VfShCXKMtbXO5eXl9etn49eff/55mpubCzHPEFWk9RSIzXqXj7kFAGimovu8dj87ffp0On36dOnyne4Z2x2zca9yo1/+8pdpeXl50z758vJy22Na90Cr7nu3Wtto1bR77K3G27Rx5tLrNenZrbMq5qgu85yrHznqXVlZSXNzc/e9Njc3t+kz0rqqyzkH6skaATF57w/W6urqpv2A1t+vK3rur7ovRefetQEAcQhUDNi1a9fSq6++mt57773CMu+8887691euXEnXrl0rLFOk7PH9tlNFH5ogx1jb1bmVu3fvVto2UC+R1lMgNutdPuYWAKCZiu7z2v3svffe27RPXVS+0z1ju2Na9yrX3Lt3Lx0/frztPvlWx+Tse7fK7Nc26R67aLxNGmcuvV6Tnt06q2KO6jLPufqRo95XX31101p99+7d9Nprr/Vc5yDV5ZwD9WSNgJi89wfrypUrhb83l1Lxc3/VfSk6964NAIhDoKLF22+/nb2NN954o2OZc+fOpcXFxbS4uJjOnTtXWKZI2eP7baeKPjRBjrEW1VlW0+YZooq0ngKxWe/yMbcAAM1UdJ939uzZdPbs2dJ1FZXf6p6xlz3Mv/3tb12VL6OXvnerm7E24R67zHibMM5cen0G8+zWWRVzVJd5ztWPHPXOz89v+Tnn66+/nubn57uuc5Dqcs6BerJGQEze+4O1uLjY1R5FqyrPSadzPz8/79oAgEAEKlr8/ve/z95GmT95+/HHH6cLFy6k8+fPp9u3bxeWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd592+fTvduXOndF1F5be6Z6xiD7MKvfS9W92MtQn32GXG24Rx5tLrM5hnt86qmKO6zHOufuSod3Z2dsvPOVdWVtKpU6e6rnOQ6nLOgXqyRkBM3vuDdf78+a72KFpVeU46nfvZ2VnXBgAEIlCxwf79+4fdhftcvHgxXbp0qbDMpUuX0q1bt9r+7IMPPkiXL1/uePy7775bqtxW7RQp24de6q6bHGMtU2dZTZlniCrSegrEZr3Lx9wCADRTlXuIZbTeMw66/X70e7/by1hH+R67m/GO8jhz6fUZzLNbZ1XMUV3mOVc/ctT77rvvpps3bxaWuXHjRrp69WrpOgepLuccqCdrBMTkvT9YH3zwQcffgyujinNS5tx3uve9dOlS+vDDD/vqBwBQHwIV//Xpp5+mf//738Puxn3u3buX7t27V1hmeXk5nTlzJq2urt73+urqavrVr36VlpeXOx7/8ssvlyrXrp0i3fSh27rrJsdYy9ZZVhPmGaKKtJ4CsVnv8jG3AADNVPUeYhkb7xmH0X4/+rnf7XWso3qP3e14R3WcufT6DObZrbMq5qgu85yrHznqXVlZSS+//HKp9ufm5rb8KxbDUpdzDtSTNQJi8t4frNXV1XTmzJmOvwdXRr/npKq9jOXl5fSb3/ymrzoAgPqYGHYH6uKb3/zmsLvQs2vXrqV33nkn7du3b/21K1eupGvXrpU6/u7duz23U6SbPnRbd93kGGs3dZY16vMMUUVaT4HYrHf5mFugrHa/+PTJJ58MoSeD03Z8PiAdbW3OX9OvY+qv3TVYxS+b5thDLGPtnnF1dXUo7fej1/vdfuZ6FO+xexnvKI4zl16fwTy7dVbFHNVlnnP1I0e9r776aunPE+/evZtee+219Nxzz5UqPwh1OedAPVkjICbv/cG6cuVKeu+99yqrr59zUuVeyvXr1ze9Zh+SUeBzkQbz+Qgd5PqsogkqD1SMjY093qHI/626zX5V8efEhu3cuXNpz549aXJyMi0uLqZz585lb6dIL30oW3fd5BhrHc4hUA+R1lMgNutdPuYWBmsU90U2+vTTTze99swzzwyhJ0N2739TSv9n2L2gV/f+d9NLIa9jau/TTz9NX/jCF3o+PuceYhlnz54d2X+hs9v73SrmepTusfsZ7yiNM5den8G+8pWveHbroIrn27o8I+fqR4565+fn0xtvvNFVna+//no6ePBgmpqa6uq4HOpyziGKUdsXsUZATN77g7W4uJjOnj1beb29nJNB7KXYh2Rk+VykGXw+Qg/6/ayiKcYz1Hmrw/9q989VvfLKK8PuQt8+/vjjdOHChZRSSufPn0+3b9/O3k6RXvpQtu66yTHWOpxDoB4iradAbNa7fMwtDNzI7YsAMJpy7iGWcfv27XTnzp2htd+Pbu93q5jrUbrH7me8ozTOXHp9BpudnfXs1kEVz7d1eUbO1Y8c9c7Oznb9LxWurKykU6dOdXVMLnU55xDISO2LWCMgJu/9wTp//nyW/YNezsmw91IAgPrKEagYKX/+85+H3YXKvPnmm2lhYSH97ne/y97O0tLSlj9fWlrquQ+d6q6bHGPtp85+2wbqJdJ6CsRmvcvH3AIANNMg9hCbruz9bpVzPQr32FWMdxTGmUs/83fz5s2ejosy31U839blGTlXP3LUu7Cw0PO1eePGjbSwsNDTsVWpyzkH6skaATF57w/W0tJSevPNN7PV3805sZcCABTJEaiY7vC/PRna7NnXvva1YXehMvv37087duxI3/nOd7K3s3379i1/vn379p770Knuuskx1n7q7LdtoF4iradAbNa7fMwtDMVI7YsAMJoGsYfYdGXvd6uc61G4x65ivKMwzlz6mb8nnniip+OizHcVz7d1eUbO1Y8c9e7YsaPna3P37t1px44dPR1blbqccwhmZPZFrBEQk/f+YG3fvj3t378/W/3dnBN7KQBAkYmqK1xdXf1X0c/HxsaqbrJvzz33XHrllVeG3Y2+PProo+nw4cMppZSOHDmS3n777Sx/omxjO0V66UPZuusmx1jrcA6Beoi0ngKxWe/yMbcwWKO4L7LRgw8+uOm13/72t+mhhx4aQm8G45NPPknPPPPM/S9u+5/hdIZqtDl/Tb+Oqb92a027NbcbOfcQy3jkkUfS6upqunPnzlDa70e397tVzPUo3WP3M95RGmcuvT6Dzc3NpaNHj3p2K1DF821dnpFz9SNHvXNzc2n//v1pZWWldJ3j4+PppZdeKl0+p7qcc4hi1PZFrBEQk/f+YB05ciT96U9/qnz/oJdzMoi9FPuQjAKfizSYz0foIMdnFU1ReaBiFM3MzIx8oOLYsWNpcnIypZTS5ORkOnbsWPr5z3+etZ0ivfShbN11k2OsdTiHQD1EWk+B2Kx3+ZhboBvj45v/mOlDDz2Udu3aNYTeDFHNfsGDLrU5fyGvY2qv3ZrbjZx7iGUcP348ra6uDq39fnR7v1vFXI/SPXY/4x2lcebS6zPY1NSUZ7cOqni+rcszcq5+5Kh3amoqPf300+ny5cul6zxw4ECampoqXT6nupxzoJ6sERCT9/5gTU5OpuPHj1e+f9DLORnEXop9SEaWz0Wawecj9KDfzyqawiz81x/+8Idhd6Fne/bsSU899dR9r+3bty/t2VPur2Xu3Lmz53aKdNOHbuuumxxj7abOskZ9niGqSOspEJv1Lh9zCwDQTDn2EMtYu2ccVvv96PV+t5+xjuI9di/jHcVx5tLrM5hnt86qmKO6zHOufuSo9+jRo6U/T9y5c2d69tlnS5UdlLqcc6CerBEQk/f+YO3bty89+eSTldXXzzmpci/jq1/9aiX1AADDJ1DxXw8++GB6+OGHh92N+2zbti1t27atsMzExEQ6ceLEpj+NOTY2lk6cOJEmJor/CMnExESanZ0tVa5dO0W66UO3dddNjrGWrbOsJswzRBVpPQVis97lY24BAJqp6j3EMjbeMw6j/X70c7/b61hH9R672/GO6jhz6fUZzLNbZ1XMUV3mOVc/ctQ7Pj6eZmdnS7U/Oztbu3/ZsC7nHKgnawTE5L0/WGNjY+nkyZMdfw+ujH7PSVV7GRMTE+n73/9+X3UAAPVRr92sIXvjjTeG3YX7HDp0KM3MzBSWmZmZSdPT021/Nj09nQ4ePNjx+L1795Yqt1U7Rcr2oZe66ybHWMvUWVZT5hmiirSeArFZ7/IxtwAAzVTlHmIZrfeMg26/H/3e7/Yy1lG+x+5mvKM8zlx6fQbz7NZZFXNUl3nO1Y8c9e7duzc98cQThWV2796d9u7dW7rOQarLOQfqyRoBMXnvD9b09HTH34Mro4pzUubcd7r3nZmZSY899lhf/QAA6kOgosW3vvWt7G2U+VdZHn300XT48OF05MiR9MgjjxSWKVL2+H7bqaIPTZBjrEV1ltW0eYaoIq2nQGzWu3zMLQBAMxXd5z3yyCNd/XXmovJb3TNWsYdZhV763q1uxtqEe+wy423COHPp9RnMs1tnVcxRXeY5Vz9y1Ds3N7fl55zj4+PppZde6rrOQarLOQfqyRoBMXnvD9aRI0e62qNoVeU56XTu5+bmXBsAEIhARYuvf/3r2dt4+umnO5Y5duxYmpycTJOTk+nYsWOFZYqUPb7fdqroQxPkGGtRnWU1bZ4hqkjrKRCb9S4fcwsA0ExF93nHjx9Px48fL11XUfmt7hl72cP88pe/3FX5Mnrpe7e6GWsT7rHLjLcJ48yl12cwz26dVTFHdZnnXP3IUe/U1NSWn3MeOHAgTU1NdV3nINXlnAP1ZI2AmLz3B2tycrKrPYpWVZ6TTud+amrKtQEAgQhUDNiePXvS0aNH05NPPllY5qmnnlr/ft++fWnPnj2FZYqUPb7fdqroQxPkGGu7Oreyc+fOStsG6iXSegrEZr3Lx9wCADRT0X3eVj9r3afuVL7onrHdMa17lWu2bduWzp4923affKtjNnryyScr7Xu3yuzXNukeu2i8TRpnLr1ek57dOqtijuoyz7n6kaPeo0ePblqrd+7cmZ599tme6xykupxzoJ6sERCT9/5g7du3r/D35lIqfu6vui9F5961AQBxCFRUaNu2bZv+zO22bdvStm3bUkopPfDAA+nkyZNpfHw8nTx5cv31jdbKjI2Nrb82NjaWTpw4kSYmJrYsU6Ts8f22U0UfmiDHWFvrnJiYWL9+Nn79wAMPpFOnToWYZ4gq0noKxGa9y8fcAgA0U9F93lY/O3nyZFfli+4Z2x2zca9yo5/97GdpYmJi0z75xMRE22Na90B//OMfV9r3brW20app99hbjbdp48yl12vSs1tnVcxRXeY5Vz9y1Ds+Pp5mZ2fve+3FF1/c9BlpXdXlnAP1ZI2AmLz3B2tsbGzTfkDr79cVPfdX3Zeic+/aAIA4RmNnq4Z2796dnnjiifteO3ToUDp06NCm12ZmZlJKKR08eDA9/vjjKaWUpqen119PKa3XtbHMRtPT0+ngwYOFZYqUPb7fdqroQxPkGOvGOmdmZtavn41fHzx4MO3ZsyfMPENUkdZTIDbrXT7mFgCgmYru89r9rNvy3ba/ca9ycnIypZTSww8/nL7xjW+sl9+4Tz4zM3PfMWv75q17oDn63q2Nbaz1s9M+/yhrN94mjjOXXq9Jz26dVTFHdZnnXP3IUe/evXvX14Ldu3d3/BeG66Yu5xyoJ2sExOS9P1it+wHtfr9uUOekUzuuDQCIof0/n8SWHnvssTQ/P59eeumllFJKhw8fTtPT02liYiIdPnw4pZTS9evX08rKShofH19/7S9/+cv612uOHDmSrl+/nlJKaW5uLr344oubyrSWb1dPWWWP77edYdVdNznG2lrnVl9HmmeIyvsciMJ6l4+5BQBopqL7vHY/67Z8t+2vff+Tn/wkfe9730tnzpzZVH5tn7z1mF/84hf37Zvn7nu3WvvZ2t+m2eq8UE6v16Rnt86qmKO6zHOufuSod25uLh0+fHj9M9NRU5dzDtSTNQJi8t4frHb7Ad0891fdl6J2XBsA0Hxjq6urg21wbOzxlNKtlFK6detW7VKb77//fnr++ec3vf7rX/86TUxMpC996UtpaWkp7dixI6WU0sLCQtq+fXtKKa3//9LS0vpxG19b+3qjtbLbt2/fskxr+U5lqji+33aGVXfd5Bjrxjq3+jpX20C9eJ8DUVjv8qnz3P7rX/9K09PTa99Or66u/muY/YGq1H1f5D//+U/69re/fd9rb731Vtq1a9eQepRfuzEv/L9DafWBySH1KKWxzxfTjusX73tt2H0aJe3mr+nXMfU36PW16D6v3c+6Ld9t+2vfz8/Pp6mpqbblU0ptjynaA83R92619rPO99hViDLOXHqdN/PdWRVzVJd5ztWPHPUuLCysf2Y6iupyzrdib4Qmqvu+yEZ1XyOAPLz3B6t1P6Db5/6q+1LUTrufR9xPpxnq+LnIoDX1cxifj9DJKP23a9D7Iv5CRUlf/OIX1y+YjTdH7TYJ291cbXXDtfH1Mjd//d4glj0+541opAePHGPd6pppbSvSPENU3udAFNa7fMwtAEAzFd3ndbN/3elnZY9Z+75dmKJTnzrtoVfd92619rPp99hRxplLr/NmvjurYo7qMs+5+pGj3lEOU6RUn3MO1JM1AmLy3h+sMr/rNKhz0qkd1wYANNv4sDsAAAAAAAAAAAAAAAAwaAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOAIVAAAAAAAAAAAAAABAOBPD7kDd7NixY9Nrp0+fTjt37hxCbwAAAAAGZ+fOnemtt97a9BoA/bG+AgAAADSL/R4ARo3/dm1NoKLF+PjmP9qxa9eutq8DAAAANMn4+HjatWvXsLsB0DjWVwAAAIBmsd8DwKjx366tSQkAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAWz1K/gAAIABJREFUAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFQAAAAAAAAAAAAAAADhCFTw/9m783iJ7vl+/K93FhJLEEEsrRDVSqmqWBJClKpd7UuVaC21Vf3Kl1aRllpKS2upJYi9VAVBpaioWCKofYkgUYkgSBCSiHx+f5wzvZObmbvMnTtz753n8/E4jzln5nPO58ycz+fMOZ/zeZ8DAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALZ7d5rwAAAAAAbCV1/rnzXYHzzxn5Xs1+TbaluW8/AAAAAADYRhauXX2HXodZuO0IUySgAgAAAACGXPILb5v3KlzEpb5w1LxXAQAAAAAA2IG24nWRWXMdBhbbLvNeAQAAAAAAAAAAAAAAgFkTULHMZS5zmTW9BwAAAAAAAAAAAAAAbF8CKgAAAAAAAAAAAAAAgIWz27xXYKvZa6+98va3v/0i7wEAAACw84xqC5q3Cy64ID/5yU8u9N6lL33p7LKLe6NMSvseAAAAAABszesis7ZI12FcH4G1EVCxzC677JLLXvay814NAAAAAGZgq7YF7b333vNeBQAAAAAAYIfZqtdFZs11GGDYzgunAgAAAAAAAAAAAAAAWIWACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4QioAAAAAAAAAAAAAAAAFo6ACgAAAAAAAAAAAAAAYOEIqAAAAAAAAAAAAAAAABaOgAoAAAAAAAAAAAAAAGDhCKgAAAAAAAAAAAAAAAAWjoAKAAAAAAAAAAAAAABg4ew2hzx3HYx85zvfmUP2AAAAbHXLzhd3HZcOtiHtIgAAAKxK2wg7lHYRAAAAVjXrdpFqrW12HhfOsOrAJCfMNFMAAAC2sxu11j4575WAadAuAgAAwAS0jbAjaBcBAABgApveLrLLZi4cAAAAAAAAAAAAAABgK5rHEyounuR6/eT3k/xypiuwNvtm6a4IN0py+hzXBaZFuWanUrbZiZRrdiLlmvXaNckV+vHPt9bOnefKwLSMaBe5QuwfWeL/kgFlgQFlgWHKAwPKAsOUh51L2wg7zgb6i9jXbS+21/ZhW20vttf2YnttH7bV9mJ7bS+21/axFbfVTNtFdtvMhY/Sf6Et/TjSqhqePL219u15rQtMi3LNTqVssxMp1+xEyjUTOmXeKwDTtrxdpKqGOw7YPy44/5cMKAsMKAsMUx4YUBYYpjzseNpG2FEm7S9iX7e92F7bh221vdhe24vttX3YVtuL7bW92F7bxxbeVjNrF9llVhkBAAAAAAAAAAAAAABsFQIqAAAAAAAAAAAAAACAhSOgAgAAAAAAAAAAAAAAWDgCKgAAAAAAAAAAAAAAgIUjoAIAAAAAAAAAAAAAAFg4AioAAAAAAAAAAAAAAICFI6ACAAAAAAAAAAAAAABYONVam/c6AAAAAAAAAAAAAAAAzJQnVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcHZ0QEVVXb2q/qGqvlJVZ1fVD6vqhKp6QlVdYor53L6qjqqqb1fVuf3rUVV1+2nlAQObWa6r6hJVdfeq+pd+mT+qql9U1Q+q6mNVdXhV7Tut7wIDs9pfL8vzElX1japq/XDyZuTD4pplua6q21TVkVV1Up/XWVV1YlW9taoeUVWXmmZ+LLZZlO2q2q+qnlNVn6qqM/vjkR9W1Uer6qlVdcVp5AMwTdogGNjk8/ZdquqAqjqsql7SL/fcofOaQ6f0NZgS7TgMbHJZuE5VPbqqXlNVn+7/G87p8/lGVb25qu5aVTWt78PGaAtjYJP3DYcNbe/VhsOm9JWY0Cz3C6UtEZiT6tp9H1NV/15VX6uqn/XHrd+uqrdX1X2rard1LO+6VfWyqvp6Vf28qr5fVR+uqj9dz3LWmNf9quo/q+r0fp1PqarXV9VB08xnK6mqS1XVLarq8VX1lqr65nqPJavq5HUcjwyG/SZc3yM3O4+tbErba791/IZHTmm9d+vr7If7Ovzzvk6/rKp+cxp5bDVT2la79Mt4ZlUd2++bzquqH1fVF6prN/ytKa2vurXB7bVsef675qi69tL1/i8dPmFeh252Hjtdv39b0284xTwP7uvJKX29Ob2qjqmq+00rj52qpnysv0I+6tYqyjXriVVrU9ufbClVdeckr0+y15gkJya5Y2vtpA3ksUuSlyf5kxWSHZHk4a21CybNBwY2s1z3J1MfSbJaQ/mPkzystfbm9eYBo8xifz0m3+cl+Yuht05pre03zTxYXLMq11V1uSSvTnLXVZLeoLX2mY3kBcnMjrH/KMnLkuy5QrIfJrlva+19k+YDME3aIBjY7LJQVQ9KcuQKSW7VWjt2kmUzfdpxGJjBvuH1Sf5wDUk/lOQerbUfTJIP06EtjIEZ7BsOS9dutBYPbq0dOUk+bJy2RGARVNXTkzw5yWpBvickuWdr7VurLO+hSV6U5GJjknwi3b7zjPWu67J89kzy1iR3GJPkgiR/21r7m43ksxVV1QeTHDrm4zUdS/adja++jmzPSrJva+2cdcwzyOvIJA9aY/JrtNZOXm8eW9mUttd+Sb65xixf01o7bI1px+W3T5L3JLnRmCTnJnl0a+2IjeSz1UxpW30rya+skuyCJM9L8qS2gc6B6tbGt9fQsvx3zVnfufpp65zt/q21N02Q16FJPrjG5H/TWjt8vXnsdFV1bJJbriVta23DN5Lpy8dTMv4m9e9Od5y67uOUnW7ax/qr5HVo1K2xXLPemKlGNm4VVXWDJG9O1wnrp0mela4S7ZnkvkkemuTaSd5dVQe21n4yYVZ/l6VC8T9J/j7J15Psn+T/JblBkock+X6Sv5owD0gyk3K9V5Yuwn8kybuSfDLJD5JcIcnd+zz2SvKGqvpxa+0/NvSlWHgz3F+PyvfPk5yT5BdJLj2N5UIyu3JdVZdJ8r4kN+zfOipdw8jXk/wyXSPaLZPcY+IvA0NmUbar6mbpOonukq4x7zVJ3pHktCS/mq7B9s5J9k7yjqq6bmvtGxv7ZgAbow2CgRmVheHG6F8k+XyS3ZNcbwOrzibQjsPAjPYN5yc5Pl1Z+HyS09P9H1wuyW8keXiS66Y7Rzy6qm6+3S5k7BTawhiYQ1n4/XTn1uN8e4PLZ0LaEoEFcuV057Rnp9sHfSDJ19Idn1wnyZ+l61R9oyTvr6rfaa39dNSCquoOSV6arh35u+naTI5P12780HTnQzdOclRVHdpa++UG1vtVWeqQ+sEk/5TuP/V66dpf9k9yeFV9p7X28g3ksxUNt0H8MN0558FZPbB/2G0zvuPwwG2SPL8ff8sUOimelu7YZyWnbjCPrWga22vYX6e7PjPOjyZcbpKkqnZNty8YBFO8Lckr0q37Tfr8r5jkZVV16g5r05jGtrpK/3pSkn9P1x5wWrpjyFsleVy6NoH/l+5YbxrtxerWBuqW/64t4yXpzoNWsmuS/07XrvrjJG+fQr5/nK4j+Tjfm0IeO9knkzx4MzOoqodnKdjm60mema6d9SpJHptu33rHdPXr/pu5LtvU1I7110ndGuKa9RS01nbckO5PraW7MHDQiM+f0H/ekhw+YR7X7pff0lXKPZd9fon+/cF6XGvev4thew+bXa7THfC/OckBK6S5a7rOjS3diVnN+3cxbO9hFvvrEcvcNd3BdksXWXxyP37yvH8Pw84YZlWuk7y2X8Y5Se6yQrpKstu8fxfD9h9mdIz9rqFlPHJMmn8YSvOief8uBoPBoA3CMOOycOMkj0ly0yR79O8dPrTcQ+f9OxhmUx6042yfYUb7hhXP+fq2kH8fymfsOaRh+5eHMdtfW9gWG2a0bzhsaBn7zfs7G+ZXFvrlaEs0GAxzHZI8J13nmkuP+XzX/hxnsM976ph0u6frrNPSPc1g/xFpXjy0nMM2sM6/O7ScdybZddnn+yQ5pf/8R0kuN+/fecrb7GFJ7pehdqbNOJZctt1vvoHlHLnIx7nT2F5J9ptG3VljXn88lNeLR3x+rb6Ot3QdMnfM8cmUttVH0wU3jGzrSdeh8XtDx5nX3MD6qlsb317+u7bRkOT2Q7/hERtYzqFDyzl03t9rOw5Jju1/v2M3OZ+9k5zZ53VKkn2Wfb5rX59sz/G/4VSO9deYl7o1/rdxzXqDw7jH02xbVXXjJIf0k69srX1sRLJ/SPLlfvyxVbX7BFn9eZae8PGY1trPhz9srf0s3QXu9OkeN0EekGQ25bq19tHW2n1aa19aIc070t0ZIOlOwG6wnjxg2Az318s9Nt1duL6a7oAOpmZW5bqqbp7kj/rJv26tvXNc2tY5f715wLAZ7rMP7l9/0Fp7yZg0fzs0ftAEeQBMjTYIBmZVFlprn2itvbC19vHmsdJblnYcBma4b1jxnK91dzV87tBbh4xLy+bRFsbAHMsCW4y2RGCRtNae2Fr7+zbmLqj9Mesjk5zXv3XPMYu6W5Jr9uPPaq19fUSaJ2Tp7vlPmHCVk+Tx/ev56W4AdKG7hbfWzkjyxH7ysunuwrpjtNZe3lp7U2vtpM3Ko3+C0l36yW+01o7brLx2ullsrykb1K8fZkQ97b/Hs/rJa6Wr+zvCNLZVa+3g1toxre+5OOLzr2fpetpuSf5g0rwW3ZTqlv+u7eWBQ+OvndtaMEsPSXKZfvyJfT35P0PHqYP6tJE6uiNN8VifCblmPR07LqAiFz4IfPWoBK17nPngD++y6R7Js2ZVVenu8JYkX2mtfXxMPh9Pd5EiSe7azweT2PRyvQ4fHBrff5PyYDHMvFxX1dWz1HDwp62181ZKDxOYVbl+dP96VpIXTTA/rNesyvbg0d/fHJegtXZWkkEjxmqPCgfYbNogGNhK5+3M31YqD9px5msrlYXhi1l7bFIerExbGANbad/AfGlLBBjSWvtBks/1k+POX4b3nUeOWc7Pkrylnzygqq693nWpqksnuXU/+f7W2rfHJH1bkh/34zumw/cM3TtL5yc6rS6Ivk5ep598S19nRzlyaFz9Wj9tQluH/65toqr2ytL1mG8m+fAcV4fZGdTRH2fpBkUX0ten9/eTt+7rG+uwxmN9Juea9RTsxICKm/evZyf51ArpPjQ0frN15nGNJFcZsZyV8rlqusfjwSRmUa7X6uJD478cmwpWN49y/ZIkl0zyutbasRtcFoyy6eW6qi6WpQPU9w3uTFxVu1bVr1TVflWlcwzTNqt99uCk6hrjEvQNWfssSw8wL9ogGNhK5+3M31YqD9px5msrlYX7Do1/ZZPyYGXawhjYSvsG5ktbIsBFDc5hxp2/DPadX22tnb7Ccjb6P3qjLN3QZ2x7TB+wOuhIdCNPlVq3wV3AW5LXzXNFmKmbD42vVL9OT3JiP+l4eP20CW0d/ru2j3sl2bMff924p8Cwc/TnzDfuJz+2ys1IBvXq4kkO3NQV27lWO9Zncq5ZT8FODKgYRDGftMojaYcvGl1nbKrRDhiznGnnAwOzKNdrdcuh8S+PTQWrm2m5rqr7JrlDusck/sWky4FVzKJcXz9Ld+v5fFXtVVUvSHfH/m+lu1PCWVX1vqo6dJ3LhnFmtc9+af96+ar60zFpnjIiPcC8aINgYCudtzN/W6k8aMeZr7mWharap6oOqqpXJnly//YZSd4wrTxYF21hDMxj3/Dqqjqtqs6rqjOq6uNV9YyquuoGl8vGaEsEGFJVV8zSfu4i5y9Vdakkv9JPbnYbySTtMbsl+bUJ8lpIVXWNLHXiOq619o0pLfryVfWhqvpBVZ1bVd+pqmOq6tFVdYkp5bEIHlNVJ1XVOVV1VlV9sapeWlW/M4VlT1K/fqWqLjmFvBfJtNuE1K0J+O/adh44ND7NJyf9XVWd0tedH1XV/1TV8yd5EsmC+o2qOr6qzuz/l75dVe+oqgdOISDo2kl27cddg9tEqx3rT0jdWuKa9RTsqICK/g4qg7vVjntsVZKktfajdNE4ydKBy1pdbWh8xXyS/O/Q+HrzgVmW67Wsy/WT3LGf/HxrzYV4JjLrcl1Vl0vygn7ySa2170+yHFjJDMv18AHqLkk+meSx6R7HNnCxJLdJ8l9V9cR1Lh8uZMb77FdlqXHqxVX1iqq6c1UdWFV3r6qjkjy+//zvWmvvH70YgM2nDYKBrXTezvxtpfKgHWe+5lUWqurYqmpV1ZJ8P8lHk/xxkkrXefZurbUzN5IH66ctjIE5/k8cmuTKSXZPcvkkN0kXaHVSVT18g8tmAtoSAUZ6QrqOnUnylhGfz7KNRHvM5ntguvOUZLqdVi+V5BZJ9k73H7dvktsmeWGSE6vq4CnmtZP9TpL9091Jeq90xxQPT/KpPrDi4ivNvIpJ6lctm48V9AEOf95PnpvkHVNYrLo1Gf9d20RV7ZfkkH7yI621r09x8Qcn+dV0deeySX47XR39clUdXlW10szkSumeInGZdP9LV01ylySvSfKZqtpIZ231ZnZWO9afhLoV16ynabfVk2wrlx4a/+ka0p+d7nHXl9rEfM4eGl9vPpDMrlyvqD8hPiJLUZlPXiE5rGbW5fq56Q6wP5bkFRMuA1Yzq3K999D4E9PdYe69SZ6a5HPpGjXvkeTZ6U4on11VX2mtTaOhjMU0s312a+2XSR5UVUcn+askD+mHYR9M8kzBFMAWoA2CgS1x3s6WsSXKg3acLWFLlIUh/5zk6a21MzZp+axMWxgDsy4L30jytnRlYXAh85rp2o7uma5d6aVV1VprL58wDyajLRFgSFXdJEudf7+d5F9GJJtlG4n2mM33R/3rzzOdTnUtyceTHJ3k00m+m+5/73pJ/iRdR8yrJvnPqjqktfY/U8hzJzozyVFJjk3ytSTnpAvMvW263/FS6QIrLp3kDyfMQ/3afM9J18E0SV7cWjttA8tStzbGf9f28UdZCvR7zZSW+Z105+THpTs/Pz9d3bxTusDC3ZM8LV1n8L+aUp47yQVJPpDkPUk+m+QH6cr576T7L7pOuoC/D1bVjVtr35ogD/VmBtZ4rL8e6taFuWY9JTstoGKPofHz1pD+3P51z03M59yh8fXmA8nsyvVqXpTkwH78Na21o6e8fBbLzMp1Vd0i3Z0Yz0/yp621tt5lwBrNqlwPP852jyTvS3KnviN60t2B9KVV9YUkH0p357lnVdU7lX8mNNNjkf4OEg9M1xA7ykFJ/qSqvtxaO3WSPACmRBsEA1vlvJ2tYauUB+048zevsvDgdOeNle6uXAcmeUSSRye5ZlU9pLX23Q3mwfppC2NglvuGo9L9BywvAyckeXNV3Sndxefdkzy/bzs6fYJ8mIy2RIBeVV0pyVvT9V9pSR7UWvvZiKSzbCPRHrOJ+jvZ799PvqO19uMpLPZxY57G97GqekWSZ6TrUHfJJEdU1YH+6y7itCRXHVH//ifJe6rqxUnen67D4v2r6s2ttXdOkI/6tYmq6g/TtQEkyZeT/PUGF6lubYz/ru3jAf3rOZlOoN8JSa7eWvvFsvc/neTtVfXyJP+ZLrD9Sf0+9bNTyHcnufuY/c+Hq+ol6W4i8qB0NxV5QZK7T5CHerPJ1nGsv1bq1kW5Zj0lu8x7BabsnKHxi60h/eARdD/fxHyGH3O33nwgmV25Hquq/jJLd4c+IcmjprVsFtZMynV/R86Xp+tE8E+ttc+tZ35Yp3kchyTJE4cugP6f1tpx6S6KJ11k/rjO6bCamR2LVNUh6e6aeeckp6a7E8i+fb6/ku4Y5GdJ7pvkE1X1m+vNA2CKtEEwMPfzdraUuZcH7ThbxlzKQmvtm621L7TWPt9a+3Br7flJfivdndzulOSEqrraykthE2gLY2Bm+4bW2lkrdWRqrb0ryd/2k5dId3dZZkdbIrAlVVWbwnDYOvK7dJJ3Jxkcoz6ptfZfY5LPso1kW7THzHp7TdEDh8anchfwMR0uB5+11tqT093lOunubH3wNPJdj62+vVpr563UwbG19rUsdThOksdMmNWWr19bfVutsN6HJnllP/nDJPdorW20nUHd2hj/XROYw/HITZNcu598R2vtrI1+h9ba2SM6fA9//oksBT/V0Pi2spnbapX9zy/StYF/tX/rblV11Qm+wo6pN2sxh7q1nmP9NVmUurVOrllPyU4LqPjJ0PhaHhMyuCvLWh5zMmk+w3d+WW8+kMyuXI9UVQ9P8sx+8itJ7tBaO3uFWWAtZlWun5zk19M9zv5p65wX1msexyHfX+WxqccMjd9onfnAwEzKdnUdf96U7k4Bpye5aWvt9a2177bWftFa+3Zr7SVJbpHuRO0qmd7jVgEmoQ2Cgbmet7PlaMdhYMvsG1pr56R7csXP0gUq//2082BV2sIY2DL7ht7L090dMEluuUl5MJq2RGDhVdUeSd6R5Ib9W89rra10rDrLNhLtMZukvxZw737yO+menjQrLxsad+wzgdbah5N8qZ+8eVVN0u9M/doEVXVgknem68D403RtQl+eUfbq1nj+u7aH4UC/184w339NMnhKk7qzTq2187MURJZM9huqN5tkgmP9aVq0uuWa9ZTsNu8VmKbW2jlV9YMkl89SVNNIVXW5LG20/11nVt8eGl/tbl6/MjS+3nxgluV61PLul+Ql/eQpSX6vtXbGRpcLMyzXT+xf35/kzlU1Ks1g2Zesqvv249/baEQsi2eG5Xo4/bfHprpo2iusMx9IMtOyfbskg7tGvLC1dvqY9fliVb0+3R0nblhV11+ARzQCW5A2CAbmed7O1qMdh4Gttm9orZ1RVR9J8ntJ7lpVu690Jy+mS1sYA1tw3/C9fn32ydI5OTOgLRHYwq4zhWV8Z7UEVbVbkrckuVX/1hGttSesMtupQ+Ob3UayvD3mk5uY10bMZHtN2Z2TXK4ff+OoJydtoi8Njc/j2Gc7bq9RvpTkgCR7pDuW+f46519ev1ZquxjUr5bVj2WmaVttq+qe6P7eJJdOcm6SP2itHT+r/KNurcR/12Rmtk2r6mJJ7tNPfjcXDjTfVK2186vqxCQHZvuek8+7/m10/7No1+C28rH+1OyQurVmrllPz44KqOh9KckhSa5VVbv1kWij/MbQ+Hojcod3xL8xNtXG84GBWZR7s5/AAAAgAElEQVTrC6mqu6SLut0l3R/hrVtrszxBZeebRbkePF7qwf2wkn3S3Rk9ST6UxEVkJjGLcv3FofFdV0k7/Pm4dYG1mEXZHj55//QqaT+VLqBikKeACmBetEEwMPPzdrY07TgMbLV9w6CTyyXStYNshY44i0RbGANbbd/QVk/CJtGWCGw5rbWvbHYe/R3tX5euY32SvDnJw1ebr7X2k6r633Sdcza7jWSS9pjzk3xtgrwmNovttQmG7wI+66dQz/W4Z5tur1E2+jsur1+fWSHtoH797yyfwLmdtlVV7Z/uSS+XT7cfuk9r7QMzXg11awz/XZOZ8Ta9U5K9+/E3zDjQL9nm5+RboP5t9Pc7Mckv050P7/hrcFv5WH8TbOu6NQHXrKdgkkevbXXH9a+XzNLjYkYZfpTLR9aZxzeTnDZiOaPcon89NcnJ68wHBmZRrv9PVd06XZTgbkl+kO6Ohl+fdHkwxkzLNczIppfr1topSb7VT+5XY2432dt/aPzUsalgdbPYZw+f0K0W+L37mPkAZk0bBAPObximHYeBrbZvGL4b17Z5zPYOstXKA/OzZcpCVV0hXXBNsnTMyexoSwQW1cuSDJ6UdXSSB7TWLljjvIN9569X1b4rpNvo/+gJSc4bsawL6e9qfdPBPJ4Ct7L+2ON2/eRnWmufn/EqHDA07thncoPf8dx07RDrddzQ+Er1a98k1+4nnRuNUFVXS/eEwisnuSDJg1pr75jDqqhbK/PftbUNB/q9dpYZ93fxH+zn1J3JbGj/01o7L8kn+smD+voxzqBenZuVnwCz6DZyrD8VC1q3XLOegp0YUPH2ofGRd2Dqo6AGf4ZnJvngejJorbUkgwPQ36iqm45K178/iLR5Rz8fTGLTy/XQcg5OV74vnuSsJL/fWvviynPBRGaxv67VhiSn9MlPGXr/0HV+FxiY1f763/vXvZLceoV0dx8aP25sKljdLMr2N4fGD1kl7fDJ2TfHpgLYfNogGJjZeTvbgnYcBrbMvqHvZHFQP3lKa+0nm5EPK9IWxsCW2TckeViSQQf7D21SHoynLRFYOFX1j1l6+vAHktxrhbunjjK87zxsTB6XSHLvfvJLrbUT17ue/fHy4A7vt+mPp0e5e7r9a5Ictd58FtD9snTDpFk/nSK58N2RHftMoKpuluQ3+8njJukg2dfJwZ2K793X2VEOGxpXv5apqiumC6bYr3/rT1trb5zT6qhbK/PftUVV1eWT3KGf/Gxr7bMzXoX7JLlMP67urFPfaf6Ph9767wkXNaije+XC58XDeV0tyW36yQ9oWx1tCsf607KIdcs16ynYcQEVrbVPJPlwP/knVXXQiGR/keQ6/fg/LY+0rKpDq6r1w5FjsnpBusf9JMkLq2rPZcvYM8kL+8nz+/QwkVmV66r67STvThepdnaSO7bWPjWN7wDLzXB/DTMz4+OQc/rxf6yqvZYnqKoHJDm0n3x3a+1/1/5N4MJmVLY/kORn/fgjqup6o9alqm6f5G795KlZ+VHQAJtKGwQDzm8Yph2HgVmUhaq6dlX97krrUVWXSfLGJIM7rM30bnt0/FcwMKN9w35VdYOV1qOq7pTkqf3kz5O8eh1fgynQlggsmqo6PMnj+smPJrlra+3cdS7mqCTf6Mf/sqr2H5HmuUkuNzQ+al0OG9p/Hj4mr+f1r7sleXFV7bpsGfskeU4/eWaSI9b2FRbaoAPX+enOUdakqg4f2l6Hjfj8plV15RXmr6p6RpY6Qn42nnhwEVX1B1Xjn2ZVVdfKhbfbS8akW3F79Qb1a+8kfz9iGfsn+ct+8qQseKfv5arqskmOSfLr/VuPa629YoLlqFuz4b9r6xoO9Ftze1l/zj3YFseO+PxyVXXoKsu4cZIX9ZMtyb+sNf9FUFW36vd14z7fPV35HZwvHz3qPHa1bdU7It3NipLk2dUF2gwvY9d0/3mD+jSyji66aRzrq1uTc816Onab9wpsksemO0DbM8l/VtUz00XT7JnucTIP69OdmOQfJsmgtXZiVT03yZOSHJjkI1X1nCRfT/dI3CcmGTRWP7e19rUJvwsMbGq57g/Yj0kyOBj56yRnVdV1V5jte6217603Lxiy6ftrmINZHId8q6qemq6B8XpJPtEfh3wuS1Hzj+iT/zhLJy2wEZtatltrZ1bVs5P8bZJLJ/loVb0wyfuS/CjJlZLcNclDsxQY/qRZPx4SYARtEAzM5PxmxMXN3x4av11V7Tc0fVJrzd2F50M7DgObvW+4SpIPVNVn092F6lNJTk93sWLfJDdL8if9eJJ8IcmzJ/omTIO2MAY2uyzsl+SDVfWxJEen69g0+A+4ZpJ79sOgw9zjW2unTpAPG6ctEVgIVfWYJE/rJ09N8v+SXGOFvttJ8tXlnXxaa7/ol3V0un3YR/rOvJ9I1xH1oUnu0Sc/LsnrJl3n1tp/VdW/ptsf3yXJ+6rqBUlOS7c/fXKSX+2TP7G19qNJ89qK+s7zN1/29qUGryPaJ97bWjt9heUdkOSGQ2mneX56uyRPqqr3prum8KV0HYUvnuS30t29+iZ92p8leeh2ulPuWkxpex2V5KSqelu6OvXtJOcmuXKS3093bjlY5ltaa2/bwCq/Jt12uVmSR1XVvkleke560I2TPCVdHb8gyZ/N6e7Wm2Kj26qqLp7uBhuDNsE3JHn/Km1CZ7fWJnniu7o1hbrlv2tLGw70e8MUl3uZdOfkn8tSe9130nVC/tUkd0ryR1m6+cnz3CjnIh6U5J1V9c4kxyb5arrz1UulO554WJID+rTfS3duPZHW2g+r6olJXprk6kmOr6q/S/L5dG2vf57kVn3yN7XWjp00r51qWsf6a6Burcw1641qre3IIcmd00WOtTHDV5Nca8y8hw6lO3KFPHZJ8soV8mjpIth2mffvYdgZw2aW63SPlVupLI8aDp/3b2LY/sMs9ter5H9yP//J8/4tDDtnmFW5TvKsdA2J4/L5bpKD5v17GHbOsNllO11HjuevUq5bkvPSdfaY+29iMBgMrWmDMMy8LKznvH3scgzbuzxEO862Gja5LBy6jjLwriRXmPfvsejDLP4rVsn/5GgL2xLDFtk3nJ3kYfP+LRZ9mNV+IdoSDQbDHId0HeHWew6z3wrLe2i6jt7j5j0+yT4rzH/YUNrDV0i3Z7qOy+Py+eVK82/nIes/7zx0leU9eyjtvda5LocPzXvYKp+vNJyS5Gbz/m236vZax7wvSXLxSbfXULp90nUoH5fPOUkeMu/fdqttq3TB0+vdnx47ybZSt6a7L4z/ri01JPmNod/k3eucd7geHrvK5ysN56frhF7z/j222pDkyDX+hp9LcsCk22pZ2r/JyufM706yx7x/m604ZErH+urWVLaFa9YbGHbqEyrSWju6qn4rXdTNHZNcLV3Hq5OS/FuSF7XWfrbBPC5I93iUf08XvXOjdAf8ZyQ5IcnLWmv/sZE8YNgsyjXMmnLNTjSrct1a+8s+Iv8RSQ5Jd4eYc9JFE78zyQtba2etsAhYl80u2607+3pcVb0+yUPS3fHl6kkukeSnfT4fSnecfeJGvgvANGmDYMD5DcOUBwY2uSx8JN2dQm+T7o5QV0v3dLdLpLtr2zeTfDzd3dM+spHvwXTYNzCwyWXhU0kekOSgdPuGK6c7dtwt3V1/v5jkA0mOaJ5eNHfaEgHWr7X2iv5JTH+W5Nbp7h58dpIvp7vD9BFtCne0b639PMkdq+r+6TqyXj/dkwK/m+TD6fbRH9toPjtdVe2S5A/7yTPT/e9M06vTBwamu2v+FZNcPl1nujOSfDrdneHf2Fo7Z8p57yR3Sfcb3iTdtZl9klwy3bnlN9KV+Ve11r4wjcxaa2dU1cHpOpnfP8l1+vxOS3es+k+ttS9OIy8mpm5Nkf+uLeePhsZfO+Vln5bkXunqzo2TXDXdPnWPdB2dv5quA/oRrbWTp5z3TvGcJJ9J9xsekOQKSfZOF5T03SSfTPLWJEe11n45jQxba0+rqmOSPCrdOfOV0h23fDbJq1trb5pGPmyIurUK16w3pvqIEQAAAAAAAAAAAAAAgIWxy7xXAAAAAAAAAAAAAAAAYNYEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFAAAAAAAAAAAAAACwcARUAAAAAAAAAAAAAAAAC0dABQAAAAAAAAAAAAAAsHAEVAAAAAAAAAAAAAAAAAtHQAUAAAAAAAAAAAAAALBwBFQAAAAAAAAAAAAAAAALR0AFwDZVVYdVVeuH/ea9PrBcVZ3cl88j570uAAAAsJOs1C5UVUf27588l5UDAAAAmJKd1DemqvYb+i6HzXt9AIAlAioAAAAAAAAAAAAAAICFI6ACgKmrqsMHUfXzXheWVNWx/XY5dt7rAgAAAAAAAAAAADBvAioAtqnW2pGtteqHk+e9PgAAAADMX2vtsL69aL95rwsAAAAAAMBWJ6ACAAAAAAAAAAAAAABYOAIqAAAAAAAAAAAAAACAhSOgAmCbqqrDqqr1w37LPju2f//YfvqqVfWPVXVSVf28qn5QVcdU1e1XyWPXPp9jqur0qjqvqs6qqq9V1Qeq6q+q6oDl65TkaUPvtRHDfkOfL1/XX6uqF/V5/Gw4/Urfedl67zeU7rARnx/Zf3ZyP71vVT2vqk7s8zy1qt5SVb85Yrn/3Kf7eVV9t6reUFX7r/Q7Ds1/q6p6TVV9o8/nx1X1+ap6blVdZYX5Dh98n356j6p6QlV9uqp+0g+fqKpHV9Vu475vklv2b91yxDY5edk8l6yq+1TVEVX1mX67/6Kqvl9VH6qqx1fVpdbyvcd8p0OH8j60f+/efbn6fv/7frWq/r6q9l7jMv+gqv6tqr5VVedU1ZlV9cmqelpVXW6Vea9dVS+sqi/0v+d5VXVa/91f1f8WFx8x37rqCAAAAGy25e0eQ+8/dehc/NfWsJxj+rTfqapdx6SZ6Fx8RNvMZavqb6vqi1V1dr+c/66qP1zjd75MVf1lVX2kb1c4r1/vo6vqnlVVq8x/t6p6e1V9u6rO7dsGvlFVH66qp1fVjcfMd5WqenbfRjNoO/lu397zpr7NYK+1fAcAAABgMlV1hap6RlX9T9+mcE5VnVxVr6uqm68y76Ct5PBV0l2ob8uYNLtW1SOr6vjq+oOc1bcZPH5Uf4MR82svAYA5uUinSwB2lqq6WZK3J9ln6O09ktw2yW2r6gmtteeNmO9SSd6T5JBlH+2eZK8k10ryu0l+J8k9p7Sud03yhiSXnMby1pjn9ZO8N8m+Q2/vmeReSe5QVbdrrR1XVb+b5G1JLjOUbo8k909y+6o6pLX2xTF57JHk1UnuO+Lj6/bDI6rqfq21o1dZ3yv16/vbyz66UT/ctqr+oLV2wUrLWYN3ZykAY9g+SW7RD4+sqju01r6ywbx2qarXJXnAsvevneQJSe7W/76nj5q576Dx1nTlcdjFk9ywHx5ZVXdtrX18xPz3SvL6JBdb9tGV++H6SR6c5HpJvjA038zrCAAAAGzAG5P8TT9+/6Hxi+jbH27dT/5ra+2Xyz7f0Ln4smX9erq2jv2WfXRIkkOq6qDW2qNXmP/WSd6c5PLLPto3yZ364T1VdZ/W2k+XzbtrkjelawcadrEkl0pyjSQ3T3L7JAcum/eQJO9K1wYw7Ir9cN10bUFn9OkAAACAKauq2yb5t1z0/Pzq/fCAqnpxkj+bQj+KldZjXP+BG/TD/ZI8ZB3L014CADMkoAJgZ7tyumCKC5I8KclxSc5Ld2Lz1CSXTfKsqvqPEcEAh2fpRO9d6QIdvpXknHQnOTdId4LVhuZ5e5JPJnlkkkf0711vxHqdOuK9X03Xqf1nSZ6e5MNJfpkuSOCnI9JPwyWSHJXupO+vknyoz/N2/fQlk7yuqn4v3Xc7K93vdny6/9B7JPnzJJdL8sokN12eQR/R/9Ykd+zfOjrJW5J8I912uXGSv0j3/d9aVTdrrX1yhXV+W5IDkvxzv6wfJvn1JE9Jcp0kd07y0CQvG5rnyUmely6o48B02+jBy5Z73rLp3ZJ8Psk7+/SnJal0DQ53S3LvdCfJb6+q326tnbPCOq/m6UkOTvcbvzbJKUmulORR6X63ayV5froGhgvp7+Lw/nRBC79M1znkPUm+mS6w4RZJ/r90ZfY9VXWD1topQ/NfKd3vcrEk30vyoiQfT3fyvmef9y2T/MGI9T48668jAAAAMBettZOq6vgkN8kqARVJ7pNk8FSKNwx/sNFz8WUuka594/JJntEv96fpzqmfluRqSR5VVUe31o5ZPnN/I5H/6PP9bpIXJvlsunaMq/Tf4wFJ7pDkNenacoY9IkudA45LckSSryc5u1+n30rXTjR8g43Bb/Cv6ToH/CTJvyT5YLq2hYulazM5OF0bCgAAALAJquq307UrXCzJL9Jd739nuvP6G6TrJ3ONdH0Pzk7yxE1cnddnqf/AJ9L1cfhaur4Ph6Vrf3jZyDkvSnsJAMyYgAqAne3a6Tqn36y1NhzEcEJVnZDkv9P9FzwsyWOXzXvv/vWtrbXlUedJFwn/rKrae/BGa+3MJGdW1feG3vvCiHlHuUa6k7eDWmvfGnr/+DXOP4krpAsSuHFr7evDeVbVGelOtvdL8tEkp6f7Hb8/lO4jVXV+uqco3KTvIPA/y/J4SLqggF8kuUtr7b3LPv94/3SGDyf5zSQvSBfwMs6Nkty2tXbs0Hufrqpjknwp3cn4IzN0It5v+1Or6uz+rbPXsF0e3Fr72oj3j0/ylqp6ZZJj0gVz/GG6gJJJHZzkr1trfzf8ZlW9N105u22Se1bVny37/ZMuwOV3kpyZ5DattU8t+/y4qnpDko+lCzB6Zr++A3fM0hNRbj3id/loktdW1ag7O6y7jgAAAMCcvSFdQMW1q+rAFW7qcP/+9cQRaTZ6Lj7sCukuqB+07GYfn6qqY9Pd7GGPdG0dF+ogUFW7p+ussHu6c/B7tNZ+NpTk00neVVX/neTlSe5eVb/XWnvfUJrBuf3xSW7VWjt/2fq9P8k/jji3v1m6DghJcv/W2vI7Kn48yZuq6nHpOkEAAAAA0/fydO0Kv0xyp9bafw59dkJV/Vu6gIADkjy+ql474majG1ZVd0xy137yPUnuuqyN4T1V9dSsfHOLYdpLAGDGdpn3CgCw6R6zLJgiSdJaOy5LwQrLHzmYdI/5S7qO/mO11n64sdW7kCctC6aYhacsC6YYeFW6Jw0k3cnqqM78SRdRP3Ch37F/OsXgDgf/PCKYIknSWvtRuqCMJLlZVf3aCuv7wmXBFINl/DDdkxaS5HpVdZnladZjTDDF8OfvT3dnh2T00xvW41PpOlcsz6Ml+cd+crckBw1/3j8y81H95FNGdOAYLOeUdE/BSJJ7VdUlhz4elPMfrRRk0lr7eWvt58venkcdAQAAgI14c7pOBsmYIIeq2j9d0EVy0adTTONcfLmnjOrM0Fo7Kd3TLJPRN5+4b7obYZyT5IHLOgcML+cV6e4MmXR3hBw2OLf/6IjOAcPLWH5uv+/Q+H+vMN/5rbUfj/scAAAAmExV3TjdDSmT5BXLgimS/F9fjIf1k7ukC0DYDIPlnpvkoWPaGJ6RZK03JE20lwDATAmoANjZzkzy7hU+H1z0vuaIz77Tv96nqmYRGX5ekn+bQT7DWpK3jPyg6zw/CCr4UZZF9Q+l+2a6RxUmF/0dD0iyfz/+1lXWZfhk8qCxqZZ1ZFhmsD0r3RM/pqaqrlBVv1ZV1x0MSQYBJtff4OLf2AdPjDLcMWP573vLLD1Ccq2/7+5Jbjj0/qCcX66q7pr1mXUdAQAAgA1prX0vyeCOg/epqlHXCO4/NP7GZZ9N41z8Qqs0Io9hg3aBvavqsss+u0v/+qExN8EYtS7L21wG5/Z3rqp9VlnGqPmS5MHrmA8AAACYjtsMjb9yXKLW2keSfHnEPFNRVbsmObSf/M/W2mlj1uOCJK9Z42K1lwDAjAmoANjZvtaflI0ziBa/9IjPBidyByf5ZlW9qKruVlVXmOoaLvlaa+2c1ZNN1RmrPD3gzP71pBU6/A+nW/47Hjg0/rGqauOGJD8dSrtvxvvKCp8Nf5dR23RdqupmVfXmqvpBku8lOTHdoyMHw0P7pOs5gR5l0u80/Pt+Z5Xfd/hOD8O/7zuztP2Oqqr/qqrHVdUN+4aPlcy6jgAAAMA0DG7WcOUkvzvi80FAxfH9XQ+HTeNcfNgZrbUfrLCua2kX+P2V1qNfl8ePWY/Buf21kpxUVa+qqvtV1dVWWKckOS7JN/rxF1TVJ6rqL/u2lIutMi8AAACwcdftX89L8plV0h7fv/7aJpy3759kcAPGE1ZJ+4lVPh/QXgIAMyagAmBnG/noviGDYItR/wdPT/KqdJHvV0zyqCRvS/K9qvpCVf1NVV1pamvaPQVi1tb6+6w13fIO+Fdc9xp1xj7tYNzjGJetx6h1WZeqOjz/P3v3H2x5Xddx/PVZl18J62YqrNoPBc0SSlFBERVFsdA1QENNR9Py56gpTU6NYzWWTuOgVFKCWZZFKZktkZo/Mk2jxJ+TRDlqgGRIGMGCprHspz++3+teLvf3nnvP3X0/HjN37vn1PefDuXuH+/2c7/PzHXZ2z0xy5yUefsjevFYWeX/nBEETf3/HSYgnJflqhjN7PDrJG5N8Ksn1rbV3t9aeuMDzrPfvCAAAAEzCjuzZF3/G7Dtaa8cmud94db6zZE56rmO5cy7JZOYFbjOH0Xv/gySvS7Irw5k3npNhBcirW2tfaq29obV2uzO79t5vSbI9e1a4fMj4PB9PckNr7W9aaz+1jMUaAAAAgNWZOY7h+t77riUe+7Xxe0vy3Ws0jmRYqHIx1y7zOc2XAMA62zztAQCwMY07Oj/TWntDkqdnWLHwwUkOTHL/8eus1toze+8XTeAlb53Ac2w0s3cCtye5cpnbLbWTvaZaaycn+ZXx6r8nOTvDDu5XknxjZjKitfaaJK+eyiAHs9/fY5Pcsszt/mP2ld77x1prRyV5cpJTkzwyyT2TbElyepLTW2vvT3LG7KBlCr8jAAAAsNd67ze31i7KsC97RmvtRbPOGjpzdopbk7xzns0nsi8+ITNjeV+SV672SXrvr2qtvSVDXHJykodmCECOTHJWkpe21l7Wez9vznaXt9aOyTDnsz3DfMJRGQ5CePz4dVZr7dTe+1TnegAAAGA/1qc9gFk2wljMlwDAKggqAFhU7/3yDAfNv7q1dnCSEzN8uP6sJIcm+bPW2pG992vWYTizK/vFzrJ0x7UeyDLNPgXjDb33y6Y2kpV53vj9f5I8tPd+3QKPW+rMFWtt9vt7Xe991QdnjAeOXDB+pbV2ryRPSPLSJPfNsFP/2iSvmGfbjfQ7AgAAAMtxQYagYkuSJyZ5V2ttU5Knjfd/cIEPtSe2Lz4B/53k7kkO3Ns5l977VRlWTHxda+2ADCsonpnkBUkOTvK7rbVP9N4/O2e7WzOc8WNHkrTWtiX5sQxnsXzQ+HV+hgUbAAAAgMm5fvz+Pa21zUucpeKI8XvPcBzEbD3DmSsWOwYlWfg4lNnPd/gSz7HU/ZNgvgQAVmGpPwQA4Dt679/qvX+o9/7cJL8w3nxIhg/eb/PQNRrCTbMuL3Yaxvuu0euv1OydxodPbRR7LPfncv/x+98tElMkw9kYpmnN3t/e+xW993MzTAjMHBxy5jK2W+7vCAAAAEzT+5N8fbw8c1aKRyW5x3j5ggW220hzHTNjeXBr7cBJPWnv/Zbe+yW995dnz3vTkjxlGdte03t/W5KHJfnMePMTW2uHTGp8AAAAQJJkJhY4MMkDlnjsceP3L/be/2/OfTPHoSx4DEprrWU4y8J8vpzkf8fLD1liHEvdPwnmSwBgFQQVAKzW3866fJc5931r5kJr7aAJvuYVsy4vdjD/0yf4mnvjM9lzMP7zx7MXTNPMz2Wpn8nMGawWPNNHa+2BSY6fxKD2woeSfHO8/LJxEmOieu87k3xyvDr33/lSFvsdAQAAgKkZV228cLx6amtta/Z8GP7NjCsIzmPN98VX4K/G73dK8pw1eo1V7dv33m9J8tHx6uYkWyc5KAAAACAfmnX5uQs9qLX2sCQ/PM82M2aOQ1nsGJQfzwL79uMcy0fGq6eMZ2OYbxybkjx7kdeYFPMlALAKggoAbqe1dufW2vYlPhQ/ZdblK+bcd82sy0dObmS5LHtO2/iS+WKN1tqZSX5ygq+5ar333RlOf5gk907y9sUCk9baltbaS9ZwSDM/l3sv8bP94vj9xNba7VZZaK3dNckfT3pwK9V7vyHJuePVE5KcM05CzKu1dnhr7Wfn3Pb4hSY0xvvvlD2rVVwx6/a9/R0BAACAaZs5C8VBGWKKJ4/XL+q93zzfBpPYF5+gP0py9Xj57NbaIxd7cGvtxNbao+bc9szW2uaFtskC+/attUfMN2cy6/4DM5zxI0luTrLYGUABAACAFeq9X5rkU+PV57XWTp77mPHz/vPHq7uTvHmep5o5wP/41trtzsbZWjsiyZuWGM7M8x6U5PzW2h3mecwvJTlmieeZBPMlALAKi/2PD4C6tmSo1q9srb07ySeSXJVkV5JtSbYnmfkw/KtJ/nrO9pfMunxOa+21GQ7m7+NtV46V/or03ne11s7PsKN5dJIPt9Zen+QrSQ7PEFL89Pj6J6z0+dfIeUkel+T0DOM7dvxvuDTJjRne6/slOSnJkzKcReLceZ9p712SYQWCuyV5Y2vtT8YxJMktvferxstvz/AzvmOSj7bWfiPJp8f7TkhyVpIjkvxjhlMyTtMvZ9jhPp31x/UAACAASURBVD7JzyU5qbX2e0k+l+QbGU7Lef8kj82wasTnk7x11vZPT3Jxa+2DST6QPdHOYRn+jb0kyT3Gx543a7u9/R0BAACAqeq9X9JauyLJvZK8NntWBbxg4a2S7P2++KTG/+1xYY2PJDk0wzzROzKcXeOKDAtKbUvyoAzzMsckeWn2HCiRDAtGnD3u21+S5MsZ5mYOzzCf86LxcTfntu/LyUle3Vr7WJL3JPnnDAcBHJLkvklemOTY8bG/v5p5MAAAAGBJz8vwWf2BSd7bWntTkoszzE88MMkvZlj8MknO7r1fNs9zvCXJizMcR3lxa+01ST4+PufDMxwfcUCGhSnvM98geu8Xt9YuznCcwPYk/9BaO2fc5m4ZjmN5aoYAZLEzYew18yUAsDqCCgAW8wMZdg4Xck2Sn5i7amHv/UuttQuTnJmhTD9lznb3SnLlKsf060keneShGQ7u3zHn/o9kOAh+vh3hddd77621pyb5rQw7h0cmef0im/zXGg7nHRlilHsnefn4NeOqDD/v9N7f1Vp7W4b44u5JfnvO89ya5BUZDpCYalAxTgY8LskfJjkjyY9m8SBl5zy3HZDk1PFrIefl9u9DssrfEQAAANgg/jTJq7Inpvh6kvcvtsGE9sUnovf+T621k5JcmOR7kzxj/FrJWA7PcCDAi+a5LxkWo3ha7/3qObdvyhCWPOr2m3zHRRnmYgAAAIAJ671/rrW2PcmfZ1gU8efHr7l+Jwvsn/fe/6W19sokb8xwDMQ5cx5yfZLTkvxaFggqRs9I8r4MEcbxGY7PmO2zSV6QPYtZrhnzJQCwcoIKAOZzVZLjMhxgfkKS78+ws3RokhuSXJ6h6n9L732hD8WfmaGuf0qSH8yw4v+mvR1Y7/2brbXHZDig/2lJjkpyS5IvZDh14XkZdgg3jN77LUle3Fp7c4YVEk5K8n0Z3s+bM6wC8OkMO9drdiaD3vvNrbUTMuyYnpLh5/pdCzz2ua21Dyd5fpIHZFh94WtJ/j7Jub33S1trv7pWY12J3vtNSZ7cWjsxybOTPCJDCHJIhh3/L2c4I8h7MpyFYrZXJPlgksck+ZEMKzHcNUM0cnWGs3C8tff+8TnbTeJ3BAAAAKbtggxBxYwLl7M64F7ui0/UeJDAfTKs9rg9wwqUd0myO8MqiP+aYZXFv+i9f2HO5kcneUKSEzMsgnF4hrjkpiT/liEueXPv/do5252dYZXFx46vd/cMK04mw/zJpUne3nt/z8T+QwEAAIDb6b1/oLV2VIYFJU/NsMDkQUmuTfKxJOfN83n/3Oc4p7V2eYbjB47LcBzFfyZ5b5LX996/0lpbahw3jRHDC5M8K8kPJekZ5kjemeQ3kxyxyv/MFTNfAgAr03rv0x4DAAAAAAAAAAAAAADAutrrlcIBAAAAAAAAAAAAAAD2NYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5Wxe7xdsrR2U5Jjx6nVJbl3vMQAAALDh3SHJXcfLn++9f3uag4FJMS8CAADAMpkbYb9jXgQAAIBlWtd5kXUPKjLsHH9yCq8LAADAvukhST417UHAhJgXAQAAYKXMjbC/MC8CAADASq35vMimtXxyAAAAAAAAAAAAAACAjWgaZ6i4bubCpZdemm3btk1hCAAAAGxk11xzTY477riZq9ct9ljYx5gXAQAAYEnmRthPmRcBAABgSes9LzKNoOLWmQvbtm3LPe95zykMAQAAgH3IrUs/BPYZ5kUAAABYKXMj7C/MiwAAALBSaz4vsmmtXwAAAAAAAAAAAAAAAGCjEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmbpz0A9t7u3buzc+fOaQ9jw9i9e3duuumm29x22GGHZdMm/RCL27Jli38nAAAAwLLsS3Ny5sumy5wTAAAAAPOZb47RXBIArD9BxX5g586dOe2006Y9DNjn7dixI1u3bp32MAAAAIB9gDk5lsucEwAAAADzmW+O0VwSAKw/KSMAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAABgHd14443Lug0AWFuCCgAAAAAAAAAAAAAAoJzN0x4Aa+MbR5+RvvmgaQ9jOnZ9K4de9pe3uenmo09PNh88pQGxEbVd384dL3v3tIcBAAAA7Ec27Jyc+bJ1Y84JAAAAAABg3yKo2E/1zQelH3DItIcxFW2+GzcfXPb9AAAAAGB9bNQ5OfNlAAAAAAAAML9N0x4AAAAAAAAAAAAAAADAehNUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOZunPYCNZvfu3dm5c+dtbtuyZUs2bdKeAAAbh79ZAIBp8XcIADDD3wUAAACwert27VrWbQDA2hJUzLFz586cdtppt7ltx44d2bp165RGBABwe/5mAQCmxd8hAMAMfxcAAADA6l177bXz3nbkkUdOYTQAUJclggAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAAAAAAAAAAyhFUAAAAAAAAAAAAAAAA5QgqAAAAAAAAAAAAAACAcgQVAAAAAAAAAAAAAABAOYIKAAAAAAAAAAAAAACgHEEFAAAAAAAAAAAAAABQjqACAAAAAAAAAAAAAAAoR1ABAAAAAAAAAAAAAACUI6gAAAAAAAAAAAAAAADKEVQAAAAAAAAAAAAAAADlCCoAAAAAAAAAAAAAAIByBBUAAAAAAAAAAAAAAEA5ggoAAAAAAAAAAAAAAKAcQQUAAAAAAAAAAAAAAFCOoAIAAAAAAAAAAAAAAChHUAEAAAAAAAAAAAAAAJQjqAAAAAAAAAAAAAAAAMoRVAAAAAAAAAAAAAAAAOUIKgAAAAAAAAAAAAAAgHIEFQAAAAAAAAAAAAAAQDmCCgAAAAAAAAAAAAAAoBxBBQAAAAAAAAAAAAAAUI6gAgAAAAAAAAAAAAAAKEdQAQAAAAAAAAAAAAAAlCOoAAAAAAAA+H/27i7EqvPcA/g7H1WmWuNI1VOI0ptCYSyci4wpLfE2lEapSvxASS4KsaA4aAuFMqZQp4XeTJmJXhgopEFRE9R0YihpoRRDW/y4OFAHAr3TQIi22hjt4HScORfn7OBst9u9ZvaatfZ+fj8I4trr43nfvffqs177nwEAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAAAAAAAAAAAAAAMIRqAAAaHN3794tuoRZJicnS33+vOsrWruPr1q08WZlfoB63CMAgKJV+pFG+pKH95mcnAzVy1SPNa+xZzlv1hoivV8VRYw5y3eq2dednJxMt2/fznxcnsq2bgqUy5kzZ4ouAQAAIDcXL14suoRSEagAAGhjt2/fTtu2bcv8j5V5mZiYSD/84Q/TxMREKc+fd31Fa/fxVYs23qzMD1CPewQAULRKP3L79u0n9iUP9y4TExPpwIED6cCBAyF6meq+La8+Lst5s9YQsfcsYsxZvlPNvu6BAwfS3r1709atW9PHH3/c8HF51lm2dVOgXEZGRtJrr72WRkZGii4FAACg6cbGxtKPf/zjNDY2VnQppSFQAQDQxgYHB9O///3vdOjQoaJLSSmldPz48fS3v/0tnThxopTnz7u+orX7+KpFG29W5geoxz0CAChapR8ZHBx8Yl/ycO9y/PjxND4+nsbHx0P0MtV9W159XJbzZq0hYu9ZxJizfKeafd3x8fH097//PU1PT6f9+/c3fFyedZZt3RQol3Pnzs36EwAAoJ0MDw/P+hOBCgCAtnXp0qU0Pj6eUkrp6tWr6dKlS4XWc/369XT69OmUUkqnT59O169fL9X5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L6nTp1KJ0+e/Py1U6dOtXUvU923Xbp0KZc+Lkt/mLWXjNh7FjHmLN+pZl/31KlTs7bdvHkzvffee088Ls85Ktu6KVAuzz//fN2/AwAAtLKXXnqp7t+jEqgAAGhD09PTaWhoaNa2oaGhND09XUg9MzMzaXR0NE1NTaWUUvrPf/6TRkdH08zMTCnOn3d9RWv38VWLNt6szA9Qj3sEAFC06n6kolZfUr3v1NTUrLWPqampNDIy0pa9TK2+bWhoqOl9XJb+MGsvGbH3LGLMWb5Tzb7uyMhIevDgwSOvDQ8P19xeq95m11m2dVOgXG7dupXu378/a9v9+/fTrVu3CqoIAACgee7du5euXbs2a9u1a9fSvXv3CqqoPAQqAADa0LFjx9KdO3dmbbtz5056/fXXC6nnwoUL6fLly7O2Xb58OX3wwQelOH/e9RWt3cdXLdp4szI/QD3uEQBA0Wr1IxXVfUm9fSuuXLnSlr1MrbFXrwU1o4/L0h9m7SUj9p5FjDnLd6rZ171y5UrN1x48eJBeffXVxx6X5xyVbd0UKJctW7Zk2g4AANBKXnjhhZrbN27cuMCVlI9ABQBAm7l9+3Z6++23a7721ltvpdu3by9oPRMTE+no0aM1Xzt69GiamJgo9Px511e0dh9ftWjjzcr8APW4RwAARavXj1RU+pJG9q04cuRIW/UyWcY+nz4uS3+YtZeM2HsWMeYs36lmX/fIkSN19/nzn/+cPv7440eOy3OOyrZuCpTLyMjIvF4HAAAos7Gxscf+BtDp6ek0Nja2wBWVi0AFAECbGRwcfOyvqJ+enk6HDh1a0HqOHz+ebty4UfO1Tz75JJ04caLQ8+ddX9HafXzVoo03K/MD1OMeAQAUrV4/UlHpSxrZ4JWy9AAAIABJREFUt+LGjRtt1ctkGft8+rgs/WHWXjJi71nEmLN8p5p93Zs3bz5xv/379z9yXJ5zVLZ1U6Bczp07N6/XAQAAymx4eHher7c7gQoAgDZy8eLFND4+Xnefq1evpkuXLi1IPdeuXUunT5+uu8+pU6fS9evXCzl/3vUVrd3HVy3aeLMyP0A97hEAQNEa6UcqTp48mU6dOpXp/CdPnmyLXibLPFXMpY/L0h9m7SUj9p5FjDnLZ6WZ17527VrD38+bN2+m99577/Pj8pyjsq2bAuXy/PPPN3U/AACAMtm9e3dD+7300ks5V1JeAhUAAG1ieno6/fznP29o36Ghocf+NLZmmZmZSa+99lqampqqu9/U1FQaHR197K+Vy+v8eddXtHYfX7Vo483K/AD1uEcAAEVrtB+pePDgQXrw4EGmazx48CCNjIy0dC+TdZ4qsvZxWfrDkZGRNDo62nAvOT09Ha73LKLfzvpZada1Z2Zm0ujoaKbv5/DwcJqamsp1jsq2bgqUy61bt9L9+/cb2vf+/fvp1q1bOVcEAADQPPfu3UsfffRRQ/teu3Yt3bt3L+eKyqm76ALKptYC2aefflpAJY2rWV8bLDBDrmp8R8r+XQd4WK171htvvJHu3LnT0PF37txJr7/+evrBD37Q7NI+d+HChXT58uWG9r18+XL64IMP0oYNGxbs/HnXV7R2H1+1aOPNyvwA9WS9R/z1r399ZLvnKSKyJkdN1pwIptbney7/R+Qs/ch8XLlypaWfd+YzT1me9bJc58qVK5lqOHbsWLjn0yKeyefyWWnGtS9cuJDpM5HS/4Wd9u3blz788MOG9p9LnceOHSvVuilQLlu2bMm8/5/+9Kd8igEAAGiyF154IdP+GzduTH/84x9zqqa8mh6o6OjoePoJu/xXs6/ZTJ999tkj215++eUCKpmnB/dTSl8sugoorweP/pSRlvyuAzzk/PnzmfZ/66230vbt21Nvb2/Ta5mYmEhHjx7NdMzRo0dTf39/6unpyf38eddXtHYfX7Vo483K/MDCarV1kbncI379618/ss3zFPw/a3JYc4L02WefpRUrVjS8/1z6kfk4cuRISz7vNGOeGnnWy/v9ePvttzPt3+rPp0U8k8/nPZzPtScmJtKRI0fmdN1GwxQVWeq8fft25s9dnuum0O5abV1kZGRkzscNDAw0uRoAAIDmGhsbm9Nv+hwbG0ubNm3Kqapy6szhnNef8F/+P2IIACCgrD8Bcnp6Oh06dCiXWo4fP55u3LiR6ZhPPvkknThxYkHOn3d9RWv38VWLNt6szA8suJZaF5nLPeKf//xnTtUAABHNpR+Zjxs3brTk804z5qmRZ72834+s61et/nxaxDP5fN7D+Vz7+PHj6ebNm3M6NqssdQ4ODpZq3RQCaKl1kXPnzi3ocQAAAAtpeHh4QY9rZXkEKgAAaBFXr15Nd+/ebeo5Jycn09mzZ+d07JkzZ9Lk5GSu5797926u9RUt7/kvm2jjzcr8APXM5x4BANAMRfUjrfa808x5qjf2svaHrfZ+VRTxTN6M93Au1y7is9NInXfv3k3j4+NzOn8e66ZAuZw5c6bQ4wEAAPJ08eLFQo9vNXkEKtY84b/+HK4JAMAcrFu3Li1durSp51y0aFHasmXLnI7dunVrWrRoUa7nX7p0aa71FS3v+S+baOPNyvxAIVpmXWQ+9wgAgGYoqh9pteedZs5TvbGXtT9stferoohn8ma8h3O5dhGfnUbqXLp0aerr65vT+fNYN4UgWmZdZOvWrYUeDwAAkKdnn3220ONbTXezTzgzM/NRvdc7Ojqafcmm+tKXvvTItt/85jfpqaeeKqCaxnz66afp5Zdfnr2xa3ExxUCrqPEdKft3HeBhtf73v7OzM9Ovr+/s7EyHDx9udmkppZR2796d/vCHP6QbN240fMzq1avTrl27FuT8eddXtHYfX7Vo483K/MDCarV1kbncI7785S+nf/zjH7O2eZ4iImty1GTNiWBq3Qtr/TtLPXPpR+Zj1apVLfm804x5auRZL+/3I+v6Vas/nxbxTD6f93A+1969e3f6/e9/n27evDmn47PIUufQ0FDaunVradZNod212rrI5s2b07lz5+Z0HAAAQNkdPHgwDQ8Pz+m4aJoeqGh1nZ2P/tKOp556Ki1fvryAauahZAsRUDo1viMt+V0HeMjGjRvTb3/724b337ZtW+rt7c2llp6enrR3797005/+tOFj9u7dm3p6ehbk/HnXV7R2H1+1aOPNyvwA9czlHvH9738//fKXv5y1zfMU/D9rclhzgpr/zlLPXPqR+di3b19LPu80Y54aedbL+/148cUX0+nTpxvev9WfT4t4Jp/Pezifa/f09KR9+/bN6bpf//rX04cfftjw/lnq7O3tzfy5y3PdFCiXgYGBOQUqBgYGcqgGAACguTZt2pR+9atfpZmZmYaP6ezsTJs2bcqxqnLKtqoNAEBpvfzyy2nZsmUN7bts2bL0yiuv5FrPhg0bUn9/Y7+9u7+/Pz333HMLev686ytau4+vWrTxZmV+gHqy3iO++c1v5lwRABBNln5kPlr9eWc+85Rl7Fn7w2eeeabhfffs2RPu+bSIZ/K5fFaace0NGzY0/Hmo6OrqSkeOHMl1jvbs2VOqdVOgXM6ePZvr/gAAAEU6f/58pv3ffffdnCopN4EKAIA20dnZmQYHBxvad3BwMPNPjMyqo6Mj7d+/P3V31/+laN3d3Wn//v2Zf9X3fM+fd31Fa/fxVYs23qzMD1CPewQAULRG+5GKrq6u1NXVlekaXV1dLd/LZJ2niqx9XNb+cGBgoOF9Ozs7w/WeRfTbWT8rzbp2R0dHGhgYyPT9PHjw4OfXz2uOyrZuCpTLihUr0uLFixvad/HixWnFihU5VwQAANA8S5YsSWvXrm1o37Vr16YlS5bkXFE5WQ0CAGgj69evT319fXX3WbduXVq/fv2C1LNmzZq0ffv2uvvs2LEjrVmzppDz511f0dp9fNWijTcr8wPU4x4BABStkX6kYufOnWnHjh2Zzr9z58626GWyzFPFXPq4LP1h1l4yYu9ZxJizfFaaee01a9Y0/P1cuXJl+u53v/v5cXnOUdnWTYFyef/995u6HwAAQJm8+eabTd2vHQlUAAC0maGhocf+FLXOzs50+PDhBa1n9+7dadWqVTVfW716ddq1a1eh58+7vqK1+/iqRRtvVuYHqMc9AgAoWr1+pKLSlzSyb8WqVavaqpfJMvb59HFZ+sOsvWTE3rOIMWf5TjX7uitXrnzifqOjo48cl+cclW3dFCiXzZs3z+t1AACAMjt48OC8Xm93AhUAAG2mt7c3vfjiizVf27ZtW+rt7V3Qenp6etLevXtrvrZ3797U09NT6Pnzrq9o7T6+atHGm5X5AepxjwAAilavH6mo9CWN7Fuxb9++tuplsox9Pn1clv4way8ZsfcsYsxZvlPNvu6+ffvq7vPtb387feUrX3nkuDznqGzrpkC5DAwMzOt1AACAMtu0aVPq6Oio+VpnZ2fatGnTAldULgIVAABtaM+ePWnZsmWzti1btiy98sorhdSzYcOG1N/fP2tbf39/eu6550px/rzrK1q7j69atPFmZX6AetwjAICi1epHKqr7knr7Pu6YdlFr7NVrQc0Ye5b+MGsvGbH3LGLMWb5Tzb7uM888U/O1rq6u9LOf/eyxx+U5R2VbNwXK5ezZs5m2AwAAtJLz58/X3P7uu+8ucCXlI1ABANCGOjs70+Dg4Kxtr7766mN/pX3eOjo60v79+1N3d3dKKaUvfOELaWBg4LHJ54U+f971Fa3dx1ct2nizMj9APe4RAEDRqvuRilp9SfW+3d3ds9Y+uru727aXqdW3HTp0qOl9XJb+MGsvGbH3LGLMWb5Tzb7uwMBA6urqeuS1H/3oRzW316q32XWWbd0UKJcVK1akxYsXz9rW09OTVqxYUVBFAAAAzbNkyZK0du3aWdu++tWvpiVLlhRUUXlYGQIAaFPr169PfX19KaWU1q1b99ifCLdQ1qxZk7Zv355SSmn79u3p6aefLtX5866vaO0+vmrRxpuV+QHqcY8AAIr2cD9SWdt4XF/y8L47duxIO3fu/Py1HTt2tHUvU9239ff359LHZekPs/aSEXvPIsac5TvV7Ovu2LFj1raVK1em73znO088Ls85Ktu6KVAu77///qy//+53vyuoEgAAgOZ78803Z/39jTfeKKaQkhGoAABoY0NDQ+mLX/xiOnz4cNGlpJRS2r17d/rGN76Rdu3aVcrz511f0dp9fNWijTcr8wPU4x4BABSt0o8MDQ09sS95uHfZvXt36uvrS319fSF6meq+La8+Lst5s9YQsfcsYsxZvlPNvm5fX1/62te+ljo7O9Po6GjDx+VZZ9nWTYFy2bx586w/AQAA2snBgwdn/UlKHTMzMwt7wY6Op1NK11NK6fr166X7STP/+te/0ve+971Z29555520fPnygip6slo13/3vnWnmCz0FVVSsjv9MpKX/c3LWtsjzQW21Pidl/64DPCxLz3L37t20dOnShSrtiSYnJ9OiRYtKe/686ytau4+vWrTxZlXm+fnoo4/SmjVrKn9dMzMz81GR9UCzlH1d5GGPu0e04toJ5KGV1uSsly0ca05Ek3dfUOlHGnl2eXifycnJlFIq7fNOs1XPT17PelnOm7WGMj+f5qWIMWf5TjX7uimldO/evdTb25vpuDzrLNu6aTVrI7SjVloXOXPmTNq6dWvRZQDQ5v7yl7+kn/zkJ7O2/eIXv0jf+ta3CqoIgCguXryYnn322aLLeKyFXhfpzvPkAAAUr2z/KJj3P9bO9/zt/o/37T6+atHGm5X5AepxjwAAilbpRxrpSx7eJ1ofUz3evMaf5bxZa4j2nqVUzJizfKfKcN286yzbuilQLsIUAABAOytzmKIInUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHC6iy6gbJYtW5beeeedR7YBAJSJngUAKIo+BACo0BcAAADA3K1evbqhbQBAvgQqqnR2dqbly5cXXQYAQF16FgCgKPoQAKBCXwAAAABz19396P99s9Y2ACBfnUUXAAAAAAAAAAAAAAAAsNAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAAAAAAgHAEKgAAAAAAAAAA/pe9Ow+X5yrrBP59fwkBEkgCBIkgEhYVUFSGRcMiQTaFAMoIMi4QhUEYZRTFCYhL1FEQhhFkGRAYAwoIKiEBRQhLkE0JOGyyLwECgSQsISwh25k/qi63c+nbd+v11ufzPPXc6ttVp6r7rVNVfareUwAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAINz8KJXgNmoS7+56FVYnEsvGvu/mv+asMQGXUcAAACAmVja9gbtZXOztNsAAAAAAAAAY0mo2KcOe9/LFr0KS+Vq7ztl0asAAAAAwD63Sm1y2ssAAAAAAAAgObDoFQAAAAAAAAAAAAAAAJg3CRUAAAAAAAAAAAAAc3TEEUds638AwGxJqAAAAAAAAAAAAAAAAAbn4EWvAHt3+OGH5+Uvf/miV2NpXH755bnwwguv8L+rX/3qOXBA/hCTHX744YteBQAAAGBFrFKbnPayxdLmBAAAAMA449oYtSUBwPxJqNgHDhw4kCOPPHLRq7FUrnnNay56FQAAAADYx1atTU57GQAAAAAsl1VrYwSA/UoXZAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAACdn8Y+AAAgAElEQVQAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBkVABAAAAAAAAAAAAAAAMjoQKAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAAAgyOhAgAAAAAAAAAAAAAAGBwJFQAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAAAAAZHQgUAAAAAAAAAAAAAADA4EioAAAAAAAAAAAAAAIDBOXgByzxobeScc85ZwOIBAABYdht+Lx602XSwgrSLAAAAsCVtI+xT2kUAAADY0rzbRaq1NutlXHGBVbdOcuZcFwoAAMAqu01r7R2LXgmYBu0iAAAA7IK2EfYF7SIAAADswszbRQ7MsnAAAAAAAAAAAAAAAIBltIgnVFw5yS36l+cluWyuK8DQHZ31Hi9uk+RzC1wX2IrtlVVhW2WV2F5ZFbbV7pGN1+7H39ta++YiVwamRbvIyrAfHgZx3v/EeP8T4/1PjIdBnPc/Md4dbSPsOyvSLmKftdzEZ7mJz/ISm+UmPstLbJab+Cw38VleqxKbubaLHDzLwsfpP5DHkbIQVTX68nOttbMXtS6wFdsrq8K2yiqxvbIqbKvf8slFrwBMm3aR1WA/PAzivP+J8f4nxvufGA+DOO9/Yrwn2kbYV1ahXcQ+a7mJz3ITn+UlNstNfJaX2Cw38Vlu4rO8Viw2c2sXOTCvBQEAAAAAAAAAAAAAACwLCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHCqtbbodQAAAAAAAAAAAAAAAJgrT6gAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqAAAAAAAAAAAAAACAwZFQAQAAAAAAAAAAAAAADI6ECgAAAAAAAAAAAAAAYHAkVAAAAAAAAAAAAAAAAIMjoQIAAAAAAAAAAAAAABgcCRUAAAAAAAAAAAAAAMDgSKgAAAAAAAAAAAAAAAAGR0IFAAAAAAAAAAAAAAAwOBIqWElVdYOqenJVfbCqvlZVX6yqM6vqt6vq0D2WfaCqbl5VJ1TVM/tyv1lVrR+Om9LHYCBmvL0eWlX3q6r/05f5paq6pKq+UFVvq6qTquroaX0W9rcZb6s3q6pfq6rnV9W/V9XZVXVRv5yPV9VLquq+VVXT+jzsX7PcVics89B+W107HzhrFsth/5nxvvWEkW1yq+GEKX0kgJVVVYdU1UOr6tVVdU7/W/+rVfWhqvqrqrrdNsv5yao6pT+n/Wb/95Sq+slZf4ahqqrvqKrjq+qPqupVVXX+yDHu5F2Ut+cYVtXBVfXwqnpTVZ1XVd+oqo9V1bOr6vt3uk5DN40YT7uNpC/vf/RlfbE/l/tgf253g11/2AGbdl3eUPaufrOJ83TNIsZVddeqOrmqPtrH54Kq+nBV/X1VPaKqrrbF/GI8RdOMcVUdU1V/VlXvrKov9/vsL1bVW6vq96vqO7ZZjhhPUVXduv/+XzNyrvTVvt79VVXdYYflOe8CpqKqDq+qB/b79zf25wYXVNXFVXVuVZ3RHw+uNcVl2odt07ziU1P63devz7ba1veyvstijvGZ6jWLIZznzSM21Z13bzcuE39TD63uTFLdb5nRz3zclMr9L9Wdi3+uuvspPllVf1NVx+6gjH1fd7YyzfhU1RFV9fPV/R56d19HL6nuuP6GqvqtqjpyG+WctZf6t19MOTYn7WC/tuVyquqo6to73lNVX+mH9/T/m9o55jKbVnyq6rhdHHvO2KSsQdWdvX5fu1ie486o1prBsFJDknsnuSBJ22T4UJKb7KH8B08ouyU5btHfgWF1hllur0l+MMmFW2yvrV/+zy76uzAs9zCHfevfbGNbbUnOSHKtRX8fhuUdZr2tTlju/9qwnLMW/V0Yln+Yw771hG3uW1uSExb9fRgMBsMihyQ3SPK+bewv/yJJbVLGgSTP3WL+5yQ5sOjPu9+GLb7zk3dQzlRimOSoJG+fUMZFSR666O9tlYa9xjhTbiNJcpMkH96inOMX/b2t2jCturxJ2Tv+zSbOyx3jJNdI8vJt1OsfFuPVi3GSX0zy9S3K+0KSu21RjhhPN77/so0615I8P8khW5TlvMtgMEx1SHLXbe6jzktyjz0uyz5sCeOTKf7uS3c9cjvr2xb93a5KfPrlnLDd7zVbXLPIQM7z5lR3jtlBXNaGV29S1qDqzoTv9IeTXLLhMx+3xzKvmuQfJ3ynlyX5g22UM4i6M6/4JPnJdMfrrbb5c5LceYuyztpm/Tlr0d/hKsSmL++kHezXJi4nyY/0cdxs/s8mue2iv8NViU+S43YQm7Xh2ZuUNai6s4Pv64w9LsdxZ8xwcGCFVNUtk7wkXYX+apLHJ3lD//qBSf5rku9N8o9VdevW2oW7WczI+CVJ3pvkSklusYdVZ4DmsL0enmStB7a3JHllkneku9B07ST365dxeJIXVtVXWmuv2tOHYl+a07710iT/lm5bfW+Sz6Vr+LlGkpsm+ZUkP5DkTkleUVV3aK1dvpfPxf4zp211s+X+RrrGkkuSXH0a5bK/LWB7vUe6hpzNnL3H8gFWVlVdKV2j4FrPj+9J8r/TJbZdPckdkvxWksOSPDLd/vQJY4r6kyQP6cf/X5InJvlYkhsn+R9JbpnkoenOc39nBh+FzqeSfDDJ3Xcx755jWFUHJTklyW36f70s3Y00X0x30eV3k3xHkmdX1Wf8Dt+V3cR4am0kVXX1dPuM7+n/9Zwkf5vkG0nunOSxfTkvqarbt9betYP1ZN1e6vIV7OY3mzjPxa5jXFVHJDk9ya36f52S5O/T7bMvS3L9dG1I/3lCGWI8e7uKcVXdPsnJ6W5WvTzdzfmnpjsH++50nV7dO8k1k5xaVT/QWvv4mHLEePqu2//9bJK/S/KmdHE+KMmx6c6Zr5fkQemum/3chLKcdwGz8Ol0bazv7MfPSXc8+a4kP5PuvP+oJKdV1W1ba+/e5XLsw3Zn1vGZxbXxdyT5pR2ux6qaV/1Zs+trFgM8z5t1bD6T7d3v9Nisn989f4tph1R3rqCqDiT5yyQHJzk33b58Gv5vknv2429I8tR0degW6Y41N05yUlWd01r7y03WbWh159vMID7XSnLldL9dT0/yz0neneTL6erozyf52SRHJ3nlNr/XU9OdB2zm4j2u81KaYd1Zs9V+7hObvVFV10/yinTnE5emu370yv7t45P8ZpLvTHcv061aa/vuuvsM4nNmtnfseXq6Nr5k62PP0OrO/0nyzAnvf22P5TvujLPojA6DYSdD1nvHuSTJsWPe/+2sZzedtMtl3DbdDRQ/muQq/f9OGin3uEV/D4bVGGa9vSa5XbobNW8+YZr7pjuxb0k+mk16WjUMe5jTvvXgLd4/KMk/jCznPov+XgzLN8xjWx1T5kHpGgVbkt/Levb7WYv+PgzLPcxp33rCSBnHLPozGwwGw7IO6S48ru0v35rkoDHT3CpdY2tL8qWN56/pkuDWeuY5M8lVN7x/aP//tX3/1J+YNeQhyR+mu3Bxnf71MSMxPXmbZUwlhkl+eWTZzxjz/k2y/oSqj2z1W8gwnRhnim0kSf5oZNm/vcmy1ralMxb93a3SMI26PKbMXf1mE+fljnGSF/TzXJQJbUTpOkcau58V4+WNcbqbEtbm+W+bTPPkkWmeLsZzi+8rkzwgY86X+/ePSpeUvPa9/9gm0znvMhgMUx822zdtmOanRvYbL9vlcuzDljQ+me7vvjOGdI4wx/pzwkgZx+xhfQdznjev2GxnPdIlXrQkX9m47xuZblB1Z5Pv4Df67+ADSf50JDbH7aHMHx8p57SN20W68/BPZr3t+hqblDOYujOv+KRLlnhWku+eMM0jR5bz+gnTnZU9tIGt+jCjunPSWjl7XLcXjKzP/ce8/4CR9/dl/GYRn20s88isPwHmIxOmG1TdGfnuT5rhMhx3NhkOBFZEVd02yR37l89rrb1tzGRPTrdjT5Jf73uh3JHW2ttba09rrf1ra+2iXa4uAzeP7bW19tbW2s+21t4/YZpT0/V4knSZg7fcyTLY/+a4b710i/cvS/KkkX/dcbNpGaZ5batj/Hq6Gyw/lOTPplAeA7DA7RWA8W43Mv74/tzzClpr78x6j0NHJrnZhkl+I/nWk14f2Vr7xob5v57uwkn66R6115VmXWvtD1prr2ytfX4PxUwrho/u/34xXYLkxnX9aLonUyXdDTI/vYd1Hoy9xnhabST9Odl/719+IN0527ctK8nz+pd3qqrbbJyG8aZUlzfa8W82cZ6dacS4qu6Q5Bf7l7/bWjttwvLauDYnMZ6dKdXjtXOzL7TWNutp749Gxo/d+KYYz0Zr7fjW2kvHnS/375+f7ikVa35mk6KcdwFTt9m+acM0L093Xpjs/jqTfdguzCM+ro3v3hzrz54N7TxviWJz16w/rezvN+776FTVdyf54/7lwzO93tDXjhmXpks6v8J20Z+Hn9i/PDLdU5I2rtug6s44s4hPa+0lrbWHt9Y+NWGap6Xr7CPpvtej9rrc/WaGdWfPqurodE8aSZJXt9b+buM0rbWXJnl1//IX+3n2jQXG52fTPQEmSf56Tsuk47izCQkVrJKfGhn/q3ETtNYuT5c1mHSV+c6zXinYxDJtr28YGb/xjJbB6lqmbfXCkfGrzGgZrK65b6tVdYOsX8B/eGttaX7Ys/SWad8KQHLIyPjHJ0z3sXHzVFWl6+EwST7YWvvXcTP3/1+7uHnffj6WwLRiWFXfm/Vkm5f2N9KMc/LI+ErfFLMPbdVGcuckR/Tjz+/P2cY5eWRcjBdkD7/ZxHm5/Vr/94IkT99lGWK83NbOsz6x2QSttQuSnL9h+lFivDgTj6XOu4AlsHatacfXmezD5mLX8dkB18Z3bx7x2YrzvPFmHZsHjYw/f0bL2A+ekeRq6bbNN06jwKq6epK79C9f21o7e5NJX5bu6SHJ+G1e3ZlBfHbgjP7vgSQ3nPOyV8EiY7OV+2T9Huqx1/V7J/d/D/Tz7CeLis/asadl/b4JZsxxZzIJFaySO/R/v5bknROmG92x3352qwMTLdP2euWR8S17OGBwlmlbfeDI+AdntAxW1yK21WcmOSzJX7fWzthjWQzLMu1bAVi/ySFJbjRhurWL7C3JR0b+f8Os99C2VWPy2vvXS3LMNteP2ZtWDO8wZrpv01r7XJIP9y8d45fLVm0k24pxul7n1m6KEuPF2e1vNnFeUlV1SNZvYjx97QnSVXVQVV2/qo6pqu3cQCTGy23t3GzTm0yq6vAka716fmjMJGK8OFsdS513AQtTVd+X5If7l7u5zmQfNkNTiM92uTa+C3OMz1ac520w69j0N1audRR2VpJ/mfYy9oOqekCS49M9eejRW0y+E7fJehL5pGPGxUnWEv1u0/cMPmrQdWeG8dkux55NLEFstrLdurMvr+svKj5VdeOsP8H0Ta21s+a1bBx3JpFQwSpZ68Xho+Me4z1i9AfEzTadCmZrmbbXO42Mf2BGy2B1LXRbraqjqurYqnpeksf1/z4/yQuntQz2jbluq1X1wCT3TPKlJL+123IYrEXsW/+qqj5bVRdX1flV9a9V9T+r6np7LBdgP3hx1ntRObGqDto4QVXdMsm9+pcvaq19ZeTtm4+Mb3XRUpvEcppWDHdTzvWr6rAtpmV+tmoj2VaM+3O8j/Yv1fUF2ONvNnFeXj+U9R5X31tVh1fVU9K1FX0q3RMNLqiq06vquAnliPFye1b/91pV9fBNpvm9MdOPEuPFmcqxdMz7zruAXamqQ6vqe6rqN9PdyHNw/9ZTdlGcfdiUTTk+27WTa+M3rap/q6ovV9VFVXV2VZ1aVQ8ac9PYvjPj+Oz2moXzvMy97vxMkkP78b9urbVtzDOoulNVRyZ5av/yxNba+ZOm36HdHDMOTvI9uylnP9adGcdnu9aOPZdk/fvdzI9V1buq6sKq+npVfaKqXlJVP7Xfnno9z9hU1Wuq6tz+uHNuVZ1RVY+pqmtsMeta3bmgT3Ydq7V2TtavM6k7e7ebJyMNpu707l9V7+8/64VV9ZGqen5V3XmP5TruTCChgpXQ9zq11hvRZo+ZSZK01r6UrjfgJLn+LNcLxlmm7bWqfijrNwW9t7UmoYJvWdS22v9waVXVkpyX5K1JfjlJpbtA/tOttS/vZRnsL/PeVvsf1WsNko9prZ23m3IYpgWeBxyX5DuTXCnJtZL8SLpEtY9W1a/ssWyAldY3Av9iuh5Qbp/kzP7i3o9W1V2r6g/SXZg8JMm/59tvzP2ukfGJ+/Yknx4Z1yaxPKYVw92UUxvmY0G22UayFquvbeN36VqMr11VV544JVM1hd9s4ry8Ri/EHUjXg9mvJzly5P+HJLlrktdX1YmblCPGy+3/JnlBP/6MqnpOVd27qm5dVferqlOy3ivin7TWXjumDDFegKo6kOQxI/966ZjJnHcBM1dVJ4xcZ/pauqc8PDnJdfpJnpDkRbso2j5sCmYYn+0se6fXxq+T5LZJjkjXu/j1ktwn3Y1976qqpb/pa6fmGJ/jsrtrFoM9z1tg3Rm9qfUFm051RUOrO09McnSStyR53pTLnvaxZ3B1J7ONz5aq6l5JfrB/+eoNnTWNc8N0HUpcLclV0z3p6gFJTknypn3WWd48Y3O3JNdOd9y5drokl8cn+XhV3XfCfGt1Z6v6l6zXnf1y7WchdadPfviF/uU3kvzdNmcdUt1JunbSm6X7rFdLcpN0x+zXV9UpVXXELst13Jng4K0ngaVw9ZHxr25j+q+le9z71WazOjDRUmyv/QHouUnWel993ITJGaal2FZH/EWSP15QjwEst3lvq09K1xD4tiTP2WUZDNe8t9ePJ3lZuu117YfojZL853S9Cl0lybOqqrXW/nKXywBYea2106rqVumSJR6Sb+/x5vPpekJ+Tmvt6xve28m+/Wsj49oklse0YmhbWFE7aCNZi/F2z+PWXC3JN3e3duzCXn+zifPyuubI+Inpfs/8c5LfT/KeJIen+63zhHQ37jyhqj7YWjt1QzlivMRaa5cleXBVvSLJ7yR5aD+MekOSP90kmSIR40V5VLob55LkZa21d46ZxnkXsEjvSvKw1tqZu5zfPmy29hqfiXZ4bfzyJK9L8k9J3p3kC+ni9p+S/Eq6m9dunuQNVXXb1tqnZrHOS2Za8dnrNQvned9uZnWnqr476z3rv7W1tlXP+oOrO1V1x3S/Vy5N8vBtPsFjJ6Z97BlU3ZlDfLZa/jWTPKN/eVm69ovNXJzktCSvSfK+JBek60Di2CSPSHez8u2TnF5Vx7bWLpjVes/DHGPz3iQvT/L2JJ9Nl1DxfUl+Psnd033H/1BV926tvWrM/LupOyt/zrbgunOHdOcGSXJKa+3CLaYfVN1J1zncaemOtx9Mt22uJQk9PF2i6k8lObWq7tZau2SH5TvuTCChglVxlZHxi7cx/Vqlu+oM1gW2sizb69OT3Loff35r7RVTLp/Vt6ht9ZfS3Txc6U5yb53uJPfXktyoqh7aWvv8HpfB/jK3bbWqfizdE1MW0ujCvjDPfesp6Y7xG7fTM5O8pKqOT3fh4kpJ/ryqTpv0qFKA/ayqDknXc8t9052HbnSddD3ifCJdQ+WonezbRxsBtUksj2nF0LawurbbRrIW452cxyViPDdT+s0mzsvrsJHxqyQ5Pcnx/Q34Sfek02dV1fvSPV3qQJLH97912oZ5EzFeWn2PtQ9KcotNJjk2yUOq6gOttc+MeV+M56yq7pQumSlJzk3XnjuO8y5gHl6e7klWSVfvb5yud9qfTvLiqvqN1tord1Gufdh0zCo+W9nJtfH7bdKT7puq6pnpErcfnK696ClJ7jfVNV2sWcZnGtcshnyet4i68wtZbyvdztMpBlV3+jblv0z3Hf15a+19M1jMtI89g6k7c4rPpOUflOSFSW7Q/+t/ttb+34RZbrtJ/Tmjqp6e5O/TJQDcLMkfJPnNaa7vPM0xNk9prZ005v//luQF/RORnpUu2fK5VXXj1tpFG6bdTd1Z2XqTLL7upHui/JrtHHsGU3d619vk855eVU9L8qokt0yXYPGIdJ0X74TjzgQHFr0CsE2jB7NDtjH92qNhvjGDdYGtLHx7rarHZr1XrzOT/Oq0ymZfWci22lr7RGvtfa2197bW3tRa+/N0j0D8pyTHJzmzqvbFY42Zmrlsq33vRWs/HJ/aWnvPTuaH3tz2ra21CybdQNY3rP9R//LQdD2yAwxOVR2W5LVJHpuu5+snpmtYvXK63q3vnuTN6S66v7yqNja27mTfPvqoWm0Sy2NaMbQtrKAdtpGsxXgn53GJGM/FFH+zifPy2nhR+8SRZIpvaa29Od2NWEl3TN94U74YL7G+F8S3Jbl3ks+ku5B+dLp4XT/dfvrrSR6Y5O1V9f1jihHjOepjcEq6jvouSnL/1tq5m0zuvAuYudbal/vrTO9rrZ3ZWvvb1tr90iXr3Shdb60n7KJo+7ApmGF8NrXTa+Ob3KS29t4lfVkf6v/101V1vWms5zKYZXymdM1isOd5i6g7Wb+p9ZtJXrKddZzw3n6sO7+T5KZJPpXkD2e0jGkfe4ZUd+YRn0memeQn+vFXJvnjSRNvUX8uTJdA9cX+Xw/rb3pfVXOJzaTvtH//2Ume17+8brqnJW20m7qzyvUmWWDdqaqrJLl///Kz6a7dTTSwurPV5/18uid+rT2V4pG7WITjzgQSKlgVo4/22c5jk9Z6strOI2Vg2ha6vfYZtn/av/xgknu21r42YRaGa2n2rX0W+C+lu1h6/XQ3ucGaeW2rj0v3+MdPp8tch91Ymn1r7y+TrF3AuNOkCQH2sZOS3LEff0hr7cTW2gdbaxe31r7SWjs9yZ2TvCHdTbpPqqofGpl/J/v20Z61tUksj2nF0LawYnbRRrIW452cxyViPC/T+s0mzstrdD973hY9O756ZPw2m5QjxkumT4x6cbqk1s8l+dHW2t+01j7fWruktXZ2a+2ZSX4s3YXZ6yZ5/piixHhOquqGSV6T5BpJLkvywNbav0yYxXkXsDCttb9O8nfp7oN5elVdc4dF2IfN0BTiM9Ysro231i7N+g2YyQDa1mcVnzG2umbhPG+DGdad26a7oTZJTtvqxuTt2E91p6pumq6DniR55AzvuZn2sWcQdWeO8dls+Y9P8rD+5ZuSPGBchxA70Vq7IMnf9i8Py/pTl1bKomMzxrNHxqd13FnJepMsRXzuk+TIfvyFe603yf6pO9vVWvt4uqf6JslNquq6OyzCcWeCgxe9ArAdrbWLquoLSa6VZGKv5VV1jaxXwk/Pet1go0Vur1X1X9JlQSfJJ5PcrbV2/l7LZX9atn1ra+38qnpLkrsluW9VXanvyYKBm+O2emL/97VJ7l1V46ZZK/uwqnpgP35ua+31O1wW+9QS7lvP7dfnqCSr3hMQwI5Vd0D/5f7lh1tr427IS2vt0qr6vXRPqjiQ5IQkj+rfPntk0q2epHb9kXFtEstjWjHcWM6k39tr5bQN8zEnu2wjOTvJj6Q73z9yi5sJ1mJ8XmvtmxOmY3qm9ZtNnJfX6H53q33n6LTX3vCeGC+vn8j6b9OntdY+N26i1tp/VNXfpOvh9lZV9UOttXePTCLGc9BflH9tusSWluSXW2unbjGb8y5g0U5N10vtYemOOy/awbz2YbO3l/h8mxlfG3//yPhQ2tanGp9xtnHNwnneeLOIzYNGxl8whfLW7Je686h0vW5/PMmhI20Mo35gZPzHq+rofvwVO7hJeeMx4x0Tpt3q2DOkujOv+HybqjoxyWP6l/+e5PjW2rR6XN8P9WdhsdnEVt/p2Umuk63P/ZL1urPK134WHR/Hnul4f5J79uPXS/e0j+1y3JlAQgWr5P3pepS8SVUd3Gc2j3PTkfEPzH61YKy5b69VdZ90JxsHkpyT5C6ttSE0vLE3y7ZvPa//e2i6hrRzZrgsVss8ttW1R9H9Uj9MclS6HhWT5I1JJFQwatn2rZs+YhtgAK6TZK3Xtkm9XCfJO0fGR/fR79/k/+Nok1hO04rhxnLetY1yPr0EvXANzh7aSN6f9Ue/3zTJv25S/sFJbty/VNfnZ1q/2cR5ef3HyPhBW0w7+v7G31xivLxuNjL+71tM+850CRVJF8fRhAoxnrGqOipdj4c36v/1yNbadm52cN4FLNp5I+M32OG89mGzt5f4XMEcro0PsV19avHZwqTv1nneeFONTVVdKcm3OiFI8s97LXPEfqk7V+7/3ijr7QuT/N7I+A2TbHefvptjz6VJPjKmnCHVnXnF5wqq6r8leUL/8gNJ7tFa+6RtGjwAACAASURBVMpuytrEfqg/C4nNBFt9p+9PcqskR1TV0Zt1/FBV35nk8P6lurMLVfUdSe7Rv/z31tr7dlvWGPuh7uzEXj6v484EBxa9ArADb+7/HpbuQLaZ0cczvWV2qwMTzXV7raq7JHlpukS5L6TrfeNjuy2PQVm2fetopvBSP+aLuVu2bRUmWZrttaqune5msmRnPRMA7BejN1hu1bHIlTaZ7xNZ34du9Zj6H+v/fibJWVutHHMzrRi+eWR803L6Hpu+t3/pnHTO9thGsq0Yp3ts+NqTEMR49YjzkmqtfTLJp/qXx9QmjyHp3Xhk/DMb3hPj5TWNc7NEjGeqqo5I8uokN+//9ZjW2jO2ObvzLmDR9nKdyT5s9qZyHXBO18ZvPjI+lLb1mV+n3cY1C+d54007NvdK96T1JHnRhI7BdmOIdWcvzkxycT8+6ZhxSJIfXZuntXbJhknUnRmrql9M8vT+5ceT3HWKT0Vao/5M31bf6XbrjvtQ9u7nst4WNM2nUyTDqzt7+byOOxNIqGCVvHxkfGwPZFV1IOuPBvpykjfMeqVgE3PbXqvqduke8XjlJBeky4D+j8lzwbcszb61qr4rybH9y0+21i6cxXJYWTPfVltrtdWQ7pHRSbeNrv3/uB1+Fva/pdm3JnlYkrWbkN44o2UALLMvJlnrIerYvieUzYw2+H1ibaS11tL95kqSm1bVj2aM/v9rvbWc2s/HEphWDFtrH856DzoPqKpDN1nkCSPjp+xqpdmVKbSRnNHPlyQPnnAz9wkj42I8J1P8zXZGxHmZ/UP/9/Akd5kw3f1Gxt+84b0zIsbL6hMj43fcYtqx52a9MyLGM9Gf3/xjkv/U/+tPWmt/tt35nXcBS+D+I+Pv3cmM9mFzsev4rJnHtfG+/eiXR/71L9Msf4ntOT7bsNU1izPiPG+cacfmQSPjz59CeUn2V91prZ2wjTaIPxyZ5c4j7521g+VcmOR1/cu79vdMjHO/rPeOP26bPyMDqjvzis+aqrpfkr9Kt/86O91TkaZ603af2L725JivJ3nHNMufl3nHZht+ZWR83HHntCSX9+OTnoh7Qv/38n6elbTg+Kwdey5J8qI9lvUt+6XubFdV3TDJ3fqXH2utbexoZiLHnckkVLAyWmtvT/Km/uVDqurYMZP9VtYfGf3UjZlRVXVcVbV+OHl2a8vQzWt7raofTndx47B0j9W6V2vtndP4DAzDPLbVqvreqvrxSevRn+C+KMkh/b+mnY3MinMewCqZ0771mKq65aT1qKrjk/x+//Ib6Rr6AAaltXZ5ut9MSXLdJI8bN11VXSPJ6I1ir9wwyVOSXNaPP62qrrph/qsmeVr/8tJ+epbLtGL4v/q/10zyxI1vVtWNkzy2f/nRrEAD8X4xjTaS1trFSf6if3mzJI8es5xjkzykf/nG1tqZu15pFkKcl95TklzUj//vqjp84wRV9QtJjutf/mNr7dOj74vxUntduovbSfKIqrrFuImq6ieT/HT/8jNJ3jX6vhjPRt/74ClJbt//66mttd/dRVHOu4Cpq6oTquoqW0zzqCT37F9+IutttGvvb+cagX3YLswrPtP43VdVd66qIye8f6Ukz816+/0rNp5vrpp5xGda1yyGdp43x33b6PTXTPeEiiR5b2vtXZOmH5lvcHVnGvoYr8XnpE0mWztmHJzkGVV10IYyjsp62/WX033PVzC0ujMt24lPVd09yYuTHJTk3HRPpjhrh8v5iY3nFBvev1q6Jy+tPTnmea21b+5kGfvNVrGpqltU1U22KONhSR7av/xcxpxvtdY+l+SF/ct7VNXPjCnn/knu0b/8636eQdvmvm10+u9Psnae8M+ttfO2uZxB1Z2qundN6Biuqq6TrjOatXvrnjlmGsedPdjqcbqwbH493aNfrprkNVX1p+l6871qukyzh/XTfTjJk3e7kKo6YcO/fnhk/Ceq6piR1x9trW3sAQuSGW+vfUPbq5Os/Wj93SQXVNUPTJjt3NbauTtdFvverPet103yuqp6d7pe29+Z7sfKpUmOTneB7iH9eJK8L8kTdvVJ2O/mch4AUzLr7fWYJG+oqrcleUWSd6drxEuSGyX5mX5Y6wng0TvtnQBgH/mjJPdNcmiSk6rqVul6Xvt4kquke2TtbyT57n7617XWXjNaQGvtw1X1pCSPSfd42rdU1Z8l+ViSGyc5MeuNwU9qrX1kth9pWKrqDklGL44cNTJ+k43tOK21kzeWMcUYPj9dT3u3T/KrVXV0kuck+VKS2yb5vXS99lye5L+31i7d/icdrr3GeMptJE9K8rNJvjfJE/sLc3+b7maPOyf5nXTt6t9It+9gm6ZRl6dInGdgSvvrT1XV76e78fAWSd7e76/fk27/er8kj+gn/0qSR22yOmI8A3uNcWvty1X1hHTnZ1dP8taqelqS09MdS6+T7rztv2a9U7jH9EmyG4nx9L04yd378dcned4Wx9KL+17Yr8B5FzAjJyV5clX9Q7qnU30syVfTHU9ukeTns54QdnGSh7XWLhtTzkT2Ybt2UmYcnyn+7ntwktOq6rR0Pet+KN155dWS3Cpd2/3N1+ZP19a/6k7K7OvPMZneNYshneedlDns2zZ4YNZvxNzJ0ymGWHfmorX2+qr623SxuU+S06vqKUk+m247eFzW265PbK19aZOihlR35qK6p1Kdkq7OXJKuDeJKWxx7zm6tfXnD/x6T5IVV9bJcsa4fkeR2SR6e9Rh/KN2+gcluleS5VfWGJK9K9/SeL6Tbxm+abv+59vv2snT7z69tUtbjkvxEkmsneXFV3TrrnW4dn66jxCQ5L935Bzv34JHxnRx7hlZ3npZuH/MPSd6W5Kx0++yj0nUu8ytZb4t7c5Jn7GYhjjsTtNYMhpUaktw73eNi2ibDh5LcZJN5jxuZ7uQJy9is7HHDpuUYDLPcXtM9Emkn22pLctKivxPDcg4z3laP28E2+sok117092FY3mEe5wFbLP+sfv6zFv1dGJZ/WJJ969fSNRAt/PswGAyGRQ5J7pqusXur/ebrklxjkzIOJHneFvM/N8mBRX/e/TYkOXknv30nlDOVGKZrsH77hDIuSvLQRX9vqzTsNcaZchtJupuFPzxh3guSHL/o723VhmnV5S2WcVa2+ZtNnJc7xkken+4Gw83m/3ySY8V49WKc7ia6P98ivi3dDWOPFuO5xnenx9KzJpTlvMtgMEx1GDnP22r4dJK7bVLGcSPTnTxhWfZhSxifTOl3X7Z/PvOeJDdf9He7QvE5bpvL2NY1iwzkPG8esRkz/b/2016a5OgdrOvg6s42vpOTRj73cZtMM7rvOmlCWVdN9wSezb7XyybNP1LOIOrOvOKzoYztDieMKeeMbc57RpLrLfq7W5HYnLDN7/T8JPfdxjr9SJJzJpRzTpIfWfR3tyrx2TDtgXRPH21JvpjkkB2sy6DqTrZ/XvD3SY7cS2ziuDN28IQKVk5r7RVV9YPpspnvleS70jWsfzTJ3yV5emvt6xOKgLmxvbIqZrytviXd4+/umq43n+9K19vcoel6rfhEuoabF7fW3rKXz8H+Z7/KKpnx9vrOJL+Q5Nh0+9bvTHeB7uB0vZz9R7qbgp/bPJ0KIK2111bVTdM9Ge0nk3x/uh4NL0339LQzk7woyWmtbwEcU8blSR7S9wzzsCS3SbfvPb+f/9mttVfN+rOwe9OKYWvt/Kq6Xbres38u3eOMD0vXe8/rkjy1tfYfs/kUzENr7aNVdcskv5rk/ukuChyS7gaGf0oX408ucBWZAnFebq21x/Y9nz4iyR3T/ea5KN0FutOSPK21dsEWZYjxEurPtR5VVX+T5KFJ7pDkBunaCr+a7jfzG9Mdl7/t6QcbyhLjJeW8C5iBe6RrY719uv39dZJcK11vp+cmeVe6TrteutdrBPZhuzK3+EzBn/Xrc2y63vSvneSaSb6ZLmn3HeluUjul7f1JAMtiHvGZ6jWLAZ3nzbXuVNX3pLtpOElOb619bgezD7HuzE1r7RtJ7lVVP5fuZtgfStd+/fkkb0p3TfFt2yhnKHVn1Tw6yV3S1Z/vS7d/PDLJ19OdF/xbuicGvmaz6xN8m39Kd73n2HRPD1vbf1a6m/bfneSf0yWafWWrwlpr/1ZVt0h3Xf+n0j15KenuZzo1yVNaa1+Y8mcYirsk+f/s3XmYJVV9N/DvD0FFBHFDUFRcYoxCVBQTNwSj0biCor4aE8HEXZNINJvhFZNoXhNMosHgLmiMcQUVNW4Rlxijxg2XuERARFQUcVA2gfP+caqdy+XeXmZ6pme6Pp/nuU/f6qo6dW518wz16/M954bD+ze21i5Zwblj+2/nsUnumf55b57+eXdLr5edmeTjSU5Yzr8HS/Hvzmy1Pn6PAAAAAAAAAAAAAAAAlm+Hte4AAAAAAAAAAAAAAADA1iZQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVADAGquqfaqqDa/DN6Odwyfa2WfVOggAAAAAAAAAjE5VHb0wDmGt+7I9qqqDJsZxHLTW/QEAZhOoAAAAAAAAAAAAAAAARkegAgAAAAAA1jGrWgIAAACT1ArYEqzIAcD2SqACANaJ1trxrbUaXqevdX8AAAAAAAAAgO1Xa+3ohXEIa92X7VFr7ZSJcRynrHV/AIDZBCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACgFVRVTesqv9XVZ+pqh9X1c+q6ntVdWpVvaGqDq+q3abOacPr6GH73lX1jqo6u6ouqqpvVtWxVXWjZfZh/6p6aVV9tap+UlU/Hd4fV1W32opt7FtV/zh89h8N9+K7VfWBqvqjqtprGW3cp6reOZx3cVWdNvRh70XOOXzinu4zY/8pw75Thu0bVdXfVdU3qurCqvphVb23qn5jmZ9zz6p6XlV9uqrOHfp5ZlW9qaruvcS5Vxn6+97hM14y/N58vao+WFV/VlW3mXPurYb7+8WqOn849ztV9bmqenVVPbKqrraczwAAAADrWVUdVFUtyWsmvn3aRP1g4XXQjHMPqao3V9W3hjrNeUMN4DlVde1Frnn80Obpw/aeVXVMVX2tqi6oqrOG2sFtp87bp6pePBx34VBXen1V3WKRax298BmG7d2r6rlV9aWhrnNuVX2oqh61zPu1T1X9/XD++UN/v15VL6uq/ZbTBgAAAGzLVlormH72ntHe6cP+44ft/Yfn+TOH5/tvDOMSrjd13l2n6g7/W1UvqKpdl/EZrlJVj62qk4exAhcP4x0+VlVHVtXOm3p/lrjuvaqPfzlt+GwXVNUZVfWJofZxrxnnHLRY/WXiuJtUHxNy2nA/vlNVJ1XVwcP+pX4O0+NvDhj6+u3h/pxVVa+rql9a4jPevKr+sPp4ldOHz3nh8DnfWFX3m3PePkPfPjTx7Q/N+L06fOKcK9SQFunTUmNhpn8H7zi0fdrw2efds80eHwTA+lGtzfz3AgCWrarukeTkJLstceiDWmsnT5y38I/Qc5O0JEfPOe/Hw7kfnXP9HZIck+QPktScNi5N8tTW2su3YBtXSfK3S7SRJCe01g6fOG+fJKcNm0ck+cUkfzLn3HOS3LO19pUZ1z88G4seN2utnT61/5Qk90zy4STPTnJSkisULSY8q7V2zLwPUFW/meRlSXaZd0ySVyV5Umvt0qlzr5nk3Unusci5SfLW1tphU+c+PMk/J7nqEufu11r74hLHAAAAwLo2/KH+Q0sdl+Tg1topwznXTvKWJFcaBDDh+0ke0lr7xIxrHp/ksUnOSPKQJP+WZM8Zbfw0yf1aax8bBhy8Lcm1Zhz3oyT3aK19aca1jk7ynGHz5knen2ReAONNSX5zuk4x0dZvJ3l5knmTNFyW5KjW2l/P2Q8AAADbvJXWCiafvVtrVxoHMQyGv2mSE5J8MMkrM/vv+V9LH+vw3ap6ZpK/yexxFZ8ZjvvJnP7fJMk7ktxukb5/I8kDWmtfW+SYFamqv08fC7KYH7bWpoMjB2Xj/f55/WXqmHsleXuSa85osyX58/R7utjPYXL8zfeTvCjJjjPauyDJb7TWPjKjjZsl+eaMc6b9c5IjJmssU+NeFnNEa+344ZzjM9SQWmv7zDthGWNhTs/G38FPJPnHTH32yXu2GuODAFh/Zv2jCQDLVn0lgH9ND1Ocn+S49IfB76c/0N0syV2THLpIMw9IcqckX01/aP5C+h/QH57k8cP7k6tq39bamTPO/8ckTxnefyTJ8ekPeRekP0T/QZLbJnlZVX23tfaOLdTGy5M8bnh/dpJjk3w8PRBy/SR3TnLYjPMmPT79fn04PbDwtSS7J/nt4XX9JK9Ocpcl2lnMXulhisvTgxsfS3JJkrsn+b/D9f66qt4zZ7DCI5K8Lv3B8pvD5/xyethjnyS/k+T+w9cNSY6cauLobAxTnJzk9Um+leSiJHskuUOSB6YXBiave4P0h+Srpv9+HZv+MPyDJDsnuWV6YOSQFd4PAAAAWK8+lWS/9GDDXw3fu2+S70wdd1ry8zrPB5Lsnx4g+Jf0SRFOS7JTkgPTn/P3SPLuqrpDa+2MOde+RpIT05/j/yy91nFZkvsN27skeV1V3Se9TvHj9LrEf6X/7eJh6fWYa6dP2vCrS3zWN6bXoV6aHgj5cZJfTvLHSW6V5BHD537G9IlV9YD0WlAl+UmSFw734dL0Os2fpk9K8fyqOq+1dtwSfQEAAIBt1YpqBStwuySPSg8zHJPk1CS7po+heEz6s/kxVfW29IkqFwa+fzX9mfv30scZ7J8eILjSJJRVdd308Q03TnJxklek1xtOTw8j/HqS308fO/Ceqtq/tfbjFX6OK6mqB2ZjmOIL6eNivpJee9g9fSzJvdPHhKy07ZunB0R2Sa9DHJdeJ9mQZN8kz0ryvPR6yXLcd+jHqemhilPTx1Mcmn5vrpFej/mF1tolU+deJX3syHvTJ634cpJzk1wn/ef31OGzPiZ9rMhzJs49K/336oD0MS1J/9l/auoa317m59gUBwx9OzP9d/DT6TWm6ck+V2N8EADrjBUqANgsQ1L+g8PmFVagmDpuxyTXaK1tmPje5D9CM2cZqKrfSvLaYfPNrbVHTO2/T5L3DZu/21p71YxrXz3Ju9JnVjwjyS2nkvKr0caD02cMSJL/THL/1tp5c+7FjSeDITOS+q9I8sQ29Y90Vb0iye8Om/u31j47tf/wLG+Figyf4W6ttbOmjrl7+gNjJXlxa+33p/ZfL70Acq30h+AnzprZsaqelz444vIkt2mtfXVi37fSCxxvaa09fPrcieOu01o7d2L7cekDKJJFVqCoYfnO1tqF89oGAACAMVmqZjBx3MLz/HlJ7t1a++8Zx9w0vfaxV5J/aa395tT+49NnF0z6JAi/2lr736ljnpo+UULSJ2g4L71Occ7UcX+TPnAgmV0LOTpX/OP9o1trb5g6ZtckH03/g/jlSW43WVOoqp3SB17cMD1McY/W2ucW+cwXJLlpa+0HAQAAgO3UCmoFR2d5K1QkfcLJ+7TWLpg65s3pk09elh5C+FCSR7bWLps45irpYYlfTfLDJHtOj0WoqtcneXT6eIeDW2tXCn1U1R3S6wC7JHl+a+3Zc27BslXVa5P81nDdfRdZPeMKYxyG7x2URVaoqKoTs3HSyENbaydN7b/GcP7PwxpLrFCR9MkxDp0OTFTVs7MxRPPQ1tqJU/t3SbJba+3sOZ+v0seJHJ6+8uiNpgMry1mRY+LY47O6K1QkPUBy4CLjdTZ7fBAA69MOa90BALZ7e068v9KSgAtaa5dOhilmeMKsh87W2uuSvGfYPLSq9pw6ZGFWgrfOetAZ2rgoydOGzZsmOXgLtnFBksPmPZwNbc1aZWPB2UmePh2mGBwz8X46Qb9ST58OUwx9+1g2zmww6xpPTg9TnJXkKYs8ND5nOGaH9JU1Ji38DD+6WAenCw0T5/1oXphiOO9CYQoAAABYmaq6ZvpMg0ly1KwwRZIMK1L85bD58OGP7fMcNR2mGLw6faXKpK/G+XvTYYrB5EoQS9VCTp4OUwz9PT/JE4bNHZI8aeqQQ9PDFEnyV9NhiqGNM7Ix2HGNJEcs0RcAAAAYm5Y+QP2CGfv+afh6lSRXTx8fctnkAcP2y4fN6ya5zeT+YaLKRw6bT5sVphja+WySlwybh6/oE8y3MFbhM/PCFMO1p8c4LKqqbpjkQcPmW6bDFEObF2RjXWM5LkpyxIzVJ5LkxekrUCQz6iyttZ/OC1MM+1uSP0wPxuySvirHtuapi43XyeqMDwJgHRKoAGBzTT5Mbeofk0+d90f6wcJygDsmOWjhm1W128T2Wxa7QGvtK+mzIibJXVa5jeumz5KQJG9srU0vhbkSb2mtXTzn+l9NnykxSW6+Gdc4Lz1NP8/Cz2LWNR48fD15Xj+THqBJn7kxmbhXg4XfmUcOsyks18J5166qh6zgPAAAAGBp90yfRCFZokaSjZNq7JTkjnOOaUneNHNHnwjh68Pmj5K8d85xpyU5f9hcqhbymnk7WmufTPKlYXP6j/0L2y0ba1CzvDl9Fs1ZbQAAAMDYfWEYUzHL5yfev3+R4MHkcdN1gAekBzIuyMZJOedZqFvcsKpussSxy7EwVuHAqrrFKrS34OD0z5Qkr5t3UGvt87nivVnM+1tr35/TzvnZWI9ZcsxJVe1UVXtX1S9V1b5VtW/6pBQ/HA653TL7tLWc2VqbO7HnaowPAmD9EqgAYHN9LMk3h/f/UFWfrKo/raq7VdVVl9nGp5bY/8mJ9/tNvL9DNv5b9oaqaou9klxvOHbPVW7j9kkWllRcdNWFZfifJfb/aPi662Zc4+uttcsX2b9QvLjCNYYlNm8/bD5xGffqsOHY6VVFThi+3jXJaVV1bFUdWlXXX6Lf70gPgyTJiVX171X1jKq649A3AAAAYNPdaeL92Us880+uHDn93L/gB0vMzLjwjP+NOSt1Th+3VC1kufWlW03VrPYdvp42Z5WMJMkws+Nnp84BAAAAuq8tsm9yxYDlHjddB1ioW1wjyaVL1C1OnjhvXt1iJV47fL1uki9W1b9W1RFVdcvNbHeyvrDYJKRJ8ulltrnUmJOZ40EWDCGKp1bVJ9In/DwzyZeTnDrx2mM4/Hqz2lhDX1hi/2qMDwJgnRKoAGCztNZ+lr4E4cJMAwckeX560OK8qvq3qnr0EgPeZ6bjJ3xv4v11Jt7vMX3gMk2uirAabUw+JM5d/nCZZi1/OWkhCLE5AYLlXmP6/xOuk75KyEpNr0Lxl+kzPrb0+//UJG9L8v2q+mJVPbeqbjDdSGvth+krZJyVHmA5OMnfpRcOzq2qt1XVAzehfwAAAMDq1EgmLbf+sFq1kOXWlyrJtSe+v1BrWur8JPnu1DkAAABAN/f5fmrCx8XqAJPHTdcBVrtusWyttQ8meVqSC5NcPckj08c8fL2qvl1VL62qTVmtYbI+MXeSh2XuX7DJdZaquk6S/0xybJJfSbLUJKo7L7NPW8uPlti/Zr9DAGz7NmVQJABcQWvty1W1X3qw4kFJDkxyy/SHp/sOryOr6v5zlhZcbBbCxUw+4D0xyceXed7kQ9RqtDEWk/fqlUletMzzLpncGEI4v1NVL0zyqCT3Sp9N4qpJbju8jqyqx7TW3j517keHWR4eluT+6b9reyfZLcmhSQ6tqvcmeWhrbalCAQAAALDR5HP//kl+tszzvr0F+rIpNrW+tFrnAwAAAFvOQt3iB+mTLy7Xaatx8dbaS6rqzUkeneQ+Se6W5FpJbpQ+1uQJVfX81tqfr8b11siLktxxeH9SemjkC+mTUFy0sMJoVX0ryY3TJ63Ylly2xH7jgwCYS6ACgFXRWrss/YHqpCSpqr2S3C999YE7Dq+XpQ96n3al1QgW2X/uxPsfTry/oLX2xRV2e7Xa+MHE+7024fztxeS9r028Vz/XWvtykqOSHFVVV09y9/Tiw28nuWb6Eou3aK2dPXXeRUleP7xSVTdL8oAkT09yq/QAz/OSPGNz+gcAAAAjM1kjOae1tq0EJZbrBknOXGJ/0oMTk38IP3dq/2L2nDoHAAAA2DoW6ha7JvnKMEZlqxomEP2HJP9QVTskuX36GJinJdk9ybOr6lPTE0cuYrI+cf0kZy1y7PU3ocvLVlW7pa+8kSSvb609ZpHDr73IvpVYWC1jhyWO22WVrrca44MAWKeW+scIADZJa+3s1tprktwlyWeGbz+wqmYt+XfAEs1N7p98oPlcNs4eeLdN6ujqtPHZiTYO3MQ2tnmttUuSfGnY3NR7Na/ti1prH2itPS7Js4Zv75zkgcs497TW2rHpvycLgz0esZr9AwAAgO3cclZf+OzE+1V97t9Klltf+vpQ41iwUGu6WVXNHZxQVTslucPUOQAAALC92t5WalyoW1wtyZ3WsiNJ0lq7vLX2mdbaUUl+bWLXSsYqfGni/R3nHtVt6c/8C0l2Gt6/cd5BVXXr9Aky51nJ79X5w9fdlzjuVitoczGrMT4IgHVKoAKALaq19rMkHx42d8zsB6H9quoOM76/4HHD18uSnDLR9jlJPjFsPnqxP3ov0r/VaOPcbFwK8BFVdcOVtrEdecfw9dZVdd8tdI0PTry/3nJPaq1tSPKplZ4HAAAAI3DRxPurzTnmA0kuGN7/XlXVlu3SqnvsvB1VdUCSfYfN9bePyQAAIABJREFUD0ztXtiuJEcs0v5hSa41pw0AAADY3iynVrAteWc2Dob/g7XsyLTW2meycbWJlYxVOCUbV2n4rXkHVdXtktxukzq3fDtOvF9sRYgnLdHOSn6vThu+7lpVvzjrgKq6apKHLdHOsqzG+CAA1i+BCgA2S1Xdo6puucj+qya557D5kyTnzDn05VV1pYeyqnp0kvsPmye11s6eOuSvhq+7JXlLVc1NrlfV1arqqVV19S3QxguGr9dI8uaqulbmqKq95+3bDrwo/eeYJK+pqtsudnBVPaCqfnli+zpV9aAlBmX8+sT7hQfoVNV9q2qvRa51rSR3nj4PAAAAyGQ95RazDmitnZfk2GHzrkn+vqrm/g2hqm5QVb+7el3cbA+uqivNAllV10zysmHz8on3C05K8p3h/bOrar8Zbdw4yTHD5gVJXrMqPQYAAIC1s2StYFvSWvtqkjcPm/+nqo5c7PiqullVPWo1rl1Vj6yqnRfZf6ck1x42lz1WobX27STvGjYPq6pDZrS9c5KXr6C7m+ob2RhYeeysMR1V9aAkT1uinZX8Xn144v0fzjnm75LcaIl2VmI1xgcBsA7tuPQhALCoX0tyVFV9NP1B7wvpoYmd05fde1KS/YdjX9Vau3RGG59OX57w01X1giSnps/4d1iSJw7HnJ/kmdMnttbeXVUvSvL7SQ5M8pWqemmSjyX5YXpy/pZJ7pHkoekPsSdsgTbeWVWvSvI76YMOvlxVxyb5jyQb0mchuFOSRyb5fJLDZ97NbVxr7XtV9dgkb0myV/rP7Pgk70ny7fQlIPdODzYcluTmSR6U/nuR9IfSdyQ5vareluS/kpyR5NKhvQclWRiMcVaSkycu/6gk76yq9yd5X5IvJjk3ya7ps0w+LRsfpF+6mp8bAAAAtnOfTZ8h8OpJ/rKqfpb+PL4wC+JZrbULk/zf9IkxfiW9TnJQVb0iyeeS/DS9JnLbJPdO8hvpNZxXbsXPsZhPJ/mXqrpnet1iQ5JfTvLHSRZmOXxJa+0Lkye11i6pqiekz3S5W5L/qKq/TV9B87L0Os+fJNljOOWZrbUfbOkPAwAAAFvYcmsF25Inp4+7uHmSF1bVQ5K8NsmXklyc5LrpKzncL8m9kpyY5A2rcN0XJHlpVb09yUeSfC29TnLdJHdP8vThuMuy8jrJkenjbhYm7zxu6PeG9HEQf5TkNkk+leSAzfsY87XWflhV707ygPT7976hL2ek10Qelj7O5ZtJdk8yc3WH1tq3qurb6eNGnjm8/2r6vUmS77XWzh+O/WxV/WeSuyR5/DBh6wlJfpzkF5I8If3n+PH0+sxqfM7NHh8EwPokUAHAatgh/Y/t91zkmLcn+dM5+941vJ6T2TP8bUjy4Nba6XPOf0b6wPqjkuyZ5OhF+vHTbHxQW+02npjkwiRPTXLDJM+fc/7nF2l7m9dae9tQmDg+yXXSQzPzlnW8PP1+TdsnvTAwz9lJHtJa+8nU93dKX7Hk/lc+5edemuTFi+wHAACAUWmtnV9VL07/I/z+6RMVTDo4ySmttYur6j7pz/wPTR+EcGzm27AFurupHpEegnjK8Jr21sypRbTW3lVVR6SvXrFrkr8YXpMuS3JUa+24VesxAAAArJHl1gq2dr8W01o7t6ruluRN6QPeDxxe86xm3WL3JI8dXrNcnORJrbVPr6TR1to3hpUpTkwfzP/0bAxoLHhu+ricA9JDMFvKk9ODBTdJn0zj3lP7v5XkkCTvXqKd5yf5pyQ3Sx8rNOmI9LrTgselr1SxR2bf32PSAzOrEqgYrMb4IADWmbnLdQPAMh2TnkQ/Lskn0h+gLhpep6c/yD6wtXbIYrMXtNaOTk+5vyvJ95JcMpz/T0lu21r78CLnttbaX6SviPE36TMSnpv+UHN+ki8neX36g9des/qxSm1c1lp7evqMCC/PxlkJfpbku+kFiCMzY6WN7U1r7Z3pD7/PTPLv6T+zn6UHSk5LX1niyCT7tNY+NHHqGemrVxydfj++muS89BUqfpA+m8Ozkty6tfbfU5d9RpLHJHl1+s/nrPTfkwvT7/UJSe7RWntya+3yAAAAAJP+JMnjk3w0G2seV9JaO7+19rD0gQmvTH92Pz/92f3c9BkRX5I+2cF9tny3l6e1dlqSO6b/0f4rSS5In9HwI0ke01o7bM7KqQvnn5Dk1kleNJz/0/Saw/8meUWSO7TW/nqLfggAAADYupZVK9iWtNa+21o7MMkD08dwfDO9BvCzJOekr2bwwiT3bK09bpUue3D6igZvTV+t85z0OsmG9JU+jklym9ba8ZvSeGvt/emrUbwsfUzFJeljMN6V5H7DeJrdhsN/vKkfYhn9ODM9XPO36WMwLh6u9/n0UMftW2tfXkY7x6WPI3pfku+n36t5x/7PcM2F1TAuSb+//5bkAa21Z23GR5p3zc0eHwTA+lOttbXuAwAjVVUL/wg9d3gABAAAAIBlqaqj01c8TWut1rY3AAAAAFtGVX0gya8l+Vhr7R5r3R8AWG+sUAEAAAAAAAAAAACwjamqGyY5cNj8xFr2BQDWK4EKAAAAAAAAAAAAgK2sqm65yL6dkxyfZKfhW6/dGn0CgLHZca07AAAAAAAAAAAAADBCr6yqXZK8Kcl/Jzk3ya5J7pTkKUkWAhevaq2dujZdBID1TaACAAAAAAAAAAAAWHeqao8ke2zCqZe01r622v2Z407Da54Tkzx9K/UFAEZHoAIAAAAAAAAAAABYj56S5DmbcN4ZSfZZ3a7MdGSSQ5PcK8neSa6fpJJ8P8knkpzQWnv3VugHAIxWtdbWug8AAAAAAAAAAAAAq6qqjs4mBipaa/usbm8AgG2RQAUAAAAAAAAAAAAAADA6O6x1BwAAAAAAAAAAAAAAALY2gQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGZ8etfcGqulqS/YbNc5JctrX7AAAAwDbvKkmuP7w/tbV28Vp2BlaLuggAAADLpDbCuqMuAgAAwDJt1brIVg9UpD8cf2oNrgsAAMD26YAkn17rTsAqURcBAABgpdRGWC/URQAAAFipLV4X2WFLNg4AAAAAAAAAAAAAALAtWosVKs5ZePPJT34ye+211xp0AQAAgG3Z2WefnTvf+c4Lm+csdixsZ9RFAAAAWJLaCOuUuggAAABL2tp1kbUIVFy28GavvfbK3nvvvQZdAAAAYDty2dKHwHZDXQQAAICVUhthvVAXAQAAYKW2eF1khy19AQAAAAAAAAAAAAAAgG2NQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKMjUAEAAAAAAAAAAAAAAIyOQAUAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAACjI1ABAAAAAAAAAAAAAACMjkAFAAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjI5ABQAAAAAAAAAAAAAAMDoCFQAAAAAAAAAAAAAAwOgIVAAAAAAAAAAAAAAAAKOz41p3AABgW3L55Zdnw4YNa92Ndevyyy/P+eeff4Xv7brrrtlhBznfzbXbbru5jwAArEvr/TnNc9Km8xwEAAAAAPOt99rqWlLX3brUgtnSBCoAACZs2LAhhxxyyFp3A1bspJNOyu67777W3QAAgFXnOY15PAcBAAAAwHxqq6wXasFsaeI6AAAAAAAAAAAAAADA6AhUAAAAAAAAAAAAAAAAoyNQAQAAAAAAAAAAAAAAjM6Oa90BAIBt3U/3fWjajldb626sD5delGt+8cQrfOsn+x6a7Hj1NerQ9qkuvTi7fPFta90NAABYM+vqOc1z0rJ4DgIAAACAzbeuaqtrSV13i1ELZi0IVAAALKHteLW0nXZe626sCzXrmzte3f0FAABWZD09p3lOAgAAAAC2lvVUW11L6rqwvuyw1h0AAAAAAAAAAAAAAADY2gQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdAQqAAAAAAAAAAAAAACA0RGoAAAAAAAAAAAAAAAARkegAgAAAAAAAAAAAAAAGB2BCgAAAAAAAAAAAAAAYHQEKgAAAAAAAAAAAAAAgNERqAAAAAAAAAAAAAAAAEZHoAIAAAAAAAAAAAAAABgdgQoAAAAAAAAAAAAAAGB0BCoAAAAAAAAAAAAAAIDREagAAAAAAAAAAAAAAABGR6ACAAAAAAAAAAAAAAAYHYEKAAAAAAAAAAAAAABgdP4/e3fwG2XV7wH8tLdyU4OFcQE3Rv4CYGFi2cHfYCRQE0hYCSZNcOF20AV16YY3XYArE0gsROPeHaykGxPhH5DrAjYNhdiIvNO78L2R4kynffqcPuf09/kkbKYzh29Mf8/MOY9fRqECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIR6ECAAAAAAAAAAAAAAAIZ6rrAAAlGwwGaXV1dcNjMzMzaXJSHw0AqJPPNwC0zXsLAHg/BAAAumdfAgBsxmeF0RQqADaxurqaPvjggw2P/fDDD+ngwYMdJQIA2BmfbwBom/cWAPB+CAAAdM++BADYjM8Ko6mUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUbOLFixddR4DiNJ2L3PPU9vrmHwAAiC7HvqjUvVapuQAAgPFKvXcF1M01Iq/nz593HWHLaspao5pmraasAABsj0LFCGtra+mzzz5La2trXUeBYjSdi9zz1Pb65h8AAIgux76o1L1WqbkAAIDmzGtMAAAgAElEQVTxSr13BdTNNSKvlZWVdPbs2bSystJ1lLFqylqjmmatpqwAAGyfQsUIN2/eTL/88ku6detW11GgGE3nIvc8tb2++QcAAKLLsS8qda9Vai4AAGC8Uu9dAXVzjcir3++n33//PV25cqXrKGPVlLVGNc1aTVkBANg+hYohHj16lJaWllJKKS0tLaVHjx51nAi613Qucs9T2+u/vt5vv/2244wAAAA1ybGPK/WspdRcAADAeKXeuwLq5hqR1/3799PDhw9TSik9ePAg3b9/v+NEo9WUtUY1zVpNWQEAaEah4jXr6+vp2rVr6eXLlymllP7888907dq1tL6+3nEy6E7Tucg9T22vP2y9r7/+upWsAAAANcixjyv1rKXUXAAAwHil3rsC6uYakddgMEgLCwsbHltYWEiDwaCjRKPVlLVGNc1aTVkBAGhOoeI1d+/eTcvLyxseW15eTvfu3esoEXSv6Vzknqe21x+23s8//9w4HwAAQG1y7ONKPWspNRcAADBeqfeugLq5RuR1/fr1tLq6uuGx1dXVdOPGjY4SjVZT1hrVNGs1ZQUAoDmFilesra2lxcXFoT9bXFxMa2tru5wIutd0LnLPU9vrb7YeAABABDn2caWetZSaCwAAGK/Ue1dA3Vwj8lpZWUl37twZ+rPbt2+nlZWVXU40Wk1Za1TTrNWUFQCAnVGoeMXNmzfTkydPhv7s8ePH6datW7ucCLrXdC5yz1Pb62+2HgAAQAQ59nGlnrWUmgsAABiv1HtXQN1cI/Lq9/tpMBgM/dlgMEhXrlzZ5USj1ZS1RjXNWk1ZAQDYGYWK//j111/T0tLSps/59ttv06NHj3YpEXSv6Vzknqe219/KegAAAHtZjn1cqWctpeYCAADGK/XeFVA314i8fvrpp/Tw4cNNn/PgwYN0//79XUo0Wk1Za1TTrNWUFQCAnVOoSCmtr6+nf/3rX+nly5ebPu/ly5fp2rVraX19fZeSQXeazkXueWp7/a2uBwAAsFfl2MeVetZSai4AAGC8Uu9dAXVzjchrMBikL7/8ckvPXVhYGPnNELuhpqw1qmnWasoKAEA7proOUIK7d++m5eXlLT13eXk53bt3L506dSpzKuhW07nIPU9tr7+d9f7f06dPt/V8oC5DZ9whGKUZ8jvp/YmtGva74sYPxJZjH1fqWUupuWo37H3EZxPaZJ9GSsk+iOLZa0F+pd67AurmGpHX9evX0+rq6paeu7q6mm7cuJE++eSTzKmGqylrjWqatZqyvs45HfA6Z6tUyVlwNs4wR2u9UDExMfHumKf8T9t/506sra2lxcXFbb1mcXExzc7Opunp6UypoFtN5+L48eNZ56nteW2yXkopXbhwYduvASr37z9SSm92nQL+9u8//vGQ9yd24tmzZ+ntt9/uOgbsCc5Fyj1rKTXXXvDs2bN/POazCdnZp8VjH0SF7LWgPaXeuwI2ci7Cq1ZWVtKdO3e29Zrbt2+nubm51Ov1MqUarqasNapp1mrKOoxzOmBLnK1SOmfBu8oZ5l8mM6z5aMyf7f1T8JndvHkzPXnyZFuvefz4cbp161amRNC9pnPR7/ezzlPb89pkPQAAgDHCn4uUetZSai4AAGC8Uu9dAf8Q/lyEv/X7/W3/a7eDwSBduXIlU6LRaspao5pmraasAAC0J0ehohovXrxI33//faPXfvfdd+nFixctJ4Lu7WQuHj582Oh1W5mntud1J+sBAADsBTnORUo9ayk1FwAAMF6p966AujkryOv58+eNr8EPHjxIz58/bznRaDVlrVFNs1ZTVgAA2pWjUHFkzJ/ZDH9nI/v27Usffvhho9eePn067du3r+VE0L2dzMXRo0cbvW4r89T2vO5kPQAAgE2EPhcp9ayl1FwAAMB4pd67AoYKfS7C3/bv39/4Gnzs2LG0f//+lhONVlPWGtU0azVlBQCgXVNtL7i+vv6/m/18YmKi7b9yR86fP59+/PHHbX1d2+HDh9O5c+cypoJuNZ2LhYWFdOnSpWzz1Pa8NlkvpZRu3LiRDh06tK3XAPV4+vRpunDhwsYH/+u/uwkDowz5nfzmm2/SgQMHOghDbYZd5956662O0sDe41yk3LOWUnPtBcPeR3w2oU32aaSU7IMonr0W5FXqvStgI+civGphYSGdPn06DQaDLb9mcnIyXb16NWOq4WrKWqOaZq2mrMM4pwNe52yVKjkLzsYZ5mitFypqMz09nebn59MXX3yx5dfMz8+n6enpjKmgW03notfrZZ2ntue1yXoppXTo0KF08ODBbb0GqFxhB/ww7HfywIED3p9obHIyx5cXAjXIcS5S6llLqbn2gmHvIz6bkJ19Wjz2QVTIXgvaU+q9K6Buzgry6vV66cyZM2lpaWnLrzl79mzq9XoZUw1XU9Ya1TRrNWUdxjkdsCXOVimds+Bd5QzzL/4rpJROnTqVZme39s2Ss7Oz6eTJk5kTQfeazkXueWp7/e2sBwAAsBfl2MeVetZSai4AAGC8Uu9dAXVzjcjr0qVLaWZmZkvPnZmZSRcvXsycaLSastaoplmrKSsAAO1QqEh/fa3k5cuX09TU5l/YMTU1lS5fvlzc11BCDk3nIvc8tb3+VtcDAADYq3Ls40o9ayk1FwAAMF6p966AurlG5DU5OZn6/f6Wntvv9zv913FrylqjmmatpqwAALTDp/v/OHLkSJqbm9v0OR999FE6cuTILiWC7jWdi9zz1Pb6W1kPAABgL8uxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHN33OsWPH0okTJ3Yp0Wg1Za1RTbNWU1YAAHZOoeIV58+fT4cOHRr6s8OHD6dz587tciLoXtO5yD1Pba+/2XoAAAAR5NjHlXrWUmouAABgvFLvXQF1c43Ia2FhYeQ3OkxOTqarV6/ucqLRaspao5pmraasAADsjELFK6anp9P8/PzQn83Pz6fp6eldTgTdazoXueep7fU3Ww8AACCCHPu4Us9aSs0FAACMV+q9K6BurhF59Xq9dObMmaE/O3v2bOr1erucaLSastaoplmrKSsAADujUPGaU6dOpdnZ2Q2Pzc7OppMnT3aUCLrXdC5yz1Pb6w9b77333mucDwAAoDY59nGlnrWUmgsAABiv1HtXQN1cI/K6dOlSmpmZ2fDYzMxMunjxYkeJRqspa41qmrWasgIA0JxCxWsmJibS5cuX09TUVEoppTfeeCN9+umnaWJiouNk0J2mc5F7ntpef9h6H3/8cStZAQAAapBjH1fqWUupuQAAgPFKvXcF1M01Iq/JycnU7/c3PPb555+nycny/telmrLWqKZZqykrAADN+aQ/xJEjR9Lc3FxKKaW5ubn07rvvdpwIutd0LnLPU9vrv77eO++8s+OMAAAANcmxjyv1rKXUXAAAwHil3rsC6uYakdeJEyfS0aNHU0opHTt2LL3//vsdJxqtpqw1qmnWasoKAEAzChUjnD9/Ph0/fjydO3eu6yhQjKZzkXue2l7f/AMAANHl2BeVutcqNRcAADBeqfeugLq5RuS1sLCQ3nzzzXT16tWuo4xVU9Ya1TRrNWUFAGD7proOUKrp6en01VdfpX379nUdBYrRdC5yz1Pb67+63h9//NHKmgAAADXJsY8r9ayl1FwAAMB4pd67AurmGpFXr9dLt2/fTvv37+86ylg1Za1RTbNWU1YAALbPN1Rswodg+Kemc5F7ntpe3/wDAADR5dgXlbrXKjUXAAAwXqn3roC6uUbkVVNBoaasNapp1mrKCgDA9ihUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAAAAAAAAAAAAAAAA4ShUAADA/7F379HWnHV9wL+/NxcgJCFyUVpAwkVcICqsJkgQ4VVRqwsERClasa9KEVpslaqwrNrUeqOWBVphRbyQIF6gSCJFQaAYigISoBZSCBclUeSSIBJCQhJCpn/MnJz9npy9z97n7LNvz+ez1qx37/fMfp6Z+T3zPDOz5zcbAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgOScuewEAVtnpp5+eiy666Fb/BwCwrhzfADBvxhYAMB4CAADL57wEAJjEscJ4EioAJjhy5EjOOOOMZS8GAMDcOL4BYN6MLQBgPAQAAJbPeQkAMIljhfGOLHsBAAAAAAAAAAAAAAAAFk1CBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQgUAAAAAAAAAAAAAANAcCRUAAAAAAAAAAAAAAEBzJFQAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADTnxGUvAADAqqubblj2ImyOm67f9f9q8Uuy1rRJAABat1HHxM6TprJRMQcAAACAJXGdbU5c1z002ijLIKECAGAPt7/0lctehI126qUXLnsRAACANbPp52nOkwAAAACAw7Dp11aXyXVdWF9Hlr0AAAAAAAAAAAAAAAAAiyahAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDknLnsBAABWyemnn56LLrpo2YuxsW6++eZcc801x/3faaedliNH5Pke1Omnn77sRQAAgEOx6edpzpP2z3kQAAAAAIy36ddWl8l13cVyLZjDJqECAGDEkSNHcsYZZyx7MTbaHe94x2UvAgAAsEZaOE9zngQAAAAAzFsL11aXyXVd2BxSoQAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaI6ECgAAAAAAAAAAAAAAoDkSKgAAAAAAAAAAAAAAgOZIqAAAAAAAAAAAAAAAAJojoQIAAAAAAAAAAAAAAGiOhAoAAAAAAAAAAAAAAKA5EioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmiOhAgAAAAAAAAAAAAAAaM6JS6jzhK0XH/vYx5ZQPQAAAKtux/niCePmgzXkuggAAAB7cm2EDeW6CAAAAHta9HWR6rrusOs4vsKqs5JcstBKAQAAWGdnd133jmUvBMyD6yIAAADsg2sjbATXRQAAANiHQ78ucuQwCwcAAAAAAAAAAAAAAFhFy/iFitsk+crh7VVJvrDQBWjbXbP9tIezk3x8icvCfInt5hLbzSW2m0tsN5fYbi6xXU0nJLnL8Po9XdfdsMyFgXlxXWQsfTHjaBuMo20wjrbBONoG42gbjLPstuHaCBvHdZG1suw+kNmJ2foRs/UjZutHzNaPmK0fMVs/6xKzhV4XOfEwC9/NsEJ+jnQJqmr07ce7rvvIspaF+RLbzSW2m0tsN5fYbi6x3Vxiu9KuWHM3WBcAACAASURBVPYCwLy5LrI7fTHjaBuMo20wjrbBONoG42gbjLMibcO1ETaK6yLrY0X6QGYgZutHzNaPmK0fMVs/YrZ+xGz9rFnMFnZd5MiiKgIAAAAAAAAAAAAAAFgVEioAAAAAAAAAAAAAAIDmSKgAAAAAAAAAAAAAAACaI6ECAAAAAAAAAAAAAABojoQKAAAAAAAAAAAAAACgORIqAAAAAAAAAAAAAACA5kioAAAAAAAAAAAAAAAAmlNd1y17GQAAAAAAAAAAAAAAABbKL1QAAAAAAAAAAAAAAADNkVABAAAAAAAAAAAAAAA0R0IFAAAAAAAAAAAAAADQHAkVAAAAAAAAAAAAAABAcyRUAAAAAAAAAAAAAAAAzZFQAQAAAAAAAAAAAAAANEdCBQAAAAAAAAAAAAAA0BwJFQAAAAAAAAAAAAAAQHMkVAAAAAAAAAAAAAAAAM2RUAEAAAAAAAAAAAAAADRHQsWaqap7VtVzq+qyqrq2qj5VVZdU1Y9X1SkHLPv+VfWMqrqgqt5VVR+pquuHev6mql5WVY+tqprX+nC8w4zvhDpPGeLbDdPlh1FP6w553z02Er+9pmNzWiUGi9xvq+pRVXV+VX1oqOvqqvpAVb2iqp5eVafOs77WHVZsq+rMGfZZffMhWMR+O8T5OVX1zqr6dFV9fqjnLVX1M1X1xfOoh+MtKLb3qqrnVdWlVXXNUM8Hq+qFVfUV86gDYD+q6our6tFV9bNV9Zqq+uTIscT5+yjvW6vqwuHawA3DvxdW1bfOUMaJVfW0qnpzVV1VVZ+rqr+uql+fpc+sqjsP6/XuqvrMML17+L87zVDOA4e6/3pYlquGZXtaVZ04QzkH3jaLNI+2UXM+76z+WsRPDOP0p4bx9LJhHL/nDOs2l7G/qh5WVS+tqiuqvxb28ar606r67mnLGMr57qp63fD564fyXlpV58xSzqJU1VnDsenrRtrzZ6s/z3xxVT18xvL0G+PLWbd+48BtQ78xdTlr029U1elV9aRh+72p+utTV1fVjVV1ZVVdPMRoqn1slbbhpravRZlH26iqozP0GedOsUzGkzVQ/bWz0dgeneIzjjfGl7NR7QM2UW3gOVhVPaD6Y51XV9Xl1R+7XFdVH66qP6iqb5tlnSbUs5Tvwzc0ZpdPuR0vn2Xd9qhzYWPUpsWs+nsDZv1e+dgs6zhSV/P7WVXdpqoeWlU/XFW/U1Xvr6qbt9Z7H+u2yHtJFnosuIlxm/c6Tajn3Bn2taPzqHOodxNjNu12vHiWddujzoVdy9u0mFV/fWjWMe3oLOs4Upf9rOpLquopVfV7VfXeYTlurKqPVdVrq+qpVXW7GZZlY8e043RdZ1qTKcljklydpBszvT/JfQ9Q/ksnlD06XZzkTsveHps2HXZ8J9T733bUc/myt8WmTQvYd49Nue92SY4te3ts0rSo/TbJFyW5aIr4PmjZ22RTpsOMbZIzZ9hnt6Y/XfY22ZRpEfttkicnuW6PmP5Dkm9a9vbYpGlBsX1qkhsm1HFDkmcse1uYTKY2pz3GnfNnKOdIkt/co7zfSHJkj3LunOTtE8q4PslTplier0nysQnlfDTJQ6Yo51/v0Yf/ZZI7L2LbrGPbyBzPO5PcN8kHJnz+6iSPnmKZ5jL2Jzk3yRcmlPPqJLfdo4zbJfnjCWV8Icl/WnZb2LHM/3vKeF6Q5ORF7BvRbyy9XcyzbUS/sYn9xqOmjOdVSb5lXbbhJravdWwbSY5OWUaX5Nw9lsd4sgZTkgcl+fyOdTh62NtA+1h+7E2mVqds4DnYsKzTrNNrk5xxwO13bMq6uszp+/BNjNlQxuVTrtflc9iGCx2jNjFmSc6foe1vTefYz/YXsyQvnvT5GddtUfeSLPxYcBPjNs91mqKuc2fY146K2cRlmXY7XjyHbbjQa3mbGLP09xxPG7OtbXo3+9nsMUt/reGmKZblA0m+aop129gx7VbLcFgFm+YcqOTB2b4x75okP5nknCTfkORFOxrnafus4/wkb0vy3PQHyv88yT9LfzH8GUneM1LPWw6zYbY2LSK+E+q9KcnnknxmqOPyZW+PTZoWtO8eGynnm5M8cMJ0oItVpsXGdqjnDkneMVLeK5N8T/ovbM5K8vgkz0/yd5FQsRaxTXLSHvvp1vS7I3V9z7K3yyZMC+qTvzbbNz58IclvJ3lskrOTPCHJq0bquS7JvZe9XTZhWlBsnzRSzqeT/PQQ77PSn5B+cPjbzUmeuOxtYjKZ2ptG+qguyRVJ/nTk/fkzlPOLI59719D/nT38+66Rv/3ChDJOSPLmkXn/MP01hock+eEknxgZK791Qjn3SHLlMO/nkzwnydcN03OyfQPWJ5LcfUI53zYyPn98WIaHDMv0hyPL+eYkJxzmtlnXtpE5nXcmOW0Yj7fKetEwXp8zjN/XDP9/bSac32ROY3+SHxqZ90NJfmCI6WOTvHHkb7+3x/b5/ZF535jt478fGMrd+ttTl90eRpZ5a7n+Pv055ROGZX5okh9N8pEZ1l+/cYjbZl3bRvQbm9hvPCrJ36b/0u/fpb8m9dAkD0vyxCQvz/YXdTck+epV34ab2r7WsW3k+ISK78/kPuOLJyyL8WQF2sQUbeZItm8s/MTI8h89zG2gfaxH+zCZNnXKBp6DJXnDMM8/JPn1JN+d/hjo7PQPJ7psR1+27/tLsoTvwzcxZkM5lw/zXbTHdrzfHLbhQseoTYxZkrvtEacHpj8G2TqmeL/97EAxO39kvs+kv/n3liTaGdZrYfeALXo/29S4zXOdpqjr3JGy9tq/by9mE5dlq4wX7rEd7zWHbbjQa3mbGLMk95qizT9xpJ7X2c/2F7MkPzX8/Yb0xx8/lOQR6cen78zx3xNemcnXLjZ6TLvVMhxWwaY5B2o7g+nz2SWbOMmPjzSYc/dZx4l7/P2EHH8B79uXvV02ZVpEfMfEc+sm7Z/O9onz5cveHps0LWjfPTZSxpnLXudWpkXtt0leMpRx/aR+N0nt1Y+bViu2eyzDCekPsrdORm637O2yCdOC+uRXj5Txb8bM89yReX5t2dtlE6bDjm2SU7J9YfuaJA/cZZ7Tk7x7mOfjSU5d9nYxmUxtTUn+c5JHJ/mS4f2ZI33f+VOWcb9s3/xzyc5jkKE/vGSkz931aSPpLyBv1f2CXf5+32w/yeSD445jR46FuyTftcvfRy+s7rqO6ZNZ/3qY5+ok99llnheMlHPsMLfNGreNYyOfOfMAy/KzI+X8+C5/f9jIdr54QjkHHvuT3DF9kmSXPtHkzjv+fkKOT4Y9OqacbxiZ51XZcbNb+icRXjH8/R+TfNGy28SwXK8e9qFdb84blnv0JuNHjJlPv7Fh/cYc24Z+Y/P6jbE3847M87iRdXvlqm/DTWxfa9w2js5j3WI8WZnxZI84/ciwvO9L8gtT7POONxpqHybTpk7ZwHOw9E8qfmqS24yp45QcfzP59x1g+x0bKedMMTvQOHb5pDFqjttv4WPUpsZsivV++kg9P3WA7Wc/S/7FsB2+IkMSWEaeqD7Dei3qXpKlHAtuYtzmtU5T1nXurG1KzMau14H3oynrWfi1vE2N2RTr/ZyRdfreA5TT9H6WPoHjl5LcZcLyjt639NsT5tvoMe1Wy7GoBmM6QJD67OStRnfemHmOJHnvSMd80iEty0NHluWXl71tNmFaVnyTPHMo77IkJ0dCxdrGNhIqNjm2Dx+p58eWvd4tTKsy5ib5lmkOXE2rF9sknxo+/8kJ89xhZFneuexts+7TImKbPkt/q46fmzDfo0bme8ayt43JZGp7yv5umn/hyGceOmae0esCt/oicJhnq8/9hySnjJnn2SPl7HYT0l2z/WS1105Y5tcO83whyV13+fvozUzPHlPGKSNj+P87zG2zCtM+28axkc+cuc96T8r2jaLvzfifIj5vpK6zd/n7XMb+JD8xUs6TxpRz92w/UfuPx8zzJ9m+gLvrU3xy/C9d3eqG3VWd0ifibC33r46ZR7/RQL+xz7ah32iw3xiWfetJxFet8jbc1Pa1ytMebePoyPofPUAdxpMVH0+SfGm2f/3lkTn+qZG7xn5e20D7WP32YTK1PmXNzsGmXKcHjpTxqgNsm2Mj5Zy57Fitc8yyuISKlRyj1jFmU6zTW4fP35zkngfYNs3vZ2M+d/HW56acf2H3G6zqfraOcZvXOk1ZzrnzXrZWYzZSz7mHvG1W8lreOsZsj/KOZPtXHK7JmLFzyrLsZ3svy8lJPjqU8enscm00DY5pR8I6eNzI6xfvNkPXdTenfyJKkpyR5OsPaVmuGXl920OqozULj29V3TP907eS5Gld1914kPIYa5X2XeZrUbF9xvDv1Ul+bR+fZ3arst9+38jrCw6h/BYtKrYnD/9+eNwMXdddneSTO+Zn/xYR27NGXr9mwnwXp/9FoaRPwgBYG1VV6X+iOEku67rubbvNN/z/+4e3jx0+N1rO/ZLcf3j78q7rrhtT5fkjrx+/y9+/PbnlutWu/fuOco4Mn9lpdJw4f5e/Z1jGlw9vHzCswy3mtW3I16dPLE2SC4bxeTfnj7zerW3Ma+zfKuczSV45ppyPJHnD8PYbq+q00b8P779xePuGYf7dvHKoJ9l9nVbVn428vs/OP+o3mu43JraNOdJv9Nap30i2v0PY7fuDVdqGG9e+1sCktnFgxpO1GU9ekOTU9Pvdm/aa2fFGc+0DWrdu52B76rru0mx/H3KY5w7LsnExm4cVH6M2KmZV9WXpby5Mkjd1XXfFrGWsgYXEbI4W8p30Cq73TusWt2ks6nrYsmxizA5sxa/lbVrMvjHJ3YbXr5gwdq6zlYnZcL/wXwxv75DkTrvM1tyYJqFiPTx8+PfaJO+cMN/ohcevPaRledLI68sOqY7WLCO+L0xy+yS/03XdxQcsi/FWad9lvg49tlV1crYPFl7fdd31w/+fUFX3qKozq0pi2/wtfb8dTsi2DkovT//zaRzcomK7dfB+r3EzVNXp6X/Ob3R+9m8RsR09efzEuJm6rrsp/ZMDk+ScqjpxxnoAluleSf7p8HqvG5u2/n639L92MOrhu8x3K13XfTzJB4a3u/XLU5WTvfv3rXLeP9S5n3LmtW1aN21M35Fk60L5pJjue+wfzrceMrx96x4Pmtgq5zY5PskySc7OdoLspPZ+Y5KtC8BnV9VJE+pbJbcZef2FXf6u3xhfzqb3G3u1jXnRbwyfWZd+o6q+PMmDhreX7fjbqm3DTWxfK2tS25gj40lvZceTqnpi+qcxfirJj035Mccb48vZqPYBJFm/c7BpbR27Hea5w7JsaswOapXHqE2L2ehD+l4ydq71tqiYzcuivpNetfXead3iNo1FXQ9blk2M2Tys8rW8TYuZMW3xMdtreZob0yRUrIetrOUPDTdpjTN6Efr+Y+eaUVXduarOqarfSvIfh//+ZJLfnVcdjVtofKvqSUm+Lf1P7PyH/ZbDVJax7764qj5aVTdW1Ser6m1V9XNVdbe9P8oMFhHbr87209reU1WnV9Xz0/e/f5v+6fdXV9Xrq+rojGUz3lLH3MF3pv8596RPfOvmXH6rFhXb84Z/71RVTxszz0/vMj/7t4jYfnbk9R3GzTRkwJ8+vD05yX1nrAdgmR4w8nqvm9wm9an7KeceVXX7MeVcPekGo67rPpbtp/4ctyxVdWqSe8y4LLcqJ/PbNptiv+edU23HYTz/0PB2t204j7H/fklO2GtZpihnP23jxCRftse8q+KRI6/ft8vf9RvbWus39mobO+k3tm1cv1FVp1TVl1XVM9N/obWVWP78HbOu2jbcxPa1UmZoGzv9fFVdUVU3VNU/VtX/qarn7Xw6/y6MJ+PLWbqqOiPJrwxvn9V13ScnzT/C8ca2jW0fwC3W7RxsT1X14GxfM5/m3GEaq/R9+DrH7BFV9VdVdU1VXVdVH66ql1XV4+bwtN9VHqPWOWbHGeL0vcPb65K8YtrPTqHF/WxeFvWd9Kqt907rFrdpzHo9bE9V9bqqunLY166sqour6tlV9UXzKH9G6xyz76qq9w7j2TVV9cGquqCqZn5S/i5W+VreOsfsOMN58tYve1yR5OI5lm0/28WQ9HPO8PYTXdd9apfZmhvTJFSsuOHp41tPMB73k0FJkq7r/jF9NlCyfSFuv/VeXFVdVXVJrkryliQ/kKTS38z7+K7rPn2QOlh8fIeBYOvLimd3XXfVfsphb8vad5McTfJPkpyU/mnaX5M+EepDVfVDByybLDS2owcLR9I/De/fp/95rC0nJ3lUkjdW1bNmLJ8dlrjf7tRC1vVCLTi2v53tuL2gqn6jqh5TVWdV1XdU1YXZfgLfz3dd94Z91MFggbEdPZl95Ni5kgcnOXXk/ZfOWA/AMt195PXEPjXJ34283tmn7qec2vG50XL2KmO0nHksy2GWsymOZn/nnVvb8dopriltbce7VNUtT8iZ49ivbeyhqo4kefbIf718l9n0G9u0jcmORr8x73KWqqqOjXx/cG36J6o+N8mXDLP8UpLf2/GxVduGm9i+lm6fbWOnh6U/nz45/bXQByX5kSTvq6pzJ9zgZzwZX84q+K9J7prkL5L81gyfc7yxbZPbBzRvTc/BpvGTI6+nOXeYxtGswPfhGxCze6V/wN+pSW6X/gm/T0xyYZI3H/DG+ZUcozYgZjs9IttPZr6w67prZvjsXo6mvf3swBb8nfTKrPdO6xa3aezzetg0vinJXdLva3dJ/z30Lyb5m6p67Jzq2NMGxOwB6W+svl36ce2+6e+7eWNVXVhVYx+YOIWVXO8NiNlOT0iylVT40jk/eNZ+trunZnvM+h87/9jqmHbi3rOwZKeNvP7s2Lm2XZu+czl1rxn36VeT/JcZnhzDZIuO7y+n/+LirUl+Y59lMJ1Fx/ZvkrwyfWy3Bo57pz/g+M70v3RwXlV1Xde9aJ910FtUbO848vpZ6WP42iQ/k+Td6Z/m8oT0X0LeIckvVdVlXdf90Yz1sG3pY25VfWm2b9Z+S9d1H5o0P1NbWGy7rvtCkn9VVf8z/RcFTxmmUX+W5BckU8zFomL7miQ3pT9/emZVvWTn8fBwAvzzE5YPYNXN0qdeO/J6Z58673Km7d8XsSwHLWfdHfS8cz8xTfrteMOOMmYpZ7exX9vY248mecjw+pVd1+32c86rth31G4sxTdvYot9oq20kyV8leWrXdZfs8rdV24ab2L5W2aS2seVj6fuMP0/ff9yUPrHi0elvhDgpyX9Kn2jxk7t83ngyvpylqqqvS3997KYkT5vxxohV25baB3BY1vEcbKKq2jruT5J3ph/nD2LVvg9f15jdmORVSV6X5NIkV6dPYj0nydPT35j2tUleX1XndF139R717WZVx6h1jdk4ow/pu2CGz03S8n42D4u832CV1nundYvbNGa5HjaN9yS5KMnbk3w0/fnulyf5l0m+OX2//IdV9Ziu615zwLqmsa4xuy79mPa/0j+1/rPZvmH+aekTwh6X5I+q6pu6rvv8PupYxfVO1jdm4xzGg2ftZ2NU1b2zfW/LZ9MnmBxkWbaWZ+3HNAkVq++2I69vnGL+rQv5tztgvd+fvoFX+s7jrPQnT89Icu+qekrXdZ84YB0sML5V9Yj0vzKynwvWzG6R++6FSS7YJaaXJHlZVT06/UnvSUmeV1WvmvRT1OxpUbEd/TnP2yZ5fZJHDzdrJ/2vB51XVZcmeVP6X7H4xSG+9u/9WdaYO+p704+9iV+nmKeFxraq7p/+hO8rx8xyTpIfrKr3dV339/upg1ssJLZd1/1dVZ2X/lj4bkn+oqp+In1yzI3pn5Z5bpJvGd6fvJ96AJZslj71hpHXO/u6eZdzkP591dZpnc3jvHM/MU2O347zGvu1jQmq6pHpk/eT5Mr01wR3s2rbUb9xyGZoG4l+Y7dlmWc5y3ZR+l9TTfplu0/6p9k+PsnvV9WPdF336h2fWbVtuIntaxXsp20kfd9wz11ubnhXkouq6kXpb/q7Q5JnV9XLuq77vzvmNZ6ML2dpqurkJC9Kf83zeV3XXTpjEau2LbUPYO7W+BxsrOF7khcPbz+X5MkH/P5ypb4PX/OYPWTML7RdXFW/luQV6W8yvH/6ZNZn7lHfblZujFrzmN3K8NTorYSlv09/M/FBtb6fzcMiv5NepfW+xZrGbaIZr4dN4/ld1527y///ZZKXDL8Cc16SE5L8ZlXdp+u66w9Y51hrHrO7jRnTXl9V/z39QxMfnD7B4unpHyQ+q5Vb7zWP2a1U1d3T/zJSkryt67oPzKFY+9n4ZTkl/Xi+9cstP9x13UcPuCyjy7PWY9qReRfI3I3uqCePnWvb1s9Nf+4glXZd9+Gu6y7tuu49Xde9ueu65yX5qiR/kv5pQJcMnRkHs5D4Dj9DvnXB+le6rnv3LJ9nXxa273Zdd/WkC1DDF1Q/O7w9JckPzloHx1lUbHceqD1rJJniFl3X/Xm2n+hy/4y/gZu9LWXM3eHJw783JHnZHMtt3cJiOzxx761JHpP+AuaTk9x1qPceSf5t+iclPCnJ26vqK2atg+Mscr/9sfTHwklyv/Q3iVw9lPXW9MkU70jyWyOfmefPKwMctln61NuMvN7Zp867nIP076u2TmtrTued+4lpcvx2nNfYr22MMRyfXpj+QTzXJ/muruuuHDP7qm1H/cYhmrFt6Dd2X5Z5lrNUXdd9evj+4NKu6y7puu4Puq77jvQPF7h3+if/HdvxsVXbhpvYvpZun20jXdddO+lJkV3XvT39Qw7y/9u773BbqvLw498XEFGkgwo2lKIi/ARBIwH0Ioiggr0glgtGjYVEDRgbckGi0Whi7CJR7A0iFmyxXIrGCKgRjYoIFytVmvTy/v5Ya3vm7rvrOfucfc7e38/zzLP37JlZs2bWlD1rVqG853hZh9m8n3QPZ5xeCzwA+A1wzCyWX2z70uND0kgt8WewjiJiK0pe+gZAAodl5s8HWbabxfQ+fKmnWZeCp61p11Iqw/6p/vTCWjlyWIvqHrXU06yLJwIb1u8fz8zbB1yuK8+zkVjI95aLabuBJZ1uXQ2bHzaIXtfhOv0DzLxv3orSQ8y8WOpp1ueedgml4lkrr+HwWa5mUW33Uk+zLp7NTDn2kfS45HnWNS7rAJ8DHlx/el9mnjiCuDTjs6TvaVaoWPyahbAG6aKk1aL5IN2sDKXWwjqUUgjwXsBbR72OKbRQ6fs6SpdFv6W0IqD5t2jO3ep4SoYVlJq3mr2FStvmei7LzB/1mPfrje8PHXI9mjHW8zYiHkZ5uQjwxX5/8DWUBUnbWoHxU5Sa3BcDD8/Mj2fmJZl5S2b+LjPfCzyC8kCwFaPrgndaLdh5m5k3USrKvAD4MTP3VSitCPwTsBczvcwAXDnseiRpjIa5pjZ7U2u/po46nLlc3xfbNk26fs+ds0lTWH0/jure77HRQUTcl9L69ybAbcAzM/P0Hosstv3odWOezOLYGJTXjdmHsyhl5scoL+XWAt4dEZs2Ji+2fTiJx9ei1efYGNSngWvq917XDPB+siiOjYh4APCaOnp4Zl43i2AW2770+JA0MhPwDLaGeo//BrB1/enwzPx0v+VGZN7fh09imrXLzKsp/7taYe02bBgsonvUBKfZcxvfPzrgMqMwyefZKCxkeYPFtN1LPd06msf8sEF8oPHdc22WMvMC4L/q6La10uewFs12T3Cajavh2ak6zyIigBOBx9afPkvnBktmE5dmfJb0Pc0KFYtcrcRwRR3t2SNERGzCzAHz23mKz+XAd+voEyLiDvOxnmmxgOn7j/Xzm8CBEfHM9qER9vqN3x815HpULcJz99JGfO4xH+uYFguYts35fzfEvFsMuR5Vi+C8HVfG18RbwLTdn5lr7Lu6dXObmT8DPl5Hd42IB3eaT/0t9Hmbmbdn5gmZuQul4sx2lDTfMjNfX+OzXWOR/5vNeiRpTJr/Ofv1SHmvxvf2a+pswknW/M/bGh+kd8xWOO1x+f0s4tIpnFHtm4k2wHNnaz+uHxEb9wmutR8vq5UaW+sY1b1/nMd7p3DGrr5M+ial0m+rBdEv9FnM68YMj41Z8LqxtI+NHlrHx/qU5+SWxbYPJ/H4Wuy6HRsDycxbgfPqaK9rBng/WSzHxisoLQteANy5y7upHRvzP6oxrXW++H9jxqQdH9JUm5BnsNVExAbA14BWz9xHZeZ7+oQ/MvP9PnwS06yH5ruN2ezLRXGPmtQ0i4i7AfvV0XMyc8HeRU34eTZnC/zectFs91JPt07mMz9sQHO9Dvc0iWnWg/e0YlGmWUTsBuxQR7+cmQvZYOW0nWfvAQ6p378KPLtXD1fTek+zQsXS0Dp5t63drnTzgMb3OXWZ2Mdl9fPOwObzuJ5psRDp2+oK51BKy9mdhlZabt747Q1DrkerW2znbtfuGTW0hUjbnzW+r91n3ub0W4dcj1Y3lvO2VlB8Zh29lJLhrNFaiLR9YOP7D/vMe06XdWp4YzlvM/PazDw/M//QetCMiLWBnessF9TKyJK0VDQzDvvdm3pdU2cTzm87tFbbCmejiLh7twAiYktmurdfLS6ZeS0zmWkLvU2dwpkGvZ47B9qP9X6+TR3ttA9Hce8/j9IaUM+4DBDObI6NW4Ff9Zl3QUXE5pSWuu5Xfzo8Mwep5O11Y8ZEXjfmcGwMw+tG/3AW3XWjj8sa3+/T+L7Y9uEkHl+LXbdjYxhzvma0Tfd+Mr/uWD/vR/d3U09pzH9U4/dWw0H+35gxaceHNLUm6BnsLyLiTsCXgIfWn/4lM4/rE/Z8mJf34ZOYZn3MdT+O/R414Wl2CDPlAz4ywPyjNqnn2ags1HvLRbHdE5Ruf7FA+WH9zFv5rklMsz7GcU8baV7ehKdZs+HZhb6nTc15FhFvAV5cR08HnpKZtwwRn6m4p4EVKpaKM+vn+sCuPeZrdj3z3a5zzV2zRpbdws7d0d1e9wAAIABJREFUYktfjc6iSduI2IKZSjN/mI91TJl5T9vMvAj4TR3duna91c02je+/7zqXBjGu8/ZxwGb1+ydri3sarYVI22a69XqYAGj28mV6z82iud8CezNzLi9kd5SSNAoXMvOs0K9r20fUz98Dq9qmndn43jWcWvho+zra6bo8UDj0v763wrl/rwJPfcIZ1b6ZaAM8dw6aprsx05JNrzSd9b0/M28GflBHd4+IdemuFc5NwNlt084Cbu6wvtXU8B/eWmbAjOoFEREbAV9nphWoVw/RgqjXje7hLPnrxhyPjUHX4XWji8V83RhAx/cHi3AfTuLxtdjN6d1SfXHbug/M+prh/WTJ8f9G93A8PqQlaMKewVrz3QE4uRHW+zPzVX3iN3Lz9T58EtNsADs0vs9mX471HjUFadYqfHoLpSLqgpnw82xUFuq95di3e8LSDViY/LABzfU63NEkptkA5rovx5qXN8lp1tbw7GWUXhMW0lScZxHxeqD13/ws4PGZecOA8Zmae1qLFSqWhlMa3w/tNENErMXMn+argO/MR0Qi4p7A7nX0otqKiuZm3tM3M6PfAFxUZ7+o8fuyIbdFq1s05y7wQqBVIP+0eVrHNFmotD25fm4I7NNjvic3vp/ZdS4NYlzn7ThrXU+LhUjbCxvf9+ozb/Mh4MKuc2kQi+J+Wyu+raijtwAfHPU6JGk+ZWYCra5mHxARD+80X/291frHF+pyzXDOY6ZFkKdHxJ27rHJ54/vnO0z/ItDqarbj9b0tnNvrMu2a94nlHaZT4/j0Ovp/dRv+YlT7Zgr0e+5cCVxdvz+vR6Xx5Y3vnY6NUd37W+FsyOrPVM1w7gnsW0e/1Z4PVse/VUf3rfN38mRmWijutE1jUY/9U4GH1J/+KTPfMujyXjcm97ox12NjCF43lth1Y0BPa3w/t23aYtqHK5mw42sJ6HVsDOIZwEb1+xrXDO8ni+9+kpnLB3g3dUxjkb0b01bVMPy/UUzc8SFNowl8Bmv12vxJ4ID608eAl/TYjPk08vfhk5hm/dRCgK3Cjdczi0q847xHTXqaRcROwIPr6Fdy4XtKn9jzbIQW5L3luLd7AtNtIfPDBvGixnfPtVmKiPsCj66jv87MoRuoHWde3hSk2QHM9E45joZnJ/48i4i/B95YR88F9h8yP3Eq7mntkXFYAgOlq5WkFM7avcP0I+v0BFZ0mL6sMf3EDtO3Bx7VJw4bNeKRwLHj3i+TMsx3+g4Yh1V1+VXj3h+TNCzAubs1sEufODye0mJZUjI97jHu/TIJw0Kct8C9gRvqPD8BNuwwz7Mb4Xx53PtlEoaFviYDmzbO0Z+Me/sneViAa/LGwHV1+jXATl3icQBwW53vd8Ba4943S31YoGvyZsAdu0xbG3hPI4xjxr1PHBwcHOqzwlDPiZS8gVvrMmcBd2qbfqf6e+uau12XcA5rrPvdHaZvQynAmJRuj9fpEs5HG+E8tcP0pw1w/b4D8Os6z9XANh3maV7Dl8/nvlkMw7DHBiN87gSObaz7yA7Td6/7L4GVPdY3p3t/nWdTSuZuUvJENmubvjal8FsrnGVdwnlUY54vAGu3Td+c0ohFAlcCm4z7GKjxWpfSSlIr7u+YZTheNybsujGKY8PrxsReN5YD6/WZ5xWNbbugw7Ytqn04icfXUjw2gE36bQ/wsJqWSSmgvmuX+byfLJL7yRDHz4oBznn/b0zp8eHgMEkDE/gMRilU/aFGOCfR9r9swG1a1uu6yZjeh09omu3fvv626Xdp2+Z3zibNRrnd055mHZZ5WyPMJw+xTZ5nszzeKJXxE8ghlhnFM+KiPM8mNd1GuE3Le6UtsBOwbZ8wXtgI44/A+qZZx/kPpMd1E7gb8MPGNr9yNmlW51nwvLxJTLMOy5/U2L6HDLGc59lg/0MOpeShJfBL4G6zjM9E39PWiMd8BOowDwkFu1D+kCZwLfAaSjdBewMfaBxwvwQ26LB8z4OyMf3HlMzLA4GH1vUeABxXLx6tMM4F7jzu/TIpw3yn74BxWFWXXzXu/TFJwwKeu9+rYT+W0g39bpSWiz7buDkm8JJx75NJGRbqvGX1Px6/oPzh2bWu513M/Jm4er7+LEzbsNDXZEpLPa35/2Hc2z/Jw0KkLXBUY55rgTfV8HcGHgO8l5nCGAk8e9z7ZRKGBUrbpwIXA+8AnlSvxXsALwZ+1Fj+K8C6494nDg4O0zcAe1IyEVvDEY1r05lt05b3COfNjeV+SGkJeLf62cx8flOPMNau62zNe1K9Dz4MeBlwSf39NuCAHuHcC7iUmcyxf67buWf93rqnXgrcs0c4j2WmMuPFNQ4Pq3FqZtieQY8X/6PYN0vx2GCEz53ABpT7cWveD1Du1w+vYV9bf78e2LlHOHO69zfCeVFj3vMpz1u7AQcB325M+2SfffypxrzfrsvvVsM7vzHtheM+HhpxPrkRr29RXjLs2GPY3uvGdFw3RnFs4HVjUq8bq4ArgOMprY7tQWkZdU/Kc1HzHL4J2Hex78NJPb6W2rHBTGXP/6X0VnAQ5f3UQ4AnAicwU3Argbf2iIv3k0VwTAx5/KxoxH/ZfO4Dj4+ld3w4OEzSwAQ+gwFvbyx/LuXe3WubduwSzrJGOCf2mL6g78MnNM1WUv63fRB4HuXetTOlV/XXMFMYNCnvpTedTZqNcrunPc06hPeHuswVDPEuql+a4XnWCuPutOWV1nOhtWz7tI4FdhnBM2K/NBvXeTap6TaqbaJ/Qe/llDI+/wW8ktJ7wkMo14Xnsnph7FuBA02zrmm2Cvg98E7gYEqjGDtTevY8DrisEd4ZdG84sWeaNeZb0Ly8SUyztvA2AW6sy5475L7pmWZ4nkHJT2uWJ9y/T1x2pEulEib8nrZGHOYrYId5SKxSyeHqxoHRPvyy28Wo30HZNr3f8GVgi3Hvj0kb5jN9B1z/qrr8qnHvi0kbFsm5ex2L6AXspAwLdd7WPwy391jPJXSoBeqw+NO2zv99Zv6o333c2z7pw3ynLaVFpn/rc84mcDNwxLj3xyQNC5C2T+2TprcD/0GXzBgHBweH+R6AEwd8Nkgge4SzVr2e9Vr+BPr0sERpkecHPcK4EfibAbbrr1i9gYf24Y/AXw0QzgtYvSBe+/A/wOZ9whjJvllqxwYjfu4EtgXO6xHO1cDjBwhn1vf+tnCOofd/t1Pp3+r2nep83cK4jR4vY8Z0XAx8TNRh1XyfG3jdGPtxMapjA68bk3rdWDVguv4WePRS2YeTeHwttWOD1XvP6jXcChwNRJ/4eD9ZQgODV6jw/8YUHh8ODpM0DHivaw6reoS1KK6JDP4f4C9Dl3CWNeY5sc/0XsNI34dPaJqtHHBbVtKj94F+aTbq7Z7mNGsLa//Gcu8Zct/0TDM8z4bdD61heY+w5vSM2C/NxnWeTWq6jWqbGKyg9yDhXw48wTTrmWarBlz2JGDjHnHpmWaN+RY0L28S06wtvL9tzLtGr7F9lu2ZZniewZDvBeuwrEd8JvaetkYc5itgh3lKMLgP8K/1ILyO0k3QWcCr6NFjRL+DktK17H7AWym16M6rJ8EtlJrNZwPvBvYY9z6Y5GG+0nfAda/qd7F2WHxpS2lF7ZB6fn6f0mrEdZQM+IspNR5fC9x13PtgUoeFOm8ptak/ClxIyVi5ipL58npgo3Hvh0kcFiJtge0a83513Ns8LcMCpe2uwPsorTJdQ3npf1X9T/V2etQ2d1icaUvpFvQISg8UF9Twr63rej8DvCR3cHBwmM+BEVWoaIT3WOAUSgs/N9XPUxigtbRGGOtQWiU+g5IxeQPwa0rrxQ8aIpzNgTfW++q1dfhJ/W2zIcLZsa771zUul9e4/S09uoaej32zlI4N5uG5E1i/3p/Pqvfr6yitGf0rcJ8hwpnVvb9DOH8NfAL4Td2uS4BvAAcPua+fVZe7pIbzmxruoqsAP8wxwYD5RV435nffLKVjw+vGUPt7KV037k9p1e1kSk8CF1PeH1xDaYnvJMoLy4H242Lah5N6fC2VYwNYl9KIwdsp19gL6rI3U1qUPJPSuuTWQ8TJ+8kSGRiwQsUo94HHh4ODwzgGJvAZjIWrUDGW9+ETmma7Af9Y1/lzyn+tWyhlg35OyUN6DP0rsPZMs/nY7mlNs7ZwPtGI+1DvpDzPBkszRl9geNbPiIv1PJvUdBvVNtG/oPddgcMoPQWdTWl44HrKdeH3lPfQfwdsaJr1TbNHAm8Avko5x66g3NOupDyXvZ8B8ob6pVmH+RckL28S06wtvO/W+W4Fthpy33ie9UkzRlyhooZ5HybwntY+RI2AJEmSJEmSJEmSJEmSJEmSJEnS1Fhr3BGQJEmSJEmSJEmSJEmSJEmSJElaaFaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1rFAhSZIkSZIkSZIkSZIkSZIkSZKmjhUqJEmSJEmSJEmSJEmSJEmSJEnS1LFChSRJkiRJkiRJkiRJkiRJkiRJmjpWqJAkLZiIWB4RWYetxx2fSdbYzyvmEMayRjjLOkxf0ZreZfmVdfrK2cZBkiRJkiTNnXkynUXEiXWfrBp3XCRJkiRJ0poiYlV9dj9x3HGZVpb9kCRNAytUSJIkSZIkSZIkSZIkSZIkSZKkqWOFCkmSNBaj6EVDkiRJkiSpyd44JEmSJEmSlo6I2LqRl7N83PGRJE2ndcYdAUmStDhl5kog5rD8spFFRpIkSZIkSZIkSZIkSZIkacTsoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSdLIRMQmEfHPEfGLiLghIi6NiG9GxNMGWHbdiDgwIt4dEWdFxJURcUtEXBER/xMRKyJi8z5hrIqIjIgT6/j9I+KD9febIuKSiPh8RDx8wO3ZOiLeEhHn1HjcEhGXR8QZNT7367HsRhHxmoj4bkRcFhE3R8QfI+JLEfHUiIgey64fEc+IiBMi4scRcXVd92URcVpEHBERdxlkGxph7hsRX6xxuDEiLqj7+h49lllW92dGxLJh1leXX1mXXdn2+6qIyMZPRzfW0xpOrPP+Zx2/MiLW67O+dSLi4jr/V4aNryRJkiRJ0ywi1o6I50XElyPiDzUv5YqIODMiXhkRd+qx7Gp5ABFxj4j414g4v+YRXRERX4+IAwaMy3NrHsiVEfHniDg3It4QERvW6a38gxWNZZbV/IYPN4K6sEOew7Ie6904Io6NiJ9FxHURcVVEnB4RhwwSb0mSJEmSJl0tK5Gtd/61bMRREfGj+hydEbG8bZlZl58YIl7bRsS/1TyEq2t+xAURcWJE7NZn2S0j4iURcVJE/KrmCdwUEb+PiC/U8hs9y1lGxHoR8Xc1j+SyWsbjTxHxy4j4as1b2brH8rPOl5mriHh4RHyulre4MSIujIjjI+L+Ay4/6/1Xj6MLGz99uENezoouyz4kIt5f9/Gf63p/GRHvi4jth94RkqSpts64IyBJmgwR8UDgm8BWjZ/XA/YB9omIDwOn9wjieOB5HX7fFHhYHV4WEU/IzO8OEJ8nAR8H7tz4+a7AE4EDI+KQzPxMj+WPAN4E3KFt0mbAnnVYVof2ZfcBPlPnbbo78Pg6fCUinpGZf+6w+lOBR3b4fXPgEXV4SUQ8NjN/0W0bGvE5GljR9vN9gZcCz46IAzPzjH7hjMkJwJOAjSlp9+ke8z4WuFv9/qF5jpckSZIkSRMjIu4NfBF4cNukTYE96vDiiHhcZp7XJ6w9gFMo+Rgt6wH7AftFxJGZ+bYuy94B+BzwhLZJO9bh2RHx6MG2aji1kMDXgK3bJu0F7BURu2fmy+Zj3ZIkSZIkLUURsR3wDdZ8lm7OM9fyE4PEo1v5jvvW4bkRcVxmvqHDsmsDv6Nzw9RbAQfV4fkR8eROcYyILSnlZXZom7RJHbYH9q/hHdFh+ZHlywwrIl4BvI3Vt39r4AXAsyLi6X2Wn/P+m0Wc16pxfjnQXhln+zr8TUS8NDOPn+v6JEnTwQoVkqQ5i9I64NeZqUzxGeAjwKWUB5VXAodSXnx3sw5wAfB54AfAb4BbgfsA+wKHUR6wPx8RO2bmpT3C2gl4BvBH4O3A2ZSHqMcAr6a8xD8+Ir6dmZd12J6jgGPr6FXAe4HvAFdQCvY/BHgykB2W3QP4KuVB/RLgXcD/An+o++cZwLMphf8/Ajyly744l/LAfHZdNuq+eBLwdMpD/ykRsXNm3thjXzwO2A34JfBW4CfARsDTKA/AGwFfrvv0tz3CGaX9gHUp2wjwPso+brqyfn6N8vB9T8ox1KtCxaH183LKvpMkSZIkSX1ExGbAmcC9gJuADwKnAauAu1Ce4/8e2Bb4akQ8JDOv7hLclpTKFLdT8mDOBG6mNEzxBkq+ypsj4quZ+bMOy/87M5UpfkZ5Of5TYENKnsiLKflOnZxFyRN6AnBc/e0xlHyVpgtZ052BL1Hyno6jFIL4M7ALcDQlX+KlEfGlzPx6l/VLkiRJkjRtTgLuQSkX8UXKe/7tgItgZOUneoqIIyllIaCUh3gf8CtKWY/7Ay8DdgeOiojLM/Od7UHUz2/XuJ4LXAZsANyPUq5id+DRwHvo3FDou5ipTPFx4D/rNt5GySvZjTUbj2jFf5T5MkOpDZX+ax29GngLsLKOPwp4FfAJyv7oGkz9nO3+24lyLLTyW14PfKFtnvbyQe8CXlK/nw6cSClvdD2lUsrLgQcBH4iIizPT8iOSpL4ic42yoJIkDSUi/oWZWvSvzcw3t02/A/BlyoNey30zc1Vjnm2AC7LLjSkidgK+R3lgPC4zj+owzypKpQOAc4BHZeY1bfMcQnmABXhlZv5b2/RdKJUY1gLOA/bJzN91idO9mpUQ6naeR6mt/zXgKZl5fYflXkDpkQNgv8z8r7bp22Xmrzqts07fl/IwuRbwN5n5Hx3mae7HHwKPbK/pHxHPAT5aRz+XmU9vm76MUpEEYO/MXNk2fQWlUAGZuUYXnBGxktLTxmmZuaxHHI/JzBVrbOjMfMcCR1EKY9ynU3pExF0pFS/uAPx7Zr68W3iSJEmSJE2biFgOfLiOtufJfAJ4FqWww96ZuUaFg5pfcgawPvCmzHxd2/SVzPS2eRGwR2b+vm2ePSkvuQN4Z2b+fYd1nFOn/zclT+aGtnmeSunBomWNPIVe29phu05k5kX+1TXeP2ubZ1tKYYD1gC9mZscCEJIkSZIkTYNmOQHKO/wDMvMbHeYbVfmJVZRyIB/JzOVt03YAfkwpJ3AMJZ8g2+ZZi1JZ49mUxhPunZlXNqYHsE1mnt9jm4+hNBSRwP2b5TkiYj3gmhqHt2fmGj1QNObdNDP/1PbbnPNlZiMi1qU0OrEVJU9k98z8eds8OwLfpTR0AR3Kfsx1/9XpWzPTAMahmXlij7AeTekVBbqXl1kPOJVSKeQiYNvMvLVbmJIkQeeuliRJGlh9yHp+Hf0J8M/t82TmLXWeW7qFk5m/7laZok4/Fzihjj5xgKgd1l6ZovokMy0T7tVh+pGU+2MCz+xWmaLGqb1Hh2dSMgNuBJ7bKTOgLvdBSi8cAMs7TO9amaJO/yYzPTAMsi9e2KnbxMz8GKWFAIAnRcTdBwhrHD5ESY+16NzaA5TMjzs05pckSZIkSX3UF9bPqKMv6/TSHiAzf0RpRRA65GW0Oby9MkUN40zgf+popzyZFzLTquEL2itT1DBOovRuOh+O6tRrRi0QcEod3XOe1i1JkiRJ0lJ0YqfKFNVIyk/08Q+UcgJn06EyRQ3/duBwSu8PdwGe2jY9e1UGqI4FLqfkWxzUNm1TZsoqnN4rkA6VKbZm9Pkyg3oCpTIFwBvbK1PU9f4U+KdegYxg/w3r1fXz5E6VKWqcbqT0TAKlMs7ec1ynJGkKWKFCkjRXuwKb1O8f6VYpolZM6PYgvYaI2CQitomIB0XEjrXm+1V18g61NYNuzs3Mn3SJRwI/qqP3a1vnWsABdXRlfSgdRuvB77TM7NXlIcw8SO/eL9CI2CIitmvth7ovWuE/uM/i52bmOT2mtyofrAMs6xeXcagtSX6zji7vMtuh9fOcbmkvSZIkSZLW8DhgbeB6Zhpd6KaVl7FVRNy7yzxXUVoA7KaVR3G/DtP2rZ8/6lSxoeGjPabNVlIa4eimFe9NI2LjeVi/JEmSJElL0Sd6TJuX8hNtDqyfJ/dpwPMqSu+TfdcREWtFxFYRcf9G+YwHAq3GONvLaFwB3Fy/Pyci1hki/qPOlxlGKx8mKT14dPPhOs9AZrH/BhYRGzJTruWkXvPWCiKX19FhjytJ0hQa5gYuSVInOzW+n9Vn3h9QHgg7ioidgFdQKjX06i1hLUoljku7TP9Fn3i0av1v0Pb7fYHWS/Ez+oTRyW718zERMegDZcftjIg9gL+jPMRu2mP5zfuEP0iatOwEfLrP/ONyAvBoYNuI2Csz/5I+EbEbsGMdtXcKSZIkSZIG18rLuDNwa0T0mrfp7sBvOvz+q9ryYzcd82QiYj1g2zraq2EIKK1OjtrlmXlFj+nNFiQ3YKbRD0mSJEmSplmvxg5HVn6ik4i4D7BFHX1zRLx5tuuIkiFyCPB84K+AO/VYfrUyGpl5U0R8BngOpfeLh0bEZ4GVwPdqZY5uRp0vM4xWWZ8LM/PybjNl5mURsYpSnqajuey/Ie3CTAPin4qITw243MDHlSRpelmhQpI0V83C/t0qOLRc0m1CRDwfeD+D35t6PYB17CqyofVif+2235sPbn8cMB5Nd53FMmtsR0SsAI6e7fJthkmTXhU3xu0USusBm1N6o2hWeDmsft5I79YkJUmSJEnS6maTlwHlRX8ng+bJtPee3ez1oV+rlf2mz8ag8YY185MkSZIkSZpWV/aYNpLyEyMOH9ryNGojD/9JafhzEJ3i+DJK3saBwH2AI+twe0T8EPgscHxmXt223KjzZYbRKh/Sr0wJlHIlHStUjGj/DWqc+0uSNOGsUCFJGqWBu/lriogHMFOZ4lLgX4BvA6uAazPzljrfYcB/tBaba2TnQeuF+leBV80mgIjYh5nKFBcAbwPOpLQucF1m3lrnOxY4aoAgZ5Umi01m3hwRH6P0YPK0iDg8M6+rD+cH19k+36d1B0mSJEmStLpWXsblwN5DLHfhPMRFkiRJkiQtIZl5W4/Jcy4/0UezwYNjgc8NuNx1beOvY6YywGnAe4AfAhcDN7R64oyI04G96FBWJTOvAQ6KiIcBTweWATvXOO5WhyMi4omZ+d8dtmGc+TJzLVMy5/03hGaavwj43oDL9ar4I0kSYIUKSdLcNR887gac12Peu3X5fTnlnnQb8MjM/EWX+ea7B4VmN4ZbzmL5K4CtgHUz86ezjMML6ueVwMMzs1uri4Pui277vNP0Pw0Y5ricQKlQcRfgacCJwBOZacXyQ+OJliRJkiRJS9YV9XMD4Od9CkLMp2YDCVv0mbffdEmSJEmSNH6jKD/RL/yWW2azjogI4G/q6BnAo1oVADroW0YjM38A/KCGvQGlYsVy4MmU3hVOjohtMvOGtm0YR75Mq6xPvzIlXecZ9f4bQDPNr5+n40qSNKXau9WWJGlY5za+P7TPvN2mP6h+/m+PyhRQau3PpwuZeYH/iFks/6P6uVtErDvLOLT2xXd6VKaAwffFMGmyqB82M/P/gFZrDYfWz8Pq50XAtxY8UpIkSZIkLW2tvIw7Mv/5Ll1l5o3Ar+vorn1m7xfPieitU5IkSZKkJW4U5Sd6uQC4un7fY5ZhbArcvX7/XLfKABFxF+D+wwScmddm5pcy8ynAO+vPWwJ7NmYbZ75Mq6zPfSNis24zRcQWwNZdJo9q/w2al/PjxryzTXNJkjqyQoUkaa7OYabm+nNqDfQ1RMQ9gP26hNHqMWn9biuJiC2Bg2YbyUHUh7tT6+gjI2KXIYP4Yv3ciJkC/8MaZF/sAvzVgOHt1Gc7WhUSbgNWDhjmqNxYP+84xDIn1M+9ImJvYJ86fmJmWmBCkiRJkqThfImZF9EvH2dEmGkoYZeIeFCP+Z7bJ5wbG9+HyXOQJEmSJEmjM4ryE13V3hy+Ukf3i4gHziKYdRrfu5bRoPTCsE6P6f00G4fcvPF9nPky36yfQe+8luV1nk5Gtf8GysupjZJ+v44+q1b2kCRpJKxQIUmak8y8CfhwHd0ZOLJ9nohYB/gg0K3VgV/Vz+0i4q87LH9n4JPAneYc4f7eBtxOeSD8dETcs9uMHaZ9BPhtK5yI6NnLRUTsGRGPbPu5tS/2jIhtOyyzBfCxXuF2cHxErPHwGhHPAh5bR0/JzD8OGe5ctda3zRDLfAa4lpI+n6T8l0lmjkFJkiRJkjSgzPwl8Lk6+syIeGWv+SPivhFx8DxF53hmChF8MCLWyAeKiKcAT+oTTjN/Y5g8B0mSJEmSNDqjKD/Rz5spjUeuBZzUp3zH2hFxSNs8lwFX1e8HR8Qahfkj4qHAG3uEe78B4t1sfPTC1pcx58ucwkweylERsUYPEhGxA/C6HmHMef9VVwA31+/98nKOq58bUtJ8424zRsQdI+KlEbFenzAlSbJChSRpJI4Ffle/vyUiPhkR+0fEQyLimcD3gAOAs7ss36ogsBZwakS8NiIeEREPi4gXU7qQ5UZvAAAHxklEQVTtWwZ8d/42ocjMHwNH19HtgXMj4riI2Ccido6IZRHx8og4nbaKDbVyydOBm4C7AN+OiI9HxFMjYteIeGhEHBQRx0TET4AzgJ3aovDR+rk+cFpEHB4Rf12HI4D/BXYA/nvATTqb0jXk2RGxvMbjURHx3kb8rwWOGDC8Ufpe/TwoIl4UETtGxLZ1uGunBTLzOuDTdbTVdeS3M/Oi+Y6sJEmSJEkT6sXABfX72yPitIh4fkQ8PCJ2iYh9I+IfIuK/gPOBp8xHJDLzHEqDHAC7A2dFxPNqXsbeEfEuSkMLP2gu1iGoHzHTsuEbI+LREbF9I89hIRrskCRJkiRpqo2o/ES/dZzLTFmHHYCfRsRba3mVXSJi94g4OCLeSanc8XFg48bytwOfqKP/Dzizzr9bLSPyduB0Sj7DeV2icW9gZUT8rJYteWLdtodGxJMj4jPAS+u8Pwb+p235seTLZObNwOF1dBPg+xHx6rre3SPiNcyU6Ti/Sxij2H9k5q3AWXX0sBrGAxt5OZs25v0K8O919BHAzyPi6EaZnj1qftIJlAoj72ZuvYtIkqaENwtJ0pxl5tURsT+lS8C7AwfXoelE4DQ69CSQmWdFxNHAMZSH13/qsJq3Az8F9hhdzDvLzOMi4vZGfF5H51r3p3VY9vsRsQz4LHAv4JA6dHNN2/InRcSHKV1ebgW8s23+24BXUB5odx9gc06tw9F07sXhGuCgzFw1QFij9jbgqZQuG9/fNu0jlK4jOzkBeEFj/EMjj5kkSZIkSVMiM/8UEXtQ8jL2oryM7tVq5DU9ps3V4ZT8kMcDD6LkJzVdCDyLmRf5N7ZNJzOvrQUlXgU8BPhG2yx7AytHFmNJkiRJktTRXMtPDLiOd0TEdcA7gI2AI+vQyc2smZfwOko5lJ0pjVV+sm36nyiVGI6lNMrZzQ516OYXwJMzc7XGIcaZL5OZJ0fEkcBbKWVj3tw2y/WUSjFHAtt2CWZU++/NwJeAzTqEcQywojH+ihruUZQySivo7jpKORtJknqyhwpJ0khk5s8oL7rfCvyK0srA5cB3gGdl5qF9lj8WeBzlJfeVlAfZ3wH/CeyXmQvag0JmvonysPsOSkWOa4BbKV0Wnga8HnhOl2W/D2wH/C2lMsMfmHkw/y1lG18HPCAzP9ph+cNq2GdQeo+4CbiI0qPEX2fmv7cv02dbVgD717hcUuOyCngv8KDMXKNiyEKovYHsDnwK+A1lOwdZ7gfMtF5wFeUYkSRJkiRJs5SZF2fmIygVGT5BaRnxeuAWSl7I9yiNXTyy5lvMVzxuBg6iNDRxJnB1jcfPgTcBuwJXNBa5uktQr6Y0xnAG5QW7L84lSZIkSRqDuZafGHAdHwTuR2lo8ruUsiq3UgrTnwecXNd/j8w8v23ZqykVAo4Czq3x+jMlL+JtwIMz8/Qeqz8DWEapEPAdSiMQ11LyVC6p2/e3wM6ZeWGX+I8tXyYz3wbsSSl3cSkz5VM+BOyWmaf2WX6u+68VzqnAPsAXKMfILT3mzVrGaHtKGaWzmcn/uRb4P8p+fB6wZWbe0G/9kiRFW6VHSZKkRS0iNgQuBu4EvC8zXzLmKEmSJEmSpAUSEXtSCisA7JuZ3xpnfCRJkiRJkiRJ0tJmDxWSJGmpOZhSmQLgP8YZEUmSJEmStOAOrp+3AOeMMyKSJEmSJEmSJGnps0KFJElaMiJiHeCVdfTszLTghCRJkiRJEyIiNo+IjXtMfwzwojr6xcy8amFiJkmSJEmSJEmSJtU6446AJElSLxGxKbApsBnwD8D2ddKbxhYpSZIkSZI0H3YEvhARnwO+CfwauB24D3AQ8GxgbeAG4LXjiqQkSZIkSZIkSZockZnjjoMkSVJXEbECOLrt5y9n5oFjiI4kSZIkSZonEbEM+E6f2a4BnpaZ35j/GEmSJEmSJC0+EXFX4K6zWPTmzDxv1PGRJGmps4cKSZK0VNwKXAR8CnjzmOMiSZIkSZJG72xgObA/8GBgC2BjSiWK84GvAe/OzMvGFUFJkiRJkqRF4CWs2TDlIC4Cth5tVCRJWvrsoUKSJEmSJEmSJEmSJEmSJGkJiIgVzLJCRWZuPdrYSJK09FmhQpIkSZIkSZIkSZIkSZIkSZIkTZ21xh0BSZIkSZIkSZIkSZIkSZIkSZKkhWaFCkmSJEmSJEmSJEmSJEmSJEmSNHWsUCFJkiRJkiRJkiRJkiRJkiRJkqaOFSokSZIkSZIkSZIkSZIkSZIkSdLUsUKFJEmSJEmSJEmSJEmSJEmSJEmaOlaokCRJkiRJkiRJkiRJkiRJkiRJU8cKFZIkSZIkSZIkSZIkSZIkSZIkaepYoUKSJEmSJEmSJEmSJEmSJEmSJE0dK1RIkiRJkiRJkiRJkiRJkiRJkqSpY4UKSZIkSZIkSZIkSZIkSZIkSZI0daxQIUmSJEmSJEmSJEmSJEmSJEmSpo4VKiRJkiRJkiRJkiRJkiRJkiRJ0tSxQoUkSZIkSZIkSZIkSZIkSZIkSZo6VqiQJEmSJEmSJEmSJEmSJEmSJElTxwoVkiRJkiRJkiRJkiRJkiRJkiRp6lihQpIkSZIkSZIkSZIkSZIkSZIkTR0rVEiSJEmSJEmSJEmSJEmSJEmSpKljhQpJkiRJkiRJkiRJkiRJkiRJkjR1/j+aeOcrmpqnWAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(20,20), dpi=200)\n", + "\n", + "plt.subplot(4,3,1)\n", + "sns.boxplot(x = 'popularity', data = df)\n", + "\n", + "plt.subplot(4,3,2)\n", + "sns.boxplot(x = 'acousticness', data = df)\n", + "\n", + "plt.subplot(4,3,3)\n", + "sns.boxplot(x = 'energy', data = df)\n", + "\n", + "plt.subplot(4,3,4)\n", + "sns.boxplot(x = 'instrumentalness', data = df)\n", + "\n", + "plt.subplot(4,3,5)\n", + "sns.boxplot(x = 'liveness', data = df)\n", + "\n", + "plt.subplot(4,3,6)\n", + "sns.boxplot(x = 'loudness', data = df)\n", + "\n", + "plt.subplot(4,3,7)\n", + "sns.boxplot(x = 'speechiness', data = df)\n", + "\n", + "plt.subplot(4,3,8)\n", + "sns.boxplot(x = 'tempo', data = df)\n", + "\n", + "plt.subplot(4,3,9)\n", + "sns.boxplot(x = 'time_signature', data = df)\n", + "\n", + "plt.subplot(4,3,10)\n", + "sns.boxplot(x = 'danceability', data = df)\n", + "\n", + "plt.subplot(4,3,11)\n", + "sns.boxplot(x = 'length', data = df)\n", + "\n", + "plt.subplot(4,3,12)\n", + "sns.boxplot(x = 'release_date', data = df)" + ] + }, + { + "source": [ + "选择几个范围相似的列。确保包括 artist_top_genre 列以保持我们的流派清晰。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import LabelEncoder, StandardScaler\n", + "le = LabelEncoder()\n", + "\n", + "# scaler = StandardScaler()\n", + "\n", + "X = df.loc[:, ('artist_top_genre','popularity','danceability','acousticness','loudness','energy')]\n", + "\n", + "y = df['artist_top_genre']\n", + "\n", + "X['artist_top_genre'] = le.fit_transform(X['artist_top_genre'])\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "y = le.transform(y)\n", + "\n" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 1, 0, 0,\n", + " 0, 1, 0, 2, 0, 0, 2, 2, 1, 1, 0, 2, 2, 2, 2, 1, 1, 0, 2, 0, 2, 0,\n", + " 2, 0, 0, 1, 1, 2, 1, 0, 0, 2, 2, 2, 2, 1, 1, 0, 1, 2, 2, 1, 2, 2,\n", + " 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 0,\n", + " 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 1, 2, 1, 2,\n", + " 1, 2, 2, 2, 0, 2, 1, 1, 1, 2, 1, 0, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2,\n", + " 2, 1, 1, 0, 1, 2, 1, 1, 1, 1, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2,\n", + " 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 2, 0, 2, 2, 0, 2, 2, 1, 1, 0,\n", + " 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 2, 2, 2, 1, 1, 1, 1, 1, 0,\n", + " 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2,\n", + " 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 2, 2, 2,\n", + " 1, 2, 1, 2, 1, 1, 1, 0, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 1],\n", + " dtype=int32)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ], + "source": [ + "\n", + "from sklearn.cluster import KMeans\n", + "\n", + "nclusters = 3 \n", + "seed = 0\n", + "\n", + "km = KMeans(n_clusters=nclusters, random_state=seed)\n", + "km.fit(X)\n", + "\n", + "# Predict the cluster for each data point\n", + "\n", + "y_cluster_kmeans = km.predict(X)\n", + "y_cluster_kmeans" + ] + }, + { + "source": [ + "那些数字对我们来说意义不大,所以让我们获取一个“轮廓分数”来查看准确性。我们的分数处于中间水平。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0.5466747351275563" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "from sklearn import metrics\n", + "score = metrics.silhouette_score(X, y_cluster_kmeans)\n", + "score" + ] + }, + { + "source": [ + "导入KMeans并构建模型\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.cluster import KMeans\n", + "wcss = []\n", + "\n", + "for i in range(1, 11):\n", + " kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)\n", + " kmeans.fit(X)\n", + " wcss.append(kmeans.inertia_)" + ] + }, + { + "source": [ + "使用该模型,通过肘部法确定构建的最佳聚类数量\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAFNCAYAAACAH1JNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5hdZX33//d3coIQgSQEUkJMQE4iVMABgyIp4SyHhD3wCLWK/VEpLSii9Kn2oG3110ptK1JbWypWeMoD8kNIEJCDnEU5hIMEpEIKBMIpkUA4J4R8f3+sNWYnmWRmktmz9t7zfl3XvvZa91p7z3c5l5kP973WfUdmIkmSpNbRUXUBkiRJ6h8DnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASdI6RMSnIuKndfsZETtWWZMkgQFOkoiIJyPizYh4re717arrkqR1McBJUuHozBxT9zq96oIkaV0McJLUPx+NiMcj4tcR8Y2I6ACIiI6I+IuIWBARiyLiwojYojx2QUR8odyeVA7FnlbuvycilnR/jyT1hf9gSFL/HAt0AnsDM4H/p2z/VPk6ENgBGAN0D8PeCvxOuT0deBw4oG7/9sxc2diyJbUTA5wkFWZHxMt1r0+v47yzM3NJZj4FnAOcWLZ/HPinzHw8M18DvgScEBHDKQLc/mUv2wHA3wMfLj83vTwuSX1mgJOkwqzM3LLu9R/rOO/puu0FwLbl9rblfv2x4cA2mfk/wOvAnsBHgKuAZyNiFwxwkjaAAU6S+mdy3fa7gWfL7WeBKWscWwG8UO7fChwHjMzMZ8r9k4CxwAONLFhS+zHASVL//ElEjI2IycAZwA/K9ouBMyNi+4gYA/wt8IPMXFEevxU4Hbit3L+l3P9pZr4zaNVLagvDqy5AkprEjyKiPkjdAMzp4bw5wL3AFsD3gfPL9u9RDKPeBmwCXAd8pu5ztwLvYlWA+ykwum5fkvosMrPqGiRJktQPDqFKkiS1GAOcJElSizHASZIktRgDnCRJUosxwEmSJLWYITeNyFZbbZVTp06tugxJkqRe3Xvvvb/OzAlrtg+5ADd16lTmzp1bdRmSJEm9iogFPbU7hCpJktRiDHCSJEktxgAnSZLUYgxwkiRJLcYAJ0mS1GIMcJIkSS3GACdJktRihtw8cA21ciUsWgTLlsGoUbD11tBhRpYkSQPLdDFQVq6EefNg2jSYOrV4nzevaJckSRpABriBsmgRzJwJC8oJkxcsKPYXLaq2LkmS1HYMcANl2bJV4a3bggVFuyRJ0gAywA2UUaNgypTV26ZMKdolSZIGkAFuoGy9NcyZsyrETZlS7G+9dbV1SZKktuNTqAOlowP22APuvBMefxzeeqvY9ylUSZI0wEwXA6mjAyZOhGuugUMPhSVLqq5IkiS1IQNcI9Rq8M47cOWVVVciSZLakAGuEfbaq5gL7vLLq65EkiS1IQNcI0QUvXA33ACvvFJ1NZIkqc0Y4BqlqwuWL4err666EkmS1GYMcI0ybVrxQIPDqJIkaYAZ4BqlowOOPbZ4IvWNN6quRpIktREDXCN1dRXh7frrq65EkiS1EQNcIx1wAIwbBz/8YdWVSJKkNmKAa6QRI2DmTPjRj4oHGiRJkgaAAa7RajVYuhRuuqnqSiRJUpswwDXawQfDu97l06iSJGnAGOAabZNN4MgjYfbsYnktSZKkjWSAGwy1GixeDD/9adWVSJKkNmCAGwxHHFH0xDmMKkmSBoABbjCMGQOHHVYEuJUrq65GkiS1OAPcYOnqgoULYe7cqiuRJEktzgA3WI46CoYPd1JfSZK00Qxwg2XsWDjooGIYNbPqaiRJUgszwA2mWg3mz4eHHqq6EkmS1MIMcINp5kyIcBhVkiRtFAPcYNpmG/jIR5xORJIkbRQD3GCr1WDePHjssaorkSRJLcoAN9hqteLdXjhJkrSBGhrgIuLMiHg4Ih6KiIsjYpOI2D4i7oqI+RHxg4gYWZ47qtyfXx6fWvc9XyrbfxURh9W1H162zY+ILzbyWgbM5Mmwzz7eBydJkjZYwwJcREwCPgt0ZubuwDDgBOBs4JuZuSPwEnBy+ZGTgZfK9m+W5xERu5Wfex9wOPCvETEsIoYB/wIcAewGnFie2/y6uuCee+Cpp6quRJIktaBGD6EOBzaNiOHAaOA5YAZwWXn8AmBWuT2z3Kc8flBERNl+SWYuy8wngPnAvuVrfmY+npnLgUvKc5vfsccW77NnV1uHJElqSQ0LcJn5DPAPwFMUwW0pcC/wcmauKE9bCEwqtycBT5efXVGeP76+fY3PrKu9+e28M+y+u8OokiRpgzRyCHUsRY/Y9sC2wGYUQ6CDLiJOiYi5ETF38eLFVZSwtq4uuP12eOGFqiuRJEktppFDqAcDT2Tm4sx8G7gc+DCwZTmkCrAd8Ey5/QwwGaA8vgXwYn37Gp9ZV/taMvO8zOzMzM4JEyYMxLVtvFqtWFJrzpyqK5EkSS2mkQHuKWBaRIwu72U7CPglcDNwXHnOSUB3grmy3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSMpHnS4soHXM7D22AN23NHpRCRJUr818h64uygeRrgPmFf+rPOAPwU+HxHzKe5xO7/8yPnA+LL988AXy+95GLiUIvxdC5yWme+U98mdDlwHPAJcWp7bGiKKXrgbb4SXXqq6GkmS1EKi6OQaOjo7O3Pu3LlVl1G4+2744AfhwgvhE5+ouhpJktRkIuLezOxcs92VGKrU2QnbbecwqiRJ6hcDXJU6Ooo54a69Fl57repqJElSizDAVa2rC956qwhxkiRJfWCAq9r++8OECU7qK0mS+swAV7Vhw2DWLLjqqqInTpIkqRcGuGZQqxX3wP3kJ1VXIkmSWoABrhnMmAFbbOHTqJIkqU8McM1g5Eg4+uhiWa0VK6quRpIkNTkDXLOo1WDJErj11qorkSRJTc4A1ywOOwxGj3YYVZIk9coA1yxGj4YjjoArroCVK6uuRpIkNTEDXDPp6oLnnoM776y6EkmS1MQMcM3kyCOLBxqc1FeSJK2HAa6ZbL45HHJIcR9cZtXVSJKkJmWAaza1Gjz5JDzwQNWVSJKkJmWAazbHHFMsr+UwqiRJWgcDXLPZaiuYPt3pRCRJ0joZ4JpRrQaPPFK8JEmS1mCAa0bHHlu82wsnSZJ6YIBrRttuC/vt531wkiSpRwa4ZtXVBfffD088UXUlkiSpyRjgmlX3MOoVV1RbhyRJajoGuGa1ww6w554Oo0qSpLUY4JpZVxf87GfF+qiSJEklA1wzq9WKd4dRJUlSHQNcM9ttN9h1V6cTkSRJqzHANbtaDW65BV58sepKJElSkzDANbuuLnjnHbjyyqorkSRJTcIA1+z22gumTHEYVZIk/YYBrtlFFMOo118Pr7xSdTWSJKkJGOBaQVcXLF8O11xTdSWSJKkJGOBawX77wcSJTuorSZIAA1xr6Ogolta65hp4882qq5EkSRUzwLWKWg3eeAOuu67qSiRJUsUMcK1i+nQYN86nUSVJkgGuZYwYAcccU8wHt3x51dVIkqQKGeBaSa0GS5fCzTdXXYkkSaqQAa6VHHIIjBnjMKokSUOcAa6VbLIJHHkkzJ5dLK8lSZKGJANcq+nqgkWL4I47qq5EkiRVxADXao44ouiJc1JfSZKGLANcqxkzBg47rLgPLrPqaiRJUgUMcK2oVoOFC+Gee6quRJIkVcAA14qOPhqGD/dpVEmShigDXCsaOxZmzCjug3MYVZKkIccA16pqNZg/Hx56qOpKJEnSIDPAtapZsyDCYVRJkoaghga4iNgyIi6LiP+OiEciYr+IGBcRN0TEY+X72PLciIhzI2J+RDwYEXvXfc9J5fmPRcRJde0fiIh55WfOjYho5PU0lW22gf33dzoRSZKGoEb3wH0LuDYzdwXeDzwCfBG4MTN3Am4s9wGOAHYqX6cA3wGIiHHAV4APAvsCX+kOfeU5n6773OENvp7m0tUF8+bBY49VXYkkSRpEDQtwEbEFcABwPkBmLs/Ml4GZwAXlaRcAs8rtmcCFWbgT2DIifgs4DLghM5dk5kvADcDh5bHNM/POzEzgwrrvGhqOPbZ4dxhVkqQhpZE9cNsDi4H/jIj7I+K7EbEZsE1mPlee8zywTbk9CXi67vMLy7b1tS/soX3oePe7YZ99DHCSJA0xjQxww4G9ge9k5l7A66waLgWg7Dlr+DwYEXFKRMyNiLmLFy9u9I8bXLUa3H03PP107+dKkqS20MgAtxBYmJl3lfuXUQS6F8rhT8r3ReXxZ4DJdZ/frmxbX/t2PbSvJTPPy8zOzOycMGHCRl1U06nVivcrrqi2DkmSNGgaFuAy83ng6YjYpWw6CPglcCXQ/STpScCccvtK4JPl06jTgKXlUOt1wKERMbZ8eOFQ4Lry2CsRMa18+vSTdd81dOy8M+y+u8OokiQNIcMb/P2fAS6KiJHA48DvU4TGSyPiZGAB8L/Kc68BPgrMB94ozyUzl0TEV4HuhT//JjOXlNt/DHwf2BT4cfkaemo1+NrXYNEi2HrrqquRJEkNFjnElmLq7OzMuXPnVl3GwHrwQXj/++G88+DTn666GkmSNEAi4t7M7Fyz3ZUY2sEee8B73uOkvpIkDREGuHYQUUzqe+ON8PLLVVcjSZIazADXLmo1WLECrrqq6kokSVKDGeDaxT77wKRJDqNKkjQEGODaRUdH0Qt37bXw+utVVyNJkhrIANdOajV46y348dCcTUWSpKHCANdOPvIRmDDBSX0lSWpzBrh2MmwYzJxZPMiwbFnV1UiSpAYxwLWbri549VX4yU+qrkSSJDWIAa7dzJgBm2/uMKokSW3MANduRo6Eo4+GOXOKeeEkSVLbMcC1o64uePFFuO22qiuRJEkNYIBrR4cdBqNHO6mvJEltygDXjkaPhiOOgCuugJUrq65GkiQNMANcu6rV4Lnn4M47q65EkiQNMANcuzrqqOKBBp9GlSSp7Rjg2tXmm8PBBxcBLrPqaiRJ0gAywLWzWg2eeAIeeKDqSiRJ0gAywLWzmTOho8NhVEmS2sx6A1xE7BMRE+v2PxkRcyLi3IgY1/jytFG22gqmT3c6EUmS2kxvPXD/DiwHiIgDgK8DFwJLgfMaW5oGRFcXPPJI8ZIkSW2htwA3LDOXlNsfA87LzB9m5l8COza2NA2IWbOKd4dRJUlqG70GuIgYXm4fBNxUd2x4D+er2UyaBPvtZ4CTJKmN9BbgLgZujYg5wJvA7QARsSPFMKpaQa0G990HTz5ZdSWSJGkArDfAZeb/C3wB+D6wf+ZvJhTrAD7T2NI0YGq14t1eOEmS2kJvT6GOBu7NzCsy8/WI2CUizgR2z8z7BqdEbbQddoA99zTASZLUJnobQr0WmAq/GTb9ObADcFpE/F1jS9OAqtXgZz8r1keVJEktrbcANzYzHyu3TwIuzszPAEcARzW0Mg2srq5iSa3Zs6uuRJIkbaTeAlz9IpozgBsAMnM5sLJRRakB3vte2GUXJ/WVJKkN9BbgHoyIfyjve9sRuB4gIrZseGUaWBFFL9wtt8CLL1ZdjSRJ2gi9BbhPA7+muA/u0Mx8o2zfDfiHBtalRqjV4J134Ec/qroSSZK0EXoLcGOAH2XmGZn5i7r2pRQPOKiV7L03TJniMKokSS2utwD3z8D4HtrHAd8a+HLUUBFFL9z118Orr1ZdjSRJ2kC9BbgdM/O2NRsz83bgtxtTkhqqVoPly+Hqq6uuRJIkbaDeAty71nNsxEAWokHyoQ/BxIlO6itJUgvrLcDNj4iPrtkYEUcAjzemJDVURwfMmgXXXANvvll1NZIkaQMM7+X454CrI+J/AfeWbZ3AfjiRb+vq6oJ/+7fiXriZM6uuRpIk9VNvPXBHAr8H3AFMKV+3Ar+dmY82uDY1yvTpMHasw6iSJLWo3nrgtgPOAd4LPEgR5BYBo4G3GluaGmbECDjmGJgzp3igYeTIqiuSJEn9sN4euMw8KzM/BGwDfAlYAvw+8FBE/HIQ6lOjdHXByy8XKzNIkqSW0tsQardNgc2BLcrXs8BdjSpKg+CQQ2DMGCf1lSSpBa03wEXEeRFxB/ADigcXfgYcn5mdmfn7g1GgGmSTTeDII2H27GJ5LUmS1DJ664F7NzAKeB54BlgIvNzoojRIajVYtAjuuKPqSiRJUj/0dg/c4cA+rFq4/gvAPRFxfUT8daOLU4N99KMwapRPo0qS1GJ6vQcuCw8B1wA/pngS9T3AGQ2uTY02ZgwcdlgR4DKrrkaSJPVRb/fAfTYiLomIpyjmfzsK+G+gRrGgvVpdrQZPPw1z51ZdiSRJ6qPe5oGbCvx/wJmZ+Vzjy9GgO/poGD686IXbZ5+qq5EkSX3Q2z1wn8/MH25MeIuIYRFxf0RcVe5vHxF3RcT8iPhBRIws20eV+/PL41PrvuNLZfuvIuKwuvbDy7b5EfHFDa1xSBs3Dg48sJhOxGFUSZJaQl/ngdsYZwCP1O2fDXwzM3cEXgJOLttPBl4q279ZnkdE7AacALwPOBz41zIUDgP+BTgC2A04sTxX/dXVBY89Bg8/XHUlkiSpDxoa4CJiO4r1VL9b7gcwA7isPOUCYFa5PbPcpzx+UHn+TOCSzFyWmU8A84F9y9f8zHw8M5cDl5Tnqr9mzoQIJ/WVJKlFNLoH7hzgfwMry/3xwMuZuaLcXwhMKrcnAU8DlMeXluf/pn2Nz6yrXf01cSLsv7/TiUiS1CIaFuAi4ihgUWbe26if0Y9aTomIuRExd/HixVWX05xqNXjwQZg/v+pKJElSLxrZA/dh4JiIeJJieHMG8C1gy4jofvp1O4oVHijfJwOUx7cAXqxvX+Mz62pfS2aeVy7/1TlhwoSNv7J2dOyxxbu9cJIkNb2GBbjM/FJmbpeZUykeQrgpMz8O3AwcV552EjCn3L6y3Kc8flNmZtl+QvmU6vbATsDdwD3ATuVTrSPLn3Flo66n7U2ZAp2dBjhJklrAYDyFuqY/BT4fEfMp7nE7v2w/Hxhftn8e+CJAZj4MXAr8ErgWOC0z3ynvkzsduI7iKddLy3O1oWo1uOsuWLiw6kokSdJ6RA6xub86OztzrqsO9OzRR2GXXeDcc+Ezn6m6GkmShryIuDczO9dsr6IHTs1q553hfe9zOhFJkpqcAU6r6+qC22+HRYuqrkSSJK2DAU6rq9Vg5Uq40udBJElqVgY4re63fxt22MFhVEmSmpgBTquLKIZRb7wRXn656mokSVIPDHBaW60Gb78NV11VdSWSJKkHBjitbd99YdIkJ/WVJKlJGeC0to6OYmmta6+F11+vuhpJkrQGA5x61tUFb75ZhDhJktRUDHDq2f77w1ZbOYwqSVITMsCpZ8OHw8yZxYMMy5ZVXY0kSapjgNO6dXXBK68UU4pIkqSmYYDTus2YAZtv7qS+kiQ1GQOc1m3UKDj6aJgzB1asqLoaSZJUMsBp/Wo1ePFFuO22qiuRJEklA5zW7/DDYdNNfRpVkqQmYoDT+o0eDUccAVdcAStXVl2NJEnCAKe+qNXg2WfhrruqrkSSJGGAU18cdRSMGOEwqiRJTcIAp95tsQUcfHAxnUhm1dVIkjTkGeDUN11d8MQT8ItfVF2JJElDngFOfXPMMdDR4aS+kiQ1AQOc+mbCBJg+3fvgJElqAsOrLkAt5NRTi4cZ5s+HMWNg662LXjlJkjSo/Ourvlm5EnbaCc48s3ifNg3mzXNuOEmSKmCAU98sWgTHHgsLFhT7CxbAzJlFuyRJGlQGOPXNsmWrwlu3BQuKdkmSNKgMcOqbUaNgypTV26ZMcV44SZIqYIBT32y9NcyZsyrETZkC3/senHyyT6ZKkjTIDHDqm44O2GMPuPNOePLJ4n3XXeHVV4tJfs86C95+u+oqJUkaEgxw6ruODpg4seh9mzgRtt0Wbr8dTjsN/vEfYcaMYtF7SZLUUAY4bZxRo+Db34aLLoL77oO99oKbb666KkmS2poBTgPjd38X7rkHxo0rFr7/u79zjjhJkhrEAKeBs9tucPfdcPzx8Gd/VswT99JLVVclSVLbMcBpYL3rXXDxxfDP/wzXXQcf+EAxtCpJkgaMAU4DLwJOPx1uuw1WrIAPfQjOO8854yRJGiAGODXOtGlF79v06fCHfwif+hS88UbVVUmS1PIMcGqsrbaCa66Br3wF/s//KULdo49WXZUkSS3NAKfGGzYM/uqv4Mc/LuaJ6+yEH/6w6qokSWpZBjgNnsMOK4ZUd9sNjjsOPv95V2+QJGkDGOA0uN797uLhhtNPh29+Ew48EJ55puqqJElqKQY4Db6RI4tpRi6+GB54APbeG266qeqqJElqGQY4VeeEE4rVG8aPh0MOgb/9W1dvkCSpDwxwqtZ731us3vCxj8Gf/zkccwwsWVJ1VZIkNTUDnKo3ZgxcdBF8+9tw/fXF6g1z51ZdlSRJTcsAp+YQAaedBrffDu+8Ax/+MPz7v7t6gyRJPTDAqbl88INw//0wYwaceiqcdBK8/nrVVUmS1FQaFuAiYnJE3BwRv4yIhyPijLJ9XETcEBGPle9jy/aIiHMjYn5EPBgRe9d910nl+Y9FxEl17R+IiHnlZ86NiGjU9WgQjR8PV18Nf/3X8F//Vaze8KtfVV2VJElNo5E9cCuAL2TmbsA04LSI2A34InBjZu4E3FjuAxwB7FS+TgG+A0XgA74CfBDYF/hKd+grz/l03ecOb+D1aDB1dMCXvwzXXgvPPQf77AOXXVZ1VZIkNYWGBbjMfC4z7yu3XwUeASYBM4ELytMuAGaV2zOBC7NwJ7BlRPwWcBhwQ2YuycyXgBuAw8tjm2fmnZmZwIV136V2ceihxZDq+94Hxx8PZ57p6g2SpCFvUO6Bi4ipwF7AXcA2mflceeh5YJtyexLwdN3HFpZt62tf2EN7Tz//lIiYGxFzFy9evFHXogpMngy33gqf/Syccw78zu/AwoW9fkySpHbV8AAXEWOAHwKfy8xX6o+VPWcNf8wwM8/LzM7M7JwwYUKjf5waYeRI+Na34JJL4MEHi9UbfvKTqquSJKkSDQ1wETGCIrxdlJmXl80vlMOflO+LyvZngMl1H9+ubFtf+3Y9tKudfexjxeoNEyYUw6tf+5qrN0iShpxGPoUawPnAI5n5T3WHrgS6nyQ9CZhT1/7J8mnUacDScqj1OuDQiBhbPrxwKHBdeeyViJhW/qxP1n2X2tmuu8Jdd8GJJ8Jf/iUcfbSrN0iShpRG9sB9GPgEMCMiHihfHwW+DhwSEY8BB5f7ANcAjwPzgf8A/hggM5cAXwXuKV9/U7ZRnvPd8jP/A/y4gdejZjJmTDHFyL/+azGUuvfert4gSRoyIofYTPednZ051z/07eWee+C44+D554uHHE49tVjZQZKkFhcR92Zm55rtrsSg1rfPPnDffXDQQfDHfwyf+ISrN0iS2poBTu1h/Hi46ir46lfh//7fYkkuV2+QJLUpA5zaR0cH/MVfwPXXwwsvQGcnXHpp1VVJkjTgDHBqPwcfXKzesMcexbQjZ5wBy5dXXZUkSQPGAKf2tN12cMstRXg791xXb5AktRUDnNrXyJHFU6mXXgrz5sFee8ENN1RdlSRJG80Ap/Z3/PHFHHHbbAOHHVY86ODqDZKkFmaA09Cwyy7F6g0f/zh8+ctw5JHw4otVVyVJ0gYxwGno2GwzuPBC+M534KabitUb7r676qokSeo3A5yGlohipYY77ii299+/WI5riK1IIklqbQY4DU2dncXqDYccAqedBr/3e/Daa1VXJUlSnxjgNHSNGwc/+hF87WtwySXF6g2PP16sqbpgQfHuww6SpCZkgNPQ1tEBf/7nxeoNkyfDk0/CtGkwdWrxPm+eIU6S1HSGV12A1BQOOgh22gkOOKDofYPifeZMuPHGItANG1ZpiZIkdTPASd0yV4W3bgsWFCs4vP/9sO++sN9+xWvaNNhqq2rqlCQNeQY4qduoUTBlyuohbsoUGD8ePvUp+PnP4eyz4Z13imM77bQq0O23H+y+u710kqRBETnEpk/o7OzMuXPnVl2GmtHKlcU9bzNnFiFuyhSYMwf22KO4Vw7g9deLVR1+/vNVr8WLi2ObbWYvnSRpQEXEvZnZuVa7AU6qs3IlLFoEy5YVPXJbb70qvPUkE554YvVA94tf2EsnSRoQBriSAU4NZy+dJGmArCvAeQ+cNNA22wymTy9e0HMvnffSSZI2gj1wUhXqe+nuvLN4X7SoOGYvnSSpZA+c1Ew2ppdu2rSil264//eVpKHKHjipWdlLJ0lDnj1wUqtpRC9df5+ylSQ1JXvgpFbWn166D30Inn56/fPcSZKaitOIlAxwamvrm5fu8svhzDPXXmnijjtg0qTqapYkrZNDqNJQEAE77FC8Pv7xoq27l27s2J7Xep0/v1jrdfvtV7122GHV9pQpMHLk4F+LJGmdDHBSu+u+l+7553te63XMGDjuOHj8cbj/fpg9G95+e9U5EUUP3ZrBrvu17bYOwUrSIDPASUPF1lsX97z1dA/cv/3bqvPeeQeefbYYin3iiSLYdW//5CfFsfpbL0aOhKlT1w523a9x44oQKEkaMN4DJw0lA/EU6rJlRQCsD3b1ryVLVj9/8817DnY77FAEv9GjB+zyJKndeA+cpCKsTZy4cd8xahTsvHPx6snSpT0Hu1/9Cq67Dt58c/Xzt9lm3fffTZ7shMWS1AP/ZZQ0sLbYAvbcs3itKRNeeGH1YNfdk/fzn8Oll66a1w6KNWEnT+453G2/fRH+6odnnedO0hBhgJM0eCKKHsCJE4u56db09tuwcOHa99498QRcfXUR/uptuumq++8OPBD23x9OOGHVPX6zZxf3+A0bNiiXJ0mDxQAnqXmMGLGqd23GjLWPv/EGPPlkz/ff7bzzqvAGxfusWXDOOXDqqcXDFP15bb65vXeSmpYBTlLrGD0adtuteK1pwYKe57mbOhWOOaZ4uGLJEnjqqWJy4yVL4LXX1v2zOjpgyy37H/zGjvW+PUkN578yktrDqFE9z3M3cSKcd17Pn1m+HF56aVW4W9/r17+GRx8ttl9+ef21bL75hgW/TTbp/Tq9z08SBlFgrMMAAApnSURBVDhJ7WJd89xtvfW6PzNyZPEgxDbb9O9nvfNOEeLWF/jqg+HTT6/arn9IY02jR68e6NYMeTvvXDzUcfzxq67x8suLkDpsWBHoNtmkeG/VufcMqFKfGOAktYeOjuKBhTvvbPwf/2HDYPz44tUfmfDqq33r8VuyZFWP34svFr2Fl1++KrxB8V6rwTe/WbzX6w5z9a+e2vpzvD/fsSHDyCtXwrx5PU82bYiTVuNEvpLU7DKL+fOeew523HHt4w89BLfdBm+9tfZr2bKe23s7vrGGDet/APyDP4ATT1x7GHz2bLjnnqLHdOTI4ju6t9fcX9exESOaIwTaw6h+ciJfSWpVEcXw6mab9Xyf3/jx8Ed/NHA/L7Po8duYANiX40uXrn78U5/q+UGUpUvhlFM2/rpGjOh/8Ovvues7tuWWxZPUtdqqHsYrrijmNxw2rOi17A6arToEDu0fUpvk+gxwktQqNuQ+vw0RUfxhGjVqYL+3N88/33NA3WGHYn7AZcuKYNn9qt9f37H+nLtsWdHbuXTp+j+3bNnqawL3xeWXw5lnrj4EfuyxPQ+BjxixKtDVb6/53te2RhzrqW2zzYr7P+tD6uzZxe+wo6M4b/jwIrC2YkhtomF+h1AlqZU0yX/9N0QT/XHskxUr+hcSp07teQqcBx8slpl7++3iO99+e/XtNd/7e6y38wcyB6wZUqH4PfYUUrsDXXfv48ZsD8R39GV7zz3hqKPWvr4779z4ZQrXwSFUSWoHA7GebbMazAdRBkL3H/fRo/t2/rp6GCdMgLPOakyNfbFy5cAFxV126XkYfMcd4e//vngKe8WK4jVQ28uXb9hn69/76pZber6+Zcs2+tfQXwY4SVLzaOeAOlhD4P3V0TFwQ+brC6l/8icb//2NkFmE2L4Ev2HDer6+wb7dAAOcJEmDo9V6GDdEs4bU9Ykogln3XIrrs3Jl01yfAU6SpMHSzj2M0P4htYmur+UDXEQcDnwLGAZ8NzO/XnFJkiQNXUMhpDbB9bV0JI6IYcC/AEcAuwEnRkQPj/hIkiS1j5YOcMC+wPzMfDwzlwOXADMrrkmSJKmhWj3ATQKerttfWLZJkiS1rVYPcH0SEadExNyImLt48eKqy5EkSdoorR7gngEm1+1vV7atJjPPy8zOzOycMGHCoBUnSZLUCK0e4O4BdoqI7SNiJHACcGXFNUmSJDVUS08jkpkrIuJ04DqKaUS+l5kPV1yWJElSQ7V0gAPIzGuAa6quQ5IkabBEZlZdw6CKiMXAgl5P1PpsBfy66iK0Ufwdtj5/h63N31/rG6zf4ZTMXOsG/iEX4LTxImJuZnZWXYc2nL/D1ufvsLX5+2t9Vf8OW/0hBkmSpCHHACdJktRiDHDaEOdVXYA2mr/D1ufvsLX5+2t9lf4OvQdOkiSpxdgDJ0mS1GIMcOqziJgcETdHxC8j4uGIOKPqmtR/ETEsIu6PiKuqrkX9FxFbRsRlEfHfEfFIROxXdU3qn4g4s/w39KGIuDgiNqm6Jq1fRHwvIhZFxEN1beMi4oaIeKx8HzuYNRng1B8rgC9k5m7ANOC0iNit4prUf2cAj1RdhDbYt4BrM3NX4P34u2wpETEJ+CzQmZm7U6widEK1VakPvg8cvkbbF4EbM3Mn4MZyf9AY4NRnmflcZt5Xbr9K8YdjUrVVqT8iYjvgSOC7Vdei/ouILYADgPMBMnN5Zr5cbVXaAMOBTSNiODAaeLbietSLzLwNWLJG80zggnL7AmDWYNZkgNMGiYipwF7AXdVWon46B/jfwMqqC9EG2R5YDPxnOQz+3YjYrOqi1HeZ+QzwD8BTwHPA0sy8vtqqtIG2ycznyu3ngW0G84cb4NRvETEG+CHwucx8pep61DcRcRSwKDPvrboWbbDhwN7AdzJzL+B1BnnYRhunvE9qJkUY3xbYLCJ+r9qqtLGymNJjUKf1MMCpXyJiBEV4uygzL6+6HvXLh4FjIuJJ4BJgRkT8V7UlqZ8WAgszs7vn+zKKQKfWcTDwRGYuzsy3gcuBD1VckzbMCxHxWwDl+6LB/OEGOPVZRATFvTePZOY/VV2P+iczv5SZ22XmVIqbpm/KTP/Lv4Vk5vPA0xGxS9l0EPDLCktS/z0FTIuI0eW/qQfhgyit6krgpHL7JGDOYP5wA5z648PAJyh6bh4oXx+tuihpiPkMcFFEPAjsCfxtxfWoH8re08uA+4B5FH+HXZWhyUXExcDPgV0iYmFEnAx8HTgkIh6j6Fn9+qDW5EoMkiRJrcUeOEmSpBZjgJMkSWoxBjhJkqQWY4CTJElqMQY4SZKkFmOAk9Q0IiIj4h/r9s+KiL8aoO/+fkQcNxDf1cvPOT4iHomImxtZV0RMjYjf7X+FktqBAU5SM1kG1CJiq6oLqVcuOt5XJwOfzswDG1VPaSrQrwDXz+uQ1MQMcJKayQqKSU3PXPPAmj1VEfFa+f47EXFrRMyJiMcj4usR8fGIuDsi5kXEe+q+5uCImBsRj5ZrwxIRwyLiGxFxT0Q8GBF/WPe9t0fElfSw2kFEnFh+/0MRcXbZ9mVgf+D8iPhGD5/50/Izv4iItSb9jIgnu8NrRHRGxC3l9vS6ybPvj4h3UUwa+pGy7cy+XkdEbBYRV5c1PBQRH+vLL0ZSc/G/xiQ1m38BHoyIv+/HZ94PvBdYAjwOfDcz942IMyhWLvhced5UYF/gPcDNEbEj8ElgaWbuExGjgDsi4vry/L2B3TPzifofFhHbAmcDHwBeAq6PiFmZ+TcRMQM4KzPnrvGZIygWMf9gZr4REeP6cX1nAadl5h0RMQZ4i2IR+7MyszuIntKX64iILuDZzDyy/NwW/ahDUpOwB05SU8nMV4ALgc/242P3ZOZzmbkM+B+gO7jMowht3S7NzJWZ+RhF0NsVOBT4ZEQ8ANwFjAd2Ks+/e83wVtoHuKVckHwFcBFwQC81Hgz8Z2a+UV7nkn5c3x3AP0XEZ4Ety5+5pr5exzyK5X/OjoiPZObSftQhqUkY4CQ1o3Mo7iXbrK5tBeW/WRHRAYysO7asbntl3f5KVh9pWHPtwAQC+Exm7lm+ts/M7gD4+kZdRf/95hqBTX5TZObXgT8ANqXoWdu1h8/26Toy81GKHrl5wNfKYV9JLcYAJ6nplL1Tl1KEuG5PUgxZAhwDjNiArz4+IjrK++J2AH4FXAf8UUSMAIiInSNis/V9CXA3MD0itoqIYcCJwK29fOYG4PcjYnT5c3oaQn2SVdfY1d0YEe/JzHmZeTZwD0XP4avAu+o+26frKId/38jM/wK+QRHmJLUY74GT1Kz+ETi9bv8/gDkR8QvgWjasd+wpivC1OXBqZr4VEd+lGGa9LyICWAzMWt+XZOZzEfFF4GaKnq+rM3NOL5+5NiL2BOZGxHLgGuDP1jjtrykegPgqcEtd++ci4kCKHsWHgR+X2++U/3t8H/hWH69jD+AbEbESeBv4o/XVLak5ReaaIwqSJElqZg6hSpIktRgDnCRJUosxwEmSJLUYA5wkSVKLMcBJkiS1GAOcJElSizHASZIktRgDnCRJUov5/wEEXUm8vjXJ1AAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.figure(figsize=(10,5))\n", + "sns.lineplot(range(1, 11), wcss,marker='o',color='red')\n", + "plt.title('Elbow')\n", + "plt.xlabel('Number of clusters')\n", + "plt.ylabel('WCSS')\n", + "plt.show()" + ] + }, + { + "source": [ + "Looks like 3 is a good number after all. Fit the model again and create a scatterplot of your clusters. They do group in bunches, but they are pretty close together." + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOydd3gUVduH7zOzNZWE0BKqVAHpAgpSFBTBil2wI2Lvfnasr72j2MWCBVGQpqgIAtKl914SSoD0bJ853x+zCdnsbFhCAop7X5eXZHZ2zskmOc85T/k9QkpJjBgxYsT476Ic7wnEiBEjRozjS8wQxIgRI8Z/nJghiBEjRoz/ODFDECNGjBj/cWKGIEaMGDH+48QMQYwYMWL8x6k2QyCE+FQIkS2EWB3hdSGEeFsIsVkIsVII0am65hIjRowYMSJTnSeCMcCACl4/F2ge/G84MLoa5xIjRowYMSJQbYZASjkbyKnglguBL6TBAqCGEKJedc0nRowYMWKYYzmOY2cAu8p8nRm8tqeiN6WlpcnGjRtX47RixIgR48Tj77//PiClrGX22vE0BFEjhBiO4T6iYcOGLFmy5DjPKEaMGDH+XQghdkR67XhmDWUBDcp8XT94LQwp5YdSyi5Syi61apkatBgxYsSIUUmOpyGYBFwbzB7qDuRLKSt0C8WIESNGjKqn2lxDQohvgD5AmhAiExgJWAGklO8D04CBwGbABdxQXXOJESNGjBiRqTZDIKW86jCvS+D26ho/RowYMWJER6yyOEaMGDH+48QMQYwYMWL8x4kZghgxYsT4jxMzBDFixIjxH+dfUVAWI0aM/xYysAu8vxtf2PsjLPWP74ROcGKGIEaMGP8o9OLPofBVQBoXCl9HJj6IEn/tcZ3XiUzMNRQjRox/DDKwM2gEvIAv+J8XCl8xTgkxqoWYIYgRI8Y/B+9vgG7ygg7eX4/1bP4zxFxDMWIcJQd25zD5velsWbGdFqc24/wRZ5NSO/l4T+tfijzeE/hPEjMEMU54pJRIKVGUqj8Ab125g3t7PYHf68fvDbBsxiomvDWVd+b/j/ot0qt8vBMee38ofMvkBcV4LUa1EHMNHWN25uex/sB+NN3s+BujKinOL+bl60cx0Hk1A2xXcn/fkezaYCpwW2neuvVDXAVu/N4AAD6Pn+I8F+/dM6ZKx/mvICyNIOEewI6xT7UY/064B2FpeETPklJH+jciAxHVl2MEEYbkz7+HLl26yH9jP4LMgnxumfIT2/JyUYXAplp49ewB9G180vGe2gmJlJI7uj3CtpU78PuMRVoIQXxyHGM2vk1yWtJRj6FpGufar0Lq4X9DVruFae5vjnqM/yoysB08wZiA42yEpfGRvd87D5n/AEgXSB3U+oiUdxGWJlU+138LQoi/pZRdzF6LnQiOAbqUXP3jODYcPIAnEKDY7yfX4+b2aZPZlpd7vKfHrvx83l44n2dnz2Tuzh382zYHZqxbuImd6zJLjQAYxsHn9fPLp39UyRiKomCxmntX7U57lYxRFUj57zt9CktjRMJw478jNQLaHmTuraAfMAwBHtC2IHOGIqW/Wub7bydmCI4Bi7IyyXW70cstsAFd5+tVK47TrAymbtzAOWPH8O7iBXy2fCkjpv7ELVN+qhbXVXF+MZuXb6Mwt6jKn12ezA27Ta/73D62rqwaV4EQgn5De2G1W0Ou2xxWBtx0ZpWMcTTorono2b2Q+1qhZ/dEd/1wvKd0TJCu8UCg/FXDKHjnHo8p/eOJBYuPAftdxabXA7pOVmHBMZ7NIVx+Pw/9/gueQCDk2rzMnUzfspmBzVtUyTi6rvPhg18yefR0LDYLAV+As4b24u73bka1qFUyRgl5+/NZ+vsq8g8UoJu4bOxxNpp3qjp33K1vXMfuLXtZv2gTqkVF82u069OGG569ssrGqAy66ycoeBLwBC9kQ8Ez6IASd8nxnFr1o+8FTHb+UjdOCTHCiBmCY0CnuukETHbYTouV3g0bH/sJBVmUlYlqkknj8vv5acPaKjMEP7w+hSkf/IbP48fnMf5A/xg7h6TUBIa9OLRKxgCY+M40PnzoKyw2FYEg4AugWo3FGUBRBPY4O+fc0LfKxnQmOHn1j6fYtnonmRt206hNAxq2yjC9t8TlJoSosvEjUvwmpUagFDcUvQUnuCEQttOQ7qkY/a7KooOt0/GY0j+emGvoGJCRlMRlrdvitBxyIdhVlXqJCVzY6uTjNi+LokRM27apVbdHGP/6ZLwub8g1r9vHpPemV1k8YsuK7Xz88Fj8Xj/uQg+uQje6piMAZ6IDq91Ct0GdeXfRiySmJFTJmGVp0rYhZ1zS3dQI7N2ezaPnPs8A25UMdF7NC0PfoiCnsMrnEIIWoeurvveEiAFViONssDTEyDwqwQmOAQhL0+M1q380sRPBMeLpPmfRqV4GX6xchsvnY2DzltzQoRMOi/Xwb64mumbUR1XCd6dOi5XLW7etsnEixQQ8xR50Ta8S99D0MTPxe8PdATaHjQc+u50zBnc76jEqg6vQzZ3dHqHgYCG6LtE1ndnjF7B15Q4+WP5qtdQ2AKDWB21n+HUl/dicSMohpRf0IlBSEKJ6959C2CD1W6TrS/BMBuyIuCHgvKhax/03EzMExwghBBe1OpmLjuMJoDw2VeWD8y7ipkk/AqAFC6+uansKPRs2qrJxWnRuypp5G8KuN2iVUWUxAneRxzQmIKXEU1zeRXLsmPHVbDwub8jcAr4A+7bvZ8WsNXQ885TqGTjhfsj/P0LdQw5IuK9Kh5FSgn8J0vMHiHiE84KQfH8pfciC58A9AZCgJCMTn0BxDqjSeZRHKHGIhFsg4ZZqHedEoVpNsxBigBBigxBisxDiYZPXGwkhZgghVgohZgkhYlqzx5iuGfVZcNMInjuzP4/27M3PQ67j8V59q3TXeOsb1+OIs6METx9CCOxxNu5456YqG+OMwd1xxIenbGoBjc7921XZOEfKttU78RR7w65rms6u9eaZTVWB4jwXkl8CtSGgGv9PfgEl7oIqG0NKicx/CJk7DFyfQPF7yAOD0F0TD92T/zi4J1IqIqfvh/yHkL5FVTaPGEdPtZ0IhBAq8C7QH8gEFgshJkkp15a57VXgCynl50KIM4EXgGuqa04nGlJKxq5awUdLl5DncXNqen0e7tmLZqk1j+g58TYbF7asvpNKy1Ob8c7CFxj7/A9sXrqVRm0aMOSxS6o0e6fLOe3pfHZ7/v51BZ5iL0KAzWnjuqevILVuSpWNEwktoFGYW0RiSkLIKadp+8Y44u1hxkBVFRq1rt59j+I8F5znVt8AvjmGSJx0By8EjP8KnkA6zgQkeKZhKIiWxYMsGo1I7Vp9c4txRFSna6grsFlKuRVACPEtcCFQ1hC0BkrOqjOBifzLkVJG3E3vys/npw3rKPL5OLPJSZyannFUO+8X587mq1XLcQfTP2du38rCrEymXX0tDZL/WaJnjds04LGv76m25yuKwlWPXMzmpdvwuo0UwabtG9NvaK9KPa+in+OcHxYw7tVJ5O8voMs57YlLdDJ59K/4fQFsDitDn7yMS+4ZhBCCM6/uyedPjcPn8aNrRuaY1WYho3k92vVuXblv9h+CdE8NFmyVQ1jA9xeozUBYQZY3BJjHL2IcN6rTEGQAZQXEM4HyEbsVwGDgLeBiIFEIUVNKebDsTUKI4cBwgIYNj0xv5FixKCuTZ/78g3UH9pNkt3NTx87c2qVbaXrmTxvW8cjvv6JJHb+u8+XK5XTLqE+yw8HO/Dy612/A9R06USsuPqrx8j0evli5DK+mlV6TgCfg5/2/F/H8mcdWoCtvfz5/TViE3xug23mdqNekzlE/c/nM1Ux4exp5+wvocVFXzrulP3GJzpAxJ749jaUzVpNat4ZxGiiTnbRh8Rbu7/sUn6x5I2qDu2XFdt654xPWzt+AI87OucPO4qYXhmALFo19+ez3fPfyT3iDO/wpH/wWIjHh9/r5/IlviUt0MHBYP5wJTkYtfIF37/qUxb8sQ7Wo9LmyByNevfa4BG2rFGEBBOapZxawNDBy98NQwNqheucW44ioNq0hIcSlwAAp5bDg19cA3aSUd5S5Jx0YBTQBZgOXAG2llHmRnlsVWkP5Hg/j1qxi2b49tKyZxlVt21E7vvIphWuy93H5+G9Ld+YATouFy9ucwsjeZ1Lg9dL9k/dDCrdKKPkzsikq8TYrk6+6hvTEw+vgLN+7h+smjqfQF77balUzjWlDrotq7gFd5+OlS/hq1XKKfX56NWrMQz3OICOKOZQwe/x8XrpuFIoQ6MF6iasfu4Qhjx1Zvrqr0M3fv61ECNi1Pouxz/9YmnZqc9qo3aAm7y15CWeCk4N7chnR8UGK812m2UIlOBMdPDvpYdr3bnPY8fft2M/Np9yHu+hQgNXmtNLl7A48PeEhivOLubzecHwekx1uOWo1SOPrHaOj+K7/vUjfEmTOTYA79AURh6g9HyGc6EXvQ/HoMu4jAcKJqPlDLJXzGFOR1lB1ngiygAZlvq4fvFaKlHI3xokAIUQCcElFRqBKJlVYwKCvv6DI60NH8uvmTXy4ZDHjL7+Kk2vVrtQz3160IGyRdwcCfLt6Jfd278G8XTuNnH0TSsywT9fQvDpvLPiLV/of3q+bnpiIr8xpoAQBnJSSGvXcH/j1Z6Zv2VR6spiycT1zd+7gt2uuJ9UZd9j3F+QU8tJ1o/C5QxfHb/73I90GdqJZx+hEvmaPn8/L149CtahIKXEXhmb6+Nw+sncdZOqHv3Ppfecz9rnxFOYUoQXCP4OySF2yd1t2VIZgwttTS1VED43rZ8n05ezZto+DWTlY7ZaoDEHu3iPTkFo+czVf/+9H9m7LpvXpLRn6xKXUb17viJ5xrBG2Lsj466H4U4zfPAWQiBqjEMI4uYn4W0BNRxaNNqp6bZ0g4U7wr0Z3jTdE4ByDEEp0J+EY1UN1Zg0tBpoLIZoIIWzAlcCksjcIIdLEoaTiR4BPq3E+APzfb9Mp8HrRg0uwDri1ALdPm1LpZ248eMD0cGxVVXYXFmAxydU3Q5OSOTui08GpHZ9A38YnYVdD0y8dFgsjuhwKwi3bs5sLv/2KZu+8TocPRvHmgr9Kq5x35efzy+aNYe6lAq+Hb1atjGoeC6csRVXDf438Xj8zvp4T1TMOZB3kpetG4XX5cBW4w4xACT63j/mTjdPg4p+XH9YIgOHrj9YYbVq6jYA//NRmtVvJ3LCb1HopISJ2FdHgZPPqYjP++HYuj5//AstmrGLP1n3M/GYut3V5iB3rMqN+xvFCSbwXkTYVkfgQIulJRO25CHtPpLYbGdhmSEFru0E/CLIQApmQOxxZMBJcnyALnkfuP8toUVkBUi9Gun9CFn+O9IenIsc4OqrNEEgpA8AdwHRgHTBOSrlGCPGMEKIkh60PsEEIsRGoAzxfXfMpYUGWed/T7fm5eE1cN9HQKi0Ns6Xer2lkJCbRo0GjqKs5kx2OqMd9/Zxzuahla+yqikVRqJ+UxHsDL6BtbcM/v+ngQYZO+J5V2fvQpaTA6+XDpUt4YubvAKzdn43fRPpCk5KZ27dGNQdN002/NymJaqEG+HPcfFMp5/IIASl1awCQWPPwrjy700a7Xm1o2r5xVPNo3qmJqZqo3+unfst00pvWpWWXplhsFR+k7U4bt7wSXaN1TdN47+7P8LoOnTJ0TcdT5GXM499G9YzjjbA0RMQPRcQNBj0X/cCFyP3nIA9cBPs7Q9EokHmADtqmMqqgAG6QeciCxyM+X/qWI/efgcwfiSx8BXnwMvT8h0/8CuljSLXWEUgpp0kpW0gpm0opnw9ee1JKOSn47/FSyubBe4ZJKcMTrquY8gqgZamsIbiz62k4LKGLg9Ni4aq27Ui023Farbw38AIcqorDYsGqKMZBulyw0GmxMKxj56jHdVisvNDvbFaMuJPFw27lz+uG0bvxod3v6CULQ3b7AJ5AgInr15LjdlHk90VsDGgWezCj28COpdkwZbE5bfS+7PSonuEp9kZlNGxOGxfdYbjNLr3v/LC6AdWqUDMjleS0JNLq1+TKhy/i6YkPRjUHgMF3D8LqKKck6rRx6oCOpcHvpyY8SPverbHarTgTHCSkxHPF/11Iiy5NSUiJp/XpLXh+6qN07t8+qjFz9+WHxCRKkFKy+q91Uc+99H2BzUjvQqRezRIWZmPLADJnCAQ2YNQNuIML/uF+l3TwLUKaZBdJqSHzbgVZhKEd5AM84P4ZvNOr+luocqS2Fz1/JPr+/ugHr0Z6Zh7vKZnyn6ssTrDZKDJZ5FQhiLfZKvXM1rVqM+aiS3jmz5msO7CfZLudG4NZQyXUS0ykZlw8+13FKEJgV1XqJyWTWViAVVHwaRpDTmnPpZWQdrCpKjY1vEJ37YH9pobPpqrsys+nht1hBHhN7qkZRXwAIKVODW598wZG3zsGLaChazo2h43+1/biQOZBJrw9jdant6Rll8iBwVPP7cA3L04I0yMSwpCIUK0qWkDnllevoW2PVgD0vbIH21fv5Ic3pmC1Wwn4AjTr2IRnJv0fSamJUc29PLUb1uLNOc8y6s5PWDPPyBoaOLwfNzx3Vek9SamJvDj9CXL35VGYW0xGs7pHVR0dnxwX8TSUcgT1D1I7gMwdDoHNpSmbMuEOlGNZWeubG1ywKyNhXhJjKId/FUgzV6Eb6RqHcFRvhfLRILV9yAMXBD+TAGg7kHlrkIn3osRff7ynF8J/zhDc2+10np/7Z8jiJ4Ahp7Q3VeKMxAGXi+/WrGTDgQO0q1OXy1q3ZfJV5rVwmq4z9Mfv2e8qDtmBZxYW8N7A87GrFlqmpUUVnD0STk6rxeacg2ELvVfTaJCcTIPkZCxBI1QWu6pyXouWUY9z3vD+dDyzLTO//Qu/x0+Tdo14546PmTF2DgGfhqIqdOp3CiPHP2C6aLbo3JRmnZqwZu76kOsd+rZlxOvXU5hTRItTm+KMP+Q2E0Jw4/NXc+n957N1xQ7SMlKrpEdwfHIcaRmpJNSIIy7R+LfFGj7nlDo1SKlT46jHc8Y7OPPqnsz89q+QgLs93s7Vj1xc+rXU9iILXwPvbBBOiBuCiL8BIYw/YZl3OwTWA4FDC2fxe0hLC4Sj6tRWK0TLjpAuejgsYO9V+r2EEgBTxysgK3eCP1bI4g8PGYFS3FD4BjLuitKA+j+B/5whuL5DJ3I8bj5eagQddQmXnNyax87oE/UzNh48wGXff4tPC+DVNH7ftoX3/17ExCuGUD8pvJBrfuYuiv3+MDeMX9OYtWM7T/WuniYmt3bpyq9bNoWktTosFi5o0arU6NzZtTvvLV5Yeo/DYqFRcg0Gnxy52ElKyboFG1k4bSlxiU76XtmDjGb1GPr4pUgpubH1PRQeLKSs/Vn6+yqmfvg7F9x2Ttjz9mzbx6YlW8Kur5m3gcTUBE5qZ657tG/HfsY+/wMr/1xDrQZpXPXwxXTqV3k5idx9edza5SGKc4vRdUnBwSI+e/xbdqzN5L4PR1T6uYfjrneH4ff6mfPDQiw2FalLhj55GX2u6AGA1POQBy8GPQ/QQOZC0TvIwDpEjdeRgUzwryWsGYt0I12fVbkhkHoe+DeAWi+0j7C1IxHlbEMQGMqgunF6UVIRSc+a32pth7kH24mI+4eLyHnnE94gBxAqBLaAteqEHY+W/2zPYpffT2ZBPnUTEkiyRx+gBbjs+29Yumd3yK+8KgRnNWnK++ddGHb/lI3refj3X3EFTNQxVZWArtM8tSaP9+pDjwZVJ/YGRtbQU3/+wersfSTa7VzXviN3dj0tJJ11zs7tfLliOXleDwObteCKNqfgtJqrokopeeWGd5kzfgEetxeL1YKiKjz02e30vvx0dm/Zy/D294cEP0to2qEx7y99Jez6uFd+4rMnviVQLiPH5rAy7MWhXHzXwLD37Nm2j1s7P4SnyIMWMHah9jg7t799A+feeNYRfUYljHnyW8a9MimsLsHqsPLF5lGkpRtpuWvmbWDCO9PI2ZNL9/O6MGh4P+KTKj7NSWmksVpsFmrVN5cAKcgpJGdPHvVOqh3S6lIv+gCK3iW8v4AdkTYNZAEy55rg7rMcanOUWlONOfhXGgJw/lUgEiDuGkTCbRF24ubfgyx8FVxfgLCB9IO1PSLlPYRiuOP03HvAO5NDtQV2YywZAArA0goSH0GgQWAjqI3BfkaFc5De2cjcOwEN8IGIA2tnRMoHUc/9eKDn3Gi4y8KwIWr9jlDrHtP5HK86gn8Ufk3DHQiQaLMhhCDOaqVFzbQjfk5A11m2d0/YvkeTktk7t5u+p1PddFMjAJS6ZTYcPMDNkyfy5cWX0rleaOphkc+HVVGwW478x9WxXjo/XVlx85czGjbmjCgb5Cz+ZTlzflhQWsFbsni/cuO7nHpuRwJ+LWLFbMBvHhAO+DVTP7muy4jv+eqZ8bgLPSGBaq/Lywf3f0H/a3pH7CUspWTt/I0cyMqhRZeTQiqgV81ZZy5lbbeybeUO0tJTmfrRb4y+93N8bi9SGtXLU97/ldF/v0R8snku/Nr5G3hhyFvkZucjdUmDVhk8Me4+MpqF1gkkpSaaxzd8Swg3Ahi76cA6sPfBfCduA4dx2pSBrUFjEVygZT4Uf4zU9yKS/2c67zA8E8H1FeCFkrwO/zJk/oOIlPeNKdV4DekaB+5vjHscgxDxNyIUkywve4+ohhX2XlDrV6R7MugHEfaeYDut2uWsjxYRfzPS9zehBXc2sHU95kbgcJzwhsCvabz412y+Wb2SgK6TFhfHYz37ALD2QDZNaqQwqHnLiDvg8ihCoEYIsJbP6S9ha14uFqEQOIz/1BMI8Mb8v/hq8OUALN2zm0dm/MrW3FwUAec0bc5zZ/YnyX78GqPPGDvHVE1Ttags/X0lPS7qSmJqQtg9NqeN/teY6/6cfuGpjH3+h7DMIUURnH6h6QaGFbPWmGYraZrO3m3ZpvGCg3tyefCsp9ifmYMiBAF/gL5X9eS+j0agKAoNW2Wweu76sOcGfAHqNK6Nx+Xl/fs+Dwlq+9w+DmTl8NN707n6kcFhY+buy+Phc54LyQzaunIH9/V6krE7Rkc0WCFYmoJvHuHtFzVQ6yOEDZn4BBQ8hZGtIwG7of0ffyNQ4q8OF3/DPQmZ+ABCOXwRoiz+lLAqYnzgnYvU8xFKMkKoiPirIP4qs0dUGqHWQSQMq9JnVjfCfhoy6TEofBGjZ7LfMGA1Xj/eUwvjhDcEI2fNYOL6dXg0Y+e6t6iIu36Zgk1V8WoacVYrL/01hx8vvzoqoTZFCAY2b8G0TZvw64cWLruqRsz4yfO4sVssBPyHT8ncmGPILO3Kz+eaCeNxB08SmoTpWzax/sB+GiQnE9B1Lm7VhvNbtDyiIPfRoloij6WoCkIIHvvmXh4Z8BxaQMPn8eNMcNDw5AwuutO8YrpxmwZcev/5/PDa5NKCLavNwlWPDg7ZNWdu2sOPb0xh+5pdYW6kEjS/RlKaedbQ81e9QdamvSEL/azv5nFyt+YMGt6fwfcM4rcvZ4cs9Fa7hZanNsMRb2fRz8tMTyh+r5854+ebGoJfv5gVZuCkLnEXe1n08zJOv+BU07mWRcQNQbq/MRaSQzMDtTnCasRylLjBSEsTZPFnRs9e2xmI+GsQSjCg7V+L4Vop/3A7BHaALYpqdD1S0b8SdEslG7n93llI93cgPQjH+eC8ACGOXwOmo0EGthlGWCSC/awjroBW4i5HOi8yPmMlBaEeuRfiWHBCG4ICr5cf163Fp5f7Q4TS/HqX348nEODhGdMZG9yJH46n+/RjW14em3MOIjBqEzrWTef+08yPul3SMwjo0RVXNUsx/Mefr1iKTwtd7Py6zubcHDbn5gCwZPduJm9cx8fnX1ytAmYuv5+J69eyKCsTxzn1UX9LQNsT6o+WuiwN1LY5vSVfbBnFjLFz2J+ZQ7szTqbbeZ1QI5yYAG545krOGNyNOeMXIISg9+Wn0eSUQ/GSNfM28PA5z+L3+tECuqlBsjqsdBvYydS9krsvj/ULN4ft9r0uLxNH/cyg4f1p0DKD56c8wmvDRrM/0zDI7fq0IXvHAW5oeRdSyogGyBWhGjp754HSPs1l8Xv9HMzKifh5lEVYGkDKp8j8R0ELVhvbe4e5dIStI8LW0fwhlpMNn3z51E7pBbWB6VvCsPcM9hYo97usJIBiGGxZ+CK4vqXk5CB9y4ymNKmfYyjT/zsw4iHPgWuccUFYgKcg5SOELfpaHwh2TLM2r/I5ViUntCHYX1xkWjlbHl1KFmVl4g0EovLDJ9ntTLj8albu28u2vFxa1kyrUKeobkIiN3ToxOcrlpfu8C2KgqbrIZ5dh8XCPd2NIqwV+/aiHSaQ7w74WZiVyfzMXZzeIHpV1vUH9vPrls1YFIWBzVvQuEbkfPVct5sLvv2KHLcbd8CPTVWRD7Yl/f31OHcUBbWB4Inv78cRd8hlVaNWMpfcc17UcwJo1qEJzTqYy0G8ccsHIe6mkgCxoirY42wEfBqnntOBh8bcbvp+T7EXRTU3lmXdNu37tOHzTe9QcLAQCdx08t0U5hRxuJyKSIa4bqNaptcDvsARyVAIW2dI+yVYoWtHKEeWaiwSbkZ6fiHUteMw+vgGd6lSSmMnX/QB6MXg6A2Jj6KoKcFn3GV0IpPFGIVdCmBDJD2LEAoysAtcX2O4p0pwQ2A1eGeBo3JB/OOC709wjaf0ewnGRGTuCKg97197wonECW0IFCGQUaWzAYgj2lULIWhftx7t60YnDPbg6WfQOT2Dr1Yup8jnY1DzlhT7fHy6/G9yPR6apqTyRK++dM0wmpWYCcqZ4fL7mb1je9SG4NV5c/h0+VL8moYiBKMWLeDhnr24tr35TvKthfPILmNQfZoGCgQe6MJNRRk4E5z0HNy10kVc0eBxedm1Psv0NavDyltzn6NGnRqk1I7s2qvbpDaJKQl4XaG7cIvNQs9y/YyFECSnJTFj7Bz83sBhjQBAk1PMP//c7ALT64qqkL3D6JsgpWTy6Ol8/cIE8vbl06h1fW557To6nRXaxlIIAaJyTXaEpRmkfo4seBoCa0HEg/NqROLdpffIvLtCq3U9P4FnOnqtuShqEk0NypcAACAASURBVEKth6z5FeQ9adQsqDUh4T5EyQLvW4hpqqd0Ib0zD933L0C6xhMeDwEIgG8p2I9PD+zq4oQ2BGayz2aoQtCzYUPT6tyqQgTTS89qElphe3vX7qZNUOKt0VU521SVFGd06a9r92fz6fKlpZ+LJiV+dF6Y+ydnN21G3YTwxXz6lk2mp6oDXjc9h/WhTkLl5bujxVqBto+qKCEupEgIIXjo8zt44oKX0PwBAn4Ne5yd5FqJpr59gANZOaZunfCHw3m3mPd/MAtog/E9lcQbvn1xAl//78fSE8/WlTt48oIXeXH647TtWXWd44StAyJtgunvmx7IiiDZ4IHC56DGy0htH+RcazShxwuaG/IfRirxCHtvUJJAKCYJTBaIIhj9j8KsmQ5g1EBE8TvxL+OfnX91lFgPE0S1KArxVht14hN48axDhU5+TePzFcs4/5svOe/rLxizfGnUO/TKYHYS6dO4ScQspLIoQhDQJW/M/4u/du2oUIhr2qaN+Ew0fYQQzNh2SGRu6Z7d3Dx5Av2//MxUjgOMQjx7FTWej4pK1Lvous5vX/zJnac9ys3t7mPt/A28Pe85LrzzXHpc1JVhLw7ho5Wvk1TT/DTTqlszrPbD75UsFpVNS7eZvnbGJd2xx4UbdV2XdB3YEb/PzzcvTAjLsvK6fXz2RKjonJRepG8Z0r8pKsE16d+AnncP+v4B6Ll3If2GdpHpydddQXNA75/G84pGgZ7PIdePDniQ+Y8hpQ723pjvLS0I55H1pjjeCOcFRgV3GDrYzDPZ/s2c0CeC+snJEfsnNUhKZsgp7WlcowZ9G5+ENbjoSikZNnkCS3ZnlVbbvjxvDr9t3cxXF192zLpKXdn2FMasWMpBl6t0R25TVQSUzlXTJbrUeXex0Q8hbrmVjnXr8ekFg0vvKYsiBMLkAykrgPf71s3c9ctUvIEAEvPiflUIOtdLp4ajakvkc/flsXDqUhCC7ud1okYtw9Xj84ZXZZegaTq7t+wlOS0xLI//zVs+ZOa3c0sX2a83/8isb+fx7pKXSjuOVUS7Xq1peWoz1i/chNcdOeMr4NeY++NCrvy/8ErXlqc2xRHvCCuwa9Q6g7T0VA5kHYx4atix9pAMte6eDAVPAgKkBmo6pHwQUtkr/auRxV+CtsdIOXX/gOHL10HbjvT+CamfIMwWMrUCl5N0oe8/G7S9mFbK6gWg70GoGZA6Bpl7c7BeQRhjJ72IsFRtoWS14zgXPJMNd5d0AVZAhaSXEeLIClD/DZzQhqDA60URwjToWuD1MHP7VlrXqk2X9IxSyYXFu7P4e8/uEFkGTyDAin17KwzKegMBpm3ayF+7dpCRlMTlbU45oi5f5UmyO5h85TW8t2Qhv23dTKLNELK7oEUrlu/bg1/TueeXqRxwH+oZ6/L7WbpnN+PWrGJIu/BWgOe1aMnHy5aglXOZ6VLS76SmSCl5cuaMEJdaySenCIFDtSAE1IqP580B4dW+R8PPn85g1B2foAR7G7xz+0fc+9EI+g3phTPeQUbzemRu2B32Pr/Pzy0dHkALaPQc3J37Px6B3Wkna/MeZoydHeLa8Xn87N2ezZ/j5tH/mt6HnZMQgv/9/BgT357GL5/+gdftI2dPrmkKaXIt81PF/ElLwpr2AOxav5utK3dQv2U6IkK/igYtjVoI6V8H+Y8RUlSmbUPmXg9pvyOEgu6eAvmPUrrw+xcSavF1wI0seBaR9lP4YI5LoOAZzAXjvKBtN51jcDJGzAEQ1jZQaw74VxgBVlvHals4pdQNgyPiqnyDJoQKNd4H3zzDgCo1EM4LDWN3jJHSjXRNBv8SsDRGOC9FqJVrohWJE9oQFPv9WBUVTQvfxeR7vSzMymRhViafL1/K95ddRcd66SzZnWUaW3D7/SzZnWVqCIp8Pi4Z9zVZhQW4/EZmzcdLl/DR+RcfUTZPeWrGxfFEr7480StUK+bU9Pqs3Z9tWq3sDgQYv26NqSFoUTONu7qexlsL5wHGQiel5Nm+/cj3eFiTvY8ct1mADOIsVp7qcybpiUl0zagfJqF9NOzdns2oOz4J88e/cfP7dOjblrT0VO4ZPZzHznsBv9doAq+oCrqmowd0PAFjx//XhIUAPDr2btbO2xgUuAt9pqfYy9+/rohoCApyCvnh9SnM+2kxiakJDL5nEJc/eCGXP2hIh9zc7j52rssK2cU74u1cfNcg0+ctn7XaVGYaYM1f6zmpXSMuvf98vn91ckj9gt1p47qnrwBAur4mXMpZBz3XqOy1ngIFIwmtPo5whgqsN40RKIodPfl1yL+PI1MPtRpFUsohAT4hVKMTWclM9ELwTEVq2QhbJ7CdflRVwVJKZPEnwRaYLlBqIBPuQ4m7rNLPNEMIAfYeiCgroKsDqecgD14CWg5G8NpmFAemfoGwVl5XqzwntCFolFyDRLsNj6vioLEO3PDTDywfcSdpcXE4LBZc/tAFxGGxUis+1PXg9vvJLi5m/LrV7MzPK61NKIkn3Dd9GvNuuqVKF80SKtoBVfTaiC5dGdi8Bb9v3YJFUWhXpw4P//4ruwryUYQIq7kooVZ8PINPPny7x8ow+/v56BGkmMc8/i2tujWnw5lteWfB//j+1UnsWLOLA1k55OwNLXDyefzM/XEhhblFRgMbk8/BYlOp1cC8qKc4v5hbOz9E7t680paVm5ZuZfN927j+6SsBeH7KIzw84Dn27zqIalHxe/0MefwSupxt3n8gLSMVm8MaZuRUi1raZOfakZfjKfLw06hf8PsCJKTGc8fbN9Ghb7BAUduH+eIsQM+BwKYIr5vhiPj7oTgHIu09kK7vjE5ingoa44jEoNZQK0SNVyPepvvWQM6VlMQVZLECluZQczxCVK5CXhZ/CkXvUJrVox+EgufQsSNsHYzCLaX6stiOJbLwneDPv2QN8xkS43kPIWr9UmXjnNCGQBGCV/qfy4ipPxHQNAIVBNgKfD6KfT4GNm/J83Nmhb2uCsGg5i0AQ1b6xbmzGbt6BYoQuE2URQGK/D625ebQNNVcZOxI8QYCjF6yiB/WrUGLUB/htFi44jA9DRom1+DGjp2RUtL3i0/ILCiosGGP02JhROfDV8BWloBfQ5r4yX0eP398M4dZ4/5C6pJzbzqLBz+7HSEEQ5vcZvos1aqSv7+Ajme1JT7ZiafYE6JjpFpUBt5snsY45YPfyMsuCOlb7Cn28v0rkxh81yCSaiZSu2EtPlnzJpuXbSP/QCEtT21KYkrkzKn+1/bh6+d/DLkmhJH22nWgsWte9sdqJr//G1rwM/C5fLx/7xja9WptCNTZ+wZTM8ud1qTPUPyUbiNuEA3iMJWxIgFh64BUalVgCASixpug1EVUUCglpYTc6witK9AhsAFZ8AoiOXJXsgqfWfw+4amdbih4CIkd0JCOsxHJz/+jpJ4rhfdXTOMyWiZSO4hQq2ZtOaGzhgB6NWrMlKuuYWi7jmGpm+XxBPwk2GyMHXw59ZOScFqsxFmtpCcm8uXgy0pVSt9ZtICvV6/AEwjgimAEwAjmOixVU3gipeTaieP5cOlisgoL2FtcZNQCYCzUFkXBabHSo0EjLomyuc2yvXs44HKZGgFFCBJsNhwWC8M6dalUw5xoOe2CLqgmmv8Afm8Ar8uHz+Nn+piZLJjyNwBterQqjSeEzFsR1GlcC1VVeW3m0zRu0wC704YzwUGNWkmM/OHBEKG5siz+ZbmpP99is7ChjEy2EILmnU6iy9ntKzQCAGnpqTw35RFS69XAkeDAHmcjo0U6r816GpvdipSS14a9h9flLXU3+Tx+CnOL+Hzkd8Z4cReDmgGU9bU7IX4YQk0zKo8tzYEosrjkwYgZR9K/Cbm/NzL3FiiMIAsNYDkFYT+jQiNgPG8DSPM6Cjw/HH6upniN3semGHEQ8IHnN2Tew5Uc459EpFOTNEQHq4hqPREIIQYAb2H8hn4spXyx3OsNgc+BGsF7HpZSTqvqeZyUksqTvQ0/e9O3X4u4cCcGF/q2tevw53XD2JKbg5TQLDW19DgtpeTTZX+HBJPNUISgaUoKGUmVDxiXZcmeLNbszw6JX/h1nTirlUtatSY9KYmu6fXpULde1IGzHLcrotuqe0YDHunZi0Y1UkioZOe2w5G5cTcrZq0hLskZMWBaFk+xl2kf/c5p53fh2qcuY8GUJXiKPKVuJUecnZv+dzVWm/EHkt60Lh+ueI2szXvwunw0alO/QpmLWg3TEIoIU0LVNZ2UOkYGk6ZpfPviRCa+M43ifDdtTm/BrW/cELFnAkD73m34ZtcH7FibidVmIaP5oZ9Rzt48cvflh71HC+gsmrYUwAi21vzeiBV4poOShIi7JqTPgEh5D5l7Y1CCQjWXpAZjx2/yM5dSN96vZ0f8PgziIGX0Ye4Jou+P/Fqlu9LaQUmLYp5e8M5A6rkIpXJFeFJ6ka4Jxq5cSUHEDTFiHMeSuCtMJMhVsHVGKFWztkA1GgJhCIu8C/QHMoHFQohJUsq1ZW57HKOp/WghRGtgGtC4uuYEMLB5C6Zu2hh2/ZTadUIKyoQQNDNx6fh1neIKxOPirFYEgkS7jfcGXVA1kwZW7ttHwMQd5PL7sVss3NK56xE/s0PddNP6CKfFwoBmzWlT23znfLRIKXnrtg/57YvZCGHoFEVVuAV4PcZnn9GsHu8ufokvnx7HqjnrSMuoyVWPXMxp54enRpaXe47ExXeey5zv54ekiiqqQr2T6tC0fWMA3hrxIX98M7c0HXT5zDXc0/NxPlj+KvVOivx5KYpCk7bhiQOOeHvEVpXxyYdkJIQSj0i4GRJuNr1XqHWg5hRDllo/gCz+Dny/hd9o624+Qf+yCMZDgNrU0COyd0fEXR29b9/awXi/2dZLqVw6qRACmfBAMJXWPAh/6GarET+ohCGQ0os8eAUEtmGcMgTS8xsy8X6U+OsqM/VKIeJvRPqXgXeeUayHACUNkRze1+NoqM4TQVdgs5RyK4AQ4lvgQqCsIZBAiVlLBsLzA6uY58/sz7oD+9mZn09A17EoCikOJ+8PCm8oY4ZNVWmQnMzO/PBdXKuaadzYsTO14xPo0aBhlaqCZiQmYVXUsIXbabHQMLlyLRPT4uK4pfOpfLz071INJLuqUi8xsdoCwwBzfljAjK/mmLphKsIRb+esq88o/bp+83o88tXdEe+XUjLzm7lMGj0dT7GXPlf04MI7BoS0vCxLi85Nuf+T23jr1g/RdYkW0DjplIaM/PFBhBDkZufz+1dzwnoW+Dx+xr3yE3ePHn5E3w9AfFIcXc7pwJLpy0ME7exxdi4yachTEUIICKqRyvxnzG/yrTG/LoswrxqRoNZDSf3giOYCoKiJ6PZzwVv+kC8guQLX0+GeG3cRUnEiC98EbXewSU4BpgYnWkG9ckjXhDJGgOCzPVD4KtI5+JgFo4WwIlLeR/rXg3+NUT9i61blvRiq0xBkALvKfJ0JlBfoeAr4VQhxJxAP9DN7kBBiODAcoGHDyqdjgpGfP33I9czeuZ11+/fTuEYK/U5qekTyEiN7n8nt0yaXumkEhmDcM3370SW9evKMz2xyEvE2K+6AP8Snb1EUEu12vl29klPTM0wD05qus7eoiES7PayXwb3de9Cudl0+X7mMfI+Hc5u1IMFmY8BXY8h2FdMstSaP9ux9VGmw5Zn64e+mPQ3MUC0qWkDDkeDg5O7NOWvIGYd/U5C3bvuQGV8d6p+wa0MWM7+ZyzsLX4hYUNb3yh6ccUk3tq/eRUJKPHUbH8rXztywG5vDGmYItIAWEkM4Uh4aczuPn/cCW1bswGJV8Xn99Bt6BuePOLvSz0TPNL8ud5umj2LtVE7mOohwHlWDeFHjNWRhBrg+B3yGSqnzCigciZ67A9S6kHAvitM8/Tbicx3nIByGGoAM7EQevChY+KWXzpuEeyqdmWQEaU1SqYUV/EuDVdTHDmFtBdZW1ff86mpVKYS4FBggpRwW/PoaoJuU8o4y99wXnMNrQojTgE+AtlJG7uBSVa0qD8fyvXuYtGE9Esn5LVrRqV5oo5M/tm3ludl/sK+4mPqJSTxzZn+6BQXjqov5u3YybPKE0viERQgcVitI0KShZDqoeUte6ndOqe9/2qYNPDlrBi6/YUD6NWnKS/3OIT6C33/M8qW8Mm9OWJ/jMRdeUiqId7Tce8YTrP5rfYX3WG0WajeqRd+relBwsJCu53bi1AEdUKI8Ze3Zuo9hbe8Nczk54u3cPXo4/YaaN8mpiAO7c7i26R1hhkBRFfpf04sHPjVXPo2W7Wt2sW97Nk07NCYt4+iyQfTsPqCbHLCV2ii1zdongl48FgpforQoTThBbYao+Y0hpXwUGOuMZhRo5d5BqFvHAUkjUeIqL0MhAzuQRW+DbxEotREJtyIcpvvKqNDz7gfPFMLL8OMRKZ9Glvv+B1NRq8rqzBrKAsqey+oHr5XlJmAcgJRyPkZaxHHv3PDyX7O5+sdxfLFyGV+sWMY1E77nf2VSSrfm5nD/rz+zt7gYdyBAZmEhd/08hT2FkbIZjh5vIMCt0yaFLNABKSny+Sjy+3AHAniC1c2TNhiL7N97snjwt1/IcbvxBAL4NI0Z27Zw1y9TTMfQdJ03F84LC4R7AgFemTenyr6XM4ecgT0ufKdmsVmIS3KSUCOec27oy6iFL3DdU1dw5zvD6DawU9RGAGD1X+tNexZ4ir0smb68UvNOS0/ltAu6YHOGLopWu5XLHozOtVgRjds0oNugzkdtBABIuJvQLCMAJyTcFfEtSvwQROqX4LwI7GciEkdWiREAw20lhAVZ+Arhvn0PFL0elX5SRLQd4F9pBKi1LYYmk4xOdNJ0vnFDCM/YESCSwGpeM/JvpjpdQ4uB5kKIJhgG4Erg6nL37ATOAsYIIU7G+M2tINWg+tmcc5AxK5aFZOe4AwG+WrWCwSe3oVVaLR774zcKvJ7SvYI74MenBXh+zixGDTy/WuY1ddMGCryHd6e4A36+Xr2Ci1qdzAdLFodVSXs1jXm7drK3qJC6CYn4NI13Fs3n61UrKPb5I7bT3BTsnFYVDLixL398PYcty7fjLvJgtVlQLApPfHcf3QZF3/Rj7YKNfPjAF2xaupXkWklc/uCFJNSI589x83AVutG18IXFYrVELCgDw300+r7PWTlrDc5EB+ffNoCrH7m4tKXk/31xJx899CU/f/IHPrePxqc05K53h9Ho5CM7LXlcXhZOXYq70E2n/u2oXcGcKoMSdzE6ASh6IxgwTYX4u1HiKm6+JGztEbZqXOgC282v6wcx6g2OXI5C+paHnjKkC1xfIvX9RnBc2MDex7xvcgSErRMy8X4ofDWYpilBJCFSP/3H90quDNVmCKSUASHEHcB0jNTQT6WUa4QQzwBLpJSTgPuBj4QQ92Kcwa6X1eCryi4u4vu1q8kqKKBb/Qac26xFxJjAH9u2mhZr+TWNGdu20iy1Jot3Z5k2r5+5fWvY+6qKP3dsj/reksV/Z0G+aaqsVVXZV1xM3YREbp36E39u345+mL4NjSoZkDbDarPy0m9P8sVT45g/eQk1aiVxw3NX0rZH9JLLm5dv46F+z5TKMuzfdZD37vkMRVXQSrSATGKfqlVl4DDzgrIDWQe5s/ujuArcSCnxun2Me2kimRt28+hYIyhts1u5/a0bue3NG9ACGharhaK8Yia8PZVtq3fRvGMTzhrai7jEyIVMq+eu47FBLyCRSF2iBXSufPgirh0ZXYe8aFHiLoO4y5DSB1iPmWBihah1jd17eUQikXPmK0YWjcL0lOGZiPROx3B86FBjFMIefYxJib8O6RxsxASCJ4ET0QhANdcRBGsCppW79mSZf68FqlXIY8nuLK6Z8D1+TUMHxq9dzdsL5/PTlUNN8+MjGQghBPag+qcSoXm9Ral6WeZV2fuYu3M72UXRuZ0cFgsXtTQW1K7pGWzNzQlLO/VrOk1TUtmWm8Os7dsO27rHYbFwb/fQH9OWFdtZ/PMyHAkOel92Gil1ojcUPq+fh/o9zZYVO/AUedhtU3n47Od4/Lv76H5edCeCL54ah88dekKSukQrK5ERlE+12a2oFhWLzcL/fXFnxDTPCW//jM/tC3FReN0+5k5YSPbO/dRueKjbmBACi9VC1uY93HXao3jdPrwuHzPj7Xz5zPeMWvSi6S7f5/Xz+Pkv4ioMDUSOe2USJ7VvTFp6Cg1aZRCfdGQdyCqiIteODGwH7wxAAcc5CDU94r1VgtrY3BAodStvqDRzCXAgqIIa/GfeHVDrryM7GSiJxzwwfDw4oSUmpJQMnzyhVAMIDL/6trxcHp0xnR4NGtG4RgpdM+qX/hKeVr+BaSOWgK5zWn0jJfScps34dcvmkPtsqsrgk1tXOB+338/M7Vtx+f30bNjItBHM6ux9rMneR/2kZCasX8u0zRvxa5ppYl8JJYYpzmqlWWpNrj7FEKMa0aUrkzaup8jrK93xOy0Wbul8Kgk2G9+t3hrRCAiMxa5uQgKP9uxNz4aNyCosoIbdwSf3fs6vn88i4NNQrSof/99XPPrNPVE1YgeY/tlMNi/bVpqLH/BpBNB48Zq3+X7fx6UFYRWxZfn2qFoUOOIdDHlsMF3O7kCTUxoGhejMWb9oE36TnsQ2u5UdazNDDEEJb474kMLc4tJaAE+xF5/Hz+h7xjDyhwfC7l/+x2pTX7jX5eWZS1/FmeAg4NO47MHzue6pK6p1F68XvR8sVtIBAYWvIxMfMpQt9SKjbqCq1Tb9y8yva5uRMoAQlViSLCcHC+kO9wuhGL0VjjBD6b/ACW0ItuXmkhfBrz5l00ZmbNuKIgTpiUl8c8nlpDrjWLJnN6qJdLWKYMmeTNrUrs2zffuxOSeHXQX5pal4LWumcUOHTvyxbSu14+NpU6t2yB/xoqxMbpo0obTZvSZ17ujandtPNQp8vIEAN0+eyN97jHi6LiU+TYuq0WaduHjibDb6NG7CLZ1PZfzaNazdn03rWrX5ZvAVfLR0MfMyd5LmjGN451M5v4WRhmapIPiakZjI79fehE1V+Wb1Srp89B5+TUPTdOLz9pHi9SM0I9ce4IUhbzFu78cRc/TL8sfYOWH6/GAY7o1LttLm9JaHfUaDlulk7zxw2PsURdCwVX2adTTvhVyWJqc0ZM28DYdcS0H8Xj/pzeqGzHPD4s3kZhewYtYa00rkRT8vNR2jfMZRWaQucRUYO9gfXp9CRrN6UcllVwbp3xQ0AuX+PgqfReI0BJEKNGTcdShJ4Qat8kQK4EqOTPX0ECLhDqR3DuatJcuPUdmK5hObE9oQZLuKK3y9JDtme14uj/3xG6MHXchBl8u0f4GG5IDL0P6v4XAy7eprWZSVyba8XFrUrMnPmzZyzldjsKkqmi5pkJzM5xddQu34hOAiPyGsIvm9xQs5rX5DOtVL570lC1m8OzPk9BIt+90uAsVFZBUWMGb5UmyqijsQwGmxEGe1MuGKIbyeFF6c1L9pM56ZPdPU2JzfohU2VeX3rZt5dvbMUGmLjqlofo1a47eXXlNUhWW/r+L0Cw9/KrCZdOwCYyG0OaLTTxn65GWsnru+woYxYFT0dhkQKsl9YHcOOXtyadAyHWfCIV/+4LsHMf2zmSGGwOaw0r5Pm9Lq5L3bs/m/s58ld28eiHA5ihJKgsvl6dC3jWk/g/J4ir2Me+Wn6jMEnulEXpTdhzbX7i+R9tOqTorZ3hc8vwBlPwMB1k6Vzk4S1laQ+gWy8CXwrwIRFyyQK2d0pQa26GME/yVOzMhHkBY1a1boUinBr+vM2LYVv6axsyAv4n078w69JoSgW/0GXNm2HVmFhXy9ehVeTaPQ58MV8LM55yC3T5sMwNxdO0zdGJ5AgO/XrgZg3JrVlTICQGkMwBMIoElZauDcgQC5Hg8jZ80wfV96YhIXt2qNWs79UMPhYHhQsuKdRQvCMo+kTaWwW210W+ivT7Rx/vOG98cRHx4YTEiJj2rnDtC2Ryue+P5+0pvWQVEEzgQH3c/vjM1hJS7JSVyik+S0RF6c/nhp8Zir0M1j5/2Pa5vdwYNnPc1ldYbx7UsTSp+Z3rQur8wYSbOOjVEUgdVupd/QXjw5/oHS7+/x815g79Z9uIs8uAvNd6BWuyVi4Vt8cjztelfsQiwhLzu8er3qiDInQ7oNWeoqQiT+X7B/cYkBdoBIRFRQaazrPvSDN6DvbYW+twX6vu7onlmhz7W1R6n5NUrdVYjaC4wOY6XKo4oxTuL9CDXcvRfjBD8RpDrj6Fa/AQsydx32Xl1KdCnJLop8isguNn/NEKErV20qJauz97G3qBCvSZ9gMP4U3cG+B9H2RLapKrXj4vFoAfI9HtN4Rll0KZmz0yQ4F+Tl/gPoULceY5Yvpcjno99JTbm72+kkOwwXT8TaCCnR4ywowZ7GAb/GytlrWT5rDb0u6U7bnq1M/dsBf4AeF3el34ze/DpmJkJRUFUFi03l2UkPH5FPvNvATnQb2Amfx4fFZkFRFNxFblbOXofdaeOUM04OiQm8fP0ols1Yhd8bwB8sNBv73A9kNKvHGZcYLrpWXZsz+u9X8Hn9WKxqSO3CjrWZ7Nu+37R3gqIqWO3GHBq2rs/NLw81nfOB3TmsnBVB5qHs8xRB+z7Vp/gqHOcgiz8idGceAXk4l8sRjKvWhbRfke5JEFgFluYI58UhjW3CODgoNMAscyBvOHrq9ygmqa5CCEh+BXwLjJOPcBrdxaqxMvffzgltCADeH3Qht02dxOLdmShCwa8ZvXjL/ikLoH2dutgtFlrXqsXcXeYL58m1zHcTkfL7VUWh0OujR4OG+E0avsRZrQxqbvjDzz6pGT+sXxOW4VMStC3pV/zewAvo3bgJGw8e4OLvxh7WEABYKkh5U4RgaLsODDXpaAbQvm49/ti2JWz/KAISa3EAq8OKpunoAY2J7/yM1HV++WQGfa7owX0fjShd2H//6k8+zyHhdgAAIABJREFUfngsOXtySa6VzDUjL+OD5a+ycvY6kmom0HVgp6j6CJthcxxyKTgTnHQbGK4QWZBTyKJpy0J6DYDhgvnu5YmlhqD0mSZzKc53oZgUqQHUb1GPwXcPolGbBrQ5vWVEg7Z23gYsNkuFInuqVcURZ+eG566MeM/RIqwtkAkjoGg0hjEQhLlSAHAinOeVfiWlBN8CoxWlmg6O/kes+S+UeET8VcBVh71X9601zzICoytb2kRjXtp+pOszQ5xNTUfE34Swn4awn3ZEc/uvcsIbgiS7na8GX0ZWYQH7i4tJttu56sdxFHp9uAN+HBYLNlXlxbMM3ZI7u57GJ8v+No0TTNu0kXFrV9Mtoz6P9Oxdqk7a/6SmfLZ8Wdhib1ctnJSSgqoojOx9Js/MnmkEXIMZPj0aNOSsk4weCfef3pM5O7eT5/Xg8vtxqBYsqsKzfc4is7CARJudQc1bUjPOSCtsHmWzG6uicl6LwwdfI3H/aT2Yt2tHSLWxTVW5rV0H0kY2R9d0xv7vBwLlmrnM+u4v+l/bm3a9WjPru794c8RHpTn/edn5fPjglwx/eSgX3FZ5HZsjoTCnCNWi4Dex2eU7nUWiWcfGpqcBm9PG2df1YdDw/od9Ro3ayaYuNEUR1G5UC0ecnVN6ncwVD11EnUbV68ZQEm5DOgaA5//ZO8/wKKo2DN9ntqZ3IEDoTXoTEFFRARVQUBAQ7KBi7+WzYu8FCypiwYKAgAoCIoh0lI50pNdACOnJtpnz/ZhkSbKzyZJkQ8t9XVyY2Z2Zs7iZd+YtzzMPhAmJGbLeRa8deIBQsLYFu95lI6UDefxW8GzVZaSFHTJfhbgJCHPJXh9lxrXM/2v5w2lSPYI8ds2JuoBnC9K5BBn5Mkpo+Se+zwXO+kBQQK2ISK+Z/J833c4v27awPvkwTeLiGdi8BdF2/a4mzGrll8HDuPXXaaTmG8MX3I0XFJ8X7NnNykMHmT3sFmpFRHJXh078tn0bxx26lINJCCwmE69f3tOrQDqkZWvaJ9Zk6pZNZLuc9GrQmIvq1vNqAsWHhjL3ptv4ddsW1iYfokF0LAObt/Re+IuT4XT49UQQgM1sRhGC+tExPFvM8/hkiAsJ9RafC9CkpFPrJnTpncTvX83HbDYVCQSgB4OXB72HxaYPXBX24wW9XfLbF38qdyBIO5LOjrW7ia8VS/1WRaWNVVVlxqd/MOPTP3DmOr0OYIVRTArtewTm/WoLsXHnWzfy8f1fFplajogN5+q7rwjoGC27NSMiJhxHjrNIodlis/Dy9Keo16JsapmBINVD+vCVcykosYiwEWDvjQjXVVMFIG0XI/OmgpaOsF0Gtkt0D2JA5ozTFTALOm9kDpCLTH8EEf9rcBZtMX5SBfThNEBmf5pvVlPwHSxQCn0ZGdIbUYEGLmcrQROdCxaVJToH+kRyam4u106e4JPDtygKQ1u14YVLLgP09NCkjf+yeN9eakVGckubdjSLL/mOzuFx88fOHRzKyqJ19RpcUDsp4Bz5T5s28OSffxi+Zsl/AmkUG8f5NWuVqxf9vlkzmLXD178hxm5n1R338OcPi/nwni/8GrSXhBAwy/Gj3w6bkpBS8vmj45n+6R9YbGZUj0adZrV4bfbTRCfoJjKv3vA+y2es9gYhk9mEqqrevKDJbCIkws5na94O+O77f1e9wrr5m/C4C0lGh1j5YMkrJRa6NU3zGtMIRfB8vzc5svcYJpOCUASPfDGSiwcGnsaQUtMN4XMnAW6w90OEDvTbeaPfNffNv2su+C7bwXoByHTAjAi9HuzX+J2e1VIuB9Wo3mZFJPwVtEKsdrSL7s1cnOgvUOyX+F+XCEXETUGYGwVlXWcaJYnOnTNPBCdDptPJO8sWM2P7Njyaavgo79Y0Zu/Yzv6MDNrUqMHQlm24o8P53BGgt++utOMMnjIRR75YnM1spll8At9fOzAge8ukqCi/r4VbrQxtdaKIpknJsdwcwq02Qi0nd3c0b7exvHKaw8HBrCy69O3AByNPXqseIDYxpkxBAGDe94uY+cU83E63tzd/1797efWGD3h73gvs23qQZdNXFfE8UD0qVruFWo0TkZqkdfcWDH6iX8A6P0f2pvDvws1FggDo08KT3v6VZyY8ZLjf+oWbeO2GD8jN1v2TE5LiGDX1MRCCvKw8GratF9AQXWFkxpO6VHJBIde9BemYBbHfGl7IZc6X+TLNhW9oHOD668R7MjeCYwEi5gM/Jy3ppjGIN5TxsyD1hkITxFaIeArFnt9aq8QZBwLpAVE2d7JzjapAUAxV0xg0ZSJ70tNK7eQ5lpPD/JxdLN2/l6/WruHnwUOpFx3YF++h32dyPC/P++uT63az6egRPl+9kgc7dzXcx6WqfLNuDZM3b0DVJBZFMSwWj2h/IujP3bmD5xbMI8Ohi+Rd1agJr17WM+CAYOSKVkCOy0nt+ASenfgIrwx5D0VRUD1qQG5jtlArt79WXIMwcKZ98JuPp4HqUdm0dBtpRzPYtmKHoaexy+Gmfuu6/O87/yqc/ji67xgWm8Xn80lNcvC/w4b7HDt0nGf7vl5krQe3H+LRS0cxYd9nZSqQS/c23bKyiL6OAzwbwbUIbN19d3L9g3ExuPCB88D5F9K9CWExMCYK6Qc54yg6lCXAXE+fRg4SihILCXPQNBeQi1Ksw0iEDUemP0HRgTILWDtVmLn72c5ZPUdQFhbu3cPBzIyA2jkLLpH6/ICTVxcvDOgcx3Jz2X481eceyqmqTNls3FoopWTE9J/54J9l7EpLY29GOkjpMyfRq0Ej7u6o+/+sSz7Mg3NmcjQnB6eq4lJVft+xnYfnzAxonQDVQsMMtwsgKV+IrkvfDny6+i26XdeZDr3aYPZjRF+Y869sV65hqazjxq28ikmQk5FLfO1YjDJiFpu5REvJkqjborbhZLDZaqL1xcaCeXO/XeA1pS9ASnA73F5P4pPG9Q+Gd+AyF+n0U1w11cbYgaw4Hl3T3wARdgeYG+sDWwCE6oqcUe8FcNzyoyhWnyAAeiss4SPRZxLCAZs+oBb9fqWs62zgnH0i8Ggax/NyibaHFBGa23IshTy3cRG2YPDKqKNIk5IlJfTrF0aW8Bjt77W1yYdZffhQ0QlfKQmzWBjRrgMJYeH0atiY+ELF5U9XrcBpIEO9cO8ejmRnUz28dPGt5y65lAdm/1bkMwv0yeOCp4q/Ji3lndvH6PIZmoaqaigmxecCWJgl0/7hiye/5863bip1DUbUbpLIkb2+iuWqW6Vmw+rUbFid6IQonLmuIuswmf2rj5ZGZGwE/e67iulj5njrDooisIfZGfiIsfz4sYPHDZ+QVI+qTyfnM+/7RfzwylRSDx2nYdt63PHWTTTv0sR4IUosCLOBAbwFXOvR0u4G68WI0P7e1k4RNgLpXELpMgwWvx6/QgmFuCngWoR0/asL1NmvQijGNwuViRJ+NzL0JvBsByUBYQ5e0f1s5Jx8Ivhm3Ro6jB1D9/Ff0u7zT3hn2RKvmmjdqChCDPLWYRYL93Xqwie9r8biR2XUaD8jEkLDaBAd43N/ZjOZuLap8dTpuuTDhrMIOW43uW4PQ1u1KRIEAPZmpBuGFavJRHIxNVOZP1AHsGz/PoZOnUy3r8fy2/atDG/XAatiQhECBejTuAlv9tC7ZDJTs3jntjG48lw481y4nZ78bhiJ2WIynCAuYOr7xgY5geCv5VMCGceyUBSFd/4aRbPOjbDYzNhCrFSrE89rs54pl/b/HW/eyL2jb6POebWIrhbFJYO7MmbVm37NZNp2b0lIuLH+UosL9QGnaR/O5IORYzmw/RB52Q42LtnKEz1eYtvKHcaLsPdAV3Yvjhs863U10aw3kMf6IzXdkF5Y20HU6/k58xDAguGvv1DA5r8NVggFYeuOEvGAXpw+DYJAAUIJR1jbVwWBMnDOPRFM27LJx4rx63WrsSgKD3bpSs8GjXh18QKvXAPoQ1cOj4exq1diVhRUTfURprOZTAxu0SrgdXxwZR8GT5mIS9XI87gJs1ioFx3D3eefsHXOcbmYsGE9v+/8j1y322++PsRs/L+xY2Itdh1PxVPsCcatajSIiQX0yebXlixk6pZNOD0e6kXHcDAr05saK5gstppMaJrEpphYsHcPO9OO0zyhGv/MXGPoBCYl9L6jBwMe7sstje83XJ+majjznNhCTl6HPi/LuEvJYjWTk5FLTLUoqiXFM3rJq6QdSceZ56J63QTdhP5IOmlHMqjVuIbhuXeu38OaeRuIiAmja//zWTFrLb9/NR9N0+h1y6X0uqU7Vw0P7Kmia7/zSWpWiz2b9nsL1/YwG136dqBB67p43B6+fWGyYXvtV8/+yJtznvM5phB2XVsnbWS+abvILwQXFm7LA/UQMnc8Ily30FRCeiPtV4B6EJRIcG9Fpj+Ibk1Jvg3jmKBf3KVnPzLnK91RzNIYETai1M4e6VyGzBmvdw/ZL0OE3lhpBvLnAudcIPhoxd8+/fd5Hg9frl3N/Z0vwGY2M2XQUJ6aN8crTWE1mXB4PEX2U6TEajJhNZlwqxoXJtXhIT9FXiOaxMWz+LY7mfnfNg5lZtK6Rg26163vnTvIc7u5dtIP7M/MxKmWbLnnz1Xs7o6dmLF9CznuE4b3IWYzw9t1JCLfxP6u334tIna3Oz2tyDEKQkjB605NxelSeXjOLObceCuapvlNZ5mtZmo2rFFimqjwVPDJ0Llve2Z+PtdHwM1kNvH1MxMIiQjhytsvo3H7+mz5+z8cuU4kks8eHs/K39dhsZnRVI1bXhzsTetIKXl3+BgWTF6G6tEwW0y8f9fnuqF8fnrnv9W7WDx1Oa/M+J+3LVdKydYVOziw/RD1WiTRuH2DIut5b+GL/Prx7/z5w2LMVjNXj+xFz1v0+kj60Qw8BtLXALvW7/H7+YWlOSQs1Ien3NshcxSQW+xdTnDMhvATXspCmMBcR//B1gWqLQPPJsAM5mZBN16R7u3I44Pz01oe8GxG5s2G2C8RVsPORrScryBrNN60VvZWZN4UiPv1pLwFqvDPORcIjuRkG27P87hxejyEWCzUiojku2uvx+nxsPVYCkOn/eRzqdOAdjUSual1O5rGxdEwwEnfwoRbrX6fIqZu2cTBrNKDAICRAKaUklqRkfwy5EbeXbaEvw/uJzYklDvbd2TAeXpHyM7jqaw6fLBMYnd7M9JJycmhU+/2aPd84fO61W6l+2BdsbL74K7Mn+BrmN6+Z+siMw471u5m4U/LEIpC90FdadC6rs8+BQx7ZgCLp/5Ddlo2Lodb7xCSEpfDzaIpfyOEyD+nxGKzIKXEkeNEUQSqR/MWfce/MInEBtW5sH8nlvy8goU/LS/kk6D/27sKBTFHjpN/F27m34WbadO9BTkZOTzZ6xX2bt6PEAJNkzQ9vyGvznwae74vsy3ExqDH+zHIwNc4Ms7/XW2N+iUXtYUQYGkOIgzpT8JZlHzXLIQJLIEN1FUEMuv1/EG0AlQgD5n5AiLet4lBatmQ9T5FO5WcoB5F5k7wDsOVaS3OJfowmnoIrB0Q4fchzPXKfLwzmXMuEDSLi2fdkWSf7SFmCzf+/BNxIaHc2rY9XZPqYDObcaoqJsW428KtqvRu7KegV07+3L3T7+RwYULMFno0ODHeP23LJt5ZvoTk7GwSwyN4rGu3Ij7KblVl8uaN/LxlE5lOZ5kNw6WUmBRBTLUo7vt4OB/f9yWaJtFUDYvVTN+RPTmvc2MAnhh/H2lHMlg7f4P3EaNZ58bc+tIQprw3g8i4CPZs2s/0T37XL9BCMO3937jhf9cy7NmBhuePqR7NFxve5bfP/mDNvA2YzCY2Lt3qTb9IKb0X+8L6QmqxqOnIcTLxjZ+5sH8n/vjmL5+WVCMcOU7WLdhIm+4t+OTBr9m1fk8RQ5stf//H2Ce+5eq7ehGVEElsDf8txVa7lWvuvYLpY/4okh6yhVq5+YXrS10LgDDXRZrrguc/imr6hyBCy1aMDxqu1cbbPTuR0okQxVJ17o2657BPYdwJzr+gjIFAy50KmS/hfcpwHEY6/4S4aQhzYAq4ZxNBDQRCiCuB0eiVrXFSyjeKvf4+UKB/EApUk1JWnDmuAU91u4Rbf51apPtGAE7Vw9pkvRd86f69PNzlQka070jLatUNPYztJhO9GjYO2jqrhYX7tcQsINRs4aK6dflt+1bGrVlFhM3GjG1bcBTk97OzeGb+XACubdYcTUqGT/+Z1YcPBhRkSiIpKorYEL04fdXtl9P20pYsnLwct9PNBdd0pFHbE79MJpOJt+Y+T9qRdA5sP0z1egmMe+p7Hr/8RVSPismkFPMV0P2CJ7z+M5cMvpDajRMN1xAZG8HQpwcw9OkBvDt8TJHhsZMh9bCeDlP9qMQWxxpiJSouEiklf01c6pPacTvdzBjzB/O+W4zH5aHtZS15ZsKDhEUVzb3n5ThwO9wMf30YZquZXz6cjcvpJjo+kjvfvZnzr2wX8GcQ0Z8ij9+UbwKfXysIHazLMZ9OKBGgGdV3LPl/ir8/BmPfBAFK2Yr+Unog63WKdlBpuuR29ofnZNtp0AKB0AVKPgF6AgeAlUKI6fk+xQBIKR8u9P77gcC/+WWkU63afH/t9byzbAlbU1Owm82k5uYWGczK83h4d/lSBrVoRaTNxjMXdfcWkCW6h29ieESR6d2K5sbWbZmxfWuRgKUIQUJoGJfVa4AqNRLDw/l8zSqvkJ3At7vc4fHw7vIl9G96Hkv27WVN8qESg4BAdy4TgNlkwuF2GyYdMhwONCm9WkmJ9asz5Mn+JX6mmOrRxFSPZv6ExSyfvsp7B+xvNZqqsXz6Kq5/1Lg1szBh0WGltqwaoZgU2l6qyz23urg5K39fV+o+UpPMGf8XUz/4zW9+H/D6Faybv4FXh47mtZlPA3qn1du3j2HVHP1cifWr8dhX93DLi4NxZDsIjQwtgyyIlp9ycaJ/CxRQDWQZTjWhN0H2GIoOw9kgZKBxfcLcRJ+B8Oyi6FS0HRF2S9nWoCaDNBqu08BVOfI1pxsBBQIhxGrgK2CClDKttPfn0wnYIaXclX+MiUA/YLOf998AvBDgsctF+8SaTBgwCIAhUyeRnO1bN7CaFDYcTebCpLoMbdWGZvEJjF+/hqM5OfRs0IjBLVoRZi1boTMQWlWrzsuX9uCFBX+iCIGqadSMiOTLa66lTlQ0blXl/C8+LRIo/D07HMrKotFH72H2M4ks0AviqpR0qZ3ECxdfSkJYOMdycxgydZLXma0wOW43R7KzSYwwzkE785ws/WUlacnpNO/alGadGnkvbrO/nB9QCkZRREDDaQBX3HYpv332R6mOZT5IyfWPXQPAvq0H/b7NFmpDMQk0VUNqkh1rSjBML4bb6WHd/I2kHk4jtkY0T/Z6mT0b93kL3fu3HeLJK17hy43vGfoiB/QxUgfnawYVoIFzOjK3LSLM2BvhVCDC7kCq+yHvVxA2kC6wdUdEPmX8fiEgZhwy7U7w7ANh0p3GIp7yW1wuFSUavz4MQZyQPp0J9IlgMHAb+l39KuBr4A9ZcoK5FlBYAOQA0NnojUKIukB9YH6A66kwEkJDDe+kPZokxn5CZ719Yk3aJ9as1LUNOK8FfRo3YePRo0TYbDSJjfNeTLccS0H10y1khAS/3gUSePLCi7m1bVEd/0ibjWh7iGEg0KQk3E8g3L1xH49d+gJulwe304PZYqJN9xa8+PMTJ4TfAuSiAYZfGR/qt6zD3R/cypgHv8FsNeFxqwGlikwWE4umLKd+yzqk+PFADo0M4daXBlO3RR2eu/p1wwGxgqcRIYwlecxWM+lHMzh2IJUD2w/5dDt5XB6mfzqHEa/rF+2czFzmfP0XGxZvIalpTfqO7OV3/kFzbwGZavwBsz+FcgQCKSW41+laPpbm5RZwE8KEiHoVGf6wrh1kStLNakrax5SIiJ+B9OwALR3MzfXhtrKuQQlH2q/Kt8wsfEMSgggbWer++myGPKvaVwPqFZNS7pBSPgM0ASagPx3sFUK8KISIrYB1DAGmSCkNrxBCiDuFEKuEEKtSUnynScvDLW3aYy/Wh28SgloREZxXinpoaTg9HlYcPMC65MMl5vpLwm620LFmLZrGxRdJF4RZLOXO8xfG3/ruaNfBZ07BajJxab363hbUwkgpeWngO2SmZpOX5cDj8ujF1b828tvnulpqr5u7eztqimMLtWEPtWG1W3jg0zv8DmoZ0eeOnkw6NJbHv76X/vdd6XeQqzBup4c/f1gMQMdebbCG+AY3j8vDpTd0w2ozY7EZ3zvF1ojm0iEXct4FTYq4ohUgpSSpaU2S96QUcT0rfI79Ww8BcDw5jeHNH+KrZ35kybR/mPLuDIa3eIhN859HS+mJduxaZN7PJwr9nv/8f0BZdrtLqaUhU/sh025DZr6APHYdWtpdSFm2WkxhhCkeYT2/1CBQZB9zI4S1Y7mCgPdYUS+DvSdg1SUzRJhuZWn3P0wn1UNoqcOQRzshj3ZGOzYQ6dlV7rWcDgRcIxBCtEZ/KugNTAV+ALqh38UbiYYfBAqP+NXO32bEEOBeP68hpRwLjAVdhjrQNQdCx5q1ePqi7ry2eAFmRcGjaSRFRvFlv+vKJd88d+cOHp07G9AvAmFWK+OuvpaW1cqmc1Mcm8nst+PHoiioUmISIiAHM5vJ5FeEbmDzluw4fpxv/12L1WTCpWp0SKzJWz2MfQQO7Uwm5YDv3akz18V3L/7E/AlLqNsiicYd6vPf2j04sh1Y7RYUReHRr+4hJz0HIQQXXNORmOon3zcQHh1Gt2s706JrU375aHZA+7idHqa+/xvV6iYQERtGZorm7QKyhVpp36M1rw0bjSPb6W0tLYwQcF6XJjw94SFSDqRyV9vHyM3M8xaf7aE2Rrw+FKvdSsO29fAYFKVtIVZadtMnjb9+9kfSj2Z693e7PLhdHt4duY5xi3QZE5kxClwbEFHPg6WD/w9nKvtTrMx4Gjw7KFLFcS5DZn+OiDAeEjxTEMKOiH4PqWXoBXZTbb8S3gBSuvT0m5aCtzPLswGZOgQS5p/x8wwB+RHk1wjSgS+BqVKe6OUSQkyTUl5nsI8Z2A5cjh4AVgJDpZSbir2vGfA7UL+UVBMQPD+CXLebjUePEG230yTu5LsRth5L4c0li1idfIhom53DWZk+WchIq5V/RtyNzc8k8MmwPvkww37+iVy3b5qiaVw8s4fdwiNzZjFj+1ZDbaTC2Ewmltx2p18THIC0vDy2px4jMSKCOlH+L9D7tx3kno5PllgDMJkVLDYLt782jOPJacQkRHHp0G7EVPMvrV0Wprw3g2+en4jb4UbTJEIRRcxgQL+ImyxmvThuMxMWFcYFV3dg7fyNRMaGgxDsWr/H+3mEIkBSJAjbQq28Ne8FrzZQyoFUfnx9GmvmbSC+ViyDn+hXpAPo5cHv8c9vq731DJNZITIugq+2jCY8OoyB1YeTkZLp83nMVo0JqzcTFVfwzbIiEuYhTDXQjl2bPxhW5NNB9NgTcs0ngZQO5JH2GJbylWoo1XznQs5mpGMOMuOpYjMQAKGIyKcRoYNOybpOhorwI7i+oOhb6KD1pZS7jYIAgJTSI4S4D5iD3j76lZRykxDiJWCVlHJ6/luHABMDCQLBJNRioVOt2mXad1facfpP/B5X/t13tsv40Tnb7eavPbu5slH5204bxcYZpnMsikK3Ovog1t0dOzPrv20+gnGgO5gJ9JTQWz2uLDEIAMSEhNC5dukaLrWb1CQyLqLEQKB6NFSPkz++mc+nq98u9ZhlZeAjV5PYsAY/vj4NR46TTr3bMXf8Apx5LjwuFU1V0VTp7fxxuzw4c10c3nWEr7eMZvvqnTxyyQtF+vtlfkAxm02YbRbMFhP3fzKiiEBcQu04HvjkDr/revqHB/np3RnM+GwOjhwnXfp04LZXbyA8Wm8vtYfaMEzoSLDYCv0/F1ZdpsFUAxH7HTLtHnCvzH/RAhHPlCkI6OcqIe3o09N/ZiK1THDMQHoO6FpMtsvQ718NUA/4+dy5SHVfQLqupzOBBoIpQHFH8ClACc+kIKWcBcwqtu35Yj+PCnANFcahrEy+WruadUeSaRIbx4j2Hb3aO2Vh1II/vUGgJDQp2Xg0uUICQZjVykOduzL6n2XeWoFZUYiw2bizvW6Ok+fRh7MKowjBRXXqcln9hlgUhR4NGpUaBE4GIQTPTHyYp654Gc2jldjFs3PdXn2OwCCnXhH88e0CRt/9BZpHRfVoJO8+yiWDLqBz7/akHkpj/AuTyMkoWgjXVI21f27E5XCxbv5GHxMa0INB/4evoveIHtRsWOOk128ymxjyZH+/7bZ9R/bi+5d/KpKGMps12l2cTWh44e+ZBoqeahRKOCLuW6R2HLQ0MNUpl0WjUMKR5obg2VZ89WAru/Xp6YJ0b9bnLqQHyEPmhYKpDsT+aKy1ZG6eP9hW7PsgQhGWlpWy5mBSYiDIT9u0AKKEEIXv/COB0itxpwlSSlYeOsjRnGyi7XbumTUDp8eDW9NYn3yYX7dtYXz/gXSsWatMx1916FDA7y1emC4Pd3Y4nwYxMYxds4qUnBwurluPezp2JiFM/yJ/tmoF7mIdOqqULD+wnzd7XOl9X0XTvEsTvt81hvkTlnDsYCq/jpmDw8DK0mw1G5rHBIoj18m87xaxfsFGqtdLoO9dvahRT2//y0rLZvTIL3A5TlxMnblOFv20nMuHXczFAy/g2xcn+zmyRNMkkXERWKxm1GIdPla7hep1qpHUtGzfl9K4/tGr2b56Z76gnwmpqSTWyeSxD/YVepcJlEQfeQihxOoy1QEitex8g3gT2Lp6ZasBRNTr+RdLN7owXQgoYYiIR8v1+U4HZPoj+T7HBRtywbMLmTMWEfGw7w7WLmBqlB8YC54MLKDUAFvZZM1PJ0q7KjUF+gLRQOGpnizA/7PvacSF1AToAAAgAElEQVThrCyG/TyZozk5CPRhscIpFVVK8jwenpk/lzk33lq2kwT4XGgSgjY1jKdky0qPBo3o0aBoS19ydhZ70tPZfvyY4WyBBAb+9CNhVitDWrRiaKs2mA06WcpDZFwE/e/Xp1oX/rScZINAEBJhL3NBPistm3vPf4q0I+k4cpyYrSZ+/eh3Xp7xFG0vbcmqOesxWZSic0vo8hALJi6h/eWtqNciiY1LtvocO7paFPZQGxcN6MyYh7/2eV0xKXQfErjA4MliMpt4fvKj7N92kB1r91C9XgLN2h6EzKf1C5ZUwdISET26XA0NWt5MyPif7m2gb4HoDxG2iwH0O934ObovsrpDN3sJGXDGF0alekRP9fjggrzpYBAIhBC64mvOJ5D3i/7/wN4HEfFguZ68ThdKDARSyl+BX4UQF0gpl1fSmiqU+2bPYH9GRqkF051px3F43AH5BRenY2Itluwv3ZRGk5J2NYI3i+BSVR6fO5s/du7AajL5rVW4VJX9mXoW+s2li1i8bw9fXH1t0NZl1EUEkHksq8ypoYlv/ELKgVRvft/jUvG4VN685SMm7P3MUBob9F9oU/6QWsp+47mBzOPZqB6VsKgwnpnwEC8OfMerV2S2mHjsq3uITqjYwrYRSU1rFXrqaIK0LQF1ry4XbSpf95lUD0LGU4CzyBCNTLsfqi1E5DuBCVO1M75DyJcSvm/C/2tCCUVEPA4RjwdhTaeWEm8DhRBP5P/nUCHEh8X/VML6ysWR7Gw2pxwtNQiAnl/3ZzhTGqO6X4bNVPq+ihAs2BO8vuP3li9l7q6d+daZroDsxPM8Hpbt38e/BkJ8FYXZz4VeMSllTg0tnvq3obxD1vFsDu86Qscr2qKpvv8C1hArPW7UC6iZqcZKtJpHw5HrRPWofPrIeNRCshWapjH28e9wGVhWVjSappGVlu1tIxXChDA38AYBKR1Ix19Ixx9eA5pAkXm/gZF4iAAcc8u58tMbYYrXLTd9Ln92CDEWOTzbKe23cEv+36uA1QZ/TmvyPO6AsjY2k4lrmzX3egGcLA1iYvl58DC6161PhNXq1yhGlZJ9GWUf8CmNCRvXF5GcCBRVSlYfDrzOcdL4SV+UI6uBzc9AmqZJbKE2QiNCeG7Sw9hCrNjD9AE1q93CgIf70KJrU0BXQDUirlYMoREhrJi9luPJaWieQoFAlWQdz2bpz8a+vhXF3O8WMqTWnQxKvIP+sbfy1bMTikxkS+cy5NELkBmPIjOeQh69AC13eglHLIbMwbA1VKr5JjdnNyL6A13QToQBFhAhYGmLCLv9VC/tlFBaamhG/t/jK2c5FUudqGgfd67CRFituFSNrklJPH9x+TohmsUn8FU/vZ5++6/TWLDXWItGKc/VrxSMZgoCwaIoVA9S4RjwKwSnqbpsdVlSQ/3uvZLPHh1fpLVTMSk0aluPuERd9rlznw5M2P8ZS39egSPHyflXteXvGau5PnEEWalZJDaogdVuwe3yeOcLbKFW7vtwOEII9m4+YChTkZftYM+m/T7bK4q/f1vN6LvHFvFFmPbBLKQqGf76MKSWhUy/G2Qx/+HMZ5DWtogC45kSELbuuuOXj4exAraLKuaDnMYIc13d2Mc5H9TDetHd0r5cNZczmdK6hmbgX8sMKeU1Fb6iCuRYbo6hhDRA9bAw3ul1FXUio0mKqth8b4uEaizcu9vnH86iKNSNDp7Kdutq1Q29FkpCF5wzc3n9hqW+t6y0uLAp6+Zv9NneoE3dMreO9r7jcjYt38aiycv0YwiIqRbFs5MeKfK+yNgIr63k18/+yNQPZnqDx4Hth7DaLbS9tCXJu49Qq3Eiw54dSMt8L+E6zWphDbH62GKGhNupe15wOoYAvh01yWeC2Znr5JePZ3Pzi4Mwq/NAGl2wVGTedETEfaWfxNIO7FeA84/8JwAB2CF0CMLcoLS9y4XUMpF5U/UZCHMTRMgghOnkjZ3KixBWsBtPyJ9rlNY19E6lrCJIHMjM9BvF0hwOLkzy74BVHga1aMW4tat8nL9CLBYuqxe8X7IXL+3BDVMn4fJ48EiJWQjMJhOtEqqzNTWFmJAQrmjYmN+2bSXd6UACtSIiGdP7mgqZdvbHPe/fyoPdnsPlcKG6VRSTomsJfTKizMdUFIUnv7mPG58dwLYVO4irFUuri84z1PEBvdW0cBAowOVwY7Ga+XbHJz77dO7TnuiEKFx5bm+e3mRWCIsOo9uALmVee2kk7zXW09JUjey0HKLDczDM76OCDKxWIISAqDfB1QeZNwOECWG/FmEL3ucCXa9Hpg4ALQe9pWseMmccxE5EWILn71FFyZSWGlpYWQsJBpEGomgFBFLcLStJUVF8cEUfHps7GyEEUkpCLVbGXXNtUC+4rapVZ+YNN/PFmpVsTjlKi2rVGdGuo89TyFMXXszu9DTMilKiXERFUb9VXcauf4cp781g28qdNGhdh+sfvYbaTcrfQVWrUSK1GpXeknvs4HEUP05zuzfsM9xuMpsYvexVPr7/S5b9uhKpSTr3bc/9Hw3Hagtey2DDNvUMn6CsIVYi4yNAXgxZb/ruKEIQ9sB72oUQYLsEYSvj9HEZkJmv6wNv3kDmBOlCZj6LiJtUaeuooiilpYYmSykHCSE2UDRFJAAppaw8s9MyUC86hjCLhRyD3PkVhdzFPJrGHzv/48/du4gPCWVwy1blmjQGuKJRY7rXq8/a5MPYTCba1EgMan2ggLrR0bxymX8FRdAvAOX9fCdLjXrVuO/D4ZV6zsLE1YzxW6uo28JXWiQvOw+z1UxMtSiem/SIV1uoMnLIt786lMcvH1UkPWQLtXHbKzdgMpmAOsjQWyD3O/S7aqkraFq7g6WMGv2VhWsRvk8zEtzrkdJVovBbFcGjRNE5IUSilPJwvl+AD1LK0pvnK5iTFZ2buX0bj86djSs/TaMIQbTNxqxht1AtLByXqjJs2mS2HEsh1+32plPe6nEFfZs0C9bHqOIUMPaJ75g+Zo6PN3BhwbhNy7bx/p2fcWD7IRRF4ZLBXXngkxGEhIf4O2xQ2Lx8G+Oe+oGd6/cQXyuWm18YxCWDig6xSdcKPdcu3Qj71frdvZHL12mEduR8P9LYFkT19f61fqooNyWJzgWkPpp/kBrormMSWCmlDF7jeQmURX10/ZFkxq1ZxYHMDC5MqsOtbTsQn6+v8+OG9byyeIGPtn+oxcKqO+4u04BZFSdPekoGnz78jd6WKQQXD+zCyHdvITKuZPMPj9vDkb0pRMVHekXb/KFpGhPf+Jkp784gKy2HOs1rc+8Ht9G+h/5ge+C/w9zd/vEignkWm4WW3Zrx1tzn/R22ipNAy3wDcn+gqCGMBexXoES/d6qWdU5Q7kAghBgBPI/uPSCAS4CXpJRfVeRCA6GiZaiHTZvM8gO+rYDhViuf9+nHBUmlt+JVUT7cLje3n/cQKftTvUVZs8VEjfrVGLfxfb+dRTO/mMsXT3yPmi8q1+26zjzyxUi/pjeFkVL6pHk+um8cM8fO8zGxt4VY+Wzt2xVS0zjXkdKBTLsLXOtODJKY6iFixyOU4E9rn8tUhAz140A7KXU/PCFEHLAM3ansjCbUYpyTlFIS4sespSxIKZm+fSvfrl9LjttN70ZNuL1dB792j+cSy35dRUZKZpELsMetkno4jX9mraHrNef77LNi9lo+ffibInn0pT//g5SSZyY8VOo5jXL9ezbt9wkCoIvjHd51pCoQVABC2BGx45HuzbqAm6k+WNqcs/37pwuBBoJUdKG5ArLyt53xDG3VmmX79+mSzYWIsNpoXT1wG73SGLVwPlM2b/SmoPampzFj+1Zm3HDjGZ9+klKyYvZaZo/7E6fDxeVDL+LSIReWOiOgqipH9x5j+6qd5BmI0jlzXezddMAwEEx4bZpPr73L4WbpzyvISssmIubkhdGaX9CELX9v9+oKFeB2uqnXsurJsCIRluZgaX6ql1FFPqV1DRVM5+wA/hFC/IpeI+gH/BvktVUK3evW56bWbRm/fg0mRUFBYDGZ+LLfdRXW5XMwM5PJmzYUmStwqiqHsrL4ddtWBrdoVSHnOVV8/th4Zo6d582tb1y8hXnfL+K1WU/77etfPO0fRt89FkeOE4/L4zV/L4wt1ErtpsZ34cf8CNmZLCYyUjLLFAj639+b3z6bi8etFpk0vmjgBSTUrvyBpyqqqCxKeyIoqNTtzP9TwK/BWU5wyHI6mfXfNpJzsmlXoybd6tT1XuSFEDzV7WJuatOWFQcOEGW3c1GdulgqcM5gTfIhzIriM2CW53GzcO/uMzoQHNqZzIxP/8DlOPFE5chxsmnZNlbNWU+nq9r57LNt1U7evPlDQ//fAkxmE5GxEVxwtbH3UYtuzUg5kOoTPBRFUL1eQpk+S1xiDB+veJ0vnvyetfM2EBIRQv/7ruT6x07rAfoqqig3pQ2UvVhZCwkWm1OOcsPUyaiaRq7HTajFQrO4eH64blCR4a5aEZFce15wHlUTQo27WcyKQq2IyKCcs7JY++cGhMFdvyPbwd+/rTIMBFPem4Erz3e2Q1EECD04d+nbgQfGjMBsMf6K3vzC9fw9YxWOHKc3GNhCbQx/fRgWa9lTbbUaJTJq6tknM1xFFSURUI1ACJEAPIHuVuZ1JpNSXlbKflcCo9EFwMdJKd8weM8gYBR6ymm9lHJooIsvDSkl98/+jSzXiVa1XLebzSkpfLl2Nfec37miTlUinWrVJtoe4mOKY1YUhrZqUylrCBbhMeEoJt8Umtli8tv6mbzrCEbdaiHhdl785QlaXdzcb0qpgFqNEhmz6k2+HfUTGxZvJqF2HDf87zq69C3RPbWKKqowINBi8Q/AJHS3spHALYCxIEo+QggT8AnQEzgArBRCTJdSbi70nsbA/4ALpZRpQohqJ/8R/HMwK5PD2Vk+2x2qh2lbN1VaIFCEYMJ1g7jrt1/Yk5GOSeh1iHd6XkX96JhKWYM/NE3jzWWLmbjxX1yqSrsaNXm755XUigzsSaVzn/aGF22T2cQVtxorura5tAU71+3BXcxPwO3y0KBNvVKDQAG1GiXyv+8fCOi9VVRRhX8CDQRxUsovhRAP5usPLRRCrCxln07ADinlLgAhxET0IvPmQu+5A/hESpkGIKU8enLLLxmBQNWM5yQCnKOrMJKiopg17Bb2pqeT63HTODauwu0hy8LAn34solj698H9XPrtlyy97Q4SwkovuNpDbbz++7M8d/UbuJ1uELo42uNf30tiA2MXrQEP9WX2l/PR0nNQ87X+7WE2rn2gd5mKvFVUUUX5CDQQFCR0Dwsh+gCHgNLEamoBhSe1DgDFb8GbAAghlqKnj0ZJKX8PcE2lUjMiAn8q2pUhtmZEMGWoT5atKSmGstUeTWPUwvl80juwIul5nRsz6dBYNi/fjtvppsWFTbGF+B/qiqkezWdr3ua7l35i1Zx1RMVHMPCRa7hsaLcyf5Yqqqii7AQaCF4RQkQBjwIfAZGAr8Nz2c7fGOgO1AYWCSFaSSnTC79JCHEncCdAnTqB93MfzMr0O6iyLyPdcPu5xG//+Rq3F/D3ASNzb/+YzCZaXXRewO9PqB3HI2NHntQ5qqiiiuAQUCCQUv6W/58ZQKBWXgeBpEI/187fVpgDwD9SSjewWwixHT0wFEk7SSnHAmNBl5gI8PwIhN9ZgMpQAj3dKempKDak7CJrUkp+/nAWk9+ZTlZqFk06NmTke7fStGPJ5jcZxzJZMWstCL32EBlbss5QFacHUkrQjoCwIZRTW/OqomwElKQWQjQRQvwphNiY/3NrIcSzpey2EmgshKgvdG3ZIUBxU9Vf0J8GEELEo6eKKszdvVZkpGF7pt1sZuB5LSrqNGcsA89r4bdO8XCXC8t83HFPfc9Xz/xI6sHjuBxuNi7ZymPdXyjR3vGPbxcwtM5IPrpvHB/dO46hSSP5a9LSMq/hZJBS4nK4DDuZqigZ6VqFPNYDmdITebQbWuqNSLVCS31VVAKBViu/QO/ucQNIKf9Fv7D7RUrpAe4D5gBbgMlSyk1CiJeEEAXJ5zlAqhBiM/AX8HiBnlFF8dFVfYmy2Qi1WFCEINRioXX1Gtzatn1FnuaMRFEUJg4Y7GPSc3vb9vRu3KRMx8zNyuOXj343cAJz8cMrUwz3ObovhdEjx+JyuMnLdpCX7cCZ5+Kd28aQejitTOsIlD8nLOaGpLu4OvxGrou/jUlv/1oVEAJEqoeQacNB3Y+uJuoG92rk8Zuq/g3PMAKtEYRKKVcUy7d7/L25ACnlLGBWsW3PF/pvCTyS/ycoNItPYOntdzF7x3aSs7NpXyORLrWTqkSu8mmfWJMt9z7Esv37SMnJpmeDRoSWQwgvefdRzFYTrmLSQZom+W+N8cPewsnLvZIORRCweOrf9L/vqjKvpySW/bqS9+/8zDvhnJ2Ww/cv/QRSMviJ/kE559mEzJ0IsvhlQNXTRO5VYPXViKri9CTQQHBMCNGQ/BYcIcRA4HDQVlXBhFosDKhKBZVI1wqS205IivMRbQNdcbjOeb5OYAAupxuPgeqn6lFxO3wnkCuKr5/70UfmwpHj5MfXf2bgo1fnu4FV4Rd1LycaCgsjQK1cuxIpXeD4A+n6B0y1ECHXIUwVOpZ0VhNoauhe4HOgmRDiIPAQcHfQVlXFGUtETDg9b7oYW2jRpwpriJVhzwww3Kdz7/aGgx2aR6NTn+Cl8JL3GM9EOnOdOAzUUKsohqUTYNBUID1gaVlpy5BaNjL1OmTGs5A3CbI/Rh7rhXRVnG/J2U5AgUBKuUtK2QNIAJpJKbtJKfcEdWVVBIRbVflz904mb9rA7vTg5tMD5f5PRtDv3iuxh9kQiqB2k0Re/PkJmp7fyPD9qYfTUAwkq01mhdRDwftMdZoZK5uGRYUSEnHiApednsP8CYuZ9/0iMlN9J9XPVURIf1BigMLaTnaw90CY61faOmTOV+DZC+Tmb3GBzEWmP1JVqwiQQLWGXgPeKujvF0LEAI9KKUvrHKoiiOw4nsoNUyfj9HhQpUSTGv2bNue1y3ue0hqI2WLmjjdvYvjrw/C4Vay2kkXgtq3Yger2TQ1pmmT7yh20vzw46qzDX7+R5695A2deMZP4V2/wylwsmrKcN2/5GJNJ/1n1qDz42Z30url7UNZ0JiGUMIifhsz+BBxzQdghdBgi9MbKXYhjJkWtL/PRMvT0lble5a7nDCTQ1NBVhYe88iUhegdnSVUEgpSSO2f8wvG8XLLdLvI8bpyqyoztW5m+3f+gWGWiKEqpQQD0uoI9zHcS2RZiJSEpPhhLA6D95a148ZcnaNimHla7hZqNavDI2Lvoc0dPANKOpPPmLR/jynN5u5lcDjejR47lyN4SpbbOGYQSixL5HEq1RSgJf6CE3YIuM1aZi/DX3KCV8FoVhQk0EJiEEN7fVCFECFC6MWwVQWPH8eMcycnxEdDI9bj5YcP6U7KmsnLJoK6YrWYKP8QIIbDYLXS7rlNQz92hZxs+W/s2M3MnMH77R1w29CLva4un/oPRc5WmSRZOXhbUdVVxEtj83JMqsQhTlb1oIAQaCH4A/hRCDBdCDAfmAuODt6wqSsOpevxORzs8weu0CQahESG8t/Al6raog8VmwWKz0KB1Xd5f9HKJmkXBxuVwoWmaz3bNo+J0+DfVAUhPyWDF7LXsWLu7Kk8dbNTDYBSytSx00YIqSiNQiYk3hRD/Apfnb3pZSjkneMuqojSaxSdgMSk+3Xt2s5lrmgSu+XO6UL9lHb74911SD6chBMTWOPVSBZ37tOfr5yb6bLfYLVzQt6PhPlJKvnpmAtM+mInFZkH1qNSoX5035jxLXOKp/0xnJe6lGIpLCi2/RmDcpFDFCQLWQZZSzpZSPpb/pyoInGLMisL7vXoTYjZjUfScbKjFQqPYOG5sfeaa3cQlxpwWQQAgqWktBjzUB1uo3v0khMAeauOq4ZfTqJ1xV8ziqX/zy0ezcTnc5GTk4shxsm/LAV4c8HYlr/4cQvHjJy09IE6P79LpTqBdQ9cBbwLV0J/BBPpg8Jnts3iGc0m9+sy58VYmb9rIkZxsLqpTlysaNq5Qv+WKYvvqnYx/YTK7/91LUrOa3PTCIFpe2OxUL6tUbn91KBdccz5//rAITZNcNuRCWpSw7qkfzMSRU7SDRVM1dq7bw9F9KVSrUzY/5bIgtRxk3m/g2QLmpoiQqxHK2ef3IMKGI9OfAPIKbbWAtTPC5CdIVFGEQCeL3wKullJuCeZiqjh5akdG8cgFZReIqww2Lt3KU1e8givPiZSQciCVTUu38cLUxzj/Sl9P49ON8zo35rzOjQN6b3ZatuF2k8VEdnou1SpmgLtUpHoYmToAtBz0C2QIMns0xE1BmI0nvM9UhP0KZPhuyB4DwgzSDZa2iOj3TvXSzhgCDQRHqoJAUaSUrEk+xJ70dJrExdOqmrEbV0Wfc+n+fUzdshGPJunXtBmX1W942ktqf/boeB8ROmeei08e/Jpvtp3+geBk6NrvfA7vPOJjw2kym6jbvPIuwDLzJdCOAwXF7jyQTmTmKETsuEpbR2WhhI9Eht4Inv9ASTjrgl2wCTQQrBJCTEKXjfb+RksppwVlVac5mU4Hw6b95J3klVLSqnoNvr7mOkIspffNl5VXFy/gx40byMvvCvprzy4uq9eA0Vf2Oa1F9Hat32O4/dCOw6geFZPBVPGZyvWPXcP8CUtIT8nEledCUfQ22Ic+u6tyP6dzESeCQAEauJYipTytvy9lRSjhYD27biwqi0ADQST6/HavQtskcE4Gguf/+pPtqcdwF2otXJ98mHeWL+G5iwP17Tk5dqUd54cN/+JUT9xp5rrd/Ll7F6sOH+T8mqfvHVBkfCSpB4/7bA+JCEExnXrf5ookMjaCsevfYebYeayas45qdeLp/0BvGrWtPMkFHRPGgnBnT9AtCSldyNzJ4JgBwo4IvQFsV5yVAbAiCLR99LZgL+RMQZOS2Tu2FwkCAE5VZeqWTUELBIv27sGoRS7P4+av3btO60Aw5Mn+jHvqhyLpIVuojese6ntW/mKGRYUx6PF+DHq836lbREgfyJtO0WBgAfvZfzGU0oM8fiO4t1FQQJaudRDyNyJq1Cld2+lKoF1DdmA40AKwF2yXUt4epHWdtmhSovoZEHKpvno5FUWY1YpJUaDYOSyKQrj19B7y7nfvlWQcy+Snd2agKAJN1eh7Zw9ufM5YjbSs5GTkMPHNX1j403Jsdit97+5F37t6npNy0iLif0j3Zr2PXqogTGCqjYh8vvSdz3Sc88CznaJdRHmQNxUZdhvCXLdchy8YEDybAmqgqaHvgK3AFcBLwDB017FzDrOi0L5GTVYfPljk/lxBcEndekE77xUNGzFqwXyf7SZFoV/T03uATAjBLaMGM+TJ/qQcOE5czRhCwuyl73gSuBwu7uvyNEf2pOB26nfBXzzxPRsXb+GZHx+u0HOdCQglEuJ+AdcKvYBqbqi3U4qzKxVnhHQuAZlr8IoCrpVQxkAgtePIjFF6oEEibRcjIl9EmGqUZ7mnBYF+KxpJKZ8DcqSU44E+QOfgLev05rXLexJhs2E363E0xGwmJsTOs0FKCwFE2ux83rcf4Var90+I2cw7Pa+kVuSZMc5hC7FRu3FihQcBgL8mLuXYgVRvEADdV2D59FXs23ow4OO4XW7mfb+Ilwa+w+h7xrLTT6H7TEAIgbB1RoTdiLBdcE4EASB/wMygaUMo+bLZJ4+UKjJ1SH4Q8AAqOBciUwci5ZnvXRHoE0HBb1e6EKIlkIw+XHZO0ig2jvk3385PmzayNfUYratXZ8B5LYm0BTdF061OXVaOuJvlB/ajahpdaicRVg5bybOJdX9t9BnkAhCKYMvf26nTrFapx3A53Tx6yfPs2bQfR44TxaQwd/xC7vt4OFfedlkwll1FEBAhA5E5X+NbLLeC7SKjXUrHuQi0FIo69Gogs8HxO4Sc2damgQaCsfkeBM8C04Fw4LnSdhJCXAmMRm9VGCelfKPY67cCbwMFt2wfSynPiCbn2JBQ7uoYXGVMI2xmM93rVXYHyulPjfrVsNjMPjaZQhHE14oN6Bhzxy9g98b93qK2pmo481x8fP9XXDKoa1CeZKqoeIQ5CaJHIzMeQ2+w0EBEI2I+R5RVllrdBdLA80DmIt3/IQyM2s4kSgwEQojCpvIFnUOf5P8dVsq+pvz39gQOACuFENOllJuLvXWSlPK+wJd8+uBWVTKdTqLtdr2QW8Upo/eIHkx5d0aRQKAogojYcNpeFpht4sKflvsMvoHulLZ52TY69DxzNZzONYT9UrD9De6NIGxgPq98xV1zI/04spgftwhFWJqWb7GnAaU9EUTk/90UOB/9aQDgamBFKft2AnZIKXcBCCEmAv2A4oHgjENKyUcr/uaLNStxaxp2k5kHu3TltrbB89etomQSasfx6syneeOmD8lMzUJTJQ1a1+G5yY8G3DUUHm18byOlLGJdWcWZgRCWihsws3YDpYbeheVND5lARIH9ioo5xymkxEAgpXwRQAixCGgvpczK/3kUMLOUY9cC9hf6+QDGBeYBQoiLge3Aw1LK/cXfIIS4E7gToE6dShJrKYHPV6/k89UryPPoXwiXqvLOssVEWK0MbF55pt1G7E1PZ9zaVWxKOUqLhGqMaNeRutHRp3RNlUXri5vzw55PSd59FIvdQnzNwFJCBfQd2YuVs9fiKPZUEB4VRrNOVVLG5zJCmCDuR2Tma3pNAA1slyEin6WQZ9cZS6D5jOpAYScOV/628jIDqCelbE0JZjdSyrFSyo5Syo4JCZWn3uhnLXxWKAgUkOfx8OGKv0/RqnQ2Hj1Cnx+/ZdLGf1mXfJhJG/+lz4/fsvHokVO6rspECEFig+onHQRAt64c/GQ/LHYLoREhhEaEEFM9mtdmP+P1MK7i3EUo0SjRb6HU+BelxkaUmKyH6lIAABJdSURBVA8RprOjZybQYvG3wAohxM/5P/cHvilln4NAUqGfa3OiKAyAlDK10I/j0FVOT2vcmkaW06BoBBzNMVaerCxeWPAnue4TnRIeKfG43Yxa8CdTBg09hSurHHIyc/np3RksnLQMW4iVq+/uxVUjLj+pi/iNz11Pnzt78u+iLUTEhNGme4tyawTl5TiY+t4M5v+4FLPFRJ87e9D3rl5nlcZSFWc2gUpMvCqEmA0U9F7dJqVcW8puK4HGQoj66AFgCFDkaiSESJRSHs7/8RpO0yE1l6rywd/L+GHDOnLcbsyK4iMxAXpb6alk/ZFkw+3r/Gw/m3A5XDxwwdMc3n0Ut0MPhp8+Mp5/F2/hf989cFLHioyPoF7LJMKjw8p9sfa4PTx80XPs33oQV/66vnjyB9bO38ioqY+X69hVVFFRBPpEgJRyDbDmJN7vEULcB8xBbx/9Skq5SQjxErBKSjkdeEAIcQ169eU4cOvJLL6yeHzu78zdtQNHfjpIM5CYsJvNPN3tkspeWhFCLRayXb5eumFBVEQtTF6OA03VCIsMrZTzFWbh5OUc3XfMGwRAHyhbMu0f9j97kKSmpc8RACz5+R/ev+tzXA43qkelWafGPDf5EWKqRZVpXUt/WcmhHcneIFCwrlVz1rFj3e5TIEZXRRW+BDXxKaWcJaVsIqVsKKV8NX/b8/lBACnl/6SULaSUbaSUl0optwZzPWUhOTuLP3b+5w0CBShCEGsPIdJmo0NiTb7pN4CuSae2kH1Dy9beaecC7GYzw1q1Dep5Uw+n8b8rX+Ha2FsZEH8793R8gt0b9gb1nMVZM3+D4UCZogg2L98e0DF2rNutdx0dy8KR7cDtcLN5+TaevurVMq/r30WbyMs2mDyVsCXAdVVRRbAJ+IngXGVPejpWkxlnMbE3TUrqREUxbfCwU7QyXx69oBuHs7KYu2sHVpMJl6rSs0FDHurSNWjnVFWVRy5+jiN7U1A9errsvzW7efiS5/l2x8dExkaUcoSKoXrdBCxWs48hjKIoxAVYOP7lw1lFnigAVLfK/m2H2PXvXhq0PnmNmoSkeKx2S5EnAtCNagJdVxVVBJuqVohSqBcdXcQDoACzEDRPOL06BqwmEx9e1Zf5Nw/nsz79mH/zcEZf2RdrENU31/65kbSjGd4gUIDH6eGP8QuCdt7i9B5xOSZL0c+pKIKw6FDaXR5YS2/ynhQ0zTftZ7aYSD3k66cQCL1uvsSnziCEwBZq4/yrgvukVkUVgVIVCEqhRngEVzRs5JNysZrNjGjf8RStqmQSIyK4IKkOiRHBvxs/vOsImse3cO7Mc3Fg22GDPYJDtaR4Xp7+FHE1Y7CH2bDaLTRoU493F7wY8EBZ+56tsdp9JQjcTjeNOzQo07pia8Tw2uxnSEiKxx5qwxpipV7LJN5b+CIWa+XUbqqoojTOidSQ0+Phrz27OZKTRbsaNWld/eRkY9/ueRXv/72UCRvWk+N206Z6DUZ1v5x60WVTMjybaNSuPkLxHd23h9k4r0tghu8VRdtLWzJh32cc2pGM1W6hWp2Tmzm5emQvpo+ZQ0ZKJp78FJM9zMY1915JdELZisUALS9sxg97xnBwRzIWq5nqdU/tLEwVVRRHSD8mK6crHTt2lKtWrQr4/bvSjjN4yiQcHjceTUMRgs61k/i8Tz8s56BhSUUjpeTxy19ky9/bvXlwk8VEfM1Yvtz8PraQM2vqMj0lg4lv/sLyX1cRERvGgIevpvvgrmeVCUkV5yZCiNVSSsM0xlkfCHr/MJ5tqceKmMiEmM081rUbt7XtUPELPAdxOVx8/8oU5nz9Fx6XyoXXduL2V28o1110FVVUUbGcs4HgUFYml3/7lU/HD0Dj2Djm3HhrBa+uiiqqqOL0pKRAcFYXiz2a5veR3mMwGfz/9u4/yKryvuP4+7PL7soiIhTGqFB3VaISlR9FA0karUqLP4KdmEZMmpBEy8SqI8ROitKxE1NnqjP1RyamDqYmnalKq8aUAadqiWmjbQQUURQRlE2BIGADQfm1LPvtH+esOSzrsqR7Oefe83nN3Ln3POe5dz/cs8v3nufc8xwzszKq6UIw6pghjGg+eGrhpvr6wl/n18zsSKnpQiCJ70y9lEENjR98/bO5oYFThg4r7Fc/rfqtemENN0y+halN0/mTj1zN/DueoNN7oFZgNX2MoMuvdu/ix2+sYuN7OzjnhJFcdPIpDPC0wlYB61b+DzdMuuWAK501NTdxyTUX8uf3fLWXZ5pVVm/HCEpxHsGwgc18bby/IWSV9/Dtj9O+58CJ//bu2suiec8w41ufZ9CQXq/wapaLUhQCq007fvUeC+9/muWLV/KRlhF8dtaltJ51+PMB9ae1y9uInqapaBzApnVbPNuoFZILgVWlbZu38/UJ3+T9be/TvmcfdfV1PDv/eebOn83kz+R3/KflzFFsXLOJ7kOuHe0dPqPYCssD5VaVHr79R+x4d8cHZzN37u9k7+527vqz+3M9MPvFuVfQOPDAOYSamhuZ8uXzGDz06JxSmfXOhcCq0s8XvkjHvoNPFNyzcw+/fCu/azSfOr6V2xfdQutZybUpmo8ZyBWzP8MN370mt0xmh+KhIatKRw9thraD2/d3dDJoyJG/QlrW2PM+xrwVf0dnZ6cvem9Vwb+lVpU+O+syjhp04IR2Axrq+dgnT/utLyvZ31wErFpU9DdV0lRJqyWtlTSnl35XSApJPsvL+uSiP/00l86cQsNRDQwaMpCm5iZazz6JuY/MyjuaWdWp2AllkuqBN4EpwAZgKXBVRLzerd9gYBHQCFwfEb2eLfbbnFBmtWvb5u2sXb6O4ScOy/2ro2ZFltekc+cCayPi7YhoB+YDl/fQ79vAHUAPV/g2693Q447lnKnjXQTM/h8qWQhOBNZnljekbR+QNAEYFRGLKpjDzMx6kdvRLEl1wF3ATX3oO1PSMknLtm7dWvlwZmYlUslCsBEYlVkembZ1GQycCfxUUhswCVjQ0wHjiJgXERMjYuKIET4708ysP1WyECwFRktqldQITAcWdK2MiF9HxPCIaImIFuDnwLRDHSw2M7P+VbFCEBEdwPXAU8Aq4F8i4jVJt0maVqmfa2Zmh6eiZxZHxJPAk93abv2QvudXMouZmfXMpz6amZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJuRCYmZWcC4GZWcm5EJiZlZwLgZlZybkQmJmVnAuBmVnJVbQQSJoqabWktZLm9LD+65JelfSypOckjalkHjMzO1jFCoGkeuA+4GJgDHBVD//RPxwRZ0XEOOBO4K5K5TEzs55Vco/gXGBtRLwdEe3AfODybIeI2JFZHAREBfOYmVkPBlTwtU8E1meWNwAf795J0nXAN4BG4IIK5jEzsx7kfrA4Iu6LiFOAvwT+qqc+kmZKWiZp2datW49sQDOzGlfJQrARGJVZHpm2fZj5wB/3tCIi5kXExIiYOGLEiH6MaGZmlSwES4HRklolNQLTgQXZDpJGZxYvBdZUMI+ZmfWgYscIIqJD0vXAU0A98GBEvCbpNmBZRCwArpd0EbAP2AbMqFQeMzPrWSUPFhMRTwJPdmu7NfP4xkr+fDMzO7TcDxabmVm+XAjMzErOhcDMrOQqeozArD9FBGteeptfrn2H1rNP4qQzRuYdyawmuBBYVXh/+07m/NHf8IvX11NXV8f+jv2Mu+BM/vrxv6ChsSHveGZVzUNDVhXuvXYeb61oY8/Ovex6bzd7d7ez/Ccreejbj+UdzazquRBY4XXs6+C5J5bQ0d5xQHv77nYWPbA4p1RmtcOFwApvf8d+Ovd39rhu7+69RziNWe1xIbDCaxrYxMljTzqova5OnDN1fA6JzGqLC4FVhZseuJaBgwfS0JQcGG4c2MjgYYOZeeeXck5mVv38rSGrCqeOb+XBVfew8P6naVu5njMmjebiay7kmGGD845mVvVcCKxqDD9hGF+5bXreMcxqjoeGzMxKzoXAzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxKzoXAzKzkXAjMzEpOEZF3hsMiaSvwiz52Hw68W8E4/aVackL1ZHXO/lUtOaF6sh7pnCdFxIieVlRdITgckpZFxMS8cxxKteSE6snqnP2rWnJC9WQtUk4PDZmZlZwLgZlZydV6IZiXd4A+qpacUD1ZnbN/VUtOqJ6shclZ08cIzMzs0Gp9j8DMzA6hZguBpKmSVktaK2lO3nm6SHpQ0hZJKzNtwyQ9I2lNej80z4xpplGSnpX0uqTXJN1YxKySjpK0RNKKNOe30vZWSS+k2/+fJTXmmbOLpHpJyyUtTJeLmrNN0quSXpa0LG0r1LZPMx0r6TFJb0haJWly0XJKOi19H7tuOyTNKlLOmiwEkuqB+4CLgTHAVZLG5JvqAz8EpnZrmwMsjojRwOJ0OW8dwE0RMQaYBFyXvodFy7oXuCAixgLjgKmSJgF3AHdHxKnANuDqHDNm3QisyiwXNSfAH0TEuMxXHIu27QHuBf4tIk4HxpK8t4XKGRGr0/dxHPB7wC7gCYqUMyJq7gZMBp7KLN8M3Jx3rkyeFmBlZnk1cHz6+Hhgdd4Ze8j8r8CUImcFmoGXgI+TnKgzoKffhxzzjST5g78AWAioiDnTLG3A8G5thdr2wBBgHemxzqLm7JbtD4Hni5azJvcIgBOB9ZnlDWlbUR0XEZvSx+8Ax+UZpjtJLcB44AUKmDUdbnkZ2AI8A7wFbI+IjrRLUbb/PcA3gc50+XcoZk6AAJ6W9KKkmWlb0bZ9K7AV+EE63PZ9SYMoXs6s6cAj6ePC5KzVQlC1Ivl4UJivckk6GngcmBURO7LripI1IvZHsts9EjgXOD3nSAeRdBmwJSJezDtLH30qIiaQDK9eJ+nT2ZUF2fYDgAnA30fEeGAn3YZXCpITgPT4zzTg0e7r8s5Zq4VgIzAqszwybSuqzZKOB0jvt+ScBwBJDSRF4KGI+FHaXMisABGxHXiWZIjlWEkD0lVF2P6fBKZJagPmkwwP3UvxcgIQERvT+y0k49nnUrxtvwHYEBEvpMuPkRSGouXscjHwUkRsTpcLk7NWC8FSYHT6jYxGkt2xBTln6s0CYEb6eAbJeHyuJAn4B2BVRNyVWVWorJJGSDo2fTyQ5DjGKpKC8Lm0W+45I+LmiBgZES0kv48/iYgvUrCcAJIGSRrc9ZhkXHslBdv2EfEOsF7SaWnThcDrFCxnxlX8ZlgIipQz74MnFTwocwnwJsl48dy882RyPQJsAvaRfKK5mmSseDGwBvh3YFgBcn6KZFf1FeDl9HZJ0bICZwPL05wrgVvT9pOBJcBakl3xprzf00zm84GFRc2ZZlqR3l7r+vsp2rZPM40DlqXb/8fA0ILmHAT8LzAk01aYnD6z2Mys5Gp1aMjMzPrIhcDMrORcCMzMSs6FwMys5FwIzMxKzoXArJ9IasnOKnsYz/uvzPO/0P/JzHrnQmCWk64ziiPiE2lTC+BCYEecC4GVRvqJ+w1JD6Vz1z8mqVnShemkZa+m14toSvu3SbozbV8i6dS0/YeSPpd53fc/5Gf9TNJL6e0Tafv5afsCkrNgs8//W+D30znrZ0v6T0njMq/5nKSxFXuDrLRcCKxsTgO+FxFnADuAb5BcI+LKiDiLZCKzazP9f522f5dk9tC+2gJMiWTitiuB72TWTQBujIiPdnvOHOBnkcxdfzfJFB9fAZD0UeCoiFhxGBnM+sSFwMpmfUQ8nz7+J5L5adZFxJtp2z8C2Zk2H8ncTz6Mn9MAPCDpVZKpI7IXRloSEev68BqPApelk/99jaRgmfW7AYfuYlZTus+psp1kzpe+9O963EH6IUpSHdDT5SVnA5tJrppVB+zJrNvZp6ARuyQ9A1wOfJ7k6lZm/c57BFY2vyup65P9F0gmLGvpGv8HvgT8R6b/lZn7/04ft/Gb/5SnkXz6724IsCkiOtPXrO9DtveAwd3avk8yrLQ0Irb14TXMDpsLgZXNapILrawimanybuCrwKPpME4ncH+m/1BJr5Bca3h22vYAcJ6kFSTDRT19wv8eMCPtc/qH9OnuFWC/pBWSZgNEciGbHcAPDu+fadZ3nn3USiO95ObCiDizj/3bgIkR8W4FYx0qwwnAT4HT070Ls37nPQKzgpL0ZZLrRM91EbBK8h6BmVnJeY/AzKzkXAjMzErOhcDMrORcCMzMSs6FwMys5FwIzMxK7v8A+me/ab3a2nMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "from sklearn.cluster import KMeans\n", + "kmeans = KMeans(n_clusters = 3)\n", + "kmeans.fit(X)\n", + "labels = kmeans.predict(X)\n", + "plt.scatter(df['popularity'],df['danceability'],c = labels)\n", + "plt.xlabel('popularity')\n", + "plt.ylabel('danceability')\n", + "plt.show()" + ] + }, + { + "source": [ + "该模型的准确性还不错,但并不出色。可能是数据不太适合K均值聚类。您可以尝试使用其他方法。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 811, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Result: 109 out of 286 samples were correctly labeled.\nAccuracy score: 0.38\n" + ] + } + ], + "source": [ + "labels = kmeans.labels_\n", + "\n", + "correct_labels = sum(y == labels)\n", + "\n", + "print(\"Result: %d out of %d samples were correctly labeled.\" % (correct_labels, y.size))\n", + "\n", + "print('Accuracy score: {0:0.2f}'. format(correct_labels/float(y.size)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/2-K-Means/solution/tester.ipynb b/translations/zh-CN/5-Clustering/2-K-Means/solution/tester.ipynb new file mode 100644 index 000000000..7e71c1e7f --- /dev/null +++ b/translations/zh-CN/5-Clustering/2-K-Means/solution/tester.ipynb @@ -0,0 +1,343 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "6f92868513e59d321245137c1c4c5311", + "translation_date": "2025-09-03T20:12:37+00:00", + "source_file": "5-Clustering/2-K-Means/solution/tester.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 104, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: seaborn in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.11.1)\n", + "Requirement already satisfied: pandas>=0.23 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.1.2)\n", + "Requirement already satisfied: matplotlib>=2.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (3.1.0)\n", + "Requirement already satisfied: numpy>=1.15 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.19.2)\n", + "Requirement already satisfied: scipy>=1.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from seaborn) (1.4.1)\n", + "Requirement already satisfied: pytz>=2017.2 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2019.1)\n", + "Requirement already satisfied: python-dateutil>=2.7.3 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pandas>=0.23->seaborn) (2.8.0)\n", + "Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (1.1.0)\n", + "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (2.4.0)\n", + "Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib>=2.2->seaborn) (0.10.0)\n", + "Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.7.3->pandas>=0.23->seaborn) (1.12.0)\n", + "Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib>=2.2->seaborn) (45.1.0)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n", + "Note: you may need to restart the kernel to use updated packages.\n" + ] + } + ], + "source": [ + "pip install seaborn" + ] + }, + { + "source": [ + "从我们上节课结束的地方开始,导入并过滤数据。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 105, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "0 Sparky Mandy & The Jungle \n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "2 LITT! LITT! \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "0 Cruel Santino alternative r&b 2019 144000 48 \n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "2 AYLØ indie r&b 2018 207758 40 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "0 0.666 0.8510 0.420 0.534000 0.1100 -6.699 \n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "2 0.836 0.2720 0.564 0.000537 0.1100 -7.127 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "\n", + " speechiness tempo time_signature \n", + "0 0.0829 133.015 5 \n", + "1 0.3600 129.993 3 \n", + "2 0.0424 130.005 4 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 " + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
      0SparkyMandy & The JungleCruel Santinoalternative r&b2019144000480.6660.85100.4200.5340000.1100-6.6990.0829133.0155
      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
      2LITT!LITT!AYLØindie r&b2018207758400.8360.27200.5640.0005370.1100-7.1270.0424130.0054
      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
      \n
      " + }, + "metadata": {}, + "execution_count": 105 + } + ], + "source": [ + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import numpy as np\n", + "\n", + "df = pd.read_csv(\"../../data/nigerian-songs.csv\")\n", + "df.head()" + ] + }, + { + "source": [ + "我们将只专注于三个类型。也许我们可以建立三个集群!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 106, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Top genres')" + ] + }, + "metadata": {}, + "execution_count": 106 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAHbCAYAAAAJY9SEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de7ymc73/8dfbjNROhUwINR0msjvInk07hZLILofaiSJKTQfS+biT2NXu3O6oKL+0f6WURG0dpIOdnTJkO5UMEdNgoaQIw2f/cV1Td2ONGbO+y32vNa/n47Ee676/13Vf9yetWet9f09XqgpJkiRN3GrDLkCSJGm6MFhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiZFwh8Hvm5PuGng+fOHXZ8kTYa4QaikyZZwKfDiKr437FomImFmFYuHXYek0WWPlaShSLhXwicSFiVckfD+hNX7YzslLEg4NOG6hF8nPOdOrjUn4X8Sbkj4dsKnEz4zcPxJCT9N+H3CWQlbDxw7PeGQ/vsfEk5KWLs/tmnC4oSXJFwOnLQC13tJwqV9LZfcWd2Sph+DlaRhORR4DPBo4B+A7YA3DhyfDdwDWB94CXB0wkOWvkhCgGOBHwD3B94D7D1wfDbwdeBfgXWAtwFfXxKees8Dng9sAKwFvGrg2AxgK2ATYNc7u15/zfcD21dxH+CJwHl35T+KpKnNYCVpWJ4PHFLFNVVcBbwT2Gfg+GLg0Cpu6YcQvwf8yzjXmQNsChzWn/tD4FsDx/cFvlbF96q4vYqTgAuApw2cc2QVF1fxJ+CrwOZLvcfbq7ixiptW8HqPSrhnFb+t4hd36b+KpCnNYCXpbtf3Mq0PXDbQfBmw4cDzsSr+vNTxB45zuQf259480Hb5wOMHA3v3w3a/T/g9MHepa1058PhGYM2B57dX8dsVuV4Vv6MLjAcBVyacmPDwcWqWNE0ZrCTd7aooujDz4IHmBwELB56vm3DPpY4PBpwlFgGzEtYYaNt44PHlwGeqWGvg695VfHhFy13q+Z1er4r/qmJ7uuD2G+DwFXwfSdOAwUrSsBwDHJJw/4QH0M1Z+v8Dx1cHDk64R8JTgB2A48a5zq+AC4G3JayesA2w08Dxo4HnJGyfMKOfNL99wvorWfcyr5ewYcI/J/wdcDPwR+D2lXwfSVOQwUrSsLydbm7S+cDZwGnA+waOX0o3z+pK4CjghVVcsvRF+t6v5wJPBX4HvBX4Cl2woX/Ns+kmy19DN6T4Klby999yrjcDeHNf87XAPwIHrsz7SJqa3MdK0shJ2An4eNXKzU9KOAE4vYp/b1uZJN05e6wkTXkJWyXMTlgt4Zl0Q4EnDLsuSauemcMuQJIa2Ihu/tXadJPLX1TFBcMtSdKqyKFASZKkRhwKlCRJamQkhgLXXXfdmj179rDLkCRJWq4zzzzzmqqaNd6xkQhWs2fPZv78+cMuQ5IkabmSXLasYw4FSpIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1MnPYBbT2D2/4/LBL0DRz5vtfMOwSJElThD1WkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskGyf5QZILkpyf5FV9+zpJTk5yUf997b49ST6aZEGSc5JsMdn/IyRJkkbBivRYLQZeV1WbAY8HDkiyGfBm4JSqmgOc0j8HeDowp/+aBxzevGpJkqQRtNxgVVWLquqs/vENwC+ADYFdgaP7044Gdusf7wp8vjqnA2sl2aB55ZIkSSPmLs2xSjIbeBzwU2C9qlrUH7oSWK9/vCFw+cDLrujblr7WvCTzk8wfGxu7i2VLkiSNnhUOVknWBI4DXl1Vfxg8VlUF1F1546o6oqrmVtXcWbNm3ZWXSpIkjaQVClZJVqcLVV+oqq/1zVctGeLrv1/dty8ENh54+UZ9myRJ0rS2IqsCA3wW+EVVfWjg0InAvv3jfYETBtpf0K8OfDxw/cCQoSRJ0rQ1cwXO2RrYBzg3ydl921uB9wDHJtkfuAzYoz92ErAzsAC4EXhh04olSZJG1HKDVVX9GMgyDm8/zvkFHDDBuiRJkqYcd16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqZHlBqskRyW5Osl5A21fTnJ2/3VpkrP79tlJbho49qnJLF6SJGmUzFyBcz4HfBz4/JKGqnruksdJPghcP3D+xVW1easCJUmSporlBquqOjXJ7PGOJQmwB/CUtmVJkiRNPROdY/Uk4Kqqumig7SFJfp7kR0metKwXJpmXZH6S+WNjYxMsQ5IkafgmGqz2Ao4ZeL4IeFBVPQ54LfDFJPcd74VVdURVza2qubNmzZpgGZIkScO30sEqyUzgWcCXl7RV1c1VdW3/+EzgYuAREy1SkiRpKphIj9VTgV9W1RVLGpLMSjKjf/xQYA5wycRKlCRJmhpWZLuFY4CfAJskuSLJ/v2hPfnbYUCAbYBz+u0Xvgq8rKqua1mwJEnSqFqRVYF7LaN9v3HajgOOm3hZkiRJU487r0uSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUyHKDVZKjklyd5LyBtnckWZjk7P5r54Fjb0myIMmFSXacrMIlSZJGzYr0WH0O2Gmc9g9X1eb910kASTYD9gT+vn/NJ5PMaFWsJEnSKFtusKqqU4HrVvB6uwJfqqqbq+rXwAJgywnUJ0mSNGVMZI7VgUnO6YcK1+7bNgQuHzjnir7tDpLMSzI/yfyxsbEJlCFJkjQaVjZYHQ48DNgcWAR88K5eoKqOqKq5VTV31qxZK1mGJEnS6FipYFVVV1XVbVV1O3Akfx3uWwhsPHDqRn2bJEnStLdSwSrJBgNPdweWrBg8EdgzyRpJHgLMAX42sRIlSZKmhpnLOyHJMcB2wLpJrgAOAbZLsjlQwKXASwGq6vwkxwIXAIuBA6rqtskpXZIkabQsN1hV1V7jNH/2Ts5/F/CuiRQlSZI0FbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNLDdYJTkqydVJzhtoe3+SXyY5J8nxSdbq22cnuSnJ2f3XpyazeEmSpFGyIj1WnwN2WqrtZOBRVfUY4FfAWwaOXVxVm/dfL2tTpiRJ0uhbbrCqqlOB65Zq+25VLe6fng5sNAm1SZIkTSkt5li9CPjWwPOHJPl5kh8ledKyXpRkXpL5SeaPjY01KEOSJGm4JhSskvwrsBj4Qt+0CHhQVT0OeC3wxST3He+1VXVEVc2tqrmzZs2aSBmSJEkjYaWDVZL9gGcAz6+qAqiqm6vq2v7xmcDFwCMa1ClJkjTyVipYJdkJeCOwS1XdONA+K8mM/vFDgTnAJS0KlSRJGnUzl3dCkmOA7YB1k1wBHEK3CnAN4OQkAKf3KwC3AQ5LcitwO/Cyqrpu3AtLkiRNM8sNVlW11zjNn13GuccBx020KEmSpKnIndclSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamSFglWSo5JcneS8gbZ1kpyc5KL++9p9e5J8NMmCJOck2WKyipckSRolK9pj9Tlgp6Xa3gycUlVzgFP65wBPB+b0X/OAwydepiRJ0uhboWBVVacC1y3VvCtwdP/4aGC3gfbPV+d0YK0kG7QoVpIkaZRNZI7VelW1qH98JbBe/3hD4PKB867o2/5GknlJ5ieZPzY2NoEyJEmSRkOTyetVVUDdxdccUVVzq2rurFmzWpQhSZI0VBMJVlctGeLrv1/dty8ENh44b6O+TZIkaVqbSLA6Edi3f7wvcMJA+wv61YGPB64fGDKUJEmatmauyElJjgG2A9ZNcgVwCPAe4Ngk+wOXAXv0p58E7AwsAG4EXti4ZkmSpJG0QsGqqvZaxqHtxzm3gAMmUpQkSdJU5M7rkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyc2VfmGQT4MsDTQ8F3g6sBbwEGOvb31pVJ610hZIkSVPESgerqroQ2BwgyQxgIXA88ELgw1X1gSYVSpIkTRGthgK3By6uqssaXU+SJGnKaRWs9gSOGXh+YJJzkhyVZO3xXpBkXpL5SeaPjY2Nd4okSdKUMuFgleQewC7AV/qmw4GH0Q0TLgI+ON7rquqIqppbVXNnzZo10TIkSZKGrkWP1dOBs6rqKoCquqqqbquq24EjgS0bvIckSdLIaxGs9mJgGDDJBgPHdgfOa/AekiRJI2+lVwUCJLk3sAPw0oHm9yXZHCjg0qWOSZIkTVsTClZV9Sfg/ku17TOhiiRJkqYod16XJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmRmcMuQNJd95vDHj3sEjTNPOjt5w67BGlasMdKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpk5kQvkORS4AbgNmBxVc1Nsg7wZWA2cCmwR1X9bqLvJUmSNMpa9Vg9uao2r6q5/fM3A6dU1RzglP65JEnStDZZQ4G7Akf3j48Gdpuk95EkSRoZLYJVAd9NcmaSeX3belW1qH98JbDe0i9KMi/J/CTzx8bGGpQhSZI0XBOeYwU8saoWJnkAcHKSXw4erKpKUku/qKqOAI4AmDt37h2OS5IkTTUT7rGqqoX996uB44EtgauSbADQf796ou8jSZI06iYUrJLcO8l9ljwGngacB5wI7Nufti9wwkTeR5IkaSqY6FDgesDxSZZc64tV9e0kZwDHJtkfuAzYY4LvI0mSNPImFKyq6hLgseO0XwtsP5FrS5IkTTXuvC5JktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIysdrJJsnOQHSS5Icn6SV/Xt70iyMMnZ/dfO7cqVJEkaXTMn8NrFwOuq6qwk9wHOTHJyf+zDVfWBiZcnSZI0dax0sKqqRcCi/vENSX4BbNiqMEmSpKmmyRyrJLOBxwE/7ZsOTHJOkqOSrL2M18xLMj/J/LGxsRZlSJIkDdWEg1WSNYHjgFdX1R+Aw4GHAZvT9Wh9cLzXVdURVTW3qubOmjVromVIkiQN3YSCVZLV6ULVF6rqawBVdVVV3VZVtwNHAltOvExJkqTRN5FVgQE+C/yiqj400L7BwGm7A+etfHmSJElTx0RWBW4N7AOcm+Tsvu2twF5JNgcKuBR46YQqlCRJmiImsirwx0DGOXTSypcjSZI0dbnzuiRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyke0WJEmaNFt/bOthl6Bp5rRXnjbp72GPlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUyacEqyU5JLkyyIMmbJ+t9JEmSRsWkBKskM4BPAE8HNgP2SrLZZLyXJEnSqJisHqstgQVVdUlV3QJ8Cdh1kt5LkiRpJKSq2l80+Rdgp6p6cf98H2Crqjpw4Jx5wLz+6SbAhc0L0Z1ZF7hm2EVIk8yfc60K/Dm/+z24qmaNd2Dm3V3JElV1BHDEsN5/VZdkflXNHXYd0mTy51yrAn/OR8tkDQUuBDYeeL5R3yZJkjRtTVawOgOYk+QhSe4B7AmcOEnvJUmSNBImZSiwqhYnORD4DjADOKqqzp+M99JKcxhWqwJ/zrUq8Od8hEzK5HVJkqRVkTuvS5IkNWKwkiRJasRgpSaSzE1yn2HXIUnSMBms1MpLgO8ariRp6kmSYdcwXRisNCFJtgCoqpcCZwLHG640VYz3x8Q/MFrVJElVVZKtk+yfZPt+qyStBFcFakKSnA7cWFVP6Z8fDswBdq+qG4ZanLQCkmxDt6HxH4Bv9n9gVquq24dcmnS3SfJk4LPAl4FnAEcDX6+qBUMtbAqyx0oTUlWPB2Yk+Ub//OXARdhzpRG2pFcqyVzgKGBrYG/g60tClT1XWlUk2QR4GfDqqnoLsC/dB+QdhlrYFGWw0l028EdpJkBVbQvMWipc/RL4fpI1h1aotAx9r9T2wFuAF1fVK4D9gKuBjyw5Z3gVSpMvPWAb4GHAjknuXVVnAccA85KsPdQipyCDle6SJWPx/dMNk8yBv/Rc3T/JN/vnBwKnAusMp1JpudYCdgf+sX9+C/BpwLklmtYGemPXBWZW1ZHAu4DQ3YIO4Erghr5Nd4FzrLRSkrwO2Bm4J/D9qjq4bz8VoKq2GWJ50h0MTNBdD7ihqm5M8s/A14Gdq+rkJDsA76MbArnWXitNV0l2Bg4DFgJ/AvYHnk03DLga3S3v3l9V3xxakVPUpNwrUNNbkhcBu1TVtkk+Brw2yd9V1euqapsk30mycVVdPuxapSX6UPVM4JVAJTmNrodqN+A7SY6l+4R+WFVdM8RSpUmV5JHAO4EDgbOBLwL/r6r2TPJnYEfg3CWhaqmRCi2HQ4FarnEm8S4A9knySmBD4DHA3kk+BVBVOxqqNGqSPIyuN+oNwAfoQtShwLfohgSfCfxPVR2/ZP6gNE3dDFwAnFVVN1bVbsAGSQ6g68H9KfDYJHsaqu46f3louZb8o+onot9cVacmuR+wLfC+qrq4/7S/VZJ1quq6YdYrDRr4w7A2cFlV/W/f/htgK+CpVXVCkn2BY5P8uqp+OLyKpbYGhsFn0HWoXAdsAMwFftyf9iW6X/eLkxwN3Ar8wFB119ljpWVK8rAkm/WPXwt8nm45+gOq6nrg18Czk7yZrufq2YYqjYqBntZ79d/PAxYnORCgqi4ELgc2659/FfgXYNHdXKo0qfpQtStwLN0+VY8EPgF8LMmBSV5MNyy4oD//1qo6uqquGlrRU5iT1zWuJPcCPgZcRddlPA94Od2ta3YHtqALU7sBTwYOqqrzhlOtNL4kO9H9zF4CnA4U3Z5Va9J9Qv80sF9V/Y9DHpqukmwKfAb4d7qVgO8A9qHrldoR2Aj4alV9d1g1TicGKy1Tv5XCa4H7AudX1bv79g8DOwFPqqprktyzqv48xFKlO0jyeOC9dB8QHkO3jcKtdJ/aX0230/r3q+obQytSmmRJHgV8ELiwqg7q23YEPkf3O9yd1RtzKFB/Y3CielVdBLwbuB54TJLH9O2vAf4b+EE/Zn/LMGqVliXJhnQT1H/aD/G9D/gh3bySRVW1P/CGqvqGO6xrmvsV3Z5Uj0wyJ8kaVfUd4Dhg1nBLm54MVvqLwaGQJM9NshuwKV2v1fXA7gPhah7dpN/bvKeaRtBNdJNy90yyVVX9saq+DTyIrveKqlrcf7fbXtNSkhlVdQvwYrq5g68HdkmyLfAsYPEw65uuDFb6i4FQdSDdXj8A36D7Q/ReYH26bRb+vj929d1epDSOgdssPSrJdnRzqN5D11N1WJKn90PbGwO/H1qh0t2k/6B8W5KZVXUrXbhaDfhXulC1X1WdYY9tewYr/UWS1ZJsQDcZfXvgocApwM+r6hK6YcGZdBPa/aSvkdGvetoZOAF4Id1ePM+kG/47jW4DxE8AL6qqs/xjoulm4MPFnCTrL2nvt0+Y2fdcvQKYD/wdcJYLNiaHwWoVt9QfmBl0+5tcS7cr7zbAc6rq1iQv7895vbtSa9QkuTfdH419qmpfuo0/twXWo/tZPhj4I93PtzStDOxTtSNwIt0HiwOSPBz+JlzdSvfv5AF0NyB3L8tJYLBahS01p2pvYF5V3Uy3JP0gun2pbkzyPLr7SFVV3Ta8iqW/SrJa//0f6XaSvgbYBKCqTqDbt+oN/enH0n1SPyTJPe/+aqXJ04equXTDfc8EXgf8PbDbUuFqyZyr5wAf7IOWGjOtrsIGQtUBwIvo9jWhql6aZC3g1CQ/p9uder+qumJoxUq9JPeqqpuq6vYkTwQOp7tx7M+AjZPMrar5dCtXtwBmVNXVSY4AbndrEE03Se5DNwS+Rb99woL+g8dewHOTfKWqftXPuVqtD1e/HWbN05n7WK3ikqwNHAG8qaou6Zfi3twf24muJ+DSqvr1MOuU4C978vwH8Ay6rRMOp9vY8DNJHgocQLfIYjHwD8DBVXX8sOqVJsvS86OSbAJ8lG739Ff2Hzy2A54PvNvf4Xcfg9UqZrzJikm+Rrf673MDvVhbAedU1U1DKFO6gySr0wWpn9L9vD6NbthjbeAFVfXbJOvS7SK9KbCgquY7QVfTzcCcqh3othBJ/+HiEcCb6Ta/fW0frtauqt8NteBVjHOsViFLzama03/CAfgO8GDgn/pjzwXeRrdkXRolC+kmpX+Fbs7UYcDZwEFJ1q+qa6rq7Kr6Uj8c6OpVTSv9UF4l+We6HdWvoNtS5ANV9Su61dvrAx/vX3L9kEpdZdljtYpYKlS9lm5O1U3AfwH/RnfvqMfRDaE8DHheVZ07nGqlv7XUJ/T/BH5YVXv2x7amGxq8F92Qh/uradpJ8hBgtaq6uO+Z/U/gNcCSXqoNge9V1f79h+Y1quqc4VW86nLy+ipiIFQ9HngC8ERgDeAMYHFVHdzvYfVwuiGURUMrVhowEKoeSncLjmcBr07yTrqVTaf1E3V3oxsWNFhpOnoCcFGSK/p7tM6j+3k/lG4+4Wy6Ses3VdWBQ6xzlWewWoUkeSRwCF2v1GpVdVW/VP0nSR5YVa+gu+2BNDL6ULUL3bDfAuAS4NN0S8oPSvLRqvrvJOdWlbuqa1qqqi8kWRM4I8neVXVOkgcCZ/ZzqdYHPkQ3tUND5ByraWzp3aWr6hfAkXTBarsk61bVVcDWwBOTrOeO1Bo1fS/rwcCOwPF0Gxw+je4my9sCr+s3PzRUadoZ2FF9R+BRdEOAR/YrZC8F7pfkk3Q3VT6hqk729/hwOcdqmhpn88916O5y/h3g2XTDJl8HTu33+Jnh5p8aRUk2ottaYW26XdSfB3yKbhf1zwFjVXXG0AqUJlmSLYGPAK+pqtP7ebLPo/s9Dt39XP9UVT8aVo36K4cCp6mBUPUaYFe6VVRvotvs893AbcB+wK1JvgHcPpxKpTvXb0x7RZJ3AV+oqgVJPk93d4Dzq+qy4VYoTZ4kGwNvBM6tqtMBqupDfafUyXS3HTtpiCVqKQaraaa/fcE6VfWzfk7VFnQ3VX4D3f/f69NtpXAY3ZDgmVVlqNJUcC7w0n4/q2cBrzJUaRWwGDgH2DXJTlX1bfhLuJoBrDXU6nQHBqtppL+twf7A6kluBf6Xbhnu04Gdge3ptlk4iO7WHocOq1ZpJZxEt5J1F+BdVXXakOuRmh/RBFIAAAVUSURBVBtYBftPdKtgf0N3t4HfA7snubWqTgGoqvcPsVQtg5PXp4l+07gb6HamXgzsCTyiqhYC9wN+1t8f6hbgW3SrqqQpo6r+UFVHA8+tqv9ygq6moz5UPQ04ClgPOJNugdGJdD1X+/XHNaLssZomBobzdgQeC2wC3DPJZ4CfAJ/t96naDtihqq4cSqHSxN0G7qiu6affj20t4KXA7nSLji4Azuq3x/kKXa+t2+KMMFcFTiNJngR8DNgSeDywE7A63XyqNek2kbugqi4ZWpGSpDuV5E10Iw1PAZ7f77a+H3AqcKnzYkebQ4HTy5rAtVV1S1WdSrevyVPo7hm1TlV901AlSaMnyeZJDumf3hvYB9i7D1WPpVvV/UBD1ehzKHB6+RmwMMmewFeq6swkp9EF6KuGW5okadDARPUnAc8BdkxydVW9PcmmwCFJFgObA2+qqh8PtWCtEIPV9HI98GO6vaqelmQ+3T0Bn11V1wy1MkkS8NdA1YeqbYAvAAcCC4EnJ1mjqvZI8kS6jXE/3n9QjnMLR59zrKaYfvXfMruCk9wL2JRu4uOawGer6vy7qz5J0rL19/d7JPDDqrqtvzPGhlX13v5egJsD7wWOraqPDLNWrRyD1RTV/2N8EHADcMx4PVL9/dMW3+3FSZLGlWRX4CLgCrqtcbYHPky3WvvX/crAo+nmWX21qr44tGK1Upy8PgUleRHdxp8X093376Akj+6PZcn+PoYqSRotVXUCcCXwSbp7/X2X7t6XH+nnVT2G7t6YFwEbDqtOrTznWE0B44yrbwe8vqq+neRU4GC6DUHPdfxdkkbP4O/xqrouyY+Ap9Ft2nw8EOA/6Xqx9qe7HdkO/S2cFvu7fepwKHAKGFg58jLgDLpb1NwT+FD/D/QhdLv07l5Vvx9mrZKk8SXZFng08P2quiDJXnS/z79eVV9Lcu/+1C3p7o6xu3Nkpx6HAkdYkk3gL7c4eBawB/BbunC1Ft3Kv7WAR9F9yrllWLVKku5oydSMJFvRDf9tC7wxyUuq6hjgm8DeSfYA/kz3ofkJwK6GqqnJocARlWRH4PAkW9CNt78YOK+qFgGLkmwMbNO33wN4ZVXdOLSCJUl30H8w3hI4FNirqs7p9xp8Qh+ujkwyA7iwqm4Drk3y/v7erpqCDFYjKMlMuq7gg4HN6Jbf/gDYNckz+h3UP5PkfnR7nPypqsaGV7Ek6U6sBTwV2IHuRspfBW6nn0NVVZ+Ev9nfylA1hRmsRlBVLU5yMfA2uhvOPpmui/gmYJcki6vq21V1Pd2moJKkEVVV3+2nc/x7kt9W1TFJvgrMAP534DwnPU8DBqvRdQ5wI/AH4H5VdU2Sr9F9ytk3ya1VdcpQK5QkrZCqOrG/Pc2/JblHVR0NHDPsutSeqwJHxOBS3CT3AG7rd+V9Pd2NlA+pqjOSbES3iuSb/XwrSdIUkWQX4D10Q4NXelPl6cdgNQKWClUH0s2r+gPwjqr6c5K30t3/7z1V9ZMkM/pJjpKkKSbJLOfFTl8GqxGS5BXAc4HnAWcB3wPeXlUXJ3kn8HBgv6r68xDLlCRJy2CwGhFJ7gt8iG4l4HOAnYGr6bZaeHlVLUhy/6q6dohlSpKkO2GwGiFJ1gA2Bf6jqp7cbyw3RrcD7zuq6tahFihJku6UqwJHSFXdnORGYGZ/U+UHA6cAnzZUSZI0+uyxGjF9r9Wr6VaMPBB4TlVdMNyqJEnSijBYjaD+bubrA7dX1cJh1yNJklaMwUqSJKmR1YZdgCRJ0nRhsJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmN/B/Djeb5PsBsCgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "df = df[(df['artist_top_genre'] == 'afro dancehall') | (df['artist_top_genre'] == 'afropop') | (df['artist_top_genre'] == 'nigerian pop')]\n", + "df = df[(df['popularity'] > 0)]\n", + "top = df['artist_top_genre'].value_counts()\n", + "plt.figure(figsize=(10,7))\n", + "sns.barplot(x=top.index,y=top.values)\n", + "plt.xticks(rotation=45)\n", + "plt.title('Top genres',color = 'blue')" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " name album \\\n", + "1 shuga rush EVERYTHING YOU HEARD IS TRUE \n", + "3 Confident / Feeling Cool Enjoy Your Life \n", + "4 wanted you rare. \n", + "5 Kasala Pioneers \n", + "6 Pull Up Everything Pretty \n", + "\n", + " artist artist_top_genre release_date length popularity \\\n", + "1 Odunsi (The Engine) afropop 2020 89488 30 \n", + "3 Lady Donli nigerian pop 2019 175135 14 \n", + "4 Odunsi (The Engine) afropop 2018 152049 25 \n", + "5 DRB Lasgidi nigerian pop 2020 184800 26 \n", + "6 prettyboydo nigerian pop 2018 202648 29 \n", + "\n", + " danceability acousticness energy instrumentalness liveness loudness \\\n", + "1 0.710 0.0822 0.683 0.000169 0.1010 -5.640 \n", + "3 0.894 0.7980 0.611 0.000187 0.0964 -4.961 \n", + "4 0.702 0.1160 0.833 0.910000 0.3480 -6.044 \n", + "5 0.803 0.1270 0.525 0.000007 0.1290 -10.034 \n", + "6 0.818 0.4520 0.587 0.004490 0.5900 -9.840 \n", + "\n", + " speechiness tempo time_signature \n", + "1 0.3600 129.993 3 \n", + "3 0.1130 111.087 4 \n", + "4 0.0447 105.115 4 \n", + "5 0.1970 100.103 4 \n", + "6 0.1990 95.842 4 " + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      namealbumartistartist_top_genrerelease_datelengthpopularitydanceabilityacousticnessenergyinstrumentalnesslivenessloudnessspeechinesstempotime_signature
      1shuga rushEVERYTHING YOU HEARD IS TRUEOdunsi (The Engine)afropop202089488300.7100.08220.6830.0001690.1010-5.6400.3600129.9933
      3Confident / Feeling CoolEnjoy Your LifeLady Donlinigerian pop2019175135140.8940.79800.6110.0001870.0964-4.9610.1130111.0874
      4wanted yourare.Odunsi (The Engine)afropop2018152049250.7020.11600.8330.9100000.3480-6.0440.0447105.1154
      5KasalaPioneersDRB Lasgidinigerian pop2020184800260.8030.12700.5250.0000070.1290-10.0340.1970100.1034
      6Pull UpEverything Prettyprettyboydonigerian pop2018202648290.8180.45200.5870.0044900.5900-9.8400.199095.8424
      \n
      " + }, + "metadata": {}, + "execution_count": 107 + } + ], + "source": [ + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 108, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "scaler = StandardScaler()\n", + "\n", + "# X = df.loc[:, ('danceability','energy')]\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 110, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "ValueError", + "evalue": "Unknown label type: 'continuous'", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;31m# we create an instance of SVM and fit out data. We do not scale our\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[0;31m# data since we want to plot the support vectors\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 22\u001b[0;31m \u001b[0mls30\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_30\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 30% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 23\u001b[0m \u001b[0mls50\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_50\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 50% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mls100\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mLabelSpreading\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'Label Spreading 100% data'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/semi_supervised/_label_propagation.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, X, y)\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 229\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mX_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 230\u001b[0;31m \u001b[0mcheck_classification_targets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 231\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[0;31m# actual graph construction (implementations should override this)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/utils/multiclass.py\u001b[0m in \u001b[0;36mcheck_classification_targets\u001b[0;34m(y)\u001b[0m\n\u001b[1;32m 181\u001b[0m if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',\n\u001b[1;32m 182\u001b[0m 'multilabel-indicator', 'multilabel-sequences']:\n\u001b[0;32m--> 183\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Unknown label type: %r\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0my_type\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 184\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: Unknown label type: 'continuous'" + ] + } + ], + "source": [ + "from sklearn.svm import SVC\n", + "from sklearn.semi_supervised import LabelSpreading\n", + "from sklearn.semi_supervised import SelfTrainingClassifier\n", + "from sklearn import datasets\n", + "\n", + "X = df[['danceability','acousticness']].values\n", + "y = df['energy'].values\n", + "\n", + "# X = scaler.fit_transform(X)\n", + "\n", + "# step size in the mesh\n", + "h = .02\n", + "\n", + "rng = np.random.RandomState(0)\n", + "y_rand = rng.rand(y.shape[0])\n", + "y_30 = np.copy(y)\n", + "y_30[y_rand < 0.3] = -1 # set random samples to be unlabeled\n", + "y_50 = np.copy(y)\n", + "y_50[y_rand < 0.5] = -1\n", + "# we create an instance of SVM and fit out data. We do not scale our\n", + "# data since we want to plot the support vectors\n", + "ls30 = (LabelSpreading().fit(X, y_30), y_30, 'Label Spreading 30% data')\n", + "ls50 = (LabelSpreading().fit(X, y_50), y_50, 'Label Spreading 50% data')\n", + "ls100 = (LabelSpreading().fit(X, y), y, 'Label Spreading 100% data')\n", + "\n", + "# the base classifier for self-training is identical to the SVC\n", + "base_classifier = SVC(kernel='rbf', gamma=.5, probability=True)\n", + "st30 = (SelfTrainingClassifier(base_classifier).fit(X, y_30),\n", + " y_30, 'Self-training 30% data')\n", + "st50 = (SelfTrainingClassifier(base_classifier).fit(X, y_50),\n", + " y_50, 'Self-training 50% data')\n", + "\n", + "rbf_svc = (SVC(kernel='rbf', gamma=.5).fit(X, y), y, 'SVC with rbf kernel')\n", + "\n", + "# create a mesh to plot in\n", + "x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1\n", + "y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1\n", + "xx, yy = np.meshgrid(np.arange(x_min, x_max, h),\n", + " np.arange(y_min, y_max, h))\n", + "\n", + "color_map = {-1: (1, 1, 1), 0: (0, 0, .9), 1: (1, 0, 0), 2: (.8, .6, 0)}\n", + "\n", + "classifiers = (ls30, st30, ls50, st50, ls100, rbf_svc)\n", + "for i, (clf, y_train, title) in enumerate(classifiers):\n", + " # Plot the decision boundary. For that, we will assign a color to each\n", + " # point in the mesh [x_min, x_max]x[y_min, y_max].\n", + " plt.subplot(3, 2, i + 1)\n", + " Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])\n", + "\n", + " # Put the result into a color plot\n", + " Z = Z.reshape(xx.shape)\n", + " plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)\n", + " plt.axis('off')\n", + "\n", + " # Plot also the training points\n", + " colors = [color_map[y] for y in y_train]\n", + " plt.scatter(X[:, 0], X[:, 1], c=colors, edgecolors='black')\n", + "\n", + " plt.title(title)\n", + "\n", + "plt.suptitle(\"Unlabeled points are colored white\", y=0.1)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/5-Clustering/README.md b/translations/zh-CN/5-Clustering/README.md new file mode 100644 index 000000000..b7194600d --- /dev/null +++ b/translations/zh-CN/5-Clustering/README.md @@ -0,0 +1,33 @@ +# 机器学习中的聚类模型 + +聚类是一种机器学习任务,旨在寻找彼此相似的对象并将它们分组到称为“聚类”的组中。与机器学习中的其他方法不同,聚类是自动进行的,实际上可以说它是监督学习的反面。 + +## 地区主题:针对尼日利亚观众音乐品味的聚类模型 🎧 + +尼日利亚的观众拥有多样化的音乐品味。通过从 Spotify 抓取的数据(灵感来源于[这篇文章](https://towardsdatascience.com/country-wise-visual-analysis-of-music-taste-using-spotify-api-seaborn-in-python-77f5b749b421)),让我们来看看尼日利亚流行的一些音乐。这份数据集包括关于各种歌曲的“舞蹈性”评分、“声学性”、响度、“语音性”、流行度和能量的相关数据。发现这些数据中的模式将会非常有趣! + +![唱盘](../../../translated_images/zh-CN/turntable.f2b86b13c53302dc.webp) + +> 图片由 Marcela Laskoski 提供,来自 Unsplash + +在这一系列课程中,你将学习使用聚类技术分析数据的新方法。聚类特别适用于数据集缺乏标签的情况。如果数据集有标签,那么你在之前课程中学到的分类技术可能会更有用。但在需要对无标签数据进行分组的情况下,聚类是发现模式的绝佳方法。 + +> 有一些实用的低代码工具可以帮助你学习如何使用聚类模型。试试 [Azure ML](https://docs.microsoft.com/learn/modules/create-clustering-model-azure-machine-learning-designer/?WT.mc_id=academic-77952-leestott) 来完成这个任务。 + +## 课程 + +1. [聚类简介](1-Visualize/README.md) +2. [K-Means 聚类](2-K-Means/README.md) + +## 致谢 + +这些课程由 [Jen Looper](https://www.twitter.com/jenlooper) 倾情创作,并由 [Rishit Dagli](https://rishit_dagli) 和 [Muhammad Sakib Khan Inan](https://twitter.com/Sakibinan) 提供了有益的审阅。 + +[Nigerian Songs](https://www.kaggle.com/sootersaalu/nigerian-songs-spotify) 数据集来源于 Kaggle,由 Spotify 抓取。 + +在创建本课程时,以下 K-Means 示例提供了帮助,包括这个 [鸢尾花探索](https://www.kaggle.com/bburns/iris-exploration-pca-k-means-and-gmm-clustering)、这个[入门笔记本](https://www.kaggle.com/prashant111/k-means-clustering-with-python),以及这个[假设的 NGO 示例](https://www.kaggle.com/ankandash/pca-k-means-clustering-hierarchical-clustering)。 + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/1-Introduction-to-NLP/README.md b/translations/zh-CN/6-NLP/1-Introduction-to-NLP/README.md new file mode 100644 index 000000000..5ae742a3c --- /dev/null +++ b/translations/zh-CN/6-NLP/1-Introduction-to-NLP/README.md @@ -0,0 +1,170 @@ +# 自然语言处理简介 + +本课程涵盖了*自然语言处理*(NLP)的简要历史和重要概念,这是*计算语言学*的一个分支领域。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +## 简介 + +NLP是机器学习应用最广泛的领域之一,并已被用于生产软件中。 + +✅ 你能想到每天使用的软件中可能嵌入了NLP吗?比如你经常使用的文字处理程序或手机应用? + +你将学习以下内容: + +- **语言的概念**。了解语言的发展以及主要研究领域。 +- **定义和概念**。你还将学习计算机如何处理文本的定义和概念,包括解析、语法以及识别名词和动词。本课程中有一些编码任务,并引入了几个重要概念,这些概念将在后续课程中学习如何编写代码。 + +## 计算语言学 + +计算语言学是一个研究和开发领域,已有数十年的历史,研究计算机如何与语言协作,甚至理解、翻译和与语言进行交流。自然语言处理(NLP)是一个相关领域,专注于计算机如何处理“自然”或人类语言。 + +### 示例 - 手机语音输入 + +如果你曾经对手机进行语音输入而不是打字,或者向虚拟助手提问,你的语音会被转换为文本形式,然后被处理或*解析*成你所说的语言。检测到的关键词随后会被处理成手机或助手可以理解并执行的格式。 + +![理解](../../../../6-NLP/1-Introduction-to-NLP/images/comprehension.png) +> 真正的语言理解很难!图片来源:[Jen Looper](https://twitter.com/jenlooper) + +### 这项技术是如何实现的? + +这项技术的实现是因为有人编写了一个计算机程序来完成这些任务。几十年前,一些科幻作家预测人们将主要通过语音与计算机交流,而计算机将始终准确理解他们的意思。然而,事实证明这是一个比许多人想象的更难的问题。尽管今天对这个问题的理解已经大大提高,但在实现“完美”的自然语言处理以理解句子的意义时仍然存在重大挑战。尤其是在理解幽默或检测句子中的情感(如讽刺)时,这个问题尤为困难。 + +此时,你可能会回忆起学校课堂上老师讲解句子语法部分的情景。在一些国家,学生会专门学习语法和语言学,而在许多国家,这些主题是语言学习的一部分:小学学习母语(学习阅读和写作),高中可能学习第二语言。如果你不擅长区分名词和动词或副词和形容词,不用担心! + +如果你对区分*一般现在时*和*现在进行时*感到困难,你并不孤单。这对许多人来说是一个挑战,即使是母语使用者。好消息是,计算机非常擅长应用正式规则,你将学习编写代码来像人类一样*解析*句子。更大的挑战是理解句子的*意义*和*情感*。 + +## 前置知识 + +本课程的主要前置知识是能够阅读和理解本课程的语言。本课程没有数学问题或需要解决的方程。虽然课程的原作者是用英语编写的,但它也被翻译成其他语言,因此你可能正在阅读翻译版本。本课程中有一些例子使用了多种语言(用于比较不同语言的语法规则)。这些例子*没有*被翻译,但解释性文本是翻译过的,因此意义应该是清晰的。 + +对于编码任务,你将使用Python,示例使用的是Python 3.8。 + +在本节中,你将需要并使用以下内容: + +- **Python 3理解能力**。理解Python 3编程语言,本课程使用输入、循环、文件读取、数组。 +- **Visual Studio Code + 扩展**。我们将使用Visual Studio Code及其Python扩展。你也可以使用自己选择的Python IDE。 +- **TextBlob**。 [TextBlob](https://github.com/sloria/TextBlob) 是一个简化的Python文本处理库。按照TextBlob网站上的说明将其安装到你的系统中(同时安装语料库,如下所示): + + ```bash + pip install -U textblob + python -m textblob.download_corpora + ``` + +> 💡 提示:你可以直接在VS Code环境中运行Python。查看[文档](https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-77952-leestott)了解更多信息。 + +## 与机器对话 + +让计算机理解人类语言的历史可以追溯到几十年前,最早考虑自然语言处理的科学家之一是*艾伦·图灵*。 + +### 图灵测试 + +当图灵在20世纪50年代研究*人工智能*时,他提出了一个对话测试:通过打字交流,让人类和计算机进行对话,而人类无法确定自己是在与另一个人还是计算机交流。 + +如果在一定时间的对话后,人类无法判断回答是来自计算机还是人类,那么是否可以说计算机在“思考”? + +### 灵感来源 - 模仿游戏 + +这个想法来源于一个叫*模仿游戏*的派对游戏,游戏中一个审问者独自待在一个房间里,任务是判断另一个房间里的两个人分别是男性还是女性。审问者可以发送纸条,并试图提出问题,通过书面回答来揭示神秘人物的性别。当然,另一个房间里的玩家会试图通过回答问题来误导或迷惑审问者,同时也要表现得像是在诚实回答。 + +### 开发Eliza + +在20世纪60年代,麻省理工学院的科学家*约瑟夫·魏岑鲍姆*开发了[*Eliza*](https://wikipedia.org/wiki/ELIZA),一个计算机“治疗师”,它会向人类提问并表现出理解他们的回答。然而,虽然Eliza可以解析句子并识别某些语法结构和关键词以给出合理的回答,但它不能说是*理解*句子。如果Eliza收到一个格式为“**我很**难过”的句子,它可能会重新排列并替换句子中的单词,形成“你**已经**难过多久了”的回答。 + +这给人一种Eliza理解了陈述并提出了后续问题的印象,而实际上它只是改变了时态并添加了一些单词。如果Eliza无法识别一个关键词,它会给出一个随机回答,这可能适用于许多不同的陈述。例如,如果用户写“**你是**一辆自行车”,它可能会回答“我**已经**是一辆自行车多久了?”,而不是一个更合理的回答。 + +[![与Eliza聊天](https://img.youtube.com/vi/RMK9AphfLco/0.jpg)](https://youtu.be/RMK9AphfLco "与Eliza聊天") + +> 🎥 点击上方图片观看关于原始ELIZA程序的视频 + +> 注意:如果你有ACM账户,可以阅读1966年发表的[Eliza](https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract)原始描述。或者,可以在[wikipedia](https://wikipedia.org/wiki/ELIZA)上了解Eliza。 + +## 练习 - 编写一个基础对话机器人 + +一个对话机器人,比如Eliza,是一个能够引导用户输入并表现出理解和智能回应的程序。与Eliza不同,我们的机器人不会有多个规则来表现出智能对话。相反,我们的机器人只有一个功能,即通过随机回应来保持对话,这些回应可能适用于几乎任何简单对话。 + +### 计划 + +构建对话机器人的步骤: + +1. 打印说明,告知用户如何与机器人互动 +2. 开始一个循环 + 1. 接收用户输入 + 2. 如果用户要求退出,则退出 + 3. 处理用户输入并确定回应(在本例中,回应是从可能的通用回应列表中随机选择) + 4. 打印回应 +3. 返回步骤2 + +### 构建机器人 + +接下来我们来创建机器人。首先定义一些短语。 + +1. 使用以下随机回应在Python中创建这个机器人: + + ```python + random_responses = ["That is quite interesting, please tell me more.", + "I see. Do go on.", + "Why do you say that?", + "Funny weather we've been having, isn't it?", + "Let's change the subject.", + "Did you catch the game last night?"] + ``` + + 以下是一些示例输出(用户输入以`>`开头的行): + + ```output + Hello, I am Marvin, the simple robot. + You can end this conversation at any time by typing 'bye' + After typing each answer, press 'enter' + How are you today? + > I am good thanks + That is quite interesting, please tell me more. + > today I went for a walk + Did you catch the game last night? + > I did, but my team lost + Funny weather we've been having, isn't it? + > yes but I hope next week is better + Let's change the subject. + > ok, lets talk about music + Why do you say that? + > because I like music! + Why do you say that? + > bye + It was nice talking to you, goodbye! + ``` + + 任务的一个可能解决方案在[这里](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/1-Introduction-to-NLP/solution/bot.py) + + ✅ 停下来思考 + + 1. 你认为随机回应能否“欺骗”某人,让他们认为机器人真的理解了他们? + 2. 机器人需要哪些功能才能更有效? + 3. 如果一个机器人真的能“理解”句子的意义,它是否需要“记住”对话中前几句的意义? + +--- + +## 🚀挑战 + +选择上述“停下来思考”中的一个元素,尝试用代码实现它,或者用伪代码在纸上写出解决方案。 + +在下一节课中,你将学习其他解析自然语言和机器学习的方法。 + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +查看以下参考资料,作为进一步阅读的机会。 + +### 参考资料 + +1. Schubert, Lenhart, "Computational Linguistics", *The Stanford Encyclopedia of Philosophy* (Spring 2020 Edition), Edward N. Zalta (ed.), URL = . +2. Princeton University "About WordNet." [WordNet](https://wordnet.princeton.edu/). Princeton University. 2010. + +## 作业 + +[寻找一个机器人](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/1-Introduction-to-NLP/assignment.md b/translations/zh-CN/6-NLP/1-Introduction-to-NLP/assignment.md new file mode 100644 index 000000000..a7435831a --- /dev/null +++ b/translations/zh-CN/6-NLP/1-Introduction-to-NLP/assignment.md @@ -0,0 +1,16 @@ +# 寻找一个机器人 + +## 说明 + +机器人无处不在。你的任务是:找到一个并与它互动!你可以在网站上、银行应用程序中,或者通过电话找到它,例如,当你拨打金融服务公司的电话咨询或查询账户信息时。分析这个机器人,看看你是否能让它困惑。如果你能让机器人困惑,为什么会发生这种情况?写一篇简短的文章,描述你的体验。 + +## 评分标准 + +| 标准 | 优秀 | 合格 | 需要改进 | +| -------- | -------------------------------------------------------------------------------------------------------- | ---------------------------------------- | --------------------- | +| | 撰写了一整页文章,解释了假定的机器人架构并概述了与它的互动体验 | 文章不完整或研究不充分 | 未提交文章 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/2-Tasks/README.md b/translations/zh-CN/6-NLP/2-Tasks/README.md new file mode 100644 index 000000000..d1644e674 --- /dev/null +++ b/translations/zh-CN/6-NLP/2-Tasks/README.md @@ -0,0 +1,219 @@ +# 常见的自然语言处理任务和技术 + +对于大多数*自然语言处理*任务,需要将待处理的文本分解、分析,并将结果存储或与规则和数据集进行交叉引用。这些任务使程序员能够推导出文本中的_意义_、_意图_或仅仅是_词语和术语的频率_。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +让我们来探索处理文本时常用的技术。这些技术结合机器学习,可以帮助你高效地分析大量文本。然而,在将机器学习应用于这些任务之前,我们需要了解自然语言处理专家可能遇到的问题。 + +## 自然语言处理的常见任务 + +分析文本有多种方法。通过执行不同的任务,你可以理解文本并得出结论。这些任务通常按顺序进行。 + +### 分词 + +大多数自然语言处理算法的第一步可能是将文本分解为词或标记。虽然这听起来很简单,但考虑到标点符号以及不同语言的词和句子的分隔符,这可能会变得复杂。你可能需要使用多种方法来确定分界点。 + +![分词](../../../../6-NLP/2-Tasks/images/tokenization.png) +> 从**傲慢与偏见**中分词的示例。信息图由 [Jen Looper](https://twitter.com/jenlooper) 制作 + +### 嵌入 + +[词嵌入](https://wikipedia.org/wiki/Word_embedding)是一种将文本数据转换为数值的方式。嵌入的方式使得具有相似意义或经常一起使用的词汇聚集在一起。 + +![词嵌入](../../../../6-NLP/2-Tasks/images/embedding.png) +> “我对你的神经非常尊重,它们是我的老朋友。” - **傲慢与偏见**中的一句话的词嵌入。信息图由 [Jen Looper](https://twitter.com/jenlooper) 制作 + +✅ 尝试[这个有趣的工具](https://projector.tensorflow.org/)来实验词嵌入。点击一个词可以显示类似词的聚类,例如“toy”与“disney”、“lego”、“playstation”和“console”聚类在一起。 + +### 解析与词性标注 + +每个被分词的词都可以标注为词性,例如名词、动词或形容词。句子`the quick red fox jumped over the lazy brown dog`可能会被词性标注为:fox = 名词,jumped = 动词。 + +![解析](../../../../6-NLP/2-Tasks/images/parse.png) + +> **傲慢与偏见**中的一句话解析示例。信息图由 [Jen Looper](https://twitter.com/jenlooper) 制作 + +解析是识别句子中哪些词彼此相关,例如`the quick red fox jumped`是一个形容词-名词-动词序列,与`lazy brown dog`序列分开。 + +### 词和短语频率 + +分析大量文本时,一个有用的步骤是构建一个字典,记录每个感兴趣的词或短语及其出现的频率。短语`the quick red fox jumped over the lazy brown dog`中,词`the`的频率为2。 + +让我们看一个示例文本,统计词频。拉迪亚德·吉卜林的诗《胜利者》中有以下诗句: + +```output +What the moral? Who rides may read. +When the night is thick and the tracks are blind +A friend at a pinch is a friend, indeed, +But a fool to wait for the laggard behind. +Down to Gehenna or up to the Throne, +He travels the fastest who travels alone. +``` + +由于短语频率可以根据需要区分大小写,短语`a friend`的频率为2,`the`的频率为6,`travels`的频率为2。 + +### N-grams + +文本可以分解为固定长度的词序列,例如单词(unigram)、两个词(bigram)、三个词(trigram)或任意数量的词(n-grams)。 + +例如,`the quick red fox jumped over the lazy brown dog`的n-gram长度为2,生成以下n-grams: + +1. the quick +2. quick red +3. red fox +4. fox jumped +5. jumped over +6. over the +7. the lazy +8. lazy brown +9. brown dog + +可以将其想象为一个滑动窗口在句子上移动。以下是长度为3的n-grams,每个句子中的n-gram用加粗表示: + +1. **the quick red** fox jumped over the lazy brown dog +2. the **quick red fox** jumped over the lazy brown dog +3. the quick **red fox jumped** over the lazy brown dog +4. the quick red **fox jumped over** the lazy brown dog +5. the quick red fox **jumped over the** lazy brown dog +6. the quick red fox jumped **over the lazy** brown dog +7. the quick red fox jumped over **the lazy brown** dog +8. the quick red fox jumped over the **lazy brown dog** + +![n-grams滑动窗口](../../../../6-NLP/2-Tasks/images/n-grams.gif) + +> N-gram值为3:信息图由 [Jen Looper](https://twitter.com/jenlooper) 制作 + +### 名词短语提取 + +在大多数句子中,有一个名词是句子的主语或宾语。在英语中,通常可以通过前面的`a`、`an`或`the`来识别。通过“提取名词短语”来识别句子的主语或宾语是自然语言处理中理解句子意义的常见任务。 + +✅ 在句子“我无法确定时间、地点、表情或语言,这些构成了基础。这太久远了。我在不知不觉中已经开始了。”中,你能识别出名词短语吗? + +在句子`the quick red fox jumped over the lazy brown dog`中,有两个名词短语:**quick red fox**和**lazy brown dog**。 + +### 情感分析 + +可以分析句子或文本的情感,即其*积极性*或*消极性*。情感通过*极性*和*客观性/主观性*来衡量。极性范围从-1.0到1.0(消极到积极),客观性范围从0.0到1.0(最客观到最主观)。 + +✅ 稍后你会学习使用机器学习确定情感的不同方法,但一种方法是由人工专家将词和短语分类为积极或消极,并将该模型应用于文本以计算极性分数。你能看到这种方法在某些情况下有效,而在其他情况下效果较差吗? + +### 词形变化 + +词形变化使你能够获取一个词的单数或复数形式。 + +### 词形还原 + +*词形还原*是指获取一组词的词根或主词,例如*flew*、*flies*、*flying*的词形还原为动词*fly*。 + +还有一些对自然语言处理研究人员非常有用的数据库,例如: + +### WordNet + +[WordNet](https://wordnet.princeton.edu/)是一个包含词汇、同义词、反义词以及许多其他细节的数据库,涵盖多种语言中的每个词汇。在构建翻译、拼写检查器或任何类型的语言工具时,它非常有用。 + +## 自然语言处理库 + +幸运的是,你不需要自己构建所有这些技术,因为有许多优秀的Python库可以让非自然语言处理或机器学习专家的开发者更容易使用。在接下来的课程中会有更多示例,但这里你将学习一些有用的示例来帮助你完成下一项任务。 + +### 练习 - 使用`TextBlob`库 + +让我们使用一个名为TextBlob的库,它包含处理这些任务的有用API。TextBlob“基于[NLTK](https://nltk.org)和[pattern](https://github.com/clips/pattern),并与它们很好地协作。”它的API中嵌入了大量机器学习功能。 + +> 注意:推荐给有经验的Python开发者的TextBlob[快速入门指南](https://textblob.readthedocs.io/en/dev/quickstart.html#quickstart) + +在尝试识别*名词短语*时,TextBlob提供了几种提取器选项来找到名词短语。 + +1. 看看`ConllExtractor`。 + + ```python + from textblob import TextBlob + from textblob.np_extractors import ConllExtractor + # import and create a Conll extractor to use later + extractor = ConllExtractor() + + # later when you need a noun phrase extractor: + user_input = input("> ") + user_input_blob = TextBlob(user_input, np_extractor=extractor) # note non-default extractor specified + np = user_input_blob.noun_phrases + ``` + + > 这里发生了什么?[ConllExtractor](https://textblob.readthedocs.io/en/dev/api_reference.html?highlight=Conll#textblob.en.np_extractors.ConllExtractor)是“一个使用ConLL-2000训练语料库进行块解析的名词短语提取器。”ConLL-2000指的是2000年计算自然语言学习会议。每年会议都会举办一个研讨会来解决一个棘手的自然语言处理问题,2000年的主题是名词块解析。一个模型在《华尔街日报》上进行了训练,“使用第15-18节作为训练数据(211727个标记),第20节作为测试数据(47377个标记)”。你可以查看使用的程序[这里](https://www.clips.uantwerpen.be/conll2000/chunking/)以及[结果](https://ifarm.nl/erikt/research/np-chunking.html)。 + +### 挑战 - 使用自然语言处理改进你的机器人 + +在上一课中,你构建了一个非常简单的问答机器人。现在,你将通过分析用户输入的情感并打印出匹配情感的响应,使Marvin更加富有同情心。你还需要识别一个`noun_phrase`并围绕它提出更多问题。 + +构建更好的对话机器人的步骤: + +1. 打印说明,指导用户如何与机器人互动 +2. 开始循环 + 1. 接收用户输入 + 2. 如果用户要求退出,则退出 + 3. 处理用户输入并确定适当的情感响应 + 4. 如果在情感中检测到名词短语,将其复数化并围绕该主题提出更多问题 + 5. 打印响应 +3. 返回步骤2 + +以下是使用TextBlob确定情感的代码片段。注意,这里只有四种*情感响应梯度*(如果你愿意,可以增加更多): + +```python +if user_input_blob.polarity <= -0.5: + response = "Oh dear, that sounds bad. " +elif user_input_blob.polarity <= 0: + response = "Hmm, that's not great. " +elif user_input_blob.polarity <= 0.5: + response = "Well, that sounds positive. " +elif user_input_blob.polarity <= 1: + response = "Wow, that sounds great. " +``` + +以下是一些示例输出以供参考(用户输入以`>`开头的行): + +```output +Hello, I am Marvin, the friendly robot. +You can end this conversation at any time by typing 'bye' +After typing each answer, press 'enter' +How are you today? +> I am ok +Well, that sounds positive. Can you tell me more? +> I went for a walk and saw a lovely cat +Well, that sounds positive. Can you tell me more about lovely cats? +> cats are the best. But I also have a cool dog +Wow, that sounds great. Can you tell me more about cool dogs? +> I have an old hounddog but he is sick +Hmm, that's not great. Can you tell me more about old hounddogs? +> bye +It was nice talking to you, goodbye! +``` + +任务的一个可能解决方案在[这里](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/2-Tasks/solution/bot.py) + +✅ 知识检查 + +1. 你认为这些富有同情心的响应能否“欺骗”某人,让他们认为机器人真的理解他们? +2. 识别名词短语是否让机器人更“可信”? +3. 为什么从句子中提取“名词短语”是一件有用的事情? + +--- + +实现上述知识检查中的机器人并测试它。它能否欺骗你的朋友?你能让你的机器人更“可信”吗? + +## 🚀挑战 + +尝试实现上述知识检查中的任务并测试机器人。它能否欺骗你的朋友?你能让你的机器人更“可信”吗? + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +在接下来的几节课中,你将学习更多关于情感分析的内容。通过阅读像[KDNuggets](https://www.kdnuggets.com/tag/nlp)上的文章来研究这一有趣的技术。 + +## 作业 + +[让机器人回复](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/2-Tasks/assignment.md b/translations/zh-CN/6-NLP/2-Tasks/assignment.md new file mode 100644 index 000000000..6921a6b69 --- /dev/null +++ b/translations/zh-CN/6-NLP/2-Tasks/assignment.md @@ -0,0 +1,16 @@ +# 让机器人回应 + +## 说明 + +在之前的课程中,你编写了一个基础的聊天机器人。这个机器人会随机回答,直到你说“bye”。你能让它的回答不那么随机,并在你说特定内容(比如“为什么”或“怎么”)时触发特定回答吗?思考一下,机器学习如何让这种工作变得更自动化,同时扩展你的机器人。你可以使用 NLTK 或 TextBlob 库来简化任务。 + +## 评分标准 + +| 标准 | 卓越表现 | 合格表现 | 需要改进 | +| -------- | ------------------------------------------ | -------------------------------------------- | ---------------------- | +| | 提供了一个新的 bot.py 文件并进行了文档记录 | 提供了一个新的 bot 文件,但存在一些问题 | 未提供文件 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/3-Translation-Sentiment/README.md b/translations/zh-CN/6-NLP/3-Translation-Sentiment/README.md new file mode 100644 index 000000000..a197169ca --- /dev/null +++ b/translations/zh-CN/6-NLP/3-Translation-Sentiment/README.md @@ -0,0 +1,191 @@ +# 使用机器学习进行翻译和情感分析 + +在之前的课程中,你学习了如何使用 `TextBlob` 构建一个基础的机器人。`TextBlob` 是一个库,它在幕后嵌入了机器学习技术,用于执行基本的自然语言处理任务,例如名词短语提取。计算语言学中的另一个重要挑战是准确地将一个语言的句子翻译成另一种语言。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +翻译是一个非常困难的问题,因为世界上有成千上万种语言,每种语言都有非常不同的语法规则。一种方法是将一种语言(例如英语)的正式语法规则转换为一种与语言无关的结构,然后通过转换回另一种语言来完成翻译。这种方法的步骤如下: + +1. **识别**。识别或标记输入语言中的单词,例如名词、动词等。 +2. **创建翻译**。以目标语言的格式直接翻译每个单词。 + +### 示例句子:英语到爱尔兰语 + +在“英语”中,句子 _I feel happy_ 是三个单词,顺序为: + +- **主语** (I) +- **动词** (feel) +- **形容词** (happy) + +然而,在“爱尔兰语”中,同样的句子有非常不同的语法结构——像“happy”或“sad”这样的情感被表达为“在你身上”。 + +英语短语 `I feel happy` 在爱尔兰语中是 `Tá athas orm`。一个*字面*翻译是 `Happy is upon me`。 + +一个讲爱尔兰语的人翻译成英语时会说 `I feel happy`,而不是 `Happy is upon me`,因为他们理解句子的含义,即使单词和句子结构不同。 + +在爱尔兰语中,这句话的正式顺序是: + +- **动词** (Tá 或 is) +- **形容词** (athas 或 happy) +- **主语** (orm 或 upon me) + +## 翻译 + +一个简单的翻译程序可能只翻译单词,而忽略句子结构。 + +✅ 如果你作为成年人学习了第二(或第三甚至更多)语言,你可能一开始会在脑海中用母语思考,将一个概念逐字翻译成第二语言,然后说出你的翻译。这类似于简单翻译计算机程序的工作方式。要达到流利程度,重要的是要超越这个阶段! + +简单翻译会导致糟糕(有时甚至是搞笑)的误译:`I feel happy` 字面翻译成爱尔兰语是 `Mise bhraitheann athas`。这意味着(字面上)`me feel happy`,但这不是一个有效的爱尔兰语句子。尽管英语和爱尔兰语是两个邻近岛屿上使用的语言,但它们是非常不同的语言,语法结构也不同。 + +> 你可以观看一些关于爱尔兰语言传统的视频,例如 [这个](https://www.youtube.com/watch?v=mRIaLSdRMMs) + +### 机器学习方法 + +到目前为止,你已经了解了自然语言处理的正式规则方法。另一种方法是忽略单词的含义,而是*使用机器学习来检测模式*。如果你有大量的文本(*语料库*)或原始语言和目标语言的文本(*语料*),这种方法在翻译中可能会奏效。 + +例如,考虑《傲慢与偏见》的情况,这是一本由简·奥斯汀于1813年写的著名英语小说。如果你查阅这本书的英语版本和人类翻译的*法语*版本,你可以检测到一种语言中的短语在另一种语言中被*习惯性地*翻译。这就是你接下来要做的。 + +例如,当英语短语 `I have no money` 被字面翻译成法语时,它可能变成 `Je n'ai pas de monnaie`。“Monnaie” 是一个棘手的法语“假同源词”,因为“money”和“monnaie”并不是同义词。一个人类可能会做出更好的翻译,即 `Je n'ai pas d'argent`,因为它更好地传达了你没有钱的意思(而不是“零钱”,这是“monnaie”的意思)。 + +![monnaie](../../../../6-NLP/3-Translation-Sentiment/images/monnaie.png) + +> 图片由 [Jen Looper](https://twitter.com/jenlooper) 提供 + +如果一个机器学习模型有足够的人工翻译来构建模型,它可以通过识别之前由精通两种语言的专家翻译的文本中的常见模式来提高翻译的准确性。 + +### 练习 - 翻译 + +你可以使用 `TextBlob` 来翻译句子。试试《傲慢与偏见》的著名第一句: + +```python +from textblob import TextBlob + +blob = TextBlob( + "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife!" +) +print(blob.translate(to="fr")) + +``` + +`TextBlob` 的翻译效果相当不错:“C'est une vérité universellement reconnue, qu'un homme célibataire en possession d'une bonne fortune doit avoir besoin d'une femme!”。 + +可以说,`TextBlob` 的翻译实际上比1932年由 V. Leconte 和 Ch. Pressoir 翻译的法语版本更精确: + +“C'est une vérité universelle qu'un célibataire pourvu d'une belle fortune doit avoir envie de se marier, et, si peu que l'on sache de son sentiment à cet egard, lorsqu'il arrive dans une nouvelle résidence, cette idée est si bien fixée dans l'esprit de ses voisins qu'ils le considèrent sur-le-champ comme la propriété légitime de l'une ou l'autre de leurs filles。” + +在这种情况下,由机器学习支持的翻译比人类翻译更好,因为后者为了“清晰”而不必要地在原作者的文字中添加了额外的内容。 + +> 这是怎么回事?为什么 `TextBlob` 的翻译如此出色?实际上,它在幕后使用了 Google Translate,这是一种复杂的人工智能,能够解析数百万个短语以预测最适合当前任务的字符串。这完全是自动化的,你需要互联网连接才能使用 `blob.translate`。 + +✅ 尝试更多句子。机器学习翻译和人工翻译哪个更好?在哪些情况下? + +## 情感分析 + +机器学习在情感分析领域也表现得非常出色。一种非机器学习的方法是识别“积极”和“消极”的单词和短语。然后,给定一段新的文本,计算积极、消极和中性单词的总值,以确定整体情感。 + +这种方法很容易被欺骗,就像你在 Marvin 任务中看到的那样——句子 `Great, that was a wonderful waste of time, I'm glad we are lost on this dark road` 是一个讽刺性的消极情感句子,但简单的算法会检测到“great”、“wonderful”、“glad”是积极的,“waste”、“lost”和“dark”是消极的。整体情感被这些矛盾的单词所影响。 + +✅ 停下来想一想,作为人类说话者,我们如何表达讽刺。语调的变化起到了很大的作用。试着用不同的方式说“Well, that film was awesome”,看看你的声音如何传达意义。 + +### 机器学习方法 + +机器学习方法是手动收集消极和积极的文本——例如推文、电影评论,或者任何带有评分*和*书面意见的内容。然后可以将 NLP 技术应用于意见和评分,从而发现模式(例如,积极的电影评论中“奥斯卡级”这个短语出现的频率比消极电影评论中高,或者积极的餐厅评论中“美食”出现的频率比“恶心”高)。 + +> ⚖️ **示例**:如果你在一个政治家的办公室工作,并且有一项新的法律正在讨论,选民可能会写邮件支持或反对这项新法律。假设你的任务是阅读这些邮件并将它们分为两类:*支持*和*反对*。如果邮件很多,你可能会因为试图阅读所有邮件而感到不堪重负。如果有一个机器人可以阅读所有邮件,理解它们并告诉你每封邮件属于哪个类别,那不是很好吗? +> +> 一种实现方法是使用机器学习。你可以用一部分*反对*邮件和一部分*支持*邮件来训练模型。模型会倾向于将某些短语和单词与反对方或支持方关联起来,*但它不会理解任何内容*,只会知道某些单词和模式更可能出现在反对或支持邮件中。你可以用一些未用于训练模型的邮件进行测试,看看它是否得出了与你相同的结论。然后,一旦你对模型的准确性感到满意,你就可以处理未来的邮件,而无需逐一阅读。 + +✅ 这个过程是否类似于你在之前课程中使用的过程? + +## 练习 - 情感句子 + +情感通过*极性*从 -1 到 1 来衡量,-1 表示最消极的情感,1 表示最积极的情感。情感还通过 0 到 1 的分数来衡量客观性(0)和主观性(1)。 + +再看一眼简·奥斯汀的《傲慢与偏见》。文本可以在 [Project Gutenberg](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) 找到。以下示例展示了一个简短的程序,它分析了书中第一句和最后一句的情感,并显示其情感极性和主观性/客观性分数。 + +你应该使用 `TextBlob` 库(如上所述)来确定 `sentiment`(你不需要自己编写情感计算器)来完成以下任务。 + +```python +from textblob import TextBlob + +quote1 = """It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife.""" + +quote2 = """Darcy, as well as Elizabeth, really loved them; and they were both ever sensible of the warmest gratitude towards the persons who, by bringing her into Derbyshire, had been the means of uniting them.""" + +sentiment1 = TextBlob(quote1).sentiment +sentiment2 = TextBlob(quote2).sentiment + +print(quote1 + " has a sentiment of " + str(sentiment1)) +print(quote2 + " has a sentiment of " + str(sentiment2)) +``` + +你会看到以下输出: + +```output +It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want # of a wife. has a sentiment of Sentiment(polarity=0.20952380952380953, subjectivity=0.27142857142857146) + +Darcy, as well as Elizabeth, really loved them; and they were + both ever sensible of the warmest gratitude towards the persons + who, by bringing her into Derbyshire, had been the means of + uniting them. has a sentiment of Sentiment(polarity=0.7, subjectivity=0.8) +``` + +## 挑战 - 检查情感极性 + +你的任务是使用情感极性来确定《傲慢与偏见》中绝对积极的句子是否多于绝对消极的句子。对于此任务,你可以假设极性分数为 1 或 -1 的句子是绝对积极或消极的。 + +**步骤:** + +1. 从 Project Gutenberg 下载一份《傲慢与偏见》的 [副本](https://www.gutenberg.org/files/1342/1342-h/1342-h.htm) 作为 .txt 文件。删除文件开头和结尾的元数据,仅保留原始文本。 +2. 在 Python 中打开文件并将内容提取为字符串。 +3. 使用书的字符串创建一个 TextBlob。 +4. 在循环中分析书中的每个句子: + 1. 如果极性为 1 或 -1,将句子存储在一个数组或列表中,分别存储积极或消极的消息。 +5. 最后,分别打印出所有积极句子和消极句子,以及它们的数量。 + +这里是一个 [示例解决方案](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb)。 + +✅ 知识检查 + +1. 情感是基于句子中使用的单词,但代码是否*理解*这些单词? +2. 你认为情感极性准确吗?换句话说,你是否*同意*这些分数? + 1. 特别是,你是否同意或不同意以下句子的绝对**积极**极性: + * “What an excellent father you have, girls!” said she, when the door was shut. + * “Your examination of Mr. Darcy is over, I presume,” said Miss Bingley; “and pray what is the result?” “I am perfectly convinced by it that Mr. Darcy has no defect. + * How wonderfully these sort of things occur! + * I have the greatest dislike in the world to that sort of thing. + * Charlotte is an excellent manager, I dare say. + * “This is delightful indeed! + * I am so happy! + * Your idea of the ponies is delightful. + 2. 以下三个句子被评分为绝对积极情感,但仔细阅读后,它们并不是积极句子。为什么情感分析认为它们是积极句子? + * Happy shall I be, when his stay at Netherfield is over!” “I wish I could say anything to comfort you,” replied Elizabeth; “but it is wholly out of my power. + * If I could but see you as happy! + * Our distress, my dear Lizzy, is very great. + 3. 你是否同意或不同意以下句子的绝对**消极**极性: + - Everybody is disgusted with his pride. + - “I should like to know how he behaves among strangers.” “You shall hear then—but prepare yourself for something very dreadful. + - The pause was to Elizabeth’s feelings dreadful. + - It would be dreadful! + +✅ 任何简·奥斯汀的爱好者都会理解,她经常在书中批评英国摄政时期社会中更荒谬的方面。《傲慢与偏见》的主角伊丽莎白·班内特是一个敏锐的社会观察者(就像作者一样),她的语言通常充满了深意。甚至故事中的爱情对象达西先生也注意到伊丽莎白的俏皮和戏谑的语言使用:“我有幸认识你足够久,知道你偶尔会发表一些实际上并非你真实观点的意见,并从中获得极大的乐趣。” + +--- + +## 🚀挑战 + +你能通过从用户输入中提取其他特征来让 Marvin 更加出色吗? + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 +从文本中提取情感有很多方法。想想可能会利用这种技术的商业应用。再想想它可能出错的情况。阅读更多关于分析情感的复杂企业级系统,例如 [Azure Text Analysis](https://docs.microsoft.com/azure/cognitive-services/Text-Analytics/how-tos/text-analytics-how-to-sentiment-analysis?tabs=version-3-1?WT.mc_id=academic-77952-leestott)。测试上面的一些《傲慢与偏见》的句子,看看它是否能检测出细微差别。 + +## 作业 + +[诗意许可](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/3-Translation-Sentiment/assignment.md b/translations/zh-CN/6-NLP/3-Translation-Sentiment/assignment.md new file mode 100644 index 000000000..8c2c6f9a9 --- /dev/null +++ b/translations/zh-CN/6-NLP/3-Translation-Sentiment/assignment.md @@ -0,0 +1,16 @@ +# 诗意的许可 + +## 说明 + +在[这个笔记本](https://www.kaggle.com/jenlooper/emily-dickinson-word-frequency)中,你可以找到超过500首艾米莉·狄金森的诗,这些诗之前已经使用 Azure 文本分析进行了情感分析。利用这个数据集,按照课程中描述的方法进行分析。一首诗的情感倾向是否与更复杂的 Azure 服务的判断一致?在你看来,为什么会一致或不一致?有没有什么让你感到意外的地方? + +## 评分标准 + +| 标准 | 优秀 | 合格 | 需要改进 | +| -------- | -------------------------------------------------------------------------- | ------------------------------------------------------- | ------------------------ | +| | 提交了一个包含对作者样本输出的深入分析的笔记本 | 笔记本不完整或未进行分析 | 未提交笔记本 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/3-Translation-Sentiment/solution/Julia/README.md b/translations/zh-CN/6-NLP/3-Translation-Sentiment/solution/Julia/README.md new file mode 100644 index 000000000..e2fb46232 --- /dev/null +++ b/translations/zh-CN/6-NLP/3-Translation-Sentiment/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/3-Translation-Sentiment/solution/R/README.md b/translations/zh-CN/6-NLP/3-Translation-Sentiment/solution/R/README.md new file mode 100644 index 000000000..ba3fc1469 --- /dev/null +++ b/translations/zh-CN/6-NLP/3-Translation-Sentiment/solution/R/README.md @@ -0,0 +1,6 @@ +这是一个临时占位符 + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb b/translations/zh-CN/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb new file mode 100644 index 000000000..581dd4d69 --- /dev/null +++ b/translations/zh-CN/6-NLP/3-Translation-Sentiment/solution/notebook.ipynb @@ -0,0 +1,100 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "27de2abc0235ebd22080fc8f1107454d", + "translation_date": "2025-09-03T20:58:06+00:00", + "source_file": "6-NLP/3-Translation-Sentiment/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from textblob import TextBlob\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# You should download the book text, clean it, and import it here\n", + "with open(\"pride.txt\", encoding=\"utf8\") as f:\n", + " file_contents = f.read()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "book_pride = TextBlob(file_contents)\n", + "positive_sentiment_sentences = []\n", + "negative_sentiment_sentences = []" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for sentence in book_pride.sentences:\n", + " if sentence.sentiment.polarity == 1:\n", + " positive_sentiment_sentences.append(sentence)\n", + " if sentence.sentiment.polarity == -1:\n", + " negative_sentiment_sentences.append(sentence)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n", + "for sentence in positive_sentiment_sentences:\n", + " print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n", + "for sentence in negative_sentiment_sentences:\n", + " print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/README.md b/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/README.md new file mode 100644 index 000000000..037a97521 --- /dev/null +++ b/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/README.md @@ -0,0 +1,408 @@ +# 使用酒店评论进行情感分析 - 数据处理 + +在本节中,您将使用前几课中的技术对一个大型数据集进行一些探索性数据分析。一旦您对各列的实用性有了良好的理解,您将学习: + +- 如何删除不必要的列 +- 如何基于现有列计算一些新数据 +- 如何保存处理后的数据集以用于最终挑战 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +### 简介 + +到目前为止,您已经了解了文本数据与数值数据类型的不同。如果文本是由人类书写或口述的,它可以被分析以发现模式和频率、情感和意义。本课将带您进入一个真实的数据集并面对一个真实的挑战:**[欧洲515K酒店评论数据](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)**,并包含一个[CC0: 公共领域许可](https://creativecommons.org/publicdomain/zero/1.0/)。该数据集是从Booking.com的公共来源抓取的,数据集的创建者是Jiashen Liu。 + +### 准备工作 + +您需要: + +* 能够使用Python 3运行.ipynb笔记本 +* pandas +* NLTK,[您需要在本地安装](https://www.nltk.org/install.html) +* 数据集可从Kaggle下载:[欧洲515K酒店评论数据](https://www.kaggle.com/jiashenliu/515k-hotel-reviews-data-in-europe)。解压后约230 MB。将其下载到与这些NLP课程相关的根目录`/data`文件夹中。 + +## 探索性数据分析 + +本次挑战假设您正在构建一个使用情感分析和客人评论评分的酒店推荐机器人。您将使用的数据集包括6个城市中1493家不同酒店的评论。 + +使用Python、酒店评论数据集和NLTK的情感分析,您可以发现: + +* 评论中最常用的词汇和短语是什么? +* 描述酒店的官方*标签*是否与评论评分相关(例如,某个酒店的*家庭带小孩*标签是否比*独行旅客*标签有更多负面评论,这可能表明该酒店更适合*独行旅客*?) +* NLTK的情感评分是否与酒店评论者的数值评分“吻合”? + +#### 数据集 + +让我们探索您已下载并保存到本地的数据集。使用VS Code或Excel等编辑器打开文件。 + +数据集的标题如下: + +*Hotel_Address, Additional_Number_of_Scoring, Review_Date, Average_Score, Hotel_Name, Reviewer_Nationality, Negative_Review, Review_Total_Negative_Word_Counts, Total_Number_of_Reviews, Positive_Review, Review_Total_Positive_Word_Counts, Total_Number_of_Reviews_Reviewer_Has_Given, Reviewer_Score, Tags, days_since_review, lat, lng* + +以下是按类别分组的标题,可能更容易检查: +##### 酒店相关列 + +* `Hotel_Name`, `Hotel_Address`, `lat`(纬度), `lng`(经度) + * 使用*lat*和*lng*,您可以使用Python绘制一张地图,显示酒店位置(或许可以根据正面和负面评论进行颜色编码) + * Hotel_Address对我们来说似乎没有明显的用处,我们可能会将其替换为国家名称以便更容易排序和搜索 + +**酒店元评论列** + +* `Average_Score` + * 根据数据集创建者的说法,此列是*酒店的平均评分,基于过去一年内的最新评论计算*。这似乎是一种不寻常的评分计算方式,但由于数据是抓取的,我们暂时接受这一点。 + + ✅ 根据此数据中的其他列,您能想到另一种计算平均评分的方法吗? + +* `Total_Number_of_Reviews` + * 此酒店收到的评论总数——尚不清楚(需要编写一些代码)这是否指数据集中的评论。 +* `Additional_Number_of_Scoring` + * 表示评论者给出了评分但没有写正面或负面评论 + +**评论相关列** + +- `Reviewer_Score` + - 这是一个数值,最多有1位小数,范围在2.5到10之间 + - 未解释为何最低评分为2.5 +- `Negative_Review` + - 如果评论者未写任何内容,此字段将显示“**No Negative**” + - 请注意,评论者可能会在负面评论列中写正面评论(例如,“这家酒店没有任何不好的地方”) +- `Review_Total_Negative_Word_Counts` + - 较高的负面词汇计数表明评分较低(无需检查情感性) +- `Positive_Review` + - 如果评论者未写任何内容,此字段将显示“**No Positive**” + - 请注意,评论者可能会在正面评论列中写负面评论(例如,“这家酒店完全没有任何好的地方”) +- `Review_Total_Positive_Word_Counts` + - 较高的正面词汇计数表明评分较高(无需检查情感性) +- `Review_Date`和`days_since_review` + - 可以对评论应用新鲜度或陈旧度的衡量(较旧的评论可能不如较新的评论准确,因为酒店管理可能发生了变化,或者进行了装修,或者新增了泳池等) +- `Tags` + - 这些是评论者可能选择的简短描述,用于描述他们的客人类型(例如独行或家庭)、房间类型、入住时长以及评论提交方式。 + - 不幸的是,使用这些标签存在问题,请查看下面讨论其实用性的部分 + +**评论者相关列** + +- `Total_Number_of_Reviews_Reviewer_Has_Given` + - 这可能是推荐模型中的一个因素,例如,如果您可以确定评论数量较多的评论者(有数百条评论)更倾向于给出负面而非正面评论。然而,任何特定评论的评论者并未通过唯一代码标识,因此无法链接到一组评论。有30位评论者有100条或更多评论,但很难看出这如何帮助推荐模型。 +- `Reviewer_Nationality` + - 有些人可能认为某些国籍更倾向于给出正面或负面评论,因为有某种国家倾向。构建这样的轶事观点到模型中时要小心。这些是国家(有时是种族)刻板印象,每位评论者都是根据自己的经历写评论的个体。评论可能受到许多因素的影响,例如他们之前的酒店住宿经历、旅行距离以及个人性格。认为评论评分是由国籍决定的很难证明。 + +##### 示例 + +| 平均评分 | 评论总数 | 评论者评分 | 负面评论 | 正面评论 | 标签 | +| -------- | -------- | ---------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------ | ----------------------------------------------------------------------------------------- | +| 7.8 | 1945 | 2.5 | 这家酒店目前不是酒店而是一个施工现场,我在长途旅行后休息时被早晨和全天的建筑噪音折磨。人们整天在相邻房间工作,例如使用凿岩机。我要求换房,但没有安静的房间可用。更糟糕的是,我被多收了费用。我在晚上退房,因为我需要赶早班飞机,并收到了一张适当的账单。一天后,酒店未经我同意又收取了超出预订价格的费用。这是一个可怕的地方,不要惩罚自己来这里预订。 | 没有任何好处,糟糕的地方,远离这里 | 商务旅行,情侣,标准双人房,入住2晚 | + +如您所见,这位客人在这家酒店的入住体验非常糟糕。酒店的平均评分为7.8,有1945条评论,但这位评论者给出了2.5分,并写了115个词描述他们的负面体验。如果他们在正面评论列中未写任何内容,您可能会推测没有任何正面内容,但他们写了7个词警告其他人。如果我们仅仅统计词汇数量而不是词汇的意义或情感,我们可能会对评论者的意图有一个偏差的看法。奇怪的是,他们的评分为2.5令人困惑,因为如果酒店体验如此糟糕,为什么还给了任何分数?仔细调查数据集,您会发现最低可能评分是2.5,而不是0。最高可能评分是10。 + +##### 标签 + +如上所述,乍一看,使用`Tags`来分类数据似乎是合理的。不幸的是,这些标签并未标准化,这意味着在某个酒店中,选项可能是*单人房*、*双床房*和*双人房*,但在另一个酒店中,它们可能是*豪华单人房*、*经典大床房*和*行政特大床房*。这些可能是相同的房型,但有如此多的变体,选择变成了: + +1. 尝试将所有术语更改为单一标准,这非常困难,因为不清楚每种情况的转换路径(例如,*经典单人房*映射到*单人房*,但*带庭院花园或城市景观的高级大床房*则更难映射) + +1. 我们可以采取NLP方法,测量某些术语的频率,例如*独行*、*商务旅客*或*带小孩的家庭*,并将其应用到每家酒店中,从而将其纳入推荐模型 + +标签通常(但并非总是)是一个包含5到6个逗号分隔值的单一字段,对应于*旅行类型*、*客人类型*、*房间类型*、*入住天数*以及*评论提交设备类型*。然而,由于某些评论者未填写每个字段(可能留空一个字段),值并不总是按相同顺序排列。 + +例如,考虑*群体类型*。在`Tags`列中,此字段有1025种独特可能性,不幸的是,其中只有部分提到群体(有些是房间类型等)。如果您仅过滤提到家庭的标签,结果包含许多*家庭房*类型的结果。如果您包括术语*with*,即统计*家庭带*的值,结果会更好,在515,000条结果中有超过80,000条包含短语“带小孩的家庭”或“带大孩的家庭”。 + +这意味着标签列对我们来说并非完全无用,但需要一些工作才能使其变得有用。 + +##### 酒店平均评分 + +数据集中有一些奇怪或不一致的地方我无法解释,但在此列出以便您在构建模型时注意。如果您能解决,请在讨论区告诉我们! + +数据集有以下与平均评分和评论数量相关的列: + +1. Hotel_Name +2. Additional_Number_of_Scoring +3. Average_Score +4. Total_Number_of_Reviews +5. Reviewer_Score + +数据集中评论最多的单一酒店是*Britannia International Hotel Canary Wharf*,有4789条评论(总计515,000条)。但如果我们查看此酒店的`Total_Number_of_Reviews`值,它是9086。您可能会推测有更多评分没有评论,因此我们可能需要加上`Additional_Number_of_Scoring`列的值。该值是2682,加上4789得到7471,仍然比`Total_Number_of_Reviews`少1615。 + +如果您查看`Average_Score`列,您可能会推测它是数据集中评论的平均值,但Kaggle的描述是“*酒店的平均评分,基于过去一年内的最新评论计算*”。这似乎不太有用,但我们可以根据数据集中的评论评分计算自己的平均值。以同一家酒店为例,给出的平均酒店评分是7.1,但计算得出的评分(数据集中评论者评分的平均值)是6.8。这很接近,但不是相同的值,我们只能猜测`Additional_Number_of_Scoring`评论中的评分将平均值提高到7.1。不幸的是,由于无法测试或证明这一假设,使用或信任`Average_Score`、`Additional_Number_of_Scoring`和`Total_Number_of_Reviews`变得困难,因为它们基于或引用了我们没有的数据。 + +更复杂的是,评论数量第二多的酒店的计算平均评分是8.12,而数据集中的`Average_Score`是8.1。这是否正确评分是巧合还是第一家酒店存在不一致? + +考虑到这些酒店可能是异常值,并且可能大多数值是匹配的(但由于某些原因有些不匹配),我们将在下一步编写一个简短的程序来探索数据集中的值并确定这些值的正确使用(或不使用)。 +> 🚨 注意事项 +> +> 在处理这个数据集时,你将编写代码从文本中计算某些内容,而无需自己阅读或分析文本。这正是自然语言处理(NLP)的核心:无需人工参与即可解读意义或情感。然而,有可能你会读到一些负面评论。我建议你不要这样做,因为没有必要。有些评论很荒谬,或者是与酒店无关的负面评论,比如“天气不好”,这是酒店甚至任何人都无法控制的事情。但有些评论也有阴暗的一面。有时负面评论可能带有种族歧视、性别歧视或年龄歧视。这种情况令人遗憾,但在从公共网站抓取的数据集中是可以预料的。一些评论者会留下让人觉得反感、不适或不安的评论。最好让代码来衡量情感,而不是自己阅读这些评论后感到不快。话虽如此,这类评论只占少数,但它们确实存在。 +## 练习 - 数据探索 +### 加载数据 + +通过视觉检查数据已经足够了,现在你需要编写一些代码来获取答案!本节将使用 pandas 库。你的第一个任务是确保能够加载并读取 CSV 数据。pandas 库提供了一个快速的 CSV 加载器,加载结果会存储在一个 dataframe 中,就像之前的课程一样。我们加载的 CSV 文件有超过 50 万行,但只有 17 列。pandas 提供了许多强大的方法来与 dataframe 交互,包括对每一行执行操作的能力。 + +从现在开始,这节课将包含代码片段、代码解释以及对结果的讨论。请使用提供的 _notebook.ipynb_ 文件来编写代码。 + +让我们从加载你将使用的数据文件开始: + +```python +# Load the hotel reviews from CSV +import pandas as pd +import time +# importing time so the start and end time can be used to calculate file loading time +print("Loading data file now, this could take a while depending on file size") +start = time.time() +# df is 'DataFrame' - make sure you downloaded the file to the data folder +df = pd.read_csv('../../data/Hotel_Reviews.csv') +end = time.time() +print("Loading took " + str(round(end - start, 2)) + " seconds") +``` + +现在数据已经加载,我们可以对其进行一些操作。在接下来的部分中,请将这段代码保留在程序的顶部。 + +## 数据探索 + +在这个例子中,数据已经是*干净的*,这意味着它已经可以直接使用,并且没有其他语言的字符,这些字符可能会干扰只期望英文字符的算法。 + +✅ 你可能需要处理一些需要初步格式化的数据,然后再应用 NLP 技术,但这次不需要。如果需要处理非英文字符,你会怎么做? + +花点时间确保数据加载后,你可以通过代码来探索它。很容易想要直接关注 `Negative_Review` 和 `Positive_Review` 列。它们包含了自然文本,供你的 NLP 算法处理。但等等!在跳入 NLP 和情感分析之前,你应该按照下面的代码检查数据集中给出的值是否与通过 pandas 计算的值一致。 + +## Dataframe 操作 + +本节的第一个任务是通过编写代码检查以下断言是否正确(无需更改 dataframe)。 + +> 就像许多编程任务一样,完成这些任务的方法有很多,但一个好的建议是尽可能简单、易懂,尤其是当你以后需要回顾这段代码时。对于 dataframe,pandas 提供了一个全面的 API,通常可以高效地完成你想要的操作。 + +将以下问题视为编码任务,尝试在不查看答案的情况下完成它们。 + +1. 打印出刚刚加载的 dataframe 的*形状*(即行数和列数)。 +2. 计算评论者国籍的频率统计: + 1. `Reviewer_Nationality` 列中有多少个不同的值?它们分别是什么? + 2. 数据集中最常见的评论者国籍是什么?(打印国家和评论数量) + 3. 接下来最常见的 10 个国籍及其频率统计是什么? +3. 对于评论最多的前 10 个国籍,每个国籍评论最多的酒店是什么? +4. 数据集中每个酒店的评论数量是多少?(按酒店统计频率) +5. 数据集中每个酒店都有一个 `Average_Score` 列,但你也可以计算一个平均分(即根据数据集中每个酒店的所有评论分数计算平均值)。为 dataframe 添加一个新列,列名为 `Calc_Average_Score`,存储计算的平均分。 +6. 是否有酒店的 `Average_Score` 和 `Calc_Average_Score`(四舍五入到小数点后一位)相同? + 1. 尝试编写一个 Python 函数,该函数接受一个 Series(行)作为参数,比较这两个值,并在值不相等时打印消息。然后使用 `.apply()` 方法对每一行应用该函数。 +7. 计算并打印 `Negative_Review` 列中值为 "No Negative" 的行数。 +8. 计算并打印 `Positive_Review` 列中值为 "No Positive" 的行数。 +9. 计算并打印 `Positive_Review` 列中值为 "No Positive" 且 `Negative_Review` 列中值为 "No Negative" 的行数。 + +### 代码答案 + +1. 打印出刚刚加载的 dataframe 的*形状*(即行数和列数) + + ```python + print("The shape of the data (rows, cols) is " + str(df.shape)) + > The shape of the data (rows, cols) is (515738, 17) + ``` + +2. 计算评论者国籍的频率统计: + + 1. `Reviewer_Nationality` 列中有多少个不同的值?它们分别是什么? + 2. 数据集中最常见的评论者国籍是什么?(打印国家和评论数量) + + ```python + # value_counts() creates a Series object that has index and values in this case, the country and the frequency they occur in reviewer nationality + nationality_freq = df["Reviewer_Nationality"].value_counts() + print("There are " + str(nationality_freq.size) + " different nationalities") + # print first and last rows of the Series. Change to nationality_freq.to_string() to print all of the data + print(nationality_freq) + + There are 227 different nationalities + United Kingdom 245246 + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + ... + Comoros 1 + Palau 1 + Northern Mariana Islands 1 + Cape Verde 1 + Guinea 1 + Name: Reviewer_Nationality, Length: 227, dtype: int64 + ``` + + 3. 接下来最常见的 10 个国籍及其频率统计是什么? + + ```python + print("The highest frequency reviewer nationality is " + str(nationality_freq.index[0]).strip() + " with " + str(nationality_freq[0]) + " reviews.") + # Notice there is a leading space on the values, strip() removes that for printing + # What is the top 10 most common nationalities and their frequencies? + print("The next 10 highest frequency reviewer nationalities are:") + print(nationality_freq[1:11].to_string()) + + The highest frequency reviewer nationality is United Kingdom with 245246 reviews. + The next 10 highest frequency reviewer nationalities are: + United States of America 35437 + Australia 21686 + Ireland 14827 + United Arab Emirates 10235 + Saudi Arabia 8951 + Netherlands 8772 + Switzerland 8678 + Germany 7941 + Canada 7894 + France 7296 + ``` + +3. 对于评论最多的前 10 个国籍,每个国籍评论最多的酒店是什么? + + ```python + # What was the most frequently reviewed hotel for the top 10 nationalities + # Normally with pandas you will avoid an explicit loop, but wanted to show creating a new dataframe using criteria (don't do this with large amounts of data because it could be very slow) + for nat in nationality_freq[:10].index: + # First, extract all the rows that match the criteria into a new dataframe + nat_df = df[df["Reviewer_Nationality"] == nat] + # Now get the hotel freq + freq = nat_df["Hotel_Name"].value_counts() + print("The most reviewed hotel for " + str(nat).strip() + " was " + str(freq.index[0]) + " with " + str(freq[0]) + " reviews.") + + The most reviewed hotel for United Kingdom was Britannia International Hotel Canary Wharf with 3833 reviews. + The most reviewed hotel for United States of America was Hotel Esther a with 423 reviews. + The most reviewed hotel for Australia was Park Plaza Westminster Bridge London with 167 reviews. + The most reviewed hotel for Ireland was Copthorne Tara Hotel London Kensington with 239 reviews. + The most reviewed hotel for United Arab Emirates was Millennium Hotel London Knightsbridge with 129 reviews. + The most reviewed hotel for Saudi Arabia was The Cumberland A Guoman Hotel with 142 reviews. + The most reviewed hotel for Netherlands was Jaz Amsterdam with 97 reviews. + The most reviewed hotel for Switzerland was Hotel Da Vinci with 97 reviews. + The most reviewed hotel for Germany was Hotel Da Vinci with 86 reviews. + The most reviewed hotel for Canada was St James Court A Taj Hotel London with 61 reviews. + ``` + +4. 数据集中每个酒店的评论数量是多少?(按酒店统计频率) + + ```python + # First create a new dataframe based on the old one, removing the uneeded columns + hotel_freq_df = df.drop(["Hotel_Address", "Additional_Number_of_Scoring", "Review_Date", "Average_Score", "Reviewer_Nationality", "Negative_Review", "Review_Total_Negative_Word_Counts", "Positive_Review", "Review_Total_Positive_Word_Counts", "Total_Number_of_Reviews_Reviewer_Has_Given", "Reviewer_Score", "Tags", "days_since_review", "lat", "lng"], axis = 1) + + # Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found + hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count') + + # Get rid of all the duplicated rows + hotel_freq_df = hotel_freq_df.drop_duplicates(subset = ["Hotel_Name"]) + display(hotel_freq_df) + ``` + | Hotel_Name | Total_Number_of_Reviews | Total_Reviews_Found | + | :----------------------------------------: | :---------------------: | :-----------------: | + | Britannia International Hotel Canary Wharf | 9086 | 4789 | + | Park Plaza Westminster Bridge London | 12158 | 4169 | + | Copthorne Tara Hotel London Kensington | 7105 | 3578 | + | ... | ... | ... | + | Mercure Paris Porte d Orleans | 110 | 10 | + | Hotel Wagner | 135 | 10 | + | Hotel Gallitzinberg | 173 | 8 | + + 你可能会注意到,*数据集中统计的*结果与 `Total_Number_of_Reviews` 的值不匹配。目前尚不清楚数据集中该值是否表示酒店的总评论数,但并未全部被抓取,或者是其他计算方式。由于这种不确定性,`Total_Number_of_Reviews` 并未用于模型中。 + +5. 数据集中每个酒店都有一个 `Average_Score` 列,但你也可以计算一个平均分(即根据数据集中每个酒店的所有评论分数计算平均值)。为 dataframe 添加一个新列,列名为 `Calc_Average_Score`,存储计算的平均分。打印出 `Hotel_Name`、`Average_Score` 和 `Calc_Average_Score` 列。 + + ```python + # define a function that takes a row and performs some calculation with it + def get_difference_review_avg(row): + return row["Average_Score"] - row["Calc_Average_Score"] + + # 'mean' is mathematical word for 'average' + df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + + # Add a new column with the difference between the two average scores + df["Average_Score_Difference"] = df.apply(get_difference_review_avg, axis = 1) + + # Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel) + review_scores_df = df.drop_duplicates(subset = ["Hotel_Name"]) + + # Sort the dataframe to find the lowest and highest average score difference + review_scores_df = review_scores_df.sort_values(by=["Average_Score_Difference"]) + + display(review_scores_df[["Average_Score_Difference", "Average_Score", "Calc_Average_Score", "Hotel_Name"]]) + ``` + + 你可能还会疑惑 `Average_Score` 的值为何有时与计算的平均分不同。由于我们无法知道为什么有些值匹配,而其他值存在差异,在这种情况下,最安全的做法是使用评论分数自行计算平均分。不过,差异通常非常小,以下是数据集中平均分与计算平均分差异最大的酒店: + + | Average_Score_Difference | Average_Score | Calc_Average_Score | Hotel_Name | + | :----------------------: | :-----------: | :----------------: | ------------------------------------------: | + | -0.8 | 7.7 | 8.5 | Best Western Hotel Astoria | + | -0.7 | 8.8 | 9.5 | Hotel Stendhal Place Vend me Paris MGallery | + | -0.7 | 7.5 | 8.2 | Mercure Paris Porte d Orleans | + | -0.7 | 7.9 | 8.6 | Renaissance Paris Vendome Hotel | + | -0.5 | 7.0 | 7.5 | Hotel Royal Elys es | + | ... | ... | ... | ... | + | 0.7 | 7.5 | 6.8 | Mercure Paris Op ra Faubourg Montmartre | + | 0.8 | 7.1 | 6.3 | Holiday Inn Paris Montparnasse Pasteur | + | 0.9 | 6.8 | 5.9 | Villa Eugenie | + | 0.9 | 8.6 | 7.7 | MARQUIS Faubourg St Honor Relais Ch teaux | + | 1.3 | 7.2 | 5.9 | Kube Hotel Ice Bar | + + 只有 1 家酒店的分数差异大于 1,这意味着我们可以忽略这些差异,使用计算的平均分。 + +6. 计算并打印 `Negative_Review` 列中值为 "No Negative" 的行数。 + +7. 计算并打印 `Positive_Review` 列中值为 "No Positive" 的行数。 + +8. 计算并打印 `Positive_Review` 列中值为 "No Positive" 且 `Negative_Review` 列中值为 "No Negative" 的行数。 + + ```python + # with lambdas: + start = time.time() + no_negative_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" else False , axis=1) + print("Number of No Negative reviews: " + str(len(no_negative_reviews[no_negative_reviews == True].index))) + + no_positive_reviews = df.apply(lambda x: True if x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of No Positive reviews: " + str(len(no_positive_reviews[no_positive_reviews == True].index))) + + both_no_reviews = df.apply(lambda x: True if x['Negative_Review'] == "No Negative" and x['Positive_Review'] == "No Positive" else False , axis=1) + print("Number of both No Negative and No Positive reviews: " + str(len(both_no_reviews[both_no_reviews == True].index))) + end = time.time() + print("Lambdas took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Lambdas took 9.64 seconds + ``` + +## 另一种方法 + +另一种方法是不用 Lambdas,而是使用 sum 来统计行数: + + ```python + # without lambdas (using a mixture of notations to show you can use both) + start = time.time() + no_negative_reviews = sum(df.Negative_Review == "No Negative") + print("Number of No Negative reviews: " + str(no_negative_reviews)) + + no_positive_reviews = sum(df["Positive_Review"] == "No Positive") + print("Number of No Positive reviews: " + str(no_positive_reviews)) + + both_no_reviews = sum((df.Negative_Review == "No Negative") & (df.Positive_Review == "No Positive")) + print("Number of both No Negative and No Positive reviews: " + str(both_no_reviews)) + + end = time.time() + print("Sum took " + str(round(end - start, 2)) + " seconds") + + Number of No Negative reviews: 127890 + Number of No Positive reviews: 35946 + Number of both No Negative and No Positive reviews: 127 + Sum took 0.19 seconds + ``` + + 你可能注意到,有 127 行的 `Negative_Review` 和 `Positive_Review` 列分别为 "No Negative" 和 "No Positive"。这意味着评论者给酒店打了一个数字分数,但没有写任何正面或负面的评论。幸运的是,这只是很少的一部分数据(127 行占 515738 行的 0.02%),所以它可能不会对我们的模型或结果产生显著影响。不过,你可能没有预料到一个评论数据集中会有没有评论内容的行,因此值得探索数据以发现类似的情况。 + +现在你已经探索了数据集,在下一节课中,你将过滤数据并添加一些情感分析。 + +--- +## 🚀挑战 + +正如我们在之前的课程中看到的,这节课展示了理解数据及其特性在执行操作之前是多么重要。特别是基于文本的数据需要仔细检查。深入挖掘各种以文本为主的数据集,看看是否能发现可能引入偏差或导致情感倾斜的地方。 + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +参加 [NLP 学习路径](https://docs.microsoft.com/learn/paths/explore-natural-language-processing/?WT.mc_id=academic-77952-leestott),了解构建语音和文本模型时可以尝试的工具。 + +## 作业 + +[NLTK](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/assignment.md b/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/assignment.md new file mode 100644 index 000000000..2490acf81 --- /dev/null +++ b/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/assignment.md @@ -0,0 +1,10 @@ +# NLTK + +## 使用说明 + +NLTK 是一个广受欢迎的库,用于计算语言学和自然语言处理。请利用这个机会阅读 '[NLTK 书籍](https://www.nltk.org/book/)' 并尝试其中的练习。在这个不计分的作业中,您将更深入地了解这个库。 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/notebook.ipynb b/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md b/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md new file mode 100644 index 000000000..c0d51b129 --- /dev/null +++ b/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/solution/R/README.md b/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/solution/R/README.md new file mode 100644 index 000000000..e939b3c66 --- /dev/null +++ b/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/solution/R/README.md @@ -0,0 +1,6 @@ +这是一个临时占位符 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb b/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb new file mode 100644 index 000000000..113161615 --- /dev/null +++ b/translations/zh-CN/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb @@ -0,0 +1,174 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 4, + "coopTranslator": { + "original_hash": "2d05e7db439376aa824f4b387f8324ca", + "translation_date": "2025-09-03T20:57:48+00:00", + "source_file": "6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# EDA\n", + "import pandas as pd\n", + "import time" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "def get_difference_review_avg(row):\n", + " return row[\"Average_Score\"] - row[\"Calc_Average_Score\"]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "print(\"Loading data file now, this could take a while depending on file size\")\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n", + "end = time.time()\n", + "print(\"Loading took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What shape is the data (rows, columns)?\n", + "print(\"The shape of the data (rows, cols) is \" + str(df.shape))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# value_counts() creates a Series object that has index and values\n", + "# in this case, the country and the frequency they occur in reviewer nationality\n", + "nationality_freq = df[\"Reviewer_Nationality\"].value_counts()\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What reviewer nationality is the most common in the dataset?\n", + "print(\"The highest frequency reviewer nationality is \" + str(nationality_freq.index[0]).strip() + \" with \" + str(nationality_freq[0]) + \" reviews.\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What is the top 10 most common nationalities and their frequencies?\n", + "print(\"The top 10 highest frequency reviewer nationalities are:\")\n", + "print(nationality_freq[0:10].to_string())\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many unique nationalities are there?\n", + "print(\"There are \" + str(nationality_freq.index.size) + \" unique nationalities in the dataset\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# What was the most frequently reviewed hotel for the top 10 nationalities - print the hotel and number of reviews\n", + "for nat in nationality_freq[:10].index:\n", + " # First, extract all the rows that match the criteria into a new dataframe\n", + " nat_df = df[df[\"Reviewer_Nationality\"] == nat] \n", + " # Now get the hotel freq\n", + " freq = nat_df[\"Hotel_Name\"].value_counts()\n", + " print(\"The most reviewed hotel for \" + str(nat).strip() + \" was \" + str(freq.index[0]) + \" with \" + str(freq[0]) + \" reviews.\") \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# How many reviews are there per hotel (frequency count of hotel) and do the results match the value in `Total_Number_of_Reviews`?\n", + "# First create a new dataframe based on the old one, removing the uneeded columns\n", + "hotel_freq_df = df.drop([\"Hotel_Address\", \"Additional_Number_of_Scoring\", \"Review_Date\", \"Average_Score\", \"Reviewer_Nationality\", \"Negative_Review\", \"Review_Total_Negative_Word_Counts\", \"Positive_Review\", \"Review_Total_Positive_Word_Counts\", \"Total_Number_of_Reviews_Reviewer_Has_Given\", \"Reviewer_Score\", \"Tags\", \"days_since_review\", \"lat\", \"lng\"], axis = 1)\n", + "# Group the rows by Hotel_Name, count them and put the result in a new column Total_Reviews_Found\n", + "hotel_freq_df['Total_Reviews_Found'] = hotel_freq_df.groupby('Hotel_Name').transform('count')\n", + "# Get rid of all the duplicated rows\n", + "hotel_freq_df = hotel_freq_df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "print()\n", + "print(hotel_freq_df.to_string())\n", + "print(str(hotel_freq_df.shape))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# While there is an `Average_Score` for each hotel according to the dataset, \n", + "# you can also calculate an average score (getting the average of all reviewer scores in the dataset for each hotel)\n", + "# Add a new column to your dataframe with the column header `Calc_Average_Score` that contains that calculated average. \n", + "df['Calc_Average_Score'] = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n", + "# Add a new column with the difference between the two average scores\n", + "df[\"Average_Score_Difference\"] = df.apply(get_difference_review_avg, axis = 1)\n", + "# Create a df without all the duplicates of Hotel_Name (so only 1 row per hotel)\n", + "review_scores_df = df.drop_duplicates(subset = [\"Hotel_Name\"])\n", + "# Sort the dataframe to find the lowest and highest average score difference\n", + "review_scores_df = review_scores_df.sort_values(by=[\"Average_Score_Difference\"])\n", + "print(review_scores_df[[\"Average_Score_Difference\", \"Average_Score\", \"Calc_Average_Score\", \"Hotel_Name\"]])\n", + "# Do any hotels have the same (rounded to 1 decimal place) `Average_Score` and `Calc_Average_Score`?\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/README.md b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/README.md new file mode 100644 index 000000000..c212881e0 --- /dev/null +++ b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/README.md @@ -0,0 +1,375 @@ +# 使用酒店评论进行情感分析 + +现在您已经详细探索了数据集,是时候筛选列并对数据集应用NLP技术,以便获得关于酒店的新见解。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +### 筛选与情感分析操作 + +正如您可能已经注意到的,数据集存在一些问题。一些列充满了无用的信息,另一些列看起来不正确。即使它们是正确的,也不清楚它们是如何计算的,您无法通过自己的计算独立验证答案。 + +## 练习:进一步处理数据 + +对数据进行更多清理。添加一些后续会用到的列,修改其他列中的值,并完全删除某些列。 + +1. 初步列处理 + + 1. 删除 `lat` 和 `lng` + + 2. 将 `Hotel_Address` 的值替换为以下值(如果地址中包含城市和国家的名称,则将其更改为仅包含城市和国家)。 + + 数据集中仅包含以下城市和国家: + + 阿姆斯特丹,荷兰 + 巴塞罗那,西班牙 + 伦敦,英国 + 米兰,意大利 + 巴黎,法国 + 维也纳,奥地利 + + ```python + def replace_address(row): + if "Netherlands" in row["Hotel_Address"]: + return "Amsterdam, Netherlands" + elif "Barcelona" in row["Hotel_Address"]: + return "Barcelona, Spain" + elif "United Kingdom" in row["Hotel_Address"]: + return "London, United Kingdom" + elif "Milan" in row["Hotel_Address"]: + return "Milan, Italy" + elif "France" in row["Hotel_Address"]: + return "Paris, France" + elif "Vienna" in row["Hotel_Address"]: + return "Vienna, Austria" + + # Replace all the addresses with a shortened, more useful form + df["Hotel_Address"] = df.apply(replace_address, axis = 1) + # The sum of the value_counts() should add up to the total number of reviews + print(df["Hotel_Address"].value_counts()) + ``` + + 现在您可以查询国家级别的数据: + + ```python + display(df.groupby("Hotel_Address").agg({"Hotel_Name": "nunique"})) + ``` + + | Hotel_Address | Hotel_Name | + | :--------------------- | :--------: | + | 阿姆斯特丹,荷兰 | 105 | + | 巴塞罗那,西班牙 | 211 | + | 伦敦,英国 | 400 | + | 米兰,意大利 | 162 | + | 巴黎,法国 | 458 | + | 维也纳,奥地利 | 158 | + +2. 处理酒店元评论列 + + 1. 删除 `Additional_Number_of_Scoring` + + 2. 将 `Total_Number_of_Reviews` 替换为数据集中该酒店实际的评论总数 + + 3. 用我们自己计算的分数替换 `Average_Score` + + ```python + # Drop `Additional_Number_of_Scoring` + df.drop(["Additional_Number_of_Scoring"], axis = 1, inplace=True) + # Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values + df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count') + df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1) + ``` + +3. 处理评论列 + + 1. 删除 `Review_Total_Negative_Word_Counts`、`Review_Total_Positive_Word_Counts`、`Review_Date` 和 `days_since_review` + + 2. 保留 `Reviewer_Score`、`Negative_Review` 和 `Positive_Review` 不变 + + 3. 暂时保留 `Tags` + + - 我们将在下一部分对标签进行一些额外的筛选操作,然后再删除标签 + +4. 处理评论者列 + + 1. 删除 `Total_Number_of_Reviews_Reviewer_Has_Given` + + 2. 保留 `Reviewer_Nationality` + +### 标签列 + +`Tag` 列是一个问题,因为它是一个以文本形式存储的列表。不幸的是,该列中的子部分顺序和数量并不总是相同的。由于数据集有515,000行和1427家酒店,每个评论者可以选择的选项略有不同,因此人类很难识别出需要关注的正确短语。这正是NLP的优势所在。您可以扫描文本,找到最常见的短语并统计它们的数量。 + +不幸的是,我们对单个单词不感兴趣,而是对多词短语(例如 *商务旅行*)感兴趣。在如此庞大的数据(6762646个单词)上运行多词频率分布算法可能需要极长的时间,但在不了解数据的情况下,这似乎是必要的开销。这时,探索性数据分析就派上用场了,因为您已经看到了标签的样本,例如 `[' 商务旅行 ', ' 独自旅行者 ', ' 单人房 ', ' 住了5晚 ', ' 从移动设备提交 ']`,您可以开始思考是否有可能大幅减少需要处理的数据量。幸运的是,这是可能的——但首先您需要遵循一些步骤来确定感兴趣的标签。 + +### 筛选标签 + +记住,数据集的目标是添加情感和列,以帮助您选择最佳酒店(无论是为自己还是为客户创建一个酒店推荐机器人)。您需要问自己,这些标签在最终数据集中是否有用。以下是一个解释(如果您出于其他原因需要数据集,不同的标签可能会被保留或删除): + +1. 旅行类型是相关的,应该保留 +2. 客人群体类型是重要的,应该保留 +3. 客人入住的房间、套房或工作室类型是无关的(所有酒店基本上都有相同的房间) +4. 提交评论的设备是无关的 +5. 评论者入住的晚数*可能*相关,如果您认为更长的入住时间意味着他们更喜欢酒店,但这有点牵强,可能无关 + +总之,**保留两类标签,删除其他标签**。 + +首先,您不想在标签格式更好之前统计它们,因此需要移除方括号和引号。您可以通过多种方式完成此操作,但您需要最快的方法,因为处理大量数据可能需要很长时间。幸运的是,pandas 提供了一种简单的方法来完成这些步骤。 + +```Python +# Remove opening and closing brackets +df.Tags = df.Tags.str.strip("[']") +# remove all quotes too +df.Tags = df.Tags.str.replace(" ', '", ",", regex = False) +``` + +每个标签变成类似于:`商务旅行, 独自旅行者, 单人房, 住了5晚, 从移动设备提交`。 + +接下来我们发现一个问题。一些评论(或行)有5列,一些有3列,一些有6列。这是数据集创建方式的结果,很难修复。您希望统计每个短语的频率,但它们在每条评论中的顺序不同,因此统计可能会出错,某些酒店可能没有被分配到它应得的标签。 + +相反,您可以利用不同的顺序,因为每个标签是多词的,但也用逗号分隔!最简单的方法是创建6个临时列,将每个标签插入到对应顺序的列中。然后,您可以将这6列合并为一个大列,并对结果列运行 `value_counts()` 方法。打印出来后,您会看到有2428个唯一标签。以下是一个小样本: + +| 标签 | 计数 | +| --------------------------------- | ------ | +| 休闲旅行 | 417778 | +| 从移动设备提交 | 307640 | +| 夫妻 | 252294 | +| 住了1晚 | 193645 | +| 住了2晚 | 133937 | +| 独自旅行者 | 108545 | +| 住了3晚 | 95821 | +| 商务旅行 | 82939 | +| 团体 | 65392 | +| 带小孩的家庭 | 61015 | +| 住了4晚 | 47817 | +| 双人房 | 35207 | +| 标准双人房 | 32248 | +| 高级双人房 | 31393 | +| 带大孩的家庭 | 26349 | +| 豪华双人房 | 24823 | +| 双人或双床房 | 22393 | +| 住了5晚 | 20845 | +| 标准双人或双床房 | 17483 | +| 经典双人房 | 16989 | +| 高级双人或双床房 | 13570 | +| 2间房 | 12393 | + +一些常见标签如 `从移动设备提交` 对我们没有用,因此在统计短语出现次数之前删除它们可能是明智的,但由于这是一个非常快速的操作,您可以将它们保留并忽略它们。 + +### 删除入住时长标签 + +删除这些标签是第一步,这稍微减少了需要考虑的标签总数。注意,您并没有从数据集中删除它们,只是选择不将它们作为评论数据集中需要统计/保留的值。 + +| 入住时长 | 计数 | +| -------------- | ------ | +| 住了1晚 | 193645 | +| 住了2晚 | 133937 | +| 住了3晚 | 95821 | +| 住了4晚 | 47817 | +| 住了5晚 | 20845 | +| 住了6晚 | 9776 | +| 住了7晚 | 7399 | +| 住了8晚 | 2502 | +| 住了9晚 | 1293 | +| ... | ... | + +房间、套房、工作室、公寓等类型种类繁多。它们的意义大致相同,对您来说并不重要,因此从考虑中删除它们。 + +| 房间类型 | 计数 | +| ---------------------------- | ----- | +| 双人房 | 35207 | +| 标准双人房 | 32248 | +| 高级双人房 | 31393 | +| 豪华双人房 | 24823 | +| 双人或双床房 | 22393 | +| 标准双人或双床房 | 17483 | +| 经典双人房 | 16989 | +| 高级双人或双床房 | 13570 | + +最后,令人欣喜的是(因为几乎不需要处理),您将剩下以下**有用**的标签: + +| 标签 | 计数 | +| --------------------------------------------- | ------ | +| 休闲旅行 | 417778 | +| 夫妻 | 252294 | +| 独自旅行者 | 108545 | +| 商务旅行 | 82939 | +| 团体(与朋友旅行者合并) | 67535 | +| 带小孩的家庭 | 61015 | +| 带大孩的家庭 | 26349 | +| 带宠物 | 1405 | + +您可以认为 `与朋友旅行者` 与 `团体` 基本相同,将两者合并是合理的,如上所示。识别正确标签的代码在 [Tags notebook](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) 中。 + +最后一步是为每个这些标签创建新列。然后,对于每条评论行,如果 `Tag` 列与新列之一匹配,则添加1,否则添加0。最终结果将是一个统计数据,显示有多少评论者选择了这家酒店(总体上)用于商务、休闲或带宠物入住,这在推荐酒店时是有用的信息。 + +```python +# Process the Tags into new columns +# The file Hotel_Reviews_Tags.py, identifies the most important tags +# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, +# Family with young children, Family with older children, With a pet +df["Leisure_trip"] = df.Tags.apply(lambda tag: 1 if "Leisure trip" in tag else 0) +df["Couple"] = df.Tags.apply(lambda tag: 1 if "Couple" in tag else 0) +df["Solo_traveler"] = df.Tags.apply(lambda tag: 1 if "Solo traveler" in tag else 0) +df["Business_trip"] = df.Tags.apply(lambda tag: 1 if "Business trip" in tag else 0) +df["Group"] = df.Tags.apply(lambda tag: 1 if "Group" in tag or "Travelers with friends" in tag else 0) +df["Family_with_young_children"] = df.Tags.apply(lambda tag: 1 if "Family with young children" in tag else 0) +df["Family_with_older_children"] = df.Tags.apply(lambda tag: 1 if "Family with older children" in tag else 0) +df["With_a_pet"] = df.Tags.apply(lambda tag: 1 if "With a pet" in tag else 0) + +``` + +### 保存文件 + +最后,将当前数据集保存为一个新名称。 + +```python +df.drop(["Review_Total_Negative_Word_Counts", "Review_Total_Positive_Word_Counts", "days_since_review", "Total_Number_of_Reviews_Reviewer_Has_Given"], axis = 1, inplace=True) + +# Saving new data file with calculated columns +print("Saving results to Hotel_Reviews_Filtered.csv") +df.to_csv(r'../data/Hotel_Reviews_Filtered.csv', index = False) +``` + +## 情感分析操作 + +在最后一部分中,您将对评论列应用情感分析,并将结果保存到数据集中。 + +## 练习:加载并保存筛选后的数据 + +注意,现在您加载的是上一部分保存的筛选后的数据集,而**不是**原始数据集。 + +```python +import time +import pandas as pd +import nltk as nltk +from nltk.corpus import stopwords +from nltk.sentiment.vader import SentimentIntensityAnalyzer +nltk.download('vader_lexicon') + +# Load the filtered hotel reviews from CSV +df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv') + +# You code will be added here + + +# Finally remember to save the hotel reviews with new NLP data added +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r'../data/Hotel_Reviews_NLP.csv', index = False) +``` + +### 删除停用词 + +如果您对负面和正面评论列运行情感分析,可能需要很长时间。在一台性能强劲的测试笔记本电脑上测试时,根据使用的情感分析库不同,耗时为12到14分钟。这是一个(相对)较长的时间,因此值得研究是否可以加快速度。 + +删除停用词(即不会改变句子情感的常见英语单词)是第一步。通过删除它们,情感分析应该会运行得更快,但不会降低准确性(因为停用词不会影响情感,但会减慢分析速度)。 + +最长的负面评论有395个单词,但删除停用词后仅剩195个单词。 + +删除停用词也是一个快速操作,在测试设备上,从2个评论列中删除515,000行的停用词耗时3.3秒。根据您的设备CPU速度、内存、是否有SSD以及其他一些因素,这个时间可能略长或略短。操作相对较短,这意味着如果它能提高情感分析速度,那么值得一试。 + +```python +from nltk.corpus import stopwords + +# Load the hotel reviews from CSV +df = pd.read_csv("../../data/Hotel_Reviews_Filtered.csv") + +# Remove stop words - can be slow for a lot of text! +# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches +# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends +start = time.time() +cache = set(stopwords.words("english")) +def remove_stopwords(review): + text = " ".join([word for word in review.split() if word not in cache]) + return text + +# Remove the stop words from both columns +df.Negative_Review = df.Negative_Review.apply(remove_stopwords) +df.Positive_Review = df.Positive_Review.apply(remove_stopwords) +``` + +### 执行情感分析 + +现在,您应该计算负面和正面评论列的情感分析,并将结果存储在2个新列中。情感分析的测试是将其与同一评论的评论者评分进行比较。例如,如果情感分析认为负面评论的情感为1(极其正面的情感),正面评论的情感也为1,但评论者给酒店的评分是最低分,那么要么评论文本与评分不匹配,要么情感分析器无法正确识别情感。您应该预期某些情感评分完全错误,这通常是可以解释的,例如评论可能极具讽刺意味,“当然,我*喜欢*住在没有暖气的房间里”,情感分析器可能认为这是正面情感,但人类阅读时会知道这是讽刺。 +NLTK 提供了不同的情感分析器供学习使用,您可以替换它们并查看情感分析的准确性是否有所不同。这里使用的是 VADER 情感分析。 + +> Hutto, C.J. & Gilbert, E.E. (2014). VADER: 一种简洁的基于规则的社交媒体文本情感分析模型。第八届国际博客与社交媒体会议 (ICWSM-14)。美国密歇根州安娜堡,2014年6月。 + +```python +from nltk.sentiment.vader import SentimentIntensityAnalyzer + +# Create the vader sentiment analyser (there are others in NLTK you can try too) +vader_sentiment = SentimentIntensityAnalyzer() +# Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014. + +# There are 3 possibilities of input for a review: +# It could be "No Negative", in which case, return 0 +# It could be "No Positive", in which case, return 0 +# It could be a review, in which case calculate the sentiment +def calc_sentiment(review): + if review == "No Negative" or review == "No Positive": + return 0 + return vader_sentiment.polarity_scores(review)["compound"] +``` + +在程序中,当您准备计算情感时,可以将其应用到每条评论,如下所示: + +```python +# Add a negative sentiment and positive sentiment column +print("Calculating sentiment columns for both positive and negative reviews") +start = time.time() +df["Negative_Sentiment"] = df.Negative_Review.apply(calc_sentiment) +df["Positive_Sentiment"] = df.Positive_Review.apply(calc_sentiment) +end = time.time() +print("Calculating sentiment took " + str(round(end - start, 2)) + " seconds") +``` + +在我的电脑上大约需要 120 秒,但每台电脑的运行时间会有所不同。如果您想打印结果并查看情感是否与评论匹配: + +```python +df = df.sort_values(by=["Negative_Sentiment"], ascending=True) +print(df[["Negative_Review", "Negative_Sentiment"]]) +df = df.sort_values(by=["Positive_Sentiment"], ascending=True) +print(df[["Positive_Review", "Positive_Sentiment"]]) +``` + +在挑战中使用文件之前,最后要做的事情就是保存它!您还应该考虑重新排列所有新列,使其更易于操作(对人类来说,这只是一个外观上的调整)。 + +```python +# Reorder the columns (This is cosmetic, but to make it easier to explore the data later) +df = df.reindex(["Hotel_Name", "Hotel_Address", "Total_Number_of_Reviews", "Average_Score", "Reviewer_Score", "Negative_Sentiment", "Positive_Sentiment", "Reviewer_Nationality", "Leisure_trip", "Couple", "Solo_traveler", "Business_trip", "Group", "Family_with_young_children", "Family_with_older_children", "With_a_pet", "Negative_Review", "Positive_Review"], axis=1) + +print("Saving results to Hotel_Reviews_NLP.csv") +df.to_csv(r"../data/Hotel_Reviews_NLP.csv", index = False) +``` + +您应该运行 [分析笔记本](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb) 的完整代码(在运行 [过滤笔记本](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) 生成 Hotel_Reviews_Filtered.csv 文件之后)。 + +回顾一下,步骤如下: + +1. 原始数据集文件 **Hotel_Reviews.csv** 在上一课中通过 [探索笔记本](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/4-Hotel-Reviews-1/solution/notebook.ipynb) 进行了探索。 +2. Hotel_Reviews.csv 通过 [过滤笔记本](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb) 过滤,生成 **Hotel_Reviews_Filtered.csv**。 +3. Hotel_Reviews_Filtered.csv 通过 [情感分析笔记本](https://github.com/microsoft/ML-For-Beginners/blob/main/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb) 处理,生成 **Hotel_Reviews_NLP.csv**。 +4. 在下面的 NLP 挑战中使用 Hotel_Reviews_NLP.csv。 + +### 结论 + +在开始时,您有一个包含列和数据的数据集,但并非所有数据都可以验证或使用。您已经探索了数据,过滤掉了不需要的部分,将标签转换为有用的内容,计算了自己的平均值,添加了一些情感列,并希望学到了一些关于处理自然文本的有趣知识。 + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 挑战 + +现在您已经对数据集进行了情感分析,试着使用您在本课程中学到的策略(例如聚类)来确定情感的模式。 + +## 复习与自学 + +学习 [这个模块](https://docs.microsoft.com/en-us/learn/modules/classify-user-feedback-with-the-text-analytics-api/?WT.mc_id=academic-77952-leestott),了解更多内容并使用不同的工具探索文本中的情感。 + +## 作业 + +[尝试一个不同的数据集](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/assignment.md b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/assignment.md new file mode 100644 index 000000000..c6ef325c0 --- /dev/null +++ b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/assignment.md @@ -0,0 +1,16 @@ +# 尝试不同的数据集 + +## 说明 + +现在您已经了解了如何使用 NLTK 为文本分配情感,尝试使用一个不同的数据集。您可能需要对数据进行一些处理,因此请创建一个笔记本并记录您的思考过程。您发现了什么? + +## 评分标准 + +| 标准 | 卓越 | 合格 | 需要改进 | +| -------- | ----------------------------------------------------------------------------------------------------------- | -------------------------------------- | ---------------------- | +| | 提供了完整的笔记本和数据集,并通过详细的单元格记录了如何分配情感的过程 | 笔记本缺乏良好的解释 | 笔记本存在缺陷 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/notebook.ipynb b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/notebook.ipynb new file mode 100644 index 000000000..e69de29bb diff --git a/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb new file mode 100644 index 000000000..6cb58d031 --- /dev/null +++ b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb @@ -0,0 +1,172 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "033cb89c85500224b3c63fd04f49b4aa", + "translation_date": "2025-09-03T20:58:26+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/1-notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import time\n", + "import ast" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def replace_address(row):\n", + " if \"Netherlands\" in row[\"Hotel_Address\"]:\n", + " return \"Amsterdam, Netherlands\"\n", + " elif \"Barcelona\" in row[\"Hotel_Address\"]:\n", + " return \"Barcelona, Spain\"\n", + " elif \"United Kingdom\" in row[\"Hotel_Address\"]:\n", + " return \"London, United Kingdom\"\n", + " elif \"Milan\" in row[\"Hotel_Address\"]: \n", + " return \"Milan, Italy\"\n", + " elif \"France\" in row[\"Hotel_Address\"]:\n", + " return \"Paris, France\"\n", + " elif \"Vienna\" in row[\"Hotel_Address\"]:\n", + " return \"Vienna, Austria\" \n", + " else:\n", + " return row.Hotel_Address\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "start = time.time()\n", + "df = pd.read_csv('../../data/Hotel_Reviews.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# dropping columns we will not use:\n", + "df.drop([\"lat\", \"lng\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Replace all the addresses with a shortened, more useful form\n", + "df[\"Hotel_Address\"] = df.apply(replace_address, axis = 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Drop `Additional_Number_of_Scoring`\n", + "df.drop([\"Additional_Number_of_Scoring\"], axis = 1, inplace=True)\n", + "# Replace `Total_Number_of_Reviews` and `Average_Score` with our own calculated values\n", + "df.Total_Number_of_Reviews = df.groupby('Hotel_Name').transform('count')\n", + "df.Average_Score = round(df.groupby('Hotel_Name').Reviewer_Score.transform('mean'), 1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Process the Tags into new columns\n", + "# The file Hotel_Reviews_Tags.py, identifies the most important tags\n", + "# Leisure trip, Couple, Solo traveler, Business trip, Group combined with Travelers with friends, \n", + "# Family with young children, Family with older children, With a pet\n", + "df[\"Leisure_trip\"] = df.Tags.apply(lambda tag: 1 if \"Leisure trip\" in tag else 0)\n", + "df[\"Couple\"] = df.Tags.apply(lambda tag: 1 if \"Couple\" in tag else 0)\n", + "df[\"Solo_traveler\"] = df.Tags.apply(lambda tag: 1 if \"Solo traveler\" in tag else 0)\n", + "df[\"Business_trip\"] = df.Tags.apply(lambda tag: 1 if \"Business trip\" in tag else 0)\n", + "df[\"Group\"] = df.Tags.apply(lambda tag: 1 if \"Group\" in tag or \"Travelers with friends\" in tag else 0)\n", + "df[\"Family_with_young_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with young children\" in tag else 0)\n", + "df[\"Family_with_older_children\"] = df.Tags.apply(lambda tag: 1 if \"Family with older children\" in tag else 0)\n", + "df[\"With_a_pet\"] = df.Tags.apply(lambda tag: 1 if \"With a pet\" in tag else 0)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# No longer need any of these columns\n", + "df.drop([\"Review_Date\", \"Review_Total_Negative_Word_Counts\", \"Review_Total_Positive_Word_Counts\", \"days_since_review\", \"Total_Number_of_Reviews_Reviewer_Has_Given\"], axis = 1, inplace=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_Filtered.csv\n", + "Filtering took 23.74 seconds\n" + ] + } + ], + "source": [ + "# Saving new data file with calculated columns\n", + "print(\"Saving results to Hotel_Reviews_Filtered.csv\")\n", + "df.to_csv(r'../../data/Hotel_Reviews_Filtered.csv', index = False)\n", + "end = time.time()\n", + "print(\"Filtering took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb new file mode 100644 index 000000000..a7e0b93fd --- /dev/null +++ b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb @@ -0,0 +1,137 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "341efc86325ec2a214f682f57a189dfd", + "translation_date": "2025-09-03T20:58:43+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/2-notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV (you can )\n", + "import pandas as pd \n", + "\n", + "df = pd.read_csv('../../data/Hotel_Reviews_Filtered.csv')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# We want to find the most useful tags to keep\n", + "# Remove opening and closing brackets\n", + "df.Tags = df.Tags.str.strip(\"[']\")\n", + "# remove all quotes too\n", + "df.Tags = df.Tags.str.replace(\" ', '\", \",\", regex = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# removing this to take advantage of the 'already a phrase' fact of the dataset \n", + "# Now split the strings into a list\n", + "tag_list_df = df.Tags.str.split(',', expand = True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove leading and trailing spaces\n", + "df[\"Tag_1\"] = tag_list_df[0].str.strip()\n", + "df[\"Tag_2\"] = tag_list_df[1].str.strip()\n", + "df[\"Tag_3\"] = tag_list_df[2].str.strip()\n", + "df[\"Tag_4\"] = tag_list_df[3].str.strip()\n", + "df[\"Tag_5\"] = tag_list_df[4].str.strip()\n", + "df[\"Tag_6\"] = tag_list_df[5].str.strip()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Merge the 6 columns into one with melt\n", + "df_tags = df.melt(value_vars=[\"Tag_1\", \"Tag_2\", \"Tag_3\", \"Tag_4\", \"Tag_5\", \"Tag_6\"])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The shape of the tags with no filtering: (2514684, 2)\n", + " index count\n", + "0 Leisure trip 338423\n", + "1 Couple 205305\n", + "2 Solo traveler 89779\n", + "3 Business trip 68176\n", + "4 Group 51593\n", + "5 Family with young children 49318\n", + "6 Family with older children 21509\n", + "7 Travelers with friends 1610\n", + "8 With a pet 1078\n" + ] + } + ], + "source": [ + "# Get the value counts\n", + "tag_vc = df_tags.value.value_counts()\n", + "# print(tag_vc)\n", + "print(\"The shape of the tags with no filtering:\", str(df_tags.shape))\n", + "# Drop rooms, suites, and length of stay, mobile device and anything with less count than a 1000\n", + "df_tags = df_tags[~df_tags.value.str.contains(\"Standard|room|Stayed|device|Beds|Suite|Studio|King|Superior|Double\", na=False, case=False)]\n", + "tag_vc = df_tags.value.value_counts().reset_index(name=\"count\").query(\"count > 1000\")\n", + "# Print the top 10 (there should only be 9 and we'll use these in the filtering section)\n", + "print(tag_vc[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb new file mode 100644 index 000000000..0107825cc --- /dev/null +++ b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb @@ -0,0 +1,260 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "705bf02633759f689abc37b19749a16d", + "translation_date": "2025-09-03T20:58:59+00:00", + "source_file": "6-NLP/5-Hotel-Reviews-2/solution/3-notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "[nltk_data] Downloading package vader_lexicon to\n[nltk_data] /Users/jenlooper/nltk_data...\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "import time\n", + "import pandas as pd\n", + "import nltk as nltk\n", + "from nltk.corpus import stopwords\n", + "from nltk.sentiment.vader import SentimentIntensityAnalyzer\n", + "nltk.download('vader_lexicon')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "vader_sentiment = SentimentIntensityAnalyzer()\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# There are 3 possibilities of input for a review:\n", + "# It could be \"No Negative\", in which case, return 0\n", + "# It could be \"No Positive\", in which case, return 0\n", + "# It could be a review, in which case calculate the sentiment\n", + "def calc_sentiment(review): \n", + " if review == \"No Negative\" or review == \"No Positive\":\n", + " return 0\n", + " return vader_sentiment.polarity_scores(review)[\"compound\"] \n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "# Load the hotel reviews from CSV\n", + "df = pd.read_csv(\"../../data/Hotel_Reviews_Filtered.csv\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove stop words - can be slow for a lot of text!\n", + "# Ryan Han (ryanxjhan on Kaggle) has a great post measuring performance of different stop words removal approaches\n", + "# https://www.kaggle.com/ryanxjhan/fast-stop-words-removal # using the approach that Ryan recommends\n", + "start = time.time()\n", + "cache = set(stopwords.words(\"english\"))\n", + "def remove_stopwords(review):\n", + " text = \" \".join([word for word in review.split() if word not in cache])\n", + " return text\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Remove the stop words from both columns\n", + "df.Negative_Review = df.Negative_Review.apply(remove_stopwords) \n", + "df.Positive_Review = df.Positive_Review.apply(remove_stopwords)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Removing stop words took 5.77 seconds\n" + ] + } + ], + "source": [ + "end = time.time()\n", + "print(\"Removing stop words took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Calculating sentiment columns for both positive and negative reviews\n", + "Calculating sentiment took 201.07 seconds\n" + ] + } + ], + "source": [ + "# Add a negative sentiment and positive sentiment column\n", + "print(\"Calculating sentiment columns for both positive and negative reviews\")\n", + "start = time.time()\n", + "df[\"Negative_Sentiment\"] = df.Negative_Review.apply(calc_sentiment)\n", + "df[\"Positive_Sentiment\"] = df.Positive_Review.apply(calc_sentiment)\n", + "end = time.time()\n", + "print(\"Calculating sentiment took \" + str(round(end - start, 2)) + \" seconds\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " Negative_Review Negative_Sentiment\n", + "186584 So bad experience memories I hotel The first n... -0.9920\n", + "129503 First charged twice room booked booking second... -0.9896\n", + "307286 The staff Had bad experience even booking Janu... -0.9889\n", + "452092 No WLAN room Incredibly rude restaurant staff ... -0.9884\n", + "201293 We usually traveling Paris 2 3 times year busi... -0.9873\n", + "... ... ...\n", + "26899 I would say however one night expensive even d... 0.9933\n", + "138365 Wifi terribly slow I speed test network upload... 0.9938\n", + "79215 I find anything hotel first I walked past hote... 0.9938\n", + "278506 The property great location There bakery next ... 0.9945\n", + "339189 Guys I like hotel I wish return next year Howe... 0.9948\n", + "\n", + "[515738 rows x 2 columns]\n", + " Positive_Review Positive_Sentiment\n", + "137893 Bathroom Shower We going stay twice hotel 2 ni... -0.9820\n", + "5839 I completely disappointed mad since reception ... -0.9780\n", + "64158 get everything extra internet parking breakfas... -0.9751\n", + "124178 I didnt like anythig Room small Asked upgrade ... -0.9721\n", + "489137 Very rude manager abusive staff reception Dirt... -0.9703\n", + "... ... ...\n", + "331570 Everything This recently renovated hotel class... 0.9984\n", + "322920 From moment stepped doors Guesthouse Hotel sta... 0.9985\n", + "293710 This place surprise expected good actually gre... 0.9985\n", + "417442 We celebrated wedding night Langham I commend ... 0.9985\n", + "132492 We arrived super cute boutique hotel area expl... 0.9987\n", + "\n", + "[515738 rows x 2 columns]\n" + ] + } + ], + "source": [ + "df = df.sort_values(by=[\"Negative_Sentiment\"], ascending=True)\n", + "print(df[[\"Negative_Review\", \"Negative_Sentiment\"]])\n", + "df = df.sort_values(by=[\"Positive_Sentiment\"], ascending=True)\n", + "print(df[[\"Positive_Review\", \"Positive_Sentiment\"]])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "# Reorder the columns (This is cosmetic, but to make it easier to explore the data later)\n", + "df = df.reindex([\"Hotel_Name\", \"Hotel_Address\", \"Total_Number_of_Reviews\", \"Average_Score\", \"Reviewer_Score\", \"Negative_Sentiment\", \"Positive_Sentiment\", \"Reviewer_Nationality\", \"Leisure_trip\", \"Couple\", \"Solo_traveler\", \"Business_trip\", \"Group\", \"Family_with_young_children\", \"Family_with_older_children\", \"With_a_pet\", \"Negative_Review\", \"Positive_Review\"], axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Saving results to Hotel_Reviews_NLP.csv\n" + ] + } + ], + "source": [ + "print(\"Saving results to Hotel_Reviews_NLP.csv\")\n", + "df.to_csv(r\"../../data/Hotel_Reviews_NLP.csv\", index = False)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md new file mode 100644 index 000000000..c443a00dd --- /dev/null +++ b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/R/README.md b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/R/README.md new file mode 100644 index 000000000..2b73ba091 --- /dev/null +++ b/translations/zh-CN/6-NLP/5-Hotel-Reviews-2/solution/R/README.md @@ -0,0 +1,6 @@ +这是一个临时占位符 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/README.md b/translations/zh-CN/6-NLP/README.md new file mode 100644 index 000000000..7418af484 --- /dev/null +++ b/translations/zh-CN/6-NLP/README.md @@ -0,0 +1,29 @@ +# 开始学习自然语言处理 + +自然语言处理(NLP)是指计算机程序理解人类语言(包括口语和书面语)的能力——即所谓的自然语言。它是人工智能(AI)的一个组成部分。自然语言处理已有超过50年的历史,其根源可以追溯到语言学领域。整个领域的目标是帮助机器理解和处理人类语言。这项技术可以用于执行诸如拼写检查或机器翻译等任务。它在许多领域都有实际应用,包括医学研究、搜索引擎和商业智能。 + +## 地区主题:欧洲语言文学与浪漫酒店 ❤️ + +在本课程的这一部分中,您将了解机器学习最广泛的应用之一:自然语言处理(NLP)。这一人工智能类别源于计算语言学,是通过语音或文本交流连接人类与机器的桥梁。 + +在这些课程中,我们将通过构建小型对话机器人来学习NLP的基础知识,了解机器学习如何帮助使这些对话变得越来越“智能”。您将穿越时光,与简·奥斯汀1813年出版的经典小说《傲慢与偏见》中的伊丽莎白·班内特和达西先生进行对话。随后,您将通过学习欧洲酒店评论中的情感分析进一步加深知识。 + +![傲慢与偏见书籍与茶](../../../translated_images/zh-CN/p&p.279f1c49ecd88941.webp) +> 图片由 Elaine Howlin 提供,来自 Unsplash + +## 课程 + +1. [自然语言处理简介](1-Introduction-to-NLP/README.md) +2. [常见的NLP任务与技术](2-Tasks/README.md) +3. [机器学习中的翻译与情感分析](3-Translation-Sentiment/README.md) +4. [准备您的数据](4-Hotel-Reviews-1/README.md) +5. [使用NLTK进行情感分析](5-Hotel-Reviews-2/README.md) + +## 致谢 + +这些自然语言处理课程由 [Stephen Howell](https://twitter.com/Howell_MSFT) 倾情创作 ☕ + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/6-NLP/data/README.md b/translations/zh-CN/6-NLP/data/README.md new file mode 100644 index 000000000..444e947cc --- /dev/null +++ b/translations/zh-CN/6-NLP/data/README.md @@ -0,0 +1,6 @@ +将酒店评论数据下载到此文件夹。 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/1-Introduction/README.md b/translations/zh-CN/7-TimeSeries/1-Introduction/README.md new file mode 100644 index 000000000..f88e67406 --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/1-Introduction/README.md @@ -0,0 +1,190 @@ +# 时间序列预测简介 + +![时间序列的概述草图](../../../../sketchnotes/ml-timeseries.png) + +> 草图由 [Tomomi Imura](https://www.twitter.com/girlie_mac) 绘制 + +在本课及接下来的课程中,你将学习一些关于时间序列预测的知识。这是机器学习科学家技能库中一个有趣且有价值的部分,虽然它的知名度可能不如其他主题。时间序列预测就像一种“水晶球”:基于某个变量(如价格)的过去表现,你可以预测其未来的潜在价值。 + +[![时间序列预测简介](https://img.youtube.com/vi/cBojo1hsHiI/0.jpg)](https://youtu.be/cBojo1hsHiI "时间序列预测简介") + +> 🎥 点击上方图片观看关于时间序列预测的视频 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +时间序列预测是一个有用且有趣的领域,对商业具有实际价值,因为它可以直接应用于定价、库存和供应链问题。虽然深度学习技术开始被用于更深入地预测未来表现,但时间序列预测仍然是一个主要由经典机器学习技术驱动的领域。 + +> 宾夕法尼亚州立大学的时间序列课程可以在 [这里](https://online.stat.psu.edu/stat510/lesson/1) 找到 + +## 简介 + +假设你维护了一组智能停车计时器,这些计时器提供关于它们使用频率和使用时长的数据。 + +> 如果你能根据计时器的过去表现,预测其未来价值,并结合供需规律,会怎么样? + +准确预测何时采取行动以实现目标是一个挑战,可以通过时间序列预测来解决。虽然在繁忙时段提高停车费可能会让人们不高兴,但这确实是一个增加收入以清洁街道的有效方法! + +让我们探索一些时间序列算法,并开始一个笔记本来清理和准备一些数据。你将分析的数据来自 GEFCom2014 预测竞赛,包括 2012 年至 2014 年间 3 年的每小时电力负载和温度值。根据电力负载和温度的历史模式,你可以预测电力负载的未来值。 + +在这个例子中,你将学习如何仅使用历史负载数据预测一个时间步长的未来值。然而,在开始之前,了解背后的原理是很有帮助的。 + +## 一些定义 + +当遇到“时间序列”这个术语时,你需要理解它在不同上下文中的使用。 + +🎓 **时间序列** + +在数学中,“时间序列是一系列按时间顺序索引(或列出或绘制)的数据点。最常见的是,时间序列是在连续且等间隔的时间点上获取的序列。” 时间序列的一个例子是 [道琼斯工业平均指数](https://wikipedia.org/wiki/Time_series) 的每日收盘值。时间序列图和统计建模的使用在信号处理、天气预测、地震预测以及其他事件发生并可以随时间绘制数据点的领域中经常出现。 + +🎓 **时间序列分析** + +时间序列分析是对上述时间序列数据的分析。时间序列数据可以采取不同的形式,包括“中断时间序列”,它检测时间序列在中断事件前后演变的模式。所需的时间序列分析类型取决于数据的性质。时间序列数据本身可以是数字或字符序列。 + +分析使用了多种方法,包括频域和时域、线性和非线性等。[了解更多](https://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm) 关于分析这种数据的多种方法。 + +🎓 **时间序列预测** + +时间序列预测是使用模型根据过去收集的数据所显示的模式预测未来值。虽然可以使用回归模型来探索时间序列数据,并将时间索引作为图上的 x 变量,但这种数据最好使用特殊类型的模型进行分析。 + +时间序列数据是一个有序的观察值列表,与可以通过线性回归分析的数据不同。最常见的模型是 ARIMA,它是“自回归积分移动平均”的缩写。 + +[ARIMA 模型](https://online.stat.psu.edu/stat510/lesson/1/1.1) “将序列的当前值与过去的值和过去的预测误差联系起来。” 它们最适合分析时间域数据,即数据按时间顺序排列。 + +> ARIMA 模型有多种类型,你可以在 [这里](https://people.duke.edu/~rnau/411arim.htm) 学习这些类型,并将在下一课中涉及。 + +在下一课中,你将使用 [单变量时间序列](https://itl.nist.gov/div898/handbook/pmc/section4/pmc44.htm) 构建一个 ARIMA 模型,该模型专注于一个随时间变化的变量。这种数据的一个例子是 [这个数据集](https://itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm),记录了 Mauna Loa 天文台的每月 CO2 浓度: + +| CO2 | YearMonth | Year | Month | +| :-----: | :-------: | :---: | :---: | +| 330.62 | 1975.04 | 1975 | 1 | +| 331.40 | 1975.13 | 1975 | 2 | +| 331.87 | 1975.21 | 1975 | 3 | +| 333.18 | 1975.29 | 1975 | 4 | +| 333.92 | 1975.38 | 1975 | 5 | +| 333.43 | 1975.46 | 1975 | 6 | +| 331.85 | 1975.54 | 1975 | 7 | +| 330.01 | 1975.63 | 1975 | 8 | +| 328.51 | 1975.71 | 1975 | 9 | +| 328.41 | 1975.79 | 1975 | 10 | +| 329.25 | 1975.88 | 1975 | 11 | +| 330.97 | 1975.96 | 1975 | 12 | + +✅ 在这个数据集中,识别随时间变化的变量 + +## 时间序列数据需要考虑的特性 + +观察时间序列数据时,你可能会注意到它具有一些 [特性](https://online.stat.psu.edu/stat510/lesson/1/1.1),需要考虑并减轻这些特性以更好地理解其模式。如果你将时间序列数据视为一个你想要分析的“信号”,这些特性可以被视为“噪声”。你通常需要通过使用一些统计技术来减少这些“噪声”。 + +以下是一些你需要了解的概念,以便能够处理时间序列: + +🎓 **趋势** + +趋势是指随时间可测量的增长和下降。[阅读更多](https://machinelearningmastery.com/time-series-trends-in-python)。在时间序列的背景下,这涉及如何使用以及(如果必要)移除时间序列中的趋势。 + +🎓 **[季节性](https://machinelearningmastery.com/time-series-seasonality-with-python/)** + +季节性是指周期性波动,例如节假日的销售高峰。[看看](https://itl.nist.gov/div898/handbook/pmc/section4/pmc443.htm) 不同类型的图如何显示数据中的季节性。 + +🎓 **异常值** + +异常值远离标准数据方差。 + +🎓 **长期周期** + +独立于季节性,数据可能显示长期周期,例如持续超过一年的经济衰退。 + +🎓 **恒定方差** + +随着时间的推移,某些数据显示恒定的波动,例如每天和夜间的能源使用量。 + +🎓 **突变** + +数据可能显示突变,需要进一步分析。例如,由于 COVID 的突然停业导致数据发生变化。 + +✅ 这里有一个 [时间序列图示例](https://www.kaggle.com/kashnitsky/topic-9-part-1-time-series-analysis-in-python),显示了几年来每日游戏内货币消费。你能在这些数据中识别出上述任何特性吗? + +![游戏内货币消费](../../../../7-TimeSeries/1-Introduction/images/currency.png) + +## 练习 - 开始使用电力使用数据 + +让我们开始创建一个时间序列模型,根据过去的使用情况预测未来的电力使用。 + +> 本例中的数据来自 GEFCom2014 预测竞赛,包括 2012 年至 2014 年间 3 年的每小时电力负载和温度值。 +> +> Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli 和 Rob J. Hyndman,“概率能源预测:全球能源预测竞赛 2014 及未来”,《国际预测杂志》,第 32 卷,第 3 期,第 896-913 页,2016 年 7 月至 9 月。 + +1. 在本课的 `working` 文件夹中,打开 _notebook.ipynb_ 文件。首先添加一些库以帮助加载和可视化数据: + + ```python + import os + import matplotlib.pyplot as plt + from common.utils import load_data + %matplotlib inline + ``` + + 注意,你正在使用包含的 `common` 文件夹中的文件,这些文件设置了你的环境并处理数据下载。 + +2. 接下来,通过调用 `load_data()` 和 `head()` 检查数据作为数据框: + + ```python + data_dir = './data' + energy = load_data(data_dir)[['load']] + energy.head() + ``` + + 你可以看到有两列分别表示日期和负载: + + | | load | + | :-----------------: | :----: | + | 2012-01-01 00:00:00 | 2698.0 | + | 2012-01-01 01:00:00 | 2558.0 | + | 2012-01-01 02:00:00 | 2444.0 | + | 2012-01-01 03:00:00 | 2402.0 | + | 2012-01-01 04:00:00 | 2403.0 | + +3. 现在,通过调用 `plot()` 绘制数据: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![能源图](../../../../7-TimeSeries/1-Introduction/images/energy-plot.png) + +4. 现在,通过提供 `[起始日期]:[结束日期]` 模式的输入,绘制 2014 年 7 月的第一周: + + ```python + energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![七月](../../../../7-TimeSeries/1-Introduction/images/july-2014.png) + + 一个漂亮的图!看看这些图,看看你是否能确定上述列出的任何特性。通过可视化数据,我们可以推测出什么? + +在下一课中,你将创建一个 ARIMA 模型来进行一些预测。 + +--- + +## 🚀挑战 + +列出你能想到的所有可能受益于时间序列预测的行业和研究领域。你能想到这些技术在艺术领域的应用吗?在计量经济学、生态学、零售业、工业、金融领域呢?还有哪些领域? + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +虽然我们不会在这里讨论,但有时会使用神经网络来增强经典的时间序列预测方法。[阅读更多](https://medium.com/microsoftazure/neural-networks-for-forecasting-financial-and-economic-time-series-6aca370ff412) 关于它们的内容。 + +## 作业 + +[可视化更多时间序列](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/1-Introduction/assignment.md b/translations/zh-CN/7-TimeSeries/1-Introduction/assignment.md new file mode 100644 index 000000000..fe2260fd9 --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/1-Introduction/assignment.md @@ -0,0 +1,16 @@ +# 可视化更多时间序列 + +## 说明 + +你已经开始通过观察需要特殊建模的数据类型来学习时间序列预测。你已经可视化了一些关于能源的数据。现在,寻找一些其他可以从时间序列预测中受益的数据。找到三个例子(可以尝试 [Kaggle](https://kaggle.com) 和 [Azure Open Datasets](https://azure.microsoft.com/en-us/services/open-datasets/catalog/?WT.mc_id=academic-77952-leestott)),并创建一个笔记本来可视化这些数据。在笔记本中记录它们的任何特殊特性(季节性、突变或其他趋势)。 + +## 评分标准 + +| 标准 | 卓越表现 | 合格表现 | 需要改进 | +| -------- | ----------------------------------------------------- | --------------------------------------------------- | ---------------------------------------------------------------------------------------- | +| | 在笔记本中绘制并解释了三个数据集 | 在笔记本中绘制并解释了两个数据集 | 在笔记本中绘制或解释的数据集较少,或者所展示的数据不足 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/1-Introduction/solution/Julia/README.md b/translations/zh-CN/7-TimeSeries/1-Introduction/solution/Julia/README.md new file mode 100644 index 000000000..b411dd85f --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/1-Introduction/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/1-Introduction/solution/R/README.md b/translations/zh-CN/7-TimeSeries/1-Introduction/solution/R/README.md new file mode 100644 index 000000000..cc1524018 --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/1-Introduction/solution/R/README.md @@ -0,0 +1,6 @@ +这是一个临时占位符 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/1-Introduction/solution/notebook.ipynb b/translations/zh-CN/7-TimeSeries/1-Introduction/solution/notebook.ipynb new file mode 100644 index 000000000..8ca393a09 --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/1-Introduction/solution/notebook.ipynb @@ -0,0 +1,168 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "在本笔记中,我们将演示如何:\n", + "- 设置本模块的时间序列数据\n", + "- 可视化数据\n", + "\n", + "本示例中的数据来自GEFCom2014预测竞赛。它包含2012年至2014年间3年的每小时电力负荷和温度值。\n", + "\n", + "陶宏、Pierre Pinson、Shu Fan、Hamidreza Zareipour、Alberto Troccoli和Rob J. Hyndman,“概率能源预测:全球能源预测竞赛2014及未来”,《国际预测期刊》,第32卷,第3期,页896-913,2016年7月至9月。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import matplotlib.pyplot as plt\n", + "from common.utils import load_data\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "将数据从csv加载到Pandas数据框中\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ], + "text/html": "
      \n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
      load
      2012-01-01 00:00:002698.0
      2012-01-01 01:00:002558.0
      2012-01-01 02:00:002444.0
      2012-01-01 03:00:002402.0
      2012-01-01 04:00:002403.0
      \n
      " + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "data_dir = './data'\n", + "energy = load_data(data_dir)[['load']]\n", + "energy.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "绘制所有可用的负载数据(2012年1月至2014年12月)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhb5ZU/8O+r3bYkO7bl3YljZ3dCnJBASCCQFkqBgUDpBrRMZ6YLMJ2l26/TTjtDmelMp09nOtNOaUt31tKFtRToQAkpSUhIiJPY2Z14X+VFkiVL1vL+/pBkjHESL5Ku7r3fz/P4IbF07z1Gsa1z3/OeI6SUICIiIiIiIgIAg9IBEBERERERUfZgkkhEREREREQTmCQSERERERHRBCaJRERERERENIFJIhEREREREU1gkkhEREREREQTTEoHoITi4mJZU1OjdBhERERERESKOHDggFtK6ZruMV0miTU1Ndi/f7/SYRARERERESlCCNF2rsdYbkpEREREREQTmCQSERERERHRBCaJRERERERENEGXexKJiIiIiIgAIBwOo7OzE8FgUOlQ0sJms6Gqqgpms3nGxzBJJCIiIiIi3ers7ITD4UBNTQ2EEEqHk1JSSgwODqKzsxOLFy+e8XEsNyUiIiIiIt0KBoMoKirSXIIIAEIIFBUVzXqVlEkiERERERHpmhYTxKS5fG1MEomIiIiIiBRkt9tTcp57770X3/rWt+Z9HiaJRERERERENIFJIhERERERURaQUuILX/gCVq9ejTVr1uDxxx8HAIyOjuLd73431q9fjzVr1uDpp5+eOObrX/86li1bhssvvxwnTpxISRzsbkpERERERATga88242i3N6XnXFXhxD/fWD+j5z7xxBNobGzEoUOH4Ha7sXHjRmzduhUulwtPPvkknE4n3G43Nm3ahJtuuglvvvkmfvnLX6KxsRGRSATr16/HxRdfPO+YuZJIRERERESUBV577TXcdtttMBqNKC0txZVXXok33ngDUkp8+ctfxkUXXYSrr74aXV1d6Ovrw5/+9CfccsstyM3NhdPpxE033ZSSOLiSSEREREREBMx4xS/THnnkEQwMDODAgQMwm82oqamZ9ViL2eBKIhERERERURa44oor8PjjjyMajWJgYAA7d+7EJZdcAo/Hg5KSEpjNZrzyyitoa2sDAGzduhVPPfUUxsbG4PP58Oyzz6YkDq4kEmnQSGAcDpsZRoN2Z/4QERERac0tt9yCPXv2YO3atRBC4Jvf/CbKyspwxx134MYbb8SaNWuwYcMGrFixAgCwfv16fOhDH8LatWtRUlKCjRs3piQOIaVMyYnUZMOGDXL//v1Kh0GUFj2eMbznv3ZiZbkTP7pzA/JzzUqHRERERJS1jh07hpUrVyodRlpN9zUKIQ5IKTdM93yWmxJpzL///jhC0RgaO0bwgR/uRo9nTOmQiIiIiEhFMpYkCiF2CCGCQojRxMeJSY/dLoRoE0L4hRBPCSEKJz1WKIR4MvFYmxDi9innPeexRHrzRusQnjnUjbu21uLnf7ER3SNB3Hr/bpzq8ykdGhERERGpRKZXEj8tpbQnPpYDgBCiHsAPAXwUQCmAAID7Jx3zPQDjicfuAPD9xDEzOZZIN6IxiXufaUZ5vg13XVWHzUuK8finNiEck3j/D/Zgf+uQ0iESERERkQpkQ7npHQCelVLulFKOAvgqgPcJIRxCiDwAtwL4qpRyVEr5GoBnEE8Kz3usAl8HkaJ+tb8Dzd1efOn6lci1xHtS1Vfk44m7N6Mwz4I7frwXe1oGFY6SiIiIKPtouU/LXL62TCeJ/y6EcAshdgkhrkp8rh7AoeQTpJQtiK8cLkt8RKSUJyed41DimAsd+zZCiE8KIfYLIfYPDAyk8EsiUp5nLIxvvXgCl9QU4saLyt/2WHVhLn5z12UoyrPg/h2nFYqQiIiIKDvZbDYMDg5qMlGUUmJwcBA2m21Wx2VyBMYXARxFPIn7MIBnhRANAOwAPFOe6wHgABAF4D3HY7jAsW8jpXwAwANAvLvpnL8Koiz0nZdPYSgwjl/cuApCvHPsRZHdilsvrsL3XjmNfl8QJY7Z/aAgIiIi0qqqqip0dnZCqwtJNpsNVVVVszomY0milHLvpL/+QghxG4DrAYwCcE55uhOAD0DsPI/hAscS6cLpfh9+sbsVH964EKsr88/5vO0NFfjuH0/jd4d68JeXL85ghERERETZy2w2Y/FivjeaTMk9iRKAANAMYG3yk0KIWgBWACcTHyYhxNJJx61NHIMLHEukC//yu2PIsRjx+fe8o8r6bZaUOFBf4cTTh7ozFBkRERERqVFGkkQhRIEQ4lohhE0IYRJC3AFgK4AXADwC4EYhxBWJRjX3AXhCSumTUvoBPAHgPiFEnhBiC4DtAB5KnPqcx2bi6yJSWlOXB6+eHMCnty1Bkd16wedvb6jAoY4RnHX7MxAdEREREalRplYSzQD+FcAAADeAvwFws5TypJSyGcBdiCd8/YjvJ7xn0rH3AMhJPPYYgLsTx2AGxxJp2iN722AzG/DhSxbO6Pk3rq2AEMAzjVxNJCIiIqLpZWRPopRyAMDG8zz+KIBHz/HYEICb53IskZZ5g2E8dbAbN62tQH6OeUbHlOfn4NLFhXj6UBf+9t1Lpm1yQ0RERET6lg1zEoloDp58swtj4Sg+smnRrI7b3lCJMwN+NHVNbRxMRERERMQkkUiVpJR4+PU2XFSVj4uqCmZ17PWry2E2Cjzd2JWm6IiIiIhIzZgkEqnQvrNDONU/OutVRADIzzXjquUlePZwN6IxjgwlIiIiordjkkikQg+93ganzYQbL6qY0/HbGyrQ5w1h75nBFEdGRERERGrHJJFIZQZ8IbzY3Iv3X1yNHItxTue4emUp8ixGPM0up0REREQ0BZNEIpX51f4OhKMSd2ya2diL6djMRly7ugy/b+pBMBxNYXREREREpHZMEolUJBqTeHRvOzbXFaHOZZ/XuW5uqIQvGMGOEwMpio6IiIiItIBJIpGK7DjRj66RsTk1rJlqc10RFuSa8YejvSmIjIiIiIi0gkkikYo8/HobShxWXLOqdN7nMhkN2LykGLtPD0JKdjklIiIiojgmiUQqMRIYx46TA/jghmqYjan51t1SV4xebxBn3P6UnI+IiIiI1I9JIpFK7GkZhJTAthWulJ1zy5IiAMDu0+6UnZOIiIiI1I1JIpFK7GpxI89ixEVVBSk758LCXFQW5OA1JolERERElMAkkUgldp8exCWLC1NWagoAQghsWVKEPS2DiMa4L5GIiIiImCQSqUKPZwxn3H5sWVKc8nNvWVIMbzCC5m5Pys9NREREROrDJJFIBXafHgQAbK5LfZKYPOeuxDWIiIiISN+YJBKpwK4WNwrzLFhR5kj5uV0OK5aXOrC7hfsSiYiIiIhJIlHWk1Ji9+lBXFZbBINBpOUam5cUYd/ZIQTD0bScn4iIiIjUg0kizUgwHMWxHi9+d7gbD+xswcvH+uAeDSkdli6ccfvR6w1ic2JcRTpsqStGKBLDm+3DabsGEREREamDSekAKDtJKfHKiX48tq8DJ/t86BgKYLrml1ULcrC2ugAbFy3AbZcuhNVkzHywGre7Jb5XcEsa9iMmXVpbCKNBYPfpwbTseyQiIiIi9WCSSG8TjUk8d6QH979yGsd7fShz2nDxogXY3lCJJSV2LHHZUZ5vw6n+URzqGEFjxwga20fw3OEetA4GcO9N9Up/CZqz+7QbFfk2LCrKTds1HDYz1lblY1eLG5/H8rRdh4iIiIiyH5NEAhBPDn9zoAPf39GC1sEA6lx5+M8PrMVNDRXTzuW7ZHEhLllcOPH3e59pxs93t+JdK0qwdZkrk6FrWiwmsefMIK5eWQoh0rMfMWnLkmLcv6MF3mAYTps5rdciIiIiouzFPYmEPm8QH/nxXnzxt0fgsJnxg4+sx/995krcenHVjAe3/8N1K7CkxI7P//oQhv3jaY5YP472eDESCGNLGvcjJm2uK0Y0JrH3zFDar0VERERE2YtJos69enIA1//Pn9DYMYJvvv8iPPPpLXjv6vJZd9G0mY347w81YMg/jn986giknGYDI81acixFJvYJrl9UAJvZgF2nOQqDiIiISM+YJOpUOBrDN54/jj//6T4U26149m+24IMbqudV0ri6Mh+fuWYZfn+kF0+82ZXCaPVr1+lB1LnyUOq0pf1aVpMRG2sKOS+RiIiISOeYJOqQJxDGh364Bz94tQW3X7oQT396C5aUpGZI+11X1mFjzQL88zPN6BgKpOScejUeiWHf2SFsWZK5bqNblhTjZN8o+n3BjF2TiIiIiLILk0Qd+u4fT6GxYwTfuW0d/u2WNbCZUze2wmgQ+K8PNgAAPverQ4hONzeDZqSxYwRj4WhGR1Ikx2zsSYzdICIiIiL9YZKoM10jY3jw9Tbcur4KN62tSMs1qgtz8c83rsK+1iE8d6QnLdfQg90tbggBbKotvPCTU2RVhROFeRY8f6Q3Y9ckIiIiouzCJFFn/uelkwCAv79mWVqvc+v6KlQW5OA3BzrTeh0t2316EKsr8lGQa8nYNY0GgQ9cXIX/O9aHPi9LTomIiIj0iEmijpzq8+E3Bzpx56ZFqCzISeu1DAaBW9dX4rVTA+j1MNmYrWA4ioMdw9hcl/7RF1PdfulCRGMSj+1rz/i1iYiIiEh5TBJ15Ft/OIE8iwn3bFuSkeu9b30VYhJ48iA7nc7W8V4fwlGJdQsLMn7tRUV52LrMhV/u60AkGsv49YmIiIhIWUwSdeJg+zBebO7DJ7fWojAvM+WLNcV52FizAL850MG5ibN0pMsDAKivyFfk+h+5dCF6vUG8dKxfkesTERERkXKYJOqAlBL/8cJxFNst+MvLF2f02u+/uAotA340doxk9Lpq19TpQUGuGVUL0lsWfC7vWlGC8nwbHtnbpsj1iYiIiEg5TBJ1YOcpN14/M4S/eddS5FlNGb329WvKYTMb2MBmlpq6PVhTmQ8hhCLXNxkNuP2ShfjTKTfOuv2KxEBEREREymCSqHGxmMQ3XziO6sIc3HbJwoxf32Ez47rV5Xj2UDeC4WjGr69GoUgUJ/t8ipWaJn3okmqYDAKPvM7VRCIiIiI9YZKocS8296K524vPXrMMFpMyL/et66vgDUbw0rE+Ra6vNicSTWvWVCqbJJY4bLi2vgy/PtDJBJ+IiIhIR5gkapiUEv/7ymnUFufhprWVisVxWV0RKvJtLDmdoaYuLwAoniQCwB2bFsIzFsbvDvcoHQoRERERZQiTRA3bcXIAzd1e3HVVHYwGZfa2AfEB7e9bX4WdJwc4oH0GjnR54LSZUF2oTNOayS6rLUKdKw8Ps+SUiIiISDeYJGrY/a+cRmVBDm5Zp9wqYtKtF3Nm4kw1dXmwWsGmNZMJIfCRTYvQ2DGCpsRYDiIiIiLSNiaJGrX3zCDeaB3GJ7fWwmxU/mVeXJyHDYsW4DcHOjkz8TzGIzGc6PVlRalp0vvWV8FmNuCxfe1Kh0JEREREGaB89kBp8b0dLSi2W/ChjdVKhzLh/RdX4XT/KB7Z285E8RxO9vkwHo2hPouSxPwcM66tL8NzR3owHokpHQ4RERERpRmTRA063DmCnScH8FeX18JmNiodzoSbGiqwqbYQX3mqCZ986ADcoyGlQ8o6yZLObFpJBICbGyoxEgjj1ZMDSodC0+gcDuDh19vw6/0dCEeZyBMREdH8ZHayOmXE/a+0wGkz4SObMj8X8XxyLSY8+vFN+Omus/jmiydw7bd34uu3rMF7V5cpHVrWaOr2wGE1YVFhrtKhvM3lS4tRmGfBU41duGZVqdLh6F4kGsP+tmG8crwfr5zox8m+0YnHfvBqC7503Uq8e2VJVuxrJSIiIvXhSqLGnOrz4YXmXnxscw0cNrPS4byDwSDw8Stq8bu/uRxl+Tbc9fABfO5XhxCKcA4fABzp8mJVhRMGBbvRTsdsNODPLirHS0f74AuGlQ5H18YjMXzkJ3vx4Qdex093nYXLYcVXbliJlz57JX505wZICXz8wf247Uev40gnmw0RERHR7DFJ1Jjv72hBjtmIj21ZrHQo57Ws1IEn79mCe66qw2/f7MTTjd1Kh6S4cDSGYz3erCs1Tbp5XSVCkRheaOpVOhTdklLin55uwutnhvDPN67CwX96Dx75+CZ8/IpaLCmx45pVpXjxM1tx3/Z6nOwbxY3/+xq+8fxxpcMmIiIilWGSqCEdQwE8fagbd1y6EIV5FqXDuSCLyYAvXLscRXkW7GkZVDocxZ3uH8V4JIY1VdmZJK6rLsCiolwm9Ap6cE8bfvlGB/56Wx3+Ysti2K3v3DFgNhpw52U12PGFq7C9oQI/3NmCloHRac5GREREND0miRryfFMPojGJj22pUTqUGRNCYFNtEfa0DOq+4+mRRNOa+orsTBKFENi+tgK7Wtzo8waVDkd3dp12477fHcXVK0vxuWuWX/D5TpsZX/2zVbAYDXjg1TMZiJCIiIi0gkmihuw4MYDlpQ5ULciupicXsqmuCL3eIFoHA0qHoqjmLg/yLEbUFucpHco5bV9XCSmBZw9xNTGTWt1+3PPIm6hz5eG/P9ww4z2rxXYrPrihGk8c7ESvh4k9ERERzQyTRI0YDUXwRusQrlruUjqUWbustggAdF9yeqTLg/qK/KxrWjNZncuOi6ry8VRjl9Kh6IYvGMbHH9wPIYAf37lx2hLT8/nk1lrEJPDTXWfTFCERERFpDZNEjdh92o1wVOLKZepLEutceXA5rNhzRr9JYiQaw9EeL+ornUqHckHbGyrR1OXF6X6f0qFonpQSn/3VIZx1+3H/HeuxsGj2VQLVhbm4YU05Hnm9DZ4AO9MSERHRhTFJ1IhXTw4gz2LEhppCpUOZNSEELtP5vsQzbj+C4VjWdjad7Ma15TAI4KmDLDlNt5/tasX/He3Dl69fic11xXM+z11X1sE/HsXDe9tSGB0RERFpFZNEDZBSYseJAWxeUgyLSZ0v6WV1RXCPhnTbhTE5z04NSWKJw4YtS4rx9KEu3Sb1mXC4cwT//vwxXL2yFH85z2ZUqyqcuHKZCz/bdRbBMGeSEhER0fmpM6Ogt2kZGEXXyJgq9yMmTexLPDOkcCTKONLlQY7ZiFqXXelQZuTmhkp0DI3hzfZhpUPRJG8wjE8/ehAuuxXf+sBFEGL++1TvvqoO7tFx/PpAZwoiJCIiIi1jkqgBO04MAIAq9yMmLSrKRXm+Da/rtHlNc7cHqyqcMGZx05rJrl1dBpvZgGc4MzHlpJT40hNH0DUyhu/ctg4FuamZeXrp4kI0VBfgRzvPIBKNpeScREREpE1MEjXg1ZMDWFJiV93oi8mS+xJfP6O/fYmxmERztxerK7K/aU2S3WrClrpivHJiQHevV7o9tq8Dzx3uwefesyyle4yFELj7qjq0DwXwfFNvys5LRERE2sMkUeUC4xHsPTOEq1S8ipi0qa4Ig/5xnOzT177ErpExBMajWF6mniQRAK5aUYL2oQDOuP1Kh6IZx3q8+NqzzbhiaTHu2lqX8vNfs7IUda483L+jBbEYk3siIiKaHpNEldvTMojxaAxXLS9ROpR5e2teolvhSDKrdTCeZC0uzlM4ktlJ3ph45Xi/wpFox33PHoXDZsa3P9SQlnmZBoPAX29bgmM9XrzYzNVEIiIiml7Gk0QhxFIhRFAI8XDi71cJIWJCiNFJH38+6fmFQognhRB+IUSbEOL2Kee7PfF5vxDiKSGE+mZAzMOOEwPIMRuxcfECpUOZt+rCXFQtyNHdvMRWtzqTxOrCXCwtsU/siaX5cY+GsPfsIG6/pBrFdmvarrO9oRJ1rjx8+6WTiHI1kYiIiKahxEri9wC8MeVz3VJK+6SPX0x5/jiAUgB3APi+EKIeABL//SGAjyYeDwC4P91fQLaQUmLHyX5sriuC1WRUOpyUuKy2CHvPDumqFO6M248csxGlzvQlBuly1XIX9p0dgj8UUToU1XvpaB9iMt4UKJ2MBoG/v3oZTvaN4rkjPWm9FhEREalTRpNEIcSHAYwAeHmGz88DcCuAr0opR6WUrwF4BvGkEIgnjc9KKXdKKUcBfBXA+4QQjtRHn33Ouv3oGFL36IupLqsrwkggjGO9XqVDyZhWtx81xXkpGXOQaduWl2A8GsNunXalTaUXmntRXZiDVeXp35t6w5pyLC914L9fOslOp0RERPQOGUsShRBOAPcB+Ow0D5cIIfqEEGeFEN9OJIcAsAxAREp5ctJzDwGoT/y5PvF3AICUsgXxVcdlKf8CslCyzE8L+xGTLqtL7kvUT9LROhjA4mJ1dqbdUFOIPIsRr5zgvsT58AbD2HXajffWl2XkZoHBIPCZa5bizIAfT3OMCREREU2RyZXEfwHwEynl1EnOxwE0ACgH8C4AFwP4r8RjdgBTl5Q8AByTHvec5/EJQohPCiH2CyH2DwxoYw/VjpMDqHXlobpQnQnGdMrzc1BTlIvXdbIvMRyNoX0ogJoide1HTLKYDLh8aTF2HO/nKIx5eOV4P8JRifemudR0smvry1Bf4cR3/ngKYa4mEhER0SQZSRKFEA0Argbw7amPSSl7pZRHpZQxKeVZAP8P8RJTABgFMLX2ygnAN8PHJ1/nASnlBinlBpdL/eWZwXAUe88M4koNjL6Y6rK6+L5EPTTV6BweQzQmVde0ZrJty0vQ7QnqbnRJKr3Q1AuXw4p11ZlrQCWEwGeuXoa2wQCeeHPqvTsiIiLSs0ytJF4FoAZAuxCiF8DnAdwqhHhzmufKSXGdBGASQiyd9PhaAM2JPzcn/g4AEELUArAmjtO0vWeHEIpoY/TFVJtqi+ALRtDcPXWRWHvU2tl0suS/QZaczs3YeBQ7Tgzg2vrStIy9OJ93ryzB2qp8fOfl0xiPcDWRiIiI4jKVJD4AoA7xstIGAD8A8ByAa4UQ24QQi0RcNYBvAHgaAKSUfgBPALhPCJEnhNgCYDuAhxLnfQTAjUKIKxL7GO8D8ISU8h0riVpzsH0YQgAXL1L/6IupLqoqAACc0sHK1BkNJIll+TasLHdyXuIc7Tw1gLFwFO+tL8/4tYUQ+Mw1y9A1MobH93dk/PpERESUnTKSJEopA4my0l4pZS/iZaJBKeUAgHUAdgPwJ/57BMDfTjr8HgA5APoBPAbgbillc+K8zQDuQjxZ7Ed8L+I9mfialHa404OlJXbYrSalQ0m5YrsFADDoDykcSfq1uv1w2EwozLMoHcq8bFvuwv62YXiDYaVDUZ0Xm3qRn2PGpbXKjHi9cpkLGxYtwHdePgXPGF8/IiIiUmZOIqSU90opP5L4839JKSullLlSymop5d9OXgmUUg5JKW+WUuZJKRdKKR+dcq5HE5/Pk1Jul1IOZfrryTQpJQ51jGBtYsVNa+xWE6wmA9yj40qHknatg34sVun4i8m2rShBNCax65Rb6VBUZTwSw0vH+nD1ylKYjYr8OIYQAvfeVI8h/zi+8fwxRWIgIiKi7KLMuxKal87hMQz6x3FRtTaTRCEEiu1WuH3aX0k8M+BXdalp0rrqAjhtJu5LnKXXzwzCG4xktKvpdFZX5uPjly/GY/s6dDV+hoiIiKbHJFGFDnWOAAAaNLqSCMRLTgdGtZ0kBsNRdHvGVDv+YjKT0YArlrnwyokBjsKYhReae5FrMeKKpcVKh4K/v3oZFhbm4stPHkEwHFU6HCIiIlIQk0QVOtzpgcVkwPKyd4yD1IxiuxWDGi83bR8KQEp1N62ZbNvyEgz4QmjunjralKYTjUn8obkP25aXwGY2Kh0OcixG/Pv71uCs24/vvHxK6XCIiIhIQUwSVaixYwSryp2wmLT78hXbrXBrfCXxrAY6m06WnNn5R3Y5nZE324fhHg3hWoVLTSfbsqQYH7i4Cj/ceQZHmewTERHplvZaY2pcJBrDkU4PPrSxWulQ0qrYYcGgfxyxmMz47LhMSc5IrNFIkuhyWLGpthC/3NeOu6+qU6wRi1q80NQLi9GAbctdSofyNv94w0q8cqIf//DEYTxx92aY+DoSERGd15mBUfzxeD9CkRhCkRjC0RjGIzFYTAasKHNgVbkTi4vzVPU7lUmiypweGMVYOIq11flKh5JWRXlWRGMSnrEwFqh8PMS5nHX7UZhnQX6OWelQUuYTV9Tir36xH78/0oPtDZVKh5PVdp1249LaQjhs2fX6F+RacO9N9fj0owfxs12t+MTWWqVDIiIiykrjkRh+8GoL/vePpzEejU183mI0wGIyIBSJIhyN92qwJraKbawpxKe3Lcn697dMElXmcIcHADQ7/iKp2GEFALhHQ1n/TTRXZ93a6Gw62bblJahz5eGHr57BTWsrVD/aI11GQxGc6PPh2vrsKTWd7IY15fjVsk78cGcLPn7FYr6OREREUxxoG8I//PYITvWP4sa1FfjSdStQZLfAYjRM/N4MR2NoGRjFsR4vjnZ7cbTHi1/sbsVTB7vwTzeuyur3SupZ8yQAQGPnCBw2kyY6Yp5PsT2eGGq5w2nroF9zr6PBIPDJrbU42uPFrtMcpXAuhztHICXQsDA7b/YIIXDd6jK4R8cn9s4SERFR/EbvV546glu/vweB8Sh+9rGN+O5t61BRkAOryfi2pM9sNGBFmRO3rKvCP96wCo98fBOe/ZvLUVWYi7/7ZSM+9rM30DEUUPCrOTcmiSpzqGMEa6sKNLtPL6nYnlxJ1GaHU38ogj5vCIuLc5UOJeW2N1Si2G7FA386o3QoWauxI/vH2GysWQAA2N86rHAkRERE2ePeZ5rx6N52/OWWxfjDZ7Zi24qSWR2/styJJ+7ejH++cRXeaB3Ce769Ez/fdTZN0c4dk0QVCYajON7r0/x+ROCtJHFQoyuJrYPJzqZ2hSNJPZvZiL/YUoOdJwdwrIcdMqfT2D6CmqLcrC6lrnPZsSDXjP1tQ0qHQkRElBU6hwN46mAXPrZ5Mf7pxlXIs85t557RIPAXWxbj/z57JTbVFuLeZ4/iV290pDja+WGSqCLN3V5EYxIXZfHqQ6oU5JhhNAjNjsFodcdLC2o0uJIIAHdcuhC5FiN+xNXEd5BS4mDHCNYtXKB0KMnIF7IAACAASURBVOclhMDFixZwJZGIiCjhRzvPQAjgE1sXp+R8lQU5+NGdG3DF0mJ85akmHGzPnt+5TBJV5FCyRK1a+0miwSBQmGeB26fNctOz7lEA0NyexKSCXAs+uKEazzR2o8czpnQ4WaXbE8SAL6SK7+MNNYU44/Zr9mYNERHRTLlHQ/jlGx24ZV0lyvNzUnZek9GA7962DmX5Ntz18AH0e4MpO/d8MElUkUOdIyhz2lDqtCkdSkYU260Y9GvzzelZdwClTuucyxTU4K8uXwwJ4Oe7WpUOJas0tqvnZk9yX+KBtuy5s0lERKSEn+06i/FoDJ+6si7l5y7IteCBOy+GdyyCux4+gFAkmvJrzBaTRBU53OnRxX7EpGK7BQMabVyjxc6mU1UX5uL6NeV4dG87fMGw0uFkjYPtw7CYDFhZ7lQ6lAtaXZkPi8mA/a3cl0hERPrlC4bx4J42XLe6DHWu9PSTWFHmxH9+cC3ebB/Bvc8cTcs1ZoNJokqMBOKt6PWwHzGp2G6F26fVlUQ/al3aThIB4JNX1MIXiuDxLNuMraTGjhGsrnDCYsr+H79WkxFrq/LxBvclEhGRjj38ejt8wQjuuWpJWq9z/Zpy/PW2Ojy2rx2P7G1L67UuJPvfpRCA+CoioI4StVQptlsw6A9BSql0KCnlGQtjyD+u+ZVEAFhTlY/lpQ7sOu1WOpSsEI7GcKTLg4bq7G5aM9mGmkI0dXkwNq586QsREVGmBcNR/OS1s7hiaTFWV6a/ou+z1yzHtuUu3PtMM9oGlZtVzCRRJZJNa9ZU6anc1IpgOAa/xt6ctiaGk9cUaz9JBID6CieOchQGAOBErw+hSAwNC9Vzs2djzQJEYhKHOkeUDoWIiCjjfn2gE+7REO6+KvV7EadjNAj8x60XwWQw4JsvnMjINafDJFElDnV6UOfKg9NmVjqUjEnOStRayenZRJJYq5MkcWW5E33ekGZnXs5GsrX1OhVVBKxPjOrgvkQiItKbSDSGB3a2oKG6AJfVFmXsuiVOGz51ZS2eO9KjWPM4JokqIKVEY8cI1upoPyIAFNnjg8a11n7/rNsPIeKNXfRgVUW8QcuxHp/CkSjvYMcIiu0WVC1IXevsdCvItWBZqZ37EomISHd+d7gHHUNjuOeqOgghMnrtT26tRYnDin997qgiW6+YJKpAjycI92gIa1W0+pAKEyuJGutwetbtR0V+Dmxmo9KhZESyi+cxlpyisWMEDdUFGf9FM18bagrxZvswojFt7Q8mIiI6l3A0hv9+6SRWlDlw9crSjF8/12LC59+zHAfbR/D7I70Zvz6TRBVINq25SEf7EQHA5UgmidpaSWwd1Edn06TCPAvKnDbdJ4meQBhnBvxYt1A9TWuSNtYsgC8Ywck+rgYTEZE+/Gp/B1oHA/jCtcthMChzc/fWi6uwosyB/3jheMZnJzJJVIFTiTdmy0odCkeSWYV52is3lVLirFv7MxKnWlnu0H3zmsZE4xc1dijesKgQAPclEhGRPoyNR/E/L53ChkUL8K4VJYrFYTQIfPn6lWgfCuChPZkdicEkUQVO9o+iakEO8qwmpUPJKLPRgIJcMwY1VG46HAjDF4xgUZE+9iMmrSx34nT/aMbvgmWTxvYRCKHOioCqBTkodVqxX6HN80RERJn0892t6PeF8MXrVii+RWTrMhe2LnPhu388jZFA5t4TM0lUgVN9PiwtsSsdhiKK7VZNrSR2DAUAAAt10rQmaVWFE5GYxKm+UaVDUUxjxzCWltjhUGGHYiEENtQUYj+b1xARkcZ5AmF8f8dpvGtFCTbWFCodDgDgy9evgC8Yxnf/eDpj12SSmOUi0RjODPh1V2qaVJRn0VaSOBxPEvXS2TRJ781rkh2K1VhqmrRx0QJ0jYyhe2RM6VCIiIjS5vuvtsAXiuAL1y5XOpQJK8qc+OCGavxidyt2t7gzck0miVmufSiA8WgMS/S6kuiwaqq7afuQPpPEmqI85JiNuh2D0TYYwHAgjIZq9TWtSdqQuJvKklMiItKqXk8QP9t1Fjc3VE7c4M4WX7p+JRYX5+Guhw7gdH/6K7OYJGa5U4l/BEt1upLo0ly56RgW5Jph19n+UqNBYHmZA0d7PEqHoojGDvU2rUlaUeZAnsXI5jVERKRZ3/njKcSkxGevWaZ0KO+Qn2PGTz+2ERaTAX/x830YTPP7YyaJWS7Z2VS3K4l2C3zBCIJhbTQ86RwO6G4VMWlluRPHenyKDIRVWmPHCHItRiwrVe/3sclowPpFC7DrtBsxzkskIiKNOTMwisff6MAdly7K2vdq1YW5+PGfb0S/N4RPPLg/re+PmSRmuVP9o6gsyNHdylNSkT0+K3HQr42S046hAKoXZOcPnnRbVeGEZyyMbk9Q6VAyrrFjBKsr82EyqvtH7vaGSrQM+PHs4W6lQyEiIkqpH/3pLCxGA/562xKlQzmvhuoC/PeHGnCwYwSf+/WhtN24Vfc7Fh042TeKpSpefZiv4mSSqIGS02hMomtkDFWFOUqHoohV5fGS6WPd+mpeE4nGcKzHizWV6ht9MdX71lWivsKJ/3j+uGZW94mIiCLRGF5s7sU1q0rhcliVDueCrltTji9dtwLPHe7Bt/5wIi3XYJKYxaIxiZaBUd2OvwDi5aYANLEvsc8bRDgqdbuSuLzMCSH01+G0ZcCPUCSG1ZXZtQF+LgwGga/csArdniB+8tpZpcMhIiJKiX2tQxjyj+O61WVKhzJjn7iiFu+/uArff7UFQ2mouGOSmMXahwIYj8R027QGeGsl0e1Tf7lph047mybZrSYsKszFUZ0lic3d8WY9qyvUv5IIAJfVFeE9q0px/yun0e/TX+kwERFpz/NHemEzG3DlcpfSocyYEAI3N1RCyvTcgGeSmMWSTWv0vZIYTxIHNLCS2DEcny9XvUCf5aZAfF+i3lYSm7q8sJkNqHVp5/v4S9evxHg0hv/6w0mlQyEiIpqXWEziheZebFteglyLunqArExu5WGSqC96H38BADkWI/IsRgxqYFZix1AAQgCVOk4SV5Y50ToYwGgoonQoGdPU7cGqcieMBqF0KCmzuDgPd15Wg8f3d+CozvaYEhGRthxoH8aAL4T3qqjUNKnIbkWJw5qWKi0miVnsVJ8PFfk23XY2TSrSyKzEjuEASh02WE1GpUNRTHIw7YlefSQWsZjE0W4vVmugac1Uf/uupcjPMeNfnzuqy7EmRESkDc8f6YXFZMC7VpQoHcqcrKpwpuWGLZPELHaqfxRLdLyKmFRst2giSewcGkO1TjubJq2qiCeJR3t8CkeSGW1D8VVTrexHnCw/14y/f/dS7G4ZxMvH+pUOh4iIaNaklHihqQdblxbDYTMrHc6crCx3omVgFOORWErPyyQxS0VjEqf7R7FMx/sRk4rtVm2Umw7rd0ZiUnm+Dfk5Zt2UKDZ1xZvW1Gugs+l07ti0CLWuvLS13yYiIkqnQ50edHuCeO/qcqVDmbNV5U6EoxKn+lN7A55JYpbqHA4gFInpekZiUrFD/eWmoUgUvd4gqnTa2TRJCIFV5fppXtPU7YHZKLC0RJsVAWajAe+/uArHe30YCaj/Rg4REenL8009MBkErllZqnQoc5bcynMsxVVaTBKz1Kk+Nq1JKs6zYCgwjkg0tcvomdQ9EoSU+u5smrSy3InjvV5EY9rfx3a024vlZQ5YTNr9Ubu2qgAAcLjTo3AkREREMyelxPNHerF5STHyc9VZagrEm8nZzIaUV2lp952Lyp1MLBkvYbkpih1WSAkMqXilQu8zEidbWe5AMBxD66Bf6VDSSkqJpi6PJvcjTpZsynO4c0ThSIiIiGbuaI8X7UMBXK/CrqaTGQ0Cy8tSX6XFJDFLne4bRXm+DU6VbqJNpeSsRDXvS+wYZpKYlGxeo/WS025PEMOBMOo12Nl0svwcM2pdeWjs4EoiERGpxwtNvTAI4JpV6i01TVpV7sCxXm9Ku40zScxSJ/t9XEVMKMqzAICq9yV2DI3BbBQoc9qUDkVxS0rsMBmE5pvXJJvWrK7QZtOaydZWFeBQ5whHYRARkWr8/kgPNtUWoSixGKFmq8qdGAmE0eMJpuycTBKzUCzZ2ZT7EQHEy00BlSeJwwFUFORoaqD6XFlNRiwszEVbogRXq5q7PDAaxMSGci1bW5WPAV8Ivd7U/XIiIiJKl1N9PrQM+HGdyktNk95qXpO6G/BMErNQ5/AYguEYlnIlEYA2yk07hzj+YrISpxX9Gk8omrq9WOKyw2Y2Kh1K2l1UHW9ec4glp0REpAIvNPVCCODaem0kiSsSSWIqq7SYJGah5JwTjr+Ic9pMsBgNGFD1SuIYqgvZ2TSp1GlDn1e9r+dMNHV5NDsfcapV5U6YDAKH2LyGiIhUYF/rEFaWOVGikW1AdqsJi4pycayXSaKmneqPj79YotHZarMlhECR3QK3T50rif5QBEP+cTatmaTUaUO/L6jZPWz9viD6fSHNdzZNspmNWFHuYIdTIiLKerGYRGPHCBoWFigdSkqtKndyJVHrTvb5UOq0Ij+HnU2Tiu1W1e5JnOhsynLTCSUOK4LhGLzBiNKhpEVz4od0vQ6a1iStrSrA4Q4PYjqYf0lEROp1xu2HLxhBQ7W2ksSV5U60DQXgD6XmvRWTxCzEpjXvVGy3YNCv0iRxaAwAx19Mlizv0Oq+xOZEZ9NVOksSfaEIzmp8/iUREalbY0e86mWdBpNEKYHjvb6UnI9JYpaJxSRO9Y1y/MUURXarastNO4aSK4nck5hUmuhYq9V9iU1dXiwuzoNDR3NO1yZ+2bLklIiIslljxzAcVhPqXNp6r528MX00RR1OmSRmma6RMYyFo1xJnKLYbsWgP6TKPWwdwwHkWowoTMx7pPieRCC+d0+Lmro9uio1BeLzL3MtRnY4JSKirNbYMYKLqvNh0NhYsop8G5w2U8rGYDBJzDKnJ5rWaOvuxnwV2y0IRyW8Y+rbw9YxNIbqBbkQQls/jOajxKndlcSRwDg6h8ewulIfTWuSjAaB1RX57HBKRERZKxiO4niPT3P7EYF4o8dVFalrXsMkMcu0J0oTa4ryFI4kuyRnJapxDEbncIDjL6bItZjgsJrQp8E9icmmNXrpbDrZ2up8NHd7MR6JKR0KERHROzR1eRCJSTRUL1A6lLRYWe7EiV4foiloIsckMct0DgdgNRlQbGdp4mTJJFFtHU6llOgYCqCKnU3focRp1WS5aXN3vNxSb+WmAHBRVQHGIzGc7EvNpnkiIqJUSjat0eJKIhAfgzEWjqItBU3kmCRmma6RMVQuyGFp4hTFjnjSrLYkcTgQhn88ys6m0yh12jRZbtrU5UVlQQ4W6HAPavKXbvKXMBERUTY52DGCyoIcuBIN9LRmZXnqmtcwScwyncNjXHWahiu5kuhTV1LBzqbnVuq0aXIl8WSfDyvK9Nl4qmpBDhbkmtnhlIiIslJj+wgaFmpzFREAlpbaYTKIlDSvYZKYZbqGx1BZwIRiqgW5FhgNQnV7EjuGE0kiVxLfocRhRZ9XnR1rzyUWk2gd9GNxsT73FAshsLa6gB1OiYgo6wz4QugaGdPcfMTJrCYjlpTYU9K8JuNJohBiqRAiKIR4eNLnbhdCtAkh/EKIp4QQhZMeKxRCPJl4rE0IcfuU853zWLUJjEcw6B9HFVed3sFgECi2WzCgupXEMQBMEqdT4rRhPBKDZyysdCgp0+sNIhiOYbFLn0kiEN+XeKrfB39IfZ2IiYhIu7S+HzFpZbkTx3rm3xtAiZXE7wF4I/kXIUQ9gB8C+CiAUgABAPdPef544rE7AHw/ccxMjlWV7pF4QsEkcXouh1V9SeJwAAtyzbBbTUqHknVKNTgGo9Ud3yi+WMfdiRuq8xGT8Q5yRERE2aKxYxgmg9D8iKrlZQ70eoPwBud3Ez6jSaIQ4sMARgC8POnTdwB4Vkq5U0o5CuCrAN4nhHAIIfIA3Argq1LKUSnlawCeQTwpPO+xmfqaUqljmEni+bjsVvWVmw4FuIp4DqVOGwBoal/i2UQ3sRqdlpsC8ZVEADjcySSRiIiyR2PHCFaUO2AzG5UOJa3K8+Pvr+a7sJKxJFEI4QRwH4DPTnmoHsCh5F+klC2IrxwuS3xEpJQnJz3/UOKYCx2rOl2JJLGygEnFdFS5kjgUQDUbEU2rxKG9lcSzA37YzAaUJRJgPSq2W1FZkINGNq8hIqIsEYtJHO7waL7UFHir2aNqkkQA/wLgJ1LKzimftwOYesvZA8CReGzqzsvkYxc69m2EEJ8UQuwXQuwfGBiYQ/jp1zk8BrNRTLx5prdzOaxwj44jloIBoZkQjUl0jYyhqpArw9MpccQTqT6vdlYSWwf9qCnKg8Gg7xE2a6vzcYQriURElCVaBkbhC0XQUL1A6VDSLjneQxVJohCiAcDVAL49zcOjAKZOnXYC8F3gsQsd+zZSygeklBuklBtcLtfsvoAM6RoZQ0VBju7fYJ5Lsd2KaExiODCudCgzMjgaQjgq2a32HHIsRjhtJvRrKEk8444niXq3qCgPPZ4x1dzQISIibTuok6Y1QOqSxEx107gKQA2A9sSQeDsAoxBiFYAXAKxNPlEIUQvACuAkgBgAkxBiqZTyVOIpawE0J/7cfJ5jVadzOMD9iOcx8Y9+NIQie/avtvYnvjmTK2b0TvFZidooN41EY+gYCuDa+jKlQ1FcqcOKcDR+Q0cN36tERKRtjR0jcNhMqNVBz4D8HDPMxvmPjctUuekDAOoANCQ+fgDgOQDXAngEwI1CiCsSjWruA/CElNInpfQDeALAfUKIPCHEFgDbATyUOO85j83Q15VSnJF4fqmqsc6UZEOWEiffJJ9LidOqmXLT7pEgwlGp686mScmmRL0aeW2JiEjdGttH0FBdoItqPSFEvNmjGspNpZQBKWVv8gPxMtGglHJAStkM4C7EE75+xPcT3jPp8HsA5CQeewzA3YljMINjVSMYjqLfF0IVm5ycU3Il0a2SDqf93uRKIpPEcyl12DTTuOaMexQAdD0jMak00VmtXyOvLRERqdfYeBQn+ny6KDVNSkWzR0WGt0kp753y90cBPHqO5w4BuPk85zrnsWrS44nfcedK4rmlqsY6U5JllC4miedU4rSh3xeElBKJUnTVSs5I5J7Et1YStbJKTERE6nWky4NoTOouSewemd/v4IzOSaRz6xwOAOCMxPOxW02wmQ0qShKDKMg1w2rS9jye+Sh1JveuzW/gazZoHQzAbjWh2G5ROhTFJUvDtbJKTERE6tXYMQxAH01rklyO+c8WZ5KYJToTMxKrOHj9nIQQqpqV2O8NTbxZpuklV5yS+zfV7Izbj8XFeapfEU0Fi8mAojwL+jTwuhIRkbod6vSgakGOrhqpuexWDI6GEJ1Hl3EmiVmia3gMRoNAKUsTz8tln/+dkUwZGA2xac0FJPdramHFqdXtR40OuqbNVInTpqnxJkREpE5Hu71YXZGvdBgZ5XJYEZPAkH/uY+OYJGaJzuEAyvNtMBn5kpyP2lYSOf7i/LSyd208EkPncACLi1gJkFTqtLK7KRERKcoXDOOs24/VlVPHqmtbKvp4MCPJEl0jHH8xE2pJEqWUGPCF2Nn0ApI/xNS+4tQ+FEBMsrPpZFrqXEtEROp0tNsLAKjX4UoigHlV3zFJzBKdw2McfzEDLrsNw4EwxiMxpUM5L89YGOPRGDubXoDNbERBrnmiE6xasbPpO5Xm2+AeDSESze7vVSIi0q7mZJKot5VEe7xSiyuJKjceiaHPG0QlO5teUDLpGvRnd1KRTHpKnCw3vZASh1X15aZnE0niYu5JnFDqtEJKwD069/0QRERE89HU7UGJw6q77T/FjnindSaJKtfrCSImOf5iJtQyKzE5RJzlphdW6lR/WeLZQT8W5JpRkMvxF0mlDm3sNyUiIvU62u1FfYW+VhEBINdigt1qYpKodp0jiRmJ3JN4QapJEhOt/5kkXliJQ/1dMNnZ9J200pSIiIjUKRiO4lT/KFZX6ms/YtJ8ZyUyScwCEzMSuSfxgtSTJLLcdKZKnVb0+0KIzWOWj9LOuv1YzP2Ib1OaGP/Sl+Xfq0REpE3He32IxqQuVxKBxNi4ecwrZpKYBbqGxyAEUJbPhOJCiu3zr7HOhH5vCLkWI+xWk9KhZL0ShxWRmMRwQJ1718bGo+jxBLkfcYoiuxVGg0CfhyuJRESUec3dHgD662yaNN+JAEwSs0Dn8BjKnDZYTHw5LsRqMiI/xzyv5fNM6PcFWWo6Q2+VJWb3a3ourYOJzqZMEt/GaBBw2dXflIiIiNSpqcuL/Byzbnt+MEnUgK6RAGckzoIaZiX2+0K666Q1V8mS3L55lEQoqZWdTc+p1GlluSkRESniaLcH9RVOCCGUDkURLocV3mAEwXB0TsczScwC8RmJTBJnKl5jnd1vPAd8IbicXEmcieTeNbU2rznLlcRzKnGqvykRERGpTzgaw7Fen26b1gDx98sA4J5j9R2TRIVFojH0ejgjcTZcDuuc/8FnSr+X5aYzlWxG1K/SctOzA364HFbuP51GqZPlpkRElHmn+0cxHonptmkNMP9mj0wSFdbnCyESk+xsOgvZXm7qD0XgH4+y3HSGrCYjFuSa1VtuOuhnqek5lDpsGA6EEYrMrdSFiIhoLpq7vQD027QGYJKoel0T4y+4kjhTLocV/vEo/KGI0qFMK/nNyJXEmSt12lTbuIbjL84t2ZRIravERESkTk1dHuSYjbq+iTuRJLLcVJ06hwMAwMY1szDfGut0e2tGIpPEmVLr3jVfMAz36Dj3I55D8nuAJadERJRJR7u9WFXhhNGgz6Y1AFCYZ4EQXElUreRKYgWTxBmb7/J5uvUnyiZdXEmcsVKHdSK5VpNWd/wmj57vVJ5PcvarWleJiYhIfWIxieZuD1breD8iAJiNBhTmWpgkqlXn8BhcDitsZqPSoahGsT3Lk0RvstyUexJnqsQZTxJjMal0KLNyxj0KgEniuZQ6kkkiVxKJiCgzWgf98I9Hdb0fMWk+fTyYJCqsa4TjL2ZrvjXW6dbvC8FsFFiQa1Y6FNUoddoQjUkM+seVDmVWkiuJi4rYeGo6BblmWIwG1TYlIiIi9ZloWlOp75VEIJEkck+iOnUOB7gfcZYK8ywwzKPGOt36fUG47FbdDm+dixKVrji1DvpRWZDDSoBzEELEV4lZbkpERBnS1O2B2SiwtMShdCiKm89scSaJCorFJLpHghx/MUtGg0DRPP7Rp9uALwSXk6Wms1GaaHDSr7IVp9ZBP1cRLyDeuVZdrysREanX0W4vlpc5YDExzUmWm0o5++08/L+noIHREMajMVSy3HTW5nNnJN36vSGOv5ilEpWOSujzBCeas9D0Sp1WJokAxiMx/Pvvj+GKb/4RX3riMHafdiOqsj24RJQddre48b77d+Hzvz6kdChZR0qJpi4PVnM/IoB4khiKxOCbw9g4UxrioRnq5IzEOZtPjXW69fuC2FCzQOkwVCU51kRNXTBjMYl+XwhlXDU+rxKHDTtPupUOQ1EdQwF8+rGDONQxgksWF+Lpxm48tq8DLocVN6wpx63rq7Cmim9oiOj8Tvf78I3nj+OlY/3IsxjxZvsIrl5ZiveuLlM6tKzR7QliOBBGvc47myZNngjgtM2uVwaTRAV1jcSTRO5JnD2Xw4qTfT6lw3iH8UgMw4EwO5vOksVkQFGeRVUNTtz+ECIxyZXECyjLt2E0FMFoKAK7VX+/cp4/0oP/99vDgATuv2M9rl9TjrHxKF450Y9nD3Xj0X3teHBPK35792asW8ibS0T0ToOjIXz7pZN4bF8Hcs1GfPG9K/DRyxbh/d/fjXufacaWJUVwzDIB0KrmLg8AoL6SN96At27CD/hCqHPZZ3XseX9jCyEeAnDBehgp5Z2zuioBiJeqAeCbzDlwOaxwj8ZHJhiyaFBqcnUzOUScZq7EaUO/isoS+zzx17qUK4nnNbHf1BuEfZa/oNQsFIni688dw4N72rC2ugD/e9s6VBfG96/mWIy4fk05rl9TjmH/ON77Pzvxlaea8MynL9f14GcieicpJT72szdwtMeLOy5diL9791IUJd74f+PWi3DL/bvwrRdP4GvbVyscaXZo6vbCIICVZVxJBOY3W/xCexJPA2hJfHgA3AzACKAzcex2ACOzvioBiHdyzDEb4dDh3fX5ctmtCEclPGNhpUN5m2SSwz2Js1fiiM9KVIvexGvNctPze2tWonpe21S4/5UWPLinDZ+4YjF+/anLJhLEqRbkWfDVP1uF5m4vHn69LcNRElG2e7N9BEe6PLj3pnrct331RIIIAA3VBbhz0yI8+HobDrYPKxhl9jjd78OiojzkWNh1HEhjkiil/FryA8AyADdIKe+QUn5ZSvkRADcAWD77kAkA+nwhlDo5KmEusnVWYjLJYbnp7KmtwclEkshKgPOaaEqkolLi+RqPxPDI3na8e0UJ/vGGVRfssHfDmnJcsbQY33rxhK7+PxHRhT2ytw12qwm3rKuc9vHPX7scpQ4bvvTEEYSjsQxHl33ahwJYeI6bcnqUn2OG2Sjm9H55Nt1NNwF4fcrn9gK4bNZXJQDxlcQSrkLMSTJJdGfZytNEkshy01krddow4AuppuNjnycIo0Gg2M7X+nyS5aZqugEwX8839cA9GsKdm2tm9HwhBL52Uz1CkRj+7blj6Q2OiFRjJDCO3x3uwc3rKs65p9thM+Nr2+txvNeHH//pbIYjzD7tg0wSJxNCzHkiwGySxIMA/k0IkZO4aA6ArwNonPVVCUC8NJGlanOTrSuJA94ghACK8ixKh6I6JU4bYjK+QV8Ner1BuOxW7iG7ALvVhFyLEb0edbyuqfDQnjbUFOXiiiXFMz6m1mXHXVfW4qnGbuxu0Xc3WCKK+82BToxHYrj9kkXnfd619WV4z6pS/M/LJ9E+AeO7GwAAIABJREFUGMhQdNnHEwjDG4xwfvEUyVmJszWbJPFjALYA8Agh+hDfo3g5ADatmQMpJfq8oYm77DQ786mxTqeB0RCK8qwwGTmCdLZKHeoag9HnDaKUpaYXJIRAqdOmqs6189Hc7cH+tmF8ZNOiWTfVumfbElQX5uCrTzVhPMKyMSI9k1Li0b3tWL+wAKtmMM7ha9vrYTIY8Fe/eAMH2vS5P7FtyA8A59wDrldpTxKllK1Sys0AlgC4CcASKeVmKWXrrK9K8IUiGAtH2RlxjhxWE6wmQ9Ylif3eEJvWzJHa9q71eoIo402eGSl1WlXVuXY+HtrThhyzER+4uHrWx9rMRtx302q0DPjx49fOpCE6IlKLPWcGccbtxx2Xnn8VMak8Pwffu2M9fMEIbv3+bnzxN4cx5B9Pc5TZpX0ovorKctO3m+ts8Vkvd0gp2wHsA9AphDAIIbhkMgcTXTCZJM6JEGLOd0bSqd8X4n7EOXpr71p2vabn0sty8RkrddpU87rOhycQxlONXbh5XQXyc+c2s2zbihJcW1+K77x8SjeJNRG90yN721GQa8YNF5XP+Jgrl7nw8ueuxKe21uK3b3biXf+5A7/c146YSvb6zxeTxOm57FYMjs6+58OMEzwhRIUQ4kkhxCCACIDwpA+apeQbplKuOs3ZXO+MpFO/LzgxuJRmp9huhRDqaHASGI/AF4yw3HSG4kliEFJq+43Krw90IBiO4aObauZ1ni9fvxLjkRh+9CeuJhLp0YAvhBebevH+9VWwmWc3yiHPasKXrl+J5/72CiwrceAfnjiCL/72cJoizS7tgwEU2y3I42i5t3E5rIhJzHpleTargD8EMA7g3QBGAawH8AyAu2Z1RQIQL1UDOIh7PubarSldojEJ9+g4VxLnyGw0oCjPqopy0+T3L1cSZ6bEYUUoEoN3LKJ0KGkTi0k89HobNtYsmNH+ofNZVJSH7Q2VePj1dt2VixER8Kv9HYjEJG67dOGcz7G8zIHHP7UJt1+6EE8e7NLFz5L2oQD3I05jrn08ZpMkbgbwl1LKRgBSSnkIwF8B+NysrkgAMNHEgQnF3GVbuemQfxzRmOSMxHkocVjRr4KyxIkZiUwSZyR5M0zLzWtePTWAtsEA7rysJiXnu+eqOgQjUfz0Nba0J9KTaEzisX3t2FxXhDqXfV7nEkLgo5sWIRKT+N3h7hRFmL3ahwJYxCTxHeY6EWA2SWIU8TJTABgRQrgA+AFMP92TzqvfG4LDZkKuhUvic+VyWDEUGM+a4bHJFTA2rpm7UqdVFYlEsiSW5aYzk0wSkyuwWvTg7la4HFZcW1+WkvMtLXXgutVl+MXuVnjGuKuDSC92nhpA5/DYjBvWXMjKcidWlDnwxJtdKTlfthqPxNA9Msb9iNNw2eO/g9O5krgXwPWJP78I4HEATwDYP6srEoBE+3yuQsyLy2GFnEONdbr0J775uDo8d2ppcJKc+cfv4Zl5qymRNpPEtkE/dpwcwO2XLITFlLpebn+9bQl8oQge3N2asnMSUXZ75PU2FNutuGZVacrO+b71lWjsGMGZgdGUnTPbdI+MISY5/mI6xY747O50JokfBfBq4s9/D+AVAE0Abp/VFQlAMklkMjEfyQYx2VJyOpBIblhuOnclThvcoyFEsmR1+Fz6vEHYrSbYuTl+Rkonxptkx/dqqv3ucA+kBG6fx/6h6dRX5OPdK0rwk11n4Q9pdz8nEcV1DAXw8vF+fHhjdUpvOG1vqIRBAE8d1O5qYrKz6aKiPIUjyT65lvj7lbQliVLKESnlUOLPY1LKf5FS/n/27jy8zbPKG//31m7ttmXZlvclq90szdq00JbSBei0tEBLYYBSBjoF5jcsA7zDDMsLww868w4wzFtm2AtlK2UoOwUKbWmzJ03TJI0d77skW7K1Wvv9/iHJMSGJJevZZJ3PdeW6Umt57lSW9JznnPucj3DOZ4pcK0G2uyllIUqz2o24YsmXm9ZRuemqOXPZYZ9CssOXQhd5imPQqmGr0q7ZTOLZmSBaaqpE+Ux/zyu6sRBN4nuHxwR/bkKIsnz30BhUjOHNe4W94FRvNeDqbgcef2FqzXaZHqPxF5e1mokAxYzA0DLG/jdjbIQxFmOMDef+W1f0Sisc5xzeEJWblqohtx9sOrAo80qyvKE4rAZN0e2qyXlLDU4UHky4g7Gl3z9SmHqrXvGv62r1uUPY2FBaR9NLubK1Gtd0O/DVP40glkyLcgxCiPwWE2n88OgEbulpQKOtSvDnv2N7Eyb8izg2Ni/4cyvBhD8KnUZFfSEuITsRoLjv4GJy2f8K4JUA7gewFdnRF68A8GBRRySYjyaRTHOakViieosBOo0K476o3EsBkG1G5KTAvyTn964pIzt8KZ4AXeQpVrnsNy1WLJnG8GwYmxosoh3jva/oxlw4jkePToh2DEKIvH72whQCi0m89SphGtZc6OaeBlRp1fjJ85OiPL/cxn1RtFRXQaVici9FkVYzEaCYIPENAG7jnP+Oc97POf8dgDsA3FXUEcn5zoh0klkSlYqhtcaIUV9E7qUAyJab0hWs0pRDJjGT4fCG4jT+okhOi0HRr+tqDXrDyHBgY6M4mUQA2NNRg13t1fjvZ4Yom0jIGsQ5x8MHRrGxwYLdHTWiHMOk1+CW3gb88sWZNfk5MuaP0n7EyxA7SLxUaE4he5HyM9Yo61S69lojxpSSSQzFKUgsUa1JB8YAr4KDiblIHKkMp3LTIjXY9PCG4khn1tZ+mLMzQQDARhEziYwxfODGDZgJxPC53/SJdhxCiDyOjs6jzx3CvfvawZh4p9V3bG9CKJbCH/u8oh1DDpxzTPijtB/xMuosegRjqaIuEBQTJD4G4BeMsZsZY5sYY7cA+Gnu56QI3qVMIgUUpWqtMWHcH5V9IzbnHLMhKjctlUatgsOsV3QXTA+Nv1iVBqsB6QyHr8iN80rX5w7BoFWJfgX7qq5a3LuvHQ8fGMWzA7OiHosQIq1vHxiFrUqL27eJO3r86m4HnBb9mpuZOB9NIhxP0fiLy8gnMYqp6CkmSPwwgCcBPATgOID/RHYMxoeKeA6C8/utqAtm6dpqjYgm0kV3bBJaMJZCPJWhTKIAlN7gJF8JQOWmxWnINWKYCSj3tV2NPncQG+otUEuwD+Z/vWoj1jnN+IfHTmIhquwOwISQwswEFvHEGTfu3tWCKp24je/UKobbt7nwdL9XMTOmhTCW23bURkHiJTXZs9/BUwuFN3u8bJDIGHtF/g+AawA8DeBdAP4K2QY2T+V+TorgCcZQY9JBr6EumKVqq81+IMhdcuqhEmLB1FuU3eBkKUikctOi5INqt4IvAKxGv4idTS9k0Krxhbu3wR9J4J8eP11QBUUmw/HQU4PY+///Afd89RA+95s+PHF6BjMK6QpNSKX7/uFxZDjHW/aK07DmQndsb0Yqw/HLF6clOZ4U8jMSW2spSLyUxlyQOLNQ+HfwSpOgv3GJn+e/mVju750FH5HAE6S9a0LJl3iN+aLY1S7OZu9CuAOUXRKK02rAyckFuZdxSZ5ADGoVg8NM7+Fi5INq9xrKJM6G4pgLJ7BBxP2IF+ptsuH9N67Hvz7RjxtOOHHnlc2XvO9CNIEP/Ogk/tjnxVWdtYgkUvjGc8NIprNf4V11JvzwXVdRVQshMomn0vjBkXHcsNEpWankZpcV6+vNeOK0G2+9ql2SY4ptIhcktlRTkHgpjfmxcUVkEi8bJHLOO0pbErkYmpEonCZ7FdQqhnGZO5x6qARRME6LHr5IAsl0Blp1MRXx0nAHY6gz6yUpL1xLak06aNVsTWUS+9y5pjWN0gWJAHD/y7vwdN8sPvGzM9jdUYPmi5wYvTi5gHd/73l4gjF86vYevGVvGxhjiCXTODsTxPGxeXzm12fxyMFRfOCmDZKunxCS9asXZzAXTuBt+9olPW6Py4YjI35JjymmMV8UTote9HLdcmbQqlFr0mG6iAu1K2USiQg8wRg2SVSetNbpNCq47AaMKqbclK7Il6reagDnwFw4LspA4VJ5gjHUU6lp0VQqBqfFsKYyiX0zIQCQrNw0T61i+Pe7tuJV//Es3vO953HH9iZUm3SoNelRbdLi+bF5fPqXZ1Fn0eOxv92HbS32pccatGpsb63G9tZqHBr24buHx/Hu67th0NLJFSFSymQ4vv7sCDrrTLim2yHpsV12A9zBGNIZviYueI5TZ9OCNNoNwmUSifDSmWwXTOpsKpz2WhPG/PIGie5gDHajlk60BJB/b3iCygwS3YEYOutoFtNqNNjWVpB41h1EvVWPGpNO8mO31Bjx2TuvwAcfO4mTv3jpL26/bkMdvnDXNlRfZm33Xd2BJ88exs9emMLdu1rFXC4h5AI/fn4SL80E8cW7t4k69uJimuxGpDMcnmAMLrvyvmeLNeGPYm9nrdzLUDyXraqo2eIUJEpsLhxHhlODEyG11hjxq1Mzsq7BHaDh6kLJl2IrtcOpOxjDvi76MlqNBpsBL00H5V6GYPpmpGtaczF/tdWFV1/RiIVoAvPRBPyRJPyRBNQqhhs2OqFaIUNwVVctNjZY8M3nRnHXzhbJT1QJqVTheAr/9tt+bG+14/ZtLsmP77Kf359W7kFiPJXGTDBGTWsK4LJX4eCQr+D7K2/DzxrnWZqRSAGFUNprTViIJhGIJmVbA+0zFU6+qZNXgUFiNJFCKJaictNVarBmM4lyzzUVQjKdwaA3LPl+xAupVQy1Zj26nRbs7qjBLb0NuHFz/YoBIgAwxnDfNR3o94Swf7DwEwdCSGm+/NQgZkNxfPzWzbJcnFnNOASlmpxfBOegctMCuOwGhOIpBGOFnS9TkCixfGt/KjcVTv7q0ZhfvuY17kCMXlOB1Jr1UDHAG1LeGAzqYluaRpsBi8k0gospuZdSstG5CBLpTNnvL79tqwsOsw7f3D8i91IIqQgT/ii+/twI7tjehO2t1bKswbWGgsSl8RcUJK4ov4Wn0DEYFCRKjDKJwpN7VmIqncFcmMpNhaJWMdRZ9IosN3XT+7ck9WtoVuJZd7ZpjZTjL8Rg0Krx5j1t+GOfF0OzYbmXQ8ia99nfnIWaMXz4Fvm6Cpv0GtiN2qKamCjVuI+CxEItLzMuBAWJEvMGY1CxbDt4Ioz8B8O4TM1r5sIJZDioBFFA9VbDUtZdSbxLlQD0Wq9Gfk7TWggS+2aC0KgYuurMci+lZH+9tw06tQoP7x+VeymErGmHhn349Sk3/vbaLtkbs7lsVZiaXwNBoj8Kg1ZF814LkM8gTwcUFiQyxr7LGJthjAUZY+cYY3+T+3k7Y4wzxsLL/nxs2eP0jLFv5h7nZox94ILnvYEx1scYizLGnmKMtUn1b1oNTzAOh1kPjQLnv5Uro04Dp0WP0Tl5yk2XsksWChyE4lR4JrGBLgisylImscAvKCXrc4fQ7TRDpyn/z/I6ix63bXPhx8cnsRBNyL0cQtakdIbj0798CS6bAe96eafcy0FTdRWmCyw7VLL8+AtqvLUyp8UAtYopstz0swDaOedWALcB+BfG2I5lt9s55+bcn08v+/knAawD0AbgegAfZozdAgCMMQeAnwD4GIAaAMcAPCr6v6QEHmpwIgo5x2As7VOjwEEwTqsBswrdk2jWa2DWU2Po1TgfJCrvtS1W30wQG8u81HS5+67uwGIyjR8enZB7KYSsST8+PoEz00F85FUbFTH0vcletWbKTanUtDBqFUODtfBZiZIFiZzzM5zz/JkBz/3pKuChbwPwac75POf8LICvAbg3d9udAM5wzh/jnMeQDSi3MsY2Crp4AXmCcQoSRdBaa8RYEbNfhET7TIVXbzHAF0kgkcrIvZQ/4wlSg6JS6DQqOMw6uIPlfWISiCYxHYhhY2N5N61ZbrPLiqs6a/HtA6NIppX1viOknKUzHF9+ehD//NPT2NlWjdu2Sj/y4mKa7FUIxVMILMrXGb5UnPNcJpFmFxeq0WZQXrkpADDGvswYiwLoAzAD4NfLbh5jjE0yxr6VyxCCMVYNoBHAyWX3OwmgJ/f3nuW3cc4jAIaW3b782O9ijB1jjB2bnZ0V8p9VFC+dZIqivdYITzCOxURa8mN7gjFoVIz2mQoo/x6ZDSsr4+QOxihjXKIGm2Ep+16u+tzZWY9rKZMIAO96eSdmAjE8cnBM7qUQsiaMzkVw11cO4l+f6MeNm+vxtbfuVExZ5NL+tDLOJs6FE1hMptFaU96zHqXUaC+8zFjSIJFz/m4AFgAvQ7ZMNA5gDsAuZMtJd+Ru/17uIfmOAIFlTxPI3Sd/+/LbLrx9+bG/yjnfyTnfWVdXV/o/ZhXiqTR8kQRlnETQWpu9iiRH8xp3MAanRV/QXDJSmPx7RGn7Ej0BKhcvVYPVgJmyDxKznU03raFMIgBct6EO166vwxd+fw7eUHm/RoTIiXOO7x4aw6v+41kMeEL4jzduw0NvuhLVCrqYnO90Wc7Na8Zzo8/yo9DIylz27IXaTGblecWS77jnnKc5588BaAbwAOc8zDk/xjlPcc49AN4L4CbGmAVAvh/38m9iK4BQ7u/hC2678HZFye+xokyi8NqXxmBIX3LqCcaos6nA8l3KvArqcJrJcHhDNOqkVA02g+KC/2L1uUOwG7VwrrFueowxfPK2HsRTGXzu131yL4eQssM5x9P9Xrzxq4fwzz89jR1t1fjt+1+O27c1KSaDmNdUXVynSyU6PyORyk0L5bJVIZHOwBdZuUmZnG3ZNLj4nsR8aKvinM8jW5a6ddntWwGcyf39zPLbGGOm3HOegQLlW/o76SRTcG25Dwg5ZiV6ghQ4CC2frVNSNmMuEkcqw6nctEQNVgPmo0nEktKXhgulz51tWqO0kz4hdDhMeNfLO/GTE1M4POyTezmElIV4Ko0fHZvALV98Fvd+6yhG5iL49Gt78Z37dss+6uJSHCY9dGoVpsq43HTcl117c7Uy/x8rUTFlxpIEiYwxJ2PsjYwxM2NMzRi7GcA9AP7AGNvDGNvAGFMxxmoBfAnA05zzfBnpdwD8M2OsOteQ5p0AHs7d9jiAXsbY6xhjBgAfB/Ai51yRl0C9NCpBNDajFnajFmN+GTKJVIIouFqTDmoVU1TGyROgGYlCaMidMCnptS1GJsPR7w5hY8PaKjVd7j3Xd6PJXoVP/PwMUtTEhpBL4pzj2wdGcc2DT+HDP34RjAH//oateO4jr8Bb9rYpehuKSsXgshvKutx0Yj6KeqseBq383WLLRX5e8UwBGWSpMokcwAMAJgHMA/g/AN7HOf85gE4ATyBbInoa2X2K9yx77CeQbUYzBuAZAP/GOX8CADjnswBeB+AzuefdA+CNEvx7VuV8F8y1VaKkFG01RskziZF4CqF4igIHgalULDcrUTnlpkszEum1Lkn+/1+57kucmI8imkhjU+PaalqzXJVOjY/duhl97hC+Q01sCLmodIbjYz87jU/8/AzWOc145B278Zu/fxlet6O5bOanusp8DIY7EFNsplap8pnEqQKa10gy7CsXzF17idt+AOAHl3lsHMB9uT8Xu/1JAIodebGcJxSHVs1QbVTOxuW1pLXWhJMTC5Ie8/xwdQr8hZYNEpUTSJx/rSlILEX+vaKk17YYZ2eyW97XciYRAG7uqV9qYnPr1kY4qQKGkCWxZBrv++ELeOKMG/df24mP3LxR0VnDS3HZq/DcwJzcy1g1dzCG7jrzynckS6qNWhi0KswopdyUZHmCMTgthrL8ICkH7bVGTC0sSjrji2YkisdpNSw1e1ICTyAGtYrBYaYLAqXIl5uWaybxnCcbJK6rX9snJtTEhpCLC0STeOs3juCJM2587NbN+MdXbSrb87omexU8oZjiZhIXyhOgsVTFYozBZasqqGERBYkS8gbjcFKpqWhaa4xIZ7ik9fUUJIqn3qq8TGKdWQ91mZ4MKIVZr4FZrynbWYmjvggabQYYdZIU4siqw2HCO1/egZ+cmMKgV5FNwwmR1ExgEXd95SBOTMzjS/dsxzuu6ZB7SSVpsleB8/Ks7AjTdp9VcxU4K5GCRAm5gzHazySidkeuw6mEsxLduWYm9LoKr96S7YIZTymjCyaNOhFOg81QtkHimC+KtgqayfWmPW0AgGfOlW9JGiFCWEyk8eavHcbUwiIefvtu3LbVJfeSSpbfnzZZhs1r8t8htN2neI02g6Ia1xDkTjIpmBBNW430sxI9wRgseg1M+rWfVZBaPuuulFmJnmAM9WtsLp5cGqyGpT2e5WbMF0F7beXM5GqyV6HDYcKBQQoSSWX7wpPnMDwXwVfesgNXdzvkXo4glmYllmHzGqrkWr1GexW8ofiKZcYUJEokmkghFEtRuamI6ix6VGnVknY4peySeJxLsxKVEiTGae+DQMo1kxiOpzAXTqCtgoJEALi6uxaHhn2S7vcmRElOTizg688O457drWsmQATOj0MoxyBxKZNIQWLRmuyGgsqMKUiUSD4bQjMSxcMYQ1utUdJMojsYo5EmIsm/V7wKyDjFkmkEFpN0xVIgDVYDZsPxspvBl/9saa+gclMAuLrLgUgiLXn3aEKUIJHK4MM/fhFOiwH/+OqyaKZfMINWDYdZj6lyDBKp4/iq5ceGrHRxgIJEiVBaXBrZIFG6TKI3GKfXVCT54FsJG+rzF3mcVG4qiAabAekMx1w4IfdSipL/bKm0TOJVXbVgDNg/6JN7KYRI7qGnBtHvCeEzd/TCatDKvRzBNdkNZRkkeoIxWAyaimgiJrT8XtSVuoxTkCgRT65kjrJO4mqrNWHcH0Umw0U/VibD4aFmRKKpNuqgUbGl946cPCG6yCOk/Hum3PYljuYyiZXUuAYA7EYdrmiyYT/tSyQVps8dxENPDeL2bS7csKle7uWIItvpsvyCRHeAzr9Wy2XPlRmv0LyGgkSJ5EvmnPQLLarWGiPiqczSSb2YfJEEUhlOpQ4iUakYnBa9IvauUSWAsPLvGSW8tsUYm4uizqKvyEZV+7oceH58HpF4Su6lECKJVDpbZmqr0uITf9Uj93JE02SvwtTCIjgX/+K6kDxBmpG4WkadBrYqLZWbKoUnGINBq4LVUHknF1LKdx2UouQ0Hzg4aZ+paDrqTBiek26P6aV4glQJIKTzQWJ5Xb0e9UUqbj9i3jXdDqQyHEdG/XIvhRBJfHP/CF6cDOCTt/WgxqSTezmicdmrEEtmMB9Nyr2UorhpYkBJXPYqzKwwK5GCRIl4cnvXGKNB3GLqrMsGiX0zQdGP5aFN06LrrjNjyBuW/QqnNxiDTqOCrWrt7UeRQ41RB51aBbdCxpsUKjsjsbL2I+btbK+GTqPC/gEqOSVrXybD8V9PD+G6DXW4dUuj3MsRVX4MxlQZzUpMpTOYDcWp3LQELtvKe1EpSJSIOxijzqYScNmr0FxdhYPD4jdYWOqsRR9Soul2mhGOp2Tfu+bJdbGlizzCUKkYnFZ9WWUSFxNpuIOxis0kGrRq7GyrxnO0L5FUgLPuIOajSdy21bXmP/ebck1Myql5zVw4gQwHjSArgcteRY1rlMJL8/Qkc3WXAweHfEiL3LzGE4hBxQCHee2Wocit22kBAAx6w7KuwxOM00UegTXaDLIH/8UY91dmZ9Plru52oM8dwly4vDLAhBTr4FD2QvNVXbUyr0R8+U6X5dS8hi7Sl67RbkBg8fIlxhQkSoBznjvJpP1MUtjXXYtgLIUz0wFRj+MJxuEw66FR09tILN1OMwBgwCNzkBiivQ9Cq7cayqpxzejSjMTKDhIB4MAQjcIga9vBIR86HaaleXJrWbVRiyqtuqwyifnvDgoSV89VwO82nd1KIBRPYTGZppNMieSv/Ik908tNnbVE5zDrYKvSYnBW3iDRG4zDSU1rBJXPJMq937RQY7kgsbVCy00B4IomGywGDe1LJGtaKp3B4RE/9lZAFhEAGGNw2Q1llUlc6jhuo+/l1cpnkC+HgkQJnB9/Qb/MUnBaDFhfb8aBIXFPZDzUWUt0jDGsc5plLTcNx1MIx1P0Wgus3mpALJlZsdxFKUZ9UdSYdBXdvEitYriqsxbPDc6VTXBfaYKxJE6Mz+OxYxP4/O/6MeEXv9P3WnNqKoBwPIV9FRIkAuU3K9EdjEGjYnCY6Lx6tRoLSHLQPAYJnG+fTyeZUtnX5cAPj44jnkpDr1GLcgx3MIad7dWiPDc5r9tpxu9e8sh2fO/SjET6MhJSvozLHYzBblT+vt4xXwRtFZxFzLtmnQO/e8mDcX/ldnpVmlgyjQ/9+EUcHvbBG/rz/aJP9c/ifx7YB52GcgKFypdT7+2snCCxuboKv5egK7xQPIEYnBY9VKq13VRITA02A1bqyUSfGhKgQdzS29dVi1gygxPjC6I8fyyZxkI0SfXwEuh2muGPJOCPJGQ5/tJFHmpcI6iGXJnQSt3VlGJ0LlrR+xHz8vsSqcupcjxycAy/ODmNvZ21+MgtG/G1t+7EHz94LR5605U4NRXAl/4wIPcSy8rBIR82NljgMFfOhUGXrQpz4QRiybTcSymIm5pBlkyrVsG5Qq8UChIlkD/JXOnFIMLZ01kLFQMOiHQi46XssGTyzWvkKjn1hvLl4vRaCyn/3vGUQZAYT6UxHVikTCKATocJDVYDDoi855sUJhhL4qGnB/GydQ586Z7teOC6Lty4uR6ddWa8ZksjXr+jGV9+ehDHx/xyL7UsxFNpHBvzV0RX0+XysxLLpeTUHYzRRXoBrNSYiYJECXiCMVj0Gpj0VN0rFVuVFlc027FfpC58bsoOS2apw6k3JMvxPVRuKgqnJVvqUg6ZxAn/Ijiv7M6meYwxXN3twP6hOWREHjNEVvaVZ4awEE3iI7dsvOjtn/irzXDZq/D+R08iHE9JvLry88L4AmLJDPZ1OeReiqTOj8FQ/ucxkL24SOdfpWtaoXkNBYkS8ARj1LRGBld31eLkxIIoX4z5wIG6m4rPZathi8JhAAAgAElEQVRClVYtWybRE4zDqFPDTBd5BKXTqFBr0i+9l5Qs39mUMolZV3fXYiGaRL9Hngs3JMsbjOEbz43gtq0u9DbZLnofi0GLL9y9DZPzUXzqF2ckXmH5OTDkg4oBuztq5F6KpJrKaFZiKJZEJJGm8y8BrNS8hs56JOChUQmy2NflwJefHsLRET+u3+gU9Llpn6l0VCqGbhk7nOa72LKVdniTojXaDGWRSRz1ZTtEUiYxq8eVDUj63SFsarTKvBp59LmDeNs3j8AX/vO90nqNCp9+bS/uvLJZ9DV88Q8DSKU5PnjT+sveb1d7DR64rgsPPTWEV2x04pbeRtHXVq4ODvnQ22SruC7G+SYmk2UQJC5dpKfzr5KtNAaDgkQJeIJx7Kmwq1JKsLO9GjqNCvsH5wQPEt2BGKq0algN9BaSQrfTjEPD8uyB8gbjtJ9YJPVWAybnld+if8wXgdWggd1YWSeOl9LhMEGjYjhXoZnExUQaf/f9E0hngPuv7fyz2w4O+fDhH7+IOoseL1tXJ9oahmfDePToBN68p7WgLrN/f8N6PHNuFv/4k1Mw6TXoddlQbVJ+V2EpLSbSODExj/uu6ZB7KZLTqlWot5THrER3gHpCCOWW3obL3k5nuCLjnMMbilHTCxkYtGrsaK0WZV+iOxhDvVVP2SWJdDvNePzEFMLxlORln55QDFub7ZIes1K47AYcHvGBc67o99KoL4p2h0nRa5SSTqNCu8OEARnnl8rp0796CQPeMB55x+6/CASDsSTu+u+DeOC7z+NH91+FzS5xMq3//rtz0GtU+LtXrCvo/jqNCl+8ezte+9B+vOUbRwBkM/mbGq3ocVlx77521FZQN8+LOTbmRzLNK24/Yl5TdXnMSnTTdh/BrJRJpD2JIpuPJpFMc2p6IZN9XbU4OxOELxxf+c5F8AbjdBVLQvnmNUMSn5RyznPlpvT+FUNrjRGhWArz0aTcS7ms7IxEKjVdbp3TjIEKzCT+5tQMvn94HPdf23nRTKHVoMW33r4LZr0Gb3/4iCgn3ScnFvCrUzP4m5d1oq6IKodupxnPfeR6PPKO3fjHV23Eno4aTM5H8dBTg/jgYyfBeWU3Ijow5INGxbCrQucfu+xVmCqDIJHKTaVDQaLIaO+avPblZnodGha2/beb9plK6nyHU2mDxGAshVgyQ+9fkXQ4soHXyFxE5pVcWjKdweT8ItpqqGnNcuvqLRjzR8tmrpoQphYW8ZH/eRFbm2344I0bLnm/RlsVvvX2XYjG07j3W0cQWBTuIgjnHA8+0Ycakw7vfFnxZZF2ow4vW1eH+6/twhffuB2/e/+1+OirN+Hp/ln84axXsHWWowNDPmxrscOoq8wiO5fdgJmFmOK7FrsDMVgNGlTp1HIvZc2jIFFk1D5fXlubbTDrNdg/JNy8RM45zeiRWFuNEVo1k7x5jTdIMxLFlA8SRxUcJE7NLyKd4dTZ9ALr683gXL75pVJLpTN43w9PIMOBL92zHTrN5U+fNjVa8d9v2YHh2Qj+9pHjiKeECaafHZjDgSEf3nt9NywGYfbIvm1fO7qdZnzqly9VVNC/XDCWxKnJBeyrsPmIyzXbq5BIZzAncOWV0OgivXQoSBRZfui600K/0HLQqFXY01GDA4PCBYmz4TgSKcouSUmjVqHDYZL8hNSTe//WU+MaUbTUGKFWMUVnEkdz4y/aHVRuutz6egsA+eaXSu0//ziIo6Pz+JfX9hZcenx1twP/+votODjsw+d/f67kNWQy2Sxic3UV3ry3teTny9OqVfjkX/Vg3B/F158dFux5y8mRYT8yHLiqQvcjAuf3pym95DTfcZyIj4JEkbmXMhF0kimXq7pqMeqLCvbBd3x0HgCwteXic6mIOLqdZgzNSh0kUrm4mLRqFZqrqzDiU26QOJYbf0GZxD/XXpvtcDrgWfuZxAl/FP/5xwHceWUTXru9qajH3nllM964qwVf+9MwXphYKGkdvzw1gzPTQXzgxvXQa4QttbtmnQOv6m3AQ08NlUXzEqEdHPZBr1Fhe2vlNilzLc1KVPZYIneAKrmkQkGiyDzBGKqNWsE/0EnhrlmXvTL4TP+sIM93eMSPKq0aVzRV7peJHLqdFoz5IpKWQ3lCdJFHbO21JkWXm475ojDq1Kir8M6PF9Jpstn9cxUQJD4/Po8MB975ss6V73wRH33NJtRbDfjQYydX/fmVSGXw77/rx8YGC27fVlygWqh/es0mcHB85tdnRXl+JTs45MPO9moYtJV7rtZUnc8kKncsUSpXDkvlptKgIFFkHuqCKbsN9RZ0OEz4+ckpQZ7v0LAPO9qqV9yTQoTV7TQjw8+X/0nBG4zDYtBUbCMDKXQ4skGiUjsr5jub0viLv7Su3lwR5aZnpoPQaVRLDbSKZTVo8dk7r8CAN4wv/WFgVc/xw6PjGPNF8ZFbNkKtEud3sbnaiAeu7cavXpwRdIuG0iXTGZzzhLClwkcdWQ1aWPQaRWcSZ8NxZDiNv5AKneWKzBui2mm5McZw+zYXDo/4MRMorYxmIZpAvyeEPR01Aq2OFKq7LnuCJuW+RNr7IL4OhwmRRBqzIWU2Sxj1RdBOpaYXtc5pwbg/isXE2m52cmoygE2NVmjVqz9lum6DE3ftbMZ/PzOEk0WWnUbiKXzpDwPY3VGD6zb85dgNId1/bSeaq6vwyV+cQTKdEfVYSjHujyKV4UvfMZWsqVrZYzDcARp/ISUKEkVGM9aU4bXbmsA58PMXpkt6nsMjfnAO7K3gDmhy6awzQcUg6R4oev+Kr13BYzDSGY4J/yLNSLyE9fUWcA7J9wpLiXOO09MB9LqsJT/XP71mM+osenzoxyeL6nb6jedGMBdO4H+9aqPoGW2DVo2P3boZ5zxh/OT5SVGPpRT5C49dq8wUryUuexWm5pUbJFKfAGlRkCiidIZjNkTlpkrQ7jBha4sdj58oreT08LAfeo0KW5qpaY3UDFo1WmqMGJTwhNQTjKOeOhOLqiMXgElZRlyomcAiEukMZRIvYX19fn7p2i05HfdHEYql0NtU+me+rSpbdnrOE8b//eNgQY/xheP46p+GcXNPPa5slWbI+02b69FoM2D/oE+S48ltKUiso4tBLrsB0yVWXIlpKZNI5aaSoCBRRL5c7TTNWFOGO7a50OcOod+9+hOawyM+XNlaTY2IZNJdZ8aQROWmnHN4QzF6/4rMZTdAq2YYmVNes4TznU3p5PFi2h0maNVsTTevOT0VBABcIUCQCACv2FiP113ZjC8/PYQ/nPWseP+HnhpCNJHCh27eIMjxC8EYw/ZWO05MzEt2TDkNzYbRYDUINneynDXZjViIJhGJp+ReykW5g3Fo1Qw1Rp3cS6kIFCSKiGasKcutW11Qqxh++sLqsomBxSRemgliTyftR5RLd70Zw7MRpCTYKzMfTSKZ5lRuKjKNWoXWGqMiO5yen5FImcSL0ebmlw541m4m8fR0AFo1w7p64UoRP37rZqxzmvGObx/DRx8/ddET8mAsiQef6MN3Do7iDTta0O20CHb8QmxvqcaEf1Gxe4WFNOQNo8tJF4KA7EU7AIodg+IJxuC0GKASqXkT+XMUJIqIaqeVxWHW45puB37+wjQymeI7KR7N70fspP2IcumuMyORzmBCgj0T9P6VTofDpMg9icOzERi0Kio5vox1TssazyQGsKHBImj1iM2oxU/fczXuf3knfnBkHK/6j2dxbNQPINtp85GDo7ju357Gfz09hNu2uvDRV28S7NiFys8LLHW2o9JxzjE0G6GmNTnNS2MwlBkkugMxKjWVEAWJInLTSabi3LG9CVMLizia+0IuxuERH3QaFba1VHabbDnlW9BL0eH0fJBImUSxtdeaMOqLrOrijZgGvGF0O8101foy1tWbMTG/Njuccs5xeiqAXpfwe9ANWjX+8dWb8Oi7rgIHx11fOYiPPn4KN3/xT/jYz85gfb0Zv3jvNfj83dtgM0pfBtnbZINGxXBifG2XnHqCcYTjqVWPN1lrXHZlB4meYIw6m0qIgkQReYMxMAY4zFQ7rRQ3bq5HlVaNn66iy+nhET+2tdgretiu3PJf5FI0yvDmysWdlEUSXbvDhHgqs3RhTSmGvGHKMKxgLXc4nVpYxHw0iR6B9iNezO6OGvzm71+Ou3e14PuHxwEAX3/rTvzgnXtxhYwN0gxaNTa7rDgxvrYzieeb1tD7HMh+32lUTJHlppxzuGkslaQqMkiMJaW54ukJxuEw66EpYbYSEZZJr8FNPfX49akZJFKF72sLxZI4PRWgUlOZWQxaNNoMOFdC86FC5TOJTsokiq4jNwZDSfsSI/EUphYWKcOwgnyH03NrcF+i0E1rLsWs1+Czd27BU/9wHX77vpfjlZvrRR91UYjtLXacnFxAWmEZfiHlL27Q+zxLrWJosBkwvaCsC3YAEIqnEE2k0WCj72SpVGT0MuANYz6SEP04nhClxZXotdubEFhM4ul+b8GPOTY6jwwH9nZQ0xq5XdlWnZtXKe6JiycUQ7VRS51sJZAPEocVFCSeP3mUtmFIuWmrXbsdTs9MB6BWMWxskOZ3oMNhglZBF5W3t1YjmkivyQsAeYPeMCx6DeqoweASpc5K9ARoC5fUlPNpJLHnJaiz9wTjtJ9JgV7W7UCtSVdUl9NDIz5o1QzbJZpTRS5tX1ctZgIx0RudZN+/9GUkhQarAXqNSlGZxHwZGmUYLk+rVqHTYV6THU5PTQWwzmmu2C0G+eY1a7nkdNAbRpfTrIjMrVI02asUuScxvx2Bki/SqcggkQE4NiZ+kOgN0ow1JdKoVbh1SyOePOtFMJYs6DGHh/3Y2mxHla4yTxaU5OouBwBg/5C4g57p/SsdlYotNa9RikFvGBoVQ1stjb9YSXe9Geck2CcspaWmNSKXmipZa40RNSbdmm5eMzQbpgtBF2iyV8EdjEkyaqoY7lwmkbqbSqcig0SDVo3jo+J+6CVSGfgiCWqdrlCv3d6ERCqDx59fOZsYiadwivYjKkZbrRFN9iocGJwT9TieYJxmnEqo3WFU1BiMAW9YceV/SrXeacHk/CKiCWUO4F4NbyiOuXACvS6r3EuRDWMM21vsa3YMRjCWhDcUp6Y1F3DZq5DOcHgVNiOTxlJJryK//Ux6DU5OLhTVuKRYs+Hsm4vKTZVpW4sduztq8J9/HED4IoOMlzs2No90hmNPJ+1HVALGGPZ11eLgsE+0kQnpDMdsmMpNpdThMGPcH1XM1eshL2UYCrW+3pztcOpVTpBfqlOTAQCQtcOoEmxrsWPAG0ZgsbCqm3JCJeUX15Sblai0DqfuYAx2o7Ziy7/lUJFBolGnRjyVwZnpgGjHcNMGW0VjjOGjr96EuXACX/3T8GXve3jYB42KYUcb7UdUin3dtViIJvHSTFCU5/dF4khnOF3kkVCHw4hkmiuiq148lcaoL0InjwVaV59t7LKWGpycng5AxYBNjZWbSQSwtA//xcm1l00coiDxoprs2fNWpe1LnFmgZpBSq8gg0aTTAACOi7gv0Uvt8xVvW4sdr9nSiK/9aXjp9bqYwyN+bGm2wZj7vSHy25fbl3hgSJyS06UZifSFJJn22myH0xEF7EscnYsiw+nksVDttUbo1Ko1tS/x9FQAXXXmiv/c39JiA2Nrs3nN4GwYOrUKLbnMGcly2bP/P5QWJE4HYktrI9KoyCBRo2ZoqakSNUik2uny8OGbNyCVyeALTw5c9PZxXxQvTi5gD+1HVJR6qwHdTjP2D4rTvIbev9JT0qxEKkMrjkatQmedCQNraAzG6algRTetybMatFjnNK/J5jVD3gjaHUaaZX0Bo06DaqNWceWmM4FFNFLTGklV7DtjZ1sNjo3NizZrzROKQ6NiqDHqRHl+Ioy2WhP+em8bHj06/hct3EfmIrjrKwdh1mvwhh3NMq2QXMq+rlocHfWLsrfYE6Q9xVKrs+hh0qkV0bxmwBsCY6CGFkXodpoxsEYyibOhONzBGHoquGnNcttbqnFiYkH02bRSo86ml6a0WYnRRAoL0SRlEiVWsUHilW3VmA3FMSnSm8ATjMFp0UOlotk7Svd3r1gHk06DB5/oW/rZoDeMu79yEMl0Bj9411500smi4uzrciCaSOOkCHtlPMEYGAMcZgoSpcIYQ7vDpIggcdAbRku1kRokFGF9vQUT/rXR4fR0rl/BFZRJBJCdl7gQTWLUF5V7KYKJp9IY80XoQtAlNNmrFLE/PC+/FpedMolSqtggcWeuCcmxMb8oz+8NxlFPafGyUGPS4YHru/DkWS8ODftwzhPCG796EBkO/PBde7Gxga4mK9FVnbVQMWC/CKMwvKEYak16Gn8gsXaHMmYlDlJn06Ktr8/+/8qX6pazM1PZIHEzZRIBnG9es5ZKTsd8tO/4clz2KkwtLComezwTyCZ0Gm2USZRSxZ4Bra+3wKLX4JhI8xI9wRjNSCwj913dgUabAR//2Wm88auHoFYxPHr/3qWufUR5bEYteptsODAk/L5ETzBOpaYy6Kg1YXJ+EUkZx2CkMxzDc9TZtFj5jMzwrPxBfqlOTQXQ6TDBYtDKvRRF6HaaYdZr1lTzmvzFDMokXlyTvQrheArBmDIqA2bymUQKEiVVsUGiWsWwrdUuWvMaTzBGJ5llxKBV44M3bcA5TxgGjQqPvusq+vIoA1d11eLE+LzgJW6jcxHa+yCDdocJ6QzHhF++srYJfxSJVIaCxCK11hqhYsCwAsqFS3V6KogeKjVdolYxbG2x4cTE2skk5oPEzjqTzCtRJqXNSpwOLIIxoN5G59VSqtggEcg2r+n3hBCMCTskdjGRRjCWovb5ZeaO7U34l9f24kd/exXaHfTFUQ6u7nIgmeY4KmBFgDcUw/BcZKkknUgn3+FUzn2J1Nl0dfQaNZqrjRieLe9y0/lIAlMLi+ilUtM/s72lGmdnQlhMpOVeiiCGZsNosldV/IiTS1kag6GQ5jUzCzE4zHroNbRPXEoVHSTuaKsG58LP/6H2+eVJrWL4671taK42yr0UUqBd7TXQqVU4IOC+xCMj2X3KNPZEekoIEgcoSFy1zjpT2Zeb5l//jY0UJC63vdWOdIbjVG6/Zrkb9IbRRe/xS8o3iJkOKCNInA4swkV9PiRX0UHitlY7VAyCl5yeDxIpLU6ImKp0amxvtQu6L/HQsA8mnZoyCTKoNmphNWhkbV4z6A2j3qqHlfajFa3TYcbIXASZjDKaXaxG/nevvZYuFi63rcUOAHhhDZScZjI8O/6CtpRcksOkh06jwpRSyk0XFqlpjQwkCxIZY99ljM0wxoKMsXOMsb9ZdtsNjLE+xliUMfYUY6xt2W16xtg3c49zM8Y+cMHzXvKxKzHrNdjUaMVxgTuczgQok0iIVPZ1OXB6OoCFaEKQ5zs07MfO9hoasCwDxhg6HCaMzsm3J3HQG6Is4ip11pmwmEzDHVRO6/xijfui0KgYmmhP8p+pNetRZ9FjwFPe5cRANisVS9K+48tRqRhcNoMiyk0555gJxKhPgAykPAv6LIB2zrkVwG0A/oUxtoMx5gDwEwAfA1AD4BiAR5c97pMA1gFoA3A9gA8zxm4BgAIeu6IdbdU4Mb6AlIDd9I6N+WHSqZdKpwgh4rm6uxacZzOApZoLxzHoDWMvlZrKpt1hkm1fG+ccQ7MRyjCsUr4JSDmXnI76ImiqrqKLRBfRVWfCUJnvOQWWdzalc7TLaaquUkTjmuBiCtFEmmYkykCyT0HO+RnOeTz/n7k/XQDuBHCGc/4Y5zyGbFC4lTG2MXfftwH4NOd8nnN+FsDXANybu22lx65oR1s1ook0+tyh0v6ByxwY9GFPZy3NWCNEAltb7DDp1Hh2oPR9iYeHs1UFeztrSn4usjqbG62YDsTgDUmfjXIHYwjHU+im0Ter0unIjcGYK99AYtwfRVstBQ8X01VnxtBsRDGz81aLmlMVxmWrUkS5aX4NVG4qPUmjGMbYlxljUQB9AGYA/BpAD4CT+ftwziMAhgD0MMaqATQuvz33957c3y/52ELXtLM9ezIo1L7EqYVFDM9FsK+LMhGESEGrVuH6jU788sUZxJKldd47NOyDUadGL7W/l00+i5sP2KWUL6WjTOLq1Fv1MOnU5Z1JnIugrYb2I15MV50ZgcUkfBFhSvvlMjQbQbVRi1oz9Y24HJe9Ct5QHImUfHNrAWAm1zynkTKJkpM0SOScvxuABcDLkC0TjQMwA7iwXVYgdz/zsv++8Das8Ng/wxh7F2PsGGPs2Ozs7NLPXTYDGqwGHBMoSNyf67J4zTqHIM9HCFnZm3a3IrCYxK9PzZT0PIdHfNjZXkNVADLqcVlh1msEKR8uFmUYSsMYQ0edqWxnJS5EEwjGUmijpjUXtRbKiQFgyBumOcgFaKquAufnmzHKZTrX58NFmUTJSX4mxDlPc86fA9AM4AEAYQAXthG0AgjlbsMFt+dvwwqPvfC4X+Wc7+Sc76yrq1v6OWMMO9qr8bxAQeKBwTk4zDpsoHIlQiRzVVctOhwmfP/w+KqfYy4cxzlPmEpNZaZRq7CzvRqHR6TPJA7OhmE3auEw6yQ/9lrR6TCX7azEUV+2YRKVm15cPrAq932Jw3MUJBYi37xpUubmNTMLi9CoGOoslPmVmpyXyzXI7kk8A2Br/oeMMVP+55zzeWTLUrcue9zW3GNwuccWs5BdbdWYWlgs+YOPc479Qz7s63KAMVbScxFCCscYwz27W3BsbB7nPKvbX7w0H7GDSsXltrezFoPeMGZD8ZXvLKBBT7YtPn1+r15nnQlTC4sll37LYSw3/oIyiRfXZK+CXqPCkLd8g8RwPIW5cAJtDnqNV5IPEuVuXjO9sIh6qwFqFX0uS02SIJEx5mSMvZExZmaMqRljNwO4B8AfADwOoJcx9jrGmAHAxwG8yDnvyz38OwD+mTFWnWtI804AD+duW+mxBXn1lkaoVQw/OjZR0r9zIHdSc003lZoSIrXX72iBTq1adTbx8LAPVVo1tjTTfkS57enIZnMPj0hbcjo4G6ZS0xJ11pnBOWSddbla47lMYivtSbwolYqhs85c1pnEpQsBNZQtXklDbni97EFiIEadTWUiVSaRI1taOglgHsD/AfA+zvnPOeezAF4H4DO52/YAeOOyx34C2WY0YwCeAfBvnPMnAKCAxxbEaTHgho1O/M/xSSRLGIXxXK674tW0H5EQydWYdLi5twH/8/wkFhPFZzGy8xGraT+iAvQ22WDSqSVtXuMLx+GPJChILFGno3z3rY36omiwGmDQquVeimJlx2CU32ubN75UUkwXAlZi0KrhMOtl73A6E1ikzqYykeRsiHM+yzm/lnNu55xbOedXcM6/tuz2JznnGznnVZzz6zjno8tui3PO78s9rp5z/vkLnvuSjy3G3btaMBdO4A9nvav9Z2L/4Bzaa400hJcQmbxpdytCsRR++eJ0UY/zRxLo94RoPqJCaNUq7GyvkbR5DTWtEUbHUpBYftmmcX+EgocVdNaZMTkfLctyYgAY8+eyxfQ6F6SpWt4xGJkMhzsQg4vOq2VBl8xzrl1fh3qrftUlp8l0BodH/LiaSk0Jkc3ezhp01pnw/SPFlZweyZU1UtMa5djTWYMBbxhzYWn2JQ7OUpAoBJNegwaroWwziRQkXl5XnQkZDozlMnLlZswXRbVRC6tBK/dSykJ7rVHWPahz4TiSaU7lpjKhIDFHo1bhDTta8HS/d2kmSzFenFxAOJ6i/YiEyIgxhjftbsWJ8QWcnQkW/LhDw35UadW4osku4upIMfJZ3SMSdTk9NRmA1aChNusC6CzDMRjRRAqzoTh1Nl1BuXc4HfdH0EqvccF6XTZMB2LwyzQbMz/+gspN5UFB4jJ37WxBhgM/PjZZ9GOfG/CBsWwrfkKIfF53ZTN0muIa2Bwa9mFHWzV0GvpIVIormmww6tSSlZweGfVjZ3sNVNRBr2SddSYMz4bBOZd7KQUbo71qBcnPSizXDqdjvijaqDFRwXpc2SlzZ6YvHEkujZlcqWujjTKJcqAzomVaa43Y11WLR49NIJMp7stt/9Acel022I00X4sQOVWbdHh1bwN+emIK0URqxfvPRxLoc4eo1FRhtGoVdrRVSxIkzoXjGJ6NYHcH/Q4IodNhRjCWgk+m7MNqLAWJ1PXysow6DZrsVWWZSUykMpheWEQ7XQgoWI8r2+379FThlTlCymcSaU+iPChIvMDdu1owOb+Ig0WcmETiKZwYn6f9iIQoxJv2tCEUT+EXJ1duYJMf2k5Na5Rnb2ctznnC8Im8L/Fo7ndgVzsFiULIZ5vKaV9ifjQCNTRZWTmWEwPA1MIiMhxUbloEm1GLlpoqnJYxk2jQqlBtpD2kcqAg8QI39zTAVqXFD48W3sDmyKgfyTTH1d10kkmIEuxqr8bGBgsefKJ/xSveh4Z9MGhV2NJM+xGVRqp9iUdG/TBoVbiiiWZkCqHTkd23Vk4dTsf82YYmtio6GV1JV50ZQ97yKicGls1IpAsBRelptOGlabkyiYtw2arAGG0DkAMFiRcwaNW4Y3sTfnvajfkCS2UODM5Bp1HRVWhCFIIxhv/66x1gAN7y9cOXbEZ1bNSPn74whV3tNbQfUYG2NNtQpRV/X+LRUT+2tdjpd0AgTdVV0GlUZZVtGvNFqGlNgbrqTIgk0vAEpek8LJRxf76kmILEYvQ2WTEyF0EolpT82NMLMTRSZ1PZ0DfiRdy9qwWJdAaPn5gq6P7PDfqws62aBvASoiAdDhO+fd9uhGIpvOUbR/7ios9PT0zhTV87jGqjDp+6vVemVZLLyc5LrF4qCRZDKJbES9NB7O6gShChqFUM7bXG8sok0viLgpVrh9MxXxRVWjXqLHq5l1JW8vsS5cgmzgQWqbOpjChIvIhNjVZsbbbh0aMTK5ZTzIXjODsTpP2IhChQb5MNX3vbToz7o2+OHqYAACAASURBVLj34aOIxFPgnOPzv+vH+x59Adtb7Xj83fuWBoAT5dnbWYs+d0i0FuzHx+aR4cBuqgQRVKfDXDaZxHxDE8owFabLWb5BYmuNkUoXi9TTlO9wKm2QmExn4A3FqWmNjChIvIQ372lDvyeEb+0fvez9fvJ8dlzGPhp9QYgi7e2sxUNvuhKnpwL42+8ex//3wxfwpT8O4g07mvHIO/ZQR2KF25PrOHpkRJyS06OjfqhVDNtbaU+qkDrrTBj3RZFMZ+Reyoom56PIcFC5aYGcFj3Mek1ZNSYC8jMS6UJAsZwWA5wWveTNa9yBGDgHXDT+QjYUJF7C63c046bN9fjMr8/iwNDcRe/zVL8Xn/tNH27Y6MS2FjrBIESpbtxcjwdftwXPDszhFyen8ZFbNuJfX7+F9qCVgS3Ndhi0KhwaFqfk9OjIPHpdVpj0GlGev1J11pmRynBM5PaBKdmYn2YkFoMxhq46U1llEjnnGPfTjMTV6nFZJS83ncmNv2ikTKJs6AzpElQqhs/fvQ2dDhPe873n/+KL7qXpIN77veexqdGKL92zncoXCFG41+9oxn+9+Up8577deOC6LnrPlgmdRoWdbTWiNK+Jp9J4YXKB5iOKIF/CXQ7ZprG5fNdLyiQWqjPX4bRceENxxJIZuhCwSr1NNgx4w4gl05IdM99wjjKJ8qEg8TLMeg2++tadSGU47n/kOBYT2TeHJxjDO759FBaDFt942y66Ak1ImXjVFY14+fo6uZdBinTt+jr0uUPocwt7JfvFyQASqQx1phZBV35W4pzyA4kxfxRGnRoOM5WeF6qrzoTpQAyReErupRRkdC4/B5MuBKxGj8uKdIajzx2S7JjTC5RJlBsFiSvocJjwpXu246w7iI/8z4uIxFO47+GjCC4m8c17d6GBrnAQQoioXr+jGXqNCt8+MCbo8+bnL1KQKDy7UYcak648Mom+KNpqTVRdUIR8h9ORMmlONEbjL0qS73B6RsJ9idMLi7AaNDBTIkY2FCQW4PoNTvzDTRvw85PTeNV/PIuzM0H83zddic0uq9xLI4SQNa/apMPt21z46YkpBKLCzeo6MuLHOqcZ1SbKIImh02EqkyAxQsFDkcqtw+m4Lwq1iqGpmrJSq9FcXQVblRanp6TblzgTWKTOpjKjILFA776uC6++ogHj/ij+9209uH6jU+4lEUJIxXjrVe1YTKbx2PEJQZ4vneF4fmye9iOKqLPOpPgxGOkMx4R/kfaqFamt1ggVA4bK4CIAkM0kuuwGaNV02rsajLFc8xopM4kxNFK1nqzo3VIgxhi+cPc2/Py9V+MtV7XLvRxCCKkovU027GyrxncOjiGdufz82kKcnQkiFE9RkCiizjoz5sJxBGPCZX+F5g7GkEhnqGlNkfQaNVpqjGWUSYygnV7jkvQ22XDWHZJsrM1MYJH2I8qMgsQi6DVqbGmmUReEECKHt+1rx7g/iqf7vSU/F+1HFF9nrsPpoIK7YJ7vbEqZxGJ1lVGH0zF/FK1UUlySHpcViVRGkvfzYiKN+WgSTRQkyoqCREIIIWXhlt4GOC16fPtg6Q1sjo760WSvoj0vItrUmN23L/V8tWLQjMTV66ozYWQugowAmX0xBRaTWIgm6TUu0fnmNeK/n6dz4y+o3FReFCQSQggpC1q1Cm/e04Y/nZstqcyNc46jo37soVJTUeWbXUhxUrlao74ItGqGRhtdLChWV50Z8VQGUwuLci/lssZ92QsBrTVUblqKDocJRp0ap6fE35c4kx9/Qe9LWVGQSAghpGzcs6cFWjXDIyVkE0fmIpgLJ7CLgkRR5ZtdSNk2v1jjvihaqo1Qq2j8RbHKpcPpmJ9KioWgVjFsapTm/ZzPJLrslEmUEwWJhBBCyobTYsBrrmjEj49PIrzKQd77B+cA0H5EKfS4rOiTsNlFsUZ9UQoeVik/K1HJe06B7BxMALQnUQC9Litemg6KXmKczyTSLHJ5UZBICCGkrLx1XzvC8RR+8vxk0Y89NRnA537Th94mK7rqqPxMbD0uGxKpjCKzTZxzjPsi1Nl0lWpMOjjMevS5Q3Iv5bLGfVE4zHqYaCh7yXpcNkQSaYz6xB19MrWQfc30GrWoxyGXR0EiIYSQsrK9xY4tzTZ8a/8oYsl0wY8b80Xw9oePwG7U4Rtv2wXGqMRQbL1N2eY1Ug7hLpQvkkAkkaZMYgl6m6yS7FErxZg/Qq+xQHpy72ex9xmfngpiQ4NZ1GOQlVGQSAghpKwwxvD+G9djZC6Cj//sNDhfufRpNhTHW795BOkMx3fesRv1VipjkkKHw4wqrVqR+xJHcuMvaH7e6vW6bBjwhou6WCO1cV8UbVRqKoh1Tgt0ahVOi/h+DsdT6HMHsaONtgPIjYJEQgghZef6DU689/pu/OjYJH5wZOKy9w3HU7jv4aPwBGP4xr27lvZSEfFlm11YFNnhNF8mub7BIvNKyldvkxXpDEe/QktO46k0ZoIxtFImURA6jQrrG8yiZo9PjM8jw4GdbdWiHYMUhoJEQgghZen9N67Hy9fX4RM/P40T4/MXvU8ilcED3z2Ol2aC+PKbr8SVrXTiIbUel02SZhfFOucOwaLXwEXNMVYtPztPzMxSKSb8i+CcOpsKaXd7LY6OziOaWF3jsJUcG52HigHbW+2iPD8pHAWJhBBCypJaxfClN25Dg82AB777PGZD8aXbOOd4qs+L2x/aj2cH5vDZO6/AKzbWy7jaytXjsiIcT2E8N7heKfo9IaxvsNDe1BLkZ2Eqcc8pAIznxl/QjEThvHKzE4lUBs8OzIny/MfH5rGhwQqLQSvK85PCUZBICCGkbNmNOvzXm3dgPprA3/3geaTSGRwb9ePurxzC2x8+ikg8hYfedCXu2tki91IrVm9TNtukpJJTzrMlkuvrqdS0FIwxXNFkU2zzmvz4C8okCmdXew2sBg2efMkj+HOn0hmcGJ+nUlOFoCCREEJIWettsuGzd16BQ8N+3PTFP+H1/30QI74IPv3aXjz5gWvxmi2Nci+xoq2rN0OjYooqSfSG4ggsJrGR9iOWrKfJin53CImU8mZhjvmiMOs1qDXp5F7KmqFVq3D9Rif+2OdFWuAS8j53CJFEGjvbKUhUAgoSCSGElL07r2zG31zTAV84gQ/fsgHPfOg6vGVvG3Qa+pqTm16jxrp6ZTWvyTdaoUxi6XpdNiTSGQx4lde8ZswXQWuNkUqKBfbKTfXwRRJ4YeLie8FX6/hY9vl2UCZREejbkxBCyJrwz7duxomP3Yh3X9cNo44GZytJr8uKM1OBgsaVSCEfJG6gTGLJlsqJFbgvccwfpVJTEVy7oQ4aFcPvX/IK+rzHxubRYDWgyV4l6POS1aEgkRBCyJqhUlHGQIl6XFb4Igl4gvGV7yyBfk8IdRY9aqgMsWRtNUaY9RpFlRMD2c7G474oOhzUtEZoVoMWeztr8eRZYfclHh/1Y0d7NWV+FYKCREIIIYSIqmepeY0yAol+dwgbqNRUECoVw2aXVXHNa0Z9EaQynEqKRfLKTU4MesMYmYsI8nzTC4uYDsSoaY2CUJBICCGEEFFtarSCMWV0OE1nOAa8ISo1FVCvy4aXZoKCNzIpxTkP7TsV0w2bsiOF/iBQNvFYbj/izrYaQZ6PlI6CREIIIYSIyqzXoKPWpIhs04Q/ilgyQ5lEAV3RbEUsmcHwbFjupSw55w5BxYDOOio3FUNLjREbGyz4vUCjMI6P+mHUqbGpkd6XSkFBIiGEEEJE19NkU0QmsS/f2ZQyiYLpdWXLiZW0L/GcJ4z2WhMMWrXcS1mzbtxcj6OjfsxHEiU/17GxeWxrsUOjptBEKeiVIIQQQojoelxWTC0sYiFa+gllKc6XIZplXcda0llnhkGrwqlJ+S8C5J3zhqjUVGSv3FSPDAee6i+ty2k4nsLZmSDtR1QYChIJIYQQIroelxWA/PsS+z0htNYYaUyKgNQqhs2NVsVkEmPJNEbnInQhQGRXNNngtOhL7nL6wvgCMhzY0U77EZWEgkRCCCGEiK7HpYwOp/1ualojht4mG16aDiKjgOY1w7MRZDiwjjKJolKpGG7YVI9n+mcRT6VX/TzHxvxgDNjeahdwdaRUFCQSQgghRHQ1Jh1cNoOsmcR4Ko2RuQg1rRFBr8uGcDyFMX9U7qVgwJstKaaLAeK7cbMTkUQah4b9q36O42Pz2FBvgdWgFXBlpFQUJBJCCCFEEptdNlk7nA7PRpDOcGpaI4Kepmw5sRI62Pa7Q9CoGNprqbOp2PZ1OVClVePJVXY5TWc4TowvYGc77UdUGgoSCSGEECKJ3iYrhuciiCZSshy/P9fZdCMFiYJbX2+BTq1SxL7Ec54wOutM0GnoNFdsBq0a12+sw09fmMJcOF704/vcQYTjKZqPqED07iGEEEKIJHpdNnAOnJqUJ5Do94SgVTN0OCjDJDStWoWNjRacmZK/w+k5T4j2I0roAzeux2IijQd/01f0Y4+PzQMAdlBnU8WhIJEQQgghktjdWQONiuGZc7OyHL/fHUJXnRlamsUmih6XDaenA+BcvuY1i4k0JuajWO+kIFEq3U4L3nFNBx47PrkU9BWCc45fn5pBg9WA5uoqEVdIVoM+JQkhhBAiCatBix1t1XiqX74gkWbniae3yYqFaBKT84uyrWHQGwbnwIYGGn8hpb+7YR0arAZ8/GenkS6ww+33j4zj0LAf73lFNxhjIq+QFIuCREIIIYRI5vqNTpydCcIdiEl63FAsiamFRep4KaJeBYw56fdk951Suam0zHoN/uk1m3BmOojvHx5b8f4T/ig+86uzuKbbgb/e0yrBCkmxKEgkhBBCiGSu3+AEADxzzivpcc95wgBA4y9EtKHBAq2a4fnxBdnWMOAJQadWoa3GKNsaKtWtWxqxr6sW//bbfvgu08Qmk+H4h8dOQsUYHnz9FsoiKhQFiYQQQgiRzPp6M1w2A57qk7bk9JyHZueJzaBVY29nLZ58ySPbvsR+TwhdTjM0tO9UcowxfOr2HkQTaTz4xKWb2Hz74CgOj/jxsVs3oclOexGVit5BhBBCCJEMYwzXbXTiucE5JFIZyY7b7w7BqFPTSanIbuppwPBcBIPesCzHH/CEsb6e9iPKJd/E5kfHLt7EZmQuggef6MP1G+pw184WGVZICkVBIiGEEEIkdf0GJ8LxFI6N+SU7Zr5pjUpFpW1iumlzPQDgd6scrl6K/L5Tak4kr3wTm3u/eQT3P3IMjxwcxfBsGOlcmalOrcLnXkdlpkqnkXsBhBBCCKks+7pqoVOr8HT/LPZ1OSQ55jlPCK/cVC/JsSpZvdWAbS12/PaMG++5vlvSYw/kspcUJMrLrNfgm/fuwncOjuLZgTn89kz2gkG1UYv5aBJfuHsr6q0GeRdJVkRBIiGEEEIkZdJrsLujBk/1efHRV28S/Xhz4Th8kQTtR5TIzT0NePCJPkwvLMIlYXnvQG7fKZWbym+zy4rPvW4LOOcY90fx3OAc9g/OocFahddua5J7eaQAVG5KCCGEEMldt6EOA94wJvxR0Y91bDS7N6rHZRX9WAS4qSebsf29xCWn5zxhGLQqtFRTZ1OlYIyhrdaEN+9p+3/t3XmU3VWV6PHvTmUkEwkZCIGEKQMQmiGAIE8IIDg1zVOUp9KIz25A1O7WFlkuZwXn7nZoWxREBARFUZ8KikpAUEAlqCEMSRiSAGYmY2WqpGq/P+6viktIVZLKrXtvVX0/a9VK1W84v31z1q/q7nvObx++fv50Pnb24U4z7SZMEiVJUtWdNrW0FMZv53d9ldOZjy9j6MC+HDtxRJdfS3DI6CEcOmYIv3p0aVWvO3/ZeiaN8blTqRJMEiVJUtUdPGowE0buxT3zuna9xJaW5O55y5kxZQz9XBahal51xFj+uGAVqzc0Ve2a85etZ5JTTaWKqMpvy4gYEBHXRsSiiFgfEX+NiNcU+w6MiIyIxrKvj2537rcjYl1ELI2If9+u7TMiYm5EbIyIuyNiYjVekyRJ6ryI4LQpo7nvyefZvLW5y64z+7k1rGxs4pWHjemya+ilzjp8X5pbkrvmdu2HAK3WbtzKsnVbmGLRGqkiqvWRWl/gWeBUYDjwEeAHEXFg2TF7Z+aQ4uuKsu2fACYBE4HTgMsj4tUAETEK+DHwUWAkMAu4pUtfiSRJqogZU8ewaWszf1rQdUthzHx8OQ19glMnj+6ya+il/m7/4YwbPrBqU07nL28tWmOSKFVCVZLEzNyQmZ/IzIWZ2ZKZtwELgOm7cPqFwBWZuTozHweuAd5e7HsD8Ghm/jAzN1NKKI+KiKmVfxWSJKmSTjp4Hwb07cPdXTjl9M7HlzF94gj23qt/l11DLxURnHX4WO59YgWbmrpupLjV/KKyqdNNpcqoyeT8iBgLTAYeLdu8KCKei4jrihFCImIEMA6YXXbcbOCI4vsjyvdl5gbgqbL9kiSpTg3s18BJh+zDb+d1TfGa51ZvZO7S9U41rZGzjtiXzVtbuPeJri9ONH/pegb3b2B8FZfckHqyqieJEdEPuAm4PjPnAiuB4ylNJ50ODC32A7R+HLS2rIm1xTGt+8v3bb+//LoXR8SsiJi1YkXX/7KSJEk7d9qUMSxYuYEni+mCldT6PNwZh42teNvauRMOGsnwQf2qMuV0/rJGJo0d6vIKUoVUNUmMiD7AjUAT8B6AzGzMzFmZuS0zlxXbz4qIoUBjcWr5wkbDgNa/JI3b7dt+f5vMvDozj8vM40aP9rkESZLqwWuO3JdB/Rr48p1PVLztmY8v56BRgzlktFMQa6FfQx/OmDqGmY8vZ2tzS5ddZ1tzC48tWWfRGqmCqpYkRumjnWuBscC5mbm1nUOz+LdPZq4GlgBHle0/ihemqT5avi8iBgOH8OJprJIkqU6NGTqQi085mNseXsKfn1ldsXY3bNnGA089z+lTnWpaS2cdsS9rN23lwS4sTvSnBatYu2krM6Y4CCBVSjVHEq8CDgPOzsxNrRsj4mURMSUi+kTEPsBXgd9mZus00huAj0TEiKIgzUXAd4p9PwGmRcS5ETEQ+BjwcDGNVZIkdQMXn3Iwo4cO4NO3P05m7vyEXfC7J1bS1NzCGT6PWFOnTh7NoH4N3Prn57rsGrfPWcKgfg3MmGJfS5VSrXUSJwKXAEcDS8vWQzwfOBi4g9IU0UeALcBbyk7/OKViNIuAe4AvZuYdAJm5AjgX+DSwGngZ8OZqvCZJklQZgwf05f1nTuahRau545HKPL828/FlDB3Yl+MPHFmR9tQ5g/o38JYTJvDTvy7m2VUbK95+c0vyq0eXcvrUMQzq31Dx9qXeqlpLYCzKzMjMgWVrIQ7JzJsy83uZeVBmDs7McZn5tsxcWnbulsx8R2YOy8yxmflf27V9Z2ZOzcxBmTkjMxdW4zVJkqTKedNxBzBl7FA+d8dcmrbt2fNrLS3J3fOWM2PKGPo11KSQu8pcdMpB9Am4+t6nK972Hxc8z8rGJl575LiKty31Zv7mlCRJNdfQJ/jQ6w5j0fMbufEPi/aordnPrWFlYxNn+DxiXRg3fBBvnL4/t8x6luXrNle07V/MWcLAfn04barPI0qVZJIoSZLqwqmTR/OKSaP46swnWLOxqdPtzHx8OQ19wkImdeSSUw5hW3ML1/5+QcXabG5J7nhkGadPHcNe/ftWrF1JJomSJKmOfOi1h7Fu81a+dteTnW7jzseXMX3iCPbeq38FI9OeOHDUYM4+aj+++4dFe/QBQLk/LVjFysYtTjWVuoBJoiRJqhuHjRvGm6bvz/UPLOSJZS9Z9ninnl7RyNyl63mlVU3rzrtmHMqGpma+c//CirT3y0dKU01d5kSqPJNESZJUVy47awrDBvbjkhsfYt3m9pZVfqltzS184NaHGTqgL/9w1PgujFCdMWXfoZx5+Fiuu28hjVu27VFbzS3JLx9ZymlTnGoqdQWTREmSVFfGDBvI188/lmdWbeS93/8rLS27tnbi1+5+kocWrebK109j3+EDuzhKdca7ZhzC2k1bufmPe1acaNbCVaxY71RTqauYJEqSpLrzsoP34WNnH85dc5fzpTvn7/T4hxat4qszn+D1x4znnKMdRaxXx0wYwcmH7sM1v1vA5q3NnW7nF3OWMKCvU02lrmKSKEmS6tIFJ07kvOP257/vepI7HlnS7nHrN2/lvbf8lfEjBvGpc46oYoTqjHefdigr1m/p9LOJLcVU0xlTRjN4gFNNpa5gkihJkupSRPCpc6Zx9AF78+8/mM28pTsuZPPxnz7K4jWb+fL/OZqhA/tVOUrtrpMO3oczDx/LF+6Yy52PLdvt82ctWs1yp5pKXcokUZIk1a2B/Rr4xj9OZ/CAvlx0wyyuv38h9z25kmXrNpOZ/PSvf+PHf/kb/3L6oUyfOLLW4WoXRARfefPRTBs/nH/53l+Y/eya3Tr/F3OW0L9vH844bGwXRSgpMnftYfCe5LjjjstZs2bVOgxJkrSLHlq0mktunMXKxhfW2Bs6oC9NzS1MGz+cWy4+kb4NfvbdnaxYv4U3XHUfm5qa+fGlJzNhn706PH7Dlm3c8MAivnbXE5x86CiufttxVYpU6pki4qHM3OGNZJIoSZK6hcxk+fotPLW8kSdXNPLU8kaWrdvCh193GAeM7DjBUH16akUj5151PyP36s+PLn05Iwb3f8kxG5u2ceMDi/jmvU+zakMTp04ezRXnTNtpUimpYyaJ2zFJlCRJqg+zFq7ird/6I0eOH84V50xjzcYmVm1sYvWGJhav3cwPZz3LysYmXjFpFO995WSmTxxR65ClHsEkcTsmiZIkSfXjF3OW8O6b/8yO3paWksNJPnMqVVhHSaJ1gyVJklRTrz1yHLe+8+UsW7eZkYP7M3Jwf0bs1Z8Re/XzWVOpBkwSJUmSVHNOI5Xqhx/NSJIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2pgkSpIkSZLamCRKkiRJktqYJEqSJEmS2kRm1jqGqouI9cC8WsehLjUcWFvrINRl7N+ezf7t2ezfns8+7tns355jSmYO3dGOvtWOpE7My8zjah2Euk5EXJ2ZF9c6DnUN+7dns397Nvu357OPezb7t+eIiFnt7XO6qXqqn9c6AHUp+7dns397Nvu357OPezb7txfordNNZzmSKEmSJKm36ign6q0jiVfXOgBJkiRJqqF2c6JeOZIoSZIkSdqx3jqSKEmSJEnaAZNEdWsRMTIifhIRGyJiUUS8tdj+uoj4fUSsiYilEfGtiNhhiV/Vrw7697SImFP07/PFMeNrHa92T3v9u90x346IjIhDaxGj9kwH9/CMiGiJiMayrwtrHa92T0f3cESMjoibI2JtRKyOiJtqGat2Xwf374e2u3c3FffzqFrHrMrprUtgqOf4H6AJGAscDdweEbMpreFzJXAvMAC4Gfgi8M4axanOaa9/HwNelZmLI2IAcAVwFfAPNYtUnbHD/s3MRwEi4n8Bh9QwPu259u5hgMWZuX/NIlMldHQP/xh4EJgAbASm1SxKdVZ7/fsZ4DOtB0XEJ4BTMnNlTaJUl/CZRHVbETEYWA1My8z5xbYbgb9l5ge3O/YNwCcz88jqR6rO2NX+LZLETwDnZObhtYhVu29n/RsRfSm9wbwQmA1MyswnaxawdltHfQzcAXzXJLH72kn/3kWpIMYhmdlcuyjVWbvxNziApyi9x7q+JsGqS9TddNOIGF7rGNRtTAa2tf7yKswGjtjBsacAj1YlKlVKh/0bERMiYg2wCbgM+EL1Q9Qe2Nn9+z7g3sx8uOqRqVJ21sdjImJZRCyIiC8Vb0rVfXTUvycC84Dri0cCHoyIU2sRpDptV99jvQIYA/yoWoGpOuomSYyIQRFxLfB0REyodTzqFoYA67bbthZ40bOHEXEmpdGIj1UpLlVGh/2bmc9k5t7AKOAjwNzqhqc91G7/RsQBwCV4z3Z3Hd3DcylNXxsHnA5MB/6rqtFpT3XUv/sDZwF3A/sC/wn81GfWupVdeo9F6f3VrZnZWJWoVDV1kSRGxBBKzxONApZTer5I2plGYNh224YB61t/iIgTKT2P+MbtPg1T/dtp/wJk5irgekpvQHzOuvvoqH+/DHwqM9dWPSpVUrt9nJlLM/OxzGzJzAXA5cC5VY9Qe6Kje3gTsDAzr83MrZn5feBZ4OQqx6jO25X3WHsBb6L0N1g9TE2TxIgYFRH9ik8ffgJ8GDgHuCAiXl7L2NQtzAf6RsSksm1HUUwrjYhjgJ8B78jMmTWIT3umw/7dTl9K0122/4Om+tVR/54BfLGoTLy02PfAjqqfqq7tzj2c1MkH19plHfXvw5T6tJxFMLqXXbl/Xw+sAn5bxbhUJTUpXBMRBwKtpZDXAR8E5mXm5mL/NcBRmXlC1YNTtxIR36f0h+efKU1d+gXwciCAmcC/ZuYttYtQe6KD/p1C6Q/VE8A+lCqwHZqZx9YoVHVCB/27ghcnDEuAk4DZmbmp2nGq8zro4zHA08AzlKYm3kBp5On/1ihUdUIH/buEUjGT9wLfpZRMXA1MtgJm99Fe/5ZVoP418IfM9NGAHqjqn9pFxCDgW8BDwBsoDWd/AnhL2WHvBo4oXzMpIvyEUTvyLmAQpWnK3wMuLX55vR8YDVxbto6PhWu6n/b6dzyl6ojrgTlAC6U3Iepedti/mbm8mI64NDNbRxJXmiB2S+3dw8cA9wMbin/nAP9aqyDVae3dw6soLUl0GaXn2D5IqQK1CWL30t79S7E28emUPuBRD1T1kcRi2Po64J8zc25EDAP+DTgNuLi1xHlEvA+4PDPHFT8Pzcz1ERHpuh2SJEmS1CVqMToXlBZUXQuQmesoLbi6GLgUSqOGQZwyKgAACatJREFUmfklYFVE/CwiNgKfLY43QZQkSZKkLlL1JLGoMDmHF5c2n0tpusmBEXFwZrZExBhKCeWxwPsz8z3VjlWSJEmSeptaPef3OeD1ETEZIDObgceASbywJsts4M+ZuX9mXlWbMCVJkiSpd6nVmmJ3Fl83ACcW2x4p/h0OrAQmuTCnJEmSJFVXTZbAgLYFOGdTWofld8AFwCzgosxs6uC8ccBFwN2Z+TsL2UiSJElS5dRqJJHM3BgRZ1Na++o1wLeKYjU7szdwMhARMcuS6JIkSZJUOTUbSXxRELs4Gth6XERcCpwBfCczb+v6CCVJkiSpd6iLBep3J0EsfrwFaATOjIh9W/d3YYiSJEmS1CvURZJYrr1krxhBnBwRZ2TmKuBnwIHAq1v3Vy9KSZIkSeqZ6i5JLJLB9uI6D7g9IvoDPwEWAqdExOHgaKIkSZIk7am6SxIj4tXAlRGxX/HzKa37MvNKYDHw0WLk8BZgBKXCN44mSpIkSdIeqrskEWgAzgJOjojXAddExKll+/8N+EBETMjM+yktm3FsRJxWg1glSZIkqUepuyQxM28H/gS8EmihNK30PWX7f17s/2yx6fvAaGB6RDRUN1pJkiRJ6lnqKkkse6bwK8BhwETgAWDviHhb2aH3AG8uitg8BVyWmf+Rmc3VjViSJEmSepa6ShKLojWRmfOAX1NaC3Fr8f3FETG8OHQt8CBwcnHewwAdFLyRJEmSJO2CqNdaLxExFPgxcBfwG+AKYBylQjWzgLdn5vraRShJkiRJPU/fWgewIxHRJzPXR8QNwNspjRqeB/w90JyZP9ju2JbaRCpJkiRJPUvdjiS2iojvA88Dn8zM5WXbG3wGUZIkSZIqq26f4SsrYvPfwHTgwPLtJoiSJEmSVHl1myQWRWz6ZOZ9lOJ8Vev2nZ0bEQdHxLDi+9jZ8ZIkSZKkkrpNEgEysyUi9gI2AfN25ZyIeDfwCHBW0UZ9z6eVJEmSpDpS10li4X8Df6FU6XRXHAWsBk6IiEldFpUkSZIk9UDdoXBN7OIU04bMbI6ID1BaKmM68B3g5szc0sVhSpIkSVKPUPcjie0liBExoPi3oTiutZDNScB1wG3AOcBBVQhTkiRJknqEuk8StxcRIyLi28A34IXkMCJaX8uzwAHAtcBA4C0RcWVE/F0t4pUkSZKk7qRbJYkRcSTwE+B4YHJEvKHY3iczW4rDjgHmZeYqYCvwYeBI4OkahCxJkiRJ3Uq3ShKB/sCNwNuBmcBFEdG/qILavzjmj8AnI2IOMAz4PbAQGFz9cCVJkiSpe6nrJDEipkbEqRExptg0B7g1Mx8CfgUk8B6AzGwqppyOA44AvpyZpwKfB0ZWP3pJkiRJ6n7qsrppUYzmG8B5wEOUEr/LM/PnZccMAf4JOBe4IDMXFdsPApZl5saqBy5JkiRJ3Vy9jiQeARwKHAKcRWkpi69ExCmtB2RmI6Upp4uB95Wd+2xmbmwtZBMRUa2gJUmSJKm7q5skMSKGl1UoPRGYmJkrgZbM/DylZw0vjIiDy06bD3wPmBYRn4mI+4AzAFoL2ezKGouSJEmSpJKaJ4kRMSkifgXcBPwoIiYCjwHPRMTRZVVLPwscBbQtZZGZTUAzpaTyQuCazPxVVV+AJEmSJPUgNU0SI+KfgLuAvwCXUyow81GgL7CM0lRTADLzYUqFay4ozm2IiDOBW4GvZ+b4zPxOVV+AJEmSJPUwNS1cExFXAosy85ri5/2BucBkSsngscA3M/OuYv/ZwOeA44vnDscDGzJzTU1egCRJkiT1MH1rfP1vAFsAImIAsBF4ChgE/JBS4Zr3RsRTRfXS44Fft1Yuzcy/1SRqSZIkSeqhapokZuZzUKpAmplbIuJwSlNgny3WPfwqcCVwe0SsAaYA59cuYkmSJEnq2Wo9kgi8qALpDGBeUZCGzHwkIs4FjgGOyMzraxSiJEmSJPUKdZEkRkRDZjYDJwB3FNsupTRy+OnMnAXMqmGIkiRJktQr1EWSmJnNEdGXUnXTMRFxL3Ag8I7MXFHT4CRJkiSpF6lpddNyEXEkMJvS0hf/mZn/UeOQJEmSJKnXqacksT/wHkprHm6udTySJEmS1BvVTZIoSZIkSaq9PrUOQJIkSZJUP0wSJUmSJEltTBIlSZIkSW1MEiVJkiRJbUwSJUmSJEltTBIlSQIiYkJENEZEQ61jkSSplkwSJUm9VkQsjIhXAmTmM5k5JDObq3j9GRHxXLWuJ0nSrjBJlCRJkiS1MUmUJPVKEXEjMAH4eTHN9PKIyIjoW+z/bURcGRH3F/t/HhH7RMRNEbEuIh6MiAPL2psaEb+JiFURMS8izivb99qIeCwi1kfE3yLisogYDPwS2K9ovzEi9ouIEyLigYhYExFLIuJrEdG/rK2MiHdFxBNFe1dExCFFnOsi4getx7eOVEbEhyJiZTFyen51/oclSd2VSaIkqVfKzAuAZ4CzM3MI8IMdHPZm4AJgPHAI8ABwHTASeBz4OECR8P0GuBkYU5z39Yg4vGjnWuCSzBwKTAPuyswNwGuAxcU01yGZuRhoBt4HjAJOAs4A3rVdXK8CpgMnApcDVwP/CBxQtP+WsmP3LdoaD1wIXB0RU3brP0uS1KuYJEqS1L7rMvOpzFxLadTvqcy8MzO3AT8EjimO+3tgYWZel5nbMvMvwI+ANxX7twKHR8SwzFydmX9u74KZ+VBm/qFoZyHwTeDU7Q77Qmauy8xHgUeAX2fm02VxHrPd8R/NzC2ZeQ9wO3AekiS1wyRRkqT2LSv7ftMOfh5SfD8ReFkxRXRNRKwBzqc0igdwLvBaYFFE3BMRJ7V3wYiYHBG3RcTSiFgHfIbSSGBn4gJYXYxatloE7Nfe9SVJMkmUJPVmWaF2ngXuycy9y76GZOalAJn5YGaeQ2kq6v/jhamtO7r+VcBcYFJmDgM+BMQexDaimA7bagKweA/akyT1cCaJkqTebBlwcAXauQ2YHBEXRES/4uv4iDgsIvpHxPkRMTwztwLrgJay6+8TEcPL2hpaHNMYEVOBSysQ3yeLOF5BaWrsDyvQpiSphzJJlCT1Zp8FPlJMD31jZxvJzPXAWZQK1iwGlgKfBwYUh1wALCymj76T0lRUMnMu8D3g6WKa6n7AZcBbgfXANcAtnY2rsBRYXcR1E/DO4rqSJO1QZFZqpo0kSaonETED+G5m7l/rWCRJ3YcjiZIkSZKkNiaJkiRJkqQ2TjeVJEmSJLVxJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTGJFGSJEmS1MYkUZIkSZLUxiRRkiRJktTm/wOL0q2viKFO9gAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "energy['2014-07-01':'2014-07-07'].plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "dddca9ad9e34435494e0933c218e1579", + "translation_date": "2025-09-03T19:56:28+00:00", + "source_file": "7-TimeSeries/1-Introduction/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/1-Introduction/working/notebook.ipynb b/translations/zh-CN/7-TimeSeries/1-Introduction/working/notebook.ipynb new file mode 100644 index 000000000..10da8cc34 --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/1-Introduction/working/notebook.ipynb @@ -0,0 +1,64 @@ +{ + "cells": [ + { + "source": [ + "# 数据设置\n", + "\n", + "在本笔记中,我们将演示如何:\n", + "\n", + "设置本模块的时间序列数据 \n", + "可视化数据 \n", + "\n", + "本示例中的数据来自GEFCom2014预测竞赛。数据包括2012年至2014年间3年的每小时电力负荷和温度值。\n", + "\n", + "1陶宏、Pierre Pinson、Shu Fan、Hamidreza Zareipour、Alberto Troccoli和Rob J. Hyndman,“概率能源预测:全球能源预测竞赛2014及未来”,《国际预测期刊》,第32卷,第3期,页896-913,2016年7月至9月。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "coopTranslator": { + "original_hash": "5e2bbe594906dce3aaaa736d6dac6683", + "translation_date": "2025-09-03T19:57:09+00:00", + "source_file": "7-TimeSeries/1-Introduction/working/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/2-ARIMA/README.md b/translations/zh-CN/7-TimeSeries/2-ARIMA/README.md new file mode 100644 index 000000000..ee4a1d8d9 --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/2-ARIMA/README.md @@ -0,0 +1,398 @@ +# 使用 ARIMA 进行时间序列预测 + +在上一节课中,您学习了一些关于时间序列预测的知识,并加载了一个显示电力负载随时间波动的数据集。 + +[![ARIMA 简介](https://img.youtube.com/vi/IUSk-YDau10/0.jpg)](https://youtu.be/IUSk-YDau10 "ARIMA 简介") + +> 🎥 点击上方图片观看视频:ARIMA 模型的简要介绍。示例使用 R 语言,但概念具有普适性。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +## 简介 + +在本节课中,您将学习一种特定的方法来构建 [ARIMA: *A*uto*R*egressive *I*ntegrated *M*oving *A*verage](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average) 模型。ARIMA 模型特别适合拟合显示 [非平稳性](https://wikipedia.org/wiki/Stationary_process) 的数据。 + +## 基本概念 + +为了能够使用 ARIMA,您需要了解以下一些概念: + +- 🎓 **平稳性**。从统计学的角度来看,平稳性指的是分布在时间上不发生变化的数据。非平稳数据则由于趋势而出现波动,必须经过转换才能进行分析。例如,季节性可能会引入数据波动,可以通过“季节性差分”过程来消除。 + +- 🎓 **[差分](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average#Differencing)**。差分数据是指从统计学角度将非平稳数据转换为平稳数据的过程,通过去除其非恒定趋势来实现。“差分消除了时间序列中的水平变化,消除了趋势和季节性,从而稳定了时间序列的均值。” [Shixiong 等人的论文](https://arxiv.org/abs/1904.07632) + +## ARIMA 在时间序列中的应用 + +让我们拆解 ARIMA 的各个部分,以更好地理解它如何帮助我们对时间序列建模并进行预测。 + +- **AR - 自回归**。顾名思义,自回归模型会“回溯”时间,分析数据中的先前值并对其进行假设。这些先前值称为“滞后”。例如,显示每月铅笔销售数据的时间序列。每个月的销售总额可以被视为数据集中的“演变变量”。该模型的构建方式是“将感兴趣的演变变量回归到其自身的滞后(即先前)值上。” [维基百科](https://wikipedia.org/wiki/Autoregressive_integrated_moving_average) + +- **I - 积分**。与类似的“ARMA”模型不同,ARIMA 中的“I”指的是其 *[积分](https://wikipedia.org/wiki/Order_of_integration)* 特性。通过应用差分步骤来消除非平稳性,从而使数据“积分化”。 + +- **MA - 移动平均**。该模型的 [移动平均](https://wikipedia.org/wiki/Moving-average_model) 部分指的是通过观察当前和过去的滞后值来确定输出变量。 + +总结:ARIMA 用于使模型尽可能贴合时间序列数据的特殊形式。 + +## 练习 - 构建 ARIMA 模型 + +打开本节课中的 [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/working) 文件夹,找到 [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/2-ARIMA/working/notebook.ipynb) 文件。 + +1. 运行 notebook 加载 `statsmodels` Python 库;您将需要它来构建 ARIMA 模型。 + +1. 加载必要的库。 + +1. 接下来,加载一些用于绘制数据的库: + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from pandas.plotting import autocorrelation_plot + from statsmodels.tsa.statespace.sarimax import SARIMAX + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + from IPython.display import Image + + %matplotlib inline + pd.options.display.float_format = '{:,.2f}'.format + np.set_printoptions(precision=2) + warnings.filterwarnings("ignore") # specify to ignore warning messages + ``` + +1. 从 `/data/energy.csv` 文件中加载数据到 Pandas 数据框并查看: + + ```python + energy = load_data('./data')[['load']] + energy.head(10) + ``` + +1. 绘制 2012 年 1 月至 2014 年 12 月的所有可用能源数据。没有意外,因为我们在上一节课中已经看到过这些数据: + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + 现在,让我们构建一个模型! + +### 创建训练和测试数据集 + +现在数据已加载,您可以将其分为训练集和测试集。您将在训练集上训练模型。与往常一样,模型训练完成后,您将使用测试集评估其准确性。您需要确保测试集覆盖的时间段晚于训练集,以确保模型不会从未来时间段中获取信息。 + +1. 将 2014 年 9 月 1 日至 10 月 31 日的两个月分配给训练集。测试集将包括 2014 年 11 月 1 日至 12 月 31 日的两个月: + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + + 由于这些数据反映了每日能源消耗,因此存在强烈的季节性模式,但消耗与最近几天的消耗最为相似。 + +1. 可视化差异: + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![训练和测试数据](../../../../7-TimeSeries/2-ARIMA/images/train-test.png) + + 因此,使用一个相对较小的时间窗口来训练数据应该是足够的。 + + > 注意:由于我们用于拟合 ARIMA 模型的函数在拟合过程中使用了样本内验证,因此我们将省略验证数据。 + +### 准备训练数据 + +现在,您需要通过过滤和缩放数据来准备训练数据。过滤数据集以仅包含所需的时间段和列,并缩放数据以确保其投影在区间 0,1 内。 + +1. 过滤原始数据集,仅包含每个集合中上述时间段以及所需的“load”列和日期: + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + 您可以查看数据的形状: + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +1. 将数据缩放到范围 (0, 1)。 + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + train.head(10) + ``` + +1. 可视化原始数据与缩放数据: + + ```python + energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12) + train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12) + plt.show() + ``` + + ![原始数据](../../../../7-TimeSeries/2-ARIMA/images/original.png) + + > 原始数据 + + ![缩放数据](../../../../7-TimeSeries/2-ARIMA/images/scaled.png) + + > 缩放数据 + +1. 现在您已经校准了缩放数据,可以对测试数据进行缩放: + + ```python + test['load'] = scaler.transform(test) + test.head() + ``` + +### 实现 ARIMA + +现在是时候实现 ARIMA 了!您将使用之前安装的 `statsmodels` 库。 + +接下来需要遵循几个步骤: + + 1. 通过调用 `SARIMAX()` 并传入模型参数:p、d 和 q 参数,以及 P、D 和 Q 参数来定义模型。 + 2. 通过调用 `fit()` 函数为训练数据准备模型。 + 3. 通过调用 `forecast()` 函数并指定预测步数(即预测的时间范围)来进行预测。 + +> 🎓 这些参数的作用是什么?在 ARIMA 模型中,有 3 个参数用于帮助建模时间序列的主要方面:季节性、趋势和噪声。这些参数是: + +`p`:与模型的自回归部分相关的参数,包含 *过去* 的值。 +`d`:与模型的积分部分相关的参数,影响应用于时间序列的 *差分*(🎓 记得差分 👆?)。 +`q`:与模型的移动平均部分相关的参数。 + +> 注意:如果您的数据具有季节性特征(例如本数据),我们使用季节性 ARIMA 模型(SARIMA)。在这种情况下,您需要使用另一组参数:`P`、`D` 和 `Q`,它们与 `p`、`d` 和 `q` 的关联相同,但对应于模型的季节性部分。 + +1. 首先设置您偏好的时间范围值。我们尝试 3 小时: + + ```python + # Specify the number of steps to forecast ahead + HORIZON = 3 + print('Forecasting horizon:', HORIZON, 'hours') + ``` + + 为 ARIMA 模型选择最佳参数值可能具有挑战性,因为它有些主观且耗时。您可以考虑使用 [`pyramid` 库](https://alkaline-ml.com/pmdarima/0.9.0/modules/generated/pyramid.arima.auto_arima.html) 中的 `auto_arima()` 函数。 + +1. 目前尝试一些手动选择以找到一个好的模型。 + + ```python + order = (4, 1, 0) + seasonal_order = (1, 1, 0, 24) + + model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order) + results = model.fit() + + print(results.summary()) + ``` + + 打印出结果表。 + +您已经构建了第一个模型!现在我们需要找到一种方法来评估它。 + +### 评估您的模型 + +为了评估您的模型,您可以执行所谓的 `逐步验证`。在实践中,每次有新数据可用时,时间序列模型都会重新训练。这使得模型能够在每个时间步进行最佳预测。 + +使用此技术从时间序列的开头开始,在训练数据集上训练模型。然后对下一个时间步进行预测。预测结果与已知值进行评估。然后扩展训练集以包含已知值,并重复该过程。 + +> 注意:为了更高效地训练,您应该保持训练集窗口固定,这样每次向训练集中添加新观测值时,您都会从集合的开头移除观测值。 + +此过程提供了模型在实践中表现的更稳健估计。然而,这需要创建许多模型的计算成本。如果数据量较小或模型较简单,这是可以接受的,但在规模较大时可能会成为问题。 + +逐步验证是时间序列模型评估的黄金标准,建议在您的项目中使用。 + +1. 首先,为每个时间范围步创建一个测试数据点。 + + ```python + test_shifted = test.copy() + + for t in range(1, HORIZON+1): + test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H') + + test_shifted = test_shifted.dropna(how='any') + test_shifted.head(5) + ``` + + | | | load | load+1 | load+2 | + | ---------- | -------- | ---- | ------ | ------ | + | 2014-12-30 | 00:00:00 | 0.33 | 0.29 | 0.27 | + | 2014-12-30 | 01:00:00 | 0.29 | 0.27 | 0.27 | + | 2014-12-30 | 02:00:00 | 0.27 | 0.27 | 0.30 | + | 2014-12-30 | 03:00:00 | 0.27 | 0.30 | 0.41 | + | 2014-12-30 | 04:00:00 | 0.30 | 0.41 | 0.57 | + + 数据根据其时间范围点水平移动。 + +1. 使用滑动窗口方法对测试数据进行预测,循环大小为测试数据长度: + + ```python + %%time + training_window = 720 # dedicate 30 days (720 hours) for training + + train_ts = train['load'] + test_ts = test_shifted + + history = [x for x in train_ts] + history = history[(-training_window):] + + predictions = list() + + order = (2, 1, 0) + seasonal_order = (1, 1, 0, 24) + + for t in range(test_ts.shape[0]): + model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order) + model_fit = model.fit() + yhat = model_fit.forecast(steps = HORIZON) + predictions.append(yhat) + obs = list(test_ts.iloc[t]) + # move the training window + history.append(obs[0]) + history.pop(0) + print(test_ts.index[t]) + print(t+1, ': predicted =', yhat, 'expected =', obs) + ``` + + 您可以观察训练过程: + + ```output + 2014-12-30 00:00:00 + 1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323] + + 2014-12-30 01:00:00 + 2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126] + + 2014-12-30 02:00:00 + 3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795] + ``` + +1. 将预测结果与实际负载进行比较: + + ```python + eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)]) + eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1] + eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h') + eval_df['actual'] = np.array(np.transpose(test_ts)).ravel() + eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']]) + eval_df.head() + ``` + + 输出 + | | | timestamp | h | prediction | actual | + | --- | ---------- | --------- | --- | ---------- | -------- | + | 0 | 2014-12-30 | 00:00:00 | t+1 | 3,008.74 | 3,023.00 | + | 1 | 2014-12-30 | 01:00:00 | t+1 | 2,955.53 | 2,935.00 | + | 2 | 2014-12-30 | 02:00:00 | t+1 | 2,900.17 | 2,899.00 | + | 3 | 2014-12-30 | 03:00:00 | t+1 | 2,917.69 | 2,886.00 | + | 4 | 2014-12-30 | 04:00:00 | t+1 | 2,946.99 | 2,963.00 | + + 观察每小时数据的预测结果,与实际负载进行比较。准确性如何? + +### 检查模型准确性 + +通过测试所有预测的平均绝对百分比误差 (MAPE) 来检查模型的准确性。 +> **🧮 展示数学公式** +> +> ![MAPE](../../../../7-TimeSeries/2-ARIMA/images/mape.png) +> +> [MAPE](https://www.linkedin.com/pulse/what-mape-mad-msd-time-series-allameh-statistics/) 用于以上述公式定义的比率显示预测准确性。实际值与预测值之间的差异除以实际值。 +> +> “在此计算中,绝对值会对每个预测点进行求和,然后除以拟合点的数量 n。” [wikipedia](https://wikipedia.org/wiki/Mean_absolute_percentage_error) +1. 用代码表示公式: + + ```python + if(HORIZON > 1): + eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual'] + print(eval_df.groupby('h')['APE'].mean()) + ``` + +1. 计算单步预测的MAPE: + + ```python + print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%') + ``` + + 单步预测的MAPE:0.5570581332313952 % + +1. 打印多步预测的MAPE: + + ```python + print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%') + ``` + + ```output + Multi-step forecast MAPE: 1.1460048657704118 % + ``` + + 一个较低的数值是最好的:请注意,如果预测的MAPE为10,则表示误差为10%。 + +1. 但正如往常一样,这种准确性测量通过可视化更容易理解,所以让我们绘制一下: + + ```python + if(HORIZON == 1): + ## Plotting single step forecast + eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8)) + + else: + ## Plotting multi step forecast + plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']] + for t in range(1, HORIZON+1): + plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values + + fig = plt.figure(figsize=(15, 8)) + ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0) + ax = fig.add_subplot(111) + for t in range(1, HORIZON+1): + x = plot_df['timestamp'][(t-1):] + y = plot_df['t+'+str(t)][0:len(x)] + ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t)) + + ax.legend(loc='best') + + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![时间序列模型](../../../../7-TimeSeries/2-ARIMA/images/accuracy.png) + +🏆 非常棒的图表,展示了一个具有良好准确性的模型。干得好! + +--- + +## 🚀挑战 + +深入研究测试时间序列模型准确性的方法。本课中我们提到了MAPE,但还有其他方法可以使用吗?研究它们并进行注释。可以参考[这份文档](https://otexts.com/fpp2/accuracy.html)。 + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +本课仅涉及ARIMA时间序列预测的基础知识。花些时间通过研究[这个仓库](https://microsoft.github.io/forecasting/)及其各种模型类型,深入了解其他构建时间序列模型的方法。 + +## 作业 + +[一个新的ARIMA模型](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/2-ARIMA/assignment.md b/translations/zh-CN/7-TimeSeries/2-ARIMA/assignment.md new file mode 100644 index 000000000..67cfc44e3 --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/2-ARIMA/assignment.md @@ -0,0 +1,16 @@ +# 一个新的ARIMA模型 + +## 说明 + +现在您已经构建了一个ARIMA模型,请使用新的数据集构建一个新的模型(可以尝试使用[杜克大学的这些数据集](http://www2.stat.duke.edu/~mw/ts_data_sets.html))。在笔记本中记录您的工作,可视化数据和模型,并使用MAPE测试其准确性。 + +## 评分标准 + +| 标准 | 卓越 | 合格 | 需要改进 | +| -------- | ------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------- | ----------------------------------- | +| | 提交的笔记本中包含一个新的ARIMA模型,经过测试并通过可视化和准确性说明进行解释。 | 提交的笔记本未进行注释或存在错误 | 提交的笔记本不完整 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/2-ARIMA/solution/Julia/README.md b/translations/zh-CN/7-TimeSeries/2-ARIMA/solution/Julia/README.md new file mode 100644 index 000000000..779236745 --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/2-ARIMA/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/2-ARIMA/solution/R/README.md b/translations/zh-CN/7-TimeSeries/2-ARIMA/solution/R/README.md new file mode 100644 index 000000000..ba3fc1469 --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/2-ARIMA/solution/R/README.md @@ -0,0 +1,6 @@ +这是一个临时占位符 + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/2-ARIMA/solution/notebook.ipynb b/translations/zh-CN/7-TimeSeries/2-ARIMA/solution/notebook.ipynb new file mode 100644 index 000000000..e0e051feb --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/2-ARIMA/solution/notebook.ipynb @@ -0,0 +1,1135 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "陶宏、Pierre Pinson、Shu Fan、Hamidreza Zareipour、Alberto Troccoli 和 Rob J. Hyndman,“概率能源预测:2014年全球能源预测竞赛及未来”,《国际预测期刊》,第32卷,第3期,页896-913,2016年7月至9月。\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## 安装依赖项\n", + "首先安装一些必要的依赖项。这些库及其对应版本已知可以正常运行解决方案:\n", + "\n", + "* `statsmodels == 0.12.2`\n", + "* `matplotlib == 3.4.2`\n", + "* `scikit-learn == 0.24.2`\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 16, + "source": [ + "!pip install statsmodels" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "/bin/sh: pip: command not found\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 17, + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from pandas.plotting import autocorrelation_plot\n", + "from statsmodels.tsa.statespace.sarimax import SARIMAX\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape\n", + "from IPython.display import Image\n", + "\n", + "%matplotlib inline\n", + "pd.options.display.float_format = '{:,.2f}'.format\n", + "np.set_printoptions(precision=2)\n", + "warnings.filterwarnings(\"ignore\") # specify to ignore warning messages\n" + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 18, + "source": [ + "energy = load_data('./data')[['load']]\n", + "energy.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      load
      2012-01-01 00:00:002,698.00
      2012-01-01 01:00:002,558.00
      2012-01-01 02:00:002,444.00
      2012-01-01 03:00:002,402.00
      2012-01-01 04:00:002,403.00
      2012-01-01 05:00:002,453.00
      2012-01-01 06:00:002,560.00
      2012-01-01 07:00:002,719.00
      2012-01-01 08:00:002,916.00
      2012-01-01 09:00:003,105.00
      \n", + "
      " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2,698.00\n", + "2012-01-01 01:00:00 2,558.00\n", + "2012-01-01 02:00:00 2,444.00\n", + "2012-01-01 03:00:00 2,402.00\n", + "2012-01-01 04:00:00 2,403.00\n", + "2012-01-01 05:00:00 2,453.00\n", + "2012-01-01 06:00:00 2,560.00\n", + "2012-01-01 07:00:00 2,719.00\n", + "2012-01-01 08:00:00 2,916.00\n", + "2012-01-01 09:00:00 3,105.00" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "绘制所有可用的负载数据(2012年1月至2014年12月)\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 19, + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHVCAYAAABc/b7wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9d5xfVZ3//zopEBGwIOiu7Bp0bYuIBXdtYMOKosh3VwHLuqv+lNXVdReNuCgdpBuahNBNQkASIKQnpPdJnfRkJtOSTO8zmfb5nN8fn8+duZ/7Obff+7n3fu7r6SMyc8u5Z255n/M+7yaklCCEEEIIIYQQQgBgXNQdIIQQQgghhBASH6gkEkIIIYQQQggZhUoiIYQQQgghhJBRqCQSQgghhBBCCBmFSiIhhBBCCCGEkFGoJBJCCCGEEEIIGWVC1B2Igje96U1y8uTJUXeDEEIIIYQQQiJh69atrVLKM1X7UqkkTp48GRUVFVF3gxBCCCGEEEIiQQhRa7aP7qaEEEIIIYQQQkahkkgIIYQQQgghZBQqiYQQQgghhBBCRkllTCIhhBBCCCGEAMDw8DAaGhowMDAQdVdCYdKkSTj77LMxceJEx+dQSSSEEEIIIYSkloaGBpx22mmYPHkyhBBRdydQpJRoa2tDQ0MDzjnnHMfn0d2UEEIIIYQQkloGBgZwxhlnlJ2CCABCCJxxxhmuraRUEgkhhBBCCCGpphwVRA0vfxuVREIIIYQQQgiJkFNPPTWQdq6//nrcddddvtuhkkgIIYQQQgghZBQqiYQQQgghhBASA6SUuOaaa/C+970P5513HmbPng0A6O3txec+9zl86EMfwnnnnYeXXnpp9JxbbrkF73rXu/DJT34SBw4cCKQfzG5KCCGEEEIIIQBumLcHe491B9rmP/7t6fjD1851dOycOXOwY8cO7Ny5E62trfjIRz6Ciy66CGeeeSbmzp2L008/Ha2trfjoRz+KSy+9FNu2bcOzzz6LHTt2YGRkBB/60Ifw4Q9/2HefaUkkhBBCCCGEkBiwdu1aXHHFFRg/fjze/OY341Of+hS2bNkCKSWuvfZavP/978fFF1+Mo0ePoqmpCWvWrMFll12GU045BaeffjouvfTSQPpBSyIhhBBCCCGEAI4tfqVmxowZaGlpwdatWzFx4kRMnjzZdVkLN9CSSAghhBBCCCEx4MILL8Ts2bORyWTQ0tKC1atX45/+6Z/Q1dWFs846CxMnTsSKFStQW1sLALjooovw4osv4sSJE+jp6cG8efMC6QctiYQQQkgCGMlkcbxrAH/3xlOi7gohhJCQuOyyy7Bhwwacf/75EELgjjvuwFve8hZcddVV+NrXvobzzjsPF1xwAd7znvcAAD70oQ/hW9/6Fs4//3ycddZZ+MhHPhJIP4SUMpCGksQFF1wgKyoqou4GIYQQ4pjrX96DJ9fXoOL/LsabTj056u4QQkjZsG/fPrz3ve+NuhuhovobhRBbpZQXqI6nuykhhBCSAJbvbwIA9A2ORNwTQggh5Q6VREIIISQBDI1kAQAnTeDQTQghJFw40hBCCCEJYDiTCw8ZP05E3BNCCCHlDpVEQgghJAGM5hBIXyoBQggJnXLO0+Llb6OSSAghhMScq6ZvREf/MADqiIQQEjSTJk1CW1tbWSqKUkq0tbVh0qRJrs5jCQxCCCEk5qw73Db6cxnOYQghJFLOPvtsNDQ0oKWlJequhMKkSZNw9tlnuzqHSiIhhBASU04MZXCouadgm6QtkRBCAmXixIk455xzou5GrKCSSAghhMSU/569A4v2NBZsoyWREEJI2DAmkRBCCIkpW+s6irZRRySEEBI2VBIJIYSQmJLJFquE5ZhYgRBCSLygkkgIIYTEFLWSGEFHCCGEpAoqiYQQQkhMUSmJhBBCSNhQSSSEEEJiykg2W7SNlkRCCCFhQyWREEIIiSkKHZElMAghhIQOlURCCCEkpmQUZkNaEgkhhIQNlURCCCEkQVBHJIQQEjZUEgkhhJAEwRIYhBBCwoZKIiGEEBJThGIbVURCCCFhQyWREEIISRA0JBJCCAkbKomEEEJITBEqUyJtiYQQE1YdbMGK/c1Rd4OUAROi7gAhhBBC1AgIGJVCWhIJIWZ8//HNAICa2y+JuCck6ZTMkiiEWCmEGBBC9Ob/HdDtu1IIUSuE6BNCvCiEeKNu3xuFEHPz+2qFEFca2jU9lxBCCCk3qCMSQggJm1K7m/5MSnlq/t+7AUAIcS6ARwB8F8CbAfQDeEh3zoMAhvL7rgLwcP4cJ+cSQgghyUXhbkpLIiGEkLCJg7vpVQDmSSlXA4AQ4joA+4QQpwHIArgcwPuklL0A1gohXkZOKZxida6UsieCv4UQQggJDHV2U2qJhBBCwqXUlsTbhBCtQoh1QohP57edC2CndoCUsgo5y+G78v9GpJQHdW3szJ9jd24BQogfCyEqhBAVLS0tAf5JhBBCSDioEtfQkkgIISRsSqkk/gbA2wG8FcA0APOEEO8AcCqALsOxXQBOy+/rNtkHm3MLkFJOk1JeIKW84Mwzz/TzdxBCCCGRQSWREEJI2JTM3VRKuUn361NCiCsAfAVAL4DTDYefDqAHOXdTs32wOZcQQghJNELhcEp3U0IIIWETZZ1EiVy4xR4A52sbhRBvB3AygIP5fxOEEO/UnXd+/hzYnEsIIYQkGrqbEkIIiYKSKIlCiNcLIb4ohJgkhJgghLgKwEUAFgGYAeBrQogLhRCvBXAjgDlSyh4pZR+AOQBuFEK8VgjxCQBfB/BMvmnTc0vxdxFCCCGEEEJIuVEqS+JEADcDaAHQCuDnAL4hpTwopdwD4CfIKXzNyMUTXq0792oAr8nvmwXgp/lz4OBcQgghJLEos5vSkkgICRFJIUNQophEKWULgI9Y7J8JYKbJvnYA3/ByLiGEEFJuZDmBI4SExJfuW4269n7svfFLUXeFREwc6iQSQgghxCFUEQkhYbG/kRFbJEeUiWsIIYQQYoFQZa4hhBBCQoZKIiEBcaS1D3O2Nbg+79vTNuBL960OoUeEkKRDFZEQQkgUUEkkJCC+dN9q/Oq5na7P21jdTvcOQlJKNitx0yt70dDRH3VXCCGEkFGoJBISEIMj2ai7QAhJGJVHu/DY2iP4z5nb1QfQlEgIISQCqCQSQgghEbG1tgMAsLO+U32AIksN09Onk8auAXT1D0fdDUJISqCSSEjAHKDrKCHEIeec+VoAwIff9oaIe0LizkdvW46P3rY86m4QQlIClURCAuaLTEJDCHGI5k16yknjrQ8gBMCJ4UzUXSCEpAQqiYQQQkhI1Lb1YUHlcdP9LHFBCCEkjkyIugOEEEJIufL5e1djaCSLqlu/gvHjPCiEqphE/90ihBBCLKElkRBCCAmJoXzW4y/cuyrinhBCCCHOoZJIUk1T9wAON/dG3Q1CSJlT1dKn3G5rW6Q3KiGEkAigkkhSzRfuXY2L7+EKPyEkWkyrWtC3lBBCSARQSSSppusEa04RQqLDS94alkkkhKiYvaUu6i6QMoJKIiGEEBJX6G5KCHHI0xtqi7b1DY7gnN/Ox5I9jRH0iCQZKomEEEJIxEgzv1JaDcuSgeEMJk+Zjxe3H426K6SMyCrkxZHWPkgJ3LfsUOk7RBINlURCANwwb0/UXSCEpBCRNxXShTRdtPQMAgDuXHwg4p6QciKTzUbdBVJGUEkkqUXqZmVPrKuJriOEEOIKapSEkGIyKlNiHkoN4hYqiSS1PFdRH3UXCCGEEEICwUpJZHgzccuEqDtASFRsPtIRSDs76jtx6sn8lAgh7tGym9LdNF14yWpLiB0ZChISIJzZktRimijCJd94cF0g7RBCCEkXkpN6UiL4phG30N2UpBaOzYSQ2EOLU1kiaEokISAUAmOc0JJjjU167l5yAJOnzC9Zv0gyoZJIUkspVnAzWYnrX96Dho5+5f7VB1tC7wMhJL7YqgoKMRXnBa7m7gFMnjIf2+qCcecvd2L8KEkCUa09jMvP9LM6wXH/q4dL1COSZKgkktRSisF5W10Hnlxfg1/N3qnc/6OnK0rQC0JI3AnK/T1q1le1AQCeZMZoS7S5vBeFf0tNe6B9IeWNZklU5bShuzOxgkoiSS2llI0MJieEKLEzJSbMK1GzZFhlWST+Etf8dk4lAOCVXcfQ3D0QUI9IOaB6rcYWJIq/SX6mxAoqiSS1BC0bxymkc8Lmd4SQuJGwSVxr7xAAYH7l8Yh7kgy8WJCllOgbHMHPZm7HVdM3hdArklRUsa5Wb1iWC9jEAiqJJLUELRz1wrl3cCS/Lfe7mUsHxTMhBHDn2RC23Njf2I3pa6o9nXv6JCZNd4IqwYgbtPHrWOeJILpDUgYt/sQJVBJJeglRNv7LnzfkfxKWl1IpjyOZLKavqcbQSDaczhFCYoOwkRFRcMnUtbh5/j5P55552skAgAvf+aYgu1S2eF2r1BYlnZ7edWIYB5t6vF2MlB1anOLKA80R94TEGSqJJLUEbknU/bzveHfBvu11nSZ9KN42a0s9bp6/D4+sqgqwd4QQ4gzNuuAnqQVLPFjj5/ZIuE98861HNuAL9672flGSCFSvleod0Y77yV+2hdkdknCoJBISEKpBX79tYDhTtF+lqPbnXVV78v8lhBA9e452leQ6XjzR4mQRTQKe7pfUhTI4bGF/I62IZAyu4RAnUEkkqSVoIamKMdFvUSmEqhW+0XTVjBVIJZmsRENHPzr6hqLuCikBo3LIxed+/by9ofTFyEjWu8s756DW+L0/o27KHCaIHn54JEAYYU5Si9/EAYoGizfpNFGng/nYCjFJI//17HbM35XLDFlz+yUR94aETRzndONEzoroSUek4HKFFyVPQp8Uzf744Qzj29OC0t1U8VHm5j/8WIk1tCQSEhBW9YkA9zGQXCFOJ5qCSEhUaN4MXuq7ahNSurNZ0zdUHH7gFCmlq/HhT8sOeb4WSS7Xzq2Mugsk4VBJJOklaEOiTUyiU+9RzfrI+kWEpAcv9fLCwq50j6M2AupLufKZu1YC8K9MO3lvqlt7/V2EJAa999LMTXUR9oSUA1QSSWoJehKjjkl0f5VxnF0RkhrioxoGA9e23OHV3VTDyeJj4KEVJLY4zW5qBnMhED1UEklqCTpFu50l0SnjaEkkJHXE8XP30iXt72AJDGd4uU36d8VRMXQ+CuKQB1ccLun1nttSj81H2kt6TeIcKomEBIR+HHaTVKConfy5VBIJIaXmeNcJDGe0Oone26FeUsz2ug7UtPYF0pbezXRhJeOYiT1VLX22LuSVJSqvo/HrF3bhXx/ZUNJrEudQSSSpJWi3Ti+ZTJXtBNAGISQZxO07f2WnTuFgncRAueyh9fh0PhbRD8Y4xB31nZbHU2FPDyrLtF7GLNzdmD9QfT69TYkeKokktQQfkxhQO3kpT1lNSHqIy/c+4nOWqFkq6G0aHm4XFuj6SzRaewct9/tJVkXKDyqJhMSMIDILEkKSxdbaDgyOeC+LEBQZXXHEOGVcJYTYY5ekaLyNC5X+i+cchFBJJKml5KurDuWtlriG8pmQ8keviBW4ekZEUG7zJDykLHw2do9JP9L98tntYXSJxBi9jBmf/77NZj/6XAj8/gmVRJJa4uqAo/VLE9b7G7uZljpBVLf0YtXBlqi7QYhv/EmduErY9KFfD31xx7HoOkJCx27te5ydJdHF4kMYSCnR0TcUwZWJCiqJhMQMvZA/2NSDL923BvctOxhdh4grPnv3Knz/8c0YGI7edZDEn3k66+G2uo4IexIMXM4iJBqklNjf2GN5zAQbJbHQklj6r/mhlVX44E1LcbzrRMmvTYqhkkjSSwAL3UMjWfuDXPKbFyoB5Fb0tBW1ebuid0Mj7vhsAFkMSfkza3Pd6M8zNtUV7JNSomdwpKT9GVfgbup+kjhWJzGoHhG/8FGkA7N6g/rP2C4mseA8vx3ywJK9TQCA410DEVydGCm5kiiEeKcQYkAI8Zf8758WQmSFEL26f9/XHf9GIcRcIUSfEKJWCHGlob0r89v7hBAvCiHeWOq/iSQTuwBvJ/x81jbHx7pNAiEBnDQh94keae1Dcw+FZpI4xkGOeGDvse7Rn5ftay759fXKnZ9JIhUTZ7T0DNoq47saOjGSKVyQdJNghNlN00HfkP2CkqYkmr0SUddnZgkw5wxngjdSGInCkvgggC2GbceklKfq/j1lOH4IwJsBXAXgYSHEuQCQ/+8jAL6b398P4KGw/wBCNBbvaQq1ff2qX2sP/fQJKXe+MnXN6M/9DiZ9QeNfneDsTsX6w62m+zTriYp9x7tx6QPr8IX7Vpse8/zWBl99I+lhvM2CQTZ8vcMRYXhplROHmnrwzt8txILKcL3MSqokCiG+DaATwHKHx78WwOUArpNS9kop1wJ4GTmlEMgpjfOklKullL0ArgPwTSHEaU7a39/YHfoNJvGl5MlNbeZOBwyxBKsOthRYO6Ne4SOElD8FlkQPIofupmqunL5p9Offza0s2NfWa74A2NKTq2tX3dJnekxn/zC6B4ZN9/NRpINymCLsqO8EADxXUY+B4QyT9plQebQLALBkT2Oo1ymZkiiEOB3AjQB+pdh9lhCiSQhxRAhxb145BIB3ARiRUuqzduwEcG7+53PzvwMApJRVyFkd3+WkT1+6bw2unuHcXZCUF3EbOP/fn9cX/K5NDjSoJBJCwka/MKV3kd9Q1Ya6tv4oulR2GGNPrWS7mbJtdDG1nEybtLHnWBc6++mhUi4EMUXwu0gUFFUtvXjPdYtw28J90XUixpRqEa6UlsSbADwmpTT6RewH8AEAfwPgswA+DOCe/L5TAXQbju8CcJpuf5fF/lGEED8WQlQIISpaWpienpQeO3mrcq/QT9K4oEZIuohiklYw+chff2gkiyse3YiL7lxhe77W5SBivklhIqGguWTqWnzzofX2B5JEkAlAYMTFA0CbDz27uT7insSbsIeIkiiJQogPALgYwL3GfVLKRinlXillVkp5BMCvkXMxBYBeAKcbTjkdQI/D/frrTJNSXiClvODMM8/EvuNG3ZOkjVIIQzfJagZHsrjg5mWF5+tOpyWREBIF33x4neNj6W7qHqNkP9Z5ApOnzMeO+k7HqrbV8GClsFe3mruxkmRhlsBItdnsnYjL4s6E8bl+cN6jplTPqVSWxE8DmAygTgjRCOB/AVwuhFD5ekpdvw4CmCCEeKdu//kA9uR/3pP/HQAghHg7gJPz51ly+8L97v4CUnaUWhiqBLhxItXaW+hiqj+DvvmEkLDRZ8LUJM7uo+4XVakkusAwNqw5lPN2mrGxNorekITiJNml3SyiMLtxdHOOscUmCpIoKZWSOA3AO5BzK/0AgD8DmA/gi0KIzwgh3iZy/B2A2wG8BABSyj4AcwDcKIR4rRDiEwC+DuCZfLszAHxNCHFhPo7xRgBzpJTW1UTBAYwkD6qI5U8UxYsJ0TPOb+IaSirXGNf/tAVMCfNJsvEu+7nrPRZJb0hyCMLqVkqlLOykK2kg7ClDSZREKWV/3q20UUrZiJyb6ICUsgXABwGsB9CX/28lgP/SnX41gNcAaAYwC8BPpZR78u3uAfAT5JTFZuRiEa920ifqiMQLe451eU7N7OVb1isN1B/Kn1mMvyA6olC4CkMS3V9/1ALAUdY7ultXijn7HYsOhH8REjpmSqLqOw7ivWrqHkCjj3rAP35mq+k+znesKZUuP6E0lylESnm97ud7MJaoRnVsO4BvWOyfCWCm2z44XS3ZXteB889+PcaN44CXdura+nHJ1LX4/sfehhu+/r6i/SqZZjdREibnaehXmGllKn/WV5nXUiPpI8ykJWYEZkngkOkYq1gy1W082nki0OsPDGcCbY9EQ9Dxe3bN/fOtuWp2NbdfEuh1AX0CLGJFWSSuSSrrDrfisofW4zuPbbI/mJQ9rX25eMGdDcaEuuboV/C8ye+xkxbutnfN+OFTFfjq/WtsjyPxhPEXRE8U74PvOonBdaUsGM5k8Z3p1nOIYnfTHBLS8TvARUSSNXFy4qtBvJJaJdGJ2G3oyNWEWl/V5sukTsoDLXGMmVE5jOmcXrg/ub7G9vhl+5o8JZkg8YAqItET9fvgx0U+6r7HhcV7GrH2sLWHgPE+6xVDMx1xQ1WbZRuEqEiKwjj5jFNyP1CQWBL24lB6lUQHq3N6V0G6Y5CRvJI4YZz6sxmxyT6qjguwfg8TIs9JQNCQmC6qW3ot90fx/RdkN/UxAaFVPEfGR1bqxbsbTRcljxlcTt3c7U3VbfYHkbKhpWewaFtcv85vXfB3AID3vfV1AOLbz6gJQr5mshK1bdYlcFKsJDo5aOxHTtaJNtiPNxm1T4SwkJCUVT8SDFHEoJHo+Ozdqyz3R+FCyDcwWJxM5ozPWTujbyiD4yF4MV09Yxv2HHMeNkGSzQ+froi6C47RPheW/HKGn7t037KD+NSdKy2PSa2SSIhbtHHcxJDooAEv16SgTBNeJujDmSzWHmLCm3Li2c11uOb5nZFcuz4fZgF4jEkczW5KvKLXKweGvWXTNmsPyA1Fl0xdW/C7FRU17Zg8ZT52H6VimXSSUqKGOqI1o5+0j/u00YFHQWqVRA5gxCtB6m1276GbS/11a4OfrpCIGRzJYM72o67Pu2vxAXznsU3YWtseQq9IFEyZU4nntzbYypq23sHA4+UfWVUdSDs0iud44NVDvs63ynzqvA1fXcDSfU0AgDVcjCobnFm4S9ARs2vnZz90W1cTxG1xUqYovUqigxtcUC+KFh3iE29JIJwfe/vC/R6uQKyYuakOP3zK2lVn99GuQFxjqpqtYwNMz2vJndfWO+S7DyRe2K36f/jmZfjobcvDu76n7KYcK/UcbLKOO1XhZH7ip9yB1/kMny0pFZxylwAHcia9SqKDu2NcwWjqHqCySEqKm0GZpTyD59q5lViWX0VXsam6DV+9fy0eX3ekhL1SQ8lUfpiltI8zaXE3zWZlYHFT7X2FCzz6+UkQlhRjE72DIwW/23mhmM2XZm6qw476Tl99I+lkJGMt3EbrJJa7IIk5qVUS3XKktQ//fOtyTFsdjCsOiTcnhjJFgf1ehJV+TcG4vjCcydpmRHWDWUIdEh71HbkMg3uP+y87YvZ+XTFtI/71zxsKth1p7cNP/7IVgyPMukzCw4vlaFRJLPPZ3duvXYArp28MpK2HVlYV/F5YqzL45Z/hTHGbRw3ZUp1w7dxKfOPBdUF0icSQMC3Hdyw+YH1tltJxxPzK456rLzi5t6lVEt2OX/+Rdzmzq3dEkoPVO/CbF3bhkqlri1Z4g+S3cypdnzNzUx2au9UxSMyMGSEhmvE2VLdhc01hvOHv5lZi4e5GVNR0hHdhEjhuB/OorcN+9JM0SKON1dHFAQetOw6P2Jut6UhVPkT9fe40sUBr7xjfNWv01v0GXbIxV23Q3dQctzGJGnxxywerZ7mtLjf57h0YMT/IAQUrwoYp32tPGm/fgKGP186txPce32x7LVIagrjlmaxEfXu/Z0s1n3s4DAxnMGzjEuWWG+btdXV81OENnuKoA+9F+iioVemzraGRrO+kZpQxJGjs3mvGv8aD1CqJTlAJRr646UL5DgT0Ckwcb//5qS7VrCiMC9CSGCbXv7wntLbvW3YQF96xAnVtxauBbmKeuIAVLO+5bhH+xeDm6xe3K76JfqQURyXl57O2K7cfaOxx3dblD6/HPUus3QGHHFgeSfwoZVZc68bVm0frJCZa+MWfjr4hR54QVBIBLNtrnpjCCCdi6UD1nP3OeYxtOtHpVP0wsy5QRwyPJ9fXWO63EgurD7Zg9cEW0/3rq3K1ilTK/83z91led2A4g6Uu5BdxR+RJOSIeb3xZMjlWeqZAlJvcR+OCtSZHitryMC5sre3A1FcPWx7z2btXum+YEBs4xy4N2+udhaqkVknU+/P+8GnrFPd6+AITN1i9L04SO6jSnJs1SUtiPPne45tNXYQB68WHF7ZZu4m5kV0ketyOH5kEupsS/zi576WytAxnsnjYkFgHABo63Ce6IeGSpCkAvfLc8ak7V+CL964e/d3v/XNS4QFIsZLo5AbT3ZQAuYLVQaB/c25dsC/wTLlJGiDKkfr2fnSdGHZ9ntVzc2fJoWyKO27HDz+18ILA1+Upj2KB03HB7FGf0CVb2ljdhhaTcAeSMJx4MrlsUkqJW+bvdTQOmsmW2RX1lvvTSm1bPw40uXcdN8WhXEitkugEp5o2KT+0yfnqQy348M3LsPJAc6DtO1UQVXLSKDx7B0fQNzhCS2IEaLdcSokL71iBz9+zytX5O+o7sSWfoVT1rAeG1XE/bh61lDLyBCgkR2FJHPtnkui4nCT3PQL074P+847TwvSaQ634yC3LXJ93y/y92FobXSZYMkaYb9OcbUfx6JojOP+GJZ76cWKoOPtzfN7+ePGzmeoYZKc4nUKkVkn0qgByrpUuttflYpL0sUleB20vE3Wlu6lh2/v+sBjn37AELJMYDJuq2xxnA/zVczsLfjdLKmRGQY0xxbMeCiC75qUPrMM5v13gux3iH+0Rrz7Y4uiZuC3W/u7/W4hvPhRk3ToOeCrCKI3kdkGg26HXgp/F7t5Bf9m9NR5dcwSXPxxsEigSP5p61OW5VDidD3X2u/fOIcGRWiXRK1QS04GTx1zZ0BV6P1Qd0W9aWHkcADCSlbR8B8S3pm3E/z6/0/7AhFB5tATvKXGEtsC0wqFnglt308GRLLbVeU+2Y5y40d1UzYV/fDXwNt0uIj6kiBNU4cfB5Fezd3g/mcQaJ6+F23fy3W8+zfGxSi8p3Vb9z6rM38QfTnJiAFQSC1h3uBVbdEWrGZOYXjTZOE4U/q5n3q5j4ffDRku85q+7Rn+mt6l7DjX1YPKU+aN1MZMMF7Dij/aMJjg0+0f9TP1cflOEhebDpk/hFueXqD9flUJQ3dpXzrp+Kgkz9ODUkycAAD4y+Q0O+uFsGwC09TEONmjobuqBq6ZvCrwuFkk2mnVO5n4pwK2w9SKblYJU97N+rsmYRPesypemmL8rZ5Ft9ZikKIhhN+pJIgkf7Rk7XcUtdeKaIC6n/WVHO5n90g1mz9rvM4liWPjUnSssMz7OJVwAACAASURBVDqT4NhW14GB4eAXLexQXXNcfkLiNZba7LSoE3iVI07lQnqVRIsb1NIziGV7m9RBtHxXU0GRBU8ZG+ikHZ/9sKmTOGH82Cc8Lr1fsy09A8N4aOXhohgvbbKuDUK/eNZfMLgfKFtSQP4ZO8446fGd2He8Gy/tOOrtZJ/X52scLH7vp5swBCklegb8xYDVt/ejtq3fsjYsCYZjnSfwzYfW49o5laG0b/Xu+b2mOimfVB4QQGg+8ciEqDsQR66avhEHm3qV+zgApgNpMZnT9pUi86Dab3+M8TpTIi2J5tz0yl48V9GAd551Gj7/j28e3W50Jw46SP7pDTWBtkeSjbb45HTi7jW84ct/WgMA+PoH3urqPOPV0hhesXxfE045aQI+9o4zou5KILgpgfHEuhrc+MresW0eVgk+c9dK1+cQb/TlEwvt8hB37tSbwYw5230uQrmoAZ1JdJrnYOk6MYzXvWai73ZYJ9EHNa3mQbJMJZ8uavMB089srMWqA4Uro05cIPy+L3bn6z9zv0K/nNGy9A2OFHoHaHdMe5b6W/jY2iOO2zd7TE+uq3Hchhu8JCkayWRxuDnAOkvENVaLTyqinht5EV9Jl0L/8VQFrnh0Yyonpov2NPpuY8Tivmlu/SQYRt07Y/Kuuvn2nZT30qC76Rjn37AEK/b7L8lGd1M/WNw8TsTTgSaSNEvd4EgWjzisbWjapgc5p5L9Zu2wBIY5o7GlhnunDbKjk3fdx3+TbkXdK1EPbXO3j5XyuHPxAVx8z2rUtPZF2KN0o70PTr/VoCdHaw61KMMoNIJYBI36nQ+KP7y8u6TXC2seHPWwoH+n/nPmNkeF1okzNO+hTEgvj1Wzp08K3hFR/67oL53GBRsrNh0xTwq2/nAr9h3vtm2DiWtCYmttB5q61bVgjrT2YX+j/cMh8UeTVef+7ekAgG9+qNhty8mEKowpl94FTL9mEfVkINbkb87PZ23Hz2ZuM25WWhLd8PJO+0y3VpPzIFC9a3ctPjj6c0VtLoNri8fkPGmlti04pVqTGY7dTQOcGx1q6sF3H9uM9/5+kfn1Qrx+0nhpR/jZq8Oie2AYn75zBXYf7Yo067VqjOSEPzjGa0qiz3s6ogv6U8WSZrOy6FmecpK5kuhkbqSuAa0+NiwlOGqe3VyHyVPmY2gkuKDLK6dvwpf/tAZTlx/CuRay3ilUEj1Q3aKeNHzmrpX40n1rStwb4hU3g6dKRrmVy17ie9ykiSZqVhxoLnBzekX3s+YZMJp1MuBr6wfLq2dstTzWr9WILjnh8P0AszS6tSQGGd7gxYLjRWaVzWJVgj+njVVtqGnrx33LDtofnMfPq9beN6Tcft+yQ94bJbZMGJ/72rTYRK9ocahVLepcHG+/dgHO+e2Cgm16GTbsIbNMVnGK/hXUy75MJsEfowV3LD4AwH0maCdy+Z6lB61L9dDd1Dt2985vMP9IJsvVtBjgd/7l5D3wfw1n24g5P3hii+k+zV1ndEAKcdl9Q3Wb5X67K1ebDOAamazEZ+9eiVdKUL8zTQwGuMqrvWaHmq2fpfH4IHAy5Biv5ze7aZJj+PWLLjvrO/HLZ7eXLPZLL4b+uGi/h/P1bvTOZZrxSKd/7e9fUrvmzthUy0XNENFurd/XcuneJgBAt3EhyaJdfejV/zy30/U1bbOb6ijXBVDtDrpO9hTA7WDiGh/YTQpae9WrZk459w+L8ck/vuqrDRI2Uvf/homP9l+3lkQPH/acbQ3FG8tTXkaCNs5pq5pWFp7fzqn0tbgzMJxFXdtYUiy3qeY/d8+q0Z9Vuuwvnt2B6pY+XPP8LuX5ZWPhKTHjAwz21d4eM8uLkSB1kigUtnKZ2/3w6Qq8uOOYrat298Cwo3ggO/T3zUvG5VJ/60G6yxHnaN/0qBu7xwc/brQUlLfz51ceL7j+trpOW+umqqtmly9bJVF3EyZPmY+VB/wnpDFy1fSNvs5PrZLoR4j+1yx/tdQGR7I43qWOayTxwIlMciZQ/Qm3ZfuKhUZBTCKn/r4w3j2ruzlrcx3ece0CiyOKMT79F3W16z5+m7uFIilzMQy3Ldzn6jxVO8Q5DR0n0D/kz51rlPzNd1quJsjJkSNLYsArUEl+1fR9156W3eO46tFcPJCUEhuq2iK3pPq9enVLH4Z9uPpJqYpzLdzSOziCP6+qik2GziTiZuFadcz4cQaPGgfoRZhKTtnNcdWWxLGf9xwbW2yxypibbArHgdlb6h2d5eZurDvchsGRTJFLK7Obhsx3pm/C9rqOqLtBIsTtBCAoMedn3rG1tsN3/EI5cyTkzJ/6Z9fj4TlMmVOJR1b5y7JL3BPUe+E6jtniY3frVlyQOdChEPHtLp/gFQkvXa/M16ubX3kcVzy6EbM2O5v0GfHr9V6Q0MxnWwsq7ctWmF2jrW/INl7t9oX7cPvC/VgcQPmN1OLzM9OURDfySb/QpfpWvHjd6Bep1leNhWcwPKuQaS4z7f9i1g584vZXC+4js5uGzNrDrfj1X9VuXST5GAe9AiEoFdtKiNfLdvUP4/KH1+PnPi3hUdDeN4SHVh4ObdIpIbGroRMdHly7koKW3ZS4R5VkwQ+fe+9Zjo6zett/NtPdd6yfZ5lNuurbC2sEW1kWpZTosvleegaSuyClyiLd3OPMA6i+Pbdq7yYzbpCiTeuvO3kZTjzY8xXWirL2jgQZ+5sWjI/G64KA9p4Yn/VDKw+bnqO+1thGO8VO6W5qckq5lp4L6s+yKokBjNU/9aJsU0n0Adc2yp+xFZvip+02cU1QCo7XdobyK7o76zsD6UcpmfLCLtyx6AA22whDI8e7nGcNqzNMkIOgKBEIpUYiCcrtU3v+kyaOD6Q9N+j/BrO5wsX3rHbc3rTV1Tj/xiU4ZpGZL8kLE6pHfukD64q2zdpcV7RtxqbaXBserz047F1hqm/vx6GmXGKkOBhgBgx/S1N3YVxngo3NscHNLZy+NjenUc0jjJusakPbuczbyUw7d9PC7eX5khQlivL4Z/5urrOarl7mH1QSCfFIVANwQaxMeS6wFdGbd810Gx/zMYdxfyL/v7AJaqzzmzyLWGOclASlJAZtkbRDX/OsUEn0726quQcalUT9V5RkN7HCmERz2TBzU7GS2NCRuyeVDV2Or6d3ab5+3h7H5xm58I4VuG2h+4yoZqjeAWMtPav7Y5yYfmWqukxYWsayMHCjRO0+WpxYqSafUM1VTKLjI53DRVTvuFkQdwOVRB/4Xd1YtNve159ERTAiUJUVNSo0AZzEwTisPk+ZUwkgvMEprHaDyKBInBOUruO2meWKxFVu+J6uxqN+uAozW6C+5QATw5Ye3R/iVf7Ylb3Ro1eevLrp7j1WKBdcOZu6sOJc81d1yYPO/uLFK6evWpkai0pCELcum5Xu5JzNN+FFxqTtHSgKa/LxJD9+u/2CuJf7m1olUV9QOyr+a9aOqLtAHBIn4WU6mNueqP2Q5Jlb9Axnsnhs7RFHad/bXFj8SvWKlavrTpgE7SrutL29AS4G6CcgbiaDxvfcTeHsJMcSFWaRTgY/eHKz/UEmBPGorn/ZuwWUeCcI8TRrS13kpSbSNjIF6b0U1qNLpZLYF1Q6c5+4XTV4vqI+NJMyscbrB1gYkxhMX/R4ETEJnreF6o7i9L78ZWMtbnplLx5be8T22P6hTMHvVr0P6rHY/R36iftLO45ixf7gazMlHeO3GrTX5HUvlX4yrf+bnLqBSgC/eq5wMfOdv1uIGotsr8Lk56Th2AIWo6mtcdIZxOKGmxaM8Yduzyfu8D4vKT7xWOeJAJREbwtRGoPDGfuDiClVLb2W+6evcZ8ZPZVKokpqLd3b5LqZqpY+/HlVVQAdsqdnYBjX/HUXrpq+qSTXI+Y4nRSEbbFZsqcR3Tq3JLsJWZIH61LECzq9guYK1j2Q/Eyov3h2B37w5JaouxF7AktcE+FHmC1YsHLeEZXXzeFm88lIkuWMnsLYb2vpIKXEPUsP+r7m5CnzXcUxGlF1043kVJ2velXCyESa5MXLUvDo6mpc//IedcIZl1+d6pmOE8JVK3aPy63MrG/vVy4ylDNGd3y/48O1+fAZM+5aMiajnHp5pFNJVHDTK3s9nXe7IkD8Bh9B52ZoCQ9aegatDySB4MRX3O4TW7i70SDQg5s+tfcN4cfPbB1N6OKkdU1ocyz2h/ZIvQj0qcsPmU7Q6zvoJRBXgs5uGgVOsps6Zfx4MZrd0Kqtkycmd4rhRpFu6R3E1OWHArnu0r3e6wX6yZZoduyrCk+DThelgujd7p/Dzb24ZcE+PLm+RpmF23X9VcU2gVxcop82Cva7fPDzdh3DSROSKy+8kAR3/HQ9EQuCHLyfWFeDHgdWBgrP5ODlWRlrjq077DyJgR1erJSa/E+AXDIlrG9GSuf3ZWeDvxIiZq5+TtxXSTQE9d5FKfP1MsOpu6lV3O2Ykmje1htfe5LD3pWe3/x1F+ZsazDdr5/A2ckG1WKxVxoCXCwKYl6z9nBrAD0xh9Mge07owhYKPAJGiza7a085fxDCkbJ5uLnHtOxNYXIsd30aGMog7W+D378+jLkdlcSQOO/6JWjvY5r6cqHzhH/Xwj8EGNTvxRKgrRKWwnUzaOKk2Gor614nYOkeBpOB8RkFZ0mMB04Xmf71kQ2m+8blZw9G64O+7TgvhM6uqMevnlNn6QSc3yMpgTnbjgbVLczZ7r0to2Vi3eE2fPbuVY7O/da0jZ6va0WcYjaTiv6xKmWRy/HRzJLo5J2/+J7VoWTSHE5wuZy4EIa8TaeSqPig6tuDd/UK1DU0RpPkNKKKWXWiuIQh9oSwF+ZWhXLjpHC5JaxhxNM9CSCZURj0D2WYwTRgAiuBEelzGXvJM377IYHx+YAa320lACv5UC5/vp9FbavySnb3Z97OY46OIzmUr6JrS6KiXeFfzulPb+oecN2ntL0DR00sskbCMDg5nfOkUkmMyxzZ0/eQP2nR7uNo6Cj2TSfO8aosaUkborTIeXl30jCZ80ru1rh7nl6tS6VYWX/Bo2XjPdctxKOr3WdAK3fcxOroOdTUU/B7pCpigTXCf3vHu3KTwC01Hf4bizlJ8b5wOukMmiDuT5IXL0vJxPFj03bP2U0hC5LehcHPZ2237oOh82mzOKuyips9z//38PqQe2NOKpXEUiOlxOqDLdh91DprWW1bn+0xGj/5yzZcMnVtEN1LLVYC1mq86ugfRr/DMiphxtC5Yf3hVnz+npzbUZLH4p31/uIB40ApdPXjHieLA8NZ3LJgX8C9SR5BWfwW7TYkIYlwHqT/7odGsvjSfaux6mCL7Xn/cNapRdskJKpbcmUwnt1cZ9hXfugVmIESpOm/8J1vCv0aSWPR7uOYPGU+ugII/Uga+vcvCGVaNc+MfA056uuXGLtyFXqqLUoO6QnjFlJJLAE/enorvvf4Znz1fmul7lN3rrQ9Rk8ahWVcGBrJYjhrna45Tiuj//fSbozkzQdJlsVBpJkHcq4wxpqjbp9X5IMqiT3FWZKjQx+vdrzzBPY39timTAeASQnOUBoGpShD9f6zXxf6NUpFUAsuD6/KeThUu5hclyNB3M4DjcX3MIin5KZvxvjZrEyXLVGd2dTfHTB6rgTBhMBbTCGNXQN4y+smFW3XXvll+9Q1GN0IT+19StNHFGcGhrOOkhWUUuzpRY5Vts4kKjdBp4r+3mObccCnQPV6G5N4/9OO1+9YNRGKA4fzE22v7onTdC7Jp5w0PpA+xRn9U9xaW+heG48nmnxsZXxMvp2o0d8G4x1x6varkmdm81Enmfq9UORuysfrmw4XpWmcUvIlQiHEO4UQA0KIv+i2XSmEqBVC9AkhXhRCvFG3741CiLn5fbVCiCsN7ZmeWyo+etvyUl+ShIzdeNXn0N00LJRCXvdzc88gntlYW7oOJYzmHndB9SriHJN43GXSAFJIOc5X9CJt77FuX21trG4f/fmnn36Hr7bihL7UgFPKKUmU19hCt4l9NJfdsBSQcqNQMfT/vqmeidnCsmlsobIN875lshLTVleZhupkLRLXlNEnZon2dx7vOoFbF+zzHAsfJFH4kTwIYIv2ixDiXACPAPgugDcD6AfwkOH4ofy+qwA8nD/HybmREuSL3d7LchpxwmmdMaMgnfLCLnSXYGD88TMVuO7F3WPJjQIeZErJdS/uxmoHsVN+eH5rA4Yz1u7DQSFlcQ3NoJm5qc7XAPOHl3bjh09VBNijdFLkbhplTKKuLx/4u9cDcOZKatfnSRMNlsRkiZcCrpoeThkIt5TTpFj1pzxXUQ8A2N9Y6M1x37KD+PKf1qgbilP8RoQU1En0vFCp2iaVSwRaoj6/vLLrGG5dsB93L8mFjBgtx0mbl/jF6m3+n+d2Ytrqamytiz4pWEmVRCHEtwF0AtCb3q4CME9KuVpK2QvgOgDfFEKcJoR4LYDLAVwnpeyVUq4F8DJySqHluVb9iPuruKGquOj6p+9aWfqOEFNUmamc8OyWerz/+iW+r283NrTlFxW0sMkjbc4Cn+NIqSyifYPurMNeJ3JZKfGzmdu8newCu+5ZxTQ/taHW1E0+jXh91kbLTJQTIf2cbEI+Q+I7zixOShMkSVN2ttWNJcbSdz1od3c7EnbbsNCYoEmH6h0YyeRLZhi237fsEPYd7w4s9rxckA4VQ8fyRdHGgyuqQn3vevPjq2ZJVLmbpklRtPpLtQVrKYEn1x0J5fpOJVrJlEQhxOkAbgTwK8OucwGMVrSVUlYhZzl8V/7fiJRSLzF25s+xOzexXPFoPFYz04yd281tC/c7aiMqkdfWl6vROTiSc+tJ2mQtCnoHw89aCACv7m/GcKb4gZRyHvp8RT3Ov8H/YkW5EtT3EitLok6maa7STvpDAw5xwv5GtQuzXWiEhv41m7r8UDCdShiZrLT1mlHdu6FMFq29zutym332QyP+vGmsxIlmAR1nIlDiEq8dJ5q6B3D9vL2R9qGUlsSbADwmpWwwbD8VgDEfbxeA0/L7jJJH22d3bgFCiB8LISqEEBVdnc7KTPgljHfeuPri1vpB7OnsH0JjADFdYa6KaTXKzBgYzgn7Odu91ctLKm29g45ccFRH3PRKaYTxL57dodxuNniGwcqQ3XfLjR6PNcWMTzQu8yCtX04yZNv12bi/XKwBUo5ZP6K4dtLodxHPubG6DdvrOvDSjmOj26zEX317P3pTEL84bXU1vvf4Ziw3eHHovyn9+KZ/TY609vmuVxmmoqb122ycS+I77werJ6U9R8dhTSFSEiVRCPEBABcDuFexuxfA6YZtpwPosdlnd24BUsppUsoLpJQXvO71waeXVrlHhDHnM7q9/CmlK25hsnRvcG52aw61BtaWhgBwucPiquUueDdWt6Ern9Fr77FufPjmZaPxLlZ0hpAFzC9BDwjllFAjan45W63Y26EaA0ZKFPtqpGCimf/v0c4TofYn6Qrj0xtqbI8JZTE4ofdN9b6r7s/SvU247KH1jkMJLrxjBapakhsy4RQth8AxQ9bhQndT9bluxg+zNlQeLm6w+ha0/o0zmRdnpSz7+QqQy458m8NaxHHw4iiVJfHTACYDqBNCNAL4XwCXCyG2AdgD4HztQCHE2wGcDOBg/t8EIcQ7dW2dnz8HNueWlCfWuvcbzkrYJsuQUqLJwqpVisK+aSOoybqAwJ9XVQXSllcyNrUck8zAcAbfnrYR59+4BFJKHGrOrQ2tPVwc00vGMC+N4u69v/mVvZg8ZX5ZKqNBTdKLYhKlRCYO90vXhSGbMchuohKHiYwfVhxoxs9nbceDKw4X7YvDoyolu4+VxsvKD+X8SDQrm9UUxGyfGyug2RxH1UZQ3/eokmiiJUoA23UxwYX7yuepX/7wejyiKyEUFU6fa6mUxGkA3gHgA/l/fwYwH8AXAcwA8DUhxIX5RDU3ApgjpeyRUvYBmAPgRiHEa4UQnwDwdQDP5Ns1PbdEf5clTpSNp9bXWO5/dks9/vlWltgoJSMhm/g/+vbSVWl56+tfU7JrlRr99/V8xZgXezkqLV74rUmh9KBuz3QPC2NpwzgQW6V594Ofd96v9cBI0j6/J9bVYN7OY7hz8QHTY6zmU37rrSqJ6B56dau24qkNNY6OW+bQgyfhaxKWaPpTUVKXgp/1rqdj292sB9eaJLKzkyOP+5D5WtPjTd1NJa6dqx6zygXH7usxeslLoiRKKfullI3aP+TcRAeklC1Syj0AfoKcwteMXDzh1brTrwbwmvy+WQB+mj8HDs4tGapP66v3r7U9z04ob6ymVaTUhO0H7ncSZXa6fhXuda+ZCAA4+w2n+LtYjNGPNU3dAyXPQOiHUnT1+a3G8G9r7N7LbFZia2279UEkEpzIFLNaa3GIewmbxq4BzN5Sp9znNYY5TMrpiTh17X9RF58IjLleGmtXJknOu0WYWBL176heGXx+61hohRtL4lMbvGUMv9Embt/K4qf1z9SSWE4vvQl6bwUnf24c3vUo6iRCSnm9lPI7ut9nSin/Xkr5Winl16WU7bp97VLKb+T3/b2UcqahLdNz44BdjZk/LT/ka5BOw4dVasK2JJbikWkJKVTXKpd3pjBbY+mvn1RXb6/jzrQ11bj84Q1Yf7gwzrZc3qdSIBFO3I2fJkdsTBB++huXd+Mzd63Eb16oRHufu3rDUXklmFl60sQn/7gCQK52op7op83hoclm41un/10fc//IqjG3xSDc2FVNOG12tCazCVr/zMafNGQ31cd/P7zSPBRp85H2ouOjIhIlMU3cMG9Pwe/GVTHAfpAmpSX0OD6fstDNIJkGwQtEE7Pw7Bb7BDlJob1vyPYOHsy71R01JFUoR7x+Np+7eyUes3DJCmsxw5E1zCT5hV9L4pM2IRNRs+ZQC07kF3TcjrXarSm1YrJ4T/JqlLb2DPrOrqmix8RFr769H+sOB58YLkq0+6eqIahh9r1lAxAuflr45B9XWHrG2bub+rh4QtBbBp2ULOlzkTHYQ28cHUUlscT8z/PusuSV86pZXAnfklg6aVjOglc/1uj/zld2HY/FClyS+METm22PMZsAlvEr5pqqlj7LUiotPYOobrX2LvGCW5GVdaEk2lmet9d1FiwcxO19ONBoHTNYzjKylPz4ma2htGtUKlp6cpPrT9+1EldN3xTKNaNC88Q0Lu46WQQKwm1cdRnTRGeKbVZKota/uSZluVLg9R4znN3wdCqJESYOqDxanD1sYMj7hLacsj6VGjPhlwkokYN5FslAmic6JAoXVJp6nBcWThuq96+2vd+xDEvD69sS4vuztbYj8DbdjgP640ds5J2T18LMOvDI6mizOzvB6t5RVkfPeEMM2w+frgBQnrG02t9q/NOc/KlBeA35baN/yFxJ1No2q/FsNf6Uy3doZ/SpajEsIMbgD0+nkhgCZmZhu1VMADj/xiVBd4c4wPj97TvejfVVraEnFYn+sy8PCupZelh5jZIYxKO7ZrTP8b61gXDhHSuKtsX9nbJD33v9pHPqq/5r7U4cr36hF1Q2+m47UFzGXHERNnqSKCs948OSmJXe67kGRd+guXuknaIbty9ta20HXjSxenrG5l2uaesv8MoIdyGE7qaxoNnjivT/Pr/TtoYiCZYv/2kNrnx0U+gZpdISJxg2P5+1ffTnokB/3mJThADm7zpesE1K+0Ha7KtIuvLklKAG7CBih7zwo7wFBih8ZnO2+Z8I6f+icnodyulvSSrjUqQlan+r8b1zIjICcTdVbXPR7Kknj/d87bjNiy5/eH0kSndlw1iW+oCrExXQPeAs6zCVxJjy160NSrckozk/Zt9Voohq7In6mZXjKxO3ASbOvLq/2df5ErJA0fngTUv9dilVjB8f/LDr9vXXP78L3vaGkl+/lNgt+llbErVGAusOcYnR3bScGXXW8GRJVB/jZhEvzAU/u6cYZxnihRNDGVQ2dKFNl6DGSWKnn/xl2+jPVvHtfvnBE1scHUclMcaoYkXK0A0/MsyEUtjK4476TvuDSsSm6jZMnjIfdW3W6atJ+WCWettukB5Nzy6BGZvG6myFUYC7nInDnFf/qP/jk+dYHutWHoaeHdoHD68qfvc3WNUiLreZawKhJdHZwm4QlkSVl4Ob2++0CypltFwWem9buA9L9zbhq/evwdceWIuP3f7q6L4kvspUEkuMm+/gO4/ZZ+4qj88qXoSRxjuuaAXXNx6xmCglACnNs52SYNDuqRDA7qPdrs6ta+tHo0nCgqQQ1CsVhrtpVkq8vPOY+X7DNfW/zrGJu3HyLelj9657aY/FkdHyxLoa1+dIKVHdwrqFURGHRZVSIUZjEu2P3WRY3AhizHPj3qhS9JxaIlV/X7kM2Y+sqsaPnq5AVV5mDI3Ed9HMCVQSY47KVUb/Ie5qiI9VipCoMA46f90a7xqGpVqIcFrTUAjnSToEBGZXuLu/F925Ah+9bbmrc8oBlfwOwxvksTVH8F+6GF0jxkLb+jGkIAGUV2I2w5NSYmN1G6SUvr40CWCeIX6XlJYkWl+8oskLoyxW6V7fmrbRUZulXDBt6xtydNzVM4rLpcQpu2lYCWOS+CpTSUwg+kFr99FudPY7+zCJM9I0KGnCt7492e6mKwxxdlNfPRxRT0i5EtRERe+qGxRNPdZWWuOkJ2jXrpjpiJixqQ7fnrYRC3f7y656tOME2h0UvSbhUNnQlSp3U+0v9aKjBPEN+o1JvN9i3NU/xsV7ihem4uSlfveSA4G219DRj7WHws+cHwZUEmPOlpr2om3GCf3AcIy+rjIggd+xb6yEexI40NSDhg5nVjOihi66peFgU6/9QS6xs0w/urq64Pegn3Xc3p2a1pyr11GfMmHO9qO4fl54ySOINV97YG2qxuNx+sBvl5gpeFF+mtp3CNjLKCeeLK29g7h2bqVrF84jrX1Yd7jV8fHrqorDbzJZie8+tgnrq5y3o/HZP5TmDwAAIABJREFUu1Y5Ch+LI1QSY4JZnIqTiS9rOQVLUKs9S4Jw4wqZJK5sAWrL5+0L90fQE2/E7Zs1m5OoEho5TZ1N4sPdSw8W/J6WBGhx+86IB5I6SHlAi780esI4eY/nV/p3i3ajmzopFfbpu1Y6bs+JTLpx3l7M3FSHRXvceQh85q6VuGq6PyWtvW8Iaw61Wrr1mzGUL2f34Ap10rg4QyUxJtyxOFjzNvFOUPFim48UW4GDIMw6jltrO3Dn4mCVratnbA3cxe7z964KtL1S4zbxS9h0nRhG32BxltKL7swVlZ+38xg2570abp6/r6R9iwtuFY7GrgG098XTVTFJmQSPdp7AZ+9e6SrxkZ2IZIhGSIQwNKVHRfSnD6880OL7+m5kXNDlMpw0p7nNR5HM6LoXdwMAWnuHEp+Mxg1UEmPCggBWgUgwlNvC5coDhfF6VsL48ofX48EVVYEOAAsqG/G7ubsDaw+gi3UYzNhUZ7rv57O2o5ZlUlzx0duWl2zl+JmN7hZhjN/3h29a6qsMTpgWuxkba1Hd0uc4GdVv51Ti0TVHLI+58I8rgugaKQHlNh5bYbYA7Gc4dlcn0ft1SoG2uBVFnKreeuk2cVuceGRVFSZPme/4eCqJJSaIj7C40Kr/Nkn50txTaM1o7R3EwHAGAHC4WR0fFcY7FWahXkLCppxeX+Pf0tY3hF+/sDOazjjEqQfFrM2Fix2q03oUVnMST9JUkirqMTLMqweh140pif7bcoPxuQwn2JLodkGRSmKJGQzg5SqnyUqUpGWFUhXv+t18EPWO+uBLqPQMDKPrRHHc2jRD8gwSL8zkSkOHvYUp6skN8U9Yad+9sOdYF04MZaLuBokB9y47aH9QmdDZH228t0qMt/YE45p9jyEuen9jj+s2djV0AQg35AYodnH+z5nblMc9vaEGk6fMT5T7qdtbRyWxxLQynXZsMJvXllvKbdXcb0tNh+U5fqaL512/BOffsKRo+1oX2cVI6TFzGfykA9e8WxekM04xqaie9IgPJTHINYKegWFcMnUtfvFsLkGEWdPvuW7haJxQKfpF4kO5Lkq99Q2vUW7389f6vVMnhkuzWGM17fr1C7swecp8HM/HJZd6jragsjBRjnZ5TfFVxfPHFbeWeSqJMUFleSHRUGY6Ymoz/O07Hq/kMHHHz7zLLgaMRMdIpniVW/Ws42JJ3FSdS5C0rc56IWtgOFvkOqWyPpaZOCcAHl1THl4pzT0DoSsYAy6UvLDmCgccWA2txh+jbIoicY2RE0OZUctvPCRnOFBJjAlulETjC/lcgoNoo2TjkeJaOOWH9FaYN8YrtTe/4qxu2bVzK0PuSXnhpo6UGSeGMkqlhESHKnO2ajLox2UqSGnxw6cr8j+5nwl++9GNAfaEuGX+rtIk4Asrc3ip+adbluMrU9eEeo3zri/26jEjrGH/i/etDrQ9r5ZEVd1xr+gztu8MIWwnLOhumgKM6cvvW3Yoop4kl/VVrabZGmOwSBUocVb4vDB9rTOrVbk9x7CpqLW23Djhvb9fhH97YkvBNv2EzsmKclxJ6me0SpEaX/W3BBEv75dhh1ZPPVUtY8m3jJM1pVstFzEST0yM3oHgJGt0uY3hKnpc1N/16u31L3/e4O1EBXrr5g+e3GJxZLKhkphA0pTty4z+oRHcs/Sg59Xvlh7z2NCwg6JLiZTqxDUaH3v7GY7a2dXQiUsfWJuoZBLl9ByThDH29F8fGRuYr1BYevqHRrChKg1W/Wg40ORMMY9D7cR/t5hsmX3On7t7FWpa+xxfwywJBUkOr+5vtj8o4UShGLoqlxHwtTe5sA67sSS6UT6BnHwII6FfXGjvdZeIiEpiAklrjJmeh1dWYeryQ3h2i3ltNz1Pra/BQl0tylaLD6W9r7wKLde1nyjadtqkCQDMJ4bGrde/vAe7Grqw51iX536Uesyjihg/VFac/31+J654dCOOdxW/p3GinOSu6i8pVS02K9YcGltgcLPG4yYh3OI9TW66REgk6Nd2SyV5YrBO5Ag3SqJdcisjpXKZjgq35X+oJCaQID7kHz61Bc9sqPHfUEQMZ3I3oWfA2Qv/h5f34KczxlaQ3/XmU02P/dPy8nHflQAeX1fsnvm9j70tt9/hu6QdZpTNaw+1FqzUOZ0s/s9zOx0VdE2S5ZLYozJqa6nQ+wb5rEtGDGaDgyMZ/PfsHTjaab044EQ5j/6vISRYIrEklvyK3pg43rmSaDQI6I0A7X1D2FTt3otFoHgu1Nw94LqdJEAlMYEEocQs29eM617aE0BvouGkvJB4vqIe020yne09VpzlstzKXLhF+/v1lkS9W6r5+DR235q7B/CdxzbhF8/uGN1228L9jq7/wrYGy/0zNtViR30nPnPXSkftqUj5I44l1o8kKVOU5KO0JJb4/q860IK524/iojvUJVaM74rXMAu6nZMkov8aX9p+tHBfSApkGM2G0dcJLpRE4+d/9YytAHL9+tBNS/GtacEku/pCwMl54kIqlcQjLuIXSEzJf/k1bf24eb51jbaws4clmYxOgM/YbO66q5LzWv0kfXzIk+tqzNuAREffUEHK71f3q12/fjd3N77x4Do0+lidY+xudOxqcB7ToT2lGBi3LIl7/9wQ9N/itL31h1vR3JP7prVTMlmJQw7jJs2YZSK7yumZkXShX8B9ccexCHuixknCHQB4wmJO4JWJ472rLsc6c/JnzrYxxTuImHitHEa5kUolkeNG8mlzEYOiIi3qg90kSe/+19Q1ppCZWRXMFuXXHCrOoGhk3eE2fPCmpQXWwX9/siJRhWiJMy59YB2qdVknrdCs2pTLpUP1fZdCobpy+iZc9uD6ou29VjJA16/9jd3oUkzG9BM+QlQMjmQwb+exxGQKtepmWH9CRW3wpUX2NwZfr9iPJ5h2alPP2HxHlVDNC9ttarsmkVQqieVI/9BIwc8Pr6yKTXHkMOh2GItYYVIXhy5IOZzW97F7kxo6iuOKzFLNNxsyy577h8XhJAviI46UDtXKquKZaJ9iHLJrWhHv3plz5mknF217dI2zMjJhoMUgzts5Zh1xWr/sS/etwbemOU9j/8dF++l2TgAA9yw5iJ/P2o5VB+0XNONAFOJQnzgqKEZKPA8dGM6gqqXXdjEgjPt72UPFC2BJh0pimfBN3ct51+KD+OOi/QWDcFpZvKcx6i4EjhvlX0Li6x/4W+U+Y8IIy5ikvETVVvCue3E3PnXnytHdoxN83YTsR6NFse2ZvaUeT2+oweQp8wsWPPzAuWG0DAw7S0Qzakm0eP3aegfRkaCsw3G3VqhKB5W6y6/osgjeuqA4lrm5ZxAnhjJFSbP2u6y1uSIF5RKIPdp413UiGW6BVuNxvKVLIWEYK6xk1XuuW4TP3b0Kty7Yh4MKN/batn40dDhzlTVDCJGacBYqiWWCfuDsHcwJwcER+0nakj2NsU89DwCzt9Rh0e6xSYXTz/M1E8eH06EywDiJ1wte/c8X37MKOxtypS+0+/7MxtqCc7NZicGRTMHkc4WiiLcZEhLTVucSELX2BKMM0IJQWuoMMSpXTd9UdIwqG7FQJFEy8uGbl+GDNy312cPS8det1omZSkmSP4OZuljDXofeI0bcyCFS/iTFi6hcHMFKbUnUeHTNEXzhXnUymWV7i3Mh+A1hKlcmWO0UQjwDB4sWUsrvBdYj4ovhTBbPVeQmKE5Whn/8TC7TU83tl4TZLd/85oVKAMDqaz6Dvz/jFN/tlVPNMyvM3gHVMGl2Rw43O4ste3xtjaPjzNDG7rQ8m3Ljz6urPJ2XnMQ1zjtYr3C/LmfCenZSytH7/sCKw+FchCSa7XUdmDRxPN77N6dbHhdz8VKElbyJu6eCnqT09av3r8WG334u6m7EDjtL4mEAVfl/XQC+AWA8gIb8uV8H4DyNHQmd+nZ/ZvS4820X8ShA8gaGMHC6bupElpvWNBNiNNupV+rbTzjuhxPS4g4SF/w+NyeeD3FGmpniI8YYAxwVXiaLQog43UoSQy57aD2+/Kc1WHGgGb2DI/jV7B3o7Fd4oxRHRMQa7bXPKixxWp3oJBBKWQ1InBjK4M7F+/Hx25bjE7e/6up8lTX5eJc6k7pKbs2vPJ4aTyVLJVFKeYP2D8C7AFwipbxKSnmtlPI7AC4B8O5SdJS458Udyc/41tg1gF88u33092MmH7IZxu9Yy6T5WISJG0qNmYz2IryvnrHNdJ8fmRnGQJIWIR4XvK4Y7z2ey34XRqr0IHHz1019NXlWL7ui9l7Ze6wbk6fMxyGHHgmEeKGquRd/2ViLOduPmroZAsBShathFEx5YVfRtoJ1pnzkxqAiflir9ZcEwkpI9tDKw3hwRRWOdQ2EJrsAYMam4vI6m48EnwU2rriJSfwoAGOe2E0APhZcd0iQbKxO/ot88/y9eElRI8ix2DFoCuf+YTG6TgxjeUqSGVjdJ+OkXu/mGWVm3OSskRI9ficDh5qSrUSk2eJl5SI+b1dOfj/gUXEul9gsEi76Mau5ZxAfvXV5wX7tHX05Jgn9nt1Sb7lf6+84xSw9SXG2YX2/ThOjqeSymwXktSFkfE0SbpTE7QBuFUK8BgDy/70FwI4wOkYIUFwP5/RJlmG0Rahkwdxt8UkqESWft1htff8NS1y1JaAWvF5qJAUVw+CnlhJxj0nFE8eMGxfv55XJSGwrwzpYduw55vwb3n20y3Sf18n54+vS4/VBvGMsw9TY7c7rKA7oh6zuEzmvp6QvPoURk6hqUuWWa91Gwm9siXCjJP4bgE8A6BJCNCEXo/hJAExaEyPK7bUfb5g4Thife2X/7g2vcXS+Sk+IKttWFEgp0dztMCZJd1usLIl7XUwan/CQzCY9T6e88JtwaHzMc23fvfQAvvnQeuw+2oVN1W2YPGU+qluSbf0Miu11udQEX71/bdE+P3OxeC8bkDhhzLitJ5uVWFCZrHJYF925AusOJ9+KVarp1m/nVJbmQnlunr+vpNeLCsfDspSyRkr5cQD/AOBSAP8gpfy4lLImrM4Rd7y04yh+/ddiP/ckY7QGaS5t737LaY7OVyUvGfJr8kgYG6rbijf6sLJ9Zeoax8d6URz6B5OdwCS1OHzU+lI2esbH3PJbmS8D0943hBfy3gh6l/40L278cjYdikj80MrybHXpAXDrgn34/uObw+iSElXdUiBXRmjfcffeOHEijJhEVYuzK6zdd4k3XK/dSinrAGwG0CCEGCeEiPn6b3r4xbM7sLW2vNyhJhgsiW5dCpSWxARlBislxrtyuNld0eqgsol+7YFia4QXYq5zlB1Ovyoz98Uvvu8twXXGBc09A/j9S7sxbLN4pGUUnDBOjJYZqmnrC71/SYclbUhUVNTmFnHsvm0j01ZXY9XB0sX93bYwZ5VSJUSpbUt2xvpSOm6psvurvD0EnHs4DCQ867ZfHCt4Qoi/FULMFUK0ARgBMKz7RxLAzvpOtPcFU6i8VIwfXzjTdytvVHrCSMosiSrWK9xYjD76VhninOJUEDM+IPk4fYZmuvtZp03y1a4batv68IeXdiOTlfj9i3vw9IZavGqTzEpzwR43TuAT/3AGgMIYab7DznH8rgjgg3//+pB7Q8oVTUHJxnzIP9iUW5BduLvYJTbp4TGllIsX3rGiaJtZRnynvVqZoCRBYeDGCvgIgCEAnwPQC+BDAF4G8JMQ+kVC4OsPrsM3H1oXdTdcMdFgSQxC3gwnXOgGQYXC4my8t25uE612pKXXYeyr7mWpc7BK3pMvWxMk/z17B57aUIvKo12jli67yYzmNjVOiNG43LuWHMSjq6sD71+5M9sms6OerhNchybe0OolhlWGISjGq1KY5nHrPRU3QnE39dumyYQlyqzuccWNkvhxAP8updwBQEopdwL4DwD/E0rPSKDM3a65RyXLdcEoPHsHR9DVr540fPX+NTjv+sUF21SyYNjE/78ccSNL/YjH383dHXibJFmsO6yIfbXhojuLV35LgVZMeTiTHXUrs5sfaPHRmawsOPaWBTlXMb7rznGaMXU4k0V1C116iTe05CJNMc90apXYORNzBdeOuFtx9UxfwwU/I27qCWSQczMFgE4hxJkAugG8NfBekcD579k7bY+RUkLKeKWinzC+uC9rTTJ+7T5aPPEQCi0x6e4bcUWlkNcyZosYiIN00UTc/a8exsBwbhajrXibrVJrclFKWZR12W3MU6pQ3E6nE1/KauKGJ0zKpVwT84R+Kw+0oM/EYyLp30BYVly/zarOr+9IlhGlFLixJG4C8JX8z4sBzAYwB0BF0J0i0fDL2Tvw9msXBN7uusOto5ZMtzQrVgCdTDCyWWkae5imCZ2bpBG+PTgU27bUOEuklPDFUuKB70zfZLrv1gX78H6DV0CQaEreal1yCu0dPOe3ahmoLXhkpCzKunzN8zv5Dpugui1+MzY6LaRN0kWT03JPMaROkXQFSH6scxjdT/YdSRZulMTvAliV//mXAFYA2A3gyqA7RaLhpR3qYsdba9t9Caqrpm/Cf8/eiZ4BZ7ElN87bi6V7mwAAzT3FQt9JX741bQP+4XcLldYt+p3Hj7nbj0bdBVIi5uWLqpt5BAC57ILdA/li0gGt6TR3D2Awn6nOaAkE7Cce/UO5czNZWVTT8UUT2UnUGJVst9y1+EDRtn97onQlC0h5kM1KTJ4yH4+sqjLdXyruXnJQuT3p85U4xoMeanKXuT3NuKmT2CmlbM//fEJKeZOU8jdSSnXRK1IWLN/XhMsf3mBZqNYpxzrt4wKGRrJ4fN0R/OjpnIH69EkTi45xInQ0C5aqLEMMZVYsiDJVfXVr8G6ptDZEz/GuE0Xb3D7r37+sjnd1yz/duhw/n7kdgDpRhNOFMCnVNR27HS6CpQ3V4qDTmphm9ePmKBaV0p6FkLhjz7Gu0djYOxWLDgDwSAmTUi3b16TcTiUxeJ7eUKuc78Swq5HjpgTGRCHEDUKII0KIASFEdf73k8LsIPGPn8myVnfmcHNxrRkjU5cfsgz8dTIveHV/oaBUpT/PZtWxhk6vmaa6XU5iUTXKTUA6dXUl4fHAq4d9t2Hm4aAim5X44VNbsKm6MImOpgAuyXsotCo9FBxeQ0pl3PZft3pzqS93Zm0uzmRqkcyxgPuWHVJuH+QCEPHJJVPXjtbkNfv0Dzq0OO091o3Khq6AelZIHJUsN4Sh4yb8liQKN+6mdwC4GMD/B+B85EpffBbAH52cLIT4ixDiuBCiWwhxUAjxw/z2yUIIKYTo1f27TnfeyUKIx/PnNQohfmVo93NCiP1CiH4hxAohxNtc/E1lTyYr8Z7rFnk+36kyBgD3LD04mk1MhZN8OA0dxZYHI3YxiUn34Y8K1X3bfdT5wMcyGMSIl1Vwo4Lnho7+ISzb14xvTdtYsN34ah9TWDidLh5lJfDevzm9aHuasib7RSWiZ26qc3x+3xCVRBI+ThW0r0xdM6pwBt+HUJotGTvqO0Np1+9tUcVFtygWD9OOGyXxXwBcKqVcIqU8IKVcAuAyAP/q8PzbAEyWUp4O4FIANwshPqzb/3op5an5fzfptl8P4J0A3gbgMwB+LYT4EgAIId6EXPKc6wC8EbkkOrNd/E1lz188uIn+fNZ2TJ4y33JlrH9oZDS+xzn2WoSVkqlhpwTqd6sUU+qQalS3ZYaLiRvvKzFipiRq9cv0SClR1dJbpOC5QX81vZww9kIVE+f0/X1y/RF8ZPIbirYnPVV9KVHdqWvnVpa8H4QA5nIqDp900t1Nw+B41wnfz2bxnmL33g0+FijLFTdKotkM35H9QEq5R0qpqeky/+8dDk79PoCbpJQdUsp9AB4F8G/5fd8EsEdK+byUcgA5hfJ8IcR7nPQpDbT1FU/G7NASS6w+VJz5T+Mff78YX7h3tat27SxNTi2AdslJfzZr29g1VTGJjq6SPhbtboy6C6TMMJvgfOm+NcrtxsLpZhmKzdCLkL26lWKjbFEmrnEoGMzqQXIu5xyzWENCSsHaQ+qkWVLKAot2HFw9S5k8Jyn8bOb2UMKG/CbUKkfcKInPA5gnhPiiEOK9eWvei/ntjhBCPCSE6AewH8BxAPpc47VCiAYhxBN5CyGEEG8A8DcA9IFVOwGcm//5XP0+KWUfgCrdfuKDTFZaKna1be5qyuibymYl7l16EK29Y+Z9NzFBRqpbxmImF1RS2fHCyRPdiANC7DGzrjWaFLc2ihujZ8Gqg86Tk1wydcz9yzjPUnoYOG5ZDSdzzgnLBY0QJzyyWp3NdPGepgKLttUXXdPah2km7aiob+/Hot3u8zzSQ6F0xKhEeGxwMyv8NYBlAB4EsBXA/ciVwbjGaQNSyqsBnAbgQuTcRAcBtAL4CHLupB/O75+RP+XU/H/1fo9d+WO0/UafSP3+UYQQPxZCVAghUl/XUTVAm1nxhjP5AtMBrNoMjmSx8kAzAKCitgN/Wn4I1zzvPLGKhqqvn717leJIk8Q1lLlK/lERZ8WFNeIHv9/aRoP7z5EW6wRaZnJKv31gOKPMrimlxPoq87IcdsTB6kAIsWcko15oPjFcWNDeyrvpykc34tYF+9HVb5/VeGttBy68YwV+8pdttsca4eKTmjDEbYeDZ5k2JljtFEJ81rBpZf6fwNgiyycBvOr0glLKDIC1QojvAPiplHIqcrGEANAkhPgZgONCiNMAaDOC0wEM6H7WUk715n/Xo9+vv+40ANMA4OS/eWeqvzpVxq5pilTPAsBNr+zN/+xfW/jyn3IuZiv/99OjE6q+wbG4RtVDUW3z66OfpuymbhhWDJxu4F0lRtwqTsajjae7/fS7+ofxulMmFrSz6Ui7MjuplLkshV7hXI6Q5PL0hlq8/+zXFWzLWnhF9wzmFMotNe22bd++0D7XghmUKyRKLJVEAI+ZbNdeW01ZfLvHa6tiErW2x0kpO4QQx5HLpro0v/18AHvyP+9BLmYx1xkhXptvU9tPFKj8rlWFrfWHHe20zzrqlN7BEUzIT9LMXCnOOu1k0/PdCE032VnTzrDL+C8j9yxVFwMm6cXt/OZHTxU6ehgXdOza21BVaHn87uOb8MJPP47GrjH31l//dScmTRxfdK6EVMYqOoWWRELih8oaqFooFqJ4UWrEYrLRM5BTEo+Y1H0dGM7g5AnjIIQYPRYAatv68LYzXuuk6wDobkqixdLdVEp5jsm/t+f/nSOltFUQhRBnCSG+LYQ4VQgxXgjxRQBXAFguhPhnIcS7hRDjhBBnAJgKYKWUUnMjfRrA/wkh3pBPSPMjAE/m980F8D4hxOVCiEkAfg9gl5Ryv6e7kRK8ZPx8dX/zaFFkv+4P+jpj2+s6cKAxZ9lcqPPXt9LtslI6tmsqj6PMVaJSEjk+ET/M3+UuBseYaMsoaroUWVH1rD5YuNi1/3gPrp1TiU/ftXJ021mnTcLrTyku7yulwyxsJjALISHxQ/VZqsY1KYu9rLQC91JK3L3kAKoU7u63LCi2EjZ2DeA91y3Cn1flPLROmjA21X6+wl09VbqbqmGps9JQqkwVEsBPATQA6ABwF4BfSilfRs4KuQg5F9HdyMUpXqE79w/IJaOpBbAKwJ1SykUAIKVsAXA5gFvy7f4zgG+X4O9JNMr07w40p968e4U+2YwXsrrJWFYCX7wvlyX1ZzO3OzyfbpFhsLG62G1m8xGmhCbRYfzWp7562NX5GSlHJ3oaEhIXvK24hIWEOuupU2hJJCR+fHvahqJtytAWKfGIIuwGAB5bewT3v3oY33tss6NrNnTkkvr9cdF+1LT24TU6z4UHVhx25dbOxSc1vCulwc7dNBDyytynTPbNAjDL4txBAP+e/6favwwAS164wGsylxX7W/CFc9/s20deSn9RgUFcnzhD7yZDSJioJ27u2nhhW+EqfSZbLGvMvKql9OeezhV/QuLHlpqOom2bjxQviJp9vXuPdY9mWR6xClLUoY95rmrpxYTxhXLl8ofXO2oHoLupGbwtpYE571OI00LSxgnTtXMrcfE9qxwLSjP8zqXcrNirjqVscY7fOEVCnLJEUdw4iAWdTkPGOmnirp6V/mIS0z6Z67RxBSYkzph9vvqMp04T+J00fmxqnZXFcy431sGUixUSMVQSU4iykLRCderoKx70O/uHAxBaEgNDGcsjmrrNXVq5Yl86VKnCCQmD3sHi9ONhfOpmEzQJKEtjOCXtYukDNy61P4iQmGLu3zQmE/5/9u47TK6y7B/4957tve8mm81ms8luyibZ9E3vCamUhIRAKCHEEIo0aUpCkRZpgl2UpqIvivhTRFGxoLzWCK8FRTESQARF6R2S5/fHzJk9M3POzDlnTpuZ7+e6cmV35pwzz0555qn3/dwrb1kaOC1J6CRaC5xjhstNjX3rd/8MuggFgZ3EAtNYVWoYuMZoP9rnH3rC8eM88Kd/4Yd/Tp0ZAKKNqY/96PGM1zDLP5Qu4ljqYxlU0KxzLSv02RHyj9XBqzlX/zDh9888uA/ff/Q5y49j+p5WKqu8oBy8IspdZtVCcp3w1b1Pm17j10+8gEM++lO8895gR9JoNYSdqoLfwcZefpM5Df3ATmKBqa8ocTUthNkG7O1f2IuTksLZa5Qy7pQme9Fk+dKNDzyOf79qLXgO69fsvJFhxpfILUZLuYxWtv9Tl84CAPZ89zHs+OJvs378g4qBa4gK1Q///G/D25NrhG8+Yj6Ddem3HsVf/vVqQhTUAwdTl5va2jLDwScKEDuJhUaAR595OfNxaejrtx//xbhi1fzt36+m3KaUwsRhdQZHJ7o6TQLay7/9p4znAybhry2dSUR+MsrVmqkx9T+/fsr24/z9eeO8ZirLPYlsyxHlrudeecvw9uRB9V/vNx/g1uqPd3RLUg8ohRV9bQnH2RlP4uATBYmdxDz39rupM0F2w8ink2m9/JP/fSPlNqsj9maNOTuMl5uy0iXKBc++bNxw01x4zx88qc2IAAAgAElEQVRceywF46BeVnHEnyj/2KkR/hAbgD//7t/Hbztw8GDCHkW77GyvIXIbO4l5zizvTzb0+4Tefi+1E/pv3YicYdJaWNv749WGbVa5RPnnlbey26OiFFBZWpT5QBPcO0SUf4zaKl+xsYIh2wDhHHyiILGTWGDcmJ3T++SP96XcNvOqwcAShtWbxTrv7/95Pes9haxgifLPC6+/g56LvpNw29MvpK5asEMBCUmv07nqO4+l3Maqhij/GO2V/uyDqe0eMwcCThlGlA12EslTZpG9kqtdsyWgH7k/tTFm6/Et30hEueI3+1/Au0npWbIdUHr0ny9nVTVwQIoo/xjNJNpZNZDtTCJTPVCQ2Ekk2+w0xowOVVBoqSlzrTzpZJujiIjCx6gOeifL1tg9Dz+T1fkMMEFUGOxMDnIZOuUydhLJU0YpMpQChjdUJtz2lV+b5x7Kxo0PpOZjZJ1NlH/qK0qyvkY2dYM+NxoR5QejmUS7KSy++htv2jdEXmMnkWxLrh7TRQu96YcGnTQAn3/oiYTbrrjPWkoLIiKjNQrFkWC/zn74WPp0QESUe4z2JNqJOPreQYW9T77oZpGIfMNOImVt5Ae/k/kgHaNROD+XanEmkSi37TMIwJVF9oo4LkUnIr1/v5qahsdOGi3uVaZcxk4i2fbSG+9kdf57Bww6iVypRUQWXfu9v6Tc9vSL2UU3JSJK9tIbqal17PT7XsyyvUQUJHYSKa2e1uqU2954JzU3oh1/+/drKbf5OpPI2QKivPPcy6kj/nb95okXXCgJEeULo/bCC68bd/xmdTem3Papn1hPl0EUNuwkUlpdzVUptxkluX/TRsfxXYMohH5GAHvrXU5bEuUbN1Z1PW4wgEVEhctO02RIbbl3BSEKADuJlNYb77yXcpvRrN8HvvZ/lq/55V89lXKbn/sEH/zr8/49GBH54s13s1vhAABFERc2NhJ5aMnY1qCLUFD+89rblo/lGiXKN+wkkm1GHbqHn3zJ+vmsSonIZVd823qE5P+aLBdjJ5HCbmBk6pJG8s5V33ks6CIQBYadRErLKPyz0UziS29a35y9bFxbVmUiIkr2to08hf96xXj/IjuJFHZuRPElbxgNoG+bO9L/ghC5hJ1Ess1o74+dfX6cRySiMCpiC5yIHDKKsMxxJ8pl7CRSWg/97T8ptxkFrrGDeQqJKIw4k0hhZ7S6h8Lhkaesb7shygXsJJJtdhLJEhGFzVMvGOdUFM4kUh6rKCkKughElEPYSSTbsg81z04mEQXnHy++aXj7K2+mJs4mCpNsxjG+fcY89wpCRHmPnUSy7Rd/T12CSkSU6+77w7NBF4HIM6NaqoMuQsFxIzUPUVDYSSTbvvTL1DyHRERERDToToO80ES5gp1E8t1jz70adBGIQq2qlHuH0uHzQ4WK+2aJyC/sJJLvGAGMKD02BNOrKisOughEgWDNQER+YSeRiChk2BBM79+vvh10EYgCwfEjIvILO4lERGHDhiARGWDVQER+YSeRiIiIKAdwKToR+YWdRCKikGEzkIiMJPcRT5g9IpiCEFHeYyeRiIiIKAckDyCdtawXE4fVBVIWIspv7CQSEYVMJMK5RCIywOWmROQTdhKJiEKGzUAiMpJcN7DPSEReYSeRiIiIKAewU0hEfmEnkYgoZAZGNgVdBCLy2PDGCtvnRJJ6icJ1B0TkEXYSiYhC5sbNk4MuAhF5bOuckbbPYZeQiPzCTiIRUciUlxQFXQQKme+eOR+XrhuPzsbKoItCAUpZbspeIxF5pDjoAhAREVF644bWYtzQWvzz5bdw80//HnRxyAVO+ndcXkpEfuFMIhERUY5gF6GwdTVXJfxuNZDNl04a8KA0RJTP2EkkIiIi8sENm/rjPzuJVDqls97R484c2ejoPCIqXOwkEhEREflAqcGf7fYRW2rKUm6zeg2zDun1G/uN7yCigsdOIhEREZHPxOZU4uiW6pROod1rpJYhq9OJKI8xcA0RERGRD3QTibY6aLedOANTOxtSbrc8kxj7f+7oJvzv3/5r/YGJqGBxJpGIiIjIB0q33tTOJN7iMa2oqyhJmTm0OxN4x4kz7Z0Q8/4lox2dR0S5y7dOooh8SUSeFZFXROSvIrJdd99SEXlMRN4QkR+LyAjdfWUicmvsvOdE5Jyk65qeS0QUhMpS5jkkj3B5YE5TmQ+xxW5KDKedzLmjm209DhHlPj9nEq8G0KWUqgVwKIArRGSaiDQDuAfAbgCNAPYCuEt33qUAegCMALAYwPkishIALJxLROS7hsrSoItARCFUpO+VOdgQmLon0eJ5sQNTzrfYyZza2YCmKtZrRIXEt06iUupRpdTb2q+xf6MArAfwqFLqa0qptxDtFPaLyNjYsScAuFwp9aJS6s8APgdga+y+TOcSERERhUJnU2X853yfFL7s0L6gi0BEWfB1T6KIfEpE3gDwGIBnAXwHQB+A32nHKKVeB7APQJ+INAAYqr8/9rNW85ie61aZL1473q1LERERpRg3tDboIpBPZnQ1Yl1/u+Pzk2cOLc8kmhxfUmStGcgoqESFx9dOolLqVAA1AOYjukz0bQDVAF5OOvTl2HHVut+T70OGcxOIyA4R2Ssie7P5G4iIiNy0ZGxL0EUgH0zprAcAVJdFA8u70fGyuydRb/LwelSWcf80ERnzPbqpUuqAUuohAB0ATgHwGoDkYdRaAK/G7kPS/dp9yHBu8uPerJSarpSant1fQEREROQ/EcH0EQ263+2fr9E6rZbOs/cwOHtZr80ziChsgkyBUYzonsRHAfRrN4pIlXa7UupFRJel9uvO64+dg3TnelpyIqI0uDSL3HTXjlnxn7OZOaKwyC7G6cLewZlny3kSDQ708r3UVluWkO6DiHKPL51EEWkVkc0iUi0iRSJyCICjAfwQwDcATBCRDSJSDuBiAL9XSj0WO/0LAHaJSEMsIM37ANweuy/TuUREOenrp8y2lJvsisMn+FAaCtJAd1PQRSAXJPeZBIK+9uD2o3Iwi4jS8WsmUSG6tPQfAF4EcB2As5RS31JKPQ9gA4ArY/cNANisO/cSRIPRPAngQQDXKqXuBwAL5xIR5aRpIxrxgRVjUFqcvppmQ48oNxRFoh9WfWfxsMnOg9gAqXkP7Rxnp+qw+jhElD+K/XiQWGduYZr7HwBgmLYiljZjW+yfrXPdwMUSRBSkoXXlePK/bwRdDAoJttVz19C6cgCDnUR3Atc4F4l492Yq8vDaROSPIPck5gRWc0Rkl58Nee5RI8oNV6+fmPC7G5/cbOoaATBvdLPp/WVJqxjsDJozrQtR7mMnkQpeR0NF0EUgIqI8V1Ne4vo1RQTK4ZqnUxePRklRxLSjePKC7sHHsXHd2vJiTBhW56hMRBQe7CRmwOWm+a++0v0vbips2czuPbx7ua3jnTYQKTw4G1xY3P7MOg0iWlfhzXdfQ1WpJ9clIn+xk5gBv7qJyK5sloA1soFFlNeOn92F4ohg0ZjWrK5z+uLM0Y+tMOu06m8VAVNaEBUYXwLX5DJWiUQUZmy3EeWWCcPq8LerVjs+P/kj71UdwLqFqLBxJpGIyGV2JxLXThrq+LHYjissXN2SX9xYapxtHWDUGTxyWofrj0O5I1PqJSoMfBdkwC9kIvKaFhrfidndjS6WhIjCYl2/tRyKXiwDXT6+LWEZqoj4MrNYUVLk/YMQEQDg+o39ae9nJzED5qQiO+7eOTvoIlAI+JV4ev+eNRjdWoMvnTTgy+MRUf4x6vwplXq71c5oNp3JjdNTZzCJyBsbDFYM6BV8J7GlpizoIlAemd7FWR2yvwIh2xH6eT3muc6IKPfcvXO2aT3i9hCU1WiryfXUJhsdutLiCC5YOdZOsYgojZV9Qzx/jILvJH7ztLlp7+dEIhEFiXUQUeFJF+XY7cA1RueLGDxO0u/XHGm8VM1oP9ufLjsEpywalbEsrO+IrJnf6/3gcMF3Etvr0ydST142tnVOl4elIaK84GJLh8EiiArP8MZKy8d6kSs1m+WmNx83LeU2v5bgE+WiGzal3xsYlILvJGair9duOWE6Lj20L7jCEBFRQWNbO78YvZ5rJg5FSVHEctcv65lE09uVpeOSdbdUOy4LO5NE4cFOog2su8gLs7ubgi4CuWyEjVmATKxWO1WljApIVIi8WG0gknrhbDqjbD755wdnLwi6COQDN9LnZMJOIlHAvnjSzKCLQC67cfMU1661a814S8fd+/55rj0mEQXH7vJRJykwDp+sS69hFt009rO2PzKbZa1WB9kPHEx9jIW9LY4ftxD1tNUEXQSyqbgonN2xcJaKqICEtXIg5+oqSly71rLxbZaOy2aJF+UOP0aPKTOrn/Fl41o9K4PW8Tpy2nBb5/31ilW4YdPkjMdtnjEcdRUl8QGobKIpWl1G2j+8PuW2bPLIEoVde105Rof0+5utU6IQuHvnbOxcmDnyGxERBa+h0upAkHedem0CcefCblvnlRZHEIkMlstohrC2vBjdLdX43SUrMCwW4M8smmkms7qtp4ZaO2moo8eg9Ni+CK+ff3ApKhxsF/EiYFUydhKJQmB6VyOOmdkZdDEoh3xt5+ygi0AuiXByMKfVlhf7+nha51B732Qb7KW7OXEW44rDJ2D2qNS98kapLawYY2P5I2M/EFnjx6oSf2s2IiIyNTAy84j70TM70dFQgRld1kfnKdwY0TH36F8zv9PUHNR6iS69by47rA937X06/vuxs0a4cl0KDz9mnci5sH4DsJNoA/eCEJEXtK/vZeMy7z+8ev1EbwtDvouwk5i3vHhptfrCrUuXl3gbGdlO98SonZVtig9i+zUfcbkpEcWVOVzqQ0ThtrZ/KB66YDGKuO604Ew2CNSSUazXFMTgQnssiMz8nuaMxxp1Zu8/a777hSJH1vW3Zz6IfBHWcUK2OpOcsbQn4ff6ytKASkKFRj8q1N9Rl3DfRzZMRHsseAAR5Y+mqlKMaqlGR0MlKi0ELwhrY6LQTBhWl/mgmKKI4LDJxg3y6V2NpjlOzVJbHLS52nSYi98dPz5vER7ZvRy3bp2R8djBVbGDBR07pDbtOXx/++fjR7uXqonCaccCe0GtkrGTmCS5fpoyvB41Pm9KJzpyWkfC74dPGRZQSfLfKYuCjfp24tyu+M9eN5CWW0ynQdTTGs6Q7GFxzYZJlo/dd9Vq3JQmd2pNuXGkVLPFZNqAotXq4mSb0U/TKSsuQkNVKUospG6yuhjOyqwkZc9p4CHynpPlwFaWYW9MakvaxXdMkvVTBxvjwxsrMLyxEtNGNARYIipISb0F7ifwzsimqkAff9UE/0K+V5dxwCvUQrT3aqKNmbJ8YyUap9WQ9V7U3Hbj1gT17aHNhGYqZ5euDjY79NcfWmorSiqlum6jsxQmXrKeSoaSZVpuXlYcQU+Wnxl2EpOM0FVW/R3RvQLcNJ3fDh4MugSpkrcmcQmOd4w2f+tn97zm52trtnyNvPW546e7di1WBd5bOcFm0nivPlYm143v9UtTebTVlg3+4mElk7zqxYgbg5ytteUod5BLjsKNkZ2d8+OpYyeRCt5BFxrOt26djod3LwcAlJc4+1jpi1ESiSTMagvYwHfD/j1rLB33odXjPC7JIMYqyX9uLvMttrDMj7LjZuMrm2uZRS+0MpN47ooxg2VwXoSMtgyY5/d1kqmDnQZ33HfGvKCLQB7L9Elxo8XIb5s0vKyszlrWk/kg8kVrbXnW11gytg2NVdEgRz8+d1HW1wMSlzwxRL6/9Ptt3OjEvX/JaNP7Ohv9W+7KYYbw0X+0qywsBz5hTpd3hdHheyV4ZuOC6/qjS9RXpBl8KNOltQj664PfXv7ra09dLs6B5vzCmcSApTz/Lr4gDYyaGho3HTXZ1esNrXMnktwRU4ahu7kKPzt/MSKcbsppZq/e1M56tNSUcUl7ATp3RW/Kbf+zY1bG8+oqgtnD01xdlvkgcpVZvdDXXof9e9ZgdKv5fqNh9eXxtElB7WmPB9ixM5NodBu//rLG5zD/+PG5ZicxDS/b5cfOGuHdxcmWhqpwdNiT2wOtteX40bmLMLyxMpDyUHasRE31e2kVO6PhYfRadDUHG0SJnPFuS2I2VxYcPjm6ZSGoDoJRCgzD45L+zn4nuSMpJxm9M46eOdz3cuQki5/r5JRqdrCTmIZZxXbByrFZXhdMmkyU5y5YOZbLyslTayb6Fxm3voCiENodoU93dDaj/dkM6ojYT5XhNqvFP6g7UAS43UIORnLHvacHu3fR6D0yqYODBEbWJ6VCy/i5jj25x6TZN5wJO4lpaC9A8ps46LxqVAA4hpBzPnpUanhxqyPpfuFEYn4Z354+Mbmb7tg207fHykUzRzYa3p5d4BrnosHOsi9DNhpj22paMixVTu4Mm63u4di6+yZmMcvkhuSXdOnYVsfB//LdDUdNdjVSthUF/UpkSiwaloYd5ba5o5tM77twVXaz0mTNyQu68f2zFzg6N11DrbGqFFM76/GB5b04YkpqKHgtcm6QgYdmdDHPaxgNvq9y43tmWL07e63z1e0nuj/7ld1MogymygjoPXbktA589Kh+bJs3MuW+Kl06iym65aXp2l1Xr5/obgHJE3ZWOCS/3txek15Hg7/1cEF3En9+4RLD26/ZMAkAN/qSO8YPNR/tXzbOvdD4ZO7khaPQa5JUNpuG2NTOetxz6ly8f6nxstKWmugIemut8Uj64GqF9IXoy2LG6IsnDcR/ZnS78NvqU/TSdO6yEECHdAQoNUlNkk074pgB53uzhtVXxNMoDXQbz3J6LRIRHDGlI2V7zQPnLMCD5y+O/75xeuZciwAwdoh/M+f5yK/q384KB7az09u1JjEd17ihtaiMDbBY3eubzSBRQXcSq03CjZut4w/be3kPR9VygpMZaaMzDrJ978iQ2vJ4ehK3XBTPo5j+tT12YAQ+ccwUHDU9u43438pi30h5CRNQ55JLD+3Dnz58SKBlYDRl+/T1fLrUFHYsGduG+T3Nts9b0NuClpoyzBnVjP171mBEU7gCIo1urUmIlstVW94TZBsIyRt85dMz+mxoqzr8qKYLupNoRhtt0ZaIaaPvQVdkycsWWa/mPv1rmGmWJ4wVfC7w4nNiNbR7JCJYO6k960a31UBXx87qxOqJQ9BeZ5z70+130LD6Cpy8oNvlqxaGdB/3ytJiTLYQ4dGrmeFM7zY/A+bkIv2g1JqJ7Vld644TZ2LfVattnWM2q+mFCcOc72m7+bhpOHtZaioYAPjVh5bijDT5ZSk/MAd0lJ32ndGRRjER3FDQnUSz9+bc0dGRu00zoksg4pu/s3is0a3V8Z+dfq/ftjUxcEBQ+wzIPdpyRCu4UjAYbj3vpy32PuDVFYdPxKe2TMPPP7jU88f6+NFT8LWds/HB1eMyH5yjVk0YEthje/Vx15YgppOp3fZRl3PLho2TATmzp2zNpOw61JGI2I6G7me7u6QogpV9zj4nK/qG4EyTCNBtteUYyn2wee8cg3yxhcisnWH0UR6cuBq87cBB69e0o6A7iWaGN1Zi/541mDYicR1/kAMeNeXFqYF22Ef0nZNGo9nLtH7qMNSWG4eVN5q1ZifRGS8+JlM7o8FgTrSxf+y8Q8ZikkkkOd+ioLr4HlrX3472PG/E9ZjsY3WD1dlot6OK9qRJwK4RkbSzlJmCvgHh2Fvpl5StKTY/xgddrNx7WqtxznI2vCk4dt7/m7LcilGIjGqLBo9SFBV0J9HqTJwbmz+9EK7SFIbrN3kzpQ8kfvCNIqL6Ge4+nzjteH1kw0R88piphvc1V5dh/541mDPa3n6hTG1BfqbDJ+jgUrXlqXvnp3ZGl6J6NXCULthWIbD7XZ/6MmR3/shm53sIf3DOQozL4vVzknibWyFyg9X64mNHT/HlcWiQ2VNm1HzR9iTq80lGRPCjDyzE2CHuDmwWdCdRkykAzMHYNK7dtuaXtw8kjKZuySKhpZGg90gWmqrSIlSWGgc7SsvmyzSyuQpD61JnaG48ajK+tnO2/ccnR46a0Wm6VMzpR8+sMWW0fMQLbMzZIwCWjWv15NoZG1Jp9sJ/afsAfqaLDummJWNbCz7YkZPPYVb5EHXvhY3TOkz36fnhazvnBPbYyTJ9Rm47cQYuXjvel6X8heTQ/uz20R7MIsqeUqogO5l29pd//Ogp+MQxUzCqpRoLe1vit3e3VOP+swZTfcWvmEXdVNCdRK1SP3xK5j0agP3nec7oZhwT6xgKEN+7w74dAfZHq6vKijGjK5hQ5vksyO8jbcR/MJ+Zt5aO9WZW7KbNmfeoHT2Ty4rcUllaHHg+sWNcHvTMZdkuN7143fj4z9du7Eexj4FnkllZSuyFm4+bltI5eS82Ql9i8nwsHtOKbfNGFmSnwi4/2518OdKbOTK1HWfnOauvLMXaSdY78vqYKHYVdifR4nF2Rt9/8cHE3IuDe42yawAancu+pr+cztxa7QxWxEbvRzQxmayRGoNldwBwzZGT0p6X7Zej/vrDG6MzvE6Xnic3ZnatHZdwu1erA+7YNhN71k/EhmnW8pGlM21Eg6Pzupudf1GRsSAbY1cdkb8pmATAeoPB43vTpKLJ5rOb7cxNPljRNyRlmeM770U7ifqO64PnLUo5t8oknRkl8qszfYD5utK640R395lnMrWzId6+tKugO4lW2WnAJS8T1Dak6xuVTr5KjB6bM5K5QQT47HHTsC5DQ6C9vgKfP3561vsB8tWK8cZBg7L9GGT64tRvrHf7S7asOFpxWw1i4tTC3hZsnunOzM+XThrAry/yPnpqGIh41xHza/aYnJnfm7rfeGLSfr0dTP8CwLvOx8Zpw7GgtyUhzY5Rzsft80d6UwDK6PPHT0+5bblLeUKPsLjKL9dUlKZ22Mw+Q2bBDdOpMRg0cbrPuaA7iVZH/uJf5g6+zRNmEtkayGlmL983T5ub8dxD+obg40mdP6MZ6mXj2xxVCpqTF+Zno+WE2SMsrdm//PAJKbdl+tw5Cndvcs0LVo7FNRvMZzbN/gQ30uzY1ddei08eMxUzbS5hrigtQmuNcR7GdFYGmE4ilDLmRc3OrG4uTXfK6nf1qYsS98LN7o4GHDOahcxnc0YNBlq70cX0KHWVJfjCtplorU1f35QVF6HYj8ziOaw44n5z//6z5mNZUofw8MntmDCsDkMyvGZWeJUHNkweOGdh7CfjvzXTdjijuurhi5dj4rA6S9tAMuEcPSx8IaR5n1aVFuH1dw6kOTW7N/molirse/71rK5B3uq3kPTaL0V5OhKxbHwbvvHwM4b36Qd7jP76yhL3qrlM31mnLHIWQGFwg7l/r9+9p89DJCJYM2koui68L+X+lpoyPP/q2wm3mUV7zaSvvbbgl4Rl+q4w4/QdEbZo3LnE7tJR7fiv7Jjl+DG/edpcvPb2e47Pz9bdO2fj7w7bGifM6cKl9/4JgPUYD+SNK49IHSgFgJ0LR+E7f3jW+oUsNF3HDkmNomsn9zMN7hc0aluUFkUy5kg1Oq+kKIJ732++NF5z3cbM0foLeybR4nHa1HBJkdGST2svoIg4+tI+OmmJmH4Dap72B8LLaURL0ySp7r+A+TzuZhoiOsN5t2xNXQ6TcF0fnzSzhwpiJjGS4cvnp+elRs90mhicdRXw0AVLMh9kwO5z96ktU7FrzThLA5S71owzvc/Kx4Kzle7pH16PuTZT6rhpelcjNs1wFlyKkdbDr6K0KOEzfdysEfGf6w1y7IUhEraImMYioChtS1umzqTRR7S+IvOqtYLuJGq0xrrZc3zdxn6cs7w3nkA78Vyrj6H7OfZqWQnbXBbbsD0v9uVxgi6lhrafibylreXO9CG0Il/X2PvBLOG0vvLraEhNHdLRkD4QkJOvQvfbRP6kwLDDaN+EU7m6asjNgZyGqtKE3y1mwLB9zOqJQ7F9frfhfTO6nAUdMpM8iJlP3HjPHsVE4b4x+37IJ06Dhmn0HS59ELPvnDE/5VinT6cbL8OYWK6/uaOb8zZGw/qpwwyjnNo1ObaSbWhd9st7jfjSSRSRMhG5RUSeFJFXReT/RGRV7L4uEVEi8pru3+6kc28VkVdE5DkROSfp2ktF5DEReUNEfiwiI5If37xcKeU0PK6lpgxnLO1JuL9O64Fn2u8U+8BEIqmPZ2XvWXlJEX587qKUJO4MP+6OxqSGW7K22rJ4bsKICy34j7q4X6OQKAWcsbTH8D7tc3TSvJHO8lja+FbLdo+E2fmDM4nudUru2jELnznW2vLQ3rbEyKOruH8wzuu2p1cDA0bFttKpC9E4Reile2/s37MGH8kQeZncUwgBNVf2ZVcvrzAJKGP01Dl9OjPVZ5m+WxSAvvY6PLJ7OY50IRp3WN2waTK+evJg3utRLc6if5+1rBc/OHsBetpq3CpaAr9mEosBPA1gIYA6ALsAfFVEunTH1CulqmP/LtfdfimAHgAjACwGcL6IrAQAEWkGcA+A3QAaAewFcJfdwmnT6nYmih7ZvRwLe1vw6S3TLF3bKLqp1Q/hyOaqgk9u7BWjcNp6I5urUFdRgpqyYly8dnzaY3PB4Cbp3GNWiS4d14rrNvbjvEPGOLqus5lEd5vSWs4jN0YWNQPdTVg5wdry0C0D0bG19VOG4Y+XHZISZInc58bKhOQlYfr9QAMuvpfsujXDEu9cUAATU67aPm+kK+9pp4y2A+Ubo68dLdeutfMF/UkRes2cvni05esmP4ZVPzs/dUuDJnnlRb6LRATLxrXaPq8oIpY6iEYvi5UqzpdOolLqdaXUpUqp/Uqpg0qpbwN4AkD6HlbUCQAuV0q9qJT6M4DPAdgau289gEeVUl9TSr2FaIeyX0TGWimX9mbWvgzsLN+MRAR3bJuJeT3p9xDoo5ua3UfBSVehbRnoxGeOnYaSogj+cNkh8Q356fbxhF02SVXDqKasGCKCI6d1+DKQ4hN5q48AACAASURBVNVHdl5PM/bvWRP461NdXozqsuJAk3kXirWx/Z0Le1sM7zcaYMzk/jMHl42dtaw34/HpUivlf5PbXJiWfeeKXWvH429Xrgrs8f/faXNxxhJnHZtc1p2U2sCt1ShnL+/F/j1rXLmWnr7da7REMqX0bCe7wml/I5CWgIi0AegF8Kju5idF5B8icltshhAi0gBgKIDf6Y77HYC+2M99+vuUUq8D2Ke7X/+YO0Rkr4jsTb6vvKQIZy/rxddPmePo79FPGQPApI46fGh1tJ86mCdRX5bo/5uTNomfv3KMq+GjKTtXHjER9ZW5NZpVaAMPRyV9hqwsB71odWIn38lz5vRrONvXZ55HgS2yXUZbCPuB3DR2SA1Gt9bgoQsW44rDjZPSX7ByLNpqyzCq1Xp+q6bqwZlE57M6scFTh2eHVXeLszxhVoShU/nDDyx03IZxi18BbPasn4gvbEtMSN7XXoczLQyMkH2HT06f41kvc7KAwZpFe7/cduIM3f2Fy8uv0ZzpJIpICYA7AdyhlHoMwH8AzEB0Oek0ADWx+wFAG1Z/WXeJl2PHaPfr70u+P04pdbNSarpSynAdzJnLeuKbZe3Slog1xCJEfev0edixIBqUpq+9DivGt+EjR05K+SJpqCqNnwMApy4anRI+Ol2lG4LvpZznx3NoFiXMre/Tn5y7yPCx9qxPbHyeNC//Ew5bqQe3JT0PdjpI2VbiNxyVOeS0mb9esQp3JDWM3KLt53G67/bgwcGfL1hpaSFHTih2eQnb8bMTt8x3NFSitNj4a3h+Twt+9aFlaffZZvt+9LL+C0PHSa/NRm5Pq7MxYWrQjmqpzjqwSa7YPLMTC0xm4POZG50Iu5f4yxUrcf2mwcmL5DoshWiPk/mRtHGsuaOadbclBwuxVMyc8f2zF5jeF6b6RONrJ1FEIgC+COAdAKcDgFLqNaXUXqXUe0qpf8VuXyEiNQBei52qX3RdC+DV2M+vJd2XfL9v7toxC/eflfrilxZHcPPx0xPyyei/gML4pigkXjVk9MmFk22Y6u5m7C79chPdGyr5b9udB3sqg9JWW5YwoOP0fdPXbm0/iJHS4sw5k6xYMzF1n6I2E+i0k7hwzGCDrbEqc0CuXLFtrrsDK8kz336z8vKmO+Z7Zy3A9wy+51KuEcKWnZ3E0iLm383fOn1ufGBOy0s71uEAM7krfO867xmlr3BTWXFRwvfOhw8zzsNolUpoo0js/3QnZPVwoTOsPjUCuybdgHXyykO7DIMTWRh18K2TKNF3wy0A2gBsUEq9a3KoVuqIUupFAM8C0A+/92Nwmeqj+vtEpArAKCQuY/XFQHcT2mrTj1QavR4HY0P4i8dkNypWCJu2c8kn0iQdH/Awt1ie1aeeSP6kWHnOfnHhUvx21/JQ5I7K1ieOmYJ9V61OuG3x2OiG+cOnJC4rshoMqLm6DLecMB29bdU5t0TbTETcTQMSRnbHBMYMqXG84iZorUnfz/2x0PFmmqqN38eTOurjA3N1lSX44kkz8dnjcj9QTz4ZbyOYS667yIUYCVY6C2ct67G07FQbIDK7ZKZHciOKfK46NPn5jT0V+65ajavXG29LsMrplhI/ZxI/DWAcgHVKqTe1G0VkQETGiEhERJoAfAzAT5RS2jLSLwDYJSINsYA07wNwe+y+bwCYICIbRKQcwMUAfh9bxhpeus/AjZsno7+jDp8/YUamQ9PiLJEz2Y54/+aiZY7P9WL9ub4iCONovteSN/G7JRIRRCKCoXXRUcDiSO4GdhGRlBnJUS3V2L9nDSZ1JDac+zvSN6T1lo5rw/fPXohig9lOblmMUlku6025nitXSTTSo89Q2Bi9TzWlRREssriccX5Py2BKLApUJCK4a8cs3Ll9wPQYp1E7w6DNINCL3bRPg6tGBm+zUj+ftawXN262HvXa6JKXH9aX8bHyvY+Yru4/YorxKrOiiGS933dGl7PJCb/yJI4AcDKAyQCe0+VD3AKgG8D9iC4R/SOAtwEcrTv9EkSD0TwJ4EEA1yql7gcApdTzADYAuBLAiwAGAGz2429yy5Kxbfjm6fNMl5Elvy+0TkCRCOZmiKxK3lBplnTGb0/42b9az6/AAWHVWluORRlm5bN5ij5/wnTctHlyQqoBsua9AwczHxRCbs4eV5VFG3R2wtZ7yeijcO6K1NnjNZOMU6ks6rUfsj0XbJnVCRFBT55Fgy4EA91NaKgqNVwFccXhE3Cuw1RJYbDO5HNoR6aBqh/rYhw4oV3WqDM4vr0OUzpTBx71JQkwi4ovgmqiOZ1I8isFxpNKKVFKletyIVYrpe5USn1FKTVSKVWllBqqlDpeKfWc7ty3lVLblFK1Sqk2pdQNSdd+QCk1VilVoZRapJTa78fflI16G6OOyW8obXlqRKJJxPkllh0nH9jyEnsfm+RGppb8PduORmdjZcqI6Wn6UdI8qmztNNPtzlrZOb65ugyHTR6W+cACdsAkq3U2y1DzZaZmZHMVvvy+AVx5RHb7ejTZblMweqWMAuncsMk44FJdZUne7cerKSuOp8PiBHjuOs1gxvDYWRmCroSAWfChjdM6ICJp97RZoVXPRm2fYfUVjlYS7Fk/EX3t0YGvdBE3RIBTFo5Ke618D1xji4sVkFG9Hpo8iRRVXlKEyw+fgLt3Wg9TnTwLNSm2j2KuC6HwV00YkvU1CtHmmZ3xn53UX4f0teHaIyfh7OU9WZVjVEtVyvsgXxrTfhrWkN2Xbj474GCd6OKxrTh2VmfK7aXFEWx3GGG3KoC9gW7Nyn/lfbMSfp8zqtm1nJ5TOhts5TIrxCXo6WgRoLuaKgdvTFiGN/j+T7c8lcgtZkHvpnS6E7l2WH10yWpN2WBbQUtcv3Nht6VrXLpuPKbqZgQ3z+yMtye1anOhwSoDQXRJcMrturo2pd7N4ZEaoxWCubbn0t5iZsracTZHsuqSIldN7WzAHy87BNVl2b90c0Y14bt/fC7zgZSgpCiChsoSvPjGu6YNyXT1gIhg4/TsoxzqE553NlbiqRfeyPqahSD5Nettq0F7XTn++fJb2DqnC4fZyAmV7+aOasLWOV3YsaAbjVXWZgJLiiK44vCJ+NIvn/K4dLmhtdb7pcm71ozD628fsHRsQp4yi9fP187ljFj6qoRGqsmx2S7DI8pGpqjDh9z4UwCZVzpdv3Eyfr7vP+jUDYxUlxXbGmzaOncktmaI/Hz1+on4+sP/SLjNysDbIX1tlssRdqNbqvGXfyUmW8ixPiI7iWF00ryRGDOkBuUlRYab593oIJK3/AjUoV+y9s3T5uLfr76dVIYcHoLzWWdTJf758ltYMb7NtRHbfFBcFMGlh/a5dr21/e34/ENPuHY9ito+39oMwJC6cjzzUjxuHIY3VqY5Ojthr34Eg2U0a7fp/wQvnysK1pi2mpTGfC4ZM6QGj12+Erf9734c2p9+kLOusgSrDNIgZWvwsxT9NJnlfzWi//zlw/fv2ct68dEH/mrYIcyxPiKXm4bR7rXjsWn6cBza355x5CXk38Oh53RUJ9Pz7sfr0qpLDt1QVZqzoendZve5F9NfyC3aazJ5eD0uXDXW9vlBBmQa3pBd5yBMy4tmdQ8uZYtINCKtGSsBunJfai8xIe0Jv2ALwsbp7uYuzobTj1p5SRFOWTQqYYWRn7SgXDXl5pMYblQjWwZStzKEyTdOnYPl483rVVvfBx7Xu1YG8thJpILmdBnVsQPRZcOVJnulDoZgGD0ERXBNkY2K1ckMavIoKGVvl0n+rp0GgQs2TE3fSAsy48gCi6kQzITlHaUFOdM+H9rrYCVQRZg6um4ymknU7yFtZhRj8tjpi0dbXsofZsfNHoFda8bhxAzLUPPdlM6GhCX9v7tkBf5w6Yr477lWlbKTmONy7P2WNz6wohf7rlptGoAinzpoYaAtXZlqED7bDd0tseTYDPzjGv0SyEz1lFmwBs2WAf+jEuoHG4Y3Og9uFLYOVrxjFCvWHSfOzHiOk78g7MvdRQYnCvUz1d0tgxHDP71lqs+lIj+EqZ4/95Ax+MTRmfMPhqsWSVVSFMH2+d1pl5mapgxL88fpO1ybpnfkxOT+YB0rqKsoQU354Pst19KUsZOY47Tolk4qvdoQVZRBMfu8plsuED0vNSG5np31+F7JhcrUqumxsOBfPMk8SbJTbbXluGRdH24/cQbGt4cjf12+yfa9ePICa3vu3OTWl3mQs6DfOn0uzlneC2AwSEu8YxRrdnY2VeLB8xalnKuPbJtj7Zq4IbWpycf1Mu1JbKrmTGI++tbpc4Mugm3aZzBXP4sA0BFbum+2cmSHQT2vb9tedmh2qYO2zunK6vxMlo1LjOjq5KWa0eXnnszM38yMgJLjPrh6LLYMdOL5197OfHCSKcMbcMe2mTioFE687TcelC533HfGPLz61nvYfPMvAUSXgGSjrqIEG6Z2pET3csNFq8ehp815fswtA52481e5E3ly/NDaeNjsKgtBm46c1oGfPf4fS9fWR3RbNMbfxODdDvJRFaogRl/1j5jNpFimjoqXJnXUY1JHPVZPHILOxuj7LXkmEQBGNKW+Fy9eOx73/f7Z2LH2n/9cGKTSZilyueFN9iWncg160ltfHu3H8UNr8adnX0k5NuiyOvXE1avj9cj1m/px3cZJ8ftExDS66rQRjbj9xBmYO7oZJVnst9y/Zw2eeelN3P7z/Sn3nbm0Bzf98HFL1ykpErx7IPVF0P99RnWsVV/aPoCX3ngXA1f90P7JNlmp14Of7qCslBUXoaetJmXZ4/GzrS3PWtjbgsU+N47DRPuI9LXXYVZ3E/buWoYLVo7FpI66rK+tjQg1ubzf4H0LutN2aOb3RGeXzb5M1kxyP7JZmFhJdr9kbCtuPm6aD6VJ9fMLl+DWrdPxzRwczfbLeYeMCboIrtg6pyuwQBJ6o1tr4qsb4h2jDOe0Zdm5zYXGLPciF6Z0KS9Ptpgr0E3KoyGV31y0zJPrWvXI7uXxn5M7JHYGnhaNac2qg6hpM9hjPKWzHmfHVltY8YEVid9Nd2ybib9ftTrh72mriz7Oal0U2ZuPm4YlYzO3tcuKiwaD/3hch1rJ1xv8txe5YmpS2ODKUk4SO9FcXYZTFo1yZeZi0/ThuPbISdjm80buzx0/HT87f7Gvj5lrbt06Ayv6hgTy2O31FVgyti1hn0K+2r12vKPzTtPN5A+tC2YmLmx7CV3n5d8n3jV8nTh/pfGgg/YUFBfl+WtNCUY0VSXUTfr3aksAS4z1M4na8kqzrQ92guJpA9SdAaVvaQhZQJ7iokjKIMAd24z3ZH/zNGuDuAt7W+IrnTStNeX4/aUrcOqiwSBtK/qG4NatMyxd049Bq/NXjsH82Ha1dNiTyCPze5rjy+zOXNqDzzy4L+AShccRU4bhG488k3K7l8vYIhHBxunDPbu+mfKSIgxvrEz44ls/NfPsGpHbBmL74KyqKS/GtUf2J9z24HkBDXjkab8h3T68Y9wKLx+e/iEA4PDY6oIvbJuJ42/9dfz23tYa7FjQjeNmjcB7B1Uo9pKTe6Z01uORp14yvO+keSOxasIQ7Hv+NfzZYFmnn/Qdv46GSnz9lNnoa6/D3b8d3K6idRzszNBHIoJbTpiOiS6sjMqGlRk0v3QlLa2v1Q3W6peS9g9PDJJ3z6lz8JsnXrBctdW6MQjs4XfQqYusbalijZinKkxSM1h12uLUMPVhdPYya8sESgp8pDiXl+/l+4ROPtMaP8Xp1nfpTB5ej5UTEmd4c7nhPqolfPtOByN6Jt6+f88aXHXERPceJ2QdRSA1nUkkIvjQ6nEY3liJkc1VGFbvPIothc/JC9K3Y9rrKzC/pyXhvaqtIFg9MbEeuuzQPtfLF5f0WZk2otF0KaDd9FpLx7Ul5FT222OXr8Tnjp/u2vWybQ5snmE8cP/9sxfgVx8yX547tbMBJy8cFcp6zUu5++1LnogI8MljpqIoyJB8HvjQauOcbfnc/yiEysysAzmr294MFnljaF200Z08k33JuvFZpZXwg34WtNnhErRjZ/mfuiMTLTWF10uagq5+Lna41DnZA+csxL2nz3PlWhROm2cMzqBrA8rJbSAvByutdPy0aOpBf67sKi8pShsJ3ksVBh1tETHck9rbVmMpX+XI5sGlu17tXw3TwHh+9QTIsYtinajRrdV5GdikvrIUzdWpFUCYPoxuC9uXybr+dleuU2ZhZunL22dlPIa811JThsevXJUSevzEuSNx98458d+tjEnduX0Ad+2Y5Uu00K+fMhuf1QU2+tzx03HNhklpzjAWxpxYI2NRdXuziJCsZ9a+DXKQateacdg2z5294KNbqwNfrkfZqS4rxg2b+k3vr6sswS8/uBTXbezHnNg+rZVJe9anDPcuNYHZZ+XnFy6J/3zo5PbYsYMHX36Yh7ObOeTYWYOd/PVTBgckT5o3Etdt7MeX35eYOkt7Br9zxnzbj7VywmD7+CSX6hi/tdvY589OIgEA5oyOJrPOtxlEve+cmVoh5PVsW8B/3EyL+9EqbS6N/rWFiG3JG8kpOCVFEcPOUltteXy2rrw483tg7uhmDHQ3OSyD4I+XHWL5+GkjGhOCf7XUlGGTyTIlfaMkFxwxZRi+edpcrJro7WDgxunGudDCIowdeHJb9DtwzqgmrDfJzacZUleOI6d1YFRLNfZdtTplsHxiR517e3aTNFQl7ovTaEFsSosj8eie+q/142Z3eVKeXGO20uOsZT04cloH5oxKDNCiPYdOB8qcriyxSptZ9qoZ890zF1g+Nn97BJSRUUSv5NGzsLMTQS95Xf6iMalRqfJJkKH35/c044wlPQm3TRqWOhp/2aF9+OCqsbauXV4y+HexoZfbbj5+Ov5nxyyUxwYKvHo9BYJqCzk27br5uGm44ajJCbctDVGQBiMikhKUwQvJEbeDkG4/ax5X/RTz9nsHAdiP0ZC8PLLf45nkaSMacd4hY9DVVGk4uKovznVpZkQLgVGLb5NJgMBMbSCj75tbTpgeb5MEtcxci3Zb7NGkTV2l9aA6BdlJtBpEoZC01pbjkd3L8f4l0YhH6/JwyWmyGV35vW9tQ4aRU80mD0b8ZyY9t3+5YqVrSzPKiotwyqLcCKxE6dVVlGBWd1N8CZVnVbNL101uwBmlUbnFYpjzvGbx+d46pwtfOmkg84ExOxZY2wO0bFwbAOCzx03DtrkjDdOo5H2KE8IhfUOwcVoHdq1xtj81+b2Z7eKcdN9bpy0ejZ+ctzghNZL2cPr3aiHntQYSl9sCwK8+tBTt9RU4Y+ngoPQ5y3vxPzsybzkx+r5ZOq4NJy+Mvk7my8y9XaVVVVqEHQu6cdfJwW+bKchOYk9bTV5uRE9umNvVUFUan1nraatBVZYRUt20MBaV7oKVibNO+d7Ry0ZpcSS+fyvdl9s1SSkH3Hjdd+q+DOeMakJZcZH5rG2GxprR3doyHMoPVbGlnVqgG7ele4fZCXK0M4BE20FqNUg+bcXYITWWjtuxoBvzejLn6gKiS8fOWtaT8bhh9RXoiu27HDe0FhevG284Y8BOYv4rLynCtRv70eLwfVxdnrj6YJLLM4q3bk0f9VOb0DjKZKl7IUpuy7TF2jj6XJBnLO3BrDRbE7SPvtOVK1p6i1KPVmuJRKMu97W7+377wdkL8JX32et4FmQnsTgiebkR/dTFo3HXjlm4/yz7m3HD7qI14zB9RAPW9SfOcM4d3Zwx+Izd5YyFbrHN5XKfOXZaym0lJpXncUnRHkVg2oPVZg38SCxLwZo5shEfPao/ISLl/WfNTxtsIp2+pETUWh2RbZQ9fcMjUwNPvyw6V33nzPm47wx7A6rzRjdn1dkfP9Q4ifhZy3oT9olqTpjtLIIs+4hkl1n6BKeWjG1Le395SRH+cOkK7HY4E5qPzAa8tY+zlTm+e0+fhzOXZh5wMnPHtpm4/LA+1FdmjoYaJj1tNZg9yt6+/tz/FqO4oohgoLsJY4dEv2QzzQjZ2bPmViQ8p3rbanD3KXMMGwnJe43uOXVOQr6rIbqlRv938XLvCpknrt/Uj4cusJ7APDmvXTqXHz4h4XcRMa3UtdnjdI05tvPyg4jgiCkdCXuHxg6pzRhswsz0EYn74bSBhhuT9g/aVVlajEVjWlJuT+5IXbex31ZwgLBqri7LOJp92BTrUYu17QyZ3LCpH+NMOot6zdWluOywCRmPM2IlSjKRXhB74GvKS/I6doJdh002rm8OxLcsZH6uJgyrw9nLreXYNjK8sbJgggaxlsxj92UI72snlPztJ87E1evdS7TsqqRextTOBlxvMgOhD2SwJOQBJrzSkGH0q6y4CB0NlWmPSUeLAKcFFUpXZxeJ4ODB1G7iSfNGoipNoJG8jkpLWUt+e2jvQa/eNlpaCc2R0zpSbstXpyx0f3/w+qkdWD4uc/18zylzHT/GVWH9PqOcc9URfC/5RUtRkkzrHJblwQqOMOGzmce6khop+un1VROG2Fp61V5fgaNnZhf++eNHT7F87Ke3TDW8XV/iyw6N5giy0/DTL120MlKd67RQyvrX2s2/+55T56TcdkVsZF9bcqbNCBpZ1z/U8PU7d8WY+M9p36UcYCUDyYMI8aVIHF1wnYjgy9sHLOVBtbPH0WDsKEVnU+pgltWAgMnRronMZHorDmswXl59RdLKmfkmHRzK3qH97Thp3siUuBXZ+ul5i/HrDy119Zq5hJ3EAuLHRv2fX7gEf7tyVfz3c1dEp/Tn9zRbTqZ+0+bJlpZ1xGcHdA0/bc+b6br1AutUaJ3E5L/7W6fbG4FfPXFIQnJxjRbmXp/MVlsaM7q1Gr/44BK8b75xsI9h9RWoKS9BV1PqjEtFaVHaBv0xA504pK8NJy9glNNCkyntzdY5XViaNAvl5jIxoysV+r7ZOaObM0ZJvnTdeGwZGIG/XbkKbbXmncUVfdF9WgczdOgXmAw+zexKv+fmmg2T8NWTZ6c9hgjQ56tL//meM6rJsG2R/A6eM7oZj+vaR06t629P2XddSJqro6uh9AGySosj2L12vOtB7TqbKtFqY9VdvnE/cRSF1oLeZnz0gb9aPl6r4H5lYxSlXbcXMCLA6Ut6sGVgBCrLrEfMPGzyMNz/x2fjv+vzjmWqiD98WHR2savZ+XLJfDJmSA3+87f/oiwpWfmkjnqMaKrEk/99w9J1zlnei9GtNVgxvg3f/9O/ACRGE7v8sAn40i+fSjkvXQAL7bU0C5Sj7SVdOi51c39dRQk+e1z6wCEAMKXT+3xw5K9MM0xLxramdCAGZxJTj180phVD6yowqqUK133fev1IiTJN0m6dG02BE4Ggt60G/3rl7XhU20kddfj9P14GgHh+VX2exU8ek7qypMik3X7V+vR7FDcxUiRZpEWvzLQ1JyKC/o56/N/TLyXeYfChMAvqZoedVVn56P+dNhePPPUS1hZAqragsZNYIJ64erXt0XRtFK2m3P7b5MOH9cUjATZUWY8AVRL75tc3BHea5BYyavhpf+PQugqsnTQU3/79s6knFpBPHzsNjz7ziuHo2r3vn4eXXn/X1vVuPn46ui68L+V2JzM1+lOG1VfgmZfeTLh/aF0FfrtrWcY9lGb271nj6DwKt+QZ5qOmD8dde59Of1J8T2LiuXt3LUNTVWn8/eu0k1hoKxSy9cktU6P1Uiyp81dPno2xu+8HMLgSYdn4wcEho/3jbbqG+7ffPw9rP/4QAKQMiBE5NWFYHa7ZMAkrJ5oHZ9sy0ImiiHEANv0gqdFKHHKmo6Eyq7gJZB2XmxYIJ414rS3mZJnq8bO70NtmLVeWnrZsy2xUOuH2WLnYQDNXW15iGvK4trzEcE+PVdk+7+cdMrh3wGxpWVN1GSO7UYIbj0ocRR/RXJkxIfsRU4YBSK1XmqvLEupGK1GcuavRWLr64Le7liX8nlwvlZcYd+y0QGP6az9x9Wpcs2ESLl43mBZgwrD8S2lF4bBpxvB4XjwjjWkGwStLi/DY5SuxZ/1ErNANeowdUoPhjd7khCVyEzuJZGrxmOjobba5xdJJaViYjPhr9JGrtFPv3pkaPCV6bXYu7Hp492CKkE8c482SlpMXduPCVWNxqG6P6gErUSqIgJTk6ycvGIV5Pc3xVQiaS3SdiEvWRZehz80QOOKeU+fify9ckvYY7b1apIuQUlYcQWVpEW7anF2KjVymDfAZfV80VTtLZm70NSAi2DRjuGE6JCKvrUla4rhlIJan02Cgs6GqFOUlRdg8szOhPXL/WQvws/PT1zNEYcBOYoGy0n+6cfNk/Oz8xaZr6I+c1oHbT5yRVTn+b/eKhA3Y6fYOAdE8Zdo6dO1vGG+ygdso8InWgJk8nHvVjDRUOt/0fe/p8/Dt92dOvP3BVeOwMyls/ieOmYrFBvnniDLRPtMzuhoBDNYLJ8b2wOmPaastx6QO81mn6rLihByrRuKdRF0lKiL404dX4rDJw+z/AXliVncjjps1AtccOcm1a9bH6iM39nERueEmXa7V4ogk5GHWa6wqLYgI6pTfWPOSqfKSIgxvNF+OuGWgE4vG2Ms1OD9pFqCusgRf3j4r/ruVfGbaHslMEQWrY3n29HsqS4oi+POHV+KeU4xnHwvVhGHRLzP9aGemQBQXrR6X8PvEjjrHy75mjmzEbSfOdHQuERBNibN4TEu8s2hG6+Q5HZQYnEnkSgW94qIILj98QsJewWzdvXMOrtkwic81hUaxxQGLgZHp6yGiXMD1GgUqqHRhH1w1Dj97/GcJt9XpZq+0jt/UNFEptVHl4gwNh4vWjMPo1ur4sllNRSkDGyS7c/ss/DMpcIy2H8jMij7zzfxEfutpq7E00KCtbP6ALhenHWsnDcWvnniBEZR90NlUmdW+aSIvlem+I5ObVEcxii7lAXYS89zHjp6CKoNOkdOciXduH8CWz//KcXky5b7Slm50NFRi2ogGT3xSTgAAE95JREFU/PbJF1OO+cCKMSgtiuDwKYNLuxb0tuDlN95JOK6mvATbTXL0UaK6ipKUCKjLDVJPEOU6ZTH3mZljZ43AphnDGUWTqMB947TUfMNLxrbi1q3ZbcMhCgt2EvPcoSYJ7IOK6ZJpBvPL7xuMUqg15pKLWldRgl1rxyfc9oVtXKrotkhEMKqlCvuefz3oohAZOmtZT9r7P3PstJQVB/EE2Q43W4gIO4gWdTRU4B8vvpn5QAB3bJuJJhvpkpLduX0gvsWAyA9GEdzPWJq+TiLKJdyTWKCanUabM7BhaoflY/VRSy87tC/lfn1eIe79CZ72had/XYjC4qxlvWnvXzlhSEK+PQCoiEXFLHbaSyTLvnHqXHxt52xLxy7sbckqlcXc0c3oZ0AyCsjuteMxurUaYxyk/iIKKw67FZjm6jIURwQXrhqb+WCLrt/Uj68//A9Lx45srgIQHeFfOSH9nrayWO4s7iEMzmGTh6VEbLx03XgMYaeRctRnjp2Kex5+BqNaqoIuSt5rqSlDS417A5JEYTWjqxEPnLMw6GIQuYqdxAKzNympcTYaKu0vDaopL8H+PWssHfvxo6fgnoef4chcyGzVpRYgCkJfey1eeuNdR+cOravAaYtHu1wiIiKi/MJOIjlSHBF0NQ+OxP/momUZo43a1VZbjlMWjcp8IBEVlPvOmB90EYiIiPIaO4nkyMykHEBcUkRERERElB/YSSRHgsqzSERERBSUR3YvDyxCPJGf2EkkW7INH29m15pxENa6REREFGINWaRqIcol7CSSLbGsFI4TUZth0nsiIiIionBgoiiypSjWOawoYVoKIiIiIqJ8xJlEsmXOqCacsWQ0TpjTFXRRiIiIiIjIA+wkki2RiOCcFWOCLgYREREREXmEy02JiIiIiIgojp1EIiIiIiIiivOlkygiZSJyi4g8KSKvisj/icgq3f1LReQxEXlDRH4sIiOSzr1VRF4RkedE5Jyka5ueS0RERERERPb4NZNYDOBpAAsB1AHYBeCrItIlIs0A7gGwG0AjgL0A7tKdeymAHgAjACwGcL6IrAQAC+cSERERERGRDb4ErlFKvY5oZ0/zbRF5AsA0AE0AHlVKfQ0ARORSAP8RkbFKqccAnABgq1LqRQAvisjnAGwFcD+A9RnOJSIiIiIiIhsC2ZMoIm0AegE8CqAPwO+0+2Idyn0A+kSkAcBQ/f2xn/tiP5uea/CYO0Rkr4jsff755939g4iIiIiIiPKE751EESkBcCeAO2KzfdUAXk467GUANbH7kHS/dh8ynJtAKXWzUmq6Ump6S0tLdn8EERERERFRnvK1kygiEQBfBPAOgNNjN78GoDbp0FoAr8buQ9L92n2ZziWiHDSqpSroIhAREREVNF/2JAKAiAiAWwC0AVitlHo3dtejiO471I6rAjAK0b2GL4rIswD6Afwgdkh/7Jy053r4pxCRR352/mLUVZYEXQwiIiKigubnTOKnAYwDsE4p9abu9m8AmCAiG0SkHMDFAH6vCzzzBQC7RKRBRMYCeB+A2y2eS0Q5ZHhjJWrL2UkkIiIiCpJfeRJHADgZwGQAz4nIa7F/W5RSzwPYAOBKAC8CGACwWXf6JYgGo3kSwIMArlVK3Q8AFs4lIiIiIiIiG0QpFXQZfDd9+nS1d+/eoItBREREREQUCBH5rVJqutF9gaTAICIiIiIionBiJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIopjJ5GIiIiIiIji2EkkIiIiIiKiOHYSiYiIiIiIKI6dRCIiIiIiIooTpVTQZfCdiLwK4C8ePkQdgJdz6Lp+XJ/Xzr/r89rGmgH8x8Pre1H+XH0f5mq5vb6219fP1Wt7ff1crlty8TOaq9f2+vosu//X9vr6Xl57jFKqxvAepVTB/QOw1+Pr35xL1/Xj+rx2/l2f1za9fs7VL7n6PszVcrPsfF4cXt+zuiUXP6O5em2WPf+unctlT1evcLmpN+7Nsev6cX1eO/+uz2sHw4vy5+r7MFfL7fW1vb5+rl7b6+vnct2Si5/RXL2219dn2f2/ttfXD6RuKdTlpnuVUtODLgcR5R/WL0TkBdYtROS2dPVKoc4k3hx0AYgob7F+ISIvsG4hIreZ1isFOZNIRERERERExgp1JpHIERG5XUSuCLocRJRfWLcQkRdYt5BT7CQSARCRn4jI9qDLQUT5hXULEXmBdQt5jZ1EIiIiIiIiimMnkUhHRLaKyENJtykRGR1UmYgo97FuISIvsG4hr+RcJ1FEcq7MRJQbWL8QkdtYrxBRLsqpiktEipRSB4MuBxHlH9YvROQ21itElKtyopMoIkUAoJQ6ICLNIvIxETlbRPqCLhsR5TbWL0TkNtYrRJTrcqKTqJQ6AAAiMhfAgwDaABwK4FoRmRy7Lyf+Fgq91wFUar+IyJAAy0I+YP1CPmHdUkBYr5CPWLeQJ0JZQYmIJP1eJiJfBnAJgI8rpY4CcDqAfQDOBwAu5yCX/A5An4hMFpFyAJcGXB5yGesXCgjrljzGeoUCxLqFPBGqTqJEFSmllP52pdTbAH4KYCKAmthtjwL4LoDhInJk7PxQ/T2Uc5RS6q8APgzgAQCPA3go/SmUK1i/UIBYt+Qp1isUMNYt5BlJqteCKYRIRD+iJiLVAC4C8CqA3yqlvhcbpfsmgMcA3KSUekZEWgCcCmABgDVKqbcCKD7lARF5GMCHlVL/L+iykLtYv1CQWLfkJ9YrFDTWLeS1wEewRGQlgCtFpDP2+3YAfwcwDkA/gI+LyHGxUbpbAMyK/YNS6nkAPwYgAOYFUHzKA7FAAuMAPBJ0WchdrF8oSKxb8hPrFQoa6xbyQ+CdRADFAJYBmCkilQCmA3i/Uurw2Br+HwG4EgCUUt8E8FcAK0VkfOz8XwPYoJR6wP+iU64TkY8A+D6AC5RSTwZdHnId6xcKBOuWvMZ6hQLDuoX8Epblpp8EUAvgCgCvKqX+KSI9AD4PoAPR9fxfUUqdKSJTAXwF0c3gd2n7ALRN48n7AoiosLF+ISK3sV4honwX6EyiLhrYTQC6ACwB8IKIdAP4KoBfKKVGAbgZwOkiMlIp9TCA7Uqp/9FXrCrG37+AiMKK9QsRuY31ChEVikA7iUopJSISi8z0XQBrEF1jPQrAC0qpC2OHliG68XtD7LyfAakhp4mINKxfiMhtrFeIqFCEYrkpEI8M9g1E1/K/BWA9ohXsAgB7AZyqlHo5uBISUa5i/UJEbmO9QkT5LAyBa7RQ0q8B+CKAuQCeQ3SdfwmA65RSW5RSL8fyEaUts4iU6q/rZbmJKPxcrl+q9df1stxEFF5u1iux63WLSG3sZ842ElHgQjOTqBGRuwA8D+ASpdR/dbcXKaUOpDmvE8AeAO8A+IdSapfnhSWinJJl/XITgPcQzYO2Qyn1ntflJaLwc1qv6I47DcC1AI5XSt3tXUmJiKwLzUi4buTsYwBmILq+HyJSBAAZGnA7EV3a8Syiyz6OEpFbY/eF5m8komBkWb9cBOBhAE8D+DCA5QA+mXRdIiow2dQrSfoBvIhoSo0et8tJROREaDpQsc3gEaXU/yKaZPaQ2O1pK1kRqQfQA+B0pdQHlFJfALARwHoRqVVKHfS67EQUblnULwLgIICVSqkzlFJ/APAQgNpY8IpwLcUgIt84rVc0WmcSwOMA7gIwAGCeiJR5UV4iIjtC00kEAKXUwVhi2jcB/MXsOK0CjTXg3kY0/9D9sdsiAOoB/BnRSpuIyEn9UhzrBN6glNorItNE5C8ADgXwdwCH6/dAE1HhsVqvAAl1S/JM42wAtwH4NoDDAIz0rMBERBaFqpMYcziARwDck3yHiDTElpF+BojnGHpTKbVXKfVKbGT/IKKhp18F8JqfBSei0LNTv7wX+//t2CHtAD6hlKoCcAOiibEvEpEaPwpORKFlWq8AhnXLgdjtWhvsaQDDAdwCoBzA0SJyhYhM8rrgRERmwhi4xnAJl4hMBPBxAE0AXgFwvVLqHqON4SLyaQDvKqXO8KXQRJQTXKpfJLbM7EgA1wMYr5R63Y/yE1H4pFt6nqZuiWjbYUTkpwBOVErtE5F7AawCcB+ALbEIqkREvgvdTGKaPT6liIaa3grghwDeJyKlSqkD2uZxEYnElnFMQ3R9P0Rku4ic4n3JiSjssqlfdIpj/7+KaLCJWi/KSkS5IcPeZLO65aBuufqvAFwmIn9AtD55CMB+AFWeFZqIKIPQdRI1IjJWRBaKSGvspj8AuFsp9VsA3wOgAJyuHR77XyFawf4bQIeI/AjAlYgu5SAiAuC4ftFC2r8rIuMQzYn2XaXUs36WnYjCy07dopR6J7bkdCiAPgA3KqUWAvgIgEb/S09ENCiMy02LEF23vwnAbxGtPM9XSt2rO6YawEkANgA4Tin1pLZ0Q0SWI1oRvwDgY0qpD/v+RxBRKGVRvwiAakQDTJwGYAGAa5VSV/n8JxBRCDmtW2K3jwTwL6XUG74XnIjIRBhnEvsAjEY039AKALcDuElEFmgHxNbo/xDAPwGcHbvtYKySfgnApQC62EEkoiRO6xeFaCCsxxHdK9TJDiIR6TiqW2KeVkq9oQWyYf5VIgqDUHQSRaROF+VrFoARSqn/ADiolPoIouv1TxCRbt1pf0U09cUEEblKRH4BYKFS6jdKqQ9zszcRAa7WL8uUUk8opW5WSr3q6x9BRKHjUt3yvwCWAtHB7tj/4VriRUQFKdBOooj0iMj3ANwJ4OsiMgLAnwA8JSKTtQoTwNUA+gHEw0Erpd4BcADRivkEAJ9VSv3I1z+AiELLg/rlB77+AUQUSi7XLZ9TSn3P1z+AiMiCwDqJInISgB8hmlvofEQ3ae9GNHLgvxBdrgEAUEr9HtHN38fFzi2K7T28G8CnlFLDlFK3+/oHEFFosX4hIi+wbiGiQhFY4BoRuQLAk0qpz8V+7wDwGIBeRCvUqdDNDorIOgB7AMyIrd0fBuB1pdRLgfwBRBRarF+IyAusW4ioUBRnPsQznwHwNgCISBmANwDsA1AB4GuIbv4+S0T2xSKAzQDwfS36l1LqmUBKTUS5gPULEXmBdQsRFYTAOolKqX8A0SheSqm3RWQ8ostfn47lDvoYonnI7hORlwCMAbAlqPISUe5g/UJEXmDdQkSFIsiZRAAJUbwWAfhLbFM3lFJ/FJENAKYA6FNK3RFQEYkoR7F+ISIvsG4honwXeCdRRIqUUgcAzARwf+y2UxAdfbtSKbUXwN4Ai0hEOYr1CxF5gXULEeW7wDuJSqkDIlKMaISwVhH5KYAuANuUUs8HWjgiymmsX4jIC6xbiCjfBRbdNKEQIhMB/A7R8NHXK6WuC7hIRJQnWL8QkRdYtxBRPgtLJ7EUwOmI5g16K+jyEFH+YP1CRF5g3UJE+SwUnUQiIiIiIiIKh0jQBSAiIiIiIqLwYCeRiIiIiIiI4thJJCIiIiIiojh2EomIiIiIiCiOnUQiIiIiIiKKYyeRiIgIgIh0ishrIlIUdFmIiIiCxE4iEREVLBHZLyLLAEAp9ZRSqlopdcDHx18kIv/w6/GIiIisYCeRiIiIiIiI4thJJCKigiQiXwTQCeDe2DLT80VEiUhx7P6fiMgVIvLz2P33ikiTiNwpIq+IyG9EpEt3vbEi8gMReUFE/iIim3T3rRaRP4nIqyLyjIicKyJVAL4LoD12/ddEpF1EZorIL0TkJRF5VkQ+ISKlumspETlVRB6PXe9yERkVK+crIvJV7XhtplJEPiQi/4nNnG7x5xkmIqJcxU4iEREVJKXUcQCeArBOKVUN4KsGh20GcByAYQBGAfgFgNsANAL4M4BLACDW4fsBgC8DaI2d9ykRGR+7zi0ATlZK1QCYAOBHSqnXAawC8M/YMtdqpdQ/ARwAcDaAZgCzASwFcGpSuQ4BMA3ALADnA7gZwLEAhseuf7Tu2CGxaw0DcAKAm0VkjK0ni4iICgo7iUREROZuU0rtU0q9jOis3z6l1ANKqfcAfA3AlNhxawHsV0rdppR6Tyn1CICvA9gYu/9dAONFpFYp9aJS6mGzB1RK/VYp9cvYdfYD+CyAhUmHXaOUekUp9SiAPwL4vlLq77pyTkk6frdS6m2l1IMA7gOwCURERCbYSSQiIjL3L93Pbxr8Xh37eQSAgdgS0ZdE5CUAWxCdxQOA/9/OHbJmGUZhHP9fwVnUKbYhBsExP4DBIJgMFoMmZX3rJllZUfwEBqsiYjHsCyz7BZbEIYzXNNhsgsfw3Lt9w1bePaDu/f/gbg/nnHo4F88j4AGwm2Q7yZ2TGiZZTrKVZJLkAHjBcAmcZS6A/Xa1PLILLJ3UX5Ikl0RJ0jyrkep8A7ar6vLUu1BV6wBV9bmqHjJEUT/xJ9p6XP/XwA5ws6ouAc+BnGK2Ky0Oe+Q6sHeKepKkM84lUZI0z74DN0aoswUsJ1lNcq6920luJVlI8jTJYlX9BA6AX1P9ryZZnKp1sX3zI8kKsD7CfJttjrsM0diPI9SUJJ1RLomSpHn2Etho8dDHsxapqkPgPsMPa/aACfAKON8+WQW+tvjoGkMUlaraAd4DX1pMdQl4BjwBDoE3wIdZ52omwH6b6x2w1vpKknSsVI2VtJEkSf+SJPeAt1V17W/PIkn6f3hJlCRJkiR1LomSJEmSpM64qSRJkiSp85IoSZIkSepcEiVJkiRJnUuiJEmSJKlzSZQkSZIkdS6JkiRJkqTOJVGSJEmS1P0G8XdW8bXHiqkAAAAASUVORK5CYII=", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## 创建训练和测试数据集\n", + "\n", + "### 数据集的重要性\n", + "在机器学习中,数据集是模型训练和评估的核心。一个好的数据集可以显著提高模型的性能,而一个不平衡或质量较差的数据集可能会导致模型表现不佳。\n", + "\n", + "### 划分数据集\n", + "通常情况下,数据集会被分为三个部分:\n", + "- **训练集**:用于训练模型。\n", + "- **验证集**:用于调整模型参数和选择最佳模型。\n", + "- **测试集**:用于评估模型的最终性能。\n", + "\n", + "### 如何划分数据集\n", + "以下是一些常见的划分比例:\n", + "- 训练集占 70%,验证集占 15%,测试集占 15%。\n", + "- 如果数据量较大,可以考虑训练集占 80%,验证集和测试集各占 10%。\n", + "\n", + "### 注意事项\n", + "- 确保数据集的分布一致,避免训练集和测试集之间的分布差异。\n", + "- 如果数据集较小,可以使用交叉验证来提高模型的可靠性。\n", + "\n", + "### 示例代码\n", + "以下是一个简单的代码示例,展示如何使用 @@INLINE_CODE_x@@ 划分数据集:\n", + "\n", + "```python\n", + "# 导入必要的库\n", + "import random\n", + "\n", + "# 定义数据集\n", + "data = ['样本1', '样本2', '样本3', '样本4', '样本5']\n", + "\n", + "# 随机打乱数据\n", + "random.shuffle(data)\n", + "\n", + "# 划分数据集\n", + "train_data = data[:3]\n", + "test_data = data[3:]\n", + "\n", + "print(\"训练集:\", train_data)\n", + "print(\"测试集:\", test_data)\n", + "```\n", + "\n", + "### [!TIP]\n", + "在实际项目中,使用库(如 @@INLINE_CODE_x@@ 或 @@INLINE_CODE_x@@)可以简化数据集划分的过程。\n", + "\n", + "### 总结\n", + "划分数据集是机器学习项目中的重要步骤。通过合理的划分,可以确保模型的训练和评估更加可靠,从而提高模型的实际应用效果。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00' " + ], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 21, + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e5wtV1Xv+5tVtR792u8kEoMkIGAUJEjwwEE9IHh5eHzCiYr40XPPJSjnw8XrkQN6RRHPOXJ8AKLyFHzw1vBSQQnEhMBNQtgJeZNkJ+wk+5Gd/eze/V6rqub9Y9aomlVdtXqO2btXr+4e388nn97pXnNVrVr1mGOO3/gNpbWGIAiCIAiCIAiCIABAsNE7IAiCIAiCIAiCIIwOEiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDkSJAqCIAiCIAiCIAg5EiQKgiAIgiAIgiAIORIkCoIgCIIgCIIgCDnRRu/ARrBv3z598cUXb/RuCIIgCIIgCIIgbAi33HLLSa31eXV/25ZB4sUXX4z9+/dv9G4IgiAIgiAIgiBsCEqph5v+JnJTQRAEQRAEQRAEIUeCREEQBEEQBEEQBCFHgkRBEARBEARBEAQhZ1vWJAqCIAiCIAiCsL3p9/s4fPgwlpaWNnpX1pVut4uLLroIrVbLeYwEiYIgCIIgCIIgbDsOHz6MqakpXHzxxVBKbfTurAtaa5w6dQqHDx/GJZdc4jxO5KaCIAiCIAiCIGw7lpaWsHfv3i0bIAKAUgp79+5lZ0slSBQEQRAEQRAEYVuylQNEwuczSpAoCIIgCIIgCIIwZKanp/Hud7+bPe5lL3sZpqen12GPCiRIFARBEARBEARBGDJNQWIcxwPHfeELX8CuXbvWa7cAiHGNIAiCIAiCIAjC0HnTm96EBx98EJdddhlarRa63S52796Ne++9F/fffz9++qd/GocOHcLS0hJe//rX48orrwQAXHzxxdi/fz/m5ubw0pe+FD/0Qz+EG264Ad/5nd+Jz33ucxgbG1vzvkmQKAiCIAiCIAjCtub3/+lu3HP07Dl9z++9cAd+7ye+r/Hvb3vb23DXXXfhtttuw3XXXYcf//Efx1133ZW7kH7oQx/Cnj17sLi4iGc/+9l4+ctfjr1795be48CBA/j4xz+OD3zgA7jiiivwqU99Cq961avWvO8SJAqCIAiCIAiCIGwwP/iDP1hqU/Gud70Ln/nMZwAAhw4dwoEDB1YEiZdccgkuu+wyAMCznvUsPPTQQ+dkXyRIFARBEARBEARhWzMo4zcsJiYm8n9fd911+PKXv4wbb7wR4+PjeP7zn1/bxqLT6eT/DsMQi4uL52RfxLhGEARBEARBEARhyExNTWF2drb2bzMzM9i9ezfGx8dx77334qabbhrqvkkmURAEQRAEQRAEYcjs3bsXz3ve8/C0pz0NY2NjuOCCC/K/veQlL8F73/teXHrppXjqU5+K5zznOUPdN6W1HuoGR4HLL79c79+/f6N3QxAEQRAEQRCEDeJb3/oWLr300o3ejaFQ91mVUrdorS+ve73ITQVBEARBEARBEIQcCRIFQRAEQdi2/Je/+Qae/pYvbvRuCIIgjBRDDxKVUk9WSi0ppT6S/f/zlVKpUmrO+u+XrdfvUUp9Rik1r5R6WCn1ysr7vTL7/bxS6rNKqT3D/kyCIAiCIGxOrrn3OGaX4o3eDUEQhJFiIzKJfwngG5XfHdVaT1r//W3l9T0AFwD4RQDvUUp9HwBkP98H4Jeyvy8AePd6fwBBEARBELYW29GjQRAEoYmhBolKqZ8HMA3gGsfXTwB4OYA3a63ntNZfA/CPMEEhYILGf9JaX6+1ngPwZgA/q5SaOvd7LwiCIAjCVmWpn270LgiCIIwMQwsSlVI7ALwVwG/U/Pl8pdRjSqmDSql3ZMEhADwFQKy1vt967e0AqNvl92X/DwDQWj8Ik3V8Ss32r1RK7VdK7T9x4sQ5+ESCIAiCIGwVphd7G70LgiAII8MwM4l/AOCDWuvDld/fC+AyAI8D8KMAngXg7dnfJgGcrbx+BsCU9feZAX/P0Vq/X2t9udb68vPOO8/7QwiCIAiCsPU4M9/f6F0QBGGbMT09jXe/269S7p3vfCcWFhbO8R4VDCVIVEpdBuBFAN5R/ZvW+pjW+h6tdaq1Pgjgv8NITAFgDsCOypAdAGYd/y4IgiAIgrAqkkkUBGHYjHKQGK3bO5d5PoCLATyilAJMBjBUSn2v1voHKq/VKILX+wFESqkna60PZL97BoC7s3/fnf0/AEAp9UQAnWycIAiCIAjCQAIFpBqYWZBMoiAIw+VNb3oTHnzwQVx22WX4sR/7MZx//vn4+7//eywvL+NnfuZn8Pu///uYn5/HFVdcgcOHDyNJErz5zW/GY489hqNHj+IFL3gB9u3bh2uvvfac79uwgsT3A/iE9f+/CRM0/ppS6gUAvg3gEQAXAXgbgM8BgNZ6Xin1aQBvVUr9XzCy1J8C8O+z9/kogBuVUj8M4FaYmsdPa60lkygIgiAIwqpMtCPMLseYXpQgURC2Nf/yJuDYnef2Pb/j6cBL39b457e97W246667cNttt+Hqq6/GVVddhZtvvhlaa/zkT/4krr/+epw4cQIXXnghPv/5zwMAZmZmsHPnTrz97W/Htddei3379p3bfc4YitxUa72QyUqPaa2PwchEl7TWJwA8E8ANAOazn3cC+L+t4a8FMAbgOICPA/g1rfXd2fveDeBXYYLF4zC1iK8dxmcSBEEQBGHzE4UKALDUTzZ4TwRB2M5cffXVuPrqq/HMZz4TP/ADP4B7770XBw4cwNOf/nR86Utfwhvf+EZ89atfxc6dO4eyP8PKJJbQWr/F+vfbURjV1L32NICfHvD3jwH42LncP0EQBEEQtgdZGQx6sbTAEIRtzYCM3zDQWuO3fuu38JrXvGbF32699VZ84QtfwO/8zu/ghS98IX73d3933fdnqH0SBUEQBEEQRonAxIhYliBREIQhMzU1hdlZUyX34he/GB/60IcwNzcHADhy5AiOHz+Oo0ePYnx8HK961avwhje8AbfeeuuKsevBhmQSBUEQBEEQRoFUm5+SSRQEYdjs3bsXz3ve8/C0pz0NL33pS/HKV74Sz33ucwEAk5OT+MhHPoIHHngAb3jDGxAEAVqtFt7znvcAAK688kq85CUvwYUXXripjWsEQRAEQRBGjn5igsNeIkGiIAjD52MfK1fNvf71ry/9/5Oe9CS8+MUvXjHuda97HV73utet236J3FQQBEEQhG1LHiRKJlEQBCFHgkRBEARBELYtcWL0plKTKAiCUCBBoiAIgiAI2xKtNeKsKFEyiYIgCAUSJAqCIAiCsC3pZ1lEAFiOpU+iIGxHtNarv2iT4/MZJUgUBEEQBGFb0rfMaiSTKAjbj263i1OnTm3pQFFrjVOnTqHb7bLGibupIAiCIAjbktjKJIq7qSBsPy666CIcPnwYJ06c2Ohd4bF0FujPA1OPc3p5t9vFRRddxNqEBImCIAiCIGxL+qlkEgVhO9NqtXDJJZds9G7wectO8/P3pgGl1mUTIjcVBEEQBGFbInJTQRA2Ncuz6/bWEiQKgiAIgrAtEbmpIAibmvn1k8lKkCgIgiAIwrakJ5lEQRA2I91d5ufCqXXbhASJgiAIgiBsSyiTGAUKyxIkCoKwWRjLgsT5k+u2CQkSBUEQBEHYllBN4ng7lEyiIAibh7Hd5ueCBImCIAiCIAjnFAoSJzuRZBIFQdg8UJAomURBEARBEIRzS5wauel4J0IvTlhjj04vYn45Xo/dEgRBGEzYNj/7i+u2CQkSBUEQBEHYllBN4ng7ZLub/vu3/Rt+4QM3rcduCYIgDCbNFrXipXXbhASJgiAIgiBsS1JtgsRu5FeTeMfhmXO9S4IgCKujKUhcXrdNSJAoCIIgCMK2JMnkpp1WgFQDaapXGVEeJwiCsCGkmdRdMomCIAiCIAjnliTLJHaiEADQT92yieKEKgjChkL3KskkCoIgCIIgnFtSK5MIFDWKq7HU55ncCIIg1LHUT3DVLYehNVOdMIRMYrRu7ywIgiAIgjDC5HLTiBkkMp1QBUEQ6nj3dQ/iXdccwHg7xMue/jj3gVKTKAiCIAiCsD6knnLT5b7ITQVBWDvLmSrh4Ml53kCpSRQEQRAEoY5/vesYzsz3Nno3NjXU9UIyiYIgbAT7JjsAgJNzzIxg6plJnH4EWDjt9FIJEgVBEARhk3F2qY9f/cgt+JW/vnmjd2VTkxvXZDWJfcdeiUuSSRQE4Rywa7wFADg5x1zw8+2T+M6nA+/8fqeXSpAoCIIgCJsMynjdeUT69K2F3Lgmk5vGjq0tlsW4RhCEc8jJWWZGkGoSEw81SW/W6WUSJAqCIAjCJiPOMl7Srq+gn6S4/zG3yQ+x0rjGMZMoLTAEQTgHUF00X24qNYmCIAiCIFToOQYz24m3f+l+/B/vuJ5lAFENEvvSAkMQhCFCt/JF7j3FtyaRgQSJgiAIgrDJcDVY2U7cc/QsAODgyTnnMVST2G2R3NTR3VQyiYIgnAPoHpRwZSG+NYkMJEgUBEEQhE2GazCzndgz0QYAnJ7vO4+RTKIgCBsJ1UW71kPnSJ9EQRAEQRCq9OJiQsFegd6i7B43QeL0gruRQ94nkTKJjjJe27gmleMvCIIndP/mZxKlJlEQBEEQhAp2JnFZevYBAHZnVvKnGb0jVxjXOE7U7BYYUh8qCIIv6VrlpkkPWCdliQSJgiAIgrDJsPv5LUvPPgBAKwv0zjAyiTQxo5pE1z6JdmAux18QBF+8M4naWhxMHCWnzGBSgkRBEARB2GTYtXOSyTLQJIuTSczlpnkLDLeJWi+WTK4gCGuHjGvYdeapdd9xlZym7vXagASJgiAIgrDpsDNePXHaBFDUBi4xMnt0GAu5qdtYW5bK2Z4gCIJN6l2TmADRmPl34hj8ub4uQ4JEQRAEQdhk2BkvyWQZKHBzlYwCdiaR5KZuEzV7QtcXp1lBEDyh25WXcU2LgkRH9QSZ3TgiQaIgCIIgbDJsian07DNQwMfJrObGNS3/TKL0rBQEwReSm6aa6ZSsE6A1bv7t2gZDgkRBEARB2NrYgckw5KZxkmKxN9oZSwr4lhiZVRrTDnl9EkuZRKkJFQTBEzswZNWXlzKJjjJSO0jUq9/rJEgUBEEQhE1Gf8iZxNd/4jZc+rv/uu7bWQu0Is+pEUy1hlJAm2lcYweJ7CbYgiAIGbFPkEiKB67c1A4mHbKKEiQKgiAIwiZj2MY1n7/zUQDAqTlHWdMGQCvynBrNJNUIlUIUKAC+clPJJAqC4EeqPVQhFOCxaxKtINFBoipBoiAIgiBsMvpDlpueP9UBANz/2Ny6b8uX2MfdVGsEgULElpsW23AdI9Rz6PQCrr33+EbvhiBsCLYqwfleTj0S2UGi3Vtx9TESJAqCsClZ7CV455fvF2dHYVtiZ7yGITd94nkTAIADx2fXfVu+FC0w3O8JaZZJbIVZJtExK1jKJIq76Zr4lb++Gf/5b77B+t6Gzen5Hv7y2gf4DpSCsApeQWKeScyMa3zkppJJFARhq/I3NzyEd375AP72hoc2elcEYejYk4lesv6T670TJpN4cs69Uf2woZpETtAcpxphoBAFQf7/LqTibnrOoMzvPY+e3eA9aeZPrr4Pf/zF+/Clex7b6F0Rthi23NTZBCutZBJjD7lpIkGiIAhbFDKaODq9tMF7IgjDJ/ZZfV7T9sw2RjnbQ/OrXpw6W8mnWZBImUTXSVos7qbnjEsftwMAcOfhmQ3ek2a6WR/Nh0/Nb/CeCFsNO5PovMBVDRJ9+iQ6BJYSJAqCsCnZN9kGAJxgGmn8fw+cxB/88z3rsUuCMDTiIbubUrZslNtgpB6TrUSbIFEphTBQ4m66AZyX1bsenV5kjbv67mO4+eDp9dilFVy4qwsAOMLcR0FYjZJxjeuCU16TSHJTx3lQYgWJkkkUBGGrQn3NTszygsRf/Kuv44NfOzjSGRFBWI3esPskZoHQ4ghfN3EpSHTbzyQFAmWyiFGgWJlEbvZRqKdwpeUdxys/fAuueN+N67FLKyD32yNnJEgUzi1rq0nk9km0axIlkygIwhaF6o9OMoPEnWMtAMDhITzse3GKV37gJtz6yJl135awvRh6JnETyE3tFXlXh1MjNzX/boUBqyaRJIhiZrI2fGpJhw2dF6fmeTW5n7rlMH77M3euxy4JWwR7jYlfk8g0rrHlpunqgaUEiYIgbEpoYnaSKTd93E4jGzp0ZuGc71OVgyfnccODp/DGq+5Y920J24t+kqLbMo/wYUyuqc3DKAeJiU8mURt3UwBQqhxoDiJONTotEySKcc3aSPJM4uieW3T+a8fzg/hv/3A7Pvb1R9Zjl4QtglefxGoLDAenUgAVuakEiYIgbFFoYsHtUZYHiafXP0ikDEXCnFgIwmr0E412GKAdBkORmyabQG6aeGYSg0xKGAbK2fAmSXUepPelBcaaiD3lpsOEMve+SeNRXlwRNhY/uWk1k+gqN43r/92ABImCIGxK6MbKlXrtHjeGN4/OrL8rKu2a68RTEFzpJylaYYB2NJwgkSbJXOOaWx4+jW+fmFuPXVqBfZ25TsrJuAYAQqWcg4A4TdGVTOI5Ia9J9AykuNk9H/qezxuCq3gZJp++9TAuftPnMb+8etAgnHvsxa2+6/lFQWLUzd7E8fyyJaYSJAqCsFUhiQa3kTWtWg/jgUiTd8kkCueaONFohQE6UTAUmV4hN+Vdby9/z4340T/9ynrs0gpinyAxteWmyvlaTVOgk7XhEeOatUH3cN9M4jCy27RI4uw+mUELEMeZtfPD5P3XfxsA8JC099gQ0lQX95L1Nq6xXydyU0EQtio0IeQu7CZ5kLj+EwuavIsaTTjX9NM06+8XDCVIoetmlGVzdibRVYaealtu6p6VKmUSmTehmQXHCd02gU7fZeYCBDE9hONJ3zE3a7973BilcV24fZhZ7OMFf3Id7j7K6zdJZm5yXm4MiRUkOi96U01i1AFUwDCuse7fkkkUBGGr4ivhpAn1Qm/9M4m0Mi7uh8K5hprAR6F7b7+1QHV3m6Um0TVwtjOJgVLO16pdkxgzgvTbD03jGW+9Gp+/41HnMVudJM8kup9bdjA/s7j+wQ2dT9wgcVdW3jCMTOI3Dp7GwZPz+JMv3scaRyUY00M4jsJKUq3zBaee672cArwgAsK2u3FNSW4qmURBELYovoFXLjcdQlPwZZGbCutEolFkEoewCEGBKCdIHHYtbpLqvH+qqywwSZFnEgNWTaJGJ2uBwTHPuvfYWQDAtfcddx6z1aHDx5Gb2vf/YQSJdP5zpd0TbXOODKO8YaobAQBml3jb2pVlO08z23sI54Yk1ei0uHLT7HUqBMKOp9xUMomCIGxRfJMnvjWJj5xawPGzPLMbWnUehrGCsL1ItUaggFaoWJksX2gbHLnp0pBbGpgVeV6dYKqLPolB4B7YJqlGFCiEgWLVRbczWdkwzIY2C4lHTaIdmA+zTyj3e6MFCF8pLYdWdm5xg8Qdmdx0lM11tjKJRt5z1flekmcSQyBsefZJlCBREIQtSmLdTDlZRZrscoPEH/nja/GD/+sa1hiRmwrrRZpqBEohCoZTkxjnNYmpcyA1jLpfmzgpZFs+clPjbsoIEkOFKODJfVuhn9nNLQ+fxus+/s0t6ZScZ+kYCxB2ptjXFZUDBaVc45rcuXUICyb0nJld8susSpC4MaR2JtH1XkI1iUFo5KbO7qZ2kChyU0EQtij2s5qzukuT3YUhyE17EiQK60SS1SS2QsWSOx6fXcJv/sPt7FYWJedQxwkvdxtrxa7t8TGuCZRyViiY4x9kxkHuxz/KtsXNSL3mw7fgn24/uiUn8hSYczKC9vHjBm4+0OJiP9GsQL2f8D+bL7TwwM0k0riZRWmBsREkJek6N5MYAWHk1ydR3E0FQdiq2Cv+rCBxqMY1mbupxIjCOcbITRWiMGDJHd/xpQO46pbD+OxtR1jbsycvrtfbQn+4k85Sg3sf45rAPZMYpxqhgjEOYhz/nmdGigxQTm3BurE45QdSPucjMbccs0sA7EUSzncXe5jy+JJnEpkqGcrk9oYsDxcMiS6k6+5BYvZdqdAEiqnjdyfupoIgbAdsiddy4v5wW2sLDE5NFtWhSCZRONeUMomx+/k1lmXa5pjZhiTVGM9MOJyDxCFnEhONIpPouI9xdhwBIFC8msQwCDK5r/vxp2PHzSztGhteK4Vh4yPJ9A0Spxd6eNrvfRHvuuYB9x1E5XnjoVwZRk2ir8uxb72lcG5IrXu583dIwV4QmUBRuwaJUpMoCMI2IPHMJPYtl0af4O3RGXfzGlpxFndT4VyTaJP5Mu6m7uf/JDkgemQbKEh0nSTbctNhmDel6epy05mFfqkeOS0FicyaxHxix5dJsvvtTZhMIjdIvPngadz07VOsMcOGAql+op3vyXaQyAna5rLv/sM3PczYw7KhCE+5Mny5KX+c3z7e8vAZfO3ASa9tCgWJzoLEIHDPUuc1iYF/JlHkpoIgbFXsFX/OQ9uehPhITh9jOJzS6vFWNJsQNhatM7kj0zhlqmOCRG4msZ+mGG+bsa6TUTuTOJS6sdTuN7Zye8txgme89Wr8n3/zjfx3NEEDqE+i+7bCMOtTybi+SdLn25Sd22/vivfdiJ9//02sMcPGvie7ZhN7sd/9n9YATs/zjqO96MCSmybDl5v6juMGiS9/zw141Qe/7rVNoYBMyFpRwMgkZvdvFRrzGtcgUYvcVBCEbUApk8h4aNtZFx9jDc6YXiaDjVP3FXJBcCGhiUXIczfNyu8wt+zugJimGlqjkJs6B4nFJGSpt/5BYppqdKPmmsQv3fMYAODrB0+XxgTkbhoo54xnkqYIPdxle7kBCu94kCvq8VleG57NQClIdJRlluSmnPt/9lru7dg3k9j3DMB88O2XSsdE5KYbA0neI5+axCACVMCUmyrr34ORIFEQhE1Jcg4yiT7ZDU4zcXvCM4yVZGH7kKS6kJsyzmOarM4x5Ka0sDLGrEm0F1SG0TMx0UVbirpjctZyb6TG4eVMors03J7YcRaAcrkp895Dn4ebAd4M+NyTfeWmnKxveXtre95waxJnFvus+ncAJdkzR71SSGLlGbURFPXljPpmuwUGV24aROY/kZsKgrBV8Q0S40R729ADPOOaci8vWaUVzh2pNq6cfLkj3yafJpETTLmpvaAyjHYYaSm7uvKY2L1V7zl6Nvsd8kyicTd131YUGHdZH+MaV2MdYpi1bcPGDsxdzy373sqrSfc7fnHit+DX95SbPuP3r8YV77uRNWbtDqx+x2YY9cZbGbqXm3ZGHpnEIHTKCppxcTamJX0SBUHYungHiWmaZ0RcJ3f2Q9A3kziMTIqwfbBXnzk1iTR55ARtNPkcYxrX2Nfo0DKJmZlM3T3Bvt7vPjoDwDRip7YZgVLOGRiqSWwxW2Ask9yUmdGi13OzS5sBe+HO9Z7cL7mNMs5laxwnuIlTv8XFtQT3dxyeYb2+5MDKWJSk69tXbroVFy6GSele7novyVtgBEx308QElWHLKfsoQaIgCJuSUh0Ly0igcGl0XbWzJyRLjIevPXnhjBOE1SjcTRUra5BnsjzMN7gtMOxrdBiZxDgxEtx2VC/Bpf2Z6ka451GTSVzqJ3lbkJDpbhoq09vMR27KzWhR5nHJc0I+yvVmqS4Mh1ydYu1MLHeRkOD1ZeS3gLG3N4zjX/5s/MDZN9ibZzolC2XS7F4ehUHJkGnwoOyYk3TUNbjUWZAYhCI3FQRh6+LbAiNOde7S6Dq5th++nJX8cnC59TIAwsZRuJsGrBYMNHnsMbKPlGko3E0dAynPa9SXQrZVHyTS5/j+i3bi3kdnARhlAAUoSrk7RFJmybcmkS03JUmg533Ex8l5WBhXWjMd9alJ9GmBBPDuyXGSYiJzBmYtSg7RuMa3l2MuifU8tzj1zcJKzIIT0OaoEko1iUGz3HTuBHD7JwtbX5GbCoKwHfBtgREnKbvhtu/EoiS3kyBROIeQu2nEacAMv0xW3zOTaF+jw5gkk2wrCtXAmsQnnTeJQ2cWoLXGUr+Qnxt309W3Q58rDAIEilcTSseSU8dov943kzg/hEyuL2mq0Ykok+h2XEo1iUwlCcFRd5jFRX4mnc6nYZjCeGcSSW7qWa/JqW8WVkImZBHHhMzOJA6Sm978fuAzVwI3vTsbl5jXhy1xNxUEYfTRWuNPr74Pdx3h1V/41iT27Ye9aybReh1r9Tn1m5AI24s/+eJ9+B//fA9rDE0s2iGjATP8gsQkzyTyZNqx5zXqS6oLx9e6Y0L78117xrHQS3B6vmcyiVFRk+jibkrvE2V9EjlOkra7Ka8mbm3ZnlGWBMapRqfV3LqkDgqax1ohq/6u760KSTFJmUTnxUU/aauvEYxvWQSdz/3Er1XTKJ9bm4GScY2z3JRqEsndtOE76M2Zn49kJkh5JjEEEgkSBUEYcZbjFH/+bw/gP72X5+SWpBqtMDMSYE541zLZ5RjX2PVNYlwjNPEX1z6Av/raQZzJ2jK44O1uSpksD4ketwXGRmQSoyxwrvt8JvsKPH7POADg2yfnAQDd7HMZd9PVjyVNpAOl2JlE+17FykDGfNmiHWyM8kTe9LfkmYnRvXuiE3lnElmtMxKrTMFxnP39cgJZ3566vu2dYk/pLiFy07VRaoHBNa6h+sImE5o50xsWi9PFuCAUuakgCJsDWs3lSl0Sy+zA9cGmtVkpHcvH8SYkAH+FtpNlKXwzAML24dZHzji/NpdWBkEma3OU6eWZLPeJKE0+qQWGa01WqSYxGYbczm6BUZ9JjIIAF+0eAwA8cNysslOAEii3/nKU1aOaRFezG6B8r2JJfj0yiXaQMr88uvefONWW4zTPFGm8HbLLDQieKiTFRIf3vKFtTbRDLMeJ8zXq28ux1KaD85zydIolJEhcG7YCwvmeUO2TqBvGzR03PxdOF+PI3VSMawRBGHU4mTmbcrDHW9nlTkjshygrk5jq3OxA5KZCE1mbPtY5Qo547Yhkem4Ty+U1yE3JXMQ1Czl0uWm+Il+f3TZb/koAACAASURBVIuTFGGg8LidJkh8iDKJJXdTl+2Yn2Fg3E05NaF29spZWobiHsSpSbSP+ShP5BPLuMbVuMM3SLRbj3BNyMbyTKLbuNzwqRMh1e7BX6m/LqcnY+oX7NnZK86CKyH19muDnJJbnPryUk3iIOMayiSeKcbljqjSAkMQhBGHrPG5dRip9qkt9KutKtWWeK4+y4NUaIL6r3Emdmnubkr95dzOZZ+aRMqU5Zl7x7FDl5vqQrZVN9mNU40oVNg11kKggCPTiwCAsbaZCinl5lRKk+oo9G+BAfDUEz4OlH3PrJkvWmvcd2yWPS7RhdzUVd1RLFyEzHYP1jFhnJNpqjHOPP/pecOtZbQDBU4GOPG83nwkuL01SlSFgsJwi1FfXqpJHCA3na0JEvM6RskkCoIw4vhmEuOkkJu6TpxolXqsxast8TUESFNLoicPUqGBKMgkyYxzpHA3zTIwTFdIn0wiN3OfpEWWdDjGNWZ7g/okRoFCECjsHm/jaBYkUoASBnCSjtLCVrcVGrkvR25q7ZePw6xvJtH3PsvhM988ghe/83pce+9x5zFUApD3SXTMJNL3NNYKvdo9AHwTMlKguEo5i7pJ5nPK2sc5hnOor1FOkupckeAacNvnljzb1kaqTX1zOwwYmUSSm2ZZwTp30zQBlmeAqAvEi0B/MatJjERuKgjC5oAe1Ipmk46k2kyS21HgXCPlm0m0Jy6cyZbJJJLcVDKJQj2UDeScI2lKdSxZJtFxcl1kEt3rGCkIakUBAuV+3aS6kIQPYyKpS30Sa+SmqUaYBeR7Jto4Or0EwDKuUW71hTSR7rZCBMxMov1aTpBIUsUk1c59Me1jvjiEFhgHshrPex496zyGDgfX3dSWQPOCbc92RtrUlyvF6a9bqeV1XZS0a0kZ/S1LGcF1d271M8kRVmIyieY54FWTqMJ6uWmSGaFNfYf5uThdMa4Rd1NBEEacxZ65KXLlpiTR6DRIy+qo1iS6mnfQA7EVKubEoghIpSbR8PCpeQmYK4QhyU0Zq/9WQATw5aZmjNv5n/cFVM1SzjriNC2Mm4bkbhoo1TjZShKdB+S7J9o4djYLEsm4xjHgo3vWWCtExAwS7Yk8K0i0gxsPSeAwMom0IMA1hAEKKbPrOZlYEmiO0YuvuQvVu7YZ5z/15eTLTf2ydLGv3NRy/HaWm9qyackkrolE230SGTWJKjDSiSAsCqVLb5wFiZMXmJ+LpwvjmqAhsKwgQaIgCBuKt9yUHtoRb9IKFJMZd+Makg1FvCAxTdEKA7TDQFpgwEy0/sMfX4fXfPiWjd6VkSKvSWTZ5Jughsa6ypRKxinMrA1db64TySQFojBgXaNrgcx8muoE6Z4BAHsn2vnvx6xMosta1VKeSQxMb0VmJrGQ4PrJVF3vQcOuSSTzGU7Wkua2RQsMXr1rJ2JI9FANpHiZRO75TxP+8TxIdP3e/DKCcZJighnsme2leZDoLFuXIPGckWbGNa5ydzMoMRlEoDngIzlpHiSeKYxrRlVuqpR6slJqSSn1Eet3r1RKPayUmldKfVYptcf62x6l1Geyvz2slHpl5f0axwqCMPr4Bomp9ggSK/3euC6NE21eT64kNRPrTiuQ7BmKie5X7j+xwXsyWtC8gG1cE4CdSbRf5xwk6qIvYLvBpn16oZe3lMj3MZv8dMLAy1qfg873McsI1ky2kjRFlGVt91hBIgU3oYJTfSEFQV6ZxDRlL1IBJgDgZmV7Q5ab5plEjpFMnknk1dbSoetEIdMAiF9frrWGzurGOpG7uUhhXMN14fYzN4pTzQ5IgbJTuLMiQYxrzhm0ABFyFpx0VlsImGCxriZxRSbxjGVcM7py078E8A36H6XU9wF4H4BfAnABgAUA7668vpf97RcBvCcb4zJWEIQRZ4ncTZnjyDa6zXho0ypdO+TVltgGBJwHYpKmCJVCtxWK3BRicNAELUJwjk+ayU0p6HGV3PnUEtktH5oWZa78u1vword/pfQ3mvx0WuufSaSPHygz2arrd2hnEi/ZN5H/vuiT6FaTSAtbVJPIkjt6TMgBE3BMMuubh21c08k+F8lxXbBdSgFOdjvNthk412gCfn0S7Ux6JwqdM/5Jbq7j727K6ndoyUa57VW4x9/XpVcoYy9ABEH9fasWqi0EmttZ1AaJqdUCY8SCRKXUzwOYBnCN9etfBPBPWuvrtdZzAN4M4GeVUlNKqQkALwfwZq31nNb6awD+ESYoHDh2WJ9JEIS14Z1JzLJ0vBqR4mHfYthNF4Y3ETNI1AhDhW4rYMmGtiqbZcX50OkFPP0tX1yRGVsv6LzkSZk1VBYQ2e+xGmlmwAG4139RZsPYtNcHRd8+aY7VNx85U9rHIDCLMuu9QJBamcSwIZMYJxqtzLjmPz3r8ZjqRHjy+ZO4aLfpm2gmaatva8kKEqPALbC094HbSoReO9nNgg3HwGHYQSKdi5xM4ooenIyaRLqPO9dxoTCFiQLlvJ90LuWLJEyZ9rinKyrAbWWRoh3yzKUAY3pVmLm5LjZJJvFcYM9JQlV/36qlFCQ2tMDI5abnm5+53DQEwmi05KZKqR0A3grgNyp/+j4At9P/aK0fhMkcPiX7L9Za32+9/vZszGpjBUHYBPjXJKZsuWk+kcwMb1xXW/0ziZncLgqlJhH+9v/D5ot3H8PsUoyPfv3hoWwv74HH7NsWZu0cAPcgMU5Sttw61ZWJTM22Ln+CqfT4xkOn89+ZlhMBOi3edeMD7aNSymQEazZnZxJ3jrdw3Ruejy+8/ofzNiKBGlwTdHR6EX/wz/fkjenH2iHCQLEyWYmd7WHW0o0x20T41DGuBZrgLjGkrf6ZROSZdK5sNwp46g463CS37rkGlxWjNFcJqG/dZD/RiMLAGKC4thJJTSYrb0EictOhYi9AhA0LcLWQbBRolpvGy+bn2C4jL12wjWtaI9cn8Q8AfFBrfbjy+0kAM5XfzQCYyv5W9VKmv602toRS6kql1H6l1P4TJ6QeRhBGBaqV0ZrncJpkJhW8lV3zM1QKrYZeanXQ6jO7JlHrbEISiNwU5cnELKP/17CZyjI2w9pHmkyy3U2DIpPoms1KUs02CbGvm6Z6P5oIn5zrlfYxUGBl+32hXQoyA4i6QNauSQSAvZOdvKYTQKPhDfHaj96KD37tIG552GRLu1Gw6pgqdr891yCdeglyW/fQMVdqODWJeUacaQgDFCUArkFKqk2WuhUEbLlvFJrWMa7bKibyYC1KJvlzg2cmY58X3PKGKFBoBcq5tjN3/GZmt0t9Ekd4wW/UsRcgmmTyOUduBW77uPm3XZPYmEnM7sVhBxjfUzauGSW5qVLqMgAvAvCOmj/PAdhR+d0OALOr/G21sSW01u/XWl+utb78vPPO430AQRDWDXuFm51JUTwpWyHtMO0sfNxN+4l2rhtIEmNt3Y3CdTfu2AyU2y+M7sRistMCAMwurb7Sula01kVNIqtPIgVEzEyiFaRwZXNBgIH1fgBwZsEKEhPbEZJ3/p+YXWYtGjnJTa1MYh1KKQw6jLcdmgZgMoqACYyjhm01kaQpO2tGGccJZisF+t6mOtFQ5Ka0PU5ASsFMECi0gsC5LRGpNFphgCR1vyf3kxStwGTbONsCkPfl5dbAj7eZ7qZraGURhbwFUNrHDlPuW5LEygKoN/YCRNN9K+cDLwA++6vm3yQbBVZ3Nw1bwNjuirtpBCQjEiQCeD6AiwE8opQ6BuA3AbxcKXUrgLsBPINeqJR6IoAOgPuz/yKl1JOt93pGNgarjBUEAcCdh2fYPQiHiT154fXXMo2xfVZ2wyDg9XuruKI6T67zTKIY1wCbxzad4ohhZBLtua1r/zuAMonI2yk4q5S0ZvekK8lNm9pLZNfEmYUisDaZRJ4jJGBqQp/9P7+M91//becxtnFN0BDIGvlrc5AYDjCuse+hD59aAGAMb1x7KxK2bNS9Kbt53Rjze6PAfbITse8/X7rnMRyfXWKNKWpreQZMAPXgZGT3UuotZ75PV3llnJhAqsmlt3YfS8Y1/OfNGLMmsdwnkRdwR4FCFLjXadI+diKe3NSupRPjGn+SpFiAoBY8qy54mBetLjfNM4ltK0hMTX/FEZObvh/AkwBclv33XgCfB/BiAB8F8BNKqR/OjGreCuDTWutZrfU8gE8DeKtSakIp9TwAPwXgw9n7No4d0ucShJHmhgdO4if+4mv42xse2uhdaaRsyc/IHKRmksx6aNuyoTBwlskULTD4GZggl5tKJrGXJNa/R3diQSv5wwgS7foyTiaRMimUGXOVm5oghdc2I58QUgDWkKUDTCsMIs0yG9w+iYfOmCDs2vuOO48pahL9M4mDahKnreD30ZkltKMg71PJChIT7R3s+daSTnZ5/V37SYpX/91+/ML7b3IeA/gZMNGhC/Nm4u6fzRjXZEEiw4QpCgNPuSmzT2jubsqUm9oOxMyFo4AbbGu/mlA6J8dboXONprAS+9yiBaxVlQn9hUomMQJ0ihVNXmuDRKtP4qjITbXWC1rrY/QfjEx0SWt9Qmt9N4BfhQn4jsPUE77WGv5aAGPZ3z4O4NeyMXAYKwjbmqMzZiX4jsPV0t3RwW4o7WrIAJSbG7Nlc5nhQeK82lpeyeesJEeBQqcVSpAIv0buGwFNwochN7UDDNdJpM4DIp67adWkghtsDGxUn32fp+fLNYnUpoblbuohfEita3twJrF52jMoK3h8drn0/3QvCDKJqqtaI7FrEpmZLG7rjNiSqXLkpvT+D56Ydx4DFOcgp0aQxihlen72HcfG2b2Vakpdg6J+otHKA1LHTLotN2UoUGjcONu4xs/dVFuOr67fAT0D2e6y1sLFKKtCRh06jtFqJmR2zeHybGFAAxQ/q3WJJblpVpNItYyBm9w0Yn2ac4TW+i2V//8YgI81vPY0gJ8e8F6NYwVhu9NmNl/eCEqZREZvpzSTm4bKPWizZXOuPdEA+4FobpnuTZHNym43ErkpsHnkpjRJOzuUTCI/SLSlXjSxcKnJ8jWpKGUSA4W6eWSRSeyXxgVMiZ4vhdy0CNxW7GOSIuw0T3tI7lVHVXo5s2g+Z2RN7GxTnCbiNGUHiXRsua0zKCMx2Ylw5Myi0xiAdx+u2x4ns2rfk1uhcl+4yO6t5EzrnElMKJPIWFystsBYd7mpX01ikmp0IrMAyv1s3pnEdjjSqpBRp7oAZ/+uxOyx4t9LZ4uMIGDko0AmObXub6VM4i7jbjp1QeZuGo2U3FQQhDXywj+9Du+65gBrTCcPEkc3i2WvmrrWlZhxmXGNT03iANlc07aAYkWYs5JM7qaj/B0Mi81iXEOGFq4T1rVgZ7Nd5aYl23RXiRKKyUeX2YKh3MurPiClie3ccpx/zySJbUchLyPi/MqCct1kfaASpzqXJ9YxyKn0+FmTSXzXLzwTAPLG9hSku2Ru0lQj1cjdZbkZKTIX4d7vuq2Qdb35TvppeyyXauuezMqAZdLhVkByU8dMIkmgmfWP9j46t5cgU5goRKA4clNPCbouDICcXWLpHIm4EnTzuu4Q2ttsZexza6AqZO6x4t/LsyZrqCy5KbBSPmoHieN7gHgRWJ4bPbmpIAhr58ET83j7l3ieTO1w9DOJJbkpoyaRshQst7ncpbFZNte0LYCfgaEaKDGuMdjHbZTPSQoOOa6VvvhkEm3b9IAhN61mErkOiIOuG/t304u9/Hdcsw/AL0gp9UlsqEmk/WlCDahJJLnpC7/nfNzwph/FVb/2XADlTOJqFFmbTCLpev/R1e+Nd98yQaL7uey7gEPb41w39rnFzYAFypabussrI7bcFPk+NvXgrN1W9jpzDbg7XNvnBeda0NosnLYi9xYYeQuSiFknm1iZxBG+l486SWVOAqD+/Fo8U/x7ecYEiXYLDGB1uSkALJzMjGuyFhirXKsSJArCFoYewCM9IfdssJ7qwgLdNeNjZ2CaZHODxo1xM4lajGuI47NLeOT0Qv7/nEnrsKHsNkc250viMSG0DZgo5nGZl6+sP3LNGpiflIGvCwLs7MqZeTM5IXMRbk0iyfIUVpdvEqU+iQPadAyqSRzkbnpybhljrRATnQgX7hrD93yH6b7FyeRWG8e7Zntyd2V2w/kiS8QJNtYcJHLkptaCRxS414mnWcBPEl9+cMmXZJo2Be6fzx7XablfA3RejLVCVnuJhCS4Ab9OP8qMU7jn1ng7kiBxDdjuvmGuSqg5nqUgkWoSs3sZBYtVh9OqcQ0RRMbdFFg1m7ghNYmCIAwHmogPK0j85DceQT/ReNVznuA8piQ35TSqz2RDYcOktWkMQBNJtzouoJhcjzObItvmCnGq83qY7ciL33F9qT3CKE8s6LpxlSOvBbu9AXeCxu2TWM1IcV2Bg6yXV924JNW59Jt6JcapRrelsl6m7osk9FrlHiM69UlcLZPYVMsIAGfme9gz0V7x+/z4OwQ3lCGiMgDXTGIuE/YMEsfaoXNACvhfm7Q9zgJQecGDUSeusxpByiS6SkDTwtxlftmt5rh6vbk+b2zDmxYjc1n0xeTJtFOSm4bumUQ7S9piuMvaC6dSk+hPXX157fllB4krahKbMokVuSlBfRKBItvYwPacrQjCJsO3zyE9OIc1IX/jp+7E73z2LtYY2ySBNbnIVk2b5G9aa9x88HTp2Ln0e6vdlsfkmpwkA6XyzA2nD95Www4QgRGvSbRq6tabYkU+dM6Ia11MPnO5qcM9wrffXt4nbsAkOU40zpvsACjaYJC5SKfFk5v6LGoVxjVFv7HqfTNO04F9Ege5m55e6GHv5Mog0dm2HkWGqBUGCBRDIukpd7eDy1S7n8/eNYmagkTeYh9gudIyArBAIV9048grw4AXtK0wPGOWKVB7g8S1l2P2uolOxFpcoWNiFiX5WdJWqNhS5vE2L5AVypSk/MpVblqtScxCuYFyUzuTGDbXMVaQIFEQNgH2M8n1AQUUN/JRNk3pJWmxss6ZXGQP+yCon1h8+tYjuOJ9N+Ifbz9ajHGQzdVuK3v45sYRDvtJ7x1lNYkAz4RgK1EntR3lIJEmWKle//20nSvZbqOlOhaG3NHTXTMKgsZJcpym2DdlgkRaEEh01gImNFI718UuryAx2yfqkwisDIqSZPU+iUD9otzp+R52j68MEgfa1lfIj2OY1cS5TuQ9jWuqmUtncxdPKXiRSeTV0QHFuez6eDMBf8CXm6aF3NSnTygnk5hYizlhoJwzx3kmsR3x3E01SXCD3Hxr1THZORgGASuTaEugOV4CQhl7TjJwwWnhNNAaB6CApWkgXgYic791k5tWMomOclMJEgVhE2CvCp5l9G7L5aYjbJoSp2ku43TtkQUU0rGo4eF7Ys4YTdxp9YgsisTNpMR10koGNO3QPZNoF6STm+F2zSQePrOw4nejvPpsT5LXez9tSWA/0U7nZGKvPrMyWVSj5tenj66bpkb1lEkkuWmSIjeXMttzDBI9FlNKNYkNxyROB7epGOQueHq+h701clOWcY0VbLcCvrlIKwwQetSNcWWqa61JdD2P7TEmk8io96Nzi5lJTK1MIru/LilQuBn4PJPIG8fN0qVUbxlwnFvNz9xd1ssUaXTv5aNOseBnLTjVfQeLZ4DxfUB3pwkYe3NAe9L8LZebVt1NKZNYlZuGIjcVhK2EfeOuyvYGjzM375GekMca41n/QU7LAbLXb5KW7R43K2VnKn3bgCIjwnloh9ZklxMkRoFCK8oK0rfpw/S+Y3MrfjfKEwv7+11vwyHbJRBwC6RSa2LHcTeljHtuwOTRJ85cNytfEycak50Q3VaAM/MUJKYIlXF25GzPT25aBLJBg2yLFnuayHtO1hzK0/M97K4JEn3cZSNPd2WqwfNxNwXcg3Tf1i9rMWEKVLMqpA4T7BVBOqedBTcgKpmLcBQoFaM0tpstN0hMC8dXbrAXBibD7dO7M041S+EkFKSlbLP5XWNN4vhuE+wtngZ680B7wvyt0d20B0CZv7fGgKhrfq9EbioIWwr74cKZtFJmrjfCctN+UjSXdq2jAIpMYpO0jAJPqo8CKiYJDHdTckXMg8Rk5fH8i387gN/69B24+eDpyrYUwoBpVJFqPHB8ZWC1WbnuvuPY0S37pI2ycY19HnImaV89cAKv/8Q3WduqTuQ5UuYwKKSVLvPWYmKXZfYcm6bb2Z6m2ipjJBVg93i7kJtWFldcM4R0zDnGQS6TrThJB7qb5sFlZdxSP8FCL6k1rqHMpMu1TRmCoiaOL3dshfXGQYPGceWm9jno0/PQbMv1Xmd+hllNlrNxTRbsUU0iJysYBp5yU2Zwn1avG+eg1PzstkJWVj3VyB1f2e1tlFmAcD+OabaP2bnFeHYLBSXjmkELTr05oD1lZKML1SCR5KaV7yDpmSwiOYCR5LQkN5VMoiBseuybBmfSSquro9xuoJekrCwKQe0lmqVl5rOftoJE+6HNcjfNahIHZRL/5Or78fGbD+GK992IfpKWJoQcSRoA/OW1D+BFb/8K7j121un1o843HjqN5z5pb+l3o5xJtIMnzqLML33wZnzutqOsjDGdp/k14GiKBBQSPYAnd+TKFlOHSXI/MaYwO7otzC5RCwyUM/CumcTsmHMWEkp9EhuCvSTVA41rKLisjiP5bL27aZC/92rQd21qEhlyUzuTGPGCS/u+5VOTyHre2EEio00QULibOgdg2f2fKzfNyxQYQbptLsLJdpaDy4C1SBgoE9xzTISSVENlxjXceldauHA9jnYmEeD1OBYK6koHas+veAmI2sD4XiuTSHJTunHVyE1D657VGjM/o7YxswGARDKJgrDpsSednJVFegAMw8rflzjR7P5fQDHha5KW0UR/ukZuynY3zbIkrSxrsFowe9O3T1UyiSSJctve/oeNk9mjM0tOrx915pYT7J3s4KcuuzD/3ShnEvul642/nwse1yjHudJe/We5myaWBJqTSbHkdkGDuQi1pJnsRpjLWgvEaZo1EqdMIk9uypkg0z4FypabVoLELLBoomkl/9ScCRLrjGsG1TFWia37T8QJGnR5Is9pXRIFQR5IubdgKN5/scdz16x7j9X2EciC+6DB2bFuXJ5JpHuy6/aKWkZ32a75mctNnWWjxbiIE1za/UUZ95+idzC/3jVgZiATK5AFRnvRb5SxnaOjQfOEuGfkouN7gPlTWWaxkkmsk5uGloJn/qT5ufe7RW4qCFsJezLBWdmlh+AIx4joW5lE1web1tr0hBrgCEYrqTOLVpBYmVy7PrTjrNYjbMhQAMDFe8fxI085DwBwx+GZFfbngHsmMWdI35tp17F+G1vqJxhrhXjnz12Gg3/4MgBwdt9bK4fPLLAmukDZQInjDEyqnoVl9zFxNUhk1Lty3U2LYCNgGXcUxjUmA9+cSQww2YkwtxRn4zIZGzeTmB1z7gQZKDelru5nqgf3XiwykOXfUyaxrgUGp0+lHaRHoXKW18drkKkGAdiBlP06TqBuP6e45xZ9b5wsHfUEBNxNz9JUI1TwkpsGWZlCqt1kuFXDJ86iQJDV8nKNa9hZ0pKUOXA+jlSCwZX7CmXq5Ka110CyXLiUnj0MQAOdLJMYNBjX2L0UAWA5M/E7/3utIFHkpoKw6Vmr3NS10J745zuO4rl/eI230QqrcXOS5vWDPi0AmhzBSO5kZ15dZHP120tzswl7+6XtJRr7Jts4f6qDgyfnV9imA7yay2HyxN/+Al79d7esy3trrbGYBYlKKSiqfRlSJvGH/ve1+JW/vpk1pl8yrnHfT1pEWOi5NekGyu6mgNtEPq2RKLn1SSyClDazcTZtp6mXIGX2J7sRZrNMopH2oTCucfzOKTjkmXaYn0o1N6XW2eS7CUoyVgPu0/MDMoke7qZhEBhXZm62R5HclKGAyBYEAEZNonXcfSS/Zlt8SSanLVGRNeO1T1qL3DQsLRQ6bMvKAHP6JOb9RaOA5SeQpOb8bwX8fod5nSaj3tUYKbmpa7YD/STFc/7XNfjCnY86j6m2SQEa7iXU8mLc6ndImURyN622wKgGia3s9XueaMlNJUgUzhHfevQs2+lvqZ/g7/cfWtcsxXbAfpj5GNckzEzR737ubjw6s8RyUrVhrT4nujCu8XBbJEf7Ort7oNx2ouo2594nsZy1qbuJx2mKVhDg4r0TePjUPMqZRPe6pY3iy996bF3et59oJGnxHQO8Vfy1QOf81zMzIVdKclPGJI2CkwVG5nJFJtHFuKbG3dStT2Ka72crDBjGNUUA3GQu0k81wlBhysokmuCyMHxyPZYUHLIaieeTrWJfq3NyrYtAsI6mmiAKEge2wHAK0ouaRE5GkD4HjeP1BISH3NRzUdJDblrIhHmN6qmdScQMgPM2EZnc1KnlTGlxsfw7m8NnFvCK99yAB0/MlV6T90lkyFvDQKHTCljHX5PjaxiwgmaAn6WOE53J1vk9jrcqZxf7OHZ2Cb/9mTudx9jGTU2LWwBMkBi2gZ3fVfyuXckkVo1rdFoEkADw6muAV3zIBIjSJ3HzsBwnePuX7mdLoobJ3HKMl/7ZV/Hrn7iNNe7PrjmA/37VHfji3eszAd0u+GYS7ZVLzkofTVg5Aan9sOXIxPpJionc3ZS/+tkUuNFEyg6Qy8Y1ylmGm2S1VQODxMRMWp6wdxwPnVqoZDvB+nz5e45wUOkK3dfI4AAAy3xjLfgev36q88DGL5PIWf2vGtes3GetNQ48Npufx7ZtfRHYrL6tUk1ixHNApHO4KQOfpBotkptWMokUpLjeu3K5KWuCbH4OcjdNtYZCc5SoGuo7z8z3EChg51hrxZh8YueQJbLb4nCUDBRcGgdKnkwyCoO1yU2ZLRi44+zWJWFDvWvTtuxyA86zw86AObnSljL3zQt+f/gv92L/w2fwtzc8lO8jUDiOskx5FNAJTZDo3HOyEgC7jin20V1umqQpwlCxs9TbAc68yXaqF4ndvAAAIABJREFUHliWkiybmsS93138Ls8kknFN5TtIkyKABIDzLwWe9nLz7yaJagUJEkeAq245jHddcwB//m8HNnpXGqFVomvvO84aR/2yaCVW8KNck8jIUlgPCk52j2ytZ5fcZXM+9Shaa8Spxpiv3NSSllVX/+Oa1fCytKn+Znzw5Dw+d9uR8ntVTHLqVvr6SYpWGOBxu8ZwYnY5f2iuJZM4DEnmemf5F7MH5ljLziQOR27qO3HpxymmOuac5FxvFLDNM+SmeYP7vHfhyu296VN34sfecT2uu+8EgKpxjXmNk9yxaoDC7C0HoNbdUWudT76nui0s9BIkqc7HdVru/UWB4l7iU5NY7pNY2U+4ZRKrl8Sp+R52j7drTW+Kid3q+1gyrmFMyNdiXBMo/kTetybRq0+ifS9vuCfXjssk0JxMOo0LAl4GMneqXqWX3R2HpwEY4zLA+r4V0900+2wdhroAoMxxJhtlupuyHb+1zg2wAKDnqErYytCx5CwsVheu7fcpEfeM3HTvE4vfVYPEWrlpiFpEbrp5oMnT0enFDd6TZmhVitvkmGu9LdRTCnhYWTr+yi5Q1EdRRsBtW5ZEz3Efaf/GmDba9PwzRhr1N1Z7f/LMRvYSCi7rbsav+quv4/WfuK20GkgP7UEmIfkkOQsuzmZtAErupswgkROg+OKbbZtfjnHF+27Etx4d3KYjDxLbxeOmHQ0pSPScuPSTFJNZX0fO9UYxBEcVssLdtGafb88mn7dkrrd0bnZbYeMiyaBtsWsS08IVtM7dkc6hVuZuCphrLk3LbQpcnx/0/pwaXrsFRl3GX2sNrYtsYR1NAffMYr82iwjAurY5mcQArUAxJIHIximWAUpSkQS6Zpd6npnEtbTACAKemViSOtRx1W0vLdcyuhyTUplCw/NmOU5w5IyZwx3LXKntzxaxauCLmkTA/TvQuliU1NrtmNgLEFzH79A6t0a13n6Y+DxL6/wVagP13LjGrklcTW6alOWmNtIncfOwO6tzODXC2TbfGwDdQEbZ7n4z4Nvc2x7HChKzCSv1O3PBnpC7Bjc0Se22AijFr0kcZCZjP/wLt0VL2tQwIaHj+/Cphfx3caLzZs9A/cOgnxYtAIDCVTUKbHdTt89H81jOiqQv3IUf4u6jZ3HzwdN406fuGPg6CpjsTGLEmOiuBV/HvX6qMbmWTCJjcYWOw/gA4xp637uOGnc6krOOt0OvFgx5TaJzc+/CuKZuIlm4bwb5IsnccpxnG7iTXXp/15oxs4/mZylwsMbSP93cTcvbTFKdP8uqcIKUkrogZAR7ltw0DNzr9ijbljuAOh5/+16+3sY1tikMJ0hMMylzfv473k5IFdJmSHBL2Z6Gifyh0wtINXDJvgmcXYoRJ2lu5gR4uJta1w1ncSVQQCsa/NkOnV7I72vV+mZnx++kGmzLHM+nV2StcU31O0gTkxWMOub/f+6jwFNfZuSjgCU3rWYSk7JxjU1T24zqy5w+hbCu0DPr5NwIB4mezlV5kCg3kDVhT0BYxjWemUSqH+NkEu3veLWH2kIvxs0HT+cPllYYoBUEzm0RYsuAo2mSFtdmEldfNf2uPabhLJkPAMUkOQgUVIMkJ07SvCYLKIJE++bPvY6GkUnk9N20oaDmW8dmB75usb+yJpFjGrQW7IkLx1ihH6f598iqScy+50WPPondAS0w6Ly568gMtNZ5kDjWDlnupoldk8iobYutya6ZSFb/TtexlUlcik3rmMBqgcEMEgH3YEPnk616uSn9a7C7ab3hDX2OQWOcatusTG4UcMxFzM/8vsVoE2Fne5zdTS3Jc538uQkf4xp6Gd0n2XLTvBzLPbhky01pUTJsnsgfPGkWFZ/5+F0AgOnFfqkvJ8/d1ARtbWaQSMFlK2j+bEv9BD/8R9fijVeZxT27vQc7kxgWfSpFbuqXTKk6rgM1C07xsvlJQeKl/xH4hY8DnSnz/6ohk1itSbSh/okiNx19aOXm5NzyBu9JM76rRNzJwUZxz9GzI+3O5es2l5QykO4Pe8r6nGXUJPYZQeJrPnwLrnjfjTiSSaxbkTFXcP0OckewAatv9v5QbWVV2lG3avr4PeMAgG9bQaI9SQ5rbNrT1PRttDOJ05kzbGQ9SLk1ib5ZPt9tuE60gOK+tdq1vVRTkxgFakXLkvXAPgc4Tr2JZyaRAob5NfRJrLvX0uTj5FwPj51dxmLfnM/j7YjnbupZ20YmIWZs3YJM8b6TeSaxn0v7OIEsUH5/14nXaplE2/20iab9tDNCTWNcMp55C5KQmUmsyB2dM4nVINFxnO/iYppqlksvjQGKHoSua0d0TjY50jaRZK0zBjYur46xMolN19vcsrm/XLzP1IlNL/Ty8x/gZRITMq7JWse4LuSRc2shW1z5Glr8/OxtR/MxtH+cxTvqk9iWTGKOj3u5XafcqApJstgg7NS/SVNNok6Kv1URuenmga6tUyMcJPpKw0jSMcqZxIdOzuNl7/oq3vYv9270rjRSdjf1M67hBByUJZrzDBIHTSzSVOOrB04CAG7NaqxaAbNJtOUI1vTQtidEttsiUPS7qrup00Pv2NmlYnt2TVbNw76fZ1IKuZ2dSeTY5AOFNI5TD+eLfV6wDFcc7wmLVtaL4PRDWwv2+XSWIZ1OtXE3DZSf5JfTJ5HO2+6AyXWcaly022S47zoyU5ab5pPk1bdl18RxHGYp2ADqs8BF8BPkiySzS3Ge7eEaN9nv796mw7xOWZlEe3t2zWIT9KcVJljW56/S1G5j0D5GQYAo4PQ7LGSqfplEntzUvn9zyxu6TJOicgDsfo90MROr3V46WIFSR7Vur2579KzdO2nKh84s9PNWFgBYNYmU7cxl2kyDqaa2UADwwPG50v/bvVPDNSxASE2i3zzZNiFrziRmKsNoZQseM7gpkxg3y03JuEbkpqMPnRBDKNHxxneViO5Rrg+njYAmXBS4jCK+NYl2oMQJ1EmKw6lJLE8smm88C9aqKBlxtMIgc2RzfEBZNVCNmURrf+hzVFtn1Pc7NL+zHXmrtSXVB6n9vhNZkEjOvu0wGGibXvv5stcNRW5qbYMjL3adTNS5m3LqqtaCLYGioN0Fkol1opD1HdA1xmqBkZ23FEQ3yU2fduFOACYTYAfeTWYrdRSr1mDb5OeZxJqJZN7/L1ClRRKtzXa4xk2px31LW5MtOib2LcGlJrGp3iwdkElsCizrKGoSefLDct2YW0BqxvnVjfnWsqfp4Ix47RirJrFp4a4OWrjjupumWS9BTgbSPv5N2R56n32TJttzer6Xt7IAzLPKuU9itriSy00dF6pSvXoAbAeJcZKuqLd0D9LTkimSyE09axJtdVNDTbRzJnG1Fhg29HuRm44+rjKJKtfddxyv/rv953hv6ilnpDg1ceakXRrCZNcXuhFzMg2AWdG/4n03smoEfbGPP2d7sWN2rwrduDgtMFxrEhesQOTmrMl5txWixWkAXJNJrHNc3D1uVstOZfW+qdZQymQTlFppdQ8U56wdJNqZBDORqY4pVmNJbndk2mQid4y1WNImwK9PnC/2BMS35ckgqV1dTWK0ATWJZxlBIsnEuq2AlUmka9PnWutGNLleeVz6SYpd4y20QoXpxX5Rk9gK83PZ5TlS1L8ErJrENK0Y1zRkUaKgkFsfzc7/yU5UZNIZNZAEtyl7U20P7bJTTWJ1IT/rkzp4zOrHn2TIE50ok9fzguYwZJqLeMpN7UPOWVyM0zRv5cI5twBzT2bJTXVFyswMnBXjeysZnjXVwKflIHF6oVfKwLMyido8Z3K5qcP9pAj2it6ddZ/txGyhWDs13ysFKWqVBYhvPXoW33zELOyuyFKPsFpsWPhkU0t1ymHDuZzXJHbr32SQ3LTRuMZNbtowWhgmvlLO//w334DWZmJiT8DWA/sG0E80Oo5nDhmRLDBqdIYN3Ug5k0gAeMs/3o39D5/BnUdm8OyL9ziPO3R6AbNLMb73wh3OY8p9EjkPbWtF3mPcepjkULYqChSOZlbh5+/oIAoVQ35VrH7SBLR6f+4lKXZPtLEcp3g0247d762uthAoJrzVTGIrk1EFNRkACm5bYYCpfJJs6i13jrXYNu30HQ8nk1h8FlYT4NJEXqMd1U+i6T3H2xXjmiFkEu37FjeTGDIziVrr/FhyJkx0/6EWIb2a7cWpcc7dOdbKP0fLamS9WgbmzHzPuAdbExJWn0RdTI4DZSbyWut8om3X2tEiCZ3/U90IIaNxOVA9t3gZKXuSXFeTOCCR2LjglKQ6X0yswpH70ne3c6xlMrmOk8pyvz1eU3bTOD4LEhk1qJ3INHJnLXhoq5UL814+qHdt0zgaY7bNk3IWGUGHbdXJTWuyzQCwN3Orn8mMa2yZNieTrhTy/qIu9yA7IzuoKbt9jz8xu1x211xlAeKlf/ZVAMBDb/vxXO4r7qYFSWW+1XTPsKm2gAFqgs08SGyQm+ZBYk0msakFhvRJ3Dz4yq7oYTzNMGTwxZ68s1wCs9dyap2GDV3Y8wyJGFBkRjg90QDgh//oWrzsXV9ljbFXmzh1ar6ZRBrHkra6ZhKz4/WcJ+7Nf3fBVBetwL1Gim6sUWBL2VYGbu0wwHfs7OKxrL7Qdpvjyk1JMlqXBbMnyRN5JtFMknd0rUyia5CYfcfDqEm0Jw0+GTBg8CSmriaRIytbC3YQxDFhSlMzaeJkEntJmmdBfBqQU9ag7hyJkxRREGDHWAszC30s9pKSfHeQ4cRiL8Ez/+BL+Pn331S0Ugh4fRKNSYj5d90k2V60mWib858WZqa6LVabjurruPcEZUkC+e6m5fci4lQ3juPIfWcW+2iFCmOtkGXelE/kA54zMEkyI2a2J9F6oPy5eXtp/lx0DUjt3rUcuSM5eapcgsuQcioF6mjC6S9K/XXrxtF1S5n0hV5SMnziyYtpkcq9vjOpCTbqzknbefnUfG+Fu6bLeZykusgkZvvo64C/lXBVQDw6s4g3XnUHTs0tl6XMTRng1eSmJB2tbYHRZFwjLTA2Db6TpTxIXFz/1hmlGgWfIHGEM4m+x58ehkORm2bHf7zNq5GKU42JtrtkxR5nxjAyibFbQEo95J77pCJIPH9HJ5ObOsqo8prEZmlNPzHZl8ft7OLRGROw2W5zTe6mdKzPLPTzB6jJQCIft1JummUSgwCtMEC3FWBmsQ+lTCYlz2w4ThJ85ab7HzqNf9h/iDVmuVRL6hskNo/L5aZRuSZxOJnEYhssuanlLuh6DdjHwDUjDhTHkVbkmxYuoqDIJC70Yoy3CznHIMOJq+85BgC499jsykwioyWFLTcFqpmbIkgMMsk1XXM7uhG7JjHROpexudY62XLSukC2CCKb36NpkjbI3XSQtI948MQc/vBfvoX3fuVB7BxrQSkTuLnKP9P8ewvY5iKRR5BYcill3RP4NYnaDoCVapSuL8dJ6W8lVQgzcA6DQm7KMa4ZlIGk92lHATpRgMVesuK6YfVJtGpJ3eSm5udAAxQAi/00L8M4aWUSBzl+m/cvfn90ehFxYtxNWyNuTviV+0/gtR+9ZSjbsucvg87/6+47gU/uP4TXfvTW0gJQY3Z7NeOaphYYA+WmFCRKJnHk8a3NGWYmMS5lEt33ly4UTt+wYeMr9yUXt2F8NjrmY+2QffzHs/OE1e8q+944E4RyTeIA45oss/SsJ+xGGCjsHm+h2wozuSlXWtb80O4nKVphgAt2dPHY2eX8NeXawma5aZLqvE41tjKJZlx5Y7ZkCgCecoHpXzTVMQEiO5PoKTd9xXtvxBuuGtzcfuW21p5JHLRQsthP0ImCUp+5oQWJ1ufhBIk0uWNlEu0g0aMBOU22miTQURhgVx4kJiX5bhis7F0IAP9272N4/SduW7Ffud29ax2XZVxT10uQtk1/M0FiVpPYjQbK32q3l+p8Ec69BYYlN61xvKT50yB308aaxKS4/pvGDHqMv/pv9+N9X/m2eS8r4HNV5ayQm3ICIlX0zeN83+0ogFLcrHjhbspxzgWK9hJ158hDJ+fxg//zGvzyX38jb01Uctxl1GnSuDzbzMwkUgayTpJMrxlvh5jvxaXrJgrcg/siSHR/bhQOrM2tXABgqZfgot2mzdOp+eWycc0AhccpS1lz8OR8lqXGwJ6Mo8Avf+hmfOHOY0NdzAcGXzekUpq2FqJNltr8fcV5EmdO69yaxDQWuelWwD4hOFLOiaHKTYv94gQptAo8yn0S15pJ9JUEcmTGtI9jrZBVHB0nRSbRpyaRJzd1yyxRTeLeiTaefP4kLthhbnxRGDCMFezVz/Lviv0xze3Pn+ri+OwStNYlt7kgm1hXV67tc52uLdvdMKzNJGYTv+yh/qwn7AaAPNuzWk3ib3zyNnz06w/n/0/Hz6f9Ahf7/OVmqYtxzfu51EtKUlOAt/K/FnxrEknKxskk2tczZ8JELyXZVt19oZ+maGU1iYfPLOCf73g0zzIAJjtWd2792TUPlP7/WLZYEgVmsus6sS4b12T7XVfvl11bk90onwhNdfk1uXaQyDWuKfXOs4bqPNvZ/B5Bw34OzCQ6yE3tY0WLFT7GNZRtY7mbZgsC5hxhZI6VkSRzF45INu3TAqNp8eiT+w9hZrGP6+8/gZf+2Vdxer63MkjkyE0DW9rnMCY//s0OlPbnGG9Hudw0v244fTHTausYhtxUDXZ8XYoT7J1soxMFODnXK7fAGLB4R8oAwGQSE51lEkdcbkrJFK7nhA/VOv0mjmflL3GaluYy9H2vOE+SLEBfTW5avZ8PdDelTOLgMgwJEkcA+wHCWbUjg4wZptz0riMzuPfYWdaYkgGKh9x0VFeZAP8gkWQ1vpnEBY4pTPaQ6LZCZ0MAwHxvY1mg4pMl8qljXG0c9ZCb6ET47Zddije8+KkATE9N9zoWa2LR8NCOM7np7vEW+onGfFX+05A1sM+HIpOYWpPklavWFLjTxP3fXWKMjKjXYuPNP+PT3zyC//czd+X/P8zr5pzITQcEs4v9cv0cMMQWGNnxCxS3T6IZ02FkEn3v43QutcP6bE+aamhtjtnOsRbOZAsX9z02m7+m7pwEgGdctLP0/4dOLwAoZHPOQZu2g8RsP637UCH1ND8nLWezqW5k6gQ5hisluaN79gUwgWp9IGt+DjauMT+rC0eJ1rn5zsoxq2ekOlGAx+8ZK+1HKwycgwY7+xgGjGDb+t4irtwxMC0YuPcEqnd1fU7Zmawmx2m6vzzniXuwHKe4/dB05Zx0y4prba4l2hbt86r76GBcU7RlUhhrh0Zuqv36JCa63MrCRb5ebWVh3mfluMVMhbBvsoOTc8srAuCmXTx+tnBFnVnsW865oy03naz0LV5PSjWJA66b45nD7NxyXDauqblvmV9QkNiqf8O8BUZdTeJq7qYSJI48pZ5QjBsyGQRwT/7/+Odfw0veyTNOKWUSGZksGjfKmUT78wyy8q9CshpfGcM8oyddbpPfClnZ5lTrXJbGqklM+JlE+8Y2KPuS28C3I/zIU87DCy+9AEAmv2KsdAPZ6ltY/9Amuenu8ay58XyvMrFA/bi0yL6eXYzz15QnJCsDUvMZzGue9937Sn93zaQcs1xY6TP4wBlnf1fr8X0v9GqCROU+YV0LNLnaMdZiZfwpk2Iyibxz0myXH2xHDRO7vrUAsXO8qEn59Rc9Of93U8BH991PXPkcAMBDp+bz1wcDAnWtNZb6CU7OkUzb7pOIFftZbVS/Y6yYzNBiJqcmK041W7ZY7pNYY1xjTcaaaDLYsevfqrjUJJ6a6+HyJ5QdsM3xYEppA14WPl7lvtVEcf67O+Ca/TTncTvimJAh378mx+lUa+wca+GPX/EMAMaVczlO0c2yWIFiykaDASYhteOyfbSMa5rMy0huWhjX0OcziwIucwytTQ183qjeJUi0FmryGuCacYv9BN0oNPXNC/1KANz8jJpdLuaZ04t9JNQnccTlphMd8+wZSpDoWJOYB4lLcVnK3JQBpuCvKSvY5G6qk+JvVYLA/E3kpqNP1TbXFbLXHe2aRH6wMWzs5zRn4kqyGt9MIqdxeV6T2ApZN+M4KYJEbr8rwL9GzcW4ZrxTvuG1IkZzb1vH3zCx6yfG/GJXVqQ/vdBHkhSTpqY+WXGSYs9kYWMOIJPWNE+2cuOa7KE+1W3hZ5/5nXjjS74HQBEA1F07dtBvT8oBdxv5Kpxm7v6ZRLdxdS16ht0CY7ITsXq1kk1+txVg2fH6tu8jPsY1ZOe/olG9tQDxuJ1FTcqvv+gp+b+bDCfmlmM8cd8ELnv8LgQKuPvoWShl7iNNE/K7jszgkt/6Ar7nzf+Ky//Hl/N9oIzBoB6EFEa94Knn5X+j+yTH3THVhWxxLXLTsnFNto8DahKLe0L599Q4vI4mRQKRpBpnFnq4aLfJJP7c5Y8HALQC0/LHJWiw73dqgLlLFVvuGAXumcskLRxwOc8A6kPL6cFZ1CQ2Z8Tp+O/N7suPnF6A1oWT6GoB8D/sP2T6FtYpUBiZxCBAY30tffYgMEFi1bgmb9Xk8BXQokyxAOogN01rPltdTWI/Qbcd5iZY1QC4aQGCFkyVMs/SOCmkzIEaYblp1zz/h5NJdKtJpF6V870kv74GZanzbF9TVrCxJnFAJhEw2UTJJI4+9rXlI/fiBBs2HPmVffJzgpQ8kziiq0yA/2ejuQZnQm7DySTGudzU3QEUKNf2cDMpAK9GzX4gDTqP53sJ2lFQqqkCaNLkOCG0JDLNzY2zTGLWt+pMNkmwHfGq+w2Yh92eLGND10iSWK0zarI2VeMaAHj7z12GX3v+k/L9bKoJsq8NamafZxI9F1c4bVl826TYX9VqxjUrahIZRhNrwQ4SOec/NepmZRKtz8Ptk6gUCklmzfkImJrdJ+wdr32Ppkzi/HKMiU6EbivExfsmABRmSk0T8ruPzpT+f6mfYCkuAv26zJntLAoAL3/WRbjs8bvww08uMurcTCLXJdMONmqNayjbOeA9Gt1NrcWlKvTrpvN5eqGHVJsa7IN/+DL871d8PwDzfdr7PYi4EgC4LrD4ZhJNf0WzEM0KEtPClZNjQkbnv2qotyQZ63g7wng7xMEsIz6VBQCDsqsPHJ/DG666A//t728vOYCqmnOkibpsz8rnTbGQON6OsNAvG9c0tWoCjJHJV+4/seLz0vu5LDrZmfJBypWlfoqxVhEklrLUA2o7Z7Nn4eN3j2Nm0dSERtbC0TBqzH2YzBajh5FMca1JnLXm3o/NLqEVmqx9Y3Y7d91qqi9saoERN2cfARNASpA4+pTkph4BmK/c8aGT84xtuZ38K8eNvtzUviB9zF18g3ROWxDa1lg7dG7ADGQudaGxqeadW1kmyzNoWC2TONFeeePiGDnYxfZ1E0J6TRCo3O77zEIvzxABzdKyOE2xd9IUiJ+tySTWrbZWjWvqaKoJsoMXenjQ+/tKeDjZ7bLhkPs410xitacfwDNxWAt0Hk51I7aUljKJrvdXX0WILWWsM+Ao6l0VLt47UfseTe6m88tJLrd6aua4uzO7Hpom5NWs77GZJSz2iiCx7rqxJ5qA6Q362f/6PHz4v/y7/DWsmqxU543EnWvbaibJ57JPYtO1nWcfGz4buULuneyUspgc4xSSLfrUdtL3FTHlraFS/CBRm/PDtFdx/66Lhbv6oM02Dto72c7nLlRvNsi45vAZU4d777FZK5NoHX+Hj1c2Sqv/vu2eiGPtEAvLSSWT2xy4vfajt+CXP3Rznu3S2XGkhQSX761kXNMQbGit8xrxnWOtTDZqBcADgr3ZpRidKMD5Ux2cmaeaxCA/LsOoMfdhw2oSBzy7l/opdmRZ8Eenl7Cj28qv7er7ALDkpg0h26AWGE2BJQCEkchNNwOJZ5BCF7evA+JjViHyatjZBk5N3GYwrrEDE+6qKcDLCNqwahKzfey2QvQdH75AxUjA49zykR+GgVrV3ZRkQjatMHAOgJNVJoRA8aDdlWUFpxf6pZrEoGGSEKcaU5ltf55JTMu1jHWBJX2GJpomd/axml2Kc6MSwP+6IXMgF3yDG1d308V+uiLw4PR6WwsUAE92Il5WPDWTLU4m0ZYAsmoStbVwUVfvak1Qv2NHvQW6qpGpAtm1lk2SSO441aHsS/2EvLpQc3RmEctxmgf6dQ6geU3igDxdyJI7WplE5+NvfpZqEq3N2S0ymhjkbtqUSVwt2Ds1lwWJE+UeZ6ohIK2jdN8aYC5SJU7T3HCHW5NYGNcwFo60aYvQbqhlPDK9iFe85wbcdaTIVqcapYW7erlpEYDtm+zg7qPGeM+WmzYdx4dPmSBxoVfUfwVWKwuX478UJ1lLkGZTmFImsWVqEqvmOvS6KofPGOdQkiHSceS0TqrPdpZf0090pi4KsGuc5KZWAKwUtK73Zji71MdUt4Vd4ya4NPeWYuFoGIt+Pvh6d/hQqklsuG9RoL5vyixEH51Zyuu2m0pn/OWmqchNtwK+kzRqF+CbSfSdELq2KQCKVeBRziQmjpPdKnRMvOWmjIk8bavLbIFBK7DcFWEK1nhBovk53hrcNmB2qZ9PVG1YEqXK6iew8qFNMqZdY0UmsbRqXWPAASBvErxjrJXXYZRlW8GqxjV1NNUE2d/L3HJckS36PXhZctNUZ/LfwcF9FTsoGVS3t1QnNx2SPCmXm3Zb7ExiGBh3U9dJMn2eDqO2Fihne+rqBPN618D0mvyjl38/Pvdfn1d6TdPxnO/Feauk86e6+WvzbdWcj3R/+dirTRbw6PRSKRtcV+9EbzMgSWcyiYya47X0SRzobjooSMz+uMJcUOvcoXjlmPL2q5yaNxN/UicQTUqGOlZbpGqCMntAlklkZGXzFhiMBQ+ti/5+dZPk+46dxf6Hz+An/+JrpW3RMVQNQUpqZXL3ThTHcYc1uW7aTTJrml2K8wXuMODJTRetvqRNE3n7O5roRHlQavdJBFB7DVA/Wj7xAAAgAElEQVTd/PHZwrgsUGpgLXsVbZ3fTXJTUph0WyF2jLXQi1Ms9OKS3L1uHACcXYqxoxth51gbMws98xzP5L7DqjH3gfaKSjnWk8ShJpGeQ/uy+8HR6cXc6IuO/4ognYK/1eSm1XFp3Jx9BDK5qWQSRx5fuSmdkEueARinuXrfYYWkdlz22jjVIytH8K0lWqsDJUemmmRyI5+MYOgRJPq0wKDjONYOB46bXarPJHImMXUuddWHlNbIiv8DTHUj07i2krWpG2dcURV2dKPCuMaepKmVE8KqcU0dzZnE4jqcXeqXF428M4m8msQoyLJmDFWCcyaxl2CsVT4uISNgWAv9JEWgsoULj5rEFqOOznYg5sq07ex2o3FNNkm+4tmPxzMev6v0mtVqEgHgvGzlms63Jtkc3esfnzXcfuzsUqmutP66KTI0TXBqElNttcBwDmyQ78Mgd9NBxjWN7qaJbvxsTdlHgjKJeyqZRJ67piVJHrDAshwn+Mw3D+P+rD2KLdMMQ2Ym0VNuOqgmkXY71cU9syw3ba73o9e85Se/N//9ZIeClObjSJnEONWYph6VAc+4Zn45yTNSjXWr1jNirB1isZ9ktZ10/JvbIO3MggRqM0HjBmUfq7g8EymhMJYZ1wDA6fl+yZQNqA+cZ5diTI21sG+yjRNzy1jqp5jqrJ7J3WiKns9+i/k+2wKaF3jpOUT345nFfk0msTIol5uukkms1iSuKjdtAYlkEkceX7kpnYTcTCKt2nFkiyW5qUcLDGB0zWt8J+VrDRJZRjLZSjan1xWQyY3oYc90RQXM8XAN7ul14+3BEr3ZbEWySothm17n5NbkNgcAu8fbKzKJTXUbVJC/d7JTyH/SsrtpNZitM66p0lSTVZWblnqS+hrXMO4JJJMy5winJtExSKzrk9jgrHmu6SUpojBgZQSpl5pZWQ+gtaMDYnYIui338xgoZ1JqjWuyN44GLEAMcjedXBEkZtmUplrebN+N4U2AmcU+FvtJXiNYd93YAVoTUejublpqgeF4DZT7JK68J1TNdepokoAOqklsyj4Sp+Z7UAp5bXSxLV5NXEmS2XA+/uNtR/H/fPJ2/PKHbobWujSO426apshko9wFj2wxs+F5Y2//geNzKz9bg3TXDrYu2l2YN+Vy0wFmPpRJBICT2f28VKbQcEg+dcth/M5n78RiL8FiPy4WSRom8kZ9QO7WEfqJxtxSXMrk0uetkgeJWSaRFqlUlk10KfGptrKgfbLJg8SWHSQu5+dwMOCcPPv/s/feQbdlV33g74R775df6he6X7ekDpJaCSGU0BiQhMCWisIYCxFcDBhmbMAe12AzpgjWmMwUEpjgGRMNA7YZwxQYDLKEJIJQtpAsulupWy11fvm9L990zp4/9ll773POWjvc773PUs1bVV3f63vvvmffE/Zea/1+67f2Z9hYKnH3yTXje1Jwk1JvfNhGa85hsNnawjX88WhvPr1uSwc2CJGVWAmLtsCo5wG66U0k8fPCWrStJOGIxYJEos1MUmoLIzIk7LjPgyBx0ZpEWoBTFx9yRFID0jxPC6T0OJ1BHhZptSWxUs7dOQIaSfEGiRNLU3GNJOGjjtXaEP1IIqAdtKt7Wu67K1zDoYJlnuPs0WU8cW0fSilM57Vx0jlHnp6PgUe4JhcCfPe6bI3dupn0BAS1xQnRTX/yv3wcb3vgHAAKinOMynwhBVwgrG661KGbanpS9KEWtnmlMMi1clxqv0O3B2dUJl85SGLis+3Wm3WHuiJNknFO8ryqMZ7VBgGhIJGulYSAmeMVGdaXdC+1qVOTyDnJtIf5qJyxSCLV5I4S1U25PolsL0fPd8SgRF2jl6Wkx+WdCY6tDHtBvkR356ybpJLGvO/hywCApzbHuO+JTUyaWjqaZzSS2ARlet9ITHjkMpLoHv89D10C0PQEbH6bGKQL6rIGgRHOSVUrPHZlz4g2kYiQDsD6cyJ7+8fO43t+96P4d+9/FL/+3s80SCLV5PLjtAKu/vfZo7r+95Ere+bzPnVT8snObVJS0iYRSo/I19XdKV7z03+OX3jng61epRySDlhfZVDkZj14anPcojIDEpKoEa+7T62Z1wzdNKC4+6o3/Rl+5V0Pi+/fSDOsqEPYcNoCj/zxaP2986QVIaP7OGvuy766KdFNJeEaX03iTXXTz3tbFEmk7FIykpgvfiwgtQXGwVGRG20L000N2paWQaMFfBEFxJTeWnpcbaT8F+15GOsk0MIWQhJ3xhbdcG1Q5NGiSK4AgYQI1koZh/DoyhDX9qa6Po4QkYCU+W1Hl/HU5j7GsxrzWpk5c0puNG+pbkm/xyMpbSTR0k1Te2ICmo4M+OmmO5M5fukvHsZ3/NZf6bnXtaUkJ/XSDD83Va0D7JVB+3qXh0RPIpRiaVBgPKvietJFJCCkYwHAUpl23driFn3HLqbeVSOJ7dfoviJEjmpgjjVCTlJARPfAINc07YtN704TJDJOMv0rWJOYGGwDB+uT2KabNu/7SnQYwRvA3ycxF5JNZFd2pz2qqZ5HAt20I1wjiYv81SNXce8ZHRA9dGGnhSRrJDF+fdXCTWlrAil8Dgu+LpfWjJPrI/zqX37G/DbTJiKi3s81QwEV0NUnr+1jVim86Gmank19aNtIYn/c+x++jOVBgXvPrOPdD15qahLteeTGuXWrdxzXaOe1vZl5zYckUqKQyhu0KirM8aQyjIcv7eDTF3fx02//lEnatOr0pQRQnuFpzRw/c2m3pa4szVG3zihxTytIDPepnFU1Pnt5Dz/+lo+z799oW6R0ZvFjOcl14XjUr/fE6tCwCzacpDmLiofoplILDBXok1gMcFPd9PPA3DU4JWtn6aZpNz8tWklN2Z2bNqVP3zziobme9rsfegzv/fSlpDGLCtcsgiQqpczmkkzjaTK09P8xRoIrwwQkxR2XMk8T3AwLUchEKaVrG7iaRMGx8B3LrS3p3s59JHGKHadGS1Q3rTSydvbYMmaVwsOXNC3KrRvoZnZdBUrJJCTFvS47k3nrPKYkBACLZPrUTf/68WvtubtoW0rdXkSQaGtg+jWJKSrJixrR1EZljlrFIYIuLdGqC4bnqkxwky5c4zrJonCNj26aMcFl5548vjrET3ztC/Cr3/oSMwZgAqLKouIbSwNDgVvuCHe06aaq9R5nseqmdP+PygVbYLh00+Q5tucA0JotP9tBuunOtKds6o6LozL3++11hyml8OS1fbzoacfMcV0kOb1PYhMkprbAyBvhGhZJ1K+95t5TOLc1xu5krtkdvd/GBWD2/P/I1zwP955ZbymHcr+NVEO/4PYmSGzopkVLAbc/7uruFCfWhjh7dBmb+zPsTudGuIbuke69TGwfwNbzAu1AihsH2D2AFM9deq1GEvlr4Pb+u9KgpNL9T3ME9N53ZmPJIMU9uq8wx9Egx5HlAU41KGQLSRQegD2n1VfKXna9jM73YfifMTWJxPJZHhRGzMplVnEJP6tuugDdVEIfgZtI4ueLLdqnb1G6aarzD7SdwKQ+fbUyi+thPKT//P/9a/y9X/lA0phF1WUXqUmsatveIClD22waRFmKdULrejF103llr1uquuPyoBR/G6FyLN20yOJbYDgOcC5QZDT1Sf/76MoQ13Zn2JvOHaeJHzevtXDN7Q1liEQgXGeL6z9F70km1iQ2gdmxlQG2HbrpqCQkJX5jpeP7xjzwhJaPp0xyVSsURYM2L5A48ql57js1MK6lyPgfxAiBp3MZkyhx6b6LIImjQYGqVkkiIV7hGof+KRlHQaTvcZ3rv/fyp5maLhFJdxQg15dKI6axVMrCNUZZ0fM7Y1U56dkqc0Kk0pBEiW4XczkyJnComPPomqGbCge4tDsxKK5rPpGQrrntFaTjXd2bYVYp3H1yFVmm200AMH0yfbTFrtFzkyx41tSBDwSBNUpAUDuWpzbHLdRMqtN06xYB4Fte8Qy89bu/zPy/tJ5s7uvA6a6G2nexERGidg/03V27sqfRX2o4vz+tsDJqi4t0n1NNCSbUfmjWvCMd5UrfHkCK5/o8hmtJ3SDxsaYfpIuScnX6QBMk5xluP66vg2UJyPfkZF6ZxM0zT2s00Q2ApWTHjpOwvNSc/8M0OgcpSfKDHgvwJU7166NBjqtNYP+Ku0+Y93Mv3VQKEov258jqyk83LW62wPi8sEWFU8ihPpQWGI4TmIYkuip18cd76MIO3v6x89GfP4i1H+y036bH3Hj6raGbNo5ibDBFiGAqbWhe2wx07DxbwjUCIkXN4qU+iUqlOZJ5npmNuer8Pv01hCQOsT2ZY3N/ZpFExkmoa4sa3NYEiZ88t9OaMxfsuVQ3yWQkUT+/t6yNNN2Ugu1hGt1OGwWJ8pjzWxoZoqnOGucmtScaCa4MPXWylDXt9kksE5QWD2JUI0WiK75WHWQu3TSpT9mCNMkW3Y4J9mi99SUguJqgELotoQazWmFQaNEMjSQ2QaKpyeo7kpbKeXAk0Z231EqBM1uTeAAFViZIpPlIvy2kUirSTQUklzO3rleiqRLie+bIEo4sD0yQ6NLkk9RNF6Cgq0ZwZSCMo+MTHfPc5tiItAC2TpMVE/PSrfnzT/TNs0eXUeYZSzflLtvV3SmOrQxxZEXX5O5O51jpBlIckthMMcsynN7QiYEjDaXQ1/KEKIgGSaxVS/BGYl1cc3r/PXZlzxzHR9t1fwMhnsea+9OHbk/mtalvveekDhKJJukT1NtzVNx3JnP81SNX8HPveJD97I2ww6SbRtUkzu2e+K++4QvxPV/5LLzszuPmfZ5u2nxXiG7KBZch4ZqbdNPPfXNviJQAzCCJiTc/LQCpQYNRm0us21teAEn8ip/5C/yD3/xQ9OcPYouqSdYLLD5ucJfWg1A1TlO64h8JEKQGpRZJjA9IAX9N4nazYXDqpoSUxNxf9JEW3bT36NhN+8Sa3gTPb01MZp1z7uj6DIoctx3V6mOEJK45waWUofX4MSjznG37QNflxNpQI4kVBRvpzxs5wj4qJ9GSKAtdNfVW2iFPS5KUee5Fe1zJdddCQgfXyyyS2ASJEfcyPdd5o25K3xMep/8ulWnXrXaQRFaAxrknJePQbat2yI8Tm4I3wk0AsLFsn9Nen8QWShdz/8epm7rnf1DGK3K6dcrcmmCRRvk7OHXHEJJo0cf+e7OqxrW9mVl/+GOFf9/eZN6qv3PnRUaI76n1JRxdHhiq5epITm5J1uqTuEALjJGwJtC1JCTxyc39FmrGJSBoXCi4534bBYlHVwY4e2wZn720az7vQ4AvN4H90WWdXNwez7Ey6vRJZBgobk06JRUJSfS1SjFIYkPNdGtQy0JuDbW5Z5E5ChLz3K/cDdhnn2ijRIeW1gQSbyNGxkvvPI71UYlb1ofmt0lJErfV1950jtf/m/fhX73jUwurwqeaaYFxCMermvp+QPavxw7d9MuedRL/5DXPbL2vUfFukBhJN3VrEpXS9FNfC4z8JpL4eWEu/zypTtBpVJ/Sg3ARjvasUqZwOwVtq9RiSOJhWrtPZboCaBKS6JzzRfodpqgt0ueIbhob7Cml9PUepQWJdB6HZS46g9TQlqtJHCTUytL3a+Ga9vHNfJTd0J9/9oh5nZwmztlyRULWlwbYWCrxyXPtIJHLyJv/9TigoZrEW9ZG2BnPzX21yHNjKNCe+4MU/rYakRxSDhwUeTKVPM918CIFlxLdtMjjaHYHNepBmEI3tagwDogkRgY3qtMnUUASk9VNjUPIj5GClFll2z24tPAeJY0JEn0PQAySNa/qFr22zOORLHPdcn5NcGtNJeOo6/Y8BoJ05rcRneyEh24aI1yz6zRzlxx5QnxPrY9wZGWIJxr6obtuxfephBWzWqAFhrQm0PU/e1QjWE9dG7eSJNI9WddyCxJADlI292co8gxroxJ33bKKB5u2G0UuB3uAgyQ2SZI95vz36aZttJlExI4uNwGYpwaSGBw7Bkm08xsUHrpp02MvyyyVs5UkCSCJpHAaQjtp3aRk21e94FZ86I1fYXxCXwsSV0Rtb1qZdYzaS91oWySZDwDX9qYmyRBr81rZJKGwJ7pIImdcyYGmkWZyhivL9PtuTWJI7AYAips1iZ8XVrk31oKiMAsJriQFpFYCPUVwYl4frCbxMAqdF0US6TQk0XYXpBYTJY3QhJhjkpR8nqcJENAUVxLpppT95PoIkhm66YivSQTingGXkiY5TW7/uefdtmE+t9qlzblBonFQ9Xk+e2zF0rZcJbcercOiGJIVApLSChKntk9iarAB2IDChzQTkqiU7n01rxUGRdODM5HJUOY5BiUvUgG0i/RdK/K8qc+9sc831aVaJDGCbsrdWxHnpTbXLQ1JrOra9klknK0Y4Zos6zONavM7EpHEujbHWndUiJe6qsAu3bT5G0YS+fOolMI3/vL78Dd/9l0tJHF4ULopK1wjf4cVobHjQkgifSfn/FNCxidcE4Pu7TtBihRIXW6olCfWhji6PMBWk5CjcWXzzMVY7dBN57WKSkKb859n4ppAa9vysMCxlQEu7oxbSRJJlEeXTXiCdCFIubY3w5HlAbIsw90nrSpnkecO3bQ9bjyrsDutcHx1gKMr9rqtDNsCNH1RmLYCLu0hR1fCNYlUp0aCY93eqT7hmuOrQ6wNS2w1e6ur7tsLEjv7FCGJNGtJzI18FVpHM6fOm8ZJy10bSawMtfVcU/Zwo82CImllWV/4I2/HC3/4T5LGVLXCsNT3VqgmkdbTrmlWSOfFOkAbBTSa6NYkGvQxIFxzk256uPYb7/kMPv7UVtKYWinTEyopAHMcl5S6xMVoksrU9aQKtSxCNyU7jGLjlnBQkpNcN2Pi5zhtIYlp14xqdIA0ZCNVuIau72qqcE2Npm5SRqR2PEgibaoxzwAttMuDQnS26trSmAZFbihOXSTR3ettKwuq2Vg27/laYFj0KRAkMpdt4khiU+AGOEHiAkkI3/1xeWdinIire1NTt1omiIQAbQq09AzsNetSt0+izapHH24hM3TTZu2KUYJu1bua5y1+HF23FFVgF0nsNel2kDXJOIpSCEmUUIN5Zeu/nnvbhnmdxFcKxpFUkUkS6b585PIe3v/wFTx8cddQ0ss8S+oL66qX+hRYQ2gngNY1oGvvqwnNBHXHyzueIDEJSZwb4RQpAJgZR74wgQngrHcJSGKlFIrM9l2N2eNcuq+EANOeWeYZTqyNcGl72gqIDAWUoUl6bv/mueGRRKJ7un3pWkhiZ5pUF7i+NDAIG6DFaOj3AQySqNr3CCGJlCDzXW+rblrZ30t0U0/y7lrz+9aWSoN6ucmtHgW9hvkMYGsRbd0z/ZYOkmjEVnj0y9fSyFXa3pvMcbwJvM9vHk6QaGoSD6lPYpHnorov4NTplwKSmDHodj33C9AA+n0XSQyJ3QAN3fRmkHio9kP/+WN43c/9ZdKYeaXMguKjifXGNVkLwELYMUY3YBq1tcaAbv7IOSqlFf6WE4UcXAs1Bb8e5i7AaUpu+u8iYjeLHMutSYwJpFy56xQBAhqXiiQSauPb1Hx005RngGiMozJ3nNb2OIU2O4PEI2wLDP06Ry0jh/yL77KqY2tOcNl1tmJQCglJtDWJ2gm/2tQKHoRuKo1RSuHy7hR33qIdJq2mamsSY51IOlaRZxjknppEEUlsz/dGWUXCNUQ3jUimuQqAC6mbJtYktlsA9B07E+wFArDuFC0iym/z5LR2/ZFZpcw68+pnn8LL7zyO/+lL7sQzmnuGcySNroJnjj4k0UUbnmhq6WxT9kj0y0nUcI68pZvK30HT59RNve1tsowVQLm8a9E9bow7b5/tTysjnOKr2wP0eb71SD+5FVsTCjjCNUVCLW8zHQpSOPTRZYDcsjbEpZ1Jq72HTzk0hCRKdNONJkg8sWopv26ZgtQmoiwynG3Ey77iOafxd150Vr8uUNDdejTAqsq664n+XH/+lCicVrUuH1L2OvtUaccNwrw2Kk1y0UUSe3NU7XvZ+BNOgO+eg+78aG3rWu5JQOw4LTB2pxWOrerrcf6QkMTDFK6pGmV0X+I0SDfNOLppoLYQ0EiiW5MYSzet/HTTAH5501IspS7QNaLp+VSsOJtXNdZGJa7Mp9H9zZRyWjAkqptSjUjsHOl0HARJ3J9VOJY8Ks1iGqD6xpHcvc+JIHMdxzTnv27ukfjMrus0DIsiiTYK2OsWi+YSalM2NRTKESQgI0rMOkM3NcI1EcebzCosDXK9kTYf725SSrWdVsrm0+LMbYjGIWzee81zTuFH/uhjACxti6sZoP/t/l7XJEoU1QRSxvtaI0ZAdJRFhJGkZ3Q8qzGZ13ja8RU8dGEHW+OZqUFLebYBq5yrqWX82ie2wEhAUQ5ipBKYVFvYQkTiKdD0WyhxF1//5ReucZFNyTKG7ti9l7tmUJsukljX5lnM8wz/zz/84tZ9bZ8be6/QsX2iMIWnKbhbt0SCK2UApe6aOwcOEYypSeTqxmKCxDzj93+LJPZrEqXzz9mu09/VCge1P1PVuv1Enmf4wjuYGuwEOjk9N6ZXZVSQ2D7/HLJKtO0yz3DL2gj3P7GJ46tDhm7KBYnysYs8A5dP3tqf4UiDXNH6CujgyDJJ5KTMs06v4wM/8BqcWh/1xHW4pIx7j/zw334+TqyN8CXPvKUZZz/Xtcms1n1q5zX2pvMWulp6knCzusbaoMTaUolPX9T1lnnmC7bbqPgLmlr913/R2dbr3fPfrUnsWiHc/4BFZgFgfzo3pSYXdw6nJvEwW2CQwJJPzI1qFYdSwM0K18TQTTtIYkjsBkBMn8SbQeJ1tBTRB9cslTCN7jWrFY4STTWxvxyQTjctC4LR4zYaK8DRIFILIImLtveYV7WhL4aMejsplU6lJZtVNYoQHQBdumkitS/LMCwbZzfiGrhIQgrd1G1lkTJPyj6XxkHriw0QYsC1wDB004h7eX9WtWg8nJNcK9Uilh1rnAWqi+Q2xK5D/vQTq3jT130BPvLYNadvVd8BUlFOMl9bQsEWnROiDaUi8FSDCsj3B53/W49o5VbqyzgcFCgTnm2gSVxk/nVrX1A3TQnaDmJW8Cke3TOoWJ6mbkpfTahlrEPuyvtzAhxRgiuZD0nkx8nqpu12A93Eh2k54wZg5rPiFL1I4q5DSXu8EVzRqswybatr7nniaIsxgawvceRvwSDQTXcnrQRQd0z3WJK1hVOaeTHBDc3xRU+zqVVSqE1pO0M18Cl00y7dl1vG20jiCJd2prj7ZB9J5GrpSg+SmGVC8DWvjd6Dew2OrQzlY3Wem9MbS6336Tbw9UkEdCuSn/jaF5j/l4Rr6lphWtW47cgSntwcY2cyN/s9oGv1petGz+raqOwhufxva8/ljuMr+Oz/8VW9OfaQxFkgSPQ8224LjN1pZZ7nw0D2AOtPLHq8WVV768Fdc3156XjTqmpdo64VTMmBppsG5tCjmzb/vkk3/dyxFAfLNaISpjtpyhFJiF/8yVKFawaJgaylLaYhUq7tLxgk7iWMI+GOIs+SAzey2HPZFq5JudZo9QSMUwCljCgM3TQG7aZxy4k1iYSI+BRYt8dzrA4LdoEcJgjX7E+rFjrF0Y1ItIfsNc85DcD2eOI2RPoKd3ZveMkdrc2eq3+JQimEjZTonkTBpdYUS6ZPYmxSJnw/En2bHJ/t8cwignkenWzS80YwuSX1SUwR7TiI1UbwKYE2aihZbjAb8bw140ZlfLLDzDECSfTxFDgkKxQkyuqmfqeIQ0SiahILWYBjn0ESc2IlJKBfepwObLvnhP7lVzfto0ShfpP0nRwofqVRyeRQYK4mumsXtsbY3Ju1BOAy4bq5SNbpjSX84jd/Ef7kn36ZSVoUCcI1tN8Mk5BE+7sk9WKaY5ZlOLk+ws5kjsu7U9teyIMk+ntw8nRT95wc7dQXSkH6oskVLinKjuscj9bq4w0leW9aGeEgGic9A7MmGe6Wb2SZ3BbKlqDwc5TOiaWb8gGHhBwDOjBcHhTIMh0w0l6xqL+cavRTFg0SUxRO68aX97FrNJ3ftwYxgo2qiqCbZgLd1DOuGATppjeDxOtoKVQt1zQnn6SO42mjrihMStaabCG6qadnj3SsReimVAsRIzTBWUotY9Vk43zFxuy4Bc4lff/SILX/lKbblJ5A6r9+9gq+8Ef+xEhLm82uyE0AliJ4s7yIAEeWeVtZbI9nLIoIICoAJkl5t7k0gKbvXvuzdYMQk732+WfwwR98DV7e1BlaJbd+kJjakyu6JpE5/RSkkRNIaF8qkuiuHdIzSojNmQ2LJM4rXUdRJDa4rxpa4tBTNzYWW2Dwju71NnISbYuh8PFcRCSlJpF+yyhRqdpFDbhEQmwCoudYO8JV0hj3c2TzSGe3jcDrvwsjiQ7aQHV8tCYnt8Bwz2Uykth8lkUSPYGzgGRd2pkawZPeGAERJDu/NcbLfuKd+Mf/4cMA0Go3ADC1q1UbyXrt82/Fs06vm//3NTzvGu03wyJ+D6Dfn2Uear0TtFEf2o89uWWCHKlO00XbOZOO5waJLSTRobh2T3+3bq9rnCgSHSsmAdG93rS+U6uMncnc9KkE4BWCm1U1hkVugmyad1Hw62ut/PeydG9NQ3RTz7M9q2qMBjlWBgX2ppX5rpSE5EGMjhOr0tu1a04vypARK81Hk5/Oa+PfcpZzIlj/HemmN4PE62iLqicZSlRCzYCRyS/TxC0WQb8ATaUdFPlCSOLSAsI1lGlZlG66lxIkKpfum4bkkkU78s33rw7LJHVTQzf10OYeeGIT1/ZmuP+Jzdb8ykTaHK3dqQhw1yHnjrUzmbd6r7kWcsh/5u2fwot+9O148Pw2xrOqpQ7GZd+6NYmAbjTdOx5LN+V/I43rB4nNPIJIYv9ckgNEgRSJ+ywlCtfMI+5Hei5OboyQZcBWQzfVSGIik0GRmq1HyW1WwVXlJTs0ukjtVbgAACAASURBVKmyAij6eDF0UxskpvQltTWJaUrVLkrCBXsxwU3G0k318SUERkJzZ1XtDYh8CPyi6qZ0Xw7LHFd3Z2beKftN9zx1BSAsJTwtALbKj+lI1pXdKStaQ/MD5PXudz/0GADg3Q9dAoB+n0QmAAjN0efIP+eNb8XvNMe05Q3xSKJygisuAae/17aJeO6tuh5uWtUmcWhowh6UlDNJ3dRtSr/iJBUHRe5VUqXfwR5LQnJVOJBlxzX/T7TgvUllBLdoHiLdtEnouHtq4SCJ3ectqHgsIolNkCi0bciFIB2wzITlYdmim6a0WzqIue2LFvHRSUguxqiWd1jkorbCrKrFekRASHjUVVjdtNsCQ0UI1+TlTbrpYdridFPbAy/aIazaKF20mIzzsWQkkTbtSMeOFqRF+iQOSLV1gdYeQDszHTLjJKe2AHCpu5G/jZzUlVGRtGCRA+ALpKj/3YMXtlvHcoU7YhqYd5HE1CDR1+9wezxvZT1d84mZKKXw8+98EADw0IUdXZPYQxL7TpOfotc/ly6KJBkfJMagFHwvKeoBRud7Z9KpSYw9/875lp5RkiNfG5VYG5bYHs8MZUlT+1KQ9NrU+0n3//60bqhG7RNzWMI1um7SBqVpdNPMqb+LGNdBEpNQmwgkMYSAcc29gTCS2I2b50E6FIckhpF0H5JIQeKZjSWTudeCW2lBYpbZILB7Lm0gK38H1wMyRriGC9IB3W7mOCNa436f1Cv0yU6LgJUAJXPe6dPXNY0k8ufywfN6Tf2pt35Sf3eTuDDMlRi6tZNcKZjzqOdog7a7T66aZ6VLN+XElLzqvpzYB9oofW8NCtQkBp+bzuHmVZgS6zveRhPo7UzmqGs7Py1cIwSJDXrcRRIpx8PVPwLy/ibdW1a4RqabSmv5rFHvXx0V2JvOzXfd6AQhmXsPLlLytJVAN43xJadzP52f9DFaFkM37dYkEkLoG3eTbnq4ltLPzDW3B148kki0RRKuiRvnPjBJIjnkSObxCqzdmsSkILF5iFJqEtuLQRpKtwjd1L1W8ZTA5pwMyuQgPRQkXmqCxIcuaJUztyeSGZfQFHyUGiQ2yQ6fAI0vi+aTCH/0yp7597mtsVCT2B6jEBL7aD7njIt5jLj6C4NSeMLSMudl4YnuTPRZ6pVl6aZxz/asRTf1I4nLgwLrS6URrikbhzCpBU9zT/oc+fG8YilKkkDC9TYSk7BU5vhgzyclz1lX3TSFcUHH0VSj9vsK4cQF3yex9o6TBVDSkcS4HoS5B0mcI8uAk+sjk7k3SOI8Pth2f2uRdemm+m/oPALtNSFE26Vjcc/2tf0ZjjKiNe6xpGfgwtYY955Zx0ufcQzroxLPOt2tpW5/PoS2+RApYp+c3tABLSUuBikMFDq/DpLIBUR0Hssix11NfbhFEgUKaA1DoUz5bbXnnEhBuvv8cyahnXUASfTRVAGYVh27RDdtHkEtXCOjUoMiM2MB4Jb1obi+hlFS+i3t18mf8u3dfiQxM/uNRRIPh266aInVImPcGni5JjGAJHL3ckyfxF4LjGbeQbqpPwi+qW56HW2RPoCApUSUCTWJBklMpHIuXJNY6+xymUDJdDPrWZYG9S9Sk9j+bfHOJ9US+DJ20jh6oGOPR9dtZVTgwnYaaun2/+IbN+taHgoS3SbQKU3B3UzqsMzjhWsc2jTA00mqWolZNJ9E+Hs/fdn8+9zWGPuzGsdX7eKXZby6qQ814APuSIe8cxpjUIqQuqmhmzYo+GiQHmyQyXRT/d2roxLrS4O+cM0C6LZvQ5wLG2JKrd9BrK71fWXu/4jfR9fSvZdj+stZddN4xxqwlFg6ptReJVTvJDmfUn2h5LROK4WlQToior9THBaoSaywOixxZHlgEoNFlmFQpiCJaKFN3VY1sQJAQPu3hWi7NI5Fsiq5vtO3lgPAhe0JTm8s4de+9SWolXXQpR6jXVXarvlqEj/21BYAm9Aln6TwrOVds+JFcisFYk2QHW965hGKJiUuqgCSmOe8cJCLXALA97/uXiNgk3uCbUB+brKMV9Oe134kUaKu0/9vNIHy3nRu9nvAL1xDdNMzjgLridWRTNsNMGVuhLopAQzHVoa4ujc1fmBKQvIgNq+1wON4Vi9EN01jfFkxN2mc24eWM7kFRihI7KqbNn5b5qudGQDVzSDx0OwgNYnUkysVNSB102gFuBaSmIIa6OxyiiS5zVrlGHooaZzRhpiCJLq/LUm5tcluDhMcEkAvuMuDAjuTeUJNaEM3Hcb3LQR0ADb0NI4HbE+uBy/sGGEjwC+Jzc7RoduNElpnuCq9AI++6AXbv0H1VUoVfuqtn8Dzz27g6u4M5zbHmHTophzdRSl4OXqckxbjkHPKfXHjeEoaCcAMmhYzO+M23TSaylyFn21CEleGBTaWS2ztzzW9MM9RFnp+dcDZMcerLQVdCr6kDfGwgsRK2d8GxDkmFklAkpNs1E0TEWBdx4LmmH1HPpbK3EdfQogIv5bMq4Cwgpdu6r//pftkfzbH8rBoqTSmC9e0haq6iL+l7YYDYE6UxxekSHRTX52aJJxCdr5BErutnHyIlB9ty0UmCZVnkOiZTq7YtTxl32jRTbtBSieQJTEeQzf1/bZAkM4F265yMAB8xyvvbo1x503WbSzPGUdvDYnrhOitJKyzPZm36ulDwjVlnuPWo/1aey6QDSaOBP8ihm4q3SPTud4DjiwP8PjVfStcc4hI4sqwxHg2xWQBjYvYHuR0rDzT/uuOUPI0CdBN2SBRRQjX5DnfAsOLJN5sgXGotmhNImXkh2V8Jp8eyOUD9ElMUZcyDbdT0E4XkUqotwSscE3KQ91CUhIDsKLIvDUb0vFSRXnoHlkZlknno5vZ5TZEqkncHs9xcXvSokmlCIW4dQvU4DfGSKWXqGrcvezbSKXAYVYpXN2b4W899wzOHl3GU5vjpk+iXb66NYluVlsyLuCOUillFvG4ZuJ+JBHQ9HHaXG6IcM3EBom3rI1wcWeij19YcZfYfq8kuDIoc7Gdy7ShGnXNdx9fT3NZAgBQxbSOMeJFaU5yV900ZU2m81HknCKh/huqSZQEOFKft7kH/QJ4uiP91FAgK51GjSQWBlECGrqpp5F41+q6TTftHi+ml6lBidw1oY5bSzgk0YcuSWgPAPzOf30M57cmvR59dCxunE7ayC5dWchIIq3xF0gZu6GbGlXgGMEnJ5i2wUb7M11kj5BLSvjJTeADVFqB7ujWJHaN2qR06aYhBVCa5yJ0X/f73XGA9gnyzAqX0efLPBODe6IuUt9b1zjk3iSORQo6vy5PA3RTqU8ooNfBYZEZJJF8oEMTrqmVTbguEJhOEtk1IcEtrUjrv09Y4ZpgC4wu3TQSSQzYzSBRsKpW+Nd/+iAuNRS+GHOdYqkYXToWiYtE90RrPreUmLV2KaApWfx5XeuMfMIcTSa7CYAXqklMUCltifIkIonUFDyVpmr6VCaIuwB6c5xV8ZLM5AD5EJire1PcdXIVgEYT6R5JbgreQhLjEc8Y4RqqY+NMkggnZ3tQ5rj92DIev7LXBIlFa6z702KRve7xYpzdrEFt3Gc8RjlRajDtBs7LgwI7jZOwPEylkrs1iSEkscTpjSWc3xyDFAd9NGH+eCooLjITsqY+RPx6Wkzvzt4Yx5FKSa7Qs0WOVAq7Q2rbAMBATYsgG/SdnEl0x1ld99Cr1jiGEhiHJMrrz950juVhaRQegQZJLOPr9CfzuqW+mHeCPWVe96Pk3eDSBunpdFNSO2THeBIlb7n/KQDAq559KnrcQWoSaY3fm1bYbZq5U5AOIKmWPctgkHGONuomILoK2qK4S6jej6FpA/2gtDeOCS7tvikOQ54LaGfgGdWfa79ukrlFhtVGTAxwgkRPrThRjF3VbjNH5rdZ9e7AmsAkINw5cb9NWstJ3fTYygCb+zMjRniYdNNFdDHIUntnG8VvwZcM1SR2fRkADd00EK6JdNNATWLAbgaJgv3Fpy7gzX/yKfzUWz8RPcYNTFJUlGzdTHzW1LTAWLAmcVSm1d9RdjmFktmtbUt52GitXVRtNLXfYZGn1b/QOHP+Ixc8+n6zaCVc7zKXaTyAvkbPuXUDgK5LtBnRxZzdPKOaxEThmlxGUnyOjCQRTottmWd4+olVPLk5xrW9WadPYjoiyG2IJBISQ0lrj/Mfi+bPXrfa1umsDAvsTrvCNenIvZT535vOMWpoy6c3lrA9mWNzf6bFXYq04MbUMnoo6FJjdkmi/Xqb2bQDwjUfefQqvud3PorN/VkrwZDUOkbZtVUfazHhmkVqEjMmAREKEr3qpgHURo/rB2BeJNGDNkwrTad3pfyPrw6TFL+n87pVM9UNimLWBKAveBPDSpBaANC6LR3H/X7Xnry2j7/53NN48dOPRY87iLqpW3d+rVFzdJHEFOEmX3lDN2gjpJR+k6Wbtr87CkmUgvRAcCkj8H7xJg7t9CHwRnFUQvfyDCujwiCJ9CxxawKgr7+uSbRlKM8/u2HneAAkUWLKSOfSV+86m+vzcnRlCKVsovKw6Kb1AkGi+2yliiCGkMSQuimbcIqhm/ZaYETQTSOQxJs1iYI9fHEXgOXMx5jrgIxnlQkgQkZ1MwXihVrmnWAjOvuvKNtdYH8a3yaCnL20Xo42Ozgs0+im9FGJxsaPcR/sBYLEBeimhlqWrPiq76tpVUfdJ7T4+JDEea1w25ElrC+VeOjCDl5wu+5D1R4XQRtqPmJrEtOEawpvTaKsnCg5CBTwDMscJ9etnPwtjrR8F0mx9M80+o8VoIkZZ1/rKitylgsbqYskuvdCKkvAZRf4+iTSmnHmCCkZ6my1TSTE0/sGg9yb3CLBq65J6ofX2/rPDT/Pb/jl92M6r/G655/BqpHjT+vn2A0SUxSnWz3RJCqz5zs42lxIlVMWCWmLi/THMUmSWLRTRERqDPIMx1dsT8Fb1kdJLTAm87pVM9VtSm0RQf/3dGu5TJAeCDZ6WhMOk4YdIyBLSik8fnUfX3LPyaRxMUhirfiaY3e/pBYkhSP4FMVAcZKLUiuFbrnBd77ybozKAl/34tubsWDHBRHBnG8v5PZJZMdljJKqCYjEYb17C7DUdskkKiet22WeYXVU4lqj7kuJLZZdALu+UELnw2/8yp7it9gDUghmJbTTJqr43yYhuYD2cdYHJY6ttgOSw2iBQYH0cmKQ6E4tBdxQSu8bvvKqWVWbPYYztp1LPV+gBQbRonx0U76Ha+trg5/4/6k91kjuc1xvyVzKYVLrhtoiMLHBRg9JTHDsAO3IpDyklBFNQTtdJDG5B2Hze1LGtEV5EummeZ4kt67nqJIdeUIcUzNbJEnu6y9Hzt09p9bw4IXt1vlPQhKdTTIFSTRCJrmMSPkcGUndlK7loMjx9BOr5vWvf8kd5t9ZL/tPr8vzZWurIlCDjHFkahWmsRUMRQloO0CuGA9RmVPovjROSuS4ySu33olaYNB8Yqz13FSKRUSkrGnpuY+vpxkpfw8FGrBJniu7U5s1z9KSK1bdNNyW6ONPbeHTF6lVjdMnkUGkYhIXktMKhIOUPnKp/A4yc+1iAjBWkKExYqrcfmzZvLY+Ks29FWOTTruVrlJsDCWcGxfHSuADG0AO0qX17ureDHvTCmedcxEzzodauvPgAo5pK0i0LUgskhhfk5h7GC9dddOlQYHvetXdjnJrf1xdKyglo1h6nET3DScu+mgbJbcDlEDmuQkdS3+/hNLpfoeXd3WJE63/Ek3YBJfNw3p8ddjuHczMMYQkSvdWSARLQnIBqknMcXSlHZAcBpJIP8P0fI72r+3nkuimjr6IiCQ2rAnJWFZClLpppyaRAsabdNMbY49f3QcQzjq65t4UKUW5VkpeFoDoWrcFRiqSmBwkVprWkJLZbdUkJqqb0ti05t7296T2trF94tIWhGSRCoMAl0nzpODK10uQ6Eb3nFzDQxd2WzSWJJVGZ0MYlXm0uhcVbfvaDcSo/fWcLSfT+pxb1/FNL7sDf/CP/waOrAxaY91hMY61FOy577HzZDb7rrIiZ2XO1wFXDk1sxdnkyzxP6t1pkSwZSXSD9FMOKusG9ynHKzKYInxuPZHqL/JcHnM9jX5v1gR80nNK6+il3UmLWnUgJNFzHn/g9+/DD/3hA3qODtohOZ+APyHM1bEsKlxTK+Xt98nd/1GBbDNHLpkwq3Uy4fZjK+a1rKkTr2rFPjddm8zaNYkagbHvx8yR3u+yBGg+vjGp9V9W3bQ97tzmGICcoJZUoMNIokydnsxrHF/VTjwFia2a3MQWGDF9EjnjEhAmaZlYkwuEKbh86xj7neLxmOetDgSyUoLX1vvp9Z9UyimZJ4nykK/CMTWAprxBYBcEKehdNkPtHychuYCmmw6KvLXfAIeDJPaYW4kJVyCdlZZnmTe5NQuqR/dLAKDqCLqpVJPoc2ZuCtcsbIQEpgQbLrycXBPXZLvjkUT9uUV7qQ0b4ZpYgR29iWdehTTpWLbfXkrgpv8uSjdNRRIpkE26bpVFElPquIBFkEQ0TYqbYzOLOG1Szzy9hks7E7PZtBGReGdXO8nxAkfufQzwdZqVR7hGyrTSczUsc4zKAj/5d78AL7zjaOszedYP2gA/RY8TT4kVoHGPoceFE0pi3ZJzTlp0oUQE3g1SpA3KDUiOu3Rdp01E9L1cWSQR4O/lmdC7Tao/vd5Gzw3gr5uh6315Z2quUZb43Nh67/CacHlnahKRLtrBZeQNKu45Nkc3DUn5S+0GiDIlGSv4ZJ4bzziBTg5YAY4zncBoUBICHH4GJvO285VnfJ1yKO/bXUtikdzu7woiiZJwUPNblwb8RfCq0nppwu15uTaZV7hlrQkS96dmfoRSpQieuS0wkmmjzLgQRRJomCQ9BF61nn/peH20rS2iw49j9uCALxVucN8gid0gUUASibkmI9VM4iICEWTnGAjUSybYNvOsagzKHLceWe68fnhB4nJHIClk7jOSCjiYfVsYp9k1oQRENwMx92cJAb34LtICI2A3g0TB6CKlBCnuTZ+SJaEMoG4vkRZs2BYYceMoQzFKGFc1dI8yzxtKrDxmazzDL7zzQcyquqWIlSpcQw/34nTTlPNfW0psCt3UQRJTxUXShWvqlnBNb2Nz6o/uObUGAPjk+W39WpEmQOBSUnRSID4B0VZS7Y+j5r+ciZlWgySGFMEcx45eT6wRMZSpACICtLN9KqImsSxkmXY6J0tskBj5bDcf81FdXAU+6stFczPCNQnXu8z995YoXJMQfB3E9O/V/5bqqZVS2Gvqs1t009wRYUpA4Ak59bEStsYzPHlt3/QzpVPEZeRJTCk1SKE1ItTMvS9SEZkk4ZIrPgRSoLIBlobYRZ1T0O1ppyax61xHI4l51gq4o+imOVMTGhmkc5RMPX+53QAg1ZKGrxt3/qfzGres6aSRSzdNa51kjyOqlAaQPY4pE6JIAn2KMGDXw9C4/nm070nGismouH3DJybjtsZadoJEqUwB0KrfnPFUWv3XF1gCMpLoQ8UlgGPa1BsfW+nUJB4C3ZT2stSew66a70LqpqXc3zWobspRd2PopnmBG9EC46ZwjWDkmCUhUgsiieRIDfJ4ahl9zsjkJyhQApYSVdUKId0UOpZWN/XP8f/804fwS+96GGePLeNMU/NU5jlGnuai7DwXCBIPKlyTSjed1ypdpGJB+gOhDfLma7Ot95xcBwB88tyWfq0J7oG4GjB3Q/DJpvfGKdUkEij7zwdEqUiirUkMOclpyIbP2fU5hDSN1JpEnwLiSnN93GbiFCRGq8sSkjUoxKDGbS7tXoelQWEEEKJb3Kh2704OFZw2WeSuHWaQaJDEgq/5nla1cSgv7UxadLMiQbiD7p1BAJFVSmGrUVG9tjdrobtcbVVU4iLzBBsSapD3HXKaXwwC746zSRl5nK+eeu700/zNb38ZTjSoVqiW1LXJvMKxVVv31BeuCa8JQB/NpdMaouBy7A7AhyTqv93TEaQJC4nCeV1jNPAIYnie00krSCQGinutY2oS7drpS/j5gi+uBCBEkaT3RJXS4L7Rfm0ehSTyvXK9+4ZwTtyyEFfQxEUSpQQcYBMp3PH64kb6BTHY8yCJ4fPBv0f+rZt4kn7T9Ta6bVdGiUGic41S1E0pweZtCyUkTsnYcxmlbtqlm96sSbyhRjdTShZh1goSU5AsjSQMCj9K1x0DILkFAy0SKQiYyVgVOrPuG0PzeuLqfotrny5ckx4kLipcQ9mfZLpprRxqWVpw3+0PFTXHPFzXUOYZzh5bRpFneOSyFl9qSZnHICKdmqyUvpgU2EjH8jV8lgIHV7hGMq2caP/fMC1ikMQWJU3/9TmEXCY/piaxyPvZfzo+OYRuM/EizzBcqCYxx6yuWSr5XKB/Pu34SnILDFMnKyAb9F1c/YVvzPU0Eq4B9PrFOSbjqT2/l3cskpiqbtoNmqUxO5O5uc+e3NxvNYHnsv9RCQ8GbQjJ1kvqpgrhgLQ7LkRjA2QHFCCGgZ7Qlz3rJJ53m1ZmtvdkHN3UJ1xjnu3Ac5p1nDQVcf67YwC0mDScyW0iGkc+GNz3g41QIAXwz9xkXmNjucSgyLC5b/v0+RJ+XWu1wBBq513WhG+O7nWrDJMkhOz1j0XvyeN44SZ3LtI8OQVQH7XVd04AHcyujaxDvzzMzfyVYujklR3HGYtuB4I9Trmb/t+PyMqJtHmlDG2c7DX3nkpSkl/U+khiXMDX0rdI8UEbP21Q5KgVf04mMS0wehcgQt201wLj+iCJN4NEwcgxSwkaXGpqCpQ+qxwkK5Z+6CycpQfq75pV4IuvNaDvLpu6JZ8TSV/32NW9Ftc+WbiG6L5JaqP23ynHIgpk6Le5RjSxJVMTGu9Y55k9/ymZrfbmK2Ujdc+kU+sjPNHUPNG9xY2T5gjAKO5G1yQ2m6RVyWSEazyOjBQA07n1LaxZtniNVFvcwmbDJeMRyDCSWOR8HbBbp7PhUkDztN6dtfNsK2GDkhT4nnFixVy3WDSdKNCSSiZAWdP+8XzUt+tp7v1WCHRTV4l6azxrBTyp6qZFpkVyfGvy1tgyKs5tjjXa2tzbnHCNqUkM3JNd359+q/i8CdctlPDIsoyp9wvP0RekzBpKWtd8ipxd67bA6KNL4aBBj+N/WyjhJAcboZY/aQiYNC6kbupF/Jtzt7E0wFVG3TR135CoxV11U3GOzrBQsK3fY+i35vzLc+aYMvOYoJQJwOoAAm/6JPaum00KuC3X6F4uhWtA40rhB/KKx/5gzyC53Xu59q8JRZ57eqDa9e3X//5L8eY3vBBHlgdJ4o6LGs1pkb7UZLHCfXQ8N1HO7d0huinL3qrrOLop1wLjZk3ijTFy3lNpo/bf8Q/AvK4xMFLyaTexCdwS6Y60AMXM0zrpDdrmcZgubGtltocv7rbQrcOoSVxUuIYy+WkiIfqvre2MRRI1kkaLROyiRXOUHK0uRenWI7pROoAOuhFPGypyTbdL6ZtXZA76wiKJck2KlGk1SYpABtrdtOlf/hoRO2/zG4yzm5ZtjUISBeEOt05no0M3TUG3Y/r0SUH6HcdXkpQMgWbfCiCJErXmMFtgWOEafu2iesSjKwNsj+ctJJ2uWay6Kd1TvjV5q0FqAOCRy3vYHs+NsiQvXBOJiCQjibzzGZPwKPN2/Tz9K7WWkUy6L/OEe3Iyq1rOV5feHRPs0fttUarm/Hv75snsDilI8fUS1ONkhEiPa78eRBI99zK1D1lfKrHpqJsaVkjU/a//Zpk/APYjgs3nmISfN7hk6+9inhtOpZSut38ch8B79w0hMUbHK/MMawzdVFKCNn6ZZz/lflscktg/l8EgXbhH3D3g1feewte9+PamldqNDxJpuT9QTeJCvmQmjp0J7BoytlWQim2BkUg3LW7STRc2urgptW1uXWAKlE49onzqe/0x1nEeBCigrtHNN0xBEp2MlUY75TEXtnWPnyt709Zmt2iQmHIe3QcrGUlssj/JPekMbTc2SK+b2s7FkETJ0erWUbhKYm6j9LiMsP5LEuixaA9liX0CKF4kkbKYnQWSnsUQj59TN/UhglxwE4ckghkXh1AAUnZdj1136aYZ3ZOR95YJEuWsKaG9ZF/xnNMAtENiRFoSkUQfjVDqk5hCfz6IuUI9A0E4iJDEU+sjbI9nLecyzzO23i94LM+a7AaJ9z+xCQCmHozLIhvn23Nsrt41hMBI6poxCY+8UzuZ8txwp3JWKRYRCSUT/vNHn8SzfvC/YGcyx7Rq003zrF3vF1uTqM+lO86+LlnG1ag57A7OgvTDQDKNRxL94l7u97vznDW929aXBlbdNE9D0pWy95tMpY1UN3XG2edRPjb9tpbgUOA86nH+0g3J+H6mcTWJEnJZ5JmpnQOs3oQUuHX7JHYtyxg/IVATKq0JlUPb50xq0wHoZ7vLJhkkJJ8PYpXj72ZZvL/lzi1Nld/2SQT6WiFVrRodkMQgMZpu6gaJES0wbiKJi5tFEv3OwcXtCX7t3Z+BUqqDJKYFKYMiT2pU36oTTKBJWiQxoSaxRW31t8642ASJ1/ZmrSAxpQckYBe31Ob2ZCnZH1tLtwAim9gCg6jFyUFi1an/CjgWbo+tk+ujYJ0U9115nlZgbvj4zbG4Z8dHiQqpm3qFa3K+t5lvgeSy3TFIIufIhEQLAOsschlvgyQu28xenkg3Var9bHP3JKG9ZL/0P74Yn/yx1wIIC650rWqQRE7tlYxzEAAZabjeFkM3HTdB4umNJdQK2G7ooHQ9u6iZ71hWJEdekx94csv8+z4TJGokkastpP8NKSd2T2UIkaLXu2u5Uv6aXKDvFNqkTBil4GsSeVpyaN363373o5hWNR69vKf7JEapm4pT1O93qIRRCSemJi6MJLa/vztOOpeZeXbar8ciiVISblQW2FguDd20yNKQ9G5yBeAYLwF1U2YPiEX2uIBD1gAAIABJREFU3Dm4cw6dEy5odr+TPR7zvNUqXLeaBRD/FpLYrONSgtcmT+XnO1VcJxfurdpZ29hxZg/on0suKAqp5F8vc6/lsMgxSWwVBySKICrLSgP6PpDRVyj9z0DvcYtRN+3VJEbQTW+qmy5u9ACGVEP/yW9/GO9/+Ape+ayTrSAoiW5a1aZIPB61IeQojabqZlaAuAy5Kxziqs0NmRv9yq7OQl7bm5px9NtSHEJa4JOCvQWRRFdwJfk8FjpDFZNppWMNitzQDaZVZCF1k8njUCygX390+zGLJK6PSpNhjrne3WbivsX8rx65gloBL33GcYN2Sr216lq3Ugln1oWFNVTs3UH26HV5TH9js+0G5HG8I+MPLPU4/Ze7dnROXOEaAEnCNabeeCCLfXQdSZ14aGpfkltgNEii8Lvou1i6qamRjTrUwlYre52l53tvqp/Bk02zZ1e4g/76ar5//p0P4hV3n2i1QdHtjPgxP/uOTwEAVocFHrywAwC4pTn2wsI1jPNpgkRhoHWs26+HEBEAvR5sLtXQN0Z/lrlPhB5/oZo4cuAu7050TaLTW1BSNw11Suyrm9L59yNS3T3frRNnxyxck9jMi2GTxARg3XNJNVejMsf6aGDpprlF0mMcehdxlRVYA8EGsweYfJ/n2C4rhJzaqOCS8UtikESOXRDTBol7vt1gdtWpSSQkUWyVEtgXOXZBKJEg3VtBwRsHgcydK0X0/u4cBwn72kGsy2aLrS9cuE9ijU6Q2B5rwB0P4s8hwFHqpou0wLiJJC5uFByGgpSHL+4C0Nlo15FIyZLMak037aIhXdufVnjksj7ezEH3knqpdZDEGIdw7mxavoJcpRS2xzOsDAvUCrjaSGlTL7UUMR/apA+jJpEWTuLJSyhpa0xlN6BBnkery87rukNHiEVt9Bw50Qh6H7COxZ0n18x7blPw1D6JRQBFef2/eR/e8IvvA9Cvm5QWyFCNTi9IdFBzyYpeHVHznVHIhn0tBUlsOzJ+0QJ9vBgkcdAcQ7+XVidLz7aPbio7MilKhoCljklOjGZX8NQaGnOjKUdVbXsQSnWC+1Oim2r0nYJEozia95UMyR66sIOfefun8L/+9kdajpSUXNmdzLE1nuO7XnU3XnrncfP6yYZuSntAq742JkhhKEqxtW19umlEm4h8gefNQ0ueNzT8rsXS5EkAyKduShYMgLOuuql93TdGqhMXW5AI5yNINxWCbWKbiHMUxpHE/7CpSaR1w63lja3JBfT5ldcEv3AKN8fY8w+02Qyh80/jpOcmtSYxJlGY5577pEM3XSrbdFMpuJRbrPT9yVh10/49GXi2BWG8mcACSmEoHcTc+vJRWUSDDvQ7dJlUfAsM2m+kmkTXb5SsL7gFHfAF6aYFjyR6axJvBokLm0ESAzfV1lg7FFv7s9Zn02oStXCNlMUBgMev7uFVb/4zvPJNf254zQA1wY7nd9ODmSZc09QkuvVmnAM0rVArLacP6J5jgEWkUpQMDd104SAx/li0cA6NKmdEIOUUm2tqWeT5b1oQUJAYS3/o9rfroVGdrPWdJ1Zb71tnK164Js+zpo6LH+P2vdwa235vA+E8hjLrkvNDCZvrXZPIobJxjbN5RyacRW6Ox2z2tMmSChvVlKbQtGtnYwP4Z7SqZQn6FAVcOp7bXkVSpeWU3KQx19uq1nPDO7v7hm6qAzViQ9D9poNE/hl42wPnAAC3H1tpOVJSQPrUphb2evbpdbz5DS80r5uaRIbupRAObKgFgxtcVrVGBCXHVUJ7FNIRkdg2HTSvrkmtWaTESve1J65pJWefumkMJZbm2aWS63GeMZxDHpkUk8eFEMj263PPsw3INZCExo7KvKWuvDIghoF8/7vmMlAkcZ1gL0Hmt7ktacRxTMIjlCSh46UG6fSdbCJHnqL5zkpAnLvCNd1+tt093/avFu4Tpt5y0URCsN5SYgEJe3dZ+MuWrpe5dNNRgi4Grd0rwyKZbupTNzVBa+Bc9msSK/8DAGiksXZ6kd9sgXHjjDLgQBhqHjfw9eb+rOXMxTdJV6iVXohdyL5rr37zn+P8ViMKszttt6UIUAK7xwPSWmAQHWt1VFi6KbNpkCDD0080QeJ205SXkMSEIJE+mxLsuRt7knBN1aZJxvWOtNnWlF6CtJGPClltq6oVfvSPPoaHGioavUb3h+4J5d/Yzjp0UyBNKKSNJMrX7b7HN1v/pjnKmU+6Z0OZ9fbrIalvgDZE+//GafVs2xwqG4fa0DHaxws58nKW1tLEbjuyjG99xdPxG9/2UgBIElOir/XVG1e1HAD4kB7OKLgN0YS5622TFlGHWthq57kZCGwGqkkkuun5LR3IUVafzew2RomwQZmZmlx9LB4BfmpTBzO3HlnCLWsjvOufvxo/9XVf4IhU6M91A7CYoA1oC7VUyi9kIt2PsYgIJ1wTajivv7/vgLp9Ettz1H99zcQBmHY/XXXTVrBHifUgksjXKYfUZXs96YLBHs1LSPiJNYn8uGBNoiCcRU4wIYlk7v2fpm6aiddaiyKF11Y2AeHrXcusQTFBIsfectEn3/H4eteI5IqnBvVuhwFkxkj7aaBWnws2QgI0Pgp0FALZDWQlumkCs+kg5l7LFPFEOtcrgyLJl1TN/S0h6eae9Lbz6tc3Q9VhJDEv2lC6uSkP1gLjZk0iYy5EHAtPbzZIIhXLR6uUOs595txYg851dYOQi9uT1riD1CTGjKPgb2Np4G2UToIPT29QrIsOksgVUUvmbn5JSKKD7iXJFiurbqqPGbEhNl9P41KQ3FYLDGYBuv+JTfzauz+Dt3/sPN71va+GUjqR4FLZpADMraP6qdd/AZ5z60br9ZgAwN1cfQjw5d2J+ffjV/dMcbso9d381LC0ezfY8G+GgN7c3ADA1LFEBG5dlVL9fZ4xzO+LcazJWeRqYOic5HmGH/6a55v3hmVCTaKhm8r3sU8C3Vczxhk1qhdpwp6aGTvmxkaJ7rmVxGRoLaU2FOcatI+QFB/ddKdZ867tzXDrEeuAScciJJGQ4qedWMHTmqQawF8DfW/5f6dNXNiaIC2k4xnjQQ2Cz43oJHvGBGhznJS/D0l099jHru4BQI9u2nq2QXMMBMALoKScKm2oT5/kWNMzUUjOv3DdQuqm0rmcO468q65MqFYsC8iiNvK1VoF7mWVpNH9D59+dAxAb7DHBdqC/KM3Tfbxj0GYax4m7AHrNWB31XXJpP7VJV0ndlBfl8VIdBZTaV6YA8PX9gLx3u4y0rq97Pc20CsyQ1KvbBImj0iQCY8eRKrx7/O73epViGQRYB4kBTK8rXBNTkxjRAuNmkMiY61z5HLSJw1W+1gSJK4MC25N5PP3QQUnovgj5aBe2x478cSZSmzhzudbu//uMgr+N5YFTt8QgiQ319nm36cDkU+e39RwJ7Yydo4o7/71xzfcvJWZ/yJG0ojzxSGKRparL1i26KTfPDz1yFQDw6JU9jGeVOeduIBHqkwgAX//SO8y/TQ+8qIywdYp8NYnuebq4PcF4XmNpkIeRRE/mkxtngo0AKsIHe2GHMLVxNk839Tvkeo76L0fDldDVlASQVTeVe3e6iHRvfgsgiW4LDDG45+imAmp8Pa2rUljmOfbm897n6PdSkPjktX2MSkut1wERP9HdqQ0SXQdM13H1x5xvgsTTR0bs93HXQEUkIFw1SdrUJTEY37HoeDGoeGqbiJB6sa8FBk9RtRN49LIOEl0krN/KIhzs0Tj3cDF9KrOMo5tS4i5VuEb/9dWaAVxwGYkkSjV4Wdbq00qN3Ys8TvPApZvSp/s9PyPRZobdEVNf3kquRCCJHEvAUgJ98+wq4Oq/qUlJoI8cv+OffRmeuDZujQG4gKP9Pnesri8Zqkmk+XPBpW9cKZSYuIw311xG2jJuXJToUsyHZR4NHtDavTIsosVuAPsMWg0IgW7qS94xwX1UkNgVromhm95EEhcz13H3CYvsTuwFISRxeaiDxFj6oStAQzd0dxHpBhJtJDEPiou45gZS7vG7n/kPH3wUUAp/+okLeOWzTgLQG7BPuMbSTVdx9ugyHm8oQPqh0UFwKJPlzlGan2R0/pYG8cgeHc99sOOypvqvRtvihYOoBQb9x6mbPvCEpXF+4DNX8MV3HTfHor8+hTTOUmrAqtZvk+st3Wfj0s4U+9MKy4NClPoO0X+CtBom2CDrOmmxDmEX4Y5Tkuxv2rVSwbYBco9Lq27atRSpcDpvpPAo0k0Tzz9nrlKtNI6OP2SSAhKKcj3NZRYAcp0gnd+TayNkma6tpoCR5ir5FtsGSZy2aKHSsSbz2ogocMadlxi1UbpfVecZWIQiFnUvd7LdsQqs+rPt1300dJ/AkevwPdkE3yQ+BDQZeSbYCCP+3TUBzTh5TJ5xdNPm+4SB0npQdVgh4jjmPPoVOfnn1GXFuDWJqw3dVCOJ4f3UDTbpke+hZoF72QbA7pj2e5xlTOAcou3SuH5wr5H0oHANizbHoNT94wH2et9zah33nFo374cDDuk+4emOMWtC715W/mDbtmXh/ZJuYtgkrQ+hTy6QXvJE45YH8WI3AIyatpQQsyi1r3SGYd2pKgJJFIRrDtgC42ZNImOuc+W7QXYd4Y7N/Rmmc2WEJ+Jl660jIy3iVCPzL77qOQA0jdNkaAq9IHNiN5zRQ7I0kJHEjzx6FW/8T/fjjX/wAP7skxdNsLe+VJqHnQuKDOK4VOIFZ4+Y13W9XzyS1QoSk1pZ6L/DQnasdyZz/NAfPoBv+/UP4uGLO+Z4ZZ4nISkuvTNFOEhTiXMzTw5J3JtWeNrxFQzLHO956JJDmWiCRG+xvRxsAJE1iU4mVTtM/P1Fz8b6qMT5rTH2ZxWWKfvMzDGkxkbBZXeDmlayE0nWfQaiRSo6m3ZUbRWTkVcIoy/SM+BDEjUCv2hNYv+aEUWUsxS6qZsRlcb56KYmQLmBUGJXpVBK5riJs+MrOjikdZzmKp0T2gN2pxXGs9qi/Vw2GIs1E48J2jg0l5SUJeMCSyDuXu7RTc13hlEiKQnEqpsWPIrijnONxIeAxajk9D7bpy+AZIn1R8GkTPv1UHCTm+u2WADQd+TtXnZsxSZHCEmMZSq5wZyPbupHm+lzaQkIi0Da17rPPz+Or+307TX0ndzzHaxJzPnjAfLeLQYcEckEtrYwgjbavSe1crk4jD3/dDxujpZuemPLDej5J+2IVD95dVTq8rEEf77I5SA4BkksmMQFVO0P9oC+cE1UC4ybdNOFzHXcfbTFnU6QOK9rs7BG1yQ6ClUK+t/dxf9C06D+7lNrWBuVuLg9MbUD1F4iliJmHCJSN2V2X1KKI3vkyh5GZY5RWXjpP0Q3XV8a4M6TVl1zWORiAMzOccHaQoukFOL5f/eDl/Ab7/0sAOBLn3kRd51cA4l5+NT3pGNZtC3u/FPdKkABQH/crKqxvlRiWK7gsSt7vYWF7e0UqKOQJKo5q53NlWgh3f5HNE8AuM1BjZcbhNov9R1QKRV+m0/dtOvIW6dVHNIcr0sbbV4P0EGAft1YTEAKdKmEyuvcaWXBuHur2wJDQhLFeySBAupeS2nczHNPWpGu8LEWNZf+BkB0ElwU/uT6CJd3p61+Zb4MtLsHnNsamwBdCixDzcQ5hdkY+ieHLlV1gGon3I+x9NZUtFNucSMLU0koCmDXhfWl0iQoT21YJHERKjnNk6u39A3LBIfc/Q294xhkVRgn9kkUgu1AcCPWijvPiYugU6IkuibROOQAaj6w0cI18nf4+iR6gxQmcWd+VyC4587/ouq+UckVie4r7DmSyFcMUt1DH4NJquZzzHWLoTKLVPJukNj8f2zrsEXNUI4zQhIjg71m3iQoNq1qr3CeOV7DJvFRwoGQD8T4aUpF0k3djDcpdX2eIIlZlv27LMueyrJsK8uyT2VZ9j83rz8jyzKVZdmO898bnXGjLMv+bTPuXJZl/6zzva/JsuwTWZbtZVn2Z1mWPf2gcyW1r7VR6UUEXSRxZzw3dFMgHkl0e8BJiz8FqktlgSPLutlt1WSJSUkplrZlkUQ9z64cMwDj8P/iN38RAODtHztvaj2kOgrAIonrSyVuPbLUfF7XP5qFLmKetTPHlJpE6yTnYubn4rbl+lPwTT26pNoqzlyqR5JwUK1M4MUVsQN6QRoUOW49soQnr+23aDxAAEmU2hsYZyt+s6c+ie73u2aDxCU8ekXXBJFjUWT93xbTpLhg6Dizqm6JIXDWLdKPqWMB+ghAjCMpoj0hJJERruFqSdtj4ikyvR6oAmoWEg6KeUZbDAhBNdGXITciRTfQSeiKBBQC4l85dEdSOHX7leUM2kC2M56b831ha2xVSjNGoQ7xSGLb2Q3fx1wtUTD7zwRtMQER0H++Q6qVNIY+65pJAvmSCdz605xgah+yNMhbLQS6SKJVyfRbF4GJqonjaIsBOmCIli/WJBpkyb7m0r8lM+MEJLfIM5xwgkS3BUxan0QXSWx/RiGANjN+QgyVk1uTQ8E2fSe3boWRxP4zqr/PO4zd821S3F+72l27bDKXPxaxgFpjlD8AJsVvDqWOovuKaHq/BQbA+5/X07p005R6e8CKl8UrjOtyDokBESNcw9JN6xi6aUe45jrVJB4m3fQnATxDKbUB4G8D+LEsy17svH9UKbXW/Pejzus/BOCZAJ4O4NUAvjfLstcCQJZltwD4PQBvBHAcwIcA/MeDTpSc39WRn49MWeSVYYGdyRyzucKw0DU6sciSW9ibMwsk4KqPZTi6MtCopdNXShcoxx2P6F3GkRSQxGMrA5w9alX3Lu3YdhYAv2mPZxWyTH83qfe5dXT6+OF5upTYWsWhX+6chqVco3lhe4I8A85sLOFCQ+Otaz9Fhp2js7GmCAdRuw0ayznk80rfR2ePLuPJzbFzjzjjehQlP/XE/raE2pI88waXhBSdObJsGpAvexQhQ/QYfUyGtljXXhQR0Ituux5L/w06u4Ijme5cR2SfSbjGeQbmAUemSKhJpOlQTSK3dvmEC6S+eZzNnXtEcv7tBt0fb+jPNzBINDRtem48FFBAX1eqaXORREmEBtB7ACXELmxPzP2fZXywHXJAOZGKWqlgZMPVEvmoxXqO/SCF/pWaXIlBO6X11Ye4+dZk2qdvWdOBzXJHJrEX7DV/Y4LZ9vm33ydZl5Gg5xxe73y0/BAC6V5rqfardSzBv6ic4O7Ict9p1HXR4X3DPU+SSE4IcaZz7A5TEeefu09iHHKuTcS8DusmLJJIoHmmIomicE0guMwYRKqq/b00AZ4qHwouxQSQUG/sa6V2Pc29txepSSS12RRV1MJBEjkkF/DTTbkWZ4sJ1yj7umSfS0iiUuoBpRRpyarmv7sjhn4rgB9VSl1VSn0cwK8A+PvNe38XwANKqd9VSo2hA8oXZll270HmSjfE6qj01sSRcM2ZjSXsjOcaAWpQs1hkyV3cuV5XQLtp6pHlAa7tz1rUEqn+xXe80aBo/b9rT1zdx9ljyzi+Nuy9JwWyAFrCJRZJzMzv08eL2Gw6aGfsuWwjiUKQuDXBibURbj261EYS80ThGocSWwo90TibOwEPV8QO6N9bFhluPbKMi9sT09ybKMZsk9zAhliYRSv+t7XEfJjzSYg7oS+ApWdwTlM8ktgJEucqGCR2M7sxjgW9z9Uy+rxyjtpX13Gqie1jRCCJKfWuHbop9wxQQoSzlPvfnbc0zt5HHiQxMrm1iHUbF0uoLKGrWZaZmrZWvz0m4QFox3BnMsdtR3VCbF6rVpJEorb60B6pV24sldk9ZBWJ7rECHN5RfSe5VvEKrAvVrnLnsrm/CUm84/hK6/28E+xZR947zV6AH5M44uu/9F+vmAyD9oTWcl9PwNRAyv3/ssjY4MhHed+dzPGrf/kwZlXdaoEhifLo+0ScoqU7Jt6TXAAcovvSexzaFkQSBSpz6vPmzlPWE5DAg3Bw2QUP5gFEUH8ff0/G1bv2x7nvk6VoJBzE2gKDKTWJeiD5M5OIIJFalbnJdY5urecTr9SuvzwiSOwK10TVJBYIrfaHKlyTZdn/lWXZHoBPAHgKwFuctx/JsuzxLMt+vUEIkWXZMQC3Avio87mPAnhe8+/nue8ppXYBfNp53z32P8yy7ENZln3o4sWL3nnSpqXppvJNRXTT0xtLGkmsagyLDMMiXu3ScrZzdoHU89H/30YSLUe627PHezwHpXOP79r2eIajy0Mj4gAA3/HKuwD40Yb9WWWcpDNNkHiqcbqSHFC1WJBoahLLQnSsL2yPcWp9hNPrSzi/NW71IExRXHSRlEGgBca8qs294tLNuCJ2QP/eQZHj1qP6HD54QQvskPLcQtnnPOO57o198tw2fvYdn2pq5GCOU3oyfnqeGY6v2GxUy0kWaGV+JJHbRP0CHADntMY5hBIFxe8Qto8BAArhzZerN7PXTXYQYhNAtgWGzBKgwnrOkoRrnPtfZkDIWdPUdhsp9kd//SSe8X1/jKt7bfaDP3DTn3n2Ga0qSP0MgbbytGvjWY1a2Z6HALA0dJB0Dkms/A4oRwkMKUICwj2p/LW1dDw2uRI4YB9JDM9Rql31oWB+JgPV8Ov/f+kzjnfm2KffAnHqpnx7g0CwJzAnUhHIeKVq+5pCeL2TnrlQgOmjvH//792HH/vjj+O9n77MJxc740KMCx8FOqZO3L1uLookGYe2hSjhNM9uTS4QkVzh9sXaf+2knrJuvR07jilDikH8WVRc+dcEju4OyIlhK4B4OEhikTesnMj9xijllylBov5L9Y9A37/27Ylk3RY8+ssj6KZd4RpTkxjqzeVHEw81SFRK/SMA6wC+FJomOgFwCcBLoemkL27e//fNkLXm76bzNZvNZ+h9973u++6xf1kp9RKl1EtOnjzpnadBEoclplUtUjmJbnrmyBK2xzPj3Kdk/y1KKAunuMIdR5YHuLbXRhJT1E2NcI0HSSRKwrKj8Pf9r9PKqr5gb39Wme89sTrE97722fi/v+1lzRzjkSz6vUtGyj/tt4XopqfWRzi1McL5rXEr05UirlM7i5+PjgYAb/yDB/C8f/k2fODhy5jOa5NF44rYAWBaaeSMlOYeaXqAERXI2yfRQyUpPYvkV//rd+Nn3/EgLu9OWwIEXrrXXN/vxxixAw7djpkjF1xSEO+zRRBBM082uExzZKKQFOYZuJ41iW6SBOApMj66qa/eWDpWq09igvOZkjRKtTe97ZMAgPubVjJG3VSghbsUUOrx+tlLu+b9XLgG1CPRVdQ0wk0cZQhhB9TQ9Dr3cujeyphrEKKIAXxtYYxxzcRj2mYAXBLUllz05udJXNA1+dovOovveOVd+Kdf+aze2K4CMRDjJEv1zb4xHLtD//Wudxy1z0G2OaOXuTYdiyCJLitGGic9p39831MAdGLZfd4l4Y5ahYK2vsJ1Sk2iG3MsvN9EBIl9lJpe9w4TkMTae72l5EoIKe3OEQgL0NDxeghwreBjqUrPqb0GfJ/EG1luADh1mw0FOr50Sf8lfyaGblo560TofISEa1i6aVDdtCtcE4EkAsG6xENXN1VKVQDenWXZNwP4LqXUz0PXEgLA+SzL/hcAT2VZtg5gp3l9A8DY+fd28++d5v9dc99fyCamJlGfnlmlMCz7T0gXSZzOKUhMQBJrCgDl2h6X131keYgtqkksbIY8mm5akSMpSxDPa1vL8tUvvA0vv9NmaKXFHwAmMyvck2UZ/tGr7jHvLULlXPKoNPrG+eimu5M51k+u4ejyoNXP0s1+xsT3rkx5WWTYn8m/66OPXQMAvPWBc9ibVlgbWQVQ1pGsagxLjRoDMKIwG8u2vYQso+3fELnzX9fKLIKPXdlr0Z0GntoxSoocdRBnQlJ8GdMQ3Y5zYkIZ2i5tKHbTzvNObzmqYws4MjQve7wwksIJ14RrSXV/0RDdR3+v/jss5WumxUzSnBHOXFGOMN20fzwSSLgRQSI1P/7Ueb0N0O8S21I4dcJ33qLzkq96tk0kSkk4WpdOrPWDRBFJbESyJOPW15jsP4cu1cpfj0Xj+Ocm5Ei2z0kcQtFHewB7DwyY8yJl5AHbHmljaWCSmN3jsZTAYDDL91wNBWDSvu1v+cCvkzHiRlxw76dyCv5Fh+Hx3u/78tZz4uvVOmioqJe2J0bZPc/tGeb6JIasn7jTf31XjUuuRFFwGZqw6//Ic+wG6c2xQsFlztXqhymx+nNSwCEFiTzdMaqXI/OMhmpr6ftdk1BxSze9sUiiuwf5kuS9cc3nLN2038+6ay67xqxb0jVLXEvi6KYd4Rqim4aCywCS+N+zBUYJvibRJPyUUlezLHsKwAsBvL15/YUAHmj+/QB0zSIAIMuy1eY76f2FbDzVJ5ec8llVt2pUyHamcwzLHMdWBqiVVvccFDkGeXxNoi1uz9mNXh+fNtEcR1cGmFY1ticz86Bx9RBkv/yuT+OeU2v48ntPA9AbV5ZZR5KTIHYXhF/4phe13vMFUhpJFGhzCS0YumhnfNGw/jss5RrBWRNcbywPoJRt26Gd3eZ7Ijay2ln8BoUfSbzQKKre9/gmdidzk3yQCqlnlUYbCTl87EobSeSCvZgMldSqg2h5APDY1f3W5uOrSZxWCsMyx1FH7MBVN5VrL9KcJoUwStelDcU7u1JTZM8YJkuokUTvoQyS4l6DmJpEgHre+Rf7rrop2wLDhyQm1AmapsAOapDaAkAKpA5iu5M5rjT384cf0ckZWkdKX+BGrIw8wwd/4DWtpuJlnntr4taXSvNMLreQ9P78wkgiFwDEoNT02fa9HLone89NBG2R5tlF0mNEO4D++uptleJjMjSvcQlcM0eOEhhKrPcCAHrdnzjq9ZbzJEnssbiEn79NinXI7WuGWRaFJPrnSTW27jhpf1sblRjPpri0M8Xtx2w9uphMjrlPeucyHOzxbYnC55+9brXyKqLSd3bvfyBMNy3G0Ln8AAAgAElEQVRYPYE6GDToz3XGBX6fxMoJJ04ZJDEQXMrqprxwjWmBcUjqpiRcE824a87bcoIPGkO3DokUAdROR69XmYbVmzdShWsiWmAAnxt00yzLTmVZ9o1Zlq1lWVZkWfa3AHwTgHdmWfbyLMuenWVZnmXZCQA/D+DPlVJEI/1NAP8iy7JjjSDNPwDwG817vw/g+VmWvT7LsiUA/zuAv1ZKfeIg8x03WYONRihEukGm8xpLZY61pj3Elb0phmWGgacFQ9dMAJhnIq/bpaQea9Clt9x3LogkKqXwE2/5BL79Nz6ET57TWfV5rTDIcxNgcs2sfVkjXyBFwjX8uHg1QxskpikgWuEO3qmj7y7zzFxbEoUp8zS6qZsh8/VJ3J9WRhn2/ic3cXVvamTaJbrprKGbUlD4aCdI5JICMaIwOovZv97UugTQASk5l5lTk8g5CboGN281YPapm8Zk1rnWAbH1ThxFKbkmq/nrDRJNJr87x7Dz484NCNdp+vqSds0g6R6adlWF1U3j7n+7JknOZ1BMKWHTjrW3PXAO03mN244s4X0PXwZgs8FFnrPJjq6YzKmNJRNYAvoeYoNEBwGjZ3ppYB1lrkzBpbZyxgnXqAgkXUa3Y5BExtmNQAV7NO1IJLFfTiEL15h9iqObemiqZo4LJo64YMOP0vWvt9QjrnUsJnERQrKMn9Bat8LBvbR3h2ogyyITnXl6/eL2pFUDKAvXxPTT7NJNYb5XMs4pjxEO4nQBopDEznND538x4ZrwHIH+dQshpRxzIn5NaL8WUkqWwANpfzMtMG4Ak8S1bluW1NINt09i7Jgiy8S91FK7w+JlZmiMAA3QF665TnTTw6pJVAC+C8DjAK4CeDOA71ZK/SGAuwC8FZoiej90neI3OWP/JbQYzSMA/gLAm5RSbwUApdRFAK8H8OPN974cwDcedLL7U6KxWCSRM0IYyUFQSl/8Ms+8TUI/+JkrpubFbCSFiyTym2iZ5/jK554xr/salwM2AAKAX3/PZwDYAFCCw93PcCYt/kC7JrFrKQ7oosI1FkkpMK8V66Tpnoi56fvoilv46l+kOdI46Xc9cU0HeK97/hkjdOEiiVKfxGGZtYLEMs86ARifsfNlTaX6NjdIfKLpy2h6y3mCFE2vznBs1RGuMXRTX32CLyPM1LFEKofyPdEiHMKWIxnOWnNOWgzaw6HpoXNC5z8m49pXNxWQRE/Q1p2fZO3Nt318c6wQkpjFb9qx9sCTW1geFPg5hwFB7SyK3FODnejIA+11mdBb3zMKhNVNubp0TeUMIYl9J82nZEvWdVpjpfw5xctYJDElwWXQd5ZxEX52WEqmd5Z9dCkmuOQSfjEURE6kIoRkcb3sYgIpae8OBRss/a0x2psv7Uxac5Ap6JFruXvdzPw8YxiUOkY4iEfbYltg2P+PTUBwTJmqrr3Ho/WCqxME/P00u5ctBvHn9uAg3VRgoUj7m08Q73qaEeEL+Gldo99h6Kaz+BYwWSbvpTHCNb1zGStA0xOuoZsyhCT6CaWHEiQqpS4qpV6plDqqlNpQSr1AKfUrzXu/rZS6Uym1qpS6VSn1LUqpc87YiVLq25txp5VSP9P57ncope5VSi0rpV6llPrsInO8vDPBM77vj/GnnziP8Yzopg2SKAWJc4UytwEHoLOhg0JGEt9y31P4+l96H17903+OT53fNg+Jr5k7bYbDIsfx1SG+5gtvA6Az3gBfowYA57cm5t8ff2oLAEx/RZ9DWCnZafKNG898SKKMSPWOb5DEVLppc55KOUtFgj90ba/tOXTTlEDWyZBJQTqg6ZsA8IaX3G5ec4NEnsama/2WBoX5LUeWByYI4dRso9pLCJs9UW4BTdernE3SRwuhmkRqzQHA1KX46KZe+hUTOMcoh3briOifIYdEog3FZK3TFSj791eoTnOQkHGlS+ulm3o2e6m5N9lkXuE/feQJjGdV634Tnc+Ak8wp2R7UZlWNpUFumAIAsDJykEQxcPM7aSzd0VGdHpog0VWcXiAg5YK9GCSdcdJi6KZdpzX2cvQc+Ui0H+gjzn51U5nxQvf3UPC4ZOGaUDDbCcAigpSMpY3Sb/AnxTgkK6oFQyLaac6lsC77xLOk57QVJDrnySLi7c/HrOXdgNsc2oeSMmuQGyBIljHBfQQojiJD7/4HImjazL4Yut6S6F9MP00ucRETpPfqhpU/2WHoppEJIKN1cKPppiaZT0nyNF/S0E1j+oQ610NMkgT2e4Ch7kYHiQUdpPn7+YUkfs7bx5og6hf/4mHsz+LoprOqxqDMsDayJ3lQZl56xrsfugRAL0Rvvf+cCTbKPBN53S61CwBONkIJp9ZtewnOITnfNIu/++QqzjX/ruoahROQSs3cRcfOM248q1qKqK6ZvjExohgmSJSdXc5c4RpAQA0qHdjTtXWRRE5+XpyjiyQKQTqge04CwHNvPWJeW2+CRKmWdNbMEYBBqd1ehJyQRkwAVuQ8LXbbCRL3plWjZEZIohykUJAIAB/8gdfgF77pRWa+PgXWEG0lVREP6DtbsYjIIs4WVzscg/bwlCi/g7ZIcsXUG3N9EgNZcqnhPAD84O/fj+/+j/8Nv/W+R/i61e49GaDbSa0lDmKzpjXQmpO4ozpZuSbR32C66xC64wD9jJB4zbJTk7uYumn/eseg1HxNVjqSSJFUOk01QhBDUDd16/K54wD9YANw90WZbtoNtoEFkKzmn6F6v+6tFYtkcUGb7x6xc7T/H6UAKp7/ULAhl7PQGnNpZ2r8pGGZ2/pmBkkMRWBZ1hYTUxE1idya7AYI4jjmOY1PSnL3iHcYmxgLKY5K180tC+GME+WJXUu44MarbhpAqbvPtiljudHCNQ5KzpXASNYNEqOEaxyfMNTbMoq6a5DEBLqp+3lVA8giMuU3g8QoI0SpqhUmswpZ1lY35WzaOMnkGAM6q+lrrn7f45v4G/ecwAvOHsF7HrrkKJc6dNPO0C6thhwSOm6W8cEXBYkvvOOorhmoFWa1DkDomeV8tDoCSQz1SeyN89S2dc0EiUbdNM6R7DvJTPa5URck9JeuewtdZU7KY1f28IO/fx++//fuw7yqe06yhCQ+fnUfgyLDqfWRcVZDSOK0ST4AljL83V9h5d05IQ2336ZknGoZAGw1dNNT6yPsTyu4amu+mkQSrgE0qv3VL7zNvOdTYPU6ydwGFRFILFpb1b0GKmIcTb9Lbw1mn5n7K6RuavrERTwDrpR9mfPiWS6VmDMfKv7hR68C0HV/7rWUas1CfcpSakRibVYpDDtrsqWb6mvNNZheCEl0kne3NqwOSppIa0JIlITrVakQI0DDJS5UsCa36zgtiojoJEn4WO4xyHyIm01AcEhiOAnhrlsxzzYg15v5fp9E0fPNT4/r003jauI6NZAmuJfHSPtbSOBFah3j7ssXtyfYawT/lgeFvJdGJtNSa0lNCYAb3EegNmz9XQRNuys4ZESRIpIynLqsv0ykr4oNhNfyrJMkaSYa9Zx2z0mYbtpffwAPkmjoptd3/e9az0+LRBLpXKe0wHADUqmdXYxwTY/RRkhisAUGZWYoSIzorQgEkUQvGTXLst+CZWmIppT6lvBMPrftyWsa8alqhfG8xlJZeIMNen1Y9Ommw0KWjP70xR1840ufhiu7E3zksWstypLE66bjE0TffeC4hQfQCzcAvODsEfzeh5/ApZ2Jaebso1b66mZ8gdT+VK5JXESAI7UmsVuTJWX/XbopBWGt3k7MuH/7ns/g33/gUQDAd77yrh7dTlp7Hr+6h9uOLiPPM6wMS+xNK6yO3FrS/ph5c18BwPe97l4oBbz2+bYWNc899V++PolMHRFgaxLPHFnC3nTeoo75rttsXvupXlwWGYEAjEOXVIQAjVjHEs4Iu9cgBoHk6JU3GkmMem5q66hwjp1SSqNLgSCdSwBVtcLjV/Qa+dePb5pnsoUkdp3PCITiegvXzCudBFp1GA0rToN7oI8cBtUkJeEaIzqW48wRHSRe3rHrCbcmhBxCjpIZV5Oo/3bRvfD93x8DRKANeR9ti3GQARlJ5OZq15/+97n9g9nj5W2VwDR2gf3/GCTRJybmrUlkardj1DX7DAj7umTS+Q/RFos8F2vnAc1yubg9wfntsU6SF7bVAJfwiwtSuHvSM4ZB0mNQmyyTETrvHDsJ15hAFtB78HjeT6bF1Ptx7RRC43h1U/8cNejAXbe0IF3/P58EPawWGG6iMk24Rv9NKXlikUQh4e1N5nfBoli6KYckhgJL4MA1iQ9Bi8Z8GrpJ/d8BUEAL0OQAvgbAtfAsPveNgsSre9Mm2MlNkDgR6aaqhyTqPoky93kyr7EyLLAyKrE7qVqUGZHXXemFlW4e+ku0SgmRmsx1k9bbj60AAM5tjk3W3FuTWCuRouGvSayDwjUxDylt/sl005qCRJ5uR/SYMs96wjVlIT/YQHuRuLY3i27S+vjVfZxtJMUpOLTqpjw9o1bW8fnOV96N73pVu1MMJ3gTVZMo0Ia29jWaenJthL1p1dp8fAJHMwfx7FqW9bORMVLmEpIY49gxifUIatniSnqp9V/c/RVy0Og+iHluamW/Z1D02Qz0FeFemv3Xz2+NMa1qPP/sBqZVjccbGjUJdXV/F2DXsUVqnRY1er5dCqKL3LvzItOBmx9tYGn5jgP05feeAgDcc3qteY1HwEPUVo5aFuu00mftuDhqWRs1o9fDx+srqfrHcAqsgL92zI8kkiqqfH/psao5rn49qgdk4m/TtdTt1+rA/a+PxQeXPicS8NBNA3N0P2vGhoLETFj/mz2RWmY8dmXPURLuJ9Lo2CExsUwMgOUxnF9i9ugQ3bRzPhTikiTtREL4/AN8YiwU7PkEh0LjFg3SObQ5JgERK0pl/IobXJPo3tsp+00XqJBigPYY/df11RcSrqGAm85ldG1hE4eQeE19CEiiUuqH6d9Zlr0NwFcppf7See1LALwxPIvPfXtqU1Mzn7o2NrRJA4l7kMRBkRknBNAbVlnk2J32Ocx1rVDVOrBcHRbYncxbMtkSr3vWKHKSfcNL78AnntrCd75SBw8s+gJLo6LaRU051Zl2n0hF5dmk5GywwrSqg8I1UaIwPSQxLfsjCdfQ/xZ5bnpOUnLAp8gG6ACY7Ore1Fn8ci/d9OL2BC+78zgAK+oy9AT3brsTyfhmt2F1U0m4Zns8x+qwwNpSif1Z1cpsSmIHNFe39qt9LD6LSfOXjGs2HJP97NK9XPVNn4l9Er3H6t8nSvnPvTSucu4jdn4eJ7lrleMAcEFiiNqq58ivCY9c1iq9X/rMk7j/iS18+qJWZ85z2fm01BoBSbwhQWLdQ5YoaSQGs3VI3ZRHUuYOC+QVd5/EB3/wNTi1rhFFqY5rXiusRMmft++tcPa/k31GpEMo3P+hqLQv+BR2/iW6qe++9CUX7Vop1CQ6Ca6ySHPk+6I84fVHcpBTHfm4msQuJdl+n2RBJFGkhUvCTfr8nz26hI8+plW43T65QD8ho7AIlbm5boF9o3u82FrGXpAYkxToJHgNkhhD706ku4uCQypcOrBITWLBJHjj6ab8HtAdm5L8PIi1Vejl1mi9cc3nfCKIXXOBAxFJrCPuya5YnVmTY4VrHCQx1CMRuK41iV8M4P2d1z4A4BUJ3/E5a0S5m1Y1zm2OtbJkc7G8wjWFRRwBfVMN8oyF0d0altWRdshJSXVU5mKQMm/qbMjWRiXe9IYX4tiq7k8nIUREoyJHfnc6x8xFicRx8qYozZEKe91z4Ron/y8ZOTqL0k0lmnA3AHv68RV8pmlFUuY5K/5ANm7qVAFgc3/WylK6VKauXdmd4nhznf6Hu08AgFED5YI9ovBINE6ADy5jC6K5zN3OZIa1pRIrQ41u1871p+vNXYPJvO+Qm2MJWUwgJArDBZdx9X5dxxqIcAjzrkPSvB7hkPSofREOAtBBEiP7JMYkSlxnlqX7UmlD4B7hnlGqb37FXfoefvjiTjO/3Js4AnzOp5xcWdS4IDHr3MucSqCfAso7M13hFAoQATlxFw5IGUQkAkmkr0wNLnvzdLLh4XHOMBXn/AN96qivJi7PM5b+BrT7VHJWdp7TyPi31zogLknFOOQxQSJzn8wDzdW5cZZq7h8D+Oqk5PMo1c4DwK1HNJL46JW9Vlsud16ADr5UTJDC3FtAXADcVpwOj+u2O6FxQeS+s3bFJiW7CDDN2V+nrP+yYjKBdlLdyxaH+HMIsJ82LYouCloJPq2D62mxjK+u0ed8IojSGLdOX1KkjemT2KtJjKab1vZvFJJ4/VpgfATAT2RZtgwAzd8fB/DfEr7jc9ZI0RQAHrmyi9EgpiZR9RySMqcWGFzmrQliityIKVxsalhWR6UTpLTHUZ2NZJJjR84PqWluj+eoKmVqGyWRinktH09CDUIbtk8lkzs+sFifxDyzc+A4/IB1Hu44vmLahLQpuP3vHs+q/4+9d421LcvKw7611t7nnHvuvdX16mr65Wrc3XQDbTcCxLOJTUMEthTkOIEIS8QojuNECkqIHVsxWIqFJVs4TqQosWKTOH+sOAgpOCFxlETmkcSY4E4cFAgY6AYaupuuoqpuVd17z2PvvVZ+zDVfY445xzf3PdWpNndKV/uevffcc+6155pzjPF94xtBnOKVBwJJrDjbD6/3uNgd8Mwd5yT+e3/og/jvv+cj+MJnb4cxC9qokWcD1Bww99iut1RXUz3ZjDg/mXBxvc8kuZs5iYd6TqJm/MTDvjpF9bstsA9tmaS/ENfDj6fmvzR2xmiQx+d6kJS8lte6jmqGbkcJjMy51xCKYIy356jtCS+tubsfeudbMA6OWuY/yzI+6zS2m0cS9/PS2IPWeR7KeVpiMq2cRFVwpYEkWk4DgCLfiUG/AC0nsd2vRBLzz6v3k44sQ9Fb31usE/fYFqDRrn8UfVPnKIICy9JWgwzzLL4bVzZgXnLqOhW4G0qaaioc1h6vL7hVQ3ssWuxYuf7ennn7mo+7LMjUzeVewjrp0klhEOBacAWwaKr69egVrmG3sWks1/++EZR3fco9wfez1tYxqRuanXCYDXVTC0kUnb0NyrLEjm1xP3M2aK1+tmz+PUwJqlcf7vAPP/5SUTsbUJztBFyotaLuMF0CQwjXzAcb2gZuFEn8bgBfD+DVYRg+C5ej+BEAn/eiNYBzAp5djfnffPkCt7ZjWCAW3TRtT98+cSUwlAjJPkGyfO2uF193Efpb20mNBgNORdJSrdTWcKC2rk7ig6t9ZqTURCrmxiFVjQYbBuFGHNitFvngbSRXNk+TjPQMQbcLKrHu9eefOQ+vuRs7fo5sl/sD3rYehvcudsWGoG0iXsTimRVJ3EwjPvTOWApDM8hjnk07sbkYjzBkaonbPgfm/GTCw90BF7sDznzZgIrD7ea6VJHjNpLYjkjq9B/rYCsNZIBAN45AEjXkjHFkVSSRVTel7pv4OVpuYUAMWihpZU94+cEVpnHAk7e2ePr2aRJcGU3jsy6I8cbQTWv0w7os+WzQvep0fkB38GvfzRTJURERzrBz743POefGRqR6c9tiv/S+4fYfoLz+Qbim5qRUHO7rhO7bHG9930w4275fNyK7vi4RSMBCYPTr0QoK+/Hkb+0/r9Zqe4lFi62tf38uP/fEWdhnz1MnUaBm/hModdNOB1gLsIf/N4bTEGAG7SxtLntvBfQzf56NEjyV382xV/rOUhYV1wJ+luAZgCLgUctJ/FyVwEgDlRtlj6z2W21JP+3W+fvtf+On8Z0/9DP47TVlbRxi6lgBVISATNueB5Iz4FFKYFB005Pmy7STuCzLry/L8nUA3gfg2wC8b1mWrzu2eP2brT28PuD5Z26Hv8+2UzDUa0mr1wrd7v1vu6PmAwGRnpGK3bzw2hXOTyaMYz0nbq84o2mrqu+tDuH5yYRhAO5f7bMDqCZS0aK7jBVHyhJOiflYTAkM93hMCYyUDy77xXIj7nUv6OOfqyWIA0659fbJBnfPNrj3cBeKO3tqgbaHeOXUp2+fli9CN8j9wduu23bc5m8ZrrdOJiwLcO/hdaANWTmJrehzgQiS0e6StkXWNlOcRMsslOqmPQIQUvCGyX8EajmJbUOXOUwPczTUa6qJ6WfWxqsFPJ46P8E4Dnj2zkmouzoNQzVwZKsmvjHCNX6vTINAbrxKbg9hpNWCK4B+4Nf2BLZOogxcMIqEgAyUMEGS/tw2oNyDFrIPoF1/99grcLRf95+aQS+DAkz9O0ARTpkZsY/1vZlzQyp5Kk4blZM49/1utfPNFK4ZK+kz63NnmzGccalwXU05l0G3ex3gsXL93Xjta3KcuEt5r1lj+dfV37uTSgt4dM84S5XvxqLiaVsWq9zGOqdKAEiurVbw+SZbWHMN+1prh9ld92Hwgjf6+fvgao9f/qxLvfj7v/iCG2sYIk2+Yie3AL4iNYsugeGFa3pLYNwc3dSNuyyfBPCzAH5rGIZxGJhZvPnbxe6QGRW3kpzEmpPi1B3zr//80+eOHmPQTb2IyQuvX4X/t6icbUW8Sk2uVelvGAbcOdngvkASR2URe5l8C0lki6b61rMp+M/yBw7LW/e0MY8kyN9AUvve9kR03qxNxCm3jnjq/AT3Hl4Hx8IjkFof7yR6uqlsLSSxNyfxGGqZb16W/3y93i/dvy7KBlQRyEZOYg1Zak1Tp5vy6qbeMGCorW68440tiaQwBqHsx0Tx0/e12rK0841T9LvWtDxZwNFNPSL+1rvxvrlztlENNMBO0tei+I/a9klO4v/yvX8Av/QD3xpeq0nJM3QvXbgmDzrlffQ9waS2VmijjGEHlDlg3cJN/v/EWi7FXYw5Vilp9RIYfqz6/tP63fKgwLzYwSZAc1IYJz13SF0/G8mtU/v6+nH53kYwp3H9WzmJJ5sx7AklkqjN0Q549OYWquwOMigptyCW3q1/t3Y/FUlc+gNH7m9rL9dyEpk8ZeUeNfaSGr2ytrYi3fRzhCQOfU5iqjFQ238AhNqgAPCx33h5fb/7W6PJz8a9BiT2RTfd1AvX7GM/qgTGDdFNh2F4xzAMPzoMw0sA9gB2yb/P+3Z5fcCTt05CuYKzEy4n0RvzT527C72ZRmw3o+pYpnRTX8frxdevYt08xUDw428NeFrjWacO4Z2zDe5fOjVV/1na5s8iGzXhlJuo9+bfc+ukk266UiKiYS2Ea8QcU6GJFEms0U3PthOevn2Clx5cZxGympMekMRz3UnUkthjbmebbiovozOACNSsZrhOQwhWvPzgOjjoMSex/A2c4pk+lra2KNrQWFJWqO8m6EaMsp02T8rYCusknSNnEAI1JLEWXOFzEtODXFuTLJKo002vQ7Dj2TvRSXzmzoktXFNzgCt1Ox+lpdT8k82YIRveadACXBYFVM+Jy4NOaasqThPlNtyc4nPHrH///27hGvF5bD9mjtY6aZ0dteBWUwBCBAWYexQ4PicRyOmmziBv9xuGslYuhyRKcRd7v/MfWdsXmsI1yhrxJTBOpjGk6vgzxH+e5rRRjpQIdlj9amJiQPs3kL81QAYl5foPomDNbmrwzl7HtfumTZNXz4Ajg8mHuU2b1ujufs7jUPb1SNsbXQJDq13IgA5poGYzDkUeu2/XyUb9mYRu6h/rpco6fm+2BIYUrrmhEhg9KODfAHAN4JsA3Afw5QD+OwD/esdnvCnbsix4uDvg1kksivzFX3A30Jba6qbuPT/xZ/4gfvbPfxMAYDsOqmOZ5pv5PMEX70cksUrbUgRy0lYXSYh0wNunm5VumtfAq9FGW7L1gBJpIlUaa0bhJ168Hw4DP6fTTrqpj8jVUEs/R3+DPpcgIq1kY8AFEc62E567e4oXXrvKKFK13E5PU67WjlSS2P1aa9KLtYNtsRVAa7klTvF2DHmyv3P/KtBN/TWpBT1qm52kcQJ8tLuQTSe+m6R7MUqebi79AhD+Ky+iH4skpuMxlMz0fa2WOgXammSENLToM5Cr9HqD8GQz4u7ppm7ELPl3KMfiixuzbX+YcVKp3VnNyTIct7GGJDYCOjWU1HRIVTo/g9K5x2MQyGMpgb05iVVhNuPMmcZRdVIsg1cGBTyzxmrSAViM3C83lnvsFfPRauXOhJNYQ9taww3DUNBUAZ+T3nYA9HSDdf1vRrz1Tkk31XI7AZgCX4UoT/J8dY5KACJek05Hambp1vFvH5Sk6isqQZK2kIkevD4sRsBPAQ8oUR7FTnC2VaNPJQDRqvm5XYVk3ogW2AN+b+lEEtMczBaSeJUIXr74usvT97a9RpNna3dm8wxIokU3lSUwFjIn8ebopl8H4F9ZluX/BrAsy/JzAP4EgD/d8RlvyrY7uPqFt7ZT2L6+4vmnA5W0LVzj3vPk+QmeW9UvN9NY4fB7o2II6OFhXgKqWKNttdRGXb9SWc31S5DEU083jZ+lRTospbN6raV2Ll3L2P0nv/06PvrXfgr/2U99ws1hfU93CYw1+uM3JRml2ok5PpMgIre2U3UzBoDLvaObPvfEKV54/TKjSGmOjZtPW5TkJoVrFnComXb9Q6mUdXObl0gbapUumRuH1DSU65GJJGs5IsvS3lTdZ+bzpOk/0kieiah1xSBhkcT0NziIPFnZgmND3ANp7lSLJdAyeGuo+MPrfVgfb1v3OZ+zUau5yqz/G6ebNoySqMKaX0vLcashKVZ9v2qeuFEDFSgdAFY4pcxJtI1d3bBudlPQHo7GBihOkXHm1CL5acCz1g+I95tVV843GWCZl+PUZemcxE76odaPCW75fqWzYYiSVM6N64MzRrfTiPc+dweAU/72rUbJNAMeRwQu9FxeIihZcaSsH1wikPT1H/TrzwiZaA6HmTpQ9AHx3fop0LV819Y9upn0XNdHbf/x3/8VvPfP/z3sDnMI5qcgACue6N+/mer1FT2S+OR5ROP8/zVVYEq4Rq7lYDhZRpCPXvfmJHTY2G4AACAASURBVN4ckniAo5kCwL1hGN4K4AGAd3Z8xpuy+fIXt042+Ev//Ifw7V/xLnzle56KdRI7SmAAWNVNtchbiSQCMfJQu9GuD/XcLyDJExRDHhIaw92zCpJYQxsMZKNMUI4Rm2Y/5bq8dN9FYH7s5z6dzeF0M2IYOkpgrIddrQaPpPal3/FD73yLkZN4wK3thOfunuGVhztc7qJxL/PhfGPEfGoGk6UkpuV/UQaJZriuEXZfvxGIUubB4TaQatlUZ+/I4sY96o6Bxr8+323sJvO3xjp0GoTaYW/WSezI5U0PNu2gD2qjRkReWyPpvvFFb7sLIC8bVKMotcZ7I4RrNDEx3yKbIX9+P89tx61iJIegnyZcUwncmeqmyh7Ul5MYn6PW5Fj2ST+vNV56SWYK7dfPDubMUYNbhjMlgwLzbCOCvp9EiXgnPT7H7FuDZsgTAaeauinlgCnOhrUml0VjvazrfxrwbR9+B4B8nzoGEfTj5d/NPfbSTSlWiHpOEdfRjyeDku1uhZowsOZEE8EOLTDfdNzEdQT4POUi5cOYo8aSAaJtobVaaZtHbX/nZz8JAPjHn7wX9ppxqOdNai11it3+o9ugV6sd+K6nboXnnlrTizTmVgzU1seW9V2juqm1KIVwzQ2VwGjjjHn7PwD8YQA/CuB/AvDDAC4AfKzjM96U7WJNPr21nfDBL3gCf/XbPwwAGAf3IzF007SdVJHEWHz5C544w+9962184sUHAVWsHqKHGdvmDeoeZdQmRRJvn2zw2dcusRnHYPhrIhUWbbTmyD5KTuJrly728JlXL7LPHscB22msOumyRSTRoy/5WP76p9/t3/zG9+EdT95ykaZKxG5ZFlcWYjuFBP3APx9zGkOKpIacrAa6WuYMrK8ZTopmWDCbv44kLjjdjrh7FreDIidR+Q0OjYNDQztn4tCu1YBkapsB8d6hjd3CILGNLS3/iDEIN8ohJcWUyj4dOYkJTaqFJFo5iTUEzM//S97xRPF6Lf+lNZ5bjzcbSd7PdSXoGEnuQxLrjnOdPZEG7tKXzTqJfg8Sxq6NUmMdL3cuGYM8DcKxNpsU5qGQxAYikr6uzVFDnNO6oFpTkUTGSRTnYs/+04sAa/cAQ68fhlIkZ32l2U+jwLHqmodlwZh8vl83p5sR7376HH/ru78SH3pHWuIpD0Cw7I4SpfP97Dl27+VJMGcI+/qC0TCu43jumgSH1LDJ1bqMhJMO6MI1TVZIsiaDIjfa1wOolGUxUPjavX1oBOBqVQAetX3pO96Cz7x6iZ/++O+E4LlXKQX4gKu/ZjUhSiACSO9+6hw//6nXAEQkUQtupUI6tTbKeT6KcM3nGEn8LgA/tf7/3wbwEwB+HsAf6/iMN2WLSGJ+OTxEzdBN07YZR8xLecOkdNNhGPAdX/luAMC9h077p3aj7Q+2uimg0718v+eeOMWn711mZQs0ZCnC4Zazlz9vilQ0jN17Dx1F5ZX1OoRk42FYHW7OcvFqXzX0SxNI+DPf8gH8sa/+PQAUmH9t14cZy4KQkwg4hza9jum8W+OlTXWIZvZgKw3yXtTMN5+TmDqJQd20gWS1jOuWuqn13Uon0TaaJN2LcUjdPI/IY/EOqejHXH8gv5Yscs8cps64Wec41nNC24ZFJZcuydvzwjVf9u4n4zwVR8pCSd8IJHHX2CvrEXmbtqgKdzS+n5aj5v9mDMKyTmK1C4C4XqWYBoNI5XPkgyulkmd7jrVIvhVgrCEOFt1UGtdpEKXVxkHmGx+n3MpekwLtgW3IS5pkRM3seWqKiy0kfaqkHMjUiI9+8G0h5cbPUat3SOXtdSOCKObIBiXTMXw/Zv0D8cxnlVtV4Roj2FGj81t5gpO2J5CBI42Cy6D2qjJ/7b6e6s7XozQ/3AuvX2WBoVoJJK1lwjUNgTWPJL7n2Vg+L9VzqFcBIAIe0km0lEqLOomHz21O4rIs95ZleXn9/8WyLD+wLMufW5blM+xnvFnbw2vned/alhdrUugBgDs4WnRToDTsZHmDb/7i5wAAv/Dp18JY7rPzz9vNdQoV0MoTjDfIh975Fty/2uNXX7wfNv1JMSStvCWJ2Mh+x+QkeucQcNc1NZy3U91Jl83LFtcKtbaKX6dzlBudp5aebka8Y1W//eTLDzNqH4CComE5AFoSO+OkqGUiFk5dU9vsPAUuo5sW6qalYTEvfQ5A+LPlJA7l+vfPt5pEuOmotZhnV1Hwol+7o3bYSwq0bNuKgaa1VN1UE8Sw6J+AgSQm983Hvv+b8V/9ya8W/cr5APXfTtt/HrXVAneAEqFdm+W4jaNOt9uHoJ9ONwV0o4lSN5VIYrXHOl4V3W73kygdH1wp8/aYPkB5dljqmu4eVZgMhsEr9y6Xw9WcopunuAcYIRONbsqgq8Og7K2EIS+de8aRAnRU1kISa2eAlT8vz7fF2A/CHAe5JrngYvpe+f9qP8WeOYbeHc5tazzVcWhT0AE9UHIw9hLpyPp59geO7IBTQC0Ve7IFHOxumEkCAK+vzLQHV3vMczyXayWQtJaWF9k0BHZ8Xu6XvD2ya8J4CnPrkCCbtVbYF91I4hz7MSUwbgpJHIZhOwzDXxyG4deGYbgchuET69+6vv/nUbsMSGJ5QZ1BXhehOdmUl3BbQV9SuikAvPetd/BHv/yd+I/+JU9vde9TkUQmYqo4bj5f5ve909FAliVu+qNiSFpR3ZZCmpuLlQ9UXst7FzHZ/XI3Z1L9PZQEH/2pXf8gWV+ZY01d1q+Ps+2Ed67c89965SIgKnGDrDjOjfE0Jc/0M9V+FQeMiSKrAhzr+jpPlOluecXdmmGdoL21sYp9laCA6hRcPifRXxc2sl4UBacMO2+Q9/UDysP+ptVN0zyKOt20/hkaAunGz+XWn71zmsvda5Fu40CcKsb/o7SWErRG9wUIx63i3BzmGcOg/3a1ckbHIIlcTlz8/NCPdNw0cREmULLPxiIM68b1N4WDlPVvCneIe4cVrnGKx8k4DJJYQW04JLHPIAcaNHmL7qg5AEs738x/N7kHRSXuyvlWoM3ukQl4qOyORs9aoDydvzqWGvA7ht5tn21+npqd1kJy/eeqojDNgGsZOGJR8QI8IFFLDaiol3e6eSYJALx+5UCH+5d7h4CGM7GNJP7FH/sFfOff/Bk8vN4HwMH1q8/T3wNfmCCJvk2TztRridb48fx7AYAvgSGEa9gSGDeYk/iDAL4KwJ8C8BsAngfwFwA8AeB7Oz7nTdcurt0PfUspVVCjusQoWnnH+U1TIlkp3RRwG9F/+B1fFl6v1ekzI0YSnl6bL5IOOIc0fqd6ncTooLWj3d3Uyoaxe+9BRBJfu9xlvO3tNIYEeat5lbYp0E0lkthWYK2py/qN4GQz4omzLZ442+C1yz3e8eRZ9t2q5UQqm7KWxE4hiSpFicuJ05FEhxKlhkJEEnWlWDPfUo2Qu0dLSKAUVuAQQeAI+k+BpNiHqO8no89MP/n9bHVT/fprzUVN4zi1HME2/arcR4DjZPIZ1b6bTkmp5YkDjYCH9d0SNDc9InaNfnpx78WmSCr9epCsYk0SqsAS/XKf1+6XOrPjOFDqyr7fMeqa6r61tGlbMijACtekdC/vjL1hOaEKvZtDsvIgVRROYZzLviB0Lbgi7RnZtDIpfg7tOeasnJ46ifl9wwVc3Rj5eGxQIJ43+fOt8bTgnRW8qPZrOvfxfb5xiL8muGXkJFaYE20kkWeJ9bT7K5LohBpTRLAeSACA//If/DoA4Kd/9aWcbjo2hGtW27AGMKlIopm36u+39Qm6BIYQrlkWjm46tt3AHifx2wF8eFmWl9a//8kwDP8XgJ/D57mT6CFjDRXUogFAm2rhkUIpuGLRM+KGpSEp9fnXoP79PON0pdCebEY8sxaCj0hivU5iuyaOVoPNlrsHdAP0lYcRSXztYpc5IF100/XG9je3NKwjksgbdunfvt+7njrH//uZ1/D2tzhUsS7/7GgkdSSl3FSjAmjtW9aRxGPyIdw8yyCEz8+dxmGlRNWUYmsOtx6xBtqRZM2IXGBTOTdiY/UfYZmEg3BUmOsIeOMu78ciiel1odWEK4fUqw93eO1yh3c/fZ7ljUzjUAhuMZS0WuBoMQzyWuDIUnFjlObY5qnqNlNA7gvtotStfla5jfRns+6ZtN8hW1sLJVsPlI4D49zI/EfX7L3EzdMJd/BBkvKcYoQ7aqV7mJzEfuGadV6LFyXhnG03pxyRsoaT+4+cQ32OuiqziVwqZ4BF25180Lt2LrbophqSSDhEaYA97FsMAt9JnQ6OlKRkNmeopDfMtiML6E66C6YR16T3d1OvCecA9zr3LUHD2ne7dTKFVJ6bbIFu6hHBdfiacJls96/2WYCnhSR6J/FkGvE/f+8/k/0etTPRCghE5F4aM73CNQd7QQLA1CaD9gjX1EYjZvHmbruG81BDEq8FdTRtXom05qRUOfwVuqOjP9TnX1e/yg/FUN8syUmsJ9YaSKLhSBV9KpQVIN7UwIokJlTGbrrpOITvV6V/Gk66doimr7/n2XMAUcCj1s8SxKgpeQIW/1+nqTLRfzXgoeRE3DmNFATtHrDoxVqEnHJSKtfE/G5iY2XKbQClo84oCwJaMWuunxSOOBiBi23Ib9YPqW/8az+Jb/jBn3CfNYuDrYYkGgGgWuCoWbuzSoeyjP+bMxIsZKNW85OlgKqFohtIuuwT7pmWSIgSTFvAI3uHDIEhkQ1BmwYxnkRu5gWUQaIHGO11Ug1uGXtJOkfGQAN0VgKL5KZLhEUgtTJIvarMrJqzljs8N9Yx0KYSpq9r/TRng3HANOXWZnBRsZ0Y6rQmFthD7/bdWCddzS082Ai3Rks+GL9bELNKr8lsB45KKvP6PHOvidu0Fcg5P9kEPZCbbN6evH8pSr41KMnpc8FJTBDIWrqHdxJPtyO+6G138b7nImNvGsv6rhb66/sBiV2ysHRTKVxD5iQadNMeJ/FHAPzYMAzfMgzDFw/D8K0A/u76/Od1awoQVNCXWCNLcSwD3TTvd92gqALReNOQFIZXbylLPXPHRQzONlF9qZc26vvVnYbad3O5jLUb1NMbX7vYh/eMo5dJ1m9Q2fzhWsstDDmhlTnWi4L7a+J+oG/7sCsNemdVA9USxAGsdSrbv1u1TmIzKKAYFgQlrRqRT2jJ7183uY+879msXzW/rTKkjnauh7aREye/m3PcyI3VCwl4QbBOdHUh+gAlIsjksfh5zprj0LhvAF2E4TAveHktXr0/zBmaqdJ2CUra0YpslTXSjD6PJW36UZp3OOtMDT0nxQzm+PtbCfr1lPyh9laFNkrVNlPODhY1mMU69s+3x8vXJRtcqSHVTce5yoBooxsyKGDl3vmmiZKw118GnKjAXRHMYejF/ahZbTxauKYSdGrtXVnQIszddrilKJLVT0sViY6bfW9nCDyREyrvb4bK719flnw8i8oPVBDg2UASgyOb39/U2lLYBa0p+utf1Io+1PfW2ycTHl4f1NeObZe7Q7Cz718dcnXThgjcvYTN9sDXEyeQRM/WOZ0Uuuk4VlLH2te/qOcb1E07hWvYnMS3f1nz5R666Z8F8P0A/lMA7wDwKQD/NYAf6PiMN2Vr5apV87g8AqAhiT76L6LkJt1UoQwB9qHRokmmC/JT91wdwq/6wqcA6A6wvxYWjaFwpAy5e/9arSj707dP8Kl7F3j1QuQkbvqRxJqzHZHEPoNESvl/y5e+Df/5v/yV+Jr3PhP6AHnEzn0vI9emgggCBNp2RB6L9rv5efo1+8N/6msxIOfYa+pekRKsr2WZ6wR0IIkKAsny+P367VE3zQ7Emc9JlMIdTD+5n/g1WzNKWnkUv/LC6+H/L7x+VSbbF8Em1yxWQomYtYMrQD0Hsu0Q1fNDfGuplZbvre/JQFk3zzcrIl9HEucm1Q5AJSDQUiSMc/LNIVLVLq6fQvfinJsKamPtJeLMsSTy034aImsjzuU6MUsAiKAAiyRKh69H7TL/3WznfqjcNwy9OC93Qv5uyrW0frtWkARo6RCUVEc3d3uOGUpKpGBo678rt1CyQohzw4/hHvPPq7XUudwkjCcGXdKCroxwU2/gSMvTB2x2E2DboGk7P9ngky8/bE+msz24ciji2XYM6qZ+bq2z9JXCSUSCJNbLsF3tnZN7ulVS1UbleixtfRFAuZasuumxJTCe/9rmy00ncRiGj4qnfnL9NyDaHB8B8OP2TN68LaKCek6injTvD/zy87xRI50bnm7a5wDU6vvJ/JyPfuA5fOLFX8NH3v/Wde66shpgR7ur1JNOtMHP2zuJmXDNOOCkIyfxsLhrUdSZWduOiORrCqASARiGAd/8JW9LvpcfXzE+O68Hg4Clkvx5kVz7oLHqjT19u+SnyxwR3wfgDQSAow3pYj68uuksDm3G2JX5KLQAR6dBDpSBGba4uva73U9o2p++d5FdJ00UhglA1GijgH1v66qhrT5j00n81L0LfP1f+XH84L/4+0NN2VaLJYYqyEbYX9N8p4UuS6EJg2lMEiAJHCmGfJMlUDV2+5ANPza1/gWS7uZooA0Cue+hcmoId1OAZhpCPbK0sXTTkJNoII9hjgLNZdCXWKcyPkc56cr9Brpf1mWdR7NbgRIBbbQHKANwvvn7qHZNS+Vcfo56PyJQXjhE3DqWlGvauUwCCW6O7X5pwMkb39Y+6fv10uR1xV37HpCBCyq4WwmktfKAz98AJNGjiM/cPsWn7l3gOsk3lznKaXs5EU+8f3XIAlCttIjrJCdRNu18c6yt9nco6aa9JTASdVNDlIZp1if8F5Xnw560/v/3PvJM/n9s+0MdSdQUioC4iWk3TohYi+jDrjEOUHf2rENKM0j856Q36J/7Qx/Ev/EH34s7p5vQr4YkWhGqmgPQUjPcVIzC/bzgmTW/77WLXYh2DUNfTqITrtENJve3/26tOZY88nBNDOOzV1q/Ke5CGJJeNML3Y6LdOnW6LsABOGS8pBfP2Vy0ORbrOJlHrenOJU//8fPkcxKVEgC2HYlJoKvM9dfGs2pk1ZQFgZgPAQCffvVS5CRquU7u0RSuWeS+ZQdXXL/8uTSKq/dpI4mfePE+AODv/uNPUU7i3kISA90omeM6PEMB1Sj21p5QrC3YzjYgjd1++htAUsskkh6iK81uRc7lPNtov59ngSQaTspYOYMt+qhGCWRA6ZBfGOimNpW2VricctrkfUOgPcNQQ+n6nQ3LmdIEUACYgivSTogqpcaaHGr9Gn2UfZJB4CN7Kz7H5CRKJD06Uu3xJJXZfwblJCr2nRXwk2OxgaNuuqlyHV3f+pq8fbrpchL3hxk//LHfxHd85burQIs/A95ya4tP3bvA65f7eCZWQBgAIW0DKOmmm2nAZUVh/3rv1LS1fUhXeOdTB8Kex5bAkMI184HLSTRa00lcluULH3mEz4MWECbNSaygX60Dv4YkhtqKhnCK5oA1o89VJDE3QLfTGJwxAIXUdPoZvYIrj4ok3tqOmMbB1UlMok+bacQDciOJdFP9Olr0GECnQ9momX79TdU+jVq5PrLIsZfkZwzCVgmMY/LN/Gu1OVZz4ozDphS8IYw0EZhhHKIwTzEem5MoxUXYnMQeJLEV/fRUFwD4zZcfZhFwzahgKGkaAhl/65ZwTemUUutKoT8f26ycYw0RYYNiQHl/t4Irmropg4iEvGiBJLLrv5tadgRqkI2XOGAaE0c2dX1ZSGJr32rMU+Yk0mindIAZRGp9uTv/S3XauNy2fYaIu0fr22m0cItuXaNp9wqz9cxRXkf/fKvJ/WQhgivht+5khUS6qe/DOcAa64hZl7UzuL2/5nPz82Xy+yUiDlgMlDintLXSNxySyAvX/J+/8Qq+70d/Hs8/fRsfef+z6nv8GfDkuRNjefVil9iS9bPU01S304D716VwTS2YebWfm/b8Mfe2P2fDGcCWwJB003kPbE7r7ydbj3DNP7XNI4naIVdDv9K8uaJPRZGQzUnUI4u2EaM5RVauzbHCNaUhaect1erNeGPr1nbCxe6QbX4n04DdnkMSvSS0pcbWuiaac0OXKZDXnzCSl0UWZbcjwlowgc01qCG5bSOhnpNYV3fUcwsBxkkpHWfG2AXyPCJrLN8vPxDf2JxEec9ZlKFhGAqRCt9SCt7HX7if3TcabZQJQGgIJJOTeJwR0y6B0es/BrqpUsoI0CPJzH5Xy2Vp0SQ1Y5BVdywcN/Drvzcnbhzz8ybuP+3x5JljyfGHeSrry14n9TOYKwIf85SpOoniuzlno91HDwqQqI0SFGaCAvnvls+j2U853xj7oqiVayHAo+4kHsXuAHcP5Oq+XOH4dIzwf6ufcIp6HOC0n/9/S7gJ0APzVn1RtSwLOJRau/7tc6N/j7x9usHusBSlmmrt4c45P69e7Krv8WfyU+cubea1xEmsMb6A1Lk8UYRr6jmJ1/u5ft7UUHuLbip/N5puKuokzvsbQRIfO4lIaUrlYm7lcQH6phwKYCvCNcNQdzYGsfH4Ns9o7j41NU+T7qhtPI3vFfoplEAp7qL3ayNZZ9sxOonrd9pOIy2TP6+f03LagDYltuU416J9tc3nMM+cIIaIYqafqfZTDcL+wvFxnkcUSicc55I2zTnAx0jCTyJKyDikbi79hrWfZ5rbxkQIY784nnWP+j46kujGf+eTt/CrL95fjdIh9KmWwDAoSlV131ZwRUMoDISoRuX37WI1ClhnMdJi+RI3LAMCUPaThrqpLq2fv1ZrMi+3J7dK5h9R1D5l/zHRBvH9LGpxNp6yvtrCNTpFbF5IVc5OJHEQ+zmL7Pk5+UYhiSpzwv7daoY8FShU9gULyU3H8I25v1VKrGXrrsHT2M892qUbtMAp+bulJgbxu8k9oSe9wY3HBwp9v1I/wmYqAWVZFoZKmwWuCZ0Ez4CQoouHuV5y43wVx2PRRB8UvX9VdxK9s/eWFUm89zA6iTVHNu331Pk2OIkcknjA6UZ3xKr3GrGOgeS86c5JTOok3kBO4mMnEVGFVEP4pDHoW6CbNpBE2W13aFNyagIJgJ3Hlc7JN8b41zZ+oF+4hjEkN+OgRmS8BPTZdsLl7pBFyHpKYPhDq+a0McIRGh3KQiBj5Lns159/RMxRiVovTNRacTYY4Y7NWIoHWTWy9LzV9TXDSSxpklz9Kfdeb9hxh7bMZZkJ1MCPJwueU0iiuHesMilAHXG7XJ2oD73zCfzqC/ezA0jNCSWi3ZpwE+tI9dZJ1FD7tHnjYQF3/0emhj6mVifRqlMJ1PfllhFaQ/sBDhHJBW/61UYBvgSDhnayCExwwAyHIfSr0B3bTkopJc/0k0ahhTzKfiGQT0T//cd25ySO5XnD/m6LsraYoEDBsKGFa/rtCxWRMgIQ41BB4Jn7RgZO211UxJ/Zy2MOng+S5M/XxyvPfEvd1/cr6m6b+yuKsdjv1muTaP0Ad+bU5nj7xDkwbDqRT69I62rL5q/Rk7eck/jC65e4fRJLvgFlsA8Arn2/85MoXOPP0qkuXNNi60ndAoClm4rzhi2B4esdHlYn+oaEax47iWjnqmmCDEAbSZE0F9+sw6ZNN63302gFgKPRvhG5hY9iSNYO+82UOInJ4bOdRpqO4KPZ0TgQry/MHOvOZc2RktST7Hu1rqMSxYxR02o3tVA3E7X29FYZxQSOoxL61/Q5NkR5GnN0yEb+3AICJQ33XDQI0+etfqmSIZ9bmCCJjYhp2U8YCJaTWEHcPJL4nmdu4+H1wSXpr0u0WYPTiv7XAkCdCDyDULRyEh9c9Snf+WtUr5NYGruxwH3juw1lP6DtpNTQfqCfbsesfy1vkkXAtDnawjW5E8zUaQUawYTO/Yfpp9VJfMNyEpVAIbcn95e8cnPU6abWt9NQkXmxnT1AT9+w7YRkjusj4+wdQ1OVTgqL5AIKAt+eYsIU8H04R1YGsC3bIu2nIYkM3TrSphcuT3MsUzD8860m6b6Ap8Tq7/dlti46kcSmkzh7RNDRTefF0VoBDkl88lZEEkMuYwNJbNW4nAY9sMgG/MJ5QyOJq5M4eyfxMd30xprPSdQ2vI2BJOp003Lj8X+3IXv3qBlbx6qbmuUe5IHN1DtsGJIW/aeWEzetOYmXuznPSdz0lMDwSGL8O20MbaVWx8vPX2vaQZN+r+pYrbwlA20DNJpktYvrJxwiP8f0M7W2mfpzEv1Bs4jDF7Bz4rTakUxkHcgRQT+PVpPGdU9uYRrZdYY81y9dJxYl2ffR7hsfWX3mjjsQX3pwHagvrZzQ1vfTnD2KSn4EQjEqyHbaLq576aZczndvTmJNuMaX3Gn1yRFBzpIfh+MQwWI8sl8uwLSeaywikjhg7H1TqOBatMVRj+QzdEcgDxyxaCcg2QWcs9G7J2voC6uKKnPN0nlU+yl7Cc14UYKn7eufG8lMuoGfY06R9P2a3VSl3l6nDSDVTUU9U9oBFmhWPH/b/TZKKTZTXVZ8N97ZRoHIAhzdV6Ob1tVN3VnFBgMZJNGzzjzd1I0T1fz9nIp+a8D1Lbe2LuUp2dtr6R5Aew/Scql7yhmFvZxVNw1Iolc33XN1Eo322EmEUzfdjHpBaw3mB2IESXOKQsT6IDd/m9ctb1Dfr9dpANoS7X7uNbppb2SXzfer5Xc6uumIi+tD5hRvRr4ExmGNZteuIyulreUW+vnXvpf/Htr3qo6lUsTy12pzBPrzLyaNbhfQlz7n3ioMruVDYD20TSddi74RimzpvBhqcdovFbw5JreQiVr7fhLJMpHEmpO4izWhAODF169CdLZWbxKwiyLXFI97qetMcKtFN33g6aadTmLN6fZ7U47k2uqm1aBf4/7WWAKskSavJbX+BbLh/m+j2yXd1D1aK7kQrqEdsHJfZpwUje11MNBLeW+3nPp8jtqe0O4T97u+Pbkm1NVbJoKmO2pnvuns1e0Lk12gOhvNKSp54ms/LBHg8QAAIABJREFU4gyQAVdGyAcQlMyZDwqkKF36fHU8cS0ju8lGErVALVMCxnc7Nm+VpqBra7nhRJ1tfU4i6yTaOYmSbgog0E1rAo9A1Au5c7ZxNui8BMZWC0lsiTdpudQM46KwJ1l1U08tPazlPB7TTW+uebqj1lpUF0CnCWtRXf83E2kqE9nbh1Rt8T+KIElr869RHwC0ndKxrEEIuBt0Gle66f6QCUL05CS6yGYyVhVJMebYiyQqB43vx0Roe2sStahsrab1s5w9P88aklgX81nfJ5DE3hxBYHXAyAK0h2AQ2sEOQDu0qTKJBVWSUST085FOup2TWCK5gDs0p3HAU7fjgXhr6/Mvyv2AcQC0g83nbFsBJ20veRS6qTceLvecEeH3iVrAoxUkYZBErVZotU6oxhKAfW+7vkoAwhT7cI9HCadojix937i/LaXF0K9y5ljrREMS0/1e77cKyPmyOInhZ80RiHsqdx3do9yTGSdd3gKUKuego22MfdEbzKyVDnBOSnuOcj365805KvcNgwrKGqhmsEMN5vA5iTGQAG6OYz4eiyRqdqGZ8y3W5Eze2zUxK8YB1sTLav1ON3qpuLT9xksP8IufeQ1AdBKbSOIcVUp980hiTaUacDmJ22kMZTlSBHQa6zZoiy2m5VKzecrZPFm66bR+5/lxTuKNt91hrgrK1PLoWsI1tURv5rAZVPqJ4dgoUWRGkERyz91nEE5KE0lsOUW6sRuRxAkX10K4ZjPgmkQS93PMwdRKALAO2DH5d0AZIT/MRk6oFsUkHdl0XgCfkyjH81RrqwSApFxb10TPkeKLUhcOGPvd1s08rmPWKXV/L4Rh58eTzgaDpMj1xamblmsL8MpqI+6cRifRK8ZNwxB+W98YSpq233GOFEoEcjEoqmOZI5s2L1xz/4rLWdmTdFM1J5FAUspc5brzptMP89dqrUCJiPUvHSLfzzY+S0aCm4PdD0gMUMNg9a0qXGMwJ9RArUE3HcUc2XvUT6WHShsUUZNpcs6GgjZQwTT93GAMUGnvtiiBQAwgaikmfUgit7acA3yMc1kGXFnnvlQFbs9RnsE9cwSSYGag8tsK173BFQ0RBzhnOx2qh+4rTeUWclarJ+7bZ169wB/4qz+J7/yhnwEAXK1Cba3zwO9/5ydTKE1xZ3USR2X/9213cPUOz082mBcXmMzVTfU5tvZYvQYqwfiSZwftJCp008c5iTfTWgpFrTw6oF42A9A2f4620pvsKg/D9P9tlVJ9ju4zjUO7OGg42pYG9Xta7K3thKv9nOU6nExjYezWWnq4apsqY6RpqpxR2IiX1vf9qE1cOUhbv7eGVDMKfBpyaTl7/jUZSbNyEtU5osNp60REpAM8E98LKI0E5joCa+1IYZBTVLYjkEStTiXgIqvOSYzRQo8kagEghpKmBVes9Q/ozmWrkDKgBwTS9nDNVXlI5qywJTDynFD7u9WKibfzUcqxjkV7loVBROKc0vF6xT7ifO1+6fvd3mtMEp462mfs1s5gq+xGoBd3UmL9e4JyZUeQSuZgc05b33kPaGweLiimiWlYdXKPEW4Cyu/Ws7Yy55IIXPt5yvqidHAxvd+InEQpVNTjAKfjMWryQC0Nwz6307l1OdvavsWo0nbYvJaT+I9+/RUArowFAFyuSOJrTXXTmHJwtjqJUrhGC0ruDzO2qw0KAA+u9mHdb6Z6TmIbSez/zdJ59pfA8HUSHwvX3HjbzzM2DUU8LScxblyKk1jh8FNRhFGTxOaQxPTGZgvHlxzy9bXmePpBk85F7TfWcxK34xhyElOa5nYaMS86RUD7HN9Poz4wRppWpiM4UjWRloqxy9B9Zb9HE67hNh8NSWnmJCpJ857+VRuzVtybMX6AHJWiEEhxTQLdtNe5JK4jsEbyJZJI9JOBEjYnUQuuXO1mnG4m3D1LnMQVSaypGAJ2AKKKJFp1EpXxmkaMQv9Mm89JfECq33lj42RTD/gBOdrG1ncFdCSlZ/0z9zZQ5h8xwRUtD9s5KfZYyxLntoTnm93K+20mgySFc0PkxNXODWt9KXsClzcp9wTG+I9z8o0SqRComevH0oTz3zqde3U8bV8w2Ax1zYM63RooA97RtmhOUUEg3SOnyimvf3us4+uL+vcu2SPrlPr3h3OUOAPU60/sWyFPv8ORlUEqgAxuKTZXbY7eSbyuUDl/7cUHAIAnVxGagCRe1nMSrwMzagy/xTlZAmOz0k3dGPvw/lZOopWXfhRQJM+bUALDcPiGwTmKvgTG4zqJN9dc/cJ6RLiVk6jdAHUkkUva7s1l1MbjkERdbAKw8pZ06sM4tDc7DbZfliUYCbfWnMR5iQa3FW1algX/z2+9GuYQ6KZKxDoYaY1vpxkxFpU23tT586z6nrYhtzaSqmw3e0CpSGILSWmom9Y2SOWaLMT613O57INN5huEII6JJObXZF7YnMSYb7AsizMkSZRin13/maqTqCOJB5xucyTxPBWuKe5t99hkJSgHGyPuUsuZsUSK/Pu0drEK87AlcPw8a6hgpEDHz2P2ybC2OoJAtdxagDOSS9pcu4/vVzopdh8gpc2RjqwSXKHopqPCQiH2ydoZbAUlgTwnkQoAiUDVstjCQVoJDNZJ1wxJzk7I+wCcIa+qcDf6afVF3d/2nqCKIpkBj1ysis3lLRxnQiREO0upmsPi3Ajfrd2tzIFf1xhzBhSqwJZwU3G2+etor+VFWVvMtexRNw05iZX9/dd+5z6AeE2ZnMR9kpfuh5V0Uw1J9HRTH2R9cB3pprU0KaAdKKkhiWw5r2DyBiSROATGrUASHzuJN9L2hzqSWC3k27hxak7iwhwayiZuRRa1aBgrSHIMkqjllVhKZ36eNZQuy0nMkET3WMtL/KH/7RP45/6T/x0f+/WXM0OlLVxTn6PuABuomeLY+O/GCGJodRK5nMS0H5/vpyGJN52TqNVyZIw0PZervx9D6wDK6OIC+zD0/fbCQGBzstJDyqIk+7H0nERHN72t0E115VD7sK/RAQE74KTtJYwRX6Ob+sgxq26826/zNJR68/Vvi/LUhGtaCFg0PuNzXWiPMNKYPFkNXeqladOOrKTNEYi466cjshbiXKWbtvZXsQfxSOL6+SmSaDG91MAdh2TNS05TpZDEUeat5nOvNS3gdDCQxJjLJc+AdvkeKYpE57sK+4JFEvX7xh4LyM9Sd/3b/UJt6nBu8A6YG8+9P+w/FAIsrv9iCTeVZyLTxkEi4n7uVj/dKardoxFJrDiJLz0EEJ3DqG5q10ncTCPe88xtADm7xr1HdxJTuikQbZg2kli3M7QSTz3odvgN2BIYADBtk5zEx0jijbXd3K9u2sp5qi1GKrJ7BEStHlCzvSFrDilLSes96AGjlMI04HTNSUwN54AkVqJNP/Kx3wIAvC4KoEqlM/fdEF6rNS3STddJlN/t0F8nkbn+miPFHGxa8KJVIzTtV3XujZzEPNeDN1plRNjygGV5gwOLvhTOpW1YuPHioX0gjZ/QL/m9D429J52jpu7onMSYoA8At05i/kUNSTxW3dfMP9L2LUP9ENAju0A0HuYFVF6yV7Y7aVhO8vuxDrA2z1bwonVv24hIiUAya1ITCmHQFyAGqlhHVjNAjxF88p9hB6n0QG3LuB6GIb9PDeQxnSOQ5nJ1CKAUezKHGkjkxpqlDAj0UJn1s7vep1YCZm8E/aRSsv8fcwb00kbd54rrT4ylqQL3pG6E+4YsQVIyXvLPq85T2DORgdUWJkzHAnlvSxuURRK1VCkXuNff7wGAWhDQ00qjk7jmqF8fqudBULgeB3z9+54J7weU65H1m1d10+hUpXUSD/NSoKRAm/KraXCw6SxZYJ4tgQE4pzBFEhnH0prLI3/CPwVtb6ib1gr5+te1PoBOG+UihPlzVj8tGjY35pf2qyGJlpNYyMGTiEirvERIGr6OfPBIN9UNyV95wVESQn3FcGPrRp353SqRbqCONtSQYxNJVJ09e0PW1hdXAFhxEhkkUc1JXK9JZcxaLUeGDgWU6BJ72Kd0Uy63MD/sGYPQ9/OOsx+TFa7JcuLmBeeUsl35vFc3TVsQrhlirllUXuQCEPU6iQ3na+g/EGvS+r75OpCAcxhrbA/fgsBO432bMS/DQ6mbNu5vE0lUjC0r4iEdKcbZAHIEZlkWirkinVkt91Vrkk7LKKkCOgulRUkDfJBEcRLnNgIM5AEuC3lM5+jnBfC0Uf9e3zgn3T0elgUjosPIlCBR0R4KbSv3ciYnsaz7TJTYUoIklgc8KAjkMQGIvhz4tB9BGxXOJa0cKs63iHzZzqWWg9rD1OhRKQXi2cEiueOIwpFq3dvb9eyqpRPskvN1d5iz8+DB1QFvOS/XbBSuGfE9H30/zjYT/siXvRNA3S53c3AlMDzqCCBjpfl5yN+ppeDt9p78uzEUaMAHXdc/WOEaYEUSH5fAuPHWUjd1qFn5fDAMG3TTclNleN2ac2MUwFbUTWdiP1bppiwlrdgM2knUgB4RTiWgb5+6G/T1y30YvxVtSj/r9ctdFinWhGtYURjNGPTz15qG5AJrlMmoGyn7cWhPPi+A23w0Bywigi0joeTkW0GIWr4lEyEHSuPaOtiOVzJE1s8VUja7ZVFCJiCj9fPzpPJRNCRxNwcU0Y9dJOmL6w9YdOvSQd+RaHNx31j7loEkXiX1ET2VtNX8PFsiTJICRDnANSexQV889vq714+rwZnmYbNOg3SIepwNQNxvpCHfTTetlmBoC6cAOb3YQh59k/mFPXXzSifFDgrr/aw5lg4pwOXEaYg/JbDWGRgu0c74fHOOYg9iWDL+c8t+/WfiQvxuJd3UP9+eo2QltOxIOc8UrIjpHu0+6XuDk0iglmm/GLhudlMDQK2Ax4kBAKQ239V+DogiALxWEa9JBRvPthO+55veHxw/DUxJx9puonANEK9fKy2iZfdOCuBzIJlKWdB16aCbjluHIAKPcxJvsjm6aV3GVi3keySSyGwimnNjIXtyPMYhGgcNtYyvNeeoGExUUXCxIfhru52GkGD8yoPrYOidNAqufubVi/D/1y8F3VQxRhYct9FZaEPNSbQcgJoCKNA+7DU11S6UrhdJVO4BqyxCTRCAUXEDlO9mCkes8+o1COWBCHssP8+9OOhZA1TmhHIIfPn8bl4C0v7WO6cAgLNtXcmNUeBr1Qm18mtLVoJRAqNx+AJ5rsrVwS6DEahGBpKo527zEXnfGCTxWLSnl7bo+3WjBoHumBuELAKTIfdUUKaCJBpMBqC/BIPrOyZ5kyTav74lzUk0g1vrkpMlMKzh/PzTS8I6N3oAwnZKy7SIdoC3JdxkBo4Um8S8JkOZb8kiiTK4SCOJvddfOHsMA8jPEcjTIgBbuEYyzKL92WZ3pGOxiGC0J5E99tJU/di1r2aJEmZO4u6Ay108A2p5iZFuWl6XFpLohGvynMSUbuq/i2wt8SaNhcgylbL7m1U3BYBpVTedZwAL18doj51EeLpp5bBXjB8gRiM0wzAgiYXRRG7iWjSmZWxpqI3/PAOR0qKKgEFJq6BttrGrU7bca9FJ/O3XLsP/W3TT33w5dxJTpFajxLK5BnXhDqtOYv685QBoUWTmsK+hFOzB1puTKCl66WdUi4n7DVmI8hwzRxeNbHYLv02gv5FGqzSSWUMyRcXDIdrZz43HqZtqSGLa9613nZPogysy1wwgRanC76YEEpq11Eoj0lK8bB2+gENK/aVhFE4jksij4v66HoOktNAzNbd2ad8zad+i3iHDNDpiTcrvxpwbab8UTT9GuAlw66Z2/qZzUUUxCCTRrwuWEisdAIuOmfXJnA0iuLW+3Isc1/LGjglCz8uRdOsGkg6sAddsju7RuibDIMqykEh6mcvIMbeAfuZKzZGigyvrPH2w1bpP5bkRg1v2HHsRQf8dJFPGDDiNuSqq79tyoqZxqO7t1/s5OG0eSfSgQU3hNK2TqI3n3lOeN/uDE148V+imMo80bS02g8ZCtO61tG90Ev3iYpHEXUQTHzuJN9NadFOphudblNgv+9Q2VVZIoEcgwc2hjJAwN7Ymk78Qm52Wf2TllQC6UmyKZN1Z673NC3DnbBueB3Qj8TdfeRj+H5HEdY7Kd6OcFKWfn2PtWh6rbqrVtwyHfWvzr1Kb6n3cPBUnkUESlWKysV/NcXaPvcZPzIeIzzGRZKncyioZankbVG7VmOc6ARwlaiPQdBpJVPaglO71de91SfqnG48kuveoSGJrLAUB4yiZY3kgzjZqmX6+bFf7OQSLapSktO0PM4bBMniR5yQSdRKrdW8bgQhpRLr/e0PeMlw145pYy0PqJHJOg1bKws3BHguIgbEDwRLwnyt/bkvgq41ktcfbTHnuMOPISirhTIwj+wDreUOqosoAby8iGAJABCJVBjPbgaqacc3k3GviOqwDlgYuGPRlGI5QN1XORHfeWGMhnyMRgEvHi0JR9vnrPzcPLi7h+VafdIweRDDvx+5bus3b6redhiqSeH2Yg014tZ9xvZ/x9PkJAOD+lU433TXsGS0gk461FUrhPthYC1L556paFUOJJLLCeCqS2JOT6Cmqj+mmN9N281yNPtcMtKZwzSNEPjVqmWUk606De7Roo7VagqYCovLdjjF2I5KY13vz/w81mpQb+9WHbqO4e7rB/atdZqho321eFtPW0tXf3CFa+w2q6qZGBLqdt0QEBToNC208LidRpxenn1nMsWL8sEWK82tCRNan/Joc2ARxMU/WkExpi9a1SJs8FKmcRIXGE/qu3/vf/ZYP4O/8ya/B73vXWwBUrn/P2uqmZPYHxSwk8Xo/4+4aLKKQxHmpCpD5Jmt+xvVvG8kqklLdE+J7fItISruVOd8ddRKDAJOfB2kQCnVT27l0j5Fu2kGJ1RBZBhGRTgrhmG7GMaje9lBigXgNmYBT7JPvW+yenNNUSRX0zgAQUC9n1LouNZqelZM4FXmT7rGb7jizStUoHGc2J/dYEbhe4RoZvGP2Vt8v1yCw+0madi8FvdcB1lJ15kVn2/m2ncZqCYzdYcHd4CQesJ9nPHXbOYktJNHVSCzHHIZB1fxwYzm6aYokPnErKoUDDSexdgaMZXkbxgcAxLUMJTCIm2DcOBQxIImPncQbaQ5q1n+Amvx26+ZuIYm2kyI3OvvGVqNhhEVSQ9uMblUFVmsNa7lt3mDejINwEqNKI6DfoH5zeebOiaObJjes6twvXBRTV387wog0jJ9jEeBq3h4bNe10AKRhDQCHQ5umV8uTpaPIhdHEGbuxdiFvWAN5ZJczJOM1iUgi4VwKVNZCUXyf6gG19t1MI752RRPd/MpAAqtu6vol4xi/tR9Po5v2qvT6tiwLrvaHYCRc72e88uA6y0OWbbefm6I1fkzNAT6ObopqFFkPHHHrRO5dh5mLPjsxkz6DUBqtbCkF+dtZNdvCHBUWCq2uKaPyREBnmyKJDac+Hy/Oy4/D0hZLRIpzUlJK4OKiacYcRU6i+Dy2nx+bQhIVe8ZKp9ByElmULkXAjglAUMwVlc3DM1dmcd/QTmkSlPRzb44nWFhMLmOp0svd2zJVhN9LBlXdtPXdTqaxKkp4mBfcXW3Cq92Mw7zgqXMXNKw6iXO7Xnet7rkvgTEMQ1h/PkDZyp3fN+4djabK2yXJ2dFTAsMjid5JZPoY7bGTCLdAakiKVhATSCI5jYiF7qT0GTEMIqg5G+E1g46wLGX00+o3Kd+NidpNYz23bRoj3RQA7pzmN6j23bza1VO3T3D/ap9FfDVjhM1JLGg1hIobUG4i+8Nslg0A8lxG6veuIMfHIYmcAyClnAMFt+YkanMk0AbNuF7AU5SC0WocTrGfe+xXaUzQxw4kcTOO3UiipBr51jqgtIPN/7f19TSaalrLtDVHTZWZCa5o++t+XhztfDUSrg8zvv+//Xl87V/+cfzDj7+kft5+rguQ+SbTB1ImgzXPku7YzkdJPx/oo3vJXF5qTSp00977LawRYiwgN0BZdVMteEo56fL6EwjfZhqDc8nuCX7P9nseM44ugNJfODuiNna/3uCin6eco3V21IIklkEu2Ty0I6s5N0yQZJBOac+ZGJ+zhAKBhF4c5rg+b8xRXkveSdQZQD0IMM8uQNaP3be0c2o2AlzbaVSVq/0ZmdJNd4cFT523kURny7dsZR1w2B2Wgk34xJmNJM6NPeXYgDcAfOMHnsOXvOMJ90evuunhOqKPN4AkPq6TCDsaoMHT1s2toS9sTqKakN7s49+bj5W+prV08fsbi3VKj8m3nBSHO43k310dQyBuDq28pav9ASebEXfPtnj5wRWWJfLIa5RYykA7EknsNZL10iXl96yO14vSKddyR+RkaXm5Vi7FsdLu6sY625LkMm/mQG7GGt2UE6AZgxHpvyJjJKfIBrCuLaJGli6/Xf+OmrPNOA5aACLsdYYhqSGJDGqpsgT2uZFwvZ/xy7/9OgDgb/6vH89Q09DnUE8bCGOOOd2uB0nsKd2gKhAHxLk5RUzjkFGwaBGm5DcIRmtn4IgpgST7sTUZ5Rx9o9U1RUSecQI2SdCPZwnkwQsmcKSzQniHyHfrcaS0AARTF1NNNzCYJOl7076Wk6JRYhkbKH1/+lyrTWMugsKdN/ncAK7kRumA9d03vcrY8vdm+sX7BtlcewMXPfnNZapU+97ZbvScRP+ctwmv9gcc5gW3TydsxqGak7hXnL201VI3rvfx7PBL4YlbAkmsBDNNJ1EEypl98q/8C78//hEcPhJJnPd9fYz2GEmEd5JqOYnO2ZMwulVzJqX+pH2YaIwaIWxtxhVkyX9etV8l0gHYwinld+tHSdM5b6YRZ9s4qKebykLgabvezzjdjLh7usFnX7sCEOvE1TYsJtJ3Y5Hu2cjJanw3K5fUfX4+x16DMP1/K/qm0R0tmqr23RbwyIbMpTMPqPX1XGyCNwh7VRrdWkYYCyDrKybIBuDQKEb+XFVka/RVkUT/eQwFVNlLLDS9l12wCWOVr3mWQBSumcP1/Qe/+pIauPP5KK2mqcsCBuI55Iadb609r3UdzZSDsQwUskhiKclv9JHr36utG+Ol8vUsGiLn6JuFpvuzL70H2DFTejfLEvDfLRWmsmvLIbzXNy4ojDA33yd9vtpvzPOd6NIlwnHjWAL5e30zfzfBVIqOrD1HQKQAEHtr6ZTa61izL3rSG2QuLyPel47HnL+As0PnuW/9x0BtHszszdOkHeABhZ1s5Q2fTCOuVCfRfY4PEl7uZnfeTSPunG0adNP2eVqrVrA7zDjZ5P2e8HTTRjCzqd6q2uXcWs5ajwiNpJs+zkm8mdZaWMGQEevDiuRIFUP/GYwhn47FUMRauW1MJF+TyW/NsuZIWZu/hkilkfz02hR004oheboZcfdsgxdfv1r7eQSyjPxTzsZY5ltaOTM14Rorct3KJWURYN96op9pP0ul1PUrAyWeNmw6KUciidmaBHfYTwlKdFh4o9WNFw0ZjpI2ZDS2dO5Wv90hXktG3VTW9vOtlRPXqsFJra3OvWQadeOfGUurQ+sRgVS4xhsG14cZv/PgqujTUqlOx9TXP2NsKUZy7fqrTjpvbKW/N6scmn431iCURjKLGqSiGD1062rOdytIpZxv7Jie3h1olcw9OuXrksll1EpgMOe9XFts3pgcj6cSDrqz0egn99a0b0+uPp3v6h3uZE1SKLVCpTXPm0qA3RrPvyzRNisAVEMS7QB77qQzZ44MJtOI4JEOsEo3NRx1RzetI4nennPCNa5Uzt2zDe5X6aZtJLF2lu6U1CBGuIZBEmcRzGf2yawF4RoCFXxcAuONaa1cqZohYx1SGmpG5SgMpfHvnmc2g7JfUxVVyT9iDBm9liODZI1KTqIeyQ9000p5CcAZjidTrop6fhpv7BLZIIq5D4ox2BA2Sufei6RIWgfQhwB3J9sr4zE5iVqgxEISR6UP46TXSjewkeRcbMLuI6XreZGQuL56cxKBeF2onEQluOL61oNbtTqVAJqGjJoTSkSSa3TT1v3WyqW+2ruDMQjXHGa8drHD88+cAwA+fe+y6MPQTSXlnTG2NCfF961dE/+0FvDrFRdhlUNTFgotNiEMybBEzIBfzNtjv1eYo7AJLYRPy11lAzOe3h3QcGKO/veOpTNs51JDpLjzfljfi+yR3ic7EUh5n7J7l1uT+XP7Rk5u+pky39L6BUq6o/29APeeR1X8Do6sMVaNgm7NM1JA3cVkgrRAiQAzv1v1+hMOKZCyC7i1paYhGefwyUYXrolBwihc40Xe7pxu8VpD3dRSqlZz4BXdiSfObF2MVqBE8x0YdLto8wHAEPOTWm3aAofH6qY33hjaVlkDrG04TaNWI4WIxoz9Cel6UXai37E0VS1iNDMHVElZ2QtE6sPvfhKAVhRcdxJPt1NAGwDg9klURT2mTqK20Zk5icHRyJ+3nBuJYvk+ACkuIn5vGklMJsrkJOqbnRuvXhYkvi+fox2NBDQE0t5Y0yg5L1wjo6asuEXukKZzb/Zb17U/GJlC3bW86HYU0z1m9wDp7Ml+zJ6gGf8s3VRTQJd008vdAQ+uD/jA2+4CAD5zr1Q53R/sEhjSAduF/YdR1xRO4lJX9Gzd24zjcAxFKaVW0oiU2EtYtGcb1vGSoCH2HMdBcbaX/iAcm8vltAFSSqw9R596konymPUOEd7rm0tvIK+/MOSZcyodz18aezxHAQ37JLH/A/7MV5BEQ8wKiHsri6RrYkrU/i+DK4yTPupOOk/JjGMx/YrceTLYIc8A5syJ5737AVgKelWUx7wmeX1j17d9nm6nUa2BWyKJjm66nVYksVYn0QjoawJrgLv/ZKqCzEnUA7X1AFeNldPrI2Le84jguHFIoldEfewk3kxrRQpDVLHYIN1jK4ogjR9K3GWoOYn2ZtCtinq0k6KgdFRtodHMbfuh7/oKfNfXPI8v/z1PZc9XhWtioWzSAAAgAElEQVRWjrpv5ycRSVTpn53X343djk75/E0tb5X53dLNhzHSdNluvraTWiidoHtJwRVOuTVfk+wcpZAAs7FmjhtxPdx47rFf3TQaWwGlIKzk7ZT/5gyS6Iry6gdUFUl8hABQ2c82LqaxRPut+83Po003dffzyw+uAQAf/ALnJH5KcRJ3hxnbTftaVnMSiTqJqnCNZSAo15+hXEtqJbO2Uuey39iV/dpjeUdqP8/9dFNh7C4LmoESTbgm5E5axvXk6N1Mbr8cz9dXtFSqAf33XhY7+C+vfz8CLJx7Y7wY0FyyR2sP2ij2jLV3yb2VzXeNZ4D7my0bUOo5dNTl7bz+o/xu5L0d6j4n+z/AOekZkk78bjJ4zez/ab8yJ7HZrUCpGeXc7TSodRL9cx4AuNofAtp397Sek7gz2CSa7Qrkwdpv+/A7ACSpSw0btBUoqacFdXqJy4F39oqcxMd00xtpTdqWYjQB8Sat3Tha5I3btPpVy2pCJoCdWwgIuimx2Unuv5+n9d00lcZAt1hvtOeeOMMP/JEP4Wwr6iQqUP/1fl7VTeMNdHsVvNHpb4BFJNE2ERpJLJxSi+6rOencZizHmwlH6vicxNKZdcp29bFG9bvZUTSd7shtrNMUAwOskyjHsxT7fNsk904PkpLT9BYK8dQCHkAbhdQDR/Y8WzRVaw/S8pQ5kZzyNU839Qf179x3TuK7nj7HZhzw0uo0pm1nBC78mHt1/dv3d9ovRPJr54Ya7LADQL5vavzT6388gm4q9gTWkAyO1GHpQtIlU0bu/2ofZX8NjqlllK/XkkUefR8gEa4hrn9dzZl00iUCTJxTwPEIZOmkGPfNVNoz+7l9f8vfjc+Jc4+p42ZdD6A8u4/JSaQDOYEm3Hf9i5xEMsAiz1O/NpuaB5O+ttg9IaKk+Ryqc6zYrlZO4rWWk7iWxciFa1xQwiGJjTqJRsCvphTu7/v/4Ns/jH/0fd8crkNLuKY/UHiEcM184Osdjl7d9HGdxBttLUNNRn5881zr2iGgIYnMpjWOudHEcOT9/i7RF8BApBRDnss/0vLvOLrjYRYCKCEnrm3sSpQOcNEmr27q2+31/zqtgKOfaLlHveqmTPStJm5xnAKobZBoEXmmUPpW0K+AVSSks7bcshD5KEpQgFGlBfJoay/dNKOWkcau78dSjQCdpmciiWM/kthSPG4ZXDWaqr1vlXvJwZD7buUbX+1yJPGl+06o5omzDU43umHBqJtKQ5Kh26nfzYjkt/LEKXERaaCRdOteZ68qd2+Mlaqb9iDpVSn/Rt+NQN/Zfq6vy3k6Jm8430vafVQ1Z8K5LJy99Xk64HfIfzfeAVidjXAdjX4Km4E9FwNtdH2+N1C4EIFTAEXeHnP9I93Uz5EM5BzpAMtyIoy6suun36fNnFAR3GIp6P7l3nxXp2ZbBiVba6u2l18Huqlzci52Lmi4mVzJs2adRMMu0WzX1F442Yx4693TrA9QcRKX3jOYC15nbe5BEjcrknhzdRIfO4loG5S1BWJRgNxizBc/e2hoyF7T2TiWIhYOtvhcNCTrTat1xURbNSdlbxhpcTMuX7vazaFOom+3E7ppMUdCAEJDRNiIqSZ33zLIa5TAYymZxziXjAR6LSexaVhrRjJFSfbXMj63gDSSEwf/sHDUMumUss5lpKEvtMEK5DQ95tr7z9WEolpzbeUptyhpR69JxblflrZxPQWDqWUkuHvbI4dPnG1xUjEsLKqRH1Nd/50siIAeW+dGJ5Lr+0oDjcmlSwOMbFkWmTsZDXl7TY6D2797kHRppO1nO0g1jWWQiqWPbtc8zWPyhn0dVEZdVmNbcCUw8v1u6aRkFnRHC4GUzg2LJFaCp8y5EdFO7jeQ59u8kDmJIjDcc/27adqj7OeDK33rxNs1jHhZOh5z5kjwoBftjKVLOOdS2lyH2e63UVKQgJiTeLaZsJ0GPFiRw2kccPu0rm7q6iS2HefCljeupWZvAZEqX01VUwAmtk5iPtDe5q2HyZ4Ah+vHTuJNt5bDt1E2f8A2Jp1RkT/HbloqRYwwyDUk0UIEAZ1uauUtHZPvNyrX0sqJa6qbHkq66flpIlxzTE6ogtosREDAfZe8j5tHeyw/r3SOPG00Psd+N9evNJIZdVNp3FFR5CXfIO0Dyj0erW6a1DazqGjZPBMEhis3EA3XA3GP+pZS2R4FSTQPtqP3BH1Nsvd2T9RUo8n75n/HW6sQ1b2H1+Hv080U6Khp2x3q9W59K3MS3XczqVRjRRW18v1agSMmmCONQVq4o5d+KAKFbL09YEXp5rkr30+mKjB5aloQlKWPulJUfbUcJXLp9hI2uNUXXPHT6aUJF2gbuN9N0slZJHEzlrVarfztkkoLbo6F49ZObfDNObLxb4buW+btkcGV4Eghe7R+N6lu2oskytIZbRu0FGBi5igDpz17iVZOzbKdtJx07ySebEacbqbgJG6nwQUJ13QN2Zxd0ihXpgQ7zJrPyZmt9evTBbBZCUXryUncnAH7KzzOSbzhNs8MktW5QSpIIpujoCJSnbRRZrN7FOEarbD0MXRH9karqptuRrzlVkQSz7c+J7Hsw8xRF7xpb5B+6qoiZGuDVIzkLkRQjPcowjWMEyyLWfd+t2NyEn1OVq+R3Es39b8XrSSZrGV/WPUU6t4dEiSxU5ET4A82DX1pzfLYumG6c2ncN4pKr2/++51tRwwDQg7KyWZsIoknRmRgHMqcRCuPESgDYxZ9MRr/8TlNQl0dayydBmYtp85ldNyMPoW6afwsq21Xx6En30+mKgQkkUGkFCeRFa5h3w+kecPrXmIECYHj9zuN7g70lzOiUSJxVrE5iTXV7540jF6ULr0HmJzEYVD2LaOP/9plbqHRT1xHxk4DSiTR2sd9Cw5fhyqqfynSTf3zZOBI1FdkrokU3LL6aWcbEJ3E7TTidDOG/X8a3d+Arja6M2rlyiAhEOds1nwu2HPtPUVShH2ffrrpns8t3JwB+4vHTuJNt1a9n1pOomUka5E3ZzS151LSTbkbtOi3PlISyXM5Xq/gSlcJhmSe+xBJa+ckahvJ1X7GyWYKtdOASOfT6KYLuENb9vNoQ60Ng6NedTvpng6S0RF6Cs7n41lbj4okrmu0VTqglhPULkAe3+fbgg7jRxitzL6aHjgHcjOWh70V/An9wmE/B8Owi8o2dyCJCkXGOthU4RT/GhFwKvJdmzOsOJfGWo41I8t723/Odhpxtpnw2oU79E43zki4UnMSbYdvI4J3h3mm6cWZA+CdjsoX1PdWNPukfWVuIau4WyJSnHPTi2QBbq/dHzqRRBHJ78lJ1JxEKwd160tgGPdL2qZxwDC4e5sVDhrXPunaYvsBCSXQP2+dARXaqNlP5Jeze5CkWzM01VIUhpyjRLeJPr5ftpcw1786x75+jEMEJI7DIf/d7NzaeN7k49X7SbukVzgopftaYwGlw8dcy1SRPG3X+7j/n25GPLw+rH8PSV6/cgbM7ZQDKa7j+rR/g5oNagIcSnCdCbgWrScncXPmOOv7Vf37Md300ZuX6a0vED1qYeVk1fKIeiF7+gYV9EoWEQRQOJf0AdUZIZEbJFDWSZTNVDedRgzDgD/9z34RvuH9z2b9JCLIonRFTcyFy0nppu1Wrz9n2EkDtNcBc/+fMQwG4qnkjpmKr5qTwtAWJdVFPN9qKcI9k0hiQYkygj++hQLrc4pqmN2CE+OQRI5q5JQFOw+2CrIBGHvCUP5uzL2tq6JaRdLdo1rcOLk25ycTXr1wdbG2UwNJnGdsN4xKYxqkskuQACUzxFLlHAbnNGjqpkxZhJBbO3OGHZAHE3qRjaIfgdxspwG7eaFLG/j3qOqmTUQkN5DTfuZeuf7efr2ckFwvb7z20FSnYSjORKuXTBVhkUR5v9G/tzg7/DVlHABNFbh1Ocs5+v7WGYxsjgxLxs+xoLtbgjziDO69b0Le3twWMpT9CiSxs5+/pi3UzPc7Nie0V5SnqPFN3DsacwtI6aYDTrdTgiQOkY2zV84No06ihlweWBtUAYrcZ+qLLNgInTZQ0eYDZ1wAwPbMPV4/cI834CQ++id8njc2t6eXblqjZDI5Cr2y9YBbQ6pB0qRJ5gayH68naXtld64Jue05TlPpcNNJwxUk8XTrPvN7vun9Rb/eum2un04r4JzLvt+tJjhkb8Yo+lFIrjLejjCSt+KA8p/BCNf00A+B8vfuQTZOphG71RhkaR3yQDwYjo3st0uQFI5uGqOLj4IkmgebukbW1wgKaDqcC640p1jQ2PxnULnUyr2dXptbJ1MQrjlpIIm7wxzWaq1pOYmWcBBQ7idUMetBGq0w+4SxApLe4aQo/exzQwRlvEFIBjz2mXKo3aeubmrXSdTORQs53o6ObhqcRCOIEMeU3429/vFvJigpgzk82uweYzCN+71rtQuZvOjDoe93q+kJ0GsyPQOI/b9wUshzG8jTG4AOFe71+rG1TIdhyBkv/joSiDiQOpe8cy8DQN3odge6mm7lzHibSUcSJd304fWakziOWFabU6uvaImXOdHF/LkoIMc7e0CaF10fK/189xlcwCNr874PSQSAq/vrJB4jiY/crEMgRnDK/MI2+qJTxCi6o+JsMKplmkHSiyQ6ONyeYzo3wFM5+6KYgB2RlzljabvaH6qRYZ2ix0Vai34zF+nrpVrotdQ6In2dDphMZPf/N5EshTZhIYm1pG12bRWS/MTG6hPaXX+S/iaQy8PM9dsqtNGeHMj9vJjKvr616ovWDjYVESRQqUdV3O35vVtU8hQpvbWNeRUnDSRxb+SjACik/FkkUd7fjPMgVaCZnFAgp0QFlLoTSaEd0sJIBjVHYDXwMnVT4n4bnSG5LPn3a6vgKvsPe++slNirXicxqKKu86avf64AzeaElkii0a+gSWLt1+cU0WyGccxz2Qn67qNSOcNwpGGt2UD29YjvTce0GS/uMTrbfK5ZCiCw+bxhrxQlT5hcWUlJZtdWN9106M8btnISN9OI0+2EB1eH8P6TJK9fNrNO4lAGJa1gbU24Jjr4hnNZgDDV6emtR7hme8s9Xq9OIhPtM9pjJ9Ew8FJamexn1ajRnBQmiqMpEjJQfzdqcCxtsWpItucYFbrSnCB/g+pLcRCbcdq8cI3WRoXGwNWp1G9s07kpqEZ+/u01ApSGtX1AVfp1ilQAq2S0lcelSjmTNbKWvrVVO7SZ83e71kTz82PUTeV3Y9XH8jpx9mEo+6WKi5ZjM44DliVfk+zBJnNCAY4C3au4e0zAoyYIkM57M444P4lO4nZVu9PVTZkSGEKA5kAKHNUQMOP+npXrT4lnrW/uUc5NnVI6/0usE7ZOHOAc9usUSSevo5uf+5sRb9LWJBuY2ayU2G4ncXQOMFOiI8xzkCkf/U4b66TIa8KcbWm/AskynUThADDF3MUc/bFvBwrXMZK1zBjW0uGgcqk11BL2/ebz/dJgB7P+gTwvmhau8Xl4QRV1nT9hT5aBhPb85D3Ks9kqyvyNfptxrArQAI4JcLoZg7rpZhqw3bgPrAYKm6yEsQB8QqCkcmG0/QewzwBZp9L3OaoERo9wDQBc3HOP3ml8hPbYSbSMLZEwHPvZXGvpJFJOioDsefqJfoMykfxctpiXuy/7cdGwtB+bW6U5fL4ERq1fIVxDOOnH5ltKp5Shex1TNgDQKbgUSqoY5Yd5Jur0lTRhhyQyogXxuR4HuDSaSKN17w/RPnXTrHA2MVaaW8hGyF2/OB6rbqqppFkIgKQRAsdToBeDNVHrdzB+bxpJPCmRRJ1uuphOoqQ30eqmoxSuyb9DrU++l/OO20Gsf4oCnTilMZeRdFK8U0oan0BEEnvW/yQCVQzlWt6jAIdkAatwzWEO+8Ipm5M4jTmSyOwlU44kHiPmRqubivuNOdu08WjKuzDmqfqWco7r8zQFNHMSiSDJMCA98hfY95rMHQ6OlDlajvjPC3fPADmSOJPXX7KAekpnRFEk7j4NKOkRKLWWcmOlZWn7f+qsZ07iOGYBWtlcoLA+XlpLNoxl7OXa/gPYe5Bmp7H3aTHBXrrpxcv534/QHjuJBlWmlpNoITc1umkvZM9KmZdUC3tDqNWks6mtWj+C7qg43AfjsKkZkofZqc7VjMJRGHVujsfWe7M343HIKbHMYaOjNnykT6rg9kZNAY5uF2v75QhwW7TAPcoN8tjILrOtbjcjrhM6DifjH5E9P98uuulh6TSs4wHHGmjammSjmDdTToeRktcDHhbSJvv45n+PzTjg/CQekCdrjooeRW4bCEBu2LmxOXVTSSVkaHpDbS8njC1pxNNIinA27LWVz409b9xnr8qhxhmaj5fvecx11PYt1kj2jrpHnn0Ou9UckpjkJDLXv2CTdOTErd3YoJiWt8esERmEYyiBwOpsKE66RbeWc2RaISbGdcM49Ad3AWSqqD1IukTuWds/zYtmkcQ0Bx5IgjlEPz9G79oqcxKb3Yr1z+wLTiCq3MvT8+10M+HBdaSbeptPy0ncz+1AoaZVYZXhqQrXGGi65lyyTKWszXtuQwaicM3FK+vfj44kPhau8YZaZYFotf3832aEREWy2vORtFHWsBgqCGSrV41uSkc/xTxtGknZb2fklmg0NoDJJQW0OpU0StdJt5O/d1QyZIzk+BxFyRzX6Gf6u6EDJU2dRIJupxtpBpKoIFkLeKPpGHXTY5BEjW5KIYJBhCkxkimaanQu2XwgWUg5/b+Vy1vQr9h7tPN3kzmQTH3L2r2dznuaYk7idhowjkMTSdxYSOL4CDmJWRCIuL8lu6ODblcINxFzTJWZg/pnJwLM5kgBq7rpYaFQVWu81m+g1tclcxL9/XaxGpknE0fb8ohzT76xDEwygVP/sUWZAmOssnQJX0sWSJBEMpjgcnnLNJGmcy/m6DdzRik8HYNVqi50AWbS2Utowj3MlXGI7++hm6aorHfue2tMs2JRKbpH00aDkw7Rz7ZLNBv0mJzENHiRBna20xDmsZMKNHBOdCt9QwYJ07HMlLOKDWqVwHjkOok9OYmb1Sl8TDe9uWYiiTUn0aBg6UgiRyNZskXlHm0qYYnaAH05A3683kgT26/G0QYaSGItimP024yjev2tVqv31q9u6h7bRrJ/b27IU6iBGrU2+lSRREMh8Ig6ifp15GjT7r3CaCKuyclmiJFWgiIJpLTRePgyh32s1RTpdpRTOpbOpYn2aFRO42DT1GUZqktNuObY+paW+qccyze/1rbjGOimPkLschJzJ3FZFlcCwzRAxyK308oJdf0EkkKgx5LdwQY80nu7RzhlMw5ZTq41P6Dcy7vW8pTXIKTUTQsk0R5vbJwbjHANgIBEdKmbzkuXky5rcB4TOI3ndm8/m0mS9vNONh1MGPPSUIyTXs33Y50U74CRe7KWE8ecG6kyfI+adnp/s3ME1nWSXP+eYKakqTKpCr200ZoCLqXMr96j7flpOYnp2ZjqTqRIoipcY6QcbMQaAewyPHXhmlVh1nAuU1VgNpiTtaNyElckcfPYSXzkxvKKCz6yUY9FSq0DfJ04FZGyDhvFabD6HVuCoZq3dKSTkr5W7VO5sVtGstx7GCNZR0k5Woe8Hm4ejT6V68/StmRxb2vz8cn2krZl11oqVVH389w0QPVAQj+StXQYySmSyPzWQHL4BuOa66cJ1/SUwNgdFhNFD3OsILnpa7LFdRyf6wkk9AYu5O/NFJfWKKq+pU6AF67xBr6jmx6K9y9LnX7umxMykfU+iZzEKpJS71MTcrCWiRcqWpalywHbbhTVxE4kMSogsk7pknwvu49/T0ApiHn6e1SjO7JUeS+h3ydcEwM5zL2dIlKAp9dzQZnSSekMyhB9gBIVsUrphH5Tvv4ZOnMZgHDP29ckH4MJQANlUCb9LKufpLZyzmW8vx9F3bQruCic+z7hml4nvS9QK9lUXMrTWIiyATlT7HSTCJdNYzxDK2WQrPzmqkpp5RyoC9e4x54a38fXSWTVTRMncRiBads5WNl+1zuJe5JXrCKJLSNZ2bBYARRJWQGIjXXUk4Z7848cJY2LPvc6N5pK5mF2N3VtzEIO2/czDGypxuY+o6O4rjDIe517351SdxQOaW8eBdDhFAkpcyaSqdEdrcNNDyR0yG8fgSSm6qaODm738d9tl0WE+X5pCQDKsE5oqmztNi+xrSOJtYNtfZ9Yk0wpHff58TkKARb9GASmRuUH4r68GSPd9GSKTqJEEiP91lY3ldfxqBIYRCS/QBJZByC5d3pEYeT69/NujiV+gx5EZLuWl2BRS6BUuGaQRI2BwuZy+aCBl9DnS2CMGd2UEq4Z5Z7cIdQlHalOJ9EXc7earN3G1oGU9kzP7xaonHQtx+O/27wkBe7ZgGtydi+E3ZTOM6VN00hiInDk9h97TUo9h1CnlbBn5Hej82QLdNvup9eKtgNARU3xOfYtkMSNnpO4LMtaAqNRJ3GoI4m1bjWgyKpVqQW3WPsua/MBGI9AEje3OMPJaL/rnUQrIqbVlgNsnrxWJJRZINMYb2agb2M9CKcB4IRT8vwjDrUEBEpE8P/rKpktZ9s9ak460OaDS/SRddLTz/f9KNl6dYOs95HKanGs5lBhvF4EGHCHisztYQopu/fmSEqT+x+ib/E5KrdNiZADJJK4yXMSGcMuFjdOnUvOIAcEkkhFhFen9LAEg75W69O3Zn1RI4qZ560ypSxQjMUhkHk/im5aYQm4z5kxDG4debqpf7+vh5nuk7H4sh3w6Nl/Qj+xnzMI31QJ+LF7kFPXPNJJZI1/iSwRNWF9OyZvr8iJC+u4swQGXSfRve7VEa17LfRbkcQeloBcW/PC0TiBxJHyTooxlkQpWOOzyG0jfztZq5XpJ/cS1gEu1yRfpiYdh70maYCd2bd8S39vCzTI5imQRMa3rOck2usrOtvuOZbNE68jZ4NK9pZf0xaY4t4r7Lskz/ksqZO7GdM6ibqz10o50NLAoghWRQRROUvTOVupUlK4phtJXDqcRJ+DePFKRBUfsf2udxJZuqMmf9vm44/FomIM+QKRCje2HX3O819s40LPP+o35H0/67uptDnDSakiuRaSIqJabo4dggCCNsQUu9WELbp/t4WkugwCpUN/HgXA0e2OQRL9S71RtKjc6vtwBxTgjGQfXbSUNdPma6LF6CznNABYjeR87tYcAeecs0iiVgLDUnfUhWt4GlupuEtGnwvaHNFHQxIThM/TTf13Od04ilJqJIS6WqZwjesbjeQ2PSn205HE1vUchjzg10Pb8u/3Q7J5sh6BZeYH6AgwLaS30rsjtbjfSaEQqQS19401kj1V7fXLHYAeJPE44Zru+roiL50NisXc7aQ/GVwESieRCRRm15/op4lZAf3F3FkHTF7LnmsiHSLm5JjGmFvIiusA+V5yMJCvdCwAxf3N0MmlY2mLICIbgw1uSfZWDJ7W+2i1s93YHqUDbiclkDZTvQRGYJ90qptatNGWeCWAagkxeZYyYm5qOyYncTncSD4i8NhJNHMiWk5KW5ShdCwZI03SOugozqgr6TGR/NIgtMeS/ag5DuWGYEXyNbTN9wPaOVmFuiz6k7b9/81C9YOk7frn7ahpyVlnDsQy34ntJ+m+Jvqi0B33BuKmoUSM0TSs1zmlDLkX7O92uulXNwU8ApPkf/UiiST1B8hpQ96htQzXgG4nRtreyCXS8iEY2pZKEyYQyFKkIp9Hu0/5Wvr73Tl1eRWyIHpKNwolM8y1nO9BjLov4JzL1Chh0OMqu6PjN4jOnjlFR/9c0UcW3Q7BHH+/GedaPp5zpPz36kESo7FL1NvTgosEAgkAd05dLs/LD52TeNqVk9gnXKMF/BhVcqAvuALo5xSbbgBoSGI/Tdvqp9FGASLgKgMX5F4+yL2LuP7AGnANhvz6HF0Cxjtg3PoH3DXz/fbk/RaCi/J3Y4LX8vqT6LY8gxm7MEP7Z9+v794GIggzDAPOT2M+3mYckrz+/ODwueYte0ZDEtmawwVQZPwGcq/rCfhlrScnMa2L+BhJvJlmJQDXKFEzgSTqOYnt+UyjKAjLRnEqzmWr27ElGOqF0jkDLVNJm2c7j2hQKAJGLuk4RPEH37pyRI5AV9Xr3x6uQDxZikw5Xn8eBfDG5SRqKHXf2ooHvfu8ZjcAOd3OISJkZHfNEenJP/L1FVPhDuZ380bq1S7JSSTKNgASSeSCW0W9w06qF0AGt8Qco4HQ6OMj1grddHeIuTrP3DkBENEgjw5d7aJ4zXWgm5KoeBKRZ9RN3RrRnPSbz0mMueJcXo9vIXAxz2YQoRgrQW14BH7MxF2Y203mpTP13oJjs+T7luvXHs87ia88uAbQQzd1yq1WMDJtKY0QIM97sd+xzCEtd5tikoi9nBVAkQEP5voXewJpy/iXszXZEYBIHW7mmuhlIrg9IeQIEgHQ0G8csrq87NoCYlCFRRLTHDxW7EkGGHtyGeW5AbTXlqZT4f6O/e6cTtn7fZCwyEsn9jzVljTu8WoJDAKoAFJKOL9PZq0nJ3F7K6KON1D+AnjsJJo320bcnGm/NpJSLnwmt20cdMjeRLLGiuBNy0hT8o84ldKyH+PcxANK5LYRhkxBETA2vBol9hgqLY0AC0TWzb3ZTclbInMLiw2ZNRLGwtlgcxIP8nczInaARFc7FHDDxuqeZ3MS5wXBcO2hm+4SRKRXFZWlvgEI+RWXuwPt2IzK9T9GFZhCBKsUdK5fzO2xr4lX29XopmmR+2dXJ9G/TUbVgWggsKh4qhJIqZuOQ0ZvDQaCkZcrWRqAvb7SoEBPvmtag5NWySyclL7gSorAc+IuEhGxa4WqebIkAnZ7NTBfenCNzTh0fbdMuOYNYnfIcg+9lOSI3Nu2Rd5PlEohcnm7kUTpyJKMC3l2sOh2sZaPCLgqW1G1pTmJc8d5kwYT6Jzo9T27Q/y9/Wc1+02l4jEjQJO+nwOUT14AACAASURBVN23pAPGnIs1JDGlvZ+f5EjiSZVu6tkkDeGasUxDOjrlzLie2j0KHEE37clJHAbg/Gn3/8d005tpbEReyubOc3uzk8Y4QKo7jtLZ4BaWFLwBkZOo002Xbtnu0M/4brWiyEwh3zJpmMzJEhRc+vAVjhTj3EiHCGCcy37Uxo9XIolmNxe8ELTF45FE20CQjnOvslpPjkikgLpcLj5HZBTOHtHHU17mfnGRaRxwuT8EJNGiwMX7Jj5n7VuqcE1HIOfYAFCvYZFSttK2n5fg9Dxz+zTvsz5/nUSSd6TDvRV0UyZI4j83R+Bt56bK7jDGStWje5yUWPNzphA6ORbAozaAQ9P383HqpjInsV1OSqe7W/2AHElk8xH957o8Zfc3m5MohWts5H59r7gH2H0ypUlSSK7YS3pKKfTmJJbOBufYlMIp/PUH8jxNZiXngit995t3THrSG/KcxJnqJ1M+WHXfNH2ph6IKRCSwL+Up/s0EPDTbAvB2ofvOt1MkcUxyEgWS6BXKW4FCKcAEwBTBqgrXdAIVPUHorPXkJALA+bPu8THd9GaaFe2wONO1ppdg4KIxalH2Zq8GktVyEiuUQBbt2Rf9uM2ncDbMOn1lzUNe3TE+55CUPicF4KiLko4TkVyinxiLPdhymjAXbS1LYMxmXo8WKHE5iY35KUgi891knprvzSKJgHMeXN1IswuANdp66DPIPd00q6VGGglnmxGXO74EhpbLa+Vk1ZB0Jkjl39vVTxitvGFR0nj8vAOSeDd3Ek8UJHFH0D8BnW7HUtl2WQ4kYSSP8h5dnyfRvVS4hqJAJ7maPeqHfiz3yBsx241DEtl1nI7XU6rDv5SfG+1C1r7d9jmJvU6iL4HREzgahwJJp/e7zvumQNsIhzQbzwdJWERKoKSW/D+QOMBrN1Y4xU8lpa4zW+sk+jHpDX6esgRJPwJ5pLrpwlGZN0fcN/71VCWW6ROuvwj4MSw4oESOrbSsdCzfUvbK7QRJnMZYAqNQN/VIYuMMSOtGhn7GPLUgbdqviiRWgiSkmRBbT04iAJw/4x4fI4k302i6qcJHbtZ/eYScxNxoYjfWfsEb3SDsr9HkP4M92GRE2DLshqHcROz6lu6xRLLIOXaie8OQO7JLx2EvkePjqE38gShpQ6bYh1K6xEIS/RzldWQPmmA0zXY00rcTjzCtRnKXummCCFLUvk2C2qxfkR3vbDtldFNW3TTP5TWCW8Fpi8+xQSoARQCC3RNkkfRedV/f0n0hVbcDEhQ3ddpmfy3b420TtA1wxjKHJOp14tqlGyrqpibdDuvcli7D4iShmzI0TqD8vdmadIDLDb1K1jEjClMgiYRz78vUzOr155zE68NM5yP6z83zLYk9eShpizzdtK+fPKcWMrgokZtDMKzt8TKU1CtCMikHYi8/hk3CnolAitywzmV/wXkgCjf5MWkkccqRRLYGpx8HSJgTHYJDrAiTXJO0LVMECvPP01oNSUyv5+1EuOb8ZApIoayTGAKFrTWpnDf+e9b2IC3dA4jrky2f1xOAyAfa83RTINJNHyOJN9NYuqm2sCzhDt1J5JyN5YhDQ8t/aXXTkUReybA3/0ItgUFsrqXjnN7Yel9dOIXPEZFztDdIiZrln9caT1ICOdrokB2G7rPsfjJ4kZYaqPaZyk2SymUcynxLa44yT62HopGqXvYd2o4215NbmOaILKTx75tzEudAl7EokrVcXjf3yvpXaGzM9Q/R4CJI0u4ngzJ+WIbuqDmJ6e8nHU1NAn1HRJHT+aS0LQ5JHIsgCWDkJA5lkMQ/32rpHsRSxIAK3ZSlOyZoA3vf3NpOuNzPuFwFhE63tiGzEShwuOcINknupHD36p3EwOxBEk83I672fTVQ0wAcuyfX6PWWxyfPKfZ309a/m7t9/Y+hW6djsXuCtC/Y7+a/Q2o7UeqmiX3B1hL08wwCWAuH9rt+Y+ZcUkiiKDq/P7i93PzdMrppfK7VJHjA5jdr9S2tfhLZ9i1l6p0nQcKnb58UgT7f/JpsnadyHbt+9j2u0VT3xveTudT+kfIRf+l/AH7grcBnfwFY5j4k8daT7vHsLXyfRvucOYnDMPztYRg+MwzDa8Mw/PIwDP9q8to3DcPwS8MwPByG4SeGYXg+ee10GIa/tfb77WEY/h3xudW+TLMO4VpOonVzSzU8gETpQhRn7RMWYrNbVUmvV354QQ/akEcWbbShpBbsDnYkX4v+sMnGpbpjcyjVkbUCAn68XiRX70cebMNxEaq0H8A76YAQCpltCq6kEnY5wOKAYvqluQpd6qajo8315hYCyGiqLJJ4uh1dTuLBFYxnhYM0uldXTi6x/9TopsfmkvYzJ1yTwYu//Se+Gv/jv/UNAJBIoKf7iO20pa/799M5ieOAvHQPIbhSYXdYo6W/d08JhpSGRYuEiN+tpyj42dYFnB5cOSeRQeqqxdwpxLkUbmLunVur89rjJN462eBid+h20gsUhb633d80JVka5J1oW5Tl566jDC4y16XuNLTnWDjA5F6uUd6ZpZyKwPn60gwrxwcXAazCNfZYgNtLUpXSnnxjT6ncEarwbo5DEZCh9wRvg3YGt7LanWj/3lUkMdFKSAM9w+DEp9yZfYS66VimLjFleGS+MZAgiZUfXqoyM2JuccAtcLgGdpdrTmKHq3bvk+7x+Y/wfVpTuZFP4dpfBvCeZVmeAPBtAP7SMAxfMQzDswD+GwB/AcDTAD4G4IeTfv8+gPcDeB7ANwL4s8MwfCsAEH3NZkWENQPN92vy8RXHpkc5VNJPmAR4WQDez6Pep2YQtueo5ZsxCOQxpRT8eHX5YSMnq9PYredy2RvkMYJDcp0sC1fMWqORMGeUdEqdk04Kp2TCBbZzX6Ck4A7EtJ/vTdFNJZJIGrtelKQHSZxGV7+zF4EEEpre3lHgWCpnj3BEDUk3HRQtAMQEt8R9Qwtu1eimh1zQ4SPvfxZf/PYnAJQGk/u/+wxbuEYIQBx4ddPuYuLjceqm6bVk6t36tg3odlyT1r1dGNYdSKJX6n31Yi1NsuVzEkOdShIRdGIf8e/gcBBz9XS1J29tzff6dms74eL6kDjbxL6l7cmmQ+QeexFImSfF/m7yXDxGACWdbx+S6GyE7r2E3MvleAvIPM0hZeW45zjHLUESO+6bdC/Zz3wJHv9+wO1bW/L3Ds42ybaQa5JX3F37iQBvOyexPNv8Z/jfM62T6Nt2GjPhMoATL5tEsC8d21rLVVVUEknsCeYHquj+oj8n8QN/2D2+96N8n0b7nDmJy7L8wrIsV/7P9d97AfxRAL+wLMuPLMtyCecUfngYhg+u7/3jAH5gWZZXlmX5RQA/BOC719esvmazIHEtH8v3s+BpuRgZlEgWhH2U3Darn17vsGMTT1EiYo41Kf9j6iTGnMTKWCJCDpA5carjTCIiYqx0Hq1+x+Qkpk5pD9qglsAgqF5Av3M/FY4zi3aWyfY96N7F9QHzwhfOntaoZC8iuJ1GXB/mLgQScAjM5W7G1X7uEvvQ65S1g1sHsSZZylBJ027PUVNbTJ+vNY3+A7RpoP53TnNSGGQvfT0VgODoXmOBpFvjFeyOgFK0x8qcxGBomVPMaLiRRtjuIwN+88IHOwon8YicRDYnbhxzJJFx0n3zddbe9dS5+V7fbp2MDknsCRwN6HY2SmpfX78oQMPS5EWeFOukT7k9w9CttcBRjwJuioD10E39NNmcxFSVszfguk++G7v/5zmJfSUwYnCLRBLHMaPEAv10016afHF2t+zkSp3EtBTPuUJjl0EjIGEXGCkAwiyn1rI2nhUoKXMSOVvedV5FZ3YX/TmJX/WvAd/3WeDOW/k+jfY5zUkchuGvD8PwEMAvAfgMgL8H4EsB/Jx/z7IsDwB8HMCXDsPwFIC3p6+v///S9f/VvuycaERKOokGBcLD2lK4gHE2/Hvdo3ueSTaW0X8AzXIWo4j8ABwiqKEUPTmJ0tlgKEPyBrWSjVVHlrn+quNsH241J93aD2T9qXnhDqjNlCrpuec4Kmf+uzE5WV444pj6loW6KTXH+Hv35AR5h+v1yz0ADtkAVgGCw9J1HYGVgnhYYq4Ha1xvnHDNjhTT0PYgc9+q3qPcWGWQpC/6z1LLak7iYV6qEeG0HmCcI+c0bGVEfrbVlf3nashlW0mvn93h5liqlDKIiEY3pRCYZO86kPcogEDj9E5iz1ouirkzdfo6giRpe+uqjvuup3i1v1vbCYd5weXOVvH0bUoomTTdWhjWNCVZnFOs4FD1+hP3tyqc1UU3JRG6QOX3VE72+rvHlPLLpmAUOfBkUCb9vXl10zHbJ9l7FIjXfTcvzVIPvqVgxbEUdDblSQbmmf1O1k31LQ0M+HX0x7/2+dhvOhIRHHObMB3bWstarXSgIXgz5J/fVSdxmzqJnUjiMNyYaA0AdIz86O3/Y+9dY23LsvKwb67H3udx3/fWs6u6u6qrmqYbKN79wNAQwGDAsUgHuR0S4SQGYhsbh6AkljAgISRH+EcUJYpC4jwcxxa2ZAs7kZFCTKxEUaTwAz+IiSPLEBv6XVX3cR57r1d+zDXWHGuudfb6xrr3nLvPuXtIpXtqnz3PmnvtueYcY3zf+EbTNH/COfenAHwcwLcCWAG4BuAL0VvvA7je/k7+P/4dJsb2zDn3IwB+BADe+973dq9PZVzPgsOnKBDaaZIMhZfln9iMB3xw8tBIhs3VAU64Zm4vtbmqqH2Vuuk+Qc7FPSAN6o5RADadocVgXEV8b2MCNPrvnX296HuDgSJjzPQB/QMK4JGUWDiCCS7jwJlBcoH20I6ykcxBupfFyAaXfcvafm8Mhao3LvV9sqzS1nt5goerwtNNLUjiCJJ1JpKeeDqs+Rk9I0liQb9kjH79LItp2mIMkjjWkmJ675Lsrk3dVNf26PFTSIqeI+ts6SDYEuz16KaGtawFpixNwTWSuMimadOAyq5X/eebQxKHSRJmru+5tY//C+/g7rXl5HvF9lvZ/Uergpof4B1Qs9hH9LyFRBV5Tql90oRIKSTdOaJ20vWdcopKOPhsXClFTK1kklvAMHltSkrGQToZuGlGwnJCWVksS+yqqKHlUjuO6G8MjNckMnuyf7//fxbdPitRuOkZHdOAAIb7/2//+e8djBvUCBIUe/F/tGI3s5ZH+ytOnMGxKrPFT+sFiU1l65P4hO3C1U2bpqmapvnfAbwC4I8DeATgRvS2GwAetr9D9Hv5HSbGxtf9xaZpvr5pmq9/7rkAw07K37bf52CBTFAgzqJkTq0P+b3m1fvXpzfxWCQE2Lz5n1l/t3mKZ8rkT+1Zj4UkDh7QzTSlmHoC2D5bfC+tAdHcmiwLRWYOjUFTogCPOjA1WXniejWJjJjPeC9HYo6JGxw0DJVWVNDeOV4D4OmmcpBaawvz1KGoG7rWRkzUTdcVGSSOJDyY+pKxtTXJEohqov04QwIoYkAw4+JaD2Bz8BaLz/j3N73fnWUhkApICutcx31C5fWzLHFnKU5PzFEFwayDBgQksawaOkgH0BOYstRW7S/89e6fFCZqNzCibjpxzfj+W4Lgj73u+4Y9f90QJLYB8KNWlIet9wuBjX+NDfbmthuwCg4l8f03JAk1M4pF0mVuci1LD9rCWO8X70FMwhvos7C6721yVL8tjk3dNLAS2M8mST/xewqivzEwrJsE+ER5UIkVX2Z6jv79oMeN9QAGOBCmioCbABycfb0YhAHYtTxkvDB13z65YvfTkOmaRCPd9AnbhSKJI9f+AIDfhK87BAA45w7l9aZp3nHOfQbAWwD+5/Ytb7VjsGksO4mpheWcaymB8SKegtGHjp0JpTMuLBc55My4sfo7Zo5jaBuD0o3dk6JqsJfbAilgmlow1ifR4uxaaXpxQMQ6d3HDbbonlHJA2aw1EFAzMRZJGUMSp4N7RHRTFu2ch5JKkPiuBIkk3VQOUmttoa/3sInkAKpPYvkYdNOm/7sxS2IkF8QzOpemGo2z1VIPXy83ZMrlnvXWMUk3zSLhGktNolW4Y0y4yb8+cS3lJE9lq/vjJACuJ5kW2uI+cXRtrULuLQkZQNckNt0cNs4xWsviXDOJmT/8Da/i1TsH+MQH7lJzBEIA/KilrrMsjTpa/3RSMgpSWFXUnriLAUmsjYGbRnx0Td2mdTkWyFI1iR2SXndzpertR6i7zFJOXDhnLAqUupWFRd10kSVdPfW6qnFtj3PDs8QnJYFWuIYSvEl6a8TPezq5C/T3ciYJKn829ks2InRn1CROa34kQySx+3ybkMTh3+/2cmN/RabuO07AATOQxLp6qkHihSCJzrnnnXOfds5dc86lzrnvAvBHAPwvAP4mgK9wzn3KObcH4KcB/IOmaX6rHf6XAPyUc+52K0jzwwD+2/Z3U2MnjXEMx+Rv/SI7+++e1UqBcZoAKCeZW1hjDjmwuSbxLIeQpZZZVVHPEkChatsiJHFqAzq7bnLzHJPo/svfsN5/3kmO7iNZf9FHEiff3lmWDhERTl2tf9g0ROZ0KFzDNXzWznVAGqbH7XdIotRIkXTTNOkpQtJIYuZbZxRVPamqqU2Ea9YlN268JnFa8CNWZDPtPzOTW1X0vVH9XUeRxLPXZTZCN2UP4Fi4xiOJXEa+GG3BsFlJLxZuAqadrUUW5mhxWnu1jAaHJN5L6NrahQ4SuWctnAE2ddO4drU0JGacc/imN+7RSD8QkMSjVUnND/AsDY3QMePG2jYA08HloN6PYHbo+eiaRCZJMkAgKWpfHGxwaFuX7FD3kvmuh6J/hqRk9L3R6qa1DREE2h6cba0rewb464UzuGRbYCSut9cBXEIG0IggeR8HdF//uhVM8WM3+1w+URH3SZz+fGPACMMKGdXFIM4ALRzEsPs6y2PhmqeH510U3bSBp5b+CwDvAPgLAP5M0zR/q2maLwD4FICfb3/3UQCfVmN/Bl6M5ncA/D0Av9A0za8AADF20pjDPhuBtqc25bniLrFCFCuBfhbdcdN6HKPE1o2lbkkHN0S95ciGMFvddOLBHgtkKWc3yn524xgnZsQhZK5nDdJlnFZxY64FtAGRMUgH+kgi3aMsHanTZD7bzEP7oK0jeufIRjcV2pAp0wdPiyqqmq4tFFtmKVZtn0RmXDbynFLqmgOUevrZdm6sltHQFse6b7mhAAGwOXgb65M4JSIQj9UULApJTBI0zUi9zcQZMIduHRS1azrYBoJwU6+WkXy2ZQ/xCbHpOQIKSTw2IIlxMoFEBOMgsSJq2R/HQk2iBInTY3SwHXrSTSdAASX20b5uPYPNiKCRyhkjkMz+M9YnkfnKpJarMgZggYWF7rpsUlILN8lrU6b9QgsCv8xSrBSSyJ4dOuArKpYB0WcJODe9JuVjaESQ+d7O6otpBVPk/6fqvYfAzbTC9WjpBjMumRmUuv59lNcmTeimxTGA5qnWJF5IeNoGc5/c8PtfBTDatqJtm/Fvtf+ZxjLGKD6N1cTVE5vyGIzOOGlnNSSd5IMPqE1ox00HsjECZnUI/bjpjTWWBPY/E/32RrI4U07a46KkVgTSubj+iPzekmEtKdsnca3qGvTcN5lX5OwjIiySUg6ut3lcTAlhJdDH2nswn21Qk0jSTYU2JM8cL1zjUVnLQQ94uumq4IPLsbYUVVdHwR1QAFeTCJyVuGCd1jBG5rDJxp5toM2UnzF4VLiG2MeBPpLSNA3vJHdiGjXSJO2uvTn7HLM7pu8joBDB0pa40HTTDhWf8byxtVWC3FvWf3f/jTWh8Zqsak5MZq7FSCJ7/+MkCatcGVAb7rmJEUGmRnxsnDUA68ZVdoecRTuBfi0djWQN1E35zybPs2yX7J5QGO8j4JOX69KzBFiFa8AnXTskkWSvZG0is5vjTESQE5wb910ZJDEO+Mop/zoZAgdyHDBtWUbbGU1dr3+5kIjb1DojDeU9LHAAwDuO2T6wPmoHXX0kcWuNRhLjBTkDSaRaMIzIOOu/d/a4WEnSgCTqbDdzrblUzvb3dpXMvrMLTNckjvZ7g6EmVNNNiSzhGLUPzPUi54duOD8jaw2M0E0rviZRrifB6VRNRJoM22awh3atDl+Ac7aWWQLnAt2UpcDlrZNgobbK31+VFVZFTSMpgO/btq5qPFqVs3rLARYk0ZbIAYa1jHXD0N/8v/Y+icNnG9hck9gJYM1CEhVKRyLiY9cUVGRKGCyuiWb8yFwFpOE+MuNC8FzVHGrg/3YI1C31tXsqCcMjiX3J+7rhmQwDJJEtApthQbjGQDdNxpQkp6+VuGF5CStu1GvmTlIyExcHbgbKe9xzb2L9yzUA8X+47yxPk44p4IO96TEDddOaD26GzJXp62n651RLNG2SUFmVNV2XLtfr0YTJFhjWOQ5pwqzgHLrrAJwPNAYcyNjNa2tYkyi+BhOU1nX/7JjaK8daYHBI4rCdF816z/eA1YP2D13xmsRttuBgn/2ecWh7OtOh/z7AZcSGvWa4hTXI/hMZaHkmhs3cJ641irYxyq1DESCqJtENaxKn6sfOqgllkcRS3X+2Jit2CAGutiS+jxz/f0jt40QBkq62qq4b1M20IiTgD+2uR1O7602hB7EiIS1AMJZZJ8Y553CQp0G4xqJuqhQh2dql/TzFSVFhZUQSbx4sAACfe3BKBbJBAa5/sE3R9MYo6NRhHyU8wKz/aN+qiX1VxsUOAuA/31lJiNAPcFiTOOXM62CP7dGn/26/lmvzh4vZHWxGPg729PU32UL1SbQEexrxrGoDkqiaXNPtZjqGTVsnRUr5P05N4hwT4ZoHp20LDMKR19+3RQSrP05e2zzGP/vhPtY1x0AB2uBGKIEVF4DF/gxTEx37MiwlFhDF6YCAsbWFQFynOX2tRKFEloRrqtg1bAIOCOfSuqpRVA1ysnVGnjoUZXhuqOSKQjvZ9jZScqDVTdl1LO8HAvjAJBJGNT+MSGLoVMAnLuRak6UzI+cU2zoj9uXZdYL8ADh+2/+8OOTGnIPtgkRGSj4ZiitMLaxEOSNijJMW01RlNKOSOSpcs2GYZBUH44hr+ffOQ8B6SCLRgiEZeUCnkIMxARpmIx/2Wuq/vmlc3G5Dz+Msi1uXmHo7xQ45gzaowI1VhIyvV3RI4kSQmA4DYO6QUtlIsrZNbH+RBSTRTDedzgxq21ukOCls2WAAuLWfAwC++GiNO4f55Pt1n1UxBoEfBinNRiErsWEt43R/s7OEa6ZbAAwTQPJ3zqxJjCTy9XWng8SAZFmQxIDc8HVSY+wOCqFQNZc25WIZV5uQDY1QsGgnEPokAtMJo3iOge7I1RbGfdFYKuFck8/2zpHfS3RAfJbpXmqW4D5VzwB73sv1CvW8sfdD7+VMssOP6SM+LJPBj0H3L0837SOJFnXTXr0rmXDtAiLDGTDod0gux2W7lrqSA1JgLU+DKmpJtsDINdppuv/9di6mIDHySzYNDcn8YfeAqbU1QBIn2GVjc/TXJvfyqCyCuV6aDNvi0EFitgccfdH/LEI2T8F2QWL7xW3OWgyh7amFFSNZgkhNBmARakDXKLjIIWn/pQQBjI7MeMNtLkseiwBtqj3ScxzQTScOqTEBmjnKrSFbNDUuphb7f5mM8BwkcZQiwzhbbQN4PY6uSZQeTaUfNxUkxpQQVrhAI1lWCujBIsX9EyPdtM1aWxw7ADjIU5ysS6xKG9301kEIDG8fLibfn0Z7AtA618yzHa1J5nxK3JhwjS1x1KlyTowbywgDm1UXg3DNsCZxMkhU8vqlYf3HQTCTyR8+22SfuF6fRP7Z1ghrRSINQITaGIKNZZZ0yRFrn8R+kGILpAAeSZlrIoL1diuCtUcknBJ1tlmUkudS0np0RwtKl+h6PxbJ9f/qlg/+9U0Ouf+3Rzclt8k8jXoJkglowH+m2nAmjvVJZEXgdJDIJmWWHd3Ui5exSOIiS/rCNSQDoqp9/bUlsRInoZlRMUrHrJG4RlmsnEgejbalI5E9PUd/relEyZhwTUX45nrfslCZAfjA8PhL7c8H5KAnb898kMgUnyZRAABMZ7eGfPz2b00hie1iDUGKf53JyMdKesz1BoI3DNoWcc/lelQAEAWlVd1M0r3GoP6pwvkxSixFG40CYJaCOEbtY8ZpqoufI38fB4GsMfvJiG/o61lrEuMAoCYP0t4BZaBtAUG8BrDVSZVVY1K2A7xwx0lRYV1WdEAKALf2Q2B454AIEkeQe8a5Tly8JlkBiGHiwqq2aEHg4wSc/J2pZ1sLMLFqnkGAxooktoFpF9xM18QNBYDYJt1KpZRIYopJwLZukUQWEc/TvrgFu/6dc7h3za9fvidpvybRUqcc16CyTvkcO1z65/lLRysAQcl1k+lErY1uOkyuMIh/lgbBFUsAoOuraOEg8UtiJHHD54uZSkxtv5hPXEhwwwd7fo62M7FX398Fl8QckxDIsqJsgA4SPZK4JDOgi9QL3gB+/2GEa3K1300FXtpidgGbXAS0cI28viFoO6tP4sR3Hu8HAKe6Psbw41kh/deEBTFV8hEDPnQrHh0k7uimT884ZaMzkMSJxSHvA3gaSZexq/qHxnSwF94LGIRTRrLdU0u4cwi1k0Y6oHHgUNYN8ilnNwHqGOqfcArj/lN+jtNIohwOwxqRaWd30O6BGJeqQzTMcd7BxiqyWXt5ASK/3Q8upyiWA+Ea8iDVNahWdG9/RpCYZ66rDwFCnzrmWidrewsMjSTeYZDEkYOtZpIrSbwm2ebSseKuvb9rcJKnx431SdzEMHDOYRG1cmHbsnRBSlV3a9PiJAtSxATpMd2arVvKFFJqyT53QWJZ0wkZoP9sW2mcz11fAuBR+wEtmcjiy7hecrE5XyRxmaV+jVUNFlnCJbfU921BEnt0Uzk36CBFBdsWJFEl4eYgiawwkv7ebHNsSwAMSRItnGKqLXSuu+8WNe0s9bXzdc2rJAPhXDpeVQCmGTlin+LqEQAAIABJREFUiyzBylqTmISEU0X2YPbj+v6FKUhv+s/AHHVTXz959rXivVXmCUwEl9Ec/bWng+cxJJETXRzWG9P71uIQOH3X/7xDEp+eMZtCvECY7FZMN+WlrWMk0RDsRagBQAreGOv2OkUq9YzSohgxBZGoSYw/m1zPz2Uz2lD30FXuPgJDha5puqm9T2U3rkcjZIVr5om7aEls+R6mEMF4nnRN4kgCwipSYUX3ekgiUUcEeJRgXdY4LfyhzTq8+4puahOumRckWpHEOPvZgEQ2krhOlhBgiujdbE3i2LMNEHR+JeLg58itE40kioNtQxJbxK3ihGuswllACPZ6NYmMk5b44HlV1ibaqKaxWRARIIgwvecWVzMzphI7W7jmHINEIKCJeyyVdqwEwFg6cBF0Rx2UlgRt3Y+RmsSAODPPjU6eNiQiCASULiQJp8foPchSy54kI+e9oQa4aqmcPN3Ur6uHrSgSe3YssoAkFmQLDK2U7BMC1KV65SVsQmZQqkMkeM9SN91Uk+7/Zj9JqP8GJVzT87mIYG+EzVYzZ7AL99GSlAQAHNwLP++CxKdnTPHp0Nn1/05J3wLDIHHaaWrnFWUfJhEwN8xa63mcOS4ZEbcwom1Sb8kgYGmCqCZxmls/JlwzWZM4QomllFvP+N4YJHFsjVAI5Fzabucg9Oe+yfK0n332f4uoSVT9frogceJwi4vLaUlyFdxYFcE0lZNFEkWk4uGpl7tnD21RN10baxKvL0PPI6omcSTbyhxsmuoFGBI58V5CiFLFIhWypKfnOI4kTjWL1mq7AOiATwuniMPFfN9jtXST1NYkTsBxjqQWoLGKKS2yBKuiNiEbfUTKQIdC6CP4xvPXqPcnSV+V00J37Dl2pCrq49i1Pf+c7pHJJp3wsPRc1UkZps5JbC7dcYBAGtZkr1WKNeFXc/sP0KpwGxWn9TNqqWXXa0v+5a6nUTo73fRh++ywSOIy08I1fE1iN0fDGolLPizCNRZg5CwksZoIaMdqEikkcSThyiQ8PCLYf41RWPb3Eb1r0vvWtefDz4tdkPjUjNmU4wCAyW4NVErJoCHO2FmQxLE+fZNI4sCR4cYAY/WWHJJldXZ1k+Ju3FSfxAjZADh1x1iAIwTp53j/jfcDGBeuoaTMVbDHUvTkPV1NYitcM0U3jZMrrCS5puAyMtra3nPbIxrO8bQOObRF8IZVKt1fpKgb30vNgiQ65/DyzT0AwEvtv5tsLPvJF9tHiCBdkxj+nwnu5VYPe2QR1zoTSTz78+Wp6xwm//6aor9puqmMZ747GRdq9+rp5FbSF+liEFkAbZ2Ln2Nl2FsBv5ZXZWVyWrVqogVtANC1m3n9Ob5mZqAKadx/AAkuz9d9OVzYg8SmaemHliDFBQfUUssYlw7QoiRp/+xggo0gqKeCe5LxUqkAmO+T6BEYi2OtS0wsSG7qhoENcz2N0lnuv+w3j4xJyV5NIpkkkdYtot5tQZt1IoFCjSPfyRK0jYnCTAE3cU2iBUm09+rul84AfMmHbvej5zBph8+Fn3dI4tMzpvh0KOU/vfjnqpTGGTu6lcJI1lrPY9M8e4I3BGowJ2Ok56kDvoJSN03OLFI+66Aac6w93WVifmd8tqlzdPb9j8bxDW/taCcgjeO9IIBkoWnhiPZ6oU+i7Xtjs91jdFPWcZXgi0W2geAEPjixtc4QWfx3jwtTCwwA+Ls/+a341Z/4Frx0c5qmF69J+ZlB6eI1SdUkJmPqppvHxCIVMlWKbloPX/fCDJuchKQnXMNmyUeRRANty4okameEbRPknEOeJFi3zynA1agBLdpQ1rDI3eda8dhYk/inv/1NADySCPSfb0bdGvBrua9mu3l9PAm73iKJTPsLQKnS1rUpSElc2OcsNdi5SrjWDU/l9BS4sI4t7VV0cEmjpIpxZFVgrSbOeW2hxKShqI5hXEASLT2HNUpXN5ZEjl9Pj1okkT07NN20rOuuFdAmC/tdbarjjWtJbS1I/P8z4EHcEkdsCr0cq0lkFK5j31V+tpZuyPUoJLEdZy2d6SGJTzFIzKbfcrWNOUxjBT5m4zpLpZQNwEIjWUxeS8b1+/T5f6eWo26kLONYalnsELJUKl003zTT9/+sxqnJBuRgXLiGUxsFRgIwYo2M3v+p4NINBW/YGpE5joVkFqs6NBNnMsn6O5hTk2ihJGsKrlXd9D237ZupyNtL42wLkggAJ0VFB5bhmineeP469d6zsp8cRSZKkrDZ/znjlGNBC9e4IW0ImHZC88z1+iSytMUk8cFsWTWdCISFbirX5FpgJOb9R0xaAFiCDcDX4a5Kn/jkg0QlXEMGDWJ/6Kvfgz/01e+h3w/0e+CxwWyeDhkX5ylcAwCHS0ESjT0gFU3SGkhZHEmP9ug2EdQ0+1RCtt5skCSpu7Nk8lrqnKIp0K3ibldbSCYyAf+cWfuLxklJ5hHQAQ5L5QdCEnJWTWIVUCkr3bQ0IInxPWETyQAG95ISeIxRwYl1GdPP9XWZ6+kjh0USx1puWMZ1wjXsg3q4o5tuhTH9xsZoc8BExiJSKWXph6FxNnrjJp2tBBFq0M5jKuCL0Aaql2AUgI01wz57nn35bYDot5cOof4pul0cyAJcvd8gY0rWRCSufx94evGwJQiHyA5FQrg+ieFgC/QM5rBPBuqmzPfWCX0YAtnHUTd98YZHEr/2vbeo9wMaSfSZXVbwRovksA2R51iM0gGBAbHJ4rXFOjIxus0Kruj6wrnqymJTQXCuBJgAXqURCA7oquSFinKVXJH5TQtuxUwGa01WbVLJBALd1CLsItcC7Oqmc0yfARWJJGqRFsDvQcy+9TgmQSK7H3TUPiMCNpYUYxN+c4RrdH9FlrY41qieRYADK4pHO/OWShsCjekx8qfN6qZpP3EN2BOulgB4bk2ippvahWuaVjGURxLntKmR9wOczxv7kmJltXk9xywNfd0pmmp8PV6ErP8a8+zErAn5W5TtkMTtsKqerl0a1PYQ2d0YSWwMrRSAsKBoummU/WeD0li4hkF7Ou559JDy2U9bADCGJPpDcfN1gKFwzVRN4ln1lhytYHj/p/bWGIG0UDsGTWspummorbJw5HWh+LrigvuxDC172KxKW7Ah9uGXb+CPf+sH8EMffz/1fiAgBdaaRF2rZKlJnGNxLS9zQI2qaxJVcTG6zTaBj0Uq5LWNc0yCSm93vY5hsKkmMYnoh7yTtt+ibXOEawJyM013lGy3p/m6traTmqL/fO19APj1L5S0LEnogHSh+yQaKIFzTTt47Pem1RYBv/7P+5m7vrTVJMZKkgCPgMWUNBZdnSNcEwcAXE1uPwCYEpYK10IvccSuSa+CXpmTi0Bf3ZSum1RKnuz1ArugNqmbzq5J7NFNbS0wKmPdZJYkHbrH1jfHvhMTcAuzY4wpNoUIjvqEbrP/Gphi/bNjupZ9KLDGIKxa3XRKkX9gz32Zmvj5JaGnbBck1jVV77cu+4sK2AwbD1RKWSSxo0xEzpYhcEsS19UfWSXoTeqaTezIc+O0/DbABelx1qicyP6Mcc8bYo4DKX+SNpc4L1rQOYQkAhmjDexhP7dPos72sfcf6IskFGQtlzSpB2ziRlrd1NICAPCf7z/47g9R7xWTRtkPTgs4x7UEAfq1SuftsMa1vMyBH4/xdEfuWvFzQ41zwz1h+hAdOgjM/pqlfeECC/3Qty6puj2dUaaVhIhWF2QcBMDf99TxNYn+er7Fh3xG1q9Ytr3UlpkFSdRIiiHTPdN0PZFFuEZ/30Xd4MBYB2w1QRL3SbqppoVbgg3NQrHQ6+egPYDcf1sNaowSlRVJN1V7gklMKfEBsGX/13O0qZvqhuf+Naq+P2Ll8Oqm/ZpE9rzpBYlVQ91/6UEtSrGWPonzkUQJitrXJ5l6Z/Qhn0QSh2I3k2JuUd2knydXujG4HnFfsjQkvM3CNTnXVui8bRckkgukhxIRG3msUiqj2Xq/GG1jauKANlsHxyvpDdAGy7gwRs9hk8XKdsA8JHGKFhXqE/rfGxM0+7mF6wCccJAf52sF5tJN6V6Cbl4dS9fvrQo1iVMKXcAZNYkTwjU9JJEMtgGMq5ueo+O6VMI1izSh68Zu7Id+h5YWGHNMI/CAYd/Sz00DOLLfWEydpvsrKoRI5jA15szakg1jBWnTY2gkcdG2LjGom8r3K04aE5Rqheu0RUz5INE7TuuqQpo4yiH08/SfzTv/3Jg8TbrEj58rNWy2aaeQRhLTpF+DWtWdA3xe9tz1JQDgtBhRVhoxzdKwCde4QVKSQhJVEs6CZGmNBWsAoL83ShU16VPQaUpsmwSyMEm0DoFJJVbP0XBOSYnBuqxNVFpJLnbMFQOSuGr3rIIUbuoFzjMTCRafxF8L3TUBu8I7c80zkcSJWym/12PZmsSY8UKLx0VAkSkJ9+m/Avzeb/DvPwfbBYkk1GytSTxTpZR4YPT76Yy8gvoz8FnruHE2P244RytKIYc+pW46QBs217KMZYwYZ1f+pLW9R3z/bXRT7ewa2hR02ef+HDZZkMQOjgyjkqaVSi01iZ0zYqTxxDTV8yw/6oRrTgoTIqjbV1xEkKgpMlQWM2JAVE1DftdDmqqVXcA6yWMJoIJAuAVpE7M4QHuqvyXA0Yvl+12VPJI4pgLN+gdZ2+JjVdR0M3eZ57sna1Owl6euC7it6qZzLKYlLwg6Z5721z8r3PE49lXvuQkA+Cefe0i9v6v3NgrX9Pe79jUmuEmdasli65OomUqWRunyfDPCTTJOn1PsPp6lSU8l1qxuarn/qT1xDYQ94Xhd0nME/HmzSBN8/sEKAF/esExFuZgT/AOU4m7bTmdOIoHvZRojidP0T2C8ncXUNcdqEqfYZX5cvwxM5jsbSTSAABahwM4+9L3+v6doO+EaYpMcZPGJjSs4CH0+MotkhU0Lk9fS16sVujdHyZBteK7HsfWWQJ+CGDZkW789GbuxBUn7Jwd9EiemGIuEWOim/npyrf7rZ9k4krj5WoBkaP3PFmqNVuCz1yT699tqEkP/NcCQWZ9RbznXOuGa05ISMRG7d23Z/Xz+NYn9Q5E6ENNhT1Ir3RfgaxL7IhVsAmjYJ3GqByogSFsUJJJrZD9PcKqCREaZdhEhiSUhnKLl5wEekQUEJao9dZSsiZN5iiNp6ZMowYbQ5c/TJAAGbEiWPoNZdc3Hsa98xQeJuvZ1k/UTcP41XrjG/xxqGaevN5duGusCcPt/y4wSdd+aEw7SfoIlAZG3c5yjbmrvkziC9hDXk3PjZF21158cAsD7GLcOcnz+YRskGpBEADgt/PUY4Zo+ksiJRAFDFhBLf/bv9/9P17JHCSDmmqmqmRTj1Eb9v3Pq+2MRbrq/YswKPOf99UnbM48kMn2CBrU9xMYVqEb+/2U4A737cfGmNTXO/6trgpi16Ole4f9t42IYnRmn6hosNYnRQT2VyYwznwBXkyhjzbVVI/cfIISDRsRFrE2KLQFYL7NoyGxphdmuT+IUkpiM1XpMXqqXWbdkhOeaHPaPViVuKgrplOk5ve8u30x8jo3V4Flp2jxtKEqu1KA46Fqkgk1AxEg6oDOuZ6+vLE1w1DpnQHs/2FrSha9JXJmQRL9GViUf3ARkw/+/BUmUFh+rsjKh1FKTaKL2RYm780zIAH2VRhbJyltkSaysm3Onm17fy/Effeor8darnFKyzEcrRzPBnmbl2IRrNN2Udz6z1HUUWr51DLr3A54FxNAd9b5lqYnL2t6dlgRoKLmxBXvZyHnPzFMYKLIPsc8bANw+WOD/aRFqWt0067dqYvaFWM3cIm6kz+A5aHNV8/d/rE/iRiQxHUESCcXvWHPCz7OZTBSOljwRlOtUJ7ytwjVbYs98kMh80XFhLbNxDfsdcojIoJk7GQDE1Kam4eifiRu2bmAd+XjxcxtCgpOq6s11+v6PIIlTnPUR4RoLImJtCj68/9z3liYx3ZTL5EuQ3qisKUc3DYeGOF20cIQ4CKXQTfnvzaRSN0JbPE90Q9P55tJGv8bQcmOOZUnsJNdY5pu37zQ6fC0qdfHzRmfkjXvCKJJYTx+mImwhNtUSR9t+nuLd48KkbhqQRL93MU5yYIUEIQdLTWJR1TgtamOQmGJV1HTwBfiA1IrsPY4tI5XGOcI1Pvt//kSoP/wN76Xfq/UETHRHN9wnWeSmRzclb8ciTbp2P94ZZ9RN+zQ9X3vPjSsVm8Qk3FTbEEG51XXdmJDcNEnQNPZxkjiy0k0B4OZBSEZeW3JuuCSzpJaRUd2V701QWZ7u67CSRMJEOwqxmG5qEkEc8e+mQIAhu8xQlqWRxLrB/pR/N0ZvZeimKpg1C9dsiT3zdFPmi47FFZiN6yyVUosACqACUpKmKgFHw0L90WdjaxL7FA3/GltLp7nueu5njhnJGk05QUl0/2WedL2fESWN73+4J9Pj9Gdj+73lap1YhGvk0CiquqNrMHVqWhK7qGo4x2zIiUIS+URC6vpiB/5vnT+SCNhpo7//wy/g5n6OG3s8AjnH8plIog6kmPproEW3Iwo0xxLQAhxhDpPXGskIA9N0U00DrMg5AqomcY5wTVV3/06NizPr3kkm55gJ2lnRLRgAT51dVzXFkBETaitgC2Tn2jJLux6VTL9PICSpJPnm+8Rtl7M1xtJglarn9EnM0z6Vk+9BGJ4d7/9Mj4nLYIqK+97y1HXaAxa6qZzB1tpOIIi0+Nemr6UTpyxzCwhI4rEgiYbn5rYKEm8fLqgxi6zfz3efCRJVWxbb/e+f3VSNbEQ3ZZOSZ6mbTvVJLAYU1eme52MMM0qELGITAiS99YJ9mfOwHZJIfNFjtC1g85ets4qArd8eMIIkssFll8m313+ZxqmHRg5uZunrOrWAGNih/qneNmNIorQFmbJRKX/j5mMRvOkVUZMbeZ6JQ9KYHQugrUk0IpDy/nXVICdUQPX3xt5HQNBt//OFqJs+BpL4X/wbX4fo7DgXy6IaPKZP1iAB1LCZ9b7gjalPYpcU4xoHx0i6HzuNJA7ot0SNpth+nuLUSDeVgFCy654GutlJGyT8DCjdwSLFZ+4XuFbakMRFmmDV1lte3+OO9zxNUDfonPLzVjddZEmHvljUTQFBsBytrnmRNh5sGJFEwz6pnWtLo3TdSqEikcQYJSrrpguSNs4x1UiigRKbJLOCbcDvV7NUUWubKqo8/0dtKwuL83/7wAeGeepwuOCSQLIHCZK4T4zTGgRsbaGM0/vWXs7ff90Cg+4TOnIGTPVJFPRXrsHWCMrf711rqnVGMl7yRMUOkXDNZQsSd0gi8UXHi5jZuFK1YQG8SmOXjVHjKIpexLVm61/iz1Y3DVd/pIVrojlsnKeiDbHwu2S1miZ2CqeRxP5nY+smh5LkLN00zhpNIomDmkRbbeG6V7fBZ1t13Qw7Tt5fVDXlWMsYTYmlhVMGCOTksNmWpUkXPFuRROecqRZlrmWJ67UAYA58aaPQjWmmJcKB8cSRVcyKCfTk92M0HmDzulykSYfqyRhagn4R1E0XGdfyJEscnFNIIhG8jbFCWCftYJnhpKiwKmqTmNIy9zWJpwWPQEpwI075eSOJiyx8dzWR7NBzDNQtTjjlIq3H0jAEN/0+lXxwqXvFWVCiRVu3CvgaW2bPi1Eilt6t9y2WkSBzlCb1AL//+DnagkTtc1mCdK2KDXACWGK32iDx1sGCLqXoahIlSLTQTbsEEI/kalEk0320CtdEZ0DTNJMBpvg/MQuLqRH0c7QhiVpcqhtHCeWomlyDD7RNtl277FMwFjKOlfSAzYs4pmewTnIc3FQ1n/0H+kgWsxTTyCEEGaT4AMD/bBGu0RkqVrgmUHfDa1N9wOIgHWiRROKuaMc1IIKbxwzvP/991014P0tJW0SOHXMtQG2uVR0EaEgnoVDCNZRogXoGTCp1ri/RLq+dp4lS6XmrlM61PE2GNXhETVwVHaJz1E3Z2hLNLpDxk/1dR2g8DMMgRhJZcQXAO1cnhadyLknYzDnXicIAaBvWTwSJI/XlNJKYpzhel36OBudzmaUo6wbHaz5IXCiapEXwZq4tsyTUO5FIVp70ncKy5oRTLtJkPn26I4kIVvZgr+slWDcm5dylCtLXpDBSjBL5IJ07b7rPZlj/Urdqae+kz2BrAhTwiWdLkL5Uqth+znwy54Ub/ryJEbRNJrXz7xyv/f8b6aZs2xIgYnwZgQrNFOMT0Jq5EuawaYxcQ4wtHfPX0OPqSdGzLD0D7ZzyXUfaq1w24Zrt9Igu0CiIOh0qgAIckmhVadT0AKB10Kjsv8wNahzjEAb1PZkn5xCGzyTXtFLS2GbusQAEMJ390QEKwGWnxHo1IuT3Ft9/9p7IGurolSzdNHLsmDkC/fsijgLblFfoHUXFyc+n2mnq5jg5bLQm9LwpGs/f8D0PLQf9RVqs5sYITmikAeDX1kDdtCF7oPaQRE4UKUbSgaCeO1WTGNNv2eBmL09xWtQ0iiKmVTlXxfTYGP2yBAD7ixTH68osXCPoxjvHa7q/ou7vdyHqpipIYQV2QvlGENM47xYYVhsTrqEQQV1bSCaF/bgERdWYmCRAvyZxXXHrKz5P2T6VuibRom66zDwFWmpXTeqmtf3+A96/qBv+Pi4j+idDvxX74AvXAQBvH63pMaK8/dn7p/T1ulpqUTwm778WamEEYYBxn5cFDuL2NvrvnTVGv1eux5w3eo7y85zaeYamqhNAcj8vgnn0JG27dtmnYEw2wDsyfYcE2BzcDLLIVgEahaRYePVaOMUatMk4ZgnH9RAA50iOKV5OCadkyfDBnnIKx+4HQKKyM9TmzqKbTiOQ6K7TNHxGuAsSS5siW6aCS7aVBdB3Elak45pHVBfAXu8a1tb5bqwvtpndA7I+5KItT/pCLWxN4kDsZo6YFelc6HY6tHBNhKTLPIHNyYtcBWwAT1sEQi3Pg5PCFCQu8yC4YqlJ1NR1mm66CMI1lj6Jh61S4sPTkkYS+wmn83didLDNBvd5x5zw97Ko63NvgWG1vnCNf40V/OgFUqwCZYvAWFAzINz/pmnoREm8lguyT2WmAlLL2urq/QyiMMF3stWy65pEiwDWMkvgXAgSLQnGN1+4Rr9XTCiqn33gg0SmJlG37rEguX0/bVoQBtBIrv9/C910tMWcAYQB+NIxIOqTSJyLWeQny7Wn8iQ9KnmzQxIvpTGO05gCJTCBJKb9RczWtg1oqqSy1NwsTpwhYdVNE4U2sCItfp7JjJrE4YM91Rg23A///7UZyZJx/l+rKq2Mm6xlVEkBCyIrwjXrqjY1YNbCNeuulYWhBUBV45RUXByl8ViDdAP68jgmh+mHX75x7teaY3P6JMY1iTXpkM8Vs0p77ALu+46RdICrScwjZJXpkSUmtTz3Twq7KExZo2yDKZZu2lMJZOmmC08bfbQqTXPUcvossiF7glBpzxtJlLpJgEcS+43qfTLtIlpgWKzXk85QS50lSV/cyCDuYm23AQThmrK9j1R9ebSW2e8tj5xkliEsa/dkzYvCyFs03Ze7/xLcNKY2HUJB72oSDc/pc215A9uDExgiiUxNYhDcqkwKuDpRaKGN+vfbhIriunSGdRQj2wCJJEbJDj/f6XG65Vh/HMHmEX/XmMzZFnvm1U1ZKfl4UQEcHB7qUTA5Rv9e17GYetT0KKDzsjiz20RQAdgwcGb6JALoWjDI2E33sjswoto2rgdh+EyhtnDzmLNrEifGqSxm4vhAtleTaHASJBhaKyQxJw43OZBO1hWNJMby2+wc+0Xz5++0AsAXHq4AAB968fq5X2uOxc3jy4kkCTBEBC0Jp1jMyko3ZRNAmUqmxXvf5prEqAVGzaubClr89tHaiCT64EYCnKlawVF1U3It7y/80fzOcWFCKA4WOki0IYnyuc7bh1mkaaSuyZ9vZdV03/vWqZsq4RomkSyWpqHeuyLPe0B6CdpEcgAfOJR1g9PC7ydMzWuc9C5JNeFevaUhAAs9CFu6KTHOOS8uVTfBmbck2CXgtjjxyyxVSCK/lzjn8H/8h/8SbuzzrZNutW0zPmMIEmVOq7I2KeD2lcltpSwdm4Qtb4jPqc6/3qQ5kfTeC/DsGpmbvh4reFM36BIdfu/aOCxS9+UT5dtk25WKewpG0U3PyHRs+rKTOPNGIlkxTXWuuilANjKNkUTSIdS91CxUQt1/h+GeA0A6omQ1lcl0zvkAOApkuZqsJ0c3ZZHjqrHVUcztySWHxmlRdRQnJpMsTutJ2zrAhCTWDUUhEVtkAW220K8ex/7s93wIH3/9Lj72+t3zv9gMi5vHs8mtfh0vX5OrD1GWAt0XruGSJEm03wFcgJm3FL1GJYHYoOFO25fst794ZOpvKTQ9tnXGMOHHq/RKIMuoqGo7XIbnklc3FdSm6v3/eVncgoFFpIC+KvNVEa7Jo4SrRYGyt7fSwaX/fh+1rRss5QYyT1q8TNckGgLgZdyDkL0n7dldGc7SrPe92Zz4vTwJQaKBFg4AL9/a7yH/09dKscgSfK6lm+5RdNNQkzi3TyLL0oiFa9izO1PsMj9e/JlNY4ZIIpNgGfrJvACNnhvgz7ipRIk+p2SuO7rpJTNWxnaMM80gicMaNRuSyG5aAySRHKfbDQC+nQUVXPYCMP8aKyUv90I2BlbddKBkRXxvRbdhta/R6o79z0Z/b0pd1o+buNZIsT0zxzHhGuZAFMdxVdaKbjo9rkMSiwqnBaeI11M3JYMGGdfVsRiyn49jX/XKLfzVH/lYD4nZJovppgWhVBfXJLIqpboBMMBT12PhmjRxRJLE/xtndoHNSFEsgW5BKSRIPFpX3c+MieKi1CVOOYXxnmBx0nRtLBvsAX26KRtcCitBggZrr1CribpmXTeUsiCgpPyrWp0b2+W+zBeuSXqUtNnCNeQ2Kd+v9PdbEEh1nPRm+1TmiUJSGh7tlDk+PJU5ct+1nN0WxW/92SxtOgD14AvOAAAgAElEQVT/bM5BEufarf28+w72iO8tSxOkicOqrFGUvCJwD0k00EYBVeJD7slnI4lnj9WlLHoc60vGNYlTe8lYMpMJSnV/V4ty7jbZdu2yT8H4jPwQSWQW8aD/0cRD45xD4vp0U4uyl7UmMW6BMadxNkutlHGx2hOrSBWrmzLfm2wigW5KzNENEUgrImIOLmvbwdb1SSxV1tqAJK6KqssGM8G9OK1elp9DNzQlxJJZz9LQF9PSW+4qW5YmXcIDaCXoJzYGfR8BI/0n2hM4mnak0mjKPutDm1C361q5hM/GZmh1YGgLEr1wjbRvMPdJNASymkpmQxLtdFOh9j089c7uebeB0fXNc5BEeQ62D0lsE3dGCqhG/C1tUkS4h1ED1raIAjBLwk/ORbZPpU5usX1a/ZykvUS7Jkl0W85um+K3/9t1G1za6KahvvZCgsSWcpomjl7/fo4VrSUgf1/ThJlnNG6TwiYFvLhLX6VU/72zxgB9n7Ak9tdRRJD0JYF+MpMp+YjrlC8bigjsgkTqAUiSIP/vx0z395Ngb9Dvjdy0NJXTwquXZ6Zu7LWFYdzksJ7gTYckkj0IYyrnlHDKmJIVmzWKg3QrR56tmxzefy4oTdTmY6ENLbKwSYYifSJIbGk8py2SyIjWAEFJTZBEqkdT0t8g2TnmapyFonSVbZH2KTkFkcmP+4uyQUriXK8tTkPuCTrhZN+3hnTTTc+3OEjSSoFRthObGyQKTVKuyaqbauo0jyQqRNAgrX84oyZRnNsHhqDhcUzXSbHIWZqEpEC3PrasBYZuX2Wpwe4FUoYgRT6/JC3YfVICLgtKJ3MqVIKX7ZOoWSF0TWIuc7S1lxDROYu6aYwA2+im8xD/uXZr3+9X+3lKK35LIMtqCQBxP2uj4I1KSlLnxhlIorVPYk2dicLAsgV7nZ+me/MSiVDtA1nu4zbZdu2yT8EYxynOIlhUOeOaRI4C2q9J5II99K7TgKwtTFxPWbAxBJe1uhZgQBIV111e22RxvzGA5ZEHqovl0Nbqjiy6N7j/VnXHGiba0Nw+iZ0kdlG3SCIZJGrhGhpJDJlFi5CACOmIKM9lUwM7D8uSfk1iWdWTrWMCm8GGUmhxKYCvSdRy32zQNiYkwKmbBvohYHOuNSXTSjcVZwuYdq41QtHNkRauCQ7ngakFhnZauWe7awp+cjFIouwdx+sSTcPVcskZUNRBcGvbsvK6vZBFpEK3k7IwJ7r7WLQKoOS4QU0i8X2LkufK2Keyl6g17OVyTt0/kbpJ7hmQxLxFTE+Xs9QGBVAAvZrmi0ASX7jp+/laAtJlluK0mIEk9r437lq9ceSePGDqEc/OWbTRSbXRNPgk+nqT6vXtr2Mkcbp1RjinLG2atsl2QSKxkGMlJdYp13V7srZoJNH4oHW1baomjms3EGVjZtUfCWo2E6Uj7iMQoQ0Ej7yv0PW4c7Rx1nm6qf9XC9dQYgc9uqlca3JYR1NZlRXWVUM7hIFuakcSi0rPkTs09Lgd3VTopmFN1s00Aq+RDeDx6KbM2tJy36xDOPZsMwyDsZpE1gHVe4AVSVzpmsRJuikGc2Qd0OevL7uf33P7gJ5jT92UVEUNSKK939scm0N3zDWSSLI7Ltp0sNEhWayTXNkSOUBA245WNnEXuf+PjMjxIku6BAmDvgD9ekubumm7JjtRGL4msW6MLZdUMs2SyAGA22r/sArXzLGXb+31/mVsmSc4WlVoGj64jH0gtv43LtU5v5rEfrmBjJvaEuJWLjJu0gdN+zGA/xmT9dS6v6ul3nibbBckUkGi/1cXbQNEcONcz0EAOEc+UYFb1dhqe/qNm4lrDeim3EJOkkCtZIM9eU+HyJIU0LlKVj2n1Ug/ib/rqT2yc3YHiq+bx/WEawzB9qhwDX0ApzhtkUS21mNPCddYkcSysvWt0igRW5N71S1PgyPJtgAY1kXzQg5D4RrOISyMyN7Yoc3VJPrfifjSuuKagou91GbkLUHifp52SDrABIktkqgz8uQz+vKt/e7n997hg0R9z1iHcK9DEi+GbrqIAgAL3dE78oIkbtfGMNonkUncpZpxxNcW7mWhThzgkcQuSDcgiYDU5NZtzR8XpOepw7ryTJKaTFwDAQV/eGoThYnVTU2JqnaOFubKnYOLRRJfafcFiyrzMkvM4jraT7ME91kSekyzCV6NpAMc6ytT+0E3jkASk8SXgQW/kPvO464D/mcCSYyEay4j3XQ7pfwu0Dh1034Wga0B62VjjGpnGklkEaLeHEnaRCxcU9UsvdX1HEI9h83jkq6+k0XpxnricNmfId2XCTg0lZae4xlIIt0Cw3iwhQyV6snFOhe5L2RnZcyBgCR6J7misqZCGy1rRYk1BcD2GpGralomXNb01HeXR9nPiqQNDZFENnHhejVLrLqynqP+edPzvYiQREvCAwD+1o/9Pvzl//N38I2v3aHH7C88bWvd9UmcqEmMAmAL2qnf98rt/Q3vPNtouukASTxvumkrlGNQU+2Ea6qmqyfaOuGaqE+ic+Rzo5xk9rwHQnDf9RI8ZyRR1H2DcBDzvSkn2UBbDMI1dnVTEaABbMyVsmq67401jSReBJXw1oG/HvtsA/5eds82jST2/TT2e/Ogg18fjYW5opOShD9ztgDN9BxF0A0IfiGtsN/E1+PGSenMjm56CY2pnYlbMLDIWRzsAZyTnEQIpEklsAnXm9U423C9mMpp6UlU1k2HjMxFEqfGxYevzHvKelRaMnATZyDQfY3BfZvFlOtPWa9PoiEAAwKSaBGuERqbp5vW2CMO7UUU7AG2NSKfbRckhsbZQKjDm06u9LOtNEtArX+pJWW+gTztP2/MgZhGz42fL+8kFB262tBrGQCeu77Ev/udHzS1PDlYpDhukyTAjD6JzTz580NDLzUAuNs6ruy19i64JnGOcEqnZltvbwsMjVJUBtRYzuDGqK6pazvl+ozJ/X+0stGLRSWTbV0FROiqhW6aR2izQd1UAlKAZGFFiVoTkqiCRFZI5nHszReuAQC++yteoscssiTQdlkkMULFpxC6blzSF65hfaBYpRTY7M/ELBm5HqW4qwLZAHBMI5AABi03LHoalnKDbbJnHklkHKckcrZYmqQO9roAgKRkzuF1A4FWyfQRBPoNsAFb3VJA29rXSAfUj+Gbi2oBFDGmJkLLOFsomX0qLRfIjqmbUm0DRummk8NCTWJl77+z7CGJNrTB0ji4l0UzBOla7t5So3OVTSsgirpmPnHg6wx50zQ2UaouSPSv0bShGfWPwFlI4nRNYhckGhIec21/keGkqHBSSJ9EW5DI1Mxo+zs//s34zP0T8zz/qx/6evz0L/8m3nj+GvX+ziG/oJpECUrvH6/p6+m1LMmSbatJBFSrGkNCII8ccp6S6e+b1CRa6aYW4Rp537pVpAVIxotGVw2iMLoFRpY4Wsl2jrppv58vfx8B4PYBT1d/EvahF2/g13/qO3Dv2nL6za0ts6RDZC01iYDU11qRRFtSLE3cIPiSv3WWZWewy9jrFRErZ9qXbK/RxEHpFMARSmfYViLbZs98kMg0hc2iAIClV+pgrzIEALGyFBcktnPTSCKZyY9bYJjRNsOhobnk3Tjy/sdFykwj07gmlHVcA5W2P4ezx7Tz6gkHTV6qhyRa5tihdKVdAVRqSyzCNUnisJ+neLdz7AiqkeqH1hgyu72N1VgjclVN6jaaJrQAyCfXZP+g169NjdMteABuLWu6Kc2AkL3VrG4qCYgQOOfZ+a6T/S644bLyMZJrzSR/+Us38OUv3TDP82veext/+0/9Pvr9UtsmNYnnjSSKAuvbRzy60WegCN10u5BEAL3evDySGEQ4LEkxoRx2NYnk7RgguYZE4aqsu8Qrc/8zRROuyTNRrgUAp0XdlTowliR9dVPW3wJaNo+RbmqpaX5SZgkQgfk1iYBdzKcnFkgixxp9BECVpowhiayYUq4YfvKsTpeOSVBqU0XVCSC2BGPb7JkPEpmFHDdzZx2uONhjxsh7NBw+S7iG5D+P0U2ZjbzfONv22fx1AiJipW3JzwyPfKA2aqTSskji2P23IInmmsRMo3S27OcyS3BaeNqQpY7rYJHi7aM2SCQykl3dWNV0dEULlXbd1vbsYsTosCH7xGkFUMvaci48L5bnRrfAYPetQOUPrwU67aYgMUISjTWJc0ycVXkGpqiqoU9lOAO2Ud0uTx2cAx6uLqYmUeiz77QJJ4puqhAptkzhaZj0BUwSR88vPNu2hN8yiwWHuGBqoC5L166mnm4q6AuB5GZqL69qnhKu16BlPYrGgqVOv0OlKhvdFwA+8rJP4rz1yk16zEXbMks7f8aKJEr9NUs3HZRKPY666Yb1Fc6NcHAwfQvleoEVyLXTOavkiUcSLy8r6pkPEplgaow2BHA1QbEACkt/ENCsMkD28RzZgEite54mpnsJGkRhMnUgFiWXER7rk8jQaTUiaEFE9PfGUmsG9UeGDdK/n++tCAzVTS3lOV64xgdglkbd1/YyfPHRCoAt+19Udfc5OSqtzj5fzo31SVumAu4gHMGuybpjQbAsAU13p+eYKHVTsh4liRJwAFQQfPYfEId4XdZgW4I8rknvwi91QeKEcE3EgLA6oBdl0gOvQ0gNe8Ick/v2joFuqvcE6dV3EWqSVhO0bZkldHIrVoG2KoDeN9aSSp/QLx35vZxGEvMER6uSpugBge0g4jrsHJ1zXQ2wBdmWBK+pL3L75610X8ALyfzWz313t+9to+nnmRcpikWRuGvpUgVfcjM95qw+iRSSWGmfcFpttLteTDc1stlEFXWyx7rq71peUrrp9u2yF2xVxdAW+wEAU1gLjCOJVOCmkMSarGOJhWv4LE74XFK3ZO1tM6cnUVU3WFcVUiLjOlfdNE9H0E7SSdabgZ73WTa8/2xWC924Ob0E15L9NCGJQje11XHdPljgs/dPAXAZyV4ga8nsKpEKi9N0la2r71TNxOk+iT2nafpamm5qaW+Tq7rJquJEBOJaXgCUeqI4O1JbO/X+J2ES3Hzp0RrO8XRTjSRuq3DBXp4GJclzvo8SpHSsBErdNOwlp63jamkoflG2l3sF3NpAk88U4m9JinW1nUYqoVAkf+9dv5ezipeLtE83pURC2s92tLKvrVv7vs2DpUZ2Tp9EXd/GKnJq28tTXDe0pLho0+uCfWZkjNRfs/uWBjj4XrnJaE2iXd10unRJxsq47uyY6rkdXY9XRVVI4hbv/5tsFyQSSOKgUTpZSxdnVfTf2mSaJkn3G2vf0zS2cUmv/qj/t6bGyftZZBXQ1F0vZc4cGmNQf0kgpWnSb+4t854yzVm3iuv0BYcmL9Wnm9a8I++cw6KlNllrnZZZglUr5W8LEnP8XhskXlvydNOimtfeY13uWmCI5QpJZNUFY4QC4PskNo3fSyzfm68BVkiiMUkixnw+yY6fFnUQ8jlnIZMuSDxaYT9P6fY2VvrV07Aeve+cgy+h6UqQyCBFISlQ47RVl93fwiBRkEQLbTTv1omt/muu4NDBIsVenuDtozXy1OGQrPlbtgwUoSBOCWcB4ZkURMqC/kq7ByvddE4NNhB0Aa7aeaNp8XRbnK7e1X9vLALWAzjIRIkuUwDCWbDpexinf7JIYoJC/DuCtQKouuEYdJhCIDsGxOUVrnnmg0Qm2Ih7pNCBgwvcZ6sCqM5YsI6dvg4dXLqhuA6zjrMer1sCsOlxPSSx5Pr0jambMhL7XuxDEFn/GkXlzPpNwQGuJyYQIbmGA0oX27OHVJ46FGVtpmTu5R5JLIwNyLWS2/PX9ybfr+mmXW2bgUrbOU2XcGN90qbvJYuc6ZpEi3CQfkYtGfk88apxTSP1F5NDBgk4AFTNmTjEq7JCQTa3f1yTLPyXHq0pMY1RddMtXcsaYThvJHGRJVikCd4lBYCAML9V6Vvw6Ne2yTok0RBs6GROXXPnKKBrEm00Yecc7h568ZPbBwu6dcMyS7Eu6+7+M0G6JI6PWnEdS1LyVtuo3nJGiQp0l/A2sHKquqbLey6T3VXiOny7k5Zu2iLA7FqOAQ5WTbuvi9H+rQ2+4Ri7jFX01y0wuppElpUT9waf+Hw95eJLmoB45oNEJtgY1pb4hTIpeJO4LmirDYGUD1ICBXSOuqlFgn6gZMjWMqp2D/K3pkzD9uuqxsIif65osX5DmKYIDPsdTl4Oeeo6dIKl28XOrqW2U8aZg8Qs6QQBLAjFwSLFo1VJI7lit1SQ+Nz1aYW1Mbopm4AApN/Y1Tu055iWkpfnYMrh0skVC5I4V3FXDlppb8OIHcSUTAAo6qYVU9kUJLbIUlGr5urnTTeVWq51V5+4yXJFNQJ45einYXI/nbuYJvUHy7SriWOQS612eVoI3XT73JcOSTQkBGKBKau6qZVuCgTKqUWd09NNqw7JZe6/nPfHK1tNIhCSkpbPtWzPxE7d1JC4llZBW9hZ5bHsnjqraSSx68EpNYkkkhj12GXupQYcgBC4WZFEujevYph1ZwcLAgz8yWmgws+zRRIv4eLavl32Aq0LNkjaUMiQ+NeZ4DJA77yztZgjJR+pa7JKSj1qmaVuL+lnyPlx4UBclzUWBiRRO1sAp0hVxHRTChEJSGJJOteD+iMya9S1ADBSZAAvXe/rX2x009uHC7x7vKaRXLE7h6Hu4i7hXOSabmr4bDq4LMg1ctVNS8kLcmYptq8MCaBe6wzDOC0wVZMOwqgAQVVPUtcDssQjq49rgh7ePylwkE9rvmkFYkD28vOb3+OY3M9FmlxIU/DDRdYhUlTJQZogSxxWZehTuc1IokUAJU7msOP8dwXcN6qbAiE4tPT5E7rpqeH+y/kiSKIlSLx5YK9JXGYpVkVt9EnUfndJ0Z5Npltm8EhiGyQWtiAxTsyzScm6waA0a9M1w7mhg0sSSVT0Vl4pvB+Udm1upnxQ1arpsrbA2NIj62KsCzbYjHxHJazhHEdBLKPMA0u3CyqB89RNmeA3HmcJZHNVf2RCEtX1WLpjLHcv12WyOHPEdfIsBJcskhgQQXTjLPejVPefDfj2FylOCjuSeOdggaJq8KWjlenQ1kgi09x4ob436/r34wRtfqa3KQDBuSqququnYNVNy7rpUH8b/co2rod2ssI1ktzSSGI1nXHVwjVdTeI5rxNNr6OQxGjfYus0n4bJ/bwoxdBDVdPMt2BIWiRx+9VNLXL3uuenpXRAVGlDTSJ/P+5em4ckarrpHhFwSFBi7ckIBOEay3PtA9nKVksd1yRu6TM61+5dC9+xiEZNmaD7Qje1IImdWGNNJhcH/rV/fdOZM4okks+O9BwGgkgaW5P4uMI121pusMm2b5e9QLMEGwB6srmss6WRJYB3ktdKXXOuuqkpuGyCQ8hkkvP2wADCfbHUOxVVTQun6KABCJz1SVXU1HWbgBXJErSGHSf+sG4LYm9l0c6blkBvs9akkqqYOAZF1ZhU2V64MV2HqK3LopV1aO9hQqTqFm1+prcpAMG5sqgLamTPqm4K9BFIU3ubdpy1RlmsrKf3hT7dVBCp8z2AtYPF1CRqBWKAb4vzNEwQpYtC57SYBvt8+1rqCquiwjK7GMTTarInSxsMxrQDak347eVpdw5bkmkffsn39ztuET7Ghkji9PX2FfpunaOsSTmLqTmqIB2w0eu7+v4tXFePYxpJZO//gG5qQMV7as4UmyQKwIjSrPFzY0ZNYkc3JWsSB3PkkMSy9onTXZB4yYxVCQyZPiMFVHGfHydIMQmgKMie4WcHmqriWRPrOE/noaSySa0rXjhFNxvW/zJ00zjzQ80xTXrBZeKmA+e5dF8dJFqEgwB/SAe6KTcG6GePr+/xrVK/9cueww983Sv48W9/k3p/aNvQUNlBsYBItZTkLUQMLtqWPXolV4MXpN1tTlNPkr/btzhKIOCzszTdPcoiA2hRyKnDN0GauL7a4jknE27u591nYkQ7nHNeXEohidvqJLz+3DUAwHvvHFzI9XpIosFxlZpEBsl9GqbnyAbcWpTKimQd5Pb7CADf9qHnAaBD4RmTpuwSWDKf77BNBtxve2JaEn7f+NodvPXqLfzrH3ufaY6+JtT/P/O8yd66bhO1lrP0MpjoB7z16i16zNwWGGnk81rZVDLOv372F6HPKMD7W03DAxVyhnYJV0PP4f4cJ2IHBTBts7r1JuM9xCtooZHm5l1BBzYA16MPkJq4IAcMcE7yIus3gbeKTQCcaqsfh26cVaSim6NhnDhXp2ufbWUcO/l+1kZ0L0uSbsMSH5TZ6zzdNwSXln5vQTiIrD/NAtoQxI1IummbtV5XNrTtdi9I5JHEPE3wCz/wFv3+XpuODkkkrqNquVhxo6tuC/UMhBo87mCz1oSGQzuI5FCCTwqBLOsGBxa6qcoIF1VD7QveIb+4PolJ4nD7IMcXH3HCNTKnsqpNPWifhr1+7xAAcEjS0R7XhLq+MCCCosqcOI7q+DRs2c7RgiT26N1GJOvGvm9LlCaOKgEQe/3eIX7++78C3/Lmc/QY8YPuG9RUBXF/59iOJL716i388p/8Jvr9QGjvFDQIpsfsKVGkq1iTuJen+Gs/+nF86KXr9BgJnKW/JY0kakX/hlM37RKFyucCNp85WRy0kfRPwO/JEvyypRuZOkv9dbmka48VVdW4ZkjKb4tdvhk/QaOzAVGQwgdgDidFvxiXUdvSNYksj3kUyTK1zmhMlEAJpHQvNeYB7YLEtgm2DUlsev9OB4m6BYkNyRXqz+MIB7EBKeCpLpY6CkAaYBdYFbVNtEDVFt44500ra9t0dC0YDM2Ny2pHNxUTh2xVVrRst65jnFOjY+2v2GV3K7twTUw3ZVTghFq2Ljlk9UnYncMFvki2wADCPmm5j0/Dnrvh0YbX2mDxvO3Flrq+ZwgaFm1SwGE7lU0BP69VUeG0qHqU2k2WKeaEtU3KrU7cxXY/nHP4wY/yCB0Qzu63j3zAxyCJ8py8O4NuOseEEls3DRzBAAKCKJKwcrYV7X8c+8bX7pjeL+vp0comOJSlDqsyBFJTqqFAPykJcKVZYz1oAV6/QxBEvnRjnBI7KR6n6o29n7ad+9Yme6aDRLYmUb5YjWSxUrtxD0KKbqeRLDKzNSbRy84RaNU1TZTM8JBaHlA5WE7WPgBgDlIdSMlc9dzPsrEWGFQArJAslkc+tyfaWE0i60h6JLHGqqxMh++da/PopnNMEh4WJ1kLOXgk8eod2lbrI4m25FZRhSCdc5rCs20TsxJ6Md8CYDRIJOimgFDLApJ4EetEqNpsAODry2tTbefTsE+++Rx+/vu/At//Ne+5kOu90AalN/Z5JoMgiQ7bqWwKBLrjaVHjziHvWAOCJNpa/tzat7eJmGs39v2a//yDUwAc5fogppued5DY0U3ttZ2nbTsdhjl01W0Zocbs86ZbYJRVQ6HbY76Tfn3MOiTRKDAo7+mEayoy2IuCUlb1PlP1luvKlszfFnu2g8QZzhYgtSUclSqu22MDh7WiqVrl5wH/8FiFayyBrEYNLOPkYDkpKt+njzg0dG0boGjCFJIodFN+jote4Gbsd9j6urOEa4w1ics8wcnaJpIA9AU4LHTTOZanSVuTaBGukXqDHZIoFtQ8627fmnp2OiSxtNWEaiTXtCfE9RfG/UesqDgauqAGF0U3BYKQwwee4xC3vEXSRWxrW5UTk8SOLD2OiQgWi8gCoQYb4HorPg3by/3ZfVJUtEMYzrcaZV2b+vTdmtEmYq7dbAP6zz9cIU0c9bzt5b5NR4cknvMz6tkFPEspHrcuq0uJ9jxpk/X0wNiDsx+AcS22huqm075yjCSyQRvQBw8EKLL0HAYCM5AVjyuquhPcumx2+Wb8BC1AxmRNoiCJZKY7VcIpFuGIQZ9E4tAIgU0ISi1007puTI5MR8HVKBGDJC5CQTTbp08EIMoqpo5OPdiJKqL2r1lbMJR1TQpw+H+twjUdQmSsGwN8wL0q2yBxptN0/kiid5Itmb4ekrgTrgEQDm1dk8gKbulnlFIpVQewLbgPB6KVph2r1DF00722J9pFBon/9POPAAAfe/0u9X5B0mtDkupZMFFc3CcRWUB64FU4XVcmmupFmnau2dYeuUq4sm0DxHRt53mbBImfe3BK33/nHA7yFO8ceSTxvJ/RZZaiqBocr20OuSCJu5ZL3vLUIXF2JHGR9XtMW/QcykFN4tnPgXNu1L/mkEQ1RxIoGiCJFXee6uSu99Mu39q6fDN+gsYiUsM+fXyWvFvEVuEURW21BG0huPQtIJg5Ai2SaKBEdXWCygFiHtCuCXYh2T422zpscD81T6/A2g8sGSbJHGd3KFxD0k0VtdVC9wX8vTxZV4+VoboQJLGqTTLtogi2KneHtthCHTZdkDiV3IoQcWBebSHA0uRVcMmyLYTuHiGJjHMhPdGkxcRFBIn/8ae/Bt/85j288fw16v156jySbqw3vur28q19AMB3feQFesyetGAoeeXQizaplbx/Upgca8AngNhSFjFBEnWS5bzsxl5AEi33/2CZ4UHbJ/G8kRRxwh+cliZ0dZknOC2rS1s39qTN9+BMu++NrQHut0bjEuyabq3/nTpzdB/yziekhBCDX84mGAeBLAlULNIEiYNqi7Od+9Yme6bpphVZk6gdNIAXk0kTZ4LQxTJVk8iqnaWJz/yEILHmxqlMvsWR7KNt/Gfr6KYtTZKln3gpebmX8r1NP9hB3dRG9wVsh3aMiLC1pLresjEGift5itO2BcD8IPECkMSWj+8cl0hIEofrexnePV6jqhss0su3sT5pC3XRVfe8TaHwY+1VrOqmYmyTYiDQVCnhmu65Ca+VVUMxDKTdgCTULoKW/J0ffgHf+WE+sJGEn4VJ8izYa/cO8b/9+9+GV27v02OWWdqJi2yrcI04gWXdmFp7AOiawJuEa1p0T2i452mCJN4/KfCeW/z3pinF51+T2AaJBk8rL7QAACAASURBVCQXCKyEXVIy2DJPgpItGdx4JDEEbsw+Ln5c186C1I/Q/Q4tZRFjweV0TWJ/jqxYo3MO+5LMN2pHbItdvhk/QQv9xiaCxIjKWRqEayq18Fm1rUXqsG7FJixqZ7qW0dLLEfB9Ek291KSOorI5QHmrJHbSIYn8Z5MAWNQMp5pnZ2mCsu4rsLJ9EoFWuMYoHKT7VFoccu/I9//WlO3lXoX10cqWNQWAv/LHPoo/+NbLuH7OkvfiJEttISt3f3M/xxcergBcDJVq262HJJacIptO5FiEm+YK12glNy/4NP29xTRtf10SSYyEa/ItFDgS+pWVSv4s2Kt3Duj9AAhI4oOTskO1ts32F2HdsmibppLX5Hkj9lIbrH2ppXOep2mRIUsApkWeLkK4BgAenBamxGnHStjVwHe2zJKuJtGCJK7KQOVkhGt0CxgZp18/y3SwZ1HYzxR4wKub9msS5V/mPN1fpDhalygqPnG0TfaMI4kkZDxQN60NUrtK7ZLc/LsahVbtjD1IF2mCQskPc2in/7dPNyUCKS2vbw5uFP+f3JCzVD3YNflgd1Q2vq8NEN1/sj4qCNfYvm/pJbiubHRfIDgh941ZUwD4xBv38Ik37pnGzDEJ7lfG2sJbByFIZLKRV930HiSo7DSS6LoxtSHTqgVo5JG2IPBl7RV3mTUZZ2gBH2Tu5Qx1PcHbR3XnlGyjc+d75dqC9J2NmyCJp0XdoVrbZncPl93PbC/HRVy3ZEj4ffMb9/Cvft0rePnmnm2iM2wvT7HIPJ3Q0qeyhyRegHAN4JFEVoEY8N/VaauTsEtKevNJuFX3MzcmJPOLuqZaYAQRmr4oDIckBqFGZgwQwAOAB4qGLTfCHKZsf5Hi3WMbIrtN9kwHiWxN4pDKySGJWeK6BV83PNUoVwGYR6SoYcjVA8rSVjRN0tQTTfd2MjSuBdpauqJCUXIqhkAfSWRli0Mz8RpS8mSR8l+XNV1/GhBZKaTm6h/lerpNgaUmEYBZ3fQizdeFivwzP8eb+zn++dsnAC5G3n3bLWv3IC+vX2E/TyeTRyEBEdqrWBBBLdpkYReUVYPToqYk8hOVpBIra25fOFhkOFqXOFr7upmLagRvMWF3CHN3J1wz3w4WKd49KdA02Nog8UUVrLGJO003ZZMrYkni8Bd+4C3bJB/DhOFhuf8SJDp3/ki6rkm8rfoBT9lenuDzDwuUNae4/iyY3k95JNF1ZTpNMw3AAEMkka9JVK3ijEiiIIFsz+G45YaMY87F/VwHiZdvbV2+GT9BY2sSAZ/ts1I5NRxeN40haFABmAmBDKqodW2jVpb1vEDKI4nemWQRz/2FlzK38P+llYJcU899ao79AJi4Vg8l5e9/4oJAkaW2JM/svQSBfp+qbc1QZW0hu5XGc2t/saObKnPOdXuQRbgjVpdllpZWcqsNLAFdA3laVJRjIc9Wj25Kqkdf28twtCpxtCqRJm4rD+BFlvgazS3vk3gZ7N61ZXdGiWDLtpm09gBAK4DKuj1e+7ZQFpTuou3F9vO9RraAAYKSraXcYK7NUZeVcQ87cZ3tvf8XaVqvwFKTuK5qFXxZkERe3RSIaxJ5X14z/Niewx3goEAAgPt8+3natYDZqZteMmMRKSBSbTIEibXKjrDBxkIFYDWpbgqIAmjIdHDtBkQ4xRhI9UQxbBny/TzFccvR5pHE0AKj46xPKlIF2ty8mkRbTWgsVMQGe4sWJQ2yynzdntg2OshAKy4iQaIFSTzIcdKKMeyCRG/SAuBkzaF0QEhAWFRKs5Hnhmqd0e5bpy0Czzi7cSNloFU3Jfbka8sMD09LHK0qHC6mkdWnYXkrQrYTrnl8u3c9IEM3thRJvLGn0RdSubtVQHxwYlOSfBomgjWv3+ODRBEn2jf0xJxruuWAJdjbyxM8OG17Oe7OGwD9tcz6F3nqdRLEV+b6JPq/HVNHp/ygUXVT0ueNW1lM+aGh5UYfgWT28708xf1jXzN8GRMQz/TTEHq3MSIJM5BEpwprDcGeDsBYkRwgiCQ0ja9lpFpnSK2TbsFgqj9qTCgp4B8aORDZzIpugVGQWaoO7azrWeqmgu4xDqv8bS1URNOL0wTrssGq9EER61zcPgxO07ZmqA4XGU7WpT1IVE7gTt3UWx9J5A9taw9OXaRv6+8a6oEAbh13NO0e3ZTrr3VtmWFV1rh/UuDaFlJNgcDu2AnXPL49dy2gdNtKN9WJCiuSdd/YuPxpmNBpLfdfAsvzVtIG+nuOtU+i7Fu7INGbtMdapAntu8q9O1l7X+ax+iROnDm5amVh2V99cBmCPZYGnUXMQHltyg4WKd45vrxraztP1gsya/ZB9y7k1E2TzslqjEED4NE9GyXTtaiB/39b4/KAPFJog4zr2kTYNuTPPzwFAFpdM9fSypWom04IDvVaWfjXOOGatiaxDdItgkOSQWPVTYEQ3IsAB+tc3FFB4jaKdgC+ruFoZaMWA0HaHbicG+t52DJr+8StebqpoNQmddOulrdBlhja2yyCkBLAISJxPQogqnjT15Oamc89OMXBlgaJWVuTuOuT+Pj23PUgCrOtQSLg23v8sy8emVDjRRaQrG3tAQkAf+Y73oRzwPd91cv0GOmJeX15/t/ZjX07+gX4ey5b0HJLz9KLNgnqLckO8UOOJEi09OruqJzcWdVTNzUIs+WtmFjTNJ7NRvquWeJCTaKB9bW/SDtW1DYngM6yyzfjJ2gCHTOQuK5J5Nsi9HnWlho1ADgpKlR1Q0PUIu5SWmotew23Zd4GtK2t97P4Pjf2cvzuu16U5BqZXfQPtgjXsEiiQgQ7J5m4lupdaAn2tLJXRdaE+uu5fpBIbiR3DjSSuJ2OxeHSyz+baxIPdkFibIs2SDxphWsY6xJHFnXTNNB/LDRtmdPbrRw/sybl7/bVTWvq4L6ugsRtFK0BQpC+o5s+vt27Fva7WwZRkou2H/u2NwDA1Kaj325gO/dywN/3n/mDHzFRR1+9cwAA+K6PvHhe0+pM33MLtU+fudvKyrlo64JEw32Us/q4FRMzIYlSX0i3D0u6oK0LEpn+uu3z5Vs1caUNMs8YSWTmORfd3hbbzpP1gqwwZAO0umZdN9RGosdYggapSXy08g+aRdxlXQWxCVMz9yr0JmOmuVCBlKVuDwDuHi5wWvhJstlF3QKjCxINrUssTrIWDvL93ngkUa8RWpVW2kQUFZzjUcHrM2oGLtoOFhmOV3ZpcY0U7FpgeFu0SPVpUdFBkawtE91UqQIv64QeJ4fhO239BePsxv1FAdAUb7kHn3+w6qlKbpN54SBbe6GdjZtWq3zxxnZ+3wDwqa97BV/93lumur1+4/Lt3Mvn2mv3DvF3/71P4v13+fsx155IL8cdkggg0E0bVQowZeI7nRiQxEGfRJK9pWmjFiRRnq/TsjKVc2VtvaXMUeYwZboFzGWsSXymg0RLTeIi7QvXHDBjMl8gW7X99ixBAwAcSZBIDly0lFiLHLBca102WGYWtCFkfywoKdCvpaORxDTBw8Lfj1BsvPmauv9UbUBE+sqttiCx66VpQY7b4F5aWbACHJqOsa2OxeEixbqqcbQucffacnpAazf3FUq6pZ/tom2Z+15eJ0WNO4cGtbmyMa3/UJPY0G2CgPA9idw3o+4Y9xcFWiSR2PNk73i4KnFo6Il2keZFEuzKxTsbWpI4/OpPfBJ3DhcXIoLyOPaB566Z3r9Ik05dc5uRxLn2uvF+zLXDRdppA1jOjduHO+ZKbJKEFp+GMfFVj9sgkUnwxnTTiiw3yFKnhBrt59SqqOmzRuY5CEoZuqlGEi8hSn35ZvwEzVSTmHlHHhCl0um/L1mDdRukWGsSBUlkF1aetSIJhsaiuQ72jDWaAFrk0hYk3lEbMlvMLs4WEJDEqYe7QxJ1ewnTZ/MBMFtvuVB1k7VV3XRGI2Vt25qhklqxd4+L2XTTba4/uki7sZfh0ar0fRJJJ1mQRAHqmKWs5b7ZxsaAF+3Yz1MTkpi0/R8l8QOAzu5eW4a/v610U0kcWVqJ7Oxse+P5a71a7KtiyywIp1xGR3JbzDnX+RSWYFuj1Lsg0ZsgiVJmxVge0U2pPolpP0hk9/9MCwUafFfxlVZlRde/A77kSc4pCZwZn2b/ktNNL9+Mn6BZahKXaYJ1qz7pW2BwiqhAK5zyGEEi61xLL8GgDsVfS8vkm4JLo7gL0N+QWbpprummkjWaQhKj2kKA3ETygECWRlXaTgHXVIMqNYmVeRP5o594P4AgM75tJo78O8dr02fTgeGLN7fzs1203djLcf+k8EEi6UgKA4KlaAPo6gErTVOle6CmuH9sq63K0qRTLAZEuIZRNw1r5HC5nUmSvM127/ok7myTLfMED1e7Pn1PwoRVYDlvLoMI3EXbay09+Ac/+j56zABJNJQ3hHYWNbX/Z6q8xwL4aP+uqGsaBEiVmqqAAUxC4bqqk7XUKW+LbWf69YLMUpO4yJJOoagmMx2B7liZ0DZZxFZJZlFgDUW8hEMojeONlLRecGkIpADgrhIgYJHETAVg0i9xStxCI4mdKI9BgON0XdHfNeBrSddKAdeiivrotMSqqM1Z5J/9lz+Cn/yuL9vaFgBS63G8rmzqpgpJ3NbPdtF2Yz/Hg5MSZV3TAVieOayKGqu2BphqcJ+GQ9vauqGPJJL7lsrQAr5lDZO4047dNiOJvgcqH6Tv7NkzHZhsc5/Ey2ASHFqCbX3ebKsI3EXbV75yE//wZ39/L8iZsmXWDxKZYC+N+iSWFedz5anrtC0sNd+yLk4LjySymgdZEvorsmw2AHjpVqiffmGLa6nPsmd6N7LUJOYqACjqmlNRUjVxVcM7WpIJe6drwMkGiVFPLmO7B2EVmFpgtFlyU03igd25045k94BO3Jd+Cww/lonbxAE/LaoWNSaDxKwvXGNDIJvZdNNtDqI0wmPJ0LLqnc+S3dzP8eCkwMnaom6adCg1wKF7knwpjXRTwCe43pmBJEoQVdUNmobbk3VLhDcuqObJalKXLk7TZaQb7ez8TQcmV7Em8SJNHHlLwnWHJI6bJUAEHk+4plQoHRN8ZYk6NwyAj0YSTwu+nZTugx2CxOnrSQsY4HJSmS/fjJ+gWSBqHQCsy5rqpRMLp7CMTFFDEmfL2gLDQm3SLTBC3Z59nIVu+ppSfTOhpF0LDK5IeVTdlKxJTBOH07JCVdez+iRWDX9PFi2V+bSw00233XqqcYbPxor3PEt2Yz/Dum2VQiOJbQJCMq7M+grNjW2JI6Af3O/R+5brKORse5vYPvb6XdP7L8rCXs63BdnZs2f6udwFiY9n3/LBewCAb3ztDj1mV5P4ZEzu3VHXAsMiXBMa3DP7fz4iXMMhiUG4RsQCGctUG7a1AUl8z63LXS6zvRDEBVhlyAboAICV89cFsrUhkDrsxD68Y2ELpBoVEDEIaQj2GgNkn8VBogFJvHWw6BoOs5alQRQmqJtu/nxagMZCNwW8MuPJut1EWNpcmnSKtFXNoy8HixTH68rk/F8WO5wZJALAp7/hVbz5wvUnPaVLa7pOk10niwhJZBJOOrNr6S8KREGi4bkpyn5tCUsB+k//ta/Br/yjz3a92LbN9hdBuAnYIYk7Gze9N+7WyOPZn/u+D+OnvvfDprNUv1czFHZmM9m3O7opI1wT1ySSdFNP/2yZWw3PCpTvelVWXgdiDpJYcj4oANwzqLpvoz3TQaIVSVyrLAIVJOYBybLQFoWiJ02pbX0Sa/W5uDEAeuIKTE1iT5THGCQCwN/58W/uJL8ZW2ZaOKiGc9PfWywcBHB0U8ALcJy26B6LiCyUAm7d8C1Pru/leHhazhKu2XbTtR7WIPHPf+qrnvR0LrXpone2dYwwIFZljcRxwZdWHLX0FwXQU11lD98sdcpBsNXufd9XvYzv+6qXqfc+DTuIekdeted7Z0/G9Blz1RKFF21zhX9++U9+E24fLHZq2o9hcsaLuumcFhhlzbWl0L2zLT6vLgM7LWqTLoZmvKSJo/zeNHH46Gt38G0fep66zrbZLkiEvU/iuqwp3rpQUldl7SmqpIOwSBNkiTNnnxepayli9p6Aum6PFa7JEoeTojK19xDby1PTYbjMEqzKEKQzm0hPuKZukDiexrjMfE+606KmERGhjQI24ZrrbWuD43WF569frUfyxZt7cA5oml2tx+Oadl5eILPdyyzByVqozCm9/rPU19JZ9kig7+CytbJ5MqSSs0jitpsk/Lq9fBcA7GzEXroZBC2Y/qI7e/L21qu3nvYULr3F6qYUK01q4BVTjC0LElVsC3tOC9esyhrPsaUbieuSmL6/In9G/dKPfpx+77bZM70bdcI1xJfdQxJZumneDxJZJMU5h4NFOgtJLKrGBL075zrBG0ubCMBTy07W85BEqy3zFKvSU2LLqqGklbVwTW0U19nLE6wKW2Gz5shbhGskk/X20frKyZ/naQLpk37v2tXrb3aRputmWJW0a0ufgLDQpgFPASqrUMvL0k3lWZGm1tS1ehlhqUm8GkfT/kwRsp09WyYtjNLEXZm1v7NnzzokcdW2wGDUTaM+iUXNtUDKkhEk0cCCW5U1VgYdiMUMoOIq2LPxKc8wWWCcCqivm6nb7LqlJnFd1jRFVexwmXWOBd0nsQ1ku89FXi5vUYPaKFKxt0hxYlQAnWt7undhxfXR6dp7tGI+FjGUvTzF8bo01QlqcSOLcI3QCL/4aHWlGyl/7ftuP+0pXGp7/71Qd8cGidf3chyvKxyteNo00B7AuucqnTjy65elwwJ9UaqSFKW6LDYUIbu6z/fO5tsrt/2zvVsfO7vMJuUGD079fjdH3bSsaq6/otKpENEbquuA8iUt/p0veQpI4rPCjHo2PuUZVta+TodBfARJFDSRCfh0n0SWoip2sEi7B4ClKIm4joU22htnrNvzaFtlRunmmKYIrEmJ5B6SaFRg3c9T3D+xSfn31E0NgbMgiUXVXEkn4YMv+PYEH3rxxlOeyeU2LUfOorKytr50ZEtAeLqpfS+RBveWtixxrQfAZaAvg4mQz7sdkni1mAI7ezL2cttLbaesubPLbNfb/V/o9QybTc6WTt20amh1U2GerA1lCp1wTWFTlF/oILHkfNCrYFerAMpoZd3QtTZC5ZSm1FRNopLatdBNgb6TxQaXgrZJ0TArIy+ZfEubCKClmxaVuQXGHIuRRE6RNtRb1oY+lf56KX7v3ZPetaevFyjJdWOhm6pGvlfQifyrP/wxfPHR+twTCc+SsZS0G20d4xcerkwJiKxVcrPuCXfb4NVygOpaj9JQAnAZTLfAcKRw0M6ePXv1zgG+4f238ae//c2nPZWd7Wy27eW+fZgk2DmV0qhPYl3jWj4dmvg+iX3BM5NfXtam3tSLLO38u6KqkWfPxl7+TAeJVc1lLICwsKT/iwVJFARyYQgA5vSXEyU9UQ1lingBL3jT769oCxJLEtl7HNtTSGJJfm/OOc8jr3xgaa1JfNeIJC413dQoXCN2aEBgLovdvbbE3UsuA70t9jf+xCe65AVjsra++GhFU1QBH+StFLuAXct326bUknFlTNckdn0S2SLILTfZx989KrDMkl3/z52NWp4m+Ov/ziee9jR2trPHMuccDhdpVyrF+GlJ4uBcEJ9hWViipQHo/ro8w2xV+BYYNmHCXU3iM2VFZWmU7t/3qO2Dx2UsAqxtpZuKKp7/O9w44YN3wQ0reJP1+yuy1LJlnnrlxLLqMubnZUKVOy1qn8WhA2D/YHvuOX//l3naUcRMSGIrrlM3fJ9EHSS+cGMXTO3sbPva9942tXyQtWVFEkW4KQjXcGv5ThskrgxBolapK6+YuqnsyQ9X5ZVkCexsZzvbmTapgwd4RkmWOFVywDH8dOukwlDL7pzDMktwvK7aEh9ec2K1q0k8H3POLZ1zf9E59zvOuYfOud9wzv2B9nfvd841zrlH6r8/F439r51zD5xzn3XO/UT0t7/dOfdbzrlj59yvOefeNzWff/yZB3hwWvi2FIYsAqCCREq4pg9rW+imdw9DsMAuxtC4ua1/sdTSqYbzLOC2n/s2ESfrCnvnHCQKkrgqq1Z+mOeRS584y/3fz9Pufuwb7mPdhA2LTUDcUqqVLxrQnp3tbMpEFKlubFTmZZZiVVZegMmAwAvd1BwkdnTTq6VuqpNnV7HeeGc729nOtOlSKXbPE2FIAHQ5UZYkqOoGTdOYa9n3F2knJsaCAL4Nmw9+iwtgz22LXRS3LQPwzwF8EsD/B+B7APw159xXqvfcappmrLv6zwJ4E8D7ALwI4Necc/930zS/4py7B+BvAPhjAP42gJ8D8EsAPrZpMmXd4HRdmfjIopR5ZAgSO7ppWWNdVlgYsuNvtmIfAJ/F35/ZuDlLHAoleGOhm362qHGyruhAaq4J5fO0qOnCZiAgiWvDd+2vF+4dG2zL931aSo8g7lq3VcP5F27ugsSdPTnTKLUVSTwtarNy8Z02uSX9QhnTUuZdn8QrUr+ap0nXGucqKxfvbGc72xnQV7ame+X2EoVcCwwJJIvKt0VLHO+73tzP8fmHpwD4czFWN70qbJcpu5BTq2mao6ZpfrZpmt9umqZumuZ/BPDPAHwdMfyHAPxc0zTvNE3zjwH8lwD+aPu7fwXAbzZN89ebpjmFDyjfcs59aOqPHndBog1JPDLQTbPEIXFtn0RjC4wPvnAdAHDDICUfgkRbLZ2gbdInkQ1K9/IEJ0WFk+L8g8RAN62wJltgAEGRalXyKlZAHz1kWwfIpnFaeAeZvY+6TslSN7aznU2ZFkVi9wN572lRmVWBhW7Krn3gjBYYVyhLK47Sjm66s53t7Kqb7Hf7eWrz07QoDNkCA/Dsk6K21Qje3M/x+QcrADY/eV35cqJ1uatJPFdzzr0A4IMAflO9/DvOuX/hnPtvWoQQzrnbAF4C8PfV+/4+gI+0P39E/65pmiMA/1T9Xl/zR5xzv+6c+3UAOCkqrIqKDtzkfSIKw4xzzmE/T3G8rszqpl/2og8Sf+DrX6XHdDWJRiRx0dJNOySRdAr32z6JJ0XVXfu8LNBNa6yKuuvHNjmuRUSsdNOb+9q5tq2R03Xbs8fgXH/guUMAwPPXdzWJO3tydnM/77KrliTJMktwWlaoapsq8I29DD/6ydfxl//tj9JjerUlHd306mRpdz3wdraznT0rJkHidQPA4RlfolTKMcWk/rCoGnNLih6SaCg5axqPdBZG0Ocy24VLKTrncgD/A4D/rmma33LOXQPwDQB+A8BdAP9Z+/vvAiCcy/vqT9wHcL39+RqAL0SX0L/vrGmaXwTwiwCwfOnN5qSobI3SYySRXCDX93K8e7JG3QCLlA+kXrixh1/7yW/Fe+8cTL+5tQ5JPLI1bl6KSEVXk8giiSmOVyVOC/4+zrU9hSQeFyWev84hbofLDEfr0oQaA/0gkQ2AZY2cFEI35R3dX/rRj+OffPbhM5Od2tnFWJo4vHB9id+7f2qqG97L03ZPaOgaZcAnxv7sH/hy0xz79ShCN706z8H77x3iH/7u/V2QuLOd7ezK26wgUSGJvsSBoZu2SGJVo6xt9M+b+3lg3BmEawBfPrarSTwnc84lAP57AGsAPwYATdM8AvDr7Vs+55z7MQCfcc5dB/Coff0GgFP188P250ft/2vTvz/TTta2RpqyIES4hh13Yz/DFx95ZM+aeXjt3qHp/bonF8DX0u1lvnF8oJty19vPUxy1Klbnrm6qWmAcG2ogDxcZjlYlqga4pQK/KbuhkURyE5FAWdqksME2ANy7tsS9N3Yo4s6evEmS432GhNNenrZIoq0mcY7laVC2K6urhyS+/66/77s+oTvb2c6uut3YlyCR97cWOlFIBnxyRgiyZylR0CAAjST2gsRdTeITN+cLr/4igBcAfKppmuKMt7Z4FpKmad4B8BkAb6nfv4VAU/1N/Tvn3CGAD6BPYx21E6lJNIqSPFr5oIhFBa/v5fjSo1Xvb5yXiTN439gCY9lSMq10U40enr9wTVCKPV3z9NaDhaf7WqjFQEw3tQWJxys7kriznZ2XiRz5G89fm3hnsGXW7glGddM55psit/Uo9dVqgQEAb7b15ayIw852trOdXVZ76eY+gKBUzVieuYAkki0whG1SVC2yZzintH+n1eU3mfiPojGyQxKfvP3nAL4cwHc0TdN1g3bOfRTAuwD+XwC3AfwnAP7XpmmEYvqXAPxUW0v4AoAfBvBvtr/7mwB+wTn3KQD/E4CfBvAPmqb5ranJCN3UjiT6AIwNOG7sZfjdd05MY+bavkIS08TRmZW9Vu5+XdamcT1K5rkL1ygkseD7MgrdNE8TE91Lbxz3rnGbiNx/QZst4h0729l5maxHS5Do6aYVquoCgsQ0qJt2SOIVopt+z1e8iOd/5GOdGNnOdraznV1Ve+W2DxLfPT4LBxqablTPonQdklh5JDGfCQI8d41jcEk5kSCJuz6JT9Da3oU/CuCrAXxW9UP8QQCvA/gVeIroPwKwAvBH1PCfgRej+R0Afw/ALzRN8ysA0DTNFwB8CsDPA3gHwEcBfJqZk0cSebqpBHhHgiQaahK/dOSRxOU5L6p91Sbi/2/vzoMkuasDj39fX3P03DPSwOhcSUggtCABkkBrc6wEmCtYEAiEECAsc8hgBwEGggUB5jCLN/AuYQ6DZS0IcZrDBmyFIYwIbwBhZHMYeWVAIHGIEbpmpkfTPdPH2z8yK7vU9MxU9XRVdlV9PxEV012VWfW6pjt/9fK9/P3amqRidLic3GW2rV/8bU1/XJ1eJ7F5zcl2ltxYOzbMvv2z7J9ubwmM5oNI68n2fVuSW1nYVeq0v3j+wzn/gUdXE6i0YtXoEFMzc0zNzHb8euPR4aFqwpr52U37529nZHiIR560tZr5VZL6VWOc2TPZepLYWKsbGktgtDe7aVF9bH3M2NS07NhRLU4W2ChUs0uoiQAAGwxJREFUHJidbXuinF7WlUpiZt4KHOp/8BOH2Hc/8OLyttjjXwUOu+TFQsXspq0nDo3kqTG7aavtUOtXj1Rrf3W6kjg6PFSsOTaX7c9k2KistrGWV3OFreOVxJHiZ9szNc3+mbmW200blcSIWHK7aasWtvs6UYVWgvNO2cZ5p2xra5/VI8McKE/ItHpN7lI11hGE+dlNB2UAlqR+ckxZSZzYv9iy54sbGxliYmqGzGR2rtV20/nZTdtt/zx+y/x8H+1OXlm1m470z4nMQxnYiySKdtPZtpc3mJhqbw3C5glQujFl7tqxYfZMzbS9Jtr+6caC820kiU1nYDo9cU1EsKFpbZuW203HRpianmM4Ztr62dpZn7KhkSjvLicO6nQFRuqUxsmi3ZPTLR8jl2pkaIjZuSQz5yuJVuElqedsXDPKxeccx9MesqPlfVaNDHH37Fy1FFIrx/+qkjibzLSZJJ6+Y+F8l63FCEW76dR050+erhQDmyQWk5m0XklsVA7vLCeh2dDizE3N0wB3o4d5y/gYe6baS4hWjxal/n0HZttqybxPu2kXEqINq0e4fU8xyW3Ls5uuasw4OttWlXRkeIg/euJp/FYbFZjGe7DLSqJ6XGMA3D05fZ8TXZ3QOLZOl9eWQOst3pKkleVPnvmQtrYfLa9JnL/c4PDH/0ZL6vRckVy2uwRGu5onrunG2uArxUAmiUMRbbdXNhKAnbunWDs23MbENd2tJG5bt4pb7trXVrLX2HZiarqtGJurbd2YuW/DmlF2NpLEsdZeb23Tdu1eE/r7jzulre0bvyON9Xfa+T+QVpLG7/LuyemWr9lYqvtcW9KHs5tKkg6usU7i/OUGhz/+N2Y3nZlNDsy0twQGwNWXnc3aNoob1QoHUzNkDk6n2EAmiRHF5CIHZltvr2xMOnDvgVnuv7G1hdwBdmya37adxUWXqlHda6dq1mgna7cCGRE86qStbFgzwqnbW585cak2rB7lJ3fcC7TRbrpqfrtWlztZqsaZpV3VOpVWQ9SbGseBXfumuzJxDcD0TPbl7KaSpIMbLddJbOdyg/nZTYuTi+1eFvG4045ua/tqTJxs75KzXjeQSeJQBLvbrPasHh1m3aoR9u6faatUfXzTAtYnbet8IrVtfZHMttMv3Vw1aPdavE+85JFtbX8kNqwZqWYObX1206ZKYocruY3ZTfdU61QOxkFE/adxTJic7vzspvMzF89WE9h4TaIkDYZGJXGmjcsNmme8n56d63gRZrzslru7XK2g09fqrxSD8VMuMBzBHeW1he0kDlvL2TzbuUanedr5jWs7e20PzFcS2zkR33gPdk+2127abc2tu632g29tmoG100niyPAQY8ND89ckDshBRP2nuQK/usN/N42ugH0HZpmZm2MoXGNUkgZFY53E6TYuN2h8BpycLk4udrr7pHFJ1V17i06xTs/ov1IM5KfY4aGoJkBp54P81rLldFMbSWK3S9KNM/CntbFwcyPGPZPTK/o6uubkvNVrIJsrud1IgFePDlWLyDpxjXrV+qYTMp0+hjUG230HZov1rpy0RpIGRqOSeGBmrvr+cBrjxuSB2WJx+w4vSdE4mdkoMA1KkjiQ7abDQ8GvdhdJYjstgVvGiypduzMjveMZZ7B1vLOTPzT8t7OO4Ve7p3jt77S+dGSjbL6/zSUwuq25Ffbko1pr3d3atID10etbv5Z0qVaPDvPrif3V11Iv2rhm/m+t020182eEZ5iezWr9K0lS/2tUEqskcfjwn50aSdrUzCwzs3MdrySOj923kjgon+8GMkkcGY7ql3HzeOsJXyPhaDdJvOTcE9ra/kgcu3kt73jGf25rn+bqYacndzkSxzVVBVttN42Y/8B59n/asuwxLdQc10pOuKVD6WYlsXHdcKPddNS/G0kaGKPDQ8xl0ToKrVUSV481VxKzrXUSl2JoKFg7Nlwtg2eS2MeGm85Ut1Phu+D07fzs7n089aGtLxLaC5orBd1Yy3GpnnD6/QA4adt4W/td9Ihj+emd93ZlmY7mFoSV3LorHUrzJACdTxLnB/tBWqRYkjSfFN5bTkzYTrvp1HTRbtqNZZPGV400VRJX7mfl5TTwSeK2NtYAe/zp23n86ds7EVKt7jMD6Ar+xV8zNsw/vOrRbVdy3/2sh3Yoot/UHJuVRPWq+57s6Fa7aXtr10qSel8jKZyYKpLEltZJHB5iZCiYnJ5lZi6rJTE6ad2qEX5+9z6g9W62XjeQSeJIBLPl183XrA2qLePdmwH0SJ3axoQ8ddi8tngvx4aHnKFRPau5TbtblcR9B2bZPz1nJVGSBshYmeA1Komtfg5dPTrM5IE5pmfmOt5uCsWs3zPlDKyDMk6t7IygQ4aHu/cBqBdsalqaYyUvgdELNpcJ90pPtqVWdXN206mZWSuJkjRAGpfmTEwVM8O3MnENlEli2YHSjc+u401dd4NSSRzI0bi5vVLFH+h4+QvvdXRHZks5EZLJtvrFeIcHw6rd9MCMlURJGjCNMWD3ZOvXJBb7DTExNc2B2TnWdeFzffO8FoMyTg3kJ9mRoeCZDzuGi885ru5QVozx8pffCtiRabSbHpidqzkS6chc8KDi+utHn3pUR19nbHiI4aEo2k2tJErSQGl0k+yaLCaFaTlJHB3m7nuLfdZ2YWLCdat7Y/6O5TSwJbX3XHRm3SGsKFn+240ZQPtZI0mcPDB7mC2lle39lzyMucyOt5tGBGtHh4t20+k5towPxuArSZq/Ln33vrLdtI0ksTHbaKc7XgCO2bQGKD4nD0pBxYxAANxRLgD/8BM21xxJb2tUZI9vWtNR6kXdbJleMzbMZFVJHIw2HklSc7tp45rE1ieu+eWuSaA7lcRTjl4HFB13zZO79bPBSIV1WI1f/tPvv6HmSHrb2Sdu5oIHHc1HXnxO3aFIPWN81Qj3HphhanpuYM7QSpLmk8RdbSaJa8aGubOLlcTG5+RBmrneSqIA+NRLHsnE1MxA/fJ3wtZ1q/jLF55ddxhST9mweoQ9UzPsn5lzxmlJGiBrR4tUpKokttFuWj1HFyauaSSJr378qR1/rZXCJFFAkdxsXbeq7jAkDaANa0bZPTldtJtaSZSkgVFVEtu8JrF5+bbxVZ0/ubh2bIRb3vWUjr/OSuJoLEmq1cY1o+yZnGb/9JzL8EjSAGkkiXsmpxkeCoZb7GhrTBQILm3XKSaJkqRabVwzyj37DnBgdo7VAzK1uCRpvm30wOxcy9cjAmwZn08Su1FJHESOxpKkWm1cM1q1GllJlKTBMTwUVYtpO7NqW0nsPJNESVKtNq6Zv7bEaxIlabA01kpsJ0ncsq45SfTkYic4GkuSatWcJDq7qSQNlrXlcb+tdtOmSuJoG/updb6rkqRaWUmUpMG1egmVxEa76fYNzszfKTbxSpJqdXTTIH//jatrjESS1G1bx8f4yR33tnWS8NjNa3jlfz2Fix5xXAcjG2wmiZKkWp20bV319QnbxmuMRJLUbffbuAa4h/u1cZJwaCh49RNO61xQst1UklSvzU1Tmd9/g5VESRokO8rk8NjNa2qORM1MEiVJK8ZQiwspS5L6Q2MJi3WrRg+zpbrJdlNJUu0+d8V5TE3P1h2GJKkm7Uxco84zSZQk1e5hx2+uOwRJUg0ufdQJ/PD2CS4778S6Q1ETk0RJkiRJtdgyPsb7LnlY3WFoAeu6kiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKkSmVl3DF0XERPAfyxh143A7hW+nzHWu18vxLjU/Yyx3v16Ical7tcLMS51v23AnV16raXu1wvv41L364UYl7qfMda7Xy/EuNT9eiHGpe5njPd1WmauX/SRzBy4G3DDEvf70Erfzxj92Qb5Z+uFGP3ZejPGI/jZVvx40wvvoz+bMa60/XohRn82Y2xhn4OOUbabtueLPbCfMda7Xy/EuNT9jLHe/XohxqXu1wsxHsl+3Xwt3//6Xqvb+xljvfv1QoxL3a8XYlzqfsbYokFtN70hMx9RdxySpP7meCNJWqkONUYNaiXxQ3UHIEkaCI43kqSV6qBj1EBWEiVJkiRJixvUSmJHRMSWiPh8RNwbEbdGxPPK+x8XEf8WEbsi4q5ym2PqjrffRMQrIuKGiNgfEf9nwWPnR8RNEbEvIr4WESfUFGbfOtj7HxGXRMTeptu+iMiIeHiN4faViFgVEVeVx52JiPhuRDxpke2uLN/7C+qIU+qUg42/5WOvjIifRsSe8hj1W3XG2o8Ocfw/sTzmNI8Bb6ox1L50qDEgIh4ZEV+JiLsj4o6I+ExE3L/umPvJ4cbgiLg8In5c/v5fFxE76oy3VSaJy+t9wAFgO3AJ8IGIeDDw78ATM3MTsAP4EfCB2qLsX7cBbwf+qvnOiNgGfA54E7AFuAH4VNej63+Lvv+ZeW1mrmvcgCuAnwD/WkOM/WoE+DnwGIopsN8IfDoiTmxsEBEnA88GflVDfFKnLTr+RsS5wLuAZ1H8bVwFfD4ihmuLtD8tevxvsqlpHHhbF+MaFIcaAzZTtBSeCJwATABX1xFkHzvo+x8RjwXeCTyd4jPoT4FP1BRnW2w3XSYRMQ7cA5yRmT8s77sG+GVmvr5pu1XAW4CnZ+bpdcTa7yLi7cCxmfmi8vuXAC/KzPPK78cp1i07KzNvqi3QPrXw/V/k8a8B12fmW7sa2ICJiO8Db83Mz5bfXwe8F3g/cHlmfrXO+KTlcqjxF/gO8OrMPKdp273Ajsz0hMkyW2T8PZHiQ/FoZs7UF9ngWTgGNN3/MODrebC18bQsGu8/8ChgTWb+fnn/Dopj0ymZeXONIR6WlcTlcyow0xigSt8DHgwQEcdHxC5gEngN8O7uhziwHkzxfwFAZt4L3Fzery4q23wfDXy07lj6WURspzgm3Vh+/2xgf2b+Xa2BSZ1xqPH374HhiDi3rB6+GPgusLP7YQ60WyPiFxFxddndow5aOAYs8OiD3K9lssj7H80Pl/+e0dWglmCk7gD6yDpgz4L7dgPrATLzZ8CmiNgC/B5gBat71gF3LLiv+r9RV70A+KfM/GndgfSriBgFrgU+kpk3RcR6ilaXx9cbmdQxhxp/J4DPAv+X4sPZLuBJaRtVt9wJnE2RmG+laAu+FnhinUH1s4VjwILHHgJcSdH6qA5YZAy+DvhkRHyQ4nKzK4EE1tYYZkusJC6fvcCGBfdtoBigKpl5N/AR4G8iwiS9O1r6v1FXvIDi918dEBFDwDUU12a9orz7LcA1mXlLTWFJnXaoY/zvApdRVBXHgOcDX+qViSN6XWbuzcwbMnMmM2+nOC49oTx5pWV2kDGg8dgpFJX1P8zMf6ohvL632PtfXtrxZoqTVbeUtwngF7UE2QaTxOXzQ2AkIh7QdN9DWbykPwIczW8OauqMGyn+L4DqmpSTsd2iqyLiv1BM3PTXdcfSjyIiKCbl2A5cmJnT5UPnA38QETsjYidwHMUF9a+rKVRpuR1q/D0T+FJm/jAz5zLzOorJm86rIU4VFRTw8+eyO8QY0LjU46vA2zLzmppC7GuHev8z832Z+YDM3E6RLI4AP6gn0tb5R7pMyuvcPgf8cUSMlx+Inw5cExHPjIjTImIoIo4C3gN8p6wqaplExEhErAaGKa5BWV1Waz8PnBERF5aPXwl830lrltch3v+GFwKfzUwruJ3xAeBBwNMyc7Lp/vMprn04s7zdBryUou1L6nmHGn+BbwNPiYiTovB4imuFVvwHtF5ysON/eS1o4/PPVorJs67PzN31RtyXFh0Dolhy7R+BP8/MD9YV3AA42Pu/OiLOKI8/x1PMNPu/M/OeugJtlUni8roCWAP8mmJ625dn5o3AMcB1FOXlfwPmgGfUFWQfeyPFxECvp2gpmgTemJl3ABcC76CYAe9c4Ll1BdnHFn3/oThIAhdhq2lHlGeJX0qRBO6M+fXILsnMuzJzZ+MGzAL3ZObeWoOWltfBxt+PAp8Erqe4bvG9wEs9SbjsDnb8P4n5zz8/APYDF9cUY9861BgAXE7x//CWpvs9/i+jw7z/q4GPU7TF/zPwTYol2VY8l8CQJEmSJFWsJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSpYpIoSZIkSaqYJEqSJEmSKiaJkiRJkqSKSaIkSZIkqWKSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIkSZIqJomSJEmSpEpfJYkRcUtE/Doixpvuuzwirq8xLElSnynHm8mImIiIXRHxjYh4WUT01bgqSRpM/TiYDQN/WHcQkqS+97TMXA+cALwLeB1wVb0hSZJ05PoxSfxT4DURsWnhAxFxXkR8OyJ2l/+eV97/nIi4YcG2r4qIv+1SzJKkHpWZuzPzb4HnAC+MiDMiYlVE/M+I+FlE3B4RH4yINY19IuLpEfHdiNgTETdHxO/U9xNIknRf/Zgk3gBcD7ym+c6I2AJ8GXgvsBV4D/DliNgKfBE4LSIe0LTL84CPdyNgSVLvy8x/Bn4B/DZFZfFU4EzgFOAY4EqAiDgH+CjwR8Am4NHALd2PWJKkxfVjkgjFQPzKiDiq6b6nAD/KzGsycyYzPwHcRNEutA/4G+BigDJZfCBgJVGS1I7bgC3AS4BXZebdmTkBvBN4brnN7wJ/lZlfycy5zPxlZt5UU7ySJP2GvkwSM/MHwJeA1zfdvQO4dcGmt1Kc3YWianhx+fXzgC+UyaMkSa06BhgB1gL/Uk5qswu4DmicuDwOuLmm+CRJOqy+TBJLbwZ+j/kk8DaKyQWaHQ/8svz6K8BREXEmRbJoq6kkqWURcTbFmPMFYBJ4cGZuKm8bM3NduenPgZPrilOSpMPp2yQxM38MfAr4g/KuvwNOjYjnRcRIRDwHOJ2i4khmTgOfoZj4ZgtF0ihJ0iFFxIaIeCrwSeBjmfk94MPAn0XE0eU2x0TEE8tdrgIui4jzI2KofOyB9UQvSdJv6tsksfTHwDhAZt4FPBV4NXAX8FrgqZl5Z9P2HwcuAD6TmTNdjlWS1Fu+GBETFJXB/04xIdpl5WOvA34MfCsi9gBfBU6DaoKby4A/A3YDX+c3O10kSapNZGbdMUiSJEmSVoh+ryRKkiRJktpgkihJkiRJqpgkSpIkSZIqJomSJEmSpIpJoiRJkiSp0tNJYkSsioirIuLWiJiIiO9GxJOaHj8/Im6KiH0R8bWIOKHpsYsi4hvlY9cf4jVeEBEZEZd3+MeRJEmSpNr1dJIIjFCsT/UYYCPwRuDTEXFiRGwDPge8CdgC3AB8qmnfu4H/BbzrYE8eEZuBNwA3diR6SZIkSVph+m6dxIj4PvBWYCvwosw8r7x/HLgTOCszb2ra/nLg+Zn52EWe64PA94GLgI9l5l92/ieQJEmSpPr0eiXxPiJiO3AqReXvwcD3Go9l5r3AzeX9rTzXOcAjgA8uf6SSJEmStDL1TZIYEaPAtcBHykrhOmD3gs12A+tbeK5h4P3AKzJzbrljlSRJkqSVqi+SxIgYAq4BDgCvKO/eC2xYsOkGYKKFp7wC+H5mfmvZgpQkSZKkHjBSdwBHKiICuArYDjw5M6fLh24EXti03ThwMq1NQnM+8JiIeHL5/RbgrIg4MzNfcYj9JEmSJKmn9XySCHwAeBBwQWZONt3/eeBPI+JC4MvAlRTVwZugaikdpXgPhiJiNTBbJpkvAlY3PdfngL+mSEYlSZIkqW/1dLtpue7hS4EzgZ0Rsbe8XZKZdwAXAu8A7gHOBZ7btPulwCRFkvnb5dcfBsjMXZm5s3GjaGPdk5kLr3GUJEmSpL7Sd0tgSJIkSZKWrqcriZIkSZKk5WWSKEmSJEmqmCRKkiRJkiomiZIkSZKkikmiJEmSJKlikihJkiRJqpgkSpIERMTx5Vq7w3XHIklSnUwSJUkDKyJuiYgLADLzZ5m5LjNnu/j6j42IX3Tr9SRJaoVJoiRJkiSpYpIoSRpIEXENcDzwxbLN9LURkRExUj5+fUS8PSK+UT7+xYjYGhHXRsSeiPh2RJzY9HwPjIivRMTdEfEfEXFR02NPjoh/j4iJiPhlRLwmIsaBvwd2lM+/NyJ2RMQ5EfHNiNgVEb+KiD+PiLGm58qIuCIiflQ+39si4uQyzj0R8enG9o1KZUS8ISLuLCunl3TnHZYk9SqTREnSQMrMS4GfAU/LzHXApxfZ7LnApcAxwMnAN4GrgS3A/wPeDFAmfF8BPg4cXe73/og4vXyeq4CXZuZ64AzgHzPzXuBJwG1lm+u6zLwNmAVeBWwDHgWcD1yxIK4nAg8HHgm8FvgQ8HzguPL5L27a9n7lcx0DvBD4UESc1tabJUkaKCaJkiQd3NWZeXNm7qao+t2cmV/NzBngM8BZ5XZPBW7JzKszcyYzvwN8Fnh2+fg0cHpEbMjMezLzXw/2gpn5L5n5rfJ5bgH+AnjMgs3enZl7MvNG4AfAP2TmT5riPGvB9m/KzP2Z+XXgy8BFSJJ0ECaJkiQd3O1NX08u8v268usTgHPLFtFdEbELuISiigdwIfBk4NaI+HpEPOpgLxgRp0bElyJiZ0TsAd5JUQlcSlwA95RVy4ZbgR0He31JkkwSJUmDLJfpeX4OfD0zNzXd1mXmywEy89uZ+XSKVtQvMN/autjrfwC4CXhAZm4A3gDEEcS2uWyHbTgeuO0Ink+S1OdMEiVJg+x24KRleJ4vAadGxKURMVrezo6IB0XEWERcEhEbM3Ma2APMNb3+1ojY2PRc68tt9kbEA4GXL0N8by3j+G2K1tjPLMNzSpL6lEmiJGmQ/QnwxrI99FlLfZLMnACeQDFhzW3ATuB/AKvKTS4FbinbR19G0YpKZt4EfAL4SdmmugN4DfA8YAL4MPCppcZV2gncU8Z1LfCy8nUlSVpUZC5Xp40kSVpJIuKxwMcy89i6Y5Ek9Q4riZIkSZKkikmiJEmSJKliu6kkSZIkqWIlUZIkSZJUMUmUJEmSJFVMEiVJkiRJFZNESZIkSVLFJFGSJEmSVDFJlCRJkiRV/j9YJ750IxgAtQAAAABJRU5ErkJggg==", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(10)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      load
      2014-11-01 00:00:000.10
      2014-11-01 01:00:000.07
      2014-11-01 02:00:000.05
      2014-11-01 03:00:000.04
      2014-11-01 04:00:000.06
      2014-11-01 05:00:000.10
      2014-11-01 06:00:000.19
      2014-11-01 07:00:000.31
      2014-11-01 08:00:000.40
      2014-11-01 09:00:000.48
      \n", + "
      " + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.10\n", + "2014-11-01 01:00:00 0.07\n", + "2014-11-01 02:00:00 0.05\n", + "2014-11-01 03:00:00 0.04\n", + "2014-11-01 04:00:00 0.06\n", + "2014-11-01 05:00:00 0.10\n", + "2014-11-01 06:00:00 0.19\n", + "2014-11-01 07:00:00 0.31\n", + "2014-11-01 08:00:00 0.40\n", + "2014-11-01 09:00:00 0.48" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "原始数据与缩放数据:\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 24, + "source": [ + "energy[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']].rename(columns={'load':'original load'}).plot.hist(bins=100, fontsize=12)\n", + "train.rename(columns={'load':'scaled load'}).plot.hist(bins=100, fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAZ+klEQVR4nO3df5BV5Z3n8fdHoOjwKyq0ZFYGOroRGBEDNNHEgJg4cUdXolIzi8YVzRiyZq1UyspkslZQRl3N7jBOyk00YWOUKJgfikw07tRIIok6M2rjChFtpSxFWX8UkAnQ/Ea/+8c5rZdL3+5z6T739u3zeVWdou95zjn3e56+fb8853nOcxQRmJlZMR1V7wDMzKx+nATMzArMScDMrMCcBMzMCsxJwMyswAbXO4BqjBkzJlpaWuodhplZQ1m7du3WiGjuqqyhkkBLSwttbW31DsPMrKFI2lSpzJeDzMwKzEnAzKzAnATMzAqsofoEzKz/OnDgAJs3b2bv3r31DqWwmpqaGDduHEOGDMm8j5OAmfWJzZs3M3LkSFpaWpBU73AKJyLYtm0bmzdv5qMf/Wjm/Xw5yMz6xN69exk9erQTQJ1IYvTo0VW3xJwEzKzPOAHU15HUv5OAmVmBuU/AzHLR8s1f9unxXvv2eX12rHPPPZcVK1Zw9NFHV9zmuuuuY/bs2Zx99tlVH3/NmjUsWbKEhx9+ONP6IzFnzhyWLFlCa2trr47jJGBWAKVfyH35ZdpoIoKI4JFHHulx2xtuuKEGEdWfLweZ2YBx6623MmXKFKZMmcJ3vvMdAF577TUmTpzIZZddxpQpU3jjjTdoaWlh69atANx4441MnDiRT3/601x88cUsWbIEgMsvv5z7778fSKasuf7665k+fTqnnHIK7e3tADz99NN88pOfZNq0aXzqU5/ipZdeyhzr73//ey644AKmTp3K6aefzvr167s95p49e5g/fz6TJ0/mwgsvZM+ePX1SZzVpCUj6GPA74P6IuDRddwlwCzAGeBT4YkT8vhbxmNnAs3btWu666y6eeuopIoLTTjuNM888k2OOOYaNGzeybNkyTj/99EP2eeaZZ3jggQdYt24dBw4cYPr06cyYMaPL448ZM4Znn32W22+/nSVLlvDDH/6QSZMm8fjjjzN48GBWr17NtddeywMPPJAp3uuvv55p06axatUqfv3rX3PZZZfx3HPPVTzmHXfcwbBhw3jxxRdZv34906dP73WdQe0uB30PeKbzhaSTgR8A5wHPAkuB24H5NYrHzAaYJ554ggsvvJDhw4cDcNFFF/H4448zd+5cJkyYcFgCAHjyySf5/Oc/T1NTE01NTZx//vkVj3/RRRcBMGPGDFauXAnA9u3bWbBgARs3bkQSBw4cqCrezoTxmc98hm3btrFjx46Kx/ztb3/LV7/6VQCmTp3K1KlTM79Xd3K/HCRpPvAH4Fclq78APBQRv42IDmARcJGkkXnHY2bF05kYemPo0KEADBo0iIMHDwKwaNEizjrrLJ5//nkeeuihPrlbOo9jdifXJCBpFHADcE1Z0cnAus4XEfEKsB84qYtjLJTUJqlty5YteYZrVjgt3/zl+0ujmzVrFqtWrWL37t3s2rWLBx98kFmzZnW7zxlnnPH+F21HR0fVo3a2b9/O8ccfD8Ddd99ddbzLly8HklFDY8aMYdSoURWPOXv2bFasWAHA888//34fQm/lfTnoRuDOiNhcdhPDCGB72bbbgcNaAhGxlORyEa2trZFTnGbWx2o9Cmn69OlcfvnlfOITnwDgyiuvZNq0abz22msV95k5cyZz585l6tSpjB07llNOOYUPf/jDmd/zG9/4BgsWLOCmm27ivPOqO9/FixfzxS9+kalTpzJs2DCWLVvW7TGvuuoqrrjiCiZPnszkyZMr9l1USxH5fK9K+jiwHJgWEfslLQb+fURcKukfgCcj4n+WbL8TmBMRaysds7W1NfxQGbPqVRoi2pdDR1988UUmT57cq2PUQ0dHByNGjGD37t3Mnj2bpUuX9lmnaz109XuQtDYiuryhIM+WwBygBXg9bQWMAAZJ+hPgH4FTSwI8ARgKvJxjPGZmh1m4cCEvvPACe/fuZcGCBQ2dAI5EnklgKfCTktdfJ0kKVwHHAf8iaRbJ6KAbgJURsTPHeMzMDtN5nb2ocksCEbEb2N35WlIHsDcitgBbJP0XkstFo4HVwBV5xWJmtRERnkSujo7k8n7Npo2IiMVlr1cAxU7BZgNIU1MT27Zt83TSddL5PIGmpqaq9vPcQWbWJ8aNG8fmzZvxUO766XyyWDWcBMysTwwZMqSqJ1pZ/+AJ5MzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMcweZ9QN9+YQvs2q4JWBmVmC5JgFJ90p6S9IOSS9LujJd3yIpJHWULIvyjMXMzA6X9+WgW4C/jIh9kiYBayT9X2BbWn50RBzMOQYzM6sg15ZARGyIiH2dL9PlxDzf08zMssu9T0DS7ZJ2A+3AW8AjJcWbJG2WdJekMRX2XyipTVKbn1hkZta3ck8CEfEVYCQwC1gJ7AO2AjOBCcCMtHx5hf2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrIqIjItoi4mBEvANcDXxO0shaxGNmZolaDxEdTNd9ApH+6yGrZmY1lNuXrqTjJM2XNELSIEnnABcDv5J0mqSJko6SNBq4DVgTEdvzisfMzA6X5xDRAK4Cvk+SbDYBX4uIX0i6GLgZOA7YATxKkiDMrB8ovYMZfBfzQJZbEoiILcCZFcruA+7L673NzCwbX4M3MyswJwEzswJzEjAzKzBPJW1mPfJU1wOXWwJmZgXmJGBmVmBOAmZmBeYkYGZWYO4YNsuZO1WtP3NLwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCizXJCDpXklvSdoh6WVJV5aUfVZSu6Tdkh6TNCHPWMzM7HB5twRuAVoiYhQwF7hJ0gxJY4CVwCLgWKAN+GnOsZiZWZlcbxaLiA2lL9PlRGAGsCEifg4gaTGwVdKkiGjPMyYzM/tA7n0Ckm6XtBtoB94CHgFOBtZ1bhMRu4BX0vXl+y+U1CapbcuWLXmHa2ZWKLkngYj4CjASmEVyCWgfMALYXrbp9nS78v2XRkRrRLQ2NzfnHa6ZWaHUZHRQRLwbEU8A44CrgA5gVNlmo4CdtYjHzMwStR4iOpikT2ADcGrnSknDS9abmVmN5JYEJB0nab6kEZIGSToHuBj4FfAgMEXSPElNwHXAencKm5nVVp6jg4Lk0s/3SZLNJuBrEfELAEnzgO8C9wJPAfNzjMWsX8h7WmlPW23Vyi0JRMQW4MxuylcDk/J6fzMz65mnjTAzKzAnATOzAnMSMDMrMD9j2Kyfceeu1ZJbAmZmBeYkYGZWYE4CZmYF5iRgZlZg7hg2s6q443pgcUvAzKzAnATMzArMScDMrMAyJQFJp+QdiJmZ1V7WjuHbJQ0F7gaWR0T5oyHNLAfuhLW8ZWoJRMQs4AvAHwNrJa2Q9Ke5RmZmZrnL3CcQERuBbwF/TfKcgNsktUu6qKvtJQ2VdKekTZJ2SnpO0p+lZS2SQlJHybKoL07IzMyyy3Q5SNJU4ArgPOBR4PyIeFbSvwP+BVhZ4dhvkCSM14FzgZ+V9S8cHREHexG/mZn1QtY+gf8F/BC4NiL2dK6MiDclfaurHSJiF7C4ZNXDkl4FZgBrjyxcMzPrS1mTwHnAnoh4F0DSUUBTROyOiHuyHEDSWOAkYEPJ6k2SgqR18VcRsTV76GZm1ltZk8Bq4GygI309DPgn4FNZdpY0BFgOLIuIdkkjgJnAc8Bo4Htp+Tld7LsQWAgwfvz4jOEWi0eQFFvp778321d7HBsYsnYMN0VEZwIg/XlYlh3TVsM9wH7g6s79I6ItIg5GxDvp+s9JGlm+f0QsjYjWiGhtbm7OGK6ZmWWRNQnskjS984WkGcCebrbv3E7AncBYYF5EHKiwaVQZj5mZ9YGsl4O+Bvxc0puAgI8A/ynDfncAk4GzSzuUJZ0G/AHYCBwD3Aas8U1oZma1lSkJRMQzkiYBE9NVL3Xzv3oAJE0AvgzsA95OGgWQrnsPuBk4DthB0jF8cdXRm5lZr1TzPIGZQEu6z3RJRMSPK20cEZtIWg2V3FfFe5sNOHl3xLqj17LIerPYPcCJJKN53k1XB1AxCZiZWf+XtSXQCvxJRESPW5qZWcPIOhrneZLOYDMzG0CytgTGAC9IepqkoxeAiJibS1RmZlYTWZPA4jyDKCrf6ds4/LuygSrrENHfpEM+PxYRqyUNAwblG5qZmeUt6+MlvwTcD/wgXXU8sCqvoMzMrDaydgz/V+AMkhu7Oh8wc1xeQZmZWW1kTQL7ImJ/5wtJg/lgvh8zM2tQWTuGfyPpWuBD6bOFvwI8lF9Y1hfcmVk/vlvXGkXWlsA3gS3A70jm/nmE5HnDZmbWwLKODnoP+N/pYmZmA0TWuYNepYs+gIg4oc8jMjOzmqlm7qBOTcCfA8f2fThmZlZLWS8HbStb9R1Ja4Hr+j4ks77Xl53k7nDvmuulMWW9HDS95OVRJC2Dap5FYGZm/VDWL/K/K/n5IPAa8Bfd7SBpKHA7cDbJpaNXgP8WEf8nLf8s8D1gPPAUcHn6IBozM6uRrJeDzjrCY78BnAm8DpwL/EzSKUAHsBK4kuR+gxuBnwKnH8H7mJnZEcp6Oeia7soj4tYu1u3i0NlHH05HGc0ARgMbIuLn6fEXA1slTYqI9myhm5lZb1UzOmgm8Iv09fnA08DGrG8kaSxwErABuApY11kWEbskvQKcDLSX7bcQWAgwfvz4rG9nNVL0zsCin781vqxJYBwwPSJ2wvv/c/9lRFyaZWdJQ4DlwLKIaJc0guQO5FLbgZHl+0bEUmApQGtrq+crMjPrQ1mnjRgL7C95vT9d1yNJRwH3pPtcna7uAEaVbToK2JkxHjMz6wNZWwI/Bp6W9GD6+gJgWU87SRJwJ0nCODciDqRFG4AFJdsNB05M15uZWY1kaglExH8HrgD+LV2uiIibM+x6BzAZOD8i9pSsfxCYImmepCaSm87Wu1PYzKy2qrnhaxiwIyLuktQs6aMR8WqljdPHUX6Z5MH0byeNAgC+HBHLJc0DvgvcS3KfwPwjOgMzqxtPmd34sg4RvZ5khNBE4C5gCMmX9xmV9klv/FI35auBSdUEa2ZmfStrx/CFwFxgF0BEvEkXI3nMzKyxZE0C+yMiSKeTTjtyzcyswWVNAj+T9APgaElfAlbjB8yYmTW8rHMHLUmfLbyDpF/guoh4NNfIrKH5Ttq+5zq1PPSYBCQNAlank8j5i9/MbADp8XJQRLwLvCfpwzWIx8zMaijrfQIdwO8kPUo6QgggIr6aS1RmZlYTWZPAynQxM7MBpNskIGl8RLweET3OE2S9404/q4bv1LW+0lOfwKrOHyQ9kHMsZmZWYz0lgdJpH07IMxAzM6u9npJAVPjZzMwGgJ46hk+VtIOkRfCh9GfS1xER5Q+GMTOzBtJtEoiIQbUKxGqrUsdiaad0lm36s952nla7vztrrRFlnTvIzMwGoFyTgKSrJbVJ2ifp7pL1LZJCUkfJsijPWMzM7HDVPFnsSLwJ3AScA3yoi/KjI+JgzjGYmVkFuSaBiFgJIKkVGJfne5mZWfXybgn0ZJOkIJmd9K8iYmv5BpIWAgsBxo8fX+Pw6iNLB2OjdM5aMVV7B7zvmK+fenUMbwVmAhOAGSSPqlze1YYRsTQiWiOitbm5uYYhmpkNfHVpCUREB9CWvnxH0tXAW5JGRsTOesRkZlZE/WWIaOfdyP0lHjOzQsi1JSBpcPoeg4BBkpqAgySXgP4AbASOAW4D1kTE9jzjMTOzQ+V9OehbwPUlry8F/gZ4CbgZOI7kucWPAhfnHEvduNPrA64L61RpAIQ7lWsr7yGii4HFFYrvy/O9zcysZ74Gb2ZWYE4CZmYF5iRgZlZg9b5j2I5Qlk61RuWOQbPacUvAzKzAnATMzArMScDMrMCcBMzMCswdw0egUkfkQOuUbcRjZnmv7jqSB8Lv0KwabgmYmRWYk4CZWYE5CZiZFZiTgJlZgbljuJfckfiB3tSF67EY+uoz4jvD+45bAmZmBZZrEpB0taQ2Sfsk3V1W9llJ7ZJ2S3pM0oQ8YzEzs8Pl3RJ4E7gJ+FHpSkljgJXAIuBYkofO/zTnWMzMrEzeTxZbCSCpFRhXUnQRsCEifp6WLwa2SpoUEe15xmRmZh+oV8fwycC6zhcRsUvSK+n6Q5KApIXAQoDx48fXMkbrZxrlbmbrO/795K9eHcMjgO1l67YDI8s3jIilEdEaEa3Nzc01Cc7MrCjqlQQ6gFFl60YBO+sQi5lZYdUrCWwATu18IWk4cGK63szMaiTvIaKDJTUBg4BBkpokDQYeBKZImpeWXwesd6ewmVlt5d0x/C3g+pLXlwJ/ExGLJc0DvgvcCzwFzM85ll5p9A6qRo/fzPKR9xDRxcDiCmWrgUl5vr+ZmXXP00aYmRWYk4CZWYE5CZiZFZinku6G71DNl+uiGPrD77lSDJ6S2i0BM7NCcxIwMyswJwEzswJzEjAzKzB3DJfpD51Y9gH/Pqwr/lz0HbcEzMwKzEnAzKzAnATMzArMScDMrMAK2zFc2rHkuwar404566/8d109twTMzAqsrklA0hpJeyV1pMtL9YzHzKxo+kNL4OqIGJEuE+sdjJlZkfSHJGBmZnXSH5LALZK2SnpS0px6B2NmViT1TgJ/DZwAHA8sBR6SdGLpBpIWSmqT1LZly5Z6xGhmNmDVNQlExFMRsTMi9kXEMuBJ4NyybZZGRGtEtDY3N9cnUDOzAareLYFyAajeQZiZFUXdkoCkoyWdI6lJ0mBJXwBmA/9Yr5jMzIqmnncMDwFuAiYB7wLtwAUR8XIdYzIzK5S6JYGI2ALMrNf7m9nAlmV6E08z0f/6BMzMrIacBMzMCsxJwMyswJwEzMwKrLDPEzAzq6RIHcZuCZiZFZiTgJlZgTkJmJkVmJOAmVmBFapj2A9IN7PeyPod0kidyW4JmJkVmJOAmVmBOQmYmRWYk4CZWYEVqmPYzKySSp2+RzKgpNo7jittX4s7l90SMDMrsLomAUnHSnpQ0i5JmyRdUs94zMyKpt6Xg74H7AfGAh8HfilpXURsqG9YZmbFUM8HzQ8H5gGLIqIjIp4AfgH853rFZGZWNIqI+ryxNA14MiKGlaz7OnBmRJxfsm4hsDB9ORF4qaaB9t4YYGu9g+hHXB+Hcn0cyvVxqL6qjwkR0dxVQT0vB40AdpSt2w6MLF0REUuBpbUKqq9JaouI1nrH0V+4Pg7l+jiU6+NQtaiPenYMdwCjytaNAnbWIRYzs0KqZxJ4GRgs6WMl604F3ClsZlYjdUsCEbELWAncIGm4pDOAzwP31CumnDTspaycuD4O5fo4lOvjULnXR906hiG5TwD4EfCnwDbgmxGxom4BmZkVTF2TgJmZ1ZenjTAzKzAnATOzAnMSyEDSUEl3pvMb7ZT0nKQ/S8taJIWkjpJlUdm+P5K0Q9Lbkq4pO/ZnJbVL2i3pMUkTan1+R0LSvZLeSs/rZUlXlpRVPKeBWh9QuU6K+hkBkPQxSXsl3Vuy7pL0b2mXpFVp32BnWbfziXW3b6MorxNJcyS9V/b5WFCyfb51EhFeeliA4cBioIUkcf5HkvsZWtIlgMEV9r0FeBw4BpgMvA38h7RsDMkNcn8ONAF/C/xrvc83Y52cDAxNf56UnteMns5poNZHD3VSyM9IGv8/ped2b0kd7QRmk9wwugL4Scn29wE/Tcs+nZ77yVn2bZSlizqZA2zuZvtc66TuFdKoC7CeZO6jnv7A3wQ+V/L6xs5fEsl0GP9cUjYc2ANMqvf5VVkXE4G3gL/o6ZyKUB9d1EkhPyPAfOBnJP+B6vzCuxlYUbLNiSSTSI5Mz20/cFJJ+T3At3vat97n2ss6qZgEalEnvhx0BCSNBU7i0BvbNknaLOkuSWPS7Y4B/ghYV7LdOpLsTfrv+2WR3DvxSkl5vybpdkm7gXaSL7xH6OacBnp9QMU66VSYz4ikUcANwDVlReXn8wrpl1y6HIyIl0u2764uSvft97qpE4DjJL0j6VVJf69kgk2oQZ04CVRJ0hBgObAsItpJJneaCUwgafqPTMshaZ5B0nyj5OeRJeWlZeXl/VpEfIUk1lkkN/7to/tzGtD1ARXrpIifkRuBOyNic9n6nj4f3c0n1qh10alSnbSTTKX/R8BnSD4jt6ZludeJk0AVJB1F0hTbD1wNEMk02G0RcTAi3knXf07SSJL5keDQOZJK50dq+PmTIuLdSKYBHwdcRffnNODrAw6vk6J9RiR9HDgb+Psuinv6fHR3rg1XF526q5OIeDsiXoiI9yLiVeAbJJeaoQZ14iSQkSQBd5I8AGdeRByosGnn3XdHRcS/kVwSOLWkvHR+pA2lZWkT8EQac/6kwXwQe5fnVLD6gA/qpNxA/4zMIekHeV3S28DXgXmSnuXw8zkBGEoyl1hP84l1t29/N4fKdVIu+OC7Of86qXdHSaMswPeBfwVGlK0/jaQT8ChgNEkv/mMl5d8GfkMy8mMSyR9858iPZpKm2zySkR//gwYY+QEcR9LBNQIYBJwD7ALm9nROA7E+MtRJoT4jwDDgIyXLEuD+9FxOJrm8MYuk0/NeDh0d9BOS0TDDgTM4fCRMxX3789JDnZxFcqlQwB8DjwF31apO6l45jbCkv6AA9pI0vzqXLwAXA6+mf/BvAT8GPlKy71CS+ZF2AO8A15Qd+2ySa4J7gDVAS73PN0N9NKdfWn9Iz+t3wJeynNNArI+e6qSIn5Gy+BeTjoRJX18CvJ7Wxz8Ax5aUHQusSsteBy4pO1bFfRtp4dDRQdcA/w/YDbwB3EbJ6J6868RzB5mZFZj7BMzMCsxJwMyswJwEzMwKzEnAzKzAnATMzArMScDMrMCcBMzMCsxJwMyswP4/zu7dqmtpqTMAAAAASUVORK5CYII=", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaCklEQVR4nO3de5RV5Znn8e+PSyjlIhEK1GBZagJeQBQL7ehSM9EWO2omhjjRqOOltaIOsTNZzdLJ0oTYtunOmpl0JEokbTAg2iRpcKKxXYKXVmNPQsE0ERQ0LsHQogIJSCF3n/ljn9JjUUXtU5x9Tp3av89aZ8m+nf285+B5ePfz7ncrIjAzs3zqU+0AzMysepwEzMxyzEnAzCzHnATMzHLMScDMLMf6VTuAUgwfPjwaGxurHYaZWU1ZsmTJhoio72hbTSWBxsZGWlpaqh2GmVlNkbSms22+HGRmlmNOAmZmOeYkYGaWYzVVEzCz2rJr1y7Wrl3L9u3bqx1KLtTV1TFq1Cj69++f+hgnATPLzNq1axk8eDCNjY1IqnY4vVpEsHHjRtauXcuRRx6Z+jhfDjKzzGzfvp1hw4Y5AVSAJIYNG1Zyr8tJwMwy5QRQOd35rJ0EzMxyzDUBM6uYxlt+Vdb3W/1355f1/To8x+rVXHDBBSxfvjz1MVdddRUXXHABX/rSl1Ktr0RMnXESMMuB4h/fSvxwWu3w5SAz67W2bt3K+eefz/jx4xk7dizz5s0DYPHixZx22mmMHz+eU045hS1btrB69WrOOOMMJkyYwIQJE3jhhRf2er89e/YwdepUJk6cyAknnMC9994LJCNzpkyZwpgxYzjnnHN45513uoztySef5KSTTmLcuHFcc8017NixA4Dbb7+diRMnMnbsWJqbm2l7+uOSJUsYP34848eP5+677y7XR1SZJCDpU5K2S3qgaN1XJK2RtFXSw5IOrkQsZpYfjz/+OIcddhjLli1j+fLlnHfeeezcuZMvf/nL/OAHP2DZsmUsWrSIAw44gBEjRrBw4UKWLl3KvHnzuOmmm/Z6v/vuu4+DDjqIxYsXs3jxYn784x/z+uuvs2DBAlatWsVLL73E7NmzO0wgxbZv385VV13FvHnzePHFF9m9ezczZswAYMqUKSxevJjly5ezbds2Hn30UQCuvvpqpk+fzrJly8r6GVWqJ3A3sLhtQdLxwL3AFcBI4D3gngrFYmY5MW7cOBYuXMjNN9/Mc889x0EHHcSqVas49NBDmThxIgBDhgyhX79+7Nq1i+uuu45x48Zx8cUX89JLL+31fk888QSzZ8/mxBNP5NRTT2Xjxo28+uqrPPvss1x66aX07duXww47jM9+9rP7jGvVqlUceeSRjB49GoArr7ySZ599FoCnn36aU089lXHjxvHUU0+xYsUKNm3axKZNmzjzzDMBuOKKK8r2GWVeE5B0CbAJeAH4ZGH1ZcAjEfFsYZ/bgJclDY6ILVnHZGb5MHr0aJYuXcpjjz3Grbfeytlnn81FF13U4b7f//73GTlyJMuWLeP999+nrq5ur30igunTpzNp0qSPrH/sscfKEu/27du58cYbaWlp4fDDD2fatGmZ322daU9A0hDgduAb7TYdD3zQp4mI14CdwOgO3qNZUouklvXr12cZrlnuNN7yqw9evdGbb77JgQceyOWXX87UqVNZunQpY8aMYd26dSxenFyc2LJlC7t372bz5s0ceuih9OnThzlz5rBnz5693m/SpEnMmDGDXbt2AfDKK6+wdetWzjzzTObNm8eePXtYt24dTz/99D7jGjNmDKtXr+b3v/89AHPmzOGss8764Ad/+PDhtLa28otf/AKAoUOHMnToUJ5//nkA5s6dW54PiOx7An8D3BcRa9vdxDAI2Nxu383A4PZvEBEzgZkATU1NkVGcZlYBlR6Z9OKLLzJ16lT69OlD//79mTFjBh/72MeYN28eX/va19i2bRsHHHAAixYt4sYbb2Ty5MnMnj2b8847j4EDB+71ftdeey2rV69mwoQJRAT19fU8/PDDXHTRRTz11FMcd9xxNDQ08OlPf3qfcdXV1TFr1iwuvvhidu/ezcSJE7n++usZMGAA1113HWPHjuWQQw754JIVwKxZs7jmmmuQxLnnnlu2z0htledyk3QiMBc4KSJ2SpoGfDIiLpf0f4BfR8T3ivbfAnwmIpZ09p5NTU3hh8qYla6zIaJZDx19+eWXOfbYY8v+vta5jj5zSUsioqmj/bPsCXwGaATeKPQCBgF9JR0HPA6MLwrwKGAA8EqG8ZiZWTtZJoGZwD8VLf81SVK4ARgB/JukM4ClJHWD+S4Km5lVVmZJICLeIxn6CYCkVmB7RKwH1ku6nuRy0TBgEXB1VrGYWfVEhCeRq5DuXN6v2LQRETGt3fKDwIOVOr+ZVV5dXR0bN270dNIV0PY8gY6Gtu6L5w4ys8yMGjWKtWvX4uHdldH2ZLFSOAmYWWb69+9f0lOurPI8gZyZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOee4gsx4g6yd8mXXGPQEzsxzLNAlIekDSOknvSnpF0rWF9Y2SQlJr0eu2LGMxM7O9ZX056LvAX0bEDknHAM9I+n/AxsL2oRGxO+MYzMysE5n2BCJiRUTsaFssvI7O8pxmZpZe5jUBSfdIeg9YCawDHivavEbSWkmzJA3v5PhmSS2SWvx0IjOz8so8CUTEjcBg4AxgPrAD2ABMBI4ATi5sn9vJ8TMjoikimurr67MO18wsVyoyOigi9kTE88Ao4IaIaI2IlojYHRFvA1OAcyUNrkQ8ZmaWqPQQ0X50XBOIwn89ZNXMrIIy+9GVNELSJZIGSeoraRJwKfCkpFMljZHUR9Iw4C7gmYjYnFU8Zma2tyyHiAZwA/AjkmSzBvh6RPxS0qXAncAI4F1gIUmCMLMeoPgOZvBdzL1ZZkkgItYDZ3Wy7SHgoazObWZm6fgavJlZjjkJmJnlmJOAmVmOeSppM+uSp7ruvdwTMDPLMScBM7MccxIwM8sxJwEzsxxzYdgsYy6qWk/mnoCZWY45CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeVYpklA0gOS1kl6V9Irkq4t2na2pJWS3pP0tKQjsozFzMz2lnVP4LtAY0QMAT4P3CHpZEnDgfnAbcDBQAswL+NYzMysnUxvFouIFcWLhdfRwMnAioj4OYCkacAGScdExMosYzIzsw9lXhOQdI+k94CVwDrgMeB4YFnbPhGxFXitsL798c2SWiS1rF+/PutwzcxyJfMkEBE3AoOBM0guAe0ABgGb2+26ubBf++NnRkRTRDTV19dnHa6ZWa5UZHRQROyJiOeBUcANQCswpN1uQ4AtlYjHzMwSlR4i2o+kJrACGN+2UtLAovVmZlYhmSUBSSMkXSJpkKS+kiYBlwJPAguAsZImS6oDvgX8zkVhM7PKynJ0UJBc+vkRSbJZA3w9In4JIGky8EPgAeA3wCUZxmLWI2Q9rbSnrbZSZZYEImI9cNY+ti8Cjsnq/GZm1jVPG2FmlmNOAmZmOeYkYGaWY37GsFkP4+KuVZJ7AmZmOeYkYGaWY04CZmY55iRgZpZjLgybWUlcuO5d3BMwM8sxJwEzsxxzEjAzy7FUSUDSuKwDMTOzyktbGL5H0gDgfmBuRLR/NKSZZcBFWMtaqp5ARJwBXAYcDiyR9KCkP880MjMzy1zqmkBEvArcCtxM8pyAuyStlPTFjvaXNEDSfZLWSNoi6d8l/UVhW6OkkNRa9LqtHA0yM7P0Ul0OknQCcDVwPrAQuDAilko6DPg3YH4n7/0HkoTxBvA54Gft6gtDI2L3fsRvZmb7IW1NYDrwj8A3I2Jb28qIeFPSrR0dEBFbgWlFqx6V9DpwMrCke+GamVk5pU0C5wPbImIPgKQ+QF1EvBcRc9K8gaSRwGhgRdHqNZKCpHcxNSI2pA/dzMz2V9oksAg4B2gtLB8IPAGcluZgSf2BucBPI2KlpEHARODfgWHA3YXtkzo4thloBmhoaEgZbr54BEm+FX//+7N/qe9jvUPawnBdRLQlAAp/PjDNgYVewxxgJzCl7fiIaImI3RHxdmH9uZIGtz8+ImZGRFNENNXX16cM18zM0kibBLZKmtC2IOlkYNs+9m/bT8B9wEhgckTs6mTXKDEeMzMrg7SXg74O/FzSm4CAQ4AvpzhuBnAscE5xQVnSqcAm4FXg48BdwDO+Cc3MrLJSJYGIWCzpGGBMYdWqffyrHgBJRwBfBXYAbyWdAiisex+4ExgBvEtSGL605OjNzGy/lPI8gYlAY+GYCZKIiNmd7RwRa0h6DZ15qIRzm/U6WRdiXei1NNLeLDYHOJpkNM+ewuoAOk0CZmbW86XtCTQBx0VEdLmnmZnVjLSjcZaTFIPNzKwXSdsTGA68JOm3JIVeACLi85lEZWZmFZE2CUzLMoi88p2+tcPflfVWaYeI/mthyOenImKRpAOBvtmGZmZmWUv7eMnrgF8A9xZWfQJ4OKugzMysMtIWhv8bcDrJjV1tD5gZkVVQZmZWGWmTwI6I2Nm2IKkfH873Y2ZmNSptYfhfJX0TOKDwbOEbgUeyC8vKwcXM6vHdulYr0vYEbgHWAy+SzP3zGMnzhs3MrIalHR30PvDjwsvMzHqJtHMHvU4HNYCIOKrsEZmZWcWUMndQmzrgYuDg8odjZmaVlPZy0MZ2q/5B0hLgW+UPyaz8ylkkd8G9Y/5calPay0ETihb7kPQMSnkWgZmZ9UBpf8j/V9GfdwOrgf+yrwMkDQDuAc4huXT0GvA/IuJfCtvPBu4GGoDfAFcVHkRjZmYVkvZy0H/q5nv/ATgLeAP4HPAzSeOAVmA+cC3J/QZ/A8wD/qwb5zEzs25KeznoG/vaHhH/u4N1W/no7KOPFkYZnQwMA1ZExM8L7z8N2CDpmIhYmS50MzPbX6WMDpoI/LKwfCHwW+DVtCeSNBIYDawAbgCWtW2LiK2SXgOOB1a2O64ZaAZoaGhIezqrkLwXA/Pefqt9aZPAKGBCRGyBD/7l/quIuDzNwZL6A3OBn0bESkmDSO5ALrYZGNz+2IiYCcwEaGpq8nxFZmZllHbaiJHAzqLlnYV1XZLUB5hTOGZKYXUrMKTdrkOALSnjMTOzMkjbE5gN/FbSgsLyF4CfdnWQJAH3kSSMz0XErsKmFcCVRfsNBI4urDczswpJ1ROIiL8Frgb+VHhdHRF3pjh0BnAscGFEbCtavwAYK2mypDqSm85+56KwmVlllXLD14HAuxExS1K9pCMj4vXOdi48jvKrJA+mfyvpFADw1YiYK2ky8EPgAZL7BC7pVgvMrGo8ZXbtSztE9NskI4TGALOA/iQ/3qd3dkzhxi/tY/si4JhSgjUzs/JKWxi+CPg8sBUgIt6kg5E8ZmZWW9ImgZ0RERSmky4Ucs3MrMalTQI/k3QvMFTSdcAi/IAZM7Oal3buoP9ZeLbwuyR1gW9FxMJMI7Oa5jtpy8+fqWWhyyQgqS+wqDCJnH/4zcx6kS4vB0XEHuB9SQdVIB4zM6ugtPcJtAIvSlpIYYQQQETclElUZmZWEWmTwPzCy8zMepF9JgFJDRHxRkR0OU+Q7R8X/awUvlPXyqWrmsDDbX+Q9M8Zx2JmZhXWVRIonvbhqCwDMTOzyusqCUQnfzYzs16gq8LweEnvkvQIDij8mcJyRET7B8OYmVkN2WcSiIi+lQrEKquzwmJxUTrNPj3Z/hZPSz3exVqrRWnnDjIzs14o0yQgaYqkFkk7JN1ftL5RUkhqLXrdlmUsZma2t1KeLNYdbwJ3AJOAAzrYPjQidmccg5mZdSLTJBAR8wEkNQGjsjyXmZmVLuueQFfWSAqS2UmnRsSG9jtIagaaARoaGiocXnWkKTDWSnHW8qnUO+B9x3z1VKswvAGYCBwBnEzyqMq5He0YETMjoikimurr6ysYoplZ71eVnkBEtAIthcW3JU0B1kkaHBFbqhGTmVke9ZQhom13I/eUeMzMciHTnoCkfoVz9AX6SqoDdpNcAtoEvAp8HLgLeCYiNmcZj5mZfVTWl4NuBb5dtHw58B1gFXAnMILkucULgUszjqVqXPT6kD8La9PZAAgXlSsr6yGi04BpnWx+KMtzm5lZ13wN3swsx5wEzMxyzEnAzCzHqn3HsHVTmqJarXJh0Kxy3BMwM8sxJwEzsxxzEjAzyzEnATOzHHNhuBs6K0T2tqJsLb5nmnPtq5DcG75Ds1K4J2BmlmNOAmZmOeYkYGaWY04CZmY55sLwfnIh8UP781n4c8yHcv0d8Z3h5eOegJlZjmWaBCRNkdQiaYek+9ttO1vSSknvSXpa0hFZxmJmZnvLuifwJnAH8JPilZKGA/OB24CDSR46Py/jWMzMrJ2snyw2H0BSEzCqaNMXgRUR8fPC9mnABknHRMTKLGMyM7MPVaswfDywrG0hIrZKeq2w/iNJQFIz0AzQ0NBQyRith6mVu5mtfPz9ZK9aheFBwOZ26zYDg9vvGBEzI6IpIprq6+srEpyZWV5UKwm0AkParRsCbKlCLGZmuVWtJLACGN+2IGkgcHRhvZmZVUjWQ0T7SaoD+gJ9JdVJ6gcsAMZKmlzY/i3gdy4Km5lVVtaF4VuBbxctXw58JyKmSZoM/BB4APgNcEnGseyXWi9Q1Xr8ZpaNrIeITgOmdbJtEXBMluc3M7N987QRZmY55iRgZpZjTgJmZjnmqaT3wXeoZsufRT70hO+5sxg8JbV7AmZmueYkYGaWY04CZmY55iRgZpZjLgy30xOKWPYhfx/WEf+9KB/3BMzMcsxJwMwsx5wEzMxyzEnAzCzHclsYLi4s+a7B0rgoZz2V/78unXsCZmY5VtUkIOkZSdsltRZeq6oZj5lZ3vSEnsCUiBhUeI2pdjBmZnnSE5KAmZlVSU9IAt+VtEHSryV9ptrBmJnlSbWTwM3AUcAngJnAI5KOLt5BUrOkFkkt69evr0aMZma9VlWTQET8JiK2RMSOiPgp8Gvgc+32mRkRTRHRVF9fX51Azcx6qWr3BNoLQNUOwswsL6qWBCQNlTRJUp2kfpIuA84EHq9WTGZmeVPNO4b7A3cAxwB7gJXAFyLilSrGZGaWK1VLAhGxHphYrfObWe+WZnoTTzPR82oCZmZWQU4CZmY55iRgZpZjTgJmZjmW2+cJmJl1Jk8FY/cEzMxyzEnAzCzHnATMzHLMScDMLMdyVRj2A9LNbH+k/Q2ppWKyewJmZjnmJGBmlmNOAmZmOeYkYGaWY7kqDJuZdaazom93BpSUesdxZ/tX4s5l9wTMzHKsqklA0sGSFkjaKmmNpK9UMx4zs7yp9uWgu4GdwEjgROBXkpZFxIrqhmVmlg/VfND8QGAycFtEtEbE88AvgSuqFZOZWd4oIqpzYukk4NcRcWDRur8GzoqIC4vWNQPNhcUxwKr9OO1wYMN+HF9r8tZecJvzwm0uzRERUd/RhmpeDhoEvNtu3WZgcPGKiJgJzCzHCSW1RERTOd6rFuStveA254XbXD7VLAy3AkParRsCbKlCLGZmuVTNJPAK0E/Sp4rWjQdcFDYzq5CqJYGI2ArMB26XNFDS6cB/BuZkeNqyXFaqIXlrL7jNeeE2l0nVCsOQ3CcA/AT4c2AjcEtEPFi1gMzMcqaqScDMzKrL00aYmeWYk4CZWY71qiSQdi4iJf5e0sbC6+8lqdLxlkMJbZ4qabmkLZJelzS10rGWS6lzTkn6mKSXJa2tVIzlVEp7JU2Q9KykVklvS/qrSsZaLiX8vR4g6UeFtv5R0iOSPlHpeMtB0hRJLZJ2SLq/i33/u6S3JL0r6SeSBnT3vL0qCfDRuYguA2ZIOr6D/ZqBL5AMST0BuBD4aqWCLLO0bRbwX4GPA+cBUyRdUrEoyyttm9tMBdZXIrCMpGqvpOHA48C9wDDgk8ATFYyznNJ+x38FfJrk/+PDgD8B0ysVZJm9CdxBMlimU5ImAbcAZwNHAEcB3+n2WSOiV7yAgSR/aUYXrZsD/F0H+74ANBct/yXwf6vdhizb3MGxdwHTq92GrNsMHAm8DPwFsLba8WfZXuBOYE61Y65wm2cA3ytaPh9YVe027Gf77wDu38f2B4E7i5bPBt7q7vl6U09gNLA7Il4pWrcM6OhfD8cXtnW1X09XSps/ULj0dQa1eWNeqW2eDnwT2JZ1YBkppb1/BvxR0guS3ilcGmmoSJTlVUqb7wNOl3SYpANJeg3/UoEYq6mj36+RkoZ15816UxJINRdR0b6b2+03qAbrAqW0udg0ku9+VgYxZS11myVdBPSNiAWVCCwjpXzHo4ArSS6RNACvAw9lGl02Smnzq8AfgP8oHHMscHum0VVfR79f0PX/9x3qTUmglLmI2u87BGiNQt+qhpQ8/5KkKSS1gfMjYkeGsWUlVZsLU5V/D7ipQnFlpZTveBuwICIWR8R2kuvEp0k6KOMYy62UNt8NDCCpgQwkmYWgt/cEOvr9gm7Ou9abkkApcxGtKGzrar+erqT5lyRdQ6GgFBE1OVKG9G3+FNAIPCfpLZIfh0MLIyoaKxBnuZTyHf8OKP6HTK39o6ZNKW0+keT6+R8L/6iZDpxSKJL3Vh39fr0dERu79W7VLoKUuaDyTyTd34HA6STdpOM72O96kmLhJ0hGFKwArq92/Bm3+TLgLeDYasdciTaTTJN+SNHriySjLw4huURU9XZk8B1/lmR0zIlAf+D7wHPVjj/jNs8C/hk4qNDmbwL/Ue34u9nmfkAd8F2SQngd0K+D/c4r/L98HDAUeIoUg0E6PW+1G17mD/Fg4GFgK/AG8JXC+jNILve07SeSSwV/LLy+R2EKjVp7ldDm14FdJF3JttePqh1/lm1ud8xnqMHRQaW2F7iB5Pr4n4BHgMOrHX+WbSa5DDQXeAfYBDwPnFLt+LvZ5mkkvbfi1zSS+k4r0FC07zeAt0nqILOAAd09r+cOMjPLsd5UEzAzsxI5CZiZ5ZiTgJlZjjkJmJnlmJOAmVmOOQmYmeWYk4CZWY45CZiZ5dj/BywbGaIaCXKXAAAAAElFTkSuQmCC", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "让我们也对测试数据进行缩放\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 25, + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      load
      2014-12-30 00:00:000.33
      2014-12-30 01:00:000.29
      2014-12-30 02:00:000.27
      2014-12-30 03:00:000.27
      2014-12-30 04:00:000.30
      \n", + "
      " + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.33\n", + "2014-12-30 01:00:00 0.29\n", + "2014-12-30 02:00:00 0.27\n", + "2014-12-30 03:00:00 0.27\n", + "2014-12-30 04:00:00 0.30" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "source": [ + "# Specify the number of steps to forecast ahead\n", + "HORIZON = 3\n", + "print('Forecasting horizon:', HORIZON, 'hours')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Forecasting horizon: 3 hours\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 27, + "source": [ + "order = (4, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "model = SARIMAX(endog=train, order=order, seasonal_order=seasonal_order)\n", + "results = model.fit()\n", + "\n", + "print(results.summary())\n" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " SARIMAX Results \n", + "==========================================================================================\n", + "Dep. Variable: load No. Observations: 1416\n", + "Model: SARIMAX(4, 1, 0)x(1, 1, 0, 24) Log Likelihood 3477.239\n", + "Date: Thu, 30 Sep 2021 AIC -6942.477\n", + "Time: 14:36:28 BIC -6911.050\n", + "Sample: 11-01-2014 HQIC -6930.725\n", + " - 12-29-2014 \n", + "Covariance Type: opg \n", + "==============================================================================\n", + " coef std err z P>|z| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "ar.L1 0.8403 0.016 52.226 0.000 0.809 0.872\n", + "ar.L2 -0.5220 0.034 -15.388 0.000 -0.588 -0.456\n", + "ar.L3 0.1536 0.044 3.470 0.001 0.067 0.240\n", + "ar.L4 -0.0778 0.036 -2.158 0.031 -0.148 -0.007\n", + "ar.S.L24 -0.2327 0.024 -9.718 0.000 -0.280 -0.186\n", + "sigma2 0.0004 8.32e-06 47.358 0.000 0.000 0.000\n", + "===================================================================================\n", + "Ljung-Box (L1) (Q): 0.05 Jarque-Bera (JB): 1464.60\n", + "Prob(Q): 0.83 Prob(JB): 0.00\n", + "Heteroskedasticity (H): 0.84 Skew: 0.14\n", + "Prob(H) (two-sided): 0.07 Kurtosis: 8.02\n", + "===================================================================================\n", + "\n", + "Warnings:\n", + "[1] Covariance matrix calculated using the outer product of gradients (complex-step).\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "## 评估模型\n" + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "为每个HORIZON步骤创建一个测试数据点。\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 28, + "source": [ + "test_shifted = test.copy()\n", + "\n", + "for t in range(1, HORIZON):\n", + " test_shifted['load+'+str(t)] = test_shifted['load'].shift(-t, freq='H')\n", + " \n", + "test_shifted = test_shifted.dropna(how='any')\n", + "test_shifted.head(5)" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      loadload+1load+2
      2014-12-30 00:00:000.330.290.27
      2014-12-30 01:00:000.290.270.27
      2014-12-30 02:00:000.270.270.30
      2014-12-30 03:00:000.270.300.41
      2014-12-30 04:00:000.300.410.57
      \n", + "
      " + ], + "text/plain": [ + " load load+1 load+2\n", + "2014-12-30 00:00:00 0.33 0.29 0.27\n", + "2014-12-30 01:00:00 0.29 0.27 0.27\n", + "2014-12-30 02:00:00 0.27 0.27 0.30\n", + "2014-12-30 03:00:00 0.27 0.30 0.41\n", + "2014-12-30 04:00:00 0.30 0.41 0.57" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "对测试数据进行预测\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 29, + "source": [ + "%%time\n", + "training_window = 720 # dedicate 30 days (720 hours) for training\n", + "\n", + "train_ts = train['load']\n", + "test_ts = test_shifted\n", + "\n", + "history = [x for x in train_ts]\n", + "history = history[(-training_window):]\n", + "\n", + "predictions = list()\n", + "\n", + "# let's user simpler model for demonstration\n", + "order = (2, 1, 0)\n", + "seasonal_order = (1, 1, 0, 24)\n", + "\n", + "for t in range(test_ts.shape[0]):\n", + " model = SARIMAX(endog=history, order=order, seasonal_order=seasonal_order)\n", + " model_fit = model.fit()\n", + " yhat = model_fit.forecast(steps = HORIZON)\n", + " predictions.append(yhat)\n", + " obs = list(test_ts.iloc[t])\n", + " # move the training window\n", + " history.append(obs[0])\n", + " history.pop(0)\n", + " print(test_ts.index[t])\n", + " print(t+1, ': predicted =', yhat, 'expected =', obs)" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2014-12-30 00:00:00\n", + "1 : predicted = [0.32 0.29 0.28] expected = [0.32945389435989236, 0.2900626678603402, 0.2739480752014323]\n", + "2014-12-30 01:00:00\n", + "2 : predicted = [0.3 0.29 0.3 ] expected = [0.2900626678603402, 0.2739480752014323, 0.26812891674127126]\n", + "2014-12-30 02:00:00\n", + "3 : predicted = [0.27 0.28 0.32] expected = [0.2739480752014323, 0.26812891674127126, 0.3025962399283795]\n", + "2014-12-30 03:00:00\n", + "4 : predicted = [0.28 0.32 0.42] expected = [0.26812891674127126, 0.3025962399283795, 0.40823634735899716]\n", + "2014-12-30 04:00:00\n", + "5 : predicted = [0.3 0.39 0.54] expected = [0.3025962399283795, 0.40823634735899716, 0.5689346463742166]\n", + "2014-12-30 05:00:00\n", + "6 : predicted = [0.4 0.55 0.66] expected = [0.40823634735899716, 0.5689346463742166, 0.6799462846911368]\n", + "2014-12-30 06:00:00\n", + "7 : predicted = [0.57 0.68 0.75] expected = [0.5689346463742166, 0.6799462846911368, 0.7309758281110115]\n", + "2014-12-30 07:00:00\n", + "8 : predicted = [0.68 0.75 0.8 ] expected = [0.6799462846911368, 0.7309758281110115, 0.7511190689346463]\n", + "2014-12-30 08:00:00\n", + "9 : predicted = [0.75 0.8 0.82] expected = [0.7309758281110115, 0.7511190689346463, 0.7636526410026856]\n", + "2014-12-30 09:00:00\n", + "10 : predicted = [0.77 0.78 0.78] expected = [0.7511190689346463, 0.7636526410026856, 0.7381378692927483]\n", + "2014-12-30 10:00:00\n", + "11 : predicted = [0.76 0.75 0.74] expected = [0.7636526410026856, 0.7381378692927483, 0.7188898836168307]\n", + "2014-12-30 11:00:00\n", + "12 : predicted = [0.77 0.76 0.75] expected = [0.7381378692927483, 0.7188898836168307, 0.7090420769919425]\n", + "2014-12-30 12:00:00\n", + "13 : predicted = [0.7 0.68 0.69] expected = [0.7188898836168307, 0.7090420769919425, 0.7081468218442255]\n", + "2014-12-30 13:00:00\n", + "14 : predicted = [0.72 0.73 0.76] expected = [0.7090420769919425, 0.7081468218442255, 0.7385854968666068]\n", + "2014-12-30 14:00:00\n", + "15 : predicted = [0.71 0.73 0.86] expected = [0.7081468218442255, 0.7385854968666068, 0.8478066248880931]\n", + "2014-12-30 15:00:00\n", + "16 : predicted = [0.73 0.85 0.97] expected = [0.7385854968666068, 0.8478066248880931, 0.9516562220232765]\n", + "2014-12-30 16:00:00\n", + "17 : predicted = [0.87 0.99 0.97] expected = [0.8478066248880931, 0.9516562220232765, 0.934198746642793]\n", + "2014-12-30 17:00:00\n", + "18 : predicted = [0.94 0.92 0.86] expected = [0.9516562220232765, 0.934198746642793, 0.8876454789615038]\n", + "2014-12-30 18:00:00\n", + "19 : predicted = [0.94 0.89 0.82] expected = [0.934198746642793, 0.8876454789615038, 0.8294538943598924]\n", + "2014-12-30 19:00:00\n", + "20 : predicted = [0.88 0.82 0.71] expected = [0.8876454789615038, 0.8294538943598924, 0.7197851387645477]\n", + "2014-12-30 20:00:00\n", + "21 : predicted = [0.83 0.72 0.58] expected = [0.8294538943598924, 0.7197851387645477, 0.5747538048343777]\n", + "2014-12-30 21:00:00\n", + "22 : predicted = [0.72 0.58 0.47] expected = [0.7197851387645477, 0.5747538048343777, 0.4592658907788718]\n", + "2014-12-30 22:00:00\n", + "23 : predicted = [0.58 0.47 0.39] expected = [0.5747538048343777, 0.4592658907788718, 0.3858549686660697]\n", + "2014-12-30 23:00:00\n", + "24 : predicted = [0.46 0.38 0.34] expected = [0.4592658907788718, 0.3858549686660697, 0.34377797672336596]\n", + "2014-12-31 00:00:00\n", + "25 : predicted = [0.38 0.34 0.33] expected = [0.3858549686660697, 0.34377797672336596, 0.32542524619516544]\n", + "2014-12-31 01:00:00\n", + "26 : predicted = [0.36 0.34 0.34] expected = [0.34377797672336596, 0.32542524619516544, 0.33034914950760963]\n", + "2014-12-31 02:00:00\n", + "27 : predicted = [0.32 0.32 0.35] expected = [0.32542524619516544, 0.33034914950760963, 0.3706356311548791]\n", + "2014-12-31 03:00:00\n", + "28 : predicted = [0.32 0.36 0.47] expected = [0.33034914950760963, 0.3706356311548791, 0.470008952551477]\n", + "2014-12-31 04:00:00\n", + "29 : predicted = [0.37 0.48 0.65] expected = [0.3706356311548791, 0.470008952551477, 0.6145926589077886]\n", + "2014-12-31 05:00:00\n", + "30 : predicted = [0.48 0.64 0.75] expected = [0.470008952551477, 0.6145926589077886, 0.7247090420769919]\n", + "2014-12-31 06:00:00\n", + "31 : predicted = [0.63 0.73 0.79] expected = [0.6145926589077886, 0.7247090420769919, 0.786034019695613]\n", + "2014-12-31 07:00:00\n", + "32 : predicted = [0.71 0.76 0.79] expected = [0.7247090420769919, 0.786034019695613, 0.8012533572068039]\n", + "2014-12-31 08:00:00\n", + "33 : predicted = [0.79 0.82 0.83] expected = [0.786034019695613, 0.8012533572068039, 0.7994628469113696]\n", + "2014-12-31 09:00:00\n", + "34 : predicted = [0.82 0.83 0.81] expected = [0.8012533572068039, 0.7994628469113696, 0.780214861235452]\n", + "2014-12-31 10:00:00\n", + "35 : predicted = [0.8 0.78 0.76] expected = [0.7994628469113696, 0.780214861235452, 0.7587287376902416]\n", + "2014-12-31 11:00:00\n", + "36 : predicted = [0.77 0.75 0.74] expected = [0.780214861235452, 0.7587287376902416, 0.7367949865711727]\n", + "2014-12-31 12:00:00\n", + "37 : predicted = [0.77 0.76 0.76] expected = [0.7587287376902416, 0.7367949865711727, 0.7188898836168307]\n", + "2014-12-31 13:00:00\n", + "38 : predicted = [0.75 0.75 0.78] expected = [0.7367949865711727, 0.7188898836168307, 0.7273948075201431]\n", + "2014-12-31 14:00:00\n", + "39 : predicted = [0.73 0.75 0.87] expected = [0.7188898836168307, 0.7273948075201431, 0.8299015219337511]\n", + "2014-12-31 15:00:00\n", + "40 : predicted = [0.74 0.85 0.96] expected = [0.7273948075201431, 0.8299015219337511, 0.909579230080573]\n", + "2014-12-31 16:00:00\n", + "41 : predicted = [0.83 0.94 0.93] expected = [0.8299015219337511, 0.909579230080573, 0.855863921217547]\n", + "2014-12-31 17:00:00\n", + "42 : predicted = [0.94 0.93 0.88] expected = [0.909579230080573, 0.855863921217547, 0.7721575649059982]\n", + "2014-12-31 18:00:00\n", + "43 : predicted = [0.87 0.82 0.77] expected = [0.855863921217547, 0.7721575649059982, 0.7023276633840643]\n", + "2014-12-31 19:00:00\n", + "44 : predicted = [0.79 0.73 0.63] expected = [0.7721575649059982, 0.7023276633840643, 0.6195165622202325]\n", + "2014-12-31 20:00:00\n", + "45 : predicted = [0.7 0.59 0.46] expected = [0.7023276633840643, 0.6195165622202325, 0.5425246195165621]\n", + "2014-12-31 21:00:00\n", + "46 : predicted = [0.6 0.47 0.36] expected = [0.6195165622202325, 0.5425246195165621, 0.4735899731423454]\n", + "CPU times: user 12min 15s, sys: 2min 39s, total: 14min 54s\n", + "Wall time: 2min 36s\n" + ] + } + ], + "metadata": { + "scrolled": true + } + }, + { + "cell_type": "markdown", + "source": [ + "将预测与实际负载进行比较\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 30, + "source": [ + "eval_df = pd.DataFrame(predictions, columns=['t+'+str(t) for t in range(1, HORIZON+1)])\n", + "eval_df['timestamp'] = test.index[0:len(test.index)-HORIZON+1]\n", + "eval_df = pd.melt(eval_df, id_vars='timestamp', value_name='prediction', var_name='h')\n", + "eval_df['actual'] = np.array(np.transpose(test_ts)).ravel()\n", + "eval_df[['prediction', 'actual']] = scaler.inverse_transform(eval_df[['prediction', 'actual']])\n", + "eval_df.head()" + ], + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      timestamphpredictionactual
      02014-12-30 00:00:00t+13,008.743,023.00
      12014-12-30 01:00:00t+12,955.532,935.00
      22014-12-30 02:00:00t+12,900.172,899.00
      32014-12-30 03:00:00t+12,917.692,886.00
      42014-12-30 04:00:00t+12,946.992,963.00
      \n", + "
      " + ], + "text/plain": [ + " timestamp h prediction actual\n", + "0 2014-12-30 00:00:00 t+1 3,008.74 3,023.00\n", + "1 2014-12-30 01:00:00 t+1 2,955.53 2,935.00\n", + "2 2014-12-30 02:00:00 t+1 2,900.17 2,899.00\n", + "3 2014-12-30 03:00:00 t+1 2,917.69 2,886.00\n", + "4 2014-12-30 04:00:00 t+1 2,946.99 2,963.00" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "计算所有预测的**平均绝对百分比误差 (MAPE)**\n", + "\n", + "$$MAPE = \\frac{1}{n} \\sum_{t=1}^{n}|\\frac{actual_t - predicted_t}{actual_t}|$$\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 31, + "source": [ + "if(HORIZON > 1):\n", + " eval_df['APE'] = (eval_df['prediction'] - eval_df['actual']).abs() / eval_df['actual']\n", + " print(eval_df.groupby('h')['APE'].mean())" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "h\n", + "t+1 0.01\n", + "t+2 0.01\n", + "t+3 0.02\n", + "Name: APE, dtype: float64\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 32, + "source": [ + "print('One step forecast MAPE: ', (mape(eval_df[eval_df['h'] == 't+1']['prediction'], eval_df[eval_df['h'] == 't+1']['actual']))*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "One step forecast MAPE: 0.5570581332313952 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 33, + "source": [ + "print('Multi-step forecast MAPE: ', mape(eval_df['prediction'], eval_df['actual'])*100, '%')" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Multi-step forecast MAPE: 1.1460048657704118 %\n" + ] + } + ], + "metadata": {} + }, + { + "cell_type": "markdown", + "source": [ + "绘制测试集第一周的预测值与实际值的对比图\n" + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 34, + "source": [ + "if(HORIZON == 1):\n", + " ## Plotting single step forecast\n", + " eval_df.plot(x='timestamp', y=['actual', 'prediction'], style=['r', 'b'], figsize=(15, 8))\n", + "\n", + "else:\n", + " ## Plotting multi step forecast\n", + " plot_df = eval_df[(eval_df.h=='t+1')][['timestamp', 'actual']]\n", + " for t in range(1, HORIZON+1):\n", + " plot_df['t+'+str(t)] = eval_df[(eval_df.h=='t+'+str(t))]['prediction'].values\n", + "\n", + " fig = plt.figure(figsize=(15, 8))\n", + " ax = plt.plot(plot_df['timestamp'], plot_df['actual'], color='red', linewidth=4.0)\n", + " ax = fig.add_subplot(111)\n", + " for t in range(1, HORIZON+1):\n", + " x = plot_df['timestamp'][(t-1):]\n", + " y = plot_df['t+'+str(t)][0:len(x)]\n", + " ax.plot(x, y, color='blue', linewidth=4*math.pow(.9,t), alpha=math.pow(0.8,t))\n", + " \n", + " ax.legend(loc='best')\n", + " \n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ], + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "No handles with labels found to put in legend.\n" + ] + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAHjCAYAAAB7INHwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xV9f348de592bvhDBkhhEggCICIqCCgoJ7K462Wm1rtV+7tFpb/XVpq6211tFaR93WPVBQQXAwFBXUMMLeSHZyM26Se+/5/fG+J+ecDJYhN+P9fDx45JxzRz6xac59fz7vz/ttmKaJUkoppZRSSqnuxxPtASillFJKKaWUig4NCJVSSimllFKqm9KAUCmllFJKKaW6KQ0IlVJKKaWUUqqb0oBQKaWUUkoppbopDQiVUkoppZRSqpvyRXsAh1uPHj3MQYMGRXsYSimllFJKKRUVn3/+ebFpmtktPdblA8JBgwbx2WefRXsYSimllFJKKRUVhmFsa+0xTRlVSimllFJKqW5KA0KllFJKKaWU6qY0IFRKKaWUUkqpbqrL7yFUSimllFJKqa6ioaGBnTt3EggEmj0WHx9Pv379iImJOeD304BQKaWUUkoppTqJnTt3kpKSwqBBgzAMo/G6aZqUlJSwc+dOcnJyDvj9NGVUKaWUUkoppTqJQCBAVlaWKxgEMAyDrKysFlcO90UDQqWUUkoppZTqRJoGg/u7vi8aECqllFJKKaVUN6UBoVJKKaWUUkp1UxoQKqWUUkoppVQnYprmQV3fFw0IlVJKKaWUUqqTiI+Pp6SkpFnwZ1UZjY+PP6j307YTSimllFJKKdVJ9OvXj507d1JUVNTsMasP4cHQgFAppZRSSimlOomYmJiD6jO4P5oyqpRSSimllFLdlAaESimllFJKKdVNaUColFJKKaWUUt2U7iFUSqluYv16+O9/ITsbfvxjiIuL9oiUUkopFW26QqiUUt3Es8/Cjh3wxRfw5pvRHo1SSimlOgINCJVSqhsIBGDzZvt84UKor4/eeJRSSinVMWhAqJRS3cCmTeDsX1tVBUuWRG88SimllOoYNCBUSqluoKCg+bX5891BolJKKaW6Hw0IlVKqG1i/vvm13bvhq6/afyxKKaWU6jg0IFRKqS4uFIKNG+1zj+Mv//z57T8epZRSSnUcGhAqpVQXt3071NXZ52efbR/n58POne0/JqWUUkp1DBoQKqVUF+dMF83IgDPPhLQ0+5quEiqllFLdlwaESinVxTkDwtxciImBk0+2ry1ZAhUV7T8upZRSSkWfL9oDUEopdfiYZvOAEGDGDHjjDQgGoaEB3n4bZs2C2lr7XyDg/mr9a2iAkSNh6tTo/ExKKaWUajsaECqlVBdWVATl5XIcDMp+wscfl8CuulqCxXAY1q2Dr78Gr/fA3nf7dhg8GI444vCNXSmllFKHn6aMKqVUF+ZcHSwpgS1bYPNm2LNHgrlQSFYR6+oOvrjMunVtO1allFJKtT9dIVRKqS7MCghNE3w+d8uJlBTo1UsCRa8X9u6Fk06ChAT7X3y8+7iiAl59VV5fUCDPV0op1T3V1Ei16pwcyM6O9mjUodKAUCmlujArIKythaQkOc7MhCuvlCCvoADuvtt+/vjxMHp06+8XCsG8ebKvcPdu8PslsFRKKdX9vPqqZIv4fHJfGTAg2iNSh0JTRpVSqouqqoJdu+TY74esLDkePhzS0yEuDsaMgb597dfMm7fv9/R6Ydgw+9yZkqqUUqr7qK6WSUWQPepPPy371lXnowGhUkp1URs22MdVVdKDEOxKowCGIdVFLV99JSt/++J8vQaESinVPa1dK9sRLLW18OSTMgGpOhcNCJVSqouyZm5DIUnn8fmkB+GgQe7nTZ7sTvvcX6P63FwJJAE2bpSZYaWUUt1Lfr59bO1PLy+Hp56SQmWq89CAUCmluihr9c7vl32DADk9/PjMBtfzYmOlL6Hl44/3PcObmAj9+slxfT1s29aGg1ZKKdXh1dRI1WqQycbvfU/uJSBVrJ97TiYjVeegAaFSSnVBDQ32zbqyMhIQLlxI7vWnyAbCX//aFfWdfLLc1K3Xvv/+vt9/+HD72FqJVEop1T2sWyc9bAGGDpUqoxdfbK8UbtoEr73mTilVHVe7BoSGYXgNw1hpGMbcJtfvMwyjynEeZxjG/wzD2GgYxieGYQxyPHZL5HqBYRintt/olVKq89iyRVI5TTNSUIZiWLaUYWaBTO3eeadUh3n0UQiFSEuT1FHLe+/tOxW0aUCoN32llOo+1qyxj0eNkq+5uXD22fb1VatgwYL2HZc6NO29QngDsNZ5wTCM8UBGk+d9HygzTXMo8HfgL5Hn5gGXAKOAWcCDhmF4D/eglVKqs7FW7QIBSeOJ37aeLErIpMx+0t69cPXV0mti8WJXcZmKCli2rPX379ULUlPluLRUehkqpZTq+gIB2T8OUnnaOUE4bpy7P+2HH8Knn7bv+NTBa7eA0DCMfsDpwCOOa17gbuCmJk8/G3gicvwScLJhGEbk+vOmadaZprkF2AhMPNxjV0qpzsbaP1hZGWk3sWEDubRSEnTVKpg+nf43nMeo3nZkN39+6yt/hqFpo0op1R0VFNj7A4cMkZ62TtOmyTyjZe5cqUiqOq72XCG8Fwn8wo5r1wNvmKa5p8lz+wI7AEzTDAIVQJbzesTOyDWllFIRpmm3nPD7ITOpDnbsYBiOPhRxcc1f+OqrzL73VPjic6ivZ/v2fd/Ene0nNCBUSqnuYfVq+zgvr/njhgFnnmlPGpomvPACbN/ePuNTB69dAkLDMM4ACk3T/Nxx7QjgQuCfh+H7/cAwjM8Mw/isSDtkKqW6md27pWFwKCRfs/xb8NHAQLayl55sy51JaO16mDOn2WuPDH5OnzUL4fXXYP165r/Vepm4IUPsQjTbtkkakVJKqa6rvt6ecPR4YOTIlp/n8cBFF9kVqa3G9cXF7TNOdXDaa4VwCnCWYRhbgeeBk4DVwFBgY+R6omEYkYxkdgH9AQzD8AFpQInzekS/yDUX0zQfNk1zvGma47Ozsw/LD6SUUh2VtVrn90vfweQdaxnMZh7lak7nLc6vfIwpcwZwcehZbr58Jw/n3MF7zGATg2kghlnMlyZSn37Cyj+9zZ7nFrf4fWJiYPBgOQ6H7T0lSimluqb16+2CY4MGSRui1sTGwuWX222PamvhiSegqqr116joaJeA0DTNW0zT7Gea5iCkKMz7pmlmmKbZ2zTNQZHrNZEiMgBvAN+NHF8Qeb4ZuX5JpAppDjAM0K2qSinl4No/mBHG2LSJNCp4jKvkgbR0gkEpC75gbV8ezryZW3Ke5+KYV5nKx/yT6/maMRSQy+6KRJ64dB51s8+ROuNN6D5CpZTqPpzpoqNHS7XR226DJ5+Eb75p/vykJPjud+UrSOP6J5/UxvUdjS/aA2jFo8BTkRXDUiSIxDTN1YZhvACsAYLAdaZpattLpZRysNpA+P3QJ6MYArWsZCwmBnh9kJzU5BUGZGZBejrhvXvZ8Y0PfziF8khCxpccyQvztzPgnQIGH7WHnIsnMvXUJI4+2r2PcMMG+b6G0X4/q1JKqfbR0GBPOBqG9B88+WTZMpCQIMVjJkyAmTPhqKPse0FmJlxxhXQ5amiQxvXPPy+rh17tFdAhtHtjetM0F5umeUYL15MdxwHTNC80TXOoaZoTTdPc7HjsT6ZpDjFNc7hpmvPaa9xKKdUZlJXJHo1AQG68WWUbSaSGBcyUJ6Slkp5uMHOmew8gAB4v9DkCRo8mJcOHgZQYNfFQSSo7zb58uCqFJ36znmvOLuSDxSbp6dKCAmS/4q5mSfxKKaW6gg0bZA8hwMCBsHChBIMg6aAbNsBXX8Hf/ga//CXMmyf3BYC+fd2N6zduhNdf1x62HUVHXSFUSil1CJzpoh4PpO/Ip5BsaonUBU9L59JL4apI9mgoBDt3SiP7zZutr7FsSRpI0pY6qooDEAxSSSppVGBYL9qxnb/9qJzjvsolN1daGoKsTlpFBJRSSnUdTauL3nef+/EdO2TVMD4eCgvh2WfhpZdgyhRZNRw+HM46C157TZ6/cqX0s50xo/1+BtUyDQiVUqoLsQJCvx8yEmoxi4v4nKmNj8dlp3LeefbzvV6Z6R04UHpHWcJhWLEijtt+G0vVthKqtpSS3VBENcmNweXugkqevXMb0783kI8+ktcVFEgKkVJKqa4jGHTvEx8yBD7/3D7PzJRJyNJSOOII+3p9PSxaJP9GjJDA8IQTpGE9wAcfQFqapJqq6Gn3lFGllFKHj9UwuLoasgK72M4Aqolk5CencMY5PtLT9/8+Hg8ceyycOM1g8MQeHHlBLhOmp/JswtXE0ND4vMfuLibRV9/YmHjPHlmdVEop1XVs2mQXgunfH774AkpK7MeTkyElBWpq4PrrYdKk5vsD162Df/4T3nhDAkzr/d58s8WaZaodaUColFJdRCAgjX/9ftmXkVm8gU0MadwLSFoal112cO85e3bkwOtla98pVP/1IebwXOPjNdUm//7OEoYNs19jrVIqpZTqGpzpoqNGSSqoJSHBDv4aGmDpUrjuOrj3XjjvPFkBdCovl3vV8uWyylhaKo3rd+w4/D+HapkGhEop1UVs3GhXFyUcomF3EWVkND5+wowYBgw4uPccOxZ697bP59WdxFUXVpFBWeO11xelELdna+O5tp9QSqmuIxRyr+ANGACfOpq+JSXZbSUAXn5ZCpylp8O550pgeN11uCYOPR7Zb15SImmjCxbAPffICqNqfxoQKqVUF7F+vQSElZWQGi5nnZlLPAF5MDaOy67PPOj3NAw49VT7fOVKqP7dX/lRqr1KaJrwxu9XysZDJLXIalyslFKqc9uyRaqIguwPXLcOiork3DBgzBjpNWgJBOCZZ+xzn09SSG+7Df7wB9lD6PPJquLgwdLAvqwM3n8fXnyx/X4uZdOAUCmluoiCArvdRELFXnbRFx/SqnVETh3jjjm0BoHHH2/P/pomvLMik3P+czpD2NT4nFUl/Ql8JFPGDQ2wdeu3+lGUUkp1EE3TRd94w24/kZAgAd5FF8keQssLL7S8n3zQILjmGqlQevHF0rZo4EAJLMNhWSlcu/aw/jiqBRoQKqVUFxAKScqo3w9gUlYUJM5aHQQuu8JzyA3j4+Jg+nT7/MMPoe6M8/n5SV+6nrf8oyChvcWAFghQSqmuIBx2B2h9+sCKFfZ5cjJMnSpfL7nEvl5TA8/ZiSTNpKTAGWdImuikSZCdLde/+UYCTk0dbV8aECqlVBewfbvM2FZWQqg6wJ5gVmO6aE9vCTN/Oupbvf/MmXbRgLo6KSF+7HM/5fj4zxqfU0kya19aDeFwY/qqUkqpzmvbNru5fO/esjWhsFDOPR7o0QOOPFLO58yBxET7tc89B1VV+35/jwcmTpT3jo+XVNSKCnjrrbb/WVTrNCBUSqkuwNluorZMAsE4JKfnkrEF+JLivtX7Z2ZKGwrLu+9CKKsnP73rCLyRtFQfQb4q60dgyeeUldl7TJRSSnVO+fn2cV6e7POrqJDzxEQ47jjZDwjSZP6ii+znV1VJ6uj+jB0rgWH//rIiWVQEX30Fa9a03c+h9k0DQqWU6gLWr5d00XAY/H6DOOoxMEmglnOuzNj/GxyAWbPs49JS+M9/oP+Pz+TCUZJPZAAGYb74sApKSrT9hFJKdWKm6Q7KsrKksJglORmmTHG/5rLLZJuB5Zln9p/+mZ4OOTmyV71nT0kbBelPqKmj7UMDQqWU6uRM0w4IqypCmKFQ4/7Bs3md1PNntsn3ycmRggKWJUvgkUcNrnllNqk+uWvHE2CtmUvZa4spWBtuk++rlFKq/W3fbqd8ZmfDhg125ofXKymekye7X5ORAeefb59XVLh7Frbm6KPla69esvXBNOV7a+po+9CAUCmlOrmiImn0W1kJ5SUhvASJpw4DkzlHrnE3EvyWrr1WigpYPvoIXvqoF9dcIxVrrDTVT/f0Z/vLKxpLlSullOpcnKuDeXkyCWgFhElJMHx4pBhMkw3j3/mOtJKwPP20VMDel3Hj5KvHIyuRVoVSTR1tHxoQKqVUJ2e1m6ishPq6MLHU4yXIdBbR97xj9/8GByEtDW65xR1jLl4M1eOmMqCXBKFx1LGDfmxbsJ6Ni3a06fdXSil1+Jmmu91EcrJkojQ0yHlSEkyZbMKNN8qy4IwZ0mUeKTRzzjn2a0tL4dVX9/39BgyQverWe2c4djpo1dHDTwNCpZTq5Kx00fIyE1+4nngCGMDlPC11vdtYRoYEhT172tc++MAg76IxmB5vY3XTT0LHsOaXjzU2rFdKKdU57NplF4/JzJS2RtbqoM8n+wQnBz+Av/5VnrhwIfzoR42v/+537WIzAE8+afcubIlhSHEZSzBo32OqqzV19HDTgFAppTo5qwx4dVU4ki4aYDT5jOlVZG/MaGOZmfDrX8tMsGVbWSqZw3sSRx0A5aTz2tphhB/692EZg1JKqcPDuTo4ciQsX+5OF01JgSPfu8f9opdekka1yF7AM8+0HyoqkpW+fbHSRkH2L06fTmP/XE0dPbw0IFRKqU7M74cdO2DPHiAUIoYG4qjncp7GOON02ZBxmGRlwa23yldLUu4R+BN6EYPkFS3nONbe+Jg0s1JKKdXhNU0XjY2VSUdrxTA5GSaN9uOd38Ky3U9/Kj2QgO99z30L+u9/7ZTTluTlufceFhXB8cfb55o6evhoQKiUUp3Yhg2yP6Oy0oRQiARqOILdTGfRYUkXbapHD1kptPZ7pKQYpOb0oAG5qweI45+1V8E112ineqWU6gS++QbKyuQ4LQ02bbJXB2Nj5d+UyvktbwdYuRKeeAKAvn3htNPc7/v2261/35gYGD3a/VbTp2vqaHvQgFAppTqx9eth82YwwyY+giQQYA7P4Y31ySb/dtCzpwSF6elynjs6loakdALEAzCfWWx/bx08+mi7jEcppdShc64OjhgBn33mThcFk8kf39X6G/z6141lQq+6yr1K+PjjjQuILXLucsjPl5jzvPM0dfRw04BQKaU6sfz8SBPfkLSbyKSUs3kdpk2TvJ520ru3FJpJS5PZ49wj46nzJFJHPHXEcRc3wi9+ATt3ttuYlFJKHZym6aKGIStzxcVynpQEIzIKydrymf2k2FhpSmjZuxfuvBOQ6qEzHa1wd+6Ed95p/fs7C8s0NMhY+vbV1NHDTQNCpZTqpOrrYdGiyJ6MUIg46riQF0mipl3SRZs64ggJClNSICfHICE1htpIQLiQk1lRmQs/+IGmjiqlVAdVWGgHfykpkoFSXi73mbg4Seuc4p/vftE558Avf+m+ds898mLg+993P/TYPopPp6fD4MH2+cqV8rVp6ujcuYfww6lWaUColFKd1KZNUgocTDDDJFPFHJ6XB08/PSpj6ttXgsLUVMgd4QVfLLUkUEYm9/BzwvPmS/1xpZRSHY4zHXPoUAnICgvlPDkZCAWZsuoB94uuugp+9SuZFbTU18NNNwES4J10kv3Q1q3SpaI1zrTRlStlDtHnk9RRK/306681dbQtaUColFKd1BtvyEyppIuGmcECerNXaoQ7p1jbWf/+cPPNUjEuIcULhodKUlnBMbzBWVKFbvfuqI1PKaVUy5zpouGwrAw69w+m1u5ldJ0jXbR/f9mvnpzcmCba6OWX4YMPALj6avdDjz7a+iqhMyAsL5cAEmTCcepU+zFNHW07GhAqpVQn9corkc35Iek/eC0PyQNRSBdtauBA+M1vYMgQA2JjMYFisvkDv6G6vB6uvVZTR5VSqgMpLpbtfyDB3+bNEAhIfZiEBPB6YVLle3hw/O2+8kp5AODyy2HCBPebRtpQ5ObCCSfYlzdubGxZ2MyAAe52RlbaKGjq6OGiAaFSSnVCBQVSYRRMCIcYxFbG8pU82AECQoCcHNlWkp7hAV8MIbxsJYdbuEOmdp97LtpDVEopFeFcHczJkXNnMRlqa5m65wX3i6680j72eODee92Pr1olDQhpvkr4yCMtzwsahru4jDMg1NTRw0MDQqWU6oQefBCCQSI5NyYXEblJp6fD5MnRHJrL9OkwezZ443yEjBhM4Dnm8DLnwk9+Yk9HK6WUiipnQFhfL7eXwkIJ0JKSgOJiJrHcftLJJ8OgQe43mTwZLrnEfS3ShiIvD447zr68bh0sXdryWJxpo1u32n0RQVNHDwcNCJVSqpMpLJSy3Va6aBx1fJ9H5MFZs2QKtYPIzpZGwxMmGBAbh4lBGC+383s+Ks2DW2+N9hCVUqrbKyuDPXvkOCFB0kXDYVkhTEgAjxEmr3wpmTgis6blQy1/+Yu7DUVhIdxxB3Dgq4R5edLNwuJcJQRNHW1rGhAqpVQn8+KLUFUVuYmGQwxlI72I7PrvIOmiFsOA3FyYNAmye3kIxyUCsIc+3M2N7H5svuS/KqWUihrn6mC/frLHr7xcMlGSk4HycqbUv28/KT0dzj235TcbMABuvNF97e9/h82bOeooGD/evvz117BiRfO3iImRyURL04BQU0fblgaESinVidTWSuG26mrADOM1g8zkXQyQO+OsWVEeYXMjRsjNe+pUSMqIw4jcwfMZxVxzNvz2t1EeoVJKdW/OgDAQkK+FhXJbSUgAiouZwhL7SZdd5l4FbKqlNhSRILGlVcKWjBvnHl99vftxTR1tOxoQKqVUJ/Lmm1BaajWjD5NKBdOQst5MnuwuzdZBDBoks705OdCzl0FKD0lprSCdF7iI8hffhS++iO4glVKqm6qogJ075Tguzm7zUFQEiYngCdaTVrmDPBxLcK2li1qSkuDPf3Zfe+UVWLyYY46Bo46yL3/xRcu3AGdhmYYGyM9v/pymqaPz5u17WKplGhAqpVQnEQ7Ds8/KDGgoBEY4SBalHM9H8oQoNaPfH59PGhwbBhx7LMRlJGN45fazljzmcroUHVBKKdXunKmW2dmwY4esEvr9kXTRkmIms9RuN3H00e6qL6257DKYONF97ac/xQiHDmiVMC0Nhgyxz1etav6cllJHm64kqv3TgFAppTqJDz+UWdzqagCT5HAluRSQSCS/p4PtH3TKzZWvPXvC6NEGyT3iAAgQz7/5IYF3FsPixVEbn1JKdVfOdNHaWvlaVCTtBePjTSguYTKOcqD7Wx20tNSG4ssv4fHHmTRJCsdYPv1UgrmmnHHnypUtF6Dp29cudhoK2Suc6sBpQKiUUp3EM8/I15oaIBwmgzKO4ku5OHAgjBoVtbHtjxUQWsc9+iU0VkNdxwhe5Ry45RZtVq+UUu3I74ft2+U4JsadLpqUBEaVH6M+wHEskwfi4uDSSw/8Gxx3HMyZ4752660Y/soDWiV0po2Wl7ce7A0dah9v3Hjgw1NCA0KllOoE1qyR2dFQCOrqINGoJZY6O130jDMkJ7ODSk2FPn3k2OuF8883SMyUggRhvPydnxNa/qlsklRKKdUu1q615+HS06GkxG43YfUeHMVq0qmQJ513HmRkHNw3+ctfIpVpIgoL4U9/4vjj3ZOFS5bA+vXulw4Y4N4a37TaqEUDwm9HA0KllOoEnKuDpmmSHiwmjnomEKnX3UH3DzoNH24fjxkDg0fEyZQ0sIkhPMsc6UsYCkVphEop1b04C7VYFTqtJvBxviCUlbmrix5ouqhT//7N21Dcey/G5k3N3q5pP0HDcK8StlZ/rHfvSACLrG5WVBz8MLszDQiVUqqDC4fh44/luKoKYr1hEkOV5LCFZGqkDNz06dEd5AFwBoRbt0qGaFy6PWt8NzcRyl8Nzz3X/oNTSqluprraTsH0+WDbNjluTBctKwXTtAPCQYMO/V5z002y2c8SaUMxfbp7BXD+/OZzgs59hNu2SaXtpgxDVwm/DQ0IlVKqg9u2zSokIzO4SR6Zxj2ayFTpjBn77gfVQfTta8/g7t0rFUePOTYGYmMB2EVfHuYHcNttWiZOKaUOM2e6aGKiTDiCZHQmJwPFxWRQxgjWyQNXXmmX8zxYLbWhePVVPB8scrXPLS2VAjNOeXmyddHSUrVR0IDw29CAUCmlOjgrpcfaPxhfX4mBY9a2A1cXdTIM936RDRvgjjsgJtVeJfwHP6VmyzetdypWSinVJpzVRa1Jx9pauc/EBmugpsZuN2EY8L3vfbtveOmlMhPo9LOfcdqp7iXBpr0EY2Jg9Gj7vLW0UWeLik2bJLtGHRgNCJVSqoOzAsLqatk/GF9XQTLVjLKaBJ92WvQGd5CcAWFBgewlnDnL1zj9W0Q293ID/P739icUpZRSbaqmBjZvlmPDsBvTFxXZvQcBe+Jx5kyp8PJttNKGIvfjxxg82L60aJHd/sLiTBtdvVqC1qZSUmQvIcjr9+z5dsPtTjQgVEqpDs4KCKuqIIYGvATpy06yKJG7pHNfRgc3dKidcbR5s5QRv/NOiHWsEj7K99mz14D77ovSKJVSqmtbt85eQYuNtQOswkJISgxDSQkewkxiuTxwKMVkWjJpkjSsdzB+cyuzT6xpPK+thQ8+cL/MWVgmGHSvbjpp2uih0YBQKaU6sEBAUitNU2Z048IybXoMn2NAp0kXtcTH2zfsYBBeeEHaUZx7gbdxH2QF6dzFjXDXXXa5O6WUUm3GGVBZewfDYbnPxFSVQyjEaPJJxS9VX84+u+2++Z13uttQFBUxa/XfXE95+233S9LS3Cmh2n6ibbVrQGgYhtcwjJWGYcyNnD9jGEaBYRj5hmE8ZhhGTOS6YRjGfYZhbDQM4yvDMMY53uO7hmFsiPz7bnuOXyml2ps1i9vQAA31JvH1fmJpYJxVUKYTtJto6rTTGuvIsGMHLFwIv/sdJGYmgGFgYvA6Z7OqfKAEhUoppdpMba3ssQOZbNy9W45LSyPZ+8WSLjqVSHnryy93V3X5tvr3l6qjDn0e+QPjhtq9IpYvb15N1Jk2unKlXRDHacAAqZgKsH17y6mlqrn2XiG8AVjrOH8GGAGMARKAqyPXZwPDIv9+ADwEYBhGJnA7cCwwEbjdMIyD7I6plFKdhzWLW1MD4VCYeGpIoZLhrIfsbJgwIboDPARZWXDWWfb5Rx9Jz6iLLvE0rhL6SeUubiR87326EUQppdrQujTM7GEAACAASURBVHV2awePxw6sioshKaYO/JUATGapPHDVVW0/iJtugn797POGBmZveajxNByGd991v8QZEFZUwJYtzd82Jka6Y1jv0dJzVHPtFhAahtEPOB1oLB1nmubbZgTwKWD9ZpwNPBl5aDmQbhhGH+BU4D3TNEtN0ywD3gNmoZRSXZRz/6ARChFHPT0opj87ZHXwUEuAR9lRR7lv7i+9BNdeCxl94sEwCONhBRN4K3AS/PGP0RuoUkp1Mc50Ub/fPg4EwFtWAkAWJeSyHsaPhyOPbPtBJCY2a0Nx8qd3EFNb2XjeNG20f393z0JNG2077flJ4l7gJqBZEdhIqugVwPzIpb7ADsdTdkautXa96fv9wDCMzwzD+KyoqKhtRq+UUlGQny+znIEAxIYDeAkxji+kDHgn2z/Y1BlnyCInSEHRjz6CCy70QEIiAJWk8U+up+bfT9n5TUoppQ5ZIGAHScGgFJEByUKprzcbq4s2tptoq2IyLbn0UikyE5GKn+NDixvP16yRPrwWw2ieNtoSDQgPXrsEhIZhnAEUmqb5eStPeRD40DTNj9ri+5mm+bBpmuNN0xyfbX3aUEqpTqa0VLIl6+ogWB8m3qwhGT95rJW8mJkzoz3EbyU2Fi66yN7vsXmztKHoOzgWPB6C+NjOAP4buhxuvz26g1VKqS7AmS5qmnaSSWkpJIX8UF8PRNpNxMfDJZccvsEYRrNVwtmbH4BQsPG8aU9CZ0C4bVvzfYYAPXtKCwqAkhKtTXYg2muFcApwlmEYW4HngZMMw3gawDCM24Fs4OeO5+8C+jvO+0WutXZdKaW6HGf/wVBDiHgCpFJJHmvghBMgNTW6A2wDvXu72ygWFMCUqR68SVKBroI0nuJydj+zCL7+OkqjVEqprsGZLlppZ2dKcFgqWXUewhzLJ3DBBZCefngHdMIJOJsQTmlYREpNYeP522+7i8eMHOmub7NqVfO3NAz3KqEmmOxfuwSEpmneYppmP9M0BwGXAO+bpnm5YRhXI/sC55im6UwlfQP4TqTa6CSgwjTNPcA7wCmGYWREismcErmmlFJdTn6+3Airq4FQmDgC9KCYwWzu9OmiTuPHw6hRcmyacrMfNDwOvF7qiaOSVO7jJ3DrrdEdqFJKdWJ1ddLGCGQhsLxcjsNhKC0KNl44ii9JoerwpotaDAO+853G01gamFk3t/F89273XGBMjGSSWL74ouW31bTRgxPtagT/AnoBywzDWGUYxm2R628Dm4GNwH+AHwOYplkK/AFYEfn3+8g1pZTqcvLz5abdUG/iMRtIo4JRrMFHqEsFhIYB55xjT0QnJ0NWD4O4VJkGriCNBcxg5Zs7YOnSKI5UKaU6L2e6qGGA1yvHFRXgqyxpXIqbzFJp+nfiie0zsCuucJ3O3vYQ1AUaz5sWl3E2qV+9uuXWEs6ehZs2SdCrWtfuAaFpmotN0zwjcuwzTXOIaZpjI/9+H7lumqZ5XeSxMaZpfuZ4/WOmaQ6N/Hu8vcevlFLtIRyWG10gAA11drroSNZCbq57+rMLiI+Hiy+W/SyGAT16QN/B8eD1UUsi9cTwN35B+OZft9x8Siml1D4500UDdryF12PiiRSTgcj+wSuvlD/G7WHwYJg6tfH0KL6kT71dTebdd6UXr2XsWHtowaD757IkJUGfPnIcCMAu3WC2T9FeIVRKKdWCbdskVbSmBsLBMHHU2QHh7NnRHt5h0a+fXSenf38wMUjpIR3sK0hjHSOY+1EqvKM7BZRS6mA400VDISm2YinbWSXd6oFsihhmbILvfa99B+hIG/VgMrvkGUAm/yorYdky+6lpaa5th5o22gY0IFRKqQ4oP19mPuvqTAiFSKKadMpl/+Csrtt+dcoUGDZMUplyciApKwHTF0M1yQTx8gDXUXPz7zX/RymlDkJBgdxTwE4VBYkD/dvtMpyTWYoxexb0bdbV7fC68EJXtZhZJU9DVXXjedO0UWe10VWrWk4c0YDwwGlAqJRSHVB+vqS5BOvCgElPCsllA774mPbb1xEFhgHnny8lw3NypIBASo84whhUkkoJWTz+5dHSyV4ppdQBcaZVOvfcxXiCeMvt5cIpLIGrrmrHkUWkp8PZZzeeDmYLw0P2oD/8EKqq7KePG2cfV1RI26KmBgyQewjAzp3uNFnlpgGhUkp1QM79gz6CZFEi6aInnggJCdEe3mGVlCTVzuPj5YaemB6HGROLn1TCGDzDZey+5Z/2dLdSSqlW1dfD+vVybJp2M3qAmk17GivNeAkxsccWOPPMKIwSV9oowGm7HoFIE4L6enj/ffuxfv0gK8s+b6n9hM8nE4sgSSUtBY1KaEColFIdTF2dpPcEAhAOmSRQSzJVEhB24XRRp8GDJfYdOlRmeJOz4gjixU8K9cTyj81nwH//G+1hKqVUh+dMF42JsSuNhkKwe72dljmWVSR/5zyIjY3CKIFTTpGu8tZp7Wt4Ksobz51po4bhThtdubLlt9S00QOjAaFSSnUw69ZJMZlggwnhEGmUk0Cgy+8fbGr6dMjLk0pxaVmxmDHxVJCGCSzkZL649eXGQghKqY7LNOHLL2H+fPD7oz2a7seZLupMrIitq8R05GFGLV3UEhMDc+Y0nmZTzISgXU3m889h71776c6AcNs2d6EciwaEB0YDQqWU6mAa9w8G5M7dkyKGsQHfwH4wfHiUR9d+PB646CIYPVpmgzN6xVJLAtUkAfC3wssJ3/9glEeplNqXDRvg97+HO++Ef/0L7r5bO8e0J2e6KLgDKrNJhDTlqGoYNaqdRtaKpmmjO/4NQek5YZruItMjR7rq0LSYNtqjB6SmynFZGZRq9/IWaUColFIdzNdfR/YP1ocxgD7sIY81sjrYXn2hOojUVLjmGtkrkpzuIybORzFZmEABw5n7h5VSk1wp1aF88w3cd58Eg/n5kvmwaRPMmwdvvhnt0XUfGzbYPfwSEhxJFeEw3xTYfzt7UsjgH3eADJSjj3YFpdPDC4irLGo8d6aNxsTAmDH2eUtpo4ahq4QHQgNCpZTqYD77TNJ6wkGTBGpIINCt9g82NWKEVB4F6NE3lhqSqSYRgPv936Hmwf9Gb3BKKRe/H556Cm6+GVaskH1qW7fa+9YCAVktnD9f60K1h/x8+9j63wAgruwbiuuSG8+nxnyCccnF7TiyVhiGa5UwkVqm1cxrPN+40e6nCO600dWr3RVULRoQ7p8GhEop1YGUlsL27RCqDwFhMignlnpyvDvgpJOiPbyo+dGPoHdviEv0kZIYZi+9MYFSMln47N79vl4pdXjV18PcufCLX8C770rwYZqwY0fzVZqqKgkaH3pI2gGow6OhwZ0u6qwuam7bjjPf5MTpXju3Mtouu8yVDXPa3sdc+8Xn2fEhY8faTw0G3QGwZcgQ+zmbN7sDYyU0IFRKqQ7E2j/YENk/mE0huazHN3VSx7lZR0FMDFx/vTRUzuwTS4B4SskEYOnqNHeDKqVUuzFNWLIEbroJ/vc/d52nigopCjVjhqT2zZwJGRnyWEEB7NoFDz8M772nq4WHw4YNEqiD3D7KrYKdpsnOLfWNz0vBz8SrRrf/AFvTt6/80kQcyydkVNszB/PnSxsJkJ9ryBD7pS2ljSYmwhFHyHFdnU5CtEQDQqWU6kA+/VRmdYMNJgYmvdjbrdNFnU47TWrq+BJiiTMaKCWTAHEsD08gtGBRtIenVLezejX89rdSLMZZ4dHjgaOOkq1gw4fLRM6MGXDDDTBokPwLhSR9zzSl6biuFrY952qZFUABUFlJcW1i4+k0z0fEzJ5Bh+JIG/UR4pSy5wGpRlRYKBVHLc600VWrWi5apGmj+6YBoVJKdSBLl0I4bBIOhYmlodv1H9wXqyJ5VhYkJpg0EEspmVSSwurnvor28JTqNnbtgr/+Ff78Zyn373TMMfCb30jAFxMj10aMgOOPh4EDYfJkSE+Xa6WlkhEB8iH/4Ycl3VRXC7+9hgZZhQVJlywuth8zdu10pYvOOKa042WgnHsuJCU1np5W+TxU2j1LnGmjzoCwosK9x9CiAeG+aUColFIdRDgsM+7BWvk0lEY5cdQzuFeNTLcrZsyAnBxIz/RiArUk0EAMSxYGtJa9UodJfb3sbS4pgUcfhVtukb6CTkOGSCD4k5/A4sV2FndmphSFsvZwXXAB+Hzyr29fCQ6TI7VNTBM++ggefFBXC7+tjRvtdNGMDKn6atm92c7rTcHPxEuHtfPoDkBSkvyyROSxhgEBe0PkwoV2AZl+/aBXL/ulK1Y0f7v+/SE2Vo537dIWtk1pQKiUcgmHpcrlCy/Ali3RHk33smGDVOgL1ln7B4sYTgHeWTO7XbuJ1iQnw7Rp0HtwIh7C1BFHgHiWluTqtK9Sh8HGjXD22TB9uqzEPPmkuyhHdjZcdx3cfrukh777rgSPYK/qx8fbz+/RQ/YSWtavl8/9Rx5pXysqktXCd97R1cJD5WxG71Tvr6Os3D6fxmJizj6tfQZ1sBxpowYwe+/jEJZfvupqmTwAuT1OnGi/7NNPm88Per0weLAcm6YUl1E2DQiVUo2sDf6vvy698J54Qv9otqcFC+RGFWww8RImkzJNF23B7NmQmuElMSaIiYGfZNYyktJXFkd7aEp1Kdu3ww9/KIU6ysvlQ3h+vqwA7t4tgdxdd8GkSfKhPD9f0t4tZ50l1YGbOussKfQBMgk5dy5ceCFceql7tfDjj2W1cMeOw/6jdinBoPR9tDibsRvf7HGli87M2SRpFx3RtGmytBcxu/516S4f4exJ6AwIS0ul52VTzrTRltJKuzMNCJVSBALSKPjf/5ag0BIKwbPPwp490Rtbd7JsGYSDIcImeAmRTjkjWeeeTlf07CkZtEnJ8rGmlkRMDJa/vGs/r1RKHai9e+HHP5ZJQauxOUjgFxcnH7r/+U9pH1FdLXsAX33Vft7EidISoCXJyXDmmfb5Z5/JB/SRI+H//s+dIV9UBP/5j6wWOsehWrdxo51OmZ3t3ue5d7NdkTkFPxMuGNjOozsIHg9cfnnjaT92cWTdZ43nS5bYlVMHDpSf1dJS2mjTfYS6y8CmAaFS3Zhpyj6Qe+91p1gkJMi+D5CbypNPuibl1GEQDsvserBWPvEkUkUqleRMzJYqKspl4kTo0UcqVtQTSx0xLFmZaFeoUEodstJSuPZaWSH0R+p4xMTIql7fvnJ/8Hrlw/gDD0gF4Ouvh8pKeW6/frKSvy+nnGLfZwCef17uQQkJsvJ42WW6WnionOmiPp99b6+pClNRYufgTmcRMeec3s6jO0hXXOE6nb3nscbNkaGQZNbAgaWNZmbKnlWQ4jPOyrjdnQaESnVThYXw2GPw0ksyu2sZN05Kg191lV10rKpK0kedz1Nta9MmmQkP1oXwYJJJObmsxzv7lGgPrUMaNw4yjkggzmjAxKCKFJYFxxP+8ONoD02pTq2yUvYEbtsmgaFpSjGO6dNlf+DFF9vVQ8FuPv/RR9KHcNUqCfZ8vn1/n9hYKTZjWb/e3UNuxAhZLXSuMhYXy2phS83HlQgGYe1a+9w5mWsWF+MJ2wHhjLTP4Nhj23F0h2DkSJgwofF0Ju/iLbNLpraWNlpc3LwOgmFotdHWaECoVDdTXy9NgB94ALZuta/36gVXX21Xek5Lg+9+V2ZrQWbSnnrKrlqm2tbChdJuIhh0povq/sHW9OkDQ4YYJMZLc60qkqkklTXProryyJTqvGpqJAjbsEGqMNbWSmA3caLU9xg5En79a9lnPmeOpI5WV9sVG4NBua9cdpnsLXRWtmzJ1Kmy4mj53//cBWsSEiRovOwySEmRa6Ypew6tlEjltmmT/d+mVy930FO82W7bkEolE87sLUu9HZ2juEw6FUypeRerJ+FXX9lbXXJy3Ak1n37a/K00IGyZBoRKdSNr18J990kTYKtJbWysxBzXXis5+E49e0r6vjXTu2sXPPec+4at2sayZRCuayCMgccKCFN3u2ZGldsJJ0BKunyYCZBACIOl7+kytlKHor4efv5zWX0zTZkE9HrlT9CIEe6tzD17wi9+IROLOTn2imFKigSJ9fVSqfqcc+APf2g9zdPjkRVHy+7dcn9qasQIaWdhtRZwVphUbs500fh4u0qr3w/+YjulvkNXF23qkktcS86zS5+R2YsIqydh07TRFSuap40OHmwX7d6yRT/PWDQgVKobKCuDZ56RAjEVFfb1UaMkPXTKlNYnCQcMkBu29Qd040Z47TXdjN2Wysrkv2swEMTAxEuIbArJOTW3c8zeRsn48ZDVPwEPYUJ4qCaJJbsHaQMzpQ5SMAi/+pUUdwG5T4TD0mQ+I8M9MWjx+6XQy/jx8nn99NPhiCOav+/rr8sq329/23LV6rFjJeCzvPJKy6t/CQnufYnOgiJKhELudFHn/T5UUYW33m6+N8O7WHJ7O4MePeQXLOIEPiSxwq529/bb9mcSZ0BYWOguqAPye9SvnxzX1+ueVIsGhEp1YcEgfPCBVIJzlqDOzJQMjEsusfcJ7suIEdKHyrJqlewlUW2joMDeP+glTCp+8liL97RToz20Dm3oUOjdN4ZEnxTi8ZPKGvIof21xdAemVCcSDsNtt9krbsGgBBJHHy2fw8eNgzG+tbJn4IUX4J13CC1Zzv/u3UPVHj/U19Ont8n998Nbb0nKqbNYjPU95s2Diy6SLBXnhKJhyL3IUl4O8+e3PNYhQ6TXoTXO995ru/8OXcGmTXZdrT59ZF+mpWSLHR2mUsnEExMO7ANAR+FIG42jnhnlL4EpqU7bt9uB8JAh7t+//aWNavsJoQGhUl3U5s2SzrNggV2q2+uVwgDXXw/Dhh3c+x1zDJx8sn3+8cfuflPq0H3+OfgrwgTDjnRR1sKpGhDui8cDxx8PiUmyfF1ttZ94Ydt+XqmUAgnM7rjDPcFXVgZjxkh6pq+8iMvmXQ55efKB/OKLYdYs3p36O7bd9gj8415i7vojc27sR3zfLBJHD+Y7fz+aNwMzuYm76LnnS/m0vmuXbCgsLeHJx4Pcf797HEOGuFd25s61q5s2deqp8v99kP1jmhBgc6aLJifbWZWVlVBdZK8OTmMxvrM7eHXRpk4/XZarI2bVvAIVlY3nVnEZw3DvtGip2qjuI2xOA0KlupjqanjxRXj8camyZRk6VPZgnHSSu0LcwTjxRPcf2nnz5IasDl1dnaRphevqCOPBS4g0yskbYcoUr9qnE06AtCz5hW4gljpiWfppjL1xRinVItOEv/9dtgBYAgEYNAj6xhXD++9z+txr6fneM67X5TOKpUxuPD+LN+gd3i0lSbdsgVWriPtoARd9/ite3z2e3xT9H/2+WQG7dsrjX+fzxD3FPP6Y+1P6hRfaGfKBgHtcTtnZze9DuoWhebpold1ukEBVAzE1dn7tDBa4G0F2BnFxrg2n4/mM7Cq7jOg779h/9p2TC3v3Nk8L7ddP3g6kz7JWUNeAUKkuJRSCO++ERx6RVJFgUDb5X3yxTO5+23Z2hgFnnCGTxZZXXpE0FXVoNm6UG1awNoiXMAbQi0IGnTkm2kPrFMaMgeyBCcQiy+CVpLKs7mjCy1vIE1JKNfrPf2RfucU0YXB6KQM2LIT588jYnc+ZvOl6TRE9eJVzG88nsIKxfNnq94ghyDm8zsuczxU8JRdDUor0gRvW88K9uxuf27u3ZLBYFi6UPWAtmT5dCqaALEA6V8a6qy1b7Gqvffq4t4mUb2uSLppXLdWAOhtH2qgHk1nFTzdGgWVldnrosGF2v0Fonjbq8ciqNMjvfUt7W7sbDQiV6kJeeQXefFMqta1dC19/Lfv/hg+3i8J8Wx6PzOQOGiTnoZB8qNi9e58vU60oKIDCQpNgfRgvIXwEOYbPdf/gAYqNhaPHeUiKl1JxVSRTRgbrnv0iyiNTquN65hl4+GHHhSo/UwtfIW3JW7BH/pjP4TnisPsM1Y07jueOvJP6QcOhzxH061nPadmf2Ust++AlzP9xHxfwkut73vXzPbx92TONVWTOOccO9EIhyXZpSVKSZKxYnKtD3ZWzN2NGht1/sLISaorsipzTWIzvzNl0SpMmufI9Z4fehLLSxnNNGz10GhAq1UXs3Qv332+3kxgwQG4KL74o5cEXLWq78so+n/SFskqA19fDk09KxpA6cOFwpKDMrgaCePEQIo0K8uK3wOTJ+38DBcje1sQUKYHY2H5iXsV+XqVU9/Tqq5IqCkCVH9YXcE7Bn6nbubfxObmsZxLL5WTyZMz57/DajUsoOutquPxyEn/yfS5Z/wd8hbslvzMQkJvQ+vWSA79wocxQPv443Hsv/O53GNdey03x/2Q28+zBmCb/79lhLBr2A/jgA9LS4DRHJ4Tly5s3F7dMmmRvKSsvl9Y93VXTdNFae7sg/sowsVUljeczea/zpYtaDMO1SjiMDQyptvetLFpk75t0po3u2dN80rppQNjd0441IFSqC7AKA1gBWWqqO12irAweewxuukkKwVhB47cRHy9/l9PS5Ly6Gp54wr1vQe3brl1ykwr46wEDD6YUlJmaJUtf6oBMngzpfeLxECaMQRXJLN16hHsTrVKKd9+FO+4wwV8ps1EFBZzpf5a+7KKaZAAMTL7Dk9RPOYndz3/Ilw98zOu1p5C/WtJMDEOqhVp/+wFZJezZU3L1jjlGNqufey5873vS2+i22+DBB/Gs/prbZy7jRD5ofGkYD7/e8SM+mXYTXHUVsyeWuN77+edb/rDu87nrbn3wQffdC7Z1qx0INU0X9e+pwgjLbHAqlUzI2iLRdGd1+eWNhwZwWslTUCelVevqYPFieSw31/07+skn7rfJyLCrkVZWSqXv7kwDQqW6gHfflZshSErntGkSII4b535eYSE89BDceqtUtvy2M2KpqfDd70pfH5CA9KmnWu4hpZpzt5uQG3Y2hQw69+goj6xzSUuD4aNjSfDa7SfyGUXl64uiPDKlOo4PPzD57Q0VmOsKZCWvys9JLORcXuF1zqaIHuykH77eWfzvB+/zx2kLeCj/eF562eDzz+33Oflke//VQRs8GN87b3HnU/2ZmGDnODYQwy/4G18+/jnxY0dwbvJ7gNyg1qxxp0M65eXBwIFyXFcH779/iOPq5Jz/fXr1khUxkECnttiOkqezCN/pp3bu/rY5OVJNLGIW86HEXgG10kY9HumRadlf+4nunjaqAaFSnZzfD3/9q50O2r+/VBMdMAB+9jO4/XZpQO+0c2djFg/5+d8uMMzOhiuusCuX7t4Nzz3XdumpXdm6dVC4J0gwaOKJBIQTWIF3didpFtyBTJ0KSYlyXEMSITwsf35rVMekVIdgmiy55xN+fvo6/Ot2UlllUEoGyVSRQC03cB+bGMKupOFUDhtPjytOx99zSIsbz0ePdn0WPzSGQezlF/HXDWczJtfeoxggnhv4BwXFmUz7yyx6f/iiRDS0vkpoGO5m9StWtF6IpqsKhyVotlh9CEGyg+L8drA0gwVSGa6zc6SN9qKQY/wfYE0gfPqpnRziTBu1MnKcNCC0aUCoVCd3113S3gkgMRF++EOp1mYZOhRuvhluucX9xw+kOuhf/iKVSb9Nc9b+/aWSqdUbatMm2T7S3XPy96W8XLbcFG2tJoQXD2HiCTCh7zeds/pblJ16KiRmSJptEB8B4li6zGib/GilOimzNsC/xj7EnF/0YVd1GmVk4CeFdCo4jmXsYADFSQNh8BDIGcyICSmNNWKSk6V42PjxMGsWXHmlpIq2VYGyxL4Z/GPFZIadPLCxkkwVyVzP/eygPxdtv1saEn79Ndu3hlrte9u3Lxx1VOTnNVtvat9VOdNFe/d2N6OvKg5g1EuEmEolE3yrukZ/2wsusKsPAadV/a9xv0o4LFtYQQrqpaTYL2u6Sjh4sP25ZevW7l2YSANCpTqx5cvlfglyk5482b0h3ykvT7Zx/PznEsA5rV0Lv/893HOPlPA+FMOHw9ln2+dffSWV31TLCgrk5lNUZGIgeyHSKWfEjH7RHlqnlJMD/YdJ+wkTqCSNpdVHEl6ljTJV9/XOd57hz1/NpgFf47VsipnJuxg5g1iTdyHxIweT1ieJ0aPl/vDDH8q2gl/9Cr7/ffm7PmWKfHhuq2DQkpoKD7yQzYBT8+CIvmAYlJHBj3mQvuxkaLgAvlwFc9/ixXt30dDQ8vvMnCl7CkEmN7/NBGdn40wX7d/fbqFQWQmBEntT/3QW4Zs2Vf6jd3ZpaVKSNmI6i/CV2kvD1mcPr3ffaaNxcfbnoYaGQ//80xVoQKhUJxUIwB//aM9o9e4tKaL72hpgGHD00fCnP8F117lXEgFWrpQPAg88YO9BOBjjxsGMGfb5kiXdu/LbvqxbByUlJg2BcGO6aDZFDLpwwn5eqVpiGDDhWA+JcXb7iVIy2fDsiiiPTKno2L6yhPte6UsdsuQXSz2D2czd4//H9/83i+G3z2Ho0SmMGCETKr/9rdSD6dfPtfhy2GVmwoP/8tBrbB/Z35CSSiE9uY4HOZXIJ/vKCkpeep/3zvxHi+Ws09Ikbdwyf373SA5omi7qDJiLiyGhugumi1ocaaOp+Dmu3P4f/auvJAMH3GmjO3bYGVUWTRsVGhAq1Undfz9s2ybHcXFw1VWyb/BAGIYUGfvzn+Hqq5s3rF++XGaHn3vu4G+qJ5wAxx5rn7/zzqEFl11ZXZ2UUi/aXEXQ9DQWlBnr/RrvSSfu59WqNSefDEkpMiNSTyz1xLBkblmUR6VU+6uuhmdu+IR14VwA4gkwyLeb199J5NQVfyJj+lgWL7ZX/CZOlCySaOndWwqeZfaJh9xhkJPDDl8Of+dnjMSOeN54J47qEce02KDw+OMlzRVkH6GzEE5XtW2bXVm1Vy/3yqi/PIhR7Qci6aKs6LztJloyc6bd+wo4pWGu7MWIeO89+TpypP17Ac1XCTUgFBoQKtUJrV0rm+wtxxwD559/FZMnqQAAIABJREFU8O/j9Upz37vvlkrOzkwS05RqXffdJ30GD5RhSNrq8OFybjUXbi3VpzvatEn+uxRu8mNiRFJGTU4YXWaXbFUH7fjjIb1PHB5MwnioJoll67Ok8pJS3UQ4DC88UsmXS6upJR4fITIo45zTG+hxipSefvZZO7skNhbmzInigCMGDJDslJQUAzKzYNRoNvU4lpWMIxT5uFpNEm8WHSubGa+4AirsfqOxsRIjWBYu7PoVr53pooMH270IKyuhvqxJddG84fKkrsJqiBxxIh8QW2b30nz3Xfnq9cpnJEvTgPCII+wV8T17um/rLA0IlepkQiGpHGrd6LKypPG8VeXzUMTEyD7zv/0NLrxQitNYPv9cis4czGdqj0daUCUlyXlRkT1bp2T/IMA39r2LZPyMPUP3D34bMTFw5Ph4Ejzyfw4/KXxpjsH/1odRHplS7WfRItj0/KesCQ3HADIoxevzctFfJXdu9WrpHW854wzo0SM6Y21q2DCZhExIQD7wDxzEluGz2JUwjHDkI+s7nEoJmfD003DkkXbPJWDsWHsrRHU1fNiF/6/fNF00HLYzevbuhcSAnVrbqZvR74sjbTSRWqZWvNU4+7xmjVRUB3fa6LZt7kq0Ho+7jcqmTYdzwB2XBoRKdTKPPWbPAsbEyCRpbm7bvHd8PJx1lqSSOtNPN26UFhV797b+2qaSkiQotCxb1r3TMSymKQFhrb+B8trYxnTRHhQz8JLjojy6zm/KFHtCo5Z4Gojh02f1F091DwUFsPitaopWbKOIHqRRTiwNTJ1i0ndoAqGQ9Iq19OgBp58evfG2ZMwYmZxsnORMTqFi2HhWZc8kbHgJ4uNhfkAt8VIFZPp0uOkmqKvD43G3oVi61JVF2KWsX2+vZvXs6Q5kqvxhPJXyg6dSyXg+61r7By1HHSWTAhGnmPNde0ytiehRo+wJapD2JE6aNqoBoVKdyrZt8Mgj9vmoUa6MiTaTkQG/+Y30nLLs3StB4cHMng0f7q7w9cordnns7mrXLpm5LlpdiIkHT6R30pjELXhHjYjy6Dq/GTMgOUM+SYbxUUMCSz8KaQ8U1eWVl8PLLwPLlrE6lEsiNSRSA74YLv7dSAAWLJC/QZZLL5VUy45m4kSZmLRaAvhiPNQm9+TLwedhpmWwhjz+xK2UkS7/3777btm8np/P4MEwIvKnNBi0Uwe7gvJyWfV84AF45hn7em6uFFKBSLpoZaCxGfBJvI8vKx2O66ITjo5Vwql8TEKZ/QtuBYRerxS9s3zyifstmgaE3fF2oQGhUp2EacL/+392QJWaCjfeePiqwSUkwC9/KfuyLH4/3HEHfPHFgb/P7NlSRc56/RtvdM8/tpZ16+Rr4YYKwtg13KeMD7R9TfduaMAAyMmT9hNhDKpIZln5CMz13agOvep2gkEpAlZbXE3tinx20o90KjCAgXlJTDw+Hr9fJuUseXnuCbuO5sQTZRLS+rOYng6lNfHkDzwNc0Qe2xjI77id3fSRJ3z5pWwWu+ceTp0Zbgwmv/5aqkt2Vn6/ZNg8/LCsnL73nrtSptcrQb2113/PHkiss1fJZrBANvbvqwR5Z3bppY0zB/HUcXz1fKiVD0rr10t/QXCnjW7ZYjevB/ndstKmq6oOLhuqq2jXgNAwDK9hGCsNw5gbOc8xDOMTwzA2GobxP8MwYiPX4yLnGyOPD3K8xy2R6wWGYXSB7ppKHZiXXrL3fXg8sqfekSlxWHi9cM017tTP+nq4916ZaW5NeTk8/risMn79texLtG7Oq1fLfbu7svYP7t5jB38+gky/uFcrr1AHwzBgwiQfibFSMaOaRL6hFxuf0v4nqut6+23YvRtYtowNoUGRYNCEmBguvnEAHo8U97ImFD0e2W7Q0eegZs+Gm2+WY49H9geWlHqYV3gM72VcxKveC5jBAn7Iv7iLG3m0/nJe+cXH5M/6JT1jSqmslC1lb73VuSYia2tl//7jj8vi59tvNw9qk5IkyPnRj9zVRSsrwRdJF02jQtJFu+L+QUufPnDKKY2np/CuFC6IsFaIR49210fQaqNuvv0/pU3dAKwFrFqGfwH+bprm84Zh/Av4PvBQ5GuZaZpDDcO4JPK8iw3DyAMuAUYBRwALDMPINU0z1M4/h1LtqqQE/vEP+3zYMGkY3B4MA847T4rXPPaYbFo3TXjiCZlhu/hi+0PFrl2SxvL663bRmw8+kFnpadPg/ffl2ty5MHCgpKZ2JxUVMrNrlpVTWJ+GB6kAkEkpgy6ZFOXRdR3Tp8PT93soL4EQMQRIYNmbxQz7Y7RHplTbW7UqsiequprQii8oZjI+ZEIkcUAPzjgv9v+zd97xUZVZH//eKZlk0nsBkpDQQXoXpSPoKlZ0UbGtrmVddXd1d33fXVdd17K6vupr3dXXCtjQdW10QUGa9JIQCC0kJCG9TcrMff84M3NnIDQNmZTn+/nkw9yZO5MTIPe55zm/8zvs2wfffGO8Z8oUmTfYHrjiCqnavPCCJIUJCbImVlXZaIxIobomko8briCeIkJxZ7ybwLXlIIWRwbhsdiwWqaCmpclalp4um6rJyQH90fxoaBB/gG3bJCFxNnNnGxwsld1zzhHDUJNJztu0SV6vrISmugaodwBud1GL5pcwdUhuukmGTwJjWU1oyUFqUrqAxcKiRbKxbbHIHOZVq+Qt69ZJ4dRDjx4ycgvk7993rmVnoNUqhJqmdQUuAv7lPtaAScBH7lPeAi51P57pPsb9+mT3+TOB+bqu1+u6vg/YA/gUgRWKjslf/mK4a9vtIhX1navjS02N6ON9XbRagvHjxc3UV6L6xRfw0kvSu/DHP0ol8YMP/K2+6+pkZ3r8eOMGpL5eel06w+BgXzzVwcodh2jC6hWM9oktxhwTGbC4OhqDB0NyWhAaOk5M1GBn1Y4ocDgCHZpC0aIUFooMH4DvVxPqrKAe90XaauXimxMICYG33zYqZOHhssnXnrjhBpm1C7IBGRvr3lDUTBAWjh4aTpGWRCXG7CSTq4nwsgNQXkZTo4u9e0Wh8u23Yqxz9dWBX4eamsQN8/33pWfyo49knfBNBq1WSQBnz5b5wJddJsmLR3WTnW2YyxQUQGij4aIzlcWy+EZ28PXlssu8NxhBNDLBtQyOSpVw/36j4ucrG927VzYWPKSnG5vbhw51vvuT1pSM/g/wAOD5K44FynVdd0/CIQ/o4n7cBTgE4H69wn2+9/lm3qNQdEgWLzZctTVNlB++g989NDTIInfxxXDXXbLzNWeOSE48GvrToqhINCpz5kgm56OzGThQZKCetaW4WOSjM2bI5tyJLqAffyyynSuvNJzjDhyA7747g7g6AN7+wd3lOH36B0cOUyKHliQyEnoPsWPX6tHRqCGUTc4B1CxaFejQFIoWo75eql6NjUBNNWk/fEIOPrq3pCSuvs7K6tX+ErirrvJ3XGwv3HEHPPusFIMuu0wcsUeNkk1Ss90GkZGUWBIpJQbPqhVKDRZHNRQX46yr95sxV1srI5Xuussttz0DamqMgfA/hupq+PRTSQLnzZN5gr6zes1mMca56iqRzM6aJQPWLc3o+n74wXhcVgbWqjKgk8hFPVitcPfd3sNpLJJ7GV1uSjzmMuec47+p7es2arMZI0saGvxUp52CVpGMapr2M6BI1/UfNE2b0Arf7zbgNoBUX+98haKdUV0tC5YnJ0tNhV/9yv8cl0v6C15++fhG6J075evFF2X3a+JE+erb95jeEV0X67JXXjGyN5AM8xe/kA9wW9GlpIhZ2aOP+l8wCwrkYmqxyO5taqohY6mogK++gksvlUT13/+W55ctk53OlJQW+etq0zQ0QG4u4HRy+IgJfBLCqXPakG6pgzBunMai+To1NdBAELXYWf/uD0y4ZHKgQ1MofjK6LlJ8T4UjdP0KBjeu5RXcZTSrlTEXxRIUJEPoPaSlScGoPaJpYnLma3QGkkw99xzU1Jipr4+gIesoPbJWM871DRVEsYu+rHaNwVEaQr2Wgi0mkfpGox6yfr1UC+++WzYtTScplRw4IMoYj0vlpElSbQ0PP/2fIzsbPvnk+IRS06B7d9l47dfPPYvxFOi6kRBWVoKryQnVMjR4Essw4+qY4yaa49ZbxYWotpaRrCOisYTKsjKIiWXRItlQsFrFbXT1annLunUwfbrxEV27yr0MSJUwsRO19rdWD+G5wCWapl0IBCM9hM8BUZqmWdxVwK6Axyv2MNANyNM0zQJEAiU+z3vwfY8XXddfA14DGD58eDtqI1Yo/Hn8cSPpCg4WyWZUlBzrulzUXnjh9Bqg9++XauH//Z/0YEyYABOHVzF065uYX3vZGG54LP/6F+TkUPPWRyxYGce8ebLxFhIiMXlUeI2N4ob2hz+IvKe0VHZwPVXDuXNh5kwxgcvOlmqZ0ykSGc+FuiOzd69bBpR3iFJXpDcdDDU5GDKrhQZJKryMGAFxCSaK94ELE7XYWb2ikQmBDkyhaAFWrzaGkms11Vy9/ne8zSzjhKQkJl9g4bHHJFHwMGfOyROe9siAAaJcefppKC/XsA/N5GjGHLI3wL1H/kAIdbzBzewnHUrgHHsFey/7HR+vSvJ+Rl0dPPWUmKX9+c/+/ZW6Ln/Xn38uyacvS5ZIT9rMmXDBBc1X8Dw0NsLChcePPEhNlcrVgAEnbgU5Efv3G5sCBQVgb6ryvjaFJbL76zt1vSMTHQ033ggvvYSVJiaxjE8LkyAmhrw8jV27JNEeMcJICHNypKrq8TPo1s2oGh461LZdeFuaVrks6Lr+R13Xu+q6no6YwizTdf1aYDlwpfu0GwB33YDP3Me4X1+m67rufv4atwtpd6AncIxPkELRMVi3ThYgD5MmSRIHsjjdfjvcc8/xyaDFIjuWkyadeCRF0b4aPnhqP3dMyWHaff14eNdVrOQ86jl+IFUxcTy/YiAX9tnLc0/UeXsTzWapCIaGyliJYcOkcrh2rSR7SUkSg4fcXPmZNE0qhR7JUnFxx5oTdSI8ctGmnH2UEuN9PjO+ArO1g92htQEyMsRu30ojLszSR1jUA/1gO/afVyiQKpXvNXPK4beIqj/CQtzG61Yrsb3iWLTIfyj7RRfJvLqOSFoaPPSQj9okKopdE+/i0VGfU0osM/hKXFeB7YciuPnlEbw87j1Skv1rBhs3wjXXSE9fY6OYjPzpTyLtPDYZ9FBXB/PnwwMPyBrXnJtpYaEIcHyTwYQEuPNOKWyNHn3mySD4y0VLSiCoRsZNdCq5qC/33ON9OI1FoguullKsRzY6cKDIQz34yka7+ZSc8vLOZqBtj9Z2GT2W3wPzNU37K7AJeN39/OvAO5qm7QFKkSQSXdd3aJr2AbATaALuUg6jio5IQ4Msbp7qWlKSGMnk5Yl680QjH6ZPlwXGsyjW18uCtnw5rFzupPJAqWRgPtPhK4jkP1zMf7iYEOoYw/dMTNlNGgf4MH8sXzGDJizgALJ2yZ12ZBSaJgnfdddJgvrFF8b3fOYZMQCYPds/1rlzpecjNFR6QN59VxbPFStkrmJUlNzAeL4qKiTBvfhi6NKOu4V1XeYhAZTsLqHR59I7dGgb931vp4SEwKDhQXy/qJKKRiv1BJNHF/a9t5qMP14d6PAUih9FdbUkK561oU9SOec9fT9vcjUN7g29+rgUnJipMopFXHSRyCI7MnFxkrz9z/+4DbzMZvJ6TuLhLpu5f82VDM7fzCaGoKPxVeNkbnjuOuZPfp//nf4uH3xtmNHU1srn/PWv4uh9bL9lVJRUA0tKpO3B829RXCyKnZ49Ze3r0UOu/WvWSALf1GR8xsiRsl7/VGWMZxRVRQW4nDpapbjPeeWinS0h7NVLJLKff84wfiCGUkoLCyEsjMWL4de/lu6XIUMMR9H16w0T1thYWTvq6kQJ5XCcvVnPbY1WTwh1Xf8G+Mb9OJdmXEJ1XXcAV53g/Y8Bj529CBWKwPPss8bulNUqydUbb0h7X3NW1CNHyoWuTx//5202GB+3g/Elr+Dc9C4bq3qwnIl8wwSKSDjuc+qiUliWcDvLwsNl9arM9fYjAOByEbRnJz+b7uS6V8aRmibJzMCBshh7nOxcLlGaXnKJyGE88tDPPxcpjsUiC9iWLbLb7XJJ4ti7d/OSm7174ckn26/U6fBhtwtcVRVlpS50jAHBE2Z3ggbKADF6NMyLgIoSj2w0lNWfFJLxx0BHplCcOS6XuDh7Er3oaLg8+3Fcjno+cout6i2hFLvi6B9nvG/mTBnd0NZnDrYEYWHixPnKK8acuTJ7Vx6dupJfHPkr2xc20oiVvWTyCZdx7tJVPLA5g8kPfsyflownO9vdi+dO8goLJcdIT5dNyQsvhHPPNdapqVOlOujplweRIT78sCQdwcFGTxqIAc5llx2/Vv8YjhyRtcXz2K7Vem8QprJYpDujO+E4o3vvhc8/x4yLySzlw/IYaKjnyBEb27bJ/cqIEUZCmJ0tG9BRUfI70rWrMdfx8OHOo7gNdIVQoVAcw86dssCALEoRETLaoa7u+HN795ZE8DjXUc9ch1deEY9twAyMYAMj2MD9/J1d9GU5E1kechH7owdLRmf1kYxarNCrJxw8CEePEkEls/iAWXxAzNdl8Jcb5fPd2ospU2T9efFFqXCC2KFXVPib3cybB/37y+OwMEl46+tFnpOXJ9KfY29cjhyR5HHIkB/1VxpwNm50P8jN5SjGnZrZojHx0g5uBx5AevWC7j0tHCrRcWKWPsItdq5rajp5s49C0QZZuhT27ZPHFgv8fHIRIWNeYBnjKSSRemwcsaXTNVnzVp4uv1wSkM6E1Srma++9Jz17AHXOIF5KeoRhN22kaO5SqHewiSFsYggJJUXU/vYL4noGURg+kvJyY8PO6ZS/87g4Ud+kpfl/r5QU+M1vZJzF3LmyXIIkle+8I2t4ZqZci/r0kcT8TAxomsPhkITFd65kURHE1olcNIpyhvEDXDi7c17nJk2Spsxt25jKYj7kKvkL6tqNRYskIRw0SCqFDQ2yib1hg9zDgMhGPQnhwYOdJyFsp/vtCkXHxOWS5vjGRkmk8vNFlnJsMpiSInKWd945JhlsaJAXunaFa6/1JoPHomka/Wakc9dn0/mochofrUrhrnuD6Nfv2BNNpIxJ4/4bivlCu5jbeZUYxNKaN9+EyZP9Bh4OHQoPPui/4CUl+Usu8vIME1OzWSqIngSwslIW4O7dJfmLjTXe59H/tzeqqnwSwr17KcSwLesSW/+j+kYUp0dqKqSdE0EI9bgwUYeNDQ3nULti/anfrFC0IbKyxAjaw89+BslvPwl1dcznGhzYOKKl4LIFk54u58ya1fmSQQ+aJu0Ms2cbzzmdsKZ+KM5f3AapqZQTxQaG809u5V2uY1eOmcQ93zGyTwV2u1TzkpPlKy8Pfv5zSTKbG6/Uv784b994o5iU5OaKyMblkj7/7GxJNOz2M/9ZqqtlDZk3T1pJfvlLMcDxVEArKiSp0So6uVzUg6ZJlRAYzGbiKYbio+BysmSJ/JvYbDKv1oPqI1QVQoWiTfHPf8LmzZIENjZKMuXb/BwZCbfcItbYQcf6v6xfL9rSE3W+A8THywfcdptkXW7S02W20003STVvxQpZxIYPh8mTNczmGTD7E7nDcC86gNirjRwppcCBAwHZTXvoIfjHPyShNZmk7XD3btmsNJvl5/jZz0SiERUlVdEffpCfKThY5kJFR0s++9pr8q22bRPpTfJpTmjQdZF77NghefKUKadn493SfP+9W8XjctF130qOcq73tYFDzCd+o+InY7HA8BEmvnrPRW0tuDBTQSQb3vqO8yePCXR4CsVpUVYmgg8PQ4fCsC5H4OWXyaEHqxnLERLRQ0KJjdUIC5Pk5cILAxdzW2HGDFlLXn1VEjSTCQ5VRBJzyfVs/+IQpfvKvTMLHQRzuCaIzO+X8fg1QRwaMIMFn5i8JjENDdLOsXSprHHHVguLi8Ws+5xzZK3JyZFqZWqqJIJvvikbmz//uSyXJ5LwlpcbTtzZ2eJ2eTIKCiDcVg/1Yvk9hSVy8bvggh/999bumT0b/vhHTEVFTGUxc12z4ehRjpoS2bxZfodGjDCS6l27ZEM6IsLfr+DQIXey3Qnk1iohVCjaCA6HFPeOHpVju92wQrbZpOA3Z04zTmR1dbI6PfPMiSfDjx8vtqSXX95MJulPYqLkfccxbZqI7i++2N/a9MABGDtWtk5nzvR+xt/+JqMnQkNlIb3oIpGGglxkZ8ww1Cz9+8simJcn53z0keSto0aJDMczTHjJErj++pOGT1ERbN0qX2VlxvMVFbJj3Jo4HMaCQ34+5roqnJ7LrqZx7iWxJ3yvomXo0we6dXFRnIMhG13u4PxAB6ZQnAZNTVIZ8oz3SUpyj5X7/VNQV8cL/EqSQc0MwTbS0uQa6THJUEgbXWSkmM14/NRKy010PTeNpJ6hlHy7i4q6ILqQRwa5hOgOsueBOaOUn193MUvWR/kKYdi6VZK622+XNUXTxD104UL597JY5Lpz6aWSZHz/veE8eviwjMcYMEBylq5dZQM4K8tIAI8cOb2fq1s3aRs5fBj0I2In65WLnj9BfujOSnCwzLN6+GFJCJkNhUWQkMDChRpDh0qF0GqVzXePbHTSJEnm4+Mlwa+rk3+fuLhTf8v2jpKMKhRthKeeMpJBk0kqYWazSH4+/VT6F45LBr/7TsTwf//78clgZKQ0GO7YIc0G11xzymTwlPTpIyvf5GOGe9fUSKBPPOFd+cxmuaja7VIFvOgi4/SiInE+9WAywVVXGeEdPCg/WlAQTJxonLdypXFj5EtZmbz2v/8rLm8rVvgngyALbWvLP9atM5Lg9JIf2EF/72smq5kJk1WF8GyTmQkZA8Ox0oQLM3WE8F1eGnpRcaBDUyhOyddfG6YkNpskItYSqQ6uZjTvcw06JgixExKi8cADKhlsjr59Zb5gTIz/8/G947j3neEsve5NHuIRMsn1vubM3U/Z3//FoJDd9Owp13LfauHzz8tG7TPPiMu2x0XUbpdk79prJSd55BH5/r5s3w7/9V8yJeG++6SCuWLFiZNBk0muZRdeKD2LL78sm64jR7rnTFZIQtjp5aK+3HEHBAUxgO0kUwAN9VBezrJlotoJDpbbJw/ezVs6p2xUJYQKRRtA10VO4sFuF7XH++/LohEff8wbqqsl2Tv/fKP72ZcbbpAmhuee4/jGwJ9ITAx89ZVkqMf+EH/8o5Qxm8narrnG/3jevOM/dsYM43jpUpGcTppkyDUcDkkUQXrzvv9eFtJ//EOkOL7mNSA5cWqqcXyicR1ng8ZGic/DeQfeZSNDvcfhkRo9erRePJ2V5GRI7xuC3dKACw0XJnLJ4OC8VYEOTaE4KQ0N/nPmrrjCndA89RSbHH34A0/KSCBNg2Ab118vrpeK5unSBf7yF0mi+vWTzol//AMuvCKEsHdeZtCHf+L2qPe5hdfpyy6ZW1hXh2XB+/TY/QVjRjTS1CT7n7ou69G334qMdNMmSTIyM8XQxjcBTE+XpfG++6TC60HXj9+49OCpMs6cKa6pr74qsf/859Jf79kcXrIEcDZBlchopuBe5FRCKFKl2bPRcLuuAhQWUVZmjOsYMcI4fdcuw8HXNyE8lWS3o6AkowpFG+CTT/x3BkeOFFlJs7r1JUtkku3+/ce/1rWrNN35ZlZnA6tV7ET795fE1HcWxrvviqT0k0/8Vr+MDBlc70mStm6VXdIBA4y3Dhtm9E64XCIdveMOeX7DBtmBfecdqSDu39/8AODQUPnMgQPlol5bK4t+Q4OMr9i/H6/pwtlk82ZD6poUXk3G1gXs5Vnv6737B7XbMRrtCU2T/w+J0Y1UFHtko6Gs+qiAtHtO/X6FIlDs3WtUnbp3dycZBQVseHEtL3APubj7wENCSE7W+MMfAhZquyE6Gu6++wQvXnkl2qhRpM+ZQ/o38yghhu8Zw0aG0rhxI4kHDnLhJZex8XASO3b4L3sbN4q88Nprm3cR1TTpWxs4UGYXfvKJsT6AVH979pQksHdvSSxPNaNQ191ma5WVgG7IRfv06TzWmKfi3nvhzTeZxiLeZo6M0aqtZdEiO6NGSXJtsRgGQD/8ABMmyK2Uh86SEKrbEYWiDfDkk0ZyExQkkpDjksGKCkkEp05tPhn85S9FHnq2k0Ff7rxTJu56mh09rFkjW2++w5nwd3wD6Q/0RdOk78IzCLi4WIqRaWli/b1jhyy869b5J4PBwbLY3ngjPPCA9Nh43EtDQ/1HMS1Z0nwi2ZK4XP4Gr+fp37KJIdThdrUxmxk1vpNMu20DZGZCjz4WNHRc7j7CVRtsJ+65VSjaAFlZxmNPxWntffN5oeE2CkimDjtoGvHdbMya1blbxlqMbt1kkXj8cWItlfyML7ifvzONRUSU5GJ56w1GOr/nogt177JntYqKp6JCjNmef95oFTgWi0UkvU8/LX3y114rlb9XX5VK4MyZks+dzsD6rCxR0VCu5KInZNAgmDiR3mTTDXdmV1jIsmWi4gkJ8frhAYZsNCHBaGEpLDRGaXVkVEKoUASY9evFZdND9+7+fXOATHTv31+mvR9LRoZsOb7yilhktTaTJklfYe/e/s/n5cG4caJ7dTN6tJ+5KUuW+E2tACSB87VKX79eqoMul5HI5ebKgulpzP/97+U9mZnND68fN85waz1wQHbezyY7dhhSoOhoGLDzA5ZgaLlMQRbGjTu7MSgMMjOh26AYQnDgxEQTZlY7BuNYtzXQoSkUzeJyiVrCQ58+sPqzo7z4YQIuTBwgHQ2dhAQICzMdJ8lX/ATMZvjDH2D1aujZkxAcnMd3/IZ/cJVrPilL3yZhyXtcOrmKSy8VZaIngXO54O23Rdq5efOJv0VoqFSipk+X65P5DNvJGxulyoiue52/lVz0BNx3HxowjUVyXFZKVWkDa9fK4ciRxqlgtL07AAAgAElEQVQ7d0rl1mQy3EZdLnfi3cFRCaFCEWCeeMKQBZlMonDwJjUlJWIZd/HFYiXmi2fWztatzWSQrUzPnlIVPNbmurZWmgcvuwzy8tA0WSg9uFzwwQfHf1zv3v7afk2TRVPTJOcNCpLd1auvlp3zU83eDQmBc41pDyxdevaqhLruPy9snGUNpg/msxZjYGRwmMVvV1JxdomOhm7pZqLtDeho6GhUEMkPb6qEUNE2OXxYetVAqhXbt8Mrf9iH7nJRTRglxJJgKSW0SxSDB8vgc0ULM2KESFJuuQUAMy4Gso3beYU79j3A3e+N5uWx7/DeOy769PF/68GDIuh56inD2fSnouuySfD00yIEWrAAqKkGp9OQi8bESG+GwuCii6BHDyMh1HUoLmaR+3DIECMhdzqNucGdrY9QJYQKRQA5eNDfbTMmRpIcQBro+vWTnrxj6d1b3FWefdbQVwaaqCipZN7TTGPWp59K5vb881x4gdOvkLlggfReHMv06SIV1TSpKt5+u6zPGRnGjMIzYexYYw5hXp7/7ntLsmeP0Q8aeng3Q+6fgu5wkIX7jkHTSOoWRELC2fn+iubp0QO6p8rOi1c2uqiF7tQUihbGVy7qcMA/n69FzxYDsUN0I4FC7ClRoJmMNUPR8oSFiTLno4+8rREakEIByWU7Yc4cet10Lm/9aj133+1v5K3rsuF59dV4q1E/htJSmer085+LxHT+fK9KFMqlOjiVxSIX9Z3npBBMJrjnHjLJJcPjIltczDfLnDQ0iInfOecYp3tko53NaVQlhApFAHnqKUObrmkifwypLJTJ81dddbye0iNl2bxZMpy2hsUiw55ee+34JojqarjnHoInjOaKkcZ2W2UlfPnl8R/lqQI+/DDcfLNU+CZNMl5fseLMdP02G5x3nnF8tqqE3urgnj2MffdOrA01HKQbR3HPHLTbGTpcXXpbm8xM6DEsEgtNODHRSBDL96W5DRkUiraFJyE8cMA9x277DnA5AR0XGnarE+LiSEgIvECkU3DFFbBli+g8j2XNGsxjR3HDyluY93yx3ygDkLEhd90l4ydO93LT0CBr1L33yubos8/6j//1UlHOUDbyC9ztJEou2jw33giRkUaVsKmJ2rxSVrnNpn1lo9u3S1XX11jm4MGz7z0QaNRdiUIRIKqqpHDmcSoLDobf9P5CqoIff3z8GwYOlG3Gxx+Xk9syt94qjX+jRh3/2oYNXPX3kZgPH3Tf4MgIiub8PTTN31zHd/xhdbX/WIfTYdQoo6B65Ij0+p0OxcUiI1m9Wiq6X30l/Rvz58Nbb4khwHPPwYMPSv/Iso9LWfZ+EXMbr+AX/JO7eFFmhdntmEKClaInAGRkQExaBOHmOlyY0YE99ODQB2f4n0ihOMuUlcleYEOD9DTZtVrYnUMQDQxiCyZ0SE4CzcQVV6iCUKvhMZx54onjZ/rqOrzxBmmTe/DPPs9w/31NXkWKh88+g1mzZDOzOXRd1qQnn5Qk8Pe/FyFQc2tjXBzMmVHMB45LeI1fEkup/Ec4tm1DIYSFwa23GgkhQGERixdJltecbDQszPDLq67u+HuHKiFUKALE88/7X2DGn1NC4m0zRR/ii9UqZbL162X+Qnth4EBYtQpeeuk4s5sE1xGmHHlHVr+KcvbvlxbEU5GU5D9IdvHiM9u1CwqC8eON42XLTm00uW0b3H+/7NC+/DK88Ya4oy5YIMOIlyyRRXvDBqkOlh6opHLXYYL1WmoIox4b5USBPRSCQwgORvUPBgC7XUwCusXVoQM6Jmqxs3r+wUCHplD44akOFhbKBpa2cwdmVwO/4++s5lywBkFcHFarvwGXohUwmyVT27lTLEGPpbIS0wO/4+pHB/D+L5f5VZ4Ajh6F3/5WNg89xmNFRbKxeNVVMkL4ww+bTz6CgsSh9PnnZe35dcy7ZLDPOOG886R1Q9E8d99NqjmfXuyWY0cdK/9TTl2dJH/9+xunNicb7eh9hCohVCgCgGeenqc6GGTV+fXh3/sPNgIYPlwG4/z5z8fvSLYHzGYZJLhrl6x2PsxmrmyB79kDuXuZ96/qE3yIP76Dlw8cgJycMwtpxAgjPy0uloTvRNTUiPr12H+W5nA4oCKvAg4cQMNFPMUAVBDJwejBEByMpsmO47EGBIrWITMTeve3oAFOTDiwsXxtSMfXAinaFZ6EMD8fIoPqYHcO/dlBGTEcJNVbHZw61T2oXtH6ZGaKxGfhQv8p9B6ys0m5fjIvHvgZf7ol3ztI3sOiRdIZcuedMibphReanyYFsoH44IPyrf72Nxg7Rse8c5s0Fvqi5KInJzUVrriCC1jofcpx6KjXj8A3ed+2Te7TOtM8QpUQKhQB4N13ZffXU53qGVnE+L1v+J/0+OOiifTtdm6vpKRId/1//iMXZaA/OxmI2+WxrIzv38oh95F3T5l9DRwoNt8eFi8+s1AsFv82kGXLTvwt33vPp3kfSeaSkmSwfZ8+Uq0cORLOPx+S6/bS6+Ay+rGTy/mEG3mLCCrYmzyOiJRwUlLkR+/fX6pVitYnMxO6DEkkBJGNgsaq6kHUbz/DXQWF4izhcEhi0NQkG1ZhB6V3cDgbeJ+rvdVBQI2aaAtMmya9hc8+2+wgSO3LL5h5TzofnvMI54/2b3qvqJBKVHMqlcRE6Z1fsEBUKZeff5Twz+dJL1yXLrIQ/vCD/5tUQnhq7r2XqfjcNFRWsHh+CeCv3Glqkt9DVSFUKBRnDV0X6aFn1ITF7OKGo89IX4iH2bPFPKajNYf87Gcitfnd78BsliqhB5eT+Q/tFPeYrSceB6BpMGWKcbx+vSG9OV2GDjWUNaWlzc+L2rzZ38l0wgSR6vz97/Doo/Bf/yU/xt13w6zgz4j+ci799O30Iptz2Mr/cC9r064mJCWG4GAxtbFYZHCxIjCkpYEtzEpiaBVO929cOZFsfH1ToENTKABRPLhcsmFot9Rj3rMbDZ1EjrCasd7q4IAB0m6uaANYreL+kpMj/fO+je8AjY3E/+9DPPNRGn+buJioqOYVCcHBcOGF0mXxnwWN3DlgJamv/bfIWhIS5L7grbfEpeZY+vYVK2XFyRkzhpRRqfTHMBBY9WU5NTWy4Rsba5yakwPJycZtWH6+cd/WEVEJoULRyixbJhcaT1UqyVTM5Q6f0RLh4ZJ1dFRCQ+Xn27CBicOrSaTQ+9Ln/IyKtbskY/v9741BXMdw/vmGgtbp9B/dcTqYzf6OpcuX+1/oa2pkV9ZDbKysxc3y0UesuvGfuHSoIpz1jOBxHuRo2nCIi/ee1q+frOXTpp1ZrIqWw2qVKm2PNM/4CRN1hPDtV1UBjkyhEDxy0YICiKjMA5eT3mTzNTPQrTZvdVCNmmiDxMdLj8GGDf6Db91ohUeY9vQ0PiyfxgXnGJPOhw6VrpBFr+7jkeSXGfm3SzHFx0rD+2OPyeedTNYeFCRaUsXpcd99frLRhqIKVvxHmjZ79jRO27NH7hVSUuTY6TRGSnVEVEKoULQyTz8tO8C6DiacTKn6mBR8dvwefti4AnVkBg/GvGYVV18XJHOCgAaCWMDlcuV96ikYMAC+/vq4t9rtMG6ccbxsWfM7d9XVstv65z9LE361T5vioEHeeysqKvzVN++95191vOUWjnOMA+CDD6i9+ibWuoaxmcF8xBXkkwJp6d4Pt9vhgQfgzTebbzVRtC6ZmdBrRJR7/IQZHRMLczKbH4apULQiTifs3i3rw5EjEFF2AIABbOPfzBQdoWYiJsZfJaFoYwwdKvKS994TeecxRP+whMfe7MJ/Mu5h4d2f81rQr7jktz2xD8iQpsJ//1tsyE+G3S4D159/XnaYL730LP0wHZDLL2dK8k7jWHex6AUZTOybEObkyH1aZ5GNqoRQoWhFdu6UzT6pDupENR3lKj7EKzAZMAB+9avABdjamM1c+uJUQob192o4P2AWjbg1Gvv3y6DdsWPhmWcgN9f7Vl9zGU8vhi/r18su+htvyJzDhx6S6txvfysN/Q6Hf5Xwm2+gsVHaQXylouPHn6CNc/58mD2bt12z+YBZbGAYVpoISu/iTQanTJEJIrNmeXNeRYDJzISQrrHEmCpxuZfAvXo6+Z/8hMnRCkULcPCgXJeKiyHI7CToqGwUlhJDDaEQJT1qV1xx/JhXRRvDM1g4K0v6C2y2405J/vB5Ym+8GF588QRDBo9h8GBRzixbJr0On38uPQvuvnzFaWK1knDvbAZj9IqsWW+msqTRLyEsK5O/5s5iLKNuURSKVuSJJyQZdDpBczYxrGkNQ3wuSrz4Yqdb6SMi4OIrbZDZAzJ7UGztwlIm+5/0/ffSsJeZKQODHn2UrhU76NfXkNF4zGUcDlGk3nGH9OH40tAgM6AefFASynfflWSyqUmqhytXwuuvG+fHxJxAKjp3LuWz7+TPzj/xKH+SsRJAWNcoiI0jJUU2bp94QlREirZDSgoEh2ikJ9TgcvcR1hLKpn+r8ROKwOLrLhrRVAq6i3T28RUXSkJhC8ZshssvD2ycijMgLAz++lfZDT7TGSEJCXDddTLctqAANm2SRWXixGYTTMUZcOutTAsyBkI2NbpY/thqUlP9Dd1zclSFUKFQtDBFRTKzzukE3eUitLGc6SwkGreN5fXXS3NcJ8TrlhcVBQP6M7fvo+jaCS5PmzeLBnTAAKa+eqUskiVH2bNH56uvJIF7//1Tf8/6eli6VL7ee08qhA8/LP9OHm655XhHUP2dd/nsug+4XP+ID5jlrTIFxUZgT4nm5pvFUHXs2DP+a1C0AiaTDKnv1Ufq8k7MODGzal0HM3BStCt0XRJCl8vdP1iVB0AU5eSSARFSHZw8WW0ytUsyMsQydPHiE7sBWa3iXvb44zIZvaBA5lNdf73YWytajuhoplyXhAnD4nXRu0WYTTrduxun5eTIpnV4uByXl/u3nnQkVEKoULQSTz8tSYjTCVpjIwPZwgjWy4sREdIz10lJTfXpCTSZ2WkfwbZ520+ZIA85+CmxO1bg+moh2e9v5o6rSzi4owp8HFtHjBAzl9/8RhS5xxIcLOqeXbtEZrpwoZicduly/Lqd+/QCbpvj4BH9v6kggmrcw6WiohkxIYx586QFJDj4x/9dKM4+mZmQ2DeWIBq8Cf36Q0nN+78rFK1AcbHI00pKJDkMKZL+wd30khMiZXiqGjXRzpkyRTY1n3sOeveWReZXv4LPPpP/AMuXi8P4kCGqz+AsE/P7WxmGYR6wvjiNsq/XHmcso2mdo0qotkQVilagvh4+/FAWemejE5urlqFsNKyPH3200+8Azp4N331nHL+3sS8DV6yQxppPP5Xd1W+/9btpN+OiL7v4NzOpbIxAa9SJrsrBbDFhiwnj1zdVcdVD/TCF2OjfX75Hfr5UahcuhOxsudiHhsLRo/KZ9fVyzqJFkiBOnixr+PoX1vD2u11wIv0adYTgxExwXARTLg3h1VfV+t1eyMgALSaGaO0gRXoc0MgeZ3cc2/cQPLBXoMNTdEJ83UUjg2rRqquIopy1jJKLVHg4ffp0jLG0nR6rFX79a/lSBI5evZg69EPWb5RDFyaWPbKCni+O9p5y4IC0mnTrJqpfgLy8jmkQpxJChaIVeOklqKwEp1OHhkZ6k80QNmOnTqah3nlnoEMMOCNGSOVm7145Xr5cbo6SU1ONxbOoSHZSFyzAtXgpbzf9nH9xC1WInkNHo4pwxjWt4pGiP5P65CF4OUIyuuhoCA4mxWZjTnAwc3rbOJgaz+L9PXl59UBoigZdQwfsWgOmmiYqak0seFdjwSs1cMi4XOpANeH06mtl5EVhzJ6tksH2RGwsREZpJIbXUlip4UKjjmB2/XsHQ1RCqAgA2dmyYVhQAMkO8bbXkZtUwsLAZGbWrONH3CkUih/PpD+P48lLnTgxA7BwTRRPW/YD6YAouvbtUxVChULRArhcxky7JkcjVhoYwQYGsUWefPHFjjeA/kfgMWV79FE5drmkF++ee3xOSkiAX/yCg9N+wV8ebGDr6iooKyO0vIZqwtBwkc5+XuNWgnDPoaislOpiM6QCIziHb7ifGBLYQX+cmGkqduEqLvTrL/AljhKGTI4leUw8ERGS0yvaD5ommw+pKU1srZSb7kaC2LCsgiF/CnR0is5GTY3cZJaXi0IhrEQMjg6QJidERBIc7O+srFAofjpRl5zPqNi5rC7pDcAmBlP/8hskJDzi9RPIyYELLpBNX5cLDh+WPzvaJnAH+3EUirbHggUiQXQ1OXE1NNGNgyRxhN5kww03+A/U6+RMn+6dPgHAJ59Aba1xrOsivZ09G7ZmBUFMLGT2IKJfV8Ljgzm360GSraVsYfBpfb9aQnidWwBIpIi+ZHEDbzGTTxnD96SQ73d+EA3cob3KzFsTSR4jnefnnivDaxXti8xMSO8Tgobu3R1evS0iwFEpOiOe6mB+PkSEuTAVFWChSWaaAkRGMGHCCWahKhSKH4+mMXV2gvdQR2PpW3n07ObwPpeTIypfT1dPQ4O/+VxHQSWECsVZ5vnn5U9nbT1mnIxiLf3ZgSUyDJ58MrDBtTFsNrjySuO4ulpGLYGMkPjVr+SvzGFcqzGZ4Jd3mJlzeygRE4bBVVey+Mb34LbbpKJ4EuYym1JivMe/4+8E0UgspSRSyHvM5m3mcBP/x3W8yweWa5n0yiwKEiXhDAmB4cNb7MdXtCIZGRCcnkQYxviJzSVd0R31gQ5N0cnwlYtGOEuhqQkdZD6txQohIUyfHuAgFYoOyoQ/nYfVR6S1qG4cPXO+9B7v2SO/nx19HqHSqSkUZ5G1a2HHDtAbGnA26SRQTAr5MhD1r3+FxMRAh9jmuPJKePNNmQ0IMv89NFRmCx5r99ytm4yKGDgQVq+Gl18GTGZ2NfXi0COv0u2ll+QfISdHtFj19ZJN1tez7WAkK1aNdQ+GdHFe7E6mp0VRnBPG7opEGp1NfBt8Gxfav6GfY7kMJXz4X7yVZ8xIHD3af2aRov0QFgbx3cOIs+RT1RSGjkYx8RQt30HijKGBDk/RSWhqkstTVZVIR9ObZNyEVy4aGUFkpMbo0Sf5EIVC8aMJjw9mzPBGVq6RGdBbGcgdnz4KEy8FzURlpbgAd+sG69bJew4dEt+DjoRKCBWKs8gTTwDo6DV1gIWRrCOSStIHRcHttwc4urZJXBxMmwZfujfoDh6Ehx46/rxZs+Duuw0Z1ciRMHeuDJoHcRK96SazDAQ8ZihgbS3864+A+74/Ohque2I02G9mcj7sflmeX2eew7n3QaSMACM/H/Z8I4+tVtRNWjsnLQ1Soh3sK5Y+wnpsbP38IFNVQqhoJXJzobFRri12O1h259GIlUoipEIYEcnUqarNXKE4m0z7dR9Wrs2VUiCwMz+S4OI8HAniKp6TA336GOd3xAqhkowqFGeJ/fth1SrA4aBJ1winkh7sZSBb0V5+Sa3wJ2H27BO/lpAgPjwPPODfU2OxwKRJxvF338mOe3PMny8jnzzcfLMxgD4lxbCUdjplYL2Hb781Hg8ffvzQekX7Ij0d0t1DiF2YcWHiu2/VLEJF6+EZN5GfD5HB9VBWhhMzXjPRiAglF1UozjLnz4zGFm/0kC9hKhmHjQU/J0dEQp41/+hRqKtr7SjPLiohVCjOEo8/LjMH9dpaXJgZzgZMuBh0TT8YMybQ4bVp+vSBoc0UaS68EN5/H0aNav59EycaBi8NDbBy5fHnbNsmIy08nHceDD7Gg2byZMPefeNGY2D0DvfYSJNJzGQU7Zu0NEjqHYmVRpzu5XDd3rgAR6XoLOi69A/W1IgZckRtPi40DuFuVrKHktTVolyMFYqzjN0O46YYO8y76EtM1ippM6H5AfV5ea0d5dlFJYQKxVmgshK++AKorcWFiWDq6M8OEkOqSHr+wUCH1y647TbD1jk6WnoIH3kEwsNP/J7oaH9d/5IlXgUIIDt6r79uHEdFwbXXHv85iYkwYIA8drkkgfzuO+OzBg0yZKSK9ktUFET1TiKacnRkHuHu2hQai8oCHZqiE1BQIGtFfr4YatmK8qghjEakl4nICK/dvUKhOLtMvbGL/CK6KXVGwIH9gLSuOBwd21hGXWYUirPAM89AXWUDNDTgxMIAthNEI4PuGAvx8YEOr10wfLiYyzz8MHz8sVT/TgffWV1FRbBli3E8b55U+jzcfLMY1jTHpElGlXDLFti0yXhNTQrpOKT1spEQXAVIH2ENoeR8tivAUSk6Ax65aEEBREboaEcKaMDqIxeNZMaMQEWnUHQuxp6rYY2P9h7vphfszQVkMzg3t2MPqFcJoULRwjidMPc9HWpq0QETToaxES0piYH/dXGgw2tX9OsHF10EEWcwHq5nT5ECeli8WP7cvt1fKjpuHAwZcuLPiYszpKS6Lv+uIP2Fp5hmoWhHpKdDt0SRBXkG1K//sjiwQSk6BVlZolooLYUIVznO+iYKSJYXzWYyB9rp0SOwMSoUnQW7HUZMNm42djCA2JJsqBSnupwc6NLF2CjOy/NXILV3VEKoULQwr78Opfl14HLixEwP9hBKDem3TCYyRk0wP9tomn+VcOtW2LcP/vUv47moKLjuulN/1sSJx8u1zjuvZeJUtA3S0iCjlwUNMZYB+O6H4MAGpejwVFZKZfDIETHECi3Lo4xoNNx3mOERTJ+hbtEUitZkwiURECZ9KS5MODF7q4Q5ORAcbIi8HA4xl+koqKuNQtHCvPpCvdd+SkNnFGth8BAGXZYR4Mg6D2PGyJw5D088cfpSUV+io2HYMOM4Pd1fMqJo/8THQ2yfBOzU4HLfjm/OT+hYW7+KNoevu2h4OGgF+TiwYfIkhO7+QYVC0Xqcfz4QF+s9LiIe9uWC7mLvXlkWOqqxjEoIFYoW5MsvYf/uBgB0IJkjxAbXYZk2kf79AxtbZyIoCMaPN45ra43H5557cqnosUyaBMnJIlu96KKWi1HRNtA0SBuRQBwyh8SFmYKmeEq3HQ5wZIqOTFaWGBgePQoRIY00FJdTRKL39UGjQ0hJCWCACkUnJC4OBoyN9EqDcsnAWeuAI4VUV0tFv6P2EaqEUKFoQZ797xKZdwCAJtXBSRPpPSSUYKVCa1WmTDG0/h4iI09PKupLWBjceSfcfz8kJbVcfIq2Q1qGmZTIagCcngH1C/YEOCpFR6WhQQwqCgvlOKK2gGLiseGQJ4KDmX5F2Ik/QKFQnDXGT7FClJjLuDBRTRjk7gVENtpRnUZVQqhQtBBb1tWzaYvxKxVDCV2TnSIXHRTAwDopcXHHzzK8+WZ/KalCAdJHmN61CZAbABcmVi3pYFOHFW2GPXvEpCo/X65H5iP51BLilYuaIiOYMiXAQSoUnZQJE/DKRjXAQTAcPASNjezZI20GnukUhYU+NYB2TqskhJqmBWuatk7TtC2apu3QNO1h9/OTNU3bqGnaZk3TvtM0rYf7eZumae9rmrZH07S1mqal+3zWH93PZ2uaphT2ijbD47/Yg+5yuY90BrMFbcYMQkJN9OwZ0NA6LTNninwUxCCmuWH3CkVyMqT2DcVCEy73bfnaXWdgbatQnAFZWdDUJGNxIiJ0HIdLKMOwux89Sic6+iQfoFAozhrp6ZDaLxyscvNQRCK6swkOHmD3blGTduki5+o6HO4g3QWtVSGsBybpuj4IGAxM1zRtNPAycK2u64OBucB/u8+/BSjTdb0H8CzwJICmaf2Aa4D+wHTgJU3TlG2jIuDUHSxmxTajETmKCnoNtkNKCgMGiIucovXp3h0eewwefBBuuinQ0SjaKmYzpI9KIgqxF3dhYldZAq6GpgBHpuhouFyQnS29SC4XRFBJfl0kdtyNzprG9BuVNl2hCBSaBuMnaBAr93SNWCknCvbmkp8vngQdsY+wVRJCXah2H1rdX7r7y7MNGwnkux/PBN5yP/4ImKxpmuZ+fr6u6/W6ru8D9gAjW+FHUChOypKnN9OAFZD/1P2sOZgnTwBQctEAk5QkswOP7SdUKHxJGxpLgtljLGOiSg8nd/HeAEel6Gjk5ckNZUEBhISA7Wg+1YRhRtQltshgJlxgC3CUCkXnZvx4vAmhjXoxfCoqRK+qZu9elRD+JDRNM2uathkoAhbrur4W+AXwpaZpecD1wBPu07sAhwB0XW8CKoBY3+fd5LmfUygCyldfuvyOuw2KhhA7UVGQmhqgoBQKxWmT3l2jW5xUaVyYacTKuk87iBZI0WbIypL+wcJCcS6uPlRGHXbv6+OH12C3n+QDFArFWWfgQIhODobQUEy4qCBSXsjNJSfn+ISwI0wparWEUNd1p1sa2hUYqWnaAOA+4EJd17sC/wf8oyW+l6Zpt2matkHTtA3FxcUt8ZEKxYlxOlmzz5D42Kklpr/sUwwapCpTCkV7oGtX6JEpq7qnj/DbVeqXV9GyZGVBcbH0EEaENXG42IqdGu/r0+ckBDA6hUIB0id43nl4q4T1BFFNKOTmsidHx26HmBg5t6YGyssDF2tL0eouo7qulwPLgRnAIHelEOB9YKz78WGgG4CmaRZETlri+7ybru7njv0er+m6PlzX9eHx8fFn5edQKDwULtrCYZckhDoQaypH6yIDpAYODGBgCoXitLFaoddw6eXSkaRwy4GYQIel6ECUlkoymJ8v/9/slUVU6BFYcAIQYatnzNVpAY5SoVCA2200JgY0DRv1FJII1VXsWVV43ID6jiAbbS2X0XhN06Lcj0OAqcAuIFLTtF7u0zzPAXwG3OB+fCWwTNd13f38NW4X0u5AT2Bda/wMCsWJWPSvAzQhrjEuTKQmOMBkIjkZEtRmr0LRbkg7L5U4SgD5XT5YG0t1Yc0p3qVQnB5ZWWIkc+SIyEXL95fh8rkNm3JOEdYgVZVWKNoCo0ZBcKgFoqII9iSEQN2ufRw+7J8Q5uUFKMgWpLUqhMnAck3TtgLrkR7Cz4FbgY81TduC9BDe7z7/dSBW0zgyv20AACAASURBVLQ9wG+APwDour4D+ADYCXwN3KXrurOVfgaFolkWrjQaPlyY6XWOGAIoMxmFon2Rfk44ScFlgCSE9djY9klOgKNSdBSysqCkROaWRURAfr7mLxedpUadKBRtBZsNRo8GYmOx0EgVEdRjgwMHyNleryqEPwZd17fquj5E1/WBuq4P0HX9Effzn+i6fo6u64N0XZ+g63qu+3mHrutX6breQ9f1kZ7n3a89put6pq7rvXVd/6o14lcoToSrrIIfjoprjA6EUo29TxqapuSiCkV7IzUVuifXA7K548TEt/+pCHBUio5AXR0cOCByUZMJwrQayupDsCKjTRIoZvAtwwIcpUKh8GX8eCAiEs1idbuNJkBjIzkfbSEx0RgpVlAgfcHtmVbvIVQoOhI731rvHSjsxEyyrRwiI8nIgPDwAAenUCjOiJAQGDIYzLjcc5E01mwJDnRYig5ATo64ixYUQFgYlO4txYQhcJrePRtTTFQAI1QoFMdy3nlgMmsQG4MNh1c2umfpAcxmY0C953e7PaMSQoXiJ7D0wxIa3fMHnZjJ6NYAKLmoQtFeyRiTSCRiGefCzM7CuA5hKa4ILFlZUFYGDgdERkL+IRehvnLRS4ICGJ1CoWiOqCgYPBiIjcVGPUeJpQkzBfvrqc4p6FCyUZUQKhQ/Fl1n6SZxIfTcL2YODkfTZBC6QqFof6RP7E4CMq7IiYnyplDyNh8NcFSK9ozTCbt3i1wUINTuorTKipVGADLIpefsEQGMUKFQnIjx44EQO7ZgMy5MHCUe0Nnz4kK6djXOUwmhQtFJqd68h+11GQDomIiigqDMVJKSIFipzBSKdklaLxvdIisBMZZpwMraD/YHNihFu+bAAakMFhSA3Q5l+ysJ0uvw+IlOD/0ObdjQgMaoUCiaZ/x4+dMUF0MQDYZs9OMtdOtqyEdUQqhQdFLWvbGdOsRh1ImJLhFVYLXSvXuAA1MoFD+aiAgY3KMakB5CHY1vlzUGOCpFeyYrCyorZYB1RAQc3t+AnVrv6xdMcYLZHMAIFQrFiejaFTIygNgYgt3GMjoaOXnBROT8QITbHLiiAqqqAhrqT0IlhArFj2Tlwloa3P2DLkz0yJCdovT0AAalUCh+MoPH2AmhDpDf7U27wwIckaK9ouuwa5chF7XboazCjA1xsx3IVrpcNjKAESoUilMxYQJgsWILtdCIlVJi2Esmzv97u8P0EaqEUKH4EeiOepbvTQU0dMCMk25D49A0lRAqFO2dtPHpxHoH1JvZVxGDo045yyjOnKIiKC+XhDAoCMqLGwlpqjTkonwN06YFNEaFQnFyJkyQP21xYh9fSAL12Mibu5JuSYaCRCWECkUn49CnP3DIlQKIrCzaVIk1OZ7ERLGuVygU7Ze089NIMomxjAsTdXoQO75uxyu9ImBkZUF1tUjJIiIgP9fhHUZvwsWU/kcgOTnAUSoUipPRpw/Ex4MlJgKz5vL2EeaUx9Ft91LveSohVCg6GWvm7cOBZH5OzHSNrQNNU9VBhaIDEBtvok9iGQAuNFyYWPlxcYCjUrRHsrMNuWhwMFSU6wTjAGAUa4m5aEwAo1MoFKeDyQTnnw+ayYTNbqYOO5WEs4ceJH/+T28LcH6+uAq3R1RCqFD8CL5drdGAzI3SMdGjj/QSqoRQoWj/aBqcN6wWEy5ANn2+X6ud4l0KhT/V1ZCXJ+6iZjNUVOiENFV45aIz+AqmTw9ojAqF4vTwyEaDo8VMsJBEcuiJ9avPSAoVN5nGRigsDFCAPxGVECoUZ0hjXiGrjvZ2OxBCEA0kDkoCVEKoUHQUep6bSCTG+IkdhyMDHJGivZGdDbW1MpA+PBwKDjQQ6pT/U0E0MMG+Hs49N8BRKhSK02HYMDGFskXawGSmkESKSKCyKYRue5Z7z8vLC2CQPwGVECoUZ8jWNzZQQRTg7h8MqiUoyk5CAoSGBjg4hULRIqRf0Jt4igBJCI/WhVGU1xDgqBTtiexsqQ4CWCxQXe4kxC0XHc8K7JPHiNOMQqFo8wQFyf5NUJCGFhxEJZE4CGYPPei28j3vee21j1AlhArFGbLmP8U4kMnzLsx0S5abRFUdVCg6DomDkugefASQhLARC2vePxDgqBTtibw8o3+wqgpCnFVuXYnbXfSCCwIYnUKhOFMmTJB+wqAwGyCy0d30olvWIrEURiWECkXnwOVi1dZw6pGLgYZOWl8pC6qB9ApFx8FkgnE9Crz9Xi5MrPiyOqAxKdoPtbVw9CiUlIDVCoUFLkLrSwGIoJKxrFb9gwpFO2PsWOkHttnNYLFSSCJ76EEU5YTu2gDI73xtbYAD/RFYTvaipmnvAKccvqTr+pwWi0ihaMOUrtzO1oZe3v5Bm1ZPXN94QFUIFYqOxvAxNoK211OPDRdmNu4IDnRIinZCUREcOSKD6V0uqKtqJB65S5zMUqyZaZCZGeAoFQrFmRAeLr2Ey5YBNhslTbFk0xsnZrpt/YKs86aDyUReHvTqFehoz4xTVQj3AHvdXxXApYAZyHO/dyZQfjYDVCjaEuve2uUdN6GjEWVvJCTUTFwchIUFODiFQtGidJ9oDKh3YmJvSSSNjSd/j0IBkhB65KLV1RDiqsWk5KIKRbtnwgQZIUOQFR2NfJI5SCpdK7ZDbi7QPmWjJ00IdV1/2PMF9AIu0nX9Wl3XH9R1/TrgIqB3awSqULQFvl/u8OsfTO0mC7yqDioUHY8u088hBbmrd2GipslK1vqqAEelaA/k50Oxe3RlRQXYG0QumkARQ9ik5KIKRTtl/HgxiTJbTBBko5AkMZbhEGzdCnTAhPAYRgNrjnluLaCmqio6BXpVNd8fSMbh7h+0Uk9KX3EbVf2DCkXHwxIdzvCYfd5jJxZWzD0cwIgU7YWsLLdUtA6a6p2ENMq4iQtYiMlqgYkTAxyhQqH4MSQmQp8+7iqhzUYx8eyiD104jJadBQ4HeXkiF29PnElCuAn4m6ZpIQDuPx8DNp+NwBSKtsaeuesoIAndLfwJNjuJ6x4OqAqhQtFRmTS4zDug3oWJ1d85AxyRoq2j67BnjzyuqgKLqx4z8v9mOl/DuHGqx0ChaMeMHw82G2C10GQKYjXnYqOBBGc+7NxJfb2hEGgvnElCeCNwLlChaVoh0lM4DlCGMopOwfcf5vn1D0ZEQEgIxMRARESAg1MoFGeFPuMTCUdkoi7M7NhnD3BEirZOdTUUFkpiWFsLNmctGpDOfnqxW/UPKhTtHG9CiAY2G7vpSRlR7Vo2etoJoa7r+3VdHwv0AC4Beui6PlbX9f1nKziFoi2xZoPZ2z+oA93SzWiaqg4qFB2Z1Av6kuAzoL6gKoyysgAHpWjTFBZCeTnU1ICu69jqRS46na9ljInqH1Qo2jU9e8q9n6YBQTaKSCSbXpIQ5h2C0tKOmxB60HX9ILAOyNM0zaRpmpplqOjwOLL2s6miu7d/0I6DhF7RgOofVCg6Mrah/elnygZkI6hRN7PmP+1MC6RoVQ4fhspKkYuaXE6CdAfglosmJcHAgQGOUKFQ/BQ0TdqAg4IAsxmHJYyVnC8JIcDWreTlBTTEM+a0kzlN01I0TftE07QSoAlo9PlSKDo0G1/fRA2huDCjA0E2jdgkK6ASQoWiQ2O1Mik91zug3omZbz4pDWhIirZNVhY0NYlcVHM2YKOeAWynK4dh2jR3WUGhULRnxo93G8sA2GysYDxxHCWGUnrv+pSBA1ztyljmpIPpj+FVoBaYDKwAzgf+AnzZ8mEpFG2LNV+X+8hFNcIiLYSFQVQUREYGODiFQnFWGTNWw5rbQANBuDCxcbO6oVecmOxsqK+XHkJrkxjKTGORvKjkogpFh2DIEPGQqKgAgoLYWTOAJizcx/8g42svBW1CYIM8A85E7jkWuFnX9c2Aruv6FuAW4LdnJTKFoq3Q2Mj3WVHehNBCEykZQWiaqg4qFJ2B7pMyiEGqgi5M7M6PwOUKcFCKNomuw7594HDIgc1VgwYMZrNUBqdODXSICoWiBTCbYdIk94FmojIoljWMNk54662AxPVjOZOE0IlIRQHKNU2LB2qALi0elULRhij88gdym7p5HUZDTQ7i0sVWVBnKKBQdn7Dxw8hA5hHqaFQ1WMnJUuMnFMdTXg4lJVIhNOlNBFOPhSZ6sAeGD4e4uECHqFAoWojp02VIPQA2G59xsfHiRx+Js1Q74UwSwrXAhe7HC4H3gQXAhpYOSqFoS6x5by9NWHBiBsBqDyIuXiRjqkKoUHQCundndLAxcteJmeXzjwQwIEVbJT9fJGQOB2jOJoKopxe7CaJRjZtQKDoYo0dDaKj7wGpllXWi8WJ1NSxYEJC4fgxnkhBej/QOAtwLLAe2A7NbOiiFoi3x/+zdd3Rc13nu/++eMw0DYNDZAHawiKJEioJIVavLkmwV21KsuMf2spO4XFtOu7lxHKfd6zT/YieOb/yLEjtOcZMsWbZkFauQkigWQSQBNoAESJAEARKVKDOYmbPvH2c4pLooETiYmeez1izOOVPwgLYIvHP2++7n1qdzy0VdDLGqMPG4t/dgZaXP4URk8hnD9ef3nLZBvcNzj4/5HEqmo5YWSKUgnbYEMikiTLCCnd6DKghFCkosBqtWnTwy7AstZ4DTBksUYkForR201vZn749ba//MWvv71truyYsn4i+39zibjs7NFYQljDFjQWmuf1DD4kSKw6qrqinFW/6TIcCOPRGfE8l0tHu3t1wU1+KQwiHtFYQVFd7lBBEpKKd/zpMOlfCLwK1w++1w333wgx/4F+wMncm2EyFjzFeNMR3GmIQxZn/2ODyZAUX8tPO7mxkmfqp/MJyhZo73i6CWi4oUj8orVzGHI4DXR9g1WMbIiM+hZNppa8sOlHEzlJDAgFcQXnvtac1GIlIo3vteCJysppwgP3/Pd7xi8PbbsxsV5oczWTL6V8B1wKeBVcBvAtcAX5uEXCLTwsafHiWNQzq7Q0uoLEpNjfeYBsqIFA+z9iIuoDl3PJEJsPGphI+JZLrJZODQIe8KobEuERJESbCQDrj8cr/jicgkmDED5s49dbx5W8T7UCjPnElBeCdwq7X2EWvtHmvtI8B7gF+bnGgiPrOW516M5paLBsgQqoxRWQnl5d7+MyJSJGprua5uW26DepcAT/7omK+RZHrp7YWBgexAGdebMLqMPTi4sG6d3/FEZJJccsmp+6OjsGmTf1neqjMpCF+rW0pdVFKQRjbvYsfY4lxBWMYoNXNLCQS8q4PqHxQpLldekiJICvAGy2x9XltPyCk7dsDEBGQyloB1iTDBubR6G5ZdcIHf8URkktx006n7ExPw2GP+ZXmrzqQg/BHwM2PMO40x5xhjbgR+mj0vUnA2/2sLLoFcQRgrDVBT5/0no/5BkeJTf9VSaugDvInDuw6WYK3PoWTaaGk5OVDGxck2G6xgJ5x/PpSU+B1PRCbJlVee2n7CWq8gdF1/M52pMykIfw94DPhHYCvwTbytJ353EnKJ+O65x0bIECCF1xTsVMRyewqrf1Ck+Jh1a1nGntzx0HiEAwd8DCTTyt69JwfKuERPHyij5aIiBa28HBobTx339norBvLJ6xaExphrTt6Ay4EngU8Bt+ANl3kie16koNjRMTbun5G7OhhhHFNWTlWV9ynQycJQRIrIBRdwBc/kDtM2wK/uP+FjIJlOOjpOXSGMMk4ZIzRwCNau9TuaiEyySy89dT+ZhCef9C3KW/JGM5D/5TXOn1wkY7L3F521RCLTQNdPNnHEnZUrCOPBBFWzIjiO+gdFilZJCTcvbecv97q4BHAJ8MzPB/j4/yj3O5n4LJGAnh5IJCzGzRAlyQp2EsDqCqFIEbjqKrjnHq8YPFkQfv7z+fP74usWhNZadUpJUdr4gwPAubmCMBoPU1Pr/Vet/kGR4nX+lVXE9o4xQhkuAba1nEnnhRSqHTu8otDNWAK4REhyDru8tWTLlvkdT0Qm2dKl3hYUXV3eFjT790NnZ/78zqifZCKvYuNGi0uACcIYLE5FufYfFBGcS9Yyn1ONg53Hy7xlglLUtm071T/o7Vyb9iaMNjV5U0ZFpKA1NHi3kzIZaG/3L8+ZUkEo8jKp/V1s6V9EgghgiDNEqiROdTXEYt4nQCJSpNaupYktucOJlOH5jRo1Wux27z69f3BCA2VEikwgABdf7BWFa9bA5z4H11/vd6o3b0oKQmNM1BizyRizzRjTaoz5ava8Mcb8hTFmrzFmlzHm86ed/4Yxpt0Ys90Ys+a09/qoMaYte/voVOSX4rLj37YyRiy3XLS8xKWi2iEUUv+gSNFbvpwbw0++ZIP6J+4b8DORTAP79p0qCCOMU8UAM+nRQBmRIrJ8ubfLzKxZcPCg32nOzBsNlTlbksA11toRY0wI2GCMeQg4B5gLLLfWusaYk9debgKWZG/rgH8C1hljqoGvAE14w2y2GmMesNbqp7GcNc892Ac0nJowWhXTclER8TgO11x0guAzaVIEcQmw6alxv1OJjzIZOHQIkgkL1iXGOCvY6X1ooCuEIkVjyZJT97u6vGXk0ah/ec7ElFwhtJ6R7GEoe7PAbwF/aq11s8/rzT7nNuB72ddtBCqNMbOBdwKPWmv7s0Xgo8CNU/E9SJHIZHiutRwXwwQRQqSw8QrtPygiOfHLz6eOHsD7QbZzf578xJdJsX8/DA97A2UMligJr3+wvh7mzPE7nohMkcZGqKz0Wofvuiu/NqefqiuEGGMcvA3tG4F/tNY+b4xZDLzfGPMe4BjweWttG1APdJ328kPZc691XuSsGHj8BXZPLCJJBIuh2gySCM6kutr7lGfmTL8Tiojv1q7lXHZyJPvjp380zJEj+t2/WG3bdmq5qEOGIGlvwqiWi4oUldJS+MY38rO1aMqGylhrM9ba1UADsNYYsxKIAAlrbRPwHeCes/G1jDGfMsZsMcZsOXbs2Nl4SykSz39vD0BuuWhppUN5uSES8a4OBjSGSUTWruUqnswdZjLw+C/T/uURX7W0nJowGskOlDmXVi0XFSlC+VgMgg9TRq21g8ATeEs9DwH3Zh+6Dzg/e/8wXm/hSQ3Zc691/uVf45+ttU3W2qa6urqz+w1IQXvuqQngVEEYqSnXclERean6et5dt4kA3nogF4f1Pxv0OZT4Ze/elw6UmUkP1QzoCqGI5I2pmjJaZ4ypzN4vAa4HdgM/Ba7OPu1KYG/2/gPAR7LTRi8Ghqy13cAvgRuMMVXGmCrghuw5kbfNDgyy8VADFkgSpYwRJkqrcgNl8mVzURGZZMaw5NIZlDIKZCecbc2jZhE5azIZb5pgMmEBlxIS3nYTxniNRCIieWCqeghnA9/N9hEGgB9aax80xmwA/sMY80VgBPhk9vm/AG4G2oEx4DcArLX9xpg/AzZnn/en1tr+KfoepMC1/8fz9FGT6x+siYyScCPU1EAk4o0RFhEBMOvWsuj+/WxjFQCdPSWkUhAK+RxMptSRI9DXBzY7PaKEMa8gXLECyst9Tici8uZMSUFord0OXPAq5weBd73KeQt85jXe6x7OUq+hyOk2/uQwUJNbLhqriZKOQUkJzJ+v/kEROc3atazj+VxBODERYMMGuPrqN3idFJSdO2F0FHBdAriESXn9g1ouKiJ5RL/iigBYy3NbvI/2E5QQIEOwRttNiMhraGridu7DYAHIWPj5fUmfQ8lU27HjVP9gODtQZjm7NVBGRPKKCkIRILF9Ly+OLM72D0aoNoOMRyrVPygir66igsuWDVCCtym9xfD0IwmfQ8lU270bkkkLrkuUBHPpIs4JXSEUkbyiglAEeOHftjFBmAnCuASoLk8znnSoqYFwGGbP9juhiEw34YvXsJj23HH7gZB3tUiKQiYD+/bBRNJCdkP6Fez0+gxWrvQ7nojIm6aCUATY+PAQcGq7idiMUqJRiMVg3jxwHD/Tici0dPXVXMvjucOJJPxSc6+LRnd3dqBM5mUDZdas0XQhEckrKghFkkk2tlUDXv9ghCTU1FBT400OV/+giLyqa6/lPfwUhwygPsJis38/DA0Bros5/QqhlouKSJ5RQShFb/TZbezPzMcCCSLUBocYpTQ3UEb9gyLyqhoaWL0smduPEOCZX6kgLBY7d8L4OOC6hEgRxGUZezRQRkTyjgpCKXrtj3UCkCKEi0N5HMbGDDU13qqf+np/84nI9BW+/kpW0Jo77joaZGDAx0AyZXbuzG5Ib10iJFlAJzHGdYVQRPKOCkIpem3P9wOn+geD8RjhMJSVwdy56h8Ukddx3XXcxEO5w1TK8POf+5hHpoTrwp49MDHhbTsSJeHtP1hbqz4DEck7Kgil6O3d7fX/nCwITXlprn9Qy0VF5HVddRXv5DHCpACw1vLzH4/5HEomW3c39PbiVYZACeNe/+C6dd4PDxGRPKKCUIpbKkV7d1m2fzBKlASJUDy3/6A+6BWR11VRwbnryihnOHdq87NprPUxk0y6jg4NlBGRwqGCUIqau3M3be4i0gTJEKQ8MMZYKkxNDQSD0NDgd0IRme6C11/NBTTnjnsGQhw65GMgmXT79sHICOC6BEkTJcES2jRQRkTykgpCKWpHntjDOCW55aLhUgfHgYoKrxgMBn0OKCLT33XX8W5+hsG7LJhJW+7/qS4RFrJduyAx7g2UCZNiKW3esuGLLvI7mojIGVNBKEVt74Ye4LSBMrGo+gdF5MxcfDGXRV8kQgIAC/ziRyf8zSSTxnWhpQVSE17/YIQE57ALGhuhutrndCIiZ04FoRS19u3jACSzBaEtKVH/oIicmUiEc66aSRWDuVM7dhgyGR8zyaTp7oaeHl4yUOZcWrVcVETylgpCKV7WsvdABBdDiiCGDJlIjMpKb6uJuXP9Digi+cK5/houZmPueOBEkN27fQwkk6azEwYHyQ2UiWigjIjkORWEUrw6OmibmEeKMGAoYQIbChOPe/2DoZDfAUUkb1x3HTfwCA7eZcFMxnLvj3SJsBB1dMDwMOC6OGQoY5RF7NcVQhHJWyoIpWiNPredw9QzQRiAcNQQjRqiUS0XFZEztHIla6v3U8J47tSj9434GEgmS1sbjI24gCVImhXsxAk5sGqV39FERN4SFYRStPY92QWQKwidaIh43HtMA2VE5IwEAiy/YR61HM+d2rsvwJj2qC8orgs7dkA67U2RjZBkJa1eMRiN+pxOROStUUEoRWvvVm8K4ARhLGAjESoqIBBQ/6CInLnA9dfyDp7KHQ+PB9m61cdActYdPQpHjpAbKBNl3JswquWiIpLHVBBK0Wpr98bDTxDGJUCoNEI8DvX1EA77nU5E8s511/EONhBmAgDrWn78n0mfQ8nZ1NEBAwOcNlAm6U0Y1UAZEcljKgilOPX00HZiFhmCuAQIksYp8a4Qqn9QRN6SefNomn+cGKO5U+sfTfgYSM62zk4YHrK5gTIVDDOXLl0hFJG8poJQipK7tZl2GnP9g6EgBBxDWZkKQhF565bc1MhMenLHXUcCHDvmYyA5q/bvh5ETJwfKZDiPHQQq4rBkid/RRETeMhWEUpS617czRoxktn/QCQcpL4dgEObP9zudiOSrwPXXchVPEsAbOjKaCPLMMz6HkrPC2uxAmZT3v22QFKvYDhdd5DWfi4jkKf0LJkVp78Z+4LT+wRKHigqYPRsiEZ/DiUj+uvpq1pmtRPCWilpr+cn3NWq0EHR3w+HDnDZQJts/qOWiIpLnVBBKUWrbmQJOFYThWJCKCm03ISJvU1UVTeclKePUHoSbn02drCEkj3V2Qn8/pw2USXgTRjVQRkTynApCKT4nTtDWG8fFkCaExRAujxKPq39QRN6+xe9azmyO5I57+xz27/cxkJwVHR0wNOiC9QbKVNPPbLpVEIpI3lNBKMVn2zbaWJLbfzAYsBAIUFmp/kERefu8/QjXEyQDQGLC4bHHrM+p5O3q6ICRYe9Sr0OGc2nFzJsHs2b5nExE5O1RQShFZ+z5HRyiIVsQBgiHLCUlXjEYjfqdTkTy3iWXcFFoOyV4vYMWy4M/GH2DF8l09sqBMhnW8IKuDopIQVBBKEWnfX034PUPZggQjgaIx9U/KCJnSTRK0zrnJX2EO3dkSGhLwrx19Kg3VMZmvCuEISa8CaMaKCMiBUAFoRSdtm3ep/YnB8pEsgNl1D8oImfLwltWMo8DueP+IYft230MJG9LRwf09QGuzQ2UWcFOXSEUkYKgglCKy8QEbQcjWCBJGBeHcHmYigr1D4rI2WOuv45LeJ4ISQCS6QC//EXG51TyVnV2wkB/BvAGytRxnNrAAKxZ43c0EZG3TQWhFJfWVva6i0kTxMXBwcUJB2lshJISv8OJSMFYtYoLy/YS49QehI/dP/I6L5DprL0dRoZODZQ5h12wciWUlfmcTETk7VNBKEXF3dpMO43Z/kGHSMjFceD88/1OJiIFJRCg6cpSyjmRO7V/f3bZoeSVkwNlMmmvIAySYRXbtFxURAqGCkIpKt3P7GeM2KkN6SMQj8OiRX4nE5FCM/+21czlIAG8QuLEaIDnnvM5lJyxnh7vZjPehFGHNOt4XgNlRKRgqCCUotK2ZQiAJBFcHCIljgbKiMikMNdfxzo2U4I3XjSZcXjk5xM+p5Iz1dEBA/0Wmx0oE2aC89mhK4QiUjBUEErxcF3a2ry7CaJYIFweZv58iMV8TSYihWjBAi6ceZjYadtPbHh0HNf1MZOcsc5O6D+eBiwOGWbSQzyWgRUr/I4mInJWqCCU4tHeTltyLi4BJghjgHBJkJUr/Q4mIoWq6doK4gznjo8e9XoJJX+0tcHI8MnlohmW0gZNTRAM+pxMROTsUEEoxaO5mTaWnOofdDJgDE1NfgcTkUI19/YLmcshgqQBGBsP8OST/maSN89a2L4d3NMGypzHdi0XFZGCooJQisbYphYO0ZDdfzBAJOwtFT3nHL+TiUihMtdczUVszW0/kXQd1IPfdQAAIABJREFUnnho3OdU8madHCjjZgfKBMhwEZs1UEZECooKQika+zYew2Ky/YOGcEmA+nooLfU7mYgUrJoaLlw8SNlp20+8sHGCZNLHTPKmdXbCwMCpgTLBkxNGdYVQRAqICkIpDtbS1uL9BjaOtwN9pDTIsmV+hhKRYtD0zhrKOYHJHg8MWF54wddI8iZ1dMBAbwqL1z84ix7KZ5bB3Ll+RxMROWumpCA0xkSNMZuMMduMMa3GmK++7PFvGGNGTjuOGGN+YIxpN8Y8b4xZcNpj/zN7fo8x5p1TkV8KQHc3bcMzsHhbTgCEy8KsWuVvLBEpfHNuX0sDRwhnt58YTwR44lfW51TyZuzZA6MnTg2UWUy7t1zUmDd4pYhI/piqK4RJ4Bpr7SpgNXCjMeZiAGNME1D1sud/Ahiw1jYCXwe+ln3uCuAu4FzgRuBbxhhnar4FyWvNzexlKROEyOAQDFgcx2jVj4hMOnP5ZTQ5L1LKKAATNsiGR8Z8TiVvJDdQJnNqoMy5tGq5qIgUnCkpCK3n5BXAUPZms8XcXwO/97KX3AZ8N3v/x8C1xhiTPf/f1tqktbYDaAf0L7O8IfuCN2F0nBIshkjIUlYGCxf6nUxECl5JCReuTFJ+Wh/h3p1p+vt9zCRvKDdQJjthNECGNbyggTIiUnCmrIfQGOMYY14EeoFHrbXPA58FHrDWdr/s6fVAF4C1Ng0MATWnn886lD338q/1KWPMFmPMlmPHjp39b0byTvdznYwRYxxvB/pw1LBggVb9iMjUaHrXTEoZJ0AGgJETrrafmOY6O2GwP4O1vHSgjPYqEpECM2UFobU2Y61dDTQAa40x7wDuBL45CV/rn621Tdbaprq6urP99pKH2pq9C9TjRAGIxBxtNyEiU2b2ey+hnsOUnOwjTDqsf8r1OZW8no4OGDyewsXgkKGW48xYWg2VlX5HExE5q6Z8yqi1dhB4ArgaaATajTGdQMwY05592mFgLoAxJghUAH2nn89qyJ4TeW2Dg+w9Wo4FJk4bKLNmjb+xRKSIrF5NU0krZXgfTk0QZNOTo1jNlpm2du2CsZFTA2UW0oG5WMtFRaTwTNWU0TpjTGX2fglwPbDVWjvLWrvAWrsAGMsOkQF4APho9v4dwK+stTZ7/q7sFNKFwBJg01R8D5LHXnyRNpbkBsoYYygrD7B8ud/BRKRoOA5NayzlDOe2nzhyMMPevb6mkteQGyiTPjVQ5hx2aaCMiBSkqbpCOBt4whizHdiM10P44Os8/1+AmuwVw7uBPwCw1rYCPwR2Ag8Dn7HWZiY1ueS/5mbaaWQUbwf6cNClvBwaGnzOJSJFpem2esKkCJICYGzU5fHHfQ4lr6q31xsoY08bKLOKbRooIyIFaaqmjG631l5grT3fWrvSWvunr/KcstPuJ6y1d1prG621a621+0977C+stYuttcustQ9NRX7Jb+ObW+hibm6gTCQC8+ZBNOpzMBEpKjPeeznz6CKGt+XEeMph44a0z6nk1ZzqH/QGyoSZYE1wB5x/vt/RRETOuinvIRSZavs29+NiSGQHyoRLHM491+dQIlJ8Fi2iqXJfro8wRYjtz4+RTPqcS16howOG+tJYAtmBMn3MWT0TwmG/o4mInHUqCKWwjY+zd79DBocUIQBKK4MsW+ZzLhEpPsZw4bogZYxg8IaVDB5Ps3Gjz7nkFVpaIDHm5iaMzqabskvO8zuWiMikUEEoha2lhXZ3EUkiuDiAoaYuyLx5fgcTkWLU9L75BMkQwbssOD5mtR/hNJPJwLZtYNPeiAKHDEvZg1mngTIiUphUEEpha25mL0sZI4YFgo63hZQKQhHxQ+17rmA+ByhlFIDxdJDNz2jN6HRy8CD09lrcjHcVN0ia89ihCaMiUrBUEEpBsy80s5clpwbKhC11dVBT43MwESlOtbU0zT5COScAr49w/84Ex475nEtydu2CoWMTuBgCuERIsrLsIDQ2vvGLRUTykApCKWjdm7oYJp7rHyyJGRobwZg3eKGIyCS58LIoJYzj4C1JHBtK8atf+RxKcnbuhKH+DJYAQdLUcpzZa2brB4eIFCwVhFK4MhnaW5NMECGDA0BFraPloiLiq6b3LyaApYRxAMbGYP16n0MJAK4LmzZBKukNlAmSpo5jzLhsid/RREQmjQpCKVx797J3Yj5JwtmC0FA7M6SCUER8VX3zxSwKdOa2nxh3w2x7fhxrfQ4mHDjg9RDaVBqbLQiX0EbJZWv8jiYiMmlUEErham6mjSUkKMHFYAKGuhlGBaGI+CsWo2lBH6XZ7SfSBDnWlaC11e9gsmsX9Pa4uK7N9Q9eQLMGyohIQVNBKIWruZlWVjCBt5FwNOQSjUJDg8+5RKToXXhVOREmCJEGYPxEmscf9zmUsGXLS/sHGzhE/UwX6ur8jiYiMmlUEErBGt/SSgcLyWT/b15ebpkzB8Jhn4OJSNG78APLMEDs5PYT47DxOdffUEXOdWHDBmBiItc/OJ+DzFijTxFFpLCpIJTCZC37XhgiQTQ3UKaqNqDloiIyLVRetZrG0AHKsttPjNsIu5oTHD/uc7Ai1tUFXV02WxAGCJGmgS5m3qLloiJS2FQQSmHq6qJteMZLJozWzI6qIBSR6cFxaFo2QhmjOGRIEyTRP8ZPfuJ3sOK1bRsc78lgXe9K7Sy6qQiMMuuuq/wNJiIyyVQQSmFqbmYHK0nj4OJgjKG6RgNlRGT6uPDaShxcSk8uGz2R4dFHfQ5VxB55BNzEBBmc3HLRhefGcKrifkcTEZlUKgilMDU38yKryeBggUh2oIwKQhGZLi786EoMlgoGMVjGkgHa9rh0dPidrPhY6+0/yEQKNztQZh4Habyx0e9oIiKTTgWhFCT7QjN7WZpbLhovcykrg8pKn4OJiGTFVy9iSewIpYzhkCZBFHf4BPfe63ey4tPZCYcOZrCZNBkcKhmkgkEWf/hSv6OJiEw6FYRSkI5uPcwQFa8YKGOMz8FERE4yhqZVEzi4lDFKGofEsRF+9SvIZPwOV1weeQSSIyksBgMsYj9VDeXUrJztdzQRkUmnglAKT18f247UkCZIBgeDpWpWiZaLisi0c83nVgJQzjABLMPjQQ7tS7B9u8/Bisxjj5GdLuoQJMU8DrL4ijn6EFFEioIKQik8zc08zzoAMjgEDMQrteWEiEw/q+46h3lVI5QyRpAUI5SRPjbA/ff7nax4WAsvvpCBVIoMAaIkmEUPjXes9juaiMiUUEEohae5me2cj0sAi8EJQlmZBsqIyPRjDNxyRzg7bXQEF8PoQIpn16cZG/M7XXFobob+3jQWcHGYx0GcyjiL3rnE72giIlNCBaEUnuZm2llyaqBMaYZQCOrrfc4lIvIq3vXlCwkEA5QzgkOGYVtGz55Bb+qlTLr77iM3XdRgaaSdOWtmESvVelERKQ4qCKXgHN+8n2PU5X64V1Y5zJ4NwaDfyUREXmnG3AgXr0oQY4wgacaJkjw2zM8esH5HKwpPPelCaiK73USKuRyi8ealfscSEZkyKgilsIyOsqF9FpZs/yAu8RkRLRcVkWnttrsX55aNGmB4IsK2pwfp7fU7WWEbG4O9rSmwlgwOMzhGJBqg8bZz/Y4mIjJlVBBKYdmxg81cBHgFoWMs8aqgCkIRmdauuGMm8doIZYzikOYE5fS2D/Pss34nK2wPPgipsZP9gwEWsY/w8oXMXaglJSJSPFQQSmFpbqaFc7EY7wphMEB5uQbKiMj0Fg7Dze+NZKeNpkkTZHQozUM/GcV1/U5XuB78mYXURHZFiWUZe1j4jnk4jt/JRESmjgpCKShjm1vpYl62fxCiEYhEVBCKyPR3691LCETClDLq7UlIOe3P9NDe7neywuS6sGl9ElwXlwBlnKDCGWPxrVouKiLFRQWhFJSO53vppzr7aW+GeAVUZG8iItPZ0mWGZSuDuWWjo5Ry9GCK59an/Y5WkFpaoP9YBvBaDOZyCBYtpPH8mM/JRESmlgpCKRypFM17S0kSzg2UKa/VQBkRyR+3fmYeMTNOiDQWw4lMCU/8+yHGx/1OVngefBAyyRQuBothCXuJr1pIba3fyUREppYKQikcu3ezNX0ekB0og0u8OqSCUETyxo3vjRGpqyDGmLcnIeV0beujpcXvZIXnkZ8lIJPBxSFImkV00HjzMoy2HxSRIqOCUArG+PPb2UcjAC4OJuhooIyI5JWKCrjy3WWUMopDhiQRDg2W8uxPuv2OVlC6u2H/nhQAGQLM4BiB+jk0NlX6nExEZOqpIJSC0bn+IH3UZAfKuARCDmVlKghFJL/c+okZxEoNQdLenoRUsOW+gxw75neywvH005AYyWS3m3CYzwHMsqUsXux3MhGRqaeCUApG5wsD9OUGyriUlXmj3GfP9juZiMibd/HFMGtJnBjjuT0JD7UnefGZUb+jFYxf3J8kk8rgZn8NWsZuZl++mJjmyYhIEVJBKIXBWva2G4aJZ/sHM8Srg9TXo/2kRCSvBALwrt+YQamTIEiGDAEOuPVs/M4O7Ul4FoyOwqanEoC3GX0pI9RUQ+Pls3xOJiLiDxWEUhASuzvZnZiP9RaLYoDy6rCWi4pIXrrldodYXSkBMtk9CSvYu6GX/fus39Hy3saNMDpwsn/QYTbdmGXLaGz0OZiIiE9UEEpB6Hy0jT5qcscm6BCvMCoIRSQvzZsHa66uyC0bHSNGx3AVzd/XuNG366lfZUiM22z/YIBF7Ce0Yglz5/qdTETEHyoIpSB0PtdNPzVYDBbACWrCqIjktVvvKqW03BDEG37SyQKa/3sviYTfyfKX68ITDwyRIYCLQ5gJ5pUcZ+EVDQSDfqcTEfGHCkIpCJ07TtCfHSjjYAlHDZGICkIRyV/XXQc188qzpUuGYeIc3DtOy+M9fkfLWzt2QE/Xqe0m4gwTXzqLxUv065CIFC/9Cyh5L5GAw50p+qnObTkRr3SoqoKyMr/TiYi8NbEYvPPOOCXBFA4ZUoTYw1Kav/Wc39Hy1tNPWRIn0oC33UQDh9Q/KCJFTwWh5L2DLxxndNSSJIzBegNlakK6Oigiee+WWw2lNREcMhjgIPPY+8Qhjh9O+h0tLz11/yAJN4SLweCyIHCI8vMXUlfndzIREf+oIJS8t+/xTvqoBsj2DzrEKwIqCEUk761eDUvXxAkADmlGKKNrvIYX/3GD39HyzqFD0NaSIIODS4AYY9QtKKXxnBDG+J1ORMQ/U1IQGmOixphNxphtxphWY8xXs+f/wxizxxjTYoy5xxgTyp43xphvGGPajTHbjTFrTnuvjxpj2rK3j05Ffpm+rIXW54bpz04YtQQgqIEyIlIYjIHb7whSUhbAwdtIfScraP7P3dqT8Aw9/TSMD3pXVjM4VDBEfEWDlouKSNGbqiuESeAaa+0qYDVwozHmYuA/gOXAeUAJ8Mns828ClmRvnwL+CcAYUw18BVgHrAW+YoypmqLvQaahw4dhqHOAfqpOzhfFBB3KylQQikhhePe7oXxmCQFcAlgO0UDvgVE6fr7T72h5Zf3Ph0lMeD8pLAHm0YVZuoTFi/1OJiLirykpCK1nJHsYyt6stfYX2ccssAloyD7nNuB72Yc2ApXGmNnAO4FHrbX91toB4FHgxqn4HmR6am0Feo7STw1B0higrNwQjcKsWX6nExF5+2bMgKtuiBIIBnFIM04J7Syh+e+f8jta3hgZga3rx0gQxSVAlHFm1FlmL45RWup3OhERf01ZD6ExxjHGvAj04hV1z5/2WAj4MPBw9lQ90HXayw9lz73WeSlC1kLLpjHS/UMMEcfgrZ8qrw7R0AABdciKSIF4z3sgVhEiSAaAVlaw86njJI8O+JwsPzz7LCT7R8gQxCVAKaPULq3RclEREaawILTWZqy1q/GuAq41xqw87eFvAU9ba9efja9ljPmUMWaLMWbLsWPHzsZbyjR05AgMNncwQBUOLhmCEHCIVzpaLioiBeXKK6FufhRjDA4u3cxmOB2l5a9+4Xe0vLD+kXESo14xfbJ/sGLVfBWEIiL4MGXUWjsIPEF2qacx5itAHXD3aU87DMw97bghe+61zr/8a/yztbbJWttUp1nSBau1FWhvZ4BqShgnRRjCIQ2UEZGCEw7D+94XwJREcEiTJsgOzqP5+61ouszry2TgmV8MkSCKBUKkmVU6QnhmtX5WiIgwdVNG64wxldn7JcD1wG5jzCfx+gJ/3Vp7+k+0B4CPZKeNXgwMWWu7gV8CNxhjqrLDZG7InpMiYy207HBhXzt9VBMmSZoghMLE4zB37hu/h4hIPnnf+yBWeWpPwt2cw4FjJfT/5Am/o01r27bB0JFRxrP9gzFGqZ1fxvz5EAz6nU5ExH9TdYVwNvCEMWY7sBmvh/BB4NvATOA5Y8yLxpg/zj7/F8B+oB34DvDbANbafuDPsu+xGfjT7DkpMt3dMNDaDWNjjFLmzRc1hnAsSCSiK4QiUniWLYNzVjqYcBiHNMeoZYg4zX/3K7+jTWtPP54iPTxKhiAZHMoYpfbcmVouKiKSNSWfjVlrtwMXvMr5V/362amjn3mNx+4B7jmrASXvnFwumsHhBOXectFQiHiFobYWYjG/E4qInH0f+hBsfT6KMzFCmiAvsIZ5Gx/gmv0dmEUL/Y43LT19Xx8JGwEggKU0mKRiyQwVhCIiWZrDKHnHWmhpAdrb6WY2ATJMZAvC6mpdHRSRwnXLLVBWGSQQMASwtLGEIeJ0fO2Hfkeblg4ehINtyex2E4Yo49TODFIeN8yY4Xc6EZHpQQWh5J2eHujvGoHuIxyjjhCpbEEYZsYMFYQiUrgqK+Ed7zCYkigOaYaJc4TZNP/nLkgk/I437Tz9pIsdGMztP1jKKDWLK2lsBGP8TiciMj2oIJS8410d3IcFjlMDwIRTQjQWIB5XQSgihe3jHwcTCeNk915t5gJaR+aR/P6PfE42/Tx97zHSGUuaIBZDzCSpXVGn5aIiIqdRQSh5xdpT/YNDVDBGjBQhbDjCyR1GVBCKSCG74gqYMTNAIOoVhR0sJEGE1q8/4ne0aWV4GF7cNJHbbiLCBKGKEiqqgyxe7Hc6EZHpQwWh5JXeXjjek4F9+zj+KstFo1HUFyIiBc1x4N3vBiLestEEUdpppHlnGDZt8jvetPHMM+AODJGgBEuAEsaoqY8yZw6UlfmdTkRk+lBBKHmlpQU4dAgmkgxSgQEmAiUEwg41NdDQoL4QESl8n/oUmKCDEwxggG2sopMFDPzdv/odbdpYf38/NpEgQZQMAUoZo3ZpjZaLioi8jApCySvectE2JgjTzWwsMB6ppKbGEAxquaiIFIfGRliyhOxwmQxHmMMYMTb/5CDs3Ol3PN+l0/Dso6OkCZImSJgJgqURaueEVRCKiLyMCkLJG729cOwY0NZOP1U4ZEgQZcIpyfUPrlrla0QRkSlzxx1AKIRjMqQJ0soKnk1fRO/7fgvGx/2O56vmZhjpHc31D0ZJEqwsp6ZGHxyKiLycCkLJG62twNAgHD/GKGUYYJBKCIWYMQPmzIELLvA7pYjI1PjEJyAUMjixEhwytLKSNA73716KvftLfsfz1fqHTsDISG67iRij1MwvY+FCCIX8TiciMr2oIJS8cXIzeovhIHNJEiERLKesPEAs5g1ZUP+giBSLykq48EIgEiYcgkEq6GUGB5nH5m9vgXvv9TuiL6yFp+/rByBBCQEyRKIBahpKtFxURORVqCCUvHDsmLdklLZ2RokxTgmDVOSuDtbUwCWX+J1SRGRqfeADAAZTVkrAeMNlLIZHuIHhj38BDh70O+KU6+yEQx2pXP9gCQmIx6mtRQWhiMirUEEoeaG1FUiloLOTJBFShBgjBuEwdXVw000QDPqdUkRkat15J5SXAyaAUxajg4X8khsYpJIHhy7HfuCD3oSVIvL0o0kYHmacKC6GSLZ/sKEBZs70O52IyPSjglDyQksLcPAApFMcYQ7DVIBxCEYc5s6Fq67yO6GIyNQLh+Haa737JhTEjZXRxTzu5T08yvXsfKYf/uzP/A05xZ764VGwLgmiAMSCaaobSryprGorEBF5BRWEMu0dPw49PUBbO2DpYAEjlEE4RF2d4cYbIRLxO6WIiD+++EVYtMi7b6MxJoIxxojxMO/kD/jfnPjTr8NTT/kbcoo8+yxsf9ECkCBKjDFMRTm1tUbLRUVEXoMKQpn2WlvxpgS0t+PiMEwFFgPhMHPmwPXX+51QRMQ/K1fC7/wOXHQRRCIGyspImBgAW2jiFu7n4Pt/F/r6fE46uVIp+JuvZWBokDRBUoSIMQbxcmprYfFivxOKiExPKghl2mttxftFZnCAw8zmBOXeA6Eg73sflJX5Gk9ExHe/9mvwrnfB5ZdD3YwAxEoYpwSAPSzjfT3/wM9v/kesa31OOnn+67/g4LNdkE6TIEoVA0QDKZzyMpYty/ZaiojIK6gglGmtvx+6u4H2diIk2cjFWAIQClFVFfA2ZhYRKXLGwKc/DStWeFcKz10Vxg2XkMRbT3+UWfzxppv58k1bGB31Oewk6O2F7/xFj9djACQJM4fDUFVJTa1h6VKfA4qITGMqCGVaa2nJ3mlvI0CaPmq941CISy/1tpsQERFvwMwXvwh1dV5P4RXXhHGdMCnCpAlygnIefjTAB9415K28KCDf+KNextsO544XcIB0NA4zZ1FTo+WiIiKvRwWhTGutrUAyCQe72M4qXBzvgXCYT37S12giItNORYXXTxiLQXVtgEuvCBAkQ4YgI5STsg6HN3bx8Y9l+O53wXX9Tvz2NW8Y5eHv9YL1vplyhqkzfYzOXQ4Bh5kzYcECfzOKiExnKghl2hoYgCNHgI4Oou4Im7jIeyDgMGOWwxVX+BpPRGRaqq+Hz38eHAdqGkppXBaggkECZBikEptMkOno4pvfhM9+NrfKMi+5Gctff7AZkoncuXfxC5Kr1mIjJTgOrFoFoZCPIUVEpjkVhDJtnb5cdJgKhqjyjkMhbrpJ+0mJiLyWc8+F3/gN737D6jpKq6PM4ijlnGCMUug7Dv19bNoEd90FGzb4m/et+smnHmbvwWjueBXbKL/0PE5UzQOguhqWLfMrnYhIflBBKNPWye0mbFs7m2nKnY+WOdx6q3+5RETywZVXwi23eFfHZl84h2Q4Th3HWMh+Mjhw4AAkEwwOwhe+AH/7tzAx4XfqN2/w8a3807+eKgYNlvcv2MSzCz/IiRPeudpatP+giMgbUEEo09LgIBw+DPT0MDgaoouG3GO1c8KsXetfNhGRfHHnnbBuHdTMCFK6vIHjzCCAy238lCr3OOzvyPXe/dd/wcc+BocO+Zv5Tenv51t3PM6wPbWXxLtDj/DQVf+HRCpIIgHBICxfDrNm+ZhTRCQPqCCUaenkclHb1s5RZjKAN040HDFcdnmAWMzHcCIiecIY+NSnYMkSmLu0FDNnFgeYzy7O4U/4KpeOPQqHj+Sev3ev9/zubh9DvxHXZfd7/5D7Bq/OnSpnmLK73k3vRBV9fd65VavgvPPUXiAi8kZUEMq0dHIket/uXo4wB4v3E72yymiYjIjIGQiH4e67Yd48mLmiBsrj7GQF/8mv87/5A+7u+T2Co4O55/f2wm//NrnCarqx/+dr/NVTa3M/FwAuv2iCh46sYudO6OmBuXO9m5aLioi8MRWEMu0MDWWXLI2N0dETY4RSAEKkiNWVqiAUETlD5eXwpS/BggWG6OJ6CIbYwOV8j4/wAf6Lf+t9F9Wlydzzu7q8onB42MfQr+bJJ3noj55hO+djgQnCBEpL+HnqBnp6IJ2G0lLv6mBVFZxzjt+BRUSmPxWEMu2cXC461NLFGCUcZwYAFeFxFiwJ09DwOi8WEZFXNWeOt3H9gsYQZt5cXBz+hU+ymQtZ3v8s/5D+TcrLbe75+/bB5z4HY2M+hj7d0aOMvv/jfN1+PvuzoY5jzCC9oJFU2vt1JhCAm27yeic/9zmIRt/gPUVERAWhTD8nl4u27UgQJE2SCA5pyqpCXH65v9lERPLZihXeHoU188pgxgyShPkDvsYgcZY++2/8/ep/o6Tk1PNbW70iMpl87fecEuk0w3d+gt/r/RK7WMEAVUwQoqKhjJSJYAxUVnrf2x//MaxZo70HRUTeLBWEMq0MDXlLlUZHXLp7A4xml4tWMIyprFRBKCLyNl1xhTc4JlRfB7FSeqnjbv6ONA7n/8On+NuP7XhJMbV1K/z+70Mq9frvay2Mjp7drSushYMH4Yd3/og/2nADP+V2Mid/dSktI1RZxsyZ3tLQm2/29l7UEBkRkTMT9DuAyOl27vT+bNs8SDzTzyEaCOBSHhglVlfK6tX+5hMRKQR33QW7dgW4b2wutLWzxW3i63yB30n/LWs/cxFfu+tb/E7Lx3CzxdeGDd6Vty99Cfr7vYEzx497t5P3+/ogkfCWaX7sY3DZZW89XzoNO3bAxo1w5Kk27E/beZYbcbODZIIRh/pzy1nc6C0TLSuD3/xN776IiJwZFYQyrbS0eL9QHGxLMpsxhqikkkEClXEuudRoCZCIyFlgDHz5y7B7d5hd4/XYgwf4MXcwnwOcm9yJ/e53eWd8hH+PfIJUKEY6bfjOd+Chh7ytHF5PIgHf/rY37fM97zmzK3ajo14RuGlTtndxaBDuv58DzOcI9ZQwTqmThIVLWNxocgXgJz/pDZEREZEzp4JQpo3hYW9p0P79YIaHGKcEgyXOMFTM03JREZGzKBSCv/97uPPOCobG6hg7fox7+Dh1HPeeMAzz2UxLaA3ESsFx6OryNnx/M9M777vPKwo/+ck37uc7ccK7Crl582lLU9Np+Mm9hBODtHMpMzmKg8vw7BUsmh/KFYPXXAMXXviW/xpERIqeCkKZNnbu9H4R6NgzQTzRw3HqKOcEDhmIx9/W8iMREXml2bO9K4V/+D9nMRGJ0H00QDCTpoIhAljm0UU6FWL30HKIlkDknzh1AAAeyklEQVRJlI6OAGVl8I53QE0N1Nae+hPgnnu8Ag/g2We95aRf+IK39cXLDQ7C+vVen2Im87Jsz93LJUe+yUbWkSKMg8vErLmEK2LU1XnPqa+HD35w8v5+RESKgQpCmTZaWqCzE1KDJ4gzzB6WM4tuKC1lxfkhqqv9TigiUnhuuAE2bzbce281qXgFB3urKOs7wEL2s5IWbuEBnuVSHkncQDBjCM6dzchIJcuXGz7wgVe+37x58Dd/A93d3vHevfAnf+L1H86Z453r64Onn4YXXwTXfenrlyyBK4d/xryn3k83s/l3PgKAjVfQ78xg3TLvecEgfOYzEA5Pzt+LiEixUEEo08KJE9DR4e17FTgxTIogURKESEPFDG1GLyIySYzxNqF3HOjrc4hE6gkcC8LDbYx1ldLDLO7gx9RynJ+m3gP790E8zt/95TxKS6PcdttL32/GDPjKV+Ab3zg1KKy3F776VfjQh+DoUW9gjLUvfd0558CVV0L9yB5o8irN/48vMEEYwmH6KxZRP9sQi3nP//Vfh7lzJ/kvR0SkCGgel19++ctXro8pYjt3ev2DiXGXipHD9FFHBYPegxUV6h8UEZlE1dVw993e9NH584GZM+EjH4Hbbqe3dBG/5EYmiDCfTsaJYoeHYWcrf/6bXTxy//gr3q+0FH73d70CD7wBMa2t8NnPwoMPnioGjfGG1Hz2s/CBD0B9/ATccQeMjLCJi/gV14AxjNUvIeU6LF7svW71arj++qn5uxERKXS6QjjVJia8XX6/9S34wz+Ev/gLvxNNCzt2QFsbMDZKhdvPAAuIMAGhEDVzYyxb5ndCEZHCFolAU5N3O3YMmpsNzeXnMbJ0KTz9NHbTJpbb3XQzh4PMo8SOETvax5fvPE7sjwa4/MtXv2SkaDDoLUfdtQseeeTU13nhBRgdTPHrl3RwZelWare+CN/f5T1x/35wXdI4/DW/C0C6fh7HR0pYtcq7illR4e2jqP0GRUTODhWEU+nwYe+Tz40bveO//EtYtw5uvdXfXD4bGfEGD4yOestFHTLY7F5TxCu47DKjvaVERKZQXZ1XzF13HbS1RWhecz27n14Fv3iYqw48yWNcRxcNjFBGOJXit77i8O0H/geX/ftvYZefQ2cnPPmEZf+OUWLHj3NR+Tgv7C3HTSSpTvUQaOniyAMbiPN/gVfueP8D3k8HC7GV1Ry3tVRWwqxZ3mOf/vSrD6gREZG3RgXhVAoEvKkpp/vwh2HLFq+Lvkjt3OkNHQCIjx4hRJooSe+ElouKiPgmEIBly7zb2K0z2PahD9P8/2/l2h89x8MjQY4yiwlCHKeWD2y9m8+f+49UrF7Igd4Sb7xoMgHAfNJcxiGeZy3jeE2Am1hLHzV8ka9TwXDua/ZRzf/l0xCJMlw9n8SQ4aKLvMduvvmN90EUEZEzo+suU2n2bPjhD2kPLOUBbvHODQ/D+97nXR4rUg8/DENDwESSyvGjwMlJA4ZgdTkXX+xjOBERASAWg0suNfz2PU18/oXf4H/d2sIsenOPTxDmm/a3aW524fAhSCYIM8EVrOdL/C2f4B7+kv9FPYdzr9nHYv6EP+EQ9blz34z/EWNV9SQXLGFgyGHBAigrgwUL4M47p/AbFhEpEsa+fMzXZHwRY6LA00AE76rkj621XzHGLAT+G6gBtgIfttZOGGMiwPeAC4E+4P3W2s7se/1P4BNABvi8tfaXr/e1m5qa7JYtWybnG3sLRkbgw5e207VjkFt5gN/na16v3Ic+BN/7XtE1RYyOwrvf7X2QHOg/xjVHvsezXEaGIJSXs/ZDy/jWt/xOKSIir+b4M3v44K3D7O2vIUkUC0RIUkM/MznKLI4SJEMAF4PFYMkQoIXz6QvPgnAYEwkTLAlxwfkutQvLeXpjGNeFI0e8K5RXXukVo3/+597nqiIicuaMMVuttU2v9thULRlNAtdYa0eMMSFggzHmIeBu4OvW2v82xnwbr9D7p+yfA9baRmPMXcDXgPcbY1YAdwHnAnOAx4wxS621eTGu01pvL6au8GKo2s8DA7eyh2X8Fb9H/fe/Dxdf7G2qVCSOHIFvf9srBgHiYz0sopP1ZMfSabmoiMi0VnvZMr6/y/LJdx3h4Iv9jKcdwFvn0ctMes1sKIlCNJrb2J5oFBuOkOgPeBvYW2AMjmyEmjaIx6G/H1IpOP98bzjNRz6iYlBEZLJMyZJR6xnJHoayNwtcA/w4e/67wO3Z+7dlj8k+fq0xxmTP/7e1Nmmt7QDagbVT8C2cFem0t+wFjLf2JRplD8v4EN9nA5d500efe87nlJMvnYbHHoN/+Ad49NHsSddlyfAW+jht93kVhCIi017dDMM/3V/PrKuXUza/lrKGagKNjV6z35oL4JwVsHCRV9FVVkG0BBMIUFPjbXdxur4+b5/CEyegshLq62HtWnjHO/z53kRE/l97dx4fVXX3cfzzS0ISthAggIRNQZbiBhoUrVallipVoGqBFtEWWpG61/Vxq6I+VlyxWoUqKGKtqBSx6qtUBOqDUAERlUU2o+w7BBQISc7zx7nDTDBRIMnMJPf7fr3mlZkz95577v0lDL85554TBnGbVMbMUvHDQo8GngJWANudc0XBJqth/00ELYBVAM65IjPbgR9W2gKYHVNt7D5Jr1Ytv1jv8cfDQw+lsq9dO1i8mJ0l9bmOx/ntvme5/KJfkDJ/nl8DqgZauxYmTvQf+B9+6IfQpqVBy1obGVTyPH/if/yG6Rm07pBJ69aJba+IiHy/3FwY9Wwajz7ahLVr/YiYkhL/M/IoKfHbxpY3bQrbt/t1aCPlRUXQsCGccALk5MDgwaG7m0JEJK7ilhAGwzq7mFk28A+gU1Udy8wuBy4HaJ1kGYUZXHghdOoEt9xSm3W7j4KVKwB4lt/y2bpjue+iIWRPn+QzpRqiuBimT4f//Md/6C9aBBs2+A/9Fi3gzDXv0YwNbKGx36FBA04/Xf8DEBGpLlq3hscfP7x98/Ph0Udh27ZomRkMG+YXuRcRkaoT91lGnXPbgWnAqUC2mUWynpawf+qxNUArgOD9BvjJZfaXl7FP7DFGO+fynHN5TZo0qZLzqKjOnWH8eDi1V0NodsT+8tl0Z+DMYSwc+kQCW1e51q6Fp5/2CWFJCaxeDV984UfNtmkD7Y92DP7iTmYSMz5Uw0VFRELjyCP9Pfax3+H27euXuxARkaoVl4TQzJoEPYOYWW3gJ8BifGJ4cbDZZcAbwfPJwWuC999zfjrUycAAM8sIZihtD3wYj3OoCg0awMiRcPkfm2P16+0v30AzfjvmVF6/aRZxmAS2yhQXw9SpMGqU7w0Ev7xEfr7vIc3O9pMHXPvTJaSvXsn/RRJCS6FOs3p07ZqwpouISJw1agR33eWX573iCvj5zxPdIhGRcIjXmMTmwAvBfYQpwATn3D/NbBHwdzO7D5gPPBds/xzwopktB7biZxbFObfQzCYAi4Ai4MrqMsNoeVJS4PJhqRzbqil3XLSFgsIMAPZRiwceTWHBN5u57ZEcMjMT3NBDtG5d9F7BiNRUf69Iy5bR19deC40nvclWGrKQY/wbWfXpfloqtWrFv90iIpI4GRnQs2eiWyEiEi5xSQidc58A3+rvcc6tpIxZQp1ze4Ayl591zt0P3F/ZbUy0085vxPhXM7il7+csdsEYmZIS3h6znqUbGjDi0VrVYoKV4mKYMcM/IhMIgB8i+/nnlOrxvPRS6NABeOstZvLD6BsaLioiIiIiEhdxv4dQypfbO4/nHivgQiZGC/fsYfl7XzFokGPGjMS17WCsW+fXFZw2LZoM1qkD/fv7WeNWrIhue/bZ0KMHvstw5szocFGABg344Q8REREREZEqpoQwyaRfcwW3XbKKP3IP6RT6wm3b+HrlRm64Af78Z98Ll0yKi+G993wyGDtE9Jhj4Jpr/ALDU6ZEyzt08L2DAEyZQlGxn0wHgMxMOnfJoHHjuDVfRERERCS0lBAmGzMYNYoLjvuS5/k1LSKTqK5eDbt28sILcOWVPslKBuX1Cvbr53sG16+HsWOj2zds6JPE/StqvP02H9OFrwnmFddwURERERGRuFFCmIzq1IGJE+nQYCMvMogzeB9wsGIl7Ctk7lwYOBA++SRxTXQO5szxM4iW1St43HF+RtGRI/1wUfBJ4HXX+dlVAZg9GyZM4H3OiFbQIFsJoYiIiIhInCghTFZHHw3jxpHFTh7hBn7PX0gp2gsrV4IrYdMm+N3vYMIE4r40RVERvPEGTJ4cHb4a2ytYt67fZuTI0osMDxkCbdsGL5YuhfPPh927o/cPpqbRqHVdOnWK6+mIiIiIiISWEsJk1rs33HYbKTgGM5YnuYrsXathtR9GWlwMI0bAvfdCYWF8mrRjBzz7LMybFy1r1w6uvtr3Cpr5BPX552H58ug2555LtOdv/XpfsGULq2nBl7Tx5S1bcvoZKaTot1JEREREJC70X+9kN3w4nHMOACczh5cYyLEbp8K26E2EkyfD5ZfDxo1V25T8fHj6aVizJlr2ox/5CWLq1YuWTZ1KqRlRO3eGAQOCFzt3ws9+Bl98QQnGG/Tx5c2bQ06OhouKiIiIiMSREsJkl5oKL79MZBHCZmzkr/yOi1aNhD2792/22WcwaFDV3FfoHHzwgZ8c5uuvfVl6uk/yfvITSvXoLVkC48dHX+fkwFVX+dNg3z64+GIKPlrGOAbRhzcYy2+gcWPIzSUtDU45pfLbLyIiIiIiZYvLwvRSQTk58NprfsxlYSG1KOJ/9g2n47atjMh9jCLnw7hli+8pvPVW6Nu3/OoKC2HzZv8oKfFDPuvXL3vbfftg0qTSiWbjxvCrX0HTpqW33bIFnngiel9hejr84Q9B3c6xrN/tvDKlG+9wF3vJ8BtlZUGbNoBxyin+/kMREREREYkPJYTVRbdufhHCoUP3F1249knatdjDTRmPs3WPz6SKivwo0w8/hAsv9Pf8RZK/TZv8zx07vl19mzZ+aGfnztCxI9Su7SeE+dvfSs8i2rEjXHwxZGaW3r+wEB57zI8IjRg6FHJz/RqFf79hDh993K/0TnXq+GzUUsjLg1tuqehFEhERERGRQ2Eu3lNUxlleXp6bO3duoptROZyDIUMoHDuezeSwiSZsJofl1p4xjW9mVUprilza/h66Ro2ga1fIyDi0w6Sk+KUhNm/2HXiNGvkhnz16wFln+YljDmzW00/DrFnRsh49/HavvgobPt0Iq74qvVNGBhnHd+S83un07w/t2x/y1RARERERkYNgZvOcc3llvacewurEDJ56iikz6vPKyph4Ojh68yz22C5Wp7eDOrXBUti6FWbOhJNOiln7L0Zqqv8ZSSDBJ3fr1sH8+dHlLGrV8olgQYGfObRt2+i+AO+8E00GCwpgzx4YPdoPN2X7tm8lg83Tt/CLe7vQd2g6WVkVvioiIiIiInKYlBBWN7Vrk/PY7TB4HmzZvL84hRKOdwvI2rudxXuPwdWujWVmUlycwoIF/p7CHj2gSRN/S2KTJpCd7Yd6Ll0KCxf6+wTffx+2b48eLjMTjjrKDzd97bVoWceOfnhp3brRYaX5+bBrlx8mmpIC7Nrp100M5DGXARmT+NH04aR0bxaf6yUiIiIiIuVSQlgNNTmmKZx7Lmlr8slZ8B4525aSw2Zy2EwTNrGOIxi5+1q+3puFNW8OjZswc2YqRx7p14KP7d3LyPDrBzZv7petOO00PznMpk2+h7BevdLbg+8BnD8fpk/3w0pXrfJlKSm+npQU/Ayoy5eT6XbTi7fpzyu0S/0SXn8Dup8cx6slIiIiIiLl0T2E1VBRkZ+8JTsbrLgIxo2Du+/2mVlgLc25kYdZSgdIqwW5fp2/k09J4YEHSg8hXbLE9/7t3etfm/nlJE4/3Q8BXbwYPv3UDz9dtswnjFu3lh5qCtCsmZ8nhn2F5C6bQb/dL9CbyWQRzDTz3HMweHCVXhsRERERESntu+4hVEJYU+zdC6NGwX33+e49YA8ZDOcuptDTb5OeAbm55B7biEceNY4+GqZN84+I2rWhf38/THT5cpg71z/mzfNrEBYVwe7dvkdw925KTWDToAGc3GUvA6ZdwekrXyCFmN+t4cPhzjvjdDFERERERCRCCWEYEsKIXbtg5Eh46CHYsQMHvMgg/szVOILpQTMzSW/dnDP6NiI93Zc559cNbNXK9wjOm1f28hSxnPMJYu3a/h7Ffn320vbK80pnmOAXR3zmmW9PTyoiIiIiIlVOCWGYEsKIrVthxAi/Uvzu3XzAqdzO/ezEr0C/jWy+ScumU+cUCus1ZNcuIy3t4HK29HQ4/njIy/OPY46BWqklcMkl8PLLpTe+4AKYOBHSdLuqiIiIiEgiKCEMY0IYsW6dH0Y6ejSrio7gBh5hJW0pJoVNNKGEVLKsgLq1werW8UtW1Knju/0sBfCTyhx7rE/+unXzyWB6+gHHuekmePjh0mXdu8PUqcGNhSIiIiIikghKCMOcEEasXAn33MM3417jLu5hOmdRSC0cRgaFpTZNoYQf2BLyjlhD3gn7OOHMbOqcchyccIK/WfBAjz8O119fuqxDBz8LTU5OFZ6UiIiIiIh8HyWESgijFi6k5I67GDOpIaMYisMwHO1ZRjfmkMdcujKfenxd9v6tW0PXrtCli/+5aZO/RzD296hZM79S/VFHxeecRERERESkXEoIlRB+25w55N/xLOtn59O5YFZ0aYiKqlcPZsyAE0+snPpERERERKRCvish1EwfYdWtG0f+qxtHOgerV/uV5j/+OPozP//Q60xLg9dfVzIoIiIiIlJNKCEMOzO/1kSrVtC7d7R82zZYsKB0krhokV9nojxjxkDPnlXfZhERERERqRRKCKVsDRvCWWf5R8SePT4pjE0SFyyAWrXgwQdh0KBEtVZERERERA6DEkI5eJmZfjiohoSKiIiIiNQIKYlugIiIiIiIiCSGEkIREREREZGQUkIoIiIiIiISUkoIRUREREREQkoJoYiIiIiISEgpIRQREREREQkpJYQiIiIiIiIhpYRQREREREQkpJQQioiIiIiIhJQSQhERERERkZBSQigiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERERERCSklBCKiIiIiIiElDnnEt2GKmVmm4AvE92OMuQAmxPdCPkWxSX5KCbJSXFJPopJclJcko9ikpwUl6rVxjnXpKw3anxCmKzMbK5zLi/R7ZDSFJfko5gkJ8Ul+SgmyUlxST6KSXJSXBJHQ0ZFRERERERCSgmhiIiIiIhISCkhTJzRiW6AlElxST6KSXJSXJKPYpKcFJfko5gkJ8UlQXQPoYiIiIiISEiph1BERERERCSklBAeBDMbY2YbzeyzA8ofMrMlZvaJmf3DzLLL2f/eYJuPzWyKmeUG5WZmT5jZ8uD9E8vZ/1wz+zzY7taY8qPM7L9B+Stmll6Z553skjguZmb3m9lSM1tsZtdU5nknsySISYWOXxMlcUy6mNnsoN65ZnZyZZ1zdVCFcelkZrPMbK+Z3fgdxz/JzD4N4veEmVlQ3sjM/m1my4KfDSvzvJNZssYkeO/qoA0LzWxEZZ1zdZAEcbnfzFaZ2a4Dyv9gZouCuqeaWZvKON/qIIlj0trMppnZ/KD+XpVxvqHgnNPjex7Aj4ATgc8OKO8JpAXPHwQeLGf/rJjn1wDPBM97Ae8ABnQH/lvGvqnACqAtkA4sADoH700ABgTPnwGGJfpaKS4O4DfAOCAleN000dcqDDGpjOPXxEcSx2QKcF5MXdMTfa1qSFyaAt2A+4Ebv+P4HwZxsyCOkViMAG4Nnt+qv5WkiMnZwLtARqS+RF+rkMWlO9Ac2HVA+dlAneD5MOCVRF8rxYTRBP8XBjoD+Ym+VtXloR7Cg+Cc+w+wtYzyKc65ouDlbKBlOfsXxLysC0Ru3OwDjHPebCDbzJofsPvJwHLn3ErnXCHwd6BP8M1hD+C1YLsXgL6HfnbVVzLGJXhvGDDcOVcSHGfjoZ9d9ZTgmFT4+DVRssYkqCcreN4AWHsQp1NjVFVcnHMbnXNzgH3lHTuIU5ZzbrZzzuG/wIp8fvTBf55AyD5Xkjgmw4A/Oef2Ruo7pBOr5hIZl2C72c65dWWUT3POffN9x6+JkjUmhPxzpSLSEt2AGmQw8Ep5b5rZ/cClwA78t0oALYBVMZutDspif8nL2uYUoDGwPeYPL7KvlBbvuAC0A/qb2c+BTcA1zrllFTiHmqaqYlIpxw+pRMTkOuBfZvYw/vaF0w6xzWFwOHE5GC3w8YqI/fxoFvMfrfVAs0OoNwwSEZMOwBlB3XvwPSdzDqXRIVBVcTlYQ/C9uhKViJjcDUwxs6vxieY5lVRvjacewkpgZrcDRcBL5W3jnLvdOdcq2OaqeLUtzBIYlwxgj3MuD/grMKaS6q32Ev23cjDHD5sExmQYcH1Q7/XAc5VUb42Q6L+VoH5HtEc49BIYkzSgEX6Y3E3AhNj7C8Mu0X8rZnYJkAc8VJn1VmcJjMkvgeedcy3xtyK8aGbKdQ6CLlIFmdmvgfOBgcGHJ2Y2NrhR9u0ydnkJuCh4vgZoFfNey6AsVnnbbMEP0Ur7jn1DK4FxAf/N7sTg+T+A4w/zNGqUOMTkkI8fdgmOyWVE/05exQ/DFiocl4OxhtJDuWJjtyEy9Df4GarhieVJcExWAxOD4dkfAiVAziGeQo0Uh7h83/HPAW4HekeG9IZdgmMyBD+/Bs65WUAm+ls5KEoIK8DMzgVuxv9DEBlHjnPuN865Ls65XsF27WN26wMsCZ5PBi41rzuwo4wx0XOA9uZnFE0HBgCTgz+yacDFwXaXAW9U8ilWS4mMS/DeJKLDH84Ellbi6VVLcYrJIR8/zBIdE/y9HWcGz3sAGlZNpcTlewVxKjCz7kFP06VEPz8m4z9PQJ8rQFLEZP9nipl1wE9ktrkCp1QjxCMu33P8rsCo4Pj64oTExwT4CvhxcIwf4BPCTZVUd83mkmBmm2R/AC/j74vZh/+mbkhQvhx/D83HweOZcvZ/HfgM+AR4E2gR+dIEeAo/W+WnQF45+/fCJxUrgNtjytviZyVbjv+GPSPR10pxcQDZwFvBvrOAExJ9rUIUkwodvyY+kjgmpwPz8DP0/hc4KdHXqobE5YigvgJge/A8q4z984L9VwBPAhaUNwam4hP0d4FGib5WignpwPjgvY+AHom+ViGLy4jgvZLg591B+bvAhpjjT070tVJM6AzMxH+ufAz0TPS1qi6PyD82IiIiIiIiEjIaMioiIiIiIhJSSghFRERERERCSgmhiIiIiIhISCkhFBERERERCSklhCIiIiIiIiGlhFBERELHzFqb2S4zS010W0RERBJJCaGIiISCmeWb2TkAzrmvnHP1nHPFcTz+WWa2Ol7HExERORhKCEVEREREREJKCaGIiNR4ZvYi0Bp4MxgqerOZOTNLC96fbmb3mdkHwftvmlljM3vJzArMbI6ZHRlTXycz+7eZbTWzz82sX8x7vcxskZntNLM1ZnajmdUF3gFyg/p3mVmumZ1sZrPMbLuZrTOzJ80sPaYuZ2a/N7NlQX33mlm7oJ0FZjYhsn2kB9LMbjOzzUGP6MD4XGEREamulBCKiEiN55wbBHwFXOCcqwdMKGOzAcAgoAXQDpgFjAUaAYuBPwIEyd2/gb8BTYP9/mJmnYN6ngOGOufqA8cC7znnvgbOA9YGQ1XrOefWAsXA9UAOcCrwY+D3B7Trp8BJQHfgZmA0cAnQKqj/lzHbHhHU1QK4DBhtZh0P6WKJiEioKCEUERHxxjrnVjjnduB781Y45951zhUBrwJdg+3OB/Kdc2Odc0XOufnA68Avgvf3AZ3NLMs5t80591F5B3TOzXPOzQ7qyQdGAWcesNkI51yBc24h8BkwxTm3MqadXQ/Y/k7n3F7n3AzgLaAfIiIi5VBCKCIi4m2Ieb67jNf1gudtgFOCYZ7bzWw7MBDfOwdwEdAL+NLMZpjZqeUd0Mw6mNk/zWy9mRUA/4vv4TucdgFsC3ojI74Ecss7voiIiBJCEREJC1dJ9awCZjjnsmMe9ZxzwwCcc3Occ33ww0knER2eWtbxnwaWAO2dc1nAbYBVoG0NgyGtEa2BtRWoT0REajglhCIiEhYbgLaVUM8/gQ5mNsjMagWPbmb2AzNLN7OBZtbAObcPKABKYo7f2MwaxNRVP9hml5l1AoZVQvvuCdpxBn5466uVUKeIiNRQSghFRCQsHgDuCIZ4Xny4lTjndgI98ZPJrAXWAw8CGcEmg4D8YAjoFfjhpDjnlgAvAyuDoaa5wI3Ar4CdwF+BVw63XYH1wLagXS8BVwTHFRERKZM5V1kjaERERCRRzOwsYLxzrmWi2yIiItWHeghFRERERERCSgmhiIiIiIhISGnIqIiIiIiISEiph1BERERERCSklBCKiIiIiIiElBJCERERERGRkFJCKCIiIiIiElJKCEVEREREREJKCaGIiIiIiEhI/T/TYeQPsPM8oAAAAABJRU5ErkJggg==", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + } + } + ], + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "source": [], + "outputs": [], + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ], + "metadata": { + "kernel_info": { + "name": "python3" + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "nteract": { + "version": "nteract-front-end@1.0.0" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "c193140200b9684da27e3890211391b6", + "translation_date": "2025-09-03T19:54:16+00:00", + "source_file": "7-TimeSeries/2-ARIMA/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/2-ARIMA/working/notebook.ipynb b/translations/zh-CN/7-TimeSeries/2-ARIMA/working/notebook.ipynb new file mode 100644 index 000000000..fcb883143 --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/2-ARIMA/working/notebook.ipynb @@ -0,0 +1,50 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": 3 + }, + "orig_nbformat": 2, + "coopTranslator": { + "original_hash": "523ec472196307b3c4235337353c9ceb", + "translation_date": "2025-09-03T19:55:40+00:00", + "source_file": "7-TimeSeries/2-ARIMA/working/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "陶宏、Pierre Pinson、Shu Fan、Hamidreza Zareipour、Alberto Troccoli 和 Rob J. Hyndman,“概率能源预测:2014年全球能源预测竞赛及未来”,《国际预测期刊》,第32卷,第3期,页896-913,2016年7月至9月。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pip install statsmodels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/3-SVR/README.md b/translations/zh-CN/7-TimeSeries/3-SVR/README.md new file mode 100644 index 000000000..481611734 --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/3-SVR/README.md @@ -0,0 +1,384 @@ +# 使用支持向量回归器进行时间序列预测 + +在上一节课中,你学习了如何使用 ARIMA 模型进行时间序列预测。现在,你将学习支持向量回归器(Support Vector Regressor, SVR)模型,这是一种用于预测连续数据的回归模型。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +## 介绍 + +在本课中,你将学习如何使用[**SVM**(支持向量机)](https://en.wikipedia.org/wiki/Support-vector_machine)构建回归模型,即**SVR(支持向量回归器)**。 + +### 时间序列中的 SVR [^1] + +在理解 SVR 在时间序列预测中的重要性之前,你需要了解以下几个关键概念: + +- **回归(Regression):** 一种监督学习技术,用于根据给定的输入集预测连续值。其核心思想是拟合一条曲线(或直线),使其尽可能多地通过数据点。[点击这里](https://en.wikipedia.org/wiki/Regression_analysis)了解更多信息。 +- **支持向量机(SVM):** 一种监督学习模型,可用于分类、回归和异常值检测。SVM 模型在特征空间中是一条超平面,在分类任务中充当边界,在回归任务中充当最佳拟合线。SVM 通常使用核函数将数据集转换到更高维的空间,以便更容易分离。[点击这里](https://en.wikipedia.org/wiki/Support-vector_machine)了解更多关于 SVM 的信息。 +- **支持向量回归器(SVR):** SVM 的一种变体,用于找到最佳拟合线(在 SVM 中是超平面),使其尽可能多地通过数据点。 + +### 为什么选择 SVR?[^1] + +在上一节课中,你学习了 ARIMA,这是一种非常成功的统计线性方法,用于预测时间序列数据。然而,在许多情况下,时间序列数据具有*非线性*特性,这种特性无法通过线性模型映射。在这种情况下,SVM 在回归任务中处理数据非线性的能力使得 SVR 在时间序列预测中非常成功。 + +## 练习 - 构建一个 SVR 模型 + +数据准备的前几步与上一节关于 [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA) 的内容相同。 + +打开本课的 [_/working_](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/3-SVR/working) 文件夹,找到 [_notebook.ipynb_](https://github.com/microsoft/ML-For-Beginners/blob/main/7-TimeSeries/3-SVR/working/notebook.ipynb) 文件。[^2] + +1. 运行 notebook 并导入必要的库:[^2] + + ```python + import sys + sys.path.append('../../') + ``` + + ```python + import os + import warnings + import matplotlib.pyplot as plt + import numpy as np + import pandas as pd + import datetime as dt + import math + + from sklearn.svm import SVR + from sklearn.preprocessing import MinMaxScaler + from common.utils import load_data, mape + ``` + +2. 从 `/data/energy.csv` 文件中加载数据到 Pandas 数据框中并查看:[^2] + + ```python + energy = load_data('../../data')[['load']] + ``` + +3. 绘制 2012 年 1 月至 2014 年 12 月的所有能源数据:[^2] + + ```python + energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![完整数据](../../../../7-TimeSeries/3-SVR/images/full-data.png) + + 现在,让我们构建 SVR 模型。 + +### 创建训练集和测试集 + +现在数据已经加载,你可以将其分为训练集和测试集。接着,你需要对数据进行重塑,以创建基于时间步长的数据集,这是 SVR 所需的。你将在训练集上训练模型。训练完成后,你将在训练集、测试集以及完整数据集上评估模型的准确性,以查看整体性能。需要确保测试集覆盖的时间段晚于训练集,以避免模型从未来时间段中获取信息[^2](这种情况称为*过拟合*)。 + +1. 将 2014 年 9 月 1 日至 10 月 31 日的两个月数据分配给训练集。测试集将包括 2014 年 11 月 1 日至 12 月 31 日的两个月数据:[^2] + + ```python + train_start_dt = '2014-11-01 00:00:00' + test_start_dt = '2014-12-30 00:00:00' + ``` + +2. 可视化差异:[^2] + + ```python + energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \ + .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \ + .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12) + plt.xlabel('timestamp', fontsize=12) + plt.ylabel('load', fontsize=12) + plt.show() + ``` + + ![训练集和测试集数据](../../../../7-TimeSeries/3-SVR/images/train-test.png) + +### 准备训练数据 + +现在,你需要通过过滤和缩放数据来准备训练数据。过滤数据集以仅包含所需的时间段和列,并通过缩放将数据投影到 0 到 1 的区间内。 + +1. 过滤原始数据集,仅包含上述时间段的数据集,并仅保留所需的“load”列和日期:[^2] + + ```python + train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']] + test = energy.copy()[energy.index >= test_start_dt][['load']] + + print('Training data shape: ', train.shape) + print('Test data shape: ', test.shape) + ``` + + ```output + Training data shape: (1416, 1) + Test data shape: (48, 1) + ``` + +2. 将训练数据缩放到 (0, 1) 区间:[^2] + + ```python + scaler = MinMaxScaler() + train['load'] = scaler.fit_transform(train) + ``` + +4. 现在,缩放测试数据:[^2] + + ```python + test['load'] = scaler.transform(test) + ``` + +### 创建基于时间步长的数据 [^1] + +对于 SVR,你需要将输入数据转换为 `[batch, timesteps]` 的形式。因此,你需要重塑现有的 `train_data` 和 `test_data`,以便创建一个新的维度来表示时间步长。 + +```python +# Converting to numpy arrays +train_data = train.values +test_data = test.values +``` + +在本例中,我们设置 `timesteps = 5`。因此,模型的输入是前 4 个时间步的数据,输出是第 5 个时间步的数据。 + +```python +timesteps=5 +``` + +使用嵌套列表推导将训练数据转换为二维张量: + +```python +train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0] +train_data_timesteps.shape +``` + +```output +(1412, 5) +``` + +将测试数据转换为二维张量: + +```python +test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0] +test_data_timesteps.shape +``` + +```output +(44, 5) +``` + +从训练数据和测试数据中选择输入和输出: + +```python +x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]] +x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]] + +print(x_train.shape, y_train.shape) +print(x_test.shape, y_test.shape) +``` + +```output +(1412, 4) (1412, 1) +(44, 4) (44, 1) +``` + +### 实现 SVR [^1] + +现在是时候实现 SVR 了。要了解更多关于此实现的信息,你可以参考[此文档](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html)。在我们的实现中,我们遵循以下步骤: + +1. 调用 `SVR()` 并传入模型超参数:kernel、gamma、C 和 epsilon 来定义模型。 +2. 调用 `fit()` 函数准备训练数据。 +3. 调用 `predict()` 函数进行预测。 + +现在我们创建一个 SVR 模型。在这里,我们使用 [RBF 核函数](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel),并将超参数 gamma、C 和 epsilon 分别设置为 0.5、10 和 0.05。 + +```python +model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05) +``` + +#### 在训练数据上拟合模型 [^1] + +```python +model.fit(x_train, y_train[:,0]) +``` + +```output +SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5, + kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False) +``` + +#### 进行模型预测 [^1] + +```python +y_train_pred = model.predict(x_train).reshape(-1,1) +y_test_pred = model.predict(x_test).reshape(-1,1) + +print(y_train_pred.shape, y_test_pred.shape) +``` + +```output +(1412, 1) (44, 1) +``` + +你已经构建了 SVR!现在我们需要对其进行评估。 + +### 评估模型 [^1] + +为了评估模型,首先我们需要将数据缩放回原始比例。然后,为了检查性能,我们将绘制原始数据和预测数据的时间序列图,并打印 MAPE 结果。 + +将预测值和原始输出缩放回原始比例: + +```python +# Scaling the predictions +y_train_pred = scaler.inverse_transform(y_train_pred) +y_test_pred = scaler.inverse_transform(y_test_pred) + +print(len(y_train_pred), len(y_test_pred)) +``` + +```python +# Scaling the original values +y_train = scaler.inverse_transform(y_train) +y_test = scaler.inverse_transform(y_test) + +print(len(y_train), len(y_test)) +``` + +#### 检查模型在训练数据和测试数据上的性能 [^1] + +我们从数据集中提取时间戳,以显示在图表的 x 轴上。注意,我们使用前 ```timesteps-1``` 个值作为第一个输出的输入,因此输出的时间戳将从那之后开始。 + +```python +train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:] +test_timestamps = energy[test_start_dt:].index[timesteps-1:] + +print(len(train_timestamps), len(test_timestamps)) +``` + +```output +1412 44 +``` + +绘制训练数据的预测结果: + +```python +plt.figure(figsize=(25,6)) +plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.title("Training data prediction") +plt.show() +``` + +![训练数据预测](../../../../7-TimeSeries/3-SVR/images/train-data-predict.png) + +打印训练数据的 MAPE: + +```python +print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%') +``` + +```output +MAPE for training data: 1.7195710200875551 % +``` + +绘制测试数据的预测结果: + +```python +plt.figure(figsize=(10,3)) +plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![测试数据预测](../../../../7-TimeSeries/3-SVR/images/test-data-predict.png) + +打印测试数据的 MAPE: + +```python +print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%') +``` + +```output +MAPE for testing data: 1.2623790187854018 % +``` + +🏆 你在测试数据集上取得了非常好的结果! + +### 检查模型在完整数据集上的性能 [^1] + +```python +# Extracting load values as numpy array +data = energy.copy().values + +# Scaling +data = scaler.transform(data) + +# Transforming to 2D tensor as per model input requirement +data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0] +print("Tensor shape: ", data_timesteps.shape) + +# Selecting inputs and outputs from data +X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]] +print("X shape: ", X.shape,"\nY shape: ", Y.shape) +``` + +```output +Tensor shape: (26300, 5) +X shape: (26300, 4) +Y shape: (26300, 1) +``` + +```python +# Make model predictions +Y_pred = model.predict(X).reshape(-1,1) + +# Inverse scale and reshape +Y_pred = scaler.inverse_transform(Y_pred) +Y = scaler.inverse_transform(Y) +``` + +```python +plt.figure(figsize=(30,8)) +plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6) +plt.plot(Y_pred, color = 'blue', linewidth=0.8) +plt.legend(['Actual','Predicted']) +plt.xlabel('Timestamp') +plt.show() +``` + +![完整数据预测](../../../../7-TimeSeries/3-SVR/images/full-data-predict.png) + +```python +print('MAPE: ', mape(Y_pred, Y)*100, '%') +``` + +```output +MAPE: 2.0572089029888656 % +``` + +🏆 非常棒的图表,显示了一个具有良好准确性的模型。干得好! + +--- + +## 🚀挑战 + +- 尝试在创建模型时调整超参数(gamma、C、epsilon),并在数据上进行评估,看看哪组超参数在测试数据上表现最佳。要了解更多关于这些超参数的信息,你可以参考[这里的文档](https://scikit-learn.org/stable/modules/svm.html#parameters-of-the-rbf-kernel)。 +- 尝试为模型使用不同的核函数,并分析它们在数据集上的表现。相关文档可以参考[这里](https://scikit-learn.org/stable/modules/svm.html#kernel-functions)。 +- 尝试为模型设置不同的 `timesteps` 值,观察模型在预测时的表现。 + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +本课旨在介绍 SVR 在时间序列预测中的应用。要了解更多关于 SVR 的信息,你可以参考[这篇博客](https://www.analyticsvidhya.com/blog/2020/03/support-vector-regression-tutorial-for-machine-learning/)。[scikit-learn 的文档](https://scikit-learn.org/stable/modules/svm.html)提供了关于 SVM 的更全面解释,包括 [SVR](https://scikit-learn.org/stable/modules/svm.html#regression) 和其他实现细节,例如可以使用的不同[核函数](https://scikit-learn.org/stable/modules/svm.html#kernel-functions)及其参数。 + +## 作业 + +[一个新的 SVR 模型](assignment.md) + +## 致谢 + +[^1]: 本节中的文本、代码和输出由 [@AnirbanMukherjeeXD](https://github.com/AnirbanMukherjeeXD) 提供 +[^2]: 本节中的文本、代码和输出取自 [ARIMA](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA) + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/3-SVR/assignment.md b/translations/zh-CN/7-TimeSeries/3-SVR/assignment.md new file mode 100644 index 000000000..33e487d4a --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/3-SVR/assignment.md @@ -0,0 +1,18 @@ +# 一个新的 SVR 模型 + +## 说明 [^1] + +现在您已经构建了一个 SVR 模型,请使用新的数据集构建一个新的模型(可以尝试使用[杜克大学的这些数据集](http://www2.stat.duke.edu/~mw/ts_data_sets.html))。在笔记本中对您的工作进行注释,直观展示数据和模型,并使用适当的图表和 MAPE 测试模型的准确性。同时尝试调整不同的超参数,并使用不同的时间步长值。 + +## 评分标准 [^1] + +| 标准 | 优秀 | 合格 | 需要改进 | +| -------- | ------------------------------------------------------------ | --------------------------------------------------------- | ----------------------------------- | +| | 提交的笔记本包含构建、测试并通过可视化和准确性说明的 SVR 模型。 | 提交的笔记本未注释或存在错误。 | 提交的笔记本不完整。 | + +[^1]:本节中的内容基于[ARIMA 的作业](https://github.com/microsoft/ML-For-Beginners/tree/main/7-TimeSeries/2-ARIMA/assignment.md)。 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/3-SVR/solution/notebook.ipynb b/translations/zh-CN/7-TimeSeries/3-SVR/solution/notebook.ipynb new file mode 100644 index 000000000..7b4443b5b --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/3-SVR/solution/notebook.ipynb @@ -0,0 +1,1029 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [ + "# 使用支持向量回归器进行时间序列预测\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "在本笔记中,我们将演示如何:\n", + "\n", + "- 准备二维时间序列数据以训练SVM回归模型\n", + "- 使用RBF核实现SVR\n", + "- 通过图表和MAPE评估模型\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 导入模块\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [ + "## 准备数据\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### 加载数据\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      load
      2012-01-01 00:00:002698.0
      2012-01-01 01:00:002558.0
      2012-01-01 02:00:002444.0
      2012-01-01 03:00:002402.0
      2012-01-01 04:00:002403.0
      \n", + "
      " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAH1CAYAAABbUbvGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAC4S0lEQVR4nOzdd7wU1d0G8OfcQu9dQUA6goI0RQXFimL3jb3FrjHRmNg19hJrYo29d8WKFQQFC0WlSu8gvVzqBe695/1jd/bOzk7vs/t88/GTy+7M7NnZmTOn/o6QUoKIiIiIiIgIAIqiTgARERERERHFByuJRERERERElMFKIhEREREREWWwkkhEREREREQZrCQSERERERFRBiuJRERERERElFESdQKi0KxZM9m+ffuok0FERERERBSJX375Za2UsrneewVZSWzfvj0mTZoUdTKIiIiIiIgiIYRYbPQeh5sSERERERFRBiuJRERERERElMFKIhEREREREWUU5JxEIiIiIiIiANi1axeWLVuG8vLyqJMSiFq1aqFNmzYoLS21vQ8riUREREREVLCWLVuG+vXro3379hBCRJ0cX0kpsW7dOixbtgx77rmn7f043JSIiIiIiApWeXk5mjZtmncVRAAQQqBp06aOe0lZSSQiIiIiooKWjxVEhZvvxkoiERERERFRhOrVq+fLcW6//XY89NBDno/DSiIRERERERFlsJJIREREREQUA1JKXHvttejZsyf23ntvvPPOOwCALVu24LDDDkOfPn2w99574+OPP87sc88996BLly446KCDMHv2bF/SweimREREREREAO74dAZ+/2OTr8fca/cGuO24Hra2HT58OCZPnowpU6Zg7dq16N+/PwYPHozmzZvjww8/RIMGDbB27Vrsv//+OP744/Hrr7/i7bffxuTJk1FRUYE+ffqgb9++ntPMnkQiIiIiIqIYGDduHM444wwUFxejZcuWOPjggzFx4kRIKXHTTTdhn332weGHH47ly5dj1apVGDt2LE466STUqVMHDRo0wPHHH+9LOtiTSEREREREBNju8QvbG2+8gTVr1uCXX35BaWkp2rdv73hZCyfYk0hERERERBQDgwYNwjvvvIPKykqsWbMG33//PQYMGICysjK0aNECpaWlGD16NBYvXgwAGDx4MD766CNs374dmzdvxqeffupLOtiTSEREREREFAMnnXQSfvrpJ/Tq1QtCCDzwwANo1aoVzjrrLBx33HHYe++90a9fP3Tr1g0A0KdPH5x22mno1asXWrRogf79+/uSDiGl9OVASdKvXz85adKkqJNBREREREQRmzlzJrp37x51MgKl9x2FEL9IKfvpbc/hpkRERERERJTBSiIREVECvPbTIrS/YQQ2le+KOilERJTnWEkkIiJKgOfHLQQArNuyM+KUEBFRvmMlkYiIKAF2VVQBAEqLRcQpISLKP/kcp8XNd2MlkYiIKAF2VaUe8qXFfHQTEfmpVq1aWLduXV5WFKWUWLduHWrVquVoPy6BQURElAAVlameRMGORCIiX7Vp0wbLli3DmjVrok5KIGrVqoU2bdo42oeVRCIioiTJv4ZuIqJIlZaWYs8994w6GbHCSiIREVHMtb9hROZv1hGJiChonNhARESUIHk4ZYaIiGKGPYlEREQxtbOiCss3bs96TbIvkYiIAsZKIhERUUzdOHwaPvh1WdZr7EkkIqKgcbgpERFRTH0/NzfSHuuIREQUNFYSiYiIYqqqKrdKmI/reBERUbywkkhERBRTlToVQtYRiYgoaKwkEhERxVRlJWuEREQUPlYSiYiIYoo9iUREFAVWEomIiGKqUm9OIkPXEBFRwFhJJCIiiqkqdhsSEVEEWEkkIiKKKZ2ORA43JSKiwLGSSERElCCsIxIRUdBYSSQiIkoQrpNIRERBYyWRiIgopoTOa6wiEhFR0FhJJCIiShB2JBIRUdBYSSQiIoopodeVyL5EIjKws6IKOyuqok4G5QFWEomIiGJK6Aw4ZU8iERnpe9c36Hn7V1Eng/JAaJVEIcQYIUS5EGJL+r/ZqvfOFEIsFkJsFUJ8JIRoonqviRDiw/R7i4UQZ2qOa7gvERFRvmEdkYiMbN5RwZ5E8kXYPYlXSinrpf/rCgBCiB4AngFwDoCWALYBeEq1z5MAdqbfOwvA0+l97OxLRESUV9iTSEREQSuJOgFIVfw+lVJ+DwBCiFsBzBRC1AdQBeAUAD2llFsAjBNCfIJUpfAGs32llJsj+C5ERET+0ZmTKNmXSEREAQu7J/E+IcRaIcQPQohD0q/1ADBF2UBKOR+pnsMu6f8qpJRzVMeYkt7Hal8iIqJE041bQ0REFLAwexKvB/A7UpW40wF8KoToDaAegDLNtmUA6gOoBLDJ4D1Y7JtFCHEJgEsAoG3btm6/AxERUaQ43JSIiIIWWk+ilHK8lHKzlHKHlPIVAD8AOAbAFgANNJs3ALDZ4j3YeF/9+c9KKftJKfs1b97c25chIiIKgd4SGKwkEhFR0KJcAkMiNZJmBoBeyotCiA4AagKYk/6vRAjRWbVfr/Q+sNiXiIgo0XSXwOCcRCIiClgolUQhRCMhxFFCiFpCiBIhxFkABgP4EsAbAI4TQgwSQtQFcCeA4elex60AhgO4UwhRVwhxIIATALyWPrThvmF8LyIiorCxJ5GIiIIW1pzEUgB3A+iG1DzDWQBOVALSCCEuQ6rC1xTASAB/Vu17BYAXAawGsA7A5VLKGQAgpZxhsS8RERERERE5EEolUUq5BkB/k/ffBPCmwXvrAZzoZl8iIqIk45xEIiKKQpRzEomIiMiE3hIYnJNIREGZt3ozpi/XLhxAhSjMJTCIiIjIAaHTlcieRCIKyuGPfA8AWHT/sIhTQlFjTyIREVGCsI5IRERBYyWRiIiIiIiIMlhJJPLJ4nVb8cmUPxzvd9JTP2DIQ2P8TxARJZ7enEQiIqKgsZJI5JNj/jsWf3vrN8f7/bZkIxau3RpAiogo7qSUeHHcQqzfujPqpBAREWWwkkjkk607K6NOAhElzIw/NuHOz37H1e9M1t+AXYlERBQBVhKJiIgi8vuKTQCA7+essb2PZHhTIiIKGCuJRD5jAY6I7KpToxgA0KJ+Tf0NmJ1Q2kWvTMTDX8+OOhlEVCBYSSTy2UWvTIo6CUSUEPVqppYr7tqqfsQpobgbOXM1Hv92XtTJIKICwUoikc9GzVoddRKIKF9wTiIREUWAlUQiIqKAfDx5OS54eaLh+0JY1AI53JSIiCJQEnUCiIiI8tVVb08GAJRt24WGdUp9OSbrjUREFDT2JBIREQWs911fR50EIiIi21hJpIK2bssOLF2/LepkEFGeMwp6bDnlkHMSiYgoAqwkUkEb+t+xGPTA6KiTQUQFznDlHI4tJSKiCLCSSAVtzeYdUSeBiMgRLsVKRHomLlofdRIoj7CSSEREFBGr4KYcbkpEdt328Yyc16SUeHzUXKwsK48gRZRkrCQSERFFTBqNK2WvYd56b9JSrN3C0SwUrFkrN+Phb+bgyjd/jToplDCsJBIBWLaBwWuIiCgcK8vKce37U3Hxq5OiTgrlkcqq3FYl5bVtOyvDTg4lHCuJRAAO+jeD1xBR+ATHkxakXZVVAIDVm9iTSP6p5IRl8hEriVSwynexVY2I4sGwbKdbh2RBkIhyVen0JCqYa5BTrCRSwXp05Jyok0BEZI4lOyKyyawnkWMWyKmSqBNAFJW1m3f6cpzv56xBw9qlvhyLiAqLZXRTykv83SkIVRxuSj5iJZEKlmE0QYfOfXGCL8chosLFsl1hkvzhiSimONyUChafzUQUe+xxyksi3ZXIxxD5SS8QVlH6WlP3Mj4/dgG63vJFaOmiZGIlkQpWWC24H/22HJvLd+m+t2jt1lDSQETxpBTpnKyTGOcGrvJdlfjHu1OwehMX7jbDuj8FQW8Yc1G6pK+uJN49YiZ2VFSFlCpKKlYSqWCFUc6avrwMV78zGTcMn6b7/v/976cQUkFEFI6vZqzEB78uw90jZkadlERwU+HfsNWf+fRUGKp7EnPf43BnMsNKIhWsMPLG7ellNlaV6beqbzLoYSQiSjIG0DDnJXDNlW/96l9CKK/oXVaZ0Qo69yRvUzLDSiIVLL/zRr2HfvVQMoN9fE4DESVMOhPIt8La4nXbok5CIrgJoLZq0w7sqqxC+xtG4D9cyok8YGMOmWElkQqW35mjWYWPQzqIqBDMX70FADBteVnEKYk3vQAjdkkpM6NUnh+70K8kUZ4yK33oDUElUrCSSIXL58xRqLoSf/9jU/o1849i3ZGInAo623hy9Dy0v2GEq333bdcYANBj9wZ+JilvuX0GmA0hpMIlbI5jVjZjTyKZYSWRCpZf6yTqOeaxsem/zDNsvQy6bPsuXPTKRKzdsiOAlBFRnCg9SnEqqj341WzX+yo5XpO6NfxJDOWQqA5GYve6WbJuG76cvjKwNFE82O2fVq6fu0f8HlxiKPFYSaSC5XcDWpHenMT0a78t2aifBp3X3hy/BCNnrsZz3y/wLW1ERE556aWy26NB7giHc1mP+s/3uOz1X4JLEMWW3jWilFde/3lJuImhRGElkcgnenNM1K+Up+eQqOkVwooshqgSUWGbuWJTKJ9T6WLCEvMte6ymIpiS6j/tHWG7zvOHiMgMK4lUsMJu6NYbWqpXBsvMFeCM8oJVUVnlqoBOySOsQiDr+NfHMwJJi5arSzC9D/sRzXk9P5lhyswmSI03HvmIlUQqWF6iyxkcMPclVU3U7sM8jnOUKDyPfjMHnW7+AvvfNyrqpFAI4limY1CL8Lg5xRIeeyIpb+nlJ3q9zb6XfygvsZJIhSv4OmLWa3Yf5k7nmlB++e+ouQCANZsZuIiiUZzOhNibHU/qaQp25o2+/8uyIJNDMTV69uqok0AJx0oiUYDUQ1rtBoFQeh/Zik9UOIKMtuyUl14q5Xswbo25f3+ZiiDr9jw5eTx8O2uVuw+hxFGPXvrzSxMjTAnlA1YSqWD5XYYp0nnaq4d02G2UZ9mKqHDEp2qYy1N0Ux/TkY8++DXVu+d2uGnmbxv7c2ghEbnBSiIVLL9DtPt1uEx0U/YkElEEvMyLZrbljJvnhvoc2zrdrCMWNCf35KpN5cElhBKHlUQin6ifw8qD300BoHq4qfc0EVEyxKlytbOyyvW+yvfgOonhqKyS2OXh96L8YvuuM9jwtpAiJyv63zMS170/JdTPJPtYSaSCFWQRRikouSn4Vc8HilGpkYgCFZe7/ZfFGzJ/e6m4soqY6/1fluHH+Wt9OZb6+fD82IWm2/K3KBxmbTPz12zFjgrz9TLDjoWwZvMOvDuJgZXiipVEKlh+N3RbtpzbnZMouP4VUaGI233+q6qS6KbmGrOvEyv/fG8KznxuvOfjaBsQN27b6fmYlL/UeczwX5ebbssRTKTGSiIVLL9bV/06nnIcZtZEFLYKjxmPMpeao02D47RhgUN/SWE9NNnZ8iqU31hJJAqLzed09fOcGTRRofhl8QZUxGBuWWVVdRo45J0oWawi2RYXmb/PxmlSYyWRClboras2M98iDjclKhjqitiIaSsiTEku5kHxJKWzCKfqJ907E5cEkSSKCb1ijTqPKU5vYFT6Ufce8v4nVhKpYMV1AE71cFPm0Em0s6IKm8t3RZ0MSqBdldHf814bz6q/QVxz2MKj/kmv/2BadAmhyBVZ9CRKg7+pMLGSSBQz6gf6hq070fGmz32LiEfBO+3Zn7D37V9HnQxKiM3lFZm/LcpvoVDnP14KiZwGRxQ/xRY3ZtTDTacvL8MZz/6M8l3mUVgpHKwkEsXMD/PWZf7+fcUmVFZJPPHtvAhTRE78tmQjAGDUzFXRJoQS4dLXfsn8fc278VovzE3gCg6ACJ/V78T6emFYvnE7Zq3cnPO6+vKwmpOYPdw0/Jv55o+m46cF6zBzxabQP5tysZJIhcuHJ+fcVbkZshG7QSA+mfJHansJ1CpN3aI/zl/HSGMJc+Erk6JOAiXcHxu3Y/OOCusNfVTkuQswHd3Ue1LIhJOnAaObFoY5OhVELcvhpg7mugaJpZ14CL2SKIToLIQoF0K8nv73IUKIKiHEFtV/56m2byKE+FAIsVUIsVgIcabmeGemX98qhPhICNEk7O9EyWQVBcyOYY+N8yElxkqKqm/Ruau3BPpZRBS9h7+enfl74qL1oX++OlfkcNPgrdm8A1tMGgKqqiQe/no21m7ZEWKqKF9lAtcY3J9Rx0JgtmHfmNmrA4+IHUVP4pMAJmpe+0NKWU/13yua7XcCaAngLABPCyF6AED6/58BcE76/W0Angr6CxApdgZ4g0pkt+pbr29EREn3eIyGlrspL3LAg75/fzkr8/eOiuz5Vp9M/sNwv58WrMPj385Dv7tHGm7z3NiFqDKZTMaCd2GwM1rJat5z1PevMhdx47ad0SYk5sbOXYPzX5oY+PMi1EqiEOJ0ABsBjLK5fV0ApwC4VUq5RUo5DsAnSFUKgVSl8VMp5fdSyi0AbgVwshCivp3jj1+wDi+OW+jwW1C+CH0FDIvMd+zcNVn/fv+XZY72JyLyymu+qGRTfozUyCdPj5mf+fus58ZnvWdWuK+0GUlEHQApB3+KglDlcztyFGUOZU7lKz8uxtotO2KxdmwcrdmcGlmweN3WQD8ntEqiEKIBgDsBXKPzdgshxCohxEIhxKPpyiEAdAFQIaWco9p2CoAe6b97pP8NAJBSzkeq17GLnTSd9uzPuPOz3x1+E8oXcXtuXmQxhy3qYSBElP/UlTt15eWn+euwZN22KJKUdyYt3pD1b7Os3ajSrp2jbnfOu9rMFZtQto3L9eQLP0oIRTGJVLJ+6070u3skbvloetRJiaWwOjnCvBzuAvCClHKZ5vVZAHoD2A3AoQD6Angk/V49ANoQR2UA6qveLzN5P0MIcYkQYpIQYtKaNWu0bxMFzk0Grn7wRx2amojynzCYlHjGcz9j8IOjQ09PoQuyR/bo/47FKf/7MbDjU7j8aEiOywgAZXrNiKkrIk5JYQulkiiE6A3gcACPat+TUq6UUv4upaySUi4EcB1SQ0wBYAuABppdGgDYbPN99ec8K6XsJ6Xs17x5c6zjJPCCF0ZLjJPW3R0VVbhV02qmzvPZk0hUWOJyy1/99m+2t1XSzMA19ml/5q07KnDxq5Owsqzc9nk07Y00KfjPY0C0vGEUAV3v5bhUBo0oS3VUxiUTjKmgz05JwMdXHAKgPYAl6VDM9QAUCyH2klL20WwrUV15nQOgRAjRWUo5N/1aLwAz0n/PSP8bACCE6ACgZno/Uzd9OM3VF6H84XcmaXWz6mXgQmRn4K/9vNjwmFwCg4iCpl4uQclxPjIJrGJ8HJ8SVAg0eftnU//AN7+vQuM6pTixd+uIEkVJY2e0kdUm6vvWzRBmvzEb0RdWJT+s4abPAuiI1LDS3gD+B2AEgKOEEEOEEO1Eyh4A7gfwMQBIKbcCGA7gTiFEXSHEgQBOAPBa+rhvADhOCDEoPY/xTgDDpZSWi8WU7+JkWAqenzcyh5sSUdCyRpu6iW4ag4Jl0hidMSlhWEr28yyzATI/+DLcNMTWHSX4ihmu8Wku6Fs3lEqilHJbeljpSinlSqSGiZZLKdcA2BfAjwC2pv9/GoC/qXa/AkBtAKsBvAXgcinljPRxZwC4DKnK4mqk5iJeYSdNvO7Ib3qXlLrA5GpOIh/eBWX15vKok0AxEkWFy3N0U2W4KfsAbNMuX6GcOwn759HLlaKNpE3JZNSQrJePxKEMPPA+44UOWPQxF9bvF9Zw0yxSyttVfz+C6kA1etuuB3CiyftvAnjTaRpicH9QwlRUVuHmD6fj0oM7oEPzer4cU8D84Z493NSXj6QYu+uzmVEngWIkiopWdtwa55lOZg8+ZN1TnTu9de2276rMfdGDiYvW40/99vD1mBQ+vxuVrQ737qSlqKySOGNAW1fHr7AxPIrZiLmgi4UxCXYbPjtd2Lsqq3DfFzNRtp0hovOR05aYacvL8M6kpfj7O5MDSY8edSZt5wGwdssOrN7E3qikYs8xqUXR2p81J9HD5cjCnX1mw031yirrt+YuNO4l72C2kx/srqnpl+ven4obhwcT34OXZDwUbiXRxjafTP4Dz3y3AL3u+JqFtzzk9CdV8t8ivabdAD4vvVfmr5ttrBfU7+6RGHCv8RAOireiOIwBotiI4nrwPtyUz0q11ZvL0f6GEabbaE+Z8hOY9eRKhlUgDaNbL4m3pKwet04RKtxKoo0Lr6KqOhdesp6LCBc6JdMKM89SZ+4MVZ7/WEekqBksk+j8OLyYAQA/zV9nuY32PKvPndFp/HJG9vpxCawHUATiXmFsUb8mAKD3Ho2iTUhCBN0oV7CVRDtFffV8kLjfWBQ8Zfx8SZH+bWO1no/+5HHz65CXHVH+mr/GvOEnkrVRs4abMgeK0ufTVujOSQSAbTuz5yU6qZKPmb3afaIocdZtzY0iGtcmnCFdWwAA9mhSB0B80xk1PxrhKqskllp0gBVsJdHW+c1aL4YKnTLev9jgqa19aPuBZbTCwuGmheWwh7+LOgk5eAX6y05hTlsZV/Yo31WFFWX+zzH/x7tTsGQdR0cVigtenhR1EmxTbhdtxF/S5+Us/XfUXAx6YLTpNgVbSSRySmbmJLo9gJvPZEZZSNwU0KWU2LgtN5AFJdf4Bevw9oQlkXx21mLarvKs9HH8SU5BUv8GO3xY01lbT5UABj84OuvfZuav2YLut35p2etA5BfWEc35kb/+NH+t5TYFW0nkA4zcCrPe5uSjrIauUfwN/225433eGL8Eve/8BvNWbw4gRRSF0579GTcMnxbJSIKbP7QOkGVGGVbPTvGUiQvXe9rfaMixk2tDu63Txsd3Jy3F9l2V+GzqCuuNKW9E2UZdnY8wIwmKnSWWCreSaOO6y5rAzx6dvJOEvMfJZXfuCxOCS0iBWrZhG35eYB14wg9uK3ljZq8BACxYs9XP5FAMWK1T+Pd3JuO0Z34KKTXOJCB7DcVrPy92vI/62WRUSI6iROJm3UwiNzIjEpiRmPMUXcx6k8KtJPIRVvDCrvfrfZzVVejkobyrkjHR/Tb4gdE4/dmfDd/fsHUnDn5wNOau8t6Lt7PC2wXJ4lv+scqjPvxtOcZ77Kny8vl+7UPZ7JRPnDRc6w039cPOiqrQ1+Yjb5LSQ8erypwfP5+dQxRsJdEO9U1UJYFHvpmDdVtyo0RRYYh5nhr79CWRVfln1KzVWLxuG57+br7nzzL6/Rau3YoFmqHEUkpsLt9luh+RV256jqp7APL7whw3dy3m+NA4BJj3NtqtDDr5pTZu25X17/d/WYZtOyscHCGlyy1f4JJXkxMUheJj8TqLkS9sbbJl4dpgRxAVbCXR6fPrg1+X4bFRc3HD8GnBJIhiZdHarfjvyLm+DjPWHmre6s2ZZTX8wMiYEQrweTbkoTE4VBMF85UfF2Hv279mIIk8l+RyUr7nRme/MB5HPvq9L8darIk0mhU8yJdPsLZms3EDuNKzqXc9jprF5TTyVZDDi697f6rFZ6fkez7ilnJP/r5iE1ZvdhcB2U6RkZVEm54ek+opKN/l/zIHFD8XvzoJj46cg+Ubtwf2GfeMmGm9kSaPvvDliZi4SH94GSuJ4YvqjH/9+yoAwBJWEhNl9SZnD/NI1klUSXIlNV8Y5THa38ZrXmT2W/PRkj/iEn3Y6HJT0lcoIxL8sGn7LuuNXCrYSqIdepdm1A9tCsf2dGNAlc40P7eXgLZVrkPzejb2yTZq1mpc/vqvutsyL02mnRVV+G3JBle/n/paZNbkr/Vbd7oagmfG6UiUqH9SN58fdZrzgbpg7PV8bi7fhfd/WebxKJQE+VQGYJCkeGAl0UQ+3XDkTlaUOb+P7XI/o4YK9iQG58o39Svmfrh7xO846akfMX917twCOwsK81cPRp+7vvFtOKGioIJL8cIM1akGUW4XrXU+2mDgfaNw84fmDRoVhXQtJ4TfDYWBNjwaHFspxlRlehRZWQzC6s3l+HmBddAzVhIB/DjPekFJBa/XwhDE7xx0pEDWEYNjtT6Y2c/065IN+HXJBsP3Z/yxCQCwYdvOnPfu/3KW6efurKzMDD0l/y3bENxwc1sift54KqDxWelaVlZucB61PS3zDZbAcfNcWFFWjjfGL9FPT9oRPjegEAE6w6hZsAnE9OVltrYr2EqiOsT0mc+Pt70fK4nkhNn1UlRkI8y5TgnBqODGnsTw2TnlJz/1I05+6kfjY5js+87EpabHvuBlRhbMZ1FPb+DjLhp2zntYl0ZllcRTY3KjNwcdVZGcS1IRwO5wUvYkplz19m+49r0pvh3P7jKABVtJtHOB6t1wHCdNflwD4+auxQQb65vp5Y9Gn56g5wOpmD3Y+YDML05/zsok//7MkALl95VhdLytPs/LpeA4yi5s3J+u5iTbXbLFYLNZ6WVlkpz1BeHjyX/gPT/nFtvMnwu2kmiH3Zo25a9Vm8pxxCPfYUWZu2FnRqHMz35hPCYv3Wi5v14+aZR5JqkVMR8NfmA07v7sd8f77apM/aC6v7XBPvq/NZ+qcee0ZzDqdco9FdR4OTqiLlyrb+84NUw/+NVsXOxiXcQZf5RhU3lwERjJviCvpslLN2LPGz/HKU8bj5wxS0f5rkpM0ZSL4nP1x8sTo+eF8jkFW0l0WwFk60ZhUB7Yb09cirmrt+DtCebD/oyP4086zLw9YQmG/7qMw019UlFZhR0V9pa6GTN7DYDU77Rk/TY8P26ho89qf8MI08aCzeXeW/F/XrAOX0wzn1NJ4dq6owIPfz3bcjunPcnTl5f5vHam8wyMuZA7Tp8Vdrf3+7HwjYs50MMeG4dzXpjgb0IoR9RFgO/npJ6Hvyw2noOv0MvbWL62b+aKTaF8Tkkon5JHeA0XBt2FXDUZcKXDZn43Qwf1exKrXy3fVZkJq9+lpfWSGmTtlKd/xJRlZVh0/zDLbT+Z8kcIKfLm9Gd/BgBb34eCpdy6j307F898t8ByezvRbdWOfXwcAPe/tR/DmwvhGTnCIpCVG07P2xfT7aXBy4ioMbNXo0+7xq73V9P2EFH+aVK3hm/HUnrQN27bhV2VVSgtLtg+rUDYzRV41k3otsoUwhOQbHlz/OLgP0RvTqLqtb+/MznzN3sS3Zm+vCyrcDxlmb2oX75jM2reUwo+uyrs/daJHm6ax9nRXwJYEsdoKLLRbzDVZj7l5bFwz4iZ7nemxHPaaNSpRaqheq/dGlgfW/c1/c/7/Y9wes0Kid2osawkqjz89Ww8GdI4X0oGs/toqcPw+K6WwLBolRg3t3r5FoaKdm7k76tw7OPj8N6k6Beb9lofYB0z/pTfyEZg49T2wSVF//M0H+jl84f/utxTWgpN1Pev7vA/l8cq274LW3cw4E2cBVFaUBqq69YsttxWNyif6jV1D3iiA3jFFHsSXXj823l48CvzeSJxmkROwVHyJCWjkjrv2RkKFkTBX/2SehkNVhGdW7QuFcZ9djqi2uJ17sK6M1cgO5TrxM7yNwCj2xYSo7KF17Y/z/u72KfXHV9j/3tHeftgsuXzaStQtj38oEB6gYiUa83tCIiscpbqX06H3ZM1u/lC4VYSTU7Q6k3l+GLaCuyoqMp5j8/swpDzwPaxldUJvbxRXXAsVhU2iwr3brZUtm0XHvl6ds48UqX3VRnqFcQwMqIMpfHJbk+iy0xm2rIyvDvJXbAtPz6f/OP1N3AyJ1FKiW0el7xYsi4VOGkzexIDt2TdNlzxxq+4+u3fbO/jpOHJbMur3rL/mXaPnZU21Z+sI0aHgWt0nP7cz1iwRr9HgddqYbCTj0ZVgFJ/bFYlkcNNDd3x2QwM/3U59tq9IYb2bJV5XTl9ym/p92/65vgltrdlgTz/KY1PdgvubkeuHPdEKoDNqf32cLSf9tMKceTMzwvWoXZpMXrt0SjqpADwXuaw3SAB4JUfF+H2T6uX8XHTkz34wdGO9yF3lCjcTqe+AN6np/wwf52n/S0b3lXJcxokkKzZfQax70HHsvXGNxyH/+QPO3nkqs3lAIAvpq/E4nXZoeXtFKC8Xi9W+wuDvylb+a7Uw7SiKnt0gHLOlJ5E9TUxdu4a28c3+pmeH2sdwdINvQyeOVP8ZYaxB9yTGKWk50OnP/szTnjyh6iTEYnPp68M9Phz0sP6yR/akTBh2qkz0k659+2Ue/R7EvU3iOL7xVX7G0bgl8XrPR+Hw029MDl5DA6SP+zkO6s37QAAzF29BTeml5pwsr+X7QEbGakKr01jmbmlmnOnnDPtHFQAvqzrFfWjbf6aLZm/35m4BO1vGIE1m3dEmKLClpmTaPNW9bsBvbJKmhbgtO/5lWcl0bsTvQ/XdcLoXHsfbhot9TV15KPfM6CNj5SRRFHM2atR4q36oHtd6482ZSVR45vfVxu+V7bNXtAoBq4JyC+LN6CiMrcFhfKLkiUN6twMAHDGAGfDtrTHcZ0O3cA1+ke1W/AsSOlz8+Toefh5QfUwmcxwU2UYoMtz+NvSDV5Sl0pDAA/CP780MfP3u+kIrm6D8xSqXT7m98pvbHeoj5+Fo9Wby9Hxps/R/56Rtvcp5LLZXSN+t94oIOp8yE2eJKXER78tx/adlf4lyid6sR7IHeX5FVQd0ez+b1yn1NuxdcoxRmWbfB1uumzDNrz0w0Jfj9nrzq9x8INjMGfVZl8aulhJdGHiIv0C4QUvT8TR/x0bcmooCJnMMZ0Jq+f7KW85LcC5m9+jk5HmZ34ZKOXXm7Vyc2ZxeUA9XCd7O6eWmgxRV3w+zf8FuNX0rot8fbiG6ZYPp/t2LKc9iX5auj41XH7tlp2G2/BqUYnwZHjN439esB5XvzMZd0dY0QWqg9hQMErSC8wr0yncNnLO+CO15mbZtl34fk7uNIu3JizB+AXZcxC9xkCwWgJDLV97Es95YQLu+PR3rN9qnCe7sXbLDhz56Pe47oOpno/FSqIOq0vfqLD/7azVmLmCi37mBzvzDUNIhcUSGBxhaq3LzV/gs6n6FTTl/GV68Xw+oerewWvenezbcfWSWSUlFqzZkikwGKbJt1QUhtGzjYf2OKVcDjsr7f0Kfg4jc3MoNw1b+ZIlqb95ZZWMZJkBAK6GZ25OL0+walO5p/mvdn99ox6Ls18Yz0bNACk/rZLnuz3XF7ycGnGy0GCUyY3Dp+E0VeOq+rMBYK6Luaa6kdvVf6u+TFWedj4recrHk52tKetLQDHOSQyQx99n5opNmLeaE7gTweS3ttO6lRXRuYDn90Rpp8lwQe1cxSALuOW7vD3pnvvePAjO7JWbcejD3+HKN72FJqdsxT52+yn3s93AA352BNta11Wa/9sOo4Jekt37+Uz0uuPr0ObTqSt2d4+Y6WL/cEOajZy5Svd1zj8Mll93V7FRAByTD1BfYyc99WP6tdS/Z610V741yi8q8yQf0VLO4B2f/o5py8oCmVu6elO5wWczuqlrVmPmJyzyFlno6P+OxeGPfO/pGBQuiznWgbniDZ11+/Izv4xEdU9i9r/1+BH0ZYyqV2re6i1Z71n9rPd8bl5YfGL0PADAD/PWukob6fO1iJ2+0OxWPP1cgiKKbCPJZTt1gfWTKX8AALZYVHoWrNmC92K0PqXT47i91jmiJRrKNZqZHePydyguVhpL7V8w6s/Srq25bWclVm/Wr5xk9td5zaiOlK/TJtTn8LgnxuGpMfPs7ejgdAy4d5SzRGkUbCXRS572n5FzfUsHRccsQ/VvnUT/Mzd1wdHJQsmUS3v2rM6mk6AfQO6vP2VpWebvwx/5ztGxAOCf701xtR+QP8MAw/ZHWblvc0aqpzrbDVzjy8emj2UnLL33D1R/syQX7bKG9SuvWXyhYY+Nw7XvT0VVlcS7k5ZGFuQuk16Px1mwZis2bvM2zFabBm1FZM3mHbju/SmWw+TJH3rXcLEmyrcd6vKT3m6bLIZn6ze8V786alZ1g2q+zknUmvGHvelqTs/GpvJdmLpsY9ZrXAIjYIMe+FZ3gi8lh62KoOn+TgPX+MNLfjlh4XrL1vBCNn9NdJE/7eTZ7/+yLKcHkoL3x0bni1XrUe7dIrtPXpOb/YNfljn8cPVh7WUihTzcVJ30zIgDi1x8e7qi8+6kpbju/al4YZy7yIVee+a8RkdVG+NhTu66rTstowPfPeJ3vDtpGb6YHmxgr7zm022mbZQyu96zgvnpBk1zkQDVcRaonsV52pEIt023z1pMPdG68OWJOP6JH7IarbgERsCWrt+Ouz6LNnIYBUf7YNVb5DWq8o/bj924bSdOfeYn/EVvCGvMbSrfhdd/XhxYoVNCYsrSjZEFpwjDpMWpqMwJLrdHxu9zdnj3lvY+1+S9f7w3xdFnqgtaRsO3zCKfupHkBim9AvI2m0tKbEj3vjnpgfbzGssJyGUvBQ5ete/tCUtsbcdRMc75nS9pe+xeNGnk0P+1ql+1GiKqt3+hPZr8GqZt1QOprMjgprLNSqIHhXZBFyKzFhs7Q7OyA9dEe8UoAVyUcNdJctPwabjlo+n4JV3RscvJEKalG/wP154bB4C5RhL5NdxJ+f1Li8N/9Kq/g1Fh4cD7v836t9n1+v4vy9D+hhFYu8V4nu4kg+WikkDvJz/s4dyh3qN0grb8OD81L9jtVeOl52T7zkps2VHp+Th+2WURyZeNVt45OYXf/J66XvXKI9qXHvvWeI6csKjhWOWZusNNDXaJuuwUFO0ZdPs1r3p7sq3t3JQ/WEkkcimqB7A6w3TSElXkYt5BXCgt8k4jhB7/xDhb24n0/4KWxHNP/jUIhh3KfUVZ9TBZ9XewW+k12+ytdA/RorXZQ7TVd1GSoxJmz0k0zhv+Oyo3RsHYualK4uZy+z2p6t/k6THzbe+nddC/v8Xf3vrN9f5aej+h+roCzM+PtmDa925n87rJmpNK1Aid9XqXbdju+DhBBCtiI6p7QURGBVhJjJRRaFqKI3c3oM4oVc/cHifB5TXXD6Q5q8zn772dXt8raQ8npRCqh5EGvdMWlqIKnLBhm7fhnwPvq+4ZVH+HIL9Osu4kEzpzEnU3s1GRtmPQA6Mzf7tdb3nrjgqsUw1xdTTY1EEvzvkvTrS9rRXmV965uefUPYEV6QqGk3qG5XribuYz503mYY+f1/75L+vfk2puzm/BVhL9mCvhtQv89Od+tt6IYiFOmZfbtCgVIT6Uq01eutHxPk7u+ygqn1bJy9ehO0Hy65wpR7F7D77+s/1KhuVnZw039f597JyTfMlqwvgefkTQvert7B5EKaXttBtdk3q/8sbt+mnVC9RjnR9ZJIwsuauQZe80fXmZz0vuOD9WoV0K2h54L+c/qECaBVlJ3FVZhTGzo49MunS9/3OgyD7zglryijeW2Utmg+R9N0WQlS67Bffpyzeh/Q0j8OsS6/lWS9dnD8sqtIdgvvBrJI9SMBs1033ESPefXf237eGmAOasyl4Y+5UfF5lWELOWcU9wi1TSRhcAwLTl0c439zIHNcGXSuT8uFa/nL7SUT5ntakfFVdyxur82Q28pVaQlcSdFbkTQ+K+WGdFZRV6/OtLvO807DkZcpIfZQWgUXrknO7n0yXm9mHqtBcjTuIU+W50OiT8yN9zA1ZYMitch/TDqD+nz13f4IQnfwjlc5NE+zP5Pd/j21nhVxLVX8HJ3MgjH/0+69+3fTLDdLizWnzuWueyl8CwP+fOi1+XbPBUUI5TPqmw+21YP3DO9agigx29jzDwNlrB65qcSWMaRd+F58aaL43R565vVJ9tL68oyEqinns/n+l4n/lrtqL7rV/mvB7EorBbd1Ri685K3PnpDN+PTdbcFASs1odyS8pUJn/HpzOwoqx6XqvdOQLxK0Yki3Ie3eTnFSaVjShaUddv3YkpLobcFhr/ehL9OY67z/ZvuGlFVVWmkKE9Ur6U9Z2cox0VlWh/wwjPn3nyUz/i48l/uN4/kGAiOqdh1SbjiLZ29idnKqsk+tz1DdrfMALbdXqDnJ5jve2FgK83r9NDjZu7FrVKi/1LQAL4fbsGMUKFlcS0r39f6Wq/7ToVwnNeGO81OYaY34bDjxaeN8cv0RT8/fv11mzegZd+WJT1mtXRlUJPEnsSFUEWOJyeFjdpeWrMfMNeqQmL1js/oI4k/75x5VdvUZRDGLN6Ej3eSEJU91mZHaperRJPnxMXVoFrynzsAVmwxjzYlhkvIfWNtn35x0Vuk+MI8y1jM/4oy8xZXaUT8NDp3ay3vYD3fMHLkl9Tlm309NlJlITh+KwkBmDiog3YXG790GALW7JZ3d/aHmU/h5gVFznPXDKVxAT2JQadl0pp/zMmLfZWmTN6EH8+zV1DFQXPr7w62jxf3ZNob48dJqNiitJ5kNlUjfoxriSe/uxPePZ746UmnBTgrvRxyYnFPsYqcNooofeVl3hMj1UaWAxyRr2sTObcOu5J1O9KtJM/zVq5yVY8DaejL1I9pIV9NcTx27OSGJC9b/8a60wWGaZk8ePmvffzWT4cJUUvAw4iJDXlUuZjue0V4s8Qf9rfyK8lMOLy29tt5T/tWeMI3Eo7lfZY6n/HOc/5ecF60zzZSU/IhIX+jAIA4HG4afZT4Id563Dow9/Z2vfcFye4/lyKmMNGVC89iUP/MzZruRbDz3B470e1zBCZK8xKos4NtarM/wrd2i3eQ1pnJK/zJ6+4DRgURLYnhH4Bxm60sQSMcDAU1GPE1TlxHTTA3X52uYlgRub8jm4ajeqL3PP3kUBR+qaJecw3X7hdJzFJ1PPbnfKyvNKnU1KV4nw5j0FQj/7RPcU+zUn0ei+rd3caDFKC14CRHRX+P9Pt3quFWUnUsTOgICNmvNwPqzeVBxIgp5C4jhIag4zMukKYuwVb6oylTo2zCyLO53PMbHdDmx/5Zo6rtSPzndvfWrseb6RVRNXl7ce1W1GZOsbaAhgxk5Qh+ss3brfeKABm58fupZbkxsugqc9NaXF1sd3/R5B/BzzD4TrgcX6eBmHasrKc+9XoFFzx+q+2junkDNo93QVZSYwiL9pRUelPtMv0Dzvg3lG45LVfvB+vgJndJGbXyKTFG2z9lqkeP+fpCsLGbTs9DWOiXK7Dj4dQVZjucr20x0bNxYlcEiO3kcXlT/aSdnHxCPMDdZ5WWSXx6ZQ/bE2JaFG/pu7rSqCl+75wHhk8acKuwOzesFa4H5gAqzeX44lv5xb8WnpFevEIHF6f67fuxKZyTQNW1Kc16s8P2fiF62xvOyqCJZMUBVlJDItSGPx1yQZ0veVLHP3fsabbX/TKJAy8b5Tue3oPqe/nrPGcRnJn644Ky9blIDNdp8f+61u/4dGRc4JJTIjOC3DeTFgFwcgfxuSYf9FNo6Oer7Z6czn++tZvuOx164bGFg1yK4nq8+FTfToxtOujBvF9T9y3dQBHtRZEj6lflbqr356Mh76eg2kuG8DyhW50bIeneLTOSBMlrJ1tesnw8FNXSeNctnCemeF9UbvlnfiGHssjJz/1IwBg3mrz0NYjZ7pYnJsiISXwzqSlUSfDkDZa5x+qYQ2Fk+Ea+993xlEN7YrzaTTtJeewrtDkLqUTj6tmy47UVAWrZxKgfy0p+wPxvg/8ov4ZL3p1UvCfl0f3qF+X/Nb0XGunc93ygdH1oD0Tdiv5ur+JlJFedzHJGhPNzwBaClYSffDl9JUY2rNV1MkgH1lllmXbrZc4ESLaddHUZNbf8UiTE36vJ/Ts9wsy60655Xq4acSnP+rPLyRxWgdLnZLvZqdGoWxwub7f31RLPuzfoamXZCVC2L9j0u5RP05PnO6VODO7Nuw+2/W2M9pzktH6vT7/XIUWuCbq693up4c+3FQI0VkIUS6EeF312plCiMVCiK1CiI+EEE1U7zURQnyYfm+xEOJMzfEM9zXi93VoZ8iObjoK6Y7IMxURt2ZaPQx+nL8Oxz0+DjsrcudOJiUIQ5C0996KsnLHZ8VtZTuMCfpe5zBUVklURBDMKy6C+oXiErjGz/0O794i+4UEP9aWbdBf/y3sZ3VS60t2071w7VYAyFlvr7JK+hO7Ic+oLz8/nh96hzA67DXvTjE4iN4xjNO2futOHPrwGMxfoz96odAC1+hRTsE3v69C+xtGYOM2H1dIcCmKOYlPApio/EMI0QPAMwDOAdASwDYAT2m235l+7ywAT6f3sbNvpPy85hesSWWqvI3iwfaQF81m/e7+xtZCtF5d/8FUTFtehhVl23PSkbSexN53fh34/Ntx89Zie0jRgiWAH+evDfQzJi/daHiN2inIHfHId+h08xc+p6rwaM91XApCPVs3AAC0b1rHctuYJDkUhz9ib01BNTb2VtOtfOhsp0Rf1i67cc4L49GZ+Y6prFFBmhNue7ip7mv617FfedZXM1ZiwZqtePa7Bfpp4m2U+QWe/T41HWb2ys3RJSYt1EqiEOJ0ABsBqKOznAXgUynl91LKLQBuBXCyEKK+EKIugFMA3Cql3CKlHAfgE6Qqhab7hvSVAvHl9BU5rzHiYLyMmOouUujaLTttLURrxSpDVR4eykNjQbrlNok2uhwS55TTJWXcDzeVuPuz6CJCSplKQ5nJeU3y9RIEt791nHrt1RVW5fvUqRHsjJOkFfzKd1X3YqmTzuGm5r6YvtLwPbNeK+1p/XF+KuLjNe9O9ill+UF9Ds0aJWw3AOsc48nR3ufpm1Eqm0p0Vu33kFImrgHbC70cRWT+P32OADw+am5YSdIVWiVRCNEAwJ0ArtG81QNApj9bSjkfqZ7DLun/KqSU6rCMU9L7WO2bWJfZXBOFgmNVuHvs23m2jhFVlqfMmYxi/U8ypxSEtMIsh743aRl63fl1eB+YMH4V0nMD1/hzXDfUeZqT3oGkDn1MsiQWlX//Y5Pu63oF/6pMI2Y19d/Df13uY8qSQ0qJqcs2mm6jN0BkZ2WVo/VKja4vr0N9za5bJd16K3hY7VuoVm0qx8PfRBuVPsyexLsAvCClXKZ5vR4AbUzjMgD10+9pcx7lPat9swghLhFCTBJCTCrbGE4I5SAKBNrWl0KeNxSUHRWVWLmp3HpDC0G2ilkV8pRIcB/9VpgPWyt6Z+/6D6aF8tmXGqxvWhRiafy7uVw+JwzaXzRuPUR2kuM0zfnSGyCl90Kzl89Omh0V9kdizF21BUvWbcPERRsyr5llf1VVMpknxaGXf1yE45/4AePmZk9HyL6npM5fwKK1Wz2PXAgycqxSdlWec9re+QL4eR2LwzkJpZIohOgN4HAAj+q8vQVAA81rDQBstnjPat8sUspnpZT9pJT9GjZq6Cj9dmjXTgKsW2Dd/P7aG8uPUP6UbcTU3OG+bjlp3bNLADjo3/aGrEYdYCdoOyoqM+tGrSjbjvY3jLA13y+sIaxO+P2A5lwp/1z4irtlD/SWwIgqhL9e5W3mik0FuaSAXW/8vDjqJCSKXplHLxt6Z9JSDH5wNP795Sxbx+1w0+eYsiz/10ecm16SZuE64+H+Rtm6H/fxrkpvxzB75CjpU3oStc+nKiljUSkK2sqycoyyudxdHEZxhNWTeAiA9gCWCCFWAvgngFOEEL8CmAGgl7KhEKIDgJoA5qT/KxFCdFYdq1d6H1jsG6q/vzPZ8T5+3BCrN/tfCSkURjdghceMMnN8CFz19mRfjqXmJHX5XFHYVVmFrrd8iXs+T83vU9YIemtCfNevVMQh89dyeq38sngDbvt4el5fY17ptezHIXqj+hfTi4Cs5uVaTUKv4rotO/DjvLW6QSK2hRTMSisJ500reSmOn+L0zValqfBlzUk02NdJHVF7fKvX/ZAZbmow3lTCOG9M4v1g5OSnfrBudAyhfGA3Xw9rncRnAbyt+vc/kao0Xg6gBYCfhBCDAPyK1LzF4VLKzQAghBgO4E4hxEUAegM4AcAB6eO8YbZvmNxewj/MW4sDOzUzfH/Zhm245aPpLo9OZozKtkH3vg3Ys0kgi57qimFlxC870oXbF8YtxEn7ts68zkpLypxV1gule3HK0z8CAG4/vofFlskTVKEkqCtTSuksuIoqIRVVVQCKTY7tPl1JcNOH0/DVDP2WfTvffVYQEQgjOuc/LdCfL+2F3YbszeUVvn920giDXjY19VQTt0tjuG0HX1nmfhqO9XBTieOfyP8AjX+kz2FSstVQehKllNuklCuV/5AaJloupVwjpZwB4DKkKnyrkZpPeIVq9ysA1E6/9xaAy9P7wMa+kfrWxlplE40WKk178KvZGDOb84fCVFkVbEu/0cRtu+zs3muPRgCA/u0slw1NLPV5GO1xXcB8dMxjYx1tn++VgTgI6hzbOW52b0T1P/wf5uzr4QK3fZd1fh92W1vCTqGptyYssbXdjcPDmRMeZ0oFSvv7Zy97ob+vk0rivZ+7i6598IPm01zMGte0wYpyo5u6SlKifD3DOApwXEWxTiKklLdLKc9W/ftNKWVbKWVdKeUJUsr1qvfWSylPTL/XVkr5puZYhvtG7cGvZltuM8MgIhhFJ+iexKAO/9uSjZm/pyzdaLhdvsgK6R9dMhLH7fDBdVt24KYPp+UEqCiEh7tbOXMSY9hDaVVJjOPQaKfem7QU7W8YoTu01nRJgYgubo6GqA66NlnzLAt7OZIoaG9JadB7qF7X00ljj9G2VhXNHRX6S8TYYTnctAAuebsjyLbvjGaYu55IKomRC/FifHeS+fyob35f5WmOSiHcWGHLp0AOepl+vlwz6vleUlYXHsL6etrCS1K4/f3v+2IW3hy/BJ9O8S+wU1y5PUc7KipN8w8ZUJBGp5UK9eZW+Z2X9MYhr6mqkrj2/akAqpcGsiuq9I/iyAhcnY7z8M5Eez2R+SDTk6jtZVP9bTRCxI9rVe8Qduvkn08zfy5k1kk0OKBZBTUO+Ygf1F/9rs9+N9xu2vJUkCanazcHoTAriSH6dEr2ouvrdKJdOhkmQMELvJIY4s9dKFdWFBPbk1pJ1LN43VbLM6jkU+zlMNb1li/xt7d/M3w/qHlXdn4Ro+AXXkdOXPv+1KyAF3G7OoarlgFymk9E9V0WrDGObhlXeoF//KCtVCj/mrpso+2hrElRPScx+3U7eW7Y5UhtVe+KN37Fui07DbdXklfI6yQ67QXfYRFUzBt7aSnMSmKEoxUuf/1XR9vn/8CK+Al+uGl42WE+l+ezhpuqvueIqSssIzYWMr3n1BnP/my9H6zny5D5Ejrbd1Vixh/+h/J3vJahg4AXVuWanRVVWLZhu7MEhGjjNuOCK5DfeWSYgppTqK0krihLXWvHP/FD3s1jzCwPoclV7VyjfjRuO7kX9DY1q9Qo6Xvlx0WOP7sARhjrCvZr2/uxC7OSGOFwnxWbch+mnobzsIjmmlHG41cY6ELN2KIgkZ2hrglgfcp8oZffbNtVaZmHFdL1HOQ6mr+v8H8euvMesurtreJ02Xk+1SjRL0q8+MNCJ8mKhNm5YwXSGa+Luesp1nQ9XeawoT1JlAqxtghip0jiR+Oz12Ns32k8UkI59laD+Xbmc4M9JSs2rO4O7bracfjahVlJDIDRhW9nzb0+d33jd3LIBm3Gs3pTORau9W+Yj1HGFocbPx9MVS+unBMpLd5nOdEVrnifWl8c8eh3Oa/5dU1FdWmqP1Zd6Hx+3ALPxy4t1r+gP578h+7rcWL2e7ARNnqJziud8jTctHoeZ1Q2mQynt6roxu1OW7R2q/9LlVlcy1OWlWHVpuplRoJ9VnC4aSzYWXdom04Fc/ivy2wdP+Zl4UQZcO8oDHlojGH0Lb9wDqo/Tn3mp8zfOUMgeYoNCQEsW78t53WrU2Z0V8S9Qu6G3txBv+YqR3W+3hi/WDcNr/60WG9zR9TfKNaXQ5zTRrqMAp3ko+oh/dkXqp2sx5fhph73b1DL/dLrcSsXHfLQmKwyhh/s9LSvUa0runuj2r5+vhusJMbUNe9OwdRlG6NOBnkQ12dbvLJif8Ts+RJrK8rKMWWZ+3lx2gLMywZzTEhfEI1Qdq5/9Xq76iH1bRpHXxAJklWwCNOeROW9mOblhUA73DSfGQausfHUNqpkOWmUirLBj8/wlGMfH5f5++JXJwX2OWc8Zx2HAGAlMda27sjtYdyyI5joeBSeOGWG23dW4sVxC32bhxmVpA0LC2Lujl1/e0s/+qbVdakuwPy2ZEPm9btHuFuYuVDFodCr/qkvGdzB+/EScvutKCvPeW3WSuM5ojLnDwpbXBtbg5AJXONioXlflsDweAwvu+fLLbZk3TaUbd+Fj35bjvY3jMC/v5yVeS9O17Ld4H6sJMbYVzNWWm6TLzdWnAR9I8dp6YSHvp6NOz/7HZ9PT/bad6l1ErP/HWdJq9SqCQGMnLkq6mSEzq9fLIr2GG2hU52Glg1qeT++6uyMivG1ccKTP+S8tsEsSFHcM5ICUBynknXAjALX6NHe034MN/U65NOssVn9K+r1WMZtuKlbgx8cjWGPjc3MD316zPxoE+QRK4kxxmFcpMfpWjtmlMWl9ebFJknusgz58cAJk9U5Uz/DR89aY7yhjrcnLMEXFostF4wACkPLNmzH4Y/kBttRaMtu6kLapa/94j0BquPn00LwVTIVcXCBjwHN8loA9bkCqiNmTp+dCtNFr9gbiugku/FazzTbXf07rtyU26NvtnPS6o9xXhLIKVYSY06vQrCjorpA/+b4/FpMNkxGD5+4T5TPx0AhXmlPyRGPfh9NQmJm+cZgHlZOl3G4Yfg0XP5G/oaudyKInsRXflyEeau3GL7vV9CdpNi+sxIPfz0bOyuqPNVbhAA+mxL/CK35LMqh+WFTynu50U1zt9U2xsThDh+/wF400IH3fZvzWpwadjeVB7MEUhKvZFYSQ+ZH+f41TTS6VXqtMmTJ6LdI4o3s1S+LNlhvFGPPj80O4293vD1VY9uDOTfnR6+R77ZPZviQGme0PRN+D+2K26Xz5Oh5ePzbeXhz/GLrjU1MSni+mHTvTFxSWD2JypxEF/v60XjsNcjNlzamSBkfz/Wuvrv2vSm+Hm/qso147efFibyWWUmMue/m5A7r2qEpAMfp5qJkemfS0qiT4ElFlcSCNckZEpbk1vEkpz1fWRU+7v9iVta//X5mxO0ZVL4rNdpmZ6W3xqKfFqzD7Z/+7keSCoPP18H1H0wrqNxGGC2U6EGUt+bslZszf1s9N+w0XC1etxVnPvez4wCOs1ZuwtcOKrArN+3IeW1XZRV63/k1Pp683NFnA8DxT/yAWz+a7ni/OGAlMSaMWnDWb91pvW/s2nGTza/WnrFz1/pzIMqxUidK4SPfzIkgJe4k5Z79Q2e4anlFsuevFiLt/PZ8H32axBZ7MlBAP6YS3fSxb+dlvW7neTF6tve5wE7qpnZiIxz1H/vTPuzkSQ9+NRs/zl+Hbx3Oex76n7G4xOPc643bdmHjtl246zP3jUZPjk5eEBtWEkNmdBM+/V3yLp585VdPiV4vsB/8DFyjNW/1Frw1wd95rs98Nx8/zPO3wuzk4RNH05c7m9MXtI3bdmGXTq/LIQ+NAQBMXLQec9Nz3v71cfjDJePAacW+orIqtKVlnHY8JCmS4KbyXbju/Sm+Lv9UaHM0QxNE4Br/DxlbXh7tn09zP9RT4SSP8zs2gpNlPqJYRUgpF63dsjPxS4Y5wUpiTLw9IdnD/fJJvjVc/roke16NWWZ87ONjcePwab5+/n1fzMJZz4/39ZhKVFbyj17jgDK380//+ylWS7ckQaebv8A9n4ezhuRrPzube6ct4D3w5SxPlbAge8af/W4B3p20DC//sNDW9l9OX4Hnxppv+6f//ehH0igE+fY8NhNEA3A+BbpTGreiCC6oHqn0kYshp3ExZvZqHPrwGNvblwSXFApKPt30FDyzqIfbNUtflO9KVQqqqiSKYrDoN4VH+e1JXz5nu0+NmR/bsO1OK6CXvV4dRVe7fqri1yUbPaaKwlJIc6CN6j5h5T1Bfo5Vvc7sfSVZSiUx6itio9naqjF3y0fTHeX17ElMIDvhkcmaUaYU5HDOsAmR26iwdssOvJ3uNRoR4tp1c1dttt6IIsN8pHDo/da6a5fFAK/LwjZ12caokxCaFRujvQeDvNUWWqw16mS4adhlNO1oLMXKsnK8m/Cgf1ZYSQxZUOuWkXOFUPiQUn9C+A0WQ0q9nJrPp63A8F+X5bx+p4cJ3xSd+76wHjI5f41xbzXFj9797WWenp95aWWVxJnP/Zwzj1lbMPx5wTosXb/Nvw+mWNKuB5jP9mxW1/djOrk19e7jpev9KbN++Fv2EM1ZK+03Gi9Zvw0/zluLr39fBSD8OYknP6U/PP3sF8bjuvenoixBPYtO69esJCZQAdRtIpU//YgpYQepuOKNX3HNu/6uM+QGh2U7YzSs75nvFui+rnbYw9/5nRwKkN6tYVRJDHtgxfqtO/Hj/HW46u3fABg/705/9mcMemB0eAmj2EhSodwJw+GmIX1+lFG3zfKZx0bNxZmquAZBz0m0e/S1W1JLZSQpEJjT4dusJMbEEraIUiBk3vWY6kXh1KMN+0/m8u06oRS7BeqKKv37Kuzr4kWbAWr0LF6XO6Qt3xr9CLj142SuOaf1/Zw1pjED/OCktz2oe/3dif4OySyKuOYiBDBn1eZEz020i5XEPHDJa5OiTkLiVFVJwwXk8y1ei5setTj3wh3z37G2tvtkyh8BpyS/vOShcK5Yun4bNpXn/4MzSf7+7uSc1/R6DHZVeBhu6nrPXE+PUZaDcp4RD0kv2ULRGDE1nDnuW31cDiVK5744AYc/Yj0Kw8vz+NAYjPK47oOpvh7P7ZzEt31c3mu0ahj0Z1OTU9bgcNMCoO3ajtuaa0nwzcxVhu/lU+AawHyR2holycsC5tpsec2vXzF4m8q9F7wGPTAaxz0+Luu1z1XBkX5esM7zZ0Qlxu0mpvR6EvS+y06bPfRB2lFRmfOa1Xmfvrws87edaZXKsi6UXAm9FcnEuvTQTTvcPtutYjG4dWuC1g52eu6SV0KkggoJbaR8VyWeHD3P9tBDLe3SD/lKSvNWyL5tG9s6ztRlG3HCE+NQvis55y3fKvtJsXhddqXkijeqlyS47PVfcrYv31WJKVyDMTB2G1XiMK/mnBcmGL5ndDsf+/g4LHAQOIkjb5Lv2wIIZhPFaB4nn+l36pwsS+NkTuK2nc4aP//61m95vSbw+q07HW3PSmICRTm5OC6eGj0PD341G2/bHOv+5fQVGK/qxVhr0mpV4SHKXxyt3ZKbKdQoTt36RgVD7au3fzIDU5aVZbXaOxX2M49VxPip0rm3bhw+DSc8+QNWxXQJBkU+5bt638TL/elXgXbCwvWZv7XlQLOPMCr46O0yZvYaFykjCpc6q8yfnMcfTiqJ/3LYy/dpnk9TcTpiiJXEAvXOxCWJbi3Zke5B3Gxz/tNlr/+K0579OfPvLi3rG257V54t1fDE6Hk5r11w0J4A7BcMlc20efOWHRW6BX8rr/+8GCc/9YPj/SjZ9C4VpRdxsw/DXcmmGPQaSinx1oQlvswvi/7bEPkrmp5E+9tG2QhbUmz/01eWZTc+qkefVVZJxz2NQOq7a8tCFTEYrh8EVhIT6MVx3gNMXP/BNJz4ZHIL6UpP2LxVWzBzhfmcTL1CSHG+RacxYJTnl6YzWaPeEeOHRfV5K9u+Cz1v+wqPfDMn85rdOWe3fDTddHjJknWpACj3fW69Rp9hSgvjJ06+zO/Eon5YdHsSQz7/P85fhxuHT7PdKOf2fuawc0oi9d24YmN2RSeoCqSjNRUDSYE9JQ7Kb9rb/45Pq3sWbxw+FXv96ytf0nTxq/k5jL0gK4nbEj4fzY8AE0mnPPiH/7YcR1tEuzz3xdx5LjFoSI8F9dpovyzeYLid3vnauC01xEsdRfRckzlFeoxa8QY/OBrHPz4Oz3xvvUafEc7djR+9X0R5Le73ZNzT54Tf38XN8bakG+/enrjUNGiFncrrpu2MqEv5RX1P3fRhMAFXzD7TinbuuZFpy9xPUTFSUuy+6jJ27loAqXS9O2kZAH8q3aPzdBh7QVYSV8Z87gvZ4OCm1qv8JLlx2UnSrU6TevjfaJNgAEbDTYHUGp8bbEyGlpB47adFWZ/T966RhtsvsvkQMpTg3zjpjnvcfpAj9vSEL6r5lT1v+wrPfDc/53W9dYK1V4VZo8+Fr+RnKz4VLrNAUkE1WAWRL7wxfrHvx3TSk6ilnLtx89ZmXut/zyhnx0DhNEIXZCWRkm/+mtxFk/UYzZdzMvE5n8msv6Xu32pGZ+2rGSstP+uHeetw68cz8OeXJ2Ze276rEr8sXm+yFyXRtOVlmPGHvRZk5ZrKs3hRsdGwdmnOaxWV0ZzsLTsqcN8Xs1ztKyHx0FezMXGR/fxixcbtrj6L8s+slZsw6IFvbTVoFqr/jJzr+zHjFghQKfqpyzhmgQx1j2Hw+pVv/mrwTnKxkpgnFq6trjTNWrkJve/8Gqs352+PaZHNlqRXf1oUbEISYO/WDXVfr6yS9pce0DRdbtlRgeUbqgtges8Bu9ffKU//hImL1mNnRZWjUPaUQDq3rd5DO47inTpjemuh6g3jDns47aWvVS+H8t9RJoXTdLoEBJ4YPQ9/+t9Ptj/jlZ8WJ3rUCPnniW/nYen67fh+bjKGBebL8PbKkCuJU5ZuxH9HzjWcyrLFh+laRqNfPpu6Qvf1JGMlMU8MeWhM5u8Xxy3Exm27TIcPJp3d5/6KPBxa7KRlTkKiY/O6uu8tWpfdG2vnoaRkjn/630848/nxmdczQ2NUP8xRj35vO52TFm3ALR9Nw6EPf+d4HR/DtPpyFHJr2QZ7vThKr77Z9Tdn1WbMs7neXxy4Xb81CHbvgygLpXrLUqzevANL128zHepuxzPfuZ/XTPknKcPbTYebhpgOr4LoSTTLq0548gc8OnIOznp+vG4ZeN3WnabxFygbK4kF7u0JS7J6IePq31/OwnMugpjU9DDBOV+4yaLVmXD7G0ZgimbyuTairJQSW3dUYGdFdeF4wzb7wSQkJH6cn4qM6kdLH4VPG6Dgqrcn52yjt8yFUmgzKxQd+ej3OPyR77wl0CMnwQ1e+XFRcAkpIOph7G4bj5ZzyCklUJIqgmbM8vUg/bZkY9bUFrVpyzbmVDRXlDGf0MMSdJ7ZWVGlithkvf0Nw6dl9ULG1dNj5uOez2diqU6AAzNGpyDuQ9v8YnQN6LWl2jkjZm2wz4/1tjSL38MOE9JgnDfemrjE1X5JiW7qRKFFoA7yt1Mq5896iHRM+euXxettlQuSlr2YNUpFsYaiW3FMq15vspORT3H8TkEpMXtTCPEabNxbUspzfUsReZLvraZnPPczxl1/qO3tC+heNuTncDPDYXRCoNLjyV66frvtdNhRKNHH4sLt76Y8r6NqcfZLVsEhRt9l9WZnQRmC4qZglZShgRSdM54bj50VVXjjov3Qv30TPP7tXFxxSCfUrlGcvWHujIhYU+6WpFdIgki+hMSuyip88MsyfPjbckgJvHvZQE/HdNKwN2VZGXrs3sDT5yWFVU/iPADz0/+VATgRQDGAZel9TwCwMbjkkRfTlvu/Pk3Ytu+sxOs/V4dQtjvPSWFUxpi0qHDGpBv2prrIvP/PJGiEl4dvEA8Sli/D5u5HnPFHaujyu5OW+pkY3zn5dh+r1g5NiqAaGNdt2YELX56IjQ6GnxPZpUxxmLliE94cvxiPfzsP174/xXD7uDSkf2KRR8h0e+x2naWEHvxqdhBJCkRQjX/Pj12IG4ZPw/iF6zHBQcRjp/TmNX742/LAPi9uTCuJUso7lP8AdAEwTEp5lpTyJinl2QCGAegaRkLJHnWr0xvj3Q3/ipP7vpiJWz6anvO63WxHW0846tHvUVkl8cg3czynLQmcZM+FMgSXglHlMVbLhIX5sxSK3YWm84VZ3vH8uIUYNWt1VmOfo2MzWyIbqqTEjnSF8bOpK/Ca5npTrtH7XS7B4re/vfWb6ftKevWW69KLThxXQQU33bDNfYA7Iez30L4zMd6Nl0FzMidxfwA/a14bD8BbHy+RCSfBT3RpMtjZqzbji+n5F6bYjXdM5pB95FNLmZsoj361PLInMVxef7ekr12ar5UZJyHs9cLOK+flYZcNc7NXbXa1HxUW7WV6q07jcpLkS34SxHBZJ4fMl/MYFSeVxN8A3CuEqA0A6f+/B8DkANJFLuXb/VCsKTc2rVsDgP2MR6/YuWpTPOboRO05baAZ1Sm9Yfg0R8cS0K+UPfHtPMfp8usa5pzEcHmdkxr3SuKM5Zsw9D/fY3P5LuysSM2HSfp8ITtmrbRfSbvJYb5hRQAYO3etr8ek/GTVQ6iOvB1X6uzkg1/zI38JqidRe27mh7zGclzmegfNSSXxfAAHAigTQqxCao7iQQAYtCYmKiqrsGNX/DNCJ7QFRyVbOKRrC1v765U7K2K0hlnQpJT4eLK9+VF28/IbHRQEV5Y5X6cyD56LZKJcZ44NAJRoW4Ri5t9fzsKslZsxafEGPDF6Hv7x3hSMmFY9KqGQL9u/pofOfWQzryEK08qycoycaX/d6LLtu7B6c7RrLN89Yia63PJFfgX0CtAx/x3raHuvySqUaMu2K4lSykVSygMAdAJwPIBOUsoDpJSLgkocOXPOCxNwzGPObpS4KyrKLjgqGWaphwJlEIu7FpK3JgQ71/Wn+ew5SCSbt5XReqd1tNEIY0YZdllSJDKt1pu2F9ZSF0amLkt+kDTKP+PSvdCL1jlbC/qA+0ZhwD2jgkiSrtWbUhVSbaP2rkqJ0bPWhJaOIARR3NI75A4HPcXxbo6MF8frJEoplwCYAGCZEKJICMG1FmPipwXrok6C70q0lUSHOY7ekMOKSlYS9Whb/EbNXOVof71z7SYYzq0fz3C8j56Yj17MO3Z/6Z0GPfkn79vGv8Q4MHHRenS86XOs22I+fEhpXCouEhgxNdWDOHc158tZYUAsiorSG+i03LB1p/5oh6Bc/8FUAPpBUnZWhpsWv4V594/TGZr+o8dG5/Vb3QfIyQe2K3hCiN2FEB8KIdYBqACwS/UfJcAP89a6Gv4XpeIi/eGmdukON/UahjEPvP/LspzXtMMvLnxlkufPsTukIx/mXhQ6L/OEgdxRAwqnBTw7pizdiD/970eU76rEs98vQGWVxKTF5sviKMPUi4XAkK7NAQA1SqofobyG7XNyrgZ1bhZgSiifaK8qpfc/7oOHdqUbrvXm/yZ9dkwQ+beRs18Yn/v5Bh9vN1VBLq+RBE56AZ8BsBPAYQC2AOgD4BMAlwWQLgrAWc+Px7GPJ2s4qrYn0Wk5TK/YuYs9ifjD58YC9tqR7Yn8qovlDxtrlm3RiZjp1a0fT8fERRswc8UmKFmM7UquEPht6UYAwDPfLcDTY+b7nr5898qPi2xtJwRb8sm9rTtSeUfc5/UZNZAB4VayghDEuffcIGdQYEn6uQ6Ck0riAQAukFJOBiCllFMAXAjgH0EkjPz13ZzUuPa1W5L1wC0uyr5Et+yoMAx8ccHLE3HUo99nvcbANQ629fA5N3+oH26cWW7h+HG+8+HuB9z/bQApsaY0PlVUScxckWq9tyofKEG0Kqtk1n317y9TURV5rRvQOTHz19ibI1ZRKTHjj00+J4gKxe2f/g4A2FQe7wFvJnVEz1Gjo5ak5L9ks/GqkJQ42LYSqWGmALBRCNEcwCYArX1PFfnuvBcnRJ0EV4p1mjG+naUfpczodS0GrgmGXoXc7mTyJD1IKPmUYeyjZ63GkvWphe+tWryFqsdROwyegrGLUwPIgUkGQwP/+d6UkFPizJjZawwbr52sUxpHce3F1UvWwrXhLqORBE56EscDOCb991cA3gEwHID3iUsUC19OX4F/vOt/Zrp2yw4sTRfEnNqu02voJNMUOjUXzkkMz6dTGBKf9H2uWj5Ca9Ki9Xhx3ELD971SegWf0hkq+vDXs3X3qVDNb9LWEd+ZGGzE33wzZ5W9gD9c65ScMFrmojwBS4MZ9a7HtZJlVxDJlx6Py1zFPieVxHMAfJf++2oAowFMB3Cmz2miiFz2+q/44NfcgCZe9bt7JAY9MNr2OPK5qzZjQ3oeygKdjLNKSt3Kn9ro2avx6k+LdN8rpOimTiILRvksSvqQGrJPiSJ6xRu/Gm7zf//7CXd+lhoqFsSlodcTqHzO49/O091n3upUK3OVlDnrt9704XT2hjvgdTTHR78tz3ltcnqeKJETb01YgiXr3DVi+0nJX7SSPk8uSdGNmYfncrJO4kYp5fr039ullHdJKa+XUho3B1Pird5cjkEPfIuFa52tM6RHWVvMyhGPfo9hJus92rmR//zSRPzr4xm6QyCZEejzmpl7aZ37z8i5nj6b4kmvYeiN8c563fzIe4DU3EGlIqFXSbTbYl+lM9w06UPCgqR3ZryO1tWbO3Tikz94OygVnIrKKtw4fBpO+d+Puu/b7fH2w1/e1G80S3qbdhyzxls+mp6oymuUnCyBUSqEuEMIsVAIUS6EWJD+d40gE0jR+nzqCixdvx0v/2A99Kt8VyV2VBiv6WMnXsy89LpjSvTNnq0b5mzjZPhFoQ9XWmM34iTyr/I8VmfNJAqX3lIrRoxGGjgt/G/dUZHT+i6lxNNj5meOpe0JdEJK/f3zcZ1aP0xYmDtPzO75//r3lbqvL/Kp4YAK100fTsusyWsUQfd/MYhcnPSldYKJbur7IcmAk+GmDwA4HMClAHohtfTFoQD+HUC6yEd2wsxbsXNPdrv1Swy8zzhaoZ3W49krs3sbm9bNbYNw0jKl25NYQC1I934+K+okUAH7LeQhgOW7KtHjtq9w14jfs17XFipm66xHZrfgUVklUaTz5Jy+vMxuMguK3jBQu3X035bk7gsAZdvjHa2S4u/N8Uvw1gTzUQ12Kzgv/7AQz3wXTIUy6aMUdgQ0HzTZZyU5nFQS/wTgeCnl11LK2VLKrwGcBOBUOzsLIV4XQqwQQmwSQswRQlyUfr29EEIKIbao/rtVtV9NIcSL6f1WCiGu0Rz3MCHELCHENiHEaCFEOwffKe9t3VHhKsz86k2pnjyruX9aZmta2TnU+IXZrfF6GYFVxm3V8sZWKH165+0TB4FnuFYiaVU6GCslhICU0vYaenq2pNdFe+mH7GNoU6E34sFu41GVlDisW8vc1xNemAuTXh58wcsTw08IkQm7d/Ttn/6O+74IpkE26fP1f18RzBI2Xk/LN7+vynltlk7jYaFzUkk0KgLaLRreB6C9lLIBgOMB3C2E6Kt6v5GUsl76v7tUr98OoDOAdgCGALhOCDEUAIQQzZCKsHorgCZIRVp9x2Z6CsLzY51HCDzs4TEYcO8ojJ27JvOa9obcsHVnZqFa+6wvlVd/Wmy5jZNKIOst9umd1Z8crH2X8GcZBcCogKM0QqlJmVoT77ZPZvjy2epKmzbP0BvuaPf6vWH4NOzeqFbO60kvzIVJ71TZXcKIyG9GvXVxuKXjkIa4sRvfwoze+qthzkFNCieVxPcAfCqEOEoI0T1dUfso/bolKeUMKaUyQUqm/+toY9fzANwlpdwgpZwJ4DkA56ffOxnADCnle1LKcqQqlL2EEN1sfqe856bgooRinrqszLB3aN+7vsHgB0Y7Oq5VT5Ne5U9vF6u5jRe8Ut0irT/clPQ46TUkssOod+2Qh8bovr5Tc3M7HWqlzkLULdjaoxSZRDe1YjRagh2J9u2wM0GdKCCjDRokpJR4d+LSzL/jsPxE0oebBuG696cGMm2I69/mclJJvA7ASABPAvgFwONILYNxrd0DCCGeEkJsAzALwAoAn6veXiyEWCaEeCndQwghRGMAuwFQL943BUCP9N891O9JKbcCmK96nzywypzWmQwt1aO+/aSUeGfiEmwu36V6zd5x9DLu1ZureybGzK7uAS30wDVO1KtZEnUSKM8YNVJt26kf4Ep7tz7wVfYQrh/n2Q9GdOzj4zJ/a5OhVxbwWuTgcFP7pnC5CorQiwaB+L7+fRWu+2Bq5t9md/TqTeWOGlbXbdmB35ZssL29Ig4V1ULB0mIu00qiEOJQ5T8ABwEYA+ASAMchFcBmdPp1W6SUVwCoD2AQUsNEdwBYC6A/UsNJ+6bffyO9S730/6sjApSlt1He10YLUL+v/i6XCCEmCSEm2U1vvlrgoqvej1YbIURm/cPflm7E9R9Mw00fTneeFp1M8+j/6C+ZwSUw7Ou5e24kWc4zJC+c3mvaOdDfz8muFFoNBzLKp9Sv76qsQrHucFOJmR7mz7AwR5QMemslby7fhW07s6fQmE1tOffFCfjbW79hU7l1EKUVZdvR9+6ROOkp/aU2zLDtSV8Q2e2GbQyIpWXVdfCCwevKzyPSf3ew+4FSykoA44QQZwO4XEr5GFJzCQFglRDiSgArhBD1ASi1mQYAylV/KyWFLel/q6nfV3/uswCeBYCau3Uu6Ntu0qLc1qxxBssFvPFzKvqXHz1y170/BRMXbcCEmw/LRLxapZqbpPej6AeuyW3xcdKrWUjRTZ2oqOIQMPKXo+Vq0oFr1HL+7fDzpZTp41a/tnzDdv3hpjDOB+1gYY4ouf47ci722j27OGmWfS1PR41fuMZ6OZabhk9znS6OUKAomfYkSin3NPivQ/q/PaWUtiuIGiXQn5Oo3BFFUsoNSA1L7aV6vxcAJbLBDPV7Qoi66WP6E/kgT+n1Dj3zfW74ZgFgdrrl3o9W8onpyunqTTsyY7+NMsD6JkMfqySreUHY5XHV3oe/meNTSihfOLmipJQ5DVjabMcqG9pcnt0T8PDXudfkP96bor9On9Sfq2hX0tczIyoUeiWIiiqZk7+YlXuUsoveEi9aK8qqG8OdzjHkCAWKkpM5ia4JIVoIIU4XQtQTQhQLIY4CcAaAUUKI/YQQXYUQRUKIpgAeAzBGSqkMI30VwC1CiMbpgDQXA3g5/d6HAHoKIU4RQtQC8C8AU6WUXBzOhJvIfm+MX+JbIUhKoDh95annLO1SBTOoU7PYcH9n6yQyco1d7Ekkv81xGFL8ns9nZv1bW0CyKjBpF79+buwCzPijDP/6uHpY+9otO3QDFEhIW2u5GmGACaL4cdITp51D/atqnc7yXZVZx9qanletXbYLSDUYPfHtXKzZnIrVqM5vXvtpke306KWJUtgoF45QKolIFcsvB7AMwAYADwG4Wkr5CVJDVb9EaojodKTmKZ6h2vc2pILRLAbwHYAHpZRfAoCUcg2AUwDckz7ufgBOD+H7JJreQtB6LWva+tXqdIZnZwy+mSopMxXV35ZsxB2fpjp++9090tb+Ukrbg1/1tmPWom/e6ty5qms379DZksieuTrXlBPaSuEPFoFrtOXByiqJs58fj3cnLcu8Vr9WCXq1yZ1/K3WGsTvBOiJR/CzbsD3nNaP6xV2f/Z71b6WSt21nBbrd+iUe+Gp2zj6fT1uZ89pvSzfioa/noP89IyGlRK3S6kbvlZucPVNZF6IohRLOMF2ZO9jgvbcAvGWy7w4AF6T/03t/JAAueeGA7lArHdpeOKXAVm4QmdAubcHvpR8W4bbjemQWwna6vxkGXrFvlc7Da9pybVwoovBo7/TRqsjFerT3u97Q9KoqoGm9mrqf5SUEOoeFEcXP4Adzl+pauyX3WSelzBmuDgA7K6pwXDpS8ge/LsMNR1sXN9W9XD8tWIcaxdUt8//7bj5qltjvn+GcRH08K+EIqyeRYkRvCKad8s3dn83E7JWbPQ9/8HpzO1liSy+pHKZgXwUfUBQS7RqJgPNW9Pd/WZb1b73L16gyVyUl5yQSFYD5OsFmjO7eyUs3Zra3mz2oG+K37ajMaXx6asw8ewcCh5sa4WkJByuJBUh3jTAbN9yIaStw1H++1w0f7YSU3iqKTlrs2brvTQUXvaaQfKqz5pgfFa+NmrDmRsNKpYTu0hh2FXphbun6bVEngcg1o9tX1QloO8p7qWqnKilzRjg4iRbPnkSKEiuJBUg3cI1Otc3r3ENj0nLIqt7Qx8zeEfdkFhKvDQJEdukVnIIoHxk1HEnYH4qvf1zXu+aFQQ/kDusjSgrjmOnVecLKTeXYWWHdcKquJOov7eWkodv2pgXlqxm5c0HJf6wkFpjm9Wvq9iT+vGB9zmvPfLfA9edMWrQevyzOPSaQyvSe/i53yQ2tsu36lVQnmaZegbDAG/wdYU8shcVuQK2znv8569/v/7IMPy/IjTBoxLDHj8NNiQqW0e2rbTd675elhseYvXIz/vLmr1mRwvV6Ap2UYQp9hIKR1QyqFwpWEgtMav1B/6K5/LExN3IYAPzf/37CKU//pPuelMBYG4tWGwWyeeSbOboTzPWwFc6brR6DFBF5obcqyw/zsiuE/3xvCk5/9ufcDR1K9SS6359LYBAl19xV+pGYtVnCbJNlfa5+ZzJGTF2RdSy9bMFJgxIbnyhKrCQWGgHsqPCv4D9q1mrT99cZRBHr1qq+5bFfNVlP6I3xiy33T32Wzmu29iSiMOk1/FgVkBavyw1AYWWBTtCK1GdxuClRoZqwSH/kkzbQ36s/GZc9StKtTOoROJVS4oCOzbK2c9STyIyFIsRKYr7TFrIkcNXbk3075LxV5otlT166MXd/ADVV6wYZ+W72GsMhIDP+2GS5f+qz9IabMtMlipupy3KXW7G6Uw9+cIxvny89Djfl0Gyi/OMkR1B6GV/8YWHmtaoqiab1arj+fMaOoyixkpjnfl2yMdDj92iduyi1ml65yW5hSi8kvlMstxEl14qy8tA+S8JbdFNGISQqDBu27tR9XSmzTF9e3YjttSeQjdoUJVYS89y4edlz/xa6GJ6lpe6de/SbOTnv3//FLKsD2Jr7I2XupHGn9DJYZrlEyTdrZfZogvlr9OcU2VUlgcZ1Sm1tu01nri7riET5R68Mcvkbv9je3+sIA45QoCixklhg/M5v9Fr6/6eKXKof/tneEI6Fa7dik0GEU7t0C27Mc4kSbfryMgz9z9is17Z7DLLkpMX+PyPn5rzGwhxR/tFbmsfJCAev+QJXoaIosZJIjjnJ83R78mTuZHCjAtpTY6yXyjD/fE+7E1EMLTeIquzFJ1P+8NR+xEoiUf7R60l0cq9XeBxi8OmUPzztT+QFK4kUKKOFZDs2rxvS5+sNN2VhjijJ9MpoO2wscm1GL3COE3rLdRBRsulWEh3c65yrTEnGSiIFauqyjTmvSQk0qpMd7euFcQtztvOD3rAwIso/Teq6jyCo8NIZWMFaIlFBcBKMprJKmi7nRRRnrCSSY07KUU+Ozh0uKgE8+/2CrNce0QmAExSOCiNKutyb2EtkUj+MnGm+ZiwRJY/enEQnw02rZHa0U6IkYSWRPBt43yhH2+tlsGHO52ElkSjZ1m/NDWjlRx2RQ9GJSG3jttzlLpyMIOVcZUoyVhLJsW07K7L+7XgtM921Ez0kiIgKyk0fTst5rcxjJGQiIq3Vm3fkvOYkErLXwDVEUWIlkRwr2+atMLZYZ63GMCd3s7eAKP/MWbXZ8zHWbsktEBJR4dIrL6zbmtu7COivs/r4KMZFoORiJZFMHbFXy5zXvNbntuouRM3hpkQUra+mr4o6CUQUI07KCwd3aZ7zml55hygpWEkkUxWVuRH7KnVyzclLN9o+5gadVrgwR2R8/TsLgkT5psKHVaeLi6INfkNE8eJoXejgkkEUCVYSyZTe2mN6vX5/eeNX28d8PqDlLoiocK3a5HButI4iVhIp5m48ulvUSSgoExett70tRylRvmElkUzpRQzUm7TtZCHrw7u38JIkIqIcDztYRmeRzrxoAChmHZGIVN6euNTT/t1a1fcpJUThYyWRTOmuEaRTH9ygEybaSMsGtbwkiYjIk20G84TYk0hxF/FyoOTQQZ2aRZ0EItdYSSTH9EZUVDqYVMgRGUQURyWsJBKRS0s3bIs6CUS+YiWRTE1YmDse32skUo7bJ6I4YuAaiju90T0UD78t2Rh1Eoh8xUoimdqpE900zDUNiYjCwwI4ERERwEoiucA6IhEl2Y/z10WdBCJXvMxJfOvi/f1LCBHlPVYSybHN5bs8HoG1TCKKn7cmLIk6CUSBGdixadRJIKIEYSWRHLvxw2lRJ4GIiIgo1kbPXh11EohcYyWRHPMaeIaBa4jM1Shh1kxElHTz1+ivyUqUBCyJUOi8Lk5LlO9qFDNrNjOwA4fNUWESXCiRiELCkggRESXKTwsYeIYKE6uIRBQWVhKJiGKGBUEi0sOORCIKCyuJRERxw4IgEelg1kBEYWElkYiIiCgBOCeRiMLCSiIRUcywGEhEerR1xMO7t4wmIUSU91hJJCIiIkoAbQPSg/+3D/Zu3TCStBBRfmMlkYgoZjikjIh0MW8gopCwkkhEFDMsBxKRHm3WwLyCiILCSiIRERFRArBSSERhYSWRiChmWA4kIj1Ckzto/01E5BdWEomIYubqw7tEnQQiCthZ+7V1vA97EokoLKwkEhHFzHkHtI86CUQUsA7N6zneh3VEIgoLK4lEREQxN//eY/Dcuf3Qv33jqJNCEcrpSWStkYgCwkoiERFRzBUXCRyxV0vs25aVxHzhpn7HOYhEFBZWEomIiBKCVYTC1rxBzax/252j+MJ5/QJIDRHlM1YSiYiIiELw6Gm9Mn+7CUJzUKdmrj53UOfmrvYjosLFSiIRERFRCKSs/ttpHbF5/Zo5r9k9hlGF9JZh3R2mgogKBSuJRERERCHIqiQ67EosErmVQqfH0Gpcp4an/Ykof7GSSERERBQCVR3R0XDTxnVK8a9je+S87nWOKtddJCIjrCQSERERhUCquhKd1M9++9eRGLbPbq4/V/msDy4fmP26zUQc12t3159NRMnESiIRERFRAmiHlzrtCey9h7slVNo1qeNqPyJKrtAqiUKI14UQK4QQm4QQc4QQF6neO0wIMUsIsU0IMVoI0U71Xk0hxIvp/VYKIa7RHNdwXyKiKLRuVDvqJFC+4vBAUrG7bqLR3EW7+5/Wfw/baSKi/BBmT+J9ANpLKRsAOB7A3UKIvkKIZgCGA7gVQBMAkwC8o9rvdgCdAbQDMATAdUKIoQBgY18iIiKiWCguUlXKXEwIzA1c421/u1o2qIWmdZ0FuWFjGVGyhVZJlFLOkFLuUP6Z/q8jgJMBzJBSvielLEeqUthLCNEtve15AO6SUm6QUs4E8ByA89PvWe1LREREFAttGlcP28z3TuFLBneIOglE5EGocxKFEE8JIbYBmAVgBYDPAfQAMEXZRkq5FcB8AD2EEI0B7KZ+P/23EuLLcF+/0vyvY/fy61BEVCAYMZCc6Ni8btRJoJAM2LMJTujtPgiMNm+xm9com2m3LyqyO1zV3ucQUf4ItZIopbwCQH0Ag5AaJroDQD0AZZpNy9Lb1VP9W/seLPbNIoS4RAgxSQgxyct3ICKyol4LjcjK0J6tbG9rdw4Zxc++bRsBAOrUKIk2IWktG9RE/VrxSAsRxU/o0U2llJVSynEA2gC4HMAWAA00mzUAsDn9HjTvK+/BYl/t5z4rpewnpeznKL1ONiYiIiKywU3vXE50U4eNBur9j9nb/ZIaVo71sFwHEcVDlEtglCA1J3EGgF7Ki0KIusrrUsoNSA1L7aXar1d6H5jtG2jKiYiIQnK0g55GSgJvzc//OKJL5m/bw011tnNSwXRanz2oUzOHexBR3IRSSRRCtBBCnC6EqCeEKBZCHAXgDACjAHwIoKcQ4hQhRC0A/wIwVUo5K737qwBuEUI0TgekuRjAy+n3rPYlIkqkvu3srWd27kCu+pPvnj67b9RJIB8pw9H9GDrs5QhBzzOUHHdPlGhh9SRKpIaWLgOwAcBDAK6WUn4ipVwD4BQA96Tf2w/A6ap9b0MqGM1iAN8BeFBK+SUA2NjXM87+ICKn/Ch8fXD5AZh2+5GW23VpmTMFm4gS4qZjvAVjN1r/0Na+Drd3UuVj9ZAo+UKZsZyuzB1s8v5IALo5ZXrZjAvS/znal4goCn610NevVYp2Tetg8bptgX8WEQWrxGYkUSfsHlGvMukk73BaGWW2RJR8Uc5JTAS2hhERUVywUSC5erVpBEA13NSH39LLMYQQqFlivxjo5KOKA6gQE1G4WEm0wGyOiOKMSyIQJcP1R2cPeor6zi0tFhjYoanh+/u0aZj1byeN5nbnVBNRfLGSSAWvZ2vtKipERET+Ki32v8glhIB0OebpikM6QQhhGIn0kC7Nqz/HwXHbNa2DDs3rWW9IRLHGSqIFDjclIqe89O79eusRPqaEkoC9wYXFbaWuen/Nv10erm7NUMJSEFFCsZJogY9uInLKyzyhJnVrONrea4GTkoXPpOQ7Yq/Uupe92zby1EBw6eAOvqSHeQgR6WElkYgowbgUGVGyHLFXS8y/9xh0a+VuqoNSrVSGr3rNA4z2V78sBNc9JCo0rCRaYJZIRE457RuoX8v9sC/mUUTJk4Ton9o6od28hnXJ5KvhIOot5S9eBRbin40TUdw4XVPs9P57uP6sejWLXe9LRPHVrVV9W9t5rZPpVeqeOadv1jBUIQQrf0R5poZFMC1WEi1wTSpyom2TOlEngRLIbeHrvpP3xrH77O5vYogoFjq31K8k5gauCaf2ZvdzvJSbju/F/IwoLBNvPtz0fVYSiXz0xVWDok4CFZAzBrRFaXERFt0/LOqkEJGPtGsUBkkvcI2U0Qw3bVSn1P3ORORIQ4v7reAriQPaNzF9nx2J5ARDihMRkVcP/amX7W2D6kjMOazmhRfP76e7n15P4lWHdcbHfznQl3QREXD90G6Bf0bBVxJf+nN/0/edzi0iIvIz12AORFR4Si3mCgH+TYfRq2SmoplqttNsc2i3lrrHq6fTWPrXQzuh1x6NLNPC/I7Inoa1g+91L/hKotOen78d2imglBBR3vCxpMNYEUT5y6ii17ZJHctsRKnEBbHOoV7F0e6cxGfPze1hZIM7kbFHTrU/ckARxvqmBV9JdOKF8/rhmiO7Rp0MIiIqUCxr5xe9etewvXdDcZEIbckJo921hVC7H9O6UW3XaWFlkig+WEl0gHkXBaFJ3RpRJ4F8VuLjGmjMdohIT5BlEiGQUyv0UhllPhae9y4bGHUSKAQihLuKlUSiiI265uCok0A+e05nuJVbR/VsFfpnElE4/Kjouam77dawlvkxpc5SGx6Gt9n9nlU6NdHdLdJK2fpbBGSk+Cn2sWHZT6wkEkWsMXsS8067pnV9O9Z1R9mLYHbEXvpBJCj+OEolfx3evYXjfZxWxlrUr+lo+3cvHYiPr1RFGjX4uO67pdZpfD7dAFW3hvvo3XaHkeoVlgd1bu76c4mSoFk9Z/cwwDmJscCHN4Xh4C58CBYys6w+ri2M5B8nw/jCGGJE1to1rRN1EjLXzRNn9nG034A9m6BFffPeuSIBnNi7Nb66ejAOTzdAvXNp8MMY/3po58A/oxCds3+7qJNABkb942Ds7mEeb5BYSSSKgRfP74+R1wyOOhmUIG2bRF9IJX+wHSB51D9Zg1pmPWzB/7he57Xr9Uh0360BhBDo2qp+5rVOLeq5Ov55A+1XUOrWLHb1GWSOazjHV8fm7u6rMLCSSBQDxUUCNYr5cCT7vrx6UNRJIL9wyArpMLoqlHl7fjUunNKnTda/595zNPZgIxRRaOL6BGAlkYgoJv4ypKPlNq9dOAAfXD4QdTzMD6J4iWsBgYyp59gFNTPIcGkK5Q2fGhdOH9A269+lxdEVDfWGU7MNxbsw5q9R/mEpwwLzJiIKS6Pa1sPGGMQh/xSxFJy3gvhpM3VE/w8dCFZPose5zPEW10cAexItMHPLf0nJPBvWLo06CUQUgJP7tMbvdx6FOjU45LzQ9G3X2PlOmeGm4T+72qcD9hzWzTpqq15ldux1Q/xPFLlyxoA9ok4CxRwriRp/Oyw7spY65HNSKhPkTFyGYajT0WP3Blnv3XlCD8/BCYgofprWrYE9mtRBnRoltiLZxrXFudA4nbM3qHMz3df3bdsYjeo4awB0OtrUTXh9IyOvORgz7jgKz9pYl1UZFqsemmt13vS+k5Pov2TffSfvE3USKGCXDO7gaX9WEjW0+VPP1g0jSQcVttP7Z7fwndafLX5BOWu/ttYbBWhoj1aZv4OuAAzmUitkU7N6bJQy8/jp+9redv69x+CVPw8wfL9WiX4PsjSoHWUqXzY//2+HdbK5pbWS4iLUrWmvQcNu3a5XG5azqLC56YSy03hySFdvz3xWEjW0Qz+6tqrPNewofJraAnuxg9OrTaNIP/+Cg/YM7bOasjeabBrMua+mGtrs/RNIRa8uchGK1KgQqEQ3tduoFPXTwyqd+6jyYL1NhQDevXQgWjUwX9uRzD12hv2GjbA0dtiLTtWs7quaJUU4oKP+CAa7WEnUULe0H7vPbhGmhMISy6EssUxUftIbbtzPzTwhl4QI7+c26pmgYLEHN1muOszhgu4h31bVw03t1hKjqSYq+Y0fjZwD9myClg1ZSSRSWN1XfmRLrCQ6EXVzHAWiyoc7qW+7xrj/5L29HyitRkn2rcl5SP54+c/9bW33wP+FN1eDP23+e/E86/lbAGw91e0M86P48JJ3G82Xt9PWc/eJPd1/sAMfXnGA5TZOzoHtii+ZOrlP66iTYAt/b/fCOHWsJDrhY2vh//VtY70RhcKP3pU3Ltovs9aU24nC6mQICNx0TDfVv8kPh3TNjcin1xrXoXm9zN9+lMn3bdvI8D0+I/Nficm6c05/f/W1GST2OUfP6NGkRME1i4ZbU9XQGFUWw4EL0Xno/3pl/Ts1YoU/SD4Jo72QlUQTQbZw7NHYWWQ0Cs7h3Vt6Pkat0uqH9U3HdPd8PABZi6WbFTIp/gZ1Mp4X0HuP8Ia2sogQH3pL2uzXoYnlfsdFNA2ifq3CWVY5Lg03RmX6SwZ3wLVHdcXZ+7cz3FcdDTuq76P0hDr5+Jic+sRzMweWkiWMWBUseZrIucd8/D06twynNZis/f2ILlEnQdfp/ffAzcd0x+y7hwJgK2BQolwCpW+7xhw+WKAuHpQbsOjxM/pY7hfW8Cztp9QsYXHBjSAKcrVKi/GXIZ1QatJ42KhOKY7cq2VgabCjegkMf45DROFirm8iyGz1mL0ZFCcu4lJI1z4HS4qLcPHgDqhpEB6d4u2Zc/qiZ+sG1huGiIWt+ND7LWqbDB8MW27y4pFPhsFppSqo28pbA5bI9CZG3TNq1bBRpbkZDu2WOy2A8pPelXHtUV1DT0ciWd3X6dvq1H7up7exkmjCKGO79yRvAUqizrCJKHhH9Wjly1BmIiPa9VSD1KB24Qw3dSqoR7qXRh0hVEtl+JQep+wmX72dEMBTZ2X3qLPMFJxR/zg40s/Xu0a4VJO+SwZ3QIv6NTP/tntbaJf2c4KVRBPKD6C9iM+MePFtKgB8KIbGr961R07tlfNa5tgxKeWwIzG/7NEkvLntr15gvBg8Ad130x814C26qXvqj40q+6mdnqtft4Z5A4M2D1bP8TfdkDzrGFIgLCPaS/OoHi1Rs5RVEz03HdPdcyeVU/wlTDA0L/nBqPAAABeGuJB6ITu1Xxu8f9lA3fesbnM7xZKhPVrh5D65QzqUeaRRjmhuwlZZ8kEbBlsz9eZF+/l+TG89iaJ6TmBErY5n7tcW1w3tiksPNo/4vbtq/UOzctfVMY0fQNkO7NTU9rba33u3hrX9Tk5eaaAKeBZGHaWgK4lfXT1Y93VljTTWEckPB5lkmGcMYK90GC4e1AH92ltHjnTq8O4tsOj+YfjfOX1131fW4Cy2yEyCDJ7z5VWDqj+HLfGxYfRLxGGo1fPn2lzXkVJEMNFfzZbOsVK/Vgl67J5qoGzXNJoKfmlxEa44pFNOz+Bz5/bDF6p86fJDOto63hCdJYzIvrCy/wM6Gkfz1mI529w/NA0jA/asLsdYT0n0/oMXdCXRMOPMtL6l/xnxuH4jtwzzZ6kFigd1AV7vWmPx3p3apcXo3LK+4ftuHpw3Z5Y5Mc8VLjhoTxzWrQXOGagfqt5unjL2uiH2E6fRokEt640odNXXXfZV8MMNh+LjvxwYenrUCmm5C78E0ap/+cH2Kk9aNUuK0LF5PZx3QHt8efUg7NfBfs9OGI7Yq2XWCBsu8VS44laujhu9YGZdQlwdgXemjsxkb83VG7fhp/Vq8kGeBH5dN9oIcGRPozq569E54eW0N6lbAy+c3x+N6njrHfJr7pnfV1BMAgPnlVqlxei1R6NQCwJaRUWCvc4eqAMKeXlOFxUJjPrHwXj9QmdDWQd1TvXkCCHQrVWwEZa9NEK1N+nhfPhPvTI9oZS/Ylasjh298qNe1nzD0d2Mj+GhKl7QlUSji1MZGlG/lrfCpVrH5nU9H+OdS/bP+jdvruTjbxi8IE5xlGsrmvn+2iEYd/0QvHXx/tYb++CCA/fEDzccGspnFZo6FsE+gOCGD1vdM1H3dMadOl+/9bi9PB2rY/N6OKiz/eF7qc8P78HSulFt9GrT0NW+I/42CJNuOVz3vVP6tsFZ++mPwCDnBOL53GpSt6b1RgXAyW+jbFmkqsGpo576qaAriUaO67U7bji6G/55ZGqtFqkZfuqGH5m2dshIVJPRyT8dmtlvPGDDfnwUpe/nGiX278GR1xwc+Nygtk3roE3jOhjYMfjhZQvvOwY3D+uO1o3yN9DA3w7rHNixlUKB0aNBud3NAl+5cf1Q4xZnhRDC9JnVa49GlscYEMAc4LC4KUwbna0GNhqb/S68N/Y4esKp3V3mAXVrlqBZPePCLRtRk8nJ7/bS+f2DS0iCGJXvdKce6WxcFNDNUtCVRKNKVnGRwGUHd8wZCxxlhqU7R4QZaOj+fYp/4YdP7tPasCBmd4gBWQuiVX1Itxa4eNCeuPOEnrb36dSiHhrWNi+8Bd4D4OM1ZFWRIH/ce5L9a8wvJT4MN90rwUMFw26ArfLxvrz9uL3wr+N6+HdAG/hsIrdaNeScecDZo1nZtljVldiwTilqBDC3t6AriXZlWnx9enD4laGyeBa+/+vrfPFqu7+T+rI4umernPcHd3E25IjsMbod37lkf3xypf6wumIhcPOwvUxbwXU/S/NhSh3Lj9EKFIy/DHEXPCRIx/XaHUBwhfN9XA4fzBfe2z68HaBPW/eLX59/4J6e5kH+X9/cpXysRD2M0U7PNtnPL7wOJ2ejgXNGjXJ6eZEyuqR/e1U+IYGJtxyOy1TBrvz4HQq6kqic/KfP6mO6XVVV9vZ2jfnnIbhKNVzpuqFdnR3AAlvxw1W3RjGK3UTqcLjLns3qoq7OQ/7OE3p6inJJ+ox+nv06NMU+bRrp7+Py1jMqTEmDYFl+i7owlzQCwB4BrQ9o+QDPXBO5F8V/TuuNWXcNDSBVwKHdWvDZ4oKXU6a+Fu4+sWek6+c+9KdekX22ltU9MvyKA/Cf03qbLjNFznmtdFd56BqXUrKSaeGh/+uF9y8biN0a1sbBXZpnXm9YuzQrgI1BAG1HCrqSqBjSzd7aO07Pc/tmdXHM3rtl9j13YPvU33z+Epz3TJcWF/kW5ZKqRfk80lZAgs4aBjpYv8qJ/57e23Kbs/bjmqB+KS4SOWvP+cXuNaj0ZpL3+/a6o6obkM/ev11BVtIfP2NfHKopi1WkW+hLDYbR9WnbGCfu29rX4brkHX8Oc91a5S7J5eSc1a5R7GjdZy8NnQVdSbQ/DND+zzfqHwfrf5bwGPjG5msUnKAf3MrE45olBX1bOvbA/+1j+r7Xn0290PMeTVIBGtwOPde2kN6dnm+mvBzUNXbXiT3x5wPb42wfKmpNXC723r6p9wjPUYhzgSeItNk95uNn7BvAp8eDADBY1UKvMFuKwsu9e2p/59MY8s1xvXbHi5ogJrsqU1ejupL4+d8G5ezLnid7wjpPXpfryvc2kncvGxjq53kJZMfSqA2Z693GhduxefbaVn7PZ1TL9xspXxQJgTMGWBcC2jetg78d2gnPndsvhFQlzyl99OfKBH0bqKNB+v2QVZY5yMxJDOjLnLN/O9x2XA9fKqFfXjUIH1we7kOuEDl47JDPhABO2je3p1S7FEUDvYByKLxnc1CVjwPTw0iP2bt6jr5eQKQoh+cmRZDPFq2uLXN7ypxQrqcTe+fnaAW9iMdG91CJT4sR7+UySnZBVxKdFpjcVPT0Cn8F9vzIG0a/2wUHWj+g7jt5Hyy6f5j58YXANUd29TSk9Nh9dnO9b9zZ6dG/9djcNcmsbnO/Czhmy1wYfVZUcwWP6tHS8T4tGtRC33bOlzfo0Tp50S6DLOwH/Yt3alHPeiPy5LtrU3PEtWWJPRPaa+6Weg6928Konm6tGmDR/cMsh9Y1r1/Tt8I02Xf90G6468Ts6MutG9XG0Xv7Uw4phGHXd55gHon4yB65QQzV9E7Rl1enetuP6O78+a5V0JVEhWUh0mS7ujXM54WoC4Verne9m6UA7p94MTjf/7JYLDnMoTBt83TO4msXDjAsVavvjVqlzrM0V2uiGVwLc+85GqOu0R9ybpqGCKKbfv33wXjmnH74/lr7wZBaNXAXrrxj87ro1ip5lcQwBPWbN3cYeZec0+YDs+8eitcv3M9Vz9Yxe7dCjwiXDRnU2f185dtVS24YRYSmcFxlsLbrgZ38n4+unoqhUCKzu31WFBolVoleAadGcRFaWpxHvfJlt1YNMPa6IXjMYkrA8TbmlbOSaEMm8qDOe1YtHVU6EeqctI6oIxXlfDb7JEkjn6dmGH039V2gl2EeuZd5S5yjNFic4NLiIpS4WKuoOgpZePd0l/SQoLYGPZ96w56N5lxb0a45W4isWoz9ZqfxY2CH3LkqfKqkntFuGvdqlhTjoM7NUOSiV+ups/pihM58u7C88ucBmH/vMa72bVinevicm/yP/NOigX7j0AFOg5blc2Eihtx2Jhh1Yu3RpA5qqOJb6BUtWEm0oD1nRuUzZc2i5vVzbz67jwIBd5W64nSilLT944gu1cfk0zxUPN3RsrOOkN49cdMx3S2O6yVVzlh9VJyusSP2yh2qorc0ix0MLKFuMU7z4aToHWLSLYfbXirnsO65kb2dpOqukCu+cZNP13VRkXC3xBMlhvpyfeWCAZm/7zmpp8628bi4/3pop6iTEAq3Z1tZbiSoe7egK4kKpfJWZFDruvaorvjq6sHo0Nz9HA+9OYk3mvQSKpRC2eXpBTIbpSMLdmxe1zAsNPlLyUDdtA5rvXAeg9K4ZRTyX31vdW6RO2HeKvOMw6Mw6MA1QSuEuSN+s7lMouNrolm9mtijSR3dCozRUDS3GtZxF+m2EJyzfzvm9yHyGlEzCf7mscLUXjVqpGHt6t7fIV1zG4uiXFZkUOfmqF1ajAsO3BN92jW23iGBXvpz/6ylo9xGtT9jQCpieVedZTX8EEotQwhRUwjxghBisRBisxBishDi6PR77YUQUgixRfXfrZp9XxRCbBJCrBRCXKM59mFCiFlCiG1CiNFCiNxQS4bp0vzbYLuS4qKcH2CYMjHX4gFePdzUXQGwtFhg0f3DcOnB2WO/99MZJkTOWQV6admgJo5KTxwu9qEgfJgPE4kLkZTAjQY9gsqY/b8f3kX3fVsHt72pt0XvjXpDq4e0+1fZGnvdEHz998G2ttVGkbtyiLPCiNH3UiS1DpnkIf16v4idOcvKN/ZSRoxybl1c3HViT+b3Icr/KiJQXycqppZZntWvfRPdOBp6584qTzf8fIssU5mzCAD1daIDS6RG7c28ayj2btPQVRqSYEjXFjihd+vMv9u5DHY1bJ/dsOj+YWhR33zuottncFhdUSUAlgI4GEBDALcAeFcI0V61TSMpZb30f3epXr8dQGcA7QAMAXCdEGIoAAghmgEYDuBWAE0ATALwjtPEZZapcHASnzhzX1w8aE+8c4m9UPB6N24hZGpxd9/Je5u+37F5PTSqXYp92jTEQ3/qFVKqgjPhpsOiToJr6pZPtQM6NsNbF++PK122srq5D/3uOftTv9TyHgf5GFxgjyZ1MvMOreybHlJ/7sB2WHT/MPxTtbi3Hwqgkd8xpYfby6WkHRLWulHtzN+DdK4lvyvrRgXJfxzpssEmRnjNOvOPI7pkXX9hMxoJlk/0vuLhOkPGzdiNenzzMPOAfH6wOyy+UDj9Lb2yk8WFUkmUUm6VUt4upVwkpaySUn4GYCGAvjZ2Pw/AXVLKDVLKmQCeA3B++r2TAcyQUr4npSxHqkLZSwhhPY4T1QW96mE99jMZIQRuHraX7po9amZDhrw+hPI/Swye2W9+zv7t8PRZfVFSXIRPrjwIQ7qlbuBbhpnPcYuzFnkWcUxpiRzYsSmKi4Tr1k+7gjp633ZNsOj+YYZBZCg6QV1SyggFo/D+btbY/eyvB2X+/ouN3mCzqNmF/HwpgPqG7/56WGf8cMOhkX3+x3850PEIiHxQsySYoGAXHrSn5bJdeqzK0er8tJ7OHPecvdlY4wu3z7FIJrUJIVoC6AJghurlxUKIZUKIl9I9hBBCNAawG4Apqu2mAFBmy/dQvyel3Apgvup9W2qWFGFoj1Z46fz+jr8LoB8F8E99Uz0DmeGmqveUe0i9QCwAnLRva/xlSG5IYYrGXSf2zIralgSF1vp9Wr89HO+jHVrp5py5LUN6/X2Caqn3WrkutOvOq26t6qP7bg3w5dWD8LDBCAVlkeo9mtj/zRvXrZ4jaGcOtf4W6cZTG5+XpLmoHZoHt3ZhHE7Dp1cehBfPL4w5kBcP2jNnFFDP1g3x9yOS34NtJqp8ttcejXw7lnr0g5J/PHpaL9X7hSvI3zcxlUQhRCmANwC8IqWcBWAtgP5IDSftC6B++n0AUPrFy1SHKEtvo7yvfk/7vvpzLxFCTBJCTNJ5D/87p6/rdWS0UQAX3T8MD6Yf/O3T44zPO6B99eelH8LtmtZFE9VD/dHTeuPao7I7QY0ewjF4JuWFfDiPb128f+ZvdQZ8u2b9xu4+LnIcV3bywYdP7Z29T4hPXjfrpynGXT8En18VTIh8JUiB2yFb6qAR56vyuqTzu/DftG52oJdurRoYBmQ6rX9bLLp/GBrFODhMmPeOZw6SmsS5qHu3aYhDuxXGHMibh+2VCdhBwfru2kPw5kX7Zf7d0aKxpXpOs9H8+9xth+1tshRD8m5FU+qoskkQaiVRCFEE4DUAOwFcCQBSyi1SyklSygop5ar060cKIeoD2JLeVV26bQBgc/rvLZr3tO9nSCmflVL2k1IG0tR2+SEd8YbqRlI0rlsDi+4fhpP7tNHdz8tDNkGP54KmzSz1llLxYmBHVRAj1UdpC5/vX2Zv/iwZ81omPrW/855PRZvGdQznZTpRotPDVOUxIM+ezaoLDt13y50HmaS6hNrhPgceefVCfwsIrnrBLX5js/fvO3lvy3ncQDwrWXeekBvm34zRqb3x6G544szUItWV6R+gEObDJUFB/go+fGmzcmi7pnWzlj76+MqDDLd1mh692ybnXkros8NIP5NorWZftVk9b+VGt6cxtEqiSHWJvQCgJYBTpJS7DDZVvkuRlHIDgBUA1ONxeqF6mOoM9XtCiLoAOiJ7GGsorh/azVVPZJRhhim4YUIjrzGOKnmtz0FB7HK7xl2+0f7kdm7Bz/56ED658sDqYyS4NDL6n4fgNU1lRRnR0EozZ9Vug8a+bRujWzoCdFBzZMJWJGA55zyJslryHV7HZwxom9genIM6+xMU6tKDO+LYfVI9H41ql2Lfto3w6Gm9fTk2eVOIxamz9gv3ftSbR6imNBAZ1TvVLysj5azWOi4UetFeAeCl8/vj078eqPueF3Y6qcLsSXwaQHcAx0kptysvCiH2E0J0FUIUCSGaAngMwBgppTKM9FUAtwghGqcD0lwM4OX0ex8C6CmEOEUIUQvAvwBMTQ9jTYTO6UhTI/6m3zpjGDIf2YVd7dBCCo76JzGKeNqkrr+9hXZlZ8CRJCFSblr07fTG9GzdEPu0aRSbBYa92KNJHQzq3DzrtZP2bY3/nt47Zzjso5qhuWY+vOJAfPbXg3QfdIV4LcaR3WWfgvisuOlr0qIvBHBgJ+tlpkqKi/DhFQfi4C7NLbel4BUJoG6NYtx1gqOwFIl2QEdnjR9un2ATbjoM319rHY1Uue/dfk7OKISY5yNOmeWLRqMdhnRrgd0aeotH4HbUYljrJLYDcCmA3gBWqtZDPAtABwBfIjVEdDqAHQDOUO1+G1LBaBYD+A7Ag1LKLwFASrkGwCkA7gGwAcB+AE4P4zt5orpInj+vH16/cD/02F1/PZjcrndleAtQW7XejR8LvRcir8OiDunqvnAQRCGqqsC7ps2Gchhx8jsc3yvVg2BnvaokEULghN6tUVLs/pFQu0YxerZuaBjJOVHz1xBMUJbK9P1ZUuzPsYM4o6cYTI3QU7dGfo5O6NS8HnZrWDvTiEvJIITAjDuH4pyB7Q23MRvlE3du42aoKVMLnK773KJBLc/Rt4dfcYBuo6w6JTlF2WQ9NiyZlTn9mE5ixO0ItlByeCnlYpi3B7xlsu8OABek/9N7fyQAW0texFGjOjVMh8Fo72OlDiAgslovE1b+yntRVdnV0Q3jOC8oaEVFAod0bY4xs9cYbuOl7H/D0d3x18M6Ww65KWRVVfqvVyasAUOp1PrZe6wM51UaG+JoaM9WOa/pRfAGgMNCXtcrLIeng9El64oltc/+ehCOfXxc1msjrxmMTi3srR0bR3vt3gCtG9XG8o3brTc2oOTPes/BejVLMP2Oo1wfG1AFrjG4eU7vvwdGzlxluH++d3g4Kn/4eCoOczm/PpIlMAqVcnG0d9Aak1tJrO5JFEKwpdMjNxWGRh6Xxdg9PWygY3Nvv13/9o0x/qbDsl67ZHAHT8eMKyeFNacNJk62Ly4SaJBnvYh+KzZ4yHsJ2LR7w/xY37NFg1r4/c6jcPEgf+7TP/VtgxY+B8LSM7iLfkOmECIzFzVf1GcDUF7o2Tp3dFYSKoin9tPvyf/Xsf5MKVIed+qyj1JxdFu2ee+ygTlLuhk9tQ/fy7yykvP0yO86o7mAW6nsHJ6VxBDVLCnG8+f2wxsX7W+9cZq2N6h/euFlbauAm8rOuQPbOd+JsoZjGZ12s9/joM7N8M4l++NSjxW6ejVL0FITaKRUPVywkDNXB9o24QL2RipdDFE4uEtz/PPI3PXKhBC4yMMSIGHza7jp13/PHt5Wp0aJb8feo0kdTLj5cF+OVYieT/eQZjXcqn4a9RDpmiUsLlHwtM90hdFSOU7t0TjVSK1u7FQa8P55pL0hiY+e1gsn92md+Xf/9k2wV3qJLSVrO6pH7ogE4/KS0P0bQKK78/U6hJIWCZlNZiGzakXRUs87BFKtYwvuPcaXLnn2QrpTVCTQuE4pNmwzCtBrbb8O1kERrKgzU6/pKSTah1DHFvXQoVldLFi7FX8+sD1O7N3aYM/Cc2DHpjhvYDv8ZUgn2z2BRUUCVx7aGQ99PSfg1CWDUc+qn64f2g1bd1RYbicgsobP2i1/5evQ9T3Ta75lFVINth39z0OCTxCRAbO6xah/HIzDHv4OgM6cPo2HTu2F8QvWYw9V42jtGsVYdP8w22k5ad82OGnf7B5PbXviHcf3wBvjl2S9Zqdx7NBu+TOEvYZOw1LC6oisJMZRn7aN0LddY+zeqDaO0BlHnO9jtsmem4d1z/z95dWDsXT9tuwNEtwC54Wbr92iQU0sWLsVR3RviV57NPI7SYlVUlyEOxyuL2fmgE5N8fy4hb4dj1IuP6Sjre3q1CjOKszlWwAmJ4TB32rqvGT3Rt6iC1J8Jb2RtWPzeph6+5F49Js5OHFf80bOBrVKcYTDzgonlAYlJ0HQ1PffgD2bGL+ZEOcObIdXf1qs22uYtK/D8RMxNPyKA3HzsL3w5wP3ZIUwYG5bdarH9esfIIxAQuo5jS0b1EK/9k1MtiYjwvAf5LdDu7XEftpCgA1BRBq1q4aHiK9AvC4pbeHwZJMCpZf1FLX7x1UmjVnrtMXpF6MwXHlo56iT4FmDWqW47bgevg1LdcrO7e7qztIc+MyQ14V06oFT9sHp/Y3T6Ch/CTgrspNHs5JI5EK7pqlhSkah7KtiUELKhzX9FEG3lcTg58o7XVpWN2KoT+8rFwzI2daqIhZlud2qZd5KXOagdGpRD0KIzDy7Kw7piKIigZYNrIcRx+Mb+E85F+rv9w/1fFrmCwUhyuV56tawV6lTrtGYZCc5TunbBrs1rIXT+u9huE1c0+6nU/vvkVX2Gn7FAfjf2X0y/05avw8riVTQ3M61een8/nju3H6GkS5ZtvCX0zWdnKruUEhYDh5jH/3lQN3X9Vq67zt5b9NjNa0XfARPI6XFRdijifuhhnEtGCnpOmd/6wBm+d67pv5+56rW2Lvq8OT3MFG8/XzTYXjyzD7WG6bFtUGzdaPa+OnGw7LmOtqVb9mL8hsJIdCnbWMM7blb5r2k5aWsJCacl/wiYcuWxUqTujVMx/XHYVH7uD5M3FAePEbrtak5bRUuLSnClUM6AUAmQht5V8fBQutWz83nzunrMTXO+fUoj7LhQT2012j9sisP7aw7hEs9GsLNN4iyd8YundGmWU5gEKu85KRSFrT6tUrR2OOyWklhNapCL4Kwen3dL68e5HuaghT/6qB1Hs1KYsLdMqw7Wjao6ar1Jt/Wt3JDybP2bFY36/X/nt7b03Eb1alhvVHA4l9Es2f3hrUy17ffE+4fOGUftG5UG4O7NMei+4ehYYE8rOPGqj7RwiAsfBLUqhHdY/a1C/fDhJsPQ8Papbjh6G4A9HvN7z0ptydXvTRMwhq/M1pZXDdKRTip34/c6dk6Xo2B+fKsNnNI1+bosXvqvH9w+QG44/gemfeEELh+aDd8cuVBOfvtld7nrP3aolurBq4rXrcM646R1wy23tCl64Z2xTuX2F/ezsjTZ/XBn/rqr5UZBVYSE+6Qri0w/qbDUVMzp6dj87oGe1TbrWFtLLp/WM6C7IXoq6sHY9ZdQ3HGgFSLeo/dcxfidaJGSRGuH9rNj6Tl+OyvB+GnGw91vf9/TuvtX2JC4LTCfc+J5kMXFbVLi3GqyfyJoOzTJnVt2RnmR9FRVxzcdoo1rlOKFvWjq+DWKClCi/q1MOW2IzNr61YPhTLf9+9HVM/NczNEKkkFXw4zLyyVmpE+UXd66/Xad9eManHTkNG3XWMPqfJuSNfmmb9f/vOATD7St11jnHdA+6xtLz+kI7rqdFzs3ihVTr0n3ZDl9qe6aFAH1K2pP7pljIPlbYbqrP944UF74opDOmWWNtPLY/WWw9Bz9N674Y4Telhv6AM78+VZScwT2oL0gZ2a2d7XaPHWQqDcIjVKilCrtBi3HbcX3r10IDr5sIak0hLfvql1hd2Jnq0bYreGxnOkzkoPHTN68LWwEagiydrqLGCrddeJPfHpX3NbLcMw/PIDMOfuo3HXif4tLZFv3vahRTYO4jhcUQmqYFU8KPUY1TXqgrcVIeKfRgqGWYH9FtXSUmHRuw4Nl2VxcNG+d+lAdwnyyUt/zg1SFqXdGtZGqSbY4LC9d0P7ZvbLaPu2bZT175l3DsWtx+6V9Vq7ZqkyyKUHVy9N9PnfDordM79hbeuRU6wk5om9dm+AeqpWknoGLSZkrlZpce46PS4ds3crvHvpQJwecm/V3Sf2xLx7jg71M5PmnP3b+dIQ4EZJcZHtVsWke/yMfV3tt3+6RRaIblh83vcuBTnGUsQruvL9BoGRlFNQWpLnvzVladO4Dv53dt9MhSHqa1Xdk9gw3eBvtF6vm5R2sDGyrFBccNCeWf9+1GBk1XfXHqL7uvb819aJTtugVikW3T8Mx/faPfNapxb1bY8eCuPZ89gZ+2Z6Ps2wJpFH9m3bCGPnrgUA/O2wznhqzPyIUxQfJ+3bGh/+tjzn9SAjTQkhfKtwOv3ckmKR9eA7yWMYfyI3tHN9rTSsXYqH/tQr67Uvrw5uHompPK03mHVEnNzHp3wiPvVDAMDgLqlhb69dOADnvDAh83rXlvVx6eAOOHv/dhDC+5qYFC992zXGL4s36L43tGcrjLv+UCxcuxVTl20MN2Ea6tuldaPa+OyvB6FLy/p4a8KSzOtKxcFJ73dRkcCrFwzIzOuLygEdrSsjYdlNM3LOqMG2nWYE2PArDsCkRevzJuCjugJrhjlinvK6oOqlB3fwKSXB+vvhXaw3Ilw3tGvUSXCNQSWSS2khtyp7K7/xPm0a+h6cKEqNYhgIySii56L7h+GRU3s7P55BoSmOQzkHdW6e9W8hBG48pjv2aFIHbRrXSXSAJMp18SDzckzLBrWwf4emWdeqMk/rSE0+dGeQ88Q090rP1g0NKy9O12Ae3KU5mkW4hNC024/Eyz4OO/VaHFAvcaM2/IoDTONz9GnbGJcM7hjLfC1IrCRSjssP6YhaJd4qmXFzyWD9h0U+1z8KITMzqkAWJ23F2jxVP72OaI/dsgNB9dHM64jjtWq0BqoTVxzSyYeU+CykiJ5R/6R+Be14/cL9YrVkAvlvSLcWmb+VR0dNTUO7NtiNn2xV/NLpivq+cqp+rdJYTa8oKhK6C9r3advYVnwO9TIduzcMplEpTg3j8fnlKFJ7t04V4jq3qIfrh3ZLXEZkRRsprBDE7Tfs1cZbxFgnfrrBffRX8s+ezerivcsG5kRrG37FgXjzov0cHevvh3fBX4Z0tFzWwA+n9dsD719WHfThvpP3dpWHxKlwpFDKul4D01iJsuJ/3dCu+ODyA3w51kGdm2HYPrtZb0ix1tlkDnqXlvXx4vn9sE+bhpnAZ600Ad6cBDdxyuheeeWC6h64gZrImUBuY1uhUpctTlZNrRnStTk6taiXs6SEcgof+L99HH/W2ap5hR/95UDH+ydN/J5gFAnlZklaD4yTCeeP6QTRiFOLTb5r61OUVztrEXHYWHz0b99Ed/j7AaoIzCXF1jfiVYd3xrVHuVtWpqRI4A0HldJ//98+WYXCQZ2b44urkrWQs5FLDu6AMwa0xZ8PbB/ch4jgWtnt4NxCUjtir5b45pqDTbc5tFtLfHLlQRjStQX+e3pv/POo7Ckafdo2zkQO95u6FKMugim94TVKilRrYVdv/ebF+REF2it1T7DafSfvg5HXHIwHNfPclYq2m1gNNUqKAh++q6QvqOL4Ww6uG+akBKB6KEXSKolO2J2omy+chMoOwlNnWQ/ROrx7S/z1UGdD8rpHPAmf/PPoab3QqE5pJhpzUIGkhHC2LJBddWoUY6RF4TNuGtQqxX0n7406NYKNW3f5IR2tNwqY2eVkZ40wSraKqioAzhoNhBA4oXdr1FRNuenVpqGt5QLcUvcINqtfXQFRrlB1saxLy+poz15jTySRXqnGaHRJK4uGKr0coEGt6nwxqoA7lemyW1B51EAH34uVRAIAdG1VH0f3bIWHT021uNSM4TApv117VNdAo5tGzWlkST+df0D7rDldtx67Fy4etGfOdoM6N0OL+s5a5epzeZe8cdK+bTD5X0dmHoZB3Y1BhRT/8YZDc5ZS+eDyaNcmi4uSAHrz2ttYAxWoHubbMz2NorZOYZqVxPynVOzUFSsnBmqWCPDa7HpUD/2gXE3r1cTsu4fipfP7o0/b3Lm06vzr6bP7ekxFsmnbvls1qIXTdJYZa26jXKGXB4y97lD8kJ6u4mfAHSeK0+lSpoFFKf9rAjr8CEiQb0qLi/D02X3RrVWql+bCg3IL9FGK49yeuNNG8jOinRumXWzWjd6aNZ4uPGhP7NOmke62VrT5uBACNxzdLfM3JZ8ybDywgQwmx92/g/1laq7VDEFrlF7TTK1vu/CXvUmq58/thwkmEQW1zjGITKh1ev/UsMBHTu2F9y4biMZ1c3+nIj5S8t6gzs3x6gUDcKXD0SqK64/OHt7udXBOh+bZDUrqXquaJcU5wyarZG6+GGSPZjJk/wg/3HAohBB4WDWk9JMrD7Q1PUCv+NCwTilaN6oNwKzcmU5DQM+r2jWK8f5lA/Hcef18Pa7TBnmgQCuJ7ZrWwZy782+x8RN6OxtfbTafr1ZpMerqLBIalYPSQ8Ue1owtP7onAwqYUYZhmD3cDtAMw/NjPs+JqrH+lkM2LCp6eb+oOaF5vdR1ql7Py8/8x68rSJ2+OK39FRS3EUL72dxvr90b5Mwf1vbMKt68eD/8+YD2lsds3ah2pnBXv1Yp+rfXr7SzJ7EwDO7S3LdpNEfspT/3za2PrzzI9H1lOOnNw/by9XOTTFuW0ftt92nTyHTeoLI0kdtGZmUNRb0RCn7p176J7x1a3/7zEEy65XBH+xRkJRHIz56p/+vbBtPvOAq/3XpE1Enx3X0n743zBrbDoC7ZFZqureqjfi3z4YePnFpdsSyEYbReHbuPs7mbn/3V/EGn9o8jste1FAKGNdibj+nuKB2UXHu3aYjhVxyQte7pN9ccjDcvdhYBVXGQpuFDKQv08DifdZDquBfpDJ9Wq5cHw6LfuGg//OrweXJQp2aZpU/cMGqkOqBjMxTpFAjd5hMchUBOHdrN3zVcraaElBYXYdH9w3BmQAFzkshquRA7nb0f/+VAPHCK88imiufO7YeXzu/vKZ+LQr2aJY6D7rDEnGfq1SzRHVqjx8mckTaNa7tNki9aNqiFO07oiRIbY4Q+ufLArNZodYvxb//Kvwq03+45qaejhoaeDsbN//Wwzln/FkIYZurKkgNmZTkW8/JHn7aNs/Kk3RvVxgEd3QWb6dA8u/Cl9EZfdrC3YColxUU4pGvuMO6R1wzO+vd/T++NEX+z33gSV7VKi9HE4nly9N6tbB/PbpCq/57eGz1bW1foG9QqwcUGa+BayeMYbUR5y6gR20mwl3ZN6+JUnXmMdjWpW8Mwomq+YSUxj1mNyW7uoEXh1QsG5MzHiQ1NLWOfNo1w94k9LXezOyQq31hFRCspLrLd0KBHKUQrw5nN8uxiIXQ7Ev/Utw3qmfQQx3HxdYov5Rr047LRu5x3b5TdiHZC79aZIUn57m+HdrbeyKETerfGoV2tC2Fe1kK84/ge1hsR2XDvSXtHnYSCMbiLfqyFqkyE/jBTk/94OvOYdvHnq1S9OEf3bOVoyG2H5vXwlyHuJn8rtAuamnlcZ01DILuAdmN6UrlVwU9dSVHPb9uvQ/7PKaoOCFL9vXu7DCCj5/lzcydW/y8dfU0Zr9+mkXFEwgM6NtVdquPaodUNEqbtguwNIB3aS0pkXmfrgt+KigSuPaqr71GHq2z8VEbzF+0olEo8Bc9oGssNmsA3dqPzknOH79USuzWshYsHuRtZYOTdSwfi87/lxxq5brCSWEDCmIJx23F74VODydjaBU2NXDmkE0ptNAcpPWLqgl/bJsyE1ZSClnpoVVGRwK3HOp8IP0RnmN2h6SEX6uHIyu/St11j/Oe03rjdoMW+daPaaN+sru7coBb1a5kW6JWIlAcbtCpS4WpUp9RyfSzy11+GdMKTFuuitmxQE5cM7oCvrh5sOje8ab3UKAazwGpAqkdBL++oWWr+7GjftA7OHdjOdBsiQDX/zaLwNGwf/QB6dTUNJ6f22wNvX2J/IXOyr1m9mvjpxsPQ2eVyJ0YG7NkkK2BZoWElsYA0chk6+dlz7K/L8+cD98TebarnqC26fxgePa1XzpwdM5cd0hFG/YNZvYI6Q8jeT69RZrSMQ6HFKlCGYGgLUxcc2N7Rcb75+2C8eH7/rNf2aFI7E0hiuM6wLyEETty3NWobRKlUkqS3xhFQ3fup1+O9b9vGWHDvMa7nrFFyWQUueOz0fXGpZp6acv3r7ao0SHnJGxiB1/r8jb/pcNSvVYqureqjQfpZpBeZ8L+np0aRFKsO2LpR7px4ozmFL5zXX/+NtDHXDsGdJ1hPRyDKDGG0uLaLiwR6aZZ9ApCT4QghsL8PI5jG33QYxl43xPNxkur241KN3COvOTjilOQ/VhILxC3DuuPs/Z21niq9UAd1dlcQP65XaoLxSfu2QacW9lp3SosF6tUsycpbXzpf/6FfPYSs+rUW9VM9CHoL0hai24/vgSZ1a2RCPiuEEHjyzD44y2bUNCFS+3x1dXVlX10w1oaxd6JWabFuIXDv1g1x+SEdM4VGLb1Ih2ov/7k/PrnyQNfponjSDkM8vHtuxEFtUC6jK+XSwR3w0J964YcbDsWkm52FBqdsTkby3nbcXmhat0YmKM47qt4V5bVLVUGG9AqD6iH06nlKVhEjiexqn76WrMpORiOf1K/bfdba0bJBLexRwKOmzj9wTyy6f5in4eZkT/JjdJMtF7kYp6202LtpJZ9+x1Go5WG5CXV5wyyASWrb3NKJEALH9dodn075w3Ua8sFxvXbPVNa1hu2zm+EwGSNdW/k3lMNqiYCiIoHrh3Yz3cbMITYCX1DytG5UC2u37Mj8u2ndGqhfswSbd1QY75QZdZCdV9zo0zIrhTZCwakLD8peLuTYfXbPilKoNz+8bs0S1Cgpws6Kqqzze+ngDnjm+wU4qkd148AL5/VD55u/8D/hVNCa1auJRfcPM93mSpNYDW2b1MEhXZtjzOw1jhvpieKAPYlkSClOuSkA1atZ4miJDYVSITVqlc7qRUgnrD0DEPjmUFVY5w4WLfJeC8YvqHqIrYYQEile0IwsOKx7C4z6p/mwo4dtzoe+ZHAH1DUYHq1Q8iAOMc1mlh/cMsy/NU9vPKY7fr/zKJzWv7pnxs4cdqIgGE2nULz85wH4/c6jsgIJPnJqL9x/MiOiUvwxZy1Qdgr4FxyYav0N8gGsjcBq1OKvqFuzWLspXr/I3YLblOuF86qjlV5zZBeTLd178fx+ePuS/bOGmNpZ24gIQM5iwEf2aIUW9Wthvz2bZL0+/IoDsrYBgGP2Nu85v+mY7phx51DTbZQGDfVw51qlxbjqsM749h+FO0dGeU5oh7YD7heulwZrn9WpwUFQFI3rhmYvBabtJVdrnQ7opr1eT+7TBqcP8G/4KVFQWEkkQzcc3Q0L7ztGN7gAkBpm8fFfvM35+uKqQVnrFerNM1SrWVKMM9KZq1Ju0BYaFXq9UyXp73K8wRDMQmdcmMt9XfvKjzccip9uPNTyMw7t1jJn8v4rFwzAX4Z4W+icCpuSTykVCr15yTVLirF364Y5rztRmQlmkX0H/P2ILujQvHDnyOy3ZxPcfEx33OtjD4mylq/RM4gobFccUj28tKRIVK87rClv9GnbiMusUOKxkkimzFqAD+veQj+il4lDdJZReOWCAarPS/2/+eBDe0MTa6RbttWLx5cUF2HR/cPwmME6jIWqY3Orh1nuOb9JM59r90a1sVvD3AA0dnRqUQ/XHuV+/iHRnSf0xOHdW6Bfe/OgVUrj0WHd3M1ZzVQSWXHJIoTAxYM7oEEtd1G09bx72UD857TePNeUOC09BHMjiguO2ShQUU0Bu+6obhgze03Wa+q1hJR5Pt1NAqRIm3OC/nXsXtitYS3d6IeU7b3LDsCidVuzXquoNL9IlCF8RHHQqUU9PG+x/AFQPafw70e4G069355NMH7heuzGtRgD16ZxHbRpXLhRHCm5jtiL5Q5KPvYk5rmz92+rO4zP7RQwo+Uo7LJaIFlJV+eW9dHDYAHTiwZ1QJvGtXFkD/NMuHHdGrhuaDe2QtvQpG6NnOF5Q3uyEkj5x2iem11XHd4F3117SCY8PhEVpscNRiTNvHMoTu7TJuTUEPmPPYl57u4T9eeHuA0koLewuRNWPZhPntUn87d6mKhapxb1MO767LlvU28/ErLKU9JIo1ZpMTo2r4v5a7Zab0wUgZzAVxoHd2mek2cpeVCRy6ysuEhwrlEAztyvrWVEZTN/PrC94fx0oiAcrQqEpRRtPvrLgZYRT4mSgpXEAhVVNEmrSuIQ1dp2ytwfO2n1cx4MVevUoh7mr9mK2owmSDH0zqX7m76vnu+sqPLYk0j2PXduP3w8ebmtbe89yVvAm9uO6+FpfyIv+rRtjKnLytC0bo2ok0LkGw43LVAn92nt27GchH2vWZq65Pq0bWS5SG1FVaprsLSYhbmoPHxqb7x6wYCs5SoAoFYpsw6KnpvGIWURd/Y6Be+IvVriiTP7WG9IlHA3D+uOr64ejD2acA4t5Q92DxSY58/th84t6/k6XMpJ2PcuLevjoT/1whE2gskM7NAU05dvQov6DBARlXo1SzC4S3ZE2gk3HYaaJRxOQ8n010M74cJBe6JeTT7+iMgfpcVF6GoScI8oifiULDCH+xhxq62qxWzfto0ya1pZ+b++9iZ0Xz+0G84d2B6tGEUwVlowtDdF7L+n90b5rkpX+xYVCVYQiYiILPBJSa4M2LMJmqoqhR9ecaDvn1FSXMShG0SU44Te/g2XJyIiolycWESulHBZCSIiIipAnJdPhYA9ieSKVZRSIiIionwz886hrteaJkoSVhLJEa9rjBk5e/+2KGauS0RERDHGdRCpULCSSI4EtcbY3Sd6WyOLiIiIiIj8wUHV5IhSSRTs9SMiIiIiykusJJIj3Vo1AACc2s/eMhZERERERJQsHG5KjrRqWAuL7h8WdTKIiIiIiCgg7EkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIsoIpZIohKgphHhBCLFYCLFZCDFZCHG06v3DhBCzhBDbhBCjhRDtNPu+KITYJIRYKYS4RnNsw32JiIiIiIjImbB6EksALAVwMICGAG4B8K4Qor0QohmA4QBuBdAEwCQA76j2vR1AZwDtAAwBcJ0QYigA2NiXiIiIiIiIHAgluqmUcitSlT3FZ0KIhQD6AmgKYIaU8j0AEELcDmCtEKKblHIWgPMAnC+l3ABggxDiOQDnA/gSwMkW+xIREREREZEDkcxJFEK0BNAFwAwAPQBMUd5LVyjnA+ghhGgMYDf1++m/e6T/NtxX5zMvEUJMEkJMWrNmjb9fiIiIiIiIKE+EXkkUQpQCeAPAK+nevnoAyjSblQGon34PmveV92CxbxYp5bNSyn5Syn7Nmzf39iWIiIiIiIjyVKiVRCFEEYDXAOwEcGX65S0AGmg2bQBgc/o9aN5X3rPal4iIiIiIiBwKrZIohBAAXgDQEsApUspd6bdmAOil2q4ugI5IzTXcAGCF+v303zOs9g3oaxBRgC4d3AEvnd8/6mQQERERFbQwexKfBtAdwHFSyu2q1z8E0FMIcYoQohaAfwGYqgo88yqAW4QQjYUQ3QBcDOBlm/sSUYLceEx3DOnWIupkEBERERW0sNZJbAfgUgC9AawUQmxJ/3eWlHINgFMA3ANgA4D9AJyu2v02pILRLAbwHYAHpZRfAoCNfYmIiIiIiMgBIaWMOg2h69evn5w0aVLUySAiIiIiIoqEEOIXKWU/vfciWQKDiIiIiIiI4omVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDFYSiYiIiIiIKIOVRCIiIiIiIspgJZGIiIiIiIgyWEkkIiIiIiKiDCGljDoNoRNCbAYwO8CPaAigLEHHDeP4PHb+HZ/H1tcMwNoAjx9E+pN6HSY13UEfO+jjJ/XYQR8/yXlLEu/RpB476OMz7eEfO+jjB3nsrlLK+rrvSCkL7j8AkwI+/rNJOm4Yx+ex8+/4PLbh8ROXvyT1Okxqupl2nheXxw8sb0niPZrUYzPt+XfsJKfdLF/hcNNgfJqw44ZxfB47/47PY0cjiPQn9TpMarqDPnbQx0/qsYM+fpLzliTeo0k9dtDHZ9rDP3bQx48kbynU4aaTpJT9ok4HEeUf5i9EFATmLUTkN7N8pVB7Ep+NOgFElLeYvxBREJi3EJHfDPOVguxJJHJLCPEygGVSyluiTgsR5Q/mLUQUBOYt5Fah9iQSZRFCjBFCXBR1OogovzBvIaIgMG+hoLGSSERERERERBl5WUlk6wq5JYQ4XwgxTvOaFEJ0iipNFC/MX8gN5i1khXkLucG8hYKSl5VEIiIiIiIicievK4lCiMZCiM+EEGuEEBvSf7dRvT9GCHGXEOIHIcRmIcTXQohmUaaZiJKB+QsRBYF5CxHFQV5XEpH6fi8BaAegLYDtAJ7QbHMmgD8DaAGgBoB/hplAIkos5i9EFATmLUQUuZKoExAkKeU6AB8o/xZC3ANgtGazl6SUc9Lvvwvg+PBSSDG0FUAd5R9CiFYRpoVijPkLOcS8hWxh3kIOMW+hQOR1T6IQoo4Q4hkhxGIhxCYA3wNoJIQoVm22UvX3NgD1Qk0kxc0UAD2EEL2FELUA3B5xeiimmL+QQ8xbyBbmLeQQ8xYKRF5XEgH8A0BXAPtJKRsAGJx+XUSXJIoxmW6ZvRPASABzAYwz34UKGPMXsot5CznBvIXsYt5Cgcnr4aYA6iM1ln+jEKIJgNsiTg/FVwMA6wBASnkPgHtU772u/CGlPD/cZFGMMX8hO5i3kFPMW8gO5i0UqHzuSZQA/gOgNoC1AH4G8GWUCaJ4EkL0ANAdwG9Rp4USg/kLWWLeQi4wbyFLzFsoDEJKGXUafCeE+BXAnVLKj6JOC8WbEOLfAM4G8G8p5WNRp4fij/kL2cG8hZxi3kJ2MG+hsORdJTHdujIJQDcp5eKo00NE+YP5CxEFgXkLEcVNXg03TbeufA3gemayROQn5i9EFATmLUQUR3nXk0hERERERETu5VVPIhEREREREXnDSiIRERERERFlJLqSKISoKYR4QQixWAixWQgxWQhxtOr9w4QQs4QQ24QQo4UQ7VTvnSqE+DH93hjNcbsIIT4WQqwRQqwXQnwlhOga4lcjoogFmL80E0L8IIRYJ4TYKIT4SQhxYIhfjYgiElS+ovmMc4UQUghxUcBfh4jyWKIriQBKACwFcDCAhgBuAfCuEKK9EKIZgOEAbgXQBKmoYe+o9l2P1FpE9+sctxGATwB0BdASwAQAHwfyDYgoroLKX7YAuABAcwCNAfwbwKdCiJJgvgYRxUhQ+QoAQAjRGMBNAGYEkXgiKhx5F7hGCDEVwB0AmgI4X0p5QPr1ukgtTLuvlHKWavuLAJwtpTzE5JhNAKwD0ExKuS7A5BNRjPmdvwghigAMQ6pRqqWUcnWw34CI4sbPfEUI8T8AUwGcCuB1KeXzwX8DIspHSe9JzCKEaAmgC1ItaD0ATFHek1JuBTA//bpTgwGsZAWRqHD5nb+kC4blSFUQn2cFkajw+JmvCCEGAOgH4H/+p5SICk3eDG8SQpQCeAPAK1LKWUKIegDWaDYrA1Df4XHbAHgSwDW+JJSIEieI/EVKuY8QohaAkwDU8C2xRJQIfuYrQohiAE8BuFJKWSWE8D29RFRY8qKSmB6y9RqAnQCuTL+8BUADzaYNAGx2cNzmSC1w+5SU8i0fkkpECRNU/gIAUspyAG8JIWYKISZLKadY7kREiRdAvnIFgKlSyp99SyQRFbTEDzcVqeayF5AKMHOKlHJX+q0ZAHqptqsLoCNsTuZOT/7+GsAnUsp7fE00ESVCUPmLjlIAHTwklYgSIqB85TAAJwkhVgohVgI4AMDDQognfE08ERWMxFcSATwNoDuA46SU21WvfwigpxDilPSQrn8h1co2C0gNzUi/XgKgSAhRKz30A0KIBgC+AvCDlPKGML8MEcVKEPnL/kKIg4QQNYQQtYUQ1yNVWBwf5hcjosj4nq8AOD99zN7p/yYhFQzn5uC/DhHlo0RXEtPrB12KVIa4UgixJf3fWVLKNQBOAXAPgA0A9gNwumr3cwBsRyqzHpT++7n0eycB6A/gz6pjbhFCtA3jexFR9ALMX2oiNc95HYDlAI4BMExK+UfgX4qIIhVUviKl3CilXKn8h9Qw1k1SyrKQvhoR5Zm8WwKDiIiIiIiI3Et0TyIRERERERH5i5VEIiIiIiIiymAlkYiIiIiIiDJYSSQiIiIiIqIMVhKJiIiIiIgog5VEIiIiIiIiymAlkYiICIAQom16zbriqNNCREQUJVYSiYioYAkhFgkhDgcAKeUSKWU9KWVliJ9/iBBiWVifR0REZAcriURERERERJTBSiIRERUkIcRrANoC+DQ9zPQ6IYQUQpSk3x8jhLhbCPFj+v1PhRBNhRBvCCE2CSEmCiHaq47XTQjxjRBivRBithDiVNV7xwghfhdCbBZCLBdC/FMIURfAFwB2Tx9/ixBidyHEACHET0KIjUKIFUKIJ4QQNVTHkkKIK4QQc9PHu0sI0TGdzk1CiHeV7ZWeSiHETUKIteme07NCOsVERJRQrCQSEVFBklKeA2AJgOOklPUAvKuz2ekAzgHQGkBHAD8BeAlAEwAzAdwGAOkK3zcA3gTQIr3fU0KIvdLHeQHApVLK+gB6AvhWSrkVwNEA/kgPc60npfwDQCWAvwNoBmAggMMAXKFJ11EA+gLYH8B1AJ4FcDaAPdLHP0O1bav0sVoDOA/As0KIro5OFhERFRRWEomIiIy9JKWcL6UsQ6rXb76UcqSUsgLAewD2TW93LIBFUsqXpJQVUsrfAHwA4E/p93cB2EsI0UBKuUFK+avRB0opf5FS/pw+ziIAzwA4WLPZA1LKTVLKGQCmA/haSrlAlc59NdvfKqXc8f/t3LFqVGEQhuH3K9QmGsUuiIJg0AsQsRCsLGwsFAtD+qS3EhsbxSuwsFVEbCziBWztDaQSgxA2VUIiWAiOxflz3GK32Syo2feBA2fhMDPtMB9bVQPgE/AQSZImcEmUJGmynZH3H2N+L7T3S8CNFhHdS7IHrNBd8QDuA3eBrSSDJDcnNUyynGQjyTDJPvCc7hI4zVwAu+1qeWgLWJrUX5Ikl0RJ0jyrGdX5Bgyq6uzIs1BV6wBV9bmq7tFFUT/yJ9o6rv8rYBO4UlVngCdAjjDbuRaHPXQR2D5CPUnSMeeSKEmaZzvA5RnU2QCWk6wmOdGe60muJTmZZCXJYlX9BPaBXyP9zydZHKl1un3zPclVYH0G8z1rc9yii8Z+mEFNSdIx5ZIoSZpnL4CnLR76YNoiVXUA3KH7w5ptYAi8BE61T1aBry0+ukYXRaWqNoF3wJcWU10CHgOPgAPgNfB+2rmaIbDb5noLrLW+kiSNlapZJW0kSdK/JMlt4E1VXfjLo0iS/iNeEiVJkiRJPZdESZIkSVLPuKkkSZIkqeclUZIkSZLUc0mUJEmSJPVcEiVJkiRJPZdESZIkSVLPJVGSJEmS1HNJlCRJkiT1fgOD879bTFUuuQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAITCAYAAACqpFnEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d7gkyVUmjL+RmVV1bdvpHitpRiOLJCQhCdCHkxAsEny4FQiz2mXNhzD74yfWsAgjFrMLfBghBAtIeCuMkLBCFllkRjNyYzTe9vS073v7+qrKjO+PyBMZmRURGSdv3+rb3fE+Tz/3dt2Kyqw0kXHO+573CCklIiIiIiIiIiIiIiIiIiIAILnQOxARERERERERERERERGxexCDxIiIiIiIiIiIiIiIiAiNGCRGREREREREREREREREaMQgMSIiIiIiIiIiIiIiIkIjBokRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNDILvQOXAhcccUV8vrrr7/QuxEREREREREREREREXFBcMstt5ySUh6y/e2yDBKvv/563HzzzRd6NyIiIiIiIiIiIiIiIi4IhBAPuf4W5aYRERERERERERERERERGjFIjIiIiIiIiIiIiIiIiNCIQWJERERERERERERERESExmVZkxgRERERERERERERcXljNBrhyJEj2NzcvNC7sqOYmZnBddddh16vFzwmBokREREREREREREREZcdjhw5gsXFRVx//fUQQlzo3dkRSClx+vRpHDlyBDfccEPwuCg3jYiIiIiIiIiIiIi47LC5uYmDBw9esgEiAAghcPDgQTZbGoPEiIiIiIiIiIiIiIjLEpdygEjo8h1jkBgRERERERERERERETFlLC0t4Td+4zfY4772a78WS0tL53+HDMQgMSIiIiIiIiIiIiIiYspwBYnj8dg77u1vfzv27du3Q3ulEI1rIiIiIiIiIiIiIiIipozXvOY1uO+++/Cc5zwHvV4PMzMz2L9/P+68807cfffd+KZv+iY88sgj2NzcxKtf/Wq86lWvAgBcf/31uPnmm7G6uoqXvexl+NIv/VJ85CMfwbXXXou//du/xezs7Lb3LQaJERERERERERERERGXNX7q72/HHUfPndfP/Lxr9uB/fv0znH//+Z//edx222349Kc/jfe///34uq/7Otx2223ahfT3fu/3cODAAWxsbOAFL3gBXv7yl+PgwYO1z7jnnnvw5je/Gb/927+NV7ziFfjrv/5rvPKVr9z2vscgMSIiIiIiIiIiIiIi4gLjC7/wC2ttKt7whjfgbW97GwDgkUcewT333DMRJN5www14znOeAwB43vOehwcffPC87EsMEiMiIiIiIiIiIiIiLmv4GL9pYX5+Xv/+/ve/H+95z3vw0Y9+FHNzc3jRi15kbWMxGAz072maYmNj47zsSzSuiYiIiIiIiIiIiIiImDIWFxexsrJi/dvy8jL279+Pubk53HnnnfjYxz421X2LTGJERERERERERERERMSUcfDgQXzJl3wJnvnMZ2J2dhZXXnml/ttLX/pS/NZv/Rae/vSn46lPfSq++Iu/eKr7JqSUU93gbsDzn/98efPNN1/o3YiIiIiIiIiIiIiIuED43Oc+h6c//ekXejemAtt3FULcIqV8vu39UW4aERERERERERERERERoRGDxIiIiIiIiIjLFv/pDz6BZ/3kOy/0bkRERETsKkw9SBRCPFkIsSmE+JPy/y8SQhRCiFXj33cZ7z8ghHibEGJNCPGQEOI7G5/3neXra0KIvxFCHJj2d4qIiIiIiIi4OPHeO09gZXN8oXcjIiIiYlfhQjCJ/wfAJxqvHZVSLhj//rDx/iGAKwH8GwC/KYR4BgCUP98I4N+Wf18H8Bs7/QUiIiIiIiIiLi1cjh4NERERES5MNUgUQnw7gCUA7w18/zyAlwN4rZRyVUr5YQB/BxUUAipo/Hsp5QellKsAXgvgXwshFs/7zkdERERERERcstgcFRd6FyIiIiJ2DaYWJAoh9gD4aQD/1fLnw0KI40KIB4QQv1IGhwDwFABjKeXdxns/A4C6XT6j/D8AQEp5HxTr+BTL9l8lhLhZCHHzyZMnz8M3ioiIiIiIiLhUsLQxvNC7EBEREbFrME0m8WcA/K6U8kjj9TsBPAfA1QC+EsDzALyu/NsCgHON9y8DWDT+vuz5u4aU8k1SyudLKZ9/6NChrt8hIiIiIiIi4hLE2bXRhd6FiIiIywxLS0v4jd/oVin3+te/Huvr6+d5jypMJUgUQjwHwFcB+JXm36SUx6SUd0gpCynlAwD+B5TEFABWAexpDNkDYCXw7xERERERERERrYhMYkRExLSxm4PEbMc+uY4XAbgewMNCCEAxgKkQ4vOklF/QeK9EFbzeDSATQjxZSnlP+dqzAdxe/n57+X8AgBDiiQAG5biIiIiIiIiICC8SARQSWF6PTGJERMR08ZrXvAb33XcfnvOc5+Crv/qrcfjwYfzlX/4ltra28M3f/M34qZ/6KaytreEVr3gFjhw5gjzP8drXvhbHjx/H0aNH8eIXvxhXXHEF3ve+9533fZtWkPgmAH9u/P+/QwWN3yeEeDGA+wE8DOA6AD8P4G8BQEq5JoR4K4CfFkL8P1Cy1G8E8H+Vn/OnAD4qhPgyAJ+Eqnl8q5QyMokRERERERERrZjvZ1jZGmNpIwaJERGXNf7pNcCxW8/vZ171LOBlP+/888///M/jtttuw6c//Wm8613vwlve8hbcdNNNkFLiG77hG/DBD34QJ0+exDXXXIN//Md/BAAsLy9j7969eN3rXof3ve99uOKKK87vPpeYitxUSrleykqPSSmPQclEN6WUJwE8F8BHAKyVP28F8P83hn8/gFkAJwC8GcD3SSlvLz/3dgDfCxUsnoCqRfz+aXyniIiIiIiIiIsfWSoAAJuj/ALvSURExOWMd73rXXjXu96F5z73ufiCL/gC3HnnnbjnnnvwrGc9C+9+97vxwz/8w/jQhz6EvXv3TmV/psUk1iCl/Enj99ehMqqxvfcMgG/y/P3PAPzZedy9iIiIiIiIiMsEZRkMhuPYAiMi4rKGh/GbBqSU+JEf+RF8z/d8z8TfPvnJT+Ltb387fvzHfxwveclL8BM/8RM7vj9T7ZMYEREREREREbGbkKgYEVsxSIyIiJgyFhcXsbKiquS+5mu+Br/3e7+H1dVVAMCjjz6KEydO4OjRo5ibm8MrX/lK/NAP/RA++clPTozdCVwQJjEiIiIiIiIiYjegkOpnZBIjIiKmjYMHD+JLvuRL8MxnPhMve9nL8J3f+Z144QtfCABYWFjAn/zJn+Dee+/FD/3QDyFJEvR6Pfzmb/4mAOBVr3oVXvrSl+Kaa665qI1rIiIiIiIiIiJ2HUa5Cg6HeQwSIyIipo8/+7N61dyrX/3q2v9vvPFGfM3XfM3EuB/4gR/AD/zAD+zYfkW5aURERERERMRlCx0kRiYxIiIiQiMGiRERERERERGXLca50pvGmsSIiIiICjFIjIiIiIiIiLgsIaXEuCxKjExiRERERIUYJEZERERERERclhiVLCIAbI1jn8SIiMsRUsr2N13k6PIdY5AYERERERERcVliZJjVRCYxIuLyw8zMDE6fPn1JB4pSSpw+fRozMzOscdHdNCIiIiIiIuKyxNhgEqO7aUTE5YfrrrsOR44cwcmTJy/0rvCweQ4YrQGLVwe9fWZmBtdddx1rEzFIjIiIiIiIiLgsMSoikxgRcTmj1+vhhhtuuNC7wcdP7lU//+cSIMSObCLKTSMiIiIiIiIuS0S5aURExEWNrZUd++gYJEZERERERERclohy04iIiIsaazsnk41BYkRERERERMRliWFkEiMiIi5GzOxTP9dP79gmYpAYERERERERcVmCmMQsEdiKQWJERMTFgtl96ufaqR3bRAwSIyIiIiIiIi5LUE3iXD+NTGJERMTFg9n96ud6DBIjIiIiIiIiIs4rKEhcGGSRSYyIiLh4QEFiZBIjIiIiIiIiIs4vxoWSm84NMgzHOWvs0aUNrG2Nd2K3IiIiIvxI++rnaGPHNhGDxIiIiIiIiIjLElSTONdP2e6m/9fP/zO+47c/thO7FREREeFHUSa1xps7tokYJEZERERERERcliikChJnsm41iZ89sny+dykiIiKiHZKCxK0d20QMEiMiIiIiIiIuS+Sl3HTQS1BIoChky4j6uIiIiIgLgqKUukcmMSIiIiIiIiLi/CIvmcRBlgIARkUYmxidUCMiIi4oaK6KTGJERERERERExPlFYTCJQFWj2IbNEc/kJiIiIsKGzVGOt9xyBFIy1QlTYBKzHfvkiIiIiIiIiIhdDC03zZhBItMJNSIiIsKG33j/fXjDe+/BXD/F1z7r6vCBsSYxIiIiIiIiImJnUHSUm26Notw0IiJi+9gqVQkPnFrjDYw1iRERERERERE2vOO2Yzi7NrzQu3FRg7peRCYxIiLiQuCKhQEA4NQqkxEsOjKJSw8D62eC3hqDxIiIiIiIiIsM5zZH+N4/uQX//vdvutC7clFDG9eUNYmjwF6Jm5FJjIiIOA/YN9cDAJxaZSb8uvZJfP2zgNd/ftBbY5AYERERERFxkYEYr1sfjX36tgNtXFPKTceBrS22onFNRETEecSpFSYjSDWJeQc1yXAl6G0xSIyIiIiIiLjIMC4Zr9iur8IoL3D38bDFD2HSuCaQSYwtMCIiIs4DqC6aLzeNNYkRERERERERDQwDg5nLCa979934V7/yQZYBRDNIHMUWGBEREVMETeUb3Dmla00iAzFIjIiIiIiIuMgQarByOeGOo+cAAA+cWg0eQzWJMz2Smwa6m0YmMSIi4jyA5qCcKwvpWpPIQAwSIyIiIiIiLjKEBjOXEw7M9wEAZ9ZGwWMikxgREXEhQXXRofXQGrFPYkREREREREQTw3G1oGBnoC9R7J9TQeLSeriRg+6TSExioIzXNK4p4vGPiIjoCJq/+UxirEmMiIiIiIiIaMBkErdizz4AwP7SSv4Mo3fkhHFN4ELNbIER60MjIiK6otiu3DQfAjukLIlBYkRERERExEUGs5/fVuzZBwDolYHeWQaTSAszqkkM7ZNoBubx+EdERHRFZyZRGsnBPFByygwmY5AYERERERFxkcGsnYtMlgItsjhMopab6hYYYQu14TgyuREREdsHGdew68wLY94JlZwW4fXaQAwSIyIiIiIiLjqYjNcwOm0CqGoDNxnMHh3GSm4aNtaUpXK2FxEREWGi6FyTmAPZrPo9Dwz+Qt9XIgaJERERERERFxlMxisyWQoUuIVKRgGTSSS5adhCzVzQjaLTbEREREfQdNXJuKZHQWKgeoLMbgIRg8SIiIiIiIiLDKbENPbsU6CAj8OsauOaXncmMfasjIiI6AqSmxaS6ZQsc6A3p34PbYMRg8SIiIiIiIhLG2ZgMg256TgvsDHc3YwlBXybDGaVxvRTXp/EGpMYa0IjIiI6wgwMWfXlNSYxUEZqBomyfa6LQWJERERERMRFhtGUmcRX//mn8fSfeMeOb2c7oIw8p0awkBJCAH2mcY0ZJLKbYEdERESUGHcJEknxwJWbmsFkAKsYg8SIiIiIiIiLDNM2rvnHWx8DAJxeDZQ1XQBQRp5To5kXEqkQyBIBoKvcNDKJERER3VDIDqoQCvDYNYlGkBggUY1BYkRERERExEWG0ZTlpocXBwCAu4+v7vi2umLcxd1USiSJQMaWm1bbCB0TYccjZ9bxvjtPXOjdiIi4IDBVCcFzOfVIZAeJZm/F9jExSIyIiLgosTHM8fr33B2dHSMuS5iM1zTkpk88NA8AuOfEyo5vqyuqFhjhc0JRMom9tGQSA1nBGpMY3U23hX//+zfhP/zBJ1jnbdo4szbE/3nfvXwHyoiIFnQKEjWTWBrXdJGbRiYxIiLiUsUffORBvP499+APP/Lghd6ViIipw1xMDPOdX1wfnFdM4qnV8Eb10wbVJHKC5nEhkSYCWZLo/4egiO6m5w3E/N7x2LkLvCdu/NK77sIvvvMuvPuO4xd6VyIuMZhy02ATrKLBJI47yE3zGCRGRERcoiCjiaNLmxd4TyIipo9xl+zztrantrGb2R5aXw3HRbCVfFEGicQkhi7SxtHd9Lzh6VfvAQDcemT5Au+JGzNlH82HTq9d4D2JuNRgMonBCa5mkNilT2JAYBmDxIiIiIsSVyz0AQAnmUYa/3LvKfzMP9yxE7sUETE1jKfsbkps2W5ug1F0WGzlUgWJQgikiYjuphcAh8p616NLG6xx77r9GG564MxO7NIErtk3AwB4lLmPERFtqBnXhCacdE0iyU0D10G5ESRGJjEiIuJSBfU1O7nCCxL/ze98HL/74Qd2NSMSEdGG4bT7JJaB0MYuvm/GtSAxbD/zAkiEYhGzRLCYRC77GGFH5UrLO46v+uNb8Io3fnQndmkC5H776NkYJEacX2yvJpHbJ9GsSYxMYkRExCUKqj86xQwS9872AABHpvCwH44LfOdvfwyffPjsjm8r4vLC1JnEi0BuambkQx1OldxU/d5LE1ZNIkkQo5nJ9tCllnTaoOvi9BqvJvevbzmCH33brTuxSxGXCMwcE78mkWlcY8pNi/bAMgaJERERFyVoYXaKKTe9eq+SDT1ydv2871MTD5xaw0fuO40ffstnd3xbEZcXRnmBmZ56hE9jcU1tHnZzkJh3YRKlcjcFACHqgaYP40Ji0FNBYjSu2R5yzSTu3muLrn8ZeH0Q/ttffQZ/9vGHd2KXIi4RdOqT2GyBEeBUCqAhN41BYkRExCUKWlhwe5TpIPHMzgeJxFDkzIVFREQbRrlEP03QT5OpyE3zi0BumndkEpNSSpgmItjwJi+kDtJHsQXGtjDuKDedJoi570oa7+bkSsSFRTe5aZNJDJWbju2/OxCDxIiIiIsSNLFypV7755ThzWPLO++KSrsWuvCMiAjFKC/QSxP0s+kEibRI5hrX3PLQGdx/cnUndmkC5n0Wuign4xoASIUIDgLGRYGZyCSeF+iaxI6BFJfd64JRx+cNgat4mSbe+skjuP41/4i1rfagIeL8w0xujUKvLwoSs5nyQwKvL1NiGoPEiIiISxUk0eA2sqas9TQeiLR4j0xixPnGOJfopQkGWTIVmV4lN+Xdby//zY/iK3/5AzuxSxMYdwkSC1NuKoLv1aIABmUbnmhcsz3QHN6VSZwGu01JkmD3yRKUgDjBrJ2fJt70wfsBAA/G9h4XBEUhq7lkp41rzPdFuWlERMSlCloQchO7uQ4Sd35hQYv3qEaLON8YFUXZ3y+ZSpBC981uls2ZTGKoDL2Qptw0nJWqMYnMSWh5PXBBd5mALt8tZgKCsDSF40nnmMva759TRmlcF+4uWN4Y4cW/9H7cfpTXb5LM3OJ1eWGQG0FicNKbahKzASAShnGNMX9HJjEiIuJSRVcJJy2o14c7zyRSZjy6H0acb1AT+CwN7+23HVDd3cVSkxgaOJtMYiJE8L1q1iSOGUH6Zx5ZwrN/+l34x88+FjzmUkeumcTwa8sM5pc3dj64oeuJGyTuK8sbpsEkfuKBM3jg1Bp+6Z13scZRCcbSFI5jxCQKKXXCaRg6l1OAl2RA2g83rqnJTSOTGBERcYmia+Cl5aZTaAq+FeWmETuEXKJiEqeQhKBAlBMkTrsWNy+k7p8aKgvMC2gmMWHVJEoMyhYYHPOsO4+dAwC8764TwWMuddDh48hNzfl/GkEiXf9cafd8X10j0yhvWJzJAAArm7xt7SvZzjPM9h4R5wd5ITHoceWm5ftECqSDjnLTyCRGRERcouhKnnStSXz49DpOnOOZ3VDWeRrGChGXFwopkQiglwoWk9UVtA2O3HRzyi0NVEaeVydYyKpPYpKEB7Z5IZElAmkiWHXR/VJWNg2zoYsFeYeaRDMwn2afUO55owREVyktB73y2uIGiXtKueluNte5lJFL6J6rwXOJZhJTIO117JMYg8SIiIhLFLkxmXJYRVrscoPEL//F9+ELf/a9rDFRbhqxUygKiUQIZMl0ahLHuiaxCA6kplH3a2KcV7KtLnJT5W7KCBJTgSzhyX17aTezm1seOoMfePOnLkmnZM3SMRIQJlPc1RWVAwpKucY12rl1CgkTes6sbHZjVmOQeGFQmExi6FxCNYlJquSmwe6mZpAY5aYRERGXKMxnNSe7S4vd9SnITYcxSIzYIeRlTWIvFSy544mVTfz3v/oMu5VFzTk0cMHL3cZ2Ydb2dDGuSYQIViio45+UxkHhxz8rt8VlpL7nj2/B33/m6CW5kKfAnMMImsePG7h1ASUXR7lkBeqjnP/duoISD1wmkcYtb8QWGBcCeU26zmUSMyDNuvVJjO6mERERlyrMjD8rSJyqcU3pbhpjxIjzDCU3FcjShCV3/JV334O33HIEf/PpR1nbMxcvoffb+mi6i85ag/suxjVJOJM4LiRSAWUcxDj+w46MFBmgnL4E68bGBT+Q6nI9Ela3xuwSADNJwjl34w6mPF2hmUSmSoaY3OGU5eERCrmspOvhQWJ5rkSqAsUi8NxFd9OIiIjLAabEaysPf7httwUGpyaL6lAikxhxvlFjEsfh19dsybStMtmGvJCYK004goPEKTOJuUTFJAbu47g8jgCQCF5NYpokpdw3/PjTseMyS/tmp9dKYdroIsnsGiQurQ/xzP/5TrzhvfeG7yAaz5sOypVp1CR2dTnuWm8ZcX5QGHN58DmkYC/JVKAoQ4PEWJMYERFxGSDvyCSODJfGLsHbY8vh5jWUcY7uphHnG7lUzJdyNw2//hfIAbED20BBYugi2ZSbTsO8qSja5abL66NaPXJRCxKZNYl6YceXSbL77c0rJpEbJN70wBl87P7TrDHTBgVSo1wGz8lmkMgJ2lbLc//HH3uIsYd1QxGecmX6clP+uG77eMtDZ/Hhe0512mZEhVyWQWKShLPUuiYx6c4kRrlpRETEpQoz4895aJuLkC6S0+MMh1PKHl+KZhMRFxZSlnJHpnHK4kAFiVwmcVQUmOursaGLUZNJnErdWGH2G5vc3tY4x7N/+l34j3/wCf0aLdAA6pMYvq00LftUMu5vkvR1bcrO7bf3ijd+FN/+po+xxkwb5pwcyiYOx93mf8oBnFnjHUcz6cCSm+bTl5t2HccNEl/+mx/BK3/34522GVGBTMh6WcJgEsv5W6TKvCY0SJRRbhoREXEZoMYkMh7aJuvSxViDM2ZYymDHRXiGPCIiBDktLFKeu2lZfofVrXAHxKKQkBKV3DQ4SKwWIZvDnQ8Si0JiJnPXJL77juMAgI8/cKY2JiF300QEM555USDt4C471AYovONBrqgnVnhteC4G1ILEQFlmTW7Kmf/L93Kn465M4qhjANYFXful0jGJctMLA5K8Z11qEpMMEAlTbiqM3/2IQWJERMRFifw8MIld2A1OM3FzwTONTHLE5YO8kJXclHEd02J1lSE3pcTKLLMm0UyoTKNnYi6rthS2Y3LOcG+kxuF1JjFcGm4u7DgJIC03Zc499H24DPDFgC5zcle5KYf1rW9ve88bbk3i8saIVf8OoCZ75qhXKklsfEZdCFT15Yz6ZrMFBldummTqX5SbRkREXKroGiSOc9nZhh7gGdfUe3nFLG3E+UMhlSsnX+7It8mnReQ8U25qJlSm0Q6jqLGrk8fE7K16x9Fz5WvQTKJyNw3fVpYod9kuxjWhxjqEada2TRtmYB56bZlzK68mvdvxG+fdEn6jjnLTZ//Uu/CKN36UNWb7Dqzdjs006o0vZdBcrtoZdWASkzSIFVTjxuWYXuyTGBERcemic5BYFJoRCV3cmQ/BrkziNJiUiMsHZvaZU5NIi0dO0EaLz1mmcY15j06NSSzNZGxzgnm/3350GYBqxE5tMxIhghkYqknsMVtgbJHclMlo0fu57NLFADNxFzonj2puo4xr2RjHCW7GRbfk4naC+88eWWa9v+bAykhK0v3dVW56KSYuponaXB46l+gWGAnT3TRXQWXaC2IfY5AYERFxUaJWx8IyEqhcGkOzduaCZJPx8DUXL5xxERFtqNxNBYs10ExWB/MNbgsM8x6dBpM4zpUEt5/ZJbi0P4szGe54TDGJm6NctwVJme6mqVC9zbrITbmMFjGPmx0X5Lu53qyQleFQqFOsycRyk4QEXl9GfgsYc3vTOP7178YPnLsGe2tMp+SIOopyLs/SpGbI5B9UHnOSjoYGl7IMEpM0yk0jIiIuXXRtgTEupHZpDF1cmw9fTia/HlxeegxAxIVD5W6asFow0OJxyGAfiWmo3E0DA6mO92hXVLIte5BI3+Pzr9uLOx9bAaCUARSgCBHuEEnMUteaRLbclCSBHeeRLk7O04JypVXL0S41iV1aIAG8OXmcF5gvnYFZSckpGtd07eWoJbEdry1OfXPEJFTCCehzVAm1msTELTddPQl85i8qW98oN42IiLgc0LUFxjgv2A23uy4sanK7GCRGnEeQu2nGacCMbkzWqCOTaN6j01gkk2wrS4W3JvHGQwt45Ow6pJTYHFXyc+Vu2r4d+l5pkiARvJpQOpacOkbz/V2ZxLUpMLldURQSg4yYxLDjUqtJZCpJCBx1h0ou8pl0up6mYQrTmUkkuWnHek1OfXPEJMiELOOYkJlMok9uetObgLe9CvjYb5TjcvX+tBfdTSMiInY/pJT45Xfdhdse5dVfdK1JHJkP+1Am0XgfK/tcdFuQRFxe+KV33oX/9Q93sMbQwqKfMhowo1uQmGsmkSfTHne8R7uikJXjq+2Y0P48/sAc1oc5zqwNFZOYVTWJIe6m9DlZ2SeR4yRpupvyauK2x/bsZknguJAY9NytS2ygoHm2l7Lq70adVSEFFohJDE4udpO2djWC6VoWQdfzKO/Wqmk3X1sXA2rGNcFyU6pJJHdTxzkYrqqfD5cmSJpJTIE8BokRERG7HFvjAr/2z/fiW3+L5+SWFxK9tDQSYC54t7PY5RjXmPVN0bgmwoVff9+9+J0PP4CzZVuGEHR2NyUmq4NEj9sC40IwiVkZONu+n2JfgccdmAMA3H9qDQAwU34v5W7afixpIZ0IwWYSzbmKxUCO+bJFM9jYzQt51d+SZyZGc/f8IOvMJLJaZ+RGmULgOPP8cgLZrj11u7Z3GneU7hKi3HR7qLXA4BrXUH2hy4RmVfWGxcZSNS5Jo9w0IiLi4gBlc7lSl9wwOwh9sEmpMqWzehxvQQLwM7SDkqXoygBEXD745MNng9+rpZVJUsraAmV6mskKX4jS4pNaYITWZNVqEvNpyO3MFhh2JjFLEly3fxYAcO8JlWWnACURYf3liNWjmsRQsxugPlexJL8dmEQzSFnb2r3zz7iQhuM0zxRprp+yyw0IPFVIgfkB73lD25rvp9ga58H3aNdejrU2HZznVEenWEIMErcHUwERPCc0+yRKx7jVE+rn+plqHLmbRuOaiIiI3Q4OM2eiHuzxMrvcBYn5EGUxiYXUZgdRbhrhQtmmj3WNkCNePyOZXtjCcmsbclMyFwllIacuN9UZeTu7N84LpInA1XtVkPggMYk1d9OQ7aifaaLcTTk1oSZ7FSwtQzUHcWoSzWO+mxfyuWFcE2rc0TVINFuPcE3IZjWTGDZOGz4NMhQyPPir9dfl9GQsugV7JnvFSbgSYr399kBOyT1OfXmtJtFnXENM4tlqnHZEjS0wIiIidjnIGp9bh1HILrWF3WqrarUlHbPP8UEa4QL1X+Ms7Artbkr95cKu5S41icSUaeY+cOzU5aaykm3ZFrvjQiJLBfbN9pAI4NGlDQDAbF8thYQIcyqlRXWWdm+BAfDUE10cKEcdWbOukFLirmMr7HG5rOSmoeqOKnGRMts9GMeEcU0WhcQc8/qn5w23ltEMFDgMcN7xfusiwR1uU6IaUaEy3GLUl9dqEj1y0xVLkKjrGCOTGBERscvRlUkc55XcNHThRFnq2R6vtqSrIUBRGBK9+CCNcCBLSkky4xqp3E1LBobpCtmFSeQy93lRsaTTMa5R2/P1ScwSgSQR2D/Xx9EySKQAJU0QJB2lxNZML1VyX47c1NivLg6zXZnErvMsB2/71KP4mtd/EO+780TwGCoB0H0SA5lEOk+zvbRTuweAb0JGCpRQKWdVN8l8Thn7uMpwDu1qlJMXUisSQgNu89qKz7btoZCqvrmfJgwmkeSmJStoczctcmBrGchmgPEGMNooaxKzKDeNiIi4OEAPakGryUAUUi2S+1kSXCPVlUk0Fy6cxZZiEkluGpnECDuIDeRcI0VBdSwlkxi4uK6YxPA6RgqCelmCRITfN4WsJOHTWEjKWp9Ei9y0kEjLgPzAfB9HlzYBGMY1Iqy+kBbSM70UCZNJNN/LCRJJqpgXMrgvpnnMN6bQAuOessbzjsfOBY+hw8F1NzUl0Lxgu2M7I6nqy4Xg9Ndt1PKGJiXNWlJGf8saI7jjzq3dTHIiJqGYRPUc6FSTKFK73DQvjdAWr1I/N5YaxjXR3TQiImKXY2OoJkWu3JQkGgOHtMyGZk1iqHkHPRB7qWAuLKqANNYkKjx0ei0GzA2kKclNGdl/IyAC+HJTNSbs+td9AYVbymnDuCgq46YpuZsmQjgXW3kudUC+f76PY+fKIJGMawIDPpqzZnspMmaQaC7kWUGiGdx0kAROg0mkhADXEAaopMyh12RuSKA5Ri9dzV2o3rXPuP6pLydfbtqNpRt3lZsajt/BclNTNh2ZxG0hl2afREZNokiUdCJJq0Lp2geXQeLClernxpnKuCZxBJYNxCAxIiLigqKz3JQe2hlv0QpUi5lw4xqSDWW8ILEo0EsT9NMktsCAWmh9xS++H9/zx7dc6F3ZVdA1iSybfBXU0NhQmVLNOIXJ2tD9FrqQzAsgSxPWPbodkJmPq06Q5gwAODjf16/PGkxiSK5qUzOJieqtyGQSKwluN5lq6Bw07ZpEMp/hsJa0tq1aYPDqXQcZQ6KHZiDFYxK51z8t+Od0kBh63roxguO8wDwz2FPbK3SQGCxbj0HieUNRGteEyt3VoFwxiIA74CM5qQ4Sz1bGNbtVbiqEeLIQYlMI8SfGa98phHhICLEmhPgbIcQB428HhBBvK//2kBDiOxuf5xwbERGx+9E1SCxkhyCx0e+N69I43+f15MoLtbAe9JLInqFa6H7g7pMXeE92F2hdwDauScBmEs33BQeJsuoL2HfYtC+tD3VLCb2P5eJnkCadrPU5kHofS0bQstjKiwJZydoeMIJECm5SgaD6QgqCOjGJRcFOUgEqAOCyssMpy001k8gxktFMIq+2lg7dIEuZBkD8+nIpJWRZNzbIws1FKuMargt3N3OjcSHZASlQdwoPViRE45rzBkpApJyEkyxrCwEVLNpqEieYxLOGcc3ulZv+HwCfoP8IIZ4B4I0A/i2AKwGsA/iNxvuH5d/+DYDfLMeEjI2IiNjl2CR3U+Y4so3uMx7alKXrp7zaEtOAgPNAzIsCqRCY6aVRbopocOACJSE4x6co5aYU9IRK7rrUEpktH1xJmVf90S34qtd9oPY3WvwMejvPJNLXT4RabNn6HZpM4g1XzOvXqz6JYTWJlNiimkSW3LHDghxQAccCs7552sY1g/J7kRw3BKZLKcBht4tym0lwjSbQrU+iyaQPsjSY8c+1uU53d1NWv0NDNsptr8I9/l1deiPqMBMQSWKft6yg2kLA3c7CGiQWRguMXRYkCiG+HcASgPcaL/8bAH8vpfyglHIVwGsB/GshxKIQYh7AywG8Vkq5KqX8MIC/gwoKvWOn9JUiIiK2ic5MYsnS8WpEqod9j2E3XRneZMwgUSJNBWZ6CUs2dKniYsk4P3JmHc/6yXdOMGM7BboueVJmCVEGROZntKEoDTiA8PovYjaUTbs9KLr/lDpWn3r4bG0fk0QlZXY6QVAYTGLqYBLHuUSvNK751uc9DouDDE8+vIDr9qu+iWqR1r6tTSNIzJKwwNLcB24rEXrvwkwZbAQGDtMOEula5DCJEz04GTWJNI8H13GhMoXJEhG8n3Qt6SQJU6Y919EVFeC2sijQT3nmUoAyvarM3EKTTZFJPB8w1ySpsM9bVtSCREcLDC03Pax+arlpCqTZ7pKbCiH2APhpAP+18adnAPgM/UdKeR8Uc/iU8t9YSnm38f7PlGPaxkZERFwE6F6TWLDlpnohWRrehGZbuzOJpdwuS2NNIrrb/08b77z9GFY2x/jTjz80le3pHnjMvm1p2c4BCA8Sx3nBllsXsrGQsWzr+U9QlR6fePCMfk21nEgw6PHumy6gfRRCKEbQsjmTSdw718P7f+hFePurv0y3EUmEvybo6NIGfuYf7tCN6Wf7KdJEsJis3GR7mLV0s8w2EV3qGLcDWuBuMqSt3ZlEaCadK9vNEp66gw43ya2HocFlwygtVALatW5ylEtkaaIMUEJbiRSKydItSKLcdKowExCpIwFnBclGAbfcdLylfs7uU/LSddO4prfr+iT+DIDflVIeaby+AGC58doygMXyb00vZfpb29gahBCvEkLcLIS4+eTJWA8TEbFbQLUyUvIcTvPSpIKX2VU/UyHQc/RSs4Gyz+yaRCnLBUkS5aaoLyZWGP2/po3FkrGZ1j7SYpLtbppUTGIom5UXkm0SYt43rno/WgifWh3W9jERYLH9XUG7lJQGELZA1qxJBICDCwNd0wnAaXhD+P4//SR+98MP4JaHFFs6kyWtY5ow++2FBunUS5DbuoeOuRDTqUnUjDjTEAaoSgBCg5RCKpa6lyRsuW+WqtYxoduqFvJgJSVz/dzgmcmY1wW3vCFLBHqJCK7t1I7fTHa71idxFyf8djvMBIRLJq/x6CeBT79Z/W7WJDqZxHIuTgfA3IG6cc1ukpsKIZ4D4KsA/Irlz6sA9jRe2wNgpeVvbWNrkFK+SUr5fCnl8w8dOsTa/4iIiJ2DmeFmMymCJ2WrpB2qnUUXd9NRLoPrBvJcWVvPZOmOG3dcDKi3X9i9C4uFQQ8AsLLZnmndLqSUVU0iq08iBURMJtEIUriyuSSBt94PAM6uG0FibjpC8q7/kytbrKRRkNzUYBJtEELAdxg//cgSAMUoAiowzhzbciEvCjZrRozjPLOVAp23xUE2FbkpbY8TkFIwkyQCvSQJbktEKo1emiAvwufkUV6glyi2jbMtALovL7cGfq7PdDfdRiuLLOUlQGkfB0y5b00SGxOgnWEmIFzzlsZvvxj4m+9Vv5NsFGh3N017wOz+hrtpBuS7JEgE8CIA1wN4WAhxDMB/B/ByIcQnAdwO4Nn0RiHEEwEMANxd/suEEE82PuvZ5Ri0jI2IiABw65Fldg/CacJcvPD6a6nG2F0yu2mS8Pq9NVxRgxfXmkmMxjXAxWObTnHENJhEc20b2v8OICYRup1CsEpJSnZPuprc1NVeorwnzq5XgbViEnmOkICqCX3B/34P3vTB+4PHmMY1iSOQVfJXd5CYeoxrzDn0odPrAJThTWhvRYIpGw1vyq7eN8s8bxS4Lwwy9vzz7juO48TKJmtMVVvLM2ACqAcng90rqLecOp+h8spxrgIpl0uvdR9rxjX8580ssyax3ieRF3BniUCWhNdp0j4OMp7c1Kyli8Y13ZFTkqSct6REe8JDvaldbqqZxL4RJBaqv+Iuk5u+CcCNAJ5T/vstAP8I4GsA/CmArxdCfFlpVPPTAN4qpVyRUq4BeCuAnxZCzAshvgTANwL44/JznWOn9L0iInY1PnLvKXz9r38Yf/iRBy/0rjhRt+RnMAeFWiSzHtqmbChNgmUyVQsMPgOTaLlpZBKHeW78vnsXFpTJn0aQaNaXcZhEYlKIGQuVm6oghdc2Qy8IKQBzsHSAaoVBKEpmg9sn8ZGzKgh7310ngsdUNYndmURfTeKSEfw+tryJfpboPpWsIDGXnYO9rrWkCzO8/q6jvMB3/9HN+I43fSx4DNDNgIkOXaqbiYd/N2VcUwaJDBOmLE06yk2ZfUK1uylTbmo6EDMTRwk32JbdakLpmpzrpcE1mhGTMK8tSmC1KhNG6w0mMQNkgYkmr9Yg0eiTuFvkplLKdSnlMfoHJRPdlFKelFLeDuB7oQK+E1D1hN9vDP9+ALPl394M4PvKMQgYGxFxWePossoEf/ZIs3R398BsKB1qyADUmxuzZXOl4UEenG2tZ/I5meQsERj00hgkolsj9wsBWoRPQ25qBhihi0ipAyKeu2nTpIIbbHgb1Zfn88xavSaR2tSw3E07CB8K4972M4nuZY+PFTyxslX7P80FSSlRDVVr5GZNIpPJ4rbOGBsyVY7clD7/vpNrwWOA6hrk1AjSGCFUz89R4NhxObdSTWloUDTKJXo6IA1k0k25KUOBQuPm2MY1JpMYft9Iw/E19BzQM5DtLmskLnazKmS3g45j1mZCZtYcbq1UBjRA9bNZl1iTm5Y1iVTLmITJTTPWtzlPkFL+ZOP/fwbgzxzvPQPgmzyf5RwbEXG5o89svnwhUGMSGb2dilJumorwoM2UzYX2RAPMB6KaMsObIqvM7kwW5abAxSM3pUXauakwifwg0ZR60cIipCarq0lFjUlMBGzryIpJHNXGJUyJXldUctMqcJvYx7xAOnAve0juZUNTerm8ob5nZizsTFMcF8ZFwQ4S6dhyW2cQI7EwyPDo2Y2gMQBvHrZtj8OsmnNyLxXhiYtybiVn2mAmMScmkZFcbLbA2HG5abeaxLyQGGQqAcr9bp2ZxH66q1Uhux3NBJz5Wg0rx6rfN89VjCCg5KNAKTk15rcak7hPuZsuXlm6m2a7Sm4aERGxTbzkl9+PN7z3HtaYgQ4Sdy+LZWZNQ+tK1LjSuKZLTaJHNufaFlBlhDmZZHI33c3nYFq4WIxryNAidMG6HZhsdqjctGabHipRQrX4mGG2YKj38rIHpLSwXd0a6/NMkth+lvIYkeB3VqjXTdoDlXEhtTzRBp9T6Ylzikl8w3c8FwB0Y3sK0kOYm6KQKCS0uyyXkSJzEe58N9NLWfdb10U/bY/lUm3MySwGrJQO9xKSmwYyiSSBZtY/mvsY3F6CTGGyFIngyE07StBlZQAU7BJL10jGlaCr981Mob3NpQzz2vKqQlaPV79vrSjWUBhyU2BSPmoGiXMHgPEGsLW6++SmERER28d9J9fwunfzPJn66e5nEmtyU0ZNIrEULLc57dLols25tgXwGRiqgYrGNQrmcdvN1yQFhxzXyq7owiSatukJQ27aZBK5Doi++8Z8bWljqF/jmn0A3YKUWp9ER00i7Y8LwlOTSHLTlzztMD7ymq/EW77vhQDqTGIbKtamlEiGzj+yed5485YKEsOv5a4JHNoe574xry0uA5YIU24aLq/M2HJT6H109eC0bqt8n7oHwh2uzeuCcy9IqRKnvSy8BYZuQZIx62Rzg0ncxXP5bkfeWJMAsF9fG2er37eWVZBotsAA2uWmALB+qjSuKVtgtNyrMUiMiLiEQQ/gXb0g79hgvZCVBXoo42MyMC7ZnG/cLJdJlNG4hnBiZRMPn1nX/+csWqcNYrc5srmuyDssCE0DJop5Qtblk/VHoayB+kkMvC0IMNmVs2tqcULmItyaRJLlCbTLNwm1PomeNh2+mkSfu+mp1S3M9lLMDzJcs28WT7tqjxrDYHKbjeND2R7trsxuOF+xRJxgY9tBIkduaiQ8siS8TrwoA36S+PKDS74kU7UpCP9+5rhBL/weoOtitpey2kvkJMFN+HX6WWmcwr225vpZDBK3AdPdN9WqBMvxrAWJVJNYzmUULDYdTpvGNYQkU+6mQCubeEFqEiMiIqYDWohPK0j8i088jFEu8covfkLwmJrclNOovpQNpY5Fq2sMQAvJsDouoFpczzGbIpvmCuNC6nqYyxFf8ysfrLVH2M0LC7pvQuXI24HZ3oC7QOP2SWwyUlxX4KTs5WUblxdSS7+pV+K4kJjpibKXaXiShN4rwmPEoD6JbUyiq5YRAM6uDXFgvj/xuj7+AcENMURUBhDKJGqZcMcgcbafBgekQPd7k7bHSQDVEx6MOnFZ1ggSkxgqAS0qc5e1rbCa4+b9Fvq8MQ1vegzmsuqLyZNpFyQ3TcOZRJMl7THcZc3EaaxJ7A5bfbn1+jKDxImaRBeT2JCbEqhPIlCxjQ5cnquViIiLDF37HNKDc1oL8h/+61vx439zG2uMaZLAWlyUWVOX/E1KiZseOFM7diH93qzb6rC4JifJRAjN3HD64F1qMANEYJfXJBo1dTuNKiOfBjPiUlaLTy03DZgjuvbb033iPIvkcS5xaGEAoGqDQeYigx5PbtolqVUZ11T9xprz5rgovH0Sfe6mZ9aHOLgwGSQG29ajYoh6aYJEMCSSHeXuZnBZyPDruXNNoqQgkZfsAwxXWkYAlgjopBtHXpkmvKBtwvCMWaZA7Q3y0F6O5fvmBxkruULHRCUl+SxpLxVsKfNcnxfIRtRRk/KLULlpsyaxDOW8clOTSUzddYwNxCAxIuIigPlMCn1AAdVEvptNU4Z5UWXWOYuL8mGfJPaFxVs/+She8caP4u8+c7QaEyCbs26rfPhq44iA/aTPzsqaRIBnQnApwSa13c1BIi2wCrnz+2k6V7LdRmt1LAy5Y0d3zSxJnIvkcVHgikUVJFJCIJdlC5hUSe1Ck12dgsRyn6hPIjAZFOV5e59EwJ6UO7M2xP65ySDRa1vfgD6OaVkTF7qQ72hc02Qug81dOkrBKyaRV0cHVNdy6ONNBfwJX25aVHLTLn1COUxibiRz0kQEM8eaSexnPHdTSRLcRJtvtY4pr8E0SVhMoimB5ngJRNRhrkm8Caf1M0BvDoAANpeA8RaQqfk2TG7aYBID5aYxSIyIuAhgZgXPMXq3abnpLjZNGReFlnGG9sgCKulY5nj4nlxVRhO3Gj0iqyJxtSgJXbSSAU0/DWcSzYJ0cjO8XJnEI2fXJ17bzdlnc5G80/tpSgJHuQy6JnMz+8xissogMWMa1zTuG1ejemISSW6aF9DmUmp7gUFih2RKrSbRcUzGhb9Nhc9d8MzaEActclOWcY0RbPcSvrlIL02Qdqgb48pUt1uTGHodm2MUk8io96Nri8kkFgaTyO6vSwoULgOvmUTeOC5LV1C9ZcJxblU/tbtsJ1Ok3TuX73ZUCT8j4WQ7BxtngbkrgJm9KmAcrgL9BfU3LTdtupsSk9iUm6ZRbhoRcSnBnLibsj3/ODV57+oF+Vhiruw/yGk5QPb6LmnZ/jmVKTvb6NsGVIwI56GdGotdTpCYJQK9rCxIv0wfpncdW514bTcvLMzzu9OGQ6ZLIBAWSBXGwo7jbkqMuzZg6tAnTt03k+8Z5xILgxQzvQRn1yhILJAK5ezI2V43uWkVyCYO2RYle1zQPScth/LM2hD7LUFiF3fZrKO7MtXgdXE3BcKD9K6tX7ZjwpQItyrEBhXsVUE6p50FNyCqmYtwFCgNozS2my03SCwqx1dusJcmiuHu0rtzXEiWwimiQlFjm9VrzprEuf0q2Ns4AwzXgP68+pvT3XQIQKi/92aBbEa9LqLcNCLikoL5cOEsWomZG+5iuekor5pLh9ZRABWT6JKWUeBJ9VFAwySB4W5Krog6SMwnj+ev//M9+JG3fhY3PXCmsS2BNGEaVRQS956YDKwuVrz/rhPYM1P3SdvNxjXmdchZpH3onpN49Z9/irWt5kKeI2VOk0paGbJurRZ2JbMX2DTdZHtctVXKSCrB/rl+JTdtJFdCGUI65hzjoJDF1jgvvO6mOrhsjNsc5Vgf5lbjGmImQ+5tYgiqmji+3LGX2o2DfOO4clPzGuzS81BtK3SuUz/TsiYr2LimDPaoJpHDCqZJR7kpM7gvmvdNcFCqfs70UharXkhox1d2exuhEhDhx7Eo97G8thjP7ogKNeMaX8JpuAr0F5VsdL0ZJJLctHEO8qFiEckBjCSnNblpZBIjIi56mJMGZ9FK2dXd3G5gmBcsFoVA7SXc0jL13c8YQaL50Ga5m5Y1iT4m8ZfedTfefNMjeMUbP4pRXtQWhBxJGgD8n/fdi6963Qdw57FzQe/f7fjEg2fwwhsP1l7bzUyiGTxxkjL/9ndvwt9++iiLMabrVN8DgaZIQCXRA3hyR65ssQhYJI9yZQqzZ6aHlU1qgYE6Ax/KJJbHnJNIqPVJdAR7eSG9xjUUXDbHkXzW7m6a6M9uA51rVZPIkJuaTGLGCy7NeatLTSLreWMGiYw2QUDlbhocgJXzP1duqssUGEG6aS7CYTvrwWXCShImQgX3HBOhvJAQpXENt96VEhehx9FkEgFej+OICrbSAev1Nd4Esj4wd9BgEkluShOXRW6aGnNWb1b9zPrKzAYA8sgkRkRc9DAXnZzMIj0ApmHl3xXjXLL7fwHVgs8lLaOF/pJFbsp2Ny1Zkl7JGrQFsx+7/3SDSSRJVNj2bn7oLADgseXNoPfvdqxu5Ti4MMA3Puca/dpuZhJHtfuNv5/rHe5RjnOlmf1nuZvmhgSaw6QYcrvEYS5CLWkWZjKslq0FxkVRNhInJpEnN+UskGmfEmHKTRtBYhlYuODK5J9eVUGizbjGV8fYxNiYfzJO0CDrC3lO65IsSXQgFd6Cofr8jSHPXdP2GW37CJTBfeJwdrSN00wizcmh26tqGcNlu+qnlpsGy0arcRknuDT7izLmn6p3ML/eNWEykLkRyAK7O+m3m2E6R2e+dcJ4qOSicweAtdMls9hgEm1y09RQ8KydUj8PPinKTSMiLiWYiwlOZpcegrs4RsTIYBJDH2xSStUTyuMIRpnU5Q0jSGwsrkMf2uOy1iN1MBQAcP3BOXz5Uw4BAD57ZHnC/hwIZxI1pnTeVLuOndvY5ijHbC/F67/tOXjg574WAILd97aLI2fXWQtdoG6gxHEGJlXP+lb4mHEzSGTUu3LdTatgI2EZd1TGNYqBdzOJCRYGGVY3x+W4UsbGZRLLY85dIAP1ptTN/Sykv/dixUDWXycm0dYCg9On0gzSs1QEy+vH25CpJgnYgZT5Pk6gbj6nuNcWnTcOS0c9AYFw07OikEgFOslNk7JMoZBhMtym4RMnKZCUtbxc4xo2S1qTMifBx5FKMLhy34g6bHJT6z2Qb1UupeeOAJDAoGQSE4dxjdlLEQC2ShO/w59nBIlRbhoRcdFju3LT0EJ7wj989ihe+HPv7Wy0wmrcnBe6frBLCwCXIxjJnUzmNUQ2Z99eoc0mzO3XtpdLXLHQx+HFAR44tTZhmw7wai6niSf+6Nvx3X90y458tpQSG2WQKISAoNqXKTGJX/r/vg///vdvYo0Z1YxrwveTkgjrw7Am3UDd3RQIW8gXFolSWJ/EKkjpMxtn03ZcvQSJ2V+YybBSMolK2ofKuCbwnFNwyDPtUD+FcDelluXi2wUiGZsB95k1D5PYwd00TRLlysxlewTJTRkKiDIhADBqEo3j3kXyq7bFl2Ry2hJVrBmvfdJ25KZpLVEYsC2DAeb0SdT9RbOE5SeQF+r67yX8foe6TpNR76qMlMLUNZcDRnmBL/7Z9+Lttz4WPKbZJgVwzCXU8mLO6HdITCK5mzZbYDSDxF75/gNPNOSmMUiMOE/43GPn2E5/m6Mcf3nzIzvKUlwOMB9mXYxrciZT9BN/ezseW95kOamaYGWfc1kZ13RwWyRHe5vdPVBvO9F0mwvvk1hnbWyT+Lgo0EsSXH9wHg+dXkOdSQyvW7pQeM/nju/I545yibyozjHAy+JvB3TNf7w0EwpFTW7KWKRRcLLOYC4nmMQQ4xqLu2lYn8RC72cvTRjGNVUA7DIXGRUSaSqwaDCJKrisDJ9CjyUFh6xG4nqxVe1rc00uZRUI2uCqCaIg0dsCIyhIr2oSOYwgfQ8ax+sJiA5y045JyQ5y00omzGtUT+1MMmYArNtElHLToJYzteRi/TUTR86u41t+8yO47+Rq7T26TyJD3pomAoNewjr+khxf04QVNAN8lnqcy1K2zu9xfKni3MYIx85t4kffdmvwGNO4yZXcAqCCxLQP7H189Vq/wSQ2jWtkUQWQAPDd7wW+5fdUgBj7JF482BrneN2772ZLoqaJ1a0xXvarH8IP/vmnWeN+9b334H+85bN45+07swC9XNCVSTQzl5xMHy1YOQGp+bDlyMRGeYF57W7Kz366AjdaSJkBct24RgTLcPOytsobJOZq0fKEg3N48PR6g+0E6/vpz9zFQWUoaF4jgwMALPON7aDr8RsVUgc23ZhETva/aVwzuc9SStxzfEVfx6ZtfRXYtG+rVpOY8RwQ6Rp2MfB5IdEjuWmDSaQgJXTu0nJT1gJZ/fS5mxZSQsAdJQpHfefZtSESAeyd7U2M0Qu7AJbIbIvDUTJQcKkcKHkyySxNtic3ZbZg4I4zW5ekjnpX17bMcgPOs8NkwIJcaWvMvTvh93P/dCdufugs/vAjD+p9BCrHUZYpjwAGqQoSg3tONgLg0DHVPobLTfOiQJoKNkt9OYCzbjKdqr1lKfmWqkk8+KTqNc0kknFN4xwUeRVAAsDhpwPPfLn63SVRbSAGibsAb7nlCN7w3nvwa/98z4XeFScoS/S+u06wxlG/LMrERnRDvSaRwVIYDwoOu0e21iub4bK5LvUoUkqMC4nZrnJTQ1rWzP6PLdnwurTJPhk/cGoNf/vpR+uf1TDJsWX6RnmBXprg6n2zOLmypR+a22ESpyHJ3GmWf6N8YM72TCZxOnLTrguX0bjA4kBdk5z7jQK2NYbcVDe4170LJ7f3mr++FV/9Kx/E++86CaBpXKPeEyR3bBqgMHvLAbC6O0op9eJ7caaH9WGOvJB63KAX3l8UqOaSLjWJ9T6Jjf1EGJPYvCVOrw2xf65vNb2pFnbt+1gzrmEsyLdjXJMI/kK+a01ipz6J5lzumJOt40oJNIdJp3FJwmMgtVN1Sy+7zx5ZAqCMywDjfAumu2n53QYMdQFAzHEpG2W6m7Idv6XUBlgAMAxUJVzKoGPJSSw2E9fm59QwHiq56cEnVq81g0Sr3DSFFVFuevGAFk9HlzYu8J64QVkpbpNjrvV2hB21gIfF0vEzu0BVH0WMQNi2DIle4D7S/s0ybbTp+aeMNOwTq7k/mtko30LBpW0yfuXvfByv/vNP17KB9ND2mYToRXIZXJwr2wDU3E2ZQSInQOmKrmzb2tYYr3jjR/G5x/xtOnSQ2K8eN/1sSkFix4XLKC+wUPZ15NxvFENwVCET7qaWff5Mufi8pXS9pWtzppc6kyS+bbFrEovKFdTm7kjXUK90NwXUPVcU9TYFoc8P+nxODa/ZAsPG+EspIWXFFtrgCriXN0ZWFhGAcW9zmMQEvUQwJIEoxwmWAUrekASGskvDjkzidlpgJAnPTCwvAuq4bNsr6rWMIcekVqbgeN5sjXM8elat4Y6VrtTmd8tYNfBVTSIQfg6krJKSUoYdEzMBwXX8To1ra7fW208TXZ6lNn8Fa6CujWvMmsQ2uWlel5uaiH0SLx7sL+scTu9itq3rBEATyG62u78Y0LW5tzmOFSSWC1bqdxYCc0EeGtzQInWml0AIfk2iz0zGfPhXbouGtMmxIKHj+9Dpdf3aOJe62TNgfxiMiqoFAFC5qmaJ6W4a9v1oHcvJSHYFN/FDuP3oOdz0wBm85q8/630fBUwmk5gxFrrbQVfHvVEhsbAdJpGRXKHjMOcxrqHPve2ocqcjOetcP+3UgkHXJAY3966Ma2wLycp9M9FJktWtsWYbuItd+vzQmjG1j+pnLXAwxtKvYe6m9W3mhdTPsiY4QUpNXZAygj1Dbpom4XV7xLZpB9DA42/O5TttXGOawnCCxKKUMuvrP3A6IVVInyHBrbE9joX8I2fWUUjghivmcW5zjHFeaDMnoIO7qXHfcJIriQB6mf+7PXJmXc9rzfrmYMfvvBlsxzVel16RVuOa5jkocsUKZgP1/2/7U+CpX6vko4AhN20yiXnduMaEq21G821B3yJiR0HPrFOruzhI7OhcpYPEOIFsC+YChGVc05FJpPoxDpNonuO2h9r6cIybHjijHyy9NEEvSYLbIowNAw7XIm1sZRLbs6aPP6AazpL5AFAtkpNEQDgkOeO80DVZQBUkmpM/9z6aBpPI6btpgoKazx1b8b5vYzRZk8gxDdoOzIULx1hhNC70eWTVJJbneaNDn8QZTwsMum5ue3QZUkodJM72U5a7aW7WJDJq28bGYlctJJt/p/vYYBI3x6p1TGK0wGAGiUB4sCH1YssuN6Xf/O6mdsMb+h6+MUG1bQaTmyUccxH1U89bjDYRJtsT7G5qSJ5t8mcXuhjX0NtonmTLTXU5VnhwyZabUlIydS/kHzilkorPfdw+AMDSxqjWl5PnbqqCtj4zSKTgspe4v9vmKMeX/cL78MNvUck9s70Hm0lMqz6VUW7ajUxpOq4DloTTeEv9pCDx6f838B1vBgaL6v/CwSQ2axJNUP/EKDfd/aDMzanVrQu8J250zRJxFwcXCnccPber3bm6us3lNQYy/GFPrM85Rk3iiBEkfs8f34JXvPGjeLSUWPcyZa4Qeg60I5gn+2buD9VWNqUdtqzp4w7MAQDuN4JEc5GcWmzai0L1bTSZxKXSGTYzHqTcmsSuLF/XbYQutIBq3mq7tzctNYlZIiZaluwEzGuA49Sbd2QSKWBY20afRNtcS4uPU6tDHD+3hY2Rup7n+hnP3bRjbRuZhKixtoRM9bkLmkkcaWkfJ5AF6p8fuvBqYxJN91MXXPtpMkKuMSGMp25BkjKZxIbcMZhJbAaJgeO6JheLQrJcemkMUPUgDM0d0TXpcqR1IS9bZ3gblzfHGEyi635b3VLzy/VXqDqxpfWhvv4BHpOYk3FN2TomNJFHzq2VbHHyPZT8/JtPH9VjaP84yTvqk9iPTKJGF/dys07ZqQrJy9ggHdg/xFWTKPPqb01EuenFA7q3Tu/iILGrNIwkHbuZSXzw1Bq+9g0fws//050XelecqLubdjOu4QQcxBKtdgwSfQuLopD40D2nAACfLGusegmzSbThCOZ6aJsLItNtEaj6XdkmdXroHTu3WW3PrMmyPOxHmkmp5HYmk8ixyQcqaRynHq4rzOuCZbgSOCdsGKwXgdMPbTswr6dzDOl0IZW7aSK6SX45fRLpup3xLK7HhcR1+xXDfdujy3W5qV4kt2/LrInjOMxSsAHYWeAq+El0kmRlc6zZHq5xk/n54W061PuEwSSa2zNrFl2gP02YYBnfvwlXuw3fPmZJgizh9DusZKrdmESe3NScv7nlDTNMk6J6ABw+R4aYiVm3V/gVKDY06/Zs26Nn7cEFVT50dn2kW1kAYNUkEtupZdpMgylXWygAuPfEau3/Zu/UdBsJiFiT2G2dbJqQuZnEUmWYTbbgUYNdTOLYLTcl45ooN939oAtiCiU6ndE1S0RzVOjD6UKAFlwUuOxGdK1JNAMlTqBOUhxOTWJ9YeGeeNaNrCgZcfTSpHRkC3xAGTVQTibR2B/6Hs3WGfZ+h+o105G3WVvSfJCanztfBonk7NtPE69tuvX7le+bitzU2AZHXhy6mLC5m3LqqrYDUwJFQXsISCY2yFLWOaB7jNUCo7xuKYh2yU2fec1eAIoJMANvl9mKDVXWGmybfM0kWhaSuv9fImpJEinVdrjGTUWHeUsaiy06JuaUEFKT6Ko3KzxMoiuwtKGqSeTJD+t1Y2EBqRrXrW6say17UfgZcesYoybRlbizgRJ3XHfTouwlyGEgzePvYnvoc65YUGzPmbWhbmUBqGdVcJ/EMrmi5aaBiapCtgfAZpA4zouJesvwIL2omSJFuWnHmkRT3eSoiQ5mEttaYJig16PcdPcjVCbRxPvvOoHv/qObz/Pe2FFnpDg1ceqi3ZzCYrcraCLmMA2Ayui/4o0fZdUIdoV5/DnbGweye03QxMVpgRFak7huBCI3lU3OZ3opepwGwBYm0ea4uH9OZctOl/W+hZQQQrEJQkxa3QPVNWsGiSaToBYyzTFVNpbkdo8uKSZyz2yPJW0CuvWJ6wpzAdK15YlPamerScwuQE3iOUaQSDKxmV7CYhLp3uxyr81ktLiePC6jvMC+uR56qcDSxqiqSeyl+loOeY5U9S8JqyaxKBrGNQ4WJUsqufXR8vpfGGQVk86ogSRwm7K7antol4NqEpuJ/LJPqn9M+/EnGfL8ICvl9bygOU2Z5iId5abmIeckF8dFoVu5cK4tQM3JLLmpbEiZmYGzYJy3muGZqwa+qAeJS+vDGgPPYhKles5ouWnAfFIFe1XvTtt3O7lSKdZOrw1rQYpoSUB87rFz+NTDKrE7wVLvYrXYtNCFTa3VKaeOa1nXJM7YP8QnN3Ua14TJTR2jI6aJrlLO//AHn4CUamFiLsB2AuYEMMolBoFXDhmRrDNqdKYNmkg5i0gA+Mm/ux03P3QWtz66jBdcfyB43CNn1rGyOcbnXbMneEy9TyLnoW1k5DuM2wmTHGKrskTgaGkVfnjPAFkqGPKrKvtJC9Dm/DzMC+yf72NrXOCxcjtmvzdbbSFQLXibTGKvlFElFgaAgttemmBRL5JVveXe2R7bpp3O8XSYxOq7sJoA1xbyEv3Mvoimz5zrN4xrpsAkmvMWl0lMmUyilFIfS86CieYfahEytGxvXCjn3L2zPf09ekYj6zYG5uzaULkHGwsSVp9EWS2OE6EW8lJKvdA2a+0oSULX/+JMhpTRuBxoXls8RspcJNtqEj1EojPhlBdSJxOb4Mh96dztne0pJjdwUVnvt8dryq4ax5dBIqMGdZCpRu6shIc0Wrkw53Jf71rXOBqjth0ecNdbJwVsyyY3tbDNAHCwdKtfLo1rTJk2h0kXArq/aMgcZDKyvqbs5hx/cmWr7q7ZkoB42a9+CADw4M9/nZb7RnfTCnljveWaM0w0W8AAlmBTB4kOuakOEi1MoqsFRuyTePGgq+yKHsZLDEOGrjAX7yyXwPK9nFqnaYNu7DWGRAyomBFOTzQA+LJfeB++9g0fYo0xs02cOrWuTCKNY0lbQ5nE8nh98RMP6teuXJxBLwmvkaKJNUtMKdtk4NZPE1y1dwbHy/pC022OKzclyaiNBTMXyfOaSVSL5D0zBpMYGiSW53gaNYnmoqELAwb4FzG2mkSOrGw7MIMgjglTUahFE4dJHOaFZkG6NCAn1sB2jYzzAlmSYM9sD8vrI2wM85p812c4sTHM8dyfeTe+/U0fq1opJLw+icokRP1uWySbSZv5vrr+KTGzONNjtelovo87JwhDEsh3N61/FmFcSOc4jtx3eWOEXiow20tZ5k16IZ/wnIFJkpkx2Z5cSq/82b29Qj8XQwNSs3ctR+5ITp5CS3AZUk4hQB1NOP1Fqb+ubRzdt8Skrw/zmuETT15MSarw+s7cEmzYrknTefn02nDCXTPkOs4LWTGJ5T52dcC/lBCqgHhseQM//JbP4vTqVl3K7GKA2+SmJB21tsBwGdfEFhgXDboulnSQuLHzrTNqNQpdgsRdzCR2Pf70MJyK3LQ8/nN9Xo3UuJCY74dLVsxxagyDSRyHBaTUQ+6FN1ZB4uE9g1JuGiij0jWJbmnNKFfsy9V7Z/DYsgrYTLc5l7spHeuz6yP9AFUMJPS4SblpySQmCXppgpleguWNEYRQTIpmNgIXCV3lpjc/eAZ/dfMjrDFbtVrSrkGie5yWm2b1msTpMInVNlhyU8NdMPQeMI9BKCMOVMeRMvKuxEWWVEzi+nCMuX4l5/AZTrzrjmMAgDuPrUwyiYyWFKbcFGgyN1WQmJSSa7rn9sxk7JrEXEotYwutdTLlpLZAtgoi3Z/hWqT53E190j7CfSdX8XP/9Dn81gfuw97ZHoRQgVuo/LPQ5y1hm4tkHYLEmkspa07g1yRKMwAWwild3xrntb/VVCHMwDlNKrkpx7jGx0DS5/SzBIMswcYwn7hvWH0SjVrSMLmp+uk1QAGwMSp0GcYpg0n0OX6rz69eP7q0gXGu3E17u9yc8AN3n8T3/+ktU9mWuX7xXf/vv+sk/uLmR/D9f/rJWgLIyW63Gde4WmB45aYUJEYmcdeja23ONJnEcY1JDN9fulE4fcOmja5yX3Jxm8Z3o2M+20/Zx3+uvE5Y/a7K88ZZINRrEj3GNSWz9Lwn7EeaCOyf62Gml5ZyU660zP3QHuUFemmCK/fM4Pi5Lf2eem2hW26aF1LXqY4NJlGNq2/MlEwBwFOuVP2LFgcqQGQziR3lpt/yWx/FD73F39x+clvbZxJ9iZKNUY5BltT6zE0tSDS+DydIpMUdi0k0g8QODchpseWSQGdpgn06SMxr8t00mexdCAD/fOdxvPrPPz2xX9ruPrSOyzCusfUSpG3T31SQWNYkzmRe+Zt1e4XUSbjwFhiG3NTieEnrJ5+7qbMmMa/uf9cY32P8u//wZrzxA/erzzICvlBVzoTclBMQiapvHud897MEQnBZ8crdlOOcC1TtJWzXyIOn1vCF//u9+K7f/4RuTVRz3GXUadI4zTYzmURiIG2SZHrPXD/F2nBcu2+yJDy4r4LE8OdG5cDqbuUCAJvDHNftV22eTq9t1Y1rPAqP04ay5oFTayVLDW9Pxt2A7/q9m/D2W49NNZkP+O8bUiktGYloxVKrv09cJ+PSaZ1bk1iMo9z0UoB5QXCknPNTlZtW+8UJUigLvJv7JG6XSewqCeTIjGkfZ3spqzh6nFdMYpeaRJ7cNIxZoprEg/N9PPnwAq7coya+LE0Yxgpm9rP+WrU/qrn94cUZnFjZhJSy5jaXlAvrZubavNbp3jLdDVMrk1gu/MqH+vOesB8ANNvTVpP4X//i0/jTjz+k/0/Hr0v7BS7M65fLUlfj3Pu5OcxrUlOAl/nfDrrWJJKUjcMkmvczZ8FEbyXZlm1eGBUFemVN4pGz6/iHzz6mWQZAsWO2a+tX33tv7f/HymRJlqjFbujCum5cU+63rd6vvLcWZjK9EFqc4dfkmkEi17im1jvPGCo12+n+jMSxn14mMUBuah4rSlZ0Ma4hto3lblomBNQ1wmCOhZIkcxNHJJvu0gLDlTz6i5sfwfLGCB+8+yRe9qsfwpm14WSQyJGbJqa0L2CMPv5uB0rze8z1My031fcNpy9m0Wwdw5CbCr/j6+Y4x8GFPgZZglOrw3oLDE/yjpQBgGISc1kyibtcbkpkCtdzoguadfounCjLX8ZFUVvL0PmeuE7yMkBvk5s253Ovuykxif4yjBgk7gKYDxBO1o4MMpaZctPbHl3GncfOscbUDFA6yE13a5YJ6B4kkqymK5O4zjGFKR8SM7002BAAUOdttgxUurBEXeoY28ZRD7n5QYYf/dqn44e+5qkAVE/N8DoWY2HheGiPS7np/rkeRrnEWlP+42ANzOuhYhILY5E8mbWmwJ0W7l90gzIyol6Lzsm/xFs/9Sh+7G236f9P8745L3JTTzC7MarXzwFTbIFRHr9EcPskqjEDBpPYdR6na6mf2tmeopCQUh2zvbM9nC0TF3cdX9HvsV2TAPDs6/bW/v/ImXUAlWwuOGiTZpBY7qcxD1VST/VzwXA2W5zJVJ0gx3ClJncMZ18AFajaA1n1029co342E0e5lNp8Z3JMOyM1yBI87sBsbT96aRIcNJjsY5owgm3jvGVcuWOiWjBw5wSqdw19TplMlstxmuaXL37iAWyNC3zmkaXGNRnGikup7iXaFu1z6z4GGNdUbZkEZvupkpvKbn0Sc1lvZREiX2+2slCfMzluo1QhXLEwwKnVrYkA2LWLJ85VrqjLGyPDOXd3y00XGn2LdxK1mkTPfXOidJhd3RrXjWss85Z6gYLEnv0DdQsMW01im7tpDBJ3PWo9oRgTMhkEcC/+//vXPoyXvp5nnFJjEhlMFo3bzUyi+X18Vv5NkKymq4xhjdGTTtvk91IW21xIqWVprJrEnM8kmhObj33RNvD9DF/+lEN4ydOvBFDKrxiZbqDMvqX2hzbJTffPlc2N14aNhQXs44qKfT23MdbvqS9IJgNS9R3Ue77kSVfU/h7KpBwzXFjpO3QBZ5x5rnbifK8PLUGiCF+wbge0uNoz22Mx/sSkKCaRd02q7fKD7cyxsBsZCYi9c1VNyg9+1ZP1766Aj+bdP3/VFwMAHjy9pt+feAJ1KSU2RzlOrZJM2+yTiIn9bDaq3zNbLWYomcmpyRoXki1brPdJtBjXGIsxF1wGO2b9WxMhNYmnV4d4/hPqDtjqeDCltAmPhR+3zFsuVNd/uAOu2k91HfczjgkZ9P65HKcLKbF3todf/JZnA1CunFvjAjMli5UIpmw08ZiEWMeV+2gY17jMy0huWhnX0PdTSYGQNYaUqgZeN6oPCRKNRI2uAbaM2xjlmMlSVd+8PmoEwO5n1MpWtc5c2hghpz6Ju1xuOj9Qz56pBImBNYk6SNwc16XMLgaYgj8XK+hyN5V59bcmkkT9LcpNdz+atrmhIHvd3V2TyA82pg3zOc1ZuJKspiuTyGlcrmsSeylrMh7nVZDI7XcFdK9RCzGumRvUJ7xexmjuber4HQu7Ua7ML/aVRfpL6yPkebVocvXJGucFDixUNuYASmmNe7GljWvKh/riTA//+rnX4odf+jQAVQBgu3fMoN9clAPhNvJNcJq5d2cSw8bZWvRMuwXGwiBj9Wolm/yZXoKtwPvbnEe6GNeQnf9Eo3ojAXH13qom5Qe/6in6d5fhxOrWGE+8Yh7Pedw+JAK4/eg5CKHmEdeC/LZHl3HDj7wdT3vtO/D8//UevQ/EGPh6EFIY9eKnHtJ/o3mS4+5YyEq2uB25ad24ptxHT01iNSfUX6fG4Ta4FAmEvJA4uz7EdfsVk/htz38cAKCXqJY/IUGDOd8Jj7lLE6bcMUvCmcu8qBxwOc8A6kPL6cFZ1SS6GXE6/gfLefnhM+uQsnISbQuA/+rmR1TfQpsChcEkJgmc9bX03ZNEBYlN4xrdqingFFBSpkqABshNC8t3s9UkjnLM9FNtgtUMgF0JCEqYCqGepeO8kjInYhfLTWfU8386TGJYTSL1qlwb5vr+8rHUmu1zsYLOmkQPkwgoNjEyibsf5r3VRe7FCTZMcORX5sXPCVI0k7hLs0xA9+9Gaw3OgtwEh0kca7lpuAMoUK/t4TIpAK9GzXwg+a7jtWGOfpbUaqoAWjQFLggNiYy7uXHJJJZ9q86WiwTTEa+534B62B0oGRu6R/LcaJ1hYW2axjUA8Lpvew6+70U36v101QSZ9wY1s9dMYsfkCqctS9c2KeapajOumahJZBhNbAdmkMi5/qlRN4tJNL4Pt0+iEKgkmZbrEVA1u084OGf9DBeTuLY1xvwgw0wvxfVXzAOozJRcC/Lbjy7X/r85yrE5rgJ9G3NmOosCwMufdx2e87h9+LInV4w6l0nkumSawYbVuIbYTs9nON1NjeRSE/Sy63peWh+ikKoG+4Gf+1r8v9/y+QDU+TT324dxIwAITbB0ZRJVf0WViGYFiUXlyskxIaPrXzjqLUnGOtfPMNdP8UDJiC+WAYCPXb33xCp+6C2fxX/7y8/UHECF5Rpxwcb2TD5vqkTiXD/D+qhuXONq1QQoI5MP3H1y4vvS54UknUym3Kdc2RwVmO1VQWKNpfbUdq6Uz8LH7Z/D8oaqCc2MxNE0asy7YKFMRk+DTAmtSVwx1t7HVzbRSxVr72S3teuWq77Q1QJj7GYfARVAxiBx96MmN+0QgHWVOz54ao2xrbCLf3Lc7pebmjdkF3OXrkE6py0IbWu2nwY3YAZKl7pU2VTzrq2SyeoYNLQxifP9yYmLY+RgFtvbFoT0niQR2u777PpQM0SAW1o2LgocXFAF4ucsTKIt29o0rrHBVRNkBi/08KDP7yrh4bDbdcOh8HGhTGKzpx/AM3HYDug6XJzJ2FJaYhJD59euihBTymgz4KjqXQWuPzhv/QyXu+naVq7lVk8tHXf3lveDa0HeZH2PLW9iY1gFibb7xlxoAqo36N/85y/BH/+nL9LvYdVkFVI3Eg+ubbMsks9nn0TXva3ZR8d3I1fIgwuDGovJMU4h2WKX2k46XxlT3poKwQ8Spbo+VHuV8HNdJe7sQZtpHHRwoa/XLlRv5jOuOXJW1eHeeWzFYBKN4x/w9epGafbzbfZEnO2nWN/KG0yuO3D7/j+9Bd/1ezdptkuWx5ESCSHnrWZc4wg2pJS6RnzvbK+UjRoBsCfYW9kcY5AlOLw4wNk1qklM9HGZRo15F1ywmkTPs3tzVGBPyYI/trSJPTM9fW83PweAITd1hGy+FhiuwBIA0izKTS8G5B2DFLq5uzogHjcKkdtgsg2cmriLwbjGDEy4WVOAxwiaYNUklvs400sxCnz4Ag0jgQ7XVhf5YZqIVndTkgmZ6KVJcACctywIgepBu69kBZfWR7WaxMSxSBgXEoulbb9mEot6LaMtsKTv4IJrcWceq5XNsTYqAbrfN2QOFIKuwU2ou+nGqJgIPDi93rYDCoAXBhmPFS/UYovDJJoSQFZNojQSF7Z6V2OBetUeuwW6sMhUgfJeKxdJJHdcHBD7Yl+QNxM1R5c3sDUudKBvcwDVNYkeni5lyR0NJjH4+KuftZpEY3NmiwwXfO6mLiaxLdg7vVoGifP1HmfCEZDaUJu3POYiTYyLQhvucGsSK+MaRuJIqrYIfUct46NLG/iW3/wIbnu0YqsLiVrizi43rQKwKxYGuP2oMt4z5aau4/jQaRUkrg+r+q/EaGURcvw3x3nZEsRtClNjEnuqJrFprkPva+LIWeUcSjJEOo6c1kl2trP+nlEuS3VRgn1zJDc1AmAhIKXdm+Hc5giLMz3sm1PBpZpbqsTRNJJ+XdDVu6MLajWJjnmLAvUrFlUi+ujypq7bdpXOdJebFlFueimg6yKN2gV0ZRK7LghD2xQAVRZ4NzOJeeBitwk6Jp3lpoyFPG1rhtkCgzKw3IwwBWu8IFH9nOv52wasbI70QtUES6LUyH4Ckw9tkjHtm62YxFrW2mLAAUA3Cd4z29N1GHXZVtJqXGODqybIPC+rW+OGbLHbg5clNy1kKf/1B/dNmEGJr25v0yY3nZI8SctNZ3psJjFNlLtp6CKZvs+AUVsL1NkeW52grndNVK/JX3j55+Nv//OX1N7jOp5rw7FulXR4cUa/V2/Lcj3S/PJn361YwKNLmzU22FbvRB/jIekUk8ioOd5On0Svu6kvSCz/OGEuKKV2KJ4cU99+E6fX1MKf1AkEl5LBhrYklQvE7AElk8hgZXULDEbCQ8qqv59tkXzXsXO4+aGz+IZf/3BtW3QMhSNIKQwm9+B8dRz3GItr126SWdPK5lgnuNOEJzfdMPqSuhby5jmaH2Q6KDX7JAKw3gNUN39ipTIuS4Tw1rI3IY3r2yU3JYXJTC/FntkehuMC68NxTe5uGwcA5zbH2DOTYe9sH8vrQ/UcL+W+06ox7wLaKyrl2EnkATWJ9By6opwPji5taKMvOv4TQToFf21y0+a4YuxmH4FSbhqZxF2PrnJTuiA3OwZgnObqo4AMiXVc+d5xIXetHKFrLdF2HSg5MtW8lBt1YQTTDkFilxYYdBxn+6l33MqmnUnkLGJsLnXNh5SUKIv/EyzOZKpxbYO1sY1TrqgCe2ayyrjGXKSJyQVh07jGBjeTWN2HK5ujetKoM5PIq0nMkpI1Y6gSgpnEYY7ZXv24pIyAYTsY5QUSUSYuOtQk9hh1dKYDMVembbLbTuOacpH8ihc8Ds9+3L7ae9pqEgHgUJm5puvNJZujuf5xZcPt4+c2a3Wl9vumYmhc4NQkFtJogREc2EDvg8/d1Gdc43Q3zaXzu7nYRwIxiQcaTCLPXdOQJHsSLFvjHG/71BHcXbZHMWWaacpkEjvKTX01ibTbhazmzLrc1F3vR+/5yW/4PP36woCCFPdxJCZxXEgsUY/KhGdcs7aVa0bKWbdqPCNm+yk2RnlZ20nH390GaW8ZJFCbCRrnYx+bCHkmEqEwWxrXAMCZtVHNlA2wB84rm2MszvZwxUIfJ1e3sDkqsDhoZ3IvNKqez92S+V22BbgTvPQcovl4eWNkYRIbg7TctIVJbNYktspNe0AemcRdj65yU7oIuUwiZe04ssWa3LRDCwxg95rXdF2UbzdIZBnJlJlsTq8roJQb0cOe6YoKqOMRGtzT++b6foneSpmRbKLHsE23Obm53OYAYP9cf4JJdNVtUEH+wYVBJf8p6u6mzWDWZlzThKsmqyk3rfUk7Wpcw5gTSCalrhFOTWJgkGjrk+hw1jzfGOYFsjRhMYLUS01l1hNIGeiAWB6CmV74dQzUmRSrcU35wZknAeFzN12YCBJLNsVVy1vuuzK8SbC8McLGKNc1grb7xgzQXMjScHfTWguMwHug3idxck5omuvY4JKA+moSXewj4fTaEEJA10ZX2+LVxNUkmY7r8e8+fRT/5S8+g+/6vZsgpayN47ibFgVK2Sg34VEmMx3PG3P7955YnfxuDumuGWxdt78yb9JyU4+ZDzGJAHCqnM9rZQqOQ/LXtxzBj//NrdgY5tgYjaskiWMhr9QH5G6dYZRLrG6Oa0wufd8mdJBYMomUpBIlmxhS4tNsZUH7ZEIHiT0zSNzS13DiuSbPbYywZybDjYcW9NqTghtOvfG0QXPONNRsdeMa+/bo2XzlYlU6sIcYWZcqoWsLjGLcIjeNTOJFgZpsi2Uc0S1IJNnMFqe2MCBDYh13EQSJXWsSaQLmTj60EOEGpEnCC6TUOJVB7qe82pJQK+fmPgKKSfEGiVuVTMUEWcIHbav2QPQziYBaoJ1dV3bfTeMaGyuYJQmu3TeLR5c2IKXEcFzoRbptIU/3R89jXJM4AnzzvJzbNOtm+AkIaovTJjf9uX/6HN55+zEAFBQnGGRJJwdcoN3ddKYhN1XypOBNdcY4l+glyjmO2+/Q7MEZlMmXBpPIvLfNerPmUNOkyQXbInmcF9gcFZoBoSCRzpWLAdPbSwUWZ1QvtaFRk2hbJNMzzCflDGUSqSZ3wHQ3tfVJtPZy9HxGCEvUBL3sSnqcXt3C/rn+RJDvkrvb0ExSucZ89P7TAIDHljdx66PL2Cpr6Wg/g5nEMihTzw1mwiNxM4nm9v/l3lMAyp6A5XdzBukOd1nNwDiOSV5IPHJmXZs2kYmQCsAm94nw7juO47/91WfwJx97GL//kQdKJpFqcu3jlAOu+v3afar+96Ez6/r9PndTWpMdW6akZJVEyDwmX2fXhnjJL78fv/bee2q9Sm1MOlCtVXppoueDx5Y3a1JmwMUkKsbrxsML+jUtN21x3H3RL74Pv/3B+51/30loVdQUHjh1g0f79mj+veFQZUJG17Eor8tJd1OSm7qMa3w1idHd9KJHVyaRsktsJjHpvi2A2wJj+6zITqOz3FSzbbwMGk3gXRwQOb211LhCW/l37XkYukigia2NSVzdrNgNE700CTZFMg0IXIxgIaVeEO6b62Npfajq44gRabEyv2bfLB5b3sDmqMC4kHqfbU5utN+uuiX1NzuTUmcSK7kptycmoOTIgF9uuro1xhs/cD++549vUfteFJUkmdVLs/2+yQsVYM/16uc7m5I8iViKmV6KzVEe1pMuIAHh2hYAzGS881Y3t5hc2IXUuyomsf4aXVfEyFENzP7SyMkVENE10EuUTPtk2btTB4mWRTL91lqTyAy2ge31SazLTcu/+0p0LIY3gL9PYuJINhHOrA0npKZqPxhy04Zxjctc5JaHzuJpV6mA6N4TqzUmWTGJ4fOrMm7izQnk8NlP7XW5NGccWhzgdz70gP5uuk1EQL2fCS0BdbCrR5c2MMolnvv4fQCqPrR1JnFy3MfuP43ZXoqnXbWID99zqqxJrI6jbZxZt/q4A4rtXFof6dd8TCIlCqm8QbmiQm/PVYZx/6lV3HdyDb/87rt10qZWp+9KACUCjy/38YFTazV3Zdc+qtYZGZ5UCxLb+1SO8gIPnl7H/37756x/32l0KZ3pvi0jue7YHvXrPTjf1+qCPUbS3MqKt8lNXS0wZEufxLSH6G56EcCcgzlZu0puyrv4adJiNWU3LlpOn75xwE1zPvFXNz+Cj9x3ijWmq3FNFyZRSqkfLmwZT5mhpf+HgAxX+gwmxRzH2U8d3PRTp5GJlFLVNthqEh0LC9+2zNqS5uU8ySQOsWrUaDndTXPFrF27fxajXOL+U0oWZdYNNDO7pgOlCy4mxTwvq1vj2nHkJASAisn0uZt+9shSfd9Nto1TtxcQJFY1MJM1iRyX5K4gmdogS1DIMEbQlCVW7oLt+yp1cMM3rjEXyU7jGp/cVFiCy8Y1eWC+j5/95mfhd77r+XoMYAmI8ooV3zPT0xK42YZxR11uKmt/syHU3ZSu/0HWsQWGKTdl72N9HwCas933dqvcdHU44WxqjguTMk/222sOk1Li6NIGnvv4/Xq7JpPM75NYBoncFhhJaVxjZRLVay952mEcO7eJta2xUndMfDdbAFYd/5/+xmfgaVct1pxDbd+NXEM//7p9ACq5aVpzwJ0cd3ZtiIMLfVy7bxbLGyOsDcfauIaukea1TGofoKrnBeqBlG0cUD0DyPHclNcqJtF+Dszef2dKltR1/dM+AurZd9WeGc0UT8h9Hfs46CXYO9vD4ZKFrDGJjhtg3Wj1xXmWnS/Q8Z7G+jOkJpFUPrO9VJtZmcoqW8KvcjftIDd1sY9AZBIvFnTt09dVbspd/AP1RSCrT18h9eQ6jZv0h97yWXznb3+cNaaru2yXmsS8qNobsDK05UODJEuhi9Ci6OZuOs6r88Z1d5ztZc7vRqycVW6aivAWGMYCOHFIZJT0Sf2+b66PpbUR1odjY9FkHzculHHNdaVkiEwgzMWWrf8U/c0FZ01iGZjtn+thxZCbDjJiUsIfrLR935jbH1X28ZRJzguJNC3Z5g6JI5+b54ZRA2OCY+O/HRADT8cyJFFiyn27MImDXoq8kCyTEK9xjSH/dMEmQaTPMRfX3/lFj9c1XU4m3XCAXJzJtJnGTOY2rtHOip7vGerKSfdWlhAjxWMSXXK7kNMhLIFDbjmOJrTc1LGBU2tbmsU14TMJacJsr+Da3tn1EUa5xI2H5iGEajcBQPfJ9MkWm6D7hm14VtaB9xwGa5SAoHYsjy1v1lgzV52mWbcIAP/uhdfjHT/45fr/rvlkeUMFTk8spX0nSxMhavdAn93EmXXF/lLD+Y1hjrlB3VykeZ8qSTCx9n095+1tOFf6ngHkeK6OY3stqRkkPlL2gzRZUludPlAGyYnAdQfUeahUAu5rcmuc68TNk69UbKIZALuSHatGwvJUefynCToGnCT5drcF+BKn6vVBL8HZMrB/4Y0H9d8Tr9zUFSSm9fcRitwvN01jC4yLAl2NU2hBPZUWGMYikMckmi514du798Qq3n3H8eD3bwf1G5v33dSYnZffarlpuVAMDaaIEeTKhsZFlYEO3c+acY2DkaJm8a4+iVLyFpJJIvSDOW98P/UxxCT2sbI1xvLGqGISLYuEoqhYg2vKIPGuY6u1fbYFe6bUzQU3k6ju3ysWBkpuSsF2nye3U6Ag0T3m+DnFDNGujsrFDbcnGhmu9D11spQ1bfZJzBhOi9sB1UiR6YqvVQfBlJuy+pR1lEnW5HaWYI/mW18CwlYT1MZuu1iDUSHRS5VphmISyyBR12RNLiQrKef2mURzv12tFGyoahK34cBqCRJpf1zfrc2l1Ck3dTC5Nph1vS6ZKjG+V+2dwd7Zng4STZk8y920gwRdloYrPcc42j7JMY8tb2qTFqCq07SaiXnl1vbjT/LNa/fNIkuEVW5qO21n14bYP9fH3jlVk7s2HGOuGUjZmMRyF4UQuHKPSgzsLSWFvpYnJEHUTGIha4Y3LtXFktH775Ez63o7Ptmu+R2I8dxfXp8+dntrXOj61icdUkEiySR9hnrrhov76tYYtzx0Br/6nnus790JTFNuGlSTOK6eib/ybc/Bf/vqp+ALbzig/26Xm5af1SY3tQWXbcY1UW66+2FeEJwATDOJzIufJgBu0KDd5ph1e7MdmMSvet0H8N1/dHPw+7eDrm6SRYfJxwzueD0IZblo4jv+kQEBNyitmMTwgBTw1ySulA8Mm7spMSUh1xe9pSY3nbh1qof2wQX1EDx+bktn1m2LOzo/vTTBNfuU+xgxiQtGcOnK0HrWMciSxNr2gc7LwYW+YhJzCjb49xsthH1STpIlURY6L+ut1IKclyTJksTL9piW6ybajA7OFyomsQwSA65luq+T0t2UPqd9nPo5k/HOW2EwiVYDGuOadMHGblduh/ZxzqbgpXETAOyZre7TiT6JNZYu5PoPczc1j38vC3fkNOuUbXNCxTS6P8Pm7tjGJFbs4+TfRnmBpfWRnn/s22r/futb41r9nblfBGJ8Dy/OYN9sT0st5wfu5JYLtT6JHVpgDBxzAp1LYhKPLm/UWDNbAoLGtQX3tu9GQeK+uR6u3T+LB0+t6ff7GODTZWC/b1YlF1c2x5gbNPokWhQoZk06JRWJSfS1StFMYinNNGtQs9TdGmp5vWLmKEhMEr9zN1Dd+yQbJTm0a04g8zZSZLzghgNYHGS4YrGvv5srSWK2+lofjvHy3/wofuU9d3d2hedCt8CYwvbysr4fcK+vNw256Zc/5RB+4CVPrv1dseLNIDFQbmrWJEqp5Ke+FhhJZBIvCpj6c1adoNGontODsItGe5RLXbjNYdty2Y1JnCbqfSr5DqAsJtE45l36HXLcFul9JDcNDfaklOp8D3hBIh3HfpY4F4PU0NZWk9hj1MrS5yvjmvr29f7I6oH+zGv36tdp0WRbbJkmIYszPeyZyXDXsXqQaMvI6/96FqBtNYlXLAywujnW11WX+0ZLoD3XBzn8nStNcsg5sJcmbCl5kqjgxRVcuuSmaRIms9suqAchR25ascLYJpMYGNzIRp9EB5PIdjfVC0L7GFeQMsqrdg+mLHxCkmYJEn03QAiTNc6Lmrw2S8KZLH3eEvucYNaaumCTrlfHsSVIt3w3kpMd9MhNQ4xr1oxm7q6FPDG+hxcH2DvXx6Ol/NCct8L7VKIys+rQAsM1J9D5v3afYrAeW9qsJUlc12RRuFuQAO4gZXljhDQRWBhkeOIV87inbLuRJu5gDzCYxDJJsm45/pNy0zrbTCZi+2bLAMxTA0kKjlXNJFb710s9ctOyx54QlZSzliRpYRLJ4bSN7aR5k5JtX/esq3Hza79Krwl9LUhME7X1Ya7nMWovtdPokswHgKX1oU4yhGJcyCpJ6HgmmkyiDbaSAyUjFe4MlxDq72ZNYpvZDQCksSbxokBuXlgdTWE6Ga6wAtLKAp1jODEutleTOI1C565MIh0Glmy3o7SYJGnEJoRsk6zkk4RnQEC7OMeUm1L209ZHkKDlpgN7TSIQdg+YkjTXosnsP/eMa/bo9803ZXNmkKgXqOo4X7t/rpJtmU5uE7KOisVwIXUwKbUgcVj1SeQGG0AVUPiYZmISpVS9r8aFRC8te3AylQxZkqCX2U0qgHqRvok0Scr63J29v6kutWISA+Smtmsr4LgU+rzxmMS8KKo+iZbFVohxjRCTSqNCfw8mk1gUeluLhgvxTNMV2JSblj/bmUT7cZRS4tvf9FH8q9d/sMYk9rcrN7Ua17g/ozKhqca1MYn0mbbFPyVkfMY1IezehhGkuAKp06WU8uBCH/tmezhXJuRoXFbecyEoDLnpuJBBSWh9/BPhnBNobpvtp9g/18PJ1c1aksRlyqPKJjxBuiNIWVofYe9sD0II3HiocuVMk8SQm9bHbY5yrA1zHJjvYd9cdd7mjJp0wGYKU3fApWfIvrn2mkSqUyPDsWbvVJ9xzYH5Phb6Gc6Vz1bT3XciSGw8p4hJpL12mbnRWoXmUWHUedM413RXZxJzLW09VpY97DQqUoRXlvWcn343nv1T72KNyQuJfqaurbaaRJpPm1CqkMaLRYtsFFBsolmTqNnHFuOaKDedLv7gXx7A5x47xxpTSKl7QrECMGPhwqlL7CaTlLquh2vU0kVuSphGsXHNOIi1SC7KMeH7OKwxibxzRjU6AI/Z4BrX0Pmd5xrXFCjrJt2M1KqHSaSHasg9QBPtbC91LraKopIx9dJES5yaTKL5rK9aWVDNxqz+m68FRsU+tQSJltO2ZVhiU+AGGEFihySE7/o4vbqlFxFn14e6bjVjmIQAdQm06x5YL+elZp/EKqsevLlO0HLTcu4KcYKu1bvq+y18HJ03jiuwySRONOk2mDUXbBKlNibRxRqM86r+6/Ou2aNfJ/OV1LKQlIFJEtd1+dDpdXzs/jO4/+SalqRniWD1hTXdS30OrG1sJ4DaOaBz76sJFQ53x9OrniCRxSSOtXGKKwAY6YV8qgMTwJjvGExiLiVSUfVdDXnGmXJfFwNMz8wsETi4MMCplWEtINISUItM0nP5l/eNnUkkuafZl67GJDZ2k+oCF2d6mmEDlBkNfT/AwiTK+jVCTCIlyHznu3I3zavvS3JTT/Juqfx+CzOZZr3M5NaEBL2Afg9Q1SJWdc/0XRpMojZbsbNfvpZGptP2+tYYB8rA+/jydIJEXZM4pT6JaZI43X0Bo04/czCJwsJuF2O/AQ2g/m4yiW1mN0ApN41B4lTxk39/B172qx9ijRnnUk8oPpnYxLgyawFUFHYI6ALkSVsL9OjiD9xHKZXD3yzTyMFEW1Pw8wFzAuY5uamfXcxuumzLrEkMCaRMu2uOAQGN4zKJxNr4Hmo+uSnnHiAZ4yBLjEVrfZxEXZ1B5hFVCwz1uk1aRgvyL35i5Tq2YASXzcVWCEvhYhKrmkS1CD9b1gpuR27qGiOlxOm1IW64Qi2YlJtqVZMYuoikbaWJQC/x1CQ6mcT6/u4UcjKuIblpQDLNdADs5G7KrEmstwCYXNjpYK8lAGvuYsWI2h/ztGhtrkdGudTzzIufehhfdMMB/KcvvQHXl9eMbSGpfRU8++hjEk224dGylq5qyh7IfhmJGttCvpKbuj+Ddt/mbuptbyOE1QDl9FrF7tnGmPvtw8Yw18Ypvro9QB3nq/dOJrdCa0IBw7gmZdTylrtDQYqNfTQVIFcs9HFqdavW3sPnHNrGJLrkpnvKIPHgfCX5NcsUXG0islTg2tK87KuefiW+6bnXqtcdEnSzHg2oXGXN+US9b3L/KVE4zAtVPiSr8+xzpd0sGeaFQaaTiyaTOLGPsn4t6/WEEeCbx6C5fzS3NZF4EhCrRguMtWGO/fPqfByfEpM4TeOavHRG9yVOW+WmwiY3baktBBSTaNYkhspNc7/ctIW/jOCAUxdogmR6PhcrG8Z5gYVBhjPjYXB/MymNFgxMd1OqEQndRzoc22ESN0Y59rNH8RDSANU3juzufYsIgrlw5C3+i/IaCc/smouGfpqyZKNAdd5C2VxibbKyhkIahgQEksQsWuSm2rgmYHtboxwzvUQ9SMu3Nx9SUtYXrZTNp8nZ9kDUC8Lyby95+mH89D/cAaCSbdlqBui/ze9rwiWJoppAyngvlWYEJEfpYozkukc3RwW2xgUef2AO955YxbnNka5B49zbQOWcq6Rl9rnP2QKDwaJsB+QSyKotrDEi4RJo+i6UuAuv//Ib15jMpgvCIndsXstNaNamySQWhb4Xk0Tgz1/1xbXrurpvqmuFtu0zhUk9TcHNuiUyXMlaWOomzH2wMYIhNYm2urGQIDER9ud/xSRO1iS6jr8Na0Z/18o4qP6evFDtJ5JE4DmP26tfrzGJjNZJpuFTUHlD4/jbmFWSbWeJwBULA9z26DIOzPctclNbkOjedpoI2PLJ5zZG2FsyVzS/Aio4qpQk7qTMU65cxMd/9CU4vDiYMNexJWXMa+SnvuGZOLgwwJc++YpyXPW+JrZGhepTOy6wPhzX2NXMk4QbFQUWehkWZjLcd1LVWybCF2zXWfFnlbX6L/+Ca2uvN49/syaxidRx/QMVMwsAG8OxLjU5uTqdmsRptsAggyWfmRvVKvZdAbfVuCZEbtpgEtvMbgCE9EmMQeJ5BMf0wUQlJeTJvUaFxD6SqTL7ywF8uWmWEo0e9qCpDDhKRqoDk9i1vcc4L7R8sQ3U20lKvpSWMMoLpG1yADTlpkxpnxDoZ+ViN+AcmEwCR25qtrLg7CdlnzO9QJs0GyDGwNYCQ8tNA67ljVFek/HYFsmFlDVh2f5ysUB1kbYHYnNB/oSD8/jFb/l8fOqRJaNv1eQCSAYtku21JRRs0TEh2RCXgacaVMB9fdDxv3qvcm6lvoz9XoqMcW8DZeJC+OetDYe7KSdo2w4qw6dwdk+zYgnP3ZQ+mljL0AW5ae9vM+AIMlwRPibRPs7tblpvN9BMfOiWM2YApt/r3EUvk7hmSNKOlIYrypXZLdtqwjxONtliSCDrSxz5WzA45KZrW7UEUHNMc1su1I1Tyv2yBDe0j899fJVaJYdaTtsZqoHnyE2bcl/bNF5nEgc4tTrEjYcmmURbLV3mYRKFcARf40L7PZjnYP9c372txn1z5Z6Z2t/pMvD1SQRUK5Kf/eZn6f+7jGuKQmKYF7hm7wyOLm9idWusn/eAqtV3nTe6VxcG2QSTa/9u9X153IE5PPjzXzexjxNM4qglSPTc22YLjLVhru/naTB7QLWe6Lq9UV5468FNmGt51/aGeV47R02klpIDJTdt2YcJuWn5e5Sb7h5wFlgmSErIX6RJwyQhfPIncI1resxAtpIt8hgpExsdg8R1xjgy7kgTwQ7cCKHHsm5cwznXqPUEDHMApYwotNw0hO2mcbPMmkRiRHwOrCubY8z3U+sE2WcY12wM8xo7ZZMbkWkP4SVPvxJA1ePJ9kCkjzD37luf/7jaw95W/xLEUjgepCT3JAkutaaY0X0SQ5My7dcjybdp4bOyOaoYwSQJTjap/UZrcsvVJ5Fj2rEdFNrwiSEb1ZIsM5gNuN/KcYMsPNmh9zGASfTpFGxMVluQ6HY39S+KbIxIUE1i6jbg2LAwiQmpEhjslxqnAtvmMaHf/O6mkyxRW79J+kwbKX6mdMm0scC2mugmTpzbxPL6qGYAJxznzWSyrtwzg9965RfgXf/ly3XSImUY19Dzps9iEqvv5XIvpn0UQuDQ4gCrW2OcXhtW7YU8TKK/B6ddbmoek32N+kJXkN41uWJLilrHNbZHc/WBUpK8Psy1cRCNc90DozIZbpZvCOFuC1WVoNj30XVMKrmpPeBwMceACgxneymEUAEjPSu6rpe5oK/SNUjkOJwW5Vrep65Rcn7fHGQxbJR5gNxUOOSmnnFpr1VuGoPE8wiOVMuE0uST1XG4bNQ0heFkrQmd5Kaenj2ubXWRm1ItRIjRhA2cWsa8zMb5io2t4zocS/r8mR63/5SS22SeQOoTD57Bc376XdpaWj/s0kQHYBzDm9kuBhxCeFtZrGyOrCwigKAAmCzlzebSAMq+e/X3FiVDTHjpM6/CTT/2EnxRWWdYOblNBoncnlzBNYmWw09BGi0Cie3jMonm3OG6R4mxuWpPxSSOc1VHkTIb3OelLLHvqRvbdLbAsC90zzdokVi1GGrfnsmIcGoS6bsMmE7VJmtgSySEJiAmFtaGcZVrjPk+wjhwsVtn4NXPzkyiwTZQHR/NyewWGOaxZDOJ5XutTKIncHYwWadWh9rwZGKMgxEkHD+3iS/82ffiP//ZJwGg1m4AsNSu5nUm66XPvBpPuXJR/9/X8LwJet700/BnAH1/ITzSeiNooz60dxw9p4McV52mybbb4NqeGSTWmERD4to8/M26vSZspki0rZAERPN80/xOrTJWt8a6TyUArxHcKC/QTxMdZNN+p6l9fi2k/1p2XVvDNrmp594e5QUGvQRzvRTrw1x/FichuR3QdkJdeptYMnpRtoFUaT6Z/HBc6PWtDYnNBOsCyk1jkHge0dU9SUuiGDUD2iY/45lbdGG/ACWl7aVJJyZxpoNxDWVauspN1zlBojTlvjwmlxC8kC8/f76fsdxNtdzUI5u7/dFlLK2PcNujy7X9y5iyOZq7uQxwc0Fu29bq1rjWe81E24L8de++G8/9mXfjnuMr2BzlNXcwW/atWZMIqEbTE9uzyk3t35HGTQaJ5X60MomTx5IWQBRIkbnPDNO4ZhxwPdJ9cWjPAEIA50q5qWISmUoGSW62Hie3UQ7TlZcwNbmprAxQ1PZC5KZVkMjpS1rVJPKcqk2WxBbshQQ3wio3Vdt3MTAuNneUF96AyMfAd3U3peuynyU4uzbS+8153jSPU9MAopKE8wLgyvmRz2SdWRtaTWto/wD3fPdXNz8CAPjwvacAYLJPoiUAaNtH30L+6a99B/6y3GZV3hDOJEojuLIl4NTnVm0iPu/qveqz80InDrVM2MOS2uByNzWb0s8ZScVemnidVOl7WLflYnJleyBrHVf+n2TB61u5Ntyi/XDKTcuEjvlMTQ0msXm/tToeO5nEMkh0tG1IHEE6UCkTZvtZTW7Kabe0HZjti7qs0clILgRUy9tPE6e3wigvnPWIgCPhUeTt7qbNFhgywLgmyaLcdJroLjeteuAFLwjzOksXbCZjvI3NJNJDO3BhRxNSlz6JPXJt7dDaA6hnptugF8ncFgCmdDfwu9EidW6QsiYsWgD4Ainqf3fPiZXatkzjjpAG5k0mkRsk+vodrmyOa1lPEz4zEykl3vDeewAA955YVTWJE0zi5KLJL9GbPJYmi+SCPUgMYSnsvaSoBxgd79WtRk1i6PE3jrfrHiU78oVBhoV+hpXNkZYsKWkfh0kvdL2f6/rfGBal1Kh+YKZlXKPqJquglCc3FUb9XcC4BpPIYm0CmMQ2BszW3BtoZxKbcfO4VQ5lYxLpvnHvo49JpCDxqj0zOnOvDLd4QaIQVRDYPJZVIOv+DFsPyBDjGluQDqh2MwcspjXm57l6hR5ttAiYa5Fkjht9+ppQTKL9WN5zXM2pv/COu9Rnl4kLrVwJkVsbyZXUchzVPlZB242H5vW90pSb2syUvO6+NrMP1Fn6iTmopSax9b5pbG6ct0tifdvbUwZ6q1tjFEW1f8q4xhEkluxxk0mkHI+t/hFwP99c11ZlXOOWm7rm8lHp3j8/SLE+HOvP2ukEIcG8BruUPJ1jyE1D1pLDsV/OT/4YNYTITZs1icQQ+sZFuel0welnZsLsgRfOJJJskYxrwsaZNwzLJIcWkkm4A2uzJpEVJJY3EacmsT4Z8Fi6LnJT81yFSwLLY9LL2EF6W5B4qgwS7z2hXM7Mnkh6HKMp+IAbJJbJDp8BjS+L5rMIf/jMuv792LlNR01ifYxEm9lH+T5jXMhtZKu/0CyFJyzNErstPMmdST5LvbIquWnYvT2qyU39TOJsL8XiTKaNa7JyQchqwVNek76F/OY4t0qUXAYJ5xtkJlFJmcODPZ+VvA1Nd1OO4oK2o6RG9b9LtCcu7H0SC+84twEKn0kM60GYeJjEMYQADi0OdOZeM4nj8GDb/K6paMpN1c+24wjU54Q22S5ty3ZvL22MsM9iWmNuy3UPnDi3iaddtYgXXL8fi4MMT7myWUtdf38b2+ZjpEh9cuUeFdBS4qLHUaDQ8TWYRFtARMcxSxM8sawPr5hEhwS0gJZQcr5b4TkmriDdvP9tcLGdRQuT6JOpAtCtOtZIblregsq4xs1K9VKhxwLAFYt95/zazpLSd6m/Tusp37PbzyQK/bypmMTpyE27llh1GWPWwLtrEluYRNu1HNIncaIFRrnfrXJTfxAc3U3PI7r0AQQqSUTGqEnUTCJTytm5JrFQ2eWMIck0M+tC8Kj+LjWJ9e8WvvikWgJfxs41jm7o0O3ReZsbpDixwmMtzf5f9sbNqpaHgkSzCTSnKbiZSe1nSbhxjSGbBuxykryQziyazyL8I/ed1r8fO7eJjVGBA/PV5CeE3d3UxxrYA+7ABXnjMIawFG3uplpuWrLggx4/2CC45abqs+cHGRZnepPGNR3Ybd8Dcex4IHJq/baDolDXlb7+A74fnUvzWg7pL1e5m4YvrIFKEkvbdLVXaat3ci0+XfWFrkXrMJeY6fEZEfWZzmEtNYk55vsZ9s72dGIwFQK9jMMkosY2NVvVhBoAAfXv1ibbpXFWJit313f65nIAOLGyhSv3zOB3v+v5KGS1QHf1GG260jbhq0m847FzAKqELq1JUs9c3kRlXuRupUCqCcKBsmcesWiuxEXewiQmid04yGQuAeBHXvY0bWCTeIJtwH3fCGF30x4XfibRJV2n/+8pA+X14Vg/7wG/cQ3JTa8yHFgPzg/cst0WpcxOuJsSwbB/ro+z60O9DuQkJLeDcaEMHjdHRSe5KU/xVZm5ucaZfWhtcLfAaAsSm+6m5bpN+GpnekAeg8SpYTs1idSTi8sakLtpsANcjUnksAYqu8yxJK+yVgn6HkmaDfRA5DCJ5ndjObeW2c0+Y0ECqAl3tpdidWvMqAkt5ab98L6FgArA+p7G8UDVk+ueE6va2AjwW2Jb99GQ2w0YrTNMl17Azr6oCdv/gJp0KZX4hXfciWdeuwdn10Y4tryJrYbc1CZ3kRJejZ5tkRayILc594WNs0vSyACmV7aYWd2sy02Dpcx5+71NTOJcP8We2QznNsZKXpgkyFK1f0XLYkdvr6gk6K7gy/VAnFaQmMvquwFhC5OKSQBrkazdTZkMsKpjQbnNyYV8qJR5kn1pY0Tsc8k4bzFW8MpN/de/6zrZGI0x209rLo1845q6UVWT8a9ku+0BsM2UxxekuOSmvjo1l3EK4XjJJDZbOfkYKT/bljiVJFSeQaZnKrlSzeWc50ZNbtoMUhqBLJnxaLmp77u1BOm2YNt0DgaA7/mKG2tjzP0mNBvL22CTt7aZ67TJW8lYZ2VrXKunbzOuyZIEV++brLW3BbKtiSPH+iJEbuq6RoZj9QzYO9vDkbMblXHNFJnEuX6GzdEQWx08LkJ7kNO2EqHWr6uOkqetFrmpNUiUAcY1SWJvgeFlEmMLjKmia00iZeT7WXgmn27I2W30SeS4S+mG2xy202SkGPWWQGVcw7mpa0wKMwBLU+Gt2XBtj2vKQ9fIXD9jHY9mZtf2QKSaxJXNMU6ubNVkUhyjELNugRr8hoBcekmqZruWfQ9SV+AwyiXOro/wNZ93Fa7dN4vHljfLPonV9NWsSTSz2i7YAu4gl1LLJB7WTNzPJAJKPk4Plx0xrtmqgsQrFgY4ubqltp9W5i6h/V7JcKWXJc52LsNSatSE7zo+nzBVAgCQh7SO0eZFvEVy092UMyfT8UgTmyOh+tlWk+gy4ODeb2MP+wXY5Y70VdsCWddhVExiqhkloJSbehqJN1EUdblpc3shvUw1S2TOCUXYXGJjEn3skovtAYC//MQjOH5ua6JHH23LNk4lbdxLuix1M4k0x58gZ+xSbqpdgUMMn4xgugo26u9pMnvEXFLCz90EvkVK65A7mjWJTVCblKbctM0BlPazi9zX/HxzHKDWBImojMvo/VkinME9SRep760JG3OvE8dOCbp9Xh62yE1dfUIBNQ/2U6GZRFoDTc24ppBVwrVDYLrFVNe0GW4pR1r/dWI1rmltgdGUmwYyiS2IQaIDeSHx6/98D06VEr4QmItiVzG6a1tkLhLcE6183wwza21KQDlZ/HFRqIw8Yx91JrsMgDvVJDJcSmumPEwmkZqCc2Wquk8lw9wFUA/HUR5uyUwLIB8Dc3Z9iCcemgeg2ES6RthNwWtMYjjjGWJcQ3VsNrgswmmx3csSXLd/FkfOrJdBYloba361UGavub2Qxa4oWRvzHg9xTnQ1mDYD59leitVykTDb50rJzZrENiYxw5V7ZnB8eRPkOOiTCdu3J1vNRUaOrKmPET+fCOndOTHGWEhxkit0b9FCiqPucLVtAKCppi7MBn2mDS6546goJtir2jiLJDCMSXTPP+vDMWb7mXZ4BEomMQuv098aFzX3xaQR7En9up8lbwaXVZDOl5uS26F1jCdR8vbbHgMAvOiph4PHbacmkeb49WGOtbKZOwXpAFi17EJAM+M22aiZgGg6aDvNXdrq/SwybWAyKJ0YZwkuq+emcxiSxMF2ttyj6n3113UyNxWYL83EACNI9NSKk8TYdO3W+2j5bpV7d8ucYElAmPtk+26uuZzcTffP9bC8MdJmhNOUm3bxxSBwe2drx2/HWrKtJrG5lgFQyk1bwjWn3LSlJrEFMUh04AN3n8Avvetu/MI77gweYwYmHBelqm4mPGuqW2B0rEkcZLz6O8oucySZzdo2zs1Gc21Xt1Fuv8M04dW/0Dh9/AMnPPp8PWkxzneWuGU8gDpHT796DwBVl1hlRLstdhNBNYlM45rEzaT4FjIui3CabLNE4AkH53F0eRNL66NGn0Q+I2h7IJJJSIgkrT7Ovy3af+t5K6o6nbl+irVh07iGz9y7Mv/rwzEGpWz5yj0zWNkaY3ljpMxdUl5wo2sZPRJ0V2N2l0X7+YZ+aLcY13zq4bP4b3/5GSxvjGoJBlbrGFnNrWpb3YxrutQkCksCoi1I9LqbtrA2atxkAOZlEj1swzBXcnrTyv/AfJ/l+D0cF7WaqWZQFDInAJOGNyGqBFcLAJq3XdsxP9/E0aUN/KvPuxLPe8L+4HHbcTc1686XSjdHk0nkGDf5yhuaQRsxpfSdKrlp/bODmERXkN4SXLoZeL95k43t9DHw2nHUxe4lAnODVDOJdC/Z5gRAnX9Vk1iVoTzz2j3VPm6DSXQpZVzH0lfvOhqr47Jvrg8pq0TltOSmRYcg0by3uCaIbUxim7upNeEUIjedaIERIDcNYBJjTaID959cA1Bp5kNgLkA2R7kOINpAdTMpwo1axo1gIzj7LynbnWJjGN4mghZ7vF6OVXawn/HkpvRWl4zNPsa8sTsEiR3kplpaxnZ8VdfVMC+CrhOafHxM4riQuGbvDBZnMtx7YhXPum4vADTGBciGyrdUNYk845rUW5Podk50LRAo4OlnCQ4tVnbyVxjW8k0mpZJ/8uQ/lQFNyLjqtaazog2J40FqMonmtcBVCZjqAl+fRJozrtpLToYqW10lEsLlfb1e4k1ukeFVEy73w/ONyfvGvp/f9qaPYTgu8LJnXoV5bcfP6+fYDBI5jtO1nmguKbPnM2yyuTZXTrdJSN1cZHKcJUkSynY6GZECvUTgwFzVU/CKxQGrBcbWuKjVTDWbUleMoP9zmrVcOkhvCTYmvCYMJY11jINZklLiyNkNfOmTDrHGhTCJhbTXHJvPS2pBkhqGT0EKFCO56Gql0Cw3+N6vuBGDLMW3PO+6ciys41oZwcTeXsjsk2gdJyxOqjogcg6buLaAStrugkvKSfN2lgjMDzIsle6+lNiyqgtQzS+U0Pnka796wvHb2QPSEcy62M4qUWX/bi4mF1BrnMVehv3z9YBkGi0wKJCeZQaJ5q5xyA0p1XPDV141ygv9jLHB2s6lGHdogUGyKJ/c1N7Dtfaxre+4TPFIablv03q7YEoOWa0bioqBCQ02JphExsIOUAsZzk1KGVEO22kyiewehOX34Yypm/Iw5aZJwrJbV/so2Qt5Yhy5mS2yJPf1l6PF3ZMOL+CeEyu1489iEo2HJIdJ1EYmiZuR8i1kXO6mdC57aYInHJzXr7/i+Y/Tv4uJ7D+97t5fa21VAGsgLAuZQrbL2FKLRAmoL4BMMx6SMnPkvjTOlcgxk1dmvRO1wKD9CUHtvsmllRFxZU0zz3V8PqGt/D0SaKBK8pxZG1ZZc8FLrlTupu1tiT732Dncd5Ja1Rh9Ei2MVEjiwrVoBdqDlEnmUvoXyJZzFxKAWQ0ZSpBS5br9s/q1xUGmr60QbDXarTSdYkMk4bZxYaoEe2ADuIN013x3dn2E9WGOa41jETLOx1qa+2ELOIa1ILFqQVIxieE1iYlH8dJ0N53ppfi+F91oOLdOjisKCSndLJYa55L7ticuJtk2Sm63SAIt903bttTnu1g61e/w9JoqcaL53yUT1sFlebMemO/Xewdb9rGNSXRdW20mWC4mF6CaxAT75uoByTSYRPoauudz8Pq6eh9Lbmr4iziZxFI14YJVlRDkbtqoSaSAMcpNdwZHzm4AaM86mjAvCk5RbmUl7zaAaKLZAoPLJLKDxFzJGjiZ3VpNItPdlMbymntX34fb26bqE8ebENgmFZoBzlj7ScGVr5cgyY2edGgB955Yq8lYWC6NxgNhkCXB7l5UtO1rNxDi9jex2DIyrU+/ehHf8YWPw9/+5y/B3rlebaw5LGRh7Qr2zL9Z99PysG86K9qQJfY64NyQic0ZD/ksSVi9Oysmy80kmkH6YYOVNYN7zvZSAV2Eb5tPXPUXSeIecz5B31eUAZ/rPqV59NTaVk1atS0m0XMcf/Rtt+In/+52tY8G2+FafAL+hLCtjqWrcU0hpbffp+36Dwpky320JRNGhUomXLd/Tr8myjrxvJDW+6aJrVG9JlExMNXfQ/aR/t5UCdD++MZw678qd9P6uGPLmwDcCWqXC3Q7k+iWTm+NCxyYV4t4ChJrNbnMFhghfRJtsCUgdNKSWZMLtEtw7a1jqs90bs9yvxUtgawrwVvV+6n5n1zKKZnnMuWhtYpNqQGU5Q0OdUGrBL2pZij841xMLqDkpr00qT1vgOkwiRPKLWbCFeCr0hIhvMmtUat79GQJAGQRIDd11ST6FjPRuKYziAnkBBsmvcyuiSuz3eFMonpf115q/dK4JtRgRz3EhdchzbWtqt8eJ3BTP7vKTblMIgWyrPOWV0wip44L6MIkomxSXG7bMonTQ+rJVy7g1OqWftjUGZHwxa5aJIcbHJnXMWCv08w9xjWuTCvdV/0swSBL8XP/+vPx7Mftq70nEZNBG+CX6NnMU0INaMxtqHHtCSVn3ZJxTGpyISYDbwYprgeUGZAcMOW6RpuI4Gs5r5hEwH4tjxy921z1p+cbdN8A/roZOt+nV4f6HAnmfVPVe7fPCadXhzoRabIdtoy8ZsU927bJTdus/F3tBkgy5YLV8EnfN55xDjk5UBlwXNUIjHoZMcDt98DWuL74SoS9Trkt79ucS0KZ3Ob3amUSXcZB5Xed6dlPgteV1isTru+Xia1xjisWyiBxY6j3j1gqjuGZ2QKDLRu1jGuTSAKlkmSCgZe1+9+1vUm2rW6iYx9neQa3rKXaG9yXTGIzSHQwiaRcczPVlsRFACNo3ceWQD2zBNt6P/MCvSzB1XtnG69PL0icbRgktcG8R7iEg35uO8YpdU1bAqKZgRj7s4SAmny7tMBoQQwSHaCTxAlSzIuekyWhDKBqL8ELNqoWGGHjKEMxYIzLS7lHliSlJNY95tzmCL/23nswyouaIxbXuIZu7u5yU87xLypJLEduajCJXHMRvnFNUTOumXiwGfVHTzq8AAC46/iKei3lGRCYkhSVFAhPQNSdVCfHUfNfG5yZVs0ktjmCGQs7ep1ZI6IlUy2MCFDP9smAmsQsddu00zGZsQaJgfd2+Taf1MV04KO+XLRv2riGcb6zxH9tOY1rGMHXdqC+r/rdVU8tpcR6WZ9dk5smhgkTg4En5tSnSji3OcLRpQ3dz5QOkS0jT2ZK3CCF5oi2Zu6TJhWBSRJbcsXHQDqkbEAlQ2yyzhx2e9ioSWwuroOZxETUAu4guWliqQkNDNJtkky1/+52A4CrlrT9vNmO/3Bc4IoFlTQy5aa81knVdpwupS3Mnk0p0yaRBCYlwkA1H7aNmzyO1d9csJrJyLDnhs9MxmyNNWsEia4yBUC5fttgl9Kqn77AEnAziT5W3EVwDMt64/1zjZrEKchN6VnG7Tlsuvl2cjfN3P1dW91NbdLdELlpkmInWmBE4xoHaGHGYqQ6Mom0kOol4dIyep+2yWc4UAKVJCovJNp8U2hbyt3Uv4//55/vxRs/eD+u3T+Lq8qapyxJMPA0F7XuZ4cgcbvGNVy56biQfJOKjvIHYhvcD98q2/qkQ4sAgLuOnVOvlcE9EFYDZj4QfLbpE+OkLBMJlP23B0RcJrGqSWxbJPOYDd9i17cgpN3g1iT6HBDnyvNjNhOnIDHYXZaYrF7qDGrM5tLmeZjppdoAIbjFjaz37rSxgsMyi9zENINEzSSm9prvYV7oBeWp1a2a3CxlGHfQtdNrYWSllDhXuqgurY9q7K6ttioocSE8wYaLNUgmF+S0fyEMvDmuSsq4x/nqqcdGP80/+o9fiIMlq9VWS2pia5xj/3xV9zRpXNM+JwCTbC4d1jYJrk3dAfiYRPWzeThaZcKOROG4KDDoeQwxPPfpVi1IJAWKea5DahKrudOX8PMFX7YSgDaJJP3N6VLa+tyovzYOYhLtvXK9zw3HMTHLQkxDE5NJdCXggCqRYtvepLmResEZ7HmYxPbjYf8brW/NxJPrO51v0GU7N2AGicY54ribUoLN2xbKkTglWI9lkLtpU24aaxJ3FHQxcbIIo1qQyGGyFJPQS/0sXXMMAHYLBpokOAyYzlilKrPuG0P79ejZjZrWnm9cww8SuxrXUPaHLTctpCEt4wX3zf5QQfuYtNc1ZInAtftnkSYCD51W5ks1K/MQRqRRk8Xpi0mBjWtbvobPrsDBNK5xQTknVv/XSosQJrEmSVM/fQtCWyY/pCYxTSaz/7R9WhCazcTTRKDfqSYxwagorFLysUP++fgDc+wWGLpO1sFs0GfZ6i98Y84nyLgGUPOXbWGyOayO7+nViknkups2g2bXmNWtsb7Oji5v1JrA27L/QQkPC9vQZlvvcjeVaA9Im+PaZGyAewEKkMJA7dCXP+UQnnHNXgAwrskwuanPuEbf2y33qWgs0mTA8W+OAVBT0tjgbhNRLuRbg/vJYKMtkALs99zWuMCe2Qy9VGB5o+rT50v4NVFrgeGonTdVE759NM9brpUkbcze5Lbob+5xduMmc19c+2lzAPVJW33HBFDB7MKgWtDP9hO9/1Ja5OR5Nc4GK7vdEuzZnLvp/35G1p1IG+dSy8YJL3naYZaTfFdMMolhAV/N34KzBi3Xab00QSHtx2QrpAXGxAkIcDedaIFxfpjEGCQ6QAszTtBgSlM5VPooN5isUPmhMXFmHqq/icqBL7zWgD47K+uWfItI+rhHzq7XtPZs4xqS+7LcRqvfOdsiCWTbdzNBMrEZXRMavrBORHX8OZmt+sPXlY1UPZMOLw7waFnzRNeWbZxrHwFox93gmsTyIVm5ZFqMazwLGVcATMfWN7EK0b1Gqm5uUWXDXbAzkO1MYprY64DNOp09pgQ04fXuLIx7WzoeUC4HvusPzunzFsqmkwTa5ZIJUNZ0cns+6dv5hHm9pQ65qelEfW5zVAt4uO6mqVAmOb45+dxmpag4tryp2Nby2rYZ1+iaxJZrsrn2p+/qvN8c560t4SGEsNT7te+jL0gZlZK0JnyOnE00W2BMskvtQYMaZ/9ubQknd7DR1vKHx4C5xrW5m3oZ//LY7Znp4azF3ZT73HBJi5vups59NIa1Bdvqbxb5rT7+7n22KWXGIUGpJQArWhh43Sdx4rxVSQGz5Rpdy5njHNC4zPEF7Y7H/mBPM7nNa7nwzwlpknh6oFbz2+//+xfgl7712dg722OZO3YF7VOXvtSEUOM+2p6ZKLc9u9vkplb1VlGEyU1tLTBiTeLOgBbvXNlo9Xv4DTAuCvS0lTzvItaBG1PuSBNQyH5Wi/SSbfMsmE6sKGe2+0+u1ditadQkdjWuoUw+zyRE/axqO0OZRMWk0SQROmnRProWWk2J0tV7VaN0AA12I1w2lCZKbsfpm5cKg32xMonumhRXplUnKVoy0OZDm37z14hU+62/g17s8rKtQUyiw7jDrNPZ05CbctjtkD59riD9cQfmWE6GQPncamESXdKaabbAqIxr7HMX1SPum+thZXNcY9LpnIW6m9I15ZuTz5VMDQA8dHodK5tj7SxpN64JZETYTKJ98RmS8MiSev08/catZSS4rsuEcU1ujfLa4qsp7w4J9ujvdVOq8vh7++a51R2uIMXXS1CNczNEalz99VYm0XMtU/uQxZkMy4a7qVaFBF3/6qcQ/gDYzwiW77Mk/LzBpbX+LuS+sbmU0vn2j7Mx8N7nhiMxRtvLEoEFi9zU5QSt12We56ntu4UxiZPHsjVId1wj5jPgxU87jG953nVlK7WdDxJput9WTWKntaRwjh051DUEa6sgGdoCgyk3TaPctDPo5HJq28y6QA6VTj2ifO57k2OqhXOvRQJqgi6+PodJNDJWiu10jzmxonr8nFkf1h52XYNEznE0byw2k1hmf9g96bRsNzRIL8razm5Momuh1ayjMJ3EzEbpYRlh9ZMs0EPZHsoS+wxQvEwiZTEbEyTdi206fpu7qY8RtAU3YUwiLOPCGArAlV1XYxdNuamgazLw2tJBojtrSmwv4auefiUAtSDRJi1MJtEnI3T1SeTIn7cD06in5zAOIibx8OIAK5uj2uIySYS13q91W5452QwSb3t0GQB0PZgti6wX355t2+pd2xgYl7tmSMIjadROcu4b26Ec5dLKiLQlE/7+M0fxlB/7J6xujTHM63LTRNTr/UJrEtWxNMdVr7sgbDVqhrrDhlb5YUsyzc4k+s29zM8393NU9m5bnOlV7qYJj0mXsrre3FLaQHdTY1x1P7q3Td+tZjjUchzVOH/phgv2fqZhNYku5jJNhK6dAyq/CVfg1uyT2IQQlnVCS02oa07IDdm+Da42HYC6t5tqkh4j+bwd5MZ6V4jw9Za5bzxX/qpPIjDpFZIXsvQBYQaJwXJTM0gMaIERmcTuqJhE/+Lg5MoWfvfDD0BK2WASeUFKL01YjeprdYIMmWTFJDJqEmvSVn/rjJNlkLi0PqoFiZwekEA1uXGb2xM42Z+qlq4DI8tsgUHSYnaQmDfqv1oWFmaPrUOLg9Y6KdtnJQmvwFzr8ctt2e4dnySqzd3Ua1yT2Hub+SZIW7Y7hEm0LWTaTAuAarFoy3hrJnG2yuwlTLmplPV723ZNEttLeOO/fR7u+l8vBdBuuNJEXjKJNrdXgm2BALiZhvONELnpZhkkXrlnBoUEVko5KJ3PJmvm21ZlkuOek28/ek7/fqsOEhWTaKstpP+2OSc2D2UbI0WvN+dyKf01ucDkorBKyrSzFPaaRLssuW3e+u9/9RkM8wIPn15XfRKD3E2du6j+3pASBiWcLDVx7Uxi/fOb41zHUuh7p/56KJPoSsINshR7ZjMtN00Fj0lvJlcAm+Klxd3U8gwIZfbMfTD3ue2Y2IJm8zOt27Pcb4Vsr1sVLYx/jUks53FXgrdKnrrvb665TuK4tgpjbrOO08+AyWNpC4raXPLPF8xz2U8TbDFbxQFME0RZqdKAyTWQ9lfI/PfAxO0W4m46UZMYIDeN7qbdQTdgm2voD7z5k/jY/WfwFU85VAuCWHLTvNBF4uGsDTFHPJmqmVkBwjLkpnGI6TbXt1zoZ9ZUFnJpfajH0XfjLAhpgmcFex2ZRNNwhX0cU5WhCsm00rZ6aaLlBsM8sJC6zOTZWCxgsv7ouv0Vk7g4yHSGOeR8N5uJ+ybzWx46g0ICL7j+gGY7Xb21ikK1UmnPrDsm1rZi7wazR6+7x0w+2Kp2A+5x9oWMP7BU49RP27mjY2Ia1wBgGdfoeuOe2+yjuZBUiYey9oXdAqNkEh3fiz7LKjfVNbJBm+qMQlbn2XV/rw/VPXiobPZsGnfQT1/N9xveew9eeOPBWhsU1c7IPub177kbADDfT3HPiVUAwBXltjsb11gWnzpIdAysFtb119sYEQATPdhMqaFvjHqv5Tpx9Phrq4mjBdzptS1Vk2j0FnS5m7Z1Spx0N6Xj72ekms98s07cOqZzTWK5XxY1SUgA1jyWVHM1yBIsDnqV3DSpmPSQBb3JuLodWFuCDcszQOf7PNs2VSG0qA0KLi3rkhAm0aYuCGmDZLu/zWB23qhJJCbR2Sql5bloUxe0JRJc11ar4Y3BQCbGmSJ5f3Mfe4zn2nbQVLOF1hd27pNYoBEk1sdqcsfD+NsY4CB30y4tMCKT2B0UHLYFKfefXAOgstHmQoKTJRkVSm7aZEOa2BjmeOi02t7IYPdYvdQaTGLIgnBsPLR8BblSSqxsjjDXT1FI4GxppU291DhmPvSQnkZNIk2cpJN3saS1MXn1AOolSbC77LgoGnKEUNZG7aPNNIL+DlQLixsOLei/mU3BuX0S0xYW5eW/+VF86299FMBk3aRrgmyr0ZkIEg3W3IV0oo6o/MwgZqN6jcMk1hcyftMCtb0QJrFXbkP9jVcnS/e2T27qXshwnAyBSjrmWsQodYVdWkNjdlpylBdVD0JXneDGkOSmin2nIFE7jiaTToaEe0+s4nXvvhuvfvOnagspV3JlbWuMc5tjfN+LbsQLbjigXz9Uyk3pGVCrrw0JUiwSpdDatkm5aUCbiKTD/eaRJY9LGX4ToTJ5MgDyuZsSWgNg0XQ3rV73jXHViTtbkDiOR6vc1BFsk9rEuY+OcWTx3y9rEmneMGt5Q2tyAXV83XOC3zjFto+hxx+oqxnajj+Nc9033JrEkERhkniuk4bcdCary01dwaW7xcrkejLU3XTymmy5tx3GeCOHCoijUNoOzPryQZYGkw70PVSZVHgLDHreuGoSzXWjC5OGW1ABX6vcNLUzid6axBgkdoZmElsuqnObakFxbmNUey+vJlEZ17iyOABw5Ow6XvRL78NX/OL7ta4ZoCbY4fpuujF5xjVlTaJZb2ZbAA1zFFLZ6QOq5xhQMVIcJ0MtN+0cJIZviybOvnblDAikjGJzJS0LPP5lCwIKEkPlD83+dhNsVCNrfcPB+drfq8VWuHFNkoiyjss+xux7eW6z6vfWcxzHtsy6a/FDCZvzXZNoY2XDGmfbFzLtWeRye5aHPT1kyYWNako5Mu3CeLAB9ns0L9wW9BwHXNqe2V7F5Uprc3JzjTnfyGv3jX2xu6HlpipQIzUEXW8qSLTfA++8/RgA4Lr9c7WFlCsgfWxZGXs99cpF/NK3Plu/rmsSLXIvifbAhlowmMFlXihG0LVwdbE9EnxGJLRNB+1XE67WLK7ESvO1R5eUk7PP3TREEkv72ZSSq3GeMbYFeWBSzD2ujYGsvz723NuAuwaS2NhBltTcled6pDBwX/8mTAWKy1yntZeg5buZLWmc4ywJj7YkCW2PG6TTZ1oTOe5d1J+ZOxjnpnFNs59t85lf9a92XCeWesuuiYTWekuXCsjx7M5Sf9nS+YIpNx0wfDFo7p7rp2y5qc/dVAetLcdysiYx998AgGIaC6MXeWyBsXOgDDjQTjVvlvT18saotpgLb5IuUUg1EZuUfRMv/qX34/i50hRmbVhvS9EiCWxuD+C1wCA51vwgreSmlocGGTI84WAZJK6UTXmJSWQEifReTrBnPthZxjV5XSYZ1juyyrZyegnSg3yQut228kLiZ/7hDtxbStHoNbo+VE8o/4PtWkNuCvCMQupMovu83XpkufY77aM780nXbFtmvf56m9U3QA/E6v960ep5bNtY2TDWhrZR317bQt6dpa1kYtfsncV3vfAJ+IP/8AIAYJkp0cf66o3zwh0A+JgeGyi4bZMJ2853lbQI2lRnFMZ903OoGagmkeSmx8+pQI6y+tbMbglKhPUyoWty1bbsDPBjyyqYuXrvDK5YGOCDP/Ri/MK3fL5hUqHe1wzAQoI2oG7Ukku/kYnregxlRGzGNW0N59XnTy5AzT6J9X1UP33NxAHodj9Nd9NasEeJ9VYm0V6n3OYuO9GTrjXYo/1yJPycNYn2ca01iQ7jLFoEE5NIMK9/nrupcJ5rZYrUPrdaExC+3rWWOSgkSLSpt0z2ybc9e71rQHLFU4N6o6EA0mNcz9OWWn1bsNFmQOOTQAcxkM1A1iU3ZSibtgPzXHLME+lYz/VS1lpSlte3i0nX16S3nddkfTNk0c4kJmmdStcX5fZaYMSaRAtMijiUnl4umUQqlg92KTUW98K4sHqN82oGISdXtmrjtlOTGDKOgr89Mz1vo3QyfHhCyWKdNJhEWxG1C+bDj8UkGuwey7ZYVu6mapsBD8Ty42kch8mttcCwTEC3PbqM3/3wA3j3Hcfxwf/xYkipEgmmlM0VgJl1VL/w8s/H06/eU3s9JAAwH64+Bvj02pb+/cjZdV3c7rT6Lr9qu7V7M9jwPwwB9XAzAwBdxxIQuDVdStXnecZYvl/IwpoWi7YaGDomSSLwU9/4TP23fsaoSdRyU/d17LNA99WM2UCN6p0yYU/NTDVmZ6NE89i6zGRoLqU2FMdKto+YFJ/cdLWc85bWR7h6b7UAc22LmERiih9/cA6PL5NqgP0cqGvL/z2rxEVVE6SMdDxjPKxB633jXCR7xrTI5mxW/j4m0XzGPnJ2HQAm5Ka1exu0jy0BcAeW1OZK29anz7WwpnsidS3+Heetzd3UdSzHxkLedFcmVitUBVSxNu5zLVuuZatKo/zZdvzNfQBCgz1LsN3SX5T207y9Q9hmGmczdwHUnDE/mFySu56nVdLV5W5qN+XxSh0dLLWvTAGw1/cD7me3qUhrrnXPJ3SrQAFWr24dJA4ynQgMHUeu8Ob2m5/rdYq1MMAqSGzh9JrGNSE1iQEtMGKQaIG5uPIt0LYMrfJSGSTO9VKsbI3D5YcGS0LXRdsa7cTKpmF/LJzSJhtMrbX5fx8o+Nsz2zPqlixMYim9fcY1KjC5+/iK2kdiO0P3UYYd/4lx5efPMLM/tJCsTHnCmcRUcN1li5rc1LafNz90FgDw8Jl1bI5yfczNQKKtTyIAvOIFj9O/6x54QRnhalHkq0k0j9PJlS1sjgvM9JJ2JtGT+bSN08FGCytiD/baF4Tcxtl2ual/Qa72Uf20yXBd7ConAVS5m7p7d5qM9MT+dWASzRYYzuDeJjd1sMbnE02XwixJsD4eT7yPvi8FiUeXNjDIKmm9CojsO7o2rIJEcwGm6rgmxxwvg8Qr9w6sn2c7BzIgAWG6SdJD3WUG49sWbS+EFee2iWhzL/a1wLBLVKsdePi0ChJNJmyylUV7sEfjzM2F9KkUwiY3pcQd17hG/fTVmgG24DKQSXTV4AlR69NKjd3TJMzzwJSb0rsne34Gss0WdUdIfXktuRLAJNpUApUk0LefTQdc9ZOblAQmmeP3/Ncvx6NLm7UxgC3gqP/dtq3mWrKtJpH23xZc+sZljhITU/FmwlSkzWLnokRTYt7PkmDygObuuX4abHYDVPdg5QHhkJv6kneW4D4oSGwa14TITSOT2A3mwt1nLLK2VZ0QYhJn+ypIDJUfmgY0dEE3J5FmIFFnEpNWcxETZiBlbr/5nj+76WFASvzznSfwFU85BEA9gH3GNZXcdB7X7pvFkVICpG4aFQS3ZbLMfXTtnwt0/GZ64cwebc+8scOypuqnYtvCjYOoBQb9s7mb3l7a4gPAxx84gy9+4gG9Lfrpc0izgVMDlte+m7ve0rw3Tq0OsTHMMdtLnVbfbfKfVlmNJdggNBdpoQvCJsMd5iQ5+dAupGxtG+DucVm5mzbBsQqn40YOj065KfP422A61brG0fb7lqSAi0U5nzCVBYC7TpCO76GFAYRQtdUUMNK+utYWK5pJHNZkoa5tbY0LbaJgg+24hLiN0vUqG/dAF4lY0LXcyHaHOrCq99Zf98nQfQZH5oLvaBl8k/kQUGbkLcFGO+PfnBNQjnOPSYRNblp+nmOgaz7IG6oQ5zjLcfQ7ctrvU1MVY9YkzpdyU8Uktj9PzWCTbvkJ1qzlWq4CYHNM/W82CEvg3CbbpXGTwb1i0luNa6xscwhLPbk9oDrfTzq8iCcdXtR/bw84XNeJXe4YMidMXMvSH2xXbVns65JmYlgnrafQJxfglzzRuNleuNkNAO2m7UqIVSy1r3TGorqTeQCT6DCu2WYLjFiTaIG5uPJdIGuGccfyxgjDsdTGE+G29dVCxjWJU43Mj3/d0wEoGafO0KRqQraZ3dhAN8lMz80kfurhs3jt39yG1/7t7XjfXSd1sLc4k+mb3RYUacZxJsOzrt2rX1f1fuFMVi1IZLWyUD/7qXthvbo1xk/+3e34D79/E+4/uaq3lyUJi0kx5Z0c4yAlJU70ftqYxPVhjscfmEM/S/Av954yJBNlkOgttncHG0BgTaKRSVULJvv1RffG4iDD8XOb2BjlmKXss2Uf29zYKLhsPqCGuXsRSWjeA8EmFY2HdlBtlSUjL9HOvrjuAR+TqBj4rjWJk+eMJKI2cOSmZkbUNc4nN9UByg5SiU2XQlcyx0ycHZhTwSHN47SvrmNCz4C1YY7NUVGx/bZsMLo1Ew8J2mxsLjkpu2ALLIGwa3lCbqo/s50lciWBrO6mqZ1FMceZIPMhoJuUnP5u7dPXwmQ5649akzL119uCm0Sft24BwORCvnqW7Z+rkiPEJIYqlcxgzic39bPN9D5eAqJiIKvXmve/fZy9ttP3rKHPtN3frTWJiX17gPvZ7Qw4ApIJ1trCANlo85pUzuXOYdbjT9uz7WMlN93ZcgO6/8k7grtOnh9kqnyMsZ5PE3cQHMIkppbEBWThD/aASeOaoBYYUW7aCebC3SdbXG0EieOi0BNrcE2i4VAloX5vTv4nygb1Nx5ewMIgw8mVLV07QO0lQiViekFE7qaWpy85xREeOrOOQZZgkKVe+Q/JTRdnerjhUOWu2U8TZwBs3ceOtYUVk5I6j/+H7zmFP/jIgwCAL3vySTzx0ALIzMPnvufaVsW2hR1/qlsFKACYHDfKCyzOZOhnc3jkzPrExGLt7dRSR+GyqLahMB6uJAtp9j+i/QSAawzWeLZkqP1W3y0upY7v5nM3bS7kq0Wrc0i5vaZstHy9RQ4CTNaNhQSkQFNKKL2LO+UsGHZtNVtguJhE5zXCkICa59I1buS5JiuTrvZtdYUpfwPgXCSYLPyhxQFOrw1r/cp8GWjzGXDs3KYO0F2BZVszcZvDbIj808Yu5UWL1M5xPYbKW7lsp7vFTfUMnNhHB4sCVPPC4kymE5SH91RMYhcpOe2nrd7SN0w4FuTmd5jYjmZWHeOcfRIdwXZLcOOsFTfuE5NBp0RJcE2iXpADKOyBjTKucX+Gr0+iN0ixJO7092oJ7m3Hv6u7b1ByxSX3dTxzXCZfIUz1BPvYmqQq32c5byFSZqeUvBkklv8PbR3WFVpyLIhJDAz2yv0mQ7FhXniN8/T2SjWJTxIOtK2BLOs0KQPlpmbGu/z9YmmBIYT4EyHEY0KIc0KIu4UQ/0/5+vVCCCmEWDX+vdYYNxBC/F457pgQ4r82PvclQog7hRDrQoj3CSGesN19JbevhUHmZQRNJnF1c6zlpkA4k2j2gHNN/hSozmQp9s6qZrd5mSUmJ6VQ2VbFJKr9bNoxA9AL/t965RcAAN59x3Fd6+GqowAqJnFxJsPVe2fK96v6Rz3RBexnYewjpyaxWiQnzszPyZVK60/BN/XoctVW2WBKPVjGQYXUgZetiB1QE1IvTXD13hkcXdqoyXiAFibR1d5AL7bCH/bUJ9H8fBNVkDiDh8+omiBaWKRi8ruFNClOLXKcUV7UzBBsaBbph9SxAJMMQMhC0sn2tDGJFuMaWy1pfUy4RGaiB6qDNWszDgq5R2sKCIdroi9Drk2KdnCR0DQJSB2Mf27IHcnh1OxXlljYBsLq5lgf7xPnNiuXUmFxqEM4k1hf7LZfx7ZaotbsvyVoCwmIgMn7u821ksbQe03oJJAvmWCbf8oDTO1DZnpJrYVAk0msXDL9aDIwQTVxNtliixywTZbvrEnUzFL1min/dkGPczC5aSJw0AgSzRYwvD6JJpNYf49EC9tsWSeESDltc3JbsE2faZu32pnEyXtUfZ53mPWZXyXF/bWrzbmrSubat0UqoNoY6Q+AyfHbxlIHyX2dbPpkCwzAvv48n2jKTTn19kBlXhbuMK7KOVwKiBDjGqvctAiRmzaMa85TTeI05aY/B+B6KeUeAN8A4H8JIZ5n/H2flHKh/Pczxus/CeDJAJ4A4MUA/ocQ4qUAIIS4AsBbAbwWwAEANwP4i+3uKC1+5wd+PTJlkef6KVa3xhiNJfqpqtEJZZbMwt7EMkECpvuYwL65nmItjb5SqkA5bHsk79ILSQeTuH+uh2v3Va57p1ardhaA/aG9OcohhPpscu8z6+jU9tv305TEFjKM/TL3qZ+5azRPrGwhEcBVe2ZwopTxFoVfImPdR+PByjEOonYbNNa2IB/n6jq6dt8sji5vGteIMW5CouSXnlTfjVFbkghvcElM0VV7Z3UD8lmPI2SbPEZt0yJbLAoviwioSbdej6V+ti52HQtJ/uI6IPtMxjXGPTBuWcikjJpE2h2qSbTNXT7jAlffPBvGxjXiWvxXD+jJ8Vr+vINBopZp033jkYAC6rxSTZvJJLpMaAD1DKCE2ImVLX39C2EPttsWoDaTikLK1sjGVkvkkxarfZwMUug3bnIlhO10za8+xs03J9Nz+ooFFdjMNmwSJ4K98mdIMFs//tXnudBUJKh9bp/vfLL8NgbSPNeu2q/athzri9wI7vbOTi4aVV10+3PDPE4uk5w2xpmOsTlMBhx/23USsiC3tYkYF+2+CV0SCbSfXCbRaVzTElwKCyOVF/5emoBdKt8WXDoTQI56Y18rtfMJ89ruUpNIbrMcV9TUYBJtTC7gl5vaWpx1M66R1esu7CYmUUp5u5SSvGRl+e/GgKHfBeBnpJRnpZSfA/DbAP59+bd/DeB2KeVfSSk3oQLKZwshnradfaULYn6QeWviyLjmqj0zWN0cKwaoZM1CmSVzcrf1ugLqTVP3zvawtDGqSUtc9S++7Q16ae3/Jh49u4Fr98/iwEJ/4m+uQBZAzbikYhKF/n5qewEPmwbbGXos60yiI0g8t4WDCwNcvW+mziQmTOMaQxKbOXqi2TA2Ah5bETugvm+WCly9dxYnV7Z0c2+SGFub5LY8EFM9aYV/t5qZj+V4EuNO7AtQyTNsi6ZwJrERJI5la5DYzOyGLCzo77ZaRt+q3CbtK4ow18T6NgKYRE69a0NuarsHKCFiA+f6N/fbNa66jjxMYmByqwuajYtdrCyxq0IIXdNW67dnSXgAamG4ujXGNftUQmxcyFqSxCVt9bE9rl65oVJmc5N5ILtnNeDwjppcJBcy3IG1U+2q7ViW1zcxiY87MFf7e9II9qqFvHc3JwL8kMSRvf5L/fSayVjYnra53NcTkBtImf/PUmENjnyS97WtMX7nQ/djlBe1FhguUx51nTh3sZI7Mq9JWwDcJvelv9nYtlYm0SFl5t5v5n66/QRc5EF7cNkkD8YtjKD6PPs1GVbvOjnO/DuB45GwHdQNBjk1iWogrWe2AoJEalVmJtdtcmu1P+FO7erDA4LEpnFNUE1iirbZfqrGNUKI3xBCrAO4E8BjAN5u/PkhIcQRIcTvlwwhhBD7AVwN4DPG+z4D4Bnl788w/yalXANwn/F3c9uvEkLcLIS4+eTJk979pIeWkpu6LyqSm165Z0YxiXmBfirQT8PdLivNdmKdINX+qP/XmcRKI93s2ePdnsHSmds3sbI5wr7ZvjZxAIDv+YonAvCzDRujXC+SriqDxMPloou1AJXdgkRdk5ilzoX1iZVNHF4c4MrFGRw/t1nrQchxXDSZlF5LC4xxXuhrxZSb2YrYAfV9e2mCq/epY3jPCWWwQ85znbLPibBr3UvcdWwFr3/P3WWNHPR2Mk/GT+2nwIG5KhtVWyQ7ZGV+JtH2EPUbcAC2RWvYgtAlQfEvCOvbAACJ9oevrd6sOm/uBUJoAqhqgeFWCVBhvQ0s4xrj+ncrINxZU267DQ7+4bNHcf1r/hFn1+vqB3/gpt7z1KuUqyD1MwTqztMmNkcFCln1PASAmb7BpNuYxNy/ALVJAtscIQHHNSn9tbW0PWtypWWDk0xi+z66ald9LJhfyUA1/Or/L7j+QGMfJ+W3QJi7qb29QUuw51BOcBnIcKfq6jWJ9vnOdc+1BZg+yfuPvPVW/K9//Bw+ct9pe3KxMa5NceGTQIfUiZvnzWSRXLCxbW2ScNrPZk0uEJBcsT0XC/+5c/WUNevtrOMsZUghjL+VFZf+OcEmdwfcieHKAHE6TGKalKqcwOeNdsrPOEGi+kn1j8Dk+tr3TCQ0W/CoDw+QmzaNa3RNYltvLj+bONUgUUr5/QAWAXwZlEx0C8ApAC+AkpM+r/z7n5ZDFsqfy8bHLJfvob+bf2v+3dz2m6SUz5dSPv/QoUPe/dRMYj/DMC+cUk6Sm161dwYrmyO9uOdk/yuW0G2cYhp37J3tYWm9ziRy3E21cY2HSSRJwqzh8PcjL1POqr5gb2OU6889ON/H/3jpU/GH/+ELy30MZ7Lo+85oK3/ed2uTmx5eHODwngGOn9usZbo45jqFMfn55GgA8Nq/vR3P+J/vxMfvP43huNBZNFsROwAMc8WckdPcQ2UPMJICefskeqQkmWeS/Ppf/zBe/557cHptWDMg8Mq9xup6328xO7Cx2yH7aAsuKYj3oQsjqPfTGlzyFjJBTIrlHjifNYlmkgSwS2R8clNfvbFrW7U+iYzFJydpxMUvvvMuAMBtZSsZ7W7qkIWbElDq8frgqTX998RxDqhHoumoqY2bbJIhtC9AtUyvcS23XVvCcg7aJGKAvbYwBLZm4iFtMwBbErQquZjYP0/igs7JN3/Btfier3gi/stXP2VibNOBGAhZJLvqm31jbOoO9dM739mkfQazbQO9bGvT0YVJNFUxrnGu+/Qfb30MgEosm/e7y7ijkG1B26TDNacm0Yw5Oj9vAoLESZaaXvcOczCJhfd8u5IrbUxpcx+BdgMa2t4EA1xI+FSqrvu0Ogf2Pok7WW4AGHWbpQQ6vHRJ/aT1TIjcNDfmibbj0WZcY5WbtrqbNo1rAphEoLUuceruplLKHMCHhRCvBPB9Uso3QNUSAsBxIcT/D8BjQohFAKvl63sAbBq/r5S/r5b/N2H+vRO2dE2iOjyjXKKfTd4hTSZxOKYgkcEkFhQAumt7TF333tk+zlFNYlplyIPlpjktJN0WxOOiqmX5+mdfgy+6ocrQuiZ/ANgaVcY9Qgh8/4uepP/WRco543Fp9I3zyU3XtsZYPLSAfbO9Wj9LM/sZEt+bNuVZKrAxcn+vzzyyBAB4x+3HsD7MsTCoHECtC8m8QD9TrDEAbQqzZ7ZqL+G20fY/EG3HvyikngQfObNekzv1PLVjlBTZZzDOxKT4MqZtcjvbIqYtQ9uUDYU+tJOk0VuO6thaFjK0X9X22pkUm3FNey2p6i/aJvdRn6t+9jP3OVNmJrzFiA2mKUe73HRye2SQsBNBIjU/vvu4egzQ93K2pTDqhG+4QuUlX/TUKpHoSsLRvHRwYTJIdDKJpUmWC7b5NST7b2OXCumvx6Jx9vumbSFZPyZhDMUk2wNU10DPclxcGXmgao+0Z6ank5jN7Vklga3BrL3nalsA5npu+1s+2OfJEHMjW3Dvl3I61hcNhcdHXvOVtfvE16u1V0pRT61saWf3JKmOsK1PYhsmE3fqp++s2ZIrQRJci0zYXP+497EZpJfbagsuE1utfrskVr3PFXC4gkS73DGol6PlHm2rraXPN+FixSu56c4yieYzyJcknxhXvq+Sm072s27CVNfoect1zphzSZjctGFcQ3LTtuCyhUm8kC0wMthrEnXCT0p5VgjxGIBnA3h3+fqzAdxe/n47VM0iAEAIMV9+Jv29EzaH6uDSonyUF7UaFcLqcIx+lmD/XA+FVO6evTRBLwmvSayK2xPrg15tnx6iCfbN9TDMC6xsjfSNZquHILzpg/fhSYcX8JVPuxKAenAJUS0kbRbE5oTwa9/x3NrffIGUYhIdsjlGC4Ym2xleNKx+9jN3jeCoDK73zPYgZdW2Qy12y88JeJAVxuTXS/1M4onSUfXWI8tY2xrr5IOrkHqUK7aRmMNHztSZRFuwF5KhcrXqIFkeADxydqP28PHVJA5ziX6WYJ9hdmC6m7prL3iLJol2lq4pGwpf7LqaInvGWLKEikn0bkozKeY5CKlJBKjnnX+yb7qbWltg+JhERp2gbgpssAbcFgCuQGo7WNsa40x5PX/yoSUA1TyS+QI3UmUkAjf96EtqTcWzJPHWxC3OZPqenK0x6ZP7184k2gKAEJaa3lu/ltuuyYn7JkC2SPvZZNJDTDuAyfnV2yrFp2QoX7MlcPU+2iSBbYn1iQCAXvcnjiZ6y3mSJNW2bAk/f5uUakFevaaVZUFMon8/qcbWHOd6vi0MMmyOhji1OsR1+6t6dGcyOeQ6mTiW7cGevS1R+/G3nrdCeh1R6TOb1z/QLjdNrX4CRWvQoN7XGNfy/VyqnPbEqYVJbAku3e6mduMa3QJjSu6mZFwTrLgrj9ssYw0aIrduMykCqJ2Omq+EotXLP3CNa2hS2F6QOBW5qRDisBDi24UQC0KIVAjxNQC+A8B7hRBfJIR4qhAiEUIcBPAGAO+XUi6Xw/8IwI8LIfaXhjTfDeAPyr+9DcAzhRAvF0LMAPgJAJ+VUt65nf3dLLMGe0qjENcFMhwXmMkSLJTtIc6sD9HPBHqeFgxN6AAwEU5dtylJ3V+yS2+/9VgrkyilxM++/U78xz+4GXcdU1n1cSHRSxIdYNqaWfuyRr5Aioxr7OPC3QyrIJHngFgZd9gXdfTZWSL0uSVTmCzhyU3NDJmvT+LGMNfOsLcdXcbZ9aG2aXfJTUel3JSCwocbQaItKRBiCqOymJPnm1qXACogpcWlMGoSbYsEVYOb1Bow+9xNQzLrttYBofVONokSuyar/OkNEnUmv7mP7Ysfc9+A9jpNX1/SJjST7pFp53m7u2nY9V/NSa7FZ6uZEuOhHYp33n4Mw3GBa/bO4KP3nwZQZYPTJLEmO5pmMof3zOjAElDXkDVINBgwuqdnetVC2VamYEpbbbAZ18gAJt3NbocwiZbFbgArOCHTDmQSJ8sp3MY1+jllk5t6ZKp6HzsmjmzBhp+lmzzfrh5xtW1ZEhdtTJZeJ9Tmrfbg3vXsbquBzFLhXMzT6ydXtmo1gG7jmpB+mk25KfTnumBblIcYB9l8AYKYxMZ9Q8e/m3FN+z4Ck+etjSm1KSfC54T6a21OyS7ywPV80y0wdkBJYqLZloVbumH2SQwdkwrhfJZW0u528zI9NMSABpg0rjlPctNp1SRKAN8H4AiAswB+CcAPSin/DsATAbwDSiJ6G1Sd4ncYY/8nlBnNQwA+AOAXpZTvAAAp5UkALwfwv8vP/SIA377dnd0YkoylYhJtIIaRFghSqpOfJcLbJPSmB87omhf9IElNJtH+EM2SBF/9eVfp132Ny4EqAAKA3/+XBwBUAaCLDjffY4Nr8gfqNYlNcBagXY1rKiYlxbiQ1kWa6omY6L6PprmFr/7FtY80zvW9Hl1SAd7LnnmVNrowmURXn8R+JmpBYpaIRgBmz9j5sqau+jYzSHy07Muoe8t5ghQlrxbYP28Y12i5qa8+wZcRttSxBDqH2nuiBSwIawvJ9qy1bZEWwvbY2PS2Y0LHPyTjOulu6mASPUFbc/9cqD9869vX22pjEkX4QzsUtx89h9leil81FBDUziJNPDXYzIU8UJ+Xib313aNAu7uprS5dSTnbmMTJRZrPyZbQXLSGWvnbHC9DmUROgkuz71bFRfu9Y5Vkevdykl0KCS5tCb8QCaLNpKKNybL1sgsJpFzP7rZgwyp/K0HP5lOrW7V9cEvQA+dy87zp/fOMsbDUIcZBdrYttAVG9f/QBIRNKZMXhXd7NF/Y6gQBfz/N5mkLYfxtz+BWualDheJ6vvkM8c4ntAlfyzqtCfoeWm46CmES1U8h3M/SEOOaiWMZakAzYVxDF2Ubk+gXlE4lSJRSnpRSfoWUcp+Uco+U8llSyt8u//ZmKeUNUsp5KeXVUsp/J6U8ZozdklL+x3LclVLK1zU++z1SyqdJKWellC+SUj7YZR9Pr27h+tf8I/75zuPYHJHctGQSXUHiWCJLqoADUNnQXupmEt9+62N4xRs/ihf/8vtx9/EVfZP4mrnTw7CfJjgw38c3PucaACrjDdhr1ADg+Lkt/fvnHjsHALq/om9BmEv3osk3bnPkYxLdjNTE9jWTyJWblscpc2epyPCHzu3SuiE35QSyRobMFaQDSr4JAN/6/Ov0a2aQaJexqVq/mV6qv8ve2Z4OQmxutkHtJRwPe5LcAkqulxsPSZ8shGoSqTUHAF2X4pObeuVXlsA5xDm0WUdEv7YtSFyyoZCsNd+BcvL6aqvT7DEyrnRqvXJTz8Pe1dybsDXO8TefehSbo7x2vTkXny2LZJuT7XYxygvM9BKtFACAuYHBJDoDN/8izSp3NFyn+zpINB2nOwSktmAvhEm3LNJC5KbNRWvo6ZhYyAey/cAk4+x3N3UrXuj67jtWXG7jmrZgthGABQQpwiobpe/gT4rZmKygFgxMtlMfS8e87DPPct2ntSDROE4VI15/f8hc3gy49aZ9LKllDjIDBBeEJbgPIMWRCkxc/0CATNvyXGw73y7Tv5B+mrbERUiQPlE3LP3JDi03DUwAaa+DnZab6mQ+Jcl5a0ktNw3pE2qcD2eSpOV5D1iku8FBYkobKX9eXEzirscdZRD1Wx+4HxujMLnpKC/QywQWBtVB7mXCK8/48L2nAKiJ6B23HdPBRpYIp67blHYBwKHSKOHwYtVewrYgOV42i7/x0DyOlb/nRYHUCEhdzdydCzvPuM1RXnNENaH7xoSYYugg0b3YtcE0rgEcrEGuAns6tyaTaLOfd+6jySQ6gnRA9ZwEgM+7eq9+bbEMEl21pKNyHwFoltrsRWgz0ggJwNLELotdMYLE9WFeOpkRk+gOUihIBICbfvQl+LXveK7eX58Da5tsheuIB0wutkIZkS6LLVvtcAjbY5dE+RdoXZIrut7Y1iexJUvuajgPAD/2ttvwg3/xafzxRx+y1602r8kWuZ2rtcR2MCpbAy0YiTuqk3XXJPobTDcXhOY4QN0jZF4za9TkdnM3nTzfISy1vSaLzyRSJMWXqQYYYjjcTc26fNt2gMlgAzCfi265aTPYBjowWeWvbfV+zUsrlMmyBW2+a6Tax+r/QQ6gzuPfFmy4y1lojjm1OtTrpH6WVPXNFiaxLQITom4mJgNqEm1zshkgOMdZ7tPwpKTtGvEOsybG2hxHXefNLAuxwWbKEzqX2IIbr7tpC0vdvLd1GctOG9cYLLmtBMaFZpAYZFxjrAnbelsGSXc1k8iQm5rvlwUAEZApj0FiEIhRyguJrVEOIerupjYMy0UyLYwBldX0NVe/9cgyvuRJB/Gsa/fiX+49ZTiXGnLTxtCmrIYWJLRdIezBFwWJz37cPlUzUEiMChWA0D1rW6MVAUxiW5/EiXGe2rYmdJCo3U3DFpKTi2RL9rl0FyT2l857jV21HJRHzqzjx952K37krbdinBcTi2QXk3jk7AZ6qcDhxYFerLYxicMy+QBUkuEf/KrK3t1mpGH223TB5loGAOdKuenhxQE2hjlMtzVfTSIZ1wCK1f76Z1+j/+ZzYPUukm0PqIBAomttVfMcyIBxtPtNeWtr9tlyfbW5m+o+cQH3gGllnyV28yxTSmyDjxX/5MNnAai6P/NcumrN2vqUcWpEQjHKJfqNObmSm6pzbWsw3YlJNJJ3V5eqDkqauOaENlMSW69KiRADGlviQrbW5DYXTl0ZEZUkad+WuQ2Cj3GrEhA2JrE9CWHOWyH3NuCuN/N9P5dEz7d/atyk3DSsJq5RA6mDe/cY1/OtzeDF1TrGfC6fXNnCemn4N9tL3c/SwGQat5ZUlwCYwX0Aa2OtvwuQaTcNh7QpUkBSxuYu6y8TmXTFBtrnctFIkpQ7GnSfNo9Ju9x0cv4BPEyilpue3/m/iYl1WiCTSMea0wLDDEhd7exCjGsmFG3EJLa2wKDMDAWJAb0VgVYm0StGFUL8MSqVhhNSyn/Xvie7G0eXFOOTFxKb4wIzWeoNNuj1fjopN+2nbsvo+06u4ttf8HicWdvCpx5ZqkmWXLpu2j5R9M0bzjbxAGriBoBnXbsXb/3kozi1uqWbOfuklb66GV8gtTF01yR2MeDg1iQ2a7Jc2X9TbkpBWK23k2Xc7/3LA/jTjz8MAPjer3jihNzONfccObuOa/bNIkkE5voZ1oc55gdmLenkmHF5XQHAa172NEgJvPSZVS1qknjqv3x9Ei11REBVk3jV3hmsD8c16ZjvvI3GhV/qZcsioyUAs7FLMsCAxlnH0p4RNs9BCANpk1fuNJMYdN8U1ULFtrCTUip2qSVItyWA8kLiyBk1R372yLK+J2tMYnPxGcBQnG/jmnGukkDzhqJhzmhwD0wyh61uki7jGm06luCqvSpIPL1azSe2OaFtQWiTZIbVJKqfTXav/fqfHAMEsA3JJNsWskAG3EyibV+r+Wfy88z+wdbtJXWXQJ66oPp/CJPoMxPz1iRaardD3DUnFRDV6y64jn+bbDFNEmftPKBULidXtnB8ZVMlydOq1YAt4RcWpNiuSc8YC5MewtoI4WbovPvYSLiGBLKAegZvjieTaSH1frZ2Cm3j7O6m/n1UpIPtvPGCdPV/exJ0Wi0wzEQlz7hG/eSUPFmZREfC25vMb5JFoXJTG5PYFlgC265JvBfKNOY+qCb13wQghTKgSQB8I4Cl9r3Y/aAg8ez6sAx2Eh0kbjnlpnKCSVR9Et3a561xgbl+irlBhrWtvCaZceq6czWx0sVDP0lW6WKktsaqSet1++cAAMeWN3XW3FuTWEinRMNfk1i0GteE3KT08GfLTQsKEu1yO5LHZImYMK7JUveNDdQniaX1UXCT1iNnN3BtaSlOwWHlbmqXZxSyWvh871fciO97Ub1TjM3wJqgm0SEbOreh2NRDCwOsD/Paw8dncDQyGM8mhJjMRoZYmbuYxJCFnSWxHiAt6+6kx63/sl1fbQs0ug5C7ptCVp/TSyfVDPQR7b00J18/fm4Tw7zAM6/dg2Fe4Egpoyajrub3Aqp5rEutU1fQ/W1KEE3m3twvggrc/GyDVZZvLIC+8mmHAQBPunKhfM3OgLdJW23SstBFK723GhcmLauzZvR6+/YmnVT9Y2wOrIC/dszPJJIrqvv6UmNluV31elAPSOZ3U7XU9deKlutfbcseXPoWkYBHbtqyj+Z79di2IFE45v/ymUgtMx45s244CU8m0mjbbWZiwhkAu8fY1iX6Gd0mN20cD4mwJEk9kdB+/AF7Yqwt2PMZDrWN6xqk29jmkAREqCmVXlfscE2ieW1znjdNosIVA9THqJ/mWr2TcQ0F3HQsg2sLyziEzGuKKTCJUsqfot+FEO8E8HVSyg8Zr30pgNe278Xux2PLSpr52NKmlk1qStzDJPZSoRchgHpgZWmCteGkhrkoJPJCBZbz/RRrW+OaTbZL1z0qHTkJ3/aCx+HOx87he79CBQ9W9gWVjIpqF5XkVGXafSYVuech5c4GSwzzotW4JsgUZoJJ5GV/XMY19N80SXTPSUoO+BzZABUAE86uD43JL/HKTU+ubOELbzgAoDJ16XuCe7PdiQv2Zrft7qYu45qVzTHm+ykWZjJsjPJaZtNldkD7atZ+1bdlz2LS/rtgazYckv1syr1M900fnH0SvduavE6k9B9717jcuI6s++dZJDeRGwsAW5DYJm1V+2ifEx46rVx6v+zJh3Dbo+dw30nlzpwk7sVnJa1xMIk7EiQWE8wSJY2cwWzR5m5qZ1LGhgrkhTcewk0/9hIcXlSMoquOa1xIzAXZn9evrfbsfyP7jMAFoeP6b4tKJw2f2hf/Lrmp77r0JRerudJRk2gkuLKUt5CfNOVpn39cC2TuQj6sJrEpSa4+z4VWJtEpC3cZN6njf+2+GXzmEeXCbfbJBSYTMhJdpMzleWt5bjS3F1rLOBEkhiQFGglezSSGyLuZcnen4ZBsLx3oUpOYWhK84XJT+zOgOZaT/NwO6i707tZoE+PK9/lMEJswiQMnk1gEXJNNszo9J4ca1xhMYluPROC81iR+MYCPNV77OIAXMj5j14Ikd8O8wLHlTeUsWZ4sr3FNWjGOgLqoeomw0uhmDcv8QC3IyUl1kCXOIGVc1tkQFgYZfvFbn43986o/nYshIhkVLeTXhmOMTJbIOc79UHTtIxX2msfChM3+3wVa6HSVm7pkws0A7AkH5vBA2YokSxKr+QNhs6xTBYDljVEtS2lKmZo4szbEgfI8/V83HgQA7QZqC/ZIwuOScQL24DK0INqWuVvdGmFhJsNcX7HbhXH+6XzbzsHWeHJBrrflyGICbaYwtuAyrN6vubAGAhaESXNBUr4esCCZkPYFLBCABpMY2CcxJFFiLmatcl8qbWi5Rmz3KNU3v/CJ6hq+/+RquX+JN3EE+Baf7uRKV9iCRNG4lm0ugX4JqH0x0zROoQARcCfu2gNSCyMSwCTSR3KDy4n9NLLh7eOMYTJs8Q9MSkd9NXFJIqzyN6Dep9KGrHGfBsa/E60DwpJUlgV5SJBouU7GLc3VbeMqqbl/DOCrk3IfR1ftPABcvVcxiQ+fWa+15TL3C1DBlwwJUizXFhAWANcdp9vHNdud0LhW5r4xd4UmJZsMMO2zv05Z/bSaybS0k2qetjDG38YA+2XTTtNFh1eCz+vgfCJU8dUEvc9ngugaY9bpuxxpQ/okTtQkBstNi+pnEJN4/lpgfArAzwohZgGg/Pm/AXya8Rm7FuRoCgAPnVnDoBdSkygnFiRZQi0wbJm3MohJE22mcLKsYZkfZEaQUh9HdTYuuBZ2tPghN82Vzf+PvT+NtmTbzsLALyL23qfLzJuZt3vvvr650tN7T3pCEtJTh1os0ckGWbRFQRmQjI1MW1AYYfCQGaYQrqrhYVcVyOAqFwUlMwYYsA1VBgRlG1OgKiMjGdGo19Nr7715sztnNxFRP1bMWE2s5ptxmnsyc88xcpyT++y1Y+1o1ppzft/85g5t24+1jSmRil2XPl4KNSht2DmVzNjxgXl9EuvKziHG4Qes8/Cuu8djmxCfgjv97LNtO4pTvPEoQBITwfbjzQ6n2xbP3zBB4h/8JR/Cf/ndX4P3vXAyHnNCGy3U2QCpAMz8zPdbSquprhY1jlcNTjc7T5I7W5PYpmsSY86P3eyTU4x+tx7lTTss0u+J8yHHi9a/ZFZG65Db1zRIit/La7iPUo6uogWGF9zHEIrRGc/PMbYmvDbU7n70Hc+hrgy1TD6r5HymaWwXjyTuuj6zBg3zbKfzLInJ5GoSo4IrGSSxFDQAmNQ7MegXEKtJzI+bIon+56XHhYEsQ9Eb3ju5T8zPvABN7Pxb0bfoHIOkQN/n1SDHeU6+G9c2oOt96jqVuKumNFVXOCx/PF1yK4X2lGixdeL8iz/z9qEet+/hqZuHawkbpIdBCoMAp5IrQImmGj8fWuEadhlr6un9v8sk5c2Y6Zog40r31pzSjZif0HYFddMSkhgMFh+UZYnNNbueGR801T87NHkP04Lqzcdb/A8//tqkdzYQCbYdcCFlk77DdAuMQLima8vQNnChSOJvBvDVAN6squrTMDWKXwPgiRetAUwQ8MLgzP/s66c4WtbjDVKim7p292RlWmBEMiQ7B8mS3l2ffWAy9EfLJpoNBoyKZEm1MnYPj9TWIUh8tN55TkpKpKLLbFLJbHDBIVwEG3bOLB88j+SGJjRJS88I6HajSqz5+3uePx7/Zh5s+zmhne1avDxshvdOt5MFIbaIiIjF8wOSuGhqfPQdz3nHDI9l62zyhc2T4xGOTKpwW2pgjlcNHm9bnG5bHErbgETAbebaJ5HjPJKYz0jG6T+ljW3qIAMEujEDSYwhZ0wgG0USWXVT6rmxnxOrLRwRgxxKmlgTXn+0RlNXuH20xN2TAye5Uhedz7QgxuXQTVP0w7QseVege6Xp/EA8wE99t6JIThQR4Rw78177mgluyoiUtrbNjnOfG279AabnfxSuSQUpiYB749B9s8cb3tcRwbaMUyOyw99DBBIoITDx85FLCsvxwmstn5ey1FpSosWm7n/Zl1+6dTius8dukBigZvIJlLqpMgCOJdjH3zOHiyHADNo59bnKaysQ3/O7rtCCJ3HdDHtFt5eyqHgs4VcSPAMwSXikahKvqgWGm6hcRNbI5LjBl5Rp5/bf7/hTfw+/7vv/Pj41lKzVlS0dmwAVY0Im788Dzh5wnhYYFN10lf0zHST2ff9Tfd9/FYAPAvg2AB/s+/6r5javv272eNPiPc+fjP8/XDajo54qWt1E6HavvnwjWg8EWHqGK3bzmftrHK8a1HW6Jm4XCUZdS6rvDQHh8apBVQEP1ztvA0qJVOToLnUikCoJp9h6LKYFhvk5pwWGywcPx9l2I+bvIugjr6UKxAGj3HqyWuDm4QL3Hm/H5s5CLYitIaKcevfkYPpHxB1y2XjzfdvmLf4lx/Vo1aDvgXuPNyNtqFSTmMs+TxBBMts9pW2Rvc0iQWLJLQzVTTUCEKHgDVP/CKRqEvOOLrOZtp111FOqie5npo6XSnjcOV6hriu8cGM19l1tqiqZOCqrJl6OcI2slW4SyBwvUdtDOGmp5AoQ3/BTawLbJzFMXDCKhECYKGGSJPraNmC6BvXkGCB2/s1PrcDRblh/Ug59mBRg+t8BEeGUjhH7GN7rBTekkmckaKNqEjvddUvtb0XhmjpRPjO8drioxz3OFa5LKecy6LY2AK4T598cL39O5om7TJ+10rHk79HrraTSAoLuFfbSyHdjUXHX+r7UbmOYUyIBFN5bueTzRdp4z2X865i1nTnvVSWCN/H999F6h3/2aVN68bf+yWfMsarK0uQTfnIO4JuUZtEtMES4RtsC4+Lopua4ff8zAP4BgJ+rqqquKmYW199Ot63nVBw5NYmpIMWoO/pf/z13jw09pkA3FRGTzzxYj7/nqJx5RbxET65B6a+qKtxYLfAwQBLryE0sMvklJJFtmiqmWRTks2TDYXnrQhsTJCG8BiG17+VbNngrLSJGubXGneMV7j3ejIGFIJCxMRIkCt00tBySqK1JnEMtExNZ/uPhfL/2cDNpG5BEIDM1iSlkKTfNON2UVzcVx4ChtprjzXe2QiSFcQjDcUwW331fzvo+X2/sot8pi9XJAoZuKoj4izftc3PjcBF10IBykX4si39e2zk1if/N7/46/Nj3fuv4t5SUPEP3igvX+Eknf0x8TShSWxO0UcaxA6Y1YGrhJvmduJen4i6FOSYpaekWGHKs9PqTu25+UqDry8kmIBakMEG6H5CacWUkN03t043j6r0LyZzM+c/VJK4W9bgmTJHE2BzLCQ9tbWGU3UEmJcMliKV3x79bflwUSez1iSPz/9JaHqtJZOqUI89oYS1J0StT95alm14RkljpgkRXYyC1/gAYe4MCwA/99OvD+83/YzT5rvCsAY5/oaabinDNzo6jWmBcEN20qqpXqqr6y1VVvQZgB2Dr/Hvi7WzT4vbRamxXcLjiahLFmb9zbE70oqmxXNTRwNKlm0ofr88+WNu+eREHQY6/LMDTMZ61GxDeOFzg4ZlRU5XPii3+LLKREk65iH5v8p6jlZJuOlAirGMdCNcEc3SFJlwkMUU3PVw2uHuywmuPNl6GLBWkj0jicTxIjBWx29rOPN00PI3GASJQs5Tj2lRjsuL1R5sxQLc1idNrYBTP4seK3VsUbaieUlao7xbQjRhlu9g8KWdrvE/cOXIOIZBCElPJFb4m0d3IY/ckiyTG6aabMdnxwg0bJD5/Y1UWrkkFwIm+necxl5q/WtQesiFBQyzBVaKAxmvi/KSTa0nFaaLdhpmTfW3O/S+/q4Vrgs9jxzFzLN0nub0jldzKCkAESQHmGQXm1yQCPt3UOOT5cVU17ZXLIYmhuEt5vZOPTK0LWeGayD0iLTBWTT2W6sgeIp8XC9qoQCpIdpTGpcTEgPw1CK81QCYlw/t/FAXLDosm78r3ceq5ydPko3vAzGRy2+Vp0zG6u8y5rqZjBWm77BYYsd6FDOjgJmoWdTWpYxfbOAv1Jx26qfxMtypTXG+2BUYoXHNBLTA0KOCfArAB8E0AHgL4EgB/FcC/rviMa2l93+PxtsXRyjZF/oK33RxpS3l1U/OeH/x9X49/8G9/EwBgWVfRwNKtN5M6wc8+tEhikrYVEchxLS2SYOmAJweLgW7q98BL0UZzsvVAJNNEqjSmnMKf+OzDcTOQOR0o6aaSkUuhljJHeUBfchCRXLExYJIIh8sGL908wGfurz2KVKq2U2jKyd6RkSJ2udey9OLYxtaXFUBTtSVG8bYe62Q/93A90k3lnKSSHqnFLqRxAny2eyKbTny3kO7FKHmauegFIOQr98E4Fkl0j8dQMt335cwNCmL3JCOkEcs+A75KrziEq0WNmweLtBPT+99heiy+uTFru7bDKtG7M1mTVQjc6hSSmEnopFDSYkAapfMzKJ35OQeBnEsJ1NYkJoXZCntOU9fRIKXk8IZJAWHWlCwMAPpC7Zc5lvmpFfOJ9crtiCAxhbblDldV1YSmCkhNej4AiJcbDPf/osaLN6Z001htJ4CiwNdElMd5PTnHSALCnhNlINWxdGv7f0lKUv0VI0mSvJBJPHnd9oWEXwQ8oER5In6C8a0yYxIJiFzPz+UgJHMZNrIHZG1RIoluDWYOSVw7gpeffWDq9MW3j9Hk2d6d3jxHJLFENw1bYPRkTeLF0U2/CsC/1vf9PwLQ933/wwB+C4Dfq/iMa2nb1vQvPFo24/L1pe+5O1JJ88I15j23j1d4aVC/XDR1gsMvTkU1oodt14+oYoq2lVMbNeOmympmnIMkHgjd1H5WLNNRUjpL91rK19LlnN1/+qkH+Mb/4O/i//x3f8LMYXiPugXGkP2RRSnMUm2DOT7vICJHyya5GAPA2c7QTV+6dYDPPDjzKFKxwMbMJy9KcpHCNT041Cx2/sdWKcPi1vWWNpRrXdJlNqmmmt6PTCY5ViPS9/lF1XymP0+a/hM6yR2RtU44JCyS6F6DNqiTDW0MbIhnwK2dyrEEcg5vChV/vNmN98fLwzonNRupnqvM/X/hdNOMU2JVWP1zWQrcUkhKqb9fsk680AMVmAYArHDKtCax7OzGHevssAjaw9HYgEhQVNhzUpl8N+GZGgfY563UV04sTLB0/Tx1WbomUUk/jI1jklsybhpsFERJEvvGpjXO6LKp8YGXbgAwyt9iKUpmMeExI3ERr+UlkpKJQKp0wUMEkj7/Vfz8M0ImsYCjWDowGQPiu+kp0Kl619wzumjita7ntf/wb/1zfODf/q+xbbsxme+CAKx4orx/0aT7KwqSePvYonHye0wVmBKuCe/l0XEqOUGSvdbWJF4cktjC0EwB4F5VVS8CeATgHYrPuJYm7S+OVgv8e7/yo/iOL30nvuy9d2yfREULDACDumks8zZFEgGbeUg9aJs2XfsFOHWCwSFbh8Zw8zCBJKbQhgKyMS1Qthmb7LjIeXntocnA/LUf/nlvDgeLGlWlaIExbHapHjwhtc/9jh99x3OFmsQWR8sGL908xBuPtzjbWuc+rIcTY8R8Ug5TSUksVv9FOSQxx3XIsEv/RsBKmY8BdwGpDi0a7M1sbqxRdxxp/MPramfXmX/pWK3SIYxt9sU+iYpaXndji230o9poISMfu0fcdePzXr4JwG8blKIo5Y53GcI1MTExMctm8F/fdV0+cEs4yWPSLyZck0jcFdVNI2uQribRvkbdk/V0jPt5ueO5p6Sj0P743sHsOdHkViGYCpMCXVdGBGVciBLxQbp9jVm3qpgjTyScUuqmVAAWCTZK92Tfx1gvw/3fVPi2j70CwF+n5iCCcjz/u5mfWropxQqJ7lPEeZTjhUnJ/LCJmjAw1EQTyY5YYj4buAXnEeDrlCclH4U5xlgygPUtYpZqbXNe+wv/4GcAAP/jz9wb15q6StdNxswNis36E/dB14Mf+M47R+Nrd4byohhzyyZq08cO+7taddPSTRkI11xQC4w8zujb/wfALwXwlwH8PwH8AIBTAD+k+IxraadD8enRssGH3nYL3/cdHwMA1JW5SAzd1LVVEkm0zZffdusQ73/xBD/x2UcjqpjcRNsOy+wDan6GWRsXSTxZLfDp+2dY1PXo+MdEKkq00VQge56axPtnJvfwyTdPvc+u6wrLpk4G6aFZJFHQF/9Ycv7d7/Y7vuGDeOX2kck0JTJ2fd+bthDLZizQH/nntU9jcJHUsSYrg65OawaGvxWClJhjwSz+cSSxx8Gyxs1DuxxMahIj16DNbBwxtFP+W6INzXOahjkN55N2dicOSdnZitUfMQ7hIrJJhWJK0zGKmkSHJpVDEks1iSkETOb/4VduTf6eqn/JHc/cjxebSd51aSVom0nWIYnpwDnNnnATd+6fi30SZQ0KnN0ySo3heH5wyTjkbhKO9dlCYR4KScwgIu7fY3OMIc5uX9CYRZFEJkgM9kXN+qNFgGPPAEOvryoEcxzTYtlxMQocq67Z9j1q5/PlvjlY1HjX3WP82d/8ZfjoK8/ZcUECgmV3TFE6GVeeo3otd5I51biu96gLzrU9njknY0Ba8MmjfRmJIB2IC9dkWSHOPTkqciN/PoBEW5YCCp96tttMAi7VBeC89pFXnsMn3zzD3/vxz43Jc1EpBfiEq5yzlBAlYAGkd905xo984j4AiyTGkluukE7K6nCe5xGuuWIk8TcC+LvD778LwA8C+BEAv17xGdfSLJLonw6BqBm6qWuLukbXTx8Yl25aVRV+9Ze9CwBw77HR/kk9aLu2rG4KxOleMu6lWwf4+XtnXtuCGLJk4fBSsOe/XhSpyDi79x4bisobw3kYi42ragi4Oc9F1L5S6FdMIOH3fcvn49d/xbsBRGD+wTZth77HWJMImIDWPY/uvHPHcy0aEHXsxjZ1yLWomZjUJLpB4qhumkGycs51Tt209N2mQWLZaQrpXkxAauY5o45FAtJgHHP+Af9cssg9s5ka52aYY52uCc07FolaOqduT4Rrvvhdt+08I4FUCSW9DCRxm1kr0xn5Mm0xKtyR+X6xGjX5P+MQTvskJocAsPdrKKbBIFL+HPnkylTJMz/HVCa/lGBMIQ4lumnoXLtJlJzVVVhvPE+5lT0nE7QHZUc+pEla1Kw8z5jiYg5JbxIlB2FpxDd+6OWx5EbmGOt3SNXtqRFBTObIJiXdY8g45v4H7J7PKrdGhWsKyY4Unb9UJ9jE1gQycRSj4DKofVSZP/VcN+ng6zwmh/vMg7WXGEq1QIqZJ1yTEVgTJPG9L9j2ea6eQ7oLAJHwCIPEklLppE9ie7U1iX3f3+v7/vXh99O+77+37/s/0Pf9J9nPuK72eGMi76Pl9GQ1EXoAYDaOHN0UmDp2YXuDb/6ClwAAP/rz98djmc/2P2/bpSlUQK5O0D4gH33Hc3i43uFffPbhuOg3EUeyVLcUIjbhuDk1iRIcAua8uo7zskkH6aGJbHGqUWuu+bU7x3ChE2rpwaLGK4P67c+8/tij9gGYUDRKAUCsiJ0JUqJtInpOXTO22AkFzqObTtRNp45F1+sCgPG/uSCxmt7/8nrOQoSbzloH81Q1BZ+Myw+MbfYhBTq0ZcJBi5mrbhoTxCjRP4ECkug8Nz/0Pd+MP//bviIYN50PkL52sfXnvJZK3AGRDO1gpcCtruN0u92Y9IvTTYG400Spm4ZIYnLEcLwkup0fF6J0fHJlWrfHjAGme0dJXdM8oxEmQ8HhDdcuU8OVnaKZZ/AMMEImMbopg65WVWRtJRz5MLhnAikgjsqWkMTUHlCqnw/3t76wHoxzrMJ7kksuuu8Nf0+Oi/gzc+jd475dOl40cMhT0IF4oqQtrCVhICvz1CeOygmnEbWM+JM54GB7wUwSAHgwMNMerXfoOrsvp1ogxcxtL7LICOxIXe6H327ZNePxIsyt1kE2UzbxL9RIYmfHMS0wLgpJrKpqWVXVv1tV1U9WVXVWVdVPDP+P6/s/QXY2IonTE2oc8rQIzWoxPYXLBPri0k0B4AMv3sCv+pJ34H//az4GIJ4NA/K8biCPZEm9zBe+4zkAZjORz6ojjmQpq5tTSDNzKdUDTc/lvVNb7H627Typfg0lQbI/qfM/StYn5phSl5X743DZ4B0D9/zn3jgdERW7QCYC58zxYkqe7mdGxyUCMCaLHBXgGO6vY0eZ7kgUd1OOtYP2po41WVcJCmicgsvXJMp5YTPrk6bglGMnDrluHDDd7C9a3dSto0jTTdOfEUMgzfF9ufUXbhz4cvexTHdhQ2wSzv95LKcEHaP7AkTglghu2q5DVcWvXaqd0RwkkauJs58/jiMDt5i4CJMo2XnHIhzrzPkvCgdF7v+icEfw7LDCNUbx2DkOgyQmUBsOSdQ55ECGJl+iO8YCgD5fbybfLVyDrBJ3Yn+boM3mJ5PwiLI7MiNTiXJ3/tFjRRN+c+jd5b1N5hnz03JIrnxuVBQmm3CdJo5YVHwCHpCoZQyoSLd3ungmCQA8WBvQ4eHZziCg456YRxL/3b/2o/h1f/rv4/FmNwIOZlx6nvIMvM9BEsWaJs7Uy4nWyPHkvQDAt8AIhGvYFhgXWJP4JwB8OYDvAvDTAN4D4A8DuAXgdys+59rZ6cZc6KNIq4IU1cVm0aZPnCyaIZLl0k0BsxD97371F49/T/XpK2aMQnh6MGmSDpiA1H6ndJ9EG6Dls91qamXG2b33yCKJ98+2Hm972dRjgXzJRKWtGemmIZKYV2BNqcvKQrBa1Lh1uMStwwXun+3wyu1D77sl24kkFuVYETuFJEYpSlxNXBxJNCiR6yhYJDGuFFust4xmyM3PkpDAVFiBQwSBGfSfCZJS3kRlXJh9ZsaF36+sbho//zEzWVN7nFSNYJ5+NV1HgHky+Yxq30WXpKTqxIFMwqP03Rw0190itplx8ebefZkiGRmnQbIm9yShChyiX+bz8uPcYLauK0pdWcbNUdeMrlt9nrYVJgVY4RqX7iXB2KXVhEbo3RyS5SeprHAKE1zqktCp5Eroz4QWa5Mic8jP0WflaPok+s8Nl3A1x/CPxyYF7H7jv547Xix5V0peJMdlg3v7PjEO8Y8JbhVqEhPMiTySyLPENPZwQBKNUKOLCKYTCQDwn/73PwUA+Hv/4jWfblpnhGsG3zAFMEWRxGLdqjxvwwt0C4xAuKbvObppnQ8DNUHidwD4WN/3rw3//6dVVf3/APwwnvAgUSDjGCoYywYAeaqFIIWh4EqJnmEXrBiSkp5/CurfdR0OBgrtalHj+aERvEUS030S8z1xYj3YynL3QNwBfeOxRRLvn269AERFNx0ebHm4Q8faIom8Y+f+X8a9884x/udP3sfbnzOoYlr+2dBI0kjKdFG1CqCpb5lGEufUQ5h5TpMQUp/b1NVAiUopxaYC7njGGshnkmNOZI8ylXMRLKzyESWXsAoCFeY8AuLc+eNYJNE9L7SacGKTevPxFvfPtnjX3WOvbqSpq4ngFkNJSyWO+oJDnkoclVTcGKU51oSqXmYKhOtCvil1blyp3YZ72UrPjDuu9e6tnpKtB6aBAxPchPWPxspriZmnEe7gkyTTfYoR7ki17mFqEvXCNcO8ehEl4YJtMycfkSodLlx/wjmk5xhXZS4il5E9oETbbSTpndoXc3TTGJJIBERugn1ctxgEXkmdHgOpkJKZnWGkvKErB7JAPEg3yTTinGivW/SccAGwNrjPCRqmvtvRqhlLeS7SRrqpIILD4VPCZaE9XO+8BE8OSZQgcdXU+H/97l/kXY/UnlhKCFjkPnRmtMI1bfmGBIAmTwbVCNekjkbM4nrbNhM8pJDETUAddU2USFNBSpLDn6A7GvpDev5p9St/Uxz7mzk1ienC2gKSWAikJmMSlBXAPtTAgCQ6VEY13bSuxu+XpH8WgvTYJur+/b0vHAOwAh6pcSVBjJSSJ1Di/8dpqkz2P5rwiNRE3DiwFITYM1CiF8cy5FSQkjgnxe8WLKxMuw1gGqgzyoJArJk1Ny4UjmgLiYvlWN8c36S+4T/4O/jaP/GD5rO6YGNLIYmFBFAqcZTt3ZmkQ5Wc/4tzEkrIRqrnJ0sBjTaKziDp4ZjxmcmJhESSaT14ZK/1EBgS2Qho0yCOFyI3XQ/KIYknGMv3STK5VVhL3DkyDhoQZyWwSK57i7AIZKwNklaVmVVzjtUOd5n7GMhTCd2/x8bFgg0mAIspt2aTixHfiaFOx8QCNfRuGcYG6dHawraMcMdoyW3huo1iVu456cqJoymVeXidedaCxzSXyDleLUY9kIs08ScfngUt3zKUZPe1MUh0EMhUuYcEiQfLGp/38k188CXL2GvqaX/XEvor4wDHL+lZumkoXEPWJBboppog8S8C+GtVVX1LVVVfUFXVtwL4L4bXn2jLChAk0BfbIysSWI50U3/cJkNRBazzFkNSGF59SVnq+RsmY3C4sOpLWtqojEsHDanvZmoZUw+o0Bvvn+7G99S1yCTHH9DQZHNN1RaONaGJOaabgss5MRfo2z5mWoPeGNRAYwXiAIY+lfnrluyTmE0KRBwLgpKWzMg7tORXh0Xuaz74gjcuWd+WOGQc7Rw27UJNXPjdTOBGLqwiJCCCYEp0tSfGAFNEkKljkXl2scAh89wAcRGGtuvx+tC8etd2HpoZpe0SlLTZimyJeySbfa6ntOnzmAScaaZGvCalmMyR5zuS9NO0/KHW1ghtlOptFtk7WNSgC+5jeT1/PP++ZJMrKaQ6GzgnGRB5dCNMCpRq78RioiTs+Q8TTlTibpLMYejFetQsdTxauCaRdMqtXV7SYpx7OeAORZFK42KlIjZwKz/bHgJP1ISGzzdD5Ze/971/vBKVH0ggwF0BSRwDWf/5pu6tCLsgN0U5/5Ne0W16bT1ZNXi8aaN/m2tn23b0sx+uW1/dNCMCd89hsz2SfuIEkihsnYMmQjet60TpWP78T/r5juqmSuEatibx7V+cn0/5E0b7/QC+B8B/DOAVAJ8A8P8A8L2Kz7iWlqtVS9ZxCQIQQxIl+x9kyYt00whlCChvGjmapHtDfuKe6UP45e+7AyAeAMu5KNEYJoFUQe5e/pZqyn73ZIVP3DvFm6dBTeJCjySmgm2LJOocklDK/1s+8jL+k//ll+HjH3h+HAP4GTvzvQq1NglEECDQthl1LLHrJvOUe/YHvusrUcHn2MfUvSwlOH4vh7VOgAJJjCCQLI9f7l+Nuqm3IXZ8TWIo3MGMC9cTuWdTTkmujuKff+bB+PtnHqynxfaTZJOxEithipjlkytAugYyHxCl60PEcmql0/em12Rg2jdPrJSRTyOJXZZqByCREMgpEto5iRlEKjnEjIvQvbjgJoHalNaSYM8pSeS742KIbBlxnt4nxRYAQVKARRLDgE+jdulft3JwXyWeG4Ze7Lc7Ia9b5FyWrl0uSQLkdAimVEcz9/IcPZSUKMGI3f+q2sKQFULsG3IM89P/vJS5weXCYTwx6FIs6coIN2kTR7E6faDMbgLKPqhrx6sFfub1x/nJKO3R2qCIh8t6VDeVueX20jcmQSIcJDHdhm29M0HuwTJSqlZHzkef1xcBIueSVTed2wLjPV+Z/XM2SKyq6huDl/7O8K+C9Tm+BsDfLs/k+ppFBeM1ifGiednwp58nTk0Y3PB0U10AkOrvF9bnfOPnv4Sf+OxP4mtefXGYe1xZDShnu5PUEyXaIPOWINETrqkrrBQ1iW1vzsWkz8xgWyKTH1MADRGAqqrwzR9+2flecvyI86k8HwwC5kry+01yyxtNqd/Y3ZMpPz2sEZExAO8gABxtKC7mw6ubdsGmzTi7YT0KLcChdMiBaWKGba4eu24PHZr2z9879c5TTBSGSUCkaKNA+dmOq4bmxtTZIPET907x1X/8b+NP/KtfNPaUzZltMZRANsb11a136um2FDFhsBiTBHASRxFHPssSSDq7OmRDjk3d/wGSbuZYQBsC5F5D5Ywh3FkBmqYa+5G5xtJNx5rEAvI4zjFAcxn0xfaptK9RQXrkeQM9zhsyzCM7bIISAXm0B5gm4MTkOUqd06lyLj/H+DgiUT4JiLj7OKRc08Glk0gwc8yPcxNO4nyX1kkZp6XJxxV3y89AmLigkruJRFquDvj4EpBEQRGfPznAJ+6dYuPUm4c1yq697ognPly3XgIqVxaxcWoSQ4vtb4a1lf8OU7qptgWGo25aEKVhrPQJfybx+rgmDb+//9wzeQtt16aRxJhCEWAXsdiDM2asg+zDNnMcIB3slTapmEMin+M+oH/gl3wIv/3rP4AbB4txXApJLGWoUgFATs1wkXAKd12P54f6vvun2zHbVVW6mkQjXBN3mMz/5bvl5jjlkY/npOB8aqX1s+IuhCMpohEyjsl2x6nTaQEOwCDjU3px580lNsfJfezMI2Xx4JKn/8g8+ZrESAuAsh+JJkBXmfMfO16pR1ZKWRCw9RAA8PNvngU1ibFaJ/OzKFzTh+tWOblixvmvuVnc+Jg8kvgTn30IAPgv/sdPUEHiroQkjnQjZ47D4RkKaIxiX1oTJvcWysE2EDq7evobQFLLQiR9zK5kh01qLruujPbLPCdIYiFIqRN7cIk+GqMEMqD0WF840k3LVNpU43IqaAufGwLtqaoUSqcPNkrBVEwABUBRcCX0E6xKaeGerFLjMmMi6ySDwFv2ln2NqUkMkXQbSOWPF1KZ5TOoIDHi35USfuGx2MSRmm4aOY9mbPqePDlYqILEXdvhB37oZ/Grv+xdSaBF9oDnjpb4xL1TPDjb2T0xAcIAGMs2gCnddNFUOEso7G92Rk07tg7FFd750oFxzWNbYITCNV3L1SQWLBsk9n3/vnMf4QmwEWGKBYkJ9Cu34aeQxLG3YkE4JRaAZbPPSSTRd0CXTT0GYwAmUtPuZ2gFV86LJB4tazR1ZfokOtmnRVPjEbmQWLpp/DyW6DFAnA5VRs3i57+o2hejVg4/WeRYJPkZhzDXAmNOvZn8LTXHZE1cYbOZCt4QTlqQmGEConGewfHYmsRQXIStSdQgibnsp1BdAOBnX3/sZcBjTgVDSYshkPZa54RrpkEpdV9F6M9zrVRzHENE2KQYMH2+c8mVmLopg4iMddEBksje/2pq2QzUwDueE4DFmDihRe+vEpKYW7cy8wxrEmm0MwyAGURq+LO6/isatHG1bTsPETc/S98uRgsv0a1TNG2tMJtmjuF5lNdzFq4nPZFcGa+1khVi6aYyhguAY6wj5r5M7cH59dWfm8yXqe8PEXGgxECxc3ItV75hkEReuOb/+9Nv4A/95R/Be+6e4GtefSH6HtkDbh8bMZY3T7eOL5neS4WmumwqPNxMhWtSycz1rsv683Oebdlnxz2AbYER0k27HbA4SL+fNI1wzVNrgiTGNrkU+uXWzU3GJBQJ2ZrEeGax7MTEgqJSrc1c4ZqpI1muW0r1mxFn62jZ4HTbeovfqqmw3XFIokhCl9TYcuckFtzQbQrC8084yX0fNmUvZ4RjyQS21iCF5OadhHRNYlrdMV5bCDBByjRwZpxdwK8jKh1Lxvkb4uXWJIbPXIkyVFXVRKRCzKXg/fhnHnrPTYw2yiQgYggkU5M4z4nJt8DQxo8j3TTSygiIZ5KZ9S5Vy5KjScacQVbdcRK4gb//tTVxde3vN3b9yR8v3HNKcvzjPCP3V/k+Se/BXBN4W6dM9UkMvpsJNvJj4kkBErWJJIWZpIB/3fx5ZMdF9jfGv5j0yi0hwHU8SJzF7gD3DPjqvlzjePcY4++lcUFQpAmA3XHye064CYgn5kv9RaNtWcCh1LHzn9839GvkycEC27aftGpK2eOtCX7ePN0m3yN78p1jUzZz3wkSU4wvwA0uVxHhmnRN4mbXpfebFGpfopuG142mmwZ9ErvdhSCJ+yARLk1pejPn6riA+KI8NsCOCNdUVTrYqIKFR6zrkF19UmqeRbpjbOHJfK9xXIQSGIq7xMflkazDZW2DxOE7LZualsnvhs/JBW1AnhKbC5xT2b7U4tN2HSeIEWQx3c+Mjos6hPrG8XaeMxqlE4HzlDbNBcBzJOGbIEvIBKRmLnrHWubp1rYxGUI7zh6v9IzKmDiSaI7/jttH+BeffTg4pdU4JtkCo0BRSqr75pIrMYSigBClqPxip4NTwAaLlhbLt7hhGRBAZD3JqJvGpfX9v6UsrMvV1FaF9UcUtS+y/hTRhuD7lajF3vEi91deuCZOEet6UpVTiSRWwXrOInsyJzEKSYwyJ8rXLeXIU4nCyLpQQnLdY4gxz3eUElvydYfkqR1nfpZbN8QSp+R1c10M4rqFa4KmvMEcj08UyripfkSZqQRM27IwVFovcU3oJAgDIhRdbLt0y43jQRyPRRMlKfpwnQ4SJdh7bkAS7z22QWIqkHXH3TlejkEihyS2OFjEA7Hks0bcx4Cz36hrEp0+iRdQk7gPEmFVSGMIX+gMio100wySGA7btnlKTkogASjXcblzEmOc/9jCD+iFaxhHclFX0YyMSEAfLhucbVsvQ6ZpgSGbVipoY4QjYnSoEgJpM8/Tcfr6I2KOkax1z2StI8EGI9yxqKfiQaUeWfG61eFvhSBxSpPk+k+Z94pjx23aYS1LR6AGcryw4TmFJAbPTqlNCpBG3M6GIOqj77iFf/GZh94GFK0JJbLdMeEmNpDS9kmMofauifPQg3v+LVMjfsxYn8RSn0ogvS7nnNAU2g9wiIgveKNXGwX4FgwxtJNFYMYArBAwjOMSdMd8kDKVkmfGhU5hCXkMx42JfCL7Lx+rrkmsp/sNe936yL3FJAUmDBtauEbvX0QRqUICoq4SCDzz3ISJ0/yQKOLPrOW2Bk+SJP7r6eNN9/ySuq+Mm/TdLq6vmByL/W5anyQ2DjB7TmqOJysTwLDlRFJe4fbVDk3O0e0jEyR+5sEZTla25RswTfYBwEbGHa+scI3spU1auCbH1gt1CwCWbhrsN2wLDOl32A5B9AUJ1+yDRORr1WKCDEAeSQlpLmKlzSZPN02Pi9EKAEOjvYzawvM4kqnNftE4QaKz+SybmqYjSDbbOgfB33tmjungMhVIhdQT73vlzmMki2mzpslh0UbdTNZa6K1hFhOYRyWUv8XnmBHlyczRIBv+az0IlHR85qxD6L5eGucqGfK1hQ6SmMmYTscFDkIpSEwgboIkvvf5EzzetKZIf7hFsz04S9n/VAJIicAzCEWuJvHRWqd8J+co3Sdx6uzaBveZ71ZNxwH5ICWF9gN6uh1z/8fqJlkELDbHsnCNHwQzfVqBTDJBuf4w42J9Ei+tJjGSKOTWZH3LKzPHON209O1iqEjXl4M9IF6+UfYTnDkOP5lgbw5NNQxSWCQXiCDw+Sk6TAEZwwWyYQK75Fu442JIIkO3trTpnqvTrKclGPJ6zkK6LyCU2Pj7pc3WqRJJzAaJnSCChm7a9YbWCnBI4u0jiySOtYwZJDHX47Kp4olFNuE37jc0kjgEiZ0EiXu66YWZ1CTGFrxFAUmM002nC4/8Pw/Zm58xZ2uuummx3UO4YTP9DjOOZIn+k6qJa4aaxLNt59ckLjQtMARJtP93jaGtpPp4yfxjFtto3O+VPFaubqmAtgExmmRyiBkXBEQyR/czY7Zo9DWJstH0weYLlGviYr0jmcw64COCMo+chc61prbQzewaR54b594nJUqyjIk9N5JZff6G2RBfe7QZqS+5mtDc94sFexSVfAZCUUeQbddON1q6KVfzra1JTAnXSMud3BgfEeQ8+bqahwhOjkeO8wWYhn2NRUScAIx9biYquCXaYh3P5DN0R8BPHLFoJxCyC7hgUa45QgAA3VBJREFUQ7smx9AXVhU1rDVz55EcF1lLaMZLJHmaP/++k8yUG8gcfYqkjMsOiyr1aoM2gFQ3DfqZ0gFwgGbZ/Tc/bhFpxVZUlw2+Gx9sY4LIAhzdN0Y3Taubmr2KTQYySKKwzoRuao5j1fxlTpNxQ8L1uaOlKXly1vZUuQeQX4NitdSadkbjWs6qm45Ioqib7rg+iQXbB4kw6qaLOt7QOgbzAzaDFAuKxox1Gy7+ZV53+IDKOG3QAOQl2mXuKbqpNrPL1vul6jsN3bTG6ab1guJFzbfAaIdsduo8slLasdpCmX/qe8n3iH2v5LGiFDH/b6k5Avr6iyZGtxvRF11wX2oMHquHwLBpF4P0WPaNUGRz58VQi91xruDNnNpCJmst40Ikq4gkpoLEre0JBQCffbAes7OpfpNAuSlySvFYS11nkls5uukjoZsqg8RU0C1rk4/kltVNk0m/zPMdYwmwTlp4Lqn7P0A2zO9ldHtKNzU/S3fyRLiGDsCm6zITpMTYXm0BvQyf7VxQ788xtibkx9j1Trcmp4S6tG0iaLpjbM8vBntp/6LILogGG9kpRurEh3HEHhAmXBkhHyCgZHZ8UsBF6dzXk8cLzqVlN5WRxFiilmkBI8Pm1q3SFPTYvZwJog6XUpPIBonlmsSQbgpgpJumBB4Bqxdy43BhfNCuHxlbOSQxJ94Uq6VmGBcTf5JVNxVqaTu089jTTS/OhO4YsxzVBYjThGNZXfk/k2maFrLnN6nUzX8eQZLc4p+iPgDIB6X1tAchYB7Qph7oprvWE4TQ1CSazKZzrCSSUpijFkmMbDQyjsnQansS5ahsOYuNKwV7Ms8UkpgW8xneFyCJ2hpBYAjAyAa07egQlpMdQGzTptokTqiSjCKhzCcM0ss1iVMkFzCbZlNXuHNiN8SjpdRfTNcDJgCIbWxSs11KOMXWkvPQTcV5ONtxToSsE6mERy5JwiCJsV6hyT6hMZYAys+2GRtJQBTFPszPWcIpsUCWfm7M/0tKi+O4xJ5Tuk9iSKK73sfHDQJy0hbHcfxKcwTsmsqdR/MzXJOZID18BChVziqOtjH+hTaZmWodYIKU/BzD+1FeL84x8twwqGDYA7WY7Igmc/iaRJtIADfH2j8eiyTG/MJizXdwT3bks50Ss2IC4Jh4WWrcwSLeKs61n37tEf7JJ+8DsEFiFknsrEqpmCCJKZVqwNQkLpt6bMvhIqBNnfZBc2yxWC01W6fszZOlmzbDd+72NYkXbtu2SwrKpOrocsI1qUJvZrOpovSTQmATySIzgiQh99x8BhGkZJHEXFAUd3YtktjgdBMI1ywqbEgkcdfZGsxYCwA2AJtTfwdMM+RtV6gJjWUxyUDWnRfA1ySGxxOqdakFQEi5Lp2TeI0U35R6EoCx321YzO19zAal5v894djJ8cJgg0FSwvuLUzed3luAKKvVuHFgg0RRjGuqary2YgwlLbbecYEUpghkX6Co1tMaWddEuObhmqtZ2ZF002hNIoGkTGuV08FbnH7o/y1lE5SIuP/DgEjGlZ3PKSPBzKE8DnAc0ILDKpYUrikwJ6KJ2gLdtA7myD6jMhUNlXZURHWmyQUbEbSBSqbF9w3GAQ393RwlELAJxFiJiQ5J5O4tEwDPCS6nCVc2uJ+qAufnGO7BmjkCTjJzpPKXFa61yZUYIg5wwbZ7KA3dN3SVc8hZqp+42CffPMXXfd/fwa/7/r8PAFgPQm25/UDWv+NVM7amuDEEiXVk/Rfbtqbf4fFqga43iUlf3TQ+x9waG++BSjC+wr2DDhIjdNN9TeLFWE6hKFdHB6TbZgCxxZ+jrWiLXcPN0P09r1Ian6P5zMKmPdloONpWDOoXWuzRssF613m1Dqumnji7KXM319iiyjhpMVVOK2zES+vLOGoRj2ykuesdQ6oZBb4YclkK9uRvYSatVJMYnSMUQZsSEQkD4I74XsDUSWDOIzD0jgwccorKNgNJjPWpBExm1QSJNlsoSGIsAcRQ0mLJldL9D8SDy1wjZSCeEHDt8VCr8pisWWFbYPg1oeXvlmomnq9HmR5rLtrT9wwiYufkHk8r9mHnWx7nvt+svYVJQqijOmc3tQeX2m6M9GIlJVbeMypXKpJUYQ02F7Tp9nsgxubhkmIxMY1Sn9w5wk3A9Ltp7i0vuCQS1zLPsL8onVx0nzeiJjEUKtIEwO7xGDV5IFWGUd633bmpgu3YusWo0ip83lKQ+A9/6g0Apo0FAJwNSOL9rLqpLTk4HILEULgmlpTctR2Wgw8KAI/Wu/G+XzTpmsQ8kqi/Zu489S0wpE/iXrjmwm3XdVhkFPFiNYl24YoEiQkOP5VFqGOS2ByS6D7YbOP4KYd8+Fv2ePGNxp1LdFydrklc1vVYk+jSNJdNja6PUwRinyPjYtQHxkmLtekYA6mUSEvC2WXovuG48wnXcItPDEnJ1iRGiuaF/pU6Zqq5N+P8AD4qRSGQwTkZ6aba4JI4j8CQyQ+RRGJcmChhaxJjyZX1tsPBosHNQydIHJDElIohUE5AJJHEUp/EyPGyTkyE/uma1CQ+ItXvxNlYLdIJP8BH29j+rkAcSdHc/8yzDUzrj5jkSqwO2wQp5WP1vZ1bP76eHTZ93joySTIJboiauNS+Ubq/ImsCVzcZrgmM82/nJEaJVASomRnH0oT9a+3OPXm82LpQYDOkNQ/SdGtgmvC2vkV2ihEE0vzkVDnD858/1vz+ovLe3vvJBqXy/nEfJfaA6Pkn1q2xTl8RyIZJKoBMbkV8rtQcJUjcJKicP/nZRwCA24MIzYgknqVrEjcjM6oer8Ux2QJjMdBNzTF24/tzNYmluvRZQFG434wtMAoBX1WZQFFaYOz7JF6cmf6F6YxwriYx9gCkkUSuaFtbyxg7HockxsUmgFLdUpz6UFf5xS4G2/d9PzoJR0NNYtdbh7uUber7Hv/4594c5zDSTSMZ69FJy3y7mBNTotLah9p/nVXfiy3IuYUkKdvNblBRJDGHpGTUTVMLZOSc9MT9H6/lKm9sYb3BmMQpIon+Oel6tibR1hv0fW8cSRKl2Hnnv6P6JMaRxBYHSx9JPHaFaybPtvmZZSVENjZG3CVVM1MSKZL3xex0EOZhW+DIPFOooKVA289j1snx3lIkgVK1tQDnJE9pc/kxMm4apJTHAC5tjgxkI8kVim5aR1goxDqZ2oNLSUnAr0mkEkBBoqrvy8JBsRYYbJAecyQ5P8EfA3COfFSFOzMu1l/U/L+8JkRFkYoJD1+siq3lnQTOhEhIbC+leg4H+8b43fLDpjXwwz3G7AETVeCScNNkb5PzWL6X+8i9xZxLjbrpWJOYWN9/8nMPAdhzytQk7py6dDlsSDeNIYlCN5Uk66ONpZumyqSAfKIkhSSy7bxGl3dEEolNoF4GSOI+SLwQ27VpJDHZyDfz4KSCxJ7ZNCKLeCmzGMuGsYIkc5DEWF1JSelM5plC6byaRA9JND9TdYnf/9/+BH7Ff/Tf4Yd+6nXPUckL16TnGA+AC6hZJLCR78YIYsT6JHI1ie44vt4vhiRedE1irJcj46TFa7n04xhaBzDNLvYob4Yybhc4CGxNlrtJlSjJcqx4TaKhm55E6KZx5dDyZp+iAwLlhFNsLWGc+BTdVDLHrLrxdjfMs6DU69//ZVGelHBNDgGzzqd9TYX2BE4aUycbQ5e0NG06kA1pcwQibsbFEdkS4pykm+bW12AN4pHE4fNdJLHE9Iom7jgkq+t9miqFJNZh3ao/95TFEk5tAUm0tVzhHpBv3xOKItH1roF/wSKJ8eemfCzA30vN+c+PG3tTj/sGH4CZ45n3j+sPhQAH578vCTdN90TG6ipExGXupXHxoCj1jFokMREkvvYYgA0OrbppuU/ioqnx3udPAPjsGvOeeJDo0k0B68PkkcS0nxFr8aRBt8drwLbAAIBm6dQk7pHEC7Ntp1c3zdU8pW5GKrM7A6KOblBdeUGOBaQsJU270QOFVgpNhYOhJtF1nEckMZFt+os/9HMAgAdBA9RQ6cx8N4x/S1ks0033SQy/W6vvk8ic/1ggxWxsseRFrkeoOy4Z3BdqEv1aD95pDTPCpQg4bG/QsujLJLgsOxbmeHbTbknnZxznXO82s/a4c4ypO5og0RboA8DRytZfpJDEueq+xfqj2LpVUD8E4pldwDoPXQ+qLlmU7VYZzyn8fmwAHJtnLnmRe7bLiMgUgWTuyZhQCIO+ADZRxQayMQd0juCTfEY5SRVP1Oac66qq/Oe0gDy6cwTcWi6FAMpkTeZQgxC5Kc0yTAhoqMzxvTs9JtUCZldI+oVKyfIbswdoaaPmc4PzTxwrpgqsKd0YnxuyBcmU8eJ/XnKegT9jGVh5YUL3WCCf7dAHZZHEWKmUSdzH3y8AQCoJKLRSGyQONeqbNrkfjArXdYWv/uDz4/uByPnwxnWDuqkNqtw+iW3XT1BSIE/5jWlwsOUsXmKebYEBmKDQRRKZwLI0l3N/wlNgu4K6aaqRr/w9NgaI00a5DKH/WmlcLBvWZebnjkshiaUgcSIHTyIiufYSY9HwxvLBLd007kj+888YSsLYX3F8sONOXfG7JTLdQBptSCHHRSQxGuyVF+TY/cU1AI4EiQySGK1JHM5J4pipXo4MHQqYokvsZu/STbnaQn+zZxxCGSeBsxyTFa7xauK6HseUst30dVE3dW0UrqlsrZlVXuQSEOk+iZngq9JviClpfTHpAwmYgDHF9hAbBXYy71vUfhseSt0083wXkcSIs1XKeISBFBNsAD4C0/c9xVwJg9lY7WvMQjoto6QKxFkoOUoaIEmSSJDY5RFgwE9wlZBHd44yL4Cnjcp7xbgg3fxs+x41bMDItCCJoj0U2jZdy5maxGnfZ6LFViRJUoqAqwgCOScBoauBd8cRtNEguKSVQ4P9zSJf5eAyVoOqYWpoVEoBu3ewSG5dYxJI5Z7t5bB3pcoJts7+um07bz94tG7x3PH0nrXCNTW++xtfxeGiwb/yxe8AkPbLzRxMCwxBHQF4rDSZR3idcgreZu3xvxtDgQYk6Tr8hxWuAQYkcd8C48Itp25qULPp66NjmKGbThdVhtcdC24KDbAj6qYdsR5H6aYsJW2yGOSLqIF4RtiVgD45MA/og7PdePxctsn9rAdnWy9THBOuYUVhYs6gzD9mMSQXGLJMhb6R4TgO7fHnBXCLTywAs4hgzkmYcvJLSYhUvSWTIQemznVpY5uvZAhvnGmkXBzmZQmZhExsnMyTqkeJIYnbbkQR5diTIv3g/AMluvU0QN+SaPPkuSmtWwUkce30RxQqac5knjkRppACRAXAqSAxQ1+ce/7N3+f14HTrsNmgIQyINMEGEDxvpCOvppsmWzDkhVMAn15cQh7FwvpCTd+8aZBSTgrHx5XmOA1IAa4mLob4UwJrysTwFO20r2fnGKxBDEtGPnc6Tr8n9sR1m9JN5fX8HENWQs6PDOfpghW23CM/xn3vGCQSqKU7ziaus8OiCaBcwmNVAABcn2+960ZEEQDuJ8RrXMHGw2WD7/6mV8fALwamuMdaLqxwDWDPX64sIuf3NhHApyWZSl7StVfQTeulQRCBfU3iRZqhm6ZlbKONfGciicwiEgtuSsheeDwmIKqrGGpp/5adY8RhopqCBwuCnNtlU40Fxm882oyO3irTcPWTb56Ovz84C+imEWekx7yFroQ2pILEUgCQUgAF8pt9TE1VhdJpkcTIM1Bqi5ASBGBU3IDIdysKRwzz0jqE4YaI8rFknrtgo2cd0LAmlEPgp69vu35E2l+8cQAAOFymldwYBb5cn9BSfe2UlVBogZHZfAG/VmXdlttgjFSjApIYr93mM/JiDJI4F+3R0hZlnBo1GOmOvkPIIjAeck8lZRJIYoHJAOhbMJixtVM3SaL9w1vcmsRicmu45cIWGKXDyfzdU8IGN/EERDkonZZF5BO8OeGmYuIo4pMUz0k1rbdkkcQwuUgjidrzHwR7DANI5gj4ZRFAWbgmZJhZ/zPP7nCPxSKC1p+E91NLU5Vjp75aSZTQCxK3Lc62dg9I1SVauun0vOSQRCNc49ckunRT+S6h5cSbYixElqnkPd+suikANIO6adcB6LkxBdsHiRC6aWKzjzg/gM1GxBzDEUmcOE3kIh7LxuScrRhqI59XQKRiWUWgQElLoG1lZzdO2TJ/s0Hip+6fjb/n6KY/+7ofJLpIbYwSy9YapIU7Sn0S/ddLAUAsi8xs9imUgt3YtDWJIUXP/YxkM3FZkANRnjlzNNnI7LDx2oz0N9JpDZ1k1pF0UfFxE1WOM8fj1E1jSKI79sWbJkiU5EpYawaQolTjdYskErK91KZOZEnxMrf5AgYplVPDKJxaJJFHxeW8zkFScuhZtLa2zz8z7thJv0OGaTTjngy/G7NvuONcNH2OcBNg7pvU/uvOJSqKQSCJcl+wlNgwACjRMb0xXrBBJLeGP2uR41Td2JwkdNfPpFtnkHRgSLh6czQ/S+ekqoK2LCSSPq1l5JhbgJ65kgqk6OTKME9Jtpae03DfsMmt8hy1iKB8h5ApU0w41b4qqozNBVFNXSXX9s2uG4M2QRIFNEgpnLp9EmPHM++Z7je71ggvHkfopmEdqWs5NkOMhVh61tyxNkiUm4tFErcWTdwHiRdjObppqIYnZiX2p2NSiyorJKARSDBzmGZImAc7JpPfE4tdrP6oVFcCxJViXSTrxtDvreuBG4fL8XUg7iT+7BuPx98tkjjMMfLdqCAlMk7mmDqXc9VNY/0tx80+t/gnqU3pMWaekSCRQRIjzWTtuFTgbH5qnR9bD2FfYzLJoXIrq2QYq9ugaqtqv9YJ4ChRiwBNp5HEyBrk0r2+6gOmSP9gIUiieU8UScwdK4KAcZTMerohdmXU0v380Na7bkwWpShJru3aDlVVcnjh1yQSfRKTfW8ziYjQiTS/iyNfclxjzjVxL1dukMgFDbFWFmYO5WMBNjHWEiwB+dzwcpcEvvJIVv54i8avHWYC2ZBK2BHHCccAw35DqqKGCV4tIjgmgAhEaprMzCeqUs41U3MfE9dhAzA3ccGgL1U1Q900siea/aZ0LPhzJBJw7vGsUFR5/5XP9ZOL/fh6box7DA0i6I9j1624z5sbt2yqJJK4abvRJ1zvOmx2He4erwAAD9dxuuk248/EEjLusZaBUrgkG1NJKnktqVVRTZFEVhgviiRqahKForqnm16MbbsumX1OOWhZ4ZpzZD5j1LKSkxwPGszPEm001UuwqIAY+W5znF2LJPr93uT3sUdT5MF+87FZKG4eLPBwvfUcldh36/q+6GvF1d/MJpq6Bkl100IGOl+3RCQFlI5F7HhcTWKcXux+5mSOCeeHbVLsnxMis97456RlC8SDebKOpEtbLJ0L18JNkapJjNB4xrHD9/5ff8vn4y/8to/jC9/5HIDE+dfcW2pKpj4pVkISN7sON4dkEYUkdn1SgEws7Plp7/+ykxxFUpJrgn2PmEVS8jat+Vb0SRwFmGQepEMYqJuWg0vz09JNFZTYGCLLICJhkEIEpou6HlVvNZRYwJ5DJuFkx/jrFrsm+zRVUgVdmQAC0u2McuclRdMr1SQ2k7pJ81NNd+xYpWpMAme2JneuCJxWuCZM3jFrq4zzNQjK40KatpaCrg2AY6U6XR9n24ktmzrZAmPb9rg5Boktdl2HOycmSMwhiaZH4vSYVVVFNT/MsQzd1EUSbx1ZpXAgEySm9oB62t6GiQGA4FyOLTCIh6BeGBRxRBL3QeKFmIGa4xcgJb+de7hzSGI5SAkXuvKDHc2GER5JCm0rDEsqsJbu4VhtmzjMi7oKgkSr0gjEH1BZXJ6/sTJ0U+eBjQb3PZfFjKu/zXAiC87PXAQ4WbfHZk2VAUDoWANA2+Zpeqk6WTqLPHGaOGfX9i7kHWvAz+xyjqQ9JxZJJILLAJUtoSgyJrlBDWMXTY2vHNBEM79pIoFVNzXjnOMUrrUcL0Y31ar0ivV9j/WuHZ2Eza7DG482Xh1yaNtdlxWtkWPGAuB5dFMks8jxxBF3n4RrV9tx2WcjZqJzCEOnlW2lEF67Us+2cY4RFgqtrhlm5YmEztJFEjNBvX88Oy85DktbnCJSXJDiUgJ7k00rzDGoSQw+jx0nx6aQxIg/UyqniNUksiidi4DNSUBQzJUom4dnrnTBc0MHpU5SUuaePV7AwmJqGacqvdyzHZaK8GtJFVU3zX23VVMnRQnbrsfNwSdcbzu0XY87xyZpmAwSu3y/7lTfc2mBUVXVeP9JgjJXO7/LPDsxmirvlzh7h6YFhiCJEiQyYwq2DxJhbpAUkhJriAk4mZxMxiIepOicGAYRjAUb498KdIS+n2Y/S+OayHdjsnZNna5ta2pLNwWAGwf+Axr7bqJ2dedkhYfrnZfxjTkjbE3ihFZDqLgB00Vk13bFtgGAX8tIXe8EcjwPSeQCgFDKeaTgpoLE2BwJtCHmXPfgKUqj01rYnOw481Ov0uigjwokcVHXaiQxpBqJ5Tao2MYmv+a+Xoym6vYyzc0xpsrMJFdi6+uu6w3tfHASNm2H7/krP4Kv/Pf/Nv6HH38t+nm7Li1AJhaWD7hMhtI8p3THfD2K+/mAju4V1vJS92SEbqp93sZ7hDgW4DugrLppLHlKBenh+ScQvkVTj8EluybImi1rHnOcuACKvnG2RW3K47TJRZlnOMfS3pFKkpQc8pDNQweyseCGSZJUYVCq2RPtayWhQMChF49zHF4vzDE8l3yQGGcAaRBgnl0Abxy7bsX2qa6Q4Fo2dVS5WvZIl266bXvcOc4jicaXz/nKccBh2/YTNuGtwzKS2GXWlLkJbwD4hs9/CR9+5Zb5j1bdtN1Y9PECkMR9n0SUswExeLr0cMfQF7YmMVqQnh0j7/WP5f4tZu7NLw8WG5TOqbdsIgG3m8m/OQSGgF0ccnVL612L1aLGzcMlXn+0Rt9bHnmKEks5aDORRK2THG9dMv2eyeNpUbrIudwSNVmxutxSLcVcaffowtqVJcnDupmWXIxjdFNOgKYenUj5ioyT7CIbwHBvET2y4vLb6e8YC7aZwCGWgBjXuoIjGUMSGdQyyhLY+U7CZtfhn33qAQDgT/+/f9xDTccxbbpsYDxm7dPtNEiipnVDVIF4RJyzU0RTVx4FixZhcq7B6LQqE0dMC6RwHNuTMZyjGK2uGWTkmSBg4ST9eJaAn7xgEkdxVggfEMkwTSAVS0AwfTGj5QYFJon7XndsKUiJUWIZH8h9v/tazpraF0Hh9ht/bgDXcmMagOmeG60ydni9mXH2uYE3V23iQlPfPC2Vyj87y0W8JlFeE59wvWvRdj1ODhos6ipZk7iLBHuupUo3Nju7d8itcOsoQBITycxikBgkypl18o9/+xfZ/4wBH4kkdjvdmILtkURIkJSqSTTBXgijl3rOuNQfdwyTjYlmCHOLcQJZks9LjktkOoCycMr0u+lRUnfOi6bG4dIeVOimYSNw1za7DgeLGjcPFvj0/TUA2ycutWAxmb4Ly3R3hZqszHcr1ZKaz/fnqHUI3d9z2bcY3bFEU419tx48shHW0hU3qOHvvtgE7xBqVRrNvYzxWADZX9FBNgCDRjHy51FFtszYKJIon8dQQCNrSQlN17ILFuOxpn8TloAVrunG8/vf/4vXook7qUfJWUxdFiggnpXv2Inl1rzceSyWHNTTRCGLJE4l+Qtjwvtf1NYLx3Pl61k0JJyjWAlNl73PfQbYY7r0bpYlIN/NFaYq95bD+F4xLimMcW4yxn09Oa72653o1iVB4MaxBPz3ihWvW8BUsoFseY5AUAJArK3ToLR8H8f8C015Q1jLy4j3ucdj9l/A+KFdp7v/baLWT2Zq6zTpALjCxE8u1Q2vmhrraJBoPkeShGfbzux3TY0bh4sM3TS/n6a6FWzbDquFP+6W0E0zycysemvUL+fuZc80IjQh3XRfk3gxlruxRkcmuD9KmZxQxVA+g3Hk3WMxFLFcbRuTyY/J5OdmmQqkSot/DJFyM/nuuZnQTROO5MGixs3DBT77YD2MEwRymvmngo16Wm9ZqplJCdeUMte5WlIWARbTZD/dcSWVUjNumigR2nAxSJmJJHr3JLjNvnFQorbnnVZzPOvIcJS0yqOxuXMvjdu29lwy6qZhbz+xXE1crgcndW8p15Kmjjv/zLFifWgFEXCFa8Qx2LQdPvdoPRmTU6l2jxm//xlnK+Ikp85/NEjnnS33erPKoe53Yx3C0ElmUQNXFENDt07WfOeSVJH9jT2m0LtHWiXzjDb+fcnUMsZaYDD7fXhvsXVj4fF4KmEVDzYy48K11R2rqdWn610l4HbuSQqljlBpi/tNIsFeOp78OUTbSgmgFJJYTrD7QTqz54TJZBoRnBkAR+mmhUDd0E3TSKL4c0a4xrTKuXm4wMMk3TSPJKb20m2kNIgRrmGQxC5I5jPrpGejcA2BCu5bYFyO5WqlUo5MaZOKoWZUjUI1df7N68xiMB2XVUWN1B8xjky8lyODZNWRmsR4Jn+kmybaSwDGcVw1virq8YF9sKfIBtHMvYo4gxlhI3fuWiQlpHUAOgRYXWwfOR5TkxhLlJSQxDoyhgnSU60b2EyyLzZRHhNK1/MiIfb+0tYkAva8UDWJkeSKGZtObqX6VALIOjLRmlAik5yim+aet1wt9XpnNsZRuKbtcP90i/c8fwwA+Pl7Z5MxDN00pLwzzlYsSJGxqXMiL8cSflpxEVY51GWh0GITgSM53iLFhJ+t22O/1zjHwCcsIXyx2lU2MSP07hENJ+Yo19u2zigHlzFEitvvq+G98H7S66QSgQyfU3btMvek/9ouU5PrfmZYb1m6AlO6Y/l7AeY951X8HgPZwrFSFPTSPC0F1JxMJkkLTBFg5rolzz8RkAIuu4C7t6JlSIV9eLWIC9fYJKEVrhGRtxsHS9zPqJuWlKqjNfAR3Ylbh2VdjFyiJBY7MOj2xLoWQGXrk3LWLIF2r2564cbQtqY9wPKOU1PHeqQQ2ZhaX5Aeb8pOjJtLU41ljDpmg5pSVnYBIvWxd90GEGsKHg8SD5bNiDYAwMnKqqLO6ZMYW+iKNYljoOG/XgpuQhRLxgCkuEhwvWkk0ZkoU5MYX+zM8dJtQez7/DmWs5FADIEsL6xulpwXrgmzpqy4hR+QunPPjhvua9kYmUbdqbrofBbT/PSeATLYC8cxa0LM+WfppjEF9JBuerZt8WjT4vNfvgkA+OS9qcrpri23wAgDsO24/jDqmkGQ2KcVPXPPNhM4zKEoudRKGpEK1hIW7VmO93HvoCHlOdZVJNju9Uk4tpbLaAO4lNjyHKX0xBPlKfY7xPheMVPeQJ7/wJFn9in3eHJqysczFNBxnSTWf0D2/AiSWBCzAuzayiLpMTElav0PkytMkF7Hg3SekmmPxYyb1M6TyY5wD2D2HLvfmwvAUtCTojzFc+L3NzZj8/vpsqmjPXCnSKKhmy6bAUlM9UksJPRjAmuAef7CUoWwJjGeqE0nuFKsHG2MiG7HI4L1wiCJooi6DxIvxnKZwjGrOFkgzc9cFiF0fihxlyoVJJYXA7Uq6uwgJYLSUb2F6mJt2/f/xi/Fb/z4e/Al777jvZ4Urhk46mLHK4skRumfyvNvjp3PTkn9Zqxulblu7uLDOGlx2W6+t1O0UTpB9woFVzjlVv+eZOcYCgkwC6sXuBHnwxzP/NSrm1pna0QpCC952fjXnEESTVPe+AaVRBLPkQCajis7F009RftLz5vMI083Nc/z6482AIAPvc0EiZ+IBInbtsNykT+XyZpEok9iVLim5CBEzj9DuQ6plcy95QaXemc3HJc/lgRSu67T000DZ7fvkU2UxIRrxtrJknPdGHo3U9sfHk/6K5ZUqoH49e77cvI/PP96BDgI7gvHswnN3vtZWoMWEX+mtHaFaytb72r3APN/tm3AVM9B0ZdXef7r8LuRz/bY99lZ/wEuSPeQdOK6hclrZv13x01rErPDJig1o5y7bKpon0R5TQCA9a4d0b6bB+maxG2BTRLzXQE/WfttH3sFgFO6lPFBc4mSdFmQMkrsWz7Ym9Qk7ummF2JZ2lbEaQLsQ5p6cGKZN27R0quWpYRMgHJtIRDQTYnFLuT+yzxL3y2m0jjSLYYH7aVbh/jef+WjOFwGfRIjUP9m1w3qpvYBOhkEb+L0N6BEJIktIjSSOAlKS3TfWJDOLcbh8ToikJpfkzgNZo2yXfpYdfS7lbNocbojt7A2jU0MsEFieLySYp/Ywnl2NEiKT9PrKcQzlvAA8ihkPHFUnmeOplpag2J1ypxIzvRvQjeVjfpzD02Q+M67x1jUFV4bgkbXtoXEhRxzF73/y8+3O27M5Kf2jWiyo5wAkrGu80/f//UMummwJrCO5BhItb0KSQ+ZMuH6Hx0TWV/HwLTklA/nkkUeZQzgCNcQ5z+t5kwG6SECTOxTwHwEchqkFJ6bZurP7Lr88x1eN74mzvx0A7fS+QCme/ecmkQ6kTPShHXnf1KTSCZYwv1U7s2s5kETv7fYNcGipP4cknNM+K6lmsRNrCZxaIvhC9eYpIRBEjN9EgsJv5RSuDz3f/I7PoZ/+Ie+eTwPOeEafaJwhnBN1/L9DmtRN933SbxQyzlqYeZHTLjWqU0ghiQyi1Zd+04Tw5GX9T1EX4ACIhVx5Ln6o1j9HUd3bLtAAGWsics7uyFKB5hsk6ibip0Mv8dpBRz9JFZ7pFU3ZbJvKXGLeQqgZYcklpFnGqUvA/oVMIiEKHvL9T1RjxJJCjCqtICfbdXSTT1qGensyjiWagTEaXpFJLHWI4k5xeOcw5WiqZbXrela0hbkvnP1xuutjyS+9tAI1dw6XOBgEXcsGHXT0JFk6HbR71bI5OfqxClxkdBBI+nW2mAvKXdfOJarbqpB0pNS/pmxiwB9Z8eZsabmaU7dsL+W5MdE1ZyJ4HIS7A2v0wm/1r9ufAAwBBvjeSyMi7AZ2H1xpI0Or2sThT2ROAUwqdtjzr+lm8ocyUTOzAA4bCfCqCubcfHnNFsTGiS3WAq6/Flb72rUbKdJydy9lVrLNyPd1AQ5p1uTNFw0puVZtk9iwS+J+a6uv7Ba1Hjx5oE3BkgEib12D+aS1551GiRxMSCJF9cncR8kIu9Qpm6QEgXI3Iz+zc9uGjFkLxtszKWIjRubfc06kmmL9bpisq2xIGVXcNLsYjz923rbjX0SxU4cuulkjoQARAwRYTOmMbn7nEOeogTOpWTOCS4ZCfRUTWLWsY45yRQlWc6lfa0H6SQ7AX7bc9SyMChlg0tLQ+9phxXwaXrMuZfPjQlF5eaaq1POUdJm35OR4L7v8851MzpMOSfBPNuCHN46XGKVcCxKVCM5ZvT+V7IgRvS4tG8okVwZGzpoTC2dm2Bk27KEtZPWkS/fk3Vl1m8Nkh46abuunKRq6mmSiqWPLoc6zTl1w9IHlVGXjbEtuBYY/nrXKymZE7pjCYEMgxsWSUwkT5l9w6Kd3DUI97euJ2sSg8Sw5vyradp1OE6SK7r7RPwaRrzMPR6z54TggRbttK1LuOAy9LnarjxuESlBAmxN4uGiwbKp8GhADpu6wslBWt3U9EnMB84TX75wLmP+FmCp8slStQjAxPZJ9A+0K/PWx8mugHazDxIv2nIB3yKy+ANlZ9I4Ff5r7KIVpYgRDnkMSSwhgkCcblqqW5pT71dHzmWpJi6rbtpO6abHB45wzZya0Ahq0xMJAfNd/DFmHvljybzcOfK0Ufsa+93MuKmTzKibhs4dlUXu/QWyvEGZn7PVTZ3eZiUqmjdPB4Hh2g1Yx7UlnlExl8p2HiSxuLHNXhPi9yT7bGuypjGavJhcx6NBiOre4834/4NFM9JRXdu26X63YtOaRPPdilSqOqGKmvh+ucQRk8wJnUFauENLPwwShWy/PWBA6bpOVe8XliowdWqxJChLHzWtqHS9HEPk0qwlbHJLl1yR6WhpwhO0Ddx1C+nkLJK4qKe9Wkv121MqLbg5TgK3fGmDmAlk7f8Zuu+0bo9MroyBFLyfpesWqptqkcSwdUbeB50KMDFzDBOnmrUk1k6t5DvFatIlSFwtahwsmjFIXDaVSRIO5RqhGb8k064skuwo9nx29uzYOJ0uQJmVMDFNTeLiENitsa9JvGDrOgbJUi6QESSRrVGIIlJK2iiz2J1HuCbWWHoO3ZF90JLqposazx1ZJPF4KTWJ0zHMHOOCN/kFUqYeVYTMLZARJ1mFCAbHO49wDRMEh82std9tTk2i1GRpnWQt3VSuF60k6dzLsllpGnVvWwdJVCpyAvzGFkNfcrOc2zcsHlwWnpuISq+YfL/DZY2qwliDslrUWSRxVcgM1NW0JrFUxwhME2Ml+qJ1/u1rMQn16LHqadDA3MtucGkDt8KYibqp/aySLYfAQVPvF5YqjEgig0hFgkRWuIZ9P+DWDQ9rSSFJCMxf72J0d0DfzohGiYK9iq1JTKl+a8owtCid+wwwNYlVFVm3CmPka09rCwvjgvPI+GnAFEksreNiY8CnUEWVP1m6qbxOJo6C/orMOQkFt0rjYnsbYIPEZVPjYFGP639Tm/8DcbXRbaFXbpgkBOyciz2fJ+y5/JoSUoRljJ5uuuNrCxeHwO50HyRetOX6/aRqEktOcizzZpym/FymdFPuAZ2MG35SEsnd9HhawRVVCwZnnrsxk5avSYwtJOtdh9WiGXunAZbOF6Ob9uA27XCcoA0pqypDvVIH6UIH8egImobz/vFKS08USRzu0VzrgFRNUL4BuX2fWA+F8xM4rcy66m44LbkYh5t9Kfkzjhs3+250DFVUtk6BJEYoMqWNLSqcIn8jEk6TetfsDBPBZeFetj0jp8+2fM6yqXG4aHD/1Gx6BwvjJKyjNYnlgG8RJO/arqPpxV4AIEFH4gvG11Zkx7hjw9pCVnF3ikhxwY0WyQLMWrtrlUhikMnX1CTGgsRSDepSWmAUnhfXmrpCVZlnmxUOqocx7r3FjgMcSqC8XtoDErTR4rigvpxdg0K6NUNTnYrCkHMM0W1ijIzz1hLm/CfnqBvHBESAEzi0/nUr19ba/cY/Xnpc6JdohYNcum/pWMA04GPOpatI7tpmZ9f/g0WNx5t2+H/l1PVH9oAuX3IQiuuYMflrkPJBiwBHJLnOJFwnpqlJXBwazvpuUP/e003PbyLTm75B4lmLUk1Wqo5IC9nTD2hAr2QRQQCT4JLeoJQZknCBBKZ9EkMrqps2Naqqwu/9xZ+Hr331BW9ciAiyKN2kJ2bP1aSoabvJ8885dqEDqg3AzO8dqqqAeEZqx4qKr7EghaEthlSX4PWcuQh3RyKJE0pUIfkjNjZY71xUozhsDGIMkshRjYyyoHJjSyAbQGFNqKbXjXm246qopSbp5me0ubFzbo5XDd48NX2xlk0GSew6LBeMSqObpCq3IAGmzJCSKmdVmaAhpm7KtEUYa2s7zrED/GSCFtmYjCOQm2VTYdv1dGsDeU9U3TSLiPgOsjuuuFYO11vulxXJ9RLnVUNTbapqsieWRoWlIiySGD5v9PUO9g45p0wAEFMFzp3O6RxlfGkPhjdHhiUjc5zQ3UuCPMEerH1uxrq9Li9kGI6bIInKcXJOc6iZjJtbE6oV5Zn0+CaenRhzC3DpphUOlo2DJFaWjbOL7BuFPokx5LJlfdAIUGQ+M36TjT6C0geaWNdyzgUALA/Nz80j8/MCgsTzf8ITbmxtj5ZumqJkMjUKWtl6wNxDUYckS5P0HWQ5nqZoe2B3DgW5+Tk2zTTgpouGE0jiwdJ85nd/06uTcdq+bWZcnFbABZe665YSHCovxpiMo5DcyPG2hJO8DDYo+QxGuEZDPwSm11uDbKyaGtvBGWRpHeGG2BYCm3Dc1kFSOLqpzS6eB0ksbmzRe2T4G0EBdQ9nkivZKU5obPIZVC115Nl2z83RqhmFa1YZJHHbduO9mrJYTWJJOAiYridUM+sqdFpRHDMea0TSFUFKZFx53wiSMuIQkgmPnaccWh6TVjct90mM7Ysl5HhZG7rpGCQWkgj2mOF3Y8+//T+TlAyTOTzabH7aZBp3vVO9C5m66LbVXbeUngB9T7p7ALH+T4IUct8G/PIGQKHCPZw/tpdpVVU+40XOI4GIA25wyQf3YQJIjW4r0FV3KWeOt2jiSGJIN328GWoS6xr94HPG+iuWxMuM6KL/mhWQ44M9wK2LTh/L/XzzGVzCw7Nup0MSAWD9cJjEHkk8t5U2AZvBmdYX5tGXOEWMojtGgg1GtSzmkGiRRAOHl+fozg0QKqcuiwmUM/JhzZhr612bzAzHKXpcpnUyruMyfVqqRbyXmiLTpwzAwkJ2+b2IZEVoEyUkMVW0zd5bE0l+YmGVgnYznqS/Bchl23HjlhHaqKYGctf1RWVfsVx/0dTGFkUECVTqvIq7muudo5K7SOnR0tZVrDJI4q5QjwJgIuXPIonh880ED6EKNFMTCviUqBGlViIpdEA6cZJBzREYHDxP3ZR43mrjSPa9//3yKriR9Yd9dgZK7FobJI6qqMO86fPvK0CzNaFTJLEwbkKTxDBOFxTRbIa69mvZCfrueamc4+FIxzrmA5XPh32ve8wy48X8tME2X2vmAghsPe+4VgYtT5ha2ZCSzN5barpppa8bLtUkLpoaB8sGj9bt+P6VU9cfWrFPYjVNSpaStSnhGhvgF4LLCQiTnF7cNMI1yyPzczMEiUy2r2D7ILHg4Lm0snBcqUdNLEhhsjgxRUIG6lejBnNpi0lHMj9Hq9Dl1gTJAxq/FatgMXZNhGtiVkdoDFyfyviDXQxuJlQjmX/+HgGmjnV5g0qMU4pUAINkdKmOKyrlTPbI6nX3VmrTZvbf5dATTebHqJuG341VH/P7xJU3w3Ccq7hYCmzqukLf+/cku7GFNaEAR4HWKu7OSXikBAHceS/qGscrGyQuB7W7uLop0wIjEKBpSYGjFAJWeL67yPmnxLOGN2uUc92glK7/Cu4Ttk8cYAL2jYukk+fRzM/8nxFvit2TbGJmMVBi1UFibQJgpkXHOM8qLPnQB21skBKeE2Zvc8dNkKxikBgEAEwz92COsu2XE4XDMZx7mXGsw4CDqqWOoZYoP29S7+cmO5j7H/DromnhGqnDG1VRh/kT/uQ0kZCfX/iM8my2hDJ/ZtyirpMCNIBhAhws6lHddNFUWC7MByYThVlWQj0BfMZESeLExNYfoLwHhH0qZcysFhga4RoAOL1nfkrQeA7bB4klZysoGLbjylzrMEikgpQAsufpJ/EHlMnk+7LFvNz9dByXDXPHsbVVsYBPWmCkxk2Ea4ggfW69ZRiUMnSvOW0DgDgFl0JJI05523VEn74pTdggiYxogX1NEwBPnSbSad3JJqpTN/UaZxPHcmsL2Qy5GWePx6qbxlTSSghASCME5lOg+wJrIjWuLVxvGklcTZHEON20LwaJIb2JVjetQ+Ea/zukxvhrOR+4tcH9T1GgnaDU1jKSQYoEpaTzCVgkUXP/N0GiiqFch88owCFZwCBc03bjunDA1iQ2tY8kMmtJ4yOJc8TcaHXT4Hlj9rbY8WjKe+DMU/0twzkOr9MUUC9IJJIkVQV3y+9RftbC2uExkCoezUf8u557ZgAfSezI8x+ygDStM6woEvecjijpDJQ6VnJTKsuKrf9usO4FiXXtJWhDM4nC9PHcXrLjsQpreWz9AcprUMxPY5/TyQS1dNPT1/3/n8P2QWKBKpOqSSwhNym6qRayZ6XMp1SL8oKQ6klXprbGxhF0x0jA3RY2m5Qj2XZGdS7lFNaBU2fmOLffW3kxriufEstsNnHUhs/0hSq42qwpwNHtbG8/HwHOixaYn+ECOTezyyyry0WNjUPH4WT8LbIn81XRTdte6VjbDY510GL3JJvFvJh2OoyUfDzhUULawjFicj0WdYXjld0gV0ONSjyLnHcQAN+xM8fm1E1DKiFD06tSaznhbIVOPI2kBMFG+d7y58buN+azB+XQwh7qH89f85jzGFu3WCdZAnVBnqWGvWQGSXRqEpnzP2GTKGrihmFsUixWt8fcI2ESjqEEAkOwEQnSS3TrcI6MTcTEuGGoK31yF4CniqpB0kPknvX93bpoFkl0a+ABJ5lDjJNjaO+taU1idtjk/mfWBSMQNV3L3f3tYNHg0cbSTcXni9Uk7rp8ojCmVVFqw5MUrimg6bHgkmUqedbtuAUZsMI1p28M/z8/krgXrhFHLXGDxHr7yf+LGZIokpWfT0gbZR2LKoFA5kal6KZ09jOYZ5lGMh23LdSWxGhsAFNLCsT6VNIonZJuF15vq2TIOMn2NYqSWQ/ZT/e6QYGSukEiQbeLO2kFJDGCZPXgnaY56qZzkMQY3ZRCBEcRJsdJpmiqNrhk64HCRsru76Va3gn9in1GldctrIFk+lumnm133k1jaxKXTYW6rrJI4qKEJNbnqEn0kkDE8x2yOxR0u4lwEzFHV5l5VP9UIsBsjRQwqJu2PYWqlo6XuwbR/rpkTaI8b6eDk7lqONqWIM6aeuMwMckkTuVjJ20KCseati7he8kCDpJIJhNMLe+0TCQb3AdzlMWcUQp3j8EqVU90AToy2HNowhrmSl3Z92vopi4qK8G9tsc0Kxblons0bXQM0hGMK/slMR90Tk2im7xwEzvLphrnsQ0VaGCC6Fz5RpgkdI9VLDlL+KClFhjn7pOoqUlcDEHhnm56cVZEElNBYoGCFUcSORpJ791U5meZSjhFbQBdzYAcT5tpYselONpABklMZXEK4xZ1HT3/JUv1e9Orm5qfeSdZ3us78hRqEM1aF8YkkcSCQuCMPonx88jRps17A6eJOCerRWUzrQRFEnBpo3bzZTZ726vJ0u2ooLSeBpdFtCdG5SxsbDF1WYbqkhKumdvfsqT+GR5LTO61ZV2PdFPJEJuaRD9I7PvetMAoOqD1pLazVBNqxgVICoEeh+wONuHhPtsa4ZRFXXk1uaX5AdO1XHUvN34PQkrddIIklo9XZ/YNRrgGwIhEqNRNu14VpIc9OOckTu2+rR1XZpK44yTIppMJtd8aignSk/V+bJAiARi5Jsdq4ph9w1WG16hpu883O0dguE+c869JZoY0VaZUQUsbTSngUsr80Wc0P79YTaK7N7q6Ey6SGBWuKZQcLIJ7BCi34UkL1wwKs4Xg0lUFZpM5ns2qSXxj+P8+SDy3sbziCR+50I8llFoH+D5xUUSqtNlEgobSuLktGJJ1SzODFPdvyTGJBzvnJIdrD+Mkx1FSjtYRng8zj8yYxPlnaVthc+/S4iPF9iFtq9xraaqKuuu6rAMaTyTokaxe4SS7SCJzrQFn8x2da25cTLhG0wJj2/ZFFH2cYwLJdf8Wmr2P7WuaRII2cRFeb6a5dIyiKuYGASJcIw6+oZu2k/f3fZp+LmaETMJ+n0RNYhJJSY9JCTmUbhMRKur7XhWALRcR1UQlkmgVENmgtHe+V3mMvGdEKYh5yjMaozuyVHmR0NcJ19hEDvNsu4gUIPR6LikzDVKUSRliDDBFRUqtdMZxjX//M3TmaQLCvF4+J/4xmAQ0ME3KuJ9VGhdSW7ng0j7f51E3VSUXg+BeJ1yjDdJ1idqQTcWVPNUTUTbAZ4odLBzhsqa2e2iiDVKpvjmpUprYB9LCNeanpsf3/D6JrLqpEyRWNdAslQeb2jMfJO5IXnEUScw5yZEFixVACSkrALGw1vGiYW39kaGkcdlnbXATU8lsO/NQp445kcOWcQUHO1RjM5+haK4bOOTa4F6GU+qOQUCqraMAFEFRIGXOZDJjdMfS5hZPJCjkt2cgia66qaGDl8fId9t6GWF+nNsCgHKsHZoq27tNJLbjSGJqYxveF9yTTCsd8/n2NQoBDsYxCEyKyg/YdXlRW7rpqrFBYogkWvptWd00PI+zWmAQmfwJksgGAM6zoxGFCe9/mXf2WME10CAiy6G9BItaAlOFawZJjDFQ2FouSRqIhD7fAqP26KaUcE0drskKoa4wkFIGidLMvWRh7za2D2Toz2iu20jlpHs5zv9uXe80uGcTrs7e3RN+kztPlzZNI4mOwJFZf8r3ZKjnMPZpJfyZ8LvRdbITdLs8Lt4rupwAmvQU7+zYCZK4iNck9n0/tMDI9Ems0khialgKKCr1qowlt1j/zrOuBeoZSOLiiHOcCvbMB4mljFistxxQ5snHmoQyN0hT24cZ0C2sbRA0AJxwil9/xKGWQIASEfz/tEpmLtg2P2NBOpDng4foIxuku58v4yjZ+ugCmR4TKqvZY2UPNR5PiwADZlMJa3uYRsrmvT6SkuX+j9k3+xpV2xbJkAMkkrjwaxIZx842N3aDS84hBwIkkcoID0Fp248OfarXp1i2v2ghi+nXrTKtLDA5FodA+uMoummCJWA+p0NVmftI6KbyfumH6a6TtvlyOeGhWX/GccF6ziB8TSLhx65BRl1zZpDIOv8hskT0hBWbU7c3qYkb72NlCwy6T6L5u6gjlp61cdyAJGpYAuG91fUcjRNwAikJUgrHClEK1vmc1LaR1y7s1cqMC9cSNgCe3pN8mxr3OOw5cRPszLol5l7vEmjgzTNAEpnYMl2TWL6/bLBtXmPZPPY8cj5oyN6Se7oEppj3Bv6dU+d86PTJXdRun8R4sJcrOYiVgVkRrIQIYmQvdedcKpUKhWvUSGKvCBKlBvH0DYsqntOe+SCRpTvG5G/zfPx6clMxjvwEkRof7HL22a9/KTsX8fojvSMv40rfLUqbKwQpSSS3hKQEWS0zR4UgQEAbYprdxoQt1NetJ6kuVYDSQV9HAXB0uzlIovxJm0Wzyq0yhtugAOMkS3axpKzpmvREs9lZLmgAMDjJ/txLcwRMcM4iibEWGCV1x7hwDU9jmyruktnnCW2OGBNDEh2ET+im8l0OFoai5DoJY1+tonCNGWud5Dw9yY6LI4m581lVfsJPQ9uS98sh2TpZQWCZ+QFxBJgW0hvo3ZZarA9SKETKQe3FWCdZqGoPzrYANEjiPOEadX/doC6dTYrZ2m1nPJlcBKZBIpMo9M4/MS4mZgXom7mzAVh4LjXnJAyImJ2jqW1tISuuA/hrSVtAvtxjAZg83wydPAwsyyKI8I7BJrdC9pZNnqbHxHpnm2MLSgecOC2QFk26BcbIPlGqm5ZooznxSgDJFmLhXsqIuUVtTk1i315IPSKwDxKLNRG5ICUvyjANLBknLaR10FmcOq6kx2Typw5h+VjhOGqO1XRBKGXyY2ibjAPyNVkTdVnoi7bl92Kj+iqk7crr5azplLPObIjTeid2XEj3LaIvEbrjroC4xVAixmmqhvPsUobMH8rf7WChVzcFBIFx6r+0SCJJ/QF82pAEtCXHdUS3HSdtV6glitVDMLStKE2YQCCnIhX+PPJjpn9zr9+NA1NXETZEd+lGY8uM4r3sr0GMui9ggkvXKWHQ4yS7Q3ENbLBXnKKhfw7oI4tuj8kced4K+5p/PBNIyffSIInW2SX67cWSiwQCCQA3Dkwtz+uPTZB4oKpJ1AnXxBJ+jCo5oEuuAPF9ii03AGJIop6mXRoXo40CRMI1TFyQa3kVrl3E+QeGhOvoyA+v0S1gJADj7n/AnDMZtyOftzG5GF43Jnkdnn8S3Q73YMYv9ND+Tsbpnm3AgjBVVeH4wNbjLerKqev3Nw6pNc/5MzEkke05PAGKCtcgXOs0CT/PNDWJbl/EPZJ4MVYqAE5RojoCSYzXJObn09RBQ1g2i5MILnPD5rZgSDdK5xw0TyWt68p1RFWEIlCoJa0rK/4gpqoRmYGuRs9//nATxJOlyEyPp6+jAC6vJjGGUuvuLbvRm8/LDgPg0+0MIkJmdocaEU39kfRXdIU7mOsmTup669QkEm0bgBBJ5JJbk36HSqoXQCa3gjlaByEzRjLWEbrptrW1Os/fWAGwaJCgQ+utFa/ZjHRTEhV3MvKMuqm5R2JB+sXXJNpaca6uR2xMXHRdMYkwOZaD2vAIfO2JuzCPW1iXzvR7GwOb3l+3zLj88SRIfOPRBoCGbmqUW0vJSNdcGiFA7vfBescyh2K12xSTJFjLWQGUMOHBnP/JmkD6MvJn755UJCDcgJs5J/E2EdyaMNYIEgnQcVxdeX152XsLsEkVFkl0a/BYsacwwaipZQz3DSB/b8V0Ksz/7bgbB433fkkSTurSiTUv6ksWnvFkCwwCqABcSji/TnqmqUlcHlnU8QLaXwD7ILH4sC2Ch9Mdl0dSpjc+U9tWV3HIvohk1QnBm5yTFqk/4lRKp+OY4MZuUEFtG+HITCgChQUvRYmdQ6WlEeAAkTVzzw6L1C2RtYWTBZl1EupJsMHWJLbhdStk7IAQXVUo4I4Lq3mdrUnseoyOq4ZuunUQEa0qKkt9AzDWV5xtWzqwqSPnf44qMIUIJino3Dhb21M+J6K2G6Obuk3uXxiCRHlbmFUHrIPAouKuSiClblpXHr11dBAKdbkhSwMo319uUkBT7+r24KRVMidBii654iLwnLhLiIiUe4VG62RJBOxkcDBfe7TBoq5U380TrrkkdkfY7kFLSbbIfdm38McFrVKIWl41khgGsiTjItw7WHR7ci/PSLhGlqKkuTWJnWK/cZMJdE308J5ta6+3fFZ2XDNVPGYEaNz3s+tWGIAx+2IKSXRp78crH0lcJemmwibJCNfU0zKk2SVnhfMZe0aBGXRTTU1iVQHHd83ve7rpxRibkQ9lc7suv9iFzjhAqjvWYbDB3Vih4A2ImsQ43bRXy3aP4wrfLdUUmWnkOy0aJmuyAgouvfkGgRQT3IQBEcAEl3rURo43RRKLw0zyIqAtzkcSyw5CGDhrldU0NSKWAmpqufgakToI9ogxQnnp9OIiTV3hbNeOSGKJAmefG/taad2KCtcoEjlzE0Bax8KlbLm26/ox6Hn+5MAfM7y+cTLJWzLgXgZ0UyZJIp/rI/Dl4CbJ7igcy1WP1gQptudnRyF04bEAHrUBDJq+6+apm4Y1ifl2UnG6e2kc4COJbD2ifK6pUzb/Z2sSQ+GaMnI/vDd4Bth10qVJUkhusJZoWiloaxKnwQYX2EyFU/jzD/h1msyd7Auu6J43CUw05Q1+TWJHjQtLPlh1X7d8SUNRBSwSqCt5sv9nEh4x3wIQv9B85xMXSaydmsQASRSF8lyiMBRgAlAUwUoK1yiBCk0S2jNNTSIAHL9gfu7pphdjpWxHiTOdsngLBi4bE23Knh2VQbJyQWKCEsiiPbvJOG7xmQQbxT59056HvLqjfc0gKbogBeCoiyEdxyK5xLjgWOzG5tOEuWzrtAVGV6zriSVKTE1iZn4RJJH5bmGdmoxmkUTABA+mb2RxCIAh29rqHHKhm3q91Egn4XBR42zLt8CI1fKWarJSSDqTpJL3qsYFTivvWExpPDLvEUm86QeJqwiSuCXon0CcbsdS2bZeDSThJNfhMzq8TqJ7rnANRYF2ajU16odyLPOTd2KWC4MksvexezxNqw75k79v5BtZi51ITaI2SJQWGJrEUV1NkHR6vVM+NxO0jQhIveNJkoRFpAKUtCT/DzgB8DCMFU6RqbjUdWZpbYJxTHmDzDNsQaJHIGeqm/YclXkx47mRv7sqscyY8fwHCT+GBQdMkeNSWZZ7LDGXvXLiIIlNbVtgTNRNBUnM7AFu38hxXGGesSStOy6JJCaSJKSbYE1TkwgAx8+bn3sk8WKMpptG+MjZ/i/nqEn0nSZ2YdUL3sQdQn2PJvkMdmMLM8Ilx66qpotIub+l+TlFssg5KtG9qvID2V6x2YfI8TxqE78hhrShothHpHVJCUmUOYbnkd1oRqepK2cjxVaCMA1Oskrd1EEEKWrfwkFthq/IHu9w2Xh0U1bd1K/lLSS3xqDNvsYmqQBMEhDsmhA2Sdeq+4q564Krbgc4KK4btHVyLvPHWzpoG2CcZQ5JjPeJy7duSKibFul2GObWqxyLlUM3ZWicwPR6sz3pAFMbunbuY0YUZoIkEsG9tKnpouefCxI3bUfXI8rn+vWWxJpcTWmLPN1UNy7cp3oyuRgiN+3oWJeP56GkogjJlBwEa/kcNgm7JwIucsMGl/qG84AVbpJj0khi4yOJbA9OOQ7gMCcUgkOsCFN4T9K+zCRR6H9ezFJIons+TxzhmuNVMyKFYZ/EMVGYuycj+418z9QaFCv3AOz9ybbP0yQg/APteLopYOmmeyTxYoylm8ZurJJwRzxI5IKNfsamEat/yQ2LI4m8kqG2/iLaAoNYXKeBs/tgx8fGhVP4GpFwjuUFMkTN/M/LHS+kBHK00crbDM1nlceFyQu31UByTDNdJKlaxmpab1maY1inpqFouKqXuk3b0OY0tYVujUhPOv9iJkjsRrpMiSKZquU1c0/c/xEaG3P+x2zwJEmSHxcmZeSwDN0xFiS61y8MNGMS6Fsii+zOx6VtcUhiPUmSAIWaxGqaJJHXc+auQSxFDEjQTVm6o4M2sM/N0bLB2a7D2SAgdLAsOzKLAAUenzmCTeIHKdyzesNxMDVI4sGixnqn64HqJuDYNTlFry9FfOE+xV632P1v5l4+/3Po1u6x2DUh9C/Y7ybfwfWdKHVTx79gewnKPEcBrJ5D+8242gsuKSQxaDq/a81aXrxuHt3UvpazEDxg65tj/S1L40JkW8xl6h07ScK7J6tJok9M7sncfhrex2Zc+RmP0VR3he8X1lLLTypG/LH/CvjeF4FP/yjQdzok8ei2+Xn4HD8mY1cWJFZV9eeqqvpkVVX3q6r6Z1VV/Vbnb99UVdWPVVX1uKqqH6yq6j3O3w6qqvqzw7hPVVX1e4LPTY5lrLQJp2oSSw93qIYHkCjdmMUZxow3YnZYUklPKz/cQ4M2+JnFMtowpRZs23ImP5b9YYuNp+qO2UNFA9lSQkCOp0Vy4+PIja2al6FyxwF8kA4EQiFdmYIbUglVAXCwQTHj3FoFlbppbWhz2tpCAB5NlUUSD5a1qUlsTcN4VjgoRvdS1eQS60+Kbjq3llTPnDAWJi/+3G/5Cvz13/m1AOBIoLvrSDloc/8u76drEusKfuseQnAlwe4oHc293poWDC4NixYJCa6bpin44dIknB6tTZDIIHXJZu4U4jwVbmKenaMheNUEiUerBU63rTpIn6Ao9LNt/k9TkkOHXIm2WVl+7jyGyUXmvKSDhvwcJwEwuZbHKO/MreyKwEl/aYaVI8lFAINwTflYgFlLXJVSTb2xUCq3hCq8mWM1ScjQa4L4oMrklte7E/nrnUQSHa0EN9FTVUZ8yuzZM9RN62npEtOGJ6w3BhwkMXHhQ1VmRszNHnAJtBtgezbUJCpCtXs/Y36+52v4MbmpXMincPbvA3hv3/e3AHwbgH+vqqovrarqBQB/CcAfBnAXwA8B+AFn3B8F8CqA9wD4BgC/v6qqbwUAYmzRShnhmIMm47J8/Ehgo1EODeknTAF82ABe5pEek3II83OM1ZsxCOScVgpyvLT8cKEmS+nspmu5ygvkHMGh8D7pe66ZdYxGwuxRYVBqgnRSOMUTLigH9xOUFNyG6I6T0RTdNEQSSWdXREk0SGJTm/6dWgQScGh6O0OBY6mcGuGIFJJeDFBiCSAmuRU8N7TgVopu2vqCDl/z6gv4grffAjB1mMzv5jPKwjWBAETLq5uqm4nX89RN3XPJ9LsVW47otr0nS8/2xLFWIImi1Pvm6dCaZMnXJI59KklE0Ih92P+PAQcxV6Gr3T5aFt8rdrRscLppnWCbWLdia3IxIDI/tQhkWCfFXrdwX5wjgOLOV4ckGh9BvZaQa3l4vB5knWblsnLMa1zg5iCJiufGXUt2Hd+CR94PmHVrSV7vMdgm2RbhPckr7g7jggRvviZxurfJZ8j1dPskii2b2hMuAzjxsiZI9rnHLt3LSVVUEknUJPNHqujuVF+T+Pm/1Pz8wDfyYzJ2ZUFi3/c/2vf9Wv47/PsAgF8F4Ef7vv+Lfd+fwQSFH6uq6kPDe38TgO/t+/6Nvu//CYDvB/Cbh7+VxhatBInH6rFkXAmeDm9GBiUKG8Kep7atNC7e71CxiLsoETHHlJT/nD6JtiYxcawgQw6QNXHRwJlERIJjufPIjZtTk+gGpRq0IdoCg6B6AfrgvpkEzizaOS2216B7p5sWXc83zm6GrKQWEVw2NTZtp0IgAYPAnG07rHedSuwj3qcsn9xqg3uSpQxNadr5OcbUFt3XUxaj/wB5GqhcZ7cmhUH23L+7AhAc3aueIOml403YHSNKkT+WFySOjlZxih4N19II82PChF/X88mOSZA4oyaRrYmrax9JZIJ0Memz9s47x8X3ih2taoMkahJHFdTBxpTapxtnBWhYmnxQJ8UG6Y3vzzB061jiSKOA6yJgGrqpTJOtSXRVObUJ153z3dj1369J1LXAsMktEkmsa48SC+jpplqa/GTvzvnJiT6Jbiue4wiNPUwaAQ67oFACELjl1L0cO14pUTKtSeR8eTN4EJ3ZnuprEr/8O4E/9Gngxov8mIxdaU1iVVX/x6qqHgP4MQCfBPBfA/gIgB+W9/R9/wjAjwP4SFVVdwC83f378PtHht+TY9k50YhUGCQWKBACa4fCBUywIe81P83rTLFxmP0HkG1nUQeZH4BDBGMohaYmMQw2GMpQ+ICWio2jgSxz/qOBc3lzSwXppfUg7D/V9dwGtWhcJT3zGkfl9K8bU5MlwhFz+ltO1E2pOdrrrakJkoDrwdkOAIdsAIMAQdurziMwUBDb3tZ6sM71wgjXbEkxjdgaVFy3ks8od6xpkkSX/WepZakgse36ZEbY7Qdo58gFDcswI9+V1ZXlc2PIZV5JT8/uMHOcqpQyiEiMbkohMM7a1ZLPKICRxilBouZenjRzZ/r0KZIkrr04qOO+8w6v9ne0bNB2Pc62ZRVPscahZNJ068CxpinJwT7FCg4lzz/xfEeFs1R0UxKhG6n8QuVkz7/56VJ+2RKMSQ08mZRxrzevblp76yT7jAL2vG+7PtvqQcwFK+ZS0NmSpzAxz6x3Yd9UMTcxIPfRb/rK99hxzUxEsPZ9QvfYpXs51isdyAjeVP7nq/okLt0gUYkkVtWFidYAgOLI57e+7/+Nqqq+G8BXAvh6AGsANwB8NnjrmwBuDn+T/4d/Q2GsZ1VVfSeA7wSAd7/73ePrpYxrCg4vUSBcp0kyFEaWv7AYT/jg5KZRT5urA5xwzdxeanNVUX2VunKfoKoKe0Aq1B2DAKycocVkXEtct5gAjft56eMF1w0Kiowy0wf4GxTAIymhcAQTXIaBM4PkAsOmHWQjmY30cBEiG1z2bTH0e2MoVN64xvTJ0kpbHy5rPFhvDd1UgyRGkKwkkl4bOqz6GU0kSTTol4xxX09ZSNMWY5DEWEuK8tol2V2duqlb2+OOLyEp7hxZZ8sNgjXBnkc3VdzLrsCUpim4iySuFmXaNOBk11v/+eaQxGmShJnrO24f4R/iDTx/46D4XrGjQXb/4XpLzQ8wDqha7CN43myiitynnHVShUg5SHpVEbWTle+UU1TCyXfjSilCaiWT3AKmyWtVUjIM0snAzWUkHBSUlcUWtV4V1bZcGsYR/Y2BeE0isyab95v/s+h2KlGYe0ZjGhDAdP3/qT/+yybjJjWCBMVe/B9XsZu5l6P9FQt7cKjKrPHTvCCxb3V9Ei/YrlzdtO/7tu/7/w7AOwH8dgAPAdwK3nYLwIPhbwj+Ln9DYWx43D/d9/2X9X3/ZS++aGHYovztcD0nN0iBApGiZJbuD/m7y6s3r5cX8VAkBMgv/sn6u/wUkzL5pTXrXEji5AHN05RC6gmg+27hudQGRHNrsjQUmTk0BpcSBRjUganJWtaVV5PIiPnEezkSc6yryUbDUGlFBe2NxxsAPN1UNlJtbeGyqbDterrWRkzUTTctGSRGEh5MfUns3iqyBIKaaDNOkQAKGBDMuLDWA8gHb6H4jHl/7/0tZTaQskgK61yHfULl9ZTVVUpxujBHJwhmHTTAIom7tqeDdACewJSmtupoZY735ulWRe0GIuqmhWOG518TBH/8/aZv2Es3FUHiEAA/HER52Ho/G9iY19hgb267Aa3gUB2ef0WS0GVGsUi6zE2OpelBu1XW+4VrEJPwBnwWlmVglc1ti6NTN7WsBPa7SdJP/J4t0d8YmNZNAnyi3KrEii9TnqN5P+hxsR7AAAfCtAFwY4GD9PFCEAZg7+Up44Wp+zbJFb2fhoVbk6ikm16wXSmSGDn2BwD8KEzdIQCgqqoTeb3v+zeqqvokgI8B+G+Gt3xsGIPcWHYSpRurqqqBEhjexCUYferYqVA65Y1VBQ45My5Wf8fMMYa2zaGkAWYjOFzqAimgTC2I9UnUOLtaml4YELHOXdhwm+4J5TigbNYasKiZGIukxJDEcnCPgG7Kop3zUFIJEu9JkEjSTWUj1dYWmnoPnUgO4PRJ3J2Dbtr7f4tZHSK5IJ7RuTTVYJyulnr6+i6TKZdz5t3HJN10EQjXaGoStcIdMeEm83rhWI6TXMpW++MkAO6KTAvXwj5xdG2tg9xrEjKAW5PYj3PIzjG4l8W5ZhIzv+YXvgvvunuMr/rA89QcARsAPxyo6yxLowvufzopGQQprCqqJ+6iQBI7ZeDmIj5uTV3uvowFslRN4oikd+NcqXr7CHWXuZXryu4zGgVKt5WFRt10tajHeupN2+HGIeeGL2qTlAQG4RpK8Kb27hEz73JyF/DXciYJKh8b+iVZhC5Rk1jW/KinSOL4/XJI4vTzx7Vc2V+RqfsOE3DADCSxa9/SIPFKkMSqql6qqurXVlV1o6qqpqqqbwHw6wD8LQB/GcBHq6r69qqqDgH8OwD+p77vf2wY/p8B+J6qqu4MgjS/DcD/ZfhbaWzRGMcwJn9rbrL056ZaKTBOEwDHSeZurJhDDuRrElMOIUst06qipgRQqNq2AEksLUDpusn8HOvg/MtnaM8/7yQH55Gsv/CRxOLbR1s0U0SEU1fzN5ueyJxOhWu4hs+uc22RhvK4oxFJlBopkm7a1J4iJI0kLkzrjG3bFVU1XRPhms2OGxevSSwLfoSKbKr1Z2Zyqw2uG9XfNYokpu/LRYRuym7AoXCNQRK5jPw22oIhr6QXCjcBZWdrtbBz1DitXi2jwiEJ1xK6tnblBoncs2b3AJ26aVi7ulMkZqqqwld/8AUa6QcskvhovaPmBxiWhovQMeNibRuAcnA5qfcjmB3ufNyaRCZJMkEgKWpfGGxwaNuY7HDOJXOtp6J/iqRkcN1oddNOhwgCQw/OodaV3QPM8ewevGNbYNSVt9YBXEIGcBFB8jxO6L7mdS2YYsbmfS6TqAj7JJa/XwwYYVghUV0MYg9whYMYdt9oy1C45q3D866KbtrDUEt/DsAbAP4kgN/V9/1f7fv+swC+HcAfG/72FQB+rTP2j8CI0fw0gL8L4Pv6vv8bAECMLRqz2S8i0HZpUZ4r7hIqRLES6Cm6Y+5+jFFiu15Tt+QGN0S9ZWRBmK1uWniwY4Es5ewG2c9xHOPERBxC5njaIF3GuSpuzLGAISBSBumAjyTSPcqaSJ0m891mbtrHQx3RG490dFOhDakyfTC0qG3b0bWFYgeLBuuhTyIzbhF5Til1zQlKXX62qypWy6hoi6Ndt6qpAAGQD95ifRJLIgLhWJeCRSGJdY2+j9TbFPaAOXRrq6jd0cE2YIWbvFpG8tmWNcQkxMpzBBwk8bECSQyTCSQiGAaJLVHLfh6zNYkSJJbHuMG27UlXToACjtjH8Lp2D1YjgkoqZ4hAMutPrE8ic8mklqtVBmCWhYXxuGxS0hVuktdK5vqFGgT+YNFg7SCJ7N7hBnzblmVA+CyBqirfk/I1XESQuW6pvphaMEX+X6r3ngI3ZYXraOkGM66eGZRW/nmU14omdNPtYwD9W1qTeCXh6RDMfV3m738TQLRtxdA2418b/qnGMsYoPsVq4rrCohyD0RknLdWQtMgHn1CbMIwrB7IhAqZ1CM248sIaSgKb34l+e5EsTslJOy9KqkUgqyqsPyKvWz2tJWX7JG6cugZ37jkzipw+IsIiKbvJ8fLjQkoIK4Eea+/BfLdJTSJJNxXakDxzvHCNQWU1Gz1g6KbrLR9cxtpStGMdBbdBAVxNIpBKXLBOqx0jc8hZ7NkGhkx5YnBUuIZYxwEfSen7nneSRzGNDk3djMfOZ59Ddkf5PAIOIrjTJS5cuumIis943tjaKkHuNff/eP6VNaHhPdl2nJjMXAuRRPb8h0kSVrnSojbccxMigkyNeGycNgAbx7V6h5xFOwG/lo5Gsibqpvx3k+dZlkt2TdgqzyNgkpebnWEJsArXgEm6jkgiyV5ZDInMcY4zEUFOcC7uuzJIYhjw7Ur+dT0FDmQ7YNqyRNsZlY7nH84m4nKtMxpb3sMCBwCM47g4AjaPhkFPP5J4bY1GEsMbcgaSSLVgiMg4u5+XHhcqSSqQRDfbzRxrLpVz+LteJdN3doFyTWK03xsUNaEu3ZTIEsaofWCOFzg/dMP5GVlrIEI3bfmaRDmeBKelmoimnrbNYDftztl8Ac7ZOljUqCpLN2UpcMvBSdBQW+Xz17sW621HIymA6du2aTs8XO9m9ZYDNEiiLpEDTGsZu56hv5mf+j6J02cbyNckjgJYs5BEB6UjEfHYMQUVKQmDhTXRjB+5dAJSex6ZcTZ4bjsONTCfbQN1TX3toZOE4ZFEX/K+63kmwwRJZIvAZpgVrlHQTeuYkmT5WHU1LS9hxY28Zu4kJbOuwsBNQXkPe+4V7n85BiD+D3fNlk09MgVMsFceM1E37fjgZspcKR/PpX+WWqK5JgmV9a6j69LleB5NmGyBoZ3jlCbMCs5hPA7A+UAx4EDG5u+taU2i+BpMUNp1/t5RWitjLTA4JHHazotmvS8PgfX94YOe8prE62zWwU6/Jw5tlzMd7ucDXEZs2muGu7Em2X8iAy3PxLSZe+FYUbSNUW6digBRNYnVtCaxVD+WqgllkcSdc/7ZmqzQIQS42pLwPHL8/ym1jxMFqMfaqq7r0fVlRUjAbNpjj6Zh1SuhB6EiIS1AEMusE+OqqsLxsrHCNRp1U0cRkq1dOlo2ON22WCuRxOeOVwCAT98/owJZqwDnb2wlml6Mgk5t9kHCA8z9H6xbHbGuyrjQQQDM90slIWw/wGlNYsmZd4M9tkef+7l+LVf+y4XsDjYjHwZ77vFztnL6JGqCPRfxbDsFkug0uabbzYwMm6FOipTyP09N4hwT4Zr7Z0MLDMKRd6+3RgTLHyev5ceYZ9+ex67jGCjAENwIJbDlArDQn2FqokNfhqXEAqI4bREwtrYQCOs0y8eqHZRIk3BtHHYNm4AD7L60aTts2x5LsnXGsqmw3dnnhkquOGgn295GSg5cdVP2Ppb3AxZ8YBIJUc0PJZJoOxXwiQs5VrF0JrJPsa0zQl+evU+wPAYev25+X51wYy7B9kEiIyVfT8UVSjdW7TgjYoyTFtJUZTSjkhkVrskMk6ziZBxxLPPeeQiYhyQSLRjqyANaQg5iAjTMQj7tteS/nhsXtttw55GysHWJqrdT6JAzaIMTuLGKkOHxtiOSWAgSm2kAzG1STjaSrG0TO1otLJKoppuWM4OuHa4anG512WAAuH20BAB87uEGd0+Wxfe7fVbFGAR+GqT0WSErsWktY7m/WUq4ptwCYJoAks9J1iQGEvnucctBokWyNEiiRW74OqkYu4NCKJyaS51ysYzrVMiGi1CwaCdg+yQC5YRROEdLd+RqC8O+aCyVcK7Jd3vjkVlL3IA4ZW4vNU1w3zjPALvfy/G2zvPGng93LWeSHWaMj/iwTAYzBuNPnm7qI4kadVOv3pVMuI4BkWIPmPQ7JG/Hg+FeGksOSIG1ZWNVUXdkC4yli3aqzr/fzkUVJAZ+SW6oTeZPuweU7q0Jklhgl8XmaI5NruVBWQRzvKaetsWhg8TFIfDoc+Z3EbJ5C2wfJA4XLp+1mELbpRsrRLIEkSoGYAFqQNcoVIFDMvykBAGUjky84TaXJQ9FgHK1R+4cJ3TTwiYVE6CZo9xqs0WlcSG12PxkMsJzkMQoRYZxtoYG8O44uiZRejTtzLhSkBhSQljhAhfJ0lJAj1cN3jxV0k2HrLXGsQOA42WD080O652Obnr72AaGd05Wxfc3wZoADM4182wH9ySzP9VVTLhGlzgaVTkL42IZYSCvumiFa6Y1icUg0ZHX3ynu/zAIZjL502eb7BPn9Unkn20XYW1JpAEIUBtFsHGwqMfkiLZPoh+k6AIpgEdS5pqIYL0+iGAdEgmn2tnbNErJcylpHt1Rg9LVbr0fi+San27LB/N6ziE3Pz26KblMLpuglyCZgAbMd+oUe2KsTyIrAucGiWxS5mCkmxrxMhZJXC1qX7iGZEC0nam/1iRWwiQ0MypE6Zh7JKxRFtsVkkfRtnQksufO0RyrnCiJCde0hG/urlsaKjMAExg+fm34/ZgcdPH2zAeJTPFpHQQAQDm7NeXjD59VQhKHm9UGKeZ1JiMfKukxx5sI3jBoW8A9l+NRAUAQlLZdX6R7xaD+UuF8jBJL0UaDAJilIMaofcw4l+pi5sifx0kgq8x+MuIb7vG0NYlhANCRG6m3QSloW4AVrwF0dVK7tlcp2wFGuON022Kza+mAFABuH9nA8O4xESRGkHvGua6r8J5kBSCmiQut2qIGgQ8TcPI5pWfbFWBi1TytAI0WSRwC0zG4KdfETQWA2CbdjkopkcQUk4BtMyCJLCK+bHxxC/b+r6oKL9ww9y/fk9SvSdTUKYc1qKxTPsdODszz/NqjNQCr5JozN1Gro5tOkysM4r9orOCKJgBw66to4SDxS0IkMfP9QqYSU9svZhIXEtzwwZ6Zo25P9Or7x+CSmGNtA1lWlA1wg0SDJB6QGdBVYwRvALP+MMI1S2e9KwVeroXsAja5CLjCNfJ6JmhL9UksXPNwPQA41fUYw49nhfivCQuiVPIRAj50Kx43SNzTTd8645SNEkhi4eaQ9wE8jWTM2LX+plEO9ux7AYVwSiTbXbqFR4fQddJIBzQMHHZdj2XJ2a2BLoT6C05h2H/KzLGMJMrmMK0RKTu7k3YPxLjG2UTtHOdtbKwim7aXFyDy235wWaJYToRryI3UrUHVontHM4LE5aIa60MA26eOOdbpRt8Cw0US7zJIYmRj65jkSh3ek2xz6VBxV9/f1TrJ5XGxPok5hkFVVVgFrVzYtixjkNJ2472pcZIFKWKC9JBuzdYtLRykVJN9HoPEXUcnZAD/2dbSOF+8eQCAR+0ntGQiiy/jvORif7lI4sGiMfdY22O1qLnklnO9NUiiRzeVfYMOUpxgW4MkOkm4OUgiK4zkXjfdHIcSAEWSxBVOUdUWVtV43jVq2ovG1M53Ha+SDNh96fG6BVBm5IitFjXW2prE2iacWrIHsxnn+xeqIL33n4E56qamfjJ9rHBtlXkCheAymKM5djl4jiGJnOjitN6YXrdWJ8DZPfP7Hkl864xZFMIbhMluhXRTXto6RBIVwV6AGgCk4I2ybm9UpHKeUVoUI6QgEjWJ4XeT45m55NGGzkNXufMITBW6ynRTfZ/KcZxHI2SFa+aJu7iS2HIdSohgOE+6JjGSgNCKVGjRPQ9JJOqIAIMSbHYdzrZm02Yd3iOHbqoTrpkXJGqRxDD72YNENuqwTpYQYAro3WxNYuzZBgg6vyPiYObI3ScukigOtg5JHBC3lhOu0QpnATbY82oSGSetNsHzetepaKMujU2DiABWhOkdt7mamZhK7GzhmksMEgGLJh6yVNpYCYCydOAq6I5uULojaOtmjNQkWsSZeW7c5GlPIoKARelskrA8xl2DNLXsdR3Z7xU1wO1A5eTppua+ejCIIrF7x2phkcQt2QLDVUo2CQHqUF55CZuQmZTqEAnelLppribdfKafJHQ/gxKu8XwuItiLsNk6Zg+u7HnUJCUBAMcv2N/3QeJbZ0zx6dTZNT9L0rfANEgsO03DvILsQxEBq6ZZa3ceyXF1RNxCibZJvSWDgDU1gprEMrc+JlxTrEmMUGIp5dbEdWOQxNg9QiGQc2m7o4Pgzz1ny8bPPpvPImoSnX4/Y5BY2NzC4nJaktwJbrSKYC6Vk0USRaTiwZmRu2c3bVE33ShrEm8e2J5HVE1iJNvKbGwu1QtQJHLCtYQQpQpFKuSWLs8xjiSWmkW7arsA6IDPFU4Rh4u53rFauiK1tQ4TcJwj6QrQaMWUVosa622nQjZ8REpBh4LtI/jBl25Q769rX5VTQ3f0HDtSFfU8duPQPKeHZLLJTXhoeq66SRmmzklsLt1xgkAq7kmvVYo24ddx6w8wqHArFafdZ1RTy+7eW/KTO56L0unppg+GZ4dFEg8WrnANX5M4zlFxj4QlHxrhGg0wkkIS20JAG6tJpJDESMKVSXgYRNB/jVFYNucR3jHpdevGS/b31T5IfMuMWZTDAIDJbk1USsmgIczYaZDEWJ++IpI4cWS4MUCs3pJDsrTOrtukeBxX6pMYIBsAp+4YCnDYIP0Sz7/yfABx4RpKytwJ9liKnrxnrEkchGtKdNMwucJKkrsUXEZG27V33DGIRlXxtA7ZtEXwhlUqPVo16HrTS02DJFZVhVeeOwQAvH34mbNY9pMvtg8QQbom0f6fCe7lVE97ZBHHSiKJ6e+3bKrRYTLv7yj6m0s3lfHMtZNxtnavKye3al+ki0FkAQx1LmaOrWJtBcy9vN61KqfVVU3UoA0AxnYz73+Rr5mZqEIq1x9AgsvLdV9OVvogse8H+qEmSKmsA6qpZQxLB2hRksbfO5hgwwrqOcE9yXhpnQCY75NoEBiNY+2WmGiQ3KaaBjbM8VyUTnP+Zb15qExKejWJZJJEWreIercGbXYTCRRqHPhOmqAtJgpTAm7CmkQNkqjv1e2XzgB8yYfb7sedQ9FOXrS/75HEt86Y4tOplH/55p+rUhpm7OhWCpGstTuP3Dw9wRsCNZiTMXLn6QZ8W0rdtE4WKac2qphjbeguhfklvltpH519/oNxfMNbPdoJSON4IwggWWhaOGI4nu2TqLtubLY7RjdlHVcJvlhkG7BO4P1TXesMkcW/93iraoEBAH/79309/ubv+UV4+3Nlml54T8rvDEoX3pNUTWIdUzfNjwlFKmSqFN20m75uhBlyTkLtCdewWfIokqigbWmRRNcZYdsEVVWFZV1jMzynAFejBgxow66DRu5+6SoeK2sS/61vehUAjyQC/vPNqFsD5l721Wzz98dF2M0BSWTaXwCOKm3XqYKUurLrnKYGe+kkXLuep3IaCpy9jzXtVdzgkkZJHcaRVoG1LezzrtkSk56iOtpxFknU9Bx2Ubqu1yRyzP30cEAS2b3DpZvuum5sBZQzu951qjresJZU14LE/J8BD8KWOGIl9DJWk8goXIe+q/yuLd2Q41FI4jBOWzrjIYlvYZC4KL/l6TZmMw0V+JiFK6VSygZgtpEsiseScX6fPvOzdDu6jZRlHEstCx1ClkrlFs33ffn8pxqn1hnkIC5cw6mNApEAjLhHoue/FFxWU8EbtkZkjmMhmcW2s83EmUyyew3m1CRqKMkuBVerbvqOO/rFVOTtpXG2BkkEgNNtSweW9pgNPvjSTeq9qewnR5EJkiRs9n/OOMexoIVrqiltCCg7octF5fVJZGmLdW2C2V3bjyIQGrqpHJNrgVGr1x8xaQGgCTYAU4e73pnEJx8kOsI1ZNAg9i9/8TvwL3/xO+j3A34PPDaYXTZTxsVlCtcAwMmBIInKHpAOTVIbSGkcSYP2uG0iqGn6VEK23mySJOnGvaR4LGefoinQg+LuWFtIJjIB85xp+4uGSUnmEXADHJbKD9gk5KyaxNaiUlq66U6BJIbnhE0kA5icS0rgMUQFC/dlSD93j8scz91yWCQx1nJDM24UrmEf1JM93fRaGNNvLEabAwoZi0CllKUf2sbZ8MYVna0aAWowzKMU8AVoA9VLMAjAYs2w0/P05bcBot9eM4X6S3S7MJAFuHq/ScaUrImoK/888PTiaUsQDpGdioRwfRLtxmbpGcxmX0/UTZnrNgp9KALZ86ibvu2WQRK/5N23qfcDLpJoMrus4I0rksM2RJ5jIUoHWAZEzsJ7i3VkQnSbFVxx6wvnqiuLlYLgpSPABPAqjYB1QNc7Xqho6SRXZH5lwa2QyaCtyepUKpmApZtqhF3kWIBe3XSOuXtASyKJrkgLYNYgZt06j0mQyK4HI7VPiYDFkmJswm+OcI3bX5GlLcYa1bMIsGVF8WjncqDS2kCjPEY+Wq1u2viJa0CfcNUEwHNrEl26qV64ph8UQ3kkcU6bGnk/wPm8oS8ptmvz93PI0nCPW6KphsfjRcj815hnJ2RNyGdRtkcSr4e1Xbl2aVLbQ2R3QySxV7RSAOwNRdNNg+w/G5SGwjUM2jNyz4OHlM9+6gKAGJJoNsX8cYCpcE2pJjFVb8nRCqbnv7S2hgikhtoxaVpL0U1tbZWGI+8Wim9aLriPZWjZzWa90wUbYh9+5RZ++9d/AL/pK99LvR+wSIG2JtGtVdLUJM6xsJaX2aCi6ppEVVyIbrNN4EORCnktO8faqvSOxxsZBrmaxDqgH/JO2tGAts0RrrHITZnuKNluQ/OthtpOaorm+w3nAeDvf6GkLeqaDkhXbp9EBSVwrrkOHnvdXLVFwNz/l/3M3TzQ1SSGSpIAj4CFlDQWXZ0jXBMGAFxNrh8AlISl7LHgJY7Ye9KooLfq5CLgq5vSdZOOkid7PMsu6FTqprNrEj26qa4FRqusm1zU9YjusfXNoe/EBNzC7IgxxUqIYNQnrPL+q2WK+XtHuZZ9KrDGIKyuumlJkX9iL36+M/HLS0KXbB8kdh1V77fZ+TcVkIeNJyqlLJI4UiYCZ0sRuNV1NdYfaSXoVeqafejIc+Nc+W2AC9LDrNGukP2Jcc97Yo4TKX+SNldXRrRgdAhJBDJEG9jNfm6fRDfbx55/wBdJ2JK1XNKkHtCJG7nqppoWAID5fn/gWz9EvVdMGmXfP9uiqriWIIBfq3TZDmtYy8ts+OEYQ3fkjhU+N9S4aromlDfRqYPArK+Lxhcu0NAPTeuSdlzTGWVaSYi46oKMgwCY895UfE2iOZ5p8SHfkfUrDoZeagcLDZLoIimKTPdMc+uJNMI17vXedj2OlXXAWhMk8Yikm7q0cE2w4bJQNPT6OWgPIOdfV4MaokS7lqSbOmuCSkypNgGwZv1356hTN3UbnpvXqPr+gJXDq5v6NYnsfuMFiW1PnX/pQS1KsZo+ifORRAmKhteLTL1EH/IikjgVuymKuQV1k2aeXOnG5HjEeVk0NuGtFq5Zcm2FLtv2QSJ5g3goEbGQhyqlMpqt9wvRNqYmDhiydah4Jb0J2qAZZ8e4c8hZqGwHzEMSS7QoW5/gXzcmaDZzs8cBOOEgM87UCsylm9K9BKt5dSxjv7fW1iSWFLqARE1iQbjGQxLJYBtAXN30Eh3XA0e4ZtXUdN3YrSPb71DTAmOOuQg8oFi33OemByqy31hInab7KzoIkcyhNCZZW5IZK0ibO4ZGEldD6xKFuqlcX3HSmKDUVbhuBsSUDxKN47RpWzR1RTmEZp7muxnnnxuzbOox8WPmSg2bba5TSCOJTe3XoLbd6ABflr148wAAcLaNKCtFzGVp6IRrqklSkkISnSScBslyNRa0AYB73ShV1NqnoNOU2CEJpGGSuDoEKpVYd46KfUpKDDa7TkWlleTiyFxRIInrYc3aksJNXuA8M5Gg8UnMsTAeE9ArvDPHTCKJhVMpf3fHsjWJIeOFFo8LgCJVEu7X/nng5/8R//5LsH2QSELN2prEpEop8cC476cz8g7UvwCftQ4bZ/PjpnPUohSy6VPqphO0IV/LEssYMc6ufKS2vUd4/nV0U9fZVbQpGLPP/hxyZiWxrSPDqKS5SqWamsTRGVHSeEKa6mWWH43CNadbFSLotq+4iiDRpchQWcyAAdH2PXmtpzRVLbuAdZJjCaAtgXAL0iamcYAOnf6WAEcvluu73vFIYkwFmvUPFkOLj/W2o5u5yzzvnW5Uwd6yqcaAW6tuOsdCWvKKoHMuG//+Z4U7zmNf9I7nAAD/7NMPqPeP9d5K4Rp/vRteY4KbpnJasuj6JLpMJU2jdHm+GeEmGefuU+w6vmhqTyVWrW6qOf+NPnEN2DXh8WZHzxEw+82qqfGZ+2sAfHnDQSPKxZzgH+Ao7g7tdOYkEvhepiGSWKZ/AvF2FqVjxmoSS+wyM84vA5P5zkYSFSCARihwtA/9MvPvLbS9cA2xSE6y+MTCZR0En4/MIll20ULxWO7xOgfdm6NkyDY8d8ex9ZaAT0G0C7Ku356MzbYgGT5y0iexMMVQJERDNzXHk2P5r6csjiTmjwVIhtb8rqHWuAp8+ppE835dTaLtvwYoMusz6i3n2ihcc7ajREzEXrhxMP5++TWJ/qZIbYjNtCeplu4L8DWJvkgFmwCa9kks9UAFBGkLgkTyHjla1jhzgkRGmXYVIIk7QjjFlZ8HeEQWEJSoM9RRsiZO5imOpKZPogQbQpe/TJMAGNAhWe4ezKprnse+8J0mSHRrX3PmJ+DMa7xwjfnd1jKWjzeXbhrqAnDr/8CMEnXfjhMOcv0ETQJiOcxxjrqpvk9iBO0hjif7xummHY5fHALA+Bi3j5f4zIMhSFQgiQBwtjXHY4RrfCSRE4kCpiwglv5s3m/+T9eyBwkg5piNUzMpxqmNmp9z6vtDEW66v2LICrzk9fWi7ZlHEpk+QZPaHmLhslQj838ZzkDvZly4aJXGmZ9uTRBzLxq6l/2/blwIozPjnLoGTU1isFGXMplh5hPgahJlrLq2KnL+AUI4KCIuom1SrAnAvMyiIrPlKsyOfRJLSGIdq/UoHsrLrGsywnNNNvuH6x2ecyikJXPn9J7n+WbicyxWg6elafO0oSC50oHioLsiFWwCIkTSATfjmr6/Fk2NR4NzBgzng60lXZmaxLUKSTT3yHrHBzcW2TD/1yCJ0uJjvWtVKLXUJKqofUHi7jITMoCv0sgiWcsBWRLbdf2l001vHi7xv/32L8TH3nWber/Mx1WOZoI9l5WjE65x6aa887loqpFCy7eOwfh+wLCAGLqju25pauIWQ+9OTQLUltzogr1FZL9n5ikMFFmH2OcNAO4cr/BPB4SaVjdd+K2amHUhVDPXiBu5e/ActLnt+PMf65OYRRKbCJJIKH6HmhNmnn0xURgteSIo142b8NYK11wTe+aDROZCh4W1zMI17XfIISKTZu5kABBSm/qeo3/W1bR1A+vIhzc/tyDUOG1bb67l8x9BEkuc9YhwjQYR0TYFn55/7ro1dUg35TL5EqT3TtaUo5vaTUOcLlo4QhyEndBN+eumUqmL0BYvE91w6XxzaaO/QNFyY44t6tBJ7nCwzC/fTbD5alTqwueNzsgr14QoktiVN1MRthArtcRx7WjZ4N7jrUrd1CKJZu1inGTLCrFCDpqaxG3b4WzbKYPEButtRwdfgAlItcjeeewgUGmcI1xjsv+XT4T6Nb/w3fR7XT0BFd2xmq6TLHLj0U3J07Fq6rHdj3HGGXVTn6Znau+5cTuHTaISbup0iKCc6q7rVUhuU9foe/04SRxp6aYA8NyxTUbeOODccElmSS0jo7or101QWZ7uW2EtiYRCOwqxkG6qEkGM+HclEGDKLlOUZblIYtfjqOTfxeitDN3UCWbVwjXXxJ55uilzoUNxBWbhSqmUagRQACcgJWmqEnD0LNQffDe2JtGnaJjX2Fo6l+vuzj05JpI1KjlBdXD+ZZ50vZ8SJQ3Pvz0n5XHud2P7vS2d+0QjXCObxrbtRroGU6fmSmJv2w5VxSzItYMk8omEpvLFDsxnXT6SCOhpo//Sh1/Gc0dL3DrkEcg5tpyJJLqBFFN/DQzodkCB5lgCrgCHnUPxWJGMMFCmm7o0wJacI+DUJM4Rrmm78WdpXJhZN04yOceFoJ0t3YIBMNTZTdtRDBkxobYCukB2rh0smrFHJdPvE7BJKkm+mT5x18vZirE0WKXqOX0Sl41P5eR7ENpnx/g/5TFhGcy25a7bsqlG7QEN3VT2YG1tJ2BFWsxr5WO5iVOWuQVYJPGxIImK5+aOEyTeOVlRY1YLv5/vERMkOm1ZdOff37upGtmAbsomJVPqpqU+idsJRbXc8zzGMKNEyAI2IUDSW6/Yl7kM2yOJxIWO0baA/MV2s4qArt8eEEES2eByzOTr679U45yHRjZu5tZ369QsYqCH+ku9bWJIorQFKVlUyl+5+GgEb7wianIhXy7EIenVjgUw1CQqEUh5/6btsSRUQN3rxp5HQNBt8/uVqJueA0n8U7/xSxHsHZdii6AGj+mTNUkA9Wxm3Re8UfVJHJNiXOPgEEk3Y8tI4oR+S9Roih0tG5wp6aYSEEp23dBA807aJOGnQOmOVw0++eYWN3Y6JHHV1FgP9ZY3D7ntfdnU6HqMTvllq5uuFvWIvmjUTQFBsCpaXfMqLR5sKJFExTrpOteaRuluK4WWRBJDlGjX9WOQlJ1j4yKJCkpsXc8KtgGzXs1SRe10qqjy/D8aWllonP87xyYwXDYVTlZcEkjWIEESj4hxrgYBW1so49x163DJn3+3BQbdJzSyB5T6JAr6K8dgawTl871jlVpn1PGSJyp2CIRrnrQgcY8kEhc6vImZhatxFiyAV2kcszHOOIqiF3Ct2fqX8Lt1fc/VH7nCNcEcsvN0aEMs/C5Zrb4PncIykuh/N7ZucipJztJNw6xREUmc1CTqags3Xt0Gn21162bYcfL+bdtRjrWMcSmxtHDKBIEsDptti6Yeg2ctklhVlaoWZa4t6sprAcBs+NJGYRzTlyXCgXjiSCtmxQR68vcYjQfI35erph5RPRlDS9CvrLrpasG1PFnUFarKQRKJ4C3GCmGdtOODBU63LdbbTiWmdLA0NYlnWx6BlOBGnPLLRhJXC3vtOiLZ4c7RUrc44ZSrNI+loQhu/D6VfHDp9orToESroW4VMDW2zJoXokQsvdtdt1hGgsxRmtQD/Ppj5qgLEl2fSxOku6rYACeAJXZ7CBJvH6/oUoqxJlGCRA3ddEwA8UiuK4qkOo9a4ZpgD+j7vhhgiv8TsrCYGkEzRx2S6IpLjeMooRynJlfhA10nu16r7FtgLGQcKukB+Zs4pGewTnIY3LQdn/0HfCSLuRWbwCEEGaSYAMD8rhGucTNUrHCNpe7a10p9wMIgHRiQROKsuI6rRQTzY6bnn7/eXW/fz1LSVoFjxxwLcBbXtrMCNKSTsHWEayjRAucZUKnUVb5Eu7x2mSZKpZetUjrXlk09rcEjauLaYBOdo27K1pa47AIZX+zvGqHxMAyDEElkxRUA41ydbg2V84CEzaqqGkVhAAwN6wtBYqS+nEYSlw0eb3Zmjgrn82DRYNf1eLzhg8SVQ5PUCN7MtYNFbeudSCRrWftO4a7jhFOu0mQ+Pt2RRARbfbA39hLsepVy7oETpG9IYaQQJTJBOrffjN9Ncf9L3aqmvZO7B2sToIBJPGuC9ANHFdvMmU/mvHzL7DchgpYzqZ1/4/HG/F9JN2XblgAB40sJVLhMMT4B7TJX7BxyY+QYYmzpmDmGO64rip4tmgTaWfJdI+1VnjThmuvpEV2hURB1M1UABTgkUavS6NIDgMFBo7L/Mjc44xiH0KrvyTw5h9B+JzmmlpLGNnMPBSCAcvbHDVAALjsl5tWIkNctPP/sOZF7aKRXsnTTwLFj5gj450UcBbYpr9A7ti0nP9+4TtM4x+KwaE3oZVM0Xrpleh5qNvqrtFDNjRGccJEGgL+3JuqmPdkD1UMSOVGkEEkHrHpuqSYxpN+ywc3hssHZtqNRFDFXlXO9LY8N0S9NAHC0avB406qFawTdeOPxhu6v6Pb3uxJ1UydIYQV2bPmGFdO47BYYWosJ11CIoFtbSCaFzbga27ZXMUkAvyZx03L3V7ifsn0q3ZpEjbrpwcJQoKV2VaVu2unPP2D8i67nz+NBQP9k6Ldin/fyTQDA64829BhR3v7Um2f08cZaalE8Js+/K9TCCMIAcZ+XBQ7C9jbu56XGuO+V4zH7jTtH+X1O7TxDU3UTQHI+r4J5dJF2vVbZt8CYbIBxZHyHBMgHN5MsslaAxkFSNLx6VzhFG7TJOOYWDushAM6RjCleloRTFvX0wS45hbHzAZCo7Ay1uRTdtIxAYjxO3/MZ4TFI3OkU2RZOcMm2sgB8J2FNOq7LgOoC6Otd7b11uQvr24bM7jFZH3LVtqx9oRa2JnEidjNHzIp0Ltx2OrRwTYCkyzyBfPJi6QRsAE9bBGwtz/3TrSpIPFhawRVNTaJLXafppisrXKPpk3gyKCU+ONvRSKKfcLp8J8YNttngfjkyJ8y53HbdpbfA0JovXGNeYwU/vECKVaAcEBgNagbY89/3PZ0oCe/lLdmncuEEpJp7a6z3U4jCWN9JV8vu1iRqBLAOFjWqygaJmgTjqy/foN8rJhTVT903QSJTk+i27tEgub6fVhaEAVwk1/xfQzeNtphTgDAAXzoGBH0SiX1xEfjJcuxSnsSjkvd7JPGJNMZxiilQAgUksfFvYra2bUJTJZWl5mZxwgwJq25aO2gDK9Ji5lnPqEmcPtilxrD2fJj/d2okS8aZn1pVWhlXrGV0kgIaRFaEazZtp2rA7ArXbMZWFooWAG2HM1JxMUrj0QbpCvTlPCab6YdfuXXpx5pjc/okhjWJHemQzxWzajx2AXe9QyQd4GoSlwGyyvTIEpNanjdPt3pRmF2H3RBMsXRTTyWQpZuuDG304XqnmqMrp88iG7ImCJX2spFEqZsEeCTRb1RvkmlX0QJDY15POkUt9aKufXEjhbiLtt0GYIVrdsN5pOrLg3uZvW7LwElmGcJy755ueFEYeYtL9+XOvwQ3vapNh1DQx5pExXP64lDewPbgBKZIIlOTaAW3WpUCrpso1NBGzft1QkVhXTrDOgqRbYBEEoNkh5lveZzbcswfR7B5xN9VJnOuiz3z6qaslHx4UwEcHG7rUVAc4/7drWNR9ajxKKDzsjiz20RQAdg0cGb6JAIYWzDI2Ny5HDeMoLaN60Fov5OtLcyPSdckFsY5Wcy64gNZryZR4SRIMLRxkMQlsbnJhnS6aWkkMZTfZufoF81fvtMKAJ99sAYAfOhtNy/9WHMsbB6/KyRJgCkiqEk4hWJWWropmwBaOMm0cO3L1yQGLTA6Xt1U0OLXH22USKIJbiTAKdUKRtVNyXv5aGW25jceb1UIxfHKDRJ1SKJ8r8v2YVZNE6hr8vvbru3H637t1E0d4RomkSzWNLbeuyX3e0B6CepEcgATOOy6Hmdbs54wNa9h0ntHqgl79ZaKAMz2IBzopsS4qjLiUl1vnXlNgl0Cbo0Tf7BoHCSRX0uqqsLf+998I24d8a2Tbg9tMz6pCBJlTutdp1LA9ZXJdaUsI5uELW8I96nRv85pTtTeewGeXSNzc4/HCt50PcZEh1m7ssMCdV8+UX6d7Hql4t4Co+imiUxH7mLXYeaNRLJCmupcdVOAbGQaIomkQ+j2UtNQCd3+Owz3HACaiJJVKZNZVZUJgINAlqvJuji6KYsct72ujmJuTy7ZNM627UhxYjLJ4rSeDq0DVEhi11MUErHVwqLNGvrVeewP/tIP4Svf/zw+/v7nL/9gMyxsHs8mt/w6Xr4m191EWQq0L1zDJUnqYL0DuABzOVD0eicJxAYNd4e+ZD/1uUeq/pZC02NbZ0wTfrxKrwSyjIqqaycH9rnk1U0FtWm9/1+WhS0YWEQK8FWZnxbhmmWQcNUoUHprKx1cmuv7cGjdoCk3kHnS4mVuTaIiAD4IexCy52TYu1vFXrrwrpvOiT9c1jZIVNDCAeCV20ce8l8+VoPVosanB7rpIUU3tTWJc/sksiyNULiG3bsXDrvMjBd/JjdmiiQyCZapn8wL0LhzA8weV0qUuPuUzHVPN33CjJWxjXGmGSRxWqOmQxLZRWuCJJLj3HYDgGlnQQWXXgBmXmOl5OVcyMLAqptOlKyI67YdF6zhNVrd0f9u9HVz1GXNuMKxIsX2zBxjwjXMhiiO43rXOXTT8rgRSdy2ONtyinieuikZNMi4sY5Fkf08j33RO2/jL3znxz0k5jpZSDfdEkp1YU0iq1LqNgAGeOp6KFzT1BWRJDE/w8wukEeKQgl0DUohQeKjTTv+zpgoLkpdYskpDNcEjZPm1saywR7g003Z4FJYCRI0aHuFak3UNbuup5QFAUfKv+2cfeN6uS/zhWtqj5I2W7iGXCbl+kp/vxWBVIdJb7ZP5bJ2kJSeRztljg/OZI7ctZa9W6P47X43TZsOwDybc5DEuXb7aDleg0Piui2aGk1dYb3rsN3xisAekqigjQJOiQ+5JqeRxPRYt5TFHcf6kmFNYmktiSUzmaDU7e+qUc69Tna9Vtm3wPiM/BRJZG7iSf+jwkNTVRXqyqebapS9tDWJYQuMOY2zWWqljAvVnlhFqlDdlLlusohYuikxx2qKQGoREXVw2ek2trFP4s7JWiuQxPW2HbPBTHAvTquR5efQDZcSosmsLxrbF1PTW+5ptkVTjwkPYJCgLywM7nkElPSfYE3gaNqBSqMq++xu2oS63djKxX43NkPrBoa6INEI10j7BnWfREUg61LJdEiinm4q1L4HZ8bZvew2MG598xwkUZ6D64ckDok7JQXURfw1bVJEuIdRA3ZtFQRgmoSf7Itsn0o3ucX2aTVzkvYSwz1Jotuyd+sUv81nd0NwqaOb2vraKwkSB8ppU1f0/W/m2NJaAvL5Lk2YeUbDNilsUsCIu/gqpe7npcYAvk+4I9bXKCJI+pKAn8xkSj7COuUnDUUE9kEi9QDUtZX/N2PK/f0k2Jv0eyMXLZfKqeHVyzPT9fraQjuuOMwTvBmRRLIHYUjlLAmnxJSs2KxRGKRrOfJs3eT0/HNBae0sPhra0GphF0lbpE8EiQON52xAEhnRGsAqqQmSSPVoqv0Fkp3j0hmnoSg9zbZqfErOlsjkh/1F2SClriqvLU5Prgluwkm/bk3pprnnWxwkaaXAKNuJzQ0ShSYpx2TVTV3qNI8kOoigQlr/ZEZNoji39xVBw3nMrZNikbOmtkmB8f64Zi0w3PZVmhpsL5BSBCny/SVpwa6TEnBpUDqZ09ZJ8LJ9El1WCF2TuJQ56tpLiOicRt00RIB1dNN5iP9cu31k1qujZUMrfksgy2oJAGE/a6XgjZOUpPaNBJKo7ZPYUXuiMLB0wd7op7m9eYlEqOsDac7jdbLrtcq+BcY4TmEWQaPKGdYkchRQvyaRC/bgHacHWVtYV56yYK8ILjvnWIACSXS47vJazsJ+YwDLI7dUF82m7ao7suje5Pxr1R07qGhDc/skjpLY225AEskg0RWuoZFEm1nUCAmIkI6I8jxpamCXYYvar0nctV2xdYxlM+hQCldcCuBrEl25bzZoiwkJcOqmln4I6Jxrl5KppZuKswWUnWsXoRjnSAvXWIfzWNUCw3VauWd7bAp+ejVIoqwdjzc79D1XyyV7wLazglvXLSvvthfSiFS47aQ0zInxPG4HBVBy3KQmkbjeouS5Vvap9BK1irVc9qk3T6VuknsGJDGvEdNzy1k6hQIoAK+m+SqQxJefM/18NQHpwaLB2XYGkuhdN+5Y3jhyTZ4w9YhnJ0UbLaqNNtYncY9XVK8f/hwiieXWGXaf0rRpuk62DxKJGzlUUmKdcrduT+4tGklUPmhjbZtTE8e1GwiyMbPqjwQ1m4nSEecRCNAGgkfuK3Sdd446zjpPNzU/XeEaSuzAo5vKsYrDRprKetdi0/a0Q2jppnokcdu6c+Q2DXfcnm4qdFN7T3Z9GYF3kQ3gfHRT5t5y5b5ZhzD2bDMMg1hNIuuAumuAFklcuzWJRbopJnNkHdCXbh6Mv7/jzjE9R0/dlFRFtUiivt/bHJtDd1y6SCLJ7rhqc4ONEclineRWl8gBLNr2aK0Td5Hz/1CJHK8W9ZggYdAXwK+31KmbDvfkKArD1yR2vbLlkpNM0yRyAOCOs35ohWvm2Cu3D72fjB0sazxat+h7PrgMfSC2/jcs1bm8mkS/3EDGlZaEsJWLjCv6oI0fA5jfUayndvu7auqNr5Ptg0QqSDQ/3aJtgAhuqspzEADOka+dwK3tdbU9fuNm4lgTuil3I9e1pVaywZ68Z0RkSQroXCUrz2lV0k/Ca11aI0dnd6L4mh/nCdcogu2ocA29ATc4G5BEttbj0BGu0SKJu1bXt8pFidia3Kfdlo11JNkWANO6aF7IYSpcwzmEWyWyF9u0uZpE8zcRX9q0XFNwsbcPGXlNkHi0bEYkHWCCxAFJdDPy5DP6yu2j8fd33+WDRPecsQ7h4YgkXg3ddBUEABq6o3HkBUm8XgtDtE8ik7hrXMYRX1t4uLB14gCPJI5BugJJBKQmtxtq/rggfdlU2LSGSdKRiWvAouAPznSiMKG6qSpRNcxRw1y5e3y1SOI7h3VBo8p8sKjV4jqun6YJ7he17THNJnhdJB3gWF8LZz0YxxFIYl2bMjDrF3LXPOw6YH4nkMRAuOZJpJteTym/KzRO3dTPIrA1YF42Rql25iKJLELkzZGkTYTCNW3H0lsrzyF055AfV4/1nSxKF+uJw2V/pnRfJuBwqbT0HBNIIt0CQ7mx2QyV05OLdS6WppCdlTEHLJJonOSWypoKbXTXOZRYVQCsrxF5Ws2VCZd7unTtlkH2syVpQ1MkkU1cVF7NEquu7M7R/T33fK8CJFGT8ACAv/o7vgZ/7u//NL78fXfpMUcrQ9vajH0SCzWJQQCsQTvd973zzlHmnWmj6aYTJPGy6aaDUI5CTXUUrmn7sZ7o2gnXBH0Sq4p8bhwnmd3vARvcj70ELxlJFHVfKxzEXDfHSVbQFq1wjV7dVARoAB1zZdf243VjzUUSr4JKePvYHI99tgFzLsdnm0YSfT+NvW4GdDD3R69hrrhJScKfSQvQlOcogm6A9Qtphf0+PB43Tkpn9nTTJ9CY2pmwBQOLnIXBHsA5yXWAQKpUAnt7vFmNsxXHC6mcmp5Eu64fkZG5SGJpXLj5yrxL5lFpycBNnAFL91UG90MWU45fMq9PoiIAAyySqBGuERqboZt2OCQ27VUQ7AG6e0S+2z5ItI2zAVuHV06u+NlWmiXg3P9SS8pcgWXjP2/MhtgEz42ZL+8kbEd0tafvZQB48eYBfvcv/jxVy5PjVYPHQ5IEmNEnsZ8nf36i6KUGAM8Pjit7rMMrrkmcI5wyqtl217cFhotStArUWPbgXqmu6dZ2yvEZk/P/cK2jF4tKJtu6CgjQVQ3ddBmgzQp1UwlIAZKFFSRqVUiiEySyQjLnsVdfvgEA+NaPvp0es1rUlrbLIokBKl5C6MZxtS9cw/pAoUopkPdnQpaMHI9S3HUCWQtwlBFIAJOWGxo9DU25wXWyZx5JZBynOnC2WJqkG+yNAQBJyZzD6wYsrZLpIwj4DbABXd2SRduG10gH1Izhm4u6AihiTE2EK+OsoWT6VFoukI2pm1JtA6J00+IwW5PY6vvvHHhIog5t0DQO9rJoiiDdlbvX1Og8zeYqIIq65rKw4bsZ8r7vdaJUY5BoXqNpQzPqH4EUkliuSRyDREXCY64drRY43bY43UqfRF2QyNTMuPbXf+fX4pNvnqrn+Z/8pi/Dv/NXfhQffOkG9f7RIb+imkQJSt98vKGP597Lkiy5bjWJgNOqRpEQWAYOOU/JNOdNahK1dFONcI28bzMo0gIk48VFVxWiMG4LjEVd0Uq2c9RN/X6+/HkEgDvHPF39IuxDb7uFH/qeb8YLNw7Kbx7sYFGPiKymJhGQ+lotkqhLijV1NQm+5LNStkiwy9jjbQNWTtmXHI7Rh0FpCeCwpTNsK5HrZs98kMg0hV0EAQBLr3SDvVYRAITKUlyQOMzNRRLJTH7YAkONtik2DZdLPo4jz39YpMw0Mg1rQlnH1VJp/Tmkxwzz8oSDiofykETNHEeUbqdXAJXaEo1wTV1XOFo2uDc6dgTVyOmH1isyu97CqqwReVpN6jb63rYAWBbvSX+jd18rjXNb8ADcvezSTWkGhKytanVTSUDYwHm5uNz75GgMbrisfIjkajPJX/D2W/iCt99Sz/MXvPsO/tp3fw39fqltk5rEy0YSRYH19Uc8uuEzUIRuer2QRABeb14eSbQiHJqkmFAOx5pE8nRMkFxFonC968bEK3P+Fw5NuCP3RDkWAJxtu7HUgbG69tVNWX8LGNg8Srqppqb5okwTIALzaxIBvZiPJxZIIscu+giAKk2JIYmsmNLSYfjJs1ouHZOgVKeK6iaA2BKM62bPfJDI3MhhM3fW4QqDPWaMvMeFw2cJ15D85xjdlFnI/cbZuu9mjmMRES1tS35neOQTtVEllZZFEmPnX4MkqmsSFy5Kp8t+HixqnG0NbUhTx3W8avD6oyFIJDKSY91Y2490RQ2VdjPU9uxjxGCzIfvEuQqgmnurquzzonlu3BYY7Lplqfz2NUunzQWJAZKorEmcY+KsyjNQoqraPpV2D7iO6nbLpkJVAQ/WV1OTKPTZN4aEE0U3dRAptkzhrTDpC1jXFT0/+2zrEn4Hi1BwiAumJuqydO1qY+imgr4QSO7CWcvbjqeEu/eg5n4UjQVNnf6ISrU6ui8AfOQVk8T52Dufo8dctR0smtGf0SKJUn/N0k0npVLnUTfN3F9237AbB9O3UI5nWYFcO51UyROPJD65rKhnPkhkgqkYbQjgaoJCARSW/iCgWauA7MM5sgGRc9/zNDG3l6BCFGbhbIjbHZcRjvVJZOi0LiKoQUTc68ZSayb1R4oF0ryf760ITNVNNeU5RrjGBGCaRt03Dhf43MM1AF32f9t24/fkqLRu9vnJXFgv2hZOwG2FI9h7shtZECxLwKW703OsHXVTsh6lDhJwAJwgOP0B4hBvdh3YliDnNeld+NoYJBaEawIGhNYBvSqTHngjQqpYE+aYnLc3FHRTd02QXn1XoSapNUHbDhY1ndwKVaC1CqBvKmtJpU/oa4/MWk4jicsaj9Y7mqIHWLaDiOuwc6yqaqwB1iDbkuBV9UUePl5L9wWMkMyPfe+3juvedTT3eeZFikJRJO5YbqmCKbkpj0n1SaSQxNb1Cctqo+PxQrqpks0mqqjFHutOf9fdE0o3vX6r7BVb2zK0RT8AYAprgTiSSAVuDpLYkXUsoXANn8Wx30vqlrS9beb0JGq7Hpu2RUNkXOeqmy6bCNpJOsnuYuDOO2XT889mtTCOm9NLcCPZTxWSKHRTXR3XneMVPvXmGQAuI+kFsprMriNSoXGanmYb6zudZuJ0n0TPaSofy6WbatrbLJ26ybblRATCWl4AlHqiODtSW1t6/0WYBDevPdygqni6qYskXlfhgsNlY5UkL/k8SpAyshIodVO7lpwNjqumofhV2eHSKOB2Cpr8wkH8NUmxsbZTSSUUiuTP3zNrOat4uWp8uiklEjJ8t0dr/b11+8i0edDUyM7pk+jWt7GKnK4dLhvcVLSkuGpz7wv2mZExUn/NrlsuwMH3yq2jNYl6ddNy6ZKMlXHj3lHquR0cj1dFdZDEa7z+52wfJBJI4qRROllLF2ZV3M/KmUuTpPuNDe/pe9242qs/8j+rNE7ezyKrgEvdNVLmzKYRg/p3BFLa1H5zb5l3yVzOulZcxxccKh7Kp5t2vCNfVRVWA7VJW+t0sKixHqT8dUHiEj8/BIk3Dni66bad195js9u3wBBbOkgiqy4YIhQA3yex781aorlupgbYQRKVSRIx5vtJdvxs21khn0sWMhmDxEdrHC0bur2Nln71VphH77vk4EtouhIkMkiRTQp0OBvUZY+uYZAoSKKGNroc7xNd/ddcwaHjVYPDZY3XH22wbCqckDV/BwMDRSiIJeEswD6Tgkhp0F9p96Clm86pwQasLsDTtt+4tHi6Lc5Y72quG4uAeQAHmShxyxQAuxfkrkOc/skiiTW24t8RrBXAqRsOQYcSAjkyIJ5c4ZpnPkhkgo2wRwodOFSW+6xVAHUzFqxj5x6HDi6rqbgOcx8vPF63BGDlcR6SuOP69MXUTRmJfSP2IYiseY2ici78puAA1xMTCJBcxQblFtuzm9SyqbDddWpK5uHSIIlbZQNyV8ntpZuHxfe7dNOxtk1BpR2dpidwYb1oc88li5y5NYka4SD3GdVk5Je1UY3re6m/KA6ZJOAAUDVn4hCvdy22ZHP785pk4V97uKHENKLqptf0XnYRhstGEleLGqumxj1SAAiw81vvTAse97XrZCOSqAg23GRO13H7KODWJOpowlVV4fkTI35y53hFt244WDTY7Lrx/DNBuiSOHw3iOpqk5O2hUb1mjxIV6DHhrWDltF1Hl/c8Sfa8I67DtzsZ6KYDAszeyyHAwapp+7oYw2dlfMMYu4xV9HdbYIw1iSwrJ+wNXvh+nnLxE5qAeOaDRCbYmNaWmBulKHhTV2PQ1ikCKROkWAroHHVTjQT9RMmQrWV02j3IZ5XMhe03bYeVRv7cocWaBaFMEZj2OyweDsumGtEJlm4XOrua2k4Zpw4SF/UoCKBBKI5XDR6udzSSK3bbCRJfvFlWWIvRTdkEBCD9xp6+TXuOuVLy8hyUHC43uaJBEucq7spGK+1tGLGDkJIJANuuH8RUckHigCxtO6e5+mXTTaWWazPWJ+Zs6VCNAF45+q0wOZ9VdTVN6o8PmrEmjkEuXbXLs63QTa+f+zIiiYqEQCgwpVU31dJNAUs51ahzGrppOyK5zPmX/f7xWleTCNikpOZ7HQx74qhuqkhcS6uga9hZ5Vz2grNX00ji2INTahJJJDHoscucSxdwAGzgpkUS6d68DsNs3DtYEGDiT5aBCjPPAUl8Am+u67fKXqGNwQZJG7IZEvM6E1xa6J13tlZzpOQDdU1WScmjlmnq9mo/Q86PsxviZtdhpUASXWcL4BSptiHdlEJELJK4I53rSf0RmTUaWwAoKTKAka439S86uumdkxXuPd7QSK7Y3RNbd/E84VwsXbqp4ru5weWWvEeednOl5AU50xTbt4oEkNc6QzHOFZjqSAchKkDQdkXqukWWeGT1vCbo4ZunWxwvy5pvrgIxIGv55c3vPCbnc9XUV9IU/GS1GBEpquSgqbGoK6x3tk/ldUYSNQIoYTKHHWeuFfCmUt0UsMGhps+f0E3PFOdf9hdBEjVB4nPH+prEg0WD9bZT+iTOeveEoj05c1tm8EjiECRudUFimJhnk5Jdj0lpVu6Ydt9wg0sSSXTorbxSuB+Ujm1uSj6o06rpSW2BcU23rKuxMdhgM/IjlbBDVXEUxF2QeWDpdlYlcJ66KRP8huM0gezSqT9SIYnO8Vi6Yyh3L8dlsjhzxHWWCxtcskiiRQQxjtOcj51z/tmA72jV4HSrRxLvHq+wbXu89mit2rRdJJFpbrxyrpv2/jfjBG1+ppcpANa52rbdWE/Bqpvuun5E/XX0K904D+1khWskueUiiW054+oK14w1iZd8n7j0OgpJDNYttk7zrTA5n1elGHri1DTzLRjqAUm8/uqmGrl7t+enpnRAVGltTSJ/Pp6/MQ9JdOmmh0TAIUGJticjYIVrNM+1CWRbXS11WJN4TZ/RufbCDXuNRTSqZILuC91UgySOYo0dmVyc+Nfm9dyeE0USyWdHeg4DViSNrUk8r3DNdS03yNn1W2Wv0DTBBgBPNpd1tlxkCeCd5I2jrjlX3VQVXPbWIWQyycthwwDsedHUO23bjhZOcYMGwHLWi6qoTTUuAlokS9Aadpz4w25bEH0ri2HetAT6kLUmlVTFxDHYtr1Kle3lW+U6RNfGLNqus+09VIhUN6DNz/QyBcA6Vxp1QRfZ06qbAj4CqWpvM4zT1iiL7bryuuDTTQWRutwN2HWwmJpEV4EY4NvivBUmiNJVoXOumAb7fJta6hbrbYuDxdUgnlqTNVnaYDDmOqDahN/hshn3YU0y7cNvN/39Hg8IH2NTJLF8vCMHfdfOUe5J2YupOTpBOqCj14/1/dfwvjqPuUgie/4ndFMFKu6pOVNskiAAI0qz4vvGjJrEkW5K1iRO5sghibvOJE73QeITZqxKoM30KSmgDvf5PEGKSgDFgewZfralqTo8a+I+XjbzUFJZpDYtL5ziNht2fzJ00zDzQ82xqb3gsq7KgfNcuq8bJGqEgwCzSVu6KTcG8LPHNw/5Vqlf//kv4ju+9J34nd/0KvV+27ahp7KDYhaRGijJ1xAxuGo78OiVXA2elXbXOU2eJP+4bnGUQMBkZ2m6e5BFBjCgkKXNt0ZTV77a4iUnE547Wo7fiRHtqKrKiEs5SOJ1dRLe/+INAMC77x5fyfE8JFHhuEpNIoPkvhXmzpENuF1RKi2SdbzUn0cA+IYPvQQAIwrPmDRll8CS+X4nQzLgzaEnpibh9+Xvu4uPves2/hcff49qjqYm1Pyfed5kbd0MiVrNXvokmOgHfOxdt+kxc1tgNIHPq2VTyTjzevpCuHsUYPytvueBCtlDx4SrouewP8dC7OAATNdZ3TpnvIf4FJptpJlfFdzABuB69AFSE2flgAHOSV4t/CbwWrEJgFNtNeMwjtOKVIxzVIwT5+psY7KtjGMn12ejRPcWdT0uWOKDMmudofva4FLT780KB5H1pwuLNlhxI5JuOmStN60ObbvjBYk8krhsanzfd3yMfr/XpmNEEonjOLVcrLjR024r5xmwNXjcxqatCbWbthXJoQSfHARy1/U41tBNnYzwtu2pdcE45FfXJ7GuK9w5XuJzDznhGpnTru1UPWjfCnv/CycAgBOSjnZeE+r6SoEIiipzXXFUx7fCDoY5apBEj96tRLJuHZm2RE1dUSUAYu9/4QR/7Fd+FL/o1RfpMeIHvalQUxXE/Y3HeiTxY++6jb/yb341/X7AtneyGgTlMYeOKNLTWJN4uGzwn3/XV+JDb79Jj5HAWfpb0kiiq+jfc+qmY6LQ8bmA/J6zCIM2kv4JmDVZgl+2dGPh7KXmuFzS1WNFtR1uKJLy18WevBlfoNHZgCBI4QOwCqdbvxiXUdtyaxJZHnMUyVK1zuhVlEAJpNxeaswDOgaJQxNsHZLYez/LQaLbgkSH5Ar15zzCQWxAChiqi6aOApAG2Fust51OtMCpLbx1yYvWYmjTMbZgUDQ33rV7uqmYOGTrXUvLdrt1jHNqdLT9FcfsbqsXrgnppowKnFDLNjsOWb0Iu3uywufIFhiAXSc15/GtsBdvGbThfUOweNn2toG6fqgIGlZDUqDC9VQ2Bcy81tsWZ9vWo9TmbOEwJ7RtUm6P4i6681FVFX7DV/AIHWD37tcfmYCPQRLlObk3g246x4QS2/U9KoIBBFhRJGHlXFe0/zz25e+7q3q/3E8P1zrBoUVTYb2zgVRJNRTwk5IAV5oV60EL8PodgiDypRtxSmxRPM6pNzZ+2vVct3L2TAeJbE2iXFgXyWKldsMehBTdzkWyyMxWTKKXnSMwqGuqKJn2IdU8oLKxnG5MAMBspG4gJXN1556yWAsMKgB2kCyWRz63J1qsJpF1JA2S2GG9a1Wb790b8+imc0wSHhon2RVyMEji07dpa81HEnXJrW1rg3TOabLPtk7MSujFfAuAaJBI0E0BoZZZJPEq7hOharMBgKkv71S1nW+Ffd2rL+KP/cqP4lf+gndcyfFeHoLSW0c8k0GQxArXU9kUsHTHs22Huye8Yw0Ikqhr+XP7SN8mYq7dOjL3/GfunwHgKNfHId30soPEkW6qr+08G9rpMMyhp90OAtSYfd7cFhi7tqfQ7Zjv5L4esxFJVAoMyntG4ZqWDPaCoJRVvV849ZabVpfMvy72bAeJM5wtQGpLOCpVWLfHBg4bh6aqlZ8HzMOjFa7RBLIuaqAZJxvL6bY1ffqITcOtbQMcmjCFJArdlJ/jygvclP0OB193lnCNsibxYFnjdKMTSQB8AQ4N3XSOLZt6qEnUCNdIvcEeSRSzap7duG6Vnp0RSdzpakJdJFe1JoT1F8r1R2zbcjR0QQ2uim4KWCGHD7zIIW7LAUkXsa3rqpxY13pk6TwmIlgsIgvYGmyA6634Vtjh0uzdp9uWdgjt/tZh13WqPn23Z7SJmGvPDQH9Zx6s0dQV9bwdLk2bjhFJvORn1LALeJZSOG6za59ItOeiTe6n+8oenH4AxrXYmqqbln3lEElkgzbABw8EKNL0HAYsM5AVj9u23Si49aTZkzfjCzQLGZM1iYIkkpnuxhFO0QhHTPokEpuGDWxsUKqhm3Zdr3JkRgquixIxSOLKFkSzffpEAGLXhtTR0oNdO0XU5jVtC4Zd15ECHOanVrhmRIiUdWOACbjXuyFInOk0XT6SaJxkTabPQxL3wjUA7Kbt1iSyglvuM0qplDobsC64txuilqYdqtQxdNPDoSfaVQaJP/6ZhwCAj7//eer9gqR3iiTVs2CiuHhEIrKA9MBrcbZpVTTVqzTXuWZbeyydhCvbNkDMre28bJMg8dP3z+jzX1UVjpcN3nhkkMTLfkYPFg22bY/HG51DLkjivuWSsWVToa70SOJq4feY1ug57CY1iennoKqqqH/NIYnOHEmgaIIkttx+6iZ3jZ/25N1bT96ML9BYRGrap4/Pko83sVY4xaG2aoI2G1yaFhDMHIEBSVRQosY6QccBYh7QsQn2VrJ9bLZ12uC+NE+jwOoHlgyTZI6zOxWuIemmDrVVQ/cFzLk83bTnylBdCZLYdiqZdlEEW+/2m7bYytlsxiCxlNwKEHFgXm0hwNLkneCSZVsI3T1AEhnnQnqiSYuJqwgS/w+/9hfga199AR986Qb1/mVTGSRdWW/8tNsrt48AAN/ykZfpMYfSgmHHK4detUmt5JunW5VjDZgEEFvKIiZIoptkuSy7dWiRRM35Pz5Y4P7QJ/GykRRxwu+f7VTo6sGyxtmufWLrxi7aTA/OZrxubA2w3xqNS7C7dGv3Z2nPcfuQjz4hJYRo/XI2wTgJZEmgYtXUqCs4bXGu57qVs2eabtqSNYmugwbwYjJNXakgdLGFU5PIqp01tcn82CCx48Y5mXyNI+mjbfx3G+mmA02SpZ8YKXk5l3Ldyg+2VTfV0X0B3aYdIiJsLalbb9krg8SjZYOzoQXA/CDxCpDEgY9fVVwioa4r3Dxc4N7jDdqux6p58hbWizZbF92Oz1sJhY+1V9Gqm4qxTYoBS1OlhGvG58a+tmt7imEg7QYkoXYVtORf/OGX8Ys/zAc2kvDTMEmeBXvfCyf4b3//N+Cdd47oMQeLZhQXua7CNeIE7rpe1doDwNgEXiVcM6B7QsO9TBMk8c3TLd5xm79uLqX48msShyBRgeQClpWwT0paO1jWVsmWDG4MkmgDN2YdFz9ubGdB6ke4/Q41ZRGx4LJck+jPkRVrrKoKR5LMV2pHXBd78mZ8gWb7jRWCxIDKuVMI17TOjc+qba2aCptBbEKjdubWMmp6OQKmT6Kql5rUUbQ6B2g5KImdjkgi/90kABY1w1Lz7EVTY9f5Cqxsn0RgEK5RCge5fSo1Drlx5P3PKtnh0qiwPlzrsqYA8Od/61fgV3zsFdy8ZMl7cZKltpCVu3/uaInPPlgDuBoq1XU3D0nccYpsbiJHI9w0V7jGVXIzgk/l6xbStM1xSSQxEK5ZXkOBI6Ffaankz4K96+4xvR4AFkm8f7obUa3rZkcre9+yaJtLJe/I/Ubs7UOw9tpA57xMc0WGNAGYK/J0FcI1AHD/bKtKnI6shH0N/GgHi3qsSdQgieudpXIywjVuCxgZ576eMjfY0yjsLxzwgFc39WsS5Seznx6tGjza7LBt+cTRdbJnHEkkIeOJummnkNp11C7JxX+sURjUztiNdNXU2DrywxzaaX76dFMikHLl9dXBjcP/JxfkReM82B35YI9UNr6vDRCcf7I+ygrX6K639BLctDq6L2CdkDeVWVMA+KoPvoCv+uALqjFzTIL7tbK28PaxDRKZbOTTbu4aJKhsGUmsxjGdItPqCtDII61B4HedUdxl7skwQwuYIPNwyVDXa7z+qBudkuvo3JleubogfW9xEyTxbNuNqNZ1s+dPDsbf2V6Oq7BuSZHw+9oPvoB/9UvfiVeeO9RNdIYdLhusFoZOqOlT6SGJVyBcAxgkkVUgBsy1Oht0EvZJSWMmCbcef+fG2GT+tuuoFhhWhMYXheGQRCvUyIwBLHgA8EDRtOWGnUPJjlYN7j3WIbLXyZ7pIJGtSZxSOTkkcVFX4w3f9TzVaOkEYAaRooZh6TygLG3FpUmqeqK5vZ0UjWuBoZZu22K741QMAR9JZGWLbTPxDlLypJHy3+w6uv7UIrJSSM3VP8rx3DYFmppEAGp106s0Uxcq8s/8HJ87WuJnXz8FcDXy7tfdFsMaZOT1Wxwtm2LyyCYgbHsVDSLoijZp2AW7tsfZtqMk8msnSSW267h14Xi1wKPNDo82pm7mqhrBa0zYHcLc3QvXzLfjVYN7p1v0Pa5tkPg2J1hjE3cu3ZRNrojVdYU/+R0f003yHCYMD835lyCxqi4fSXdrEu84/YBLdris8ZkHW+w6TnH9WTB3PeWRxGos0+n7MgADTJFEvibRaRWnRBIFCWR7DoctN2Qcsy8eLd0g8cm7t568GV+gsTWJgMn2aamcLhze9b0iaHACMBUCaVVRu05Hrdx18wIpgyQaZ5JFPI9WRspcw/+XVgpyTHfupTn6ATBxLA8l5c9/XVmBIk1tyXKh7yUI+H2qrmuGajEUsmtpPLePVnu6qWNVVY1rkEa4I1SXZW4tV8mtU7AE3BrIs21LORbybHl0U1I9+sbhAo/WOzxa79DU1bXcgFeL2tRoXvM+iU+CvXDjYNyjRLDlupm09gBAK4DKfft4Y9pCaVC6q7a3Dd/vfWQLGMAq2WrKDebaHHVZGfdgFNe5vuf/Ks3VK9DUJG7azgm+NEgir24KhDWJvC/vMvzYnsMj4OCAAAD3/Y6WzdgCZq9u+oQZi0gBgWqTIkjsnOwIG2ysnACsI9VNAVEAtZkOrt2ACKcoAylPFEOXIT9aNng8cLR5JNG2wBg560VFKkubm1eTqKsJDYWK2GBvNaCkVlaZr9sTu44OMjCIi0iQqEESj5c4HcQY9kGiMWkBcLrhUDrAJiA0KqWLyHNDtc4Y1q2zAYFnnN2wkTIwqJsSa/KNgwUenO3waN3iZFVGVt8KWw4iZHvhmvPbCzctMnTrmiKJtw5d9IVU7h4UEO+f6pQk3woTwZr3v8AHiSJOdKToiTnX3JYDmmDvcFnj/tnQy3G/3wDw72XWv1g2RidBfGWuT6L57JA6WvKDouqmpM8btrIo+aG25YaPQDLr+eGywZuPTc3wk5iAeKafBtu7jRFJmIEkVk5hrSLYcwMwViQHsCIJfW9qGanWGVLr5LZgUNUf9SqUFDAPjWyIbGbFbYGxJbNUI9rZdbPUTQXdYxxW+WxXqIimFzc1Nrse650Jiljn4s6JdZqua4bqZLXA6WanDxIdJ3CvbmrMRxL5TVvbg9Mt0tf1d7X1QAB3H480bY9uyvXXunGwwHrX4c3TLW5cQ6opYNkde+Ga89uLNyxKd13ppm6iQotkvalsXP5WmNBpNedfAsvLVtIG/DVH2ydR1q19kGhM2mOtmpr2XeXcnW6ML3OuPomFPWfptLLQrK8muLTBHkuDXgTMQHmtZMerBm88fnLvreu5s16RabMPbu9CTt20Hp2sXhk0AAbd01EyqwE1MP/XNS63yCOFNsi4sU2EbkH+zIMzAKDVNZeutHIr6qYFwSGvlYV5jROuGWoShyBdIzgkGTRW3RSwwb0IcLDOxV0nSLyOoh2AqWt4tNZRiwEr7Q48mQvrZdjBYugTt+HppoJSq9RNx1reHota0d5mZYWUAA4RCetRAFHFKx9PamY+ff8Mx9c0SFwMNYn7PonntxdvWlGY6xokAqa9x09+7pEKNV4tLJJ1XXtAAsDv+uZXUVXAL/+iV+gx0hPz5sHlX7NbR3r0CzDnXJagg2u6l161SVCvSXaIH/JIgkRNr+6RysntVZ66qUKYbTmIifV9b9hspO+6qCtbk6hgfR2tmpEVdZ0TQCl78mZ8gSbQMQOJuzWJfFsEn2etqVEDgNNti7braYhaxF12mlpLr+G2zFuBtg31fhrf59bhEp+4Z0RJbpDZRfNgi3ANiyQ6iODoJBPHcnoXaoI9V9mrJWtCzfEqP0gkF5K7xy6SeD0di5MDI/+srkk83geJoa2GIPF0EK5hbEwcadRNG0v/0dC0ZU6vD3L8zD0pn+urm3bUxn3TCRKvo2gNYIP0Pd30/PbCDbve3VaIkly1/Y5v+CAAqNp0+O0GrudaDpjz/kd+xUdU1NF33T0GAHzLR952WdMazT3nGmqfu+deV1bOVdsYJCrOo+zVjwcxMRWSKPWFdPuwegzaxiCR6a87PF+mVRNX2iDzDJFEZp5z0e3rYtdzZ70i2yqyAa66Ztf11ELijtEEDVKT+HBtHjSNuMumtWITqmbure1Nxkxz5QRSmro9AHj+ZIWzrZkkm110W2CMQaKidYnGSXaFg0y/Nx5JdO8RWpVW2kRsW1QVjwrenFEzcNV2vFrg8VovLe4iBfsWGMZWA1J9tm3poEjuLRXd1FEFPuhqepxshm8M9ReMsxv2FwVAU7zlHHzm/tpTlbxOZoSDdO2F9hY3V63ybbeu5/UGgG//0nfii999W1W35zcuv55r+Vx73wsn+Nu/9+vw3uf58zHXLqSX4x5JBGDppr1TClAy8Z1OFUjipE8iyd5yaaMaJFGer7NdqyrnWgz1ljJHmUPJ3BYwT2JN4jMdJGpqEleNL1xzzIxZmALZdui3pwkaAOCRBInkwNVAidXIAcuxNrseBwsN2mCzPxqUFPBr6WgksanxYGvOhy02zh/T7T/VKRARX7lVFySOvTQ1yPEQ3EsrC1aAw6VjXFfH4mTVYNN2eLTZ4fkbB+UBgz135KCk1/S7XbUdLE0vr9Nth7snCrW5Xa+6/21NYk+3CQLsdRK5b0bdMewvCgxIIrHmydrxYL3DiaIn2lWaEUnQKxfvbWp1XeFv/p6vw92T1ZWIoJzHPvDiDdX7V009qmteZyRxrr1feT7m2smqGbUBNPvGnZM9cyU0SUKLT8OY+KqPhyCRSfCGdNOWLDdYNJUj1Kjfp9bbjt5rZJ6ToJShm7pI4hOIUj95M75AU9UkLowjD4hSafnzJWuwGYIUbU2iIInsjbVcDCIJisaiSzfYU9ZoAhiQS12QeNdZkNlidnG2AIsklh7uEUl020uovpsJgNl6y5VTN9lp1U1nNFJ27bpmqKRW7N7j7Wy66XWuP7pKu3W4wMP1zvRJJJ1kQRIFqGNuZVfum21sDBjRjqNlo0IS66H/oyR+ANDZ3RsH9vOvK91UEkeaViJ7S9sHX7rh1WI/LXawsMIpT6IjeV2sqqrRp9AE2y5KvQ8SjQmSKGVWjC0DuinVJ7Hxg0R2/V+4QoEK31V8pfWupevfAVPyJPuUBM6MT3P0hNNNn7wZX6BpahIPmhqbQX3StMDgFFGBQTjlHEEi61xLL0GrDsUfy5XJVwWXSnEXwF+QWbrp0qWbStaohCQGtYUAuYgsLQK5U6rSjgq4qhpUqUls1YvIb/6q9wKwMuPXzcSRf+PxRvXd3MDwbc9dz+921XbrcIk3T7cmSCQdSWFAsBRtAGM9YOvSVOkeqA3efKyrrVo09ahYDIhwDaNuau+Rk4PrmSRZDtnufZ/EveXsYFnjwXrfp+8iTFgFmv3mSRCBu2p730AP/g1f8R56zARJVJQ32HYWHbX+L5zyHg3g4/p3266jQYDGUVMVMIBJKNx06mQ1dcrXxa5n+vWKTFOTuFrUo0JRR2Y6LN2xVaFtchNrJZlFgdUW8RIOoTSOV1LSvOBSEUgBwPOOAAGLJC6cAEz6JZbELVwkcRTlUQhwnG1a+loDppZ04yjgalRRH57tsN526izyH/22j+D3fcvnX9sWAFLr8XjT6tRNHSTxun63q7ZbR0vcP91h13V0ALZcVFhvO6yHGmCqwX1jN21t6wYfSSTXLSdDC5iWNUziznXsrjOSaHqg8kH63p49cwOT69wn8UkwCQ41wba731xXEbirti9853P4x3/0X/KCnJIdLPwgkQn2mqBP4q7lfK5lU43aFpqab7kvzrYGSWQ1Dxa17a/IstkA4O23bf30y9e4ljplz/RqpKlJXDoBwLbrOBUlpyau7XlHSzJhb4wNONkgMejJpWz3IKwCVQuMIUuuqkk81jt3riM5PqCF8+K3wDBjmbhNHPCzbTugxmSQuPCFa3QIZD+bbnqdgygX4dFkaFn1zmfJnjta4v7pFqcbjbppPaLUAIfuSfJlp6SbAibB9cYMJFGCqLbr0ffcmuy2RPjgFdU8aU3q0sVpehLpRnu7fHMDk6exJvEqTRx5TcJ1jyTGTRMgAucTrtk5KB0TfC1qZ99QAD4ukni25dtJuX2wbZBYPp60gAGeTCrzkzfjCzQNRO0GAJtdR/XSCYVTWEamqCGJs6VtgaGhNrktMGzdnn6chm76Pkf1TYWSji0wuCLlqLopWZPY1BXOdi3arpvVJ7Ht+XOyGqjMZ1s93fS6m6cap/hurHjPs2S3jhbYDK1SaCRxSEBIxpW5v2xzY13iCPCD+0N63apGCjnb3ia0j7//edX7r8rsWs63Bdnbs2fuc7kPEs9nv+jzXgAAfPn77tJj9jWJF2Ny7h6NLTA0wjW2wT2z/i8jwjUckmiFa0QskLGF04Zto0AS33H7yS6Xub4QxBVYq8gGuAEAK+fvFsh2ikDqZBT7MI6FLpDqnYCIQUhtsNcrIPtFGCQqkMTbx6ux4TBri8aKwlh10/z3cwVoNHRTwCgznm6GRYSlzTX1qEjbdjz6crxq8HjTqpz/J8VOZgaJAPBrf+G78OrLNy96Sk+suXWa7H2yCpBEJuHkZnY1/UWBIEhUPDfbnV9bwlKA/qNf/wvwN37kU2MvtutmRysr3ATskcS9xc1dG/f3yPnsD//yD+N7ftmHVXup+16XobA3ncm6PdJNGeGasCaRpJsa+ufA3Op5VqBc6/WuNToQc5DEHeeDAsALClX362jPdJCoRRI3ThaBChKXFsnS0BaFoidNqXV9Ejvne3FjAHjiCkxNoifKowwSAeCv/86vHSW/GTtYuMJBHaqqfN1C4SCAo5sCRoDjbED3WERk5Sjgdj3f8uTm4RIPznazhGuuu7m1Htog8Y9/+xdd9HSeaHOL3tnWMcKAWO861BUXfLmKo5r+ogA81VV28100leMg6Gr3fvkXvYJf/kWvUO99K+w46B35tD3fe7sYc/eYpy1ReNU2V/jnr/ybX407x6u9mvY5TPZ4UTed0wJj13FtKdze2Rqf1y0DO9t2Kl0Ml/HS1BXl9zZ1ha943118w4deoo5z3WwfJELfJ3Gz6yjeulBS17vOUFRJB2HV1FjUlTr7vGqqgSKm7wno1u2xwjWLusLptlW19xA7XDaqzfBgUWO9s0E6s4h4wjVdj7riaYwHC9OT7mzb0YiI0EYBnXDNzaG1weNNi5duPl2P5NueO0RVAX2/r/U4r7nOy8tktvtgUeN0I1Tmhr7/F42ppdOskYDv4LK1sst6SiVnkcTrbpLwG9fyfQCwt4i9/TkraMH0F93bxdvH3nX7rZ7CE2+huinFSpMaeIcpxpYFiSq2hj3nCtesdx1eZEs36mpMYpr+ivwe9QPf9ZX0e6+bPdOr0ShcQ1xsD0lk6aZLP0hkkZSqqnC8amYhidu2V0HvVVWNgjeaNhGAoZadbuYhiVo7WDZY7wwldtf2lLSyK1zTKcV1Dpc11ltdYbPLkdcI10gm6/VHm6dO/nzZ1JA+6S/cePr6m12luXUzrErajQOTgNDQpgFDAdq1tpaXpZvKsyJNraljeRlhqUl8Oramo5kiZHt7tkxaGDV19dTc+3t79mxEEtdDCwxG3TTok7jtuBZIizqCJCpYcOtdh7VCB2I1A6h4GuzZ+JYJkxuMUwE1dTPdkF3X1CRudh1NURU7OViMjgXdJ3EIZMfvRR5uOaAGnVKk4nDV4FSpADrXDt3ehS3XR2ds7zGI+WjEUA6XDR5vdqo6QVfcSCNcIzTCzz1cP9WNlL/kPXfe6ik80fbeF2zdHRsk3jxc4vGmxaM1T5sGhg3Y7blKJ47M/cvSYQFflGpHilI9KTYVIXt6n++9zbd33jHP9v7+2NuTbFJucP/MrHdz1E13bcf1V3R0KkT0huo64PiSGv/OlDxZJPFZYUY9G98yYbvO1OkwiI8giYImMgGf2yeRpaiKHa+a8QFgKUoirqOhjXrjlHV7Bm1r1SjdHHMpAhtSItlDEpUKrEfLBm+e6qT8PXVTReAsSOK27Z9KJ+HzXjbtCT70tltv8UyebHPlyFlUVu6t1x7pEhCGbqpfS6TBvaYtS1jrAXAZ6CfBRMjn3ogkPl1Mgb1djL0y9FLbK2vu7Um2m8P6L/R6hs0me8uobtr2tLqpME82ijKFUbhmq1OUX7lB4o7zQZ8Ge7oKoJS263q61kaonNKUmqpJdKR2NXRTwHey2OBS0DYpGmZl5CWTr2kTAQx0022rboExx0IkkVOktfWWnaJPpTleg5+/d+odu3w8S0nueg3d1Gnk+xQ6kX/ht30cn3u4ufREwrNkLCXt1lDH+NkHa1UCYjEouWnXhOeH4FWzgbq1HjtFCcCTYG4LjIoUDtrbs2fvunuMX/jeO/i3vunVt3oqe9vbbDtcmvZhkmDnVEqDPoldhxvLcmhi+iT6gmcqv3zXqXpTrxbN6N9t2w7LxbOxlj/TQWLbcRkLwN5Y0v9FgyQKArlSBABz+suJkp6ohjJFvIARvPH7K+qCxB2J7J3HDh0kcUdet6qqDI+8NYGltibxnhJJPHDppkrhGrETBQLzpNjzNw7w/BMuA31d7C/9G181Ji8Yk3vrcw/XNEUVMEHe2mEXsPfy80NTasm4MubWJI59EtkiyGtuso7fe7TFwaLe9//cW9SWTY2/+K9/1Vs9jb3t7VxWVRVOVs1YKsX4aXVdoaqs+AzLwhItDcDtr8szzNZb0wJDJ0y4r0l8pmzbahqlm/c9HPrgcRkLC2tr6aaiimc+hxsnfPAxuGEFbxZ+f0WWWnawbIxy4q4dM+aXZUKVO9t2JotDB8DmwTbcc/78HyybkSKmQhIHcZ2u5/skukHiy7f2wdTe0vYl776javkg95YWSRThJitcw93Ld4cgca0IEl2Vut1Tpm4qa/KD9e6pZAnsbW9725trUgcP8IySRV05JQccw89tnbRV1LJXVYWDRY3Hm3Yo8eE1J9b7msTLsaqqDqqq+jNVVf10VVUPqqr6R1VV/ZLhb++tqqqvquqh8+8PB2P/bFVV96uq+lRVVb8n+Oxvqqrqx6qqelxV1Q9WVfWe0nz+ySfv4/7Z1rSlUGQRACdIpIRrfFhbQzd9/sQGC+zNaBs3D/Uvmlo6p+E8C7gdLU2biNNNi8NLDhIFSVzv2kF+mOeRS584zfk/Wjbj+ThSnMeutwsWm4C47ahWvk2B9uxtbyUTUaSu11GZDxYN1rvWCDApEHihm6qDxJFu+nSpm7rJs6ex3nhve9vb3lxzS6XYNU+EIQHQ5USLukbb9ej7Xl3LfrRqRjExFgQwbdhM8Lu9AvbcdbGr4rYtAPwsgK8D8DMAfimA/7yqqi903nO77/tYd/U/CuBVAO8B8DYAP1hV1f/c9/3fqKrqBQB/CcBvBfDXAHwvgB8A8PHcZHZdj7NNq+Iji1LmI0WQONJNdx02uxYrRXb81UHsA+Cz+EczGzcv6gpbR/BGQzf91LbD6aalA6m5JpTPs21HFzYDFkncKK61OZ49d2ywLdf7bCc9grhj3XEazr/83D5I3NvFmYtSa5HEs22nVi6+OyS3pF8oY66U+dgn8SmpX1029dga52lWLt7b3va2N8BXtqZ75XqJQq4FhgSS29a0Rasr3nd97miJzzw4A8Dvi6G66dPCdinZlexafd8/6vv+j/Z9/1N933d93/+XAH4SwJcSw38TgO/t+/6Nvu//CYDvB/Cbh7/9KgA/2vf9X+z7/gwmoPxYVVUfKn3o4zFI1CGJjxR000Vdoa6GPonKFhif9/JNAMAthZS8DRJ1tXSCtkmfRDYoPVzWON22ON1efpBo6aYtNmQLDMAqUq13vIoV4KOHbOsAWTTOtsZBZs+jW6ekqRvb295K5ooiseuBvPds26pVgYVuyt77QKIFxlOUpRVHaU833dve9va0m6x3R8tG56e5ojBkCwzAsE+2na5G8LmjJT5zfw1A5ydvWlNOtNntaxIv1aqqehnA5wH4Uefln66q6ueqqvpPB4QQVVXdAfB2AD/svO+HAXxk+P0j7t/6vn8E4Medv7vH/M6qqn6oqqofAoDTbYv1tqUDN3mfiMIw46qqwtGyweNNq1Y3/fy3mSDxO77sXfSYsSZRiSSuBrrpiCSSTuHR0CfxdNuOx74ss3TTDuttN/ZjK44bEBEt3fS5I9e51t0jZ5uhZ4/Cuf7AiycAgJdu7msS93Zx9tzRcsyuapIkB4saZ7sWbadTBb51uMB3fd378ed+y1fQY7zakpFu+vRkafc98Pa2t709KyZB4k0FwGEYX6JUyjHFpP5w2/bqlhQekqgoOet7g3RulaDPk2xXLqVYVdUSwP8dwP+17/sfq6rqBoBfCOAfAXgewH88/P1bAAjn8k3nI94EcHP4/QaAzwaHcP8+Wt/3fxrAnwaAg7e/2p9uW12j9BBJJG+Qm4dL3DvdoOuBVcMHUi/fOsQP/r6vx7vvHpffPNiIJD7SNW4+EJGKsSaRRRIbPF7vcLblz+NcO3SQxMfbHV66ySFuJwcLPNrsVKgx4AeJbAAs98jpVuimvKP7A9/1lfhnn3rwzGSn9nY11tQVXr55gJ9/80xVN3y4bIY1oadrlAGTGPuDv+QLVHP061GEbvr0PAfvfeEE//gTb+6DxL3tbW9Pvc0KEh0k0ZQ4MHTTAUlsO+w6Hf3zuaOlZdwphGsAUz62r0m8JKuqqgbwfwOwAfA7AKDv+4cAfmh4y6erqvodAD5ZVdVNAA+H128BOHN+fzD8/nD4v2vu35N2utE10pQbQoRr2HG3jhb43EOD7GkzD+974UT1frcnF8DX0h0uTON4Szfljne0bPBoULG6dHVTpwXGY0UN5MlqgUfrHdoeuO0EfiW75SKJ5CIigbK0SWGDbQB44cYBXvjgHkXc28WbJDneo0g4HS6bAUnU1STOsWVjle127dOHJL73eXPe931C97a3vT3tdutIgkTe31q5iUIy4JM9QpA9TYmCCwLQSKIXJO5rEi/cKlN49WcAvAzg2/u+3ybeOuBZqPu+fwPAJwF8zPn7x2Bpqj/q/q2qqhMAH4BPY43aqdQkKkVJHq5NUMSigjcPl3jt4dr7jMsycQbfVLbAOBgomVq6qYseXr5wjVWKPdvw9NbjlaH7aqjFQEg31QWJj9d6JHFve7ssEznyD750o/BOaweLYU1QqpvOMdMUeahH6Z6uFhgA8OpQX86KOOxtb3vb25Nqb3/uCIBVqmZsuagskki2wBC2ybYdkD3FPuX6d666fM7EfxSNkT2SePH2fwLwBQC+ue/7sRt0VVVfAeAegH8O4A6A/xDA3+n7Xiim/xmA7xlqCV8G8NsA/K+Gv/1lAN9XVdW3A/ivAPw7AP6nvu9/rDQZoZvqkUQTgLEBx63DBT7xxqlqzFw7cpDEpq7ozMrhIHe/2XWqcR4l89KFaxwkccv3ZRS66bKpVXQvd+F44Qa3iMj5F7RZI96xt71dlsn9qAkSDd20RdteQZDYWHXTEUl8iuimv/Sjb8NL3/nxUYxsb3vb296eVnvnHRMk3nucwoGm5jaqZ1G6EUlsDZK4nAkCvHiDY3BJOZEgifs+iRdoQ+/C7wLwxQA+5fRD/A0A3g/gb8BQRH8EwBrAr3OG/xEYMZqfBvB3AXxf3/d/A///9u48SLKrOtD4d2rprVq9S4LWOpKQQGhAAiSBxmYZCTBbMCAQCCFAWGaRwQ4CDAQDAsxiBk/gGcIsBssaEGI1iw3YCkMYEZ4AwshmMfLIgEBiES20dXepu7q7ljN/vKVSRS+Z1ZX5KjO/X0RFV2W+l3kqO+vdPO+cdy+QmXcAFwLvAO4BzgWe205MRSWx/XbTKsHbVVUSO7gm8a5dRSVxZZffVKtblonoaJKK8dFycpfZjt74W1r+uLq9TmLrmpOdLLmxZsUou/fOsne6syUwWg8i7Sfb921JbmdhV6nb/uL5D+f8Bx5VT6DSjpXjI+yZmWPPzGzXrzceHx2pJ6yZn910cP52xkZHeORJm+uZXyVpUFXjzM6p9pPEaq1uqJbA6Gx206L62P6YsaFl2bEj25wssCpU7Jud7XiinH7Wk0piZt4KHOx/8BMH2Xcv8OLya3/3fxU45JIXCxWzm7afOFTJUzW7abvtUEesGqvX/up2JXF8dKRYc2wuO5/JsKqsdrCWV2uFreuVxLHid9u5Z5q9M3Ntt5tWlcSIWHS7absWtvs6UYWWg/NO2cJ5p2zpaJ9VY6PsK0/ItHtN7mJV6wjC/OymwzIAS9IgOaasJE7u3d+y5/u3YmyEyT0zZCazc+22m87Pbtpp++fxm+bn++h08sq63XRscE5kHszQXiRRtJvOdry8weSeztYgbJ0ApRdT5q5ZMcrOPTMdr4m2d7pacL6DJLHlDEy3J66JCNa1rG3TdrvpijH2TM8xGjMd/W6drE9ZqRLlHeXEQd2uwEjdUp0s2jE13fYxcrHGRkaYnUsyc76SaBVekvrO+tXjXHzOcTztIVvb3mfl2Ah3z87VSyG1c/yvK4mzyUyHSeLpWxfOd9lejFC0m+6Z7v7J0+ViaJPEYjKT9iuJVeXwznISmnVtztzUOg1wL3qYN02sYOeezhKiVeNFqX/3vtmOWjLv027ag4Ro3aoxbt9ZTHLb9uymK6sZR2c7qpKOjY7wR088jd/qoAJTvQbbrSSqz1UD4I6p6fuc6OqG6tg6XV5bAu23eEuSlpc/eeZDOtp+vLwmcf5yg0Mf/6uW1Om5IrnsdAmMTrVOXNOLtcGXi6FMEkciOm6vrBKAbTv2sGbFaAcT1/S2krhl7UpuuWt3R8lete3knumOYmyttvVi5r51q8fZViWJK9p7vjUt23V6TejvP+6Ujrav3iPV+jud/B9Iy0n1Xt4xNd32NRuLdZ9rSwZwdlNJ0oFV6yTOX25w6ON/NbvpzGyyb6azJTAArr7sbNZ0UNyoVzjYM0Pm8HSKDWWSGFFMLrJvtv32ymrSgV37Zrn/+vYWcgfYumF+204WF12sqrrXSdWsaifrtAIZETzqpM2sWz3GqUe3P3PiYq1bNc5P7tgFdNBuunJ+u3aXO1ms6szS9nqdSqsh6k/VcWD77umeTFwDMD2TAzm7qSTpwMbLdRI7udxgfnbT4uRip5dFPO60ozravh4Tpzq75KzfDWWSOBLBjg6rPavGR1m7cox79850VKo+vmUB65O2dD+R2nJEkcx20i/dWjXo9Fq8T7zkkR1tfzjWrR6rZw5tf3bTlkpilyu51eymO+t1KofjIKLBUx0Tpqa7P7vp/MzFs/UENl6TKEnDoaokznRwuUHrjPfTs3NdL8JMlN1yd5erFXT7Wv3lYjh+ywVGI7ijvLawk8RhczmbZyfX6LROO79+TXev7YH5SmInJ+Kr12DHVGftpr3W2rrbbj/45pYZWLudJI6NjrBidGT+msQhOYho8LRW4Fd1+e+m6grYvW+Wmbk5RsI1RiVpWFTrJE53cLlB9Rlwaro4udjt7pPqkqq77i06xbo9o/9yMZSfYkdHop4ApZMP8pvLltMNHSSJvS5JV2fgT+tg4eYqxp1T08v6OrrW5LzdayBbK7m9SIBXjY/Ui8g6cY361REtJ2S6fQyrBtvd+2aL9a6ctEaShkZVSdw3M1f/fCjVuDG1b7ZY3L7LS1JUJzOrAtOwJIlD2W46OhL8akeRJHbSErhpoqjSdToz0juecQabJ7o7+UPlv511DL/asYfX/k77S0dWZfO9HS6B0WutrbAnH9le6+7mlgWsjzqi/WtJF2vV+Ci/ntxbfy/1o/Wr5//Wut1WM39GeIbp2azXv5IkDb6qklgniaOH/uxUJWl7ZmaZmZ3reiVxYsV9K4nD8vluKJPEsdGo34wbJ9pP+KqEo9Mk8ZJzT+ho+8Nx7MY1vOMZ/7mjfVqrh92e3OVwHNdSFWy33TRi/gPn2f9p05LHtFBrXMs54ZYOppeVxOq64arddNy/G0kaGuOjI8xl0ToK7VUSV61orSRmR+skLsbISLBmxWi9DJ5J4gAbbTlT3UmF74LTj+Znd+/mqQ9tf5HQftBaKejFWo6L9YTT7wfASVsmOtrvokccy0/v3NWTZTpaWxCWc+uudDCtkwB0P0mcH+yHaZFiSdJ8UrirnJiwk3bTPdNFu2kvlk2aWDnWUklcvp+Vl9LQJ4lbOlgD7PGnH83jTz+6GyE16j4zgC7jN/7qFaP8w6se3XEl993PemiXIvpNrbFZSVS/uu/Jjl61m3a2dq0kqf9VSeHkniJJbGudxNERxkaCqelZZuayXhKjm9auHOPnd+8G2u9m63dDmSSORTBbft96zdqw2jTRuxlAD9epHUzI04SNa4rXcsXoiDM0qm+1tmn3qpK4e98se6fnrCRK0hBZUSZ4VSWx3c+hq8ZHmdo3x/TMXNfbTaGY9XumnIF1WMap5Z0RdMnoaO8+APWDDS1LcyznJTD6wcYy4V7uybbUrl7ObrpnZtZKoiQNkerSnMk9xczw7UxcA2WSWHag9OKz60RL192wVBKHcjRuba9U8Qc6Ub7hvY7u8GwqJ0Iy2dagmOjyYFi3m+6bsZIoSUOmGgN2TLV/TWKx3wiTe6bZNzvH2h58rm+d12JYxqmh/CQ7NhI882HHcPE5xzUdyrIxUb75rYAdnqrddN/sXMORSIfnggcV118/+tQju/o8K0ZHGB2Jot3USqIkDZWqm2T7VDEpTNtJ4vgod+8q9lnTg4kJ167qj/k7ltLQltTec9GZTYewrGT5by9mAB1kVZI4tW/2EFtKy9v7L3kYc5ldbzeNCNaMjxbtptNzbJoYjsFXkjR/XfqO3WW7aQdJYjXbaLc7XgCO2bAaKD4nD0tBxYxAANxRLgD/8BM2NhxJf6sqsse3rOko9aNetkyvXjHKVF1JHI42HklSa7tpdU1i+xPX/HL7FNCbSuIpR60Fio671sndBtlwpMI6pOrNf/r91zUcSX87+8SNXPCgo/jIi89pOhSpb0ysHGPXvhn2TM8NzRlaSdJ8kri9wyRx9YpR7uxhJbH6nDxMM9dbSRQAn3rJI5ncMzNUb/5u2Lx2JX/5wrObDkPqK+tWjbFzzwx7Z+accVqShsia8SIVqSuJHbSb1o/Rg4lrqiTx1Y8/tevPtVyYJAookpvNa1c2HYakIbRu9Tg7pqaLdlMriZI0NOpKYofXJLYu3zaxsvsnF9esGOOWdz2l68+znDgaS5IatX71ODunptk7PecyPJI0RKokcefUNKMjwWibHW3VRIHg0nbdYpIoSWrU+tXj3LN7H/tm51g1JFOLS5Lm20b3zc61fT0iwKaJ+SSxF5XEYeRoLElq1PrV43WrkZVESRoeoyNRt5h2Mqu2lcTuM0mUJDVq/er5a0u8JlGShku1VmInSeKmta1JoicXu8HRWJLUqNYk0dlNJWm4rCmP+x21m7ZUEsc72E/t81WVJDXKSqIkDa9Vi6gkVu2mR69zZv5usYlXktSoo1oG+fuvX9VgJJKkXts8sYKf3LGro5OEx25czSv/6ylc9IjjuhjZcDNJlCQ16qQta+vvT9gy0WAkkqReu9/61cA93K+Dk4QjI8Grn3Ba94KS7aaSpGZtbJnK/P7rrCRK0jDZWiaHx25c3XAkamWSKElaNkbaXEhZkjQYqiUs1q4cP8SW6iXbTSVJjfvcFeexZ3q26TAkSQ3pZOIadZ9JoiSpcQ87fmPTIUiSGnDpo07gh7dPctl5JzYdilqYJEqSJElqxKaJFbzvkoc1HYYWsK4rSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmomiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqJomSJEmSpJpJoiRJkiSpZpIoSZIkSaqZJEqSJEmSaiaJkiRJkqSaSaIkSZIkqWaSKEmSJEmqmSRKkiRJkmqRmU3H0HMRMQn8xyJ2XQ/sWOb7GWOz+/VDjIvdzxib3a8fYlzsfv0Q42L32wLc2aPnWux+/fA6Lna/fohxsfsZY7P79UOMi92vH2Jc7H7GeF+nZeYR+70nM4fuC7hhkft9aLnvZ4z+bsP8u/VDjP5u/RnjYfxuy3686YfX0d/NGJfbfv0Qo7+bMbaxzwHHKNtNO/PFPtjPGJvdrx9iXOx+xtjsfv0Q42L364cYD2e/Xj6Xr39zz9Xr/Yyx2f36IcbF7tcPMS52P2Ns07C2m96QmY9oOg5J0mBzvJEkLVcHG6OGtZL4oaYDkCQNBccbSdJydcAxaigriZIkSZKk/RvWSmJXRMSmiPh8ROyKiFsj4nnl7Y+LiH+LiO0RcVe5zTFNxztoIuIVEXFDROyNiP+z4L7zI+KmiNgdEV+LiBMaCnNgHej1j4hLIuLelq/dEZER8fAGwx0oEbEyIq4qjzuTEfHdiHjSfra7snztL2giTqlbDjT+lve9MiJ+GhE7y2PUbzUZ6yA6yPH/xPKY0zoGvKnBUAfSwcaAiHhkRHwlIu6OiDsi4jMRcf+mYx4khxqDI+LyiPhx+f6/LiK2Nhlvu0wSl9b7gH3A0cAlwAci4sHAvwNPzMwNwFbgR8AHmgpygN0GvB34q9YbI2IL8DngTcAm4AbgUz2PbvDt9/XPzGszc231BVwB/AT41wZiHFRjwM+Bx1BMgf1G4NMRcWK1QUScDDwb+FUTAUpdtt/xNyLOBd4FPIvib+Mq4PMRMdpYpINpv8f/FhtaxoG39TCuYXGwMWAjRUvhicAJwCRwdSNRDq4Dvv4R8VjgncDTKT6D/hT4RDNhdsZ20yUSERPAPcAZmfnD8rZrgF9m5utbtlsJvAV4emae3kSsgy4i3g4cm5kvKn9+CfCizDyv/HmCYt2yszLzpsYCHVALX//93P814PrMfGtPAxsyEfF94K2Z+dny5+uA9wLvBy7PzK82GZ+0VA42/gLfAV6dmee0bHsvsDUzPWGyxPYz/p5I8aF4PDNnGgxt6CwcA1pufxjw9TzQ2nhaEtXrDzwKWJ2Zv1/evpXi2HRKZt7cYIiHZCVx6ZwKzFQDVOl7wIMBIuL4iNgOTAGvAd7d8wiH14Mp/i8AyMxdwM3l7eqhss330cBHm45lkEXE0RTHpBvLn58N7M3Mv2s0MKk7Djb+/j0wGhHnltXDFwPfBbb1PMrhdmtE/CIiri67e9RFC8eABR59gNu1RPbz+kfr3eW/Z/Q0qEUYazqAAbIW2Lngth3AEQCZ+TNgQ0RsAn4PsILVO2uBOxbcVv/fqKdeAPxTZv606UAGVUSMA9cCH8nMmyLiCIpWl8c3G5nUNQcbfyeBzwL/l+LD2XbgSWkbVa/cCZxNkZhvpmgLvhZ4YoMxDbSFY8CC+x4CXEnR+qgu2M8YfB3wyYj4IMXlZlcCCaxpMMy2WElcOvcC6xbcto5igKpl5t3AR4C/iQiT9N5o6/9GPfECive/uiAiRoBrKK7NekV581uAazLzlobCkrrtYMf43wUuo6gqrgCeD3ypXyaO6HeZeW9m3pCZM5l5O8Vx6QnlySstsQOMAdV9p1BU1v8wM/+pgfAG3v5e//LSjjdTnKy6pfyaBH7RSJAdMElcOj8ExiLiAS23PZT9l/THgKP4zUFN3XEjxf8FUF+TcjK2W/RURPwXiomb/rrpWAZRRATFpBxHAxdm5nR51/nAH0TEtojYBhxHcUH96xoKVVpqBxt/zwS+lJk/zMy5zLyOYvKm83ofpigqKODnzyV3kDGgutTjq8DbMvOahkIcaAd7/TPzfZn5gMw8miJZHAN+0Eyk7fOPdImU17l9DvjjiJgoPxA/HbgmIp4ZEadFxEhEHAm8B/hOWVXUEomIsYhYBYxSXIOyqqzWfh44IyIuLO+/Evi+k9YsrYO8/pUXAp/NTCu43fEB4EHA0zJzquX28ymufTiz/LoNeClF25fU9w42/gLfBp4SESdF4fEU1wot+w9o/eRAx//yWtDq889mismzrs/MHc1GPJD2OwZEseTaPwJ/npkfbCq4IXCg139VRJxRHn+Op5hp9n9n5j1NBdouk8SldQWwGvg1xfS2L8/MG4FjgOsoysv/BswBz2gqyAH2RoqJgV5P0VI0BbwxM+8ALgTeQTED3rnAc5sKcoDt9/WH4iAJXIStpl1RniV+KUUSuC3m1yO7JDPvysxt1RcwC9yTmfc2GbO0xA40/n4U+CRwPcV1i+8FXupJwiV3oOP/Scx//vkBsBe4uKEYB9bBxgDgcor/h7e03O7xfwkd4vVfBXycoi3+n4FvUizJtuy5BIYkSZIkqWYlUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1UwSJUmSJEk1k0RJkiRJUs0kUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1QYqSYyIWyLi1xEx0XLb5RFxfYNhSZIGTDneTEXEZERsj4hvRMTLImKgxlVJ0nAaxMFsFPjDpoOQJA28p2XmEcAJwLuA1wFXNRuSJEmHbxCTxD8FXhMRGxbeERHnRcS3I2JH+e955e3PiYgbFmz7qoj4296ELEnqV5m5IzP/FngO8MKIOCMiVkbE/4yIn0XE7RHxwYhYXe0TEU+PiO9GxM6IuDkifqe530CSpPsaxCTxBuB64DWtN0bEJuDLwHuBzcB7gC9HxGbgi8BpEfGAll2eB3y8FwFLkvpfZv4z8Avgtykqi6cCZwKnAMcAVwJExDnAR4E/AjYAjwZu6XW8kiQdyCAmiVAMxK+MiCNbbnsK8KPMvCYzZzLzE8BNFO1Cu4G/AS4GKJPFBwJWEiVJnbgN2AS8BHhVZt6dmZPAO4Hnltv8LvBXmfmVzJzLzF9m5k0NxStJ0m8YyCQxM38AfAl4fcvNW4FbF2x6K8XZXSiqhheX3z8P+EKZPEqS1K5jgDFgDfAv5aQ224HrgOrE5XHAzc2EJ0nSoQ1kklh6M/B7zCeBt1FMLtDqeOCX5fdfAY6MiDMpkkVbTSVJbYuIsynGnC8AU8CDM3ND+bU+M9eWm/4cOLmhMCVJOqSBTRIz88fAp4A/KG/6O+DUiHheRIxFxHOA0ykqjmTmNPAZiolvNlEkjZIkHVRErIuIpwKfBD6Wmd8DPgz8WUQcVW5zTEQ8sdzlKuCyiDg/IkbK+x7YTPSSJP2mgU0SS38MTABk5l3AU4FXA3cBrwWempl3tmz/ceAC4DOZOdPjWCVJ/eWLETFJURn87xQTol1W3vc64MfAtyJiJ/BV4DSoJ7i5DPgzYAfwdX6z00WSpMZEZjYdgyRJkiRpmRj0SqIkSZIkqQMmiZIkSZKkmkmiJEmSJKlmkihJkiRJqpkkSpIkSZJqfZ0kRsTKiLgqIm6NiMmI+G5EPKnl/vMj4qaI2B0RX4uIE1ruuygivlHed/1BnuMFEZERcXmXfx1JkiRJalxfJ4nAGMX6VI8B1gNvBD4dESdGxBbgc8CbgE3ADcCnWva9G/hfwLsO9OARsRF4A3BjN4KXJEmSpOVm4NZJjIjvA28FNgMvyszzytsngDuBszLzppbtLween5mP3c9jfRD4PnAR8LHM/Mvu/waSJEmS1Jx+ryTeR0QcDZxKUfl7MPC96r7M3AXcXN7ezmOdAzwC+ODSRypJkiRJy9PAJIkRMQ5cC3ykrBSuBXYs2GwHcEQbjzUKvB94RWbOLXWskiRJkrRcDUSSGBEjwDXAPuAV5c33AusWbLoOmGzjIa8Avp+Z31qyICVJkiSpD4w1HcDhiogArgKOBp6cmdPlXTcCL2zZbgI4mfYmoTkfeExEPLn8eRNwVkScmZmvOMh+kiRJktTX+j5JBD4APAi4IDOnWm7/PPCnEXEh8GXgSorq4E1Qt5SOU7wGIxGxCpgtk8wXAataHutzwF9TJKOSJEmSNLD6ut20XPfwpcCZwLaIuLf8uiQz7wAuBN4B3AOcCzy3ZfdLgSmKJPO3y+8/DJCZ2zNzW/VF0ca6MzMXXuMoSZIkSQNl4JbAkCRJkiQtXl9XEiVJkiRJS8skUZIkSZJUM0mUJEmSJNVMEiVJkiRJNZNESZIkSVLNJFGSJEmSVDNJlCQJiIjjy7V2R5uORZKkJpkkSpKGVkTcEhEXAGTmzzJzbWbO9vD5HxsRv+jV80mS1A6TREmSJElSzSRRkjSUIuIa4Hjgi2Wb6WsjIiNirLz/+oh4e0R8o7z/ixGxOSKujYidEfHtiDix5fEeGBFfiYi7I+I/IuKilvueHBH/HhGTEfHLiHhNREwAfw9sLR//3ojYGhHnRMQ3I2J7RPwqIv48Ila0PFZGxBUR8aPy8d4WESeXce6MiE9X21eVyoh4Q0TcWVZOL+nRSyxJ6lMmiZKkoZSZlwI/A56WmWuBT+9ns+cClwLHACcD3wSuBjYB/w94M0CZ8H0F+DhwVLnf+yPi9PJxrgJemplHAGcA/5iZu4AnAbeVba5rM/M2YBZ4FbAFeBRwPnDFgrieCDwceCTwWuBDwPOB48rHv7hl2/uVj3UM8ELgQxFxWkcvliRpqJgkSpJ0YFdn5s2ZuYOi6ndzZn41M2eAzwBnlds9FbglM6/OzJnM/A7wWeDZ5f3TwOkRsS4z78nMfz3QE2bmv2Tmt8rHuQX4C+AxCzZ7d2buzMwbgR8A/5CZP2mJ86wF278pM/dm5teBLwMXIUnSAZgkSpJ0YLe3fD+1n5/Xlt+fAJxbtohuj4jtwCUUVTyAC4EnA7dGxNcj4lEHesKIODUivhQR2yJiJ/BOikrgYuICuKesWlZuBbYe6PklSTJJlCQNs1yix/k58PXM3NDytTYzXw6Qmd/OzKdTtKJ+gfnW1v09/weAm4AHZOY64A1AHEZsG8t22MrxwG2H8XiSpAFnkihJGma3AyctweN8CTg1Ii6NiPHy6+yIeFBErIiISyJifWZOAzuBuZbn3xwR61se64hym3sj4oHAy5cgvreWcfw2RWvsZ5bgMSVJA8okUZI0zP4EeGPZHvqsxT5IZk4CT6CYsOY2YBvwP4CV5SaXAreU7aMvo2hFJTNvAj4B/KRsU90KvAZ4HjAJfBj41GLjKm0D7injuhZ4Wfm8kiTtV2QuVaeNJElaTiLiscDHMvPYhkORJPURK4mSJEmSpJpJoiRJkiSpZrupJEmSJKlmJVGSJEmSVDNJlCRJkiTVTBIlSZIkSTWTREmSJElSzSRRkiRJklQzSZQkSZIk1f4/WCe+dKm1/scAAAAASUVORK5CYII=\n", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "现在,您需要通过过滤和缩放数据来准备训练数据。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Training data shape: (1416, 1)\n", + "Test data shape: (48, 1)\n" + ] + } + ], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "将数据缩放到范围 (0, 1)。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      load
      2014-11-01 00:00:000.101611
      2014-11-01 01:00:000.065801
      2014-11-01 02:00:000.046106
      2014-11-01 03:00:000.042525
      2014-11-01 04:00:000.059087
      \n", + "
      " + ], + "text/plain": [ + " load\n", + "2014-11-01 00:00:00 0.101611\n", + "2014-11-01 01:00:00 0.065801\n", + "2014-11-01 02:00:00 0.046106\n", + "2014-11-01 03:00:00 0.042525\n", + "2014-11-01 04:00:00 0.059087" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      load
      2014-12-30 00:00:000.329454
      2014-12-30 01:00:000.290063
      2014-12-30 02:00:000.273948
      2014-12-30 03:00:000.268129
      2014-12-30 04:00:000.302596
      \n", + "
      " + ], + "text/plain": [ + " load\n", + "2014-12-30 00:00:00 0.329454\n", + "2014-12-30 01:00:00 0.290063\n", + "2014-12-30 02:00:00 0.273948\n", + "2014-12-30 03:00:00 0.268129\n", + "2014-12-30 04:00:00 0.302596" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [ + "### 创建具有时间步的数据\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "对于我们的SVR,我们将输入数据转换为`[batch, timesteps]`的形式。因此,我们重新调整现有的`train_data`和`test_data`,使其具有一个新的维度,该维度表示时间步。在我们的示例中,我们取`timesteps = 5`。因此,模型的输入是前4个时间步的数据,输出将是第5个时间步的数据。\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=5" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(1412, 5)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=np.array([[j for j in train_data[i:i+timesteps]] for i in range(0,len(train_data)-timesteps+1)])[:,:,0]\n", + "train_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(44, 5)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=np.array([[j for j in test_data[i:i+timesteps]] for i in range(0,len(test_data)-timesteps+1)])[:,:,0]\n", + "test_data_timesteps.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 4) (1412, 1)\n", + "(44, 4) (44, 1)\n" + ] + } + ], + "source": [ + "x_train, y_train = train_data_timesteps[:,:timesteps-1],train_data_timesteps[:,[timesteps-1]]\n", + "x_test, y_test = test_data_timesteps[:,:timesteps-1],test_data_timesteps[:,[timesteps-1]]\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [ + "## 创建SVR模型\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = SVR(kernel='rbf',gamma=0.5, C=10, epsilon = 0.05)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "SVR(C=10, cache_size=200, coef0=0.0, degree=3, epsilon=0.05, gamma=0.5,\n", + " kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Fit model on training data\n", + "\n", + "model.fit(x_train, y_train[:,0])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "### 进行模型预测\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(1412, 1) (44, 1)\n" + ] + } + ], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = model.predict(x_train).reshape(-1,1)\n", + "y_test_pred = model.predict(x_test).reshape(-1,1)\n", + "\n", + "print(y_train_pred.shape, y_test_pred.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [ + "## 分析模型性能\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)\n", + "\n", + "print(len(y_train_pred), len(y_test_pred))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)\n", + "\n", + "print(len(y_train), len(y_test))" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1412 44\n" + ] + } + ], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)].index[timesteps-1:]\n", + "test_timestamps = energy[test_start_dt:].index[timesteps-1:]\n", + "\n", + "print(len(train_timestamps), len(test_timestamps))" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABasAAAGDCAYAAAAlN0y0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9eZxtV13m/aw9n7GmOyY3E4QhITIHERkUacjbIrZt+wrd7dCKgratre3Urd2grSD42ohoMwiKAxAwKCAaDGMSEkJIIGRO7s2dx5rrjHtYe6/3j7X2ObvqVtU5dc+vbt3K/X0/n3xy65xTq/Y5Z++113rWs56fUEqBYRiGYRiGYRiGYRiGYRiGYbYSa6sPgGEYhmEYhmEYhmEYhmEYhmFYrGYYhmEYhmEYhmEYhmEYhmG2HBarGYZhGIZhGIZhGIZhGIZhmC2HxWqGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhthwWqxmGYRiGYZgLGiHEzUKIn6B+7agIIZQQ4urz8bc2m+J7EUK8TwjxP8+xnZYQ4im0R8cwDMMwDMNcLAil1FYfA8MwDMMwDPMkQwjRKvxYBhABSM3Pb1JKfeT8HxUtQggF4GlKqQMDXnclgEMAXKWUPB/HtlGGfS8rfucrAP5WKfXBTTswhmEYhmEY5qLC2eoDYBiGYRiGYZ58KKWq+b+FEIcBvFEp9YWVrxNCOBeqgLtd4c+UYRiGYRiG2a5wDAjDMAzDMAxz3hBCfI8Q4rgQ4jeEEKcB/KUQYkII8VkhxIwQYsH8e1/hd74ihHij+fdPCiG+KoT4/8xrDwkh/p9zfO1VQojbhBBNIcQXhBB/JoT423WO/deEEKeEECeFED+14rnvF0J8SwjREEIcE0K8tfD0beb/iyYm47uEEE8VQnxJCDEnhJgVQnxECDG+zt9WQohfFEIcNK//QyGEVXifdwgh3iWEmAPwViGEb973USHEGRPtURryvXxYCPF7hZ9/UAhxn3lvTwghbhBC/D6AlwH4U/Oe/rRwnHmcyJgQ4q/N93pECPHbK455ze+GYRiGYRiGuThhsZphGIZhGIY53+wBMAngCgA/Cz0m/Uvz8+UAugD+dJ3f/04AjwHYAeCdAD4khBDn8NqPArgbwBSAtwL4sbX+oBDiBgC/CuBfAXgagFeteEkbwI8DGAfw/QB+Tgjxb8xzLzf/H1dKVZVSXwMgALwdwCUArgFwmTmG9fghAC8E8HwAPwigKDJ/J4CDAHYD+H0AfwDg6QCeC+BqAJcC+F9Dvpfi+34RgL8G8Gvmvb0cwGGl1G8BuB3AL5j39Aur/Pp7AIwBeAqAV0B/Pv9pxTEP+z0yDMMwDMMwFwEsVjMMwzAMwzDnmwzAW5RSkVKqq5SaU0p9UinVUUo1ocXWV6zz+0eUUn+ulEoB/BWAvdAi7dCvFUJcDuB6AP9LKRUrpb4K4DPr/M3/F8BfKqUeVEq1sUJYVkp9RSn1gFIqU0rdD+Bj670HpdQBpdTnzWcwA+D/DHjPAPAOpdS8UuoogD8G8IbCcyeVUu8x8R8h9CLAL5vXNwG8DcDrh3kvK/hpAH9hjjVTSp1QSj064DghhLDN3/vvSqmmUuowgD/C8gWBjXyPDMMwDMMwzEUAZ1YzDMMwDMMw55sZpVSY/yCEKAN4F4AbAEyYh2tCCNsImSs5nf9DKdUxZtzqKq9b77U7AMwrpTqF1x6DdjivxiUA7i38fKT4pBDiO6HdzNcB8AD4AP5ujbYghNgN4N3QURo1aBPJwlqvLxxf8e9fssZzO6GLWt5bMCoLAPYw72UFlwH45wHHtRo7ALgr2j4C7fDO2cj3yDAMwzAMw1wEsLOaYRiGYRiGOd+oFT//NwDPAPCdSqk6+rEZmxkJcQrApBHKc9YSqvPXF5+/fMXzH4V2Zl+mlBoD8D70j3/l+wW001kB+A7znv8jBr/flX//ZOHn4t+YhY5SeZZSatz8N1YoejnovRQ5BuCpazy32vsqHkMCHe1S/Dsn1vkdhmEYhmEY5iKHxWqGYRiGYRhmq6lBi6uLQohJAG/Z7D+olDoC4B7oYoSeEOK7APzAOr/yCQA/KYS41gjcK4+xBu3UDk3O878vPDcDHX3ylBWvbwFYEkJcCp0JPYhfM8UoLwPwSwA+vsZ7ywD8OYB3CSF2AYAQ4lIhxGuGfC9FPgTgPwkhvk8IYZl2nmmeO7PiPRWPITV/5/eFEDUhxBUAfgXAmgUsGYZhGIZhGIbFaoZhGIZhGGar+WMAJWg37l0APnee/u5/APBdAOYA/B60+But9kKl1M3Qx/klAAfM/4v8PIDfFUI0oQsZfqLwux3oHO47hBCLQogXA/gd6EKJSwD+CcDfD3G8n4aO77jP/M6H1nntb5jjvEsI0QDwBWj3+jDvpYdS6m7ooojvMsd6K/pu6XcD+HdCiAUhxJ+s8uv/Bbrw5EEAX4V2n//F4LfJMAzDMAzDXKwIpdbbvccwDMMwDMMwFwdCiI8DeFQptenO7o0ihFAAnqaUOrDVx8IwDMMwDMMwmwU7qxmGYRiGYZiLEiHE9UKIp5p4ixsA/CCAT23xYTEMwzAMwzDMRYuz1QfAMAzDMAzDMFvEHuj4jSkAxwH8nFLqW1t7SAzDMAzDMAxz8cIxIAzDMAzDMAzDMAzDMAzDMMyWwzEgDMMwDMMwDMMwDMMwDMMwzJbDYjXDMAzDMAzDMAzDMAzDMAyz5VzQmdU7duxQV1555VYfBsMwDMMwDMMwDMMwDMMwDLMO995776xSaucobVzQYvWVV16Je+65Z6sPg2EYhmEYhmEYhmEYhmEYhlkHIcSRUdvgGBCGYRiGYRiGYRiGYRiGYRhmy2GxmmEYhmEYhmEYhmEYhmEYhtlyWKxmGIZhGIZhGIZhGIZhGIZhtpwLOrN6NZIkwfHjxxGG4VYfyrYmCALs27cPrutu9aEwDMMwDMMwDMMwDMMwDMNsP7H6+PHjqNVquPLKKyGE2OrD2ZYopTA3N4fjx4/jqquu2urDYRiGYRiGYRiGYRiGYRiG2X4xIGEYYmpqioXqERBCYGpqit3pDMMwDMMwDMMwDMMwDMNcMGw7sRoAC9UE8GfIMAzDMAzDMAzDMAzDMMyFxLYUqy8UPvWpT0EIgUcffXTd1/3xH/8xOp3OOf+dD3/4w/iFX/iFc/59hmEYhmEYhmEYhmEYhmGYCx0Wq0fgYx/7GF760pfiYx/72LqvG1WsZhiGYRiGYRiGYRiGYRiGebLDYvU50mq18NWvfhUf+tCHcOONNwIA0jTFr/7qr+K6667Ds5/9bLznPe/Bn/zJn+DkyZP43u/9Xnzv934vAKBarfbauemmm/CTP/mTAIB//Md/xHd+53fiec97Hl71qlfhzJkz5/19MQzDMAzDMAzDMAzDMAzDbAXOVh/ASLzpTZvT7vvfP/Aln/70p3HDDTfg6U9/OqampnDvvffi7rvvxuHDh3HffffBcRzMz89jcnIS/+f//B98+ctfxo4dO9Zt86UvfSnuuusuCCHwwQ9+EO985zvxR3/0R1TvimEYhmEYhmEYhmEYhmEY5oJle4vVW8jHPvYx/NIv/RIA4PWvfz0+9rGP4dChQ3jzm98Mx9Ef6+Tk5IbaPH78OH70R38Up06dQhzHuOqqq8iPm2EYhmEYhmEY5pyQErj9duA7vgMYYMRhGIZhGIY5F4YWq4UQNoB7AJxQSr1WCPFhAK8AsGRe8pNKqfuEEALAuwH8awAd8/g3TRs/AeC3zet/Tyn1VyMd/RAO6M1gfn4eX/rSl/DAAw9ACIE0TSGEwPXXXz/U7+uPSBOGYe/f/+W//Bf8yq/8Cl73utfhK1/5Ct761rdSHzrDMAzDMAzDMMy5cfvtwI03Ap/8JPCnf7rVR8MwDMMwzJOQjWRW/xKAR1Y89mtKqeea/+4zj/0/AJ5m/vtZAO8FACHEJIC3APhOAC8C8BYhxMQIx75l3HTTTfixH/sxHDlyBIcPH8axY8dw1VVX4TnPeQ7e//73Q0oJQIvaAFCr1dBsNnu/v3v3bjzyyCPIsgz/8A//0Ht8aWkJl156KQDgr/5qNB2fYRiGYRiGYRiGlNOn9f+TZGuPg2EYhmGYJy1DidVCiH0Avh/AB4d4+Q8C+GuluQvAuBBiL4DXAPi8UmpeKbUA4PMAbjjH495SPvaxj+GHfuiHlj32wz/8wzh16hQuv/xyPPvZz8ZznvMcfPSjHwUA/OzP/ixuuOGGXoHFP/iDP8BrX/tavOQlL8HevXt7bbz1rW/Fj/zIj+AFL3jBwHxrhmEYhmEYhmGY88rYWP/fWbZ1x8EwDMMwzJMWoZQa/CIhbgLwdgA1AL9aiAH5LgARgC8C+E2lVCSE+CyAP1BKfdX87hcB/AaA7wEQKKV+zzz+PwF0lVL/34q/9bPQjmxcfvnlLzhy5MiyY3nkkUdwzTXXnPMbZvrwZ8kwDMMwDMMwzNDcfDMe//CdeNrYNMTbfp9zqxmGYRiGWYYQ4l6l1AtHaWOgs1oI8VoA00qpe1c89d8BPBPA9QAmoQXpkVFKfUAp9UKl1At37txJ0STDMAzDMAzDMAwzKlGEN93+H/FEYydw5sxWHw3DMAzDME9ChokB+W4ArxNCHAZwI4BXCiH+Vil1ykR9RAD+EjqHGgBOALis8Pv7zGNrPc4wDMMwDMMwDMNc6EQR4szGA/OXsljNMAzDMMymMFCsVkr9d6XUPqXUlQBeD+BLSqn/aHKoIYQQAP4NgAfNr3wGwI8LzYsBLCmlTgH4FwCvFkJMmMKKrzaPMQzDMAzDMAzDMBc6UYQkF6tnZ7f6aBiGYRiGeRLijPC7HxFC7AQgANwH4M3m8X8G8K8BHADQAfCfAEApNS+E+N8AvmFe97tKqfkR/j7DMAzDMAzDMAxzvohjJJmN++cvBToPbPXRMAzDMAzzJGRDYrVS6isAvmL+/co1XqMA/Oc1nvsLAH+xoSNkGIZhGIZhGIZhtp4oAgAcbOwEut0tPhiGYRiGYZ6MDJNZzTAMwzAMwzAMw1zsRBEEACEUi9UMwzAMw2wKLFafA7Zt47nPfS6uu+46/MiP/Ag6nc45t/WTP/mTuOmmmwAAb3zjG/Hwww+v+dqvfOUruPPOOzf8N6688krMcqYcwzAMwzAMwzCjEEUQQsERGWQ72uqjYRiGYRjmSQiL1edAqVTCfffdhwcffBCe5+F973vfsuellOfU7gc/+EFce+21az5/rmI1wzAMwzAMwzDMyJgYkLITo91It/hgGIZhGIZ5MsJi9Yi87GUvw4EDB/CVr3wFL3vZy/C6170O1157LdI0xa/92q/h+uuvx7Of/Wy8//3vBwAopfALv/ALeMYznoFXvepVmJ6e7rX1Pd/zPbjnnnsAAJ/73Ofw/Oc/H895znPwfd/3fTh8+DDe97734V3vehee+9zn4vbbb8fMzAx++Id/GNdffz2uv/563HHHHQCAubk5vPrVr8aznvUsvPGNb4SOEWcYhmEYhmEYhhmBOAYAVNwInSaL1QzDMAzD0LOhAovMcqSUuPnmm3HDDTcAAL75zW/iwQcfxFVXXYUPfOADGBsbwze+8Q1EUYTv/u7vxqtf/Wp861vfwmOPPYaHH34YZ86cwbXXXouf+qmfWtbuzMwMfuZnfga33XYbrrrqKszPz2NychJvfvObUa1W8au/+qsAgH//7/89fvmXfxkvfelLcfToUbzmNa/BI488gt/5nd/BS1/6Uvyv//W/8E//9E/40Ic+dN4/G4ZhGIZhGIZhnmSEIQDjrG6xIYZhGIZhGHq2vVh9ww0AZRzzjh3A5z63/mu63S6e+9znAtDO6p/+6Z/GnXfeiRe96EW46qqrAAC33HIL7r///l4e9dLSEvbv34/bbrsNb3jDG2DbNi655BK88pWvPKv9u+66Cy9/+ct7bU1OTq56HF/4wheWZVw3Gg20Wi3cdttt+Pu//3sAwPd///djYmJiQ58BwzAMwzAMwzDMWeTOaidGJ7SAJAFcd4sPimEYhmGYJxPbXqweJCxvBnlm9UoqlUrv30opvOc978FrXvOaZa/553/+Z7LjyLIMd911F4IgIGuTYRiGYRiGYRjmLLJMi9MAyiWFtvSBbpfFaoZhGIZhSOHM6k3iNa95Dd773vciMQO6xx9/HO12Gy9/+cvx8Y9/HGma4tSpU/jyl7981u+++MUvxm233YZDhw4BAObn5wEAtVoNzWaz97pXv/rVeM973tP7ORfQX/7yl+OjH/0oAODmm2/GwsLCprxHhmEYhmEYhmEuEoyrGsJCpZyhIz0tVjMMwzAMwxDCYvUm8cY3vhHXXnstnv/85+O6667Dm970Jkgp8UM/9EN42tOehmuvvRY//uM/ju/6ru8663d37tyJD3zgA/i3//bf4jnPeQ5+9Ed/FADwAz/wA/iHf/iHXoHFP/mTP8E999yDZz/72bj22mvxvve9DwDwlre8Bbfddhue9axn4e///u9x+eWXn9f3zjAMwzAMwzDMk4woglKAEgLlEtBOWKxmGIZhmFtv3eojePIhlLpwC2O88IUvVPfcc8+yxx555BFcc801W3RETy74s2QYhmEYhmEYZiimpyF/6y14yT/9Fn7kBQdxWecxvP5PXwrwfIJhGIa5iLn6auDAga0+igsHIcS9SqkXjtIGO6sZhmEYhmEYhmGY9YkiJJkN11EoV9DPrCbgiSeAN72JpCmGYRiGOW8oBZw4of/P0MFiNcMwDMMwDMMwAzl5Evi939vqo2C2jDjWYrWrUKlapJnVi/c+gf13nNFFHBmGYRhmm9DpAGHYqz/MEMFiNcMwDMMwDMMwA5mZAW6/fauPgtkykqTvrK5aaBOK1fFHb8LpEylw990k7TEMwzDM+WBuTv8/DLf2OJ5sbEux+kLO2d4u8GfIMAzDMAzDbAQpgTNntvoomC1DSi1W2wqVmnFWxzFJ03Fq41RnDFhaImmPYRiGYc4HuVjN9YZp2XZidRAEmJubY7F1BJRSmJubQxAEW30oDMMwDMMwzDaBxeqLnDQtZFYLtBMfiCKSpqPMwWJcQZjYJO0xDMMwzPlg7owEwM5qapytPoCNsm/fPhw/fhwzMzNbfSjbmiAIsG/fvq0+DIZhGIZhGGabIKWOAskywNp2lpeLDyl1hmapRNRgHgPiFpzVFGJ1liFO9bT09LyHK0dvkWEYhmE2n6NHMfdHtwB4I4vVxGw7sdp1XVx11VVbfRgMwzAMwzAMc1GRJECa6i2vO3du9dEwg7j5ZuBrXwPe9jaiBnvOavQzqyliQLpdxJkRq88IFqsZhmGY7cHtt2OuW4ZAhjDkVXxK+NNkGIZhGIZhGGYg8r4HAQBnjtJEPzCbSxQBjz9O2KCUkJkFx1GojNl0mdXtNuLURtUNcer06M0xDMMwzHlh927MRRXsLjURtuRWH82TCharGYZhGIZhGIYZiLzlSwCAM5/75hYfCTMMaQrs30/YYF5g0QHKdRdt6ZOJ1VHm4IrqHE5Pc2Y1wzAMs01wHMyHFVxaWUR4dHqrj+ZJBYvVDMMwDMMwDMMMRGYWSnaM6YPtrT4UZgjSMzM4sD8DWV36XKx2gUrdpiuw2G4jTh1cUZ3H6dltl1LJMAzDXKxIibmogn2VBYRHuAI1JSxWMwzDMAzDMAwzEKksXFpZwJmT6VYfCjME6T/8IzpdC6cfmqNpsCBWl+oubQxI5mAqaKHVFqO3xzAMwzDnAykxF1a1s3q2tdVH86SCxWqGYRiGYRiGYQaSZDYurSzizPTFKyjeeSfw0ENbfRTDkSoLjkix/6tEbq+8wKIL2CUPmRI0YnWngyh1UHdDhF0qGzjDMAzDbDJSopkE2Bk00W1nW300TypYrGYYhmEYhmEYZiASLnYGLSx2faDb3erD2RJuvx34xje2+iiGI1UWrqrP4uDDIU2DBWc1fF8/RhED0mohzmzUvRAh1+5kGIZhtgtSQioLNS9E2GGxmhIWqxmGYRhmizh6FLj55q0+CoZhmCHIMkgJTAUtLMUlYHFxq49oS5AS6HS2+iiGQCnIzMLOoInFU0QLC7lY7QHwPAih6GJAUgc1NyTRvhmGYRjmvJCmkJmFqhOxWE0Mi9UMwzAMs0Xcc8/FLVa320BIZPhjGGaTiWNIZWPKb6ORBBetszpJtslbzzKkysKk30FjmtpZLQDP049RqMudDuLM0c7qxNYrAgxDxPw8cOONW30UzLC0WsD09FYfBcMMSZIgVRbKTswxVsSwWM0wDMMwW8TMzDYRPTaJP/9znkAyzLYhjpFkNnbkzuoLvPNSCvj85+nb3TbOaimRKgsTfhuNxQzICBxfRWd1HgMSx/rDHoUwNJnVXUSpu00+YGa7cPTo9hlrSAn84R9u9VFsLbfcAvzZn231UTDMkKS64HTgJCxWE8NiNcMwDMNsERe7WB2GwNzcVh8FwzBDEYaQmc5l7EjvghcUowh49auB97+ftt0kueDfusaI1eNeF42YyAkvJaSy4bgCsG0IAWSp6k3WR2m3l1mdOhf3jfEiJ4qA7/5u2jaTZPs4dcMQeOc7R1//2c5ICSwtbfVRMMyQSAkBoGSzWE0Ni9UMwzAMs0Vc7GJ1kgALC1t9FAzDDEUcQyoLrmWEyQu880oS4OlPV/jMZ2jb3V7OaoEJv4Nm4uvcpVFJU+OsFgCAwEkRpc7oudVJgjh1UPeMs5oiB5vZlnz0o8Cdd46+/lFESj3e2g4kCTA7C5w5Q9vu4uI26bfAYjWzzTCxVYGdIIzEFh/MkwsWqxmGYRhmi5iZoc9s3k5Rn1LqLEmGYbYBUQSZ2XCEiZO40MXqL38VU41DaJyhPc5tk1ktJdLMwoTfQSMu0YjVvRgQPYUM3BRdSSAuS2liQIyzmsXqi5YbbwSe9jSdW0yFlNvHWZ2P4e6/n7bdD3wA+Nu/pW1zs0hTFquZbUQuVjsJwtiiidxiALBYzTAMwzBbxmY4q3/914GPfIS2zc2CndUMs42IIsjMgmNlEACy9oWt2MqbPoUxt4POEVqVans5q01mdRIQi9X6x8DLEKbu6EUWkwRx5qBcsyEzm8Xqi5hOW+HyyxWpWJ0kQKNBUwt0s8nF6gceoG03joGHH6Ztc7NgsZrZVvSc1VIv3nLleDJYrGYYhmGYrWB2FnPHOuRidbMJ/M7vbA+HdZKws5phtg1RhCSz4YgUVTdEayHZ6iNal2TPZXCFyRIgnDxut8zqmhuhTRUDkovVvg0AKPmpFqspYkAyG17VqOAsVl+cnDoFeeAQxjunyJ3VwPaIAkkW27hib4QHHqDNvpWSxer/8B+4TgqzCeQFFu1E3w+3xdar7QGL1QzDMAyzFbzzncDsLOJFAgGhQD4pO3yYtNlNgZ3VDLONiGNIZcO1Uox5XSzNE4bKbgJJUOvnaz/xBFm7281ZbeexLRQH3XNWm8zq3FlNlFnt1Xz9M4vVFycPPIA0ExifP4jWHJ0NOjHrattBrJY3/QMuV0dx5gH6HSHbRazerMzqI0eAb32Lvl3mIqeYWc1iNSksVjMMwzDMFqAWlyCEonG7FUgaXeyYSNFskja7KXBmNcNsI/IYkGqgxeqFCzuXMQlTOJY+RtWg6xC3k7NaZlqsJrvX5AUWfSNW+0pvex41X0FKRJkWq4VQ2yOvgaGnVEKmLNS9EM27HyFrVsa6H9gOudXywccwFbSwdILQWg493jp1anvEa2yWs1pK4JvfpG+XuchZJlY7HANCCIvVDMMwDLMFNJIAdTekdZAtLEDe9yAmpx/ZFmI1O6sZZhsRRZDKglMvY8wLsbRIu02dGhmlcK0UJTtBtECnLku5TYxTxlndE+ybBOJXkiwrsFjyFamz2h8L9M/srL44kRIKQM0N0Tq+SNZs8k+3YMpvYWY/XZsAoDahC0x2XYqqEyFKnb4lnAApgac+FXjsMbImN43NFKvZWc2QY/qtUt3V90MWq8lgsZphGIZhtoDZZBw7ghaUzOhmPDMzSDIbk24TzTMXuPVPKSQP70dzKePC2QyzHcgzq+tl7awmFBP+/M/po4uSKINrpah7XTSm6SaP2zEGJLATRA0Ct3LurA70FDIIQFhg0e7HgBA6q9/yFuDb3yZrblORshd/enFixNmqG6G1RPdByEPHcEllEdP3HCVrEwB+8RfpxU/plvrxRVSdolKQ334Qe5yZbbGbLU31ehW15pdl20OsZ7YZubN6zOcYEGJYrGYYhmGYLaBbmkTZMe6xxUWaRpWCVBYm/A4aj52iaXOz6HQgz8xiwmuhsXRhOzQZhoGJAbHh1ksY87poNAVZ03fdBdx/P1lzAIAkSuFYKWpuhMYsnVN3O8WApErAtpT+DOYIXJomWsTxdIHFwM90DMgoCqtSOgYkdeCNlfRDEd33deQI8NWvkjUHQL/dP/gD2jYB4E//FPjEJ+jb3TYY0afqhmg16cYFUtnYW17CzCxdnwUArRZw4ABpk8vii8i2yLVaSE7OYqJzAs35C7swLtCvvULtrhZC/8cwpEgJAcAfCxBKFqspYbGaYRiGYbYAmSg4VqrzOakmJHGMJLMx4XXQfOICD2fsdpFkNnaXGpg/vh2UH4a5yIljLVSOV7WzumVTNo0TJ8iaAwDIWPWd1RRCbd5uO0QSbQP7q5RIMwt2taQ/g3lJ0qbOrDbO6jwGZBSxOk3NQqsNu+zDs1LEHYJjNcQxcM89ZM0B0FrE7/1eX1Sjot0GTp6kbXNbkSQQAKpORBpllmQ2pvw2+cK4lMDx46RNQsYZHCuFIzIkTSJrcZJAZsbIcITWWv3KV5I2B0B3CZZFLFa328DcLBwZkl+3zEWOuf85YxWkyuIYEEJYrGYYhmGYLSBJANdKYYsMskm0Ch/HkJmNyaCN5gzdYEkp4Kd+CvjlXyZrsidW7yo1sXCSxWqGueAJQ51ZPVbRzseuBaoMnyShF6t7MSBuSCPUAjoK5dGDcFvbIGw/jwGpllB3QzSXCL6rFWJ1L7N6FPXH/K4QAsL34NsJojadmpQkwL33kjXXa7PdBh54gL7dM2do29xW5JnVXohWm84Cmwu11LU8pASOHSNu02Ttj/sdLE0TxeEkid5153XQPEZrV370UfromjRJMTmpaMXqL3wBaLdRmT1MXdecuchRiblfVSpQABcIJoTFaoZhGIbZAmSi4FoZSk6C7iLdhCTJbEz6HRphwhDHehs16cS800GS2dgZNLF4ml0IDHPBY3ZuOCUHpQDoSo9sUkYuViuFJMrgiAx1L0Rjkag/XFrSgr1IoeQF7q7OxepaWX8GDZo2dWZ1HgOiEKbOaGpVXkROCMDzENgSYYfo+1IK8fEzWJhJSKNbcm3+zjvp2gT0RzF9gW+K2lTyzGonohOrs8yMi9potmmlj80Qq/N+a8zrYnGOqI8pGhlOERRaLRBFdEl2Oemtd2AymSaNb8r7qKoToUX4ERw7Bvzu79K1x2w/0kTvhkClAgFwgWBCWKxmGIZhmC0gSQBHpAjsBGGDaGATx5DKwqTfRqMJssKNcQzs2AHSAT46HcjMxpjXRWeOxWqGueBJU8jMhuPZKJWgs4qJxGryGBCTrayd1V0aoRYAmk0kmY2yEyNZoBV9yMkzq8u+/gzaBLEtvQKLfbG6K73RxOpc+RUAfF8Xg6RyVj/6KOITM7hCHcHMDE2TgL5/79sHfP3rdG3m7V7UYnUvszpCs2PTjGGiqDcuanZtUtfjpjqrvS6W5oiuAzM2nPA6pLvuAP0ZzM2RNgk538Ck38bSfsKLoV4HYIp3nqbru6engc9+lqw5ZhsiY73AhEpFP8AxIGSwWM0wDMMw5xulejEgJTtBd4lQrM4dRJFHVgUsmV1COV5AEhPmPZoYkLoborPILgSGueCRElJZcH0LQQAd/0DkICJ3VhsXuOsJ1P0QjRZRZEmjYRbZQnRmLvC95Lmzuuyj5kVodJzRPwOzeycXq0sljB4DssJZ7VM6q1stxKmDcb9D6qxOEuDyyxSpAA7oj/GijgHJndVuhFZCtHMjinQtD7+DZhyQ2oCThDhjXCmTWZ1h3OtgcYFozGXGhhN+B03CeBVAn7Ozs4QNKoXULC4snSYsVFc8t56gu8jiGHjoIbJELGYbktcg6sWAsLOaDBarGYZhGOZ8k6Y911/JidFtEBX/ygss5pMyosC/5G9uhDt9AlgkzGk1MSB1j8VqhtkW9JzVFkplgW5K56xOWhG6VAIl0BNVHVegXlVoxD5IgkobDSSZjZobojt3gWftSwmZ2bA9G/WyRCMJRp9Er+Kspo8BSRCFRCKdbSM2O3jI4rYAJLfeicmTD6A5QyimgZ3VkBICQM0N0UoCmms2DCEzGyVH9wno0n1nUupCgAlV/VYTs+OIVBexXaQUq01ud4euMC6g3zupszpNkSqBqaCFpTOEDlXT91XdCK3DdOp6kmhfyOHDZE0y2wmlIBMFWyigXIZrpUg6dAWdL3ZYrGYYhmGY800+IbEyBLakE6vNjKnudbUwQSVWP3YQniVBWp3IOKvHvC46DS7NzjAXPCZaw/FtLVZLj8ZBND2N5ImjGO+cpCt8ZcQZ1xOojwk04hJNjlGjAQUteHTmaYVKcpIEqRJwPAv1Sqo/g1G2J2cZkGWIMweer92ZQZ5dTuCsVrDondVhqJ3VXhedM3T3r+Sz/4K620X3xDxZm0BfrCZK8Np+mAKL2lnt0+wOC0O9wGKZBRVKsTrJcOmlim6BIYoglW0KLHaxuETkgs5jQPyO3nU3yvW6AnJndRwjzSxM+p1NEqtDtGbp2s1vgQ89RNYks53IMshMwLEyoFRCxYnRblzg9Sy2ESxWMwzDMMz5Ji9SZZzVYYsul1ABqLkRmpRi9diO/kSPim4XUlna8dZksXo78MEPAkeObPVRbC0/8RNbfQTDc//9oxlezyJfZMud1VSZ1SdOIM5sXBrMY/oMnZMwyWy4ro4qbcQBjUhlwq9LTozOPJ1Td1NIUx0D4tmoV1J9Txji+/rCF9bQsszJ1E4DVKp9sTpMXXJnNVnkp1kUrbm0sS1S6Z1RlKIfoD+Kchl0GevbjUJUQzMJyMRqmemiqEIoOrG61YJ87CB2tI9SDbX6RWzzGJAGkVTTiwFp032u0OtXShE7q5MEUuk4u6VZQodqLlY7EVpLdDfGJAGuvhp48EGyJpnthJRIMwuOnQG+j4oTod26WFcb6WGxmmEYhmHON3n2a55ZTSXWmsF4pazQkR5ZNmNSn4JrpXBEhuQMkZOsFwPSRafJLoTtwF130ReT2m7cfvtWH8Hw/Nf/CnziE4QNpqnutwIbQcXWIiWFWG3bSDIbO4IWlo4sjt4esDyzug6904RQrC47MTrzF3gRJTOJtl0L9ZrSgv0QKvDbfzfGmQ/+I3D69FntAUAn9VAu64dKZTF6DIiUSDMB21aA78O3JaIukbPafOdlJyaNbUnqhQVcKhu0UkgefAz7qosXb261Oce8soModWhE1YJbGQBUh0isfuIJSAlMdk+gsUh0vpodIY4rdAxIiyiywzirx72udqwTCfb5Wg25s1oJLVYvKbrrKx8fuzFaTToxMf7Gt7EvO4LZ02y6uChJU0hlwzH3r7ITo9NmsZoKFqsZhmEY5nzTiwFJUXISdFtEYq0ZjItdO6GUoBOrQ12dvupGaO8nqiZkJqF6YMeVabYDUcRFzjsdspjmTUdK4I/+iLZBmdn9GBCqAovdLpQSGPc6WDpIZNGLYz2B9CzUxu3RIzByGg0I6H6rvUCbtf+qV5E2Z2JAtLO6VlVasB908jabkAeOoPnlbwB/93fLnzPKVFv6qFT0Q0EAhHJ0Z3WS2fActSnOasDcZ2YJxWq/CkdkEABdwb5GA8ncEi7BCUyfvvDvifPzwMGDtG2qWDtpxVhdu6AJY0AcK6O9bj0P0hQCbBwhqucRRXpBsOphzOtiseXQtGuc1YGt+wSqvCUpdZFVUmd1HgMStLEUDbcbZNh2AR0D0iYUE5Pb78J4No/OwdODX8w8+cjj0YxYXXHZWU0Ji9UMwzAMM4D3vIdsbK8xk3PXSvXEnMpFlm+nnpzU/yfa6tkXqwmz/ooiQoe2Oj2zOcQxi9WSOLp9M5FSz/MzKt3LOKsd30ap5uisYgohwfQFY14XjaOLo7cHFJzV0JnVyXCu4oEYZ3XNjdBapHXSHThA2lw/BsS1+rndgz6Dxx6DzMxrH3xQK5I5RqyOUheepx8KypZetBglDkNKRJkDz83oCyx2uxBC6UVhygKL5p7oWCniI6doGjXn7KTfRmuWNg99M5zaX/kK8Cd/QttmlugdXBgb0w9QDLyiqFfQuuaGaM4TRUtEEaT5vhoHiEKr8xiQkouKl6AT2zRRM4V4EQBkY0PZTbB7IsbsNG1x3FSZzOq4RBdZEsawhNIxIC26MWdewLVDZTphthdmp6xj68XWihOjzXMaMlisZhiGYZgBfPKTwDe/Sdhg7lC0FEpOjC6VyyOOtdOrVtM/EymLcaR6zmoysbrorA7FRVxRavsQRdvHVbxZbDexenyc8HjTVAsevo2g6pA6qwGg7oVYOkFQBBEoiNUWahOOzmml6A/Nh1lzQzQJc08BrctRfJw9pESqhM6szgX7QRewcWA2kwDHW+PAHXf0nzOLocLS8dKAdlVSZFaH0kXgqX6BxZjonlBcFF2iy79Noqwvfs7QLeAmma2LQRLmawPADTeQNgdA9y/79xO3GaWwrQyoVvXuMIoLouCsrrshmgu0NULG/S6ds9pcf65voVy1dJwbRWSHiQFxRKrHiFQxIJ/+J+yRxzH3KFWFSRSKQbb1ohmVsB5KOCLT41hCMbF3zdJt3GC2E/l8zgYQBHr3BovVZLBYzTAMwzADiCLgW98ibNCIPm7J0ZnVHSKhNndW1+vwbImoRTM51y6yTDtS5onUlKKIkHhkExJm8+AYkO0lVqcpMDVFWKytEANilzxkSpA7q5fm6SKRZGbB8SzYZV8fK4VAUywAt0S7wCYl/Q6eXgzImIXmMJnVxiXWKO/Biz/9m1C3f7Vvzc/7aKs/fQxKgkSs7kgP5SAFhEDgZYhSt38/GwXznZfsmO4+i76zuuZGaM4R3RONqDrmddGmWhQ2zMzQrwen6SaI1XGmndXVKhwrRdIm+GzzaI2xMmoe4SKT6fvqbheNWaJzoNdv2SjXHS1WU4yN8naNs1q1iGJAvn6vPl8pi82aGJDA1n0RqVidmy46dBJYnDraWd1lgfKiJI8BMTFWFTfS5wIbcEhgsZphGIZhBhCGxGJ1HgNSdvX25C5tARnU69gRtDA7RzN4zl1kVTdCc4HInZaL1RWzjZxUpWE2gzhmZ7WUQIvI/Hs+GBsDlpaIGssLw5YcwPO0Q486BqRNNDXJndW+pe2/wOgrLUr1hNuaG6JJfB6Qn1tSarHad+BWdL7ucM5qC3MTV+NEewKHj9nAww/r5/KDs/pF34KyhS5BZrUWq/Vn63uZLtpIEX9gvvOyE5OKSTJK+85qKrE6d1b7HXQWaDvaMKRfaJQSOHSI5mvqtZlkcKwUKJdRcyO0GwTCcu6sHqvoxQWqRSYz3qp7IRpNonMrj+vwLFRqxllN8cXFse4L6hWdqUskLsugCtcybm0q8mMVxJElRWd1OGJ0Ua9RiThzMO51WKy+WCkWWLQsVPwU7cSjWWxlWKxmGIZhmHVRCipO8OADhJl8+Up82TOTaItmFd5sS0W9jp1BCzMLBMV5lEISF2JAFmmLQZZ3lPWEjMXqCx52VmtNjtpZff/9wKc+RdsmlILqdFEvJXRidZoiUwKW5wC+rx+jdlZTFRTLFwQDS1cBBEY/eQviRs0N0aIS1g1JQixWp2nPXY4g0LEKgz6DJIFUNo7M6yip++Yu09nVQO/gVNFZXba0s3oU4acnVut7YOApXbSR0lntJOiGRGKSUkgSwLEy2gzkMITMndXExTuThHCHhSFN9dd++DBhm1Hac1ZX3RCtBsG4y2RLO+MV1NwQjUWisVxPrO7SidVRBKlMDEjurCaKAQEAMTGuz1miKBQZaAc8qYd0s8TqKDXO6hAt6dN8rlHU2w3BtVcuUpIEMrNgmzXccpChLX12dhDBYjXDMAzDrMdDD8GePgl5mrDcuZQ911+1nKFN6J4BANRq2Bk0MbPkjd6mlEhSqy9WU2yhVaonbrBYvX242J3V+WlLLVYfOADcfTdtm3j0UWBmBmN3fx6NaaIVhlyQtG3A97VAQZRZLYRC3etiqU0kVvccijZQKsEWGWRrxM8hF0+F0IJP1yHd6kvurC7EgAy9uGAm3odnqxirpVqsfuwx/VyrhSSz4Hp9Ucb1LSSZPZqzWkp0Uw/lUu6sVogyGme16nShlOjXRqAgd+1bqY6VoCq0aZzVY14XnUVasVpKerFaSr1zgzIKRCZKZ1ZXKnonV4Pg+gpDXWBxooa616Xrv3sxICEaHXvAi4ck77fyugDEYjXGtVjdmKNZYJFeWS8uAHR9YRzrrH2hd/TFS0T52qHU49iyQishEqu7XcSpjYobQyaKox8uRvLC02boUillek5zMQ+WCWGxmmEYhmHW42tfAwC4cWuk+fgypNTuGReoVoFWEpDmqaJex85SC7NL7uhtGueIZ0ntSGkSDMZ7H6RAMB6wWL1NuNid1Xl0L7VYnSRk9a76LOiCX3W3i6U7Hxq9PaX6161tA55ZCCNyVisltLO6Q9BnAb0iXa6vXcV1L0RzaURHpRFPlRCoVhSaiU92QeQf72bFgCAIYAmFrDOEszqzcWS2jFd8j8C35q8ATp7USmerhY70UCn37wHCsXt/65zJndUmrSXwjbOaQKxOuzEcK9WFjCMiQdHcE3uZ1VSxEgWxmiT+osBmLLKlKXDVVcDx43RtFjOrq05Ecz3kAnAeA9KiW7QATAxI16OJlcizpX0bokwUX2TaBWDE6ogst1sKF46VDte3DIspMulYmb4nzBG5wI1rv7KjpMfcFI5tEzHjWRJQ2SbcyJkLHimRZhbyW2GlrHQMCIvVJLBYzWwJr33tVh8BwzBPRrJs82LCAlvSjUONs9pxhRGraVweWZTo7MBqFTuCFmaawehOj3xi7ig9eaQQq/NJnRCw6lW9PZ1QpZmZIWuKKRDHF7dYnZ+21KKPlJswx01TCKF0DvQMwaRJ5a4xoQvs+T4EABUSZ1ZHXn9VYBQKu1cQBNr9OOr2fxODIoRArS50wUKiLy5fB6COAUmzvrO6NkysQpJAKguHp8t43vMtHEt268cPHgRaLbQTH+VKQezL7WQjOqu1WG1iQHzjrB71Zp5liLsSnpVqZ3Vs05xbRWe1S7AIkhOGkMrSzuoWvVi9GTEg1Sph36UUpFT9zGovpLke8qz98Qqqbog2VVxDLla7XSwlJZoF9xWLbAA2QawO0SSKQkkivbhQshN0Ty2StNmLAXH1tbA0SzCoV0ofq5X1d/NROaszB65lrtftUn2ZocOYj/JbYbkMjgEhhMVqZkt4/HGa8SLDMEyRW24Bfv/3iRsVemJTcmK6SVmep+oJVOuWFqsJJiRpmOhBs+9jZ7WLmW519G36+cS86ukYkDZBlevednoAlYr+N6Gz+tWvJmuKKRBFF/f4e1uJ1eYaG/O6NJnVvQUm87PnwbcTRJ3RRbWsG8EywvpSXKIRZ4pidamkc2VHFetMRIbrZKjVhc49JcpTzbvETYsBCQL9GQwSqYyz88Ssj6kpwA0cxKmt3dW5s7pamD7mQZ2jiNVhqMVqI4L7Pmic1cap7LkK5bKg25odRfo8yMVqqv7AnPcVJybdaJRl+j/yfutr30B15hDCLtGETkrtqLUVEAR0zurcHDBWQdmJ0e4SjGGA5c7qOKAZw5ixoePb/cKwmxADQrXAIkMJx8r0rrsTRMURkkTHgIzX9D1hgeBY0xQy1TnzVr2qI6wondW27P3MXGTkNYjyGJCq0NGOF/NgmRAWq5ktIYq4SCrDbBc+/GHg535ueywwdTrA9DRxo2ZSU7IThB3KSZnO/qzUbRpntVJI4ky7kjwPO8djzITV0QfPUYQ4s+H6NqoVk/U36iBfSmPSFJsiVs/OcnTgZsDOav3/7SJWKyW0kEJR/KuwGwIA4Pu6aF179D4xaUVwrRSlAHSCYppq4csVQBCg5kZojPq9GYemYynUxiw0qeKb0P94SdOQ0lSLPj1ndYSlxoBzwQjcWSYwOQk85coMB5s7emJ1W/oo1wrTx3yGPoqwbETw8phuKwhA46yOY8SpA8/NUKpYOv+XSKxOMhtOVbvVyWIlzLlEWnQZ/XUEcmf1gUOoxvPonqYUKS0tVnt6cbxJkQVtRHC37KLspejENBEziCIoJRDYiS4ySqGsm37L9cTmOas9unM2L1pYcWK0zxDdGHNnNaVYnUeLONDWV4BMrI7NLgulBFSHY0AuOvLMapNgVqkozqwmhMVqZktgsZph6FFqE4p0QYu/n/gEcNtt9G1TkyTA/Dxtm7LRgS0y7ayeo3HRIU1N8S8L1TGbpjJ5PiGzM0AI7ByXmOnWRp/o5M5qXx9rM/FHn5TlrkdbF1ISQpGqNFHE0YHkfP7ziNrJRT3+TvXudFr3K3S/Rb4IUHRWNwmG+0bxUiiI1XaCbmdEQU0pxB1d+EpMTujHiPL7lzmr3S4ag4RaAP/4j+vc6/I+1slQrjtoUxXpQl87Iz23smxZgcWKE6E7KF4iSVB2tLA1MQE841kOHl/cvcxZXa4VimDato5xGsVZ3ROrdQ46mbM6jhFnDjxHoVwxzmqKCy2PxqqVtPDXJhKWe87qCO3EJTu38vkW+SKbslF1I4RNogKTZhHftgH4vt7J1SHou3JndeDoPFmqLfpGABaeUakoxjC5S9Prx4BkbWpnNV1utwylzoF2I7TniYqC5sLyeBX1YaKLhm7TuF8pHev57g0rhWdLJM2LeDX/YiXfEdKLARF6bEBRfJoZXqwWQthCiG8JIT5rfr5KCPF1IcQBIcTHhRCeedw3Px8wz19ZaOO/m8cfE0K8hvzdMNsGFqsZhh4pgZe/XLtKqdvds4deoNkMkqRXV4yMaClEYEstzFCJ1YUYkMqYQ+OszosIGSPSzgmJmZBQrPYExsaF3qY/qiPF5KK6juo5q1WLTqzejGJSFzVLS8BNNyFuS7rdBdsQKbWAty2c1b0t6l0stZ0BLx6CnnDYF6sDO0E4agxIFCFJLXhOBpTLunUKQdEsCLq+zteueyEabXugqPjo/TEevm+NSWYuetmAVS3rreQXslhtBGTh2IDrInAShPGAqV+SoObqz39yEnj68yp4fGk3cOYMsLSEduKhMrZcrLaEQpqM0C/kYvWED0BrdGHqjj5RSBLEqa2d1VUb3dQlc6kmmQ237KBWStGMicTPorNaemQnQ35ukTurlUDNDdGlEqvNuMAxYnXNDWnEauN8dH0L5TLQkS6Zwx6AvikAZGJ1bmRAqYSSEyNsEkyY41gvKo2N6d0ARAssMtY50FUnQmuR6DyIY70jZKKm3fUU99sk6ecK+7qfIam3EIaIU51ZXXZidBYu4tX8i5VeDIgeG1Uq0DEgFLs3mA05q38JwCOFn98B4F1KqasBLAD4afP4TwNYMI+/y7wOQohrAbwewLMA3ADg/wohiMoyM9sNFqsZhh4p9bX1F39B3261uj12NElJ76yOFrvw7QSBk6A7T6Qo5QV/fAtuLYDM7NFFjzxP1daiQS8Le9QvLneR+RbGxkCTKdsTfRRQrcK3JaIlOkeKlNtjcWXbYBYnMgiEs9vjg73vPuDAAdo2pQQmxlI0KYqMrmiXXKyWsl9gsUsgVufCZz5z8Dy926Q94mdhMj9dR/Ucb6pLk1ktM0tnvzoO6qUYjchff/CZZZD/8kU0bvyn1fu4PL6pcKyUmdUenT6pyTItUFkWYNsIbIkwGuCojGM4VobAz7RY/SwXj0VX6JO00zEOaLf/ettGyYkRxSM4NY1YXRo3YnVJIEqd0Sf7SdJzVlvlAJkSpDEgrmfpQpuJTyNUmk6g4kvt/iVaFduU+KIsQ5pZqLgRwhals9qG46i+szocvMA0kDwHOnBQqRJml+fOyclJAEQL7vnYMNA582UnRqdJUGwzP1bfR62S6XOW4KYjoxSOSFFxY7QblGK1BXu8buqk0LQpMwuui96uIJJFgG4XcWbDs6T+rhbZTXvRYQos2svEap/FaiKGEquFEPsAfD+AD5qfBYBXArjJvOSvAPwb8+8fND/DPP995vU/COBGpVSklDoE4ACAFxG8B2aboZSeA/DuCIahRUrg6quBW2+lbTdJtFi9HbJqyWNAlELYiPvO6gWiD2GFewYASQxIkk/0AIgSUd5hQawen7S0WE10rLmzmnqQz2I1Md0ulAJ8SyKa2x4f7C23AF/5Cm2b8p77MDF/EM3Dc7Ttbqaz2g2xFBJMnFY6q11X94nRiM7HYl8QBLpoY4NASCoWWARQL0ndd60nUnW7SDoJGqEP3Hzzmm06jurnnhI6qycmNsdZDVsL9oGdIBwkKpvvuV7VYvU11wCPZM/oPd2p7UZlRWZ1YCcbv80sLOh7k1J9Z/WUvhf6PqGzOrN7AhUAshgQqWy4gY36mKDLLjfH5u2e0GI9obO6ViN2VhunatWJ0KUSq82Cu2MDsCxUA4lmHIzed+X59b6NchlkW/SzKNERZhMTqDgxOvN0hWEdVwClkh4bjSoCK9XvCxwH9ZrSn+uoC21KQUYpXCvV0TUNAlEd6IvV9You3EiRWx7H2rXvAAgCVNyIJl4kX2wNbP1dLbET70Lna18DPvpRwgbzhXFX31tLZUETY8UAGN5Z/ccAfh1AflVPAVhUSuXfwnEAl5p/XwrgGACY55fM63uPr/I7zEWElPq+yc5qhqFFSmB8nF702G7OatIYkDBEFAG+nehiYsRidZ6nCmCoL+7b315nwpmmepujbVxIVMV5CpnV5TGXJqc1SUy+thGrbdpBfpJwDAgp3S6kslB1Q4SL2yMMXEpgcZG4zX++BRN+G80TtPvpk2TzCizW3FCLaQRFUQH0tGo4ju4T4xGFhNz96mZAEOg2F+nF6mopHex2MoJGM/GBu+5atU2p+i5wAaI8WfTv39RitRBquVg9aHEhX+SoKYyP63t/x64jfdPPA69/Pdrf9wM9nR5Az7G9oUWLY8eA3/5t4L3v1Sd+lqGjSijX9LkUlC1dYJEiszp14HmKvFhdYsRP7awOaNo1bYhdO/XPhM5q8vgiKZEqgaoboduiKzydKqvnUKyWM5rdYblbueSgXLXQSWmc1Wk3hmulwMQE6l4XjXkCcaogrPfE6lGd1UoBSunauJZFVxw2TbVIZ2XaAd0g2nGU50uPV3W8SEiwMyjPwTYLV1WHTqyOUwfeZJVmYYHZdI4eBe65h7DBvMCiOU39QOjFVharSRg4shBCvBbAtFLq3vNwPBBC/KwQ4h4hxD0zMzPn408y55l8fMBiNcPQIiVQr5PtSu6x3ZzVi4tARhWr22wiTF3jrI4RNojcv/l2V1NERwg11MThAx8AvvnNNZ7sxYBsjljtlWyIMrULHHpC5sZ6F/UoRboMSm0vZ/V737sNri0zIRvzutti0QrQfcHSEm2bsj6Jkp0gTgkmz8V25SacA2aiZFtKxx+MGlOQX5vCqNW2bZy6I2af5vn9xvEWUG3PNgKV42sBtOyn6Ep3/T7GHEsjLukbycovpZBZjVJJu/6IclqTToJxr00joOTkN8Jlzur1p35ZLCEA/M2fNnqT76uvBp6oPgf43u9FR/p5mYFe2yUnHhwvUuDRP/4cfvOOH8Cxe84Ac3qXQgflngjuB8aZRuKsduC56N8PKWNAAlsLfzGtWI0dO/T/idTlJNFJFeTO6swUWOwSnbN5ZrXZHVarKjKxOlMClufoLfoUbSKPwMiAeh11N0RjkeBzyOt5+FY/BmTUqKUk0V20uUR7YvWo94Qo0t9X7qxuEYnVSaIXLaol1LwIzWhAvz0MvTGnADwPVTdCu0nwfZkCi+5EVbvrKSJbmE1FSuLaTkmCtOCstjxHj7lYrCZhmGXw7wbwOiHEYQA3Qsd/vBvAuBAiH63vA3DC/PsEgMsAwDw/BmCu+Pgqv9NDKfUBpdQLlVIv3Llz54bfEHPhw2L15nDHHeuIWMxFgZTapEt9bcn9h1BdOrEtRKok0boJmUjVaiFKnb6zukH04eYCTaDdM66VIm4NFsLXdWCagmL5RA++D0soZB2iGJCAPrLEdRQgBMYrCU3hRvT1me0iVn/848CJs0ZDFxjdLqLUQd0LEY7qpD1P5AtXlKS1cTiWOcEIFlZyNiMGJAtj2FZhMk7grM6UgJXPHIRAyZVaAB5ldXBFDEjJTtClEKuLBRYBlPxMZ9Wud4M07rtGbITN06eXP58vCLraWV1zIzQXaCak8ubPY3zhMFr7T5G0B6B/jprMat+WA8XqNJJwrBQvfnH/sec+V2fAA1rfWuasHlIE77G4iI98+RKc7tbxP+95HfDQQwCALoK+WF22aZzV5j7reYo2BiTfbVRy4FR8pMoavd18lRXoF+yjigE5ehITzSNoThN2MsYFXXUjdKkMErmr2KgL1SrQkjRiNQDAceBVPR2xQiFWh/paQa2mndUUiwH5OM7XmdUVJ0ZnVOd6miJTArZlFgHGLJrM6tytLDKdWU1VIzuPAQlcVCt0Cxa6CB6AINBOcIrLK18QGy/T5Yszm0qaEovV+a5WI1bDcbQBiYUuEgaOLJRS/10ptU8pdSV0gcQvKaX+A4AvA/h35mU/AeDT5t+fMT/DPP8lpZQyj79eCOELIa4C8DQAd5O9E2bbwGL15nDXXcCXvrTVR/HkJE3pq6hvBlKiN8gnI4qQHDiC6tGHEXZpi4ptBlJq4x9ZbnUU9Z3VToxuh8hBVBRSSiXt8lgaPDE3Na7WfFIqSzsUgZ5LMWqN7k7Tx6onT5ZQo299z9t09Tk1WZOYjyokk/P83rJdxOokAaant/ooBtDtIs4c1NwQsRyhkNp5RMpNcFanQosTANQZui9tM8TqnusvV5dHFavzLd92/z5QciW66YhV702usGcE4JITo9skEICLC4IAyiWlxeoBMSBJZqORBDjeGkd2coVYXdwRUi6jRuislvfch3Gvg9YM4YlQFKuHFJV7543bL6L4nOf0xepOB6vHgAy7iHX0KGbCKn7+2lvx+NJunLlDV0HtZKVeu7ZnI80sGmd1asPzAAQBHJEhaRPsjsrPLU/QObazDCoz9td6XT9GFQPysb/DZDaLxv7Tg188LGbhpuqG2lU/ahFEYLmgCC1WN5OAVKwWvqeFpFEzq7MMMlF68bJS0bUBGgT3RrPrLh8blp1Yd92jfL4mvsjJxepJlyYaKo/rcIXeZdImGhsUnPBarA5G/77yz8BBv3gnkVidZDa8CVN7hSoSh9k0pARIwxtWZFb3OjBCQ8PFzChVUX4DwK8IIQ5AZ1J/yDz+IQBT5vFfAfCbAKCUegjAJwA8DOBzAP6zUoq/xYuQfMzBBRZpSZJt4M47D2yGqHzrrcDv/i59u9QksYKTxQAIRWUzGK26EV0EhuEd7yBtDoC+DqamCHOrw9A4q6WekFPpCPngxhRYHDY/b11n9YoCi3BdBE6CcFSBXUrEqdObPNXcEI2F0bdkyqwvrE+NScyFldG3paI/L90umdVxvA3E6sJ1kGUgzNnZPDbDWS1DCUfofM72E3TCz2ZkVssohS0yYGxMZyu3RndW6y3fBbHaGyJaYxDFhSvfR2BLhBRide7SDHQnUw4ydNPBMSAy01vkf/HO1+Obd54dA9LLpjSLjE2inFaZWah5oT5GKooxILat7wfJ+qKyjDO9ION5vceuvRZ45BFtgv7MZ/TPPSxLi+DSHk5QO3oUM90adu5QeN7UMRx8QPf5nczvi+C5UE7grI4zB54nAN9H2Ylpdkfl96/ApnNs59EHlgJqNbhWimSJxrIsWyEqToxYjlgMdVmjxlntRLoPoHAg9epu6B/LVUu3PYpYXXSsOw7g+1BKjC6A50KtDSAIUPdCNJpUYrWJL3IclD2JTmyPdi3kbZqFxtK4rxfuSGJAbDhlDxUnRrtDJFYXCsNuirPa97W4TuastuGOs1i9XSB3VufjAq8vViuOASFjQ3ctpdRXlFKvNf8+qJR6kVLqaqXUjyilIvN4aH6+2jx/sPD7v6+UeqpS6hlKqVXKbDMXA9vNWf2e99C7szYDKVmsBoBXvIK+zdWiKy9E5L98Ee7D99GGVhunWdWNEDVoP4Q/+zP6c1ZKYNcuWmd1lDkIAoWSHdMJSkmCRPVjQKpDViYf6KzOt9MDfSfdqF9bz1mtxeoxr4ulhREH5KbN3IAwOaG0s5pQrKZ2VifJ5ri1t5Oz2rfMh7sNOsRNEaujFI6VYtJvY/4I3WqIlHrRgnINID9WjI2h4kbozI/4na1cDAMQeNnohYRWZFbrHSw0Ls1lzupguBiQxMSAnOqM4dj+1TOrXSNW19yQTKxOMlsXa6NCqWWiT+6AjpL1M8b1ebPcWX355boo1V/+JfC2twFPeUrhF0wcTDjsosXRo5gJa9j5wy/Hnj3Aqc4YAKAj/V7KFNk26jjWrn3jrC47Mbotgs84vxZMzQkAUF2a68u1M6Bc1uLfELuthmraCeBYKUj3xBix2rV0xATJPSFNkSrRK7DoVxxE6YhitTknFYTedpcvwlCI1Xm+tu/rGJA2QUSWlEiU3c/aD1Ldb41yvLmYZsRqstojuWBfclHxJdox3aKFAADH6bvrSZzVxv2aF1jsECzerHRWE9cMYujZHGe1yUMH+s7q7SJ0XeAQLrEyzHBsN7H65pvphYQkAb7+dfo2WawGDh+m33nTbG6P81V+5atwRAY1T2UrRm9AXnVDcme1lMDdxGFQSaLFajJndRwjlC78sqMzq7t02xxlpqvT6/y8EK3mYNFjOGd1vwCab8nR41uKok8QYNzvYGmRqE2jh0xOgkys3qwYkFtuAf7wD2nbBC5wZ3WS4Ja/b+F3b3waotSBZ28fsXpTYkCMs3rSb2NumjazWhDpPTlpbETHsTEtqs6PeBNLU0SpC9/tK+okzuq8L/AA+L7OrCYUFHOxulSCFn0GOauVhUZaweluHceOrFg9yCelruiL1URrFjKz6MXqHKGFusBN9eLCWp9Bluk4sWJ8DLTWDQD33gu88IVn/9rAdoscPYq29FB57tOw9/WvwOnrfwB4+cshy7W+Pk7prE4deIEWKUtUzsf83DJF8EpOjM7SiNdXbyEk67nAqVya0tERKKRBbrlTNc/Fp1jJ74k++kfhe1oIH0WoXFkYliq2xRSYdGxosdoNacRqE7fUW2Tz0sHxRYPIP9c8wimvkDqqsmrqmTiehWpNaAc0xXlQdFbn7ZI4q82YM48BoRCr852HkzWUHcLcbmbTSFM91SDfKWsWmOC6EEJBJeyspoDFaua8k0/GtoP4B+h7OfWx3n038Na30rYpJXD8OG2b24041k466oiZbSNWw4FjZXBVQne8ubPaiRBRFL0qkCTAN75B2iTk/kPY2T6MxQWiaVkYamd1xUbJienEpFxY9u1eZfJWd/BEZ11ndZ4pW3RWO5vkrB5CrP7iF4GvfW3tNqUqiNU7LMxHZRKFWUod+UkdAxJF9E5dYPOc1V/+MvC+943WRvvPPoxv/+EteOShDHGmC7QB2BZi9WbFgNhWhqmgjfkZWrG6WqWNAullD9dq2kW2NHp0T1e6KPv9dkp+pjOrR4wBiVMHnhERAjuhqY+QZ/iXTAzIhjKrSzjVGcPR0ysE2HyR0YXOrPZCNFs0C5gys7SgqIgWRI1NXxX8tD0n/FrflxHrHVP4tsiVVwKHDunF4JUEbqrjSwYJaq2WXkkWFsTuXdh7icAp61I88Oz/ADiF+BMqZ1oxBsTztADcJnTtG7G65oZoLo5+ffWc1b6v2yQ6txLL74vKVOSxJcK0S3FPWJFZ3fvHiEItUDidPU9HrHRGX1zoRWsEAca8LhodGmf1svgiPx28yDaIXr0B811RFcrO3eWeQKVmoS09mp2daaoXVhwHbsmBVBZdDIi5z1SGHHMPJL8OJuqoOBFdFAqzaeTdCVkUiIkvsgtGIc9KkUQcCUMBi9XMeWe7Oas7HXrx88476fMpkwQ4eXJbRIluGvmNh6DI9zK2jVg9sROOldJuRTPVvqtuhLBNu0pcLtOL1cnBo6g1jiOcJ/oAokg7q6uudvxFRLfN4mTXdVFxYrTCAdUxswzJ4ePo7l9jVaq4nR4w274TXfxoFIqFyoxYvdgY/Dncdx/wrW+t8WQu1puCJJM7bcyHFZKJjpTAxAS9s1rKzcnE3yyx+m1vAx588Nx//+8/FuFVb/8+PLawC0eWxrWr1pJa+tomYjW1szqN+s5qsqgh6GOt14nF6jx7uFbTi2GjitWpFk3K/irOaooYEJMrrHewjHaoAHqij+3rDrFUArpDxIDIzIbMLOwst3GsObF8v3Cv3wLguqh5pt8myKZc5lKlYKWjFEPEtpj376yi4TzjGcB1163+a4GXDhcDcuwYZGbB8h1ACOzZo8etL3kJMDdXeB2ps9rcZz1P38MpImaKC7hBgBpFdnnv/q1jJXaWmphe9Ab/3hBI4cKxUl0cOSYaxxWc1UIoMketVHZ/3SKPgyEQq3vXgREqO02CuhvKuJV9X2dWdwjy5osRM9DxRa0kIOlje9e16+pio+GIn0HeX3g2qnVLO6ApJh/5e7ULmfAUYrWy4bh6zF11Td896qQ5jqEAiGoFVS9GK7Qv7on4NiBN9QYLMrG6WIMI6EUwUus8FyssVjPnHRarN0esllKP70lzmLYZueBz0TqrgyockWmxeppIqevFgESI2rT5Kjt2EGZLG5IY+lhbRF9YnlldNTEghGK1zGzt+hNCi0mxt/4g99AhJLMNdO59ePXM0VUmeoEtEYWEMSClEsa9Lpaagz+HJOmLu+997wp9c0UMyNRuB3NRhcxZvRlidZpuTtFGy6Lvt48f18XQRpk3/s5bUizGJTwwfynmwwriVGe/KmBbiNVS6nOQPgfaiNULdA4qKYFajV6sto2zuuaGQ2Xir9+gREd6KBXE6sBXo2dW92JAcrGaLrMaAIRZvbM8R0cKDIgBSTIbk9UY1181h+PtceB0oZCmETxcV8dqVCtK56kSfHHkmdXmfRbPUv19OWt/BisKsRW57jrg+utX/7XSsDEgR49iLqxgalL/uHevHg9XKn0TLQAtUgJQMUVmtQPPLzirKdax83O25PRd0EujX1+9gn2+jz2lBs4sBQQHq/sCNzcynKHKrZHLndVUYnVmLYsyyx8/Z3p9k2nTnAftJtH35SjAtlH3IzSiEeM68naVBbesB0fVQKKdjNhuPjYsFN+ueQQRRnlmtWehOu7ovpDIWS2A5WL1qBO7NO0vNAqBajlDS/okWdgA9A7JcoY2RWQJs6lIqe89ZONu0xf2xOq8uD3FDjGGxWrm/BNFelBKLShuFu027bEqBTzxBH2R2CTR2zQv5iiQXKy+aJ3ViYJjGbH60BmaRgsFFsMOrVtgnRpP54bJ26w6EcIW0QWWO6vrent6Nya6bZqtg5ZnxOog0a6U9SZlSkEqS28JXc0y2tui3i/yMUyBRaWAD3xg/WNd6axeag3ePhlHGRpL+kt+17v0FvKz2jTVsyd2ezqzmkL0SYDx8c1xVm+GWD0+Tpixblhc1EXQznXeGIZAJW3gZXsO4Fh7AmNeF80kgF9xtDuvc+GL1UkCTE3RuuFlnMERKSaDNuYWCbYQ5+1KhWpFka4B6GPNgHodVTca/dzNndVBwVkdqNEzq3tRDehnVocECwFFdx4wXKSAWZydqiV4yuVSO7FXiNXFHSG1KpFYnWWQqYAjjPs1Ihhw5Ks0hY8y8JV2QK/nrFb2cuHY8IY3AL/1W6v/WuBnw8WAmOKKuy7R38muXcBjjwFvfjPwe79XeJ3rwiNcaPUC46x2EnQJI2byAosk2eU9Z3UGeB52lxo43SiTrLblWfsVJ0LrNNGN0YxhHLPAMnKBSaAvgBcKlalBC0xDtAmgfx2YQpsj54HnfYENQAjUqxkacYlE/OxFxAGollItqo6cWW31i2+7Lk3MjBHBXRcoj3t6bEqcWQ3f1+cASca41eu7qxWlheVRb7r55NB1USkrmnxtZlNJU2DPHlqxeqWzukRR3J4BwGI1swVEkXYQUYt/d9wB/P7v07YJ0DurpezHhVEiJXDJJYTbWrYh+Y3nonVWRykcYdwzc0QWvV4MSIioe4FvbQtDJJmNihsj6hA51HJn9ZguzkTmrM5db8b1V/WlHuQO2KKeZLYWUA4fPvv5XoFF8/OQMSBpCrz73eu8IJ/wl3S+9pgfYqk7IENRKSRf+ioan70V8vffgUMHMxw7trzN4sTBr7qIU4fkQpOzi5hoHkVznrYjSNPNiQHZDPJYiXMt9tO4dz/q8Ry+c+9RPO2pGS6rzuOJxk54VQ++JRE1L/zVZin17g2yKJA07S0ITvltzDcIxeqHHkdt+gl0m0SLbEr1CyxWq3rnxhAFXNc/SIlu6i4Xq4cVKddjRQzIMAtsA1GqL/IVxOqBkQKmj52sJ9hzmY5OkCcKC7+56GMW2Wp1QeMm7HR6kQqBnSBaJBR8ijEgg5zwuaDjnH2uCIFVRWwACNxs6BiQmbCKnZfpQbDjADt3As99LvD61xdely+0jrpAHseIC2K1dlbTLIT0FnB9nya7vFdgEYAQ2F3v4ky3TjKgzXeEVN0I7WmiCnDmWrCFgm9LxE0Cga7nrDY/UzqrRd9ZXXFitFsj9odpavLd9Y/1aoZGEowuVK4cG5YzPTYcVaxW1rIYkJobotkecTzbE+kERKWsHxu1L8wyQCm9g8vS161nS8St0RcBpLJ0DAi0WN1KRnRWK7VMrK5WoRcWWKy+oJGS2NDS29W6MaMQMxwsVjPnnc0Sq2+9FThxgrZNgF6sjqL+riZKkoR+G/F2Y3paj20uWmd1nPWd1QtEH0KhwOLI2ccFlKnfJOiaBMLQRJaEdGJ1GJrMag8llyCfNSdvw8x0qoHUg9z1JmVRBJnZ2r1y5MiqbUrVF1J6BRYHfG9JMmDQliSI84m52freGuRIiSIkSx00Ih9HHmxAphaO3nt29mvxWHsHMyLy7/4B9eZxdI7QZmtslrM6h3KnQV5k8lznjY2vPYQxr4t/9R934/U/7uOK6jz2L+2CXzPbGxsXvlidJFqsJiuyGEWQZtv7pN/GfJMmTxYAksUW6lYL3aNE52yaQmZCF9Qql3UMSHtwZ3vmDPDOd67d5urO6tELLJ6VWT2qs7rophQr+phBzurMxmQ9xd4rfewtL+HkocK9dKWzui7QTPzRB16djhZSrFRfXxQ1F1Zx5A4lVhcEuGEp+QOysAH93MwMZsI6dl5R7j28Zw/wnOeseK3ratF+1GFMXryz56yOyVz7PbE6z6weVfgoZlYD2D0eabGaYECbhNrIUHFitGeI6nkUCiwGdoLuEsE9Ic8VzscFtq0XjKLRxGqlsCyzmqTQZpLovOZcrK4p7aweRaFShcU0I9T3oiU2MO787GdXdMl50caCs7pOIVb3BHvRd2GNKlavXGQzMTsjx1ilqf4Mcmc1hbCcLyyY+0y1Chq3NrOppClxQet8kXdlZjXFvYZhsZo5/0SR7iSoxb977qG/PyhFL1bHMfR2V2LyzMuL+R45Pa1zqLaLs/oDH6AVv5Io6xdYXCI64GJmdUJ3401TwBEpFKVCZ5zVNTdCeI5i9dwc8Pa3Fx6I435mdVnoCTnFCZafUAWxeuCEJIqMs9oFjh49+/kVQgpsG74lEcbrf29SDhare/mc0AV/2kMUKksyG80kwP6l3bh24iSO3lrIAVkpVrsuBNH29+TUrM5+Jc5a2pTMaqWAOILnZuQ7eMbGzn3euHSmi7rXxeUv3IWf+29lXHlNCY+lV8OreNox0rzwV++SxTZ2lNp0zmqzWOSUXEwGHcy1fZpAbCMk1NwQ3RbRIlteXNAGEAQ6BmQIsXp6WmcIr9VmR3oolfp9NmVmdZ4rXHJiHbc0ymdrjkcVpzkmUkAl6xyr6eue94wOrnlegMsqCzh2VC17vpeBDPSLihGI1XlmdWAnCJdoXKqZEssWhAdmVueCzgY3DfTOg/UWLWZngSzDjLUbO/f0/8CHPqQj7JbhOPBtOXrmZ5IgSp3erqCyE6MTEkx9i9FYeQxIa3SXarGOw56JCKc7BGJ1lvWMDBUnQmuBqO/OnapWqqN7KHaFrJJZPXLdjXwRP89h9zxUnGj0aOXesep2yzVbj4sIxE+g7+ToZStvoI/99V9f4Wfo5Wv3x1s1L0SzM+LuoLy/8CxdMR0YvS8sCsAA4Ps0BYKNoJiPOStVsytmlElzPgY2B1upWeys3gbIKEWtJOnE6nzRxu/v4tJGIaL2L3JYrGbOO2G4fcTqONbzpW3hrI4y1GvqondW79tHP05oNDZHrH7nO5fHYY6KTFS/iE6DSKgzomPFjRBJuirXyR13wzl+CE5riU5TzGNAnAjROU5yH3wQ+NSnCg/kmdUVB6WKpYViihNMSr3N0cxMq6V0cAyIcXZ2Uk+r6isxEwe3WGBxSGf1unERxWJSACpBOlhYN+dNQ9Vx4JU/g++79FEcO5Iuq7DbkV5vfgPX1YUbh8jCHoTMLNpCZXm7m+CsVvd9G+LMaVTnj51zZMdq5HFT59pvNWZi1N1QV6oUAs/46Zfi/oXL4JcsncV3oYvVSQJ58Ah2PPF1LC4QLYhFkc5o9W2MjyksxSUaa45x1da8EN15yvgms+3biNWtznBFUddcuOo5q/ufZylQJDEgcWrD9S1ACAQ+dKTEKAOvlTm1QE8AjbvrF1iUysJ/ff1pPP8VNVxencex025/24OUaMQB6jX9c23cpsmsbre16GNcquEiwWA2TZEqAdvqf1++j/UXF7JszQKL6xF42cDs8uzkaZxoj2uxemf/8Re+cJUdVoTO6rb0UakJwHVRdmJ0KXaIFe+JQYC61x1d+OuJ1fqz3zWRYDqsjT7eMIYDx0pRcQkKC+YkCdLMgh2YBUyK3TZGWLbdvkPRt0csVNbLljZtmMzq9qhidV5s1TirRUCQrbxKdE9vJ9swfaxSyB5+FAcPquU1QlYWWHQcvRuA4JzVcW4AymXYIoNsjtgXrlIQs+pEaDYoYlvsnvu1XCUYz68Qq6s1cdFmVn/4w8A73rHVRzEc6W1fRfWbt9LFruU7F87KrGZnNQUsVjPnlyxDtP8oqkFCKgBPTwPBiAukq5GvvJM6q7/xbfj7H4RIYrpt31mG5FsPonbf7Re1WD0zo8Vqamd1u00vVs/O6kKblGMamSg4wsSANInEOiN6eJZ2aVFdZPJTn4VjZSg1z9Cds8b5WHWjc87XfuIJLM9WDkNEmQO/4sAvWXqiTyRWA+hv9cyL6AyIAUkzM8BerSKfcXstz02TCAfkbCeJfktrzoVWOKsrpUxHkQzhrG4kAfYfK+GVz53H0caErqYFaNEnCVCvm9e7ro5WaGxw//kqyMzSheWIyTOrKTcDJPd8G66VohIvkIvVrnvux9qYlxjzujrYD8B11+n7rFeyaRfDNotuF0lmY0fQwtJJomDCKOrlc1YnXC1SUnxpnY7ut5yIxlEL9IufOeg5P1tDCBNJArSb6ervS+qCg+V+ggNKJZAUWEwyI1bnbabeaDfyVUQfOI4WKzvrXBSm33LLLuB5uGyqg2ONsf4qlZRYiku9fqs24dCI1csyqyXNeZBlWkwsdP9DidXK3rhYHQx2Vj92bwu/cMfrMZNNLROrVyV3Vo863IhjtBIftTHtrC7ZCTqhPXonnosTgRarK06MdmiN1m4xsxqAV3GRZPbo440w1IvYVoqqG+rrmwJTDNGpBjq6h2JXSJoiXZFZHYx6HuTfVcFZrQttjh41tCxf2/d1Jv4o39cqi2zlkkJ7GGe1UsDf/i1Ove0vEUUCh/YXXt/Lojc/e57eDdAlEKuV3YsBqbkRmvMjTpZMH6IKMSAlJ0HYHvH8WlEEL6g6o4/nV4jVXtXTtVcuQrH6+HFdJPfBB7f6SAYj2xFqboTuLG1+/zJntZ0M3NXKDAeL1cz55ZvfRHTHPagee5RU/JudBa64YnuI1dFHboKXdhEsnqY73m5Xb2tJ5um2EW9DOh1tBKQeJ9g2vVh99936/2THqtTyzGpSsdqGnYt/RMqyLNfhWqmZNJA02XNWV93onK+tJ57Qua29a944q4O6BxH4vcdGRko9H8ljQIYpohNFcK1UD7DD8OzvIt+W6ha30CYD41vkKZ2T255b40Nb6awuK73ddRhndRzg8GHg+d87jvmo3BerkwRLcQljY+b1uVjddNdqcWiksnVhOWKk1PMoyvtM4pS0WO1G5GK1I86xD0gSLDUt1H2T2QUdrzQxAfgVLfh1Wtuj2OqOoIXFo0R2eLOzwfEsWJWSdtFRfGntNpLMRt0L0V0kuiHkW/QdaGeaG6EZugN3xiRf+wbaB04B/+N/nL0gZmJAyoUYEC1WD+gLhjjWYiRQqSy0AD7gQssy4Jd/ee02AawqVq+7/T93pJd0P3TZpRmOtSaA+fleu8V+qzLh6V0mo2YKmPO1FwNC4VJNU50pXHBWO76NNLMGxIBs3FldGiIOJjo1r53V8dhgsZrQWd1MAlTHbMC2UfYSdJN1YlCGpXhPtCxdaHTU3QD5ok1+C/S1U1eNupc8DHsLuBUnRnvUQqs5uQu6XtHnbJumlkfR/dobw4wYA1LMAofj0BTL7hXs64uqAIjE6n6/Zbm2NooM6GNn7z2CxpfuwRONnbi6fgYHv1iwVhezpYF+gcXuiOOtvL8wMSB1r4vm4ujX1jLyorsbKLaaJMA//MPZD+b3bwAQnqvv4aNM7pLkrDz0kRcsCtx9N2ERwE1GSuDSS/X86UInzSwdu0bprF6xIyRwEnQpIqcYFquZ88z0NKLUQc3uIInp7Gl5ccHtIFbHmXaMlNChE+mMMFRzQ5rto9sUKXVsGrWz2qZLv+hx993AJZcQnrP5oFGktGKS+TB7Y2eikzYpj/W3PFN9BkZMqrohoujc+pcnngCe8Qzg5Ml+mx3poVR3+5ORUU8wU0RnWQxIINFKgoECsBD6fd03uw9q/mwxSarlRQsDOxnsrP7YTQCA1nv/Zo0XmEJKgT7WSikb7PSJY8SZjUbk49QpYO+1E7CFQnxmoXesjYJDEa6LyYBGrE5S69yF2nXI9Q3KKJDYCuBZKapOhNYinVtZfvFWOF/5AoQ8h3N1YUFHHYxbvQtfCO2u9sraWd1uXOCLosZNuCNoYfEkUUGxPLPas4FKRT9GJFZLZWHC76C5QBff1Cv+lRdFlYMLPyWPPIFW4qPVVJj77NeWP9np6L6w1t/94HgWpFpH/ByGPAc6MI638nA7WJIE+NKX1nhSSiSZBdcu3AeNSLVuYbU4XtbXXXa5wNHWZF+4NztCxib0sVqVkhaSRr0v5iKd0GI1lUtVKksX2cyxbX0PWavvVsqIWucYA7LOQEnON7RY3SkP76weNbIjSdBKfC1WAygF0LuCRr2Hm/u35Zk6DiU1ersrMqvh+6i40ej1R0yti15mNZX4lY8L6hVtOqAwSKxccM/HMCOK1R3poeynvTZLdoJuQhGBYS9zVo8cA7LaIlt+QgwQq//yT5r45KHn46C6Eq+69FEcOlD4PlYeq+MYsXrEnWx5H+OKXiHf5tLohRABQBQE4I2K1fffD/zWb61yrCuiGop/75zIF5jyxb38HCCa1Pzf/ws8/DBJU5tOXrTwgq+bZeJgyMXqfKcNUNjVys5qClisZs4vExOIUgdVN0TSouvR4njzxGohiJ3VIoBnS5REROoolcqsFFI5s7YhUmoNgfL7ynd1Um79B4BTp4CnPY3QWZ1v88ud1aNWOs9Z+WFSOauDar8wz3rbsjdC7qx2onP+XA8dzPDyF7T7USBRhNmoih17XRrnDKBPpvyEsvRtuFrFYGd1oYN7w5feiIXDKyrH5dmMK1xJ4YBJWTKthZjWI8dWf4E5JuEWnNVDZla3Y09HUuyawPN2HMW9D5rPMHdWj/edPpN+B/Pt0QP9pdIORQHa61ZK/XU1GnRtJu3YOKtjtM/QWWiSbz0IJ4tXzzYfxOIiGkkJ9Ynl58111wF+HgMy6hbqzcYsXO0IWliaJupkTQyIXRSrR67ShV4ExI6gRZevbe4HtrMiS3OQWB3phaibDj4fN/zadyDuFK7xRkOLPhOFa9Rx9A6RESf8UerAL5sYkNxZPeBGLuU6b8cIVBWvcPy2PnfXvYXlLjtTBfuSKz2c7Iyd5ayuj5nzv1TS4u+o50G+jdjKdJ2BFsEkuhcDUjinBgk0vQKLGzsPXRcDFy2SKMPp7hjmG25/kXKdBkeOfwC0WC191Cb6ovLIETOmXQC9z7McZHqHwSjXQb5g4a4Q6UZ12YdhbyGkSrmDJz9n6+UNi4lrkoufhTGMjoMZ4X6Ti9VBX6zWW/SJ8poLYrUlFNLO6GK1KuaAmKi4QedWcvwMFqMSnpj6Trzy0kdx+Ezp7GPNF0LyAouRRxJdkzura25EJlb3PgLP21ix1UcewV2//VkcO5otf2urjI/XXbgbhnyh1TXvmWqOgH4z1OarzULKbSJWJwlSJVB1I3Spaq+YXUzLM6vjgXMvZjhYrGbOL1IiyhxU3QjJzNLg1w9JkuhOkjr+odMBxsaIxeryBHxLouQkdIKicU7U3BDdpe1xZzt+fEU28KhkGeRiExWrS3oehKHOQ6cmivS5RSpWmyI620KsNkXwSk6M7gyRSFeMATmXLZ5RhPj4NK7efzOO3X1Ku8SSBHNhFVN73J6AMfKXZia6ouCeCQIMLlRmvgsFgcPNKZw5uGLWaSYkRWe1b0uE8fqfhbzkcgDQ0R4r9/BlGZCm2i1iJk2eLxClzlBitetk+mObmMDL9+zH7Y/s6B1rz70LAK6LKb+FuRaBWG1EH99Ozjm7fDXSVEc4Uzqrk5aOdqk4EdrTdDkguTjhJF0knQ0OyBcX0YgDjO30lj38i78IvOw7Y92/XOjbG82MadzvYHGWaEISRf0t6pUKbCuDbBCI1aa43pTfwhLVsKiXJap/rNWFzlYeMJOMwwztxMNCXEEjdHHjHxZu0s0mutJFeaogguRCygYn/MtuI6YIXrVqYkCqtu4LBxyrlOt0xVKinfgoF8VqU2BvUAxI/lpAL7LJzD47BmS8Lygu+71zpRDbEtgSYYco/1ctz6zunRADCyxu7E85rtD5ygPE6kxZWGxaZxdUXEke/zBq5meSoBkHqIzr77NUAjqjxnUA2lmtRO88KfmmjsOIwtcyZ3UQILAlotaI/VceAxI4tHFTJrPaHqvqAq4UwzjjUMwX2fq7w0YTq9vSQyUXq4VAyZUDdwIMdazKhuMtX1yImqNl7WuBdXl8EQCoeJ3zIAwhGx0syCoOxZfimp1zOi837+xyoTb/XC0LNT9BMx5QJ2WI4+25lUsl7awedXyU6vo4oiBWb2gH5nveg7sO7EBJdZbfT1dkVg/rWC/y7W8DP/dzhbnryogZ34dtZaMtWBQIw+0Tf71txGqz66zmhuieww7kMAR+/udXPLhaZrXDmdVUXOCzDeZJR5oiSl3U3AjJPN2MP471nIHa/dpua3GCNAbECuDZRqSbI9qebAajdS+kceScBz7xCeAznyFs8O67Ic/Mo3zrzaTfV7OpXfvURBFQrxMORPJt375D63zMoydKRqCgigGJMhMDIhHOEPUF5jqoutE5TXI7n/48KlkLl1UXcOz2Q70LX8K4nahcE6ts9RSOrSe/AzKrlRLoqDLC1MPpIyuOY6VzJJ/oJQNiQKQ+jlYS6ByUtY41j4RwBwgeQE+snqzE2LsXwNgYXn7pE7jt8GX696TEUlLqbafvxYB0hl8ZOnkS+LM/W/Fglulzy0q1UL9AV3FWSnqxOm7F8CyJihuhdYZQrK5N9HdZHJ3d2C8vLmr36M7lCwfPfCawa4+1bZzVADDmdekE4DRFqkRvy3PdDdGcJejAOx1IZWEqaGOxSTQsl1Ifq7lUh3ZWxwptGWDh0uvwA1fcj298frH33KGjto4BmSpUWBwkfq5CGALPec7yY20lPip1E9VQsbRLdUA/O5Sz2i8cl9n+v+65mw8e8oXJyUk4Vgo5u9hrtxGXMDZpJqWuCwEgi0ccd+WiR9nVjqw2wSJblmkx0V7FWb1uDMjGndWOJ7Sov55YbaL/JieGaDt31I7qTDP3Ia+8Iq5jlJzaLNOTDYHezqiyn+p2R3RWF7Pb4ft6wXXULGiz89Kt+qg4MVoduj5GZjaceln3sy0CF2FetLFYd8MZMbs81d9NJTDXVFGsHtUJny3PgS458fAO4NUwu0wCt3BcZhwXh+v0CWahY1HWMD1rYc8VPlwrRXLsdP9Yi659ALVyikYSjHYtFDOri2L1iG7tZbn55hwYZLoAoLe9pSkeXLgE/+qSh3D8YGEyuEoeulJiQ+fA3/0dcPvtwH33mQeSBF3pouSZ7yYItPGAKCaNndWbQNFZfQ67QWZngfe+F3jggcKDUiJMXXil/rggsCW6o+7eYACwWM2cb6TsxYDEbboeODl6Cu7RAwBo1epOR4sTlMX1olDBtxO9HfXEPFGjkSnQ1KXLYNpkTp8mLlpoQoZ9FZKuRDcfOopq8xSoz61crCa7secxIGUXZTdBJxoxRzQnHymNjelJeZvIWR1KHQPixOhO0xVASzIbJSdGLDcupi3un8G438FVtVk89qgCjh8/q3iKJRTSLoUrC8vMM0O5PMyJXSoDAhlOH1txAUmptyT6yyd6gyb8MtR/s514hbDufpsAIIqjhWGO1YgEO+oR9u0DYFm4Yl+KE+1xYHERaLe1szoXRC1Lx4CE5aHdTrffDnz2syse7Hb1xDwvVEYoVqepLjK4GTEgVSdCe5ZQWE8UHCtFxYnRmd9gJ9NqoZEEqE+tkh/uujpHdbs4q70uFjseTVxH7iJzBVCpoOaGaMwR3MSM1XHc62Cp7dCsuq/IKPWrrs6BHrDYmET62jtduhLfc8l+3PdETZ/4SuGVH/1ptKSP8s5K/xfOIffzyBFg/369u0r/0UQ7H2sms7rq6GMdMQakLf1+Ti3QiwFZV6xeEQOCiQnsDFqYPW7+UKeDtvRQHjfPuy6qbohWe3QHsMxsOGVP99lEkQpnOasHOeFz8WmDUbauM0QMSKwgkGHnjiEatG14luwtpG6EhQXgb/4G+j4ipV5szx3QZaEXQkYshAgsjxUuBWrwzqgh2j1brJaji9W5kaHiayGtS9R3G9HHrpUx7nWw2Box/xjon39+McpsxDiYJNG7LIL+NRV4me5jRo5tWZmvPeKxpila0kc1KNxXHGewc90cy0JcwcICMHHVOHaVmph+dL7XrsysvmsfWqxujipWm7/renqXQS1I0IxHvL5W9lvmc42GafKBB6AUYAmFK6tzOHZnYWdQvvMw6LtfLaGQRsNfXwsn2njetRFOmzUAxDFaiY9ayXyGvq+/qwbNjr7t5qyuVLaBWF10Vp/DkHtxUdeb+vM/LzwoJeajCiZ3mT7QshA4EuGouzcYACxWM+cbKRGmjnZWR3QXcPyxm+AdfIy8bG4uVpM6q8MUXp7Vu0DUq5tiUjU3QpfCkXMeIBerJycBAL4tEXfpin9F7/0LBNNHgRad6xEAolNzGFOLpM7qxBT/qtWAZhzQCDQFsdq3E8RNmgOWsXZWl+yEeIeBDUdkfffTBliaiTHmdfGCZ4W4Z+YKyBtv0gPRcj+PrmQnoy8I5Q6qFYWv8ufWJIoghEK57uK6yZM4fWjF55ZnM1YKYrUtEQ3KrDZ9cUv6Z4vV5iJVq2xLHUasnqonuPRS89jkpG5lehpYXEQ39RDsndDPCYHJaoz5qDx0x3DvvehPGnJMpELPtU9YcFZKLVaTO6ttqTOrF+huNDJRcIRxVi9s8JrtdLR7dEUMCADA0Ts32uEF7hgxM6Yxr4uluATMzIzeZjH3s1xG3euiOU9wEzP9dO9YKQYc5ljz7fSiZHYsDCpaaNyvJ2Z8XL43QSvxkE7PQXW6ONEex7HOFMpjBcXD9FsqGb5PPPRQB4Gf4WtfTXvH2k58VOt6SuKWXR0pMcgFnqwfA7IspxboxYB018u/XemsnpjQos9JvRtE2/QFxKTptxw9nm22RhSr83Or7JkYECqxWpzlrLaEQhqvMUbKsl4cyUZwPGtwDEgC7C0vDS6uCGix2pZ60XmD9/H3vAd4xzuAY/cv4O4zV+hzNHdAVwRJIUQAy9TqckAQAyIl4tTuLzb7PnxLImyPOJ7NBeCKFtLaVAuNUiJTFqxaBeN+F4tdf3RhppdZbe4ved2NATvlokiPB9Zqsy19VMr986jkZ0TOanu5C9xORnNW532hv0KsHlQY0yx2LcZlZBlgX7Ibe0oNnNnf6B9rUVgHUCvJ0cXqFUULa1Wl5x6j7MDMxeq833LdoQqFAwDm5xGmLkp2gn3VBRx7uOAsyD+DgrN6Q074dhsLtz+Ea458DmdOZ702m0mAasmcR76vjQdEzurtJlZvH2e13oHbPYcdgouLwA/+IPDVr5oHzFxzKS7sFAVQ8lKEqUMsdFycsFjNrEu7Taz/Soko1U6UJKJzqiaZLqhF3atvhlgdhVpQLTlEFd+BXjGpqhvSTHJWQB2vAmyCWG0mDp4lEc3RnbR5trJICM+tgwcRHZtG/d4vEWdW23A9LagtxOVNEKvl6MV+DDJK++5XquiaMIQQSidWmJ83wtKcxJjXhf3D/wav2LsfX/pagOmwhl27zQs8TzvBCcRqqax+BXFAFyoTav3t5LmzetzDd+09gtPT9nLl1Gx37YnVeQyIHCxWC2Q6BmQNZ/UyG5kpTLNuhmIcI84cTI1J7awGgIkJfQ499ET/PRdsf1qsrmxIrD5LOO529aKNlen3vkR33aaxxHg1oc2szgssOhFaLbqOViYKrsmv37AI3m6vGgMCoJ/7G13gYrW5Vhwr0/EEVGK1MrmflQpqboTGIsH91jir616oxWqK2Z6peF8s/gVg/baV6l16x08KjF1SwdPHprH/niUsnWghyRzsX9qFciEFBI6jt5sPaz44dQqH3vNZvO7Sb+LOvz+lHzNF8Cpj+mBF4Ot9TEM6q1cdn+Rb/1c4q0tOsv6ugLy/yz+4ceNQnBG9c0gVxE94HupeF43WiNOp/P5d2WA+63r0CiwWHsuzoNfK8s+ycyuwOGQMyNVjM9h7yRACgWXBs1PE6cZ2GnS7wE1/p2AhxU1/ehofOfAi9KvKmYiZIVz767JKEbxSCSTiZzMJUKv2828DJ0E0an55Hg9W1rtiWiHR7o3cYe46GK8kWIzLNNntRQE4r7sxQKjcvx9429v0v9/7XuD971/eZkd6KJcKYrWXju6E7y1erhhvjXLt5pFI/vIYkGGc1UlmYzE2cX0TE9hdauD0if6C4LLPFUCtkmlhedTPQPWzems1aAF8lLlHvshmFWJAhigUDgBotbBoRMPLKgs4fqgwlsw/g0Ku8IYKvB84gIW4jGvGTuL0Y0YETxK0Eh/VgqGlQpXfjm0WA7LUQtVqk4vr7343bXv5LmTPknptbYMLbAt3PIyd930eOzCDU6fQvx8I0RsWAGb3xqj3BAYAi9XMAP7mb4C//mvCBvMYECdCEhM6q1MHni3JOwVysVopxJGCZ0mU7BjdUR0TOWZ0VLITdEdZ1V+F+Xng1a8mbRIAcOoUsVidJFAwzuo5OjVJC18p7VaeVgtR6qDuhvQxIJ6NiQlo0Y8iX7ogVo9cPKaAzhXOyBdtlNKDcQVs7P1nGZbmU4x5XeDZz8Z/fPlRfPixl2CmW8POfUboyZ3Vo4rrSYIodeE6hXPKdXVkw3oFP8wosFyx8F3XNXG6UwcOHuw/LyU60kW5WtxCmyBM1p+cyki/72/P7cM7vvyi5Z9bkiDNlg/C4Lp6e/J6k2jjrH7V8xfwgheYx6amMBW0sHDr/frnFfa9yZouZjlMx6CUzo4bG1txaXY6+joQeiEkatCNnOWtd6D28N10RWyVQtJJdAwIZeErAFKqfmb1Rp3V7baeME+tkh/eE6sv8OHjyo6VQqw2DkXb1QUW614XzUWCvstM7B1Li4sks708s7ogpABYf4xkrlkAOHlSYPzyOp42No1DD3Uwc0Qf41y30itfAKDnThs44ZcSuPFGHHvLB3Fofgz/7in34lv3mXPIbNPPxephawPkGsuq3UWSoJ14y7b+w3F0tES8zrHmnYnV70N3TSSY7laBgwd1VHGx+qDrou6GaLRHXLzJBcWKbwQvgnHcSoci0BPU1vy+egUWN5hZnRdYXGecJBOFG/Y91BMVB+E5CnHmbGhc/+m3P4zXuTfjGZ378MnP+jjSnIJX6vdVQdkaPQZklQVc27ORKmvkGJBmEqBeM5+958G3BtxnhyFfuPIdVAJdQJVk8C2lHme5LsZrKZbiYPS+q9jHAkMX2kyWOph/5DTwvvfh7i828b9/N8NsXqrB9AWV0ioxIBv4vtIUuOWWFceq7LPytUcadpv4omppedZ+1Y3Wjxoy4/+Tzbrun8fGsKfc6NfLlhJxVigGCcAtOTq6Z8hzodEAbr11xYPFaCwYZ3UyorNaSqTFIq+9QuFDLHI1m9rhusvXtWeOF8YpqxTBKznx8Ie6fz8WojKeOX4apw8YNdostNbKBWe1S2c82DbO6iiCvPd+VO+4hdxZ/fa3E5sm41jn4luZ7r82eMCL9z6BCSzgFfYduPUTZwp9yPLzM/AVuumIu20YACxWMwOYnSXuKNMUUaZvvAnhamHPWd2rpEwDuVhtimfkzupOk0gAzR2XToIusYhw443AoUOkTQLYBGe1acyzJaJ5OtWnf24RitW2jTB1UffC0fMIc+K4t82vFwNCceLGsRaAN8FZ3cusphKrVw46NuLuaDaxFAUYq2aAbeNFP/YMHGzuwEMLl2DXU0yFTd/X2wZHjdpZrfiXbaPqhmivM8jNwhiWUPhvvxjjVa8CTnfryy/O3EGUi9VCIHDNVrR1RIQkVpjwO/jSmWvxvkdeDnWqkK1h3F71oPC9O47OvlxvQG6Er3//6llcc4157MUvxqTfxtwZqau9rxCrg5JANOS2ufkv3YedncOYrESYL0b/t9vaoWilOvuV6HwFgDSSqHkhumeIKvZFEeLUgmec1e1Rc29zsgxSCjhCO6s7SxvsaM11I6qVs58zMSCdmCCfdDPJBy6XXAIAUDMbLDK5Gkb8czwLKJd1/EODYMCR99O5+EUx21uRWb2R6B7fTjA/D9Qun8DOoInpg03M/M3n4Nv6PAqKaxi2Pdwi+YMPAl/+Mr7/k/8Jnzz0fDxv6hiWlpRedUoSxJkNr+IOf6yFp/OP633vAz79afNkvsskWL4g6FjZ+t3LSrEawK5dwHS3Dhw4YOIECq93HNS9EM3O6GJ1HtWgxWqCvmC1zGrHgbeeEz7LjAC3sT/lemL9zOosQyIFPDvtF6EagOdkiNP13dor+euP+/iJp38Nzxw/ja9PX4X9jV2o1vqfpRWYeJcRxeo4teEVF5vzGK8RndWNOEC9bn7OF4VHnYPlWb2eQLUm0JaDC60ORX4hOQ7G6xkWozJJ8em04NTtLbhH618P8jP/jIXpBPjWt3DgjtP4lSv/Hh/4H4f1k/kui8LtrBQovWixge/r3e8G3vzmwgMmY3x5QesRM6tzZ3Ww3FldcQaI1Wax6/DiGHbsAFCrYU95Cadn+vFy7cTHslt63s8OeS3ccYd2ra/8u0UBuFbJaKJFlH12DMgwxepaLSxGZYzvLeGKySYOz9V6O5dWusB739ewBq/9+5FkNi6rLuD0KXPtJwmacYBqHjETBDoGhGgKum2c1VHUK24fEhmacqQEHn6YsMEkgVQWbGG+w41csGmKhVMhxr0OXrz7EO7+WtozYXrO8r4k8BXHgBDBYjWzLvPzxB2lEWurbkSbA53pAbinIrp+IcvQueNbGF88THesUaQHuZYczo00LKazHfqGvgE+/vGzDJAjkyR6IYT03JISAoBvScQtwuxXZZkMZELXfhwjUwJlJ0a0RLQMnRdo8m2IYIgt38OSf0n1uj6/mjQXmEwyEwNCkMmYkx+r6+o17o24OxYXtSNj3GS8Xv9C/MyLH8TbH/wB7LrCWAl9X1d4HlWs7m1RX8U9s46DIOlKOCLDK77PxSXfMYXZsLo8tHmlWK0PeaCDKIkyjHtdPDy3G7NhFU/cV9iZYNxetRUFfypOvP6A3JzjdqmQe3zJJZjcV8HjS7vxO/e+FrX6it9xXe10GKITb33qC6jLBew59S2cOVX4PsygWceASLLzFQBkZqPqROiu537fCO12bzGs4sZod4jE6tylaWWoOBE6jQ0uiOVf7LK8B0PPWX2Bi9V537dvn15gOrUwepvFbd+VCupuF40mwXeWX5tGTVEhjbN62RZ1W+e4y/V2tJnonomgi1oNsHbvxM5SEzP3n8bMmQzfMXkCZU8uSwTqb30f8DksLgLQO34OtXbgsr0SdiYhT04vixPIjzV/DwPeIgD9VaepdmD1JrXGoVh0U8LW19q6zebild0fR+3aa2O6WwMOHND3iLHC611XF9qkEKuVBbcWaHcmUQyILpZYGGfaeqfYmudBz1m9sT9luTYyJdYW//I6DY5aHim1Dp67QWd1luH0goenjU3jmonT+I7JE5ju1lAbL/RVeRb5KBOFfOu/t/yeCGDkSIVGUkLNrI3D87RBYNTdkoWs3nLNRjshEqvNmBuui7G60jEgQ4jV/+7f9bqDdY8VQCGzen25QjY6WIj0/aqZBHjTM27Fxz/l6VMnL7ZajAHxMy0kbUCs/su/1LfEniFqlRiQkh0PFNbXxeRrV1f0W1U3QquzzmdgBLhMWVqsrtexu9TEmfl+Mey29FGtFs6lYQplF3j44VW+t17GuD62sVqGxWjEugtmV1CvC87d9XIIySp3Vu9wMP6USR2rdeJEr90odeEFyzOrh5omZBlw9CgAoOpGej0/y3rO6mqlH91TcWO02jTy2rZxVpvzr+JECKlqcRmk1GvdZMSxdu5b5yBWnzyJxa6Pcb+DHUELC3PaJDkXVjBVWn4i9RbE2Fk9MixWM+syN0e8KJSmiFIHNTckbTeBq4UvK6YTJ44eRefwNMYf+zrikM4BHWXaWV12YrpiiIV8zjRbZ8JwDrTbWOZIoGB6Wm/f3xxndYqI6vtC31ltZSndx2q+r8BO6ArAxbGJARH9bdQEqwG9wln1us5oXaJZYEkiZQosEi7ayP6xKmBjzuqlJSzGZYxN9l0XP/bx1yKtj2PnLjP5yDOrR71u8y3qxVxC112/iI5SkKHULn/Pg3XJHiSZjcaRggi3ilitV/fXyU1TCjLOMO53kGYWfvxpd+GWLxSGBkmi3V6lFWK1O9hZDaAvDhimXvQU3HrqafiD+16D+viKIUi+yDCMWI0qqm6I3eUGTn+zkLOdu53yPHSqhRClkCqhndVU/XangyTTBbWqbohWl2ih0UwcnDyzeoPFfpJGV0cfrdbx587qAdEyW04+AdmxQxcunCc4D4rbvstl1LxQF9Yb9XMoiNUlJ6bJWTf52nmBxd73tt5Ci3FWj5cijI8D2L0bu4Imprs1zIRVPG/qGMrlFe/VcfSOrkF9+OIi0kxgT6mB//v2Bvxrn4pLKws4+aVH++8/F09MP5Al639nycFjAIDoyGn882/ehslsBjPTqvf+V+bUwnHgiBQyWeNYlep/lwVBddcVJUx3a1BnpnGsNbGsiFIvs7qzQSvySvIFpmqgF9lGEbxyejEghcccRy9arPUZnGOBxd4fWWsHj+mX3Q18TJ6TIR6Qg72MkychVAbs2IEXvesN+H+feg8m/A6qE4U/mi+IjiimtaR/1gJu/tywHDiwouvIndXjfaeub0tEo0bCFIrgWSV/4xFp67QLALBt1OsYOm9/ZgZYWGvtcEXBvn4ExPpyRRIrzEcVtH7pt1B9xj5UqgLPqh/Ho/e2gUZDmwMm+mORIMCGhKQ0TuFnXezcoXSN1fxYVwrrDlFm9YrCsFqsXt9ZLTMbFS/uO6tLSzi9VNLXZJrqdiuFNjYw3gKARx5ZQ6wu5EBPjme6Xs4o11eaLs/adxz9uSb24Httq6XF6ikX2L0bjpUiOWkiwKREM/FRm3B67epdQUMc0+IiVKp3XWJsTOcMLiyY72t5znzZiUnKBQF6qrgtxGpz/lXdCCGVAavfNB56iLDBUZzVR45gMS5jwuvoceWiAqTEfFTBVGX5ieS6Wj9gsXp0WKxm1oXcWd0rsBghkYLmIlYKsdRh+YEtaRxUho70UPdCxHONwS8ehijq5WsPfZMcst2cc8lgWo/N0CNOnQIuu4xYrDbnkmdJxITFO6URq13EdMdrvi/flmQZ0HmBJsezAd/Xg7T2iG0rhTTJtHBVq2HC72Bxicb9KeNCZjWhWC2EAup1WEIha5+Ds3qqP0v3Agsf+YjAy19uHsgzq6liQIoTEttGxY21+LUaSYIkteDYmd6ivns3fut5N+PnP/l9/UmjlOiudFZ7SkdrrNXXGpFkPAhhWQo/cMX9eOKQWPZ8IymhviJDsTyEsxrAWWL15GVV3GtdDyUsjF1aW/47rqu/v2HE6khnfO8uNXHmUGFmkDsUqcXqfDDuROeUWZ6mqxSKCUPEqQO34mmn+nqF3zZCvstCZIMFylUOdL7hYDLorMh7MAiBip9qd96FXDgmvydOTuKS8hL2nyRYcTV5qo5n6azikkQjGjH/1rQLAKhWMeZ1sThLMC5axfVXGZSLXhCrx8YA7N2LnVMZZsIaZro1PPcN16BUW6E25u60Qc7qhQU9oXtKHW/+jTHghS/ElbU5HP7M/XqQUSxaaNoc5CiV934bABD+6QfxV5+s4Nef/mlMHzJvsNvVfWy1cFyOo2NA5BrHqpTOpAaWi9X/+oWYzqbwwPyleNlnfg31qcJn4OjaE43uiGJ1fs1WAxN7YI0++Mqys2NAbL3jQkZrx3Usi48Zlvy7W6tPyMVqb/jxg+cqXWBxyH4mfPQwAjsBrroKVz+7jN/85Rh7d0hUdxVC1vP70SgKkBGoqsHyeyKADfWJP/zDK0SYJEEjCVAfM5+RiT8YlNc8zPEmea5wEOhYNwoFrCBW2yVPO+uHaFfKdTJo88xqb0UMyCBndawLRD96tIyrnyaAffuwr7KAUw/M4vN31dCWHsq7qr3Xl/xMF1gc8vuav+lLmGocxCXp0X4NanPN9s7pPFZilIUmI1b3CvYBgK134647LDLX185aqMVqx8HuHSnOdEwMhpRoS29ZJE5v5WiYic3Jk3jkznl02iv6pBXRGhPjakNFslclj9ty+guHgTtEsTqlTIHFMsZ3ecCuXbi8Oo+jD7d6x9pMguVi9bDRmXNzZqeOAnbv1uPfQ9NAHKOZ+Kjmp5bZebbROM5mE/ipnzr78TDcJjEgRgDWYjXtAY+PEzurk8RkVqd6UXwj88RTp7AQlTH+1CktVi8JoNXCXFjBZHX5Oe96gsVqIlisZtZlfp5eUFTQgmKibJrVfSmRpH1xIlogWtI0A7yqGyKepROro9SBb+nMajKxeqU4Tdbw5jAzA1x66eY4q32bVqxOhAfH0pEVSUhXCBAAfDtB1CL6EPICi74F+D4m/A4WZkevIi8zC66dAaUSJvw2FhoE7k+lIBPVFxSp1lak1BOxWk0XJtrICv/SEpbikh7kFnjJS4Ddu80Pvk9z3ebbUldUfPftZO0s0Xyyn+f4eR5+9EWH8PD8HvQqCUmJMHXhV/pKQ29r/VqD/DiGVFqguvLSBJdV5jE9XZjQJAmaiY96uTDgyotBrtfVriVWTwL3PVHHD/+IjfGpFeeSmTz13Pzr0G5mqLoRdpcaOHN8lYrvgUsrVpuiLFU3QngOGevz88Cv/Mry1JZcHHTLDipegna8sYJPa5L3BabAYnsjYnWng7moiqlKuOZ2/XKQoSOJinRtEirPUZicxBuf+VW8567rR280n5jnxaTqQtcGGDWgsuCsHid0gadquVhdduKzxYYi5nycKMfaWS0Edl27wzira7jmJRN46lNX/M6QOa3TxyKc7Ixj925zPNddhysmmjgyW9H59W5BHc1jhgbE4shQf26nF3wcaU3hVZc+gpnj5kBaLS1QjS0XlteNAcldxfby62XnVVVM15+Gx596A37yX53AT/1yIQfE1bUnmqE7mricLy6UHJQCE1FAsAhylrPaddePAckXZM7VWT0gBmQjWdgbjQFpHJhG3QuBK67QD7z+9djzgktRqxemuhuMPlgV49BcJlabmJ1BY8S/+zvgC1/Qp8qBA8Btt61styBWmxiQaNTxbH5ueRZ61VGJnNUK0N/9kEVRoRRks4PmyTWKoEupd5+W+s7qwEkQJQOc1eZWdM+DAa6+GsC+fbiksoSTjzXxho++Fs04QGV3X6x2fUsLSUOeWzOfugM7gxb2Nh7DqRPm2smvlQ3maxeZnQUef7zwwGrxRfki23qFYc29qSdWA6jv8LTbvdHoO7arZ4vVKh6ioPUf/R+0p9twuyvqdaxwwgcVW5sjRnRWyxX9lu+pwQUxu11dKD2r6R2Su3bhqtocDj2e6AsuTdGVHkrVYmb1kPOP2VksRGVMjGfA7t3YW17CqUeXgDjWC1f5qZXfZ6ONzZNuuQW4+eazH9+WzmrC6D1A14zoFUulwCwy2ULp738jdW1aLSzGJUw8fSfqbhdLLRuYm9Nj5h3Lr/teH8Ni9ciwWM2sy2Y4qwFo4S8jEqtNzqJnG+FrgUioNYPrihMjphIUo6h3rCV7A1WIh2h3GdTleImJY6Ba3TxnNeXNXWZ6IcS1UiSEDnsAepJ/Di7NVckLLBpn9YTXwcL86JMcHamgtFjtdbDQJBCr80G+SGkXbQoxIL69QbF6fh5LcYCxvavk9Ob4Pk1sSb5FPVgxIRHrTEjyLad24fk9e2AJhfTE6V67AJYLP4NEBCNQ7am18eLrM+wqNTG9UPh9KdGIS/1q5+ZYK4OKyKwVAzKltb3f/E3gf//vFb/j6jinpDv4mmi10Beri5nVeQxI2dNbRztEkR0mZqfqRuieQ5tzc9p8d+ONhQeTRN8PPIFq3UIrCWjuifkuC5Gi7oVoraELrEq7rfP3amvf+Hti9QU8CJfdREfmjI/jxXsO4+DiJNqjFjQ2EzLbCMD1OtBICMTq/NqsVOgiS1ZzVg8SgHNndSXp5TLveNFTMBtWMd2tYddeG1/+8orfMTnQg+7lv/OPz8NH9r8Iuy4x/ZHr4sprSrh39gocbk6hVCocl23rCX93gFht3MH3ZM/Hd+06iEm/jfkZ89k1m7qPnfD7v+A4Wqhd67TNhRdr+XnieUAoHTwx+SK88icvxwtfVJg6WRZqXoRGHKxbxHYg+Y4Q30ZQtrWLcNSBTJqa6I0VmdXrZZcrpfsOarG6FwMyvJDX20Y9pKC4dHgBY263V1QVAPbuRV9IMsc5TMTMuuTO6hW7jYapQ3PoEPDEE3rRcudO4PbbC0+ayK3aWDECI0E0aiRMfm55AiiV9O4l4hiQXKwemLf/6KNITs6i+e6/0LkSq7TZkR4qtWJmtUQ4QKzOz+e77/N6YvXe8hIevuU45roVHGtPorKnv5NL5KHsw9zDlpZ0/1dqapHy3pO9310WtWTE6o24aj/6Ue2w7x1Gu62d1ePLF+8cK4Ucwlm9oxb3xGoxVtfftRGr24l/lrPatdLeot96zM1m2Bk0z47Wy+cIfr9fB0ATA1KYavTi7Nb7vlotPLywFwtqTC+27tyJq2qzugZ5fq4KQFj976vkxOgOc33NzWlH7bjoO7Yf6wKLi2glPmq7zC60cyxA/Y//qIcRxa7ORGJvG2d1qnScXdimGxeq4UscDE8cI1X9AuTdjTjBWy19Hjx9F2xLIZMpMDuL+aiMyV3Lv3N2VtPBYjWzLpvhrAa0WB2nDlkBuDxXOHASmrxHoDfAqzgRhlh4Ho7cWe0YkY6i4jvQ/xzNQPxCd1ZLqQuVUBfvVDDOaqp2lUKSAI4wYnWD6HMtOqupbuzFyuS+j8mgPbpYbUQv18mAINBu7bY32qQc6F2zjie0+Eux5Rnoj/RqNVMMcgMnwtycjgHZV1v7NZ439HXbaAAf+cgaT5otmZUVearugMJX2lldGM3u3q0LoD02r3/O37+zfKKT/81VMd/F3rEOPvJxHf8w1/T7rzcFFuuVFWK1G6O9npi0jrMaAK66Sm/vW4b5DJLOgA43y9DqCFScCHvKDZyZKQxlcpGu4sO3JMIukVhttg7W3BDd9dypazA3B7z61Vgu9hW2xns1n24B1zir3aqPca+DxdYGFpg6HcxFFUzV1+6XgpLQW6gvYGd10kl0YdwgAEol7Co10JoZ8bNNUz3JMVvUx8cUFqPhioqtS8FZPeZ1sbhA0BeulVk9YDdEktmYqCa9a9P9nu9GMjaFmb3Pxs6dq/zOoH7LEHUyfOnkM7FrX188vub5Jdx06Pn4n/e8brmIMsxiGPpi9fQlz8XYDS/Wk8cw7m0Hbyc+KpMrxGqRrX3aKmXGkme/l127gDvuwNnOcgD1ss4aHrVoXy76BCWhhZlRz6ssOztuqid8rbMouhnOarNNfEOZ1a5CnG5ArD7W0M7q9cRq46Ycya1sXKq10vIYr2Hq0EgJtJoZ9t94L37gukN46H7ZH07lu4JK5kPyPH0PGxCBMZCi+7Vc1tcAxVh2hVhd80K0FgeMZxsNSGWhlfhofvyf8aY3rRj6GbG6XOu7lX3b5BWvQ37pfeNbjharn/lM7C0v4WvTTwEAPNHahXJ9+SK+UkNGUT74IGbCKnYGRqx+zJhWpERXuihVCi5wO0G4gdiWb39bRyL+1V+ZB5aWdFzHZGHcNGhHiDkWmdn42VcewItfbB6r6wrWaqnRy1nvLQIAPbE67gz+DObDCnYELQSqu3zanpsoAvPZmvHeMG7tnCgCvud7gHvu6b8XvSOk/zkGXrZ+nB0AtFr4z199A74xfYVebN21S4vVJwq7wMTy+0zJTtAdJn7NiNUTO2xg925cXp3HkccjYG5O77LYa6qFWxbKboJO4m5onnTffcB3f7eu55STd//bwllt3MpVJyL1ymUZNn4vGkTurLYyvVjR2MB9u9XSUTJX7dALM5kCjh/HXFjF1CX+spf2xOoLOS5vm8BiNbMmSm2Cs9pctJ5N7ay2TWY1YcE6s2JcdmLECZGobJzVfk0XautQidX53Wx8HAqA6tCK1ZY1uj5ZREq9G3FTnNW2HD3jL8cU1HKtFK5IETeJRg25WG0RFM/JMYNV17cAz9Mu6MURP4d8Am0DsCxM1CQWosroi0x5MUjXQlC29JZnihFOfkLVatpZvZHtXblYffnY2q/xfd3HDMhSBYCTJ4FPfnLt41zVWb3eVs88S9Ra7qzeW1rCqf39TL68rWK7y55bSeG7gOPA3r1DZ0+e7LuHGvEqYrUTob1edfp1xOrJyd48ajmuC2+YuJ1uV7uEjLP69FxBAckXWCrGWU3VFZqdC1U3Oqfb1tx0imfsXsRCUYjMF1o9XbBvw0VB1yIvsFgrYdzvYrG1gYiCdhvzYQVT42t/B8LbQNblFpF0TTHSIADKZS3Uzo0uVhe3PE/W5ej5nCjE3lQqOld6VAc40F+08ftCir5mh3BWV2XPWQ3LQlap49RiqefYW0ZetHA9vSPUBbW/OXsZdu/rX6vXvGwH7njdO/HQwiWojC3vs4ZxVuf9xMySh/rush5UZBlUqw20WrqPnSzkrueiz1qndi7U2md//i94AfAv/7KGWF1JtcN+lPMgFyp9G0HFphGrc+EvWMVZvVkFFikzq70NxIA0m2gsKYyV42WroK95DfCKVyw/zpITIxxld9RqucJG+Fo3Zgf6FGk9cgwHPvUgnr7wdbwsuAf/8umw/6RpC4DOrHaS0cWqYq5wqYSqG6E9T5tZDV8vjA7cFWLGG80kwG1f9/DhDyt88YvLj7Wd+H2xOo8ZStY/IWWiYIsUDz8q9DW6axcu+e2fwjemr4QtUhxpTCyvF7yRjPEHHsB0t45dlwe4pLyEk8f6NULaRQE4LwQ4jLO63Qb++q/x4D8fwXuvfQ8+9D4zXlpaQisJUNlRyFkftMgG9O75L7lmod9Pj4+j5oZoHpkHUl1noroiEsez5VDxhotqDONeF+NuBwszhc5+ZRSK56HuhmguDX8Pe8cvn8Z1e2bxX39J9dpcllkN9BfwBojVSWbjzqP79P2rXMZTdrdxcGFCuwUAmIoEGpNZPVRsy+wsFuIyJnZ7wNVX44r6Ao4elMCZM7rA4r7+vKHsy43FpEUR7LCFS/ZkOHWq/3AYArXaNhGrTR9TdSO6+bdudnmMFQV5ZrUj9GLFBsVqABC1as95ox56GDNhFVP7SsteymI1HSxWM2vSbAKV0edhy8md1SWHVKzuOattSZeXlMeAuLRidZQ68OrBORVhWK9dAMD4uBZ7WnR3NyHMdkzC82AzxOosSmCLDL4l9fdF4dTtxWCYzOpRCxYa0m4MSygzsCU6t4q5hHlm9ahidZ5Z7eiB50Q9xUJUHv26LbisSlVbV2UnEOmUTHsFFjeUB64UsLCAZhKgetnE2q/LM6uH+M6kXEd/NxOHSnkVZ/U6IoJ2VhcmAXv24JLKEk4djvR7WDnZBYaOAemJCE/RTiR14An9c6eDRhKgNrZ8kO8N2sGwhli9Y8fqgk/+WtdKEXcHi9Uts6V1R9DCbNPvX+8FZ3Vgy6EWFoYiSZBmxll9DouMczd9GZc/8jm0ZwvXThwjTm14gaDNEi1EoYyXYyyGGxDS2m2dvzexzmRz0ALIBYCMdZ8N1wUqFS0kLYzugNZRS/q+PT6msBCXR7uRKQWZ6t1mKJdpCriaY80nZACGE4DN+fh9z57Bb/xG/+FqVQt+1mrDlbxg31r9FgAsLiLJbChY2LW78PevuAKXVhZxYGnn8m3vpthsO1x/lpq7uWcWHb34NTWFmhuidXS+L1ZPrRB9rAxyrQKLeR+7irP6BS/Q6x75zpAi9bLU2eWjitXKgltyUKpYWuwYdQG3J1avdFavEwNyrgUWhxWr/Y0UWATiYSf7p05hKS6hPukuc08+97nA85+//DgpiuA1kwDV0vLPtTxEDIiMM7QePIwDjV24uj6Nn3vKv+C9f7Con8zHQOVyr03fkgPzmgeSL7K5elG04kSDHdBDtisA/d0HwXC7QsyYupkE+OKJa/B7L/4n/Pmfxcuel8qCGyx3Vq/7GSiFRAI7ghYmJoAJM4Tb+6xJdFMPz548gUxZvY81b1cINfjckhJ4+GEdA/LSp2tn9RnRe65VjNawbZSGKAYJALjxRiS3fw1SAlc0H8Qlrcdx/7d1ZEc78VDduVq/tX5m9bI4DgC4+mpM+h3M33cUSJK1ndWDxlsAFsMA434H434Hi48X7L/5faYgVk/6bczPD/4IAADHj+PWTy/id/y3wV88o38vL7JZdFb7Spta1htzhCGkstCJ3d561RXXVnCkNQU8+qhu01q+cKdjW4boC+bnMR9WMLnXByoVXPHsMRxpTOjM6jRAdXd/JaQcqA3FpKlbPg/MzWHv8W8sE6ujSJs6tksMiMxsVNxI74KgmH9Df4TkzmpjPLHrFT2fa26gL8y3e1UqwNVX64XPRoxvzFyJ571khVi9wRgrZm1YrH4S8fa307Y3Pw/s2bM5mdVWraJdZFTO6lSLJ4FNGwPSd1YTXSphiDiz4Y8FelJKJFarMNJb2sbG9LYW4mq85GL1Q4+hdORRJOtNcDfaZpzBsTJ4dopIEhQnAvpibZ5ZTSRWR20J39L/ka1CF90zuVjdGPH8KjqrYba9xyUSsTqvTl+qOehKd/Q2s6wv+lSrG1u4WlrSxYIsG1bgrf26PLM6HBxbkiTraA15ZvWKGBBHpOtnVmcW3ILbBHv26MnTMQk0m8gyQNhiuRVhGGe1srQjHwCuvhrjfgdLDxzVP8/PoxkHqO8826G4bsGfNcTqeh34/OfX+J283UGZ1e02WlLnOjr1MtJM6O8Q6J9bFd9s916/qaEpVDsfanJTZH4ec08sYspvA8VdLz23YaHwFZWz2jiAx+sZFuMNRFXklc13rNN3uK6+31zIzupYwbFSff4bZ3V3cXSnatFZ7fg20swavZhUvmMiCLTTiyK6Jne8ef3s14o7XGZ1rQbs29d/eN8+4Ed/dI3fGRQrAQBRhCSzETgJdu0qPF6pwPFt7AhaqEwt71+GyqyOU3hWgul5B7UagKkp7AxamHmi0SuwWNlZUKjyPnYdsVoqe1Vn9QtfCFx99er5mbVKtmFn9WOP6ZzS/pvpO6srNQtt6ZHFgCxzVg/6vrLs3GJA8pWMtbbgmfG06w0/JvE86LjAYSb7J0+ikQQY2x2s/7q8CN4o6wBJcrazesic9WR2Ca0mcCi+FFf91PfiusmTOH5K55qmSy1YltJ2SqBfYHHU+UdRyCyX9e6NRYK+e4WzuuzEg3eFmILOzUufia8uXIufueoLOPJo4Z63MsrMZOLLbJ3PNcsgUwu7Sk1cfXX/dZUKUPMjvHj3QVgi69WAzNsfKgbk4EEgijBj78bO5+3DvsoCjs3qHRx5nFvPrdyLARni+3riCTy+uBvPeEEVCAK8oLYfj307RLLQ0qLyroINvGdkWKe9PPorKIz9nvEMTAVtzO+fA+bndQTleEFQc114lhwsVicJFjo+xr0uJrwOFk+u8315HiaDNuYXhzxnjx/HfFTGVNDGU50jOLBfrVoYdqjManOeA+jtDAqe8wwdH/Ltb+v4hqBwr85z5ocphtjpYDasYsclejx7+fc+FUdaU/jogevRzKrLYqzKvl4kHFakDO9/HIGdYG/3IE4f7ndMYajHy9vCWW3Gx4Gt58xUB70pYnWSIFMC1lhNf//DFkxP0/6u9XIZeOYzMeZ1cbpTR1e6mHra8pVszqymg8XqJwlSAn/2Z7Rt5mI15Xy0t901H4xRiNVmIqSd1QldwTozeQjsBJkCTYcTxz1ntXZo0uxvSeNUT8zrdS2CE4nVSgHIMj1pINS/5R1fR+nY40gadOFWMkrhiAy+nWg3DkWsRM9ZnertcpRitS3NRITSWd3PrB73OlhojHh+5S4XI5BOTIDGWR3HPadPqeagkxI4q/PvylZAubwxZ3VuA7EHjIosCyU/0+L6gP5gXWd1kujto6s5q9dq1rj+lgkp9Tr2jnVwcrEEHD+OMHVQ8leIEEM6q3ui1tVXY1fQxPSD07oDWFxEIwlQ37Nc9BlYVG21SBJDL2JgJXmBxSFiQFpJoF1CU1MAgGx2vvd3pbLg1gJ9P6Aa6McxUmWh5MRIUmtj94OvfQ3zUQVTQRtQhe/PfPaeL8w5KxEtEtwTexEQNsbqZoFpI2J1VMHU7nWuhfw7vVDF6ixDklraIWtZ/RiQxRH77+LuFaC/EDPK2CBv0876i2HnkIl+FnmRTa8vpJSdGJ318jnzXRbB8vvGX/818NKXrvE7JlZi0Bb1JLPxhuc8giuvXPHc296GK59dR2WisKhl2zqypDugqFqUoeLGmJmztbN6xw6d4X9gCQhDdKS/3FltWUb4WmOxcbXdK4YrrwRuuWX146iWMzQ3KFa/+93AO95ReCBfZAsceFVPT3KpYkBKy92Eg2NA7H5hzmHZlBiQjTurxy6prP+6XFDc4I6bU6cKebK5o7ay/P5dchJ0BjmrFxpoJT4W7Km+uJFIqMUltKSP/5+9946XZDurQ1fl6nj65Mkzd8LNSVlXCIEEKBAkFDEPMGCEn8A8kgFjwGCDwAEeGQuEJWEZkBA85CeCJYEkJF3JQlfh5jgzd/LMOXNip8pV74+9d1V1n67au6pr0J37zvf7zW9mOuzeXb1rh/Wtb612zU+Af0WBofiEqTiteWdIE9K1GjFa7VbA9hsDq2uKxwd+KKjaDRoIGjPoGFZiYB9FyfdMXQNFiuAHOeOGjq2l+oDoVadi32ENL371LOoNaTTRpJB9PdO9zwwqh7YaLWHpIAGRh54GrK3F42DEDFL1uGaQke3gvseauGTP4eCdc8DyMubNAdbP9vG69387vrR2aISpy02yAZOZ1bUa5pZVrFl1nN9sIoIMqZPafInutwYDbDk1zBpDIit2JbWxZWufkmZWD4XB6v6ZNTRUsi4fMy/i1Je7iWa1mnxf1VBI4ooDVgPA/tlBIvly++1oaA76j5wl2tLmmCmqCGksIoakV+0WFveTdWruZbfjkc19+I6PvxUXBp0RTkZsQC24HgzkFhqqS4gn96/EjztXNtFuBNcRs1qGKtGxVAXpAglYrfGPXOJBL6jUbonNWSwGA9iBhpoekqz1TTdhRrfw4Qu34Z7jaxjNhgGyrhJS5i6zeurYBaufJdHtApub1ba5sQEsL1cMUnoRYT62WiSrXaHBom7IZKNQsQyIKtOJpqK+ujS7XVNcWG4FYHUUwXPC+LoSY7lqrkHwufugXjwDbXutWmZ1KKOmevAEXKiF23RDAirLAcmkVwhWx8xqHuNTMJxhAEPxCDjlVmQumC5RpyyXqS8BO0BTsLozJxOWZhUyICFxp2/PKqSEeto2498qBGo1cm2HgpsEBlar/PuxZkYErOYACblgNWNWp8tSRTSrIwWaknpekrD3kIbLwxngscd2tknbjTs0KRhAxZjVe/ZgacbG1dWInM43N9F1a2jtTblU8SRLAAR+BEUKM7QDMoIdnhzOwXw4JKWybRmYm8O82cfG09vx9/RDBWqTgtVV+QIwtrJE+1YESDp3Dut2A/NGH2rgJnOp58EN1RhEaGk2ehsVTLSULa/qMrS6Br9I8q7fJ2Yxe3Kc0DQNshQhdJ+hjJEYAKbjk4HV21NeW2ompWh0TGsaVBFDUE6b3hizuhJ/ZFZKrSVgNRcAzgCr9ZxiE5G5gM3Nv/LNn2W5pSTabRw+ru8wwaurLgYOR6fWDdFUHVxdl2IZkOVaDytPdXGuP4s1t416I3X/SxJUlew/Jh4gGatYnvxddvSdhmxo4mZtILfivfcSXC6WUmXrt6kmh95pF/CYWb3TGyEvKXqtDBZHkqICQQwWxZnV224N7f05Bsm0n2Xk197zHpK0AQB0u+j7Blqzo9I1RAYkvx1vgzBnt4IWZo4RceEZuYfuWbLOtpup7ypJMI2IbyzHi7QJXr2Opuagvz0lgBKGQBQRMEaWE4k0noQRnQvOrTcwv5esMbo/JN4t7HeWpKSEQVGgSgGpnsraJ1Mz2RfuPY/v/M7Rp37iJ2W84K13odEY+70VRWyuvXoVALBqt4jB7N69JCnx5AUKVptozozra+fvI52zV/DWT30Xtmp70ZmVgKUlLJh9rD/dxdPdOZzqLo0awzKppbwhwPYnxuhnzx1o4MPnb8cPf/bbAE0dLQ1RFOiyABg6HGLLraOjD4lh8yp9QxSNJiwAQNOIDMi22Nn2yYdd3DhDANrj7VWc+sJmSr4oGUuSJiA9Rp/7x7f/ffI19+3DDXNdPLm9hE2ngdZMql9Ms5rHhLcsIIqw5s1gYYm8VmrUMT/j42v3PkGA6VTUaxEh4Ajes4N1G03NwZ7aNi5fCuPPtH/td9G+8sT1waymCQZZovdoxWC1WcERMY6Ut1FddTHoC56/+31qrEt/15kZzByawV+v34OXve3Wna/nrYm7IRy7YPWzJLa3ydxQJbA8GBAmZZUgpW1FMBQfcdqzilmYGixqs7T0f1Ads5oBlQAqA6udMMWs5piGCAUr95Wj5FDereYa+H/+QahSCH31QrVJi4jKq0zjyD7eJmVWEzaOWpn2qx/JUKVqNasJWE2Z1YFazU3GQDpTBXRqLjctUMfaZBWZDZOY71XArCYHVwlq04QfyZWA1T5jVtdqdC4Q2yS8+09N9FwjAWxzolYDLAHzK89LXvLgg8CpU6N9HXj6DsMfEc3q8RL1fbd2cGnQAT76UWJMNE4sEzJYTIEIkoSlQzX86ckX4sInTxEZEM8cBQE0jcumdD2JzJ1lwGoRZrVvkEMiA6hOUy05Boo0zYTlVIU7rOsiiCQoUkh0OousXZcuEbayOUBH7mJ7Kxrpq2bIgGmirdnoblXQ15QMSAx8FWVW781BKEXlWr5SwdZuqrVfGVgd63MmYPWcMcTmxnRmbSQJFVKw2q3mUMb6WoZZXSuwLxEEUvKAyiNHsGMubGhOfl+jCJ4boanZ6HalmFm9v7GJi6dsfOfHvw9fd/zsDnMmVcsxPcphVueGphH9W8F1/OGHgRfc5eA1XzNIJJEY+7WmFr9nsyKTWR3A93I0qyMZak6uamIoCiQQ34iJkZ7rBEM3JHGDxUuX0HVrmDmS4zlB+2kqfuHt/LlzwOOP0/90CTu6uTAqXSNimu5vE8DDlQzoLQPodLBodnH1gUvouiZazdHXGwam3yOmq+5qNZK0mtbENQgQRSnskxIkuHMX3W88eamJPQc1oNPBwdoaLnz5KuD7FI8eTTApCkjClZMIOTa/hVe/evSpt76VyBg1JuyLhPwBKJ2+75kkoXbLLTjaWsPTHzudkA7aatymqXhcEpJ/4Qo2nAY2jT1EX3t5GfNGH2tnB/BCBYoUjJIO6L4od45NJ7tSMXe4if+9chTn+3OQxjNQbB3nkQMGA2y5tUSzeo12JN5XpZILTLO6K7aGPPGkhJs7V4AXvhDH2ldx8okA8H2S3O+kvjDTGBdhVi+l7hVJwg2HAnzLh/8V3vHoy9CaS01sTLOaRxqjg3rNbZOEBY0PvKuHn/vae9Fsjc5pMbNaEKzur9loqA5hVq/SvmxtwQlUzGgWnKowjWsZdH6K54OKkGV/4EAdbMHUw0ogGADJXNpuo63b6PUE3zcYUPmnZB6aecFN+IezR/GiV0yo6NkFqyuLXbD6WRJMrpP9XUXYPQ9tw6kUpHRcCYbsJwYiFYHVXqhAn20QJl0V5kTATrC6Qn1to21AVSKiwzYtkJI+mJsmWro9PWuChqfVoTJWcYVJCy9UUFNceBWC1UyjVGk3iI5o5czqcDoGXSqcYQBD9iFLlJlSUV/9UCblu6YpbCL00ENEP3NisAMm23dWZQIXl6gryVwwbSaeMhQ1NSRgvSLOnnr/38/jVHdxRHcuK8yaBNvXuJnBNLP6T/+UMLPi8DxyyEmzfaiWaK6eaiiPMqsBHHjzPTjVW8Sfn34ufuJzb0K9ObasixospkCE5311HQ9v7sP/+B8Aej0iA3KgPdJX3pzg+RSsLmLlTTUUuWD1cEjKbzsaMDeH5VoXK+foWsLuA1OFaYr9VkLBAGC5ILPacYCrV4lp4VyEjjbA1lm6UNNEq15TAF1HW7fQ3a6+ygJAIWZ13zPQ2pNTTi+aVPhKRQwA02vZIEY6wyJGOpOC6UsbdEKkLLL1jenM2mIWOCulr6IaYFyyhALAuaaFZcFqKUAWRsn6MomxzeKrvxq4447UAyLMaqYhr5N7mzGrDzS2cOGqgb5n4Lfe8pkdb9M0kOToJCCBAbUlwOookoTnmY2/+yIWH/4Env/Ie/HgfU7MUIyZkaZZTeUhA6vHgC9iiJnxHmawqBU8HspyvhY2nT8LgdW6oEFVrwf0+9gOmmjva+a/lsmAFGRWj4DV29vEYHFpVBqrrroY5mnCex68vou+bwIaTQZSVu3aw1fQ9Wpoz4y+vxKwmjGrY83qAmzCnDaDKGVYZxgk0Tbk3DuehwjAU5fq2LtXAo4excHmJs59aQ0IArihCl0Z/b1VXUYQZVRDAEmiR5v8nZpN4G1vG3uQaZdz5GB+/38dxunuAqCpBIh77nNxtH0VT39hHbBton2rq6NtckhI3sVVrNtNbCoLBKymY+DKWRtzxgDvestHR7dNVLIkVwaEgYXa6GfPH5vFl9YO4lx/FpK+E6zWFZ9PGhoOseXU0dEtdHQLWxv0N/Z9BOGYvApbE7sC2a4owslzOk7MrAK33YZj7as4dckEggAbTgNzM6mxpGnxZ2aG75M0xxgof/NthEX/xbXDaC3uTDBZHCY8O5tcdVpYWEgevu0bD+Oe//Z9OHbz6Het1SAOVvs+Bts+GpqDeXOATcZId13YgYa2bsGtUC7zmsX4d62IWR387UegnHsatavnqmNWs3W61SLVjH3BtaBPqmLS8k8zM+TP/v0TXn8dGJFfL7ELVj9LgoHUW1vVtWn9yV+i9dkPV3ogdRwQZnW9TlgIvQradhy4gQptrkk2CrzNkmgw7dNrwayuq0lt7bSAPQP+KKO0pTnodity4tVqUOWwWrA6imIZkFx364LhuyEp0a9SD50eIGMZkIruBccKyX3ADqVV9DWtWcfAWgHzxr//e+DjH89ukwDg9P+1GiQA4aA6GRAGgEeDKTc3rE0lSjbMA0NIYsV3AlwadhKjnJyoNWRhZjWbMs6eBT6Txk0GAwIizKZKPXnMaiYXMAZWK3sWcefRAX7uvtfhMyvHUG+OUwkFZUBSQNJrvm8fPvD1f4i/+9Ic/t+n78S54cIoCM7T146iBKye5EiWFbRd1+bLgPQ9E82OmoDVF+kERUEszVRgNhRiylPR3B1EMhQpJAkm0Xn7yhUgitCNWmgfmcOsMcDm6c24r/G113XCrO5O39UYGKqpNHFVwMeg3wcASOMUv3Q805nV4/cKM1icdr+RNrEFAE0jBlabU4DLDEhSUzIgJcDqzU3gN35jvK8TNKvzfDKmYlbz9VSz9Iq//uuBV75ytM0Gr6+OAz9U0DTIfd9qAdizB/v3A0/3Foh828GDO95GZEAyAFCW8FQK7ktEgJRUrH/pLOb0AY7XL+Hkg4P4fU6okWtkGJCkCKFVkcFibdQI8JoYLDItbJdjsFgQrBbSrL58GQDQVTqY6XDuHQYoipjgpWJlBcnczJjVY7rCuhzAzdsnOw78UEbPr0GSaT+Xl7Fo9rHyyBr+ywOvxNe+YDDyFsOUyBo2zQY8XdlQr6Op2WyaLx8UrI4lc3SdJNo4BpPwPDRUF92Bij17ABw8iEPNDZx7tB8zlRv66HdVVZpg4knMZCRYJAn4yZ8ce5ABlXka42GIL5yexQPrBxLG8sICjh708R/+8VX4rS+/LOlg3KYH2+cwqzd7sAIdl4cz6HQALC1h3hzg8a09WDT7+O7XrI6+QVXJvcVJCAJI5iIaczfMwA01BJE8arRK29V5RtlAwqxeNjBnDLC2Qa9zEMAONNS11O+l6yQZwvEbAECIEJaGmXYEHDiAlu6gPyS/87rTwPxs6guLAH80ETI+eX3bd6j461f/Lh7e2IfWcirBpChkzLqcyY6ez9xIG5clRr2+8/yk6AqpQBVZD7pdYgSsumhqDnpDOf5MJ1DR1mw4vetAtNrzyFmWRVXM6ocfhyqFMHur14RZ3dJs9AaCa0G/j55rotlMvufMDPDCF2Ycc3aZ1ZXFLlj9LAkGVlepW233fbQ1G26/OsEkAlZ7QKNBSrfXKtBsZszqdg0Nw0fProhJx8A/plFakayEE6gwmlp1pZ4M8FAiWkpuodutRqfVV00iraH41THs6eFck4NKJ/FYD71NGaBVrGxsE8wA+6qY1QysZk5zFYHVac1Lwh7iT/G+j2yAjCZC0szqtm6huzElSMXkVTQp1lAcTGt+lgaoZBl7mn2sDNtCG0bPDnF5OINmh88GqdUAy9cLaVafO0cOu/F5s9cjBovzoywPVQrh5QHAoRKbXabjNa8Kocohtt0a6jNj30GAWT3CwASATgfLr34O+p6BX3vwG3DvD/zpqJoH09fOAqhYX+WwFFjNPTxZFga+juasBszPk/LJy/RzWMmzoRAWfFVgNRuzlFkdWYJtXrxI/tY0SIsLhJl0kQISbO2qyZRZXaAkMS/SppmGQUp31wXn2l6PHDqaOWC1qLb4VyriihA6jmo1AtROa1zIJLfYvcL0OQXNpCZG2hiWGSyW8LI4exaJpARt1w9lKHqip9pQXQzyAGDfJ8xGs8D3iVl/Oa8pKgERM6vzgXU/lNHQyQe32+R9B37q/8Dnt05g/2EVeO1rdzbNZECymNUTEoLcoDIgUS5SmcTGBjBvDnC4uY4zTyfyISFkMl0zhn13eo31oa+hnvKYjIGvPM1qtjYXCTYOsubudGJOMHRDEtKs/sTfDLFuN7AdzcTbv8wQZFZHEfD5zyf/DkNgaYn46mF7myRL96TmSF4SAIjXkKtWMy5Sw223YdHs4W/O3YGG6uLNrx3dVximJMystm3g7W+fkJ9npAtTSQwWhzka0CLBNPEZWE2BWq5ZneehpZO1c+9exGD1+dNeUgkwBlYrmpytMw8kxKIi0jUUqMzdGmxtwQ8kPDg4hoXF5Hsdu1HBo5t78cT2ctwW+1uEWc0SOqev1Amz+sABzB+fxRPbe7F88yzwpjeNviEmB+QnBKNI2gHUzs1LUOUAL1k+PaqDnWpXiFnt1tE50sGeehcrm/RCT/q9dB26LHhetCxYvoZai5AOAEAKfESejw27gbnOaJKN6wvAxsfYQJBvOIwbWutwAnW0YkzTiBSjzxmzA7pfE5W0U1VxD4OtLQw8YrYuSxEiP6ncswMNLd2GW9G585pG6rtKAMJ+RZrVrVmockATYZU0mcylzSYBq4eCa9JwSJjVqWn/4EHg5S/PeP0uWF1Z7ILVz5LY3iYC9FUyq+1AQ0uz4VUtA0KZ1cu1LlbWK9Bsdl1iUlVTsW/WImZjVciL0AkmxloqNFjU6wRQlOhjUwVjlKoRBRNtdKsAPMCY1RXLgDAwSQ6ShbmKZp2AAEmMWV2htEalBotRlFQYzMwQHbaqwGoGCBgGdZHnT/GelyMfxICUFLN6RrfQ25zyOrB2qYZiRx9ia2161mMaoFpuW7hizQjdX74b4NJwBs25PCcxErWmIsSsToPVlgW8+MXAAw/QJ/t9sslfHHN8zyvPZgzMCUDK679/Ae/+mv+OG2dWUJ/ZWeopAdlmeEyndRxI+tZvxS980xfwJ694F/Y/d3lHm7lzQlntV1GwmjKwak2iWX1Dew2nL9fI4ZslmAwFRkMlv1VVzOqQMKsL6dezDLJKgPWOMcTmJStu0w1UaLQaoqXZ6PYr2JaxiggqKTBSupsXYZgczHaIfKbiOmBWx2siAOg6Aat5rL9UTEz8p6UaAMqs7mN9a4qkOwOSlIiwE1UPVkHWJ0AA0BG2JJsvGLBODeBy2crsvs1gQE8MWabgZz6QMklPNTOoGeQwj/HmuvAjBU3Th64nuf/O8QVctmZx6CUHsYMGByoDkmOwOKJ1LhpMU1bEMDoMsd5VMWcMoCsBvIGHiCH9bLNpmkSypQJd4R0yIIwJn8usVqCoxcHq3GqbEprViibnM2ppvO+vmvjc6g3YDhpx/j+vnyIGi54H/Mt/Sf69vU38e26+GXj4oShhVu9N+TjQJEDAAau9UMHqsEUYtQBw111YXJbw9xdvxlftOYkRnQGQc50TioHVa2vAv/t3wC//MnDmTOqJ9P0ny2jUQgw8fsI9Nxizmq3xqiqWaPM8GLIPVY1iZvWJmRU89rQJeB7x8tBHB5GqSUQGJGtwMYmuIgkWVYWpevnM6l4Pfqjggc1DWFpKHn7pV0X4+Df/Oq5aLQJIyckcayoebF/NTQSwJO+piwYBqzUN2i/8DLS6hqXnThDYpvesF/BlQHYwq+eAG24AbvjqA6OVALRdXfbFmNUOAauXa12sbJvk+/k+rEBDTUv9LrpOAGBP4LdwXfL+GggLxDDQUGwMN2ysOw3MdVL9ot8rysuKZsiAoNOB8R1vwoFlD61OanyyOSvvugKAZcENFPFkSBH5h60tQlxZpJN0GJBrS5nVpuJfH2AnG3+1GkzFq0y6xG/NEma1ypfsEW+U/i7NJlq6je5QcF9i24l2PY3Xvhb4kR/JeP0uWF1Z7ILVz5LY3gYOHaoQrA5D2IGKpubAy9t8FYy0ZvVyLZWhnSYYO62uYt+cjYuDTjVg9XhZS5VM3bpeObOayYC0dQvdXjW3NmNWCwFIosHYaVJIFuaKwveIZjWaTcJyGlYoraHL1cmAuC5h12shUK9XKgMSl6hrGkyVupJzNNF9L0L3S0/hj3/u8ZgEGgdLhLBDQK2GtmZje3P6Q7TPQJF6XRxMywumU0sBqj0dGytWiw9WWxb8QMJle47ISnCi1pAJs5rTLjNYdF1A0yLceCLE6dP0SQpW1xZShwe6cc7TrM5iVjcOL+BFR1Zx08wK6gs7DySKFCJwM8ZuEIxctzjqdXzTu9+EQ7/7b4DXv370OZ7hD+3ruPYkN0TBatdFFEmQdA2o13Fsfhunt2bJHM1YVjUVjZZMtAMrWg+YDEgh1mO3Sw46hgTMz2NWH2Jr1Y3bjGUXKLO6ErCascANhTCr9aHY/WVZ8AKJSFLkaY0/05nVbN5OgdUi5mcs1teJNMWkdv0oxVamBouiZlJZfSWyC1FSmu7mgx2TYnMzyTOwdoMxFnjcdlaUAavjA3/OazL0VPPaJMzqnP2h48ALFTRr/gibVpKIfuThw5PfpupyvmZ1ODkhmBv0fnCHYmXfG3YD820PkGUsqetYPe/AC1PAn2GgWYUJHpMBSYPVqko0xrMk2JgUSgmDRVXOMd0tAVaLHvb9vo0zvQVYoQHTzH1pYrDISQj5PuIql3MPbOLQ4DF8R+tD+I1f8/EPF47Dk7RRuRyWbOaZ4IUELI/BalnGwre8BE/3FnHXW24Gjh4deYtRk4WZ1ZYFvOpVBLT+9V9PPcGqzmiSrdGU0PeN6XRlx5nViiLErA4dD7IUoVUPCLN6Zga3HujhkbUl4MknqZfH6HsUVco3WOTIDE0MNm/lnW9puw+sLI8Y60nLS7i5cwUXhx0Y9dT3lSRiBMepBoiZ1QysprGwgBFQPA5ZJvdsKGevC75PiC9jQO3yMvDz/17BgTvnduaf2bzFy7sPh2Q/tziD2ZkQG3adDDaWDBsDqwmzWuC3cBxYvo5aQyYT99wc0W8/N8SG08D83KgxrKH4+XsOJgMyae/y8pfj6M1GzGVibapyAC/Iua70+6/ZTSzMCO75ioDVvR5JfM3pJDMVRUQS0bZhBxpMxZuuAuKfKth3bbcJsNythuXoyzpUmey57dUqNPKQ3Jv0PNuzNbFrbNvktxLwNgKQjINdsHrq2AWrnyWxtUUc1SuTAXEc2L6GmuoBQUUH0igaZVbXu1jZ5DMZuUFNqrS6hr1zDi4NxdiU3GCTL939VgJ+0n5Jhh5rVkfOlH2NS+CYDIiN7qACeRUQBpIqB0SLr18RxZ5pbMshpKom8SgiYLUUAo0GmppTjckkA0AbenVgteMQsNqIEsPCyljgCtSaRjbNTAKBB6pudNE9vYa/+FMH73vv2GYs1gKk/2eAWm9KmRkKgqsagFoNs8YQm1tTtjkGUC13HFwRmQvW1+GFCi55i2g0+X2ImdUCBotBADz9Px/AwY0HceDB/4UL5+mGqN9HBECeSe2cmVFZXnl2Xon629+Om954O+qdsTmVlSdnaYmGIQFKJrGSJIlQyia4yKtSPrDulmFWaxphG/LA6jSLSJKwZzkiFTW93ogMSKOtoO8ZlTGrI5BLUlNd2D3Bg8v2NrbdGjozAObm0DEsbF714+/hpQ0WNas6sDpUYkmgjmFha1NgM97roeeaaNU4h6zrwGBxxBg2ZlaLXdtuF7j/fuyUZEmNLdburDHAZneK9ZZpSysAJAk1E0Lzy3jsYFaPs5lFWGQlwWoRzWoAO1h/maGqaGguhnnl9FQGpFkLdkg/HDiQA1arOaZ9cUVIcbBalwO4lsD90O1i3W5gfq8OzM3hePsqTn5xG5tOA3M1Ok8xZnV3yvtrErM6BlU5Ek5FxgBAxpeUb7BYVAZEFKz2+jYe39qDWktgfAlqVqfB6rN/8GEc9E7jno2/wd7+SfzOwy/HX33Hn+1oNzcJAMTEmo7pjICUi887BAC443uet0M2q4hmtWUBe71z+DHpN3HhTGoO9/0RI8BmExh404PVxGCR/j9OhnH0mh1SpdhsRASsliQot9+COWOAJ//481i1W6i3RtsgBotSrmb1DikzXigKFCniy7aEMk5vzI6CyIuLaGs2Lg1m0GyP9lU3JDiBJgRW2448UgkwP0/A5R0hSbQiJAewz2BWaxrwnd9J5Ap2KHsphFDAXWpY24YBudMmBJvt7Xh+qempPsXMaoHfgjGr63TMz81h3hhg/ZKDdbvJlEFIMPmeQc5cwFlnjh7FKFgtE4+b3CQAEIPVi7OC8zHdL+eywFk4DtGsbkrAzAxamo3+pW7MrDYU//oAqz2PJEvabfI7bVcjH0sqpgPiu3J5q5I243Gi62jVA/Q8Q2y/RcHq1ozgPMPWr12DxaljF6x+lsT2NgGrK2NWU72kmuJWx34NQ9i+ClMlxnLLtR5Wtng0CIFIMavNukw07iqSAZGkCGg2yeJbhckBmxA1LdEVnjYDyQBFFQSs1gtoMHHCd4KEWd2ryN0gZlZXqFkdH/gjWvY+xOZGBQs8A0AbRnXgjOfBCVUYOgDTrJQFni77NmsSbF9ArmKzj65bw7pVxwffN/Ybx4kQupnUNAKoTZsMYUwfTabM6uH0c5fvEwYrxTc67RBbbo2/CdnchB/KuGx1cmV6WRgmva48thfdnzz+7s/icG0VB/qP48IpJ6FcS9JomTpjVmeBSTnMagBAo4FvfnMN99wz9jgFJwIvD6wux0rK7GtsVHbtZEAAxIcSqd2CLEUItvvJfFjTINcMcrCqqCoGQKIn2xPcgHa72HLrmJmVgYUFzBoDbLHKBFplwQx320VKEjl9TTOr25qVLfWTjn4fPc9Eq86Z59jv9AxmVsemhUAMVnP1VGn0eqQg5XOfG3siCODSvQYAQFVhyP502w02F9Ima3VJqHJjPDY3J4DVoQKFmY7FJl0CYHVB9qsqcUBwdu+IuvYxZrWbAz66LvxIRrMWjgIQAI4dA06cmPw2zZCzQZ8wTPYRRUJVoSu+2P5ge5uUuC+pwMICbmit4cxjRHN5rkHnKcMgusKD/Ka4MYlZzZKXPGZ1CbA6l1nM5mVRKRjaJutTZvR68JwIH798M47dJLAvYaAXB6z2POrlsbWFx0/ruLlzBQDw+zf/Jv6fV/4B9h8ce78Is5rOy7N1O2FWA1hcJGN2fBwDgGYqJLkiAFYPrw5Qu3Iae3tP4uKp1J6SdUpJMas9oyIZkBSzWvG4YLXnhFDlAN/6ymHyfb/6q/Hipafxoj96G/7g0ZehMea7Iav0ns2RAfFKyICoeckVIF5HAIwwq7G0BEkiSa9GZ2dfI/rerGD7m2YjHMFVM5nV4CTZ0p+XMce+4AXAK16xs1EhiUfGWNY0oN0mbOS1bSID4uuop2VbqA60m5e8ZOE4BOxu0HtpdpYwq+0GAXBbqXtM06ArPuxhzp6Dcw1+8ieBl7xk9DFVk/LHFgAMhzjdW8CeRXGw2lB8seSl4xDNagpWd3QLWxf6MQZz3TCr2SCamYGpeBh2qwFofTdMZEDWpnWFpcHuIUVBqxGi55licyFjVrcLgtW7zOqpYxesfpbE9jZhklQNVptVMqt9n4B0WgAYBpEB6db47+MF0/1kOtBShNCuAFhmk2+rhRndwvZ6BZMvO4DqelKavD2lGDTTKlZJu23DQdfWK5kgfZcYt+myX5kGVQwkyGGsMTt1xIA9MamaNSoAP4GEodekYLVTlQyIBkOPYuOvwWY1lQB+mDDpDINqHXKyut5mH13PxNDX0Q428Mgj6SfHDgGahhm9AvYnSy4wzWrDwtb29MzqgW+gYZLvKxmUYcwDfWg5+aVeUwisllSxbDk7kJzensf+xhYONDZx4ckh0OvhdHcBgaSOsqh4DEVaoq5p2RvXF7wAO8FqhZjE5jGr/RRYJhSMWZtlTFNWs1qwLDWuRqHVKWi1cKCxiYunUjIgphJXxVQlAwIAaDZJubMoWM2Y1Qsq0OlgqdbH5Q2TzM+eh223hpk5yqzWrcQNfsq+xgxgwyBA7UDgtxgOKVjNee11IgMSAwGaRvWaxa5tvw/s2wfce+/YE8zHgs0Buj69n0MQwA5UmJSdZtak0szqcRmQga+jwZh/DEzLA5WDgFR8KMWZ1bl6qkWZ1YpCNKs9Pfug7jjwQwWNerSDWf2Hfwjceefkt6kacg0WcxOCWaFp0CRxZvWG08DcXgOYnyeGZeccUvbeGGNWTwtWBwHsQINRS4372GCRkxQtWvQoy/n3wrViVm9uwo9kPLqxF8ePC4zbAsxqxwG8k2fx6OZe3PocA/j2b0/W7Jtu2tEuMVjMb9QLFXTq7ghYvbwMvOMdk98i6fSeEWFWf/4h1BSPVCel/QTY9aOLfKcVYMutT7f3ZjIgDKxmBos8c0FKgPntt/eS7c+JE3jjXSfxxhu+jEc29+2oDovn21yDxXIVIUEeE54mbhQ5HAWR6UZx3hygOT92owiU/vtOgJriYnZmdP08cSK/IiRXv53JVmbMscePA294w85GRcwQA8eHLEWk7ZkZLNV6uHrOSrxDjFSfVBW6EsARkCCE6yYyIACwuIh5c4B1m1xfaf++5LUCsi2Rl6FZTeOWW7BjrVB1OXs9YO0OLfz6g9+A73uDYOk6NQge9gX2R7ZNzi0tGZibw4xuYevcGLM6vI7A6lYL88YAGxvVNBu4QSK9J7rn5jaazIetFsTBaschBoszgmuYohASTZYE424Ixy5Y/SyJawNWU3H/qpjVQUBAOi1KwOpeBWA1Y5GZGqDrWDT7uHqlgj4HAVn8m03C/BQpo+ZFGqxmIELBCTgMgZ//+dQZLs2sliS0myG6nlkJm9B3w8RcsCpmdcpgEUClRoiqAgJW6xXISqTbbZoERLOrGQNOoMZg9ZwxwKaAuWAUAT/90/l9DSIZskE2q4quIMwrnWRv6w6x7ZL78Odu/HP8u58ZLR/1QwWqnoDVbd3G9mBK9iczQNMlKgMywGZvyjYpONOs0e+r61ClkG+ER4G9K926EFgNRSEVF7zr+o9fBACs2i10jhHA+sK5EGG3j1f+7Y/gtbecHH0Dc3znsJVVueAY5MmAlGHSxcAXJoNJ15hZ7dkBdMVPDiWtFo6113DqySApCa5pCXO9IhkQ9lk11YXVF1hjogj/8eMvwvn+LDqLGqCqOHHIwVPbi4QK67rYcuvozDMGtI3usAIfh3hNVAHTJCCCiDmN4xCwuiEIVj9TZUCYJv64DIgjNsf0+8A3fzPwoQ+NYca+T/YEbNxR2Rp3GrCastNqBrnmZkMhlRslmNWDQep29H0Cii6kmdUcBnQUke+Xp1c+Hmx+CaRsYLkos1qSUDcCDPycpDuVAZlpBXxTvVSoeaZ9TLO6KFit69BFmXTb23ADFcZ8E1hYwHKtiyuXIvJbNehvXhWzOgggIQX2AXwGNAOri7BU43ZzwCRq+FmUtS/R92YGBYBlKcTx42JtmqoYWA0Avfsex+Nbe3DzC9vA134t8Ku/Cvyn/wR84zeOvkFViaxE3nbedeGHCmYbo2C1LAPf8A0Z79EKgNXn11BXyRjSAyuZQsYYp4uzPtbs5nRyiROZ1S4sT0wGZARUlSQ876tM/NRdH8HJ7iLqs2PGqGzPxWNWF5EBUdX8fRFt1w8V7O8MRsFqSQK+53uwsN9Ec7E++h6B0n/PA5brXczOjN4rv/VbwI03Tn4PVwaEwyqeGILMantIwEIGVi/XSIINQQDL11BPy4BIEgxTghuqQkQRK9BQa9E+HztGmdVNQFYwcpOwvubsOTyHnFeLXANN4yQBADx5Rse82ceJmwTHVxGw2nHQ9wySVN6zBx1jiO3z26Oa1eCfN77ikdKsXqr1sLJeQYUgEsKcqXiw+xWB1WwfpyjFqkwsixgsCngbAUgqUJ+ppI7rKHbB6mdJbG9HOLwwwGYVgCowWoJSJbM6oMxqXScLXn/c8aFEMPMegwDA+xubuHSpGgkIAIkBXLcC8JPpOlGwuqZ4sApOwO9+N/BLv5TS04xN8Mh/2zMSum6tEtM+slBQsLpfJVhNDBYjoLISfVL2jVijdXO7gumNMfTqGjQlhOdjev0pz6Oa1aBg9VAoC+37BDzJfQFSJlaCJh9e1yJgtarhq5aewuqZIdbWkr4OfB11llPSNGLgOa1UQfpwUauR+6uvTFfu5vuknM6k8xWdY1avcOYvOnb8QBYDqwVNM7wV8qNeXbgF7RfchJpKNluP3u/iBYtn8Ivf+qXRNzCzlxwtUT8qaXyVx6wuo1EqSeR+CDN+M9amWhKs5hyehpZEDuXsYjBm9fkwke6hQK0qB/AHFTCr2cGr2aTztliJ58fPH8cDW4cJexpA49A8Br6B6Nz5+P5qzJJKm5Zmo2tXAFazecskIHhNdWGJyJPaNnqewQerReVavlKRTuACpIpJ8TDklKiz6PeJxufrXw/80R/RB0NaCSQhYVcy0N6bYm9AD/w1nVxz4YqQsdjYIJqn8ZkrCNB1a2jPJeuBCLMaAEHPREOSoMmkOiPP/AuAOLMaRPvVDXIqgxwHfqTgyB4H73mPeHc1PafsO06ylZABEb0fmB7PzAywsIA99W1cWZWJDEgzDVY7GEwhKQxgpNw5jrRsy6Tfi/oN6EYJzeq8uZtd26oNFimgeKjTEwOrVULCsXmgKh0e3U8/QAC1m4iuNFotjAhOp9rN9ZxgfY1kdOrexCYmRgGwetgLiM8QgH3qVVy6EMbzlgTE9/VMi0qkTcus3qFZzWdWMxmQHXPBkSM41NxAEClozI/JQ/L2XPRMUXRscZMLdB2948Am9u8fe+6ee7Bw88JOnxOBfbfvhlgye+h0xOcZVZO4MiASYz8LN0rki1zO+mUNI9TYfqvdxp5aF1cu+IlmtTG6X9BNagrKW8NcF2EkQTFpn48cwbzRx7n+HBr1aLTykJl651S3svNqEbBa1WWiWZ3ze1k9H3PGIPEY4gWt5BI6glPN6uaMTMBq3cLWhQFgWWRfQJNPlfhwXctIMauXaxX5kSH5TWsqR6+8UKNJYkeqFai+pPvj5qy498Yzep98HcUuWP0sie0zmzjy3l/E5vmKNH1cF7ZPweqqmNUxWE3A2qbmYOjyXVjDEDh5MucFYzrQ++rbuHixQmC5XicGcN3pM4W+7UORQtJXXafl5MWu73vfC7zylcDly6xRf8QEr9VCpcxqVQoJe6wKzW4gxRClG5wKzQU1jcmADLDVraicnupA6wbdLE67aXBdUpprImZWbwjoa3seJ/+QyhYDEAOrPQ++7ePSsIPWHsIQefmex/HpTyfPr9lNLM7T30rTKPuzAmY109dWVXQaHrac+nRyDUwGpJaA1Uu1HlZXOe+jwBYwwYBmUtDryzNP8alG9Eq0jPbxJUDTIHsOPvkxHy/dc2rnh/EM0Ma0bYVDkPFWSO8RZArLLJ+cllnNOUNbw4gwfZgMCK1+2V4j+n5WoMOsSYmG/1Y1WvMAKLPaE5PV6HbhhQoe6x9AZ5Ze36NHsWT2cPX+i6OJVqZZbVewyU9LApkmAdcFD04910SryZmPnukyIGz8pYxh66qLoSvIrN7y0Vo/g2/cdz/u+3wUtxmx8/MOsHqKvvo+rEBHzUz0tQEIrTOf/3xSab2xQQD2mI07ZqoWzwN5ZlJhSPY8RcBq0BL1ML9EPa88O6vR3AoW6lWimQoWFgo0mwf6RFGS9C4SikJAH4e/jgdbPVJS32oRGRBaYbjhNDDfoX0yTTQ0F4NpJYEsixAC0iCLJEHVcn6vMh4GQJIU5TG2qwar6f73x1/+Zdx+u1ibpuJxwWoGMDyyuReH2ls7ZT8mtKvKYX4Om/b1+N4+DhwQ6CtQjFk9CInPEICD9TWcf5joCgehBDlVkSUbGtkrTglWB2kZEEmiYHX+mY6dKSaB1abqY299C/WFDLZyzvxSilktBfkyIFRS7AM/9GliBjkWi4sT9owiMiBehEPNDRw9UgCsFpABGfl8kWAJJg6YZlkYZVbXu1i5HMZrV90Y7ZNhAK6Izjrb77MKOE3DgtnHl9cPYnlmbMNC55e8Jsswq+P1gKMxrslBsjbzgnouDAcCv69tE5LNjAYsLxMZkCs2YNs4P5jFgcYWkZKwriOwut7FyraR/3rBiDWrFcE9Ny+iCBEjYMoykY4FxGVAPAPNOXE5s12wuprYBaufJeGu99AxLFgr3WoaHGFWVw1Wh4AsQ9I1spHmLGinTxNjhMxg76c60HPGAJuC0lK5wb53rUZkQHpT3i5BgIGroqm5ZPPFGG8iDL1U9PvArbcCV67QBzxvhHHZaCukrKUCZrXnRlBlarBoVVeC40fEYFECEFkVMavHZUCmlZUAEoaiIScu39Pq38bMagKmzRkDbGzyx5bncczbx9lrIk7EdJNv+TrmDjYBWcbX6P8bn/qYF7933W5ifjYBq2d0C11rSvYnSy7Qg+vsTIhNpz7dmPV9DDx9BKyuqQIMWM+DBGp4IwhWG4oPx8rfOPlOiLrqYHVDxcyCBtx0E/bUt/Hu99fw0j0nd4rnyaTawMsCk5hmddESdQHN6hFgTzByy1Jpm3rRvlINRS5YbYEwq9mhpN0muufrVFNYkgieaBiErbxVwSY3LQOiuLCGYixKP1Tw2OaepKL16FHc1FnBE1/oAq6b6EzSBG7fqQCs9jwiCaSrdJ3xMLQEwCfbJjIgE4y+RoKBtM/UTTjba7DzkqqirlEghaejCaD36fvR/NKncOCTf0J05gFqrkj0OOOItdunSI4z3c9URQgAIbD6Z34m2QdsbxOd7X4fZP4YM1WDJEFVpXzAI0wd4goEAVIEStSLTDK89YvKgKhGMbNfWVeJPFZekq3EvKXJgRBY3e0CM7pFAGSq0bpmNwmz+iCtNNR1wqy2cxILE+Kznx0z2WQbhvoo+KcqFPjK0+0uZbCYz6wOIykx/BRsEwAinw9W//N7nkJDpFCTGSzymNWXSJb7/sEJHH/d7XxWJZOV4DGrQxk//8ZH8cIXCvQVKAxW11UXWFjAgcYWLjw1TJJhaqpjdI6JvR/KRBBQM1L6f0lCzQiJ3j6HVbxDBgQADhHm+pHW+g7Nai5YzXwqihrDyiHfYJF5P0yIhQXsHHMiMiAuAavf8wfi11/LSzABCL2AJMEKJgR1OYCb5T1Cw7Kwk1m9KqfWrtFrGJ+VeFWo7CyVAoHn3/J1+PjFm/Ca7xzLQIrIgDBQucA1UDQZQdZcyNr1AE0OxeWxVJX4UYmA1ZRZ3ZhRgaUldAzqj9Xv4+neAo601oiueP+ZDVaHLtULb7WwXOthtWvy3iIUvhclMiAiUna8YOuQHI2a3BeRAZkTBOJFDUx3gxu7YPWzISjF1lA8OFIFGtDAqMFiWJFeEjNY1IsxiFx31DjoHe8AHnhg7AUAWaB0XQhIEu1vFElEBsSwsDUt+Om6ZKIzklLPWsls4d69KWZ1XPJMDhcS02yoQgbEi6BKAQGQqtInjTWrKQjer6BEnxn2aVIiA9Kvppzepwe3hZYzvc4fkGhWm0Svec4cYGObvwnKZVaH4U5WHDsM8EpoIxkNzcH8sgrccgvuWTyJez9mx8+v2U0szEdxm23dxrY1JaBGNasZE2ZuNsK63ZgerPYNUj4IEB1RWUBH1PPQ1sn3FZUBISXa+Yd5z43Q1BysrisEl77jDvz8c/8GP3z7x3HH/o2dtuSSJAQAl2H9KXmHMmqwWBSciN3pM0AfN1BLGyyKyIDUVHcHs3prg34e+yqmibZmo7ddzXrAPqupORj0BTbO/T78SMYTa/OJru4NN+DmzhW89xOHcK7XIZtmWabszABukAP6FeyrpFGwWnFhOQK/L9OsbnNeyzbhz1Rmte/DDVUYRsL600xFjO0FoH/VQlNzSGUG87+gB/O6lnq/ppE5pgIZkHqKWS1JkdDhyfcpOPnUUwhXr2Km7pL/hyTppSnBSCk1t+R5CrA6t0S9DOuPVxnEkt5F2JS03UzGNjObvYYyIIN+hIbqkLmr1YK8MIcokgiz+jjVhpAkNGoh+qLGTyCX6Z/9MwJYswj6FgGwxoBWVZNy15kgkouBygBlkeUzq6NIKja2KAAeeBxd4ahA0oIyq7lGgE89DQB4wj+OffsF7u/YuDLnNa5LkohagQRLERkQi7CbsX8/9jc2cfFpL5EZ0lIdo3JuU62LQYAgkhJmNUDA6jydeTAZkHAnS9UwgF/5FRx56cGd0hpszFTJrOZVnAFJ1WpGu8vL2KmXL8isVuUJ7PKc4MmAeG5EGOuFwWoxcsAOzep1FRgMyNrVHL0+uiGRtZYHVrvJWZjFwqufD1mR8brvnRt9raZxNcY9Jyx8DWLZxLwx65JzsHC7RZL5jkPOLR3iadKZV7Dl1ICLF9F1TcyYLgzFhzt4ZiOegRsQCZZ6nWhW95uV4EYMg6ipnhhBhNsg8XZSWKWJYUCRQr5UYBQBto2+Z6C1IAhWKwo06Rm8T76OYhesfjbEo49CAggrbwry6x//cYp0lDJYlKQI0VQOQjSYwaKeTBLss/LC80bB6s99jrCtR14AxDrQVYHVoeunZEAG04OfnkdKSAz6IzHGm4gJA43hkJw7xsHq2KwOSA4mVcmAUFBZyDxIqFHKgoi1sCsAqxmzmmpWzxoDbA2q035VDQXLsy5WrVYlYLUV6ITsxDSrpwWr2aYwrfFWgFk9Xxtibg7A856HhubiBuMyPv95JGA1IzmoKtqaNb1UwdjhYn4uwrrT4FDHR+PDH8ZoBUVADLnSYLWh+HCGfLC6pniQ5agAWO1y9UR9L0JTdbC6JhGw+gUvwAtfouK7v82B/NM/hUl1wLmgD2O8lWD9qVKO6z0DwYvKgOj55fTTMBR565hlS8nhCQBaLXSMIba6ErwwZfpkmoRZvV0NIwMAUK+jqTnoDQS2TzTZ5fpKwqxuNPC655yD5Wt41+MvRcek87QkQTINwvGfdo5Jmy3RdcayBforClZfJ8xqPe3hVUALut+L0NRsyFKE0PHjNgeejoY+ClZXway2Aq2UDIjnUe+KX/s1YGihcfEpslfyfWw6Dcyao3sAWVMQXitmdQ7rL5ZMKqinCiC3r37J5F2UxawuO8cqCklaCNy2wyGtCtF1sl7ffDMUOcSl4Qzmbk5c3Br1CANPFwarP/hB8pXOnEkes3o++axxZrUaZSct6BgYMWUUCaqFnXkvsLFV0LyTy1hPVb+JtmmqHmyfA1ZTZvWT20sTJSB2hIgmPEsi6gXuA02DBCC0OYMrCMi6qHrA3r1YrvWwcilI5hd9FKxeMPtYW59u3gpYNSMNXUc+SBkQmTNNCSbPMfPzeO2bdJw4Mfa4CLOaeTSIBjPEzAOrPQ8RkEgpjcX3fR/wPd+T0dc8drlXEPwEJ8FEP06Vg2L3F6sI4WlWs3FFweo99S6ubOrAYEASuDOj3yMGgEXB6lTiYnYW+J3fIf4LI8HTxAe5rhNZ+3khojHug7RbgFldBKzuexSsBjBzaAb3rhzHvVeOkc+cmYEuB3D6z2ywOpb30XUsz3lYsdrVYBBeBKViZrUfyVAZkcYwyH5+kzNWfR/veezFODeYQ71d0GDxmbpPvo5iF6x+NgSt+5MkCJW4TooPfxj4ru9KmfY5Dixfh6l45GYbVFCC4nkEANeTSSKKJO6hbFz+4MqVxKMmfgEQl1Ibig/Hnh6sjsvVmAHctOCn6xKw2kzA9boqWE5OY+W8iz3+eezF5Qma1XTDYdLymyoWCj9KDBYrZ1ZXCFYzlpWGRAZkWJ32q2YqWOq4WKkCrPY8wnSpS4lmdY8/tjyPbJom7qnogxFSm05VJRljm6NZHSqYr9tkc/ic5wCKgh878kH81q+RD1yzm1hYTDRa27qNrjOlHhndMLADZq0hww40YQ3Fv/1b4M1vBj7xidHvMvAMNOtJOb1Q4opq07frvrAMSENz0O/nbPAjcghqajaGQ4mwbxoNomf0trch6/SrMRAhi/VXQltaRLO6sJYoOC7qTF+7BENRkwO4bv53HNryqAxIq0VNOjUC0tXo3Mc0q/N+K9Fg37PRIHIdA4E2KesPGDW2P3BzE//ips/gwY396NRS83QBoDI3xsDquurCckTBagOtGc5racn7M3YTzmRAzFGDJpH9BgD0B0BTJeuSGVkkSRgEhAE1CazOA6h4EQSw/FHNakUK4Q/5/WTMai+UocoBmvYa+n3gIx+O8Ndn78BcbSyjxg7bWfNsSbA6ngsy9p+BQ706CuqpAshlgZMkfaGu5gNftM3CAHgBGRBiVpbS2z90CAtmH6e6izj2goRN2GgAA98QBqvvv5+siTFY7XlkntS8HeANkYPJABXZbygVHNMyISBkYj5lzDsVhcgU5F3XoqxaWYapBgSszjkvMTbcE+frYmA1M67kyIAAENe+BQBVJVWzvLFlWQQ4bEjA/Dxhv64gmV+01HjXdSyafVxdnwICoDIgafwuBuGzLgJjwedgfv/sn6E4WF2WWS0FXI3xWKZrQhjGCCl4tK9Z1yCK4PlSMfATqTk2o90YqC1y36pE1oorA2LTSjZVBZpNLDf6WOnVgc1NkghpjV0fjTMOaISWQ04sqYsoy8AP/MDkvmpymMtSjWVACibEAOQzqz0Ukxdh/jM5LPA4bJsk1lvkGtzwvDnIiPDWT/5zHGxsAu02uf+vA7BaodUCnZmIGLhWgEEEbgBVCinhopp9fBCOMqvbusX3tbFtvOeJl2Bvsyc+vAQSLLshFrtg9bMgvL5DDgIApKgcSPvbvw3ccQfR0wNAndblaqUaXJcwq9kBkm3YCjKrV1ZS/aTtxu3pOpnYq5BBZgtfvU5KzKcFP2Owmk6KrDy7CFj94S9juX8Kez70Tly5Qt/neURLk633tRoB6barYFZH1GBRzDxIKJgEhFTh2EpLoTAZkKFZSO9xYvg+vIhsghfnAly1q2FWx4cKplnd548ttuBNZFczxo40ClabPLCWMasbFgGr63Xg1lvx4qXTeOTLTlwN0GjJcZtt3ULXNaa7tuNagGwTKLiqf/azwFveAjzySOrBICB9ZYAzkwHhJa7oZ7bqgZjmpaKgqToYWDnLJzX/ahkuJGmCrmFGqLqczVYuq6fKNKvzZEBKgOC5faVtlmdW5ycCLEdOmD5Aolnt1rDp1DFbT4x7WpqNbq9CsLpeR1Oz0RcxP6Mmd8AoWI29e3GouYEH1w9gtpGaT3SdHN6qAqs1LdZP5JW9A0gMFjuc3fgznVkdBFSzOtU/0URAFKE/kNGi0kAH9BVcPB8CQYChr6ORZijqemlmddoI0fJHmdVCWvugYHUvwmObe3HTzAqaUQ/9XoQ/+3MZf3zyRZirje0BBNjKhaUaAKhKlMv6i/dSVTLeYlmkgteeIwNSmlmt8BmKwBizGgBe+ELsmXXxfd+8AklO3t9sRBj4uvCB37aBW25JgdXDIc705rGv3d8BYBGWZnZSlH2nQsE0gHNkQAq3K2JcSQFF2RAfW6YekuR4nlSDG6KlEfk/UWa1wmNWpyULRUNVadKdMyaHQwIcNmRgbi6RamDzyyRm9caUYHUoQ03fKzygNt6nF/wsIWa1XIxZLaJZzT6vjHxRrr42vQYFgGVFV/Ln2ICcqcowq3nrV1zJRqtBZpZNYoh+/jw5y8yOIfaC+3l7SBizQskbTSPJII4MSFHNapG+el5BLWxNI5XugsxqCYBUIySzoy87gL95ze+ioTm4YXYTaDaJDMiwIs+oaxQxs1pVIdVMso+oQorUR6JZLSJlJ9Ag0dpPwOqWZqPX5ZwTbRteqODj3/ke8c/aBasri12w+lkQg20fDY0ezksCSFeuAHfeOQpWs9DloBq9pLRWLyBs8jEOVucyqw0DhuzDsfnX4eLFfJw8zayeNYbYHE7HJv2Pv1nDpWEHzRrdbLBDaYH5/MqpAfbUuthb38blp2nnfR/bbg0zraT0va3Z/EyhQDBttUqZ1YxdIYcETKxibDHwU5MARcFs3SG6X7wyNKF2ySZYrWkIQrkiGRDKrDZNzJlDbAxNblUED6wm8gepNigjxx7wNavnGg6RAQGAO++EJAFzShfr22RzFjNmJAmaoXDds7nBmLcMrKYgXeiIjQXLAp7//DGwOtasRtymCLOaSRztmfe5HkoAiAyI5uZrVjsO/FBGU/fQboufSXLZylOUvauygMFiQc3qWAYkQ7PaLykDois+YapmrWVM41f3ElBNVdFeMrFNwepOjd6jVAZESLKDF2mwWnXQtwQOhQGpHpltOKPalnv34kBjE0/35tHZmyrRr4pZndYIVlXijSACVjODRR5YTQ+5uQf9r2QwfwwjNaaZFjTv2g6H6LkGmi0Z6HSwv7aJi4916fyio26k7k06Xl1fEd57Pfgg8P3fDywu0q4wAzQ29+g6+b0EweremoMvXD2M5y+eRUOxMVjp44v3y/jcytEkaZPqb/zGCREF5YDKXPATJUEEEWZ1yUqTzHaZaVwJZrUu+0LghGWPgdX1On7h/30u3vYHzx15XasZoeeawglc2wZuugk4e5Y+MBzik5dvxMuOXpzU3VyDRQCFExbxwTwL+AqCUU8NwTa58irpKhLBMI1ICKyeNUhlwr59Yn1VpRB5XpA8pu7EoIaQ3DONZcHyddRbBKyeNwdY76rJ/JJmVjOwerNgQiIdrNLEHJ0Po0jKZUCX2heIMKujbCPEiSFoiClJUWEAGEA+uzyUCxtaS6pCJMIyZNf8UC7OrJakxCcj5/wxTg6QFqhGx9mzhLXfyQCrOWcEqx8QxvYOevqEEJQBUYsmRYWY1RLRGL9GMiAAkmtA5QG/8/g/4raXLwGGQWRABtcBWM3W+FqN3Fv9KQlzUUTAaomME9vNrt4S76hPtPZTzOqG6mLY5TOrvVCBVi82dz+jSR3XUeyC1c+CGHSDuGQ1CorfFOyM1emkQOAUiqvJAbxhBYCi5xGwukaHnWGQAy9H2N73CRvFdYlMydWrKVA9COgBi4CUMAzoSsAvmQPwn//zqBnNju4yw4p6neih2tOB1R/+BwOPbu5NwGrDIIy3AjpMK+ccLNe6hI17iaKWnocNp465WTqJmyZhv25MubixklgpqNZMiwJZcbuCEjO///s5ksZjut21hkxcyStgKMagahUO6rSvlq8TBowkYa7tY8NpcBlUbJM28Rr4PracOjq11L2kKDAVP1/nizJd3vriR/DSl9LHjh8HANzVOo0HLsyTzXp688f+Pc21ZQkLVrapaZjRLWxvio0xyyLJtZMnUw9SMClmMVNmNe+QFzg+VCnEJ/7gSbFztKIQg0UOs9qPZDRNf6cBT04IaVYXVSPiyYCEISmLK2ioRXRq8zWrC8uASBK0PONGIK5MqOmjY0VdmkMQyYRZzdjKhkFka6oGqzUHfUcAHKE37UtvXh9l1+/dC1P1sVTroXM0ZSSk69VrVssyahoxB+Ru9B0HG04DnQXOdxM0wvynih398P3RKi5AfP7udtH3DTRnNWBxEfsbW7j41JCAM56BhpEal5IETctJ2kyIX/gF4DWvAV72Mqq5zwzQ0mC16gqB1Z4H9K/08cW1w3je4lk0NQcrj22gphKQZa4z1gYHRChVSg6+wWIMVj9DNKsz251Ca19XBDWrLXnUHBbAkSM7PBAx0wqx7dUKgdWzShdDZthtWfjU5RP4mptXdnaX6d9mAPYASsmA5IJ/ZUBwKgOSe9hPV5EIBmFWq7n3rOeEmDMGqJkh8ZwQ6KsqhwjymNWlZUAECDjDIVkXmyowNwdZihD5QcKsNkbB6sVaD1c3pzCNDwKi4W+m1pTriVnNNKs5yQUA1YKf7ExR4hpIWe2yKpOihtbU1DvXHDeKYLkKakpKdm1+nsx3fVolOmeOvkcUrB6ECWObFwJgdWG5DtougPzE1bXSrPZ92I4EQ/WTPlMdlB/9xTl8z6/eHleLP9OZ1YGXMrc0TbQ0B/2N6fexfkgS0mZDheVr07O1Gf6Q8rWpqy7fMJ2ezxkDXih2Nasri12w+lkQg26QYlYXBxRXV4HlhQDtVpSAwKldty5XVILCmNUMrNZ1YnTSy9+MM2b1Bz8I/PAPE+OFGFSnoJfGFmkmAyJQLsJA8LzPHdGstsVkJVZXJz++3ZVwureQaOoaBmFQieow+T6uXAywp96FJBFGaBSRjm46DczO0L7VamhrNrpbU4LLzLRQDgm7vgLZcgCJvrQuF0qE/OVfElZ9dpvJBlAyqR76tJpZdHOtmQSs7hhDbK1PeS8wGZAW2fi0ZyR0PVMYrM5iVm86dcymwWrKyOGB1X6o4PlHN7C4SB/buxeo13Fn4xQ+9dAsOro1ulkvINnhuiTJsCMY87amxm3Om32sr3ObBEDuW3aAjLvh+wRMaiXziyEgX+PZxMW60RbfiDY0J59ZTbPwTdMXO+jS0DRkgwhMo7UMWC2F8HMMFtnrioSs5TB9aIlwYdAHSA5PWQcdZhhljM1v1JFn002B1YxZPZyCQcaCfc9ajYDVtsZfD+h7PvSz/ziK/dC68kPNDXROLCSPC0pjcWOMbVgzQpK84xweI8vGmd48Dh4RY1Y/Uzbhr3kNsLGRemCSZrWuE6NRi7OQ9XpErmtOB+bncaCxiQun3UQGxBi9hppJK00EF8izZ4Fv/VZgYYH22SeJhB3M6gF//fZ9oL86xP3rB3D3/AU0VAf3fgZ47uEN3Dp7GbP7Ro31eCCCF8jFNT9Bwc8c48ZYBqRMeXbVzOq8dpm0QQm2tohRGaIIQ0sizGrORN5uhth2a8Ljyl7rw/z934TZXYVlAdFgiHP9WRzZv3Odjpnwk64Bm9NKyIDE+u2T5sVpZEDyLgFjvxYYW4omI8gzGgVJ3MwZQ+xdDMRwe6ZZHeZUBZXoK1QVhuzzt7KWRUDpFgGLUK9DiiKEG1vUYDE1n+g69XiYDqwe+jrqabCajukoyyE5bYReJNiYyUq2jsvKCbapSgGCvCWxBGtfiFkdlbsGmfstRiySi5/5dC0ipphZ+/lYRiaVxJyfx5LZw6rVImvX3FimTRSsHtfvzwuezBCmXGfymNVMY1y0XdHKM8fBlltPPFZY3H03pG/4eiILxZjVPKP4r2SERP5IlUMCttdqhNCzOT2xi90rjbZCPBymBat9H0EkQ2HoJ/V0Gfb5RA4AiSeYSMTVRqV6uhup2AWrnwUx6EdoqGRSKKNZfebzqzhy6bNon30oAattO7ZqKwIo/uzPjkl0pMN1SWluilltKh63vMXzyJ8rV4APfQi48UaMgOpuoEJTEwDYkH2hs34QcMDqlM6iqsvZIFIqogh45SuT9v/n/ySeaqdPA9s9Gae7iyMGcEQGRPBgdPEiVoZNLNfIl59Tu+Sw63kEqJylr6MAzYiud5lgoDIzQhQxixBtN1SgtmqFxhYzkwLIdY7NQIFkE6wnYwtAJaCPHypQTZW4HNe6WFmZUjfL8xJtQQBSvSak78X2kl/8Iin3vffe0X5uuvXRsm9WPiqgWT1iridJwLFjuGv+PP7qzO2Yrw2RINmI3elFmITr68Dv/u6EJ1IJCwCArmPeGGB9Q+zaWhZQWz2LN36jhTe/mZ4NJzCrRRhJvhMUY/0pChqqi4GdczByXfihgmYtKARWq4ylmceeKXHIUaQQftZtVpZJl7fJL9tXcORFAGIcNi7HAMRjdNNpYHaRfjBlVvcsberywdAPybhXVTRrRB+dCyRlHXYNA/jX/xqHnreIzkJq3FE5nKmrN8Y+1zAAh8MkBICTV5o4MbPKZ48wZvUzZBP+1FNjSWLfhxsqo9XFug5d8fnltP0++p6JxrwJzM8TZvX5MJYZGh93qi4ToFYgeWfbxERV/uy9RP5pA4RZzWShaD9rqisGVts++p/+MixfR/O2w2hqDv72S3vxDdaHcNvsJcwdbo2+QYBZrcpBcYNFlaNZPY2WKIdZXVS+SGTeKpwQVFXCAOaBE0EAy1dR13wuaGvWZdg+P8EEAIgi2E+egwkbN2un8chDIbZXHSyYg52UbXCSC2WMEAFAkqDKdBxMmmuDoLgeOjNY5MiARJFUmE3J28P4XohZY4C9y4IgkSQl1UZZa01aslA0CjCrrUBDfYa2vbhICABPrpNKPmMUVObKq4zF6urY12IyILVRZrWep6/refCjctVh7DMnRhkpMwHwsxRYrSiQpQihm51sL1shByDHI0RJSFsFIt5v5Uis7CAHzM9jT72LK9YMLgw62HdsbI4RNFgkYHV1MiCEYFbSyDeHWR4T1wowq1VZQLPacUZl6yaFqFH8VzKYfFaKrdzUHPS3pid2EXlPYLYTYcOpV8Sslkc0q+uqi+FAjFktNFZZxMzqcl3djSR2wepnQQz6UcKsDqPCstVnPvhlHGlcxcz5hxKg2U2Yabmbj7G47z5gbS3jSdel8gd0QyHC/ESyv7t0iTCRbtrfH2FW9z0DTSMprzMEyzF5zOq4JFbThLVEgwAxO/SDHwTe8x4C3n/uc8B2X8HTvXk0G8kkWVNcDG3B2/DqVWzYDczdeQCQZRw1L+P0kz7g+0QGhFWTqyotfZ+STUhZt6pOdAO9qgwWGVDJwGpLbGx5HgGogwD49m8nf0b6mmZZGYaYPqnAh/qRDLWmUbC6h5XVKcHqMWZ1nKkVZFafOgU897kkCRLf675PQLrGGFitCjCrI5mA8em49VbcPX8Bd81dwJ7lMSYQY8+4fHCm2yXa8DuCGqDpNSVuc94cYGNT7NoOrw5Qf8/v4d9K/wmWFRHXe9+HHWgw6wkArgskrnwnIIwA0dODqvJlQByHGCzWg0IyIFzN6qgkszrPSGgKQ60okvK1X4vKgIBcAzcPWGXriDnW9sICGqqLi4MOZm+ljliShFY9IJULU84FgRcSI2NFQbMRoe9PAVYDwI034ugdTSykiNUMUJ1Kxz8Md/ymkibGdLr36X146Z6T/A15zKwu382qIgjIHLO+TuZEAAmzupa6R9mhjwdWd7uIACgzTQpWb+LiZZlWbuijGq1I6fkLgIpPPgncpJwE/sf/wNylh8lewffJeE6D1YonZLzsDV2sWi1y4P+Wb0HT8NDQHHzToYfwb+/+MF72jc3RN/DAalbuXNRgUZRZXaacnmuwWKir+e0ytnaJNnXZ5zOrmYSRyQce4nElIgPS7cIeBDAVDy9ZPoXPfLiHq5d9LJo9Ypo8FrkyIGU1qwGoKpFRmQjWlmVWXwPNahE2pe8BR1rr+PbXixMeYi3wHOAPQDnNal43mAxIm7a9sEDIFU91qQzIKLNaV8SrJft94EUvGpNNDAJCDkiD1cwfIWvuiiUwymlWR1maHey+1QuMWSZbkyfbUnJsqVKORwg7V1UphcI8YOTi+y1di/L3W0y2MD1+5uawp76NC4MO/FCBPjvmIK6qQh40lgUiA1IArM6TGYrZ5QUTYgC4iRBVicQJHWx/xJu6bZswqxt8sNq1nsHMaibXkQKrG5qDwdaUOnGMBa3KUJsmqYapAKwOIjlZhgyDXykLlJu7dw0WK4tdsPpZEP0+Yma1JnmFS3PPnFdwpLVOpCO2yXtDyyFgX6tVGFBMmyGOhOuSzU2TDjsRTV0kc8TFTzyJQ8113Hjmo+h2o7jNnmeiNQZWO+6UMiBRBM+nZS2SJAxW+z6wtUX+/cADwFvfCtxzDzlIdwcKVqyZBKzWddRVF5YreBuur6PnmWgfbAOLizjavopP/k0fv/ShuwhQOUe/s6YRzer+lLd3SgdOU0K4fgXmBrRdL1SgtuuFEiGeR8b6+94HLC2BAJQjfVVGmNVVyYBEkUTAHsPAUq2H1bVi17XbBX7gB1IPMDmcJl30ajVIUoRoKMasvnRqiLvuItLSMbuayYA0UquiqpL7K+8SpGVO0nHXXZClCO/6mvfiv7zt9OhzmkY2+ZYYWL21lTDi05/rjoPVRh/rm2LX1rpEdFlx5QqOtDaIqRTdxcbAnKgMiEO11oowqzUOs5oZLDai6pjV7EBSouxdlQMEOTIghY2vAD7oE8rQtBKHJ53KgHDKUuvjgE+ng44+xNO9eczecSB+uN0M0ROQ2cmNKELgU9YpA6unYVbTePvbga//+tQDuk4qg6Yx02GfKUnJ4UpAlxEA7r+8B89bOMsvdYyZ1RW4s08Zly+Tr3XhAvDOd9IHg2CnZrWmiV3bXo+sHa0WMD+PffVtXLyq0/3LGJMQKCSL9Mhnt3Fb+BAAYH77dCwDYgUa6o0UWK2KgdW+G+Lp3gKWblsCbrwRx9/yXPz8c/8GuhLgps4KOreOOcNxxsFIKW+BiMHPayADkikpMK3BYh6zuoRmtSYHcHn7TpaoHk+0ZbQJQAystm2SqFU8fNWeU/jsp3ysrQRYMPuTwWpWDZBxDQCUAqs1Jco02oyBxoJAksZjVqfNZAu0CyC/9N+NMKsP8a++Xzwjl+vjAEzHrBYAqy1fR22GnlUWFwm54sltAmI3UtedMqtFQZTf/32CJ545k3qQafjXR5nVpuplSxYwQLEoj4ZWhwVexvmD7Y2KgNWKQjWrBTTGC44tVQ6yweqUDm+h4Gjt+6E8HbM6F6zWRskBCwt47sI5/Nmp5+OG9trO8cw0/O38/lgWCsqA5AB/7CyjFrwGvKQoJVcVWhNEwWrKrJ5t5ryQkW6eycxqRkBjYHWtRkzIeaaFvGAV05qUVAhVIANCpIjGmNU5xEX2PgCF5+5nyj75eo9dsPpZEIMB0KAGi7ocwO0VkD6wLJy8YOKG1hpmdAvdVXKgdwY+TMUD2m3SpmBWjwtWpzVlRZnVFHy/eCHCj97+MbzywKOJzrXnEbC6RicSwyAbOx7DBRywmpVqqRSs1jQC6HBWHyZVEQTAww8Dt99OpFTPn0e8kWgu0CyyaZJDqcO/DVdWgLWne+h6JtoHZoC9e3FDax2/954a/uqhw9h2a5iZTa5rW7PRHU6hRwckZiiaRHU55enBXyApw2nXocmhsAwIA6t/+7eBn//5sT0b6+uYDEhkTykDwjQGKbu+oTr8cqGxeOc7gXe9K7XGMgBcT8DquupiuJnf1xis/uRJdDZO43WvAz71KfokA6ubqYOVopD7a5gvAxKEMmR9bKxQ/V9JAswTB0ef0zQyJwgkGZhUyw52Nfvx2MJPmdXrWwKnGMvCcMslup8ADrtPxWA1k2lgbYokrgrLgFBmdd/Oub8chxgsNqJiBotMbihTl7CkwaKUU+4ahsXLs2m7khRxDH8K9hWAZshCMiA7qtuPHUNnUcXTynHMLieHn1YL6Lq1qcFqP5ShSIRdY9QV2IHGlxnigNW6PnbZKTDBWxOFPhOpcS+iIRkEsDwVTd3lH86fQQaL586RW/eRR0hybDhEzKzWzQnMap72I9vANBrA3BxqqkeGTrdLNKs7YzegYMkzAJx8yMKJGaJXMmcOsXE1SAwWGbOaGS/zwGrXhe9FON1bwNINBJC84bteiv/r3m8DvvZrgW/+5p1JB87B3PdBqgdKgNWZjFqUZFarKhQpROhxgK+i2xwGgk9iaZadY1WVMFUFmNUTq0ImhaYROQEOOxEA4DiwA7KfvrlzBY8/pWBtDdlgdY4pKDEsRzlmtRLBjyavX4VNygA+m5I1DJQz78yVASk+ZhVVygTrAUwFVgtpVgcazHYCVt/QWsPJMyqsQEe9kwIENY2AiYLz98oK8PKXE739OGLN6tRYpqziwM1nQBdOBjHzyiywms47klIMrFalID9/yyRmCv5eqhTCd7LHAJEsEW8SgBizugRYresgmtV5YHUwNmfNz+NrDp/FB888B7d0JhgJUZ31XIA1imDZEjFuFAGrY+Av4/n4zM5vaiR4iSt6bQutCQU0qzedOjqtnEHISDf2M5hZPcG0sKk56Hcr8M2KErDaVDxYm1NiEOOa1apKzt88HMb3iWZ8wcTVM2WffL3HLlh9vUcUYWBJaGoO0GoRc8FuAYDu0iU8vLEPt81eQlu3sb1CJgI7DVYrfmXM6hH5AwamceYeb41oflwazuC1Rx7AcxbOJ5qeE8FqD44AWzkIcvrKFj4lYUEDfC1Rtt53u4SFcHi/j/kZH6dPA8cWiYh0c5mW5qoqAas9lctY/rM/A/78Y3MEpNk3C+zbh6OtqzhzycDl7TrCSIJsJMAf0WmdUgaEmRZqEvSaQkrFptWApu2GkQyl3SATueAi7PsE/PR9Yk4lSanLNs5WMAzC8OhPuUqkDxe6LpRcGY/3vQ9485uBhx6iDzCaENugMcM2jnOyd3kNuuzh8nAGnS9+DCfmN/DUU/TJGKxO3acsGcRhVgOpkuN0/NzPAW98I6n/TAc96IjMCUw3/S//Evid30k9wW4UtlHUNKKvuC0wZvt9AkTJpI3DwWlyiHJdsplg11Ulr3G8/Lkg1mktwKxuag6XWe2FCu440sNrXyvWLMAxLWQAcAlGTq4MSFmNUo72aynJEggYLLruzsMTfePNb7gNmJ3DkSPJw+0ZCT3PmA6sDgIEkRQfBiXTiPuSG0XLiFnJN0+flPOZUQREUkGwmo5ZzVT45a6yTBKNQUXVNlPEuXPAbbeR5DCAWBJokgyIiFl0zOTVdWBuDpAkKKGH4OoGBr6O+uxYybKgmRQADDZdtDQyDuf0PtbPDyfKF5mKzycQnTmDMJJwureIpb2p8SVJRCPrW75l53s48gdBAFJlUrUMiFeCWc3mrSzQhwLLhdiUrN0sQC2eY4s1yeQquAwqtgeuCdzfuk7MYbsCr3UcUkmg+JClCHNaDyfPKLlgdZYMSGwmVoZZzWRAJoyDWPe1ILM6d+2iDRc2LRRgVvteWEweDOS65hk3xtJpZZjVPNY+3cvJJt3/LCzgxcun8b9Xj5JkWCc1b9FkIze5QsOygJtv3glWD3wDjfoYWJ3HKk5LKhQJ5ruR0y6AcmMr7/jBfseCCRY1D6iMz1UlK9ly9lulZEAMSUAGZIxZLUmY/fHvxa2dy7j1zgn3nQizmiVpdV/sd2OJq6wjXcyY5Tc13ldZirKTojEIXoxZrUoCnh7MYLGV88KYWf3MMLOeGONs5VqNSGtUAVazNb5ex4LZx/rKlDrYQTAq9cXA6rzzHO0Le71wiDLsd4Mbu2D19R6um+go1mpkU9MTL1sL1rdgByoamou2ZqG7Rt5rD0KYih/LgIgyq103H6y2AupWDcQlY1xm9aWrUKQAFwcddHQr+SAAv/qOJnqegVY9YVcYsg/H5w/tXGZ17Fodxe3qcgC3LwZWX/mP74HZvwr5p38Kc+//rzh9OsKJDhHzbu6nVEtJQq0GWL4uJi+yTn4DaXEBeNGLcLS9hhvaazjU2iSZcbYBVlXyWw5LIEXpSJXgaDWVHEKmLcEBkotUrxcCqz0PWH16gJriAE8+idnZCJubqb5GKaNAKrEy7E2ZjU6zdhgAXgBIYprSX/3VwJe+RB9kvzX7vWo1cijdzF+E3YeewIxu4fKwjY5h4dh978fJk1Hcz013rJysAFg98fB08CBxCx0HrthBR5BZfegQ8F//K/CZz6SeYBvuFAu6pgiajdIvJO3fB9RqOKxewNmnHETbFBlvUVMxRSGMBA6A4NllDBYdDBwOszpUcGS/h2/6JrFmWdsAqjX/ogyiTCwtishhv4RmNYB8pk8Zg0WDU5bq+xj62iQMBj/zM8QfIDabBdBoSuhPq1lNmSMxG0NQFmpHUoYXdMwWKfl88kkigRGH5yFIl2QCfEkFAHAcuKGSSPPkhSQlSYWv8E78/HngOc9JkoFXroCA1WGGZjWHWe3ZAQzFJ/OBqgKLi1iqdbHyhfOkMmx+jK1cAKy2ex4hAQCYMwfYuGzH908sX6RpqCkuLF5uZXsbTc2B7WtYWuJ+9Ghfc2VASmpWZzFKwxCeL0NTCrbLYyiyhFgJg8VMQC2WLyrWZAzOCDGrJ89dk9ps6xa2twT2GzRRKy2TgXCktoL7Hq5jsdYn6/h407qc+XuVApWTLme3y0DwMsAfh1ldmP0qBFaD3AsFFjHCLM8GqwPHLyY5BlCwWkCzetxocnERd85dxAPrB8i5azY1b+k6NQQV9AgZErD63Ln0lwnI2XMcrOaAyn4ZzWpZJgmmHCkz9jrhYAB4zv4wcsslQlSZp1ldznsEQH7VXVEJDFByQEY1BIDEYHG8ku3mm/ETvzyLl/3cyyY2ymVW+z4hX2mCZzSaZMxMCJYBlVPtZv5eZfayMUjJTzBxmdWsWnwaAsO1jnGPGl0nMiA8HWhejMmALJh9rK1MeaYPAgRhSrNaVdFQXQwczrpUpoKHMat3ZUCmjl2w+noPy6K6YREBq2W/ELP65CNOXJY6o1vobvjEWZyatTAZEC/rwDAWucxqxuI0EuajIfPL27zLRKJk4JuYee3XAABkz0UYAr/yznlsOg206kkG3FB8OD5/ZeGB1SMlRcz4igPQsfns8/cBN8lPAYMB5gfn8PTpCHv1NdRVB80Dnfj1tboES6Cc3PdSwOz8PLBnD+afcwhffP0v44h5hSQWUsBfW7fRtSoAq6MxsLoKGZBxsFpQY90bODj//3wes6tPAP/3/41lbTPRrWaZXcayUhQCfg6mz+wCiJnVIuM1Hf0+0GwSQ8QYrGZtMsDLMMjCznFO9gYu2rqNFXsGnVaA5qkHMNgm7xn0QsKsbqfuU2awWBaszgrmJC+QwOp2gVtvJTIg588njztWSACh1JgVzkCzL1SrAQcP4nBzA+eecuBsWaRNBlYzRhKPWe1SzeoC7NeG5vLB6kjeqQXOizzTwrIardSZPPPAPy2zOlOzusTBAYCmc2RAWCl9Xew6yIZG2OpTgtUEAKbzCbt3OfN2DA4XkJgxBKo3oogYDgPAH/8x8Ed/lHqSeQ2kS4LZpjkvMWjbk/XrM4KrdflPFOfOkfn11CmCy125Ajh2RJjV9dR3YWA1JxEwHEREYoiN70OHcKCxhYuPEu3XxsLYqb0IWN2nYLVpYt4YYGPVj2Wh4nZoxZXNK0v1vJilLQxWC8iAlGFWa3qOZjXbSxUxqKJ9FWJplij7VuUQnjMZrCbM6uKsR00OiK9HXjCDxXHgZ1JoGtmTdwVey+ahvXsBRcER4zK+cH4JC/UhcODAjpfHTPjrgVkt5TOr4zm2SoPFKEr6W5BZnadZ7bthsSou2ldTYB+zA0yZm4NqqujoFs7351CbSw06tocrwKw+fBhYXR39vIFvjCZe2D2bWw1RVgYkfy4AUGxsyTJlVmdfg3hvWBCgUvP0tZlnT4mKEAD5VXfTMKuzNt/MYHHCnPV//J8tHDg+wd+CJe/yzgiMsW2Ig9W5wB8Dq0sZkOecQ6kfUqF2RUFKz8OWWxs9t41HLAPyDNesTmvRszPScEqIkZLQVF2mYPUAa1enBO1ZZUOKiEhkQDjrRxmz1V2wurLgjiRJkkxJkj4vSdIDkiQ9IknSf6CP/5EkSU9LknQ//XM3fVySJOm3JUk6KUnSg5IkPTfV1ndLkvQU/fPd1+xbPcvjne8E/uRP6H8cB33PQKMBwDDIAsFh/6bj/gdl3DV3Adi/n8iAbEekLNVTYGp+DCi6gkwvzyMAcBgCf/EXY0+Oyx+IgGkAvK6Fjm6hWQ+hfsPLAQAtqYfLlyJs9VSc7c2hVU82K4biwwmUhNaaEUFA+hpFwJveBGxvj/aVLHxJplDEnMnbIkj9Ixv7cOhWAprNGQNsbcuYibawaPZHwWojxNDXIF1fVwABAABJREFUuQddr2dj0zbJZow5J995J2aNIQ43NzBnDkjJMpAYLE4LVjPTQk2CXlfhhtXJgAAA6nVafiNzfysA8C0P5/qzmNVJhmGPtJKA1QxYZxtAtgAV1JfeEWzMqiopzxYYr+lYXSVAwp13AvfdR75mLCXD7gNNQ0u30R9wGMCWj7ZmIwhldG4jxlkteYhuF3jjvzmGj1y4bXTToygEXM/7yUpqKOqCjPhuF7jlFgImpRNDfUdDU7MngNViJc8AiB7rwYPYV9/CpQsRBlse0e5PMatFZEA8xqAS0c0DqOO9C8vjy4Co9YLChAJs5bKb8cxy17KGWlymT4mSTBDgy81j7FKmj1ApPZCM7WkYwFRnX2GHQcOALEUIrPy1NvQCogEseiFYspXDonnqKeBHfoT8+/LlsaoFthkfY1bXFA9WP//wWAisfoYwq69eJay/KALuvhv4yEeA7/3jr4M7zqxmGvacazsYgIDVbD44fBjH26v48c+9GZ++chz1xcboGwoY4dn9AKbqATffjDljgPW1KHGfbdB2FYVoVguA1bocQFVCLC5yPzpuW87RgY4NFgtWWciqTOQPJknCxCBCScZb1ppAE2KKXjAhmKcnSkuEyxgs6iKHUiYD0hA4vGoaZnQb212B17J9imnGWsVPbS9j4Uhz4tyjGXKmDIjry9CLMqBpqCoymcXlmdU5iVYAgRsUZkBzTdXY+iUXMx6OkwBZ2u12UFhahKwJXv4+DiCeHWkWsCQB+/bhpXtO4qMXbkFtITVvseo4gQpUgIDV9Trdv7Jbg2pWN9LToQCzupSXBTNDzJkLAJRIhAQI8si/blhKvkjJm7eYGV3FxrClkgBIJZ3zmNW+BrNWoL+MKJK31jL5K12wzzz9+imY1VpegqUMCC4wbwGImdU8sFqXn+HMajam2W2ikfNdvwqwOpShaHLCrF6fEvilkn5pZnVddTF08yelyBvzRBKJXbC6shAZSQ6AV0RRdBeAuwG8WpKkF9PnfjKKorvpn/vpY68BcIL++ZcA3gEAkiTNAfgFAC8C8EIAvyBJUqpYdzdE4uRJIiUbszQti+iGNSXANMkCUUCn96mnVdzUWQFuuIEAnH1iojfwDdT0MNF5FMzqMWb1vfcS2cRPfCL15DhYrSgwFQ6YBmLOM6Nb6MyEBIgyTbSVAR79EkENz/bn0WrQ/kkSDD2CE2i5JX5Awqy+7z5y2P/P/3n0i4wsUIyVxQGr/ZNnAACP+cex71V3AC9/OVQ5RFuz0NZs/J+3fhq1ZjIpEhkQgb4OXawM29DTJa/HjwMAjrTWSdk7ozhoGlqag65T1MFjLFgJji5Dq2vVM6tVFQda2zg/mBNipXlOiPP9OczeRGhky+FlUvId91UZZVaLmFTR+PjHgfe+F3jiCYwymdJsFZawKIDXr6wAy8vkDHn0KPDoo4Brh0mZOQCoKpqqg96AA6o6IdpUBqdzG2FLHW+t4ORJ4NJVDRcHs5idSd2nDADOw9PKgNW6Tg46AnNCrwe87GVEr1pJnY17loqW5oxoVhdmVhsGcPAgFDlCYDm43G1guTkcua5EBiR/ExIfSArIgKhyiCDPRZ7KgKi1gsgy1/G9HCOHHPQynp/CYBFAtfraAHSTw6xm5aMNwf6KSnbkBTVlSZc5NlQHw22O4a4TFAP/NI2w6ByONJaXzFOXLxO95rR+vxOo0NMlwapK5sO8ShPfhxuo0A2x3+yZwqy2rETp4O67iT7+xkAn3yUtaUI17Hnz1nBIwWo2Hxw6hB+/8+/x3q99D37p+R/CDbeNaTgUMFi0hyEM2QdOnMCMbmGrqyRgdTPlZaF4sDiHp9AhJepN0y8kA5KpAx1F8ANqsFiEAQ1ibJaptc+SbCV0anlsyggEKC/cbhagFkXl5i02tgTAaivQxKpCNI3IufUFvh/blBgGsLyMI611AMDCTfOTuyvCrC44BmiXrwGzOv+wX9ggmbabOV5pZ0c8UAQjVw4HJfYaQCKpwPHhibwxGRAA2L8frzzwKC4NZ0fBal0nhqAFwOoaLCwuRAm7OggwmARW50lghCGR6yvJrM5kK5fWlg7hB9lkmZgJX5C1n8suZ2dLo/i8JSHDGJZJVcglDBZNWcBgcYIMSF7Q5J2bt4+h+5SaIdhnVhGTw6wmSYAC/WTtisiAFJkLYjNIERmQBjozOdeJMaun2L5e82AyeePSGvb0YHUQjcmAbEzZpu/DCTTENk2U2DZw8gdO4BYkngCjYLUAIW83soP7q0ck6G4aGv2Td9VfB+C99H2fA9CRJGkvgFcB+LsoijaiKNoE8HcAXj1d9///F7//+8CP/Rg5oAKgwLKOZktKZEAKaFYPuj4pJT1yBBozMrFtbDk1zDbdBKQtCFa/733AH/wB8B/+Q+rJca3e2GAxf0L33RAdY0gmdEkClpawaPZx36cIcHe2P4dWMxmSsUkZ5/DIwOq/+Auiqfu3fzv6RUipiBT32VA8rt6lf5qIuj26sQf79oGUZQKYN/uY0S3825d8cuQMoOoywoxDw0i7QxfnB7NoN1Kvo+WdN7TWML+QupWZZrU9ZgRVNNIGiw2tOs3qlF7x4bkezvbmhLRfPQ8415/D7K17AUnCsnseK5eCpK+hDNVQ4rbrqpst8zIWDz4IfOxjwC/9Ekm0xDFusKh6sB3+puX3fg947DHKrJ4PgCjC618PvOMdwFpXH2XuUcM+Xhbac0K0adl3567DAIBj8tM4dQpQIx/fdvQ+tPakTg4i2f2yMiCKL8ysXtY2cI/yeezbF5F5KwzRd3ViCssOrozpwzMRAhAxMVfTBPbsAQAsK2v4zJVjOLGUKo9g7I68A1kQUDZhAQZVzFTOB6u9UIFWrxCsZqBPUY1Wjut9GESQpWIMMgCJDnLG4cmPSrDAQVh/uYxdJgMiClZrGjmMWBUyq3VdyO28cBkxZdE5vGojjySCADLH3HNPysDV97HhNDDXSGXV2HzYzweri4yvGKz+CjOrLQuYlzZQ1z085+Aarl4FejaZW2MdaECYWR2D1exQcvgwVBW4ob2Otxz7IvTFmdE3iDKrowi2FRJm9YkTJMnmBckPmZIvqql8sDpwfGhygFatAFjNAWqDkJTGFwYqReatqrVEw4SgUCgomDSx7JseugvPsZIETQlJYjTvUMqY1U2BuYvKgGz3xMBqCSB7ikYDR1rEH2Xha2+f+HLVUDLlKqaRASGa1dntFtZDF9jDeG5ExmyVzGoKKBatDMr7/nFfSwAeInJmDptb0m3Pz+PFy6fR1OxRzWoqAyIKogzXh6j/8s/iTvkhPPAAfTAIiATlDrA6P8FUquKKx1Yuw6yWCLsylwlfcmzlVoSkKlYLRV7yLoroebVYkwA5g+YmnZkMiKDsGmmU6qwLMavFweprKgMySRaqbLsFZEB6noF2O+c1VIK0iqJmFmEI/N3fVdfeDnNLTSP7Y6vEgJzUrpFiVm9N3+a2W8NMIyHNNVQHQy+/3djbqMhNJhM5Pi8nIbYbYiE0s0uSpEiSdD+AVRDA+R/pU79MpT5+Q5IkhoztB5BSJ8UF+ljW4+Of9S8lSfqCJElfuHr1arFv8ywPzwM++lHgrW9Fwii1bbJhaEpUBiSAOxA/PA57IRqaAxw5AoACD7aNLbeOTsMHdJ0cnARBPwZWf/azwHd/N/n/xgZ5zrc8kplKy4AIGId4boSObmGGnRGXlvCchfP40Ic1zLY8nO3Nj4DVse4rh63MZEA+9Sng1a8mc1D8Fpb9ZocWlt3kaVYPyJd5eqU+BlYPSP+/67tG3yBg9AIAnuWNMsgBsjE7ehSv2Pc43v7LqUWRykqIMqv7fSKDsvNDE3ZJY0ZFzzOqlQFRVRye7+NMf54PVl+6BD+Use40Mbe/Buzdi2VzGysnu3FfvVDZAVaLYuuXLhHW8wMPpORgwpCytyjrVNcJ61EAUH3kEVIFsfqlC1j6xPuBH/9xvOHu0/C9CD/9qW9EbQysbmm2ILPahmFEMI/tB3QdB5RLOHfShRx4eP/X/zfIy6l68Lxy57jR8jIgIgaL3c0ArT/6HeBd78LB5hbRrfZ99DwTLSP1mzMAXICk6fTcWPcVy8sAgBtbV/C352/H8X2piYrJgOQxq8scSlWVMJXzwGrmOG0UYPrQtgHkalaX24xnH/g9Nypens3azTJAC0N4ZWVADP7haejrqImYlAGArqOl2+h1p9gsxprViQxIU3XQ3+YkL72IADSi11bQx8H3E2a175P5+8/+jD7peVi3d4LVNcXLrzTxPGKweB0yq2sf+O9Y1Ldx55f/O9ptwPaSdSAOUbDakkaZ1bUacOxY8oJxuSBVJZIwDuc6DIewPRVmXQHZHABa6GA4CIkWuknBJEUhMkMcsNqzA6hSiMUZF/OTCbQ7I09TlrIeVaU4O0/IGLZouzyjsjAkAG2JeStzXSyrgy1J0LWISKXl7eVook1cBsTCtgizmu2fDAO49Vbsr29hrm7BuO34xJerusxnVpeUAcliVvtBORmQ3NJ/kH1RYRBBVcnYyfqtKFGjaNJC0eRcg0XfR/FrwM5JnH3nYCgRGbT0BmF2Fpoc4p+f+BzmF1Lvl4lkhJsn/8DC82CfW0UtGuJ5/ufxxS/Q+zEIYAVj8hACCabSOvN5OtAlpcxUhVSrZYHVMWu/jMFiLlgtl6qQy7y2NJleeI4FIKn8xI0VaOLkACBea3OPdQysNgT3Zew8k7XvjpOi4t0caTfr92LX9hqB1X3PJGTDrChR0cuLwQD4qZ+qrr1JOtBNzeabFvKCkQY1GajXsWD2cXWrOAPmscdSt3gQYNutodNKzM/rqouhp2XOA0BqnSl4AMvzcdgN8RCafaIoCqIouhvAAQAvlCTpdgD/FsDNAF4AYA7Av6miQ1EUvTOKoudHUfT8RWEhvv9/xBNPAHfcASwsAFtb9MHhkJRitRUqA8Jn/8YRRRgwM6HlZaBWg4wIweo6ttwacajVdXJwEgT9XJeAn6pK9mOvehUB2GlX0RgD6UyFz1T1PGL+2OnQ1y0t4QWLZ/CPj7Rw1w1dwqxupd4gCAD7PjDY9uE6IWo1cgliDeRYs5r+n7pnc5nVboiGaiOKJHIePXAAkCTM1WzMvO3biXhvOgTNmXyLlAu1W2NP/Kt/BeWnfxJz99yUPKYohCUfimXz1teB+++f9KGJtlqtrcEOtMplQPbPWbg46PDB6rU1Mk4BInmyfz/21rdx+ZyX6usoWF1TPGFm9eXLBFx+7LHUvcWAXEkif3SdaAcKgNW+T67rygNXsGx2geEQ9U/8DX7ih2w8sr4HNT21AVZVMWa1G6GtWyMVBgcaW3jgCy4WdIpcLSwkb2Asl6rBasaC5kgVAEDv9GosXXJQOh+D1X3PQNNIJdViGRD+tR1ue2QsmCaRvmm3cePMCv7+4i04fnAUoItlQLLuA+bMXoT1F2sdcsDqEmXE10Rag8MEL82kY0DCpMMTM1ichlmdc3iKACimoMyRppFk0PYUBjU0+aCwS2QYQszqwkCKoGa17xNCbkCr9V/3OuCv/5peMsqsnm+m5lRFIUnnPBkQdtgTLE/mMuD/icIeBKidewJ/8op345B3Er/wb2wgikh1VRoUYtVRnPl7aE0Afb7ma7LfwEp+eZUmtg07UGG2ddJ2u42jrTU8srGPSK4xhjBjVnOYPr7tQ5UDfOK/fEEc+2KashlAbazTWzRoiXrVzGoemzICSs1budcgkoszq0G2tdzkDTNYbAr8YMwou89/rT90CRHEMIDnPx/Kj/5feOe7sydfwqzO0JZmch1lZEB0kHbHr0EUwQtkaEVZ+2ztyrmkhQ2SabvXQgYkBv6ymNVl2OUU+LPzPDLAwGp39Do8//nAiRP4vV+zRraGAJV/yDPWY7G1hTCSIEsRnrdwFl/6LN1j0e8opQWoeTIgZTXheQBwWbBaBYIcYpPnodTYymWXTyEDkmlIH2uBl5i7eTJWBb0sAMSEltx9jOfBDtTYgokbPEmgKRMhecmFwsxqdvbKI7QAgOcRybZ6TqcZUa7CbZbnAWtr1bVHZPKkEWZ1Q3XRt6f0zWLnKGqw2NGH2B4UZ8C84Q0EP2Ntbrs1zDSTyqy6yfcOK8WsBqBp0TOC1HG9R6HZMoqiLQCfAPDqKIouU6kPB8B7QHSoAeAigIOptx2gj2U9vhuCsb1NPPRG9nqDAfqeicacQcBqARPAOIZDDF0N9QZhjaLTIWZlj25hy6mj0yabX1P1hMFqzyMs1VmqRv6KVxDmMu3qDvkDEVmFGKyeo8N1eRl3zl2AKgW4a+Ys7EAfBat5Tt80/KGL4anLwMWLwP/+3zh0CARMox9KmNX0/xSo5IPVAebNAWQ5IqW59Trw9rdj/oXH0J6Z8D0FwWrPIs+3xyqQ0WyOsr4AMkAK6GhubRGwdgeeR0tiVUNJWF8VgdURQA75Ji1H5YHVnkfkakDH1sICDjQ2ceGiFD8/SQbE4kjMsLh0CbjrLvJzpcHqKEJywxkG0VjnaAfSt2JjPcLqORtLNVrm/cgjODB4Ak91l4i8eAqcaGk2+haHSeeEVLudPrC4iAONTXzpfhlL6nr8WBwMmLgWMiCyoAzIuhdLl+y3T+PSJQBBQJjV5iizmjAR+B9v9XzUGLMaAJaXcWNnBUPfwPEbUn2SJBhaCCdQszPmzJizKLNaDuHngdVU+7TMgQRAvolOKRmQ7HHg+yh+gGbtZpVPUtCnjGa1oiv50khFx6ymoa3Zo1r0RSMIiERCSrO6ztOABmVWFznsMukaDqDKZEDW1sgtbxjAi15E/Bfg+1i3G5hvpe4vplmdt46zQ5koWP1MYFZHEcK1dchShK/acwqaHOLHg18FAtqndI061X7lJdmGtjzKrAYI6PPd3w389E/vfAMDq7PKiFm4LmGS1en1XVjAjZ0V3L9+EDUz9V7mt8ABpxjrr90pcN/mlenTe1YpCVZngn+MWV3CtJAkW/8JZUCm0drXonztVyAhQYjIQzGj7CEfJLIH1LhT18n1uO02vPHbsuccVc82WPRCeQpmtQQ/msAii3XLS7DrOXuYuDKoYHUYgFxfhMpN8JBiVheUQollQHLIJwNLJlWy6eug68BP/ATwmtfseL1qKIQFzgOrbUK+AYDjM1fx1BMJs5r1L2lUhSrlECSY78Y1SFwBKAVW58m2xJVRVcuARCWZ1Zy5u4zBIpfcRceHpBe7v7jM6iCA7RdgVstkXsqUVGASTqXWmXDyegDE+6JCvxdLLAR8k2RJikblysaDyYAIkKREw3WnA6vf8Y4xKIBhBWpypm1qDgZOBTIgKc3qtm6jOyzW5uoq8PjjxJSctUnA6mS8G6ZEyHh5YHWZCh4AWk610W6IB/fukyRpUZKkDv13DcA3AHic6lBDkiQJwLcCeJi+5UMA/rlE4sUAtqMougzgIwBeKUnSLDVWfCV9bDcEo9sF2nUf2N6GaVL54H4fXc9Ea8FIDBZFwWrLIvp5LbpYdTo43NrAuSeGRAZkJqLMak8Y9AvDCGcf7WPBuwScPInFxQT8GwxANlMjMiAc8C8M4fnAUq2HpWXah8OHYao+7l44j7vlBwEArZlUG4pCXLE5h+igb2HbNdFUbOC//3cc1Fdw7hx9MmZWJJq6hsI3Z/KdEAtmH8vzfjKnLSzg+39Qwx13THiDquYzPFi7FBgc+Z55IaqjCZIEGQ4T6czkQ1M6VHRs2d0KXB5SzGroOhqag/4WZ8y6LkzFhyyFMVg9ZwywsSknfY3kBGih7DRRZvXmJvDSl5I/sQwIM3dgh3dNI+WYHO1A9hU3zvaw0jWxvEcCvuqrgCiC+b73oK66qDVSG3yqWd3jgdVuhLZmo8NsaZeWsL+xhceeNrGsbxHwlpl00WtADEnyGi2rWS1osNiX4yRDZ3AR26tOilmd6lgMVvOv7bAXEDCJUTL27MGNM6vo6APM7R2laeg64IQqnzVS1OlbosY8WUFlIwqbf+Ul2sKQtKmVkOuQw+qZ1XkgHTOlKbNXFWD6jLyOF7pOmNXTyIDQyo34XE7lsYYiYHWRDa6gNBZjVl++HMu244UvBL74RfLkutPEXCs197PEVRbbC4jnO0UXG1/PCGb1+fNUB6QGvO1tBKi7cCE5zKaz2KoKXQngcJawiWC1JAEveQlwww0738CSdwJgtRuoyRo1P4+bZlbwJydfiNsOjGrtE4NFvoaiKhfQQwfyS8nDcDQhUySuqWY1B6AqCqrmlX2zipASzGpNA2GqcsBqSYp2Sslk9NOQfSEfB7vvE2ksQZqioiuTZUCiCF6gTG+wON7utFIwOQzFUiACBT9DL98ErwygCCDTINkLZZK8LHJtZRmGGpCkOw+sHmdW50QMPgqA1XFXpAgHW5t4/HFkg9UcZrWXBrVEgxks+tlSDaSDxX4vRZXyZVvcchIzuRWNVLO6DJEhk10+DbNaIHEz8jrBNnWedIXvwwnVmHPCDUmCpmFyMgwonxTNk4UCynnF8IB1FiJ7WSoD4gpUnYqG55HbWvR8PB7veheReo1jgmZ1Q3XQnxasZiC4TsDqlmajV5Ct/elPA8ePA08+mbS55VDlABpxsiAPrGZJ0cJg9a4MSBUhMlvuBfAJSZIeBHAfiGb1XwP4E0mSHgLwEIAFAG+nr/9bAKcBnATwhwB+EACiKNoA8Eu0jfsA/CJ9bDcEY3sbmHnks8C/+3fYu+ASs7J+H5avoTZfB0wTuuLDFWA8AgAcB0NfJ3rXANDp4FBzA2dP+eRm7kSJZrUjtrDWNQ9nTodYWHsC+NVfRevx+2JGGymvLSgDQpkoX33wDH711+jr9u4F3vY2fPybfh03d4h4d+toilEqKgNiueh7BpZaFhBFODh4PGFWMwaMnmQKDVmgPNuLsGD2sW9pdNJ7+csTtvlI0PLZ0OXIgNg+WpqF9qzgwUzTSFmuAJDAkgmXLo1/aIppZxhYMntYvVrBgpne5Oo6Djc3cPZM/nWNHHLIa5o+uY7z82S/H/hkL+B5sH0NRiOR1qirLiwBM0QW//pfEx2vNLOabH7CuE1SjslfrHwf2DizjRWrjaW79wHf8i1kQ2LbONjYHC0DZjIgeWYUASl/m6sNk6TN0hKamoO27hD29sLC6CEo3oRlNxu5JLNflJVEzBA5rwuJxqAiR8CePWhrFrZX7Vizummmxryui2m8AbD6AWpqill9++042NjAD9z6KUhjOjm6IREAIbfctyCoKhMTsiDKMSeieqqSUvxAIklRJugDAJJc8B6k/fXDyUZCpbREaV/zylLLyoDECbysucvzCNOrALO6pdvo9qaYu4IAQSQll8gwiDxWngY0CPu1ELOasuh41Ua+T/6c+ccV7L30ReD978fznxfhC18AlQGpY34mdX/xQATWKCB8XblyLf8UwTYXR48Cz3kO0R0DYS960EfBCyYDwrm2A1sZNVjkBZsPLc6+i06YkkH3PwsLuKmzgk9evglveFFq8ZVlsufytdyDbjy2ioLVWeOAmqKq8jXSrFbLAZWZABXTrK5SBmSKJJtuSPxD6bjJeF6wpLAAP8AeBIXA6szDeVlQmYaqSZPlRaYBqyWODAhLCBa8DxQpypVqKLV+cSujqCZ8wUSAqdMKsZz9/MBWiHxRgXkriiT+/O04IwmWf3HL5/Cud2EyWM2TwGDVYaWY1VEmoBgEBEgvuodRVSDIkMMhiRuJzLEFddZVKX/eKitXoUn5+61S5AAeWO15ZJ4tCFYbCqeKiZ7ZhJnVANQ84I/NMWUNFnOY1YW9YiQJmorcRAiA5H7OS16qKnQ1gONla6sXDbamlGVXd7vA3/996gG2d2DXSNMICU3QNyszKAiuaArRwTZ99FyjEEHi3nuB7/3eFFjNmNXt1O8tQO5znSnB6l0ZkKmCu8uLoujBKIqeE0XRnVEU3R5F0S/Sx18RRdEd9LHvjKKoTx+Poij6V1EUHaPPfyHV1rujKDpO/7zn2n2tZ2d0rzpob58HHAd7lau4fBnYWPEwawwJo5LJgAwFJzTHwSDtTN7p4HBzHWfPyYRZ3ZFizWre4RkAwiBCS+rjqt3G4iyVrfjYB9HdCok+9lAalQGhLLJcZjUDjQ15dL9w991otSXMGQMAQPOWlMIMz+mbRuS4qKsulu4k1LSD9lMTZECkuE0RVpbvhjjY2MSbXj3IfyELWp5tDzgGi06ARbOP1pw4QAMQMJIX29vk5Zcvjz2RLler1bBc62J1rbhD/I5Ib36oiVB3i8NQtH1ocoBmLYiZ1QAwq/awuUm+5xWrTVjMtO2a4mJo5fe31wN+71eHqIUDzD76Gez3zyZgte/D8jWYWrIpNxWPGPZxtMA9D1i/YKPrmmjdfYxkKu6+GwBwqLmBeju14DGDRTtnEXQceKGCA50BPvCBBKwGgAP1DSzVujtZf6wkM++gVwbwoKyJzM0di+1tABHQbgPz8+R33ghiZnWrNsr81OQArgizuh+OMqvvvhvKD/xL/MoPXtihCS+rMgE+c1gjhQ8OkkSMlLIOOcBUeqoSMJnxxcZcifJsRUGuRmlhtheQz9adopw+TrRVyKxuazZ6/enAattPOddTGZAhZ5r3PBDwr6gMiACzGgCe/OPPY+/gKeATn8Dt3c/i4YdBDRabmJ9J3V8M9BEBqwXHl8bAua8ks5rpmtRq5G/qNNjSbMjj7D2WcOZc24nM6rxgVSECzGoAyf7nxAncOLOCA40N3HNXiuIkSagZIaxAyz3oxuZfBefuTNZfFFF2VAl2HpvnJh2myxpfMeCLV/pfdN6iIPjEYRtFoxVaBUJIBqRIQogmcEUYdQSs9oXB6kyAKgaVy7HAtCzAfhoZEB6zugzjLU8OB0gqK6tkVjOgtkQyyDDALVMnMiDFkmwAxJnVN94ISBK+ufEJ/N1HI/h9m+wb2NxL28yVwGAmriV9N7IAYN+LSlWHqVoOs5oxoNWCeyOWGM4z7CspMZPHrCZJgBJgpiizuoRUYK50BTNYrIlfByKpkPF7MX3jsprVnGqAotU2qsaXSfNtn3gN5HVakmAYEklWiWQuBYLd8uvr5d4vScA//EPqgXFmtapS36wpyW2+T6qbdRmQJMh1k5yrRHVpQXCNr/96IgPiOEjA6lbq99Y0buKulNwUUnJ5u8zqqaIC5Gk3/qli++kNzFCzsn24hAsXgCfPGrhpZoVoMzIZEB7Dh4Vtw/J1mE06w8zN4VBzA+c2W8RgcU5OmNUiOr2Pn0JH6QMAFv7Z1wGHD6Nhr2OwYaO3FWDVaqGhe8mGgjGr89qmIN0OcweqyzxnDtBQbcgzo+W+shQhcHOuw/Y2pMBHXfOxeMsCYBg4FDyNc6fpLD5ugqGqhJXFkWz2vQgdY4if/qF+/gtZKAop+eWVk1N5kfa8YKZSVaFIIQJHTLP6xInJzGqflUKaJpZqPayuT+nuCyDyg7iPzDyCpwXuWQSsbjGwenYWkCQcMK7ix380xJ88eAc2nAbmluhYZg6/dv64vXgR+KGfqmNf93Hgve/FzAf+EFtbdDPoebg07GD/DEWkJAmGHpFDAyfD7XsRrl6NoEgRpFtuJg8eOQIAONjcQG0m9TsyZrUAWK0ZclI2t2cPuQbNTSzfsUxcJNLBNs15eo9lSmgZsMwDZ9hOaH4emJlBW7exvRnGmtVNM/WbUwNTj2dIAsAahKgxg0UWz30u8P3fv7N8gadfHzt9FwNoFFVCkKerXFJDMde0MAjIhqpom6DajBmHslgGpHJmdTmjMt7hybP8Ykw6ZrAoCFb/zd8ADzww9mAQwAp01Jl0DVsXLX6lTaH7i60zAprVAPDk1VnsrRMJCe1/fQi6HmHYD4lm9Uzqt9a0/AM0APh+IQaVZihfebCaASlsLpibAwC0NGcnbkelvLgGi45SDKwuoFkNIAGrb7oJbd3GY2/595C9UQS9ZoSEWc3RUCzDKM08mI+biBaJPIPFaTSr80AElhCsUgaEMatLJNk0XYIb5lTxAMWqQmhSWAistiLCrBaRFwGypZZisLqcZJLKZBUy2i0sUxCbA2e/pLAvAGtXCuE7ORVXJUFVAPkGySVY67H3Rs7YGjhqMWa1pgnJJfp9m7CW221g3z5okg8dDrauekTWsd1OXswDasuyimWZaFbn+W5IYbWa1SxhUfTIw0uyUd3uUt4jOZrVZGwV7CvAB6snMegF2uRqVlOwWthgEWTayvy9pmBWa3kmrozQUnAuiCWR8u7ZAdAc15mfEIYpkURoRWD1tMzqRoNs++KtH/0tdTam2feJIi6xi0UUYaevDEvssKQhS4wVAKu7XeDQIeDpp4GbbiJtxjK3LAQSd54TQlf8EgaLAsbLu8GNXbD6OoruuS20KVj9Mv1z+OhHIjx5oY4bZ1YSZrXCl6qIg1KMJJOuFvPzONxax9n+HDFYnFdIubPqCsmAuGtdNDUHshRiYVEGDh2CJBFw8t3/LcRvPPR1aKQBKmawKMis3hGdDjq6hbY+hiArCmFQWTmbwl4PUSShUQuwtEcGDh/G3vo2rpylszgzXtPlkTa5PoBOQWdyEeMrEBbVUq2H1qKgwBdje1n8CXJ7G7j1Vg6z2jCwVOthZXNKd18Q1micTRY0rmRg9du/5yRZr1QV6HRwsLGJP3mfhEdWiQxMXN6qaVS+hg/6HGhu4fY5gtTPhJvYXvfjJy8MZnFgNkk8mEYEm6dLCcDvWXhkfQ/2ztpAp0MepGD1oeYG6rOpQyVlVguB1emkTbsN/MAP4GVvWsKJH/lG4g6ZDmYklSOt4bsU8BA95NJ2dYWvpRmtrRMAY34eaLUwo1uEbM2Y1fVRME1I4w0ErK6Pg9VZwauyYEyfgpt8Sc05lNJ2AVRuWliqTeSXu/qBVNpgMROsZpvMa1CWag2jwszXtm6j2xf7fp/9LPCRcTeNIMDQ11FjzGq2LlocuY5SmtV8QJVdmqe6S9jzspvIHLO1hRv3D/HkWR3rTgNzM6NrbS6TkDYaAdeVDEjQt8gcw+YCmqxqaTYMYyezWlc44F8YYuhphKEoej+oKkm0CYDVI5JLqgq02+SwyoTHaRCwWucyq8vJgOSYdJXVPc0zWJxGs1oO4eeU0wMoPcdmMRSjSCruNQCyhPI0qwM3gCJaaaFp0BVfyHTYHoaFZEAyD+dlGdA0MllkLClclPkpSYk/xCSCQBjCCyTCBC9oWqjKAYIs804GUBnFE7gAspnVUblraxjgy4A46k6DxbwQlAGxul6y36J72P2tLp68UCOPp30BWAVPHrM6LCipELebLa3h+eX2MIomZzOrWeKqRIJFkaLsy1o2IcaSopn7rZKya5w9clydW1SzmreP8X3YgVqIWR2zlfPWmYLEk9jbh2OwWLTaRgSs7veBpupwz1+6KcMJtMrB6jLMap/itTfcAJw5Qx8MAnKma6S04/OqrSbEffcB3/EdOz8sJswBQK1G9nsFwOpejxyVf+M3yDbZsSPCrJ5JvUjTyJ7AvobM6l2weqrYBauvo9hesWJm9UtmHsF9n/PxyMUObuwkYLUu+3ALgNWSFCUb3IUFLNd6uDycgRVoMNs6AVO1AJbHB+i8oQdd8VE3AiwuAvFsEAS4uhLgi2uHUTdSEzcty7XzDOsYSFebsFB+7/dC3b+M7/vnY/1ipdR5ACidret6QNQUDh0i4Gbfj58fWaCYIze3PDsqZnrEzJTymNVRBM+L8FN3fQSveI34YUSTA3hDMc3qW27JYVZrEmCaRAZkq0AaPCNigJSC1brMN+vzLB+qFOJNX7eZPHjwIA40NrFv3sFja4swFD+57jGzmm9a+OoDD+MXnvfXwNGjhA0wTIPVHRyYS0q0VY0yajklPV7fxqrVxuGDqe91kEjVvP7I/fimV43eB03NQc/O2bBkVRjcdRf+7a8v4dixCe/hMQZATLrKlJLreRpvNNyVTZKJjpnVFtEN9n30PAPNWuoayETmJ8jQVU7HcBChpnhiYDWPNVJWT1WgXQDVMqvDkMzXpZnVEzZMUQQvkMsZauUZ00wjAyIAVtdUr7jB4lDsug2HwIMPjj0YBMQbwkjA6rrqYshLMhZl/SkKDF61EZJL88TWMva+8CCYe+9NjQt44oyJLbeO2ZnUGIrLswVkQESZ1WZ5ZvVv/uaYQU/JsPv+aJVFGqw2x8aeppEkdh5Y7XnEdNosUPodV5pw9l3jzGoA+PmfB97yFuAVrxjtqsABJ15Hi8qASBkHc2rg+swyWMzxXCgrA8KuwaR2p0gIxprVOb9ZnGgTBavlAK6AobM9DGGqJZjV4xchiqbTrNblyczHsoxtSUrWrgz2a9xukXEgpFldojJIiFldrEmAgtV5rP0ooszqAjIgPCNjGlbXS/ZbrDpQX8W9Zw/hUGtrpwzItWBWx4mryU/HvhslmNWZ+3kGAJfR2hcA7EvLVeQaLJa4b5lkZEb5wsh5TTTYGSFvaPk+nKIyIHkAcLyXF+8mAL4uPjX5KwNWZ7LAafQGMklWc66tUZMrZVZ79HYuw6xm4O/x48DJk/RB6kPUqo9Ka4j6ZgHEF/vTnx67XEzahYHVmgZFCoVwDRbDIZmiXv960ucLVw24oQKjlvo9mcdV7xoYLO4yqyuJXbD6OopuV0Jbs4E9eyBLEb71RVfwt6duxHPmz4/KgIiC1bZNMuvsoDc/D1mK0NIc9DyTMK4lCbW6RFg+nInSG7jQ5AANwyeSwpRRKgUB1ld89D0TjdaoARxhVufs3hhoPA7SAcD+/cC///f4pXcsjD5OD/y5zGqPGMvVDQpW0/LheKYclwFRFH6mGIDvRlClYkw6Uk6e8xrXhR/KODzbRaMtbrCoyQE8AbPN7W3gzjuBU6fGnmA6VKaSyIBsVwBWexTQpwaLIjIgE/U5b7sNL9/3BH73jf+Af1w5jL217eS6s8WHUxHg9hxosk/ugf37yYNeCqzuz+LAfOrH4YGUrL9DF/NGH0eOpj7fMIA77sDRQz5uetly8jiVw7G8nN/WceCGCvRagZOOplFWUg6zOv1biIagweLw6oAczGdmgHabaJh5YWpjM/qbS7qWb6xHw7IhzqzmyYCwg0OJUk9euwBKm39lgUml2gQrd+UYX5UBfbIYKVMaLALIHAeWBXJ4LsCsbmoO+kOxH9myJoPVBMRMJIxqigfLyW+zDLOaC6iCzId11cGKNYO9LzgA3H47AOCm6HE8cb6GIJShmKnrw0CEvARTURkQBlaX2IR/8YvAlSuF37YjrG2XjAUGmNC/W7oNQx/7rrEMSM794/sJWC0agjIgkTMBrG61gK/7up3XXGCd8d2wpGZ1Bls5ngvLa1ZPBDzixFXBNvM0Wmm7En1doWC/VwZYXcprAKTSwOWAE8NhgbmL7uFEfBxsG9VoVseJhSkNFrPkRUrooatqlO0PwQgVRQGqPO121m4kV8usZuzyEoCiaUSEWZ0j1dD3DCKzWCDJJiIDQgyt6X5r714AwMHgDD568Vbcsmdz9PN41zUMy1VcKQqRAclo1/NLGCEitS/KYu2HClS5bEVIxvNhCC+aQgYkR7NaHfdpEGxXk4NMSRzHjggRqIxUoACzegQ05ISmRpNlhoCp9NAzSRe0n9dKs7o/kAhYzWNW15RKNatdl9zKZZjV3S7Ztpw4QXSgAcTSjq1mMWmNdFy+TPbeDz2UenC8wl3X0dYt9LYK6D9HIaRP/gOwtoaDB4HzV02Ce6XnCro3tHP83jwP5cDqXWZ1JbELVl9HsT1QCbP6zjsBAL/4VR/BQ2/6RexbcMmNx8BqDvs3DvZCtsGl0govXHoaEqKYpVRryMTsh9OwZ/nQpAANMyRgNWVW65KLyxdDaLKPxsyosZzG06l1HAJ6TGJWZwVjQeeB9lQ7sFXzSQUuBavVyMOlS8CXn2pi260lcmwMROCWZxdkVjMG8CAfRPDSpTAiwQ5kAmD11hbwnOeQkp6RdSU2AiGa1YtmD6u9WkYr4uG7YVK+zGRA8hILyGAA3347buqs4FvU/wUJEdFuZQsQlVcZcsAkr2uRdptNYJkCyIzK5ftEBmQhNe55ICVrd+hhud7F4VvGpDl+8AeB//gfRw+VqgpJArnnssK2s5M2WRGbE+X005egSQX1imMtzfyXWUPKgNb1RNcwCIDhEFetFqm+SEcW22u8XQviJc9CMiAlDk/XQuePtpvHVi7VJnI0q9khp+iBjPYjT7O68JzFgjF9Mmg5wyGKyYCwhBhn7mZhWWQuHDkXBAGsQEONOdfTeTs3GRaG8AJ6bUXBL7Z2cZjV3noXc8YALd1GY84Ajh4FANwUPIoHT9Oy7PSgVtV8thdQmFmtGgoZUyWY1efOFarkzAyrN8aspsBJS3NgaGNjnYHVeeCf52HgG6jXCtwPggaL7tAnh34R9isvyYaU5FgpGZAMwGMKZrUqhZNlFaZhvOVUBoVBBLmETm1uOf0UCcFYGirnUDq0pILMaj9XxotFrFktClZnrbXstyphAgjky4CUZWyrSrbfQmlwPW+8ApRZXb0MSGnNap7Boudh4OujMou8EASTrJ5P9nGGEcsVHVQv49OXj+OWg2PePKyCJweoLZXEpnvZrOkw9oYomHAnyZVspm6p5J0IYB+WM1jMS7L5kVwqGcRLtjp2BEMuCFbHc1fOa5h5XoF7jC8DUlJiRg7h5RhiltnLCsmADGUxzepatTIgnkfA6jLM6m6XHOdGwGoq7dhspK6hYOUGi8uXgde8Bvj4x1MPUla7oitxm23NRndLcA4NQ2B1FXjf+4Df+i0c3Bfg/BrFMMb2xzy8pDSzehesriR2werrJYIAXUtD23CA224jjz38MPm72SR/UxkQx4GQqH0wsIl+XnqDa1l40dLT6OgWqZkABat9LTEzyghv6EGTA3Sao8zqljLE0+cUvGDxDOpjxnKqFCLIA6vzmNVZwYDlPGkJuuL/t+/6JBHdp8D8vN7HBz4A/OHHj2Fl2Mae5Shpk6d3CcqsLsikq6kurGE+sF64DKkgs7rTAV7ykrHS7PSG3TSJ5rCtCxsmZIXvg1wjRUlKXTkl1J4d7NRWXlggf2wbR1rr2NvqJ5tVynwc5rH2AXg9G7ockMoEClbroUPuIaZZvZgCq0V0/qIIvu1jyezh8F2d0efSWl4s2AEn77rmyeFkBQOo8jSrfRQvn1RV6ErGpjkVw0FKWzgGq0Og2yWaYUtjB2u2ucnbkEURbFsiJc9VyICUPUSLMqtLSGuoObqEAMoxq9mhLNNQqwQ4kcdIoYmusgaLeYcnywYBKAswq0WSK3H7FlHVYMsrgBSzOoz7WFM9DN2c+9H3i5cRM0CVU/rvr21h1hhiT4euye020G7jmHEB/+/n9+ANN3x59Pqww36W/i+QgBaCa5ek0bmwBFh9/jx3OyEUVj/YKQl0/Dhamg19YWb0xYpCx0GOLn5aBkQ0qD4nTxbJHgTiJni8JBtYeXZxsDovGeaHCpQpEldZxo1lja8yy95Bhp0ql6gIYVrQFcuAxHuDHHDCsgrMXXSddQV8HGxHKmawmAVUTsGABug6k2OwWI5ZnW+qRtjKxQFFJc+8k1VWViwD4kflEsOGKeUzq30fA89AwygAiKgqJAChm/+eYS9IKtmaTaDRwIHmJtxQwy037PQLEpIBKTEX5DKrAzk5UxRpNk+zuiwAzOYtHmBfhlnNkwEp6RGSJ8VYllmtKxwJo4LJcUBQBqQUWJ0jNzWtZnUes9pS0NRsvgxIXancYLEsWJ2WAUmD1T3PGJGvj0knghvvy5eBH/5h4L3vJfgya3ekwoX6z/S6gqaNT59JSJarqzjUfRinVxo7DeVZJYCVA1YXNUun8Uzwdnk2xC5Yfb1Ev4+uZ6I9qxDdMEVJqEmNBvlbUWDoEdncCtwYVj/YWU5fr+OepdO4YbEfb9gJWK3zmdUUrP7of7mf7JkpWN2W+7iwquPr9z+OhT1jbC85X6agFEjH2Gl5bF1qdhQzpylYvaht4gtfAC5tmrhitbG8lDDpRNh5sSt1Uc1qO19Hc6QURiQKGiy228ArXwl87GOpJxiz2iAA60zDR9c1p1swoyhhVqtqwnrkSNfEMiDjhzGqoXekScFqFgxA4JTQej07YVZT1khH7uJ97wMC28NVu4mFTuoaisiAdLvwfeBfv+BTuP3FzdzPH2kz7xKUBKt5lQvEmKYgO02kxA8pfc4Us1qJPPjbAwCA1Bq7NiKZ+DCEE6gwVUGAXVHyD2TMVKxqZnXZEnUOmASgWhkQpstYBqymDKJMpk+oQClTlqqqMBQv8/A0tOTCBosibGUWlgW8+c3AX/5l6sEggOXrqJlJ8rKmuLDykmFMRqnIEKCSQLk+DgD89W3MGkPsXUyNv4MHYao+Xnf4fvzQbZ/ASOkCj+2FlIRDgUQrAG6VyXgEAdEnrAysVr1R3dQf/VG0vu0bYcw1Rl8sSTD0iGi/5jAUh75ejFktKItUCKxmJfp5BotlZUCygBSmWV0GqOQk2cqDCDk6tWyvVXSOlWUKAis7y/+nAasVhSurUIhZLUnQNL5pI6IItivDVAsASllr7ZRgdXwwz2JWlwarqzfBU5ks2aSgmtWVGyyWvAbEYDGHWe37hFldK5Fk45wRrEFI5ljTJImhPXtwsLGJlmZh34Gx+4RXwVNWrkImYHQms7oM6QLI96CZcmwFAYepW4JZnTkfTjG2citNQI79huKVkwHh+EOw1wo3m8eEpyzcayED4kdycbDayEmE0OhbipDBolrTyLxaIbN6bg4YDIq/lzGrl5dToDKVARlnVov6ZgEErL71VuD7vx/4wAeSdoMxsLpVgFntbA7JnovGwf5jeOTSLNq6NTruBMh9notdg8WvYOyC1ddL9HpEh3KGGCkyKRAAMWAHkAycE/BZ0AAw6FKwOs2s/r7vw4Hn78H7/yFxp9fqGpl0OWC1O/ShKz7ml+kk0GwCsoy21IeCAP/h+X+Fl3916oZl2XIBZrVqlgGr80ueo0hKJp5WC5BlLCqb+MJ9ES5t1rFmN7G4PGawmAfQRRFlDRcz1OJqVjOWRxF2uWBpMkD0lbUPfgDHDjg4dy79BHPiJZ/baMnoe+Z0KEO8AaSMKCYDwjNYdDIO5ocPAwBeuuckblu+mjzO5BQ4OArRrKZg9eIiMZLU1vGzPxPiH77QRBRJkI1RhiIPRECvhyCS8c3Pu4x6Q2DjFI8VAWZ1vYQ+aZ5mdRljGioDwmVWD1MssnodUBS01SE2zvUJCybOFCXtSkD+os507sb1aHP6mgd8TmN2AyCXWV1K+/QaaVYrqjR540wNtcqW/pOy1Ml9jQDIajmGoi4HmQksy5aKaVazhBinKiZu3yKed3/1VylCI2NW1xKwuq66AszqguAfreBx8vTrkciA7N2Xur7UwPUvvuGd6BgWcODASLt5LFUgNccWWLsAFAarV1bIYSm9jEQR8Hd/V6gZAGN6qiw0Da397YmKCDFDMWvyomB1ozH56YnBOeyzIGC1oAwIvbZZUjikq1Fxg0UGeGQYuJbS70+3mwGklAIqOcCXH0jk+5cxQ1QjuJOSFmXlmwChRLZlS4USbbpJdbDzFlu6Jpp6ARmELGZ1QEB8XSvJrDaUfIPFkmA1l01ZojJKlQMEWfNhGYIIbRfgaLeXWGtlXUWYV9HneYRZXUQGhFUccfbe1iBETUnNsXv2YF9jC9994+cgzezcw/H0mv2opFRDVpKNmkSrUvEqi1hjPS+5UGZs5RnDRlHpscU1tC7NrPYzq1tLM6uZhFFWVQj7MQsMBjFmdZl1JsyWW2IgeMHEVa5kCQ3CrObLgEiGTvCKCpnVnQ45oxWN7maA1pWnIG2kBK+pDMg4s1pX/Fy2cjquXiVH8L17CYGOtTtusNjWbXS7Yn3trTloaQ5w7BgA4ODgcfyvRw/huQvndxjD8vASz5emkwEpUYG4G0nsgtXXS/R65G82G9xzT/Lcq18d/5NoG6lCgpDDXoC6MnbQO3EC+LEfG2Vlsed5zGqmK8xOibIMtNto6zbmDcp6nUmV5rINYyjArC4C0rFy3zxpCTbps4OjLAOzs1gw+3jiSQlrfYMsUDVtpM3c8mw6sWpqAWdyxtDjgNUjE7Zgu6IyIFi7CnzsY1j61F9gZSX1+FgJjlwzCAA3JVjtRynTEl0XlgHJY1b/4G2fxItuTq1gDJzJS4QA8PopsFqSgEOH8O6veS/+8GfP4od+6zi+4cBjoxsJulDlgQjxolRAt5w0WrEMiERY05kGMmyTX1TrjzJyeJI4I9rCkgTMzmJGs3DygQGWaj2M7mwgpqHoebB9DaYueIBgwGeWgecUQAqAa2KwmFVOHwVTMKuzGERTaIkm+toTnptCXzseXxlzgmVLhOlVWAZEnFk9N7ezzNHytYRZzZKMeaAyS/YVZFbrss81VfMtD4ebG7j9ttQ1SiWtUaslpsFAAiLkgdVsji3KrC7IGDl3jhSxpNc8xwF+4icKNQOAACmTzFZbrcnyvSIMxbLMai5YzXSFBZnVOqcs1Wea1aLSD0AKSMmW7plGszqr3bKSCjxmdRmdWgCUsTxZFglAqTZFZECGtkwSbYL3mG4IsLJ8n6yJWjG5IfbekWDEiLLM6iwWWQymFW9X0wA/ypEBicpVRuXJSpT2XFAUyFKE0KvWYDGutMhlVhto1EtUhHDApBFmNQDccgs0OcTvfNX7d0qxsQqerOE6BatYyQGr4+qwgvetrOQwq8tqVvMMFqdgAOdXspXQwabtankyIA6Ka1bLMnQ1JIm2SWcPIBnLBfaImZUbQAqsLsmszvq9fB8RUp4Eos3qSn6CCUDfVtESkAGJ13hhQ7L88DwCxZRiVj90Bu0n7gN+5mcAROTYygwW00c6ti8SqO4GyDBRFLJ3i8FotodmiQJdR1uzhMHq7rpHWNT79wOtFvbgCv7LC/8Cv/KCD8aV1CN9zcJLogiuJ+2UDxEIzZDhRbvM6mljF6y+XqJPwV42G9xxB/CqVwH/4l/EEhYAcY11Q0VoUhv2QzQ0h2/Kwp7naVZb/k5Acf9+tDQb8wpNlaXBalWFIkXw88BqplldkFEqYrAoSdHoItHpYLHWg2mEmDVt8jzb1ItoVlON0kIbZ0WBqXr5l7aM2QtzkhfJatJJdOHxe7G2Fo087qU/l21MpwGrY0CfbmBiGZD8t3lZB/NDh5IN6pvfnDwemwtywOqBC132EymdI0cgSxFesedRXFgz8dab792h/arzkgClweqc15TRTZMkvoFMJBMzpYJgtSYHcDnGTzEDlv1mc3No6zaeOiVhudZNtPZZaBq5BJyDuROqMA3BAwTPbLXsYZejKRsGEZQy5l+x2cvOp8qWugI55ZNlD2Ssr1KGMc0U+trQNBg5ycahXVAGJGZWi/XFtsmSd+utwBNP0AepwWIMYmoa8RrwcvrA5s8iY0tEGgvEUOrFS6fxcz+akj66/fbk3+HYPR3r12e36TkhdMUvNG9xq0wmxLlzJCeeXkZcF9jcLNQMgJSJ6xho8oIXAN/7vTtfb5hSPlPVdeGWqGLSRcDqYUjAakG94prqwhpkHPRpFVdhpk8e8zGKiHRPaWZ1MFlWoWxCkGOw6AdSORkQALoWZYKq7LMLh4DOeDx3Cf5mqqHwWVm+DzsokMAFsvVEyyYWaKh6Ruk7k5sqwfwUkQEpx37N0ayexgiQYzRalv0KgG+wWEQGhPnFcJjVMemAnQOf//yksveGG0ZfzNNrpnNMaYPFSZ4L6WrNghEDkHmGmCUSIWpeVWcYIoyk4lVnedc2vr/KyYBkaviDyYAUBKvBEoL5Ouvs84W7qmVUCALl5y5eNQD7rKIDgVd5FkXoO6oQsxq6TvZaFTKrm81y2HfvyhBtnWzeGmGPkA58H26gQq+l1s0CUqS+n1yudjvhZiZSpGOa1b2JzeyI7maAtmaTyt7DhyFLEX7g1k9BadVHz5+8SnR2/lZROCGWm2DZDeHYBauvk3DWeuQgycBqWQbe8AbgRS8aed3MDLDl1IUAxWF/MitpR5gmYYzwmNWWT4CvdHvf/u1oN0PMmxnMaukaMKvp4sMzk4oiaRT8XF7GgtnH4YUhlhs9zBmDZBFhoFce4MEY0EUyuzE7kWOwGMlQjGJuzCIyIIHjQ5HIZ6tyiGCY+o19H056AaK/a2RPkd1lbG22pmkakQHhrMGZ+pymCfzIjwA/+qMgTpk0GDgjAFbHzGoglhUxL57CI7/1MZyYWd3BrDYUD/aQb95ZRLccAKI8ZjU78BfciGlqxGUilHE71+UAHo9ZbY2VPM/PY0a38OTWMpZrvYkyIACEWGRFZEB0OacUrWzpoKLkGm3G5l9lmdUT5gPPLw/OZB74KzBYnDgOpjQq03MSDJYjk7LkoprVPt+ojIUkkekkDVYP05rVikJkQDw1t8zVL+pOH8sXCXgjyGPJO01LAOs77hh9A8/4CoDrRMWYI6qA2eyEOHOGXNv0FsXzgK2tQs0AoGD1uGY1SP7+Oc/Z+XpdR75RGd0XSHqx/YaQZrUVEWNYQRkQM2+dSSdCCiYaMwFgpg9ZBkyLK0IqZlbnmar5U8iAaFQGZILBIIDS8xaAfINFp1iiTdIE18QSYLUxqXqFHcqLgok0rokMSB5ANVUiJJ9ZXVaqIdMbgCbGCxnusuDtjZjBYkFmta743DNCbArKznWSBPzgDwJvfztwyy072hSRASlzXTMlI2OTzXJ7GADZGshl/DwUhZCwssgc01bdTRpbUQSvLLOarV9ZMiCuVAqs1vV8g8HQ9YnsXxEZkDz9Xza2yjDWpSBbBqQEA3zk9VnrQRCg7xpoGh5/LLA9Q4Wa1bperoCIAMCkLK4jdQnJYFLiQVWhSWJg9fo6sLBA/t1u72RWK/qYZnVPrOPdDZ8A6/U6cPRo8sTy8ugL2Zk2ay6kFUd6keolGjFYvSsDMlXsgtXXSXRXbczo1s7S+bFYnnWxYrWFboxBP0Jd9cSZ1UVlQABgcRHtl9yOeYPWm4yB1QqPRea6RPvULFbqmuv0DUwGFO+5B4tmH4e1i9hX38KeWjdZJBSFgKo8sLroYS82PMoHq4HUwUWwXRGwenBuHQ11FKBO67S6gQqjQT9X12EqHpz+FJNuXBo/LgOS/7ZMzWqAbJizNs1B/hTnDogpaMysptpWOHkSh4yVuI/pdk3Fhz24RszqLOCrpNM1j4lQSpOvCLM6LdcwP4+2buGp7hKRARlnVouA1Z5XmFmtyhlMJ6C84Q8HmCht/pVjWui50XTM6knjoKzjPZACqyc8Nw1DkTG+Ju3LwxBDV0Vd88TbVhRSkhqohdgN42C15esJJirLqKk+MR7OA6uLsvYZmJiXwAUZCxP1ir//+0kS+9u+bXK7HGa1JhWTASnDrD51imDpaRkQ1yVsmkK4dxRRZrVAwp0G0azWsvdHvj9aUSUSbK3lLIuEWS2oWU33BYGbcW1ZYrxERUgmADxNlYUsZ+t+lly7eNVR8RxbVgYkj1ld0mAx7lhGDB0iH1RYaidvcAUBAatF10TarjnJ2HtKsFpSlcnVUWVNNsESrXmmaiVMQekZIZPQwqQayt5fGZrwXlFZKBYCYLUVaOM5O26bIsxqy8LO6hVJIlKR4/deXMHDMRcsc12zCEjsusrl9jCsXzuC+XmUYVbnVTFNAVarcsYcy/byZe5bBtRlVAbZTjmwOp5jM+YuooVdzLhR0WQEvCqLEusMkQHhaGsXHQi85CXVeW7UBPZPFYPVrltMPSwd3c0ALcqs7qh9QjKYBOgX8M3qdoF2tAW8971oXXgsAauDgOA/uhq32dJs9AZi905vOyQyK7XaKHshLXML8PGSNLO6YGimsmuwWEHsgtXXSXTXXFLOwAGrzbqcbyCUih3lXVlBn48sjgwIAxTHZsHWHUcwf+sSOUSnJ3yagQ7CHMYb+x5FdRnlIBugAil/3HEoPXECt9wc4a3H/wH7lBUs17sjMiA6D6BjbKeCzGrC8Mh5TQkjCtGFov/0VVKGRGPWsJJybHbt2QKk62jrNrbXp5h0Y0ZYAlZzjSvBwJkC+pwM9OOA1bF0DQOrZ2dJ1tVxgM98hjxG2dYAYsabY1XIrJYkQJbJeMzSd2MbsYKO1DwDmfLMar4G8HDcTGpuDnfOXcTfXbiF3FsTwGoJQOhwSp59DYYpeI9pGgHpshJXZXVaOUCd55XUU81hzxA2bUmwWpfJgT8DRCgFUMUsqskHSAClGYoTWX8A4HmwAh21ImZiEDDWSwVrdhKzul5PXsd1+WbmMEWAFCatEuSzwGOgblKlyateNbFqIbc8G/QAU1AGRJFC+E4xsPrkSUIAH5cBASCsRcjeNPR11AzxCgYRg0UA1wastiGuWZ1nhEj76UdTAMAZRoiFk+0j7WZrYZcGq3NAHz+UyZ6gjAyIPrlEPfRDwvYrOW/l6goDsFylkAxIprZ0OjyPGiwWSDqrKmoKlZ9LzzPsUF4SyMgE7KdlVnP2MFqJ9ZvHrC6rWZ3LrE5L4BXsLwCupEIM6gi2madVDIAkBB1KOuCdE2mbZH7JWJuZDEiJKotcZnVUnlkdRdLkfTdLhFStWT0NWJ01H05rsKj4mTgokQEpBioDRG8/TwbEsSOSvC3Sbl5yoWT1afJ7ZRssAigvA5I1EFyXJhkF2tLLGSx+8YvEKHw8PMohEiw0HInudkSwKACzSpeA1ZOuUQEZkG4XaK2eBj7zGbT/9PfR2/LjjkaRlFzLrIqgvL7qFgGr9+1Lnhj/LVlfs/ZbUyRxY2b1Llg9VeyC1ddJbG8EhFmdPi1PCl0nBM1xLboJMbQkwqrlsZIMgwCKHEata4dE/3esvRe9WMJrf/wEOUSnQ5IgKxJhYuSAdACKHUg45aMAENjezsO+JGHueTfgzUe/hAONLeyrb0+QAcnpB9OWLgJWxxsQPrO61AGax6y+sIkm03QCsFzrJiaL7NqzzzUMtDUb3c0ptJeCgGjr6QkATxjrfLB6osFiVjBwJsxxo6bt6spYuzffPNLOiHEZBdJsq/rfC0D2glZyIxZrFWeVzZUpn1RV6EoAjyNVEJc8pzSr33jDl3D3/AUcWrB2btapezRPD9wONFEiZTIXZAFqU2xwAWT+Xn5AS9SLAimaRsDKCSyX2I26YmZ1aUOtPBmQaTSraTJkYgJr3OhQMIyaDGdS2f+kiCLgz/8c7VNfxtYW8IlPINasTjPXuCX6ZcA/SUqYhFlrIgDfj7IrTSYFrzwbqWSzaIcVBQ3VxcAq9htvbpJzw7gMCHtOOByHjIUCbEKuBjB7vKAOtC5na36yKGSwyECvrHmLlqWqRQ9Peaw/qtNbSrOarbc5jNLKDRa98pUmWSXq0/gCxHJeWWK1UUSY1UoBsJpJ7fCY1X5BZrUsw1TJXDqyJsSH8nKa1ZlswmnAahW5MiClEix5RqOpdksngzLug9LJIAGWZhRJ5eatvDNCEGDo6ajrvtg9weatrC0cIweUNBec+PXLki5ou6xfk9otVXUWX4NsGRBJiorPMUwirOpEo5pvEOy4UnGDRfDNYePkbUGwOpMkQtevsgmmTBmQsntZjlQgq8QWWhfpJuf/Y+/Pg23Z7rtO8Jtz5h7OcMc3T9KTLdmSLEtGtrEtY4XBZUDF4HZB0w4bUy6qu6MKKNu0HQW0C6q6mKEg6KKhKLo6gDDNFBDuCgzYBhuwMMaWZcuy9aSn4Q333fkMe++cM/uPtVbu3JlrZe71W3n87kPnF/Hi3XvuuXny5s5cudZ3fX+fb73SS0T8kR8BfviH+18nO6vrGucrNMzqI5zg4UPhki921zsazurzkxLL4gEAYOGlOBcaQ1eD4GvEfTX7szMwYV1MEr/ne5gZ7Vu+Zfcb93VWE8TqfYI2L2u8LsXqt0idnVtsgBgbYTiAfnUy/mBsNthvxzwIWNjPaviYzWK3c7y3vQ34+q9X/KU9RDoAei8KdyTpG0CRlnBsiTONB4Z85zt+Gv/nd/2r7fXmrOK0GDgP4aSb2llNET+bncLhidbqzgZzNwPe8Q4AwE3vQSNWV3kJ26p3nNWHfozTE8KkUFRRYJWHWITbtiHfLoeDK6tqu4jcdyVtWbAcu/n7qspziejT5r0+/ngvYHGQJcoOyv5PEatVi5GqQlnbcDRxFZ43vNCjOqsZBmTMWe3ssoWvXoVlAf/8N/9FfO1XbJTHHdyJ5xz1vcVqgT8YWpQS21IBtTBBFj3EeCBZ7BYlXax2PO6sljBaSSgYYD8MiImzWjYh5W7aWah3vrbv7u9MOT0F/sW/AP7qX8Uf+oM1/vP/HFJnNVx3OBCU6PrzfL6xMDC5bZjVGi7o0YDFrIavI1a7LuZeivVm/zEpTdkrNQzlzmotbnWSaLe+NxsMUzqrRZjxyIarlrN6SPzl50nCF405qylIhfZxp3RWi7FbJvrUNXdWE7pXwJ3VVd/113SvEAMWBzdGxRgSaJzzvjkOOhu4vCKf/b2dY5cl0srdPxOiWyrxzwQDMhQSLY6re8+6I7k24lkgiKrKtUfTxaR3SADjOBhZYPxYCeFnyKWY52xDMNjzfdt08KiFWjIGRDiru+YTgWwhzmGGxE/Sudo2XLtmWUyytUdVsbkIcW6omm+RMSAja7A0t/tC5B7l+ZZ0jBXVbN5qbrAoBWBTDIhqc4FimGt//8AG097dG4eHWHgp1vfi8e9t1cc+xv77gR8AfuZntl8XzmpvgIgmrbMznKUBDg7ZxtiRdYqTewXO1zYzvcmc1UPmI17nr55i6bIJoW3V23WVwLK1NIh98kGa467AMCBi4v6BDwB//I8DN27sfmMjrKtRMGQ81j7dUZc1Wpdi9VukTs9t5qweE5Y9DzejM7xxd/yjjVOLiUlji6cwROTkiM8HBp26VmJABmsPkQ6A3ot9jzCpIimYs7p7rhzCHzgFouuLXWa1XSAtRpzVNQUDMiwiXKSzerVmO5miReaGdRd37vA/29hsoBefke/jwI9xdqq/kPnX/5rPMTmnaxltOWD7ONabF4VmmBSAwZdElll9sfrLvxz48IfZrzsBpoL1OCkGBNgrjAPAVoDfs1xvwN1ADZCxbfgO45kPbQRsMnfXWX31KnDzJtzHr8P6P/2e/l8Qos9QWyp3Vu+NARFYBdVz0Ag0+x2uqRGmbBOGSHTPSJnVOZGDDeYolQqgzYKMIE7wz0slfAGgiT5Dbal5zgRKTWf1XqIPgHyTw12dNL//vR+5j6MjtnGXlS68sPXv2ePdRdkIadreVeda18gLG64OX9rzRp3VWQaas1pDrP7c54Dnn0gQru/3mNWAplidprsc8X3K8wZRDc28QPNdGzjFuFidsnnF3mL1EL6ocWXtf5oAtq4/xTNbtsOPdWoIt2QasCg7V8GTtYnMat9CVvY378j4JmDUoci4wlys3vtE+f06pChQAhYBhF7FxOr2sYtC/5lql2qcNcAU7BWwSBConKGsGB42arsUVMMQE57YxSRc+/kwBkR/jVCNi9Wlv//7dqyDR3TzaeLsYFlwbLZB1ROr+caVNgoGGHdWU7sBnBpFrd5g2fnZ+9aQa108XwYBiyoEQhOwqPmQ7eWs1uH3A/thQHTvrWYjBPIuXKqzegQViCzb/3wPD3Hkb3ByeyTcqVOf/SyLCfubfxPbjmlsndWz2W52yGg9eICzLMLy8QVwdITjYIOHr8dcK0h3P0sxjx9h4gPA+asnTGsQVbJ7phGtxXGH8mxkx13ZjK899kIbe3e3NQjd2nPtcVnDRWkauaw3oc7WDktg3cNZ/Vh0hjduH+DFoe+rKqSFg0M/GR+EubN6MFSuZFgAz9Xc3d9TpNPGgNglykI9SJZZKQ+ounJla/v6nb9zu2hxHCbQDYnVwlmt04Y0tCATRWxN3sdZvV6BoWCuXwdcFzftu7j9Wg7Aw+nGY7wn8XODAIcaYvXpKfv/YgF85CPAK68A86LAeR5isdi+hAInH3bp8pe69kSs/ZJQbPLkOeAFnfvAsoBv/3YmWF+50jtm4BQ7rkDpQQGaWD3WYaA5wW0ctVM6q9Fpo5aNSWWJOHcRea32UccBfuiH2PWViQHinh3aiS8KJOUMYbS/M82zSxQqJnpVIa88eJ4m2kaEw6al9CXaYEB0J7iexxywMmd1QRdS/FDBTeP3wILYPupaJTYyHcUEA8InpFIMSJ4zd2J0MWL15tYpIru1IHjpJRwcXMNqw/4dVlvJcxzGt1UJSZx5GWg+X7Zro1SJM/znNe+Zfe+FsfZstFBLGs7qmZthnew/Jr386QovfPbHEf3ZH0WS/EWAXcHmEmqJ1VmGB+kch4vT/f+OGJMVn1m8rtgCWtNZ7TvFKMoqSSzG/twXA2JVKFS5G032g/47UTnfaFrJCZivkS4LIwyIilNb2bRQNQw4q/Naf7Oidb6D7y8+du3tUgU0nNXu/u9EXqFfMgxIR6xOdDqXujXgrC4qAlYD487qgjKHaQwtij/nopWlu3MzlJdjsjEsNsfzSr5op6wRPA++vR4WqwV2a9971mabqI2o3H0/8Q0x7U0AMAG4zPh7sT2vMMndEMcZYlZTNlhcbDnr3ZveAAPCxm7JPWnwfAkcjCqDpnFW62JA/JGAxRT6eJEhJzwP49M19DAnfIW8dJT3rPjZWrWHtrE3tuTwEEfBKzi5V+CpPX/8yQmLLnn3u4GPfpRdb1F5DnjIMJv52Gz6ESfKWq+xKQ4QHYdAbuPI3+DV2ynOa4eJzc7x9ns9D55d7eesfn3VEavZ38nSDl7E8/ZCromKY2B2mI2L1WOd6E2WwwXkDVzWXnXprH6L1OnKYc7qfcTq2Rlu3xsZWDnnLvAlg3O3goA5q1cDg06aXgj7lY4BqQfRGkVawpEtSiwL+K//a+C7v5u1jLTOk2FAxpzVRAzIELNaXBtNxzpbPI5gQNYWc1b7PnDlCo6DDU5usZfG2cZlvKeWWH3gJTjdMwTrL/0lRhf5n/4nxiJdrdA4qxfRVqz27XIYr5JlNH7gHi+JPAfjrMsmTFev9p8Nx2Fc5SHHOtEJb4E5OKVFbB20PYehCpTOEVrgD2vxGwiNEKJiF9dgDwhsrgvPGher09Ld31ntjgcp0ZmXame1CQZE6awu6YFiXmDLw26oIULAdoI35Kw2wYDkkpbfPKc5//ZsxYsfxIjclm3jU5/C0RFwcs6vefva78GoLWp9N+EoC1uHdSiq2RRV/50s5wGLOhgQN8Um2f8zvvtqipuzM4ROgWS9HRsyjvHVYlZnGf7dnefw/ucf7P93PG+QI5lsKtaarDN22zaCPTpN0szSw4DYFQrVe0YsdCnj1qAATA/pGnKUkuaGgq+tDFUjtv5D7fprNmyIHSFj3MtN4elttO3DrBbOah1mNYDIL/sYEFNntUqgoTqgcUHOan5vqXQkE07tsLPahkd5vvhGSBarkQIAtOecvlMMG1p0N4ctazQQEyAIigAcV527UdQOLbhyD6cuWaweuGdJGJChjJC6Rq7b1ds6WSVaoa65WJ3rY0BCZzBg8SKc1QBIc07Pw+g9q/1OGEKWAHrYksUCR0HCDGB7ip6f/CTwZV8GfMd3AL/n9+yK1dmnPgv/r/0VzOo11joYbH4QKwwaZ/XJ3Qznsct0hI6zem9m9Z2YYW45jtStCxQFsElsRG1UjOcx0+CeYnWSWizEcyzrbczcZ4CxuhSrp6lLsfotUmcbhz3M+2JAxsTqokBauQj3cRSGIWZuhs16YMKSJOQFCYDpndUjoYVFWqqZn297G8M/tEU112UYkHLMWa15DfZgiVI5mmwiOvxt69jeitXLJWNS32cnc5YwRvUuBiTB2fl+/77zc+CP/lHGywoC9ntwZ3WDAdkzuJKUUL+PWC1ERd3gxoFNgCbcVNNZ7VgVynTCTRtg+PlqnNV6hwTUAVVNZZk2T3avQI48Z63qwZ4nLRylqnZ6EyFlgIXdYEAIE1yVuG4S/qVMpDYJWBSu9aIvKldFxTyzFLHasjhmRuKmEwxNXTFlzwljfJIydM1iwb7w8Y/j8KDGyVmrO6B1zNDJ1R1HwvFFQMwMnqsI19Pp4BH31UAoak7BgHh6AYsPXk9w7G9YgGZLeMky1tyj46y++0aJmZthfqDxjI2wXxuxWtdF5tVIy4EAz7pGllv7bwbsMW4x4YvA6lXNN/jGFTlgcYxZrTvGWtb2nu1uWlHDgXn5gXyz1YhZvUcrcazrrPY82FaNKtuDWa3trK4RdzEgkiBZrVLNN0zF6gEhifQciM6ogU1sADSxWnVcA/Fz6/yT3ztlWrB8Gc3uS98u98CA6GG3GqFWEeoNgBYS7dQoZfeBwTx2PGCRiAEZ6gYwvbeU3G4CYx3gmxaKrpiyZOYQVx+3NIoBEULiVNk+FZ9zUjB5LpTYliovaXPZkVwbFMX+JizLwuGywkkWbVuWR+rsDDg+Br76q5mcseOsvn8O384xL06wkcQHKStNmbM9CIDjYxz5Gzy8V+HBysdxsJEHLI50dwPA+VnNnNXPPgsAWLobnJ8Dceaw+XhLrGb5IHt8FnmOJLcRenvcYwMmIQBAWSKr3Eux+k2sS7H6LVKnG39vZ/XN6Ay37488VUXBnNUj2jcAwGcD0cPzgYlQmiIrXfghbUAfZVZrsopZeIr6W8pUwaweOE9HhGbIuFbAbnv2vtWwRAf+fSYYkJEdyNXGZhgQzwMWCyZGPyyBusZZzMI6ewGL5/tNBjYb4P3vB/7H/5GF765WAMqSOatn/HP1PIYBKS8YA6I6dG73mdVDNZT2zqvKCrlrf+RcXbtUi9VlSWsdHOpc4MnslMm472PQNUHCNQinz5BYresgGttcoDoUXR7iKrsP6ppjQAg8VTHBkzmrCyJaBC2xWhawSFyQCReVbEFiJPoA8P0aqSycJ8+xKf1Ro0SvNMTqyMmBF19kqeGrFY7qhzhZ8b/fEatZ8PAQs5omKAIYZB2y9lHCpugIBkQ7YNFNsU73f3ge3M5xJVyzx6L178tzlnmjI1b/y48G+KYnflWv42iEAZxsKvb5a65KggDDnSa6i/6xcYuKFLAsuE6FQhb+VddsI9AACSQ1CJiI1SqHouiIIWJAVJ0m2iicdgnn40ArMfmdOIbGKggBi0GFpIsB4ZkQJhgQi5/TTpkELPoDKDPqhuCQAxowFBQVm9giI4QYYMruA/ncKEsqdYegqoYctaKE015HrBZCrUKsJrmKMSAommxcXaSzWpU7QcWANOOh6hrQAxaVAcHC1EbAHzi+IieFFxOrJ3RWG6DnXFdtvmlMIkTGuBQJBGzHrj3XtUdHNU7SGU5eXe31/avV1nMRBB1nNc8Xm9UbLbG6TlL2/AqxOohxclLjM3cP8LaDu7vzJh1n9YZjRG7eBAAs7TXOTqpt7pGYM/k+R9bscc3imL0X5+74nGusE/3SWf2m16VY/RYpJhzuIVb7PkuNjUceTh1nteviWrjCvbOBny3CAi4KA0JgVg8GLAoMyL4vSotNsKz2OfUOWrDWVF1m9UUGLI7saq7azurFgonRJ4wJdpaHOAjS7UAfBFh6Cc5W+/371mvWffO938s2TIWzekes5knUaeGqNwGoSbxjok9db53VGgKNa5VqliiAPCn1BHB+XMeqB510AKblphkwq73A3gsDouXQcoeDXgAARcGwJhruT+Z0GnAo6qJ7WseVYkB4+BeJL+2qA1dNnNV24LHrpgq+okzCwNPEJSJ4kdfkcwWAwKuZmNQVFQ2c1dJ/f6fi0wyRm7OBi2Ogjjav4+HK200lBwDH4TiLAbGaiJjB0LnyTVFv3+4CfsyxTdEsl4TNjhxz7qVazOoHd0tcCfjqqDUmZRlbp+iI1V94zcWLh3e0xWpAHVSWxLU+sxrsFNIuUqFdfL4V+JpBZUPO6prArLYsuA7k4h/fvKS685QM4KpCDZA5tdJzNXh3AS3XX3fcKkAOsd3LWV1qYkA4o1OJfwAY0k8ndJhX6Fd9DEjJONbRjHAPAOqx61HDgDQuVcWfU8Vq2x5kwpOd1UJYVrigs7jUD8HjrOIxDEhc6t0PgwHBBs5qp82B7hyTfF1HAxZpm3eOo3bq1qUBrsKtBzvkSGO34ADL5gZFgbT09n9vtWoMZ5Zk9rRitUGot+fWyu6NPAfNJLIHFkonEPLo2Mar62P8J99xba/vX62A+Zz9uitW5ykzJsyqcy2xOjnPGSaPi9XXwhVu33fx0u0lXjy8zdIcRe2pQQBcrPYT4LHHAAAHOMf5Sck2d/18u44Sm7dD5j5RWcY2Xmd7XN9GrB7KNnK0pprtYwO4FKsN61KsfitUXeM02dNZ3UxARo6p46wWYvVqwG7RTBqnDb4iteA4DhP+hjons4q9gHRGnz1FBO32bGu4PZuKAdnHWb2OmeAA12XOai/GGReVz7IIB2HrRvJ9FrQ5FC7Yqs1m+7JcLDoYkPl2whZ4FWuhVonVdc1Tuff7uU2Jz2sgAK1Z6OwrKg4tynkVSaFGzAycK9uFH8HhUJ3VA+FEFKeP5w+3+ImWZy0HrFiQxXs4q3U3F1QTJpPF7hCbsiZyoB0HnlhEt5+HukZeEtEigHqcFc8AUfRpxOquQ1FgUIhidYNVkDmrCx/RXH8TwEIL0aMoJlZnbODiLYlH1QO88cDvO249b9g5Q2UA74EBKWrCe8YumaNWVnXNQnd0HESOg7lmwOKD+zWOAw5JLHbF6uvX9ZjVaczdhJQsh3iAo0lxVvs1w9YMfGZai37hhB/sCKF1xbgDog8prI4fVDnfoKDcxGFVwldzrtNiQKZxVg8xq2kbuJnCUSuOW9UWbF/vnKNQggERTlqqWK0yCFDd9cC2e2cA1UDtjFJ2XxqYA5wRZrURBkQhfDFnteZ9K/ivI87qjeY8bmxzgeQqBuA6kAcPiw7BqZ3V4rgm6BqFU5c6N3JVbGU+56Q8X7AseE7Fulu7RiyREUMQq8eQW02GA0WsVnSKAqBfV4ULvJkXERnjyg1n8Q7f8zM7uubgFx88idVqv89i2FnN3nOz4lyLWX12UrFu6zAEjo+x8FLE6wqffPAYXrx5LndW7yFWn8Uull4KHB0x3Ki7wdntmL0v24ZK32fvw33Eap0uobGuqLJETpxvjT0Hl7VfXYrVb4UqCpxlIQ6iYnzAFA/z2HOhE8oixOr1wCxbTEYJ7Djx92WVF5Z+Cw5f6JUDzOoyK/VT38eQJZxBpe+sVjgxeFVpznh0FGf1GAYkdrBwO87qMzYZOs0iHEStA/hMsEnS/V6uwlkNAMtlJ2Bxtn2B267NXI9jorLuvSWu10A7vfZu6RhLFJyHruPa58d1rAqFqt1XCJdTMqu5A5iSTu/4DqqBFj9kmfYiZy/GWZ6zzSsdsXosYJGImHGsCkWqcuQ48Jw9ula6xVs9ewJw+xnQdWvz8wXQ/7zqmp4iD9GibcsdigbOat+rkSkwIGVtwws1V/zckTEo+gCIz3ImSs9mwJUrAIDD6iFu3fOYiL1cbr9ZbFjI7gGALk7ssSmaV87+3HZ+zMFN0apCVjF25d6fGQED8vAEUmd1ngMvvAB89rN7HwppUjE3oaazOnDUTtUkrvU5muDOatn9Kkp30b/HuGUW/iV35xWVDcejhaIqu9lMOLUjrf9UDIgfWn0MSBvfRAyGZYLiCLNaA6nAXI8jrdRFwQRAzZshDOo+BoS7/bTGlnY5Diyr7gdFXxQGxMhZPYBFMglYHGBWU8XPMTGl2bgjrBEGxeo81wu0xsVhQBxXwS5v5rHahwQchzHhZSYRwzFWKqyDuKYVx3UUoio/V0e30wZgGSFuJd8QEu8tzfBWAKOh1klqsfe35jrJtmp5R6PJe2ZgQ6zpEiRhQCrkqvmhLgbkqotffPAEkmS/7x8SqxnyrcA8fzicRdap89MKB17CJjxHRwCAdx98Ab9w/ynceKLzOeo4q2OPYUDCEDg4YB3ct9bcWd26f/j7MCv2ZFaX7n5ZDuJcVSK4wWbraIf3Ze1Vl2L1W6GyDKdZhMPFHjf7PrvlQOsltMfP52L1/c0ezmqqi0zxIJNa38VCb8RZ7ei6X8cGHYqI4A4k3ovDJgRhfU+xep3yFF/OrA6cgjmn8xxnWYjDqPWG832ETo443e+zaDurl8uOs7ql+YxeV2rL75joUxTISnfvNiwAWyf8wEZIznlguo4/x6oH+WYASBMmKUOSH5PqztvH/ZlVDrxQ71nw7Gp0YV4DmozxAYeiEQZE4aoV9yuVp+rxNv2OiEB2PQKjzmrSQg8th70KA0JkVgd+LcfM5Dlb7Oqu+F0ekDvk2gcQnxcMAxJFLJ0GwFFxDy+9sWQi68HBzjFdu1SL1eLa6n5mLk+RH3jPFLoBi7bN295teQcLBbXkMp6gFrP61Nk6qzsYkKtX2amdn+93rCytWWDhXpOY7Tn7A/cB2VkdQI6tEVWWyHQ2RvcJWKxt0kbjkLOazKxub4ZIwhDF90x5roz/S3NWe77d3wxrukwIWQP8ZAfnXPzdZQeaqIaBzRVxXPG9OsWc1f7uNeDCt0VKq4OatU5FIgHbc1F2hxEE4OY8FX9uyKyWDt2GGJChMMQsrfUxIAIxM8R/5feG5e9/3DFnNQDyxpXSWU0NiR7rkLuAUNAir9lGPmGMUXY08k0ACmoJYLeN9P3VbLISDjqyRqBiQLyBTdGaf49uea4CjYXW5gLRWa3cvCxLlLUNx9/vfI+u2vjkyeNIMw2x+tZLwA/8AIL//R9txeqybJBvMyvB5sGerdJgzuqll7AJz8EBYNv46psv49nlfVjHR7vfzOdao8ZJAOeptz3ucomr4Qr3XokZNqsnVu+JAeGbw1pi9UDAokkQvQUMhyRf1mhditVvhdJxKYqHeWyA4Jy7fZ3VV8M17q0HTqARq6cVFEkOPeFSHcOATO2sFmFtOsKXENaH1iJpqd+aOrZTyGuVugwDwsVqywKsuuTM6ggHs9aJBQFCN0ey58uy7axeLDoBi/PWfTImfF4QYkZsLmiJ1U3A4jAP3dVlVgtxYsClCYA0YaqBEWa13iEBjF9bvlums8jZx1ndYBy0MCDjDkXKYtex6uF2X6KwLA0tbCZLNHFG2YpGHbd5qRZPeW7AfgVr05cygClIJGAr+myGJ4yb8xKRwzEg8zngeTiyTvDTrz6Fdx3f2lpV+DFdVcgmwJyaNcGNsScGRGsjaCisjv+svHLgexr3l+Ng7mXYZPu/l/IM8Gz2M6yqaHTNLGMf6dd+LfDTP73fsdIECHQxINxZnSby+50qVrP7dThwVttZPTSHaYQUAlZB3AcyZzVVrLbZeFeUkuBGw+ArZcCiwRjrh3Z/3BKdccSxcJ+Axbq2tFENjFW8BxpLc6wNQyDpClRlSdsMFKW6BuI9Q3Gm7ZO7QdhsdqxKbXYzEasHmNXkELwRl2IaV2zjTnONEDjFsPhF2BxunNWyRSg1KByKeRFgxq8Xa0XZO1yMMZQxdkCwJwf2QWzeya8B9boCrJNN6azWyVroniw/Rq/qGklus3wIzXvWtSr5c2CEAVFvLpDnsq4LzxpGSwDYe2Pw8NhBXrlI9wkXBLA6LbD4lz8CPHyI4PXPbuc8mw2b6zklZm6Gzd39OSBn59YWA2LbwOEhPvT4S/jamy83TuummjFr5KBVhTj3MPP4vOvgAE/MTnHrFY4gCnbFaoYB2eOacXrAvobMQb3E5P01xi6/rL3qUqx+K1TKElitcI+nTjzMYwMaXzztxfMRGJB4rv6esmRtxLqC4hgGhPKiEOFnKvdrzRys2oLimIjAXR5ak5umHVH9dxq+9kVgQBKPYUC4WA0AKKsWeqZ1gCBgGJBsv2GjaBk9Gmc1D2zZ2e3cQ6xmDuC9fuz+xxVitaabcJAlipYTXnMS5liKwD4AdUGciI0w3sjp9O5IYJ248TTd5WOBP3la6TmIRCveIAZEE93THFdxH4jrSuSpel7dR2sUBe0Z2B60Oc5OmQhUaC3KVM5q4oF9H4wBLAlYBKAvpnjefs7qVbkNWLQs4MoVHPoxPnt+HV92o5927toDGBDxPiCMW5ZVD+KLCkKr/mB7dlkiKzXHAoEByTQ+i9a/KUDauH3ynH3mH/oQ8D3fA/wv/8v4obKsZtgSHWf1yH0QxyAFLAahJcfWiBJBVfu2049hQKiufbTuAxWzmooEUuFFjJnVFxCwGPKA4I5Qa8LvH51z5Tl7rrVD8Epkis0VAGRndRiCYUA6gj0A8iajMjDcpI16hCtM2my1bbgOe/dLA9MNmNVsviH5M822/50aEauzpGIbd5r31j5itfjevQ8r0GAK9BwAuqCo2mSrbH0zCz8P11YgIw26zhpRWeHUpaKGlKKqQfcKMIBdE85qzfBWdrK8Q0yBg0kKD6Gr3zXt2SVyGS6xqlgXKfE9o8KAkLEt/FyV73DNsfboKvu+JN/v+1evnGBhM+Ra4BRIhVFjs0FWsXObuRnW9+K9jgcAZ2fAgRdv51zHx3jX8S385V//wwNi9chzyUOwrDBgc+7lEo/PTnHrVs3F6tZn4jhwHKCsJZvi3crz/TuZxCbrmLOa8v7aB295WaN1KVa/FUowPfYRfjyPpaWOidUiQXyfdZ7j4NCPcZKG6hA8A4eiOB9ZkTEglmTCLIqLCI4Nbcf20LkyJ52mWO2OByzmKXeBazrI2E7h8LetMw9zL2uY1QBgVSWqrMCDdI6j+S6zOnRyxJnGS/vOHeCHfgiLT3+MidViN7mtuu2xCUCaNLou45ulw2K1H06MmBFCnebCwbUqJQakKms4lFCWvZjVeofcOe6YWE1hKKra5gAk65ItyrSc1aW63Ve0kBLbiFXsPBMhxXUlDiLBEjXFgKic1ZQ2TwBeYEsxICxBXXPDplVBACWzmv1gAgZkwFErKl5XmLnZtiXk+BhHPpvMv+uZ1e4374uYmToYloKbwkh7diP66J3n3ONitWpe0KqqAux6+3mGVoaYr5My/gr61m8F/vJfBj760fEfnyZA4OTTOqszizGrNT+0IABzVg9gQLSc1WMBi4auP5VDsahsOA4tXM9za+VxAVwABsTAWT1z+8zqsmQCiqeY343VRTirxQbuPs5qXQzIzGIYkM6mKIV/3ZRKoLhAZzUJ4wVs+b+K8RCAPqpBPLdKZzWRWS1a6gcwIDRndY40H5hTivtB11mtyjOZYuNK6azWPuQwY5yv58icdcU1KEp6+LQq0Jp8v4rj+pY8ILgs9YKB26WacwKNYzv0NQ0dQgCWOOHJhh5w9J7KCS/Wc0R+/Zizet9n4fAqu57H0X7YjtXrZwzxCS5Wr/nPW6/ZutcumNngfjKq+4o6X4E5q8Wc6+rV7R92xWqhQYx1+QvHgnBOHhzgidkJXr/tsIDF9j1itbo8xg6ss9EmznUg04WaubDFwVw6q03qUqx+K1SWsQnDPouyfdNSxctiH2e1xVhYgxxNaoAKZ+qqeD4N30vTWe3YAwJwnnPH27QucDMMyICz2gADkg1NRKsKq9xnYrXjNGL10t1gdVrilfUxnrqy2X6/7yNy8713dgEAf+7PAbduYflvf7QJWBTn1z5XAGrh0wADMpjGLLjK2hiQYWc1FQPiDLg0GQ6H0IommNVDvEcDDtekzuo9dqDTpNZzPop7YKCd3qSNWMouN2xR93yLORQ7rr+iJjwDogaY1QUla6B1rnJmdaU/brfK9yHFKpQJIWwWAByHBeuNBSxuaoaBEGL1lSs48jdwrRIvPtvpZxzDgAin6sQ5DgID4mqGTA65vZrOKB3MjGVh7hdYF/64ywXA2WmNQ3f7PonsBEnM7meBAXFd4Ou+br+gxSwDfEI2wFDQZpJYZAyIlLEuir9r/EDTWT2EAalpY7fvKwQPA+EPGBCWDdqzHVexwdKE2NLGQ8d3+mJSUSAufUQ+Uazeg1kNQJ8r7KhFSoDNNxzdTi60MCCta1DnBEG9XSoGsEHA4j4YEMpmq+Oox8OqrGkuTcHUVYjVJuaAQQxIUrOxUNdZbReDYrU2dg0YDcQEYMZrVvHrifeWEhNn4qxWdYSAaMBqH1cmgtc1e24NnNXSd4LAV2k0LzXleUy3kD0MRYGkIIjgLssJkQl/JqHeQ11nxszqicRqbxHgWniOq1G8jzcAq5O8JVbnSDf85202bN3LndV/5u8/j7/wF/Y6BZytHBz48VZY/oZv2P5hO88FGHcri0pT1qUrbrKDAzw+O8Xr94K+sxpg9xWA0WA2nfetONcLCli8dFab16VY/RaoOuE7T/ssykTb4JBICWxfFhptqQCbzEqrqpBThC/BjlPgD/KC70LrTG6E61GFARFBQrrv9X1wFbqLPdvmAYuK4CsYYkCGNi14UJcfWOz6RhFg2zhw1ji9z7EDbSHX91kAY+7u5aRDngEnJwCApZ82AYvi/Joa2wQwCO90rQpFMiGzeowlCpa0THZWK+7ZogDNjcFxHbUMik4ValvHVV2IKsnYhIKwwTI0uUkEp3bf4wrnzIjo43j619W1K5QKZrUJX1rqfBTOakraOz9fcRzZuVK1CS+wpZP8IqdzGQGBVegfN9lUiNyMhAHx7XFndRLXWwwIAFy9igM/wVfd+By848XuNwtBUfHuIl9b3hGiDGThm61azGoMu72oYtI8LLHOA/U7sVUPXk9YuGIYNl06yRlbcAhnNcByLR8+HP/ZaWYxJJCus3rgPkhSi3R/BaGCsS5KFwOyj2uf+NwqhXUe+GRgqpUigcxZomoXOHVDsOns6orVhYfIH7+X5Sc7sigVGBDtd2I1uMmWJjWpGyCaWYgLf2fRX2SVEb5JGYB2Uc7qZtyidBjwwD6Z+9XQTanMsiA6dcfmRlnG3JNan5voMhlYK+ZxoT2XbeYvkpMtS7DNZkoInmJj3CgkWpgOBgIWycxqFQO5sOiiqmojwGCMBbizWoUBqVwEEeG43NAiXdvnOcvMIjqrlWI1MSdlDANCMl7sgZZgP3zPGzcM8Ve/7m8jsPNRnRYAVrGLhZcAV68idAqk8VaszisH/tzD+669gv/q634er7++3ymcrR0svXQrLL/jHcCv//VsvvzCC7vfvCeKtIpTtlYUx1wusfRTrDY24sLHLOx81p43jKAUlefsuPuMXWN6CTdzXGJA3ry6FKvfApVvcjZh2NNZ7duFup1BlAiT2ZfV6rpY+glWJ0NcYcKLne+UqsRqkqNUTBhV10CwRHWZsnuIqtpIgbHgKzAMCEX8bAZflbDMmU7NfWVZwMEBDv0Yn//kBsfBZvdFatuwPQdVbY224NQ10PR4A1i4CVbnbFOiN1l1R9JyuXOCem8NOavzytETfYYWI7yo4Z3KoBewxRMJA8KPK722ZcndeQRRdSQYNVmXTPTRdD2yyc0ABiSu9RLExT0wIPoAgOVMyKw2bFH3PO5Q7LSoZ6VmAF67VJuNJu1tYIsnJQaE4PYTxZjV/cXTZl0zTMdFYEDqGnFisYDFKGJfe8c74NoV/s1H/jQD73eO6VoD44voXNCd4Aq318i4pY0BUTlf+blS2K/zoMC6CNTvxFY9fCNl75TZDAhDhE6B+IRtxOf57mvIVmjq7cpywKcGLKbyP04ymwl/mveXFzpyZ5oowf7c16HmjgTDGvBvVc8W6poszgADbkITDIhnMUFR4aakaqrSzbuyRFx6u23HOjXiziI5oN3xHIdkU+m9E3mFc6cXsBjHYO9tKrNaOB+708OqYrk7FFbDGAaEKig66vGQ7NIU/37ZPWBwrqwjRJ1FlKU1Gwt1xi3bRuAyPJGqM6Z53+o4qwNneqQCxMb4QNgqpUOQz+Ok+D2DzQXHVYufDQaEItirMCAXFbAo8FUUZzXvYpLypXn43V6d3Z1jqjjQjUloYgwI2Vk91tmri8QJQ/zOF34egZ0p5y/tWqUe5m4GXLnCnNUip4OL1e6zT+JquMb/8YWP4v79/U7hbOPsMqsB4Du+g3VQHx7ufnODIh0e79KzlL2/Ws5qAEBZYl34mEWd6zeEl2mXDjKw0UsUn/EUzuoxh/llDdalWP0WqHSVs13zfd4YTVrquLMa6LCDR4575G9wcn9iDIjrwrFqtUhHaZkSwt9A0ndRO9DVp+A4wzt6xDbawfZsEMVP24bnKCYgomQ7j8fHOPASfOxnMjy/vLd1GIoKAjYpGtnaTVMgKLYpw0svwfmDAus1WKBjBwPiOwWyeOjeIrj2xYJfFYBGZVYP8dAhnPD6YrVrqzsMyqKmLZ5GnD5kt65oxVJciHhdIdJtp2+caepvoWBABp3wYpFG2gRQjFuGLepSAVi0qAdEIcXz4MscKUJQJYrVUpGuro0S7wEWgJZWfQZwvKnZfaUjUAKNWJ0NceOqCnHuIvJaDjXuFrEs9O/1xlk9wqymbrKpxq0sQ1nb+wXHtA87FLDYdANoitVRxTAgezirNw/TLQ88ihC5GTYnW2d1+x586ing1VeHj5dm9v7zIlEjmxZMrNbHgFge7zRRrUiEQ003YFF1WQ14qsxFJ3coToIB6aJ7iprsphwKFDNl+NfdTfeyZG3HoSkGRIFqiCuS+3UMA5IkIInV0dzuOauZWK1/rKZsmwk0ZcckYeL83MtZrX/YxiQyJVd4QEwzcgCPYUBEl4nmwQO/HmTtN+9bXWa14j1D7hCEouMMaCGRtA/JO1sVgZgGnYdeYKsFezE3IqBQmu4o1YagkbN6AANCDFhU8vaLAklJY1a7ViU9JjkIEcPoGvZ50RCM0o279oH59+1VXNkPrHxcrK5rlBU3+h0f73aTrdm63Hr2GQDAtex13Lu733v0PHYZs7o95xLugm7tKdIm5znbIBU7F9wUcujHeGNziFl3zTOy9myKJFYPM6t1lx07x750VhvVpVj9Fqh0XbDW9z0DFvcSq3VbUER7n2oBTd2FFjvbKmd1SWjBEW7tAVh+WVskZ7Vt1ajyIWc1QaxWTUB45VlN4hU3bXM6IXjHxzj0Y3zsF208v7zPerLb5ftskTfyttycFZgXp+w3N29i4aU4Py1x78TFlWDdE6sDe0CsprY8C/erame7KFhrj46zekxEAB0DMuisLi0ys1q5u0/pBGidr21VyvDKzYoH1Wm6Hlk4rPpbtDEge7BfAdAcVJYiRd4UreFLuIRNizrdWe3ZZb+dXCyg9+2wkZ1r1Wn9b4QkTXxTq4KZw9yfnU2xzUbf6QWgWTilQ9k0ec6clWHrM23/nK6zemx8MWBWqxZkALYbzb6mWD30niFuWnged+nu4axOVzlzLUcREIZYuCnWJ+y+yTpDxfPPj3Ors9wiOauHgsoasZpwfwEYdVbvvTHaBLWpndVUl6Yf2sMBi0TUkMr1Z+J4U4aCGmJAmhu9N8b65s5qxfsrWZf6GyFi3B7YwE0SsA1cXWf1wkVSejtjLFX4bsqy4MpMEibBjXsELFIcb45roVShGnLQWv/F2C0bBsQG0wW485qARV18USDPhhAVr/WxW0POahMEhnI9Y8gCV5o5RJ4H4fNSOqBhgJVAy9ikCrGlOqsDxbUtS1S1DccnmA5Uc06gwWKFgeb4PYBUaPKtTDZCpnRWT8ysFmJuaKVIxjIWswwWeLbLfL67QS/+8sEBcHCAq94Z7t/Zb4P2LPYYs3ofg4AwoY04q5NzPi8Ux+QO7cdnp3jp9AaiWefvj821eBVJwe6HfQYG24bnMJSttMvk0ln9ptelWP0WqHRT7s9m9Dw4dj2OFM5zvSCVMZcqdfE0FHCBVju5prN6zE1ZUNKjx9p6iG1+g+3ZaO3ETy1WZxlzg7Unoleu4KnFQ/zoJ59hzuorVzoHlSzyJLW+vcLMSVlC8LPPMldjXOLzdyI8t7wvdVY3bUrdom6EeN6w6JNlqGoLTqAxy22C9RR/XtdkxrhrK8RP8IkY0emjRAo0zhG9QwIAHEfu1OW1Wdf67Nd9Fuappbcwb0QfxZ9T0+mHRHCBGbKJzGpfIiaVJWub1J3ct85XOnEuCuS1Jre9fdjAQd4NgxQtnh7RoQjAjxzm9OncDPEGNGb1PhiQPGdiVdfJ8Sf+BPDhDwPf+q29Yw6iGgyc1YPvmYzz4DVtHo6rDn2iuv6azqw9xOrkLNuGV4YhFl7aYMXyrIafnDVuzGefBb7wheHjpbmtz6wW94Fsr7Wuyc7qfcTqurZg+7qbbMNOH4pA4weWHAMisjyozGqPB8N2xWoDfv24m5I+HlpWvXvfliXbEDToXmGLUvlnlia1vvvV5Rk0+zirNa9vtOAYkLazOrGYk5bMVwFcp+477CnhkqL2CFgkYUBcsPt1yhC8xlkt+TMDdI/YbFViQHKLBSwSnNXJAGs/jqF9P9iuzTYBFM5qEwyIepONGD495IQX72/Co6AMg6zZs0F1Vg9dA5OARc9XvBNkGUN7H1TRzcePm1Ac20MYEKqoDIVBpHVc16JtXO3FrN73uFzMDaxsNHulmeCEITCb8bkv/zMx3vs+R4QU2/DFoSoKnKUhlv6emKjm3z8iVot5oRCruZnh6x77NP7dnecxuz7vHXewi00cV+Cx9nznDG0woSzZ/M0lrJN4t1FeKoTwy9qrLsXqt0AxDEi+326W47CXYF0PPxi6zmrPg2tXcv4U0OKG7Xe4plwXjj3sKKVjQIaZ1Y49MVaCOHEeSo4GiO5yjAy+wHawby/2j4/xX3zpT+E73/FR/Lobn+s7q8e43bzW9xPGy5rNtoJ3UeKzt2d9sZoLn8oXppGzehgDAkB78Tjo1OXIEtfW5McNYSXQYihSW9FkE0bhpqS400R7siL4Kd4Q2MKiK2RgctOESelgQOxhJBAAMgtcusipa3o6PQAv4ONBFwNSdFy/WgflrvWuWC2EdaqzWmBAOu30SekipPK1AfgzlwXWdVTFZvGs24/HWcVDoo+4xj2O4o0bwLd/O3p/0Liy1JtsJEFROLYHxq3eJuMeZfsDoahEZvUYu75dyTnHmQlntZdifcr+XvaZL8D7638F+MEfBF57DYsFsNkMHy8rbOYmpDCrMzlTNi74JovueDC2iSucpfuO33sFLNIwICxgUS5WFwQWuigVBqQRqwkiQuP4kzqrJ2BWd8bYjSzQad8aYVancaXXFQQ0nQBj3UYUznq4cPsYkIQHjBqI1Q1+rnNtAdDEtH0wIATH21AIHhlXweeceReDAhh3sg0iZlIesKh7D4TDzurNBtrzOGl4KbZfomJAGrSG0llNC+90Ve5XEwyIyigkNix01568GK5Ccs+K3xM72ZTOah2UQreEs1Y25zJgVqvWM0aboqrrWtfGzmrl1IhvYO891loWEASMP30+krAo3NNBsBWrxVS6LVYfHbFf72E2QJriLA8ZUnqf+0yMWSP5acmqYKKyuBksC7h2Db/3S/4troRrzB476B0XwOick4nV+4+JY2I1APpmkCt5J16WVl2K1W+B0nJWW9Z+D7PujumeGBDSwtxSs3pNAhaV469wEOmKdGMiAmc+Op7eY6VsdeXFdnb1J3hjzuoqzRlLsoMBcewa//1X/WO8eHinL1ZzR1IvqK1Tm5OMTXKjCLh6FQBglQVeurVgYnX7Z3KRciyobHKHorguOmLHmFO3KNiChMDXdqxKHvQCoCgNFk8Daedkp48QlhXols0GJGZ1MOAeAoA41WzTF8/sQJeFBZAXpVInvFiQkJnVEg50WZoxq10XniVxrRcFW+wTndVSsbookBQeIn9cwFRVMHfZIrqHAQENA+I4DAMyRC+SYUCGSvDrB9o8SW3EQ90Q/DzF92nVRbBfhUN1H7FaLEo4s3rhpVidsXPJ7q+YM/DhQ+Cv/BWETt7O55VWLriyU4nVeU7vXtjDWS1+/r7HG+0O0wnIbpUX2HI+aaEZut2pZh6jwoBQAsUCe0BYJ4aqAYDn9ZnVprkAI9zLxlmt+U70nT0wIARntTvz2efVxoCkFlvgUwMWAbgirKx90iYOzdGARdo967g8vFOJaiDMt2wW3F7IXHQm862ReyvLeNisrrM6AMuGGHJW62SE8HMFMIzAoKAaZB1ngFnuxpizurJJc6PGAS1zVtcGc0PFGFuV9FwAYJhZzb6BJlZ7qq4Qo4BFOWPcZFNU2cEjjCcUpJ1AAin0ySov9TawASAIEDoFkrNhsTo7T9l8KgyBKIJt1ajFeNQ2qXGx2qmL8SlcmuI8C7Gc7/l+HONA80pWBeuWbZsxr15F5Ob4Nx/503j2yxa947oDCMrmuHGttVZUdkMARiHRAOB9yfPIf9NvMXqvfrHXpVj9FqjGkbHvC0NwhQd2cRqxcd+Hh+9oDguKBPbpkEMRQF7arAVH5wUkzrVSt9AWVLF6SETgrVi2o/dSczxbHXyFCTAgivugYaF3xOqdkjirA6dAthnBgJxkmHspE6u5s/rdN27jRz7+DJ5b3ttNDt53I4QaVDYm+mjjOgZEhKKgLaKHghABFNRJ/tC1NUg7b1r8FJ0WjbNas0U/dHOkA2L1amNj4aX7L8oa0Uc9FtQAmVk9tMihi9W2tI06LjxEEemQagyIEFQNMCC9cxXIEgNndbRwEHd4qoBw/tEDFqUipSi+gNr7Go88s4JRSkJj2QP4IjFxnlispo6xymN2ijGr2xiQBKsz9m/JNzkTWwDg/n1ED18bFqvrGqhrtn7UFqtzufiX56wjQHcBDciduu3SdVE1HSHq7jAyBiSUBLjyY5aVDdsjOqt9+TwmLyx4unM4Xo3o0z3XhotPOtXtPdO+EQQGhNq90jir0XfVQn/xDKDVbaT+FiYwE9AdkmsQp7a5s9rjXN2pxGr+d2pZe1RZoqxtkgYwhN8zwlW4tRSHI+YapFZyx2Eu1dyW3lsNEonKrFYFLMbQvx8G3gmkTlleF8KsviAzh+M7qGQGpKabkTY3UmFATHjNAHsnZJJAa2Nntcq1zg0NNLFaPu9uQlEJg4HjO2zjShHkS/q8RjIMipywiRuGbB67Gnborh5kWHhJ46wGsJ03Zhmbi3heI1ZfiWI8fDjys9OUrRdn+2+4s/ehfMwSxbIcit3OxWvXAABvP7wL6/q13b8wYpRqjjsxBgQAXax+5gnk73yP0Xv1i70uxeq3QDUp4vu+MMT3DdgxirTUC+QQ/N8BDAhpwiBYvTJndV1vg+V0djUFUmEgYLGoHP1xZ49ALfF9OmW5AyIC9RpggG/Gq9nR7DCrd0q0CYlyXeZ62wwv6DanBRMrWxiQD177DH7pzg08u3iwK1YPtHYBMA4qm9ShKO6BgXuLTW70xepBZzW1fVII9hflrFZgQCjto8JZnWSOcnKzTh3M3VQbAzKU8gyAhgFRbVoY8lSlAk1R6Ll+uzXErDYJWFRgQOLS0096bx935vUFDwCbxNa/r4Cto3bMWV34+19jzxtGNVA7QkSnycBxSd0AQ+5fMW4RApKVx+xUs3iIIuasdlOszpjonMUFW7j9ht8AAAjvvTYcIiTuC8/Tey/yBbR006LZrKBhkQYT6nUxCGMtxMR8DIDz4If4pNQFmSpgUbRRU5zVoaTLBOBjrAEGxPfh2BXKuCNW62xWdcuyeEiTI0XwkZ3VdoFsYJONGrCoFKtNmdWuxCShu1nTriEkDr/OFmHXomGsK0RVegieGgFB5grbDNeWl3Lhpwmb1XVWh9ZwwKJgmOvcswPvBGqXKDA2FhBNF2JjWMEYLyqHFjir2hhuNtkMnNUysdpgcwVovRM6F6JKc3owqhi7ZM7qPEdaEZjVngfXkgvAJs5qy3XYsynZXCB/XmNidVax89W5tmG4FwZk9TBnGE7urAawI1YD2BGrr4Ur3L8/8rOFyL2vOcC2mQteFVrIK17zeWH7uLwbm51cR6wWeJkxsTqu+/rGQA12ohsGmHreJQHEtC7F6rdApSm0hWXLqgefjiTmE2fdxdOQs5oyYXBdJiyr2K9iF1pnQWozN3ZZSbhxQCtIiMisHhOrCcIXAKVYzcRP/UAOpSuJV7op+87qw0Pg5s3+uYniYnWyHmFWnxbsZdlyVn/1/OO4EqxwEKQsibh1zNHgShNntUr0obgGBLZmADHDFtGEe8suURZDzGqCa4Cf79BknNo+6dsDzGpK+6htI/Aq1paquMCr2NVzVgtsy8DmgvjZWiVa0WQYEBOnD7hDsdvqWZYMrWHIrJZhQIraJnNqncDtL56Ea8anByxKnY8A4oTg9AKa+3XcWe3qOavHAhapocMj4yGpG+AiMCCOYpEnqWRdssVDO2BxBeD8HFluw1/4wLvfDQCI7n5h2Fnd5i7qlNi0kHVvCAyI7gIaaHAoVTbCrNbCgJSDrH2qQNO4yCTOau225FapGMAmIoLj2ahk95do0adiQIKAsaDb5gtTZjWG3VkNV1iXWT3SEcJCQfWFyqbtuocBMROrPZ87ljuudbLoNbT2MBARWEejOgiQLKp6Cse2qeCh4p5WFef364vrzFmtVlIaxIzmBosKDdXMY4kYEGm2zwR4FdVGiGXVsByaEx6AfNyqGSqGUm7gSJGRJpsAABBEttRh33SDUF40wtCicFZrBQ6LEgKw5JgmAYvKz0vMi4jO6qEu3Dyr9Z3gYcgwIKthc0DTxSYRq/OkZNephQG56p3i3r2Rny3LuBqpMRQp0LrH2sdt/7prv+ddvXuJ1TrO6iFzn6mz+lKsNq5LsfotUFmiiQFxXbaAHBgg0rjSm5SKttQhVAMRA+LapdxRKlqTdV8UljUcWigcbyRn9a+xWF2WTPwkBHKMvSjSTdl/SVgW8H3fB7zjHcBHPiI918jJkcQjzuqzYsus5onE7z56Ff+Xd/0rYLncvUaC7TXmrKaIPkOBmFSxep/2bN2d+GbTRv7HRQE4ZGf1xTCrfadQfmaNA1ZTTAr8enDxtE4cJlbr7O47TNiQ7u6bBizKbi0RpHQRzuoZLUCncTl0WZp8zGlCkTTL8vmz02VWlx6d/QqoxerUoQUscvbr4IQxz1HWNuxAM7xTtmEB0J8vMR4OsLAB0N8zisk4la+tPGankg2fx+yI1TVw/z7yyoF/7QB429sA20Z471UkQwn14r7YJ3S6XY7DnEm5pHsjz9kmC5FZPbR5R8kIYffWcAcPVaDZOSdRuqHb3cP6NnOqdh4yk+ArJV6FmpEiKgj6rcRlqddZIalGrJbM5Vg4sL7wFzoF0lz9rJtgQCwAddpyVmcO22Q2YVYLZ3Fr7C6Sgs1fqM5q1aaggVvZdSFv/YchW9mFUlS2LM3g7Vb5PuT89qJgLlW/1ja02IGnDt0F22DRdu0PvBNMMCCNUCsbCwxMFyqnrhGnVnUNxLkSndVKDEgBIwxIENnMJNK5EPG60nfWixJzLpkJuCjYfUcwHajWM829Rfy8LKuedlNUdDMq5pykLAfhrB7BgGTrnBkc+dobAFCxf8N6VTNEZ0usvmY/HHVWV0nGuOhTi9WyDbF3vIP9v+2wFiWuq0ovEMeNa61N3MFzLUt2v16K1W9aXQJU3gKlnfTsSQSETiVxrZdMLtpvhgRFIp/TUbmVDbiEjtsKouj+G/m5OlMHLFInoyMBMtQ2pO3ERt4ylKxLBE7Vv68ODoDv/V75QTlXOF4PvyjiVckckDPuoL5yBe7mVfyJr/onwNEzvWMyd4PiXqTyVD0Prp2pHwMqs3rEqcu6ASg8dMWmDVptqSRmda58vkyY1Z4dqzEgicU+f12GomhLzXPILK6r1MP8SAMDgpbjr5CE1Aqkgu4kpJk0S/6s4cnSZiduKHErcyGFJKTx2nFmCZHPsPVf2sUjmNW+wexMfE4dbscmtfEYBQPCxcTBCSNFULRK5QaTyTvRVT2z/LjUexbA8HuGEJC8d8BiXG2d1WnKxOr7NnD/PrIqgnf9iC2uDg8R3UkRn+UAFP9GqrPashD42La+t+8jHrAZzggLfsFET2rIMJxlVrCFnpY5YAADQs0I4ccGoBarp3ZWG2BAms9HIfqYYECazIWai3ymG4JojbGSDy5JLZKzmm2uDIjVmU0KWITvY+49wGZdY86/1DCrSZMCfsq+haLcFWvZcXPA1XxeAf4sqOcwAMihakPOajJbWQRMTu2sVm2EFAWy0oXvTR8Mm2S2nlGqfcyhTQDCWNBsqKtQDURmtRK3ZPJ5jWJAaBv5ju9ITVimGBAn9FgHS1espjDLRfF1nZRGSmXYc7e2DOuX53TXftMhpuKha+6Ji2M2zGZJNZxxzYDFwC6QrofnW9k6Z/dDEABzPrpX7J5ZbWws3BTwDhqx+ggPcfKwBjCQF3RSYOklWnMu34ccOdaqBmPVHmNu3gT+2B/rY0iBcWOAOK7YxNVlVitMgwAuxeo3sS6d1W+B0har+S5hE6KoOKbWjvmYq5jK5xxqpxduL8KLfdBZXVUoKc5qgQEZaPsGML2zurLhuYRrIMMJtCrdlPoMxT2d1cmG78gLwbHNwu6+gPYIFGOhhfuf5va4EwcsjjmrG8cXwVk90DJWlsS21BHeI5lXzNmvUh4dgJjIFh4M/KlrrFJPDwPCTlX5HFQFfYPJtUs5/YDji6hCitRZLXiqBkKK71V9IUU408gnKxGTeBikibAuxPS26w9oiR4UsVqGQWmX7njgecMBi1Se6lBrMj/uhWFAqM7qfQIWk3obpCMCFjdCrHbgX+c5BlGEyM0QrwbeeWITQ9dZDcD3amWYVFa68EKaM8sfYPinuuYAMdcYeM+Qw9ou1FndH2dNMCBDDkUT1BJsG75bIitb52sasIgRZzUFA2LbCJwSaSHnYAP6i/KmfB8HXoKz1fZzWWcee2+bOKu9vrO6cc8RRS/l2sPArex4tlxUhllYW/Pvl9yz7AcbMuFl41blUoZC9WYQryS19J3VAx08jaiq6QAHoB4LeJCx9ruLH1P5Dqd2MAGDWAmSmYWX7TlSJ3ye07E1AJQGt3hT053Vnsd5+5I/E+eve1zbhueU/Q5BAHlp0zdFLwgDMpQ7QXVWh26OZDN8PiywutxiQCwLdVUDVYX1Gtvu1DAEfB9hnYwK4GcnFROrNT6z/Z3VEh3iySe3Qnu7xFx+TKzWRBg1eLRLZvUjWZdi9VugmmAWjYWOY1Uo0+EBQnfxNMYVLmtbf/EkgspUzs/KJrmKWYufgqVJDecZEv74ccX36R4XwMC52iQMSNOir5qIUnhk7n4BizthWsBuO087XJEfc5RZTWynHxJ9mnR5nc9rLGCxwYDonWrDwh50VtOZ1arJOLl9cg8MCGWSG4ZAUnrycNiiwLrwMQ/1FjtDG1cmwZWOVcsfLY7u8ShOJ7TaXbscaJPwLwCeUyOT8KUB0MUJWZt+46w2w4BEbrbbwVHX2KQuE1MI7aOeXSKTsYpF6YrVYiwYcL8C0F+Y75uNQHVWqzAgxMwJ8ffHKkm5AzQImFjtpljFNnB+zjAgVxbsG2czxmUcWpBRndUY2BDjXGkSEkc4YBP5M58lFWvL3fe+tdh4P4QvqmuLtnhSCVSGY4HrD7WoE4UUFdKOuoHdKt+tmetL3Et8jA0i+rJonFmt/04M/Fraoi8qyWwmKOp+bp6HpZfgbM2ROHWNW6slHp+dGjGrGVt4l1ndBPURW/SVcxjxHBBFZSkGxCDUXBxXFoJHfh/w8r0aWSl3VqelSxkKR53VaaYQkojHLCqbvAkwtMlGRiI17lfJnwlMFNWpy8+te0yTgEXVNTDBqwDYfr5d7NqmppkD+DGVBoGiYB5ewjjjOpB2ROQm7nLRIaZwwlMxIK4ld4EDzFmtHbDoshB61TxDVLYpthgQywJmM9bBfrrGamMzDIgIp44ilkN1Pqymnp1UOPD1nNV7idW6GCtuDNjJm5BUnFhaAYvNvE8xPyZ1M/K6FKvN61KsfguU9iSXA+jzeARqrzPB9Ty4imADAM2kUTuMQoh0Q0FlFLFahHEo+Zy2/rgjJs0qDAh1MroPBoSydlDxHnmlccU2QXRmuRwDkoy8LJuWb6GuPfvs9g+7ipt4qQ/cW2Vt6zuAR5zwZV7pT5yF+DuIASFMbvgGkzJotORMOorwpUo7N2RWe0PO6ozIrB5Kp89zrPIQi0gvuO9C2n0FtqVEn31rgC8CWqn3HQ50RQmkaR/Xk7Soi+A3U2e1TKyW8RD2Ld/H3M2wXrWurXA++oTPS0xwVc8toN+aKsYX1WvWQFRWPrMAqpxPnC/AWU3JnAAw2MUlKsms7ftmNmMYkI0DxDFzNC+4NXA2Q+RkiAfE6jLOGAN3SrGa0mkjaqTTRNtwYFmsI0QW1AaYOX1U8wLTVtdAPucywoAMsV+pCCtennDYCzWFL0i1OyF2jjkgVmcWKQixCcEbQDVoC4oA4Dg4CFKcpQH77MsSr68P8eTijCyoAhwDUkvEaipeRCBxZPNuA/erMrBPCIpEsdrzFfMNMU+gPl8q4SfPWWdKYOBWVm2EiA3GKZjVdY28tMnXdZQDTWVW26U8G8DEWa3axBUZRNRgWMVx87ymmVlEKTYwGwwIUawO7KJLctv9OYR5p3SMbTaY6GK1NChabOJTPq9mI0R+rzdueJ3PzPcb3NhQZZuCOatFu8V8zv7eww3WMceAiLlTGDKxeiS08ey0xoEfX4hYrXWPibXnXhgQPUMmAOm5lnkF26Bz4VKsNq9LsfotUGlmkVzQQ2mpzTG10ukvxu2lFOnEi50gVjfM6iG3MolZPdD2TZ2MjjneqG1InjcYtNmI1ReCAeFtz0KY/uqvBp56iv26LVwD423vfMJA2lwY+LyyjBD8NOZ4a8I7afdWWSrE6oqHbBI2QobSzk2Y1f7A5lXjgNV1kYmgF5kdI8uwLnwsZnrPQoMBmTJIybLgOrX8PhDccqKQ0jCrOwIw1YkiynP7k/xG+KQeV7bYLQokpWscsDhzM6w3rfs9z7EpfNpxBecuUz8/dZaza6HzThwJWARA5Myrx8OypG+wNAeQHJSKARmcF7SqYet6HrBcInJzxKkNJAkb3+d8dyOK2IbowDsmXfE2V5JYzZ2qEtGnri2yoDa0iEwTTQwI+CbbwBzGsurJHYoAjJzVcsfbBMFXUzOr0XKqCjWFGvrVqmZxLvnMksxmphNdsdqv1WgsAElu0zAgAA6iDGd5xN63aYrXN0d44kqifZx2NQ77qZzVnqcOnDV4DpSb2GJeROQKKzEgJuInBjZCOLM6CCcUgHklua2/RhDdEKqwOkfPbDB6riamC5s5vfPSkpoOAJhhJRQdIVQMiOq4Rc7NLNSxy/fZZ9aZd29i/txSjut523d859qWKd0koRKr88qBZ7oRomSMEz4vm2FJ8rL/7weIGBDPY8LymFgdl+zYwjGyWDRiNXNWt9ZmQqweCrQGcH5W40CTWa0KBG1XIyprzLv3woDo4rGGWPsmIdG4FKunqMuAxbdApZmFA82ARd8pBsXqBmq/78MnFtADzGo6+1XtrKYm8TYtfgr+UElxVvO2b6UDWPBfJw5YLCqblEujXOjx2mJAFlrHDJ0ccTw8IUgSIFy0nNWWBfzgDwIvvwy8/e29Y7p2PMisrmoLtkdwKFpq0Yc0WbCsXRGh+1lT28aaTRvJnzUCOI2b5lrqABnSdQW24p/CSbjJHNY+qOusjmz1wrwosMoDzCNNsVrVlgsDDAjYbVPk/D5o30MNt1z7kAAAbxGw+6ttSRFCigFLlIkzu9eWcYSJIgKw/XzbixzeTm/urE6xXre+xgPwZhFh4SDcGIqwG4AFzupObscCFgGQXOBDuKlcLExtfW43gOFNUV2xWswLkgJjZ5MKUc33gSiCbdWoywpYr5mjdcbfFVGEyMkRx+pjZZtCvyuIlx/YvecAwPb3RK7u0HhI4RUPjVvkuQY/VwC/dszqwqBFfcRZbSJWz8MS6yLYjrOGYj0w7qxe6obVQaCx1CFVSeaQedAHUY7zPGDjd1HgQTqTZlrpVOOwbz1fDaqE+Gx5qnm3gQCsZFaL8FKiWN04yycOWPQDi3UCSDbZjDEgSsQM4d7iSIU6L3bj2gR+kYA03DlXyXWtaovG77cseG69ddi3/52GAYuW4lzzyoE/NQYkJ6xlZMeVBiwSMSCWhdAvt2NX6xhpXJHHLNcFisTePddm3UU0SKiCosUmvkdQGsW9VUvuLYiARU1ndbMpPvxteVLAt6uts3o2Yy73+yusc577I35uEDBzwHpYrD47g3bA4t4YkLk+OSBLh+eqaQrMdXQzcT0kYyFJK2iV5zFN5LLodemsfgtUmukHLI4xfdIUzJm078uCh0nlU/Oahxbm3FFLwoAokunFueaUtrERrMRFBSySd3bHeHSiNVnXWT3iegNaoQlt5IfrAu94R//6jDmrjUQf9edFfQGx9mx1eCedhz6waUOd5A91A5g4fYT4J2MAlyXi3MPMy7WP3WBAZM7qPMe6CDCb6Z1qs7kwJQYEgOsBpcKZZRL+ZUcBS2Zvq3WGQhIgF1Li1EBEAORidVkiLnyzgEXfx9xLsY5bn0ue4zwPtZ31ALgbQ92SCTA+Iyl0eAAJBIA2bg28Z4q8pnE/BbKjUL8TSQHJdqneaBRV10hyZ7sZ4DjAfM42YO7fZ/8XuxuzGRen1IdLVzljMhJSxVQYkDLO4Ng0tEiziJS1PAPI0hq+rrNaYECmDvwZYFZT+b+AWly/KAyIUcAigEVUYSWEWmCaMXbAWZ0KDA7JWa3AgFQVksJF4NLeYctZibOMO6v5+6bZNCLWoLOauhGkYt8aPAfKLAsRkGyg+0mDEKcI6VJiQIjOas9jJgkZYqWutxuMms5qX/ZOMHGpAmoxyaTLBK3PSxWIacBArjLVJtu0zuo843MCg3mc2GBoF3tuCRkhvKKgRlz4vfl8Y5SaylnddCAbXtcpmdUY6LIA0a3LMSBjwmcWV/CdFgZEOKvvr7DKw93cnzDkGSHD/8azc4sxqzXGgia0cMBWvNNxt08NbV62ir1v9VjYAC6d1Y9oXTqr3wKVZhaCSM9ZPcb0yTJNp49wkQ24igGQhFrHqpWs3rxyEBFeFI6n4NHxcyW9gBwHnp2jUIV0XYRYzYXKiLJj7CrCiXg1rkpdZrUTj74s0xS7AYtDJRzrYw5F4kaI6rh5DiZ4OHoW0MH2bLG5oDuyCme1wgFNDRodvAaGgofvKCYMAtcQ6p8vc1YrFuZZhqq24AR6F1fJpkTLpUppI3awdU20y4ShCGyfmY6zGoCZ68+3kK93RYQkAW/P1hf9APDJcNY716QMEEZ07mnDrE54C6VlAXmOu/ES1w8UiuBQCTTWgLM6Xld6oaAN71Lx5waBu0PMahZYR+WsVyizsj/xM8CADHZcicpzFl4XWttF0sEB+/+dO+z/4RYDYlmQY5Z4pZuSYTUoGJDQkmJAms+fIlYPhUnBwFk9hgEhupVtfh+078yqqGCbiD6hK12YNwu9ifnapNDlVi1n5Y5Y3ThBL8hZnWQ2whkBAyI2cGUDQp4jKV22MUhofz+YlThbhUCW4fxugqWH/eZsA+UFNtJuwKLotJrYWV0VFfkzU7aoNwYRorM6kM836tJQrFa5FEXAIpFZHfAw215/ZVWxe8vTfHbFuzatsTOSNggMovt1gAMNgMxZ99waRSp32AMgi9Xint2ZWYm5oamzunOujemC3M7nMTFzU6K9GopTm+6sBhCFNe6e+r2xizmr9Tfu+Kn2n4OpNkIUXRbUsHTPrZWbl6SARY4BUW2Ki2oQl+Jzm89ZAPS9c6xzH4tl63yCAKFzNhxoDSZWH2o6qy3PlQeNtirONLn4rgvf3iBLh5/LLLcQeHomTwDDGws27fn67b99cDp7WXvUpbP6LVCpYN1pOauLQWd1lkHP6dNwNEeY1dSgMpmj1GC31PFsedI3sOVb6b5/R5jVzWKPKlYrnDNkl8dYi1+iv4BuMCDJwMSw7aLbx/nWOKvViBkApHBBb0BMIjGrsYezurL1JzeOA2cgaJTaYQDHYS6XixCr7QKZ7LhZxnANmg5oALBDn7mKZaqP+CA1H9whd4NJirrjqpmXRq4/Idq1nNVVRk9PF+UHkDreqA4XAEAQ9FmHPGCRslnRlGVhHhRYt52PfBNkPiccz7bZ/Vo6ylljvK5Y0IvWBu5AwCJ1sduMW4qOECpWQYjrMmG5LFGDEC7Hu1fGktmFWL2zgbFcAuB7EcBWJOMDRz0wu8/WORkDohL/NuclibMPgIk+qjApXAAGhAdaU93Kss67JOFhWgYBcD1xXTjTHKJY7XmwrRpld24ggq8C+hJmMa9wnofNRlueVmat9Bhue04p/F/wTgAZ/gFgG4OFR+5iOZiXDbP61qsFnpidGIvVbtBxVtf11j1HvF89xRyGtdLT7i0/ULjguUGEKiiq5humqAY/tJENBSyGtOcrdHKksWSsFRuMuvvY3Anf21wwmcfy40rNNyZsafD5fD3grJ7ynjWdGyoENWa6MAtYDOyidx/EiUV/JwKIggpJ6fWd1QnoGBAP/ffiBBgQW+GEZ58XfSNEJVaTjDIjHVyistxi+o449myGx6IzvPr5EqsiYM5qUYJZPdItHcfA3Eu1zW0WMIwByR3W0ajFrC6RjTmrc5u5y6cUq4nP13IJHB6S/upl8boUq98CleaaAYvC5TPkrM41F08CA6JqzaUunlwXjj3iKCW82G3PYTt6Ct4jWay21KKqieMNULRnU13gAOB50tYuUWwBrekkcxy1o1YUD1jb2+3DRZ+he0v8bK3iTsIh9itJrB5xVhe1rY/sEMgS2UfFN21I70nhcpF1A0wwGZcG1glnNWXN63LOusJFBkBfrPYVbErwgEUis9p1Id8QE+MW1fUnxOpW+0LTqWDUom4z5mWbJSqSuA3aR22rRpV2AxY9M2c1GFN2024hFedNcb5a1lacUEyc4xgEZ3WlRosYbuCqWNgNZ53o2Ja+v6i8XnfPgMUsQ1q6u/fEwQEiJ8df+cQ3snu7hQEBMOqs9qnOakX3RryujMRqtoBSnO/UzmoTN6GYH3b42pvEZv9+KrM6cPrBsEXB5y/EcxUOxS5SQOQ4+PQlzHJe7zirNxsY/fuBlltXgpZIC4eGARE5DrJxS2wCEfMBDhYVzjLmrH7tlRpPzE9hFjYABJGzG5Jc14gLDxEBCwag2XDPin6YsQlixvMtufhr0skGqNntOchzDWAkYJGKAXEHgmHznLYR4jhyfr+p+1UlJhl2namua2M+Mhm3ZII9MYcJgNxZXdd8TmCw0eZ5jFvc6Zhlzmq6WB2GQCwTq2MCgrI5Vck8TqyTDZzV0hBXk/U3+AauAkdKGrsEBmQgKBwA8rxmXcPi+i4W+PrHP42f/PgR1nmARdR1Vo+L1QxlpiH+AqOGOUBw8XUxtwWyoZDJumbOap01k+MoO9FNmdWXZV6XYvWjXnWNNHe0mdWiDUtVWWbpOaublufpMSCuVaEs5AtotqtJc5TunFe7TJjVtiIEDwb8W47B6LmH+LmSg4TE7n6iEKsz6L0k+DGVgX2ixAJq30nuCFuaLPrwDRbVuZLFasESHbi3tIVK4ayWGRRNFk9i0qwIbgRggAEp5MfNc8RUsVqIT7IDiwmv5oPreWr2K9tgIorVKi6+cP1RFyQSsZoF3dBdjwDgCbG2jQERSdwGwTzNokw8p2VJb0tuVROAxs83W2VGra6NOKHqNNlQnNXl9MxqsTGsGLfI96wQlmV86bJkDhiqC3wPsTqvHLhB6z5bLvHCwV18bnUV//Rb/9IOBgTAoFidxSXZWR1FPLCus4DerGv2+ZOZ1TlSxSKy2RjWEasFvkj2AqtrOqeVO6t7YnXqMLGW6lCc82DYTtiqyWJ/O4fpjLFFwTAgBmL1YoEdZ3Uzxk6cCwCgGRMDr9IWv1SMdQDGYbYHy7q5Br/8KRcvHt42dlbPFvYup5YH40Y+0fXIg8oG3cqE97cXOkpntYmo2mBAuudqkI+xc74SZ3VSeDRntegIkTmriwJp5erfW42RofP1plOWjgGRul9Ng2EV8/nGyEAZD1VidVnSMm1axwWwew/UNdLSQegV5HurcVZ3BMA4tfU28DsVRWBjQWfsMnFWN/P5TsAi1dgGoNXdK99gITOrVTx0ENEtohNiRKxm+k7r2PM5vv6xl/CTn7rJQupnrX9PGEo3KvrHrPUNAqp8DFHtLmwN46RyTStKrEEcjXmyOFfJIjzLDXI3LmuSuhSrH/WqKqSloxegwtNSBzEgucVaJHQxICpHLTXkgot0UgFYBMtRxod9xGoCs1oZBgmGFCA73lTuNCoDGdguShU7kElikZzVzpCwDOgvoMSC9KIcigNitU91Vg9iQAj3Ft8MUuFwSmr75EALrWmADGMAW31RKc+ZWBsRbloxYZCccBaX+jv7GBZ9jDAgglktCfwhbViIaocW8mtrFFDFy+u2Z6PlnKEe17Lguezf2/Qm8qA2yzOLxJjPKqzzrehx73aJ69E5WUxpnNWKWW5zjTXSw4c2w4zGLXvEWW2wKToYtkrNBRgLWOSfoRW03jUHB/j//Ib/N/7sV/8DFpopfnYjVqvHuzSu6AGLkc1ak7sYkJWBs9rzWEiRIqG+2RTSEatdKINhUZbMBUTkQMvMDOvEMXNWRx4TETr8+rjwEPkjmBhVCdxU13jBRXAjZ/WCO6v5+W5iy0isB1pjbHeMaXebaRbD1ihyHASzmihWLxd146z+F//+AB9+4lfMxeqlzTpixDXggbvkewBQitUmbmUlKtAg2B3ANmBSimqgi9V+aCOTbVoUBZtvhbSNq0FnNWUjRGCGumtFEVxpunHVPa64zgZitXQjxGRzwXXhWXJn9SQYkE73SlJ4CF368yVE0K671og1DyFWS961YqylYEB8SfdK46ymY0Ckc6MG60g7bLN5qcKA6OoF4nkdE6uFuNoSq69HK5xtXDxI51jMd8XqwB4PbUxTMM1IUy8AoBarOTIw9DXGcI4ZGjJjNt0mOtNDrm2UqRwD4huM3ZdlXpdX/lGvPEeqyw3bx1mdazqrPe/C+JyuPcDqpb4oBvhDRs7qAawEmZ83xBKlip/8uIGKRwce3KlzD4hzHbgGALbtg/tOcpu294ld+0NoDRgwq0eCr0gICBE0KnNp1jV98TS0C20iVlsWfA9s8dS9wEQH9M7fkfTTr08LLDQDPgDenj6EASFOQlzPQllb6oBF3bA6UVZLhOIzyDgG47oZCCl+YDFm85TOaoAFTbZFqrKkuz5bNY/qHWf1nVslboTn5DZ19u9XtNMDiDc1u8YaG7iuXaKoLAZe7lQTqEUQgD27hIwKBRgE1g1tihqE2O7rrK5ra/fZ5cxqALsCGceAuCjUY3dSkQMWG8G8M8bEm5otoCnOat9H5GRKsfo09nDoxwRntXzcqkuzgEXf7odBbjJDZ/XMZwvz9qq36bKiuynVDkUzDMhiaTFXsdgMO/VwNVhPI1ZL3K/a83heduCxHAeFWJ2aOKsPLZzlIYpVgs+8FuHFwzsTOKudXXyTMC9QndUAfK9mCKuuAGyAAWk2U6UYEIPW/0COAWnETwNmdVpJxGoiHg3AVvxSOKuTwtPHiziOPGy2Ca7UP01xrqqxQPxcSnkepPPDPKPz0JUdjaYYEP4Z19muWB2XvtHz1QQsdljIcWYjcgwwIJElZVafbxwsvYTmrJblAhjiOhoUZffzMjGLQb3JBhDHA99H4ORIsvFwwR19h8+13nP8Kv7dned7YnXo5khGQxsJ5rYhHQagbbYKE94+zmqd7KgGL9J/jkyZ1ZdlXpdi9aNeec7aB3UmDGLnaYRZ7euIFILPqRogqMKX6zJntWxhbuJwGHJWmzCrB8RPcnu2OK5SrKZjQJSuCQBJZjFxRvPl49oKXIUoEcwS7d8JMNjWI4QgqutPcVzqC4gF6ymc1dRJE0cKSK8rb5+kitUsCFEyfhhO8n0fcheZyeLJ85ioJfnQVmcV5gQ3xlBQWcP/JTqzpMc1QfeIEq3iLbHa3FntyJ3Vjmnre717XEOnk6j5rMa68BsR/O6dGtejFVlM8QJ7EAOi7ay2LLgDY0GZV3As/bb/LWtf/sdFZdM6eIY2RQ2Z1aPOahlvvJ04016t8M83stN2xuhOpZuSuXwo6p8vF6s3G01mebs48zPObOnGxcnGx5G/oWFAFPcWmX/L54fdz2yTmInVzjxkTlWZs5oYADjkpiy6WBnNWiytHWb13VMfN6Jzo3HLjxyl+zUtXQQ+zXSgzHHgjm0SrxjAwc0IZ1mEj/9Cjfc9c48NVcbO6r5YbeSuR0v06VwDk4BF5RrBlFmtCFhsnJQUBjKAaGYhKSQO+8IgfNnzmKFFJlTlOVIKC1uFARHBlVRBUWwOd99fvJOL7KxWzA+NnNUDYrWRs9r3GTaz7f4UXRsGz1fjrG67a+saceaaOatnFmNWdy7Eam1h4aVksbrX0VgU7N6iGkSazvF+NkJuYDyRhg7zYkYZzXkc7+BKR8TqPMdu5zyfa33F1Vfwq6eP7YaUhyHvChsTwLm7eEoMCKV7Q+gFqowrftyscvTet1wvkYrV1FDzy5qsLq/8o15ikquzJhMYkIEQvCy39VrqxWCucL+SXWRcqFU5q8nt9EPtJ1Rn9QhWosGAUB1vivZs8uSGc8hUDvs0s5k7TedCjLmgASDPUQOwfR2H4gW49m0WdFhUElQF6K6cJrxT5aymCJUCrzJx0ChsG55TIS/74URGzmqw20bmdjJyVvOJUC3ZNl+twCa4EwYsmridGmb11BgQoOesNg5CBOCFfQxIk8RtclwhJLSc1aSw3U7NlzbWeQCs1wCAO3eAG9EZ3VkdKlr0ecUJ2MJM4/5qeJdDiBmSqKwObiQLNCPvGfE9+uc68j4AgCxjglt7ofPEE9tftwUy/uvQSpWtqVla67t8RCm4+E3AHmXcsixEfiXlcwLA6YY7qzXOt+ngUdxbLtXpw+eHfWe1yzYDic+tFfJJalesLn1EF+CsrgFYZJsmsDxydpjVd058XA/PjcatYGbvhguKEqYTwt7KoDstzxkijCjaLx5f4jwPceuVAk8fnLEvGgYszg5ctskonoOiYMzqkChSorUhOqGzekisNmJWh470ncCeWSIDGYAbutObA4ShRSZWFwWq2oITaM4NVBgQge6hTjUakap/XJNOLhVnnox1BIad1QaIGfg+M+C0EZ9lyTpZTZzVvo/Q7WxaiOc2MNtg2eHX8zqPXbKzWroZZOiAHsKAGDGrxblKxWrC2kNsLuUjwnJh953Vto33XXsFANuobSoI4Nt7oEVEzhklYHFKsVo4oGUGLFFcN9PKzVFkeQCG75nLmqQuxepHvcTu9tQYEDGY7fvwed6gUEt2+ghmtWxhLgI5iAgMcYxemQYsDjqrDViiKmd1TThXoHFQqZzVaWbpJzILYXloE1/XWTnEVQbooioP5lG50xiHioBA2IOHri1Ucoei0lldE4NGLWs7GZeIqgDoDEUfDCuhWjxRhCQR3Cjh7a/PK8zdVPu4tuco26jz0qYHLPo2c3ioMCBEzh2A7flwa2nj+jXBgIRyZ7UpBsQTbN2pndVHHhM9NhsAwN17Fq6HK7KYwpzVAxiQRN9l3jhnZIJiXtPuLdvmGBD5JptRNoItSbwHfk0wIAB23zVXr/b/nB8TjoPIyRCfK8KBk1rf5SNK4ayOY9AxIADCoJaysAHgNA70MSCBM/juoo5bUudjVWGTe5h5Gd09FCjE6sK7ELGa7CbltTiwd53V5yFzVhuMhY4K2SFQGBFB9BnIcTASKgHYV45QA7h/u8C14Jx90dRZfeD2MSCGYhpDjg0ELFLEtCFnNXXODXVHhEkYJNDClqjmW1Rnta0Qq/Oc5lhWiUllaRaCpxCAy7wyGgtUQdlGjHHVmsZ0bsgF+533LR9bTDoX4LKgzSRtIc1EUDp17EbLWd15164S18hZnXc3g/KctqYXxTfyZRiQoraNnNVSDEhVoSht/fFAZGMUw++oHrPasoDDQ7z3KhOru85qywJQD3/OTc6ZZie20+0EaBfvitjb2MaP6TvlsFhdlsh0O5kuMSCPdF2K1Y96UTAgvPVf6ayua6S5rRewOOL2ativRGeWVKQzcZTuE7Co+wIaCVhs0qMpbOWBgEVyKIngkKkwILnNUng1d0qHwr8A6C+gxDGnDirDsPORnPA7tFssNlh0J022zXE4Ev5t05aqeUxeKudIVfBJPhUDogisK+IctlWT2+kDp0C67l/bxllNWDyxE5s2YDHwa6QyBjIfXxzP4PXawYCcbHwc+DQniigvdJhYKxYOPIk7csxCxVxxf/EVb11MxKw+8rDKQ/bBA7hz32HOR6KYYvuuEjEDAElKcFZfBGLGsti4JdsIgUFLIp+MS+cFJrkAlkIAb1Wd8nuuvdBpC0z37u3+hSBgbcln8l7PJAHbaCWK1RaAKu04qxNL+/NvVxTWLEyq66qta5wIsVrjfB13YCPEMPyrx5QtS2wKHzNP9RLeoxRidVJ6dP1zLFTNYIxZHrtYFUEzxt458VmAq4mzWLERQjKdiBpxVgMg37M4PgYA3Ltb46rPndWGYvX8yOtjQC7QWU12v6quq5hzUzEgArfVec+Y5GMAUG5a5EnJxoKpndXUe0uEb8vE6tqA16zYGE2Tmq1jiHMjpbN6CgzI1AGLvs/MQkkXA+IhpCCGRFkWQr9kXSHiOhQFNoVv9NyGc4eha7oYkI3NnNWE9zfrXOh8Xty1b4wBUTirycxqVcAi1QneYB0H7sm6ZmbEbqDz4SEO/QRf99hL8KLW18VLSYIva1eac4Ojplg9iKSljDGKzI3ucdNK01nNjVKDGJBLsfpNq0ux+lEvEcyizawecFZXFbLKge9qtPeIiYIM1wED14AIllPgD8jt9BcRsCjaqIcwICbOapkI3rQkap4r0OyWSwf1ukaaOyRntfLzEqXr9GgCxRSfc0UXVVkrtVxMIr+ARjZCipoQsMgFKmk6vWHroIotbcR7hBoDEq8rukNROH0kGyzrNQ0DohwLarYAdm1am2MQWkys7ll9WIu67dAxIJZtM4ceF1I+c/cALxzcNXNAd53VNRPXQs+MxeZ1xOo0rowWj6KuPebiXrJoMCBfuBPgmcUDupg05FAEd1ZrYiD2QjWYbLIp0DUkV62KJQoYYUDYIm/ElbPO5U5osVDqfia+j8jNlc5qxnCnjzEzN8Nm1WE2x7aZszqENEwKRYHTLMLRLNMaZ5rNlYlZ+02bfo7tAlWI1b6BWN0WasVxubM6NGVWdx/ZCbo35lcC5qwWnRtnPgtw5QGfpFJlLgh3McVZLf6NCma1+LmkOjrC3M3whTshrjqn7GuGYnV06DOxWiigRcEcmgail69wKBqxRAed1USDCKAMdDYSPwHA86Ts8s2aB8NSnoVGrJb8WwVegzDf8p0SeXc9IzAgVDyacL92DB1pahY+reqQI2Md+bkOBiwaOKubjIjW2M1CbA3EagCBV+8Ky3mOszzE4YL+TghntrTb6DzmzmrCu9ZVBCzGhcGGmKprmmpsE4f1FJkmvFvWczVd654HywLqIWGZC+G+W+/ON46OAAA/9ZE/K88LkXTxtSvLLX2DgJhzDojVNaA3xggckMI4CQAoCuas1tHNfJ9hQC6Z1Y9kjV55y7JCy7J+xrKsX7As6xOWZf13/OvPW5b17yzL+rRlWX/Xsiyffz3gv/80//PnWsf6Qf71X7Us6zdd2L/qP6YiBiwqF6VA8yDrJqUOuV+LgtjyzBnIZQm5o5S6Ez8WsEgJY9gnYNGIWa3CgBDbkPikUcWjS0uXtWbqnC8PAtwLA6LjrLYq5IrrWuUlbOKkcchZfSFitQE7Temk462DJrv70hZaw8WTylkdnxf0xZPvK9PpVyuQMCDKz0s4qGxam2MjVktEcBPHOtC6b4VYff8Ibzu4a+asjtxeEGJSeohM3JRoidX8uHFiGaNFAODa4x7utsTql2/P8cLBPbqY4nlsYqwSqwUSRQfVoFqMoBWoRRy3lCnyBpuiPUctr7pgGyxUvnYx4qxON6W8i+e3/3b2/2/6pt2vBwEiN0N8Kp/ExInFxhhiwOLcS/tidWLTmdVgt2UscZEhz3GaRTicaz5nAyizpkWd8ozZrKsuK1v3bVliXQSYBQat5LYNvpKezlWrEqvFeRuMh+7Rgm0Oi86Ns8gowBWAekNMtKkHhHctF8Br2QTJBAEBAIsFrkVrfOr+FVyt7rKvGYrV3iJg4l+WsfMrywmc1XxjvLvhbpA5ocy1MTGIoIXrUAUsmkzkJMc1Yu03YrVkfUG9txxn6/5sr+moXYeiLAueW/WcqklqGW2Oq9YIDWppSmY1d5eTmdWOA8/hxh5xDZqARQNmNYDQr5izusWaP8tCHMzo7wQ79JnpoocBcchitedLskfynG22hsRrwA1jMtyUCV7EC+wRZ7Xmul6cyNDtUxTMjNi9tFysBgC87W3bX+/jrBZubQKzWsWBBkB3VjsjzOqSdQlo3V7iuPFAN+Ols/pNq31mTimAb6rr+r0AvgLAt1iW9dUA/hSAv1DX9dsBPATw+/j3/z4AD/nX/wL/PliW9S4AvwvAlwH4FgD/T8uyLj/5sSoK9nLTCVAZw4DwwUyX58MERUXoE7Udz7LgOjWbLHR39vjk5sIwIBRmtaXe0SMHqAgRXNGeTW5Dct3BpO+k9PTX+lycKPdxVuuGdyrvLTqfc8j5SN4tHXNWEyc3jmuhlLkpuahKfU823LRu+6iBmAawwLpMctzNumZ8Zaqz2smlzmpygviAs5pthhHF6gBsci/5vAAY7cKHQc1Yf0KsfmAuVvszh4nrHbE6NGASAsCNoxy3NweNky6JzdpyRdkHC+ZS5GJ1nDoM02DqrFYxq1POrNbGgEwcsMhPVTpu1TXyyqZxWpvg5f7n3WROEDFeyrwBXsm6ZO637pjwjd8I/Lf/LfBt37b79SBgbMaV6rMyQHb4PmZOhs16d4xpBHDiyjSMLLmzOstwQhGrB0KiTTcaPbfe7YrhLd9GzmoAsPj5dF21VP3T8+DJOOsTYECwWLD/c7H6/ibE1WBl7KyWuV+NHNB8EZ3Hks/G1FltWbh2mONXTx7D1foeu5/EdaGWZaG2+eeyWm1d5QZ0FRWqgaE16B0GAKbPnFDMN4q82uXI6pZiI8TcWa1eI9S1pX9vcVE564p0RWHGrAbgOXVvLpskYPMNasCiwrVvgohrxOrummaC8G3X4XMDcQ1EwKKps9rvO6ur2tYP2GyXIsz4PPHMMCDtfz/QbIqSh+5mDdr5uhgLqMxqxbjVYEt0jXj8WbTqSi0uczNi77FtD8DPP9/7ujXkrC5LJoB7mni/AQ40ANqGmBDAh8TqPKc7qyU6zKVY/ebX6Chcs1rx33r8vxrANwH4+/zr/xuA38Z//Z/y34P/+Ycty7L413+4ruu0ruvPAvg0gF83xT/iP+riD7Pl6+08MWaY4s+Fs1pz12lQUDRACjiOYmHetONpH3LQlURu7dkjYJEkIoxgQMgTZ44BUU1E09JFEBGRJSpkBxiz2LEqTWb10EaIgUNRlhwNMNGn5Nz2ycVqGy5hctMgSySLp5L6HKC1uz+lKwlskp9JMBgNBoTIrA6dAkkswYBsLMwpbgyV6CM2gmzaJH8IA7Lzcwn12NUMb2wOm4DF2+dzPBadGfFUD48dnOXhVkwTrZOGjpznHk/xudXV5rirDXeomk7sZjPmdDjZ4PQUOPDZtTARqy1A7azOuBiu46z27ZGARSIGRMXCFl0Wdq3/nhHzAsn7IM9qMr9fynrsVLwqEch4h5YFPPNM/+cGwWDAItu4ICI7fJ9hQDpi9SZ16GgRcGe1AgNSVA68kJiNoELBmGw0dsNxBQbExFkNADa/J8U14JviZLHaZuzNrNw1M+RZTXeWi2qL1XmOqgLLGTBJxlU5qwVSgRqCp8geKRODfAhe166U+NzqKq6Ga+C552jdCt0SYvXZ2STM6gZl1hWrDQVFAOqOK6r7VSFW5znRzNI6rmtVKNLd8zVyVnPsWpL1r1+VFezeItyzvithjJclssqlc4XB2OVFJyQ6STmewCRgUYJteSQDFgG4bkew58+XqVgdhth1Vpvy8Pnftax6951Y11ilHh0DErr99Qx/f5HHmKa7We6sJq+9xEaIYozRFqttG7BtZqxWictFgUzmKm6fQ3sOLb6xrlFXivPJMqYZhYSclCFmtRgfCGiRfECDaJBDBJNnJunqzQr7Uqx+k2uvO8+yLMeyrI8BuAPgnwP4DICTuq7Fm+hVAE/yXz8J4BUA4H9+CuBq++uSv9P+Wf+FZVk/a1nWz969e1f7H/QfXZm0SQxhQAgtEq5dKfEPzeKJyBWWOkpNdqEHXEkmAYvS3VdeRUlszW1Y2HJnNdmN4Hms3Vd2H/BFpLbuIybMAwYs1vKt0S40wqxmzmrai0Ip+oiJs0PgFQ/dWwIxQ7hnHQcoZYxSk00bqJ0jRpNxqDEgm1VFF5KEs1qGAdnYWLgGzGqFg4q6KA0iG2npSe+tnZ9LqCdvFHhtfQRsNijyGnZdstvUwPV35ZqN+8mi76yeQqw+v9a4KV+/H+DJ+YmxsxqLBW5GZ3jjtoXPfAZ42wEP4aMqX0PsVwBxRmBW+7Y6YNGAealkVjdhq4R7Vjg0p3SO7BmwGG9qvY2mIEDo5kjWkglHXSPOHda9QUQNzdxMoIqb2mSOGbM6spgzTeKstqx6uk02mIe1NeJfywE9iVjdCYZthBQKq5mXJxG+GLPcsHvD95kLOC9QPzxhLtLZjJRfsD1ZPnZIAhYB0N2vihyHKfIBrj2/BAAWAPolX0I+zk45/L7kzuq48BHNDO4B32JO3R7KjBjsDgCuC9uqUWade76uUdQGIXhKsRpwLTNndejmiDe798F6Y5kzq7P+Z6NEN+1zqm7NjAzt99cEbGXXtXZRZjDHgDRmjl9LZ7WJu9zFrmAv5nEGnQuA3FnNfuAEm3ft8bAocJ6FWEYF6dr2cHb8XDeFb+Ssdu1Kim0xwYAozQwmIvhI9ooQanvTjW/+ZuDpp4Hv/u7dr3MB3LPL3kZY+5hpqRlYCGzzMRTzwyLO2RyZErBY2Gp3OR93LB2Wk9BLusiSukZeWiyw0mRucFlGtddIUdd1Wdf1VwB4CswN/aUXdUJ1Xf+1uq4/UNf1B65fv35RP+atU5Q2P97um0kmIOKYUqbRUI0gMEyEL8bqVe0+El8UfPJay9R16guocRVL/qxmO/6uRRM/mbNa8meGIZPKFr8sY24X3QWEQJYMrGmTjeYCymbc4LzjnhJV5DVZ9Bna2Sa1YQH7OasJn1ezaSOZ2Jgwq/1ghPdIbSUPHekCMt7UdKePYFZL7tnVxp4WAyLCbhwiBiSymbO6ex9M0KL+5FNgYvX5OV55KcHTIljQAC1ydM3FaRb1ndUGjjcAeO6pAp87v9oIX688mLHzNXUhzOd4YnaKW3ddJlYv77CvGzCrAQyI1a42vqZZjMi4wgYt6sqOEB7MQxKreTCNbPOS7AJvOq6Gv61pVd/32vo+IidHvJK/v+PCR+QTupiAbcBiR6yOU8eMWT23mbNawismtdMPhERPkTeQVe5WrC5LbAoP89BMrK67GBAxxpgIlRKxOkkto1A1UZFfISk9vP5LD3BzdmbMaxbdG1XWb/sGYOaslmzgNnMtA0Hp6q97O64Ea+ainUistoRYfX7ewk0ZMKsvKGDRG+DUGovVnXdCmlnanTs75XmInLzXdbaJDfBFnofQyZHm/evXoJsozmqv7odvlyVjK0+Bg2m9xNLcNsrIUOVOGHWvcPEvLzuCGjWAvVW+V+129E2EAekGBKfrggl0hhuCvcDZLMMqD7CY087XC52eu15siM3m9PBOJQaktuH6xDWSilktnL+US+v7gx2CyHOm73SF5cND4I/8EeCDH5QeM3RyJOfqY5KugzBOKpjVpDHGsnhnmCQvqHW+4ufvXcJZ3Z0fC3OjQ+hmvKzJSuvOq+v6BMBPAPgaAEeWZYk74SkAr/FfvwbgaQDgf34I4H7765K/c1mqIjJ9AqeQTkAAMFep7i7ZHu5X6qTRdWu1o5Qo/MFx4FhV3zXBj1vVFmv51DwmcxVLzqdpHSQIX6oWJH6uRU1MjxaOHBnbiS+gbV9f+HOsahADQllAKRmtYF9yiKKP7/UZdwAuTqw2CVj0FMKXeA7Izmo5BsSYWR05bMLQebtvNtz1ZtCWKhOr14lthgFRdW5QndVBp21SlIkwwevJpx28tjkCzs7wiz+X491XXjMWUnphNxM5q599qmRiNT/uK/fneHr+cBJn9eOzU7x6L8Tf+Ts1PnD8GfZ16mp3yFld10hyW5uD3Cx0JcdsOkIo45ai7b2ZOFPGLeFykfzzTTAgrq14d7WqEav3vbZhyBZPMmd1UTABlMpalzmr6xqb3GVho8T7VsWsTlc5W/RP1RECs042oOVU3RGrDQKqRHXF6jxnCCviYh9gTsILcVYDePJ4jc+eX8OP/4sK3/j4p8x41QDfbO13BlVpzgQGimtfmA4kzmo21zITlK49GeDqYx7wW38r8KXT+JCYuGwje8Cc1TWgP9dslaqLyzRgUY1qIAa78+MC6J1rktlGuAohLHed1Y1YbeSs7v9REtcM3USYxzXz7vb7S4S6m2xaSMTqi3JW56VNx7ZY1naTreMuN2EgA8A8YGN1Lyjb0HQQiEwTjp47vV+wbgvD3QXbqlGlu2K1SbeNG3l9ZzV/f5FPlZvxZGI1oOnQbZXj2WzOrTBLaeWGtc4VAGoV51Uwq3XCfHnXhiojRFwYLRwtsOVLD4nVhLWi76O/GdYu/s7RNnnKhPVGKzCcG12WUY3ezZZlXbcs64j/OgLwzQA+CSZai1Sc7wTwj/mv/wn/Pfif/3hd1zX/+u+yLCuwLOt5AC8C+JmJ/h3/8RalFUe1Q9Q6JslZbatFyqblmfBidxz5zrZAKlBdxa5docwlA4xw7xJcZEpXsWgdJLZnKxf8wlVLvAYMA6IQqwH9xRMP1CoHxOo0rrQn5UonIcza6ZmDTO2s9ikvoH0CFonM6lLJbjfgpimY1UauJDCxOq8dqVhtxFBUOatj1wwD0l2V8utKXZQ6occmoioMiImz+oUAr66O8Tf/1Qv4uf9Q431XXwHmc/LxAPTDbiZgiQLA4sjdWTy9ci/C04uHZoscAPA8PL5c4Qc/+hG868UCv+mJX2TX1DSgSoHviQsPoaf3PAw5q002cH1fHd5ZVHwRrVsDzuo8J4o+ouNqJGCR5KyWtLyLkzW6b4WzOm6N0VmGB+kcx7OU7J6JFg7iwu+NM6cPKxz5sf64NYoBMQzHLbvOanOx2hLM6hZeBICR81fprJ5ArP7Ql9zGv7r1In7s30b48JO/Momz2rfLHqOTuigHsBUUlWK1mbP62jXg6hMh8Ft+y2TOsdkM2BQ+fvcffyd++dN8k9Tgs2ryMdrPQlUhF2OhibNaJlYbYNekm0xVhbRwmIuQ2h3leYjcrCHsiNoktnknm4RZ3SBmKBgQjzPxe85qM1xFE2gsE6uNnNX9eXdRmofY9sRq4ag1cFbPwgrrItjpkEsMUUsAEM4dttnKd3FP7uY49GKzMVE4djet8ZCftxXQcFvezOuvZ/h6lrwh1u7ubTvhTcPSVd1RZcmwGh6tQy5wcqQrxaRLrG11Li/fCFOK1VSMldCiVGI18f2lDK4URVmDNUSCztdNDCKXNVnt8wQ+DuAnLMv6OIB/D+Cf13X9IwD+bwD+G8uyPg3GpP4b/Pv/BoCr/Ov/DYAfAIC6rj8B4P8L4JcB/FMA/9e6rg0BeV8EdVHO6krfWe3aJXIFJ4i1EdNbnssBRykVA+JaFYpsQKwmsaUV7vJGRKA5dYcCFsmTG/FSk90HVB6ZuK5Dzuq41ndW+4oNC5g7FKXtQjzd+EIwIMQ2P8dVXANTZ7WKyVeAPbNUR0rkSp3VcQw6+1UsniQL83XiYO4RHESKRHIjHjygnoiKXX0TZ/XbI/yz196F3/ePfyt+5J8H+MprX5jI9VdsFw6moTSigoCJoGt2fV95MMfT8wfmwg+AJ66m8O0CP/T7b7EvhCFdUPE81m2TyKzFOUNLaJ4yY1YrOkIMNnCV41YjpFCd1QVyyfy+yGvawnxfDIhw/2kwqyM3Q7yWvL8FA9fUWZ20/q15jvvJAlcPRlT3gfIil22MdsbD0wclc6gRNoYBTL4RArScqi2xel0E5s5q22LTw65YbSJUShamccr58oYYkA+9+wF+5PPvwc9+aon3XZ1gjFUgO+JVqc3D3zmmglmdGAiKoh5/HHjiCfJfl9ZsbmGdB/jYywf4+KdCY/e3FAPSON6IBxXs066QYjLnBuScXiEoegbPl+sidArEye55GTmrHYfdr4XTQ/AlcW2OAekyqwvPKL/T8yXO6twxC1gMnP6Gc10zHro1gVjduWeL2tZzvXZqHlXMHNAyHSSGjnUACJberrNavLdMPjDfZ+/x9qaz+OyI2RBe5LLPq4MBsQD6OGhZ8JyqnxNC1QpEDYS4ZpVLc1aLNdJaLSxLMSBDNSZWUzedHUedmwWhFeh3bzQmtF8LDIh4z1ADdy9rkhr9JOu6/jiA90m+/jIYv7r79QTA/0FxrP8BwP+gf5pfvFVlhEGYT5izQvFCpMDyLQuug+1LvTMIFCU96MRxeJiUzPlo4Cp2VGI1dbe04TVbTLBviyYmSIEGLyL5MzG5McCAnKdR/3zznPZyH3HYA3y3lNBOr3RWC2Y1RfRRvdRMgjNEG1ZRoncVBAaE0PbMNm3kTt1JAhbzeOfreVoZJRyHc4cxWrvO6tjSxik0JUSqpP+MrRIXCy/Rd+yqWMXc5bKYWKxu7gsDIeXxt8/x0ukSH7zxMl569Rk887UPgOjp8b84VL6Pq+EKD849PAEARYE78RLXD2RQe42KIjwxP8Hrtyw8B+DW2QyPTcF/BfAbv+IO3h/9RXh3fgf7gmFLqsddj70zE25dzVO2fRfVAL6IuoEbBJCPW8070YRZ3R+7GyQQEQOSqzbGeW1iSw/bEAQInaLHZxUnS/msmmrE6tb4lOcMDRbQBTXLZ7zinlh9UuNgYmd1M98ycFaftZnVImDRUKx2XTDsx5RitVsjT2XOajqnVtS73lHg5+49g7/wn/wzOHY9kVjdR3bE60qbh9+U67IW7aT/R3EMJtQZiNXPPAP88A+T/7q0Zgsbd5MlPntvgZ/4uUM8t3zd6B7wQxt5ZQNF612V50YByUpntWFGCPuMy57zk4nVBv4s7qyOd6dx2KQO5pSOMwCwLIYzEwzkljB5IRiQypRZbSHPO2J1Zk+PAanr7XqOuDnejFs9DIgNN6CPW7Owwvq8K1ZP4KxeeEhKAJs1AOD0pGJitck8zvMQOonEWe2SxWoVBqQGjN4HrltvUZTdjWKqs3pQrHbgU/YBhBlR5awuCmSVDz/UxIA4hRy7BvB7zSflBQ11+VOd1Y2ZYyBkEgABA1L2u3pNkKGXNVnRt/cu69ek8rTSDzngA4TSWc2ZRrrJrqPuVyKqQemsFiIdkVnt2qUcAyKc4brnallwHRak2AsCFI43qlgtSyLmxyW7PGwbvluxdrzO+dZpps90EueqcpfzouyWDjKrDRbmfiBpHwWMmdWuNYyYaQKGdA476Kw2CFiM5EGIjWOdeOBg7rJFjspZTVk82TYOwgxnWdCbiKwSjgHRdXqI0KtU4qyuDdiUCrGaNGZ3KpzZuBat8P/6+r+N7/qmL7D1kikGxHFwNdzg/iZk95jgJxq4fAAAyyVuRme4fZv9tiy5SDuBWO09cZ0J35/4BPvC0ZHBwTiTLpZMyLmYoH3KQ6iG0iY7s3wfSEtvWma1bTOXi+R90CCBCGK1lrN63zEhCBA5GWKZWC2c1dSOAN/H3Nt1Vtepmdtr5+92xq3z0woHXjJpwGJe0F37AAuHTSQYENMuizCometvSrHa7/OKG2e1IQbEWi7wyW//v+N33fhx9oUJMCAyjFW8qekbuCJ7ROKsPl/ZOPAT4+tgmoXbrdnSwX+4+wxevPoAP/GxIzy/vG90bb3A7s9hGsOBoVjdDVg06egEtqFyPWe1a5YPwZ3VSgwIdR7XFqvbx92AfM82THwZBsRE+/QtFHWrI6SqkJYOQrcgi8rSgMWiMOOWYwQDYsDwn8/qXWY1z6AyEcABIFj6OxgQtslKMIfsHDToOauLTQbHqsjvWif0WBB9ZzMIgNE46Lry7g0A5hgQScAiw4AQjilc0BvFWCKY1TooSnFMlVhNdVaLObdCrI7XFek9Ln0ftIuCAfF9Jqx3M75M3zOXNUlditWPeKVxxXa3dR463tqVKZAdKApSsuuQ+9WEoej4jtJZTU7MFS5oBQcaADEMEvK2byEokgMW1RgQk0COwK/ZRLQrqMUFfLsktSY7doWimhYD4vpyVAVgthHih7Y8iEFwvSgvIIFtGULMUO4t35Yzq7kbw3GJDg8Vs1qEqhEneFbIReOuszq1ETlEDAiAg1mJsyxCd8W/Tl22KCM4q0NZQJVwwVPbfRViUpyYMRRF/dPv+Dt479VX8ed+y79kXzB1/VkWrswSPEjmrFVwUxg565s6OMDN6By379o4uVdg6Sbs/jcR/kTduMH+/7GPsf+b9KuLgMFEMiHPMlSUwFkxxnUXI3XNN9lMxi05a58F+Wofkh1XETjbYEB07wXbZmNhZfU3cFulzVUNAuYmjSV/ludMWKWKHo7DnNW515zz6qTAwiO6E0XJ2v8BnK+ApZeQ3rU1MLCBS2dWLxbAeRbuCB6loeMPAK4f5biXLCAUtSYEysRVKzace5xac2c1Dg9xFMTbe3cKZ7VEWI7XlXmOg6Qj4nTlMPejyX17ATU/dPEzd5/DR972Cbz0+gLPL++xm45Y0jkMF/5MMCAXwqyWdXIVBZLCMMzY89gGXrr7zG9Sh35vAQhCSxoUvd5YzLFNwYAI52NHqE0KD2FIdwA364Q2r1lkTVAd0KGjFpUN9oBUAYtlbcPx6NLLLKoZs7rlrAYAi/wgsFoeu1jlQUushnnAYhQhcnLEq+01WJ/ydy11fij+Xut90HQzGuKmemHZU2FAZBjK0qURVnyfvWM2amFZm999UcxqEbB4ARgQ2TxWVJnksK1a73yFua/oo2CM3jOXNUlditWPeKVJrd/mZ1ncmaVISyW+3JowKckAwficNOHD9fhuubLl2QADohCAARicq5qvTWdWD2NAqIJa4FXS+yBelbQJrutyZrV66EgSaLflNa79iRfmQxiQrHTpPHR7Yh46WHJ0j5kG8PBO+j2gYlZnuWUkVjeTxo6ovIkNAn8AHC5KnHbF6rpGVYG1ahOc1aErcSIUhVm774BYrYU8UNT7v5S1YzaWZVMhBcDVeYL76QJIU9y6BTw+OzU+TywWzFn9wMO/+YkMX3PzZeaimyKs6+ZN9n/xzjERqwUGQxb2kufMDTcVqqGumTPLpi2ig2CIWU1vffd8OV4kF8gS3XHLsraOJBnDn1ecao4Jvs8WuRL0gXAlBVTRw7Iwi3bdafdul7genpuJfpJFNACcn4EmhLsubKvud4TAnFm9PLCwKoJGVJ4iFBYAblwtcSdeNsfNUsL8tVNel68NIM4ctiFqOnY93UErTcWs7jirN+uazqwWbd8SWtPZysaB9+iJ1bOjAD9560V8y42fR+AWeG5536gziGFA+q7H1MStLJzVRWccMTHJAIDvw7Gr3eeWIzBIjFpRYh6TdpjVQqymOqtDS9oht16DZYRMhQERaxmDDbFmLBDnKhAYBpsAzbpWxpY2cVaLkMmOWF3XlpGwPJ8D67azWpy34dh99TEP99P5lll9Zk0iVs+9FOvV9jqenfBOIwOx2rLqHR2iQRoaOaslOFID8xGAQQxIWrm0SyDeBypmNaWbib+3htza4vu0ynGGMSAEYxsg1vUKfQtAllQkhFHD2pduil46q9/MuhSrH/FK4woBQfhgzEsF04fYmskERYmYBrPFE2vzlLuVawC2R3gJj6Aa6toycFYrUA01HSshdXjw41a1RbsGAIJAMvgC2Kwq2uKJo1DKWu2ka8RqirN6KGCRyqwewoCYhHdO7doXGyGSIMDShFkdudJd6DTjoip1kqsQZ1iLNj306WBe4iwLd8XqogDAd8oJAYuhI2F+ilZP6jpfIVYnqTVJizoOD9n/33iD/X8Ksfogx/2ELUhee7XGU/OHZosRAPA8PHYY4431Aj/14zm+4fFPTYIAAbB1Vot6/HH6sUSASiIZt8SzQQ3BUwUhEkVlP+BuN8l7hpyNAMAXYXXdLovCJrvsPbdWbjSK0nb/hSEiN0ccSwRpfu4WqYeWVVesvnunxvXo/GIwIOfcWU1poZUFwMEMMQMAy0N7x1ldZQUTAAwFj+vXatxNlo3gEW9qI54sAHiB0xOrk9whh7/t1JNP7l5DE8wQwFqJHf6Ztboa4xhmzGqnL1ICwNnGZYKS6XWYuGZLB6f5HB+6+St47vDE3FkdOv15nKlQKTptpBgQejcjfB+uVe128EzmrM77zurMNXNWBxw51V0jJDaZhc0wIG5PAAZgNMZ4XWc1vwcCg+BKN3D67y9TIwPU3G4ARtdgPu9gQAo+dhuOAQfXA2YSEc7qc9ucWR0EOA5iPDx3m/Xi3Ts1roUr+rvW83qYnc2qMtqwARSd46Z4kTFnNTFgcQwDAkDvnMV7S4bIg0GHFOdA99AavJKEJlZ7gS1f1/PK0pqhGDWfM9YR0u/gSQrPbKPxsozrUqx+xKtxVmsOEvs4q3WP6fr2gPuV6MyC2NnvT5aMeFEXhWoQgqLUBU5nVksdHoAxM8v3Lel90LzcKWK12IFWOOmSBNoLScaikzOry9IAA6LgNRuL1XaJIpX8+w2c1V4omTQD24kzkXPXtDl2ni/TYBrG+Cp7O/ymbamHy6rvrBZKM6VvjjM/e5M7nshtIlbbVo0y270PGAZkghb142P2f/Fvn0CsvnJU4UE6B9ZrvPZqjSfnJ5Mc9+a1Erc3B/g3P23j19/8zCTHZAe+uft7U7HaKZCncrHasurpuMImWCi0Ntkk70STDRbPlzu285y+2TyEBxOl7f4TCzIJ+qC5JgZuUiZWb+ccd98ocT1cGQd42laFMumI1SsLS5/GrA6cAmncuYe4a9+1K3L3wvLQxnm+3RC8/8DC1WBtLlZft5izmgse8aY22xAF4AlXbdtZndrGx2UH93Y/l3e+0+x4to3AKZEWu1z4OKbzf1mwXl+kBIDTtcu4so+Ys3q5BH7fB34Brl3hh977j5izegoMSEf4iwsPYWDmrJYxSo0wIILjn1Xbe0Dwmk32hR2Hj4m7eMdGrJ7aWR3bmHt0DIiS/2u0ccW7D9sYEENnteVJcEsCEUcN7wR7JGXXwHRTcDa3sc5bGJAJrisA2IsZE4H52P35uzMc+Ruzd6Jl4eo8YXNOPo+9c9fCDZONYYlJJk4sY7G64aF3hMq6tujHVTGrRcCiTghic6KefF4giqLvCFyHzMgBIItLhg0lzGGkHGheScy1As3j2r4akQYIk6e+biY1eRYF4tLDfHYpVr+ZdSlWP+KVpmDtDLoPnYJDBoAsVjueAgPS8DnpLc9SYd1kJ9514Vj1xbhflc5qGy7FWS3YeTKx2rANKQhqaXiKCUOxcSIoeFENT3JKZjWVh+7ZyvBOMrNaoFAmvrcaTq2CWe0SnT5u6PavbVUhKXgwDbXFzfex9BKcn+9+Oc64MEVlVh9aOMs7zmrxa8rE2fel7bNioUMOFVMEX00V/oW3vW339xMIwNevVribLIDVCq++bjNn9QQu6Js3anxudRXppmQM2Kmc1WEIPP88+/WVK1u3OaUEBkQ2IRcLnwnF6rxyaFgoDDCrTR3bsgU0zLpXGOtRvtEoapNpbmCJYCaJQDeFk2wW1WzB33VWm9y3vs8C0DqbYquNhSWF0SkWpV3WvgiAc+hi9eLI3RGrb9+1cTM6M8eAPGaz8YULHkkCOv6CV89ZXdfMWT2FWA1sx5TlchLOfuBVvbm3Ueiw6yJyMoWz2sHBI+is/i//S+CP/rZfBAD8rrf/LJu/mWBAIge5REhiQiXx/W1Z8JySdXW2uwSFOYCKq+DdhzsGgQlwFbAsREGFuPS3Y21VYZN7mHn0ZyGYOex+7Yzf69jGnHjPss3WPgcagNEz64qxoOUqTksXYWAgJMk6BCc4bhMMK3NWGzyv8zmYs7rDrDYeC8W7b7PB//q/ss//a26+bNx5d+WgYGI177a5e89iyC1DsbpOs2bThoWBGjqrJRiQMivh2JW5WC0xIKWlZ4YBGWBW7/zsfcr3Wc7ZgFhN6fCH6zLHttJZDaYVEI4LYNhZTcGACGxo5z2zKXzMQoOx+7KM61KsfsTLxFmtbJMgisBN262MqSsW5hSxWuzsq5zVRLHat4t+ix+AqqjIu9uuCzmuoiy314BwUGkqOWAc8BD4kLKdNuua3Jbq+I6SXQ6wNaVua0+DmFExq6ktz67LdsYl91Zm6qwe4qETxWpph0ETiEq7ByzPZeEj7eNOEEwD38eBH/fE6k3mGAkUjbO6tXjIzhLm/KQ4q1UBi0WBhBpyAmwnjZ3jJimmcVa/+OLu7w8OzI4HRtW4Ey+Zs/q2O5mz+rHHLfzYa1+KDz79OvvCVGI1AHzf9wHf+73sPxMOtmj7ljirq6xgzwiVWa3IMKBy7hqmpcqxTUUCifbsHgbEImNAlJkTrdqkmu6/IGDCr0ysnsBZvZxXbEOsLVaHK2OxOnIzxOvd++t8ZdMwIIrNMFMUDAAsjxyc58FWrL7n4ObszFj0vP6Eh7ttZ7XAX5g43gTGqiVWx4WHyMvpG63t+r2/l22I/YE/YH4siFBrrydWRw7xncg3W6XO6o3HWvXJL7GLqfkc8K51NhZNnNUzrxeyabzZbFnwHHkInlHwMjgaqbY7uArXmLgVBRWS9lopz3GWh1hGBfndGIQWksKTO6uJAYsXhgEJJAGLppsA4t8ncVOGvjqHYfRcfUkI3AQu6NnC3mFWV7l5uCA78Ixxi89z/IN/APyZb/z/wXfK6cXqBw6uRwYYENvG0k+xyvzmem42MMeA+P0Q16YzyBADUhdyZzU1YDF0ciSxYtyjoEuGEHlgDGi6s3oAA5JaJAyI9JltVZqC6WYkDEhnfswDvWfRpbP6zaxLsfoRr+ahI7QzKDEgVA7TAH/JZPEURLYclm/yYucCsIz32PC1CZM75qxWhOBVxNZB31czq00xIIECA7KhO32aTYtBZ7XeC8j2HOaAHgpYJG5aAFA6q0lcQsGsnjhgsUGWSFv/DRZPsnT6KSb5vo+ll+J8tXte68xjjhwTZ3UWoQ2ZXp/k7JiUibPnMeGry6wWAU1U94zrInDyXvBVnNjThH9F0fYaXrkCPPOM2fEA3Hzcxu34AFiv8enXIrxwcG8SYXlxPYJt1fiGm7/KvjClWO26wDveAVy7ZnYcjgGRhb0kq4KNWVMxq8uSByHSW9TFcXaqSSYnOqtl7dloYUBMNnBVYnVd63NVgwCRkyHO+udT5+butMODegc1dPc+d3sZO6v7i8jzjUNmVkuD9Qzd9QAQHvhISm9XrI7OzZ3VT3q4Ey/x+TfYKrzBX5iI1WHHWT2FS7VdL7wA/MAP9MMWiRX4VQ+rsEksdh0o70QRNioRq89izyys7CJLYKwAdu8bnGNvwwLY3gcm7len6ovV3BzghQYOYLeWOIDNuaehXyEuWs7qosDDdIbjhXwuvk81zurOvHOdOCxgkfC5+YHEVTyBWB3MbDZudTcBpnBWy8wcBp+Xylld15YZs/rA2WFWNyF1Ezirr4Yr3Lnv4LXXajwb3m6+blJXjiqWkyIwIPcd3IjOjMaDK1HMBHD+mTUBzgbvGd/vIyDY+8ugM8h14VgVyrQ/P0xLF35AWNONYUB4iKfWOfO5cW9jnFcWl4wBTXFWCwxI3T82WawW3z8QsOgTAjeb4MZOl8Wm8CcjG14WrS7F6ke8yGJ1ZMuFL4AuAqt2sxpeM53PKXVWm7Q3CT6pxK1ssjBXspUbcYIwufE8uAMBiyaTG9WmhQkGRCp+tipJLXbPahxb6SQ0RMwMiUlmzOpq8s2FZhNAxqw2SVF3Od+rs1uclNxZTa0gYBiQdevfWpZY5z7mPt315i0C9oy1FqZ3bxVMTDJwVqswIGTjiHBWd8XqzGHCxBQt6t/1XcDb3w78oT9k5irmdfUxD/eTBbBe4/N3IzyzeDCNsLxc4rHoDF+/+Hn2+0dxZicwIJINzHhV0tpIVeOL2Lyk3gJDIjh1UxQimKazgK5rhgGxaBuCQ10xAFireuEj8jSQQ0GAyM2R5P3vz+OCvb8NnNWLYw+rPATWawDAZ14N8bzpxo0QFTddsdrAWS3rCOGblx51IwSAFQbMjSfE6vsuHotOzZ3VTwX493efw2/4W98NQPD7J3ZWc1ZxZPLuusAKJHkxcWLTRQ/H4c9Cv6PvLPaZs/pRF6sNXNUA4M89tp7piAimQqXnSZzVPHiZmhECAK7DQ2d3HMAuwsjsHR6FNRNrW85qUxa2Gzgo2xxoXuvEYc5qiljto4e0m2KT8fiKjZN2190U4Wee1+885BshEZWHjpYLvHXcupiAWb2wsS62zOokrqcJm3UcXIkS/ItXvxTv/4qycUIbO6uP611n9YnHuphMxOoZ52Dz+2ATW8YdPGGI3a4FTNAZxIXl3pyzKFDWxDFG0dHZPjYAvXvM8xBchLPasuC7FROAJRlXCaELG8AoBoQRCfSP2+CLOhtMl87qN78uxepHvJqHTpcv7audquRJg2o3iwu1HtVZrWCmGfG9RPuJxEXXtDxTmNUu1Mxqk4BFp0ZRWVIHMAA6s1qwy7vO6tgyCvwBoBarKcF9Kge0aZjUiFhNmi/tgwExcYGrnNXUxZPsuRVCraEjZeklON+0/q15jlUeYDEzc2wD2Fk83Xq9xmOzM9rE2WFs7iR3emzKpDC4BqJNvyNWGwdXtuv97we+//sZv2OCspdzVLWF9CSGbxWwrXoaYfngAP/8N/9FPGZN48a5kPI8hgGRDFvxumLolkmd1Qbu16HgxpqOAZG5h5qNO4eWCzAasEhpo/R9uHaFouyP+fG6Ml6Y2gdcPOMMo8/dDvHc4r7ZfRsEjI2/3n2HnccuFkRmtW+XUme1KQYEvs82MLsYEEPR8+qTIT51egNvrA9QlxVi4Sg2cbzN3F230xTvrgus5hlrB4AJ5x9lvmVZCEMwVnFn8DpNAhaw+CiK1VeubH9twKsGAHfm74q/AN+08I20NN+t+7hELiTZvsEGi+Df7jiAze/ZMGAInB6v2CRg0/eZgNp1VqcuC1gk3Fte6LDr2prP51nNBC8Dofb4ioWH6WzasUDReRgbHtcP+yiULAPJ8dmu+aHLnNV87Gbc32nmm1eXGf7J59+Lr//KDTtv2zY+7pUrwIN0thWrTz268UQcc57uOKs3sXnAYhhxHI7MWW3ArPbtsu+CNukaFx1c3U5RXnWW62d6eB58R66XACyw0Cdkp/HT7QvAvJLUJgUsjmFAmudMFwMSqp3V0czcLHRZ9LoUqx/xogYsDgmKeVIysZaKAZlSqMUws5qcxCtaviUuujyrjfic0oW5WEDSN2D7fDN+XMuqjTAgPQYTgI0I/KEscvYVq3VeQGPizNQOxYrt9lIxIJ5KrBbPBkVYV11XIXxRxWpXwqwWriQDJh98H0u/I1ZnGdsEiAxcxWIS25qN3bpV4/HZKW2Ca1kI/bLnmhALSGNm9UU6q6eu+Ry2VeNXP+PixSv32NemEJaffpohRUQ9omI1c1b3N1KSTUVzPorv787yDdFYQ/gik3ettD27KIzQIspuI1F5jrj0tMVqAKgr7G4wgYvVhqF9WC6ZWLtaIc8Bu67g2LXZfTubIXJybM77YjXdWa3AgBjcAwC2m35dDIjhxpXj2bgWrfHM4gHO7iS4fRqylm+TgMXQYSF44n3AhSQT1+NFlizUOk648494HaKQi5Ttcaausc495n41eRYuqtoBwa+9ZnQoK+CbKz1mtRkH2nMlGBC+7mi6/QjVoJG6YrUps7rjrK4zItKxXYp55zp1yTg3GW5qClzFlevOjqO2CUI0ua6yd7ipkQFAENq9cSBNzK9BdBwysboVYjtV2OyV4xo/9vqX4oNPvMJ/WGTc0Xd81WafGR+/754GZsxqCLF6u2nBQs3NBPsowm7XAlrjtpGzOu/rECZInCZ4Wf7+K9KSdcnpvBN8f5RZrdstvT10Lce8gn1uFxGwSM56CyREgjxHVdtwiJlRlzVNXYrVj3iluU166IYe5iytzI4pw4AYuMiaNk+Js5rcMjUA9m+c1RRmtQhhkAn2JtdAFsbBjwuAjgGJbKWz+sIwIJmt35Y2wEM3QcyMYkAMmNW5RKyuiooJw1M6q3lbKvllqXJWGzL5GmZ17Gx5ZHmuz0vrVhjCsSoUm5az+g2bidXEVUno1z3XROPKobbmKpiycTYRs/oiaj7HlWCNf/PJY7zr+A32tSmE5eee273nH1EMiG8XyLriHzgGxICd14gGogSqgfoYqMZDwaymjFvgGBCJWF1UNh3L6FnM9agSq7mgoMVntKztxlRnI8A49AgAlksAQH2+wqc/Dbz96gP2dZNnIYpwHGzw8MzZ4TOuE5exX6nM6qxz3fgGLnVzAQBzrlsV8ph9ZrcfuLgZnU3y3P7Y7/4b+MprX8Ctz6V45eECT88fmgWKHXo7jNZGSJqKWT1xNSJV68XQbGBSxWohpLSfBf4us3xvEkTU5OV5wFd9Ffv1299udixJt1WDaqAGLIIFIfbWHmKOYCD+NQJNywGdFAZzDV5hiB1nNfm9tXuy7P/tuVFdc7GathHih33RJ0ktY1zF8TXnQpzVPUyeaXgn5CasBpFocG85B6w7TiCsXn8Qso3GCeabVx7zYaHGl9S/wr5gursCIDgImGEqjvH93w+sEoddAxOxepnjQdLCgCTmzOowstgY295gSQ07g4SzWoLyAmAgVudIFc5qEhbGdRmzWjI3BjgGhKIZAfC9PhKoOVeKsY2fLwA1szoDSVz3Q7tv7jPp8L+syepSrH7Ei8qsHgLQZ0lNa+kYwoAYuIobB0NHpGsSdE0CFmUYEENmtVKsrhy4xDmj53ecGKIMMSDN5LbLrDYUq+vaUovVucN2SzUDHgAonNU2XHvidnpDZrVnl8gl91ZRgPG1KZ/XyPPleIYYEAmz2oj15zhYBhnO0nB7n4qfYbh4OvATnJ1uz+3WHcdQrK56rokmYJG6gHScvphU1+z+f1Sd1YsFbkTn+NFPPI0vP2y5Z0zL83bH6S//cvNjTl2+v91c6IS9rFZgLc+6963vM+dM3HkfCO4pdX472Gliw6UGLAaSTdGiwLoIMAsUYvPYqYoN3AFnNdBi8u99shKBClysNhD+AACLBeNL39/gk58E3nnlDvu6ybPgOLg2j1mYVGvVV9c1w+0QmdUyV5axszoIsPQTrM7ZMd54GODGBM5qAHj3c+d4bHaGN17JmVi9eGg0Fh4c2SxwV1zTR91ZHXGxWjBfAWxSh21gEgWaMLL6zmrx60cRASLqO78T+B2/A/iO7zA7ju8zE4BErDYRgD3hgO44qy3K89qq5azEeR7uOoArF0FoJlbP5tbOxs3DeyWOg800zurOtV0XAeYhbS7rzbxeO33TJWwwFhxdc/Gw46w2dqzLxPqiYBgQg+M2RiGZs9rk8xJIHS5W/8rrB3jn0a1pMCBPhvjA9c/DfvnT7AtTzA35MdYPM/z5Pw/EKf/8DdBAV5b5LgZkIrE67mJAEmIAoCgVs9oEA6IKjOdF4mz7PmNWKzAgWVrTmNUQGBC5szrJiFkOwiSSy+ecaWYxjUsbAyJxVk+BWros47oUqx/xSjP9sDoAg0yfZuCZCgPShD4RF08KkS5PKzrjjLvoZHqqCbO6Cc1QOICp3G7PuxhntRe5fdYfgE3K3Z8X4azOHf0X/ICTsDBpp3ccWFaNKlMwqylpzI1Y3T+nIqcjZoac1ZZV09tShXOk10Jr3pa6jAqc58H22DnnpZksoIMAh16Ms5OtGHHrnkfHgAAI/LovVpsuIEUAWlusrirEhY/ILR5Nt9tshpvRGX785WfxTdd/sfnaJPWN38j+/1VfBRwcTHPMKctxsAhyrDK/9w47PweWRK5w6BRI4n6AjglbWowfvcm4GA9dA2e1hNH6MJ3heC4fz0ePORawSJ3sS3BAAOt+NuJIAsByiUM/xt/9qSfw/d8PfPjpT7GvGy7Orx7muJcsdoRKq65ox+ahR2m3O0wgZkzWTmHIumJWQLIu4Vv5dPz62QyPz05x65Ucr5wu8fT8gdFC7/Cai9Ms2t4HE/F/L6qCuctEqtY9EOcO3RwAIJpZiDvO6jrh4r0B+/XCy/OA3/SbgJs3zY7jSzAgE7iVpc7qojAKNQeAo0XJ7tmWA7iqLdie2Qb2/MBh4Xr83nr4oMZxsDYTUmTz+SzDuvDJeqI/64SigjurDYVaJ/KZq3hHrHbNHgFZwKLoPDSYH4eRxFmdmTuru2L1J28d4p3Hb0wiVr/4ngj/6bO/ALz8MvuC6XMLAFEEy6rxqc96+LZvA/7I1/4Y+7pB6OqVg2IHB3OeeFh4yTTO6i4GxNhZLXEsU0IQRQlntUJYZpv5mvOjEWY104wMmNUqZzXF2AY0ZsQiUYjVRJOnHzl9Z3Wes3fPpbP6Ta1LsfoRLyZWE1x6wv0qdVbzlg7dYw6IabnBAlp1XKPgCMdhg29u9Vx0jbOaGCYl5XPWtZE44QaOVKxu3OVEZ3Uzi+u8LTexbcSslgWyAACqCmnBAu20zlnFaOV8TvLcToSqdTm1ZYmsJDKrxYtSggEpCjBe2MTOagD0CW6HTyp+BmNWm7nTlrMS59nWQVQlGZv4G2JADvwEp6fbL92675k5qwOJWM0XkBYViC7EpLZYXRSIi0fX9Sec1d/85C9jYa3ZPTWVY+A3/2bgu78b+K7vmuZ4F1CLqMQqD3rj4fnawoEXk5zVoZMj3ijcrx4dMePLNsSEUEkNWAzt/nsmZy6l47lipTJS+zqrKWK1ZdWoO6uyeFMbCX8AgMUCh36Mn/jkY/hTfwr49denEauvHRa4n853hMq6JIrVglmd2btzmKJAUdvwqPcWANg2Fnzs/pWf2+BLr9xlXzcMwgMARBETq1+vcetsYTRuA8Dyit9zqT5I5zgibq5cdPkzF2npbe+BskSce4h8erhcNLN6GJD4NKPP4d5q1Xa/imeBb7ibuJX9oM9WJgfQt+pwUeIkjfpBiIaCBxOr/a1Yfb+azlndEatNske8uc9En9b9miQw7zgT90GryyI1vAeUzOrSM8vbjeweViJN+Xre5PPyfQBcsM9z/MobR/jSo2nE6vd/0yH+wLt/fPuFxx4zPibCEId+jH//K0u8973Ad73wU+zrHMVFqSuH5Q6z+tbZnL1nTJjVc4lYnRoi/fg7vCcCG2JAQqdAmsrveZJuIhB5qoDFFPCdC3BW50QMiMifUTC21wltc7gJWGzdA8374NJZ/abWpVj9iFeaW7SAxSFmtUhKpYZJyVzFJgxFxXGNGGeWBd+tpGB/E2e15fNdeBVbmWp+VTCry6Kmi5+AupU6M2ibGnJWc7xEGELPWaraCOH3lmsTxT/HYUGbkslCDdCcLp4H15Yzq/PcDANiAajS/jUAQJ8wBQFsq0YVtwS6qZzVi3pHSIjPcvMFtO8z9uvp9ho+OPNwJViTXWRhiH7Aoul1bWNAOgvoR5WnCt/Hb3zbZ/CH3/uj7PcTBOg0FQTABz/4SDsQlrMSqyLojYfnKxtLnxCC53mI3KzvrG7cr3TEjO8UfdYh37wjd6UqmNUP0xmuLGhi9T4BiwD074sgYB0sq92NhdOVjQNDFxWWSxz4MX7p1lU88wyasCpjZ/VxxZzV/HhlycIbAei7li0LgVcxd14nb8AEOSZqOWdj9yd+LsWXHb1GO0dZzWZ4LDrFG7dqVFXN1uMGx7WjgDmbWgLVeRbiYPFojrHBwkNWOtt7Ks9xmkU4mNEwOwAQzmzEbW43gNMHJXsOvhjEasuCJd5TLQGYPIfj5Xl9cSKJCc7ETh0tS5xks50NFgDmYvWhyzZbeZfBw3sljv2N2XPr+7CtGmWyK1aLP6OUHXYc0GDGK+MgwDBk57pJ2ZxL3AO+wXUV3Zdlve1k5agho4DFmSNlVoemzmrLguVY7PpuNnj9ZIYnZifTjN3Xru2e2xRidRThy49fx9/+t8/hHW8r2b1r20bvWiZWb53Vt84XxmJ1OHN6awTj4EbBgu7mTkzArE4UYjUJA+J58vPklaU1eZPFDyx5wGJdI8ldmiGRs8B7JjRem9RhvH1dDEjksvlxa9zKk5JGIrisSetSrH7EK81sGgaEu197wU9gAw8JVaBCNQg+J3VhrhDWTVOOfa/u84fQEquJLwp2EEXIJFWsDmwprsOIgQyondUpD/whOqsByMVqKkNO5aw23AQQbVi9HViTyQJ3VuddDhmAojS4t/jEpuemNG1LDUN2vvFuiFBausat1AeLakesXj3MGfvXpC8zCHAjOsPtB60xr66Ypkp1VodgbrcOBoQchgkAto3AZdzrZpHDWYeRXw7/3TerLAvv+3UePnjjc+z3j2IQ4gXWotMJIOp8bTEMCOE9GzpF31nduF+JJ+q6jCHYHWMM3zOMyafAgCzpzOqhgMUyyWndFkGA0MmRnO++Z85WNg59ggu+XcslDv0Ev3z/Bp5+omT3QzvUkVjXrta438KArB7mWLgxe78RzlcqVue5WScbr+USTKz+pRpftvwC++IUzuo5c7l95mXuSosi+vwFAIKAvf/4HCaLS/aOfUQXj8HC28WAZBnuJQtcWyrSq/aoaG4zIaU1bj28V7IN3C8GsRpALcTqCQXgBuvXuq6bxMbcVKw+rHYxIBOJ1d4yRFnbW7FaOKtNNtlEh9imNWcx5aH7Puu+bDurJwgXhOviKIxxmvDuqLI0RrbAsuA7Fdtgagdilh6imYFrX/KuTXOLlkHVqVlQIS48rO5sENkpmxtPMZdzHOCd79z+/vHHzY955Qr+s7f9LH7y00/iHU8ydAkWCyOTxJUrYGI1fye8vlriCWOxuu+EZ8G4hs5qyTyuzCs4VkUXq7sdna0ioUv4MSVyEYAJmNUyxKno7g1q/XuBr5V782Ne68Rhoda6GJCZ29tg2mxgzEO/LPO6FKsf8Upzm/ZyE6iCtC+axDGR+ei6bFc7lTmrDQRFhfjZMM6oYrWi/cTEWT0oVhu0Z3si+Kp7rlnNXMXUyZhYfPeY1a5RwCI7OZWzmiCCDgQhGt1bfAd26jYszy7l//zMwAnPW7HSeFdYz7PabHEuHIpx0XcAG6bTHy1Lls7OJ43r04LtaBvB/li6+Z0TtlA6PwdbPALkCXnjrO60egIwWuj0xCTOOjRJkb/wev757a+Pjt6003gzajGrmbO6hwFxsPRozurQyfthNwIzRNVTRUeIZJOtMHBse6EEN1UUeJjNcLwgMqtlbu1WxauS9q7xfURujvhs97xOzx0mVhu2vh9GGaraws3ghH1tgi6Dq1ex46w+eSPBkR+Tjx34dS+kS4zdpqih5YGFVR7goz/n4SsPP8PeWVPwj4+O8MziAX7hM3M8u3hgxCYF0Ntw//wXLDy7vP9oBtiCi9XtgEW+ueCFBu+ZmdPbbH1wr8KV8ItHrMavkVi93vDwcYP76/AAOOkwq402xkWJedUOs3oCsdqZWKzubDABLVexoehzZZ4xoXKzQZEUjLVv6lj3c8YCb4nVaenSMm142UE/iD7NbHN3OYDHj2K8tj7CP/vRGt/0+K+wL05lPPiqr9r++sYN8+PduIGvufkyvuzK63j7jTP2NcN3wuKKz0wHnNt9lgZs/mYiVs+dXvdKnDnMpWwQsOg7ZU9YThNibhg/Zujm/SwLXiQ2fMOsVjirM5CZ1Z5vMR2ma0Rrd2HrljChdYPNea2Fs5ogVneDYTer6lKsfgTqUqx+xCvNbVKqqRDpdiYgvOLEoj18IrSw23ohmNWGzupumJTp5MbzIEVrmDCrh8VqE2e105s0A2w+Tj5XAPB9OHa12+IHYJ26bDAnitXdSVhT/AWkzZBTBYqVJUpDZ/VgGrOBs1rFrDZx7QcSgWoTW8ytTJ3gWhY8p94NvJkopOrKcc0WDlytW58WWHiGYjUPAbz9kC2UPv1p4O1H95o/o1QYAkkn6VugYEwmIYFf74rVIkX+UcWAALti9dd93Zt3Hm9CLRe13Fm94WK17uKcC6q9lsyiwKbwMY+I94F4f3cXD1Vl9K5VBSyeZRGWc9q5zmbApvDVYvWaONkPQ6mz+nTtmjurARwe1Hhq/hD2nTfYFwwRIABweMVhjkouJt1+JcNjs1PyuMXGF6/3eSWla4xwevG5HP/gs18JpBkem51NhwQ6OsLST/HJ7/xT+J+//m+bu7X54jyJWZv+Z19x8fzy/iO7eAyWPvvMWhgQAEaishX0AwYf3K9wJdh80YjVlt0Rq00xXlA4q2Pi+qhVR0fYdVZPFdIVRWzuLcTqh2BitSEGJHDynf3bOuXZIwbOagC7YvVEQu3xImcGifUar9128dT8ofEx50HOWODiWeWObXKoOSBdK07iLgfw4uMrvHR2A//kn/r4yNM/z4431Tjwvvcxkfqd75xm8zIMYR8s8Au/449jdo938BjwqgHAmvP7PY6ZAUeYcw2eLyZUtvSCuubOajMMSODkPbMUw2oQ7wPugk4yuSZAdVb7dsEyviSVZgbM6sCSmxmKAnHh03jzfA2udFanHlsza56vE/koK3v3fXDprH4k6lKsfpSrqpCWDm1Q41wjGYB+E1v6TCNgu4CO+26vxCRUTIh/2e7fn8RZLWNWl/bFiNWGGBCVsG7ErA4CRE6O+Hz3GpylPg4ojFZg1FmdVw7cgHK/SnZKi4Ixqw02QqTBEYbOateSO6sZtoX4eQkXeOcFPIXTx/d4m6OwgIq0c0NndXAQsIkIX5ivTkvmgjZRUpZL3IjOcfskAOoaL70EvHjABSWi8CFL+p5isRsEYGJ1axMgLvxHN2ARAN72Nvb5HB0BH/jAm302v6a1WEDurI5dI2d1K0+PFRerZxFxM0gschQYEKpO64QeE006WAkT7ud8DuZKU4jVm3MDZ7WTI17tvhPONi793dWqwxs+nlk8AD7xCf6FQ6PjAYC9mLHry2+IN17J8Vh0RhbCm/Gl66wuzPMGvu03nuHjD57Et73rl9kXpkCAAE23hnf+AId+Yn5cy8JBkOEsZ+LfZz9v4/nlvUd28bi84uEsC5t7IDnPWfaKyf0qyR55cB9fVBgQy7ZQVtbOuxaA0byo6Whst31PIFYfHlk4aQXAlXk5iQO4eej5PO7l1wM8Fp1O7qxOznO29poQA5Jm0wi1xwesEwibDT73mofnJti4WgQFVp0QV8uqzc5Vsk5indKGAYsA3vF0jF85eQw/9wkfH7j+ebZZMWX2yH/33wF/8A9OczwAuHEDjl0DL7/Mfm/abSM2ZzYbnJ+ULG/Eto2ugeV3srPKkoWlewX9uI7DNJPC2aICwbEaJmK1UyDNB8Rq3VBIwaxWHDMRx6SgzEKrj2AEgDxHVjk0sVoVQM6LmfFoc04AO+uDOIZ5oPdlGdelWP0ol0g69olMH5mwDBYaQJqMiUCxbuiTaVibGHw759rsxBNf7L5XM4GuhwExc7+yg0yLAXHHnNXUSZPvY+Zm2Kxa17aqcJ6FWPpEty53a/eCAIHmumg7EsRu8UbW9m6IAbkgZ7XsRZkXllHAYuDkvedrkxiEYW4PveusFg54U+OEECK4WL0+K80xIL6Pm4cJ7myYY/ull4AXZ6+zP6M6qyVidZmVdG4cryAAa9NvhX9N4Vi/0JrPgT/2x4A/8kce2Vb6iyrB6e2Os2cblxywGMrCbsqSidUzuljNnNWdr4v3jGk+RAcDAoA8GXcCl4U9qcTqdU2b7AcBFl6K89Pdd8LpxjPHgAA4eGKBp+cPgZ/9WfaFJ54wOh6AZnyq12w8fOO1krmWjZzVfWb1FGOMc3yA//1b/jK++/mf2Dl34+qihSYQwQ+jlDlVkwQvf46L1Y8ob//JZ128tjlqxOq7b5S4Hp5PL1Y/tL6oxOpFUOyM3U0XnombMnTYGqHLrPb0W8jbdXRsMQwIH2fTuDZayzQVRaxTcp3g1VeBT78+Z2LlBMzqNspqfVaya2CAAQGYQ1uU6XpO1NXDEnfjJROrX3WZWG24czcPCqzzvrPa6FwlaEN2DSZwVj+X4e+//H6894m7bBNk6rHQJGNAVjdvsv9/5jPs/4bOasxmiNwM8UmK1z+X4fHo1NwF3l3bFwXi0tB4wkOSuzpEmoLWMc/PM3RyJJn87yapxTZHde5d32fM6kKBFsls/WPyimYW4m53GEDXCoDtul5ixkRdY525tDWz5D176ax+NOpSrH6Ui4egBT5hUSLwBypnNcXpoRDTjJEC3P3aMbsZDZBAK4W2F7B4Mc7q3IRZLViinQHdOGDR99lLfd26D7IMWeXAjxzajrHrwrUqKQ+dLHyIVl+ZWH0RzGqT0ELBrJa82E0xIDJndRP4Y+IgcrlY3XJW12BcPaOazWABqM4ZO259XjEMiOHE8cYN4E58AJyd4VO/WuHF6FV2rxIXZUys3h0L0qQ2XjiEEceLtBw5celNQRS42Lp61XzB8BasxZJxensYkMRlAYu6963D2kSTwt1xzjTOaiq7XDCru5lsYjykitVexz0ElnbuWpVRq2v3mO1qmH8Esfo42ODhg91r2IjVhk6Xd38gxO984eeA01P2hSnE6ihim8Mn7P564w3gZmQgVquc1RPkDWC5xFOLE4QnvGvlosRqUxcdgINZydzKmw1eu+3g6cXDSbAtF1HB8WyHWX33To3r4erixOopWvXfAvXU8RqvrY+aa5CnFZ37ykvKrE4ccwzIFZttrvBFTRMWP4GzeuZm2JwV+Ft/C/j9X/NxNoU3eRZ8v2cWun+vxrFvgJjxfczdTCCFAQBJPg0G5EufjfHJk8eB9Zo7q+8ZjwWLqGQdVy2hEoCxs7oGLsRZ/eILFT565wV8+OmX2Bem6oq5qLp+nf3/dW46MX0nRBGuBBs8uFfh1udSPDE/Nb8G3Y38PGfOasMuSd/juROt+ZExBsQpkBYKZ3Vq63O2XZcxqxXHTDKOZKVgQGYuQ891F+F5ztbgxO5uT7auBxqjyDws9fUNmVgtOm0undVval2K1Y9y8ZAH0lxUhLVJxGqys1oIf91jtlNdKcWF9a4I3jCrjTAgMmf1BQQsGooIjVjdGX0bDIhBwOLMzbBZt66tOHeysu7BtUsUiUScEMcmtN+Eio0QUyeh7/RZXI0rh/ICEtiaAtvAwu3p0rEt4jnoCFRTLJ48Hz1mNQBzZ+18jkM/xuk99rmvzmvmyDF0ugRX5khLF//V9wf4yZ8E3n5416jVMYjsnrOa8QPNFg6zmYW49Hec1VNMcC/rYipaOIyv3BOrPYYB0X3ZWhbCoEbc3rAAWs5q4omKFHmJs9pkU7T5i60DnzyscRRsLk6sFs5q3eMHAa4Eazw82X3mzxIPB565s/r5D1zFb3vuF7ZfmEisfmF5Dz/1i0cAgNt3YOasFp0bMma1affGwcHu7ycQlQGwd2r73zuFs6WmeKMAAGnCSURBVHpRMvFvvcbd+w5zKj+iYjWiiC2kV+wZu3u7wvXI8HzFPKUtVp/aX1QBi09djfHq+ri5BlMIwLJ5d9PJZrKJfRSysDa+YZHG1SSOWkQR5m6K1XmNz30OeOfxBLz9KGJOzfXWfPLq6zbbEDJwVi+8BOer7didZjYT6AzH7fd+SYxfuP8UsNngs7dCPLe4b7zRNg9LrPNdsdoyxbZ0xc+6RlK47D4wDfJ9eobjYI3fMPt37AuPaJdJU089tft703fNfI4rwRoPHgCvfi7Hk/OHk2Qj7GQxCeOJ4Vw+8OteTkiaWUYBiwwDIh9LSJxt32e4TKVY7ZDHWsv3enkLAOhaAdBoUVIMSJ5jnQdMrNYt34drl8jj7Wc1BRbqsszrUqx+lEuI1QbO6jTp/9EmsWn8IbED3w1tLEvEhW+GAbH7qIYkpw+QAEuhlbmVL4xZXTn00ODARlHbveMWeW2GAeFidbyRiNUGrglnwFltAbR7yy5YiFK7OAaEPMfnzLDuvZVuSkTUF5BlwRVOZclGiGvkrO4LVMxZbRCwiBa/veWsBmD+Ap7N2KTxLjveeg1zZjUALJfIKgcf/Q8e/rPfGjO3tsFkNJw7fbE6NndWRzOLiZ+tTYCUEjB6Wb8mZYVcjO4yqxOfFrAIIArKPg9dOKsNxGrfKXsbV2I8JJs8JM6RhycWc9FdtFhNdFY/6IjVpxufOatNRbrHH9/9/UQYkD/5wX+IP/z3PoA8B9644xgxZZmzus/an8RZffPm7mfytreZHa9dbXf1FGL1QY2znDmrH5y5zFH8qAo0UYSn5id47R7LXLh7u2TOakP3q23VO0HZD06dL6qAxSevJTvO6iSuWeelybwocnrdl5vUMXfSiXuTW4vjxHxjHAAQhlh4KdZnJV59FXgquLv784jneujHODvbfum1Nxw8OT8xWiMsvRSrjd0YOh7EIQuDNBTsn37GxhdWx8Bmg8/cnuP5A3Mk0DyqWO4Cvw+qfIL5sefBQssYU5ZsPe9VxmK19cTj+Eff/D/jWc8Mj/drVi++uPtvfuEFs+NFEVt3PLTwmU/XeGF5bxKxGsCuWF34iKjdcbx8r+51R2UZ2HhAxFCGDu/mq/vnlqScL61zbMGsLhz5McVG04QZV6aGMWkWFf856yKghZv7Pq6FK9w72T73U2A4L8u8LsXqR7mKAmll4KxWYEDIzmqRGq1gVpMHdYWj1DQ92g8stqMpCS00ZVbXWUesLgrGVvZpj5QXudKAxSKvmfhJHSh5SJUIpgfYuZMEZVGuC9dWiNVU1zbHgPQY6/wZILvIhADc2TFerS1aAMP2sPLPqwA8g4BFqbM6NXdWL2YV4z22mNXGTD5g63C4V6GqgPWqZsKyqVh9cIDjYIPv+PAt/Mk/dJt9zWBCHs4dhutoXdw0hXFbajSzmKu2JVbXACz3i4sF/ZYpiVgLAHlpsbRzwss29CXOau7KIQuKjiNPZ69rlLUN26NvXta1tStWPwRzaBqI1bZVo8zkThYy88/3mbP6dPffukq9acaYMATe9z7262vX+k5jSi2XeHx2hndffwOf+hTwxn0PN02d1SpmteE/H74PvPOd29+/612GB2zV8fH21xOI1QcHaJzVZVGzsK5H1VntOHj64BSvnB8BWYa7d4Br4cpMUOKdZ233ayPaf5GI1U9dz3ac1XFs7qyeL22sO502m9Qxxq5hPmfOXC5Wv3YvwBOz00mY1XM3w3pV4403gMfsO83XTY55FMQ4Od8KVa++4eKpuYGz2raxDFKcZ34zdt1aLfH47NRYrLbmMxwHG7z6hQppZrEQV1MMyKzcwYNNMTdscIEJf2aF+cyboOvu8cfxoSde2v7+URero2hXBH3mGbPjzWa4Eq7x4NTBZz5r420HdycRq22r3oqoRTFJl2Tg12xDrI0BycGc1ZT7y7KURjyAOau1A31tG64DFJWzNTK1qkH4UMYv32d6Q2fOnawKZhgz6G5Wi9U+Way+Hq5w92R7Tpdi9aNRl2L1o1zi5UZx6fE24p4zC8Amc2nMat8fxoBQF+airaV9rnXNBl0TsVqGAalrxg0zCDdwrApl2nlJmGJAFGJ1ntVmPFHhrI63X9qc5mbOEc+Da1VScaIR8Sd0Vhu59h2Hsbg6L7XVCkzwoLr2vQFntUV37fsO3y1uTew2qWvclvrE1Yy5ki7AWX01XOP+feBP/2ngT//4+80DFgFgucTveO7n8W3v/2wT3mjkrF64zP3auhGS1HyxO5tbu1iJqa7rZV1MycTqooCFmj2zhGcsDOq+s5oHNJHCY4Bt5kRXrOb3l+XQMwwA7GJATi0zBrTr9lFTrYpj0BYlgll93rmGdcVMWlOwen//7wf+6B8Fvu/7jN1uABrB+z2HX8DHP84clTM3p4vVoSVlVqelyzInTOvFF7e/FlzRKeo979n+egK8yOGRhbMsYsGVNZ9/PsICzdPHK7zC3Z9371kMW2IoVkcdsfrhuYcjE67wW6yeupH1MCCRqVi9sHbxDwDWKTGcq12LBVyrQn7GJt4vvbHEi4d3JnFWz90U6zVQVTWclM+NTMRa28bRLMNpujUzvHrXNxOrASzDAucZD8Ssa9xaHbAuE1MUymyGD1z/PP7Y3/0yfMPTn2u+ZlLzqGabFnw+n8S1PkqhWyLjSaxrRUeMP4FYHUW73SuP8FjY1Fd/Nfv/V36l+bt2NmPM6jMXL7/i4YWDaZzVO2a8ifJnfL+fO5GmFnwDJI4V+HK0BjgGhDAuWgF/1rtd43WN1KTL3Zcfd31Wsk1ByjEFYzuVzDmLAnnlwAsJ44zv43p0jrun23HvEgPyaNSlWP0ol2gpp6zJxGJX8jDHmU0TK4WorHBWk/Up12Uviaz1AhPH9AiQfF6Ns7rDe4xLH5FPPG53t7x1vkXlwA1oEzE3kDOrGwyIibPa3XVWnz0scWAiTnCuk8xZnW0K1t5EDVjsYmvKkm2EGLj2G4diSwBexzYWXmLkrC4qCbalNOCh2zZ8hydHt8LaNqmDuWcmVj95I8frm8MLYVaLdryf+AnAQcWY1aZC0nKJP/SeH8MT/r3GnWQyIfcXPtu4at1gSWrOUIwWDku6bjGrAVxObB7VCgLmAo5b46wYc4OA9E6IIkgxIADozxd3Vu+8E4HtuGCAhQLQSzsnLxoAwHWZgLKRX7vGWU0Qq68Eazw4a51XVbFx3LKmEeksi/E0205gk+LC7HuWn8XP/1y9/byoGBAhVnfmMMBE3Rsf+hDwwQ8C3/M904j13eMul31eKaGuXbfw915+P37hlxwsXD6GP8ICzdM3Evzgz/x2/D/+pIV//UuHeM/V14wxIN2g7KriDvMvFrH6sQKvtjEgqWXurD5wpM5qY3EiinAlXOP+CZvLvXT7gInVpvMtx8E8KHB3M2fdhmLeYWgOODoocZJFjTHg1bsBw4AYoFCWYc66+bhY/UZ8gMfnZ/SweFHzOf7we/8Z/vHHnsE3P/nL7Gumzup5jZU4V7Rc+yafl8v41I0BZ0pnNbCLsXrUAxYB4Hf/buDbvx34zu80P5bj4MoixYNkhrUwHpm+DzwPoVNskZl5zjAghmJ1EKDvrM5AN8wBfR56q+LcpW20SAJBAexmZBA1E9m5rs/5WpGIFgmdHEl3ftz+OZTjCmf12Xb9eh6z+e1lwOKbW5di9aNcfGdvFhJeboJB1HVW1zV3VlMxIGqxOqA6qzksf+dcJ9iF9kO7x6Mzbu3h7Sd52neXX4izOgdcewJndbplx509LMl8VgAMA6JgVifrknGACfdWKLtfBTeMigGxLPhuyYTKVnuTKQbE9W2ps7oo+OdFnIQEXtXbhZ8CA/LkzQKvrY8bsbbIKjO8jCjOrL536uL2beDHftdfx9c99ulJnNUAgLOzrVhtMCGXsYqbgCaDBclsYbMgJb7IqXPObDddlF7WxZTvY+GmWJ9vx+864fcEcYNFFbAIwCjE1ndKpbOavOAXY37rOTB2jrgua01XidXU4wtn9Wo7Ru98VlOKq1OV6wKzGd5z/Ar+2l8HPvT859nXie7iILJZwKJsI2SKDbEgAL77u4EPfMD8WO2yLHbcP/NntmO5QX3rN6zwbS/8B/z5f/gcrkcr9sVHFQMC4EPvfog//zV/D3/nH4a4Md8w4c8YA1LsZI/UVd382RdD3bhe43Z8sBuwaMisXhy5OyIlAGxyz1ystm08c3iGL5wfA3HMxerbk3xWi1mFXz25iaeup2xOH4bGAvDhssZJOmvE6jcehnhsdmrmrJ6VW/RcniMpJkAXAcBshhvROX769/9v+PDNX2q+ZlLzWY117jfj7BThnRfqrAaAp5/e/voR3rhrKgyBD3/YfG3A68pBiS+srmDu8LbhCZzVodMyTBWFGd6UV+DXvQ3nNLcZdo46dgm0RhcDUtdICgehW+iPCao8Ln4dyPetyLiKd4+7OqvoJgnPYwaJWHL9xDUhitU3onPcOd/OLR6sA1w1weRd1iR1KVY/ylUUyEoX///23jxOsusu737OrbvW1vsy+6qRZrTLkmxJ3mQJy6uIwME2tvEbDMbBBpPYway2QgIkL2sSIASIX3jBsYHYscEYG294xbKFF0kjaSTNPtMzvXdX176d/HHuraW7ZyTdc1pd3f18P5/+VNXtrtu3q8+995znPOf5uX7M/NvVAugbDZTqDpJOjItZVDF2uVu7XkdTCiTi5mgmEkoEr3c4SnUvkFDO6hWCom6FX9e9tFjdTMTOrE4ELpqdlYhDtPOSEgkETg3Fqt0SOpbm68g65fidBsdRzurqys+wXJKxndVe4lLOar1OrmuH1Zg7xeqiZSYGpPP/JaVegUWoYhwrCv5U9WNAdmxrqhiQsOfcKi5oILN6yC/gSyf34MgR4MrUObXsXbdDGi1xnJszEgPSEiI7xeqqpT3YDTJ2V4HFQl4qtwA7Nr2J6yLtVJDPta9dpcWqWjYZc2Du+2vjrPYStZVidXR/1BCrbavRVagtdqZ0hG0j5VzGWR2J1c/2842KKOXb7yvNl9W+TESArBWZDLYnF7B9tI6fu+ULrW1xuJyzekNcYwxNKFiZFF69+2F84ZERjHhhJbgeFqvHd7t43f5v47+880m8/54H1EYDzurIpVkqAZ4VnsO9fC4YxEoFKm8/zLRTzmq9PoybcpSRIRooNZso1hy1kk1TAN49VMCZ/CBQKOD0XBp70nNGRMVUCji2OIadWXPnQX8/sFBNtj7beiOsvWJIrJbFksrwNnHOhtfSQ4njsKtFdY3R7G+mM0C+o8BiK2JGM7O6y9wVOavjGm+W833fB9x5p6q7cMMNZva5gRjsb+KrFw9gfzosMqorVnteuy6AlO04CU/vOuB6YkUcabUm4hdYBNou6OUCT8vcFaOIZ1gQdIVYrTvR5DhqVVC+29xWWGqq1c1x7l+OmlAsllf538StmwWEzuolTOfbGetzRbXCj87q9YVidS8TLfeMk3sZOrNWc6oW41a4XS1buuM4Y194hYDnhPEH0b6i+AcNsdrxLHWTWOGsduPv93IxIDJ+gcVVZzWlRKESLkHRydX1ZZeglpurI6NTlMR1kRDy8s7qGJnVqzqrw8kVzXHeCgG4UBJKrI4bA7JagQspUW8KOImYBRax+ix8oepot4Ht29GVWV0pNfWdIwDgujg8OInFioc3v6HejtnQFavHx9XjxYvA0pJ6rjPQ83010O0ssFjVH+wujwHJ5aAmguis7k08Dxmn3GpSAJCbralYpJiiT5AUK8TqZrWuBucak4yu1UClZnUXJtIVKsO6E521AYw5q0urX/OKJcQTq5NJ9b8qt49rcaamN9H6XJDNQgjgkU+cwFjzQmtbHLzAQmWVPHQAG0OsNkUqhX2ZWcwXPYw4C2pbL7sJ+/oAAHcdPI3rBs6qbTrHG66QK+TVeXvsGHDlYCjSGMgE3xCkUrCtBmqLavJ6ctFXKwQ1zgPhLut3Nxoo1FwkvdWLxT4b9oyWcDo/CJkvtFfcmRCrR5J4aG4n9ljnwg36ERD9AwKLVR8oFjE3B6SdUATTEGjSyWaraOHCZAX9bsmMWD04qPpXuVCs933tSbFUqju7vFQWysigc41dXjcqMt6YmlvKZoE3vAF4xzt6+1q4RmwfraPatPHeI59SG3TPg0QCgddAuW6rcUxULD1u3ZEQz5Mr7uHVmohfYBG4dAxIrabMeG6M69fTOavjTrKEUaSdq4KAMAYkTr8wPNaUU0WhYnf3j6HqZonwZ541QmAkXcJ0Od3qa88VfSVWb6X+Vg9CsbqXCS+WcQPo/UQN5cqym3iYw5QMYlx4ohiQVQTF6HfGxXOa3ctd63U1m6cbA7LclVSr6S3tuVQMSKOBmkZmdevC2jlTGrk83JqWyyPwJUqNdlTB0kJDDfjjOnJs+7LOaj+Oszp015dr3XnNrRuljrPahZoI6Wi4+ZKtZnXjOqtdgbq0VkyE1JsJ6ESJrnBWh20g6dS0OuR9QzYWq0HbWW0gAgMAIAQO7Sjgc6/+XbzqjkX1v0sk9G/s6bTqfJbLwGOPqW2jo/H353kQQqJZ6nBWVzTdDQC8tKMmFzrFarfEjk2vEjqrO8Xq2akGBr34hcr8QKgYkI5rgXbxL8tS8UWNlddDAFqxUFm3hKVC+37SEqs1CiyqJZmXEqut2GK1EB1xBwAmztTV8vReFqtD55+VW1ARRkLEjwG5nLN6K02IJZOwhMTVI9MYsRfUtl5uA9HKoMXFlltVS1BKpTDkFTA7r86xRx8FjvSdV9/bQmL1iJ/HzFQTUgJ/8I0b8ZYrvqF3r11ecDY08xgRq7dVcXppCB/7RAK3jx5XG02I1eMZPDi9F3eLz6sN0cS+Bv0DQsWAlEr43OeAu/afDH9ZfAEwk5atzOoLZw1ety2ruxisic80Y7WEdaDDta/prPbtcAwuZaswrucaclZvcXbs93D0X/57XJcJ26qBduB74Sq5YlHpL1JoO2pdV3Qb8QBUagKupWGUiVzQy2NAIt0kzml2qczqUDPx48a8hvEqK8TqvEZ9I8tCyq2pegON7mt1OV+Pp0GEjGQrmC5lWteC2WISg4wBWXcoVvcyOgPTaOlFZdm/OOqMxczB9hK1VaNFYh9niOdBzT52dBrNZFav5qzWiAGJnNXVlVEojaaFhKspVi871kLdQ9Ktr/6eZ0gyCJ3V4WebW5TIajqrbdFEo7byMywVY4rVQsB3myuX04duBC1ndZRd3iFWF0qW+czqcNmYbcfvjK5wVjcaKNZdpLy6llgdZTbLknI+X5xzMeznzdyAoyXuk5Pq0cSARIj2ICza75498ffneeh3S1hYbH+GJgYkrSzs6Nyis7q3CXOQF3Lt++LsdBNDfj5+ZnXkrF5WtFA3usezmysK82iL1YkE+twyFotOSwQvlQ04q53LOKvLMcVqz1PCRFO2/u6jjwpcPXCht6MPIhf1xIR6TKfjr7RJ2WoSv+PeJWsbKAbEFKFodk3/WQz7S0ZyeteU0FmNxcV2jJVOJyaZxEiwhJkF5SR77DHgcCp0bG+E4momCLOKp6eVWD/oF3Gwb1pbUASwUqyOY+ZZxu7tdZxcGsav/eEgfvmGv1Xt1URm9Y4+HMhO4YgXCuCdhfZi0j+UUDEghQI+8xngnt2hQUBbrPZaYvW25KK56J6xsfZzA/tM99so1L3WxFKpLBAk9HPLvYQSqNFsqhiQJsVqY3RmdgNGroO+D2U8KBZRL9WQ0KkXFeL5Qt3DO8XqqmZmteMo801lmbDcaChndcyV8wBWjRZpFViMg+siSNS6VvMBQH4J8Z3VAJJ+s0vXiGgVboz5fxvpq2K63BarcxVPjem2Un+rB+nh3h6RVY3sHdtGkKitFKujZSJx7u/hEuJKVay+NFlnYO5B3dSjGIHWkqn4N3Y3SFw6szqus/pSmdWNhlr2rVEwAUD3hbdeRyESKjUIkqHzLxzwLuWkWj6pm1m9SgxIPg8VMRKjzfpeKNQu+wzKDVvPWR1lhnUEYudLCb0YkNUyq6OMM02jT9cES6OBQk1/wgLpNPq9Iuan1X4eP5/B4YGLZm7A0cDh1Cn1aMrx1ukY6utrCwBx8DyVRTbf/nvLtYR+FMqyLOzcQlPv3CJri6smaWZy7Q7y7HQTQ14hfgxIIFQUTGfOvG60BtThlBuOWVetEMgGVbXKIrzOatdFiJzV5dWPKbZYLQSQTMJN1FFdUILf0ccTuHpgorfPr2jy7vz57tcxsAJPubs67om1SlMtId5Kg6dQiHjHFV/Ai8ef7Om8agDte9XCQlus1nH+OQ6GU2VMF1NAtYpHH2niSOaMagO9PHFjklQKI/4SpmYTOHYMuHE0nAzScT6G1yRZaYvVSzUfaV+zvwVgxw7g8+evwh1XTGE8mVP/fwMZ7vtu6MOPX/XV9q62b9feZ3LAQ6HuopEv4ZvfBG7JHlPf0BGrM8BSVWVWP/6EhYPZaXPX7U6x2oSzelD9/VEx76WSrcYHmqaDroLpjYZyvZrKrN7qrIVYHYiWs3pmVmDEX9K+z7qeUCu8l9UhStka7ctxVMRMYdl1Klw5H1esFujQnTr2WW448WqnhfsN7GprgVFEoQD1GcQUq1NBsyu6p7XfKF4k5n0hnYa6FoR9LimlutZupf5WD0KxuoepFOrw4uT/AuEFYnWxulh34/X1w2zpFctSI2e1xo3d9a2u5fRGRMrIUbtKZnXssU4UA7LcWa3rLl+lAFzk8kj5eksSW87q5VEFcT/c0FldrzZW5EXlC0DajicCe55c1VndlBYsV6OITpBAuUOsB4B8xdGLAfFWcVZHEyxO/P+X50F1bCJxInRWx1oJ0Uk6jRuHzuLBJ9Ug+vGJLK7qNyRWR86exx9v/S4jdIrVOq5qQInVQR7Tix3F2qoGxOqooxVNBC029VYtkLUlCJRYvdD+n8/OQlX7jhsDkrRWOKtLJQPO6miVxbL7l+7S1L6g1hUJZESsdi4tVpeqMcVqQDlK/TwmT6uJxqNPOjiyUZzVZ892v47DaoVhowinrTR4CgLAsnDr6CnsTC/0/vU1igGZnzdWx2FkoK4cX4UCTp1sYm96Vgk0hopY9jyhs3pq3sGJE8D+9JTarnn/TnYKKY0G5iopDGWWLx999th9KYwnF/GuFzyoNhjKFb7+pQN43+1faW8w4KwWKXVsX/xWGi+8QyJRyqtvaPTlMgO2igHJ5/HZrydx947H1sbIYOBakBpwVQxIOLF0YSFQTnBdV+0ysTpf95AKNPvyRLFzZ/v56KjWpHBEELRjQCanLYwF+mK1qjuxrA5RRfWZtMTqRB2V4rKxpk5spuvCTdRRK62MFpFSxB+Dh87qFTEgBagJIR2xuu6uFKvzUqs/Kzy3bRBoNiEQHjdXy64rFKt7GDVDFPNkdl0EidVjQJpSIOHFO5E9D93VswHUq03YQm+5jOcLJSwvd1brFFgM7JWZ1VEMSFxn9WViQADEv6B53XEC0T4LNU87P69VBC7skeeWgIxTid9xtCzYNlBvWCtuFEt5S8NZjRWij4mImXSqW6wHgEI5oTX76ngW6qYjZqCE9eWTNrmaj4xfu/wbn450Gi/a9iS+clwNbB6/2IfD/RfM3IAjZ8+x0I0zNKS/TwC4/vq20HP4sN6+wirPM0tea4Ll4lJKOZ50PoOO8/bECWBuXuhNBJG1JRKrO53Vc8CQFz8GJEhZajLMsLPa91deD5u1BiydFTwA+pK1bmd1JYHARIHFSzmrK2qVV6xrbTKJA9lpnHhC3V/PTTrYmZrv7fMrcv0tLKhHTbFaAl2rgkolqOJfW2nwZFnAlVe2X+/evX7H8kyI/uedReA0Y0uGhyRmyilU5wuwZBMJS26dCBAASKWUWL3g4sRxiX3eRGt7bFwXKbuKfDH839RqaEoByzFwbqXT+NZ9v45DeEK9NlUETwjgla9sv9ap5RERCr7//xd34a1vrKjYCs/Tun9lRnzkax5qc0s4NeHiQHba3CTTvn3t58sdtjGw+1JoSKstVudSRsTq1j28VALqdcxXkuhP67v2CbonUl72MiOTdi3jQbGIyZkExoKcGWf1MtNcvuIoU5dGgUUvUVvprA7rnMW6ftk23Eu4tQHEN0hEBRaXO6uLIn5mNVbGm7b2m5dKN9M4XgBAtYryUq1tGN0qk8I9yhayZmw8tJYz2DYCp45SLRRru6rHOrEvwK4n2tnSYSexXJLagycvsLCwwlmtl1UsHFsN9JYVWCzpFOyLnNU1KNEruoBFjjddZ3XHoDTKrNZ2Vve76qKeV26J4xdSeMuBWa2OY8IOCwxWuidT8kVLw1mNVZ2E6hfGb1uptEC+7nU7q6uOVgzIpTKrSw0H2zRiW9wggWpTdk3azFVSGExrOn1SKdwxdhz/9ZGXAc0mTkxnsPfmWTOiz3JnjymxemwM+PVfBy5cUGtqdbBtjKSKahl1XXU+zub6cN+OOQNidROyXMH73gfYp0fw8uQTve/826oEAYa8PGbyfuv6PTtv4Sa/ALj9sXbpp8LJwM7Mal23MtSpuTwWqVSUesIyQrG60OGsriSMFFg8W7mEWF1NxHdWp1I4kJ3GU09ehZsLQMqtqVtuLzurly/L1xGro+tzp7M6KmK8lZzVAHDDDe1iu7fdtq6H8rTYNjA8DMzMqNcGhMqRoSamSxk89VgNV+wKR/5bpbgiAFgWRrNlPH5mHCefrGP/tkl1TdGJAXEcFWFUVNGGtXIDtqmInZERtWLnrIqWMCZWA8Ddd6taHkNDZiatwgKmj53L4PlHQle15kRIZjyFpZqP7zxs4+YD8+q6bapftH078IEPKFFdt28IhP+bapdYvX14QT8GJGmhUreBQgGyVoeAGpcSQ7zznSp+8CUvMbK7dFYgN+sDhQImZzJKrNYssOglE93O6mYThZqLlKOx8s5x4CfqK3KglQ5hx7t+hTGv1dJKt7YQUqsYpKqf1i32FopCK7M6lZSrxoAUC1J9tgbE6vkLZQx6BY7negA6q3uYQl6qmac4J50QK7KKAWjPkq0mKLYGTxo39lZWVCTSRVVtdfK9LlG0UEsEFwKOLVfkFcu6ZhRKZ2Z1FK1Rr6NYd7SXjY1uS+Bisa8lVh+7mMWV/ZNaQqXtCDSaVnfbArBUCJ3VMdpXqw0sc1ZLQKttpbNhpe+obUlpLgZktYgZDWd1a8lYx3nQaFqwXc1LtWVhZKiJXDXA4sUS0GzCtppmBlBjY92zzqbEakD9f3btMlJMayRTVsuowzZ7dqkPu9Lz2suIvUQdlVIT09PAt08PIeuU2LnpVSwLw9kqZkqpVjuYnU9oFVi0U566FnRMNLac1dr3xGVidcXSE5YB9KUbK5zVRgosVlZ/f7Fqa8WAHMxO4fgJpVMe3tHhVO1VMplugdpEDEhH29qSMSAAcNNN6vPYtq3bZd2rdLo/Bwe1dzc8amG6nMFjjwFHdunHNGxERocamC6nMXmhoYQkXWe5ZSHtVVGouUCjgcmLUi39NyEAL3c8mxSrLQt4y1uAV73KzP76+tDnlvCvrv82RMGMWJ0eS2GxGuDYCQdXb5tXG01et7dvV1EQJhyP0f8mFKsncmkzMSBJW/XnCwVMTwMjBmIlSAfXXQfce6+xYrujI1BjhGIRk1MCY8mcdl9exZF2GJtqNeRrHtJBI37bdRzlrF4lBgRAvDYWRousEKt1ndWOo2JASt1/a75k6WVWp6CKoq4SA6LrrLaERKNUxdyFihKrTV67SSwoVvcwxXxTa+YpSIaFnzrdutGJHfOG2RKrOwbQ5YrQHjylM0IJipH4GcWA6PRtXBcCWKVgn55j23FWitXVilTLRTQG/BCiVTU6OtZCzdPOKx7c5mGukgSWVCX1Ib+olpJritV1mVixBCdfSsR2VvuBWOmsNhEDkrXUDGxH2yrUPFW4MmZn4VKZ1doxIElbLRnrOFYAZjq46TRetv1x/OzPCbx0x1Nqm4mbsON058eZFKsNMtJXxXQprT5bKTFXTqqOiKazOmlXUSo0MTMDPDndrzKre1lM2+IMDzQwU0m3YpFmF22tAosi8NV9plOsNuCs9nyxIsO/WIKK1NCJAVkuVlcNiNV2BYXK6tf8aj0Bx2poxYA8dcrB0aNoix697KwGgJGR9vPOa+OzxfeREE3Ui8v7Wxp9jY1KNgvcfz/w3vdujCW5+/e3n197rfbu/H4flYaNR49ZOLxtQW3cSjEgUO7yi8U+iHq4wsLA359y62rsUa3iwgUYESkBqH5Qp4jWy4LHyAjec+1n8SO7vtgqMqg7EWIN9CFhNfHY2TQODIbX7V6dxE8m4VgNVJdU33CqkMSov2TGVdtUYvXZ003sTs/17mdAMDomMFXKdMSALGlfY5QBqaMfV62iUHeRSuoZ8bxEHZXysrGmjgvaceBaq4jVOgI4ALgu/MTK+mmFUkI5oGP25VIpqBXjy8XqKF5EQ6xOO2UUFmqYm6xh0Cv29rV7i0CxuodpVUuNedIFKQulZVm9rQtPzH22ihZ2itXlcACt0cHL9gG5sHI0AKDRQLWZgONpNNFLFC1sSgHLi98JWc1ZXS5DLc/WEb6EUKbq6LONYkA0ndUik1YdsYUivvUt4NbxM+obumJ10+qeCAGwVErEdlZ7HlY4CWVNPwYknbW6Y0DqdeTrHtIa8SqOn1B//3JndSNmJeaQ1pKx8HOtFBtqEsSE0yedxn37vos/+vMkXr/3AbXNVMe5M1O6V8Xq/lrLWR21K+HYesJHWDykWJCYmwOkFMg4FKt7mf4BgflKsuWims3ZWgUW4ftq9UfHfaYlVus4q5PWyhgQA1nYfVm5TKy2tcXqpF1FsbrK+xsNABIiYcX7LJJJ7M3M4vSFUKwen1Xbe/386utrPz9yJP5+PA8ZpxItigIAlCvQXsm2YRkc3Dhu4k5n9fXX6+8vFE0eO+7hyGgYL7JRPgtDjIwKfO78VXjhwUm1wYCIkPIbyqFXqeDipMC4KbE6keietOplwSOdxiuveArp+gIwNdXapkU2i32ZGXz2iT042B+21169bjsORpIFTOWTQLWKZkOqTHjN/5mfCou7Fwo4c1ZgV2qeYnUPMzputcXqWdvI6g0n5XavvKtWka/5SKf0xGo/UUO5uFoMSMwC3I4Dd7WijSac1XYN5arVXjUOVTcq7ZRj97udwF5RPw2IdDON/mwQIONUsDRbxexkHQMUq3sCitU9TKEANfOk46yudzur66WaVjHE1ZzVpbLQzqzO9lvI1fyu+IOmFBC2geJny3KgAWh1Rh0bK1y1pbK+u9xOSJUDHR1vrYai7gwsAGQy2JOew+kzAn/918BdO8NCeDpitWupY13urC6Gzuo4BRZXiQGpVZpwrYZeZnU20R0DEi3DSsafBLBdCzW5MrO63LC1xGo35XQVWJydkRj288bE6uePnsTb75vGLQNPqX3GFeiW07ksu6fF6jRQLmN+oqQ6IboDB99H4NRRLEgMDTZhiaZyVnNA0rNYqUB16EOxulBKqEnhuG7dVe4z2tEa6Lgedjqry5Z+ZnW22TUxXKtbcCyNAsm2rZaPNroHIwDa13LXjTcplEzCTTRQqQg88ABwZCgUqXpV9Ii4917lpv2lX9KbDPM8ZJwylpbam8oG+hrkOWDXLuWqP3wYGB/X318qBcdq4KHjKhon2raV8Ps8fOKeP8DvvvbzaoMBsT6dVBmyKJVw4aIw56wGuqNAelnwEKItrJ86pR5121Ymg6v6J/HtqR3YH1xQ23q4XzSWKWGylEV9eh62aKh7lm4MSNppO6snEnRW9zijOxxMlTP4L5+6Al88ts2IWC0Cv7tIcuSs1tlt2OeqlLrHsLIWOqvjjBfDuI7lOdj1cl1LM4JlIXAbKNXtrvHyUtlWWkHcFY3uKjGvUM5qrai8dBppp4z8bAXfeySBqwcmeM72ABSrexhdZ7WftlUMSIfjq1WgKW5mdZSp2+kqjmJAdMTqPgtLtfYAulIKRUqdzsIqjjfUakqo0DhWxxVKrF4m2Osuz245tjscwIW6q9/HTadxIDuNj39rB86cAe4afVht1ymw6Fiodx5ryFLJVs7qGCLoam2rVIK2OJPqd5DvaFuo1VS2tE4UTGBfMrNaR0fJDiTUeRB2bGZmoPJ0DcWAWELif/z4g0o/SSbNLac+eFA9Dg/3rJA0OAjMVVRW8dkTNeVy0T1Wy0IyLXCxmMVofxW7M/PMrO51wv+NLIZFymRTr2if76uVK4X2tSBXCgu46sSABNaKybtSWSBp6wmVfVl0OatbAnPczn1Yx6HaSKgYq050XTnhiO59r3wI3/sesCO5QWJAtm0D3vUuJVjqEInV+fZ1ulwJzQEUq3sb2wZ++ZeBn/kZY7m6ezOz+JV/8R04uXCFQX+//n43EqkUXr7zMYiLF1qvDexSOauLRVyYssyK1Z3F/3pZrAZWitW6EwGWhSvHF7EjuQB/4aLa1qN9QwAY6ytjspTF5LEFFf9g4P/lpZ22s/qCQ7G6xxna5mK2nMKHHzyI//HaTyqjkG47iP7fXc5qT+/SFRZYXC5Wl/P1+BPZrqtWyOWX7bPYVP0NjUicwGuqVf4d4+XZQqC3onG1mmSICjdq9L2z2Zaz+sv/nMKLxp/ccpPCvQjF6h5GN3snSCfUBaLD8bW02ERGY5+tYgFdmdXQzlDMDtrIVYPWsZ46m8C+zIx2niwAozEowCViQCr67vKWYzv6bBsNbVEVQEusfv9nX4j/9OsSohp+HhoDftu1VAzGMrE6rzFb6qcSK5yEJiZCEkkPTSm6XPsSelW51yqzemDIUvnia+SsBtBe5mly8OT7wG/8BvALv2Bun4ZJBG6rKOiJJxvYk541MnAIMg7O5AcxnCzizQe/oTpgPTwo2/IEAdJOBYW5CnI5wBHhORz3fPA8DPt5zMy1u1PTSz5GfL1CXa0lxB332mJFPwu7rw9YrHWI1ZHArNEhd12g2uh2zgAAqlWV5x13QBJes9549UN46CFAFMM81V4Xfkzheci4oVgdTiqUq9bWzKze6qRS+PBdf4IfOPI4MD2tti0v4rfZ2b5dPV4IxWoTMSApqJV3xSIuRs5qU4Liy18OXHON6g/v3Wtmn2vF8LB6vBgKywYEmqt2F3Cwb0q5LoCeFmrHBquYLGXx2c8C1wyeN9K2skMOlmo+GktF/OMjQ7h+6FxPfwZbHbs/jXozgUpV4FU7HzaTix+NBTrE6oa04AQa9++wwOJyF7Qyd8UUlm0bgV2LFhy2KBca8Cy9/kbgN9Uq/07dqJ5Qx2pYrC6WLZVIoOWsrmBuqo75nIWx5BLP2R6Avd0eRs0QacSApEPxr0NQnJsXGPAK8WNAlhcLAFCuWNqCYrrfxlJHEbzjZxwcyF7QG5B5HgSK5mNAXIFa+RLOap39RoUbO+IqJADL0RQq02ncMHQWb77yQdxy3Y1qm+dpuX0Gs3XMzKRXOqvLjnJWxxGrowKLXRmt+nno8H21NKrDWQ1Ab8LicpnVGve1/mEbC9Vk21k9J1TxN5Ni9WS4lN70DTibNbs/03ieqvJcrOALX3Fw37YnjXwGyX4HZ6cGMDy4gP9w89+otm+oOjlZA5JJjAU5XJxo4pPfA9545CG1Pa6TzPcx4p/HzHwCoZSC6UISo2NLejEgSUstIe6KAUkgSOiJ1Zk+S8WAVKvqfiibqr1qTLC4bkc0Vse1v1Gqqmtv3AFJ5BxdWMDu3eqxa/tmx7aRdmtYqrgq/9u2jUzgkg3I4KAqjD052Rb/OjORtwKdRSsBI4JqOmth9pwHlEqYnLYwumsJSB3Q3i8AdXw/9VNqQrDX+wTLJz50CsOGXH9VFf9l5i/bG3p4En9ssI6Hz47gbz8yji/f+d+BpP7fPzhmY66Swke/vg0vOXBeGRkofPUu/f2oNWew3V1Aq1CEKbE6LOitxreuXgSj48Cz6suH3ygVmvHHy66LpJ1Hsdh9jpZLUvU3dJzVPlBqdDirpWyv6Iv7OYTvk5XQEBFSKFlIuRoFFjMZpJ1JfPXRIdy4e05t2yrmiB6mx++eW5tCydKKAXHTrnJBd4i18wtCZbXqxoB0OasNuF9TPpodec1PnfVwsG9aW6QEAFluX9Gb1brq8OuIypGrtuNOUa5aapbQRBZ2R4FF9Q29itRIJnHL2Bn88R1/2r4Ba3aYDu0q4cnc6MrM6ooT21ntpewVy95NONbheSr6Jfx/yaq+WG17iZXO6jAGROejbbnAI2f1rFDOat02ALQFnnPn1ONWW9rk+xgJljBzoYavPujhjvHjZpzV/b5yVsvp1u8hPUwyicMDF3D08QT+/M+BH73ya2q7hlg97OcxvdA+R6cKSYwEes5qN2mvnLwz4Kx2kk47wqkQOpVTKa3JS9eFKry8zFldytXU8cYdkAwMqEdVvXTridUAMkG9KyJNOasZA7Ll2LFDCZ4TE+qakEptvUH0jh3dfSETmdVZSxllikVMzyUwGiyZ7xv1ulANADfc0P06inbTwD60H9cOTrQ39HCfc2ykiY+evBEvv+IU+tyykXNrcNzDbDmFrx0bxr1XhrWCKFb3Lp6HoVQZh7KT6n6rOYkPoP3+SC+I+nM6YzrHgW/XUCl3O6vLxWb8voHjIGlXW5p61z41tY3Al8pZHYrVzWodAqEOE/fa6DiqVkqpuyBkoWypRALNGJDvnhnEoeFQrO7h69ZWYQPcQbcuhZKlVWBR+CtjMOYXBAY1xGo3ubICqwmhdnlkx/FzLg5kNcXqsLptrdJsLXVuzRKaEKs7JgFKBtzltoPuHGgDLnAASoRY7qrV7Igd2lvFEwtj3c5qKVGuJ+Al6rHabCsGpHMSoKKfBd6atCip/1dxqaFXLRhhpMTyApP1OkoNB0FSI59y2ZKxmammcmOYGJRGS2ijz3erdZr7+rAtWMRXv+li13BZtVMDwnIwGCixunI+3LDFPteNRhDgmoEJ/MO3BjA8LJGthfmvcTukoVg9k2tf86YLSYxoZs0L11GTbF0xIPqFGzudPvXFAhKiqS36uJ5Q/YJlYnUxV9cTqzMZde0vFID5eeUuTibNTN5tEDLJRlcdA4rVWxTH6S7UuNUiQADV5nfvbr820C/aNtbERKEfKJXC6MXq1hQnstm2c/2668wI7IcPt58fOtTTfaOxbRYeX9iGFw8dVRsMtK2hHT7mKilM51yMuWG9hR7+DAgw2l/Fob6OcbJuvYEggEBHjZTOotNxsW14Vr1r0TjQUZNMQ6wulrr/3kpZ31ntB0LVTwv/9sXpKvrckra7PGlXUcgtE6tLCTW+1yyweHRyCHsyoVjNc3bdoVjdwxTKCS1n9YqsJABziwkVAxLXWZ1MrBIDYqA6/bJjfeqsp8RqnQ6DEPDsZpcAWio0tQv2OX5ihbO6VLHUfnUyqx2BqVLGvFgNtCMajh9Xj4ODWrvbsa2Jc4WBbrE6vBEJ14l1g/eynso97ZwEKBtoW56nZmCL6vNcmGui340/YQN0TAR19hYaDdSaCTiuRucmjKpoltTnOjMDDHkGinwAwNhY9/9lq7my+vownszhb782iNuuNNcJGdiZxPdmd2LECkVPOqt7myDAtYPn8aGv7MJttzTUddbVWJbpuhgJ8pjOB+1J0bqtP4EbHU+ns7oa5vzpTN6l0xBCorGYR2mmoMRkTXHGccWqmdXFXB3JhIZYLUTbRR0V/tpCrmqgQ6wO77Un5gewMz1PsXor0inUbkWxGgDuvLP93ICovHePxKn8EFAsGsnv39C84x3A3XcDb36zmf11ttebbzazzzVibH8KAk280H9QbTDQBjJjSeRqPqZyAUYTYf+QwldPs2O0hiMD5gq4wvO6Chc2SlW1uls3BiSxSgxIUcaPAXEcBKuI1crgp5dZnU6HdQHC8fLsxZqKt9QplO26SNmV1uLAiEJk6NAQqzNOBScXB7EnWIP6TiQWFKt7mEJZ86RbRayezyUw4BbjZ1YnE2ppcqegWE3oZyh6HhKiiXpJieATMx62Jxe0b+x9QRWLHYUbWxdzzbziFTEgtYT2Bd1xgRf/7XsxcV4t7WlU9CNLWmzbph6Phq4BTbHa8l1YQqJe7HAWR59HzBuQCHxIoKttlStCX5zxPKSdcisBZXG+iX4v/jkAYNVzKxJqdAo3wveRdcrI5dTL7zyRxNWDE2Zulq4LDA21X2+1G3B/P7YlF/HZR8Zx7Q5zYvXbfiqFF28/rmKLDO2TrCFBgIN9UyhVE7jturCnq+MsFgLDmQpmyun29SDK49O5brmuynvuyPkr1pSbRGu/mQxG/DxmJhsozpaMiNUqBmQVZ3W+qdeHAdpRICdOqMetJlanml0DvS+d3Y8Xjz9JsXorsmdP+/mOHet3HOvJLbcA//JfKvfvvn3auxvbYWOymEUtV4IdFdvdqmJ1X5/6bPv6zOzPsoA3vEEJ1bffbmafa8TAvn785JEvqZhMwEj/WKSSAATmSx76q6Hwxf5hT/Off+xJvGz74+qFieuA7yPjtIskF3INFZWp6az2E7UVYnW5JONHdlzCWV024KweGLJULaaweuPsVANDfl5bsE91TAJEFMq2nsnTspDOCEhY2NM8qbZttbFyD8Lebg9TqNgqeyfuSeetEgOylMAhP76z2u0L1KC0I9houhDgKn9SO6oh685jaQnwS4CfqCkTqOaNfSBVwXwliV2Rs7oE7fyllli9LAYkSGg6q12BYt3D3KzEdgDFglQXXZNideRO0xSr4fvYl5nB6QkHrVI0kQMw7mzp8kIUAEomikn5PtJOBYW8xBBU7GmfW9YTUIIAQNN48U74Pga8AuYWExCLQK0KDJuKAQFUFEhUnGmr3YD7+jCeXMTEYhrXbZsCJmFk4OD5Ah/64b8DLoRuDA5GeptUCo7VxEv3n8Xzr7KAz0M7BmMkW8HMCVVwtmIFcK3wWqApVgNoi9X1Oop1F4Hb0Fuamk5je/IcJi4I9M+VkbQT2n9/wrNVLNLyyuxLDb0YEKAtVp8MBw5bTazOoOWsnp0FXKuGjFthgcWtyB13qA7M0FDPi39ryt13qy8DKEERmJ4Ghj1DRdVImzvv7HbD9yhiZBi/98Lfa28w0Y+zLMC2IWt1WJWSuf2SNcMdH0SrYp+JMZJlIe3VsFT1MF6pIJ9rKl3HgLO6XO32m5ZKiG/Gc10lVpe791kshoYxJ34fsW/IxkIlCRRUFM7sVF05q03EgKxwVtsqykljfJ/ps+BaNYzXz6m2sNXGyj0IndU9zHzRUy7ouCf0sqxeAJjLOVrOajvtq0FpOEMGAJNLKYwnc9pRDRmnglwOeOIJtIPtNS8SA6ka5ivJdgxIdDE3HANiIrf74M4KXjB6olVDqlCAdrZyi0isjtAVq10XezKzOH2xLUzX8hXYohm/vQaBymjtclYbyEP3faTsqnJWS4mFBaliQExkrJsWqz0PA14R80sJfP7zwF1XGi6G2FnhfavdgPv7MR7k0OeVsCtpOIusc0l2lA1OepNwdcGnf+CP0G+FSxgyGa1dDvfXMV3OAOUyZiYbKq/asvRyP51lmdVhJn7Sa1z+fU9HOo1tyUVcmEpg+kIdGaeifX0R3srIEoBitQnSaagCcJUKvvJliZeMP6G+QbF66+F5wA/8APCSl2yp3PY1JQgwlszh6MkkRrzwfkCxeusxPNz92lAb8Dtr2CQSXBHT63SuPjW0wiAT1FqrowpLTX1ntePAT9RQrnSbFlTMaS3evsO4klK5e5+5vIWsU9Jqt16fr0yOoW40NyNVLSadGBDHQSo0oXVSqoaJBBpxjOl+G7vS82plO8D7QQ/Aq2YPM1NMYtjPa8WAOFYDtUIV0aVrPu9gYEgjrzcSuDrcrxfzaYwFOQPO6jJySwKPHW3i8JCZJVP96Trmq8l2DEgJYWZ1fKHOCSJndVuwL9VsZG09AfT9/+osGo8WMT+v8qWnZhPq/2+ic7NcQNMVqz0PQ14BcwvtG0J+voa0U4l/AwoCSKjJleh2aSRixrKQ9uvIV12gWMTCglAxIDqDPd8HUFqRWQ1A71htGwN+GfNFHw/8UxMv23UaaMCcsHz33eo45+aAm24ys8+NQjqN7alFXNN/HqIQOqjWQqw+eNDMPsnaMDQECAExPwcsLqptms7i4cGmigGpVDB1roIRf0n/nF2eWR06q7XF6kxGidWzLj7xd+N4/YFPAukrzR5rSKlgIAYkEhGi6+sWE6szGWCpqpzVRx9u4rqhc6pPoFv4iRACJJPYmz6Fbx4fwmhUBG+rTeQTdY/q70fLLWSoDQwOClQqHf1NXrd7myNH1AoWxwFe8Qoju+wskpxfksac1ZVV86VjitWRs7rSPX5dKlrI6K5Ejs6lKAZkRmJQ11ntuioGZNlnIJtSicwaQnhm3xD2pEND0+goV0P0AHRW9zDlegK+XdeKAQkSNZTy7cHtfN7Ru0gsu+gAwMVCRt9ZbVnIpurIVX089r0qDvebWVI/kG1gvpIy66wOnG5ntZQo1cKCWjodEc9Dv1vEwqLax/HzvioyaUKsHhnpdvl1zh7HwfMw6BUwl2vf2E6fktidntOKARnyC5ifb28qVw0UWASQjnI/CwUsLAr0u3ozxatlVsuamYKYg6kK5qtJnDzexP5UR1VqE6RSypn1Yz+29WaLLQv7d9Xwkbv+GJgynB/YKaAZyNEka4htK7eulMCZM2qbpljd3ycxX0li4kwd//4/JjAamBGrHavRquOAeh2luovAl5d/3zPY7/ZsHo/PjeLBJzK4Z+dR/WtBdM1f7qwuSH1n9fJJtauuir+vDUhmwFYD3UIBjx9t4Kr+ixTTCDFFEGBvZhYPnBrFiL2g+skUJ7YmneMiQ/3jwdGwPwCwXW0EbBv4kR8B3vjG9qouTTLJplodVS6jkJfK1GXAWV2pLnNWR2a8OGNw10WQqK2IAckVbGSdst64doVY3VTOap1+TBQDUuz4DKQEZJhhreGsPvDC7fjlm/5OvaD5qCegWN2rNBqAhBI/4zo1fR+BXe0Sq+fyjiogEfemGUU1dDir8zVXXXw1l6VmswK5qo8Hv9XEdX2nW79PByVWt2NAphddjAQabnUATmB3i9WNBsoNB77b1BarB7wiFnLqtDx+ITAnVtu2mi2O0HWneR6G/AJmc+3P8YknBQ71TWo5q7cnFzAx076JzxQC1V4121Y6FVYjzuexmBPoc0vanQUAKvojdPzVKg24VkP7/zWQqWO+klLiv3tRbaQ4YQTR34ed6QXgYvi5anRouhgfbz83tU+ydoyMqMcoWkJTrBaB+p9/858TSLp1vO2qr+kPdqNcwlIoTjcaZpzVALaN1PHh47fglXseU7cs3WONrqXLKv4UCzL+stSITKYtWN94IzA2Fn9fG5DMsKfE6lwOTz4FXJGd4v2AEFMkk3jtnofwmRNXqLFBMkn361blllvUvfDmm7uLmWowtM1ri9VbzSBCAKgiyUtV5axeWBRmCizatZWZ1UWpzHg6zurqMmd1KYGMo+msTqVUbMmCMnedO29hPFjUOx9cFym7gkKns7rRULXNNeN2vCMH8NLtYdyaoesA0YNidY9SK9bgWA110YnbcfJ95awutKul1moCbqIRXwROJiGERCMfitXNZltU18nnBJDtEzhf7MfkJLDPm1AbdcXqfuV4ixywp2dSyv2r46xOOt0FFut1lOqOKnylQxCg3ytifjESq1PmxGpAVeV+0YuA175W+38VOatnc+2b4hMnbCVWa2Ssb08uYmKuLfadnB/AvsyMtlidygg8Mr8DzVweC/NNlVmtI1B1tvcoYqYYRcxoitXDCcxVkqiWGvCqYSeX4oQZovgbGQqAppwuV18NvPWtwAc+YGZ/ZG2JxOrT4aRoNqu3P9/HgFfEd486uOfWeVzRZ0BQdF3VwS+G9+9aTd1ndJ3VALaPNXC+MIC7+x9UGzTF+suJ1cm4Tp9O3vQmtSLkrW/V288GJDOWRK7mQy7mUClJtdqO9wNCzBAEODJ4Eb9w46dxZGCCguJW5s47gd/+beDHf9zYuGtwdxojuwNg927g1a82sk+ysUinpJpwLpXwDw+P4yXbn9CPAbHqKNe6x/HlCrRjQEpVuz0+ApArOsi6+s7qfreEhVklJj/4eAo3Dp/V68fYqpBisdNZHWkyuv3NVKodP3fkiN6+iBEoVvcosxdrGNLJqwYA34dvd8eAaC+RCALsSs3j3JS6GJbmSvDtmtqfphvhRdcv4v0P3otX3jzdvugYEKsXqm1n9em5NPakZzVjQFY6q0sNA2J1Oq0u6Dn1OT510bBYbdvAm98MvOY1+vtKpTDkFzC31OGsPuXiUL+Gs9pxsD2dw0Qu3SpWeGqxX4nVmp/BG140ga9cPIj/83dumFld0h+URO29Mw9dN18bwP79wIPTe1SuWRS3wwGUGQ4d6n5tSqwWArj9dhZX3ChEYnWErnsilcKu9By+9GAS+4YNuaiiIjqdzuqGi6TfvPz7ngHj2wSSdgW3jR5XG3SXu14qBqRoSKxOp4F77tmSy6iDkTTKdQdPHrewYzjsc1CsJsQMiQSwcyc+8LxP4vmjp7ZcJj5ZW66+1sK177gD+MVfBK67br0Ph6wDmaxa2VsvVPCPx7bhZduP6ceA2DWUa91jzVJZxF/JJgSSgUSx4Xb145ZKthFndb9XxMK8xEMPAVdvX4BtNfX6yL4fOqvbMmajUFZ51SZWt77vfcp81FmPiKwbFKt7lJnJBkZ0xeogaDurpUS1CiRkKKjGPZldF/v7ZnB8bgCo1zF5poLxIGdkEHnb82r4/Ts+jB+99RE1s+d52g7ggQF0O6vnMtiT0RSrlzurGw2U62EMiA7pNAa8IuZz6thmljy9AptrSTKpnNUFrzUL++QZDwez0/FvwkJge38R5wv9rYmAqWJaLaHTFIB37QJ+/oZP4wsPpLCQs/Sd1cBKZ3XJjLP6ppuAf5rcj339C0q0t+3ebAMbkcOH289HRjgw3ars2tV+7jj6kwyDg9idnsM3Hs1ib5+hIl2uC9+uoVIOxeqowGKg76z2+gP842t+C14izNk3EAslpVjprC5CP7N6q5PN4vt2PoZ3fvgOvOQ6FoAjxDhXdhSYpaBIDHLffWb8QWTjkslaWKr5+NLXHbxw7zkl1GpnVtdRWeasLpUtNQaNue9kSqBY7xarc2XXmLN6fk7iYx8DXntNGL+nI1YHwYrM6sJ8FSm7YkaszmZpPuohKFb3KNMXG0qo1Mw1Gk/n8aePvwCNcg1PHJO4IhNmtcYVl4XAgeEcTiwNA6USJs/XMZ5cNON46uvDffu+i32N43rH2EH/oNUlVk8sprE9uah14bWTbrezul5XzmpPX6zud4tYKDgoFSXcREOZd005q01i2xjM1jFXVq51KTtmdTVcdDsGS5go9gOlEppNAFKqz0BTrEY6jVtHTuIbR9M4M5NUOdiaYrVlCTSaYqWzWvP/ZY0M4e4dj2OvFxYZpTBhjs5s6bvuYjblVmV5kT7d68vwMHan51BvCGwPQkHRQA60Z3VkVkdxUybMxX19uGW0IwJF9x4T9VNWOKuFGWf1ViabxQ/s+zaemu7Du15zSm3jPYEQc3TeD268cf2OgxCy6ciM+Fiq+fjwZwbwxmseURt1tJ1EAl6ihnLdVlGsIaWKgJ+ox953kFwpVi+VQ2e1Th8uqcbcU/MOPv5x4L6rHmttj00QIOVUVhGr2d/cjFCs7lFmppsYCZa0HZX3v+SLeCo3gmMPVXD0oQauHphQA1ONwen+0TyO50aAYhHf+67EvsysmZmsyN11UVNQ72Bg3MN8NQkUCgCApoSa1dT4XAdHbUwU+7rE6nLDge9pOt5cF/2pGhbKPr78hRpu3xvmdusKKWtEss9BoeYBhQJmZ4GRrH5e1Pbhqvpsy2VcvCCxLVhU3zAgVvt2HRm3ihtHz6tKxJpikuPILod9qSxUJI6u8DM0hHdd/UW8dujr6jUjQMwhBPDud6vc9pe8ZL2PhqwXiURboLj+ev39hc7qXX052BV1rzHlrI4W8KBeR0NaSLgG7gedjpEox10Hz4NtNdAoLROrSxSrtclk8PzRU3j4h/4jgjprGBBinEOHgG3blFA9NLTeR0MI2URkxpKYqyTxzWN9uGPbCbVRR6wWAr4HlBtOKzITAMoVC0EivrPa8l00l62Qy5VcZN2Stljd7xbxZw/fhFe+QiKo5dR2nbGt5yHl1FCsJFqC/fSFutLNWOR+0/G0YrUQYpcQ4otCiEeFEEeFEO8Ot98vhDgvhPhu+PWqjvf8vBDiKSHEMSHEPR3bXxFue0oI8XNr8ydtDqanoO+sBmCnPBzITGN+stoWqzVF4APbSziRG0FjqYj/8eEM/tWVXzPmrAYAzM6qRwMDMn84jUrDBnI55HJAxg4LQ2pcePcf9jBXSWFyLhS8Gw0s1Xykk5rOaiGQGXSQq/n4zN818Ir9T6rtPZrTKdLhjSafxxNPAIfGQmFZ47MdH65jotAPlEo4eayq8qo9T98BG7qoP/jDn8PvvPCjapumCJxN1rvy0EtlYSSzGkNDuGX0NG7tO6ZeMzPLLEeOqHWZukVGycbmJ34CuPdeVXhWl6Eh7E7PYV9qujUxasJZ7dt1FQNSr7cHJSZW2nSK1bp51QDgunCtBqqFWtfmUoVitTaeB3ge0qJgtG9ECAnxPOD++4F3vGO9j4QQsslIj6XwxYkr8YIdZ2HVwwl9TW3HD4TSNjrE6lI1ET+zOjwmAbSd1VJiqeIibVf0+nCWhf5UDZ84fT3e+vqymVpMQiCZBAp1Vy1rBnDuHLAztUCxehPyTEbrdQDvkVIeAfACAO8UQkTlMX9HSnlD+PUpAAi/9wYAVwN4BYA/EEIkhBAJAL8P4JUAjgB4Y8d+yDJmpqXKrNYd5Pk+Bv0C5qdqeOQRiWsGz2uLn3u2VXFscQx/9+kEbr86h2G/YEZQXe5oMLHPTEY9Li3h0aMdMSg6F0nHwVuueAAffvxGNaPXaGCmnMZwuvz0730arEwKDWnhi19O4MWjj6uNutnKa0X4GcpCUYnVI+Hyd42bsJdxUW0mIEtlHP1uDVf2T5oZmIfHuj+4AK8ciuqan+vukRLO5gdazup80ULaqeiLSQMD3ULq/v16+yOErCSZBF796vY9Qod0GlcOz+GDL/r/gJmZ9v51EAK+L5R7pliErK2RWJ3N6u/P8+Am6qiWuosMF8sWM6tNELXRaNUZxWpCCCGk58ns7MPJpRHcMXysLdRqCqpeYKm+YeSClhKlagJ+Qk+sBtAWq+t1NKVQq/k0zT39fRLXDJzH4R25tqFDsx+TylhqdXcoVp+fAHak5mmO2IQ8beuTUl6QUn47fL4E4DEAOy7zlu8H8BEpZUVKeRLAUwBuDb+eklKekFJWAXwk/FmyCrdcsaCEZd1BSRBgwC1ifqaBU6eFiuzQFIG9rIebhs7gp39tDD/5mjOt36NNNgscONB+3ZkvG5dMBiN+Hk+dcfE3/6eBV+98SEWA6MSrCIFbdkzg0fltSqis19FoWrBdA07NdBq5qo87b84hKIfirwkxYS1IpZBxy8hPl5RYPTSntuvcKHwf25OLmDjbwAPfFHj+6EkzbSsSpmdm1ASD52mLPnvGKjiTH2zdKCfmA2xPLug7qxOJ7kKA+/bp7Y8QsrYIATEyjD2ZOWXvAIzE93iRWF0oYGFeot8tmYmF6rz/LcuZjoXnwbEaqBbrXZuL5YQq+MPBgx7RqjOK1YQQQsiGIbNDjeFvzzyihFrb1jZJWIGnIjuinLhGA+W6jcBtxO8jui4k0O4TRo8G+m83HSnj/ud9EpieNuOshhKri53O6gsJOqs3Kc9KXRNC7AVwI4AHwk3vEkI8JIT4oBAiWku6A8DZjredC7ddajtZhVdeP4ED2RkzYrVXxNxME7IhYQmpfyInk3jv9Z/FrYcWcXgsFChNXRxuuaX9/O679feXyeAnDn8Zv/XV5+Mz/wDcs+uokYHezqESzhX6gUoFzVoDQkgzjrdMBu++5gv4lTc/qS7oltW7A9NUCtuTC3jqSanE6r5JtV2nLQQBjgxcwKOPCXzvkQSuHzpnJrM5GuzPhxMABtzqu7fVlFgdzmyfm09hZ3peO2ceAHDbbe3ne/bo748QsrYMD6vHyOliIsYqaDurp6YFRoOcmesLAIyNqccrr9TfVxgDUistE6urCcaAmCD6X0WDvF7tExBCCCGkRbovgdHkEg5mp9SGwUH9aEvfV5EdoVCLahWlhmYB7tBZLSuhSB0J4QZWxu2/ysV9+74LnD+vokt0TYMAkpkECvW2s/rcRZvO6k3KMxarhRBpAB8F8DNSyhyA/w7gAIAbAFwA8FsmDkgI8XYhxINCiAenp6dN7HJjYmjmKRKrz01YSPn11jYtBgZwZOAC/urdX2tfKE3lKt92myp49aY3mcnS9Dy89orH0WgAP/zKBSTtmhHxc3S4iclSFigWMTcrMeQVzDje0mm8+9ovIJ0LiyumUvo3tbUilcJPHP4KfuWDO/Doo8AeJzxmHSd4Xx+ODFzAA99x4SYa8BJ1M20rlerej4E2sHt7HafzQ+0lSAsp7DDhrAaAG25QItKLXsRZYkI2Anv3dr82MCHmpxIoN2wgn8fUbAKjwZK5grvvfS/w9rcDz3++/r5cF65VR7XcXbehWLUpVpvg2mu7X1OsJoQQQnqeRAL46js+1B7Kmyhq7fvKBR0JytUqSnUHQVJDL/A8ZTooKLG6UaoiYTXN9N+i2ksnT6pHA32YVJ/dlVl9ftqls3qT8ozEaiGEAyVUf0hK+TEAkFJOSikbUsomgD+GivkAgPMAdnW8fWe47VLbu5BS/pGU8mYp5c0jIyPP9u/ZPJhy0AQBBr0Cjp10MdYXOr50T+QoW3pmpn2hNCVW+z7wkz8JvPjFZvYHwO5L4Y9e/Bd4z2vCgnUGLpJWJgUpBVAoYHJKYCzImXFWRwLHhQvq0USe6lqRSuGl25/Ajmwe738/YBfCLGidY+7rw5GBCfz2J/bj3tsNZb8CSvDvLFRowlm9RyhndZi/dW4hrZzVJtqB4wD/9t8Cb36z/r4IIWvPwYPt52NjRq7dgwMSs+U0UCgoZ7W/ZOb6AqhJxec9z0yh0dUyq6Vsi9XMrNbj8OHu/xPFakIIIWRDcMXhjn7b8vpccYg0lw6xutxw4Cc1+nOui5RTQSGn+nFLczVknLIZsTrS8556Sj0aMIy5GQ+1ZqIlVk8vOBg2UeuN9BxP26qFEALA/wTwmJTytzu2b+v4sfsAPBI+/xsAbxBCeEKIfQCuAPBNAN8CcIUQYp8QwoUqwvg3Zv6MTYhBsXrAK+Kx0wHG+wy5oKML7eyseWf1WhCJBpNhTIWJgV4yiaRdRWGmhIsTTYwlDS3PjuIqTp9Wjz0uVgPA773hq3jD6yWwtKS2a4rV1w+ew2/e+xW87wfDm5qpttU5+WXAtb9zn6OiYPJ5AMBkPqnEJFPOR0LIxqEzW/6aa4ysiNm1vaGKuBaLmJpLqPuMKbHaJK6rMqs7xepaDdWGDcfTL86z5QkCNbEAqLiZqJ9ACCGEkN7miivaz02I1ZHpsEOsrjZsOL7G+NN1kXXKWFpYA7E6ijKLdILOIt9xibSBUIeSTUNRt6TneCajnjsAvAXAw0KI74bbfgHAG4UQNwCQAE4B+AkAkFIeFUL8FYBHAdQBvFNK2QAAIcS7AHwGQALAB6WUR439JZuNqFqqoRiQExeTGMucb23TIsrmnJ1tC5O9fHGIYikisdpEBnIqhZ2peZw/JTB5UWI8yJkRwXeEMe65nHrcAGI1CoVWoUl4np6Lrr8fvl3Hjx75BlC+QW0z5SLrdFZ3FjCMiTOYQaVhIz9TRhqqbmPCkuYyZQkhGwfPU9eVxx5T8T0G2LVT4mxhAChcwNS0hRv9JSDoN7Jvo4TLR7tiQKLsbrqqzfC2twE/9EPqvssJUUIIIWRjcNVV7eeGYkAAdGVWAzaEp9Hfcl1k3RJyixIAMD/TUEW9TfThIt0owkQtpg6xem4O6PNC4b6X9SgSi6cVq6WUXwWwmkXoU5d5z68C+NVVtn/qcu8jHRh1VhfQlBbGU8oBqn0i9/WpwVIu1xZVe9lZHUU+XLyoHk2In2kV+XDu7AAmJ6FiQJL60RLYsUM58qS6WfS0WN1ZtNCEq7pznwsL5otJdbrRjhzR3186jX93/afwjr++C3/87wBfhEUpuESbkK3J29+uJu8MRZjt3JPAucIAkH8SUzMCo8klM5OtpgljQGqVtlhdnK8gYF61OYTQqwdBCCGEkOeeTrOUiT5cEEAAaJYqsBAVRbT1hGXPQ9YpI7eoVsJdvAhsSy6a6cO5LrB/P3DihHq9e7f+PjvE6ocfBq4bCwtYUqzedHBtZq9isMBikKjBs+sYc2bVNt0Bj2W1ZwbPnWv9np4lOlaTYnUyiZ2pBZw9JzA5LdTybBP7dd32chnASLbymtGZXR6J1bptK5tVg/J8vhWvYaxtRQXQkkkznYVMBm++4gE8NdOHRx9pYmdyVh17L58LhJC1I5k0JlQDQHrYR77m4fx54PhEoAos9uI9wbaVs7oKtcQEwMXzDbXiiGI1IYQQQrYqQgD/+l8DL3uZionTxffhJ2qo5NQKtuJiDSmnotffcl1k3TIWc8qfevEiMJ402Ie7/fb2cxNidShKy2IJDz0EXDsYpgf0Yh+ZaEGxuleJYkB0BdBkEkIAA0EZ440Jta1zhi8ukVBZr6vHXp7J2rmz+7WhGJAjAxN45HiAY6cDHMhOmxMpd3XUIe1lJ1U6rW5ipVJ7IkDXWW1Zah9Smp1cAJRY/Z73AB/4gJn9BQEgBF40+gTe+54mXr7z0dY2QgjRJpWCJSTe8IcvhSeqyuXSi85qIeC6EtWmHS5HVWK1MVcOIYQQQshG5YYbgNe/3kwND9+Hl6ijkq8BAGampSouqO2sLrUWzF+csjAeGOzD3XorMD6uxHoT4/ogUJ/BUlU5q7On1HaK1ZsOitW9iqkIhPFxAMCAk8d4JSzaZ0Ks7iwmlUj0dsGfTvEXMHORTKVw68gpfOOJQRy/mMT+zIw5UfWGG9Tj/v3A9deb2edaIEQ7h+rkSfVoQlyP2lIkVpt0Kh86BPT3m9mXZQGpFO7a8Ti+/o0EfnDfdxgBQggxRyqFsSAHS9bxiTf+JQK71rMdcccRqDYSrYI/FyakcuUws5oQQgghxAyhs7q8ZFCsDp3VuaXQWT2dMNuH8zzg/vuBn/opM/tLpZCyK/jmYxl85zvA1UEYMdKjfWQSnx4sK0/QaKjiREKYyZdOpXDn+OMYE1NqfyZO5KuvBv7+79Xzq67qbffU0JD6u6OquYac1f1eCXN5B4fGFpSZ1pRQefPNwHXXbYxB/vAwcP58O4fKRMb24CBw9my7QFcvC8CZDF687Qn8zk+fxMBSEUiZiwAghGxx0mnsSp3Gke0n27FIveisBuAGCeWszueB/n5cvCDprCaEEEIIMUkQKLG60ACg0jhHdMXqdBpZt4QLOVUz6+KsjW3bFs2unDe58ri/H++57mP406++CC+/p4HUfAGwNXO7SU9CZ3Uv0umq1j2xhQB27MDvv/DD8O26ytM0cbHYv7/93ESxurWk0wEMqCKGuoSCwa3bz+GOXWfUNpMO4I1ysY0+1/NhVpQJZ/UVV3S/7mWxOp1G0q7hJ+/4nnrdy8dKCNlYDAzgZ2/8LH50z+eBxUW1rVfF6mQCtWaiVb/gwqSFcYrVhBBCCCHm8H34dg3lvIpinZmBclbrCMvptCqwGGVWz7mqD9erekR/P16x6yg++OI/xa++L8wuSacZxbkJoVjdi5gqrhjRmdlsIgIEUNEf992nhMU77jCzz7Xk5S9XIvW/+TfAwID+/sL/zc/e9Hn8yJEH1batKFR2TgIAwLXX6u/z6qvbz5NJc7Eda0G0SmFyUj32qJBECNmAWBYO7G0g45RVfYgeLuDqplxUmwlEgYcXpyzlrO7VgQ4hhBBCyEbD9+FZdVQKhsXqjhiQxYKNrFPuXcNBKqWc1OWy+gAARoBsUhgD0oukUsAP/ZC5Qd6ePe3ny4sN6vCKV6ivjcDzn6++TBGKkof9k4AVXhy3olh97bXAX/6ler5790rxOg7btrWf33OPuhn1KsvF6q3YBggha8fQEDA7q56nUj3rGnFTDqpTdkusPnHOxc7rFoDklet7YIQQQgghm4XIWV1sAgBm5hO4ws/rmRnSafS5JeQKCUBKyKZU3c1eFauFUGa2mRng3Dm1jWL1pqSHVaAtTDoN3HWXuf3dfDNQKinx+5ZbzO13K+O66qtaBebn1batKFSOjKhiCR/9KPCDP2hmn0IAP/MzwPHjwPd9n5l9rhWDg+pxYkI9bsU2QAhZO4aG2s97eOWGk3JRbdp44MEEGimgWpEYDZZ4TSSEEEIIMUUQwE/U22L1QgLD/ZpiteMgm2pgseJh/kJZFfQGelesBtRKeYrVmx6K1VsB2wbuvHO9j2JzIQQwNqYKAUave/mCvpZcc436Msnhw+qr1+l0gQM9LSYRQjYgnWJ1D3fE3YyHUjOBX/urg/jH/wTc/9pT6hu8JhJCCCGEmMH34SVqqBQbgJSYXnAwMr6kXQwxO2gjVw3w8z8PvPO276iNvRzlFsWEUqze1DCzmpC4dAqVQdCzy7PJGrJcrKaLkBBikg3irHYzHgo1F6enA/yv/wX8yPOOqm/wmkgIIYQQYgbHge9KlKsWUK3i/FwS48mcdk2TzKCDM/lBfOd7Am88+K1wY8bAAa8RFKu3BBSrCYlLp1DJAfnWZGQEsDouo2wHhBCTjI+3n3cWn+0x3KyPL104hNu2n8GrXw0MiTn1jR4W2AkhhBBCNhp+0kKp4aK5kEOlJlRsh6az2u1P4nR+EHffsgiRW1Qb+/oMHO0aMTCgHuuq0CT7m5sTxoAQEpdOESHKLiZbi0RCzeSGRcU4q0sIMcq+fcBb36omR/ftW++juSRONsDnJ67Cl1/6hwCeBxSL6hucwCOEEEIIMYaXsvGjn/kRnPytPPZlwyLcms5qZDLIumW87Mgk8HhBmbF6eVy7f3/361271uc4yJpCZzUhcel0Vr/iFet3HGR9ufJK9Tg+Dhw8uL7HQgjZXAgB3H57TwvVAPC8Fwb4+Mv/O25NPQpICRQK6ht0uhBCCCGEGOP7bpjGb77gf+O3/qQP1/SfVxs1ndVIp3EwO4XbBx9Xr7PZ3o443bu3+zXH4JsSOqsJicv4OHDzzWqJTA8vzyZrzA/+oCoGeeut3ZEghBCyRdi938buq88CuSawsNB2VlOsJoQQQggxxtWHajgy9TX82rHX4ZrsGbXRgLP6q/f+BsTkAfW6lyNAACWk33038LnPqcdeFtZJbChWExIXIYAf//H1Pgqy3gwMAHfcsd5HQQgh68vIiIpEmpwESiW1TXfwRAghhBBC2mSzEAL45dc9ihcuPQHYtvrSYWRE6b3Hj6vXvS5WA8B99wEHDgDXXbfeR0LWCNoACSGEEEKIHiMj6vHMGRUFEgRcbUIIIYQQYpJMBgDw9hsfxLZkzowxoDPeFAD6+/X3udbYNnDTTfpCPelZOIoghBBCCCF6RGL16dPqkcUVCSGEEELMEorVmJxUj7p51QAwOgokEu3XG8FZTTY9FKsJIYQQQogekVh96pR6ZF41IYQQQohZIrF6ako9mnBWJxLA2Fj7NcVq0gNQrCaEEEIIIXqMjqrHmRn1SGc1IYQQQohZsln1WKmoRxPOaqDbZHDokJl9EqIBxWpCCCGEEKLH2Fh3NfZIvCaEEEIIIWYYHOx+baqY9e23q37cm97U7bImZJ1gGjkhhBBCCNEjmQQOHgSefFK9vvba9T0eQgghhJDNRhAA27cDExPq9d69ZvZ7++3AzTcDrmtmf4RoQmc1IYQQQgjR5+qr28+vumr9joMQQgghZLNy8GD7+eHD5vZLoZr0EBSrCSGEEEKIPnfcAQwNAXfeyQEPIYQQQshasH17+/mePet3HISsIYwBIYQQQggh+mSzwK/92nofBSGEEELI5uXWW4GvfQ248UbAov+UbE4oVhNCCCGEEEIIIYQQ0uukUsAv/dJ6HwUhawqnYQghhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSrCSGEEEIIIYQQQgghhKw7FKsJIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsO0JKud7HcEmEENMATq/3cTyHDAOYWe+DIJsSti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7TJ5fe6SUIzo76GmxeqshhHhQSnnzeh8H2XywbZG1gm2LrBVsW4TwPCBrB9sWWSvYtshawbZFyNrRa+cXY0AIIYQQQgghhBBCCCGErDsUqwkhhBBCCCGEEEIIIYSsOxSre4s/Wu8DIJsWti2yVrBtkbWCbYsQngdk7WDbImsF2xZZK9i2CFk7eur8YmY1IYQQQgghhBBCCCGEkHWHzmpCCCGEEEIIIYQQQggh6w7F6ssghNglhPiiEOJRIcRRIcS7w+2DQojPCiGeDB8Hwu1XCSH+SQhREUK8d5X9JYQQ3xFCfPIyv/PTQoiF5T8jhHiXEOIpIYQUQgxf5v37hBAPhD/7l0IIN9z+YiHEt4UQdSHE6+J+JsQMm6xt7Q7/lu8IIR4SQrwq7udC9NmgbWvVnxNCvFQIsSiE+G749f44nwkxwwZtWx8SQhwTQjwihPigEMIJt78pvF49LIT4uhDi+rifC9la9Nh5sGr7XuX9l7p/s2/YQ2yytsW+YQ+xQdsW+4YbgA3attg3JBsCk+eXEOJU2La/K4R48DK/8xXh+fGUEOLnOrY/53okxerLUwfwHinlEQAvAPBOIcQRAD8H4PNSyisAfD58DQBzAH4awG9eYn/vBvDY0/zO3wDwllW2fw3A3QBOP837/zOA35FSHgQwD+Bt4fYzAP4fAP/rad5Pnhs2U9v6JQB/JaW8EcAbAPzB0+yHrC0bsW1d7ue+IqW8Ifz6lafZD1lbNmLb+hCAqwBcCyAA8GPh9pMAXiKlvBbAf0CPZbSRnqaXzoNLte/lsG+4MdhMbYt9w95iI7Yt9g03BhuxbbFvSDYKps+vO8Pr5s2rfVMIkQDw+wBeCeAIgDeGvw9YBz2SYvVlkFJekFJ+O3y+BHXh3AHg+wH8WfhjfwbgX4Q/MyWl/BaA2vJ9CSF2Ang1gD95mt/5eQBLq2z/jpTy1OXeK4QQAF4G4H+vcmynpJQPAWhebh/kuWEztS0AEkA2fN4HYOJy+yJry0ZrW8/m58j6skHb1qdkCIBvAtgZbv+6lHI+/LFvRNsJeTp67DxYtX0v+x3sG24QNlPbAvuGPcVGa1vhz7FvuAHYoG2LfUOyITB5fj1DbgXwlJTyhJSyCuAj4e9aFz2SYvUzRAixF8CNAB4AMCalvBB+6yKAsWewi98F8LNY2wHBEIAFKWU9fH0OqjGTHmYTtK37AbxZCHEOwKcA/NQaHgd5FmyQtvV03CaE+J4Q4u+FEFev43GQDjZa2wqXeL4FwKdX+fbbAPz9c3EcZHPRK+fB07Rv9g03IJugbd0P9g17kg3Stp4O9g17kI3Wttg3JBsJA+eXBPAPQoh/FkK8/RI/swPA2Y7Xz7bPaLTPSbH6GSCESAP4KICfkVLmOr8XzsjJp3n/awBMSSn/ee2OkmxENknbeiOAP5VS7gTwKgB/LoTgtWWd2SRt69sA9kgprwfw3wB8fB2PhYRs0Lb1BwC+LKX8yrJjuRNqQPK+5/BYyCagx86DVds32ZhskrbFvmEPsknaFvuGPcgGbVvsG5INge75FfJCKeVNUBEf7xRCvNj8kZqFnYanIZxx+yiAD0kpPxZunhRCbAu/vw3A1NPs5g4A9wohTkFZ6V8mhPgLIcTzRbs4xL0xj+8z4fv/BMAsgH4hhB1+eyeA83H2S9aeTdS23gbgrwBASvlPAHwAlwzdJ2vPBmtbl0RKmZNS5sPnnwLgXK6gA1l7NmLbEkJ8AMAIgH+77Gevg1pq+v1Sytk4v49sTXrpPFitfbNvuHHZRG2LfcMeY4O1rUvCvmHvsRHbFvuGZKNg6PyClPJ8+DgF4P8AuFWoAo7R+fUOqHv4ro63PW2fcS37nPbT/8jWRQghAPxPAI9JKX+741t/A+CtAP5T+PiJy+1HSvnzAH4+3OdLAbxXSvnm8Ns36ByjlPKeZcf8RQCvg7rIP+2xkfVhk7WtMwDuAvCnQojDUAOSaZ3fTeKzEdvWpRBCjAOYlFJKIcStUBOs7DiuExuxbQkhfgzAPQDuklI2O7bvBvAxAG+RUj6h8zvJ1qKXzoNLtW/2DTcmm6xtsW/YQ2zEtnWZ97Nv2ENsxLbFviHZKJg6v4QQKQCWlHIpfP5yAL8ipTyLjvMrFJmvEELsgxKZ3wDghy+37zXtc0op+XWJLwAvhLLUPwTgu+HXq6CyWD4P4EkAnwMwGP78OFQuSw7AQvg8u2yfLwXwycv8zq9AdeZK4fvvCbf/dPi6DlWk5E8u8f79UIUCngLw1wC8cPst4fsLUDf0o+v9+W7lr03Wto5AVYf9Xvh3vHy9P9+t/LVB29aqPwfgXQCOhm3rGwBuX+/Pdyt/bdC2VQdwvON43x9u/xOoCtXR9gfX+/Pl18b46rHzYNX2vcr72TfcAF+brG2xb9hDXxu0bbFvuAG+NmjbYt+QXxviy9T5BXWv/l74dRTAL17md74KwBPhOfKLHdufcz1ShG8khBBCCCGEEEIIIYQQQtYNZlYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYQQQgghhBBCCFl3KFYTQgghhBBCCCGEEEIIWXcoVhNCCCGEEEIIIYQQQghZdyhWE0IIIYSQLY8QYkgI8d3w66IQ4nz4PC+E+IM1/L0vFULcvlb7J4QQQgghZCNhr/cBEEIIIYQQst5IKWcB3AAAQoj7AeSllL/5HPzqlwLIA/j6c/C7CCGEEEII6WnorCaEEEIIIeQShM7nT4bP7xdC/JkQ4itCiNNCiB8QQvy/QoiHhRCfFkI44c89TwjxJSHEPwshPiOE2BZu/2khxKNCiIeEEB8RQuwF8A4A/yZ0cb9ICPFaIcQDQojvCCE+J4QYe5a/+1TH9m8KIQ6uywdHCCGEEEJIDChWE0IIIYQQ8sw5AOBlAO4F8BcAviilvBZACcCrQ9H4vwF4nZTyeQA+COBXw/f+HIAbpZTXAXiHlPIUgD8E8DtSyhuklF8B8FUAL5BS3gjgIwB+9pn+7o6fWwy3/x6A3zX89xNCCCGEELJmMAaEEEIIIYSQZ87fSylrQoiHASQAfDrc/jCAvQCuBHANgM8KIRD+zIXwZx4C8CEhxMcBfPwS+98J4C9DN7YL4OSz+N0RH+54/J1n/RcSQgghhBCyTtBZTQghhBBCyDOnAgBSyiaAmpRShtubUEYQAeBo6JS+QUp5rZTy5eHPvBrA7wO4CcC3hBCrGUf+G4DfC53RPwHAfxa/O0Je4jkhhBBCCCE9DcVqQgghhBBCzHEMwIgQ4jYAEEI4QoirhRAWgF1Syi8CeB+APgBpAEsAMh3v7wNwPnz+1pjH8PqOx3+KuQ9CCCGEEEKecxgDQgghhBBCiCGklFUhxOsA/FchRB9Uf/t3ATwB4C/CbQLAf5VSLggh/hbA/xZCfD+AnwJwP4C/FkLMA/gCgH0xDmNACPEQlBP7jbp/EyGEEEIIIc8Vor16kBBCCCGEELKREUKcAnCzlHJmvY+FEEIIIYSQZwtjQAghhBBCCCGEEEIIIYSsO3RWE0IIIYQQQgghhBBCCFl36KwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLuUKwmhBBCCCGEEEIIIYQQsu5QrCaEEEIIIYQQQgghhBCy7lCsJoQQQgghhBBCCCGEELLu/F9cCxj9aYoWTAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(25,6))\n", + "plt.plot(train_timestamps, y_train, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(train_timestamps, y_train_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for training data: 1.7195710200875551 %\n" + ] + } + ], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAADSCAYAAAAL37fDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABSYklEQVR4nO3dd3hU1dbA4d9Kofei0qSJ9B6KKIiIgKCoIIoFbAjYr+Varvez92vFhogNRJCqgCC9inRCB+kSpPciqfv7Y53AgAmkn0my3ueZh5kzM2f2HJKTdfZee21xzmGMMcYYY/wV4ncDjDHGGGOMBWXGGGOMMUHBgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwRSHJSJSKiILBOR8d7jb0Vki4hEercG3nYRkX4islFEVohIo4B93CUiG7zbXRn+bYwxxhhjsqmwVLz2MWAtUCRg27+dcyPPet21QDXv1gz4HGgmIiWAF4EIwAFLRGSsc+5gWhtvjDHGGJNTpCgoE5HyQCfgdeCJ87z8BmCQ06q080WkmIiUAVoDU5xzB7x9TgE6AEOT21GpUqVcpUqVUtJEY4wxxhhfLVmyZJ9zrnRa35/SnrIPgaeBwmdtf11EXgCmAc8656KBcsD2gNdEeduS256sSpUqsXjx4hQ20RhjjDHGPyKyLT3vP29OmYhcB+xxzi0566nngBpAE6AE8Ex6GhLweb1FZLGILN67d29G7NIYY4wxJuilJNH/cqCziGwFhgFtROR759xOp6KBb4Cm3ut3ABUC3l/e25bc9jM45wY45yKccxGlS6e5B9AYY4wxJls5b1DmnHvOOVfeOVcJ6A5Md87d6eWJISIC3Ais8t4yFujpzcJsDhx2zu0EJgHtRKS4iBQH2nnbjDHGGGNyvdTMvjzbEBEpDQgQCfT1tk8AOgIbgRPAPQDOuQMi8iqwyHvdK4lJ/6kRGxtLVFQUJ0+eTEfTTb58+Shfvjzh4eF+N8UYY4wxgOgkyeAUERHhzk7037JlC4ULF6ZkyZJoJ51JLecc+/fv5+jRo1SuXNnv5piz7NsH4eFQtKjfLTHGGJMaIrLEOReR1vdnu4r+J0+etIAsnUSEkiVLWm9jEFq7Flq2hCfOV3jGGGNMjpPtgjLAArIMYMcw+MybB7ffDqNGwcaNsH693y0yxhiTlbJlUBYsfvrpJ0SEdevWnfN1H374ISdOnEjz53z77bc8/PDDaX6/8dnBg7B6NcTEJPuSsWPhX/+CceOgVi145RV44YWsa6Ixxhj/WVCWDkOHDuWKK65g6NBkFyUA0h+UmWwsPh7eew/69YMnn4QBA2DJEoiOPvWSL7+EDz+ESZOgfHndduWVcPgwREb60mpjjDE+sKAsjY4dO8bcuXP56quvGDZsGADx8fE89dRT1KlTh3r16vHxxx/Tr18//vrrL6666iquuuoqAAoVKnRqPyNHjuTuu+8GYNy4cTRr1oyGDRvStm1bdu/eneXfy2SwefNg717N3I+J0YBswAB48klc/y94pc8Ofp0Qz4QJULz4mW999VX473/9abYxxpisl56SGP7r0ydz9vvFF+d9yc8//0yHDh249NJLKVmyJEuWLGHhwoVs3bqVyMhIwsLCOHDgACVKlOD9999nxowZlCpV6pz7vOKKK5g/fz4iwsCBA3nnnXd47733MupbmawWFwcTJuj9u++GypVh2TJYsoT4jVt4qF8NQmUDw698i9BvakHjxlCvHuTLB0CTJpAnj8Z1LVr49zWMMcZkjewdlPlo6NChPPbYYwB0796doUOHsmXLFvr27UtYmB7WEiVKpGqfUVFR3HrrrezcuZOYmBgrV5HdzZ0LBw5A2bIacIlA27b8fXlbbu8WQ0Tz7fyn+ihkc4yOU0ZGQlgY1K4NrVpBnTq8+io8+ihMnapvN8YYk3Nl76AsBT1ameHAgQNMnz6dlStXIiLEx8cjIjRp0iRF7w+c+RhYluKRRx7hiSeeoHPnzsycOZOXXnopo5tuskpsLEycqPc7dz4VUR04AF26QM+eebj33qrA03Do0KkeNDZuhOXL9XbTTdRu356yZYWpU+Gaa3z7NsYYY7KA5ZSlwciRI+nRowfbtm1j69atbN++ncqVK1O/fn2++OIL4uLiAA3eAAoXLszRo0dPvf/CCy9k7dq1JCQkMGbMmFPbDx8+TLly5QD47rvvsvAbmQw3Z44GWxUqQIMGAGzfDh06wL//DffeG/DaYsXgqqvgqafg7bfhuus0iBszBoYO5aUXEnjpJQjiOs/GGGMygAVlaTB06FBuuummM7Z17dqVnTt3cvHFF1OvXj3q16/PDz/8AEDv3r3p0KHDqUT/t956i+uuu44WLVpQpkyZU/t46aWX6NatG40bNz5v/pkJYjExp3vJrr8eRFi1Su/26wedOp3jvUWL6gt799ahzFmzqDr5c+rVjufnn7Ok9cYYY3yS7ZZZWrt2LTVr1vSpRTmLHctMMmUKjBwJFSvCc8+xcZPQrRsMGwbVq6diPxs3wmefwfHj7ChehxsnP8j8RaGEhmZay40xxqRDrltmyZigFh2tBcfgVC7ZoEHw3HOpDMgALrkEnnkGSpak3MFVXJlnHsO+OJzhTTbG5C779uk8pIEDYcUKv1tjAmXvRH9jgs2MGXD0KFSpArVr4xyMH6+xVZpceCE8+yx88gnPnhzDNS9V5pY2+wivUTVDm22MyQEmToTffoOePYmveilbt8K6dXpbu1b/PXYMSpWCmjXh4ou1pvWUKX433CSyoMyYjHLyJEyerPe9XrIVy6FaNShYMB37LVIEnnySUgMG0HlVJF/3PUqfD45Aw4YZ0mxjTA6wcSNHR/xKn9l3sH5Aflzpk1SukY+aNaFGDV0lpHp1KFz4zLdNnKiTkCpU8KfZ5kwWlBmTUaZNg+PHNQqrUQOAH3+EW27JgH3nzQsPPcQTeUfQ6rkr6PnpO+S/o4vO2jTG5G4xMfDdd0z8szblS59k0FVvEJY/HB57DKqeu1f9zjthyBDtkDf+s5wyYzLCiROnxwC8XjLn9Cq0Y8cM+oyQEIrefwt33niMz1e30pkDI0darQxjcruff4Y9exi7pzndP7qMsMuaaH5rv36wZcs533rzzXYaCSYpDspEJFRElonIeO/xEBFZLyKrRORrEQn3trcWkcMiEundXgjYRwfvPRtFxOJyk3NMmwZ//609ZJdeCmg92Jo1IX/+DPwcER76uCbf7evI0bj8GggOHKjFao0xuc+mTTBtGnGEsTK2Bg2bhOuybk2aaErFhx/C1q3Jvr1IEZ1TtGxZVjXYnEtqesoeA9YGPB4C1ADqAvmBXgHPzXHONfBur4AGdcCnwLVALeA2EamVnsb7JTQ0lAYNGlCnTh26devGiRMn0ryvu+++m5EjRwLQq1cv1qxZk+xrZ86cybx581L9GZUqVWLfvn1pbqM5j+PHdR0k0F4yz48/wq23ZvzHFSgAfR4vyIcFn9d1Mhcvhk8/1bU2jTG5R2wsfPcdOMdvFbrTonUeXTwkJEQrVDdurIHZRx/Bn38mu5uePWHQoKxrtkleioIyESkPdAIGJm5zzk1wHmAhUP48u2kKbHTObXbOxQDDgBvS1mx/5c+fn8jISFatWkWePHno37//Gc/HpfGP48CBA6lVK/k4Na1BmclkU6boia927VP5G85pZYz27TPnI3v1gtFzSrO/1zN6qbt2LXzzjY1BGJObjB0Lu3dDmTKMO3A5118f8FxICNx3n04IOnECPvhAM/qT0K4dTJ9uHe7BIKU9ZR8CTwMJZz/hDVv2AH4N2HyZiCwXkYkiUtvbVg4I/ImI8rZlay1btmTjxo3MnDmTli1b0rlzZ2rVqkV8fDz//ve/adKkCfXq1eMLb51O5xwPP/ww1atXp23btuzZs+fUvlq3bk1isdxff/2VRo0aUb9+fa6++mq2bt1K//79+eCDD2jQoAFz5sxh7969dO3alSZNmtCkSRN+++03APbv30+7du2oXbs2vXr1IpgLBGd7R4/q2QwIPCMuWgR162pHVmbIkwcefxze+b6srlie2GP2448WmBmTG2zerBeEInD33UyfGUKbNme9JjRUr+Dq1z8dmO3Y8Y9dhYXB1Vefnjxu/HPeoExErgP2OOeWJPOSz4DZzrk53uOlQEXnXH3gY+Cn1DRIRHqLyGIRWbx3797UvDXLxcXFMXHiROrWrQvA0qVL+eijj/jjjz/46quvKFq0KIsWLWLRokV8+eWXbNmyhTFjxrB+/XrWrFnDoEGDkuz52rt3L/fffz+jRo1i+fLljBgxgkqVKtG3b18ef/xxIiMjadmyJY899hiPP/44ixYtYtSoUfTqpSPIL7/8MldccQWrV6/mpptu4s9zdFubdJo8WRNq69aFypVPbR4+PHOGLgPdcYemsu0MqwAPPqhn1hkzTi/xZIzJmQKGLWnXjvXRlahYMZmLwLAwXbatbl1NtfjgA/jrr3+8rEcPGDw485tuzi0lJTEuBzqLSEcgH1BERL53zt0pIi8CpYE+iS92zh0JuD9BRD4TkVLADiCwEkp5b9sZnHMDgAGgyyydr3EdOmh14oxSqhT8+uu5X/P333/TwFtkumXLltx3333MmzePpk2bUtn7wzx58mRWrFhxKl/s8OHDbNiwgdmzZ3PbbbcRGhpK2bJlafOPSxuYP38+rVq1OrWvEiVKJNmOqVOnnpGDduTIEY4dO8bs2bMZPXo0AJ06daJ48eKpOgYmhY4c0SAIzsglS0jQC9jXX8/cjw8N1ZUCXn8dPvmkug5VDBigM7GKFIErrsjcBhhj/DFuHOzaBRddBNdfz9gPzzgF/VNYGPTpA59/DqtXw/vva9XYgLWXGzbUOQOHD+sSvMYf5w3KnHPPAc+BzqwEnvICsl5Ae+Bq59ypYU0RuQjY7ZxzItIU7Y3bDxwCqolIZTQY6w7cnt4vcL4AKjMk5pSdrWBAhVDnHB9//DHtz0oqmjBhQoa1IyEhgfnz55Mvs8bIzLn9+qtesTZooKWxPQsWQKNGWloss3XpAu+9p+fZ2o0awe23a9Gh77+HQoW0bcaYnGPrVu2hF4G77oLwcMaPhxEjzvO+8HB44AGdFLR2rQZmTz2lq4agu0ssj3HffZn+LUwy0lOnrD9wIfD7WaUvbgZWichyoB/Q3ZsPEAc8DExCZ3EOd86tTsfnB7X27dvz+eefE+tlTv7xxx8cP36cVq1a8eOPPxIfH8/OnTuZkdjTEqB58+bMnj2bLV59mQMHDgBQuHBhjh49eup17dq14+OPPz71ODFQbNWqFT/88AMAEydO5ODBg5nyHXO1Q4dg1iy9f0Z2rQ5dZkjB2BQQ0YoYPXrA3r1Aq1baHufgyy9hw4asaYgxJvPFxsK33+rv9zXXQJUq7NunvfMXXJCC94eHa6pDjRra0//eexCQ13zHHXpNZ/yTqqDMOTfTOXeddz/MOVf17NIXzrlPnHO1nXP1nXPNnXPzAt4/wTl3qfe+TB7c8VevXr2oVasWjRo1ok6dOvTp04e4uDhuuukmqlWrRq1atejZsyeXXXbZP95bunRpBgwYQJcuXahfvz63eslJ119/PWPGjDmV6N+vXz8WL15MvXr1qFWr1qlZoC+++CKzZ8+mdu3ajB49mosDenFMBpk4UUtQNG4M5U9PPE5I0Dyvq6/OuqbUqgVvvqmBYHQ00KmTBmdxcXpVHBWVdY0xxmSeX36BnTu1d8sbr5wwIZUFqvPk0cDs0kt1rPL993USAHoqCws7Z1kzk8kkmGfmRUREuMTZiInWrl1LzZo1fWpRzmLHMo0OHID/+z+Ij4cXXoCyZU89NXeuXsgOHJj82zPLp5/qrM9vvgFxCdpTtnSpJog8/bQmTBpjsqetW+Gtt/T+009DlSoAdOsGL72kFXlSJTpaA7KtW6FlS11vCZ0/sH07/Pe/GdXw3EVEljjnItL6fltmyZjUSuwla9LkjIAMMnCtyzR46CFNI3v7bU7XKKpeXa+GP/pIy3cYY7KfuLjTsy3btj0VkEVHa4bCOcpbJi9vXq38HxoKc+acSnXo0gVGj7bKOn6xoMyY1Dh4EObN02SuTp3OeCo+XtPMkphQm2U+/FDbMHo0Og7x4INQoYLmjXz8sRa5NcZkL7/8omUsLrwQbjhdc33WLGjdWk9HaVKmDFx7rd4fPBji4ihcWIO8hQvT3WqTBhaUGZMaU6acziW76KIznpozBy67TGMhv4SF6Trlb74JS5aghYsefRRKl4Zt26B/f1uOyZjsZNs2nekdMNsy0dix5ymFkRLXXqvB3u7dp2oc9uxpNcv8ki2DsmDOg8su7BimwZEjMHu23k+8ugyQlbMuz6VoUR1Gve8+r3h3kSLw2GOnl2NKnL1ljAluicOWCQnaBe8t4wb6KzxnjqaDpUtYmE7fBg3Kdu7k6qv1VBcTk859m1TLdkFZvnz52L9/vwUV6eCcY//+/VbfLLWmTtUp6fXrnzHjEvTcOXcuXHmlT207S5Uq8MknmgR8/DjaU5a4HNOiRbowpzEmuE2dqldWpUvDjTee8dSKFTrMGNBxlnbVqmmx6fh4GDKE0BBH+/a2OIgffBxoSZvy5csTFRVFsC/BFOzy5ctH+bMCC3MOx4/DzJl6P4n557Nm6TnNz6HLs11xBfTtqyMew4dDSIUKcP/9mls2aZImo1hgbkxwOnHi9MXTHXdoKYsAY8f+o0Ri+nTtqpHehg0wdy49erTklVfOSGEzWSCI/oSkTHh4+Knlh4zJMtOn61SnWrWgUqV/PD18uBbTDzY9e8K6dVrB4/XX0XnzVavqeiqzZ0O7dn430RiTlKlTNTC79FIt9nqWiRM1/z/DFCigC/Z++SWMGkW9l+uxfXtRDh4EW6kv62S74UtjstzJkxqUQZK9ZLGx8PvvwbvU5GuvaWA2aBBnzhqdMkUbb4wJLseOaVAGOmx51vTKv/7STu4MD5YaN4Y6deDvv2H4cG65RS84TdaxoMyY85k5U69Yq1XT21lmzNCRwNDQLG9ZioSEaEDWv7/mvVGrFlSsqBMX5s71u3nGmLNNmqQ983XqnJHcn+iXXzJ46DKRiHb558kDixdze8O1tuxSFrOgzJhziY7WHiX4R12yRH4WjE2pggV1weKHH4bNW+T07NFJk6xEhjHB5PBhvdKDZOtdZHg+WaCSJU8lkpWZMogC+RLYtCmTPsv8Q7bLKTMmS82dq0MJlSolmdcRE6OTGb/8MuubllrlysHXX0P37jBrZgPyly2r4yALFsDll/vdPJPdOafrMq5cyfqZO4ncVJgLi0VzQdFoLigRR4mi8YTkDdfpguHh2hsTeL9KFf09S3Ml1Bxi4kRNK2jYUHu0z3LihP7aXnJJJrahTRs9L/z5Jz1qLGLw4Ga89FImfp45xYIyY5ITGwuTJ+v9Tp2S/GORuPh4SDbpc27USEsSvfqa8MaN18JXX+kfgcsuyz5fwgSP6GhNWFy5ElatgoMHWbG/HD1n3sOtVRaz8GRpdv9dhD1/F+ZAdEESCxmVyHucC/Mf5YL8R7kg/xEuyr+bJqXnUKt6PHJZc2jWLHeu1XrggBYfE0m2K2zqVF1pKVOFhOiJ4o03uPH4EK6Y1pAXX8yT6+PlrGBBmTHJ+f13OHRIa5LVrZvkS378Efr0ydpmpdeDD2o9tZW3RlC39FjYuxcWL4amTf1umgl2zsGuXbB6tQZiGzZobSvPmphL6LnwPkZ8+RfVIiL0wiYmRv+N3Q+xsSScjOHgAceefSHs3leQPfsK89fui3llcQPWTi9Fg+HbuabcWK6+/CRl29fV5PMCBXz80llowoTT6+qWK5fkS8aN0yUrM93FF8PVV1Nw6lTq513LvLl1ubylXbhlNgvKjElKfLwubQI64zKJS8ToaFi2DJo3z+K2pVNoKHz2GTz4UAgzX7+W0CGD9I9BkyY2dGSSFhWlPTgrV8L+/ae3i+iwY926/FGgAbf/qwxDJwnVapZIdlchQEnvVjNg+78SEkhYvZbIEbuZMrUEd317KQe/KMgVZefT9oporryjPIWb1gyuYoAZac8e+O23c/aSJSToqGL//lnUps6dYdkyepadxuC3SnB5ywpZ9MG5Vw796TYmnRYs0D8+F12kuR1JmDwZrrkme8Yx9eppGln/yOY8VHyc5gJFRib7XU0uFhUF77yjVyEAhQppvbu6dXUmb8GCbN4Mt3TRWb41a557d8kKCSGkbm0a1a1No/+c5JmlS/l7zlR+m5PA1N9q8NrIguQN30ab5ifo2KMkTTqXyZ6/fMn55ReNulq00LUok7BokaYgZNlM77x54fbbab3vE/41OoSTUfvIVz4XDitnoRT3RYpIqIgsE5Hx3uPKIrJARDaKyI8iksfbntd7vNF7vlLAPp7ztq8XkfYZ/m2MyQgJCafXF7n22mRzrYJlrcu0euEFGPhNKDsaeVflEybYmpjmTAcP6goQ0dG6vNhzz8H//gf33qs9qwUL8uefWgz+66812M8Q+fJBixbkf+ZR2g6+i7feFuY/OJhRV39KrcPzeOmR/Txx+QJip87SOoLZ3c6deiEYGgrXXZfsy8aNy4AFyFOrTh1CmkbQqcIKfnlhgZ0jMllqBogfA9YGPH4b+MA5dwlwELjP234fcNDb/oH3OkSkFtAdqA10AD4TkSCt7GRytSVLdCihVKlk86xOntSRnCZNsrhtGahAAXj7bXjkh8ugcGH4809Ys8bvZplgcfKkLqB66JDW5+vdW2dHBlyk7NihtU3799cenExRvDi0bw8vvECp1x6nW+8SjO/2HWUSdtCu50X89eBr8P33+vObXY0bp8FOy5ZakiIZkyf7tAjHLbfQo+5yBk0vp/mnJtOkKCgTkfJAJ2Cg91iANsBI7yXfATd692/wHuM9f7X3+huAYc65aOfcFmAjYJnFJrg4pz1GAB06JNtL9uuv+nciu4+etGsHBQuH8FPBO3TDL7/YlbDR3uIvv9ShywsugAce+Ecu1+7dWs6qXz+dLJnpRKBCBejWDXn7Lf79SUVevCGSjmP7MOvHXbqO2Jtval5W4lBrdrB9u14Ihoefrh+YhK1bNV4rVCjrmnZKkSLU6n0Fe/4uwr6vx2oPqskUKe0p+xB4GkjwHpcEDjnnEqtORgGJU0XKAdsBvOcPe68/tT2J95hgEh+vZ4B583RmXjLi4vTidN48nYU4dmzWNTHTLF+uRYCKF9cyEckYPlyXicsJ3n8fXhxTnyOhxXVNzA0b/G6S8ZNzMGyYlrgoVAgeeUSrDwfYt09z0d95x6flxcLCICKC1p/fyoSpeXlpc0/+t6YTbstWTWx75hn9Dn/95UPjUinxxHnllVCsWLIvGzcuEwvGpsTll3N36618uqgpDBhwxqxbk3HOm+gvItcBe5xzS0SkdWY3SER6A70BLr744sz+OAN6Vbl5M2zcqLfNmyEmht0nCrPp6AVElWnC9gsaE3WkCNu365BFdLSeF8uW1YoRFSro8pCxsZpfki0F9pK1b5/sLK+oKC3NlFNy4kuXhsefCOH5UX34uOxbegwuvdTvZhm/TJsGs2bpz/+DD2pPWYADBzTt6dVXtcao38o2uIDJkfDMvzvRNfJyvrlqEEX/WqdV8WfM0KHXVq10fDXYZm5u3gwrVmhCfYcO53zpuHFaVtA3ItzzeVOa1zzMA6tnccGYMXDzzT42KGdKyU/o5UBnEekI5AOKAB8BxUQkzOsNKw/s8F6/A6gARIlIGFAU2B+wPVHge05xzg0ABgBERETYOEpmOHr0dAC2YYN2nydoJ+j+kwUZsbk5w7a3QMLDqZV3ExV27qdCoZFENChFhX9FUDaiLPny/XO3ffroSbp27SSL3we/NWtg2zbNr0rm8v/wYQ06P/00+w9dBrrrLvj+u4tZcKg6zdau1Z7SSpX8bpbJasuWwUgvK+Wee/6x7uLhw5po/vzzet0SLMLD4f0PQxkxoiRt3nqcb97cRb290zR5fsMGvQ0frr/X58nbylKJvWRt2uh5JxlHjuixr+BzRYo8JQrx7PPHePXLTnycf5gGvPXr+9uoHEZcKvJHvJ6yp5xz14nICGCUc26YiPQHVjjnPhORh4C6zrm+ItId6OKcu0VEagM/oHlkZYFpQDXnXLJ9oBEREW6xJRWmn3N6RTZ/Pqxfr8kgAU7E52XcsasYsrEZe2OK0u22UG7tmU9rF+7fr+sj/vbb6TUS69TR2l1JLJS7YgXcd59eoPqS+5BWzumssk2bNOpKIps2JkZ7CPr2hS5dfGhjJvvjD+hx3QHmXvk84Q3rai+JyT22boV339Xu7htv/Ed+09Gj+vP/6KPB3Ru+bp0Wo3/0UejR7SQsXKg9f1FR+gIRLefRurWW9PDr6uqPP+C99yB/fnjjjXMWyB0xQkeTX345C9uXjIQEuKLuIQbX+x9VLzqhEXpuXH0hGSKyxDkXkeb3pyMoqwIMA0oAy4A7nXPRIpIPGAw0BA4A3Z1zm733Pw/cC8QB/3LOTTzX51lQlk6HDumV4m+/nRmIhYcTV7Eq005cxpClNVixtQjXdw7h9tvPUWPo0CFdmHv2bI1OAKpX1+CsevUzTmzff69d7cOGZaPepMQTZMGCeoI8qyvQOa2i3agRPPaYP03MCq/9XzTh0ybyTN2J8H//p2PTJufbtw/eeksjr8sv16gm4Jf3+HHtIevVC267zcd2ptCxY3D//Zqi9eGHkDePd2E6c6Ym1SfmQ5UurUObl1/+j7y5TOWcBsAbN+qB7dTpnC/v0UPPOxFp/lOfsaZPc3z5zEaGNn5X1+d8+ungGxr2SZYGZVnNgrI0iIvT7qp58/TSKvH/t0gRXLPmLAptzpAZZZgxM4Qrr4Tbb9eK9CkOno4e1eSx6dNP1weqUkWvquvWPbWjRx7RzY8/nvFfMVN88IFeYidzgvy//9M/TO+/70PbslBMDFxe8wDDmr5H1TaV9C+bydlOnNCM/Z079arskUfOqE66fr0GBf/6l54vsgvntKLHsGHwww8Ba3sfPQpz5+oF5oEDui0sTOvbtG6dNcP2q1frtNVkLgIDxcXpxWBkZHAtT3ttu3heK/c5jfOshKuugu7d/W5SULCgzKioKA3EFizQy0TQ3+D69aFFCw6UrUO3W0MoUwbuuEMXtA0PT8fnnTihV51Tp2q0Atqr0rIlREQQk6cQ7drBK6/ohWjQSkjQk/PQoXpifPPNfwwjDByoJTCGDw+uk2JmmffrEV7uHcWv1/ZDXnk52eriJgeIi9PgYP16nbXz9NM6nOb58UetZff119CggX/NTI958zSgrFQJevbUXLjwcPR3f9UqPY+tXn36DRUrnp4YkBlrbjqn55lt25JNlQg0ezYMGQJffJHxTUmPyEh4+pG/mVTnSSQhXi/ggqUrz0cWlOVmJ05ovsRvv51ZOLFcOV2qo1kzKFyY7ds1B+qll87bS5560dG6Jt7kyZqJChq51K3LX1Vb0vHpOkyYKJQtm8GfmxE2bNC/Otu9Si033KDDsQEmTtQ/ShMnnvG3Ksd74Oo/uNzN5c67QnUWgMl5nNPyEfPmQZEiWq2/hK5ZGR0NTz2lnWdffQVFi/rc1nRyToOIQYN0cunVV+uP9alAc88ePY/99tvpi8zQUO05bNJEL24z6gSwfLkuPlukiNZWy5PnnC9/6intiMrwc3cG6NEDetSNpN2mz/Wi9j//yfUXcRaU5VY7dmiyxJEj+rhAAa0+36IFXHzxqWHE1au1Z6x//0xeODs2VmduzZ+vsxi9n6tZB+ry4qpuTB51lDw1qwZHktn+/TB69OnK1MWL6xVrRMQZ7Vu6VC/+Jk8OnslaWeXQxn1c2ewk067/kFLvPZf7DkBuMGEC/PyzBgVPPXVqfG/bNj1n3Hyz5jEFw69sRoqN1Z7vQYP0u956q37fiy7ynly8+PSkqMS/j2FhOq08IkLXkjrHcGOy4uI0t/err/T83b27RlvnsG2bXicuXhycF4Vbt0L37o55d39JyLIlOlry7LPpHIbJ3iwoy422bYOPPtIrukqVdCyyQYN//CLMmwcPPaT5FGleJDgtjhzRHrz582H7dt5f0ZZtx0rwUefpGhk2a/aP2kdZIjpaz8ZTpujJNzxcxzLat//H1eq2bdpxNmpUkpNMc4WRD07nl2n5+ObFrdkrmcic35IlWgBURKv1e2UNJkzQzo7PPtPru5zuwAHtLP/hB+246tlTf+/z5UNzz5Yu1Yhow4bTAVp4uObPRkToTPS8ec/c6cmTsGuXdjMm3nbt0kLcifsoXhxee+2cyfEjRmhH2qef6jyEYPX449Ckfgy3b3pVexyvuEK70HIpC8pym82bNQfk77/1iq137ySvSsaO1d/50aN9nkD311+43+fT/fmq3FBuEbdfski3V6miJ7WKFbWBabnyTCnnNEgcPVpnkYIOSXTtqifHsxw8qGken36a7NKXuYL7ayc3ttjNY/Vn0ea7u85ZbdxkI3Fx8N//6g96t27Qti1xcfDiixqDDB6cOyscrF+v333cOL12vPde/f0XQVMzli6FRYu0bE6iPHn0PFykyOkALPEcczYRne1ZpozWFkmmOPrx45oDd+SI5pEF+6/dvn3aL7BgVBR5339Tf77uuSeTh2aClwVluckff+h0ouhoTUK9774kr7S++krLUowenWTM4YujhxNoc0U0X98yibp7p/9zbbrSpU8vDZD4b/Hi6R872bpVL4U3b9bHFSvqeEUy3V/R0Tpc8NhjOhEzt9v+xmBu+ehyfv96bXAmtZjU++03HbsrUwZefJFdu4U779Tc9uefP2PiZa6UkKB1Fr/+WgO17t214+dUqtTBg9rTuHgxbNnyzx2EhelY6EUX6TFOvF1wwXnLRixfrqf1Bx7QoDC7DB2//rrWpXys8VyNbPPk0S7XMmX8blqWs6Ast1izRscUYmN1+O/uu/8xFdA5nV29aJFOJgy2HIR16zR3Y9qEaIptjdQNUVG6Pl1iYdpABQqcGaiVKKF/MUJD9buffT9w28mTMH68DqGCXsnedJOuZ5nMmS4hAe68U3vfrW6qZ/VqulwXwyvt5lKn/8PZ56+ESVpCgnaJ7dkD997LrJPNePRRLdHXtq3fjQs+hw5pSY3Bg/W68d57tfrPqcGJ/ft1BkF8/OkgrGTJVE/Tdg4+/liHUb/9NvutiHL8uA53z57lKDrmWz3vlimjk0fOHt7N4Swoyw1WrNB+7Lg4TS64885//NLHx2uXd3S0xm7BWsdv1Ci9SB8zJuArxMdrAuz27Rqkbd+ut8TSHukRFgbXXKPryp1niPTZZ/Xk+Pbb6f/YHCMhgVE3fc/iP0vz5ugaULmy3y0y6bFoEQwciCtZineKvMrEX0MYMkQnbJtzW7kSvvlGqwC1b68BWkbk6u7dq/u65BKt35tdY5gBA/S0/ep/o7Xkx86dOoR599256mLOgrKcbulS+PJLvcJt3Vr70s/6AY+O1u71GjV0GY5g//l/+mnNk/jPf87xIuc0jyMxSIuK0iSLhAQN4hL/Tep+4q16dc0bO0eCjHM6EWrIEL3gHTIkd9QiS42TQ0bR7NGmLOs3l5A7skE5d5M053QV8R07mF7zIT6eVY/hw3P1RLk0iYmBX37R4c2DB7W0RocO2pmf2nPv1Kk68fWNN/5RjSfbiYvTQZzx46EMO/VLxcTo7IlgnqmQwdIblAVpf4oBtBDsN9/oybRdOy02dtZv/ZEjGnd06aJ5CNnBG2/oEEChQnqFHhZ2+hYamnhfCA0tRlhYMcIuqkNoOS1+XaKE1kxKbeCUkKCl3NasOX1bt07nS5QrBw0b6rCBBWT/lK9VU5qU3sbcn/fT6ta44O2GNee2YoVegRQrxvtT6vDGmxaQpUWePJoJcdNN2hk0eLCmO0RF6ZriderorW5dvSWVqB8bq6uELFumNRBzQupVWJjmJL7yCnz+uVel/JtvtOp27drBP2MhSFhPWbD67Tf9bXdOE6yvv/4fAdmmTTqS+eSTWlMoO9m7V39fY2O1gysuTm+B9wMfx8ZqrdwDBzTPwzk9HGFhOh+gRIkzb8WK6Sz0NWs0WTc2VnP8a9U6fatePXMKduc4zjHznu8YuqAKXwwreqp8gslGnNOxsa1bWdvsbv7142VMmuR3o3KeI0d0kYCVK/W2apX2ppUrdzpIK19eJ7/ecIOeu3PShaBzOmFk4ECofqmDzz/X2Qv162uvQbAP42QA6ynLiWbO1Ex9gBtv1G4lz549Wr/mxx81kf+dd3Rlo+ymdGkdxkyv2Fg96R04oLfE+wcPavpTp05QrVrmVtzI8URo1b0sj42rTPTsieS1oCz7WbdOZyIXKsQHvzXliSf8blDOVKSIJrwH1nhzTucyJQZqs2bpUrtNmvjXzswiojMxn38eRo4UrW+4fr0GZsuWadUAc04WlAWbKVNg5Ei9f8stcPXVHDkCP/2kcdrRo7p5+HCvAnUuFx6uM839qEWbm4Q0b0qHCguYOMFx430nrIsxu5kwAYA9ER2J/CCULwb63J5cRER7ysqV09yznK5VK/jf/3QCZvPmxTS35ocf9A9YjRp27jiPHNRxmgNMnXoqIDt5852MOXI13bpBmzaa6/7JJzB3Ljz6qAVkJosVK8Yd7fby/fqI08tTmexh0yatcZg/P5+tapVbRpGMj958UydyOYdGaVWr6tju6NF+Ny3oWVAWLI4exf30M1OjanDvjldo9lRLFizQZNBFi7Q7OLcu92OCQ70ul7DtWEkOzVjmd1NMani9ZH+3uJox48NtxSyT6erU0RzeiRPRK4AePTQBeM4cvUAwybKgLFhMn86YP2rz7uYu3PvshSxbpnm59erZVa0JEg0bcvMlyxk1vbjO1DDBb/t2zTbPk4fBu67hlluybx0sk728/DK89JJXF7xMmdO50YMHazKwSdJ5gzIRySciC0VkuYisFpGXve1zRCTSu/0lIj9521uLyOGA514I2FcHEVkvIhtF5NlM+1bZzcmTMGMGn69pxSefaEX5nDQjx+QQefNyW5doftjYVMu1mOA3cSIACVe04ovv8tG3r8/tMbnGxRdr/nOfPt4wZocOULaszlb75Re/mxe0UvKnPxpo45yrDzQAOohIc+dcS+dcA+dcA+B3IHCweE7ic865VwBEJBT4FLgWqAXcJiK1MvC7ZF+zZrF+ZxHCCuXnkqsr+t0aY5J1cae6OCBq8hrvTGuC1q5dWnw6LIwJ7lqaN9cVgIzJKk8+qXUln30WHb7s0UOHfiZN0sJu5h/OG5Q5lbjeTbh3O3U2FpEiQBvgp/Psqimw0Tm32TkXAwwDbkhLo3OU2FiYMoX+a1rR96FcvhKwCX7Vq3Nb3dUMXVj19CLvJjj9+qsGzi1a8OHAQjz+uN8NMrmNCLz7rl4fvPsuUKWKrkyTkKDDmAkJfjcx6KRokExEQkUkEtgDTHHOBY5d3AhMc84dCdh2mTfcOVFEanvbygHbA14T5W3L3X77jRMHTzJ9X1069a3gd2uMObeQEG6+LZwRmxudXuzdBJ/9+3WIOSSEpRd1pHBhXVvRmKwWEqLFZOfM0VVTuPFGrfi9dSvMmOFv44JQioIy51y8N0xZHmgqInUCnr4NGBrweClQ0Rvu/Jjz96CdQUR6i8hiEVm8N6cnE8fHw6RJ/LipCTffGE9YuGX0m+BXvG1jyhc8xMpfd3hZvCboTJqkvRBNm/Le18V58km/G2Rys/BwGDYMvvsOfp6Uj1NTgH/+WS8gzCmpSid3zh0CZgAdAESkFDos+UvAa44kDnc65yYA4d7rdgCBXUHlvW1nf8YA51yEcy6idOnSqfs22c3ChXDgAAM3XUWv/8sBi5+Z3KFcOe5svpEhK+tpiXITXA4f1mXagO11O7JtW65aD9oEqfz5YcwYrWE262A9iIiA6GgYMsTyUwOkZPZlaREp5t3PD1wDrPOevhkY75w7GfD6i0S0iIOINPU+Yz+wCKgmIpVFJA/QHRibgd8le0lIgIkTWbL3YspWK0iZstZLZrKPjj1KMnF7bRLm2RBm0JkyRXswGzak348X8uijVlbHBIdixTQwe/xxWFbjNq3uv3q1FuM0QMp6ysoAM0RkBRpYTXHOjfee686ZQ5eggdoqEVkO9AO6e5MF4oCHgUnAWmC4c251RnyJbCkyEnbv5vPN7XjguWJ+t8aYVMl3eWOaXrCNOVNOwvHjfjfHJDp+HGbPBuDIFR2ZMkVXuTEmWJQpo+s33/NIITY2v1M3/vgjHDt27jfmEimZfbnCOdfQOVfPOVcnscSF91xr59yvZ73+E+dcbedcfedcc+fcvIDnJjjnLnXOVXXOvZ6xXyUbcQ4mTuRQdH6WnajBVW1t1qXJZooW5Y62uxmyPsKucoPJtGk6JFS7Nl9NuZi77tJKBMYEk6pVNb/slrcbsbNsYw3IRozwu1lBwUqU+mHNGvjzTwZtb02PPgVsaMFkS63uqMD8PZWJ/s3WwgwKXhFqgLh2Hfn2W7jvPn+bZExy6teHjz4Sbvz5Hg7GF9HZ3GvW+N0s31lQ5oeJE3EOBm2/irvutV4ykz2FNGrAtZXWMWFWQdi92+/mmJkz4cQJqFaNUcsvoV07KFLE70YZk7yWLeG/L4dz08LnOBEXrkn/0dF+N8tXFpRltY0bYcMGZh2oS73LClK8uN8NMiaN8uThjptOMMSWXfJfTAxMnQqAu7Yj/frBo4/63CZjUuD66+HeJ4px69xHid1zAH76ye8m+cqCsqzmrUX3+a6beOBhS/Yw2Vu9my9l27GSHJoZadPa/fT773D0KFSsyNz9NalUCSpYLWqTTfS8O4SrbilNr9l34aZNh3Xrzv+mHMqCsqy0fTusWsWu2JJsj72IJk38bpAx6VS9OjfXWsuoJZW0F9j4Y543n6ptW957X6xYrMl2nni1OAnlyjN2W32dBfD33343yRcWlGWlX3Wi6ld/38Z9vS2XzOQAItx+h/CDDWH6Z9cuXbImXz42FGzA0aPQqJHfjTIm9d4dUpYXV3blxJ6jMHy4383xhQVlWWX3bliyhHgJY/jKWnTv7neDjMkYFa6rjwO2z9gIsbF+Nyf3SVyDtHFjPvg0jy08brKtC8uE0Ovh/Ly+/Hrt/Y2M9LtJWc6CsqwyaRI4x4QCN9P66lAKFvS7QcZkkDJluL3pJoauqgsrVvjdmtzFuVM9lPurt2DBAujY0ec2GZMODzxThOknmvPHoQvg++81VzIXsaAsKxw4oIm4IvRf2YK+ff1ukDEZ6+a7CzFyS6PTvTYma2zYoOeXEiX4fHJV+vSBEDurm2wsNBQ++KoIjy6/D3fkKAwenKsmEdmvb1aYMgUSEthSsTXRLi81a/rdIGMyVrE2jahQ6BArZx3IdVe2vvr9dwBiIy5j+AihRw+f22NMBmh+mVCh6UWMjGoOy5fnqos9C8oy29GjMGcOAF9EdaRPH5/bY0xmKFyYO9rsZMgfTWCxVfjPEjExsHQpAOMOt6J9e8if3+c2GZNB3nw/H69tuIWjMXlh2DDYv9/vJmUJC8oy27RpEBtLdM0GTJxbhBtv9LtBxmSOjvdcyMTttUmYl3uuan21fLkurVSpEgOGF+P++/1ukDEZp1QpeOipArwSda/+nH/3Xa4YxrSgLDP9/feptehG0YXOnSE83Oc2GZNJ8jWtR9My25kzPxyiovxuTs7nDV1uqdia2Fi49FKf22NMBut1v/D7sTqsjr4E1q+H6dP9blKms6AsM82erRF+9eoM+OlCevf2u0HGZKLwcO7oclJrlk2Z4ndrcrYjR3Tx5pAQBi5rbL1kJkcKCYGPPgnjkTV9tZNszBity5eDWVCWmRYuBGBlxesoWtSWPTE5X8uH6vH7nirEz18EBw/63Zyca+FCcI7YWvUZNykPN93kd4OMyRyNG0PNJoX5Qe7QOohffw3x8X43K9NYUJZZdu/WIZz8+ek/9RIeeMDvBhmT+UIvLMVltY8y968qmk9pMoc3dDkuuh3t20PevD63x5hM9Npr8M7vV3C4QBnYtu3UGtI50XmDMhHJJyILRWS5iKwWkZe97d+KyBYRifRuDbztIiL9RGSjiKwQkUYB+7pLRDZ4t7sy7VsFA29W1NFLGzNvfgjt2vncHmOySNf7SzByS2OddZxL16/LVFFReitQgAFTKtnQpcnxiheHJ54M4YX9j+mGX37R4CwHSklPWTTQxjlXH2gAdBCR5t5z/3bONfBukd62a4Fq3q038DmAiJQAXgSaAU2BF0WkeEZ9kaCzZAkAQ/66ittus4KOJve4qvuFzDpQh4S/ozWv0mQsr4L/louvJDYuxBL8Ta7Qowcs/7M4kVW7QkICfPNNjlzW7byhglPHvIfh3u1c81JvAAZ575sPFBORMkB7YIpz7oBz7iAwBeiQvuYHqb17Yft2XN58fDO5LPfc43eDjMk64eHQuFkYC/ZU1iHMuDi/m5RzJCScCsoGbrjSeslMrhESAv36waPj2pJwYRnYuRN++snvZmW4FPXfiEioiEQCe9DAaoH31OveEOUHIpKY1VAO2B7w9ihvW3Lbcx5v6HJFyauoWCmE0qV9bo8xWazrvcUYtbcVHD58asKLyQDr1sHhw8SWuJBxc4tZgr/JVerVg8YRIXxb+GGN0qZOhbVr/W5WhkpRUOaci3fONQDKA01FpA7wHFADaAKUAJ7JiAaJSG8RWSwii/fu3ZsRu8x63tDl0K2XcdttPrfFGB9c006YureeTmOfPDlXFH3MEt5yM+NDOtOunViCv8l1Xn4ZPvq+FAdad9ENAwfmqJneqcp0cs4dAmYAHZxzO70hymjgGzRPDGAHEFj8oby3LbntZ3/GAOdchHMuonR27GLavx+2bcPlycuvSy/g2mv9bpAxWS9vXqjVOD/LYmrrMMOqVX43Kfs7eRKWLQNgwPx6VvfQ5EpFisCzz8LzM9pC7dpw7BgMGJBj0iRSMvuytIgU8+7nB64B1nl5YoiIADcCiWfdsUBPbxZmc+Cwc24nMAloJyLFvQT/dt62nMUbuvy94NU0bCTky+dze4zxSdebQxgVc50+mJTzftWz3LJlEBPDlhKNiSGPJfibXKt7d9i4SVhUv5dOzdy8GUaP9rtZGSIlPWVlgBkisgJYhOaUjQeGiMhKYCVQCnjNe/0EYDOwEfgSeBDAOXcAeNXbxyLgFW9bzmJDl8YA0KEDTFxbCZc3H2zYAFu3+t2k7M0buhy4o4Ml+JtcTUST/vs+UYCdNz4AoaE6qcj7+5udpWT25QrnXEPnXD3nXB3n3Cve9jbOubretjsTZ2h6Q5oPOeeqes8vDtjX1865S7zbN5n3tXxy4ABs2UJcWD5mrS5FmzZ+N8gY/xQsCFWqhrC6yvW6wXrL0u7gQVi/nljJw7il5S3B3+R6NWvCBx/AdQ9VZEfrO3Tjd99p4fZszKpnZSQv32Nm+DW0bBVCWJjP7THGZ127wqjdl+uV7LJlsGeP303KnhYsAOcYL9fTrkOIJfgbA7RqpT1m17/Vgu1VroToaOjfX//Npiwoy0iJQ5dbmtnQpTFAp07wy7T80KyZzsCcOtXvJmU/zp0auhywsrkl+BsT4PLL4bPPhM5Du7M1b3X46y/44YdsO+PbgrKMcugQbNpEdEh+Fm8pSYsWfjfIGP8VKQIXXggbLvGmIc+bB0eP+tuo7ObPP2HnTrYkVCQmT2FL8DfmLM2bw4AvQ7hp+iNs/ruMXsTMnet3s9LEgrKM4g1d/koH2ncIsWWVjPF07Qqj5lwAdevqsigzZ/rdpOzF6yX7av8N9LpffG6MMcGpSRP4alA4Xeb/m42HS8OwYdlyfUwLHTJK4tDlxiY2dGlMgM6dYexYoH173TBjBsTE+NqmbCM+HhYtIjYhhLFrq9Gli98NMiZ4NWoE340oyM2/P8H6fSXhiy/gxAm/m5UqFpRlhCNHYONGjrsC/LGvOA0a+N0gY4JHiRJQuDBsDbsEKlWC48d1GNOc3+rVcPQo449cSbuO4Zbgb8x51K8Pg38qwq2zH2LtxnBduDwb5ZdZUJYRli4F5xgbdy2dbwhBbITBmDN07Qqjx8jp3rIpU3RxbXNuiQn+m6+mdx87sRiTEnUbhvHDqLzcNqM3q2buy1bleCwoywheFf+hGyJs6NKYJNx4I/z0E9CgAZQuDfv2ncrDNMk4cQKWL2frsVLEFChmCf7GpEKtFsUY9tVx7pxxLyu+WgR//OF3k1LEgrL0OnoU/viDA7GF2RNdlOrV/W6QMcHnggsgLAz+2hUCbdvqRluo/NyWLIG4OAbu6UyvvuF+t8aYbKdG50sZ8co6es64m2Wv/QKHD/vdpPOyoCy9IiPBOUb/fS1du4X63RpjgtZNN8GYMUCLFlCokC67tGGD380KXvPna4L/ljqW4G9MGlXrezWjek/m3gldWfzC2KBPm7CgLL28WZc/bmzMrbf63BZjgliXLt6awXnywFVX6cZslOuRpfbsgY0bGb+jEe2uy2sJ/sakVUgIVZ/txpiuQ4jbvhO2bPG7RedkQVl6HDsG69ez62QxYvIW5uKL/W6QMcGrXDld/WTvXqB1awgPh1WrtAK3OdP48QAMiLqW+x+w9dqMSZciRaj09C00f/dmqFrV79ackwVl6bF8OSQkMPxYR265zYYujTmfUwn/hQrp+iiguWXmtKgoWLiQrcdLE1PsQstTNSYjVK0KVar43YrzsqAsPbyhyxEbG9Ctm89tMSYb6NrVG8IETfgX0bIPllt22s8/g3MMOHY7vR6wBH9jchMLytLq+HFYu5Ytx0pT8IKCXHCB3w0yJvhVrqzLxB48iJbG6NBBZ2B+9VW2q7ydKTZuhBUrWHakKtN3VKdrV78bZIzJShaUpZU3dDns8LV0v8NyPoxJqeuvh3HjAh5UrqxR2uDBubtEhnMwejTHYvNy/+LefPd9KHny+N0oY0xWOm9QJiL5RGShiCwXkdUi8rK3fYiIrBeRVSLytYiEe9tbi8hhEYn0bi8E7KuD956NIvJs5n2tLOAVjB2zqS433uhvU4zJTrp2hVGjvAehodCrF+TLp79TuXn5pZUrYdMmHll4J488U8ByyYzJhVLSUxYNtHHO1QcaAB1EpDkwBKgB1AXyA70C3jPHOdfAu70CICKhwKfAtUAt4DYRqZVh3yQr/f03rFnDmkNlKXdJfooV87tBxmQf1avrhMujR70NpUrB7bfr/WHDYNcu39rmm4QEGDOGHzY2IfaiCvS8z7rIjMmNzhuUOXXMexju3ZxzboL3nAMWAuXPs6umwEbn3GbnXAwwDLghHW33z/LlEB/P0APtua2HJeIak1odO8IvvwRsaNZMbzExMHAgxMX51jZfLFrEpnUxvLv6Wj4fUdrWzzUml0pRTpmIhIpIJLAHmOKcWxDwXDjQA/g14C2XecOdE0WktretHLA94DVR3rbsZ+lSnIPxW2tz3XV+N8aY7OfmmwOGMBPdfrv2mm3f7pX+zyXi4ogZPZ6eM+5hwBv7KVzcclSNya1SFJQ55+Kdcw3Q3rCmIlIn4OnPgNnOuTne46VARW+482Pgp9Q0SER6i8hiEVm8d+/e1Lw1a5w8CatXs3hfJWo3ykuBAn43yJjsp04d2LTprAmX+fJpfllICEydCqtX+9a+LDVnDs//2pIu9TYRcXed87/eGJNjpWr2pXPuEDAD6AAgIi8CpYEnAl5zJHG40zk3AQgXkVLADqBCwO7Ke9vO/owBzrkI51xE6dKlU/dtssLKlRAXx7D919C9h+V9GJMWItC+fRKrLFWuDJ076/1vvw1IPMuhTp7k1082suZgGR5/+yINSI0xuVZKZl+WFpFi3v38wDXAOhHpBbQHbnPOJQS8/iIRzYgQkabeZ+wHFgHVRKSyiOQBugNjM/j7ZL4lS0hwwtSoGrRr53djjMm+zpiFGah9e7j0UjhyRAOzHFwmY9fIuTw7qwPf3DWTkAb1/G6OMcZnKbksKwPMEJEVaGA1xTk3HugPXAj8flbpi5uBVSKyHOgHdPfmA8QBDwOTgLXAcOdc9hqfiI6GVauYs/MSmrUMtxpCxqRD48ba8RwdfdYTISFw771QoICujTl9ui/ty2wJh49y9/PleLfZSC7o2QHL7jfGnDej1Dm3AmiYxPYk3+uc+wT4JJnnJgATUtnG4LFsGcTGMnRvW257Iq/frTEmWxPRlZZGjIA77zzryeLFoWdP6N9f12WqXh3Kn2+Cd/byvwe30LDEDtp2CINq1fxujjEmCFgCQ0olJMDEicQmhDBvXzVatfK7QcZkf88/D59+ChOSulRr2BBatdLyGF9+qeUycogFkw/zy4wCvBIxFqs+bYxJZEFZSi1ZArt2MeVwM9p0yk9oqN8NMib7K1FC65W99tpZdcsSdesGZcpoQdkRI7K8fZnh8GHoe38c3135NeHNI6BChfO/yRiTK1hQlhIJCTB+PABDj3TkttvtsBmTUUqU0F+v118/9Wt2Wp48WiYjLAxmz9YUgmzMOejT82+eu3Q0lYsdPD3T1BhjsKAsZbxessUx9fjzRGmaNvW7QcbkLImB2RtvJBGYlS8PXbro/UGDdPHybOrrr6Hw/i3cUmWxDs0GY9kfY4xvLCg7H6+XLCY+lAcX9GTAl2KTpIzJBIlDmW++CePGnfVkmzZacfbECejXD/bs8aWN6bF8OfT/6CQfVf9MewA7dfK7ScaYIGNB2fksXgy7dvH6uq50u6sg1av73SBjcq7ixbWn7K23YGxgFUMRuPtuuOgiXc38zTe1XEY2cPgwPP009O3rGNRhKAXCYnXaaZEifjfNGBNkLCg7F6+XbPn+8kw70oQnnrLDZUxmSwzM3n4bfv454InCheG556BBA+0x++QTnbYZpMVl4+NhwAAdpaxRA+Z+sYaah+dDwYJY5WljTFIsyjiXxYuJ3bmXvvPv4ovvC9qMS2OySPHiOpT5zjtnBWb58kHfvnDDDfr455+1ltnJk760MzkzZkCLFrBlC8ydC/feepzQn7zlCzp0gPz5/W2gMSYonbd4bK7l9ZK9E9me6zo6ateziMyYrFSsmAZm112njxPjMESgY0ctJfHVVxAZqcOZDz4IF17oU2vVpk3w739DaCgMG6ZLebJ1K3zxBRw4ACVLwlVX+dpGY0zwsqAsOYsXs3ptCON3NmL2nHJ+t8aYXKlYMR3KvO46HaU8o85q3brwn//A559rntkbb+jyTPXrZ3k7jxzRWmuzZ+uw65VXog2eMVPrq8XHa4R2//0QHp7l7TPGZA82fJmUhATixk6gz5w76f/afsLzWS+ZMX5J7DF77z0YM+asJy+4AJ59Fho10iHMzz7TqZtZlGcWH6+LDbRsqStB/fabF5CdPKlPDBumL2rTBp56SnvKjDEmGeKCNEkWICIiwi1evDjrP3jBAv73WBTHwovz8swrsWQyY/x3+DB07aqrLtWpox1l9erp/cKFHEyerFGbc/rEPffoouaZ0I7ISFi6FH78UUcjn3suYDJlVJQOV+7ZozlwPXvq6uvGmBxPRJY45yLS+n4bvjxbQgLrv5vPiM2dmTt8pwVkxgSJokVh6lStHbtqFaxcqbVkV66EY8eEiy9uT90yjakbNYF6Bzdz6V9vE/ZQHyhbNs2fuWePLiKwdKn+u2GDTgJt2FBvw4fDxRcHvGHePPjhB4iN1aK3vXv7nudmjMk+rKfsLPHzFnD1zcV4t8M0Ir7sY0GZMdmAc/DnnxqgrZx/nJVjt/DHzsI4CaFQ6XwUvLAQBUvmo1AhoWBBKFSIM/5NvB8fDytWaBC2bZuOjjZqpAFYo0ZwySUQklTSR0wMDB2qQRnA5ZfDbbdZ/pgxuUx6e8osKAuUkMBH1/7Krj3Cm58U0ROrMSb7iYmB778n/veFnIjLw/G4vBwvXp5j1RpyvEodjoWX4PhxOH4cjh3j1H3Qkc+GDbUHLEWrd+zercOVO3ZoEHbHHXDZZZn69YwxwcmGLzPQpjErGLy0NnPv/Rqav+B3c4wxaZUnD9xzD6EtW1J44UIKL1kCx9fAqjWwCqhYEZo0gdYRWhQtrRYv1jHU6GgdpuzTB8rZbG1jTNqct6dMRPIBs4G8aBA30jn3oohUBoYBJYElQA/nXIyI5AUGAY2B/cCtzrmt3r6eA+4D4oFHnXOTzvXZWdlTlhCXQLtLt/BqvZFc9nRLrfxojMkZ4uNh7VpYtEiTw6KjdbuIjkk2barjk4UKnX5PQgIcPar1Lg4f1n8Tb4cPa3Lbpk362ogI6NFDE/uNMblWVvSURQNtnHPHRCQcmCsiE4EngA+cc8NEpD8abH3u/XvQOXeJiHQH3gZuFZFaQHegNlAWmCoilzrn4tPa+Iz0xX+2Ub/QZi6rfQSaNfO7OcaYjBQaqtM069SBO+/U5LOFC/XfDRv0NnQoVKqkQ5+HD+u45vnSO0JD4ZZbtA5GisY6jTEmeecNypx2pR3zHoZ7Nwe0AW73tn8HvIQGZTd49wFGAp+IiHjbhznnooEtIrIRaAr8nhFfJD22bUngy8F5mdvxZ+h0uyX3G5OThYdrr1hibbPISA3Q1q6FzZtPv05Ep1oWKaK3okXP/LdIEShTRh8bY0wGSFFOmYiEokOUlwCfApuAQ865OO8lUUBiIkU5YDuAcy5ORA6jQ5zlgPkBuw18j2+cgz63H+HDJj9Q4KKi1ktmTG6SLx80b663o0e1xlihQhpwFS6czFRLY4zJHCkKyrwhxgYiUgwYA9TIrAaJSG+gN8DFZxQAyhxfD0ygWvw6WpXZAJ3usl4yY3KrwoWhZk2/W2GMycVSdRnonDsEzAAuA4qJSGJQVx7Y4d3fAVQA8J4viib8n9qexHsCP2OAcy7CORdRunTp1DQvTeqGrObNOj9AqVLWS2aMMcYY35w3KBOR0l4PGSKSH7gGWIsGZzd7L7sL+Nm7P9Z7jPf8dC8vbSzQXUTyejM3qwELM+h7pE1CAk23DqdQeDR06mS9ZMYYY4zxTUqGL8sA33l5ZSHAcOfceBFZAwwTkdeAZcBX3uu/AgZ7ifwH0BmXOOdWi8hwYA0QBzzk+8zLyEhdR6V0ac0pMcYYY4zxSe6u6J+QAEuWaKHJ+vUz73OMMcYYk+NZRf/0CAnRqt7GGGOMMT6z+d7GGGOMMUHAgjJjjDHGmCBgQZkxxhhjTBCwoMwYY4wxJghYUGaMMcYYEwSCuiSGiOwFtvndjnQqBezzuxFByo5N8uzYJM+OTfLs2CTNjkvy7NgkLy3HpqJzLs3LEQV1UJYTiMji9NQsycns2CTPjk3y7Ngkz45N0uy4JM+OTfL8ODY2fGmMMcYYEwQsKDPGGGOMCQIWlGW+AX43IIjZsUmeHZvk2bFJnh2bpNlxSZ4dm+Rl+bGxnDJjjDHGmCBgPWXGGGOMMUHAgrIAIvK1iOwRkVVnbf+fiKwTkRUiMkZEiiXz/le910SKyGQRKettFxHpJyIbvecbJfP+DiKy3nvdswHbRUReF5E/RGStiDyagV87RYLg2KTr8zNTEB+bBiIy39vvYhFpmkFfOUUy8bjUEJHfRSRaRJ46x+c3FpGV3vHrJyLibS8hIlNEZIP3b/EM/NopEqzHxnvuEa8Nq0XknQz6yikWBMfmdRHZLiLHztr+hIis8fY9TUQqZsDXTZUgPjYXi8gMEVnm7b9jBnzdVJHk/34+7G1zIlLqHO+vLCILvNf+KCJ5vO2tRGSpiMSJyM1p+Pwk95ss55zdvBvQCmgErDprezsgzLv/NvB2Mu8vEnD/UaC/d78jMBEQoDmwIIn3hgKbgCpAHmA5UMt77h5gEBDiPb4gNx2bjPj8XHpsJgPXBuxrZg45LhcATYDXgafO8fkLveMm3nFMPBbvAM9695/NYT8z6T02VwFTgbyJ+8uFx6Y5UAY4dtb2q4AC3v0HgB/t2JzaPgB4wLtfC9iaxcflXH8/GwKVgK1AqXPsYzjQ3bvfP+D7VALqoX+Db07D5ye53+Ru1lMWwDk3GziQxPbJzrk47+F8oHwy7z8S8LAgkJiwdwMwyKn5QDERKXPW25sCG51zm51zMcAw732gJ4BXnHMJ3ufsSf23Sx+fj026Pz8zBeux8fZTxLtfFPgrBV8nw2TWcXHO7XHOLQJik/ts7zgVcc7Nd3o2HATc6D19A/Cdd/+7gO1ZJoiPzQPAW8656MT9peZ7ZQQ/j433uvnOuZ1JbJ/hnDtxvs/PTMF6bPD5XMM5/n4655Y557ae681eT3EbYKS36dR5wTm31Tm3AkhI7eefa7/JCTvXkyZJ9wI/JvekiLwO9AQOo1dWAOWA7QEvi/K2Bf5wJ/WaZt79qsCtInITsBd41Dm3IR3fIbNk1rHJkM/3mR/H5l/AJBF5F01VaJG6JmeJtByXlCiHHq9EiccO4MKAPyy7gAtTsd+s5MexuRRo6e37JNprsig1jc4imXVsUuo+tIcxGPlxbF4CJovII2iw1zaD9ptS5/r7mRIlgUMBgW3g70R6Pj/V+7WeslQQkeeBOGBIcq9xzj3vnKvgvebhDProvMBJp5WFvwS+zqD9Zhgfj02KP98vPh6bB4DHvf0+DnyVQfvNEH7/zHj7d5zumQwaPh6bMKAEOkz1b2B4YL5ZMPD750ZE7gQigP9l5H4zgo/H5jbgW+dceTRVYrCIWHyRBnbQUkhE7gauA+7wTuSIyDdewuSEJN4yBOjq3d8BVAh4rry3LdC5XhMFjPbuj0HHt4NGFhybVH9+sPD52NzF6Z+bEWgXe1BI53FJiR2cOYQTeOx2Jw4De/9m+RDdufh8bKKA0d6Q+UJ0yCbZ5OislgXH5nyf3xZ4HuicOMQbLHw+NvehuVM4534H8pG1PzepPleKyCTv2AwE9qPpIYmjh6k91yb3+anerwVlKSAiHYCn0V/ExJwCnHP3OOcaOOc6eq+rFvC2G4B13v2xQE9RzYHDSYzLLwKqeTM18gDdvfcB/MTpbuYrgT8y7tulTxYdm1R/fjDw+9igeR1XevfbAEEx5J0Bx+W8vON0RESaez09PYGfvafHogEr3r8/J7ELXwTBsfkJ71wjIpeiSctBsVh1Vhyb83x+Q+AL7/ODLZD39dgAfwJXe59REw3K9mbQvlPiXH8/k+Sca+8dm15eEDsDSJxdmdrzQpKfn6b9uiyePRLMN2Aomq8Ti14x3udt34iOF0d6t/7JvH8UsApYAYwDyiVesACforMzVgIRyby/IxpwbQKeD9heDPjFe+/vQP1ceGzS9fm59NhcASxBZwItABrnkONykbe/I8Ah736RJN4f4b1/E/AJp4tllwSmoUHqVKBEDvqZSe+xyQN87z23FGiTC4/NO95zCd6/L3nbpwK7Az5/rB2bU8emFvAbeq6JBNr5cGyS+/v5qNfWOPRCdWAy76+CzkreiI4sJM5AbuK9/zja87U6lZ+f5H6Tu1lFf2OMMcaYIGDDl8YYY4wxQcCCMmOMMcaYIGBBmTHGGGNMELCgzBhjjDEmCFhQZowxxhgTBCwoM8YEBREp6RVzjBSRXSKyw7t/TEQ+y8TPbS0iwbgElTEml7G1L40xQcE5tx9oACAiLwHHnHPvZsFHtwaOAfOy4LOMMSZZ1lNmjAlqXk/WeO/+SyLynYjMEZFtItJFRN4RkZUi8quIhHuvaywis0RkibecSuKySo+KyBoRWSEiw0SkEtAXeNzrlWspIteLyAIRWSYiU0XkwlR+9taA7QtF5BJfDpwxJtuxoMwYk91URZeN6oxWn5/hnKsL/A108oKjj4GbnXONga+B1733Pgs0dM7VA/o657YC/YEPnC65MgeYCzR3zjUEhqHL16ToswNed9jb/gnwYQZ/f2NMDmXDl8aY7Gaicy5WRFYCocCv3vaVQCWgOlAHmKJLOxKKLk0DurzMEBH5CV3nMSnlgR+93rU8wJZUfHaioQH/fpDqb2iMyZWsp8wYk91EAzjnEoBYd3qtuAT0QlPQ9ekaeLe6zrl23ms6oeuJNgIWiUhSF6YfA594PV190MWVU/rZiVwy940xJlkWlBljcpr1QGkRuQxARMJFpLaIhAAVnHMzgGeAokAh4ChQOOD9RYEd3v270tiGWwP+/T2N+zDG5DI2fGmMyVGcczEicjPQT0SKoue5D4E/gO+9bQL0c84dEpFxwEgRuQF4BHgJGCEiB4HpQOU0NKO4iKxAe9ZuS+93MsbkDnK6990YY0x6ichWIMI5t8/vthhjshcbvjTGGGOMCQLWU2aMMcYYEwSsp8wYY4wxJghYUGaMMcYYEwQsKDPGGGOMCQIWlBljjDHGBAELyowxxhhjgoAFZcYYY4wxQeD/AfLJXGzTpAfQAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,3))\n", + "plt.plot(test_timestamps, y_test, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(test_timestamps, y_test_pred, color = 'blue', linewidth=0.8)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE for testing data: 1.2623790187854018 %\n" + ] + } + ], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## 全数据集预测\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor shape: (26300, 5)\n", + "X shape: (26300, 4) \n", + "Y shape: (26300, 1)\n" + ] + } + ], + "source": [ + "# Extracting load values as numpy array\n", + "data = energy.copy().values\n", + "\n", + "# Scaling\n", + "data = scaler.transform(data)\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=np.array([[j for j in data[i:i+timesteps]] for i in range(0,len(data)-timesteps+1)])[:,:,0]\n", + "print(\"Tensor shape: \", data_timesteps.shape)\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = data_timesteps[:,:timesteps-1],data_timesteps[:,[timesteps-1]]\n", + "print(\"X shape: \", X.shape,\"\\nY shape: \", Y.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "Y_pred = model.predict(X).reshape(-1,1)\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = scaler.inverse_transform(Y_pred)\n", + "Y = scaler.inverse_transform(Y)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrgAAAHgCAYAAAD+LG2qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5jcxN3Hv7pzBVNsmumYEjoYQkvoEFog1FDCGwiEmkACISSU0EIvCYRuG0wHUwwGA8bYuIMx7r33frbvznfnO1/Z1bx/bNNqVUbS7Eq7+/08zz23K41mZlVmRr+qCSFACCGEEEIIIYQQQgghhBBCSLFQEXYHCCGEEEIIIYQQQgghhBBCCPECFVyEEEIIIYQQQgghhBBCCCGkqKCCixBCCCGEEEIIIYQQQgghhBQVVHARQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiop2YXfAie23317stddeYXeDEEIIIYQQQgghhBBCCCGEFJhJkyZtEELsYLUv0gquvfbaCxMnTgy7G4QQQgghhBBCCCGEEEIIIaTAaJq2zG4fQxQSQgghhBBCCCGEEEIIIYSQooIKLkIIIYQQQgghhBBCCCGEEFJUUMFFCCGEEEIIIYQQQgghhBBCiopI5+AihBBCCCGEEEIIIYQQQgiJKm1tbVi5ciWam5vD7kpR06lTJ+y2225o37699DFUcBFCCCGEEEIIIYQQQgghhPhg5cqV2GqrrbDXXntB07Swu1OUCCFQXV2NlStXokePHtLHMUQhIYQQQgghhBBCCCGEEEKID5qbm7HddttRuRUATdOw3XbbefaCo4KLEEIIIYQQQgghhBBCCCHEJ1RuBcfPOaSCixBCCCGEEEIIIYQQQgghpMj5/PPPoWka5s6d61juf//7H5qamny389Zbb+HWW2/1fbwqqOAihBBCCCGEEEIIIYQQQggpcvr164cTTjgB/fr1cywXVMEVFajgIoQQQgghhBBCCCGEEEIIKWI2bdqE77//Hn379sWHH34IAIjH47jzzjtxyCGH4LDDDsOLL76IF154AatXr8app56KU089FQDQpUuXdD39+/fHNddcAwD48ssvceyxx+KII47Ar371K1RVVRX8dznRLuwOEEIIIYQQQgghhBBCCCGEFD033ZSfenv3di3yxRdf4Oyzz8bPfvYzbLfddpg0aRLGjx+PpUuXYurUqWjXrh1qamrQrVs3PPvssxgxYgS23357xzpPOOEEjBs3Dpqm4fXXX8fTTz+N//73v6p+VWCo4CKEEEIIIYQQQgghhBBCCCli+vXrh9tuuw0AcMUVV6Bfv35YsmQJbr75ZrRrl1AFdevWzVOdK1euxOWXX441a9agtbUVPXr0UN7vIFDBRQghhBBCCCGEEEIIIYQQEhQJT6t8UFNTg+HDh2PGjBnQNA3xeByapuHoo4+WOl7TtPTn5ubm9Oe//OUvuOOOO3D++edj5MiReOihh1R3PRDMwUUIIYQQQgghhBBCCCGEEFKk9O/fH1dddRWWLVuGpUuXYsWKFejRowcOP/xw9O7dG7FYDEBCEQYAW221FRoaGtLH77TTTpgzZw50XceAAQPS2+vq6rDrrrsCAN5+++0C/iI5qOAihBBCCCGEEEIIIYQQQggpUvr164eLLrooa9sll1yCNWvWYI899sBhhx2Gww8/HB988AEA4MYbb8TZZ5+NU089FQDw5JNP4rzzzsMvf/lL7Lzzzuk6HnroIVx66aX4+c9/7pqvKww0IUTYfbDlqKOOEhMnTgy7G4QQQgghhBBCCCGEEEIIITnMmTMHBx54YNjdKAmszqWmaZOEEEdZlacHFyGEEEIIIYSUK1VVQH192L0ghBBCCCGEEM+0C7sDhBBCCCGEEEJCoKEBeOCBxOeQkmETQgghhBBCiF/owUUIIYQQQggh5ci6dWH3gBBCCCGEEEJ8QwUXIYQQQgghhJQjsVjYPSCEEEIIIYQQ31DBRQghhBBCCCHliK6H3QNCCCGEEEII8Q0VXIQQQgghhBBSjlDBRQghhBBCCCliqOAihBBCCCGEkHKithZYuRKIx8PuCSGEEEIIIUQBlZWV6NmzJw455BBceumlaGpq8l3XNddcg/79+wMArr/+esyePdu27MiRIzF27FjPbey1117YsGGD7z6moIKLEEIIIYQQQsqJu+8GHnkE2Lgx7J4QQgghhBBCFNC5c2dMnToVM2fORIcOHdCrV6+s/TGf+Xdff/11HHTQQbb7/Sq4VEEFFyGEEEIIIYSUI599FnYPCCGEEEIIIYo58cQTsXDhQowcORInnngizj//fBx00EGIx+P4xz/+gaOPPhqHHXYYevfuDQAQQuDWW2/F/vvvj1/96ldYt25duq5TTjkFEydOBAAMHjwYRx55JA4//HCcfvrpWLp0KXr16oXnnnsOPXv2xJgxY7B+/XpccsklOProo3H00Ufjhx9+AABUV1fjzDPPxMEHH4zrr78eQgglv7WdkloIIYQQQgghhESX2lpg8mTghBMy2zZvDq8/hBBCCCGEEOXEYjF88803OPvsswEAkydPxsyZM9GjRw/06dMH22yzDSZMmICWlhYcf/zxOPPMMzFlyhTMmzcPs2fPRlVVFQ466CD88Y9/zKp3/fr1uOGGGzB69Gj06NEDNTU16NatG26++WZ06dIFd955JwDgyiuvxN/+9jeccMIJWL58Oc466yzMmTMH//73v3HCCSfggQcewNdff42+ffsq+b1UcBFCCCGEEEJIqfPMM0B1NfDxx2H3hBBCCCGEkJJG09TX6ebwtHnzZvTs2RNAwoPruuuuw9ixY3HMMcegR48eAIAhQ4Zg+vTp6fxadXV1WLBgAUaPHo3f/e53qKysxC677ILTTjstp/5x48bhpJNOStfVrVs3y3589913WTm76uvrsWnTJowePRqfJSNInHvuuejataun328HFVyEEEIIIYQQUupUV4fdA0IIIYQQQsoCRdH3PJHKwWVmyy23TH8WQuDFF1/EWWedlVVm0KBByvqh6zrGjRuHTp06KavTCebgIoQQQgghhBBCCCGEEEIIKWHOOussvPrqq2hrawMAzJ8/H42NjTjppJPw0UcfIR6PY82aNRgxYkTOsccddxxGjx6NJUuWAABqamoAAFtttRUaGhrS5c4880y8+OKL6e8ppdtJJ52EDz74AADwzTffoLa2VslvooKLEEIIIYQQQgghhBBCCCGkhLn++utx0EEH4cgjj8QhhxyCm266CbFYDBdddBH2228/HHTQQbj66qvxi1/8IufYHXbYAX369MHFF1+Mww8/HJdffjkA4De/+Q0GDBiAnj17YsyYMXjhhRcwceJEHHbYYTjooIPQq1cvAMCDDz6I0aNH4+CDD8Znn32GPfbYQ8lv0kQY/nKSHHXUUWLixIlhd4MQQgghhBBCipubbnLe37t3YfpBCCGEEEJIiTFnzhwceOCBYXejJLA6l5qmTRJCHGVVnh5chBBCCCGEEFLuRNjwkRBCCCGEEEKsoIKLEEIIIYQQQgghhBBCCCGEFBVUcBFCCCGEEEJIuaPrYfeAEEIIIYQQQjxBBRchhBBCCCGElDsMUUgIIYQQQohvBNfTgfFzDqngIoQQQgghhBBCCCGEEEII8UGnTp1QXV1NJVcAhBCorq5Gp06dPB3XLk/9IYQQQgghhBBSLPBlnBBCCCGEEF/stttuWLlyJdavXx92V4qaTp06YbfddvN0DBVchBBCCCGEEEIIIYQQQgghPmjfvj169OgRdjfKEoYoJIQQQgghhJByhx5chBBCCCGEkCKDCi5CCCGEEEIIKXeo4CKEEELCYeVKYNmysHtBCCFFCUMUEkIIIYQQQgghhBBCSBg88kji/8svA+0oqiWEEC9IeXBpmrZU07QZmqZN1TRtYnJbN03ThmqatiD5v2tyu6Zp2guapi3UNG26pmlHGur5Q7L8Ak3T/pCfn0QIIYQQQgghxBP04CKEEELCJRYLuweEEFJ0eAlReKoQoqcQ4qjk97sBDBNC7AdgWPI7AJwDYL/k340AXgUSCjEADwI4FsAxAB5MKcUIIYQQQgghhBBCCCGkbKGxCSGEeCZIDq4LALyd/Pw2gAsN298RCcYB2FbTtJ0BnAVgqBCiRghRC2AogLMDtE8IIYQQQgghRAW6HnYPCCGEkPKGCi5CCPGMrIJLABiiadokTdNuTG7bSQixJvl5LYCdkp93BbDCcOzK5Da77YQQQgghhBBCCCGEEFJeGJVaVHARQohnZDMXniCEWKVp2o4AhmqaNte4UwghNE1TMgonFWg3AsAee+yhokpCCCGEEEIIIU5QqEYIIYSEC72pCSHEM1IeXEKIVcn/6wAMQCKHVlUy9CCS/9cli68CsLvh8N2S2+y2m9vqI4Q4Sghx1A477ODt1xBCCCGEEEIIIYQQQkgxQAMTQggJhKuCS9O0LTVN2yr1GcCZAGYCGAjgD8lifwDwRfLzQABXawmOA1CXDGX4LYAzNU3rqmla12Q93yr9NYQQQgghhBBCvEMBGyGEEFJ4jF5bnIsJIcQzMiEKdwIwQNO0VPkPhBCDNU2bAOBjTdOuA7AMwGXJ8oMA/BrAQgBNAK4FACFEjaZpjwCYkCz3sBCiRtkvIYQQQgghhBDiDwrVCCGEEEIIIUWGq4JLCLEYwOEW26sBnG6xXQC4xaauNwC84b2bhBBCCCGEEEIIIYQQUkIYDUxobEIIIZ6RysFFCCGEEEIIIaSEoVCNEEIIKTxUcBFCSCCo4CKEEEIIIYQQQgghhJBCE5ZSa8oU4OOPs3OAEUJIESKTg4sQQgghhBBCSClDq3FCCCGk8ITlwdWrV+L/nnsCxx5buHYJIUQx9OAihBBCCCGEkHKHCi5CCCGk8IQ9/1ZXh9s+IYQEhAouQgghhWXNGqCpKexeEEIIIcRI2AI2QgghpBxhDi5CCAkEFVyEEEISbN4MvPwyMHVq/tqoqgIeegi45578tUEIIYQQQgghhBQDVHARQkggqOAihBCSYMgQYPp04NVX89fG/PmJ/83N+WuDEEIIKWUWLwaefTbhEa0SCtUIIYSQwsP5lxBCAkEFFyGEkASbN+e/DV3PfxuEEEJIKfPUU8C8eZnk8KqggI0QQggpPGF7cHH+J4QUOVRwEUIISaBpYfeAEEIIIbKsXRt2Dwgh+aa5mQZihJQ6VDARQkggqOAihBCSwKjgamzMTxtcvBNCCCHRhHM0IdGiuRm47TbgwQfD7gkhpFDQg4sQQjxDBRchhJAERgXXHXcA69eH1xdCCCGEOLP//mH3gBCST1asSPxfty7cfhBC8kvYIQoJIaTIoYKLEEKINVOnqq+TC3ZCCCEkMR/GYsHrUAnnaEKiBcOHE1IecP4lhJBAUMFFCCEkQYVpSggqeCOEEEKINU8/DdxyC9DSEnZPMlDARki0oIKLEFIIOP8TQoocKrgIIYQkML9E86WaEEIIyQ+LFyf+v/VWIs+OH+jBRUhpw7U4IeUH52JCCPEMFVyEEEISFELBxQU7IYQQkmHyZOD998PuBSGEEEIIIYQUJVRwEUJI2EyeDMyZE3YvCmMlSgUXIYQQko3fNQA9uAgpbejBRUj5EcZczPmfEFLktAu7A4QQUtY0NwO9eyc+v/IKUFkZXl8YopAQQggpHqjgIqS04VqckPKgtTXzmXMxIYR4hh5chBASJm1t1p/DgC/RhBBCSOGhMIsQYgXX5oSUPvX1wP33h9sHrkMIIUUOFVyEEBImup75HI+H1w+AHlyEEEJIGERFsBSVfhBCCCHlwtSp2d/t5uIFC4DHHgNWrMh7lwghpNiggosQQsLEqOAyfg6DQii4KDwjhBBCsvE7N3JOJSQabNoEvPwyMHt22D0hhBQbsu/c//kPsHw58Oqr6vvA9QQhpMihgosQQsLEqNR6912gpSW8vhBCCCEk/0RVkBTVfhESdb74Apg+HXj++bB7Qggpdtzm4uZm9W2GbWhLCCEBoYKLEELCxBiWcNo04JtvwuuLGYYoJIQQQtRjFiT5FSwpUkhpfXpjSf12VHAR4pfNm8PuASGkVAhjLub8TwgpcqjgIoSQsGhpAfr2zd5WWxtOX4DCLGy5eCaEEFLuqLKU9jinPj7lHNww+veW+zY0d+EcTYhfKivD7gEhpFjxOvdyriaEkByo4CKEkLAYNQpYujR7W6l7TXFBTgghpNwxem8DBZv7X551Ml6feyK0Pr1z9lVonJ8J8U2pr98JIYXD7X2Z4QQJISQHKrgIISQsmppytxXyBbmqCnjhhVwlW4oKThGEEEKIclQpuBQajVDBRQghhBQBNBglhJAcKL0khJAoUUgFV//+wKxZwBNPFK5NLsgJIYSUO2br6wh4f1RqtAgnhBBCQieIB9fGjUAsprQ7hBBSDFDBRQghUaKQQq716533R0DgRgghhJQcZg+uCKDRg0sOGuoQQghRiXlecZtn7PZXVwN33QU8/LCafhFCSBFBBRchhISF1eK0kIITvwmxN2wAXnsNWLnS23Hz5gGffeavTUIIIaRUMM/1IYQo/NOYK/HdygOU1VcW6Drw2GPAO++E3RMSNWgURggpFHYeXAsWJP5XVRWuL4QQEhGo4CKEkChRDMKlvn2BiROBp5/2dtyzz+anP4QQQkgxE4KCq9eck/Ha3BN9H1+WLFsGrFgB/PBD2D0h5UifPkBLS9i9IISoxqsHl52Ci4p2QkgZQwUXIYREiSgpuCpspoiamsR/vmQTQggh3gljrndpUwgtWmuQKELhIQmTSZOA777L3rZyJdDQEE5/CCHRgnM4IaSMaRd2BwghpGyxWoQ6JY3NN7KLYjvFFyGEEEK8E4IHFwB8vPgojHp3v0RVoPLGE0JQ4UUKj1GZtW4d8Mgjic+9e4fTH0KIevzO7UHkCFSOEUKKHEopCSGEeIMCHUIIIcQ/qnJwKaBq8zahta2EhobCebAYr1PKm50QoHDPcDye+bxmTWHaJIQUFjdlE9/FCSEkByq4CCEkSoRpPWVu+/33gfnzw+kHrcgIIYSUCyF5cBU9QgB33pn4K/S5oICRhE1lZdg9IISoQNX8ZayHqQQIIWUGFVyEEELs+e9/c7flU4gkBPDMM8Czz+avDUIIIaQUUD0fF7PCjAouQoLT3JwIdzh9etg9IaR88TufGY/761+BtjbXQ2J6BVrjVJYTQoofKrgIISQsrBavxSBcMvZx2jS1dcfjwKJFCc+xYjgXhBBCSDHgMqcW5ZRr7HQsVti2qeAipcjQodBuvgmj/jUk7J4QQuywm3/ME/nata5V/d/w67D3h48p6BQhhIQLFVyEEFKuqJBmvfJK8DrsKLSwihBCCCkCnpx6Fir6vOr5OCedjIAGDBgQoFchoOuZz1wzkDJkSf122NjSWV2FjY0AgOk1u6mrkxDiDRUeXED2HGnDpA17YFVjV3/tEUJIhKCCixBCokQxmFDnO0RhColFOSGksCya04q+z9UDs2Yxvj8hfgk4j07esAcEKtTPx3PnAuvWqa0znxh/f6HXTxV8jSbhs/eHj+P/hl8XdjcIIUFIzl+//uZWPDHlbP/zmfndWaKeCq0IZA+EECIBV+aEEBIWYSuzzKbcYfcHyF6YR6E/hJAsnrxiKq6/Y2sse+y9/HpwElJORGm+KybFdaEVXFG6TiRaaBoW129f2FskuY6vbd1CTX31SeMVQkhhSQ4c36w4FP0WHe0+18iGKJRAA+c1QkhpQAUXIYSERdiCkrDbtyJMa2xCiDutCeH3Xv2ewIKfakLuDCElgsf5Li3a8nycRPmZMz3VGSqF9vo2tkcPLmJE17HPh4/h25UHh90T/9x/f9qDkytwQgqIYf6K6RXAf/+b8Ki2Q6GCS8mxhBASAbgyJ4SQKFEMi8tChSgshnNBSBnTHG8XdhcIKVqmVe+GNU1b+zo2rajyMk+6lE3vnTLFV59CgR5cJAp8/jkwdiwAoKGtY37byuM9WL2xEv8af0He6ieE2GB4ruMiKaLt0ydQPZbfLWCIQkJIqUAFFyGEhMyMml1Q39op8aUYhCdUcBFCCCGB6Pnp/bjsuxt9Hav5FEjZ2HwDAITQUh981R0KRq+tQntwFdN5Ivnlm2/SH+N68YpXhqw8CI9P/XXY3SCk/DDMX2kFlx8vYR8KLoYoJISUCsW7AiOEkGInueg8rP+DuOuni0PuTESg8IgQQkipk5zfWnx6QaYtrj16cEkpxo4/3lefQoEeXCRi6I5qZAUYQ5PZhSlTQGNbR1RV5a16QogRq7nFyWhDVYjCXr3yOYwUjro6oKEh7F4QQkKGCi5CCIkAzfH2YXfBmi0sElfTg4sQQggJjJ6y1Pabg8ujZMrJUlukat1yS091hoYQwIwZ2d8L0SYhDqQ9IRVy8ZCbce/4C50Lvf460NKirM17J1yE7t2VVUcIcUKVB7IXDy4hgClTit+DKx4H/vlP4M47w+4JISRkqOAihJAIUKElF7ZhCk+EwNyNO+W9mf9MOwOt8UrbPlh+JoQQQkqF5PxW6FlOSh9WLHPv1KnAm29mvhciRCEpb1pagCeeAIYNsy2i50HBNWDpEXh/4TG5O5IP9I9V+0C74Xpg+HDlbRNCCouUkrytDfj4Y6uD5RuKxQA4hy4uCpqbM5+LZf1CCMkLVHARQkhYGBZhHyw8Bl3feja09lMc+PHD2NjS2bFM0MXjP376LeZulDAL5SKVEEJICePX2yOvFtfFMvfOm5f9nR5cJN/88AOwdKm1YDlJvkIULt+0Hfb78GHne7CpKVAbvLsJCQk/c4uDol2K1lYA/nN6Roakog5AwpuLEFK2+Av8TgghRCnN8Q5ojncIV3iStARt1V2mBgV9lFpMU5BESOQoektPQiJE3vP1mJBSjBXL3GsWZBXag6tYzhNRh43wVAhgScP2eW9+Yb1LlAXek4QUPYGeYrObttOYUCrKoLa2zGd6chNS1tCDixBCwiIP3lGB2k9+jxstyvPUnwq75TtDFBJSNOQj1wgh5cS06t2x1ZvP+5/vqqqAgQPlygrhqE4ruinXLJwruh9ASoVvVhyCfT58DEB5zIvV1cDq1WH3gpASx2OOTctjnObFpDKo6HNwJT3RAHAdQEiZQwUXIYSQLOK6y9SgYPFYUezhEAiJADU1wLp1YfeCEBKETW2dPB+T5QX99ddK+pFWfxWLgMgYlggojOV2sZwbUjC++w6YvGGPsLsBAHh31B5BoxTmYuHlcdppwK67Km6HEJKNCgWXE8n5zE8zkYIeXISQJFRwEUJIuWLrwZX/qUHThLugyLxI3biRwiVCDJx4bCt22qkEXk4JKTds5t98U1Lhgc0KLubgIvnGYrI94wzg/okXhNAZ5PTn6peOwTffKG5jxYqcTTSsIUQxYcwtpTKfyUR/EYLKL0LKACq4CCEkLKIWojC1GRpWbOqK3w//o6fjvDUtIZE3tjN7NnDXXcBHHwVum5CSIB7H6uVt7uUUsvPOwNvzjytom4QQEytX5m6rrZU6tOhDERmhsIqEwMK6HRDXNQgBHH987n7nQKBy1NQYHKc8rrkL+Rqxfn3h2iKkZInFgAUL8lO304CQ8uBKrQuKVeFl7LfduuDFF4G//S07nCEhpOSggosQQkgWQgDfrToQ7y881lEJd+e4S7CxpbO/NqwEAG1twDvvWB8weHDi/4gRvtojpOQwv8StXZv3JteuBVr19nlvh5Cyw4tg6ZFHcrfdfTewaJHzcU1Nct6epSDkKkQbxXqeSCD2++hRvDHveOg6MHZsftrYbruEPDYSONznO+5YwH4QUqq8/z4wb56aurzMS2kFV5Ejo+CaNQtobgaWLi1Ilwgh4UAFFyGElCNjxyaS01sgoElZef93+pkYs3Y/X80LgdxF+OTJwIwZme/GRWplZebzZ5/5apOQksZOOUwIKTksBVKff+4s3PrnPx3ndqprCJGjavPWtvv6Lz4SL78U/GlatSpwFWqwGFMYFpkQhSQ15Vqf3gCcvUD7LTw6XS4wpWik4fabSvE3E0LSSCu4NE2r1DRtiqZpXyW/v6Vp2hJN06Ym/3omt2uapr2gadpCTdOma5p2pKGOP2iatiD59wflv4YQQoqdQi283n7bvgseqtFlQg1atmFxnDmov/FctGuX+fztt77aJKSksUgETwgpTSxzac2fD0yd6rvORyafiz9//7viFQAVImRhsZ4bEhwhgMZGAIm1r52SZ9CKQ3HrXzT/90qyjbSGy6keapoIKV0snu+5G7s7HyMEZtbskvXdqWyimRKa19zWAZzDiZnx44Hvvgu7F0QRXjy4bgMwx7TtH0KInsm/qclt5wDYL/l3I4BXAUDTtG4AHgRwLIBjADyoaVrXAH0nhJDiJuwcXDZtC6E5L3YNfYwLf47AAsgVyPNFnRBCSDkQcK63nS1HjfJ3HICvlx+GV2efUjwCoDDWDAxRWL689RYwaFD6q+vl37jRXztDhybqnzULeO457/fZlCn+2rXhvc+7KK2PEOKM0yPfvsL07mxR+ND+D2Jpw3bulZVKiEIjbgquOWZxNil7+vYFPvnE/5xNIoWUZFLTtN0AnAvgdYniFwB4RyQYB2BbTdN2BnAWgKFCiBohRC2AoQDO9tlv4sLLLwOnHtMI3HcfY80SQixZv7mLZZiD8wbfiocnnZf44vJi7duDS2jA3/+eSKxrx3PPZSxZmUyekJLhqquAjz4KuxeERAiPQmzbUINOcyokLbWLVXFTrP0mxcG4cemPTiHE0rg8i7YY17tz5wLLl9uXtVLyjh/vr10brvq7c6Kt004DPv5YaZOEEBsqNbn34ZZ4O/dCpfJu7cXwJJXTu6EB+PHHRP5vQgCgpSXsHhAFyJre/w/APwGYR8HHkmEIn9M0rWNy264AVhjKrExus9tO8kD//sDICVsC69cntF2EkOKggAKaplgHy+3z6rpjccMO9gcq8eDSEguJNWty9n29/BBMWLcnUFsLfPllTpuW3wkhRcN77wFvvBF2LwgJEc5hwZH14Fq6NDHg1NcHb5PXjaQYMcJ5v9+wwcacs4Dne64gd2hba/rjiBHAgAGFaJSQMsNijstRcNm8Hw9deSAGrziYIQrtePHFhFfuF1/ktTukiOD6riRwlUxqmnYegHVCiEmmXfcAOADA0QC6AbhLRYc0TbtR07SJmqZNXL9+vYoqiV8LMkJIftE0NLZZK5kKQYdKibEhT2EUszy/TPWdN/gvuHL4dYkvTU3JA0rEyowQVQiR/e4bwsJ87eat4XepxvcIQgx49eCyE0i5KH1sPb+KEfNvtTqHDQ3AE08AP/1EKTwJxIpNXdNRD4asPBD//VeNmordnv0CTpZCIirDd98BsU3NBegNIeVJ2kPUYj6vkFRG/WXs73DON391aSgVorCE1gWy4+WyZYn/M2bkry+kKHhx5qnFnX+WZCFjen88gPM1TVsK4EMAp2ma9p4QYk0yDGELgDeRyKsFAKsA7G44frfkNrvtWQgh+gghjhJCHLXDDg4eBMSZdesyn/mwEhJJ2mIaurz5YvbGAj6vlVoq55b3YxfW7eD7WMBgYdrcDNx9N9CvX1ZlMZG0YE1ZwJobosKLkNA5a9DtOPZYNXWtWcM0fITIknpU3l9wjKPBSM5xMs9Ysb43WPX7zjsznzdtUtLGmDX7oq61U/GeJ+KL5Zu6pT+PrdoXd42/xPkAmfvjgw+Ae+5xDo0UgftMCGDgwMT4ccYZwPrmrcPuEiFlSY6CK8j4YM7BFYGxxhfGfnuVD/j1tCUlwwszTy2u/LPEEVcFlxDiHiHEbkKIvQBcAWC4EOL3ybxa0DRNA3AhgJnJQwYCuFpLcByAOiHEGgDfAjhT07SumqZ1BXBmchvJA9pGg1WZz4f1sMPotUtIPpGK4Z/P9pNDQ5temb3BheUNXbHfR48GbDv526dOTST1HDkya39MT05PdgtVLkJIuRORZ8CvB5dZ0F6jyBiekHIg5cH1+xHXYXXjNpkdbgquUrLUTg4iM2p2weL67d3HRBUadCFw0pf/wKOTzw1eFyGjRiXCcU+fntmWvE9jemUij86SJZ6qlPHCssPOM1QIYN48f3XW1tJJghCvNMXaW273rOAqhxCFXnJwEWIiZfBN4+nSwF/ylATva5o2A8AMANsDSEk7BwFYDGAhgNcA/BkAhBA1AB4BMCH593ByG8kju7//hG/DhBkzgCFD1PaHEJLBcg0WwsIsreCSpDWeKe9XSZc+zphrwOjB5aZ04yKEkEjg24uT76CEeMdscQ3TPOyq4JJvo1g4rP+DOO5zi0j55nWCwt9VXGeIBEFF6jZX2toyn5MKrudnno5ubz8LTJhgf1wRuD3/+c8Jo1k7hABOP71w/SEk6izftB22fOMly30V5hxcZrzkrC4FD66mJuCrrzLfKR8gHkk/U8V4/5McPCm4hBAjhRDnJT+fJoQ4VAhxiBDi90KITcntQghxixBin+T+iYbj3xBC7Jv8e1PtTyFWrGzshljc/+J3wgTgoYfU9YcQUiCEcJ2oU0KxtHAsT/m2LNtOVVthPQ3F3SxQuQghpLA0Niqtbvly4MknlVZJSPHgRQhlJCm8MXpiCQAT1++ZyA9kV08pzpkG4X5zvH3ubzQqDQA1gq9SPI/EkW22AX79a+Bhr157Cu6VpljHwHWoIMhPaXZJ1xWLAcOH+6+fkJLFKgeX2bwiYIjCVY3bYnPc2lvMb50F5aOPgLlz/bfPOb3sqSx2D0aSRRAPLlIGTJgA/PvfYfeCkNIkb2sqXU9Ijvv0cW4/VdxjOBNNZIREfn+CpeeX4YTEBUMUEhIWq1cDL5mNR01hRM0MGpSINirLvHmJ1COEEA+kFFyGF3IhNCyo2zFrvx1FH4rISEUFbh97GYDkmsK8LjCHsOC6gfjkm2+AISsPDrsbAIC1Gzvl5VZuaAA2xzqor9gBXWcKHEK8kBOi0IyXwUEI7Pb+U5hWvXuwTqUYOhT45z+BDRvU1CeDOYQrPbiIR9IeXCF4RC9dyqWpaqjgItY0NeVsmjYN+OyzooiGQEhRkLcQhWvXJmbMyZNd2k95cHlr2m8Oj+emn479Pnw4q027N9uYW9jEWMxXH7LYsCERh9Vs5U2IQhQ7PtmjcIX82mvAX/7i7ZhzzwUefhhYvFhZNwgpH2Sf3+ScaQ5RmDZUUeHBVSxv25qG52cmYptJradUe3AVy3kikeXDhUdhyzdeyN7o8qK9819+iw8+UN+X3XcHrh99teW+fN3qt9wC7LSTe7lVq4ApU4BHHslPPwgpFpTm4FIdxrd//0RM1y++CFaPD/b78GH8bwZjnRLvpKfcENZ0PXoAX35Z8GZLGiq4iDXDhmV/13X07AlcckkovSGkJAlbNpLyotKFw1TgFubQg/fXyDU/w8L6nbKPMyqqDG3pTmETAeDvfwcWLJBu25IXXwQ+/RQYMCBYPYTYMHUq0KVLniov9AAiYd3y3HPAPvsUoC+ElCsWShohXEING47za6ASScwhjt3CPiocM2nrVyb88IP/YyXutx/X7e0ehrBj7v71M9YkPljMy35z49bV2e/L13Jj4sRMjjOnNnbbDTjySOCBB/LTD0KKBc8KLify9WAX8v0k2dbC+p0wbNUBvo8nJCwaGsLuQWlBBRexxuxVsWhROP0gpIQReuFyXlm2L6z/u/XHr4Ds6+WHpj+7hUVMN+t0Pj780Fc/0qxdm/i/cGGwegixYf36AjaWx7FD14HPf5QwsyaE+MNrDi4t2yAkPae6hPUtqSgMbj8mHwouCsPKixA8EcwsWr9V7sbRYwrfkYBoGrBpk/1+PlqEuJMOp2aHF8/lUlBwGWSWUvKJvfbKX18IIaFDBRexxmwVyXi2hBSGQiq4Uh5c0DwFAc5Obm+R98KGuMiEHUxbmNoIqBpjnaD16Z2p26qcijCFhOSRoMLk++7LWDd7RdfVTd3z5gEXPfpzy32NjcF/Z2MjLdhImeFnrt+8GXj9dQCmEIVGgxGXEIVSAqBikTQb3lUENPdwSwp/l1BcH4koQSY3D/fHwhcGJeLwWbS574eP+e+DIsTUaf6PNZwGp5DNfJwIMWEefxYtQoV5DlfpwVWMD6Fh3tc04f4bevTI/l6Mv5mUBqkUGQXLZVAeUMFFrHEL+0EICYzfMCKuGIU8Ds9uxklKA554AqLOpyRdcnz400Ej058vHPInXD3imuzFuxBoirWXr1tVZuqSMmknpcRjjwHff+/v2OOPB847T21/8sUppwC/+EXYvSAk4nz1FTBnDoBcQ5P0d1cFlwTFsuY3KrisvMLNCi+FObjiOl+hS52aGmDqul0K0tZ+Hz2KaXe+6/3AQj2rH32kpBqn7hbLsENIPpC6/59+OjdEYZCKS+GhM6wDnNY3G1s6Y1H99rk7SuEckOJk0KDEfybhUgpX5yVKtmWnjwqo4CIk7+TtsXJLgp7clhIIpRVttbVS1WsiIyQSAtJCo207bE5/3tC8FT5Z/HOgogIPTTwPVU1bAUJgyzdecqyjTa/IhGLiuEQijnkq9YPtbe5y/48bB4wa5b29p57yd5xfNC2RhyMNPcZJOeBn/jIkyTHZhmSEXql6N2wAHnkEmDIla7vmVTgWVVpbgeXL018L7VEVd8pdSkqCv/4VOOKt23wf/9ubunkq39zsELEgZERLq+djUjZoTj8naxwbWcCFByERQ9botTIZovCiITdjbdPWwXJP5suDq5Dv55Lj5Z+/vzLhDUvZATERWm7aVIoMenAphatzQggJCdmcV55x82wytZFSGEnn4PKZ4Na8gEi1++/Jv8EXy3o69lUI4I25v8TWbz6PO8f91lO7lrz1lv9jCZFEhZyq0Pqeu+8GRowwbSxkHs7vvitcW4REBZn5zFAmx4MrNS+nBozhw4GVK4FevdLbn59xGiZv2NN732pro6d4fuklYPHi9FdL4WA+BFkpDy4quEqe+AY5oy87Ph20haKehI/XiBPz5gHt2nls5OOPPR5ASOkg+w6eMmb5fOkR+LFqb/d5rtQ9uCRpaOtkvaOMzgGJFq2610mSyMDVeRmgJAxa1F5sCSkB8ramMj6vVs9ucltqbAjcDcnxwRxWQUADhgxJfBawPiHJbfXNHXDd6D+gOd4B49ftlbXPFz/+6P9YQmRZswZAQtHVr5+/Kvx6cCnlnXcK19bs2YVri5AixWhoImCI3JAaF8we2ULg+ZmnyVVuHFtmzUpovV97zW9X88O8eVlfLdcQybXJ8k1dccIX/1AzZibriDFEYcnTfvHcgrZnGWbTVz1KqgnEunWJ/6efDowZI3fMZ4t7YsaM/PWJkCijS8rrjO/SMStDCy9eWfmS74XkweXkyW3boygMmCQaFPBe+PproOM//XuIE3u4OieEkCihUADjxIcLj8LLs04BAOjJBbKsMlzLWkxq8h5cJgWXLkz1WHmeJetujVemN9WnrLC4KCURYuFCoKkpe5vW74P051mzfFQIQIyVVMZaPA9F+YgUZacJKQBZHlzGzYYcXCmBVceOOcf6MngbPTrxf/Jk78cWGhvB3vh1PfBD1b5Km4qJCo5VJU5lWOE8vbh+F+gedB07bCJHDB8OVFcb6nHo7hXDbsCf/+yjc4QUObrQsMQqP5QFRgVXXA84D5kVXMU4pxllEg5GArb7ivE3k7yw6zGFybkJAEuXFqypsoMKrjJAybhtrmTTJl/VHHooUFWloD+ElAB5W1MZXzRtGrntx8vxn+ln5rcfRtracl6PjS/MutCAWCz3uJS3maGPbXpS2eW34/mKOU7Kmv32A+65x36/59ssmXxWnzzVd5+8EIsB++9fkKac8XiiYjFgwoQ89YWQAnHL6Muwfr18+dwQhakvNnl8hPA31VnNyxHE0tgmlXdMZX4Frhciz4Rek/DEFdOica1WrXLcHb1sWw44uVdNm+arSothyh1DaFJCSoFPFv8c+3/8SO4OyxCFGaVUTFTm7M/ByUur2CM0DRyYcReFN6NbUj5cey0wZ457udVV7XItVUnRQQVXiRI4ibSL9djQJyf50nHNnAnMLWzEB0Iii6+cEUOGAE88ATQ325cxLlht6mtfkVGCpcIi+MkJJj3S3HprbohC88GSgrS0FVaqAq8LdCq4SJ6oq8v+niWE9nCbtbQA01bvACDb0/G997JlOyoFt5s3A/PnK6rMaLJtxvAyaonH57FfP+CYYzwdQkj4mO7zV2aenJv7zkxybV7dvGWWYEs3enDZPT9+5zm3nJ4RwdI6m3N7WfL008C9Hx2eyEEXNqkceAVESWoCc50C0ObPsy8Q96cI95WndNkyX20RElU2tnSWLlthWPfHgnpw5Wt+L9Tc+/XX0kUZorB8eestYMAAycLvv5/PrpACQAVXGTBq9X7BhVYmYfqZj52MF1/0VxXnEUIS+HoWPv004df8/ff2ZdwUXEJkKbi8xv3PqdLth2zeDCBXGC8MU5CABrRvb9uY8YVdGPf16wfcdhtQXy/T9QSlEJKBFJxhw9zLqMrl/MILQM+nfgcgOy7/VVcBDz8sX09otLTY73NxU5m/bltpA7rTTwfuustDvwiJMGKe3GJ9+3eexUuzTs0cB0PYIjsPLi+GIMbBqkgUXAAsjVfu/ukivDrnZOVtqMqXRPKI0zwkgRIDksbG4HVY4LSeGLn6Z/jsM8XteVSa+VJcgctxQtzIycHlZrTp5aEq0gewtmULAM5Gt+kxTMsY9U5Yt2fR/mbiDenLPM/BkCNPBHZMIVlQwVUG/PqrP+Pyy7O3tbQAXbt6qMTCs4LzASHBELq18kmKtjb7fRIeXB0qMs90ykNE+gVWMt51mqSAzOzBZUQXGtDZwoLNQliX7qcQwMiRQGsrMG6cez/s4GBGXGhqAn71K/dyZhmyUcgj4vIC5qROOHGc6RlLt1GI+1ZRG62thi8ukq/9n74O996b+Lxxo3O9w4cDa9YE6hopR4QAxo+P3s0zapTzfptn54WZp+HS725KfLF7ZuNx+Tm+COdEy+Tyuo6npp2NYasOVNiQsP5MokcUwm/5uUcktUNCAOfdlJszpM/ck3DJJR7bzJMizozb6Vi1Cnj88YJ0hZDoYzHfaOYcXF7q8LKvSKhr7YRubz8HwFsOrs+X9sQxn99bEueAuBOF5UAWxWQ8VmRQwVWm1Ne7C47yhV+rLkKIAacHyWOIwrTQSzKufY6QzG1xKJEHQwDWk33aWtqiOYnfacfqxm0wdOWB0Pr09nQcIV7IClE49kfp4yocVme2i/R8vKQ55dxw4PTLumXZxXTsCHz7bfKLxCKgoSHxv2tXJuIleWDRIqBvX+Chh8LuSRauj7DNs7NiU7fMl9QAoWnY0Lxl1nZfXkcVFfhu5QGRlwFJhXxW+CPyEQaOBEfTgGGrD0h8iYAAydKQzQ3JF2VdB74e2cV7/VasXeu4u1DP/7JlwL/+ld82Zs/2aORLSJ6xfeSND56u44Jv/4SLhvw5vSkmKqXfwaVQ9aAXcMHQGm/nq+3qli3dC5GSwe62+P57IC5CUIkMHlz4NssEKrjKhfo61yK/+x1QW5tQfp12d/4SWkT9JZmQQhHoWVCo4Ep7cEn2J0vZ5EHIY9XlIz/9V7JOTdq8JrBgSQicMPAfOHPQ7envhDjhpHAy4mgo2SCfuDLL8ws2Hlwy6AEFfDU1vg4b/kOnHIPw5cv9daFAhuWknKiqCrsHlvid23bqbAjRa/B63uGdZ/HdyqSw36/5qqbhjEF/w8L6Hf0dXyCEQF4VWuY6uWpQz+bNwIYNweupjZDgsmgUoZWV7mXygcwzqjiX2pQp4Rn5EmJFpWY9P2c9HkJg6MqDsvbHrDy4QswzHdMrMHXDbgVrD8j2aHMOUZhN2vuNMoCywM7Y5MQTgRk1hb1nAWSl1nhq6lm4+mreh6qggqtEyfGUMGe+t+DDD4GpUxOGrSOmb2eqsEgW6IQUEZZrKtmFlouC64kpZ2NR/fYOIQotPLgk8fvCbuXBNaV6j0ydkh5ci+p3THheBViU1rcawiFycUtckJ0CzbdS9otXMGWwXRuWpEKYxgIquCIX04EQBUTAs8PqQXZ9tG0GhpjR+tRU74bmpIdHPC6vlLHoW5sekgBcEgGJXCQq2xMa1w6KueYaYIcdwu5FBiV5McK8R7y07WLF4/Vn2K1hBgwwpRBeIWH5smqVt8YJKTLaVVivSXSj17XFejxulYMrRN6ZfxyO+Oz+0Prk5T1LLxbjAxKM5PyhjxsvVdyX17UPjDKx6TW74913uaZUBRVcZUJgC7KIKbgWLOAYQIofqZA6rpWI3Bx5uo57J1yEXrNtEqsLkR2iUCT+amStXrNycDmUmzABeO45YPp0ABI5uKwqc2qgqcmtp7ZkCS44mJQ9jzwCbLONezmVkUCccFRwpV5ynRpTpZjKh4JLYj0R9Dw2Nwc7npQ4xaq4tXl2Plh4bOaLIUQhYBDi6Lq/d4Gk4LsopskCenC9vzB/kS7KFb9evlEmX8+NgOZet5fGXeZlVb/j1luBq64yNCtjbGDuW8RkEoQEpdLm/dis4DKXiukShh1O6x3Fc2ZjrKNzAV0HhgwBqqsDtWOHbRjmn37K2detY1PqoLz0hUSECRMAAGL9eqnioXpdR8H4rgSggqtMcVobWu6L2GLyZz8Dvvgi7F4QEgwlIQr79AFuuSXbSzO5mG3TK20XtlkhCqHhrfm/xK7vP51TrrGtQ26/sz47WJy8/jowdy7wzjuJLjvYj+tCA0aOzN2R8uDSXKYrtxhypiReWX3h4rbsGTcuK1qALUEUXF7uMsvbORm7SZ8+y3vjMuT5OUhVv2Rl+7y209QEdO7sXo6UMVEY8608uPzkyJKoF0DCgyvAzy5Ka+c8Xue4iLZHG0EknnNfwjLJd27XnxdRRb7UZVmxIvNZtQwiJeiM6Pkh5UeFTYjCrFvUwkglFrF5yDWX0WuvAZ9+Ctx7r7I2jesmy6GlrQ14442cfbtvWZOqQFlfSATRUmk4LOYRC0WrrmIdTkKFCi6ShYoxvrY2eB0ybJJPZ0JI6TJ5cvZ/IP0g24YUMnlwPT7lHPxx1B8si65q3Db3cMPU4Ulo7+bBZYXLoKQLDc2xds4vwC0twP33A/37+2qDlCarVgE77ZT4LCs/sZKH6LrB4KK1xf5YD0lsK9auzt04f36inpbWxHeJ+3ZzvIP0b9M++lC2e75pagL2PmOf/FTe0AAgE52REFsiaiVpKQzfuBF46ilg0iS5gco0LqRf6r38ZmMdTsKBlhbg8cfTXtqhU0APLpI/ImZTGQiv4Y7mzgV2uOwURY2ru1cLbtU+c2b+6h44MPE/K1YiIeHRzk7BZZx3LZ5nSw8uM46Wd2rns3iqv3b1GmUVisiRH7h4sDU2J2QjqXnm+u+ukMnkQoqVpMWo8T5Ztiwpr07NBUa4xit6qOAiclg87FOmAO+9l1u0Wzdg8OAC9ImQIsfyxVfhxNqmV1rXN2hQloLr0yVH2taxyS3cgCTLN3VFtUMIRDfrcLvTcu/4C9H5jZftJSJNTcD//pew2Bw6NF1ZKQlQiD/mzwfWrfN2jNV9uGgRcOGFic+tk2dhzZrMPr+3mfbj2Nw206HC8nTz/vhj7jaF45Fmk2ZPGV99lW6HkGLE8nEbOBBYvDjhra1pifyTMpWkQhSmxgu/3gopBZfVaNa7d0JS8PLL/uoOQHOsHeZv3NG5UAFzcpEIYLawDHi9VUwlXhVDU6YAG+pyIydY1j1nrnMBm2e+uhr4xS88dStSHHD1MaipcS4zYYLEWkAyZBUh+abSRsEV100hCk1DmqUha5B5L+CY6cWQTwUxvQLN8UxUCEtj2eRvSuUjzTqnAPrO/gWmvD87f50k4ZJ6dzbMxXvtBVx6qXVxLhOLHyq4iG/698+Oo23Eac0Yi+WmDCKkHPFjEbm2aWs8P+M0i8psksKbt69bBwwebMrB5a0fxn7LJlrf84Mn8eTUc2z32y6KXYRyM2p2TXywC1HYr19COGiCIQpJpeG90FUQkoxfKBpyXYfbGyLufbb0SOyyi3UV3tJhZAr/bvgNOOUUmU76p60N2BzLb+jAvJN03aKCixQrlmsC44JZ5ua2y9Gn61jd1FWyI1YeXBblOqoxgPHDE1PPwf4fP5K90UvuEb8Irh0Kga9TmzJiKmJk56/X5p6A/7uw0bmQzUmcPTsRltkLbtfDtzGPQ2QHO+at2MJqWZ9m6lSmMSDFhV2EEzcPro2tWxQuObAE8QKHd/v98D9ir35PpL/bpU2ob+2E2bU7A7AWF+iDaJkfJVpb7YPueMZmUq2pgXt6i0LDNaUSInZViSpcp5fRoxP/582Tq9DlgauvT0QqkeGMM4rbcowQVVg+Vi7P2r8mXIDbf7zc+ThjiEJzfc3NALJzcDm1aDWW5GP+dYt5bCX4i+sGNZXdImW2tVVW1eZtDJVzQVGOtGsnX1a88SYAQO/7Zs6+9pJ6odQ9PHJkItF6r172Zc13+6hRsFykG7e0xf0v6f7wB2Cnd5/xfXwkSD7HVHCRUuOJKWcnQvH6ID13+nWfdPLg2n57f3UqoL61U+5GC8v1Si2PbqN9+uSv7jLH17IsgoO/198h+xPmbtwZ/Zf83HN/amsTUU+9kq/fIVWBRWVO/TniCOCxx5JfnJTcXPuTiNCuwl8OrriMkWkBPbjieoWSemSZtGGPrO+WBru6jpO+vBOteuJlLSU5yBKbFGOO0RLm229zPaySaai9k17DWmAhO3K7F+bOBfr2td7X2AisXeuxf0Q5VHCVK198nvj/8cdKqttmG+Dqq+XLT5wYvE2uS0mxYzmJutzYb8w7Qbp+SwVXcrVstBZzUi5Z6uA0Yw4uOQ8uN/zk4Gr3ei9MTi1u7d6mrRLyMGwRQbYHlysLFgAA9Lm5RiHarBm527RcT+bUXXbqqYmIXv/7n4f2U5U60OGR+20X3W7MmJGdW6+YiaCMk0QNTcOqxm3DTSZtMe/YzUT3TrgIU6t393Vzp+sMGKKwKBJvWyq4dPv9AdtoWUZJRqSI4ODv7vlU2PVnz57A+edbdcT53P17/Nn4ZsUhSvvSowcwcf2eruU2Nwe4rqNG+T+WEJXMnQu8+aalRbhdiELduC63GEzSCqUoMGqUu6Jo662VvnKbhy3LqoXAwrodco4x9rUo1jdlTF0dsMMO7uVkyBJ9e/TgisWAhx8Grr8+8f3ZZ4F33snsv+46YOedA3SO8iglRGhUJKGQeuFNBbOuqoLWvNlXVQsXZj4X4vmsrQVWr85/O4TkjSAPisSLvGVs7rSCK7OYjgeImb2pTU2IIjcFl92pSnti2ZwPEdfx+dLDcdXwa/H+gmOsy3hMAk6Kn/p6oHH6IgDAb89vcc97nA7TlX2fjRgBfPnINMtDzFZcL8w8HdtIOg5aCr3MnhQWFcyYWt7xf//7X+CKKxKf+Z5AnNjt/afw1rxohROwtD5OzYHQpOb9HJsWP/O7VYhCK8GVuT8tLcB//pNwU80zUroMIVDpIwSaW50pThp4JweaPKHEgytoDi4F907BPZ9cGl++3F9Vz089BcNXHyB/QDJahBNLlwJtuo1navJErFsHbHFirqea9HldtEiyICF55rnnErFBLRLV2ym6zTm4zMREhbvRZqG8GD/4IGM8a1fvIYeg4rXemFUTRAuQwXzenHJwpY+xcvKigivSWNkq++XyZBAku1vU6ZFo3z6R+SLF3/8O3Hln5rsxB7cvuJ5UAhVcZYLt85IKWfJmMuzS++8Db73loYLwuO02YNddw+4FIf5R8VjN27gT/jjyasvKWvXK3IVtspzRgysu7F1Z3EIU/n2cTZZOAK/OPgk9P70PG1s625ZJodtZfcmeJBupQLPoiIuG/BnvLTwOfecdb90EQxOUFTfeCOy2G3D6jfsAAD79sqO0sYT5Xrn4YuDm739vXdbi1k2m8rLdn8LqdtaOPsq9fz+Ndy3jCYVzfyGipLzxBvDVV8HqIOVDbesWobZfYbLadvLq1oU/BVf6u98HwikHF4AmY+6+sWMT3q5GCUCesBQIWvx48zlWyfj1PfKT56tc2VgrVeyHH4CqKosdHrVD8+YBDQ2Z7/feC9x3n6cqXInCPNTcnG2EWhA++sh2l5dz0miTZsy2jlq5eyhVySOP2OcTJyQveIgRag5RaM7VZWnAEmTQ8Xts8jg7T7Q0yTG6avPW/toxV2fuhlVUGSFMucNTZU3HkciiwvBDCC3rgVI1N7e0AIMGJT576acKAxpiDRVc5U7q6TZOtj6DnEZhEU9IMeEnB9cNB4zJ+v7pkiPx5vzjE2/8QOLlLjXTWpHy4AoQFkV2ITho+aGYVr07ur79P/c63XJwuXVXYgBKt2Eqq8c5eJUTr72WLdRy49NPgUcm/RpA7m3mtJjNd97nufMtlnCb/Xlg54sNG4BHHw1Wh+x5iuta1vUQcQqeiQ3JGyXIPKikGx7al7UwzjHeDiq4cfLgqqjAlm+8hNFr9kt8j4XsQWphua48ap0X63jiCa22Jv3Zadw/4YREHsvcCrxd7AMOAG6/PfF5jz2AJ54AHn/cUxWu3Dvu/PTy3C1XtXIha/IkPv44sN9+aqs2M379Xrjppsx3rUpN+E7Pz6/HMeid11vw3ntqPQQIsWLFpq7Y84PHLe9Ru2c/K0ShrluvWfL9siFDdTUAw5rGrs3kA61EuC8E5tV1z9ok48GV2Zyr9CLRYtSoxNisbB33xRfZ363yO3qch+vrgXPPTXz2GPEwF96ISqCCq0xJPbpvTTsCAwYAj4w5JczuEFKW+JnHOlRkL4zTdaRcUJ57Ltu01UYYU2mT0Danj1YbFYeBAfzl4JIhy2rLa9uEAHjoIeDxKecAyF34ui26nQTYxlt7/PiEIk3quOT/A4/uguqWLu6Vh8gXXwD335+nyk2/sd0fr8asWYbdAz7PU8OkVDBbQxeaHOtjh+7IhijUTYYcqkIUOs2Ta5qcQwVbsnAhfndpDD/95L17iabkrl3elZhUcDnSqxfwyis+Dhw92nG35bPiQwqW8qpesSK73uXLbcJ8e+T56afixRcTnzt1CsGTCon8JflmUf2O6NNHXX3PfbanJ0MkO4569AIMH26zU4i0gW+HDsHbIsSJmTW7YPmm7Tytz83zrqVHchQUXMmkxq5rqjwbF1kay0rM0YENgUheOOUUU86soJgnAwUKLqvqvv/edxVEAVRwlTnXfnkxLr4YeGDU6flvzGKCveWWhGCPkHJExZqzvi0Z/u/4ZPg9c9wWm3hFsotLK+FYPtbKcVGButZOuTuM+Ud8oGsZAYVd7iLKp0gai5vBuP71ogxdtw72Cihk34bXXQf89rfGNv09ZHaekJqWrUCz2p9v1q3zJ9wbNw7WOdLMSc5MiNFjHPcTUqGJhPdzGJOAEDnPuZ2XFAC0xNt5U3DZfJftWxqnNv0OHLNmAc88gw/7t8MnTy32V4cVFuudLGMeFYsXt3wnJIs//SnxrucVMeibwG1XHHaw72P33BN4e/4vA/cByL5FamrsywGFmYvTRMzj28gdfQ7Ad9/5ONB0Aict2wHffmtd9K73D0Nty5Y+GiHEO2nlj8V6wy2TSKKQ8GeU45RsyLyO9jufJX+T5paDK+3B5a8ZM2fuNivru2WrQlh6axnXW74MgUj+WDA//TEWU+AZheT1bpfJ+ej5Vp8/371MkhNPdPfYtoTrSSXwaSY5SMW194OFJuuVV4C337Y/pK4OWLIkeNOEFA0uz5pZAPb0tLMSHzpZKIes6hMC8zbuhNVN2/rujtDUTx1vz/8Ftn3refsO+FwNG8M72An/qeAqD2bOBB5/zGUumzPHcbcXD64zzwTO/9ZesuckQ3a624XQfIUCmzrV8yGBMf7G++8HjjxS7jjj+bjhBuDkk10qt9pNi0xiR8qKWBPAO+8AP/4YSjfM+Sos7+jkm31TrIPUPW2r4FLoDW2LpqGxrQPiuktZwzirL8yjgssupJPiNoh6VISYFULLuVxLlyLb07fA8iS39pQquNwa++ILNDYmzkkhWb4cOOggubJ250NsbrbcfvUtuUZFDQvXWhrXPD3wAEcjJEJU4qT8sX0/NYlqLRVcpvqEbirz8cfWwvlJkzJJa53o1w+46SbnuU42/UFyPeMlPLMtQqCdaQ2liwpLuYdbRghGcokYQ4amPwoRcF405pGV0JTZrnXNBuQWCSKN/cxSTstCBZcSqOAickg8cK6Dzxhv1tSaBmy/PbD33p4OI6RosJpEXSMNmL63r3ARdFtUeMDHD+PblXKWrX766Ie1m7ex6YCQa9OmQJaCy+ZQV2EcKQleegn4130u19piRZqV18lDDi4veK7nGxfrdovnoU+fRO6SYkAIAM3N2d89QrkzcSMtZFm1qvCNC+GekB0w5MCSew5EPJ41jgVW9CYFAk65LdIhCgF0efNFPDDxfOc6x40zV6EGC8GWZUgnlVAgkR9cBvAfxui44ALv1ZxyCnDIIf675QdPt0hTU976kUN1Nf76V6BHj8I1mcLFlsgV8fEnltvf/TjX2O/Vz7rnPQcZIW6kZ1AvIQqN45eFB5d0Ta++mrvNKo6aVd9Gjkz8f+89+/pTCq5U/2bPBqZMyS1nNC5SgNT5kMnRraQ3JB+IhYvUVZZjTWqxrrV7ITd4fwGwvK+8KLgoecofVHCVKEqSNxpYvKpj8EpMA8a++7ofYmmk7svnk5DoYbXm8mpFdMtBIxMfbM0cg40FUglb8y3gEcJ3EgFLDy5ziEJaboXOgAH5D82jIsTBru8/hYcfznwP0ufUbbj77sD06R4P9uGOtW4d0snuC4JdXCAZGhqAT6wFWISoIr1WNr+4FohKs3DGai4yhBEzW3NboYsK4N//Nnz34cFlZWHuUK45njx/tbUAgIX1OzrXb0iu41cBJ3uU8nmFHlwFwdaDa948AMDadRUYONC0zyqfhulytbU57w8b7dP+hWtM111DJkaWVN7hAjJmDNCtW8GbJSVC2qDGMkShjQeXOQeXhCpGekzzOndNm2a/Lx7HFd9djxdmnpbZ1qtXbrlUiEII5/okMXuCCaG5yiisQhTaedCR8NHH/ACtbmPii4XXlCvJe25R/Q4YujRj6WD3nDwy7lfWObRM64s9922fvb+tjR5cEYEKrjLFzjW477zj8ers3FhA+1z2c0/1jxoFfPihc5lFSYW852f56689HkBINPGj4DIvwnLe581S/DyEJSpo6C9dB955B2JtlXtZq8PNHlzJ87Fth8wiifKp8Jk9O/9tSCm4XCyymuMdspyRgwhP9Vhi9btyZe4+p/Adq5u2wRdz97fcZ5dnzpVNNtncA4wfQXKoNE+dgyUTq50LuZx8p65feGEw/RspcpL3TjrvwoIFPt9Gg2H2LrKcWysNeSQlwrZtaO6SCKWS/I3xoLklzOfKiPEhGzMGGJoIKxPT5dv0a2AiFU5diCyB4IjFe/pqyxEuIArLihWeihsvz7Bhmcd83pzEjuWz6vHWW9nHXHFFgP5ZYLwtXadUlR5cycbspsqaxo55G/ZUhCBzCk2VDzmgW50//pjW4RPimfS9bBmi0PoYc4SRnDWDhELHFq9zV/v29vt0HR8tPhqLG3ZwriN5EpZt2g4tL/YJ9iBb5DHVrdZQQtjIMgzHUcEVWQQA9O6d+PyWQ14bFz5beiTO/PSm7I0WE8yT40/H7bcnHBY1zT6E7/Iqk/PHoEFZX0N4pSBJqOAqU+wE1B8sPBa95lglu3AgudoThknqjTeA3/3Od/ek2iOkFPG6yEq/RKbCCOmA1qd3pkBAbyvLHFzmbXm2OBE/jMXXyw/1dWy2gkszJMI1lKF8qizwq4wyH6fqdhe19l6JTn2dsL4HLvzgMjWdSOHTQ9INv+fqw0XHYO8Xbs9b2198AXz0UaDqSQmQnm8XL07cFAVGamxJh+nVpOaq9ZuTOWVGjw7WuRTG/AU2feu53cqs8EWfLZVMtof8G8xUVmRO2qp6Bfl26MFVEJTNs4Z6fvWrTBqNAw5KrA0nztsa116bfUw+54aC5uByqXu7e27El18WoOE8kI9xwzVEfMoSy+BVS4gsTh5cduR4cMnk4DIVOX/wn20saj3OXb/4hf0+2bqS48yVw6/H0QPuCaYFELmjgF3UmayfP2YMMHdudhEGjIssQmhpj119gcJwhQ737KRJwFVXJT7L5qjsfOm5GDEi813UbvTdNRIMKrhKkIJrjFMKJ58eFp4pskU4IV5w9eAyfTdbL7XFXYZ1j1IDS2uoQiIElm3aDn8Z66Ixt/ldQjOFKNT1HKtuz/KpZcuATz8FWls9HkjsKIRXvpQHl8XN4DTlaHGXHHg+UZKAOWQaYx3DfUQY6oG4kHWHjB0bVjekEJBTcG3XKTuEi6/HQIhEKIb33zfkALMfCM1tHLfjYuf6t946bYij1HLaxYMrL1baVHA54veVzfZ+81hhFC6P0zOYkxJE5dxfAnOg0lf+tEebz/MyJykUN+QQJESW9H1nGQJYIkShdA6u7K1fLj/cukNWAsNNm3I2/fn73+Hnn93r6sElg9HodEbNbsoHaJm0CkIAeO65rIg49OCKFsZ58JXZJ+PMQbcBUKuIFKvXSE0w6dvHpWxzW7vs1Dp9+/roVPHP2VGACq4SpF07YMjKg7O2mQcEpY/PwoWJ/xT2EuKJQCEKNS37mUuHETIdb148evbgKkyIwp232Gi7L8jCM6evKQWXIcyD5/X1448DQ4YwxplKUmGH8mihIaPg0o48IifNo+OatslHPPAk+VjGph/vCCySd3v/Kdx6q5q6GhuBnXbydozbOBWBU0RCRggNrfFKnP7V38JoPDd/hNU9u/vuqeLQ4+43rXm+9B229IMPEl5gybHZ8ujk5Gnu9xHbL3eu25DzzNdjOG2a9bhs8Ruz5nq7tYQQCTNdc4Imu7JGpkxxP4ZIIaXc8ZhMM+oKLuO+q0Zci8em/Dr/HSoBfI0bVvGgjXW6eXD5aZOQJOnZxzIHlzX+PLgkcmfb9ANz5sCc3HDYqgMweYNLeF9TXV8uOwzNsdzcpuaQi0EHaPP50K1CNpra+O13N2FzrH3WuoUKrmhhvDZTq/fAT+v2TmzXCz8K+31XPK3P5Xj00QI1RrKggosEpq4xnOTcslxwATBypPfjhgzJ1dnNnAkce6ySbhHiKQ63JX/9a444bGNrZ+djPC4mpXJwRWFCtumDcdEqbMr5zlGyfr2/40gO2uRJiQ8TJ+atjYrNcsooYw7bt9+2j9738stAc9zBotEFJwWMXwtjHVrJRs9Zt05tfVEYtkhIGAxCNjR3wfDVB0TihrDsQSr8sKQH17Tq3bCmaWvnOl07kps0yCkJu2fhkC6hdLJDCOCVV+z3mTAKwGx/w6hRwBNPAH36eOsLkCMMJGqwfRzNmk03pcV3w9R0KAANDYmQR4DzMLOofkdMchMk54n11WpFQr69pAw8+ijwpz9Z73Maj2xxG0CjoA0lJUuFgweXHTk5uKxm9Ndf97d+sbvfTbnuLZVqLnWd/+0t+GjxUTnFchRcgUMUmhVc1rlCje9bQ1YejJWNXbOLhB2thkgRxnXyOy3MqNkN/fur7QuRgwquMqFNr8zyqPe1MLRh24tPkytoYwYfj3vMqesxXsHAgcANN3jPCXbWWcDHH2dvGzUKGD/eWz2E2OHLg8tojW1c3CWfi08Xm3JfBMzBZdUf2Sq8tORkWR3kNVlUVGa3kVyprG/OCABlrOIt4cuwepqb81a19uMPno+55hpgkSnkd+r+v/VWoK51C9/9cQxb5LPOV2efgi22ACq3lu9XlUt04WeeAe6dcKHPHoWHqzV2+PoMEhbJi69DS8+pYViGmnGyvJbNwfXb727GlcOuT3/XRUWwmz3pbWUpWEidx2S/F9TtmO4rvvnGvl3DdkuBlBPJY42eWU4YhXO25+/HHxP/p0+Xbt+9UhIIu3vH/A64Zo1jNfrn4Ssghw4FjkrKemtrgY0bkzuWLPFvYCWDh+d+x8N3zl8/fDJlSo6sXQl2MhAx6Bu54wLGTdR1YMaMQFWQIsQpB5fdPWlelpjnPSE0YNUqYMECwzaLiqzereLx7JzdNvhRcAFAdXNuzsscfZbi+TMu671m2tzQ1klpP0ieUPjiJgClIQqt4PIwHKjgKhPmbtzZMTdkmPTpA2y5ZX7bWLgQ+PBD78eZPbgoECP5JqibvKt3ldcQhYF6I09Mr3Qv5ITdAtZwPgQ0y9WG7ncq5ICgHp5TJehmK0kHundPxsK34dFHgc+XHqGiWwWFCi7ixquzT8YpX94BIBovok7WqfeMv0haCTe2au/sDUOGeOtIWxuOGXA3rh5xTTrvhuXzklK+QYMQwM8+eiT5HcDnn9srjLbbLlOFt56lJWSVMkI3U86SvIQh8hgyj8ghnYMr5pwHM2rD/HnnAT//efLL6tV4cZakkahPFiwANq2ozWsbkcHNQMpl0hdjf3Ter8h74PPPgcMOU1IVKSL85eAyzC8WObjSjB6dVc7M8zNOw5CBpudDctFTKWNMYlFXbUuuoV1O1wKGpTd7itp6cLmkW/jz9x6t4Eko+DJEs1FMyY7nQd4VPd/efDFVAlflpUaID8a8up1w1lnB61m2DDjgAA8H1OZv4S4Tjp8Qv/jx4EqTnLA3xTpmVRbTTcN6UAVXgXJwtdkpuKTdxdxDFCY26DllvQo259R2R49+j3Ehkg/yeE5l79r5812NwpVg9Rxdn3S8UJpovlzh80nsSN4bi+p3xML6RHK3giu4hNxMeuHDCeXy4oYdpKtu1dunLbOFAPDZZ5l8uTLU1GDC+h4YtuqAtBe07uLBZbl2SbuqmNh1V0MVHtcTLS14ceapmFGzi21/jBhDOilRcJnboIJLinwZWdY3FF9oqcWLkx8KMEf97GdA38+6uhcsBT74INjxBVozeIpaQ0oPD4uNrJB+FgquxlhHzN+4I1BdnSlmMVff/uPl+Me17mH1jeGNU1Rtzt2Wg8WzYxWm1DIvdgDMv1SHRQ4uieeaObiihd07sN2qOT2nJhk9Wt1wTg+u4oOr8lJj7FjXIiNGAO8tUJ9IqinW0dlIVHJgmDoVmDdPvt0HH+sgX9gjUQhZQ8oL9xCFGZpi7bGsYbus/XttVW06oAAhCq3qlBTepbBVcEFSAGbnwRWLG4rYeHB5WNgKAQxffQCWNmxPAXpA2tospoUInNNf/AL4dQHyvFvdd3375r/dYmbiREjnGHMbgUSbteX/0qWuTgGk2LEYZ6LwIprTrQ0b8MWPO2X2+1iT6kgqn1atkj/IoLRJ9cnOMjqxT0NMZObwxfU74IWZp0qGKPQoNKiqwl/HXoGBy3o6l1u0CHjllayQTkIA+OknoFevHAs2rU9vLK7f3r19Krh8YQyTL4PsUmCbs47Dhg1O9URYcBkw1F2UCeWXzZ4d6HBpr2/TdXvuuYTsghAn0sYWHvJvm+dHs4JrwNIjsP/HjwBHeI+y0BbLfUp3ee8ZTFi3Z9a2dT4VXMfvtMiioIkgCy8hLDy4rA1xrE6vMWf5o0eHH8qWZPAiQZo7F9hnn+xtJ58MLFmSMFjVzjrT/mCZEIWN/i0S4i32L5M0ZM0fXJWXGvPnO+8XAjfeCNwx7rLC9CfJTz8Bv3n9AtdyCxdKvIObBqOH/5uH+IZJDZv2/WiXgoSoRXqtJwSuHnEtBq04NPE1KfjaeYu6nHL+Gkge7vc11aOiIuaQhyCIx5he15D5LCwsu+DtlHzwAXDrD8lQBiUsnCgERiVCVm65CNDYaL9PmVWYlaVhksjcWhG5HimOPhp49lnJwnYncfXqxP/Jky139+gBvPSS976RIsJqHojAK1HOXPfGG9n7fTyO94y/GId88oA3RUyyoZZ4+/QmJ0WUDi3Le3zoqoNw29grpBRcnuf3Dg5Gbcb2nnsOAHJDFL7xRiK5z6RJmbLJsWK9Rc4QVyIzWJcWXu6LtNGDxbUIIym9NPm+dyI2f6vE8rq6nc/k+bDyLDHu99QmgDvuAJ56yrlpIHA0NhJlqqtd75/U7SniFjm4bEMUmhRcdkJx470vEbIfAOpbOlqWa4xZb1eB0hCFdoa0c+Zkf9+wAXGRbUT7yORf47Lvbkp/36KdKScJiSRWt7ad0aOu53p2GVnW0A039znSvkCqzU8/A+DT8LGm2r1MVmOlO2cXkvDf5oha3BZ3M2cWph8mPv8c+Gr23q7l9tsPuOWW/PfHle+/T/xfvsJyt6Yl3o8JCYKfEIVpa9RPPkl4EZnqyjk+4GQpgITbZ9Y2iTY8ths40baxvaoq4N57gR9+gNg1k1tIAJYhCuMe8hWlZOMAKNjKB1zcAYiWZVfUbvOWFrlyZm+XxkagoQEJsz6L/UaqPb6TkCIjCh5clnk4TDQ0ZO/3OSzM2bgLsPvu8gckhU7VLV3S873l2iR50oTQrOdwu5MaxINL8kKJ1jbcP+H8rNVKVlvmJLvw6S0etQEyYng5PVJFLSqMgvelLyoD5p51g+spT1gpHrL2O+yTuc/btQPq6tzLkSJi3DjgppsS75wuyd47VCQk5LVN8gqkXA8um3vUwuvaDTulmq/3cb9jTeAQhdnttsbboe6r0dlWihZGMV8tz06Cx6EyOkybBqxq3NZyn5frJATQ0eFRa4x1Qu+h7rJpUVOLpUuB9r88Wr7xJJ7f5XkjKoEKrlLDbYW1cmVh+qGYX/0qei8wASMhEGKJlxCFWZ9TCi435ZOfHFymRbtUFTYhAeywDH8En2FCv/02IaF+5x3reN8+c3Bt3myy4KFgSwktLZn7vs9Xu+Qt96GXhWYh1pjrNm8NrcL6HrK1MFbBpk3yZYWAs1gnupif/VNOAQ4+GHLx+CO23iD5J5LX3OR1Vf/jLP91eRnULE6GkyfM2/N/gR/W7pO7w846O8uDy2PfPFh8PzrlXDTGMsItXWgYtXo/vDjz1OyCQebynXf2f2xZ4G/+CHi7+qqnkJx2Gko6vGW+jXRWNm7rKeqqDNL3SoDxornZ96Ekgog33sTYtXsnPJhHjnQsm1rXt7TlPvd2t55bDi5D5Vnl7Duc2ZeTs1vicCONjS5NWawZzOVjrQEVXKbzsaKxG7Z96/ns9xwLQ4LaluzoT5H29C0zevYE/vT9/1nu83KdhFAjprn0uxt95xDlfRUOpbuyKlck3fOLjWHDDO+0Fr/xwAMZUogUH5aOTx4mQ6MyzDFPRtZB3haTljm4zH3s1cs5plsAdKHJDVvG39U5E1c76xzBJgeX5FS49dYJI700JSycKCRbbgk8OOl8AMBNzx+EGTPy0w71kUnK0D1J0xL5u1YYnLKdhhWGEipxouDBhVzhTI4HkWnQ+vmAf/lvzMsPNCqg7LzDDTsHrTgUvx78V8d6sjbrxvqt52WZvuUwdWrGq8xKuAbgXxMuxF/HXpG9w4snjbn9gw6SP7bciMcL8t4pJWRdsCDv/fDCiBHgoiQA/zf8ehx+uGljnmUgKvK58ZKXFgvqdsTxA+9C+9dfxfTqXaWO8bK+NM+7trePlisPcGvczoB0ty617h1raUGXLsB7z613L2vA3Lf2e8mdM7vKbM+H8SQXqeyTBEOVgqsp1hFr1wavhxQOSudIXqmpkS87Zozzfqf5ae5cYOhQ+bacGDkS0K6/Tk1lhHhENkSh1qc3plbvkdm+bDnQ2Jh1/JQNFiGJPC70hq46CHWtnWz3/2aPacDy5cCXXwZqxw6/1i9an94YV9UjqxtCwFrBFZfra078Zb6pKsH8smcROargLFyYUGhaUfTvSh4Cie9/w4moqyvO+9ztMjkJq4zDxJo1wLp1avpEIoLFQ+wlVG2+cJvvzFbH3ir36SWVHC88hxIEbBVXxs26jeGJVN9MvNJ/x0TIKFgr5nRdQ/uK5PHG85FUcEmtN4p+AiggmzZJe/IsXJgdGsvWe99jiMJ0LcOHS/WjoOQ5RKHWddu81m/FnrvHsWFDYdqqlZDDe8Ht0U6PDxb3YCyWiI5OyosWvV36c9Vmm5eGJKk1p1UIQLv1qPmetA1RaLgnf/u/45064dhHq75c87OxuYWGDQMALO/3g209a5ucz4cKbKNdZCV5lvjNivpD8kvJL79K/gcWBiq4Sg03jwIhoG1uKkxfAGy3XeK/jBz4pJOCtaVqTJjlEAGG4w5RiZ8cXLZ1zV8A3HVX1vGrm7qits40Jni8iZ+b8StcP+rq7CoMQqDtOyXDAJhyhQAOyXA9IIQPoVPy86zaXbKFW6IiWaEpRKFfq0x6cOUFpxCFa9YUTohgcUsXjPBF7Qnmr+oSdhdySD++eVQwGwWm++wDHHts3poiYWDlwSVp6KCKWQs6YEPzVlnbEhFB89QPL0okQ9nLe5+W2ORnnrT5LcauCKF5NGm3/x23/HBlTlbxZZsyuUp14aLg8nHqy/W9YPFiYK+9XAq1a2e7q1ev7Mu+337AuHWZfBieohk43NpXjfgj3nwT0TRIKsE15PKVlXjjDWD02v0K33jAa/zilBMwerTNTpcUD598AnTv7t6GppXvmFGKvDr7ZOmyqTHNyphGdryrlAhR+PUUa6+oGTW7ZQ2Wdvehea5vV2ExP2/cmN2sRWXXjromZ5vqe1/Kg0sCFd6ZJP94WRf84x/Af5/MU84DEmlKb2VFnBEC2BSi1K4IcFwf19fLlSPEJ+45uKz3d+z7CuItsZzju/28h6kC76vL/kt+bluFgJbwFLOQMKjII6Tr/hVQFZqAqDeNd1YeXH4XthwECs7++wNHHRVuHwohnMhn/gptX4tcOUVE+vy7XAi7F9ZYm8NxqVCrS5ekN23ejIJZpJPwKGiIwrY2HHLuntb78jXAeM3OneSzpUcmNvlRu0t4cAmHcpa4Ca6SCeWt+pul4DLiZS73mcOz1JgyBVi2LHHqvv3WppDDef3Tn4DVq+3rn13THeutol9Z1Dl3rr3+YfCKQ/Daa859CY0SVHABwF13AXeOuzTv7XgeKl0OuGvMefiXXRTYKVPw0KTfeGwwl+OOA26+OXA1JCKs2NRNumzq9rPy4HI7JvXFNgeX7MNgDFFoM6ebt6fX0sY2kmOX07vKEdstl+vTwoVy5cwIYd++h0gVJEJ4yRHtwpdfAl8Obq+sPlI8lObKqpyJ4gJeNXn6jam0JI7vG4MG5aVtUp748eByWsI2xTokwv2Y2bzZuVEXurQ3ZUU21PFj1d448rP7ch8cp4W4B+qaO8oJ1rJNwtP/RENmsWQnSIvLKLhoclk4HASYDQ3A+vXZuZRS3Hqrcy7GfCc9J4VF22Vnx/1240b70060PygVxsqUr6UcllZlhZUHVyEteOfOtdwskEfzfg+amMbNuQthlR5cxiFeFxWZDTNnAq+/DrS02Nfp9jtSObj2zfUgEQIZBZcxLnpSse1LiVemawPjz545U339x3/2d1x+uVzZCy4ATj/dfr8QiKYyKYp9KjIMdqfuRGAiX7wYaEoF0mkqXEQdkh+Mo7+sgapl/m07vZVpTrI1HE1VMH26Yx+s8muambRhD/z0U+a75e9KKbgc3vOv3T83tKFlmwHyI9q27zEHl990CCTB7NmKKnKJO1vyy62S/4GFgSsrUjJYjgmrVkkfv/32idBYEVj/kjImiJCtRW+XEBaZSSbDi8eBb8d5j4l98V5Tsr4bF4Lz6pIxOSxe1FU8SiNW7Ov9nCQHg9rWLbCycdvMZkOuj0O6ZsYGy3NmZsYMb30g/nExJGhpAfbYI3f7yy8Dzz+fpz4VmHzPQ+XqdUAIgPAVXDaC7RwjDJUvux7qWlW7BXbsnC05tjw/bgOVVw+uF18EJkxwzpckOXiJrbfJPVRoGcMbg8vP4pptAQCXfnejRMXZ55GCsfzhRf5vtOOyJIovd1RwBUIIYJvcx9z5ABWoupe++05NPSQ0jJEC2nS5nHpWc4atN5XJg8vVUO+zz5z3Syh+rhl5LY47zrma1DOQ7nWQNZXHcIJphMPs6zlEob8ukAQHHww0N7uXc2PA4M6O+9+fd5Q6ZVoU4Y2oBK6syo1ye3DmzfNUXNez3zei+D5EShvHBaHL89tr9smOllY/fl6Fs+88NEj3Et2wWlJWVOC11wyPnBD2yXA90L4iLrdItjg3d467FGcNuj27iK4DQmC3LhkrIV1mKnSVnhCv2N7ONt4N5US+vc3KIXqHiuXOxImJ/1wLlBgWN4eXsEGBsVNwCZMHl8o1uwettoZcQZqld7jPNo2bdaHllnPSbLj9jtQ5swlHXN/WKfHlrLMSMfbmzcM+zyRihq1p2ta5bmP9JFLoOjBr+VaW+4QAB/FyII/XeMZS63srEOWwECtxjLNBS9w+56Cx7KTVztEH7FsAtu1g8y4qMb/v1LkOF1yRUSDIGmekyxmfr7SCy34+tFTk6R7c16T6ZreD83Sh8XvKR47MRIe/+MbtHcv+edTluOcef+2Q8oEKrnJDxvojorgNnC0twV1khXBeHxfnmSNRxWqh53ifC+GYCPWbFQc736PvvC3dNycs+1hRgRtvBJ58MrNJxatmlw6t3gWPNicxvdg259AwntM2+YSktY0dvPWL5B2n50dFTjgAGDUq/7IyVX21w6/BZBSQfYlS4Vlx9NHyZdescT6vzz4LXHll4C6RPFFQDy4bjF7GiQ3heHBpeu6NbOXp7FqlTYHsn5j5zY1tHbBu81b2CZUA98ErFaLQouljd1uFDhVJoXJlJfD44xD/fda5PhcoRyswNpPvqlXAIX851fNxocKbpzgQAof99ZTM9yjeSyQUjOvM7ls4x8tMvb//X/+LsHixuR7nY9w74j6WVG3eBgO/yeQkcj3E7JJjPCCl4NIs9iWRXlPJGN/YvJvbRmDJ1zqKKOfUU4FnnpEvn3M5izQkCaeR/CEtNdQ0rVLTtCmapn2V/N5D07SfNE1bqGnaR5qmdUhu75j8vjC5fy9DHfckt8/TNO0s5b+GRBYVD7Hb/DR0aMJF1q3hRYvsIxcKwYgRJFzcFoROgu+YXmm92EtO/hX5VNFqubHFVeTg6tKuWUrBta7WkEjUTsFlOLfGz+lzPmlSIpHT6NE5x7a25tY3fNZOrv0iDhTporQU4PueR4T7vbrLLsCrr9rv79sX6NdPYZ+IfywegJdmnYoRI0Loi4G0l3EKlWOkFw8ui/vdcszwubjP+okGpd7/Db8OO737H6C9Q2Jwt8HLkIPTTIfKODqkcnAlF/uBFeEcTO2RPTeFyEVEaVLpo+AaazELQbpNkrmWFuAPVyiIy0WKFuO7ZKdKZwNJ41xj1tfYKbKy5ifFc43r3Dd/vv0+KQ8ui21WHlwua5NB/xyJe475Dli92lSZsG/d49qpFEMNT58OPPVU2L2wZ8aMzJDtJbxhzmPw2aeJ/9OmKelXqHA9qQQvovzbAMwxfH8KwHNCiH0B1AK4Lrn9OgC1ye3PJctB07SDAFwB4GAAZwN4RdM0uWC1hPjFNFBoGrDvvsAJJ1jPfUIAWL++MH0jZY/VgsotRKHTEsw2/vfGjQD8K5yMSrWffkok/7ZDjJ+Q/KAmROEN316CqdW7uffRuMy19eCyJn3O330XA5b0hP7eBzllRk72nruMOCM+/Eh5nRs3Ap9/rrzaglLQ9e3y5QVsrLCc/83NeFuN0yq0Frm3L7vlw6RJnpxDSb6xeMj+M/1M/POf4bUPJNcE+QpR6MWDS+iobu6Stc0qRKFfoZDRCcsYovCLZT0TGw85xFe9iU7ZK7gAoENl0oNL0zB34074ernHsM0UQKhn4EDLzap0UpG9ZJHtWJEicT5/+1ug79wT7AtszihbdT05b9tYxa5eDbzzUSevvSQRZ8IEoHdv78fJ5uACPEQikB0i/BjDBBl/kgYiTka3Vko7yzWDS9+feW9nPDn1HFhZINl6uHlcR5XiSPzcc8Ddd4fdC3uM+spAU+HcZG6MMWOweXMi8nRUKNaoacWOlIJL07TdAJwL4PXkdw3AaQD6J4u8DeDC5OcLkt+R3H96svwFAD4UQrQIIZYAWAjgGAW/gZQJKt8Dli5NRCexbGPQIKk6aAxI8kGQHFw6NOsiHyQUNpVBFE5JF6ZRo2z2//BD4r8hprwKD67Ztbvg3QVu2W6BdhXuvy0tPDSdpLSHmBC4eOifMLs2Nz56xYZ1ch0ucu65p4ApsMaOVV5ldTVw0UXKqy04+Z5e0o+A7QMdXZ56Cth7b/dy46r2xvvvB2jIh8DAbl1w1FHAggUB+kLUYuvlW+B+mNvP2RBeiMKYyF4kW4YodBupJEIUDlzWM+dZO+rGI6X66dimxfMrdJHxZNc0XDfqapz/7S3+24KNRTrxRr11aC+VXoOEAMCnnwLDVx9gX8Bwz/35z8BOOyH3nrOIWEFKh3vvBW6+Wa6s8RZ4bMqvncsaCuuN2bm0CupBlLTEcr1/rQRlKczPhGyIQqtGXdbaaVmChWe3qhxc0qEgiTI6dvR3nO2l1XXccw+w115+e6Qeu+f6hReASev3KHBvygdZD67/AfgngNQItB2AjUKIlCRzJYBdk593BbACAJL765Ll09stjiGq4MI/G8kJLlWsuhrYHGdeHVIYrAQj7h5c9vf0MTssxe+GX5+7o6YGcx/+GIsbdvDTzWTHdOM/W95Z8Iv0Z1WjUatL4l4gswDWdaBqo/WqKcugy7A9dc5bGhNTWsfK3MTPFVMmOVdo4txzgQsucOl0BHnySSjzenHDbuFntz3o9FYss6MQ+bf6EmvW5rX+fBKPA0uWyJUNJIAyeBXQCo8UAiGyPbiUKk+8KGwtykoLq2SqN9dlqmfSvGzvMU9tpjy4bEb8tLBMCPv8HRL1lzvG09CvH3DTTdbljFfhgguAMWOsCuV3dhYi/22QCKA4H8LEiUBtbW69Hw/bLki1aZau28JzPST/aI2bpMsaFSOLG7Z3LmscDU2x4+ymFWnFl5d56Ztv5A5JKrgs17/pEIUOXbLy+rZq02VtMq8umQ6gnUkW4JSXnCEKSxbb+zYeR3V1Qbvim9tuA/rMPSl3B9eXSnBd2Wuadh6AdUIIC+meejRNu1HTtImapk1cz1BxxEAhnvk99wRu/eF3Dn3ITID932nEf/6T/z6R8sJWwaXrCe2DA9+tOgBNMQvljq7jwAcvwxXDbgjQMfvE7QCg9emdXVZRiEIAaJFQcKU61vflZnS/9bfWRZIL2BWrKlDf2jm9PXXOU7+to0UcdStvNKchadAg4Kuv3LtNCkcxKSnyLovzE3+ljHhj3vHY4lJna1wrKEMtEmylSQXKCygZonDuum6F6Y8Elvk0fA6pObKn2lp/FTlUbqccTM3lIhZH3GK9VV8np0BLf6VgDJMmAX36uJcbOBD47DOLHXYDZ31doH6liKzMKLIdK1+0OsNY1NCQ3Jh9fz76diJsupfLJ9pyDed+ee/JnvtH8k/FimSMs2R4fyfO2T2Tn83V9sLwuTUuF84wq0qnBrwodIwxgp2w8eCaORPQLjgfgPN7lVtO8UxB576vauya+NC5c84+q9DJ5jpf/7SrXD9KjGKaXvz09frrgTrTEqHo38GK6aJFGBnTteMBnK9p2lIAHyIRmvB5ANtqmpaSOu4GIBWgeBWA3QEguX8bANXG7RbHpBFC9BFCHCWEOGqHHQJ4GxBrwnhwZs1SVpUQQGOLhLDbR71e+WzwlvjHP5R3hZQ5tgvCRYuweWkVYg4Wx3E/1sgS1LZkrAxFnXUomSyWLIFbvjBP7be6WzmmhFnrvxpnW2ZR/Y6AENijZzeMW5eJcWZeIMf13PNoqeBiSINAKJ2OWlqyvmpaIoFtMVKIaVo0yFuoFjNO51IAaGoybUy+HdW2bInNMe/e3EX/clUu2N0Yy1dYby8Q/5pwYdb3WSu3UVe5h4HFyovZ0ttJ0psqp664abtVaPDp0z3VKYNR6XXwX07FhPU9cspssy0fYmUEncxUmmNzcC57vh2dKyDPwZAsU9TUJD6YFgp+bmvxQb+cbWtqO+Onn7zXRfJLOq9USsHpwK5bbkx/9vLW+9KsU7O+20a0kH3PdPFcziKZSsD1Pq6wliksXZr57DSsqvLgsu2PkweXoaEbHt7duoxbv0gg3ngDeOUV+/1Z944Hp5bUterbF5gyxV/fSGnjKg0VQtwjhNhNCLEXgCsADBdC/B+AEQBSZvJ/APBF8vPA5Hck9w8XQojk9is0TeuoaVoPAPsBGK/sl5DoMmCAkmr22gvo0QPocuOVSuojJGysFn+2Cq54HNu+9RzeNYQAlD42IAOX9cwsnocNdz8guQhVkYMLAJa6hH3Ianpjjef6U4K7zm+8DABYvinXar6dlmvxlq/zTeQYOdKg1zKbcSFaiWajRrm8zLW2AvPmWe/7cNEx2HLL/Pfhlcc3Kq1PCHkDXGKD0wMQy1XuFBRD35R6nXrJwWXRrtV859uDyyVEIQBguMRaw4rUWsWiyufHH5f22pqzcmtf1WsXZsceZg4ub/zvf8A2WycFmlVVif8SyqdFixJ/fhRVDFFIAODsP+7iqXxaeJ4z4drfS6efnmNvlajrB+ucs+NNkrBYDFi40EMniXLS85+E4sX4Hr9th8225aZOTeSUTtHQ1slUjwQSE67UnOzi5exWuWUbQXJwNTZ664cMqWsnm6qEnti+sTvFf/4zcItFitOffrI4ZvJkf4YDpmM4zRNAPgeXFXcBuEPTtIVI5Njqm9zeF8B2ye13ALgbAIQQswB8DGA2gMEAbhFC8BU9BAr+7CuSpK1fnz+BpZhmbSlaTCGtSGlgu8iKxdCq5yZYNZJXhUvyObYNB2CkQ8LzQVWIQhlSw0ylm1LNZhE+eXLm+yNTzs0p061T7gKcgq1g2Obakhx3Tz0VeOcd+/0eQ7BHhkLk4CoXDdeYMcABDvnkZZF9abIqN27A6uAdMHDvvSiIYq4cEUD4Ci4DQsuPV7ZruxbDg6WCy209YDPOxHVrwdfle0/IfG9tda7bDgfh3YC5B2Ftk0KvOOLIF19VWq4Z6xuS9/Wbbyb+SwywBx2U+PNFg0TkAVL0qBZS262SZi7ewnaaGD48IcA1ernE48DRA+6xLG++9V97DdhvP89dJQr5aV2uZ68dxnnx1oNH2JY74gjgpjG/T3+XXYHL3tMff7s19LjI9Y62QssOy2/fuE0o5dVrMlUZfonZEHRja67HpGWVk5yz4HSqtF8L2P6E1AsgXSTzTuqamq+t2eFu0ybg+++B445L/Nc2ZzxjX5h1Gk44wVt7OW1qWvEruMrk3TzfeHpzEkKMFEKcl/y8WAhxjBBiXyHEpUKIluT25uT3fZP7FxuOf0wIsY8QYn8hxDdqfwoBEEnVdSweTp9qaoD9/mDv7ZJFr1757QwhFlgJYGyVVBJCN7uE6deNuspTvyxJW25JPM9CKA1RKEWyf5U+lGpxUYF6g/wjZhGiEFuUtkR52bLoTB9e7hynx4KWXfZwDe2NIArH9g3evUqdmDTJ2kKcyNPn2z0tt0+v3k2Je5wQwJo1LgUsOLH7gvw9nB7qlVVw+cWyrngcndsZ8l/a5kmTM2KxKyZlpOOBY/5+otL6osCgQe6PgcztdOHvOtuuSwFkctxITM6trYm/pmbvSl9RU+teKAw4EatFwfm0nOst6v36K2Hb3MknA4cdlvn+r38BU6v3kGpfIu0TyTM1LV2kyxrnsutHX4ULL5Q7zhwK3+7dWvaWvvyFE7Dy5S/kDPtS463PEMOWiRQtyv53+pkSnXHPR/b3w76z3uEYgzy5zy6Eg7m4VCnixrBhmdvLrOB65hngxORyKRYD8P776X0t8fYYa+3kmkNVFdAvGfFVCGBzLGP8zfd8AgTz4CLFSAiL6fb/vg+PP17wZrFkCbBwlXvuHoCuySQ6pBbLmzcDzz5r2CEh0bQT3LwxT9IsRgIpIVdynFEVolAK2TYtQiHoqMjK9xHTcxfbYptt7ZosCZYsyXwu1AJR9vSNGwfceKNNHRLvN8VGQXJwiUSqiXlr/IXpIiZqkwJUg9n21KkJxbHqcbBY7+socVOvIyy3x0SlkhM8YgSwi7doWACA7lvUYcKkzKvZVh2aA/cljZffZVHWMp+GmxezXQ4u8zpip50AXc+eE/y64NqZEyfp3tnem+dXu8723NyMZaU3hp57bmLeTbHffsAXX9iXLyRbnnqM52OE0CIp+XrmTffw207eCyQb9R5c9vWJWNxxSG02DN3zpstbpHB+D5+9t0rmA5K4GMa5rDnewXqctHjvbF8hZ0hjvgedetQwZip+XL6rVL2AvAdXOidZyvPLw3N22WXAr3/t3OaCuh0d60hFg/l+5rbS7abXD8UayqOIMC655s9PfP7Zz3Jv+xyDVIvUAjJMmQJcmcxWs24d8KfvM6lrIjjNkxCggouULCoGuYa2TtiwIXg9hFjhZCU9dizw978bdkhYlZstwpTiJYFtckFZyBCfmRCFLovZmTNzNulCQ8vgTGiJmIXFsaW3nUtTXGip4e23E2FbvGJ8vnbcEXhj3i/VdSqf+Fz0e0IIvPQScMBdF7iXJdjYuoWtkhUA8PXXAABt+rT0piOOAM45B6hQPA5SAJZnFJzgmlWbfdX1yeKjcMzpW6W/b9UuHAWXdIhCn6cqp66ePRMKLuP2gAouO+Xbjp0bbA+1Mm4hiZxAOSnRli8PpS9+iOqQ+c/ndnYt06myzbUMSVLARbemO7+TZXVl0ya5cuD8HgX26JL0upfJeSXzTpwygDJwyd6Ts75L1ePSn3snXIhT3r/BvZ6UosqrgUpaDmDYZOi3VW2ffAJ88w3gJExrc5l3Uy2ceOexjuWy8KjgkopOU0RoWuLdOfW5qcm5vGoWLChMO1deCUyv2T3xJaVdK2Y4ASiBCi5Scsyb5318sJvk/z7uUnTvbihHTy+SZ1KCn5z3NBlLsnzenxYLW8eyQoTiweWHuNDw78nnGb5bTI2SFu2lQCwGNNjIAJub1elfVLxQOF1243vN+vXAmqZtA7dXCETfNzIWk/lqA/bXuOxocxcg6qLCWclq8xI9Zw7QZ+5JPjtmDd9/8oyKE/zJJ4n/U6cG60pYc4xdwnhFN5/l46LYg8vu3Dn9hJFr9k98cIwvWfykTu38+cCECdZl6upcwqUNHqy6WznoQsOKFYnPQXQXWtAKQqRU15l+2dJK6e83X58FxrPtNFZowtmDK4sK+WsoFi5KfFD4m4g30u+uEnOQZVQTifjoZsMn24i8rj3IMLV6dw+l5T24zHyz/JD05/Tvd6lM9O6T+G8hb4vt6OzubmssKxPCQ/IhLfVxNp92kx5Pdf6Ix4t1ms8Q+kksDajgIiXHAQcA48erq09BOgZCpLFVcPldaKvCSw6ulAdXARVcqTWBpXJKgo0tmWS4Vp5wVovyUl2HPPMMsLVN1KWrrwa23bag3XFE1xMKuV0P385yX1FSAMt4oRetvE89EycGryN5MmW8VmVzNNhRquNOFNi2Q6OSEyw2Jz24JPM/5LByZbIihRc7qAeXVYhCN6GQbIhCAIjHs/I1TZpiM5e7/Y7UwG9TTmqN8Pnn7mWKkBdfTEQGqEwazJ9xBnCMTcS/c89NONYVBJvJaML6HthDLnWRIxwyS5xBgwConxtT45H220ty9rktn7JvafvSOR5cqSgTP/3k3kGSF1Ih8byGKMxsNL18WIxvxrlz40Zgft1OlvV7MQRcvin3PciSVHIknzm4vq/aN1NErkW0rd9oW6Xbujnr9KXWRg79A+C6Dih3mprCt+PJR5SfSL7X8h4sOFRwkZJk82Zvg1ypW26QaGI155329h+wcqU/Dy6/yh0pku27KdE6VrZlPLgKKVaQ7J8dxvOdDk9hxEJb4nZJ4nGgutpXd5Tz6KPAzTfb75ddfy1apKY/gLpxt6UFWL3WIm9aka4pCzIfCRHNF4EwMFqx+L1pNBvDBAuC5rIp1vs6Mji4pWzRrjU0pVIWScmDykvda/RB0mWtum0laHMNcWTB2rXAqIUWeUJ0PWv+PmrAvzzXneiUc4hCqXWShFdnFionRh+0tQE1FssWM3/9aya3669+5W5LsWxZ5nOOIL7A702B5ytOeCWB5WUMQVLrdjtl7XcomxuiMLmB1rWh4cmDy+rimo773+tb5hQxzk433aDjqWlnW9afNc4qXvx59eDSfnMeBg8GZtdmPK50SbmD3pBIyLSpuV3OPlcFl3H/wIGmLto8XEL+GqaLm36vn4hQfpg/Pyt9b14wjzM33eQvT6wVqXP0wAOZ4AWEhAkVXOVGGUlGZN5lzjkHmDbNvRwhhWTCBECrSWpGUpmKJRZpec3BlcRNqCEE0n0taIjCJH7yFZgXyGfsNie3jE8Prr339tydvPDii0Dv3onPCxda5jzOIWzrLhmEsB/ry2i688zYdftg1aqwexENBv3YlfdKGbHpmVdt97WviCsZOH5a18O5gE/L6SD8qV+wUJm+QhRalL/tNuDW/qdYNKDniLlSjnBudVo2bbNWkTKCmTVLqo00IUt17rsP2E7SeD/FsGFy5YIq5FVB/RSxJfnOoVLp+tBDwOqmbWz3a8L5nUzWg8vMg5POT3yooIguLNK5nKUip1hcJ5Ny8m8P5t5HxvfO+okFzh2UysHlwwP7nHNci1iypGF7NDUBB9x9Yc4+N1mBcf8RD18oF6XJaw4u5K5vDjgAOOoo4KqrpKrwzf77A8d6SC/mRkuLxcZ167K+5uP9/rnngBEj7PcXYg4v+nUCX0aVwNmzhBACaGzJtYwwFypk2LCoM3hwIjd8Y6xj2F0hZYjdPBabMQfa228lvqSslfxakqki2b6bcMi4SAwjRGH3LeqdC0qsfuJWluo+f0q9S3fCYL/9gDvvdC+3yy72VuEqFpEq1nGlqOASev5t43/zzS3o1SvPjRQJ5/7zYM/y7Bw8hCgMSuq+1jSm6fBD68p1zgUUxDbdodOmYBV4CQmcB6wMOixDFPq43SvX2UhWdD1HWNinj/f63fJB9J13gvdK3fDq8aUYo6cVkPAcv+MONXUHDakaGYpU8hXWGBBVLOdYhdc29d7y738DNS1dHEoK+fHPgwcXCZ+0QkXiAlsWkVhDGFf5Wtx+/siq36U/O3WWTLQke9PJ/P7U7xDCUWE2o2ZX+2nSpR3jMz+1apcs4wzbNhWFKJw8GXjvvUBVSNHWpkbptHw50KmTxY6UhWse8HOKBw4E+i85Um1Hfv5zoMUiR2PYFKswooihgquEGDgQ6HLtpY5lJizsmt8wZkXIww8D3d56VqosxyhSCMToMRnrwNWrE//DzsGVxE303qa3w73/7ZZY7BbyxVw2RKHVyk/TsrzfLD3hfIQojAo//3mO8VaO4s3ut5hfSArxm1vi7dKOi24UbZ4tF6Zs8JYsmgSjWJ5lILuvlh4uxJE2PTecaRYKboaOlbHEB7/a95BvyHk1O+RsMyqfGhqAFSuAqjorSYoB0+9YtgzQl6+0LWeev/1E6VKyDtoyN6SUIyFrms23y8iRCWvqUoKKAOJGIYdNDYD4ZrD9ftn71a7TvOFDIx1eX1GIQitk71Uv5m5e5z4Vz4tsmy1xewN8x35YhFNPl1eYg0sky771FjBlitQhSqmtVRMy0DYCt09r2+Zm93WYn/vof/8DXph5uq8+2bLrrtAmTFBbp0Luugs47TQAmwIawBFXqOkoIVZavDOaOeauU7HAJpFlKeFk1W/G0pWXkALgtCbIcdn3m+xWFWmLcveiT/TZPn/9sCH1EuB6DiqtczXdeOCY9HcrIwCr310sypXJkzOfHdLPeKZPH2DUKGDqVH/H2724/fqbv+Dgg+XrKTU5gICGZ6afFXY3yorAL/rpHFz5lbAtWpStdC61e78QFELBFdiTLw8ht7xwVv8bcrYZQxRecw2wxx7APv+42FO9e+0FfLT4aNv95rNmOce6XJ/UGiDQZfR6cMj5cgoh2M/XWNPUBLz1/b55bV9AK9rBsr6tc9hdiBQNETkf2uYm4MexsqXtdxkHOeODXKT3aymgefDgMnsdb9uh0bMHl3M5eaQN2GVDFEr8ju/XJsduiXNld0t3ahezP8ii3qxHxu44jyEKdVEBCIFrrwXuvlvqkFBYvBgYM0bt8PC3vwFvv229r3PnRL4uR71RnYvnYAEtDwoRRcMvgwYlQzguXGhfqJisLSMMFVwlBNdCGaZNyxbqFjuy3gykNNA0kZvkNmwPrpSCS1bgtnJlKMI5t3PwxGc/s9y+ZbuMpjtm9ZJgseiwXYbU1jr24ccfgfXrHYt4ZvZsIObwjpCia1d1bd50E3DKKcARR6irEwBiohKLF8uVdVoLFus6UTDuXMFRpazO94i3776J8SPdHtd9nmnV7S2JNQ1qFFxuik63NpIKkyiNYcauVFXJdWz+mq0kK095cGXPvZN/8j4Wpg23gzyN225rvb2hwXp7AS6UrtvLkcK4TyzblEnuaeLrr4Fr+7qHjQwy1hUiPy0Jl1WrgJHLC5f0Vvt8gPN+4/0qG6LQmFyIk3s4CIv3bwfM75wCWvZxNsYPxuHTMo+XD5QruFLpBhyKDFpxqFSTTm1NXbOT/Rym6znnWGa9Xr+pQr4wkj81SgsuC2bPTuRAOylYOtUsvvwy4U3Vq5e9o0TfvsAxx9jXIV5+xbkRGeGECiI4Zi5r6Iabbk58TttXO/Uz4vdgscAVXwkRwec6NP72N+CPfwy7F+ro3Llw8wOJBhXmJLdSFmF5HNLTCi5JCq1hllTA3fvuQTnb/jf9VLwy++T0dythiFW9tiEYXay5f/lL4PbbHYt45uCD7S2wgpDPtZaKqh37VywudiaYc6N4OPJI4IorgJ73nONemESC1gJ4cFXYjG4//ggsWSLRRiyGTz8FTvlKIlligUhZOAOAWL5C6phVNR68LYTIEWT1699B/vgkSjy4Tj7ZevsXX1hvL4BQ4uWX7fVu5uZDk5FE1BpvY2tnviSXOH/+M3Dmh8Ff/GXvEq3VOfxL9u0m6cG1dq1k6ySfpK+WhGdujvJFmBRcqTzaJozrfCfDzKz3AUnv5SjipD+68rPfYqydM6QQaF+RfR3i1RvT++zel1as65guI9c/Q060iJ7Ggw8G5s9XW+f55yf+jxsH7O4SGV/TgKoqix1uIcTKWGnTqrdHn9dMMqWo3mAlBBVcJQSflzwSgcH5/fcTExApHYSN/F0ILSMgSy2wQwyBs/82a9O5XqQtzTStoI9Nqi0/C/xxVXtjek1mZScbojDI78uHwrqpyf+xERjilCOGfhd2F3wRVliyckaYhltZpkwBPvoImLY8uGvkhg3e13Fc93mnICEKba7LL38JXHaZRBu6jvFjo2XVtLAuk5dLtNplizfh8VyqmIaUCPna2Xj52SW9K8AEKhOG/r77EgIoO0ezIFTPXZflYGJJHs9DuYYoJHIovbwSxlGa5pxn2OjF69Q3baFBYs0QhZEgbWAqMZ6Z1+s5Ci4bzY3xOMcUVB7eBzx7cLn9PF3H8uXAovrcnJw5uFS2Y6cGiGXLbfc/8YR9HzpUZK+FxPffu7fpMURhXFQUrVGkEencbj6n6urqXPlFlN5Z8x0mPggc0gsHFVzElU6VDJeEmhr7fQVyrbrmGuCWWwrSFAkZAS0TIiECCq55dd2xxV47AvCwKCq0xsQmSb0fckJOCOC1abn++bY/USZuex7W0eW4eBJLl9qf7hX2L1NRphSVjVFH14Hp04F2F/1G+hirmPR3j/eWkyhFfT0wd27m+9y5wEsv+aqKuNDqkOwcgBoPLs1lgHdp45y7D4c+anTgfqjkvYXHpT//WLWP1DFeT6WUAY2bFXvy1TaQ0MWuDZvtIp5/wViFw6lJdeuxx4Du3fMTweLdwTvi2GPV1yt1j+g6gqg/OaeWOJqmdv2bEqA7Nemyv6FBw5VXuhfWjNEuSkDAXvQIw8zhI0RhXFRkv6/X11set7JxW0Md9oN7jneuw80kreCSqCvFsccCI9fs76leK7p2bIJ4403b/XPm2OywSg+QPOfHnbU1vljW0/owXT7MJADEI+z9pgJVU+DZZ8P7OkAInHQS8Mar0fTwLjgyizkSCCq4iCtR0syHhsOAc+ElFZg2LWHVUOCmSZFjd211oaWtUNKCk4jcCLrseKDrBR070h5ceWgzFgNemfKL3DbdOmP3HWr0lZdfDjz0UPB6gLByeAS/VmLCJNsXyGKFc27hEcIm9IYDTjHpvXLSScCJJyY+//OfwG9/C/zlL+7HlaNSOyiOObgg1HhwOeyTyfUweOL2iLdGT9i5ZLHwdM9lCf+c3IpsDFTO3n0mHnnESw8VhSj0eLCTDO3bbxO584JSDDKR4aNcvCP9MnFiIGNCzqkljmoF16xZ7k1KiIz79cuUloIeXJEg9f6tHX0U9JjzPGyes2J6pZRS5Z7xF2PRIus6/OK1Htd5QwhPaRUdcyJDg15rk0QSQLzRRvlhIUtIff9pUnv7BnVvspOYXhnKRDpqZEQmb0lWrMjNQOH6C4TAmDHAmppO+epWmqIYNTm25x0quEoIPi/5x+ol6YuBFejZE7j55jy1WVxzH1GAcZGaVoRE4UbQdXmlhK4rsxjyghKliek5t1NG3fzBybjqqtztw8eYFt1tmXBOqXFaVsF1112JsENWfPxxfvJuGcnXvFJVBczZuLNc4XXrbHcJAeC119R0ipQ1Uvd6i3PeDekyJhYvznx+5hkp+RrxSXNBPLiEbV2bN8u1sX5zl8D9UM2atQEEaAMGuBY2n5XBKw7BAw+Y0phEMA+JU5vDhiEtyPTL6acD771nvz8Ky0MAOP23wUO1WrJxY6DD1zRti2Xrt1DTFxI9hDfFuyuSlUkrTmX7RgVXJDDm0Gz57GvHsjkRP4BsBddOO9keu+++AGIxR8NM4z02e0F7VDdvaVvWa4hCV4SAkJlcZEI5ChdFSOMm6+0WsgSp+S6VL1TSuzpmyL1dWwt89pnUYYE55dTsa3HZZcC0aXLHLlsmH46YuZ3Dh0N64aCCq4Tgg5NHJGbT1jxFcozKiytRj5MHV4oQIxPmMm6c/AtdSKE28iHcim+0X0FaCZ1yhDwWAm+xbr1U208/DTz1lFRRPPYYcMopcmX79QO6dTNsmD5d6ji/49EbbwBDhmS+X3QRcPKXd0odq82d7dynJUustxfpgn7d5q3C7kL5sXSpo4dEmm+/dS2yse+nrmXmzMmOfMx5vnA8MeUc5wJ5DlE4e7ZcG8aQgFFBxmvBSNbP9KH4TXHBBbapTHJIG27nw5bX5ro5rdOCLIV0PWG/MXw4sDwZcddK1yNWrPDfiE9cz6/ED5e+mxQ8k2c+elLgOkhECWEC9SZzsS9845ir0jZwH/2wq98GiCqEyMrjo//wo3Nxtxxc22zj3N6IEY7vKsY7++DzemBq9R62ZaVzZKeUP25juBDK0hIIaC6/Mzc1QCwGfPJpBT5f2tOxrCXJa5AOVehWHJnrNn48cMklUocp55NPgM8/lyu7117ATTdlbws8FPrwlHZ91y6gPCjKObhST/OgMdbv+Cd0X8CXQUVQwVVC5Gst1BJ3cAEuF4TA1KnAKkPMZDNO51/XgTp7z2y3pkmZYVwIxmP2luAFp7FRvhvxeEEVDPkMURh/uVfACnKlX2L1GunDHcM+GPatXQuMGiVfZ22t4fuw4dL98cN11wF/+lPme1OTmnrfXXAc7vjxUjWVRYT9Pno07C6UHx98ILeGkvAkqJ8wz7XMQQclnokUURjey4XL9pnoXCBfIQqN9RZprhVt5Ajfx26usLc8B+B63ueOtvfkNaIkRKFHnC5nkH6sWwfceGP2tq5dgRkzTG1syFOM9CB8951rESE0T9b4QYjpVBiULELIGahIICsg1eBB+O9CczI62xX/y4RCX1vTAQDQ2AjsuaeadogEQmQ8sAHE23V0LJ7rwVXhaX7/7b8PxcT19hc4n+/RbvdvY5OP0Jp2ReDNAPXpp4H27YHLrtkC36/dL6cuWfS4XOkg53m9nL2qNF7kucb3eCekDX5kLYmS3HcfsN07zzqW0bYsnPd0pGf51asBAOf+yVpJvU2HzXwZVAQVXCUEjX3yyxFHAM/OOMPXsb17A9tu61xG04ANG6TS95ASYXmttRWH8ZKndCORuA8qKjzl4AoDaQs2B8ynOr5idbAKLc5FGGGU/KDyvsuHN+LM2l3Re87J6ismZYcqAZns2KdCyRuJeaHI6NLOxZNIwdxVYSUkXbYs89kQtraY0KZM8lTeeH9ucf2VruW7tLe/Nt1G9M+t1IK0giuIqMOuDTsPLgflSZBntNImpZVZqBVJb+UpU9TVpWKgi1Q4BKIUXS+4DMSTp4APB4edf30Err4auOOOjPcmKQzGy6VXOIc0tnyXM1xQNw+iT3/ojs3xDl66FxzJ8bTLyT9HY6MaJZcQmuOcbJ7DZs50rku2P8MWymmHheEYL4wfD+y4o+fDlOF33LP9qV6SriGhD6MjhBxa3Nk7LpLruCKFCi5CCoBRruHE3nsn4u8aoQCrNHnnHeC3b/zacp8uKtILwUi9k1dWyk/A8XhBc3ClnpN8PC/xoIsOi7fXDc1d8OCDcoe7LWCLxRmgWPpJyhNlCi7JQcj4XHOeLxxOQhYNUOTBZVGHcQAsUgWXZ2TPZbJc50r787LLFnJhEELJwWW4tOvWAUuXZr7nQ8FVKkgrIYXwHB4zp4qWPMWRJ6Gz38NXYfBgNXXF9QosXO8SVg4ePQWqnL1P7caId98F+vRxr37evEARYMuOmhrnSGzGEMPpKCo2WBp9GhVcAZcTazdvnbd3p7yE8bVBF5rj3PyLnRbb7rOqSxZP59/HxTKGGldFPpT1OT+taq1kweIi6DqBlAZUcJUQ9OAqfhoagNGjs7cV+VxTFPzrX8DXznlkPTN0aDKZvA3jx9vvEyJz3edt2A6xWETug4oK6YWl20tBvlARotCsxIvpclKmzZuT+VXMWGgpx6/vgYcf9tO7bJYtKx4hWKEVXIV8eSPFj6c11LBh9vUIuRtdhYLLy3GqBIClTIWmK8rBZVFHe4OVa6QsV+TxOqKmTuVXX0mWd9hnTALvhJIQhR4PNnpwnXkm0KOHXFXTpwPPP2+/307pnhPpQebKRGIRmc3Gls5oHP6Te0FaxxAHFm7YFg32qXI9MXLN/tjvgd+5lvMkSHXJURB0OjjgAOCZZ4LVUU5st51DbmORPZr6MpgwXNCg7yF3jrsUffsGqsKStjZg7Oq91FSWzullP0fHRCVa4vbecMfumJ1L2WGJLXVOv5i8GwBgi0o5za8w506TJB9TUzyeCVvqFelpXiLcutL2iOtd69eLkORCBRchinASjgUZrzjW5Z/HHweefFJtnWeeCbzxhv1+x7xKhmnwuHf+jP/9z+WAQlFRIb1Yn7xsu8K6WyfPj4oQhWbiknU++ihw8MEWOwKugAtx6QtxdxWpTJeUAZ6fsYEDbXd9uqgnUO2eE6fQHlznnFM+jkNOOJ1qTYPSi5FVlXEALNLB0Kt1bOr3u6ZjMlr12BATcpYca+q2yGpbKTaVGvN8pMIHbtqU3Ocw/T/5JHD77Qq6JVNonntuQOVtunDEZ/fjuj7HSjQWvDUavBCVaJq6eyq+aGngOurrnffrOtC9e+BmSoYNG+z3ZeXgcjHWtHzPNQz6KhQg+fAS6tcP+MtoRfmLhYB2nPM4/quv/4a9P3zcdv/fx12aNcy3OjjcyswG933SE3PnAttvIRcLXEBzDqtbQBnMv/8NdO4sV7atDZg/372c9FgVEW+JLu19aviKGK5R1EEFVwkRkTGJKCYKeo1ywClcQT7qdLquuilWdXU1sL7eOdFtQdDkxVtusYZVk8+FgWyIQlsL0gJbHzt5DnrloYeAt99WU5fxNBR0XFuxooCNkWLkbz9ehn//W6KgxI37tx8vA9bahP9QzMEHA7fc4l4u1e18zHPFhpPhhQZ3RYsXsqy/jQNgkXqkeH3PSM3Lk3+S06w6XZuvlh2aKuRYxwNfHZPVtiqqqoALXj3bcp/V5dwqmWLV0Zgpue+TT4A5c3LDmcumApMyJpJdGDhJfpPMnAksqd9erj4FfPL9ztKe9HbwXYqoRINQZhim93ldUU32xOOJMazsSVr5bFFvv0Yzvum6TdVu84yKkLmVG6qUG944KZDC4mRDOmUtZt9BITSp87F2LSBaPVh1paxSJNC0hGxG5rK4KZ+D8N13wP77q69X14Gn78tjx13YZYuNvo6jLJwAVHCVFHyo84jEDFZfDwwfnr1t2jTpw4M0TRSwerWaeoRIePIAzsJEfZV9g+YF8TPPAN2vP09F9wIj65WlLV9WWGuUVIgEBc+Lud+L6ncIVqHDG1I+PCq22ML7MXbXtXdvKAmlCBR+jkrfC6tWFbZhUnT8ULWvu5eJEbeBxmNCL+FT4bFiBTBypHu5VPX04CpMDq5UDVmXtcgVXFfu+5PvU1O5bo1UOadr03vOSZJ1KMDih44bBwyc0cOicHaIwlzlk3szl10GHHQQcMIJ/rpn18TPfpbotxszZhi+SMTDOvRQ4L6JF1rumz9fSkfmicuePkrag88OWkeTqKI3e9c26Lq/aaTsZQqjRgEA2k+dYL3fdIJ8OVsb6hC6gpDH348GFsvnqHJDF5ra+0BRZWPGZD5rLfYePLrQHCxKsxFxuYfENTycxb7f/z4j72lszC0Sjyfm1m22SXjMqZIz+aGutbMX/R3q6oC7Hts6fx1yoVW3D2dZqsgqbok7VHCVEFRw5RGJAWf4cOD00zPfa2qAnj3z0/Rf/0pLLNUsX574v88+Uu/3trS2Avffn/jstDDuPXAX2326KRBQZKIZCRFKAncZUs9JPoQYp331d7nG7XB4C+3QITfa2fz5wLXXZr5rVvlcCoiquSW0dRsnRxJB0rdlWxtETGKQD+AVRg+uDE7jUIXmU2pow4TF22W+JOs9uOuqolRwCaF5znGZEu5pzcHdik/dZV6qI85tqsjBZVmv/T477+Tnnwcm2MhRreo0K6BFo4fwShYsWGAQGjrMg4cdZviSirHok/33TyjsCCllVK7L/bxXnXIKcNZZHtrQs/+XLY2Nnoq7vX9bzguGjcremRW6XAldRF6OXunwfMm+58c3NkiX9ZNSYfDgjAFJly650U4++igzt155JbDrrp6b8IzddT20/4M49VRjOeffG/b9sbTBn4e41zDakSPsE18iUMFFiATazt4DVxsFSao9uF58MTenQXMzMGuW/3bKFtMJXrwY+PZb/9WpCMNW1bQ1jvv8Hv+dyBe6Lr1Y1DR14TsKjfG6KQn3l7wp7O6HJdm5dfH558BbbwGHHpo4IBbTsOWWCvpRbARc6KXvVY/eNIQUlFhMblwdMsRys4z+Vt+YCDWi1zonuy8HHD24lCnzExUd/9AZGQfSpKRM95nMPGz6LToGfedKuhglSZ3rCs0tzlMiNKTTiP+bPadLtZkSKAYxdnn5812xcKF8eaMHl5HbbwfGj7c/zjzFme8/8eZb8p1QhYKHwKMMuSAUNCcsKXlU3k1xUZEbn9SFMWPSzkgA3JfLqf2RMZiMKkKgU7uMpYGvEIVGDy5Vd4ri0MlR9OAyUllhf+Jdva2S6K/JWysLAA2N1u+KGuQMn8yPsNU8mDW9qnZ1BoDRo213eVnTyFKq+pgt26nPAeZmFFGipzIUKPUpIWikHh3Gjwe+/lqu7OTJwOP2eTdtJw/z9X76aeCQQ+TaJAYM2oXUOf3mG//VGV8e9GX2uX+6drSXAMyv28l/B/KJrktbo4U1HKleIPzhDwoqcVFwmUmVmzkzcxab5Ay584JxrLELtzF3bqLf9fUK5yIhsO++wLsLjgtUjZ3wkZC8IfEQpIpMm67l3TNWvJ540dffVJRQr4hxGoZVWX8ahVrpNUGRhygEgNfmnujrOBXnNabLvbKquIK3vvAzPPecfHnj8ys7z59yioQxlaRESkp5IzEm6TqwsUUyu32wpggpajQIqefulFOA0Wv2cyyjC82Xh7aX5yw1LhXp1FNQjNfVSSF44YUCD0+2SB+g2INL9XutritWTORBy3HgtvZhjXVRIdVmXFRId21zrAO2vuLXlvuEpLjc/Dy6PmuvvSZVryfG2Cu4/IwXTvz0k9qc3ypQ5Vnr5EHol6L3LisiqOAiJA/87nfAH/+Y+e40Ufz3v8C//mW/XyywfsE1OyV4ia1bbmyzjUMeAouL49fCbcSIhHdduuqJk2zLtjkkzI5qGEBPi9jOnQtqMZsvK6KlS533X7HPeOkQhVG2dJK2MlxjHUT8wAOBoUOBdetkG5Q4GbqORYuATW2dJCvNZe1aoN1xR/k+nhAjQ2d2x7RpwLtzj3Yu6OFNsudxnRCXyS8TwBPxd71PAeBsdOHEl18mBHWlTj5mrPRQl5oHoCHeVh5SRpH88bttuVGmsOOa4ebvf58u51xN4UMUxn0ouEaNyk0+n+PBJdkXpya9nIeXXgK6PveA/AGElCmyU/yoUUB1SxfHMjr85V7xIrBOCds/+8xzMyVJi12OH5MnsZOS4osv3C+AihxcqimGfIS/2nWu7T4hIPW86EKT/q1OMplMo854VnDlw4NLgpNPBsav3ytwPccd5+yhHgaq7uzGWAdFNcnDHFzqoIKrhKDFXHTwkmTatS6DxiQWA6Yno7TwestTX++QB6FD7iQWj/kTPp12GnDvvZnvdoqqeBy4ej/7zN9e81wUDF2Xtj/R9HDiYKhQqnlZ/HfrKOFalQpN1WZ9TnKEWgrWN17rcCqf1T+HFbvRkuvMMy0KxA1xW1evsijgoVOS1DEiG1HImf85Cz17AlcPvcq5oAcPrqDY1fPgg8CwYYnPA5YeAcC/8cQ332SHQypmXOcIBeOOsQqzgksXGtpdfkngNooBkZwuju+eh9g4NqgIUei9zczrdJDbJ3ctoC5/yCV/38u1zAp/+m9Cyg4NQtkYE5f0Ts3pgw+PjP/7v0RKg3Lnyann2O7L8uDyEwHC8J6kxINLsbFoMYQodPJ2EZAL89ylfYt011RcJ8/v8l6M1iR/iMy9Mno00BTraL2ziIWLKm9DKaNDL5itmSygaksdVHCVEmvt3XlJ4dC03Jw6dqxenZtU2oxxspo+HTj88Ew72eU8dLIMGTMGeP11ix0WCq6OaFHSpt2CqV07YHXTNp6PCx0hsgQ5TuhxeWWYCna/7WI88EA+hFpyv+L554Fp0+yqSNQhPukv12IJPMtDhxq+pBZ2hjiLUr8xcA6uol6rkxJnzhzghhvyV//DDydCFxuJS47fZkopB6DrHKF4ALZScJUbsr9YxZlPne9CzqMy11Qm2qDsfOXFgyvFZ8Ps15yEkPDwa9QYjwMDBiQ+jx4N3H+/fVnjmHHddb6aK3piMaDv0D1cyxnXCHo82ESiJkShYgWX4hCFWmf/UTZykOiYAKRC7XSsdBGwZdWpXsGlNByorYAhm6C/4+d/+QXmzQtURXgIEd0wgGPHRtV0vSShgquU+GZw2D0gFnz6KTJJxk3suivwySfOx9stjvxGKxo7VnqeLCk++cRGmGixmLrhgO+VtOm0sF3VuK3tPr9CyLzjIXbjy9NPLHhS70ceUVNPVgJbmbcAIXD77Q65XZPnTYyyj41tqs6SF15wD5noVocftE3ulkdWfP01cPPNSJuLtsYrMWKEh3Y7Bg8RQAUXCYWqKtciixbZGF3Y4eNmNh/ywszTPNcBAO3b+zoskjh7q6rPwZUmOQ/EVFuGRpgLXvwV3nvPXch32T17K2szdQWrm4LlkvJiRNZnzomu5fbbzz2cT26IQuvzdsstwE03uZcjGVQ924Sopq7Vfaxavz53W1sbcPHFic/jxwOPPmp/vFHYvmCBxw6WCHPnAte/fIRzISGy5qtY3GZsdZgQup5wUKaYgrFZebhdaJEMnQggE/HE4bzpQpOSRzwx5Rwl5//q/X70dRGUXrepUwNXIfMKMXnhNhg7tjgNbSPdZwltp/AZqpbkElEpKvFDZLXWZc5vfwt89JH/4+0mZ7uX786dgZUr7es7/nib8GHlisVk0rmdvNWPE49MOde+WbfFWxSJx6XHmeUNXfPcGWuUvwjIvARI5uCyu66ygrTbbgNefdW9O16ZMQOYvXFn2/1a0vOqRcKx0dj3Pn2A3r2R/oEbW7fEaf7k64QUFdpJJ7oXUtWWw3Rh3vfq7JPy25kiwGnuzYdRRmpM3P+SQwAAMZ/hqIqVXr2AdhXOL/efDNsOI39ojw8XHeNa3/g5Lvlsktfw2OevlO9kQJ6dcUb6s9NywC0hu+xaYN68xPyaKafmvi1l2UqhDa5I6aPqeTnu83tcy+y4Y7A2xA9j05/dIseUKrLXy1jszbm/sC7koGDZ2JDJ76UrELWqFnzrOiDG/qisPqUkf6dT2E4hqeBq0dv5uuZmtmovF9NT1oNr9epkQJOITrjFahgaWaUtIO/OF9F7otgor7esEifsAamL5ARQzjz/lPdzZDfU2V3v5uaEZXi509bmPwyaKgWTLiowYwZw8MFW+5wUXBEdmj14cFU3d0F1S+HjWt0x7jK1FbrcQ1JLkeTCRnbZIp0Py2cdZg47DLhz3KUObSYq69QJmFa9u3S9lZrK+AyEEBmamzPjhGaSA/i1Zi2ldy7Xn6IiB5fhcyoc0PzliTA+rsnMS4wffgC2bOduHXHjnVtJ1XfsLUc77heq84t4RGr+Xr3aen9jg682J67f03efPLNhg2uRsN9HCck3iWBYxXOji48z4WLK9fk0joMX7zXZskz1BoGphvec03eZY11ZLGa93dymFr33eSEAsWx52N2wJrlg7b6FfeQQHXIKrpheIf2Mzq/bybmAxCSao+CqWmdZbtddk9FNXNh7b+nbDACwaRNQ3xo8XKTU+BDRl4LIjm0yHlw0wlFG9EZd4ht6cEWf2+/uJOUFYcRuwHMbxNeujfBAXwA6dADuu0+ioMUk/YRD8lmvHHYYMHt27tzmpOCK6pM8Ye5WWNko55k1pXoPDFzWM78dyhNCKHYTTym4ZBcvra22u9KhSRsbA3Yqwc72jlueMY83FevWWu8oEEJoZT0GkvLAfI8bE8h/800i52MK38Yb1dWJ/x6MHEqVn37yVl6sWJk1ncTKTMEFyClWFyyzSXruEV2Rgsvv3CHV9tix1ttNc7+scK6+LVg4Rk9s3Fi4thTCEIVENUrvqDwJjP/xD+C114AhKzNh88p1XWw8xZ8tPRK3355b5qa/dsDkDRmDAWNEl3ffNdQhqXlQk4NLLbqIsMQwucbsUGF/fmU9uLwYC8/faK/g8qPIvv9+YOh79qHK161zf+SXLDF4fUuMDyeeCJz+9R0eemmNVqSR8qJucMA1SOGggosoozVefi/tfvAsHLELUVi30fE4pzCF5cLjjwNY7mKlpGoWFwK/2Mnedc6ss5habZ/oNqpWHMf88xSMXLN/2N0oKG63h9S1cglRmFPnkKG2+9Ivpi6xjoQAli0D7v2Ls0X42rXu/fH7KlSxeZPtvkLd4+X6Ik9KhBUr0h+HTO9uWcT8fDqNWb49uMZPSHywE8x75J57gEmTlFTlGaexx/gC+vzzwK23Zu9fvRo47jj3vhvbEL16Z6Vkay1HBVcB3+sFFCd3LyA5z7LEMS3N7qWUnn/ZRKARY/mm7cLuAikhhIjuu5qR//wHuPFG4IphmSTUKtbF69cDDf4cTkNj4cLs788/n1umpSX75Jw56HZcey1w6KHA1VcbDIgk4zxG0YMr4VUe0Xs3HfHEvn9rN28tpeDae+v10nOfU84vWYzP1aOPAt+sONSxrMx63MuzOm+efNnAbUZRAyZEpJ093E5rVv53EojojbqkaGnVSygLeR6p8PjU2Y11Wv9PbMtVVdlGQCk/vvoq62uszXRCVU0mLostB6ecHFQstIh/PAuB3e6h5L0hnU8vZn8veQlR+OGHwBMvyYV9UoXxVFTSWomQYNTVpT8OnWnjbrm5Sbq6wNbE9fZhY7zw5JOJ3ExBeeopYMwYb8fI5uC6/Xbg5Zez96cUJ2ecAUeMbejQMHduZl9DIb1tIsLvht/gXkgRQuTH0VA6l0eAac+P4LlTZ+eDlBt5SGgPaVhCiDfGzZAP6T5zZrC2VDyfO+4InHde8HoKSd++7mWExQD+1lsW51zypV6JB5diZVSkZejp92V7vl5+mNQkf8wOS30ZdbU3eY/Jni6vz5Wn61Dgi+baXAStiCJ9X3NRVFCo4Coh6PpYHFR6NN61FYq3mUKZGC7/5ZcDF1zgtWelycgFu2Z9z/F8k5gRGxqAqVNdCrlYjngJTakqBxgJQPq+cL4/pEbdZF3SObgcFuTpNVIBV3Ke1mUGV4V0F8MKUQiGKCRFjsxLpGkscPTgcsr9qEt4mCt8oFRUdffdSU9tD7gOnQ4FUn328m7/zfJD8NBD8uVJMHShKZG9+A9R6H7/2N1jud6Yap43lcuFleslQ0ly8iUlTHO8PRpjasKqAkBTs7tILqVTef+9aMh7ytGQNq1XWbNGqryKuUh16LVEiMKIjs+yJ0xCwdWmV/rKfW057xoLrLPOreVlytM0uZ8axjSqbawtfKOKiKwsXGIRFlmvyiKECi5CCkyFx8HXrjTfHR0wTCSn/i9b06fpcduydjzwAHDEES6FXFYqaQWXMUGKXVWc5CKD24JDCA3fDXO5XimLNJu6zBbnUknqXe7bRPgU527lhZdeMvYihA4QUkIY5hU7AwovITmcvINHjkyE37MiH8KQoGsYu/GtXTvgiSccjnP7LRIKCre+G6u4Y9xlGD3auTyR45rfu4eFqtBEqKnixGb3NZ4d5ttKxXO3fDkwblzgatLs/vuT5QpG2pyakGCcO/hWnPzlncrq69DOXdqdzist8R7phNYS7Ph0PUX2qipSuUSdysgF5AAGDHAumAzlqmIMX7Gpq9LxdG1dZ9S1RtSTXDZntaSCSxZhEImb18k5fXn1Vcs6vCq4VK6rBw92PyVCAJgxw7UubcBn7g1GcH4XemTVtgkjeBf5L0MUqoMKrhIisg81yaJyU517IQN2k3xMr0BTk7FckF6VGA45AnLOk8WJ+799s83Y7d4lNmwwyB9158CCrVVJi5gvv3QolSDuITEqUY8QMNwXzg/W8sZuOOOcdlL12iku//pXoLshvY6UB1cBkRWg2/YtLA8uUXwv4IRkoTgMiNM6wcnLOB/ri6DP5scfW2+Px4Hx4+2PC/JTjH1WFK2ReODt991Dod9y8qy8RM9xegaeObZ/plw8WqF7XnoJOOEEubJ8jyBEjuZ4B6X1dWznLrAfMiSh5Hry+YDKibVy3kdueE25EDoSXlczZzv/qLQSYc89nSuaPRuAGoPVXnMkjQokOeKhC/DQpN8orVMZLiH900iEiIyJCl9eMa7zoI2i1MuadsIE4Iz+N7mWk63znHPcT0k8DmDiRIk2uRBQjqzVFRdhSii2qYmQoqdi6WLH/Tn5eGwm+Uu/uxG77+6vD5oGrF3r79iiwCn5q3mSsZhMzAJ9uwXGDjsYcnTouuOioOXtDxMfNmyw71u6S5TKFwsxXW4abWkB1m7exna/xG0BwFsOrjDIGq9sQhT+6lfA3I3dUQio4CJFjeEGtlU0e0grKRyW/U7HLajfMac/YWOOElNfn+me07tkkPk1Vf/GjcA22wAPPmjTBk3OQmOLDjHoLe6eXp4xe/8b6Nwu2Z7LxOv2+JjXkMUq69Dq6yI1VhASdTqM/961zLRpwGOPBW9L1ZNZbI+4zNy/fIWkguvQQ90aM/4jsshapzS5555NhCj0oeAyrZOb4+3xt39kDFmFHvyirl8PjF61j3tfhPmDf+JxSD20mkxzmzYF7o9qhPAW0aKgyIQo5HuDMqjgIqTAVA7+2nG/eQy0GxPjohI1Ne7lrKiqAna2yVefL267DTj//MK2acVxv+6avcHixJknGaf1QDoGuYsHV8uqpAZDwuTNuSYSJaQWJELgjjuAgz95SLJOezRR+NhLqu/GYcOAmPCYjJCQMsduHsrN26O+7c+XusXo9U5Q4Vgqn+ngwQmj1IaGzL5AIeqcFmG12bkJHn44kZ9z8+YA7RHlxEe5C4vdyBGUfOW8dk8h9fzJ5uAq1rXghvVh94CQoqKQeW9UeWgUnQeXBVdd5a289NoiOcYrSzlQLpqydEh/l3KxmGtVbXqlktO2oG5H/O8lg4LLpk5t5YrgjeURiVOWwbigtmLYsEB9KTvyEVaA2FICUxNJEVmtNcmiQvM2yOXzBXf48IQRRiHyFbzwglR0Pk80NgJ/+pPFjkp74fnEaaawEhYrlfcXHpv13UkQlz7cZfJq1du59i0Fc3CFi4CWvrCTpzmHH5S6VkJg1SoP7TvUWfHj2HSdLk0qex/y/TJcLi9khBQCm+dpyqKts5yW/T52UscpNNkOWlU7w9A8fLh7+ZUrgcMPBx6adJ5r2X7vG+Zzw9wu+n2YU/aII3KFZBz5wkMIQB/4VfCKZs3K/u4Q3spoZR0kxLB5P9eChJBCMGWK92O0NvcwcVEibjGevvce8PbbCY8aqTpWJK1a3QTWKQ8uVTKccnmfkghR2LVjo3OkniRecnA5IZHZAgCg/aQw2aW5LQXXPxaDpAeXAHr1ciyjt4WY6NSGSD8iuu4qpxdCi/iPKB6o4Cohis1VvFypcBngckMU5o/TTwe22grYbrs8NpJHZs2ymYMllEhpPEwmVh7ZsgquRfU7JD4kTd7aV9ib0jAHV/EgK4BSpmyqrXEvpJgZNbtJzS85ZVIPTEgLNgGN8yIpC6qqPBS2eR7tHtPLLjN8CcFk+/rrgR9+yN1uVHDlOF1ZhJDp0QOYPh1Y37y1a5v/figxn1doeraCa/ESy/LLl5vap2IiVJSsodZlP1RSs5gQyq79xx8D/5l+ppK6Ck0Yd3+HijyEpSSkQKjOe7NiBfAbmzRL5udz2TLgyCMTnxsbgZkznetePimhDdICempedpnHtUtAYjYKj2uuAV57Ta6O+FvvJj5IvtcoiGbnqb2iR2GuIr8hCnOaMtVh997/6ZIjcO21gZvLbV8Aq2q3UFKPDJoGiKp1jmXeGb1X4P4oR4jovvO7RHkiaqEUlZACU+GyiM2NjpP/IbGuLnfb3LnR9qitqlLUPyGw3zbOK+zUhDljhuXhCVw68++U1XhSQOikGKFwLFy8vEbILp69vJs4WoBL9k6lB5cXrJpsnu2cdzCfRHaxS4gEk2Z3Tj/HWmuL1DGqPbg++cTwReED9e67UnnC0bcv8M47uduNdiw5fV+4MKe8THiWVr0SG2oq0gOZEMgSuNjN2xMm2OfjIoVF6CI0z6fp04Sll4Asxvn9rruAl2adqqJbBaeutTO+X7JrQdvssVV1QdsjJMqMGgV8JenIatQpPPSQe3qphjUJ4zWniDS1tYl8YR99lMiPacUnnwDjDE4v990HvPhi8HcXXbeuY8v29muojz+Wqzu+KRmP2K2TqRCFuqK5KMoCGZWkPbjs0SD3gquLCiXvwWaZjN07+tiqffHWW1D68h2PA59+Cuz2zysD16XrQEubu+hfg3CVNGxsbB+4P6qJtA5Y4vmNcveLDSq4SgiGKCwOKt1CFJpc/vMhQJfhwAOBzz93LlNVJZXn0xMPPADsv79zmdWrge7dHeYLT9oE97JOMr2RI+XqueeIbxIfkgquOHMQlQSyIQq93JJOdabuxVMu6mpbJmp0PvGosLtASFFy1O8PwPz5yS8O1tLG8cVprLn5wFGZ8KuTgfvv99ghhR5cmzYBX3zhGPkNf/xj4n9rKzBiRPa+yok/pT+3tZki1rQ0++rT/Lru2OHkg7BiTWJ+FqjIkv45rccefhhS5Uj+UaHgmrR+T+myqet9+M/boTHWyb5gyprM4SF1856wo3tnC0u1kJhZuytO7PV/BW2Tb8CkmDmsv1oLCad1gNlbzOiB7JZ6B8gsA6bX7G7rgfX11wmF1RVXJIxZ7PuS+fzYY8Bf/wqMHu3eBye6dQPuvDN3+95bbbA9Zto0ubrTywEXgXXKi5whCr0hYqkcXC7nTVLhJ3v+nTyAZUMUpkkv2oOz7bY2qTh80ukG96RzMt6kUbwdBbTil4VH8cQWIVRwlRCq3dtJfnA1gG7OFsyEOdZZheQz0r17RgClimHD3NcGqYTugwYl/j/yiCldguKTpunZpt9z5mSu44QJyY0ui632FclVsUT4xCAWwEQR0uEnCnutUou3UT92cCxnFaKr0FDIS0hwZCK27LFH4n9bW84SIotuHRvTY9vLLwOPPprxoip0Di4gEaLokENytz/6KLDzzsCbbya+v/cecNpp2WXazZ6e/vzAA4kQhKpoasr8zqNPzCgswh9ViQwqQhQubtg+67sKz3rtw36O++fXdU97T0g9aoaHtrIiuIU/ZSuElAZeHH5OTTqKrl0LtEg4ihvtXB54wL19J7sYq3FOIr2SI3V1wMSJudvP2G1OsIphWI+5DJZzlm8JQOE7YmOjmnoizpwFidjTrvmzJG7w6TW74sQP5LRD3bewcTOEhQeX2zwZ9AY2scFeL5s33Nc7EVwsCBFdWfhOO7kWYQ4udVDBRUgIrFolLycKy4NLts6VK73VqcLLPnXuHnss8f+BB0y5uNw6vi47trCbxYeWjKGgVSdWGRbRjwBdd6xFTwlcJCzgmYMrXLwsMvITotAe2cWb+HqQfIMligBDFJLiJ3UPy9zKV18N7LWX/X4duWNbx47AvfdmQuwNHizRmQAsWpT9vcYireDo0QlhWwqr8IJOAn2VyvWJUzKCFlklB99Rw2Pxhq0xv85dmOCGa7QFA9KXO+nBtWD1lq5FpR61n35yL1Mm0KCGECSSb8HFg8tmxNp5ZyRCrCGRk8ouQssB52SsSazGqblz092wLeOEivnTqk3XeiUajqdCDrqUFUlhhzJjQxnNYwkgYnHMmAHc8oN9SD4NkBImrWrcVrpdJ7mL+Qq6Ki2LfAGowX0+FRGMmCkE8MHCY8LuhjVdu7rKb4r7rokW7dyLEEJUIoRzSJ6c8h7qVY2MMsqrwirVz7q6hADLLRyhFa6LZbdODRyYyFwvSUVrwiS+esZq4Lztrdt3aTO9IJJQcIWVP4IkeHbGGai8N4an/+teNh8hCp2EqNJ3xpAhED3OlW9UAbqencQ5Cos1KrhIsePlHnYLs2McW4z1PvFE5vM55zisJwI+UIsWAfvu615OZrxs50EBQcqHu774JYBfBq7HnC9XlQJl1izgkDvOcy0n9aitWAHguET5SMy44cF1MyFA85padNp9dxcFlzs33gjssgtwruE1YtYsYNIkU10WlR14oHsZmX1e+e4751dxobm8f7e1AXCOjpGu3zUHV7K8qnGpTHJwaULHqFESBSUWiV68rh3zohuemLo6YMb63aXrLUY+WHgMBq84OOxueEcILN+0Xdi9sKbIlZ7FBt0ESggu7UsD8xgoPUFnxehTg8x66scfvdX54ouJMIS33AIccIC/frkuiN0mEmPMJ2EjtjDUkRIcnHfvYZg3z0ZHpVDBRQ+u8Hnm2XZy1nwFvlayQizXF7k8cPHFQM9P70t/r27uUvA+EFJqZDy4gsfF14OGwJDMwTVvnvX2VHhhFXjxsFGFtMcuV+RFj/l5cxSASa7TNU0+b61XwW+533EqQkgSUuz8u3d3AGr0IZ1M6QTvvRf4wx+yt8mMU3fcYR9C2JenlQ1nnAGcdZb9fqFAyJx+53M7wUJxDq5yUXDpcTz5pES5iy50LaN7OPdO88fE9XulP999N3Di5393q0y63SgyYOkR6DvvBMcyKp4l1USwS54QFhE2iD8oRS0hyt16r1hwW+ysb94aY8bIl0+Xq1rnXsgjytZThor+9rfEAsEuv5fMYjmwB1cq6YgDd91lbC/zbNXWZrd/yj7J7LxC5Fj8ZnUptXiSysHFoblYkBKqePXgcnjmpYVeIbguxeNAXGTu7+GrfWqwFUGBFykF/vCHROJ1GVwVXB6FLRs3mjZoGl55Bfilg4PMpk32xit2/TMPVzLjpYqcQ4TYsWzT9jjGEO1GlSW+UvmF4cEJnHuiuto98W6E4RswIUBtfWIN7jTO/FC1r1SaILM9i1Wdr77qXk9TE7B0qf3+trZE3k2VWCvOXMZwXUf7Cot4yAbSObJdF1uJ9Qk9uLyh6RJJZyXxcu5lc5875bhNUw5KijL4iaqhRKJwUIpKSAi4zX0nnSRf1hMSip28YFqYBZW9Wx2ftU0IdKx0WL0bY1nbJKV8+hmD4MCwva0te9HfqTWTmLR7Z/skpWnBoowHl86hORJIPHyyC2jZd5PmZufkutIeXFx8AmCIQlL8/PQT8Oab7uWWLpXx4PI2t4wYnl2hdtKJuP9+Z89tq3xZXpFScIWQTFp2XOXwWxpMmJD4v3Spcz4PWUO0Sk2Xvodk5q7Rs7eXq0yCd/86AXMGL1VWHyGk8KTeSdzGmY8+cq/LPAZ9+aXPTjkQjydCF99/v9p6R45M9N+os3cdp4VA147OLrZCUsGV2q0qBVe5KLgqoLvOfdK5qD2FKKTcxQt3fnhU2F3IIdJyD8UhNYkzzMFFSIHxOv5+ufwwZW2vmFgFQD52sDLhsGlgF8LZmitFPG7t8CQTorBjRQwt8faWux8afBweutO9/XR7hqt28slAO8PIqUsudtOLJwkF17y67vKdI/lD1+FmB+LVI8KNLl2AePxXtvudvASN7Pv+Q6gOSZ8dKVasgJcxj5AosmkT8PjUXzuWsQsBZMQYolBmfm+3aSOArlnbamrcj7NDWkEkUc5bXkP5so71SAjIoGl8US0xEs/WJYHr6TX7JDT8J3A1aU5+8JT056BRPK7+4OyAvQkXhgUlBIjrcgqudLhgh/ecfBqIpTIFXHyxVWoG62Pq6hI5zL2kN9h118RxTvWm0d0NEGTf+VMKKRVrgRO7L8hOrVDCVAj339nY1lGqLi8zouy7fKSVKKT44Q2mBKqrSwhaqpcejzwC3DnuUtdyP/0EVG3e2rXcstXWCh9fbNggX9ZkeTRxIjBtmvMhsVi2IsmI6/jvUqDP+MOzvrsJBozPlhDICu1g9OBxqsVLDi4SEYTAVu2dk8ZIrUU8hCh0e4fZ2NoZM2e617Nu89bl8j7kiPbSi2F3gZDIIABPL1DtNO+DiFP1Kt/dnATaZqFSwYyfZeI+kaKgQ4X8tZS9r9+cfzz691dYIUmjLBQYIUVMymPIbQi58cbkB4fILvmUK/Xqlfgfj+fOz2LWbMtj/vxn4MADvel66g2BVVyV4LruWmZd81ZS7WY8uIKfRAGUjQeXttk9SeXmeAepurwYPcheJ07N4WMXRjTS18YmWlRWkWQ5EhxXSaumaZ00TRuvado0TdNmaZr27+T2tzRNW6Jp2tTkX8/kdk3TtBc0TVuoadp0TdOONNT1B03TFiT//mDTJCEljRdrnqFD5coddxzQf8nPrXcaFkWVFXID54ABif+Oi9uqKrnOAb4G7NQC1nxodTWwetp61/acWlzTILdATVHhkMw+vYASwvHaesnBRSKCEK4LZJmwBgdecwyGDJFozxg604ZHJp+HQw+VqIvQopsQE17DsMiuGYyk5uw//hE5wnzZpcD337uX8ZRfQZGyX3Tt5lwgqeDi2FP8pK7h+PEhND7bWsDrhKzQr1Sh1yQpVs7bY7qyuvSkB5e0PsRhUvaj4Pr2W7lyjiKE777L2fTAA8CkSYnP553nvV+AhEePy3s8AFw7Uk58qdLAUAitbBRcFUMGK1OselkjKjWQoJKCkFCRedNtAXCaEOJwAD0BnK1p2nHJff8QQvRM/k1NbjsHwH7JvxsBvAoAmqZ1A/AggGMBHAPgQU3TsuOekEAEDU9BCkdB575hw9If7TyizIz7MdnBRkUJp30szNLWT6ZDzzgD+MX5OzgeO2t+ezS0dZZuyDXes8M+6RxMqXJ0tSweJDyvZB7lucu3lGtPQsFF5Bmx+mdo1RmJmZAUxkTaUiEKAzw+b74JvP66fPnRozOfZRyhvCiRAgubUtK47i7hg8PKc0ryxrHHhtDorFkQHpPZrZOI4lDK8A2YFCsqhesrqxKRWqTlDA7v5xXw/u4uk34AcA51bNX3Rx4B5s1LfB482N+rtKsSXNddx5H0O4V0iEK5vjkhgLIJUdi+Iq5MTOItB5dCDy4quPKK3XUVyhLe5QEhXOX0NNJRh6uCSyRISbnbJ/+crtAFAN5JHjcOwLaapu0M4CwAQ4UQNUKIWgBDARR3wG9CfFBwy965c9MfZZ2Htli3BACgDRxoX8hLqD0fk/30pEGbeU23aJH7sYdcsr90O7MWdMC6zc4eXU6TknSIQoOnFykSVq509XhQavVF5adSPlx0DD5ZbOPZSki5kpyDZKaidpX+PbiA3DWHU5v/z95Zh8lRpH/8WzOz7prsJht3d3dPiId4QgTiOZwASZCgh7veoXf84LAD7rA73B0O9wQICZIQ192Z/v3RPT3dPS3VMrrv53nyZLu7uqpmprvkVbtW2XZCFbs2fn75ZbFKqw20pOCiaT71sbNWj8m6fudO7+tMY7YesPCuJIgkxctcvi+8nYc//vBGwcUE+xMn7zbmppuMr8VKTsKTQ9OqDK8xeW6mPQMFMwTUHw8uxrxbP9l5r7iisbQHPvvMTY+IWJLU626OzlGIQu/gklAzxvyMsY8A/AZRSfW2dOliKQzhNYyxcMa/RgB+Uty+VTpndJ4g6hfdu8d3/FJoiHitsXP3SyEAzcyoDVaxR44AS5bwdk6n2t27AESsZrUKLq8NpDtNaYkdRjG1pR/KbMHOG/LJbmgoIgnYtctyK0O/a3LjJIcQQaQrSgtBs3XI3o++BwD4X3nRVv333AOcfnrk2I6Cy64Dq2kOLkAlEArWuhQOSYsAq7Xb79u9E2oRiaUuxB9OOiQwLuMrbhijMJcEUU/w2nI/GPRIweXALzKZ00xbfiehkGUZv0UeHbmtoPi9vr+1AVd5S+qJBxcA/PSTdRkegiH+hzHI8Q5++SXwwQcclZGSIjEkcRSczvO74Js9lYnuRr2B680XBCEoCEI3AI0B9GGMdQJwNoB2AHoDKAVwphcdYowtZ4y9xxh77/ffLfLsECqsktcRyYGdeS+8QHIDO+Vk3Hef+DevB1d2QBTSHP/KIhw0yvdpsIrduhW4+271uWAd/4d+7TN15NKtW9XX4+rk8r0o5DPPwQXxR+XNwUWkDn6/pZDJ01GXPLg8x0fzIkFEcfQo8OOPxtevvl60hqnbbE/ScNll6vl/61bg8sv5+2QHszlVm7Mi+MST9ip3yI5fRSEUKSfqF3/7pi9atfKwQloLEES9wev9oS0vGDMF1zdfO2rbS+6+G8jjifLOoQAym5fbF2/j8uBqXfQbR2fEr/Wbb4A1/xzFVd6M+pSDS+jjXUxgOx5cR0MZnrVLxBajoU34zH7u0njx6fe52HbQPDMT7Ru8w5adhSAIuwG8CGCcIAjbpTCERwDcBTGvFgD8DKBGcVtj6ZzReW0btwuC0EsQhF4VFeZ5dgg19FqkITZj8Bvxdtjn8kk+IY9yHbXIKJ+qchWrCIM4dGh00U2XmCwcdu827UubNupjIyWd3UX1rl0chQ4csCwSEhjXwpoUXClIZqbl7+bl73r2+fU7SXwsoAUjQUQIbwyzsoD//tesoFhy2L9PNylkeJvMhx8CZ55pfN02Ci2YpQeXYl4OvfCSq2Y/3FJi2SYAoK4O334rKjyI+sOuI5x5NnlhjPIxEEQ9wcsQhYBof3riibyNmyi4/m2SpsDoHs6P0rZ8h+E15TLh7rthbGirZPt2yyJmy4/irENAKGS5p5vd8j2pMot8OiHBKxFOlEd6OvPOTxZ5Tm2QKLlLOA8eEWe8euESCXn/eYKlgosxVsEYK5b+zgEwGsCXUl4tMMYYgKkAPpVueQLAcUykH4A9giBsB/AsgDGMsRLGWAmAMdI5wiOcuJIT8WfiNSN0lUB6CB4taMILztDWKJ2yLsFQZFHw8MMGzlqKkzffJODDD8W/f9Zp4utvTYaaPXvkP0dxGDp5Ff6glCdcf4a4SDELQxcSfLIgzUz4JS+0aPJKHXw+SyGTlyEK/3wVKbgIgogdt30xFG+8ab3p50nWvHat+ri6WmXrol+vy+mPZWXi1Vet69LmrAi6HKf/2M85NtfWYtMm4KOdTVy1R6QWsVjV0UqRIOoH7/7WzNP6bBl8mhho/uuHrvLfFraoMlx7awBtC3/hKielv7SGQzhgtp8TBIYnnrE2agyHslt0eUfTcp7ro+qJgmvGlQM8q8vtus8pNRM6J6Td+oKRrE2oS+0wnoLgYQK6eg7Pm18F4EXG2McA3oWYg+vfAO5jjH0C4BMA5QAukso/BeB7AN8C+AuA1QAgCMIfAC6U6ngXwAXSOYKoV2zZUZCwMLG8wvgqQa2l0h1vFSvoNTe2x6ZNZu2aNKao/PnnrftmFi7QczJFoZZZbGZuDy7yJEk9QiHrHFz0uyY1tFYkCDVXXMMRq5jjxXnsMfUxhwG1J+/j11LUJFMPLm2IQpfLhrDQyzIBfZ1J3lIibfHaUnz3wUzyPiaIesLe2hxP67NlCGqiOLn4wwny3716mSXt3GujQZEPfq02vObIe5VDq2c2pn67twJTFhXjQF22aR3hvE73Pmfcf0A0EvIqXKPAKWcg1Px2qDDRXSAIIgEErAoIgvAxgO4650cYlBcArDG4dieAO232keCEQranI9Y/Ks+aJ7zY5RUuCbv3WBfSrKDNFtSmhkc2rZLY4UMAPA4HY4T0hZklKg2ByRl9zb5eLz19iDgRDMY1RCHhPSQkJAg1PFMujweXkzXnypX27zHCbOx9YVs7ILRXUdbd/Btuq90F88wLBoMkh6qHeL2+Kzlukqf1EQRB6MK5B//uO5MJ/4kngAULAJivC66/PhI60ZP8uHv3AoWSEoPLg8v42o7DBVxN8noFfbG9GF24SloT0nikEwQRTarv98ke1ztI4koQKU7AUk2tCFHIOfhzbdY1q1htbixlfo+QmcDHroIrnlOAtBquzNlnWCSksBQ3szoz8wIjkpRQCILFNEkKLoIgUgkeQxeBo9DWrfbb/uAD+/c4RqFpcjv/BoOceTsFAc8956opIgUhwQRBEClHKGS5Bz/lFOtq2MIFuPde6e/33zMs94Qipdf8Vu8YluMWVPOEfQGAw4ft1WsC757vwqd6uG5L3TApuAgCMJFRepXDJEFQiELvSO0ngSDSHK/HOVPFlaIxvQXcunXAAw/olweAQ4eAb7+NHI8Zo2zXpFMefcjrrwf27/ekKplwerCcgHHYITkUksXnkL97mrxSB44NRapbDPFQnHkg0V1wDL1tBKGGS07C+eLsM7b9iDmWY68qRKG77Q537mpB4FIOEukFGboQBJEscE9Bb75pGQbm2mv5qvrsM+mPt982LKNMz5AXMM7VMPlZ3UBQ0fz2W+Rvs4WNtJn3YmZ+5ZfWcphkM7xcBggCw1fbKdweQZgh+DjCrycxtHPwDlJwpRFx9WwhUoqws5XpgkuxUNTbrF9xhfjPiCefBFq31r9mKlCzswoUBFOh1ldf8VfFw8dfZISbNeTDnU0AQUCncY3x+A/dDMuRACQF4ZAE14ff1UzBm+w4iuVPEGnMk89Yu33zhCgEYmOvEdrrjaXKVTdm4eBBqU6XhghHa/mMQ1koSDYs9ZD6YOhCEESKwDsJ/fabZ5N4WM5wJGS8vlDq0rxIqyEok2uafY5QCIcOAYtfWuK6zf9s7YjZszn65uE64EBdpnV4ZIKo51TcckGiu+AKWkd6Bym40gjmRTxjIql44/0sT+rhClFYGxFiGwntnS5I3ebguvlm6Q+LFWOvXvx94oI3JIAg4LNvMs2rEni0jERSwZFMpT4ouAiCqF/c91I1mje3Lse7Jjh6lL/tw3c/YF0I1lPp6efn4403xL/denBt25nNN3XT/F4voXUAQRDJgvDFl1zlXvuiTOVV5QUrXl1geE3pCe3FmBkKKuZbs/26IODnn103ZwtBYJ4o8QD+vF8EQaQuggDaQ3gEjZgEUQ9g+8Vk63uP5pgUiqzEjBRhysVaOHyfFaEQ8OSzGeYFLHjwQfH/3X+EsOtIHl/DXiBIubWsrCo4JiQSgKQeZ97Q2LJMfbC4SWUvqPrw+xCE12z5NRdbtliX4xXgZGUBH33EV7Z280+etKmk7YMX2r9JwUl/64Vnn+UoSHky6iU0zxAEkSwc2X2Iq9zgDUNw54P5luVOPtm6rvC8bLZHDyu4gkFg874y60rDLtgGLPnbiMhBMIge5T/oFxSEuMuNvWyPIjQRRPojgHJweQUpuAiiHsAOi4vdSWZxrZUKLgNrIaVgqdmQGq62X3nFogCHQOjll8X/L/0zV5P81JqHXmO8wiqeUHYkAEk5Lr+vkWWZ+qC4TOXlVn34fQgiUYTXBMr8m0Yo02WYwatQ51Eq3HYbX5s87NzJUSgBgjQi8dA8QxBEstBielfusjzbXMt9vIK8wGHDa+GgGHfcAdz51SDryt57z/Tyc19FjBBvvDsfH+xoql/Q40l51y5PqyMIgkhpY+JkgxRcaQS9FoQR4WfjSNDEk0oBT4jC3Xv5kjkOH25RwMbCM2QdMc4eVqtU2YPLAi4PLhpu05H6INhKZet0snwkiNizeLF1GV7PKy9lURbyMVsowysZwQTy4KqPkGCCIIhk4dARvv05wDcv8+SfDHNOj6cMr9XVivPjH39wVmbRue17I95nV99RaFzQY8OTHwwcxVRNetdcSu/BCILgg6QV3kES1zSCBHmEEX/s8eOtt8zL3PdoJHyh1zm4TJFWnVx1ey082rbN9DITBGzfDvzjO4vkXnZCFJJ5d1pRLxRc9MgSBGECjwDsjjv46nr86/bmBfbtA8C3GfRyzcKRkhEIhWi8rIeQhz5BEKmIz8exf+XYejMG/O9/wFnvTDcsU2ceNCUaG5o10z5yTd7e4uU6oD7sM4nY0yiPXA+TmZBAIQq9ghRcBFEP+Otj5ejf37zMaRdErJ+MFlNvv23D8oqTYC2/0spz42iL7Lo7d/tx6aXAG7+2Mq+HY0I6GvJTeo40pD5Y1qXyZ0zlvhNEqsAjh/rHP/jqWvLMbPMCQQ5XKom4K7hoc1ovIQEkQRCpCM/I9b//8dVlFcb3629tih1tTOBWCq5UzsFFHsKEF9DyNLkheYV3kIIrjYiJdw2RUFoX/Rq3tn793S+npDKzRv37371t98AB/knX88nZbx7GYcoZbXDDDRz1cHTs+k9H4owzOPtFpAz1QbC143BBortAEEQSEp76fCyO1htCuG3rsbeuDti925tmX3ie4zOSFUtakZ9hnE9GCQkgCYJIRXzMOw8uHt55B9j6E+dm3oZgy3QbnhAPLu+8Mb7fV+FJPUT9Zl9tdqK7QJhA60jvIAUXQSQx8ba2CC9izfJF8eShsENdXQKtSrKyvKmHU6j14YfeNEckD14puPpVfu9JPQRBEPHGt3NH/BqzsWD48UegpMSbZp9+hmPL5HGuDyKxNMjZy1WOQhQSBJGKeGkczVNX377ATTdzFKyrs9U5Mx3WZ1/6sWcPd1WeIAAQ/vPf+DZKECbsq82xLkQkDAEgNzuPIAUXQSQp558P/Li/NK5thsdVM6G9HQXX1q3WZR5+rthTD67fvt7NVxngnVUX5wcQBP6yRGpgpgy2A+OwoiQIgkg2vvwSeP6TSk/qsmMpnpThPMiDK63gtaitD57cBEGkHzbSXJnCmMeRhL78kqvC/fvF/0Mh47LfbA7guuu86hgnAhB67Y04N0oQRKoigHJweUUg0R0gvINxpdwmUoVNmwAgI65tRjy4jBeKv/3GX19NjXWZzT9ncsuEeMb9Bm2L+SoD4q7gItKPQ8FMT+oJhsjehCCI1EIQgNde866+a6/lKBQK4fBh4L9b23vXsEe0XTUi0V0gPIR3ZUehZQiCSEW8lB15uRXetiMTS86yFiIUFIjtmjVde1SIexqP7/4owc7DefFtlCCIlIVEid5BErU0gjwACLfweHBddZW3bWYEQjY8uDx+xj1ScB0+wFePIACf/5jvSZtEekEhjmIDzYoEEUM8Dsl3zz08bYbw4IPAvd/0965hgtDh5wPFXOXqBPN8rgRBEMmIVx5cgLeprlpPaIX/vF3EXT504JDhtWBdYnYCH+7ksPIlCIIA0KbIhgcBYQopuAiCkAl7UsUz9E+XFgc8DVFoC48SiuV0aM5VThCAjn8iC28iGvLgIggi1RBq6zyNyvfxx9Zl9uxh2MuXGokgXHE0FN8oCnZokr8z0V0gCCLF8dKDy8sc3QcP2dsTmYaJDYXi7sEFeBfCnqjflGfvS3QXiDjw5Iw7gYqKRHcjLaAQhQRByCQifURl8dHEpa3w0tyMg1deiWtzRApBHlyxgb5VgogdQ3vtxw97SuLa5imX0AaQIDJ9HkqTPSbLX4sjweRVDhIEIbLozIae1MMO7kdtbWIilIjKK+O2hWBihAyUm5HwAgqBXE847jigRYtE9yItIAVXGkHDH+GWYBD4z3+As96ZHr9GOUMcffYZsGu3x095nBVcBGHEnqM5ie5CWkIhCgkidny0Jb7KLbtkBoI4Wkfh44j0I56RFuxCuSQIon7BDuxHgwbJGYI/FIx/Di4AOBIkMSvhHppOCcIeNPKmEWOeOjnRXSDSgK++inODO3dyeXB16gQAmZ42feOjVZ7WRxBO2bKvPNFdIAiCSCv8QhAAKbiI9IO8AwiCSCZy4myn17HkZ3y2q5FlOSEYQtu2ceiQhvXvTot/o0TaQXM9QdiDgsMSBJFQhPfeT5i1559uSMCKlyAIgiCImMMY2b4SRLxJ5txlBEF4D0P8PTe5vVhDIbTL3hLTvhBErEhmb22CSEZIwUUQhEyiFE2JaDfTVxv/RgmCIAiCiAsH67IS3QWCiAkk9CIIIlk4eNiHH36Ib5uf76rmKicEQxCeeTbGvSGI2EA5uAjCHqTgIghCBU+c6mee8a49AYwrRCFBEIRdgiFa5hAEQRDpBYU1JggiWbjy3kpMnpzoXugjhATKY0SkLPTsEoQ9SPJDEISMEOKbRseP97hdmr0JgogBG9+bmuguEARBEARBOCbAgtj8/h+J7gZBpBw1+bsS3QWCcAx5axOEPUjBRRBEhARomp7YPwLr1sW9WVowEGlPjv9oortAEARBEARBuIAxAc2akjUgQdil9JOXKcwbQRBEPSGQ6A4QBJE8CMEQ4q33vual7sBLcW0SAMU0JtIfEoUQBEEQBEGkD9W5u7DtYEnM2ynLOYCdh/Ji3g5BxJKgwFAb8ie6GwThiP212YnuAkGkFOTBRRBEhFCIKwdXOhAkBReR5pCXIkEQBEEQRHpQVwdMa/ZR1Pnzp/3P03buvkvA1yuu9rROgkgEPR/diAUvHp/obhAEQRBxgBRcBEHIiB5c9QOBhj8izaHcdgRBEARBEOmBX8cRxcdCOG/6JwCATF+tJ+0EMhgy/PVnT0gQBEEQROpDEl6CICKEaDNDEARBmNO/9e+J7gJBEB7hZ0HdvwmCSCKkEBtm3vk3DnwAX8w613VTRUVA5tIFrushCIIgCMKC+hJCKw6QgosgiAi//ELjK0GkCSGBpngiNrxx3n8S3QWCIDyiUd5u+W8/I0Mngkg2GARDAZggQHbZ9zH3wak3n34TjjkGyOrQEj9+ssdlbQRBEARBEPGBpF8EQcgIt9ya6C4QBOERdQIlVSZiR+O8P1CevS/R3SAIwgXC1degOpeE2ASR0kjKLx9zH5u6WckeWZdWU+O6OoIgCIIgiLhACi6CICKEQintwVWYcSjRXSAIgqgXfP3hQTw6mowiCCJdWNvxxUR3gSAIC7QqLOW+jUEAKy+La38IgiAIgiCSAVJwEQQh4z6wRWLZW5uT6C4QBEHUC3JaN0amvy7R3SCSnExfbaK7QHByw+AHE90FgiCM4LBA9MKDy26bBEEQBEEQyUAg0R0gCCJ56PDQ+ah9LNG9IAiCIAgiHTgaykh0Fwhexo0Dbk90JwiCsIOg0GmJObg8VnIRBEEQBBE7yJjEM0jBRRCEzK4jecCRRPeCIAiCSAVoOU4QBEEQsUUp+xIEnZnXJwbl8bFQ7BomCIIgCIJIYihEYbpQSyFgCIIgCIIgCIJwAAmzCSJ5MXg/GYtcy/bX0WtMEARBEES9hBRc6UJtLY5t/n6ie0EQBEEQRD2BQiERBEEQRPzQzrqCACAkem5l+2tpXiYIgiAIol5CCi6CIAiCIIgUZduCMxLdBYIgUhhZHE6uHwSRvJi9n8OGAQDyB3aNX5sEQRAEQRBJBCm40gVBIHstgiAIgqhnVOXujX+jUlZ7kn0RROoTFGg7SBBeUJBxKDENFxfj9dcEDN4whOZlgiAIgiDqJbSjIQiCIAiCIAiCqG8IAmpDfvFvH20LCcIph49fg/4Nvo9J3UeCGfLfgqDWYIUVWgMGMu+VW6QtIwiCIAgiRaCdTLogCFELXrc0yNmD1R1e8rROgiAIgiDSA8r1QRApDmOoC9F2kCDcEvP50EDZJAjqa677IdC8ThAEQRBE6kE7mnRBECDAWwVXr4ofcNOg+z2tkyAIgiAID+nePf5tklU3QaQN+2uzEt0Fgkg5dv71n+oTVVWeG5uGyfLXyn97vd8nCIIgCIJIB0jBRRhCy2eCIAiCSHJat45bU2Mbf4bgspVAhhguiTGy9CaIVOOa/g9iY/cn5ePSrIPICxwGQMJzguCltKA26lwsZsRs/1HcOug+7vKe2p/EyZjlzSl/xpSmH8WlLYIgCIJIKshw1DNIwZUuCILni2ofC3lcI0EQBEEQnhLHRbGPheBjQmK8xgiC8IRRjb7Ayg6voFnBDgDA8xOvwZZ56xPcK4JIbfw+AUJNE8/rvXHgA1jc9s2kFIDdN+KvnqQzaF30m7i2IAiCIIj6BoUG9gxScKURXodFSL5lNEEQ8WL7gjNwepf/JLobBEFYEUehFwOA886TvcZonUAQqQeDgEadS7F57gage3eUZB1EefYBIBCgvHoEwYtm7vUxAUJuvvfNaN5J3TfUoxxc387ZoP5cFuuLea3eRbviXxy3F8bPQjTyEARBEAThikCiO0B4RAw8uBhZaRNEvaUg4zCy/HWJ7gZBEEkEYwJQWZnobhAE4ZaTTgJ++AFo0waoqwO+/RZo25ZCFBIELz61nXCsbE1kzyazBpQKLhf9aFm4A0Ce6lzzgt+xeV+F80o5CPhCMctfRhAEQRBJTRJ6aKcq5MGVLui4NY5q9LmrKn0Q6GUjiHoK5dYhCEILAzyzFCcIwh39Kr/HrBbv2b6PMQDZ2UDbtuLBqFHAypW05icIOwSi7YRjEWVIXo/7/VIbFu+p205IOTalxvH+9Etwi0kOMC9CC/pZCKE4Krh+WXA6RlR/Gbf2CIIgCIKIPaTgSiO0C97/HnOdq/pIwE0Q9RsKB0wQRBQkBCeIpGB2y/dwbo9/276PFNME4QGdO6uPBSEm6+aavF3iHzoKNT1cv98LF6oOS7IOoix7v2FxL3J2+1kIoTh6jzbI3UdyDoIgCIJIM0jBlS4IgudhRUiERRD1F3r/CSK1yPTVxrwNreCMdF0EkTg8F6bTC00Q/DRrpj5mzPN38tDSNRjR6CtgwQJDBZcXHlQy55wDNGwYdVpvZHhv2sVAx45ixBeX+FkIQSF2YqkMn3HIdWH5ipi1SxB26d/gu0R3gSAIImUhBVca4fU+19MFM0EQulTl7k7KzRUrLEh0FwiC4EESSucE4qDg0qwLPt9VFfM2CYIwxolOijwXCMIDdF4+rVOXU4ozD+CcCe8jOyApZgYPlq8dCaoVXVGhg30eKqpNBpieExoAJ5zgibzAxwRkmSih2hT9gq9nn+O4/qMnrIGfBfUvcnrGEUQ8eGPK5YnuAkEQRMpCCi7CEAphQhCxJ2nfsxh4hRIEETuaF+yIeRvaEWH7wSIAQHXurpi3TRCEGs/naPLgIgjnMIZrrwV+3XiD66r6Vm7BBZPe1b3292/7qY6jQgS6cSPTjgFS3i9dhgwBcnM9UXAxBlw74EGc3e1p3euFmYfRuug3V21ox0s5tcO0aa7qJQiCIAgiOSAFV7ogCNFJZydMcFWlnoXnwaVrXdVJEERqwCAkq+qNIAgNvx93Kk7p/HzM22FMUAnAxtV8BgDYMm895rZ8J+btEwShxomRTG3IRGhNEIQp1bm7cOyxiFYGMQa/H8gKGHsi2WLIEPH/3r1Ni0V1w83q3Y6CS8KTiC9VVWhWsBOX9HlMvw0IQLt27tshCIIgiCTh+Lav4ZvZGxPdjbSCFFzpguC9MFpvwRqPEEgEUe/o2zfRPYiCCe6TRhMEEQd8PpRnH4Dfg0TvVmj9O8qyxMTzfiagzkb+jPbF25IyNCtBpBIMApCVZfu+w3UZMegNQdQPJjT5FA89ZHydeZWIq1Ur4MorgeOPV52e3uwDdXuxNEdjDJg40bSNKA8yJ6xaZXrZ7wsBRUW2qy3MOIR+ld9HX+jUSXX43DHX4MROsTcSIghLGjdOdA8IgogThZmH0arodyBEcjevIAUXYQgFKiGI2EMRgQiCcEVxcdya0gq5wiF/fEwgrxCCiDMBn7MNcXXeHo97QhD1B18c4hvI3tIFBVEbhRaF6nDEPo1ntef7ikmTVIcntHsVj46+JdK+y++juKAOaNDAtIzTNs7u/jTenHoZMHSo+oLmSxrZ6Es0yt3tqA2C8JQePRLdA4Ig4oS8r/bKMIawVnAxxrIZY+8wxv7HGPuMMbZJOt+cMfY2Y+xbxtg/GGOZ0vks6fhb6XozRV1nS+e/YoyNjdmnqo/EIF+OJxZZBEGkJOTBRRApQk4OsHGjblhhr9GGKKwLRZaRpOAiiPjiZyHb3hvC8hVolLdb/yJj0eHOCYJQYRiST5obY51bV1s/g0bB5WWIQh16lP+Iac0/ko/thCgslby+lex6+RPxj/HjDe9zGgYxP3BE/EPnc8k1kmCRSCYSYPn68Khb494mQRAKaB7yDB4PriMARgiC0BVANwDjGGP9AFwG4BpBEFoB2AUg7D9/PIBd0vlrpHJgjHUAMAdARwDjANzMGCNpiIdEbUpdTpC0xSWI+gtjOmMKQRDJB2NATU18mtIcl2fvR/8G3wGwp+DSLk+mNP3IXccIop5Rk/cHBkjvHkEQ8WFOy3cwr1Uk3+RnM8/HX4fcG9c+6KT+SgxSSCVe5dO/xt6If429ybjA1KnAuHG6l5yEYP7k2E1Y0eEVICMD6NYtSn4YCu9xcnMBwHNDYYJIFWa0+DDRXSCIeolsnJpBocO9wlLBJYiEzW0ypH8CgBEAHpbO3wNgqvT3FOkY0vWRjDEmnX9AEIQjgiBsBvAtgD5efAgC+jm43Cq48vOiT44Z46pOgiBSgwAL0maPIAgVWi+x7EAd3phyOQCbCi7FiuXi3o/h4dG3edNBgqgn/Dj/bHQr3+p5vfHwBCWIVOX+kXdgcNW38nGHku1oVrBTPAjvu+Nsia0N3+dq+89xc5avTvxD+py8yqfcwFFk+oPmhQIB3dNOPLg6lW5Dhi8EXHcdkBct0wiF84aWlwOLFtmunyDShjiGOicIQkOrVkCHDonuRdrAlYOLMeZnjH0E4DcA/wXwHYDdgiBIKxxsBdBI+rsRgJ8AQLq+B0CZ8rzOPYRbYrCY9nXpZF2IIAj3JGMirjht0DN9tehVsSUubREEETvchCgM+EL4bs4GD3tDEPWAtWvl5cOqDi9hfqu3XVdJntsEYcGaNZG/zzsvslyWXkYvls/asINKMsMKJol4pBRQdiU7UCv+kZMjtc//gZ1+N64+o19cm6i+TkFAUFAoJAcMiENmNYJIUvqQzwFBJIwzzpDnKcI9XAouQRCCgiB0A9AYotdVu1h1iDG2nDH2HmPsvd9//z1WzaQlXm5Kx9V8imUruB4PgiBcEOtY/U54Y8plcVO69WuwGS9OvDoubREE4Y7N+8oNr5kpuMY2/gwbuj8lHzMAGDYMgOgtCgAtCnd40UWCqB906AB07iwfrmj/KtoU/equzmQ0tiGIZMLnA7p0iRxXV0dFOzgajK2g6sxuz+L1yZfJx4wB8czBBUCcv5s2BeA8P5YMh9bLdRuM6YQoVMs5nMpRijIPojp3l9OeEYSaRMzDNPcTBJEm2NJgCIKwG8CLAPoDKGaMhf3IGwP4Wfr7ZwA1ACBdLwKwU3le5x5lG7cLgtBLEIReFRUVdrpXv9ELUeiC6/r/A/37e1ghQRDGJNnCsn+D73U3g7GAQUhKJR9BpAxxDIf03u/NDK91Ld2K3HBCdw3dy3/Enzq+IB8zFrFOD/hib31OEGlH+L2nxNQEITOh5hPsXnxS7BrQWa/LuZykayXZh3Bpn0e5q5zW7EMw8M+D+ceOw4CG30e6lIg19Ny58ufNM5j3tXCFPzUYz5zk4AIArFpleCmoUWjxhGXvXbEZWf5a1bmN3Z/C+9MvcdY/gkgGfGTUThCJwE9hwT3HcjRjjFUwxoqlv3MAjAbwBURF17FSsUUAHpf+fkI6hnT9BUEQBOn8HMZYFmOsOYDWACJZWgnvcSE0N7w1yQTxBJEW1GMBFY0oBJEGZGTglsH/h98Wnm5YxGj5kOGzyMlBEIQhYeG2LSF39+4GldGMTKQ2Gb4gijIPx7VNrWLE7xNwVrdnue9/dMytqMlXewAxwPh9nDABaNFCPmxVqI54E+scXNoSYxp/jo+P3cRVfbviXzCrxXu2u+XIg6thQ6BbN8PLWg8uHt6Z9meUZe1XnfOzEBnqEakNKbgIIiFkawwmCPfwjGZVAF5kjH0M4F0A/xUE4d8AzgRwKmPsW4g5tu6Qyt8BoEw6fyqAswBAEITPADwI4HMAzwBYIwgCSTW8QhC4LI94oYUaQcSXWS3eQ1HmwUR3I0KcBF2U0J4gXCJtTGOROyc/w0JQOGqU+P/IkfAxAZn+OvPyEso1RsAXBM47D2jf3mk3CYLgpXt34PjjDS/TnEykMrF8fv8z4VouD65w+F07OJ2/n51wLZ6feI13IQodwBjQuXSbdTkABZlH8I9Rf7HdhmMPLrlxBkEj9ory4HKcH4zGTCLFIeMWgkgIpODyHksFlyAIHwuC0F0QhC6CIHQSBOEC6fz3giD0EQShlSAIMwVBOCKdPywdt5Kuf6+o62JBEFoKgtBWEISnY/ex6iGC4Klwiza4BBFf/jHqLxha9XWiuxE3BjT4Vv7baLwp1VhJEgQRe5rk78S3tz2PPYtPwqCGkfc0238UT467QV14xgxgwwZgyhRg7FhTMxul0E25l87wBYHqamDePI8+AUHUP7jX7c2bAxkZhpdjoSgniHgRy6d3dOMvdM/Lb154YhswAPjTn1y1pQzja0ZR5iHkZ2hCBMY4KkSBleGLAVyKN4O+O1IiWXwPsmLSzvd1zDFRp/wsRPoBwjs8epiE5Svi3iZBxIqXJl6J+0b81ZO6CjMOyX9PbvoRdp+buFzwWZyGoQQ/5I+aRni5nLWa5rqW/WRt2U0QROqyerWpV2iGz92E/PqUKwAYjzWDG36DAQ2+N7hKEISMxxvTbH8tWlYdRKEmzNOWuesxocmn6sI+H9Ckifj/9OnwtWllu73ybHeKbFubeIJIM0guRRARfCykCt/nOYFA1KkopTBj4rxoA603kW2UHlwxDFG4ee56HNPkExcN6GChYFrf7Slc0vsx7uoCLIjgspWWYde0IQq5IuEwphOSkvKIEikOhSgkkhBlONhGebtRlHnIpDQfT467Ac8dc4187GNCQpVMAQrT7zk0mqULHltrGVpZSQvf7mU/Yd+Sk1ReGPGmOneXdSGCSHKU26SksZzeuBFo1cpUaX5ipxewfcEZtqu+uPdjYpgXCcb0t5SvTL4STfN32q6fIAh3GFlK81hQM5/+GMag9jAJrzG+nn0OJjX52H4nCYJQ4cnqgbRlRIpjmrvKC1q3jjqlu4q12QfdfFAcdXi+bzBoMzxnNyvY6e7r9ftt37Kg9dtoX/ILfxO+kLheUbal7bQgRJSKkgzFqSTFzwQgP9/h3QShIRHzMGPo3+C7+LfrMb8sMM4DTKQW70y9BDNbvC8f+wzkRXbJ9NWpcj8netXrp6hpnkMKrjRC14LMIVa3+qRY2GEvjHhzSufn8L9jL0xI2wThOR06JLoHcaNn+Q+qMC9mIUu8zCtIEAQfRu8kl4KL85UNF2td9Bv8PlrcEwRBEO4xC9VZknUAgxt+47zyXr2AJUuiTru2MW3dOsqDy/bqV+GBEfc82gbhGFe2fxkjGynW+wzA2WcD5eW2qrebNsEX/vwDByoriSoX5cHFoyxkLKqcj4XAMqI9+wgiZfD58OqkK/DYmJsT3RNXNMjdl+guEB7RtOAP1UzmZyFP5jbG1NOBgMTadrnOL0lEQQqudEEQPA5RaO7BlQwJVUn0TaQNbdqIXlPJAsdM7+n717697unEjzIEkQJ4vDJnTL9Ot/M+q662LHN2t6dx/4i/4LOZ57tqiyDqC+H1etyF2gSRhPhM3oM/dXwRr0y+0nnlxxwD5OVFnR5c9S1O6vQ8EHQYaqikBEE9D65kZf589XGnTsDYsVHFNvZ4Cu2KNJ5XNTXAwoW2mpN/U05Not8XAtasAYYPNy3nOixkuD3OfGkEEVemTuUvyxj8PoGE7URSoTQm8Er27NN5xkMJjKCUDDL1dCOFVlOEKYIQ7e3gyoPL/GUz20DEC9rME2lFTU2iexBBGjusrBmdvIPascVAlg4gsQsOgkgZvFZwQdCNx+9jIeCUU5xXrBBOMabThiDgkj6PYU6r99ChZLvzdgiiHvHLwULvKiMhLZHiMBNlg5M16/UDHrDMOV2SdRDXDnhQrYCx+S7pKrgcvo+xzMGFqipgyBC+qpzs03WUWIwBWCHm2nxv2sXoVbHFtAo/CwHNm1t+FtmDSw5RyPfFaXvoZyHbbnwfH7sJNXl/2LqHqF/4mcvcPHaeSWk9btdbMhXJDRyR/17c5g1c1ueRBPaGMIJBQEgxJvtZyJMlKkP03JTB6tAkf6f7d84meYHD6G0xnxH2IQVXOuNGwWVxPdHaZlJuEelIMoTkK8vaH1Mhl1ZpZraYTpqcZASRAng1fvgUAkLlXOvzMaBdO8f1Rs3b2lwcTuM8DR3q7D6CSAPalfwKgHRTBAF4H93jT51eRJbPIgF9OApBr17OGmEsyqCLd58rgAHnn++s3RgTbdBm8Jks5n4fCwE9egCMoWfFj5bfjU9PyakzQDry4NKpx0norM6l20iSQejDGOpOWIn13Z82LLKs3at4dfLlnrZZX2hWEMnvPaz6K8xv/U4Ce0MYwZgQ5cHlSYhCnToCfgE/zFvvum677Fx0GrqX/xT3dtMdUnClC4IQLQzWscDmxWoASYZFWT2ai4l0J0ke5rO6PY2vZp/L3R9WWmK7jbqwxeSiRWIdRgUrK5NC4UcQSY/J+/rpsefbrw4CkJ0ddd5N6BI/CyHTr0nqG9DkrHCq4EqS8ZMgEkHAJ76Xnhh+0bvEzd+G35noLhA6mHpwxerxXrVK9G4ePdpxY65CFFZVqQ5djQWG351get1o/lYWL8064KxLNsvzrlVO7/JfnNzpOfmYawmi8/nDYzBBeILPB7/PfAdclHkI7Yt/MSkBIGTjufT5LEN6pgP/m3EBVrZ/RT7W8+YhkgMG9bzoVfhMMQeXEH2SSBtIwZVGRA3PjGHz3PV4b9rFmNL0I1t1Gb7n0gV5wOnd21a9XkGCbyIdSfQSqzDjMMqy+TagTheEdSE/MGUKUFkJAPh+XzmtKwiCE4YQfllwOnf5jqUOQ/317Al07ao6xeW5bfAy+1kI2f5aRTGBy4OrOJNvPFrT4UW0LvqVqyxBJBMvTbwSp3X5j+P7Ex1Rob6yoPXbie4CoYNZCH0GAWjc2Hadco1Gi9WsLNG72YVhqZchuRMisNULLajoy4Gla9FxQXf5WlXubu6q5c/D+f0GWIhLYLm200u4ZsBD8rET2cLK9i9jbOPPuPYxNwy4HwtbvykeDB1KsgzCMVzCfrtGY3PmpP0TWZR5KGrNVB/CMqYqQa0Hlwe/FYMAZjCXxHtMJuVqbCAFV7qgN4n5fGhWsBM9K37EY2NvsVWd2Qs3oeYTTGv2kdxGomA50RbmBJHKJDrnlKy4lt7rWEz0tSE/MGGCPGZ9s6eBYVma9glCDWNAg9x90Sc9xMcEICMDWL06+rxD/L4QAn5FDi4IQH6+6T2hZStQlbuHq/4bBz2ALqVbHfePIBLF0OpvcHHvx/HFrHMd3R9ehnslpKF5l0hlzDy4AAAFBbbrjIfQy58VsC4UDzxcTzAI8rohd9xQ0bhNYtuCM9GnYjNXPT4r7zEFl/V5BK9P0QndZnavnIOLD+XzsKH7UyjOOsR139pOL0XCozHm2GmdSE/O6PIsHh9zE5diims9bseDq55AyqzUgZWWyHKpO4bcg9KsA2mngKXnMTaQgitd0AtR6CYHl8kL9+T4GzGhyafiQVmZ4zYIglATchOixANkBVduLgDrNbaTIaY2pPbaMNvgJlrhRxApgccKLqaoU1mzKwVXVC4OAAMHAn37ysnjtesJ7o9FLqBEipPlr0PT/D8c3Rt2hKS3AGiQw6cQJ9IX5fwVdc3hHBYPRcRH//Ph8Yl/kY/dCL5i2l8bIQoZUxjM6hi06HZTpx7ZW0Vq22yv1Ln0Z7Qo3GF4XRdpEK3T7E900Xx+xgCccw53U8FQpO/kwUUoGdTwW0xu9jHXCxwUfGBFheaFBAF5gcO2+pDyHiVDhti+hd7C5IT5ffJ4ubTdG55t9ZgmlxcDoiOKxAkGABs3JqTtdIYUXGlE1JSUkeE4ITzXGDJxIjBggKP63cIgkEyLSAuUm9hELyuDAgPWrOGycHX6/rULxwwPb1TBDBfUUUp7gqjnaN8Vn0cxyVVtGAjW3Ci4AiwYfdLvB5YuFZPHA2KYp8suA664AmjRQuqL4yYJIqVwKlgKvyMNc/fwCUzNhGeMpaywR1i+AoMbfpvobhAJxtKDK34d4S87ZgxatQLalvwWuZ3zVr3X2ZXixGMPLrO+8LbkD+e4ysgAYG78Jndf+zm0x8ovThJuXvnxaFii8bxieblA48bc43edEBGk0h6H0KWBcWSTMFzPmyBg1+JTcFKn5z3oVIpgEVmKIXrMTHmlXprCWHRuylj8VgIAtG/veb08sHZtgZqahLSdzpCCK10QDBaRp5ziyMvKMLavcoE4aVJCQxQSRNogvVf/2drR02qXtn3NlgA8GPIBXbpwl7e70BCWr0D38p9U58w2qmTdSBDmXNL7MXn80JVbz5hhu07DFJwuNhZhAdVNA/9PrMtICFlcDBQWyjn6uEgGYSZBuMTpY5yZIWBxmzdQlGnPUtsIEvUQqYzZa+ToFcvOjqxFPQ8HHEKjRpG8YE7mWD3Dk4R4cOkVLcjHgbpMk6qkjmo6LCxfgXE1n8rHsgf4mDFAWZnptyR/hwb9DLAgDh+/RjwYMUI0pmnVCgBQG7IfJtLWI+HzoS5EchPCgiZNgJUrDS+/NPFKrO/+tPWzl5eHDF+IFDgW0BYieanTKrg8+K2UuSFlxowBjjkm7mFj6d2MDTTL1gdOPx2oqrJ1S4ZPx9oa0DF7SNysQIMCQZhzx9C/oSiTLzY8EG0pE1MFE2PoXvYjRjf6wjjiSexaJ4iUZ1m7V3Fmt2fleTmk9746mKOVyielNxdvVf834q/RdUr/r+74surYE4IG6xWCSAXKy13d7vMBdw27h/+GJJHmVGTvxRV9H050N4g0g8EbD66K7L14ZdIVQJs2MfO0mVDzKbZujdTtpNu6Cq4YrN0rsvebFzAIUTi/1TtY0f5l3VvMeqkM5Scb3ZaVARdeyBe+PKBRVinWNFn+OvHc7NnAmWfaNtZ1/P36/ZF9FiMpBqFG9f537274fAxs+B0KeQxamjYFJk605dmdJMsD53B8AGUReguTFwZBNQ9g1CjP6lUfQ/Ti7d/fcZ0ndnoeJ7R71X5fUv19S1JIwZUu6OXgClNaCowfb6s6QwVXmzbi/1L4IIIgPCBJZrhXfmkd1/Y+mHEx/tz3n4bXKXwHQajRfSPCCi69vBROFFxuNnyMYW6rd6NOv/1bc+d1WtG1KwAaL4gUpVDMo+H4vbMbSSHeJqoGNM7bjdO7/jfR3SDSDLMQhXbesaLMQxhcJYa8jNUbE5VDx8G76bkHl8F3N7Dhd/hj0Smma4rL+jyC9sXbVFUNq/4atw7+PwMFmF58RfGc0uBOFVWGMdMcXIwJYm5PKZyhSUHz65z3hQ+5cqb5/eTBRbgmPI4ZyurkggyYNIlUOAoYhGhb/ZLihPSFMIcxRBS5kyYBxx7LPYczmEcvUg7jgt5Jm/y5zz/RpfRn2/clifgv7aBZNl0QBNsT2KhGn6NTif7LGPAZDAwFBcC11wJnnCEeJ9KDiwYFgrDEzob+3d+aqY7Ncu7EIw8eLcoJggNpt+aV3NoXgxwm81q9Ey2I57G05BkFysvFdQlBpColJc7v9fJdZQxBITHJtr2A1gyE2fxl51WRyzoNxW/R2PDqL7HqsmbqW5SJ7zlzXuqFIY+FggsASrIOGt8nCFjX7T/IDdRad0Q67wt/XuV3LLUfVBisaNMm6Hqrh28HxNyehteNQxhe1Osxw/ss6+PB71eF3KIw7IQunGNObkateQF5b8DxnCVIqJbps/gMcYC8uJITBgG3DLoPm+euB/LzxRyxLnJBy/Uynd/c5fMf8AVxNJS6a+d0gxRc9ZiHR9+ma2kNmFiFMAbk5CRF7i2akIh0INHPcfOC33Fx78cAAOf1/LfqWkz7ptj4GrVDHhkEocbM4tlM6GOrDbEhZzdrwwIBeHnSlZjU9GPVusFyk1Jrc9Obk2OvPEEkC4wBF1wAluvwGfZyPU6WY/xkZSW6B4QODPDknZCVL0Y5ri07Yn7PTQPvtxtcRRefzvrZJyQgbG9YmK44pfoKQqGovxe1eRPTm32g/r2kv3MUijK/xujWLESh4b5FDlGo1zmR3MBRw3oN27PzaFRVqTzTksSZlkgSGAQxTFpRkXk56ZkzM0J11Yc44vf6M1i8kLqX6UVMWgoyj6BZwU71/MGB9nfO8NUZlvUpwhoLDlUjfibgSNDCa5iIG4nXUhDeYBai0IAMX9BwkegzSPzqllM7/xePjr7F0zoJgnBOadZBrO/+NAD7C1tHsrDzzhP/5xhbzIQKtw3+Oz6feZ6DDkT4/bhTMbuFvpKfIJIRBgGYODFyomVLMSE1vFMIq/Ju2b25Q4eoU70qtohrCqWCy2qsmTDBbssyKw3yfRBE0pKZKeaXcYLHHlzxIhYipbgaxUybFr+2CG4YBKCwECvav6zyDtjY/UnRk5gT2TNq6NC4yT+9ysFVnnsQ70272IMeKQh3rrKS/xajt1wSVi5r/xoeGXObuI7R8Lfhd+KNKZcB0AjBGePLwWXZOechCvXGGbOwiTInnIA6svInDGBMABYvti4HThmdrHROXg8uPQ/UeMIY2fUkK6rfRdo/8v5U2rlnUpOPcWbXZ+Rrut7SLh4EHxNwQrvXcOdQG/lwiZhBCq40wu76O8MXRFHmIXs3aV9+m4NB59Kf0aP8R3ttcnaFIAj7KIXZ5Zok0mZeFo7cxEeNAqqrxb85rHG0m9jwQvjXhafjhHavqSw8nVCefSDKMpSovwjLV6BPxWbTMp1Lt8apNyYoJ7916+SFf3gTe2jpGjTI2RNdlrd6hTWbapPAU9ewYWLidlV9Enas6hs3Bq65xtHG/JbB/4dNPZ/AvFZv87dHEAmG18CkffE2/G/GBZETXnpwxTE6g+fW5y1bUsivNEGevxzAmACMG4dbxz2OTH/Ek+mCXk+IluCc+JgAnH8+0LFjTJ4rvTW0cgzQ88zSQ/c9Ki9HzwqHe22jef6cc4AhQ4C5c/Wv6+bYUhwo1/xKD5Urr5TzEAIA/KICqDz7ANoXbxdPaUMUmnlwGV3Srml0CnItlzSfM1xfMCPb+t6SElXfabwi3PLz/HW65xvl7ZLn8/d3NIlnl2zh+TrA4iXWjiVA4iPpEPqofhfJsMLpb1WSdVDO+a6de716Bitz9mFJ2zc8qYtwBym40gUHIRT8TMCqDi+LsU1N6k1G8jKOJLoLBOEd0oJserMP4t502BJx24IzsKz9a6prvBtsbpQLT4W1utF6VBvPuEPxdgjLV6AyZ19MQjMQhNlT9ftxp+L2wX+PW1/0MNu7hQUn2YE6V4ITwxwmPNIfnw/o1cuyGFfv/H7HS5Bzez6JxW3edHYzQSQxjAFdyn5Wn5BQvi/ti7fhpE7P26s8jgouBojhmFIVsrKLGZ/PPB8PjbrN0b0+JojCsE2bVMoExqBWpPDUU1wMIDaegVY18q5xdcstWWLbI7Qsaz9mtnjPuECjRsD8+WIubhOU35WhgUyTJsCiRcCZZ0bXN2IE0KyZ6pRWKG22vuEWgLrwwFSFYQwruOYuML3nlyffj7qXwrATSri9UxiASy8FAFTn6RsDzGz+vvz3m79Ge0ga4ZXStTJnL1c5z98Ai3lZLwULTeXJCWMANmwQ55327SPneO5V/L2h+1M4s9uz0XVLKEMUOkYnPD+ROEjBlS44kAL5mICAL2Ru0ebxqC/AmwSBuYGjZHFBpB2eW/ONGsVdY1Xu3qiNstXr7+odLC8HTj8duDg6jMqQqq8BAD3KfwKDsYcVjQFEPCnIOIJADDz+svy1OKvb0/w3GLyYX+5uKP/tNITPk+NuwP0j/qrIV6F4xxxqm7TvqZ8F0an0Z4PSasjCmagv2F5uh5VRCqWUMg/flf0ewdK2rzurMw4wJgB5ea7rqcrdjS9mnSuGDjMos6bDi67bIeJDaNkKlGYfRLbfvof+9GYfYFm7iKFWlALhoou469JVHNmZA516T5u1r4NuiK+yMmDVKltt3zXsHjw46i+e7vsZA5AteTa1bau+OGAA0KJF9E25ucDZZwOIzP/aLpl7cHF8b5dcAlRVRd/Ls6fQdIb5xONgZXR9ShqUiTlgSKlFGKF9/jJ1lDEAgDZtgNJSw3f13B7/xjUDHpKvdyrhW297xTPjr8M/OdOReCETBIDjWr+JncedYjl+BYy+UyI5adJE9By2MS+VZB1Ah5Jt8vEJ7V5D66Lf5GMGqOZyMphOP0jBlUaYLpo0i/KyrP0GBTUToXazG0czh0Z5u3BVv4d0r2X7jZMFEkQqoXylPJ9iXb6vnsS5V6IVDrRuLSq6FP1kCOHlSVcBjOHsbk+j9oTV8ga+jifGve0u0WaT4CPA+DZGOf6jaCiFWPpx3ll4cNRtWN3hJcPyQxp+g0v7PMZVd6avzvC9fmRzd/lv+d21KbDuW7kZjfN361/s3l3/PC+SRfm+JSfhxn825rqF6/2UkwOry3o+fhFELJDmRdsGG+FxQDEeBEM+TRGbdfp8OKPLsyjJOmDvvgTCIKBd8a+GuXEA4MZBD6gEHt40TONLLHDztV7e7xF0L/9JPlYqfJGfD2RlcdflZyHF3CLhYVQTq/fdcjyQ+mIYacHii2xd9CuKMg/Kx/J86fQH6Nw5ugsQgAsvFI3Z2rSxXWVQ731mDOf0eApzWvLnUwvfJ/YJhuui49q8hbuG3m1ej0HEnLIyoF1ra9mE8l4SqxJmnNL5Obw6+XLjApZWqFJ0mOYfetgrc35beBrG1nyObM4UAl4pF3IDR1GafdByz6PrwUVvYlKi97vw/FZ/LDrV1HmDQVC9Ol7k4HK8NqB1ZEwgBVe6IAi2hucdi04zvPbJTHVs/7enXmrsauzIQo2PSU0+xqldntO9lu2vpTGBIDxALx51GKsxxat3UHfB4vOBMcDvExBcJlqiHg2SCziROHxM4FpcHzz+T+hQIuaOqMnfhZktPkBHj4Srmb6g4YtXqwjp6VS5I1s36rWxcCFfJXr3hnNzDRyInPPPRKAtR8gUxtQCSr0iCBl+H/H2/upW9iPO7/mvuLZJuOeZ8ddhcZvExM3/cta5XPkodQkLcpQGIm4fecZweb9HcW6PJ11WxNGUF2FhCMIEN/oopeBVnkucvqs6WEUBthT8hhVcDgXEX88+F1ObfSQfuzYI6dQJOE0tW2AQxLCQrVs7qjJkYNS2pO0buLDXE7rXrD6FmdK/JOsgFrfVD208t+U72L/kTzrtifXl5ABfvKkfLk6J/D0LAv44km9Znqg/aMeEvIyj6FbmIu+vXi5di7JudfgVOcYG9HroKZxcYeXBpZeDizx4khL9OZLvtzIzjtTWy4wa4+QfI28Hgg6f4yRNBZTqkIIrjYiJJ4Lfjz6VWxxbiNnhwl6P474Rf7Usd1GvxzC75Xs0KBBph9b62jUc72fAFzSMqX9ej3/jvWnRIQQBMYdfLJC7rNP3IyG1giscGsQNNIrUb8Y0/gxtin6xLCcsXwHGbCyuo47tP6vNCnaIiaIV+JixQufsbs/IfxsJhqww3WxmcyRR14E1qQHmzBHHmeOOA2pqOG9kltO8ygpP863He4lwUqcXsKL9K/FtlHBNx5JtKE2Qx1Lb4l9lobnt5XQ45n/Ys7JFi+hcNXb3BXEMUQjAWwWXSYhCALhr6D04rwcpoNOB4dVf4qd5Z0adVz1NjKnnXZvPmnLfK88ldiYVB++S8gnmWWuc0+PfaGqWZsAC5fjg2oMLAFq18nRNbeY1b/T9WAnz8x3m8M701yEv4ygAYNeRSGhVu2Gr5e/ZQ2Upkb648i6S3uVEhGDjGUXennopOnlk/Me7N9O+r+S9lby4+W2Uz7yVJ5gc5tfh3Der5fvWhYi4QgqudMGpJGfgQPPr0gJdrt3lZtTHQoYDVuui39AsP7JQN/pEazu9iJKsgzQpEemD9F71rtwSg6rN35OALwSMHat7rSDziOyJEnUfZ7g2FQbjlO67nJurOpzR/H3MaqFYRJxxhv32CULDP8fcgr6Vmz2pa0LNJ/hj0SkA7AmWGROABg2izm+euwG9K7aozvmYsddDA4WntZXnkx4lWQeQE857ogznA+DK1d/brk+Fw7WDlWJQJYTUlI23BxdZgaYm/hjk1bMFp6BzfM0n6hOjRkkXxov5dv70J5WnKIN+KC1Twmt+xaN859B78PwxV9urhwPP306TEIUA0KdyS1xDNRGxI8MXROP83fjg3MfQVmGgolpLap8Hm/tkpphrT+r0gv08boEARjf6HCOqv9SvX2/dq8wLwhGi8IJe/0KG0fjFMecqW5DXDAHvIiW41V+XZh/Ez/PXAYMHu2+TMcxo/j5O7/Jf40Lr1hnWq+f5AZhHwdBDHpPJSJfQYFuuZbWnlvYVybo27eOhzEN+oy3eKz1lH/mRJwcndnoehRmHTMtw/VZt25oqdbXvmWe/vxNPZYpiEBNIwZUu2AxRKLNwobmSq6TEaY908WninirRxkQ1Ilwky1+H2wf/zbO+EUTCkB78c3o8hQ+m8yfB9oIAC5lamhotuHnDtang3dCVlwOLFqlOPTz6dlzd/yGgqAi44AKgVSt7bevRtKn7OoiUxs8EQ8GFHkZT1MOjbsX9I/+Kkiwxp4X2Sbd8Vxo14m/fIOwIcy7LAyDGLTeag0+bYyNJtTYJuwtjFCtFITNS+FVWJsQEhuXmJKBVwg2WguRYY5GDa3LTj/DutEvw1PgbIyf//GegStXMAAAApaxJREFUpRTmMxAAunUDcnMxq+X7CC5bqa2aH521AIOA8mx7YYd48EroZub1Has2idhjppwNzwvdm/6h+k21j4ATQ48wSgHZ5f0exY2DHpDzSHLBGP7zTjHOUnhWqy/rCFoV3Y2l4v2xMTcD0Hpw+YD27YGMDFd1K383V4aol14KnHIKqtctAGbOjLps+5dlDA+Pvh1ndP2PcZmWLYGRI3UvyYqszEz1eZ9aqWrWPuCdwTCRfuiPCQ7foUsuAfJET0OuNU4insfGjT1bfcljjYPNDxnMJwfXDXgQOYGj8rFuiEKe3yovL7rc1Knyn4eCGdh+sEjRjke//8knA4358kvLkKFDTCAFVxrhyFqZMTFwtJaw98TYseLGWVneBVqNeoeSbeYJNHUID1qMAcvav+aqP06ItwKCSG+iLUk8nOx4QxTGa2HLMZEzCMCZZwKVlfoFLrtMYZXmRZdok1mf8bMQrhnwID6beT4wfLh54fXrDS/V5O9CYeZhR30wewJ1n08DhfTUZh/hibE3AVCEKHTykvTrZ/+eGGE1YmT5dZK6l5QAp5ziOEyjU3yanEKdS7di+wLyNE12EhG+R4WFB1fT/D/Qq+IH9UmNh7OS8OfRfTeskKM2iM/x8navYFSjL+zXw4HbvAdh/Cwkhj+dM8fWPqhZwQ5MavI/5w2TgDo28AqICgqAyZOj18wLFsh/usrBpaz3oouAjRtN3ztdqqttrehtrf/txO/VMKWZ+Nwr35eQwEQBnZvnWhNW2NUrUloKtGsHdOkCZGVFN2XwXdnJN6SL4gNU50ZCRAd8IaBDB2DgQNw++G9yuFO7IQrXdnwJZ3R5Vvx8BKFA76k0fYUmTDC+plDG21njeBX5gPc99GoPzhiAqiqgb19n9xJJhxt5WJ1i/8cyAmKkg06dAABHghmq6CjyXM/xIHQq+RnC8hXRFwYMEI3NGjZ03GfCO0jBlS44WcV37Kh/b1YWcNJJkb81nhQqGEOP8h/Qo/wH4zIKtF4fZVkHMKjhd1JVOh4hOl4aiZ6Iupf/lNgOEOmHl0nibWLlwWWEn4U866utenQKfz9nPW4d9HdvOkOkPWd3exovTbwSgPgcF2UeFkNxanN2KJk6FWja1Fqowhiwdq39TaLBS1Ab8gMAXpx4FQB1Di6t1VmWvw6Tmn4MQG25PrTqK/Rv8B1/X5YsUXTLwdpC68HldJxgzDLxfX4gkk9D7unkyUBpadwN48QcbZHjDF8QDXP3Gt9AJAUJV3DF6EHNDRzVH4fM2tO8rLcNuQ+N83d72zG5Kfefe1qzD3Fej3+L1uo6YV7N6FSyDU+Muxl+J+GWAbK8jRUGHjRKGBPE37ykJNpjSBHOTjAQc8xq8Z5lG6pwwBUV/LkjNRgZWujObIpnKh5bgU6lEc9sq7mWF+XnTYRnBNd4zqHg+s+Ea/HomFvl0wFfUJSNZGZiWfvXMK35RwA0IQo5FjtDrpiEy9ftiISYJQgJ7vclPE4MHQqceGJ0PUx7nLxzlaceXOefr5sreG3HF/HtnA0etUTEC10PLs5p6tweT2JF+5d1r4UEhuxAnZzH0877oVt26lRg/nzuOjQVOruPMIUUXGmErb1Wu3ZizH49Tj4ZaNaMu6r3p1+CGwc+wFXWz0Kuwx/IyQBd1kMQyYinG0Kfz7S+pvk7MLXZR6bvkt7cu7zdKziuzVvc3eha9hP2Lj6Ra5AKCn7uCT/82QoyDzuzVifqJW2KfkWnUjFXjepRKy+3vNcwxG74/M03A50727dK1FT89PjrAQBHQmI+jGHVX0cVM/f8ivz90qSr0b5YP5desmOmKOxVsQWX931EbzdveW+iOHqCwbqLSBh+Fkrss6KMksALxxzZKG+3faG1Qb2xEJB5sda5ot/DWNruDflYW+Owqq9U1rbKT3egTgw1Vrdstet+EB7i8wHXXce3p9UYQaieU5N35B+j/mLdDYUxiRuMPode7iZbzblVsA4fjjO7PotaaU4Kh1d2BVO/1bGU3RnVbZgTi9eQT/pecwJHVeGr/ZoxMPz12/6MbduKwlCSYRAaHIVk4/AEjPvqxiKPX17gMB4fI0ab8MxjjBm/kH4WQqbP2JCFQhQmlm5lP+I7TgUk72/Vs+JHrOn4ku618JohbLxl5wnUNaBo3Vr1zD886laUZ+/jq5AMpWICKbjSBcFmMumePSOLKzsvlwchCpWDkyp2Om8Xwn+0aeOqL47p0SMx7RLpCzPYoHtQr9m48NbUy8Qwn336iBO0Tpx7PdZ3fxo1+busC4a7AQEFmUesC2rhsOR1SzIKwYnYkumvUwt+160DxowRrSGNsJgnGQSga9doIcqECfZjcgMYV/MZAOBIUL1RZBCsBTXdukVZjcc7XJ8KFwt4M0Xhhu5PYWGbt+VjuaQ0nnplkc6LONqar2kyYphXhXCGjwlxf1ZkxowBJk3iK6sMvWOxFheWrzCeoznW8amy5VaFltEJd2S2ngomckwkzNGxwo9Ceo6DKo8h7/DKs9MoD5heaDvlOGTZuo0QhUvavK6+Nm0aMGMGGBP78cuC0zG+5lOrFrnwLAeXGVdcYfjxDX835bqJM0Sh8rMENJ6etscPstQnAFze9xH8U8qBZwlXYnrrMj3Kf+Sux/Ubm5cHbNpk2q3irEOY3EyMNhGPNAEMAmryd+GrWedEX3OST5zwlCx/HVoU7og679Xvoq1HO3bbmet58tnNaPEhd31EbKDVfbogCOaThNlCWBBQk/eH8XXGjDcNOoK2woxDmNfqbZ3CBoOIZH2S7a/lEjLIA9X8+XI81VgwruZT/GPk7TGrnyBklAqueDYLAZg3T1R2n356dMiMRo3075PeY88WhUYr4VmzRGtHq9thLsgCxLjJBAEAVbl71HNNy5bAjBmWVoeASd4HJgCrI54AcqmmTcXcHU5o1AgV2fs17cMwRKES+UrHjkDHjqrPW5hxiLsL8rrChXDG8TjBOO802JjHW3nNmKD6mnwsFAkFTSQtDAlUcHXrZjnuyO+5wXxshtN3IB4KcQa4tl7lHpaqqqQ2FcJrt785CaxjCu+zq/Lg8lBQ6ZWCy+g50/M0Ohr081esk5dKj0Z5u3DnsHvVJ7t3V3kQNcjd59njHBeD9MJC1An635VXHlyaP+HXKCR1FVw2w703yd+Jhjl7bN1DpDbl2fvRrvgX3WtR49dll4FlZbpuc3TjL/TzBsWC4cMto2EoQ7p7tfbimc/bFP/m6D4ithiN2fohCm2EE9Q516rwV1VoXrGcuTsuQ6R/lusCadLgNoCgdWRMIAUXAQD4cf7ZaGyi5DJ8ncMJqRUFVnd8CX8d8jf94iyksXAWxHCJEDX4UQOCzkpZHgtyc0WhZAx4fMxNeGT0rZjV8v2Y1E8QRnhqScSYaX2MwdxrZf16sMqK6PvsdsNmeRV5eZG/+/TR1Mv3Xc1u8S4+mnGh7jWy26pf7Fp0MoZXf21oVW31TNn2sNQmZjKq06DMvcPvwvYFZwAAzuz6DM7u/nREwWXSprxp9PuBE0+U59ZjmnyMnMBR486sXas6dLT59HDBHhZyvjxJzJk2r9XbCC5bydV+3HNwaRrVhjRSbpKI5GBJm9eRE+AzrkooTZpwGXtocfQOrFiBoNYTykE18UArmNB+XLnfHToAZ5+tutaldGtM+0bEB8N3123EERjPy3YwUtTpCfW0HtumLFokRjI5/XTTYqZrGg6jHruovJ5i6LFs9LsbCiD9CoWYhQfXxb0fQ8/yH9Gj/Ec5lFpA83uF9Ix/fD5k+03WVxq+mnUuHhsb7c1D+YLqJ1H7i6IisDatrW6KXYdcYCp7kP/wTuJRF5YfOvg+yIMrsSjnCSsPYCdPu/KR+GbOuWiiiW5gFt7ytsF/x+/HReZYQwOKMCHxOveegkIUxgRScKULgiAPAw1y9uDeYXfKLxkA8wFfulYnJbM3ymehey2s4FINSMbounZKdWb7a1EbsrZei8dENLnZx8gN1OpfpMGI8BClRwYuuMDjyl0ufAMBoKQkulrpHeSt3vYbo6x49mzRC+KUU4Djj9fUK5azWnBoPStUdSS7YJPwlOIs0XvJ6Hd36vGgvUtbv+ViVxDwztRLok7nZxxBw9y9AIA/9/0nVnV4RaHgMnizMjIgQL3ZC7f/73E3Gfdh2TKgc2d1v12ItvMzDiu7YB+Fom5I1Tfy6SgBlkEDcffg0oQoDGhi/iepHKJec+ewexHwhVw9567gfSg2bJCF0YJgcp/GW1T3HbBaw/boER8PLg88ZGSFgM8Hq5DMytzCP847C9cOeNBd47QXSCyS8YgqRKHZ62Txe63q8BJWd3hJPvbOg0v/vN66VRnKuyrXwrOnQQPgtNPE8OJ6cOz7cdFFaiMyD1CufWI55xlZyLsOUcgY1nd/GjmBWvh9ghxKLUcjE9Bt3+/HrkWn4Iq+D5v2PUx2oC5KcQYALXXCdRHpASlT1AoFr9YawRBnPV26qA59JvIBIj4o50Ivl1VR75rBD200Z7wz9RIsafs68gKRedly3SpFJaMQ2ImFvv00Iryx61z6s5iXQjlKmI0YYQFYeGOoMwCYWYqLbWvL67ennUiU9Wb56yIWGCYwJkRZYlpxXo9/2SpPEAmhQQOwfHebzRcnXoVTO/+XqyzPQltvPeDVxp+L4mLgxBNlT08l4QWEn5mLJ2ntSmjxSpEVOW/+TpgtdsP39q78Qe3lY7TrkkMUas4ffzxQUwNMnRp1i9M3VtdK2YpAAB8fuwkPehDiV6so1FVMGoQFeuu35q7btwNjUH1PfhZSHTMIlqFbiMTQsWR7orvgDTU1qrlS+d5PafoRnj/maq5qHviul6tubJO8Ts0IvxmmIdItEEz2LSqCQVWxvMCRmHqXEO4xm7OUv7ZhiEKL+VNL74ofcEGvJ+Rjn5WlNidGq1O9dXST/D8QWrYC383ZgPN7/ttdwzxzdkkJ0Lu3u3Y0xGt3oPUyDeM6RKFOuanNPsSUph9p2tepLxBAdqAOfSq3cHtsJ733MOE5xvsIvXP23yhtvrhEYKYIkMc+n8+z5z/I48HVo0eUoayPcnAlHHnMrqxUKTx1QxS6+a0MZOFGT0zvyh+i8ib7mGAeen7SJGD4cP7nmrSrMYEUXOmCXlJUzYvcseRn/dwb4US9JtYPgqasTEYGkKmOD8xgbA2hKxiXCucGjqr6YGRhz0pLI5aYHANDt7IfcX4v/o3C+9Mv4i5LEJ6gFYK6YECD73BFv0ewf8mfYjZxhheuyve5JOsAhlR9HVX2lM7P4eLej8ekH1V5omeLNjY+QVhRXXIIz4y/zrP6tK+ads588Pue5hVIHteCclmmDKkzfbp1J/r0ET04SkpwQa/HcVGvx+RLKit365oi3XJiheb3o3PpNlTm7LN/r4YXJl4te7at7vASlrV/NbqQViAlhyiMvweXclOjXe/4mACMGRPXPhF8rO7wEn6Yd1ZiO+GV6apiMFK+A/kZRzCi0VdcVWw7UBw5OPtsy3WJNu9uleR1at5Nsc4f55+tu3bgQTvOat95WcimCcXmydKIPLhiCk9EDwAagZjJbxKeJwxyV2k9cH0moYPtYDQPGRmKMQa0KNyBLH+d67YBg/le+bk8fo5VxkMxfEeMZBZcHlxmoRl1FFz/HHMrOpaqjSB0BZiZmcDKlRhS9Q1Cy1fh6Amr0KX0J+O2YKAoo3VC2mLXc9mJTCBDEz0Aa9ZwNOTRutkqhDoUn8nDEIVmRoTymDB+PJCd7VGLhFfIv0+TJoaGC04IT3PyUzZunPj/qFGqucnKaDtUFcl/64Ngng83JweYM4ffg4vWkTGBFFzpgiBEvyOaRdqnMy9Ax9Jt0fdKCiozDy7TGOdXX809IWo3EIwJgCDg9cmXoWPJtuiksYKAq/uJYUTC1nR29xt2rEMYQuhRbr4YJQjP8VDB5WMCfExAXsZRbdU6zXK0pZcHT/pfaSlZnbsbL0+6Kqrs6V3+gwlNPg03aNlcTd4f3C952ALbb2GBxUyu09Ii8ZRn70PnOOdDYQX5GFvzubgYtXMf5xOj9RD7aX+pSZ0Rnhp3PZ4ad714UKHIf1dSInpmTZ1qHaKQMZzT4yls6PG0vA5QzoN2nnlH74fUZnh8cTymMYb2Jb+gd+UPAICbBt2P4dU6gnA5F6h6DTOx6cem1bco+J27KzxlGRNUgoWAxoOrb+VmstZLUhgDSjIPJrobuvgUwiAZnvBjUAt9ZI+UkLVByLdzNuKvQ+4Fhg1ThfbTcna3p/HFrHNx34g7LeuM6qYHsy/X3qN1a1mwIYdXVrZtZo1r3riz+wguDtZlWhdizL5ATCcagFiV+vdsnLeL3+vHBCNvcV2hWgyeKeXnKs/eh6rc3eoCHOOBHeL1WhgJEA09uJRjpt9Eear8zRcsMCxWnr1f/0L37vKfGb6QpaCTJ3INkdy8OPEqvDAxev9rhNHc55W6J0qW1qUL0LWrJ3XzwpWDKzfXsxCFdSZG+owJwAkniLlMNfx3a3vy4Eow8v5UEGIbHrt1a+C664CZM1WntblcteRm1uHZCdcC4I9gxB0yk4gJ9O2nEeFFtPyiFhYqLpq8kH36ADBXYpkOOBkZ2uKmoR30JpIBDb8HY/ohB07p8jxennQl/j78TsP7zfA8DwdjGNjgW7QrTpOQNkRSYVf++c3sjcjyR2LDqzZ3jNlLWq3XHyH6XWYQgNWrVRO9UbflMpWVovWUCc8dcw0+mbmJu2/hui1zcHHXSCSCFgU78PGxF8a30VWrxATtp52mOm1lEGEY9chE2QSoc0iZMb7JZxjf5DOgRQtgzpzIhaZNxfdH8Q5xKag5rCnNcBQ+xCsljkU98lUDa+yWheZKqe/mbjS8VpJ1QPW3WVllf4qzD0NYvgKA5FkqfYY3p/wZL0y8GgiF8PbUSzGt2YeW9RH1AI53RZ5DHSi4lF4w8lkOgXZx1iEc3+51y+Y6l/6MdsW/WtZniEtpuHZ9r1vb6acDBQWqU6qx0+V41SBnj6v7CX0sBV1yfkmb3slDhgCTJ5tViW/nbMC1/R/0ZC4zmkO9CoFoiMYQ5s99HsX3czZg89wN6s8V9DacWbxyX7Yo3IGuZdEGqYYCSMZEy/3hw809uJQ5yQYPBlav1i3WqXQbtnOEYjVVcDVooC8IJUOYlKI48yAKpZyzbtANyWb1KNgxSrfbuAvMEgcwJoh7mnnzPAlRuL7bU1jd8WXD6z4IhqFYj4b8unIOIn7Ic7ggeJoPV3dfHvbgq6yMlFPMGVW5u3VDfI5p/AUA/nmb+3PQWB8TSMGVRoQtGQUwcQGvsCLSllFRVQVccQVemXQl3pp6qe6GM6ixjLbCX1Gme54xtTBaW1udQUiKIVXfoGn+TukemwouG5Mnb0z+16ZcgYdGuc8vQhAAXHlwtSpSC3G1r+ieo7mG9/ocWi2x4iKga1f4fRpvTL02wucvvBAoKjKtNy9wBEWZh/knfEGAsHwF5dJIccLPyOI2b6BZAV9y7XuG3YWFrd901mBmppir5rTTxP8VON1saZ9/7bxTrbWa1tKjh/p48WJRKHvllcA554gJ5SOVW3UmquxNg+7H21MvBYqLbW0f3AirwnfGdP0+d25UmOQwTfJ3ycomO5ze5T/4Y9Gp8jHvOKkdu/0sJAvSyrP3i7HcQyH0qdyCnMBR2/1S8tGMOCuE6wEJ2WfaUXDxEvZIqqxEqUJRK49RHgu0naL85E7DIlVk7wPOMg4tqX0nddcpGRnoV/m9rrDclFAIvy08DRu6P23vPoILXt2nUpDElYPL5wP69Ys6nacYkxvm7EV2wJsQgUYKDt15xak3oRWFhTiz27MoyDwihj5UGqaahVtyAHdoJpeUZB3ERzOiUwqYCiBnzlQbDukxcqTo8bJ8uXist7447jgAQMPcvZZjuJlnCdav1xeEktAzpWCMf61sVoo3LKsVbvJk630Os3X0l7PO1T1v9lkYBODUU4HSUk8UGhf3eRz9G3wvVR5dn/b7EFRzBpFInhp3Pe4adrd4kJdn6fnEvSc9/3z5T93h9MQTxRzvALJ8kbn+uzkb8aCJfJcBXIsTbk80igQQE0jBlS5oX5BZs3TfaMPXqLAQXcp+Rt/KLQYKLv4BRxuGUItPm3hV0c+jSmtTk/jk+gf68EyejaUk11aeIHKb55xDLs1ETHCyr7HyHjHCae6q8GKRZxFtx0o1ZFORrhyrTA3adfICDq3iy0VCxJ7wWH/XsHtEgSUHx7V5CzV5u5w1eKGxcsDSg8swtIjRDQrDE8MiAtCrF7BhQ+Rk+NkuKAAaN7bXJgB06iQq7yRP7sqcfehTuQXo2TPqE0xv9oFheBXH1pWLFzu7zwYCIIZQk2B6ni4GzGrxHnc7TsbJIVVfY1aL94GMDPyx6JSIIYL0e7gVZHQti29ITyJx2BZWDR8OrFwJrFuHLoMKcWipmH9DFqh7GJLMzTpYucZ3UouwfAUqcvYDzZvbbzv8R5MmwOTJeHPqZbisz6O266nI2R+d74TwBMu9m07+aO71s6bg5zPPw/TZGfLz7EZArMUohKJuG4sXi8oVr2nZMvL3jBlqY7Nhw0SZwQUXeNLUln3lntTjFNehobKyxJxFPaW8qXrj5cCB3NVFhYtTkp0NIaCjQNN5kE/p/Bz+MZIMa5MRu/Og0Th1WCfiipM5VveeGAnS2xp4cBsZrAPqsS8e8v1oBVeEloW/kzwvgQyp+gZN8neJThnHHONa4dmqUHoeq6rMC1ZUAPPm4dwe/8bycG5nnw85gVpTo2kv1wZE7CAFVxoRfuV0B2o7ySO1sw1jlkKuqFtMJotc/xFF1YLqZr9q0mNA//7mfeXYzSg180b8NP9sAJqBq7paP/cAY6LA0WbuFoIwxGUOLqfLAR7PBL3+KF+7a/o/aHE/P7Ii3YGCy7QPOguSlyZdLVVB9luJJlMxRtux/tWW7VL6E16ZdIX5TS1ayFZbejiN/619T7RPHNeTqowPz5H7w3SsWLtWVJhp3yUd743WRb/p57aCCwVX//6RfDdevGJLlkT+lnKoaAXL5/Z4EjcOvJ+rOjthlJVeMOZ1RtYzL0+6Cse1eQvIyEBJlpTb6dJLZU88x8pZot6h+6yavVQ+nygsKCgAVq5E9ogB0i0OPLis8v25pU4c+72ah+3kAwYgjpHSfMCV80lJOPefvbsITnjnYkMPLi0mIT7b9yuC74Slcng6L593o8+hKyjLyxND4g0eDCxa5K5ho887Zoy6XCAgei0pvcRd8MWsc3FBr8c9qcsUg5xC8nzrFRaRJ3T3IUuXisYs552HXuU/mObw1LU30Bnfu5f9iGnN3Yc2jnlozHqIjwncihozAbne/OVk/ezI6MJjr0HevVw8Qppqv/OwEvz96RfhnB5PUojCBCL/NitXArm5lgYKZs9VRfZefDMn4lHIE8Z/U69/RQwQ9ULXbtggj/Ezmr+PRW0cRo4xgrx1YwIpuNIFQZAFUbqThfRycs2/OslXrQTPvBNUSdYBZPqDandnxarg2Obv45NjN0lNCcCgQeJC0SGvT74MT46/gbu87MHVty+wfj3AGGpPWKVblsYkwguUeVoA/udqUMNv8PiYm8wLxciDS7n5P7nz8wCA/bVZumV5rV0YQmhWsFM6iEHs4m7ddE/HK18AYUymYjNmGs5F4qlx1wOIXugWZBzB4KpvzW+2eGYME9YLYWUN3/MsaLwR9TauU5p+ZNwvt8ntGdP/rOXlUU+8/A7o7NA9SfjrxkRz+XIx0XvfvsD06cApp8iX8jRh/rqX/4Q1HV/SrWZD96dw5PjVuKrfQ+ha9hMm1HwKANi24Ax0LPnZtAtDq/SVf1q0BjsAItb45eVAaanoVTdrFv7c91HsWXwSV71EjJk3L3Ft84QotEiAbUp2tiwIfuNXyYvDQ5Np7fzerexHbiUzA4ChQ8UuedQfbT3ab0wVNnX4cPFA2vMcCmbAFpq8XoS3mBlXKOdhw3J25tCwIleqyscEy5yxvNjy4Ap3YsECYMAAdw0rP5Pb9YQN2hX/ivE1n8W+oSVLgH798Mz46zCpyf8AKLw6vaRxY2DZMmCjdR5Omb59gSuuAKqr8cDIv+DL2fph3AB+h1q/z30wt0+O3YRFTkN7E4YwCNx7SbNIQV7kzirL2o+BDb+LLsc577teHkj9yTUJw62N+uQpuiEK1d95+E3qUf4TGNOJLEV4xosG0UHCaOdBq1HuaNB+9AvDZ0z7sEtrQfl0u3ai4al04uHRt4uGi0TSQwqudEHQTK7aAZ5nxpo8WYxLrrQil+qyM+kyJuhOML8tPE0MgagsC40Hl09Ap9JtAKRBz+eTBUROBNEdSrajKnevqCjTYWjVV/j9uEiuDT8LiUK0RYvkGOVRrqqk2SI8RLvY5V3s5QWOYnKzj80L6XkgKvDCgyvMEZ3QCoC0sJSEWIYIAkLLV6Emf5dxA7qdi5QzG+LojU1uMv11QEkJAD6rv/FNPosqe/vgv5nGzebFSqFj9CxpH9kuZVuR449s8PTm0MfG3mLckI6hiYysbDMuEsXGjcDUqcDAgcZvvY5nh5sE0J4oj3v2FK3ZGQPGjhU3HNLnDxhZqep8MX4WQqY/iFO7PIePZlyEhW3eBgBxfWBy+yfHbsJNnAJ7ANHSqi5dgNNPV4efHDkSGb4QCjOdJSWvUuRzK83yWJhX3zjnHHl+SniYGkHA34ffEXU6ajnv8L36cneVaKE6YoStPpmhXR+Pq/lMVDJzCOcFQAwjc/XVUdfmtXobj442GR9dwrKzIrl4JOF/JWd4XJnSUmDhQo97lp4cXLrW9j2jG3+Oac1MPFbCIQoVc7bKAMVsDjVCacgydar9+3UwskiP63iTa5yLNxZwhft3S04OMHgwxtZ8jsbhvUOs6NUrKl8rL36fIObfNEAI6TwHOgpJM4UBIHovWNGi8HduIy2CHztrcR8zTuOhJ9y3K3Lasei0SD4qDooyD6Ig45BpHwCgUd4uZPv5c8d2LduKn+ev070WEiIGeJ6FfJs71/CS9hNp93mMAaFl9vP1EtYMM4gOEkY1VzBmuQe3o+a3LGmg4IrCJOoLkZyQgiuNCAuizBbNZpbaOOYY0SJKZza19uDSnhCiklLKVlXatg0sy2ThuwvLM3ngNNikZ/nrUJ6tTMINcWPuZGNEEA7wM2ceXJablI0bgepqDGxg7NHCtbDUeXfkMUa6dmzz9zG75ftiWE9tGxCsLeS1QuFYeHDF4n7CEzJ9QaB3bwDmcdu1KL29upZtRXXeHtd9cWojq513bxn0f/hj0SlyyCOlUPqMLs/i1cmXK+5VMHiwqBThWFB3K/uJv4M1NaJFutncpqPgcrP1dKMc4yFgJESz+V6bGRnkBI7C7xOPh1nk7fvlYJFuiGe0bu2ZgPHqfg9i6/yzAADbF5yBP3V80ZN66y0ZNr12Ysz81u9EndN6tWrXDLa4/nrRm5AXaUwwWm8EmHrMkMP8VVbytxEIRCntWhTswLTmH/HXIWGl/NPdH0lj4qjGX+Lw8WvsNWhgPEeoyQnU2r6nZeEOPDrmVstyNw/8P5zV7WkAmtBcjOHuYXdhdYeXom/Svj+aNSiP8Rcv4TXFG1MuQyNFaNq4Lj/HjgU6dxZzS8WBbmUc4aI9JNZrDVNc7leMPLiaK8IafjD9Ikxu+rGhfOe6AQ/g05nWOdR8ebmu838S0YgeXHyYff+OIia4DOk/q8X72LvkZNHbGwYK+VGjsHX+Wbiy3yO2uma0JxMEJsv2eN/ci3s/hpGNvtC/WFkZycer68Gl8RLSjhdCdJ5uIj7EI6cVtzGJUc7shQvtrWkhelISiYMUXOmCIkShLpmZUjFnI3jQLEmqBjstMABo2lRxInK3WVJIvfJ62B04lVYlhsQ6JwFRr3DqwWW6AV+6VBRoM4bXplyB+0b8NapIcNlKZPqdJUeX3yvpXXho9O24uv9DkaTMemXNUC68mzXTj4OsR6dO4v/t25sKtvwspL+490V/i+XZ+3DDAGuPjePbvhafPANpTpfSnzCn5bvyZscwRKAOSsttq6cs238UW+aebR2i0CJEotH7qRUABxbNR/bw/vL8lheI5J7sWrYVg/RCiABiaKI1ayz7KSxf4SxUAmPRIQrDXdeRtITs5sVTYCefmi0EAWd0eRZdyrZy32I2rmq9UJS/pTxCjBqFFydFe5oo+W5vRbQHvMcwFhlTG+bupU25V5x3XmLa5fgBtWsEV94RvMZbYQV769amxeTuz5mDhjl70Kv8B+6uhBRhXJX7l8v6PIKVHV7hq+TEE1WH2j2OkWJO9bUrDrL81jl7ieRiabs3sLrDywDU4Y7BGBa1eQuTm/5PPjZEmvs8zRspEV5T9G/wvTondOPG3jWih/Qh/CwE5OeLeTnDIXNjDGMQw0WPGhXbhqTFiyehlJ3i0iBWd+/StCm+mHW+nOO4+9x2ouePwXPpZwJXbi0GAeNrPjM1fCTsw5jALV978sdOuvNSw5w96FJqvaY9qdPz3mvHw4Z1iOG6XUEIEVnbP0b9BQ+M/IvlPas7vGTfy1pCu2biCYVPxAfV3owj+pjZe6a9PVx3VCSuMHr5FYcMid4tlpUBF1wghvvmnNO+nH0uXlMYshLxhd7wNCK8SBIUE4dM9+5Au3aRl9bm5PiXIffinmF3GbetGHBMk1sOGhQ9YA0eDMyfD1x4IbAu4s4sC8YzM4G2bQ0HtaVtX8PYxvrxvrWCeC3y2fHjsbL9y+ImiVPBRRBe0LroN0ceXE/91Fn8o0cP9WRcXi7GfwciSdB13h3+3FgmHlxadBYjtq1zzjqL/0tYvFgMM7RsmamCP9NIaKXT34rsfVjb6SXLpntXbMH8VtHW9oQ9/jPhOsxq+b5uuCErlMow+RmfMkW3rI8JaFrwh+Wz5T7LgcSgQaKySmpvQ4+n8Omx58t9SRjMRNXjcYhCwxCCHnB5v0eRa+QVoPMbm/3sdwy5Fxf3fkw+fvj7HvLfcp7CwkLLPh3b4n1gxQqgY0fLsvIY7RSpPwm1XE8Hwg9GdTVYzx7mZWONgYW11vvF9vjhZM16zjmi8qhPH/Oqw6NJTg62L1wnh/7k6pZB/1Z3fBmN8nZbVzB/vuW7ZvTJjRRcRGqgncXCx6b7T7PfOfzuhUMUemjAqHxfHxt7Mx6efK94cNJJnrVhhqGnc6yZM0f0HIsDdgyjkg3tHD5t1F6gc2dk9esOf9tW4sljjzWtg/d5ZQyY2+pdvDYlft519QGfjRxci9vo50DbvnAdWhX9rntNybUDHrTVNysEQNyrSIalumtKD/N2Dq36Cuf3/Jc8Hrcu+s0yOgIgKhEv6v24o9DF2vdjb22OuoCHn4+wh960nOGrE6OA6RhdVuUaR2oxGgcNjcKaNwcmTQJOPjlybv58fXkzY8Dq1cDMmQBEI1OzEPHl2QdQknXQ8DoRW0jBlS5oPbi0I0YgAJxySlTiey4YwwntXhetxQ1DFGrV5jrlmjcXJ9EGDdTnfT5gyBDR/bNFC1FABI1ySpFYXtvOHUP/JgqWdJAFAxyT1y2D/w+X9HmM+7thvtRdUBPJwSOjb8Xdw+5RnbO9sdY+28pjDxNLM0USVvkV4XhXuD6PchFjZ2zKzRUTxUth4IwIW/UKy1eoQyoJ0VZ3ZgKSHuU/4E8dXwAA/HrIWuBNWKMyZACngmv9egDqcIYNcqT8Ay6taa3yHBg9nlZPbW6gFh1LtwNQfGYL7whDXG7GtPny5Pk7Jyeq7MhGX6J98TZH7eRZfJeO4R0jFGsN3XFICmnSrXwrJjaJ5DNsV/yrmOsL9kJVlWfvBwoKgBkzrAsvWSIaHjll1Spg1ixScKU6ymdZ573+YPpFOK3Lf1Xn/HYVXE7Gi/x8UXkkRyzQhzEBuOIKR0oiv8Kq1ml0CS1WnzTcTS8VGF71neBHa8gZNkzRE2QZCZ5Xtn8Z/SqlXDXSGjRc1kud56KlftmSu3PpNgz9q5S3jcNowgv8PhchTd3QqFHc2k2IB9f8+er/rTBYm4ZyIvuX1R1ewqP/LRS/txNOQKib2ujCLIIAzzdNkWdiA2NA26JfMIDDM85qj8GFk729IOCCXo+jUJFvSzytfnLM9mC6nk8VFQCA3hWb8fKkKy3f+U09/4VFJvJEIxiAFoUGoYttRnMa1PBb9b6GFFxJhZlzQvuSX6JS4BgRvt3Qg4sxYOJEoH17J910FhI7qhJ69mIBKbjSBSFiPWKegyu2PD3+eqzt+KL+5JuVJQ4ma9bIyVr9JolXtYkHdQeScFgrM3fjcBgzM2wq/AjCC5oX7EB+xhHVOd7H65we/xb/MArgDniaS04pVJPHGEkpEbnA8MO8szCq0efyKS5rc96QhCaYLTSUHlyq3tj0OGtZ+DuuH/gPAECn0m20WfQAOVTHiBFAx454YuzN1uEq8vKAm27CrJbvYX6rtyEsX4HmhTvFawbPvPxbWbxgx7V+C/kZh+18BHX9RjRrJv/pYyHg5puBadMAOAg5ZvbOc3A4qM47JACioljKg6bkkj6P4fNZmxy107xgB1bp5T9xi9HmvmtXcSyRlFM4/XRuJaJyUz+8OmJNyustc2DpWrQs3CEeSLkMTGFMXBPZRB6y6uqAkSO5rYYJA5J8Pde9/KcoDy5TLxUTYhGWqjDjsGNBvXLcU75lXs6r2lBQ4fcnKhThtdd61ibhEZrwk4YMHiwbu3C/zj4fbhn8f3h50pV4a+qlEQVXDJZ0mYvmYuBxLeXjuI3Z0pfhZT4xJ+3Hg4R4cA0ZAtx4I5/HNmCs4Dpmkvy3duzjXeoxQNdAKapcck93KQuDgNLsg3idwzPOx6mMlLEalBjDjObvY1zNp5ZVndPjKWT51euJqPB9ZgouvWuDBwMAKrL3Y0jVN5Z9sGMgq7rPZh4lJdp1/KSmH0f2NfPmkZIh0axdK/7PGHpXbMaQht/Ix3YwKm2o4DKA9w01fWxW8CnhaFCODaTgSiPClrxcL6adF4rDUiT8ko+r+QzFWYfkhVyGMt54uM0GDYDjjgMAZPsNQgxZXJPhEeCvXWv9eZX1cFrGxFu43aLA2nWdSC1shf9TsH3BGTinx5PigXaGVT7r4RCFLjbU4f4o47vLTRx/fCTxppS4vkn+LtVigktAPHcuUF0NrFzpuJ9mC40MX1AuoPouGjaMKmvWX+VGoHvZj/Y7SUQhC1+ys4ETT0TXsq0YWvW1YflMnzQvBAIY0/gL/H3EnZoKLcZvi7ngzG7P4sWJxrmWjJ4zyyn11FPFZxzSIlwx59hWcOmEEuSGsSgPLgBiOCEPPT4BINMfxM2DrPPZ2cboy161Crj++oigp7BQDgUoC7qHD9etR2mZqszZZxXmOIwqXGJZmai8XLaM48M4pFZsL5VDMyUFybS5tOqLIKBFwe8YzyHI0qs32yikJ08VOuuSH+edJebZkfqmoqAAT467AWd3e1q3vn+NvRF3D7tbPvZK6K+1RtcK95sX7sBV/R6K/qo5hMOECwxCB+sSfpY6dgSmTtUtonoeFyxAXXa+ZXXqCsQHINMfRN/KLVEeXJ7CGFBaKh96YM9ls3khMeNcPNqUc7cmSJyVkWFdJpzP0CDnWqi0XP5b+5V17qw4GDnSJIKAwLV3ZEKCwlWmOUa5HnXLeiE70nh+Pzz6dhzf9nWuW7VjXLQRiM5DJkVJUUbN0PZFDkke3kf066fbvixLsJmawUhJISxfYduDS2bgQGDoUOvGidgRCKgGujenXIanx18vHjidQzSTrKu8tXpoI5Hp0aOH5bjw9exzPOoQoYUUXOmCVYjCcLHwxBZrjyUp9M/2BeuwvttTOh0RX3pHCi6dEGxmnmBgzNo6w0iwp3dfAjYKP847C8vavxr3don4w7P4bZi7Fxk6z/zBpWvVz7KVAnj0aO5+KReI8t+NGom5866/HjjvPPm6UljMpeCqrBTvdxGyS5k7qUn+TsxtGcmPpUw8Lr/SbdoAs2dH5QkqzTpg2EbYi21eq7dRnbcnqWSjqYqPCbY8AHIDR43H4PXrrcdnp2E19RSkVvcoycoSw/Qi+p2wnVNH4Q3mhPtH3iHGwLdDMj3shlIeFj3myTlVJAYNEsetzp1lpTygFpApfw95HWLXG3bcOKBXL3v32EHqe0JCM6UpCXnEmfW6Xcl3czfi3J5P2m7m0dG34PoB/7B9nxk1+bv0L4wfD3TpgglNPsWI6i91i/Rr8D2qcqWwsoyphGp2hIVarO7M8IVwapfnHNcfpip3t6LNJBobE8CZXZ/BY2NuTmgfdENnAWL4zDDK90vrZSsZnwgsRuOpou2SEmDr1tg0o9cmQ4IUXPHwipCiSHQs2R4553J95DkbNwIXXKBScipRiTQ0gthRoxTXZ80CmjbFkjbRigzen5cx8EW1IWxh5+0yXe/ref/r/bjKh0ZWzlugHA9M+hNWBrw77RJ8PvM8PDL6VnHQWrFCf5yVZA5yrr9wJIjjjhPDv2m7AajPn3aaVc8BAJk+g1zaAIeCy0LBQR5cSYPfJ8Dvk34PKcoJL6qIMIg863Y9uCwdLPr2BUaPjqz9HEYxaF30m6NIHoQ1tDNOI3g2WfIY7rGCK6rtoUOBk09GWfaBSLxhnXqa5v9hWKfW2lR3/pGETgtavY0nx92gutRc4/EkLF+BAk3sYZk2bSJ/K/tZpzOhykH847hhyM5GrZ7lDJF2WOV2m99Kk8SdMTncTk6gVq3gMntG58zhyxUjobSAiRLmZ2WJG02p7WOafIpGebv0y8YIZZjSmwf9Hzb2iCjWlQtjITztzZoF5OWpEnA/O+Fa/MMkPF74O7hvxJ3RIY4IRzAmAJdeqj5n8sx0LjXJB9W0qUk70h8uw/t58TRrN1u2rctatRLzUl52mf3GGcPslu9hdst37d+bLNjxNJMVXAIwcqSo3DrnHDFU8rBhojAekdAr81q9jQlNPgEEAbsXnyR6pE+dKluw/rHoFLw08UpvPofTTfXpp8sWhLQvd4lyPEj0l8nhweWUac0/QgelENhrlH2bOlV+R3lzFqbSY/yXIfdiy9z1ie5G0tC66DeMbKSvyIwXhvsjI8FTRgawYYPo9Tt2LDB7NoAYDgHhHB9SvppGjWLUjg4Js01RGJDEjMaNge7dcXa3p3H0hFWicuvkk2Pfrh0KCkwt/qVHAj4WQp+KLeZ1MYY7h90bddrHQly/s88HMapNjx6WZes7V/Z7CENMokko0e5Z5EgTOoghCg0GmnPPjT6nNyh17Rp1ytLYKayI0gj7tV7O1Xl7AAC9Kn5A+5JfML35h2IfevRQjbO3Dvo7XpkUyb8Z8IWAK68UIxgAonyuSZPojwMAkyJhOdGmDVBUZN53AP7iAuOLFoZChmFaw3uJRK/90hkrhbpO1CEAolGAzXGKQRANCiRjUrlam0ZToxp9gYdG3Wb8XGRmAscei9xiKU1HOJJRVH8syMiQ1x6Et5CCK10IhWQPrpgKlA2Eg/0qv8eZXZ+JnGBMtogLGXiNbV9wBi7o9UR0ZdKAkqONE+yLdmsOK7iyA3WY0EQdtuX7uRvV/TFi3TqgZUv9ax06qA7HNP5M/lvPkqVhzh7jdlzAhJC+aziR0ug9llbvb1RINkHAB9Mvxlezzomu1Oy5r67m2/lK76MqB5fFbSd3fh5vTrmMq6xXKD24GICdhyOJm5sX7pDDujGoxxGl92fzgp0ozT5o2IbW24tycLnHB4E7Zs9V/R6KhC4wwmqj0ratZTtOPAi47gmHvdM8N6YeyEa0axcJfeMS3ZAk0YWcN+BSqRiFnUElvJ4I1IpKbcYi/wIBOQRWaZb43t834k45l1ZRppSLTfJIQYMGKMk6iN6VW/TbuvhiJ5/GPoq8YqE4eI+MafwZdh53SszbqffMnGl+PYFCGMtXTjsWWdygnTtVHlyAvZB2yno074PhN6bXPxMDCSV+JiDT7yJMbBrRNH8H+lV+H7sGOJ/5diW/4txwXlptFUZjZJMmQLduwPTpsgFDKFZikQYNgEsuUUU6iCvx1HJdeilw9tmi10esYQxYuRKMid6Z6NQp5cKNDhkC7P3kBwSXrcL81u+YFzZ4H5jJtejCLOW+o0SwtuNLkVxAFmgF6GYGkDVGht0DB0aUQ2bMmiVHSQIgv9shq3V8vhjGVZvDUzs0jGz0Jf5YpL/eqxMicqg2xb+KIYrDkZRYiCv/bFBHdsY1PNlY/7Qv3qbKOWpZvySvJNzRsvC36JOqOKsWKBVcTscoxX1OowFk+oM4tsUHlg/OW+8G8K1JalvLd/Kssww9ewl3kIIrjRBkBResQxQ6zbUhhQPQUpB5BH/u+0/1SXnS9amOwzTM3Wu4SZzb8p0ohZXsCaYkKyti/uSUli2NB7HJk+WNdrOCHXh2wvXyYKSn4Nq+cJ0675iHkAdX/SD8KK7t+CKWt3vF+oZQCC0Kd6BN8W/qCrwirODymXhwhVGE8Yq3KE5pvcYg4Pt9ovXo3sUnYm7Ld+X497KiThtWAdYKq94VP3jZZQIGSl6DR7g48yDyMkxCFJq1A0FUVIwbZ/teJUbKIDchSjyPD24GU6wTJLhCbLnJz+W1YN7m7//M+OuwssPLpmU6lGwXQ7yG0fY5N1e0KDSiVy9XFusV2XuxrJ39MMTxCFGY7a81VfynNIrfOeEhCtu3B665xrhsMlsZt2snCt7WrROPLcYL1RjI1DOvLzMATJjgyMuAS1lvxEknqZTHhDVb5m1Ax9Ltjo19nOYW1v7KWYEgNvWyCLvL8YKXNM6LjpLgFWVlfDmbvMIgJFnMKS1NvjCBSU5BPudvZGAsZBq+TUkyhZpOMNqoP1rsrMsZE1Q51owUXMLyFajK3av/M/DO7+3b60ZqUQnTL7ww+r7p04G2baMUXHrh+0qyNOs9qQ11rlpBdS3gC3I9XzExytIY9n4+axM2dI9EcTEMURiO0nTCCRQqziWfzzwPtwz6v+gLTsccG3tOYfkK3fOxdgxo0sTYPwIguW0iIQVXuiAI8qRhprEe2/hz9Ch3IKQ96SQxlEO+cSJfI8bXfIqhVV+pT5pN5Izh/0begWYFO1WnZat3Qb0x1gqd/CyICTWf6FatFeTpLmCU3gQZGXKS+gALin+PHQsAqA3qvz6uNtgGMB8zjjFPpCx6G8/wuSVtX496B6IIBMQYxccco6gg+vkLevBMKr1ODNcrgwYBNTUAYvMemKFc3Ad8EY/HgswjYn+POQaYOjXKE9Sn8kwzHpd+XXg6VrRXKxzd5AohRPQ2HkYCGfm505s/li61bqxvX9cZ3h3n4FLgOgeXByj7y7WvdqPg8tqDiyfBbxhBwNiaz5EbsIipDsnLK0ytcXndJ8Ch8uHZCdcCEMPC3D7k75blozxU4vDopKtIzCyMUNzQTqYZGeJa00vi8pAwMQRoeLcvjRdGTTMmqEKJKZ9rLz+/ofJebxGTlwf07YsDS9diXM2n0dfDt5Lntid8fOwm3Dfijpi3Y+fXCsyYgr9PfABYuTJm/Ykn7Yu3ieEjSbGR1lTm7KPf2CZaI2otPiZw51dkAHDqqbLBNbfC0QskjxV5D9yhg37ItIIC4KSTVEadgEn4PiXSRK4U2MvyM+m50yrOlBzX+k38uc+jAAw8uHj6EAoBK/QVGXrPvvK3i/qM/fqJ/w8eLP5fWQksXGjdB8IQHxOsPZZ4GDRIzMeel2ddVg/Fs9Cq8Df8fbiDNUbY66x/f2d9kLBUcNGYHTMsJRaMsRrG2IuMsc8ZY58xxk6Szp/PGPuZMfaR9G+C4p6zGWPfMsa+YoyNVZwfJ537ljF2Vmw+Uj1F4BtYruj3CN6ffon9l6pDBzGUgxGTJ0efk9roU7kFL026mr9Ngx2xoRBQIXg7od2r2DJ3PZ4cf6NpEzcMuB+ARsF1+eViaAVtMnllfOE5c2QvtqOhiKB0Qs0n+Gb2RsQMQSBLgHRFM4mHF3pci84bbxStxpTvn8575sWzo/TgMnwX8/LE+MfgcM32mKDCkyHgC+rnCRszJmpRXpgZyctn1uOoGPdDhrjsMQHoPOdSTiRTtM/4vHmyIYIXmD0HXsiKk8GDS9U+T4jEZPLgmjgRGD1aHmtct63dNOfmRt7vcMLsGDGm8RcAIu/BVf0eQvtikzxzGoJx8OBKhAI2HmT6g94rXzm5tv8/8O60S3Sv/Xbc6Vjf7Snda47w4DOGXyPuZzNsVW5oEIBIXiLGVK+p1fM2utHneO4YfU837ifVZD+SG6i1Frg1aCAb8xDOjH18EKzv4507vJpj2rUDrr5aFLClOpInw5X9HnE3f6cSCRrPXePiOf95/jqMafw5356LBKpc9KrYYmvd42OCuP/t1QtAdJ6rTF9txGPMruBe+5trf8O8PGDlSj5lHGM6Hlz8n7NOsd6U75PCKvqZYPh8tSv+BWd2exaAizWrlAdMVk4p0aQT0RL1GRcvFsd5M/cbwhZZ/jr9MUjzTNw48H45nYuwfEX03LRwoWhgYjRWrTfOf6q9xe8TrMO+6rFypZir2aVcgRRciYNnlKkDcJogCB0A9AOwhjEWHkmuEQShm/TvKQCQrs0B0BHAOAA3M8b8jDE/gJsAjAfQAcBcRT2EWwTBnseE1y/VMceI+SfKyoxj57tsk2cD9Zchf0fj/N2W5dZ2egmARrBXVGQYC/WZ8dfhgZF/VZ3rVLoNf+r4AgAgL+MIWhWJoTZi4X7NIKhiHxNpxOWXqw7Dr4mZNVRUYUDOJYNp06KKuQpjJQiY0/IdlVU1j7VVvOdtlQcXC2FczWfRhRiLUnBd2uefeHHiVQAUi2CdsKdy7aWlwKZNwLx5aevZEE+inpOpU8EK9ZMJy89deEF89tliKKuBA63b0W3MPoYeXHamX837kxAPLkV/TZXpBdJv4WYj6LWCKysLOPZYPgEzT9vaUGiXXgoMGACcf76uZ6Du+Ofy2Qo/A6d2eU4Mw8lJPJSjhuFdUpgr+j6MD6dflLCwfx1LtqGXQcjbkqyD+iGOtMZXvHgg9D0iGXR9PmsT3w1SX/WstQGdHFzKHJoWr1Kzgp3cXimG+yKj3106byks3LRJDjeXzJEj44WfYw7rXvajKoS79udrV7wdV/V7yFkHTH4E+RngHaPTRejEm483HQgLIrt0SWw/nMI7RivSRIxu9DkeHHUbqvP2gDGbhow0aJny7rRLbZXP8UtrtrBBtGbNVJO/S/QYKywENm2y5wXM81t1785tVBqWLYTDunUp26ouoCfUlz7XuT2elI1L/Cwk5hAqKgIQnaNaiXKPo9tPi8/48bGbVO9IOPIBAFHhpTTyDXuPG7QPQPw8Tj2ECF2y/bX6ykvN3LOm40sozT5geN2Spk2BKVPw3DHXYExjHTmPFwQCovG4y3mzLg4GiIQ+lt+8IAjbBUH4QPp7H4AvADQyuWUKgAcEQTgiCMJmAN8C6CP9+1YQhO8FQTgK4AGpLOEFyhCFPOVjsdgtLxeT6E6QnPnMNuNBE+G9Qd9kIZyLvmvnUC4vGcYwtuZzdC3bqmq7MOsIrh/4D7GIoniscmLUUojCtIMxISpkWnjha6rgatsWWLBAfW78eOCGG8Qky0quu0713F/Y63F8OetcW+/R/SPVLt48t8oL/jihDVFoJPjVKrhyA7VoUSgqp+VNh5l31qWXAg0bAoxRqCIP0BWem212BgyQN1Ro1kw0qOANO8j5zJv9rsrnbEjV17JVppsQhdkmCak9Rycvh6kH1yWXAJdd5i5hfCKFKXbb9vvFRNmMAVVVsbV8V/RNfg9atLDl/ZqfccTrXkURfl7P6fFvZPmTIKyfB7Qr/kU2SgoTz/Hcaig6vt3ruH7AA+JBONyQU4GMBwquRrm7MajhNwCAJW1ej1ww8qL0+4GTTzb24NKctmOgZ/Y7aesJz+06BU3PW/ZH8QF4w1ilLYsXI8tfh63zzzQt9sGMi7Gu63/kYx9TPx1Tmv4Pp3Z5Tv3b+Hy4f8Rf0Ltis3kfSGAfjVOFeCqycKG4TmnePNE9cQbvfuy44+RcnwUZhzGzxQfypQzGsY5Md0VngsgOh7eW1ouGa+r27SNGYxCNp2e3eNeTPvCuG0c1+gKtCn8FICq5FrV5S11g8WLgoouA226LnJOem7LsA6JxCYAGOXtV71uAhYzld0oFl858afVYdi7dphrjw5EPAABDh6pzG0r7QeUcnq5RCJKJTB+fBxegma4dzt0jG30ZpUhmMPAiTND6QM/ooGPJz5EDGo9jhq2dO2OsGYDuAMIZWNcyxj5mjN3JGAtLPxoB+Elx21bpnNF5wgsEge/97dtXFA527BjzLiEnxzjMg1kydoMPYpp/xSgZ9bBh4v8DBgBAlBdUZc4+436YdkLdDx7ByHdzNthrS4NyoLx+wAN4ZPStruojkhNLD65LLhFjfYdjRytRWPfJZGerFpTVubvRtvhX2xOrXSFOg9x9eGuqPSs4N6hCFLIgKnP24Z5hd0WVm9DkUwyr+kpXcE05teKP3lNl9GgyJgCLFsV2UVhcbHpZ+Zz1rdiMMY0/j/SNE+W8M6L6S8xo/oFJ6dhjauiRmWn5nRhSVSX+n2ZhQDx7/BSKB9kDomFDW8L++a3fxvFtX+Mq62dBjGr0ua0uApHn44Je/4q74UKskN/XBG18fRpDCxmpP43yduNPnV4UQ+Gdd554rahIFD796U/2GmvSRPxfKQSySWn2Qbw6+UoAENcPgJhzy8yLsn17w3WMyrCBaVbQFi+Y2VirvPLa5Mtx3YB/GBS08uDip16vGpo3F/NUZGWhUd5u43I6yhYG9d5JVwjp82FOq/eQG7AYd0jBFU1enrgHnjDBsmjKk5HhfJ2SDNTUiP238kCrqhKj5SB6HCzLOYhdi06OTf8IU7LCnqnS3FWZzSdbGlvzOe4cdg8+PfZ8/sYM5seAz2BNoeHyfo/imznnGhfw+aKjmGhyegnLV6BpwR/67eugHOeNvLo9IxAwlgkSMSM3cFQla+pdsRl/GXKvZX40N+O21mPMMFKLmVNFDNFbt3w68wIw8L2rhHO4RxnGWD6ARwCcLAjCXgC3AGgJoBuA7QCu8qJDjLHljLH3GGPv/f67geUdEY0goCTrIAALQduSJcCf/yzmmIg1jKkT9SoHmKIiMfzPlVdG3xe2CNFYq7Yo+B2rOryk39by5dFxeSdNAmbNEv9u2RK48kocCUY2+F/MOhdX9nuY73NYFrHeXLUo3GHdlkkXVnd4GRu7PwkA6Fz6M1oU0PuRjig9uLyyDG5esDNSP9P+YdUhsZyTnFp9K7fYvscpWg8uxoDjwpZpkyaJ/zOG+0bciRcm6ucEZACwQV8RrafE5vkKx9d8giFVX1sXrKd4blnn9+OliVdirF7oAp4fTBIeGFGn2Jwp+/77If2wilp+WXC66A0MAIKA5ydeg2HV8X8+lHNWzKwbTz4ZmDEDmDs3NvXzYNd7xYbHVuO8P6wLmaHom4+FRM/RmTMRlMayt3UMBLSeqe2Kf8Vfh/6Nq7kGOXvx32Ous91N5fORdt4qCsF4PPNGGiqVtUqooiK1h2r//tFe2laUlwPnnit6OHjASZ2exztT9fOHack0UHBpv2k7zxVvyaLMQ8gwErpZKETsKJlthYdPN3gVSzpzb8AXVIfK1ZuHJMXYy9vbOukdAMWzVR+FSXPnGqcNIJKHjAwxOsTq1c7rYAzFWYcMLweXKfLaeKQQLudU5KQknAYhL028En5fJHx63Qkr0bzAQN4jrfmUY11uoBYdS7cbN2CVg0tiSNU3GNjgW/PO2h0DzzxTjBZjZqQW9u7K2h9dv87ndZyDS2ctz6DjNcZYVF5dsn+ILcLyFcgO1GFE9Vf465B7AYgeVie0e93Ag0s6V1wMrFplv0GpTjkEYLt2+uXChjUJegD6Vm7R9WwXwuqX+rgmiRNcowxjLAOicus+QRAeBQBBEH4VBCEoCEIIwF8ghiAEgJ8BKE36GkvnjM6rEAThdkEQegmC0KtCJw8KYYAg4Kf5Z1uXYyz+yWaPO050yT72WPX5qiqVq7ZMaSlwwQWii7SC7EAdbh50v34bjImxjZU0a6a2GpTayvSJruTtin+1letCbkeHeLg/96z4ERf2fgKAKOSKRa4vIvEoPbiCnO7eVoyr+Qy1J4iLCFlRwzvhS4ngbQk2Bw2y0z1PUAonVZbEJSXAxImqsozBQMElRKzd9Tj99OjyFjw1/kbU5O2yLFdf0fsOXUXUCgQwtPob56HUAgHTV8ynUQyF+1+evd+67rIyNMjdF3n2EpUQ/corVVaUMcvjVFwMjBkjenMnihjE2Q//5l/NPhfn9/yXeNLJBkoZ3sUXAubNA3JzZW/tPjoGAma/1QntXsX0ZsbegDkBZ++ESsGVbsJ8Rd7VnMz4WXkajjGMiaGGvaZRI8/ehexAHXpX/sC1Fsn06YfNisrBZeP1MffgsghLtGaN+D0YCZI5PLi07aed0tcJc+aYX8/OVh2+PfVStCzcoQ6VGx7bNCEKuVi9Wvxd16yJulSdu9teXQSRCHw+5wLPmhrLQVQ1HoZCcg4mp/Rv8B1+P+5064JJiDKntCGcv8XQ6m9U9/h9gvGcIP1GjfN24fXJ3hichGlWsBOvTbnC0zrRooV+tBhAlNNJfDtnA85QhJ+VkT5veJxvU/QLupX9FF2OByFadmG0lxevmYdFJLynMPMwjm8nhrCWv3HG8N8J1+CEdq/K5eTfY82aSKQPB8j7WGVoWuXzUF0tdUwjH44jpp7tRMywXO0xxhiAOwB8IQjC1YrzyidyGoBPpb+fADCHMZbFGGsOoDWAdwC8C6A1Y6w5YywTwBypLOEFNsPlxZWBA4ErrogMNDw0aGDsZWa0SdEu7nSUZ+NrPlHFrObCaJGj+s5ji/Y39bNQzHJ9EYlF6cHlpSt/OHyAvOjj3exPnAjMmGHPun3hQpu9c0/YKkxYvoIv9Kjiva6TBMpm+xm/LwS0bq06xysw1n53fp7NVT1BN1y2mxFVJ/66U3Yedwqaazxle5T/KHsvMAiylWfD3L3WFY4YAfTpEwkxligFV0GBKlxvWsen79dPXINYWQmGDaoaNDAv17u3/KcPAs7q9gy2zD3b2W85YgQwdy5OaPcqVrV/WX4ZlJ7mWsx+q+XtXsX67k8bXs9xqPT1sZCceDytnpR4RTPQQV7T6T03ylDDiRojeOAQAHYr/wnX9o8OE5jpV8yBNoW6ZqWV477uXqhLF+Cqq8Q8prqVW/dFO7fE0/MvaRkwIBJKUw9pfA1vm/SU9/LYpnLr4lyntmsn/q46Id56ru6LoyesAmbP5quLIFKJ6mrgrLP4ytrw4Bpe/SWKMw+46FhysqnnE9i9+GSusrbtlqTxyvC2/v0BiD/DgIbfu2zMAV55jEyapFortyzcoZ7TNYTH9q9mn4fmhTujrh8NcuQL1FFwATD8TEeDEc/3xvVYyeBWka3HnUPvsSyjnM9HNf4SNw/6P3w9+xyxT24fdWmNrPUGDGgjBqxcKe7ZTjnFZYPe4zPJWUe4hycz+0AACwF8whj7SDq3HsBcxlg3iOP4FgArAEAQhM8YYw8C+BxAHYA1giAEAYAxthbAswD8AO4UBEEnhhDhiGT3v/XyJTaqq3HjyN+zZwNNm0YVeWr8je7aM7IUgQDceCPw1VfA7fabsIvfF6JNdRpg9guKHlyRyTvbfxRl2Qe8eZd69hQts3gIBIAhQxASOBIYJyPKsdHgXd5xOF88ZSK+9esIlvMCRxx1qVfFD3hr6mVgt99mXbge4mpskxROWos9xgySz+oQfg6KMg9h8z61JzljEL0XIHlwVYj5JLksQnNzgeOPjxwncN4O1pcEzH6/6EVuxYknAk89BRxzjHm5448H+0hcuvqYgEx/UMxFEGxsfp8egQAwbBj+cs87gK+7fPpw0HhpbvZbGSY2l8h26MGlfGvSylulpCRhTWeHlY1WCqwUV3DlBmpxUucXcPKbauWC9jlWPVcWQlizeVqZ28vwXTF10Q0LKPmfc1qLS2RlGV8z+M5DqnlI51k3yBet68Vn9LuOGoWMoUNd5aAjiKSjRPI+PvZYcS1hZ29o4VUvLF+BYIjhH9/3wvwXTtAtk3TG1Jxk+IJ80XsYsx9OT/oNdA3sLrwwKpeVCqO5nlOhExfOOw/44ANg7Fj96xwhCvVomLsX/xp7IyY9u9a4UDjUKuea6LBkKHZw6VrH0QsIfZa0fQNLX15kWsan8cjO8IXQuug36ZrLsWPQIOCzzxB8XP28ReWBKy8HTtAfvxKNae5rwjWWI7cgCK8JgsAEQegiCEI36d9TgiAsFAShs3R+siAI2xX3XCwIQktBENoKgvC04vxTgiC0ka6ZJ7og7BFHb6KEY2TR16sXMHw4sG6daBlthlU4DZ62FYkRGZMs+Vu1clavTfxMoKExTVGGKFRu/u8dfhc2z13vun5BYGLOOpuL5HDYLG7ivAgvyDisf8FIiaDoXzg0jqnwWEf4kukPyiFPzaB31R5GAkOuJ6pLF6BFC/0Npl1PAYvi2nCFtjHb7MaYoEEusXpLZSWweHF0cm0tjMmCUtWY4CaJcZ8+4vpFom3xr6jJ+0PMX6bB6Ld6cNRt6Fq61bQZpx5cjAmR0G3p/KjE8cPJAhcrYY3f5rwbazSh5pzw+3GnRp2zoySS3wGdvCAZCgteRwJYSfBr1h8KUajA5pyq/a7ChiglWQcwoIHk0VBeHilQUQFccQXaFZvkqOGBlFtEmtFuXDMxr2JYCcyT1iMst5g82TKXo98npF9IYiWLF5tfD4VU+977RvwV67o+a36P5BmsO/MoxzU9ahOkhLETXam6WozqohxPzdZN0rXSLHNPQMaAiU0/MS5w4oliuHNAtWZiMDZcnNbsQzw6+hbXyq22Rb+4uj9d2dTzCYxq9LnhdVmBo/N85AZspofRkpUFnHhiRAEtPQMBFkwur6hp0wwvkQdXbKEYZ2mIWXz6tCYQEBVXZskww9iJxa4cgJTChlWr5M1+rAWE2jGQQhQmN7NavIef5kUnluRBGaJQKQwIsJCYMN3lhOh0fJjZ4n0MaviNdcFIQ47acUqU90KzZuL/HKGIwu+vmUAsyvVd4sgJJhZnhCNcWcQHAsCZZ3oSc131PBjkbPMxAW9MuczZ415WBpx6KnD++Y776BRliMKY5eBKc7Q5LbziqXE34MvZ5wI+Hy7u/RjGNI4EOzD6rWa2+CCS6FyHGwbcj/tG3OGoP4LAVAo4ALim/4OO6koWdF9XQZBzVcaanPAG32gtGo5A0LVrXPrDjVJYYUMh2K8yEo6pPJsz7JWUJ+atqZdGh8Q57zxdwZzSgpcxACNHcvcRgOjd3qePdTkFaa301RAOMSTDEeECgPwlqTwi8vJkAfofi07FyEZfAvPnA23aqO8tLCQvOYJQcPAgsOkCpjK0xfLl5vlsiooi3gz5+ZFQ2SaYKe9T3jDKauBu316l4BrV6EsMbPCtftlwRJSmTYFzz3VmYGdiJPX7caciwyCfpe12wkydKoZp3riRr7yT9rKz8eO8szC31bvu2igtjbSjCBNu1n52oA7Tmn/kqtkPpl+Evwz5m6s6Ug3eFArn9nxS9sgyRec982o2jw5RmGRKo3HjgKVLdS/5bESVIexDEvJ0IZnDmHhFeCAoK3Nflx0Fl1KppRyMGjSQExozvetaPExyKCq4aGBMVooyD6Fx/m7LcnoKlfCGQkxUqyjr0WbC6VNzx9C/4aWJV+HsbsY5XlSEFc1Nmjhs0R4ZWgXU2rWiwnvePP0bwu/qkiXyuyQrRXQWZHohCnlJayvIGBD1W0rYscjXjo927q2TFs2q4VznmQgLU/s3+D7qGjdt27pKsuuUehOiMAaEx2jV8+HGg0tDdqAOuYFaICcH67s/jTkt35OvRf1WGgtBI8OXAQ2/Q03+Lued6tIFOO88+bOf3Pl553UlAbrPvCBEhziJEbIFq1JAqeTkk8X1pV0FTayYO1f9P2BLs/Pm1MvQNH+H4fXwczWk6uuo+vtWbsGStm/IuSRCAjO0Oj+72zM4vu1rACQL2VmzuPso3uQDjj/e1pxdnzy4TAVaZvsfKdfdLZ8PEY+zs4GNG6O/uyFDdG+vT98xQViRk6Pj3FteDqxebXzTmjV8Xl6AHF3AbIgPpLNhVMeOwOLFKgVXgAX1x6GuXdXKwkaNoopwrbHrDBRYgoDy7AP6OQrd0LOnGKbZrZe4WX86dULN2A7wLV1s7jFox0qke3d1vkevvg+pD4MbfiMbcBVkHK5Xc88vC06PeFJLTGzyMT6cfqF83LroV/lvs3WS/L011oRv79fPEwNUAKjT5KlPyjGpoEB9XFMDgPbdsYYUXETqsGGDmOjcyq2cBzsKLmXCby2CteeHjFXYRBMYBJWVjY8JpOBKYtx4RCgn7GObf4A5Ld8BoJi4nZgLn3GG/GeLwt/t388iSrdL+jzGd8+yZcD48eYbLg9Z0uYNvDDxqsiJggIxZKlRrPnworhfPwQLigGow7ZpcbMY0S6Q6c01p0HuPnw/x104TjchCr/a3VD+e0bz98MViv9LYWjntXobM1u8L1rCAqLnWAqhDlGYhJuCJCaQ6UObcNiS1q3F/3v08K6BGTNEhZIkEFAm4I6aW8aNA/r1kw9jti5golIhXZT1WQ7DNdphUMNvMLnpR7rXijMPAevXR29+w+Tmis+AnbVqLBk2DLj+eqB//8g5m2PewTqTtbTEy5OusixTmGkQjhjAyEZfYlOvfwFwN8/aEcDQWpyDpk2BGTOwr1Zajw0fDpSWcn93T467Ec9OuDZ2/SOIdMArYb8krzAT7vt9IXFeSDH8ir30RzMuxLCqr6ILjRgB5OWpFFx+X0hf0tO1q6zAD6P93vzacGR6kYaMFFwSDXL2oiJ7r/VvzKvE9CoHaWWl6GHVvn30NcbEHLj9+pmvZTp3NrwU5VHEjA1cvKBv5Wac3Pl57F18IloVOZCXuOSyPo84jgBkRFHmQeRy5AxvkLsvak4uzDyEbuVi+PP3p1+Er2efK1/rUGIcOlgAxJQx2t9KEDC35buY2ORj7v4bERWi0JdkIQr16NIFZ3R5Fuf2eDL5+5rCJMnOiXBNfcjBVVMjunoaWbzaQbMYMSUQEENIXXihYREu7xq3A1lNjRxruzp3t/3kp0TcKM46yFVO75EozDyMEdVfAgB6VvyI+0eKYaUqcvaJBZwouFq1AkaMgLB8BQY1/M7+/U4oKhJDIHi1iLYgO1CH4dVfWxcMo0iI3qL4DwDR7u5eof3FSKFggSCgeeHOqNN2hlDbOeMUDKmSQnEWF2NI1TdomLMn4iW9ejXQrRvuG3En2hb/CixZIoZUWptaoSr7VG7B/434KwB33on1Ed+qFfhqzQ1iXoA//Qk47TRvBT1jxojW1pJlrfJZtlK08wqMV7R/Wd5Ef3LsJqzq8JJ8rTjTOIScV5aXiSZTz0tUMbeWZe3HK5OucNXGpX3+iSv6PhLdzPIVYl6IcBjCVCE8Z4aNtQy8bYxY0PodzG/1tu61gF5YHIPIFNkWysmwwVm8LGTrk4V3FDqTcstCAy+vMWMiHnrSfbzjVeui39C3cnPkhNYqnCCIKITlK0wF22VZ++W/N89dj87hPJ6SR7rZCJqqoa3leaFhQ3Qt24rZLd8zzPGnXHvl2cgbFL3n05xZuRKYMEGdl8tig/PO1Evx6cwLjAusWwcMHCjuu8249lrgyiu9y0uYkQFcfLG4HnbK7Nm6OWdXd3gJfxt+l+4t7Yu3oXPpz3xGQJwyv+PbviavUQoyxfcm3iGIG+XtRkXOfuuCNvj5yf/h/3RClC9s/WbUuahnVzpzcqfn0L5YnY9sbccXcdQgrHdI8ImKXO1zHQrhzG7P4l/jbuL/AAbcM+xu/GvsjXIbRtFfkgrGcHm/R3Fmt2dJwRVDSEKeLqgUXCSsMiTsit2li+gNNns2331VVbLLvgrZg4sDFwOZcnEkLF+B0uyDUa65APD8MVc7boPwjmw/Z6xsHTL8ITw/8RrVuZ/nr0Pfyi3iQSISPmif3WRPOjFpkvG1uXPFsEWKxX15jijQlRVcMf58pFCIPad2eQ4buj8lH9sZfhvl7ZZDMpzY6UVsX7gu8kzk5ak8ZlBWJio49KwXk5iALyTHxc/xu0z4W99o1kzc0HfsKAr927SJzUZFqlOt4NIRKilCvxgJjOWzUk6nAAuhKPMQAKBN0a8ozxY31LUnrELPih/l+woyDqGfImRJuqwvs/TmaMW4n5dxBIOrDPJt1HdmzwZuvtl2uPCr+z+Ev4+4UzyQ8teGyfTrCCZ0vNtenXw5TuvyX6723DyrdjwVyYMrwr4lJ+Kqfg8bXm+lUX45Vg6WlDq7jyDSGZ11iDw+6exrvp+7AfcOE8fkZgU7I7KGggKgSxfTcdDPQsm/F9TBz0LAOefI89fKDq/gi1nn65YNr71enXw5Ar4Q97ygLRelDCwsBKZMEdeRK1eKMiaLcPoNcvehMmzoqkfLlqK3lGZujSInx9hz3Ck+n7WiyWyNnJUle4ev7/YUXpSisRzX5k1xn6Jz73vTL8HrUy7n69/FF1uXYQx/Hfo32VspTPVwgzzeHvH65Mtw86D7AIhKZqf5yh4dfQseHHVb9IVJk5A3qr9uHvF7h98NAGiYs0f2ZNSGOQ+PCdcMeEg0zALkZ5UxiLnhAdEob9kysd5hd2JtxxcdfQ47dC//CRObfiIfJ10OLitSqa8pRmrF1CGMScFFRkK49lrxu/L7DRP/2cLnw1+H3IuhVV8DGGQ+WHmh4FLUoedtMqKRjqs9EXd6lv/g/Gad56Q6b0/kwOm77ibUkfZeD/PNeE7btsDEicbXDTwtupf9iAY5e8UDve/Ywfs7vdkHUnXqe5PFgysvcBgH6iw2Q4nA4Lu2I7Cc1PRjTGr6MS7+cIJlvXp0K98KCEWRE2ma5/KD6RehU+nPABYkuiuEFmkcUim49N6Bnj1FT/Nbb7X2sFKEmPNLG1Nl3qmAL5Lfc3j1l3hBNraYL7afJsp53RCFinDUmbwJ3U34cX8pGpgJpFIZN3k7srNVYZMBjeVtOG/WjBnAoUPARx/Jl+x4oLvJW2p2p/YdTI83wgMYQ37GEV1BWhh5LSTNxUEbykFlSUlPTxCEEp29i6xE1ln/FmYejgitoQhdzRiwZg2Eh+4xbCpVDfV8TBA9QHdZ5yTNzxC9eMLzDq9CXvvNmO5duncX/xmh3X+nqlCcQwF25PjVCPhC8jrT7JPmhp9bq++jcWM+Dy6DelqfMhFC9xfBRgy3rsMBpdkHZO/AZgVi5BKevW7fyu/x/d5y/H64UKwn6wD2HDVIyQDj/LwA0KdyMx4fe4tUTiuv0OmL9rc8+eSIkefvv2PhY49Frmm/1+bNgXclJZ7HsuukzMGl/fyp+v6mGOTBlS6QgouPzExVaDLXMIbj270e8zi9svWPYmDsXv4TxjT+LKbt1jeiYj07QFi+QmVRYobuIiZWk5+b0J6ppOByIngTBHww42LkZRyVj5UsbvOG7SrbF2/DI2NuAwoKrMNVJIj9S0/SDw0VJ3YtOln/QgzyzjAI9t8t5XNg9HeK0738p4gFHpFcSF6mx7d7Xbay9uv9Vj6fKCBZt87QwphBEDf5incg/JePCSphVbiOFzSexEB0UudURTdE4YwZsqd+WLDlhunNPiTvHj1WrYoKMScrFNesAQYNEv8uKBDL2iSs2NJVBnNi6rmgeQfTJS+dFR1KtrmuQ6uAP1ynCJNVau6VFV4vH1q6xixiPEHUX3TWpiHBWMEFqJUxdZqcNmZL3ZT24AK4ZEFX938I383ZIB/zftxoDy4X31Oy5OF0y5gx4v8jRxoWyfQHVftjrr2y1b6Od99n9D0z5r3HmwI/ExytVN6aehlOV3izZ/qDUfPr17PP4QoH3LboV/lvbR26BrnK72rdOnUEE+337feLRscDB4qeX8NjoChMpRxcSlKprylGmoyaBDp1ki1A3FgtEjbh0Mz3rtiMZ8Zf50opoKfgqszZh2cnXK8uqAi5OKP5+3hv2sWeJHKsDwjLV6Bb2VbrgrHGSkHj1JNk2DBgwAAxZ4xdtM+1RTLchOJkwWCxa7lr2D2265UX5hUV1uEqEkgiZ4virEP6F6R34PXJl+H4tq/Jp91Z5Lt8LtLUg4tIYrKygLVrUZZ9AAvbiHkBTIX2LVuaP+dXXin/6WOCymtG+bfZW3Y0lOGJIUii0Q1RWFICnCnmJVNatTtBWL4C2YE6HHWRCzCtUApEdOZbWeGYY2yBbBc3sgM7Hly7jtjI6ZuinNL5OXw2c1O0cFLnSzb72rVroeHVX+GuoXeLB5s2Gd+oUIhm+evSRuZLEF7z2czzcVa3p+VjKwVXO0VeHa0BS3g9ISxfga9nn4P3p1+Ef465GUBy7WPsIO/NcnPF/fC6dWI+LB3yM46gReEO+Zh3H3E4qM5v5Uouly6DXYsWwPXXRzy0tWiez009n0Cnkp+t67Wa6HmNXvXqCStuHChyBzb4Fr8tPM2yXIAFMa3ZR7hFClMI8D9np3X5L/YsPgmA+D4q59dWhb+iddFvCm9p9XMUzs23a9HJ+HPff0batmuw07Kl+ljve5w0SQyfOXSo5VrQDUnpwaWFlFpxIU1GTQKNGonCayK+cCw8upf9hLE1n7tSCnB7fEgDZ/OC3/Hw6NvRs+LHhOXM6Fr2U0LadUNx1kHvKnOaQN5KEWoVX9uIjAxg0SJVvhZutBNyMntweaHg4l10mbRl9s7S8kaBXu6qBWK4vAENv0eFyxBfV/Z7KHLgxoNLKXht0UL8X5kgmiBiQefOqkOn3p+/HipUbfQzfEExp8TyFQCAEzu9gOeOET22osIfa5J/J7Ngq03RL/hi1rmW5eRwtFqkMcKrz6j0UJnY5GMcWrrGk3pThlatxP+VihEdYwHD3wMALrpIzJvLydGgGH3fVQ4uk1la68H1168GOW6Hl9zAETTN32FdMEb4WEhcO06eDADIzzjMJbzTov1FsgN1WNz2TdF7SxEiNIqzzpIty0k+RBDGdCjZjlLFXtZUWL5gATqXbpPXAXWCtEYIe3ApirYu+g09yn/C1Gb/AyCNg6nswQWIY5pWQG8C76c9pFFwuYrakS4hCgFzrznNuuDcnk8iOyDJzczkZ1YKLLN5xaR9DBzoyIM8TIYviIqc/ZblAr4QCjMPY2WHV+RzvK+V3yegMPOwVE8QHUu2oTp3FzJ8dWha8IeqrNKD69TO/8Xvx4m5o4uzDkWezzZtop5x3dCGZt+5HYWsV4ajUpsp4cGl7F+y9zWFIQVXOiFYx6wlPKa6WlQcVFWJxzqDlV7+LLvIC7JevcT/O3aUQ+mI14P65RHtbhwPOpb8jI9mXBT3dt3yyOhbsX3BGdYFeeCwGtK16grH4u7RIyqMD5YuFZPTJgJlDOtkVnA1aGD/Hh4Fl97727GjYZXyex8KRW0wQ2DOFZUek9D5omlTYPny6POdOiEcg0hpTeakr6d1eU6618EG0+cTE0B37QqMGhU5X1wMXHWVucU5QcQAXc8jBeGh6/s56zGj+fvy+fYl21XlAhohfX7GEYxs9CUA4ECtRggRDi0D4ImxN+GJsTcDCxbg2zkbcErn5+x+hJiS5a9Du+JfTcsIy1cYe2hJG2W7Y83T46/XPX80FEl17GehiMCmvrBmDXDCCcCUKZE1q47xz1+G/A3fz1mvX0dFBbB6NTB3LleT4Zx1Wit6O5hZMWs9uD6ecQHO6/Evx23xMLz6K2yZt8G6YIzwQRC9HSRhIYMgCu9s7mvO7PosrhvwQPQay6qejAyE/JyCSoKor0jvlTK3XUgTdlDF4MGqQ60HV1AvJHFAnNPMjEBO6/If7FtyIk+P445umGdJ0K6bmzPMeeep5oWTOj1vaLByz7C7xcg9Em7C5aaVgssMIyVWu3aiEb+WQYPEvVlZmf59K1eKMroFnPmFa2oif48aJd4XVsjFUJEb8AWBU08V971z5wIXX4zsBkV4aeKV0WVZECOqv0TdCSujrlXl7kGb4t/w84Kz8OvCM/C45Gmp58GV6a8Tc5hpDUwLC6NCGermo+3UCWjTBhg7NvqanefT7fc6YIC4H5cMATNM8n8mDaTgigsB6yJEqkEhCuNIdjZw+eURCxEdpQZjgphUccgQx834fdJv2qePOGE3bAjs2QPcfjuE5Ssw87/L8fDmnpHyimcgyho7DiTLkN2j/Ad8sEMtTCnP3ocdh/XjKRdlHkaRZA2j5cyuz2BUoy8w+qlTPO+nihkzxIVDx47i5HfXXcAHH4jX+vaNbdtmXHaZs/CG8WLjRuCtt0RXeLvwhDDQW4gsXaoK+6UqHt7Q6Czg6kK+iLI6wSR0tujd2zj5r/SbOM5hM3Ys8OyzDjsmkZdnnAA6P99d3Ymma1fgf6IlruEGkUgqXp98Gfo12GxaJqxMb164E03zIxac2hwQhqFfxo/HnvuNw8RNahoOedwDLQt3xGVD2bP8B/Rv8D1u/Mw6dr/rECWSMEk374AJ42r086EqQxSq1uanxHgdkSzk5orjPACcfz5w5IjumF+QeQQFmSZ5zxgDioqs21u9GsFLHgEAFGYahMDlwDREoeZdal64E+f3+jc2fcC39nhx4lUY/m973k+J9pqUFeKyZ4c0LyvXThzCqo6l29GxdDsgjLfdh0TsZQgiFZEVU61bY0T1l9JYWGF+U00NHh19K3YdzQUgeqXqGgmcfDJwszTXGrzzfiYgL+A+j2Us0FU2SZ/jjiH3SnP5UvX1CROA6mp53Lu492NY2PotQ4OVmvxdqs/vyoOrb1/gww8jx+kqFM/LUx83bQqcfbbx51240Lw+o72bEZWVotFiYWH0GsWGImbr/DPR+L7LRMWVwhBdyQW9HsfC1m+j+f2XiGvztm3Ff2EyMzG0+puo++4dfhdmt3wPvnWniwbQmzcD114re2CGKdGJRhTSMxbt0AF49FHx7+7dgdmzUXheJGTpixOvQvfyH0UP+o+ltf+cOeL+9zSDNYwdA+iASzXEcceJ/+8Qvdv7Vm4BWAd3dcYa5ZrJSc54ggtaLaYhlNQ6zuTmRgZpPQ8uCMBZZwG5ubhp4P9hebtXospYofICq6kRvcbKy+WcW0GNhZbSQknXAivGJIuS9f3pl6iOt8w9G1Oa/s9RXW2KfkUHjRW8KRYLounNPlAJIGUyMkTvrawsUXG6dCkwfjywIXHWuwDEvrRpI/7dpEli+6JHTQ0wc6Yzz6hweNfwYph3MZuXp/bsUaDc0Ghrq7OZl6Uo08PQmUpikezVDhwbNUe5swBg+vSIZ62N9gCIC/fmzfW9y9KF448H1q4FzjtP/EckPQMafm8pKFFevbD34/hpnphTSikg37v4RCxo/bY6xObGjcC4ccAxx6Bd8S9oUfC7eWc4ktB7xeyW7+GGgQ9wlW1d9JvhtcENv8H+JRZGGrKCi++DFWUeRH6GvlEMIIaoXtbuVfXJqVNFq+T6ht9vbNAQxuyB4nnYunZFXYkoyC3PPmCjc9qmnIUf5mFY9de279EqqONBfsZhWXCmVbDJ+wqlUDLGwpqCzCNomLMnpm0QREoje3BJ72d+Pp475ho8OvpW6/VvRQV6V/6AMY2/kE8tbfs6Hgt7ggDAJZfIxl1m46CPhcAYogTvyYCuB5f0vWX7a1GmN29oQqmt7/40avJ3cbU3sMG3WNr2ddv9lOneHThXEXY5w7lnclKTmQn8+c+R44KC+CvzGja0XqMYcG3/f2D34pPQKG83AOC5nztER+GRKM06iGYFO/HkuBtQka0Thv+EE3SVYxm+oPjelZWJso727cVQimZI76vSQEQAxHxoBQpj75UrgcJCPDr6Vnw3R5Q3dS79WTT6XrVKNHC+5hpruUE4sk11tXGZ8ePF59qtLIkx+V/tCatwepf/uKsvhrQr3o4XJl6lPkkKrphBCq4042/D78TFvR9PdDcIBfL87PdjdceXMUqxeOTFakN9df+H8OyEawEAzx1zDf4x8i/ihVatcMvg+3D/iL/YbtMNRuHATuvyH/Qo/yGufVHStOAPVx4r3ML29u0BQYCwfAUaGGzIHxlzG18i+4wMUSCWDEqlZctES7bVqxPdE2+ZOFG0SlwqWe3pCdJyjL0a9JDf2T59ooRltSE/t2TYz4LYvdietf9nM8/HjQPv1732yqQr8M3sjfhm9sao0Bd3DLkHS9u+hprC3Zja7EPd++OG9P24EusxjcUa72apTRvRKMFsgZ7qZGWJYR2qq83j4hOJ55xzHN2WG6hF4/zdANRriILMI+KroFRw1dQA06YBGRl4bOzN+HzW+eJ5I69hrSeHQ3gEYO2L+QxLXp18Oe4edrfh9YAviLyMo+aVSBvOHLNQRRI3D7oPP8w7G78uPN2wTHHWIdw+5O8AksezPWXhtAxuUrgbfSu/d9WU2bzz1m/NHder9Axc1eElvDDxKvSpMPfK1N4XL5TGktqQprJ1+qxZkZPSu8MVDjgspA2HlA7najMhKxDE9oXrrOsmiPqKtKZXhsYNy4ANWb8e6NdPHQJW2u8UZB7BlGYKo1CFt3+d4EvKHFw3DrwfXUqNc4DrenBpcwFpP5e0VnLycR8ZfSuWtX/N/o1KlHsR3pxSqUhJSeTvZPJU4/jhM/11hhGAlJzY83VMafoRAGBCk0/1P2bjxsDZZ+Pg0rW4sFdEputjghj2Wfk9ma2LRo4U320AhRkaj/asLN17y7IPoEXhDnQp/QkFYeMtn08MS8ij/GvcWFSErzcIOQ2IMq2VK737jX0+BHyiUj2pnhuJwoxDmNbsIwwPGzfNmiXmM02SVBXpCCm40owFrd9Gp9Jtie4GoUDemDIGjBvnLhazFmlR1qxgp2x1NbLRl5FnoEsXtCzcgfFNPvWuTQ6M5pc/9/knupUZLzzjgW7CzDAdOojxfHVgjHNxW1kJnHSSfPjV7HNx97C77HUyWSksFHNpKBdX6YDfLyolwxsHvR96/nzu6kY3+hwnd3peXIiOGKF64+8f8RfcNEhf+aSHE2vx5gU7kG0goB1c9S1aFf2OVkW/R72oS9u9gTuG/g0/nnQ1/jnmVu72hOUr0DhPxxtRh6fHX4/pzT7gqFRScKnCKtj8LhS/o67VJkGkAo0bc3tbluqEJgGgPx7MmSN6Ep15pup0hi8k5voaPDgSAsSAWIu3Di5di4lNP+Eq2zBnr8poZGP3J/Ha5MvlY65tL2P45NhNuGf4XcDcuXhn6iWGwrJVHV5BUeZhMZcBT9XhbyuZc1gmGjPhRNga2iKsTUHmEbw19TJX3TBT3B6uc25BH1Dky21d+BuGV3+Nt6f9GRf3fgz/HHMzHh6lP+86Cb0pLF+BwQ2jwxzxUpolejL4WAh9KyUlHGPoU7FZzNd32mnq9XJuLtCli3ne35kzRWFteDw78URR0DNvnnWHyNqZIMwpLwdatsS4mk8xvkYzbxqNrU2bAkuWiPu7FSvEqBQdzMN8PTP+OlzW59FIVA8N8rp95kx8euz5OLfHv+1+Eses6fgSbht8H24edJ/udTMPrqjjjRtFwx/JS6ZF4Q7ufoS/bk/CODMmjp2zZqWvB1eYsBK1U6fE9sMmBRn6ITn/N+MC5AUiiq/rRv1LNjwzJTMTOYHaiJIJ0hqySxd1OW0kBqXhquJ5mdT0Y/ww7yypHonSUlH2ocnFBwD/O/YiZPodPrtlZfF9TrV56pKM3YtPxsW9H4ucGDkSOOaYhPWnPkA5uAgixqiWlNOmYcpTq/DetIvR658ehJzTCkqUVkjLlomh7h59NO6Ww0aCaD8LmYZ+iQcNcvYaXGgghuwysTrhygHg96u0YUWZh9GphJTOKc2qVUC3btzFbxl8H1oW7gDazI9aeM1p9Z74h6CTNFcH20od2NtQ6QryOBaLC1u/iU/+aISPdoqehbyhccfVfIZHN0uhIM2EmR55iIQRBYskICNSFE7T4a5lW7Fn8Umqc/uX/Enfc6mqyjwXVKtWlsoEu+FW7aJUWGX46lAbMu6PNoxaWfYBtCn6VT7m8oJhLGIgFAqhd+UPrkPSRaqW6iGrTWPM5p6qKtGb0crAxgOvgqNB4+fajbGE0hNKOf2t7/604T2PjbkZvSu2WNbdqeRnfLqrERrm7JE9nZyGrH909C2yUiu4bJXq2ltTw2GkNEpExoA1a1Dx3KXGFY8apQ7rXF7OL+jJzQUOOc+rRhBpj88HrFuHQStW4KnxNwJQ5CDi8Wzo0UP8Z8HYms/FP/r0wbZnPsYvtz+Bj3bWYOnLiwBI487GjUDjxuj40EP4U+4L2HUkFzd8NsKy7i6lP+HjP2qs+2pCvwab0aviB6x+Ldow0cyDq2GuJB8Iy1ZqasR/En0qt9gOu+hZnlKDcPhpx1lnAd98Yy9/VqzRevhp+G7OBjQr2Kl7rUvZz+oQw7wGToEAMGcOVgUfwqhGX6DTw+frr0XHjQMOHAB69hSf1ZNPBq6+OqoYY0ATbVhNxsTyqY5y3ZiEHlxJ2KW0J7lVnoQ9ktBVnIj2wAj4QuhZ8aM3lWt/86wsoGVL0fqqV6+EWTVoP3NYsMSYdwJrXtZ3ewrruz0lH1/Q6wlsX3BGdMH8fFMLUQbBnqBr6lT5z54VPyK4bCX/vURiEQSc0eVZVOdKi0Gz90hn3A0ovTZhnM/j1cmXo9JI4eoC7oT0Rp/LwnoTAK7t/yBGVH8lHx81ETxrORzkKCv1bUT1l2gtCaltLxIV8c/9TKBVJpG6VFgkiA8zdCgKMw/L+TkBWIflM8LsfZGEPrUxVnApOXrCGtPrWsVDpq9OlQ/Udh4jaWznVRK8OPEqtaV6ixbRhXr1AoYMsdeP+oTVGN24cXQy+hhwOBixPn5/+kW4YUDE63pc489s1cUQeS6VczNv2MFjmnyC6rxIqOs5Ld/RDUH8ycwL8M3sjXhnWkTBZOpNJfHtnGhjuxaFO1RtKtfGViHPeldskUOme8ry5eK4c4bO+p0gCHOceFT07m1+3edD1dgu6F7+E4Yr9gPNCnaK76o0UJRnH8D1A/9h2dxfh9yLlyZFC+e9xMhA4dDSNRjY8DvxwEgJoTfwGQyGYeNEbXhXwoLCQlFZk+ReOUpaFO7Qlw/16QNAM9fX1Ymfj4fhw5HpD6Jj6XZk+WvRUc9YOiNDjMbQujV3f20ZzqbCvpm8uwkNqTN6ENaQgispyfTVcZcd3ehznNjpef7Km+vkAjjjDDHshwInXiBuUE6Hfx9+B16ddEXC+nJxn8dxZrdn5eNMfzBipaWHwXvEmICa/F3YMvdsADDMrSXToQNwVSShpFdW4ER8uLzfo8gNcAiGdZ4X2WJPWqAbKXUHNfwO/5txId6eamzx7MT6z/V6dPJklYLWso1hw3CgNpLH6d/jbsCSNuqkysWZB2TLRy6vD2kzPrHpJ/h69rkWhQ2YPRsYMECszisrSoJIBMOGifkPzeLaA+JG97zzuEMamqI3F7ZuLYYfqa4Grr8eR03e5U4lP2NVh5fc9aF9e+6iWsvsTL967cWYICbAbtwYOP5444pKSsRwtVIeEl6jnGHVX6MmXwrVWlEhhnBT9o8Jomd9OufQcIsXYW082Asdqov8RhXZ++W1gLB8BUY1/pK7nhM7PY+6ZWLO0juH3oPHxtwiX+MNO6hUih3X+k3cNPB+TG76P92yrYp+R43CSttIOXvb4L/LireWOmG35DZnzAAuuEDXItwIxiCHTPeUZs1ErxCOfF0EQWgoKrJ/z9KlEQ+Prl3F/w3G6PCwe2DpWqzq8LL9tmBPXmJFWNYwpOprOczwXUPvxjFN9EMeZwcUbRt57GzYEJ2PuW1b/falPT/tPdIAQcBNA/8PFdlq2dGEmk8iHn0nnigq5yR6V2wW35nzz0dFzn5VXVi2DDjhBPGY01Pt8PFr0WqZB+t6ACUGocwBANOnq4+vucaTNmOKUiCR7Ao5Wv/HBVJwEUQMWdbuVSxs/RZX2U4lP2Nlh1dw3YAH+RvIzgZuvDFyHDatNBngCzIOYVGbN/jbcIDSaros+4AqzNAV/R7B65Pd5Ufgpl07AEBh5mF8P2c9/r+9O4+Tojr3P/59elYYBhj2QYYdQRBkU0GFACK4gAsKroDgLipuUVzBuPyMGpNoEhOTeNUbE5NobhKNiZrExOQmmrhdjRrXaJS4xIgLLiDM+f1xqnuqu6uXmemZnh4+79eL13RXVVdVD9PVp85zzvOotjavl5014b60ZfHf6JDad9V43An611Hn6uOVp+hX+3xVPSs/atow3DDu1s3X5EJpCe7UXvygf4tenhixl0izFyEIfg3o+oEGdE0Pln5wtA9St/TmKCqQfENqTvqGhuiAc3W171DPsf/tat7zTwYO1OBu76ouqNkxvd/Lqg2K7T666DJJLXgftbXSwoVJi57eUN/8fQSN9fLY1o7f8AUyKS/39Q+HDMm+XSzmg09m0rp16etb2/l/1lm+w7u8XKqq0uYsszGXjHhEX57+48h1M+uf1wWT7olcl+T00/Ouf5g+g2uruoRqj8XkfCfERRclRtZGuuIKf1MfXC9um/Nd/Wqfr6ZvN3p0WorHxIy2AQPS0jsWtP5qZzNjhg9cbJdf6t6sChHgCs3g6l75SV4zoaKUW6Ni5vTtmbfq6O3/pDnbNc1yyHemdfhr65bZN6tX9cdZA8thqQGuLmU+UHf8Dn/QESP/qoWDowNlCePH+/TdpNUESo+Z/y67+uqWDR6Ixfwgk699zadql3xa0fnzpcMPT9o0PhCka/lnsl6hNLLNCI5Xlm1NqlNYCHfu9U1dMvUuSdLRo/8cXTMzdbZQpu+QhgYfnIi78sqmmlEpupX7mkxl1phW5xSl5+Rxv08aPCKF+rp22MEPngp8ZfoP9aVpd/gn9fX6w8Kr9c8j1uiZxWt9bW4zPzvyssv8zOR8jBzpaze10iuHn6fV47MMpJ8/P7muV2pAtyMKz+DqaDP/wg24+npp2rTincs2pIP9FQCl74tflL4w9WeSpBtnfk/jer2R1+seXXS5Fg17vPkHzKPRGr6+Tui1XjfPuqX5x2mGcKd5mTUm3WT3rv5Iuw14WXfM/aZ6VGYZRVIIobROw7r/J6+aP5J0zbQ701YnRmYHm8bMqUv5Z5rf8ExidO/6I8/x08/DLrkk8zHnzcvxBlAULWggnb7jr/XnA3xtisQNWra/t9AxoraqrYzfHPnP0q79XlZDzbsRW3rnT7xHjxx0eWI0WVSH3IljH/QPhg71o8emTk3clD4WBKKaTsrUUPOuzppwnzYsPz1p1X6Dn1Rtxadava5O//7hb6UZM/TQgVfq6cXr/FsLBbgn93lNvao2amxd03UwsTZXwGnBguzrm4FRlNjm1Nf7ovGSNCeofdHazn+zpMBNthSFMbmMM7bPGP9rXbbzz7Ie6td3BoH/mTPTC2tHSKQgDNK/VMS2qqZis54/9CJ/PvnOoo7Fkt7j+F7/StQceeqQS/TPI9boi7vc6YONY8b47/igrZH2+wil02MWdxZHHeWzDxSic6IAAa5+XT5Uj8qPtXHFqepR+am2NmY5rywp8+JBrGPH/G/a111ranllCyxLSgQKU+vGTuv/cqKN8L05N+nne38j8uX8pQKdQEWFr10XmlnS4v2EL2CLFqUNgku6Zlx6adPjPFPKrptyl+YPelq1lZuaXecqm6rYFjXmqp+9667Jz7P9vsLfL1nqQZbFnNzxJ/hfW1S6YpSODG2KxKCleEAo2G71+N9qRv2Lic9M/64fqqHbBu1ww2nJqQT79s2/zZNvuybT3+7220vyg7QrOlvazPDvsCOnK1y3jsFC7YQAV2fC6PQO4ZxzpHN2ui+5FkMeWtX5MWuWn60wcWLk6kydTEO6vaNlo/6sO+Z+M23drbNuih61nEE4x7BJ0uzZmlX/nHbq/XraTbYkHTw8ezCvR+XH6l6Ru6B0mW2NrGVw1MiImXMZGghHjHy4aV3ENh+uOE2zBz6f8Rzi729gzfvpubsjGi8LB/+ftGJF+lRwdAz1fqbQQwf+P31n5q3Zt3VOnx6zStdO/7Gm9fdF2VNzrkfW4MqzURv/237owC9qfK/1Gbfboe7NpNp+GTuey8ul887zo8fMNLH3a9qxbr0m9fEpPHTUUf5nZaX+ueqLumbanepZlfw5vHvvr6ss5lQ2f676LJkjxWLqWfWJ+lT7NAxVKanBXj78At2zz/Xp55LPd9b++0uShtX+W6eM+13u7TMco4IZXNgWTZ7sR28vWeKfFziVddYAV5Y2TaJjYMkSPbvkYp067rdp2+w5M2KkdRaJdsCIEZKa0h2N6vF28vp8RXQUlMe2qqHbBp1zWfemGaYDBiTSOKWlXz3zzMTDvGsjouj+sPBqvXjYhYn6dVlncI0cmTElaLYgVrk1+s9nXH2OGcqhWYeje76ln+x1Q+ZtzzpLGj487/pxqRJtlmzfmXmk2rlo8t16tg2yFQLIQyFmxOZj6tTk+5wWzBZbO+XutHuNbMb3el1njr8/fcXAgdK55yYuXZVlW3NfB4cMka65Rjr5ZGmffRLZX1rs5JNb93p0LEG7OfVe3sz57/6DDvILcvXptCa4kW/bvb5eWr5cOvvs5OUnneRnZHdGpZSiEO2CAFdnMmhQsc8AgaqyLYkp8fnK1BlUm0eQR4cf7juxunZNX7d4cdLT+A335Tv/VC8cdpFumX1zZLCpZ9Un+dUgkvSNPW7ThuVnqDpIf+IkqbZWDyy8Vv26fKgt4dGvQeeTlKHjP/DYosv1pQzpjcK2HHeyXjj0Iv1+4TWJZYNq3tV/z/kv/yScTqCx0Td+U9w256amJxGjP7pVbMp+DuFOrUzFaQOXTv2ZHzVbW8sXcUe1887SEUdo136v6Jgx/5tz86qyLUn/leWxrdL06Ym/pVc39kp+wdln5x3gMpOvvaP00dhhvas2Jj0fGEp7OKDL+zpuzB/8k5Qg+B/3v9oXpW9o8NNPZ8zwK2Ixn4qsGeI1RVJnS/Wo/NSnBenvUz5m+9yn2W8/afp0vXz4herX5cNmnY+k5AAXsC3q3r3puyZTbYkoeVyjsgW48grolJVpTM+3VJPyHVvWgjRFZeakq65KdAR0SUlF1OxBRGPHps0iTcwS22uv5A7+4He1JXWmz6BB0okntuz4aJnUWfQt0Kv6Y/Wpbko9nbNuZIbOp8g6W0Ha6pg5n35z7lz/Xbtunf++yyT0eYyZ00HDnsi8bXW1dO65aR27O0YVqY8671ijrw3SPyJN87Jl/ryj7jdS7Nb/5Vb3FQNopnPP9RlCCpDSLC/HHitX3b6pzGYPfE5fmn5H9MrhwxMDBipjW/IL9NfW+ppJBx6Y/d48nzbUTjvlHrCAkjas9t/a+/jBvu5tfJbibrslp6OM/x2tWOH76fKczRipOW333XZLnikm+e/rqVPze32BB8K1ufJy3yZZvrzYZ5IuyyxPtB0CXJ1Jnz7+wnr55cU+E7Qgx2qmWVYfrDg9vy+bTA2yuXNlQwYnnlbGtkhLl+r8Sb9smqacIYd0rkZhPCVZddkWda/8VJ8cc6qkHJ0BZ56ZCMZmGxVbHtuqZaMe0h/3vyrrOUjS8O7vaFSPtxLPkzrWwl/osZh0/vm+Mz9V/PcXBBOiTyo6LczW8O9p+vSs55r4f84RCEMRmUmf+1yLX15ujdLRRyeeP70hZRTlqFFJnVXZPmfh68KWDAGu1488V3s3PN20YMgQ7T/k//TRylMkSTfMuE03zvyef0/LloV2bupS/pnvCD7xRKlnz+QdV1UlHj635CLVd30v43kGu9PfDlmXNoMt4Ygjsr4+o1amrRpXt97/fggoY1vXnELzedSsPHDoE76YdoSYuaR6nGGJj2IwonXT1uQR32mf1Ayf3XN2uld/PegKScH3fvD+/rD/VZo/6OmkbZtdA8ssrQ5gmTX6zqsM57fFRbd9DhvxFx016uHmHR8ts+OO/mcBIytJgcsc7fuu5Zu0cYVvC0d+FwaDTJzk67QuXtwUSDLTj+d+S0Nr35GkpvbvpZfm/v5assR/vy9blhhcEx4U8+GK03RtfNBYuF28fLmOGPmw9h/yRGJRdVnQJog65u67+7ShOWxYfnpyuwRA+xg+XDr44Iz3rAVnlr2bIkN2mUi9euXeRrm/z2Pm9N7Rq2UmfRpuX6xcmf+5RBkc9Kek3i+h84rP4AotevnwC3XS+RF/q926pS+bNi1nXeucWhMca654n2Aeg1g6jJkzfWCvo+nf39dZO++8Yp/JNoUAV2czfHhycUAUx5FH+pQ1xx4bXeg9cPyYB/X4Ip+rOuu9a3NGbkSI19k5eezvdNqOD/gvgRUrmjaIT68OKbPGnIW143V1UoNzvauTZ5NM6L1ehw7/q39SXp4YwZqtQVxujaos26rdB7wUuT5mjTp8xF/8KOu0dSk7Xr3afy5OPtmnTgiOH2nGjPSp3XEZGsaJTq0DD/T/UoXT0CRe1PpRxmgnedZuk6Sder+W1qk1uc+r6a8L5WQvL8v8QbDQMVJnB4zv9bo2LD9d29W85ze5+mo/42DVKpkpUUw5cSP4uc8lBa2SZPowBh1Z2/d8O2MQPixrzcHBgxOzGZqllQGuvy3+gr7QzBm1QKc0apR0yCE+hVkmxx7rZ5XkESA4evSf9cCC6CLyMXMZWxD9u3zgjzFypKTMA3wSFi+O7FBqqHlXU4Lra2IPjY3aY8BLKosl77PFM6hCQa4ya4xOPxSkZGqMSu3WpYt+sOd3tdcgcrW1i8MO80GeEwpXxyXRxtt556TBK1HKrFE1FZt18tjf6dARf/V1NiLa2JlmMh8y/DF1CbIhJNq//frl11m9++7+XyA8eKZbxaamtomZbytMmyYNHKjb5tykGQNelCQ9s3ithnd/J/excmhOujEApS3rd/gxx/hZzxEm9v5ncs2tTPcoKarLc6cw7lH5qSSpZ7ze98CB6fW2mqtnT+nKK5PrjKFzC+5Bp/T5Z44N1er71TSrV/v6WUuXFna/2Rx9tB+sfc457XfMzmzKFF/7HO2GABfQFiorpR128DfDWaapD+/+jkZ0/3fu/bXyCzM+Wejre/xAC4c86fcXHoUakUu/zBpzF2aVdMfcb2rJiEcSz9cfeY7u2OtbSdt0q9ik2+d+p2lB0JmeabSzlGHka8jeg57W9/f8buJ5uKsgLTXS2LF+ZmNEoVdTyrZmUt++emzRZbp615T0B1OmSF//uu9AGDYssThRgHzMmOgClytXptdoIMDVOaR8Np84+LK0jtRf7nN9er2MyZN9+swrrtB23d7XC4demLw+GIVu5hJpPVNThppccidS96AuTMosjcT5ZOsgyxTgOuIIn+pEBZgAVV0tTZqUCLjnvcPWXP+YtQU0MfMdTUHB6Ug77+wDSi347PTv8r7eXX6GJH/dKa+M6Z1lZ+q7M2/RPg1PSZI2rjhVu/R7JSl98ropdyUG+/jXpnwv9+0rXXaZduv/onqF0rGa+X9f2/0Hqo2nOcxwLcs0myynBQsS6V4ypl3s1k06+ujoLr7Ro32nWrwOGtpWdbVvoxVw9HFiln5FRc7PRUO3DZJ8e3tMz7ekyy6T5s9v2qCxUSfu8HvNG/RM805i4ULfQRuehS1p8fBHdO++X4l8ScY2/OzZfn+hgW7x7+Ud6t5s3nkB2OaVZ0srHPSJjOz+VtqM76T7pfjs2xweOehyXTjpnrzPbeGQJ/XJylV5b59TXV1eNQjRSQQDsW6c+T39fcnF7XvssWP9gLT2THXXu7cPcpFmEyWKABfQ3k47LfEwZk5JY5yrq32B01SHHtqqQ9ZWbdaP534rfcWee0oTJkTWpYqZS/QT7bXdM/r1fl/W84delLbdwcMfT8wUUc+eGljzvh81lUdaxePG/DEpLUpYamM5PqJVks6feI8unnK3fxJ0NoSPlnOkdujcKsuC40yalLTJpD6vaVDNhogTK/cdDGvWJNLYbWrMMbK2okIaOVKXTf2plm7/kF9Gw6F0ZPtbjkpHkKJflw81uNu7yQvNfJqgIBXAyB4pge66Ot251zf1/Tnf9aO3167V92bflPQZTOpni/gMN20XnH+2FAeZZomatSgVR9ro9CuuSASqPr/Tfbpi5//Jf2eFGhEXFXwG0CrhwFHMnOqqPg4eN0qDBql39UdaOeZPmt7/ZUlSTUUoUB9cW2srN2lin9eT9hPlj/tfrR/PvbHp2ME3/6pxv4t+TSjY3+wUhRHKsg28mT5dO/d9NXrQzMqV7VcPBa2Xkuo93xpcn59wr/64/9Xp68Nf1lu26IYZ39fAmvfTt4sSf22PHtLatUkztCRpdI+3NC/D7MBbZ/+X7pj7TY3v1fTZ0jXXJNXCbdN6GxEz1wB0PlVluQdtvnDYxWmzYBJXxoYG6ZRT8krfP6XvP5PbEfK1tz89JjqIZSZVlzOoFC00YIC0dq1i5lTf9X3VlH+aeduOXL+qS/vWyQOKhQAX0N7GjUsULo9ZY3KXyzXXpNe9WL487Ya2ucx82pM0S5ZIq1ZFjkiNmUukKLxvv69qz+3+rlE93s5+oHB6vqgv+fhxgjy51+9+u67Y+aeRuwrP4Nq44lQtGPJk4vnp43+jXfu94p9MmCBde626VzQ1OPJJRfTFXe6UFNQkO/jgyM6n/l0/yL6T4P00upjKso1eC1ww+Zca3G2DdMYZ0XXA0DFlC7CMHetna+aQV5HjFIuGPa5ZA5/3f2cDB6pX9cdJn8FEh21DQ8b8zj+a+y3NGficTw2YLRgX1MKJFPVZjgrEZ7J8eVKdv6l9X9V5k36V/41AoQJchU4dASBJ+Ls3Jpf0Gd/aGPH5i7gGrJtyV3TaQzOZJV9LI5Mghvd54YWJ0bdZg1O5BPvMFSTbu+FpNR5/UsuPg44hntJakhYuTEsPnCb4++hd/VEiwJtRHgMtMif3TBefMRZll36v6ODhj+vJQ4LZkfPnp99jxAeJFbpfbtw4ae+9C7xTAB3RwG4f6MlDLsm5XWot4cQAmW7d/LUozxSFOvdcqbxc39jjNt025zu6edYtPsgWv75mm6XeHlpZWgIdTDCItHvlp9q4cnXm7erq/N9xhtr2RTV+fHqJEqATaqfqkwCixFJvYysq0u8y27OwZEjMGrUly8wkU6N08cXS/ff7BmnPnsk1OyZOlO6+WxoyRPrPf6SNG5tmgkyYIF1yibR2bcY0heHRYDUVm5NmhCSCX6tX+2PGYqqpjckdf4Lsxm/lDnCZ6ZyJ92lTY7nqKj+WdpqTHOQLHs8e+LzeWpqhHleK6rLc+cATClj8HO0gW2CkosLX28tR7yOffPEDu27Qvz6OSEOQITBl5nxw69RT09NlVFdLn36qxfHAdsoMxYTDDpM++CD7LK3Ua9KyZfkXc12wIPO2+d4Ajh0r/eY3LSvqHP6/I8AFtKlwACh1QExSTc+gtl+8dlXYvEHPaFr/f6Qtj9sa6iDb6swHI94J1QwKX6+6d/epEM9RM0IGmbW4jhdKz047SdddJ1VVac8br9bPX90pZ3rC/l1SBkXNmdP0+KSTpPfekzYnzzzIKcv33jvLzswdUAtbtCh9WfCetuaRkjwvkydLjz3m69kC2DY0Nmp8r3/l3ixlsF9a7a5jjpG+/OWkRY8uukyL7jtRr24M1ZgfPlwaO1YnbXkw+fXxdv7ChU3pai8O0srlU8ewUEaMkN56y7dP0Pl07x69vLxcuv76jpkxJBbzA06BTo4AF1BEZn40yOOLLm3qoG7r6c2hgulh29VsULfyTXru/QGSpLLU9ImSD1oFqsu2+M6pcMHtDaGRpA0NvhBrba30+uvSnXdKhx/etH6AP07UyNjG407w99zr1kl//7t0++1JTeDK2BZpjz18x3dc6PeWqJMRUXNLUuKG/qLJ8Rzec6K3k08vJ0k6OyLQFYw0m97/JZ/O0GjIdkr5BEYuvVS6KD2FZ9z4Xv/SS4ddEL0y+Ntdf9QaHf/gUfr232f4ZVdcIW3alHF2lUnS5z8fPeJx1SrpS1/Kfd6pteGynF/iRnTgwPSOvj339EGotJMsQLfyuHH+fbYkrWc48EeAC2hT8dpZW4870QeD3ODEukQ9oHHjpCOP9I/r6nyb5K67JEn/PGJNdGpgKTRjuumaEpNLvz727Zv13FokOHaXPAYqoBMJvltn1L+oxw6+XFL2bAp9qoP6cFdckT6CO95+vidL7ZigU2zmgBea/s5Dac1T9a7+qOnJ6NFZzy2j4Htxc3hA2zHHtGxfkq8tumFDxxzBDqBt5FlXOjWQnvg2j7fV6+ulc87Rlb//iR7412jd+/o4Te7zmvp3+VCvbuwjd3xoMGFUf0m/fv5nbW16QL89A1yHHCL16tXqDDzoQEaPlp57Tho0SDr22MzbRQzcAtB+6O0BiihmjdK6dZr4uR6+A1dKb7AVooM4PFMiSI+Y6vUj12jpqIeSzi0trZpzunXWTerf5X2N6/Wv9HNLLepdV+cblEOH+iKZEXWCUtMVSKHd1tdHNmArYlulpUuTF4beY8ycH6UyfXraa5MPkOF5quHDE0Xmk8yfL02YoD8dcJV+NPfbHTv3MpqvVy//c/Dg7NtJ/qYqniYwQ8284d3fiVwe/rtJPIqnOAh/ZlauTHqZmcv8t7v99oUbQZ3PNWjJkvzzey9e7APg+d74mfk0Yy2ZzRqL+c/pvHmFuZYCSBL+VMVnOMXM+TpG4RSF8fZEaidTqE3S0G1D5o9psCK+fvseb2pG/Yu+o6G+viml3JQp/hpzQfKAgr7x4ENLOKfNx56kbhWb8tue9ESdU6Y2nnN6d/kZ2m/wU/55tg6u+GzqqNTGs2ZJgwbpWzNv03OHrvUzw6Pqa555ZvLzCy/0nW4tEcwQO3jYYzpm9B99bdBddmnZviT/nUtwC9i2zJ3rf2aqNRlcO9NmcJnz167Fi5OWnzvxXk3p82ri+c/mf0MvH3Z+8j7rUjJeTJ2aPJA2VXvOqqmp8YN34veRKH2nny5ddZUfzEoddaDDYgYXUERl5vyXZJYRmgXplM0z8BJOIVRmTqN7vtm08vzzpV/8Qku3f1j7D/0/f+52cfIOqqqkNWuaNVOiIpajdlVw7uEUhZGvCb1Hk/OdXJl+d7l+p/mef02NnymTIz1ds/aJjuPSS306odTAbSZDh0o33ND8/2uz/D6ju+4q/eUviVScY3q8Kdl2zTtWSwSfl9p4nbvWXpPmzm26GW4PUWmZABTcPz4MZk8NHepT8yxY4K+Jkk8H3BrBdTU+Q/u5Q9f65fX1frZ3nFny9eWzz/TqEWvUr/pDSXu1+PAVzanhledodpSYLIHLRKpAs+z1Luvr/ezqqHZF166+8yxXm3L0aH/fcN11/nmmmq4HH+yzJ8RfE6W2Vjr7bO14zTX6zuf+W9LU7McGgFQHHeTvuzMNCAyunakzuGLmfIA+4r4i3CcxIKom9oEHSh9+KD3+uH++fHl6uvawjpg2DqUjFpN69Cj2WQDIgQAXUESRKXOc028XfEmfbKnU25/USlaAm81co4kTI6uaGp5l1qgR3d/x6QB69vS1tILtelRm6egeNqxZpzax9+u6a/7XtPDeU7JuZ6HaF5H960mzYHJ0wOf6fbR0enm2/RLgKj3l5c1PaZHr/3mffdKXnX56Ws75XEGkD44+zdepy3Z92JojeJyv4IbxNwu+rE9GTpCGHBW9HbMWgG3LqlXSV29MPB3f63X/YOed/c+JE6Vrr5XOPFNnTPi1Fg55UlL/3PutqkofnR2Y2vdVLR315/zPccAADe62oXXpiZo7O5sAV+eUz3fc9dfnbgdkC4AV0rx5fkbF00/7Wd2ZhDMUMNMZQHPFYn5gSybB/Uh4BlfPyo80vd/LklLKCcTrAkaUMEhSUyOdeKL0xhs+nXum4NaKFT7QnzJLDADQ+dDjChRRLLW4qiQ5p9kDn9e+g/+mo0f/uTA3m/F0IxMmRK+PSB0QM9d0kx4fadoGKfhi5rRgyFPpK+I33MGIq3jwbfn2f4reUejcGp1l/72lpm5LHdVVXZ1cqyzf/4NsAYV3MqSnw7Zj3jzpgAPSl48Z42dISprc55+qjOWu81JbuUmVZTkCWP3z6EjOx/Tp0tixqj9uoYavXdrymZEAOpcJE2QjR0iS3jzqbD15yKXS8cdLc0J1LWtqpLVrVRFr1A51b0bvJ16TK+7aa6NHW0+dqrqqj3Xr7JvzP8faWl8PNJ+ahJnk2/aJ1yRtTQ0jdFyZ0vCG/z4KWX+jEN+pZWW+7Z+hlicAtLmIwa9vLztbXzrvnYzXudTZXgmheuCS/KzYbMG1adN8armWpnEFAJQMAlxAEeWaiSSpMDN/5s/3NbCOOy56fUTqgDJrlM4913e+x1/XFueWom/1B75GwamnBgt8yqMu5ZslSTfPuiX6hcG57NL3H9q34W/ZDzJmjHTJJU3PozrSMtQqy+qzLIGJsWObvz90LvX1OTusThr7oDYdm302Y9723NMH1Naubd1+Kiqk1aulmTOzb3fKKf7zetZZrTsegJITr7+lsWPT2wbhOkJR7YaZM307JS7TbKtMbZhc6urap4N/+nTpW9+i7kZnc+KJvmZW1ACVYqGQPYBS0bOndNVVSZliYnLRNbOC+6SFQ57Unts9K02e3LRu/nw/I6u5GIAHANsEUhQCxRB08ESmKExViEZZLJY9PUmmGVxDh0pnnNH642cydqz0zDOJpxdPvlvnTfylNGqRT1EU3+aww3T9p7fr4sm/yLyv4Pf08EFXBs8zFLqN69ev6XGuQF2+/wfZUiANHOjzjNPxte3Klrs79W8w37+5bDnlKyqkfffNbz+FMGqUdNllwZPX2++4AIoukUY407Xr4IOlu+4qbJCgvWr5kX512zZpkv+XSRtkN8hp1Chfl7OZacFzKsZ7AdD59eihJcMf0YefVemXr41vGhSTKmhDzBr4vGYNfF5SKMC1++7MRgUAZESACyiiHpWf5N6oPUYdde8uKTnAVZahPlhBnXaaHxkbGNXjbVWXp9SuMJNmz1av229Xr+osReqnT5cefDD/Y4cDCrlqc+QKgC1YIL30UnIdgyiZCoGjczv1VP/3kW0WX2oHaj6f++uu6/ijEjv6+QEoiMQnPdNnft48aa+9Mq9vbhCpV6/2q6kxcqT0yivJA2OAuLb6nss2gMVMWrmyfY8JAK1w8PDHdfDwx7NvlO0alG2gIABgm0eACyiGXXfVi4ddoGGzI0ZepgaR2qODuKZGWrNGjQc+n1gUObKq0AGu0Hv7aOUp6lL2WdryvC1Z4msO/fjH+b+mrk765JPMdRXq6qQNG3xqmmzC9bqAVDvu6P9l09Dg/732Wv77jc9yBIAiiX9dJ9oM2QaEZPtu37Il87oobZAiOaP99/fpV1NrfwBtqRjBJgJcANrDfvtFL09Nvzptmv8O3ryZ2VsAgKyowQUUQ58+GnHzxYodF1GIvFjpQYYNU2PTGGz1rtqYvk0bBt+6ln/WtLtcI7mXLk1fVlEhjR/fvHO7/HJfeD7TtmvWSMuW+ZHnQFuKxaQLLsi9HemDAHRApuDalGtGdCY77+x/jhlTmBMqpKoqadYsX0cESFXo7+UxY3y7dMSIwu43m3i6z/ZK+wlg27Xnnj5oFSUc4Lr0UmmnnXwN4yFD2ufcAAAlixlcQLFkmn2ReqPcjrUf4sVf3fEnRG/QrVv7nMjIkZnXLVok7bFH9LrwiO58RqHm2qZnT5/vG2gP4UBrXV30Nlu3ts+5FAopCoFtgpmTTjih5Z/5ESOkK6/MPwUR1xZ0FPPmSf/7v9I++xRmf6ef7r/rWxosbonFi6WDDmrfYwLYNmXLQBG+N+/bt+3PBQDQadCKBTqarl2Tnw8Y0G6H3upydBgtWSJt2iQ9+aR/XogUQd26SRuD2WLnn+/3ma1WVbab73AwkM4vlKLPf1569FE/ujHKkCHS3/8u1da273k1kxOfP2BbYI0+6B6TkyZPzrF1DpkC+2E77CA9+2zrjwUUyoAB0g03FC5tpllxAk0EtwAUm5l00kl+wC/38gCAZqAlC3Q0M2ZIL73kO3FGjWrXlDjbdX0v+wbdu0urVvlR2lJhbobPOEO6+24/MyufAu7ZGruZamkBpWLkyOwzGBcs8NeEDl4LhkyKwDYimFXabv1QJ57oA1zhlMRAsbVnTTgA6Mw6+D0OAKBjIsAFdDQVFdJxxxXl0GdNuF8njf29fzJ0aO4XFKLY66BBvsMqX9k6Ebp39/vq3r315wV0RJWV0pw5xT6LnLY6OvuAbcIRR0gXS3b08vY5XnW1NGlS+xwLAAAUFjOzAABtgAAXgISymFNt5SZfA+OMMzJveO21Ph1gRxyxSscXUHQEuIBtQ8XwBs2YIVXtNqXYpwIAADq6jth/AAAoeQS4AKTbYYfss7NqatrvXFIx6gvo8HLW8wPQKZhJDz5Y7LMAAAAlYcSIYp8BAKATIsAFoLSUlRX7DADksKWRzykAAAAASVdcIa1f7wfSAgBQYMwPBpCuI6YOiDeGd9yxuOcBIKfN8QAXMy4BAACAbVvv3tKECcU+CwBAJ8UMLgClYfVqafNmqaqq2GcCIIfNW2leAAAAAAAAoG11wGkaAIquI866MCO4BZSIzY0EuAAAAAAAANC2CHABaDJokP85cWJRTwNAafuMGlwAAAAAAABoYwyxBtDknHOkt96SGhqKfSYASthmAlwAAAAAAABoYwS4ADSpqpIGDy72WQAocdTgAgAAAAAAQFujBwoAABTUkhGPqEflJ8U+DQAAAAAAAHRi1OACAAAFddqOD+gX+3yt2KcBAAAAAACATixngMvMGszsATN7xsyeNrPVwfJeZna/mb0Q/KwLlpuZXWdmL5rZk2Y2ObSv5cH2L5jZ8rZ7WwAAAAAAAAAAAOis8pnBtUXSWc65sZKmSVplZmMlrZH0G+fcKEm/CZ5L0j6SRgX/jpd0g+QDYpLWStpV0i6S1saDYgAAoBNqbCz2GQAAAAAAAKCTyhngcs694Zx7LHj8oaRnJW0n6QBJtwSb3SLpwODxAZJudd5DknqaWb2k+ZLud86965zbIOl+SXsX8s0AAIAOZOvWYp8BAAAAAAAAOqlm1eAys6GSJkl6WFJ/59wbwao3JfUPHm8n6bXQy14PlmVannqM483sETN75N///ndzTg8AAHQkzOACAAAAAABAG8k7wGVm3STdKel059wH4XXOOSfJFeKEnHM3OuemOuem9u3btxC7BAAAxcAMLgAAAAAAALSRvAJcZlYhH9y6zTn3k2DxW0HqQQU/3w6Wr5fUEHr5oGBZpuUAAKAzIsAFAAAAAACANpIzwGVmJum7kp51zl0bWvVzScuDx8sl/Sy0fJl50yS9H6QyvFfSPDOrM7M6SfOCZQAAoDPZf3+ppkbaa69inwkAAAAAAAA6qfI8ttld0lJJT5nZE8Gy8yVdKelHZnaMpFclLQnW3SNpX0kvSvpY0gpJcs69a2aXSvprsN0XnHPvFuJNAACADmS//aR995XMin0mAAAAAAAA6KTMl8/qmKZOneoeeeSRYp8GAAAAAAAAAAAA2pmZPeqcmxq1Lq8aXAAAAAAAAAAAAEBHQYALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSQoALAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpBDgAgAAAAAAAAAAQEkhwAUAAAAAAAAAAICSYs65Yp9DRmb2b0mvFvs8SkwfSe8U+yQAbLO4BgEoJq5BAIqN6xCAYuIaBKCYuAahrQxxzvWNWtGhA1xoPjN7xDk3tdjnAWDbxDUIQDFxDQJQbFyHABQT1yAAxcQ1CMVAikIAAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuDqfG4t9AgC2aVyDABQT1yAAxcZ1CEAxcQ0CUExcg9DuqMEFAAAAAAAAAACAksIMLgAAAAAAAAAAAJQUAlydhJntbWbPmdmLZram2OcDoPMws1fM7Ckze8LMHgmW9TKz+83sheBnXbDczOy64Fr0pJlNDu1nebD9C2a2vFjvB0DHZ2Y3mdnbZva30LKCXXfMbEpwXXsxeK217zsE0JFluAatM7P1QXvoCTPbN7TuvOB68pyZzQ8tj7xHM7NhZvZwsPyHZlbZfu8OQEdnZg1m9oCZPWNmT5vZ6mA5bSEAbS7LNYi2EDokAlydgJmVSfq6pH0kjZV0uJmNLe5ZAehkZjvnJjrnpgbP10j6jXNulKTfBM8lfx0aFfw7XtINkr8Zk7RW0q6SdpG0Nn5DBgARbpa0d8qyQl53bpB0XOh1qccCsG27WdHXhS8H7aGJzrl7JCm47zpM0rjgNd8ws7Ic92hfDPY1UtIGSce06bsBUGq2SDrLOTdW0jRJq4LrB20hAO0h0zVIoi2EDogAV+ewi6QXnXMvO+c2S7pd0gFFPicAndsBkm4JHt8i6cDQ8lud95CknmZWL2m+pPudc+865zZIul/cRAHIwDn3oKR3UxYX5LoTrOvunHvI+WK0t4b2BQCZrkGZHCDpdufcJufcPyS9KH9/FnmPFsySmCPpjuD14esZAMg594Zz7rHg8YeSnpW0nWgLAWgHWa5BmdAWQlER4OoctpP0Wuj568p+4QGA5nCS7jOzR83s+GBZf+fcG8HjNyX1Dx5nuh5xnQLQWoW67mwXPE5dDgC5nBKk/7opNAuiudeg3pLec85tSVkOAGnMbKikSZIeFm0hAO0s5Rok0RZCB0SACwCQyx7Oucny08pXmdnM8Mpg1J8rypkB2CZx3QFQBDdIGiFpoqQ3JH2pqGcDoNMzs26S7pR0unPug/A62kIA2lrENYi2EDokAlydw3pJDaHng4JlANBqzrn1wc+3Jf2P/DTzt4LUFgp+vh1snul6xHUKQGsV6rqzPnicuhwAMnLOveWc2+qca5T0bfn2kNT8a9B/5NOHlacsB4AEM6uQ71i+zTn3k2AxbSEA7SLqGkRbCB0VAa7O4a+SRpnZMDOrlC/s9/MinxOATsDMasysNv5Y0jxJf5O/xiwPNlsu6WfB459LWmbeNEnvB2k07pU0z8zqgmns84JlAJCvglx3gnUfmNm0IP/7stC+ACBSvFM5cJB8e0jy16DDzKzKzIZJGiXpL8pwjxbMunhA0iHB68PXMwBQ0D75rqRnnXPXhlbRFgLQ5jJdg2gLoaMqz70JOjrn3BYzO0W+8VIm6Sbn3NNFPi0AnUN/Sf/j2zcql/R959yvzOyvkn5kZsdIelXSkmD7eyTtK19U9GNJKyTJOfeumV0q38CRpC845/It3g5gG2NmP5A0S1IfM3td0lpJV6pw152TJd0sqYukXwb/AEBSxmvQLDObKJ8S7BVJJ0iSc+5pM/uRpGckbZG0yjm3NdhPpnu0cyXdbmaXSXpcvhMJAOJ2l7RU0lNm9kSw7HzRFgLQPjJdgw6nLYSOyHzQFAAAAAAAAAAAACgNpCgEAAAAAAAAAABASSHABQAAAAAAAAAAgJJCgAsAAAAAAAAAAAAlhQAXAAAAAAAAAAAASgoBLgAAAAAAAAAAAJQUAlwAAAAA0Axm1tvMngj+vWlm64PHG83sG2143Flmtltb7R8AAAAASkl5sU8AAAAAAEqJc+4/kiZKkpmtk7TROXdNOxx6lqSNkv7UDscCAAAAgA6NGVwAAAAAUADBDKu7g8frzOwWM/uDmb1qZovM7Coze8rMfmVmFcF2U8zs92b2qJnda2b1wfLTzOwZM3vSzG43s6GSTpR0RjBbbIaZLTSzh83scTP7tZn1b+axXwkt/4uZjSzKLw4AAAAAWoAAFwAAAAC0jRGS5kjaX9L3JD3gnBsv6RNJ+wWBpuslHeKcmyLpJkmXB69dI2mSc26CpBOdc69I+qakLzvnJjrn/iDpj5KmOecmSbpd0jn5Hju03fvB8q9J+kqB3z8AAAAAtBlSFAIAAABA2/ilc+4zM3tKUpmkXwXLn5I0VNJoSTtKut/MFGzzRrDNk5JuM7OfSvpphv0PkvTDYNZXpaR/NOPYcT8I/fxys98hAAAAABQJM7gAAAAAoG1skiTnXKOkz5xzLljeKD/Y0CQ9HczImuicG++cmxdss5+kr0uaLOmvZhY1OPF6SV8LZmCdIKm6GceOcxkeAwAAAECHRoALAAAAAIrjOUl9zWy6JJlZhZmNM7OYpAbn3AOSzpXUQ1I3SR9Kqg29voek9cHj5S08h0NDP//cwn0AAAAAQLsjRSEAAAAAFIFzbrOZHSLpOjPrIX9/9hVJz0v6XrDMJF3nnHvPzO6SdIeZHSDpVEnrJP3YzDZI+q2kYS04jToze1J+xtfhrX1PAAAAANBerClTBQAAAABgW2Fmr0ia6px7p9jnAgAAAADNRYpCAAAAAAAAAAAAlBRmcAEAAAAAAAAAAKCkMIMLAAAAAAAAAAAAJYUAFwAAAAAAAAAAAEoKAS4AAAAAAAAAAACUFAJcAAAAAAAAAAAAKCkEuAAAAAAAAAAAAFBSCHABAAAAAAAAAACgpPx/Taa0BNrWmiUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
      " + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(30,8))\n", + "plt.plot(Y, color = 'red', linewidth=2.0, alpha = 0.6)\n", + "plt.plot(Y_pred, color = 'blue', linewidth=1)\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MAPE: 2.0572089029888656 %\n" + ] + } + ], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "f8f3967282314d3995245835bdaa8418", + "translation_date": "2025-09-03T19:58:46+00:00", + "source_file": "7-TimeSeries/3-SVR/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/3-SVR/working/notebook.ipynb b/translations/zh-CN/7-TimeSeries/3-SVR/working/notebook.ipynb new file mode 100644 index 000000000..a6926e949 --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/3-SVR/working/notebook.ipynb @@ -0,0 +1,705 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "fv9OoQsMFk5A" + }, + "source": [ + "# 使用支持向量回归器进行时间序列预测\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "在本笔记中,我们将演示如何:\n", + "\n", + "- 准备二维时间序列数据以训练SVM回归模型\n", + "- 使用RBF核实现SVR\n", + "- 通过图表和MAPE评估模型\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 导入模块\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "M687KNlQFp0-" + }, + "outputs": [], + "source": [ + "import os\n", + "import warnings\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import pandas as pd\n", + "import datetime as dt\n", + "import math\n", + "\n", + "from sklearn.svm import SVR\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "from common.utils import load_data, mape" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cj-kfVdMGjWP" + }, + "source": [ + "## 准备数据\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8fywSjC6GsRz" + }, + "source": [ + "### 加载数据\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "aBDkEB11Fumg", + "outputId": "99cf7987-0509-4b73-8cc2-75d7da0d2740" + }, + "outputs": [ + { + "data": { + "text/html": [ + "
      \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
      load
      2012-01-01 00:00:002698.0
      2012-01-01 01:00:002558.0
      2012-01-01 02:00:002444.0
      2012-01-01 03:00:002402.0
      2012-01-01 04:00:002403.0
      \n", + "
      " + ], + "text/plain": [ + " load\n", + "2012-01-01 00:00:00 2698.0\n", + "2012-01-01 01:00:00 2558.0\n", + "2012-01-01 02:00:00 2444.0\n", + "2012-01-01 03:00:00 2402.0\n", + "2012-01-01 04:00:00 2403.0" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "energy = load_data('../../data')[['load']]\n", + "energy.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O0BWP13rGnh4" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 486 + }, + "id": "hGaNPKu_Gidk", + "outputId": "7f89b326-9057-4f49-efbe-cb100ebdf76d" + }, + "outputs": [], + "source": [ + "energy.plot(y='load', subplots=True, figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IPuNor4eGwYY" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ysvsNyONGt0Q" + }, + "outputs": [], + "source": [ + "train_start_dt = '2014-11-01 00:00:00'\n", + "test_start_dt = '2014-12-30 00:00:00'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 548 + }, + "id": "SsfdLoPyGy9w", + "outputId": "d6d6c25b-b1f4-47e5-91d1-707e043237d7" + }, + "outputs": [], + "source": [ + "energy[(energy.index < test_start_dt) & (energy.index >= train_start_dt)][['load']].rename(columns={'load':'train'}) \\\n", + " .join(energy[test_start_dt:][['load']].rename(columns={'load':'test'}), how='outer') \\\n", + " .plot(y=['train', 'test'], figsize=(15, 8), fontsize=12)\n", + "plt.xlabel('timestamp', fontsize=12)\n", + "plt.ylabel('load', fontsize=12)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XbFTqBw6G1Ch" + }, + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "现在,您需要通过过滤和缩放数据来准备训练数据。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cYivRdQpHDj3", + "outputId": "a138f746-461c-4fd6-bfa6-0cee094c4aa1" + }, + "outputs": [], + "source": [ + "train = energy.copy()[(energy.index >= train_start_dt) & (energy.index < test_start_dt)][['load']]\n", + "test = energy.copy()[energy.index >= test_start_dt][['load']]\n", + "\n", + "print('Training data shape: ', train.shape)\n", + "print('Test data shape: ', test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "将数据缩放到范围 (0, 1)。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 363 + }, + "id": "3DNntGQnZX8G", + "outputId": "210046bc-7a66-4ccd-d70d-aa4a7309949c" + }, + "outputs": [], + "source": [ + "scaler = MinMaxScaler()\n", + "train['load'] = scaler.fit_transform(train)\n", + "train.head(5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "26Yht-rzZexe", + "outputId": "20326077-a38a-4e78-cc5b-6fd7af95d301" + }, + "outputs": [], + "source": [ + "test['load'] = scaler.transform(test)\n", + "test.head(5)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "x0n6jqxOQ41Z" + }, + "source": [ + "### 创建具有时间步的数据\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fdmxTZtOQ8xs" + }, + "source": [ + "对于我们的SVR,我们将输入数据转换为`[batch, timesteps]`的形式。因此,我们重新调整现有的`train_data`和`test_data`,使其具有一个新的维度,该维度表示时间步。在我们的示例中,我们取`timesteps = 5`。因此,模型的输入是前4个时间步的数据,输出将是第5个时间步的数据。\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Rpju-Sc2HFm0" + }, + "outputs": [], + "source": [ + "# Converting to numpy arrays\n", + "\n", + "train_data = train.values\n", + "test_data = test.values" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Selecting the timesteps\n", + "\n", + "timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "O-JrsrsVJhUQ", + "outputId": "c90dbe71-bacc-4ec4-b452-f82fe5aefaef" + }, + "outputs": [], + "source": [ + "# Converting data to 2D tensor\n", + "\n", + "train_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "exJD8AI7KE4g", + "outputId": "ce90260c-f327-427d-80f2-77307b5a6318" + }, + "outputs": [], + "source": [ + "# Converting test data to 2D tensor\n", + "\n", + "test_data_timesteps=None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "2u0R2sIsLuq5" + }, + "outputs": [], + "source": [ + "x_train, y_train = None\n", + "x_test, y_test = None\n", + "\n", + "print(x_train.shape, y_train.shape)\n", + "print(x_test.shape, y_test.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8wIPOtAGLZlh" + }, + "source": [ + "## 创建SVR模型\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EhA403BEPEiD" + }, + "outputs": [], + "source": [ + "# Create model using RBF kernel\n", + "\n", + "model = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GS0UA3csMbqp", + "outputId": "d86b6f05-5742-4c1d-c2db-c40510bd4f0d" + }, + "outputs": [], + "source": [ + "# Fit model on training data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rz_x8S3UrlcF" + }, + "source": [ + "### 进行模型预测\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XR0gnt3MnuYS", + "outputId": "157e40ab-9a23-4b66-a885-0d52a24b2364" + }, + "outputs": [], + "source": [ + "# Making predictions\n", + "\n", + "y_train_pred = None\n", + "y_test_pred = None" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_2epncg-SGzr" + }, + "source": [ + "## 分析模型性能\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Scaling the predictions\n", + "\n", + "y_train_pred = scaler.inverse_transform(y_train_pred)\n", + "y_test_pred = scaler.inverse_transform(y_test_pred)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xmm_YLXhq7gV", + "outputId": "18392f64-4029-49ac-c71a-a4e2411152a1" + }, + "outputs": [], + "source": [ + "# Scaling the original values\n", + "\n", + "y_train = scaler.inverse_transform(y_train)\n", + "y_test = scaler.inverse_transform(y_test)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "u3LBj93coHEi", + "outputId": "d4fd49e8-8c6e-4bb0-8ef9-ca0b26d725b4" + }, + "outputs": [], + "source": [ + "# Extract the timesteps for x-axis\n", + "\n", + "train_timestamps = None\n", + "test_timestamps = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(25,6))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.title(\"Training data prediction\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "LnhzcnYtXHCm", + "outputId": "f5f0d711-f18b-4788-ad21-d4470ea2c02b" + }, + "outputs": [], + "source": [ + "print('MAPE for training data: ', mape(y_train_pred, y_train)*100, '%')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 225 + }, + "id": "53Q02FoqQH4V", + "outputId": "53e2d59b-5075-4765-ad9e-aed56c966583" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(10,3))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "clOAUH-SXCJG", + "outputId": "a3aa85ff-126a-4a4a-cd9e-90b9cc465ef5" + }, + "outputs": [], + "source": [ + "print('MAPE for testing data: ', mape(y_test_pred, y_test)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DHlKvVCId5ue" + }, + "source": [ + "## 全数据集预测\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cOFJ45vreO0N", + "outputId": "35628e33-ecf9-4966-8036-f7ea86db6f16" + }, + "outputs": [], + "source": [ + "# Extracting load values as numpy array\n", + "data = None\n", + "\n", + "# Scaling\n", + "data = None\n", + "\n", + "# Transforming to 2D tensor as per model input requirement\n", + "data_timesteps=None\n", + "\n", + "# Selecting inputs and outputs from data\n", + "X, Y = None, None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ESSAdQgwexIi" + }, + "outputs": [], + "source": [ + "# Make model predictions\n", + "\n", + "# Inverse scale and reshape\n", + "Y_pred = None\n", + "Y = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 328 + }, + "id": "M_qhihN0RVVX", + "outputId": "a89cb23e-1d35-437f-9d63-8b8907e12f80" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(30,8))\n", + "# plot original output\n", + "# plot predicted output\n", + "plt.legend(['Actual','Predicted'])\n", + "plt.xlabel('Timestamp')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "AcN7pMYXVGTK", + "outputId": "7e1c2161-47ce-496c-9d86-7ad9ae0df770" + }, + "outputs": [], + "source": [ + "print('MAPE: ', mape(Y_pred, Y)*100, '%')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "Recurrent_Neural_Networks.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + }, + "coopTranslator": { + "original_hash": "e86ce102239a14c44585623b9b924a74", + "translation_date": "2025-09-03T20:00:54+00:00", + "source_file": "7-TimeSeries/3-SVR/working/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} \ No newline at end of file diff --git a/translations/zh-CN/7-TimeSeries/README.md b/translations/zh-CN/7-TimeSeries/README.md new file mode 100644 index 000000000..f1d427adb --- /dev/null +++ b/translations/zh-CN/7-TimeSeries/README.md @@ -0,0 +1,28 @@ +# 时间序列预测简介 + +什么是时间序列预测?它是通过分析过去的趋势来预测未来事件。 + +## 区域主题:全球电力使用 ✨ + +在这两节课中,你将了解时间序列预测,这是一种相对较少被人熟知但在工业和商业应用等领域极具价值的机器学习领域。虽然神经网络可以用来增强这些模型的效用,但我们将从经典机器学习的角度研究它们,因为这些模型可以根据过去的数据预测未来的表现。 + +我们的区域重点是全球电力使用,这是一个有趣的数据集,可以用来学习如何根据过去的负载模式预测未来的电力使用情况。你会发现这种预测在商业环境中非常有帮助。 + +![电网](../../../translated_images/zh-CN/electric-grid.0c21d5214db09ffa.webp) + +照片由 [Peddi Sai hrithik](https://unsplash.com/@shutter_log?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) 在拉贾斯坦邦的道路上拍摄的电力塔,发布于 [Unsplash](https://unsplash.com/s/photos/electric-india?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText) + +## 课程 + +1. [时间序列预测简介](1-Introduction/README.md) +2. [构建 ARIMA 时间序列模型](2-ARIMA/README.md) +3. [构建支持向量回归器进行时间序列预测](3-SVR/README.md) + +## 致谢 + +“时间序列预测简介”由 [Francesca Lazzeri](https://twitter.com/frlazzeri) 和 [Jen Looper](https://twitter.com/jenlooper) ⚡️ 编写。相关笔记本最初出现在 [Azure "Deep Learning For Time Series" 仓库](https://github.com/Azure/DeepLearningForTimeSeriesForecasting),由 Francesca Lazzeri 编写。SVR 课程由 [Anirban Mukherjee](https://github.com/AnirbanMukherjeeXD) 编写。 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/1-QLearning/README.md b/translations/zh-CN/8-Reinforcement/1-QLearning/README.md new file mode 100644 index 000000000..827398ac5 --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/1-QLearning/README.md @@ -0,0 +1,247 @@ +# 强化学习与Q学习简介 + +![机器学习中强化学习的总结图](../../../../sketchnotes/ml-reinforcement.png) +> Sketchnote by [Tomomi Imura](https://www.twitter.com/girlie_mac) + +强化学习涉及三个重要概念:代理、状态和每个状态的一组动作。通过在指定状态下执行一个动作,代理会获得奖励。想象一下电脑游戏《超级马里奥》。你是马里奥,处于一个游戏关卡中,站在悬崖边上。你的上方有一个金币。你作为马里奥,处于游戏关卡中的特定位置……这就是你的状态。向右移动一步(一个动作)会让你掉下悬崖,这会给你一个较低的数值分数。然而,按下跳跃按钮会让你得分并保持存活。这是一个积极的结果,应该奖励你一个正数分数。 + +通过使用强化学习和模拟器(游戏),你可以学习如何玩游戏以最大化奖励,即保持存活并尽可能多地得分。 + +[![强化学习简介](https://img.youtube.com/vi/lDq_en8RNOo/0.jpg)](https://www.youtube.com/watch?v=lDq_en8RNOo) + +> 🎥 点击上方图片观看 Dmitry 讨论强化学习 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +## 前提条件与设置 + +在本课中,我们将用 Python 实验一些代码。你应该能够在你的电脑或云端运行本课的 Jupyter Notebook 代码。 + +你可以打开[课程笔记本](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/notebook.ipynb),并按照课程内容进行学习。 + +> **注意:** 如果你从云端打开代码,还需要获取 [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py) 文件,该文件在笔记本代码中使用。将其添加到与笔记本相同的目录中。 + +## 简介 + +在本课中,我们将探索**《彼得与狼》**的世界,这个故事灵感来源于俄罗斯作曲家[谢尔盖·普罗科菲耶夫](https://en.wikipedia.org/wiki/Sergei_Prokofiev)创作的音乐童话。我们将使用**强化学习**让彼得探索他的环境,收集美味的苹果并避免遇到狼。 + +**强化学习**(RL)是一种学习技术,它通过运行许多实验让我们学习代理在某个**环境**中的最佳行为。代理在这个环境中应该有某种**目标**,由**奖励函数**定义。 + +## 环境 + +为了简化,我们将彼得的世界设定为一个大小为 `width` x `height` 的方形棋盘,如下所示: + +![彼得的环境](../../../../8-Reinforcement/1-QLearning/images/environment.png) + +棋盘中的每个单元格可以是: + +* **地面**,彼得和其他生物可以在上面行走。 +* **水域**,显然无法在上面行走。 +* **树**或**草地**,可以休息的地方。 +* **苹果**,彼得很高兴找到的食物。 +* **狼**,危险的生物,应避免接触。 + +有一个单独的 Python 模块 [`rlboard.py`](https://github.com/microsoft/ML-For-Beginners/blob/main/8-Reinforcement/1-QLearning/rlboard.py),包含了与这个环境交互的代码。由于这些代码对理解我们的概念并不重要,我们将导入模块并使用它创建示例棋盘(代码块 1): + +```python +from rlboard import * + +width, height = 8,8 +m = Board(width,height) +m.randomize(seed=13) +m.plot() +``` + +这段代码应该打印出类似上图的环境。 + +## 动作与策略 + +在我们的示例中,彼得的目标是找到苹果,同时避免狼和其他障碍物。为此,他可以在棋盘上四处走动,直到找到苹果。 + +因此,在任何位置,他可以选择以下动作之一:向上、向下、向左和向右。 + +我们将这些动作定义为一个字典,并将它们映射到对应的坐标变化。例如,向右移动(`R`)对应于坐标对 `(1,0)`。(代码块 2): + +```python +actions = { "U" : (0,-1), "D" : (0,1), "L" : (-1,0), "R" : (1,0) } +action_idx = { a : i for i,a in enumerate(actions.keys()) } +``` + +总结一下,这个场景的策略和目标如下: + +- **策略**:我们的代理(彼得)的策略由所谓的**策略函数**定义。策略函数在任何给定状态下返回动作。在我们的例子中,问题的状态由棋盘表示,包括玩家的当前位置。 + +- **目标**:强化学习的目标是最终学习一个好的策略,使我们能够高效地解决问题。然而,作为基线,我们可以考虑最简单的策略,称为**随机游走**。 + +## 随机游走 + +首先,我们通过实现随机游走策略来解决问题。在随机游走中,我们会随机选择允许的动作,直到到达苹果(代码块 3)。 + +1. 使用以下代码实现随机游走: + + ```python + def random_policy(m): + return random.choice(list(actions)) + + def walk(m,policy,start_position=None): + n = 0 # number of steps + # set initial position + if start_position: + m.human = start_position + else: + m.random_start() + while True: + if m.at() == Board.Cell.apple: + return n # success! + if m.at() in [Board.Cell.wolf, Board.Cell.water]: + return -1 # eaten by wolf or drowned + while True: + a = actions[policy(m)] + new_pos = m.move_pos(m.human,a) + if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water: + m.move(a) # do the actual move + break + n+=1 + + walk(m,random_policy) + ``` + + 调用 `walk` 应返回对应路径的长度,该长度可能因运行而异。 + +1. 多次运行游走实验(例如,100 次),并打印结果统计数据(代码块 4): + + ```python + def print_statistics(policy): + s,w,n = 0,0,0 + for _ in range(100): + z = walk(m,policy) + if z<0: + w+=1 + else: + s += z + n += 1 + print(f"Average path length = {s/n}, eaten by wolf: {w} times") + + print_statistics(random_policy) + ``` + + 注意,路径的平均长度约为 30-40 步,这相当多,考虑到到最近苹果的平均距离约为 5-6 步。 + + 你还可以看到彼得在随机游走中的移动情况: + + ![彼得的随机游走](../../../../8-Reinforcement/1-QLearning/images/random_walk.gif) + +## 奖励函数 + +为了让我们的策略更智能,我们需要了解哪些动作比其他动作“更好”。为此,我们需要定义目标。 + +目标可以通过**奖励函数**定义,该函数为每个状态返回一些分数值。分数越高,奖励函数越好。(代码块 5) + +```python +move_reward = -0.1 +goal_reward = 10 +end_reward = -10 + +def reward(m,pos=None): + pos = pos or m.human + if not m.is_valid(pos): + return end_reward + x = m.at(pos) + if x==Board.Cell.water or x == Board.Cell.wolf: + return end_reward + if x==Board.Cell.apple: + return goal_reward + return move_reward +``` + +奖励函数的一个有趣之处在于,大多数情况下,*我们只有在游戏结束时才会获得实质性奖励*。这意味着我们的算法应该以某种方式记住导致最终正奖励的“好”步骤,并增加它们的重要性。同样,所有导致不良结果的动作应该被抑制。 + +## Q学习 + +我们将讨论的算法称为**Q学习**。在这个算法中,策略由一个称为**Q表**的函数(或数据结构)定义。它记录了在给定状态下每个动作的“好坏程度”。 + +之所以称为 Q表,是因为将其表示为表格或多维数组通常很方便。由于我们的棋盘维度为 `width` x `height`,我们可以使用形状为 `width` x `height` x `len(actions)` 的 numpy 数组来表示 Q表:(代码块 6) + +```python +Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions) +``` + +注意,我们将 Q表的所有值初始化为相等值,在我们的例子中为 0.25。这对应于“随机游走”策略,因为每个状态中的所有动作都同样好。我们可以将 Q表传递给 `plot` 函数,以便在棋盘上可视化表格:`m.plot(Q)`。 + +![彼得的环境](../../../../8-Reinforcement/1-QLearning/images/env_init.png) + +每个单元格的中心有一个“箭头”,指示移动的优选方向。由于所有方向都相等,显示的是一个点。 + +现在我们需要运行模拟,探索环境,并学习 Q表值的更好分布,这将使我们更快找到苹果的路径。 + +## Q学习的核心:贝尔曼方程 + +一旦我们开始移动,每个动作都会有相应的奖励,即我们理论上可以根据最高的即时奖励选择下一个动作。然而,在大多数状态下,动作不会立即实现我们到达苹果的目标,因此我们无法立即决定哪个方向更好。 + +> 请记住,重要的不是即时结果,而是最终结果,即我们将在模拟结束时获得的结果。 + +为了考虑这种延迟奖励,我们需要使用**[动态规划](https://en.wikipedia.org/wiki/Dynamic_programming)**的原理,这使我们能够递归地思考问题。 + +假设我们现在处于状态 *s*,并希望移动到下一个状态 *s'*。通过这样做,我们将获得即时奖励 *r(s,a)*,由奖励函数定义,加上某些未来奖励。如果我们假设我们的 Q表正确反映了每个动作的“吸引力”,那么在状态 *s'* 我们将选择一个动作 *a'*,其对应的值为 *Q(s',a')* 的最大值。因此,我们在状态 *s* 能够获得的最佳未来奖励将定义为 `max` + +## 检查策略 + +由于 Q-Table 列出了每个状态下每个动作的“吸引力”,因此使用它来定义我们世界中的高效导航非常简单。在最简单的情况下,我们可以选择对应于最高 Q-Table 值的动作:(代码块 9) + +```python +def qpolicy_strict(m): + x,y = m.human + v = probs(Q[x,y]) + a = list(actions)[np.argmax(v)] + return a + +walk(m,qpolicy_strict) +``` + +> 如果多次尝试上面的代码,你可能会注意到有时它会“卡住”,需要按下笔记本中的 STOP 按钮来中断。这是因为可能存在两种状态在最佳 Q 值方面“指向”彼此的情况,这样代理就会在这些状态之间无限移动。 + +## 🚀挑战 + +> **任务 1:** 修改 `walk` 函数以限制路径的最大长度为一定步数(例如 100),并观察上面的代码是否会不时返回该值。 + +> **任务 2:** 修改 `walk` 函数,使其不返回到之前已经到过的地方。这将防止 `walk` 进入循环,但代理仍可能最终被“困”在无法逃脱的位置。 + +## 导航 + +更好的导航策略是我们在训练期间使用的策略,它结合了利用和探索。在此策略中,我们将以一定的概率选择每个动作,该概率与 Q-Table 中的值成比例。此策略可能仍会导致代理返回到已经探索过的位置,但正如你从下面的代码中看到的,它会导致到达目标位置的平均路径非常短(记住 `print_statistics` 会运行 100 次模拟):(代码块 10) + +```python +def qpolicy(m): + x,y = m.human + v = probs(Q[x,y]) + a = random.choices(list(actions),weights=v)[0] + return a + +print_statistics(qpolicy) +``` + +运行此代码后,你应该会得到比之前小得多的平均路径长度,范围在 3-6 之间。 + +## 调查学习过程 + +正如我们提到的,学习过程是在探索和利用已获得的关于问题空间结构的知识之间的平衡。我们已经看到学习的结果(帮助代理找到到达目标的短路径的能力)有所改善,但观察平均路径长度在学习过程中的变化也很有趣: + +学习总结如下: + +- **平均路径长度增加**。我们看到的是,起初平均路径长度增加。这可能是因为当我们对环境一无所知时,很容易陷入糟糕的状态,比如水或狼。随着我们学习更多并开始使用这些知识,我们可以更长时间地探索环境,但仍然不太清楚苹果的位置。 + +- **路径长度随着学习增加而减少**。一旦我们学到足够多,代理更容易实现目标,路径长度开始减少。然而,我们仍然开放探索,因此经常偏离最佳路径,探索新的选项,使路径比最优路径更长。 + +- **长度突然增加**。我们在图表上还观察到某些时候长度突然增加。这表明过程的随机性,并且我们可能会在某些时候通过用新值覆盖 Q-Table 系数来“破坏”它们。这应该通过降低学习率来尽量减少(例如,在训练结束时,我们仅通过小值调整 Q-Table 值)。 + +总体而言,重要的是要记住,学习过程的成功和质量在很大程度上取决于参数,例如学习率、学习率衰减和折扣因子。这些通常被称为 **超参数**,以区别于 **参数**,后者是在训练期间优化的(例如 Q-Table 系数)。寻找最佳超参数值的过程称为 **超参数优化**,它值得单独讨论。 + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 作业 +[一个更真实的世界](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/1-QLearning/assignment.md b/translations/zh-CN/8-Reinforcement/1-QLearning/assignment.md new file mode 100644 index 000000000..328fead57 --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/1-QLearning/assignment.md @@ -0,0 +1,32 @@ +# 一个更真实的世界 + +在我们的场景中,Peter几乎可以不感到疲惫或饥饿地四处移动。在一个更真实的世界中,他需要时不时地坐下来休息,还需要进食。让我们通过实现以下规则,使我们的世界更加真实: + +1. 每次从一个地方移动到另一个地方,Peter会失去**能量**并增加一些**疲劳**。 +2. Peter可以通过吃苹果来获得更多能量。 +3. Peter可以通过在树下或草地上休息来消除疲劳(即走到棋盘上有树或草的地方——绿色区域)。 +4. Peter需要找到并杀死狼。 +5. 为了杀死狼,Peter需要达到一定的能量和疲劳水平,否则他会输掉战斗。 + +## 指导 + +使用原始的 [notebook.ipynb](notebook.ipynb) 笔记本作为解决方案的起点。 + +根据游戏规则修改上述奖励函数,运行强化学习算法以学习赢得游戏的最佳策略,并将随机游走的结果与您的算法进行比较,比较赢得和输掉的游戏数量。 + +> **Note**: 在您的新世界中,状态更加复杂,除了人的位置,还包括疲劳和能量水平。您可以选择将状态表示为一个元组 (Board,energy,fatigue),或者为状态定义一个类(您可能还希望从 `Board` 派生),甚至修改原始的 `Board` 类(位于 [rlboard.py](../../../../8-Reinforcement/1-QLearning/rlboard.py) 中)。 + +在您的解决方案中,请保留负责随机游走策略的代码,并在最后将您的算法结果与随机游走进行比较。 + +> **Note**: 您可能需要调整超参数以使其正常工作,尤其是训练的轮数。由于游戏的成功(与狼战斗)是一个罕见事件,您可以预期更长的训练时间。 + +## 评分标准 + +| 标准 | 卓越表现 | 合格表现 | 需要改进 | +| -------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | +| | 提供了一个笔记本,其中定义了新的世界规则、Q学习算法以及一些文字说明。Q学习能够显著改善与随机游走相比的结果。 | 提供了笔记本,Q学习已实现并改善了与随机游走相比的结果,但改善不显著;或者笔记本文档较差,代码结构不够清晰。 | 对重新定义世界规则做了一些尝试,但Q学习算法未能正常工作,或者奖励函数未完全定义。 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/1-QLearning/notebook.ipynb b/translations/zh-CN/8-Reinforcement/1-QLearning/notebook.ipynb new file mode 100644 index 000000000..44f884efb --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/1-QLearning/notebook.ipynb @@ -0,0 +1,411 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "17e5a668646eabf5aabd0e9bfcf17876", + "translation_date": "2025-09-03T20:45:02+00:00", + "source_file": "8-Reinforcement/1-QLearning/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# 彼得与狼:强化学习入门\n", + "\n", + "在本教程中,我们将学习如何将强化学习应用于路径寻找问题。这个场景的灵感来源于俄罗斯作曲家[谢尔盖·普罗科菲耶夫](https://en.wikipedia.org/wiki/Sergei_Prokofiev)创作的音乐童话故事[《彼得与狼》](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)。故事讲述了年轻的先锋彼得勇敢地走出家门,来到森林空地追逐一只狼。我们将训练机器学习算法,帮助彼得探索周围区域并构建一个最优导航地图。\n", + "\n", + "首先,让我们导入一组有用的库:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## 强化学习概述\n", + "\n", + "**强化学习** (RL) 是一种学习技术,通过运行大量实验,让我们能够学习某个**智能体**在某个**环境**中的最优行为。在这个环境中,智能体应该有一个明确的**目标**,由**奖励函数**定义。\n", + "\n", + "## 环境\n", + "\n", + "为了简单起见,我们将彼得的世界设定为一个大小为 `width` x `height` 的方形棋盘。棋盘中的每个格子可以是以下几种类型:\n", + "* **地面**,彼得和其他生物可以在上面行走\n", + "* **水域**,显然无法在上面行走\n", + "* **树**或**草地** - 可以休息的地方\n", + "* **苹果**,代表彼得很乐意找到的食物以填饱肚子\n", + "* **狼**,危险的生物,应尽量避开\n", + "\n", + "为了与环境交互,我们将定义一个名为 `Board` 的类。为了避免让这个笔记本过于复杂,我们已将所有与棋盘相关的代码移至单独的 `rlboard` 模块中,现在我们将导入该模块。你可以查看该模块以了解实现细节的内部工作原理。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "现在让我们创建一个随机棋盘,看看它的样子:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 1" + ] + }, + { + "source": [ + "## 行动和策略\n", + "\n", + "在我们的例子中,Peter 的目标是找到一个苹果,同时避开狼和其他障碍物。将这些行动定义为一个字典,并将其映射到对应的坐标变化对。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 2" + ] + }, + { + "source": [ + "我们代理(Peter)的策略由一个所谓的**策略**定义。让我们来看看最简单的策略,称为**随机游走**。\n", + "\n", + "## 随机游走\n", + "\n", + "首先,让我们通过实现随机游走策略来解决我们的问题。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "# Let's run a random walk experiment several times and see the average number of steps taken: code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 4" + ] + }, + { + "source": [ + "## 奖励函数\n", + "\n", + "为了让我们的策略更加智能,我们需要了解哪些动作比其他动作“更好”。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 5" + ] + }, + { + "source": [ + "## Q-Learning\n", + "\n", + "构建一个 Q-表,或者说是一个多维数组。由于我们的棋盘尺寸为 `width` x `height`,我们可以通过一个形状为 `width` x `height` x `len(actions)` 的 numpy 数组来表示 Q-表:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 6" + ] + }, + { + "source": [ + "将 Q-表传递给 `plot` 函数,以便在棋盘上可视化该表:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "error", + "ename": "NameError", + "evalue": "name 'm' is not defined", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mQ\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mNameError\u001b[0m: name 'm' is not defined" + ] + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Q-Learning 的核心:贝尔曼方程与学习算法\n", + "\n", + "编写我们的学习算法伪代码:\n", + "\n", + "* 初始化 Q-表 Q,使所有状态和动作的值相等\n", + "* 设置学习率 $\\alpha\\leftarrow 1$\n", + "* 多次重复模拟\n", + " 1. 从随机位置开始\n", + " 2. 重复以下步骤\n", + " 1. 在状态 $s$ 下选择一个动作 $a$\n", + " 2. 执行动作,移动到新状态 $s'$\n", + " 3. 如果遇到游戏结束条件,或者总奖励过小 - 退出模拟 \n", + " 4. 计算新状态下的奖励 $r$\n", + " 5. 根据贝尔曼方程更新 Q-函数:$Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$\n", + " 7. 更新总奖励并减少 $\\alpha$。\n", + "\n", + "## 利用与探索\n", + "\n", + "最佳方法是在探索与利用之间找到平衡。随着我们对环境的了解加深,我们更倾向于遵循最优路径,但偶尔也需要选择未探索的路径。\n", + "\n", + "## Python 实现\n", + "\n", + "现在我们准备实现学习算法。在此之前,我们还需要一个函数,将 Q-表中的任意数值转换为对应动作的概率向量:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 7" + ] + }, + { + "source": [ + "我们在原始向量中添加少量的 `eps`,以避免在初始情况下所有向量分量相同时出现除以0的情况。\n", + "\n", + "我们将运行实际的学习算法进行5000次实验,也称为**训练周期**:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "# code block 8" + ] + }, + { + "source": [ + "在执行此算法后,Q-表应更新为定义每个步骤中不同动作吸引力的值。在此处可视化该表:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUxd7H8c9sS7KbShJCL1IEBAURFEUBxXoVVFBARS7YQETgiooFsaGAXgUsIGIDHzuCXiuKICDKpYoiHUJJAmkk2Wzfc+b5YzcRrgSQZHM2ZN6+8kr27ObMlyX8nMyZmSOklCiKoig1h8noAIqiKMrfowq3oihKDaMKt6IoSg2jCreiKEoNowq3oihKDaMKt6IoSg0TscIthLhCCLFVCLFDCDE+Uu0oiqLUNiIS87iFEGZgG3ApsB9YDQySUv5R5Y0piqLUMpHqcXcFdkgpd0kp/cAHQN8ItaUoilKrRKpwNwT2HfZ4f/iYoiiKUkmWCJ1XHOXYEWMyQog7gTsBrFZr5zPPPDNCUSrP5/PhdDpJS0szOkqFioqKsFqtOBwOo6NUKCcnh7p162I2m42OUqG9e/fSpEkTo2NUKBgMkpeXR/369Y2OUqHS0lKCwSDJyclGR6lQXl4eiYmJxMTEGB2lQps2bcLj8RytloKUsso/gG7At4c9fgh4qKLX161bV0az7du3y9mzZxsd45gWLFggV65caXSMY3rqqadkYWGh0TEqpOu6vOeee4yOcUwFBQVy0qRJRsc4phUrVsiFCxcaHeOYZs2aJbdv3250jGMK18Wj1sxIDZWsBloJIZoLIWzAQODzCLWlKIpSq0SkcEspg8A9wLfAZuAjKeWmSLSlKMqpZf369Xi9XqNjRLVIjXEjpfwK+CpS51cU5dSSlZXFq6++SkxMDPPnz6dVq1YMGTLE6FhRSa2cVBTFcFJKcnJy2LZtG8OHD6d79+589NFHZdfIlP+hCreiKIYLBAJMnjyZF198kX/961+cccYZDBgwgLfeesvoaFEpYkMliqIoJ8pmszF+/Hhuu+02OnTowMcff8z333/PV1+p0dajqXE97l27dvHRRx8ZHUNRlCrWtGlT+vfvj9lsZsqUKdx7771GR4paNarH3adPH2JjYzn33HPp0KEDS5YsiepFMYqinLj09HTuuOMO9u3bx6JFi+jVq5fRkaJWjelx79q1i9jYWGbNmkW/fv24/PLL+f33342OpShKFWvcuDHffPMN/fv3NzpKldu0aRO6rlf6PDWmcK9du5auXbtSUlLCW2+9Rb169Vi+fLm66qwop6D4+HjOPPNMVq1aZXSUKrNkyRLee+89NE2r9LlqzFDJDTfcQIcOHThw4AD169dn3Lhx5OTkIMTRl/IrilJzORwOLrjgAn744QfOPfdco+NU2s8//8zPP//MuHHjsFqtlT5fjelxQ+j/WFdffTUul4sDBw4wfPhwioqKjI6lKEoExMTEIKXE7/cbHeWkSSnZsmUL8+bNY/To0aSkpFTJeWtU4U5LS6Nnz55MmDCBjIwM3n77bSZMmMCOHTuMjqYoShW75JJLcDqd/PLLL0ZHOWmrVq1i2rRpvPLKK1W6c2eNKtxlyoZHkpOTGT16NPPmzSMzM9PYUIqiKIdZsmQJ33//PS+88EKVD+nWyMJ9uJYtWzJ06FAee+wx3G53xNurigsLkSSlrJKr1pFUEzLquq4ufEeB4cOH8/rrr1fLv+2qIqVkw4YN/PDDD4wcORK73V7lbdT4wg3QrFkzZs2axa233kpOTk7E2snKyqJfv35s3ryZgoKCiLVTGevXr+eOO+5gy5YtUfnDHgwGee+993jhhRfYsmVLVBZwp9PJxIkT+fLLL9m1a5fRcaJWdnZ2xMefmzZtihCC3bt3R7SdqrRlyxamT5/OhAkTqmxM+3+dEoUbwG6389JLL/HSSy+xffv2iLTx+eef89JLLzFmzBhmz54dkTYq6/PPP2f06NEMGDCAdevWGR3nL9xuN4WFhTRt2pSLL744Krfv3LFjB927d2fDhg1cd911RseJOkVFRcyZM4eXXnqJ2bNn88UXX0S0vbfffptbbrklom1UlWXLljFnzhzeeOMNbDZbxNqpMdMBT0T9+vUZOnQob7zxBmPHjiUjI6NKzz9ixAjGjBmDpml88sknbNmy5aTPFRcXx8yZM6t87Ou+++5j1KhR6LrOpEmTqFu37kmfq127djz44INVmA4SExPp3r0706ZNQ9M07rzzzkrdyuy6667j2muvrcKE0KlTJ95//322bdtGVlZWpbcWHT9+PG3btq2idMY7cOAA8+bN44033uC///0vzz33HFdffbXRsQy3fPlyVq5cyWOPPYbJFNk+8SlVuAFatWrF2LFjGTFiBPPmzavSK7kej4dRo0bx9ddfk5mZyV133XXS5/J6vXTu3LlKxlHbt29Pv379gND42vjx45kyZQqXX345nTt3Punz/v7773Tq1KnS+QAGDx5cnq9x48Y88MADbNy4kQcffJDY2NiTPu/HH3/ME088USUZp02bBoSGc3r06EGbNm1Yt24djz76aKXO+8QTT7BpU9XcR+STTz6p8LnS0lIuuuiiiI/Ne71ecnNzueGGG1iwYAFms5mXX36Ze+65JyLtCSGYPn06DzzwAFOnTo1IG5UhpWTz5s0sWLCAxx9/nMTExIi3ecoVboCMjAzmzZvHPffcw2OPPUbz5s2r5LzPPvss7du35+OPP+aOO+6gVatWJ30uKSVr1qypklwQGiIBGDlyJD169GDXrl20a9euUhlbtmxJ3759qySfEIJJkyZRVFTE1KlTSU1NJTk5mVatWlWqcD/00EOMHz++yjJ+8skn/PLLLyxfvpxNmzbRuXPnSr2HAHPnzq2SfMAx1y04HI4q/ZmqyJYtW7j//vuZM2cO27ZtY+bMmSxZsiRi7QkhqFevHgcPHoxYG5WxYcMGXnrpJebMmRPxnnaZU7JwQ+iH+LHHHuOdd95h8ODBtGjRotLnfPLJJ3nppZdYunRppYc4hBARWfU5a9Ys5s+fz48//ljpc0UiY0pKCqNHjyY/P59JkyZV+nxVmbGsp9q9e3ecTie33HILjRs3rvR5q+sfc6R+pv5Xeno6HTt2ZPbs2QQCAW6++eaIt1unTh2aNWvGhg0b6NixY0Tb+jt++OEHli5dyqxZs6rt7xlO4cIN0Lx5cwYPHsxzzz3HlClTSEpKqvQ5R40aVQXJIsfhcHDrrbcaHeOYasJ475VXXml0hKiVnp7OpEmT2LhxIy1atKjS4ciKpKWlcdppp7FmzRrOOussw7e6kFKyevVqVq5cydixYyN6IfJoTplZJRVp0aIFU6dOZciQIVE7hU9RaqIzzzyzWop2mQEDBrBmzZqoWCm9detW5syZw3333RexKX/HcsoXbgjNZHjzzTd5+umnIzZVUFGUyIqNjSUYDBq+CO7nn39mxowZvPbaa8TFxRmSoVYUbgiNkY0cOZJ58+axd+9eo+MoinISBg4cyNy5c6t94dbzzz+PpmksWbKEJUuW8Nxzzxk6XFNrCjeEZknccccdjB8/PipXFSqKcmy9e/fmm2++qbbtCL7++mvOPfdcTjvtNLp168a3337LiBEjqnWI6GhqVeGG0N013njjDYYOHcr+/fuNjqMoyt/UsmXLahnn9vl8ZGZmMnbsWFq2bEkwGERKWa2zRypifAIDxMXF8cILL7BixQqjoyiK8je9/fbb3H777RFvx+l0sm/fPjp06MDXX3/Nl19+icPhiIp9U2pl4QZo2LAhAwcONDqGoih/k81mY9CgQbz33nsRbSctLY0zzjiDf/7zn9xwww0MGzaMoqKiqJhHfkrP41YU5dRjsVjo2LEjn332GTfddFNE2+rbty8XXHAB9913Hy+//LIhU/+ORhVuRVFqnKSkJKxWK3l5eaSnp0esnfj4eOLj48v3iDF64U+ZWjtUoihKzXXGGWeQkJBQbbc1q67tBE6U6nErilIjDRgwwPBpeUapVOEWQmQCTkADglLKc4QQdYAPgWZAJnCjlPJQ5WIqiqIcqVmzZkZHMExVDJX0klJ2lFKeE348HlgspWwFLA4/VhRFUapIJMa4+wLvhL9+B6ja25MoiqLUcpUt3BJYJIRYK4S4M3wsQ0qZAxD+fPL3zlIURVH+orIXJy+QUmYLIeoC3wkhTvgmjOFCfyeEptxE8659+/fvp6ioKKoz5ufno+t6VGd0uVzs3r2b/Px8o6NUyO/3R/V7WFJSgsvliuqMBw4ciPp/L0VFRezbt6/a9jw5GcfaSKtShVtKmR3+nCuEWAB0BQ4KIepLKXOEEPWB3Aq+dzYwGyA1NVUuXbq0MlEiqqioiP379xPNGXfu3Indbo/qPcfz8/NZuXIlMTExRkepUGlpaVT/PXu9Xn7O+5nPln5mdJQK2XPsXOK5pNp38Ps7srKyWLt2bVTs7V2RY75/UsqT+gAcQMJhX68ErgCeA8aHj48Hph7vXHXr1pXRbPv27XL27NlGxzimBQsWyJUrVxod45ieeuopWVhYaHSMCum6Lu+55x6jYxxTQUGB7DypsySK/6u3op5cuHCh0W/VMc2aNUtu377d6BjHFK6LR62ZlRnjzgBWCCF+Bf4LfCml/AaYDFwqhNgOXBp+rPyPyy67LKp7JIqiRK+THiqRUu4CzjrK8QLgksqEqg3y8vKMjqAoSg2llrwriqLUMKpwK4qi1DCqcCuKotQwqnAriqLUMKpwK4qi1DC1snB7vV42btzIU089hdvtVtPyjqK0tJShQ4caHUNRaoTdu3fz8MMPV1t7tbJw9+jRg+eff5527drRvHlz9u7da3SkqKNpmnpfFOUE+f1+Dhw4UG3t1brCvXjxYi677DImT55MQkICL774Ip9++mlU71mgnNreeust9fNXw1X331+tK9wZGRlkZWXx8MMPU79+fbKysmjcuLHRsZRaaOHChVxzzTWYTCb69OlTfl9DRTmeWnfrsiZNmpCZmUkwGOSXX37hlVdeYfny5VF1Pznl1Fe2C+FNN91Er169cDgcbN++Hb/fj81mMzqeEuVqVY87OzubyZMnM3v2bObOnYumaWRmZqoet1LtMjMzKSoqwm63M3HiRLp3747b7Y7q3eqU6FFretzFxcW8+uqr9OvXj5YtWwIwfPhwg1MptVVsbCw//fQTzzzzDNu2bePuu++ma9eutGvXzuhoSg1QKwq3pmkMHz6cJ554gtatWxsdR6nlPB4PDz/8MJMnhzbOfPjhh3nggQdo0qSJwcmUmuKUL9x5eXk8+OCDTJs2jYyMDKPjKLVcdnY2Y8aM4e2338ZutwPw7rvvRvXNJaKBz+cjPz+fhg0bGh3lqKr7GtkpPcadk5PDq6++yr/+9S9VtBUgNG1r/vz51d5uSUkJs2fP5pVXXuHFF18sL9qAKtonYM+ePdW6wOXvUtMBq4jX62Xy5Mn06dOH9u3bGx1HiQIfffQRQ4YM4cCBAwwePLjablEmpWTChAnExcUxZMiQqO01KjXHKTlU4vF4GDx4MNOmTaNRo0ZGx6mRhBDExMTg8/mqrUdYWloa0Z7LqlWr6NmzJ9deey1+v5+tW7dy4YUXYjabI9amz+fj7rvvZty4cbRt2zZi7ZzKpJR4vV7i4uKMjlIhk8mE2WwmEAhgtVoj3t4pV7hzcnKYOnUq06ZNi+qeTceOHfn111/p1KmT0VGOKiEhgfvuu49nnnmGJ554olraHDFiBFlZWRE7/86dO1myZAlLlixh6tSpPPfcc2RlZUXsomBhYSHTp09n5MiRtGnTJiJtnOp27dpFZmYmw4cP57XXXiMnJ4f69esbHesvWrVqRbdu3fi///s//vnPf0a8vVOqcOfn5zN79mxuvfXWqO9pz5gxgz59+rBkyRKjoxyVEAIhRLWO3c2bNy+i53/ooYfIz8/nqaeeYuTIkVx55ZURK9ozZsygqKiInj17cvbZZ0ekjdrg9ddfZ//+/ZSUlPDiiy/Sp08fbr/9dqNj/UXZxcnq+vdyyoxxa5rGuHHj6N+/f9T2YhVjDR06lH79+nH//fdz5513csUVV1R5G1JKJk2aRIMGDbjqqqvo1atXlbdRW/z3v//Fbrczbdo0GjRowMyZM9m8eTP79u0zOprhToked1FREXfffTcvvviimj2iVKh169blv9ImJSVV+fn9fj9vvPEGbdq04dprr43o2Hlt0LFjRxYuXMjy5ctZtGgRH374Ia1ataJBgwZGRzNcjS/cWVlZzJo1i8cff1wVbeW4hBARKdqLFi0iMzOTmJgY+vXrV+Xnr41sNhvt27fn/fff5+DBgyxbtoy77rpL/Q+RGj5U4nQ6eemll7juuuvUikjFMB9//DEbN24kMTGRYcOGGR3nlHLTTTfxwQcfkJSUxIcffsjFF19sdKSoUGN73MFgkNtvv51nnnmGFi1aGB1HqaUWL17Mvn37uPvuu49YVKNUHSEEAwcONDpGVKmRhTs3N5dHH32U6dOnU69ePaPjKLVYz5496dmzp/r1XalWNa5wHzhwgNmzZ3PPPfeooq0YThVsxQg1rnBbrVb69OnDmWeeaXSUU9qoUaP47bffyMvLY+vWrbzxxhvEx8cbHUtRoo6u6/zzn/9ky5YtACxZsoS3334bkylylxBrXOFOTU0lNTXV6BinNJfLxdq1axk1ahSrVq1i27ZtFBYWqsKtKEfhdDrZsWMHN954I0II5s+fj9PpjMjspTI1rnArkffyyy8zbtw4mjdvTiAQ4JZbbuHJJ59kzpw5RkdTlKjz5JNPMmnSJPx+P0IIzj77bJ588kn+/e9/R6xNVbiVv3jwwQdp27Yt999/P82bN2fAgAGsWbPG6FiKEpWmTp1K8+bNmT59OlJKxowZw+7duyPa5nEHYYQQbwohcoUQvx92rI4Q4jshxPbw55TwcSGEmCGE2CGE2CiEUJs01FBvvvkmAD/++CNz5sxRwySKUgGTycS8efPIzMxk7969zJs3L6Lj23BiPe63gZeBuYcdGw8sllJOFkKMDz9+ELgSaBX+OBeYGf6s1DDdunWjS5cuBINBYmNjjY6j1DDVfUcYIwkh6NGjB926dQNCKz4j7bj/W5BSLgMK/+dwX+Cd8NfvANcednyuDPkFSBZCRN8ejMoJsVgsqmgrJ6W67wgTDWw2W7UUbTj5Je8ZUsocgPDnuuHjDYHDt+7aHz6mKIqiVJGqHog52u9HR/1frxDiTiHEGiHEGo/HU8UxottDDz3ERRddxNq1a+nUqRMrVqwwOpKiKDXIyRbug2VDIOHPueHj+4HGh72uEZB9tBNIKWdLKc+RUp4Tzbckqmq5ubk4nU7mzZvH2WefzciRI9mxYwfBYNDoaIqi1BAnOx3wc2AIMDn8+bPDjt8jhPiA0EXJ4rIhlWPRNI2FCxeeZJTIy8/PZ+fOnVWS8ZdffiElJYVNmzZhs9lIS0tj9uzZ2Gy2Sm1S9Pvvv7Nnzx4OHjxY6YyRcuDAAb755puovndgSUlJVP8sut1uHDkOTlt4mtFRKpSQmcDvrt+jepx7165dWCwWfv/99+O/2CCaplX43HELtxDifaAnkCaE2A9MJFSwPxJC3AbsBW4Iv/wr4CpgB+AGhp5IQL9fMGJE9O6lbbfrDBlir5L9vvv27Vv+ddm9HCdMmFDp8+7Zs4dZs5IoKore97FlyxiuvTYdh8NhdJQKWSyWqN7XvbS0lC4xXZicMdnoKBXacmgLTpMzqt9Hu93OM3WewZ3hNjpKhfzCX+Fzxy3cUspBFTx1yVFeK4GRJ5ys/PtMHDjQ7e9+W7VJStpB/foF5dN9otHBgwcpKsqI6vexUaPFdO7cGZvNhtPpJKVOMgcPZZPgSKIkkMuiQ3PZ5d6EKWAhRsQjdDM5zmzOS7mCy5oPxO/20Si9CSUlJTgcDg4dOoTdbicQCKBpGg6HAyklcXFx5Uv0y5Yelz32+XwkJSXh8/mQUhIbG4vJZCq/v+Z7771XJX/Puq6zaNEi9uzZw4ABA3A6nbzwwgs888wzlfqNo7CwkNWrV0f1z6Ku6+Tn50d1xo0bN1LQoYDilsVGR6lQvKnitRM1+kYKSs0jpU5BIJstrl9YVfgVM7Lv5MPsKXx28DU0P7S2nYtdT6e01EdD2+mcl3oFiTEp3L/kZiavu5/Nub/h1/0EAgFMJhO6rgOhRRCapqFpGj6fDyEEmqYhhCh/bdljv9+Ppmnouh6xawtut5vPPvuMXr160a9fPywWC02aNGHp0qURae/vWrZsWVQPZSjHppa8K9VKIlmfu4rp6yeR4cigSVJTioMBft39B5nZ+2jXsjHWgI1tu3aQ37qI5kltEewnRiYSJxJ5f8ObnF6nA5e3vIZYWxxCCMxmM7qulxeiQCCA1WpF0zQsFguaphETE4MQAovFUl6spZQEAoGIzL2Nj4/nuuuu47bbbmPv3r08/PDD+P1+xo4dW+Vt/R0//fQT//nPf0hISOCrr77isssuU3eVqYFUj1upViZh5py0i6kf6MymrYVs3JTH+o05lGTbiHHXw7XPTtY2P5vW57Fq/Xo27VrNsnVL8biCrNz5M7nOAmatfIVCXz5OpxMI/Wru8XiwWCyYTAK7PQ6v14PVasXn8xEbG4vL5SrvbTscjvIiHsm71nTt2pXJkyeTlpbGoEGDmDhxYsTaOhFSStauXUtCQgL33nsvGRkZrFy5UvW8ayBVuJVqpes6DpOdGdfMoHlqcxbv+I5PNsznxx0/sjFrI1+tXkrdpMbcdulweqXdQANPV9xuF96SAvILD7E9ZyfBgJm+M69Bs4V6zjabjZSUFHxeD+u/fpJ5Dzfhs8kdWPvFYyQmJuJ0OklNTUXXdeLi4sjPz0fTNPx+P4WF/7souOokJydzwQUXkJyczLnnnmv4fVG3bNlSfpu1Sy+9lGHDhuH3+1m3bp2huZS/TxVupVqZTCZiYmLwlnp4rd8srmrzDyxmM6eln8Z5Lc/jzGbt2ZO3h01Zv1PgLCSnIAdHQVNcW5PokNgWT3E+6F60YsHtM25HCIHX66WwsADnwU3s3LSCQyVeGrbvQ3KDjjhLSoiPjycvLw8hBC6Xi7S0NCwWCxaLheTkZKPfkmrTtm1bGjduzCOPPEJWVhaPP/44NpuNzp07Gx1N+ZvUGLdSraSU+P1+UlJSCAQCzOz3Ko/GTeDTtZ9SVFqEw+zALuLwCT+5BVsoPlRMgjWRvt36UuosJY46FOTlYkrJxn8wgKYFsVqtLFkwjdzMnziUs49OF4/lwj5jCQZDz3k8HlJSUtA0DbvdTnFxMWazGSklpaWlEd3wPtr07t2bhIQEPvjgA77//nveffddoyMpJ0H1uJVqZzKZMJlMSClJiavDk5c/yYBzBlEacLErbze/Z/3B6t2r2XtoH6c1akGTBk3YlbMLp9dJgkila5OLyF/jI6btAd5aOIeA38vqpfPx+iz0vetNulx6Z/n5y6b5ld0bsuxxmdq0ix1Au3btGDp0KIsXL6Zhw4acddZZRkdSToLqcSvVzmQyUVpaisPhwOVykRiTyOR/PMOTV07kuleu51DJIXbs20XdhDQKSwuItybgdXshIMnLKyDe6uDSzn3Yv38by+UCfhnxFima5Ipet9C0bTesVitut5uYmJjyi5OlpaXYbDb8fj92u718OqDVajX67TBE06ZNjY6gVIIq3Eq1klLi8/lITU2lsLCQ5ORkXC4XNqsNf6mfL0Z+QWZhJv9Z+x9cXhemoAmHzU5JUQlIgcftJcZsY0DvAZxz1jks27iI11c+Ro9/DOCs865G0zRKS0upU6cOJSUlJCUlUVRURFpaGk6nk7i4OAoKCrDb7UgpcblcUb3CL1JiY2M555xzWLlyJeeff77RcZS/SRVupVoJIYiJiaGwsJC4uDiKi4uxWq0Eg0Hi4+ORUtKybktGXToKKSU2i5kDK77nwH8/xR4TS2qvK0nudgnWmBgOHTpE4EAQT5Hggt79sNlsSClJTk4mPzOT1W+8TOH+vaS0aEvnIXeQXDe9fLxb1/XyWSa1kd1up3v37vzwww+qcNdAqnAr1aqsx52UlERxcTGJiYm43W4sFkv5XGz8Xkw+L1seG4X0e2l03c2c89Cz6MKE1Wxi9+wpFPy6lqCmsyO/iJi8XHy/r2bNT8vI3biOgKbRdsAwOl0/EL/Pi+b18f6dgyktKaXPY0+Q2LwFGY2bYDKZcLlcxMTEGP22KMrfogq3Uu3MZjOBQKB8FWPZhUSz2YzmLCZ79nO49u6g7b+exJqQSKDoEN5d20GAT0LD62+h6a0jCbqcNPxxMeds20zBT8toduHFdLjpdoJBP65Dh/A7i9Ek6Ej6PPI4QU1n+f/NZeOKFdw1521OO7tz+UXL2igjIwNN08jLyyM9Pd3oOMrfoAq3Uq2EEEfsI1K2daWUEoJB9sx8Fu1gNqfdPBx/3gGCeQcQSMomfwgJ/r278UqJDiSe3pbkjp3R/EE8RQWU7NmJJiWaBE1KdCnRdNClJKhLzr66DwFd5//G/YuBz06l1bm195aonTp1Yv78+fzxxx/06NHD6DjK36AKt1KtpJQEg0FSUlKOuDhpsVjYt+BdPDs20/yW4RDwInQQIvxxxDlCBRwkmtuFX8pQsQ4XaE2X6JLy4h3UJJrUCYZf0/6iXvi8fmaNuIuxH35M27PPNujdUJSTowq3Uq1MJhOxsbHk5OSQmppKfn4+DocDn9tF4fefc/rNI9HcxUgTIASmcA/dFK7cUspQ71wSquBlRVqX6LokKHU0XaJpEAwX7oCuE5QQ1HU0XaDpOm3Pv4Dc/fvx5OdH/M+s9gJRqpoq3Eq1Kutxx8XFEQgEyi8MFqz4HpsjHm9+FmaTwGQOrQ0TZjAfVrh1GepVS12ApqNLHSlB6uGetl5WoCUBPTQ8EtQlQUmogOuhYZRAUCe1UVNeHX0vr2/6AxHBse5oXuTTtWtX1qxZQ7du3SJ6h/Lvv/+eHTt20LBhQ6655pqItVNbqMIdhSZOnMiECRNCMyxOQWWFrOyzlBLnupXYm7VE87gQJoE0mULrek0CYRKYw5Vb6hIhJVIHqcnwtD7Cn0PFW9NDRQuL1LoAACAASURBVPrPwq0T0P8s3AEt1Atv0KoFW1avMuptiAp9+vShV69e3HnnnREt3LGxsSQkJLBr1y5uvvnmI54bOnQovXv3jljbp6JTszLUUF9++SXjxo1j2rRpdOnShWuuuYYnn3zS6FhVqmz/bKfTid1ux+VyYbfbMZtNSM2P5nFhMgl0kwlpIlTAzaHiDYS73ICuo5cVbglBLVSUg1qoxx0M97gDuiQQ1AhKiV+XBDRBQNPCRZzyGzEokdW9e3e6d++Ox+OhT58+Rzz32muvMW7cuCOOzZ8/n7S0tPLHJpOJhISEaslaE6jCHWF5eXn89ttvJ/TaVatW0bt3b2w2Gx9++CFz5szh4MGDp9TKPl3X8fl8JCcn43a7SUxMxO/34/f5kQUHiQnvYyLMApNJIMwCYTIR6n5LgoCm66HirMlwgQ59HZDh3rQWKtj+YKg4l5QUY7Y78GtlxTv8fHgRTm3XqVMn1q5dS8+ePSPeVlxcHM2bNz/i2LPPPsuzzz57xLGBAweSf9j1hzp16jBixIgjXtOkSRNatmx5Qu1mZmaSkJBAamrqSSaPLqpwR1hBQcEJ367qjz/+wOVysWzZMm6//Xbsdjt5eXmnVOE2mUzYbDYKCgpIT0/n0KFDJCQkEJuYRM6P32AzmSA5GcLFG1NoSknQ70PExKFTNvwBPpcTd34efk3HF9Tx6xKfpuMLSjSTBUtaBgEExdn7sddriF/XCWjg0zSCOuTlHMDv9Rr9lhju+eefp3Pnzqxfv96Q9o92DeDDDz884nFBQQHTp08/4ljZZmWHGzZsGI0aNSp/7PP5mDJlCrquI4QgKSmJMWPGVGF6Y6jCHWFt2rQ54eGOjz76iIkTJ/LCCy8waNAgzjzzTNq3bx/hhNVL13X8fj/p6aHl58nJyfj9fupffyt5Py2maOtvaA2b4Eiri24S6CZBUEBw306sjVsgAc/BbAIlxXh9PrylpXiDGn5N4glKfEENr6bjR6Dv24sfM3GNm1Cck4NwOAho4NV0igsL2bXpDzpefS1E8cVDJSQ1NfUv/452797N9u3bjzj2yCOPkJOTU/44GAxSUFDAJ598QklJCYMHD2b06NHVkjmSVOGOItdeey2XXnopd999N5988gnx8RXf5bkm03W9/D6RZdusxjRogm6xEXC5Yfd20DRs8fEEpIYZ8JcUIzb+NzRXW9MIaDp+Tcev/Tk8EpR6eO42BDQNb1EhvqBOQX4+noCGH0Fi42YcOnSI3KwDeP1Brh4xIqpnfVSXtLQ0CgoKatRQQvPmzf8y7HLeeeeVL+oCuOqqq9i5cyf9+/fn1VdfZdasWTzwwAMnPMQSrVThjiI2mw2bzcb7779vdJSIEUJgs9lwOp3ExMTg8XjKi7gWE4dfl8iAhrmkmKAWQMveF54OKBCAhixfZOPXdYKawK8fPnatl495B8MzTIJaAE2DQFDDU1pKYc5BdAkIE3HxDqPfEsOZTCZmzpzJ2LFjmTt3rtFxKiUxMfGIx4sWLeK8885j3rx5FBYWMmLECDZv3sxrr71mUMKqoW6koFSrsjvgJCcn4/F4SEhIQNd1LBYLzW6+HV94nNpVWIi71IlP0/FqOh5Nx63peIM6nmDosV8DX7jXfUTPW9dDKyZ1WT67JBiefVJSeCh0R3iTiS79rkfE1s7dAWuLmJgY7r77bhYsWMCqVasYP3680ZGqhOpxK9WqbFvX/Px84uPjKSoqwmazEQgEaHDBpazXQZc6ugygO90Q1EPXJ0WojyGlHl6EA8HwYht/+GKlXy+bLSLxa6HnA2UFXEpEbCxejy/0Gi1Ix549aXLaaQa/I0ok2Ww2Ro4cycGDB4mLi/tLj7ymUj1upVpJKQkEAqSlpeF2u0lKSiq/E43T5Sahy0WhXnZQo9RZijsQ6mG7A3r4axnqcQd1PEENT3hGiTeo4Qtq+DQNf1Di1zT8mn7YXG4dV6kbv89PQno6lw+/C3NsXETv8l6TxMTEkJiYeMQUvFNJRkbGKVO0QRVupZqVLcBxu91YrVa8Xm/5LoFxCQm0vuk2vEEZLtAa3vBsEW9QwxvUDivaoSEUb1CWD6/4NIkvPFzi1wR+HfyaPGK+d0BKMlq1oqTwEN2u6VNrb6Twvxo3bkzXrl1ZsGCB0VGUE6AKt1LtpJTl27qWLYCRUmKxWEhpeTqNLusTLtThXnUwNLb95/i2xBMIPe8Lv84XnmUSCBfv0HCJFiriusSvh1ZXtruoJ5qwcH6//lgsllp7z0mlZlOFW6lWZUXbbrcTCASIi4srv4mCx+PB5IgntX1H/JhCvW4tNDTiDmq4y4t4MHSxsvxxqDfu1UJzuH26xBsMLbbx6xq+cG9bFyZSGjbE6Syhw0UXoWkaLpfL6LckathsNoLBIMFg0OgoynGowq1Uq7JtXXNzc3E4HBQUFJTfESc5OZm4uDhaD7iVjPMuDA2N+DXcAQ13UA99BHTcfokvKPEGZXi4JNQL9wbBo0l8wdCUQG94+CSgaUiLlfYXX8rqxUt5dsFCYmJjsVqtNWrecqQNGDCAdevWsW3bNqOjKMehCrdSrcouTsbHx+Pz+XA4HOULcrxeL36/H5MQtO3TH80ai0cLj20HNDyBP3vX7sPHvLU/i7gvPGxy+DTBICYan9mJAIIL+/dDs/7ZsywtLTX6LYkaaiFSzXHcwi2EeFMIkSuE+P2wY48LIbKEEBvCH1cd9txDQogdQoitQojLIxVcqbnMZjOapmG1WgkEAuWrJy0WS/k9IJtcfDn2NmfgDUrcQVne4y6/MBk+Xjb+7QuExrt95Rct/xz3rtuyNfaUOmRu+oMOvXrhiI8v3+fiVN0692SV/V2omz9EtxPpcb8NXHGU4y9KKTuGP74CEEK0AwYCZ4S/51UhRO29G6vyF2X3nPT7/Ufce1JKecSmQbqu84+nnseUknpYwS4bMpG4whclvYE/i7lHA0+4aHs1Dd1iJbFRUyzxCRQXFnL96Hs5vWtXzGZzeQ51cfJIM2bM4K677jpi2bgSfY5buKWUy4ATnezaF/hASumTUu4GdgBdK5FPOcX871CJ3W5H13VMJhMej4dAIACELpQ1aNmKga++SUKTZngCevgjNETiK5vfXT7GrZfPRPEFQ2Pgfinw+gOUFB6iU+9L6T10KLFxcTidTjRNUxcnjyI2NhaPx2N0DOU4KjPGfY8QYmN4KCUlfKwhsO+w1+wPH/sLIcSdQog1Qog1gYD6QaktylZOFhUVERsbS0lJCRDaxc3hcBATE4OUEq/Xi9PppGXX87j6yWfpdP2N+KQon2XiN1tofmHP8imC3qBGbFpd4us1wKtpoeXwvgA2u53rRo3i0mHDEELg9XpJTk7GbDZjsVjU5vxH8eijj/5lu1QlupzsAN9M4ClCt2x9Cvg3MIwjb8Zd5qiDZVLK2cBsgISEDOnznWQSpcax2WzUrVsXs9lMenp6+UWxsmJhsViw2+3lxzpfegXtu3XnmvtD+0xICcIksCcnU3rYykeLLQaEOGKPbVtsLHWbNEEPTzmMi4tDCFG+8EZdkPur6667zugIynGcVOGWUh4s+1oI8TrwRfjhfqDxYS9tBGSfdDrllHT4WPbRenbm/7lxr8lkwpqSQnxKyl9em5JR74TaLDtjWXvVWbDVhT6lqp3U70NCiPqHPbwOKJtx8jkwUAgRI4RoDrQC/lu5iIpSs914443ld7NXlKogjtcbEEK8D/QE0oCDwMTw446EhkEygbuklDnh1z9CaNgkCIyRUn59vBBJSXVk69b/Otk/Q8RZrS7OOCOfpk2bGh2lQgcOHODXX2Pwev/aK40WKSnb6NateVTP5Pjtt9/o0KGD0TEqFAgEyMzMpFWrVkZHqVBhYSF+v5969U7styEjZGZm8kf6HwQcAaOjVGjbC9soLiw+6q+Gxy3c1SEhoa70+7caHaNCiYmZNGjwE1u23Gx0lAo1bfoNr76aTufOnY2OUqFp06YxdOhQkpKSjI5SoUceeYRJkyYZHaNCRUVFzJ07l3vvvdfoKBVas2YNBQUFXH559C7jmDdvHhdddFFUd8ZOP/10cnNzj1q4o2T1gcDvj96eYiBQgKbFRHVGTYvD4XCQcpRx4GhhtVpJSkqK2oxle6ZEaz4IZbRarVGd0W6343a7ozpjTEwM8fHxUZ3xWNdh1JwfRVGUGkYVbkVRlBpGFW5FUaKalJLdu3cbHSOqRMkYt6Ioyl+tXr2aX3/9tXy2z4UXXsjpp59udCzDqR63oihR69NPP2XXrl089thjrFq1iuXLlxsdKSqowq0oSlRasWIFDoeD8ePHM3ToUCZPnsxvv/2mhk1QhVtRlCh1wQUX4HK5ePvtt9m8eTP//ve/6dChA82aNTM62l+43W62bq2+tShqjFtRlKgkhKBXr14sXboUp9OJEIKOHTtG3cZgc+fOZc+ePQSDQWw2G8OHD4/4LfFUj1tRKqEm3C2mJmSsyGWXXcbTTz9N/fr1mTRpEuecc47RkY4gpWTOnDmcd9553HHHHSxdupS8vLyIt6sKt6KcBCkl2dnZfPjhh8yaNYusrKyoK47BYJD9+/fz6KOPsnz5cnJzc42OdMqZPn069957L02bNmXKlCm8+eabjB8/Hl3XI9quKtyKcpK6dOlCVlYWVquVTp064ff7jY50hOzsbLp160b37t1ZuHAhV1111fG/SflbxowZw4wZM/jss8/YtGkTt956K5MnT474jShU4VaUkzBr1iwef/xxLr74Ylq3bs20adOYMWOG0bHKSSmZPXs2s2fPxuVyMWbMGAYNGsT8+fONjnbKGTVqFEVFRbjdbq699loyMjIi3qYq3LXEU089Rc+ePfH5fDXmRrCBQIDvvvuO9957j0AgEFVDEb1792bRokU0atSIzz//nOnTp9O7d2+jYx3h4osv5scff+Scc87h3nvvZcWKFVG9e2RNdcMNNzB48GDatWvH6NGjq2XjKlW4a4nx48fz2Wef0aNHD5544gl+/fVXgsGg0bEqJKWkZcuWfPfdd2RlZdGgQYOoGopo2bIlubm5TJw4EQCfz8fTTz/N/v37DU4WIoSgbdu2LFq0iIULF6LrOpmZmcyaNYuioiKj4ymVpAp3LVG2peovv/xC9+7dee2113j11Vf55ptvjI52VF9++SW33nord911Fw6HgyFDhvDpp58aHaucEIIff/yR22+/nauvvpoNGzYwbdo0XnvtNXbs2GF0PADq16/PunXrqF+/Pq+88grr16/niiuuYObMmZSWlhodT6kEVbhrocsuu4xXXnmFRo0a8ccffzBo0CB27txpdKwjxMfH43Q6sdlspKSk4HQ6mTp1qtGx/uLss8+mZ8+eADRu3JjBgwczc+ZM8vPzjQ12mAEDBtC4cehWsD179uTCCy/koYceiqqhJ+XvUQtwaikhBNdffz0ul4vrr7+ecePGsWPHDq655hruu+8+EhIS/nLT3urUo0cP7rzzTnRdp27duvznP//hnXfeoWPHjkyYMIHevXuTmJgYdYsxWrduzfjx4xk4cCDNmjXj5ZdfJjY21uhYR+jevTupqal06tSJ2267jREjRmCxqFJQGdX9c6h63LWcw+GgWbNmfPzxx6xfv55zzz2X/v37s3DhQtatW2dYLiEEW7dupX///rRt25asrCx69+7N+vXr2bJlCzfffDOLFy9m165dhmWsSHp6Ot999x3Dhw9n6tSpFBYWGh3pL9q0acP69euJj49n3rx5UX29oyao7t9eVOFWgFChFEJw9dVX8/3337N//34+//xzJk6caNgwihCCiy66iH79+pXnE0LwyCOP8Mknn/DTTz8xd+5cHn/8cbxeryEZKyKE4JxzzuHCCy9kxowZUZlPCMHQoUMRQvDKK68YHalCQghuuOEGFixYYHSUCqWlpdGkSRPWr19fLe2pwq0c1ejRo7n33nu58MILmTx5MjfddFP50uloGBuNjY1l4sSJ3HrrrXTv3p3+/fvzzDPPRE2+Mr169eKaa65h5MiRUZetzJAhQ2jSpAlTpkyJyoxCiPLfAqNVWeHesGFDtbSnCrdSoTp16tC7d2+mTZvG448/TqdOnejUqRNLliwhKyvL6HgAnHbaaVxyySW89957nH766XTq1ImlS5eSnZ1tdLRyZ599Nvfffz+dOnVi9uzZUTWtEUKFsU+fPjRv3pxOnTqxYsWKqCveypFU4VaOy+Fw0Lp1azZs2MCGDRv47rvvePrpp3nvvffYu3fvEa9dvHgxgUCgWvMJIUhMTKRfv35s2LCBb7/9lqeeeuqo+YwghKBNmzZs2LABi8XC3LlzI76Xxd9lNpu58cYb2bBhA19++SXffvut0ZGUY1CFW/nbnn32WZ588kmKi4t59dVXGTduHJs2bWLEiBGsW7eOsWPH8s477xiWb/LkyTzxxBMUFxdX+/9Ejue2227D4XDw/PPPGx2lQk8//TR//PGHWh4fxVThVk5Keno6I0aMYMSIEVx//fX07dsXs9nMsGHDuPrqq1myZImhS+vr1q3LiBEjaNGihWEZKjJgwABOP/10unTpwnfffRd1wxIWi4Xhw4eza9cuunTpQk5OjtGRlP+hCrdSKU2bNuWMM87g/PPPp06dOlxzzTV07dqVzp0788UXXxgdLyqZTCb69OnDypUr+f7771m2bFnUFW+73c59993HypUrGTt2LNu3bzc6knIYVbiVSktKSuKmm25izZo1fPjhh7z88susXr2avn37Gh0tagkhsFqtTJkyhVWrVhkd56hMJhNWq5XXX3+dH3/80eg4ymHUcimlSnTs2JFhw4bx7LPPctFFF3HllVcaHanGeOCBB4yOcEwJCQncfvvtRsdQDqMKt1Il6tWrR//+/enZsyd16tSJ+EbyihJtYmNjq23puyrcSpVKS0szOoKiGGLQoEHV1tZxu0VCiMZCiCVCiM1CiE1CiNHh43WEEN8JIbaHP6eEjwshxAwhxA4hxEYhxNmR/kMoiqIYrWwbgepwIr/PBoH7pJRtgfOAkUKIdsB4YLGUshWwOPwY4EqgVfjjTmBmladWFEWpxY5buKWUOVLKdeGvncBmoCHQFyhbZfEOcG34677AXBnyC5AshKhf5ckVRak1bDYb9erVMzpG1PhbV5CEEM2ATsAqIENKmQOh4g7UDb+sIbDvsG/bHz72v+e6UwixRgixJhDw/P3kiqLUGs2aNWPKlClGx4gaJ1y4hRDxwHxgjJSy5FgvPcqxv6wukFLOllKeI6U8x2qNO9EYiqIotd4JFW4hhJVQ0f4/KWXZjf8Olg2BhD/nho/vBxof9u2NgOjZqk1RFKWGO5FZJQJ4A9gspXzhsKc+B4aEvx4CfHbY8VvDs0vOA4rLhlQURVGUyjuRedwXAIOB34QQZbuEPwxMBj4SQtwG7AVuCD/3FXAVsANwA0OrNLGiKEotd9zCLaVcwdHHrQEuOcrrJTDy70eJrk12ji76M0bbZkVHE+0Zoz0fqIxVpSZkPBoRDcGTklJkx463GB2jQmazn6SkUmy2OkZHqVAwWEJysgW73W50lArl5uaSmppq6N3jj2f//mwslgZGxzgGjYApG2tdq9FBKqS7deKD8SQmJhodpUKFhYXEx8djs9mMjlKhd999l0OHDh210xwVhTshIUOWlh40OkaFkpJ28NxzS7jjjjuMjlKhhQsXkpGRwbnnnovP58Nqtf55lxWTzgHfHg4FDyJ1iQUbIPAE3NjNibRIPAOhm7HZrGiahhCCYDCIEAKTyUQwGMRms5V/Ljt/MBjEbDYf8dqy1WPBYBCrNVRcylaTPf3004wcOZKUlBSD3qVjk1Jy44338sknLxkdpUIxMYW0f+wy1j681ugoFar3Uz1m5c+K6t0hX3vtNS655BJatmxpdJQKZWRkcPDgwaMWbrVXySlG0zQKCgqITbDx30NfUDe2KUGTl52lv5Lj34PTW4rTW0yDuBZ4/B7qWhuxPXYzuwt2cM+5j+D3BRBCUFpaihCCmJgYSktLSUtLo7S0lDp16lBcXEydOnUoKSnB4XBQVFSE1WrFZrNhs9mwWCyUlpZGbYFWlKqWm5vLkiVLGDBgQLW0pwr3KWZH0a/MP/QiolhwwLcHq4wlGJQ4SCEtpiHJpFDkduHRA9SJaQS6la93fkqcJYGnfniAge1vo4G9MQkJCUgpCQaDpKam4nK5iImJIT8/n/j4eEpKSoiLi8Pn85GcnIyUEk3TcLvdQGilW0FBAcnJyVgs6sdMObUVFhby7bffqsKtnJx0e1M+WLyeOrF1ODP9TE6r24Zd2Zm8s+J9WrZOIt0Rz/aNOZgbBrmg3UWYg7HEWZIpdOYTY0/gzf/O5B9tr+WMlLOwWKxYrVby8vKoW7cuLpeLOqmpFBYUkJSURHFxMQ6Hg5KSEqzW0GsdDgcmkwmXy0VKSora3lWpFaprc6ky6l9VNdF1nU8//fT4L6ykOOzM/seb6Jrgyz++ZvoPL7Poj0VkpNTDn5eM70A9WtU9j9iihmhFOitW/Mzu/E2s3bmeLdk7WL13HfM3zMer+7BYLAghiI+Px+/343PmsO2Xuexe+wF7f/8PVmtoTDw2Nra8V+33+/F6vZhMJrxeb5VdtV+4cKGh97BUlGOp7muFqnBXE13XeeaZZyLejslkonWdljx68SOYLIKdBTs55DlEfKwDt9+NO+Cicd3GtE3rSKKnJc0S2+HcJhF+HTM+9uZm8+1vi5n0xdNA6AdS13WQGll/fMvSD8aw9qtHWbvo3wj5559N1/XyH16TyYSUskp+mFevXs3gwYPZt28fw4YNM/Tu8Yrx5syZQ3a2WoitCnc1io2Nxev1RrQNq9VKwB+gW6NuzL9pPmnxqZjMZoq8xVhtFnyanz/2byLPmcfWvVtYvuZnmtrb0ydjML8u3kqXNo2xO818/PXHBIIBAJwlReTuWc2yL1+iyB1Dl/5vcOmw/yOghWaV+P3+8hksZRcpdV0nLi6uUr9C6rrOzp07adWqFTfffDODBg1izZo1BAKBKnmvlJojMzOTNm3aoGkad9xxBzfccMPxv+kUpgp3NTGbzcyaNYvRo0dHtJ3i4mLq1q2LkIK29drx070rSHYkk+M8wIGSg2QX57Dv0H5+3vYzy7csJy0lHU1qHMzNp8/ZA3BsbkVSjIW6SXHs3LcNKSU/LnieOZOHEZvciktueYX2Xa8miAO73Y7X66VOnTrY7fby2ShFRUXYbDby8/MrNbxRWFjIsmXLGDp0KP/4xz/o0qULTZo0Yfny5VX4jinRTkrJhg0bGDJkCD169GDu3LnY7XZ27txpdDTDqMJdTcrmN0d6LKzsYqEQAq/XS4a9Hm8OepO7e9yNXw+QWZDJlpwt+HU/rRq2Jq1OGrlFuRwqLSQrLxu3101CYTPiEgVPfDaGT/8zh22bN5Jcrx3X3Dad9l2vwuv1Yrfb8fv9WK1W3G43fr8fgLi4OOx2O5qmkZCQUKmLk2lpaVx88cXcddddXHrppUycOJHdu3dz8cUXV9XbpdQQv/32G2eccQbPP/882dnZtGzZkh07dhgdyzBqVokBpJQRuwrt9XqJi4sjEAiUL8I5Pb01rXuNpWvDLhx0HeSZT54hKz+bXQd3Uic2FRs2CvLz8bkDeEs9jLh2BKPOv4di+37efnEKKbka9z31OinpjXG73cTFxeH1eomJiSlflFM2zl1WwMsKekxMTKX+PBdeeCEJCQm8++67/Pzzz3z++edV8TYpNYgQggEDBtCrVy+EEGzatAmTycSECROMjmYYVbirUZs2bejYsSMfffRRxOZ76rqOxWLB7/cfcZFQSuh2Wjdi42K5ot0VWG1WSp2l2MyCrF3bSE9KxSfBXiedWFssKckplJQcYmvzDfQa9g+ateqIEAJN0zCZTJTm5xGwmAloOqkNGmIymcqLN1D+2sr+hpGRkcHll1/Oeeedx6ZNm3jrrbd47rnnquKtUmqQFi1a8Msvv/D4449z991306pVK6MjGUoV7mpkNpvLi2qkxMbGls+r9vl85e0CxMTE4Pf7SYhNIH/NSmIDHpy5B0nI3kNJ0SGSO3QiseN5lGbuYLfHw74Dufy2/CfOO7s7gay9ZG/fQmxcHCXxKexZvpi9v/9KfHp97Ke1Jj41jYZnnEFGq9PLl8EnJSVV2TzupKQkGjZsiMViYe/evTRp0qRKzqvUDGazmR9++IFu3brRuXNno+MYThXuU4zL5SI1NZXS0lJiY2PRdR2fz4cQAo/HQ6zHye7/m4UjJRV/nJ2k9Hoknt8DKQQC8OzfgywuJEYP4ti9jfN9buTiL8jOykSYLBwK+Imr25DWl1xBi0suR2o6W39axoHff2Xv+rU4PV6ufXgCKWlpFBcXk5qaWmXFu2nTpjRu3JiffvpJFW6lVlOFu5pdf/31TJw4kZ49e9K4cePjf8PflJiYGNqrJDYWt9uNyWTCarUipcRhNbNh1B0kndaKlIsuw2S2gNTwZ+0NbdwrJWazhaSWbdClxNG4BS2vH4im6fjcJVji4tGkTiAQxFNciC5B0yWN2p9FfSkpLijg8+kv8Mbdd3HP2++SnJxc5TsB3nDDDUyYMIEePXrQoEE07+KnKJGjZpVUs7S0NEpKSsqHMapaSUkJaWlpSCmx2+2hed2BAN5DBay6/VrsDRpS/8p+6M5i9OJCpLMY4S1FeErB60K6StAK8wgW5qG7nASLC9CchxB+P/6iQgKHDhF0lhB0uQi6XQTcLvylTnyloeGZvmPuo/RADi//81b27dxZ5asd09PTSU5OZuvWrTV2L2VFqSzV4z7FxMbG4nK5EEIQCASQUmI2m8n5z0fUadyCBpf3IZCfgzk8PdEkwnfJEAIhJbqUIAUCCbqOlKBJSVAHTdfRpUSXhB9LNF0SkBJN6gR1ga5Lzh94E9+99SablvxA89NPr/I/4+TJk+nYsSPr51Q7CwAAIABJREFU16+v8nMr0amoqIj9+/fTq1cvo6NEBdXjPsXY7XaKiooA8Hg8oVkePg/ObRtJbtOeYP4B8LrB60b4XJh8bsx+N2afG5Pfg/C5ET43eFxIrxvpdSHdbqTHheZxE3S7CLpcBFxOAq5S/O5Sgi4X/lIXfpcTn9uJCWjW4SxWffYZxXl5xr4hyikhNzeXbdu2cf755xsdJSqowm2AadOmMWLEiD9vdFCFiouLycjIQEpJfHw8FouFnKXfgs+PrgXQPC6kJ1SYhdeNyevC7HNj8bkweV0I3/+zd+ZxTlbX/3/f7DOZZFb2fVMRFEUQgUIFVERxq7VudbdqrbYI6qB+RbG1isoiboigIra/Qq1KXepSRS2KqIAiiGwCOjIDwyyZ7HmW+/sjyeOMggyQITNw369XXkme58l9TrZPTs4995yUWMeiyEgEMxzBjIYxokHMSFK8tegPYRItHCIeCREPB0mEQ8RCYaKhOtr27EmwuppQTU3GnyPAwoULufjii5tkbIWiuaNCJVmguLiYnTt3NsnY+fn5bN++HZ/PRzgcxm63k+t2EnTZMRMxTB2kzQY2kDYBNoHNbkMIkCYIU4IpkabENAxMKyRiYpigG8nQSMKU6IZEN000EzTTREvdT5ipsImuQRPFodu3b4/X62XTpk306NGjSc6hUDRXlHAfZESjUXw+H4C1ajEWi2HGY0nP2QZ2mx3TBqZdYNpsmDaBDYEpU4JtmhimxDSkJdq6KZMCbSRv60ZSsBOGmRJriWaAZsqUiJsYTVgMKi8vj/PPP5/nn3+eu+66q8nOo1A0R1SoJEvMmDGDCRMmZHxcu91OJBKxutdIKXHYnQQ3rCVevRMjHEaPhNDT8epICC0cIWFliYTQIxGMSAgtEkILh9DCye1aKEQilAyJJMIh4qEQ279eQ7S2hlgoSCwUJBoKJsMlwVCTV/Hr378/UkpWrFjRpOdRZBfTNLnnnnuYOHFitk3ZLekSFgcq00l53Fmif//+3H333RkfN503nS5oZZom7pJW4HRRt/ZLRI9eSLcbabMh7QIpJIlwEOHOBacTQ9fREjrxWITar9eQ0HViuiRuSmK6QcwwiRvg69UXw+XCmZtLLBxBFwLNkMSNZMhk27dbCVRWIpqwo3tRUREFBQVs3ryZfv36Nevu8Ycama7Fs2bNGnr37p3RMTNJz549GTx4MH//+98PyNyLEu6DjHRZ12AwiNfrRdd1OPp4igePZPt/XsCIhino2gMjNxfDJrALibH9e4TDDS4XiWCA+M4dJIxkHDtumOiGJKFLNMNA1yWaYfL9qk+J6+AoaUNc08GbBy4PCSmo3VnN1g0bOPHK31HUrl2TPt9x48Zx0kknMWrUKAoKCpr0XIrGc6jl2Nvtdqs2/YFAhUqyhNvtZuzYsSxatCij4+bm5hIIBKyyrrqebHYQjSfQTUk8Eia4fRuxUB11326mbss3hGtqCX3/LXWbNxLekRTttOesGZJEatJRNyW6KTFkesLSILDtewIVFVSsX09NeTk7tm6h/JtNmCZ0P+pocvLyMvr8dsW4ceOYOnVqk59HoWguKOHOEi6XiwEDBvDpp59mdNxEIoHX60VKicvlwm63J7vRdOiAbneS0E2iwSDhQC3hqkrCVZVEIlGiuklMN4kZBlHdIG6YxI3kpGMilTGimaBJMzkxmV6EIyUGyUnMeCxGNBjGFAJ3np9YPN4kKY8/5vTTT+eVV15p8vMoskMikcDlcmXbjGaFEu6DkPTf1Pp/V7v/9npsJW2JGAaRSIxwIEBUM4hqJlHNJKKbRDSDiG4S1SVxHeK6SVw3SeikskaS2SKaKTH0H7zwhGFiIgjXhYlGo+i6Sb/TT2X4xRcdsOfcq1evQ7qw/sHM6aefzltvvZVtM5oVSrgPMlwuF9FoFCEEuq5jmmayLrewYStohW4kJxkjoUhStA2TqG4Q1c2U1y2JGaZ1SXrdqeuUBx43zWTKn0wKumGCDhgkQyhHDB2OHRu5npyMVQb8OYQQPPjgg0yaNKnJz6U48BiGoSaef4QS7izSp08fnE5nRmtuxGIx/H4/kKxb4nA4knnZhkHXS39P3BDEdJNoLJEU7pRgRzUjGSrRDWJa6tqQxI2kkCf0lHjrJrouSZikFtyk4uCaTiwWw+5xY3M7OfWaa6mrq8t4kand0bp1awYMGMAbb7xxQM6nUGQTJdxZpKSkBLvdzvbt2zM2ps/ns1ZlhkIh4vE4drsdp9NJt0FDMXPziKXCIsl4tiSa8q6juklEk8lwiSGJ6kkxjxsmMTMp4gkD4iYkTIO4kVx0o5smCUMiHU4Gn3cBNTur6NK3L61atcLhODCJS7m5uXTp0oUNGzYkM2kUioOYPQq3EKKTEGKxEGKtEGKNEOJPqe13CyG+F0J8nrqcVu8xtwkhNgoh1gkhRjflE1A0JBQKkZ+fj5QSj8eD0+nEMAxM0ySiaYx8+BkrHztiJGPbUc0kkopzR1OTkz944CYxzSChGz+ESgyThJ5e3m4QN0E3TI4Y8guWL17MDU/OxuVyEQqFDsjkZJpf/epXfPXVV3z11VcH7JyKpuXrr7/msMMOU6GSH9EYj1sHJkgpewMnAH8QQhyZ2jddSnlM6vI6QGrfBUAf4FTgcSGEetV3w8iRI1myZAmRSCQj47lcLmKxmNXzMR3jFkLgcrlwt25D26EjU4Kc8rJ1g6iuW5kl6fBITP9h0U3ykgqbGKaVMhg3JJpp4PbnE40lGHTaabTt0gXDMHA6nU3WFHlXCCE4++yzeeGFFw5YiEbRtMybN4/f/va35OTkZNuUZsUehVtKWS6lXJG6HQTWAh1+5iFnAf+QUsallJuBjcDxmTD2YGTIkCF89tlnxGKxjIzn8XgIBoMIIUgkEpimaS0OyM3NxVFQRPvjhxDXZSqrJOlZR3WZvE5lmUR1k7hhpMSa1OUHsY6bkriRrF1iCgd9Rp5ENJFgyJln4/P7MQwDr9d7QIUbYPTo0bz55psqXKI4qNmrGLcQoitwLLAstekGIcQqIcTTQojC1LYOwHf1HlbGzwu9AtiyZUtGxqmrq6NVq1aYppkUaocDTdPQNI2amhq8ubn0ueAyOo44haiZ9LDDmkE4YRBJpQdGUqGScErAY5pBTNeJawbx9MSlnvS8DbuTw3/xS6p3VtH/pJPp0LcvtbW1OJ1Odu7cmRXP96233mL0aBWhOxgoKSlR3vYuaLRwCyHygH8B46SUdcATQA/gGKAcSC9d25WL9ZP1r0KIa4QQnwkhPtO06F4bfrDw+eefU1ZWxkknncTcuXP3Oz7r9/uprq7GZrMRiUTQNA2n04nT6aSgoIBIJILd6aTzyaehO3OsvO2okZyUjBip+7r8IePEShOURNMxblOCx0PrHj2RDjuRugAdjjgCf34+BQUFaJpGUVFRVmKTubm5nHzyyQf8vIrMM2HCBAYOHJhtM5odjRJuIYSTpGj/TUr5IoCUcruU0pBSmsBT/BAOKQPqd8HtCGz78ZhSytlSygFSygFO56H7i/rqq68yevRovF4vy5cv55133tmv8SKRCH6/35qcdDgc6LqOrutW53cpJcefcx7DbypNetn6DxcrJdAwf5icNGRKuA3iejLerUuBy18ILjflm7fw27vu5oSxpxONRgmHwzgcDoLB4AGdnEzjdDq54447Dvh5FYoDRWOySgQwF1grpZxWb3v96kHnAKtTt/8NXCCEcAshugG9gE8yZ/LBw/Lly0kkEkyaNIkOHTpw7733snXrVtauXbvPY+bk5FBXV4eU0qpVYrPZsNlseL1eYrEYUkrq6ur45ZXXcsr/3Y1udya96VQ+d1Q3SQh7KiUwleNtmCSkjZhuENclcQSRaIyKLd9yyV2T6TVoULISoduNx+NB1/WsxLgVikOBxiTZDgUuAb4UQnye2nY7cKEQ4hiSYZAtwLUAUso1QoiFwFckM1L+IKVUU/y7oH///vznP/9h7ty5vP3228yYMYMuXbpwxBFH7POYdrsdh8OBw+Gwlrynb9ff53A4cLndDL74cnoedwJvP/EodTuT/SElMPiii/nf355HSjBNiSMnl05HHcXapUsxJUgERe3acvHtt1PUqRMOp9MaN31Oh8OhhFuhaAL2KNxSyiXsOm79+s885l7g3v2w65BACMGQIUN46623mDlzJuFwmFGjRu2X2NlsNkpKSna7Pz8/HwCv1wskVxy2bt2aPsOH/+TYU664ep/tcDqd+/xYhaIlYZom06dP5+OPPwagurqam266qUnLPah63Flm5MiRjBgxgiVLljBs2LBsm6NQKPYSKSWzZ89mzJgxCCGYPXs248aNa9JzNhPhlrjd1dk2Yre4XHXEYjGqq5vOxj59+uzX+JFIhFAo1KQ27i+aplFbW9vMi+wbzfqz6HbXYtfsuKvd2TZlt7hCLiKRSLP+LMZiMerq6jJi4xVXXMGLL77I+++/jxCCq6++ml/96lc888wz+zXuz31PRHP4EhUVFcmbb74522bslnA4TGVlJV27ds22KbulvLwct9tNUVFRtk3ZLevWraN79+7NOozyxRdf0K9fv2ybsVs0TWPJkm+oqTk826bsFo+nmmOPjdOuibsf7Q+bN2+mdevWVsiwOfLQQw9RXV2967iplDLrl9atW8vmzIYNG+Ts2bOzbcbP8tJLL8mPPvoo22b8LH/+859ldXV1ts3YLaZpyhtuuCFj43399dfyzTfflFJKuXPnTjl//vz9HrOqqkoed9y9EmSzvbRtu0S+/PLL+/1c0zzyyCMyFotJKaX8xz/+ISsqKvZ7zFmzZskNGzbs9zhNSUoXd6mZqjqgQtEE1NXVcd9999G7d2+uv/56AGpra3n55ZezbFnL4oknnqCwsJDy8nImT57MgAED+NOf/tQsa9G88sorB6wTUzOJcSsUBxc+n4/zzz+fqVOnsnz5ct577z2WLVvGddddl23TWhRXX301Y8aMwe12s2LFCtauXcvtt99+QBp07C2VlZUHLP21+T17heIgQAhBly5diMVilJWV8dprrzFixIgDVp/8YMHpdDJmzBj+9a9/8fXXX1NQUEDr1q0P+fUB6lOkUDQRRx55JLNmzWLDhg1Mnz7dyqFX7B0TJkxg/fr13HvvvcyaNSvb5jQLlMetUCgULQwl3AqFQtHCaFHCrWnafie1KxQKRUunxQj39OnTOeussxBCcMopp/DRRx9l2ySFQqHICi1icjIcDrNx40buuece2rVrRyAQYPPmzQwaNEg1EVUoFIccLcLjXr58OZ07d6ZLly7cd999tGnThs8++4xgMJht0xRNSDQa5cMPP8y2GQpFs6NFCPfw4cPZuHEjN998MxdddBEXXnghJ554IgUFBdk2rUl46KGHDvlmt48//ji33XYbH3zwATfccAPffvtttk1SKJoNLUK4ASZNmsQNN9zAo48+ysqVK3nttdcoLy/PtlkZxTAMpkyZwuGHH94sV4YdKHRd5/XXX+e8887jd7/7HcFgkPLy8mZeVVChOHC0GHXo1KkTAwYM4LnnnuOYY47h8ccfZ9y4cWzatCnbpmWMl156idzcXE4//fRDWriff/55zj33XLp3786dd97JH/7wB2bMmIGmadk2TaFoFrQodRBCNGiNNWfOHObMmcPy5cuzbNn+EwwGWb9+Pf369TukRRvg8ssvZ+HChSxcuJBRo0YxaNAgOnXqdMi/LgpFmhb9TfD5fNx444289NJLrFu3Ltvm7DNSSkpLSxkxYgTDd9FC7FDk9ttvp7CwkA8//JCFCxcyYMAAbr/99mybpVA0C1pEOuDP0b59e26++Wauv/56pk+fTps2bbJt0l4RjUa58cYbufXWWznssMOybc4+YZomNTU1QPJHaOzYsUSjUSZNmsS55567T2MOGzaMIUOGcPrpp1NcXIyUkvbt2zNp0iTuuOMO3O7m2wFGoWhqWrxwAxQUFDB//nyuvvpqJkyYQN++fbNtUqOZOnUqv/71r+nVq1e2TdkrAoEAS5cuBZJtoNLFf4QQvPvuu+Tk5Oz3Oex2O8XFxda4Q4cOpaamhlmzZtG3b19Gjhx5yFeJUxyaHBTCDckv+YMPPshjjz1GIpGgf//+2TZpj2zevBld1+nVq1ezF6Da2loefPBB677NZsPj8QDg8Xj4z3/+0+TPQQjBGWecwUsvvcTSpUvZunUrV155ZZOeU6Fojhw0wg1QUlLCNddcw5QpU2jVqhUdO3ZstoIYDoe55557mDRpEt26dcu2ORbp1kgAK1euJN0LND8/n5tuusk6Li8vj+OOOy4rNp5zzjmcccYZzJ8/n2effZbLLrus2b7PKoVx/0l/Jpvreww/vM8HysaDSrgB2rVrx3333ccll1zCjBkz6NixY7ZN+gnbt2/n97//PfPnz2/SZqVSSsrKyujUqdNujwmFQlRUVFj33377bWbPng1A//79+fe//w0kP5B5eXlNZuve4nA4uOSSS3jsscd4+eWXOfPMM5tl+YN7772XW265Bb/fn21TWixSSq644greeeedbJuyWzZs2MDSpUt5/PHHD8j5DjrhBsjJyeH5559n4sSJXHbZZRx77LHZNsli/fr1zJ07lyeeeKJJRXv58uWsXr2aTz75hEGDBjFkyBB69uwJwOrVq1mxYgUAO3bsYNWqVdbjRowYwcqVK5vMrkzicDj405/+xJQpU5g3bx69evVi2LBh2TarAfF4HLfb3ay9xZZANBrNyLxJU2GaJoZh4HQ6D8j5DkrhhmTctbS0lNmzZ+N0OpvNhOV7771H3759mzz75Z///CcAkydP5uabb2bu3LlW1kq7du0sL7xfv35WOKSlcuutt/Lcc8/x4YcfYhgGJ554YrZNUiialINWuCEpUNdffz2lpaX89a9/pW3btlmzRUrJ2rVrWb9+Pf/3f//XpOdasmSJleN+2mmnUVZWxrZt2ygtLaVr164UFxe3uLTJn0MIwWWXXUYgEODee++lpKSEPn36KC9XcdDSohfgNIZWrVrx1FNPcdNNN7F+/fqs2fHll1/ywAMPMGXKlCYvjjV06FCCwSALFizgtdde46KLLuKJJ55gzJgxHHnkkQeVaNcnPz+f+++/n2nTprF06VK2bNmSbZMUiibhoBduSKYKzpo1i+eee+6ALo8Ph8O89NJLvPfeeyxYsICnnnrqgEygCSEYNmwY69ev5/HHHyeRSHD00UcfEh6ozWZj9uzZLFq0iGeeeSarP9YKRVNxUIdK6pOfn8/111/Po48+Sn5+vjVR11T85S9/YfXq1QwdOpRbbrmF559//oBNXACcfvrpnHbaabz//vuHXMzX4XAwZcoUNm3axMyZM5k0aZK1kEehOBjYo8cthPAIIT4RQnwhhFgjhJic2t5NCLFMCLFBCLFACOFKbXen7m9M7e/atE+h8bRv357bbruNO+64o0EKXKYJh8OsWrWKSZMm0apVK4LBIKFQ6IDn9AohDjnRrk+PHj2YPHnyQVu3XXHo0phQSRwYKaXsBxwDnCqEOAGYAkyXUvYCaoCrUsdfBdRIKXsC01PHNRt8Ph9/+9vfuPPOOxukwWWSN954g+HDh1NUVMSmTZt49913WbhwoSpLmgUKCgqaZX63QrE/7FG4ZZJQ6q4zdZHASOCF1PZ5wNmp22el7pPaP0o0s+Cqw+Hg3nvv5eWXX+bzzz/P+Pjnnnsub775JjNmzODss8/m8ssv58orr8TlcmX8XAqF4tCjUTFuIYQdWA70BB4DNgG1Usp0f60yoEPqdgfgOwAppS6ECADFwM4M2r3ftG7dmmuuucaq751pHnjgAb799ltmzpzJww8/TJ8+fZrkPAqF4tCjUaolpTSAY4QQBcBLQO9dHZa63pV3/ZPgrhDiGuAaSIYvskFT5nX37t2bI444ghNPPFGVIFUoFBllr9IBpZS1wHvACUCBECIt/B2BbanbZUAngNT+fKB6F2PNllIOkFIOaM5LWfcHIYQSbYVCkXEak1XSKuVpI4TIAU4C1gKLgV+nDrsMWJS6/e/UfVL735WqRJpCoVBkjMaEStoB81JxbhuwUEr5qhDiK+AfQoi/ACuBuanj5wLzhRAbSXraFzSB3QqFQnHIskfhllKuAn5SXk9K+Q1w/C62x4DzMmKdQqFQKH7CIbHkXaFQKJqK5557jieffJIvvviCe++9l6qqqiY/pxJuhUKh2EeklMyZM4cePXpQXFzMe++9R2VlZZOfVwm3QqFo9rRu3TrbJuyShx9+mD/+8Y+MHj2avn378vTTTzNx4kRM02zS8zaLIlOmafLhhx9m24zdUlFRQXl5ebO2ccuWLdTU1DT5B2Z/qK6u5tNPP23Szj/7SyQSyej7HAgE2LBhQ8ZWzYZCITyeatq2bb6fxcLCdWzZEszo6zhp0qSMjldeXs6qVavYvn37fo0zcOBAJk2axB133MG5555LaWkpF198MUuXLt1vG3/uu9wshFtKeUDiQvtKIBAgGo02axvD4TDPPGMjGGy+NnbunGDQoBpisVi2TdktNTU6l1ySydfwJF59FSAzYzocEdqd+ik5t76YkfGaAtdmP+Hwb5r19yUWi/F/tf9HzJGBz+Kf4OrQ1RACLoCP+Tgjb3dcxne7r1kIt91u58wzz9zvcaSUvPzyy7hcLkaPHs2XX37J0qVLue6667DZ9j0qtHHjRgzDyIiNTYVpmuzY0YaKisHZNmW3FBev4pRTTqGwsDDbpuwSKSXz57/N5s3N9312u6vxt32IzWduzrYpu6Xth23ps7PPfn9fTNPk8ccfZ+jQoRx11FG8+eabJBIJzj777P2uLV9eXs624dsI9Azs1zhNSZ599825D6oY99atW3n//fet5rjdu3enqqqKjz/+ONumKRSKvWTp0qXU1tbSvXt3hg4dyqBBg3j//ffZunVrtk3LOgeVcHft2pW+ffsyfvx4ysvLufvuu4nFYgwZMiTbpikUir1k6NChhMNh7r77brZt28b48ePp27cvXbt2zbZpWeegEm6AESNGMGbMGOx2OwMHDuT888/PtkkKhWIfueCCCxg4cCB2u50xY8YwYsSIbJvULDjohLtHjx5ceOGFFBYWcsEFF3D00Udn2ySFQrGP9OvXjwsuuIDCwkIuvPBCevTokW2TmgUHnXArFArFwY4SboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWKBSKFoYSboVCoWhhKOFWHHC++uorPvjgg2yboVC0WJRw7ydSSkzT5IEHHmDLli2N7vmYftzuLuvXr+fEE09scHnuueea+Nk0PTU1NcycOZM333yTESNGNOs2ZgpFc6VZtC7LNBUVFbRr1+6AnGvTpk0MHz6cadOm8cc//pFwOMw777wDwDfffIOu67t8XCwW4/LLL0dKucv9vXr14tVks0KLTDWczSYFBQX85S9/oaKigtdff53169fj8XiybZaFYRjZNkGxC9q1a0dFRQVt27bNtinNgoNSuEtLS3n44Yf3q89kY5BSsnjxYiZPnkznzp0ZO3YsDz30EPPmzQNgyZIlJBKJXT42JyeH5cuX73fvvJaGEILvvvuOGTNmsG3bNh544AHsdnu2zbIIh7NtgeLH2Gw2ZsyYQWlpqfXdOtQ5KIX7QGKaJg6HA9M0LW8t7WXPnDmTnJycbJrX7Kirq2PJkiWMHTuWt956i9mzZ5Obm5tts4DkD/FvfvPHbJuhUOwRJdz7gRCCUaNGMWzYMB5++GHeeOMNOnbsyFVXXZVt05otubm5FBUVsXXrVhYvXtyswiQKRUtBCfd+0qNHD8rKynjwwQeZMWMGXbp0ybZJzRqHw8FFF12ElLLJQ1kKxcGKEu79RAiB3W5n4sSJ2TalxSCEOORi+wpFJtmjyyOE8AghPhFCfCGEWCOEmJza/qwQYrMQ4vPU5ZjUdiGEmCmE2CiEWCWE6N/UT0KhUCgOJRrjcceBkVLKkBDCCSwRQvwnte8WKeULPzp+DNArdRkEPJG6VigUCkUG2KPHLZOEUnedqcuuk4+TnAU8l3rcx0CBEOLAJFUrFArFIUCjZoeEEHYhxOfADuBtKeWy1K57U+GQ6UIId2pbB+C7eg8vS21TKBQKRQZolHBLKQ0p5TFAR+B4IURf4DbgCGAgUASUpg7f1azTTzx0IcQ1QojPhBCfRaPRfTJeoVAoDkX2Kh9LSlkLvAecKqUsT4VD4sAzwPGpw8qATvUe1hHYtouxZkspB0gpB6hFKgqFQtF4GpNV0koIUZC6nQOcBHydjluLZF7X2cDq1EP+DVyayi45AQhIKcubxHqFQqE4BGlMVkk7YJ4Qwk5S6BdKKV8VQrwrhGhFMjTyOXBd6vjXgdOAjUAEuCLzZisUCsWhyx6FW0q5Cjh2F9tH7uZ4Cfxh/01TKBQKxa5Qa44VCoWihaGEW6FQKFoYSrgVCoWihaGEW6FQKFoYSrgVCkWzx+fzMWiQKnmUplmUddV1nSeffDJj40UiEV588UUKCgoyMl4gEKCsrCyjNmaab775hs6dcykpWZVtU3aL37+F+fPn43a793xwltD1avr2bb7vs90eI39zPn2f7JttU3ZLbnkuS2NLqaioyOi4drs9Y9/B1atX0yPQg0T+rlsLNge+1b/d7b5mIdx2u51Ro0ZlbLxMjgVQVlaGzWbL+LiZxOFwcMIJRRx11FEZGU/XdRyO5MfDMIyM9IWcO3cLf/7zMDTNt99jNRUnn7yCl15qvu9zXV0d//rXDq4YtevlERKJxERKiUhVn5CpihM2Ybe2NSWrVq2itraW4cOHZ2S8+p+/TH0WA4EAU4+fSseOHfd7rKZisG3wbvc1C+EWQtCzZ89sm/GzbNiwoVnbuHr1atq0aZMRG7du3crtt9/OnDlzCIdjCDOLAAAgAElEQVTD/PWvf+XSSy9l4MCB+zWu1+slGOxKPF643zY2DRKbzZXR97m8vJy8vDx8vsz8WFVXV+P1eunWrRtVVVXJjTkadeFa8vML+GLHYj6MvEowVoOpC7y2IsLxMJF4mKu6T8bjzKFdXkcKvcUEAgGcTiehUIiSkhJ27tyJ3+8nEolQUlJCOBzGbrejaZolmOFw2NqXn59PZWUlJSUlAFZHo+3bt2O32zPyOm7bto3S0lJmzpxJXV0dCxYsYMCAAZxyyin71YwjPz+fjh070qlTJ0KhEDk5OYTDYZxOJw6Hg2g0is/ns/bF43GEEDidTiKRCH6/n2AwSE5ODpqm4Xa7SS5hAZfLRSgUIi8vj3A4TG5uLrquY5ombrebYDCIz+cjEong8XgwTdNylDwej/W8fq5DVLMQbkXzYvHixfzyl7/k008/5f333+ekk07i1Vdf3W/hPhR5/PHHGTlyJCNGjMjouFE9xJfR9wjpAcrq1lAVq8BT7UOYDlrbutEh5yi+2vkpDruPvr5jsOXZ+aJ6Ka9uXMDoLucxqstY2ng6IKXE4/EQj8ctEUmLk2malhilRSR9rBCCSCSCy+Wyrl0uV0afI8Cnn37K0UcfTXl5OVOmTOGyyy7jrbfe4uSTT85IF6VQKER+fj6hUIjCwkJ0XUfTNIqKiqipqaGwsNASYSkl8XickpISampqKCoqIhKJkJubSzQaRQiBaZrWmFVVVeTn5xMIBHA4HNhsNqqrqykoKKCqqgq/309dXR1CCNxuN9FoFLfb3ajnpYRb8RMuv/xyDj/8cNq1a0dlZSWzZ89m7dq12TZLUQ+bsDHzk8fQjDgd/R3pXtgdt93Ls+/Ox+9zcViXdlRtDVMVX0O/vrUUuVqjGSbtcnqwpmIV6A5audsw+rAzASzRSd+22WyYponNZkPX9QbnTreeS4u5zWZrslZ0Z511Fr/85S95++232bBhA//73/94/fXXM9avNCcnh1AohMPhoK6uDrvdjs1mIxAIcOONNzJgwACuvfZaIpGI9Zxra2vxeDzU1dXhcDiIxWJWWNFms1k/bvn5+SQSCbxeL6ZpMm/ePN555x2efPJJ8vPz0TTN2ielbLRogxJuxW5YvHgxH3zwAR9//DHjx48nPz8/2yYp6uG25/KXgY9z9oKz2OEy2OioJlfkUiS6kBtzE9mSx87vo3xdsQN37pd4qoqoKdqJ11GEw+YiUBcjlkhwQsfhOKQTr9dLOBxGCJH86++UJGJhnA47CA+mlNjtduLxOF6vF13XcTqdhMNhfD5fk/YQXbhwIV9//TWPPPII06ZNo127zPVlCYfDFBYWUldXR15eHoZhoGkafr+f119/nUWLFmEYBpdeeikFBQXE43H8fr/lcYdCIVwuF7FYDMDyuAsKCqitrSU/P5/vv/+ed955h9LSUuLxOM888wy1tbX4/X5CoWSPmrTY5+TkKI9bse+0b9+e1q1b4/f76dy5c7bNUfyIWCxG91ZdWfibhVz4z/NZvmU5Tt1BsasImQAzYXLfhffz8ZdL6ezvzJtr3qRDp0K2fFuJ25dHeWUVsYTOfW//lbvGTiYcDuP3+4nH4zhljOfvPA5Tj4GQ/OqWleQUtMU0TQoKCgiHwzgcDgKBALm5udTU1JCbm0tubm6TPNc2bdoQCATwer0Z/yw6nU50Xcdut2MYRnJSt14z62g0SmlpKXfeeSdvvfUWxx57rBWP1nUdm82GlNL615EOe0gpcblcrFq1ilNPPZVAIAAkkwjsdrsVVnI6ncAP/3KUx61QHMTk5uZSWVlJB297nvjVLG5ceCM7anbQs7gXdmnHTBj888MFeO1eorEILoeT7Z84OKLLALbt2ERd8Q5KtE78vzcXcErXUzlt0GlUVlbiccHyNx8mENJo3XkAvY45CeHMJR6PY7fbqa6utiYni4qKqKyspLi4uEk97qbE4XCgaRo2mw1N06zn8fTTT1teNEAikeCiiy7ikksu4ZxzzqFr165MmTIFKSWGYVgC7HQ6+d3vfsf27dv5+9//zj/+8Q9LtCGZFTN79mx+97vfYZomDofDmkfYm2wZJdwKRQskEomQl5cHwADPAP7fJX/nrKfO5usd6/A5fOSIHOIiTmV8JxWV5VTvrOb0gWMpcbXHxM7ReQN464v/UOR24LY5CQaDBHZs5JV/z2DH1s9o3aE/w34zlYLWXbEJgd1uxzRNiouLLY+7qqoKn8/X5B53UxKNRikqKqKurg6/34+u6yQSCf7+97+TSDTM8d62bRtTpkzhtddew+v18tlnn2EYRoNjbDYbr732GlJKVq5c+ZPzSSmZPXs2F1xwAQUFBYRCIYQQeDweEomE5fHviUN25WQ8Hmfnzp3ZNkOh2CfS3pmUEpuw0bOoF+9c9w492x5GXayOdRXr+WzrClZ9twpfnp+BfQYS1aJ8u30rwmGj7vsEJ/YYQ16ugzufv4HN2zby7cbVfP3lcoadeRvn3jCf4rbdEST/xqcFJZ0WKITA4XBgmiZ2u/0n3mJL8cDTPzxut5vq6moikQgAmqZZx0ybNq3BGo7Vq1ezbNmyn4g2JGPcK1asaCDabdq0Yd68edZ9h8NBq1at0DSN/Px8vF4vkPwXpUIlP8Prr7/O1q1b+e677zjyyCM5++yzLe9FoWgJ2Gw2YrEYIuUNa5pG2/y2vHHtq7z25Wu8+uXrLF3zERVV24kkwlSZduL2BGbCBB3WrvuKUwaOZnjJr2k9WHDjtAs5vNLOMQNGcdhxY8jNy7dEOp31IIQgkUjgdDoxDAOXy2VNUv5YcNJ//5s76TTAuro6ioqKLI87HfqApIi/9NJLFBYW7lKs98SoUaMa/BDous7OnTspKCggEAhYHrdKB9wDkydPZty4cQwfPpzLL7+cX/ziF0q4FS2KWCxmhSai0Sher5fa2lp8Ph8je47i3IG/5o0Vb1ARrCARS+Dz5BGNRIlHEyAF+gidzm06MfL4kRQVFuGvKOK7j77g5F/9gZLW7amqqsLr9aJpGg6HwxLpdH6yx+OhtrbWWrjj8/maJI+7qUmnAzqdyXBReoKwvkDn5OSwrw3Nr7zySh544AHeeusta5vdbsfv9zdIB4Tkwh3lce+GqVOnUlpaSq9evXj11VdZsGABEyZM4IUXXmgxf+8UitzcXOrq6oDkFz69Gi8dsw2Hw4w+djSB2lpyXS6itVV8O+9RYhvX4mnXgSNu+jMJpxM7sLOinIqV23B7W9Opc0/qqqsp9PlIaBobX3mR5f+cj3B6OOLM39DjxJEUFhdjGAYlJSWEQiGKi4utPOaWRjweJy8vj0gkQk5OjrWK0ePxWMckEgncbreVebI3nHXWWQANJjqllITDYbxer7Xd5XI18Mr3RMt8tfeDcePGMXjwYDRN4/XXX+fKK6/k0UcfzbZZCsVeEQ6HrdV80WiUvLw8K284fb195TJE2Wa2vLYQZ46XoydPB5sTYbdh7Kxg7Z0TMYQNM2Zirv2S1kf3Z8sLz/LdB4uJBOvI69SNw8++kDPumYqpa3z17ts8f8WFuPILGfnH8eS1bU+XXr0IBALk5OS0yH+t9eP3UkorxPPyyy/Ttm1bgsEgW7duZcWKFT9ZiNQYNm7cyHHHHcfGjRut851zzjnWnED91MO9cRwPOeH+3//+x8iRI5FS8tRTT9G7d28KCwuVt61oUbjd7gYx7kQigcfjQdM0PB4POz94k61T76TTBVfT59a/IgSE160l/TGXQtD3zmlIAbGKcgo/XkIikcAubAy44VZwOIlHIySiESJVOzClpMtxA+l83PEEqqv516Q78HfqzGUPzSDH72+xHrfT6SQej2Oz2ayl/EKIBh7yI488wiOPPLJP40+YMIFt27YxdepUIDk3MW7cONxuN6Zp4nK5rB+LvXkNW+arvY8sXbqUjz76iNLSUmw2G5s3b+aYY47JtlkKxV6TzuaAHyrmpReSVL73Bt89eT89LroWb9cexL/fgkBgQyIEqVqBguimrzGlxARaHz8YE0hEIkQrKzBN0KXElBIDMEyJYYIpk+f95SWX8v78+cy5/vdc+/QzDSbzWhLpglrplYzpycmpU6fuc1z7x6RFG5Lv25133smdd95pTYqml8knEolGZ5YcEsItpWT9+vXMnz+fBx54wPpLp0Rb0VJJZ3UIIayVfJFIBFG1ne0vP0/nsy/GXVSCGajChg0hUisCAQGYSDCTtzEliUgIQ0p0MynSppSYMnlbT1+bEgMTzQCXO4dfXPRbFj08nUevvIKb//7/svuC7CPp5esej4eamhqklDz22GM89NBDDUIjhYWF2O32BmmRNTU1uxwzPz8fp9OJaZpWDZj0sVJK5syZg91u56677rIyVQzD2Kt0wEMij/uTTz5h2rRpPPbYYy0yDqdQ/Jh0TDtdeS4QCFCQn0/Flyvxl7TFW1CMGaqFWAQRD2GLR7DHw9jikeQlFkbEwhANQywE0TBmJIyMhDAiIfRICD0cJBEOoYWCJEJBEuEg8WDyOhaqw9Q1Tr7qamrKygju2JHtl2SfCAaDFBQUkEgk8Pl8PPnkk9xzzz0NFt8ceeSRrFixgrKyMjZt2sSOHTv47LPPdlkts3fv3rz77ruUlZXx5ZdfUlZWxieffEK/fv2sYwzD4PHHH+eBBx5g27ZthMNhIOn9NzaN8qAX7nfffZe3336b6dOnqzi24qAhXZDI7XZjGEYyrS1QS+37b2DL8aAFayAWQUYjEEsKtS0ewREPY49HELEIxCPWMUYkjIxGMKNhzGgEMxJBj0TQIyG0SJhE+jocJhEOkQiHiIdDaLEETm8e7/2jZXrcOTk5RCIRHA4H27dvZ9KkSQ329+nTh1mzZlFUVGTFwuvq6mjVqhVTp06lV69e1rFut5ubb76ZXr16EY/H8fl8aJpGmzZtmDt3Lscff3yDsadOnUo4HLY6Qql0QJJ/ST7//HPef/99xo0b1yKW40oprZzONJMnT2bx4sUAXH311Vx22WXZME3RzEiHRiD5hU8kErhtgtg3X1E8aixmNIxhs2G3iaR7ZgO7zY7NBqYEYUowJdKUSNNEGhLTBMM0k/FtU6KZEk2aaEYyhKKbZnKbKdGN1G0Jbbt2QctQPPhAo2kaubm5xGIxrrvuOiu7JE15eTm33norhmFwxBFH8Oijj+LxeIhEIhx77LGccsopbNiwAYBTTjmFESNGkEgkrB+Eu+++m5UrV2KaJlu3bm1wbiEEf/jDH3jxxRdxuVx7lWp40Ar32rVreeSRR5g1a9YBWRhQUVFBYWFho/spmqbJhg0bGnxIli1bxsMPP9zguMmTJ1NaWgrQYieAFJmnfvqaldJmE0jTwIxF0G1gs9kxbQJpE2ATSLuAtDCZIM2ko2AayWvdBN0w0SVouokuk3HthGEmhdww0U2ThCnQDIlmmmiGSSwcyvbLsc+kGxg4HA7mzp3L+++/z0UXXWTtr66u5uOPP6ZHjx7cf//92O12IpEIbrebeDzeIBPE5/PRqlUrK8vH6/UyadIkxowZw4oVK35y7pkzZ3LhhRc2aGDRWA5K4f7ggw9YtGgRc+bMyVjB9d0RCAR44YUX2LRpE+3bt6dLly6cccYZPznulVdeYUe9OKBhGCxbtqzBMQMGDNjlG5wNEokEn3/+Of3798+2KYpdkEgkLIfEMAw8Hg+xQC1GOEJs+zZy/PkYNjs2u0DYQNgFCBsmNkwkupQYZlKQdSPtVUt0aZIwQEt71EZyMjIajRLXNHDnkDBlSrhBMw3ikQhNucBdSsnixYsz1sPyx2OnwxN2u50PPvjgJ8f07t2bBQsWkJeXh8Ph4O2332bHjh0UFBTQr18/LrvsMnRdZ9CgQSxbtowtW7aQk5PD2WefjcfjYdGiRYwdO5Yvvviiwbiffvop5513nuW87U2ZgINOuD/44AM++ugj7rrrriYXbUj213vmmWd4+umnWbFiBVOmTMFut/PPf/6zwXHHHntsg76DbrebOXPmNNu4ezQa5bXXXuOdd97JtiktmnPOOYf58+dzwgknkJOTk7FxPR4PO3bsQAiB1+tN9kH05WFKqPt6DfZeRyByPGCzpTztVCaJpiPcHgxpJoVX1wlv+45YOEzMMEkYkrguiZsGcR2cxW3A5ycWiRJPJBC6QSJ1nGZKErrB1tWr6Tnw+D0bvY9IKZk1a9Yuq+1lgnSnn1AoxKxZszjzzDNZt24d69ats84/depUHnzwQYQQVFVVMX78eIYMGcILL7zAOeecY5Vnvfbaa3nhhReYNm0akKxLcueddzYQ5Q4dOjBq1Cief/55SktLyc3NbXRVwDQHjXBLKVm7di2LFi1i0qRJ+P3+Jj+naZpMnDiRv/3tb8ybN48XX3yRjRs3smzZMiZOnNjg2M6dO2f0i6toGfTv359bbrnFintminSz3vRiEZ/PRzAU5MjSe1kzeRzGl2FKDu+LdLswbAJDgIhHMGtrsLdpj6kbBDeuwdAlsXicuKYRN0ziOkR1g7huEjNMtIptaNiR3nzs+QXISAzd7kAzIGGYbPxyFTZXLkf+YljGntuBJN3Y1+Px4PF4+OSTTygpKeG3v/2tdczXX3/NunXr+OCDDzj//PO56qqrKCoqstL9DMOwmicYhkFeXh5nnHEGTz/9NNOnT2fLli0N5q4KCgqYPn06N954I926dbO6Dh2SC3C++OILHn74YebOnXtAPG1Ixhnvu+8+rr/+eubMmcOIESO47bbbDpi3rzi0MQzD+pwlvUY7wleIppvYwmGqv/qc/J5HYDN07KaB0OJold9DeVkyV9sEzTRJmEkPOqEnvWiDVO62hEQ8QUwziAWCxL/7jphhojvdeNu2Z9uWrQSDEboefxh9myCMcSBIN/aNx+MUFRVRWFjId999RywWs/puQtIx3Lx5M/fffz9r1qzh3//+N8888wxSSnJycqz0wb59+3LzzTczceJEFixY8JPwh81mIxqNUl5eTu/eva1FPk6nk1gs1ug5skYLtxDCDnwGfC+lHCuE6Ab8AygCVgCXSCkTQgg38BxwHFAFnC+l3NLY8+wLixcv5t133+XJJ588oIIphKC4uJijjjqKp556ilgsxkUXXaREW9HkpJdqp8U7XV41BJgeD4l4DDSdcG0NhOsQoSA2m8CGQCIxpIkpk8Ktm6Ri1j/ErvV0/NtMxsNNU2LI5OpJQ9MI1dQSi0Sxuz1I2XLqb/+YvLw8qxt7bW0tLpeLTZs2MWTIEEaPHk1dXZ01gTlr1iyklLzyyisMHjyY0tJSq9u91+tFSsmECROYP39+A9G+4YYbLI88XRxs48aNtG/fHr/fj2EYe/2PbG887j8Ba4F0DGIKMF1K+Q8hxCzgKuCJ1HWNlLKnEOKC1HHn78V5Go2UkmXLlvHhhx8yfvz4rJSVLCkp4f7772fVqlV0795dLfBRHBDi8bhVwS4SiZCbm5sss9r7KAp/cQrb33wZEx1ZVYVDmNh0E2ETiJRwm7KeEEuZjG0bsoGA6/UmL3WZnLA0pETXJPGaAKYEu8fDGbfeYtVIaWmkQ06JRIL8/HyklAwbNoyRI0cSi8Wspeg2m41evXoxfvx4AGbMmMFNN91kpRMmEglrleS0adMs0b7rrrv4/e9/j8fjsVa5ejweYrGYVdURsLrFN1bDGuUaCiE6AqcDc1L3BTASeCF1yDzg7NTts1L3Se0fJZro53j9+vU8++yzjB8/nsLCwqY4RaM5+uijlWgrDhher5dQKNSglnR+fj5xYcffpSe6CXHNJBqJEo0miBgmUd0koievo7pJTE+KdVSTyYlJ0ySRSv/TpCRuSnRDoktBIuVxa6aJzZuXDCW4ctB0ncEnj24R6yR2RW5uboPXMB3yqKurIycnh7q6Oqu7fe/eva3H6bpu9ZKMxWI4nc4GTYDT9OrVi8LCQpxOJzabDb/fTzQaJT8/36rHnfa098bxbKzHPQO4FUinRRQDtVLK9GL+MqBD6nYH4DsAKaUuhAikjs9on7ClS5cyf/58nnjiiRb7N02h2FcikYiVpZS+HQgE8Pl82Lr2wtaqPbGKMjSZwI7AbiNVGTDpq0nZ0OtOL66xskUMA81IinfCTOdzS3QDYjW1mAKOHjUCT1ExlZWVFBQUNMiaaimk67yk86jTYU6Hw2E1AZZSYrfbG0weCiGsvOt0DZP6lzTpbvDpbZqmWXne6RBXOo7+48V3P8cePW4hxFhgh5Ryef3NuzhUNmJf/XGvEUJ8JoT4bG+rcC1evJjFixdb6TkKxaFGOu4ajUatCa/03/ouQ0/E06EzUcMklsoOSXrYJjFdJ6brRHWDqG78sN8S6dREpSGT+dxpMU/leWtmMoRS0rUb36xew9jrb8Dv97fI7jfwQypgWpzr53SnKzBKKbHZbHTr1q1BY4T//ve/AFaIJB3/rqqqApIty/r27WvtS2ed2Gw2DMNo8DjIfB73UOBMIcRpgIdkjHsGUCCEcKS87o7AttTxZUAnoEwI4QDygeofDyqlnA3MBmjTpk2jLV6zZg3//e9/ufnmm60mmwrFoUb6i5/+8qczINKCM+CWe3jlt2cQjYawC5GcmJRYZV1NwExXAUSi68lMkqQ4m+gGJMykmGummco+SQq42+endc/DadWzJ0Xt2lntvloi6SbBfr+fQCCAy+XC6XRanYSqq6vx+XxEIhEKCgoYNmwYixYtIhwOc8MNN9CpUydL2AHKysqsSoDHHXcc7dq1s+qkp2vK1NTUWJ3l063LEolEZtMBpZS3AbcBCCFOBG6WUl4shPgn8GuSmSWXAYtSD/l36v7S1P53ZQY7h/bu3Zu7775bLf9WtBiaonGuYRjWFz39lz4SieByuYhGoxR070Fu527sWPM5NmHDbpV0NZHYkCLlAaYmJ5P1tpMrJ5P1SITlaWumScxIhkwSpoHPX4DN5aJbv374CgqsmtIt0etOVweMxWIUFBRgmiaGYVBUVGS1ZYtGo/h8PqSUVn0YgMrKSiorK3c7dvpfUCAQwG63Y7PZqKmpwev1Ul1dbcXQ02GXdLPgxrA/eWulwHghxEaSMey5qe1zgeLU9vHAxN08fp+w2WxKtBUtiqbwRr1eL8FgkFAohMPhsPKRI5EIxcXFRCIRxjz2DHHNJK4bRDUjFR6RyeuESVRLhk/i6TCKIYkaENMFMd0kYZjEjeR2zTBJ6AaFHTrTa+gwPLleTrngAoLBICUlJS12ctLn81FTU4PL5aKmpsbKq043QN65cyd2u526ujoikQgDBw6kU6dOexy3bdu2jBgxwvpBcLvd2Gw2qx9oSUmJlcmSjhzszWu4V8ItpXxPSjk2dfsbKeXxUsqeUsrzpJTx1PZY6n7P1P5v9uYcCoViz0SjUXJzc8nJybGK8KdXAAYCATweD9Lhot8lVyeF2kgKd0T7IbadzC4xkvFvQ9YT8eSy9rhuErfi3RJ/2w50H3A827Zs4aQrriAQDJGTk0NtbW2DVl8tiUgkYnVc9/v9VkpjQUGBFR4xDAOv14vH42Ho0KHMmzePgoKC3Y7pcrmYM2cOJ554Im63m2AwiKZpSCmtbJWamppk3n0oZP1Y7M1rqFaKKBQtELfbjaZpVpZCNBq1VvDl5eUlGwMUFlEyeDi2Vu2I6pKIbhIxkimBP6QFyh9uGyYxzUh62XoyRTBuGCRMicufT+uevajasZ1IMET3Y47B5/MRj8fxer0t9l+wx+MhHA7jcDgIh8NWOmD6RzAYDGK324nFYlZPyt69e7Ny5UqeffZZ/H4/Pp8Pv9+P3+9n+vTprFu3jsGDB+Pz+ax2ZA6Hw6orky5RoOs6ubm5DepxN5aDZsm7QnEoUX8pdjojon7tjPSkZbfjBzPg0qt5d/qDaJGw9XiZWogjZXKS0iAd7072mtStBTgmnqIS8tq0IxKN4nZ7mPL2W5YN9SdFWyL124ulqd+erP6+dPlcm81G69atGTNmDN9++y26rlsrIwFrviFdX9s0TSt7pP57BMn5ifpZJ41FCbdC0QJJNwhOi0G6WbDNZkPTNOva5XIx7KrrMKTk1b9MRjYQqGSGiSFJ5nSnl7XLH+py61JgMySBmhq6tmvH1Q8+iC1VCS8ej1s5yUKIFtnpvb7oplc3QtITT5fLhYbecHpf/YUz9VP6NE3D6XRamSKaplmPTSQS1r70e1b/h6KxqFCJQtECSedsx2Ixq7h/elteXp61BD0YDGKz2Tj+okv59UMz6XjswGQ8O3XpMOB4PG3aEjPM1EXSa/iJxE2SS+BNiEWi9D/5JK647z5yU81CTNMkLy+PeDxOXl5ei8woASxhTS+GSYtnfdFNL1VPe+DpSn7psEo6N1sIYSVPpJs5m6aJw+Gw9judTnRdb7Av/YO3N/9aWt5PpELRQohGo1RWVhKLxSgrK0PTNEpKSjI2flFREZD8C5+Tk4MQwtpWWFiIEIL27dtb+0deejnDzjsfo54HaHc6MU0D0/jBE3e4XGj1muUCuDweXB6P5R36/X6ryFpLzeGG5A+g2+1u8BrCD+GS9L76pLux72pfmp+LW+9LTPvHKOFWKJqI//3vf0yYMIEdO3YwYcIEiouL+dvf/pax8etXoUwLyJ6u7Y2sp+PZzeK23Y3bUkkvYkrfrr/9x9sas+9AoUIlCkUTEIlEeOedd3j66afp27cvTz31FH369GHJkiXZNk1xECCaYlXX3lJYWCgvueSSbJuxW+LxuLWKqrkSCARwOBwZKwNgGAZbtmyhR48eGRkPkm3etm8vQcrmm4FQUPA9Xbp02POBe8AwDLZu3Ur37t3ZtGkTXbt2pa6uDtM09+tzZBgGVVVVtG7der9tbCrC4TCGYWS0C9X69es57LDDMjZeVVUVeXl5jV6pmA3mz59PTU3NLt36ZiHcQohKIEyGKwhmkBKUbfuCsm3fULbtGwebbV2klK12taNZCDeAEOIzKeWAbNuxK2bvclkAAAUsSURBVJRt+4aybd9Qtu0bh5JtKsatUCgULQwl3AqFQtHCaE7CPTvbBvwMyrZ9Q9m2byjb9o1DxrZmE+NWKBQKReNoTh63QqFQKBpB1oVbCHGqEGKdEGKjECKjTRf20Z4tQogvhRCfCyE+S20rEkK8LYTYkLo+IC3lhRBPCyF2CCFW19u2S1tEkpmp13GVEKJ/luy7Wwjxfer1+zzV8i6977aUfeuEEKOb0K5OQojFQoi1Qog1Qog/pbZn/bX7Gduy/rqlzuURQnwihPgiZd/k1PZuQohlqddugRDCldruTt3fmNrfNQu2PSuE2FzvtTsmtT0b3wm7EGKlEOLV1P2med1+3J34QF4AO7AJ6A64gC+AI7Ns0xag5EfbHgAmpm5PBKYcIFuGA/2B1XuyBTgN+A/JZs0nAMuyZN/dJNvb/fjYI1Pvrxvolnrf7U1kVzugf+q2D1ifOn/WX7ufsS3rr1vqfALIS912AstSr8lC4ILU9v/f3tmEalGFcfz3LLQiI1FCxLsoQ1AIsUgJFBGTyAqvwl0IQS4EwWohLQQR3Lms3IiC9qF9KWmhuDK6iisx/Eiv+NGFgsSLd6XpxtL+Lc4z3uH1fV8VmznzwvOD4T1zZmD+/N85z8x5zsyc7cBaL78PbPfySmBvBm1fAgNt9s/RJj4CvgUO+XolvuW+454HDCvNpvM3af7K/sya2tEP7PLyLmB5HQeVdIz7J1rupKUf2K3EcdJkzlMz6OtEP7BH0m1JvwPDpP+/Cl0jkk55+SZwAZhGA7zroq0TtfnmmiTplq+O80XAYmCf17d6V3i6D3jdrJqPeHTR1ola24SZ9QFvAzt93ajIt9yBexrwZ2n9Ct1P4joQcNjMTprZGq+bImkEUsMDcr5v3ElLk7z80Lumn5fSSln0eRf0ZdLdWaO8a9EGDfHNu/tngFHgJ9Jd/nVJd9pouKfPt98gzUFbizZJhXeb3btPzax4j71u77YA64HiU4uTqci33IG73RUm92Mu8yW9AiwFPjCzhZn1PCxN8XIb8CIwBxgBPvb62vWZ2QRgP7BO0l/ddm1TV7e2xvgm6a6kOUAf6e5+VhcNtepr1WZmLwEbgJnAXGASaSLzWrWZ2TvAqKST5eoux38sbbkD9xWgPGVyH3A1kxYAJF3131HgR9KJe63oYvnvaD6FHbU0wktJ17xx/QvsYKxbX6s+MxtHCozfSPrBqxvhXTttTfGtjKTrwFFSfniimRWfgS5ruKfPtz/Lw6fP/g9tb3r6SUoTln9BHu/mA8vM7A9Syncx6Q68Et9yB+5fgBk+8jqelKQ/mEuMmT1tZs8UZeANYMg1rfLdVgEH8iiELloOAu/5SPprwI0iLVAnLTnEFST/Cn0rfTT9BWAGcKIiDQZ8BlyQ9ElpU3bvOmlrgm+u4zkzm+jlp4AlpDz8EWDAd2v1rvB0ABiUj7jVpO1i6WJspBxy2bta/ldJGyT1SXqeFMcGJb1LVb5VPcr6oIU08nuZlEfbmFnLdNII/q/A+UIPKff0M/Cb/06qSc93pG7zP6Qr9OpOWkhdr63u4zng1Uz6vvLjn/WTc2pp/42u7xKwtEJdC0jdzrPAGV/eaoJ3XbRl982PNRs47TqGgE2ltnGCNDj6PfCE1z/p68O+fXoGbYPu3RDwNWNPntTeJvy4ixh7qqQS3+LNySAIgh4jd6okCIIgeEQicAdBEPQYEbiDIAh6jAjcQRAEPUYE7iAIgh4jAncQBEGPEYE7CIKgx4jAHQRB0GP8B3ecKdiRIWmrAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## 检查策略\n", + "\n", + "由于 Q-Table 列出了每个状态下每个动作的“吸引力”,我们可以很容易地利用它来定义在我们的世界中高效的导航。在最简单的情况下,我们只需选择对应于最高 Q-Table 值的动作:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "# code block 9" + ] + }, + { + "source": [ + "如果你多次尝试运行上述代码,你可能会注意到有时它会“卡住”,需要按下笔记本中的停止按钮来中断运行。\n", + "\n", + "> **任务 1:** 修改 `walk` 函数,限制路径的最大长度为一定步数(例如,100步),并观察上述代码是否会不时返回这个值。\n", + "\n", + "> **任务 2:** 修改 `walk` 函数,使其不再回到之前已经访问过的地方。这将防止 `walk` 进入循环,但代理仍可能被“困”在一个无法逃脱的位置。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 5.31, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "# code block 10" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 57 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de5wU5Z3v8c8vEk1islETkuPtlcFdT3LMvjbRsF5iTnajibdkQ5KjOeRKjKsnWT3rms1mwVw8q/EWL6gJXlAwxBsqQSWCIgJeuDPc5TrDfQBhhoFhYBiYgef80U8PPT19qe7p7qrp+r5fL5jup6qrnuqq/tVTTz31POacQ0RE4uE9YWdAREQqR0FfRCRGFPRFRGJEQV9EJEYU9EVEYqRf2BnI5aMf/airqakJOxsiIn3KggULmpxz/TNNi3TQr6mpoba2NuxsiIj0KWa2Mds0Ve+IiMSIgr6ISIwo6IuIxIiCvohIjCjoi4jEiIK+iEiMKOiLiMSIgr5IlXr1nW007T0QdjYkYhT0RapQy/4OfvLkQn78x/lhZ0UiRkFfpAp1HjoMQMOu/SHnRKJGQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEYCBX0zu8HMlpvZO2b2jJm9z8wGmNlcM6szs2fN7Gg/7zH+fb2fXpOynGE+fbWZXVyeTRIRkWzyBn0zOxn4V2Cgc+5vgaOAwcCdwHDn3OnALuAq/5GrgF3Oub8Bhvv5MLMz/Oc+DVwCPGhmR5V2c0REJJeg1Tv9gPebWT/gA8A24AJgnJ8+BviGfz3Iv8dPv9DMzKePdc4dcM6tB+qBs3u/CSIiElTeoO+c2wLcDWwiEexbgAXAbudcp5+tATjZvz4Z2Ow/2+nn/0hqeobPdDGza8ys1sxqGxsbi9kmERHJIkj1zvEkSukDgJOAY4FLM8zqkh/JMi1bevcE50Y65wY65wb2798/X/ZEpACz1+7k0bfWhZ0NCVG/APN8GVjvnGsEMLPxwOeB48ysny/NnwJs9fM3AKcCDb466MNAc0p6UupnRKQCvvPoHACu/uJpIedEwhKkTn8TcK6ZfcDXzV8IrACmA5f7eYYAL/nXE/x7/PRpzjnn0wf71j0DgNOBeaXZDBERCSJvSd85N9fMxgELgU5gETASmAiMNbPf+rRR/iOjgCfMrJ5ECX+wX85yM3uOxAmjE7jWOXeoxNsjIiI5BKnewTl3E3BTWvI6MrS+cc61A1dkWc6twK0F5lFEREpET+SKiMSIgr6ISIwo6IuIxEigOn0R6du27t7PrLU7w86GRICCvkgMDB45h03NbWFnQyKgqqt3duxp56xbprBme2vYWREJVWPrgbCzIAENHjmb+1+vK9vyqzroT1m5neZ9B3l85oawsyIiEsicdc0Mf31N2ZZf1UFfRES6U9AXEYkRBX0RkRhR0BcRiREFfZEq1GOgChFPQV+kimUauUjiTUFfpIqpxC/pFPRFqpBK+JJNTIL+kfLOV+59k/ELG0LMi4hIeKo66FuG8k7djr387LklIeRGRCR8VR30RUSkOwV9EZEYUdAXEYkRBX2RGHBqvCmegr6ISIwo6IuIxIiCvohIjMQq6Dunek2Jp0zPrEg8xSLoK9aLiCRUddA3FW5ERLqp6qAvIiLdVXXQV7WOiEh3VR30k1TNIyJRc+iw47/+spyGXW0VXW8sgr6ISNQs3ryLx2du4IZnF1d0vQr6IiIhSFY/H65wNbSCvkiVeLuukUfeXBt2NiTiAgV9MzvOzMaZ2SozW2lm55nZCWY2xczq/N/j/bxmZg+YWb2ZLTWzs1KWM8TPX2dmQ8q1USJx9INR87j9lVVhZ0MiLmhJ/37gVefcp4DPACuBocBU59zpwFT/HuBS4HT/7xrgIQAzOwG4CTgHOBu4KXmiqBS15hGRuMsb9M3sr4AvAqMAnHMHnXO7gUHAGD/bGOAb/vUg4E8uYQ5wnJmdCFwMTHHONTvndgFTgEtKujVZKNhL3OiQl2yClPRPAxqBx81skZk9ZmbHAh93zm0D8H8/5uc/Gdic8vkGn5YtvRszu8bMas2strGxseAN6r6sXn1cpM9L/gTUn74kBQn6/YCzgIecc2cC+zhSlZNJplDrcqR3T3BupHNuoHNuYP/+/QNkT0REggoS9BuABufcXP9+HImTwHZfbYP/uyNl/lNTPn8KsDVHuoiUicr3ki5v0HfOvQtsNrNP+qQLgRXABCDZAmcI8JJ/PQH4oW/Fcy7Q4qt/JgMXmdnx/gbuRT5NREpMNZuSTb+A8/1f4CkzOxpYB1xJ4oTxnJldBWwCrvDzTgIuA+qBNj8vzrlmM7sFmO/nu9k511ySrRARkUACBX3n3GJgYIZJF2aY1wHXZlnOaGB0IRkUEZHS0RO5IiIxEqugr5taIhJVlRrONRZBXw9nSdxpjNxo++sbJ/Gth2ZVZF1VHfR1mItIVKWWRQ8ddizatLsi663qoC8iIt0p6IuIhCCsmggFfRGRGFHQFxGJkaoO+mq0IyLSXVUH/SR1sSxx5Zzj91Pr2N9xKOysSETEIugnVerhB5Go2NXWwT1T1oSdDYmQWAV9kUrae6CTZQ0trNy2hzteWaVCh0RC0F42+zT91iQMV4+pZfa6nRzT7z0c6DzMtV/6az70vveGnS2Juaou6asqX8K0cNMuADoPJ0odpptLEgFVHfRFRKQ7BX2REL2xegf7D5a2ZY3uHUguCvoiIVn9bis/enw+v3rxnZIu97ZJK0u6PKkuCvoiIWlt7wBgw859JV3uk3M26cFEyUpBX0SkAhpbD1AzdCK1GxJDg4d1Yo5V0FfpRyopebwl2+yorj3e5q1PBPvRM9d3S690m65YBX2RMKilpkSJgr6ISIgqff0Xi6DvVLEjMaOLi+jTICploMtqEZHuqjroi4hIdwr6ImWmRjsSJQr6IiIxEqugf+iwilxSebq3JFESq6B/9+TVYWdBpAc9tCWVFKug/+ryd8POgkgXXQFIGKo66KsAJVFWruNTJ5PqsHPvgbIst6qDfpLpURWpgB2t7cxZt7Pgz5V6RC0VdqIt1/7pPHS463W5bkHGIujriVyphG+OmMXgkXPCzob0YXe+uqrs6wgc9M3sKDNbZGYv+/cDzGyumdWZ2bNmdrRPP8a/r/fTa1KWMcynrzazi0u9MT3zXO41iByxZff+nNNV9BA4EpcyHQ9zfU+cienlOWIKKelfD6QOyXMnMNw5dzqwC7jKp18F7HLO/Q0w3M+HmZ0BDAY+DVwCPGhmR/Uu+yIR5n+zql6UXCLZtbKZnQJ8FXjMvzfgAmCcn2UM8A3/epB/j59+oZ9/EDDWOXfAObceqAfOLsVGBKWSv4RCx50UI+Q6/fuAXwDJuwwfAXY75zr9+wbgZP/6ZGAzgJ/e4ufvSs/wmS5mdo2Z1ZpZbWNjYwGbIiIi+eQN+mb2NWCHc25BanKGWdMHCkqfluszRxKcG+mcG+icG9i/f/982SuIWjVI2DoOHWZWfVPY2ZAIyRqWynSFGKSkfz7wdTPbAIwlUa1zH3CcmfXz85wCbPWvG4BTAfz0DwPNqekZPiNSvVJ+1fdOWcN3H5vbNU5qqbR3HCrp8qT88sb0sKp3nHPDnHOnOOdqSNyIneac+x4wHbjczzYEeMm/nuDf46dPc4nnzCcAg33rngHA6cC8km1JACrpS5gMWLtjLwBNew+WdNnN+0q7PCmf1vbOrNMqcfunN+30/xP4mZnVk6izH+XTRwEf8ek/A4YCOOeWA88BK4BXgWudcyqexMg9r61mWUNL2NkI7K7Jq3hhUUPJlucobeHtF+OWUDN0YgmXKJXwdl336r0FG3dVdP398s9yhHPuDeAN/3odGVrfOOfagSuyfP5W4NZCM9lbyRK+Wu+E6/fT6vn9tHo23PHVsLMSyIjpawH45pmn9G5BeY67Yjtce642+wkp6BI7Dh3m1y++w79eeDonHff+ovIh5VGuiomqfiJX7aMlalKPyPRCyN4DnSzc1PtSXyGFm7frGhk7fzM3vrCs1+uVvqGqg75I1OQqvV371EK+9eAs9rR3VCw/SSoeRUPq8VGufaKgLxICs54NC5ZtSdzv6Og8nOET0tcVWr2s6h2RKpIa8EvRy6buV1WHqLfeEYmFGXVN7G7rO00inVN1TRRFpcm4gr5IHt8fNZerxtT2ejmpP/rmfQfZvKut18sslYjEo9hbktKkuVwnCQV9kQDWbG8t+rOZSt03vrCMG55dknH+Yn7rqQFif4Cncy9/aJbPm64JwhLWiVZBXySICvxCexN+t+bpyz9dbYUfCJLCles+jYK+VESxDyBFRVGl7wqW5fIN4CJ9j6p3eiH53fXxuBOqhZt20XGo+psSjphezx2v9ByyrvNwdW67hhINx4qte3hyzsZQ1l1QNwx9jqorS2Lltj1868FZXP0/B/DLr54RdnbK6q7JqwEYeumnuqW3dwQP+sPGL2XHngNd74OGVYXf+LjsgbdDW3d1B/20X5HaMhenaW8igK3cVvzNzGp36PCRg+2ZeZszzpPt+OvrVV9SHlEYI7fPUqyXchs2fmmg+XLF9zCO02ufWhTCWiVMsQj65eacU2kt5nL1eJkUtUPkzTWNgZp3SjjK1Zw2VkG/HD+6toOdDBg2iT9Mqy/9wiNGN/2KU4qf7oqte/iHu6bT0pa5M7b0Y3vKiu15l7moBD16SnCF972j6p1I2u1/hE/P2xRyTnqvdkMzO/ce6JGuB3h6pxQ/3Qem1rFxZxuz1gYbX/eXL76Td577Xq/reh21qxApHwX9Eho+ZQ33vLY67GwU7fKHZ3PFI7NLvtz7X69jwLBJJV9utSpFAFZ1o2QTq6Bf7tY790+t4/d9vJpnXeO+ki9zzOwNJV9mNUn2sqnWZZJKD2dJn1Xtpc69B7IPdF1q2b5J3W+Jvqj8DGIR9CPyXcdWNX//k5Zt429vmlySZeVszlnmATh0lRE96nunGClf2uHDrixn2moOaNLTo2+t4+a/rOh6/9aaxuAfDniwhBGAo1IKlSMmLXu3LMut7qCf4rQbJ2XslOqRN9fy0uItgZbxz2Pm89mbX8s4bVtLe6/yJ6WxoWkfNUMnsrRhd1mWf+uklYyeuR6APe0dge6BFBrDcwXgbNPS0xXE+75bXl6Rf6YixCboZ3P7K6u4fuziQPO+vnJHVxPNOEoGknELGlj17p6M83QeOsySzd0DbiUD0LRVOwAYvzDYiTyb1G4Vsvn2w7OZt6G5wCVnX25qCb9ue2ugtvYihYp90O+tOFSFplc3/Pz5JVxyX+YOo+5+bQ2DRsxk+daWjNP7iuZ9+YdHXPVusL6IijnnfWX4W1z9p56jdanuXXpLQT/mWto6WNu4t6jPDhk9r0fVWDLYN+3tO2PKVox1/ddNtbdukmhR0I+5r4+YwYX3vFlU4HlzTWPgqrFstu9pp2V/6arMol8S7l2AL9f5Qaed+FDQ76W+/mPZuDP44NzFBpxcJ5RzbpvKF+6cVtyCC9TecYimvQdoj3gnY+lt7mfUNfUYo7fQ4RFFkqq7P/0y29kHAkhQ5axhyLfo1vbgDzftbjvIuAUNXPWFAV1PsmZcZ4YN+tSvXwXg7075MBOu+0LgdZaMSzQGyC7z9nx/1NweaZ+/o/uJUjVE0fDtR2bzoWP6MepHf99jWlSuQhX0e+Fzv32dE449OuxsVEwUDtrP3jwl8ffU4xhYc0KP6UGyuLShuJvM/3DX9KI+F4GvLa++kMe+YN76QltzVV4sqnfKWQoK0sqjL0j9ivpC1cHBEMbrLaQqLFXwwy//nOpuQXqrqoO+Si+5ZRvoPL3qIKnok2c54lQBy2xsPcDztZmHMIyChZt2d6uzT+3KumboxIrkQaeS+FD1Toz95qUjfa7nutlazMkzSs0Q/88TtSzcVJ4ndEvlouFv8dEPJqoKc5Xms41tEJ1vW6Kuqkv6kluuJz63tezPWHUVpWCeS2oud7T2HBgmmvKfXh2OXwcYIEUSxs7bxKvvlKcPm0JF5aeTN+ib2almNt3MVprZcjO73qefYGZTzKzO/z3ep5uZPWBm9Wa21MzOSlnWED9/nZkNKd9mJUTkO+4T0r+r826fxlm3TOkx33MBq0neWH2kI7JK1u7katFTDa57ehFPzNkYdjb6jKHjl/GTJxeEnY1ICVLS7wT+3Tn3P4BzgWvN7AxgKDDVOXc6MNW/B7gUON3/uwZ4CBInCeAm4BzgbOCm5Imi3MKIA+ffMa3qSmQOR932zE/vvrx0K7tSrgz+OGtDhXIVfQc7E/dOdBNWoiBv0HfObXPOLfSvW4GVwMnAIGCMn20M8A3/ehDwJ5cwBzjOzE4ELgamOOeanXO7gCnAJSXdmgppyjCObLotu/cXVCL77csrutWxl0vDrjbWbG/11TRHzoa9ufTc1rKf655exE+fCl6iembeJs7M0mNpKaRuT5UX/gGYsGRrrz7fm2q78++Yxr1T1hT12T3tHRVvLfbKsm1sbk60xNqyez81QyeyMEaDxBdUp29mNcCZwFzg4865bZA4MQAf87OdDKTWATT4tGzp6eu4xsxqzay2sbGAvsorKFlyK6XHZqznT7PLf9n+hTunc9Hwt3hm3mYKrXgxLGMATX4fW3cH71562Phl7Cqwx9Ig33scAnwmBfXrX2Jbdu/ngal1+WfM4OLhb2VtLVYuP31qIZfdn+gwcEZd4nsbO29TSdfR0tbB6BnrI3kPLHDQN7MPAn8G/s05l7lfXT9rhjSXI717gnMjnXMDnXMD+/fvHzR7FRW93RjM9FVHngZNDxLlrHoo1YG/cluuwy65rpKsiu17QhwfIYQDLKx7IWGNQ9Fa5iEuh72wlJtfXkHtxuhdQQQK+mb2XhIB/ynn3HifvN1X2+D/JiNKA3BqysdPAbbmSC+7CJ5sQzFtVXoXAIX90B2uqOBQlhu5Zd6nC8rwY83W3DLdna+uLvm6o6alrYPdbdXxYGMmyaveYh/oK6cgrXcMGAWsdM7dmzJpApBsgTMEeCkl/Ye+Fc+5QIuv/pkMXGRmx/sbuBf5tLJJ/sTmbdjZq+V0HjrMw2+u7XofxUu2pBcWNXDFw7MK/lzOTUqJVZm2PUpfRzVU7/x5YUPF17k6y6A45fKZm1/r6lIjTOU6dhf7gYTumryqKy0qx2aQh7POB34ALDOzZD+6NwJ3AM+Z2VXAJuAKP20ScBlQD7QBVwI455rN7BZgvp/vZudcRTqq2Nxc/I2izkOHOfu2qX2mu4Ubnl2SdVpqFc6ry4O1XT4cYASpsI2esZ7jj30v3zzzlK601G3NVsLuOHSY68cu4voL/zuf/G8fKns+o2z7nr7yLEPpjJm1gZsmLC/rOqJUIErKG/SdczPIXg9wYYb5HXBtlmWNBkYXksGwvbmmMWPAzzZcYLVJ7+MmU/VOvhJM+oH/qxeX9TZb3dzsxxL95pmn8Nry4EMMrti6h0nL3qVh1/6K9Lp54FDuHlmDtAqrViOm1/P9cz7Bhz/w3oqt8+m5pb15m0lUSvep9ERuHpnGSnWOijzl19rewYqtxZ1cnHPM39DM7LW9q9pKDdj5Si2bmttYmFYXvqe9g/1p3U8/Oafnj62zRB2ozahv6vb+3ZZ2NjX3rFd1zvGbHKW8Fxf3bozdTK4e03P4w1LoC1djSTv3HmBHa8+bt3dNXs2vKtBkWRT08ypFq4ZtLfsZMb2+4HsBVz4+n8seyDwWbT7OwRUPz+Y7j84JPH82qdUj+b6NfQe7B/gfPz4/y5zdFTp6Vr7WRsnt+drvZ2Sc/lzt5h4DuKdaVIa+epYU2aVzPoWMR1Col5duZUPTvkDzBjn5fO63r3P2rVMzTmsrc4uaMESxekdBv0hBW2IA/PTJhdw1eTV1Owobi7Y3zb0OpRxt+w/2bqCXoAE2k8U5AmsQW3bv59aJK4ouzWarMvnPP5e2iilMo2asK9uyr3t6ERfd91bZlp8qzPhYyO+5EBGM+fEN+hOXbqvYupJB93CRp/1iWgulVkt9+5HZrGvcmzM4z12fvxrIrPCD+D0Br5Q6DmVe8vXPLOLRt9ezpKH7yeOFhVtwzmUthT5V5vraJ2ZvKOvyC/HAtPqyLr8cDyNWQiGNL54tU9fbhVSPVkpsg/61Ty+s+DorudNTb8Au29LCBfe8yZYcj7v/KEA1jHMw8q2epcpccf09AY+wc2/vfsm/o7Wd7Xva6chSwh+/aAuTl7/LzLVNGaeX269fKm+rj76ot4f37raD1AydyMtLjzy+s2Z7K/uKrPZpzNC76gV3v1Fs9qpGbIN+ujezPMZeiou+Qm4LzN/QsxVr0JPFz58/0lwzU510as+XhejNpW/Qkn6q1vYOzr51KufclrnuN6llf0dkSk/VYH3Auvtsevv8yjq//lEz1nct76Lhb3HVmGD3hQpZRy6z1jbxwqLKPytRKQr63pDR8zI+hZkpZjlXmqZYre0dfOvBmaxrPFLXf8XDs3uUyA8eOsyNLyzLe7k6bsGRA/W495em6Vtqff7qlNGdgiom6N82aVX+maTkdgZsMvrioi3UDJ3Yo6O0XCF/4859jJheWDVU8hwyZ11xj/PkuxeV7Xj+7qNzuz3v8vLSrTya4Qq3r6rqoF9oy5v/9dCswKWVl3I06UvvtyVZJ/r4zPXd0qet2sHCTbsZ/nr3zqrOT+uAasLirTw9dxO3T1oZKG8Ag0bMDDxvLtv3HGCXf1x+d5YO0nK2/Cni5Higo+eN50zNLqF7oPl/RT5ok8zijLpwqoqiImg5PfnEcCENE74/ai53Tc7dvUSxFwqz1jZ161eq1K57ehG3FvDb6y56l6JVG/Snr97BnHWFt1F/fkH+yzqHY21j9svE9GqJPe2JYPlcbXGXjMkbwNkasMysb6LtYHmau33p7jf4l6eKv/9RTEk/U23S9WMX93hQbOe+g7yR8mNP78O/vsDWUoti1L1uPqve3ZO1yjOb13OMxBakBVl6s90g4XJ90z6+++hcrvxjzyqgYk4iuQpzNUMnsnFn4ne/YGMzNUMnUuevFkZMr+ebD5amoFVuVTtG7pUB24enW76lBQaemn/GgvSMYm0HO3lweqI/n3yllGxx0znHym2tfO+xuXz9Myf1OpfFSg/G5XLFw7O7vf9dno7Jvnzvm+XMTlW75L78z4ekH5Y/fWohG+74Kks272bnvgNc8KmP9yoPQa66v5RyY3b+hmb+vuYEnHNFD5F5/djFOacvbWjhEx85lr8sSbT+e6uuidM//qG8VzEQnadzq7akXyrFPhGbz/Apa7rqFPfmaZ2Q7dj/3eTVXQ9vFfoMQCllC77rGvcW9NDVlBXbmVvE1VmpRO9CvLJyxdgOf2Lfvqedt/NUgw0aMZMf/zHx9PH6pn28sXpHUaXu9I+s3LYnY0OHpCsens3m5jYeeWsd59w2tceN6VJ0lJhcwtKGYM+fpK4yW/VopVVtSb9YyX00d91OTj3hA9yTYUSgH4ya16t17G47yMz63gW3WfVNPPTGkZ4/g/Q1Xy6vr8x8WX/BPYWVtK/+UyJQfOusI2Pr5HpqtpSmrNjeZ9ujV8L3HpvLoM+elHW4zKT2tPsxXyphE8lL/cAntwz6ND84rybjPHvaO7ruzWxOuQ/0wqIGBn2mx5hNef3kicyjwS30reMKOZFsbO5d66hSUdDP4n+PzN59Qbabipn8/PklPZ4KHTxyDqveLbwljMOxo7WdptaDLNtSnkf6o6C3TQcLtaShpeuEE2cz6xNNFedv6HlvY976Zuat717KzlRd8alfv1qSvHz/sbl8+qS/yjjtpgnL+d45n+A97+mZgQUbd3XlMzUc3/DsEv7p7wqvAg3SG+2yMnWvUS4K+mlKXe02Lu3G8KX3vx0o4Kc2H92YcpL5x7veoO3gIf7j4k+WLpMRU45+byS/sfM3RaaL5Rn1Td06z0ttrnzYwR2vrmJthirN3+R4aK5c1Xf/9IfM/TtBorEBJJrD5rtKqhQF/TRjZm8sawdWQathxqS0REmtxmnzrSCC3DgSKUSh3RuVq7+aTM66pfuAK5meDM9nXY4Wd5DorqRQnQG/tC/f+2bBY0KXS6xv5KaXwpPGLyp9t7oiUVfojc58fUlNydGEsxLS85evSW569VUmvxy/jJqhE7veBy18RSXgQ8yDfmq3BVGT2v9Il7g3L5Gyatpb2Ohw/zEu9++n2PskpareS29VVujPZ1tLz76q0gdUzzTeRtTFOuhHWR88liRmolL/H1ShLTbPu31a/pn6IAX9PkTVTiLFu/GFcMZQuPkvK0JZbzYK+iJStFINc1nNRqf1uRU2BX0RKdq/R/i+mGSmoC8iRXtpcYYGBxJpCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxoqAvIhIjCvoiIjGioC8iEiMK+iIiMaKgLyISIwr6IiIxUvGgb2aXmNlqM6s3s6GVXr+ISJxVNOib2VHACOBS4AzgO2Z2RqnX07I/OkOTiYhESaVL+mcD9c65dc65g8BYYFCpV7KuMRqjzouIRE2lg/7JwOaU9w0+rYuZXWNmtWZW29jYWNRKPnvqccXnUEQkAp695tyyLLdfWZaanWVI6zZypXNuJDASYODAgUWNFGtmbLjjq8V8VESkqlW6pN8AnJry/hRAozCIiFRIpYP+fOB0MxtgZkcDg4EJFc6DiEhsVbR6xznXaWbXAZOBo4DRzrnllcyDiEicVbpOH+fcJGBSpdcrIiJ6IldEJFYU9EVEYkRBX0QkRhT0RURixJwr6vmnijCzRmBjLxbxUaCpRNnpC+K2vaBtjgttc2E+4Zzrn2lCpIN+b5lZrXNuYNj5qJS4bS9om+NC21w6qt4REYkRBX0RkRip9qA/MuwMVFjcthe0zXGhbS6Rqq7TFxGR7qq9pC8iIikU9EVEYqQqg341Db5uZqea2XQzW2lmy83sep9+gplNMbM6/y+8XRcAAAQhSURBVPd4n25m9oDf9qVmdlbKsob4+evMbEhY2xSEmR1lZovM7GX/foCZzfV5f9Z3zY2ZHePf1/vpNSnLGObTV5vZxeFsSTBmdpyZjTOzVX5fnxeDfXyDP6bfMbNnzOx91bafzWy0me0ws3dS0kq2X83sc2a2zH/mATPLNFBVd865qvpHosvmtcBpwNHAEuCMsPPVi+05ETjLv/4QsIbEoPK/A4b69KHAnf71ZcArJEYpOxeY69NPANb5v8f718eHvX05tvtnwNPAy/79c8Bg//ph4Kf+9b8AD/vXg4Fn/esz/L4/Bhjgj4mjwt6uHNs7Bvhn//po4Lhq3sckhkldD7w/Zf/+qNr2M/BF4CzgnZS0ku1XYB5wnv/MK8ClefMU9pdShi/5PGByyvthwLCw81XC7XsJ+AqwGjjRp50IrPavHwG+kzL/aj/9O8AjKend5ovSPxIjqk0FLgBe9gd0E9AvfR+TGJvhPP+6n5/P0vd76nxR+wf8lQ+AlpZezfs4OV72CX6/vQxcXI37GahJC/ol2a9+2qqU9G7zZftXjdU7eQdf76v8Je2ZwFzg4865bQD+78f8bNm2vy99L/cBvwAO+/cfAXY75zr9+9S8d22Xn97i5+9L23sa0Ag87qu0HjOzY6nifeyc2wLcDWwCtpHYbwuo7v2cVKr9erJ/nZ6eUzUG/byDr/dFZvZB4M/Avznn9uSaNUOay5EeKWb2NWCHc25BanKGWV2eaX1ie71+JKoAHnLOnQnsI3HZn02f32Zfjz2IRJXMScCxwKUZZq2m/ZxPodtY1LZXY9CvusHXzey9JAL+U8658T55u5md6KefCOzw6dm2v698L+cDXzezDcBYElU89wHHmVlypLfUvHdtl5/+YaCZvrO9kMhrg3Nurn8/jsRJoFr3McCXgfXOuUbnXAcwHvg81b2fk0q1Xxv86/T0nKox6FfV4Ov+bvwoYKVz7t6USROA5F38ISTq+pPpP/QtAc4FWvwl5GTgIjM73peyLvJpkeKcG+acO8U5V0Ni301zzn0PmA5c7mdL397k93C5n9/59MG+1ccA4HQSN70ixzn3LrDZzD7pky4EVlCl+9jbBJxrZh/wx3hym6t2P6coyX7101rN7Fz/Hf4wZVnZhX2To0w3Ti4j0cplLfDLsPPTy235AolLtqXAYv/vMhL1mVOBOv/3BD+/ASP8ti8DBqYs68dAvf93ZdjbFmDb/5EjrXdOI/FjrgeeB47x6e/z7+v99NNSPv9L/z2sJkCrhpC39bNArd/PL5JopVHV+xj4L2AV8A7wBIkWOFW1n4FnSNyz6CBRMr+qlPsVGOi/v7XAH0hrDJDpn7phEBGJkWqs3hERkSwU9EVEYkRBX0QkRhT0RURiREFfRCRGFPRFRGJEQV9EJEb+P5qkdQkuhnG4AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "## 练习\n", + "## 一个更真实的《彼得与狼》的世界\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/1-QLearning/solution/Julia/README.md b/translations/zh-CN/8-Reinforcement/1-QLearning/solution/Julia/README.md new file mode 100644 index 000000000..f30fc4eeb --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/1-QLearning/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/1-QLearning/solution/R/README.md b/translations/zh-CN/8-Reinforcement/1-QLearning/solution/R/README.md new file mode 100644 index 000000000..e939b3c66 --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/1-QLearning/solution/R/README.md @@ -0,0 +1,6 @@ +这是一个临时占位符 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb b/translations/zh-CN/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb new file mode 100644 index 000000000..a69d0a05a --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb @@ -0,0 +1,478 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "eadbd20d2a075efb602615ad90b1e97a", + "translation_date": "2025-09-03T20:52:18+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/assignment-solution.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# 彼得与狼:真实环境\n", + "\n", + "在我们的场景中,彼得几乎可以不感到疲惫或饥饿地四处移动。在更真实的世界中,他需要时不时地坐下来休息,还需要进食。让我们通过实施以下规则使我们的世界更加真实:\n", + "\n", + "1. 从一个地方移动到另一个地方时,彼得会失去**能量**并增加一些**疲劳**。\n", + "2. 彼得可以通过吃苹果来获得更多能量。\n", + "3. 彼得可以通过在树下或草地上休息来消除疲劳(即走到棋盘上有树或草的地方——绿色区域)。\n", + "4. 彼得需要找到并杀死狼。\n", + "5. 为了杀死狼,彼得需要达到一定的能量和疲劳水平,否则他会在战斗中失败。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math\n", + "from rlboard import *" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "## 定义状态\n", + "\n", + "在我们的新游戏规则中,我们需要在每个棋盘状态下跟踪能量和疲劳。因此,我们将创建一个对象 `state`,它将包含当前问题状态所需的所有信息,包括棋盘状态、当前的能量和疲劳水平,以及在终端状态下是否能够击败狼:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "class state:\n", + " def __init__(self,board,energy=10,fatigue=0,init=True):\n", + " self.board = board\n", + " self.energy = energy\n", + " self.fatigue = fatigue\n", + " self.dead = False\n", + " if init:\n", + " self.board.random_start()\n", + " self.update()\n", + "\n", + " def at(self):\n", + " return self.board.at()\n", + "\n", + " def update(self):\n", + " if self.at() == Board.Cell.water:\n", + " self.dead = True\n", + " return\n", + " if self.at() == Board.Cell.tree:\n", + " self.fatigue = 0\n", + " if self.at() == Board.Cell.apple:\n", + " self.energy = 10\n", + "\n", + " def move(self,a):\n", + " self.board.move(a)\n", + " self.energy -= 1\n", + " self.fatigue += 1\n", + " self.update()\n", + "\n", + " def is_winning(self):\n", + " return self.energy > self.fatigue" + ] + }, + { + "source": [ + "让我们尝试使用随机游走来解决这个问题,看看是否成功:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(state):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(board,policy):\n", + " n = 0 # number of steps\n", + " s = state(board)\n", + " while True:\n", + " if s.at() == Board.Cell.wolf:\n", + " if s.is_winning():\n", + " return n # success!\n", + " else:\n", + " return -n # failure!\n", + " if s.at() == Board.Cell.water:\n", + " return 0 # died\n", + " a = actions[policy(m)]\n", + " s.move(a)\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 5, won: 1 times, drown: 94 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " elif z==0:\n", + " n+=1\n", + " else:\n", + " s+=1\n", + " print(f\"Killed by wolf = {w}, won: {s} times, drown: {n} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## 奖励函数\n", + "\n", + "### 什么是奖励函数?\n", + "\n", + "奖励函数是强化学习中用于指导代理行为的核心组件。它定义了代理在特定状态或执行某些动作时所获得的奖励。通过奖励函数,代理能够学习如何在环境中采取最佳行动以实现目标。\n", + "\n", + "### 设计奖励函数的原则\n", + "\n", + "设计一个有效的奖励函数需要遵循以下原则:\n", + "\n", + "1. **明确目标** \n", + " 奖励函数应该清晰地反映任务目标。例如,如果目标是让机器人避开障碍物并到达目标位置,那么奖励函数应该鼓励机器人靠近目标,同时惩罚碰撞行为。\n", + "\n", + "2. **避免稀疏奖励** \n", + " 稀疏奖励可能导致学习过程缓慢。尝试提供更频繁的反馈,以帮助代理更快地理解哪些行为是有益的。\n", + "\n", + "3. **平衡短期与长期奖励** \n", + " 奖励函数应该鼓励代理在短期内采取有益的行动,同时考虑长期目标。例如,避免设计只关注即时奖励而忽略长期效果的函数。\n", + "\n", + "4. **防止意外行为** \n", + " 确保奖励函数不会鼓励代理采取意外或不合理的行为。例如,如果奖励函数仅根据速度奖励代理,可能会导致代理忽略安全性。\n", + "\n", + "### 示例奖励函数\n", + "\n", + "以下是一个简单的奖励函数示例:\n", + "\n", + "```python\n", + "def reward_function(state, action):\n", + " if state == \"goal_reached\":\n", + " return 100 # 到达目标位置的高奖励\n", + " elif state == \"collision\":\n", + " return -50 # 碰撞的惩罚\n", + " else:\n", + " return -1 # 每一步的轻微惩罚以鼓励快速完成任务\n", + "```\n", + "\n", + "### 常见问题\n", + "\n", + "#### 奖励函数过于复杂怎么办?\n", + "\n", + "奖励函数不需要过于复杂。一个简单且清晰的奖励函数通常更容易调试和优化。复杂的奖励函数可能会导致代理难以学习正确的行为。\n", + "\n", + "#### 如何处理代理的意外行为?\n", + "\n", + "如果代理表现出意外行为,检查奖励函数是否存在漏洞。例如,代理可能会尝试最大化奖励而采取不合理的行动。通过调整奖励函数,确保它能够正确引导代理行为。\n", + "\n", + "#### 是否需要动态调整奖励函数?\n", + "\n", + "在某些情况下,动态调整奖励函数可能是有益的。例如,随着任务难度增加,可以逐步提高奖励以激励代理持续改进。\n", + "\n", + "### 总结\n", + "\n", + "奖励函数是强化学习中至关重要的一部分。设计一个有效的奖励函数需要明确目标、提供及时反馈,并防止意外行为。通过不断优化奖励函数,可以帮助代理更快地学习并实现目标。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def reward(s):\n", + " r = s.energy-s.fatigue\n", + " if s.at()==Board.Cell.wolf:\n", + " return 100 if s.is_winning() else -100\n", + " if s.at()==Board.Cell.water:\n", + " return -100\n", + " return r" + ] + }, + { + "source": [ + "## Q-Learning 算法\n", + "\n", + "实际的学习算法几乎没有变化,我们只是使用 `state` 而不是仅仅使用棋盘位置。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " s = state(m)\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = s.board.human\n", + " v = probs(Q[x,y])\n", + " while True:\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " if s.board.is_valid(s.board.move_pos(s.board.human,dpos)):\n", + " break \n", + " s.move(dpos)\n", + " r = reward(s)\n", + " if abs(r)==100: # end of game\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUVd7H8c+Zmt5J6CC9qVQpKoqIoggIuouCoojCIkXQXUV3F0XEh10bYAFBUQFBwRXXroggIjYiKkWE0EsI6Zle7j3PH5mMsBBqkjsJ580rr2Tu3Mz9zoT8cubcc88RUkoURVGU6sNkdABFURTlzKjCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs2owq0oilLNVFrhFkL0FUL8LoTIEkJMrqzjKIqinG9EZYzjFkKYge1AH+AA8CNwq5Rya4UfTFEU5TxTWS3uS4AsKeUuKaUfeAsYWEnHUhRFOa9UVuGuB+w/6vaB0DZFURTlHFmMOrAQYhQwCsBqtXa66KKLjIpySj6fD4fDQVpamtFRylVUVITVaiU2NtboKOXKzs4mPT0ds9lsdJRy7du3j4YNGxodo1zBYJDc3Fzq1KljdJRyOZ1OgsEgSUlJRkcpV25uLgkJCdjtdqOjlGvLli14PB5xwjullBX+AXQHPjvq9sPAw+Xtn56eLiPZjh075Lx584yOcVIrVqyQ69evNzrGSU2bNk0WFBQYHaNcuq7LcePGGR3jpPLz8+X06dONjnFS69atk++9957RMU5q7ty5cseOHUbHOKlQXTxhzaysrpIfgeZCiAuEEDbgFuD9SjqWoijKeaVSukqklEEhxDjgM8AMLJBSbqmMYymKopxvKq2PW0r5MfBxZT2+oijK+UpdOakoilLNqMKtKIpSzajCrSiKUs2owq0oilLNqMKtKIpSzajCrSiKUs3U2MK9cOHCsqs2FaXKeb1eli9fbnSM0/L222/j9/uNjlGut956K6LzGaHGFe6VK1cycOBAgsEggwYNYvHixYbkkFJy3333GXJsxVhPPfUUw4cPJzc3l4EDB7Jp0yajI53QTz/9xMCBAyksLGTo0KHMnDnT6EjHyMzMZODAgRQVFTF06FBmzZpldKSIUaMKdzAYJCsrixtuuIF+/foxatQotm3bhs/nq9IcL7zwAq1ateKWW26hZcuWzJkzp0qPX9mklBQUFBgdIyK53W42bdrEI488wk033cTFF1/Mnj170HXd6GjH0HWdPXv20LlzZwYNGsTkyZPZvHkzbrfb6GhAab7du3fTtWtXBg0axIMPPsjmzZvxeDxGR4sINapwHz58mF27dtG3b1/69u1Lly5dsNlsbN68ucoyFBQUUFRUxKJFi/D5fCxcuJCCggIKCwurLENlW716NdOnTzc6RkRavXo1HTt2JD09ndtvv52hQ4fy0Ucf4fV6jY52DJfLxRdffMGQIUO45ZZbqF+/Pq1bt2bdunVGRwNKZxhcvXo1f/rTnxgyZAiNGjWiVatWfP3110ZHiwiGTetaGerXr0/Lli0ZPXo0hw4dYvz48TRt2pROnTpVWQaPx4OmacTFxfH999+zb98+4uLi8Hg8JCcnV1mOyrJixQq2b9/Ov//9b6OjRKR+/foxZMgQfv/9d6644gruuusupk+fTkxMjNHRjhEfH8+AAQMYOXIke/fu5aGHHkJKyQMPPGB0NAASEhLo168fI0eOZM+ePTz44IMAEZPPaDWqcAP079+fNm3acOeddzJ+/HgaNGhQpcevV68eMTEx/OlPf2LZsmVcdNFFNG7cmMGDB5ORkRHRc1GXR0qJrut8+eWX7Ny5k3HjxlXJ8whPYWmqXm8Mp02bxv79+5k4cSLdunWjY8eORkc6oa5du/Kvf/2LcePGcfvtt9OoUSOjIx2je/fuzJgxg3HjxvHll1/y5ZdfGh0pYlSv34jTkJGRQY8ePYiNjaV79+6GTIo/ceJEfvjhB6ZOnYrD4WDTpk38+9//ZtCgQWRnZ1d5nnO1f/9+rrzySj7//HPuu+++KlmsYf/+/Xz33Xfce++9bNu2rVr1bbZo0YKrrrqKWbNm0aBBAyyWyGwfJScn06NHDxITE+natSvNmzc3OtIxyvKtW7eOtLS0iMhXUFCAw+EwOkbNa3FHAqvVitVqZdmyZeFtixYt4uDBgzz//PM0adKEP//5zyQkJBiY8vT89NNPvPnmm3z66adVurrOqFGjaNq0Kffccw8333wzr7/+Op07d66y458rIQRXXXUVq1ev5ocffqBXr15GR6q2oqKijI5AMBhk4cKFHDx4ELvdTt26dRk2bBhCnHiBmsqmCncVqlevHnfeeSfffvstjz76KM8++6xhP/jTsXXrVt5//30eeOCBKi3aH3zwAX369GHo0KE89NBD6LrOY489Rmpq6nH7Dho0iBtvvLHKsinnp2AwyIwZM3jzzTdxOp2MGjWKYcOGHbPP119/zSuvvHLC7+/cuTPjx4+vsDw1snA/+OCDzJ49OyKLYosWLWjRogVdu3Zl5MiRzJo1i+jo6Ih7O33kyBFmzJjBc889d8KCWZkuvfRSlixZwk033cTkyZN54oknuPnmm2nXrt1x+y5fvpypU6ee9PE+++wz0tPTKyvuSU2cOJHRo0fTuXNn4uPjDclwKgsXLuTWW2/lww8/NDrKCQkhmDVrFg8++KBhJ8VHjBjBf//7XzZs2MCzzz7LgQMHjjt30atXL/7xj3+c8Pvj4uIqNE9kVYsKkpOTQ+3atSOycJdp2bIl48ePp3///gwfPpzbb78dq9VqdCwAtm3bxrRp01i0aJEhJwZTUlKoX78+48aN4/rrr+fAgQO0adPmhH2cDz/8MJMnTz7p4xn5/yA1NZXCwsKIG8d9tHr16nHw4EGjY5RLCEHt2rXJyckxLMOrr75K9+7deffdd+nQoQM333wzmZmZx+1XVb8vNbJwVwdCCDp06MCaNWt4/fXX+de//kWbNm0YPHiwYZmOHDnC/Pnz8fv9PP/884aO5njqqacoKSnhww8/5Kuvvip3PyFERP+BBhg6dCiLFi1i3LhxRkdRzpLVamXAgAHhqTSGDx9u6P89VbgjwB133MGqVavCfcr9+/evkv8QUkrWr1/PkSNH6N+/P5MnT+ZPf/oTF198MSkpKZV+/FNJSEhg6NChRsc4ZyNGjKBjx46qcJ8jIQRSSkOKpdVqZdq0aezevZuYmBgyMjKqPMPRatxwwOpICMHVV1/N6NGjyczMpFOnTpX+1lVKSZs2bVi6dCnr1q2jXr16/N///R/XXXcddevWrdRjn2+EEKSmpqppAs5B06ZNueyyy3jzzTcNzXHBBRcYXrRBFe6IYrfbmTp1Kj/88APPP/98pR5r/fr19O7dm4cffpioqCh69uzJxo0bK/WY5yshBPPnz6/QUQXnG7PZjNVqjbipA4xSI7tKhg0bRq1atYyOcdYsFgszZsyo1GPk5eWRlpaGx+Ph5ptvZvXq1eTm5lbqMc9nqamp3H777UbHOCEhBH/729+MjnFKXbp0UVM1h9TIwn3NNdcYHSHiDRgwgAkTJuDxeMjIyODJJ5/kwIEDRseqsRITE+nbt6/RMU5ICFEtziW0adPG6AgRo0YWbuXUhBDs2LGDNWvWkJOTw8GDB7HZbEbHUhTlNKjCfR6z2Wzq3YmiVEPq5KSiKEo1owq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXNOo0qEEHsAB6ABQSllZyFECvA20BjYA/xZSllzVspVFEUxWEW0uHtJKdtLKcuWJ5kMrJJSNgdWhW4riqIoFaQyukoGAm+Evn4DUMuTKIqiVKBzLdwS+FwIkSmEGBXaliGlLFsR9zBg/FRaiqIoNci5Xjl5mZTyoBAiHVgphNh29J1SSimEOOGsMKFCPwpKl/XZsWPHOUapPAcOHKCoqCiiM+bl5aHrekRndLlc7N69m7y8PKOjlMvv90f0a1hSUoLL5YrojIcPH47435eioiL2798f0ZNWnWzVpHMq3FLKg6HPR4QQK4BLgBwhRB0pZbYQog5wpJzvnQfMA0hNTZVr1qw5lyiVqqioiAMHDhDJGXfu3ElMTAz5+flGRylXXl4e69evx263Gx2lXE6nM6J/zl6vl29zv+W/a/5rdJRyxWTH0NvTO6KXazt48CCZmZlkZWUZHaVcJ339pJRn9QHEAvFHfb0e6As8BUwObZ8M/PtUj5Weni4j2Y4dO+S8efOMjnFSK1askOvXrzc6xklNmzZNFhQUGB2jXLquy3Hjxhkd46Ty8/Nlp+mdJBH8r/a62vK9994z+qU6qblz58odO3YYHeOkQnXxhDXzXFrcGcCK0DJCFmCJlPJTIcSPwDIhxEhgL/DncziGoiiK8j/OunBLKXcBF59gez7Q+1xCKYqiKOVTV04qiqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDM1rnBLKZk5cyaHDh2K6AlkFEVRzlaNKtw7duzgggsuIC0tjbvuuosbb1RTgSuKUvPUmMItpeSHH37gr3/9K23atGHx4sXUqVOH3377zehoNcaBAwfYtWuX0TEU5bx3rvNxRwwpJYcPH6ZBgwbMmjWLBx98kJSUlIie5rS6kFIyZcoUpJSYTCZ8Ph9PPvkkZrPZ6Gh89tlnNGnShObNmxsdRVGqTI0p3CaTiX79+tGrVy80TeOXX34hOTmZJ5980uhoQGnx03U9IordmdJ1nXfffZcVK1ZgsVgYNGgQU6dONfS5OBwOrrnmGq677jqWLl1KcXExK1asMCyPolSlGtNVAtCiRQt27drFNddcw+LFi/n000+NjgSUrgiyadMmhgwZwpYtWygqKjI60hmZMGECc+fO5euvv2bDhg0sWrSI0aNHG5pp586dtG7dmrvvvptnnnmGYDDIgQMHDM2kKFWlRhVuk8lEdHQ0ZrMZu90eMSutPPXUUzz22GM888wzjBkzhg8++MDoSGfk+uuvp2/fvqxcuZJ69eoxaNAg5s+fb2imd955h5tuuomXX36ZjRs30r9/f0P/UGuaxiuvvMI333xjWIaaYNOmTRF/HuXzzz/H5XIZmqHGdJVEqszMTJKSkpgzZw6PPPIIl156KZs3byYnJ4eMjMhfR3nFihXs3buXuXPncvjwYb766isef/xxLBZj/+uUnYSuVasW69evZ+/evWzfvt2wPEIIoqOj+eqrr5g7dy6xsbHMmTOH0EIjyikEAgHuuece6tevj9frxe128+KLL0bU67dz504ee+wx2rdvz7Jly2jdujUPPPCAIVlqZOGOjo7G6/UipTT8B9+qVSuWLVtGVlYWkydP5r333uOpp55i9erVrFy5MvwuwehC+L+klHz11Vds3bqVSZMmERMTg8PhQNd1EhMTjY5HfHw8q1ev5sUXX6Rbt25ceumlhuYxmUwMGzaM4uJicnNzcblcdOzYEYCZM2fSsWNHLBYL0dHRuFwuNm/ezJdffsm4ceOIjY3FZKpRb37PmNPpZMeOHTz55JO4XC4GDBiAw+EI//7u37+fYcOGnfB7V61aRUpKSqXmk1Jy8OBB4uPjueOOO9i6dSvTp09n1KhR4X0+/vhjZsyYcdz3pqWlsXLlygrNE1nVooLMmTOHTp06sWHDBsMLd2xsLI0aNWLKlCmMHDmSjz/+mEWLFnHZZZcxYMAApJQMHTqUtm3b0r17d0OzHm3t2rV88MEHPP300+HXMD4+3uBUfzCbzRw4cIDU1FRuvfVWw3/OZRITE0lMTERKSWZmJlD67mDq1Km0a9eOwYMHc/fdd9OnTx969epF06ZN+fnnn6lbt67ByY01efJknn32Wb799ltefPFF9u/ff8x1GPXq1Qu/nv+rKn72gUCAV199lX/84x/Mnj2bL7/8km3btjFw4MDwPtdee225GStajSzcQoiIumry3nvv5S9/+Qsvv/wyq1evDm9ftWoVAG+88Qbr1q2LiML9008/8fHHHwMcU7QjUdnPOBIzCiHCuZ599lkAfvnlF0aMGEHv3r2pV68eycnJzJw5k6VLl3L//fdH5POoKrNnz6Zly5bMmzePe++9lz179rBq1aqIeU1sNhv33nsvd955J6+++ipRUVEkJiby0UcfGZKnRhbuSGQymRgzZswJ77vjjjuqOM3xpJTs2bOHpUuXcvXVV3P55ZdHzC9NeSI93/+6+OKLWbx4MTNmzKBTp040aNCA9evX06lTJ6OjGc5qtTJ//nw2bNhAfHw8r776qtGRjtOqVSumTJnC888/T+/evenbt69hWVThVoDSUREPPfQQr732GrGxsUbHOS09e/akR48eRsc4I23atCE7O5sFCxbQs2dPFi5cyF/+8pdq90eooplMJvr06cPll1+OyWTCZrMZHek4iYmJXHvttfTo0cPw8xKqcCsAWCwWli1bZnSMM2K1WrFarUbHOGMrV64kKyuL9evXs3PnTqPjRJSoqCijI5xSJJzrUYVbUQzQrFkzmjVrZnQMpZqqsWOQlixZct6//VQUpWaqsS3u1q1bGx1BURSlUtTYFreiKEpNpQq3oihKNaMKt6IoSjWjCreiKEo1owq3oihKNXPKwi2EWCCEOCKE2HzUthQhxEohxI7Q5+TQdiGEmC2EyBJC/CqE6FiZ4RVFUc5Hp9Pifh3434vyJwOrpJTNgVWh2wDXAc1DH6OAORUTU1GU6kRdQ1G5Tlm4pZRrgYL/2TwQeCP09RvAjUdtXyhLfQckCSHqVFRYRVGqh0ianbMmOts+7gwpZXbo68NA2VIu9YD9R+13ILRNURRFqSDnfHJSlv5pPeM/r0KIUUKIDUKIDR6P51xjKIqinDfOtnDnlHWBhD4fCW0/CDQ4ar/6oW3HkVLOk1J2llJ2jo6OPssYiqIo55+znavkfeAOYEbo83+P2j5OCPEW0BUoPqpLpVyapvHee++dZZTKl5eXx86dOyM64+bNm9m7dy85OTlGRynX4cOH+fTTT4nkP9QlJSUR/XN2u93EZsfS5L0mRkcpV/yeeDa7Nkd0P/euXbuwWCxs3rz51DsbRNO0cu87ZeEWQiwFrgTShBAHgEcpLdjLhBAjgb3An0O7fwxcD2QBbmDE6QT0+wVjxkTuiucxMTp33BET0auy7927l8TExIjOaLfbqVWrVkQv1GCxWCL6NXQ6nXSxd2FGxvGL0kaKbYXbcJgcEf06xsTE8GTKk7gz3EZHKZdf+Mu975SFW0p5azl39T7BvhIYe9rJwt9n4vBh49dbLE9iYhZ16uRHxJqQ5cnJySEjI+OsM0op+f777xk8ePAx20ePHs3DDz9cISuSrFq1ik6dOmGz2XA4HCSnJJFTeIj42ERKAkf4vHAhu9xbMAUs2EUcQjeT7ThEt+S+XHPBLfjdPurXakhJSQmxsbEUFhYSExNDIBBA0zRiY2ORUhIdHU1BQQFxcXE4HA4SExPDt30+H4mJifh8PqSUREVFYTKZwuuULlmyJKJ/zgUFBfz4448RnVHXdfLy8iI646+//kr+hfkUNys2Okq54kxx5d5XY6d1VU5fMBhk/fr1XHPNNfh8vmPue+yxx7BarUycOJGYmJhzPpaUOvmBQ+xybcGEzvvZL9EstiN+3Y+NaFrYunLIt49iTxGtkjrQKPUiEqzJ/G31MOKtqYzt8A9q2epgC9gwmUzoug6ULn2laRpSSnw+H0IINE1DCEEgEAjfL4TA7/eH34YGg8GIXCZLUU5GFe7znKZprFixgokTJx5XtMs8+uijFBcX88QTT5zzUmESycYj3zNr43QyYjNomNiI4mCAX3ZvZc+h/bRp1gBrwMb2XVnktSjigsTWCA5glwlEiwSW/ryAlikXcm2z/kTZohFCYDab0XU93KcaCASwWq1omobFYkHTNOx2O0IILBYLwWCwNIuUBAIBVbiVakfNVXKeE0Lw3XffkZ1d/jnkYDDIO++8UyGLo5qEmc5pV1En0Iktvxfw65ZcNv6aTckhG3Z3bVz7Yzi43c+Wjbl8v3EjW3b9yNqf1uBxBVm/81uOOPKZu/5FCnx5OBwOoPStucfjwWKxYDIJYmKi8Xo9WK1WfD4fUVFRuFyucGs7NjY2XMQr4l2EolQ11eI+z2VnZ/P777+fcgRASUkJGzZsoGvXrud0PF3XiTXHMLv/bO5aMYJPNn+M7oNoGYVN2vgpS+NPl9zEyD5dKHYVYfPYOOD+BG9JPnkFhezQdhIMmBk4pz8rx68GwGazERUVhdfjZvOqGWT9uJhgUKN19zvodMPjOBwOUlNT8Xq9REdHk5eXh91uJxgM4na7SU1NPafnpChVTbW4z3Nms/m0ugpOd79TMZlM2O12vE4PL980l+tb9cNiNtOkVhO6NevGRY3bsTd3L1sObibfUUB2fjax+Y1w/Z7IhQmt8RTnge5FKxbcPftuhBB4vV4KCvJx5Gxh55Z1FJZ4qdduAEl12+MoKSEuLo7c3FyEELhcLtLS0rBYLFgsFpKSks75OSlKVVMt7vNcrVq1aNCgwSn3s9vttG3b9pyPJ6XE7/eTnJxMIBBgzk0v8Y/of/Ju5rsUOYuINccSI6LxCT9H8rdRXFhMvDWBgd0H4nQ4iSaF/NwjmJIP4c8JoGlBrFYrq1fM5MiebyjM3k+HqyZx+YBJBIOl93k8HpKTk9E0jZiYGIqLizGbzUgpcTqdJCYmnvPzUpSqpFrc5zmTycSIESNo1qzZSfd76qmnsFgq5u+8yWTCZDIhpSQ5OoXHr32cIZ1vxRlwsSt3N5sPbuXH3T+yr3A/Teo3pWHdhuzK3oXD6yBepHJJw57kbfBhb32Y1957hYDfy49r/oPXZ2Hg6AV06TMq/Phlw/zMZjNA+HYZNYudUh2pFvd5TghBu3btuOyyyzCZTGzfvv2Y+zMyMmjUqBG9e/eukJOTUFq4nU4nsbGxuFwuEuwJzOj3JI9f9yiDXhxMYUkhWft3kR6fRoEznzhrPF63FwKS3Nx84qyx9Ok0gAMHtvO1XMF3Y14jWZP07XUbjVp3x2q14na7sdvt4ZOTTqcTm82G3+8nJiYGTdPQdf2cR8mcqaysLOrUqRPRFyEpkU8VbgWz2cycOXO4++67ycrKCo+NBmjYsCHz588nJSWlQo5VNs46NTWVgoICkpKScLlc2Kw2/E4/H479kD0Fe/gg8wNcXhemoIlYWwwlRSUgBR63F7vZxpCrh9D54s6s/fVz5q+fwhX9hnBxtxvQNA2n00lKSgolJSUkJiZSVFREWloaDoeD6Oho8vPziYmJQUqJy+Wqkiv8ioqKmDt3bvgPSoMGDRg+fHilH1epmVThPs9JKZFSMnnyZJYuXXpM0Qb48ccfGTVqFCtXriQuLu6cuxaEENjtdgoKCoiOjqa4uBir1UowGCQuLg4pJc3SmzG+z3iklNgsZg6v+4LDP7xLjD2K1F7XkdS9N1a7ncLCQgKHg3iKBJdefRM2mw0pJUlJSeTt2cOPr75AwYF9JDdtTac77iEpvVa4v1vXdXRdr7J5UwoKCvjss894/fXX2bFjB//85z+5/fbbVVeNclZU4T5PlRXs/fv388gjj7B8+fLjinaZ77//ni5duvD666/TuXNnzGbzWRecshZ3YmIixcXFJCQk4Ha7sVgs4bHY+L2YfF62TRmP9HupP2gYnR/+P3Rhwmo2sXvev8j/JZOgppOVV4Q99wi+zT+y4Zu1HPn1JwKaRushd9Fh8C34fV40r4+lo27HWeJkwJSpJFzQlIwGDTGZTLhcLux2+7m8lKf1nCdNmsQbb7zBrFmzGDlyJA899BDPPPMMf/3rXyv12KcjPz+f5OTkCusKUyqfKtznISkluq7z7rvvsnz5ct59992TzkQG8Pvvv/OXv/yFUaNGMWTIEFJSUs66eJvNZgKBQPgqxrITiWazGc1RzKF5T+Hal0Xr+x/HGp9AoKgQ764dIMAnod7g22g0fCxBl4N6X62i8/bfyP9mLY0vv4oLh95NMOjHVViI31GMJkFHMuDvjxHUdL5+cyG/rlvH6Fdep0nHTuGTlpVJCMFzzz3HbbfdRvfu3Vm7di1vvPEG3377baUf+2RycnL45ptvWLlyJVdeeSVNmzalc+fOhmZSTo8q3OeZspb2vHnzuP/++8OTLZ2OX375hbFjx7J+/XoWLFiA1Wo94+IthDhmHpGyPxhSSggG2Tvn/9ByDtFk2F/w5x4mmHsYgaTsMEKCf99uvFKiAwktW5PUvhOaP4inKJ+SvTvRpESToEmJLiWaDrqUBHVJxxsGENB13vzr/dzyf/+m+TleUHS6UlNTadiwIZmZmaSmpjJhwoQqOe7JbNy4kVdeeYWXX36ZBQsW8NFHH7Fw4UKjYymnQRXu84ymabz66qs8/PDDeL3es3qMJUuWoGkar732GlFRUWf0vVJKgsEgycnJx5yctFgs7F+xGE/Wb1xw218g4EXoIETo45jHKC3gINHcLvxSlhbrUIHWdIkuCRfvoCbRpE4wtE+7nr3wef3MHTOaSW8vp3XHjmf1OpyJsvHiEyZMoF27doZfal9SUsLbb7/NvHnzmD59Ok888QRLlizh/fffZ8CAAYZmU05NFe7ziK7rvPXWW4wdO/aUXSMnI6XkP//5DykpKTz55JNndAGLyWQiKiqK7OxsUlNTycvLIzY2Fp/bRcEX79Ny2Fg0dzHSBAiBKdRCN4k/ji2lLF0sT0ooK9K6RNclQamj6RJNg2CocAd0naCEoK6j6QJN12nd41KOHDiAJy/vrF+H0yWlZMeOHcTFxXHJJZdU+vFOR3x8PDfffDPPPPMMmZmZrFmzhszMTMaMGWN0NOU0qMJ9HlmyZAnDhw8/pmuk7GKYshnzymMymcJ901A6A99LL72Epmk8/fTTxMWVP3fw0cpa3NHR0QQCgfCJwfx1X2CLjcObdxCzSWAyl54oE2YwH1W4dVnaqpa6AE1HlzpSgtRDLW29rEBLAnpp90hQlwQlpQVcL+1GCQR1Uus34qX7JjB/y1ZEJfZ1SymZOHEiP//8c6Ud40wJIWjcuDEej4eDBw/y8ccfc+WVV1bYRVZK5VKnkSPQo48+espCehHdQoQAACAASURBVKYWLFjAhAkTjuvP7tKlC/369TtlX3VGRgZjxx6/Rsb8+fO57777zmiZqrJjlX2WUuL4aT0xjZuheVzoHhfS7QKvCzxuhNeN2efB7PMgvKW3pdeF9LrRPW50txvd7UJ3u9DcTjS3m4DbddSHE7/rjw+vw4HX5aBu86ZovrPrLqoJ2rZty9y5c2nRogUzZ87kzjvvNDqScppU4Y4gH330Ea1bt6ZHjx506dKFKVOmnPNjlnWP3H///RQWFoa3R0VF0aRJE959911atGhxyseJi4tj2rRprF+/njZt2hzz+G+88QYjRow4rT82ZfNne71eLBYLfr8/tM2E1Pzhwq17XEiPC+lxQ6hYC2/p13g8cNR+utdF0BP6cLsJup0EQ0Xb73bhczrxuxz4XE68TjdepxOv04mnuLjcIZAV6bbbbuPtt9+u9ONUZw6Hgx9++IEnnniC4hP8XDRNo7i4+JiPOXPm0L59e3r3Pm4xrhpPvS+qZLm5uWzatOm09v3++++5+uqrsdlsvP3227zyyivhJcnOhpSSnJwcXnrpJYqL/1iiqW7duvzrX//ixhtvPKNLr+Pi4ujWrRvLly/n1ltvZdOmTUgp0TSNL774gk8//fSUrXdd1/H5fCQlJeF2u0lISMDv9+P3+ZH5OdhDXTfCLDCZBMIsECYTpW0MSRDQdJ2grhPUSrtBAqGvA1IS0EIfusQf1AnqUFJSjDkmFr8m8etH3R+6CKcy7dq1i+joaOrXr1+pxzkXHTp0IDMzkyuvvNKwDD179qRr16706dOHFi1a8Pzzz5OWlha+v6CggDlz5hzzPUOGDGHjxo1VHTUiqMJdyfLz81mzZs1p7bt161ZcLhdr167l7rvvJiYmhtzc3HO6JFvXdQKBQHhypfT0dKZMmcKgQYPOar4MIQStW7fmhRde4K9//Ss//PBD+D6/v/zFTcuYTCZsNhv5+fnUqlWLwsJC4uPjiUpIJPurT7GZTJCUBKHijal0SEnQ70PYo9Ep67cGn8uBOy8Xv6bjC+r4dYlP0/EFJZrJgiUtgwCC4kMHiKldD7+uE9DAp2kEdcjNPoz/LEfWnK7XXnuN2267LaLnJnn66afp1KmTYUXwo48+YtCgQdx1110sWLCAtLQ07rzzzmMuTkpNTWXVqlWG5ItEqnBXslatWvH444+f1r7Lli3j0Ucf5dlnn+XWW2/loosuol27dmd9bCEE6enpTJs2jb/97W9kZWXxn//8hw4dOpxTIRFC0L17d1577TXGjRvH999/z6OPPkrv3r1P2Veu6zp+v59atUovP09KSsLv91Nn8HByv1lF0e+b0Oo1JDYtHd0k0E2CoIDg/p1YGzRFAp6cQwRKivH6fKXdHkENvybxBCW+oIZX0/Ej0Pfvw4+Z6AYNKc7ORsTGEtDAq+kUFxSwa8tW2t9wI1TSZeeZmZlYLBYuvvjiSnn8mqJJkyYsX76cmJgYunXrxsqVK3n88ccZPHiwmhKgHKpwR5Abb7yRPn36cO+99/LOO++c9kiNk7FarfTq1YvVq1cTDAZJTU095peh7CrKUymb26PssmiLxUKbNm147733wl0fpzvTnq7r4XUiy94J2Os2RLfYCLjcsHsHaBq2uDgCUsMM+EuKEb/+UDpWW9MIaDp+Tcev/dE9EpR6aOw2BDQNb1EBvqBOfl4enoCGH0FCg8YUFhZy5OBhvP4gN4wZU2nFIT8/H5PJVGETdNVUrVu3Jjs7m3vuuYdevXqRnZ3NpZdeqor2SajCHUFsNhs2m42lS5dW6OOazeZyV3rRNI1GjRoRHx9PSUlJuY/RsWPHY4bvlUlISDijLEIIbDYbDocDu92Ox+MJF3HNHo1fl8iAhrmkmKAWQDu0PzQcUCAADRm+yMav6wQ1gV8/uu9aD/d5B/XSC26CWgBNg0BQw+N0UpCdgy4BYSI6rnK6MPx+P7///nuFLD5xPvjss8/YtWsXX3/9NVlZWUbHiXhqVMl5zmKxMHjwYBo2bFjuPkIIHnjggQqZjKlsBZykpCQ8Hg/x8fHouo7FYqHxsLvxhfqpXQUFuJ0OfJqOV9PxaDpuTccb1PEES2/7NfCFWt3HtLx1vfSKSb3s5GXpNl1CSUFh6YrwJhNdbhqMiKqc2QFdLhcffPABgwcPrpTHr4maNGnCHXfcYXSMakG1uJXTmu2voiZjKpvWNS8vj7i4OIqKirDZbAQCAepe2oeNOuhSR5cBdIcbgnrp+UlR2saQUg9dhAPB0MU2/tDJSr9eNlpE4tdK7w+UFXApEVFReD2+0n20IO2vvJKGTZpUyPP6XyNHjjxuFESkEkLw1ltvGR1DOQOqxa1UKSklgUCAtLQ03G43iYmJ4ZVoHC438V16lraygxpOhxN3oLSF7Q7ooa9laYs7qOMJanhCI0q8QQ1fUMOnafiDEr+m4dd0AqFiHgjquJxu/D4/8bVqce1fRmOOiqagoKDCn+OuXbuA0hZkdSCEoGXLlkbHUM6AKtxKlSq7AMftdmO1WvF6veFZAqPj42kxdCTeoAwVaA1vaLSIN6jhDWpHFe3SLhRvUIa7V3yaxBfqLvFrAr8Ofk0eM947ICUZzZtTUlBI9/4DKmUhhYcffpiZM2eqk2tKpVGFW6lyZRftCCHCI1qklFgsFpKbtaT+NQNChTrUqg6W9m3/0b8t8QRK7/eF9vOFRpkEQsW7tLtEKy3iusSvQ1DTadPzSjRhocdNN2OxWCplzclJkyYdc/GIolQ0VbiVKlVWtGNiYggEAkRHR4cXUfB4PJhi40ht1x4/ptJWt1baNeIOarjDRTxYerIyfLu0Ne7VSsdw+3SJN1h6sY1f1/CFWtu6MJFcrx4ORwkX9uyJpmm4XK4Kf47dunUzfNpWpWZTJyeVKlU2reuRI0dITU0lPz+fuLg4AoEASUlJaJpGiyHD2bluDXvXrkIgwnNyA0gpwhNaBeUfQwMDUhLUQicjQ5e0+8r6uDUdabHRrmcvfly1hhe//QZbVBRSyjMezqgokUC1uJUqVXZyMi4uDp/PR2xsbPiCHK/Xi9/vxyQErQfcjGaNwqOF+rYDGp7AH61r99F93prEG5Slre1Qt8nRwwSDmGhwUQcCCC6/+SY0q41gMEgwGMTpdBr9kijKGTtl4RZCLBBCHBFCbD5q22NCiINCiJ9DH9cfdd/DQogsIcTvQohrKyu4Un2ZzWY0TcNqtR4zj4rFYgkPO2x41bXEtGqLNyhxByXuoI776BOToe1l/d++QGl/ty980vKPfu/0Zi2ISU5hz5atXNirF7FxceF5yNX800p1dDot7teBvifY/pyUsn3o42MAIUQb4Bagbeh7XhJCVP5qrMo5OZO5tM9V2ZqTZdO5lp2klFKGiymUXhbfb9rTmJJTjyrYWqiAS1yhk5LewB/F3KOBJ1S0vZqGbrGSUL8Rlrh4igsKGHzfBFpeckl43LoQolJOTipKZTtl4ZZSrgVOd7DrQOAtKaVPSrkbyAIiY60mpVx2uz1cMKG0RXx0QZNSVtiwuf/tKomJiQnPgeLxeMIr7NhsNuo2a84tLy0gvmFjPAE99FHaReIrG99ddjWlpodHoviCEl9Q4pcCrz9ASUEhHa7uw9UjRhAVHY3D4UDTtEo7Oakole1c+rjHCSF+DXWlJIe21QP2H7XPgdC24wghRgkhNgghNgQCnnOIoZyrpKQkkpNLf4Rms5nRo0fz/PPPhy9xj42NpXbt2hVyrLIrJ4uKioiKigrPjxIMBomNjcVutyOlxOv14nA4aHZJN254/P/oMPjP+KQIjzLxmy1ccPmV4SGC3qBGVFo6cbXr4tW00svhfQFsMTEMGj+ePnfdhRACr9dLUlISZrMZi8VCfHx8hTwvRalKZ9vBNweYRumSrdOAZ4C7zuQBpJTzgHkA8fEZ0uc7yyTKORNC8Prrr+NyuRBCULduXeLi4rjiiivCJw7PZEHgU7HZbKSnp2M2m6lVq1b4QpWjZx4sG05nMpno1Kcv7bpfRv+/TQZCq7ybBDFJSTiPuvLRYrODEMfMsW2LiiK9YUP00JDD6OhohBDhdxDqIhmlOjqrwi2lzCn7WggxH/gwdPMg0OCoXeuHtikRTAhBo0aNjtveqlWrSjne0X3ZR3fRlPnfeVFMJhPW5GTikpOP2zc54/TeCZQ9YtnxVMFWqrOz6ioRQtQ56uYgoGzEyfvALUIIuxDiAqA58MP/fr+iKIpy9sSpRhQIIZYCVwJpQA7waOh2e0q7SvYAo6WU2aH9/05pt0kQmCil/ORUIRITU2SLFvef7XOodFari7Zt807YKo0Uhw8fxm63h/uqI9H27du54IILInokx6ZNm7jwwguNjlGuQCDAnj17aN68udFRylVQUIDf76+w8yKVYc+ePWyttZVAbMDoKOXa/ux2iguKT/jW8JSFuyrEx6dLv/93o2OUKyFhD3XrfsO2bcOMjlKuRo0+5aWXatGpUyejo5Rr5syZjBgxokL7yyva3//+d6ZPn250jHIVFRWxcOFCJkyYYHSUcm3YsIH8/HyuvTZyL+NYtGgRPXv2jOjGWMuWLTly5MgJC3eEXH0g8Psjt6UYCOSjafaIzqhp0cTGxkZ0i9tqtZKYmBixGcvmTInUfFCa0Wq1RnTGmJgY3G53RGe02+3ExcVFdMaTnYdRl7wriqJUM6pwK4qiVDOqcCuKolQzqnAriqJUM6pwK4qiVDOqcCuKolQzqnCfpzZv3hyeiU9RlOolQsZxK1Vl//79LFy4EJ/Ph81mo1WrVtx8881Gx1IU5QyoFvd5RErJ3r17+eWXXxg3bhwtW7Zk6dKlVbqQgqIo504V7vOI1+tl9uzZzJo1i8cff5zWrVtz/fXXs3jxYqOjnRWv1xuez1tRzieqq+Q8Eh0dzYQJE7j33nt56aWXuOiii7j88st59913jY52xj755BN27dpFbm4uF154If3798dmsxkdS1GqhGpxn2eaNGnClVdeyezZs3n44Yfp3Lkza9asMTrWGbv//vupU6cOffv25ZFHHsHtdhsdqVwvvPACHk9krvL00UcfkZWVZXQM5Qypwn2eqVu3Lvfddx933XUX48ePZ8yYMXz++ef8+uuv1aav+5///CczZ86kfv36/Prrr6xYsYJ7773X6FjlWrFiBX6/3+gYJ/Ttt99y8GDkr3Wyb98+HnvsMaNjlGvPnj1MnTq1yo6nCvd5qnnz5uFZ5h5//HGee+45tmzZYnSs0zJlyhQmT57Mxo0b2bhxI6NHj2bWrFlGx6qWateuzeHDh9E0zegoJ+X1etm9e7fRMcrl9XrZu3dvlR1PFW4Fi8XCK6+8wsKFC6tFt4nVauWGG27g448/JjMzk4suuojY2FijY1VL48aNY+7cuRHd1aQcTxVuBShd5/GRRx7hu+++Y926dUbHOaVp06Yxfvx4+vXrx4svvhheXFhRzgeqcCthSUlJjB07lmXLlrFt27Zq0+etKEar6sWnVeFWjhEfH8+sWbN46qmn+Omnn4yOoyjVQlU3clThVo4jhODFF1/kww8/ZPXq1UbHKVeTJk2QUrJr1y6jo5Tryy+/pGfPntjtdqOjlOuOO+5gwYIFRscol5SS5cuXM2jQIKOjlCstLY2GDRuycePGKjmeKtzKCUVFRTF+/HjWrl3Lhg0bIrLbpDoU7tWrV9OzZ0+ioqKMjlKu4cOH8/rrrxsdo1xSSt555x1uvPFGo6OUq6xw//zzz1VyPFW4lXKlpKTw0EMPMXfuXLZt22Z0HEVRQlThVk4qKiqK+fPnM2fOHL755huj4yiKgircymkQQjB9+nTWrl1bLcZ5K2cuNzeXN954w+gYx3nvvfcYO3YsBw4cYMyYMRHZeNB1nYkTJ7Jo0SIWLVrExIkT0XW9Uo+pCrdyWuLj4xkzZgyffPIJmzdvjsg+70hSUlJChw4dePXVVxkzZgzXX3+90ZHKdffdd5OXl8cDDzxAhw4d2Llzp9GRgNKC+P3333PJJZeQmppKgwYN2Lp1a6UXxTPl9/tZs2YNvXr1olevXqxZs6bSpzhQhVs5bUlJSTz55JM888wzbN682eg4ANSrV4+EhASjYxxny5Yt9OjRgxEjRjB79myio6Mj8iTqwYMH8fl8rF+/nuuuu47Bgwfz22+/RcQf5u+++47Y2FgGDRpEp06duPvuu9myZQv79u0zOtoxJk2axLx582jfvj3t27dn3rx5TJo0qVKPqQq3ckbMZjPz589nyZIlEdFtMmrUKC655BKjYxzniy++oHfv3lx66aU0btyYK664IiLf5v/yyy9cdNFF1K5dm759+9K9e3fWr18fEYW7R48euFwupkyZwnPPPcekSZNo164djRs3NjraMV544QWGDBlCdHQ0drudIUOG8MILL1TqMdV83MoZs1gsPPjgg8yZMwe73U737t2NjhRxxo0bR+vWrXn++ed58803Wbp0Kdu3bzc61nGuv/56/v3vf7Nr1y5uvfVWRowYwUcffYTJFBltumHDhrFt2zb+/ve/h1vekcZkMvHcc8+FhwI+99xzlf76qcKtnJXk5GQmTJjAQw89xAUXXEDt2rWNjhRREhMTyczMZNGiRXTr1i2ip51955132LNnD0uWLGHdunWkp6cbHSmsXbt2tG3blp49e0ZUrqMJIbjxxhvDE3VVxbw5qnArZy0uLq7S3xJWVyaTiXr16vHQQw8BVT+XxZlIS0sjNTWVTp06RWROIUTEFu2jVeVEZ6dszwshGgghVgshtgohtggh7gttTxFCrBRC7Ah9Tg5tF0KI2UKILCHEr0KIjpX9JBTjCCEi8pc9UlSX16e65FRKnU5HTBB4QErZBugGjBVCtAEmA6uklM2BVaHbANcBzUMfo4A5FZ5aURTlPHbKwi2lzJZS/hT62gH8BtQDBgJlI/bfAMomEhgILJSlvgOShBB1Kjy5oijKeeqMTn0KIRoDHYDvgQwpZXborsNARujresD+o77tQGjb/z7WKCHEBiHEhkAgMhdSVRRFiUSnXbiFEHHAf4CJUsqSo++TpYM+z2jgp5RynpSys5Sys9UafSbfqiiKcl47rcIthLBSWrTflFK+G9qcU9YFEvp8JLT9INDgqG+vH9qmKIqiVIDTGVUigFeB36SUzx511/vAHaGv7wD+e9T24aHRJd2A4qO6VBRFUZRzdDrjuC8Fbgc2CSHKZgl/BJgBLBNCjAT2An8O3fcxcD2QBbiBERWaWFEU5Tx3ysItpVwHlDfAs/cJ9pfA2DOPYvzcCKcW+RkjYY6JU4n0jJGeD1TGilIdMp6IiITgiYnJsn3724yOUS6z2U9iohObLcXoKOUKBktISrJU6dVbZ+rIkSOkpqZiNpuNjlKuAwcOYbHUNTrGSWgETIewpluNDlIu3a0TF4yLyFkbyxQUFBAXF4fNZjM6SrkWL15MYWHhCRvNEVG44+MzpNOZY3SMciUmZvHUU6u55557jI5Srvfee4+MjAy6du2Kz+fDarX+MW+xSeewby+FwRykLrFgAwSegJsYcwJNE9oidDM2mxVN0xBCEAwGEUJgMpkIBoPYbLbw57LHDwaDmM3mY/YtuwIvGAxitZYWl7Ir8p544gnGjh1LcnKyQa/SyUkp+fOfJ/DOO88bHaVcdnsB7aZcQ+YjmUZHKVftb2ozN28uAwcONDpKuV5++WV69+5Ns2bNjI5SroyMDHJyck5YuNVcJTWMpmnk5+cTFW/jh8IPSY9qRNDkZafzF7L9e3F4nTi8xdSNborH7yHdWp8dUb+xOz+LcV3/jt8XQAiB0+lECIHdbsfpdJKWlobT6SQlJYXi4mJSUlIoKSkhNjaWoqIirFYrNpsNm82GxWLB6XRGbIFWlOpOFe4aJqvoF/5T+ByiWHDYtxerjCIYlMSSTJq9HkkkU+R24dEDpNjrg27lk53vEm2JZ9qXD3JLu5HUjWlAfHw8UkqCwSCpqam4XC7sdjt5eXnExcVRUlJCdHQ0Pp+PpKQkpJRomhaeIc1ms5Gfn09SUhIWi/pvpigVSf1G1TC1Yhrx1qqNpESlcFGti2iS3opdh/bwxrqlNGuRSK3YOHb8mo25XpBL2/TEHIwi2pJEgSMPe0w8C36YQ7/WN9I2+WIsFitWq5Xc3FzS09NxuVykpKZSkJ9PYmIixcXFxMbGUlJSgtVaum9sbCwmkwmXy0VycnLEzOusKDWJKtw1TDQxzOu3gAc//xsfbf2EzzZ/gV23kZFcG3+uHZ8jjebpjThUtButSOfbn7+lfrsUsg4folmqnyJ3MV6fRtMrWpFkiUYIQVxcHH6/H58jm+3b3sdR4iAlvS5pTXqjaRpRUVHhfuyytfZMJhNer5fo6Gg165yiVDDVHKphTCYTLVKa8Y+r/o7JItiZv5NCTyFxUbG4/W7cARcN0hvQOq09CZ5mNE5og2O7RPh1zPjYd+QQn21axfQPnwBKT9jpug5S4+DWz1jz1kQyP/4HmZ8/gwid19Z1HV3Xw0OrTCYTUspqO9RKUSKdKtw1jNVqJeAP0L1+d/4z9D+kxaViMpsp8hZjtVnwaX62HthCriOX3/dt4+sN39Ioph0DMm7nl1W/06VVA2IcZpZ/spxAMACAo6SII3t/ZO1Hz1PkttPl5lfpc9ebBLTSUSV+vz88gqXsJKWu66q1rSiVRHWV1DDFxcXh/ujWtdvwzYR1DH7lZrLzs7FLGzZpJwo7ufm5SL9ORnJtNKmRcySPAR2HUPRbEYn2InyJ0ezcv51WF7TlqxVPsy3zQxpc0JrLrh5Fu0tuoKSkhLiYGLxeLykpKWiaRiAQwOl0IqUkJiaGvLw8UlNT1clJRalg6jeqhik7WWixWPB6vWTE1GbBrQv4YNMHzPlyDocKssEvibfE06ZeG2zCxpGiI8RYonGUOBAaxBc3xpFQxNT/TuRPTYeQ9duvJNVuQ/+RM0nNaITX6yUmJga/34/VasXtdofHb0dHl870qGka8fHx6uSkolQCVbhrmLITgoFAIHwRTstaLWjRaxKX1OtCjiuHJ995koN5h9iVs5OUqFRs2MjPy8PnDuB1ehhz4xjG9xhHccwBXn/uXyQf0Xhg2nySazXA7XYTHR2N1+vFbreHL8op6+cuOzlZVtDtdrvBr4ii1DyqcNcwuq5jsVjw+/3HnCSUEro36U5UdBR92/TFarPidDixmQUHd22nVmIqPgkxKbWIskWRnJRMSUkhv1/wM73u6kfj5u0RQqBpGiaTCWdeLgGLmYCmk1q3HiaTKVy8gfC+6gSlcq6OHDlCWlqaevd2FFW4a5ioqKjwuGqfzwcQnhvEbrfj9/uJj4onb8N6ogIeHEdyiD+0l5KiQpIu7EBC+24492Sx2+Nh/+EjbPr6G7p1vIzAwX0c2rGNqOhoSuKS2fv1KvZt/oW4WnWIadKCuNQ06rVtS0bzluHL4BMTE9Uvm3LWsrOzWbt2LWvXrqVHjx40a9aMrl27Gh0rIqjCXcO4XC5SU1NxOp1ERUWh6zo+nw8hBB6PhyiPg91vziU2ORV/dAyJtWqT0OMKpBAIwHNgL7K4ALseJHb3dnr43MhVH3Lo4B6EyUJhwE90ej1a9O5L097XIjWd379Zy+HNv7BvYyYOj5cbH/knyWlpFBcXk5qaqoq3clY2btzIm2++yZw5c1iwYAGff/65KtwhqnDXMAkJCaVzlURF4Xa7MZlMWK1WpJTEWs38PP4eEps0J7nnNZjMFpAa/oP7SifulRKz2UJis1boUhLboCnNBt+Cpun43CVYouPQpE4gEMRTXIAuQdMl9dtdTB0pKc7P5/1Zz/LqvaMZ9/pikpKSKm0mwEAggMViUcMNa6iioiKWL1/OnDlzmDp1KjNmzGDx4sW8//77DBgwwOh4hlNNoRqmpKSEtLS08JA8q9VKIBDAW5jP93ffSEzdetS57iZ0RzF6cQHSUYzwOhEeJ3hdSFcJWkEuwYJcdJeDYHE+mqMQ4ffjLyogUFhI0FFC0OUi6HYRcLvwOx34nKXdMwMnPoDzcDYv3Dmc/Tt3omlahT6/vLw8Nm7cyC233MLPP//M4cOHK/TxlciQmJjI4MGDefrpp/npp59YuXIlGzdupF+/fkZHiwiqcNcwUVFRuFwuhBAEAgE0TcNsNpP7wTJSGjSl3rWDCORlg9eN8Loxed0Irwfh82LyehAeF8JTeh8eJ9LtRHM7CHrcBN1Ogh4nuidUtJ1Ogk4nPpcTv8uJz+Ui4PHS45ah5OzeyZbVX1Z4i3jZsmU89NBDzJo1i6lTp/Lyyy9X6OMrkUEIQZMmTQgEAhw6dIjRo0dz1VVXRfRc7lVJFe4aJiYmhqKiIgA8Hk/pKA+fB8f2X0lq1Y5g3mHwuksLt8+FyefG7Hdj9rkx+T0Inxvhc4PHhfS6kV4X0u1GelxoHjdBt4ugy0XA5SDgcuJ3Owm6XPidLvwuBz63AxPQ+MKL+f6//6U4N7fCntvevXvZv38/r7zyCrNnz2bu3LlIKdm0aVOFHUOJHG3btuWFF15g0aJFNGjQgNtvv93oSBFDFe4IIKWkqKiIFStWsHTp0nN6rOLiYjIyMpBSEhcXh8ViIXvNZ+Dzo2sBNI8L6SktzKUtbhdmnxuLz4XJ60L4QsXa60G63eguN7rHheZxoLtLi3fA80c3ScDlxOd24nM58LuceJ0uPM4SajdrhqOgAGdhYQW9SlCnTh1q167NunXrGDFiRPhEVfPmzSvsGErk6dWrV7W8+tbr9VJYWMjgwYMpLCzE6/VW2GNXv1ejhtm5cydZWVm89NJLXHLJJTzyyCPn9HiJiYnk5OQQHx+Py+XCbDYTY7fisJnR/V70IEiTCUwgTQJMApPZhBAgdRC6BF0idYmuaeh66QlITdfRdAhqkoCU+HVJUJMEdZ2ADgFdJxC67dd1grpADwagAsdx22w2mjRpwgsvvICu66SnpyOEICoqqsKOUNx5nAAAIABJREFUoSgVZebMmSxfvpzly5dz1VVXMXz4cCZNmlQhj60Kt0F8Ph/Tp0/HZDJh/n/2zjxMiur63++t3qene1b2fTMoRECWQNxQIqIRlyRuuH0JKjHiL0YFJLgnGjdcokYkiiARxYhbNCFxjcEFRVAEkQAyyLDNMHvvtdzfH91dzigDA0zTPXjf5+mnq6uqqz59u/vUrXPPPcfh4Nlnn7Wnix8I0WiUQCAAYM9ajMViWPFYsuesgUNzYGlgOQSWpmFpAg2BJVMG27IwLYllSttoG5ZMGmgzuWyYSYOdMK2UsZboJuiWTBlxC1PXD/jzfJvx48czfvx45syZwx//+Efee++9Vj+HQrE/rFixghdffNF+/f7773PYYYfx/PPPs3DhQhYtWkR5eTldu3Y94HMpw51B0rMWH3vsMY4//nj69+8PwF133cW7777L1KlT6dmzJ7179261czocDrs6TXpg0ulw0bB+Lb5AAcLnw3BoCEey1y00AcKBACySRtewwLRMdFMmH5ZElxa6AQnTxJBJg50woWLzJvLad0TXHOgmyZ64BQkjmXQqU1x++eVUV1ezdOlSVqxYwVFHHZWxcymyixCCm266iTvvvJPrr78+23K46aabdtthGDRoEOPHj7df79y5k549e3L00UdTWVmJx+NptQLKynBnkIqKCgYPHsytt97Kr3/9a1avXk3Xrl2ZOXMmV155JYFAoNWjLtKj7kIIO5e2p7QduNzUr/0c0acf0uNBahrSIZBCkgg3IDx54HJhGgZ6wiAei1D75RoShkHMkMQtScwwiZkWcRMC/QZiut248vKIhSMYQqCbkriZdJls+3ozdZWViAxGARQXF1NYWMimTZsYNGiQijjIIVrzdy2EYMCAAbz00kutdswD4frrr99tp8Ttdje5a163bh0PP/wwo0aNYsqUKVx77bXKcLcF3njjDaZNm8bQoUNZtWoV/fv35//+7/8YOXJkxs6ZTuva0NCA3+/HMAw4cgQlo05k5z+fx4yGKezZBzMvD1MTOITE3LkV4fSA202ioY74rgoSZtKPHTctDFOSMCS6aWIYEt202LrqY+IGOEs7ENcN8OeD20tCCmp3VbN5/XpG//Iyijt1ythnBbj66qv5yU9+wpgxYygsLMzouRQt51DOUZOXl9ei/X71q18xefJkZs6cyZo1a1pVg4oqyRBSSjuDXiKRYObMmQQCATt7XqbIy8ujrq4OIQSxWAzDSBY7iMYTGJYkHgnTsHMbsVA99V9vor7sK8I1tYS2fk39pg2EK5JGO91z1k1JIjXoaFgSw5KYMj1gaVK3bSt1O3aw43//o2b7dio2l7H9q41YFvT+4ZH48vMz+nkhabxnzZqV8fMoFPuKEII77rij1Y+retwZQgjBaaedxg9/+EPuvvtuHn30UdasWcM999yT0fMmEgny8/OJRqO43W5M08Q0TXxdumA4XGDoiIYGpNuNrKrEIS2E0JIz3gFTJgcm9bSv2pIkUhEjugW6tFKRJSR94VJikhzEjMdiRENRLCHw5AeJxeNYlpXxXCU//elP7fEDxaGJpmlomoZhGG0yNLC1UT3uDNK+fXu2bdtGXV0d1113HcuWLTso503fpja+Xe194a/RSjsSMU0ikRjhujqiuklUt4jqFhHDIqKbRAyLqCGJGxA3LOKGRcIgFTWSjBbRLYlpfNMLT5gWFoJwfZhoNIphWAz66TiOu2DCQfm8Qgj69u17UM6lyA59+vTh+OOP56mnnsq2lJxAXboyiBACp9PJb37zm4N2TrfbTTQatXsn8E3xXq2wHcbXm5DSxAxF0EwLh5AIJKQHMwFLymTMtmXZPe94ymgnrORApW5Z6DJp0E0LDMAk6ULpf/RxONDI8/pUZkBFq5CusJTO9/59RxnuQ4x0Dch0WlfDMNB1Hcuy6HnxFXz824/RLAvDSqAhcGiSZELXJBYyOelGSgxJKn5bohvJiTUJ08IwIWGRmnCT8oNbJnHDwuH1oHlcjLt8MvX19Xi9XmW8Fa3C6NGjD+lBz31BGe5DjEAgwK5du/B6vYRCIYQQuFwuHA4HvX50NMvy8kk01KEJcGoCzRIIIdNZXTFlssdtkexxmxYYqZmSycHKpNFOWCZxE3QzuV/ClEinix+ffR7rVn5Kj4ED8fv9yh+paDV69OiRbQk5w167QkKIbkKIt4UQXwgh1gghfpNaf4sQYqsQ4tPU49RG75khhNgghFgnhDg5kx9A0ZRQKERBQQFSSrxeLy6XC9M0sSyLiK5z4oNP2vHYETPp247qFpGUnztqmkQNk6huEjOs5EM3SRhmctJNKkQwYaSnt5vELTBMi/4/PoZP3n6bKY/Nwe12EwqF1K2tQpEBWtIdMoBrpZQrhBAB4BMhxOupbfdLKe9tvLMQ4gjgPGAA0Bl4QwhxmJSydRMzK3aL2+0mFos1qfmYdlW43W487TvQ8egT+fq/b6Kl/IaCpJ9boiGRqZ530ndtWhaGlN9Mebe+CRFMWBZxM+nv9gQLiMYS/OjUU+nYowemaeJyuVShA4UiA+y1xy2l3C6lXJFabgDWAl328JYzgGellHEp5SZgAzCiNcQq9o7X66WhoQEhBIlEAsuycDgcyWRTeXk4C4vpPOLHxA2ZiipJ9qyjhkw+p6JMooZF3DSJmZKYSeqR7G3HzeQAZdJVYmEJJwNO/AnRRIIfn34mgWAQ0zTx+/3KcCsUGWCfRo2EED2BIUA6rm2KEGKVEGKuEKIota4LsKXR28rZs6FXtCL19fW0a9cOy7KShtrpRNd1dF2npqYGf14eA867hK4njCVqJV0hYd0knDCJpMIDIylXSThlwGO6ScwwiOsmcd1KulqM5ECl6XDxg2OOp3pXFUf95CS6DBxIbW0tLpeLXbt2tXoFHIVCsQ+GWwiRDywGrpZS1gOPAn2AwcB2YJ+mrgkhLhdCLBdCLNf16L68VbEHgsEg1dXVaJpGJBJB13VcLhcul4vCwkIikQgOl4vuJ52K4fLZcdtRUyZjuc3Ua0MSNSz7ETMkMVMSTfu4LQleL+379EU6HUTq6+jSvz/BggIKCwvRdZ3i4mKVP0ShyAAtGvIXQrhIGu2npZQvAEgpdzba/hfg1dTLrUC3Rm/vmlrXBCnlHGAOQCDQQcbj+yNf8W0ikQjBlKsiXeU9Hc+dSCTwer2YpsmIs84mWl3Fq7fcQFNvxjfx3KYlkwWBU1PcDZnMHKhbFlI4yA8WgdvD9k1lXH7PPQw49lii0agdv97Q0EAwGFTGW6FoZVoSVSKAJ4C1Usr7Gq1vnD3oLGB1avkV4DwhhEcI0QvoB3zUepIVe8Ln81FfX2/nSjEMw54u7Pf7icViSCmpr6/n+F9OZuwNt2A4XMnetGEl/d6GRUI4iDZaFzMtElIjZpjEDUkcQSQaY0fZ11x08630+9GPkpkIPR47flz5uBWKzNCSHvfRwEXA50KIT1PrfgecL4QYTDLFRRkwGUBKuUYI8RzwBcmIlCtVRMnBw+Fw4HQ6cTqd9mSF9HLjbU6nE7fHw6gL/o++Q0fy+qMPU78rWR9SAqMmXMB/n/4rUoJlSZy+PLr98Ies/eADLAkSQXGnjlzwu99R3K0bTpfLPm76nE6nUxluhSID7NVwSymXArv79/1jD++5Hbj9AHQp9hNN0ygtLW12e0FBAQB+vx9I5lNp3749A4477jv7jp146X7rcLlc+/1ehUKxZ9RcZIVCoWhj5Mh8ZInHU51tEc3idtcTi8Wors5djZFIhFAolNMadV2ntrY2x/NNmDn9W/R4anHoDjzVnmxLaRZ3yE0kEsnp32IsFqO+vj6nNe7pfyJy4U9UXFwsr7vuumzLaJZwOExlZSU9e/bMtpRm2b59Ox6Ph+Li4mxLaZZ169bRu3fvnHajfPbZZwwaNCjbMppF13WWLv2KmpofZFtKs3i91QwZEqdThqsfHQibNm2iffv2tsswF7n33nuprq7e/SBRuqBtNh/t27eXucz69evlnDlzsi1jj7z44ovy/fffz7aMPfL73/9eVldXZ1tGs1iWJadMmZJtGXukqqpKDh16u0ymBMvNR8eOS+VLL72U7abaI7Nnz5br16/Ptow9krKLu7WZysetUCgUbQxluBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrWhCKBQiHA5nW4ZCodgDOZKrRJFtLMti8eLFbNy4EafTSa9evfjZz36m0rIqFDmI6nErADBNk+nTpzNy5EgGDRrE1KlTsy1JoVA0gzLcCgAmT57M4sWL2bVrF7qu88wzzzBlypRsy1IoFLtBuUoUADzyyCOMGjWKSy65BI/Hw/Tp01mxYkW2Ze2Vbdu2kZ+fTzAYzLaU3bJt2zYCgQCBQCDbUhSHEKrHrQDA7XYzZswYqqurmTt3LkcffbRdhiyXeeyxx/joo9wtafroo4+yfPnybMtQHGIow60AkrUqZ82axcSJE/H5fEybNk0NTCraBLW1tdx1113ZlnFQUYb7IGIYBqFQKNsy9kjv3r156aWXuOyyy3K8Uo1CARMnTuT000+nT58+9OvX76C597JdyUkZ7oPEhx9+yKJFi7j11ltZsmQJkUgk25KapaSkhD59+vDxxx9nW4pC0SxfffUVPp+Pq6++mt69ezN16lQ+//xzTNPM2DnLyspYsmQJU6ZM4V//+hdfffVVxs61J9q04Q6FQixYsGCv+0kpuf3225k5cybvv//+QVD2Xa655hpqa2uZMGECM2bMYNu2bVnR0VLuueceZsyYkW0ZCsV3SCQS3HDDDVx66aXs2rWLL774go0bN9KtWze2bNmCZVkZO/cLL7zAggULmDVrFgsXLuS5557L2Ln2RO6PPjXDzJkz+eyzzzj99NMZPXo0Dz30EAMGDLC3X3zxxWzdutV+PW3aNPLy8ujevftB1/roo49y5ZVXMnLkSC699FK2b9/OZZddxhtvvGH7kYUQOedTFkIgpcw5XWnSt6q5qk9xYKTLdAGUl5dzySWXAOByuZgxYwYnnXQSv/vd74hGo4wePZoJEybwt7/9LWM1TdeuXUtlZSUPPPAAV1xxBf/73/947733+Ne//gXAuHHjdjv/IRP/7TZpuGtra/n666958MEH0XWd9957j5EjR9K3b180LXkTsXDhQrp27Wq/x+/329sONhMnTuTUU09l2LBh/PWvf2Xy5MnMnDmT4cOH2z/Md955h4KCgqzo2x3BYJBrr72WO+64g5kzZ2Zbzm75z3/+g6ZpHH/88dmW0izFxcVUV1djWVbWfn9tidraWnbt2gXAypUrueOOOwDo2rUrr7zyir1ffn4+Qghef/11Kisruffee1mzZg15eXkZ03bYYYdRUlLCSy+9xJw5c3j66aeprq7mmmuuAeAf//gHQ4cO/c773nrrLYqKilpVS5s03B988AGDBw8mPz+fqVOnsmLFCkaPHs0LL7yAx+PJtrzv4PV6Of7443nwwQfp1q0bxcXF9O7dO6fjpIUQeDwe4vF4tqU0i2EYADkdtvjb3/6WMWPG8JOf/CSnLsy5hmmaLFy4kM2bN/O///0PgEGDBrFy5co9vi8vL48ePXrw0EMPZVyjw+Fg4MCBLFy4EF3X+fjjjznnnHPsGP1zzz2Xc889N+M6oI0a7lNOOYXZs2ezYcMGrrnmGi655BJmzpyZk0Y7zc0330xNTQ2rV69uM77j/v378+677/LFF19wxBFHZFuO4hAnkUgwZswYbrjhhmxLaZZx48Yxbtw4Fi9ezPz587PmpmuThhvg4Ycfpry8nEceeYRnnnmGnj17ZlvSXikqKuLYY4/NtowW07lzZ9xuN2VlZRx++OE55UuOxWIkEgl0XScajeL1enNKn2LfcDgcTJo0KdsyWszPf/7zrJ6/zRrubt260bVrV0aMGIHD4ci2nEOW66+/nlNPPZVRo0a1up/uQDjyyCNxu93U19fz6KOPsnHjRgoLC7Mtqwm1tbV8+eWX1NXVsXz5cnr06EHfvn2zLUtxCNBmDTck/bDKaGcWTdMyGl61P7z66qtMmDCBY445hvfee4+OHTuyaNEiJk+enG1pTfjoo4+47bbbqKio4KmnnsIwDJ5++ulsy1IcAqhhbsVeueWWW3IqsqRjx45s27aNI488knPPPZetW7c2iSDKBUKhEC+99BJPPPEE/fr1484772To0KF26JhCcSDs1XALIbxCiI+EEJ8JIdYIIW5Nre8lhFgmhNgghFgkhHCn1ntSrzektvfM7EdQZJpRo0bx5ZdfZluGzbBhw1i5ciVTp07l73//O/PmzeOYY47Jtqwm5OXlMXbsWBYtWsTChQvZtm0bq1evblNjHIrcpSWukjhwopQyJIRwAUuFEP8ErgHul1I+K4SYDUwCHk0910gp+wohzgPuAg5OjIwiIwghePPNN7MtowkfffQRq1at4osvvmDz5s05NzCpaRo9evRg7ty5tG/fnjfeeINRo0ZlNM5Y8f1hr4ZbJmeIpDMjuVIPCZwITEitnw/cQtJwn5FaBngeeFgIIaTKWNSmyTXDKIRg0KBBDBo0KNtSmmXIkCG88sorLFq0iKeffjqnw1UVbYsW+biFEA4hxKdABfA6sBGolVIaqV3KgS6p5S7AFoDU9jqgpDVFKxRtiXPPPVcZbUWr0iLDLaU0pZSDga7ACKD/gZ5YCHG5EGK5EGJ5NBo90MMpFArF94Z9iiqRUtYCbwOjgEIhRNrV0hVIZ3TaCnQDSG0vAKp2c6w5UsphUsphPp9vP+UrFArF94+WRJW0E0IUppZ9wEnAWpIG/Bep3S4BXk4tv5J6TWr7W8q/rVAoFK1HS6JKOgHzhRAOkob+OSnlq0KIL4BnhRB/AFYCT6T2fwJYIITYAFQD52VAt0KhUHxvaUlUySpgyG7Wf0XS3/3t9THg7FZRp1AoFIrvoGZOKhQKRRtDGW6FQqFoYyjDrVAoFG2MnMgOaFkW7733XrZlNMuOHTvYvn17TmssKyujpqYm5zL5Naa6upqPP/4Yv9+fbSnNEolEcvp7DoVCeL3VdOyYuxqLitZRVtaQ0+24fft2Vq1axc6dO7MtpVn29F/OCcMtpaSq6juh3jlDXV0d0Wg0pzWGw2GefFKjoSF3NXbvnuBHP6ohFotlW0qz1NQYXHRR7rah0xmh07iP8U17IdtSmsW9KUg4fE5O/19isRg31N5AzJm7v8W4bL5sYE4YbofDwemnn55tGc2yYcMGTNPMaY2WZVFR0YEdO0ZlW0qzlJSsYuzYsTlVkKExUkoWLHidTZty93v2eKoJdryXTadvyraUZun4XkcG7BqQ0/+X7du3s+24bdT1rcu2lGbJd+Q3u035uBUKhaKNoQy3QqFQtDGU4VYoFIo2hjLcCoVC0cZQhluhUCjaGMpwKxQKRRtDGW6FQqFoYyjDrVAoFG0MZbgVCoWijXHIGO5Zs2aRSCSyLUOhUCgyTps33O+88w5HHXUUPXv2ZPTo0dxyyy3ZlqRQKBQZpU0bbl3X2bhxI//v//0/jjjiCObNm0dNTQ27du3KtjSFQqHIGG3acMdiMTZu3MjAgQP597//zWuvvUa7du346quvsi1tryQSCZ5//vlsy1AoFG2QNm24A4EAI0eOZOLEiZx00knMnDmTsrIyRoz4TinMnCMej/PII49kW4ZCkXPce++9VFdXZ1tGTtOmDTfA2LFjWbJkCX/4wx946aWXsi1HoVDsJ6tWraJPnz50796dn/3sZ1x00UXZlpSztHnD7fV66dKlC08//TSHH344hYWFlJeXZ1uWQqHYByzL4tNPP2XatGn07duX5557jvz8fDZu3JhtaTlJmzfcaYQQdOvWjf79+/Pmm29mW44iy5SXl/Pqq69mW4aihViWxdatW+nSpQtlZWU88MADlJaWUlFRkW1pOckhY7jT/PSnP2XFihWq1/09ZuLEiUybNo01a9Zw/PHHqyijNoDT6WTs2LFcccUVFBcX89RTT/Hoo48yY8YMPv3005yupZoNcqJ0WWvSqVMnvF4vmzZtokuXLgghsi1pt2zZsoUuXbpkW0ab4euvv25xrcrly5czb948OnXqRFlZGZs2baKkpCRnfwuKJIMHD2bt2rXceOONLF26lNLSUgCmTJlCRUUFDzzwAB06dKCgoCDLSrPPIWe4Ae666y6GDBnCJ598krN/1gsuuIBPPvkk2zLaDHPnzmXTppbVWdy+fTsPPvggJ598Mueccw7PPvssw4YNy7BCxYHicDjIz8/n/vvvb7J+3rx57Nixg+nTp9O/f3+6devGhAkT0LRDzmHQYg5Jww0wffp07rnnHqZPn55tKYpWYF9mxA4ZMoTevXvTvn17fvnLX7J06dKcvYArWkbHjh2ZP38+S5cuZe3atVx22WWMGzeOs88+O9vSssIhe8k67bTTeOONN1T+ku8hL7zwAiNGjOCdd97hn//8J+3bt8+2JEUrccwxxzBp0iSmTp1KWVkZ7777brYlZYVDtsft9/u54YYbuO222/jDH/6QbTk2O3bsYOPGjYTDYd5//326detGjx49si3rkKJXr1707NmTcePGfa9vpw9VNE2jf//+HHbYYd/bO6lD9ledDg90Op05NQX+lVde4Y9//CN1dXU88sgj/OUvf8m2pEMSIYQy2oc4mqYpw90cQgivEOIjIcRnQog1QohbU+vnCSE2CSE+TT0Gp9YLIcSfhBAbhBCrhBBHZfpDNEfv3r1xuVysW7cuWxKasHnzZjZs2MDs2bPp3Lkzf/rTn3C73axYsSLb0hQKRRuiJV2SOHCilHIQMBgYJ4QYmdo2VUo5OPX4NLXuFKBf6nE58Ghri94Xrr76ahYvXkxNTU02ZQDQpUsXevTowZIlS1iyZAnLli1D13UGDBiQbWkKhaINsVcft5RSAqHUS1fqIffwljOAp1Lv+1AIUSiE6CSl3H7AavcDv9/P448/no1Tfwen00nfvn3585//jKZpvPLKK5x99tl4PJ5sS1MoFG2IFjkBhRAOIcSnQAXwupRyWWrT7Sl3yP1CiLT16QJsafT28tQ6BXDyySfz8ssv43Q6efHFF7nggguyLUmhULQxWmS4pZSmlHIw0BUYIYQYCMwA+gPDgWJgnwKmhRCXCyGWCyGWR6PRfZTd9rn44ou/twMrCoXiwNinYXcpZS3wNjBOSrldJokDTwLpJNhbgW6N3tY1te7bx5ojpRwmpRzm8/n2T71CoVB8D2lJVEk7IURhatkHnAR8KYTolFongDOB1am3vAJcnIouGQnUZcu/rVAoFIciLZmA0wmYL4RwkDT0z0kpXxVCvCWEaAcI4FPgV6n9/wGcCmwAIsDE1petUCgU319aElWyChiym/UnNrO/BK48cGkKhUKh2B1qaplCoVC0MZThVigUijaGMtwKhULRxlCGW6FQKNoYynArFApFGyMn8nEbhsFjjz2WbRnNUldXR3l5eU5r/Oqrr+jePY/S0lXZltIswWAZCxYsyOncLIZRzcCBufs9OxwxCjYVMPCxgdmW0ix52/P4IPYBO3bsyLaUZlm9ejV96vqQKMjdQitfG183uy0nDLfD4WDMmDHZltEs5eXlaJqW0xqdTicjRxbzwx/+MNtSmuWJJ8r4/e+PRdcD2ZbSLCedtIIXX8zd77m+vp7FiyuYOGb30yMkEomFlBKBsNcBaMJhr8skq1atora2luOOOy7j59pf6urqmDViFl27ds22lGYZpY1qdltOGG4hBH379s22jD2yfv36nNa4evVqOnTokNMa/X4/DQ09iceLsi2lGSSa5m7VNty+fTv5+fkEAq1zsaqursbv99OrVy+qqqqSK3069eFaCgoK+azibd6LvEpDrAbLEPi1YsLxMJF4mEm9b8Xr8tEpvytF/hLq6upwuVyEQiFKS0vZtWsXwWCQSCRCaWkp4XAYh8OBruuYponD4SAcDtvbCgoKqKystKuxpwtX7Ny5E4fDkdO/xYKCArp27Uq3bt0IhUL4fD7C4TAulwun00k0GiUQCNjb4vE4QghcLheRSIRgMEhDQwM+nw9d1/F4PCSnsIDb7SYUCpGfn084HCYvLw/DMLAsC4/HQ0NDA4FAgEgkgtfrxbIsDMPA6XTi9XrtHEZ7KgSSE4ZboThU+fOf/8yJJ57ICSec0KrHjRohPo++Q8ioo7x+DVWxHXirAwjLSXutF118P+SLXR/jdAQYGBiMlu/gs+oPeHXDIk7ucTZjepxGB28XpJR4vV7i8bhtRNLGybIs2xiljUh6XyEEkUgEt9ttP7vd7lb9jAeDUChEQUEBoVCIoqIiDMNA13WKi4upqamhqKjINsJSSuLxOKWlpdTU1FBcXEwkEiEvL49oNIoQAsuy7GNWVVVRUFBAXV0dTqcTTdOorq6msLCQqqoqgsEg9fX1CCHweDxEo1E8Hk+Lks8pw61QtEE0ofGnjx5BN+N0DXald1FvPA4/895aQDDg5rAenajaHKYqvoZBA2spdrdHNy06+fqwZscqMJy083Tg5MNOB7CNTnpZ0zQsy0LTNAzDaHJuIUST0nBtuYSYz+cjFArhdDqpr6/H4XCgaRp1dXVcddVVDBs2jMmTJxOJROzPXFtbi9frpb6+HqfTSSwWw+lMmlJN0+yLW0FBAYlEAr/fj2VZzJ8/nzfffJPHHnuMgoICdF23t0kpW2y0QRluhaJN4nHk8Yfhf+bMRWdQ4TbZ4KwmT+RRLHqQF/MQKctn19YoX+6owJP3Od6qYmqKd+F3FuPU3NTVx4glEozsehxO6cLv9xMOhxFCJG/9XZJELIzL6QDhxZISh8NBPB7H7/djGAYul4twOEwgEGizhjscDlNUVER9fT35+fmYpomu6wSDQf7xj3/w8ssvY5omF198MYWFhcTjcYLBoN3jDoVCuN2O+SXYAAAgAElEQVRuYrEYgN3jLiwspLa2loKCArZu3cqbb77J9OnTicfjPPnkk9TW1hIMBgmFkjVq0sbe5/O1qC1VOKBC0QaJxWL0bteT5855jnq9lrc3vMO/1/6bL3as4eOvVvD6Z+9wyUmXcsbgczg2eD7VO6Czv4ianZXUh+r4onwdX5Sv54+v34Hm1QiHwwSDQUzTxCVj/PXGH7D4D0fw7K2HoYercLvdCCEoLCwkHA7bvdK8vDxqampsw5Vp1qxZYxu71sDlcmEYBg6HA9M0k4O6qTsKgGg0yvTp0+nRowfLli1DCGH7ow3DQNM0pJRomobD4cDhcNj+brfbzapVqxg+fDhXXHEF4XAYSAZjpN1KLpcLl8tl9+ZVj1uhOITJy8ujsrKSLv7OPPqz2Vz13FVU1FTQt6QfDunASpj87b1F+B1+orEIbqeLnR856d9jGNsqNlJfUkGp3o1n/rWIsT3HceqPTqWyshKvGz7514PUhXTadx9Gv8E/QbjyiMfjOBwOqqur7cHJ4uJiKisrKSkpyXiPu6qqigceeACn04lpmnTr1o3LLrvsgI/rdDrRdR1N09B13f4cc+fObXIxSiQSTJgwgYsuuoizzjqLnj17ctdddyGlTF7sXC4gaYgvu+wydu7cycKFC3n22Wepq6uzj2OaJnPmzOGyyy7DsiycTqc9juBwOFqu+4A/uUKhOOhEIhHy8/MBGOYdxjMXLeSMv5zJlxXrCDgD+ISPuIhTGd/FjsrtVO+q5qfDT6PU3RkLB0fmD+Pfn/2TYo8Tj+aioaGBuooN/P2VB6jYvJz2XY7i2HNmUdi+J5oQOBwOLMuipKSEcDiM0+mkqqqKQCBATU0NeXl55OXlZeSzSimpqqri448/Zu7cuaxfv54bbriBSy+99IAvGNFolOLiYurr6wkGgxiGQSKRYOHChSQSTWO8t23bxl133cVrr72G3+9n+fLlmKbZZB9N03jttdeQUrJy5crdfpY5c+Zw3nnnUVhYSCgUQgiB1+slkUjYPf69oVwlCkUbJN07k1KiCY2+xf1481dv0rfjYdTH6lm3438s37yCVVtWEcgPMnzAcKJ6lK93bkY4Neq3Jhjd5xTy85zc+NcpbNq2ga83rObLzz/h2NNn8PMpCyjp2BtBcjAybVDSYYFCCJxOJ5Zl2S6CxrRmD1xKyfTp05kzZw533HEHHTp04De/+Q0PPvjgAR87feHxeDxUV1cTiUQA0HXd3ue+++5rModj9erVLFu27DtGG5I+7hUrVjQx2h06dGD+/Pn2a6fTSbt27dB1nYKCAvx+P5C8i1KuEoXiEEbTNGKxGCLVG9Z1nY4FHVky+VVe+/w1Xv38H3yw5n12VO0kkghTZTmIOxJYCQsMWLvuC8YOP5njSn9B+1GCq+47nx9UOhg8bAyHDT2FvPwC20inox6EECQSCVwuF6Zp4na77UHKbxuc9O1/a33Wu+66iwsuuACHw8Hzzz/PkiVLWLp06QEfOx0GWF9fT3Fxsd3jTrs+IGnEX3zxRYqKinZrrPfGmDFjmlwIDMNg165dFBYWUldXZ/e4VTigQnGIE4vFbNdENBrF7/dTW1tLIBDgxL5j+PnwX7BkxRJ2NOwgEUsQ8OYTjUSJRxMgBcYJBt07dOPEESdSXFRMcEcxW97/jJN+diWl7TtTVVWF3+9H13WcTqdtpNPxyV6vl9raWnviTiAQyGgcd4cOHbjwwgtZsGABpmly3XXXtcpx0+GALlfSXZQeIGxsoH0+H/tb0PyXv/wld999N//+97/tdQ6Hg2Aw2CQcELAHgFvCIWe4DcOweyEKxaFKXl4e9fX1QPIPn56Nl/bZhsNhTh5yMnW1teS53URrq/h6/sPENqzF26kL/X/7exIuFw5g147t7Fi5DY+/Pd2696W+upqiQICErrPh7y/wyd8WIFxe+p9+Dn1Gn0hRSQmmaVJaWkooFKKkpMSOY84UBQUFdOzYkXPOOYfJkye3Wr6beDxOfn4+kUgEn89nz2L0er32PolEAo/HY0ee7AtnnHEGQJOBTikl4XAYv99vr3e73U165XvjkDHcUkqWL1/OBx98gKZpjBw5kqFDh7bZ+FKFYk+Ew2F7Nl80GiU/P9+OG04/71y5DFG+ibLXnsPl83PkrfeD5kI4NMxdO1h74/WYQsOKWVhrP6f9kUdR9vw8trz7NpGGevK79eIHZ57P+NtmYRk6X7z1On+deD7ugiJO/H/XkN+xMz369aOurg6fz2cPlmaK2tpa8vLyWjVJWWP/vZTSdvG89NJLdOzYkYaGBjZv3syKFSu+MxGpJWzYsIGhQ4eyYcMG+3xnnXWW3bFsHHq4L7bqkDHclmVx1llnMWvWLHt58+bNynArDkk8Hk8TH3cikcDr9aLrOl6vl13v/ovNs26k23mXMmDaHQgB4XVrSf8dpBAMvPE+pIDYju0UfbiURCKBQ2gMmzINnC7i0QiJaIRIVQWWlPQYOpzuQ0dQV13N4ptmEuzWnUvufQBfMJjxHnemcLlcxONxNE2zp/ILIZr0kB966CEeeuih/Tr+tddey7Zt25g1axaQ9NdfffXVeDweLMvC7XbbF4t9acNDJqrkxhtv5PHHH6ekpISOHTvy2GOPcdNNN2VbVpslEolw8803Z1uGohnS0RyNJ4BYloUQgsp3lrD+gVvoOWEywd6HEd9aRrx8MyIWRsTCEAtDNEx045dE1q/FaKil/YhRdD7meAq69yJauYPw1i3EqnZhhMMY0Qh6JEK8IUSsvg6Hw8HxF11M/ZYtPP7rK+wwtrZIOqwy7W9OG9JZs2btt1/726SNNiS/txtvvJG6umQ7hkIhotGonQelpe3YNi+Tu+Hqq6/m/PPPZ/z48TidThYvXsxzzz2XbVltFl3XW2XUXpEZ0lEdjWfyRSIRRNVOdr70V7qfeQGe4lKsuio0NIRIzQgEBGAhwUouY0kSkRCmlBgWmJbEkhJLJpeN9LMlMbHQTXB7fBwz4UJefvB+Hv7lRK5b+EzGP28ikcDn87XqcdPT171eLzU1NUgpeeSRR7j33nubuEaKiopwOBxNwiJramp2e8yCggJcLpd9IbUsy95XSsnjjz+Ow+Hg5ptvtiNVTNPcp3DAQ6bHXVpaSmFhIU8++SRXXXUVPp+PkpKSbMtSKDJC2qedzjxXV1dHYUEBOz5fSbC0I/7CEqxQLcQiiHgILR7BEQ+jxSPJR7r3HQ1DLATRMFYkjIyEMCMhjEgII9xAIhxCDzWQCDWQCDcQb0g+x0L1WIbOSZMupaa8nIaKiox+3o0bN7J06VIuuOCCVj1uQ0MDhYWFJBIJAoEAjz32GLfddluTyTdHHHEEK1asoLy8nI0bN1JRUcHy5csZPnz4d453+OGH89Zbb1FeXs7nn39OeXk5H330EYMGDbL3MU2TP//5z9x9991s27bNngofiURa3OM+ZAy3pmksXryYp556iqOOOooHH3xwj/lsc5WXX36ZrVu3ZluGIsdJJyTyeDyYppkMa6urpfY/S9B8XvSGGohFkNEIxJKGWotHcMbDOOIRRCwC8Yi9jxkJI6MRrGgYKxrBikQwIhGMSAg9EiaRfg6HSYRDJMIh4uEQeiyBy5/PO89mtsedprXHrHw+H5FIBKfTyc6dO7/jXh0wYACzZ8+muLjY9oXX19fTrl07Zs2aRb9+/ex9PR4P1113Hf369SMejxMIBNB1nQ4dOvDEE08wYsSIJseeNWsW4XDYHmz9XocDDho0iIEDc7esU3Ps3LmTn//855x55pk888wzeL1e5s2bl21Zihwl7RqB5B8+kUjg0QSxr76gZMxpWNEwpqbh0ESye6aBQ3OgaWBJEJYESyItibQspCmxLDAtC8sCw5LolkSXFrqZdKEYlpVcZ0kMM7UsoWPPHuit5A8+2Oi6Tl5eHrFYjF/96ld2dEma7du3M23aNEzTpH///jz88MN4vV4ikQhDhgxh7NixrF+/HoCxY8dywgkn2C6dSCTCLbfcwsqVK7Esi82bNzc5txCCK6+8khdeeAG3271PoYaHnOFuK1iWxfr16+0fyY4dO/D5fIwbN45LLrmESZMmsXPnTjp06JBlpYpcpHH4mh3SpgmkZWLFIhgaaJoDSxNITYAmkA4BacNkgbQklmVhmclnwwLDtDAk6IaFIZN+7YRpJQ25aWFYFglLoJsS3bLQTYtYuPWy9R1s0gUMnE4nTzzxBP/5z3+YMGGCvb26upoPP/yQPn36cOedd+JwOIhEIng8HuLxeJNIkEAgQLt27ewoH7/fz0033cQpp5zCihUrvnPuP/3pT5x//vlNCli0lEPScB933HG8/fbb9O3bN+vhgJs3b+aNN974znrTNFm2bJn9OhwOs2HDBu6//35uuOEGTj75ZN54441W9+kpDg0SiYQ9U9E0TbxeL7G6WsxwhNjObfiCBZiaA80hEBoIhwChYaFhITGkxLSSBtkw071qiSEtEibo6R61mRyMjEajxHUdPD4SlkwZbtAtk3gkQiZjSqSUvP322xmpYdk4qZPD4eDdd9/9zj6HH344ixYtIj8/H6fTyeuvv05FRQWFhYUMGjSISy65BMMw+NGPfsSyZcsoKyvD5/Nx5pln4vV6efnllznttNP47LPPmhz3448/5uyzz7Y7b/sSmXNIGu5JkyYxZMiQVskedqA0rhTSGI/Hw+OPP27r27JlC8cddxznn38+Tz75JK+99hqffPLJwZZr4/P5GD9+PC+++CJnnXVW1nS0dc466ywWLFjAyJEjWzUiwuv1UlFRgRACv9+frIMYyMeSUP/lGhz9+iN8XtC0VE87FUmiGwiPF1NaScNrGIS3bSEWDhMzLRKmJG5I4pZJ3ABXSQcIBIlFosQTCYRhkkjtp1uShGGyefVq+g4fsXfR+4mUktmzZ+82215rkK70EwqFmD17Nqeffjrr1q1j3bp19vlnzZrFPffcgxCCqqoqrrnmGn784x/z/PPPc9ZZZ9npWSdPnszzzz/PfffdByRnct94441NjHKXLl0YM2YMf/3rX5k+fTp5eXktzgqY5pA03LlE9+7dmThx9xW5G9OxY0eWLFnCvHnzGD16NJMmTToI6prH7XZz5JFH8s477yjDfQAcddRRTJ06tdVD2dLFetOTRQKBAA2hBo6Yfjtrbr0a8/MwpT8YiPS4MTWBKUDEI1i1NTg6dMYyTBo2rME0JLF4nLiuEzct4gZEDZO4YREzLfQd29BxIP0FOAoKkZEYhsOJbkLCtNjw+So0dx5HHHNsq322g0m6sK/X68Xr9fLRRx9RWlrKhRdeaO/z5Zdfsm7dOt59913OPfdcJk2aRHFxsR3uZ5qmXTzBNE3y8/MZP348c+fO5f7776esrMzORwJQWFjI/fffz1VXXUWvXr3sqkP7MgFHGe4cweVy8YMf/IDbb7+9yTRYhaI5TNO07+aSvUYHIlCEblho4TDVX3xKQd/+aKaBwzIRehy9citsL0/GalugWxYJK9mDThjJXrRJKnZbQiKeIKabxOoaiG/ZQsy0MFwe/B07s61sMw0NEXqOOIyBGXBjHAzShX3j8TjFxcUUFRWxZcsWYrGYPakJkr3uTZs2ceedd7JmzRpeeeUVnnzySaSU+Hw+O3xw4MCBXHfddVx//fUsWrToO+4PTdOIRqNs376dww8/3J7k43K5iMViLZ7O32LDLYRwAMuBrVLK04QQvYBngRLgE+AiKWVCCOEBngKGAlXAuVLKspaep7W44IILeOaZZ9qcj7gthjAqDj7pqdpp451OrxoCLK+XRDwGukG4tgbC9YhQA5om0BBIJKa0sGTScBsWKZ/1N75rI+3/tpL+cMuSmFJiWmDqOqGaWmKRKA6PFylbP0zvYJGfn29XY6+trcXtdrNx40Z+/OMfc/LJJ1NfX28PYM6ePRspJX//+98ZNWoU06dPt6vd+/1+pJRce+21LFiwoInRnjJlit0jTycH27BhA507d7bLxe3rHdm+9Lh/A6wFgqnXdwH3SymfFULMBiYBj6aea6SUfYUQ56X2O3cfztMqTJ48mfHjx7c5w50rTJo0iTVr1lBVVcUnn3xiD84ocoN4PG5nsItEIuTl5SXTrB7+Q4qOGcvOf72EhYGsqsIpLDTDQmgCkTLclmxkiKVM+rZN2cSAG40GLw2ZHLA0pcTQJfGaOiwJDq+X8dOm2jlSMsGMGTO4++67M3LstMspkUhQUFCAlJJjjz2WE088kVgsZlem0TSNfv36cc011wDwwAMP8Nvf/tYOJ0wkEvYsyfvuu8822jfffDNXXHEFXq/XnuXq9XqJxWJ2VkfArhbf0tS4LereCSG6Aj8FHk+9FsCJwPOpXeYDZ6aWz0i9JrV9jMjC5VgIoWZO7ic1NTVs3LiRadOmccYZZ+D1etmxY0e2ZSka4ff7CYVCTXJJFxQUEBcOgj36YlgQ1y2ikSjRaIKIaRE1LCJG8jlqWMSMpLGO6jI5MGlZJFLhf7qUxC2JYUoMKUikety6ZaH585OuBLcP3TAYddLJGStbBrBs2TJGjRqVkWPn5eU1acO0y6O+vh6fz0d9fb1d3f7www+332cYhl1LMhaL4XK5mhQBTtOvXz+KiopwuVxomkYwGCQajVJQUGDnR0n3tPcln3lLe9wPANOAQOp1CVArpUxP5i8HuqSWuwBbAKSUhhCiLrX/rharagXy8/NZvHjxwTzlIcP8+fO5/PLL6du3L4lEgjPPPJMHH3xwvzOkKVqfSCRCIBBoslxXV0cgEEDr2Q+tXWdiO8rRZQIHAodGKjNgsq8mZdNed3pyjR0tYproZtJ4J6x0PLfEMCFWU4sl4MgxJ+AtLqGyspLCwkJbT1sineclHUeddlWmixK7XC6klDgcjiaDh0IIO+46ncOk8SNNuhp8ep2u63acd9rFlfajNx7A3Bt77XELIU4DKqSUrRqbJoS4XAixXAixvLWycClah6uvvprbbruN//73vxQVFXHhhRdy2223ZVuWohFpv2s0GrUHvNK39T2OHo23S3eipkUsFR2S7GFbxAyDmGEQNUyihvnNdttIpwYqTZmM504b81Sct24lXSilPXvx1eo1nPbrKQSDwYxWv8kk6VDAtHFuHNOdzsCYzr7Yq1evJoUR0vMz0i6StP+7qqoKSJYsGzhwoL0tHXWiaRqmaTZ5H7R+HPfRwOlCiFMBL0kf94NAoRDCmep1dwXSCTa2At2AciGEEyggOUjZBCnlHGAOQIcOHdpmTshDmEWLFrF69Wo+/PBDnnvuuTbZmzqUSf/x03/+dARE2uAMm3obf79wPNFoCIcQyYFJmex1S8ACrHQWQCSGkYwkSRpnC8OEhJU05rplpaJPkgbcEwjSvu8PaNe3L8WdOtnlvjL1OTM5YJ8uEhwMBqmrq8PtduNyuexKQtXV1QQCASKRCIWFhRx77LG8/PLLhMNhpkyZQrdu3WzDDlBeXm5nAhw6dCidOnWy86Snc8rU1NTYleXTpcsSiUTrhgNKKWcAMwCEEKOB66SUFwgh/gb8gmRkySXAy6m3vJJ6/UFq+1uyrSbr/R6Tzvmyr1NxFd8lEz9/0zTtP3r6lj4SieB2u4lGoxT27kNe915UrPkUTWg47JSuFhINKVI9wNTgpGnJVArXdD4SYfe0dcsiZiZdJgnLJBAsRHO76TVoEIHCQurr69E0LSO97ltuuYUbbrjBroTe2qSzA8ZiMQoLC7EsC9M0KS4utsuyRaNRAoEAUko7PwxAZWUllZWVzR47fReUzr2taRo1NTX4/X6qq6ttH3ra7ZIuFtwSDuRSNh24RgixgaQP+4nU+ieAktT6a4DrD+AciizicDiU0W4FMtEb9fv9NDQ0EAqFcDqddjxyJBKhpKSESCTCKY88SVy3iBsmUd1MuUdk8jlhEdWT7pN42o1iSqImxAxBzLBImBZxM7leNy0ShklRl+70O/pYvHl+xp53Hg0NDZSWlmZscDLtg85Ujz4QCFBTU4Pb7aampsaOq04XQN61axcOh4P6+noikQjDhw+nW7duez1ux44dOeGEE+wLgsfjQdM0ux5oaWmpHcmSvijtSxvuk+GWUr4jpTwttfyVlHKElLKvlPJsKWU8tT6Wet03tf2rfTmHQqHYO9FolLy8PHw+n52EPz0DsK6uDq/Xi3S6GXTRpUlDbSYNd0T/xredjC4xk/5vUzYy4slp7XHDIm77uyXBjl3oPWwE28rK+MnEidQ1hPD5fNTW1jYp9dWWiEQidsX1YDBohzQWFhba7hHTNPH7/Xi9Xo4++mjmz59PYWFhs8d0u908/vjjjB49Go/HQ0NDA7quI6W0o1VqamqScfepCjjAPrWhmu2hULRBPB4Puq7bUQrRaNSewZefn58sDFBUTOmo49DadSJqSCKGRcRMhgR+ExYov1k2LWK6mexlG8kQwbhpkrAk7mAB7fv2o6piJ5GGEL0HDyYQCBCPx/H7/Rm7M5s6dep38li3Jl6vl3A4jNPpJBwO2+GA6YtgQ0MDDoeDWCxm16Q8/PDDWblyJfPmzSMYDBIIBAgGgwSDQe6//37WrVvHqFGjCAQCJBIJ8vLy7LuGdGX3QCCAYRhNih9nIhxQoVDkEI2nYqcjIhrnzkgPWvYaMYphF1/KW/ffgx4J2++XqYk4UiYHKU3S/m6S6VztCTgW3uJS8jt0IhKN4vF4uev1f9saGg+KZoLi4uKMHDdN4/JiaRqXJ2u8LZ0+V9M02rdvzymnnMLXX3+NYRj2zEjAHm9I59e2LMuOHmn8HUFyfKJx1ElLUYZboWiDmKZph6qlDadhGGiahq7r9rPb7ebYSb/ClJJX/3ArsomBSkaYmJJkTHd6Wrv8Ji+3IQWaKamrqaFnp05ces89aKlMePF43I5JFkK0yUrvjY1uenYjJHvi6XS50LQ3nN7WeOJM45A+XddxuVx2pIiu6/Z7E4mEvS39nTW+ULQU5SpRKNog6ZjtWCxmJ/dPr0tXLU/f6muaxogJF/OLe/9E1yHDk/7s1KPLsBF4O3QkZlqph6TfcaOJWySnwFsQi0Q56qSfMPGPfySvqAiPx4NlWeTn5xOPx8nPz2+zcdxpw5qeDJM2no2NbnqqeroHns7kl3arpEMW0ymcXS6XXczZsiycTqe93eVyYRhGk23pC96+3LW0vUukQtFGiEajVFZWEovFKC8vR9d1SktLW+34aTeCEAKfz4cQwl5XVFSEEILOnTvb20+8+P849uxzMRv1AB0uF5ZlYpnf9MSdbjd6o2K5AG6vF7fXa/cOg8GgnVairSaYguQF0OPxNGlD+MZdkt7WmHQ19t1tS7Mnv/X++LS/jTLcCkWG+O9//8u1115LRUUF1157LSUlJTz99NOtdvzGE1PSBmRvz44WJgrzNhM33dxx2yqNUyg3/ix7+ny58NmVq0ShyACRSIQ333yTuXPnMnDgQP7yl78wYMAAli5dmm1pikMAkQuTGouKiuRFF12UbRnNEo/H7VlUuUpdXR1OpzNjM8xag507d7JzZylSZiYCoTUoLNxKjx5d9r7jXjBNk82bN9O7d282btxIz549qa+vx7KsA/odmaZJVVUV7du3P2CNmSIcDmOaJsFgcO87Z4mqqiry8/NbPFMxGyxYsICamprddutzwnALISqBMAc5g+A+UIrStj8obfuH0rZ/HGraekgp2+1uQ04YbgAhxHIp5bBs69gdStv+obTtH0rb/vF90qZ83AqFQtHGUIZboVAo2hi5ZLjnZFvAHlDa9g+lbf9Q2vaP7422nPFxKxQKhaJl5FKPW6FQKBQtIOuGWwgxTgixTgixQQiR9aILQogyIcTnQohPhRDLU+uKhRCvCyHWp56LDpKWuUKICiHE6kbrdqtFJPlTqh1XCSGOypK+W4QQW1Pt92mq5F1624yUvnVCiJMzqKubEOJtIcQXQog1QojfpNZnve32oC3r7ZY6l1cI8ZEQ4rOUvltT63sJIZaldCwSQrhT6z2p1xtS23tmQds8IcSmRm03OLU+G/8JhxBipRDi1dTrzLTbt6sTH8wH4AA2Ar0BN/AZcESWNZUBpd9adzdwfWr5euCug6TlOOAoYPXetACnAv8EBDASWJYlfbeQLG/37X2PSH2/HqBX6nt3ZEhXJ+Co1HIA+F/q/Flvuz1oy3q7pc4ngPzUsgtYlmqT54DzUutnA1ekln8NzE4tnwcsyoK2ecAvdrN/Nv4T1wALgVdTrzPSbtnucY8ANshkNZ0EyfqVZ2RZ0+44A5ifWp4PnHkwTiqlfBeobqGWM4CnZJIPSRZz7pQFfc1xBvCslDIupdwEbCD5/WdC13Yp5YrUcgOwFuhCDrTdHrQ1x0Frt5QmKaUMpV66Ug8JnAg8n1r/7bZLt+nzwBghMpPEYw/amuOg/ieEEF2BnwKPp14LMtRu2TbcXYAtjV6Xs+cf8cFAAv8WQnwihLg8ta6DlHJ7ankH0CE70vaoJZfackrq1nRuI7dSVvSlbkGHkOyd5VTbfUsb5Ei7pW73PwUqgNdJ9vJrpZTGbjTY+lLb60jWoD0o2qSU6ba7PdV29wsh0vPYD3bbPQBMA9KpFkvIULtl23DnIsdIKY8CTgGuFEIc13ijTN7b5EQoTi5pacSjQB9gMLAdmJUtIUKIfGAxcLWUsr7xtmy33W605Uy7SSlNKeVgoCvJ3n3/bGn5Nt/WJoQYCMwgqXE4UEyykPlBRQhxGlAhpfzkYJwv24Z7K9C4ZHLX1LqsIaXcmnquAF4k+cPdmb7FSj1XZE9hs1pyoi2llDtTfy4L+Avf3NYfVH1CCBdJw/i0lPKF1OqcaLvdacuVdmuMlLIWeBsYRdLNkE4D3ViDrS+1vQCoOojaxqXcT1ImC5Y/SXba7mjgdCFEGUmX74nAg2So3bJtuD8G+qVGXt0knfSvZEuMEMIvhAikl4GxwOqUpktSu10CvJwdhR0Bo5UAAAF0SURBVLAHLa8AF6dG0kcCdY3cAgeNb/kQzyLZfml956VG03sB/YCPMqRBAE8Aa6WU9zXalPW2a05bLrRbSkc7IURhatkHnETSD/828IvUbt9uu3Sb/gJ4K3U3c7C0fdnoYixI+pAbt91B+V6llDOklF2llD1J2rG3pJQXkKl2+//t2z1uwkAQhuG3g5qOlgNQpUxBC9fIMZByi5wgkVJwBeAANBAgRX5ukibFDIIGJBf2stL7SC7ASPtphEfyjt3GZLXJQUx+v4l9tHnhLCNigv8BfJ7yEHtPK+AHWAKDjvK8E7fNf8T+2NO1LMTk/CXreAAeCuV7zfX3+eccXvx+nvm+gGmLuR6JbZA9sMtjdg+1u5GteN1yrTGwzRxH4Pni2tgQw9EF0Mvv+/n5N8+PCmRbZ+2OwBvnJ086vyZy3Qnnp0paqZtvTkpSZUpvlUiSGrJxS1JlbNySVBkbtyRVxsYtSZWxcUtSZWzcklQZG7ckVeYf2tkbinO+r1AAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## 结果\n", + "\n", + "让我们看看我们是否成功训练了彼得与狼作战!\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Killed by wolf = 1, won: 9 times, drown: 90 times\n" + ] + } + ], + "source": [ + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [ + "我们现在看到溺水的案例少了很多,但彼得仍然无法总是杀死狼。尝试进行实验,看看通过调整超参数是否能改善这个结果。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 13 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAcD0lEQVR4nO3df3BV553f8fdHPxHCQgJkIEACrIkd4raxrcZksrOTCVmM3UzwH04Gz86azXrDtHHa7HZnEryZ1tMknkna7XrDrONdN2aDM1kTrzetaYpLKHYm05nasRw7trFNkLExkrGRkQAbJPTjfvvHeSQuQjrge4UkxOc1c9E53/Occ5/nHul+OD+kq4jAzMxsLBWT3QEzM5vaHBRmZpbLQWFmZrkcFGZmlstBYWZmuaomuwPjbd68ebF06dLJ7oaZ2UXlmWeeeScimkdbNu2CYunSpbS2tk52N8zMLiqSDoy1zKeezMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4NihOO9/Tz6XMdkd8PMbMqYdr9wV66vP/I8j734FlcuuIyrFjRMdnfMzCadjyhGePNYLwA9fYOT3BMzs6nBQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0ExhpjsDpiZTRHnDApJWyQdlvTiKMv+XFJImpfmJWmzpDZJz0u6tqjtBkn70mNDUf06SS+kdTZLUqrPkbQrtd8lqWl8hnyO8U7Ek5iZXUTO54jih8DakUVJS4A1wBtF5RuBFemxEbgvtZ0D3AVcD3wcuKvojf8+4EtF6w091yZgd0SsAHaneTMzm2DnDIqI+CXQNcqie4CvceZZmnXAg5F5EmiUtBC4AdgVEV0R0Q3sAtamZQ0R8WREBPAgcHPRtram6a1FdTMzm0AlXaOQtA7oiIjfjFi0CDhYNN+eann19lHqAPMj4lCafguYn9OfjZJaJbV2dna+3+GYmVmO9x0UkmYCfwH8x/HvzujS0caY15cj4v6IaImIlubm5onqlpnZJaGUI4rfAZYBv5H0OrAY+LWkBUAHsKSo7eJUy6svHqUO8HY6NUX6eriEvpqZWZned1BExAsRcXlELI2IpWSni66NiLeA7cBt6e6nVcCxdPpoJ7BGUlO6iL0G2JmWHZe0Kt3tdBvwaHqq7cDQ3VEbiupmZjaBzuf22IeA/wdcKald0u05zXcA+4E24L8BXwaIiC7gW8DT6fHNVCO1+UFa51XgsVT/DvD7kvYBn0nzZmY2warO1SAibj3H8qVF0wHcMUa7LcCWUeqtwNWj1I8Aq8/VPzMzu7D8m9lmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBYWZmuRwUZmaWy0FhZma5HBRmZpbLQWFmZrkcFGZmlstBMYYY8xO6zcwuLQ6KEaTJ7oGZ2dRyPh+FukXSYUkvFtX+i6RXJD0v6b9LaixadqekNkl7Jd1QVF+bam2SNhXVl0l6KtV/Iqkm1WvTfFtavnS8Bm1mZufvfI4ofgisHVHbBVwdEf8c+C1wJ4CklcB64KNpne9LqpRUCdwL3AisBG5NbQG+C9wTEVcA3cDQZ3LfDnSn+j2pnZmZTbBzBkVE/BLoGlH7eUQMpNkngcVpeh2wLSJORcRrQBvw8fRoi4j9EdEHbAPWSRLwaeCRtP5W4OaibW1N048Aq1N7MzObQONxjeKPgcfS9CLgYNGy9lQbqz4XOFoUOkP1M7aVlh9L7c8iaaOkVkmtnZ2dZQ/IzMxOKysoJH0DGAB+PD7dKU1E3B8RLRHR0tzcPJldMTObdqpKXVHSHwGfBVZHDN9M2gEsKWq2ONUYo34EaJRUlY4aitsPbatdUhUwO7U3M7MJVNIRhaS1wNeAz0XEyaJF24H16Y6lZcAK4FfA08CKdIdTDdkF7+0pYJ4AbknrbwAeLdrWhjR9C/B4USCZmdkEOecRhaSHgE8B8yS1A3eR3eVUC+xK15efjIh/HRF7JD0MvER2SuqOiBhM2/kKsBOoBLZExJ70FF8Htkn6NvAs8ECqPwD8SFIb2cX09eMwXjMze5/OGRQRceso5QdGqQ21vxu4e5T6DmDHKPX9ZHdFjaz3Ap8/V//MzOzC8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMyZ+RZGYGDoqzaLI7YGY2xTgozMws1zmDQtIWSYclvVhUmyNpl6R96WtTqkvSZkltkp6XdG3ROhtS+32SNhTVr5P0Qlpns9Jnq471HGZmNrHO54jih8DaEbVNwO6IWAHsTvMANwIr0mMjcB9kb/pkn7V9PdnHnt5V9MZ/H/ClovXWnuM5zMxsAp0zKCLil0DXiPI6YGua3grcXFR/MDJPAo2SFgI3ALsioisiuoFdwNq0rCEinoyIAB4csa3RnsPMzCZQqdco5kfEoTT9FjA/TS8CDha1a0+1vHr7KPW85ziLpI2SWiW1dnZ2ljAcMzMbS9kXs9ORwAW9l/RczxER90dES0S0NDc3X8iumJldckoNirfTaSPS18Op3gEsKWq3ONXy6otHqec9h5mZTaBSg2I7MHTn0gbg0aL6benup1XAsXT6aCewRlJTuoi9BtiZlh2XtCrd7XTbiG2N9hxmZjaBqs7VQNJDwKeAeZLaye5e+g7wsKTbgQPAF1LzHcBNQBtwEvgiQER0SfoW8HRq982IGLpA/mWyO6vqgMfSg5znMDOzCXTOoIiIW8dYtHqUtgHcMcZ2tgBbRqm3AlePUj8y2nOYmdnE8m9mm5lZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQjCEu6EcxmZldPBwUI2Qfi2FmZkMcFGZmlstBYWZmuRwUZmaWq6ygkPRnkvZIelHSQ5JmSFom6SlJbZJ+Iqkmta1N821p+dKi7dyZ6nsl3VBUX5tqbZI2ldNXMzMrTclBIWkR8O+Aloi4GqgE1gPfBe6JiCuAbuD2tMrtQHeq35PaIWllWu+jwFrg+5IqJVUC9wI3AiuBW1NbMzObQOWeeqoC6iRVATOBQ8CngUfS8q3AzWl6XZonLV+t7BajdcC2iDgVEa8BbcDH06MtIvZHRB+wLbU1M7MJVHJQREQH8JfAG2QBcQx4BjgaEQOpWTuwKE0vAg6mdQdS+7nF9RHrjFU/i6SNkloltXZ2dpY6JDMzG0U5p56ayP6Hvwz4AFBPdupowkXE/RHREhEtzc3Nk9EFM7Npq5xTT58BXouIzojoB34KfBJoTKeiABYDHWm6A1gCkJbPBo4U10esM1bdzMwmUDlB8QawStLMdK1hNfAS8ARwS2qzAXg0TW9P86Tlj0dEpPr6dFfUMmAF8CvgaWBFuouqhuyC9/Yy+mtmZiWoOneT0UXEU5IeAX4NDADPAvcD/wvYJunbqfZAWuUB4EeS2oAusjd+ImKPpIfJQmYAuCMiBgEkfQXYSXZH1ZaI2FNqf83MrDQlBwVARNwF3DWivJ/sjqWRbXuBz4+xnbuBu0ep7wB2lNNHMzMrj38z28zMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMYQk90BM7MpwkExgia7A2ZmU4yDwszMcjkozMwsl4PCzMxyOSjMzCxXWUEhqVHSI5JekfSypE9ImiNpl6R96WtTaitJmyW1SXpe0rVF29mQ2u+TtKGofp2kF9I6m9Nnc19QrQe6L/RTmJldVMo9ovge8L8j4irgXwAvA5uA3RGxAtid5gFuBFakx0bgPgBJc8g+TvV6so9QvWsoXFKbLxWtt7bM/pqZ2ftUclBImg38HvAAQET0RcRRYB2wNTXbCtycptcBD0bmSaBR0kLgBmBXRHRFRDewC1ibljVExJMREcCDRdsyM7MJUs4RxTKgE/h7Sc9K+oGkemB+RBxKbd4C5qfpRcDBovXbUy2v3j5K/SySNkpqldTa2dlZxpDMzGykcoKiCrgWuC8irgFOcPo0EwDpSOCC/5JzRNwfES0R0dLc3Hyhn87M7JJSTlC0A+0R8VSaf4QsON5Op41IXw+n5R3AkqL1F6daXn3xKHUzM5tAJQdFRLwFHJR0ZSqtBl4CtgNDdy5tAB5N09uB29LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVW62+m2om2ZmdkEqSpz/X8L/FhSDbAf+CJZ+Dws6XbgAPCF1HYHcBPQBpxMbYmILknfAp5O7b4ZEV1p+svAD4E64LH0MDOzCVRWUETEc0DLKItWj9I2gDvG2M4WYMso9Vbg6nL6aGZm5fFvZpuZWS4HhZmZ5XJQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlclCMIS74H0c3M7s4OCjMzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxylR0UkiolPSvpZ2l+maSnJLVJ+kn6mFQk1ab5trR8adE27kz1vZJuKKqvTbU2SZvK7auZmb1/43FE8VXg5aL57wL3RMQVQDdwe6rfDnSn+j2pHZJWAuuBjwJrge+n8KkE7gVuBFYCt6a2ZmY2gcoKCkmLgX8F/CDNC/g08EhqshW4OU2vS/Ok5atT+3XAtog4FRGvAW3Ax9OjLSL2R0QfsC21NTOzCVTuEcVfA18DCml+LnA0IgbSfDuwKE0vAg4CpOXHUvvh+oh1xqqfRdJGSa2SWjs7O8sckpmZFSs5KCR9FjgcEc+MY39KEhH3R0RLRLQ0NzdPdnfMzKaVqjLW/STwOUk3ATOABuB7QKOkqnTUsBjoSO07gCVAu6QqYDZwpKg+pHidsepmZjZBSj6iiIg7I2JxRCwluxj9eET8AfAEcEtqtgF4NE1vT/Ok5Y9HRKT6+nRX1DJgBfAr4GlgRbqLqiY9x/ZS+2tmZqUp54hiLF8Htkn6NvAs8ECqPwD8SFIb0EX2xk9E7JH0MPASMADcERGDAJK+AuwEKoEtEbHnAvTXzMxyjEtQRMQvgF+k6f1kdyyNbNMLfH6M9e8G7h6lvgPYMR59NDOz0vg3s83MLJeDwszMcjkozMwsl4PCzMxyOSjMzCyXg8LMzHI5KMzMLJeDwszMcjkoxpD9dREzM3NQmJlZLgeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgeFmZnlKjkoJC2R9ISklyTtkfTVVJ8jaZekfelrU6pL0mZJbZKel3Rt0bY2pPb7JG0oql8n6YW0zmZJKmewZmb2/pVzRDEA/HlErARWAXdIWglsAnZHxApgd5oHuBFYkR4bgfsgCxbgLuB6so9QvWsoXFKbLxWtt7aM/pqZWQlKDoqIOBQRv07T7wIvA4uAdcDW1GwrcHOaXgc8GJkngUZJC4EbgF0R0RUR3cAuYG1a1hART0b29zQeLNqWmZlNkHG5RiFpKXAN8BQwPyIOpUVvAfPT9CLgYNFq7amWV28fpT7a82+U1CqptbOzs6yxmJnZmcoOCkmzgH8C/jQijhcvS0cCF/yv60XE/RHREhEtzc3NF/rpzMwuKWUFhaRqspD4cUT8NJXfTqeNSF8Pp3oHsKRo9cWplldfPErdzMwmUDl3PQl4AHg5Iv6qaNF2YOjOpQ3Ao0X129LdT6uAY+kU1U5gjaSmdBF7DbAzLTsuaVV6rtuKtmVmZhOkqox1Pwn8IfCCpOdS7S+A7wAPS7odOAB8IS3bAdwEtAEngS8CRESXpG8BT6d234yIrjT9ZeCHQB3wWHqYmdkEKjkoIuL/AmP9XsPqUdoHcMcY29oCbBml3gpcXWofzcysfP7NbDMzy+WgMDOzXA4KMzPL5aAwM7NcDgozM8vloDAzs1wOCjMzy+WgGMMF/wNVZmYXCQeFmZnlclCYmVkuB4WZmeVyUJiZWS4HhZmZ5XJQmJlZLgfFGArhG2TNzMBBMab/+vPfTnYXzMymBAfFGJ450D3ZXTAzmxKmfFBIWitpr6Q2SZsmuz9mZpeaKR0UkiqBe4EbgZXArZJWTmQfBgtT+1rFwGCBvoHC+1pnsBDEJXQNJuLSGu9oLobxXwx9vFSV/JnZE+TjQFtE7AeQtA1YB7w03k+0efc+Hn2u44zaVf/hMXr7z34TvuLyWWfVRn6THzrWS0//IALmN8xgRnUlFcr+hlQEvPbOCQCWzatHQHt3D32DBRY11tFxtIfFTXVUV1Yg4GTfIDNrK6nU2R9Rvu/wewDMm1XL7Lqq4b9RNdQy0j9Kz10oBK8fOQnA7zTXD2+nkNoMtR3p1c4Tw9M1lRX0DRZYPi9bv79QoL27h4UNM6itrkSCrhN9HD3Zz4KGGdRWV9A3UODQsV4AFjTMQILKCtHe3TO83eWpP719g7yZ2i6fV4+Uhduxnn7m1NecHleaCLKbDw6kcS2dOxOACgnpdN+XN2evdSGgQiCJUwODHOw63Ye59TUcOdE3vJ3uk/3MrqumQtA3UKDrZN/w98TyefVUVJz5YrWl/TE0lo7uHhrqqmmYUdqPmkbbGTkKEezvPEF1pVjUWDe8rwEuq62iqb6GqgpxaqBA57un6BssUFNZweKmOoJsnxQiOPJeH8d6+gFY1FhHbXXF8Is+UAj6BgrU11ZSCHi3d4BZtZWcGijQ2z9IVWUFM2sqqa48+/+hEcGrnSe4bEYV82bV0j9YoLJCw/uuvqaSGdWVw/sAsp+RUh3v6efIiT5m1lTSN1BgoBDMrqumb6BAT//gcLs59TXMrqtGguM9A0DwzntZHySYXVdNY101kqgs2ucDg9l2evsLzK2vQYI3j/ayYPYM3u0d4J33TgHZz5okIrLv41MDBebNqh3e1pH3TvFu7wAfnDuT4z39w889ZOHsGcysqSTIfrbf6DrJ5ZdlP1uQ/Vyf7Btk863XsGr53JJfr7FM9aBYBBwsmm8Hrh/ZSNJGYCPABz/4wZKeaH5DLVctaOCNrpP0DwZz62uoqhS9/aeQsh+W9u4eFjXW8eH5sxCj/AAXlWZUV7LnzeME2ZvGrNoqqioqUHqDmlVbxQsdx1j5gQYEvPNe9kP7sSWNdBztYW59DUvmZG94zxzoZs7MGi5vqD3rKdu7e+jpH6SupoKrFjScmRA63a1I8xUSrx85ycqFDSxrrh/9rx/mBMW/XNpE32Dwm4NH+UjquyQOdvXwobn1zJ2VvZGf7Bvk8VcO87EljdRWVzBYCH72/CEAPrakkRnVFQwGw0Exb1YNH1nYMPxDMBQUH1l4ekyvdZ5gyZw6qtIb0FA3h95MD6RxrZg/iwjoHyxQIfFq5wmuuHwWVy64DAIqKkQhHSkOFuKMoLjuQ038/KW3uX7ZHN463svcWTU0zaxhUWMW3Md7+3nu4FE63z3F/IYZw8E1ZOiNeuXCBgI4drKfmsoKrlrYMMoLfQ4l/gd7f+cJls+bxfLm+uGgqKmqYFFTHR+efxmDEVRI/M/fvAlA32CBD8+/jKpKMfT/nc53T/Gr17uA7GfjA411w13qGyiw66W3uemfLUASz7cf5YrLZ6XgLXDkvVO8ffwU1y+bPWr/Xu08wbu9A3zqysuprhADheDNoz3MqKpkUVMdr3a+N9x2xeWzsu+BEh3v7ecXezupTM8DWRj29A8yt76GhY0zeLHjONcsaaS+torBQnC0p4/X3zkdsBFZP4719PPh+ZdRiDjj5//p17s41tPP714xDwQLZs/g7eOnuHLBLN5py4LiqgWnx/D28V5aD3RzxeWz+MDs7HVt7e1noBCsXNjAqfT6DrnuQ010dPec/h5K4VyIGH5tKiXqqitpnFld8muVR1P5cE/SLcDaiPiTNP+HwPUR8ZWx1mlpaYnW1taJ6qKZ2bQg6ZmIaBlt2ZS+RgF0AEuK5henmpmZTZCpHhRPAyskLZNUA6wHtk9yn8zMLilT+hpFRAxI+gqwE6gEtkTEnknulpnZJWVKBwVAROwAdkx2P8zMLlVT/dSTmZlNMgeFmZnlclCYmVkuB4WZmeWa0r9wVwpJncCBElefB7wzjt25GHjMlwaP+dJQzpg/FBHNoy2YdkFRDkmtY/1m4nTlMV8aPOZLw4Uas089mZlZLgeFmZnlclCc6f7J7sAk8JgvDR7zpeGCjNnXKMzMLJePKMzMLJeDwszMcjkoEklrJe2V1CZp02T3p1SSlkh6QtJLkvZI+mqqz5G0S9K+9LUp1SVpcxr385KuLdrWhtR+n6QNkzWm8yWpUtKzkn6W5pdJeiqN7SfpT9UjqTbNt6XlS4u2cWeq75V0w+SM5PxIapT0iKRXJL0s6RPTfT9L+rP0ff2ipIckzZhu+1nSFkmHJb1YVBu3/SrpOkkvpHU2S+fxebtDHzx/KT/I/oT5q8ByoAb4DbBysvtV4lgWAtem6cuA3wIrgf8MbEr1TcB30/RNwGNknyy6Cngq1ecA+9PXpjTdNNnjO8fY/z3wD8DP0vzDwPo0/bfAv0nTXwb+Nk2vB36SplemfV8LLEvfE5WTPa6c8W4F/iRN1wCN03k/k3008mtAXdH+/aPptp+B3wOuBV4sqo3bfgV+ldoqrXvjOfs02S/KVHgAnwB2Fs3fCdw52f0ap7E9Cvw+sBdYmGoLgb1p+u+AW4va703LbwX+rqh+Rrup9iD79MPdwKeBn6UfgneAqpH7mOzzTT6RpqtSO43c78XtptoDmJ3eNDWiPm33cwqKg+nNryrt5xum434Glo4IinHZr2nZK0X1M9qN9fCpp8zQN+CQ9lS7qKVD7WuAp4D5EXEoLXoLmJ+mxxr7xfaa/DXwNaCQ5ucCRyNiIM0X9394bGn5sdT+YhrzMqAT+Pt0uu0HkuqZxvs5IjqAvwTeAA6R7bdnmN77ech47ddFaXpkPZeDYpqSNAv4J+BPI+J48bLI/isxbe6LlvRZ4HBEPDPZfZlAVWSnJ+6LiGuAE2SnJIZNw/3cBKwjC8kPAPXA2knt1CSYjP3qoMh0AEuK5hen2kVJUjVZSPw4In6aym9LWpiWLwQOp/pYY7+YXpNPAp+T9Dqwjez00/eARklDn+JY3P/hsaXls4EjXFxjbgfaI+KpNP8IWXBM5/38GeC1iOiMiH7gp2T7fjrv5yHjtV870vTIei4HReZpYEW6e6KG7MLX9knuU0nSHQwPAC9HxF8VLdoODN35sIHs2sVQ/bZ098Qq4Fg6xN0JrJHUlP4ntybVppyIuDMiFkfEUrJ993hE/AHwBHBLajZyzEOvxS2pfaT6+nS3zDJgBdmFvyknIt4CDkq6MpVWAy8xjfcz2SmnVZJmpu/zoTFP2/1cZFz2a1p2XNKq9BreVrStsU32RZup8iC7e+C3ZHdAfGOy+1PGOH6X7LD0eeC59LiJ7NzsbmAf8H+AOam9gHvTuF8AWoq29cdAW3p8cbLHdp7j/xSn73paTvYG0Ab8I1Cb6jPSfFtavrxo/W+k12Iv53E3yCSP9WNAa9rX/4Ps7pZpvZ+B/wS8ArwI/IjszqVptZ+Bh8iuwfSTHTnePp77FWhJr9+rwN8w4oaI0R7+Ex5mZpbLp57MzCyXg8LMzHI5KMzMLJeDwszMcjkozMwsl4PCzMxyOSjMzCzX/wfjiuCHCiJzlAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而引起的任何误解或误读,我们概不负责。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/1-QLearning/solution/notebook.ipynb b/translations/zh-CN/8-Reinforcement/1-QLearning/solution/notebook.ipynb new file mode 100644 index 000000000..c4ea93772 --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/1-QLearning/solution/notebook.ipynb @@ -0,0 +1,577 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 2, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "488431336543f71f14d4aaf0399e3381", + "translation_date": "2025-09-03T20:49:17+00:00", + "source_file": "8-Reinforcement/1-QLearning/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "# 彼得与狼:强化学习入门\n", + "\n", + "在本教程中,我们将学习如何将强化学习应用于路径寻找问题。这个场景灵感来源于俄罗斯作曲家[谢尔盖·普罗科菲耶夫](https://en.wikipedia.org/wiki/Sergei_Prokofiev)创作的音乐童话故事[《彼得与狼》](https://en.wikipedia.org/wiki/Peter_and_the_Wolf)。故事讲述了年轻的先锋彼得勇敢地走出家门,来到森林空地追逐狼的冒险经历。我们将训练机器学习算法,帮助彼得探索周围区域并构建一张最优导航地图。\n", + "\n", + "首先,让我们导入一些有用的库:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random\n", + "import math" + ] + }, + { + "source": [ + "## 强化学习概述\n", + "\n", + "**强化学习**(RL)是一种学习技术,通过运行大量实验,让我们能够学习到某个**环境**中**智能体**的最优行为。在这个环境中,智能体应该有一个明确的**目标**,由一个**奖励函数**来定义。\n", + "\n", + "## 环境\n", + "\n", + "为了简单起见,我们将彼得的世界设定为一个大小为 `width` x `height` 的方形棋盘。在这个棋盘上的每个格子可以是:\n", + "* **地面**,彼得和其他生物可以在上面行走\n", + "* **水域**,显然无法在上面行走\n", + "* **树**或**草地**——一个可以休息的地方\n", + "* **苹果**,代表彼得很乐意找到的食物以填饱肚子\n", + "* **狼**,危险的存在,应该尽量避开\n", + "\n", + "为了与环境交互,我们将定义一个名为 `Board` 的类。为了避免让这个笔记本过于复杂,我们已将所有与棋盘相关的代码移至一个单独的 `rlboard` 模块中,现在我们将导入该模块。你可以查看这个模块内部的实现细节以了解更多信息。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from rlboard import *" + ] + }, + { + "source": [ + "现在让我们创建一个随机棋盘,看看它的样子:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZxcVZ3//9fn1l7V3dV7J2QjIexBwhaIC6MgyKACg47iyogzqD9QZ8YZdUZnXJDBr8vgMF8V40hEXFBHWYavy2AGR1lEQCEkbAkkgSSdpbu6u/a6yzm/P+p209F09k5VJZ8nj3pU1b23qj65Tb9zcu45p8Rai1JKqdbhNLoApZRSe0eDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVMW3CLyAUi8rSIrBWRj07X5yil1OFGpmMct4hEgGeA84CNwEPAW6y1TxzwD1NKqcPMdLW4lwBrrbXPWWtd4Fbg4mn6LKWUOqxMV3DPAl6Y9HxjuE0ppdR+ijbqg0XkSuBKgFgsdtpLXvKS/Xq/kZERPM+b/P709fXt13uOq9VqFAoFent7D8j7TYfR0VFisRiZTKbRpUxpcHCQ/v5+IpFIo0uZ0vPPP8/cuXMbXcaUfN9n+/btzJw5s9GlTKlYLOL7Pp2dnY0uZUrbt2+no6ODRCLR6FKmtHr1aiqViux0p7X2gN+ApcDPJz3/B+Afpjq+v7/f7o9bbrnF9vT0WGDiFo1G7T/90z/t1/uOW7NmjV22bNkBea/pctttt9n777+/0WXs0jXXXGNzuVyjy5iSMcZeffXVjS5jl4aHh+21117b6DJ26d5777W33357o8vYpRtvvNGuWbOm0WXsUpiLO83M6WpxPwQcLSLzgU3AZcBbD/SH+L7P97//fT7wgQ8wMjLyR/u+8IUvAPCRj3yEdDqNyM7/8lJKqVYyLX3c1lofuBr4OfAk8ANr7eoD/TmbNm3iHe94xx+F9rhKpcJnPvMZfvGLXxzoj1ZKqYaZtj5ua+1PgJ9M1/sDbN68GcdxCIJgymNEhK1btxIEAdFow7r0lVLqgGnpmZMPPvjgLkMbwBjD73//+x0uXCqlVCtr6eB+wxvesNsRCo7jcOGFF5JMJg9SVUopNb1aOrhjsRiLFy/e5THz58+np6fnIFWklFLTr6WDu6+vj6uuumqXx1x44YWceuqpOqJEKXXIaOngdhyHiy++mDvvvJNjjz12h32ZTIbvfe97fPjDH27qQfZKKbW3Wjq4oT5q5Ic//CHPPPPMDttLpRKf//znxycATdwrpVSra+ngXrt2LR/60Ie45ZZbdhrMv/vd77jiiit48MEHMcY0oEKllDrwWjK4jTE8/fTTfPCDH2T58uW7PPYXv/gF733ve/nNb36z26GDSinVCloquK21VKtVPvvZz/Lyl7+cn//853v0uscee4yLLrqIt7/97eTz+clrqiilVMtpqamErutyww038LGPfWyvX5vL5bj11ltJpVJ87nOf0yGCSqmW1VLB/bnPfY5PfOIT+/Uey5cvJxaL8eUvf1mnwCulWlJLdJVYa7nuuuu47rrrDkgXx/Lly/mLv/gLvWCplGpJTR/cruvyb//2b3zyk5+kUqnssO/kk0/eoynvxx9//A6ta8/zuPXWW7nyyivJ5/PTUrdSSk2Xpg5uay1f/vKX+fCHP4zrujvsO+ecc/jhD3+4R8H9pS99ife9730sWbJkYnsQBHzzm9/kox/9KMVicVrqV0qp6dDUwf2///u/fPzjH99hZb+5c+dy3XXX8fWvf51sNrvH73X99ddz/fXXc9ZZZ01Mfw+CgBtvvJFbb71VR5kopVpG0wa3MYbvfve7VKvViW19fX3ccMMN/O3f/i3z58/fq/dzHIclS5bwxS9+kcnfb2mtZfny5drfrZRqGU0b3CLCW97yFhYtWgTAMcccw3/8x3/w+te/nng8vteLRokI0WiUpUuXsnz5cpYsWYKIMHfuXK688kocp2lPhVJK7aBpx8OJCK985StZtmwZd9xxB5deeimnn376Hx23t10cIsIpp5zCHXfcwb//+7+zdOlSzj//fF09UCnVMpo2uMctWbKEM844Y6fBWi6X8X1/l68PgoByuYy1dof3GBgY4JprrtHAVkq1nKbuHxARRATHcXYasDNnzuTTn/70Lt/jLW95Cy9/+ct3+t7j76vhrZRqJU0d3LsTiUTo6ura5TFtbW0kk0kNZ6XUIaOlg1sppQ5HGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1mJYObmvtbqe8G2N05T+l1CFlv4JbRNaLyOMi8qiIPBxu6xaRu0VkTXi/66mN+yEajTJv3ryJWZHJZJJFixbtMJuyv7+f9vb26SpBKaUOugOxyNSrrLVDk55/FFhhrf2siHw0fP6RA/A5O3XkkUdy+eWXU6vVWLBgAZ/5zGe46aabWLFiBZFIhDPOOGO6PloppRpiOlYHvBh4Zfj4ZuCXTFNwiwiLFy9m+fLlO2y/4ooruOKKK6bjI5VSquH2t4/bAv8tIo+IyJXhtgFr7WD4eAswsJ+foZRSapL9bXG/3Fq7SUT6gbtF5KnJO621VkR2+k0HYdBfCfUV/NasWbOfpUyfjRs3Mjo62tQ1Dg0NYYxp6hpLpRLr1q1jaGho9wc3iOu6TX0O8/k8pVKpqWvcsmVL0/++jI6O8sILLzT1d83ualDFfgW3tXZTeL9NRG4DlgBbRWSmtXZQRGYC26Z47TJgGUBPT4/95S9/uT+lTKvR0VE2btxIM9f47LPPkk6nGR4ebnQpUxoaGuL+++8nkUg0upQpFYvFpv45V6tVHtj+AHf88o5GlzKl9GCacyvnNvVork2bNvHII4+wdu3aRpcypV2eP2vtPt2ADNA+6fH9wAXA54GPhts/Cnxud+/V399vm9maNWvssmXLGl3GLt122232/vvvb3QZu3TNNdfYXC7X6DKmZIyxV199daPL2KXh4WF72rWnWZr4vxn3zrC33357o0/VLt144412zZo1jS5jl8Jc3Glm7k+LewC4LRyKFwW+a639mYg8BPxARN4NbADetB+foZRS6g/sc3Bba58DTt7J9mHg3P0pSiml1NRaeuakUkodjjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWsxug1tEbhKRbSKyatK2bhG5W0TWhPdd4XYRkRtEZK2IrBSRU6ezeKWUOhztSYv7m8AFf7Dto8AKa+3RwIrwOcCfAkeHtyuBrx6YMpVSrUREGl3CIW23wW2t/RWQ+4PNFwM3h49vBi6ZtP1btu43QKeIzDxQxSqlWoO1ttElHNL2tY97wFo7GD7eAgyEj2cBL0w6bmO4TSml1AGy3xcnbf2v1r3+61VErhSRh0Xk4Uqlsr9lKKXUYWNfg3vreBdIeL8t3L4JmDPpuNnhtj9irV1mrT3dWnt6KpXaxzKUUurwE93H190JXA58Nry/Y9L2q0XkVuBMYGxSl8qUgiDg9ttv38dSpt/Q0BDPPvtsU9e4atUqNmzYwNatWxtdypS2bNnCz372M5r5L+p8Pt/UP+dyuUxmMMOC2xc0upQpta9vZ1VpVVP3cz/33HNEo1FWrVq1+4MbJAiCKfftNrhF5HvAK4FeEdkIfIJ6YP9ARN4NbADeFB7+E+BCYC1QBt61JwW6rvC+9w3s/sAGSacNl1+eZmCgeWvcsGEDN96YZXS0eWtcuDDBJZf0kclkGl3KlKLRaFP/nIvFImckzuCzA59tdClTemrkKQpOoanPYzqd5l+6/4XyQLnRpUzJFXfKfbsNbmvtW6bYde5OjrXAVXtc2cTrHLZsWbq3Lztostm1zJw5zNKlzVvj1q1bGR0daOrzOHv2Ck477TTi8TiFQoGu7k62jmymPZMl723jv0e+xXPl1ThelIS0ISbCYGEzZ3VdwPnzL8Mt15jdN5d8Pk8mk2FkZIR0Oo3neQRBQCaTwVpLKpUil8vR1tZGoVAgm81OPK/VamSzWWq1GtZakskkjuMgIlhr+e53v9vUP+dcLsdDDz3U1DUaYxgaGmrqGleuXMnwScOMLRxrdClTanPapty3r10lSu0Taw3D3maeK63GwXDn4FdYmDkV17jESXFM/Ew2155nrDLKcZ2nMK/nJXTEuvj7e95Ge6yHq075OH3xmcS9OI7jYIwBwHEcgiDAWkutVkNECIIAEcHzvIn9IoLruhP/DPV9n3g83shTotRe0+BWB5XF8vttD/Jvv7+WgcwAc7PzGPM9Hlv3BOs3v8AJC+cQ8+I889xaho4ZZX72eISNJGwHKenge4/exLHdJ/Gaha8nGU8hIkQiEYwxE32qnucRi8UIgoBoNEoQBCQSCUSEaDSK7/v1WqzF8zwNbtVyNLjVQeVIhNN7z2Gm9zMef3olo5k02ViNYiFOojyD0gtpSvkyqx/fzpZSjvLcIrnRKn39M1m98QFO6j+Ve576MmfMWUp7pZOOjg6MMVQqFTo7OzEmIJlMksvlaG/vIJ/P09XVxdDQEO3t7dRqNbq6uiiXy0QiEZLJZKNPiVJ7TYNbHVTGGDKRNDe8/gauuO1d/HTVTzA1SNkkcRvnd2sD/nzJG3j3eWcwVholXomzsfxTqvlhhnIjrAmexfciXPzV13P3++8BIB6Pk0wmqVbKrFrxWdY+9G18P+D4pZdz2us+TaFQoKenh2q1SiqVYmhoiEQige/7lMtlenp6GnxWlNo7ujqgOqgcxyGRSFAtVvjaG27kwuNeSzQSYUHfAs5aeBYvOXIRG7ZvYPWmVQwXcgwOD5IZnkfp6SwndRxPZWwITJVgTPjLG/4SEaFarZLLDVPYuppnV9/LSL7KrEUX0XnEYgr5PG1tbWzfvh0RoVQq0dvbSzQaJRqN0tnZ2ehTotRe0xa3OqistbiuS1dXF57n8dU3fIWPp/6JHz/yY0aLo2QiGdKSoiYu24afYmxkjPZYBxcvvZhioUiKboa3b8Pp2oy71SMIfGKxGPfc9iW2rb+PkcEXOOWcv+EVF/0Nvl/fV6lU6OrqIggC0uk0Y2NjRCIRrLUUi0Wy2WyjT4tSe0WDWx10juPgOA7WWrpS3Xz6NZ8mJgl++NsfsDW3DTwQDyQQTpl9CqlIiucGnyMVTdEe6+Goucfxvf++mQXnb2H57f/BO193OQ/98kcMzJzNxe+5iYEjXzLx/uPD/CKRyMSokskTQ3QVO9WKNLjVQec4DsVikUwmQ6lUoiPRwWdf+y98+k8/wZ99+VJG8iOsfeE5+tt7yRWHaYu1Uy1XwbNs3z5MWyzDeaddxMaNz/Brexu/ed9yugLLBa96O/OOX0osFqNcLpNIJKjVaiSTSYrFIvF4HNd1SafTBEGAMYZYLNbo06HUXtPgVgfV+Djrnp4ecrkcnZ2dlEol4rE4btHlrqvuYn1uPf/1yH9RqpZwfIdMPE1+NA9WqJSrJCJx3vzqN3P6yafzq5X/zdfv/2f+5LVv5uSzXkcQBBSLRbq7u8nn82SzWUZHR+nt7aVQKJBKpRgeHiadTmOtpVQqNfUMP6V2RoNbHVQiQiKRIJfLkUqlGBsbIxaL4fs+bW1tWGtZ2L+Q95/3fqy1xKMRttz7C7b89sekE0l6XvWndC49l1giwcjICN4Wn8qo8LJXv4F4PI61ls7OTobWr+ehb/xfchufp+uo4znt8r+is79vor/bGIMxpqnXTVFqKhrc6qAab3Fns1nGxsbo6OigXC4TjUapVCpEo1Fwqzi1Kk/98/uxbpXZf/Y2Tv+H6zDiEIs4rFv2fxh+7BH8wLB2aJTE9m3UVj3Ew/f9im0rf4cXBBz/5is45dLLcGtVgmqN7135Dor5Ihf986fomH8UA3Pm4jgOpVKJRCLR6NOi1F7R4FYHXSQSwfO8iVmM4xcSI5EIQWGMzcs+T+n5tRz/t58m1t6BNzpC9bk1IFCzMOvStzPvnVfhlwrM+t8VnP7Mkwzf9yuOfMU5nPTWv8T3XUojI7iFMQILBstFH/skfmD49Xe+xcp77+U9//FNFpx6GpFIpNGnQ6m9psGtDioR2WEdkfE1Q6y14Pts+Op1BFs3s+Bt78XdvgV/+xYEy/jgD7HgPr+OqrUYoOPY4+lcfBqB61MZHSa/4VkCawksBNZirCUwYKzFN5ZTX3cRnjF85+/+lsuu+xxHn3lm406GUvtIg1sdVNZafN+nq6trh4uT0WiUF277NpW1TzL/7e8Fr4oYEAlvO7xHPcDBEpRLuNbWwzoM6MBYjGUivP3AEliDHx6z6OxXUau63Pi+9/A33/8hx596aoPOhlL7RoNbHVSO45BMJhkcHKSnp4ehoSEymQy1concL+7k2LddRVAewzqACE7YQnfC5LbW1lvnlnqCj4e0sRhj8a0hMJYgAD8Mbs8YfAu+MQRGCIzh+Je+jG0bN1IZGmrk6VBqn2hwq4NqvMWdSqXwPG/iwuDwvb8gnmmjOrSJiCM4kfpqDBKByKTgNrbeqrZGIDAYa7AWrAlb2mY8oC2eqXeP+MbiW+oBburdKJ5v6Jk9j6988AN8ffUTiPZ1qxaiwa0OuvHZiuP31loKv7uf9JELCSolxBGs49RX0nEEcYRImNzWWMRarAEb2HBYH+F9PbwDUw/pF4Pb4JkXg9sL6q3wI44+iqceerBRp0GpfabBrQ6q8fWzC4UC6XSaUqlEOp0mEnGwgUtQKeE4gnEcrEM9wCP18AbCJjdgDGY8uC34QT2U/aDe4vbDFrdnLJ4f4FuLayxeIHhBEIY4E1/EoFQr0eBWB5UxhlqtRmdnJ+VymY6ODlzXxa252OGtJMJ1TCQiOI4gEUEch3rz2+IDgTH1cA5sGND1x54NW9NBPbBdvx7O+fwYkXQGNxgP73B/OAlHqVajwa0OKsdxiMfjDA8P09fXx8jICO3t7SQ7sgz+78+IOw50dkIY3jj1ISW+W0MSKQzj3R9QKxUoD23HDQw13+AaSy0w1HxL4ESJ9g7gIYxt3kh6xixcY/ACqAUBvoHtg1twq9VGnxKl9poGtzqojDG4rktfX9/Et9a4rsvMS9/J9vtWMPr04wSz5pLp7cc4gnEEX8B/4Vlic47CApWtm/HyY1RrNarFIlU/wA0sFd9S8wOqgcFFMC88j0uE1Jy5jA0OIpkMXgDVwDCWy/Hc6idY/LpLQFcIVC1Gg1sddMaYie+JHF9mNXHEXEw0jlcqw7o1EATE29rwbEAEcPNjyMrf1sdqBwFeYHADgxu82D3iWxOO3QYvCKiO5qj5huGhISpegIvQMedIRkZG2LZpC1XX53Xve58u7apajga3OqhEhHg8TqFQIJFIUKlUJkI8SKRwjcV6AZH8GH7gEWx+IRwOKAgQYCcm2bjG4AeCayb3XZuJPm8/HGHiBx5BAJ4fUCkWyQ1uxVhAHFJtmUafEqX2mn51mTqoxr8Bp7Ozk0qlQnt7O8YYotEoR77tL6mF/dSlXI5ysUAtMFQDQyUwlAND1TdU/PpzN4Ba2OreoeVtTH3GpLETo0v8cPRJPjdS/0Z4x+GMN1yKJHV1QNV6tMWtDqrxZV2HhoZoa2tjdHSUeDyO53kc8bLz+L0BYw3GephCGXxTvz4p9TaGtSachAN+ONnGDS9WumZ8tIjFDer7vfEAtxZJJqlWavVjAp/Fr3wlcxcsaPAZUWrvaYtbHVTWWjzPo7e3l3K5TDabnfgmmkKpTPsZZ9db2X5AsVCk7NVb2GXPhI9tvcXtGyp+QCUcUVL1A2p+QC0IcH2LGwS4gZk0lttQKpZxay7tfX285r3vIZJMkcvlGn1KlNprGtzqoBqfgFMul4nFYlSr1YlVAlPt7Rzz1ndT9W0Y0AHVcLRI1Q+o+sGk0K53oVR9O9G9UgsstbC7xA0E14Ab2B3Ge3vWMnD00eRzIyx9/UX6RQqqJWlwq4POWjuxrOv4BBhrLdFolK6FxzL7/IvCoA5b1X69b/vF/m1Lxavvr4XH1cJRJl4Y3vXukqAe4sbimvrsyhPOfiWBRHnpG95INBrV75xULUmDWx1U46GdTqfxPI9UKjXxJQqVSgUn00bPosW4OPVWd1DvGin7AeWJEPfrFysnntdb49WgPoa7ZixVvz7ZxjUBtbC1bcSha9YsCoU8J519NkEQUCqVGn1KlNprenFSHVTjy7pu27aNnp4ehoeHaWtrw/M8Ojs7CYKAY978Tp6995ds+NUKBJlYkxvA2vq4bwDfvjg00LP1dUq8cP1tL+w+8YzFCww2GmfR2a/ioRW/5MsP3Ec8mcRaS0dHRwPPhlL7Rlvc6qAavzjZ1tZGrVYjk8lMTMipVqu4rosjwvEXvZEglqQShH3bXkDFe7F1XZ7c5x1Yqr6tt7bDbpPJwwR9HOa85BQ8hFe88Q0EsTi+7+P7PsVisdGnRKm9ttvgFpGbRGSbiKyatO2TIrJJRB4NbxdO2vcPIrJWRJ4WkddMV+GqdUUiEYIgIBaL4XnexOzJaDQ68R2Qc895DenjTqTqW8q+pewbypMvTIbbx/u/a169v7s2cdHyxX7v/oXHkO7qZv3qJzjpVa8i09aGEy5mFY3qPzpV69mTFvc3gQt2sv16a+3i8PYTABE5AbgMODF8zVdERFeoVxPGv3PSdd0dvnvSWjsRplCfFv/aa76A09UzKbCDMMAtpfCiZNV7McwrAVTC0K4GASYao2P2PKJt7Yzlclz6wQ9w7JIlRCKRiTr04qRqRbsNbmvtr4A9Hex6MXCrtbZmrV0HrAWW7Ed96hDzh10l6XQaYwyO41CpVPA8D4B4PM4RC4/msq/cRPvcI6l4JrzVu0hq4+O7x2dTBmZiJErNt9R8i2uFquuRz41wyqvP49XvehfJVIpCoUAQBHpxUrWs/enjvlpEVoZdKV3htlnAC5OO2Rhu+yMicqWIPCwiD3teZT/KUK1kfObk6OgoyWSSfD4PgO/7ZDIZEokE1lqq1SqFQoGFS87idZ++jlMufRM1KxOjTNxIlPmveOXEEMGqH5Ds7adtxhFUg6A+Hb7mEU+n+bP3v5/zrrgCEaFardLZ2UkkEiEajdLe3t7gM6LU3tvXDr6vAtdQ/8rWa4AvAlfszRtYa5cBywDa2wdsrbaPlaiWE4/H6e/vJxKJ0NfXN7E633g3STQaJZ1OT2w77bwLWLT05bz+7z8KhN/y7gjpzk6Kk2Y+RuMJENlhje14Mkn/3LmYcMhhKpVCRCYm3ujKgKoV7VNwW2u3jj8Wka8Dd4VPNwFzJh06O9ym1ITJfdnj95NF/uCLex3HIdbVRVtX1x8d2zUwY48+c/wdxz9PA1u1sn3qKhGRmZOe/hkwPuLkTuAyEUmIyHzgaOC3+1eiUkqpyWR8MsOUB4h8D3gl0AtsBT4RPl9MvatkPfAea+1gePzHqHeb+MBfW2t/ursistlue8wxf7uvf4ZpF4uVOPHEIebNm9foUqa0ZcsWHnssQbX6x63SZtHV9QxLl85v6pEcjz/+OCeddFKjy5iS53msX7+eo48+utGlTCmXy+G6LjNm7Nm/hhph/fr1PNH3BF7Ga3QpU3rmX59hLDe2038a7ja4D4b29n7ruk83uowpdXSs54gj7uOpp97W6FKmNG/ez/jKV/o47bTTGl3KlL70pS/xrne9i2w22+hSpvSxj32Ma6+9ttFlTGl0dJRvfetbfOADH2h0KVN6+OGHGR4e5jWvad5pHLfccgtnn312UzfGjj32WLZt27bT4G6S2QeC6zZvS9HzhgmCRFPXGAQpMpkMXTvpB24WsViMbDbbtDWOr5nSrPVBvcZYLNbUNabTacrlclPXmEgkaGtra+oad3UdRqe8K6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtZjdBreIzBGRe0TkCRFZLSIfDLd3i8jdIrImvO8Kt4uI3CAia0VkpYicOt1/CKWUOpzsSYvbBz5krT0BOAu4SkROAD4KrLDWHg2sCJ8D/ClwdHi7EvjqAa9aKaUOY7sNbmvtoLX2d+HjAvAkMAu4GLg5POxm4JLw8cXAt2zdb4BOEZl5wCtXSqnD1F71cYvIkcApwIPAgLV2MNy1BRgIH88CXpj0so3htj98rytF5GERedjzKntZtlJKHb72OLhFpA34EfDX1tr85H3WWgvYvflga+0ya+3p1trTY7HU3rxUKaUOa3sU3CISox7a37HW/jjcvHW8CyS83xZu3wTMmfTy2eE2pZRSB8CejCoR4BvAk9baf520607g8vDx5cAdk7a/MxxdchYwNqlLRSml1H6K7sExLwPeATwuIo+G2/4R+CzwAxF5N7ABeFO47yfAhcBaoAy864BWrJRSh7ndBre19l5Apth97k6Ot8BVe1/KXnWRN0jz11g//c2t2Wts9vpAazxQWqHGnZFmKDyb7bKLF7+90WVMKRJxyWaLxOPdjS5lSr6fp7MzSjqdbnQpU9q2bRs9PT1EIpFGlzKljRs3E40e0egydiHAczYT6481upApmbKhzW+jo6Oj0aVMKZfL0dbWRjweb3QpU/r2t7/NyMjIThvNTRHc7e0Dtljc2ugyppTNruXzn7+Hv/qrv2p0KVO6/fbbGRgY4Mwzz6RWqxGLxTDG1Hc6hi21DYz4W7HGEiUOCBWvTDrSwVEdJyImQjweIwgCRATf9xERHMfB933i8fjE/fj7+75PJBLZ4VgRmXh9LFYPl/plEvjMZzWBPQ4AACAASURBVD7DVVddRVdXV4PO0q5Za3nTmz7Af/7nvze6lCklEjkW/fP5PPKPjzS6lCnNuG8GNw7dyMUXX9zoUqb0ta99jXPPPZeFCxc2upQpDQwMsHXr1p0G9570casWEgQBw8PDJNvj/HbkLvqT8/CdKs8WH2PQ3UChWqRQHeOI1FFU3Ar9sdmsST7JuuG1XH3mx3BrHiJCsVhEREgkEhSLRXp7eykWi3R3dzM2NkZ3dzf5fJ5MJsPo6CixWIx4PE48HicajVIsFps2oJVqdRrch5i1o4/xo5HrkTFhS20DMZvE9y0ZuuhNzKKTLkbLJSrGozsxG0yMnz77Y1LRdq75nw9z2aJ3c0R6Du3t7Vhr8X2fnp4eSqUSiUSCoaEh2trayOfzpFIparUanZ2dWGsJgoByuQxAPB5neHiYzs5OolH930ypA0l/ow4xfel53Lri93Qnu3lJ30tY0H8cz21ez833fo+Fx2Tpy7SxZuUgkVk+LzvhbCJ+klS0k1xhiES6nZt++1Vee/wlnNh1MtFojFgsxvbt2+nv76dUKtHd00NueJhsNsvY2BiZTIZ8Pk8sVj82k8ngOA6lUomuri4cRxegVOpA0+A+xKRIs+y1N/Hh//57/t8TP+Xnq35BwsQZ6JqBuz1BrdDL0f3z2Dy6jmDU8MCjDzB7UTdrt2xmYY/LaHmMai3gqD85js5oChGhra0N13WpFQZ55qk7KeQLdPcfQe+CcwmCgGQyOdGP7bouAI7jUK1WSaVSE/uUUgeGNocOMY7jcEz3Qj5+zsdwosKzw88yUhmhLZmh7JYpeyXm9M/h+N7FdFQWcmTHCRSesYhriFDj+W2b+fnjK7j2rs8A9Qt2xhiwAZue+Dm/vPWveeQnH+eR//4iEl7XNsZgjJkYWuU4Dtbalh1qpVSz0+A+xMRiMTzXY+nspfzorT+it60HJxJhtDpGLB6lFrg8sXE12wvbefr5p/j1ww8wL72IiwbewWMrnuaM4+aQLkT44U9/iOd7ABTyo2zb8BC/+n//zmg5wRlv/AbnXfEdvKA+qsR13YkRLOMXKY0x2tpWappoV8khZmxsbKI/+vgZJ3DfB+7l0v94I4PDgyRsnLhNkCTB9uHtWNcw0DWDwAZs3TbERae+mdEnR8kmRqllUzz7wjMcN/9E/ve2L/DUI3cxZ/7xvPzVV7JoyevI5/O0pdNUq1W6u7sJggDP8ygWi1hrSafTDA0N0dPToxcnlTrA9DfqEDN+sTAajVKtVhlIz+Cmt9zEfz3+X3z1f77K5twguJb2aDsnzDqBuMTZNrqNdDRFIV9AAmgfO5JCxyifuuOv+fOj3szaJ1fSOeMEXv/uL9EzMI9qtUo6ncZ1XWKxGOVyeWL8dipVX+kxCALa29v14qRS00CD+xAzfkHQ87yJSTjH9h3DMa/6G5bMOoOtpa38y3/+C5uGNvPc1mfpTvYQJ87w0BC1ske1WOF9l7yP97/0asbSG/nm9f+Hrm0BH7rm63T1zaFcLpNKpahWqyQSiYlJOeP93OMXJ8cDPZFINPiMKHXo0eA+xBhjiEajuK67w0VCa2HpgqUkU0kuOOECYvEYxUKReETY9Nwz9GV7qFlId/eRjCfp6uwinx/h6fmP8qorXsuRRy9GRAiCAMdxKA5tx4tG8AJDzxGzcBxnIryBiWP1AqVSB54G9yEmmUxOjKuu1WoAE2uDJBIJXNelPdnO0MP3k/QqFLZtpX3zBvKjI3SedAodi8+iuH4t6yoVXtiyjcd/fR9nnfpyvE3Ps3nNUyRTKfJtXWz49QqeX/UYbX0zSS84hraeXmadeCIDRx87MQ0+m81qV4lS00CD+xBTKpXo6emhWCySTCYxxlCr1RARKpUKyUqBdd+5kUxXD24qTbZvBh0v/ROsCAJUNm7AjuVIGJ/Mumd4aa2MXXEXmzetR5woI55Lqn8Wx5x7AUed+xpsYHj6vl+xZdVjPP/7RyhUqlzyj/9EV28vY2Nj9PT0aHgrdYBpcB9iOjo66muVJJOUy2UcxyEWi2GtJROL8Oj7/4rsgqPpOvt8nEgUbIC76fn6wr3WEolEyS48DmMtmTlHsfDSywgCQ62cJ5pqI7AGz/OpjOUwFgJjmb3oZGZay9jwMHf+27/yjf/vPVz9zW/T2dnZ1CsBKtWqtCl0iMnn8/T29k4MyYvFYnieR3VkmAf/8hLSR8xi5p++AVMYw4zlsIUxpFpEKkWolrClPEFuO35uO6ZUwB8bJiiMIK6LO5rDGxnBL+TxSyX8cgmvXMItFqgV690zF//1hyhuGeT//sU7eeHZZwmCoNGnRKlDjra4DzHJZJJSqYSI4Hke1loikQiD//UDuuccxRGvuQhvaJBIOHzPkfBbMkQQazHWghUEC8ZgLQTW4hsIjMFYi7GEzy2BsXjWEliDbwRjLC+97K3cvfwmVt/zP8w/9thGnxKlDjka3IeYdDrN4OAg2WyWSqVCPB7H8WoUnlnJwPGL8Ye24DhSD2oHnDC8qUc11hiwEoZ2OCIlqE99rwe1wRjwjCEw4FtLED73rSWwFgc48qSTefCOO3jFG95I94wZjT0pSh1iNLgPMWNjYwwMDFCpVGhra8MYw6a774Saiwk8gkoJcRwQkEg9tCNO/cJkYKm3qA1YAzYwGFNvhQc2wAQStr4tfmDwDfjG4FnwgoDAgmfqj2csXMiGNWsojoxocCt1gGlwH2Ky2Sxbt26lvb2dUqlEJBIhnYhRiEcwbhXjg3UccMA6Ao7gRBxE6mEtxoKxWGMxQYCZ6BIJW9hBvWvENRY/sPXgDlvcXvjcNWG3ie+BjuNW6oDT4D7EVCoV2tvbASZmLVarVUytiqmUCByIOBGMAyYiGMfBOIKDYGwY2MYQGIsJXuwe8Y0NW9NmosXtGXADE4a1xQvAMzYMcUPgeY08FUodsjS4DzGRSGTi22mCICASiRCNxCiseZJUexZJpfAjDhKpt7rFEZAIAhjqoVu/8BjgBbZ+MxbPGjwf3CDAt/XAdgPYtmEd6f4ZeE4EL6DeEjfg+vVFp5RSB54G9yFmfNy0iEyspZ3o7YNYnPyTjyNHHY1NJLCOg40IVixuqYAk0hCLEfg+nutTq5YZfWo1ru9T9S01Y6n6AdXAUAug/ehFBPE4sXSaaqmML4IXWGpBvctk8/MbGNu+HdFx3IclXc53emlwH2LGl3UtFApkMhl834eXLKFn6Tls/el/ElRKdB55FEE6TeAIEbEEWzch0QTE47iFMWpD23CDej92LTD4gcX1LV4Q4PsWLzBsWvkQNR+ivQPUPB8ybRBP4lphdCjHhjVreOUVf0X3zJmNPiWqAXSNmumlwX2ISafTjI2NEYlEqFarQL0VXqm5+MZSK5cobN1Muq+fymiOiDVQLYNbw1C/EGlsGNgGvMDihhcdfVMfURLYFy9YljZvohZYKoEh0dNHqeYyvHU7xsCCk15Cqq2tsSdEqUOQBvchxnVd2traJsZwB0FAEASkZs3Cj8TA95BCARuPY4e3E7EGEac+4x0IbP3CpDfeV20sbjhixDPgWROOLAkn4VhLQP0iZq1apVKsYERItHVQrdUwxuhaJUodYPobdQga/2fq5H+uLnj7/4fTO4NyEFAuVymNjVHxAiqeoeIZyr6h7AWUfUPFt9R8qPmGmm9wfcJRI/XRIp6xBP6LrXA3MBiEUr5EpVLB9w0nv/YCzn7bWxt1CpQ6pGmL+xATj8epVCo4jlPv3+bFL+91Ovvwn1+HtQFBsYwTGCJi63Mmxy9mUp+EE4xPrglb3rUwtF1Tv1DphRNvXBMeCwTUu1COe9nZRHBIJ1Pa2lZqGuhv1SGmWq3S0dEB1NctiUaj9XHZQcCR73wftUCo+oZK1a23tv3w5gVUfVMfOeKF94GlFliqgcH1DbXw3vctbtj/7Zv6kEHX86lWq0SSCZxEjAuufA/5fF4XmVJqGmiL+xDT3t7O0NAQyWSSYrGIiBCLxYhEIsw/82U8mG7DLYzhCEQdwTGCiB1f1fXFae/UW9zj65G4YUDXx2qDawJqAXhB/Tg3sNhojJf++WU8/ftHmbdoEZlMRr8oWKlpsNsWt4jMEZF7ROQJEVktIh8Mt39SRDaJyKPh7cJJr/kHEVkrIk+LyGum8w+gdlQsFslms1hrSSaTxGIxgiDAGEPZ8zjn35ZPjMcuB/W+7YpnKIf93JUgoOIHk1rghqoX4PpBfdJNOETQ9centwfUDPiB4biXvpxH7rmHq7+2jHg8TrFYnPgqM6XUgbMnzSEf+JC19nci0g48IiJ3h/uut9Z+YfLBInICcBlwInAE8AsROcZaq/9mPgji8TjVanWH73wc72eOx+Mk+geY8bJzeP7XK3DCpV2Fej+3xcFiJ5ZyDcKlXP1wYan6miR2Yoigawy1oN7fnejIUqm6nHnhhcyYN48gCIjFYjoRQ6lpsNsWt7V20Fr7u/BxAXgSmLWLl1wM3GqtrVlr1wFrgSUHoli1e8lkkkKhgIjgui7GGCKRSH2xqXSaaGc3Ryx5KTXfhqNK6i3rim/r9+Eok4pvqAX1fu5qQHirt7ZrQf0CZb2rxGAkyonnvJqK6/LSiy6hvaODIAjIZDIa3EpNg726OCkiRwKnAA+Gm64WkZUicpOIdIXbZgEvTHrZRnYd9OoAyufz9PX1YYypB3U0iud5eJ7HyMgImXSaEy+7nNmvOp+KqXeFlLyAkhtQDocHlsOuklIY4FUvoOr71LyA2viFS9/gBoYgEuPYl/8JuaFhTn31ecxatIjR0VFisRhDQ0N6cVKpabDHwS0ibcCPgL+21uaBrwJHAYuBQeCLe/PBInKliDwsIg97XmVvXqp2oaOjg1wuh+M4lMtlPM8jFosRi8Xo7OykXC4TicWYe96F+LHUxLjtSmDrY7mD8LlvXxxx4huqvqUaWCrjfdzGQjJJ/1ELsdEI5fwYs447jo5sls7OTjzPo7u7W79zUqlpsEeX/EUkRj20v2Ot/TGAtXbrpP1fB+4Kn24C5kx6+exw2w6stcuAZQDt7QO2VtuX8tUfKpfLdIRdFePf8j4+ntt1XZLJJEEQsOTP/pxKbpi7PvlxduzNeHE8d336OxNT3H0bToM3BisR2jq6IJ5gcN16rvz85znxFa+gUqkgIkSjUQqFAh0dHRreSh1gezKqRIBvAE9aa/910vbJqwf9GbAqfHwncJmIJERkPnA08NsDV7LalVQqRT6fx1pLtVrF930cx8FxHDKZDNVqFWst+XyeP7niPZz/8U/iR2L11nQ4nrviG1yJUJm0rRoYXOtQ9QNqvqWGUK5U2bL+ed7xiU9x9Jln1lciTCRIJpP4vq993EpNkz1pcb8MeAfwuIg8Gm77R+AtIrKY+hIX64H3AFhrV4vID4AnqI9IuUpHlBw8kUiEaDRKNBqdmPI+/njyvmg0SjyRYOnb/oKFp53F3V/9v+SHtgP1H+jSt76NX3/n21gLxliiqTRzTjqJJx94AGPBInTPnMHb/vEf6Z4zh2gsNvG+458ZjUY1uJWaBrsNbmvtvYRfBP4HfrKL11wLXLsfdal95DgOvb29U+7PZrMAZDIZAPr7++nv7+fEs8/+o2PPf9df7nMdsVhsn1+rlNo1nfKulFItpknmI1sSiVyji5hSPJ6nWq2SyzVvjeVymWKx2NQ1ep7H6Ohoky+yHzT1/4uJxCgRL0Iil2h0KVOKF+OUy+Wm/n+xWq2Sz+ebusZd/Z5IM/wSdXd327/7u79rdBlTKpVKbN++nSOPPLLRpUxpcHCQRCJBd3d3o0uZ0tNPP82CBQuauhvlscce4+STT250GVPyPI97732OkZFjG13KlJLJHKecUmNmE3/70bp16+jv75/oMmxGX/jCF8jlcju/SGStbfitv7/fNrM1a9bYZcuWNbqMXbrtttvs/fff3+gydumaa66xuVyu0WVMyRhjr7766kaXsUvDw8P2tNOutfUlwZrzNmPGvfb2229v9KnapRtvvNGuWbOm0WXsUpiLO81M7eNWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvR4FZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItZrfBLSJJEfmtiDwmIqtF5FPh9vki8qCIrBWR74tIPNyeCJ+vDfcfOb1/BKWUOrzsSYu7BpxjrT0ZWAxcICJnAf8HuN5auxAYAd4dHv9uYCTcfn14nFJKqQNkt8Ft64rh01h4s8A5wH+G228GLgkfXxw+J9x/rojIAatYKaUOc3vUxy0iERF5FNgG3A08C4xaa/3wkI3ArPDxLOAFgHD/GNBzIItWSqnD2R4Ft7U2sNYuBmYDS4Dj9veDReRKEXlYRB6uVCr7+3ZKKXXY2KtRJdbaUeAeYCnQKSLRcNdsYFP4eBMwByDcnwWGd/Jey6y1p1trT0+lUvtYvlJKHX72ZFRJn4h0ho9TwHnAk9QD/I3hYZcDd4SP7wyfE+7/H2utPZBFK6XU4Sy6+0OYCdwsIhHqQf8Da+1dIvIEcKuIfAb4PfCN8PhvALeIyFogB1w2DXUrpdRha7fBba1dCZyyk+3PUe/v/sPtVeDPD0h1Siml/ojOnFRKqRajwa2UUi1Gg1sppVrMnlycnHbGGO67775GlzGlLVu2MDg42NQ1rl+/npGREYwxjS5lSrlcjoceeohMJtPoUqZULpeb+udcLBZJJnPMmNG8NXZ1Pc369YWmPo+Dg4OsXLmSrVu3NrqUKe3qd7kpgttay/DwHw31bhpjY2NUKpWmrrFUKrF8uUOh0Lw1zp3rcuaZI1Sr1UaXMqWREZ93vKN5z2E0WmbmBQ+R+vCPG13KlOLrOiiV3tTUvy/VapWPj36carR5/1+s2dqU+5oiuCORCBdddFGjy5jS2rVrCYKgqWs0xrBt2wBbtixtdClT6ulZyfnnn09XV1ejS9kpay233HI369Y17885kcjRMeMLrLtoXaNLmdKM+2Zw4tCJTf37Mjg4yOazNzO2cKzRpUypLdI25T7t41ZKqRajwa2UUi1Gg1sppVqMBrdSSrUYDW6llGoxGtxKKdViNLiVUqrFaHArpVSL0eBWSqkWo8GtlFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYjS4lVKqxWhwK6VUi9HgVkqpFqPBrZRSLUaDWymlWowGt1JKtRgNbqWUajEa3Eop1WI0uJVSqsVocCulVIvZbXCLSFJEfisij4nIahH5VLj9myKyTkQeDW+Lw+0iIjeIyFoRWSkip073H0IppQ4n0T04pgacY60tikgMuFdEfhru+3tr7X/+wfF/Chwd3s4EvhreK6WUOgB22+K2dcXwaSy82V285GLgW+HrfgN0isjM/S9VKaUU7GEft4hERORRYBtwt7X2wXDXtWF3yPUikgi3zQJemPTyjeE2pZRSB8AeBbe1NrDWLgZmA0tEZBHwD8BxwBlAN/CRvflgEblSRB4WkYcrlcpelq2UUoevvRpVYq0dBe4BLrDWDobdITVgObAkPGwTMGfSy2aH2/7wvZZZa0+31p6eSqX2rXqllDoM7cmokj4R6Qwfp4DzgKfG+61FRIBLgFXhS+4E3hmOLjkLGLPWDk5L9UopdRjak1ElM4GbRSRCPeh/YK29S0T+R0T6AAEeBd4bHv8T4EJgLVAG3nXgy1ZKqcPXboPbWrsSOGUn28+Z4ngLXLX/pSmllNoZnTmplFItRoNbKaVajAa3Ukq1GA1upZRqMRrcSinVYvZkOOC0832fr33ta40uY0pjY2Ns3LixqWt87rnnmDs3TW/vykaXMqWOjvXccsstJBKJ3R/cIL6fY9Gi5v05RyJVsuuyLPraokaXMqX0YJoHqg+wZcuWRpcypVWrVnHU2FG4WbfRpUzpef/5Kfc1RXBHIhHOPffcRpcxpY0bN+I4TlPXGI1GOeusbk466aRGlzKlb3xjPddc8wo8r73RpUzpvPN+x223Ne/POZ/P86MfbeNd5+58eoTFYjFYaxFkYhuAI5GJbdNp5cqVjI6OcvbZZ0/7Z+2rsbExvrjki8yePbvRpUxpqbN0yn1NEdwiwsKFCxtdxi6tWbOmqWtctWoVAwMDTV1jJpOhUDiSWq2r0aVMweI48aY+h7lcjkwmw/z58xkeHq5vTHnkS6Nks508tu0e7ivfRaE6gvGFjNNNqVaiXCvx7gWfIhlLMbNtNl2ZHsbGxojFYhSLRXp7exkaGqKjo4NyuUxvby+lUolIJILneQRBQCQSoVQqTezLZrNs376d3t5eAByn3vO6detWIpFIU5/HbDbL7NmzmTNnDsVikVQqRalUIhaLEY1GqVQqtLe3T+yr1WqICLFYjHK5TEdHB4VCgVQqhed5JBIJ6lNYIB6PUywWaWtro1QqkU6n8X0fYwyJRIJCoUB7ezvlcplkMokxBt/3iUajJJNJ6pPRXzyfO9MUwa2U2jsVv8jjlV9S9MfYmF/NcHULyVw7YqL0O/OZlTqJJ4YeIhppZ1H7Ypy2CI/lHuCutd/nNfP+nHPnvY6B5CystSSTSWq12kSIjIeTMWYijMZDZPxYEaFcLhOPxyfu4/F4I0/JPikWi2SzWYrFIl1dXfi+j+d5dHd3MzIyQldX10QIW2up1Wr09vYyMjJCd3c35XKZdDpNpVJBRDDGTLzn8PAw2WyWsbExotEojuOQy+Xo7OxkeHiYjo4O8vk8IkIikaBSqZBIJCaCe1c0uJVqQY443PDbL+MFNWZ3zGZB1wISkQzf/J9b6GiPc8y8mQxvKDFcW83Ji0bpjvfjBYaZqaNYvWUl+FH6EgO85piLACZCZ/yx4zgYY3AcB9/3d/hsEZk4Buqhvidh04xSqRTFYpFoNEo+nycSieA4DmNjY7z//e/n9NNP5z3veQ/lcnnizzw6OkoymSSfzxONRqlWq0Sj9Sh1HGfiL7dsNovrumQyGYwx3HzzzaxYsYKvfe1rZLNZPM+b2Get3ePQBg1upVpSIpLmM2d8hUu+fzHb4gFroznSkqZb5pGuJiivb2NoU4WntmwjkX6c5HA3I91DZKLdRJ04Y/kqVdflrNlnE7UxMpkMpVIJEan/0z9mcaslYtEISBJjLZFIhFqtRiaTwfd9YrEYpVKJ9vb2lg3uUqlEV1cX+XyetrY2giDA8zw6Ojr4yU9+wh133EEQBLzzne+ks7OTWq1GR0fHRIu7WCwSj8epVqsAEy3uzs5ORkdHyWazbNq0iRUrVvCRj3yEWq3G8uXLGR0dpaOjg2Kx/h0142GfSqW0xa3UoaparbKg70h+8KYf8JYfvplH1j9CzI/SE+/GumBcw3Vv+Sy/efwB5nbM5eerf86sOV2sf347ifY2BrcPU3V9rrv7X/jE6z5FqVSio6ODWq1GzFb59j+dhvGrIJZL//73pDpnYIyh8/9v79zD5KqqRP/b59Srux5d/cibQAJpJciVVxInQBhINBDlOYPDQ5GryPgKdxQYAp9fAJ07d3iYBMVHZABhYBCUUQGZUVBUvntnBEMCJBEijSTk2d3pR3VXnao6j73vH+eR6pBHJ2NSXbh/31dfnbPP6Torq1LrrLP22mvl85RKJWKxGIVCgebmZgYGBmhubqa5ubneajlg4vE4rutimiae5/mTusETBUC5XGbJkiUsXbqUZ555hpNOOimKR7uui2EYKKWip44w7KGUIpFI8Oqrr3LOOedQKBQAP4nANM0orBSPx4FdTzna49Zo3sU0NzfT29vLlPRkvvNXK7nmB9fQM9DDjPZOTGUibY8f/r/HSJtpyhWLRCxO94sxjj1qFtt63mSovYcOZyrf//ljLJx2Dh/+wIfp7e0llYCXfv51CkWH8UfOovPEDyLizVSrVUzTpL+/P5qcbGtro7e3l/b29ob1uGOxGI7jYBgGjuNE/477778/8qIBbNvm8ssv54orruCiiy5i2rRp3H777Sil8DwvMsDxeJyrr76a7u5uHnnkER599NHIaAN4nsc999zD1VdfjZSSWCwWzSOYpjl6uf8U/3iNRnN4sSyLTCYDwKzULL5/xSNc8M8X8nrPBrKxLE2iiaqo0lvdyY7e7fTv7Ocjs8+lIzEZicn7M7N45pX/oC0ZI2nEGR4eptDTxVNP3kXPplWMn3Iy8/5mGfnx0zCEwDRNpJS0t7dHHndfXx/ZbLahPe5yuUxbWxtDQ0Pkcjlc18W2bR555BFse2SO97Zt27j99tt5+umnSafTrFq1Cs/zRpxjGAZPP/00SinWrFnzjusppbjnnnu49NJLyefzFItFhBCkUils2448/v2hV05qNA1I6J0ppTCEwYy2Tn752V8yY+J7GKoMsWHHH1i1aTWvbn6VbCbH7PfNpuyUebt7EyJmMLTV5sxjFpFpjrH04cW8ta2Lt7vW8fral5h3/k389eKHaJ94NAL/MT40KGFaoBCCWCyGlBLTNN/hLTaKBx7eeJLJJP39/ViWBYDjONE5y5cvH7GGY926dbzwwgvvMNrgx7hXr149wmhPmDCBBx98MNqPxWKMGzcOx3FoaWkhnU4D/lOUDpVoNO9iDMOgUqkgAm/YcRwmtkzkZ5/5KU+vfZqfrv13/mv9f7KjrxvLLtEnTaqmjbQluPDaht+zcPbZnNFxMePnCq5Zfhnv7TU5cdYC3nPKIpozLZGRDrMehBDYtk08HsfzPBKJRDRJubvBCR//xzphGuDQ0BBtbW2Rxx2GPsA34j/+8Y9pbW3do7HeHwsWLBhxI3Bdl507d5LP5ykUCpHHrdMBNZp3OZVKJQpNlMtl0uk0g4ODZLNZ5s9YwF/Pvpifrf4ZO4Z3YFdssqkM9DO91QAAGQdJREFUZatMtWyDErhnuRw5YSrz58ynrbWN3I42Nv/nK3zor75Ax/jJ9PX1kU6ncRyHWCwWGekwPzmVSjE4OBgt3Mlmsw2Zxx2mA8bjfrgonCCsNdBNTU0cbEPzT33qU9xxxx0888wz0ZhpmuRyuRHpgOAv3NEet0bzLqa5uZmhoSHA/8GHq/HCmG2pVOLsk86mMDhIcyJBebCPtx/8JpWu10hNmsKxX/oH7HgcE9i5Yzs71mwjmR7P1CNnMNTfT2s2i+04dD31I1764UOIeIpjz/8bjjlzPq3t7XieR0dHB8Vikfb29iiPudGoVqtkMhksy6KpqSlaxZhKpaJzbNsmmUxGmScHwgUXXAAwYqJTKUWpVCKdTkfjiURihFe+PxpT2xrNnzmlUilazVcul8lkMlHecPjeveYFxJa32Pj0D4g3pXn/V1aAEUeYBt7OHby29EY8YSArEvnaWsa//2Q2Pv4Am5//FdbwEJmp03nvhZdx3leXIV2H3z/3LA9/8jISLa3M/1/Xkpk4maM6OykUCjQ1NUWTpY1EbfxeKRWFeH7yk58wceJEhoeH2bRpE6tXr37HQqTR0NXVxSmnnEJXV1d0vYsuuiiaE6hNPTyQeQFtuDWaBiSZTI6Icdu2TSqVwnEcUqkUO5//OZuWLWXqpZ/mfTf8H4SA0obXCG2DEoLjly5HCajs2E7rb/8vtm1jCoNZi2+AWJxq2cIuW1h9PUilOOqU2Rx5yhwK/f38281fJjf1SK782l005XIN63HH43Gq1SqGYURL+YUQIzzku+++m7vvvvugPv+6665j27ZtLFu2DPDnJr74xS+STCaRUpJIJKKbxYHoUGeVaDQNSJjNUbsAREqJEILeX/+MN+66lWmXf4bc0e+hunUj1S2bEJUSolKCSgnKJcpvvo71xmu4w4OMnzOXyaf/JS1HTqfcu4PS1s1U+nbilkq4ZQvHsqgOF6kMFTBNk7+84hMMbd7MvZ//XJTG1oiEaZVhvDk0pMuWLTvouPbuhEYb/O9t6dKlFAq+HovFIuVyOaqDMlo9NuZtUqP5MyfM6hBCRCv5LMtC9HXT/ZOHOfLCj5Fs60AW+jAwECJYEQgIQKJA+ttIhW0V8ZTCleBJhVQKqfxtN3yXCg+J40Ei2cTpl3+cJ76+gm9+6pNc/8j366uQgyRcvp5KpRgYGEApxbe+9S2+9rWvjQiNtLa2YprmiLTIgYGBPX5mS0sL8Xg8upFKKaNzlVLce++9mKbJLbfcEmWqeJ53QOmA2uPWaBqQMKYdVp4rFArkW1rYsXYNuY6JpPPtyOIgVCxEtYhRtTCrJYyq5b9C77tcgkoRyiWkVUJZRTyriGsVcUvD2KUiTnEYuziMXRqmOuy/V4pDSNfhQ1d9moEtWxju6am3Sg6K4eFh8vk8tm2TzWb57ne/y1e/+tURi2+OO+44Vq9ezZYtW3jzzTfp6elh1apVzJ49+x2fN3PmTJ577jm2bNnC2rVr2bJlCy+++CInnHBCdI7neXz729/mjjvuYNu2bZRKJcD3/kfrcWvDrdE0IGFBomQyied5flpbYZDB3/wMoymFMzwAFQtVtqDiG2qjahGrljCrFqJiQdWKzvGsEqpsIcslZNlCWhauZeFaRRyrhB2+l0rYpSJ2qUi1VMSp2MTTGX79aGN63E1NTViWRSwWo7u7m5tvvnnE8fe9732sXLmStra2KBY+NDTEuHHjWLZsGZ2dndG5yWSS66+/ns7OTqrVKtlsFsdxmDBhAvfddx9z5swZ8dnLli2jVCpFHaF0OqBG8y4nDI2A/4O3bZukIaj88fe0LzgXWS7hGQamIXz3zADTMDEMkAqEVCAVSiqUlChPISV4UiIluFLhSIWjJI7nh1BcKf0xqXC9YFvBxGlH4fyJ4sGHG8dxaG5uplKp8NnPfjbKLgnZvn07N9xwA57nceyxx/LNb36TVCqFZVmcdNJJLFy4kDfeeAOAhQsXctZZZ2HbdnRDuPXWW1mzZg1SSjZt2jTi2kIIvvCFL/CjH/2IRCJxQKmG2nBrNA1IbfpalNJmCJT0kBUL1wDDMJGGQBkCDIEyBYSGSYKSCikl0vPfXQmuJ3EVOK7EVX5c2/akb8g9iSslthQ4nsKREseTVErFeqvjoAkbGMRiMe677z5+85vfcPnll0fH+/v7+e1vf8sxxxzDbbfdhmmaWJZFMpmkWq2OyATJZrOMGzcuyvJJp9PcfPPNLFq0iNWrV7/j2t/4xje47LLLRjSwGC3acGs0DYht29FKRc/zSKVSVAqDeCWLSvc2mnIteIaJYQqEAcIUIAwkBhKFqxSe9A2y64VetcJVEtsDJ/SoPX8yslwuU3UcSDZhSxUYbnCkR9WyaMycEkYUdTJNk+eff/4d58ycOZPHHnuMTCZDLBbj2Wefpaenh3w+zwknnMCVV16J67p84AMf4IUXXmDjxo00NTVx4YUXkkqleOKJJzj33HN55ZVXRnzu7373Oz760Y9GHv6BZOZow63RNCCpVIqenh6EEKTTab8PYjaDVDD0+nrMzmMRTSkwjMDTDjJJHBeRTOEp6Rte16W0bTOVUomKJ7E9RdVVVKVH1YV4+wTI5qhYZaq2jXA97OA8Ryps12PTunXMmD1n/0KPUcJOP8VikZUrV3L++eezYcMGNmzYABClB955550IIejr6+Paa6/l1FNP5fHHH+eiiy6KyrN+5jOf4fHHH2f58uWAX5dk6dKlI4zylClTWLBgAQ8//DBLliyhubl51FUBQ7Th1mgakLBZb7hYJJvNMlwc5rgl/8j6r3wRb22Jjvcej0om8AyBJ0BULeTgAOaEyUjXY7hrPZ6rqFSrVB2HqiepulB2PaqupOJJnB3bcDBR6RbMljzKquCaMRwPbE/StfZVjEQzx50+r94qOSjCxr6pVIpUKsWLL75IR0cHH//4x6NzXn/9dTZs2MDzzz/PJZdcwlVXXUVbW1uU7ud5XtQ8wfM8MpkM5513Hvfffz8rVqxg48aNUT0SgHw+z4oVK7jmmmuYPn161HXoQBbgaMOt0TQonudFfR99r9FEZFtxXIlRKtH/+5dpmXEshudiSg/hVHF6t8L2LX6utgRHSmzpe9C263vRHkHutgK7alNxPCqFYaqbN1PxJG48SXriZLZt3MTwsMW0Oe/h+DPOqLM2Do6wsW+1WqWtrY3W1lY2b95MpVKJFjWB73W/9dZb3Hbbbaxfv54nn3yS733veyilaGpqitIHjz/+eK6//npuvPFGHnvssXeEPwzDoFwus337dmbOnBkt8onH41QqlSjDZH+M2nALIUxgFbBVKXWuEGI68CjQDrwEXKGUsoUQSeBfgFOAPuASpdTG0V5Ho9Hsn3Cpdmi8w/KqRUCmUtjVCjgupcEBKA0hisMYhsBAoFB4SiKVb7hdSRCz3hW7dsP4t/Tj4VIqPKXwJHiOQ3FgkIpVxkymUKpx6m/vTiaTibqxDw4OkkgkePPNNzn11FM5++yzGRoaiiYwV65ciVKKp556irlz57JkyZKo2306nUYpxXXXXcdDDz00wmgvXrw48sjD4mBdXV1MnjyZXC6H53lRJspoORCP+++A14BcsH87sEIp9agQYiVwFfCd4H1AKTVDCHFpcN4lB3AdjUazH6rValTBzrIsmpub/TKrM/8HracvpPvnP0Hiovr6iAmJ4UqEIRCB4ZaqxhAr5ce2PTXCgLs1k5eu8icsPaVwHUV1oIBUYKZSnHfD30c1UhqNMORk2zYtLS0opZg3bx7z58+nUqlEnWkMw6Czs5Nrr70WgLvuuosvfelLUTqhbdvRKsnly5dHRvuWW27hc5/7HKlUKlrlmkqlqFQqUVVHIOoWP9rSuKNagCOEOAL4CHBvsC+A+cDjwSkPAhcG2xcE+wTHF4hGvR1rNGOUdDpNsVgcUUu6paWFqjDJHTUDV0LVkZStMuWyjeVJyq7Ecv33siupuL6xLjvKn5iUEjtI/3OUoioVrqdwlcAOPG5HSox0xg8lJJpwXJe5Hzq7IduWgV8et1aHYchjaGiIpqYmhoaGou72M2fOjP7Odd2ol2SlUiEej49oAhzS2dlJa2sr8XgcwzDI5XKUy2VaWlqi+iihp30g9cxH63HfBdwAZIP9dmBQKRUu5t8CTAm2pwCbAZRSrhCiEJy/c9RSaTSafWJZFtlsdsR2oVAgm81iTOvEGDeZyo4tOMrGRGAaBJUBfV9NqZFed7i4JsoW8TwczzfetgzzuRWuB5WBQaSA9y84i1RbO729veTz+UieRiKs8xLmUYdzBrFYLGoCrJTCNM0Rk4dCiCjvOqxhUvsKCbvBh2OO40R53mGIK4yj105g7o/9etxCiHOBHqXUS6P+1FEghPhbIcQqIcSqP1UVLo3mz4Uw7loul6MJr/Cx/qjTziQ15UjKnqQSZIf4Hrak4rpUXJey61F2vV3HIyMdTFR6ys/nDo15kOftSD+E0jFtOn9ct55zP7+YXC7XkN1vYFcqYGica3O6wwqMYfXF6dOnj2iM8Itf/AIgCpGE8e++vj7Ab1l2/PHHR8fCrBPDMPA8b8TfwZ8+j/s04HwhxIeBFH6M++tAXggRC7zuI4CtwflbganAFiFEDGjBn6QcgVLqHuAegAkTJjRq/r5GUxfCH3744w8zIEKDM+vvv8pTHz+PcrmIKYQ/Mal8r1sBEpBhFUAUrutnkvjGWeJ6YEvfmDtSBtknvgFPZnOMn/Fexs2YQdukSVG7r0YkbBKcy+UoFAokEgni8XjUSai/v59sNotlWeTzeebNm8cTTzxBqVRi8eLFTJ06NTLsAFu2bIkqAZ5yyilMmjQpqpMe1pQZGBiIOsuHrcts2/7TpgMqpW4CbgIQQpwJXK+U+pgQ4ofAxfiZJVcCTwR/8mSw/1/B8edUoxbr1WjGKJ7nRT/08JHesiwSiQTlcpn80cfQfOR0eta/jCEMzKikq0RhoETgAQaTk55UQQnXsB6JiDxtR0oqnh8ysaVHNpfHSCSYfsIJZPN5hoaGMAyjIb3usDpgpVIhn88jpcTzPNra2qK2bOVymWw2i1Iqqg8D0NvbS29v714/O3wKCmtvG4bBwMAA6XSa/v7+KIYehl3CZsGj4b9THXAJcK0Qogs/hn1fMH4f0B6MXwvc+N+4hkaj2QPpdJrh4WGKxSKxWCzKR7Ysi/b2dizLYtG3vkfVkVRdj7LjBeER5b/bkrLjh0+qYRjFU5Q9qLiCiiuxPUnV88cdT2K7Hq1TjqTztHmkmtMsvPRShoeH6ejoaNjJyWw2y8DAAIlEgoGBgSivOmyAvHPnTkzTZGhoCMuymD17NlOnTt3v506cOJGzzjoruiEkk0kMw4j6gXZ0dESZLOl0GuCAdHhAhlsp9Wul1LnB9h+VUnOUUjOUUh9VSlWD8UqwPyM4/scDuYZGo9k/5XKZ5uZmmpqaoiL84QrAQqFAKpVCxRKccMWnfUPt+YbbcnbFtv3sEs+Pf3uqxoj7y9qrrqQaxbsVuYlTOHrWHLZt3MgHP/lJCsNFmpqaGBwcHNHqq5GwLCvquJ7L5aKUxnw+H4VHPM8jnU6TSqU47bTTePDBB8nn83v9zEQiwb333suZZ55JMplkeHgYx3FQSkXZKgMDA37efdABBzggHep63BpNA5JMJnEcJ8pSKJfL0Qq+TCbjNwZobaNj7hkY4yZRdhWWK7E8PyVwV1qg2rXtSSqO53vZrp8iWPU8bKlI5FoYP6OTvp5urOEiR594Itlslmq1SjqdPqDKdmOJVCpFqVQiFotRKpWidMDwJjg8PIxpmlQqlagn5cyZM1mzZg0PPPAAuVyObDZLLpcjl8uxYsUKNmzYwNy5c8lms9i2TXNzM7FYLKorE5YocF2X5ubmEfW4R4te8q7RNCC1S7HDjIja2hnhpOX0OXOZ9YlP89yKO3GsUvT3KliIo5Q/SekRxrvxy7lGC3AkqbYOMhMmYZXLJJMpbn/2mUiG2knRRqS2vVhIbXuy2mNh+VzDMBg/fjyLFi3i7bffxnXdaGUkEM03hPW1pZRR9kjtdwT+/ERt1slo0YZbo2lAPM+LUtVCw+m6LoZh4DhO9J5IJJh31WfxlOKn//srqBEGys8w8RR+Tne4rF3tqsvtKoHhKQoDA0ybNIlP33knRlAJr1qtRjnJQoiG7PRea3TD1Y3ge+JhuVwY6Q2Hx2oXztSm9DmOQzwejzJFHMeJ/ta27ehY+J3V3ihGiw6VaDQNSJizXalUouL+4VjYtTx81DcMgzmXf4KLv/YNjjhpth/PDl5TZs0hNWEiFU8GL0XnGWdSlfhL4CVUrDInf+iDfPKf/onm1laSySRSSjKZDNVqlUwm05AZJUBkWMPFMKHxrDW64VL10AMPK/mFYZUwN1sIgWEYxOPxqJmzlJJYLBYdj8fjuK474lh4wzuQp5bGu0VqNBoA2traAP8RvqmpCSFENNba2ooQgsmTJ0fH53/ifzLvo5fg1XiAZjyOlB7S2+WJxxIJnJpmuQCJVIpEKhV5h7lcDiEE7e3tDZvDDf4NMJlMjtAh7AqXhMdqCbux7+lYyL7i1gcT094dbbg1mgYlXPQBu6rz7e/dzGRG9dmpIEVtd/b2uY1KuIgp3K4d331sNMcOFzpUotFoNA2GGAuLGltbW9UVV1xRbzH2SrVajVZRjVUKhQKxWCxK5h+LdHd3093dgVJjNwMhn9/KUUdN2f+JdcLzPPr6+hg/fny9RdkrpVIJz/PI5XL7P7lO9PX1kclkRr1SsR489NBDDAwM7NGtHxOGWwjRC5QYuxUEO9CyHQxatoNDy3ZwvNtkO0opNW5PB8aE4QYQQqxSSs2qtxx7Qst2cGjZDg4t28Hx5ySbjnFrNBpNg6ENt0aj0TQYY8lw31NvAfaBlu3g0LIdHFq2g+PPRrYxE+PWaDQazegYSx63RqPRaEZB3Q23EOIcIcQGIUSXEKLuTReEEBuFEGuFEC8LIVYFY21CiGeFEG8E762HSZb7hRA9Qoh1NWN7lEX4fCPQ46tCiJPrJN+tQoitgf5eDlrehcduCuTbIIQ4+xDKNVUI8SshxO+FEOuFEH8XjNddd/uQre56C66VEkK8KIR4JZDvK8H4dCHEC4EcjwkhEsF4MtjvCo5Pq4NsDwgh3qrR3YnBeD1+E6YQYo0Q4qfB/qHR2+7diQ/nCzCBN4GjgQTwCnBcnWXaCHTsNnYHcGOwfSNw+2GS5QzgZGDd/mQBPgz8ByCAvwBeqJN8t+K3t9v93OOC7zcJTA++d/MQyTUJODnYzgJ/CK5fd93tQ7a66y24ngAywXYceCHQyQ+AS4PxlcDngu3PAyuD7UuBx+og2wPAxXs4vx6/iWuBR4CfBvuHRG/19rjnAF3K76Zj4/evvKDOMu2JC4AHg+0HgQsPx0WVUs8D/aOU5QLgX5TPb/GbOU+qg3x74wLgUaVUVSn1FtCF//0fCrm2K6VWB9vDwGvAFMaA7vYh2944bHoLZFJKqWKwGw9eCpgPPB6M7667UKePAwuEODRFPPYh2944rL8JIcQRwEeAe4N9wSHSW70N9xRgc83+Fvb9n/hwoIBnhBAvCSH+NhiboJTaHmzvACbUR7R9yjKWdLk4eDS9vyasVBf5gkfQk/C9szGlu91kgzGit+Bx/2WgB3gW38sfVEq5e5Ahki84XsDvQXtYZFNKhbr7x0B3K4QQ4Tr2w627u4AbgLDUYjuHSG/1NtxjkdOVUicDi4AvCCHOqD2o/GebMZGKM5ZkqeE7wDHAicB2YFm9BBFCZIB/A76olBqqPVZv3e1BtjGjN6WUp5Q6ETgC37s/tl6y7M7usgkhjgduwpdxNtCG38j8sCKEOBfoUUq9dDiuV2/DvRWobZl8RDBWN5RSW4P3HuDH+P9xu8NHrOC9p34S7lWWMaFLpVR38OOSwD+z67H+sMonhIjjG8Z/VUr9KBgeE7rbk2xjRW+1KKUGgV8Bc/HDDGEZ6FoZIvmC4y1A32GU7Zwg/KSU37D8e9RHd6cB5wshNuKHfOcDX+cQ6a3ehvt3QGcw85rAD9I/WS9hhBBpIUQ23AYWAusCma4MTrsSeKI+EsI+ZHkS+EQwk/4XQKEmLHDY2C2GeBG+/kL5Lg1m06cDncCLh0gGAdwHvKaUWl5zqO6625tsY0FvgRzjhBD5YLsJ+BB+HP5XwMXBabvrLtTpxcBzwdPM4ZLt9ZqbscCPIdfq7rB8r0qpm5RSRyilpuHbseeUUh/jUOntUMysHsgLf+b3D/hxtC/XWZaj8WfwXwHWh/Lgx55+CbwB/AJoO0zyfB//sdnBj49dtTdZ8GfOvxXocS0wq07yPRRc/9XgP+ekmvO/HMi3AVh0COU6HT8M8irwcvD68FjQ3T5kq7vegmu9H1gTyLEOuLnmt/Ei/uToD4FkMJ4K9ruC40fXQbbnAt2tAx5mV+bJYf9NBNc9k11ZJYdEb3rlpEaj0TQY9Q6VaDQajeYA0YZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGgxtuDUajabB0IZbo9FoGoz/D3T+NYP8qlB8AAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "width, height = 8,8\n", + "m = Board(width,height)\n", + "m.randomize(seed=13)\n", + "m.plot()" + ] + }, + { + "source": [ + "## 行动与策略\n", + "\n", + "在我们的例子中,彼得的目标是找到一个苹果,同时避开狼和其他障碍物。为此,他可以四处走动直到找到苹果。因此,在任何位置,他可以选择以下行动之一:向上、向下、向左或向右。我们将这些行动定义为一个字典,并将它们映射到对应的坐标变化对。例如,向右移动 (`R`) 对应坐标变化对 `(1,0)`。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "actions = { \"U\" : (0,-1), \"D\" : (0,1), \"L\" : (-1,0), \"R\" : (1,0) }\n", + "action_idx = { a : i for i,a in enumerate(actions.keys()) }" + ] + }, + { + "source": [ + "我们代理(Peter)的策略由一个所谓的**策略**定义。让我们来看看最简单的策略,称为**随机游走**。\n", + "\n", + "## 随机游走\n", + "\n", + "首先,让我们通过实现随机游走策略来解决我们的问题。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "18" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "def random_policy(m):\n", + " return random.choice(list(actions))\n", + "\n", + "def walk(m,policy,start_position=None):\n", + " n = 0 # number of steps\n", + " # set initial position\n", + " if start_position:\n", + " m.human = start_position \n", + " else:\n", + " m.random_start()\n", + " while True:\n", + " if m.at() == Board.Cell.apple:\n", + " return n # success!\n", + " if m.at() in [Board.Cell.wolf, Board.Cell.water]:\n", + " return -1 # eaten by wolf or drowned\n", + " while True:\n", + " a = actions[policy(m)]\n", + " new_pos = m.move_pos(m.human,a)\n", + " if m.is_valid(new_pos) and m.at(new_pos)!=Board.Cell.water:\n", + " m.move(a) # do the actual move\n", + " break\n", + " n+=1\n", + "\n", + "walk(m,random_policy)" + ] + }, + { + "source": [ + "让我们多次运行随机游走实验,看看平均步数:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 32.87096774193548, eaten by wolf: 7 times\n" + ] + } + ], + "source": [ + "def print_statistics(policy):\n", + " s,w,n = 0,0,0\n", + " for _ in range(100):\n", + " z = walk(m,policy)\n", + " if z<0:\n", + " w+=1\n", + " else:\n", + " s += z\n", + " n += 1\n", + " print(f\"Average path length = {s/n}, eaten by wolf: {w} times\")\n", + "\n", + "print_statistics(random_policy)" + ] + }, + { + "source": [ + "## 奖励函数\n", + "\n", + "为了让我们的策略更加智能,我们需要了解哪些动作比其他动作“更好”。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "move_reward = -0.1\n", + "goal_reward = 10\n", + "end_reward = -10\n", + "\n", + "def reward(m,pos=None):\n", + " pos = pos or m.human\n", + " if not m.is_valid(pos):\n", + " return end_reward\n", + " x = m.at(pos)\n", + " if x==Board.Cell.water or x == Board.Cell.wolf:\n", + " return end_reward\n", + " if x==Board.Cell.apple:\n", + " return goal_reward\n", + " return move_reward" + ] + }, + { + "source": [ + "## Q-Learning\n", + "\n", + "构建一个 Q-Table,或者说是一个多维数组。由于我们的棋盘尺寸是 `width` x `height`,我们可以用一个形状为 `width` x `height` x `len(actions)` 的 numpy 数组来表示 Q-Table:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "Q = np.ones((width,height,len(actions)),dtype=np.float)*1.0/len(actions)" + ] + }, + { + "source": [ + "将Q表传递给绘图函数,以便在板上可视化该表:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXhU5f3+8fczk8m+BwIYBGQRZIkoiKIsIm6tuwVEZSkiqC1SXHAB259VYhUVqrUVUURA3FGwFLQKrsAXxJZNBQIkICEEkpBl9plznt8fmaRESEBJODPh8/LKlcmZ5dwkmduT5yyP0lojhBAictisDiCEEOLnkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMI1W3EqpK5VS25RSO5RSDzXWeoQQ4lSjGuM4bqWUHdgOXAbsBb4BbtZaf9/gKxNCiFNMY21x9wF2aK13aa39wFvAdY20LiGEOKU0VnFnAT8e9vXe0DIhhBAnKMqqFSulxgPjARwOR6/s7GyrohyTz+ejsrKSZs2aWR2lTmVlZTgcDhISEqyOUqfCwkIyMzOx2+1WR6nTnj17aNOmjdUx6hQMBjl48CCtWrWyOkqdnE4nwWCQ1NRUq6PU6eDBgyQnJxMTE2N1lDp99913eDweddQ7tdYN/gH0BT4+7OuHgYfrenxmZqYOZ7m5uXr27NlWx6jXBx98oFevXm11jHo9/vjjurS01OoYdTJNU0+YMMHqGPUqKSnROTk5Vseo19dff60XL15sdYx6zZo1S+fm5lodo16hXjxqZzbWUMk3QCel1BlKqWhgOPBhI61LCCFOKY0yVKK1DiqlJgAfA3bgVa31d42xLiGEONU02hi31noZsKyxXl8IIU5VcuakEEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsI02eLOy8urvhZ4WDIMgz179lgdo14ul4uDBw9aHaNeBw8exOVyWR2jXnv27MEwDKtj1ElrTV5entUx6uX3+9m3b5/VMepVVlZGWVnZSVmXZTPgNJZt27bx1VdfsXnzZnr06EHPnj3p3bu31bFq+fzzz9m2bRvbtm2ja9euXHnllbRu3drqWLW8/fbbFBQUUFFRQevWrRk5cmRYzRbi8/lYsGABe/fuJSkpiaysLIYPH251rFoKCgpYvnw533//PZ07d+bMM89k0KBBVseqZf369WzYsIFNmzaRnZ1Nv3796NKli9Wxalm6dCn5+fkUFBTQoUMHhgwZElaz62itmTdvHoWFhQC0atWK0aNHo9TRJ69pCE1ui/urr75i7dq1/OlPf2LXrl188MEHVkc6wpw5c3C73TzwwAMsX76cLVu2WB3pCI899hjdunXjhhtu4K9//Stut9vqSLV4PB5mzpzJ9ddfT/fu3XnsscesjnSE7777jmXLljF58mS8Xi+vvPKK1ZGOsHjxYnbt2sWjjz7KunXr+Oqrr6yOdISnn36ajIwMxo4dy4IFC9i/f7/VkWoxTZNp06YxYMAA+vfvz7Rp0zBNs1HX2aSKOy8vj82bNxMTE8O1117LQw89RGxsLKtWrbI6Wo1FixbRt29fPvroIx555BH+/ve/s3DhQsrLy62OVmPKlCn85S9/4aGHHmL16tUsXryY22+/3epYtdx+++1MmTKFMWPGkJqayt///ncefvhhq2PVqKioYP78+XTv3p2rrrqKkSNH0q9fP9577z2ro9VYvXo10dHR7Nq1i9GjR/Pkk0+yZcsWdu3aZXW0Gs8//zx33XUXzz33HPPnz2fBggVMmTIlrIaexo8fzzPPPMOECRMoLS3lvffeY/z48Y26ziY1VNKuXTt69OjBzp07Wb58OfPnz8fr9XLhhRdaHa3GjTfeyOjRo7ntttu4/PLLeeCBB7jllltITk62OlqNadOm0bNnT+bNm0daWho33XQTy5aF15wYL7/8Mpdffjnvv/8+FRUV3H777WzcuNHqWDWSkpIYNWoUb7/9Np9++ikrV65k1apVLFiwwOpoNfr27cuyZcu48MIL+e1vf8tTTz1F9+7dOeOMM6yOVuPuu+9m0KBBPPnkk3Tu3Jnx48fz1FNPYbOFzzbnSy+9RHZ2Nu+//z5Q9R7ftGlTo66zSRW3UoqePXuSl5fHc889h9fr5eKLL27UsaafSynFNddcw8aNG9m2bRuZmZl06NAhrDLabDZGjRrFBx98gM1m49JLLyU+Pt7qWLXExsZy+eWXM2/ePEzTZNSoUWH1ZlZK0b59e1q2bMkLL7yA3+/n2muvDaufs1KKgQMH8vnnn/Pcc88B0LNnz7DLeOutt/Lpp5/yxRdfkJ2dTfPmzcMqo81mY9iwYbz55psADBs2rNF/F5tUcQP07t2b3r17s2rVKi688MKw+gFXGzp0KDfccAPffvst559/vtVxjur++++npKSE0tJSOnXqZHWcI8TFxZGTk0Nubi5paWk0a9bM6khH6NixIzk5Oaxbt45zzjkHh8NhdaQjXHbZZVx66aWsXr2aiy66yOo4RzVu3DhcLhc7d+4kOzvb6jhHsNlsPProo+zduxfgpBxo0OSKu1q4/hJWi4qKCtvSrpaRkUFGRobVMeoVjv9T+ak+ffpYHaFeSqmwf78kJCSEZWkf7mQeGRY+f1sKIYQ4LlLcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWFO6JR3pVQ+UAkYQFBr3VsplQ68DbQD8oFhWutDJxZTCCFEtYbY4h6kte6pta6eZuYhYIXWuhOwIvS1EEKIBtIYQyXXAfNCt+cB1zfCOoQQ4pR1osWtgX8rpb5VSlVP+dBCa10Yur0faHGC6xBCCHGYE72saz+tdYFSKhP4RCm19fA7tdZaKXXUqdZDRT8eIDExkdzc3BOM0nj27t1LWVlZWGcsLi7GNM2wzuhyucjLy6O4uNjqKHXy+/1h/T2sqKjA5XKFdcb9+/eH/fulrKyMH3/8Ea2PWk9hob55K0+ouLXWBaHPB5RSHwB9gCKlVCutdaFSqhVwoI7nzgZmA2RkZOjPP//8RKI0qrKyMvbu3Us4Z9y5cyfx8fGUlJRYHaVOxcXFrF69Oqxmi/8pp9MZ1j9nr9fLmoNrWPL5Equj1Cm+MJ7BnsGNPmHuiSgoKODbb79lx44dVkepU73fP631L/oAEoCkw26vBq4EngYeCi1/CJh+rNfKzMzU4Sw3N1fPnj3b6hj1+uCDD/Tq1autjlGvxx9/XJeWllodo06maeoJEyZYHaNeJSUluldOL00Y/9fy65Z68eLFVn+r6jVr1iydm5trdYx6hXrxqJ15IlvcLYAPQlODRQFvaK0/Ukp9A7yjlBoL7AaGncA6hBBC/MQvLm6t9S7g7KMsLwEGn0goIYQQdZMzJ4UQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3IsWLQrraYn8fj9Lly61Oka9CgoKWL9+vdUx6vXtt99SUFBgdYx6LV26FL/fb3WMiFZeXh7WMxMBbNu2jW3btp2UdZ3onJNh5/PPP2fOnDn07duX0aNHc8011zB06FCrY9Uya9Ys1q5dS8+ePRk5ciSTJ08mOzvb6li13HvvvRiGQVpaGs8//zwvvvgiCQkJVseq4Xa7ufPOO2nfvj1lZWUopZg5c6bVsWrZvHkz06dPp3fv3txxxx306dOHu+66y+pYEScnJ4c9e/bQvn175syZw1NPPcVpp51mdawapmkyfvx4mjVrhtaakpISZs+ejc3WeNvFTWqL2zAMtm3bRteuXbnpppu4+uqr2bhxI8Fg0OpoNfx+P2vXrmXo0KGMGDGCrKws8vPzw+qvA4/Hw9dff81dd93FnXfeWTP5azipnux1zJgx3HvvvaxatQqPx2N1rBpaa3bv3k2zZs24+eabue222/i///s/2fL+mXw+H1988QXjxo1jzJgxKKUoKioKq/eL2+1m48aNjBs3jokTJ7J582bcbnejrrNJFXdBQQHbtm2jqKiIUaNGcemllxIdHc1//vMfq6PV+Pe//03Pnj2ZM2cOjz/+OHfeeSf//Oc/qaystDpajRkzZnDPPffwu9/9juXLlzN9+nSmTp1qdaxapk6dyogRIxgzZgwHDx7kj3/8I88++6zVsWo4nU4WL15McnIyw4cP56yzzqJXr158/PHHVkeLKPPnz+fmm29m6tSpvPrqq0yZMoUZM2aE1UTEU6dO5Z577mHcuHFs3ryZZ555ptHfL01qqKRNmzZ07dqV5cuXM2fOHB588EEyMzPp06eP1dFqXH311YwcOZJOnTpx5513cvvtt3P//feTnJxsdbQaU6dO5ayzzmLKlCm0bduWoUOHsm7dOqtj1TJz5kx69+7Nq6++yg8//MC0adPYunWr1bFqJCUlMWzYMKZPn86rr77KjBkz2L17NxMnTrQ6WkQZN24cAwcO5IYbbmDQoEGMGDGC119/HbvdbnW0GjNmzKB9+/a88MIL+P1+7rjjDnbt2tWo62xSxQ1w5ZVXcvrppzN58mRuvfVWOnToYHWkIzzwwAPk5+czbdo0Jk+eTK9evayOdISXXnqJ7du3s2LFCl544QUSExOtjlRLQkICf//731m5ciVZWVnMnj3b6khHOPfcc5k8eTI5OTlce+21DB8+3OpIEenpp58mLy+PefPmkZOTQ+vWra2OVIvNZmPOnDls2rQJgDlz5jTq+DY0weJu3bo1rVu35oILLiA5OZnQLPRhpUePHnTv3p2BAweG1Zb24QYMGEDfvn0JBoPExcVZHecIDoeDK664ggEDBhAVFYXD4bA60hGaNWvGFVdcQd++fUlKSgrL38VI0KdPH3r16sVVV10VdhsQAEopLr30Uvr37w9ATExMo6+zyRV3tZSUFKsj1EspFbalXc3hcIRlIR4uHP+n8lPh/nOOBHa7PSxL+3Ano7CrNamdk0IIcSqQ4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCHLO4lVKvKqUOKKW2HLYsXSn1iVIqN/Q5LbRcKaWeV0rtUEptUkqd25jhhRDiVHQ8W9yvAVf+ZNlDwAqtdSdgRehrgF8BnUIf44EXGyamECKSyOn9jeuYxa21/hIo/cni64B5odvzgOsPWz5fV/k/IFUp1aqhwgohIkM4XS+7KfqlY9wttNaFodv7gRah21nAj4c9bm9omRBCiAZywjsnddX/Wn/2/16VUuOVUuuVUuvDaeYSIYQId7+0uIuqh0BCnw+ElhcApx/2uNahZUfQWs/WWvfWWveOhCu8CSFEuPill3X9EBgNPBn6vOSw5ROUUm8B5wPlhw2p1MkwDBYvXvwLozS+4uJidu7cGdYZt2zZwu7duykqKrI6Sp3279/PRx99FNaXYq2oqAjrn7Pb7SahMIH2i9tbHaVOSflJbHFtCetx7l27dhEVFcWWLVuO/WCLGIZR533HLG6l1JvAxUAzpdRe4P9RVdjvKKXGAruBYaGHLwN+DewA3MCY4wno9yvuuqvFsR9okfh4k9Gj42nRInwz7t69m1mzUigrC9+MHTvGcP31zcNqtvifioqKCuufs9Pp5LyY83iyxZNWR6nT1kNbqbRVhvX3MT4+nifSn8DdonEn9T0RflX3xNLHLG6t9c113DX4KI/VwO+PO1nN82zs39/35z7tpElJ2UGrViX07Ru+GYuKiigraxHW38fWrVfQq1cv0tLSftHzg8Egs2bN4oknnqi1fPbs2fz6178+4emitNa88cYbYf1zLi0t5ZtvvgnrjKZpUlxcHNYZN23aREmPEso7llsdpU6JtronjmiyM+CIpsXv9/Pqq68yceLEI/4Ev/baa/nwww+58soriYqSX2nR9Mkp7yLsBQIBZsyYwaRJk446bqq1ZtSoUSxYsIBgMGhBQiFOLiluEfZsNhuLFy/G5/PV+ZhDhw6xcuXKRp9dW4hwIL/lIuxt2bKFgwcPHvNx+fn55OXlnYREQlhLiluEPYfDcVxj18f7OCEinRS3CHudOnUiKSnpmI9r0aIFWVlyhQXR9Elxi7Bnt9vJycnB4XDU+ZjmzZszadIk7Hb7SUwmhDWkuEXYs9ls9O/fn/PPP/+oW9Tt27fnwgsv5Nxzz5XLiYpTghS3iAhxcXHMnz+fDh061CpnpRTdu3dn3rx5Mr4tThlS3CLsaa0JBoOMGzeOL7/8stax3FprPvzwQ+6++2601mF9fQwhGooUtwhbWmsMw2DDhg1cdNFFrFixos7HvvHGG1x33XXk5uZimqYUuGjS5G9LEZa01rhcLt544w1ee+011q9fX+/jDcNg2bJlaK256aabuPnmm7Hb7TLmLZokKW4RdrTWmKbJww8/zAsvvHDczzNNk2XLlvHRRx9RUFDA5MmTsdlsUt6iyZGhEhF2/H4/d999N7NmzfrZz60eXnn88ceZPn26XLtENElS3CKsuFwuHn74YV566aUTKl23280TTzzBnDlzCAQCDZhQCOtJcYuwEQgE+POf/8zMmTMxTbNmeVRU1HFdPCoqKqrWCThOp5O77rqLWbNmyc5K0aRIcVvE4/GQk5NjdYywMmXKFJ599tkjlo8YMYIzzzzzmM/v378/gwcPPmJM+6GHHuK5555rsJw/1xNPPIHbHb4zrWitmTJlitUx6rV///5fNHTWVElxW+Dee+/l4osvJjs7m7POOosvvvjC6kiWCgaD3H///Tz//PO1trTj4+O5/vrrmTFjBunp6fW+hlKKNm3asHDhQpYtW0Zi4v9mD3G73TzyyCP8/e9/r/X6je2rr76iS5cudO/enUsuuYRJkyadtHUfr2effZbs7GwuvfRSunbtyltvvWV1pCPcdNNNjBkzhujoaDp37szOnTutjmQ5Ke6TrKCgAMMwmDx5MllZWUyZMoXt27efsuOwWmvWrFnDhx9+iN9fNceeUorOnTuzcuVK3nrrLVJTU4/79Zo1a8Zll13GG2+8Qdu2bWu2vl0uF6+99hq5ubknZdgkEAiwbds2br75ZhITE3nnnXcwTZOCgoJGX/fxKikpoby8nHvvvZfY2FhmzpxJQUEBLpfL6mg1du7cSXx8PBMnTuSCCy5g3LhxbNiw4ZQf+pLiPskKCwtJS0tj8+bNbNiwgbZt27J3795T+uiHQCBQa0u4R48e/PWvf6V3797ExMT87MP57HY7l112GTk5ObRp06ZmeTAYrHfm7IYUDAb58ccf0VrzxRdfEB0dTXp6OoWFhSdl/cejtLQUm81Gfn4+69ato2XLllRWVoZVce/atYt27dqxZs0atm7dSufOnfnhhx+kuK0OcKrp3bs3u3btYs2aNZx77rmMHTuWvn37EhcXZ3U0Syil6NOnD48++igZGRmcc845LFiwgEsuueSErvQXGxvLjTfeyDvvvEOLFi3o1KkTjz32GO3btz8px3XHxcVx0UUX8frrr3P99dczevRocnNz6d27d6Ov+3h16tSJYDDI8uXLufrqqxkxYgRZWVlkZmZaHa3GZZddxsqVK8nPzycxMZG77rqLIUOGnPIzHckJOBZ48cUXKSsrY8qUKaxbt67WeOypKDExkZtuuqlmst+fDo2YpnnMsenqk3a01jXFHBcXR58+ffjuu+9QSpGcnHxSL0Q1aNAgvvnmG+69917mzJnzi2e3b0xTp07lnnvuYfz48Xz55ZfEx8dbHekIS5cuJT8/nwULFrB582aSk5OtjmQ5KW4LJCQkkJCQwLx586yOEjYcDgfNmjU76n3BYJCzzz6bdevW1VngsbGxNVuQP71ud0ZGRoPnPR4Oh4O0tDTmzp1ryfqPR1xcHHFxcSxatMjqKHVKSkqiR48eTJ8+3eooYePU/ntDRITo6GgmTpxY79Zyeno6o0aNqneyBSGaCiluERGONcShlJLZb8QpQ4pbCCEijBS3EEJEGCluIYSIMFLcQggRYaS4hRAiwkhxCyFEhDlmcSulXlVKHVBKbTls2aNKqQKl1IbQx68Pu+9hpdQOpdQ2pdQVjRVcCCFOVcezxf0acOVRls/UWvcMfSwDUEp1BYYD3ULP+YdSSg6uFSfsWBcVOtUvOiROLccsbq31l0Dpcb7edcBbWmuf1joP2AH0OYF8QgAccQ2NqKioWifl2Gw2YmJiTnYsISxxImPcE5RSm0JDKdVXz8kCfjzsMXtDy46glBqvlFqvlFofCHhOIIY4FWRmZtZcjMvhcPDUU09x//3315R3SkqKZdckEeJk+6UXmXoReBzQoc/PArf9nBfQWs8GZgMkJbXQPt8vTCJOCQ6HgzVr1hAMBlFK0bFjR/x+P6NGjUJrTWxs7Em5XKsQ4eAXFbfWuqj6tlLqZWBp6MsC4PTDHto6tEyIE2Kz2Y6Yd9LhcHDWWWdZlEgI6/yioRKlVKvDvrwBqD7i5ENguFIqRil1BtAJWHdiEYUQQhxOHWtvvFLqTeBioBlQBPy/0Nc9qRoqyQfu0FoXhh4/laphkyAwSWu9/FghUlLS9Zln3vtL/w2NzuFw0a1bMW3btrU6Sp3279/Pxo0xeL3hd7H+amlp2+nb94ywvvTq5s2b6dGjh9Ux6hQIBMjPz6dTp05WR6lTaWkpfr+fli1bWh2lTvn5+Xzf/HsCCeE71+v2GdspLy0/6vjfMYv7ZEhKytR+/zarY9QpOTmf005bxdatt1odpU5t237EP/7RnF69elkdpU5//etfGTNmDCkpKVZHqdPUqVPJycmxOkadysrKmD9/PhMnTrQ6Sp3Wr19PSUkJV1wRvqdxLFiwgAEDBoT1xljnzp05cODAUYs7TGbAUfj94bulGAiUYBgxYZ3RMOJISEgIy+mxqjkcDlJSUsI2o9Yau90etvmgKmP1zDrhKj4+HrfbHdYZY2JiSExMDOuM9e1sl1PehRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLjFUVVUVLBy5UpmzJhBWVkZpmlaHakWrTVlZWXMnDmTFStWUFFRYXWkIwQCAcrKyhgzZgwFBQW4XC6rIx3B6/Vy6NAhhgwZQllZGT6fz+pIR3A6nWzZsoUHH3yQsrIyDMOwOlItWmvKy8t58803efPNNykvL6exZxaT4hZH1bt3b5YtW0bz5s3p2LEj5eXlVkeqpby8nI4dO5KRkcFHH30UllO2ff755/Tu3Zu7776bMWPGcMcdd1gd6Qg5OTlcfvnlPPnkk/Tr14/58+dbHekIV111FU8++SSXXHIJ3bp1Izc31+pItZimSadOndi7dy979+6lU6dOjb6hI8UtjrBo0SJuueUWEhISaN26NTNnzmTu3LlWx6pl7ty5TJgwgZ07d3LnnXcyduxY3nvvPatj1fB4PKxatYoRI0bw4YcfMn/+fDp27Mj69eutjlZjx44d2O12rrrqKv71r3+xcOFCCgoKOHDggNXRanz66acMGjSIDh064Ha7efHFF1m0aFFY/QX42muv8bvf/Q6n08mll17Kn/70J1577bVGXacUtzhC586d2b59O/369aNNmzZs2bKF7Oxsq2PVkp2dzY8//kj//v1JTU3l+++/p0uXLlbHqhEVFUXr1q1RStG/f38CgQCHDh2iVatWVkerkZaWhmmatGnThvPOO4+ioiKSkpKIj4+3OlqNdu3asWfPHs4//3zOPPNMtm/fTufOneudj/Fky87OJjc3l/79+9OiRQs2btzY6O8XKW5xhO7du1NQUMD8+fN57733eP/99znvvPOsjlXLeeedx5dffsn69eu55557yMvLo3v37lbHquFwOOjcuTNvvvkmLpeLoUOHopQiKyvL6mg1MjIySElJYebMmXi9XiZNmkRWVhaJiYlWR6vRsWNHXC4Xf/vb31i7di0vv/wy55xzTlgVd69evdi4cSPLly/nmWeeYc2aNY0+dBcms7yLcPPFF1/w3Xff8cMPP4TdmCJAcnIyubm5vPfee1x99dVhVdrV+vfvz9atW8nJyWHlypVhtSVb7b777uPee+9lypQpfP/991bHOaq3336bwsJClixZwrZt26yOcwSbzcaWLVv4/PPPUUoxY8aMRl+nFLeoU7du3ejWrZvVMeo1ZMgQqyMc09SpU62OUC+lFH/5y1+sjlGvVq1aceedd1odo14XX3zxSVuXDJUIIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEGCluIYSIMMcsbqXU6Uqpz5RS3yulvlNK/SG0PF0p9YlSKjf0OS20XCmlnldK7VBKbVJKndvY/wghhDiVHM8WdxC4T2vdFbgA+L1SqivwELBCa90JWBH6GuBXQKfQx3jgxQZPLYQQp7BjFrfWulBr/Z/Q7UrgByALuA6YF3rYPOD60O3rgPm6yv8BqUqp8LlAgxBCRLifNcatlGoHnAOsBVporQtDd+0HWoRuZwE/Hva0vaFlP32t8Uqp9Uqp9YGA52fGFkKIU9dxF7dSKhFYBEzSWte6ar2uumr4z7pyuNZ6tta6t9a6t8MR93OeKoQQp7TjKm6llIOq0l6otX4/tLioeggk9Ln6Ir4FwOmHPb11aJkQQogGcDxHlShgDvCD1vrwy159CIwO3R4NLDls+ajQ0SUXAOWHDakIIYQ4QcdzdcCLgJHAZqXUhtCyKcCTwDtKqbHAbmBY6L5lwK+BHYAbGNOgiYUQ4hR3zOLWWn8N1HXV8sFHebwGfv/zozTu5JoNI/wzNvYkpQ0h3DOGez6QjA0lEjIejQqH4CkpabpnzxFWx6iT3e4nJcVJdHS61VHqFAxWkJoaFZYX66924MABMjIysNvtVkep0969+4iKOs3qGPUwCNj24ch0WB2kTqbbJDGYSHJystVR6lRaWkpiYiLR0dFWR6nT66+/zqFDh4660RDZX9YAACAASURBVBwWxZ2U1EI7nUVWx6hTSsoOnn76M8aNG2d1lDotXryYFi1acP755+Pz+XA4HP+bUNVmst+3m0PBIrSpiSIaUHgCbuLtyXRI7oYy7URHOzAMA6UUwWAQpRQ2m41gMEh0dHTN5+rXDwaD2O32Wo9VStU83+GoKpfqaaamTZvG73//e9LS0iz6LtVPa82wYRN5772/WR2lTjExpXT/0+V8O+Vbq6PUqeWqlswqnsV1111ndZQ6vfTSSwwePJiOHTtaHaVOLVq0oKio6KjFLTPgNDGGYVBSUkJsUjTrDi0lM7YtQZuXnc6NFPp3U+l1Uukt57S4Dnj8HjIdrcmN/YG8kh1MOH8qfl8ApRROpxOlFDExMTidTpo1a4bT6SQ9PZ3y8nLS09OpqKggISGBsrIyHA4H0dHRREdHExUVhdPpDNuCFiLSSXE3MTvKNrLo0ExUuWK/bzcOHUswqEkgjWYxWaSSRpnbhccMkB7TGkwHy3e+T1xUEo+vfIDh3cdyWvzpJCUlobUmGAySkZGBy+UiJiaG4uJiEhMTqaioIC4uDp/PR2pqKlprDMPA7XYDEB0dTUlJCampqURFya+ZEA1J3lFNTPP4try14r+kx6aT3Tyb9pld2LUvn3lfv0nHM1NonpBI7qZC7FlBLuo6AHswlrioVEori4mJT+LVdS9y1VnX0y3tbKKiHDgcDg4ePEhmZiYul4v0jAxKS0pISUmhvLychIQEKioqcDiqHpuQkIDNZsPlcpGWlobNJhegFKKhSXE3MXHEM/uqV3ng35P51/fL+XjLp8SY0bRIa4n/YAy+ymZ0ymzLvrI8jDKTNRvW0Lp7Ojv276Njhp8ydzlen0GHgV1IjYpDKUViYiJ+vx9fZSHbt35IZUUl6Zmn0az9YAzDIDY2tmYc2+/3A1UzX3u9XuLi4mruE0I0DNkcamJsNhtnpnfkkUumYotS7CzZySHPIRJjE3D73bgDLk7PPJ2zmvUk2dORdsldqdyuUX4TOz72HNjHx5tXkLN0GlC1w840TdAGBd9/zOdvTeLbZY/w7b+fRYX2a5umiWmaNYdW2Ww2tNYRe6iVEOFOiruJcTgcBPwB+rbuy6JbFtEsMQOb3U6ZtxxHdBQ+w8/3e7/jYOVBtu3Zylfr19A2vjvXthjJxhXbOK/L6cRX2nl3+bsEggEAKivKOLD7G778198oc8dw3pA5XHbbQgJG1VElfr+/5giW6p2UpmnK1rYQjUSGSpqY8vLymvHos1p2ZdXEr7nxlSEUlhQSo6OJ1jHEEsPBkoNov0mLtJYY2qDoQDHXnnsTZT+UkRJThi8ljp0/bqfLGd344oNn2PrtUk4/4yz6XTqe7n2upqKigsT4eLxeL+np6RiGQSAQwOl0orUmPj6e4uJiMjIyZOekEA1M3lFNTPXOwqioKLxeLy3iW/Lqza/yz83/5MWVL7KvtBD8mqSoJLpmdSVaRXOg7ADxUXFUVlSiDEgqb0dlchl/XjKJoR1uYscPm0ht2ZVrxv6VjBZt8Xq9xMfH4/f7cTgcuN3umuO34+KqrvRoGAZJSUmyc1KIRiDF3cRU7xAMBAI1J+F0bn4mZw66hz5Z51HkKuKJ956goHgfu4p2kh6bQTTRlBQX43MH8Do93HX9Xdx94QTK4/fy2synSDtgcN/jL5PW/HTcbjdxcXF4vV5iYmJqTsqpHueu3jlZXegxMTEWf0eEaHqkuJsY0zSJiorC7/fX2kmoNfRt35fYuFiu7HoljmgHzkon0XZFwa7tNE/JwKchPr05sdGxpKWmUVFxiG1nbGDQbVfRrlNPlFIYhoHNZsNZfJBAlJ2AYZJxWhY2m62mvIGax8oOSiEanhR3ExMbG1tzXLXP5wOouTZITEwMfr+fpNgkitevJjbgofJAEUn7dlNRdojUHueQ3PMCnPk7yPN4+HH/ATZ/tYoLzu1HoGAP+3K3EhsXR0ViGru/WsGeLRtJbN6K+PZnkpjRjKxu3WjRqXPNafApKSkyVCJEI5DibmJcLhcZGRk4nU5iY2MxTROfz4dSCo/HQ6ynkryFs0hIy8AfF09K85YkXzgQrRQK8OzdjS4vJcYMkpC3nQt9bvSKpewryEfZojgU8BOXmcWZg6+kw+Ar0IbJtlVfsn/LRvb891sqPV6un/JH0po1o7y8nIyMDClvIRqYFHcTk5ycXHWtkthY3G43NpsNh8OB1poEh50Nd48jpX0n0gZcjs0eBdrAX7Cn6sK9WmO3R5HSsQum1iSc3oGONw7HMEx87gqi4hIxtEkgEMRTXoqpwTA1rbufTSutKS8p4cPnZjDnd3cw4bXXSU1NDesrAQoRqWRTqImpqKigWbNmNYfkORwOAoEA3kMlrL39euJPy6LVr36DWVmOWV6KrixHeZ0ojxO8LrSrAqP0IMHSg5iuSoLlJRiVh1B+P/6yUgKHDhGsrCDochF0uwi4XfidlficVcMz1026D+f+Ql747Sh+3LkTwzCs/pYI0eTIFncTExsbi8vlQilFIBBAa43dbqfwn++QfnoHTrviWgLFhdhDh+/ZVGiWDKVQWmNqDVqh0GCaaA2G1gRNMEwTU2tMTehrjWFqAlpjaJOgqTBNzYXDb+GTua/y3WcrOaNzZ6u/JUI0OVLcTUx8fDyFhYWkpKTg8XiIjo7GFvBRuX0TLc7qSbB4PzabqipqG9hC5U1VVaNNE7QKlXboiBSj6tT3qqI2MU0ImCaGCUGtMUJfB7XG0Bob0K7H2axdsoT+vxlCesuW1n5ThGhipLgtorXG6XSSlJTUoK9bXl5OixYt8Hg8JCYmYpomBZ98CD4/phHA8LhQNhsoUPaq0rbbqnZMGpqqLWoTtAnaMDHNqq1wQxuYhgptfWuChknQhKBpEtAQMAwMDQGz6nbLjh3ZnZuL89ChRi1uj8dDVFRUzaQNomkyDAOv10tCQoLVUepUfRTXyTh3QYrbAps3byY/P58lS5YwdOhQevXqRbNmzRrktVNSUigqKiIpKQmXy4Xdbic+xkFltB3T78UMgrbZwAbapsCmsNltKFVV1srUYGq0qTENA7NmSCS0hW1UDY34TU3Q0FXFHdriDoS+9puhYZNgABrpOO5AIMDKlStZs2YNWVlZdO7cmQEDBjTKuoS11q1bR15eHmvXruWKK67goosuIjEx0epYNbTWrFixgk2bNgGQnZ3N4MGDG/U6PbJz0gLTp0/n66+/5pFHHuHpp59m/fr1DfbaHo+nZis+Jiam5tR30+fF9LgwPC5Mj7vqw+vG9HowPW60O/TZ4z7scR4MjxvD4yLocRPwuAl4qnZKBl1OAm4XPpcLv6sSn8uJz+XC63Ljc7nxOisxAoEG+3f9lMvl4ve//z2DBg0iNjaW8ePHN9q6hLUmT57Mvn37GD16NFOmTGHv3r1WR6rFNE3Gjh1Lx44d6dixI2PHjv3ftIGNRIr7JFu6dCm9e/dmx44dPPfcc7zyyissWrSIioqKBnl9u92O2+2umb1Ga02U3UFl7g/4SosxXC6CbidBj7uqgN1OAi43/pqjRJwE3W4Mt5OA20nA5STgqloecDrxOyvxu5z4XU58TidFW7/DU3YIr7MSr7MSj7MSr9OFp9JJoBGL+5577uHhhx/mscceo1u3bkyfPp2cnJxGW5+wxiuvvMJvf/tbPv74Yz766CNef/11cnJywupopfvuu4+//OUvPPfcc0RHR/P6669z3333Neo6ZajkJLv88su54447uP322znvvPOYMWMG11xzTYONdVcfN62UqrmWdkyz5uCIpuKHzagOndAxMWibDW1XaKXxuypRMfHgcGAEgwT8QXxeN2Vbv8MfDOINanymxhs08BomPgOSOnXHiI7GER+P1+UmqBQBQ+MzqoZM9u3ZTfnBg6hGOo572rRpjBw5krlz52Kz2bjrrrv47LPPGmVd4udrqGGCESNGcN1115GTk0ObNm144IEHuOeee8LqpK7HH3+cwYMH8+abbxIbG8tvfvMbPvnkk0ZdpxT3SRYdHc3555/P22+/TW5uLnv27GH48OEN9otefVnXyspKEhISCAaDkN2HjL6XULT8PQyPi9R2HTDi4zFsCrvSGEUFqKgYiI7GX1mOr/gAfqNqHNtnmAQNjT+oCRgGwaAmYJgUbPoGXxCimrXAFwhCQiJEx+LXirLiUnbn5nLxbeNIb9WqQf5dP5WWlkZWVhZz587l0KFD9O3bl/j4+EZZl/j5GuoaNbGxsfTv35+XX36Z9u3bEwwGadmyZVhd5z0hIYEePXowe/ZsALp169boO1GluC1w5513ctttt/Hxxx8zceLEBn3t+Ph4ysvLsdvteL1eoGor3OPzEzQ1PreLyqJ9xDfPxFNWil2b4HWD34dJ1Y5IU4cK24SAofGHdjoGzaojSgz9vx2Wrn0F+AyNxzCJyWiOy+enpOggpgnte2QT10g7keLj41mwYAHr16+nVatWZGVlNcp6hPUeeeQRysvL+c9//sODDz5odZwj2Gw25syZw9atW1FK0fkknLsgxW2R6OhorrnmmgZ/Xb/fT2JiYs0x3IZhYBgGcVlZBO0OCAZQlZXo6Gh0yUHs2kQpW9UZ74ChzaqTasyqk278psYfOmIkYEJAm6EjS0In4WiNQdUx3j6vF4/Tg6kUMYnJeH0+TNNs1D9re/fu3WivLcJHSkoKgwYNsjpGvbp06XLS1hU+A0WiwVT/mXr4n6vtR/wOW7OWuA0Dt9uLq7wcT8DAEzDxBEzcQRN3wMAdNPEENb4g+IImvqCJP1hV4AHDrPowNUbwf1vhfsPEROGqcOHxeAgGTc6+6koG3HqLVd8CIZo02eJuYqKjo/F4PNhstqrxbf43ea8ttTnBPXlobWA43dgME7vSVedMVu/MpOokHKP65JrQlrcvVNp+s2pHZSB04o3fDD0WMKgaQuly0QDs2IiPjQurnUhCNBXyrmpivF4vycnJQNWOnaioKEzTxDAM2o26C5+h8AZNPF5/1dZ2MPQRMPAGzaojRwKhz4bGZ2i8hok/aOILfQ4GNf7Q+HfQ1FXj4IEgXq8Xe2wMthgHV46/g4qKirA6bEuIpkK2uJuYpKQkiouLiY2Nxel0opTC4XBgt9s54/yLWBufiL+yHJuCKJvCZiqU0tVXdf3fae9UbXFXX4/EHyrogAF+E/ymgc+AgFH1OL+h0VEOLhw6nG3/3UDb7t1JSEiQiYKFaATH3OJWSp2ulPpMKfW9Uuo7pdQfQssfVUoVKKU2hD5+fdhzHlZK7VBKbVNKXdGY/wBRm9PpJCUlBa01sbGxOBwODMPANE3cgQCXPDe35nhst1E1tu0JmLhD49wew8ATNA7bAjfxBgz8QQN/9VCJYeIPVp/ebuAzIWiYdLmwH99+9hkTXppNdHQ0Tqez0c8gE+JUdDybQ0HgPq31f5RSScC3Sqnqo8tnaq2fOfzBSqmuwHCgG3Aa8KlS6kyttfzNfBJER0fj9XprzflYPc4cHR1NTGYLWl50CXu+WoEtdGlXRdU4t8aGRtdcytUIXco1GLqwVNU1SXTNIYJ+08RnVI13xySn4PH6Of/Xv6Zl27YYhoHD4Qir422FaCqOucWttS7UWv8ndLsS+AGo76DZ64C3tNY+rXUesAPo0xBhxbHFxsZSWVmJUgq/349pmtjt9qqLTcXHE5Wazml9LsQX1KGjSqq2rD1BXfU5dJSJJ2jiM6rGub0GoY+qrW2fUbWDsmqoxMRUUXS75FI8fj8XXns9ScnJGIZBQkKCFLcQjeBn7ZxUSrUDzgHWhhZNUEptUkq9qpRKCy3LAn487Gl7qb/oRQOqqKigefPmmKZZVdRRUQQCAQKBAIcOHSIhPp5uw0fTetDleMyqoRBXwMDlN3CHDg90h4ZKXKEC9wYMvMEgvoCBr3rHZdDEb5gYdged+w2ktLiEcy+9jKzu3SkrK8PhcFBcXCw7J4VoBMdd3EqpRGARMElrXQG8CHQAegKFwLM/Z8VKqfFKqfVKqfWBgOfnPFXUIzk5mdLSUmw2G263m0AggMPhwOFwkJqaitvtxu5w0OayXxN0xNUct+0xdNWx3Ebo66D+3xEnQRNvUOM1NJ7qMW5TQ2wsmR06oqPsuCvKyerSheSUFFJTUwkEAqSnp8uck0I0guPa5a+UclBV2gu11u8DaK2LDrv/ZWBp6MsC4PTDnt46tKwWrfVsYDZAUlILHboGuThBbreb5NBQRfUs79XHc/v9fmJjYzEMgz43DMVTWsLSRx+h9mjG/47nrjr9nZpT3IM6dBq8aaKVncTkNIiOoTAvn/FPP023/v3xeDwopYiKiqKyspLk5GQpbyEa2PEcVaKAOcAPWusZhy0//OpBNwBbQrc/BIYrpWKUUmcAnYB1DRdZ1CcuLo6Kigq01ni9XoLBIDabDZvNRkJCAl6vF601FRUVDLztDi5/5FGCdkfV1nToeG5P0MSv7HgOW+Y1TPzahjdo4AtqfCjcHi/78/cw8v/9mU7nn191JcKYGGJjYwkGgzLGLUQjOZ4t7ouAkcBmpdSG0LIpwM1KqZ5UXeIiH7gDQGv9nVLqHeB7qo5I+b0cUXLy2O12oqKiiIqKqjnlvfr24fdFRUURHRND31t/S8deF/DJiy9QUXwQqPqB9r3lVr5a+Dpag2lqouLiOb1HD35YswZTg0aR3qolt06ZQvrppxPlcNS8bvU6o6KipLiFaATHLG6t9deEJgL/iWX1PCcHkKvaW8Bms9U7DVpKSgpAzWUnMzMzyczMpNtRpv26fMztvziHzAEpROORU96FECLChMn5yJqYmFKrQ9QpOroCr9dLaWn4ZnS73TidzrDOGAgEKCsra7CL7DcOI6x/F2NiyrAH7MSUNv5M4r9UtDMat9sd1r+LXq+XioqKsM5Y3/tEhcObKD09Xd9///1Wx6iTy+Xi4MGDtGvXzuoodSosLCQmJob09HSro9Rp27ZttG/fPqyHUTZu3MjZZ59tdYw6BQIBvv56F4cONf7F+n+p2NhSzjnHR6tGmv2oIeTl5ZGZmdnoM9WciGeeeYbS0tKj7yTSWlv+kZmZqcNZbm6unj17ttUx6vXBBx/o1atXWx2jXo8//rguLS21OkadTNPUEyZMsDpGvUpKSnSvXjm66pJg4fnRsuXXevHixVZ/q+o1a9YsnZuba3WMeoV68aidKWPcQggRYaS4hRAiwkhxCyFEhJHiFkKICCPFLYQQEUaKWwghIowUtxBCRBgpbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwTba4V69eHdZTZAWDQdatW2d1jHqVlJSQm5trdYx67dixg5KSEqtj1Oubb74hGAxaHSOiuVwuNm/ebHWMeu3du5eCgoKTsq4wmXOy4axfv54PPviA2NhY/vWvf3HxxRdz2WWXWR2rlnfffZeNGzcSHR3NkiVLGD16NGeeeabVsWp55plnqKiowGazEQgEeOSRR4iLi7M6Vg2Px8O0adNwOByYpklSUhKTJ0+2OlYtO3bsYO7cucTExLBkyRKys7MZNmyY1bEizssvv8zu3btxOBy89dZbTJo0iebNm1sdq4Zpmjz22GM1G4pKKf70pz9hszXednGT2uLWWrNhwwZM0+QPf/gDLVu25PPPPw+rLW+tNf/85z/p3r07d999N0VFRezatSvsMs6bN48bbriB3/72t3zyySe43W6rY9Xi9Xr597//zejRo7nxxhuZP39+2H0Pd+3axf79+5kwYQJnn302H374YVhljARaaxYuXMill17K+PHj2bhxI8XFxWH1fTRNk7fffpvhw4dz8803884772CaZqOus0kVd35+Pps2baKyspJf/epXjB49mtjYWFavXm11tBrvv/8+F1xwAXPnzmXy5MlMmzaNhQsXUlFRYXW0GlOnTiUnJ4fbbruN5cuX88YbbzB+/HirY9Uybtw4Jk2axI033ojP5+P5559nypQpVseqUVlZyfz588nKymLw4MEMHjyYiy66iEWLFlkdLaL87W9/48477+Shhx7ixRdf5B//+AdTp05t9GL8OcaPH8+TTz7JLbfcwvbt20/K+6VJDZWcccYZZGdns27dOv75z3/y1FNPAXDRRRdZnOx/fvOb3zBy5Eh+9atfMXz4cCZMmMDtt99OSkqK1dFqPPHEE3Tr1o0ZM2bQsmVLbrjhBr788kurY9Xyyiuv0K9fPxYuXEhRURGTJk3i+++/tzpWjeTkZEaNGsVLL73EsmXLeP3111m7di0LFy60OlpEmThxIgMHDmTSpEmcd955jBw5kpdeegm73W51tBovv/wynTt3Zt68eQAMGTKEbdu2Neo6m1RxA/Tr1w+tNX/+85/p3r07PXv2tDrSEcaOHcvWrVt5+umnueKKK+jWrZvVkY7wxz/+kS1btrBmzRomTpxIfHy81ZFqiYuL4w9/+AMffPABSUlJ/PGPf7Q60hG6du3KlVdeyTPPPEOnTp24/fbbrY4Uke6//37y8/N55ZVXGDFiBC1btrQ6Ui02m42pU6fyxRdfoJRi6tSpjTq+DU2wuLt06UKXLl3YtWsXZ5xxBkopqyMd4eKLL6Z///78+OOPtGvXzuo4RzV8+HBcLhcul4vMzEyr4xwhJiaGcePGceDAAeLj40lMTLQ60hFat27NuHHjyM/P5/TTTw+rrcRIcs011+Dz+SguLiYrK8vqOEdQSjFmzBjKysoASE1NbfR1Nrnirta+fXurI9TLbreHbWlXS0hIICEhweoY9QrH/6n8VLj/nCNBTExMWJb24U5GYVdrUjsnhRDiVCDFLYQQEeaYxa2UilVKrVNKbVRKfaeU+nNo+RlKqbVKqR1KqbeVUtGh5TGhr3eE7m/XuP8EIYQ4tRzPFrcPuERrfTbQE7hSKXUB8BQwU2vdETgEjA09fixwKLR8ZuhxQgghGsgxi1tXcYa+dIQ+NHAJ8F5o+Tzg+tDt60JfE7p/sArHQzuEECJCHdcYt1LKrpTaABwAPgF2AmVa6+or5+wFqnf5ZgE/AoTuLwcyGjK0EEKcyo6ruLXWhta6J9Aa6AN0OdEVK6XGK6XWK6XWezyeE305IYQ4Zfyso0q01mXAZ0BfIFUpVX0ceGug+nqGBcDpAKH7U4AjrruptZ6tte6tte4dTledE0KIcHc8R5U0V0qlhm7HAZcBP1BV4ENCDxsNLAnd/jD0NaH7V+pwupSXEEJEuOM5c7IVME8pZaeq6N/RWi9VSn0PvKWUmgb8F5gTevwcYIFSagdQCgxvhNxCCHHKOmZxa603AeccZfkuqsa7f7rcCwxtkHRCCCGOIGdOCiFEhJHiFkKICCPFLYQQESYsLutqmiarVq2yOkad9u/fT2FhYVhnzM/P59ChQ2E1pdNPlZaW8s0334T1pWLdbndY/5ydTiexsaW0bBm+GdPStpGfXxnW38fCwkI2bdpEUVGR1VHqVN97OSyKW2tNSckRh3qHjfLycjweT1hndLlczJ1ro7IyfDO2aePn/PMP4fV6rY5Sp0OHgowcGb7fw6goN62u/Ia4B963OkqdovOScbmGhfX7xev18kjZI3ijwvd30ad9dd4XFsVtt9u59tprrY5Rpx07dmAYRlhnNE2TAwdasH9/X6uj1CkjYxOXX345aWlpVkc5Kq01CxZ8Ql5e+P6cY2JKSW75DHnX5lkdpU4tV7WkW3G3sH6/FBYWsm/APso7llsdpU6J9rpndZIxbiGEiDBS3EIIEWGkuIUQIsJIcQshRISR4hZCiAgjxS2EEBFGilsIISKMFLcQQkQYKW4hhIgwUtxCCBFhpLiFECLCSHELIUSEkeIWQogII8UthBARRopbCCEijBS3EEJEmCZb3M8//zxaa6tj1Mnn8/Hyyy9bHSPiffrpp+zYscPqGKKRFRcX8+6771odI2w0ueJeunQpAwcOpEWLFgwaNCgsyzEnJ4drrrmG6OhoBg4cyNq1a62OFHGcTicDBw5k1apVPPHEEwwbNszqSKKR3H333dxxxx3s27ePgQMHsnv3bqsjWS4spi5rKH6/n/z8fG644QbOOeccHnvsMf7973/jcrnCZoLa8vJy9uzZw7333stZZ53FoUOHyMvLo3fv3tjtdqvjRYz8/HyaNWvGkCFDaNmyJbfeeiuFhYW0atXK6miiARUXF1NQUMCDDz5IVlYWBQUF5OXl0aZNG5RSVsezTJPa4q7+Ie/fv59nn32WTp064XA42Llzp9XRavz3v/+lffv2LF68mDfeeINBgwaxbt06PB6P1dEiyoIFC+jXrx/Tp09n//79DBs2jCVLllgdSzSwzz77jAEDBvDSSy+xfPlyrr/+ehYvXhzWw6AnQ5Pa4j7ttNPo0KED8+fP5/XXX2fcuHGcffbZZGdnWx2txsUXX8ycOXMAuOGGG7j11lvJyckhMbHuiUHFkR5++GG6devGP/7xD5YvX87s2bPZvn271bFEAxs6dCgDBw6kT58+dO3alTFjxrBkyRJstia1zfmzNaniBhgyZAj9+vVj0qRJTJ8+nebNm1sd6QhPPfUURUVFTJs2jYULF9K6dWurI0WcpKQkVqxYwaJFi+jcuTPLli2zOpJoJPPnzycvL493332XJUuWcMYZZ1gdyXJNrrhTU1NJTU3l3XffxWazheU42GmnnUarVq2YP3/+Kb/l8EvZ7Xa6dOnCww8/jFIqLH/OomG0bduWNm3aMGDAAHm/hDS54q4W7jv6pGwahryRTw3yfqntmL/1SqlYpdQ6pdRGpdR3Sqk/h5a/ppTKU0ptCH30DC1XSqnnlVI7lFKblFLnNvY/QgghTiXHs8XtAy7RWjuVUg7ga6XU8tB9k7XW7/3k8b8COoU+zgdeDH0WQgjRAI65xa2rOENfOkIf9R2Lcx0wP/S8/wNSlVJycK0QQjSQ4xogVErZEnWskwAAIABJREFUlVIbgAPAJ1rr6lP9ckLDITOVUjGhZVnAj4c9fW9omRBCiAZwXMWttTa01j2B1kAfpVR34GGgC3AekA48+HNWrJQar5Rar5RaLyefCCHE8ftZu+S11v+/vTOPs6OqEv/31tvXfr1kIwtJSIyBsCeRiCAkEMBBFmUUdYAfi6BjQAWGwDgBZUYENBBxcADZQhBBkQgCKkhAPsPIEgJkkURCSEhn6e708paq9+rVcn9/1EJ3yNKJSV4/qO/n8z5Vr+7tqtP3vXfq1LnnntMDPA+cLKXc5LpDdOA+YKrbbQMwstefjXCPbX2uu6SUk6WUkxOJxO5JHxAQEPAxpD9RJYOEEDl3PwGcCKz0/NbCidE5A1ju/skTwLludMlRQF5KuWmvSB8QEBDwMaQ/USXDgPlCiBCOov+1lPJJIcQiIcQgQABvAt9w+z8NfA5YDWjA+Xte7ICAgICPLztV3FLKpcDh2zg+fTv9JfCtf1y0gICAgIBtESw7CwgICKgzAsUdEBAQUGcEijsgICCgzggUd0BAQECdESjugICAgDpjQKR1NU2TO++8s9ZibJd8Pk9ra+uAlnHNmjWMGpWkpWVprUXZLtnsWhYsWEAsFtt55xphml1MmjRwP+dQqELDew1MunNSrUXZLslNSf5a+SubN2+utSjbZfny5RyQP4BqQ7XWomyX9833t9s2IBR3KBRixowZtRZju7S2tqIoyoCWMRwOc9RRTRx88MG1FmW73HPPWv7zP4/BMDK1FmW7nHjiEhYuHLifc6FQ4Le/bef8GdteHiGRSGyklAiEfwxAESH/2N5k6dKl9PT0cOyxx+71a+0u+XyeuVPnDujqU9OUadttGxCKWwjBuHHjai3GDnnnnXcGtIzLly9nyJAhA1rGVCpFsTgaXW+stSjbQaIo0QE9hl1dXaRSKcaMGUNnZ6dzMGFQUHtoaMjxVvvzvKQ9SbHSjW0KUkoTqq6i6SoXjv0B8UiCYekRNKaayefzRCIRSqUSLS0tbNmyhWw2i6ZptLS0oKoqoVAIwzCwLItQKISqqn5bQ0MDHR0dtLS0AB8UtWhrayMUCg3ocWxoaGDEiBGMHDmSUqlEIpFAVVUikQjhcJhyuUwmk/HbdF1HCEEkEkHTNLLZLMVikUQigWEYxGIxv4BxNBqlVCqRTqdRVZVkMolpmti2TSwWo1gskslk0DSNeDyObduYpkk4HCYej/sFI3ZUJGRAKO6AgIBdo2yWWFZ+gZKZp7Wwgs7KZuJdGYQdZrAyhuGJg/nbltcIhzJMyhyGkg7xVtdfeXL1I5y0/z8zY/9TGRIfjpSSeDyOruu+EvGUk23bvjLylIjXVwiBpmlEo1F/G41Gazkku0WpVKKhoYFSqURjYyOmaWIYBk1NTXR3d9PY2OgrYSkluq7T0tJCd3c3TU1NaJpGMpmkXC4jhMC2bf+cnZ2dNDQ0kM/nCYfDKIpCV1cXuVyOzs5OstkshUIBIQSxWIxyuUwsFutXpZ9AcQcE1CGKULjt1dsxLJ0R2RGMbRxLLJTi/kULyGaifGL/YXSuU+nUV3DopB6aooMxLJthiQNYsXkpmGEGxYZw0idOA/CVjrevKAq2baMoCqZp9rm2V0bMU+YDtbZrf0gkEpRKJcLhMIVCgVAohKIo5PN5Lr30UiZPnswll1yCpmn+/9zT00M8HqdQKBAOh6lUKoTDjipVFMW/uTU0NFCtVkmlUti2zfz583nuuee48847aWhowDAMv01K2W+lDYHiDgioS2KhJP815eec8cjptEctVoe7SIokTWJ/kpUY2to0WzaUWbm5nVhyGfHOJrqbtpAKNxFWouQLFSrVKkeNOJawjJBKpVBVFSGE8+gfkVQrKpFwCEQcW0pCoRC6rpNKpTBNk0gkgqqqZDKZulXcqqrS2NhIoVAgnU5jWRaGYZDNZnn66ad5/PHHsSyLc889l1wuh67rZLNZ3+IulUpEo1EqlQqAb3Hncjl6enpoaGhgw4YNPPfcc8yePRtd17nvvvvo6ekhm81SKjk1ajxln0gkAos7IOCjSqVSYeyg0fz6S7/mK7/5Mq+vfZ2IGaY52oSsgl21+dFXbuTlZX9lVHYUf1rxJ4aPbGTt+x3EMmk2dXRSqZr86NkbuO7UH6CqKtlsFl3XicgKD845EtusgJB84d/eIJEbim3b5HI5VFUlHA6Tz+dJJpN0d3eTTCZJJpO1HpZdJhKJYJomoVAIy7KcSd1ehYnL5TKzZ89mzpw5PPPMMxx++OG+P9o0TRRFQUrpP3V4bg8pJdFolKVLl3LyySeTz+cBJ4ggFAr5bqVIJAJ88JQTWNwBAR9hkskkHR0dDE/tx/984Q4u/fWltHe3M655PCEZwq5a/OalR0iFUpQrGtFwhLZXw3xy/8lsbH+XQnM7LcZIfvWnR5g5+mQ+96nP0dHRQTwKr//pp+RLBoNHTWb8YScgIkl0XScUCtHV1eVPTjY1NdHR0UFzc3PdWtzhcBjDMFAUBcMw/P/j3nvv9a1ogGq1yle/+lXOOecczjzzTEaPHs1NN92ElBLLsnwFHIlE+PrXv05bWxsPPfQQDz/8sK+0ASzL4q677uLrX/86tm0TDof9eYRQKNR/uffEPx8QELBv0TSNdDoNwOT4ZH51zkOc/oszWNm+ikw4Q0Ik0IVOh76FzR2b6NrSxT9NOZWW6H7YhDgkPZln3voDTbEwMSVCsVgk376a3z8xj/Z1ixk8/AiO+dJccoNHowhBKBTCtm2am5t9i7uzs5NMJlPXFne5XKapqYlCoUA2m8U0TarVKg899BDVat8Y740bN3LTTTfx1FNPkUqlWLx4MZZl9emjKApPPfUUUkreeOOND11PSsldd93F2WefTS6Xo1QqIYQgHo9TrVZ9i39nBCsnAwLqEM86k1KiCIVxTeN57hvPMW7oJyhUCqza/HcWr1vC0vVLyaSzTDloCmWjzPtt6xBhhcKGKscdcArpZJg5D87ivY2reX/1clYue51jTruGL85aQPPQsQicx3hPoXhhgUIIwuEwtm0TCoU+ZC3WiwXu3XhisRhdXV1omgaAYRh+n1tuuaXPGo7ly5fzyiuvfEhpg+PjXrJkSR+lPWTIEObPn++/D4fDDBo0CMMwaGhoIJVKAc5TVOAqCQj4CKMoCpVKBeFaw4ZhMLRhKH+85EmeWvYUTy57mr+u+D82d7ahVVU67RB6qIpdtcGEt1f9jZlTTuLYlrMYPE1w6S1fYUJHiMMmz+ATR55CMt3gK2kv6kEIQbVaJRKJYFkW0WjUn6TcWuF4j/8DHS8MsFAo0NTU5FvcnusDHCW+cOFCGhsbt6msd8aMGTP63AhM02TLli3kcjny+bxvcQfhgAEBH3EqlYrvmiiXy6RSKXp6eshkMkwfN4MvTjmLPy75I5uLm6lWqmTiacpaGb1cBSkwjzcZNWQk06dOp6mxiezmJtb/31uc+IVv0TJ4Pzo7O0mlUhiGQTgc9pW0F58cj8fp6enxF+5kMpm6jOP2wgEjEcdd5E0Q9lbQiUSC3S1ofsEFF3DzzTfzzDPP+MdCoRDZbLZPOCA4C3cCizsg4CNMMpmkUCgAzg/eW43n+WxVVeWkw08i39NDMhql3NPJ+/P/m8rqt4kPG84nv/ufVCMRQsCWzZvY/MZGYqnBjBw1jkJXF42ZDFXDYPXvH+P13yxAROJ88rQvccBx02lsbsayLFpaWiiVSjQ3N/txzPWGruuk02k0TSORSPirGOPxuN+nWq0Si8X8yJNd4fTTTwfoM9EppURVVVKplH88Go32scp3Rn2OdkDAxxxVVf3VfOVymXQ67ccNe9u2N15BtL7H2qd+TSSR4pAf3ApKBBFSsLZs5u05V2MJBbtiY7+9jMGHHMHaR+9n/YvPoxULpEeOYcIZX+Hz18/FNg3+tuhZHjz/K0QbGpl+2eWkh+7H/uPHk8/nSSQS/mRpPdHbfy+l9F08v/vd7xg6dCjFYpF169axZMmSDy1E6g+rV6/myCOPZPXq1f71zjzzTH9OoHfo4a7MCwSKOyCgDonFYn183NVqlXg8jmEYxONxtrz4J9bNncPIsy/ioKtuQAhQV72NpxukEEyacwtSQGXzJhpf/l+q1SohoTB51lUQjqCXNaplDa2zHVtK9j9yCqOOnEq+q4vfXvs9siNHcd5P5pHIZuvW4o5EIui6jqIo/lJ+IUQfC/lnP/sZP/vZz3br/FdccQUbN25k7ty5gDM38Z3vfIdYLIZt20SjUf9msStjGESVBATUIV40R+8FILZtI4Sg44U/8s687zP6q5eQHfsJ9A1r0VvXISoqoqJCRYWySvndlWjvvI1Z7GHw1Gns95nP0jBqDOWOzagb1lPp3IKpqphlDUPT0IslKoU8oVCIz55zLoX167n7X7/ph7HVI15Ypedv9hTp3Llzd9uvvTWe0gbnc5szZw75vDOOpVKJcrns50Hp7zjW520yIOBjjhfVIYTwV/JpmobobKPtdw8y6oyvEWtqwc53oqAghLsiEBCAjQTb2ceWVLUSlpSYNli2xJYSWzr7pre1JRY2hgXRWILPfPVfePynt/LfF5zPlQ/9qrYDspt4y9fj8Tjd3d1IKbn99tv5yU9+0sc10tjYSCgU6hMW2d3dvc1zNjQ0EIlE/Bupbdt+Xykld999N6FQiOuuu86PVLEsa5fCAQOLOyCgDvF82l7muXw+T66hgc3L3iDbMpRUrhm71AMVDaGXUHSNkK6i6Jrz8qzvsgqVEpRVbE1FaiUsrYSplTDVIlW1hFEqUi0VqapF9KKzrZQK2KbBiRdeRHdrK8X29loPyW5RLBbJ5XJUq1UymQx33nkn119/fZ/FNwceeCBLliyhtbWVd999l/b2dhYvXsyUKVM+dL6JEyeyaNEiWltbWbZsGa2trbz66qsceuihfh/Lsvj5z3/OzTffzMaNG1FVFXCs//5a3IHiDgioQ7yERLFYDMuynLC2fA89f/kjSiKOUeyGioYsa1BxFLWia4R1lZCuISoa6Jrfx9JUZFnDLqvYZQ1b0zA1DVMrYWgqVW+rqlTVElW1hK6WMCpVIqk0LzxcnxZ3IpFA0zTC4TBtbW1ce+21fdoPOugg7rjjDpqamnxfeKFQYNCgQcydO5fx48f7fWOxGFdeeSXjx49H13UymQyGYTBkyBDuuecepk6d2ufcc+fORVVVvyLUroQDfuQUt5c74IILLvCTlw80bNumWCxy2WWX+YltBhqWZfHaa69x9913D1gZBzred/Hb3/42hUJhj34XvSRHXqKjarVKRBFU1vyNaHMLdlnFKmuORV12/NqhSplQtYyiawi97Cjtiuq8XIvb0pytqakYmopR9pS25ihsTUVXVfRSiUqphF7RGDp6f4w95A/eFrZts27dOn74wx/u8e+iYRhEo1Fs2+Yb3/jGhxTnpk2buOqqqzjhhBOYNWuWn7/cNE0OP/xwZs6c6fedOXMmxx9/PNVqlXA4jK7rXHPNNZx88snMmjWLdevW9Tm3EIJvfetbfhjgroQafuQU9/z585kwYQKXXXYZhxxyCNdff32tRfoQF198MSeccAJf+tKXGDt2LH/+859rLdKHOOyww7jzzjvRdZ1hw4bR09NTa5HqjkWLFjF27FjOOussZs6cyUUXXbTHzu2Fr3l+VD+kzbawKxpmueQo47JjSVMuIysqlDVk2du6FrbmbM2yo7DNsoqheu4Sz8IuopeKVEsFV2mrVEolKoUCFbW0x/6vbeEpvgkTJjBy5Ej+/ve/77FzewUMQqEQ99xzD7/85S/7tHd1dfHyyy/T1dXFjTfeSCgUQtM0YrGYvzjJI5PJMGjQIJLJpD/Zee2111KpVHj55Zdpa2vrc+7bbruNxx57zI8Z771ac2d8pBR3T08PGzdu5MILL2Tp0qUsXLgQKSWtra21Fs1n5cqVtLS0cO6555LP57n99ttZunQpuq7XWjSfF154geOPP55p06Yxbdo0Zs+ezdNPP11rseoKXdd56623uOCCC3jnnXd47LHHGDx4MCtXrtwj569Wq0SjUd9VEo/HqZQrWKpGpW0jlqo6L011FHC5hKGqGCUNU9UwNdX1ZTvthqpiqk6/qlrC0JxttVTEKKlonZ2UOtpdhV10XyoVtYSuaeyt57HFixdz0EEHcdpppzF48GBuuOEGnn/++T329NI7qVMoFOLFF1/8UJ+JEyeycOFC0uk04XCYv/zlLzz44IM8++yzHHrooZx33nl87Wtf46ijjuKVV17hoYce8hNNxeNxHn/88T4+bo/XXnsN0zT9J4hdeZL4yEWV9K7OMRAf7z3rSFGUD6WSHCj0rn7S25oL2DV61w70FnfsqXGMx+O0t7cjhCCVSjl1EDNpbAmFlSsIjf8kIhEHRUGGBAg3ksQwEbE4lrQxbDBME3XjeiqqSsWyqVoS3ZTotoVuQqR5CGSyVLQyerWKMC2qbj/DllRNi3XLlzNuytSdC70b9P69eBEae/q76H3XS6USd9xxB6eddhqrVq1i1apVAH544I9//GOEEHR2dnL55Zfz6U9/mkcffZQzzzzTT896ySWX8Oijj3LLLbcATl6SOXPm9NFFw4cPZ8aMGTz44IPMnj2bZDK5y9+Nj5TFncvlGDZsGL/4xS846KCD+MIXvoCiKAOqkvOECRPo7OzkvvvuI51Oc+mll3LwwQf7ExQDgWOPPZYXX3yRl156iZdeeombb76ZU045pdZi1RWxWIxDDjmEe++9l7Fjx/LFL36Rjo4OJkyYsEfO7xXrbWhowDRNMpkMRb3KgbN/iNbVwZZlr6Pn875PuqKqaF1bKK1/D62Yp9zTQ/eSl8gveZnSujWom1rRNrWibtxAceN6iq2tFDa8z+YVb7D+5f9ly7ur0QoFSp2daMUi5WIJrVBk5Ssvo0SiHPiZY/bI/7U1Rx55JG+//TYLFy6kra2N//iP/+C4447bYSHdXSEajfo+6Xg8zquvvsq8efNobm72+6xcuZIHHniAT33qU9xwww189rOfpampyb+JeMm4vCXx6XSaz3/+89x7771MmTKFBx54gKVLl/rny+Vy3HrrrbzyyiuMGTPGT9K1KwtwPnIW93nnncc555zDxRdfzNKlS/fYB7wnueuuu9A0jX//939nzZo1A1LGN998kyVLlvDWW2+xadOmASnjQGf69OmsWbOGK664gmeffdZP37mnsCzL/1wcqzGEyDRimDaKqtL1tzdpGPdJFMskZFsIQ8fo2ACbWp1YbRsM26ZqOxZ01XSsaAs3dltCVa9SMSwq+SL6+vVULBszEiM1dD82rl1HsagxeuonmHTssXv0f+vNH/7wB1pbW1mwYAHr16/fo99Fr7Cvrus0NTXR2NjI+vXrqVQq/pMnOFb3e++9x4033siKFSt44oknuO+++5BSkkgk/PDBSZMmceWVV3L11VfzyCOPfOipX1EUyuUymzZtYuLEif4in0gkQqVS6bcB12/FLYQIAYuBDVLKU4UQY4CHgWbgdeAcKWVVCBEDHgCOBDqBL0sp1/b3Ov8o3hLge+65Z19dcpdRFIV0Os1tt91Wa1G2i6IoTJ48mcmTJ9dalLrF+y7Omzdvj5/bW6rtKW8vvWoJsONxqnoFDBO1pxvUAqJURFEECgKJxJI2tnQUt2mD4bo+nC2Yto3pLroxpcS2JZaUWDZYhkGpu4eKViYUiyPl3s2/rSgKo0aN4nvf+94eP3c6nfarsff09BCNRnn33Xf59Kc/zUknnUShUPAnMO+44w6klPz+97/35368avepVAopJVdccQULFizoo7RnzZrllzPzkoOtXr2a/fbbj2w2i2VZVKtVEolEv+XeFYv728DbQNZ9fxNwq5TyYSHEHcCFwP+4224p5TghxNluvy/vwnUCAgJ2gq7rfjSCpmkkk0knzerEg2n8zEza/vQ7bExkZydhYaOYNkIRCFdx27KXIpbS8W1bso8C95W3ZWNKMCzbWV1pSPTuPLaEUDzO56/6Nz9HSr3huZyq1SoNDQ1IKTnmmGOYPn06lUrFr0yjKArjx4/n8ssvB2DevHl897vfxTAMkskk1WrV98HfcsstvtK+7rrr+OY3v0k8HvdXucbjcSqVip/VEfCrxfc3NW6/njmEECOAfwLudt8LYDrwqNtlPnCGu3+6+x63fYYIZrYCAvYoqVSKUqnUJ5d0Q0MDugiR3X8cpg26YVPWypTLVTTLpmzaaKazLZs2FdNR1mVDOhOTtk3VllQtG0NKdFtiWhJTCqquxW3YNkoq7bgSogkM02TaiSfVZdkycNLj9h5Dz+VRKBRIJBIUCgW/uv3EiRP9vzNN068lWalUiEQifYoAe4wfP57GxkYikQiKopDNZimXyzQ0NPghg56lvSv5zPtrcc8DrgIy7vtmoEdK6S3mbwWGu/vDgfUAUkpTCJF3+2/pt1QBAQE7RNM0MplMn/18Pk8mk0EZPR5l0H5UNrdiyCohBCEFNzOgY6tJ2dfqNm3biRLxokUsC8NylHfVdZlULYlpQaW7B1vAITOOJ97UTEdHB7lczpennvDyvNi27StXcCxgrwiwlJJQKNRn8lAI4cddezlMer88vIVS3jHDMPxsjp6Ly/Oj70qI404tbiHEqUC7lPL1fp+1HwghLhZCLBZCLN5TWbgCAj4ueH7XcrnsT3h5j/X7H30c8eGjKFs2FdOmYnkWtk3FNKmYJmXTomxaH7T7StqdqLQkVYsPlLnlKG/DdlwoLaPHsGb5Ck7911lks9m6rH4DH4QCesq5d0y3l4HRC0ccM2ZMn8II3sI5z0Xi+b87OzsBp2TZpEmT/DZvJa2iKFiW1efvYM/HcR8NnCaE+BwQx/Fx/xTICSHCrtU9Atjg9t8AjARahRBhoAFnkrIPUsq7gLsAhgwZMvACrgMCBjDeD9/78XsREJ7Cmfxv1/P7f/k85XKJkBDOxKR0rG4J2IDtZQFEYppOJImjnG1MC6q2o8wN23ajTxwFHstkGTxuAoPGjaNp2DA/xroe8YoEZ7NZ8vk80WiUSCTiVxLq6uoik8mgaRq5XI5jjjmGxx9/HFVVmTVrFiNHjvQVO0Bra6ufCfDII49k2LBhfp50L6dMd3e3X1neK13mhST2l532lFJeA1wDIIQ4DrhSSvk1IcRvgLNwIkvOAx53/+QJ9/1f3fZFciCuhAkIqGMsy/J/6N4jvaZpRKNRyuUyubEHkBw1hvYVb6IIhZCf0tVGoiCFawG6k5OWLd0Uro7LxLCFb2kbtk3FclwmVdsik82hRKOMOfRQMrkchUIBRVHq0ur2sgNWKhVyuRy2bWNZFk1NTX5ZtnK5TCaTQUrpV4EH6OjooKOjY7vn9p6CvNzbiqLQ3d1NKpWiq6vL96F7bhevWHB/+EcCImcDlwshVuP4sL34u3uAZvf45cDV/8A1AgICtkEqlaJYLFIqlQiHw348sqZpNDc3o2kap9x+H7pho5sWZcNy3SPS2VZtyobjPtE9N4olKVtQMQUV06Zq2eiWc9ywbKqmRePwUYw/+hjiyRQzzz6bYrFIS0tL3U5OZjIZuru7iUajdHd3+3HVXgHkLVu2EAqFKBQKaJrGlClTGDly5E7PO3ToUI4//nj/hhCLxVAUxa8H2tLS4keyePH9uzKGu6S4pZQvSClPdffXSCmnSinHSSn/WUqpu8cr7vtxbvuaXblGQEDAzimXyySTSRKJhJ+Ev1Qq+RZePB5HhqMces5FjqK2HMWtGR/4tp3oEsvxf1uylxJ3lrXrpo3u+7sl2aHDGTt5KhvXruWE888nXyyRSCTo6enpU+qrntA0za+4ns1m/ZDGXC7nu0csyyKVShGPxzn66KOZP38+uVxuu+eMRqPcfffdHHfcccRiMYrFIoZhIKX0o1W6u7uduHu3Ag6wS2MYLIcLCKhDvOx0XpRCuVz2V/Cl02mnMEBjEy3TjkUZNIyyKdFMG81yQgI/CAuUH+xbNhXDcqxs0wkR1C2Lqi2JZhsYPG48ne1taMUSYw87jEwmg67rpFKpXcpsN5CIx+Ooqko4HEZVVT8c0LsJFotFQqEQlUrFr0k5ceJE3njjDe6//36y2SyZTIZsNks2m+XWW29l1apVTJs2jUwmQ7VaJZlMEg6H/bwylUqFTCaDaZokk8k++bj7y0duyXtAwMeB3kuxvYiI3rkzvEnLMVOnMfnci1h0648xNNX/e+kuxJHSmaS08PzdYEo3ftu2MW2beFML6SHD0MplYrE4Nz37jC9D70nReqR3eTGP3uXJerf1Tng1ePBgTjnlFN5//31M0/RXRgL+fIOXX9u2bT96pPdnBM78RO+ok/4SKO6AgDrES2zkKYNQKOQXVTAMw99Go1GOufAbWFLy5H/9ANlHQTkRJpbEien2lrVL/NWSphQoliTf3c3oYcO46Mc/RnEz4em67sck72qSpIFCb6XrrW4ExxL30uVCX2vYa+u9cKZ3SJ9hGEQiET9SxCuUAE46Xq/N+8x63yj6S+AqCQioQ7yY7Uql4if39455Vcu9R31FUZj61XM56ye3MeLwKY4/230NnzyV+JChVCzbfUnGH3scuo2zBN6GilbmiBNP4Pwf/YhkYyOxWAzbtkmn0+i6TjqdrsuIEsBXrN5iGE959la63lJ1zwL3Cih4bhUvNttLJx2JRPxizrZtEw6H/fZIJIJpmn3avBverjy11N8tMiAgAICmpibAeYRPJBIIIfxjjY2NCCHYb7/9/Pbp5/4/jvnnL2P1sgBDkQi2bWFbH1ji4WgUo1exXIBoPE40Hvetw2w2ixCC5ubmuo3hBucGGIvF+owhfOAu8dp641Vj31abx4781rvj096aQHEHBNQpvdObegpkZ9tQOt2vc8e3k4J2e+etV7xFTN5+7+NbH+tP274icJUEBAQE1BliICxqbGxslOecc06txdguuq77q6iTozRIAAAFj0lEQVQGKvl8nnA4vMeT9e9J2traaGtrQcqBG4GQy21g//2H77xjjbAsi87OTgYPHlxrUbaLqqpYlkU2m9155xrR2dlJOp0eUJWntmbBggV0d3dv06wfEIpbCNEBqAzcDIItBLLtDoFsu0cg2+7xUZNtfynloG01DAjFDSCEWCylHJDlVgLZdo9Att0jkG33+DjJFvi4AwICAuqMQHEHBAQE1BkDSXHfVWsBdkAg2+4RyLZ7BLLtHh8b2QaMjzsgICAgoH8MJIs7ICAgIKAf1FxxCyFOFkKsEkKsFkLUvOiCEGKtEGKZEOJNIcRi91iTEOJZIcQ77rZxH8lyrxCiXQixvNexbcoiHG5zx3GpEOKIGsn3fSHEBnf83nRL3nlt17jyrRJCnLQX5RophHheCPE3IcQKIcS33eM1H7sdyFbzcXOvFRdCvCqEeMuV7wfu8TFCiFdcOR4RQkTd4zH3/Wq3fXQNZLtfCPFer7E7zD1ei99ESAjxhhDiSff93hm3rasT78sXEALeBcYCUeAt4MAay7QWaNnq2M3A1e7+1cBN+0iWY4EjgOU7kwX4HPAHQABHAa/USL7v45S327rvge7nGwPGuJ97aC/JNQw4wt3PAH93r1/zsduBbDUfN/d6Aki7+xHgFXdMfg2c7R6/A/imu/+vwB3u/tnAIzWQ7X7grG30r8Vv4nLgIeBJ9/1eGbdaW9xTgdXSqaZTxalfeXqNZdoWpwPz3f35wBn74qJSyheBrn7KcjrwgHR4GaeY87AayLc9TgcellLqUsr3gNU4n//ekGuTlHKJu18E3gaGMwDGbgeybY99Nm6uTFJKWXLfRtyXBKYDj7rHtx47b0wfBWYIsXeSeOxAtu2xT38TQogRwD8Bd7vvBXtp3GqtuIcD63u9b2XHX+J9gQSeEUK8LoS42D02REq5yd3fDAypjWg7lGUgjeUs99H03l5upZrI5z6CHo5jnQ2osdtKNhgg4+Y+7r8JtAPP4lj5PVJKcxsy+PK57XmcGrT7RDYppTd2P3TH7lYhhLeOfV+P3TzgKsBLtdjMXhq3WivugchnpJRHAKcA3xJCHNu7UTrPNgMiFGcgydKL/wEOAA4DNgFzayWIECIN/Bb4jpSy0Lut1mO3DdkGzLhJKS0p5WHACBzr/pO1kmVrtpZNCDEJuAZHxilAE04h832KEOJUoF1K+fq+uF6tFfcGoHfJ5BHusZohpdzgbtuBhThf3DbvEcvdttdOwu3KMiDGUkrZ5v64bOAXfPBYv0/lE0JEcBTjL6WUj7mHB8TYbUu2gTJuvZFS9gDPA9Nw3AxeGujeMvjyue0NQOc+lO1k1/0kpVOw/D5qM3ZHA6cJIdbiuHynAz9lL41brRX3a8B4d+Y1iuOkf6JWwgghUkKIjLcPzASWuzKd53Y7D3i8NhLCDmR5AjjXnUk/Csj3cgvsM7byIZ6JM36efGe7s+ljgPHAq3tJBgHcA7wtpbylV1PNx257sg2EcXPlGCSEyLn7CeBEHD/888BZbretx84b07OARe7TzL6SbWWvm7HA8SH3Hrt98rlKKa+RUo6QUo7G0WOLpJRfY2+N296YWd2VF87M799x/Gjfq7EsY3Fm8N8CVnjy4PiengPeAf4MNO0jeX6F89hs4PjHLtyeLDgz57e747gMmFwj+Ra411/qfjmH9er/PVe+VcApe1Guz+C4QZYCb7qvzw2EsduBbDUfN/dahwBvuHIsB67t9dt4FWdy9DdAzD0ed9+vdtvH1kC2Re7YLQce5IPIk33+m3CvexwfRJXslXELVk4GBAQE1Bm1dpUEBAQEBOwigeIOCAgIqDMCxR0QEBBQZwSKOyAgIKDOCBR3QEBAQJ0RKO6AgICAOiNQ3AEBAQF1RqC4AwICAuqM/w9pIihoDh14YgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## Q-Learning的核心:贝尔曼方程和学习算法\n", + "\n", + "编写学习算法的伪代码:\n", + "\n", + "* 初始化Q表Q,所有状态和动作的值设为相同\n", + "* 设置学习率 $\\alpha\\leftarrow 1$\n", + "* 多次重复模拟\n", + " 1. 从随机位置开始\n", + " 1. 重复以下步骤\n", + " 1. 在状态$s$选择一个动作$a$\n", + " 2. 执行动作,移动到新状态$s'$\n", + " 3. 如果遇到游戏结束条件,或者总奖励过低——退出模拟 \n", + " 4. 计算新状态的奖励$r$\n", + " 5. 根据贝尔曼方程更新Q函数:$Q(s,a)\\leftarrow (1-\\alpha)Q(s,a)+\\alpha(r+\\gamma\\max_{a'}Q(s',a'))$\n", + " 6. $s\\leftarrow s'$\n", + " 7. 更新总奖励并降低$\\alpha$。\n", + "\n", + "## 探索与利用\n", + "\n", + "最佳方法是平衡探索与利用。当我们对环境了解得越多时,更倾向于遵循最优路径,但偶尔选择未探索的路径。\n", + "\n", + "## Python实现\n", + "\n", + "现在我们准备实现学习算法。在此之前,我们还需要一些函数,将Q表中的任意数字转换为对应动作的概率向量:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v" + ] + }, + { + "source": [ + "我们在原始向量中添加少量的 `eps`,以避免在初始情况下所有向量分量相同时出现除以0的情况。\n", + "\n", + "我们将运行实际的学习算法进行5000次实验,也称为**epochs**:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "" + ] + } + ], + "source": [ + "\n", + "from IPython.display import clear_output\n", + "\n", + "lpath = []\n", + "\n", + "for epoch in range(10000):\n", + " clear_output(wait=True)\n", + " print(f\"Epoch = {epoch}\",end='')\n", + "\n", + " # Pick initial point\n", + " m.random_start()\n", + " \n", + " # Start travelling\n", + " n=0\n", + " cum_reward = 0\n", + " while True:\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " dpos = actions[a]\n", + " m.move(dpos,check_correctness=False) # we allow player to move outside the board, which terminates episode\n", + " r = reward(m)\n", + " cum_reward += r\n", + " if r==end_reward or cum_reward < -1000:\n", + " print(f\" {n} steps\",end='\\r')\n", + " lpath.append(n)\n", + " break\n", + " alpha = np.exp(-n / 3000)\n", + " gamma = 0.5\n", + " ai = action_idx[a]\n", + " Q[x,y,ai] = (1 - alpha) * Q[x,y,ai] + alpha * (r + gamma * Q[x+dpos[0], y+dpos[1]].max())\n", + " n+=1" + ] + }, + { + "source": [ + "在执行此算法后,Q-表应更新为定义每个步骤中不同动作吸引力的值。在此处可视化该表:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFpCAYAAAC8p8I3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeXwURd7H8U/NmUzug4Rb7kMRQW4RFRFFlwVdXFRUdlFRQTxQ8FgUFVRQ1xMeZBE8F0VXF1R0PUCUS+VQhKDcoCQkQO7MPdNdzx+ZzMJKAMlMepLUm1deyXSa7u8M5Jea6qpqIaVEURRFqTtMRgdQFEVRfh9VuBVFUeoYVbgVRVHqGFW4FUVR6hhVuBVFUeoYVbgVRVHqmKgVbiHEECHEdiHELiHE/dE6j6IoSkMjojGOWwhhBnYAg4FcYD1wjZTyp4ifTFEUpYGJVou7N7BLSrlHSukHFgHDo3QuRVGUBiVahbsZsP+Ix7mhbYqiKEoNWYw6sRDiZuBmAKvV2qNr165GRTkhn89HRUUFmZmZRkepVmlpKVarlYSEBKOjVCs/P5+srCzMZrPRUar166+/0rJlS6NjVCsYDHL48GGaNGlidJRqOZ1OgsEgqampRkep1uHDh0lOTsZutxsdpVpbt27F4/GIY35TShnxD6Af8NkRjx8AHqhu/6ysLBnLdu7cKefNm2d0jONavHixXLt2rdExjmv69OmyuLjY6BjV0nVdTpgwwegYx1VUVCQff/xxo2Mc1+rVq+WSJUuMjnFcc+fOlTt37jQ6xnGF6uIxa2a0ukrWA+2FEK2FEDbgauDDKJ1LURSlQYlKV4mUMiiEmAB8BpiBV6SUW6NxLkVRlIYman3cUspPgE+idXxFUZSGSs2cVJQo0HWd9evX8/rrr6PretW1HkWJCFW4FSUKunbtyrx58yguLqZJkyZUVFQYHekomqZx4MABo2Mop8iw4YCKUl99/fXXDB48mMmTJ1NYWIjP5+PTTz9l5MiRRkcDKvPt2rWLnJwcunfvzsUXX0zjxo2NjqX8DnWuxb1nzx7effddo2MoSrWCwSAWi4WcnBw++OADrFYrgUDA6Fhhs2fPxul0cvfdd/POO++wfft2oyMpv1OdanEPGzaMuLg4+vTpw5lnnsmKFStielKM0jANGjSICRMmsGTJElwuF4FAgN27dxsdC4BFixYxePBgrrjiCqZMmcK8efOYPHkyPXv2jOnJW0eSUuL1elm4cCGtWrWif//+xMfHGx2rVtWZFveePXuIi4tj7ty5jBgxgksuuYScnByjYynKMeXk5DBr1ixuueUW8vPzSUpKMjoSACNHjmTZsmUsX74cv9/P1KlTGTt2LA6Hw+hoJ83j8dC8eXN8Ph+fffYZnTt3NjpSraszhXvjxo307t2b8vJyXn31VRo3bsyqVavU1XolJpnNZkwmEyaTCYvFghDHnrlc20wmE0OHDuX777/HarWyfft2WrZsGTP5Tsbbb7/No48+Sq9evbj11lu58cYbWbx4sdGxalWd6Sr585//zJlnnklBQQFNmjRh0qRJ5Ofn16n/cErD0q1bN9asWcOWLVs488wzjY4TNnr0aPx+P0888QSnnXYabdu2NTrS79K8eXNeeuklCgoKmDBhAnl5eVx88cVGx6pVdabFDbBixQqGDh2Ky+WioKCAW2+9ldLSUqNjKcoxZWVloes6hYWFRkf5DZvNxvnnn4+UEr/fb3Sc32XAgAF8+umnBINBpk6dyjfffEOfPn2MjlWr6lThzszM5IILLuChhx4iOzub1157jYceeohdu3YZHU1R6pyBAwfi8/n45ptvjI7yu/Xq1YtevXpx0003sWnTJqPj1Lo6VbirVHWPpKamcuedd/Lmm2+yb98+Y0MpilIr5syZw6233sqIESPo3bt3g+wurZOF+0jt2rVjzJgxTJ06FbfbbXQc5RQsXbqUAQMGcPHFFxMIBNA0DU3T1IXnWmAymerUlPwZM2bQoUMHRo0aZXQUQ9X5wg3QqlUr5s6dy+jRo8nPz4/qufbu3RvT/8mDwSD79+8/8Y4xZMiQIXz22We89dZb9OvXj169etG7d282bNjAtm3b2LZtGx6Px+iY9dKDDz7IjBkzcDqdRkc5obKyMg4cOECXLl0aZCv7SHVmVMmJOBwOZs2axaxZsxgzZgzt27eP+DmWL1/OBx98QNeuXenVqxdnnXVWxM9RU2+99RabN2+mU6dODB06tE5MZbZYLFgsFhwOBxs2bAAqJ1lMnDgxXFDOPPPM8ASRgQMH1rmRELHKZrPF1KzO6pSVlTFnzhxGjhxJmzZtDMuxZcsWkpKSaNWq1Unt/9lnn7F//35atWrFRRddFLEc9aZwAzRp0oQxY8awYMECJk6cSHZ2dkSPbzKZeOSRR3jsscc4fPhwjQq3x+Nh3LhxEWm9t23blqpbv6WmpnLXXXdxyy230KlTpxoV7p9++oknn3yyxvmgslX9ewgheP7558OPly5dSlFREQD/+Mc/OHjwIABXXHEFl19+eUQyKrHr4MGDbNu2jQceeMCQ8wcCAW655RaaNm2K1+vF6/Uya9aso1r+q1atYv78+Uf9vbPOOouMjIyI366vXhVugPbt2zNx4kTGjRvHm2++GdFpvAMHDuTiiy9m9+7deDyeGq2ZEh8fz2uvvRaRt3xxcXFs3LgRqBwqdeGFF3LgwAFuuOGGGj3/Ll26MHXq1BrnA0hLS6vRtO+hQ4eGvy4oKAivtvevf/2LRx99FICLLroonNdsNh93NmBVK9NqtZ5yppNR9Uu0Z8+eMTN78n+98cYbXHPNNSxdutToKMek6zp33nknr732mmEZKioq2LFjB4899hgul4sBAwawbNmyo6baDxw4kAcffPCov9e0adOoLCVQ7wo3QHZ2Nm+++SYTJkxg6tSptG7dOiLH/emnn3j//feZM2cOmqZx//331+h4QoiI9dVVFe49e/bwxRdfcMcddzBu3Dj69+9fo+OaTLF3GaRx48bhdxIPPPBA+N9h+fLl/PGPfwQqf2BuvfVWoLI49+3bFyEEUkrWrl3Lhg0b0HWdXr160b9//6j1mWZkZFBSUoKu61E5fiQ0a9aMvLw8o2NUa/PmzWRnZ0f8HfTvcd999/H888+zevVq5syZg9PpZPTo0cycOfOo/Wrr56VeFm6AhIQEpk6dyuuvv871118fkT7RTZs28f777+P1ern44otjsqgtW7YMn89H69atadmyZUxmjKQjf/kNHjyYwYMHA5CXl8ecOXPC+3z55ZdAZd/57NmzmT17NmazmVGjRrF3796YvvN8Q7ZixQpWrFjBP/7xD0NzzJo1i06dOjF//nwmTJjAvffey5NPPmnYRdJ6W7gBWrduzfXXX8/TTz/Nk08+SUpKSo2ON2rUKFavXh3VFlpNTZw4kc2bN9OzZ0+joxiqWbNmPP744wD4/X6WL18OwL333ktFRQULFiwIv/2+9957eeaZZ4yMayghBFOmTOHvf/87kyZNMjpOmJSSzz//nEsvvRS73W5oFqvVyty5c1m3bh3Jycm8/PLLhuap14UbKi/cPfXUU4wePZoFCxaQkZFRo+Ode+65EUoWHTabrcEX7f9ls9m49NJLAejbty/9+/fnxRdfJCkpiT//+c988MEHBic0lhCCbt268eGHHxodJUzTND766COaNm1Kv379jI6D2WxmyJAhnH/++ZhMJsN/kdT7wg2QnJzMK6+8wvTp0xk/fnxUhgoqdUNKSgrdu3dn3rx5CCFo0aIFqampRsdS/kdJSQnz5s3jk09i637jsbLud4Mo3ADp6encdtttvPHGG9x00020bNnS6EiKAUwmEwsXLuSnn35CSskZZ5xhdKSYkJmZSceOHfnmm29iooU7e/ZsbrnlFqNjxKz6feXqf7Rr146xY8dy//33q+nxDdzpp59ea0XbbDajaVqtnOtUpaam0qJFi5i4OUkwGOTDDz9k2LBhRkeJWQ2qcAO0aNGCBQsWMGbMGHJzc42OozQAS5cu5ZJLLjE6Rp3x4IMP8tFHH8XsAIBY0OAKN1T2Uz377LOsXr3a6ChKA2CxWOrEtPKOHTty6NAhiouLDc0xc+ZMmjVrZmiGWNcgCzdUDhe7+uqrjY6hKDGjT58+7Nu3j4KCAqOjKCfQYC5OKopyYjNmzCA5OdnoGMoJqMKtKFEmhKgzt9bKzMw0OoJyEhpsV4mi1BYhhOFTtpX6RRVuRVGUOqZGXSVCiH1ABaABQSllTyFEOvAO0ArYB4yUUpbULKaiKIpSJRIt7oFSym5SyqoFMu4Hlksp2wPLQ48VRVGUCIlGV8lw4PXQ168D6vYkiqIoEVTTwi2Bz4UQG4UQN4e2ZUspq+7YWwAYt/q5oihKPVTT4YDnSinzhBBZwBdCiG1HflNKKYUQx7ypYqjQ3wyQmJjIzp07axglenJzcyktLY3pjIWFhei6HtMZXS4Xe/fupbCw0Ogo1fL7/TH9GpaXl+NyuWI6Y0FBQcz/vJSWlrJ///6I3PM1Wo5316QaFW4pZV7o8yEhxGKgN3BQCNFESpkvhGgCHKrm784D5gFkZGTIr776qiZRoqq0tJTc3FxiOePu3btxOBzhG+rGosLCQtauXWv4WsbH43Q6Y/rf2ev18s3hb/jgq9hdQ9yR72CQZ1BM364tLy+PjRs3smvXLqOjVOu4r5+U8pQ+gAQg6Yiv1wJDgKeB+0Pb7weeOtGxsrKyZCzbuXOnnDdvntExjmvx4sVy7dq1Rsc4runTp8vi4mKjY1RL13U5YcIEo2McV1FRkezxeA9JDP9pvLqxXLJkidEv1XHNnTtX7ty50+gYxxWqi8esmTXp484GVgshfgTWAR9LKT8FZgKDhRA7gYtCj5X/4XQ6ufLKK42OoShKBOzevZu777671s53yl0lUso9wFnH2F4EDKpJqIZAShnT3RqKopy8QCBAaWlprZ1PzZxUFEWpY1ThVhRFqWNU4VYURaljVOFWFEWpY+pV4c7Pz+e1114zOoaiKEpU1avCXVZWpu4jGSFOp5MxY8YYHaNeCwQCBINBo2ModZC6A45yTJqm8euvvxodo17SdZ1vv/2WVatWkZaWRrdu3ejVq5e6q3kdVtv/dvWqxZ2enk7Tpk3JyckxOoqiVMvv93PVVVdxxhlnEBcXx1VXXWV0JKWGZC2veVKvCndWVhYtW7Zk48aNRkdRlGrdd999LFy4kGAwSPv27XnhhReYNm2a0bGUOqReFW5FqQvuv/9+rr76atasWUPr1q156qmnuPPOO42OpdQhqnArSi1LS0sjEAhgs9l44oknaNOmDSkpKUbHUuoQdXFSUWrZ7Nmzef755+nYsSMpKSm0b9/e6EhKHVPvWtzDhg1j48aN7N+/3+goSh2gaVqtXVjSdZ0nn3ySDh06MGrUKHr27KmKtnJK6l3hzsrKoqysDK/Xa3QUJYaVlpaydetWRo4cSU5ODgUFBVE9n9/vZ8GCBbRq1YqhQ4eqoX/1jBoOqCi14IMPPmDcuHE8++yzTJ06leeeey6q56u6g9JVV12FyaR+7Oqb2h4OqPq4lQbj3Xff5aOPPgJgz5496LrO9OnTmTt3LvPmzWPTpk1ROa+UkhdeeIFx48ZF5fh10cyZM9m6dWv4sdVqZd68eVgskSlJK1aswGq1cu6550bkeLGmXhbu+Ph4vF4vUsqYfUvqdruJj483Oka1hBDY7XZ8Pl+t3yPS5/Ph9/tPat9XXnnlpNenGTVqFA8//DAA//73v3G5XFx33XXs3LkTt9tNhw4dTjVytXw+H+PHj2fSpEl07tw54sevq0aPHo3b7Q4/DgaD9O3bF03Tjrl/8+bNeeutt6o9nsViIT4+Hk3T6NatG0OGDMHv93P77bezcePGqL/LMZlMmM1mAoEAVqs1queCelq4X3rpJXr06MGGDRtitnBfeumlrF+/3ugY1UpKSuKee+7hiSee4NFHH43KOaSUrFq16jc3RV21ahUrVqw4qWOMHj36pCdcCSHC/x+6du3Kk08+SadOnZg/fz4jR47E4XD8vidwAsXFxbzwwgvcdtttdOrUKaLHruuaNm161GMpJevWrat2/7y8PIYPH17t9zt27MhVV12Fpmn4/X4uu+wyOnXqRHl5OT/++CPdu3ePWPZjad++Pf369WPhwoX89a9/jeq5oJ4WbiFErfc5/V6x/G4A/lvkovk6SilZsWIFgUDgqO3nn38+Dz30UNTOCzBkyBCGDBnCnDlz+OKLLzCZTBF9rh6Ph9mzZ3PBBRdw9tlnR+y49dWRv1SPpUWLFnz55ZfVfv/nn39m4cKF6LpOeXk5y5cvJy0tjZ49e7Jx48aoF+6q7LVVd+pl4VbqBpPJFO66MMr48eOjclyPx8Pq1auZOnVqVI6vHK1z58489thjBINBXn75ZTIzM/n888955plnyM/PNzpexKnL24oSYYWFhdx444289957RkdpcMxmM9u3byc9PZ2WLVuybdu2mH5ne6rqbYv7wgsv5KuvvuLCCy80OorSgOzcuZO5c+fy8ssvk5ycbHScBkcIQXp6OqNHjzY6SlTV2xb3I488olZcU2pVbm4ub7zxBrfeeiuZmZlGx1HqsXpbuBWlNkkpKSgooLy8XE1jV6Ku3naVKEpt+vnnn5k1axYLFiwwOorSAKgWt6JEwCeffMKCBQsiNvNPUY6n3v4vi4uLY+TIkSxatIirr77a6Dh1zu23386WLVs4fPgw27dvZ8GCBSQmJhodK2ZNmjTJ6AhKA1JvC/dFF11EXl4eFRUVTJkyhfXr15Oenm50rDrB5XKxceNGbr/9dr777jt27NhBcXGxKtyKEiPqZeHesmULrVu35tFHH+WLL74AYN26dQwZMsTgZHXD7NmzmTRpEq1btyYQCHDdddcxbdo05s+fb3Q0RVGop4V7z549tGvXjlatWnHRRRexf/9+fv75Z1W4T9J9991H586dmTx5Mq1bt+aqq65iw4YNRsdSFCXkhBcnhRCvCCEOCSFyjtiWLoT4QgixM/Q5LbRdCCFeFELsEkJsFkIYskjD8OHDWbhwIc8//zx5eXncfffdXH/99UZEqbNeeeUVAL7++mvmz5+vukkUJYacTIv7NWA28MYR2+4HlkspZwoh7g89vg+4FGgf+ugDvBT6XOvWrVvHpk2bWLduHbt37yYpKcmIGHVWv3796NWrF8FgkLi4OKPjKHVMfZxmHktOWLillCuFEK3+Z/Nw4ILQ168DX1FZuIcDb8jKJbK+FUKkCiGaSClrfZWXpKQkBgwYwIABA2r71PWGxWJRw9uUUxLrq3PWdaf6U5l9RDEuALJDXzcDjrxLb25oW/1bnusUrVq1in/+85/s37+fcePGcdlllx13nWFFUWKbruvceeedbNmyBYDvv/+eF154Iao3b6jxkUOt69/961UIcbMQYoMQYoPH46lpjDpB13W2bt1K27ZtyczMpF+/fqxfv77au34oihL7fD4fq1evZtCgQVx00UWsXr0an88X1XOeauE+KIRoAhD6fCi0PQ9occR+zUPbfkNKOU9K2VNK2TOWb+EVSfv27WPHjh389a9/pVevXlx++eXYbLaYvhOOoijHd8899zB37ly6detGt27dmDt3Lvfcc09Uz3mqXSUfAn8BZoY+f3DE9glCiEVUXpQsO5n+bU3TWLJkySlGib7CwkJ2794dkYw2m41Zs2YxYsQIFixYQF5eHgUFBTU+dk5ODr/88gsHDx6sccZoKSgo4NNPP43pe22Wl5fH9P9Ft9tNQn4CbZa0MTpKtZL2JZHjyonpfu49e/ZgsVjIyck58c4nMHjwYCZPnszdd98NwOTJk5k4cWKN/x8d7534CQu3EOJtKi9EZgohcoGHqSzY7wohbgR+AUaGdv8EuAzYBbiBMScT0O8XjBuXfeIdDeJw6PzlLw6ys2ue8cj+7OzsbM4555waHxPgl19+Ye7cFEpLY/d1bNfOzuWXNyIhIcHoKNWyWCwR+XeOFqfTSS97L2ZmzzQ6SrW2lWyjwlQR06+jw+HgifQncGe7T7zzyXgSxjEu/PV4an5nJb+o/obZJzOq5JpqvjXoGPtK4LaTThb+eyYKCvr93r9Wa1JSdtGkSRH9+sVuxoMHD1Jamh3Tr2Pz5svp0aMHNpuNiooK0tJTOVhygKSEFMoDh/i85A32uLdiCliwi0SEbia/4gB904Zwceur8bt9NG/UkvLychISEigpKcHhcBAIBNA0jYSEBKSUxMfHh6foV1RUkJKSEn7s8/lISUnB5/MhpSQuLg6TyRS+v+Zbb70VsX9nv99PIBCI6C+q4uJi1q9fX+OMuq7z6aefkpuby8iRIykvL+fFF19k+vTpNX5HpOs6hYWFMf3zsnnzZorOLKKsXZnRUaqVaKp+7oQa66XUKil1igIH2OPaigmdD/Pn0C7hbPy6HxvxdLD14YDvV8o8pXRK7c5pGV1JtqYxecW1JFkzuK37gzSyNcEWsGEymcJ3iDeZTGiahpQSn8+HEAJN0xBCEAgEwt8XQuD3+8NvQ4PBIDabLeLPc/ny5ezcuZODBw/So0cPLrnkEqxWa8TPc6pcLhcfffQRd999N1dccQVvv/02TZs2ZeXKlVxyySVGx1NOQC3rqtQqieSHQ98xbcMDvLThRczOZpSVBfh280+88ekS1uz4mtxf89j43Y+s3ruCX4p/IefgFuwymXiRzNubXuGzXR/i9FZgs9kQQmA2m4+6S3sgEMBqtaJpGhaLBU3TsNvtCCGwWCwEg8HKLFL+5g7zkTJ+/HhSU1O58MILueuuu3C7I/SWPEKSkpIYPnw4N954I3v27OGBBx5g06ZNdaJo+/1+5s6da3QMQ6nCrdQqkzDTM/NCmgR6sHV7MZu3HuaHzfmUH7BhdzfGtd9B3g4/W384zHc//MDWPetZ+f1XeFxB1u7+hkMVRcxd+38U+wqpqKgAKt+aezweLBYLJpPA4YjH6/VgtVrx+XzExcXhcrnCre2EhIRwEXc4HBF/jg8//DDPP/88bdq0YdeuXbz//vvcfvvtET9PTfXp04cZM2aQkZHBqFGjeOihh4yOdEIzZ85kyJAhJCUlce6557J69WqjIxlCdZUotUrXdRLMDl7844vcsHgM/8n5BN0H8TIOm7Tx/S6NP/cewY2De1HmKsXmsZHr/g/e8iIKi0vYqe0mGDAz/KU/8sXtK4DKkTpxcXF4PW5yls9k1/p/EgxqdO73F3oMnUZFRQUZGRl4vV7i4+MpLCzEbrcTDAZxu91kZGRE9Dn+7W9/o3///owfP54ff/yR119/nXfeeSei54iEtLQ0+vfvT0pKCn379o35ZSHKysrIzc3lxRdfJCEhgbKyMvbu3Uvfvn0b3Axf1eJWapXJZMJut+N1evjHiLlc1ukPWMxm2jRqQ992fenaqgu/HP6FrXk5FFUUk1+UT0LRabi2p3Bmcmc8ZYWge9HKBDe9eBNCCLxeL8XFRVQc3MruraspKffSrMswUpt2o6K8nMTERA4fPowQApfLRWZmZng6f2pqasSfo91uZ+DAgbz77rusXr2atm3bqju+R0BOTg5NmzYN38X93HPP5ccff4y5bqja0LB+TSmGk1Li9/tJS0sjEAjw0og5PBj/EP/e+G9KnaUkmBNwiHh8ws+hom2UlZSRZE1meL/hOCucxJNO0eFDmNIO4D8YQNOCWK1WVix+nkP71lCSv5/uF05kwLCJBIOV3/N4PKSlpaFpGg6Hg7KyMsxmM1JKnE4nKSkpEX+eTz/9NJ9//jnfffddneiCqAv69+/Pq6++yq233sqOHTu44YYbePjhhxvkL0VVuJVaZzKZwhcT0+LTmXbJNKzCzr/WvcvB4kMQABEAoQm6N+9OvDmePfl7iLfEk2TNoG3LTrz9+eu0ubiAV5fMZ/TQv7D+q/fJbtKc4be8QnarruHjVw3zM5vN4VElR04MUavY1S2PPfYY/fv3p23btrz66qs0a9bM6EiGUIVbqXUmkwmn00lCQgIul4tkezIz//AE0y59mCv+70+UlJewa/8espIyKXYWkWhNwuv2QkBy+HARidYEBvcYRm7uDlbJxXw77lXSNMmQgddxWud+WK1W3G43drs9fHHS6XRis9nw+/04HA40TUPX9agO0UtNTUXXdUpLS6PSJdMQNW7cmJSUFL7++uuYGl5Z21ThVmpV1TjrjIwMiouLSU1NxeVyYbPa8Dv9LL1tKfuK9/HRxo9weV2YgiYSbA7KS8tBCjxuL3azjasuuoqeZ/Vk5ebPeXntVM7/w1Wc1XcomqbhdDpJT0+nvLyclJQUSktLyczMpKKigvj4eIqKinA4HEgpcblcUZvh17t3bz766CN++OEHBg4cGJVzNFTRXHmvLlCFW6lVQgjsdjvFxcXEx8dTVlaG1WolGAySmJiIlJJ2We24ffDtSCmxWcwUrF5Gwbp/47DHkTHwUlL7DcJqt1NSUkKgIIinVND/ohHYbDaklKSmplK4bx/rF8ymOPdX0tp2psdfxpKa1Sjc363rOrqux/S6KcpvvfDCC0yePFkVbqMDKA1LVYs7JSWFsrIykpOTcbvdWCyW8Fhs/F5MPi/bpt6O9HtpfsW19HxgBrowYTWb2DvvSYp+3EhQ09lVWIr98CF8OevZsGYlhzZ/T0DT6HzVDXT/09X4fV40r4+3b74eZ7mTYVMfJbl1W7JbtMRkMuFyubDb7Ua/LMpJ2rJlC5MmTWrw1yZU4VZqndlsJhAIhGcxVl1INJvNaBVlHJj3NK5fd9H57mlYk5IJlJbg3bMTBPgkNPvTdZw2+jaCrgqafb2cnjt+pmjNSloNuJAzR91EMOjHVVKCv6IMTYKOZNiURwhqOqsWvsHm1au5Zf5rtDm7B2az2eiXQ1F+N1W4lVolhDhqHZGqNUOklBAM8stLM9AOHqDNtbfiP1xA8HABAklVA0tI8P+6F6+U6EByx86kduuB5g/iKS2i/JfdaFKiSdCkRJcSTQddSoK65OyhwwjoOgsn3c3VM56ifR9DbomqnIJ169Zx2mmnkZWVZXQUw6nCrdQqKSXBYJC0tLSjLk5aLBb2L/4nnl0/0/q6W5oHB38AACAASURBVCHgReggROjjqGNUFnCQaG4Xfikri3WoQGu6RJeEi3dQk2hSJxjap8t5A/F5/cwddwsT3/kXnc8+26BXQ/k9fv75Z5o0aUJ6errRUQynCrdSq0wmE3FxceTn55ORkUFhYSEJCQn43C6Kl31Ix2tvQ3OXIU2AEJhCLXRTqHJLKStb55LKCl5VpHWJrkuCUkfTJZoGwVDhDug6QQlBXUfTBZqu0/mc/hzKzcVTWGjky6Eop0QVbqVWVbW44+PjCQQC4QuDRauXYUtIxFuYh9kkMJkrRw0IM5iPKNy6rGxVS12ApqNLHSlB6qGWtl5VoCUBvbJ7JKhLgpLKAq5XdqMEgjoZzU9jzp138PLWnxCqrzumlZaWkpeXx/nnn290lJjQsMfUxKiHH344vPRofVQ1IqDqs5SSiu/X4mjVDs3jQve4kG4XeF3gcSO8bsw+D2afB+GtfCy9LqTXje5xo7vd6G4XutuF5naiud0E3K4jPpz4Xf/98FZU4HVV0LR9WzSf18iXQjlJhw4dYvv27fTv39/oKDFBFe4Y8vHHH9O5c2fOOeccevXqxdSpU42OFHFV62d7vV4sFgt+vz+0zYTU/OHCrXtcSI8L6XFDqFgLb+XXeDxwxH6610XQE/pwuwm6nQRDRdvvduFzOvG7KvC5nHidbrxOJ16nE09ZWfhGDIpSl6iukig7fPgwW7ZsOal9v/vuOy666CJsNhvvvPMO8+fP5+DBgzF9777fS9d1fD4fqampuN1ukpOT8fv9+H1+ZNFB7KF1TIRZYDIJhFkgTCYq2xiSIKDpOkFdJ6hVdoMEQl8HpCSghT50iT+oE9ShvLwMsyMBvybx60d8PzQJJ5ratGnD3r17GTBgQMwuPdq9e3c2btzIBRdcYHSUY5JSsnXrVk4//XSjo8SM2PyfVI8UFRXx1VdfndS+P/30Ey6Xi5UrV3LTTTfhcDg4fPhwvSrcJpMJm81GUVERjRo1oqSkhKSkJOKSU8j/+lNsJhOkpkKoeGOqHFIS9PsQ9nh0qvqtweeqwF14GL+m4wvq+HWJT9PxBSWayYIlM5sAgrIDuTgaN8Ov6wQ08GkaQR0O5xfg90a3q2TMmDEMGjSIESNGRGUVwkj4+9//To8ePfjhhx+MjnJMUkqmTZsWs/mMoAp3lHXq1Ilp06ad1L7vvvsuDz/8MM8++yzXXHMNXbt2pUuXLlFOWLt0Xcfv99OoUeX089TUVPx+P03+NJrDa5ZTun0LWrOWJGRmoZsEukkQFBDcvxtri7ZIwHPwAIHyMrw+X2W3R1DDr0k8QYkvqOHVdPwI9P2/4sdMfIuWlOXnIxISCGjg1XTKiovZs/Unug29HBr4LDyl7lGFO4ZcfvnlDB48mPHjx/Pee++RmFj9XZ7rMl3XMZvN6LoeXmbV3rQlusVGwOWGvTtB07AlJhKQGmbAX16G2Lyucqy2phHQdPyajl/7b/dIUOqhsdsQ0DS8pcX4gjpFhYV4Ahp+BMktWlFSUsKhvAK8/iBDx41r8NOnY92hQ4fq1bvOSFCFO4bYbDZsNhtvv/220VGiRgiBzWajoqICu92Ox+MJF3HNHo9fl8iAhrm8jKAWQDuwPzQcUCAADRmeZOPXdYKawK8f2Xeth/u8g3rlhJugFkDTIBDU8DidFOcfRJeAMBGfmGD0S6KcwNVXX83SpUuNjhFT1KgSpVZV3QEnNTUVj8dDUlISuq5jsVhode1N+EL91K7iYtzOCnyajlfT8Wg6bk3HG9TxBCsf+zXwhVrdR7W8db1yxqRedfGycpsuoby4BF3XkSYTvUb8CRGnVgdU6h7V4lZqVdWyroWFhSQmJlJaWorNZiMQCNC0/2B+0EGXOroMoFe4IahXXp8UlW0MKfXQJBwIhibb+EMXK/161WgRiV+r/H6gqoBLiYiLw+vxVe6jBel2wQW0bNPG4FdEOZ5gMKgWAjsG1eJWapWUkkAgQGZmJm63m5SUlPCdaCpcbpJ6nVfZyg5qOCucuAOVLWx3QA99LStb3EEdT1DDExpR4g1q+IIaPk3DH5T4NQ2/phMIFfNAUMfldOP3+Ulq1IhLbr0Fc1w8xcXFRr8kynE88sgjPPjggyQkqC6tI6nCrdSqqgk4brcbq9WK1+sNrxIYn5REh1E34g3KUIHW8IZGi3iDGt6gdkTRruxC8QZluHvFp0l8oe4Svybw6+DX5FHjvQNSkt2+PeXFJfT74zB1I4UYp2kaZrNZXUD+H6pwK7VOShle1rVqAoyUEovFQlq7jjS/eFioUIda1cHKvu3/9m9LPIHK7/tC+/lCo0wCoeJd2V2iVRZxXeLXIajpnH7eBWjCwjkjrsRisTTo+xYqdZcq3EqtqiraDoeDQCBAfHx8+CYKHo8HU0IiGV264cdU2erWKrtG3EENd7iIBysvVoYfV7bGvVrlGG6fLvEGKyfb+HUNX6i1rQsTac2aUVFRzpnnnYemabhcLqNfEqUaX375JUlJSfRRa6b/hircSq2qWtb10KFDJCQkUFRUFL4jTmpqKvHx8XS4ajTZfQdUdo34NdwBDXdQr/wI6Lj9El9Q4g3KUHdJZSvcGwSPJvEFK4cEekPdJwFNQ1qsdLlwMOuXf8WMxUuwx8VhtVrJyMiI+nPu2bMn69ati/p56puqbjR1a7nfUqNKlFpVdXEyMTERn89HQkJCeEKO1+tFSolJCDoPu5I936wh4HUf0br472qCOqGbJoQm3ISXbz1iCKA/tCZJEBOtunYngGDAlSPQrDaCwSBSSpxOJ0lJSVF9zjNmzODss89m06ZNUT2P0nCcsMUthHhFCHFICJFzxLZHhBB5QohNoY/LjvjeA0KIXUKI7UKIS6IVXKm7zGYzmqZhtVoJBALh2ZMWiyU89KvlhZfg6HQG3qDEHZThFnf4wmRoe1X/ty9Q2d/tC1+0/G+/d1a7DjjS0tm39SfOHDiQhMRETKHFrGJ14aeGrqysjMWLF3PttdcaHSUmnUxXyWvAkGNsf05K2S308QmAEOJ04GrgjNDfmSOEUIMwlbCqe05WLedadZFSShkuplA5Lf4P0/+OKS3jiIJd1WUicYUuSnoD/y3mHg08oaLt1TR0i5Xk5qdhSUyirLiYP915Bx179w6PUhBCqIuTMSoQCJCXl0fLli2NjhKTTli4pZQrgZMd7DocWCSl9Ekp9wK7gN41yKfUM//bVeJwONB1HZPJhMfjIRAIAJXT/5u2a8/Vc14hqWUrPAE99FF5IdJXNb473Meth0ei+IKVfeB+KfD6A5QXl9D9osFcNGYMcfHxVFRUoGmaujgZw+x2O4MGDTI6RsyqycXJCUKIzaGulLTQtmbA/iP2yQ1t+w0hxM1CiA1CiA2BgKcGMZS6pOpiU2lpKXFxcZSXlwOVM+QSEhKw2+1IKfF6vVRUVNCud1+GTptB9z+NxCdFeJSJ32yh9YALwkMEvUGNuMwsEhs3xatpldPhfQFsDgdX3H47g2+4ASEEXq+X1NRUzGYzFosl6v3byqlJSkrinnvuMTpGzDrVDr6XgOlU3rJ1OvAMcMPvOYCUch4wDyApKVv6fKeYRKlzbDYbWVlZmM1mGjVqFJ5cUdVNYrFYcDgc4W09Bg+hS79z+ePk+4HQXd5NAkdqKs4jZj5abHYQ4qg1tm1xcWS1bIkeGnIYHx+PECI88aY2JnYIIXj//fejfh6l4Tilwi2lPFj1tRDiZaBq6a48oMURuzYPbVOUsCP7sqs+H+l/16YwmUxY09JITEv7zb5p2Y1P6pxVR6w6X23OxBNC0LZt21o7n1L/nVJXiRCiyREPrwCqRpx8CFwthLALIVoD7QE1gFVRYpgQgtGjRxsdQ/kdhJTy+DsI8TZwAZAJHAQeDj3uRmVXyT7gFillfmj/KVR2mwSBu6SU/zlRiJSUdNmhw92n+hyizmp1ccYZhZx22mlGR6lWQUEBP/5ox+v9bas0VqSl7aBfv9YxPZJjy5YtnHnmmUbHqFYgEGDfvn20b9/e6CjVKi4uxu/307jxyb0bMsK+ffv4qdFPBBICRkep1o5nd1BWXHbMt4YnLNy1ISkpS/r9242OUa3k5H08/PCaGo8pPXTo0FGPrVYracd4+38qPv30Uxo1akSPHj0icrxoeP755xkzZkzM3nsRYMqUKTz++OMROZbf7ycQCJCQkBAewZKcnFyjY5aWlvLGG29wxx13RCRjNGzYsIGioiIuuSR2p3G8+eabnHfeeTHdGOvYsSOHDh06ZuGOkdkHAr8/dluKgUARdru9RkX266+/ZvDgweHhbgBnnHEG7733Hp06dapxxvj4eBISEiL2iyAQCLB+/XrOOeeciBwPKn9RpaSkRCxjpFWtmRKJfH6/n0WLFpGenk6LFi1o2bIlL7zwAnfccQetWrWqUcZI/sKPBofDgdvtjumMdrudxMTEiGV0Op3s3LmT7t27R+R4cPzrMGqtkigLBoN8+OGHXHvttUcVbYCtW7cyduxYtmzZQiy88zmS2+3moYceMjpGnaXrOsXFxWRkZPDQQw+FW96lpaVGR1OiIDc3l1mzZtXa+VThjiIpJV9++SW33noreXnHHlyzZs0a/vznP/+mG0Wp2+Li4ujduzdjx45l48aNjBgxgn379tGtWzejoyn1QIx0ldRPUkpKS0uPW5SllOzZs+c3rXGl7rvwwgvZunUrl112GYsWLYrprgOlblEt7ijy+XysWbMGTdOOu18gEGDZsmW1lEqpLWazGYfDEZ74o5YnVSJFFe4oslgstGvX7oSTPcxmM6effnotpVIUpa5ThTuKzGYzTZo0OeFdqi0WC82aHXNJF0VRlN9QhTuKhBAMHjyYUaNGHXe/5557juzs7FpKpShKXacKdxQJIUhKSuJPf/oTN9xww29mDDZp0oRx48Zx3nnnnbBVrig1oWkar732mtExjuk///kPBw8ePPGOSpgq3FEkpUQIwdChQytvtxW6o3kVt9vNmWeeSefOnQ1KqDQEc+bMYfjw4UgpufTSS1m1apXRkQA4ePAgl156KVu2bGHSpEkxPRs01qjhgFFWXl7Oo48+yptvvvmb0SVlZWVMmjSJjIwMhg4dGl7KVFEixe12s2PHDh544AFat26N0+lk79699OvXz9Dbtkkpyc3NpXnz5owePRpN07jxxhspLS0lNTXVsFx1hWpxR4mu6+zbt4/x48fz/PPPEwwGj7mf2+3mmmuu4bnnnqO4uDjmZlAqddsPP/xAdnY2HTt2ZPr06TRp0oQffvghJmZwzp8/n7Fjx/Lhhx/yn//8hxEjRrB48WKjY9UJqsUdYVVdIvPmzWPp0qV89tlnJyzGuq7z5JNPkpOTw9ixY7ngggvC90RUlJro378/b7/9NhMnTuT222+nT58+vPvuu2RmZhqaSwjBfffdxyWXXMKCBQsYP348NpuNDRs2GJqrrlCFO4KqivYrr7zC/fffH74t18moqKhg0aJFrF69mo8++oiuXbuqwn2EYDAYvsmv8vvce++95Ofn89xzz3HvvfcipQxffzFSkyZNWLhwIe+88w6PPfYYmqbxzDPPMHHixGPeYEP5L1W4I0jXdV599VXGjRt3wtmS1cnNzeWcc85h7dq1al0LKpcx3bdvHzNnzmTSpEk0btyY5s2bGx2rTmnZsiUtWrTg9ddfx2w288ADD9C4cWMGDBhgaPG22+307NmTbt26hQv1W2+9xWuvvUbv3r0544wzDP/lEqvUr7UIevPNN7n55ptPuWhX8Xg8XHPNNaxcuTJCyequZcuWMWHCBGbMmMFzzz3HE088YXSkOkkIgc1mw2w289RTT7Fs2TKWLl164r9YCywWS/h2dtdddx2apjFv3jw+/vhjo6PFLFW4I2TBggXcddddR/VnCyFwOBwnbDUIIUhISDhq27Zt27j55pv57rvvopK3LiguLmbt2rUsWLCAl19+mcTERFq0aMHatWuNjlbnTZkyhT179sTkxcCxY8fy9NNPs3v3bj744AOj48QkVbhrSNM03n77bSZPnkxZWdlR32vVqhWzZ88+YX+d1WplyZIlpKSkHDVJZ/v27Vx55ZXs2LGjQY42SU5O5qyzzmLZsmWMGzeOyy67jBdffJFdu3ZRVlbWIF+TSLHb7XTp0oWcnJxqRzwZyW63M3bsWDZv3szKlStj/t+6trt0VOGuASklK1eu5Prrr6ekpCS8vXHjxvTv359vv/2WzMzMk/pHPfvss/n111+55557jmp95+bm0q9fP/Lz86PyHGKZxWKhdevWLF68mBUrVjBnzhzuv/9+9u/fz7XXXsvy5cvZs2eP0THrrAsvvJDmzZvz5ptvxmTxdjgcPPjggyxZsiTmuw1r+xeLKtw1oOs6f//734/q027atCnTpk3jk08+oVGjRid9rKrp8ZMmTeK22247agnQiooK5s6dG/Otjmg477zzWLZsGX6/n48//pg777yTKVOm8N5777FmzRreeOMNHnnkEbxer9FRj+nLL7/kvPPOi8klXYUQjBkzBiEE//d//2d0nGMSQvDMM8+wZs2amOzWqZKZmUnLli354YcfauV8qnDXgBCCVq1ahdcZsVqtTJ8+nVGjRpGcnPy73z4JIcjIyOC+++5j/Pjx4e12u73WR1IkJCQwatSomFnf4qabbjpqpl9cXBwPP/wwo0eP5txzz+XKK6/kiSeeCA91ixUrVqzgvPPOIy4uzugo1frLX/5Cy5YtefLJJ2PqtasihOCuu+7il19+4ZNPPonJjFWFe9OmTbVyPlW4a0AIwfTp05k8eTJt27Zl/fr1jB49+jcXGn/vf7S0tDRmzJjByy+/TJs2bZg9e3a4ZVRbqropYr0rok2bNgwaNIi33nqLjh070r17d7766isOHDhgdLQ6QwjBsGHDaNSoEW+88YbRcY7J4XAwfvx41qxZw9q1a2OyeNcmVbhrQAhBWloajz/+ONu2baNr165HtQqllAQCgZOaOXnkrcuEENjtdm644Qa2b9/O6NGjDV1XItYJIUhOTmbEiBFs2rSJzz77LGbf+scqs9lM+/btyc/P/81F9lhhs9l4/PHH+fDDD/n888+NjmMoVbhrSAiByWTCYrEcs0Xctm1bevTocdxjXHHFFcfsAz3yuGoiwsmbOXMmjz/+uNEx6pwBAwbQt29fHn/88d+sZBlLHnvsMbZu3cq4cePYvHmz0XEMoQp3FAkhaN269QlvSzZo0KDfdK8oihEuuOACRo8ezU033RSTI02g8lrSLbfcwrhx43jxxRcpKCgwOlKtU4U7yk6mtaxa1EosOeOMM7jpppv429/+ZnSUaiUkJNC1a1fmzp3LXXfdxc6dO42OVKtU4VYU5ShCCJo2bUpcXBy7d+82Os5xWSwW5s2bx6uvvsrGjRuNjlNrVOFWFOU3WrVqxXXXXceLL74YE2t3H09ycjITJkxg8eLF7Nixw+g4tUINVVAU5Zg6dOjA1KlTSUpKMjrKCTVt2pTJkycTHx9vdJRaoQq3oijVysjIMDrCSUtJSTE6Qq05YVeJEKKFEGKFEOInIcRWIcSdoe3pQogvhBA7Q5/TQtuFEOJFIcQuIcRmIcTZ0X4SiqIoDcnJ9HEHgXuklKcDfYHbhBCnA/cDy6WU7YHloccAlwLtQx83Ay9FPLWiKEoDdsLCLaXMl1J+H/q6AvgZaAYMB14P7fY6cHno6+HAG7LSt0CqEKJJxJMriqI0UL9rVIkQohXQHfgOyJZSVq01WgBkh75uBuw/4q/lhrb977FuFkJsEEJsCAQ8vzN23XEyix7put7g115QFOXknXThFkIkAu8Dd0kpj7oLrqysOr+r8kgp50kpe0ope1qt9fdKcFxc3FGzIs1mM/Hx8UdNuMnIyFA3R1UU5aSdVLUQQlipLNoLpZT/Dm0+WNUFEvp8KLQ9D2hxxF9vHtrWIFksFrKzs0lOTiYxMZG//vWvbNq0ibPOOguHw0FGRgYZGRlq5qSi1FFSStxuN36/H7/fj9vtjvo76BMOBxSVFWUB8LOU8tkjvvUh8BdgZujzB0dsnyCEWAT0AcqO6FJpcIQQPPjgg0yZMiX82GQysWHDhvA+sdja3rhxIzk5Oezfv581a9bQp08ftUKhohyDruu0atWK1NRUhBA89NBD5Ofnh9fpj4aT+UnsD1wPbBFCVK0S/jcqC/a7QogbgV+AkaHvfQJcBuwC3MCYiCauY6pbhySa/6iRcO2119KtWzf279/Pddddx/fff09aWprRsRQl5ixatIh7772X9PR0hBAUFRWxaNEirr322qid84SFW0q5GqjuffygY+wvgdt+f5TYvzhXFy4gRiLjs88+y7Rp08jIyODrr7/m0ksv5W9/+xtz5syJQMLYfx0jme/aa68lMzMz4s851l9DaDgZTzvtNL799ltGjhyJEIKnnnqKvn37RvX5i1h4cVNS0mS3btcZHaNaZrOfJk2cpKenGx2lWuXl5VgsFhwOR0SOlZCQgKZpBAIBEhISKC4urvHzP3ToEBkZGTH9biM39wAWS1OjYxyHRsB0AGuW1egg1dLdOonBRJKTk42OUq3i4mISExOx2WwRO17Vz0ckflYA/vnPf1JSUnLMRnNMFO6kpGzpdB40Oka1UlJ28fTTKxg7dqzRUaq1ZMkSsrOz6dOnDz6fD6vV+t/F8E06Bb5fKAkeROoSCzZA4Am4cZiTaZt8BkI3Y7NZ0TQNIQTBYDDcHx8MBrHZbOHPVccPBoOYzeaj9q3qGgoGg1itlcWlqqvoscce47bbbovZLhcpJSNH3sF7780yOkq17PZiuky9mI1/i92V8BqvaczcwrkMHz7c6CjV+sc//sGgQYNo166d0VGqlZ2dzcGDB49ZuNXVpnpG0zSKioqIS7KxrmQpWXGnETR52e38kXz/L1R4nVR4y2ga3xaP30OWtTk7435mb9EuJvSZgt8XQAiB0+kM30LN6XSSmZmJ01n5rqOsrIz09PRwy7y0tBSr1YrNZsNms2GxWHA6nTFboBUlGtatW4cQgl69ekX9XKpwG8TlcjF58uSI9RtX2VX6I++XPIcoExT4fsEq4wgGJQmkkWlvRipplLpdePQA6fbmoFv5z+5/E29JYvqX93J1lxtp6mhBUlISUkqCwSAZGRm4XC7sdjuFhYUkJiZSXl5OfHw8Pp+P1NRUpJRomobb7QYq7w9YVFREamqqGo2iNAg5OTmqcNd3uq7z888/R/y4jRynsWj5D6THpdO1UVfaZHViz4F9vL76bdp1SKFRQiI7N+djbhak/+nnYQ7GEW9JpbiiELsjiVfWvcQfOl/OGWlnYbFYsVqtHD58mKysLFwuF+kZGRQXFZGSkkJZWRkJCQmUl5djtVbum5CQgMlkwuVykZaWFpNDHRWlrlOFu56Jx8G8P7zCvZ9P5uOf/sNnOcuw6zay0xrjP2zHV5FJ+6zTOFC6F61U55tN39C8Szq7Cg7QLsNPqbsMr0+j7fmdSLVUzvBMTEzE7/fjq8hnx7YPqSivID2rKZltBqFpGnFxceF+bL/fD1SOTfd6vb+ZJaooSs2p5lA9YzKZ6JDejgcvnILJIthdtJsSTwmJcQm4/W7cARctslrQObMbyZ52tEo+nYodEuHXMePj10MH+GzLch5f+hhQecFO13WQGnk/fcZXi+5i4ycPsvHzZxCh69q6rh+13orJZDqpNVoURTk1qnDXM1arlYA/QL/m/Xh/1PtkJmZgMpsp9ZZhtVnwaX5+yt3K4YrDbP91G6s2fMNpji4My76eH5dvp1enFjgqzPzrP/8iEAwAUFFeyqFf1rPy41mUuu30unIBg29YSECrHFXi9/vDI1iqLlLquh7x1ramaVRUVDBp0iR27twZ7k9XlIZGFe56pqysjKysLIQUdG58OmvuWE1qQir5FQUUlB/kQFk++0ty+WbHN6zatorMtEZoUuPgoUKGnX0VCT+3J8VuISslnt37dyCl5OvFf2f+zBuIS23PoOv+jy69hxIkAYfDgdfrJT09HYfDER6NUlpais1mo7CwEE3TIvbctm7dSufOncMTgmJ5uJmiRJMq3PVM1cVCIQRer5dsR2NeueYVxp8/Hr8eYF/RPrblb8Ov+2nfrAOZ6ZkcKj1EibOYvMMHcHvdJBW3Ij5Z8OgHd/Hvj+az4+fNpDY+nT/e+AJdel+G1+vF4XDg9/uxWq3hBXYA4uPjcTgcaJpGUlJSxC5OaprG0qVLeemllygvL2fWrFmcc845rFy5MiLHV5S6RF2crGeqLggGAoHwJJyOjTrQYeBEejfrxUHXQZ547wnyCg+w5+Bu0uMysGGjqLAQnzuA1+lh3OXjuP2cCZQ5cnntuSdJO6Rxz/SXSWvUArfbTXx8PF6vF7vdHp6UU9XPXVXAqwq63W6PyPMSQtC6dWv27dvH2rVrad++PQcOHKBZs98s9a4o9Z4q3PWMrutYLBb8fv9RFwmlhH5t+hEXH8eQ04dgtVlxVjixmQV5e3bQKCUDnwRHeiPibHGkpaZRXl7C9tabGHjDH2jVvhtCCDRNw2Qy4Sw8TMBiJqDpZDRthslkChdvILxvpC5QmkwmunXrxrBhwygsLOTTTz9lyJAhtG3bNiLHV5S6RBXueiYuLi48rtrn8wH/XYnQbrfj9/tJikuicMNa4gIeKg4dJOnAL5SXlpB6ZneSu/XFuW8Xez0e9hccYsuqNfQ9+1wCeb9yYOc24uLjKU9M45dVy/k150cSGzXB0aYDiRmZNDvjDLLbdwxPg09JSYnoOO7OnTuzc+dOXnjhBZ566ineeuutiB1bUeoSVbjrGZfLRUZGBk6nk7i4OHRdx+fzIYTA4/EQ56lg78K5JKRl4I93kNKoMcnnnI8UAgF4cn9BlhVj14Mk7N3BOT43cvlSDuTtQ5gslAT8xGc1o8OgIbQddAlS09m+ZiUFOT/y6w8bqfB4ufxvD5GWmUlZ2Fk8WgAAIABJREFUWVlU7u5z55138uqrr0b0mEr9smbNGqxWK7179zY6SlSowl3PJCcnV65VEheH2+3GZDJhtVqRUpJgNbPp9rGktGlP2nkXYzJbQGr4836tXLhXSsxmCyntOqFLSUKLtrT709Vomo7PXY4lPhFN6gQCQTxlxegSNF3SvMtZNJGSsqIiPnzhWRaMv4UJr/2T1NTUqK0EWNWqr1rISlGg8iL2gAED6NevH4FAgEmTJvHVV1/Vuxm89evZKJSXl4fXf3Y4HJXjugMBvCVFfHfT5TiaNqPJpSPQK8rQy4qRFWUIrxPhcYLXhXSVoxUfJlh8GN1VQbCsCK2iBOH34y8tJlBSQrCinKDLRdDtIuB24XdW4HNWds8Mv+senAX5zP7raPbv3h3R4YBH+vTTTxk2bFhUjq3UXTt37iQrK4trrrmGBx98kKysLHbt2mV0rIhThbueiYuL+3/2zjs+qir9/+9zpyaTmRRClw6KgFJl7QUUddfG7irY145tXQUEf2tdtwgK2MWGuigKVlx1LevqV3HXgqAUhSU0qSGkTDJzp9xyfn/MzDVR0AAJMwnn/XrNa+6ce+fcZ24yn3nuc55zHqLRKEIIDMPAsixcLhcV/5hHSZdedD5xNMb2LRDXEXEdLa4j4jFEIo4WjyFiUUQstY9YBKlHsPQ6zJiOqUcwYxHsWFq0IxHMSIRENEIyGiERjWLE4hw+9hzK165m+Qf/brbp7pkfJIWiPhdffDGHHXYYTz/9NOvWrePUU0/lrbfeyrZZTY4S7lZGfn4+NTU1AMRisVSWRyJG3f+WUNR3AOb2rRDXU8KdiKIldFxJHVdCR0vGEAkdkdAhFkXGdWQ8itR1ZCyKFdMx9ShmNIoRrcOIRkjqEcxolGQkSjJaR0KvQwO6HzSQz+bPJ1xRkd0Lotgn+OKLLxgzZgznnnsu99xzDwcffDCff/45kydP5ve//322zWtylHC3MsLhMO3bt0dKSUFBAW63my0fvgOJJLZlYMWiyFhKmFMedxRXQsediKLFo4hEWqzjMaSuY0d17FgUK1aHrafE24h9HyYxohESeoREtI5kNEI8EiUWqaVD797UVVURqa5uls8ZCoW46qqrmDFjRrP0r8htTNOkurqaK6+8koEDB/L4449z9913c+mll7Jo0SKEEASDQWeN7NaGGpxsZRQWFlJeXk4wGCQajeJyucj3eajzurCTcWwTpKaBBlIToAk0l4YQIG0QtgRbIm2JbVnYdmoA0rJtLBtMS2JISdKWmJbEtG0MGwzbxki/Tto2pi2wTQOaaaEpTdMIhULU1tY2S/+K3GT58uVs3LiRLVu28Pzzz3PHHXc4a9pnBLpLly5ceumlDdpaG0q4WxmxWIxgMAjgzFqMx+PYiXjKc9bApbmwNbBdAlvTsDWBhsCWacG2bSxbYlvSEW3TlimBtlLbppUS7KRlp8VaYlhg2DIt4jaWikErmojKykruvfde3G43mqax33778c477+z0+NYq2BmUcGeJ6667jmnTpjV5vy6Xy6lOkxmYdLs81K36lrxgISIvD9OlIVwpr1toAoQLAdikRNe0wbItDEumHrbEkDaGCUnLwpQpwU5asG39WvLbdcDQXBgWKU/chqRpNfvg4ZAhQ1iwYAGLFi1iyJAhzXouxd6l/rLAN9xwA5s2beKqq67igAMOoFOn3Cvm/N1337F06VJuvPHGvXI+JdxZYvHixQwaNKjJ+83kTQshnLW0faVtweOl9tuliF59kD4fUtOQLoEUkmS0DuHLB48HyzQxkiaJuE7NiuUkTZO4KUnYkrhpEbdsEhYE+wzA8nrx5OcTj+qYQmBYkoSVCpls/m494YoKRDNWdC8pKUFKSVVVVbOdQ7F77InHW15eztatW7nwwgsBeOCBBxg0aJBzJ5mL6LpOOBymY8eOe+V8SrhbGZllXevq6ggEApimCQcPp81hIyj/50tYsShF3Xth5edjaQKXkFjlmxBuH3i9JOvCJLZvI2ml4tgJy8a0JElTYlgWpikxLJtNS74gYYK7tD0Jw4RAAXj9JKWgZnsV61et4tiLL6NkL/0jK3KLXV2jxrIs5s6di23bfPXVV0SjURYvXtzqQx67ixLuVkZ+fj7hcBiXy0U8HgdSXngskcS0JQk9Sl35ZvLbtiNWU4VL2qn0wGQCm9RApC3Tgm2DYUmS6UFH05aYtsSS3w9YRjdvImFJYpaNr01bookkleUV2Db0POhg8goKmvXznnrqqcydO5fDDz+c/Pz8Zj2XonmYM2cOH330EYMGpRYyu+qqq+jZs2e2zcpplHC3MpLJJAUFBcRiMbxeL5ZlYVkWeZ07Y7o8YBqIujqk14usrMAlbYTQUjPeAUumBiaNTKzaliTTGSOGDYa005klpGLhUmKRGsRMxOPEIjFsIfAVhIgnEti23azTjYcNG8bkyZNJJpNKuFsQyWSSTZs2ceaZZ3LBBRdw7bXX0q9fP+VhNxIl3K2QzG1q/dvVnuddxYa3/4G+aR2WHsdyhxGGhUtKhABE6ngLmU4BpEG2SOo5lS1i2GCZ33vhScvGRhCvjRJLJDBNm6GjT+Loc8/J0hVQ5DoTJkxg48aNfPrpp2ia1urWEmlulHC3MrxeL7FYDE3TUvFtvi/eqxW1xfxuLVJaWBEdzbJxCYlAQmYwE7CldIQ743kn0qKdtFMDlYZtY8iUoFs2mIBFKoTS94ijcaGR78/bK1/I3/zmN8ybN4/LL7+82c+laBruv//+bJvQolE/c62MeDxOKBQCUuuWuN3uVF62ZdH9gitJWIK4aROLJ4kZNjEz/TAs4qadyhwx0s+WJGFJ4pZN0rRJpJ9NU5JMx79NO5UymDRM4vE4Lr8PzefhpMuvoLa2ttkWmarPuHHjnEkYCsW+gPK4WxnBYJDt27fj9/uJRCIIIfB4PLhcLnr84gg+yy8gWRdGE+DWBJotEEJmVnXFkimP2yblcVs2mOmZkqm8bkjakLQtEhYYVjqkYkmk28PhZ45l5eKv6DZgAIFAALdb/YspFE3Nz3rcQoguQogPhBDfCCGWCyGuS7ffLoTYJIT4Kv34Zb333CSEKBNCrBRCnNicH0DRkEgkQmFhIVJK/H4/Ho8Hy7KwbRvdMBhx31NOPrZu2eimTcyw0Y30tmURM616HrhN3LBImlZq0k06RTBpZqa3WyRsMC2bvocfyZcffMA1jz6G1+slEok4pcyam2HDhrFo0aK9ci6FIts0JlRiAuOllP2AQ4GrhRD90vtmSCkHpR9vAaT3jQX6AycBDwshmm8WhqIBXq+XeDzu1HzMZHUIIfB6vfjatafDESPSgpwKk+imRcw0iaWFOhMeiZvfT7pJPdJhEyvlYSes1LGGbeELFRKLJ/nFL39Jh27dsCwLj8ezV7IEhBDcfPPN3HPPPc1+LoUiF/hZ4ZZSbpFSLkpv1wHfAj9VWvt04AUpZUJKuRYoA1pn/aAcxO/3U1dXhxCCZDKJbdu4XK7UYlP5+biLSug0/HASpiRmfO9Zx0yZejZsJ/adsKy0WJN+fC/WCVumQyU2tnDTf8TxxJJJDj/tDIKhEJZlEQgE9mp6l8pMUGSLvZ3GuEv/6UKI7sBg4LN00zVCiCVCiFlCiOJ0W2dgQ723beSnhV7RhNTW1tK2bVts204JtduNYRgYhkF1dTWB/Hz6j72Q/Y4bRcxOedhRwyKatNANKxU2SYdKomkBjxsWcdMkYVgkMgOXZsrztlweDjjyGKq2VzLk+BPoPGAANTU1eDwetm/fvlcGJwG6du3Kk08+uVfOpVD8kF2dKbqnNFq4hRAFwMvAH6SUtcAjQC9gELAF2KUVk4QQlwshFgohFhpGbFfeqvgJQqEQVVVVaJqGrusYhoHH48Hj8VBUVISu67g8Hrqe8EtMT14qrm1KYpZEN1Nx75gp04/vs07ipiRuSWKZGLctwe+nXa/eSLcLvTZM5759CRUWUlRUhGEYlJSUNFvNyR+iaZqzGqJC0dpp1JC/EMJDSrSfk1K+AiClLK+3/3HgjfTLTUCXem/fL93WACnlY8BjAMFge5lI7I75ih+i6zqhdKgiU+U9k8+dTCbx+/1YlsXw0WcSq6rkjdtvpuFd3vf53Knp7zhT3E2ZngZv20jhoiBUDF4fW9au4/K776b/UUcRi8UQQuB2u6mrqyMUCu018VYo9hUak1UigCeBb6WU0+u11189aDSwLL39OjBWCOETQvQA+gCfN53JLRvDMIhEIliWRTQaJZlMNmn/eXl51NbWIqUkHo9jmqYzMy0QCBCPx5FSUltbyzEXX8Gom2/HdHlS3nQ6nztm2iSFi1i9trhlk5QacdMiYUoSCPRYnK3rvuP82+6gzy9+kVqJ0OfD7/djmuZej3ErFPsKjfG4jwDOB5YKIb5Kt/0/4GwhxCBSS1ysA64AkFIuF0LMA74hlZFytZRy7wQ6WwBPP/0006dPZ8OGDRx55JGcdtpp3HnnnU3Wv8vlwu1243a7nbhbZrv+Prfbjdfn47Bzf0fvoYfy3iMPUrs9VR9SAoedcy4fP/csUoJtS9x5+XQ56CC+/e9/sSVIBCUdO3Du//t/lHTpgtvjcfrNnNPtdivhVrR6lixZwrJlyygvL2fBggUMGTKk2dfN+VnhllIuAHb07dtp6WQp5V+Av+yBXa2SiooKtmzZwnPPPccll1zCSy+9xOzZs1mzZk2TrYamaRqlpaU73V9YWAhAIBAAoF27drRr147+Rx/9o2NHXXTpbtvh8Xh2+70KRUvi6quvpnfv3mzYsIErr7ySF198kb59+zbrOVX+1F7E7/eTl5dHTU0N999/P7quY9t2Ti8Qr1Aods5TTz3F7373OyZMmMCwYcN49tlnufvuu5t94lmOzEeW+Hy5W8XE660lHo83SaUVn8/HmDFjmD9/PqNGjeKCCy7A5XLtcd+6rhOJRHK6GoxhGNTU1Oz11Kldw8rp/0WfrwaX4cJXlbsZNN6IF13Xc/p/MR6PU1tbu8c2Hn/88YwbN44TTjiB2267jalTp3LOOedQU1Ozxzb+1PdE5MKXqKSkRE6YMCHbZuyUaDRKRUUF3bt3z7YpO2XLli34fD5KSkqybcpOWblyJT179szpMMrXX3/NwIEDs23GTjEMgwUL1lBdfUC2Tdkpfn8Vgwcn9loZr91h7dq1tGvXzgkZ5iL33HMPVVVVOx4kyhTlzOajXbt2MpdZtWqVfOyxx7Jtxk/y6quvyv/85z/ZNuMnufPOO2VVVVW2zdgptm3La665Jttm/CSVlZVy6NC/yNSSYLn56NBhgXzttdeyfal+kpkzZ8pVq1Zl24yfJK2LO9TMVhnjvuOOO9iwYcPPH6hQKBQtkFYp3GvWrHHqLSoUCkVro1UKt0KhUOxtVqxYwYoVK/bKuXIkq0ShUChaJrZtc+mll9K2bVsgNV/jiSeeaNbVKpVwKxQKxR4QiUT45ptveOWVVwD49a9/TSQScUoINgcqVKJQKBR7wK233srUqVN55513ePfdd5k6dSq33nprs55TedwKhUKxB0ybNo2ePXsyePBghBAsWrSINWvWNOs5lcetyDkyuarjxo1zthWKXEXTNGbNmkXv3r3p1asXs2bNavZqTEq4FTnH9OnT6du3L5deein7778/M2fOzLZJCsVOEUIwcuRI+vXrR//+/Rk5cmSzr4qphFuRU2zbto1oNMrcuXPZvn07zz77LFVVVTm97oVCsbdRwq3IKUzTREqJx+Nh/fr1zJ49u0EVH4VCoYRbkWN06tQJn8/Hb3/7Ww499FAef/xxCgoKfnKNcYViX0MJtyLnmDhxIl9//TVTp06lrq4O27Z5/fXXm32N4+Zg8+bN1NXVZdsMRStDCbci53C5XHi9Xp577jm8Xi/jx4+nrKyMOXPmZNu0XeaRRx5h4cKF2TZD0cpQwq1oEdxwww0kk0meeOKJbJuiUGQdJdyKFoGmaZx33nmYpsmLL76IZan604p9FyXcu8gnn3yS0xNCkskkX375ZbbNaBa8Xi9XXHEFq1ev5vXXX8/pv4PixxiGwdtvv+08DMPItkktFjXlfReYM2cOq1ev5q233mLUqFEcc8wx2TbpR8yYMYNEIsErr7zC5ZdfTrdu3bJtUpMihGDy5Mk8+OCDPPXUU1x88cXZNknRSCzLauBULFiwYIc/vmeffTYDBgzYm6a1OJRw7wIDBw7k1FNP5aGHHuKTTz7hqKOOyrZJDpkvwMiRI+nevTu///3v+e677+jSpctu97l48WKaqhboWWed1ST9ZBg3bhyzZ8/m6aef5sILL2z2mWqKPcfv9/PHP/4RSP2//uc//9lhfv7DDz/Mt99+26Ctc+fO/P3vf//RsUKInf7tpZREo1Fuvvlmpk+f/pPH7imZ79/e+j9slcLdvn17ysvL6d27d5NeyP79+zNq1ChWr15NLBbjxRdfbLK+95SCggKmTp1Kr169GDFiBJs3b+aLL76goKBgt/scMmQIr7/+epPY5/F4uOeee5qkLwC3283555/PQw89xGuvvcZpp52Gy+Vqsv6bipKSEqqqqrBtu9nXr2hJCCE44ogjdrhv+PDhPxL0DRs2MHTo0B8dO3ny5B22h0Ihbr75Zr766ivuueceevbsyRNPPMHxxx/fNB/gB6xatYr//ve/PPzww83S/w9plcI9depUBg8ezJdfftmkwv3hhx8yd+5c/vznP1NaWspNN93UZH3vKa+99hqQuv38xz/+wbhx45g8eTJHHnlkli1rPtxuN9dddx1TpkzhpZdeYsyYMdk26Udcf/31jBw5kuOPP57CwsJsm9MiyMvL+1Fbv379WLx48Y/aZ8yYwZtvvvmj9s6dO7N8+XLOPPNMYrEY9913H0uXLuWoo47C5/M1uc22bWNZFh6Pp8n73hGtUribC9M0uf322xkwYACHHHJIts3ZIVVVVdx3332cfvrp9O7dO9vm7BVuvPFGHn/8cR5//HEuu+yybJuj2Itcf/31O2xfsWIFH374IYZhYBgGbre7VWUiKeHeBY4//nh69OhBz549czameu6557J582a6du2abVP2GkIIfve73zF79mzmzJnD2LFjVVhiH6dv377069eP+fPnc8wxx3DOOefwxBNPNIu3nQ3Uf/cu0qtXr5wVbUiFD/Yl0c7g9Xq56KKL2LRpU85Mj6+pqeHTTz8lHA6zcOFCysrKsm3SPsVjjz3Ge++9x/PPP8/q1aubLb6dDZRwK1oNmqYxceJE1qxZw7PPPpttc/j888+ZMGEC27Zt4+9//zu33XZbtk3ap3C5XIRCIR588EHcbndOO1y7ihJuRavjuuuuw7KsrE6Pj0QivPbaazz55JP06dOHu+66i6FDh/LOO+9kzSZF6+FnhVsI4RdCfC6E+FoIsVwIcUe6vYcQ4jMhRJkQYq4Qwptu96Vfl6X3d2/ej6BQNMTlcnHeeedhGAYvvfRSVgal8vPzGTVqFHPnzmXOnDls3ryZZcuW5VTuv6Ll0hiPOwGMkFIOBAYBJwkhDgWmADOklL2BauCS9PGXANXp9hnp4xSKvYrH42HcuHGUlZUxf/78vT49XtM0unXrxsKFC3n11Vf529/+Rv/+/cnPz9+rdihaJz8r3DJFJP3Sk35IYATwUrr9GeCM9Pbp6dek948UrSm4pGgxZKbH19bWZuX8gwcP5vXXX6e4uJjnnnuO8ePHZ8UOReujUTFuIYRLCPEVsA14D1gN1EgpM9ObNgKd09udgQ0A6f1hoE1TGq1Q7Aq/+93vsjowNWbMmFaThqbIDRol3FJKS0o5CNgPGA703dMTCyEuF0IsFEIsjMVie9qdQqFQ7DPsUlaJlLIG+AA4DCgSQmQm8OwHbEpvbwK6AKT3FwKVO+jrMSnlMCnlsB1NcVUoFArFjmlMVklbIURRejsPOAH4lpSA/zZ92IXA/PT26+nXpPf/W6qFkxUKhaLJaMyU947AM0IIFymhnyelfEMI8Q3wghDiz8Bi4Mn08U8Cs4UQZUAVMLYZ7FYoFIqcoWfPnvztb3/ba+f7WeGWUi4BBu+gfQ2pePcP2+PAmU1inUKhULQAvF4v7du332vnUzMnFQqFooXR6oT77bff5uSTT2b16tX86le/4plnnvn5NykUCkULolUJt2EYrFmzhrPOOotu3bpx3XXXsWrVKuLxeLZNUygUiiYjJ9bjtm2bTz75ZI/72bRpE//5z3+48sorCQaDFBQUEIvFePLJJxk0aNBu97t161a2bNnSJDY2F+vWraO6ujonljPdGVVVVXzxxRcEAoFsm7JTdF3P6b9zJBLB76+iQ4fctbG4eCXr1tXl9HXcsmULS5Ysoby8PNum7JSf+i7nhHBLKams/FGq9y7j9/s566yzqKysZPLkyVRVVTmV2Pek/3A4TCwWaxIbm4toNMpTT2nU1eWujV27JvnFL6pz+g6outrk/PNz9xq63TodT/qCvBtfybYpO8W7NkQ0elZOf1/i8Tg319xM3J27/4sJmdjpvpwQbpfLxWmnnZZtM3ZKWVkZlmXltI22bbNtW3u2bj0s26bslDZtljBq1CiKi4uzbcoOkVIye/Z7rF2bu39nn6+KUId7WHva2mybslM6fNKB/tv75/T3ZcuWLWw+ejPh3uFsm7JTClw7L/TdqmLcCoVCsS+ghFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4FQqFooWhhFuhUChaGEq4s4SUkkQiwWOPPcZHH31EIrHzdQkUCoWiPkq4s0QkEqFTp05YlsXLL7/MgAEDsm2SQqFoIeTEIlP7Ii+++CK33347Q4YM4eSTTyYUCvHmm2/yq1/9KtumKRSKHCcnPe7Fixfz0ksvZduMZqVt27ZUVFTw3nvvsWLFCrZv306bNm2ybZZCoWgB5JxwDx8+nAceeIBVq1bRo0cPIpFItk1qFo477jgeffRRqqurefbZZ/n000859NBDs22WQqFoAeSUcC9atIiDDjqIKVOmMHDgQILBIB9//HG2zWoWAoEA8+bNY/78+Vx//fUsWrQo2yYpFK2eWCzG4sWLs23GHpNTMe7169fTo0cP6urq+Prrr4lEIpxzzjmMGzfOOaZLly5cddVVWbSyaUgmk/zrX/9i1qxZDB06NNvmtDo2btzIV199xSmnnJJtUxQ5wqxZsygrK8Pv97NmzRoYmW2Ldp+cEu7Ro0czYcIEwuEwBxxwAOFwmOeff578/HznmI0bN3Lsscc2eN8VV1zBmDFjGrQJIRBC7A2zd4tkMsmCBQu48847s21Kq+Oiiy4ikUgwcOBA7r77bl5++WVKS0uzbZZiD5BSIqXcoz7mzZvHDTfcwKBBg3jooYeayLLskFPCDbBkyRI+/fRTVq5cyfr16wkEAg0EeEclxB555JEfea333XcfHTp0cF673W569uzZvMbvAhs2bKBz587ZNqPF8N133zW6VuXChQt5+umn6dixI+vWrWPt2rW0adMmp3/IWyNSSsrKyvZYcCFVsPu6667boz5Wr17N5s2bOemkk+jVq9ce25RNck64A4EAI0eOZOTIHd/HuFwuCgoa1mKbOHEiEydObNB24403Nqjg7PP5OOKIIxocc8ABB2RtQPDcc8/lyy+/zMq5WyKzZs1i7drG1VncsmUL9913HyeeeCJnnXUWL7zwAsOGDWtmCxU/xLIspkyZgmEYe9xXhw4d9jg2fdJJJzF27FiOPfZY7r33XhUqyUWmTp3a4HU0GuWFF15o0Pb+++/z+OOPN2gbP348/fr1a3b7FLvG7bff3uhjBw8eTM+ePWnXrh0XX3wxCxYsUN52FnC73TzxxBPZNsPh+uuvZ82aNTz88MNNcheQTVqtcP+QQCDAJZdc0qCturq6gVcO8Ne//pVly5Zx0kkn8de//rVZbJk0aRL33nuvEpNm4pVXXuHbb7/lww8/5J///Cft2rXLtkmKHODEE0/EMAy2bdvGG2+8kW1z9oh9Rrh3RHFxMcXFxQ3ann76aaSUzSqqmzdvpnPnzkq4m4kePXrQvXt3TjrpJDQtpzJeFVnG4/G0irGlfVq4d0Rzf9G/+uorunfv/qMfDEXTkutZRQrFnvCzKiWE8AshPhdCfC2EWC6EuCPd/rQQYq0Q4qv0Y1C6XQgh7hdClAkhlgghhjT3h2hJfP755+y///5qertCodhtGuNxJ4ARUsqIEMIDLBBC/DO9b6KU8oeLipwM9Ek/fgE8kn5WAOeff362TVAoFC2cnxVumRp+zSwY4kk/fmpI9nTg7+n3fSqEKBJCdJRSbtlja1sBeXl52TZBoVC0cBoV0BVCuIQQXwHbgPeklJ+ld/0lHQ6ZIYTwpds6AxvqvX1juk2hUCgUTUCjhFtKaUkpBwH7AcOFEAOAm4C+wCFACTBpV04shLhcCLFQCLEwFovtotkKhUKx77JLKRRSyhrgA+AkKeUWmSIBPAUMTx+2CehS7237pdt+2NdjUsphUsphKnygUCgUjacxWSVthRBF6e084ARghRCiY7pNAGcAy9JveR24IJ1dcigQVvFthUKhaDoak1XSEXhGCOEiJfTzpJRvCCH+LYRoCwjgKyCz9upbwC+BMkAHLmp6sxUKhWLfpTFZJUuAwTtoH7GT4yVw9Z6bplAoFIodoeYDKxQKRQtDCbdCoVC0MJRwKxQKRQtDCbdCoVC0MJRwKxQKRQsjJ5Z1NU2TRx99NNtm7JRwOMzGjRtz2sY1a9bQtWs+paVLsm3KTgmF1jF79mx8Pt/PH5wlTLOKAQNy9+/scsUpXFvIgEcHZNuUnZK/JZ//xv/L1q1bs23KTlm2bBm9wr1IFiazbcpO+c78bqf7ckK4XS7XTmtM5gIbN25E07ScttHtdnPooSUcdNBB2TZlpzz55DruvPMoDCOYbVN2ygknLOKNcU+HAAAgAElEQVTVV3P371xbW8vLL2/jopE7nh4hkUjsVDEQhNMGoAmX09acLFmyhJqaGo4++ugm6c+yLFwu14+294RwOMy04dPYb7/99riv5uIw7bCd7ssJ4RZC0Lt372yb8ZOsWrUqp21ctmwZ7du3z2kbA4EAdXXdSSRytYiERNO8TXoNt2zZQkFBAcFg0/xYVVVVEQgE6NGjB5WVlanGPIPaaA2FhUV8ve0DPtHfoC5ejW0KAloJ0UQUPRHlkp534Pfk0bFgP4oDbQiHw3g8HiKRCKWlpWzfvp1QKISu65SWlhKNRnG5XBiG4QhmNBp19hUWFlJRUUFpaSnwfRGS8vJyXC5Xk1zHzZs3M2nSJO6//35qa2uZO3cuw4YNY9SoUXtUKKOwsJD99tuPLl26EIlEyMvLIxqN4vF4cLvdxGIxgsGgsy+RSCCEwOPxoOs6oVCIuro68vLyMAwDn8/n1LH0er1EIhEKCgqIRqPk5+djmia2bePz+airqyMYDKLrOn6/H9u2MU0Tt9uN3+93PtdPFXXJCeFWKForDz/8MCNGjOC4445r0n5jZoSlsQ+JmGE21i6nMr4Vf1UQYbtpp/Wgc95BfLP9C9yuIAOCg9AKXHxd9V/eKJvLid3OZGS3U2jv74yUEr/fTyKRcEQkI062bTtilBGRzLFCCHRdx+v1Os9er7dJPyPAF198wcEHH8yWLVuYMmUKF154Ie+++y4nnHBCk1Q4ikQiFBYWEolEKC4uxjRNDMOgpKSE6upqiouLHRGWUpJIJCgtLaW6upqSkhJ0XSc/P59YLIYQAtu2nT4rKyspLCwkHA7jdrvRNI2qqiqKioqorKwkFApRW1uLEAKfz0csFsPn8zXqcynhVihaIJrQuP/zhzCsBPuF9qNncU98rgBP/3s2oaCX/bt1pHJ9lMrEcgYOqKHE2w7DsumY14vlW5eA6aatrz0n7n8agCM6mW1N07BtG03TME2zwbkzZeEyYq5pWrOViTv99NM55phjeO+991i1ahUff/wxb731VpOVGMzLyyMSieB2u6mtrcXlcqFpGuFwmGuvvZZhw4ZxxRVXoOu685lramrw+/3U1tbidruJx+O43Skp1TTN+XErLCwkmUwSCASwbZtnnnmG999/n0cffZTCwkIMw3D2SSkbLdqghFuhaJH4XPn8+ZCHOWPu6WzzWpS5q8gX+ZSIbuTHfejrCti+KcaKrdvw5S/FX1lCdcl2Au4S3JqXcG2ceDLJofsdjVt6CAQCRKNRhBCpW3+PJBmP4nG7QPixpcTlcpFIJAgEApimicfjIRqNEgwGm7W+57x581ixYgUPPPAA06dPp2PHjk3WdzQapbi4mNraWgoKCrAsC8MwCIVCvPXWW8yfPx/LsrjgggsoKioikUgQCoUcjzsSieD1eonH4wCOx11UVERNTQ2FhYVs2rSJ999/n0mTJpFIJHjqqaeoqakhFAoRiaRq1GTEPi8vT3ncCkVrJR6P07Ntd+adNY+zXxzDl+u+xGO6aeMtQSbBTtr87ey7+HTpf+ka6so7y9+hc5di1n1XgS9YwJaKSuJJk7+991duO+UOotEooVCIRCKBR8Z59pah2GYchOTXExeTV9QB27YpKioiGo3idrsJh8Pk5+dTXV1Nfn4++fn5zfJZ27dvTzgcJhAI0LVr1ybt2+PxYJomLpcLy7JSg7r1Ck3HYjEmTZrELbfcwrvvvsvgwYOdeLRpmmiahpTSuevIhD2klHi9XpYsWcJJJ51EOBwGUkkELpfLCSt5PB7g+7sc5XErFK2Y/Px8Kioq6BzoxCO/nsm1865lW/U2erfpg0u6sJMWL34yl4ArQCyu43V7KP/cTd9uw9i8bTW1bbZRanTh+XfmMqr7SfzyF7+koqICvxe+fOc+whGDdl2H0WfQ8QhPPolEApfLRVVVlTM4WVJSQkVFBW3atGlWj7s5cbvdGIaBpmkYhuF8jlmzZjleNEAymeScc87h/PPPZ/To0XTv3p0pU6YgpcSyLEeAPR4Pl112GeXl5cyZM4cXXnjBEW1IZcU89thjXHbZZdi2jdvtdsYRdiVbRgm3QtEC0XWdgoICAIb5h/H8+XM4/fEzWLFtJUF3kDyRR0IkqEhsZ2vFFqq2V/GrQ06h1NsJGxcHFwzj3a//SYnPjU/zUFdXR3hbGf94/V62rV9Iu85DOOqsaRS1644mBC6XC9u2adOmjeNxV1ZWEgwGm93jbk5isRglJSXU1tYSCoUwTZNkMsmcOXNIJhvmeG/evJkpU6bw5ptvEggEWLhwIZZlNThG0zTefPNNpJQsXrz4R+eTUvLYY48xduxYioqKiEQiCCHw+/0kk0nH4/851MxJhaIFkvHOpJRoQqN3SR/eH/c+vTvsT228lpVb/8fC9YtYsmEJwYIQh/Q/hJgR47vy9Qi3Ru2mJMf2OpmCfDe3PHsNazeX8V3ZMlYs/ZKjTruJ31wzmzYdeiJI3cZnBCWTFiiEwO12Y9s2LpfrR95iS/HAMz88Pp+PqqoqdF0HwDAM55jp06c3mMOxbNkyPvvssx+JNqRi3IsWLWog2u3bt+eZZ55xXrvdbtq2bYthGBQWFhIIBIDUXZQKlSgUrRhN04jH44i0N2wYBh0KO/D2FW/w5tI3eWPpW/x3+X/YWlmOnoxSabtIuJLYSRtM+HblN4w65ESOLv0t7Q4TXDv9bA6ocDFo2Ej2H3oy+QWFjkhnsh6EECSTSTweD5Zl4fV6nUHKHwpO5vY/18mkAdbW1lJSUuJ43JnQB6RE/NVXX6W4uHiHYv1zjBw5ssEPgWmabN++naKiIsLhsONxq3RAhaKVE4/HndBELBYjEAhQU1NDMBhkRO+R/OaQ3/L2orfZWreVZDxJ0F9ATI+RiCVBCszjTLq278KI4SMoKS4htLWEDf/5mhN+fTWl7TpRWVlJIBDAMAzcbrcj0pn8ZL/fT01NjTNxJxgMNksed3OTSQf0eFLhoswAYX2BzsvLY3cLml988cVMnTqVd99912lzuVyEQqEG6YCQmrijPG6FohWTn59PbW0tkPrCZ2bjZWK20WiUEwefSLimhnyvl1hNJd898yDxsm/xd+xM3+vvJOnx4AK2b93C1sWb8QXa0aVrb2qrqigOBkkaBmX/eIUvX5yN8Pjpe9pZ9Dp2BMVt2mBZFqWlpUQiEdq0aePkMbc0EokEBQUF6LpOXl6eM4vR7/c7xySTSXw+n5N5siucfvrpAA0GOqWURKNRAoGA0+71eht45T9Hy7zaCsU+TjQadWbzxWIxCgoKnLzhzHP54s8QG9ey7s15ePICHHzHDNA8CJeGtX0r394yGUto2HEb+9ultDt4COteepoNH32AXldLQZceHHDG2Zz6p2nYpsE3/36PZy86G29hMSN+fwMFHTrRrU8fwuEweXl5zmBpS6J+/F5K6YR4XnvtNTp06EBdXR3r169n0aJFP5qI1BjKysoYOnQoZWVlzvlGjx7tjAnUTz3clXGBFi3cf//73zn//PNbzECIQtFU+Hy+BjHuZDKJ3+/HMAz8fj/bP3qH9dNuocvYS+l/418RAqIrvyXzVZFCMOCW6UgB8a1bKP50AclkEpfQGHbNjeD2kIjpJGM6euU2bCnpNvQQug4dTriqipdv/SOhLl258J57yQuFWqzH7fF4SCQSaJrmTOUXQjTwkB944AEeeOCB3ep//PjxbN68mWnTpgGpsYk//OEP+Hw+bNvG6/U6Pxa7cg1bZFbJ/PnzGT16NKZp8utf/5rXXnst2ya1OnRd57bbbsu2GYqdkMnmqD8BxLZthBBUfPg2q+69ne7nXEGo5/4kNq0jsXE9Ih5FxKMQj0IsSmz1CvRV32LW1dBu+GF0OvIYCrv2IFaxleimDcQrt2NGo5gxHUPXSdRFiNeGcblcHHP+BdRu2MATV13ppLG1RDJplZl4c0ZIp02btttx7R+SEW1I/d1uueUWwuHUdYxEIsRiMWcdlMZexxb3M2kYBv/73/8488wzOf744/H7/axcuRLDMBqMBCv2DMMwWLBgQbbNUOyETFaHEMKZyafrOqKynPLXnqXrGefiKynFDleioSFEekYgIAAbCXZqG1uS1CNYUmLaYNkSW0psmdo2M8+2xMLGsMDry+PIc85j/n0zePDii5gw5/nsXpDdJDN93e/3U11djZSShx56iHvuuadBaKS4uBiXy9UgLbK6unqHfRYWFuLxeJwfUtu2nWOllDzxxBO4XC5uu+02J1PFsqxdSgdscR73mjVrqKmpYcSIEdx8883O8oqZGJJCsS+QiWlnVp4Lh8MUFRaydeliQqUdCBS1wY7UQFxHJCJoCR1XIoqW0FOPjPcdi0I8ArEoth5F6hEsPYKpRzCjdSSjEYxIHclIHcloHYm61HM8UottGpxwyaVUb9xI3bZt2b4ku0VdXR1FRUUkk0mCwSCPPvoof/rTnxpMvunXrx+LFi1i48aNrF69mm3btrFw4UIOOeSQH/V34IEH8u9//5uNGzeydOlSNm7cyOeff87AgQOdYyzL4uGHH2bq1Kls3ryZaDQKpLz/xnrcLU64DzjgAEpKSrj66quZNGkSp556Kp988kmLnLWlUOwumQWJfD4flmWl0trCNdT839toeX6MumqI68iYDvGUUGsJHXciiiuhI+I6JHTnGEuPImM6diyKHdOxdR1T1zH1CIYeJZl5jkZJRiMkoxES0QhGPIknUMCHL7RMjzsvLw9d13G73ZSXl3Prrbc22N+/f39mzpxJSUmJEwuvra2lbdu2TJs2jT59+jjH+nw+JkyYQJ8+fUgkEgSDQQzDoH379jz55JMMHz68Qd/Tpk0jGo06FaFafTrg2LFjOfTQQ7npppuc2/k//vGPQGrAsqmWfMx1bNsmkUhwww03MGrUqGybo9iLZEIjkPrCJ5NJfJogvuYb2ow8BTsWxdI0XJpIuWcauDQXmga2BGFLsCXSlkjbRloS2wbLtrFtMG2JYUsMaWNYqRCKadupNltiWultCR26d8Noonjw3sYwDPLz84nH44wbN87JLsmwZcsWbrzxRizLom/fvjz44IP4/X50XWfw4MGMGjWKVatWATBq1CiOO+44ksmk84Nw++23s3jxYmzbZv369Q3OLYTg6quv5pVXXsHr9e5SqmGLFO7OnTvTuXNnhgwZQl5eHgBDhgxh7dq1TJw4kcsuu4yePXu2yAkBu8J1113HggULmDlzJhMnTmTKlCnZNkmxl6ifvuaktGkCaVvYcR1TA01zYWsCqQnQBNIlICNMNkhbYts2tpV6Nm0wLRtTgmHamDIV105adkrILRvTtknaAsOSGLaNYdnEo5FsX47dJlPAwO128+STT/J///d/nHPOOc7+qqoqPv30U3r16sVdd92Fy+VC13V8Ph+JRKJBJkgwGKRt27ZOlk8gEODWW2/l5JNPZtGiRT869/3338/ZZ5/doIBFY2mRwp0hI9qZ7X79+nH66adz9913M2TIELp3786vfvWrJj3n888/73g62Wbp0qWMHj2a8vJybrjhhmybo9iLJJNJxzGxLAu/3088XIMV1YmXbyYvVIiludBcAqGBcAkQGjYaNhJTSiw7JcimlfGqJaa0SVpgZDxqKzUYGYvFSBgG+PJI2jIt3GDYFgldpzlzSqSUfPDBB01Ww/KHfWfCEy6Xi48++uhHxxx44IHMnTuXgoIC3G437733Htu2baOoqIiBAwdy4YUXYpomv/jFL/jss89Yt24deXl5nHHGGfj9fubPn88pp5zC119/3aDfL774gjPPPNPx8HclM6dFC/eOOProozn66KN5+eWXWbVqFS+//DK/+c1vmqx/TdNyKhSTsSczbbapyMvL49RTT+XVV19l9OjRTdr3vsTo0aOZPXs2hx56aANHY0/x+/1s27YNIQSBQCBVBzFYgC2hdsVyXH36IvL8oGlpTzudSWKYCJ8fS9op4TVNops3EI9GiVs2SUuSMCUJ2yJhgqdNewiGiOsxEskkwrRIpo8zbEnStFi/bBm9Dxn+80bvJlJKZs6cucPV9pqCTKWfSCTCzJkzOe2001i5ciUrV650zj9t2jTuvvtuhBBUVlZyww03cPjhh/PSSy8xevRoZ3nWK664gpdeeonp06cDqXVJbrnllgai3LlzZ0aOHMmzzz7LpEmTyM/Pb/SqgBlanXBn+M1vfoOu6zzwwAMMGTKEN954g06dOu1xv2PGjGkC65qGxYsX8/LLL3P88cdz4403NmmoxOv1cvDBB/Phhx8q4d4DhgwZwsSJE524Z1ORKdabmSwSDAapi9TRb9JfWH7HH7CWRik9YADS58XSBJYAkdCxa6pxte+EbVrUlS3HMiXxRIKEYZCwbBImxEyLhGkTt2yMrZsxcCEDhbgKi5B6HNPlxrAgadmULV2C5s2n35FHNdln25tkCvv6/X78fj+ff/45paWlnHfeec4xK1asYOXKlXz00UeMGTOGSy65hJKSEifdz7Isp3iCZVkUFBRw6qmnMmvWLGbMmMG6desaOFZFRUXMmDGDa6+9lh49ejhVh3ZlAk6rFW5IrecwceJEJkyYwAUXXMCVV15Jjx496Ny5c7ZNaxLuvfdeEokE48eP5/rrr8+2OYq9jGVZzt1fymt0IYLFGKaNFo1S9c1XFPbui2aZuGwLYSQwKjbBlo2pXG0bDNsmaac86KSZ8qIt0rnbEpKJJHHDIh6uI7FhA3HLxvT4CHToxOZ166mr0+k+fH8GNEMYY2+QKeybSCQoKSmhuLiYDRs2EI/HG9zJSilZu3Ytd911F8uXL+f111/nqaeeQkpJXl6ekz44YMAAJkyYwOTJk5k7d+6Pwh+aphGLxdiyZQsHHnigM8nH4/EQj8edDJOfo9HCLYRwAQuBTVLKU4QQPYAXgDbAl8D5UsqkEMIH/B0YClQCY6SU6xp7nqYm84/9yCOP8Ne//pW8vDyuuOIKOnTokC2TmgxN08jLy+Phhx9Ws0f3MTJTtTPinVleNQLYfj/JRBwMk2hNNURrEZE6NE2gIZBILGljy5RwmzbpmPX3sWszE/+2U/Fw25ZYUmLZYBkGkeoa4noMl8+PlC1n/e0fUlBQ4FRjr6mpwev1snr1ag4//HBOPPFEamtrnQHMmTNnIqXkH//4B4cddhiTJk1yqt0HAgGklIwfP57Zs2c3EO1rrrnG8cgzi4OVlZXRqVMnQqEQlmXt8h3Zrnjc1wHfAqH06ynADCnlC0KImcAlwCPp52opZW8hxNj0cVmPL4RCIe666y6++eabJr1lba1ccsklLF++nMrKSr788ktncEaRGyQSCWcFO13Xyc/PTy2zeuBBFB85ivJ3XsPGRFZW4hY2mmkjNIFIC7ct6wmxlKnYtiUbCLhZb/DSlKkBS0tKTEOSqA5jS3D5/Zx640RnjZSWRibklEwmKSwsRErJUUcdxYgRI4jH405lGk3T6NOnj5MEcO+993L99dc76YTJZNKZJTl9+nRHtG+77TauvPJK/H6/M8vV7/cTj8edVR0Bp1p8YzPhGjXKJoTYD/gV8ET6tQBGAC+lD3kGOCO9fXr6Nen9I0UO/Rz369ePwsLCbJuR01RXV7N69WpuvPFGTj/9dPx+P1u3bs22WYp6BAIBIpFIg7WkCwsLSQgXoW69MW1IGDYxPUYslkS3bGKmjW6mnmOmTdxMiXXMkKmBSdsmmU7/M6QkYUtMS2JKQTLtcRu2jRYoSIUSvHkYpslhJ5zYYifA5efnN7iGmZBHbW0teXl51NbWOtXtDzzwQOd9pmk6tSTj8Tgej6dBEeAMffr0obi4GI/Hg6ZphEIhYrEYhYWFzvooGUdyV9KXG+tx3wvcCATTr9sANVLKzGT+jUAmcNwZ2AAgpTSFEOH08dsbbZUiqzzzzDNcfvnl9O7dm2QyyRlnnMF999232yukKZoeXdcJBoMNtsPhMMFgEK17H7S2nYhv3Yghk7gQuDTSKwOmfDUpG3rdmck1TraIZWFYKfFO2pl8bolpQby6BlvAwSOPw1/ShoqKCoqKihx7WhKZdV4yedSZ0Krb7XaKAEspcblcDQYPhRBO3nVmDZP6jwyZavCZNsMwnDzvTIgrE0fflcywn/W4hRCnANuklF82utdGIIS4XAixUAixsKlW4VI0DX/4wx/405/+xMcff0xxcTHnnXcef/rTn7JtlqIembhrLBZzBrwyt/XdjjgWf+euxCybeDo7JOVh28RNk7hpEjMtYqb1/X5HpNMDlZZM5XNnxDyd523YqRBKafcerFm2nFOuuoZQKNRiJ7tlUgEz4lw/pzuzAmNm9cUePXo0KIzwr3/9C8AJkWTi35WVlUCqZNmAAQOcfZmsE03TsCyrwfug6fO4jwBOE0L8EvCTinHfBxQJIdxpr3s/YFP6+E1AF2CjEMINFJIapGyAlPIx4DGA9u3bt8w1IVsxc+fOZdmyZXz66afMmzevRXpTrZnMFz/z5c9kQGQEZ9jEP/GP804lFovgEiI1MClTXrcEbMDOrAKIxDRTmSQpcbYxLUjaKTE3bDudfZIScF8wRLveB9C2d29KOnZ0yn21RDJFgkOhEOFwGK/Xi8fjcSoJVVVVEQwG0XWdoqIijjrqKObPn080GuWaa66hS5cujrADbNy40VkJcOjQoXTs2NFZJz2zpkx1dbVTWT5TuiyZTDZtOqCU8ibgJgAhxLHABCnluUKIF4HfksosuRCYn37L6+nX/03v/7dsqYv17sMMHDjQ8RbUcrl7RnP8+1uW5XzRM7f0uq7j9XqJxWIU9exFftcebFv+FZrQcDlLutpINKRIe4DpwUnLluklXDPrkQjH0zZsm7iVCpkkbYtgqAjN66XHwIEEi4qora1F07QW6XVnVgeMx+MUFRVh2zaWZVFSUuKUZYvFYgSDQaSUDWZNV1RUUFFRsdO+M3dBmbW3NU2jurqaQCBAVVWVE0PPhF0yxYIbw55MAZwE3CCEKCMVw34y3f4k0CbdfgMweQ/OocgiLpdLiXYT0BzeaCAQoK6ujkgkgtvtdvKRdV2nTZs26LrOyQ89RcKwSZgWMcNKh0dk6jlpEzNS4ZNEJoxiSWIWxE1B3LRJWjYJK9VuWDZJ06K4c1f6HHEU/vwAo8aOpa6ujtLS0hY7OBkMBqmursbr9VJdXe3kVWcKIG/fvh2Xy0VtbS26rnPIIYfQpUuXn+23Q4cOHHfccc4Pgs/nQ9M0px5oaWmpk8kSCAQAduka7pJwSyk/lFKekt5eI6UcLqXsLaU8U0qZSLfH0697p/ev2ZVzKBSKnycWi5Gfn09eXp6zCH9mBmA4HMbv9yPdXgaef2lKqK2UcOvG97HtVHaJlYp/W7KeiKemtSdMm4QT75aEOnSm57DhbF63juMvuohwXYS8vDxqamoalPpqSei67lRcD4VCTkpjUVGREx6xLItAIIDf7+eII47gmWeeoaioaKd9er1ennjiCY499lh8Ph91dXUYhoGU0slWqa6uTuXdpyvgALt0DXNn0Q2FQtFofD4fhmE4WQqxWMyZwVdQUJAqDFBcQulhR6O17UjMlOimjW6lUgK/TwuU329bNnHDSnnZZipFMGFZJG2JN1RIu959qNxWjl4XoeegQQSDQRKJBIFAoMXemfn9fqLRKG63m2g06qQDZn4E6+rqcLlcxONxpyblgQceyOLFi3n66acJhUIEg0FCoRChUIgZM2awcuVKDjvsMILBIMlkkvz8fNxut7OuTGaJAtM0yc/Pb7Aed2Np1VPeFYrWSv2p2JmMiPprZ2QGLXsMP4xhF1zKv2fcjaFHnffL9EQcKVODlBaZeDep5VydCTg2/pJSCtp3RI/F8Pn8THnvXceG+oOiLZH65cUy1C9PVn9fZvlcTdNo164dJ598Mt999x2maTozIwFnvCGzvrZt2072SP2/EaTGJ+pnnTQWJdwKRQvEsiwnVS0jnKZpomkahmE4z16vl6MuGYclJW/8+Q5kA4FKZZhYklROd2Zau/x+XW5TCjRLEq6upnvHjlx6991o6ZXwEomEk5MshGiRld7ri25mdiOkPPHMcrnQ0BvO7Ks/caZ+Sl+m/m0mU8QwDOe9yWTS2Zf5m9X/oWgsKlSiULRAMjnb8XjcWdw/05apWp651dc0jeHnXMBv77mf/QYfkopnpx+dhw3H374DcctOPyR9jj6WhE1qCrwNcT3GkBOO56K//Y384mJ8Ph+2bVNQUEAikaCgoKBFZpQAjrBmJsNkxLO+6Gamqmc88MxKfpmwSiY3WwiBpml4PB6nmLNt27jdbme/x+PBNM0G+zI/eLty19LyfiIVihZCLBajoqKCeDzOxo0bMQyD0tLSJuu/pKQESN3C5+XlIYRw2oqLixFC0KlTJ2f/iAt+x1FnjsGq5wG6PB5s28K2vvfE3V4vRr1iuQBevx+v3+94h6FQCCEEbdq0abE53JD6AfT5fA2uIXwfLsnsq0+mGvuO9mX4qbj17sS0f4gSboWimfj4448ZP34827ZtY/z48bRp04bnnnuuyfqvX9AjIyA/9+xq5EJh/nSK2g/ZWb8tlcwkpsx2/fYftjVm395ChUoUimZA13Xef/99Zs2axYABA3j88cfp37+/U9xaodgTRC5MaiwuLpbnn39+ts3YKYlEwplFlauEw2HcbreTzJ+LlJeXU15eipS5m4FQVLSJbt32vNCGZVmsX7+enj17snr1arp3705tbS22be/R/5FlWVRWVtKuXbs9trG5iEajWJZFKBT6+YMbyf/+9z/233//JuuvsrKSgoKCRs9UzAazZ8+murp6h259Tgi3EKICiJK7KwiWomzbHZRtu4eybfdobbZ1k1K23dGOnBBuACHEQinlsGzbsSOUbbuHsm33ULbtHvuSbSrGrVAoFC0MJdwKhULRwsgl4X4s2wb8BMq23UPZtnso23aPfca2nIlxKxQKheV94zkAAATgSURBVKJx5JLHrVAoFIpGkHXhFkKcJIRYKYQoE0JkveiCEGKdEGKpEOIrIcTCdFuJEOI9IcSq9HPxXrJllhBimxBiWb22HdoiUtyfvo5LhBBDsmTf7UKITenr91W65F1m301p+1YKIU5sRru6CCE+EEJ8I4RYLoS4Lt2e9Wv3E7Zl/bqlz+UXQnwuhPg6bd8d6fYeQojP0nbMFUJ40+2+9Ouy9P7uWbDtaSHE2nrXblC6PRvfCZcQYrEQ4o306+a5bj+sTrw3H4ALWA30BLzA10C/LNu0Dij9QdtUYHJ6ezIwZS/ZcjQwBFj2c7YAvwT+CQjgUOCzLNl3O6nydj88tl/67+sDeqT/7q5msqsjMCS9HQT+lz5/1q/dT9iW9euWPp8ACtLbHuCz9DWZB4xNt88ErkxvXwXMTG+PBeZmwbangd/u4PhsfCduAOYAb6RfN8t1y7bHPRwok6lqOklS9StPz7JNO+J04Jn09jPAGf+/vbMJsaoM4/jvWdgHJYkRMngXqQgtQlQUikRkRGk0kmAWQaCLoE0uWgkiuHNpH4toUSloodCY6NKPEVqFYY02MlaCQg2jA4qjbaSPf4v3OTOHy9xLszjnPQeeH1zu+bhwfvzvPc+97/Pee08dB5X0HXD/f7rsAo4p8T3pYs4DGfx6sQs4KemxpFvATdLzX4XXlKQfffkRMAEspwHZ9XHrRW25uZMk/emri/wmYBAY8e3d2RWZjgBbzar5E48+br2o9Zwwsw6wE/jC142KcstduJcDv5fW/6D/i7gOBJwzsytm9p5vWyZpypfvAMvyqPV1aVKWe31oeqTUVsri50PQdaRPZ43KrssNGpKbD/fHgGngPOlT/gNJf8/jMOvn+2dI16CtxU1Skd0hz+4jMyt+x153dh8D+4Dirxafp6LcchfuJrJJ0npgCHjfzDaXdyqNbRrxVZwmuZT4DFgFrAWmgMO5RMzsWeAU8IGkh+V9ubObx60xuUn6R9JaoEP6dP9SLpduut3M7GVgP8lxI7CUdCHzWjGzN4BpSVfqOF7uwj0JlC+Z3PFt2ZA06ffTwGnSC/duMcTy++l8hj1dGpGlpLt+cv0LfM7csL5WPzNbRCqMX0v61jc3Irv53JqSWxlJD4BLwKukNkPxN9Blh1k/3/8ccK9Gt9e9/SSlC5YfJU92rwFvmtltUst3EPiEinLLXbh/AFb7zOsTpCb92VwyZvaMmS0uloHtwLg77fGH7QHO5DGEPi5ngd0+k/4KMFNqC9RGVw/xLVJ+hd/bPpu+AlgNXK7IwYAvgQlJH5Z2Zc+ul1sTcnOPF8xsiS8/DWwj9eEvAcP+sO7sikyHgVEfzdTldqP0ZmykHnI5u1qeV0n7JXUkvUiqY6OS3qGq3KqYWV3IjTTz+yupj3Ygs8tK0gz+VeB64UPqPV0EfgMuAEtr8jlBGjb/ReqPvdvLhTRz/qnn+DOwIZPfcT/+NX9xDpQef8D9fgGGKvTaRGqDXAPG/LajCdn1ccuemx9rDfCTe4wDB0vnxmXS5Og3wJO+/Slfv+n7V2ZwG/XsxoGvmPvmSe3nhB93C3PfKqkkt/jlZBAEQcvI3SoJgiAIFkgU7iAIgpYRhTsIgqBlROEOgiBoGVG4gyAIWkYU7iAIgpYRhTsIgqBlROEOgiBoGf8BWrDWh9zMdxMAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "m.plot(Q)" + ] + }, + { + "source": [ + "## 检查策略\n", + "\n", + "由于 Q-Table 列出了每个状态下每个动作的“吸引力”,我们可以很容易地利用它来定义在我们的世界中高效的导航。在最简单的情况下,我们只需选择对应最高 Q-Table 值的动作:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ], + "source": [ + "def qpolicy_strict(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = list(actions)[np.argmax(v)]\n", + " return a\n", + "\n", + "walk(m,qpolicy_strict)" + ] + }, + { + "source": [ + "如果你多次运行上述代码,你可能会注意到有时它会“卡住”,需要按下笔记本中的停止按钮来中断它。\n", + "\n", + "> **任务 1:** 修改 `walk` 函数,限制路径的最大长度为一定步数(例如,100),并观察上述代码是否会不时返回该值。\n", + "\n", + "> **任务 2:** 修改 `walk` 函数,使其不再回到之前已经访问过的地方。这将防止 `walk` 进入循环,但代理仍可能被“困”在一个无法逃脱的位置。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Average path length = 3.45, eaten by wolf: 0 times\n" + ] + } + ], + "source": [ + "\n", + "def qpolicy(m):\n", + " x,y = m.human\n", + " v = probs(Q[x,y])\n", + " a = random.choices(list(actions),weights=v)[0]\n", + " return a\n", + "\n", + "print_statistics(qpolicy)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 15 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3de3xcdZ3/8deHVlBxf1ykPxYBN3XF9Yd3rAKL666i3HdxFRV+/rCrII+foj9FH6th2ZW7UAEREAqFVoHl0gqVFgK9t/RCL6T3W9qm1zSkbdqkSZu0uX5/f8x3kkkykzmTzMyZzHk/H488cuZ7zsx8z5yZz/me7+2Ycw4REYmGY8LOgIiI5I+CvohIhCjoi4hEiIK+iEiEKOiLiETI8LAz0J9TTjnFlZSUhJ0NEZEhZfny5fudcyOSrSvooF9SUkJ5eXnY2RARGVLMbGeqdareERGJEAV9EZEIUdAXEYkQBX0RkQhR0BcRiRAFfRGRCFHQFxGJEAV9EQlswZZadh5oCjsbMggFPThLRArLteOXAbDj3stDzokMlEr6IiIRoqAvIhIhCvoiIhGioC8iEiEK+iIiEaKgLyISIYGCvpndZGbrzWydmb1gZu82s5FmttTMKs1sopkd67c9zj+u9OtLEl7nZp++ycwuzs0uiYhIKmmDvpmdDvw/YJRz7uPAMOBqYAzwoHPuw0A9cJ1/ynVAvU9/0G+HmZ3tn/cx4BLgMTMblt3dERGR/gSt3hkOvMfMhgPvBWqALwMv+fVPA1/zy1f6x/j1F5qZ+fQXnXMtzrntQCXw+cHvgoiIBJU26DvnqoH7gV3Egn0DsBw46Jxr95vtBk73y6cDVf657X779yemJ3lOFzO7wczKzay8trZ2IPskIiIpBKneOYlYKX0k8AHgeGLVMznhnBvnnBvlnBs1YkTS+/qKiMgABane+Qqw3TlX65xrAyYDFwAn+uoegDOAar9cDZwJ4NefABxITE/yHBERyYMgQX8XcJ6ZvdfXzV8IbADmAlf5bUYDU/zyVP8Yv36Oc8759Kt9756RwFnAsuzshoiIBJF2lk3n3FIzewlYAbQDK4FxQBnwopnd5dPG+6eMB541s0qgjliPHZxz681sErETRjtwo3OuI8v7IyIi/Qg0tbJz7lbg1l7J20jS+8Y5dxT4ZorXuRu4O8M8iohIlmhErohIhCjoi4hEiIK+iEiEKOiLiESIgr6ISIQo6IuIRIiCvohIhCjoi8iAHG3r4NDRtrCzIRlS0BeRAbnwgTf5xG0zws6GZEhBX0QGpPrgkbCzIAOgoC8iEiEK+iIiEaKgLyISIQr6IiIRoqAvEhGfu3sW4+ZvDTsbEjIFfZGIqD3Uwm9erwg7GxIyBX0RkQgp2qD/y5dW8/Ly3WFnQ0SkoBRt0J9Uvptf/Hl12NkQESkoRRv0RUSkLwV9EZEIUdAXkUHp7HTc8eoGquqaw86KBKCgLyKDsqGmkQmLtnPj8yvCzooEoKAvIoPiXOx/Z3xBCpqCvohIhCjoi4hEiIK+iEiEKOiLiESIgr6IdGlqaef6p9+mpkG3QixWCvoi0qVsbQ2zNu7jgRmbw86K5IiCvohIhCjoi4hEiIK+iGSFxmYNDQr6IjIoZmHnQDKhoC8iEiEK+iIRN2vDXta/0xB2NiRPFPRFIu76Z8q5/OGFg36d9e80crilPQs5klxS0BeRrHl9bU3YWZA0AgV9MzvRzF4yswoz22hm55vZyWY208y2+P8n+W3NzB42s0ozW2Nm5yS8zmi//RYzG52rnRKR/FGvnaElaEn/IWCac+6jwKeAjUApMNs5dxYw2z8GuBQ4y//dAIwFMLOTgVuBc4HPA7fGTxQiIpIfaYO+mZ0AfBEYD+Cca3XOHQSuBJ72mz0NfM0vXwk842KWACea2WnAxcBM51ydc64emAlcktW9ERGRfgUp6Y8EaoE/mtlKM3vKzI4HTnXOxSvw9gCn+uXTgaqE5+/2aanSezCzG8ys3MzKa2trM9sbERHpV5CgPxw4BxjrnPsM0ER3VQ4AzjkHZKVmzzk3zjk3yjk3asSIEdl4SRER8YIE/d3AbufcUv/4JWIngb2+2gb/f59fXw2cmfD8M3xaqnQREcmTtEHfObcHqDKzv/NJFwIbgKlAvAfOaGCKX54KfNf34jkPaPDVQNOBi8zsJN+Ae5FPE5EhTNMwDC3DA273E+A5MzsW2AZ8j9gJY5KZXQfsBL7lt30duAyoBJr9tjjn6szsTuBtv90dzrm6rOyFiIgEEijoO+dWAaOSrLowybYOuDHF60wAJmSSQREZvLqm1vy8kfrsFzyNyBWJgB88Ux52FqRAKOiLRMDu+uawsyAFQkFfRLJqxa56Gprbws6GpKCgLyJZ9fXH3uI745eEnQ1JQUFfJAKM/ParXFfdmNf3k+AU9EVEIkRBX0QkQhT0RSJAo2YlTkFfRCRCFPRFJJCfvbgy7TZOQ3ILnoK+SAQMtHZnwZZafvJCLNi/suqd7GVIQqOgLyIpXTt+Ga+uVrAvJgr6IhFgaskVT0FfRCRCFPRFJGuc2nELnoK+iAxK4xFNrjaUKOiLSMZmrN/TtVw6eW2IOZFMKeiLSMZueHZ51/Kuuu65+lW7U/gU9EWkj5b2TqrqdOOVYhT0xugiEiGvrn5H/fOLlEr6IpI1ib13Nu05FF5GJCUFfZEICGNs1hWPLMj/m0paCvoikhNtHWrWLUQK+iIiEaKgLxIBmnpH4hT0RUQiREFfRLJGN1EpfAr6IhFgA76NSozTTGpFQ0FfRCRCFPRFRCJEQV8kAtR7R+IU9EUka1T1X/gU9EVEIkRBX0QkQhT0RUQiREFfRNIKWlevKv3Cp6AvEgF567yjltyCp6AvIt1SxOw9jUfzmw/JmcBB38yGmdlKM3vNPx5pZkvNrNLMJprZsT79OP+40q8vSXiNm336JjO7ONs7IyK58ff3zgk7C5IlmZT0fwpsTHg8BnjQOfdhoB64zqdfB9T79Af9dpjZ2cDVwMeAS4DHzGzY4LIvIkFY0NFZGsRV9AIFfTM7A7gceMo/NuDLwEt+k6eBr/nlK/1j/PoL/fZXAi8651qcc9uBSuDz2dgJEREJJmhJ//fAL4FO//j9wEHnXLt/vBs43S+fDlQB+PUNfvuu9CTP6WJmN5hZuZmV19bWZrArIiKSTtqgb2ZXAPucc8vzkB+cc+Occ6Occ6NGjBgx6Nc72NyahVyJDG35qrWZWF6VfiMJVZCS/gXAv5jZDuBFYtU6DwEnmtlwv80ZQLVfrgbOBPDrTwAOJKYneU7OrKw6mOu3EBFvXXVj2FmQNNIGfefczc65M5xzJcQaYuc4574DzAWu8puNBqb45an+MX79HBe7A8NU4Grfu2ckcBawLGt7IiIiaQ1Pv0lKvwJeNLO7gJXAeJ8+HnjWzCqBOmInCpxz681sErABaAdudM51DOL9RSQo9coRL6Og75ybB8zzy9tI0vvGOXcU+GaK598N3J1pJkUk90pKy/i///i3YWdDckwjckWky9pqtYEVOwV9kQhQ7Y7EKeiLiESIgr6ISIQo6ItIl/2HNJix2Cnoi0iXTXsPhZ0FybGiD/pqwBLJYJZNKXpFH/R1Hx8RkW6DGZErIkPYC8t2cYwuACJHQV8kApLF9psnr817PiR8RV+9IyIi3RT0RYpce0cn2/c3hZ0NKRAK+iJF7rfTN9HeqS4NEqOgL1Lkxs3f1ietpuFICDmRQqCgLxIx9U2tnH/PnLCzISFR0BeJmMajbWFnQUJU9EFf3ZBFRLoVfdAXEZFuRR/01WdBRKRb0Qd9ERHppqAvEjGmlq5IU9AXiZjaw0fDzoKESEFfJGK+MXZx2FmQECnoi4hEiIK+iEiEKOiLiERI0Qd99VMQEelW9EFfRES6KeiLiESIgr6ISIQUfdDX3Dsi4SkpLWPmhr1hZ0MSFH3QF5Fw3Tx5TdhZkAQK+iJSMK54ZAGvrKwOOxtFTUFfRArGuupGfjZxVdjZKGoK+iIiEaKgLyI5piGShaTog76+biJhUx+6QlL0QV+kmIydt5XyHXVhZ0OGsLRB38zONLO5ZrbBzNab2U99+slmNtPMtvj/J/l0M7OHzazSzNaY2TkJrzXab7/FzEbnbrdEitOYaRVc9bjmw5eBC1LSbwd+4Zw7GzgPuNHMzgZKgdnOubOA2f4xwKXAWf7vBmAsxE4SwK3AucDngVvjJwoRKWaqZC0kaYO+c67GObfCLx8CNgKnA1cCT/vNnga+5pevBJ5xMUuAE83sNOBiYKZzrs45Vw/MBC7J6t6IiEi/MqrTN7MS4DPAUuBU51yNX7UHONUvnw5UJTxtt09Lld77PW4ws3IzK6+trc0ke0mpCUlEpFvgoG9m7wNeBn7mnGtMXOecc2QpvjrnxjnnRjnnRo0YMSIbLykiIl6goG9m7yIW8J9zzk32yXt9tQ3+/z6fXg2cmfD0M3xaqnQJ2a4DzextPBp2NmQA5lbso76pNexsyBASpPeOAeOBjc653yWsmgrEe+CMBqYkpH/X9+I5D2jw1UDTgYvM7CTfgHuRT5OQffG+uZz7m9lhZ2PIOHC4hY/c8gbLd9aHmo+GI218709vc/0z5aHmQ4aWICX9C4BrgS+b2Sr/dxlwL/BVM9sCfMU/Bngd2AZUAk8CPwJwztUBdwJv+787fJrIkLJsex2tHZ08OX9bqPlo7+gEYPv+plDzIUPL8HQbOOcWkrrP1YVJtnfAjSleawIwIZMMDpY6i4kUp4o9jXz0r/9H2NkYcjQiV2SAXIH0DYuVswqX5aDkNW1dDZf8fgGvrn4n+y9e5BT0RRK0dXRy8+Q1vHPwSMptchHEBsIKJSMh2Lz3sP9/KOScDD0K+iIJFlbu54VlVZROXpt227AL2IVewk9Ue6iF+6ZX0Nk5dPJcrBT0RZKIbhk6N0pfXsOjc7eyeNuBlNsM5CQ2hM57BUNBXySJoRBLhlL1Tkt7rKdRZ5ai9NDZ88KTtveOyFBV03CEdw8fxknHHxto+zte3cDra2vSb1hgIWconKDislUyP9rekZ0XiqCiL+kPpR+EZNf598zh3HuCDzqbsGg7e4bQyOTCOvWkVnuoJeuN34/O3ZrdFywADUfaKCktY/KK3Tl9n6IP+ku2pq5DlOLX6qsV0mkZQMmxd4Gis9PRoYbKotbW0Unj0bYBPW9pP+0ZAFV1zQA8tWD7gPIWVNEH/flb9oedBRkCWgKeHHbXN6dscPw/45fyt//x+oDev2xNDWOmVQzoub2t3FUf+hQR+ZLvsRI3PreCT942I+PnPTBjM98et4RVVQdzkKvMFH3QHyqXwEFtqz3MjPV7eHPz4KedHgp2hDTFQLLAXlXXzBfGzOXBWZuTPuetQVxV3vj8CsbOy06Vxb8+9hbfGPtWVl4r2/oL0YXQE2f5znpKSsvYdyh5Nd+MDXsBOHS0jYbm4CX+LX48wf5DLYPP5CAVfdAvNl9+4E1ueHY5oycsY9Oe4ANTnHM8MGMTW2sP5zB3PTU0t/GRW97gra0Du9qasqqaf7p/XsGc4Pb5H2x8YFCuTHq7ig3vNKbfMI343DyFqqbhCCWlZazYlf2rkpLSMq5/OvOJ6CYsilWtLNnWc1qwlvYO5id8Dz9zx0w+dUfmJf4COK8Vf9AvhA85Vw5lULdYe7iFR+ZUcu1TS3OYo57WVB+ktaOTR+dWDuj5a3c3ALA5g5NbEB2djvumV3DgcOpS1xr/3v3JVcn0ly+v4bKHFwTePlU+CqlRuq2jb5fNBb7q9fmluwb12gcOt9BwpO9vYdbGvUxZVU1JaVngm8nHawZ6X+nd/uoGvjthWdfj9iHcdlP0QV88/x1t7cjfl9X8T2iwwTFZvW1bRydH2wbWbW9h5X4enbuV//hL6lG38SCyac8hLnxgHg3NbRn3QIn3xphbEbvVREt7BzN99UBQN09ew6i7ZiZdly4/zsGsDN8vV+Il55fK+/ZMSfX9aO/opLqf6TDiPnvXLM65M/ln9PNJqwEC30z+mBQf6vo0V15XjX0ra9VzuVb0QX9jzeAvk4tCnho3nHNdpaT472egQb+/oHbxg/P56H9Ny+j1SkrLKCkt66r2SGy8TZXHh+dsYWttE/M27+Prj2VWTx6vfntsXuxKZ8wbm/jBM+Us2x58RvEXllWx/3Dym6QE+VyXpOkxkm+JJfJ0X8k7X9vABffO6feKLP4ZDLTX1KGjbT16bsW/cw/P3pLR65TvrO+3Ib6QxtEVfdCX/Lr0oQV85D/fALp/1Iu3HehRH5oN2wbRwJvs0vxIa/KrhncPHwZAS9vg6sedc131xfXNrextPNrVRS+I3fU9tx1K8+4kSnbV9vKK3Un3J96W03i0fcDvly7WfuK2GVw1tvsqIL791tqe369sxexddc2hF0QV9CWrKvYcoq3D0dreSVtCcE2sDy00zjn+9NaOPul/mLOF494V+4mk68e/Jclsj4mBrLVXo+q5v5nNP/x2Lm+sraEuwO0Oxy/czrZejfDJSo/J6raHghW76lO2v8U/x6q6ZtZV92xraU5xsu56bpK0zk7X4yS6NuE1X1mV+VTN//lK+sn54u58bQOXPhS8vSYXFPSLRF1TKyWlZUxZle62w/kpIZ5z50xGZynQ57JQe8G9c/jof03j8Tf71sfeP2NzmhJed8a++uD8wO+5NKFnyA+fW8H1T7/d9ThVT6U/LtrRI1ik+kxqE7oaPrlgG0OlvfHWqetZVdWzF0/vuYX+4bdzueKRhT3SEk/W2/c3sbhXt9lk1T6Pz9/KF8bMpXJf/72w9h9uCdRu9N9LBtcQvXjrAfb3U4WVbQr6Q1ji1zleCnxm8c5+n7P/cCt3l21Iuu7f/7w6W1njcMvAL8lTmblhL+ffMzvQKNsgU/g6B9UHj/Q7MOtQvGphAJWyiUHLEk4f8WqeuMTGyv5OlIn5vPyRhXz6jljjpXOO7fub+lwxPLN4Z5/3ClviySrx81lX3cg3xqZubA1SnfWl++dxzZNL+p0/6WhbB1NWxkrz6RqJR901i+//6W2f17RvD8SutJLnNfULXPPkEr71xOKuE8xARvxmQkF/CHs2SYAP8uN4MsUw7z8v7+5Z8Vbl/gH3jgni7F9P46kFmd1j9rap66lpOJpy4EyilVka+Tg1fmemJJ9rPCnV55TLevfe9cJfun8eX/ztXAp9OGLQj+QXk7oLII5YQ2lQyX4XcT/87+Vs8lVxQY5PpgPuPnX7DMYmuWpMJd7Yv622iReWVQGwuz59j6XBUNAP2Z/Lq3qMADx0NNbN7y8r00+6NDXhVnHpSiKWQTCo2NPI/35qKXe8lvyKIG5ddQMlpWVU7Mm8Yaq5tYO7yjb2SX9m8Y6uElj85NT7pxkscKTeKNux+N43evbaONjcmlFj3d7G7Fza5+LqKiwvr9jddcP3xiNtVGTweaaavrmj0zF3U3Y7FCQb7Pj62hpeXf0Ozjne3FzLj59fweyKnl1ndx5oYuy8rfwhYQxLR2f3ldwbgWZ7HRgF/ZBNKo+d3edv3k9JaRlPvBkr/T4+L7NScDLlO+oC1PH3ddAPL09X5zlt3R4AZq7PTl/w/Ydb+PWU9fzbhGVZv8roWbebedQ/mqT3jhlcPW5xn0bgrz26iEsfWjDo+e57108Xg4F8JKUvr+XY4cFDVaqj+9XfvZnyOQP9rL/9RN8qqXXVjfzkhZXc/uoGRk9YxmtravoUNK4dv4wx03oOEEzc5IfPrRhQfoJQ0A9ZvAQeH3Y/ZXUsSMd/HLVp5uroXXed+Oiqxxfz0xdXJX3ehnca09ZpLtte1+/8Isf4PAZtLDzgG8ZSXVbHA3PDkTb+/aU1XekT367qdyqGICXcB2Zs6loeSEl/x4G+XUSd6ztcP7ZtrGfI7xPm6Pn62EUZv+c1Ty7J+DmF1B88mR51+gGfU9fcyruGdYeq/u5fHHuT5Mm9u/kmbpbus06V11RjKAC27Es9knxXku66+Tp0kQ76902v6Cqthq3dX9ol/ijmVOzlc3fP6jfg9a6CWbkrWF32ZQ8v4IJ756Td7kfPL2f5zjqfN9czYPsI8+CszYG6HX72rllcO35pj32ctWFv12CpxPTVCXXy2/c3pWzg3LTnEB+/dTpXj1tMSWlZV5fFHz+/ssd2Cyu75/8ZyF2ckp3YZvuRtqkk1gevq85P3+yFBT6rbKdzTCqv4puPv9U1l1E6HZ2OYcd0h8S/T/O9zdbdufIhjJN0pO+cFb8Rw457Lwdi9emfuG0GY77xCb79uQ/mJQ/L/JwgvXvd1DW18vLyWKl/1a6D/ONHRiR9/p/e2sEFHz6Fk49/V1eac65P1UImX67EYLWo8gCLKhez497LueeNCsbN38bW31zGsGOMhN8h5TvquuZS6c/bO+p7/Civf6acn154FjsPNHGMf0Gz5PlNlhZvT4iXuG+auIpLPvbX1DT0bOwdnpDZ219dDxAov73fpxAlhrhbp64PLR9BLN1ex1I/IvntHcEaZ48x65rKIoigIb8+QEFlMIKcexZVdv/W+rZd9f0dZ0OkS/q9xQNFupsYHDjcQklpGTPWd18lHGzu7iff2t5Jc+vgGtX2HWqhLGBjzg+eKSfx4vCuso18NmEukoPNrSlHnCaTagj6hIWxzyVeDdN7npJnl/TfXTSu95e7qr6ZV1a9w+QVvmorgwvd3tVXcyr28cuX1/RIe2T2lh4/nvoMpsSNC3oFJdl3jGU2aCrovQR+Pil7XZSTybTnT++TRK4uWBT0gR8/v4LW9s7AH3KF72b1u5nddbbxngYTFm7n2+MWc/avpw8oLwM90A1Hukst4xdu50BCKebTd8zkn/+wMNnTAnt0bmWfkvZAyyB9Bsz0ehhkIrFMPDAz3SCr3Eo3anSwDg1imoKhIGg1UC7l4yb0fUr6OXqfyAb9xMag19bUUL6zrmtekKDHtyJhyt/EL0W2S4VB7g70/T/1P3f4wRSl29518akGhvxx0Y6u5U/ePp3New91VcfE8hjczyf1LJ33fm5Nw9GkQbrQGylTSTdDoxSG+6YnnzDtD3O2hHInslyN84hs0D/ST5dAw7i7bENXcFr/TgOXPbSAppZ2rnx0Ed9JMid91zzcad73wOEW7nljI3sakg8wStYItauuOdAI04HoPSVtqlvB7T/cQpuflvloWyfP9arKGTc/eBfT19f2bDwP2vAW78Y8kFvkZTK4R6Ip1c3W75+R/E5p2fbq6p5VWLkq6UeqIXfsvK3s2N/EmKs+2e/lfuPRtq6BQb/71qe5/OFY1cijcyt79CpJFHQa4V+9vJZZG/fyxJvbWPirL/VZ37sBEmDyimr+5uTj+fQHT+z/xfMssU5/MCWhZJ9ZssvpeLXQr6cUdmOlSDaoTj8LxkyrYKIfDJVM/ENOFngBHgtwk4T+SqGdnY5ZG7sHMn1hzNy0rxe3dPuBrE1glg2O7M3VHvS7He/WWii3TxTJpVzd9D0SQT9I3VjZmuQ9ZUpKy/p9XlNLO00t7fxrkhts3DRxFfdNr8A5R0enY9r6gY8JGMxNt3NhTsW+rAXfPQ19B9tsTzJf/kBvlCEyFOWqpB+p6p24+Ztr+wSV55buYuQpx2f8WjdNXMU1536wKyAlDsL5y8pYF8QPnPgebvnLuiHbEJlMNieFCtpfeyBdLUWkp0gE/abWDt53XPeuprqhR7IJwNLZuKcxbXfAW/6yDsjtvPAiUlxyNbI4EkH/47dO54pPnpaT166qy+00qCISTWrIHaTXUtTZZ8OOQdyvVUQkmVyV9CMT9HPptlf7n3deRCRTN01MPkPuYCnoi4gUoFkbg08ylwkFfRGRCMl70DezS8xsk5lVmllpvt9fRCTK8hr0zWwY8ChwKXA2cI2ZnZ3PPIiIRFm+S/qfByqdc9ucc63Ai8CV2X6T3fV9b0UmIiL5D/qnA4mT3+z2aV3M7AYzKzez8tragQ3zz/ZNtUVE8u0r/+vUnLxuwQ3Ocs6NA8YBjBo1akAdVT/8P/+q6xaIIiLSLd8l/WrgzITHZ/g0ERHJg3wH/beBs8xspJkdC1wNTM1zHkREIiuv1TvOuXYz+zEwHRgGTHDO6Y4YIiJ5kvc6fefc68Dr+X5fERHRiFwRkUhR0BcRiRAFfRGRCFHQFxGJEAty0/CwmFktsHMQL3EKsD9L2RkKora/oH2OCu1zZv7GOTci2YqCDvqDZWblzrlRYecjX6K2v6B9jgrtc/aoekdEJEIU9EVEIqTYg/64sDOQZ1HbX9A+R4X2OUuKuk5fRER6KvaSvoiIJFDQFxGJkKIM+sV083UzO9PM5prZBjNbb2Y/9eknm9lMM9vi/5/k083MHvb7vsbMzkl4rdF++y1mNjqsfQrCzIaZ2Uoze80/HmlmS/1+TfRTc2Nmx/nHlX59ScJr3OzTN5nZxeHsSTBmdqKZvWRmFWa20czOj8Axvsl/p9eZ2Qtm9u5iO85mNsHM9pnZuoS0rB1XM/usma31z3nYzCxtppxzRfVHbMrmrcCHgGOB1cDZYedrEPtzGnCOX/4rYDOxm8r/Fij16aXAGL98GfAGYMB5wFKffjKwzf8/yS+fFPb+9bPfPweeB17zjycBV/vlx4Ef+uUfAY/75auBiX75bH/sjwNG+u/EsLD3q5/9fRq43i8fC5xYzMeY2G1StwPvSTi+/1Zsxxn4InAOsC4hLWvHFVjmtzX/3EvT5insDyUHH/L5wPSExzcDN4edryzu3xTgq8Am4DSfdhqwyS8/AVyTsP0mv/4a4ImE9B7bFdIfsTuqzQa+DLzmv9D7geG9jzGxezOc75eH++2s93FP3K7Q/oATfAC0XunFfIzj98s+2R+314CLi/E4AyW9gn5WjqtfV5GQ3mO7VH/FWL2T9ubrQ5W/pP0MsBQ41TlX41ftAeJ3UU61/0Ppc/k98Eug0z9+P3DQOdfuHyfmvWu//PoGv/1Q2t+RQC3wR1+l9ZSZHU8RH2PnXDVwP7ALqCF23JZT3Mc5LlvH9XS/3Du9X8UY9IuSmb0PeBn4mXOuMXGdi53mi6LvrZldAexzzi0POy95NJxYFcBY59xngCZil/1diukYA/h67CuJnfA+ABwPXBJqpuR29Y8AAAHSSURBVEIQxnEtxqBfdDdfN7N3EQv4zznnJvvkvWZ2ml9/GrDPp6fa/6HyuVwA/IuZ7QBeJFbF8xBwopnF7/SWmPeu/fLrTwAOMHT2F2IltN3OuaX+8UvETgLFeowBvgJsd87VOufagMnEjn0xH+e4bB3Xar/cO71fxRj0i+rm6741fjyw0Tn3u4RVU4F4K/5oYnX98fTv+p4A5wEN/lJyOnCRmZ3kS1kX+bSC4py72Tl3hnOuhNixm+Oc+w4wF7jKb9Z7f+Ofw1V+e+fTr/a9PkYCZxFr9Co4zrk9QJWZ/Z1PuhDYQJEeY28XcJ6Zvdd/x+P7XLTHOUFWjqtf12hm5/nP8LsJr5Va2I0cOWo4uYxYL5etwC1h52eQ+/IFYpd/a4BV/u8yYvWZs4EtwCzgZL+9AY/6fV8LjEp4re8Dlf7ve2HvW4B9/ye6e+98iNiPuRL4M3CcT3+3f1zp138o4fm3+M9hEwF6NYS8r58Gyv1xfoVYL42iPsbA7UAFsA54llgPnKI6zsALxNos2ohd0V2XzeMKjPKf31bgD/TqDJDsT9MwiIhESDFW74iISAoK+iIiEaKgLyISIQr6IiIRoqAvIhIhCvoiIhGioC8iEiH/H6G+/rPuz7xgAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(lpath)" + ] + }, + { + "source": [ + "我们可以看到,起初平均路径长度有所增加。这可能是因为当我们对环境一无所知时,很容易陷入糟糕的状态,比如掉进水里或遇到狼。随着我们学习更多并开始利用这些知识,我们能够在环境中探索更长时间,但仍然不太清楚苹果的位置。\n", + "\n", + "当我们学到足够多时,代理更容易实现目标,路径长度开始减少。然而,我们仍然会进行探索,因此经常偏离最佳路径,尝试新的选项,这使得路径比最优路径更长。\n", + "\n", + "我们在图表上还观察到,某个时刻路径长度突然增加。这表明过程具有随机性,并且我们可能会在某些时候“破坏”Q-表的系数,通过用新值覆盖它们。这种情况理想情况下应该通过降低学习率来最小化(即在训练后期,我们仅用小幅度调整Q-表的值)。\n", + "\n", + "总体来说,重要的是要记住,学习过程的成功和质量在很大程度上取决于一些参数,比如学习率、学习率衰减和折扣因子。这些通常被称为**超参数**,以区别于我们在训练过程中优化的**参数**(例如Q-表系数)。寻找最佳超参数值的过程被称为**超参数优化**,这是一个值得单独讨论的话题。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "## 练习\n", + "#### 一个更真实的《彼得与狼》世界\n", + "\n", + "在我们的情境中,彼得几乎可以四处移动而不会感到疲惫或饥饿。在一个更真实的世界里,他需要时不时地坐下来休息,还需要给自己补充食物。让我们通过实现以下规则,使我们的世界更加真实:\n", + "\n", + "1. 每次从一个地方移动到另一个地方,彼得都会损失一定的**能量**并增加一些**疲劳**。\n", + "2. 彼得可以通过吃苹果来恢复能量。\n", + "3. 彼得可以通过在树下或草地上休息来消除疲劳(即走到有树或草的棋盘位置——绿色区域)。\n", + "4. 彼得需要找到并杀死狼。\n", + "5. 为了杀死狼,彼得需要达到一定的能量和疲劳水平,否则他会在战斗中失败。\n", + "\n", + "根据游戏规则修改上述奖励函数,运行强化学习算法以学习赢得游戏的最佳策略,并将随机游走的结果与您的算法进行比较,比较胜负场次。\n", + "\n", + "> **注意**: 您可能需要调整超参数以使其正常运行,尤其是训练的轮数。由于游戏的成功(与狼战斗)是一个罕见事件,您可以预期训练时间会更长。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/2-Gym/README.md b/translations/zh-CN/8-Reinforcement/2-Gym/README.md new file mode 100644 index 000000000..2c8cc473d --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/2-Gym/README.md @@ -0,0 +1,342 @@ +# CartPole 滑行 + +我们在上一课中解决的问题可能看起来像一个玩具问题,似乎与现实生活场景无关。但事实并非如此,因为许多现实世界的问题也具有类似的场景——包括下棋或围棋。这些问题类似,因为我们也有一个带有规则的棋盘和一个**离散状态**。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +## 介绍 + +在本课中,我们将把 Q-Learning 的相同原理应用于一个具有**连续状态**的问题,即状态由一个或多个实数表示。我们将处理以下问题: + +> **问题**:如果彼得想要逃离狼的追捕,他需要能够移动得更快。我们将看到彼得如何通过 Q-Learning 学习滑行,特别是保持平衡。 + +![伟大的逃亡!](../../../../8-Reinforcement/2-Gym/images/escape.png) + +> 彼得和他的朋友们发挥创意逃离狼的追捕!图片由 [Jen Looper](https://twitter.com/jenlooper) 提供 + +我们将使用一种称为 **CartPole** 的简化平衡问题。在 CartPole 世界中,我们有一个可以左右移动的水平滑块,目标是让滑块顶部的垂直杆保持平衡。 + +## 前置知识 + +在本课中,我们将使用一个名为 **OpenAI Gym** 的库来模拟不同的**环境**。你可以在本地运行本课的代码(例如在 Visual Studio Code 中),此时模拟会在新窗口中打开。如果在线运行代码,你可能需要对代码进行一些调整,具体描述见[这里](https://towardsdatascience.com/rendering-openai-gym-envs-on-binder-and-google-colab-536f99391cc7)。 + +## OpenAI Gym + +在上一课中,游戏规则和状态由我们自己定义的 `Board` 类提供。在这里,我们将使用一个特殊的**模拟环境**,它会模拟平衡杆的物理过程。训练强化学习算法最流行的模拟环境之一是 [Gym](https://gym.openai.com/),由 [OpenAI](https://openai.com/) 维护。通过使用这个 Gym,我们可以创建不同的**环境**,从 CartPole 模拟到 Atari 游戏。 + +> **注意**:你可以在 OpenAI Gym 中查看其他可用的环境 [这里](https://gym.openai.com/envs/#classic_control)。 + +首先,让我们安装 Gym 并导入所需的库(代码块 1): + +```python +import sys +!{sys.executable} -m pip install gym + +import gym +import matplotlib.pyplot as plt +import numpy as np +import random +``` + +## 练习 - 初始化一个 CartPole 环境 + +要处理 CartPole 平衡问题,我们需要初始化相应的环境。每个环境都与以下内容相关联: + +- **观察空间**:定义我们从环境中接收到的信息结构。对于 CartPole 问题,我们接收到杆的位置、速度以及其他一些值。 + +- **动作空间**:定义可能的动作。在我们的例子中,动作空间是离散的,由两个动作组成——**左**和**右**。(代码块 2) + +1. 要初始化,请输入以下代码: + + ```python + env = gym.make("CartPole-v1") + print(env.action_space) + print(env.observation_space) + print(env.action_space.sample()) + ``` + +为了了解环境如何工作,让我们运行一个短暂的模拟,持续 100 步。在每一步中,我们提供一个动作——在这个模拟中,我们只是随机选择一个来自 `action_space` 的动作。 + +1. 运行以下代码并查看结果。 + + ✅ 请记住,最好在本地 Python 安装中运行此代码!(代码块 3) + + ```python + env.reset() + + for i in range(100): + env.render() + env.step(env.action_space.sample()) + env.close() + ``` + + 你应该会看到类似于以下图片的内容: + + ![未平衡的 CartPole](../../../../8-Reinforcement/2-Gym/images/cartpole-nobalance.gif) + +1. 在模拟过程中,我们需要获取观察值以决定如何行动。实际上,`step` 函数会返回当前的观察值、奖励函数以及一个表示是否继续模拟的完成标志:(代码块 4) + + ```python + env.reset() + + done = False + while not done: + env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + print(f"{obs} -> {rew}") + env.close() + ``` + + 你将在笔记本输出中看到类似以下的内容: + + ```text + [ 0.03403272 -0.24301182 0.02669811 0.2895829 ] -> 1.0 + [ 0.02917248 -0.04828055 0.03248977 0.00543839] -> 1.0 + [ 0.02820687 0.14636075 0.03259854 -0.27681916] -> 1.0 + [ 0.03113408 0.34100283 0.02706215 -0.55904489] -> 1.0 + [ 0.03795414 0.53573468 0.01588125 -0.84308041] -> 1.0 + ... + [ 0.17299878 0.15868546 -0.20754175 -0.55975453] -> 1.0 + [ 0.17617249 0.35602306 -0.21873684 -0.90998894] -> 1.0 + ``` + + 在模拟的每一步返回的观察向量包含以下值: + - 小车的位置 + - 小车的速度 + - 杆的角度 + - 杆的旋转速率 + +1. 获取这些数值的最小值和最大值:(代码块 5) + + ```python + print(env.observation_space.low) + print(env.observation_space.high) + ``` + + 你可能还会注意到,每次模拟步骤的奖励值始终为 1。这是因为我们的目标是尽可能长时间地保持杆在合理的垂直位置。 + + ✅ 实际上,如果我们在 100 次连续试验中平均奖励达到 195,则认为 CartPole 模拟问题已解决。 + +## 状态离散化 + +在 Q-Learning 中,我们需要构建 Q-Table 来定义在每个状态下的行动。为了做到这一点,我们需要状态是**离散的**,更确切地说,它应该包含有限数量的离散值。因此,我们需要以某种方式**离散化**我们的观察值,将它们映射到有限的状态集合。 + +有几种方法可以做到这一点: + +- **划分为区间**。如果我们知道某个值的范围,我们可以将这个范围划分为若干**区间**,然后用该值所属的区间编号替换原值。这可以使用 numpy 的 [`digitize`](https://numpy.org/doc/stable/reference/generated/numpy.digitize.html) 方法来完成。在这种情况下,我们将准确知道状态的大小,因为它将取决于我们为离散化选择的区间数量。 + +✅ 我们可以使用线性插值将值映射到某个有限区间(例如,从 -20 到 20),然后通过四舍五入将数字转换为整数。这种方法对状态大小的控制稍弱,特别是当我们不知道输入值的确切范围时。例如,在我们的例子中,观察值中的 4 个值中有 2 个没有上下界,这可能导致状态数量无限。 + +在我们的例子中,我们将采用第二种方法。正如你稍后可能注意到的,尽管没有明确的上下界,这些值很少会超出某些有限区间,因此具有极端值的状态将非常罕见。 + +1. 以下是一个函数,它将从模型中获取观察值并生成一个包含 4 个整数值的元组:(代码块 6) + + ```python + def discretize(x): + return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int)) + ``` + +1. 我们还可以探索另一种使用区间的离散化方法:(代码块 7) + + ```python + def create_bins(i,num): + return np.arange(num+1)*(i[1]-i[0])/num+i[0] + + print("Sample bins for interval (-5,5) with 10 bins\n",create_bins((-5,5),10)) + + ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter + nbins = [20,20,10,10] # number of bins for each parameter + bins = [create_bins(ints[i],nbins[i]) for i in range(4)] + + def discretize_bins(x): + return tuple(np.digitize(x[i],bins[i]) for i in range(4)) + ``` + +1. 现在让我们运行一个短暂的模拟并观察这些离散化的环境值。可以尝试 `discretize` 和 `discretize_bins`,看看是否有区别。 + + ✅ `discretize_bins` 返回区间编号,从 0 开始。因此,对于输入变量值接近 0 的情况,它返回区间中间的编号(10)。在 `discretize` 中,我们没有关心输出值的范围,允许它们为负,因此状态值没有偏移,0 对应于 0。(代码块 8) + + ```python + env.reset() + + done = False + while not done: + #env.render() + obs, rew, done, info = env.step(env.action_space.sample()) + #print(discretize_bins(obs)) + print(discretize(obs)) + env.close() + ``` + + ✅ 如果你想查看环境如何执行,可以取消注释以 `env.render` 开头的行。否则,你可以在后台执行,这样速度更快。在我们的 Q-Learning 过程中,我们将使用这种“不可见”的执行方式。 + +## Q-Table 结构 + +在上一课中,状态是一个简单的数字对,从 0 到 8,因此用形状为 8x8x2 的 numpy 张量表示 Q-Table 很方便。如果我们使用区间离散化,状态向量的大小也是已知的,因此我们可以使用相同的方法,用形状为 20x20x10x10x2 的数组表示状态(这里的 2 是动作空间的维度,前几个维度对应于我们为观察空间中每个参数选择的区间数量)。 + +然而,有时观察空间的精确维度是未知的。在使用 `discretize` 函数的情况下,我们可能无法确定状态是否保持在某些限制范围内,因为某些原始值是没有界限的。因此,我们将使用稍微不同的方法,用字典表示 Q-Table。 + +1. 使用 *(state, action)* 对作为字典键,值对应于 Q-Table 的条目值。(代码块 9) + + ```python + Q = {} + actions = (0,1) + + def qvalues(state): + return [Q.get((state,a),0) for a in actions] + ``` + + 在这里我们还定义了一个函数 `qvalues()`,它返回给定状态对应于所有可能动作的 Q-Table 值列表。如果 Q-Table 中没有该条目,我们将返回默认值 0。 + +## 开始 Q-Learning + +现在我们准备教彼得如何保持平衡了! + +1. 首先,让我们设置一些超参数:(代码块 10) + + ```python + # hyperparameters + alpha = 0.3 + gamma = 0.9 + epsilon = 0.90 + ``` + + 这里,`alpha` 是**学习率**,定义了我们在每一步中应该在多大程度上调整 Q-Table 的当前值。在上一课中,我们从 1 开始,然后在训练过程中将 `alpha` 降低到较低的值。在这个例子中,为了简单起见,我们将保持它不变,你可以稍后尝试调整 `alpha` 值。 + + `gamma` 是**折扣因子**,表示我们应该在多大程度上优先考虑未来奖励而不是当前奖励。 + + `epsilon` 是**探索/利用因子**,决定我们是否应该更倾向于探索还是利用。在我们的算法中,我们将在 `epsilon` 百分比的情况下根据 Q-Table 值选择下一个动作,而在剩余情况下执行随机动作。这将允许我们探索以前从未见过的搜索空间区域。 + + ✅ 在平衡方面——选择随机动作(探索)就像是一个随机的错误方向的推力,杆需要学习如何从这些“错误”中恢复平衡。 + +### 改进算法 + +我们还可以对上一课的算法进行两项改进: + +- **计算平均累计奖励**,在多次模拟中进行。我们将每 5000 次迭代打印一次进度,并在这段时间内对累计奖励进行平均。这意味着如果我们获得超过 195 分——我们可以认为问题已经解决,质量甚至高于要求。 + +- **计算最大平均累计结果**,`Qmax`,并存储对应于该结果的 Q-Table。当你运行训练时,你会注意到有时平均累计结果开始下降,我们希望保留训练过程中观察到的最佳模型对应的 Q-Table 值。 + +1. 在每次模拟中将所有累计奖励收集到 `rewards` 向量中,以便进一步绘图。(代码块 11) + + ```python + def probs(v,eps=1e-4): + v = v-v.min()+eps + v = v/v.sum() + return v + + Qmax = 0 + cum_rewards = [] + rewards = [] + for epoch in range(100000): + obs = env.reset() + done = False + cum_reward=0 + # == do the simulation == + while not done: + s = discretize(obs) + if random.random() Qmax: + Qmax = np.average(cum_rewards) + Qbest = Q + cum_rewards=[] + ``` + +你可能从这些结果中注意到: + +- **接近目标**。我们非常接近实现目标,即在 100 次以上的连续模拟中获得 195 的累计奖励,或者我们实际上已经实现了!即使我们获得较小的数字,我们仍然不知道,因为我们平均了 5000 次运行,而正式标准只需要 100 次运行。 + +- **奖励开始下降**。有时奖励开始下降,这意味着我们可能会用使情况变得更糟的新值“破坏” Q-Table 中已经学习到的值。 + +如果我们绘制训练进度,这种观察会更加清晰。 + +## 绘制训练进度 + +在训练过程中,我们将每次迭代的累计奖励值收集到 `rewards` 向量中。以下是将其与迭代次数绘制在一起的样子: + +```python +plt.plot(rewards) +``` + +![原始进度](../../../../8-Reinforcement/2-Gym/images/train_progress_raw.png) + +从这个图表中无法看出任何信息,因为由于随机训练过程的性质,训练会话的长度变化很大。为了让这个图表更有意义,我们可以计算一系列实验的**运行平均值**,比如 100 次。这可以使用 `np.convolve` 方便地完成:(代码块 12) + +```python +def running_average(x,window): + return np.convolve(x,np.ones(window)/window,mode='valid') + +plt.plot(running_average(rewards,100)) +``` + +![训练进度](../../../../8-Reinforcement/2-Gym/images/train_progress_runav.png) + +## 调整超参数 + +为了使学习更加稳定,有必要在训练过程中调整一些超参数。特别是: + +- **学习率** `alpha`,我们可以从接近 1 的值开始,然后逐渐降低该参数。随着时间的推移,我们将在 Q-Table 中获得良好的概率值,因此我们应该稍微调整它们,而不是完全用新值覆盖。 + +- **增加 epsilon**。我们可能希望慢慢增加 `epsilon`,以便减少探索,更多地利用。可能合理的是从较低的 `epsilon` 值开始,然后逐渐增加到接近 1。 +> **任务 1**:尝试调整超参数的值,看看是否能获得更高的累计奖励。你的得分是否超过了195? +> **任务 2**:为了正式解决这个问题,你需要在连续100次运行中获得195的平均奖励。在训练过程中进行测量,并确保你已经正式解决了这个问题! + +## 查看结果的实际表现 + +观察训练好的模型如何表现会非常有趣。让我们运行模拟,并遵循与训练时相同的动作选择策略,根据Q表中的概率分布进行采样:(代码块13) + +```python +obs = env.reset() +done = False +while not done: + s = discretize(obs) + env.render() + v = probs(np.array(qvalues(s))) + a = random.choices(actions,weights=v)[0] + obs,_,done,_ = env.step(a) +env.close() +``` + +你应该会看到类似这样的画面: + +![一个保持平衡的Cartpole](../../../../8-Reinforcement/2-Gym/images/cartpole-balance.gif) + +--- + +## 🚀挑战 + +> **任务 3**:在这里,我们使用的是Q表的最终版本,但它可能不是表现最好的版本。记住,我们已经将表现最好的Q表存储在变量`Qbest`中!尝试用表现最好的Q表替换当前的Q表,看看是否能观察到差异。 + +> **任务 4**:在这里,我们并没有在每一步选择最佳动作,而是根据对应的概率分布进行采样。是否总是选择具有最高Q表值的最佳动作会更合理?这可以通过使用`np.argmax`函数找到对应于最高Q表值的动作编号来实现。尝试实施这种策略,看看是否能改善平衡效果。 + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 作业 +[训练一个山地车](assignment.md) + +## 总结 + +我们现在已经学会了如何通过提供一个定义游戏目标状态的奖励函数,并让智能体有机会智能地探索搜索空间,来训练智能体以获得良好的结果。我们成功地在离散和连续环境中应用了Q学习算法,但动作是离散的。 + +研究动作状态也是连续的情况,以及观察空间更复杂的情况(例如来自Atari游戏屏幕的图像)也很重要。在这些问题中,我们通常需要使用更强大的机器学习技术,例如神经网络,以获得良好的结果。这些更高级的主题将是我们即将推出的高级AI课程的内容。 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/2-Gym/assignment.md b/translations/zh-CN/8-Reinforcement/2-Gym/assignment.md new file mode 100644 index 000000000..cf1633d80 --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/2-Gym/assignment.md @@ -0,0 +1,48 @@ +# 训练山地车 + +[OpenAI Gym](http://gym.openai.com) 的设计使得所有环境都提供相同的 API——即相同的方法 `reset`、`step` 和 `render`,以及相同的 **动作空间** 和 **观察空间** 抽象。因此,可以通过最小的代码更改,将相同的强化学习算法适配到不同的环境中。 + +## 山地车环境 + +[山地车环境](https://gym.openai.com/envs/MountainCar-v0/) 包含一辆被困在山谷中的小车: + +目标是通过以下动作之一,在每一步中让小车驶出山谷并夺取旗帜: + +| 值 | 含义 | +|---|---| +| 0 | 向左加速 | +| 1 | 不加速 | +| 2 | 向右加速 | + +然而,这个问题的主要难点在于,小车的引擎动力不足,无法一次性爬上山顶。因此,唯一的成功方法是通过来回移动来积累动能。 + +观察空间仅包含两个值: + +| 编号 | 观察值 | 最小值 | 最大值 | +|-----|--------------|-----|-----| +| 0 | 小车位置 | -1.2 | 0.6 | +| 1 | 小车速度 | -0.07 | 0.07 | + +山地车的奖励系统相当复杂: + + * 如果智能体到达山顶的旗帜位置(位置 = 0.5),奖励为 0。 + * 如果智能体的位置小于 0.5,奖励为 -1。 + +当小车位置超过 0.5 或者回合长度超过 200 时,回合终止。 + +## 指导说明 + +将我们的强化学习算法适配到山地车问题中。以现有的 [notebook.ipynb](notebook.ipynb) 代码为起点,替换新的环境,修改状态离散化函数,并尝试通过最小的代码修改使现有算法能够进行训练。通过调整超参数来优化结果。 + +> **注意**: 可能需要调整超参数以使算法收敛。 + +## 评分标准 + +| 标准 | 优秀 | 合格 | 需要改进 | +| -------- | --------- | -------- | ----------------- | +| | 成功从 CartPole 示例中适配 Q-Learning 算法,代码修改最小,能够在 200 步内解决夺旗问题。 | 从网上采用了新的 Q-Learning 算法,但文档记录良好;或者采用了现有算法,但未达到预期结果。 | 未能成功采用任何算法,但在解决方案上迈出了重要一步(实现了状态离散化、Q 表数据结构等)。 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/2-Gym/notebook.ipynb b/translations/zh-CN/8-Reinforcement/2-Gym/notebook.ipynb new file mode 100644 index 000000000..9aa8ff149 --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/2-Gym/notebook.ipynb @@ -0,0 +1,394 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.4" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.4 64-bit ('base': conda)" + }, + "interpreter": { + "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" + }, + "coopTranslator": { + "original_hash": "f22f8f3daed4b6d34648d1254763105b", + "translation_date": "2025-09-03T20:54:32+00:00", + "source_file": "8-Reinforcement/2-Gym/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## 小车杆滑行\n", + "\n", + "> **问题**:如果彼得想要逃离狼的追捕,他需要比狼移动得更快。我们将探讨彼得如何学习滑行,特别是如何通过 Q-Learning 学习保持平衡。\n", + "\n", + "首先,让我们安装 gym 并导入所需的库:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 1" + ] + }, + { + "source": [ + "## 创建一个平衡杆环境\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 2" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "要了解环境如何运行,让我们进行一个100步的短模拟。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 3" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "在模拟过程中,我们需要获取观察结果以决定如何行动。实际上,`step` 函数会返回当前的观察结果、奖励函数以及 `done` 标志,该标志指示是否有必要继续模拟:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "#code block 4" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": null, + "outputs": [] + }, + { + "source": [ + "我们可以获取这些数字的最小值和最大值:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "#code block 5" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 6" + ] + }, + { + "source": [ + "让我们也探索使用分箱的其他离散化方法:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "#code block 7" + ] + }, + { + "source": [ + "现在让我们运行一个简短的模拟,并观察那些离散的环境值。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -2, -2)\n(0, 1, -2, -5)\n(0, 2, -3, -8)\n(0, 3, -5, -11)\n(0, 3, -7, -14)\n(0, 4, -10, -17)\n(0, 3, -14, -15)\n(0, 3, -17, -12)\n(0, 3, -20, -16)\n(0, 4, -23, -19)\n" + ] + } + ], + "source": [ + "#code block 8" + ] + }, + { + "source": [ + "## Q-表结构\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 9" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "#code block 10" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 22.0, alpha=0.3, epsilon=0.9\n", + "5000: 70.1384, alpha=0.3, epsilon=0.9\n", + "10000: 121.8586, alpha=0.3, epsilon=0.9\n", + "15000: 149.6368, alpha=0.3, epsilon=0.9\n", + "20000: 168.2782, alpha=0.3, epsilon=0.9\n", + "25000: 196.7356, alpha=0.3, epsilon=0.9\n", + "30000: 220.7614, alpha=0.3, epsilon=0.9\n", + "35000: 233.2138, alpha=0.3, epsilon=0.9\n", + "40000: 248.22, alpha=0.3, epsilon=0.9\n", + "45000: 264.636, alpha=0.3, epsilon=0.9\n", + "50000: 276.926, alpha=0.3, epsilon=0.9\n", + "55000: 277.9438, alpha=0.3, epsilon=0.9\n", + "60000: 248.881, alpha=0.3, epsilon=0.9\n", + "65000: 272.529, alpha=0.3, epsilon=0.9\n", + "70000: 281.7972, alpha=0.3, epsilon=0.9\n", + "75000: 284.2844, alpha=0.3, epsilon=0.9\n", + "80000: 269.667, alpha=0.3, epsilon=0.9\n", + "85000: 273.8652, alpha=0.3, epsilon=0.9\n", + "90000: 278.2466, alpha=0.3, epsilon=0.9\n", + "95000: 269.1736, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "#code block 11" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "从这个图表中无法得出任何结论,因为由于随机训练过程的性质,训练会话的长度差异很大。为了更好地理解这个图表,我们可以计算**运行平均值**,例如基于100次实验。这可以通过使用`np.convolve`方便地完成:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "#code block 12" + ] + }, + { + "source": [ + "## 调整超参数并观察结果\n", + "\n", + "现在,实际观察训练后的模型表现会非常有趣。让我们运行模拟,并采用与训练时相同的动作选择策略:根据 Q-Table 中的概率分布进行采样:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "# code block 13" + ] + }, + { + "source": [ + "## 将结果保存为动画 GIF\n", + "\n", + "如果你想给朋友留下深刻印象,可以考虑发送平衡杆的动画 GIF 图片。为此,我们可以调用 `env.render` 来生成图像帧,然后使用 PIL 库将这些帧保存为动画 GIF:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/2-Gym/solution/Julia/README.md b/translations/zh-CN/8-Reinforcement/2-Gym/solution/Julia/README.md new file mode 100644 index 000000000..e2fb46232 --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/2-Gym/solution/Julia/README.md @@ -0,0 +1,6 @@ + + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/2-Gym/solution/R/README.md b/translations/zh-CN/8-Reinforcement/2-Gym/solution/R/README.md new file mode 100644 index 000000000..61677dbd3 --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/2-Gym/solution/R/README.md @@ -0,0 +1,6 @@ +这是一个临时占位符 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/2-Gym/solution/notebook.ipynb b/translations/zh-CN/8-Reinforcement/2-Gym/solution/notebook.ipynb new file mode 100644 index 000000000..08632234b --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/2-Gym/solution/notebook.ipynb @@ -0,0 +1,526 @@ +{ + "metadata": { + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.0" + }, + "orig_nbformat": 4, + "kernelspec": { + "name": "python3", + "display_name": "Python 3.7.0 64-bit ('3.7')" + }, + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + }, + "coopTranslator": { + "original_hash": "5c0e485e58d63c506f1791c4dbf990ce", + "translation_date": "2025-09-03T20:56:48+00:00", + "source_file": "8-Reinforcement/2-Gym/solution/notebook.ipynb", + "language_code": "zh" + } + }, + "nbformat": 4, + "nbformat_minor": 2, + "cells": [ + { + "source": [ + "## 小车杆滑行\n", + "\n", + "> **问题**:如果彼得想要逃离狼的追捕,他需要比狼移动得更快。我们将探讨彼得如何学习滑行,特别是如何通过Q学习来保持平衡。\n", + "\n", + "首先,让我们安装gym并导入所需的库:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Requirement already satisfied: gym in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.18.3)\n", + "Requirement already satisfied: Pillow<=8.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (7.0.0)\n", + "Requirement already satisfied: scipy in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.4.1)\n", + "Requirement already satisfied: numpy>=1.10.4 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.19.2)\n", + "Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.6.0)\n", + "Requirement already satisfied: pyglet<=1.5.15,>=1.4.0 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from gym) (1.5.15)\n", + "\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.1.2 is available.\n", + "You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n" + ] + } + ], + "source": [ + "import sys\n", + "!pip install gym \n", + "\n", + "import gym\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import random" + ] + }, + { + "source": [ + "## 创建一个平衡杆环境\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env = gym.make(\"CartPole-v1\")\n", + "print(env.action_space)\n", + "print(env.observation_space)\n", + "print(env.action_space.sample())" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Discrete(2)\nBox(-3.4028234663852886e+38, 3.4028234663852886e+38, (4,), float32)\n0\n" + ] + } + ] + }, + { + "source": [ + "要了解环境如何运行,让我们进行一个100步的短模拟。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "for i in range(100):\n", + " env.render()\n", + " env.step(env.action_space.sample())\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/gym/logger.py:30: UserWarning: \u001b[33mWARN: You are calling 'step()' even though this environment has already returned done = True. You should always call 'reset()' once you receive 'done = True' -- any further steps are undefined behavior.\u001b[0m\n warnings.warn(colorize('%s: %s'%('WARN', msg % args), 'yellow'))\n" + ] + } + ] + }, + { + "source": [ + "在模拟过程中,我们需要获取观察结果以决定如何行动。实际上,`step` 函数会返回当前的观察结果、奖励函数以及 `done` 标志,该标志指示是否有必要继续模拟:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " print(f\"{obs} -> {rew}\")\n", + "env.close()" + ], + "cell_type": "code", + "metadata": {}, + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[ 0.03044442 -0.19543914 -0.04496216 0.28125618] -> 1.0\n", + "[ 0.02653564 -0.38989186 -0.03933704 0.55942606] -> 1.0\n", + "[ 0.0187378 -0.19424049 -0.02814852 0.25461393] -> 1.0\n", + "[ 0.01485299 -0.38894946 -0.02305624 0.53828712] -> 1.0\n", + "[ 0.007074 -0.19351108 -0.0122905 0.23842953] -> 1.0\n", + "[ 0.00320378 0.00178427 -0.00752191 -0.05810469] -> 1.0\n", + "[ 0.00323946 0.19701326 -0.008684 -0.35315131] -> 1.0\n", + "[ 0.00717973 0.00201587 -0.01574703 -0.06321931] -> 1.0\n", + "[ 0.00722005 0.19736001 -0.01701141 -0.36082863] -> 1.0\n", + "[ 0.01116725 0.39271958 -0.02422798 -0.65882671] -> 1.0\n", + "[ 0.01902164 0.19794307 -0.03740452 -0.37387001] -> 1.0\n", + "[ 0.0229805 0.39357584 -0.04488192 -0.67810827] -> 1.0\n", + "[ 0.03085202 0.58929164 -0.05844408 -0.98457719] -> 1.0\n", + "[ 0.04263785 0.78514572 -0.07813563 -1.2950295 ] -> 1.0\n", + "[ 0.05834076 0.98116859 -0.10403622 -1.61111521] -> 1.0\n", + "[ 0.07796413 0.78741784 -0.13625852 -1.35259196] -> 1.0\n", + "[ 0.09371249 0.98396202 -0.16331036 -1.68461179] -> 1.0\n", + "[ 0.11339173 0.79106371 -0.1970026 -1.44691436] -> 1.0\n", + "[ 0.12921301 0.59883361 -0.22594088 -1.22169133] -> 1.0\n" + ] + } + ] + }, + { + "source": [ + "我们可以获取这些数字的最小值和最大值:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]\n[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]\n" + ] + } + ], + "source": [ + "print(env.observation_space.low)\n", + "print(env.observation_space.high)" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def discretize(x):\n", + " return tuple((x/np.array([0.25, 0.25, 0.01, 0.1])).astype(np.int))" + ] + }, + { + "source": [ + "让我们也探索使用分箱的其他离散化方法:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Sample bins for interval (-5,5) with 10 bins\n [-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]\n" + ] + } + ], + "source": [ + "def create_bins(i,num):\n", + " return np.arange(num+1)*(i[1]-i[0])/num+i[0]\n", + "\n", + "print(\"Sample bins for interval (-5,5) with 10 bins\\n\",create_bins((-5,5),10))\n", + "\n", + "ints = [(-5,5),(-2,2),(-0.5,0.5),(-2,2)] # intervals of values for each parameter\n", + "nbins = [20,20,10,10] # number of bins for each parameter\n", + "bins = [create_bins(ints[i],nbins[i]) for i in range(4)]\n", + "\n", + "def discretize_bins(x):\n", + " return tuple(np.digitize(x[i],bins[i]) for i in range(4))" + ] + }, + { + "source": [ + "现在让我们运行一个简短的模拟,并观察那些离散的环境值。\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "(0, 0, -1, -3)\n(0, 0, -2, 0)\n(0, 0, -2, -3)\n(0, 1, -3, -6)\n(0, 2, -4, -9)\n(0, 3, -6, -12)\n(0, 2, -8, -9)\n(0, 3, -10, -13)\n(0, 4, -13, -16)\n(0, 4, -16, -19)\n(0, 4, -20, -17)\n(0, 4, -24, -20)\n" + ] + } + ], + "source": [ + "env.reset()\n", + "\n", + "done = False\n", + "while not done:\n", + " #env.render()\n", + " obs, rew, done, info = env.step(env.action_space.sample())\n", + " #print(discretize_bins(obs))\n", + " print(discretize(obs))\n", + "env.close()" + ] + }, + { + "source": [ + "## Q-表结构\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "Q = {}\n", + "actions = (0,1)\n", + "\n", + "def qvalues(state):\n", + " return [Q.get((state,a),0) for a in actions]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# hyperparameters\n", + "alpha = 0.3\n", + "gamma = 0.9\n", + "epsilon = 0.90" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "0: 108.0, alpha=0.3, epsilon=0.9\n" + ] + } + ], + "source": [ + "def probs(v,eps=1e-4):\n", + " v = v-v.min()+eps\n", + " v = v/v.sum()\n", + " return v\n", + "\n", + "Qmax = 0\n", + "cum_rewards = []\n", + "rewards = []\n", + "for epoch in range(100000):\n", + " obs = env.reset()\n", + " done = False\n", + " cum_reward=0\n", + " # == do the simulation ==\n", + " while not done:\n", + " s = discretize(obs)\n", + " if random.random() Qmax:\n", + " Qmax = np.average(cum_rewards)\n", + " Qbest = Q\n", + " cum_rewards=[]" + ] + }, + { + "source": [], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 20 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxU9b3/8dcnCSTsa8CQgAEJIKIIBGSXTUWiYqu0Lq2o3MvV6nWhVlGrtbdasddq9dqfy9W2tr22WpdKXYu4W0VBRVBAQFACCEF2kCXk+/tjvkkm+yTMZCZn3s/HI4+c853vzPmenMl7vud7zpxjzjlERCS4UuLdABERiS0FvYhIwCnoRUQCTkEvIhJwCnoRkYBLi3cDADp37uxyc3Pj3QwRkSZl0aJFW5xzmXXVS4igz83NZeHChfFuhohIk2JmX0ZST0M3IiIBp6AXEQk4Bb2ISMAp6EVEAk5BLyIScBEFvZmtNbMlZvaxmS30ZR3NbJ6ZrfS/O/hyM7N7zWyVmX1iZoNjuQIiIlK7+vToxzvnjnfO5fv52cB851weMN/PA5wK5PmfmcD90WqsiIjU3+GcRz8VGOenHwVeB67z5X90oesfv2dm7c0syzm38XAa2pjWbd3Lj/+2mG7tMvjpaf3p3DqdbXsO8K/V31BwXBbOOf7+8XpO6NmJj77azsSjuzD5N2/yo3G9eXbxev484wTumb+S/lltOaJdBobxwBureePzIpbccjJmBsCLSzby+ooiphyXxYl9Kn7nYUnhDv7+8Xq6tk1n5tijyso/XredtBRjQHY7nHM8uaiQCf26cOvzy+jYqjnLNu7kX6u/4d5zB5HdvgWri3bz3UHZpKWm8PKnX3NMt7bc/sJybig4mpPueoNHpg+leZrxwdptzHlxOU9dOoIN2/dx+sBuPLbgK254Zglt0tO4cFQu//PqKm46rT+/eO4zlv9iMjf9fSl/W1RIn66tGdazI51apXPP/JX87PT+9OzcivfXbGXJ+h28tXJLg7fFJScexQNvrKZ3l9as2ry7rNwMUs0oLonfZbbbZKSxa19xxPVHHtWJpet3sHNfMcdmt2PJ+h306tyKL7bsAeDu7w/k6scXx6q53HJ6f7buPcgTH6zj6537YraccENzO/DB2m38YHgP1m/7luZpKbz86aZ6vcb5J/TgolG5TLrrzXov/4qJeaSacfcrn9da79YzB/DlN3v437fW8B9je/Hgm19UqfPdwdk8/eH6Gl9jcI/2PHXpSNZs2cOEX78RUftyOrTglVknktEsNaL6DWWRXI/ezNYA2wAHPOice8jMtjvn2ofV2eac62BmzwFznHNv+/L5wHXOuYWVXnMmoR4/PXr0GPLllxGd998ocmc/Xzad06EFb183ge8/+C4L1mzlvesnsm7bXqY98G5ZnYn9ujB/+eay+cqhFO73Fw1lfN8u7Nx3kONu+WdZ+do5BTW2Ifyx0vK1cwp4aelGLvnzh3Wuz7WT+3LxqJ70u+mlOuuWKv0HrUnz1BQOHCqJ+PVEksFvzxvMZY/V/T8Z7ofDj+QXZw5o0PLMbFHYKEuNIu3Rj3LObTCzLsA8M1te27KrKavyaeKcewh4CCA/Pz9h735SuO1bANZvD/0+eKiE3fsr9uLWbdtbYb6mkAfKeoDFhw5/lXd+G1lvcuvuA5TU8wYztYU8oJAXqcaufQfr/ZyiXftj0JKKIhqjd85t8L83A88Aw4BNZpYF4H+XdmkLge5hT88BNkSrwUGVO/t5LvnTong3Q0QCqM6gN7NWZtamdBo4GVgKzAWm+2rTgWf99FzgAn/2zXBgR1Man4+nlz79Ot5NEJEAimTopivwjD+AmAY85px7ycw+AJ4wsxnAV8A0X/8FYAqwCtgLXBT1VouIBETR7tgP3dQZ9M65L4CB1ZR/A0ysptwBl0WldQG0/+Ah5i7ewKijOjXaMuN4YoqI1OHLb/bWXekwJcRlipPJr15eQdGu/dxzzvGNtkyr7vC4iETdI2+viXcTqqVLIHhffrOHRV/WfqZJNJQeYd/5bf2PzotIYltZyxl38aQevXfif78OVD2fXUQklrY0whi9evRRYNV+dSBxOJf4bRSR2FHQi4gEnIZuoqAhBzsb80SY372zhjYZ2tQiyUo9+giMv/P1CvNNcRDknvkr490EEYkTBX0E1virC4qINEUK+nqq57XBouqv738Vv4WLSJOloI9QInzpaPbTS+LdBBFpghT0IiIBp6AH9h6o+7ru0R6yiecQkIgkFwU9sOCLrXXWKb0BSayHcL49cCi2CxCRpKOgr2TfwbqDNpad8UPq6otIlCnoK9l/sHFukVfbnkFjXPtCRJKHgr6eHv9gXUzv8bh19wHyb30lZq8vIslHQV9P9722it+/szZmr79174EqZbmzn+eQ7h4iIg2koAdcPUfdDxQf/gHTmobiP9uws9ryg4caZ0hJRIJHQd8Aq4sO/5IIroakX7l512G/tohIOAV9gvmwhrtcrdyUmHeuEZHEp6CvpL7DONG2uHBHteWn3/d2I7dERIJCQR8nlggXzxGRpKCgFxEJOAU98bnuTE0HY0VEok1BHwUahhGRRKagr8Sa5I0CRURqpqCvpCFn3SzbWP2XnEREEoGCnviM0Wu4R0Qai4JeRCTgFPTE9vryNS5TZ92ISCNR0MfJLf/4LN5NEJEkEXHQm1mqmX1kZs/5+Z5mtsDMVprZ42bW3Jen+/lV/vHc2DQ9etS7FpEgq0+P/kpgWdj8HcDdzrk8YBsww5fPALY553oDd/t6Ce3xD9bFuwn11uenL/L655vj3QwRaQIiCnozywEKgIf9vAETgCd9lUeBM/30VD+Pf3yiJfgpJis3l18Zsql07g8Ul/DCkq/j3QwRaQIi7dH/BrgWKL37RSdgu3Ou2M8XAtl+OhtYB+Af3+HrV2BmM81soZktLCoqamDzRUSkLnUGvZmdBmx2zi0KL66mqovgsfIC5x5yzuU75/IzMzMjamysxPvSxCIisZQWQZ1RwBlmNgXIANoS6uG3N7M032vPATb4+oVAd6DQzNKAdsDWqLc8SkpKHCVhd+lL7EEmEZH6q7NH75y73jmX45zLBc4BXnXOnQ+8Bpztq00HnvXTc/08/vFXXQKf1nLqPW+xfvu38W6GiEjMHM559NcBs8xsFaEx+Ed8+SNAJ18+C5h9eE2MrRWbdI9WEQm2SIZuyjjnXgde99NfAMOqqbMPmBaFtsVF4u57iIg0jL4ZKyIScAp6EZGAU9CLiARcvcbog+JAcQl9fvoiV0zoHe+miIjEXFL26PcVHwLg9++sjW9DREQaQVIGvYhIMlHQV6KzK0UkaBT0legKCCISNAp6EZGAU9CLiAScgr4SjdGLSNAo6CuZ95nu2iQiwZLUQb9rf3GVsi27D8ShJSIisZPUQS8ikgwU9JX8+p8r4t0EEZGoUtBXUqKjsSISMEkX9J9v2sW0+9+NdzNERBpN0gX9L19YptsHikhSSbqgFxFJNgp6EZGAU9CLiAScgl5EJOAU9CIiAaegFxEJuKQLet1YRESSTdIFvYhIslHQi4gEnIJeRCTgFPQiIgGnoBcRCbikC3oznXcjIsmlzqA3swwze9/MFpvZp2b2c1/e08wWmNlKM3vczJr78nQ/v8o/nhvbVRARkdpE0qPfD0xwzg0Ejgcmm9lw4A7gbudcHrANmOHrzwC2Oed6A3f7eglD/XkRSTZ1Br0L2e1nm/kfB0wAnvTljwJn+umpfh7/+ETTeImISNxENEZvZqlm9jGwGZgHrAa2O+eKfZVCINtPZwPrAPzjO4BO0Wy0iIhELqKgd84dcs4dD+QAw4Cjq6vmf1fXe69yJ1Yzm2lmC81sYVFRUaTtFRGReqrXWTfOue3A68BwoL2ZpfmHcoANfroQ6A7gH28HbK3mtR5yzuU75/IzMzMb1voG0CCSiCSbSM66yTSz9n66BTAJWAa8Bpztq00HnvXTc/08/vFXnXNVevQiItI40uquQhbwqJmlEvpgeMI595yZfQb81cxuBT4CHvH1HwH+ZGarCPXkz4lBu0VEJEJ1Br1z7hNgUDXlXxAar69cvg+YFpXWiYjIYUuKb8YeKnHcMvdTNmz/Nt5NERFpdJEM3TR576/Zyh/+tZbPN+2iZfPUeDdHRKRRJUWP3vmzO0t0TFhEklBSBH1FOr9SRJJLEga9iEhyUdCLiARcUgW9huhFJBklRdBb2Li8LoEgIskm0KdXOudYXbQn3s0QEYmrQPfoH3l7DZPueoPFhdvLyg6VaPxGRJJLoIP+o3WhgF+3dW9Z2avLN8erOSIicRHooBcRkSQLeg3aiEgySoqg15k2IpLMgh306sKLiAQ86D3T9W1EJIkF9jz63NnPl00/vnBdHFsiIhJfSdGjP1BcEu8miIjETVIEfRmN2YtIEgpU0O/eX8zU377D55t2xbspIiIJI1BB/69VW1i8bju/emlFvJsiIpIwAhX0dXl/7dZ4N0FEpNElVdCLiCSjQAW9jrWKiFQVqKAvpUseiIiUC2TQi4hIuUAFve4JKyJSVaCCvpRGbkREygUy6EVEpFzAgl5jNyIilQUs6EN01o2ISLlABr2IiJSrM+jNrLuZvWZmy8zsUzO70pd3NLN5ZrbS/+7gy83M7jWzVWb2iZkNjvVKlNJZNyIiVUXSoy8GfuycOxoYDlxmZv2B2cB851weMN/PA5wK5PmfmcD9UW91HXRHKRGRcnUGvXNuo3PuQz+9C1gGZANTgUd9tUeBM/30VOCPLuQ9oL2ZZUW95dXYrxuMiIhUUa8xejPLBQYBC4CuzrmNEPowALr4atlA+L37Cn1Z5deaaWYLzWxhUVFR/Vtejase/zgqryMiEiQRB72ZtQaeAq5yzu2srWo1ZVVGz51zDznn8p1z+ZmZmZE2IyI660ZEpFxEQW9mzQiF/P855572xZtKh2T8782+vBDoHvb0HGBDdJorIiL1FclZNwY8Aixzzt0V9tBcYLqfng48G1Z+gT/7Zjiwo3SIR0REGl9aBHVGAT8ElphZ6SD4DcAc4AkzmwF8BUzzj70ATAFWAXuBi6La4gho6EZEpFydQe+ce5uarxM2sZr6DrjsMNslIiJRom/GiogEXCCDXl+YEhEpF8igFxGRcgp6EZGAC2TQry7aHe8miIgkjEAG/fKvd8W7CSIiCSOQQS8iIuUU9CIiAaegFxEJOAW9iEjAKehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiIgGnoBcRCTgFvYhIwCnoRUQCTkEvIhJwCnoRkYBT0IuIBFxggr5w2954N0FEJCEFIujfXf0No+94Ld7NEBFJSIEI+uVf74x3E0REElYggt65eLdARCRxBSPo490AEZEEFoigFxGRmgUi6J3GbkREahSIoBcRkZo1+aDfd/AQtz6/LN7NEBFJWHUGvZn9zsw2m9nSsLKOZjbPzFb63x18uZnZvWa2ysw+MbPBsWw8wINvfBHrRYiINGmR9Oj/AEyuVDYbmO+cywPm+3mAU4E8/zMTuD86zazZ3oPFsV6EiEiTVmfQO+feBLZWKp4KPOqnHwXODCv/owt5D2hvZlnRamz1DYzpq4uINHkNHaPv6pzbCOB/d/Hl2cC6sHqFvqwKM5tpZgvNbGFRUVEDmwH/WLyhwc8VEUkG0T4Ya9WUVdvnds495JzLd87lZ2ZmNniBG3bsa/BzRUSSQUODflPpkIz/vdmXFwLdw+rlAOpyi4jEUUODfi4w3U9PB54NK7/An30zHNhROsQjIiLxkVZXBTP7CzAO6GxmhcDPgDnAE2Y2A/gKmOarvwBMAVYBe4GLYtBmERGphzqD3jl3bg0PTaymrgMuO9xGiYhI9DT5b8aKiEjtFPQiIgHXpIP+/TWVv8clIiKVNemg/8HDC+LdBBGRhNekg/7AoZJ4N0FEJOE16aAXEZG6KehFRAJOQS8iEnAKehGRgFPQi4gEnIJeRCTgFPQiInHUPC32MaygFxGJo7OH5MR8GQp6EZE4Om9Yj5gvQ0EvIhJHA7LbxXwZCnoRkTjp3aV1oyxHQS8iEidj8zIbZTkKehGROLnmlD6NshwFvYhInLRsXufdXKNCQS8iEnAKeklIfbo2zkEqaTzpjfDFIKme/vKSkJyLdwsk2sbkdY53E5KWgl6kEfzyO8dGXPfYRjivuql69OJhUX29Fs1So/p63Tu2iOrrRYuCXqSBxveNzalxd04bGPUAasq+Oyi7bPrEPuV/87F9av/7FxyXVedr5+d2qHd7Tu7ftcJ8r8xWjIvReyFaFPRS5vwTYv9V7Ibo27VNteV/nnFClbJOrZrHtC3nDO1eNn36wG4AXDDiSNbOKaj1ec1SrV7LuXh0br3bVpe1cwq45uTGOZ0vmobkdqBV86offJUDd3CP9hXmczrU3btOT0vh0nFHlQ0rRXKBsXF9u1SYP2twDtntQ8tqlpqYkZqYrZKo6pXZKqJ6t9VjeKHyP1ldLh/fO+K6o3tXHMt9+eqxVercd94gRsdhzLe095bZJp0zBnbjigm9+ckpfWt9zohenfhOWK80El3bZgBUG3CljvB1EtWpA4447Nd49rJRnDesBwtunMTim08GKgb43y4Zwc2n9WfBDRN57N+H07LS36tTq+ZMOrrm9+pPTunHdZNDPwBnDc7m/RsncvGonmV1hlbq9We2Secfl48um+/SJp3Zp/bjigm9Oe3YmvcirpjQm/wj678HEQ0K+iZkUKUeS6T+3/mDK7xxo2FafndunHI0AMNyO9ZZ/5pKYTiqd6da6885K/Sh819Tj6n28dOO6xZJMyOWF/ZV9PvOG8S8aj5cSv3homF8cOMk0lJTmHVyX9pkNAPgwpG5NK+mR/eXmcNJS03hhin9uHBkbll5Zpt0js5qW+0y+vi9mP+aOqDC3kL3ji147ZpxADzxHyPKyksD5KcFR5eVfS+/6lURv5ffvcK6Ho7OrdOrLX/1xyfy4pVjKqxruJqWX10IDuzeHjOjdXoa7VqG/s5XTepT9jpDczty8eiedG2bQUazVF798ThOCuuELLrpJB6enl82f+e0gfz7mPL/hTYZofPYB2S345Hp+fzs9GPo0iajQs/+4QuGcsvp/cvmT+rflWNz2vHFL6fwwA+GcPaQHNpkNGPWyX0Z2L3m/9ExfTI55ZjyD7+nLh1RY91oU9AniLp2Gbu0SeepS0Y26LWz2rXg5tP7c1xO+UG+W88cUOtzurWrvbc4rm8mk32P7ZJxvSJqx2XjjyqbPmdo7cNEQ47syNo5BVwwIheAD26cVGub75w2kGd+NLLsHzcSFjaaMm/WiRSE9cbyahguqs0tZxzD57edWuPjM8cexS1nlH9wDc3twItXjikbAgo3vFcn3r5uPGf5S9iWhvbLV42lZ+dWrJ1TQI9OLcvq//b8wVxzch9mjC4Psdu+cyzvXT+xwut2aZvBvFkncvNp/XllVs0fZvURvmdxZKeW9MpsXeMHWG2evDSy9/dZg7N569rxnNCramfhiHYZDO5R9QOjTXoak47uwtlDcrixoD9PXjKCn5zSl27ty/cOJh7dlQx/bCR8CLBdy2ZcOKon78yewJrbp5SVp6QYkwccgYW9kSaG7T3MOqkPr10zjldmjeXqSX3IP7JD2V7oHy4aypAj6+4gRYuCPgZKd+XrMx561/cG1vr4+zdOIiXFuOec4+vVlrVzCmjXItQTmnv5aOZ8N9RT7ndE7UFWenbDhSNzeSSsRwSw5vYpNEtNoXvHlqydU8CEflV3jR/4wZAqZT85pR9r5xSwdk5BhXBb/ovJQGg4qH9WW2af2q/KczPbpJeFeAffswt39pAcBvXoUHYlwNJeY/hxh/Drfg/s3p41txfwyqyxvHjlmBr+CiGDe7RniO9tRnMM9r/PDm3z/zl3EGvnFPC3S0YwMKcduZ1DAZ7ToTzIf3X2QNbOKajxm5Rd22Zw+YQ8zKys09AsNYUj2mUw7+qxvHRVxXW8eHRPenWuX8++8tlAE/t1oW/XNtz2ndAH8IhenXiyls5Ih5ah8ByTl1n2Plg7p4B7zjm+wvBKm/TaP6zNjO4dW9b4+FmDs8nr0pofDj+yrGzJz0/h4elDy+bzcztyWS3DiWP6hAK5Z+fyYc/s9i0qhHpNXrpqDPOuHssVE/Po2bkVvbu04cpJoW1zdFZb1s4pqDLOH2uN8/3bAMjr0pqnfjSS4275Z511Z4zuya59xfzbmF7c+c/PAUhLMYpLKp4cfnL/rvTLasuQIzsw6qjqhzLeu34i7cOC7YyB3fh80y4y0lJplpbCWYNzuP2FZTz90XpG9e7ElRP70KVNOu+s3sJx2VV3I78/tDsjj+pMj04tueOsY8nr2oY9+4tZun4nEOoZp1ioR/v2dePJateC1JSKb+7q3uxzLx/FkvU7uPGZpQBMHnAE/bPa8tnGndUeNAX4xZkDGNS9PRnNUnn3+gl0apVe655NwbFZLP96F5ecWL5n8OAPh1QYLik9KHbd5H4s/HIbV07MY8/+Yv7+8QbunDaQJxcVAnD/+YMB6N2l5g+8966fSIdWzUhPS2XvgWLunb+K8yI4YD0mrzOL123nzWvHY1T9Ww3IbsvufcW0qhRoQ3M78mzY2G8k/jRjGDu/La5Q9tx/juatlVvK5mvaOyndjOP6ZnJS/65l2y6rXQYbd+yjR8eWfLV1LwA/P+MYpo/MJXf287RJT2PX/mLyurbmjrOPA+Cta8eT3b4FKWHvlaP8h+2IXp1494tv6N+tLW9PGl/l2MLU47OZenzoGMaHN51Es1TjpLveJDuCg6nVKd1rORyl262+B9EB+h1R/72ZWDOXAN9Myc/PdwsXLqz380bcPp+NO/bV+3nXTu5L6/Q0bn72U1o0S+XpH40kNcW455WVPL9kIytvO5UHXl/Nr+eFQvrm0/pzsd8lds5x07NLuXBkLt978D227jnA9/JzSE1J4cqJeXz5zZ4Ku5TTf/c+Zw7qxstLN/HSp1+z+pdTqgRnuE8Kt3PGfe9w7rDuXDAiN6Jd4H0HD/H6is1MHlD36WSH465/rmDX/mJ+dnr14+YAS9fvoEXzVI7KbM3WPQf4dMMOxjTSFfoADhSXMH/Zpiq71KWeWlTIc59s4PcXVT0fe8XXu7jssQ956tKRZXtBySR39vMAvH/DRFYV7eaYrHZ8+NU29hwoZsqArLIQd87xwpKvmTzgiFrfy6VKShwvLo28fiLYX3yIs+7/Fz8t6M/waoaIEoWZLXLO5ddZLxZBb2aTgXuAVOBh59yc2uo3NOiLD5XwzEfr2VdcQtuMNIbmdqR5WgqpZlz+lw+57cxjSU0x9heXRHTd5/3Fh9iy+wDZ7VtQUuJYt20vR3aK7IyVSF77m90HKowJ1uTLb/bQo2PLiHYTRaJlz/5i9uwvpkuCn80j5eIW9GaWCnwOnAQUAh8A5zrnPqvpOQ0NehGRZBZp0MfiYOwwYJVz7gvn3AHgr8DUGCxHREQiEIugzwbWhc0X+rIKzGymmS00s4VFRUUxaIaIiEBsgr66geUq40POuYecc/nOufzMzMS+ToSISFMWi6AvBLqHzecAG2KwHBERiUAsgv4DIM/MeppZc+AcYG4MliMiIhGI+hemnHPFZnY58DKh0yt/55z7NNrLERGRyMTkm7HOuReAF2Lx2iIiUj+61o2ISMAlxCUQzKwI+LKBT+8MbKmzVrBonZOD1jk5HM46H+mcq/O0xYQI+sNhZgsj+WZYkGidk4PWOTk0xjpr6EZEJOAU9CIiAReEoH8o3g2IA61zctA6J4eYr3OTH6MXEZHaBaFHLyIitVDQi4gEXJMOejObbGYrzGyVmc2Od3vqw8y6m9lrZrbMzD41syt9eUczm2dmK/3vDr7czOxev66fmNngsNea7uuvNLPpYeVDzGyJf869liC3rDKzVDP7yMye8/M9zWyBb//j/hpJmFm6n1/lH88Ne43rffkKMzslrDzh3hNm1t7MnjSz5X57jwj6djazq/37eqmZ/cXMMoK2nc3sd2a22cyWhpXFfLvWtIxaOeea5A+h6+isBnoBzYHFQP94t6se7c8CBvvpNoTuytUf+BUw25fPBu7w01OAFwldBno4sMCXdwS+8L87+OkO/rH3gRH+OS8Cp8Z7vX27ZgGPAc/5+SeAc/z0A8ClfvpHwAN++hzgcT/d32/vdKCnfx+kJup7AngU+Dc/3RxoH+TtTOj+E2uAFmHb98KgbWdgLDAYWBpWFvPtWtMyam1rvP8JDuOPPAJ4OWz+euD6eLfrMNbnWUK3X1wBZPmyLGCFn36Q0C0ZS+uv8I+fCzwYVv6gL8sCloeVV6gXx/XMAeYDE4Dn/Jt4C5BWebsSujDeCD+d5utZ5W1dWi8R3xNAWx96Vqk8sNuZ8psPdfTb7TnglCBuZyCXikEf8+1a0zJq+2nKQzcR3cmqKfC7qoOABUBX59xGAP+7i69W0/rWVl5YTXm8/Qa4Fijx852A7c65Yj8f3s6ydfOP7/D16/u3iKdeQBHwez9c9bCZtSLA29k5tx64E/gK2Ehouy0i2Nu5VGNs15qWUaOmHPQR3ckq0ZlZa+Ap4Crn3M7aqlZT5hpQHjdmdhqw2Tm3KLy4mqqujseazDoT6qEOBu53zg0C9hDa3a5Jk19nP2Y8ldBwSzegFXBqNVWDtJ3rEtd1bMpB3+TvZGVmzQiF/P855572xZvMLMs/ngVs9uU1rW9t5TnVlMfTKOAMM1tL6KbxEwj18NubWekls8PbWbZu/vF2wFbq/7eIp0Kg0Dm3wM8/SSj4g7ydJwFrnHNFzrmDwNPASIK9nUs1xnataRk1aspB36TvZOWPoD8CLHPO3RX20Fyg9Mj7dEJj96XlF/ij98OBHX637WXgZDPr4HtSJxMav9wI7DKz4X5ZF4S9Vlw45653zuU453IJba9XnXPnA68BZ/tqlde59G9xtq/vfPk5/myNnkAeoQNXCfeecM59Dawzs76+aCLwGQHezoSGbIabWUvfptJ1Dux2DtMY27WmZdQsngdtonAgZAqhs1VWAzfGuz31bPtoQrtinwAf+58phMYm5wMr/e+Ovr4Bv9wf3t8AAACjSURBVPXrugTID3uti4FV/ueisPJ8YKl/zn1UOiAY5/UfR/lZN70I/QOvAv4GpPvyDD+/yj/eK+z5N/r1WkHYWSaJ+J4AjgcW+m39d0JnVwR6OwM/B5b7dv2J0JkzgdrOwF8IHYM4SKgHPqMxtmtNy6jtR5dAEBEJuKY8dCMiIhFQ0IuIBJyCXkQk4BT0IiIBp6AXEQk4Bb2ISMAp6EVEAu7/A6SijxMjKxrLAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "plt.plot(rewards)" + ] + }, + { + "source": [ + "从这个图表中无法得出任何结论,因为由于随机训练过程的性质,训练会话的长度差异很大。为了更好地理解这个图表,我们可以计算**运行平均值**,例如通过一系列实验,假设是100。这可以方便地使用`np.convolve`来完成:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[]" + ] + }, + "metadata": {}, + "execution_count": 22 + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
      ", + "image/svg+xml": "\r\n\r\n\r\n\r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n \r\n\r\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAD4CAYAAAANbUbJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3gVZfbHvycdAiGUAKEZelGqkY4gICDo4rr6U3dVVKxrWdeKde2ylnXX1bWiYu8FpYmAKCol9AABAgQIBAglQALp7++PO3Mzd+70O7fk3vN5njyZeeedmXfu3HvmzHlPISEEGIZhmOgmLtwDYBiGYYIPC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDJIR7AADQokULkZWVFe5hMAzD1CtWrVp1SAiRYaVvRAj7rKws5OTkhHsYDMMw9Qoi2mW1L5txGIZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMDsLBnGIaJAUyFPRGlENEKIlpHRBuJ6DGp/V0i2klEa6W/flI7EdFLRJRPROuJaECwL4JhwoUQAp/n7EFldW24h8IwhlgJqqoAMFoIUUpEiQCWEtFcads9QogvVP3PA9BV+hsE4FXpP8NEHXNz9+OeL9aj4HAZ7hnfI9zDYRhdTDV74aFUWk2U/owqnkwG8J603zIA6USUGfhQGSbyOHaqCgBw6ERlmEfCMMZYstkTUTwRrQVwEMACIcRyadNTkqnmRSJKltraAtij2L1QalMf8wYiyiGinOLi4gAugWHCB4V7AAxjEUvCXghRI4ToB6AdgIFEdAaA+wH0AHAWgGYA7pO6a33//d4EhBBvCCGyhRDZGRmW8vgwDMMwDrHljSOEKAHwE4AJQogiyVRTAeAdAAOlboUA2it2awdgnwtjZRiGYRxixRsng4jSpeUGAMYCyJPt8EREAC4EkCvtMgvAVZJXzmAAx4QQRUEZPcOEmVrpnVUYTmPFBt+v34dVu46GexiMDlY0+0wAi4loPYCV8NjsvwfwIRFtALABQAsAT0r95wDYASAfwJsA/ur6qBkmQnjn150AgFnr+OX11o/W4E+v/hbuYTA6mLpeCiHWA+iv0T5ap78AcEvgQ2OYyGfbQY+jWnmVr599eVUNVhYcwYiuPB/FRAYcQcswQeDRWRtx5YwVyNt/PNxDYRgALOyZKOPD5bvw2co95h2DjKzxnyivDtk5K6pr8I9vc1FVw9G8jD8s7Jmo4sGvc3Hvl+tt7fPBsl3YeajM1XHIE5Wh9MO/94v1mPn7Lpz97OIQnpWpL7CwZ2KSkpOVKD5RASEEHvomFxe+8mtAx5twemvNdgqhtP9l2yEAQNGxchwqrbC0z9wNRciaNtsbCcxELyzsmZhkwBMLcNZTP3pdJwMVdh2aN9Rs31tSHtBx7XCkrC5lw/8WbzfsW3yiAmUV1XhtiaffzkNluPWj1fh4xe6gjpEJHyzsmZjE6x8vAvOPv3poFgCgVVqK5vZtB04EdHynmD28znrqR5z/36UorfDMKdQKge/XF+H+rzb49T1cWoGsabOxcPMBS+cuq3A2T3Gqsiak8w3Xv5cTUw83FvZMTBNoKJRsptETrtW14Qm2+s6C3//OQ2XYXuyZqyg1mEjeVOTxKHrn1wJL5z79H/ORf9D+Q67nI/PQ9cG55h1dYsGmA5oPt2Bj1cTmNizsmZimNkDN/rf8wwCAlxZu09xeFaY895U2NeSftribjHDjPnsup1v2h+cNKNQs33EY2U/+iHm5oU8qwMKeiXpeXrQNd362VnNbgLIeW0zMNG5r9vtKTiFr2mx8u3avq8dtmZbsXe720FzNCetgpoQ4WRk6F1XA13zn5C3EKTmSl9a6wmMhO6cMC3sm6nn+h634arW5cHzw6w2ue6XY1bDNeG7+FgDA3z7Rfng5JbNJ3ZxDZXUt1u4p8a6T5ED6a/5h3dw3gc591ITY3KU83dh//YwCl11v9ZAfag0S40NyPiUs7JmoJGvabNz3hbm/vdKM8+Hy3brmGKe4bcZJSdT/yd43wXmlrMR4a6JAby5ALazJps9pqOc21Oa7/cdD4zU1e73HfPP1GnffzKzAwp6JWj7N8Y2k3V5c6tdHrZAGatZR47YMS06o0wgHPf0j8vYfR8GhMmRNm42PVuxyfNz4OGvCOU5HiKuFtcXDeQl11K/64ZSU4FwU7iguxUPfbECthZtdcPgkAGD/sdC55MqwsGdihjEvLPFrU/88F2856Oo50xsmunq8FMXr/4HjFXjz550Y9fxPAIA9R045Pq6eEAeA2RvqJhP1uqmFNdmMHS456dx8tufISaxTmJ2soH6ot0hN1u5ogZs+WIUPlu3GVhPbf/GJCnTKSAUAnKqqcXw+p7CwZ2Ia9eu8kfWhsroWk176Bb/mH7J8/GqXNdZklQYaqDeRTFqKdgLcE+VVPr7oeh9PpcpcdeSkvZq8pQ598wFgxLOLMdlmBLRbnxsAlFV4BHd1jf4xtx44gbOe+hE7ikMzN6AFC3sm5thz5KR3Wf2bH9lNPyXxvpJT2LjvuC3f7CqX7TjJicER9o00hP2O4lJMfTfHp03vYaiM3gX0Hx56lIdY01V/biWnnBeM31vieaP6YlWhbp/cvaH3vlHDwp6JOUYoEoXd+tFqn21G5gdZPOxWPCzMqDHQ9pyg9uLQe5b8aUA7W8fVemaMfmEJVhQc8WnTM/esUZlRGibZE/bqCeK1e0rwyLe5ul4+xSc8Ub2L8qxF9cpU1dTio+W7/Wz26jcTJ5yq1H9gac0XhRoW9kxMIycPk3n7151+Oej3HDmJDQ79oqtq3fbG8RX2esLQonONl2cll04zCo9qzwscV7ms2nXFVNv8L3zlV7z3+y6/ojAysqZ8rerNw4zXl2zHA19vwOc5vlp4WoPA51aM5me27GdhzzARx6SXlvqsj3h2MS54ealO7zpOf2SenznCyI7rBPVEpJ4Zx6p3jczPW61F0Cona5WotdpaIXD9eznIUb0Z6KGnWS/bcdjS/laRbeay6UXG7n06dqoKX632fWAcLtM3BVVUh35CVg0LeybieG5+HuZv3B+047dpop20TMZKgI+W5lpWWYN3fyvwaat2WbP/RFWYRe/wahu6kkADoLR4YcFWn/XiExVYsOkArn/PXPP+bt0+fLNW23//pI5ppOCw/0RnTa3Aw9/k+szJKDl4vBxfSf7tB1R+9XbnPvo+9gPu/GwdNu6re+NTH1NJhc7DbF/JqaDcDy1Y2DMRxyuLt+PG91f5tdfUCld+GOkNkxztpzy3nvfI9Ll5PutVLmv2TVTmBr0UBvM36tuyQyFb5DQSRy24VN728RpsLtLOpaPnovjYd5v82tbsPor3l+3C3z/Vji6+Q9HevplvSuqaWoH8g6XImjYby228TWzcWzfuHq0b6/ar0LiO938vwNDpi3Drx2ssny8QWNgz9YbOD8zBzR+sNu9owiYdwWIHPWHfv0O6z7rbrpcNk6xN0KrZUHgMD3/jmfB0w4PnyhnLMeCJBbrbW0spnxPsRlepsOOPLkft1kjX98rifOQfrLOV/7a9TojLkawyNULgmTmbAQCv/7xD9xzPzN2MborMnD9trYvLGNalhe5+WuUpP1qxR3MswcJU2BNRChGtIKJ1RLSRiB6T2jsS0XIi2kZEnxJRktSeLK3nS9uzgnsJTCwxL0DzTiBeF0rBeqqyRtNdsEtGI591ZWRpba0wfNW3NgZfQW1Vbl/y+m94f9kulFZUY6mNOAE9ftl2CEfKKnVt0bLg7dgiNaDznLKRIE1+rtTWCuwrOYXn5m/BJa/9ptlXbbOvqRVYmOcR3Ivy9APrXl+ywyff0dDOdQLeaJ5kh0buncY23VMDxYpmXwFgtBCiL4B+ACYQ0WAA/wTwohCiK4CjAKZK/acCOCqE6ALgRakfw0QE3wSQk0QpaEe/sASXvv67Rh/fdeXE3yuL8zHo6YW6NmUr2H1Y1dQKHC+v8nq1LNx8EFe/s9Lx+dVco3Msed7DKDLXCqcqrV+vLGxrhMDlby7z7C89kI+ZmJOcJmLLaFwXeWv3EFbSK7iJqbAXHuR3oUTpTwAYDeALqX0mgAul5cnSOqTtY8huViQmavlpy0EUn3CneMPGfcfw8iJ7ics+DKAykVogrCs85memUNvQlRO0SySPl0CSbvnbwI0FxqSXfkGfR3/wrt+hY892itI0okR+MDr55Zcoom+bNUqyLBTlB0tNLbBLykEjP59HPm9chN2p4FW+WdUKgRlLd+K5+Xn6OyjI0ckgGiws2eyJKJ6I1gI4CGABgO0ASoQQ8jtWIYC20nJbAHsAQNp+DEBzjWPeQEQ5RJRTXOxu4QQmMhFC4Op3VuKyN/w1Yidc8N+leP6HrYZ91JpwUYn1/DGnKmt8smC+9ctOvz5+9m/VqnKCVv5xV+j4jjvBzIyTF6aiIAelB7qT9ABK09fD3+Si0wNzLAljWdgfVXgiyZ+PWe6d71R28xcXbLVUhvGmDxSOBAJ44vtNeMWk/m+4sCTshRA1Qoh+ANoBGAigp1Y36b/Ws9zvTgkh3hBCZAshsjMy9EPUmehB/r1q2S9lRktJvewczwi1Nn7QxltFz0fm4V8Kl8IvV/uHw6vH0CzV19NHy/UykND8Sb0zHe/rFupJ5x83+QvFuZI/vlk+fy3ziVbZPjmD6c9bi5E1bbbmseT9lG9OAsJSKoZftvkqnP9ZuA1TZ3rcRn/NP4SsabNNJ9vdzLcTDGx54wghSgD8BGAwgHQikmcY2gGQHWULAbQHAGl7EwDWIiuYqMb7am/Qx+hBoIeRO6bd4KJAGdTJ9yVWK1gnkPS2Qzr7vSSHnNtUroLXafjSWw1SeusXf8+XCf/+xa/tsCTI//dTvu6xrnp7hV9bVY2wlD5Zzw8eAP7y1nIAwAfLjFNIq1NLRBpWvHEyiChdWm4AYCyAzQAWA7hY6jYFwLfS8ixpHdL2RSJUUQNMRFNnx3VXAMvfLq2vmVNty2nZP2WQDaBdlGOrSSlDNXn7j+OdXz0mJPXRwvHDmptr7hE1tIvnoWRUkWnBpgN4Zq41+7b8nXFiWtebV1BiZR5pywHjlAdHDQLZjLhueEdH+9nFiu9PJoCZRBQPz8PhMyHE90S0CcAnRPQkgDUAZkj9ZwB4n4jy4dHoLwvCuJl6iMvBpF4Kj57CjkOl2FfirzEfL3eWJ/3Vn5zZXZXeGYDH5FFRXYN4xQPOivBRImu61wzr6Gekj1Q9qpmUH753uya6faxE18pU1wg8Omujo7eitTZz3euR1sBYXOq9zew+bOx91ad9uuF2tzAV9kKI9QD6a7TvgMd+r24vB3CJK6NjogorZhw91HZXZaTq6Bd+QnWtwMCsZv47OpSFTic2m6uKYFTXCnR/aB7OPK2pt00vmZgVIkGzt4a7I3t/2S5NW74V1u62J+yzmjf0VpRSYpbBVK94ydnPGXsCZSu+G8GEI2iZkBHIBNYuxY/vVGUNXltSp3nLppKaCNRyZW1Pr1C3HY6drLKl2RYdc/5QCRR54nXFTnfs2E4FPQD8bjOZml49XrM6uQePOxtjqBzTWdgzISOQGBKl//oJHdOMlmdHuMW/m7VVNxYdw3u/+04SGj3fLvivvepNbmImGJduCzyKN1jojd0sqZ3Te223hKNTWNgzIcOJfVkIgQWbDvjYQ4+d0hb2WrbZUCv7ZRXVPuMwE3p6ZE2b7edi+MrifNw6uovlYwSiDQfKGoXppEDDw+qKGctDORxbqEs/ymjlt1GiDnjL23/c0kR/qBzGQpucgYlpnMi9GUt34snZmzFU4XJ47os/W95/9e7QRine9fk6n3Ut3+zz+xj7yiv91pVFU37NP+xXNtHtZ9nbV2fbLgiixU6FgB/1/E946fL+OHSiAteGyPMkGHyrk4ZZDy0XUk1Y2DPRhmyzlwXUF6sKMbxLC7Q2yC//5GxPJkK7Hiwyf/0w8CyZgaBVg9aozi3g67depkoE5nISTT9G92gVlOPeLvnmbztYig6q9MKRhtIcGIr8NWzGYaIOWdjLybnu/nxdRL/Ou4GWZm9nolrd1T/rpfvCKJjeIR+v2I1/zrPmW+8WRoF1fTVcQ5XC/sUfjdNx6GHnIREqMw4Le8YV9L7cQghvoJGydJ1snlDmG49GtD4WI+28TJUnXy3MQ6FpntFW3ze+PmKU0fLu8d392pR1g79Y5Z8iwwr/WWg9QV+o8kSysGcCZs6GInR6YI5m6t73ft+FSS8txW/5h/Dh8rqMk3IIuhJ19Gm0onYRnbOhCFnTZuO6mSv9hItSTt00srPfHMRelc9+kt1K4xo8MLEnLh/YPuDjuMnoHi2Dclx1MRjA15/eaaUxW8Le0Rnsw8KeCZj7vlwPAPhcQwvK2++pCrXzcJmpa5q60He0otbW5XmFHzcfRO5e3wee0uX0tSXbsXiLb8Ku3YoH7PIHxmDj4+NxaXZggjopIQ4jutpPTtiiUbJ5J4cESyAmJ/gLe6UHlds1hLXQ8y5zGxb2TMDILmk/aFSRypVqdC7bcSTkbpCRipFZQZ2Qy+wzi1MYfFulpSAxPk63Lm2wCaY1wqkLqxmZGs4BynkRvYLnbtKicfAekkpY2DOuoZViYIOkqS42KPWmh7KIRTRhJOzV+ffNkqZZqVyVZrH8nbKEoLqwuRXcKkqjRbA07OYabyNK000gZSz1yGru643EZhwmIjlUWoGsabPx3bp9OF5ehSe/3+Td1qJRku5+aSkJttMl9Htcv6B1faZWCNTUCgx5ZqFfmcRyVU1X2fU0EBIs2vHH9apzuxwaAamUlVRVh+5txWmJQquo8+4EWrrRKizsGVtskbT36XPz8MycPLy1tK56U28DL47z+7aJWjPOZzcOsdW/tLwaldW1KDpW7p3vkLFSaMMuWsLkvDNa+7UpTUiRVkk0GLni9dIvh8JOr4Rz4zARyQGpCtDeklPe/N1yHdbzemfins/XadaF/WHj/rDZkoON3QIpLy3K934Wai2y3IWShWkpviYYLcVeK9mX+s2rbXqDgMcSyXRt1UizPdiafbhgYc/oIoTw8xzZXHTcuyxPmsn/5+Xux+erCjXrwhYcPomhnVtonqf/4z/gjk/WaG6rDxxxULSi1yPzAfhPPBpVTDJiYu86TT1O9fDR0uzj4wjjT/eNllULuQYabolGhLgoWMDozTEEazJYD9bsmbDT+9EfcI6qJux36+oKM/+oKshcWmGcKEqtccocPVmFb2zmHXGbu8d1c7yvmxPJLR16ZijNLuoHtJawv/Ss9pg6vJNPmzrRl16qXz3s9jdjapDz6Dx/SV/N9mCbG9VzW2yzZ8JGaUU1sqbNRmlFtd9k0sET+vnU1bnLlfbnsT1bRrQZZ4jOW4cVurdu7No4lmwtNu+kgZHASIj33fbjnWdjcKfmGNixGWZMyfa2b1NFMyfpZH/Uw+lbiR7BNKe0SkvGsC6ee948Vd+xIBh8fP1g/H1snXLB3jhM2DjjH/N1tyl/fyO66gvI8qoa9Hh4nnd9cKfmPtkcI4U2kp91IIXJu7RshC9vHurWkByhHL16cjVBdW2dM+ps1crUCEoTHQAkxYfXLuM0VYEVFtw50rusNnsFkxFdW6Brq8b429iu3jZOl8BEPOkNPRqRlqDUCg5atsN9jwqnvHbFAKx8cKz3XSM+gB9cw6QEDOgQmjqiehjJq8Nllbhy8GnedaVwaZWmn3HULH97sLGS5O2/l/tVTLWE0qQYaHyAnYLh708d5F1u38wzAc6aPVNvsPK6LSBw48hOpv1CxYiuGchonOy1z8bZ+CXcf14Pv7Zwuyoanb/kZBUenNTT9jG3mAR0BZvINfoBtymKyDx0fi9Hx/j8xqF47YoBIXuzYGHP4EhZJY7rlPpzyk9b/CNmX9Dw0gkWPTPTDLfLNm55HsHOJNmNIzujkyLaNBIwG32lg0T46RpRtI0tRuO6QSA1i43o0lLb5RKw7hlz1zj/bJl2ad0kBRPOMC5k4yamwp6I2hPRYiLaTEQbiehvUvujRLSXiNZKfxMV+9xPRPlEtIWIxgfzApjAGfDEAvR59Afb+2nlapf52ydrfdZnLN2JvSXuFsD+6e5RutvMfrPqH7WVH/n401uhhzQZG2la51drjMvfNUryCOnbbJQ1/EPfNn5tTtIoOMXK/OzI7vYTtv2osNeridbAP8CaZl8N4C4hRE8AgwHcQkTye8uLQoh+0t8cAJC2XQbgdAATAPyPiOw57DJhxWjiVcncXP/EZ3ocOO5+3pQsA+3a6oSrnOjKimb/+pXZmHfH2dYGF2TsCt24OELB9Em2NNLxp3t895VvMWYxBdcN74ibRna2NTYtRvdoaclmn5aSiB1Pe/VM3DyqMz5Q2MXVPOTAnBUtmAp7IUSREGK1tHwCwGYAbQ12mQzgEyFEhRBiJ4B8AAPdGCzjLsdOVaGi2j88f3An37woe46c9EbORhp6KRrMZL0s2+VJSLtm02BUiLLD97cNd/2Y6jmVoV1a4Pf7R/t4rsjLKYnaouOh83uhUbI13U7P5XFsz1Z4++qz0L6ptfKFSpv39+v3GZp/AvG6knnnmrP82sxKTQLASw4nk93Cls2eiLIA9AcgV564lYjWE9HbRCTXMmsLYI9it0IYPxyYMNH3sR9w0f9+865nTZuNmb8V+PUb8exiDHp6YQhHZh09bwyt6M9hXeoeYuq6n+GeYLVLexfruA7q2AyAtsDKbNLAR0C2TW+AgumTsPyBsbqBaLLw7WpgGwf0I3RrpNw0vTVKBpqx58gpNG2o7zfvxl0epfE5vXlVXbyC3ptxqs2IZLexLOyJqBGALwHcIYQ4DuBVAJ0B9ANQBOAFuavG7n6PWiK6gYhyiCinuNhZIAnjnG2Sp8XGfb6+1f+YtTEcw3FMok7gT8Mk/4nEBIXLjSy/5PS/ekLg+hHBjeIMBKMso3aQg67s5P9q0iARt47u6tP2x/4enU42iZlNsOoVs1Gn4bBD4+QEpFp8s3CKlmKgDEB79A+na+53tgXtP5hYEvZElAiPoP9QCPEVAAghDgghaoQQtQDeRJ2pphCAslROOwB+sfBCiDeEENlCiOyMjPB+CLFIcWnwco87wUwL1EPrrXxsz5Z4WMMdTlkFSv7BJkuZD/Vs9r3bafvPy/t/fpO9jJdu4pYlSb72QLM9pjf0zCPEe4W9cX+9eRzZlVcvvYYR8fFkrNkH8Q1umuSSm9E4GZec2c5nW9v0Bq6nk7CLFW8cAjADwGYhxL8U7UqfoT8CyJWWZwG4jIiSiagjgK4AVrg3ZMYNjL54Rn7z/YMUPETkzJ6qtc9bU87yKxABAGWVdUFC8l7HpZJwejKgfVPjzI+h9E5R888/9XHlOHKErdF9//624XjtigGGx5Ft8LIZx+zhcUZbbfdYWaN/aFJPPGLRh13O0NmuaQOkN0zE+X0yNR/EWt/fyf38vY6ccOPZnbDj6YlIS0nEMxf19tlmN/VEMLAygmEArgQwWuVm+SwRbSCi9QDOAfB3ABBCbATwGYBNAOYBuEUIEfzaXowtWjXWj5w0ErqntzH2X7fCoxf0woWqH1gcEZo5yFGSoVP3VEuDG9WtpWK7578c6aun2evVVd15qMyvrbVBNGowOPO0puadLBAvmbeMhP0ZbZtY9gk/Q/qO9G9vPL42TbQfpLXSOFKTE3CtxehUeXK5b7t0EBFe/vMAnJXVzKdPzkNj0UfjTe2JC8+wdA4ziMj7oFMXjFGnrAgHVrxxlgohSAjRR+lmKYS4UgjRW2r/gxCiSLHPU0KIzkKI7kKIucG9BMYJRknJ9IT920t3ouRk4MFXU4ZmITXZ16ZeUV3ryMPFzmv5PEWNXHm/RtI4GupMniXreJ3IKGMH/jKog+WxuIHepdsVK3KQUdMAE4LJz4pBnZpj+QNjfNIua6FV/xUAaix+D/oqJnDJGySnzZJ7Ruk+uPXMRaMc+PDrYbVaWDAJ/wiYoCGEwKK8A5rBT0a/Jz0l5PHvN+H79UXaG21ARLhYZdOsrK7VtPEqPWiCid5Dw8yMfbKi7qX15lGB+5e7gd1H5l3juuH9qQP9NGG7KD25jHLuyOgJdavZLpVxFrKicEqnQLiTNMLPumQmA/yTzIUDFvZRRnVNLW7/eA027TuOV5dsx7Xv5uAJRZ1YGSNPCbVbYjDo38H3Fb9FoyTU1Aq/4tjn9vQtsBEIsouhFnoPuETJU2WgjiBUCqxQa29W71Oyib04MT4OI7oGrsUeVgVcDeroeVC/8mdtW79aB5FNHVZ81gHf5HVyLd+vdSKJzfLPTOrtb6IKdDJX77rDBQv7KGPHoTLMWrcPE1/6Bc/O2wIAmPn7LszLLUKZorjI+sJjeocIC/FxhFoh8CeVxq/8kVqN7NXjuhH6idi0BOel2e3RvFEyCqZPwmc6XjdWA4jcpGD6JM+CjixSm8OSwmRCaJqahILpkzCpT6amSadG9dok55dXpmA2QvnduELK6qlnSjMzmb94aT+seHCM3z5P/7G34wC2SX1Cl/fGCizsowy97/RNH6zGtK82eNeX79RPNzw3N3BTjV2ICEJ4XrevHprl0y5z7bCO+G3aaEfHv/+8HprauSwYSeOXcG4v/bcK2QunV6Z54I+ebdpNOiiCrNQvbZP7u+NtYkYPgyIu3Vt5Jm1lU9fAjs1QXeM70LvGdcODE3viAo2cPEr+fWk/AHXzLYDHx/+tq7LxmI6Pu555RyYpIQ4tVU4L8XGEPw/q4JPzvz7Dwj7KMHrz3H2kruqU0WTo6t0luttG92ipuy0QjpRVorSiGodKK5CSWKctKzWyuDhCG40i2B9ep58LRaZVWophGmOtj23fMf3EbfKErpXJxFJFXninWSO1JpCV9/rZi/Xty+eFKLOiUVKyW0d3wZc3D8V9E3rgzauy8f7UgX5BU8kJ8bj+7E5+DgK3j/EN3jq/TybuHtcN94yvy/NDRBjbq5WuKa2Rg8/9pMkDor7Bwj7qMJD2CsFkZQJN+xDByQkjuzJ+u3afz+u9cmJN71Vcfv0HgDeuPFP3HHYn6YwmCmWBVGthMvGEwnw2pJP2hLPaD1vtpy3nAFIH68go507BDLIAAB5KSURBVGDUIwpVJoi2Gg9imfg48rqKnturFZIT4i1PxGarXEwT4uNw6+iufh5dRlg1ZXXKqJv0VR5f+WCRuXxgB812La4ZlmWpXzBhYR9lGP2wjygKYzv10Q5iWVAvyrwvPpq9wcWdJgVR6b1yt0pLMfxstCbjurbUN0skeAOH7H0getegFkbqdXm/sxSTzMojpSrSQ6ifx6EoaD2sS3NcMeg0844K1MJezx1YmWbgkxsG2x8crJcenHVrnX1emcvmNI0gvWcu6o1bzrGWMtrouxQqWNhHGUZf6T1H6swSTos5Oy2IbQel0FAKLiOZNfOagbh9TFdN+/hzF/fBkM7NbQs9I/kgexPp+efroTeERJN6r17ThuLzUNqse2TWCZN+qijRUCj2fxrQznbFJav+9ACw4oEx+PLmoX4ZWa1iteyk8jNVmpMCVXL0ooVDSejKzjAhwaq72M/bIjf5nFJoLMqrq3hl5GqY1SIVd56rnYUxo7EnmMaugmv0WT5zUW9cMyzLtjlMT76ZuW2SV9YLRRvhg6mD8P6yAiQn1D10/tC3DVo1Tsalbyzz9gsWk/pkYvb6Ikdup2qFw+j+tkxLQcsAIpSdpOJQfm5OzZf5T52HgsMnDatjhQrW7KOI4+VVun7GMq8t2Q4AeOfXghCMKHDi4wj92ns0VacR57JA1hImsneIli+6kYxMSYzXDL03Q8scAAAX9PH1QFGfW09YDe/aAq9fme3XrpzIDmbuffnYTu6NOuulUVR3oITClKVFQnxcRAh6gDX7qMJKacHpc/NcqSQUKpQTl04LM8sapNbut47u6peq13u+IAiIjhrVtQZ0SEc7VcK1MT1bIS0lAcclTx5ZMFo1JyhTAARzmkWeS3fyWQWrxqwWgeamkYeqVaqxvsCaPeMKcnpbtyk8esorrALNJWXFnKFMtbxi5+HATqg5Bv+27q3T/K6tSYNEzL59hHf913zPWL5b55ctXJMmivsRTJlaG4Bm73TeyAlOFYVogoV9PWb5jsPImjYbBRoZGENF89QkbHlyQtBCw1ftOqpYc/aDlQWs2e99zcPn+nhjHCo1rrdqh/sm9ECvzDS0VmR6bCNNJv+hbxvNB5GWgDqh8Nm3SqVBYfhAkeW1k3kBdVCV1UnUYBMsxSXcsBkngjlwvBylFdW64ePfrPVoeb9uP2RYfDuYpCTGIzkh3kcMd2jW0CeAyy2cygLZVm8mkNRZH7cXlzo7oQY3j+rsnR8474zWmHBGa0zuV1etM2+/f6IsrdE6sWuv31NiOd+MXWQvIidmEqXb6gMTe0SMbXvtI+PCPYSgwMI+gpHrvnpzoahIkn5oVdXB09zMGCj5fSsF6ZmnNdUV9p0znD+UQq33bZVKN7rNq1f4B35pmVq0nk25e+1nT3QaQGeFJy48A+2aNsCo7vYjq5U2+xvOjux5pLQGHlHZKk07TXJ9gIV9PaZK0ozCWWJQjvRUCiYj7w+tdAdK1JWfOrZIDdjobJQmwYhQBsLIV9gzMw3T5c/Upcfb6J7BSXEBeIq7PDjJWjUpNS0b1x/BeU73lvjX//WNuORmdmCbfT1mzgZPwrJXFm8P2xjkPDZKsbS5SF8jNpuUO3bKtziK0uUwmP7iWgQrD5AW8gNySKfm6Bugq6kavaId4SZbSkx3ncVqVOGEiHDRgHY+8Qz1DRb29Ri5apS6xJ8dPphqnkTMCsrJxC0G5g8zd7uemZ5Iw2uHeQRAIAU1ZN95py8GoawbKrwTnYpGDWFvZ/Lwrauy8anD9AKhxEnAE2MfFvZRQEJ8nKWEXDJZ02Z7l4cHmCNexurP1UzwPj7Zk6L2ppGd0LRhok+6Y7s4qWmrxKzoh1WsJOHScmFs1rBu/PIEq53Sh2N7tcIgh+kFooV7xnc3TL0cS7Cwr8dcdlZ7AJ6MiP/7KT9o51ELXPm8SqxaWJSavVYmQNkdr2VaCtY8Mg7dFT9Uu5GgRcfKAQB7j+qnKjYiOdH5K/tfR3X2ZuDsoBM1q6QulqDug1SmIHj9yjPx0fWDcPc4a1kWGQ+3nNMF8+44O9zDiAh4grYekxAvuxQCz/+wNWjnaZPu682hLNwtY2RP3/T4eCzZUoybP1ztEwGqFU2qDqEH6kxEdmNwZBfQds2MJ4X1cKLZt01vgN5tm+DeCT0AeEwpfdqbF7/wPgT1iogTMLSzO29hkUboQqtiGxb2UUKz1CQcKXMvCEhJlSr4peRkFR6c2NNH6zZS7BsmJXiTWCknaLX20cqEKAfb2I24TEmMk87jzCbsRNj/qqqkNdag2pUdIiXgyE2i74oiG9NvMxG1J6LFRLSZiDYS0d+k9mZEtICItkn/m0rtREQvEVE+Ea0nosiquhtFyHKxvKomaIIe0M59f/3ZnXzyjJt5yshavFwrFAC+X+9f/vBsjcLX8gSeXWEve3uo3TmtEsoJWjPClcgrmLSV8gEp6xcwwcOKZl8N4C4hxGoiagxgFREtAHA1gIVCiOlENA3ANAD3ATgPQFfpbxCAV6X/jENOVlajYZL/rZJF39Nz8oJ6/gwL/tC5e40LmDeTik8r2bTPP0BIyzPj6Yt64+VF+bYLrjx6wem4emgWWjusAevWBK0bRGNul0m9M9HsuiQM6Rzbk8ihwvTbLIQoEkKslpZPANgMoC2AyQBmSt1mArhQWp4M4D3hYRmAdCKqv5EILiGEcJxqttcj83WOGciIrJNoISpJq/jGvRO64zmD2qhWldXOGY3w4qX9bGvaSQlx6NbKuSdGUnz99amuDxARhnZpEfL4iVjF1q+HiLIA9AewHEArIUQR4HkgAJAjUNoC2KPYrVBqUx/rBiLKIaKc4uLILaThFh3vn4O7PlsX8HFeX7IdP0gTpBVVdQWRz8pyVmbQCu2aNsDFOrVPZZR1YGW6t2qMS7L9PXdkjjtI6gUA/7msH2ZM8c/h7jaJCaETQt55BZ6tZIKEZWFPRI0AfAngDiGEUYIO7fxN6gYh3hBCZAshsjMygpOkKdL4yqSwiBHHpACqZ+bm4Yb3V/kdzzc7pDWmDDGvGdqjdWPExZGhhg5om1+ClcJ2cr+2GNPTnYlP7eN7gtQymzjz4nECK7dMsLEk7IkoER5B/6EQ4iup+YBsnpH+y/XjCgEo1bl2AKwl4Y5S7AQ86fHb9kM+6+8v2+V7DgensFLPU37FNnvV1hL2ai8eM+6T3BXDzX8u64+C6ZMcT+w6Qf74QlnQg4ktrHjjEIAZADYLIf6l2DQLwBRpeQqAbxXtV0leOYMBHJPNPbHKzsOB55tX1/h8+JvcgI95pgXTz+Yi/5c4rYhE2TWwqSKcv1xhZtIiSxVs9OeB1qNDo41mqZ5JcHWa5Wcu6o2+7cz99BnGDCveOMMAXAlgAxGtldoeADAdwGdENBXAbgCXSNvmAJgIIB/ASQDXuDriesjyHUcCPsb+4+V+2n2gNE4211wzNTxZtLR42TVQqZdWmKRevnNcd9z+8RrveiS5Ooaai/q3hRACF/b3nd66fGAHXB7DD0HGPUyFvRBiKfTjH8Zo9BcAbglwXFGFVlSomoMnypHRKNlrLlHb4P+7cBsOnnA3lXGDJHNvk/SG/vllxvVq7dcmW3mUJqvKamPNvqzCd4JWy6MnVoiLI8PJbIYJlNhVpUKIme03d+8xDHxqIT7PKfS2qQtnuCXo7SYH03IXvW10F782cqDZK/OZF0yf5GeqYhjGPfjXFQIqdDTcrGmzkTVtNj5cvhsAsKKgztwTjBzkfx/bDRdKpfCmnWdtMnScRri/VoBPqvSWoJxkNRP2IzSiZRmGCQ6cGycEmAm9j1d4hH2ipNl+tnIPdh1xPqk7Y0o2ps7M8WufOqIjGibG465x3ZCabH7rVz98LtIteqQkxMd5I2QfkiaP9R5yMpzHnGFCBwt7FymvqsHGfcf9wvorqqzViJWLNt/75fqAxqH0QR/ZLQNLtnqC1uLIo5VbEfRA4Pngza5blvWRlJaAYaIV/pW5yKOzNuJPr/6GXZKr5Wc5e5B/sNRUw5UJhqL77jVneZfdqmlqFbO5CiLCfRN6YNatw0M0IoaJXVizd5FNkk96yckqnNYcuPeL9UhOiMP1Izp5++wrOaVbdNvNHCEfXz8YLdOSfY7ptPC2Xc48rSlW7TqKszqalxS8eVTnEIyIYRgW9i6yvtCT+fFwWYU3VUBFda2PZp9g4F7oZhpbrUyCdo7fVueBZIUGUoUnKy6noeaFS/oikc1GTAzCwj4IrCw4iiGd6hKDKSdodxSXoWXjFM2UwMEOlQ+VEUf2l49EYf8nk4RuDBOtsIoTBI6dqsI9X9RluFSmDZCXH9JId/DubwX4dOVuW+d6aFJPy31DVQDjkQtOx9ndMnweeAzDhBfW7IPAR8t9BbZSs1+ytRiz1u7TzQh535cbbJ1rytAsPDl7s6W+ZgUwWqelYP9xT5FurefCm1dlW8rJ37FFKt67dqClMTEMExpY2IcApQviO78WAACSXIoWVdcm/UPfNo6PpXwWaAn7c12qp8owTOhhM04AlFVU47n5eag0CZoqq/Qv0lHpkj1bra2/eGk/x8dSeu6E2k2TYZjgwsI+AK6bmYNXFm/HN2uNi5L8ss3dbJVGaEWlWk0wdk4PZQFx14bEMEwEwMI+AH7fcRgAsGZ3ScjPTQTT6lEyP/x9JF68tK9pv39ccDoW3TUSDZPiMS1CCokwDOMObLN3gd0B5LExY94dIzDh37/4tV8x6DTLKXE7tkhFxxaputu/u3U45m/cj8T4OHTKaIRNj09wPF6GYSIT1uxdoE2TBkGrt9o8VTv75Ucr7LloGtG7XRPcPb67a8djGCbyYGHvAkO7NMftn6wx7+gAoarV3q99OoDgFfNmGCY6YWHvAmUVNZi9PjhldlMSfatJrd0T+vkBhmHqPyzsXeDRWRuDduyGiealA7+8eUjQzs8wTHTAwl6DaV+uxyWv/Wa5f3UQTSpWSvWVW8yXzzBM7MLeOBp8snKP4facgiO4+LXfvetxBITThB6MEoYMw0QXpmojEb1NRAeJKFfR9igR7SWitdLfRMW2+4kon4i2ENH4YA08nCgFPRCe8nqt0uoEfLdWjUJ+foZh6hdWNPt3AbwM4D1V+4tCiOeVDUTUC8BlAE4H0AbAj0TUTQhhrVRThPPIt7nomZnm1x7kzMSa3DWuzlXSzaInDMNEJ6bCXgjxMxFlWTzeZACfCCEqAOwkonwAAwH8brxbZLLrcBlOa14XjPTe77s0+wXTZq9HUUl5yM/JMEz9JZAJ2luJaL1k5pErbLcFoDR4F0ptfhDRDUSUQ0Q5xcXFAQwjeIx87iesL4xMV8fOLfUjYhmGYdQ4FfavAugMoB+AIgAvSO1a9gRNtVcI8YYQIlsIkZ2RkaHVJSLYfeSkX1v/Duk+6/dOCH30aeHRUz7rvds24XquDMPo4kjYCyEOCCFqhBC1AN6Ex1QDeDR5ZcKWdgD2BTbEyEOd+OyLnEJHx9kcQA6aU5W+0yDf3TYc93HyMoZhdHAk7IkoU7H6RwCyp84sAJcRUTIRdQTQFcCKwIYYXuS87ifKq3T77DjkLBFag6S6gKl5d4zwLmc09njaZDVvqLuv3IdhGMYKphO0RPQxgFEAWhBRIYB/ABhFRP3gMdEUALgRAIQQG4noMwCbAFQDuKW+e+I8Oz8Pk/pk4vI3l7l63LvHdfNZ79G6zstn5YNjTfcf2rm5q+NhGCa6seKNc7lG8wyD/k8BeCqQQUUSuw6fRL/Hf0DJSX3N3gm3ju7q1/bhdYOQf7DUrz37tKbI2XUUo3u0xKK8gwCAZAtpFBiGYWQ4XYIF3Bb0rdNSNNuHdWmBKUOz/Npfv/JMNE9Nwp3n1r0NWK0+xTAMA3C6BC+HSyuwcd9xnN0t+J5BN43s5F3u2z4dI7q0MOzfvFEyVj18rk9bYhw/pxmGsQ4Le4m/vLUceftPIPcxdzI8/HjnSGQ2ScGO4jJc8PJSn23tm9VNvH57yzBHx09MYGHPMIx1WGJIbDlwAgDw1OzNrhyvY4tUpCYnoHe7Jt422bumVxv/lAt2SWFhzzCMDVizB5C3/7g3v82+klPGnS2ilRxt0V2jcOxUFZqmJjk+7tpHzsX+4+WWUh8zDMPIsLAH8MmKugwPp6qC5ykaF0cBCXoASG+YhPSGgR2DYZjYI+aF/UPfbMAHy+qKd6/YeSSMo2EYhgkOMW8LUAp6hmGYaCXmhT3DMEwsENPCvromsNqt7107EL/ce45f+9y/jdDozTAMEz5i2mb/yKyNAe2vF4ClVc2KYRgmnMS0Zj9nQ5HjfXu3rfOfb8kZKBmGiXBiWrMPpHbsjKuzvctL7jkHOw6VYtJLS/GPC3r59f3qr0NRXROGQrUMwzASMS3sA6Fl47pkZg2S4nF6myYomD5Js++ADk012xmGYUJFTJtxGIZhYoWYFvbCoR1nbM+WLo+EYRgmuMS0sHfCiK4t8MaV2eYdGYZhIoiYFvZ6ev3401vp7pPVPBVxGknOGIZhIpmYFvYnyqs12+dvPKC7zxCu/cowTD0k5oR9Ta3A/mPleOTbXL9tZlWqLj6zHSb2zgzW0BiGYYJGzLle/nNeHt74eYfmtkbJxkW8OygqTDEMw9QnTDV7InqbiA4SUa6irRkRLSCibdL/plI7EdFLRJRPROuJaEAwB2+XlQVHdAU9ACSZFATp3yHd7SExDMOEBCtmnHcBTFC1TQOwUAjRFcBCaR0AzgPQVfq7AcCr7gzTHS557XfD7ftKyr3Lc24fgXeuPguXD+zgbRtuUhicYRgmUjEV9kKInwGoK3pMBjBTWp4J4EJF+3vCwzIA6URUb4zcKwrqLrNXmzSc06MlhnWpm5AlYi8chmHqJ04naFsJIYoAQPovRxm1BbBH0a9QavODiG4gohwiyikuLnY4DPdY8cAYzfZmXAKQYZgowG1vHC3VV9OdXQjxhhAiWwiRnZFh7AUTCL9tP4SPlu9GZbVx7vqWaSma7a2baLczDMPUJ5wK+wOyeUb6f1BqLwTQXtGvHYB9zocXOH9+czke+HoDKi0UKpHTFr91VV2EbAanL2YYJgpwKuxnAZgiLU8B8K2i/SrJK2cwgGOyuSfcHCmt1N3WOSMVABAvRcY2Ta0z3TROSQzuwBiGYUKAFdfLjwH8DqA7ERUS0VQA0wGcS0TbAJwrrQPAHAA7AOQDeBPAX4MyagekJOlfavfWjQEAXVs2AgA0aeAv4FulsYbPMEz9xTSoSghxuc4mvxlN4UkjeUuggwoGRsVD+rbz+M8/ceEZmNyvLbpIQl9GL089wzBMfSGq0yUcKq3wLg+dvki33/UjOgEAUhLjMbwr+9IzDBN9RLWwv+Kt5Zb6cRZLhmGinagW9nn7T4R7CAzDMBFBVAt7K2x8bHy4h8AwDBN0olbYV1vwq7+wXxukJsdc4k+GYWKQqBX2XR6ca9qndzvOYskwTGwQtcLeCuVVNeEeAsMwTEiIaWE/4YzW4R4CwzBMSIhpYS/046wYhmGiipgS9lufPM9nPS2FJ2cZhokNokra1dQKfLJyN/4vu71Pe3JCHH6+9xwkJcThgYk90CApAWN6tNRNa8wwDBNtRJWw/2LVHjz4dS5KTlZ52+4/rwduHNnZu37D2Z21dmUYholqosqMU1rh8a5Zs7sEAHDjyE4+gp5hGCZWiSphXyUFUv24+QAAYN2eknAOh2EYJmKIKmE/fW6ez3r+wbIwjYRhGCayiCphr0aZ4phhGCaWiWphzzAMw3iIamGf89DYcA+BYRgmIohqYd+iEdeNZRiGAaJY2PeQiogzDMMwUSzs371mYLiHwDAMEzEEFEFLRAUATgCoAVAthMgmomYAPgWQBaAAwP8JIY4GNkxz5HTF7Zs1wPSL+qB1E06FwDAMI+OGZn+OEKKfECJbWp8GYKEQoiuAhdJ60Bn+z0UAgPQGSRjWpUUoTskwDFNvCIYZZzKAmdLyTAAXBuEcfhwqrQQAbNh7LBSnYxiGqVcEKuwFgB+IaBUR3SC1tRJCFAGA9L9lgOewxcTeXJCEYRhGTaBZL4cJIfYRUUsAC4goz3QPCenhcAMAdOjQIcBh1PHipf1cOxbDMEy0EJBmL4TYJ/0/COBrAAMBHCCiTACQ/h/U2fcNIUS2ECI7IyMjkGEAAAZ08BQPT06ID/hYDMMw0YZjYU9EqUTUWF4GMA5ALoBZAKZI3aYA+DbQQVqhY4tGaM3FSBiGYTQJxIzTCsDXRCQf5yMhxDwiWgngMyKaCmA3gEsCH6YxczYU4cvVhcE+DcMwTL3FsbAXQuwA0Fej/TCAMYEMyi5//XB1KE/HMAxT74jaCFqGYRimDhb2DMMwMUC9F/alFdXhHgLDMEzEU++F/Wcr94R7CAzDMBFPvRf2S7YWe5ffuirboCfDMEzsEmgEbdhp3igJAPDtLcPQt316mEfDMAwTmdRrzf5kZTW+Wr0XANC+WcMwj4ZhGCZyqdfC/pFvN3qXGyXX+5cUhmGYoFGvhf1pCm0+KaFeXwrDMExQqdfq8G1juiI1OQF7S06FeygMwzARTb0W9gBw7fCO4R4CwzBMxMO2D4ZhmBiAhT3DMEwMwMKeYRgmBmBhzzAMEwOwsGcYhokBWNgzDMPEACzsGYZhYgAW9gzDMDEACSHCPQYQUTGAXQ53bwHgkIvDqQ/wNccGfM2xQSDXfJoQIsNKx4gQ9oFARDlCiJhKZM/XHBvwNccGobpmNuMwDMPEACzsGYZhYoBoEPZvhHsAYYCvOTbga44NQnLN9d5mzzAMw5gTDZo9wzAMYwILe4ZhmBigXgt7IppARFuIKJ+IpoV7PHYgovZEtJiINhPRRiL6m9TejIgWENE26X9TqZ2I6CXpWtcT0QDFsaZI/bcR0RRF+5lEtEHa5yUiotBfqT9EFE9Ea4joe2m9IxEtl8b/KRElSe3J0nq+tD1LcYz7pfYtRDRe0R5x3wkiSieiL4goT7rfQ6L9PhPR36XvdS4RfUxEKdF2n4nobSI6SES5irag31e9c5gihKiXfwDiAWwH0AlAEoB1AHqFe1w2xp8JYIC03BjAVgC9ADwLYJrUPg3AP6XliQDmAiAAgwEsl9qbAdgh/W8qLTeVtq0AMETaZy6A88J93dK47gTwEYDvpfXPAFwmLb8G4GZp+a8AXpOWLwPwqbTcS7rfyQA6St+D+Ej9TgCYCeA6aTkJQHo032cAbQHsBNBAcX+vjrb7DOBsAAMA5Cragn5f9c5hOt5w/xAC+KCHAJivWL8fwP3hHlcA1/MtgHMBbAGQKbVlAtgiLb8O4HJF/y3S9ssBvK5of11qywSQp2j36RfG62wHYCGA0QC+l77IhwAkqO8rgPkAhkjLCVI/Ut9ruV8kficApEmCj1TtUXuf4RH2eyQBliDd5/HReJ8BZMFX2Af9vuqdw+yvPptx5C+UTKHUVu+QXlv7A1gOoJUQoggApP8tpW5612vUXqjRHm7+DeBeALXSenMAJUKIamldOU7vtUnbj0n97X4W4aQTgGIA70imq7eIKBVRfJ+FEHsBPA9gN4AieO7bKkT3fZYJxX3VO4ch9VnYa9kl650fKRE1AvAlgDuEEMeNumq0CQftYYOIzgdwUAixStms0VWYbKs31wyPpjoAwKtCiP4AyuB59daj3l+zZEOeDI/ppQ2AVADnaXSNpvtsRtivsT4L+0IA7RXr7QDsC9NYHEFEifAI+g+FEF9JzQeIKFPangngoNSud71G7e002sPJMAB/IKICAJ/AY8r5N4B0IkqQ+ijH6b02aXsTAEdg/7MIJ4UACoUQy6X1L+AR/tF8n8cC2CmEKBZCVAH4CsBQRPd9lgnFfdU7hyH1WdivBNBVmuFPgmdiZ1aYx2QZaWZ9BoDNQoh/KTbNAiDPyE+Bx5Yvt18lzeoPBnBMeoWbD2AcETWVNKpx8NgziwCcIKLB0rmuUhwrLAgh7hdCtBNCZMFzvxYJIf4CYDGAi6Vu6muWP4uLpf5Car9M8uLoCKArPJNZEfedEELsB7CHiLpLTWMAbEIU32d4zDeDiaihNCb5mqP2PisIxX3VO4cx4ZzIcWFyZCI8XizbATwY7vHYHPtweF7L1gNYK/1NhMdWuRDANul/M6k/AXhFutYNALIVx7oWQL70d42iPRtArrTPy1BNEob5+kehzhunEzw/4nwAnwNIltpTpPV8aXsnxf4PSte1BQrvk0j8TgDoByBHutffwON1EdX3GcBjAPKkcb0Pj0dNVN1nAB/DMydRBY8mPjUU91XvHGZ/nC6BYRgmBqjPZhyGYRjGIizsGYZhYgAW9gzDMDEAC3uGYZgYgIU9wzBMDMDCnmEYJgZgYc8wDBMD/D9pwksMstgtRgAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "def running_average(x,window):\n", + " return np.convolve(x,np.ones(window)/window,mode='valid')\n", + "\n", + "plt.plot(running_average(rewards,100))" + ] + }, + { + "source": [ + "## 调整超参数并观察结果\n", + "\n", + "现在,我们可以实际看看训练好的模型是如何表现的。让我们运行模拟,并采用与训练时相同的动作选择策略:根据 Q-Table 中的概率分布进行采样:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "obs = env.reset()\n", + "done = False\n", + "while not done:\n", + " s = discretize(obs)\n", + " env.render()\n", + " v = probs(np.array(qvalues(s)))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + "env.close()" + ] + }, + { + "source": [ + "## 将结果保存为动画 GIF\n", + "\n", + "如果你想给朋友留下深刻印象,可以将平衡杆的动画 GIF 图片发送给他们。为此,我们可以调用 `env.render` 来生成图像帧,然后使用 PIL 库将这些帧保存为动画 GIF:\n" + ], + "cell_type": "markdown", + "metadata": {} + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "360\n" + ] + } + ], + "source": [ + "from PIL import Image\n", + "obs = env.reset()\n", + "done = False\n", + "i=0\n", + "ims = []\n", + "while not done:\n", + " s = discretize(obs)\n", + " img=env.render(mode='rgb_array')\n", + " ims.append(Image.fromarray(img))\n", + " v = probs(np.array([Qbest.get((s,a),0) for a in actions]))\n", + " a = random.choices(actions,weights=v)[0]\n", + " obs,_,done,_ = env.step(a)\n", + " i+=1\n", + "env.close()\n", + "ims[0].save('images/cartpole-balance.gif',save_all=True,append_images=ims[1::2],loop=0,duration=5)\n", + "print(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/8-Reinforcement/README.md b/translations/zh-CN/8-Reinforcement/README.md new file mode 100644 index 000000000..f13cbcfa9 --- /dev/null +++ b/translations/zh-CN/8-Reinforcement/README.md @@ -0,0 +1,58 @@ +# 强化学习简介 + +强化学习(RL)被认为是与监督学习和无监督学习并列的基本机器学习范式之一。RL的核心是决策:做出正确的决策,或者至少从决策中学习。 + +想象一下,你有一个模拟环境,比如股票市场。如果你实施某项规定,会发生什么?它会产生积极还是消极的影响?如果发生了消极的事情,你需要接受这种_负强化_,从中学习并调整方向。如果是积极的结果,你需要基于这种_正强化_继续发展。 + +![彼得与狼](../../../translated_images/zh-CN/peter.779730f9ba3a8a8d.webp) + +> 彼得和他的朋友们需要逃离饥饿的狼!图片由 [Jen Looper](https://twitter.com/jenlooper) 提供 + +## 地区主题:彼得与狼(俄罗斯) + +[彼得与狼](https://en.wikipedia.org/wiki/Peter_and_the_Wolf) 是由俄罗斯作曲家 [谢尔盖·普罗科菲耶夫](https://en.wikipedia.org/wiki/Sergei_Prokofiev) 创作的一部音乐童话。故事讲述了年轻的先锋彼得勇敢地走出家门,来到森林空地追逐狼。在本节中,我们将训练机器学习算法来帮助彼得: + +- **探索**周围区域并构建最佳导航地图 +- **学习**如何使用滑板并保持平衡,以便更快地移动 + +[![彼得与狼](https://img.youtube.com/vi/Fmi5zHg4QSM/0.jpg)](https://www.youtube.com/watch?v=Fmi5zHg4QSM) + +> 🎥 点击上方图片收听普罗科菲耶夫的《彼得与狼》 + +## 强化学习 + +在之前的章节中,你已经看到两种机器学习问题的例子: + +- **监督学习**,我们有数据集提供问题的样本解决方案。[分类](../4-Classification/README.md) 和 [回归](../2-Regression/README.md) 是监督学习任务。 +- **无监督学习**,我们没有标注的训练数据。无监督学习的主要例子是 [聚类](../5-Clustering/README.md)。 + +在本节中,我们将向你介绍一种不需要标注训练数据的新型学习问题。这类问题有几种类型: + +- **[半监督学习](https://wikipedia.org/wiki/Semi-supervised_learning)**,我们有大量未标注的数据,可以用来预训练模型。 +- **[强化学习](https://wikipedia.org/wiki/Reinforcement_learning)**,代理通过在某些模拟环境中进行实验来学习如何行动。 + +### 示例 - 电脑游戏 + +假设你想教电脑玩游戏,比如国际象棋或 [超级马里奥](https://wikipedia.org/wiki/Super_Mario)。为了让电脑玩游戏,我们需要它预测在每个游戏状态下应该采取的行动。虽然这看起来像是一个分类问题,但实际上并不是——因为我们没有一个包含状态和对应动作的数据集。虽然我们可能有一些数据,比如现有的国际象棋比赛或玩家玩超级马里奥的录像,但这些数据可能不足以覆盖足够多的可能状态。 + +与其寻找现有的游戏数据,**强化学习**(RL)基于一个理念:*让电脑多次玩游戏并观察结果*。因此,要应用强化学习,我们需要两样东西: + +- **一个环境**和**一个模拟器**,允许我们多次玩游戏。这个模拟器会定义所有的游戏规则以及可能的状态和动作。 + +- **一个奖励函数**,告诉我们每次行动或游戏过程中表现得如何。 + +强化学习与其他类型的机器学习的主要区别在于,在RL中我们通常不知道自己是否赢了或输了,直到游戏结束。因此,我们无法单独判断某个动作是否是好的——我们只有在游戏结束时才会收到奖励。而我们的目标是设计算法,使我们能够在不确定的条件下训练模型。我们将学习一种称为**Q学习**的RL算法。 + +## 课程 + +1. [强化学习和Q学习简介](1-QLearning/README.md) +2. [使用Gym模拟环境](2-Gym/README.md) + +## 致谢 + +《强化学习简介》由 [Dmitry Soshnikov](http://soshnikov.com) 倾情创作 ❤️ + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/9-Real-World/1-Applications/README.md b/translations/zh-CN/9-Real-World/1-Applications/README.md new file mode 100644 index 000000000..53f79ed03 --- /dev/null +++ b/translations/zh-CN/9-Real-World/1-Applications/README.md @@ -0,0 +1,150 @@ +# 后记:机器学习在现实世界中的应用 + +![现实世界中机器学习的总结图](../../../../sketchnotes/ml-realworld.png) +> 由 [Tomomi Imura](https://www.twitter.com/girlie_mac) 绘制的手绘笔记 + +在本课程中,你学习了许多准备数据进行训练和创建机器学习模型的方法。你构建了一系列经典的回归、聚类、分类、自然语言处理和时间序列模型。恭喜你!现在,你可能会好奇这些模型的实际用途是什么……它们在现实世界中的应用是什么? + +尽管深度学习驱动的人工智能在工业界引起了广泛关注,但经典机器学习模型仍然有其重要的应用价值。事实上,你可能已经在日常生活中使用了其中的一些应用!在本课中,你将探索八个不同的行业和领域如何利用这些模型来使其应用更加高效、可靠、智能,并为用户创造更大的价值。 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +## 💰 金融 + +金融领域为机器学习提供了许多机会。该领域的许多问题都可以通过机器学习建模和解决。 + +### 信用卡欺诈检测 + +我们在课程中学习了 [k-means 聚类](../../5-Clustering/2-K-Means/README.md),但它如何用于解决信用卡欺诈相关问题呢? + +k-means 聚类在一种称为**异常值检测**的信用卡欺诈检测技术中非常有用。异常值,即数据集中的偏离观测值,可以帮助我们判断信用卡的使用是否正常或是否存在异常情况。正如以下论文所述,你可以使用 k-means 聚类算法对信用卡数据进行分类,并根据每笔交易的异常程度将其分配到一个聚类中。然后,你可以评估最具风险的聚类以区分欺诈交易和合法交易。 +[参考](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.680.1195&rep=rep1&type=pdf) + +### 财富管理 + +在财富管理中,个人或公司代表客户管理投资。他们的工作是长期维持和增长财富,因此选择表现良好的投资至关重要。 + +评估某项投资表现的一种方法是通过统计回归。[线性回归](../../2-Regression/1-Tools/README.md)是理解基金相对于某个基准表现的有力工具。我们还可以推断回归结果是否具有统计显著性,以及它们对客户投资的影响程度。你甚至可以进一步扩展分析,使用多元回归来考虑额外的风险因素。以下论文展示了如何使用回归评估特定基金的表现。 +[参考](http://www.brightwoodventures.com/evaluating-fund-performance-using-regression/) + +## 🎓 教育 + +教育领域也是机器学习可以应用的一个非常有趣的领域。这里有许多有趣的问题需要解决,例如检测考试或论文中的作弊行为,或管理纠正过程中的偏见(无论是有意还是无意)。 + +### 预测学生行为 + +[Coursera](https://coursera.com),一个在线开放课程提供商,在其技术博客中讨论了许多工程决策。在这个案例研究中,他们绘制了一条回归线,试图探索低 NPS(净推荐值)评分与课程保留或退课之间的相关性。 +[参考](https://medium.com/coursera-engineering/controlled-regression-quantifying-the-impact-of-course-quality-on-learner-retention-31f956bd592a) + +### 减少偏见 + +[Grammarly](https://grammarly.com),一个检查拼写和语法错误的写作助手,在其产品中使用了复杂的[自然语言处理系统](../../6-NLP/README.md)。他们在技术博客中发布了一篇有趣的案例研究,讨论了如何处理机器学习中的性别偏见问题,这也是你在我们的[公平性入门课程](../../1-Introduction/3-fairness/README.md)中学习过的内容。 +[参考](https://www.grammarly.com/blog/engineering/mitigating-gender-bias-in-autocorrect/) + +## 👜 零售 + +零售行业可以通过机器学习受益,从优化客户体验到优化库存管理。 + +### 个性化客户体验 + +在 Wayfair,一家销售家具等家居用品的公司,帮助客户找到符合他们品味和需求的产品至关重要。在这篇文章中,该公司的工程师描述了他们如何使用机器学习和自然语言处理来“为客户提供合适的搜索结果”。特别是,他们的查询意图引擎通过实体提取、分类器训练、资产和意见提取以及客户评论的情感标记来实现。这是 NLP 在在线零售中的经典应用案例。 +[参考](https://www.aboutwayfair.com/tech-innovation/how-we-use-machine-learning-and-natural-language-processing-to-empower-search) + +### 库存管理 + +像 [StitchFix](https://stitchfix.com) 这样的创新型公司,一个向消费者发送服装盒的服务,严重依赖机器学习进行推荐和库存管理。他们的造型团队与商品团队紧密合作:“我们的数据科学家使用遗传算法并将其应用于服装,以预测哪些尚不存在的服装可能会成功。我们将这一工具提供给商品团队,现在他们可以将其作为工具使用。” +[参考](https://www.zdnet.com/article/how-stitch-fix-uses-machine-learning-to-master-the-science-of-styling/) + +## 🏥 医疗保健 + +医疗保健领域可以利用机器学习优化研究任务以及物流问题,例如患者再入院管理或疾病传播控制。 + +### 临床试验管理 + +临床试验中的毒性是药物制造商的主要关注点。多少毒性是可以接受的?在这项研究中,分析各种临床试验方法导致了一种预测临床试验结果概率的新方法的开发。具体来说,他们使用随机森林生成了一个[分类器](../../4-Classification/README.md),能够区分药物组。 +[参考](https://www.sciencedirect.com/science/article/pii/S2451945616302914) + +### 医院再入院管理 + +医院护理成本高昂,尤其是当患者需要再次入院时。这篇论文讨论了一家公司如何使用机器学习通过[聚类](../../5-Clustering/README.md)算法预测再入院的可能性。这些聚类帮助分析师“发现可能具有共同原因的再入院群体”。 +[参考](https://healthmanagement.org/c/healthmanagement/issuearticle/hospital-readmissions-and-machine-learning) + +### 疾病管理 + +最近的疫情突显了机器学习在阻止疾病传播方面的作用。在这篇文章中,你会看到 ARIMA、逻辑曲线、线性回归和 SARIMA 的应用。“这项工作试图计算病毒的传播率,从而预测死亡、康复和确诊病例,以帮助我们更好地准备和应对。” +[参考](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979218/) + +## 🌲 生态与绿色科技 + +自然和生态由许多敏感系统组成,动物与自然之间的相互作用尤为重要。准确测量这些系统并在发生问题时采取适当行动(例如森林火灾或动物数量下降)非常重要。 + +### 森林管理 + +你在之前的课程中学习了[强化学习](../../8-Reinforcement/README.md)。它在预测自然模式时非常有用。特别是,它可以用于跟踪生态问题,例如森林火灾和入侵物种的传播。在加拿大,一组研究人员使用强化学习从卫星图像中构建了森林火灾动态模型。通过创新的“空间传播过程(SSP)”,他们将森林火灾视为“景观中任何单元格的代理”。“火灾在任何时间点可以采取的行动包括向北、南、东或西传播或不传播。” + +这种方法颠覆了通常的强化学习设置,因为相应马尔可夫决策过程(MDP)的动态是已知的即时火灾传播函数。阅读以下链接了解该团队使用的经典算法。 +[参考](https://www.frontiersin.org/articles/10.3389/fict.2018.00006/full) + +### 动物运动感知 + +虽然深度学习在视觉跟踪动物运动方面带来了革命性变化(你可以在这里构建自己的[北极熊追踪器](https://docs.microsoft.com/learn/modules/build-ml-model-with-azure-stream-analytics/?WT.mc_id=academic-77952-leestott)),但经典机器学习在这一任务中仍然有其作用。 + +用于跟踪农场动物运动的传感器和物联网利用了这种视觉处理,但更基本的机器学习技术在数据预处理方面非常有用。例如,在这篇论文中,使用各种分类器算法监测和分析了羊的姿势。你可能会在第 335 页看到 ROC 曲线。 +[参考](https://druckhaus-hofmann.de/gallery/31-wj-feb-2020.pdf) + +### ⚡️ 能源管理 + +在我们关于[时间序列预测](../../7-TimeSeries/README.md)的课程中,我们提到了智能停车计时器的概念,通过理解供需关系为一个城镇创造收入。这篇文章详细讨论了聚类、回归和时间序列预测如何结合起来帮助预测爱尔兰未来的能源使用,基于智能计量。 +[参考](https://www-cdn.knime.com/sites/default/files/inline-images/knime_bigdata_energy_timeseries_whitepaper.pdf) + +## 💼 保险 + +保险行业是另一个使用机器学习构建和优化可行财务和精算模型的领域。 + +### 波动性管理 + +MetLife,一家人寿保险提供商,公开了他们分析和缓解财务模型波动性的方法。在这篇文章中,你会看到二元和序列分类的可视化图表,还会发现预测的可视化图表。 +[参考](https://investments.metlife.com/content/dam/metlifecom/us/investments/insights/research-topics/macro-strategy/pdf/MetLifeInvestmentManagement_MachineLearnedRanking_070920.pdf) + +## 🎨 艺术、文化与文学 + +在艺术领域,例如新闻业,有许多有趣的问题。检测假新闻是一个巨大的挑战,因为它已被证明会影响人们的观点,甚至颠覆民主。博物馆也可以通过机器学习受益,从发现文物之间的联系到资源规划。 + +### 假新闻检测 + +在当今媒体中,检测假新闻已成为一场猫捉老鼠的游戏。在这篇文章中,研究人员建议测试结合我们学习过的多种机器学习技术的系统,并部署最佳模型:“该系统基于自然语言处理从数据中提取特征,然后使用这些特征训练机器学习分类器,例如朴素贝叶斯、支持向量机(SVM)、随机森林(RF)、随机梯度下降(SGD)和逻辑回归(LR)。” +[参考](https://www.irjet.net/archives/V7/i6/IRJET-V7I6688.pdf) + +这篇文章展示了如何结合不同的机器学习领域来产生有趣的结果,从而帮助阻止假新闻的传播和造成的实际损害;在这种情况下,动机是关于 COVID 治疗的谣言传播引发的暴力事件。 + +### 博物馆机器学习 + +博物馆正处于人工智能革命的前沿,随着技术的进步,编目和数字化收藏以及发现文物之间的联系变得更加容易。像 [In Codice Ratio](https://www.sciencedirect.com/science/article/abs/pii/S0306457321001035#:~:text=1.,studies%20over%20large%20historical%20sources.) 这样的项目正在帮助解锁难以接触的收藏,例如梵蒂冈档案。但博物馆的商业方面也从机器学习模型中受益。 + +例如,芝加哥艺术学院构建了模型来预测观众的兴趣以及他们参观展览的时间。目标是每次用户参观博物馆时都能创造个性化和优化的体验。“在 2017 财年,该模型预测的参观人数和门票收入的准确率达到了 1%,”芝加哥艺术学院高级副总裁 Andrew Simnick 说道。 +[参考](https://www.chicagobusiness.com/article/20180518/ISSUE01/180519840/art-institute-of-chicago-uses-data-to-make-exhibit-choices) + +## 🏷 营销 + +### 客户细分 + +最有效的营销策略根据不同的分组以不同方式定位客户。在这篇文章中,讨论了聚类算法在支持差异化营销中的应用。差异化营销帮助公司提高品牌认知度、接触更多客户并赚取更多利润。 +[参考](https://ai.inqline.com/machine-learning-for-marketing-customer-segmentation/) + +## 🚀 挑战 + +找出另一个受益于本课程中所学技术的领域,并探索它如何使用机器学习。 +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +## 复习与自学 + +Wayfair的数据科学团队制作了几段有趣的视频,介绍他们如何在公司中应用机器学习。值得[看看](https://www.youtube.com/channel/UCe2PjkQXqOuwkW1gw6Ameuw/videos)! + +## 作业 + +[机器学习寻宝游戏](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/9-Real-World/1-Applications/assignment.md b/translations/zh-CN/9-Real-World/1-Applications/assignment.md new file mode 100644 index 000000000..50491247f --- /dev/null +++ b/translations/zh-CN/9-Real-World/1-Applications/assignment.md @@ -0,0 +1,18 @@ +# 一个机器学习寻宝游戏 + +## 说明 + +在本课中,你学习了许多通过经典机器学习解决的真实案例。虽然深度学习、新技术和工具的应用,以及神经网络的使用加速了这些领域工具的开发,但使用本课程中的经典机器学习技术仍然具有重要价值。 + +在这个任务中,假设你正在参加一个黑客马拉松。利用你在课程中学到的知识,提出一个使用经典机器学习解决本课中讨论的某个领域问题的方案。创建一个演示文稿,讨论你将如何实现你的想法。如果你能收集样本数据并构建一个支持你概念的机器学习模型,还可以获得额外加分! + +## 评分标准 + +| 标准 | 卓越表现 | 基本达标 | 需要改进 | +| -------- | ---------------------------------------------------------------- | --------------------------------------------- | --------------------- | +| | 提交了一个PowerPoint演示文稿 - 构建模型可获得额外加分 | 提交了一个非创新的基础演示文稿 | 工作不完整 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/9-Real-World/2-Debugging-ML-Models/README.md b/translations/zh-CN/9-Real-World/2-Debugging-ML-Models/README.md new file mode 100644 index 000000000..190ec0817 --- /dev/null +++ b/translations/zh-CN/9-Real-World/2-Debugging-ML-Models/README.md @@ -0,0 +1,174 @@ +# 后记:使用负责任的AI仪表板组件进行机器学习模型调试 + +## [课前测验](https://ff-quizzes.netlify.app/en/ml/) + +## 简介 + +机器学习正在影响我们的日常生活。人工智能正在逐步渗透到一些对个人和社会至关重要的系统中,例如医疗、金融、教育和就业领域。例如,系统和模型参与了日常决策任务,如医疗诊断或欺诈检测。因此,随着人工智能的快速发展和广泛应用,社会对其的期望也在不断变化,同时相关法规也在逐步完善。我们经常看到人工智能系统未能达到预期的领域,它们暴露出新的挑战,而各国政府也开始对人工智能解决方案进行监管。因此,分析这些模型以确保其为所有人提供公平、可靠、包容、透明和负责任的结果是非常重要的。 + +在本课程中,我们将探讨一些实用工具,这些工具可以用来评估模型是否存在负责任的人工智能问题。传统的机器学习调试技术通常基于定量计算,例如总体准确率或平均误差损失。然而,想象一下,当您用于构建这些模型的数据缺乏某些人口统计信息(如种族、性别、政治观点、宗教)或这些人口统计信息被不成比例地代表时会发生什么情况。如果模型的输出被解释为偏向某些人口统计信息,这可能会导致这些敏感特征组的过度或不足代表,从而引发模型的公平性、包容性或可靠性问题。此外,机器学习模型通常被认为是“黑箱”,这使得理解和解释模型预测的驱动因素变得困难。这些都是数据科学家和人工智能开发者在缺乏足够工具来调试和评估模型的公平性或可信度时面临的挑战。 + +在本课程中,您将学习如何使用以下方法调试模型: + +- **错误分析**:识别模型在数据分布中错误率较高的区域。 +- **模型概览**:对不同数据群体进行比较分析,发现模型性能指标中的差异。 +- **数据分析**:调查数据是否存在过度或不足代表的情况,这可能导致模型偏向某些数据群体。 +- **特征重要性**:了解哪些特征在全局或局部层面驱动模型的预测。 + +## 前提条件 + +作为前提条件,请先查看[开发者的负责任AI工具](https://www.microsoft.com/ai/ai-lab-responsible-ai-dashboard) + +> ![负责任AI工具的动图](../../../../9-Real-World/2-Debugging-ML-Models/images/rai-overview.gif) + +## 错误分析 + +用于衡量准确性的传统模型性能指标通常基于正确与错误预测的计算。例如,确定一个模型89%的时间是准确的,误差损失为0.001,可以被认为是良好的性能。然而,错误通常不会在您的基础数据集中均匀分布。您可能获得89%的模型准确率,但发现模型在某些数据区域的失败率高达42%。这些特定数据群体的失败模式可能导致公平性或可靠性问题。因此,了解模型表现良好或不佳的区域至关重要。模型中错误率较高的数据区域可能是重要的数据群体。 + +![分析和调试模型错误](../../../../9-Real-World/2-Debugging-ML-Models/images/ea-error-distribution.png) + +RAI仪表板上的错误分析组件通过树形可视化展示模型失败在不同群体中的分布情况。这有助于识别数据集中错误率较高的特征或区域。通过查看模型大部分错误的来源,您可以开始调查根本原因。您还可以创建数据群体以进行分析。这些数据群体有助于调试过程,以确定为什么模型在一个群体中表现良好,而在另一个群体中却出现错误。 + +![错误分析](../../../../9-Real-World/2-Debugging-ML-Models/images/ea-error-cohort.png) + +树形图上的视觉指示器可以更快地定位问题区域。例如,树节点的红色阴影越深,错误率越高。 + +热图是另一种可视化功能,用户可以使用它通过一个或两个特征调查错误率,以发现整个数据集或群体中导致模型错误的因素。 + +![错误分析热图](../../../../9-Real-World/2-Debugging-ML-Models/images/ea-heatmap.png) + +使用错误分析时,您可以: + +* 深入了解模型失败如何在数据集和多个输入及特征维度中分布。 +* 分解总体性能指标,自动发现错误群体,以指导您的针对性缓解措施。 + +## 模型概览 + +评估机器学习模型的性能需要全面了解其行为。这可以通过查看多个指标(如错误率、准确率、召回率、精确度或平均绝对误差(MAE))来发现性能指标中的差异来实现。一个性能指标可能看起来很好,但另一个指标可能暴露出不准确性。此外,比较整个数据集或群体中的指标差异有助于揭示模型表现良好或不佳的区域。这对于查看模型在敏感特征(如患者种族、性别或年龄)与非敏感特征之间的表现尤为重要,以发现模型可能存在的潜在不公平性。例如,发现模型在包含敏感特征的群体中错误率更高可能揭示模型潜在的不公平性。 + +RAI仪表板的模型概览组件不仅有助于分析数据群体中的性能指标,还为用户提供了比较模型在不同群体中的行为的能力。 + +![数据群体 - RAI仪表板中的模型概览](../../../../9-Real-World/2-Debugging-ML-Models/images/model-overview-dataset-cohorts.png) + +组件的基于特征的分析功能允许用户缩小特定特征内的数据子群体,以更细粒度地识别异常。例如,仪表板具有内置智能,可以自动为用户选择的特征生成群体(例如,*"time_in_hospital < 3"* 或 *"time_in_hospital >= 7"*)。这使用户能够从较大的数据组中隔离特定特征,以查看它是否是模型错误结果的关键影响因素。 + +![特征群体 - RAI仪表板中的模型概览](../../../../9-Real-World/2-Debugging-ML-Models/images/model-overview-feature-cohorts.png) + +模型概览组件支持两类差异指标: + +**模型性能差异**:这些指标计算所选性能指标在数据子群体之间的差异(差距)。以下是一些示例: + +* 准确率差异 +* 错误率差异 +* 精确度差异 +* 召回率差异 +* 平均绝对误差(MAE)差异 + +**选择率差异**:此指标包含子群体之间选择率(有利预测)的差异。例如,贷款批准率的差异。选择率指的是每个类别中被分类为1的数据点的比例(在二元分类中)或预测值的分布(在回归中)。 + +## 数据分析 + +> “如果你对数据施加足够的压力,它会承认任何事情” - Ronald Coase + +这句话听起来极端,但确实如此,数据可以被操纵以支持任何结论。这种操纵有时可能是无意的。作为人类,我们都有偏见,而要意识到自己在数据中引入偏见通常是困难的。确保人工智能和机器学习的公平性仍然是一个复杂的挑战。 + +数据是传统模型性能指标的一个巨大盲点。您可能有很高的准确率,但这并不总是反映数据集中可能存在的潜在数据偏差。例如,如果一个公司员工数据集中有27%的女性担任高管职位,而73%的男性担任同一职位,那么基于该数据训练的招聘广告AI模型可能会主要针对男性观众投放高级职位广告。这种数据的不平衡使模型的预测偏向了某一性别。这揭示了模型存在性别偏见的公平性问题。 + +RAI仪表板上的数据分析组件有助于识别数据集中过度和不足代表的区域。它帮助用户诊断由于数据不平衡或缺乏特定数据群体代表性而引入的错误和公平性问题。这使用户能够根据预测和实际结果、错误群体以及特定特征可视化数据集。有时发现一个代表性不足的数据群体也可能揭示模型学习效果不佳,从而导致高错误率。一个具有数据偏差的模型不仅是一个公平性问题,还表明模型不够包容或可靠。 + +![RAI仪表板上的数据分析组件](../../../../9-Real-World/2-Debugging-ML-Models/images/dataanalysis-cover.png) + +使用数据分析时,您可以: + +* 通过选择不同的过滤器探索数据集统计信息,将数据切分为不同维度(也称为群体)。 +* 了解数据集在不同群体和特征组中的分布。 +* 确定与公平性、错误分析和因果关系相关的发现(来自其他仪表板组件)是否是数据集分布的结果。 +* 决定在哪些领域收集更多数据,以缓解由于代表性问题、标签噪声、特征噪声、标签偏差等因素导致的错误。 + +## 模型可解释性 + +机器学习模型通常是“黑箱”。理解哪些关键数据特征驱动模型的预测可能具有挑战性。提供模型为何做出某种预测的透明性非常重要。例如,如果一个AI系统预测某位糖尿病患者有可能在30天内再次入院,它应该能够提供支持其预测的数据。提供支持数据指标可以帮助临床医生或医院做出明智的决策。此外,能够解释模型为何对个别患者做出某种预测可以确保符合健康法规的责任。当您使用机器学习模型影响人们的生活时,理解和解释模型行为的驱动因素至关重要。模型可解释性和可解释性可以帮助回答以下场景中的问题: + +* 模型调试:为什么我的模型会犯这个错误?我该如何改进模型? +* 人机协作:我如何理解并信任模型的决策? +* 法规合规:我的模型是否满足法律要求? + +RAI仪表板的特征重要性组件帮助您调试并全面了解模型如何做出预测。它也是机器学习专业人士和决策者解释和展示影响模型行为的特征证据的有用工具,以满足法规要求。接下来,用户可以探索全局和局部解释,验证哪些特征驱动模型的预测。全局解释列出影响模型整体预测的主要特征。局部解释显示哪些特征导致模型对个别案例的预测。评估局部解释的能力在调试或审计特定案例时也很有帮助,以更好地理解和解释模型为何做出准确或不准确的预测。 + +![RAI仪表板的特征重要性组件](../../../../9-Real-World/2-Debugging-ML-Models/images/9-feature-importance.png) + +* 全局解释:例如,哪些特征影响糖尿病患者入院模型的整体行为? +* 局部解释:例如,为什么一位年龄超过60岁且有过住院记录的糖尿病患者被预测为会或不会在30天内再次入院? + +在调试模型性能的过程中,特征重要性显示了特征在不同群体中的影响程度。它有助于揭示比较特征对模型错误预测的影响程度时的异常情况。特征重要性组件可以显示特征中的哪些值对模型结果产生了正面或负面影响。例如,如果模型做出了错误预测,该组件使您能够深入分析并确定哪些特征或特征值驱动了预测。这种细节不仅有助于调试,还在审计情况下提供了透明性和责任性。最后,该组件可以帮助您识别公平性问题。例如,如果种族或性别等敏感特征在驱动模型预测中具有高度影响力,这可能表明模型存在种族或性别偏见。 + +![特征重要性](../../../../9-Real-World/2-Debugging-ML-Models/images/9-features-influence.png) + +使用可解释性时,您可以: + +* 通过了解哪些特征对预测最重要,确定您的AI系统预测的可信度。 +* 通过首先理解模型并识别模型是否使用健康特征或仅仅是错误关联来调试模型。 +* 发现潜在的不公平性来源,了解模型是否基于敏感特征或与敏感特征高度相关的特征进行预测。 +* 通过生成局部解释来展示模型结果,建立用户对模型决策的信任。 +* 完成AI系统的法规审计,以验证模型并监控模型决策对人类的影响。 + +## 结论 + +RAI仪表板的所有组件都是帮助您构建对社会更少伤害、更值得信赖的机器学习模型的实用工具。它有助于防止对人权的威胁;避免歧视或排除某些群体的生活机会;以及减少身体或心理伤害的风险。它还通过生成局部解释来展示模型结果,帮助建立对模型决策的信任。一些潜在的伤害可以分类为: + +- **分配**:例如,某一性别或种族被优待于另一性别或种族。 +- **服务质量**:如果您为一个特定场景训练数据,但现实情况更复杂,这会导致服务质量差。 +- **刻板印象**:将某一群体与预先分配的属性联系起来。 +- **贬低**:不公平地批评和标记某事或某人。 +- **过度或不足的代表性**。这个概念指的是某些群体在某些职业中未被看到,而任何继续推动这种现象的服务或功能都在助长伤害。 + +### Azure RAI 仪表板 + +[Azure RAI 仪表板](https://learn.microsoft.com/en-us/azure/machine-learning/concept-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu) 基于由领先学术机构和组织(包括微软)开发的开源工具构建。这些工具对数据科学家和 AI 开发者理解模型行为、发现并缓解 AI 模型中的不良问题至关重要。 + +- 通过查看 RAI 仪表板的[文档](https://learn.microsoft.com/en-us/azure/machine-learning/how-to-responsible-ai-dashboard?WT.mc_id=aiml-90525-ruyakubu),学习如何使用不同的组件。 + +- 查看一些 RAI 仪表板的[示例笔记本](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks),以调试 Azure 机器学习中的更多负责任 AI 场景。 + +--- +## 🚀 挑战 + +为了从一开始就避免引入统计或数据偏差,我们应该: + +- 确保参与系统开发的人员具有多样化的背景和观点 +- 投资于反映社会多样性的数据集 +- 开发更好的方法来检测和纠正偏差 + +思考现实生活中模型构建和使用中显而易见的不公平场景。我们还应该考虑什么? + +## [课后测验](https://ff-quizzes.netlify.app/en/ml/) +## 复习与自学 + +在本课中,你学习了一些将负责任 AI 融入机器学习的实用工具。 + +观看以下工作坊以更深入地了解相关主题: + +- 负责任 AI 仪表板:由 Besmira Nushi 和 Mehrnoosh Sameki 主讲,实践中实现 RAI 的一站式解决方案 + +[![负责任 AI 仪表板:实践中实现 RAI 的一站式解决方案](https://img.youtube.com/vi/f1oaDNl3djg/0.jpg)](https://www.youtube.com/watch?v=f1oaDNl3djg "负责任 AI 仪表板:实践中实现 RAI 的一站式解决方案") + +> 🎥 点击上方图片观看视频:负责任 AI 仪表板:实践中实现 RAI 的一站式解决方案,由 Besmira Nushi 和 Mehrnoosh Sameki 主讲 + +参考以下材料,了解更多关于负责任 AI 的内容以及如何构建更值得信赖的模型: + +- 微软的 RAI 仪表板工具,用于调试 ML 模型:[负责任 AI 工具资源](https://aka.ms/rai-dashboard) + +- 探索负责任 AI 工具包:[Github](https://github.com/microsoft/responsible-ai-toolbox) + +- 微软的 RAI 资源中心:[负责任 AI 资源 – Microsoft AI](https://www.microsoft.com/ai/responsible-ai-resources?activetab=pivot1%3aprimaryr4) + +- 微软的 FATE 研究组:[FATE:AI 中的公平性、问责性、透明性和伦理 - Microsoft Research](https://www.microsoft.com/research/theme/fate/) + +## 作业 + +[探索 RAI 仪表板](assignment.md) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/9-Real-World/2-Debugging-ML-Models/assignment.md b/translations/zh-CN/9-Real-World/2-Debugging-ML-Models/assignment.md new file mode 100644 index 000000000..a5ac0eb36 --- /dev/null +++ b/translations/zh-CN/9-Real-World/2-Debugging-ML-Models/assignment.md @@ -0,0 +1,16 @@ +# 探索负责任人工智能(RAI)仪表板 + +## 说明 + +在本课程中,您学习了RAI仪表板,这是一个基于“开源”工具构建的组件套件,旨在帮助数据科学家进行错误分析、数据探索、公平性评估、模型可解释性、反事实/假设评估以及人工智能系统的因果分析。作为本次作业的一部分,请探索一些RAI仪表板的示例[笔记本](https://github.com/Azure/RAI-vNext-Preview/tree/main/examples/notebooks),并在论文或演示文稿中报告您的发现。 + +## 评分标准 + +| 标准 | 优秀 | 合格 | 需要改进 | +| -------- | --------- | -------- | ----------------- | +| | 提交了一份讨论RAI仪表板组件、运行的笔记本以及从中得出的结论的论文或PPT演示文稿 | 提交了一份没有结论的论文 | 未提交论文 | + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而导致的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/9-Real-World/README.md b/translations/zh-CN/9-Real-World/README.md new file mode 100644 index 000000000..a442de445 --- /dev/null +++ b/translations/zh-CN/9-Real-World/README.md @@ -0,0 +1,23 @@ +# 后记:经典机器学习的实际应用 + +在本课程的这一部分中,您将了解经典机器学习在现实世界中的一些应用。我们在互联网上搜集了关于这些策略应用的白皮书和文章,尽量避免涉及神经网络、深度学习和人工智能。了解机器学习如何应用于商业系统、生态应用、金融、艺术与文化等领域。 + +![国际象棋](../../../translated_images/zh-CN/chess.e704a268781bdad8.webp) + +> 图片由 Alexis Fauvet 提供,来源于 Unsplash + +## 课程 + +1. [机器学习的实际应用](1-Applications/README.md) +2. [使用负责任的AI仪表板组件进行机器学习模型调试](2-Debugging-ML-Models/README.md) + +## 致谢 + +“机器学习的实际应用”由包括 [Jen Looper](https://twitter.com/jenlooper) 和 [Ornella Altunyan](https://twitter.com/ornelladotcom) 在内的团队撰写。 + +“使用负责任的AI仪表板组件进行机器学习模型调试”由 [Ruth Yakubu](https://twitter.com/ruthieyakubu) 撰写。 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/AGENTS.md b/translations/zh-CN/AGENTS.md new file mode 100644 index 000000000..20b20fa4a --- /dev/null +++ b/translations/zh-CN/AGENTS.md @@ -0,0 +1,336 @@ +# AGENTS.md + +## 项目概述 + +这是**机器学习入门**,一个全面的12周、26课的课程体系,涵盖使用Python(主要是Scikit-learn)和R的经典机器学习概念。该仓库设计为一个自学资源,包含实践项目、测验和作业。每节课通过来自世界各地不同文化和地区的真实数据探索机器学习概念。 + +关键组成部分: +- **教育内容**:26节课,涵盖机器学习简介、回归、分类、聚类、自然语言处理(NLP)、时间序列和强化学习 +- **测验应用**:基于Vue.js的测验应用,提供课前和课后评估 +- **多语言支持**:通过GitHub Actions自动翻译成40多种语言 +- **双语言支持**:课程内容同时提供Python(Jupyter笔记本)和R(R Markdown文件) +- **基于项目的学习**:每个主题都包含实践项目和作业 + +## 仓库结构 + +``` +ML-For-Beginners/ +├── 1-Introduction/ # ML basics, history, fairness, techniques +├── 2-Regression/ # Regression models with Python/R +├── 3-Web-App/ # Flask web app for ML model deployment +├── 4-Classification/ # Classification algorithms +├── 5-Clustering/ # Clustering techniques +├── 6-NLP/ # Natural Language Processing +├── 7-TimeSeries/ # Time series forecasting +├── 8-Reinforcement/ # Reinforcement learning +├── 9-Real-World/ # Real-world ML applications +├── quiz-app/ # Vue.js quiz application +├── translations/ # Auto-generated translations +└── sketchnotes/ # Visual learning aids +``` + +每个课程文件夹通常包含: +- `README.md` - 主要课程内容 +- `notebook.ipynb` - Python Jupyter笔记本 +- `solution/` - 解决方案代码(Python和R版本) +- `assignment.md` - 练习题 +- `images/` - 可视化资源 + +## 设置命令 + +### 针对Python课程 + +大多数课程使用Jupyter笔记本。安装所需依赖项: + +```bash +# Install Python 3.8+ if not already installed +python --version + +# Install Jupyter +pip install jupyter + +# Install common ML libraries +pip install scikit-learn pandas numpy matplotlib seaborn + +# For specific lessons, check lesson-specific requirements +# Example: Web App lesson +pip install flask +``` + +### 针对R课程 + +R课程位于`solution/R/`文件夹中,以`.rmd`或`.ipynb`文件形式存在: + +```bash +# Install R and required packages +# In R console: +install.packages(c("tidyverse", "tidymodels", "caret")) +``` + +### 针对测验应用 + +测验应用是一个位于`quiz-app/`目录中的Vue.js应用: + +```bash +cd quiz-app +npm install +``` + +### 针对文档站点 + +本地运行文档: + +```bash +# Install Docsify +npm install -g docsify-cli + +# Serve from repository root +docsify serve + +# Access at http://localhost:3000 +``` + +## 开发工作流程 + +### 使用课程笔记本 + +1. 进入课程目录(例如,`2-Regression/1-Tools/`) +2. 打开Jupyter笔记本: + ```bash + jupyter notebook notebook.ipynb + ``` +3. 学习课程内容并完成练习 +4. 如有需要,可查看`solution/`文件夹中的解决方案 + +### Python开发 + +- 课程使用标准的Python数据科学库 +- Jupyter笔记本用于交互式学习 +- 每节课的`solution/`文件夹中提供解决方案代码 + +### R开发 + +- R课程以`.rmd`格式(R Markdown)提供 +- 解决方案位于`solution/R/`子目录中 +- 使用RStudio或带有R内核的Jupyter运行R笔记本 + +### 测验应用开发 + +```bash +cd quiz-app + +# Start development server +npm run serve +# Access at http://localhost:8080 + +# Build for production +npm run build + +# Lint and fix files +npm run lint +``` + +## 测试说明 + +### 测验应用测试 + +```bash +cd quiz-app + +# Lint code +npm run lint + +# Build to verify no errors +npm run build +``` + +**注意**:这是一个主要用于教育的课程仓库。课程内容没有自动化测试。验证通过以下方式完成: +- 完成课程练习 +- 成功运行笔记本单元格 +- 将输出与解决方案中的预期结果进行比较 + +## 代码风格指南 + +### Python代码 +- 遵循PEP 8风格指南 +- 使用清晰、描述性的变量名 +- 对复杂操作添加注释 +- Jupyter笔记本应包含解释概念的Markdown单元格 + +### JavaScript/Vue.js(测验应用) +- 遵循Vue.js风格指南 +- ESLint配置位于`quiz-app/package.json` +- 运行`npm run lint`检查并自动修复问题 + +### 文档 +- Markdown文件应清晰且结构良好 +- 在代码块中包含代码示例 +- 内部引用使用相对链接 +- 遵循现有的格式约定 + +## 构建与部署 + +### 测验应用部署 + +测验应用可以部署到Azure静态Web应用: + +1. **先决条件**: + - Azure账户 + - GitHub仓库(已分叉) + +2. **部署到Azure**: + - 创建Azure静态Web应用资源 + - 连接到GitHub仓库 + - 设置应用位置:`/quiz-app` + - 设置输出位置:`dist` + - Azure会自动创建GitHub Actions工作流 + +3. **GitHub Actions工作流**: + - 工作流文件创建于`.github/workflows/azure-static-web-apps-*.yml` + - 推送到主分支时自动构建和部署 + +### 文档PDF + +从文档生成PDF: + +```bash +npm install +npm run convert +``` + +## 翻译工作流程 + +**重要**:翻译通过GitHub Actions使用Co-op Translator自动完成。 + +- 当更改推送到`main`分支时,翻译会自动生成 +- **不要手动翻译内容** - 系统会处理 +- 工作流定义在`.github/workflows/co-op-translator.yml` +- 使用Azure AI/OpenAI服务进行翻译 +- 支持40多种语言 + +## 贡献指南 + +### 针对内容贡献者 + +1. **分叉仓库**并创建一个功能分支 +2. **修改课程内容**以添加或更新课程 +3. **不要修改翻译文件** - 它们是自动生成的 +4. **测试代码** - 确保所有笔记本单元格成功运行 +5. **验证链接和图片**是否正常工作 +6. **提交拉取请求**并提供清晰的描述 + +### 拉取请求指南 + +- **标题格式**:`[部分] 简要描述更改` + - 示例:`[回归] 修复第5课中的拼写错误` + - 示例:`[测验应用] 更新依赖项` +- **提交前**: + - 确保所有笔记本单元格无错误执行 + - 如果修改了测验应用,运行`npm run lint` + - 验证Markdown格式 + - 测试任何新的代码示例 +- **拉取请求必须包括**: + - 更改描述 + - 更改原因 + - 如果有UI更改,提供截图 +- **行为准则**:遵循[Microsoft开源行为准则](CODE_OF_CONDUCT.md) +- **CLA**:需要签署贡献者许可协议 + +## 课程结构 + +每节课遵循一致的模式: + +1. **课前测验** - 测试基础知识 +2. **课程内容** - 书面说明和解释 +3. **代码演示** - 笔记本中的实践示例 +4. **知识检查** - 验证学习理解 +5. **挑战** - 独立应用概念 +6. **作业** - 扩展练习 +7. **课后测验** - 评估学习成果 + +## 常用命令参考 + +```bash +# Python/Jupyter +jupyter notebook # Start Jupyter server +jupyter notebook notebook.ipynb # Open specific notebook +pip install -r requirements.txt # Install dependencies (where available) + +# Quiz App +cd quiz-app +npm install # Install dependencies +npm run serve # Development server +npm run build # Production build +npm run lint # Lint and fix + +# Documentation +docsify serve # Serve documentation locally +npm run convert # Generate PDF + +# Git workflow +git checkout -b feature/my-change # Create feature branch +git add . # Stage changes +git commit -m "Description" # Commit changes +git push origin feature/my-change # Push to remote +``` + +## 其他资源 + +- **Microsoft Learn集合**:[机器学习入门模块](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) +- **测验应用**:[在线测验](https://ff-quizzes.netlify.app/en/ml/) +- **讨论板**:[GitHub Discussions](https://github.com/microsoft/ML-For-Beginners/discussions) +- **视频讲解**:[YouTube播放列表](https://aka.ms/ml-beginners-videos) + +## 关键技术 + +- **Python**:机器学习课程的主要语言(Scikit-learn, Pandas, NumPy, Matplotlib) +- **R**:使用tidyverse, tidymodels, caret的替代实现 +- **Jupyter**:Python课程的交互式笔记本 +- **R Markdown**:R课程的文档 +- **Vue.js 3**:测验应用框架 +- **Flask**:用于机器学习模型部署的Web应用框架 +- **Docsify**:文档站点生成器 +- **GitHub Actions**:CI/CD和自动翻译 + +## 安全注意事项 + +- **代码中不包含秘密信息**:不要提交API密钥或凭证 +- **依赖项**:保持npm和pip包更新 +- **用户输入**:Flask Web应用示例包括基本输入验证 +- **敏感数据**:示例数据集是公开且无敏感信息的 + +## 故障排除 + +### Jupyter笔记本 + +- **内核问题**:如果单元格挂起,请重启内核:内核 → 重启 +- **导入错误**:确保使用pip安装了所有必需的包 +- **路径问题**:从笔记本所在目录运行笔记本 + +### 测验应用 + +- **npm安装失败**:清除npm缓存:`npm cache clean --force` +- **端口冲突**:更改端口:`npm run serve -- --port 8081` +- **构建错误**:删除`node_modules`并重新安装:`rm -rf node_modules && npm install` + +### R课程 + +- **未找到包**:使用以下命令安装:`install.packages("package-name")` +- **RMarkdown渲染问题**:确保安装了rmarkdown包 +- **内核问题**:可能需要为Jupyter安装IRkernel + +## 项目特定说明 + +- 这主要是一个**学习课程**,而非生产代码 +- 重点是通过实践练习**理解机器学习概念** +- 代码示例优先考虑**清晰性而非优化** +- 大多数课程是**独立的**,可以单独完成 +- **提供解决方案**,但学习者应先尝试完成练习 +- 仓库使用**Docsify**生成Web文档,无需构建步骤 +- **手绘笔记**提供概念的可视化总结 +- **多语言支持**使内容全球可访问 + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们对因使用此翻译而产生的任何误解或误读不承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/CODE_OF_CONDUCT.md b/translations/zh-CN/CODE_OF_CONDUCT.md new file mode 100644 index 000000000..fa794ccfb --- /dev/null +++ b/translations/zh-CN/CODE_OF_CONDUCT.md @@ -0,0 +1,14 @@ +# Microsoft 开源行为准则 + +本项目已采用 [Microsoft 开源行为准则](https://opensource.microsoft.com/codeofconduct/)。 + +资源: + +- [Microsoft 开源行为准则](https://opensource.microsoft.com/codeofconduct/) +- [Microsoft 行为准则常见问题](https://opensource.microsoft.com/codeofconduct/faq/) +- 如有疑问或需帮助,请联系 [opencode@microsoft.com](mailto:opencode@microsoft.com) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。对于因使用本翻译而引起的任何误解或误读,我们概不负责。 \ No newline at end of file diff --git a/translations/zh-CN/CONTRIBUTING.md b/translations/zh-CN/CONTRIBUTING.md new file mode 100644 index 000000000..832b3d123 --- /dev/null +++ b/translations/zh-CN/CONTRIBUTING.md @@ -0,0 +1,16 @@ +# 贡献 + +本项目欢迎贡献和建议。大多数贡献需要您同意一份贡献者许可协议 (CLA),声明您拥有并确实授予我们使用您贡献的权利。详情请访问 https://cla.microsoft.com。 + +> 重要提示:在翻译此仓库中的文本时,请确保不要使用机器翻译。我们将通过社区验证翻译,因此请仅在您熟练掌握的语言中自愿进行翻译。 + +当您提交一个拉取请求时,CLA-bot 会自动判断您是否需要提供 CLA,并适当地标记 PR(例如,标签、评论)。只需按照机器人提供的指示操作即可。您只需在所有使用我们 CLA 的仓库中完成一次此操作。 + +本项目已采用 [Microsoft 开源行为准则](https://opensource.microsoft.com/codeofconduct/)。 +有关更多信息,请参阅 [行为准则常见问题](https://opensource.microsoft.com/codeofconduct/faq/) +或通过 [opencode@microsoft.com](mailto:opencode@microsoft.com) 联系我们,提出其他问题或意见。 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/PyTorch_Fundamentals.ipynb b/translations/zh-CN/PyTorch_Fundamentals.ipynb new file mode 100644 index 000000000..c82c561cb --- /dev/null +++ b/translations/zh-CN/PyTorch_Fundamentals.ipynb @@ -0,0 +1,2830 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "provenance": [], + "gpuType": "T4", + "authorship_tag": "ABX9TyOgv0AozH1FKQBD+RkgT2bV", + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "GPU", + "coopTranslator": { + "original_hash": "0ca21b6ee62904d616f2e36dc1cf0da7", + "translation_date": "2025-09-03T19:15:43+00:00", + "source_file": "PyTorch_Fundamentals.ipynb", + "language_code": "zh" + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "EHh5JllMh1rG", + "outputId": "f55755ad-c369-414c-85ec-6e9d4f061a02", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + } + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'2.2.1+cu121'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 1 + } + ], + "source": [ + "import torch\n", + "torch.__version__" + ] + }, + { + "cell_type": "code", + "source": [ + "print(\"I am excited to run this\")" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "UPlb-duwXAfz", + "outputId": "cfd687e4-1238-49f4-ab6b-ee1305b740d2" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "I am excited to run this\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "print(torch.__version__)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "byWVlJ9wXDSk", + "outputId": "fd74a5c4-4d4a-41b2-ef3c-562ea3e4811f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "2.2.1+cu121\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "Osm80zoEYklS" + } + }, + { + "cell_type": "code", + "source": [ + "# scalar\n", + "scalar = torch.tensor(7)\n", + "scalar" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-o8wvJ-VXZmI", + "outputId": "558816f5-1205-4de1-fe1f-2f96e9bd79e6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(7)" + ] + }, + "metadata": {}, + "execution_count": 4 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mCZ2tXC4Y_Sg", + "outputId": "2d86dbdc-56e1-45c6-d3dd-14515f2a457a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "scalar.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ssN00By0ZQgS", + "outputId": "490f40d1-5135-4969-a6d3-c8c902cdc473" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "7" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# vector\n", + "vector = torch.tensor([7, 7])\n", + "vector\n", + "#vector.ndim\n", + "#vector.item()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Bws__5wlZnmF", + "outputId": "944e38f9-5ba1-4ddc-a9c6-cfb6a19bb488" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([7, 7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "vector.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9pjCvnsZZzNG", + "outputId": "e030a4da-8f81-4858-fbce-86da2aaafe52" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([2])" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Matrix\n", + "MATRIX = torch.tensor([[7, 8],[9, 10]])\n", + "MATRIX" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "a747hI9SaBGW", + "outputId": "af835ddb-81ff-4981-badb-441567194d15" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[ 7, 8],\n", + " [ 9, 10]])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XdTfFa7vaRUj", + "outputId": "0fbbab9c-8263-4cad-a380-0d2a16ca499e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "MATRIX[0]\n", + "MATRIX[1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TFeD3jSDafm7", + "outputId": "69b44ab3-5ba7-451a-c6b2-f019a03d0c96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Tensor\n", + "TENSOR = torch.tensor([[[1, 2, 3],[3,6,9], [2,4,5]]])\n", + "TENSOR" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ic3cE47tah42", + "outputId": "f250e295-91de-43ec-9d80-588a6fe0abde" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]]])" + ] + }, + "metadata": {}, + "execution_count": 12 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Wvjf5fczbAM1", + "outputId": "9c72b5b8-bafe-4ae7-9883-b051e209eada" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([1, 3, 3])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mwtXZwiMbN3m", + "outputId": "331a5e36-b1b0-4a5f-a9b8-e7049cbaa8f9" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "3" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "TENSOR[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vzdZu_IfbP3J", + "outputId": "e24e7e71-e365-412d-ff50-fc094b56d2f3" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [3, 6, 9],\n", + " [2, 4, 5]])" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "A8OL9eWfcRrJ" + } + }, + { + "cell_type": "code", + "source": [ + "random_tensor = torch.rand(3,4)\n", + "random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hAqSDE1EcVS_", + "outputId": "946171c3-d054-400c-f893-79110356888c" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.4414, 0.7681, 0.8385, 0.3166],\n", + " [0.0468, 0.5812, 0.0670, 0.9173],\n", + " [0.2959, 0.3276, 0.7411, 0.4643]])" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.ndim" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "g4fvPE5GcwzP", + "outputId": "8737f36b-6864-4059-eaed-6f9156c22306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "2" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XsAg99QmdAU6", + "outputId": "35467c11-257c-4f16-99aa-eca930bcbc36" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor.size()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cii1pNdVdB68", + "outputId": "fc8d2de6-9215-43de-99f7-7b0d7f7d20fa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([3, 4])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_image_tensor = torch.rand(size=(3, 224, 224)) #color channels, height, width\n", + "random_image_tensor.ndim, random_image_tensor.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "aTKq2j0cdDjb", + "outputId": "6be42057-20b9-4faf-d79d-8b65c42cc27e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([3, 224, 224]))" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "random_tensor_ofownsize = torch.rand(size=(5,10,10))\n", + "random_tensor_ofownsize.ndim, random_tensor_ofownsize.shape\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IyhDdj-Pd6nC", + "outputId": "43e5e334-6d4d-4b67-f87d-7d364c6d8c67" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(3, torch.Size([5, 10, 10]))" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "UOJW08uOert_" + } + }, + { + "cell_type": "code", + "source": [ + "zero = torch.zeros(size=(3, 4))\n", + "zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGvXtaXyefie", + "outputId": "d40d3e28-8667-4d2f-8b62-f0829c6162ad" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "zero*random_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "OyUkUPkDe0uH", + "outputId": "26c2e4be-36ba-4c6c-9a90-2704ec135828" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones = torch.ones(size=(3, 4))\n", + "ones\n" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y_Ac62Aqe82G", + "outputId": "291de5d9-b9df-49de-c9d1-d098e3e9f4d8" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1., 1., 1., 1.],\n", + " [1., 1., 1., 1.],\n", + " [1., 1., 1., 1.]])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TvGOA9odfIEO", + "outputId": "45949ef4-6649-4b6c-d6af-2d4bfb8de832" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ones*zero" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "--pTyge-fI-8", + "outputId": "c4d9bb7e-829b-43db-e2db-b1a2d64e61f0" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0., 0., 0., 0.],\n", + " [0., 0., 0., 0.],\n", + " [0., 0., 0., 0.]])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "markdown", + "source": [], + "metadata": { + "id": "qDcc7Z36fSJF" + } + }, + { + "cell_type": "code", + "source": [ + "one_to_ten = torch.arange(start = 1, end = 11, step = 1)\n", + "one_to_ten" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "w3CZB4zUfR1s", + "outputId": "197fcba1-da0a-4b4a-ed11-3974bd6c01aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])" + ] + }, + "metadata": {}, + "execution_count": 27 + } + ] + }, + { + "cell_type": "code", + "source": [ + "ten_zeros = torch.zeros_like(one_to_ten)\n", + "ten_zeros" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WZh99BwVfRy8", + "outputId": "51ef8bfb-6fa0-4099-ff66-b97d65b2ddea" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" + ] + }, + "metadata": {}, + "execution_count": 28 + } + ] + }, + { + "cell_type": "markdown", + "source": [ + "张量数据类型\n" + ], + "metadata": { + "id": "pGGhgsbUgqbW" + } + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor = torch.tensor([3.0, 6.0,9.0], dtype = None, device = None, requires_grad = False)\n", + "float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JORJl4XkfRsx", + "outputId": "71114171-0f49-481f-b6fc-6cb48e2fb895" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3., 6., 9.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_32_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6wOPPwGyfRLn", + "outputId": "f23776a1-b682-404a-9f67-d5bcb0402666" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float32" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor = float_32_tensor.type(torch.float16)\n", + "float_16_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tFsHCvmZfOYe", + "outputId": "d3aa305a-7591-47f5-97fd-61bff60b44bd" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.float16" + ] + }, + "metadata": {}, + "execution_count": 31 + } + ] + }, + { + "cell_type": "code", + "source": [ + "float_16_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "TQiCGTPuwq0q", + "outputId": "98750fce-1ca3-4889-e269-8b753efdea96" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor = torch.tensor([3, 6, 9], dtype = torch.int32)\n", + "int_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "5hlrLvGUw5D_", + "outputId": "41d890a0-9aee-446c-d906-631ce2ab0995" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9], dtype=torch.int32)" + ] + }, + "metadata": {}, + "execution_count": 33 + } + ] + }, + { + "cell_type": "code", + "source": [ + "int_32_tensor*float_32_tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ihApD9u3xTNW", + "outputId": "d295eed0-6996-4e0f-8502-ff4b55cd1373" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 9., 36., 81.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(0,100,10)" + ], + "metadata": { + "id": "utKhlb_KxWDQ" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p78D74E9Rj7Y", + "outputId": "781a1614-a900-41f5-9e5d-358f0b2390aa" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])" + ] + }, + "metadata": {}, + "execution_count": 36 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.min()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4BcSs5NeRkcj", + "outputId": "3f24a8dc-58e9-4a5f-9834-e85856a34f9d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.max()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hinqvXVLRm4q", + "outputId": "5c7d8a53-3913-4ac1-bba3-5ba8ff68250a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mean(x.type(torch.float32))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "k7okc0_vRpnB", + "outputId": "91e5494f-dc57-417c-ea4d-25dbc547c893" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 39 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.type(torch.float32).mean()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "29QcDTjHRq10", + "outputId": "62937c6c-78e0-49f2-dde3-1543ee8f7907" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(45.)" + ] + }, + "metadata": {}, + "execution_count": 40 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.sum()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wlpY_G_sbdKF", + "outputId": "475d8258-af65-4011-a258-b93d4d8142d4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(450)" + ] + }, + "metadata": {}, + "execution_count": 41 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmax()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GT6HJzwhbk4n", + "outputId": "2e455c20-c322-4bcf-d07c-1259d3ccefc6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 42 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x.argmin()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "egL3oi2Mb19P", + "outputId": "f71fb32f-6338-44a3-b377-75bea0a3ab54" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 43 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "p2U8DZKib3DP", + "outputId": "b9f613b9-74e9-45f4-ed01-05babb6a6793" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0)" + ] + }, + "metadata": {}, + "execution_count": 44 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[9]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "24qBFlGYcABe", + "outputId": "5813cfcb-7f63-4bd7-ee46-f95ccbfda939" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(90)" + ] + }, + "metadata": {}, + "execution_count": 45 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x = torch.arange(1, 10)\n", + "x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0GPOxEzkcBHO", + "outputId": "aefbd903-4f4c-4d2c-c90f-eccd682fe018" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "torch.Size([9])" + ] + }, + "metadata": {}, + "execution_count": 46 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped = x.reshape(1,9)\n", + "x_reshaped, x_reshaped.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "spmRgQjwddgp", + "outputId": "85a7c55c-2909-4ea2-fc68-386dddc65742" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]]), torch.Size([1, 9]))" + ] + }, + "metadata": {}, + "execution_count": 47 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_reshaped.view(1,9)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "tH2ahWGydqqP", + "outputId": "65d92263-4fc4-434a-c06d-c5e08436f7fe" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 48 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked = torch.stack([x, x, x, x], dim = 1)\n", + "x_stacked" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "jgCeJcaud_-1", + "outputId": "7f293a37-6ef1-43b6-aee5-9d6d91c94f9e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 49 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "XhJHIK6cfPse", + "outputId": "06c47b89-3a9e-453e-bcc3-00cbcb0b8b49" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 50 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=1)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ej2c3Xxzf0tq", + "outputId": "94024061-eb37-446d-c4a8-e4d16cb6de81" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 52 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.squeeze()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4DJYo1a0f5M0", + "outputId": "efca2b47-1b14-44de-9a9a-2c83629d153f" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 1, 1, 1],\n", + " [2, 2, 2, 2],\n", + " [3, 3, 3, 3],\n", + " [4, 4, 4, 4],\n", + " [5, 5, 5, 5],\n", + " [6, 6, 6, 6],\n", + " [7, 7, 7, 7],\n", + " [8, 8, 8, 8],\n", + " [9, 9, 9, 9]])" + ] + }, + "metadata": {}, + "execution_count": 53 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_stacked.unsqueeze(dim=-2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "J4iEjn2ah2HL", + "outputId": "22395593-7c16-4162-beae-dd2bbe7bda35" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[1, 1, 1, 1]],\n", + "\n", + " [[2, 2, 2, 2]],\n", + "\n", + " [[3, 3, 3, 3]],\n", + "\n", + " [[4, 4, 4, 4]],\n", + "\n", + " [[5, 5, 5, 5]],\n", + "\n", + " [[6, 6, 6, 6]],\n", + "\n", + " [[7, 7, 7, 7]],\n", + "\n", + " [[8, 8, 8, 8]],\n", + "\n", + " [[9, 9, 9, 9]]])" + ] + }, + "metadata": {}, + "execution_count": 55 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "tensor = torch.tensor([1, 2, 3])\n", + "tensor = tensor - 10\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cFfiD7Nth7Z_", + "outputId": "1139e1f8-fc1a-46ca-d636-f2bc4fd2eef6" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-9, -8, -7])" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.mul(tensor, 10)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dyA7BM_GHhqE", + "outputId": "0e3b9671-d9e8-4a32-87bb-59bc05986142" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-90, -80, -70])" + ] + }, + "metadata": {}, + "execution_count": 9 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.sub(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "owtUsZ1KNegI", + "outputId": "189b7b23-0041-4e09-b991-cd209a48506a" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-109, -108, -107])" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.add(tensor, 100)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "K5STXlQONsyc", + "outputId": "00cbb79a-0a1d-4e21-86ec-5c91c37a2d01" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([91, 92, 93])" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.divide(tensor, 2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xqMGnzIUNvp0", + "outputId": "c894cf3e-f148-45f8-cfc8-d78740735306" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([-4.5000, -4.0000, -3.5000])" + ] + }, + "metadata": {}, + "execution_count": 13 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(tensor, tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ruGzKpV8NyBc", + "outputId": "fddb63bf-006f-48b6-ae28-287fbcda8bc5" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "8GS3r9yTeGfD", + "outputId": "c80b12ac-30b5-4f3d-c38c-9e41ba511b0e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 16 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "tensor@tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "QmuYHqXTemC0", + "outputId": "402fe3ba-70b5-4bb2-c83b-254db84ff810" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 622 µs, sys: 0 ns, total: 622 µs\n", + "Wall time: 516 µs\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ] + }, + { + "cell_type": "code", + "source": [ + "%%time\n", + "torch.matmul(tensor,tensor)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dGr1fzdNepd8", + "outputId": "97bd6c91-bc25-4b38-cdf5-f22dcdef243e" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "CPU times: user 424 µs, sys: 998 µs, total: 1.42 ms\n", + "Wall time: 1.43 ms\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(194)" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.rand(3,2)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "pGYDoK2gevfo", + "outputId": "2c8783d5-0453-47c5-c7ed-af10d25d6989" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5999, 0.0073],\n", + " [0.9321, 0.3026],\n", + " [0.3463, 0.3872]])" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.matmul(torch.rand(3,2), torch.rand(2,3))" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KGBGQoB8e2DP", + "outputId": "4c2ef361-a2d0-41ee-c328-3992cbbc138d" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.3528, 0.1893, 0.0714],\n", + " [1.2791, 0.7110, 0.2563],\n", + " [0.8812, 0.4553, 0.1803]])" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch" + ], + "metadata": { + "id": "ib8DMtkBe_LJ" + }, + "execution_count": 1, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x = torch.rand(2,9)" + ], + "metadata": { + "id": "nJo8ZBdrQY1b" + }, + "execution_count": 2, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "wi6oRv4MQfgf", + "outputId": "55c99f55-31f6-4cf5-ba4e-19a47c3a0167" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[0.5894, 0.4391, 0.2018, 0.5417, 0.3844, 0.3592, 0.9209, 0.9269, 0.0681],\n", + " [0.0746, 0.1740, 0.6821, 0.6890, 0.0999, 0.7444, 0.2391, 0.4625, 0.8302]])" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "y=torch.randn(2,3,5)\n", + "y" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zpx8myAUQgoc", + "outputId": "07756d70-56bd-437c-c74e-9aecc1a77311" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[ 1.5552, -0.4877, 0.5175, -1.7958, -0.6187],\n", + " [-0.3359, -1.9710, 0.0112, -1.7578, -1.5295],\n", + " [ 0.0932, 1.4079, 0.9108, 0.3328, -0.6978]],\n", + "\n", + " [[-0.9406, -1.0809, -0.2595, 0.1282, 1.6605],\n", + " [ 1.1624, 1.0902, 1.7092, -0.2842, -1.3780],\n", + " [-0.1534, -1.2795, -0.5495, 0.9902, 0.1822]]])" + ] + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original = torch.rand(size=(224,224,3))\n", + "x_original" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "s4U-X9bJQnWe", + "outputId": "657a7a76-962c-4b41-a76b-902d0482266c" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[[0.4549, 0.6809, 0.2118],\n", + " [0.4824, 0.9008, 0.8741],\n", + " [0.1715, 0.1757, 0.1845],\n", + " ...,\n", + " [0.8741, 0.6594, 0.2610],\n", + " [0.0092, 0.1984, 0.1955],\n", + " [0.4236, 0.4182, 0.0251]],\n", + "\n", + " [[0.9174, 0.1661, 0.5852],\n", + " [0.1837, 0.2351, 0.3810],\n", + " [0.3726, 0.4808, 0.8732],\n", + " ...,\n", + " [0.6794, 0.0554, 0.9202],\n", + " [0.0864, 0.8750, 0.3558],\n", + " [0.8445, 0.9759, 0.4934]],\n", + "\n", + " [[0.1600, 0.2635, 0.7194],\n", + " [0.9488, 0.3405, 0.3647],\n", + " [0.6683, 0.5168, 0.9592],\n", + " ...,\n", + " [0.0521, 0.0140, 0.2445],\n", + " [0.3596, 0.3999, 0.2730],\n", + " [0.5926, 0.9877, 0.7784]],\n", + "\n", + " ...,\n", + "\n", + " [[0.4794, 0.5635, 0.3764],\n", + " [0.9124, 0.6094, 0.5059],\n", + " [0.4528, 0.4447, 0.5021],\n", + " ...,\n", + " [0.0089, 0.4816, 0.8727],\n", + " [0.2173, 0.6296, 0.2347],\n", + " [0.2028, 0.9931, 0.7201]],\n", + "\n", + " [[0.3116, 0.6459, 0.4703],\n", + " [0.0148, 0.2345, 0.7149],\n", + " [0.8393, 0.5804, 0.6691],\n", + " ...,\n", + " [0.2105, 0.9460, 0.2696],\n", + " [0.5918, 0.9295, 0.2616],\n", + " [0.2537, 0.7819, 0.4700]],\n", + "\n", + " [[0.6654, 0.1200, 0.5841],\n", + " [0.9147, 0.5522, 0.6529],\n", + " [0.1799, 0.5276, 0.5415],\n", + " ...,\n", + " [0.7536, 0.4346, 0.8793],\n", + " [0.3793, 0.1750, 0.7792],\n", + " [0.9266, 0.8325, 0.9974]]])" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted=x_original.permute(2, 0, 1)\n", + "print(x_original.shape)\n", + "print(x_permuted.shape)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DD19_zvbQzHo", + "outputId": "1d64ce1b-eb48-47e3-90b6-7f1340e7f2b2" + }, + "execution_count": 9, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "torch.Size([224, 224, 3])\n", + "torch.Size([3, 224, 224])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "NnPmMk4ZRF7w", + "outputId": "2cd5da7f-4a23-4a76-8c4a-bb982113f2a4" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Z0ylNoAARgTo", + "outputId": "ddca0298-cddf-4048-9b71-a791655e5bed" + }, + "execution_count": 11, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.4549)" + ] + }, + "metadata": {}, + "execution_count": 11 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]=0.989" + ], + "metadata": { + "id": "RXw0xXsDRi4L" + }, + "execution_count": 13, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "x_original[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "1sFdV6wzRo3f", + "outputId": "1cf87d2c-6d88-453a-d136-0f625a2800f1" + }, + "execution_count": 14, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 14 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x_permuted[0,0,0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "xTX-hx2SR1wp", + "outputId": "0d4908c4-c3bc-44e3-8ec6-1487104cc209" + }, + "execution_count": 15, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(0.9890)" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x=torch.arange(1,10).reshape(1,3,3)\n", + "x, x.shape" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mZomOe7gR4Q8", + "outputId": "0b3c922f-ec11-46de-b8a5-9f9533d866ad" + }, + "execution_count": 18, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(tensor([[[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]]]),\n", + " torch.Size([1, 3, 3]))" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "3y7v4SQvSBs1", + "outputId": "8c53307d-e628-404d-db66-56c6bdffab7c" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]])" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "hf9uG4xLSNya", + "outputId": "3075bc42-9ffa-426b-8a86-95628ffcd824" + }, + "execution_count": 21, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 21 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][0][0]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "zA4G2Se4SRB3", + "outputId": "324312d2-ed0a-49eb-f81f-e904e53992fe" + }, + "execution_count": 22, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(1)" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0][2][2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Mwy3zmKKSdbk", + "outputId": "d35172c3-b099-40a6-ddf1-a453c2adfa44" + }, + "execution_count": 23, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor(9)" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[:,1,1]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fE3nCM1KS7XT", + "outputId": "01f5d755-9737-4235-9f73-dce89ff6ba16" + }, + "execution_count": 24, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([5])" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,0,:]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "luNDINKNTTxp", + "outputId": "091195ef-2f71-4602-e95f-529a69193150" + }, + "execution_count": 25, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3])" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ] + }, + { + "cell_type": "code", + "source": [ + "x[0,:,2]" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KG8A4xbfThCL", + "outputId": "5866bc41-9241-4619-be7b-e9206b3f80ab" + }, + "execution_count": 26, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([3, 6, 9])" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import numpy as np" + ], + "metadata": { + "id": "CZ3PX0qlTwHJ" + }, + "execution_count": 27, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array = np.arange(1.0, 8.0)" + ], + "metadata": { + "id": "UOBeTumiT3Lf" + }, + "execution_count": 28, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "RzcO32E9UCQl", + "outputId": "430def24-c42c-461f-e5e7-398544c695d3" + }, + "execution_count": 29, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([1., 2., 3., 4., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 29 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.from_numpy(array)\n", + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "JJIL0q1DUC6O", + "outputId": "8a3b1d7c-4482-4d32-f34f-9212d9d3a177" + }, + "execution_count": 32, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1., 2., 3., 4., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 32 + } + ] + }, + { + "cell_type": "code", + "source": [ + "array[3]=11.0" + ], + "metadata": { + "id": "j3Ce6q3DUIEK" + }, + "execution_count": 33, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "array" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dc_BCVdjUsCc", + "outputId": "65537325-8b11-4f36-fc73-e56f30d6a036" + }, + "execution_count": 34, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 1., 2., 3., 11., 5., 6., 7.])" + ] + }, + "metadata": {}, + "execution_count": 34 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VG1e_eITUta2", + "outputId": "a26c5198-23b6-4a6d-d73a-ba20cd9782b8" + }, + "execution_count": 35, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([ 1., 2., 3., 11., 5., 6., 7.], dtype=torch.float64)" + ] + }, + "metadata": {}, + "execution_count": 35 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.ones(7)\n", + "tensor, tensor.dtype\n", + "numpy_tensor = tensor.numpy()\n", + "numpy_tensor, numpy_tensor.dtype" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Swt8JF8vUuev", + "outputId": "c9e5bf6a-6d2c-41d6-8327-366867ffdd2d" + }, + "execution_count": 37, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(array([1., 1., 1., 1., 1., 1., 1.], dtype=float32), dtype('float32'))" + ] + }, + "metadata": {}, + "execution_count": 37 + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "random_tensor_A = torch.rand(3,4)\n", + "random_tensor_B = torch.rand(3,4)\n", + "print(random_tensor_A)\n", + "print(random_tensor_B)\n", + "print(random_tensor_A == random_tensor_B)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uGcagTteVFTD", + "outputId": "49405790-08e7-4210-b7f1-f00b904c7eb9" + }, + "execution_count": 38, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.9870, 0.6636, 0.6873, 0.8863],\n", + " [0.8386, 0.4169, 0.3587, 0.0265],\n", + " [0.2981, 0.6025, 0.5652, 0.5840]])\n", + "tensor([[0.9821, 0.3481, 0.0913, 0.4940],\n", + " [0.7495, 0.4387, 0.9582, 0.8659],\n", + " [0.5064, 0.6919, 0.0809, 0.9771]])\n", + "tensor([[False, False, False, False],\n", + " [False, False, False, False],\n", + " [False, False, False, False]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "RANDOM_SEED = 42\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_C = torch.rand(3,4)\n", + "torch.manual_seed(RANDOM_SEED)\n", + "random_tensor_D = torch.rand(3,4)\n", + "print(random_tensor_C)\n", + "print(random_tensor_D)\n", + "print(random_tensor_C == random_tensor_D)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HznyXyEaWjLM", + "outputId": "25956434-01b6-4059-9054-c9978884ddc1" + }, + "execution_count": 46, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[0.8823, 0.9150, 0.3829, 0.9593],\n", + " [0.3904, 0.6009, 0.2566, 0.7936],\n", + " [0.9408, 0.1332, 0.9346, 0.5936]])\n", + "tensor([[True, True, True, True],\n", + " [True, True, True, True],\n", + " [True, True, True, True]])\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "!nvidia-smi" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vltPTh0YXJSt", + "outputId": "807af6dc-a9ca-4301-ec32-b688dbde8be8" + }, + "execution_count": 2, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Thu May 23 02:57:59 2024 \n", + "+---------------------------------------------------------------------------------------+\n", + "| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |\n", + "|-----------------------------------------+----------------------+----------------------+\n", + "| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n", + "| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n", + "| | | MIG M. |\n", + "|=========================================+======================+======================|\n", + "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", + "| N/A 60C P8 11W / 70W | 0MiB / 15360MiB | 0% Default |\n", + "| | | N/A |\n", + "+-----------------------------------------+----------------------+----------------------+\n", + " \n", + "+---------------------------------------------------------------------------------------+\n", + "| Processes: |\n", + "| GPU GI CI PID Type Process name GPU Memory |\n", + "| ID ID Usage |\n", + "|=======================================================================================|\n", + "| No running processes found |\n", + "+---------------------------------------------------------------------------------------+\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "import torch\n", + "torch.cuda.is_available()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "L6mMyPDyYh1j", + "outputId": "279c5dd8-c2a8-4fbd-f321-2f5d7c6e90e6" + }, + "execution_count": 3, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "True" + ] + }, + "metadata": {}, + "execution_count": 3 + } + ] + }, + { + "cell_type": "code", + "source": [ + "device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", + "device" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 35 + }, + "id": "oOdiYa7ZYytx", + "outputId": "d73b04fc-8963-4826-9722-08d118d5ab91" + }, + "execution_count": 5, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'cuda'" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "string" + } + }, + "metadata": {}, + "execution_count": 5 + } + ] + }, + { + "cell_type": "code", + "source": [ + "torch.cuda.device_count()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vOdsazLqZFM5", + "outputId": "8189cd6a-9017-4663-a652-3e15c517d9c3" + }, + "execution_count": 6, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "1" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor = torch.tensor([1,2,3], device = \"cpu\")\n", + "print(tensor, tensor.device)" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cdik9Vw3ZMv0", + "outputId": "044a68fd-83a1-409d-8e3b-655142ca0270" + }, + "execution_count": 7, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "tensor([1, 2, 3]) cpu\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu = tensor.to(device)\n", + "tensor_on_gpu" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Zmp835rrZp-z", + "outputId": "37fa3413-18a3-47bf-ae51-5b36ff85a3ef" + }, + "execution_count": 8, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "tensor([1, 2, 3], device='cuda:0')" + ] + }, + "metadata": {}, + "execution_count": 8 + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_gpu.numpy()" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 159 + }, + "id": "jhriaa8uZ1yM", + "outputId": "bc5a3226-1a12-4fea-8769-a44f21cdc323" + }, + "execution_count": 10, + "outputs": [ + { + "output_type": "error", + "ename": "TypeError", + "evalue": "can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtensor_on_gpu\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first." + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "tensor_on_cpu = tensor_on_gpu.cpu().numpy()" + ], + "metadata": { + "id": "LHGXK3GgaOzL" + }, + "execution_count": 12, + "outputs": [] + }, + { + "cell_type": "code", + "source": [], + "metadata": { + "id": "j-El4LlCajfq" + }, + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。\n" + ] + } + ] +} \ No newline at end of file diff --git a/translations/zh-CN/README.md b/translations/zh-CN/README.md new file mode 100644 index 000000000..5c36134d4 --- /dev/null +++ b/translations/zh-CN/README.md @@ -0,0 +1,221 @@ +[![GitHub license](https://img.shields.io/github/license/microsoft/ML-For-Beginners.svg)](https://github.com/microsoft/ML-For-Beginners/blob/master/LICENSE) +[![GitHub contributors](https://img.shields.io/github/contributors/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/graphs/contributors/) +[![GitHub issues](https://img.shields.io/github/issues/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/issues/) +[![GitHub pull-requests](https://img.shields.io/github/issues-pr/microsoft/ML-For-Beginners.svg)](https://GitHub.com/microsoft/ML-For-Beginners/pulls/) +[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) + +[![GitHub watchers](https://img.shields.io/github/watchers/microsoft/ML-For-Beginners.svg?style=social&label=Watch)](https://GitHub.com/microsoft/ML-For-Beginners/watchers/) +[![GitHub forks](https://img.shields.io/github/forks/microsoft/ML-For-Beginners.svg?style=social&label=Fork)](https://GitHub.com/microsoft/ML-For-Beginners/network/) +[![GitHub stars](https://img.shields.io/github/stars/microsoft/ML-For-Beginners.svg?style=social&label=Star)](https://GitHub.com/microsoft/ML-For-Beginners/stargazers/) + +### 🌐 多语言支持 + +#### 通过 GitHub Action 支持(自动且始终保持最新) + + +[阿拉伯语](../ar/README.md) | [孟加拉语](../bn/README.md) | [保加利亚语](../bg/README.md) | [缅甸语](../my/README.md) | [中文(简体)](./README.md) | [中文(繁体,香港)](../zh-HK/README.md) | [中文(繁体,澳门)](../zh-MO/README.md) | [中文(繁体,台湾)](../zh-TW/README.md) | [克罗地亚语](../hr/README.md) | [捷克语](../cs/README.md) | [丹麦语](../da/README.md) | [荷兰语](../nl/README.md) | [爱沙尼亚语](../et/README.md) | [芬兰语](../fi/README.md) | [法语](../fr/README.md) | [德语](../de/README.md) | [希腊语](../el/README.md) | [希伯来语](../he/README.md) | [印地语](../hi/README.md) | [匈牙利语](../hu/README.md) | [印度尼西亚语](../id/README.md) | [意大利语](../it/README.md) | [日语](../ja/README.md) | [卡纳达语](../kn/README.md) | [韩语](../ko/README.md) | [立陶宛语](../lt/README.md) | [马来语](../ms/README.md) | [马拉雅拉姆语](../ml/README.md) | [马拉地语](../mr/README.md) | [尼泊尔语](../ne/README.md) | [尼日利亚皮钦语](../pcm/README.md) | [挪威语](../no/README.md) | [波斯语(法尔西语)](../fa/README.md) | [波兰语](../pl/README.md) | [葡萄牙语(巴西)](../pt-BR/README.md) | [葡萄牙语(葡萄牙)](../pt-PT/README.md) | [旁遮普语(古鲁穆奇)](../pa/README.md) | [罗马尼亚语](../ro/README.md) | [俄语](../ru/README.md) | [塞尔维亚语(西里尔字母)](../sr/README.md) | [斯洛伐克语](../sk/README.md) | [斯洛文尼亚语](../sl/README.md) | [西班牙语](../es/README.md) | [斯瓦希里语](../sw/README.md) | [瑞典语](../sv/README.md) | [他加禄语(菲律宾语)](../tl/README.md) | [泰米尔语](../ta/README.md) | [泰卢固语](../te/README.md) | [泰语](../th/README.md) | [土耳其语](../tr/README.md) | [乌克兰语](../uk/README.md) | [乌尔都语](../ur/README.md) | [越南语](../vi/README.md) + +> **更喜欢本地克隆?** + +> 该仓库包含50多种语言的翻译,显著增加了下载大小。若要在不下载翻译的情况下克隆,请使用稀疏检出: +> ```bash +> git clone --filter=blob:none --sparse https://github.com/microsoft/ML-For-Beginners.git +> cd ML-For-Beginners +> git sparse-checkout set --no-cone '/*' '!translations' '!translated_images' +> ``` +> 这样你将获得完成课程所需的一切,下载速度更快。 + + +#### 加入我们的社区 + +[![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) + +我们开展了一个 Discord 中的 AI 学习系列,了解更多信息并加入我们,时间为 2025 年 9 月 18 日至 30 日,访问 [Learn with AI Series](https://aka.ms/learnwithai/discord)。您将获得使用 GitHub Copilot 从事数据科学的技巧和窍门。 + +![与 AI 一起学习系列](../../translated_images/zh-CN/3.9b58fd8d6c373c20.webp) + +# 初学者机器学习课程 + +> 🌍 通过探访世界各地文化,一起探索机器学习 🌍 + +微软云倡导者很高兴提供一份为期12周、共26课的课程,全面介绍**机器学习**。在此课程中,你将学习有时称为**经典机器学习**的内容,主要使用Scikit-learn库,避免深度学习部分,深度学习内容已包含于我们的[初学者 AI 课程](https://aka.ms/ai4beginners)。同时你也可以结合我们的[初学者数据科学课程](https://aka.ms/ds4beginners)学习。 + +跟我们一起环游世界,将这些经典技术应用于来自世界各地的数据。每节课都包括课前和课后测验、完成课程的书面说明、解决方案、作业等。我们的项目驱动教学法让你在实战中学习,帮助新技能得以巩固。 + +**✍️ 衷心感谢我们的作者** Jen Looper、Stephen Howell、Francesca Lazzeri、Tomomi Imura、Cassie Breviu、Dmitry Soshnikov、Chris Noring、Anirban Mukherjee、Ornella Altunyan、Ruth Yakubu 和 Amy Boyd + +**🎨 感谢我们的插画师** Tomomi Imura、Dasani Madipalli 和 Jen Looper + +**🙏 特别感谢 🙏 我们的微软学生大使作者、审稿人及内容贡献者**,尤其是 Rishit Dagli、Muhammad Sakib Khan Inan、Rohan Raj、Alexandru Petrescu、Abhishek Jaiswal、Nawrin Tabassum、Ioan Samuila 和 Snigdha Agarwal + +**🤩 额外感谢微软学生大使 Eric Wanjau、Jasleen Sondhi 和 Vidushi Gupta 为我们的 R 课程做出的贡献!** + +# 入门指南 + +执行以下步骤: +1. **Fork 仓库**:点击本页右上角的“Fork”按钮。 +2. **克隆仓库**:`git clone https://github.com/microsoft/ML-For-Beginners.git` + +> [在我们的 Microsoft Learn 集合中查看本课程的所有额外资源](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +> 🔧 **需要帮助?** 请查阅我们的[故障排除指南](TROUBLESHOOTING.md),解决安装、设置及课程运行的问题。 + +**[学生](https://aka.ms/student-page)**,使用本课程,请将整个仓库 fork 到你自己的 GitHub 账户,并单独或小组完成练习: + +- 从课前测验开始。 +- 阅读课程内容并完成相关活动,在每个知识点处暂停并思考。 +- 尽量通过理解课程内容来创建项目,而不是直接运行解决方案代码;解决方案代码可在每个项目导向课程的 `/solution` 文件夹中找到。 +- 参加课后测验。 +- 完成挑战任务。 +- 完成作业。 +- 完成一组课程后,访问[讨论区](https://github.com/microsoft/ML-For-Beginners/discussions)并通过填写相应的 PAT 评估表“公开学习”。‘PAT’ 是一个进度评估工具,这是你填写的一份评分表,帮助你进一步学习。你也可以对其他人的 PAT 作出反馈,共同学习。 + +> 进一步学习,我们推荐跟随这些[Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/k7o7tg1gp306q4?WT.mc_id=academic-77952-leestott)模块和学习路径。 + +**教师**,我们提供了[使用本课程的建议](for-teachers.md)。 + +--- + +## 视频讲解 + +部分课程提供短视频形式。您可以在课程中查看所有这些视频,或访问[微软开发者频道上初学者机器学习视频播放列表](https://aka.ms/ml-beginners-videos),点击下方图片观看。 + +[![初学者机器学习横幅](../../translated_images/zh-CN/ml-for-beginners-video-banner.63f694a100034bc6.webp)](https://aka.ms/ml-beginners-videos) + +--- + +## 团队介绍 + +[![宣传视频](../../images/ml.gif)](https://youtu.be/Tj1XWrDSYJU) + +**动图由** [Mohit Jaisal](https://linkedin.com/in/mohitjaisal) 制作 + +> 🎥 点击上图观看关于项目及其创建者的视频! + +--- + +## 教学理念 + +我们在设计此课程时选定了两大教学原则:确保课程是动手的**项目驱动**,并且包含**频繁测验**。此外,课程贯穿了统一的**主题**,以增强整体连贯性。 + +确保内容与项目相结合,使学习过程更具吸引力,从而增强概念的记忆效果。此外,课前小测验帮助学生确定学习目标,课后测验则促进巩固知识。该课程设计灵活有趣,可以全程学习,也可以部分学习。项目起步简单,到第12周会逐渐变得复杂。课程此外包含有关机器学习实际应用的后记,可用作额外加分或讨论基础。 + +> 请查阅我们的[行为准则](CODE_OF_CONDUCT.md)、[贡献指南](CONTRIBUTING.md)、[翻译说明](TRANSLATIONS.md)和[故障排除](TROUBLESHOOTING.md)指南。我们欢迎您的建设性反馈! + +## 每节课程包含 + +- 可选的手绘笔记 +- 可选的补充视频 +- 视频讲解(部分课程) +- [课前热身测验](https://ff-quizzes.netlify.app/en/ml/) +- 书面课程内容 +- 项目课程包含构建项目的逐步指导 +- 知识点检查 +- 挑战任务 +- 补充阅读材料 +- 作业 +- [课后测验](https://ff-quizzes.netlify.app/en/ml/) + +> **关于语言说明**:这些课程主要用 Python 编写,但很多课程也提供 R 语言版本。要完成 R 课程,请到 `/solution` 文件夹中查找带有 `.rmd` 扩展名的文件,它代表**R Markdown**文件,即将代码块(R 或其他语言)和一个指导如何格式化输出(如PDF)的 `YAML` 头部嵌入到一个 Markdown 文档中。因此,它是数据科学创作的优秀框架,因为你可以将代码、代码输出和你的想法一并写入 Markdown。R Markdown 文档也可以渲染成 PDF、HTML 或 Word 等输出格式。 +> **关于测验的说明**:所有测验都包含在[测验应用文件夹](../../quiz-app)中,共52个测验,每个测验包含三个问题。测验链接嵌入在课程中,但测验应用可以在本地运行;请按照`quiz-app`文件夹中的说明在本地托管或部署到 Azure。 + +| 课程编号 | 主题 | 课程分组 | 学习目标 | 相关课程 | 作者 | +| :------: | :------------------------------------------------------------: | :------------------------------------------: | ---------------------------------------------------------------------------------------------------------------------------- | :-------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------: | +| 01 | 机器学习简介 | [介绍](1-Introduction/README.md) | 学习机器学习背后的基本概念 | [课程](1-Introduction/1-intro-to-ML/README.md) | Muhammad | +| 02 | 机器学习的历史 | [介绍](1-Introduction/README.md) | 了解该领域背后的历史 | [课程](1-Introduction/2-history-of-ML/README.md) | Jen 和 Amy | +| 03 | 公平性与机器学习 | [介绍](1-Introduction/README.md) | 学生在构建和应用机器学习模型时应考虑的重要哲学性公平问题是什么? | [课程](1-Introduction/3-fairness/README.md) | Tomomi | +| 04 | 机器学习技术 | [介绍](1-Introduction/README.md) | 机器学习研究人员使用哪些技术来构建机器学习模型? | [课程](1-Introduction/4-techniques-of-ML/README.md) | Chris 和 Jen | +| 05 | 回归简介 | [回归](2-Regression/README.md) | 使用 Python 和 Scikit-learn 开始回归模型的学习 | [Python](2-Regression/1-Tools/README.md) • [R](../../2-Regression/1-Tools/solution/R/lesson_1.html) | Jen • Eric Wanjau | +| 06 | 北美南瓜价格 🎃 | [回归](2-Regression/README.md) | 可视化并清理数据以准备机器学习 | [Python](2-Regression/2-Data/README.md) • [R](../../2-Regression/2-Data/solution/R/lesson_2.html) | Jen • Eric Wanjau | +| 07 | 北美南瓜价格 🎃 | [回归](2-Regression/README.md) | 构建线性和多项式回归模型 | [Python](2-Regression/3-Linear/README.md) • [R](../../2-Regression/3-Linear/solution/R/lesson_3.html) | Jen 和 Dmitry • Eric Wanjau | +| 08 | 北美南瓜价格 🎃 | [回归](2-Regression/README.md) | 构建逻辑回归模型 | [Python](2-Regression/4-Logistic/README.md) • [R](../../2-Regression/4-Logistic/solution/R/lesson_4.html) | Jen • Eric Wanjau | +| 09 | Web 应用 🔌 | [Web App](3-Web-App/README.md) | 构建一个使用您训练模型的网页应用 | [Python](3-Web-App/1-Web-App/README.md) | Jen | +| 10 | 分类简介 | [分类](4-Classification/README.md) | 清理、准备并可视化您的数据;分类简介 | [Python](4-Classification/1-Introduction/README.md) • [R](../../4-Classification/1-Introduction/solution/R/lesson_10.html) | Jen 和 Cassie • Eric Wanjau | +| 11 | 美味的亚洲和印度美食 🍜 | [分类](4-Classification/README.md) | 分类器简介 | [Python](4-Classification/2-Classifiers-1/README.md) • [R](../../4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | Jen 和 Cassie • Eric Wanjau | +| 12 | 美味的亚洲和印度美食 🍜 | [分类](4-Classification/README.md) | 更多分类器 | [Python](4-Classification/3-Classifiers-2/README.md) • [R](../../4-Classification/3-Classifiers-2/solution/R/lesson_12.html) | Jen 和 Cassie • Eric Wanjau | +| 13 | 美味的亚洲和印度美食 🍜 | [分类](4-Classification/README.md) | 使用您的模型构建推荐网页应用 | [Python](4-Classification/4-Applied/README.md) | Jen | +| 14 | 聚类简介 | [聚类](5-Clustering/README.md) | 清理、准备并可视化您的数据;聚类简介 | [Python](5-Clustering/1-Visualize/README.md) • [R](../../5-Clustering/1-Visualize/solution/R/lesson_14.html) | Jen • Eric Wanjau | +| 15 | 探索尼日利亚音乐品味 🎧 | [聚类](5-Clustering/README.md) | 探索 K-均值聚类方法 | [Python](5-Clustering/2-K-Means/README.md) • [R](../../5-Clustering/2-K-Means/solution/R/lesson_15.html) | Jen • Eric Wanjau | +| 16 | 自然语言处理简介 ☕️ | [自然语言处理](6-NLP/README.md) | 通过构建简单的机器人学习自然语言处理基础 | [Python](6-NLP/1-Introduction-to-NLP/README.md) | Stephen | +| 17 | 常见的 NLP 任务 ☕️ | [自然语言处理](6-NLP/README.md) | 通过了解处理语言结构时所需的常见任务,深化您的 NLP 知识 | [Python](6-NLP/2-Tasks/README.md) | Stephen | +| 18 | 翻译和情感分析 ♥️ | [自然语言处理](6-NLP/README.md) | 使用简·奥斯汀进行翻译和情感分析 | [Python](6-NLP/3-Translation-Sentiment/README.md) | Stephen | +| 19 | 欧洲浪漫酒店 ♥️ | [自然语言处理](6-NLP/README.md) | 使用酒店评论进行情感分析 1 | [Python](6-NLP/4-Hotel-Reviews-1/README.md) | Stephen | +| 20 | 欧洲浪漫酒店 ♥️ | [自然语言处理](6-NLP/README.md) | 使用酒店评论进行情感分析 2 | [Python](6-NLP/5-Hotel-Reviews-2/README.md) | Stephen | +| 21 | 时间序列预测简介 | [时间序列](7-TimeSeries/README.md) | 时间序列预测简介 | [Python](7-TimeSeries/1-Introduction/README.md) | Francesca | +| 22 | ⚡️ 世界电力使用 ⚡️ - 使用 ARIMA 进行时间序列预测 | [时间序列](7-TimeSeries/README.md) | 使用 ARIMA 进行时间序列预测 | [Python](7-TimeSeries/2-ARIMA/README.md) | Francesca | +| 23 | ⚡️ 世界电力使用 ⚡️ - 使用 SVR 进行时间序列预测 | [时间序列](7-TimeSeries/README.md) | 使用支持向量回归器进行时间序列预测 | [Python](7-TimeSeries/3-SVR/README.md) | Anirban | +| 24 | 强化学习简介 | [强化学习](8-Reinforcement/README.md) | 使用 Q 学习入门强化学习 | [Python](8-Reinforcement/1-QLearning/README.md) | Dmitry | +| 25 | 帮助彼得躲避狼!🐺 | [强化学习](8-Reinforcement/README.md) | 强化学习 Gym | [Python](8-Reinforcement/2-Gym/README.md) | Dmitry | +| 附录 | 现实世界的机器学习场景与应用 | [野外机器学习](9-Real-World/README.md) | 经典机器学习的有趣且发人深省的现实应用 | [课程](9-Real-World/1-Applications/README.md) | 团队 | +| 附录 | 使用 RAI 仪表盘进行机器学习模型调试 | [野外机器学习](9-Real-World/README.md) | 使用负责任的 AI 仪表盘组件进行机器学习模型调试 | [课程](9-Real-World/2-Debugging-ML-Models/README.md) | Ruth Yakubu | + +> [在我们的 Microsoft Learn 集合中查找本课程的所有附加资源](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) + +## 离线访问 + +您可以通过使用[Docsify](https://docsify.js.org/#/)离线运行此文档。分叉此仓库,在您的本地机器上[安装 Docsify](https://docsify.js.org/#/quickstart),然后在此仓库的根文件夹中键入`docsify serve`。该网站将通过本地端口3000提供服务:`localhost:3000`。 + +## PDF 文件 + +在[这里](https://microsoft.github.io/ML-For-Beginners/pdf/readme.pdf)找到带有链接的课程大纲的 PDF 文件。 + +## 🎒 其他课程 + +我们的团队还制作其他课程!请查看: + + +### LangChain +[![LangChain4j 初学者](https://img.shields.io/badge/LangChain4j%20for%20Beginners-22C55E?style=for-the-badge&&labelColor=E5E7EB&color=0553D6)](https://aka.ms/langchain4j-for-beginners) +[![LangChain.js 初学者](https://img.shields.io/badge/LangChain.js%20for%20Beginners-22C55E?style=for-the-badge&labelColor=E5E7EB&color=0553D6)](https://aka.ms/langchainjs-for-beginners?WT.mc_id=m365-94501-dwahlin) + +--- + +### Azure / Edge / MCP / Agents +[![AZD 初学者](https://img.shields.io/badge/AZD%20for%20Beginners-0078D4?style=for-the-badge&labelColor=E5E7EB&color=0078D4)](https://github.com/microsoft/AZD-for-beginners?WT.mc_id=academic-105485-koreyst) +[![Edge AI 初学者](https://img.shields.io/badge/Edge%20AI%20for%20Beginners-00B8E4?style=for-the-badge&labelColor=E5E7EB&color=00B8E4)](https://github.com/microsoft/edgeai-for-beginners?WT.mc_id=academic-105485-koreyst) +[![MCP 初学者](https://img.shields.io/badge/MCP%20for%20Beginners-009688?style=for-the-badge&labelColor=E5E7EB&color=009688)](https://github.com/microsoft/mcp-for-beginners?WT.mc_id=academic-105485-koreyst) +[![AI 代理初学者](https://img.shields.io/badge/AI%20Agents%20for%20Beginners-00C49A?style=for-the-badge&labelColor=E5E7EB&color=00C49A)](https://github.com/microsoft/ai-agents-for-beginners?WT.mc_id=academic-105485-koreyst) + +--- + +### 生成式 AI 系列 +[![Generative AI for Beginners](https://img.shields.io/badge/Generative%20AI%20for%20Beginners-8B5CF6?style=for-the-badge&labelColor=E5E7EB&color=8B5CF6)](https://github.com/microsoft/generative-ai-for-beginners?WT.mc_id=academic-105485-koreyst) +[![Generative AI (.NET)](https://img.shields.io/badge/Generative%20AI%20(.NET)-9333EA?style=for-the-badge&labelColor=E5E7EB&color=9333EA)](https://github.com/microsoft/Generative-AI-for-beginners-dotnet?WT.mc_id=academic-105485-koreyst) +[![Generative AI (Java)](https://img.shields.io/badge/Generative%20AI%20(Java)-C084FC?style=for-the-badge&labelColor=E5E7EB&color=C084FC)](https://github.com/microsoft/generative-ai-for-beginners-java?WT.mc_id=academic-105485-koreyst) +[![Generative AI (JavaScript)](https://img.shields.io/badge/Generative%20AI%20(JavaScript)-E879F9?style=for-the-badge&labelColor=E5E7EB&color=E879F9)](https://github.com/microsoft/generative-ai-with-javascript?WT.mc_id=academic-105485-koreyst) + +--- + +### 核心学习 +[![ML for Beginners](https://img.shields.io/badge/ML%20for%20Beginners-22C55E?style=for-the-badge&labelColor=E5E7EB&color=22C55E)](https://aka.ms/ml-beginners?WT.mc_id=academic-105485-koreyst) +[![Data Science for Beginners](https://img.shields.io/badge/Data%20Science%20for%20Beginners-84CC16?style=for-the-badge&labelColor=E5E7EB&color=84CC16)](https://aka.ms/datascience-beginners?WT.mc_id=academic-105485-koreyst) +[![AI for Beginners](https://img.shields.io/badge/AI%20for%20Beginners-A3E635?style=for-the-badge&labelColor=E5E7EB&color=A3E635)](https://aka.ms/ai-beginners?WT.mc_id=academic-105485-koreyst) +[![Cybersecurity for Beginners](https://img.shields.io/badge/Cybersecurity%20for%20Beginners-F97316?style=for-the-badge&labelColor=E5E7EB&color=F97316)](https://github.com/microsoft/Security-101?WT.mc_id=academic-96948-sayoung) +[![Web Dev for Beginners](https://img.shields.io/badge/Web%20Dev%20for%20Beginners-EC4899?style=for-the-badge&labelColor=E5E7EB&color=EC4899)](https://aka.ms/webdev-beginners?WT.mc_id=academic-105485-koreyst) +[![IoT for Beginners](https://img.shields.io/badge/IoT%20for%20Beginners-14B8A6?style=for-the-badge&labelColor=E5E7EB&color=14B8A6)](https://aka.ms/iot-beginners?WT.mc_id=academic-105485-koreyst) +[![XR Development for Beginners](https://img.shields.io/badge/XR%20Development%20for%20Beginners-38BDF8?style=for-the-badge&labelColor=E5E7EB&color=38BDF8)](https://github.com/microsoft/xr-development-for-beginners?WT.mc_id=academic-105485-koreyst) + +--- + +### Copilot 系列 +[![Copilot for AI Paired Programming](https://img.shields.io/badge/Copilot%20for%20AI%20Paired%20Programming-FACC15?style=for-the-badge&labelColor=E5E7EB&color=FACC15)](https://aka.ms/GitHubCopilotAI?WT.mc_id=academic-105485-koreyst) +[![Copilot for C#/.NET](https://img.shields.io/badge/Copilot%20for%20C%23/.NET-FBBF24?style=for-the-badge&labelColor=E5E7EB&color=FBBF24)](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers?WT.mc_id=academic-105485-koreyst) +[![Copilot Adventure](https://img.shields.io/badge/Copilot%20Adventure-FDE68A?style=for-the-badge&labelColor=E5E7EB&color=FDE68A)](https://github.com/microsoft/CopilotAdventures?WT.mc_id=academic-105485-koreyst) + + +## 获取帮助 + +如果您遇到困难或对构建 AI 应用程序有任何疑问,请加入学习者和经验丰富的开发者们的讨论社区 MCP。这里是一个支持性的社区,欢迎提问并自由分享知识。 + +[![Microsoft Foundry Discord](https://dcbadge.limes.pink/api/server/nTYy5BXMWG)](https://discord.gg/nTYy5BXMWG) + +如果您在构建过程中有产品反馈或遇到错误,请访问: + +[![Microsoft Foundry Developer Forum](https://img.shields.io/badge/GitHub-Microsoft_Foundry_Developer_Forum-blue?style=for-the-badge&logo=github&color=000000&logoColor=fff)](https://aka.ms/foundry/forum) + +--- + + +**免责声明**: +本文件由 AI 翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻译。尽管我们力求准确,但请注意自动翻译可能包含错误或不准确之处。原始语言版本的文件应被视为权威来源。对于重要信息,建议采用专业人工翻译。我们不对因使用本翻译而引起的任何误解或误释承担任何责任。 + \ No newline at end of file diff --git a/translations/zh-CN/SECURITY.md b/translations/zh-CN/SECURITY.md new file mode 100644 index 000000000..592a633a1 --- /dev/null +++ b/translations/zh-CN/SECURITY.md @@ -0,0 +1,42 @@ +## 安全性 + +微软非常重视我们软件产品和服务的安全性,这包括通过我们的 GitHub 组织管理的所有源代码库,这些组织包括 [Microsoft](https://github.com/Microsoft)、[Azure](https://github.com/Azure)、[DotNet](https://github.com/dotnet)、[AspNet](https://github.com/aspnet)、[Xamarin](https://github.com/xamarin) 以及 [我们的 GitHub 组织](https://opensource.microsoft.com/)。 + +如果您认为在任何微软拥有的代码库中发现了符合 [微软安全漏洞定义](https://docs.microsoft.com/previous-versions/tn-archive/cc751383(v=technet.10)?WT.mc_id=academic-77952-leestott) 的安全漏洞,请按照以下描述向我们报告。 + +## 报告安全问题 + +**请不要通过公开的 GitHub 问题报告安全漏洞。** + +相反,请通过微软安全响应中心 (MSRC) 报告,网址为 [https://msrc.microsoft.com/create-report](https://msrc.microsoft.com/create-report)。 + +如果您希望在不登录的情况下提交报告,可以发送电子邮件至 [secure@microsoft.com](mailto:secure@microsoft.com)。如果可能,请使用我们的 PGP 密钥加密您的消息;您可以从 [微软安全响应中心 PGP 密钥页面](https://www.microsoft.com/en-us/msrc/pgp-key-msrc) 下载密钥。 + +您应该会在 24 小时内收到回复。如果由于某种原因未收到回复,请通过电子邮件进行跟进,以确保我们收到了您的原始消息。更多信息可以在 [microsoft.com/msrc](https://www.microsoft.com/msrc) 找到。 + +请尽可能提供以下所需信息,以帮助我们更好地理解问题的性质和范围: + + * 问题类型(例如缓冲区溢出、SQL 注入、跨站脚本攻击等) + * 与问题表现相关的源文件的完整路径 + * 受影响源代码的位置(标签/分支/提交或直接 URL) + * 重现问题所需的任何特殊配置 + * 重现问题的逐步说明 + * 概念验证或漏洞利用代码(如果可能) + * 问题的影响,包括攻击者可能如何利用该问题 + +这些信息将帮助我们更快地处理您的报告。 + +如果您是为漏洞赏金计划报告问题,更完整的报告可能会获得更高的赏金奖励。请访问我们的 [微软漏洞赏金计划](https://microsoft.com/msrc/bounty) 页面,了解有关我们当前计划的更多详情。 + +## 首选语言 + +我们希望所有交流均使用英语。 + +## 政策 + +微软遵循 [协调漏洞披露](https://www.microsoft.com/en-us/msrc/cvd) 原则。 + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/SUPPORT.md b/translations/zh-CN/SUPPORT.md new file mode 100644 index 000000000..ed355fe39 --- /dev/null +++ b/translations/zh-CN/SUPPORT.md @@ -0,0 +1,20 @@ +# 支持 +## 如何提交问题并获得帮助 + +在提交问题之前,请先查看我们的 [故障排除指南](TROUBLESHOOTING.md),以解决安装、设置和运行课程时的常见问题。 + +此项目使用 GitHub Issues 来跟踪错误和功能请求。在提交新问题之前,请先搜索现有问题以避免重复。对于新问题,请将您的错误或功能请求作为新问题提交。 + +如果您需要帮助或对使用此项目有疑问,也可以: +- 查看 [故障排除指南](TROUBLESHOOTING.md) +- 访问我们的 [Discord 讨论 #ml-for-beginners 频道](https://aka.ms/foundry/discord) +- 提交问题 + +## Microsoft 支持政策 + +对该存储库的支持仅限于上述资源。 + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/TROUBLESHOOTING.md b/translations/zh-CN/TROUBLESHOOTING.md new file mode 100644 index 000000000..59a4f7ee7 --- /dev/null +++ b/translations/zh-CN/TROUBLESHOOTING.md @@ -0,0 +1,601 @@ +# 故障排查指南 + +本指南帮助您解决使用《机器学习初学者》课程时常见的问题。如果您在这里找不到解决方案,请查看我们的[Discord讨论](https://aka.ms/foundry/discord)或[提交问题](https://github.com/microsoft/ML-For-Beginners/issues)。 + +## 目录 + +- [安装问题](../..) +- [Jupyter Notebook问题](../..) +- [Python包问题](../..) +- [R环境问题](../..) +- [测验应用问题](../..) +- [数据和文件路径问题](../..) +- [常见错误信息](../..) +- [性能问题](../..) +- [环境和配置](../..) + +--- + +## 安装问题 + +### Python安装 + +**问题**:`python: command not found` + +**解决方案**: +1. 从[python.org](https://www.python.org/downloads/)安装Python 3.8或更高版本 +2. 验证安装:`python --version`或`python3 --version` +3. 在macOS/Linux上,可能需要使用`python3`而不是`python` + +**问题**:多个Python版本导致冲突 + +**解决方案**: +```bash +# Use virtual environments to isolate projects +python -m venv ml-env + +# Activate virtual environment +# On Windows: +ml-env\Scripts\activate +# On macOS/Linux: +source ml-env/bin/activate +``` + +### Jupyter安装 + +**问题**:`jupyter: command not found` + +**解决方案**: +```bash +# Install Jupyter +pip install jupyter + +# Or with pip3 +pip3 install jupyter + +# Verify installation +jupyter --version +``` + +**问题**:Jupyter无法在浏览器中启动 + +**解决方案**: +```bash +# Try specifying the browser +jupyter notebook --browser=chrome + +# Or copy the URL with token from terminal and paste in browser manually +# Look for: http://localhost:8888/?token=... +``` + +### R安装 + +**问题**:R包无法安装 + +**解决方案**: +```r +# Ensure you have the latest R version +# Install packages with dependencies +install.packages(c("tidyverse", "tidymodels", "caret"), dependencies = TRUE) + +# If compilation fails, try installing binary versions +install.packages("package-name", type = "binary") +``` + +**问题**:IRkernel在Jupyter中不可用 + +**解决方案**: +```r +# In R console +install.packages('IRkernel') +IRkernel::installspec(user = TRUE) +``` + +--- + +## Jupyter Notebook问题 + +### 内核问题 + +**问题**:内核不断崩溃或重启 + +**解决方案**: +1. 重启内核:`Kernel → Restart` +2. 清除输出并重启:`Kernel → Restart & Clear Output` +3. 检查内存问题(参见[性能问题](../..)) +4. 尝试逐个运行单元格以识别问题代码 + +**问题**:选择了错误的Python内核 + +**解决方案**: +1. 检查当前内核:`Kernel → Change Kernel` +2. 选择正确的Python版本 +3. 如果内核缺失,请创建: +```bash +python -m ipykernel install --user --name=ml-env +``` + +**问题**:内核无法启动 + +**解决方案**: +```bash +# Reinstall ipykernel +pip uninstall ipykernel +pip install ipykernel + +# Register the kernel again +python -m ipykernel install --user +``` + +### Notebook单元格问题 + +**问题**:单元格正在运行但不显示输出 + +**解决方案**: +1. 检查单元格是否仍在运行(查看`[*]`指示器) +2. 重启内核并运行所有单元格:`Kernel → Restart & Run All` +3. 检查浏览器控制台是否有JavaScript错误(按F12) + +**问题**:无法运行单元格——点击“运行”无响应 + +**解决方案**: +1. 检查Jupyter服务器是否仍在终端中运行 +2. 刷新浏览器页面 +3. 关闭并重新打开Notebook +4. 重启Jupyter服务器 + +--- + +## Python包问题 + +### 导入错误 + +**问题**:`ModuleNotFoundError: No module named 'sklearn'` + +**解决方案**: +```bash +pip install scikit-learn + +# Common ML packages for this course +pip install scikit-learn pandas numpy matplotlib seaborn +``` + +**问题**:`ImportError: cannot import name 'X' from 'sklearn'` + +**解决方案**: +```bash +# Update scikit-learn to latest version +pip install --upgrade scikit-learn + +# Check version +python -c "import sklearn; print(sklearn.__version__)" +``` + +### 版本冲突 + +**问题**:包版本不兼容错误 + +**解决方案**: +```bash +# Create a new virtual environment +python -m venv fresh-env +source fresh-env/bin/activate # or fresh-env\Scripts\activate on Windows + +# Install packages fresh +pip install jupyter scikit-learn pandas numpy matplotlib seaborn + +# If specific version needed +pip install scikit-learn==1.3.0 +``` + +**问题**:`pip install`因权限错误失败 + +**解决方案**: +```bash +# Install for current user only +pip install --user package-name + +# Or use virtual environment (recommended) +python -m venv venv +source venv/bin/activate +pip install package-name +``` + +### 数据加载问题 + +**问题**:加载CSV文件时出现`FileNotFoundError` + +**解决方案**: +```python +import os +# Check current working directory +print(os.getcwd()) + +# Use relative paths from notebook location +df = pd.read_csv('../../data/filename.csv') + +# Or use absolute paths +df = pd.read_csv('/full/path/to/data/filename.csv') +``` + +--- + +## R环境问题 + +### 包安装 + +**问题**:包安装因编译错误失败 + +**解决方案**: +```r +# Install binary version (Windows/macOS) +install.packages("package-name", type = "binary") + +# Update R to latest version if packages require it +# Check R version +R.version.string + +# Install system dependencies (Linux) +# For Ubuntu/Debian, in terminal: +# sudo apt-get install r-base-dev +``` + +**问题**:`tidyverse`无法安装 + +**解决方案**: +```r +# Install dependencies first +install.packages(c("rlang", "vctrs", "pillar")) + +# Then install tidyverse +install.packages("tidyverse") + +# Or install components individually +install.packages(c("dplyr", "ggplot2", "tidyr", "readr")) +``` + +### RMarkdown问题 + +**问题**:RMarkdown无法渲染 + +**解决方案**: +```r +# Install/update rmarkdown +install.packages("rmarkdown") + +# Install pandoc if needed +install.packages("pandoc") + +# For PDF output, install tinytex +install.packages("tinytex") +tinytex::install_tinytex() +``` + +--- + +## 测验应用问题 + +### 构建和安装 + +**问题**:`npm install`失败 + +**解决方案**: +```bash +# Clear npm cache +npm cache clean --force + +# Remove node_modules and package-lock.json +rm -rf node_modules package-lock.json + +# Reinstall +npm install + +# If still fails, try with legacy peer deps +npm install --legacy-peer-deps +``` + +**问题**:端口8080已被占用 + +**解决方案**: +```bash +# Use different port +npm run serve -- --port 8081 + +# Or find and kill process using port 8080 +# On Linux/macOS: +lsof -ti:8080 | xargs kill -9 + +# On Windows: +netstat -ano | findstr :8080 +taskkill /PID /F +``` + +### 构建错误 + +**问题**:`npm run build`失败 + +**解决方案**: +```bash +# Check Node.js version (should be 14+) +node --version + +# Update Node.js if needed +# Then clean install +rm -rf node_modules package-lock.json +npm install +npm run build +``` + +**问题**:Linting错误阻止构建 + +**解决方案**: +```bash +# Fix auto-fixable issues +npm run lint -- --fix + +# Or temporarily disable linting in build +# (not recommended for production) +``` + +--- + +## 数据和文件路径问题 + +### 路径问题 + +**问题**:运行Notebook时找不到数据文件 + +**解决方案**: +1. **始终从包含Notebook的目录运行** + ```bash + cd /path/to/lesson/folder + jupyter notebook + ``` + +2. **检查代码中的相对路径** + ```python + # Correct path from notebook location + df = pd.read_csv('../data/filename.csv') + + # Not from your terminal location + ``` + +3. **必要时使用绝对路径** + ```python + import os + base_path = os.path.dirname(os.path.abspath(__file__)) + data_path = os.path.join(base_path, 'data', 'filename.csv') + ``` + +### 数据文件丢失 + +**问题**:数据集文件丢失 + +**解决方案**: +1. 检查数据是否应该在仓库中——大多数数据集都已包含 +2. 某些课程可能需要下载数据——请查看课程README +3. 确保您已拉取最新的更改: + ```bash + git pull origin main + ``` + +--- + +## 常见错误信息 + +### 内存错误 + +**错误**:处理数据时出现`MemoryError`或内核崩溃 + +**解决方案**: +```python +# Load data in chunks +for chunk in pd.read_csv('large_file.csv', chunksize=10000): + process(chunk) + +# Or read only needed columns +df = pd.read_csv('file.csv', usecols=['col1', 'col2']) + +# Free memory when done +del large_dataframe +import gc +gc.collect() +``` + +### 收敛警告 + +**警告**:`ConvergenceWarning: Maximum number of iterations reached` + +**解决方案**: +```python +from sklearn.linear_model import LogisticRegression + +# Increase max iterations +model = LogisticRegression(max_iter=1000) + +# Or scale your features first +from sklearn.preprocessing import StandardScaler +scaler = StandardScaler() +X_scaled = scaler.fit_transform(X) +``` + +### 绘图问题 + +**问题**:Jupyter中不显示图表 + +**解决方案**: +```python +# Enable inline plotting +%matplotlib inline + +# Import pyplot +import matplotlib.pyplot as plt + +# Show plot explicitly +plt.plot(data) +plt.show() +``` + +**问题**:Seaborn图表显示异常或报错 + +**解决方案**: +```python +import warnings +warnings.filterwarnings('ignore', category=UserWarning) + +# Update to compatible version +# pip install --upgrade seaborn matplotlib +``` + +### Unicode/编码错误 + +**问题**:读取文件时出现`UnicodeDecodeError` + +**解决方案**: +```python +# Specify encoding explicitly +df = pd.read_csv('file.csv', encoding='utf-8') + +# Or try different encoding +df = pd.read_csv('file.csv', encoding='latin-1') + +# For errors='ignore' to skip problematic characters +df = pd.read_csv('file.csv', encoding='utf-8', errors='ignore') +``` + +--- + +## 性能问题 + +### Notebook执行缓慢 + +**问题**:Notebook运行速度非常慢 + +**解决方案**: +1. **重启内核释放内存**:`Kernel → Restart` +2. **关闭未使用的Notebook**以释放资源 +3. **使用较小的数据样本进行测试**: + ```python + # Work with subset during development + df_sample = df.sample(n=1000) + ``` +4. **分析代码性能**以找到瓶颈: + ```python + %time operation() # Time single operation + %timeit operation() # Time with multiple runs + ``` + +### 高内存使用 + +**问题**:系统内存不足 + +**解决方案**: +```python +# Check memory usage +df.info(memory_usage='deep') + +# Optimize data types +df['column'] = df['column'].astype('int32') # Instead of int64 + +# Drop unnecessary columns +df = df[['col1', 'col2']] # Keep only needed columns + +# Process in batches +for batch in np.array_split(df, 10): + process(batch) +``` + +--- + +## 环境和配置 + +### 虚拟环境问题 + +**问题**:虚拟环境未激活 + +**解决方案**: +```bash +# Windows +python -m venv venv +venv\Scripts\activate.bat + +# macOS/Linux +python3 -m venv venv +source venv/bin/activate + +# Check if activated (should show venv name in prompt) +which python # Should point to venv python +``` + +**问题**:包已安装但在Notebook中找不到 + +**解决方案**: +```bash +# Ensure notebook uses the correct kernel +# Install ipykernel in your venv +pip install ipykernel +python -m ipykernel install --user --name=ml-env --display-name="Python (ml-env)" + +# In Jupyter: Kernel → Change Kernel → Python (ml-env) +``` + +### Git问题 + +**问题**:无法拉取最新更改——出现合并冲突 + +**解决方案**: +```bash +# Stash your changes +git stash + +# Pull latest +git pull origin main + +# Reapply your changes +git stash pop + +# If conflicts, resolve manually or: +git checkout --theirs path/to/file # Take remote version +git checkout --ours path/to/file # Keep your version +``` + +### VS Code集成 + +**问题**:Jupyter Notebook无法在VS Code中打开 + +**解决方案**: +1. 在VS Code中安装Python扩展 +2. 在VS Code中安装Jupyter扩展 +3. 选择正确的Python解释器:`Ctrl+Shift+P` → "Python: Select Interpreter" +4. 重启VS Code + +--- + +## 其他资源 + +- **Discord讨论**:[在#ml-for-beginners频道提问并分享解决方案](https://aka.ms/foundry/discord) +- **Microsoft Learn**:[机器学习初学者模块](https://learn.microsoft.com/en-us/collections/qrqzamz1nn2wx3?WT.mc_id=academic-77952-bethanycheum) +- **视频教程**:[YouTube播放列表](https://aka.ms/ml-beginners-videos) +- **问题追踪器**:[报告错误](https://github.com/microsoft/ML-For-Beginners/issues) + +--- + +## 仍有问题? + +如果您尝试了上述解决方案但仍然遇到问题: + +1. **搜索现有问题**:[GitHub Issues](https://github.com/microsoft/ML-For-Beginners/issues) +2. **查看Discord讨论**:[Discord Discussions](https://aka.ms/foundry/discord) +3. **提交新问题**:包括以下内容: + - 您的操作系统及版本 + - Python/R版本 + - 错误信息(完整回溯) + - 重现问题的步骤 + - 您已尝试的解决方法 + +我们随时为您提供帮助!🚀 + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/docs/_sidebar.md b/translations/zh-CN/docs/_sidebar.md new file mode 100644 index 000000000..d912a1dfd --- /dev/null +++ b/translations/zh-CN/docs/_sidebar.md @@ -0,0 +1,48 @@ +- 简介 + - [机器学习简介](../1-Introduction/1-intro-to-ML/README.md) + - [机器学习的历史](../1-Introduction/2-history-of-ML/README.md) + - [机器学习与公平性](../1-Introduction/3-fairness/README.md) + - [机器学习的技术](../1-Introduction/4-techniques-of-ML/README.md) + +- 回归 + - [实用工具](../2-Regression/1-Tools/README.md) + - [数据](../2-Regression/2-Data/README.md) + - [线性回归](../2-Regression/3-Linear/README.md) + - [逻辑回归](../2-Regression/4-Logistic/README.md) + +- 构建一个网页应用 + - [网页应用](../3-Web-App/1-Web-App/README.md) + +- 分类 + - [分类简介](../4-Classification/1-Introduction/README.md) + - [分类器 1](../4-Classification/2-Classifiers-1/README.md) + - [分类器 2](../4-Classification/3-Classifiers-2/README.md) + - [应用机器学习](../4-Classification/4-Applied/README.md) + +- 聚类 + - [数据可视化](../5-Clustering/1-Visualize/README.md) + - [K-Means](../5-Clustering/2-K-Means/README.md) + +- 自然语言处理 + - [自然语言处理简介](../6-NLP/1-Introduction-to-NLP/README.md) + - [自然语言处理任务](../6-NLP/2-Tasks/README.md) + - [翻译与情感分析](../6-NLP/3-Translation-Sentiment/README.md) + - [酒店评论 1](../6-NLP/4-Hotel-Reviews-1/README.md) + - [酒店评论 2](../6-NLP/5-Hotel-Reviews-2/README.md) + +- 时间序列预测 + - [时间序列预测简介](../7-TimeSeries/1-Introduction/README.md) + - [ARIMA](../7-TimeSeries/2-ARIMA/README.md) + - [SVR](../7-TimeSeries/3-SVR/README.md) + +- 强化学习 + - [Q-Learning](../8-Reinforcement/1-QLearning/README.md) + - [Gym](../8-Reinforcement/2-Gym/README.md) + +- 真实世界中的机器学习 + - [应用](../9-Real-World/1-Applications/README.md) + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/for-teachers.md b/translations/zh-CN/for-teachers.md new file mode 100644 index 000000000..7792f4c1d --- /dev/null +++ b/translations/zh-CN/for-teachers.md @@ -0,0 +1,28 @@ +## 给教育工作者 + +您想在课堂上使用这套课程吗?请随意使用! + +事实上,您可以直接在 GitHub 上使用它,通过 GitHub Classroom 来实现。 + +为此,您需要 fork 此仓库。您需要为每节课创建一个单独的仓库,因此需要将每个文件夹提取到一个独立的仓库中。这样,[GitHub Classroom](https://classroom.github.com/classrooms) 就可以单独识别每节课。 + +这些[完整的说明](https://github.blog/2020-03-18-set-up-your-digital-classroom-with-github-classroom/)可以帮助您了解如何设置您的课堂。 + +## 按现有形式使用仓库 + +如果您希望按当前形式使用此仓库,而不使用 GitHub Classroom,也完全可以实现。您需要与您的学生沟通,共同决定要学习的课程。 + +在在线教学环境中(如 Zoom、Teams 或其他平台),您可以为测验创建分组讨论室,并指导学生做好学习准备。然后邀请学生参加测验,并在规定时间内以“问题”的形式提交答案。如果您希望学生公开协作完成作业,也可以采用类似的方式。 + +如果您更倾向于私密的教学方式,可以让学生逐课 fork 课程到他们自己的 GitHub 私有仓库,并授予您访问权限。这样,他们可以私下完成测验和作业,并通过您课堂仓库中的问题提交给您。 + +在在线课堂环境中,有很多方法可以让这套课程发挥作用。请告诉我们哪种方式最适合您! + +## 请告诉我们您的想法! + +我们希望这套课程能够满足您和您学生的需求。请通过[反馈](https://forms.microsoft.com/Pages/ResponsePage.aspx?id=v4j5cvGGr0GRqy180BHbR2humCsRZhxNuI79cm6n0hRUQzRVVU9VVlU5UlFLWTRLWlkyQUxORTg5WS4u)告诉我们您的意见! + +--- + +**免责声明**: +本文档使用AI翻译服务 [Co-op Translator](https://github.com/Azure/co-op-translator) 进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/quiz-app/README.md b/translations/zh-CN/quiz-app/README.md new file mode 100644 index 000000000..faf68f16c --- /dev/null +++ b/translations/zh-CN/quiz-app/README.md @@ -0,0 +1,118 @@ +# 测验 + +这些测验是 ML 课程(https://aka.ms/ml-beginners)的课前和课后测验。 + +## 项目设置 + +``` +npm install +``` + +### 编译并热加载用于开发 + +``` +npm run serve +``` + +### 编译并压缩用于生产 + +``` +npm run build +``` + +### 检查并修复文件 + +``` +npm run lint +``` + +### 自定义配置 + +请参阅 [配置参考](https://cli.vuejs.org/config/)。 + +致谢:感谢此测验应用的原始版本:https://github.com/arpan45/simple-quiz-vue + +## 部署到 Azure + +以下是帮助您入门的分步指南: + +1. Fork 一个 GitHub 仓库 +确保您的静态 Web 应用代码在您的 GitHub 仓库中。Fork 此仓库。 + +2. 创建一个 Azure 静态 Web 应用 +- 创建一个 [Azure 账户](http://azure.microsoft.com) +- 访问 [Azure 门户](https://portal.azure.com) +- 点击“创建资源”,搜索“静态 Web 应用”。 +- 点击“创建”。 + +3. 配置静态 Web 应用 +- 基本信息: + - 订阅:选择您的 Azure 订阅。 + - 资源组:创建一个新的资源组或使用现有的资源组。 + - 名称:为您的静态 Web 应用提供一个名称。 + - 区域:选择离您的用户最近的区域。 + +- #### 部署详情: + - 来源:选择“GitHub”。 + - GitHub 账户:授权 Azure 访问您的 GitHub 账户。 + - 组织:选择您的 GitHub 组织。 + - 仓库:选择包含静态 Web 应用的仓库。 + - 分支:选择您希望部署的分支。 + +- #### 构建详情: + - 构建预设:选择您的应用所使用的框架(例如 React、Angular、Vue 等)。 + - 应用位置:指定包含应用代码的文件夹(例如,如果在根目录则为 /)。 + - API 位置:如果有 API,请指定其位置(可选)。 + - 输出位置:指定生成构建输出的文件夹(例如 build 或 dist)。 + +4. 审核并创建 +审核您的设置并点击“创建”。Azure 将设置必要的资源,并在您的仓库中创建一个 GitHub Actions 工作流。 + +5. GitHub Actions 工作流 +Azure 会自动在您的仓库中创建一个 GitHub Actions 工作流文件(.github/workflows/azure-static-web-apps-.yml)。此工作流将处理构建和部署过程。 + +6. 监控部署 +进入 GitHub 仓库中的“Actions”标签页。 +您应该会看到一个工作流正在运行。此工作流将构建并部署您的静态 Web 应用到 Azure。 +工作流完成后,您的应用将上线并可通过提供的 Azure URL 访问。 + +### 示例工作流文件 + +以下是 GitHub Actions 工作流文件的示例: +name: Azure Static Web Apps CI/CD +``` +on: + push: + branches: + - main + pull_request: + types: [opened, synchronize, reopened, closed] + branches: + - main + +jobs: + build_and_deploy_job: + runs-on: ubuntu-latest + name: Build and Deploy Job + steps: + - uses: actions/checkout@v2 + - name: Build And Deploy + id: builddeploy + uses: Azure/static-web-apps-deploy@v1 + with: + azure_static_web_apps_api_token: ${{ secrets.AZURE_STATIC_WEB_APPS_API_TOKEN }} + repo_token: ${{ secrets.GITHUB_TOKEN }} + action: "upload" + app_location: "/quiz-app" # App source code path + api_location: ""API source code path optional + output_location: "dist" #Built app content directory - optional +``` + +### 其他资源 +- [Azure 静态 Web 应用文档](https://learn.microsoft.com/azure/static-web-apps/getting-started) +- [GitHub Actions 文档](https://docs.github.com/actions/use-cases-and-examples/deploying/deploying-to-azure-static-web-app) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于重要信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/sketchnotes/LICENSE.md b/translations/zh-CN/sketchnotes/LICENSE.md new file mode 100644 index 000000000..dde8df6a2 --- /dev/null +++ b/translations/zh-CN/sketchnotes/LICENSE.md @@ -0,0 +1,190 @@ +归属-相同方式共享 4.0 国际许可协议 + +======================================================================= + +创作共用组织(Creative Commons)不是律师事务所,也不提供法律服务或法律建议。分发创作共用公共许可协议并不会建立律师与客户或其他关系。创作共用以“现状”形式提供其许可协议及相关信息。创作共用对其许可协议、根据其条款和条件许可的任何材料或相关信息不作任何保证。创作共用在法律允许的最大范围内对因使用其许可协议而导致的损害不承担任何责任。 + +使用创作共用公共许可协议 + +创作共用公共许可协议提供了一套标准条款和条件,创作者和其他权利持有人可以使用这些条款和条件来分享原创作品及其他受版权和以下公共许可中规定的某些其他权利约束的材料。以下注意事项仅供参考,并不详尽,也不构成我们许可协议的一部分。 + + 对许可人的注意事项:我们的公共许可协议旨在供那些有权向公众授权使用材料的人使用,这些材料的使用方式通常受到版权和某些其他权利的限制。我们的许可协议是不可撤销的。许可人在应用许可协议之前应阅读并理解所选许可协议的条款和条件。许可人还应在应用我们的许可协议之前确保获得所有必要的权利,以便公众能够按照预期重新使用材料。许可人应明确标记任何不受许可协议约束的材料,包括其他创作共用许可的材料,或根据版权的例外或限制使用的材料。更多关于许可人的注意事项: + wiki.creativecommons.org/Considerations_for_licensors + + 对公众的注意事项:通过使用我们的公共许可协议,许可人授予公众在指定条款和条件下使用许可材料的权限。如果由于任何原因不需要许可人的授权,例如适用的版权例外或限制,则该使用不受许可协议的约束。我们的许可协议仅授予许可人在版权和某些其他权利范围内有权授予的权限。对许可材料的使用可能仍因其他原因受到限制,包括其他人对材料拥有版权或其他权利。许可人可能会提出特殊要求,例如要求标记或描述所有更改。虽然我们的许可协议不要求这样做,但我们鼓励您在合理的情况下尊重这些要求。更多关于公众的注意事项: + wiki.creativecommons.org/Considerations_for_licensees + +======================================================================= + +创作共用归属-相同方式共享 4.0 国际公共许可协议 + +通过行使以下定义的许可权利,您接受并同意受创作共用归属-相同方式共享 4.0 国际公共许可协议(“公共许可协议”)条款和条件的约束。如果此公共许可协议可被解释为合同,则您因接受这些条款和条件而获得许可权利,许可人因根据这些条款和条件提供许可材料而获得利益。 + +第1节——定义。 + + a. 改编材料指受版权及类似权利约束的材料,这些材料基于许可材料进行衍生或改编,并且许可材料被翻译、修改、编排、转化或以其他方式更改,需获得许可人持有的版权及类似权利的许可。对于本公共许可协议而言,如果许可材料是音乐作品、表演或录音,则改编材料总是在许可材料与动态影像同步时产生。 + + b. 改编者许可指您根据本公共许可协议的条款和条件应用于您对改编材料的贡献的版权及类似权利的许可。 + + c. BY-SA 兼容许可指创作共用批准的、与本公共许可协议基本等同的许可,列于 creativecommons.org/compatiblelicenses。 + + d. 版权及类似权利指与版权密切相关的权利,包括但不限于表演权、广播权、录音权以及独特数据库权利,无论这些权利如何被标记或分类。对于本公共许可协议而言,第2节(b)(1)-(2)中规定的权利不属于版权及类似权利。 + + e. 有效技术措施指在没有适当授权的情况下,根据1996年12月20日通过的《世界知识产权组织版权条约》第11条及/或类似国际协议的法律规定,不得规避的措施。 + + f. 例外和限制指适用于您使用许可材料的版权及类似权利的任何例外或限制,例如合理使用、合理交易等。 + + g. 许可元素指创作共用公共许可协议名称中列出的许可属性。本公共许可协议的许可元素为归属和相同方式共享。 + + h. 许可材料指许可人应用本公共许可协议的艺术或文学作品、数据库或其他材料。 + + i. 许可权利指根据本公共许可协议的条款和条件授予您的权利,这些权利仅限于适用于您使用许可材料的所有版权及类似权利,并且许可人有权许可这些权利。 + + j. 许可人指根据本公共许可协议授予权利的个人或实体。 + + k. 分享指通过任何需要许可权利的方式或过程向公众提供材料,例如复制、公开展示、公开表演、分发、传播、通信或进口,以及以公众可以在其选择的时间和地点访问材料的方式向公众提供材料。 + + l. 独特数据库权利指除版权外,根据1996年3月11日欧洲议会和理事会通过的《数据库法律保护指令》(Directive 96/9/EC)及其修订或后续版本,以及全球范围内其他基本等同的权利所产生的权利。 + + m. 您指根据本公共许可协议行使许可权利的个人或实体。“您的”具有相应含义。 + +第2节——范围。 + + a. 许可授予。 + + 1. 根据本公共许可协议的条款和条件,许可人特此授予您全球范围内的、免版税的、不可转授权的、非独占的、不可撤销的许可权,以行使许可材料中的许可权利: + + a. 复制和分享许可材料,无论是全部还是部分;以及 + + b. 生产、复制和分享改编材料。 + + 2. 例外和限制。为避免疑义,如果例外和限制适用于您的使用,则本公共许可协议不适用,您无需遵守其条款和条件。 + + 3. 期限。本公共许可协议的期限在第6节(a)中规定。 + + 4. 媒体和格式;允许技术修改。许可人授权您在现有或未来创建的所有媒体和格式中行使许可权利,并进行必要的技术修改以实现这一点。许可人放弃并/或同意不主张任何权利或权限,以禁止您进行必要的技术修改以行使许可权利,包括必要的技术修改以规避有效技术措施。对于本公共许可协议,仅进行本第2节(a)(4)授权的修改从未产生改编材料。 + + 5. 下游接收者。 + + a. 许可人的要约——许可材料。每个许可材料的接收者自动收到许可人的要约,以根据本公共许可协议的条款和条件行使许可权利。 + + b. 许可人的额外要约——改编材料。每个从您处接收改编材料的接收者自动收到许可人的要约,以根据您应用的改编者许可的条件行使改编材料中的许可权利。 + + c. 无下游限制。您不得对许可材料施加任何额外或不同的条款和条件,也不得应用任何有效技术措施,如果这样做会限制任何接收者行使许可权利。 + + 6. 无认可。本公共许可协议中的任何内容均不构成或可被解释为许可您主张或暗示您与许可人或其他指定接收归属的人有联系,或您的使用获得许可人或其他人的认可、支持或官方地位。 + + b. 其他权利。 + + 1. 道德权利,例如完整性权利,不在本公共许可协议的许可范围内,也不包括宣传权、隐私权和/或其他类似的个性权利;然而,在可能的范围内,许可人放弃并/或同意不主张许可人持有的任何此类权利,以允许您在有限范围内行使许可权利,但不包括其他情况。 + + 2. 专利权和商标权不在本公共许可协议的许可范围内。 + + 3. 在可能的范围内,许可人放弃任何直接或通过收集机构根据任何自愿或可放弃的法定或强制许可计划向您收取版税的权利。在所有其他情况下,许可人明确保留收取此类版税的权利。 + +第3节——许可条件。 + +您行使许可权利明确以以下条件为前提。 + + a. 归属。 + + 1. 如果您分享许可材料(包括以修改形式),您必须: + + a. 保留以下内容(如果许可人随许可材料提供): + + i. 许可材料创作者及任何其他指定接收归属者的身份信息,以许可人要求的任何合理方式(包括使用化名,如果指定); + + ii. 版权声明; + + iii. 提及本公共许可协议的声明; + + iv. 提及免责声明的声明; + + v. 在合理可行的范围内,许可材料的URI或超链接; + + b. 表明您是否修改了许可材料,并保留任何先前修改的指示;以及 + + c. 表明许可材料是根据本公共许可协议授权的,并包括本公共许可协议的文本或URI或超链接。 + + 2. 您可以根据您分享许可材料的媒介、方式和上下文,以任何合理方式满足第3节(a)(1)中的条件。例如,可以通过提供URI或超链接到包含所需信息的资源来满足条件。 + + 3. 如果许可人要求,您必须在合理可行的范围内移除第3节(a)(1)(A)中要求的任何信息。 + + b. 相同方式共享。 + + 除第3节(a)中的条件外,如果您分享您制作的改编材料,还需满足以下条件。 + + 1. 您应用的改编者许可必须是具有相同许可元素的创作共用许可协议(本版本或更高版本),或BY-SA兼容许可。 + + 2. 您必须包括您应用的改编者许可的文本或URI或超链接。您可以根据您分享改编材料的媒介、方式和上下文,以任何合理方式满足此条件。 + + 3. 您不得对改编材料施加任何额外或不同的条款和条件,也不得应用任何有效技术措施,这些行为会限制根据您应用的改编者许可授予的权利的行使。 + +第4节——独特数据库权利。 + +如果许可权利包括适用于您使用许可材料的独特数据库权利: + + a. 为避免疑义,第2节(a)(1)授予您提取、重用、复制和分享数据库内容全部或实质部分的权利; + + b. 如果您将数据库内容全部或实质部分包含在您拥有独特数据库权利的数据库中: +权利,然后您拥有“独创性数据库权利”的数据库(但不包括其单独内容)属于改编材料, + +包括用于第3(b)节的目的;以及 +c. 如果您共享数据库的全部或大部分内容,则必须遵守第3(a)节中的条件。 + +为避免疑义,本第4节是对您的义务的补充,而不是替代您在本公共许可下的义务,当许可权利包括其他版权和类似权利时。 + + +第5节——免责声明和责任限制。 + +a. 除非许可方另行单独承诺,在可能的范围内,许可方按“现状”和“可用”提供许可材料,并且不对许可材料作出任何形式的陈述或保证,无论是明示、暗示、法定或其他。这包括但不限于所有权保证、适销性、特定用途适用性、非侵权、无潜在或其他缺陷、准确性或是否存在错误(无论是否已知或可发现)。如果法律不允许完全或部分免责声明,则此免责声明可能不适用于您。 + +b. 在可能的范围内,无论基于何种法律理论(包括但不限于过失)或其他原因,许可方在任何情况下均不对您因本公共许可或使用许可材料而产生的任何直接、特殊、间接、附带、后果性、惩罚性、示范性或其他损失、成本、费用或损害承担责任,即使许可方已被告知可能发生此类损失、成本、费用或损害。如果法律不允许完全或部分责任限制,则此限制可能不适用于您。 + +c. 上述免责声明和责任限制应以尽可能接近绝对免责声明和放弃所有责任的方式进行解释。 + + +第6节——期限和终止。 + +a. 本公共许可适用于此处许可的版权和类似权利的期限。然而,如果您未能遵守本公共许可,则您在本公共许可下的权利将自动终止。 + +b. 如果您的使用许可材料的权利根据第6(a)节终止,则该权利可恢复: + +1. 如果在您发现违规行为后的30天内纠正违规行为,则自违规行为纠正之日起自动恢复;或 +2. 经许可方明确恢复。 + +为避免疑义,本第6(b)节不影响许可方因您违反本公共许可而寻求补救的任何权利。 + +c. 为避免疑义,许可方也可以随时根据单独的条款或条件提供许可材料或停止分发许可材料;然而,这不会终止本公共许可。 + +d. 第1、5、6、7和8节在本公共许可终止后仍然有效。 + + +第7节——其他条款和条件。 + +a. 除非许可方明确同意,否则许可方不受您传达的任何额外或不同条款或条件的约束。 + +b. 关于许可材料的任何安排、理解或协议未在此处说明的,均与本公共许可的条款和条件分离且独立。 + + +第8节——解释。 + +a. 为避免疑义,本公共许可不会,也不应被解释为减少、限制、约束或对任何在未获得本公共许可许可的情况下合法使用许可材料的行为施加条件。 + +b. 在可能的范围内,如果本公共许可的任何条款被认为不可执行,则应自动调整至使其可执行的最低程度。如果该条款无法调整,则应从本公共许可中删除,而不影响其余条款和条件的可执行性。 + +c. 除非许可方明确同意,否则本公共许可的任何条款或条件均不得被放弃,也不得因未遵守而被视为同意。 + +d. 本公共许可中的任何内容均不构成或可被解释为对适用于许可方或您的任何特权和豁免的限制或放弃,包括任何司法辖区或权威的法律程序。 + + +======================================================================= + +Creative Commons不是其公共许可的当事方。然而,Creative Commons可以选择将其公共许可应用于其发布的材料,在这些情况下将被视为“许可方”。Creative Commons公共许可的文本已通过CC0公共领域奉献声明献给公共领域。除用于表明材料是根据Creative Commons公共许可共享或根据Creative Commons政策(发布于creativecommons.org/policies)允许的有限目的外,Creative Commons不授权使用“Creative Commons”商标或任何其他Creative Commons商标或标志,未经其事先书面同意,包括但不限于与任何未经授权修改其公共许可或任何其他关于许可材料使用的安排、理解或协议相关的情况。为避免疑义,本段不构成公共许可的一部分。 + +您可以通过creativecommons.org联系Creative Commons。 + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file diff --git a/translations/zh-CN/sketchnotes/README.md b/translations/zh-CN/sketchnotes/README.md new file mode 100644 index 000000000..16a3343be --- /dev/null +++ b/translations/zh-CN/sketchnotes/README.md @@ -0,0 +1,12 @@ +所有课程的手绘笔记可以在这里下载。 + +🖨 如果需要打印高分辨率版本,可以在 [这个仓库](https://github.com/girliemac/a-picture-is-worth-a-1000-words/tree/main/ml/tiff) 中找到 TIFF 格式文件。 + +🎨 制作人: [Tomomi Imura](https://github.com/girliemac) (Twitter: [@girlie_mac](https://twitter.com/girlie_mac)) + +[![CC BY-SA 4.0](https://img.shields.io/badge/License-CC%20BY--SA%204.0-lightgrey.svg)](https://creativecommons.org/licenses/by-sa/4.0/) + +--- + +**免责声明**: +本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保翻译的准确性,但请注意,自动翻译可能包含错误或不准确之处。原始语言的文档应被视为权威来源。对于关键信息,建议使用专业人工翻译。我们不对因使用此翻译而产生的任何误解或误读承担责任。 \ No newline at end of file
    2. 5P@F9uusj?~9mdUMLb zCDbgMlcVon03vPpAsC;Kqt3s@ZdOah~bqermWqG*)p*@J~c#KKm~%`_`tkMj=is_|c5JgyP>T~#8aeFD{^ zuk7I_dqyi6N8t(f+!Lz@ybh7X_l#y2U1XQeMSF>D2Rkwbo-t^Y@du9}2G?F%biM#I zHfD?QRBCh-SKq|q=Ts0`?X%;mvT)N?UMO{5D%VMOY^VYhg2DG4leIP)37)oWNgRvGDiF z_J`|?DX;dOIqA!U{x^t4XB8j?qvphEN=BSzL;ZuF~~E^ z6`wF$0PY1PyA(0O4mC$+I(U$KKY7oB=+guoqNJ#r0f}U^ z)MbhgAsq)u8#6k`SlR|wwCWbtQsj+&*Jk2!-sd^$5|$qGM|aM!QRK86$kkqCyFM99 z-`@srkOjs{+#}Zm{7BHBmWr}IlktWiBE8jL%%41u7Ud)_Y1NU@8zTIYuzjhf@fP0t z((_7Mzg^9@QHOkNsVaMZC1ANWa^wXB}g^F9}dPge0#B8u`*TzvDBkLwYncBf^BQQ8ZlmN zBH4Ok+40CEcUO5ggymGl!8)I=nmiGK!m{d<@+d2av#c#8laNEnSO!9^=(GyW=+k*1 z@pnhvHx+Pa;O`@Z0i|+?Zec1NxwK)Jwcj|*7KRENum{tJX)sxuXZ^UV0vwhjl@9%L z?-`JJ3hYV%NjxZM+x?b^y%xvOG}3SRzq^Q5IAqahaCp#ZKy*gL`t~&DqfQI^0mfI_ z^3Xbaf#SvaTK~pWm<}UNjn;8R<1-Jj0iwgx=(=AJjjBC@}GO1v*n+Qk{Z zYp?%A58Sa#`Q(vSoW2Hm<@m0LqF-)prK3tE5~$GKfB1=? z_bH3dKav^BsDByq!+j3}J_3^DtGuS1w652LguAFuCPpD=$05u?a!yw5`?m59jSnCN zyNdpqME>!Vxf|o2+YkxZ=P!kr;=kftaJqP5^EP-uIl4MNRk4GiWN3=0#f|+fz$$h08&Gyu(P?*iR z)C)W4nCn@{YkfXsV$($}(wF{narVDpA<5C%FydUIE6>4dGuhX9vsu_fW|d9lFQYy* zM(E5@GbF>;%#y;R^z^mPs{@D6oO>o(JO9?$WZ+ETvO+2kNSD8qc7!_v2rqT4;b5zC zKnvkQ|8;_)gSC+g9`(;+cGPqn3Io3w6lL?y9D3y7cn77`w}*hy<@n9U-Dz;SCD_6q2YSW_>b%`FOP~kIrb|?zC;6*H zYV*+V_3IKNiJDzd2}pAyw1XrTgIX{mFd$Lx;*rB9G?&3J6glD!FMw1eQ1Q4ihURHH zUM8<0&-tGy9jxYoRqsQ^#yjnHS4n<7jLok_a4qclLiqL6ie{h7b?aq?e45A#KV`}S z1i#sI!NOShR)=UfA@wtm)!OM|eyqtm?f&>!B0f@La@IN}#CQiK{&EymbJuDWEi-Q+ z1N?^LMsnNDJqG~XKDFz~CSrt4MsLFHXKAKHNpv`?P^=B7qy(78)<;fYVjrO0?fGVW zIm-nRH?j3vIcmrL{f*HTYl|y|4b=)BIx0B2h!rny{Tgp-7b>9z4EJPSwf2$(fwqVP z*R&X2|gZS4J=3{e{c#PX-Nxubh{u?*fkVx_8__MS z7b^nT$sE04{#z60Rd*f$7{qV&bmpH|jd;Exo{4%a4wApsaxWLo2lP@nM3B3furT<- z^Vsvqmn@^a<3q}VhC7JvZ+86xs;E9{i@4=+m)T60O;T#dBt*ibt!oV-$sR``e}^5##ygr@lwdOs=LkV&cY=m z5vB-Np-evkK!FvQ$-hHuwEs*L^MW7fCB^F~98PXH9fe#Ci)EainfWC@(}GhGuZK2-l5JhGaX zoIQq5rr+yD38GDNd~pvJEkj0ZVI-7;=>{ga8WmaagfvhpRXeCHi0DY0@cj+Fxv1ih6(ROfU*M0C!Os>~+xnyt z66;4$w48i`Oe|!{qT2sb6uRI%lcrSl!974Q-Qlz0 z7RY%?Y3v-Hj#xcKii0giYzFgnbTEI;qc^v*FXf5{+Q`Tvc@5(6N=|5&ogZKGrr(K< zSbYY3Y$Ira5|9PXU@uEo`7Z^@-RC-de_HK05dCZL^8z9pMd!0CWu~SRTSL&X4f8su z{Q-EBF&m&0QkETluz*K3%)I!`nql@VolU?r8$sQH6^sp|6ol%wm~<^y4opj}62jYv*C`By$AnTNu?eU7WX@lVTJmSHpnFh@s@ z7Mug6s7at7y+fn-(D4w=Iv#91`1dc- z#MA33PesM@je!TQ9oEZzTT&~M*(;0POMpg%_B^I3c-(ibt|OkPi80g&ROz~3hLtFP zmDL>Z=UOw~HpvvhtJ%Z=0S7bDPlPMdEdzA86$l4(wkl8+lt`za9P2?mp%L=SI_D&X z!3gh|utv*Kryohthnnmde5o~42eE|06;KNpkraGZg>0iqByCc+5~AvdqF#`~|-@i}_ zt|J!Z{Wr3J0N`woJ7FBTZSxFD3Ll?v2m?eMtaA$yrnc%};v2OAOMSUMVMJ_%{F#@y z-r~49Vn$n|Zc%#=$m+YHS#ie(VI`aHSqlRn;P3gdDJX3}8nLm@Gnb@AD)$0h?^G_{ z$VAi~=~|0#7G}u%QD}K#CtseI9;Y{;Z4e@^#X}Gm+XQj#4z=bkpaE9+^(SIQ)MW1D zfb1D!q_veWq;oVLqS$nxqx#qDW!rdLq(Rh-wGDlJ!1SQkdfjhbLB$Oj&$*!5lld5K z=`2B-`7W>ZZ9}u>)#iIZD~%)V<&(=l5RuDGjpQqi+UORSz*q%NKZ~dyjKrhjoqY@w ztqgv43C@i~HAEDI1XTw0Kr-%6c_{2d`n2VT^Mvw+duU`5io`xI`StFU*ELke&bB}6 zL~4p+)^$Ew*r3h2!F|B0laZr0*kqdeFWNxhk3P?2g0ah#w@WXz5gyFynj1^fpCk0H zvCTGuzcV(}hBu&>-0kVD6f!}YHucH4R?l4hRKM}f|0KYrTGW)mZI!QJOQu~A#1o#O z7n8*Cpb4S--|ni)=zSq3IY7rH43qCiBJofi80=NKub9=q0%KzVQcU|`#124kj~U?s zYZYb-PSNV?HwrBdQ0<}FqkA0VigkG#XuK$J?o3{l3e_F9_G!-(`={w>GKEreg#m@% z2)m&j9DehM7+=^VUK~MTh$JxzzUTUxAv&B9(x5NzAi%G#l7Q{H)mbwU3tZzyxTsvk4faE(OT$ERmO`wLBr11N3S*#to9*pk9MTC;($7UOGZWJ^G z6ZKM3dMG>5JJ6N`r}`uK{LRuvbn*NwTGp=L$aKKC7HCWuzG?>BtWveZ7 zaz*I0VZVrqj@2O$W&PD|JG91fK3aXGhYAq*1<=(I9$WXKu4-KNY5-uefU}NU4M<2( zCmBF)#^9zwnLAdM&d0&lFhLPdOe=z6=btx8PZqB$ytU3e>0%G&-<~wBQUTVg=8OpAMbuKGUOSu`J;q^V@!|6IY-F z_dd{qjd(+-aYR(vceK0N4r_`lWTMbvl*AGY<=;mIUBqU<){5@!RyYPZi33wXxdXa~ zW#8Bd&n|S4*_~WZp7Q*PxWe-`1L(IQsL6r-Vy1)v>-9Msmkv$S673A=M7&YCssp|Q zLzyYW3CRXRGfUB=<}&trbryVGsc>gG9&@`VxHy2u1*}sR<9ID*vT^F}5?fkjdloRs zr1@8R@SMC|DFkvaBXq_6m6+0ve)VH|{dc%Sg7+;u(>82s@jpJ7BNOU9E*rFKW3b z6CRcy#d81YtV+d4cl7L3@_S0WZwf2B+Im;FSE&86hi)I-n~Yr4jskD!p%#uS<_vZR zu!h7OP&V7}af+9;UYp~P6^b`FIGGJX+n=X5r9#-rW$ROcM)jwRhP%xp)JWDesWgNX1tE3w z{263#FoTjvroSR=IZ{X&?!=A&*dwneVX~uEC>^$*ox3?tU713CeQ^N5d52#9ZgUG? ztag$32SJ{8lhc#pCcvQdsAvH7j`I-pmVy|gRkC-L3JZhjfT^9td9%>v3hAWOm@{h` zsjNc!X%Zn%ajjHDTDlw_*XvrH8H;l`AxD5i(!bGIa&)-@=X(8vN01L2VHXJa>yw>3 zckj=;5ee$>bhhR|huR>(w@sDM8Wh72E)rMeXXpPl0Fpr_yN&+L*DW&`dG)&=%G_+`4SJ`)8~V{p9;#nT zbTE*$Iq~U%v%K^-Uj3TkHaB2bLHd-g9ZPUWJ$liD^$*XS~z$hv?}n)-Zh^ygYuj z+Y`3-4B69yC7Y)aUqU_eSzCrvi0x%m7$c6>bxHJ>&)Vy5hDpeKmh4%%0F!S~XyiG5 zp&Z1jHkt70E8$o<)7wg7gT#@elX@`2$R;&|~Z65^{tb zyHBxtqBYq`U28Ptd_Ww4AA&w+p|5wYp!_T4y12?j;4nr$QmHAlQEvVxF=i9`K9X>} zD3YHH3090LK2?)eHs7=)VUV;Mf-&MsOT~OW%eQh#XhlCoM$-wjdXwZbT^AKTuA36e zAA|#fQJ80^+6eoa6I4QG8VaoOkX%$Vrlkl3ukIc%iR1#Fipz#7I{@KI zja$EdW(BAlF@2m(Crsg+8!*!)IZRk9NIVeZWmvF|c=X5}wzIJ?(3JerzrF(x-+N{= zf=tZ>r>#^&ETlR2$2058@>HS!3giF-l5<#(0F2t{HDS#2>lN~ zhfm0xPU%sk|E!mQh2GQlO&}fT`1Z<-Y30cb5seE$^F z2MKbEz9@=cXgUM&$+cOVrR)OVM$Fi?c)N$C62B$lgZ@cB4Rz4w85@-6I~2NfnnQNl zq^e9*0OT@wWU3aupJi9Q?0(f1rqYParv~CZWZ+gK$#8K1J|Qg=6XE*sh&>7VFTW)` znt2|Itl>B6XXV63r}f_hM+JJ_P3ts$ib@w29i|Z9EkI@}bZPCA}ANbo*dy)E=Kw^3>Ien+y6~w*mRQ06Jg{ zEBsunFU0chyR9j5 zC^(KJl5OvkL<#BnwQ7?%jA}aOYxf97FU~k$)m2pwzJm!7g4ZGO>*9#H59K17V8?Da z=@fw|T5?Z`(^B@z5@3nfE7T^R-A=ZI$y}w_fb4u*l=ZTO+Bh(r9w4dfv?fdN+ zK&$nWN<#HCD=5pF*9>`Cbz4X*W)ilpF9f_?~|Mz+V&kIABablSBXc zTs_S|7m}PQiT-{7=)KSc`@bwWs_$q32eGTPJ@G@n^piuJDs)Qqfjr%gg|$ET{ANm? zlmCgu_4?ght=vD`2_Q8UxKYVM&_cU-r(wA8G-+P$r0g6X{-F=rcR@if#-K_$B$k;yJWKeJbh*01soKeEEmb`V^Sx~B16pl&JN@50w_+Dhz?RN>p@1hR1G*8 z4P)%hJ=`Pk7w?4=B2f*=((#p}%n#FMZp7t`KWPPDW2Ov)Ms>Gcr&W6{R%=4#u1JSh zc)65dH#+`V`UBJuTw&PmSZcNP)9ti0Ozt|nOH83vDmQYTXe|NrX8Mg^h z2YtWt&J5z6H>V#pXA3M1s;F-bKoAv#%$zHO0t}K43l8_K4mn+9ze0GfV3ClwI|a5J zC$>6`2p{<56^Lt+IR>_YuhmW>j6F8>L@yA5m-YTv0%jG{P6BqUIgw|)n4kVY=E+8^ zwX#frr%p946jb{@?N^H0D!^^M&`f5!~%gVCeuvG}zXiFU6YcDy>_C>$NL1N}1ZE!D@AJqxmzLh>i?n zbbV$Om~NGTp`JL>z)SI$5Ppu^W^tu1x1)wz29NGH(UH=##pauOkDpY9zSHyTL#&OP z24^TYa;2du4l`nW0x)g&f`84;5S!x2Oh*6>83SUzAxK!~I#ed+DVTOjmgge#p}=Sb zgyVdq+&BcJZLtUpo4}gy8H^s9n9kAEng4%Y#E&y6opJ*|Y;6LUJ9cJN_m}E(TiTj4 zlj3S2E`GWG|LMIgT-_QU1k?W;El@p=g4cCOYW|QzeXSoXHASKSj$|P=_uV5pIXrvvg!-2_028ZEVKX>LcRK)q!Waj=#=T zWspqpvuqjsoiqheq|W1;8C#&rF-9p6D@7)`>ZY^#wTPo}fD~fg86m%KlP7Tl!ezmq zi_GZ*S7W+CXfXPxrHa*1&NSgFHCol?-RbFYl?mD!+4P7RU^`?XS*!}yKCrrK;-M4h zO<8B9S|UN!S5?FJY0%XPazHjRtI-2in>l`gSZn);a}y=>1gkcbF)QBLW<#cNCLma+ zd;w+YzEbT}82-zO+dmc?s3wjvpztNa(8+A#;gLcU4tFb^kfYrbz`{Ve5(+Kz{DGQ2?C_+4rr zA6f-eo!z1TH$3ubR_FcWm!Y-wORCO4#qEK~G+$vHJjEwmX$0o41L8(MK0C zuSuA^@N76;FE373z9}#CAWYFU*JT3WTzq05c&odA;^)N}7m(UR{|HGyN+aLbg5udd zf4T7Tb|@GM5m%A3pRb#zA(yHTQAL*T?&dsNY(yF=*q)YISs-3=>q~yk+(pIk@BcYI z8yl`mx(XoG)Qx?CQ^IB2eDfWYG+}c`Wn$~glzu)wJv{LyOxz%XSC{73Z)LixM}8&F z)R^d#xl_jkGyNC{56I`r$@}4Rr8r~=w2^No6Ux-=Y2d)|Nkc1<{aO@1oTw&^`k{1757Tf)p(G3X;?xOt33ZtFk0@)-ls&D`K1Kh#?KLv zkN>O7YMe37CD32`aqpkaXa5+g%WR`zz&jj4DRQC3r&3M`f*;NKNbVUQ&bcJVkMR0` zZulHQ`vZFbuP#CmFiA`tJ$vFEU!`?Svx$u02>+==|DR9R>DMBf+xBWkSsS=8qots_mz{ zZ5Ly6H}y~PF^p{)oZ`qnMq7X0{r0iw@xw)vPrXHz<kFdPeown=O=xl|T2ACzq@t z)y#U0-!1aF(QbkSpKrS0sh{ShIumzkB*u6E_~eCdE4@Sodq~B|qj~r>#vulJU$}TO zRXOob0d}i3r=CE`8fQ1`-Gv$2 zT1i%Cc#RERt3kxsV`TqB;WBP@&l+^wvl{#0!R_(A7zu9aH~vjsL$x33TN6_gHI`XV)~J{ zdl2gFQ{Y^+Z6%L3X9vJ>@&njP7TZ6*(+Nuy@KiTMt!u`wJzMj@fB%a3H9 zD6kVT?7kc!f{3~ex}pYt1t=X!e43ytRe#`Rx+sm$qOJ!4ckHNS=3|}w=CLo4)1ml6= z3`q$#nubG5Dw4G%mfS##X-noWolaXowdn_3pB>Ph*xGdAmC1Mg+n+qmzAAPLSX}R* zBR-Dv=DWZ&B_%76?u2YkZp>{rM6^k|Kl@GE&4BOeBP^%|ak7I7N=`+yUrG9L9^PpP zpr`#;iH%Y1BFXG9IpO+lx?6&{-lKW}9uIji2@urxpwX9->lYG<$<+x24ZvZNB>{iW z5X9hF68D5bxl;!&VkDO7Xq43c4jS5^ZTw9%S=n>r+N$tXEJT$9UOywL7u&sc{2w2Q z95?FaKjT0eJWXHgi-&frpzTo6-PMCL*cV~%SRMXMC%ADHB<%qOs8#ds`XReI$~PnJ zlY&)5EUw00?)!$BId7w<)(Q+iP_NFI@FK%e75%Zk_v-DIp_l^J4`@kH*f08nS=5)| zdV!?C#lnWFVf)Y|8CfTtjmu(2lW?xaRil2b>jK@9EfkOt^oK4%KS!B}f?_NRik5f< z7hz>5jRHdlp{_h9PQ7|ngHk+0A)PC)NOb)-nIXu({`+=;m_wmAvVt-`hR8ET?|Dh! z+6#@8md?fEp7gf{AwsDBfU?!$iu0l|CcV&hH$FoxLx0mGrQQxBT#j|8CQf}Lp6 z8BK^oh)ysRMi%8bT04w1+_agOh99P)H*G z9piAAx$lkDg;o>x!5)SG#F6=vpTQ>TwM>~yzc=A-y4=i>5V8tT#Jx6q^c6*qlMrd-lnW#wP8s|3CZuPn@d<2wIVT_tA2l_3Tyy~D!IP9!;r?NV?YV9ao6 zk=%-Pa|cjV4VLz0xlH>65If*9(ltJgk&fraRS3)&w$vBpU7<+gNzpSzKGmM?YfXIuTN1m6Kq^;l*;Y~(PRPH zB|JD1*tqbv*bJy;WZW;D?%*xgNVh5_>_C9cmDnVW>L=zAypvhJ7oNEfl%O>`1n%(X z)Bn-?9eCYF3<FjYYcmTDw#sIV?wcXrK3pTS4|^ne<{bk611Cd>=8qVCz1mi zQZiYSc;kQ&_m4JbRQuDUe=gRRE`sGsx|C4o#3r1}AYvchuS=Bj!Y{C;+823_2bj(%NUo{SxP{dm zhd2C=VFC*Hh-U_Xdvvd$(Y4daB{f+X!+Y`6%CTFy;E79|D?0vvhs>Q^mFjELH%e_XN|q81i@IVlg!qU^>!k`fi!G7MnmOg4<$_^Wg_WbY`HQt z>emnJBgEkvnBI)g-1rc}`Hy3>M!4dzrN9sGfBV&NUJ7(_gDU>U2X7@}cOu4V#fs^V zQ!w@8V4vF~CY^=(?TckN0`(&U{dkaRtF;jhVA>6KvYE99ZwO8QW}ZHo_s))oCVzzK zWYJ#U6-ozQFPv!I!8_Eh!hsUaHB_Fdib*PrT6tWkkvJzjC}GhvrlnPZvD*hTc4Xf#G6liPg-Yb5LM|ZiGb6-Th6J}_TJJ>O9ZkfG@QU~cH=Ck zDQ4FT^(TD2)L8UeJ>D9sOEWZ7BCQl&280#>4M*gl3(XJs5G_vv7Z~Bu^f0q-l{N^N z6{>%Hy>YctSy{KP?IRf$s!gz z^zx5Y|4wga5pd8_=C2+NfLp81pmSs-_!9ufhTD{4V9;R-zuqJ3_(6(!Xu zcQS^Aik&3epL(Vh!hq`Z|hfkC85dpO~Y` z4$(8XP&~)^KcB!~eJ`M3TlR5k{abn2yJYxjk99)+sdFfUcBv&n z)0q~T?bk(vMQu7tbpBiUa%(V_aPA7*0`p${?D(C^X7axFzxP}JgZQl;3G6HL(p3e7 zI9>YYSTDT4Rpxp}DtXdEHV_@dg ztBucTf_M0xF*f5|ck{=h4Mrl@%CnwsY8s2`ICxk{eYdJYMo5bfpvg|kEvk8N<{qN0 z*e(HZSHAAQs=x|97S3dG{6UG37UB9(QLuGP9TZXoZKF5&dPDn1U7Dd~GOmgV1iynT z|F5Bo`Q_`{q6y3y}u_D(vi& zK8-i`-O+bo*!o{u@nGLEOW_K8V6lDIK|j2uj14!Xy<=#;&PCWo{pHv@YY!Feb#g)2 z;dy9|7uTfxOwT-z--^g-G36VJOOWl}RLB+%V2OP0oI2p2GBNP$%OL(g0%f zZgN2wy_1X0_dhvZ3cq8VCJykJ4NNT7Xc8c6s&D6r`)18pUh5ssH zWu~nj6wR>33b?DH5j_Fn*eyU@kg&`%!r*+^u@{u~TDYTsmKmzSYG3FyhW9~l(ul?r zf6DmAO7`cX_w9me7JJiGv9^K#+Ob~tHq<>XZzx(CXsD?0`W=2A;dD|Jz9F{kuLx2u zIWwd_>#knab&gQv;?5ZT09&X3{qCkN;&|zE#fL%W4llMHk$D2U0&PH}R2TGaTmK+O zmw4>(5Ykj_{7QTy z&jtabwwKpmToQE9Cit*@Vs?R&O)9UpzTjM1InEX5icu&LbO8#_yT^YsskVn@J1JhH z909j5PA^<#E;zDZ5Q{3~SE^jGP)jJ4R)L})!?aFLo1TY^f^(osChGn9W0RfX%avS9 zE0?-5I+(J-Mxl`%4b5;^*q#uK-K)US-ot(A&QW49XScwX5?9BQE#l}y_5$3~)aSAN zB^wo)rF}77x~=8d1%k|UQ0i=Plqk?t&B|Dw83Fe{zdNf?q^20ndXZgKZM)00(L=1~ zFV6wftN61pUWjy`Mrm9Hg9>?631A;9b*xslhI#e;wqJ-t$J$FC9Cr}AybLCC(YK;^ zdzQB=k9=t6}UYmBa&tGu+Z07Fn{18kXw|g#63SG zJyYO@VGclNCV|huGJSnLv`t_TM(^N}JK9FU7G(Y*!ZO#n0RbPI7QfG{WHs42274Ve z|KyM8A9aIgPB4bxoT<@)bTbl_3x}g;O`_{4-TtHlZ9;bDB=X*ID^QmGTN_gDdh<}G zAnJ)Pr{1qa(g*_&t>`3++&%ITmR-B^)`}S9Y`Q zU?V&r-sne+0!+YQZf-VmpFxq!IsXz|Hj=TwUfX%A?l@bPsS1K!3lWu{%AT2!`7iG2 z&BL{8{N`~2Tvy1eP?$8;R3&yoCxR#9*{?t|d{c3#T@ zRlQyLJ*ggGDxlFc{5J@Fb#aL)8}yj{*`WPJhpn@yeU4@-Vwc*{gk~lweYMOeEWP{F z?g^yLo0T*n)SMipz@O<Qo2Y~UIPbQ=!jI-0F>5W4Cj;#ge!L42U>MX$OaaZLRazY@Bfm9U4m{uZct7{w zr<FQ6>MU5?imAoLK^rX|&9{>7%t$Id3 zg+1ggqug*z+%qB@jlH8Qr%>E09{X%?7u-i!fPOKc`h!+!7#ur7=r?8%uEKiH)HhpP zI}L*Ldb&2XTy?+|%C-{_-{}_yI<7A+7#pj)X`nYD=Il{g-w%h*l2$2-dHZuuro$3t z`DN{``54)d_c&uoyx z63INCqfN{s)lum`uhi1+Du81 zz}TQXtknR2@&o{|m>J}^h>GGpE&OSaMU#s6NBtbu=@8WjSM_a-fl0ZKgtq!H!`ct6 zf)~h4t(y%D#c9AxVWL4TTkpdM?5+f5XIC|7UwF^#g@EVNU&7)~5xaVB*95a;z{;MH z`L<;AF54jb6NR5pI_Dwn)2T4FP6;z-UO$4oPD1Bi1eKH-FmwuA+S^o7j7WY2@DW6k{6kVDU0N zTjuEZe;CQJ6l(sstFdr8arSsM77R7gfxsAs9m62`qE!4$#=GNOaQ5KMRZu9UeM!|S zkA!cz^#<@HLgoip3pt?h3@jQ)*XCr-h#`dl%5n>aUto{fJ&PGpN*ewp5Vi;V>)RrcV;iN)@OTqJou%| zvS_wl45dF>fFqr?lJ+lAT9EMnDMy$)PUHA)9ZG^(-?Uhh3gOGsm_`vzyb*n`E!zrb zTS^W1umU)GiX^NRh-96zNQ~U5VOF}S~15=1;g^!k^*o}pD*&zSZDc)kgq-F)u zXL=I#P)6QSZ6r^B@boYI6`aHD#Y~vG@J*ta`kJ$k#BF=Wmac5^su4(~j7?nB`8~Hu zXk3Gvoz1aAy~o+?rFoDFVmk?Zt`3gO zxSIeVulvuZF{voT+<6F;CHigXQ0e++EzRO%83Ti}V2~@_lNX8F{CW#!a`-HfIS2Ml zZuHN?hXV{Xc2G~eWA{lYcy5@CDv*8nch)nEU8h*m1UXn|NX#0)LadQ_-}shg7ty%Z z`*oiVV<$Ybyi($Jg6X{ct!X)MgRzCLh5=R3m!6fG|$PSIqKvu>j-~p5=d@;A* zc2|}2MC~{W}H5ILlFeN?9>yA${YC9TABAsB5CKPM@8fD{F$`GPi^%Uq<;SpS!P@LeTPd99U;Mi{DlSE$7-qoXCrq@_87kOz;ZMYIQoR z$y_3AQ|~55B<$#DA#0rk9P@pZ(c_+WX-Br%g=LQ+bwn#-xH{}8KBX65QBNVaBSz!e zrH?uz`5AJGuMvW)cI;mkc}E{p8*~|(bl6zD)i)lF1OP)oyuX)lh7tk70$h}pz0dJ| z*dm8R^j)GSu8B|BPP@FzIo&81lwrS{-rr9|DJ&NYzT9OM5YX`Ez`__v>f+GOq_$O^ zBj%|12ilJ#je+M`wmy*n184Cn>W+gmw9iD|Ej`Dtl?RYtkliiXRA zfGSprNb%pm8MGwjDiUZDybcGv(6f&=<~^J@o-u~ zR=o&+&^AA&my>-$JFBb$#o7oAxoIMqgsVlGQ*_*Z#8*Tszta1`Hx+n?5Ow>NZIZg+ zpgL~RJiM&uv5ap zdN(HCJX_z(wD{ZNCa1XbgsL)}H=secYL;h#9m8R-gW-d54*|bTwc4u4=yc zW4)emU3D{6;m7gkKx5vQa;y*XtPLqa#)VjhVr`DzP8>zc$qVhejVybqmTsZ60w3*87A3cGq@2I~+xQKFz&$<&7xdDgS!y`*&-p zdvdlg7#f6n%KESvW= ziKMN(ucvspiQ`4K&B77h)(Q{<`W^uhG*B4~av1Pc)IAjAClz>~5T1Jijrjb?Sy5&0 zxAeGUOcxJSn@Hw|3~R@%pH%kA0}|yC;^{6Hu42k9vV*T1`jq(A8QFcGp3DJ*1Z$a7a0vxN5wR0`f_db zJsdCMc4+B$i44G+V1~GvCeARp>#2zBU)y2~Ic36dg^r#_wa%C;N(d-&tNsFd`SXTV z4~KATV#@rOV-#Cj;3g@jUQ69d8M;GTgg|eGZchQlRW4D*lZ*37>3ni7_=oS`c-6tR zP(PQE;%yXYWXl>Sa3JncTesw6uf1IH>Ngg+%CZIMHObmZr+j8N_Yc1XN!mf9o7YC&$6a-i&TRodNr*zCuL5 zQG$<-G+s2Xc^3tumllzU7^0=cEqGoEw&E-gU@2K-_6~V}EYbly10;X^^4xUbax#E# zTKmkZG!faJ8{z*zbdpSHFE{Dk8>rUO@o&JRV#maArGxWqF3Ov{JG}b|7UiEJMMa)P z=;@=|G~Ub>DF_xgwSYzpW?8ibN@|m%c|P2LYfTyVfZkaOayU^1_9j<;u6&9?X$x zKrA!Q?z`HofPwtrgg;z&3p)WHiqdZsNxm)lRd(-_S1ebM6>tK? zT~i~>l4Rn#g-F|GCS1F5z*GtVM^n^V?*6+`@NgNhD4GrUC4pOImI&ncbpAAD?tE-3 z32&)Y;Y?wUZ1$EaR(#?e-8m8e!9_G%SDC}L)YQYHHiouQfEb=Mz6chdLfErP<+*? zr2+z20 z`TOnL?nTi9+SlD*7OzO&eDi8pbjQEvdyzft8HW_dovhJX%v;qMtxPhXV~}XIuDY0& z%eak1SXyV_)tbF7x=;t#ln020cKj;s;|TU4wvG_FvE}85 zsCiD!bj%z;N@_{$2nFV%2_$8>)L+sYD-0EBm+;4D<|T~u!dIiCq)YXA9*Wg{e>9vN z-sHUW`DXL|j_;Jxtc1Vv+2FwWc-k!4jn7?at)1h+P?^N9mo>U13`{r)uuhAjq)D-?cFNbJ zt(2LWtgjUEFS-Otc3_$pw%t&mWQ{%Gc)%PCbJ!5128X8CiT0;hFOmWSgyut+q|adn za_p2OWgLk;>XFp??}7% zQlZd|bW$!KooE{J*z**E(}Sn@XWPgu@1uHQzH%`dASDTgl4{v;C3c1R9n7L*mezl$ z*KFw3O@A`ipwQsO1@L@zVcy=Q@)#4=T*43Ao$~vDFPET#H;Tm;lp8uIS15Z1k5?X{ z4^ef?H@syN59c`wguxksHRthW!vSTLP=+JUl>aOR=s}UDh(Wj0B(ydagN|$2G#5s7 zEPSgFD9%cE*f#50X{JYGz_ANA?FAX8)d331cg(3*Z^@|EIy+&EK*r_t`Hj48vg6^h zBt}YG!w^d#EWuaZn07fp1}N(XRGjLcZbwi3713N0(r<=29OY0Yzal z3&Zr-vTa)~PTRJASl6!lAUR{sTkAzgh4d8N=~QsL!JSy}PtbpGoZ9n*|m z){m^r^EL166Gs7?3wp_fSCQRsxLn7}M)>p+RiiJMQ(q2^7{76Z29i!K&Io-Mi~C+ zfz*;>~ue?|raoj)eDLSO#gM+X; zY>N)PtC#FRRnR(Z!K?V548_a2X}uSwYRvO7eRkm(WG1l;cr-H@JcJ$_FOzV_t*3t? z45Q!eaPL423#sx2=IDuk@=K*|6iq<1n=T34>TR;*`r7Lpevz36MSy}3SKCNM#`}E~ zbQ;9fXc}iQ1~J2G5sKxcx9<;J6dM~Gl%9JEe|K{^?Za)Cw{bQW%@rAH$}PlEyRj#e3|E7tJ%8Zz01=2EdC% zf=yNo|GRX(>JPzNscu;ISPam2hQ(~WA{ejTylaTC~18K|xrM3U6qB3#xei`j~?|HB) z$)dAH0M?)0geJDK%&djmX~)|t)20epUsxgLh%Euz9rlJw6cffFTm_cJt9N^_RR5>! zdp|8 z-;|aE>0s5}!RHv{_-urr3*IqUlh=0I)h8AX9cgWV2XODncP=7aV%qIl5^Kn3le_}6Rpz*Tlm>E3$uesuPHNvu>!gs7mFIkN=|w1XihH!-36r_~qd55F%KY&` zy*p3how(%89hdZ+z40o8gK*NYkgO?pf?^u2e(jJlt2zm2uKB`8$QGNLjAkT9NN8!aEB{UiMtQ`VQBrDt zxAj_PIkTfkHm6IJw?#6kmqQ)Sq6UL|3O`#w%1@ZhCEZy;UcX^>N%fLlDmLPES(=8a z9`DAWjvph{=CEd|MhR}f{)>JPj9sO0=O6!=y_IU_qk-v;!< zG2v9skAJ9kyON$oh{SSft}E0?c<}Zkv)9G#N$>A!XajU;LTh*TWJ5Kk9z>kP_oBZK zj;*u>Ze>nD!V<8@X3pqR2~|!cr2!A^T^8K2;$G~X736bi`MHv!jwe4foUl{yYuNwj8?Itwhev|I z3`^gT;rhg734I*3N=$i91ow8f$hrl_d|?^h)?{mXv1yTYC%#;UBX2oxPh!89gjb^i z)ub3v-?6~qBD-#*jW!Z6kq6xo&}t>IglNeQ?-@L=4d_*NahAmi;rlGH9Z4XnuHdMX zoaly{jcf;!fHl+hSj+^0sfjvc{ay@KLN3M=VM1{Ei75=NRFShlByX#I;eojvzLr-8 zec@m)Io*VBSR6OGv$?TKTwOjia+7~lv_H_tegBDm2g{RxLrWJ-<13Z9n1dK z!_=0m>kS@J|^VCcSgzZ_M3JRlYmwn%7LO zm?&Q7->8Be$y=XE0t6cpP!I~ zpbx|%M5B=Mo}{+MO$nwXU+?Rk#Bj9G1 z)?u|vE^AK1(g29a%)$|l+~lS5$uo7R6>;=`s?Gsj>ImezGuW!Cxax&WsDEXy-S)6R z>9On5br0_F*4ybgszHxtBKx=RP#87)1AZs^`#_E{sj&P)NAs8#vXe~lv@NXPkTYIZwl%C=;*l@|ee%nkG8 zNf5`e)4DTQKhulFHD$75uquvNH+81}%V zKVGt|5pkul>Z3I~r}3HwiByWT%^cgE!kYhP&lwQ039KuiheQB0?JUc)V$9}ZAV!Z@ zuX)rfR)5+7AN;*Nt+ZA&o(pkei*|w7{8+RU`VcZ*{ooOm5Yi*M5>?X>FBKJ_TV|lR ztz%I0MM#KE%7J}k`UA{8`ATc;giDda;-h}H;z{R}ZB*&|V;uk~BCYwH#a#S!bB1wu z7LRxoRm*@mxeq?6Z#Kc08>t4NWADguV~IhTT`A^7!HMn;4i3mm6VN{GPLga;1V+(v zIm#IKF`>K%L_gwo!V(uJ$VxbgIYwahF8D(_x-v4rw@ZfiBu`+Z5FJ-7!Vv_ph1QmAvUQ; zBmA%id?gigZMa1i6-QZXKYdhz7ytmxZ8AR!rFO`&)_ll6ZOVBs0fUfWkOeiQ=I`EobKmByu|)i2o~^$(ZA%?V zco=zTCl78#?Jy=-NvtuqvQQP$B{YYcSR$yzfO7N%>o>>? zf}M}AVOXRdqP2b=7*62)2iq1oFtK-s9ZO)96)QAebu%T_G@N|x`vl~UU0mgR*YTC? zQHZt%>e}$&bMVzw<8L0v=))Ue_c>P-JvHgXv#fLi{nM$bY@g_JsXsb$Sb_YVC4wlV z*Q;T~u4sF19c4|dxuSM8-%NrR$ayRLn>ZT(FnM+gg6*A~7u#SJ4&hkor~>w&nV1#b z5zymG=*B1|`q+|F1PXY1-^Okr_n&sMxx~(6dG#5DO4@VoPwYrV;p9KrGG2bl3Y&Y8 zfZ}ql$XXUv)#Abcy?SbpBd(dUcWw%R@l0R8n;r&GBZL!g4f@$e?)Tm;%}3Z*N1c{D zL^8{3jF`=-@yd%`hP1^{w&LMRjJfKmZb~$M%mOIC7)L4&4sQ>@BsBd5bs~<9vnh2z zl9M{o!lV77IB!kOVNRo(8J$X4gA3&6DlogNuX-G#L!~N-E!<+1m%V?w8vmZV+}QpR z3(4iHTWMQx>G?)XLVH{a()waU3W1l6ex4dQ#qbz@(V}rIS|j8WW5_zlOL{o*lZJbs zq9Yh!m{a$d2`#(T*D7p=IC^J&08KDV1Ebg;Lkqm*%C0-Z3m1Eob3KhP^Rv|@b#DxV z_&>6Tz*X>)1YYtnwf)FAWs!+hW5AAqJeVNCZHq|QoeWb!zUMaU@Q_9L4~~-0Rglby z1A$E%My>+6@$@FQTU>Yn;^FK|Li!b!8&8s=>dav;xF0KC4I&hf^$r%#p`iueMac8i z5o9sdUaL%*U&4w%0s#z~JRA{pV`S|JM2U9Ij%R+5u5zce{y-ap+FvzjoIYj1=FR-O zaD$bsEP2g+u1^}TA-3<>ZDqp3@2r%1pMI`<+uChke9n9N=)M!Y0~T$`;+m+m^QCf) zhaT1;Bpj|2vsIWpOK4&xaOu|-qfDa47iRdC>0q#5Lq^%wEEJ4xif~X6GwTCnlWqyg zQG{A8=LE+nyHi}bmj7#Pid2I9q? z#tg~TyK#Yz7`Ebsy)^Wm2WbGH0RHfG@wFz|f17OWcjjLx`5mE%!}6P%@7i=PuW0AOMe>AXjoCw-w7N80x}z~!YMYg0M4zHBn2TBt~4 zQ-9!Q76wg|JtVSy1qo_h!zBp1=cONaa80i}yjdZ3EH^Pa&6L=}R*G>kQ5^0V-)gS* zKN8VR{kp|SDBc~e7D70d<+qn3JTFAx%VQ=WN7@}EyNJ`b0k<5$; z;LIZN^~a<`ws`gBNFCo=AR})Muy7&S0YMj_aoh{>i<=^Zx4K9)V8-g68;-;^A&L?9 z*t~gel7Nkcr9(%}*^5Uz-ut1fI~r89e~tDO;R<>ItxbVIupCRqCDDf;u1rEcBeE8Q zo6I#L0(8kWw9Yvj`i!!ZvC+-&tIk#ck|rK?sSzsAnGf8)%}84Eos>=ryAh#zf!&A*a7opwQo-O>P%C;n`4-K`w-_xI!SFEvD$ zA@x!Ly{*rO+odRmON7+u)SNV5J1H>0T@OOZ8*GMOb6|X$qwK&Xq?`Z$PVahzX!@>j zww5<5B$QWkEL}F6$3qU z36!~}qAu1?BJNlrmjn7|g&2yW+45Ch@z*q=LWr3BPhoq5JFR#ezJB>Sf|r7jh_0*g z&!tcR0M1#p^EosvRjV4@5qw<78py>fx0`7yn3U*XPMtvYen_k5wWs%)ms(vU>F_x& zp^%&c57LCqZ2*^ES2bcjhuT?RnjCX}Cf)mZeao7<5M^MUl+wAV5@+Rg4aXpj^ce;p z-Qh(V0-G;ay%k1#s5^ecB=w#$S<+Zpj$alR zVUI?d(+L4EvER0p33Ob~)$@EhRp{h#H3PB*dmX}u$?x5olalJNrx4U-hr}VZAipjj zUG=aG8G);{NC}JM7aG(wsZkq~eemnEu6;~^xR21;^p-=6IPX}ZX)GeCaH^(!v;YOH zHGc~JreR;-1uoD5zLE4wm*Pa19+^Ocq$$+B>wsSjWWDfR0xsRK86tZqZUR$>g?H}X zBZtm}%N@>VJ@4)h+%adN1=}>NWh~J5}I>|Na=< zkE5|_G@={D^j{E$v7iLMJ~vE>bxO#IVV4Q#$ z;UQ@((1H#Tr(t#PvjKtVQ<05pQwSPO)2&ZicL2KFsUpcjJNjN#c*$nU#2@N}c`j4= z7!-VC@_fXl4PZ_dG$z%Wd^Q=9{@7-vAv~=zU8_CJhO{e_Pruz_`7t(Ws049bnfG+N z7aufwppNv}j`H(|@Ju8pWJS6sYL?oJ1PmB6gd5Vx6{r)-43=U{{xL;t-*~e}|96Td zv~0{#?&)+a5XMNIynHi5vmsYT?8C{ChqF|X`j)Nb;l=dY)9aG& z^Vu1%02GcG?-yd^rk28U{TjN}`REF_S@YYrlt(}9J%M3~--=be$ucTX6tKsHY?2~Y z?^%oAz0mC`4ANd1Vz+>j#|h=f+$zN)q+8I!#jvJw)JDIheQ?~0%PFx?$Qqgy1`DGK zvWSa}o`nUi4I~>JO+l=J!e~cP-VODkZGg<~n>=R{Ge#YZOSG9z++zF^u{K6oKCoMJ zl&C-+#tQ8}j9`qRvGt78WqMrs8J`h-^r8+&X_uoUIlr>aTLF@%M@#o!qH5q5a( zEHwBzAV{6}!TEwo1_b~B0`fX~b7b^()ww&4>cM8Wky@L)$IX@nWUM#!pooif>c@O< zW-lNE51IyJ2A}{32#>Jwro`iOo4A6pAM5$(zNR`+Q|i9S8Jy|)KuKO~E3Jg&nG>t_j5Lml7qbuG_1_|}!J+)~imjH`_yEN}e(BbP@^*7-vZk-uKU8o@M*dWS~kgORoS8z zMa)#u>ymYT$E?KP;AXR6iN8Y^DoofxA%_IK;B-Wa?BMe(_#c>AV^7f9wm*iAB7*2@ z@uCz7nEX?V4dL*Eh=cGxhm_hj|80NZ5a8E^dHQh8KiKF#%?|LyGLJB6WA0#`QK(k$ za7Z&kgPB*nYWwe9xA6Cc@S`M&lE#f(80BNLeCb7pKl2H42N$a-?{5=Hp5r-qIw(U! zacBs{+hiOyB>N&(BN#;<4!#eE(jc>0)0Lzw(5V(**TebI(q>?L-19>84c%GfUsHxpw{-gE{gy#k^ye$#0! zh>9>A!(OX+=QcM+D_%Hq=Z2kQ0I7O-KrMihGS)esOJ^Cy$_oow|2 zEqCx@y>uX46=35{yYYEJAs6eU#XI1hiy-WkjPL4vMI&kFllvR)sQrjbpYBDwE`5lB z-)m0KVU<8h@O2uMyP30D(!|2i``PE^1e3@bO#y3Q^|mlt(cL_xQ4I_m&;C`fbW63`!z*rByS3F`<{huh*Y~I#Wa4&qg0BF z=?wfD6sU&G*k}IRA9W$nckJw49H=V%i@|v*Q?=nAAhyyDwt)Mvy4nv3S{U{Bg|wpg zDm)JkEI>&9a~t38Gp%0jJB4PSZ^T3sQ1Wr0M8heQ(@5SVTpL#(?U3)k(d0<( z#^dKY&Bi8!=0*2X8P>kYGHuPFU)VMMDr%iygU`)(7XLAyDxXS^De(7Z0--_6L!}J9 zY&{kR*0DN1HF^v_7+Z9Iz3zS~J8W&-0oO;NV|hsYE8`p9z4OVu*iJL*WM;c1{N$w8 z8-RV$`=n@(FE7TBUH+s}C!_P#?|3o@GeCDw2qzNpQDZ%DkNb%1Ee=b`YbCzYy?Bq| zK3ZkhVK^8Uz`3e+%3JaPqhUN$UdySipKGQzbqQ~pS)Z;~*e33)=s~eJc7&RNYDYB} zJkR{lLsTNMAl>WuYt;#76aVOt`joNw(SG`0OQnCu#1u&!p#OcIEQQ78)1!DXgLzXS zS@P&VwsaLFy#}{S(GD z-T!4?Hk+lT7YSgQc?)s;(w+Kgfl)nvS_wNv9J~le4NM1Fdw|+ZXuviymb>>*_lraj zxS~J`k-(9UrZae=xDKoR)D2~-SibQyFHD^fo0Tp&aopoku6Ooz*MfLMcdZ0cRhlsb z?>b>J2$m4;_4eBR!Qj-#854uyHdKwiAb&x zctWn>P7J0Ah6&Hh`COOOMWP`6!yp&FI2rl?1dRcjo+MAx*rF-=JdeLAe25T3$%hv0 z-5GK+)zDS?S-(ZWgUg?6pVd1svsVS@4c?zDh(+s33+i9<7lD-X*sf2l%k7x^0?c$g zSaTs;x(dGcQjRq51C5cV2>aP?h)i@`yoihPdWZh&3)gaijS&$-&$YUp%GbCGxeP`w zRbD*fe)dsm=0De%qy?IS(&^v>X@IBnO7)=>ZDZUQQ>VJ#5}q=>8h1GtDT469J_{o- z)VXGSt;YfizGZSnWtOOP(N9tjz#D4McRS03C8QTx+*1&c7!u(Z=Wq&~C1V=+xJL=R z_lc8^)=HF^RoSJ?mrdoeF2)kgSdn*%*KxyXT|0hE5XX;k7a@mZt=uVE;>fj8V zyZrG^&qEq-a+W+Jyh2?)Q5**&MuZIFs2~B66zPAnZM1mXBKK&}JHV2MBRoscL5`h) z#^TSaccge`z1pr?!uT03HTbgG-yE6h%x@YPtV`puaRRVZ*o1eHHA) z9Vw{nhlCOIfGO+jK*_oVT6_L8tK=RZ?V>6=4GLrN@y#3Q$6n6pSZd5neChsA-}D$| zxb=^t?FqNmUcO<1i*AkDt3_)WbTFEa6A%|Bw!ho@u` zDZ2It1mwdVf)C8#!m-CwhZ70LBN_c=={Ulz!nOHFV&ziX)$totun>9!0X=JNWuRh@ zjvmRPB)M*>Peqptp&5QA{cd`r3+~~~RwZn@U=mXSj&Z)8VVN-pLw8ZD;uj3YvJ&u} zQ$nLbbY9jAjU-}+yH*I9f9e^dwhgqo<^#0XWol3Z-J4%Gb&{=cVS&LOqJDmyvm%mC zQAQ8YKF?qT06duaL$E8Y2G6gkGuErVQ*PV%*Czhc|N0yu?E_K-FJbGhHuS%P5+af{ z+%U0RNb+MGtXv$iACqJIk*ej7^$v`Di#RYw&s?Jf`=;S+5lrWhsF&DIe(|01$e!hR zM|dQb+njanwXr&{PbXz7h&s*5dAd6iGRO!0(dSb}%&%7F@PCaz9gP(212B@jVywhSY6 z{PGZrT7h`3k4yknfXbN(8W$>o?<0QM`%_N7kCEsj zQ&n07kszT#5q$9w5>o%obg<5q@3(%=5W@^u&rZOTlA?rvPK@{)zw7e%P6ukTf4{_ZGw_oPY zhYO1tp;XzhYgk8L zT}V=cpc==nO^n*(busbRE-<{OjJ7GUTI(DX z9OgjP#|Y^zRLfs^y?MDHD7BKIo`nr^j|A&`Py~4!3U}GbUFI;n*au1;wxFJkKv*Ug z+5o~blSy2qv{+$*-k@T~j@m4|yDsarlCGLtbu&pC|Lz2qS;y zHr!fGvzQd&&g3+SKUtp)4@w{K%HQ07QO%|C)s8G&K?MdQ8J;Ss8A8f@A8Zy^d2+}P z8cVRb1=Zyn_@x~uI;|B1p%2FAP+jW<@WEK$8sS!ne|fbfHT`I5Z_-c14&( zemOjYKyk3C;=>U)u^|NR3Q$k1p_&W#%RmIfbXNv+%!%D7^IDLaKy)}Yk(e|filBgQ z!=}dP8f(HkUfAi`NO6=^$BETYBE+WR4N^eaGF^llEqpHbA)@_GL7`y~PIU(GEM)8- z_adVoqc_hItI#3E2I~>aIk#4#!n8=pl!YRv`BdfGV@x&GK}H&n2UZkN0c{V833m9V z%MBTFTo}WvqGX{Br4D`V37T5z`5L)yd#Qc=P7+$Ed}@)TVpm{wa5g^kZU^DY9%lu! zm?)mf_+P7F^2vGFXj5jx9U$Emg<~j_vi(VWIENRy$jnw_v16fvy;0#2)sGdt- zP*WP?_fdxh(n=;Lt*JqG85=8JQH;f~`aFXu@BjcVtno}(oT{n1a2Yp-2FHFr*y z8N>PBf)t3kB~vszHq(7|*!X+uJ;u?x3f4Wa9kSm}`lwX7uI}QQc(8?h^BJxB=q-ef4qD#%ClL7sDQhOM<4jL7}y4-zhGKI#Yx3DW3{~ zjhCseOIMeg+lUYKy@U*bZ3TZHIR>SM{1_&xf^^d4ZSn zu2|7H^Nfo96~rYEzapvfAiFc#eBaIoweC0)dj9j>SQeiSHmC z=SzT|PJu^MH^1R$zwgR>1h`;U=^1?vZDoWVdRIO+7*yCKVoIiufL79=q3)nd0u1;$ zw-rq(owi8}nz9wzukK^uRYi?$vfgUrbuSMh#vE$$FHy5)kCw^A@>rtW=CzI?)PG`6 z9S}7d_BxKhSp~BlAnttbuztn380B0jo;*&Vcr09W`Jf~a)oBrN25C6Iy!*)CVg?Al zbS}^U=Ws%wh7!rBxoR~W4Hd-pt6pBM4nkq3_*c>TD^fZy~B97wJyfeTri+fCY zT6Kp6fOC=r8fTP#kM%iC(g+xi9P@aQ*onRdF>5A|la21ZhW?(?Fu#bh5Ob+gFC@FN z_EF|w*QD8x(c+k4KZZl9Fqz4r-%%!83;Vjr_$octeau$fE|hc9>9AHAD+Kaz4JY?P z;NTpr&Hs65!9w41TExTiB>FtyFv76X3%$W#xaY`DOitc4X5Cm4?HR|W?-1Dfzgp3e zv(`-koAxR;-CpP#_uJ4#|LR|TQrsG>QZ;sr;(J%O19Cz<+W{kISR+Myz3>%V;+Wu9 z3-E1=7Ubrz7UJu3G={-JQhcc;0e%m>%KI=)t@c!jvLerBcHwFzz05>>!YSE%xf>C% z67zs-GPr`4rBtzhr8(aQ5X6tpzZCbxaLM_e}@~h=GTw+L1#+1dAmhmA;QT^ zfV`aet+4dD&a*EoK-rj_nmql`mFUe5?KsGkEirtZc7j4*C(e;S(^9;MIRj-%#e z=cg2yrA2yIT6i8wb`sMm%er~;5=i)~&H4vn zF3Z4_)K8C~^a6-)YsqEeJzh8DAC!((FOU62?IT{*{Nnf9y=m!D-m4f01qM?^=$hLTaNpX zbt!#l1(*bqSW*uB1_BaD${vHCIbm48Gl_Wo#9-4JkMfM^h?2$(aA~MA@2m#|@i*qn zeavLl{YSh@KK(3ta^d>`?1&)#z1bEC+L1UXx(U#dpBEF97kO3EZ}R7riy!=~zM}Ss zy9`dQ5xw|YQ!eiE9MhSdYn+xn*bv&rpt&BlTIR}R%(%DMoXP}Tt%Xs zX`>`nGr1ky(Ic+*Mr_XD3#+IxC|vv(1{hf}gNQ{^@e7+=FdZhtAva3|4~{+uE@OBM zc9~DT$auuUGZQJ|TgE46X-{As(`)-YdPHiP@_z!5nCEbdaEv4h7VJ6a!K{?_SFluyVqePf^fCPL@ z-Nj4Gu1#!+ZHtNE^gwp6iA*nU_#Ju8?oH%!deZAPU}%<_DqFLFv92wigecJ_^Dtsc zosG{={vm|<$#`FtZ`6r|Lm@hTsySBxtgn=uQMa6}4wcwB-!k02NDVC<00O01ad~6= zHMaa1|6%z%>KT+sdY!XH%&egbdbPMvIamnt>32atB^&V21@99!>qx=BXF$0kD~Spk z+Agh(P6SC6$s-HwVYRj`)QTXu}kD4ujNDU_1(<0E=o)T%r{0-`A6GV^up%24e|Q_|q`*2+xn9icl&-2kP= zvXo0IG`hHDcLF|@SqNy&81{bAe=<`h83KexF@{xx_I?59SeCj+3elN|+d){bI~!y% zRWaXD2=m&K6%sNu)Q>67h${JPC_vpVddzTD*C3b(zGQf2(8=NA{Cazho=1FNSh6P_cBt$Mgy?A% z*fH=Pfi6+RUA*GHGQvu*>R%RalE_ZowV}o`Fi$5OSj}dnGd4#YUSlbB5{@?ACcrpn zN|9&9uB-*kY}vDWH26w~aD0M34yHK_Pfumw(|F`o!oljd=aowy`UQE2O>tY4$ri?ya@wJ{NRYhy>VTD2vR7UMj$`O*4SiQY_=B;C_Rs zGk2%#U^;37I2T4Xe<{E41{A%H&?GL=ybk2SYh175LsX9^i7QCK>hsGt~LjKkTzSI5I2Bds)0X;UQ$>i?9v?`GjeoXm=cmL4Uxp-5)7>}UDDvMAEHsATP z4E(&J?$HowVfRBTce^U0at6H$g#ot9`NIh*7Hs~;zb32$OA+=#7)i^NEz zn4fs!t6C?ZN?VQLfS;$P{J=W1F1g0hhm8$^7Ofn7h`H+f93aN`TX9G>6%EHWaXu1@ z311*{WrojD59Ky}(lgk+9+yXjU6P`IfcFj*FMUA95px8IKSc8bQhiD6_vQn;+HP*5UJyTF1|Ca@`~ID6bBwE{pC6^i zK>Ciw;FL?=wuoE@-DH=&MZ~w>_(q=#IVK1TT)%qd;Cq+1#?y?CgRVE)do4^o!AI() zm4q2t2`lK%_*K6r3;Ad|l13_pM%<-Qs1Ea-ZNwdAcMdFl&n$z z1~*fCE!p@J_2gei3Kjyvvkz*-Mv4IBlKjrupLv!=wOn~Q=_4MpGp8_QjaGvRvx(c)8(7PqIR#B%>~zt5$cStObSO=~LgJ*r zGN9>%LmSYx?Z`(2dcRlr$Y=@NHzXyo=?|P6P@6h#;_OqSXVn6Zw1^5QA}xJ4)(FA@R`7IGUE?Ray^G9KH0giM4)x9_gut5 z8rh3TOGCI$N#&`Vi+n$m3$Ni0vS-lvZ!>XVML=O{<6Uf!#*!tN6CNfdd@Q#oFMxSM z>b{F0KEdgDyG#BoP5>E ze5-^h^-lLKZd5rkrdY)lZ_+@^r{it40J%p!*}=t!T;VAr zK~RpxJL_|l00g~@?q15^6QYJ1=|zKcjxXMYzJ<-@AI-Q`9i5FObXH~DG5R#s4+w0b=jzdk)cAS^u;M1n@AkYuDgkmtJZ0uv4cg)EsMk42^TF>?Rvel|&d`eQc_a_cnCeV&8+b8~h?~ zhFwaQSTddiHUmoE#tR^!1&~mjxhVl_OIKk@RE`gt%qvNWKJbJ^1L+gcc9nVV8h(m) z92`n?n3e?<3n~Y9Z{jFV(yiU&%WY(H#mn{#zFK?doD;-S--o?cJ~ZEJA-U|PMxJ<< zC!U`qd|9MfEg*DC+0sp&l_WbxbX?|sa@GWLyh8hVEZDc`0v`{jvd|&+O+8UK`d!DF z|Ns4_kvn?oLp!$cEjTgc9txqyf3sKR zh?!iqa^NbUt8Uk?S zpw@47K3#`DXnr(@;_?(lx ziS*Ga?Ea{w#P6~0qqb3l`P72@DhRT(FKp%S+bwc^&o0{k@~)Nm^Dy&n@f3mc7UpT^ zx~Mcj0?_&?nDwDSAAsulAYF11W6w*?o25v>l@J@TQ*sz08I8-YiqUvsl#8g`U$$9vYWvMwM(?6GONNST@I;SrS`%d)CMrjHp> z0YOlsN5k(?{Z9UvcrM+T*u?1OL0tbGJx#}zTW&!HbJTgPf8HP;I3Tf);sBWg{zpWr6@m-<)EkF7_DovAfaIf%v1XIZYtQurBFaae2M|2SnW6I zamh_=+Kfd}!FK^q>qsJ@L9RsYM^XAK2N$o&T1&{+2HiB)wG3u$7c*<0tlrhufQJGD zdK_z};VD8_2uGkA0oVex*0ex)!weB=xyY@36!gZxfXJ9vXNc1>$!YrV>UUx;2I7l5 zA0Q+(|O7=^!-; z{}n=V%X$kncM|KU0GP5M4Tt<070&j7=Hmv57|p@mk3=!14+OD5G|L_NA=o&_L^n*d z+i&P{lCsrQ-PloRXZK64p)VzECm56lvV}s9{M1Lg9-@fk$f{Tx#^Sdepg&&58jn~@ zO{Z8;%H@%dcZ_OD@cbPPJNCC7Jo1OR=rCWrFgn9l@(omKR-qZO=$dIPcc<~3hhkf( zLCWlPgtzmN1o1tU)E(Zm{>tuF@9vhgLk` zgzZRp=b8dZ?0ltLJHI6`+^q91=j_~LdOPZh&X&11Cp^re^{$oyJ6IWwsEgbPB)ih% z2P*NXN1cND)ceCBTXz%rlR!j)ZfKOI{JV6l$K^aO`upqZSP!9x@X5GYcgLE-ca2V7 znxq;Gi>NfRa|RX%0DHK;6whcO4C4IQ?R@goKCRN1id1Cki;mUnh{}>F-FLBvU_$gw zeq&-QvJ6*?G3yeZKYC*&hAzumqXHf!W=AoEa36cH=aWjWwnl2aa{m=eZB>87&QB&ebn-_ec*^AAQjYWUmpyfID-3R@=@O>g z8iE=fr47MfJet5`85#Wnt3()ob(=U&A!W);1hkPV7%EzX=Dp-yn+P=3kg#53?rG{J zsr?{aeH?m?VQ2`lQS7HJ$6^{h%)rc#Bpsb|Ynsl`JbzSV8Y4^F0e_Kk4N|9PXHFib z9Jptk;%4^Ud*xkAwywp6h49R)y%Os=!1S@XL*9cUL-~S|izAVokxyQ;GlAt6zO53i z;`3_`@x99;C>4V;uK6(A4!R;wDwW|e*UFxge#PT^gj0}jetPbD+63z48IsocOV?0Tny+aZ%--{i7C-kxr)q+64X_p zzb$9YFA)A{(QsI*myesOJo+N*D(M*wM9UgR#MG-QD-QvF@pX7Gniq#MRdF^q?AOj= zaXBVtnpILp8$^Zc9ea}~LSvTQKKJD2@YERx;kX>YBm^0Rszo{?-Q~$1n2F|l52hRy z6M;Y&2-OxPRd>`ZI}y2eq>`qu!bk~;-a3q$quo}E(MD!g3|euKa*QR`&Pn4!8*WVQ zPIMCSEwnA}x}18BA|yfuc0PTofc7WyX*y5UNXUSuPtE=o{n*AP?TxtvmGD`NQ=|t6oODmg=pfilmxZ~-5uVmFPf*`b;9JbmkEjIkA09Scd{i5; z<0HSEJb86nPu~033Tsmsw&ALS(TjuIqGOv;e*+bHwK_}*y&^J5S;ZQc_neUS5lhGD z=hrF>+&#K84@bv%=C0MkN3R9UolPCAH!(qfWVUV4<=$IZ!Xtvodh@~bmuCR)Y0cd7 zy3uA`cY7JkGb8=b!cx;#?I&>PIaJELaL&A-0Hjhz)HV0%hV zuxHV9`L`O*;DIIxzfoONcf{dnd}+xas5+o|^OyXwZ`QP8$hfy1C0xx4?REb?wU{;R zg%dGkW$<7S8K&|UJL+E43m;xFL!YVUTw0EGKJd?-bG3gU+s*V~k}{1~kx%>jL=et_ z6o)P{**7(CkN*jUD^fQcP$u|fBqTp)3&i!!$>>E2vWz1xmGQ!)KaZTAg0Wp^#1k)N ze%DR($x1)2!T>&MO3nn1etVf0h&gaq3hCzTWEmI@GQqh|I~TjrQ9LqlxeO8ZC6 ztc^j7jxNHyZ9*Q+X=ph{3v3pONgW6Kcx;0>c2Y8re7X1lML7;E=74tchOX#9_V$vx zGiQHYPA3n-oD1Me$g6=Wo)JZE1DWT*%h`R^L<-9j1#P&^RQ55RL<}9Fq(eJ^{_^Yw z|4v`CVcY!j4|!cS`W&8{OsB0(@XfTvTps3PXoXLT|5F7Ax-%Pey)=|`T-3XF(R@O@ zR2>i2Dm$w&_#gXP`UL$&usuW#o3VPf{#>>KC-TOte#;f&&|SJgrzx?7#G0B$pY= zEBs+)+&w`{IV4<36K!c_&_Cw1aNN4@DQhNHN-I(zsvca&sCU{$kk(=Lv(uXld}X-M z<8MmdIV~N1kymIC5->6uX3enuQovaADG75Hv9rN{)%5! z(Q@@sZJHN!1~#FvNPNnv9pM=bNCIN&WP- zfv$MIp9@Ijk_2!|u(E$pu)iKvk?A?tWwev%(r;0|>+dRCe5xM_hh1pyVs5MVJ@u3h zOC~8jP3G&9w{FN4N356Nv$n+iMES!7=O0g+u^S?F6TO_l%e(OSiBK^t@?!OkTk5Yo zr=MJVU)a~e_tGL#V5E|~NkbpVi1o7!sn`wm*{MWt2WS-~jU1A*8abON30mE3f2@Gw zx4T18O#p6@RJCFDBSPf>T$W*-u$9SgH-lH1OCMPnUVSm-;mj@X-Y z%FSG&h$=yfOk$LUok>(ixyySNlTf+r={ZDfH#S*r0Y6&;KC#nkOkw`jgc}xR_5JY*@4}ULo_I1pxq9*`k741G_#wh-s zEDK{BTR{%`*lVLf5{zh0rky(nEWxtzObf!f z*w62xzFcXzA!6#)n(k~B;0X{Q+EL~;%|cS-2+i%GP|!8oNpSj{wA_AXLa47{5{=fn zIf9nN1DW9ss;VZ{BQwd_4u|K7q1Y(=#*Bk%v$UcK`B^dw82DGdB>B&HqJe!P4>FwE zxrvbb&POhvEP+5@dC29~w3@mfU}wSYy9g~Up-p?WUvvigt2`0ad5kG6Lr2*Nu?umA zcwMl2_C2vvI=ho#bq(}#fv0g%vz2j|seHMM+AC81gO`D3w5}L<#P8js9J7|*wmrdL zec{W<6+?nY=NIQe%t)Crl+te9TiNroP^OkkC#q8TfmRbEEOhsu?We5a2=S*83J zeQw7B_o6A9@Nl&9*E`4D5b3hyHRSz~XAM4-@pZf-a=#0hV~K)AeEy(I`L1Gq#%R2Y zhDDnj(pIPP!y2uanmi4Y3zNDGw4?e$W!lh&#>i6)WQ+>79t>dsH&Vwi#8}4V?GvdR zQRRnCU?k7Qvjj_pl0LvKQ>8e3-Q9@>%TTl*x5aaS+cY$U^6oh}RqK+}QwZ0ju#1uCooQsYPUO zMfF+wlaBugf3lH*>es_Pl&2OV`96mxxrbm65v-_k;6`B-1wxnZCc|Y+e2BkB8Wdf(}iUe zEzn#!WM>~INIFBYgMZ#06T8sj)HA}?bYVZrnYAfPW58~oa8rK!LH_F9jH8u*Xj>IKWVV8xz-ESzlzyrnjlq)ZaQ-(zA0QHu7MUmFlbuZd6;JF=6brkN)oKC zb*({sqgO3p55vEo8whroq1DTDiEODLa6R}y@`gE18vxa`_?qNk&Nko{Ch2w(g3l50 z!srv1{^BJ&n}2+L;{l91G^dg8mN@qZ_`hYOFfQwEYO36&rR&;#dc5SU#ev500&D4rw8e(V)VCW#Nkvey99#Uw*|7b9$>MA zd8ZH5yHAm)n+t^kJb{oO1p6AWq+@^uckdXr+_@7b%-aDX-sLNtw?7U#I*6x|Vb*J7 zYSQM*VFyUUEjF@g)elbDVmadhKslmPd;PEy(~oOMvPXF+JYOj%OZ^vrfFkxX58%*u zz%vc5ZPD`cs|1#A-c0?5K6CPXPRYj2dK{|wTZd-pES;e(r=gDriE#4n!0O=v)Y>sb z3#vm3|B%y5-_*rQxjZ6nGv#82|22W$>FYo$zL!(|}n#_;qniV$6jL4;RbEvBo* zlCGz67{&g77CO-jX*5A$a<=HbgHI858sPD%L3Jz;3xy$L*w9Z)$BQJzI>H7=B?kAX za&t;h&v<-#mzrZ)KfWU}!=4JB(*W>94w2O_y;6tCBQTl(+%;ew1^6&*!HI%UB)Bci zYo`r%)BFNAHr4eQmRMmgz=sIrz5^wU6r#sEWDfHLSs;~ni9Tv_N;WNsX4+FkTh&18 zd{W|J3c*Umh4sUIJr@s8ZNuZz0MGky<;WRrV<_?re;zyq8-U352z0iDR-vna4r|6T zO9{5iq{}FyPCl4A0-MOc^ZnZIa}N-&O5nCQLbn{pyY8puLD-fxw5110eT(MSjvQ$D z7VgzT_!5@qxSYN8V7@M;&Jl`|VtmKH4H-0NOV{Nks{kI$vLUUlPWVRk=3SpHx^4%J zj0~~OS7nDaX&a9@M<@3qWPun1YU{nbs^E)b?bqjPLDkh3cr5W+ZP%}~#Mp@UQ7RB) zNV>vj4*L--d9MgkICGAcQ^`1wF%x|(%6k^%W5C?1Oq8*b>>^<@Hy{wL$K>{!FXr13 zKUeB)oPSF8!;{Zb11@{DNJlFjOiX(M>I2+g!~|NKsgVD)dOkj6-H#b$1l;<1X7{tx z+lBKcq%vRyA&^XMrVn`dldrIHjo~fFWt{J;{Dz>SeInyv*DxyanI^!loS%JE5<%%p z|8_#;7N=6MpH=U9+=w$H)~(C)#z6mVh+~PrV>CjyM>`(Ridx9+?Jdw^BdK&t9$L z-3tvH72@jf!5C5#iUOK674)Ln)P=O%G%%n-s&13g54)vD#mEaG8)!L-e}exjbue00 zP)o!e3Js9Pmf>l216M;>0Du*myl4yt`hCkNjzo5?P1ZXDK)v! zx=!a==TcP$_jg;^L@cgpN#L_e2&?Y+(?qDa$_Cr0uE6S3qN&j#F=-d3pC)w=O)Mc) zD9;O6d;dOKd7nzQZP$!Pty>vwuZMhr?v!YbTifSz^3OSoli0Es zrkz^D-e$-8ny>?-WE(U-6Hs7qxvt#ySe}-%K&>j+`xrE?WnZwDFDQ(E!!HQNl-b@*jkA% zz1oL=mRe%0;kFNmtr*p1o*;hujMVQ^>sEw4if=uPz#J6T9;9@k`tah*LC1O z768wc0BICUE_xadap7Ni!Sym|PmAJhT?B{Y3HP}1Vg~mV|p&BBCq+7jcyV`6XnnlYBH{<{J5*En=2;m)6;^=0Mz4h z^LT^x_-(xNXq49cXS+muMZO49srmk4fy%;|RwyajCx;i}e{$Xw-q0ySxoQ&jb8}S- zT819~DqdlJ(C?7&-n~`(YacN?(XF&}N>5)$L^qtu5JP)~m2 z-^{>b3yLK)Ukhp_WnzFEd~r~sVKbD1JVEIJ*I6#MATXYR4_wZE2~Sgl;UN5dIOE1v z+c*YBJE^Q`usprKrS@hsbUqdOo&2^{&K!k+uX-94$|zB0?|3n=g+hnH9+X@5X;C*~ zsP>Jwm&Z9udNjj&kjkV@ix6M-<(Fp8V)bPgHT{i21*?IU_u_b-*>N^PVt!ES(* zyX##&HGoed=HrB_TlPHx?aXipZZGBW%xIVxJhwgTvOxI6PQs54srFa%g<~yHiRtAr zluaXe&g}uyZ{D$yX-BZtFixyJVpS!z$I|@Q41+2DNVR{(n)Z0CVjzQ`h5F2*tvL8_ zuk~&6;^Em&*F#PkMwDQoFqptn+!ov*wPN+>8zKiR`^|Zx#4N&J*AN%v1HvE}4H$*` zr~#8rR@<$TjgW?{r;gUC#up0l{{|+t%G=U>NXjDpwQdq7(Zp*u6x;?Qnz$yEPrfoR z23d>U_d7S`$eHCO?nn%ntpzYW!lM zrL??4u5LoYvdl>&Ng0alW8p!el~vL1=k5Tx-q%np29!=oDukLJ-LZo(klS?V;{^_o zKf+RW*Wj{B6AmE3iMfe&H&CrFX>+egu?PV%Z>|LXTB}?z_H^3tKj%8xy zVWhM@DhHpTx>3fLgP~4<$t6Vl=_HI$YUA#dF_O!?Dl2F)PLPDtW~pLP5(V_lEODw+ z{|!kew6Z9w3njw?Yb+i)e!M6QQf!21`785Kgk$gE@50f|{n-!e;1wqclaA9}Y{gO` zgQ#0GK=B}XZX&h~mZxrL(qYU0T0kc7=|$B9I&`?@O-34v8K6{;T~{Z^L)gk}p?!|sHcjO@){xzvToL!^=}+HWdjGrojc+kQoqf#pMd|T6H$WFYjbpcOu`H1RZS8)RA&F!SLa7iF!j2rH#g~ zoQUJS?Pd`&j-z|Goc5-M<>>%uz2JhHzdwo-VjXYR3S(Oi>q7Cy@N~!g1>X)^_T>DZ z{5E^$5ydqw4_>Fgy-PJ#VN7eZ4O|QwA5~~GWU6%!%yVi{88VwJh10>uQHC#Fdp6o) z!0{0i*cO@;{)=h|08-}rsQvd?r4*mW9^XeP!n*QTi9XerAynRtQ(jU=m8&H%?-7C> z&3b#xs=)Dqz5BCpnw8CD0=#!|1shNiGWyJ&-vM^lu>=c;)Pkvj+(BGc_&^dh$-G0!XyH^xM@u{9h!8@Wih)4 zlK%yz8LPfX(G3MpqI2b(mZ_MlCPs-p)9#^%Dz9UFoQct^=pR}D02~vG^O%)!+|*G! z;12RVh>^@t%#i~R4o#mKb2{O2tlPvfXS=$?K!sAO;G1&ev50#j44L~0a_XEV9)O!;@xvV;Nb8s z&pbOpACO1Lfa{EwRtbmaZZVs8b%rx+an(>Re*7$4f-3s89rH8 z_@~@Ru*hEs7gGd_*-TeXXpw9ZVEe`y$(#rsVrc{UTd$xP$Fyth)w=9RI0&BdL$+ck zMFQFxlPo{#8~_-X=O8W^DyP^lyt1A#GO28jv5{NfVP&9Rt+%a0!sR<~rsECg2$5ng?-7VN{$`Ss4*L=7RehGlo( zh8vmR_bM-yN+A$LJrI7ou_WK^c=_8F0ShRtT5x?Ps-j-OF8+EJwQv}? zX>gl1@NO9K=#=gwIsHOVrPKj!NdrE3$+%q$xctssz;oivR^Mpb<`aT`qC{!0{DF>lMC${VuK6~8Yi5X)rGPdi zcEC!bm>44g0>Vv9-BNN}A{@PuCNsxH$jKzj+CVqSEA^Q?Sa z5;y*(JpP7}a`Hfj940!zWO_UQiyTDm>etnRg)-w~GHfs^ zq(vv-WMpAl+(Ns-f69sIj-kKUn<}yH`;o*h;?Mg}oAU#1ioB{O@B~-s<2A)&+X&-l z!Tr|5))b9DyytWM;4Q6TCXfzQyElDo-InfVam7qej>Va>jdiW+OE?>g(SaHsO@0Kv zd4FOgSWn3h&_BI^-5%38dg8jtBRLPKbvn&kY6hn>GchxgGmiZ?z*#pNwx*S0*)W`} z<}jsrel#B98ey2?H@9KzRZs8s>JY_oyLfJdb(i0+dSGPVkY_4DruDs`e)@Xr)JKVu zDwXB3mccUTHFZ{0lh*;LNF=kZfM7Z+vKi;4;zt4sBxmtsVq&03hM#~~Biaz)r&s(!!hLt+=NWK%?n|Y}! zvu?FqEaIdXdzm@cEwnL9baU4NJKFwAT1eFt2rP=#S|7lf@M_1+nXy_0iZ}d z%6s@>zS|*;$I03^KGC1d-vj_0c_K;VNGlP)rMi!p-IpO7v{43<*s?%ALf%m0d7qcs&>DI3Hv@lonzq;3*_D{T|1 zgllV_?`NYP@G!}K)(7LBKDNr5WQEA2q1|C#+}VFqM{Bs8{ygPn31FFVMW)yOZQWT2 zOkb$8B*7iT_QE&gS74KWEoxpK=rL9Qu^-L@Y7HKE!uDI=*fZ0>Y0&R~ueP7t%gM~K zEVw3!A+7H`vhhJ2gHelg?x2+(AwK%`8BX_me&F%fx+a{cxrUXQ#HUannJkeIg-F-+ za_>OKM>H{o&ADAKGy=SUcJ*Q-*C12)7wS!l$?`hbc4lHJFg|*En`8AaFek|_Nc92T zvz1b~qx=)Swg@gnmcNL8YC=seyQT^X?--u8nvrf3Wk*_YAnE2tNF7swi~!h55xw!(ttg;<<&f`tkFvK*Z%d;RLd zM!k+pxs_~+4K}b8nr(!6W3qxK&GXJxIqMM}G;5|4M%;!r)dO9hHIp=HeLO^n z?$pV$Ky1H@u8~9vNGmVQ5C)V2wUA38B^j6Ba;+ax3f9kdF(GMa%Q%qHmS>I0mJ|^( zwR&fS1!R@<6b=sJML8AxM-XPEcom8N;H#BCb33*7orMKlvG((fg&yR^WzfS! zTL1Mq*DajldctOh!fk>To$6Y)aCo`0_(j*v=h^~hng?bA8s=9j0dQdC`})F@RV@Ug zC!mwVd1((xGC0-m()Ay6=RFg`FSK!-LL)$QyW8pSeR$PL3R3@m?-pKo+*!WqG<=J{ zsY%_I{ID*wlbw|s+hHFb>-2yC9Lw|i-_D_28xQ`53=kOX3}%hT`k9L`9E`?!Fw&FP zakdLI@aA+wK3-C(i(gexIb@5Uev;;O!}hDL6*wk8&AIN*Lb_Qg&`xwpksV<5ky5%J z=TOo%?&Dfb49e2BA(VbT$V{6^S>O!8(?lUH(3gN-s!X^|Pq+PArCJNGxZK~VwBYdK z5gqM%dJg-0UKQ%~E>plM)=WQ}o~v6(QJGdUIap%b1~UT2B;{ZKBR~208y@!j+xy3) z%%&ns`@+){@5gee_FKzfKk}@oo~E|%<5NaiUzL`#|KSdw-sqdjaFkUuWPKmt;QwTB zuHj@ukuf7KL1ARk;9mwP6MM}tBI;JrMF{;I<+TRyr-okd=`PDN1!8nGb)<)zlQ zbJ(Ido8lYVRbA}2YWmqFMNFl%a=3kjivs09{%D+DRCh`ZYt1d8&ZqmkTZDp|JncE1 zF_8S|SNaWJu8G`zIT8!zleU27U-H5vQi&5{L)Z*VC@l+MCjgUfJ)9IVfDgkYdDW0s zF-^!THc2ArCd25t6S;w&LmTriKC$SO)!rM`&r(d(0$OtQ^AU_hm(zlIi>hhlnPE#n zXJ+(6qS&i`Vr-~dk`>sy=td8sVK-J2T2gjQhZ09);*rrJ2r_(^(<%DN+Cn9S5j5F#mYu%?fnr_fVNMZx|k-+2BrT3Dk20*2-w zlKqTno>UkTqjG_-c?UZ>Hmi6C=PTx$O0{bg)c1@km6s&O`5uL~F%I+r7LX;V&qp2O zMXl3wBt8SX|HOVn#eS0A$t2G3keG%cv+x9goioIzZ#K$@u?XjBEd{W+fkLKww?^@}Y`9p- z;wQ+{l)?7j=B2p=#s6^up1(9{9;W>m+#<}=Un{8@H~^hf^FAwgT-xX$@3k?h3Oz&M zo}Y~Dcn5jkb#QHfBPZ{|Vs#~X_$p@85U3XClTwIWzF7?1DV;HOHgx_n2L@jtW)}b~QeNfrErWe%2C9LTRWBiEyn(eGug?(nvH&cn-TkJ ze)<@d!6u^YfBDEug3-u9_61cEXOD}4uE@~N=_LR|W7%}z^u~l=5>t!Su82+uFsq15W+(p^=BfIU*#kGM(8P9XkNTHk{_Xluq5+ht+)A2wfAgO%`1pJgFZ#|2|^Myp$II==kBQ z#eI;Xry4PFOEABtJ*=l@J!Jw)zWFjO9Y-mM9G)7u{O-AwG>y7b$M030oH(41`V`ur z^muFm#SmM7pvG3#cm(i66KUX9<0S0zaeGu7IF(Ww`0xHi2dFX>#+AR{u+VTZCUO;C z6FbeggUa1gEFdggX0OmFv1{xt#@13>fu4gxI}wYgIH#jj9ixQYNoIk@Mdt5O+dHS> z>lx=~0SZeP>$USRc0(TEGWIOUO#h$UC5zd+65=K5#%wjrzKb<(WYR5L5V6|mx~Kqk z$nAG3$9B|U#z#l9_wT}J|gd=#d%=1 z{|v4qKsSXvtHu25v!YBZnInY9X^3x5$A0AFa-VZLzw`i7GD&GBl$8_;! z)cmcuy5%_oC(oFi*l+n20N*vV58TeGE@Qyz99N_mlNe;tTh@7Md)bE14!IT+!bT6j??~JP>~j8TQpG zy*{nj-`P|C>*YN-8ncIMUdJfUFW_BX)g39}V2iVB_D#AE!>zjN-;l&ZcUkN4+ReD@ z0h#t_7W?Fdl`^tK(CoNepRDN3rj&=r*Z4C=$kP{6a4>t2fraD%2lpKiq|qS`WrDxF ztNjQQilEa^4xGml?Hd1d8Uxx46c9hQ0FC)+w-RST915iDAAe*tpij3C6K7QWzhjW) z(FvMifrwy^^ou+Kw?eAm3LuDS%r+@F{y@h~FT@! zBCjkg_wZY6rcqSsQ-&G(+Z&{rsy6ufw4U#%*|)|GimLEws8>17dgcob4d zS}Kxs&n|`q({!%{0YkO~(M74KZ4LGi?s&Ngk{J*W0JNm%rB@N$Bo1OtUziXbQoJq+ zLqRHPXaS8~UucU{D&6LTpGe)Z1C{Gxt*19tOTysV1LX%K9^;Z44(x#IYX&+NC;(@w z5qDY_uFZd%*-mt3UF*nZd4pd9ylf;5lx@8KOFl%-a)1;+CMoTl$UD`rNzN+-2p^ctHxPU>$PaBN3DjSaVfUZgn zIm@_uh`YUkxiIsib93WR+q?~9^rjQq|=22htyTWvs|g)+t4G2O7(KN zC>C^n8m8N>&m(qjR^_w1prKeRJziyyLAEUup6H?WjC~hw1k1q_K{U1vS+*phS|SgX zxr6trcvl6&3Qg9=D5{`Gx`zATQ^RxyWa0lNRLMA3CRf60U*!@6%Cl$J{gO%kub+K@ zCQ)}=((=M7DUTdT`{~S2S%$B_^nODR;)FO8r~r?eYyGUJ$xKQmXR1mR0^DV%{I*#6 zLTteUEy+oDp5k0n(S!Y`o^T$Mlo;72hs&yLz}fyStZ!7DF~d9U#cEskvSn{iNFA;~ z@cZ=A^6{Pxf`H%$*D&n?l#eh&PkIByPcllzptc-^+dmwnF3V@ZB6hU>tn{o(u4{>Y zFu^Q|G5cqc?JAhh*_b~J2(X;cm{WruNXJyBpLcDD$qAy;!BZNz0lwJLXb0bmZTG(Z zI8Dsv59eNr-h&{I-9W~gPsnlPyv{4*jl9xBUN)Y*ndN*WbHdHSMl)t95iKwItYbTB z?3~vAhnGAmC6#hYlj({5AXke~K|K?=(+_M%mK)Wj{imYCP`m@S91MFTt|vEtIruil zBB@{7Wi?FAo9XW+aj!=zYwz!^NR#jMq(1W7sjqRca)D`;*xSuZhhihPN(N-saZJv$1~i=F(1K!LvKAxBPAg2Ji(;CI7syZs|T#WZGF7?uO- zgW3$Nlu(pox{_hhbp}}c(?kW|2Julo`+GjXr-3w;`HzC3NTb2IDwHqor%|r?D|ow# zs_LPOL5n!c*2xiM|JMVr$R^YxRv$)I2Ghk`lwZKfh35z!_|uCvbRd`UQ|$(x2p~C$ zgPaO!yRV11~iYZ3mVC33+HFw5RESNfueegPWvBLu)UDgD{X1Hz1-vPySyJUw`6PVHYD~ zbhNI)K!gWdREBw?hsIPQ`r)|_Kjp_}K<_0NiR5Zat5R({5=7G{DGo4W=}mU*$koLY z34spbU;@oXi@lWXL!;#)mkHjCuSX)Q)z%&~d@O`Ryx>O4^~?Q~cFA7ZKkt*z7S70Z z^_LdY_Fu|1vR}_C_&8j?_n$D&MsCHMoYKbk*X9&!9FQ1^0Tdmgb_(Qx*55&Q~Ukj?h;F zIf9IG)PF_x^i+u%GVda@g^N`(2+m99N{F~&FK7%9B7|-kBy_^IRc-k($xU~?>@&lv zM@VR*#?fAIx2n2%tQ+gR?3$6H`@eGTeO%e%@xloq)1P;$*V#o0zLGF6>MH()YM=kk9K`yy{)_a&@s4vs25)&32dRF1y z=Y#NhbC$kbYzh&(52yX-&#gP;u8{SP{;uyv>5`y>V$-sSwB;9_EjXUWrp8i^Z+ZT^ z-^*lNe>qOz@L)v+y+hYwB7nmTH>MT9hVxzJv^=bGK805~rSnIwN^+(B7J5YT!Hy;W zkI*F{4XComDY!;)&igS`p3!UXDT?Vp3!%Ole88*^!`Iqqr_S|VCuY@xz(~o~U45GD z`G6P8kGcS0-l4h0Hyr<$73u)bZVaNxtwT9vBwWs5mutB0Y?I~FixN$sckck06^JI; zA-OncO6#OWX}(0x30DYUbT9+dupgY1=g6IiF?rAwp?DNP>{7_NgoJZ;WG=`CWfdwZ zgwxx3WM0V12rXO>=l}u&a;0`M024~92i6+3mBgUt!5&L9uV3^F5W=@=rL@lsU8jQx zf(Kh4ncfzPkB(J0h3z+Sj)%)JtNCLzqlLskm*<-NH_-UFnI1%7wU8vR@ zokHWAB}aRs=fT*#KBcj=Huruj`B(6SaeAQyC^7widcCMG|EeWxUifBV_HKv`W|ril z-;h<`Rqd87nE8^hS*cKxg^Dm`x|Uv95o&eHWSu*;TypiZX%@_v)$S77+`lw{@NqKF zor3dUpaAdYTTWlR)ndM;zA@}1BpJT>$L%JE1p%-~GA~0zEaubMnxMXw9;sd7-^;ER zfsY}2AWjquc5N+YQ(LD+60Yn>{J|#jO@=-!F3@7w8-h0_a^;=#bXveSA?8@@J3ewF zj5&IE^uV1}%OTk@_qZ4rZ7>%fpC%n23f5!idMlY`7$j>Ku}23}Z`gJ(pkY7~JUaRv z#i=|SZv!~3ek`hRii*?U^mGF`@cK@WK!Kh|TLv~eTVUQIr4l;lpcLW-&1?}ku#HyQ zqUYfX4WgK(8j;6S_r@vEL67xXG-C;^HKQEF*LMqo;a5tjQ87ULNf{gSX#>%x;2J`a z$iq1#aAqoRR(wTHVx@Qf33k)}Jlyzi+#bxXD=hw65e`Zk!a#=?=zm+kUT=(!X31hX zKyv$>JmcP^`w&0fK4ee(G=oOo7*wUE3%V05)Ywqv0@8jiU&k^93>;XNGi}3jO!rtZQCvIQ_%%Z>r6LaMrxu`gE@r? zOJ>;>h@Y(@5}A+~ndmH2_ixLZKBbt@n?WZ$7`f0ASE0! zh9V~C*!M4t#^3)&Dv-L3`!NKJ8?ajRcJr~`^|Z?wkMH*-EFtGnnUIQ z;2Z}6y?vDw7T>y7u#A<)$b1`hMQ;MdU(r|0_~6%6?BgzsEdAUOf@Z-T%@4Aq?-g%l zGZTode*!t@nO|Iy=8sTn-k7l}fKq=dLT>VXV^10o`FhdFuYtDS#-Fyg2ZNZ0=5U0j z1tj)0+5*Ap8x*lE83(*j-yH2QH~Tgvru*GT%%Tu!iHVkdlRM(eqRAi3u3_&hsbX6C zr@{K?lA}qJ`A>S7sZHXS?+Ms?I4#-$0C`cqOcu*wpFosrEeQC=Bz`>53ztS2zg4jF zHmW(CWoIzrH$6Hm<}z~aA)VMLCRJOo#R3{8LwA0|Ar$W+OH;SiuP%G%XcAt9UM#Pj zJ4DOlp7T@>#%*t`PHYb0w%``4tLwocJCNcGu)6SEsegG8GpHDppI^C4Fn{f|Fj zKoBJ6hXmP~5TAajL1Y6Kch{DrZrI)_?FFEvn<@uR(g+D{QBjwy!8wbyXaJ(BnE>ox z$LY<^?NiCgxnsY$4dA>cMVbUbWD`30m{K|c>@;M%}-qEo~Yk0 zQRuV2nN8Zup84gHOq>49R6k6LwOUB+Smd4<&I);M*+?G(9vLKXT)Z{w)1*EVy^C1} zce5+mx%0mAh1S{5fY_ikeddFHH5yYhy7-A8ReOF%OJL(5M6Ff?o$suNe8f7=1Y}?F zQrKfREQhjjpTAX~=Y5EDBqcs>v*VW=s!c4SlK~q60TKT0W&1zAeefCVP&Oaj?+EY8 z)X3O1~VIj6tjWduykx1&wmoht~-NP`pK1UKnfAo7Z`+OSmewM4$ z&^1H~&QO}R< z&zoh93)um~#Kq){!aAfR9qs;XFRTHE-7cH8^0;NcAf@?7M03q@9nZ20NU{02i!XNg zuTDTVVFCEaa`u|m*)f8Fc$pt44%L?IiSY3dvh(x;b_SI4%bRT5uXM1nx)5~;o_z0s zPYpmrG~{gF z{bu^F;@Pm7dNDot2_5DYQ!m5O`9uB*%wC8B(S#(vS;+4?W_-)c_8U;LLwg7tNE9H9 zcDEPYyj^e@eyPoUTvsJ`}%7&_aV-4f#Qv4gveR35Q&kE;b4KzNr%`Kn-X{TB zpLny9CFc4M3U#`Yn!)WS?{M-q(~GJXwWx5UqrAE@Er19D%qApT0YUKe?A z-^&f{`RK?KR2}>_8Cke_myc`TLbKC1b%vU2HbK zfTUYmr1NhEUio zuNbj0GAY>Zlcw(%WnGoq1vV}W(mcqi_Kg-!=V=4ciRlrd@p09AFWAQ%QqKvM^FDR; zM(4}$UnW4lSVIGJ>jNmZZzkq|L!V&TRT4}9`8%7(CbW%NV*(TTB+XI9;2Z|G8y`|q zHFRTXkJ+ot;zG)-Bd|$&O7OG(XBdw~%>QFmL_mc7UJ;?aGST^v_!*aItat4!J(V>s{N#(s#*qMuGm|TfGv*W%2pn?5_cf~}U7tPMgIhBf6I z5qWX=;(cHHrxU}084Ryd3=lqr$%tB+W$QrW>S@ZOPiWy*@JmINtZ^O5!dVXS6mDjqna!%w{C!Q6I9-(2<9uas13R7gU!LbV~4-#lT zL*}w-WIW5_T(W4SZG(|y!mfn&Gq|ff%%X%2BkWpX8Ew|Cs1-rvi*{H z@=jMdF)2knQ7U20e`1000000004;64UIDGEabc zdQ(^!))G2TrVJYpJ@rwWW;}20wwC01FRWKzA$YQBi@pz!xQI<+-~a#s0000000Gew z0r2G>CDAV_lFET?~ks%nuRqFE8O)Wz9ov1=wozF3-Rz0LjOOoH3 zBJpf`+kd0{uFlY}i}?4E(^PFG9KY>@uB|hNHGDr)E2e`^#Oza3%;_e(VBM$tJh4Xj zu~0F>4c`zv&x!x+{Vy%Tvh*&u5Emo7H!QG`^3&TQeeY0Bu$nZ6Pd=z^<5N|HA}%^m zrQnKv&Z!fI(v1*V(r`BCVmR82(?iAEDw*kNp)rb+psHViBzGV!a#RPrk*KTfb2$M&=+XoaeaVqba8p&LA$1=CT*Nl9BeEmoQvH2S_Ktget={h!ZwCpPu7x7 zV1{mgO50-dl8-m@nPIHN-iV?UkS%W3b~>9aD9acrK`y4QGUD@PCKr1|H>_s%pvTZ@ zyuF=$S~-DRCaj+iIn`y}5ssJw4j8%61QRk~Xma_y#SdohkmtbaI(}hQ)vxAR;F|>- zrMkahX9Ekkrp-bGKLLQ5RQ-HC4j<)d+UD304kA?+hJfw;=U;MGQ@}}Vx6RE@y#Pd7 zAf9XZ94h=hvhDF!=mC5D1vy&Sn5!tnHg2!r1fC)eE)QBlJ)xNK6c6R<=uW~+$?yK= zfvl`R{Q^SL+(UhCOE1}o{T7e0ZU>k)k{T4MHY{4gNm5oTCZUklneRWP1@uOf#j%2A zw*!t%n(Q#3Wk;gk^yX>v(y{$peQ0hRy610c$Yd zNsm30G);f#sYr-l=0sN$yXnfO?iI~U0&CSKw4td8vS;xUzIzy46Z`gxFN6G6jZ1BQ zNwKwDh3+`Gah9S?q{Q(J>&bAqU%0h1_1HLr@(=(30000000000I9}d5DM(#m@5?(a zF#R~K9yL~r{8`S{=_Pt1VEbB2g6i0R5Q|-Nv{W%?+tqz5d25~N?y(ofznt2yaqc!8 zIFD-o*S0sz{8hbzh!?qatjTdoVMki5P%gIcKd5SC&?^zE`Sm-+i=@@8qS0vvWqvHQ zWD&Qe6ga2ootIvPsv`xT9YtLl7wTY+0ty4Z&IUB8^D@JHeB83mTc8;ThVQKS+E&Ib zJulAOePXvCBx`zBCl1*RpQ0&Np*D~OYOt4)`f@45ls|UU@;^fZtN;Q(RU#<(tsi}0 zBuv3*&OGzAqCkDd(Kx19iwDh~N$}n)nG3|m>Ynh^8hl-1wXtLFo93d^__ko=y^IpL z)?qGNhvz<{oH`B-_5c@L6P55lo$!VMxZ<~IiWsMG`;yz;?e?}a$aND72EJAmf3ZH! zX)n0dBl_d3ea%P^{YzY1n+9qzAiG<-MN|L)000003G%Dw000CiNJdsAy0W{yXH)t% zi}G1YklJ`ta2i#}!!2&5Ig6#a;QrMBPYNE6_R1YB!u^A^wD@n&1T9a*Cs5&oE~|oLH~GGYnbvz{Y+S z_nhVM!xM&cLr(Mj&`N-Cx~~X<3aitAy-c4pxA=Ve*Y}R_Un^#bB>zU8Jgj%rMmeRV z#0$j`vQ}k6w#lA=ZCB_)xBbh20000000000000000003~TwprD000000000000000 z00000000000000000000EZ=I^ZjYV-Y$z(#GfO>vXK zvbS;IrXFdwu&jz9E&$9tdsSpTv98{h-@-}rz0p0!@VU$|bt zpV0rj|I+om{hjzZ{jUAF|K0BY|DV_c&;zOes9)wgO#cD>tMON{KhR#)a@y+8GJlGF zO8h7FuiSslZRaxI^2^tEj&amC?QyKnj+4(g4OLJ5!roA~%gXH#{TnIne z3wFngpyl3vNTKfW_bFh;WhlWx8IPdL4w&7x1T{Rq#m$-OU}nU@k9J&dhtI;-ZdNZC z?DKq=U17O`cd{i`!x_GcX^k{y?DQFs@q5eOb7h!cL}bRYG)gIXMiFP=Q{8}2!uRu6Bzg`=lxA(*;K_M~VH zw#E=I!Z$cfzatUQ)?bVgb5F2uO(h{S_yK%H{fzHo39_MgT*Ecqv%S0c4uDi`2!l?i zy2ZLqYMO4@~dprTzNaSD* z?{iV=MiW$8MNT<#Y1eT<`mF@>Yi9|7Hq1PEhrQlSKGYI43f4m~zH22trZK+ysXW@+ zH2?tq|Jk4&on;PR7?i*CU4)1l0<3M&qO}>}!@nVj|NUI0@VXzA!!4<>GbKt?1IXXQ z3Whq?YzEyeKmYk3>ABY0g&rl<-csrBq#}9qtj0G&f~h}d9iL&6DbF`ws7#gP^a6Q9 z3Oq!}O~j{lBedzBN3FP0qsz>;bA(%pKJ8hgzE}a28GmX{RR4GRyj4i{Thw)9#@`Fl z%{oiK|Nqa>xtG0?UKTwbPkZ`10rU_%ZO|w30>C8i-UXX!Dg~ zHEYdbf#{B2-)9&xEH&&{hu9wwNNZFuXqloo3Kyg{ii16LjzX-))@H&f$ySzOt9pN6 z$)qHSMI@^USlLPCT@aJ@VD%6LJkK=QSQW3;>Xaqxf2~G*1SVvSZAyk77E)n0d~?|i7g3= zZ^2_lBb+Cz7{d$9QsPCjA)cCT_ujEmy;fHRY-vdLpUf6Q?~H%Gmk#;9hM-POD2(^# z&mWe-lSijsrj5+lF~$w3D`ya8rV->d za)vmoODg|V(=8?HuJk#s_yPjWQmXk4Z)*k6%2tt(lwqCa)&`FcWK>}lyrQlOLowQRLMA&gczZp;VTNe zL@kjBS(UvfO^Li|5)FTy``fPA=nIembY~w;&v-Jv{byxz5U>4ov)%ZHR1Pl0)3#qMpBqjQ<=J%d;&ExnD{$s{p%D+gdEARp- zUumMn;_L7KqyJ7FRq@CNv>4I6$Ku7>(gn+zWcQoje;KlZ8h5?=rEnwp%g6d8-!*F< zXGhm1J_!10m+3+LaH9}k{H#FxVA(&z=i8APlT5wJp6U(xPobFNDUU8BO#rt5K zFCWW#LiRBVulSUgoQOHEDAbWrsTKt&u)~pmcEn50##QF((yQ5C)#7&99lMgR`TAE8YP;rzgN!>Zis5m9UhsF5=l(Qg+!*NZnvAy?r|Ro5HMp*eYB zL>{i@jIFtOzS>>I_F5?`uj*c`W`~@F(Cv*a zZ*NdBSis6fvm@uL%110TDs_EsZD1?_j|FY1@S=Gpz8mGz6C)qb?1vS7!Xiy4 zWl!Wg^4#7NQ2j}ra{UjU19{jV{nM3|0=w&Si!#zhZH(=QZNa{}vfE3P>sM0!Fq zX7xi%!I?nlO}0)A=N=Nun?33os7xmG-&>V^b)o@;!)h(^MVVV|a}#DrV~rQB9gJw= z!s#_&pHfij&50)JZY5Z1-p)_3p}`QnY0@Dz@iHPrrx2xo2$r7ytrFQ2=_qn4iV2v( zAw5?FlUjVLv^)ZlJSh%Q5Z)k@daXR>orVecCzXru1w#>%&|;d%apq?BO*pVyUBvrKeFRsdkrf8zK2KXx`=2+K0=lQs2meIqezZ=zXC#V{x6~)Pgy34Ri1ePh z=yMxwn=V1aL0DKeGBZfwQHW}msg3WU)2h7kzFYX#DvEZ`_e?A?gSu4dp%Dxn1ByD> zo9O|Q9ou0h^;&+Mq9M9%py_eY~-(g9KRyLx#o$u>Fi*i zSi57yr1YMvsTt6z6xcg9wJ~E?pV;d8CCmmUQ~BqV@%*9U&Afq>e`!+AD9Ow#=Rx+& zH`WCU)y++)5hP}Kew!AEW;c*m&mMfLL~y-u*DVnywX1zLPmO4#cSPg`hsP~elRgg` z$qHMC;o-FpphS!N0C0R6Ka2^~-!zT7Z6^@&Y@$HZ`W0Tikpn}NM z_9U6FMF}uN#zZ^O)+P1bbY^5a6TJ(1K`MAo)Gthp$6!CePJ&EZfd)b+qLxQ$=BKT5 z)dF`&*_R}DUVd|+Oycj&57K=oAsKH^e~PGf+b9(16;z*G)N_%xBH9C{kKmV*2chRi z&uudG=;+de9kROhu@7%y^KI1#`XnCNFZ^<0faL3i{{J1YRk@s8KR5`@bQunPaempyTBLx&nowjfIA#gF9$E?bGYaAsxVNc}_U8|W((!dY!8GvH<>pi^|Vnt4P}>{C#6 zB<$L&ARREJ<_%BBAQff5(qxfXb(kX=(MTdZBC*SKG>o=Vh)6T=m#A=!KcVb;|zEwbp0Ubl)dkHEH7cAP2(}Hcmaz&Os;!~qw>cmH zX@FQ@ucD7|Ny7VPw*}zTgc~vV`+)cNX5kTm=Uwy#JOPJ+4{eI{vfe+-r+*k9m;U-| z?!R<)w(yc2kep3`3})ra#F(wy!1Gfn-rrC>*7ZAn8Ertx?$dA?xV&68KU9Lk6d*sC zJcI2MUMKL>*28D$;s&;#5#uYR&X(z*uQj^)da2rKq!zR?iGEraf)X8A|Bh9gy^{JYwxWXbQ#lK(rn!ah4#^z8r) zztFRBuKxh4-gTK)V=gmp5AjRJVe7}YLvG0y=ct+-t87H%&F`1(_>1NR0o>236eD|mh<#uQoO+^r9-Sj9C+m+O?meIuZJeh<5U%!jI882;q5 z@8G1gof?XX4>q74onQAg#k2SJ6s z>>Cu0bkR#*m zd4?_t?I*!x*n}9s85Mya5q(4ror39-;{T@fNV%-i){iS1(2z!t%Tik55;R8M3>%yG z1z_y3pT7kSyjH_~kS!$d`$yBeAUrMy{-+nLsa8 zlPBBjb7#7?618jQBBlc=E{2LJi}lB)>8!0O{;|?Yx~cI3E>j470C?4=3?T?)n`K-T zm(h)-HP+bEjt~*w&GU1CpbHu|m`WlstCOXHQs<*I9@zeK*;ZHd69X_NzCVZvr=2ZZ z0q=u%io^XuLhW*S6&(-YT>yU@Zvi2P{ca=Y7+@=Icp^tw%MJ$O;v_uswz8~}v|>T| zRQw?;uO~0e+f;A1C+MfvEvV8rgd|okp_`l4$mR;^oRSL(6e92#VI}3O=dXP$ftlMa z0ML=4_AS@>L4-uv~MCl(tdJ!!Efil6mCV0aKYEt|0%hWY~vF{9a7~v*SiZQV>|Gzxc+e=2&)#YQ^f=ioN6eFb zq&Tdz73l0^rMXX@Qayl4mdp!bIJ!bd*?zI9ECQX4aZK+B9BJntMyNsgj|N^~d&(K` zsgieX4iT+&5_md1V7~!YNKSoeU)6hdAEDCGGuV8rRA*G}#p)%vui!6?^xCOj6F1_kt|Q9GInY%yX1okJ z9?LGLTR{Uwh2ADKDwQD-T@ljtyCwUjACI@`mv#xj@B@}e6geGVW!qPHq(kLTbKF{r z6!rWc(t_CFnEY~JQa5YE++(0+lJYYa!r(tdVL)jgA^If+|89$Q6c6+3%1B%qe30c# zeB_b9@ZeQ;d+qaCaW3!(9Miz5=y7e_^Inz@jc1w{h@Jr`WE z`*hI}n&ozkotA{&8lJ}JNl`YsaBBJb#PTA{2CoGdn*=+a7zIE76CeBipTx)dkJ5dk z?{CXwYom-cJ=Q#gMqt^vog47NXvD^_cH9!;;NsQPVF@Q2-*VfJ$C3;YC*SZ}&{@t^ z=mpi^(y~4nry&vSoAfa3;y}8^|4w15c7HneR!f34W{ za(%olk@s&|4$4iF!m3R?ZUI=rI>$1*ofF{;gko+z_v_xz4h8@58wslnfuABSJQgT!0*rL)d&H|8t{8# zjf

      ux7`Nw`m8LE zh3i`N-WN$}!IW#P^-~Kur{6g^`?oqYfxr?4vn8#;@s`I3mnK3`s=gE^D)NYj)E z%WwENYvmuTZ2RNT;y^csbkFu+ACE4Hxl>bJIHc}abr8kg*54%pC7#%aKeLEhCcgv- zmmg$srclarzebB))l_{SD5i1oYS-qQOfdNUdrLX+$vbSbhiHENUvp(^F`x4*On;&# z5Vd00l`y$e@lxMV!7f0hP}U`C(wzPX@Ok4-5(VvFq(><%{?DQEDuCc#g9-jecJ0ut zRmbn%g42~Aq4oJ>2Sv4KGn_ntfl)a4c_=C)fRSaqO&-*;|<_^=2BAFTK*u01!hin+h|s=o$v$0Z@|?NX&88bAw# zpCIqiaXy5uw3HAiCAYE>Zg~J{j4=$I63?Z&5{rXPhNPrxn`?pJIgUk8Ji>sGm~vmG z64G}iw}CGwP4<~ups_ltvQ$kGRs3w~{1hn~@6pa0;ysRJ0**f#ytug;da?eVuB;HQ zLzx~0w&?mhI0H1p44v9RLbCz&joE&Kjby+&H+f2~VtHC*MG}3iY<1?IGfe+zlRlQ| zI%GBXhh37MkYSoZk&5|-0#YDL3b}oqWnoYC#NoPZ;KXVO>6Jb`mT&X=*3`U>*UDIS=`NGWf z1VZ}W#6<)YyGw#hOTwV6{iy*|X`wM;hD1g-5wYE<8~&ML*t?L93rz(OZ|6ID!sanV zzZ;<@@z=0(VZw2ha|CTdr=N~e9zR@A@rgM5f-D!+eKhisiuGbOg?O$@^YPJ$rtNWy zW{8otnoYZx(agm??j^7)Y*a}m20fj-g1>SlENRU3LUOL{CMt-<7kuKM6#u{w<6^4* zRtdyK0^!~Suatcx{4Wc_YTOjjEC6Y>Mxbj|4CVOqOw(4>%{=n^Hp?S2u#u?Z-a0z* z9aCubEy1~I+v9+AIT;NTAn3N7z^4QzJyZ*N{_=g;lE@nIuz42V>XH?gXGAEDxHxBQ z7zQ!E=AT{yX}r022#oIy2#;+Om^KpKgF? z<{^$xqN>w}u&Nf2bw&>f4@| zhKEFRVfmbWGQ-jWf?D|6?Eq-Ta?iY@_n_H_9z|S2%Xu~9xi!6g$UnO^FaYp8r!*ViA6GWOEQ~i zftL^SQTC$Fl<=+3_|7lnHC-3j(McNVaj6i_7BWvZsj7V~VtF+2mwzd} zl{K=Hx>&CPB9%Pns$84{trk*?M%K>)8Uo zo>KmtJF505b{&!ItI#A3_@)rCxj%yHhlxC~T1LusLmUY~8kJSsAMLfhLRYH+B<*A- z|K{2|o5ZHI_0Ea?s9OE1d=YdTneoP5GdOuzZ^;PxJ~ zf1|*T8U^aAin_Sia`P0J-q*WoLSq!W025D826O-plb5Vb%k+vU=TVHAgOh%~Y<*UM zgt3@qTGDJJGlSr@o2pei8w>D}{nzG^X=-wc!e6Js1W*2wB{Nm-+#-;T>)+UXW#9Jw zetkVB^!S?&_AQYEaDB28J_}_4TNnEw(AC6h)dG2<(t64kUevA(>@#Nr2N%#FqFRJO zJon)m2&?2nEH%JE_mv3mp`})kAA4UhIAIeqL?@tLousMfv@j((hNmFo{Jq2Tlw}tW zj>drMJZ4~RPC9`!ep!O}MRD*@HidQEI$!$1x!@n}Yd%yq^Zyoo?aPLluYx}n1vr+> zQ`>A&zGj2~C$uQunKIf*m>omvqtR~)jaECUiLl@}2eA`TClG6NmrKdHC^|3pUJ zcpZmwGx$G_8c=HHnS;1Z6S#MVMn3>AY$rgm2YS-a37POeXMYU&2a1H!e&u-;TVOYZ zPzi%mKmHcRI%oA8M&x>Z>v%+a9kDLip8k z50b^Ic9?09y2iL7{(*i!pqAhUx2)!F06HCp@@gi!aQkKdxYF!0a?dfu8^}*Z;FtUn z%!n=_Uw&E0_z-e|cL%zIiU?shATXQ*U~ygDZhb$d9YBg(3~CSP@z201rq6py{HT;(=!o4Ux8FMQ)3nQa zq+ApNZ~*~rj3Xk;wvw1u;p>jR8g2~q6=9LL^n{I;ZSMmo?gGi%rqh5(WA{!&6^u6X zWC(EUOO6>D|96JWwoPqWa5W^UT!l zu<`Gw>Bh|+8}==KEYlerAd@^?G*R1u&fmCZ*@LXMcr!ta2*kK+Px%NXB>Yt`^@hQT z{2yr$cc*}g=}=`@6JJ6QyRY})ypZ~VN)%z!=(uvt<$QRgS0c)eO+=+Syu=(Yh*rT~ z+J(q3(zORg)MBMkkosc{5-#e+Y=M+7(M!13k44`hR5$XkkiD)Gm`HQML!}t6q;mEI z%**6aoJS&V^h)2N@)^$MaUfrQ47@b=@7$YJb%i~uTs#WnuArSJ3~d5tyCPDk_~W+1_Tict1#EI^c`;7VRd1dMev@=b!{{aEE!9mt)&LO8TLY%m44PDcRQ!f zZr#r;i(ys^PMbo!JJbVC?ec-9Kp%UJxy^A8dGmt!&dq4K7;pc?0oc3-wxo~(Ahk-o zHks(?({u)~?ti)XMT>?QD#vm&@nu)IXy%clkn6`T7+*QqOXnr5ed(xyQjvcYGDLCs z#6N)KFwLONim`-*FGfqf%_fRJ5OXTZK~M|hLK0>LmZ=5up{J;?%wZedrPmvS&V;$h zlDg`L9*xy6{l#X_?G1ceY^0sna6a**GYsIO`oEA~@wT1&{8`KH*qd=dULdWB2nW=P ziXO5Nc^gbr-DtxEq3#h2XcQGe(C6b92xL0t0(%>pV49oa zoh_@5-g3iiK7_=R)4be@4-)_y5if--6d-_v^MN&tdcw%vk*cOkKm%A-CUiu_DuC-t z>fh*!jI|3a+6fKeVy$6RESBn4?VJr;&`D%f$EdhP%FJ|FYah_^@{53dQou~-oMt)o z(*i(_Y-~|*s%t7B+Z%FFok&=Rt3l=!iA!ETM?l1wWF6kWD8AHZrJ~xj;(7x3r0E08L!!UT;+ zj^2DnGHp$$%EYu(-jj~{tV99jX`d=ZSpWQc^W2$r9Dz51gOH* z?<2^HH*B#7U+>F53cW>`&q+L`&zlnMFc^{;+4C-zMuQhF@{;j-31S#do!@toGV0wn z`6HD6uHCrOt>>c4Jq(!Z?7$kfK*LRlmz4_KGp1TE<8r&m;!c8?JO#3}?_81V7n zO^yJ^iWH`t_H^!1f&pN2DI--D5MDaZW94d14N)oY&aKG`o86Z@t0|*Nug%9FwGtmcw6nIV%+U4k5EVz5D$AC?ylfqPpcr7)QIzN=lzH)ucKOu+hO~ zuTgEE2A#4%j*Ux8jA@{8ks6plU1F{Nu0VXmr9a{H!To#li={7TU>RFTnmRC|14{u& z8P)F%jzbr`cCXqx!FM430H3@**jXDQKMH=s`PTO7nq`h#aYyP<<`u2$>-x7!+a+Q- z1Y%Xo!;BY!KfGsnTvMIw%;%HNWrK@)ElhK%oayTDSHyDiX#cWVN-y{#{w3xMSZYlC zV47F^)AZq=Dl3$yY8OfJm6f=q*Ns=emBi?UDug0M#X39ANT|HjtWP5S4lfch^$=Q@ z&B+qXlBG74_So?`DOBq;i{3$D*o?q-$F>--ss~hmh(4L8e~Qv}(p@>>l{BM*H0ZYM zn2dpsX5y{OZ{sBr?bd7GK!+JI>AiU87u|&&QyR{L!od&dTT3Z; z6jfE6Ip!x1u0kiYmik*1J>Es2 zw&0!qHUH-Op2_*Cq$|;%VxGy#ZrCf=b_agQ@W_<$dc0QRj`Az`jSm>gqJ~`D#3{Ie zy!NC&s;tt>&~*nYD|Xv9+w@;Qvry{@coH~XN4hoH^T{m`4S!Vjy)q=b)0YGn41W6f z`pYNrIm_DTbt>Qg2v}-0|8mNPNYFj$#GGe7T==_I?;P5eY037(l3uKA8|5{`bb1(> zAgsQ#5T7W;reQu5cN?#sx<&ggG3ll_)@U)pc%sS4Eu!kJb9$ObG&fv2y{x{f?)C7( zV?L-l1Nx>aV_B09&MbP>7qaJYw=8)hgFB+1v$9JoSm{!WT}?_e++d@G*i7eE_qPNX zz_I+G^Mb{|2L+u;-H;wWjZYZ_mu1!`T0jUs7jB@DvwA3})3!KwQul6d@SXIK z@h~7?lLOn@_P5Yu4{zAaW-2OaOl5}CuJ$R?H(!5kdl{Q!?9@SY@-MbT-Fl4Lk~~kVxF7#Oa*06=ZMj-RO_RPTT8csis6QzY9OJ>I4VYnG@_@5jT(PRz~XJ>lyOwGDH5c&_@!2`8NM0q3`{rI{Oy4=D=7ish!R=@NLuyU zw7AUWM*3kI!jybDq-o+Mu6Azk6EQ(0m`93F4I<1zl_|EZnrpuB-~CoDY|R3>ONB8j zk-w~UbUnN-T4de`9Oc2IUfQ-YP%gNnn;aGiIMU4pbj>QbO2laIN{TY`b(dDPuAh`3 z`;X91jDg!c>*rKK#Uq(=`%Vf}zgk|JeeX_(`~hi$FOLJkMGlkdm-c59G!$bc|1&jH z8khbyKa-t{A#q@Y;%F%t?_A>3j{(V+&6`)1+Fehc=3)-B;3NyxkV7?W9dm+)!d)(< zo&_nOz}5kD4jw1onzTyO64Mj~Yz$;WvTL`ZJ#PJ%ryZb`9+rLky8ika;_6T2IC?%t z)U4>zxHS$fQYn_!PFC}7@EH7!#1uQXJn#aO-jdf_{Mm&H8`qOEdMMaR>`l=*3wkuM zCT4VUx-qpz4B@OLL_KYZw7$0|fEkBui;=JG+Zr=bN-T@DjEk1E=?p{L0LA(A=~(Cl zNk9t+?sOC3PwkO4z!3Y?%~bx8@>LSjP@K% z9{d>+d2J!hI!SZ~aigi~v%4SM)Iw6=w&c*gX)El7>r1pk`wj^DO%^OPLXDJvDbFGz zMIL!ULtYu0GY**pGqQKSc#DepK2wNRc;NnIy$0oZx>LHhD%8(j2o$kJXznSi4D&y< z@lkLvQ+D9`q+y5i-{sc=5a*xgTYTD`0bCjAi!3WsWEHwfLfeS4=gcd88$Piv!{o@b z;<=ptg!h$8QFSCpkvju&HjaZ>dIMSJD+NHib3RNb)O*NDEIJTvgL$pq7&g+C%1;%> zcJQKzB9>{^5J&awdx-ta=i8U4U~ zMVx(NT>)<-7FH|!*!s}`1PQ=EnibT2XnMWz-l zWIz3OVe-Z&XRON>u~ZVjo8tjsbppK?S|stK5K^UQi0wTQpL>aM9p#>J~D0dI@DMORp2 zHx*`^@4mVgpFx~_1V4hY8Z$E`-4-Bq60yM8pIp(SI?2j364(`0St8dr-p3Rn+)A*m zGqHbFZ8MjGF!-G;`jflmo(rS+9+vV-PLi8wd+@hUsqt@4ks~U-29Dd!Pvzkpw%W-{ z{=IVmmG!E?1AwVtQK0J|XYXy7)-e4H9(k-WGg1kyxD^mQtP98VsjWR@$0G_W)Rj9( zDq8P;02+Dw;(O^g7^@^ojKPq$jHeWe#_NT;s(utH)^G=Ab`C&5+;zc8D0O@H+n{^Ep5^%n5QVII?oKDuFC=1UP0D_l`T^AN*WGZPg9N5(vT<&i<>D8%1!~}U%e0tZZ3hhE;CdXgjs+GyCKcm#-=}K!9Y6QNP<||!^jNiy)BPQbD{v+M zSHXHOdol`ed~b4JKJbp9zHSdX|!8@|Wlij>dE~lvG!y`a@Xj%%Y;F`-S z=7J=S9&$1aC*XM|@W9Wy2?zJwzYErjuQfSf9865+QmuHDvWb0JTOp$#FVlpH%+^X7 z!1S=A&Em3)u%BeSIsdQ`uN8t0FMr{pRGaA4rhT+*Pa<94DFa`Tzk(i!hm<^kOd>+dfT$@uC>-aHO4#q^{~)4CFK&KYvQ2c` zUD}&-obha-YmhgmnRRrF#Y0(&iuo+{ikWaEg$sC`-~G%HSp`y zh4Z;yb5%y3&6w+(%H}432gMc#Zt2jsqtF{j`IgDNhGi_F(KHUbcBdY=XjQT6Mo9-9 z9XHVXu`qFC{`~~B%e_y^D4e}fVZP0;)&EWX3Sc3vHrR_hlvLvI<63Q=l3zj0+%e${ zVum}^(x{vo*WnURS|IBb57=yw<}Vm7g^Lr|hPp;o^furBV{-0I?eu(sBniLc=+6}0 z_O8QY`^D%(=F!H}IIdD9lVGkU#yI(gAtRqP15{v{os2hIlHJ7v3r$5?=eNQR6An=} zfVfE9J*zIX%3Eb7lS0WHo-0Cg}J1iYyTpK7G&4S%>2Y^C1_3lEcG670egK}Uc z5BZGGBCU@7u*!3*`Rx2EO{~8r4xQRS$^Y(_BWt(0M+oUNe@ARlA`GgBAieXi1RZ*S zRa1@3QQ3no<^rf8hO$D;!lxt<86N805?HK!ru1%)TJ|!$5R=vHl4T39aG5#>#_cg& zA_m1rOBRS=-mzpo6z10o9ryVb!_1Z& z{iMtvlqJR?qgiD7ABTD9Ce`cG%Ihu)@9#3z7&f~_veb?>(Z~u~{cZXcVP)&2OE2is z4&YtyQ2brY6q#chwm~1c0#GT>d8Jm=1iZ(Ia>R)2&x*#(|Uh_8^Vq%;k zL~;2KgIk>y7MMf*r_YZ#mg(vGO5_15PP|s7A#{G+4yD&d! z^xZYK*Z#zIl;AKm(YnUy6G^ zmLcqp<(T9FcnIuwc1Vv*agpK#Mjhd~mT-NCBET$*aZJ5vfgnarvz+(mJjNXWncIH5Y~PaQX7b|SIeg|@-=AnD2`X-n4Io!QZG2MGPw8>T+l zj}@rji$-!`1UYoQXJK<;jkMLKy`7v(!n)ou$@A=Dx6UdzHno-vF7Ddlg0KXtb4DB8 z(;eyE?i&z1Dc%^r=-Py^Usrw?!?`ox0>ThCoX%s)ByOUhLZ^kU;yaY z)k_iC@)^(nQh8nOej#f@3O;gGZGhP9!)!P3RYT)q#t!yOHBg^s-d}9DruLptT|r9 zZo>f)JkKC}s`3=u`_8QW8UB&oGbPA4Djf2OLXXr%5>wbGc=P|hLUz`CG&0b>9te0Z z7mtRU8?=WXlg}2fYz_);`{-5%G^c+`dLgV+{Sg%S&MI)#OcLo@SWR7Vnf_C{XBmxS zuS$#9##%e^ND$^T=_JMFFZDmZck~&H(^ChW5BJdv_XkX*Dagi-mfULxaT8u7VR4W5 zMkTnhWNNqFwjLQtS2WRy4Sr=DccBqi;$gw%WD{$|^{RMV!#@TZxS6@ctJkwB?a#hRR;NiP zY*c2isInY_pS!tQhpS2%?Z7^vG8rPR{mM%GLo>z1;i9HtQDef-DFLg#l8<>VnNv-L z1%<6llj&v@?-@8b%zfoqSszA+050>*C@_e36+|v{w{vr#Dq?WYBO{P}7^ag?lzEZ1 z(AnN0(~a#wEA@T3@QlR~(#`RW^+$O-F2JWWn=l_I7s>4}pHkxYgONR1u}iAz=vhv< zR`6NGW07V)M4|fxvfFgSjYAq2x;X3JbxgD>G+vFup{$x&9JjE}CUlk%YhRbC5%6jT zi!5+nu`+T91uNwHdF#`Q=8Llh3LGR^&*0Vt(LpO79T!7tPkoLx%aUWg{qR7#-8AKe z=nUpwUu8trBB6a*7#s)%W3Ihik|TrQWJSslr`hhNyPan$lNS~1Wn*U)y?`sSEoscr zUN6^@oAjb_VY17g%vR_-HapJ#-D>AAD8v0-{9(dI=XqlrSKj9ta#3t2&B+kL5)*W4 zA()agd-Ha{nT~0VuSAd*23tj7$B*a?EJQ^u!;MUdmmkg0_c%I6TGhTTZkVWqd7nb{ z5*;=Xswe2MHPT%%*#GfzxlA-qT`U{?Bpv(J&2y!y_(Y4o2Ir00P&{j_N0Y2?O>Pz+ z3jzYC#b)v+4tMZzehN>UKtHfN0@ij0h=)zX0_3GAx+7wWK%#2HWf&j=uggigv|;LL z5^}~D&eu*^@3;=dzki%*?3Xfp)vCBOhaw40l$ZyM8w3>Po5CeP9NkzJ8|c2gUcjBCS6mhM8IFo@%Oetcw0YyI`Ev$=f<&MwvaF3+ z!T?EjFGyH|)ehQ7=fYl%p|gHLrUd-`ub8u-3Cdtd^d?1A9bXUoFv3N=W6$czG`D*6 z8l>K$Z6(OgfGEBvA@&7tZm%JPUl_cU1@7oHewiFhtLZ9}ZP9=?dsS8F+Zakno>)fNz zmJV39qp>MNg~uZM1mOYv6&-^@oOH15+Z$$^1MW^Nyr2i5x6}vy;6`vvp)yu0 z(~S{%8WF_=b-Dx5*!Gbj*ST}uU+#eiRazsiWAqa>Xwr)aQ^V*=^mHDhlZvUZ4EJOa zrIbB$RySd^nqEoUkgc`yV%7RJiX;uNoS{Dsnjt52Z39OcXRr(MbEIh5!;PIG!W&EV z?tTXSalO9<9Y(W=?_1o8L=f6QIykUzN{T z^LC?PZPSIDwl_j}gx?(jF~%^0N6V?g;Q@li#=l2z79*QTu_a z%MYAx2C=zrKu{KD_A2Hg=jvem0i3fEIyJ8qsgB{m3cqq>Cw-ULFKJl8^;TBv+8pw! z>&7k`u$N3YQ#r2aD4bG?o4J$jdE684mdf)GM9_9Ru|v4Oq_)!+zb9uu;GN`T-1?LE zZu(~onf!wBK;r?dmQIYvC_D2)y=+FZU}on{jp|LF-FUC~g}@L-`Iw zY*e~B^BvR@s=<}r=XqU;qi-_@9#t^`D(u_@8^LM9tQ`cF;*e~DBbmNpdL@AxWzN~N zhh#WA0f*+JtMealWUNKi(Go(v{IeX|`$Mk8)UAd*Un)5VliJwIwPRo;&s$3+V;54E zQD(0=?yqg(B5@koL4kc)P1*0SL**8qGA10{fW?k4v?0N2GsaB=a~J?kK(fEku3Pe%4k@e9H>uY9lxp?S z_PWxL2j4-$flaDLWK8oYy+QGBondeh@|y-mH3F0)#LT~6t(TIgJ)7iuo~LJt$%7`R zcC~M-cUR&vicmjRzZ8$zWg-azt|D2cxQ7mw6ZAd~q(O4%2w()5trpj&C%%?iw|q5) zZY&+T1lND^hf^CsevRqh-D*ZuK~@EyC_T?a0<+19hpkpp=M+9I77G-Qy@I~#`Ia=! zE6Z3{V_Fx|czMx*`ozPI!|y+Qy@vb>YhNcb8>mNP$-bb*`^P%#slvceC&@~x_}KI~ zGTg&ft@s*`fZNtXCg|dL#-aM|Kvz!&4djk`;ct`#G!cm%L+SHh!DmbVD{8OhNRkVN zKa7De1y2nI+wEmCTSC^j<|~0CHf?f|*khgKwjgYa4zwpJ72BQweIqmdvrX{;0Ws+8 z18;4s&Te>Y^|JG1fI<5WKjM7UZjUne=VY(&b!fApvh|m&_0v|N6cTUH9Ds0UP-~;} z=zXvfP8+lWlp{Ksf)q#D884RabFdz$)=7I%+jxbWVhtx~(i3>H-kN>|@0lB$o$A_o zZa5`p#dHv&pu_PsX~cGgn&H7@`gO?l-C?i8l7dVU>_#ie|Mz58TEX(}smpdtze- z$zb<}Qh@N)p&Ox zFm6h$3Xe_VKQx3?nbJdNyEEkcoh9*fDKSgh*{K+3)yQQuC3jU;Q7UWb! zgcY`%wesukhH5_VXwM-b_r4N<7nKRxl@N$wN#{ISAfs(C^Ga7iO$?Bp1YWs48^R}j zIn{pPWa?!1-sO9pls1Zkq{<_M-t2Cv%r`-7Svz(1^NE712k?0lb|TM)0R6r5e84Un zYnQ^+7WH@{^UKd>MwQ!*(H`;K;8(;E7 z(#}NAk*!qA_a)55s{YZ$%fH&b2xL3N2&UdgK2m-a&$>tKbk%C92kbt^#qcci)iOqK zep!td++e=ftC#0i#7^`T*zsWTJ+s97HJSweMMjq@U47*31n;3AkkB|>uS~t;Bu}JUwDRSgJwO{_2c2hcG zWw4@s7w6I2hcO+B9|Ut{p{@phR@xiS!K};;ljJkwOQ68YcrLrPvENH{M2PcaI3xT# z`2Uuja_|^yHi*!NU|%;#UFJ5Bl}9w+LN?z_exP(;e$3iats8d*;yW#;TBhHFfx0P@ z*?Tw}`h^OGzUpBFJOt(X4|op$0u@ax;5poPgX}2H_E-lTYpS_`WkGY)M>gBPHHV(%Zg9}H1tDXXwW>PWFNuQbh}FDYUB?i z$)LnML`x#Y*x#8{cB}~Vtgl)lUQ-m#B(lE4RrwJhx%06GdGy6>qyPbaaWz!Pz7_Up zQV=%`b7LW7t=wL-GO|kVoc-J)WKHVjljE!B8bJDV&*zLoJO)?F2(%Oyy9nHXsZWFx3CR*tk)hqFV@V`~2k|Ei zay_G6@%>$}?$Rhi#X<2QF}>r|tL|#PQ={6*U*?3;fWopNHSKjTg47Z_KeZuELG1q~ z2)erz5Kbbo)`)g$*C*t=nO~J{N!^SVXz=PEk-qaQq+Qlw%rTq5rhrBkrpae!@?8Y< zY}Gda2y9%?ge@4^EZcVkco4`6!70g{m+O0>)PkMA^AHe3Eb=qt02Qn+VafRYfsd>J zc^~+DVjp0g7O9K)&?TdG*8l($OxUI-_nX^bIy1C{zKyt}lHvn1F%;~he=wh@khzGt zqjx=h3y2UZDc&*wL||G>qnx$Xw!Q`|3$`udI;wx`Nu$02=IF|Tl0_?>oP+5m z!bMlo8o(47^1!_ToPR_Di+w=KgfH2#;YOOHSS|gW)#7j=S5=uQTcW@2!N1A~fFbAK zH{-^4Vqk4c5ooqpOtX9bfN?!dG=hHM;#!}m{_WNvtA0Hn1J!r(t%UEaO4lDvK;G~9 zlm`ca5s|aa&`SGC(FL&|CrQUEY-H5F7n`^0z>J3^zr}jLD&R3da3O;3-LbRGl#^gl z3m_h8C{7{(hfYT}%}pjt_F@Af%2>Luiu2C{4GftPtaNH zAy9*b^Ki-|3>dp7>D5P@-c6&WY|RG`3Ywb%HlDm!Xh>oDPkCY{(l(p<5Y$}-&mN#e z$(^$uZOW*YUp~@V@Y?b$t>k=D4GCB_KTG6BvWuVDdA{)7dYl|H=^U|B@(bLe z`8sj?BxyKtDo%5V8Tbu&gT`#oQn&R0lQ)ACWJ>Upk7lh&%S*HF{vSCa+2H8TW6Jym zd$a#C+XdSE)r>e4D?KvKg9bvR%NjA|aSq+5LY1NK2A(F(0vJ|7NJ5R&{I z^wO*SpIl>TD#@set)=$AWV#Q+P4r~1hm+kNZ1>^%T@I2IbvSZ{=NV4sUCrGf(E1V@$ zW3C1?gg8*PWt%UQUpRIjV)LgS0llj$ela~LHOrNk&CeT1`&M^%SP}oaMDvJGr;h|8 z@FES^IKkKYta>G3Dv&E2O%B@t1~oaCCz_JQ*m8;<+UYc&lp`l2u%79AlDKEv4U^~~ zQw%Dn`Xo)yZ6wXVyjCa2O<`)g^=;~%e_8T}QVF!-@$@I^28~?PsL28eMbI?gimlnL z-jf0xw6+X*+0(Ai9Vze#g-cQlLTBI#RW8sLZxiX;6F52$yT9#bbxeud?u2qtiWG3L zTE~fO@u$ZAudNkQSs9q`5cm%RRhJds%#RX+t8)bIu@Q)sen$Q zyWoan0D0rHOJBhq2;ppExy&Ct-IDGa{C>eVfHKd7UY@i zZtuq}!wh|Z{@o{QQtX-?B$DE}kJUK3zVkf`7vAoXl5#fU76&V)$p4?(kKCZsqF)go zt~m{y$YyC8l#w;oP8n_l>=9JlnK{SVguQ7YFy(D?4vH32jV?aNH!ve- zqF5+RnI-vAg!%>BYy|x?b<{suX$O0R60n)c^b&AAqmP_t4=Mrsqn@}d0ia%pJ2GVo zaV9Ykftc*X1tCVgMw)3Dqq(LkrX4b@S&zA#zRe#b-VpJwoo_w1a6F~E_Mv^co7D)r z;{XjO(ItP0XuimaAcH(H++^fdJ-=Akyp2|OfkKckm5N+H^C1A=U|?^(Y`Fgvl7^W7 zPAW|?hH|^d!;!GF_PC?6l?Lfxf9-wDKFjHL8Xh21G1;1B$E|1th zj$YDM3^}#7d@pPwfxcwd?5+956LuGnsk9F}$%MfN_A)V~t);`HIh6ib&rZV(GjQwm zcO&Pl(5WZP*wp5~a^&M%lQi0UFP!5xc#}M4PQflgnH3@L=C{b|ucDq6V*RLCec6@P zqdCm?-{-i2XH}Sov;Yc8y8+BMlkhd11*kk*-1kk)d$IC9U;Ya7!ef5VVbK z(cR3fwvHU7MX+0;iOT+ZzVUJ}NLT|rc$^&Yb0ni)&Zij7My0pB3u3hH@|~)L-R3_0 zaW!AkshjtQ^k=>|0LIt+t3&$bx9$?7Fx-FY82zI*B`J*(7M380vgzsknt0J*eF5bMe^pT062hBB=&aMw&wEB28iR; z#Q?&`88L~|Of;mA6i=duIcxLTWs^TI5>Fl!W^D(3llKOkz;+grq`({Xt%kF5b za}^?~EmVU~lVIhhQ30#=p=6D#y*@5A^~6`6ztG=IaY;AWQb{2TcdD$;kkq>QKb8)} zzUO((aDgcC1&XMT-$>1M)dgR^?MYTp26h^XyFFBa(G!mEs2DJwhFpPFp;T zs+t)epf;#^P_I`Vx$fSC)t!4EWaWrW-xobg7Ou;1@rJu0t67$`EaN!7WwJ&v6&oZI zf+8%w+xIfnT{^bJZdh6%!LLyi-xyR;00+7fOUlKg@L2CZ9~3wTTSd0GU}1BmAyT5# zRl#k>`}O?bq~=F9MWIxDRXQ6Zoz+Ko^qeb7+kP zKC_j}QPY?|&2K{$0qNqwpw$7x|L(*M;@G%gu1016ygWs5Y$er-sT>wBCdT%}hdXnN ztlBFCHCmy~oZiCnK8f=TZQ98j{YcZ#h%NOqW(3=C`$uB&eL3Rvr~{Ojgl*3vvoyAY ziIX`$)2^x)FiP72$k+Tp+Q$FZZDP?H;VW}a?%!aaetunJw;I5kLRC7890%M#>+#;O z5>m27?bjdok>k^1T2T&s*hp_(@d%nsM^*bk~aK=CsR)vG(1)?oE+OnL{3Qc(jilwM}SL27){oo(cWBWXi<1Y zZF!REc?DUUjER)u_Yw7~K-u-We_aTMHDeci*G!I*4*-?Eg!kXKUhiaU=&B#mq_G>U zI(HqgvoI=wqjq?p*;I_riG31Le%gED)XXcrsxI7&Y7V~sj~+fyy3 z@x?S*z&Brlt5K)iRaQRo6O7J<_Ej(upd0{^itvJCcsOoF zr5>ypg8CAqS1|>7!^>;eXi=O+o0D=DRbgapoa-s_VFG}Nf?T{07+8$P_0ZqjKCqE) zaG^p;qb|X&i%Uy>b!WW^*5EG*c=k~*UA*h^TO(*THhxmAeO2fIaiO*x%nhQe!+#_o zr!dX_x>e+4f*&+E&d?WmHj+-k7 z({6yBX>rBPgxfDcA+jSa+%y%DsFt?&tgBc6oWKan`6j&M_W79uwU{})%KVEr2W=N% zuEOY3L87_BiuS^b`_ic<%IiEghJ1hmleWM=XWZCh8exYcKEC#r!ac?K9%v>lB+}2! z3@Z#=6@_>4w4hlC@ii!tZfxsEq_V(`C02K)PlyEDYjtoOs727PXXu@!H+1vhg-{ud zIEIWrS^ysryUD2;B-^UFh=){v6a{>CDi5$;RVIi5q|rY)0;l+0D2ssDW(SpIj@15X z1gk47{c=4BLFKVk!?z{KG1 ztyJPBi~h>U9_YZwWgyVFoI)9mVm{Op-JF6tQhj+9(ApRJa4Yn4SUBj;_;EN+zay5x zCi2B5AGf)bq7Qq!#g;2*1j%cl1w3Gr%fr++8p(#`{zUfP1`26rcO_$ZfQPt#1(8AQ zPNlA!oc1RtQ*D-W)4*A)q+&`w$D1BM zDw;=6T${WPxSYSBM-eQjD$5pU7Q&oLBmb!r4Qw*46UAe+y4wzY0r{Zzc0Qtjq|1S& zztdE#c+Cy|NyPMyS@xyuXne>^-8v_!5~=3}$^JNtg89m;86!+t(95s+{v-Q-%hgj* z7gB6BDQ7oik6l2Up%AM*$PNXri4p}Y-E$;>d1k9?MhMWR-W{Wbw}XYHT1&K3U{?~S zWdd21iv)X2?$xfo*oCxhu!2sk`__Z!@Jpe$q9jGRPdN$Z(}@P9$g```03sBmZm3nL zznx47r1KY%GtA2oO9iAKo_$BzMaE%Ulvbqnv0soU#zAW8uq3yLBDj}8RuizNEluIK z)zwZu9iqtg?ifAWy?ArxKdTMI2sbN~{-?$)tSQgcCy(a0VATvfcuBx4FoNo@NOE7* z?KIjKD{MAVkhbycTnXj>sio=`#4)KSQD?iqIF#*Hiy&#vii8Iu{^hEkg^XH*xmrN- zEPO}Gyw*BH5qWrB$H?_zy&<5)SU`hzq z{gL%uqmz_%7Be;nukEz!Qn-C7;}}vBGDok?1yN=lE45-6{f)|>v53z~KYQ5F8&0wk zq~*S=>nFI|tnyct+uy6Td`SkIU+>C6@dL!k(vC*`=)rz@=`qRN=CHGaQ=9LhWMtw1`%#3Xx)(~K zTO=s-$Ut^68$a!OiTSl7=lbPT*rPPE?RUDobQ$+Z%9K`Id`qU7z{Kxdc-H8lIhJb? zr|TKZKB^o^q&YjUR$HMko|s9&lE{6J;9Gq#ROoRJTud7e4qp>wcj=@%R+WLMzbq7* zq_=IsX$A(!Fcp3Ee~iofC!q5Snrr<+z!R24XU5>ZU(Dk!tU<8R;l}Mg5bu1^oRz2N zFQbh>8EU^D)mekTOS+P$-)mZagDrpaxw2W(KcY?SVa!C~_*zsroNv}IjGPT`j?#n- z8RDOsI8Zuno6pLqS4!&Oeq_kaQZzj<%%N=-t6SuH-Ajpm~**f zm85o~6eW4flERPDCnR%2`RP<}1j`UI8jM0@;0oUDEgVS$7AZ;LX9$7+Ji&)k zoLm<{`q;@h52Z`V>q=F(A{smnNXHWBJIY zq%ed!`=gtIzvf-w8y`iA0Mm#-^vYZ9r|75AO9Hx<-kX=joe{E>2*avL;)JJ};5H?i zubzZ`eghekiw(gSi;>~e_SqL*gwaiSBLDcr)@kUx=kYShV-T+XXCNuc zxL*OIV^5FV=hIGG!a7=}ccUDmzP6F(Eqh&CTxSUn6!d4({Vj<|mo{le&w1cDFeDNS z`?(3Oro^j=(|abb5I6Hbp;NFJl*1weJRT@79(v~fd0s$XWkw+FpQU|rx5#SKKW3+H zoyeL{y6=_Tp{3NKLjUYP${E0ywk8#yoL4fQ2x~{Zt?c8V2ggzDxd@|>)7H0d zlF)qwQNri(WsgeIQHuPdWY*G12Hv4~zR3lnZ+gwoLhhBF#m>3(cc$9f(?vKHgfK3K zGm7Cq{3cPGeX2TcqbUrU8V+yc8NL7`w`z95085`LDVWawYxTd_>!ehG!ugh5B`yp# z^ToO`Zvi(!gA6%Huh>b}b@_pZo)llLHC_xPY*V#Z3GfV&6pU|3C*q(DUByq|+qz7g z+E3fq%7T@J8-ti$#@E#0_%pzFhjKa+4F3$X<$IN}a#0iA9sw6Jz+{6GP=GwQVl47J zz$=bcE_qz5#@FFne0^=Y@<2A5xeO={VFP(NSQ=^cYthp8Ezjj`Fzd9uKzG zH8H7rj%rS0vc8;6AABZ&V*AYCZNA-E2UsJY{v+~P8%I|Ty}f4;g0{;}A2N5q;UmEG zs2Lh?1Qdqa;)+GtNLZl&%B*qh1z*L=#m94*jmmmr6D~x{D~Dqy@(;d0*N)7B?mDNa z5*}Uhcw~iL98VfCuh!z=Am)krD;lU5?3>Y_4`%hNu^I&4RhEz>m&sN6Wo2vH6Mc9D zN9M@gIctBESQb*Nm%NRsHt6npVRXM}K&anS)7r9|=UyF_yX$tpZnmp87LQWfTU@MrE_P@j=p_EfWczqnw>!kMyHKO#c-Szf@*WMzdYnJ2M1}e zlgyLQB-DTd5aZTMD3b{w=wTcf|2T%=xr5`|-%_GrFbgSqd>FWRS=3;U2*3HIDAO(|5RRXx6V#NZ zB)didl>I$_hVCdb<(+g2QhSVGB2n2r)7A+6(LE@*S;6z|+nl*+!Lp}4O{o?miwZP! z>D+0X8&LAQrV8(soKsX>eJFj&zzlFhLahYu=+5c%*SX801zau_C1+JC^tY1dlL_C4 zUtUNBn_k_yTQ7QZ>F{Cq9Q&e>8;^1s5s@+M@cx0+ z1`q1DqO>S^G8XE&I$!aflR-*4Y-v!Eu8I_R@UXLX6L1a(Qes?SVI1638I=`5so_{;dyTui=$hJAti_s>}X%`^g4$Qg9?XOOO$=o!w8JCUOXnP5i z?KKlKgD1BuFqhc#_r}|PVf9AO9+=_*NjJFv$>P|B=%1xCeefVRL|zSId5M0e*xSO> zo)>KvY0y_S12@xU*mW_AAL0?`XhJ^qu?;F9WADN_A>&Lb%e=^}lJ**7OaW}*OZqlH z@_O3Hnba!U9)o{FLCe)~ zPl1zf8PXqFT9)$&;DLZKrSeejPkjEAtaDX>WfhIaKW&IA(E^`hOWajbS-}mZQ@IO6 z2YKZBU1Rw!I2&N42MW(Q*=PoQ*Df4a+{jlpo7 zYZK3nz#sNNOT>;|5IMTR{!i)PG0@*(hd?F?s+myYg^9erYsBoXVQaqBIAw<~H_l^d zMV&||-8jSF7?+&-%|sON<*d!Cj9T44T>N|28@loUn3F{fz#W?XOP$VG-NChyUl#oV zJ&df;e(zvD>XnDUsI3Y|e$J?+d?ss4r1 zbW}tSQAk1Io!K9^bd;0po0g89o-r>@_N*+Q=m>dAf%rpW!YT!Y`AOjs@(L7YM)Cuj zjj`ycvv!Gz>2FROUFwK)_vELqe$?IclL2XoN?D@V(ckFQXW$9#z=s_Zb_XMmtWO`x zrG+gByrXnw^+L^^F3}n7#Y7P!p4VU_1w<%SZQ;D9R>jLq)$F`TRA&35s6}p|(HYlv zIFnjk)yc%(+rADX_7%F2m2CJf={NM&v(6Q>)Me25j5+6OJki+9SC4$Pc#J4!Al9nA-FG392>9n{JXMuFjR0>-kX9&6$ zCOMara2@qV$qB&Wsz6g?iKSMJ@c`XhFX3K?*Dhwi_*fkBMZ8P3R-R1_mw#-v_?#+D zCK`b`5{kJfzxIHIr6+ePocW-Owi919FB-4Qx?oq;Zo$4>#gQ6S9wIjZ@Z*``Q%=-Q zvIbbu^YC1-pNu_GS-5y$=N|jwXF{gPGN}}?hsFa%aFKMZg4tBAbzQlitzP3eK9Gmy z85=LStIDsgk6sS4f#yTmEt|;&UGE!(>dHx?q00P^A22oB4!{_@fo~(mV@BrJw*!OZ{s^+oWXykdz1h1(Sc*!?JkJ_uK#k|_^5Dlgcyb8Ys#(L& zV43<(4~Z#Vra#*YuOVeNwiPmv_kC%qrygS*b~M9;HUj5}(jz+fo<-6AxFf3!&#%hv zl}>WYN86U$YX{{TnB|1=d1#b*_#Qvht>^iJE;Wx+h@wE@^0%545}K*njXWRCUj>uy zE)T>UtBi^@9{$yTjJOkS9O^#?Sf$6ChLS&}FWtJ;RvrO~F(#r7B#H1E9K7P5yVI9y zk{rNhzV~89m+yAlz?Qe8atT8TN$M6zYhh$XJ{^WRHnt`hI|VdwGc<>MyI<AwrhX-ilQ~-~ zu;fN)Hx!a6M64WEmu2(Hl5hT_SAWOnb_%cEiN_W_Z>UsP8_kp-WaDl{zuvlM28)UFY|;;7pHexHZ%e$$8LXV%4p0giNpub>CBcTGxM{?ba$ zx8R+eM&fPAeO*K20!7K&31%wa?sluM`3j@;rNsI%01ESZZ7s zE#iC#Jne<{3u<`c7uJ)ezE|Sb;3XP|iHUPlz*)eK3-y)j-Zm=WwHfb!z$()0cEhE+ zG?}%QeaN@5G1FBs^mW>QG3VWFMp4$p=o`svo&mJVNdFW9UtTeVpj|4eR)S32HyOlH zy_LUhri7|Ne8#dTaGwl=CTqM>-TK~H1WMeh;?#wk3!lNpdDQGCJ|-zUNPxszFai-d zuUM8mLXN-MEcT_jubU(FJFMPPk@HEG<~AQ~&gNNw1Z~H9yx??j1|ptHw&|`9dtSv8 zlAYM}NSc9(SERR*z>DgHqQbhOu7LQH!iB4=?fmvH=0wmQ=X?|Zbe1U9qa>xi8!e_C zTS0`>^KW+6T|QOfW?i3x&ge&H(w16dIdj;pZAp{r<>41gIEwCXoql-0e)e^9nf zid~vQ?e_ZE->@d?Py!{1pW^R+f$rG<03!?zJm0{QiPX%A(1zN41%_7kdMI!rio?== zjI1bD@slS-OUnC4!fDRtWr)kLRYR`eTw zw#vpPj=6|I+*UL?KLA*>w3U(uDd6zBmjGUVG#J;58oRa;P#@$fvaT4>)ekG)O(Cmu zb_mD)jLnNSPn`xTI$BLB2}c?E;h08E%FoL}YMF;+IltN!$xqJrvS_H<67--zU5xUn zVq4d0MLYA+^|KdZ?$sS5)htfI3==*+C0E>TF*3K>6IsUh86x~%rt}0R6Bxd?DlD=3 zC`X4*cJX{*_eM4!3`{*9U=+RqEl%Jr@waSm1m7q35{Ajj zd_h|e?_%vYm9|YpXUd+*ESGqTMGPpuciE?sz+A7NVI|;WyMN9{5WOe;^`{8ELHx|} zUge$zyi&MWGxBoM^jXV<84AQ3X0Z-(K<~F$$^iPkY)A}lL+9Y_iE(TgXv@=1+{xBN zanm?%UGXd=fPO+3(Zv{wUZsJS1ym`ytPEBomt57hUJ(oJ?eS4FrZ6h<`rBVm{Nrl* zMCT#(BSBDofIPiEzPLX`Q%GaFwte!6nFl{zpI2NA=Z7T&v-__dP*AR>{X)7)RmqN! zRBjf=K1?=-IOUI1T&fpsQ)Iks0hbEipH?o!Q95+bQ)qMP7eTv7$aBX*$lav3XA9hj z#6Vyau*XGT4odH2Z|9pkmanMszIXiye{81~MUorEm!1GjB@SIrQ};}Gd1gkawouQU zNoycMU*gCZ7QIF4ttxg+Lq{HW(hiDivf<{dN$KE zM4$$CV5l->f*zZswW-?PL$EYc%g5QiS1igxt1D zEQlRwqkGUB9TvKAt4c^G%@8C>ZNrhsSL6$7e4JPd3AbT^0=?ykp{=(s>7^6ropED& zz|Y*wnx5=o`z=evz#y2=zcHn-}W2PMf&GJ$Gg`JS=8 z9*VbM93G*BEkngA#*{$%_ET#CDNYq0^1Ua)Lw^vI8!_UZ|R z>97%O6MCI^$H@SAx`G5A2~%LI(#n`*p_U_2nU^I)#rqug2v0gJZ7XaA?h zLyz4Q>gYQSIsh`8-nJNig0JexDpzDnMirmQm+pP_pKW5wDo`#PTF9LqghA_0!eu&? zk(sw3A+jPc$F)q>w!8krfR?feyzbFA{qL=3RD(5(5y>yovQ436ev7FT8y&TP-*d+U z%(|0W{%RNPCNGEVu9$gX%N2@9sTg>=@-Pp`x1lvH7ccvbwS;xdoumOTZX-?jkvI@I z=Xjpm@TRrz?gbscoRcbxf$eX^?2k@8SVXy|#Z`yE1+|uGD3WOC$(4FsXvq)dt@ zT!l)Uf7~E$OV5flpRiqFU&w{UDW}^aK9zi@x$I#PpS<>bSMCrL>ewIW^qp!pFgtKu zHh5H^R{yCo+2NfTTcWF$=x?)`l*Ir{AnP>$8zAcdG6Lr~yjnZL9b;-P=v zT_~ZbJ&Yt?M97+MHdB`Q#=3-0A-3aRtFI!Jd2>ZNjO_ z#N}wM;MFE}W#*vR`=w6XCs;7JG1x*<32_wr0K)mxYVE9tq_plyG|a8#mfyW8XdB4e z9Q;!YV~W2_NW;jLNIH#u9Nv>ahE7>w!ZGrh_0iL{qn7t31RKEhm7V%cxSm7mak#m) zum{IK%OsVAY2GL{JeoeLAhi6Wd8k;x1N&}|kjKb@)4#%|cPF0&%yWO8VfEN8Ew`^i}593SUSZK=Ckn$g`$jdC21h(%4 zhvZ8t(W9aWuD7e8k`HMCk!UTS7QuLP+6K&2VTaL&ZmmoG5_nm3xB*Y2&UKN+0egf>X&XwqXgHB75Edh#wPDF>ZXx#@&%sMgNRpgN}` zFH@8)Bus;~au6#!dLv3 z5A}=^c>Sjj-83fK)LSBbc-s_z%a}Tod3n|B-ycv8y59!*HAPUuy=}g#nji)X8X_i7 z_GI$huqM8;-lF+v*(o9RoEo@scXR3EtjsT*oFnT%SQ=xdW z9cXVZazxnkZl1b%WRkGY-KT8qD%sJCkT^lbS-W*dV}_BAtCj=+wZyi`5!zHTvbGR&({+QUzA_7krfM)Pl`8wui{OTI541P7S{NIx%>_jlTq z;pS}YU)5GAU8`|g3SR)_P96;=JGYeOEsdbdnu-P4SPKXr0O=336M~Ijj0nPPG^kLc zt41I!AQueKB{wwx0q(NPbPD*iU)xrl-+M<}736 z(~rP{yzQW4BZ1QGD%1kw2g_9-ZAAizuW)A&)5zLXRGcKW@tqZKJeNYNOIju%bp$#$W`r^bFT(qPTv0xQSztVbQ zagET*C{+%=!JJZX@=q ztc`me-W3qgNjo~kW#HtB%E@u(#$wnde?mdJE7ib~`2)Zr(dk#gt-SxKLk9e5y*m*$`geSz5l-2JruAq~$AHG`epAeRRQsbQ0?`4SZCWxEw}J>$ zPp!)el^0qQ(B{Bx4K!`EB@i6;UwHmG*QPOALu5Myfcu00L$sFOgNKL}|GN7!sQ7qe z+d$3H_E{q{y;`(qs%kKjxxC=?ZBkc8$#jz?r+PP26ZEiMke3l%Q3_#4Y z7ZmkVYj0Vzf(`_>A|D^Pk@Cgabe&G5@MMpX!od{yM+tNax<{8cIjCS3GnPcXimusQ zeQ$89zWmRHk|CvPPd;P<}ZQOEHtiu{HsMJJgoY2ASm76 zDY<5v+}=@Lf^yV)EdB(pMmp*3MBO$lc5zEjCYS{8w$IwDMCe&lyfX!Sm~NR?q`5Na zo2VCa38Cj|IXYER_<7nu`LBb(g3$+t=2W}&r?`yplk2JA`}(!$_rQ zPY_Ki+#m5-DXr));ch#F>}p@D6029xp;x})|w|B5509m=FqwfC2>ga|Bsowh~m z)tT)JD-jk?Q^Zf;JJNVxg(%Ib+0YYAC(Kxfr&zYQ^MozzEg||Fp@ZN=C|@qAif zIy=6Co^&E2>0lOvcPJ|&RPPiyRV9t~=8#7!$VXZC^6E1Phm)$76S#FqMlPxFc&Kbp zM^Kf+V4H?=6;S`=Zu6gF{0Fp~T?Y60K5hobKoQ9&B&f#*)7;S5qM7{R zS4`Wm^XZvz;c`yfV<5cLc|ZFni3lg%ucco?(0{d8ny?CLbD9_z7@1+8nFgd#D0*s; zYlSzUtrG*6mP0mf9!{Ab)2$8b!aq@|L>XRL zrKHG8#~wTJtl})#Q9A2Y2ygZrypOQJ$PRq@++%#8{l~16Ab=XTB1LzIEu=Qvn?B0# ze*_A@-t~aTd5h^cQ6j;N0M;lJ){_&xx&{ZkH0DkmD7r956mJ)fa+5@SFnmzE9))^3 z1R&dAzu%xl%Z`~YNa>tS3QdHUwl^_kVf{ic~

    U$O6WY=Jk~Au;^CDZf|S`9oqxE9 zcCh8jcG+i&1+F0~jg03F>*r^k|DlpWbC3g?$a#T`Si!jdPpC_D`q@7IDQ9Pywls^Uluw}S+l4HWatDS=6Y=ri}>b{EyNcQ55 z=KzB!9rI=xm;(jcooIIc5geG@CvZ&%VUwJDeHzd}BrDq%?RZz~XfZV>VGzYlxSN0; zyH*6VG}6=*MqT-~AOr98e>ZFoklvIufMhbFDZ1&8w=B&cy6A)=TaVI%mLOf0bE8Jp zk+n&_qz)F2mbGPDZL`QboS1G&lQuAw?DI-yVO5U->G`a;hjDFgkS1;}SEl-RSleg$ zi*Bm<>hnGoZsBoID8Kqelmw!)-f@>M(6}Ub$nx)-P@#{G*>M|V?)chpU3S8+mJa0w zP)c$j4$nf>q2z7UGI~yQX?~55LK_Jl<*!XlaLM!0*b$W9my5SFQ`m}KN-37}GZ0k1 z4+d6O6C3ps+%+bLSipK^!#mDUI#R-~^#3&z=PWz< z_=Nslm_g0zg1{|*ehOaUWRTLnlf)aCdd@gbEDF*%j`g`pRO5x=$SZ0wD`jvlx8%jc zj5MFMLqU7g|DA3E4))v1Ru6s4pcxKo-p3P4 z3>NZ6fj3fIy&VE67N2PT|I|8!z~Dj_^u<05FRl7TXwgBBsW|Oc(wE<-@WxL#w|4N z*nebk_{2Z?-Ft9^5)aKmylV*3WyE(=0RF}aPI+d!2IxM+gKQ3cJ!j0R-NLO7M9w#a zU2{Yyw)|u@-LXDNUMQ+X2kl82=ty|!46)H>7~iAS+o<-^J`e`FSvYpj+$|A;ac!5V zM#PEMCH7xZz6PTxg!U$-v6^2+->uDWNy7eD1JfaX?llpp&_^%w=Cn1yx-fBlxX>=iU92Cgd49yG`yRHlnE<#t<|7;0c)Q@AyK}tP9L1$yR#zSZ zV*MzqkYyT2hwkTy=q)jos$#%<7$?z5K)MVSL7w3JqUK3?@&es}uT)LO2srU;#F(*x z=*ct*j($+2(t-+Z^Qq%s*b>)(v;Y7AEn$zjzYe0Y?6MhuM0s{0y-C~pJ;h{W>&vW~ z*0T$?5O9nALveSxxblUgVyD&s+vl{UW|-L@1bDEB(^WJjZSWAp|%P+l&ebH?iaCfEhBjw6sme4gINkmt8P7>7l(UM^qj5c{E&@t#1rG)3?q~Meh{eX5IDc1<25sg*^OA5H@_08$YuS$ITe&sS z{IKeY>I&RB3H?L1q_5gH5ysonhXFfjR91YfqIC+%a<1=PRCgr74wY#I-`M`!3YkDp zgm-Y<`~}Dq*m%ve6EuS!ZG!!;UiEG<(Pn$S7&Bb}x?^fa_H&PIbm2(oQ(p>*0FgBj zWW_vg4ao~a++RiTVx^>HGjM?aWYdf`KT)YzuX){Mte>Xn1)Ufpm&*_g9q_|2ZL%v@ z;q)Il+TUVNt9;6M<8%ac7+;RJQ>2C-Ub`G~JA9nY{SB3JW>?{{@&royK1lXsI28s&aMcE6LLQYz1(iy19NSLh0qM zc#YOJqk_sR=3dKVJF!2#jtUbBj;*Y=wF2hk9+%&wA0^9dv+tJfTkTnaWRxWzcyx36s4ra(IQp~O zZ)8B(-+so-*_gZ=Jt)bYm;2B8D^WKhnDXjHtPuEvXD8ZD%!~ozYXlA6Pv{v(+0|{N zFP{!f7D(^iPdvdbBy+?FKO1CprnK&YC_4>B5k%nw?~ZLMhd z(Job~#40x?uELtNQ8-;gyh|b&bRobGH_{8_SbF1hE3!%5hJ8*U`YCXwXTwr8i29d? z;<48MnGwdfSAI~t!5Q+?2#r@7G$SJ6KK9-V&;yO&w(|AXsD3eo6qq=^^=}lQYVD|j z{c1=+zJrOr%iU5OqI;0PZ>2rH0i-Dp0@iG-w<9r7@85%2G&J*OlxVL`-i7=Won4%P zuj`_3a2r9`K~`;&C^@#d$*7vBc+My4gqg}HvEM0N-+Bu# zMlrYJJNRJz)!LV_-_5;1vTRPtA-dyG&UrV=|K)Ov0%&5J$8uqz+c*GsM@$rD)_eqM zXifCJ;ewU_-q~f~TvFW}%*z4v*tI7|+$9pQ351bj+IsqS^cxOxI(X=d+)THp=eTD6 zOB$(qX4uRt5D$nSsosuGx+-usw`wbbK+j;baCKi_|HRUPcvXec&o1z@r@3-dS~Q`f z%8+-NIglTqx98JyH%Tc0X)Z;|ig!Pt8V$Nq!q$%YhS9}{!r5fC=3b8a6gi%4{_2!# zUIKSQ+I*LC*=5=qUGXnB(vpwzkhfpAju_4JtUVl(t8S@bTHTlTf8&x6reM*{+Z9a{ z`tkYVsVTpb{peTW;l$}+EnJ`*q2$#kH#10w%|l{_o~C08t6HVbiR~q)>l-ejr)K~Y zIgKCja%-At&bMgRgLz{(eP*M-cs~=9@fP=;wtS_aF1hB!29YpvtTVx=uEL<#9GtK; zB!A4>$_(gsV)Oy3ZBb$hi{Vsd;G^)fq!0iCY<(D32&&F-W>uOntX*G%MtI5EC!6Vf zx;Z1`?V>!S_bhP%-DoIsxvFiAAYV&j47rQHA85Ld&(N^Vwi>>I77NHzi;GVVGjRrf z!Fv>+0$%B08GFuTlS|Ia1WNE=tR27ej8DVxi(9Ykr^5{^ts54?Ba`2^S5G6Kqf)E2G zHoUao+=vlho-7Yzc9E#N2fGDeykW$0a~jt!5ijm_uv~^Eia34#)MJ5D=qcU8%vw(CVOkRzu>MFJA?%DfQfkR( z(ycf$uXpVA-$EU$0lw>Hft(j{@{UN|(bo3&3Ca@kXQawW?kMr7|0>BE$9Mr%W>9$h z!N-Ohq&V8pjI%rp5cG3x$#w=cqM)L_Uh$b($sW@|uK@V<*{%}*o z^Z>O#56(Lg#?jk43RF=xe?rJTdVed-L;?Sv;+g2j7`{c{lhUy$<8W#C)D21vQN6H5}BgL7>9xIyZemXav)<>EC{* zjHf#=uc?LxNWW^i@B|O)wP9f1uT--~VZ!yA`9o^d5=4Mgn}F<)K0ZIokGiT)Olvs< z&er11A;AJyGh`yAt_sLptN?`hcj+sI(>sw5i?cEYD;WnjTfYY6-3D=i1XDCmNkWd_ z>+a@$&GUYceNN%B_~QoyGm!>~(cso18fRv}U0W#Tu^6d`OIYU$McJ;$qeh@#eGU7- zrkK{_<%}{*ioe}l4cY%mdu#z#a!yABJuqaVnozc|X%j8|VB3 zK0Q(Ar~9?dba2CJwd0%FPJ;D_v3M!*x`KaRF#yf}!S)>yR)HLC9e(AmT721DdihPs zZ;!sz&d6=s#*zOZ#~rORJcZ8ZV8eU~&8p`#(BO>arJioAz&-fRfnc$2h^w_O!y?44 zH5Jb&W7C1wAw0P4Dbwe1ELXH@U+8lO`zHLDUx9Hf+@3aS(v2#~8iX-wH+NRx&pjec;aqC%(d zgzUED-{COlTb=5Qg}+6u#feI|)L^qnPMMjJE+K}6Z~e;Y-By_4_0Z6w`>K~C*>&Pb zHr<)n`G*@;BzIx5?3@2S=hEae&Uz@ElN$OwJ@suwgp%F}H`0!wi;0(>k)0K+Mh}kY zFB>}&u%$so+I1;3g|A2}9c)Y*R@iqT|1Ce>r9`)f`amg+%$#DTb$8K$L@PrQbQ)&YL*(H%&C{IOzUbx5j z=0~Q+woYFYq{ulSD)pbW=R_*3X4t)+!0(>!S-2hpPvKhxVY+3>@K6eggZ9Wm!RG%- zM(|zu>O>RR^Yht}UqK0eWyb~ZNZBrkC!J{|-fDD4Zm`!uskO;fcUXCOugL-l9VMMm z;_R)O;`XK7NT;2o*7(g__v|0g1ZM3^ubrbA71gTrt-!%LqG@kT>_M9?4)^Ze&i+5V znpmphb;qH>29ZYZ3S?NoCS-J6Ft8XfOxa4jWz@QCz+IH4S+Vq7ojiau#ah2Y^Ag#_ z*{U0VW-f?R#zik0j*tNeTE7@aV{G1LMN?>qv0hHW@5*R?_dX4we_uwsOddTO_6%)a z`x=e8n$3cHZ1cMjb>iA(MSYQqaZS~v4&p!!MK{EO z@Wi6oON79<9!2G*t0_hK4TGj59h(J|^G0S}XRt@pOhMb19adxGn-`FS1uY0e;nT0! zi&JJNVe%ZfY17mZD9!bZPpJ7$%tL$OlubbgM`X~@^`K#JG&Jt~$8YC<-ao)Jzr|^M z1ZmWoDV~s+l}f=lN<&+%v-2rqP?J+TbYuW;&mIuYxyQ%DzntiK2rOPY#V~KvAxB9k zl|t@jU6vTL=gXO>{{UBGE0(ky*N(hJggW;LKi6SP#u;c$a01@$UpiiF(Pn|7nMzem zscEO~47>pKSFv)py6nIzX<-g+&J8U#>7~LAu zLZ1k!7_?i&Sl>1s8#-oC(JBpaHgq4lHr?NN+UKl6)8LA@x z0JC77{Ja*$*54Ha#`?;yC)3K2$&CO3nymwFHfIfRUE_*RBfr^VN8}!jY%;4)uHl#W zMORIL6(E1Mc(uNi(o71*^@LLL72sR!;f1(48DY@(kf^529hYsawre zajP!rpvg8=kWRNEsFc{yb5=ZIg|fJvi8>Pk0iUWmiOF`jHEbrVzQkCCa;Qs<*6PE+ z6BQ3E0xoSyAZnz#b15!5S_JJgHi|#mq}hG&RD>-omV%E!@P5KkL#x8IJVD1pRAiZ8 z$LkyG%E%n*meqppe6(PqT?|Pz8?blom@A(BJ2+EdyJVdf*9%D#GC&a(ca|*&o)px) zsxpx%Do!N4a2gFcTq-`!=#*mljOd-+&Kv#!r z<7hGK=V!MhE&Io+0$oKE>YM%jPm+ zQzL7+Me3Ee={i9fMl1rT@MZzPnPGO9^0lru#|V)K2#QY;KfCCek}giCl`SbO2h=b8 z2WAd%Ouf)<=;_U}4UsQLr8*|s>gok$@+UwLICacOb}s@+Kv7m8Eaq_JOmjCw8LkN1 zI$9o&`_tq-mULzC9ZHx+DzQQxDs#7!x+5ud6a-!yGAdghP>kt`%hDF?juRAT&O9somevdPY z@Jv7~!EZYeOl&7hCVkF>2bOjrTLYRb9xi|Y=0Rx`1)((-B<9)OY;KgXtz(+ogX!q( zkY@JrOQ^;1C1>Y?{90RWo9(ZjRuCAL@>%He=YfPnpx;(Y#{BBYVs`6=7;#+~KwO9? zh?893z%&91&=*poG<`h|Cxk*Oc9^Eq?Uvc0B4SVhSDkhyd>|Q@_%OGo3?Lh6yJB1e zQ1B5_3bsM9k!y7C=H6z;;u@PM;%>GNaz*JWv(ID+J>nk0D_b6(%wrUE5xmU@P{_oS za^8TlVCn|u1CT|4gA0p{+`1EfCwrnB#C`DOKeyL*x}<_Uwxw@SyEUXct7EJRUqOQSxd*nE>5Wqx^8oKN`D>#DVMZz z8k$yp=+x=d($quO-e7QJOk@~oD%E|=6ls!aoSE5MsLq*o?G4DP1+fu16SAN zj{YmG9H@z;M407EzLDk5e72w~MTPcn(^U3+*33d4X<%&6ucr2R(@sI22`u`eXeds~ z`H*YZ@QL(APtcn<2$fO$I=PwsMZ~l%Zw)KuwwH4t?Z4g8%(ZD=6;@;x=jV)m^Z{EQ zo9p)CC{=ppNa2TxJc38!PdrV}tQW9YaB&5S$1T;r9#`VL9Spy_19G_syMqAA3;FI7 zxvfzlo~fJ}Gi8u@d$=qk>g44w_5T8SMP%N&E2%CPt;H#Wv+rbD_UYWQf>r?x|6Iwm z_^EEO4KPz_9JJUI5(Bfo`$56>_a$XOpveDtQt!#7<))+TlGKHenrRPgiE}CsuS$X ze|aT$F~4!-fl(c$xPVqdA`RxsBIxeMMiJky>39vyX+U&pvuVyAAj;SQPy~c{Fe z!l(kdLedZadBAgjV#ea`VYg~YI-EG46z_n)%r09R%qvi|7-XQE8##)ylaA_lhJqIN zV7sly@h|rh-YpE@!ukx%aZv645u33EEwtIZuF652qm%Bq_wr(%&zBpOF(@Sq!A?BI zSG2r!M_~DK-N}P?R_#^OEQ0H=ZoLvP&-CaUbVW z#S$sXKmZ`E%97XKS({Wy;DM2qY!nUF&C#&oOc}TjJV!;+Fi&goIwi*Sn9Rizfzix& zlsrhY(0UsHk|WiyX>@3WVM?p~2dX5mQe zzurgW?>24uKp1TcOE0iFnDID641K6K8r#TWhJcnZK%XP2;9;ddEvZIZ_&-1724m&6 z%3>Lbn;o8V0QXL*H&OgXsywpn|IQB`ioQz)MDwf z7eYdrWRlr=*H4u()Vn=GrH#xC&DGa?6Yy}LD(dfQDudsO?*3$KPj%OsQiM;>%S7Oy{ZWY0p?A6YmwD#K9JC9;C9@@4glIa8!*6 zAM|)5K`y{JS#*@K@nvU%wcLaiA3EtHt2|^ucC9WR?J-D_&&B0J+XPG+V$r24LW(G0 zokukOP0^GJAhI7JM=W)hcKRRy1i0k@Sy-4K$&OoRq?rb0Ct_<;Q|AK78G7Wi9Dou6 z+MR=PT(;rcp2QqyJDT+T#TU#w6INcr|4ni<{@B|3Vqv>};{W^%iap83f>2`KJ5U-T zcf5bz^IZ|)I#QEfzC$D#kEynnNU3WGYn3@tXk?*-Qf5&BuInjD!h)^`*C8usePX>C8KjOu2Nh)}icH~m zj;ah%4iY{~M$e`S*bJfHTpM6nJ0jt~jpjUfpF-_z zf3pNho9>Y$k!@R9^MVG*&G4pblTH#(;iACXqqLm-TD(eL124II2nF_WtV|wEJ%qu@ zU)jHgp5fD>f`}(1Kb&TACh&s#d9YNT`ueC38(}XW2U%)Ro1e2=C26>{bHpC z*>*9h@sdQEH!LIDdKt)yuCVibbc99!Evtx&6*Ck>64_qU_#b^*nE=+*>@vID4K6{Z zq6!}LthX+Am}tU`I2Q|(!#x!RDLdmKPf?la)QAWuDlw;upbva@sM>BHl8ts{y%|@c zv2rB(*`X9e#^-G40y{WUfHsAF0FcHj~15AL(}*^S+<(F_5kHH@R@M( zS5i6+jh=}%oO~%GMF2YiZ+8R6c|Qet&qHEQ9O%XCc!TEAtB9%r0a+}beCFYD+)iuA z3*f8H(oS>)nBf3beB#`cu*$bX2v$4Q$OXMLU(Qc6b5MOi78+vfkl=yzvxLHNmIh4W zZ3r{)t4Rgj2pn9%qOMP+~>nMz?V0fhqSlYA3r5U zLg21Wlc#5)FNW@MJvvxj1x?#J$;@Z*tJZWOM)%fXn-^-F-D(ZH+ED zd*e<<_T#AO5Tyv8R+ZR_Xhjd}2bHpb+sy>|o)@vBxfRmd#>Hh4T-8MwZSC+P;}yG`Ig5(BY&nQ0pw?OV*}*l`qjE=F^P^KM|i`L`Pa% z+YfdAjau8Q4wrj+o!a3?D1KMdW!QufpH3FF4+L%LL6uhHb$=mdy#ZqXu`Vo9MLLq) zzemfnR&LDZ|N9%?eGVsq0mkeGx3IV$v6r{9Xy#QVVD=09@YS`~R7zv#@L{(3*kL5c>k5I%y>7uFuW6`o zLZv&QbZ1xfB+Of|a0}f3a(vygu{!)RXgR3rX^Cgbl_OD4C$OuS$Z1CEhI8x;8=IT# zTRr;kQ!hp3V%L)}6}-BmbOZ%2!rjq34eR326ktU5m3UEd?^}vMc~``y1XjQ%g!=_s zbELuUFzJj__c*D_bOWPnhz72}Asl{NccT{dR|l7x%A={QFU`3J@^-Hw4y^!)aA4Tx zgp+^5IDb_WM!p+9(u#;MZqO@Ao$Jqf@k$Sj{kR-Gjs&zAx9E&%JYOiD3i^uuRpCl6 zce5`ZKBp6-$PLBSBFI?qK;4-2wB zW^UDXa6@)S-+d!k&Gv0eMJ{bW9IlxCKQM1CJ z;)oLJ)c1mZoS&Fl%)vK|Sf9-O5=~)Fu~}K9LJAi#DCK<5xQ;IWProSHRD8qW5s|KZ z+(rU~%N4fW-5W1acC;!deRlHxdHG^5&s&QuBD0P>v3+u+5?GcTe+P~HtJ7iOEPdgG zgT{V@JZ-_!-fo(!ht=lq6eH!Yp*e`M?JeJ*m_v={tJDE%F69=e;%~S#%#7iS^RxV^ z+4>Pk#*5U+k8VKKQ*-3W>G}_erG!a7(8{Piicp-#w5aH*Xex~z_!P@~SZ8;+mkdH` zYl&MHP489HCCt9GNEn%&s0M@x6KGpYrC$Q0A=fpCrWziNOcdXlR2Nl22%TM-GG9h% zIjZn%;*|UY{FMn}_C5_Ue<=WK4e)ckK3b^};DO>nAiJ}==y?j%-`#xcN|Y&dMjodW z_&359+56k)4yt8fsdy3;!ElSBd@KJc*#UAUT6wmQB5*1{iHM!pdtCS}0vEO7T80SzYY3dK&rR|3@* ze?^d5SBEO#Zz{3z6O0M!BxdV4_W|uxOvOzBy;88mNq@U*cdZ75P$Rm^`Y@z67hlsf z-HEsHh!tu>KP-^)r^x-*`G)*^7@-eauj8x73TnuD@UKR_9oVwZEY#+yl=F+x`MI*O zh@=BnRWyTbI)%S>w&U3HONgo0M)_g3U;lEdl~Xu2HHG#uO%Pich(FnDZh>KeXKQ`c zsF^S)J3ZuUSSKtjWaHjxgd|r1LgM~qKD|`#YGMz=UwTci-jplE@VRB7Qu=s8#7gA= zQeb|N+v#mH#@*y+egHvU`TzhEg+2khcmEa&+Q?E zt;RWEX28C>s#Ta;?m{H@V@!eGjnZ&xsboBXvxkNTkd``#cfgodC4zBmYO>|3Y?NB{ zFp7t4_WWwOn^<>GO3E0C^=WRN!Y8SS@0+!8Uahc~f$=CD5{!ot1&|+X$L^zsZf$w? z*BkL@o-;u~D1nmta@4KoJg^(=t^=h~{nskC%OuB^=d(~({52Wcx56|xoj8Om(o{)Q zT{{EggXJ~0+<2sR-zftYH^o>hQce4)XMFlz7u_*A2FxQ;@t-UoY1-PN%Q2t{d_?t$ zXDP$#Tt|M}acWc~Ny1MdtBH&?d(`fs7p@+e)R#VZ z00|?#q@Cbvv%h zvdCy#O`U!!7dLXpR{EgSRdG{9=7>HJH40Kc-by16B)rNj*(3B9r!7^(s_5z!bg1(5@vAL=@aU;jNtk3!3i45ELMeTNhB--T8p)<3r?Z@mb7%|v(!!XA zPvu|rrK$Dc43{e@|bR6t@_N8crj6ue>A9 zEzBxXTXhP80P{>M)MtvWBI!+w>SNRko6%4R-HS3s>reA%_<~(?{{mwjOb_L0Y~mU4 zK+{?Oz?jA#yq&=6EZSH;5Ksh~JJM)`*uE(_u+}q!#CIS>Oc9jiXfO4TR;ta08dhE? zIN>~GhJukeOc0u7LFtQG$eT)CKax)lI?C?W;TY;Pk}dPI*S;-|oMEGl6m-FbA9 zegFkJ@&aQ5#wZr0AlssolDrjLez_*WVGhL10{~qpnksFxal9KC^Zx-I+&T{&i0eW?cyab4CPf&p^$ukn>KKS`Yuf8vsaj!DT|-f$ki%{$m5=kZR0ewK7m%V zR%O7$ei|IPsnRg`%?6()0X3&+e8UE_Ip_ATSp8YN00#oKN)qadiA7`9PGIv0Rj;5X zUzWqUek8XypxDepBfiH7xUy0qARiNmO>0=ed-1M@wxSrR9l6T=z5XG$ z+<#7psfB!~Atf}3o~a@nYPRwCXR@EIZ-(%X_EDL;U!9g%;BBms6+HGg)RHL^?fno@ znXBW4KAVctM3!0@alS_!6X~pCk+=!YdB1pgEr=12P2;%LQ75S5a%1DVc~uWHkKn+7nxf9{wFbD(^{EXpqq3*U=eH1HbEl3$Pl$;8M6{CRKk}@*Wjx9 zyev~ISU>jO)-ay!0nlW|zH{zZSrhk%0PU!%&i;w0@zSiszM6|AR!TSsT54 zla$CuC*&+-h=gU|T0$-68tj4uapGc_ao`B8ZeKUMbwI#7QfI=fHP(%)3aU%oh=+B9 z3SCdLM>4?m72k0UvY2KDhyYpVVW_WYm>`=p;!!;$w{+(y@=KQ%# zN>>M*gtV+9#zv2+h?L!#tpUijDr6e35CIbM?<1upEJfyn@{WfnLV_*HoS zZ*$oyzlrQMN+58~e;D$!P!F|(!%;gpBK$iL>?vS56*)0{$%d&QI82=m?(mg-6aAHT znm^Sgcdkh74i5tL_L9$WByd7rKrfd@iEwqDh}M%_+IQTdLLfkW`%s{0YsS>QZyDDR ziq(Ptv40tz@O%k+Q@C#@Y>`a9jVr7o>&*gJ;e1aj?cc@X4VRE^#&Uq<47>FA;-2_^ zA}M}K)Y{Nr9|rW_i~S8I&k&YvivcEZmz*Xk#yDEQe3~5Gy`?2+;qD-HWz)cx-fuQ% z6!GIFe$*QaAgZPg>2tJVs{*BAYZ&D!gBIUc+3RK|k`9OOcvoG{N`K$LgkS2E|` zzLg)qX&ECLAq6HB8@Jejos&##M`_(|isiPl_Us4G>axHFknV7<-8Hz&RiDqhOjy`0 zFWT2-=-4-`VITNY`-YRQ8fySnR95wON^*E9Oy+J9wUtZH6xJ&CNf|hu2}ktBnKH${nB0Y0r6dM6`!E&C4Nv5m^DnqoZp( zdnS&P+H^=lnOOi(;Cqm^1Ba28ipSF9%em%qb1T1VGXZL-gk_9EIR3-K%j2Ph?I^-@ z*^!*%RZ*QF5^{n8iuNq!48SOO)jIp7Q&0OIDumDEBIZ39^-ekZRoB$-%hqh zBMM%1G5LqsV#B3-&DiW`Vvh>^Dqqb3d^~5W%uKZpZLc=Ejn!lG(T}ZC`ck&wjM0la zqRjiAc9XQ~A&~quE+ZJIyNS~z%%5R6kUVPKN0;k_sc)iZ9SO zwEKG`=uCg6x4h%jjoedu`ad61tJg}(E7Ji&C`>1duvASZB(yB2 zFlkipB;VKx>icM08O*;M&Rq(%lNXr9Zpq~!Xv@1R$&y5^DD)zQ^IJD;5~>6f@6NqV zEA|X@Q(I7-nAnD~ql;m-QM%T56QJ1C4|Z}SHOd;TQh;&g^h1x^VW@mlT?n@?zo$7K$x{vTD#ldSQ0d#LhPc(dSu<}IaZewcIw`Oo;b69%J zW4@fqUYw%j6$ie?Qj7A?HhxXl87}UzE15#+RW-KH^7SoW2}A!=tzkXU6(1z|P~zS- zh@GFk#OeCmHyXb+P4guRFmd9drVO-0+F722+gEm(#f2P&tcJdfiVEg7N&M+&qM*O>7krCwNT@cGu#IN7<%;E{qa9odU2|%s^uqZNYe9~Ik!f}%Sc7D7DE!?cMn3RnP z(y;VAloouy);9c%5ieTz7C?P|n_bDqiRo}uT)h!yPT1^XPwIi1#8B;JlgDp1qF$ZJ zZtU$LX-MITPNrmxM~KLL09-($zfn$_(%F{tmBJJ;zwb6CdKX0XOe-tOPyNWaUZ1mc zH=+d1ID|0c+hYew4gm`%i*`Z!21FeGhYBI>^!|*w`^Jv^^0wxc1ZT_@SX!GAiDL_4WaY3RVcqFwQEd*NFX6IZk`ooYXi|Zm8%g9%7R}QK1F< zJk*p!uCFlzD%L!`D>jZK5lYffXC0skjPk~ds8 zL_{O{6xIx8(+Q=+^vz$bN5p0%iQFTR*mxx0Zy0K%0l+X;n8IQeu{FnPgDe;52%O9H z01T=?=!rQ;4-FV~zPwA>Z5=_6I%s}~I?ABA^Kxn``q^w80J`8kn4g8+5(A>$VaqO^ z@kFh5OjvfTSesr=c;0jX29Z{wqw<~5X&_7`0o7j}LX$HKFT5JkqJqJd=}+%ya`ndX z+R~k(lP4R`cgcFH-x3cO91tMiFZSkxf#YKXWTYGXBxcb6N+o_&7wB)6vg3;r8`#l# z7zhaPN<@?D7TG{(<+}63G%ua1vj-VqxM@R$0wvUJaoL-3*6pvG)$P+r>2O%@ZKQTl zxOlQNAls`uq@P0N+Vhjc*k4 zAvy4rl=q6ug-YuOC*s>?c>oelYBL2DXWGh%;4AAC>6&JstDXYl2&tv_pX$Sbt}tq2 zwI4Dt1$!r7AdaFT86!XLkptN`QJtjyYlsyNb&uo6T&*3FBv*^M5`qELVjYx*a2q7n zdLT`La#NWBl;fMysX?hv*x9Q+WuMd0Vr&2%;rHtYa*#PTd5)Nn|8OYG6V$qw<90(o z{ngR8t@4OdqHDuwmL_@dHCTFVP2MK_XvkSlv~z-YvQA3qC)qY-vrer0oY}o{<%V?6 zV7;Qmx+2B=nctZZ%qN+s`rD`&+>Wda_9?yULi7}>Q&V+QO$_;j-%*xi2!BkBb)AYb z$AFaK;o@bPw>Dh4(7nw=+Mgf9Pe3J{UFrLU?KTVGal__lf+wBw>)fm0pJGkfJ(G9l z-%=xmkP=b|F0jHYKeGA^Wka!BSi4EVPI1gzO>;9G=#DCez5+{W@W{y8q2tqfg`re4 zj`8wc<+ZV?$5+m1&=qw|jer&Q5Yc0ozP3UIu&HbUUKQ&sWx~j0Hv)l&3J6seWwkpaU&Nff^)^0(_<2ji)xvhfZ4E5g`B)MQ z^+Si$8KCxPruzAo$)aOV=M-FU2g{`JJNFo#IakMQD*wHR zVUlsSj_D>ngN)xWNqb>Ui^0)uTfm$Hq=8ijO|f66BgkL4;62H2BgAaMY2R5?Zla|| z$%OYPsB2&*7Rv1e@CkM}4{$iZYe3SgYk73=001x9V`9RSZH)MH-(|}uetI%ZyalD~ z(-aeB7JXL6VHieb@Mary7&+UJnE(+wWHyA) zMCvCq5C@YS(RAM?$<^*5KEe#)uqr-9D6f_Fe>n`Ar9F2$glg3m0+aY%CF?$q6<`h0 z0)=9{AN!nKQBj~>;UdvssKs`A8p#A_X;#v{;fBK6B2Zz;njLP`^HJSRv1ZT6$zUK~7 zp3_9B_5{OTd|$Rj30X0P@gr+K z-AC9xxp4a)`e?(i?td%mXuuJ?3&$_%dfnk|3g)DK2D116_%(<2>{jAlILp@DUrdqM zMcT;!?oTtNeOO5ZvOx6kffBld=uDq7!ckqJQlSnI2l0ETI0a}4zZT1#PxSYkXe)_> zh?1ZB03D%Sp)7f9nQC&pCo2L7EAo#`e}N41-7$Nyz$9|y-C7P~A%Hc$L}zucz&tCW z80j}Zf?6Y1M`jS_@8Y}Q87 z+s4W5P*@^OQe(b+CldhfqWDdqvd;7JWyCSEMu_Fr=?5T{jU2^`Z)UcG@^f0|;(q>f zO_RJ1!Wm=SAj6PyTHK>;1(u9rW5Npd)CsPyn_ANkCd?q|h#dGNlOO`!*b>96wp`u7 zZ9sjrt2lGko{|tSSV>JHHvIy33IGw6%J8O&R?PIYG{s#dtR7ux2!=r}iaqk=;|z*= zQ;4!mc@V~l=RW@Qd|X$zd8>mN%>{Hogqla97JWRPBZM%4g)5z6S(1(VAOHiC z+tY!(ZV2cLNIj4+fxgudkz;@i#K?+>v87YEF@8q1^!#c}8wV2iRXNO3t|!e7B*~Q7 zpV0`orP<;}_?76@hf~_YeSZN1-Z1I**U!FOc)Nl6dg&HmHb+f-G|}nX04ZYa{T1Oo zh-s=8YXv^Oh~aZqMXq)r4xnpgQGnidFU|ld#dHBwa;~+6=hkyb$O&HX7!y)cw*-Ay z*&M4(6sEH7n&8e>d&Gambf4ecHm+4L!2jCi&RKM$>+N*a+qp#e(caf&0`sl4-u-WK zUYN??_4s__Pr3``hafRd%!JSV3~w5;zyJV;Q+09khazBVt)i9EoB~(L!!}>a?hazN zO~C;Rm;|7tw>tekU^wDpBDBHZ3bMv%0osH)je<+)7EqTN|UU_H(Y5C!9x)?x((WP=F6#zZLL*x-Qx5 zedloEd?WH%*j)~Ju^4MIwe&9W!_?lSkn2t49DSCt-<5S11wm%`s|(Jh&m|!c)t3u& z{eKPz=MwQj4qGVU&fsH^?l-#-k@|MOE_zk^+T)*&gNJzU{Bv>QUpPa9Ka_XAom82R z9D<<6Pe*xl3(?>cFm@&uMpOmg7ym*Yij{o$ z(HFQT4qNulWjenbcKCGE|ab($WZ1?&n>RwXa^TjOJu04L=cV$(w84gCM= zvlcYj(L->UG_1FyJ+<^kxuf@sHp5-2e@M2a*p}*-kxcTEwS27=+SYN@FQPFCsK|i z#T!RfTmbr^)W67mxaLMKW#f~hp+Fd#zzZw5G6$2k<*u7f>neU{QjrO=t&9~j|71d)YzB!wkaf*g|9=!-!aWygiIml)n;6Ol}=xNV4; z8faLz&UTFx*Hh$Lz|Q~E_OGCL0bpFfz4J}NqiF4uOiuuCczIhG2=tKNak5lf{DwVK z2Yu@E5&c5^*-aMpfu)n(nmk)h^FP+798EuqNxIAwO0}wo@58fnOAd#uM(%h8hgQ1) z1!=Lgku<7KB2C-z%umm#e*wgbPRe}|2k}o7jz)o+A|E%f_*;2h4pEoOz01x&mPmzY zjUue>61X0uni9@YRf(?w9s7c+aLTX4V&m&6z-LsC#ncvSz$Cnf6L*0$8{C3~;pUsN zpVz?;T92b#ZOn`vm{xda4)Gn5RJO`M|%qXBv+4+*%VSP-+}HQMAJTS_QhrRgB0;u6E(7S19txp{9R?5$Z%Y$L$@c;%cz3^m z66>n`yD1R#Qq#)E3Z+sKyf@r-l*j=qTg}z%x7bay=hQ>B2j<*~XaRe~;T@<+@TOa` zmswE0QQ)V;ANryE63C)x;2>I#ZsM8se_oNQLh6JvTP6ANx(UyA0F5T7pci>q!uChV zm^;*OEg}1)(K^LWsK^}YC+sc{p(s?{OuKs1eQ+&$#E>crdHI$1tpij=jS+Fv;rrM= zypj(yJXpgYOpCLbJIpcGc><4ye=P18D0?!EU9uccFo%UH%9>^ud);*)52gIZwLWm8D;#Vg*l zOP9@>D;GK~bl~{u7(iV*2aYl8=ikn+^eRai7iqHR#87*EE$?-KcOordT*aAi1py?r z5n7ywcPkt)h?q<~;uItcUf89Z;ZsRW3JSY;PNkjhV2O~*23oOnKi1-4$OFs4^vcWdT}$#{4T8Q?z|qe zHm+mV9MHO+$Mn5K@Tngpnd5ft2Bro}(OhSiPa);-00KlqxSq&EtDu;=6c5DFTgYV1 z&(zNLQjcQ6CAAmQRL+kP5sf!gsjm6}g44bJd9D41d4{R$TnR%zEKu0d@D%dRz>>>5 z(-G_k+C2hA7XIUzp7R~*7(f7*f}&)}~5#8D=qn)l{=M$PLOJIzLGg+h z2&#P9we8&UfY~Mo6FEh9AKI%F?d=DBSU(l8H!mVdbd6c4lzBIqa}~+P4P#wpD?MN@ zgqU#XwZaG*qKa7^XscpSo?#Sm@DG5n*2z8_hh(%-t)Xi(KQrp}*8s&Z-61h7zS(Q6 zEQ%j8o1+r|E<*qiq>bRV{8E&&>Wkkik;m^BF>ZO5`s1gH_86yJma53G14Wx+kE=a1G` zsLfsMKL0GGuE#~6@AcJ1o_?gT0D^qMW;JtBA?QZXj2lvg@j3Zca|6u&>)Cr{X^S_e zcX~j92e>dOca&)|nntLkfCpD_Sc$SliKS7i%`Qy>%-VjYV68)z=G;koIyodi+K9YB z9jzo!Zzc+#TMbb>Osk|^Gd)^V&_x^#Auqmj+aR}kLW{$t8iPSwUBBfl88Mqd8uegL zu8s_c z_e*K+4`+1XCF6zKy3Wz92(Pq*y^27>tJDM5TAaR(3VtQ(0e<;N)m)cg(M_9{m72W= zmWiA}HSh%XWP$nLO8Pdk(u2mw!G=>`J$+_Xnv+t?D;f)dl^6m8Qh-pWIKc~3NK~?A zW5~#}u(3NC-czySd!#`E(O|o(ekxYsQ{-A}5a;g+=V zenfNuCQn0})`$gjqwf68^c}F=T}(J@RE)TSp5bl~EtuXOa@ucG6?&`H7cybpP)=)J zBA#su^HUnh?jW!L z`0W~2HLXZW?p6MaF0T}gmX?ll>0~asnaiw$d`XxKSO_PRKIejhCR^mhjXtd6z!~UL z)*=PqE{eo?@$ly?nJ42;hcw?*`9>60{8i+QDew*hE{Efc(`NE+D|}sZ`BUEH&`H50 zN+Og*H{NTV1f2P2xo-03Uu;pr0=2Th|Bq<-y%ECIww%Cp^0@s^Fwz-0SR5*p&$2Q9 zTp0ju%qZYe?pS-g5ew)q*~GYJEs$RXeGw?uMa}>K2|xBW^+>CooXrisVE5sE=~H+D znhY;EtaMX~GYpBW!bfRHnOHI{=2!l%NyA7U@VH>*-|j);ey_S#!5~IzknHsEf>iBT zodU~TI~$y4*g$e)@7!cJ9a!yOKB{*P&%GY>IOR5c2c9J-d^%Zsvc6w}9Qx?|DSN_@%9@Jl5RB2+D{yK7TH>mix4sy9wnUhX+2?5)Nuc4iz& zB|Y`1$eD}Y-+uaKFa@czPPPwr7%)U{1Qs(f3Z$cT>-T`bKZ2y3-Yh)nARok2q z$5-naoG>V;@0Wk6DC%E#MAiVDhwZ>0X%bhJ>^Q3tpZl;J0f8wr!cwGJl?REFtFbyA zr5M3hA_I{-Vy%}YZJ693`_qryXeA5o9|y#65%Ep9fS?IF`)iS^vbxEJmw6v}f9@7# z(9tn&zX8@w8{hF-Sn@-ojLH0N- zts@oYB=+QR=OPioTf?E{Hv9Zj1EgPJcrUV4FtfyPsWou@7+-nf=OF+0l^1E6b28Vw z9^oZes%#m;9~vznTSTZSTw^29G)fqs13)eD@+zt=U$ZT15b&V1{pqB3v1OnD1iz?e zVKi9L+5;^va3kw;3O4+G&$5)DtNQ%>pHfZY8-inTU}~=+8Bum^iO&(tiJ`(`ZY4Tv zq@`{*y<-vXRLK3(O?0a!#1WDu ziL;|u^$(%UMuR5W4dZ|S003oZ1U#j~o*m#qMxYi;iw>nM0rF+R$U|m&fn>dwz;5p> zB$yzOsEDSeXZV3MSCtcepp4Jqa6-L0grO@gD|+;jHviup*ZHebC~6EAa!vautvRs4 z^VmYbKG}f2`lNWKocdGM}~0 z2jaB`2?;XdS~>w@tperPrr+lwSiETHC*Nf`e8q9?wdsXiKA6|q`jgm9zG7=|3XCnS zKBL@*)?kO5q|1^**UpU(3!A?P_Tb5Z zs~HVz>J*4w1=O;r4#Mus@wtYWj)3=L8N(~{KwT)YD%AxEelm9bLPS8HPT0bmgmr0u z=_a2JH7oRCVim1+d)&<{)gUK7eVCi2n|qp_p*}t}{%@(nQB=;Dy-D765sgM9tOj9A z(y%DInzJOPyJ@(EZhgM86MS?Rq5C4hh1w4**{{j1fQexE&Ddma>v|5adJ+%Ip2u^7 zzaX&vYQymrRL@RV`d)Gzy}fbqTVZdHx{y;dO(YQ|nI?J&m!V^I*8_+#^jQM!(x}~L zDJ+O!Fw*n&skiu%uwZs-jRyeY#7rG)FJz2Ou8;PrPdeSFW0PmWG|Rpv9bAVsDz3SJ z{!j-^;fm&jvb)KVycM633XymLu6HC*HBE5pY8c%-j2JR`xd@IraG)3ivV4%6CyAfdj)vJhhclFt5RIUxEAM6i>dBl&Dhh(@CePDN%pK@@b%~+`F=-jYBCyvw{3p_Kg%#K)yTUJ-Q%* zWW2YHf~7Hhj5afM-cbNd|}G{4Yu&N7b+zJI-pNdYdp{l@RPY%X_2-ST`ew zV1m|M>9~qxXTdV5=H8NS`r+tPNh-h$`ogN=?Sig&y^~Z(pFYxlos`1gAG^+-1Ksqh z5^BJIg}tq4xoj2&Dy^tY)9+o3>r~);1y$UjblIbT_K%y<7E~GQGxtb(OVIKj1TL^6 zE~@z5TN%9GPx zJ9@H4#J0-JDOnw4R^9oH40%e+=OS@7w&8pq^nLp-Bnj0NFXBZwNaJy;Gr}PO$e*a5 z;YA8sL%5cnX;{)~u2TpKlZ;8yMwmXaNdjXE#B7Cp%UF>{ z+HwfUj-j1=pGJc5aZ4fTLY+}TV8#RrdrI1CHDFVewTg5x-$88|chnEoaJ@BOdjya+1eP^)T4Em_yJ@*fqI zYUI}{AvqK5XOl`2uMA(_IEQ9R7aU%lAN9H~s?wFr(7N|bWZl_<& zT&+&-dIdtqX8=Z}5!cvTDXsWIg^vp1PoSS=KNq#oy%I-rdLsj3gMMSl4aaw0N)Hd~ zLrTk@H8$y<2if5>niR>qhGgBGEkp==K$Fvi8d9sPx*QSWZ9WS?g?u?bS`#*?>97GK zN!1$eR(#6y40Ji)iM$K8;%+nWMbe0aOiRCw08X8q zggN3lj)=a2f=A&yn7)3OtcH_+YalM-fypL+Cv3kY%EtG!rYqw zNKr-K-K#V~>XCkCv6G5y4*X*7w-F(&?{I!L_V-Q={^>QTiX)XR+_?gzHi#_bTESiR z?vcBaG@odbhZ%PDZ2O?+NoEz>Dh2>=h8@+K^o0eDDg=s#K*wZ5=${)ahYjbKn~`go z9g+rhN`Mp}<}VLXM%R#s2;w6?k&TpxlDUFh4?6mBkp?PtJ=svF1C>Z@dR)*jmmTdL zyWhzM^E^@Z7ZWLhP^jrYxJ&bg%KyCVi4=0CzV7y%5imqPCiT|UPWN&=v$@ zst+}^N5$O=rx@mGXrVX{H;tXHJCNJsOt=@b8505K=xi+v*=m8j-}hj*TfhhrDg(er zHc-TF@BYxd$7UeS>bYV?T-tAU;vXhs(Z9#HDeqkU$fy=l1WAqF;y4E=Z_JG^_I{M<(}7*VF<7Niv(-HI$cg6tG2 z0o!C@Kb%o6!YY~EJy#~58Q{-vLpOTzf5WpKV!Ql0(NjQhG}78s6p*Ia+Dv2T>gC+| ztllu1DRV8{oyaU#sp#KbW5)ipkejxGb@55ya}1DLbo4Kjrsyz`mm!;M80vS8xwK*D zESSz4WrHFRZ92XhbdTlo5j|E}Q^=f+Nqm(_9i5o&sW{JHEi|>_%PZ(;FgwLKU(%#b zQMe~w*CnAchwBIg6yDb-Y(MG7jl&)Tro%A)_LqIlvhMx9&g zxdfDRC#e3;>Kap~yO>_^0r&)yX8rrNW*^cGP&d#!yyxZGqXR zRl!jcc6$^HT?m^2vOhf-E;>D0h-z%T&OWf~A$KO)<8lwwHGWeE_86?*+>Z$j@}`pj z5jI*|y0Kl-X2VR>^%e96rA|HQ8}%|&a3HLfUN-p08}))M(F4aT4rw;dr@B(vcN3G+ znc8kTrLxvgm62e+)C?CAMkE!nA&}zNi~}cG1;?FFp#yGM77rx2^cWZ=MvNf}5eFev zmx9OuE%SeX246=L`i|Oi8j~eMZv1q1dh?9uyh2NKQzXVPz5cFreq(A)J$@nJrdImo zg-j(La>-Q?VblV;B&td5I!gbTm}9NvY%jokh`wq1j~#`c`eM!7ZaEnxa8@T zB=@e?5;_oTP|W0s>@5~?opp7^?RaO zEF84ED_ZN1@F^*$DdXzOrKC`x->9S(T)$kHPCt|pp>6Si0n9rt9vV5102-r+LB+!1 zwwzE*CN^{*D5bjsBXWuR4!3_HSh>eoaP`c8^WHRVyPkmBKQcn_K7_$&WP4(A{qrc8 z-!UmoBlS!<Z zkGzzfOdHP6BG2t5%Eow&;CHT7IY;zTrLtV>c3!VI(MVSY#L(hAi9-e4TI2TEWr#cO ztwfh4!D#MEtx=nA_R)cPd~3<28gfXQ@T9t)j<@tKj4X8|YuZ%?9*JK#>Gh=Jt*(9~ zkOC%uR)_%cYadH>yv+tPS$v1$FPRfB?FxGo^TOYL$ph0_nN2hSVHL*OQP7-d2H1ow zTHx2F<182v4;P|63t8=7YrR;g@8!&RRai#(u!`k2j7=a$iCzcIKW|KifRw4y2IPO0 zHgxu6Q#Tl$D`;(9Y`vu9x;FzgK;hABs-BFw`W_YWi=^`=TBsl~x5dZtG4)dbZ{crR zD`%uA2p*<_F2Wmn(DR#J;= z?Rgb_OH(W;F&JW7OTkHU;W1=6>D@|)zmskM&^KXZ4_SiFlw2GjVb!8oa@7&abn{V6P$u>gU&JMx-k+p}L?A0(Oye;2EN=X>yvgdXDby+Jv(b=$-AS0S2amGY zl0dL+9tGYU48~P2b2u$+CqQS6ys|gXUNgT;PY#^e%zM=Xz6xLH9Q`pO zzaEBOw}4;@Gi3cGo;9id+&uww;bA!Emn|T3w#fO+6J*x~pTgsJ6Z-nUiBNQUDBeXv z5&C;n)mOyHR~ml}0ynRYw$=OZ5wk>^YBo*Pl2|~Kr&QKT3e|2}S)K-NQ47 zsCG-4^XFp1t(3!gh(hVb7?!x?4M<d;Yc#!14V1?~e*YEJ{&*UhN7yrOX4@ z$(1C|gO0`JV8J-N^ZnIDEQ9Uxjp2O3$I)K1^Km;Ly!bJq6t1qFrF)>J4(mnISwMN} zxP2l~$2o|K375aoRqd&pj1x5Czwo5&*zS8MBddNQ}>MPQCp~K0oF$b5mQFSW)h1fHx8bvj2(7FevcC1@ROVD0)m zj4l}c9}UI0i@p$vGSW$>#lVy-nGvqOCVHC2KO?ybZIBx2h?xrx<@q5>s8o^&ge@MAvr*DFH*j@3O=i7)=54JlStlL@)coFMX2;mMgFWSvLq;)#=je!_HK0-Q1{1L zpz87J<;>Zg{l0#;3_`@{N#TZamfrJdf&hNvGOW_g5U-(6qz?F%+-iq&qQ4FjopttZ~HB6^32 z__&Q@ixbl+ykkrs;3&W0{>4h5AMWPA32spEP>CpBtq_g)+QP?a3rmdF$kQ-f?R0pw zShgQO!{j>oOhY5pRX2KGAru%PnEs!|t7=uzWJE5*{#Wa+p`L#-*WV6UnJd(frf&x< zUogMW&{8H){|o~@XDDm-JId&;O7jCy7$;8XZno**xeLL>6ssF{r&PcgRT9zPGZKI5 zW&nRuI(*P)d?*X-XYtm%CqZnh{3+R*3CVZ0uY1g?45UFL^gTF~9aNJluq(<96Depg zKt*k0c`8{RbS$Q|wyP*?+tZNmVVSeaI{un;jn^M1Wzx|$3ao+6 z@*{ikmmL9Pkff|BFJTH1E=JWyM{H*g_dUFTv~l2B!{;g8mh>SNhP2MuS9@iEXIm?( z__H`gMdN^Rl zMEXWuT(V+IwOWz4pfk;zfg@meiD#id5$$v-6XgviT33HM8Usbp02A{kvATg4Oq1$T zp@iLWOe^rC>2hZT1n>X=PL^>R_!uuR4G~Cx=m>Vbt)6E?nJ?0h$y&1+;(jyz2IjpD;FSx$c9VTb(&Y8~ne-spxYs8mBz z1{D6I$WdHISa@w52)3EV00000000n({FYiyzxJ7$>b-wMi3Do+J^PQyy%4xYk<$uX zTC)Ql7%-=nFQ|h}2RJeCaB;$UujEfe+9M z>6O*;Pw!n>T*t~B+V)cFy$q$^WqPHMu~AS9IJ>@nPVl<_uavzFW%<+{=J$(+oIR!m zsI<%dvOH)YY>O%f4J`kpqcSqh?Y5bnqH;{tEEuI$gADuio?^1ex6yw;aVU?IL8;D^ zA4f+O9U7nKGH(22K>`S1%>?&pt0DMLruFJy!WSpoT41Y6UUjKn;RtpwaRrAEv^s~8 z(OQh#G1c6@^^`)UU^=T|EJMihb5yfs1Eb&5= zDMtkPa`zE_42%n(@5+~X4u;^*>c@P6t)P=K*U^*hRgW`Ra$iNpJT3i@DH|*kmOQ{otlByqjxswxFbsAUVgvvQeGOETTvI?^|)@d;5nW&i`L!1Nu&2=o!<+rmj2%~XG@PJL zlra2wfu}Pph2H09`~O-rMWfg9`jYKH1sq1f$M3JeTl40a5amO|ckp=o@T$bMt}q4g z?m4eQ#%6HNBC(ZZ%qA|;1!qIQ_F<9p(XzGJ z`a9}3m^DSS?t6;r_2C!eTV==>^B-%Vx8eN*EABl&4&f#UNOy5ZXm0*%foZUHEYX-&|Z=(qR%=gJksWWr?E63J^weQu*vDE`t#O zjVJCgnei{aL*1wUR!TGR*e)hy3ZsIk95;RI8fVrb*#gusHXsL*+D1jUdKad?XpYs5 zgA|AeU2o&s5gdvXcd1j#`MwKFB|xmuxZF zsz7Q)iJHfEe`bkTkWC=qA8_g;*CvuJ6#aL&zi#6}5xu5FBl@&jqUzuORVc>->~jUd zL-@25IAcCY8PNuXl<6iqtr%w=riSLv=z>Fqs}1@?1yLpJ&`PI79@^{xBwW9 zvIl!zIs=^<^Gq|vZ{SS+ssD8*?SC~adN;WN7 z(QZ*bD}DrSOXf%zB33n_sfU2TBRA2-G?5%i>bV}N-%a9#K2$TVBb@rVobpAK4N8p+ z3`>H}auEq^p9RVsYfEp7o4&kY&+Q`Hmd`r};gNfor#2szusC}A$&*8J`V9G4u%2m_h=<6GnJHKC=9wICRuk^TpPn^I|fZHkC|6bz%T7bJR@ z84Az}Ejw6W&v+BkwtLmU%k=x>vm&#bT+JiqV$sz1>97(>5b=PW=C847i|jeBOa-f= z{g*YKgH?2+ESONITLr*1Z1Mk2e-3TCGuj!O*JkPzYnqYQOfUOXXTT!5q;}c-YX`}b zp*RCQH~vK6S0xeN6&#$b{%y(`4=oVOVM@BNlfn&dHO6(v4CG-EYclIbxBAC7{OK+L zpZ>j6T?wq2h36n6-z8ml_mIy|pXaQB3fmsfy0>=dTR^)wY7VYP*+6150qk|c!;FPF zc(zBg_fmJQ6)K$3k|t+wy>M>wAI(zL=Eehf%cd_;n29iS(RiJ3T;;-Kt>*)yuXof# zNH*wuKDYs^H>?w=x%J5Y+YwiOLP&(2*W0q>!De@d(xpwq`=sTLH78M{aH`+c4|RW+-|)a2@IRMa1q8J z)6e?|>bKH`41vu$;QlRyMz!h3n-q7%*e#%`6{62QlZw7t0V*pbFiY{leU*?2a*k6z zJ!)0^E`1~WgD^q05yK%AlCiCs)iHEZ!lZf5k;0dwf~=R9C$(~n`X2Vl@fS>l+YkQ1 zoS1>Bx>+7O#9jljoWCRG7Rr7$93+o#VKUI#PSfj;F3IMG*Ul4pIdS|0}T?)UkXowy;^IQDz8EE(4}|Q#wAeV6FQmvd&_ehLC}YoV z$98Y2+UEpI(M1xUD*Sjj{kV=PRZ9&=yYB1POhelO)d%0c{s_1bq{9wz9m%255j>@G zF`|7H&n<00W55=3>|k){>z~3T-yT8HxF+?k;fAf+2{w(G(bj*l0f%#fsnGSfS zc5zfuNY38~l&5HNYHIUg6%L)r4*bv}c4p=q0r-slO9I?RdIp_U%5=J6D+l{Spv+&( zR=@xNUT5@gm01d-hb+JZu_Tztx2Q9TpCK0=b`~vzzsfp1hs37{%TzMC2kwRblK7|A45WRu$@-fVXM7&$jJWEJy`5b zAikU^|LsTZjG0Xe$^}^Y#i`(6blWMj z?<+PgTM~g7z^cJW1@xapZsKaV({_f-{=8!DRc$!tYjaa_eTG#v^yfb|m~^zHEXK6+ zx0OBBZPfB7OS4FWrI$MQ&etHqq3+5(hw%BI9Mf|q;EydbBC=WZ>F@|B>sRsc$!=kF zHxRS3UJ zVOqgFKW3)U8Dab#T(XIs2&>Gq77?NTN@ZULX(*)=cu5@H4jCcXc(LX*v)MF)h#!jWI;N+Xgb!>CXs0P9sE>S24RV zuEtjzbtn{{uQ$MIfJ*&I<2-C)l#_4agz~sh#&4>RXsu1C=YEI&8zOMdbV*hwt8EZH zI6jFFh1u@bC3yPr7YM4GN?PCd@+$tp?m0UWfZ~Xp3XcDWp(w|o{u@YiLg3T0^ucdq zA&|tBs`vbCvdG&oJ9qv%?#5IfBQ7n&*A24ud8Jy!HXcqi1D}5K{TjV+Z8iHEdex{(AUcDDa4M){2KU)ty+Km;H z_j=Jcv>Lq2y}IT@6cw$BTMVsJG9vrj`B`waXI?M{xd467CvR#|{mmWsk|ePYlEUNu z3wHqCwzmiby3S)B2K%-haYp_JC?QmiV7xLwBT2(9(ek~<2yIoU(-AD9cQureOavZ^ zP(s=W>L%Yjow{{zEQ0b#G#MlmoyoQH!3GKGy6~9_8k8;qIothp)C|Cnq6rdj{LVe- z4f29)K7VMhOLM`u)6xSZ@S6OYpV`r<~X3YT`Kv z9un?fm_=BqX3h2wSv^QXI7D&nfWi!1_n94HBN%H3hK^hAKSVJHGK(OopT7e(2Hlf$ z5`<|EowK(vgj7e(FG$taY3Yq38Bmzv0EEwoqibIk+;ZyyP~O4mTAt?h3dwc@GGc6E zh&tW72!b_{(+IkWCDgG&7Y5w3T*%F${N(G8alf3Py8nff0?Z07U*`qL%*FOJd5)4F zvTlJ9w%8&WG|zeN4A4`p>q|_Lqdm{-Ga;0V+S&P;Cv&0_$rUm~?=)JS?ElP`qK8CL z?oM4E$>(W|QC03sgE89W#VQNu&uZ#?Cc)&Zq9Y>VZ z`U<-@K{70dJqfMCCvNYVG=0PN) zDqT%bXTK~Fv5b-hWB@oo$G=s71!=-(m+-IiqHp@kRr75~rL+A$9K73}rwHHNM@G=U z8DX(xvortcZX1!p8u2JGk_UO#Px40y&*Of!uLshS?v@okG*^iNGt9+IbUcS{!#DE+ zR~I{*T!d`Wa%UybGSU5WHiD`#Ctj66q}y_i>G3Iy(J|rLgWRYw#C>Qn@kLJPzv7+p zF^@2~X6{;k0!Ei6%fsKnfk;HsGM_yvPlO1-R9N5*BAsXN!0T<&H$zw?x-6y&wko!* zoouTl{!t@zC+G(EP_W5wFRO!Ny{e;|!5zaLbGcxMEj2b{?PZ>Wkr*%7K##-=N1DIU0%s2rDPr_A_eL`2EyOF+bePV8Fhxukfi)=eRuHQBRtp272UkK0$JdQKq zUhu6cd<#(#-#GZlZVoql{q)P{7J=qArbufhH!PWBveDUq;u}|yw5unnokZ-2jQ&K$ zx%eJl^G4+`;zlq7Ts1kUf8sa*YV1zb@_>+B%_>WmURK4Dy zdTAX7MD&&K-0Pan2H7+rn0c`+>(I0dW0h-L=Y(YDc0dY>{{~& zo0IH~XCrp`6fll#He3ZYaL|~ERNg>Qj5LHtFXi~i%X`s|~pHbwl8_X}s?Uvem z3|N>Qd9Zzr(~Dx5BmDranfe|NO~N_9*CHk%X_D>Vo#q;yu8i?^W5?ZGWfi{nT6v++ zXkokGhbwAh@9R~&TNrV0gDh><@c>^}HtVzLy+4DhkKb2EyMcnqvq_!ELLeM6D003rj_o9(ke@8sRJS<%fu=M*`^v~MzHhu)gJ8a`7GgO-)lbRR- z?PDb!`~M3e6U=Y*lRS-!tZCNm)Y7AU*6~sB0RlFId7?)u;9`zX=-dV{Vd6|DaBtZZ ztNYXd4CIWC;)?A(0O2MX^}(QiItNF{f?XQNdENnbay)%UG0kJ}%((T|FAjrM)vtt! z((C$qMHWc3?sOEcn``)H_--ax5f)MjYYOh3&i4PjfrJrcFpv5SUqMmY1~v=Hry1-N zRerxLL2#5ETX>$HV_{Kzc<_GD8bz0$Xz;tge0?YISKjPA7E{b?|0@e+5H2#dy+#yS z8fz<`etQOd?SHz8bbW(w{oDD?HdP^920|C_9b^tRTR98_jr<2F8*rBRTNM|GHnA@5 z;0;x4Fy4uevdA#$#d*}*7R?qyfNPa=all7~U}M-lYq?bt**fv_HG`0MDZ0Zy0$Nsh zUFa2*T*$qquB1^7f}1sIW0bvKCjMMvO(n?p#r}6a@Y9p+Ig2_=SFmol74r6rxNpYV z#PGodkr9v}@z1lv_57_22uE!G09dZSFSRo+|2XyvlKNX|Lep;S+UEifC<>VM%g%n_ zPqp>bAQVmYAd1cXcL)hgKn`f@W{uW@ny)+jv*>ZC@IEyCZew3lPVYa@X(Z>xWlG z*gW68kGkys^pf@H!ichpjpeRz>fhUJ1W9$P9p$4%mEp~lT&mL@7(k?B>PES1j)MW! zS(2-e`XdeMY>XTcz_8U8czyKrJ08$g)}9l$>OhAk=mY^mhJyXm(rGm@QLeP=9?eIL zJFrE<``5Q2r~iKtK%^qajf+(0_KOpQDYFAiVk=0L^s^w^(F&XlITmG|$_}lMjJD7( zc1()?q8Wt=)QyLm`RU^WCrdhAtVU6DUu?_^rUb!LM&bkW96W$?nR<|ZTA5u5fjapy zfXGLId*mbY(sTwWO6S( zor*chsx*b8`Zj6s65mi+55jRGJc@}X-bO5r&e;P>wt(U~$FuVCIf`8;z~v?(+UrjF zdpRy$+^7up!Fb8Ncu7~3^b{lJh@nG!Mx`nCkOi}|mG|Z_-#lu&gw{LiO;-at3^#wf zuoJ=1(9Sq|e`P#OOQZ^s>Og$gZde$uCwPw3YJ9+nYrzwYPR6*n!HVD7LFY{thgk;W z3W#q2yK1(Z&O-g$JKw-yvKMx_ZE8I_%x8#!BEyj!$4Ng}?^Ym_ zr^IimRAdYz;4L;t-Pd3o%?KSnmEHeYOxM|Q95nJtE(oX%;yl#mR=KiR+#;>2_uCk= zXz<%ofg}e^KKXqxv#=&1T-S}uJS5f_94|R~^IQ>nn(9&Xi<_@L0A;%Mk7z-PR#hA0 zdiBW+1SBER-PP19f7L!g@l*Cga13n(n&~P9wTMr=6qiGE68a{COu@T)m}Ek6v4i(- z%$A^GFEFG{C#fIsWes^B>P2Aj)~Bd7{GZ|-=GVTpHFy+Y;@uK?et?1)#K+&snp_hC zA)Me42_;;l6c-IX#H}HqcNsRs31D6TS&!?D?gesLrI{?1W~<|M7U4E9{nvw4-#5`% zZUxX>LA3BJbjizb;HQX+yQ4@t-??t88V8mS$f|uUlr?2G>-NTus5_{V1cTEbz`8Qc z3IG@f#kz!7jQz0Z>B-K$*($X$)Ww;}Ev12nR>2#=D)5ng&VmXBSMg(_NjXR&I;|Ps zarwwXO!%IRafWcv0JYfk+DA(?sB(Ymlx}&1HFuRnnpB{DHHYcG$A6Y4P+e2&LvZi5CDiq*d25Ur=VJmu}YR4Xb#k2Q~mh#^GG z-P6?4`!Q^Wf7;3=xbQ^EIqo>Xgm2~MsObi(GfE>((9DF?Z5S-N50b;kE z5D<+^(e|SuDizSmG?!w2rV`N)R?3PSSe>`62HKt^>$2w)J1M3QO+l_crzfJAd(`2o zZ&{JAg-CLJy}Cg*Vr~2mH}|S^D5fjiqoBWd_;A0KQA8n5YZyr$D%yQ*Ka^`(g8lia z&vJ*GX)#rIKelcXk2KCXg817KXTf^&+x;fU0P*~#V`H|&P<12U5t~(2WGU(mv;%`Q zGI2uP5SN=V%feAf$}0zq{(BQ7MdPCOH|bKJB*iusGCe-bxNgySv04=;IT;e_@T(k~ z_^z|x{-dECWj$RUkUyT?eJ00!DpA%&2ASW>nXg?8<8kIIq-D)WM5Mm^s`t^#cO{zQ zcjzuEcPZCRqv?kn`_+$?!SvdZGoGvIvIh(5&_#L0UG@w1>$tZQ5{>plY_xSQ-$1$@H&WivhzN%{1JE_=e3F{?2FzkoZOV7CAOcjyr+;M<|v z!dM-vEXrXq!k8)dV(8D;n7LuP^x_rsIB~^P2CPaj8ml~N42QX(XzcM@461amto1TK z!rJrXM7tD}x6{9GW)@lCs0G&IbW7X%ljl52=`7SNb&?$jM0{uI*4bC#;sS;v{JBa$ z2NM8XM>c@Z!o{pt8RX^ckHL@5=s&ZHfzrVC6s?iGDlK%D0sE)e^ntP6xU4+=^LG+2 z?ss|e)9&--r|(_ui-_qfiPFfEq-wJnLD*+aYj&Usp^!IEbDeLoKQhb`(H4;Z@>sMv)YNS3OAByXh)`kLH#V6@HK~v z_yKsO_U0|`4zvR^m=bsh&f#xyrHm6C9+ljn|7 zWeA5!=-66b(I~dMn6L7BL8;Ms0?A!%mjI0-s7U}k^Fd(8}xb2vqm>xR4VUHE&OwhrLmy--MzG?ct0C{a8y;Rux zcG^NX3|FU?u}Xwh`)Ozk-Y~zq-0b!{jamSzo&`iWw5)&YOYR#2H#Nv4RTXlmRUMe2 zdp>M?9U(Tij=NXucko6Th1-n7Xr~lO9p!sQ+YcCWf=2Z>?-W2Z@b*ydVi*(wNh9tS zUDfFCg{f6qC1S*T+z|(oJ}avj>=6Q7^I9X08TbPQri2A71oNRTW2zZ%+|*@5?kFnM$=c5G;Cmg9 zk6`aK>PA%dM_mS1D60uL-Kj0v?$6JP55_V_hT*pKBn+-e;^()~k#FHugrT}UQJ9Nx zL+1BKtww`_P?;Nbj#a;G;Df6)z9?8-r!?r;hXmX4B13@k0WpNrJfwX+t=6gA>bB-w zj#GSTE61+}p}{NWnlcYv*lzoxxKF&ntjNtYztKsB^v?5ZHv9fkr7w(J_O6l^&kY!C z`2u}SUX24w-|9-I-D?!y`5gN7?+>*PzrvtuGMYTkXm@&mC&a+y@(ywb&OtpK){A6f zK_LPCOCGtny{pcR=;hF&B4dMF%{6lIr5~tc!IUaT8|u);K3!gTis>V;9i>SM0G+`Du&CHRjDNE!R zF!M}s#C)Pic6j=t^M8DQ^XYSdg27GQE;xo6h%!o?i{>80&h|7ch>VSVG$f-Hev4Ct zilUb=t8W`*YNPgP7`nz8LOCq?_pEa@$q+t}BI36RXOzE_`gcPzBxfp?uhu4Hiy(w5 zM(huWka3DU?1#2b*If~OkRA5N$bJ|RNm?R2yNE8keLY8Kc)l3JnS5|N_%eBOARhW5 zuv;?fG-5@mRzV8vLCiQ4MG;h>e~Q)RBuT25wGUgGz!9U9a#MOLPXz3z+!R@eugP~z zAe@jFMMX&WFgJfB_@dA>M^1+sE<&bP|2Hr`ywDjcLtnS4$9NV9knJf?3IKG_9MjSO z?ouzg@Zr{fbH00heot=gSi_!yJ~n3td8hTfH>>!qzyNZg+tKxw3dHM^65Cw>HIu$} zfNfoGCrYL3cxtC!A^u%1beF2(Q3w)mF^Lr$ut13W9rqDwOUe zI(z1IqE2CsX)s-sadB9Eh&zY=1s`!puqx%Nn+n;DxjAij^*g;!L05d2=Xo$h=t6R5 zRNl_No~4pquFYmpZBnkK*}!wbWho_oOa>hsD^L==56}X3le_c=RW7(}wl2SVFBCAn>JTAhyQ-d0A8`cCk}_9%cbe0U+!-g zDoZ)%EFlQ_nAI^nK1t2woH69fnvK+miA*vl{i z$)C2Mw2BgUd>Rp}qL349H*CWWqOG9TaO=bCbozrTz8<#<-r>6Y6rZh&p^a3b`8gj%q(Z!KYfpZoW%)E|N z6E}QR*pWgY$7i_XuwQ#{d9QCz1*nBq@Cpo}`ki^^dSQeS+9tEO2z( zb+->7T^9(O>j!3Cmcgp?3vP334}Fg6E5enKt*ig=&kOqOy8 z#9gDf?P(%(3-GYBzU|C*F=uo&n9!D(iE7S! zCP+?V@{(M-si$yiI;uPU&nhN~_!m}_A{VtIBVTZ$(iPi->z0DFI-GIOBs_4bOK6uR zcyj)TMF7>6Uh#|2x^xJnTz7B~ibPgeUyO7X4iBaBydLOwwXOF9@As0$aa!-z45kkG z)_i&{j}rRv;5@uo`zDzS>lZP546!7)mFvme*4x8ibUgCH$sumF3|1?w#W`U(^QSIc z_CcDfpADoan53W!@H5j5r*I7I4kZK?g34WsG@U9Q&+2#bmy!egf;Zezb(ZCZ3?pSymer0v z)}I?3JJ+<_1=*B%B6R!Q02Wp3^LB|gy8}johBmX3@sA?^xRnNR`-{RSzQ%^gpdg|) zKqJx)H5-OS_;pM@Tce+P9e3 z*9saUIN!y%w}P@ty!d;^)zGkCq}`@6CWM>~9AFT8L(fqZXst#jXx7HKU&%Ttcj|Zq zFTiWC;=^iFRTgPrplC|nTWL0AKFWr}-p?$*{gc>w{KOs-Z~B*B7^2hj>riDO>f~;9 zsJ&-23+}07f@~SE?ivm|x$K?VW`b`cP)=(KRc;HaKSgDO+__AQSQJ+mdo&6p{2n7B zU;}FIZH*GQ4*3Vd#G@!zY1ry{Dq)^aF$Rlz0N$Qu(^}dx69sRh5YQ36fFB%_&)PV8 zR#4k7jq^J?7@W{zcDMxdk_Itc<_(H4ws0ptqgfb!Z}eQTU*PZCUqh|gZyl6yuUSR; zZeuMw2BD@-DTK^T29VCkIVa>gEjk%Biukrbq|rO9%QdPL#S83KD=dd5@_;si9Oj{6 z`s|ED8ANqMr2Uk5bz!->MbwBk$PDgL+isPwe~{%)!CYVX8D^k@vDTS=S}>vgl35&O z23!{6akQERZIwSFR$uZ1?*Q9Kk(U2TvCIo95RMTEJ~Mm!LmU~M`UO}HE}i^W_?P{B zfF6cB>R!l#bTYL8X7dDJt`yhNei=HAvrR;@+7!^8CJbpO!g9H(g zaO&?FY=gK}ZQ<0>;o%g1IFkw&?>@7|BEOpAMAp~=9eqzFCGmjMg1Q$HgP*;bEU%mR zaYay}cs{5aAsRLPC-B-YoaY9+TUpj>VJd|BfoTVoQ zGY%5+UWq>t#9`JUd8nqPo+o|;?ErNZT* zS?gEc5l_s`Ph0I9zN%GXn05AJl8P+iN&*G_3*Ij*7S*(VT|z=$z=3f7xG{&>=V4Mn}ay16OV6i53fD@xXu4kqMjoLCz*}5^-XhafE88J@pL| zP$Vx`1!PGx{M~M3GJeTYcmPnMt6&~Tl_hO7dfVkULOjIyv9yBNPVlaLB2+Eb%J)#r zING_FPd%`A!tGp;G%`kSCRe~wdW9Sr*c0^WOxk3HM9Pi1>@3E1J)3AF<0Ob&{*Eo^ zJ%`^t_YT@}m%kuJ$k-JNeIY;F8w(X4o?(zGp%Hz!xx{V}veM@W4XZKBdqJ&71xH@c zlmqDh8R?vHCUb`QZDVz)~PV(YVn-Z=U76FZ&13tol{<@zUt}r)t1scTp8M{qv~k#b0`XA9AH)U z-$U^FhAV$j1Ln%nda_YT=nz?RRr5C3h!c5KqFB|&GI?a66rC#QVUF?p-S4p)T0MBc z=&4btHAx2xc6~TOM{{RKc1Bdhp6vUDG4(XRi@93(Oc086QGz&MQNwI)cF@TSH3_~= zhclK0z6wlGB#VHUTH!CH#5)7t(NzO~YN`44LF)NVNmp?u8mEX2>U7q%&rBb%&@XKP zUN;7I<#)G&3#4)(nA*PC?5oV43BS29@M5+t`z;eK-rUQBZ)@n6Sbq5j`q3|523@^RXqpfMk<46b{SN-6oT~SaD=TvZuL4yf*WX%AraN2 zuQa+{(C7X20yrFx4Su4AFJf$ptuS*_ijH@&J1w3ti?%N>hsOT(R%WH1qQaB9-GB-> zSZfczT?_7>)DtQ2yS6a3F#A+0dKH91BPV{m3AT_N@Qs8|UgeEuP-ERJHrT%*IIUQ? zBOp6p?lz$Dv4$Tc2$yiEb-+~yzOeT^leGGs`Da@8zy4_`{}maVE9^s&YZQ<0mf)yG zgCl~<8CWdYKUn1GgBp@@@3{E{0yBnA_7hKg8 z2eYIx)|QNbK(;ARvI2ACSL-1z-v3uRU_-i!1wR}n#YwKWwi0Oih2VVBt_+x-YkTy7F)$yIc#`lawpRJ2L9f6 zrMwvnd!+B>N^|2E0dWxG64$Lu3yr{n926Oo{D^_)i}6v1sn8Mv!7t~7%{Pct`l!>< z*z)%<$c?@zk?isS#R{?JOHfHN`cH=n9s)=%uN(lg0jy~YsSBB>JB*NnQItVHW;uXqPran;QVWur-2_G zHq7dwKLJRm)vxRK8+Ug5D3Hc)Bs!9rkoMS|0{$PmxtJoA)M$aA$qKSn9}WhK@v|1a zDxoT@=3SSCZkqOfh4IS$xp?f*twlo@DTs+0iViY%UrDXlr?Cd4-3W55nmM&ZP^h9w zTccKanTQEn2YEY=@mMORkMzW4;xvbQ?i!FWe+~a~XO=b3H$@V>rxj4uW!|H{_x7x{xQ;rNk*ygd zVgUmm-8<+p+)yDSh7(k&*om&t8z8kU{Z%P#lw|$ zAtIOs432P_cD7Bt8@!u6hj%U_R-U-NlGjOnB`(G1ItcOukmd8 zpQJow6V~X$Idt{GI!U$3zXPidk~ixos%2$;p`Ad^Hs()VM?@l)%n(G~;Cafgw7Vjj`arsfK=K1UfN}`j*EAvBIrl)%D({tWPjPl{~@}6`>V4d z#!OY8mjc=CEK0m14pe%^+{+lC4N8V@ZtdQ0n1Dl27Q%-HEAV?=1Uq8B+m_jT| z&-)Ak<(wd5|GYN5uiR-+{Gg^;%*AdIYmbE&wp4M;=UoSxjHicRGfz*GSw_i+5EIX2 zi@xQZ{iKXlNFf;r3^W;|lY#<`#iNq#Qx`5Ud-gKzI9nQmbl-oo&F0NKL<=&r|KvIC z@!W3Tz>Twl^!y7n2SKketyla{q{IzL8!s+p~Mb1Pdu zX>ts;XD)m-8drEvSC~SM!zJu2WS)r?y zX6<=7JMxVFhw%SH`GvFZ;8BY>?I3jO98Ci2}LZm=?t$H#Bdy;&BP( zT*F`Q#H{WF)bY8vYhSG){%{PXT04Bc=5ZRh3#Tw=jG+=PZ8a1NEo())^Hhr4+iQ<; z+T{{AboCmv$0Z^HN1!+_8P!cp4h0-cT@M3SMqkE<-dZJcO1sw@YrOlyEcVN46YR21%1_PTCGdn$LNxj3GSEF!i#xl}SzM^4hAVY{yZElJgKQcnXf4SY6|`FgV*M25b!4Dvj&BCxP7XPAD|Sc zEv@obo3}=F@W>oO@Cj%D01Cf5oVFH0?rw|$8Jk7$Fo82gPWNhe2PMkh{Qtrh$q4TR zaDW@G#PYKl*)+@M%~j_ssF4u?)dUuKd4UGl{WrzBMs5M54C;=t)aWb1m;tzF@pL-6 z3N<*^TfaWtI86F=Y_5~>l+pR5csj$AqL^opPCCty&mI$4%9-02!Z z5e(Mz*-w?Ywi8gg%<1FY^H57EEDIi08Rz(%mCZj( zFXVZ!Z*)wc@aO+5VYFBgp&k3Jk7LW_Km_o|7qVlOrGG633b~jmj{+N5F_2DKo3$P5 zr&S0j&3R~LJ=c!S1&*gN?h*qMvH$|n;uzTz?!Rtb;7Ezs^kdyDj|22y3+vbouqn%3)XWbg4lO~UqGM`23GcM#Jq2J zUrvBJd5KGIX*MZV+pzC5QKG?B&>()pYGlyUrVm|hUi;)w zSO%(ZO8;{**+g_iK~}0B5aa~v=kx+-uc28lE0B2iDtn%jbQd^p*ksdbQtC8;?YJ(| z7uHI9fe^R2>(@2$!~@F~#JW;f*Wf5((^q5S2$#0t<&8$ba1erUp*}||RIvpeh}4-< zLE$~DNQRaU%IXLKKGBCC%@e#LgA^E~`qD}QT5w=@%V{$uK2(Jr7yB5P6~VR7g(v(`B&RCHlxEqqs@lUK54 zF|(d}VgZ}}%N(rog%_K@e0^0wrJ)5)-+04K9c#UqMHtZx_}|!>oa7)y*6Gv@$q#RH z9CPPYCRAH&rm0Xuhlr$$BhDqiIT+IX;q#CL!jK z|HTf;$M+v!AJeOe_)QpIVEzwHtA1j%{Uy>zm&{P)U1cS^OmQf-zhOozrBS5l03JJ3 zQ&Ph?T~tqRQE327y#YfC9xLG71&v3TT>@@yD1vGO*xzo%xHT3t*>st6^) z+ZnqN-TSlttYnnw|8LL>qO`<}IM>EVX|ios=TwFOQQ9|*)~`#dJD=NRdvWX1SeCov{HcTN`k0>J8!B<}Tg>)T7mD$*g*dwrU&o(x<5R1_iT?2`b~;M>cV z#8UPVH|ZqBnQNT*A47=O4fQ^l@s*N+_|=sw9k-x~$NrF%NpK83Oq+XzI9C63q(W(sO|T8u9|N zV*S;4?5}Mdk>yAKva4Oloo_Qe)}({>g?P`?%-iAAR=wnMqAT+qUEaV?eVNU*QRA}b zaf`S3H=Z@d>>nKkw-cXrWs1EYXTsCu&LoU$!$^h1A&bbtj=VEdc~5tGF})sOrp?R@ zz{ln#1ysk}3`orQgx@6xHFh>zl(;**2BgUK9zo!Jxn5cDbO$$`_%yAi$fMM23;r*v z=`v9a#M^INNZ!R`9IB+b-WkMoOz0U@-rJupe5Bi;Vj0O)5?@|^5k&$uEyyrq-m5PM zm4G!f#5Po8%zSe?IAB1Jy=2{9{*vJZe7?cyNgdHW)GX30cPH1@Cf~STaH9$qq0TP* z&U-XoYC=fLt8p9ijxg*0GP10S<{FmjwL1_}s0{}*nia$v6W+gN2eKp5C4C7I1scDE zkuj5~Z0AHOh8vllPa`Q|A&-SGxG6kQS)~`+N|II8eUI~;j!%w-MqSnI2ZA;R3S9s= zkv%`BGqZ4w{Q`DGpSSeQv`K`|yOYye$&V`?1W5~{=!wbOOSc~7v$`!^`8`iVeB!`S zwa#^mUc0N^VlrVXG&fX?v+=1Q>A;?79@Of7ey30UB)Y!HH7FiOZZCi(eb3!zdE`dz zkhE(II%7S%DFP5p&6nsfJ$*on;nfZCa2O+#_>G31TqVg?N%Mn2QP8BJ)L#`X;JAVl zil>~>XWJYqfZucR-Te`<7klBo{V~m%-VX{qDn`qjC}EHjuKna!VjlZVE2g^ubt%4i=tCvKtQ4v4cpnZU z7mp9zmVRtn%K3%_pP>(7zo&J&G3>m_A??CBiOqU%fC*{6%Cd-2eyw51AAV;c&>Xxi zdlX5H^xX~68B!m>PL)5Xk58m1W@bG*LBfJMm8PPHHId{D+5i9m0C_8oqS%pPHEV?Y$uY=B(r+zzzTa0$@mso^oMv542LmnyMiRAMj69I>1N(l1d43Sb#x` z|2_w1j9RpFd3q#c;D?!dg~bx?!x|w7K@n)HhlvZ;#x^37TTBTZ2GiA?7MKrw;6qQ+ zF0^lPzqOy<1a%=d(qkglBS#tJ^M&GDl60agUJ@}LKgnL`pQkfUCnKa$K)VxB;sZNF zGh{7%1O&mPZjd7uTMRaF2l1Ai$h+@rO{njj*=sqlSg`z#KR<_BE}NbF`Gt2UFS5ZebW zw}*Y(q|l)b(ILn|n(U)!NHn&onRw)bosSq=j7$M={EuP#Cr(oBqDhQCHFcaB@O+B6 z59zUchf3apmY@Tu64B3a(|GxNyVXP&JPJqQO(@4HdUyk{0%<1dI5YD!yLX2W^9(Kh z32XDH+!XlfAQo6x%cfdr_9W`i8qFRBl#~@>7hRq_lUr)OsD1~>9CJY!+qx4zjBAdd z)<3N6f9}E0N~^I0{frXf2p>3AN^xh^>S1yFhB4j@N(CL_RcZ&k^f`}gZ?E!~GE!Qz zXGi39sUXPLfD}&<{4s@uY4vFt6FAr?Hu~S#ip=Rt-*lkm+3_b8NW~dIm-@SJ3UZWN z^X!$X2&_Z;v;@MtUUu=HYOLGwKmM#=fdDu1#8K{HQ~A+r`Q*WPA{fx*C~c+ojg@TcBn&n|$&dh^S2U``jVNsto4f+rzS?qWRh`;crt;;)O|=0b~yDZLxaMGWk8l_wQJA=dlgP&!LlQ3fk_XOoNQy&daC5#zaYDY}p^m~0QU zYANpVKQy2QyghL5912KeCu#9uPguxG+;w6!8&dseRc=;1Hm?>tbtaNdeHlwz(xX1Q z!WI;^eZaYE9e3NZ5z5irHM9uOfyF?misF*aMjU&>s34P}s^x-N(qVA~weJ|5o^QNs#F~K> zGdESJr#OC=2X_;>3#b1hgLH+kP^>m;w?6!4-?qo?-G+1WKO?#K?}9U=GCHiejwN?e zcWOL278#BLPyIXSP`Lfg(KK<HW6@05$bcSPV~=7mqdtgd-p-Zk0=^kGaO&Lo zY00O_L2oW&ed>YVXua*aJJ;rFMHOpRplk-aGMbyK;)Dd%S2Aq*IkQIlF!%&ur!=9A`Vb=xAe@{ z@Cpz*0cU5&JT8Tv10EK{q()o;Y(S_eI=T1xTXLAx^Y8BS48;9 z6luZ*RU3^8AM{rst6GBA1AMV(5pi|tKDFQ)G85Cdb|ZtYmI;ps0JIQK89_G8oO#`u z+Sj=qVR7k4SL*SHQcb?rgGo0eZfXEiwT1G{y3&C#%D)-%yeXYOI%sFKK81Y-bhY7U zJ6jA5Ml&AWfRad2n0*H&S;Pelw*!|`-|sFCrz)fCfB}ey<`W5ao3e)a5*jtmd{HFd z*#bwhN1P~Mh~+w*mAm$1N2(^Fe1KC*ri;A3+dqipou`QG8Z%|+cttOsGg31Q3(A%f z*``c)s8!e!$-)ua=*d_EPI#lF|Kid<#*T!S?n=)$i;|hNYEsI;ZhC9IXKK?|d}^tU zqOk-5FcD>DF*v-w_scSz9O$LS7+5@!h52J)1+Dp7R~FPB+Y7615DYfTJf+xw6bD zhfOPlv1ctRE7l4qb|z<8QdZ$|SFkX#^1&2(3ceHh{^`@gdVkN4_3`P8v}jagQs?r3 z-l$Ux4a`w5d8OcqT))WGebN&@Oa5kV3sczel#o6+ZeAsmxSjQhgi)olGaR8mvT9HcZX-D*+|cL$q;v5-G-Z z_%}hTIHG%U6n{9A^bEGU#(&)uWHO~U zegS=q2VURr4GU9K@e@v@?V+jQp7QI6rD0V}lPw{Bo5x7;5q~H$fyU0)jz6taqz7Qv zh0Lh5rpM(DCefqA+yN`-tk94khrcCx?5Sxs#cKrhU0A#NZ@@blnSQZ@Le2n{5?pwy zfbC1BExp91m0fC1Wo*Lno+-T8V!kqOQ z{!wUN-}7Z0yj^~|7#RzP!g2db;VI?uHQ}>6!7p1B+qOGY9Y&D{LIuiu($9xv)!sX8 zFb}>>q#G$a=>g~|Tta3DPWUc-1q-_6SH6trv2+R36(H>~!wrE=ffp* z;~Lj)p0VDwe+q%6e-z-n#qj}*h3TIF000FdYYRVKV8y;FiX?|p-85dJ6}H5lscE0r zftlZv+SvuRY=z78Oa_>t%Ly=mt8mT@+7gtsxA!+2VWSm5Omf}kG$$(ifoj)1f`YCa za25Zb_rS)tdT|M^7f8AlRl3uQ1w2{p4&ek+K4IR4(>htOzs@#*j(%k96t&(b!^}P6 zmAJWQy`|Ui@La2(?z}*8?`CYV^*aB+LC?VpuTk+6N)ra-5H}w6*z2=l+ z)5qZhJsFO$Fp0Ye5DkTuNCq_Jywvh5L3U|fp?t;D!PS26jZvkTXa59O^p~W7<@_PY zAXflTjS%9DArS8uOG7L@au+Q{8aodTJ0oK$>5L{9c-ayxxJ8uc{A$17`rbO5v=IB@ zrF1&V)9MgXcR=@p1keF}8I5P2SsfxXrO&K%I71^y1nfS#{P!Tddv?4Q@774{8svc@ zE@USG7XIy$T>$XVQq#LVIHd$O`KhxaMyd=rwyM4ft_6)b!VDE-s3Q8gTK+ZVqfm2xrW~c$>*8P5@Q)0 z@yQoQph3bwpL0(gAT(5JXrs9=nC6UlapAe1S%on_>CQYFC$S&@P0J~EsV?qyL_aiO z!Y>;6nR-x0UJ0`+3FkL+!RL3)n>lKxs zxdL3meSyDytn=5Glh+~vP;jIbh#w&h2;)V;G=S4>sI$bSE*l|&XYfeS9FgFE?j24p zFc0mo53@!Tjtp8+m{~6NZRW=;a!aQ)blvGypLq(qBO*lIY1)Fp*`<&eD(hpU^j!J@ z^ku^51&~wuQMyPzClm<3ThtN5y_`FqW?Syk?)u$({mS(bG>5{%s5FprlQzJtWTdsR zC(K;4+z#3Y&|+b^(YDX7*~hdpy$B3VYbwEazw#)H0NNALjvjMkH8`*eD|B{+fzW^Z zOARTtw;HSM`Zp2v=j5u3k+=X%hyBR(O<)9n4l)xBUn{OhFGbYEp$(z>`BpWE-x_Kzp)z^$+ zD`+SDu5x@TkTY`E#DGlc^=neFmitZV`pas*?qV1b_3x*?Qoma$CNB%`f?U`gz9xhF zA`dt-VgE>%UE%-8x0ry0MV`rZcZvNfH&G5}(9X2Z`33tj@5!n%Wgu~xW>f9**DImf zKrI1f_9kZj)p3{~>E>EdZz4J7l`YZ7+%3dg<+1*2Z`Z*YppLZcLo&YfBkq73GRWc+ zw%wC#Jfo_3NI;=3&DrQ2F})C2jvb%oaczk`{QX3k{vBN&tHvrt)Q)dXVz|p3)R`x^ zFdgSh#D02OI%4X>7^uiME<Rz6Nc3p0R3^tvA&ky#SC;k}Xmu`fgsS5MG zU-P&TPGM%q=4Xg^000<23z1Y^n+$^@Hen)J@|iV$R2H$PVltYA`7fZf#lkA00-dGj z{toC!M=RQp2T%;rp8fO0aDzQv5J6P&M#})68ONBB@74@^3pQYbB$ieRh^CyvWl6?F z7z5_zun~$& z-)GuKg7#z**u9sKpTqo5UqPCmLWqyoITV5-j9dDkLXsZpI^0(ofZ(c3B5rua15J=m zJy?3vEj~C5fVSu@7(1hwZ`}}2z|fpBlHTb~d;6>H&%LWpj6EtX#~+2aMbmoHjog$0 ze8d*)J4-IQVbmi?Qt-SnP zl4di8(t0chc7B%>?vSlu%jC5@5FN}ZQ__n5+pUbcK~awMqQkc0UYQv^s9eLX*rQU* zQMhOYNO6{f7#repwpFT?WZOwMMigSRVn@$mS-+s^L0yT^U?aYWq;1eiH{^~04ZQyGv_U!>VS>10f2rf5s#!HZHg4#y2$kv*2fdD^29?P) zL%Eb(b(R%$5TUOB)_^M&iSWHy4>eG~i>uZzTc?+yVJKg9&4aur~>0hM3Vz` z4*})QZCdjOA1!(VnYO9bmx;pHva=n0$QKLAFmj#yu4;7*9)LZ;7RL|sMDfuPOUfwd`qXj^Yx>KJqG>wqqmaq7KIr5sqC6hK&s8_cAH@+0Y_7PSw?9lhjbXTdV5Ja0!~u2X1#To%1+I<{{D zY*yJTUuh$KJK-4Ll#FXtnU-VH6pYPygHab)Gjmy!~e@4snPzl}3J2wrKn2S~Y*B<}?1GE?k6S-XTTjExFfT-sn z2nVKFQE6FArZSpO%}r|L`81a~>i9g_Dl5=l*Md<{E^j_oS`xCem*&i!@bikp&yLJj z@dg>1sni_;Ci1@(4X6Zz%zBf*B^5p|4VMnsm0whTlQ*~XW&29lsYw@0~As1$ikK`{%Fk~x6H0Lyr4 zX7%?KbOHg5cV>o`Y+(TdRig2E5#^0fLmQB~VQLwjr%zSlaU2Df$C9u(++;!y%tdf5 zUDXaIBB*J*R-3>!f5s7zDjod7kay3Er?iUU51~4+s!^yXx1pV3k*-Kv+H4Q?h*rjw zoL4|TKNdjEf30SZbh12_+y%eU2v^XvzB;RFD->~#=uFNgb9k116QNqc(9l}R+&%0O zBM7pf3hR-Ch5G5Wwnj!+m z&;yIrNvnKmW3zTyVJ&s)ASR$8tW2T@pBsRb-HIw%0OQ>jsi^t|z7?;j$E;!y9Ds5u z_`18EzBFj@$d8q{=e$c;Z>aMOa(PE4Pj85l6CD6bkL6)Y8M?>3*-3$9MmMh*#XV<~ zy9-H&qLav;GRkR*5-D)HPy+dmNzvaixjTVR<=}?iNy(X@ z$}0u)?4k#t7$PO8Aj>${pgr%3ulWX$Lh<)W3l>Wa>Z{muZ7J~ZBNr_{08a`9Qyi~6 zBPBzy{`2kI1*__^_2f}WC!3jq9~ORv`7Ud50`H9zC(l)>Z7Tsp?AnLt>BF~@qb<(=;Q`g!ye3WaC{89&N z*k*Z@w&e6ex+wf!cGzi=H5bl1uiuOeCuumBd*~Vb5AM)Uf=<%dZFnZ}pbeLA0uw%> zqlXFj9(^_Vsb*6i_u9TZ62BIh>;BTyi>P9Hmmq;ExaV>e*+5~n_k@$8QS`qGSwF{X z(ncJ1O5)G7>!LvlD^+CCDUHo>5&LipYW)uv+D|@YCj*&TqSfQXOnoZcM{ioulge>i zZxes2a`93;C6ZOxJ=#AR7O~cvamLD?lp8(%MTe z74~1vPz_oHNiWTA-^@j#U;S{$8taw}}eSA=JPw7+sjTFE>sUG)Q} zvnb)b?e5kRRohI%*qeTpFgcrpf{uFz4UcCBn@=nXf9(t_qgqKQWZm=e=`U$~GajKt zy4Q@QyY1Y<0#(Qm?CI{`pySBNLDHa`pw*w$1Q^i7!@9}}sUA_rH zcEOPf*3UOU7I0H%4imXsI96xmgORaSFKdodO@~u9WB+}y+^g4wJMj49(*M^?7^kj2 zBD%hMfb_Tcc2pzl93YW>O5W^p3E^XR;xUXA-o>0#|ClK@3i-Kqw$I8+$G(;`gp`?* zwae5Qzy!4Ebo8e{21pZVOrQZyyLEmqHQ zq!WOPN1c$54WlFGiX8-^`Q=c0iJ)G!T`JWe@{x+V5|K~1lt#jIRTSZn=&>foHLJ@r*fNZ!1Ok1*uBvK%l`K~p!Mt-cPVM$%g3=r`0G2>N)m~rJAD}JtD8gdCRS(+|C~aCv8Q4)q62klA(oD;* zAN&H^Z`45?q2`p?f>o-($gz4tV5J-Q&lz#0Z#nYEl9I=B$eK;=_j*NwNdPHr+Og$k zI4%^7ih~JFG^XRXfz%Xesb>VVr7_?=kVx0k9dnY{knOF`P+6y{tzI{9+dgYb)Ysc4 zce;m~tc=iV7*Jl1x2Ym$uSp!DQ_E)C$iF&kqyq2a$TBXM&k(9{m-@vsn;pZ{;*^j8 zE$`K1^!-H%H{+sG0O1$UB^^$Ak_A<*HJvd{OOWGAqSD-ixMbd7bQcb9Waz>gn88A80kKfueyg;Fp&~;* zN+=W-us|E6y;PTJ4Pcc2=H?Zcd)~zKaOEZ-Nu3iiLA{O-QzwQO^oYd)&MbZ z?Kd?7?OXC~{rp|R7wVjgFA64BQ#|0*l#gQ`GLMf12$=WIWOK3-xvJqaIL%>06Rt%r zmxTowK-GZG!6l1>N(ng*aCAmE&T}}E8a!U)8BX6Qc@Qjbo_6ki#w63|F6Wb}z4-Ah zWw3X(5&KLGEp{9LZLJa4JxKyW?deN1LsygPwkv65x@>Xs4G@gV*RO7d_2-y@*#X+1 zJL7a$h6o(qrAU)%q(nQ5)nAJKbH?X%mmdWT#VElLsC}};BVApg(!wW19i@PGW~`%NUORx{$ElVIPTUBPX+W?k=mgY>V5mQ z>D7U*@=-GIGa!G>Gg-TqC3FpukUctAkswyo57Ycj>j$>~vB_G%_i&?b8G^dn1jg*E z!*5Ji%(K{QsvcBd0ayP{=AmBQCv*@WwNQF|NIPlr=6-jvYscSDs||T1Ou#Z(YOP)W zDjF@==5P4HY6g>_vid$CxA+Q3u+B3^0kxrL#(+ab-nCDLgP#hR6v#(9T8VckH7C4k z0Tc>>mG=-drD*0I2(X3=zcXMN)467ndXbJo1~xtuB208ZUTaAMJnEA~)^8xaJrmny zA$#m)A@AWvE-j~u6Evy6+ogdob@T)oW3V;BPg*rfV>RW1kx;Q2lI0CO6r{tUe-w>N`k0~oWxFw>!obN%tdgS%iX4uj$`bB7W>9-QgYK)q%N zIyDGJ|05tTFJckgS!2PJxj$-f3y!^SGe{26*SOfamCHNqfj|iaJ9+i>JPx5#tmId) zd2GZuI%3u&bHuqAObMPn`nQ}(n&kTzFZvjHrKj%E;|k4d$eC3fzrPbt)~Sui(h#CX zrafW*GimeVi_Gt0`z{reDh`5|6qQw&{~)q#L<|fBM@!K3?82Ly!Cu3MmzME%Y7z9aSOZ|ekH zFIC|}Kq^y{7+6fRxSUYZri{A$tZ6GXcz)DrfEXQn)3k1@^; z1fFkyl{~{5C^1t4W@$T!E6U2V8#(|1%myZWhfwn+s3d;g+0-WZY-oE8VnXz$h$qCOX`CBA<$)qy%0`TAwyn*hDxd@hp$HQjqMvHc0oLYGoFfV6)E+{`F;P<7wv<(Fr{tP)D>4_^5rdGBn@rGv_LOhkn>0w_o z7up;;7!&%rZ5?}xSjZW?{4FKL3U80C&=4kp78cr6j2q;=fgyil=9;&C82wMVxJHYQ z3)ncEi2$X_Hnmmu7oAx?GHA}$Xv!9ZW(J#Kd?xc0KkvHcw+6%KFFi?6FL^@za|Ig$Eys#av~q3riWTsE3m!;T8)-wBi^IT&kNQZ)x`S5BjK75%#rZ7 zLAVdFyaMXv5;7aZIdaJr{YKHD&pRW@)|2NGRh6ho>%jUt%Kh-W^;khcze}OE?#WlX3dzD#V~_! zys7Tp_e8Kaz%Lf`M2Z!-kSwRbKXR zpIZvsF)L+OU~OkNmlnnZyvB^(xYI(fz8D^T(*8v>&?0H#fL(-*U*~4#YTiOJj8i+a z&|VnjjaYJFVlo^@M!2)`K+a*=E4x=&%>c=`%`QXwP`6z_PJ0OeUxtxZswewXG5&cW zH1HFU@=qqPX$t=09x|Y6-NqdT0|F3*!PFG|W^}MAXhdnv)mG=^0_EoLcLT4n)~BZZpotZwo=tCd%39T*|3=h5p(a0@@r`^Urz)jyBXH(Y7}IUyLV)`ajMZZFw(^9)-QVVwZ1wawx+o6 z!b68Kh|#`l!!6Hk&#)F!evvpRdEIW6crV8H%!UMSav_FC`b(u4p15ixpbZM-dovHZPd2y;uSd-@w7WpgNni9LcDj1weyxO|qH$DK~oJF{p=y;|87PsQdK1NU8n z50C(Vg+)OgbSE}FF&VDwVyzu$(lz=CPuC`_2bBP+^IbWnQP8ne>$K-n#I9apOek-M zj2GQUv=+A^oG`>A0Ig0+!`cOL={Gj~#;Os;uyl(n<57K;0wtRmv^9-3zJ7b%!`V~O ztnP!YHXq?~e0Pp`7Rq_>NkwIO$?Kh%$;K$0WBDa!*^bC;Z}z=-Fa!+_(phaCsXHno z##{|K5yo@D5mXEr-gJ8WAt;a|gH1~6T$^6Q@v85=DmY(eQ;&8Vgf<1U7DJFQT_-7; z!FXIZ0^DaN_(x@W?|vR4di{OzVj#wr4`W%@Z`oYKSD(tg)PY$Jv(!%#WEKS=8$OkE zHd?4&!1DELN$XU(7OKLx;!U|=?Xdw$J8JET_VZedoCp8$wvdSK-RYZdFT#~L+y!s4 z%l;Q7`{xV@<928P?II&UI&uH=<3jfVJ+s-ssWe6K*V*AeZT_ST?TPdgcM}Gc-+g;G z{}|Pspe|Tb)Hcc!0%Fm8wPtC;jRWaSeJDgG`yW1V{z{po&XDm6`Y5*`UBlzx$=*Ul1VA8YiWW8 zLlG^>>Kz||pq(lYQ$r26g~a56oYiQPhP+z`M~#*&OwD$2EW z1)tL`5j$C7^2?1g>e}WWjba__CLP$QY+>LPc>NF%vr8Rd{zXkw$Mu8DZrHCeP*$rO zNuU4$`vBCc!^@GaiYeC)<4G|PGzaKAi^X2lZY7Mbx4!TiMpYKk=g&$}Hc?Wr;R8&!#>h`ps|1(KFeqBLIoio_^`9l`U53+HIu6{wOv5 zRSh5fvy@@m|Nc(*0y_SURXq5V z$A3dqnTEC796MPH{h9h-KfxNN`hz9vV4b{7l>o!h#~__+cH7c;iIm`V?7B)6dbLO8 z)~(#GLiql;0?3)~20uBbhqXe3CqfSc>O!c|x^^$mnF%_YR^02I)lo-2U#n~Qq&18k zxmz`>666FR4zv$)l2Fk>T4VktG?u@syD)CpNZY!?~!;K+Jza0fuVy`ih?su)fK1 zbB(}4wDTp6QW?f@3Ah=9Kif(xdJC{U?8wFzD{h~__)u_Un`=3`N#nG|3^;(>zL>gt z_!hrUbUidQnQ1p&!x6H%z6Dc#P`dv84CzXQ`6fq8Wgghy{oeba>i@Qx6n!;!g^c z52??qJxynHPG8L!lR%0o&NI_=UMuS1=^Qg;Nv=!{zN*>M54UqcyfF6k{k7N%C$simTzjYnJ4jWxOq1ZN ztPY219o*eVo(iB<-8G%prq2B9XBKy`U> z<`C6-ymwJ;VhI(=bz+g<`>%I3d+xg+-qf;kj79cas5TrIy>>Bh>zqVTvAOkt2Yic) zZJzuR9Ut_{LACQTxA+4eQUSv+{#M$4BpdGeJ1>&cPhcI?LfUBbXFJ}bUW~RL3<#Kq z>GfERXR2RCf;}#>zZrv%#Y$%hxWDAZs1y-AA3ySb-3iNZq6Whuflud?Uvr#=l2-`$ z3Y$+j)~P_fTTn`sN~!imhD9acce%MM#N&VBfSa=~;k)&XtBXTtuksMg>{O4%)@(x*AZuPLXjH>-93;{-F_RKJum3^j(3^9O)<58vgs&g;2H7%e%fR@KQAL|^ zhkMe&+RmiMVr~Q|yl~-%k%M6{zbM-Ibu~WSjfvH`de9aC`hNJu+WRlwS1kEMUzV=J zn<{_+9Ux2d$p_|fq!dp7Kt<0rJMti1mkoB>`z-MR7Vt-KXNwW>p2a!t z@N9n^^@Q`C*-{EAm?!nzz5`Gtl*<46fcTS;+Po+wNC(W7LP21u3<(Mbj_IsJO&!T& zg`$0pHLeV)ix{~F5Avc_kI#NXG(BoF>-DMqUN8$YBny&Zj7@y72y&b_!^v)*QgZ}j zmMyHD_0V>;OFEqNP-H42%VxyGX$hi4x*I_i<}oPW$?yrvILZl`XX+4_gu*em2Z?|U z*4;Jj$uo}!L8il|8aW|`%>n?(W78S`H0d6m5IlTCCGTkjo36pb3IY&cjW|7bwyEz4 z!BYfD^Ku|;X^-+QjSuZ93j?gOvb)Y~?&s-DR#N!I3csL=$9|nroE@pk6y}?k z!!eI`k`wmZUU&q7BxCoMaKh)x(upCbDrgS-d?9XA9&!T~5?>ETctSLbe|ND0J^WmM zqk&k@YG*cCidx!8vgl)azQB$M1*F*&kA4=Xyw{pruT(@!bHP5n!U)!`_TmOV3acxLN+q385Gt6+D|V;VW$(2ilmwp-Xkw1EsOteh_)nD_q+V_vZ8CV{asVMr8HJH{NqA_z;Ic zw5~vEvYvG2{&fY_Axag&%k+k~pU2+hzdp49MDp!Os2X~au^6F;Uy;0(z=@7B@GR^`8hgTwfQ~_Q#OK6LidcpUj2>Ia=x+5T9wlr>BVyIsfzw|!~Mkd7E zSh#bbxA~E@Y~!a_8Rc6ycD3$jYEG#+b!l;E939=7<c3iGu(F`XQk}TnMNDQ4=cL=mW%exhUuHDV7O*a$21m%;%DwMSHcl`ybqWo z4h{{dL(k&rn<%P6PzX%<^`W~NLKk6h2==yio0IH+`SvNx5*%o|A|-V3CVA>_lb)JZ zVjh7y7e4SVyXKcq`>9xul&}1_4~(UN000009>zHi+GY@`oaosm=2T@kpyjp9D!$k! z##bMx3%OJekORArZFIbliB1Plil5I?!km;+3^-$E)2seXy)j*b8$3L zcUHSG5?~4qF3hOCY~$xW$fIPA5wTJDqY=EDS6oA&?Ot-(>G>Sq%3C?&Fk-CCz@MTV zQuxPaOLKDh<>~xw2cXZ${wO&|W2+#rD)|!i=A0R1&m@ghFr9nZq$?(7Ow1uQFzk6U zqTgP;Q$ktw-^5ZR7{n*05TpomGqRJR*DFPx@=V5_o$Ba^tEYEd#l?oY!Q-Ui z%tLGYP<;9qjJ_8aJcA-3Gr|XYYg~({2R6!+-*TQLc(WFdd0oUx3$d}Li^eNr@*k7s zTFx0S@>Y&V1~o<2s2G`li&j-D5Y^9A#j!-|G-8V9Vma&G3LPPmRS-Z@`%TuLReY(J zMrjIfTeY!x#Dt`7WT&3i7x>*BpYgn-Bj0akQY75JG;b4fZEfeoT)=n4JtLVE%TdbP zj&;zG!1@PTK5<#MKKj?z~fe(>zne3?{%sOuxjxbeYcyZnt1GW}Z-5G5@RL$wj*u1GsTtv; zUJ#HWf=eaw-&taTf3nl3@tVFG;QIjISNv&w#KJZ%ZFi3QGNkqY>%+kDW%S0MOSL(Z zIOr)4#h8|9oV0vnlWs7(m|HC^`4UO=Jh7dxV(#WlO}f?$|6HpJPhXwpMB)3*I%Sm1 zT{Or?x$wLLC~wCJVS<(9)^ZokH3lAQe-|*o1zz^9H7MIeI%JFJJ}TBJ#8f5}!lV;% zyOvkPoNJ9_$A-xwb2(?((sVvdil8~=qi}5S$d?3a^rSLxiCD@!;VOH) zQ?6&@-0A&Kcg^7^g9eEcqCr`E&p5a=Y-E{h0ksa)PCWVy114ZX@eXm{k#b*A=dtgH z_i9X~lr)_J`^Y*flPkJOwYl6}00HBC39Un7vhSE!i3jR{9k}U9qljd5-lBz})@|`6 z-dbt#=cZ81(mQJl!JVI$M!&~3XDl-j7UDgPWoBOWJe+rQ-KKwG(^!87nSu2mhu2o` z8ai$W#EcXn*hW2eYQ#_+=9J;JCE_6YraYavus0V{xxJNS`SW~I$PoyZhud}TJVHa9 z&~SM}R49^0!}aT@HS*XPr;2I)b?2LWXmz(W~;OxxT%_pTBmO61{Fm)o>tysgp5i@BptC7s4ezj0z; zH4Y9X5<}O7h`ntYg4x7k5QF-z2_MoOK(Yo9pFe6!(EM+UO$ zsKp^PTzRc-;ofh1up5LXEanQrECa!+$;I{I4{qs z09g_*C6s6W#JT#5sc_3ln0~O3nI^*u%$wdA#7{dG>K&q#TuSa)+*dG_o8YF%Fn5)H z#SK+v&I0yByuJx1kAu!Xt&c;3XK>xFLUld}chcw6@8w(5_n&{6p!K~0uhhrvKTM{& zhYjyJ_}4m}K|I6dm52=vryDb*SkA$zP5AI{_3t6xnBTla9;|xM*y0*f*s9PE$@-t* zKQfaOU{l_P-9@|;VqAmPaIhxw=WcI?skHg$-OGK@Y zI2vNvRipR$CoENIz(otzwWU{k&Ij42xYMOo3G16`X}u}h%BwI}&bI$8z(-{enJE^_ znR3HyZguF;+aO!$90`#H5UK#dF8+J*@aT^@_}~O&yfb!{>r@mkHa|oQS^0@KiZ&S!81JSUc?Vo} zWlX%L-1+?D@riX!N0~^$TMP}dp6Mw)O7c9`A^sBcHmZG5ak2{}BJX6|z6K^NH)HFJ zW;-ojeQdG9WFV8i(i;(cAq@UAzI1INH6b7W_qw=$TZt#uY2H*=?EK4t#aLk0)sdwb zc0>J50J#KZA4jWdj?;%TQaG`=KFmhVa8-uI2la3Hu7GTSJ%tnotxn;Osr%((m5wp3 z_GM1}tT#!Zqj&uKZpGFlzWg4`p|9IDx(iX0SK^|jr`=?WA~3W_3q#h55s}hQy;66k zV-8RExQNc*LSZqZf;l3cw?-V;?6AOhFm2qYM66U%!Gt8PAd?8_iC%Hj^w0hUNO0(C zL`qICpY&k}R@fN46BL@G|0v|r^^e9j<<{zVi`z(?wg}BUj&CF@!PTO?+64?Yt8sRc zxLTN|#VljeY!3P~(zc*bzvgjv!(f_(%)66bop~_cRqQz;!PkP1VlksSm5+r{f_RAL zSpvblU4aEAzMlAk#Eb-ak0Re%yc)<^d32oJ1?-#{;G~Rot2dPT90l>Ypi$aHNZ)MN z{+$3)o=VAocL0k?DFC(;@$GIr7oc*e>r60)sq>`YH5D8LU1RsO_t89C)3p~T<|ISw zbwi69=4#?{nyDq}+D0bzJ~E$r)WBG~aUFLR%IQ6YtYpdg;cR08Ciza0ZWM`{8IN)V zJ^|oUysXA{M<5TSzpJSvm|?UR3aAYCn|$}%5ox-Hc~WKR)2{>jKaMTM0JOX@+mW4vi6V1_Gdt zFG3xHcs6kQ^vi?wo|RctC7>!`{skfTrDr50ThO5kX5dQs`D_SGx zzOTF_-<(Iv{g^hi#{8{>QPqgS{SH9dMG8&uiDv>y4fRzk44pkvP<7`Ml>-Z}-1%(lV z$*2Fq72cQt0dP-XPmJ{oW2|Xh!FDZe)L8lktXI5uSXCR*l*4>qJ{Dr4j3eb8-fi>W z4{1iJb9(cI&7LEL#Y58d$i=0s%HQN4;B<4e4YHjR$DELp9iBFm3lu8g| z|JH(&AzmyA*Pd^vF#sFCF_2ENvtp8|)DcBgRSFW5dUb^M!nB|870=E!bTfE{YY4qN z|F63nJ~6-&)HBqQiYurND1M84%QcF+kL5RRZ9N+YN7F$jn(WXeHuE_WiZXTdO19-9 zL`Uv-jU~n?xf4aHwh3qjMD`ZFIIEm$F z20#UPA4ZGK?zMsk)hI-q8v+8;G-K2B18Au`c2aHNvN+FL5x{CI?uZ1h&xV7mzYxYN8ciKoFsqfKnW=zeb|-G7LfSYei- zr_k9XCpKCiU6UP$HkKoLA}(q=xrYr3G)2z<<MhKUR#!KDRFX7dJaX8N~w+9(?$8WLBrQUU)*- zSk)Z^pm}rXA0liHjElsHEBD?k$J@ctMhd3q1dSSgI)gD(!W!PqZu}%{#AECih8EIW z(hL!ncBl+)SJ9P-1`*f)*|X0y_19#rtfSf6xg?b?0lL4eP#Yb|hL{I_2&R5AHq7D0 zRBZL^&1hRo3IZ1dDbfCVA&aI&hZF=s`8Zf8H(cD}N*L-rLq6HxBeGLA${+)9x?PO@ zY`Q|mSEYlf0Rl`DKzge7S^^m4Icf)99d(@QT06s@Q!n#te%(;mOMm!Fq%G+_#y35^l0i$0(+ifXMV*Fp)ig*wON8WOO_K*H7}_P4LR_J|Dikz_*G^ z$C3KGew|ZB>bw5P?}TlX;=V>|`_pFpHevv^mcd3?(-3+UP1}8gd$jpOPRjP7;?HmA zW~|{ty>N{>^NI~@s44G=UsdSVO1of|PPZQo`y_7vH^!De�I{9yhz6AJfeJp2;Wh zB2{I($W&xNQM~N{NRnmJ1(A40%H=IvSd+&Z`9U<_qf(v3y^_M}5&R)M-XJTRkC_Lw zoN&&4<~K(GGJ*;*sA!~}8Kw2TR$qUY+>LNG7R~J)H1>0f*6@1kMBfY?1#P=9qx zme9vh#0j(sl(_$HQr`AqW13KKT;A7M3eo?j*f71?xbMl-P$L%Xl3FMkZHrv3Ldrk* znHz|aPx-dwbGR8r8C-*MkQnb<*UIYS+S}b-*E=_q?6??-l_KYBqKl&WNCWI7QfFiD z4j{Zk1#*uN)rC&kugRw7@+C!VHdsNge$O@uq0ivG)m|N)dG?{e!YiIoH zI@v)gO5tXR8?#wi85B4ObA;x1?pR|0V7eiOs?wBl2xR=MIeN*4`le9{{q9`Cq8xem7t-|KoDSA9=aMA@G*8e482~&bOv}I1~16qo9)%`!NgD>>eVF z?mShz*~eWFQt2-`gYz+)6Z|F*seuFNGKv=CQaC_WLPoL=2*6D9+L6+E82eY=(chjE zMkGN`g)M59U5-Wt-o!t5?hgM`RNN?cot~iZN11}bC2b&k(WdjRrPQJ4JuX>LR%Y1 z$72O^AXLg?%f(6Fn8P!we4T#-g05cQ%M=6UQ$0-W(2GFeLIU)gZOt;)mc$O!{sO((|nMKPy?)n-yvQ^N3cdb@deRT^-=AMJxru2dU zVYeyAiC0-+3;MN~Y*f9tEJEQK5&t=U!OF$rd%Ay*nNU5<(0hmEe5qx}>n?p5%7oZ& zqwt9MF8e)`pLvdo%;h?qy1~)YyZ6M=q3royd$g2=v6f3_l(YDtUQvK>JmMUL{|-CgnzI$r=h&UoPCLiR@i z-x^j`QcOHINVo@781mMn_&;!BDyK+y?WDw!FdIiX)r(Sf_d3MG!Nze`TW)inW2lK! zCYcBzT?bA^!CreF_&bhYZUDZk#DyFULWuBfB*bKPiui0Zdyk#4JdhaF1r$C0!awISpjC1GV>+7aoPT0-caW-@H7I2!ZWs({0S>Z2D=hMR!jhe zKzhHi1czVRMM68G&MsD6JuYhL-~eMAWSuGP9@R)GZ$9)N^OR=*^jB}TBIaK|NiSIj z(zSyb4Gw8BRe(uNh^x6Nra;})hAV5FfvOc17rS`=5wf2fz?qX~A>~;eBG!LRRZ(+( zvPh-=ek4ZmOJT-d<`O?CftHka6!ppCJFYY%%->44qS5q>XFJ@4X@MoX*@pWuKy&91}79e_M>HS@eYB}5pTbAhm0x_e!!lbH!sCy_j9wzX~qhwyJP@IOI zy@k+xXR-(>R2jAm+D2FI1eg2yogXH#%|%=fuSzspUc9Dxr0Q!`9t7+^g&!XU)m;J? zT$oa84n?Tj(u{`G^>yZl(tt){)UvL_RIo*1L-p=IV{xF85xER>6!THcu2|x2Gz!bH zBYt{p<{*plL(~Fd{iSE`i_CUNwc=k+i@iy|M-a5!DR=u_qU6h%V`-u{=oJR7R59zH zNt`BOx{RY-B{BBy;p*1?!)A&_eTbF-?1MwQ5TuC-okk_R-UM5)Va!s?R-cNh!lcn< zTLp|4JPzWqe=4f8frAv33f`?yPbJnRjR@8FN2}8BJsz)R=3V^f3 z@y4UyhO4-E`IHqw(1ezwGv_!sHZWNmVchTOk!)S7;L|W&oH>AmG(C~WY#!hkACQEV zykrigL@2rnrtWNTRAFx6cy{-c(CDzvXfhFb4HKE-A*Ns}Fy!W#!Em^+YzLYi_ZT7E z3Mf~eYwSty$Z*R{Mnr`u)@sr}GF*RzCjO@+bFbXi{t{is>tt)qd1TdX`p!k% zzyBEm(mYWH=L-fmYw?&v-nJf1`7b$p%6cly}b@XVg zJvc&hydXGuBQf4Y?=w7aX}_j{&a?ZqN@@RXLt{7TTcf{m$_5zJEXD@E00lR8ew?gu zonE^@csHc&a2U!sWU$W&a0|T6K~%_1YzRw5E2|4kV;hbkDAYYbaf=|BJy^#^zK`Mgm}b3B!0V2iQ|eJzRly zGWLq^c0l5S$*%>YW^rXkfC`7Vl1hwD;Uh=0YEs3s=(;*S?M_P28fiF_tau0ul0S)Z zh30nBVILU#nqUhOyCr=SD`t9wfhLGrsK^*&Mtq?;%g^pq=D0E$A>YCr1 zL^G2`C>1L|K~Yc(9O9JDx~LJcPOmqQ>9{CIZBXTnFO$bqp9KU38e~JQ>Z$uSu&br3 z5_@b2%LdWO8`2i-PWOlvxd0r~%Yrj1`R}H67jiAZSW8U|LPT$qQOm71eVrk^(HQ~J zt?ymoBS(!s`qsqis)hoi4Szd$bIbkMdhlt8mq>VR8!$D6f$Dj#9rf}3QxSr6q(4-6 zlXzZx+hv5Je>2Yju#F#5O!japb5xmHt-be@o}_hoOb*su2e{1DneyNZl}!b2r(f|$~Y0g{4)q)}rY{Bls zfMr{MrwQYU2uA-#vE>}KZuQYzZ>Twk!|s^9g8p=Nb^exf z(~*h6LXrWqDc?MZO;7NY9y1d3i$t<0XE->(aO3VsV*-~%IMwwm@OqhNVVy<`OS!<3 zM@F@4s573?Be(tivpflpkS zx(tr?55Mtt0%T0XtG)$Y!8kgWfpe@A)0#@pu-{PX0$_>yBSVP3XR=|XAy<0fwY_EpN7lBF0G%0ga?c+BrM(-tme_Sgf?U@uTt6##!h18ucK zQf2xbq|}sLJ;)<99x*!EVh`!t5HDSi#}PekL%b^n&XgK^Xg>#LYhm*ncw~z-HQ9S2 z-W-RG9PoODmb6Qem7vFX57d>!pfre8ex?Bfk_L+q@0Bo-j||{T9{=ci zne4{La!}~iE}59Cb!scasJ;MO5l_boxZnD$G@s7+fm~X`#GYGu?olY*C>+8J7#H|6 zW*3_h8^4v<6?Aox<^C*I`YwdLn{nRt1-trm0HHVjZ=Y>L1AmYB(&ci>W&n3(2!*n* zptreg*X2;SHVBw|nhmlp?7x91OAW;bGmdy_6Qg=s5xJn;qNc)>Mjyeeqyx-p#LRMd@v z{#E7~L|Bu~TT|cq8ZdF6J~eqMa<9a5JQSA7@0dzem!)#Er&7k&CHM%N2>21OCya|O zR@9onI{Jw8E)+SQ`@sfV8SJV&^sc7!Iz6d+0K7 z%&zhN0K7|=!#DvL^WR5Jl6{OO#%?_eIS+s8-mSKwY9&v5kdpA?w!moL0E7`bny$7~ zyLO@8tOkaS;tS7uQxqRlyMRB!0AsZiGMG20Wnkw1*ZP0equTm-h-*c}*xXq;f8^Z5 z)6hn!)KO{DG^yu=Cr6lTMd1Qq?gEtsdteDQ+OPbVVy|aqYadFp z4MyYbZ#p!vYmA^oXvt8S?a1*3>??Cj87FpLt*t=VhyZ-RAu=&I8FuOPukU<4Nb&@o z!6Dk-6Px=>eEpWdnJP-~3ybpvS)acO5ng(qbs%j&OuGhvfm8GshFs?wJ|Ev$NRl>h($ z0000000000000000005PL3qrbWGYl^MJR(rgR;HF-VEyLF&03^9^e38->SkYgMngX zTbX-!Ak3G%+vmO>(l)SrAm=A`=396>=GgE6IIG|MF@>4oG{=><+O-lG1Sp;dKt6S` z?Hn(cO!$Ko!{^dq^s>rK=+bgN?c$Rqp+k=foYsG&;)yfx98F$(M#2UI#Su8ICEZ$9 zf1M70!MoMPN4*wUj4ei*@vX5Ak>->paX!x*<0=#aWh6@^?U^ACRj2~+$=*CVCKt+I zL4QO+1Q=W zI04Wyn$!8FHv&lcbw;%7Fd@A3s|s_WVD!i$xi6RAWbA4DW)tAA!!L_2ucc)2F~L}H zc-R+{ozElqGM{n?fxzqtd`S>bM;nz~gkq}GLiI0NOXn;9u9fWYFLy~g3`gR`hUrE| zh5Qigv2xlDg8AgrDS|^6*1G>G}@1LYn8|PRJUsZG9 zvju%+zA{M~{42?UN(w-kMKX?)olfO3muZa!f8w#|kHg|~HI=Ty@m_Q6w3ztkG++xL z+6oR7BBCwk!-L@O=edge8Cz6ed~xTL!yBZ8uWbsCbEDk_84?P+F%8YQMR4llSjQ8F z7MzxV+)3}G!cIq5^dH85*q-1ZC{F3V502XSnc(*-*5s+rqZ(11cjb7y8or9Zp*47X z-CFuQcV?m_RwQC_^&XQk55CVNHjghuJ49jAn*t`SDYuF)SB2p?a9x%QK*sjR%;O10 zRxe>xtE_;_s8zyLKNUc4sU-0w;KuYD=@%6=jL2=sX-ZLCx(a>0_kqrm(5_za|O!ofH93%juSVUBTmyte1Syf^R z$-_b(!(+ilRqVO3amWDk&rk|0OmkTTUMr2*dTH!nniE1``@^0YW`EL#IW5=Jyz7v9|R{C5%$m)+B`+AGSZ+JAE@tkReuJ z@%7Kt)B5Mr-a&x4RN}ixc6kw$G}M!k=^gJBIgvd#kgnh>^#6eHBNCG~OWG6PuR-P} zw+)@U+(Rc;OA$ytp$HuMcwyjzXvwfP-9vy!3o$Sb@`@^axS<_&mJ?WGFasalmmVi? z(Kv*umM{~fUbLlb#%0C&xAcR7He`<&GX(2Y#Z;WafFKqxGTp+_NEd<2dS$T=S6p6Y zpVumlVU|y{3pL@~J`TMO))4&TTGq>lm0y)0T=!zXt$fH$+?7XI$jz7m@?8t5;?9cT zymJ=l2&YB*QA#V#tw$-=Q1@ym+r^+bHt8_t)9uj40kDfCU$7m{5fLpncHnOBa_jMb zi1(1ghHy(~{b%K&{&~_OF3maoy0Gd{)2TmQ7}S0`r3qKy=In$&XCE{;hS&j%C<|8FPff(?a(O}k>LIpTB!hp8w_gtg zDNN#TrOwX&#uk(9zmDgP%7Au>RMdcK5Vgh!f&qL6BSuMu{1Y&y)fHySWRiR$l=qUH z-{TBJ;^q3`O!jj+XYa%wO#17*xw$}})h+k$wLP%0oB-{8g)8O(toiOS>si18aRWvB z^Dq>}kGSS9+RxZ33(0De$ye2|?vubD&>%*9`_b&K)-h|khGK#vBQG;I$;(IB+PG1k z5q#zPH>dHEOO!a+9b7_`zBkKx8cB{pdv?gO@ooX}qYPX)?2}jd(`P{teJQRYYnn-} zSDTG~n64zatff>ya0Oyj)X38iYH!YW5G$SPrZ$HTBN+)?nl!%%=gng^mTS@{+?pwv z2bBw~&~pZwg_22_>PHIO9&ogTB_c78+M0~sa$oXCh0Fh(4)1h!!%*fxC@%@rI~b&t z(0q;XNbW@*3zf!w*7p9o?XBe%uuKs6o!Z4?$yPy`rRe6$>VZbUGxm z_NEZQa}qf-iJ(X#7-YmD&^kUU*6l^=MGG*kJ!#=i@MyDZZ<)0ukmL!+YMYq!uMDZA zyxkTb{QiimKT`dZS;X)9-2IK4>vkCIlG_RfLMb3YY@*OLDRJ%pc3X45-yfi9lV35} z_rBRQ1>fzFc$!?2h3ywcs|We?6LXkEKAI=zM*RZKSd0^vA_x!efOF-M^=^!H@PGzk zNOdX%2{r`ung@x60IC0s=-2PAB@q6rLo*-}$pjJ4zY<{UwRJw!BmV$9iu{H30s z!pBFjqgoV!{vytp&uVHpb0Y$5xq_Kg6~ksCGyb(alQ7Q@KWe;qeO31kcYcmb{h164 z>?*&-vOo`?>JG~GI&wA3{bNzw;}QbcRLj=b+pXSh+|680Q*b<8^y9ZY$`ofJ=@Lgd zX5H9Mb&t`WjIG?zoKyr=-NHRn-$BWfnN-ceDfJS+g%R!Ne}$p3Hz+MoL%0YnKI|e7 z9_k5OZi(o9g9$4WXgOtG69tod^)JUvIUj*TZP86?NsHRF-$iB`;W=Y2D9$a#%a*z? zpt!KcIXoP4S>q*4oyXBbqdnAMzX}y)umROU2l^6t2PvM>y4gRMnxL4#Wj<-=v$DG= zjAMWSskqmxA=0{-hN8)yaomAkqW7}^ZnlZMgCMY)` zTUY1vL5IE6C}46ap*l5mYJnYzLLQ+r`D`oPG&Vx-HgAds;G#G5CBZ@{%0)%QZGOlfDd`OSy%j2GS2X^x+n^29aN5q zjmPyjduAX#^Ql1TvJ*^elU z&t=J((#*4k9$e2W`QcmE+iZ8((gw5CaL8gFXb#1nf@DewTsv#Tg9K3sFmf?|Tax16 ztpH61T?2#+INDdHY=8x8jpLy?p_{5Jcbd#>E8m|e5~g_*fw*&oXWj~|O!nrN(!i7- z+R(x-bDFCJ3)?$!%yeN>_sk5d{Xf=548kMwtf*mE>_GQXTqTHY9-}&#^vewJF2ih& znE}{i^&WVJzLX((WICv5XdRmAl%t-e53Rc^RV)C`=r+XLSQq<@1 zB$-d|l+JL=jxB5-W+rC7SteZH-x6VQ`M>=xEE@Xw$C{gSJxB0wT9+M2^g~G55WY>H zm+Cc9jF8S|M%=(YKB14LEA|DWSa*71ZAyYDKze90P;B5EOq7uOYCH#&$O3Y#+gV#N zPtpBPh1l2WpkTs6Wa)kY{Uy7(wfFcUCu)~1ZIRO@vE{WCVaVmM)2AeBC^-z1dU0cV z3<=K|aSOUxOMY)^yZzN7dwxOIX3%iDa$h#T)9*2yWC(B9o4tl;s!$Ug5Vo+1So)6{NzWxb(KM}6fV zzpidL12QD;j&C^QgL71H=~Tn!;2T`<<_Kl91x1S0QR0$({Y1j+5G-d$mF5v?1aD3I zQse=W-3T0q`Kdpe4&HHN)?Y+sa4sdRZ414|!!zrsoccrF#F1Je73%YhV(;oJ{;UJ| zKD}s&C^R-e{kq#!{NIU^f<_+GF?hzz1Y=vbgkj#=QFT<)P)j7HMXiLh^Cka+7US~T zMNMj{;2lt$u8B!W2Dhc-{$mOuxRq-hqKs1-N|KvJ6hOScSGb5=l2*iq=6!%TNg+I} z!u6-J2an!y zu@TNNd`onMcz?2v@kL>{j<+TQg%S4kG_eLYE-jRiE}se;kpJae^G6rfoobXr+y`Yn z+#B)K8;aLpUIIT-(3cH_Y*dEX`4|_=rQ;WEaeH)7`g72C0kDGaFG)w@HFqT~T4Qmh zrVP>7#f?D7HzBUg%6;%3+`wOPiJX`3KZuui9J7gb)jD3UUjBsObw2q| zhGRKES91>=J1BW6-9Zd|`!%Yj#=(=;Kjgh#$txeYKC!78V#Iqf@)A11M<-*X^PHiT z$>?dv(ZM8#-YvY}5MbyBq;@)c)mo_IAS8jtpAWA}(a+iRVB14#=MpH7Tz@tg+~X+H z%MXZl+tGSp^f?h&)+j*%gY`~-L~)6_?!vWG#?OQ_-WO`2JkBTtDcWZ@DL7X$nNn(^ zKyc8h&$|HFE58>lKds@q#H5G^`%f35xsB1#nWU#Z}_J5>$Pu z+WRE=g_kmpBcbv5Gb^$52=h37NC~+0HvRSzx2L%ltP+;b!flG(BRDm~u}@vjN$3TesHq_W&0BS2KAX?}_e- z8K{;omiXZi2n5|p*srD|!2{4XpS((` zg5+!q``v^dMypTHU~I&5$6J>_Q&5xTgdQsxPk;MbBC8t||85}Sg6CuE&lX~IY$^um zt9%0(trs5;lBTJhV%rpfbWE}HU2T$134g~-1EZmLI}2QQ(|*KjDnXexojpKNGE06& z2OkaYKw+Uz7Kenn1Hr6&o{3(U|I%|I><1r|5<6-IGeTY0lL-a1J|c3APlJHu5?`~f z`ZQUg`U5c7wXjV2YRz*}8YM*eXQ8x5Z8t!V=*uL=~`4xo>n1 z{+Y;d^Fl6LHQM=T?vQY$%wAjU>U?8bj5EhzZ{;V1_`LWf2?|Z}27Y%6CNSr=;--Ys zAL>BL*LUG^Y7eYEu@KNWaN(hapkebM2m*ON%-hC)Ppjl&iRuPTI~E1T3sjmH_>9E; zPztf)1s5PuKZ7M)@KK|`RlLpJLC@OM2Ut}39*lh<4>aCjD+r&biRNz6+oAj1Q>?!1 zOOY~?Zu^5lFJ z|J?q8SXaB?!pnS6n-4w0W0=N3vfM^SmM&?a09azW(lK3ky$Kqs2nUDReD?AH00000 z02stTRJ%Py_2cV(sw?5PAie$%ZI@1<0Dn4kyFUkuphCFdu3y6-GR9qKdPViALPciS zqY+sZ@JfwxUES{=9uX6}{$rFBxn%LZ1|{*BU^15#iBnf8|p|z#00U0f4w;7KUTVOmZH*kPvAnc7W2(am?kjR{E5hyNViNqR)w z3Mb!(`I&JUTO~J^25(5is}hi}o&`eefqtB^QR$;)@pPzLC>1P$-^)m&+)Wab#U$hY zxA&TGtNdX63-Y^-N<@G6d_GTUZfGZenP!a5J3QVQa$cf(gfL|@U;u3>2(n|yf|^<3 zeaxq$t#3%fu>HgO6TDQT&l`foQH?1r-+@2ev>nY$7c1BfOC1vRq9RGJR}hqeX4i^+ z9*Oa)eK?IL`{n>&8s@E*%EAyl=^o<^N(e2Bc?q4s*2KazF2E{s*&Gd~(Id~+W%sgx zCMZ1SFQteLj{`_;(gq)Rf}nJJkFy@U>MGAVyAFM?6qPM|x^wb%F=-f~HW}FAmBvpF zk!2&|xB_^JKmlhBP_ec=AFXf9l0a<9=s#9=P#S@?>qr4%+knByY)HE{3r|E6D1>_O zm9sD@u2T%k1F+I06?O+G0LVl*Z{$^yBhy|iC{}e|*ZZp2N$V5^YQr1t4opADEiF?r zliy~8j#mvVs%S4Y{sicW9Q9C0(3X&^;m+vR3t_ke|W3fZr=yNPP-muGQkt4CmF^S9@6dw z@aB#1<3l48z~nZd^fHl$QGkx|M%vQI-T638I3G+8jPNp4U;1Arg z$<#z)FZxAJ&{wMJ)xux+QxAaaOG%Fk?f&6&m#01`NXZu%C6?WU=wy(gymsjM4nZbi zhk!m3NRj2?^L^0$x4>ArI@soPTGGa{ypy$d zurtd3jaUWR?>S564ml0}fEF03Xmfl`>RJ=c9x82AEl~booP9k)PndINofn!MWy06dTx44v#j-lk-l_IJo{1!{`4r z-A1_2p9)2wq_~NNhhY+?fJcu#&ha`kG6xgp0000000ZujgHQ;jhlo*7*H?O+NOo?z zZ9qUA8N0_RuW5DnV@DH69gaanKkxY+LwgsAV^_wg`xIUISPayrbGe*rN#EU z66PpE9-I-;JqOO+>EG1mvw4MvbrJWasu6bXw6HiGodKbFVu6WOSxg$3<6w(q2XSUY zA9Nib`T42J&PRGoCqcKCa(Cut>uZAc-V)bWWrMiQL8lgdH#hk+3~}So8ZNJX(t;p} z{EK=d;P`|Rf7*oOM0Ks>SMEqZw2syGEP9@FnpwwWGrf^2YYj|JC0n%f%@f~%}fy_l1u0Jh~vdM89@G6e$DLNqCUb_(jgk))?^Lk&4FvZZ}&Anw`uGLKqp{`v|F&c(c?d|N*H3^P%C3sXk}q z5HP@e^EXL_X~Yp4;z=K&9+5+|$cks$4H5aR5F@EOIzx&qez`n7FH6fOXww`OkU#@k zM26#zZj$Jx&p^Y{JSdczPOvpt+pDXBcJ?Ia(AP?a74km4=$LG$1=qM;4GAk=hk!0f~S4tl+ z_g{Ntpkn`dm|AD2qePSGrfeY)qWE2U1ok+56zAdSe+V$1Wxvr@!d&7{gS`NzlbLoX z?(*`%W8c%xuu!e7g}CU)tSAcjFR(R;ul(O_;%SrktPK6{7U`Ea?IwJuW#|C=mrj7Y18YP?ZjsuFJ4`IiF1~XJqW;7y zqz*M&a@8>xZ)cqSiE}X7J+Ke+zJ%(W#rTorA`j;0T2#!+S2bU-ebmbk+=<50)zoBr zodtujCwKBn{JO^mGh)o$z>+kGVVck8bSVmv{4%>UR7xBF$x72fSC zS3uCCdsC>H@;ioEbpXzFNBi)AYqH(7Q%cOwzK6?HX7%)yILm^FM0&BquC~KsU;|FQ zYnwfP_%W%1bGE{k{xr(->pB5I0%g;lJ#HSclo{m7w08aZ0TOAjfv>XpFi~$8sTS9$ zJgQA_Z$jL*X^`YB4GWm{%GbZ|>i8O#|serI$0#U||jkvxe#ygMU);dxTEUj41mj0$>HWao*{$&>7 zsFbAW;z+iWnweSder!8!@CTVvS~F z4PpAlt5P-s?EU9GnlCkQsvGc#=(7OZ3%9|DigP?`9K>VeEy6l~bN{b|uinbjE77C2>@eFJo_&Wpr2GVAY*s!ays39)ewl8+zycb^e5!7Vf;VD0o# z=Z`3LUh=Yx&#@QQGC2owp)LVw>OFN@$XemOlY6zgg(J_fu51JvRzf7z+2mB8@27i~ z`sf-5I)%r_FeE2sqF6GgH@hGv;S4H|O&JXf&e1mWGY|13@YhM_om(*`vDXQdLKF$A zoEZ9{OH9rh>Ujve2w7rI9t*qM{o*v1Za()7#h$U9gAehytFH9^tk5vuCp$gp!3lG# zC2zB3q^FCR&HSn*Skn|Nlp({wLq~HW8(mb2^RGLA=vaDd$y)u?Lyhlt9=(#`5tu37 ztLg@j)7ECU49h`s%#}!}qDGa_h|IGcm^mghPB&KH@G1kjl@46x8!_a{F@kZXUA^C! zb0P;a4Xf**OMWo{60*Q+JvpR(W>}2rjP|MvB!yjCT21p5{+P;Gu*3fdQ?$XL=g>iEeBCq^FXG82D%8#mzOE`1u5APgwzO zS=jSm+L>Aj`Te(h0JSSDv9W8EVcfD-Hr{Ul6-ZL9e+3|07$Amyxa^}z-9qMI`t1)Q zH@D6KR(yJm^xm-lc8u3@$T8QUSB>~w$8d`y`Unn2D~ zl@C7qGmL>!MGYnZE$LK#n8O&Ufz9k)`RA(=e{K(bdm(a^+JsTnhlQpqrM)PpE)8Uq z0i9GCWUOstPp81y{<^$6S=m82f_3(7ym1LF1+CL+m9dG!_Dmc@rO#SHE_?rJiAQom z75^=75bK>*M;XlrK)xT+H*e6cJ>Zm9xDOZqCvHCc+vE;xs$Fpnq*ZzT(e0*ieKqzI z>0BBN;YSHs8nw%?00CJH0==7{)_oXEa~3S1h`rCNr@aa#?XS6Fi)$WfU%6Kap+0B~ zI!IdA8{WYKm`)h4D|L=u`+pJjTkB03(F>t#JtvbNz5oWVFnz4YNQ zAFANqJ44dUQxYOtN|!rNDH0J&cUSS|6gMw09jSiat5?G*AeC(R$>=Sa0U$_Eej<3tX0Rx#E#XM1U?Mu)e!nGGcf=_T2XQrzcV}lq@?EN z5L4}JdN7!OapL7G_$TO2k13N(9O2G4vMTS&{s5bHbrT0xQ2knA_;Fk&_id$h{rGc^ zohRck#B6H?^4GeVbHK;LnbP%o_j*+dl=rOc&mzxl@&+}}9d)+{>2TG|zla(EV$i=k zwmWX%Ue;}8f+sq8EP}Y&GFT^wwdIRgTfH;w&zq1ZXq8`QUL~+X4M^?XmBZnuF-GoJ zLu|)?g85#ufTvEH`#bQC{AcFj+YEekb%<{R{yY^9bUWcp7nip%Xvv_H_nvW5Uh=v; zaR5Qx(FlGJpnXc8S*f@=L(`*8G&YLa z<0h-5;7ZhNzw~;8WX|2j4N}PxQ1ljSn06}=miWU(X-FM`Q5pA6#3-nwQ9=ny22CH& zk9iR_tvi<3A(*i}&wX?O%^!$Oyu8i`-tJN8lxkKdImY>WX@DwKQnkgrwh6$bK}?j) zzz(qN5Z#>geZpDO57zjPiOV5F`5pdwJPoz#aDu3GV+=A0uK>C?>Y<3<*C z;0BdfVg=Qnk3@5(ZD^S0>1wr$PF|YztRtnsr;xt#SB;1n#*4(7`d*}35zXLh5pGIQ zFO5+gsJ&a7(D#w1QCmmZqYsWIJ)2La=Xf6y0P^I^aCH{P7$DjeHYCVD4sx6A`IV1} zy_Bk-YPRVJ`Nn;78eRb>OJS@nY+mVVWJeHY#WV{Y6$Yo#(*CCCCm4zY#>)K0+e006gvS(A+3Xv!>aslRsZg=Xo` z3_6L10B$F;a@UXld7MMdL^w3L;xG@hgdH?zB`);}CaJNEMY@YC%b~Zh9+NSO)ig4z zLAy?ZYeIDfpxRy$nhI2yei*(&{=EfhgKLO8cz_+bp){)@77i0FJW0e;Rts@2XR6GE z#CAkZ5d^h+nRXC&c66JKz=*J8sKfghVD(0zr~gX*0af4cs}?~glAh{{q2kuy_s_-& z9hz`2>oJsANJiWFd!}5I?*y6{XL9P0`T!O6PK0xKv_RX!{J>CAK2wpR(>xVodJMGx}+`W_4hFuA;iU>?hO*&^mr;D|JOQs2xIc``=! zTgJ*YBao7tw z;Fit?8Tvrt;40`;>au!{jBp93Q`aKlO9Kz`0a&`ILiJ?d;fD680gDM`Mj7vY7wayaq5G$|FkS zdI!!~A3dydK#>drS$W7p0mJ+XhOt=5+0g@IagBeo0k4vk9VC1iY6su!n)}XI^x@+X z2F-ZY+L4Wya|C@ykv-CL&sh>6qwI&>EhQGV0owUdqc*zLH0tFijb30ZAhgTDz>0;X zDzmAK=%&;_@T9V%%%!C>(rvVK<-@(gyOs(ton2D2$KYG=nb+6lFcL-|1_b9bP7!aPxf*J~8+y#dYL`IlPRn>iGx4 z)m}XI&ud8v*q}W*42CC2N1{;+ExRF!z*L!!40=GxBHwS7z8StHakytN7cvq8)65d! zI(Az>wIqc|!3=TZH5KS6>PuNuUw9Iu$BQd?>eXuc#13xN%vfloH9Gx!eg|lW0001W zgX_hgiSaF6d$t#(#r0v=;^XW;U;qmQ&vyS&1FljYN}+N?GI!QLNQh)Jy0ye7t_9K^ z5ADZDSKM%k2#R-}TBl;KPMGyMG5si?RWWKMJcmD!%|l5MA4#6C{Hw~w=*&&E$hq^z zw%RlDd{G+_w-T;V_AZd5Ghi;x6iEY;AiqZKad<^-mWk?e$qK4fbv6Oi7L|%DfW=OQ ziW|y$7qYtj3&L`l1Iv8NA|TYlVB+tiG!oWGO3RwBD??Shwr6Xf?5?am9Y|K*%$0`l z#*35Sl}araG`o8J*)kD1<1rVk3Zo4Cl8NA9>v9`P6qvLvR3-J*SHP7mly^LE9vEUB-wQ-R@~{7lJkMyAU zTPaiE1htJ%Cqg8s>4myuWdHrN5a~qZmMb&bckHe(z_H_R3AX~YSCKXYKo{a3XtY;x zw$?UMvo^=?vc!aGti9kXK0`ku>B6Pou+6!iZ?GK#Z@V-A00000000000000#T$sJf zjUNo-1-GvJEE6C!bH(vnZEx^ZPTn1BBQ%5!P?>JJ9M<_B3G5F}wg_}Ms^#z6<$+6) z;P>02^R&K^-kpX5Czq#i+n4z;YYM^PvEuAW17zOZz-hzQN zUnMTDomVchr@z$qqT@ITS@qiCigW!Y_?6t&auJZc4HPaZWDh=p ztZ|^wz&WD(O;Mf)C9X;|Mh-gJGh8D&I$1@fq-c+;CO2Mt5M9Eot!XSUFSVLLel8VdJ@U1%!BA zvXvMFpsjeR`K8@UZMLHI>d;cV)d1!L$vXc&+^nA}Z&04vsskpQ-O92ZY&_{U znftg@wIs?jjS{Yu3FYYb?J^reXH^HUR9cb069j44bQ>os<-qUbyk^oc2%*rkPcHz> zQA(5<|G=lZ8N3`E0u|(I9cWWfU@_(`D;9MEthoH}D+aQ0P&dBTKeKmOvn0DF$$43T zDVoj1;wCYLORa|OCHsg;8&$JyK|mh#Q5{tVQ4t{}AA44eZ5L62`~f##*t9wrgK?Jw zSgOKwd;C$k`~Uy|003M;h4DNyfmU=SGGH5|ts}l#EZ#8yQ){QDGnC&ZM%YtV`blu| z%N<(<&&Z*KNBLptg|j!JmV9T5u4~))KB%Sqm$dkT#IuILAh$zvgRP&S@@D^#2o2Z% z9eErkpQaAF=-AsR&BJ6?0$6uZ4>k6DXN?Ftpqs4+Ixyc#BT;q5u7m9gk#}7Q)18Nj za0mw#955cr$EK+q<^eZlgd~9)fa;WY4d_M!B0R%(puln!OlC-tI|vqL5kU?Owi>78 zsFkTm{Fyw#+Zn5LxaOfVb$Wer+AubeGtmSw`_rNFjdRnwDrWG4-Kdrf#}j5ms6SzE ziohlUqC%*>tOWBDF0Jb?qvdsEhfog*RaQVuaeohq*a~^xdyJ?P1)?hs7mohINZ(yt z7nSWG-gnt%v~~ryDgVXz2GF0A>>{4%3RxN(iuZ0<9?-oaO#UE7dJ#uiRTdi3o!Pe% zDzn`eHtGvL@$qMnBNbI3zndv?E0bofBot2?JR{FPiL5n8YV46@7G>m@(&5PSJ99uz z&;iz)ATmOM8LRV*fZNdG-+(=q-ZAA=lOrHsMkW^|rcc@`iKL-KM4do*THv?@3bjJa z&&YZD+xbH7ENR)-f$y_u=6u;}&3gDg_7A!=-RJK;~` zM1LNeF<+WKj991!Cc)`bb1uF;5+G1Se=yw{uX6q3#*GI$`Z1IU3&Jx(R0^0!LkDBP zAd!nK2On91bTJH_&~SGF@>*;d1mB9yPJ>tmdh3 z+A1H?S7}!Wg%(LYu$Y?IRa1)kuX1owt_m)_Uy&|Q8#?VH2Rph)p2RTy8D1(6?RNej zjTiYB6(r+;IFAaGd?=$zXAoFypx3GDdvb+kGjGaM||14E@JbksJj|D zw*WD(AGlfjJ)TWUT6BLQy(6$0-tln5L!I2xpTl6v=nDI<1qQNDHrMk7Isy6H76w>y-IqIS%V z(W*>`{XYT!`3I?*?QtoJ!aWx9`Rp(tW~OGf5?JU*-g=iM^%3C&;HbCV0MXMzCRF*z z#L8VzJEnZwH!#1`+WSb7kr$49DvKlOM-|##Stidq9u>S#07gK$zkTCVJY#PxB?9>O zfh*GSQ0>T=gh}if!~VN;ZoN0iUBlQ!HMN-f=by4YYft1rqi+9@eF5$E_U?DHtWnkN{jTx$yc1Vl9xPO8veX zmqcNu$-!AG8(7-LsiT2%YsDPXMF9j=&VU2JA*oC=G|U0u5Y($Ba$6Wo1B~{|8^~Hy z=1yf(+h;g=r$KUP5ee79SQhf+;236TnGNBNYAW_K{;(Ib49ytM%vyjCn{*jL20XO} zD*99fV#TwIJ)SGjmn3tK_znG zSO;QRh@2oB4F#x}sT{sS9bMweP;#}jDPu9XoFBRB0!X$E2mhW!>u`%h1G;}1P9y;Irr$+ zi@$1a7c9GJ*z3jN3W_9)`ptHo?kK!ye+gktJ0ygVMXi#D&!?1S%uPzu zhS63;3bYw1Mo8DbeUPiCz{B(d7uafSk*hoiObPF5ay2Z26=9eUxwgGFRCC3F4l&r>3PXn7=clI5bTB$=6gsbc# z)tBd{9%K<)0Zdb>YSoF?m}kd>Q%C-u;;tLiGa{X0?)g~RPkS;MBvkxnKSfIpOo_Oi z>Jy_oDAF{tRC;3ifeRu(u)foomKfg2e|CeC2r4+}l?|X0=f2B3EJAI-1%~?|^$yuh zC*&<91v`L6q?Cn1{aw`& zXKKhv(1eH<4*=UEF5Zb0VLdOt(`Y5{(MIed+7W2jYxf^^!-RtD-CuLZTarX0|hf?)BYx1r#fm0hlcZ=b`1l|naP;aId zg875-CfrUZOe9a*sWA8AHf(ICnAb8+Wyv~*!9bB5y4}1 zY~#BfqLCfu1P-DS<%H-!Zcovmtukd3*t1Th(w@Qczn5z92t`3Wx~f7!AVpP@N8nvh z(ouH47kO9m_?wBtq)az1=lCj(`M5u(g=lkSWKF( zCCYC z(Rrp_dc{5_x?c;m?BP&XzLHPAr%DE6>8wiuU>?cUU7kQ8^?a2dYKLivBQl5Z%`9F4 zP;emN4q+*~fK;SWiuq(nLg~E{vmx&E#j@5m#$9c(ngFxna(Q=vBG;!9fQcEi2q)bH zb*2YL@9;7-X#tcnkV|w7Z2>LKi|#3Y$$xhL1rW@R6KUHr;;qH55CuZ&xc!0kJ-4ko zW5(<4*CWI|6T)8Z<1Wz=EprgQSI2c3A4gE&_zt{FAyYVKE8m3*_nWC93*^HLgqn;-6|ovG^gwwHo0{BT z3y^pJZ#uOTglI8N`O8E9KmL)w%OP0f8KEF*R`iIi{uf1B(H#fs3&I!JQ#Z8*T=E(8 zyD0n#cL&pT z=hNT(p%x{nijE%@tZqCHZ}n`xyL8F)Uj^%_*j7WYLfKnl%AdJdbE321^nqbfmP+An z?USBuqSrdbU3wga7@JhDB5==2RCsux08zl~tQP+RB@R;KGU*r!H{58W!wZ6aoU_&L zfn>*NDLVoXEf8KmP+j%xjK~LkI-WNvabgGqRqY#_gOAc~i1SA12x9z~XbNR`I<@E+ z@@R}ay!5@edNA}BG+~Z-e=n@1)*Br**rZ8j-$Ydn@bIlHs5aQCCQ|&WF}pN1NM%@X zZWNv`3o?r-yKBYLlKqYOl!b;ns53vkh1bX+c+;lo-x?fcM_=FI0!ISy*^=|j2|v@- z62}J}g^;mcrX*Ny*m2+Fhrn!I5Lsp{oxa_l0Cmz}qKZGt(EVGuVTuE;xBNO_B4nhz zRAK==qsOnnx=w=IXq6u@d#z)L1aJu47$AGkKc$@; zbppXyEER-)SE*6)W;aZ4q*f9lzA1eFmuv>h!2#-JhO_CaR7^EO<#uq$7_hs=(LbSV z^Sf1kj{qwf(1w79*|S~p)TR@Z1?2`sI5v-^n^#eC@;+3wI1POF{lmrZ&7X@jk?(5q z=&)8CEEtawJ2^TeUwcWjsCBn#EsQ|X_jb@jatnT*tiLHFk9yh zseTFXx_sF#>a!cvmNMzf42K!f(RB!6bLxWxc(bKvyS?5AXzjUs$mW;K7b3;X`eiR z(UX_cvg9P|4u-&QQMh@G619HopbjwUeaA7dM9(B>LUvLb57QwYc9%H+#OAI2pB1X= z9PJ@|sxZBZQuRaYUnYcv|A~F=Mk9zyTz6t(u09PS zjCQSNsnB1ggKI!#`NM)=>K&CGt|S^qIfr`;%o!!kGb6+wlE3SdEbnJ@1CII0nZ?i5P7GS2q1Ma6)nj+GC2Y!n?T-p=)M2CO@|I#)p8 zoCPM}oUMir9_kZ1`~~iqZNe;-jiMsM=1_wFT6KY%G#^AKG4b6-3b6GO8b#hvRGMZ0 zYeHQ7pb+oP4Yh|yr@;Jmsz}FRRa*Oi4*Yq&e04-{HvyQ>zRo49xhGHuY+ly;+`s?~ zKZE+~lR-h4z%628q*?{Yq1($JlU*B18XCC*hq8UXdhc-9FAP6NUB|yB$6sVE(oD6T zP53R?MOo)3x%iglt4$Z2o?A&^DXD^S?7grr`iT;w|m0hMFm_M`mgVPq4F{#?~Zd#ubEMsDd zt;$kAPNAnZBTBO@-RHdnKAN;U&Y(jMzfo0~H@;Gb%nfX1gpEZTeW&i+%7vaIgaB7W zM#*7LnvU>RJ*lT48p$!@+h!G)>!(|4y=ByWg!`VQ9I;OzRW}&XOZIOafa7tOH^`fO z_OEE8T`pT2&owayKMZ~3QzT&YqzBaS4S1&0q{_KpeCI_ z4t=JI)GVesUWB)3Pwq&!8WM&m`7kArGOzJgSDBz5qLJe9+AWJjVIb7dL_u%$4#w*X z5`db&V=x~+z(k>vmV*QY4N6l^gAR2O8O3pXD_y^1`M^pVX~R6ha%jxVc>FOj!K7tA zk<|~l5CQ|Vl)OGi=JX-K4sg`LOakuZ)vaWLm@)^*syEVnNt3y ziU0;aKC~5pS}83(KdPK{rEBfLJ#Y+r0Nw5vsf>wY{B;)yRcgdZVjl} zm5Fpee>gxP)vLi{O~k5T?+Xs8o$2m9jx-ElKmcLjWiQh{4WO%nF9!1QxY!neq z$A>p>7%c^xZGDaKG?Z9MI5g~>wR_V#^*G)~Oe{A!68QBtsC=AMlsm2dZ<{IRvc|8K zA@X?CU*fMRk@HW`A}D(9OOC^85oNwNth-aL(KT}cqX7dFH3YyRG>5VaXe{L-ikg`w zQ24G;Phn+~caXbdWX?0XP2zPoCxE&R5%3DaJvQTuW97WRqPfYgU)} zdChOJXj!iZ(K^+7slp|kTFKAKd0W~$?Lafa+_A#!m8$a@bLMfdMNlVMnIkGmldIRB z!=_weSSe2pzd$dAXb{b0!h*`BP9yNT?d}LDHdLrI3wODcNx#q}Jpx16=^K^mo_e2a zxaF2uydSPw=a%cQcKQVIE=+QJoCFNJ41{6I=OgbZXBwP)=eV`(4H8y6>T9aFwz48k z3wdN93w5k%c8zY>^1t=6x&r!@xUWHMmj+NOvZtP5E z)Zt-i{P6*0BP^&%Cif}}=F-`g7j0aB6-_hmcAawZUL9QZ8WqX5^($)n#)*{Joq8hw z!(ZA+^o>;^Z{##`Jq&S2jDqf3poOSK3YF8M(MfNkB5eS!CU$-vNxaZet+?sY08^{r zPEWYl_7ZwfkE`+Ho6s0&|I557$m)`3;rs1*ilh$4hyonLEQd37u|**w3#K5 zkn5*BvO#(}03oHseJfDY&cxy9H9xutilK(yl&9AUnJ0PX1x64OC{bOB+6ijItmwh! zh+8*s+0VZqH6hyxpzz|pwxjQ*e!Ro|U&JOj9YQF|^v|R~03oAnJHO(Kpzu)nZFpm_ zb<=oskUS6Qr%P0@{ zqWWMSERJANER%-+Vn-t*21P=ep6bP1Ia+kwZD?K8W=A59!Iv=v zQ~lJNqnS-JdF>_>y8SywZxJs3mIWyxU`YMX$4}s*hf5f?_p8Hxh$C^fl)HJOVckKrM57B1#)`-1p zxF$uu#-UjGx}#_}r=E^5%*Z>yC%C<+ zzalu$4e)Ll>VlW>$zlNpkQ5}y3o+#o!n*PSSGA+8K?F~fg-anJ0J{T&ymdj^VSnO{ z_ZsVW7%;-|gO4JYvVL_otlBeYnFBXvBwL;jxuw|Dr7Hm3(r$l`cqh4tBc;z(gws4P>_TmIKtI&_~XF)wXt2 zYTPR9QWy}BSZtIXI%n4or@RLAu5X-uENF%hpqT%sB6=IVIL)gj&~r<+tSma`8k3bo z1zL2OHe1};t;}80)0;!X5TOv>U5&)lJYvnIOR5FX`8uNmG~HZmMVK0f&koBpjg-=b z)I|P`Xqo%`Y6s>OE*_|ADoJsN=L|n1Q3<`AsoE?as7-kn>*YDiZ85dj&9`*TLgoM^ z`@lbXN)b=2;pSR97e&nw$b6IwWz~}c&LS_6^8fcYIr-?Hv%pA2px5gY9jfBABpSfX#=CDq%3-v1IMTfl=f~r>luUnQ>pvo<| zmy6MyN$TT|0wB{>mc~Fo-0g{Cv#B3+S-1L^&Pkk0x2f{*rOqiph7ATWwDHGa{~JwK zydHEtbi7hIPI5nuQ_Twt&;|Rl@^{2k;$w4#5AeCJEqXHhhaNsODZ!Tq&|`IP{g&L} zUZVCN`Eod4JVIYki{dM=LTJ7mjh6CxSdO|sgo~8~MG{8Nq-N1@+=(@1RcADRq#CV| zn%l{1NAdJn&{veD74rwa#yGXu6uxb66`W_QMv4qyt_(+N93{TCFAdyJ^dcR8ZLTq&45oxm5qGGI}z;lU~RqcjbUBmev!V;K`!@RgNaKMl& zdt`L5tIN3=zhaiFsZ&7R0F7~CeM|czDwRQ+N*fbhP-w)Zr<^3LaQx0ASoh{ysaqtV zmDK1betxNHdqcCvTtIO$LPXAuDBT71I$D$i)yq~qTu%Zr0x!s}?0JYt&Uw82qG%AN z*&1A@>^*wu!;BP46hJm)4N$|Z{Eiq=qSlcm9R(7cqMrF5GOW)n)Z4yP(Em+oEhrZ9 zk86_mcg45SwZNYim-*hG+Ounl{MR^|)!`pe8;~hZrR<8vY}COCW@{SJLaN_eHiBbc z7^)G*c7_rCgk{>`712)Yvbar@P_nQ|zynrHMKu29)}!m#&VdvbN+)IyWA+*MRpj=* zW468?@Pt}-e?`8(^Dy<)GPT#i3Q+Crk}H1S(9>*nsvoji+1~h(Znpz$-Dh)Dxrff!W|zVpcq1Fs)~nNaieCtmBQu&ZM`L&QXzs`0&<$~&=6#_W&?U0QkB`hp>u zdhf+e9hEtsembeJwTCmppetrSXvzuo)mZAH6_i{*bKu_S_G{ayZ*{ewaDoiY#vaCO?z+U? z=zXBHOZq$~mmlpqf6Tg9V{~il^2|L+0J*}(B-I=Msl@zKw&q(*(d-L^#M>!b+mNj_ zW2mTVFQ52qKeo0r-N_+iXWPBx`0&EV*F?_7Ln8I5v64;Pz*c^EEb#9KUYNlwF55F4 z;8!T36zKI0EJvT{XlTni-7@K5_muxzHQBO8+HdzdhrSAB5hJYmfS`{DC`C#nyzktx zlnUB26XW%+*70(CfS6C~os^BU#6VOu+rE_5gNwd_5?658Qg)vDr9QC?G3vauAv3d@yi)2-j zIC(8Z=@|BX8PJyi0000EI8zSOm;L|*bn#(m2+KG;NFXM^u-@PXiBmOUhSRu;;+dtJl(`gT1z|gOSR)E{7v*>?`kPw zAClo3*_1Vb6i_8%Y2}eB5qqnkF<-{jQSb%-%WuyH7I-6&;(b{%ip;JD$DD}3sC0oF zNGt0khHUk`K7Nn@OaUU0q*dLLB%5<29%oO|_74=Dg0j|*8SeMYtQ?NyRqf4B{ED|g z9ds&n`?)Kn0Vc&(NDhHU&cOg(EijxXvmAZvj6kvMKUf>VsWnhE%JohM+5TlZ17s1P zub!x*b|qL8?l(*rU5ae&x}Ny)%0xSs-3LIS$P9>S1~e6T7Z?KG%trLQH*BUjp<74@ zhLQ@~{$irud@`3Es`qNf*);&3v1a?_D7+{#N@6h^i#;Q4jW)*%5>ABFhM_&AP^gh2 zHax?2b1Sja*UcccPhmC^Z&$3;f>c6yH~%XQOG+>OK8x-h20S$5Jd!=-nIj#lJhr{i z@*3`6`mDn5W*n^&`HDloOu2!?1-hrDK9g-=7hjHyk~Urb@~2%73s&Fi1?(!d$Bi52 zLPx;CZ=pfDBNbp&Enl+*un2Y{zk4%dVzDZBNe{}@`*&)(M^n5j%*}gku)NqsdFuq` zw}YVo1iRRSS4KN7T6-oMY#~|+*E&YcQG;f;St$4*~nNK)_hyU#&WyFMqLDUUICz2V!w&E`9{J~F#7 z%2oZAtP%$y0gcq|-N|M(clhf4*Ju{Qn#4T?S^a!=1RF+kmuNk@$`8xuvYbluG<=^d zhu*FCD_VfrFBy7ziH5-OSKxI3T~wL7o`U8QWSzw&t zLnFyCeL;^sBqD1MG(UCS1R03ylEm1}X(R}Lp{7%O@9X|c>NsRp*l{b2*BAZ=FMVl{ zUPW3w(>a~Q(lNlla9@-UJe}sDWI~r)SNCe-Ka`9S3pNL(@RM7(?W$)Mbcv?|(ATN~~^$P)#+p_rRqF5XbQj$V``(P`1y zSxy*C(~r1OwahrXZ?;9>ZUj1{d%nI9?`{>S#kZ$-cPVa$Vcfyl#ZL^=9n&Q=bYttOYB-7JI!@R>qn4`|7RMeqBanH8Nals zv1Ob}YoK{V^w}_~_18_?8DCB!I|Vrh#Bcvt3BN)%IIhX{58kpN?JY%D!rQ^-Rg4iR zdejj9Dz)w9Cf?wlKufH+ZNcFTJ5q2&b`*rFv~VQmMk=dk*_OjmP$2U~+c zOw>4pSD^aYxYTo>$J7z!Q7dP)`TN%C06B}R)RBvfg;AN5G2E1@F-3@HiSo;^{m_5! z_JRIn9-7Ocm8qcV-LuZ00@mK0$MV};A9*PvV6Q;G8}hj%k~ysjxh3LLTES$3(goic zCr8YG02o+@{DyY9T4nHNXAr1$3*vk#l?U=SQ!ObbL?h;?P?3~yzYchrmb(VjjGvluHJj=B;u ztw=MO6ZC5_Ev==S8t9d}Q-b_j4|u=$HtV1Vx{{{O-w4*3B?>>hSM!>a zoHkNb4EWqu#tj0twV?iALpbvE1}`KP_c1WDq40r8klLc`7C>WU!<`tzO&^ky1#=!p z6j`N8)i&20!ReU8MU#hk;hDSRkcy~f&P)xjXzLAhZby@l=7I+!H}zQW$T$5Ky{$KR z(jXIjP{%gmf}8WL&JVYQ*%dAMIgspFi9GzihTf}9sIO&lBbVjR|Nrt;w|X;jJGk;; zdPlmrFG#EyvjI~zi^Ho>c9y-GU3HD7(}&AG{ie8Vw&P`>;;Ql0?XRH5bKxeLQ7?Z* z%Kzl!cQ#8fv1!uX&4r)=0T|ysdkksEA9W0}BEeaMaMoe;}xIktKWp5nqQ zPR;rJ`Uj&wm;)Z6wFE`<>6jS|Z^7&HJ?49U^V@e^rTqZIis-W|R8BE;VQMm1;d}CE3c!0xOU;xK!L&Ed;+;}_ zV}C&NHUHY5RTGMR{ay&eo*5#GW)R}%_#P%`l%gubd^K4^XIh!&f@?;8@%9fewoJhe zRDi6N_YFI-TMPiX>-ChxWWvD%~U2`hl(rvEWJJYUi-=Y=+DpuI6cVetVb~XYY zq%z$4u}jiLPb56#m}5m`?>7jS^du@`c@XQf;o!pzIn)LXC#rke#RCj(6Y<^cgen;N>={i9ptyT+Gi&HajXsLtk@yPaLkl(b;K=DZb9Hu`&(=6xtQdY<4O?I&QM`J0bgm}S@ zbbODlo(?Y{V9>}R*PTt^00YURT%g>2ff6W#9C2IEqPKZ+wDTLWRKe$~{awGc{w#a& zDan{nJEsqeaC|qq__bZ#(XMc+40I^T5R9CwGcz>Haa^@DBty(sWsf&>JwumgSTvF9 z4;T!cl$<-AE-TW!F`}^G4t7#kM>dpjL3C;t44a6khdG8Qy_hDT1`a2uFSVGZ2dBR8 zUjS%jxfVHuVt{#O>9Z)T{EAx|ZE?%oqqlu=WI^Fl(#Wc!MR}}jqzB3XKW_d~lf4Ue z5^Unf&oeYb_y7*_5FT;C)(z>l4l`MH&&3S(4h0Z{LhL1gl>qhro_F3N61a_l$XS+)}^y_&6X#SL1I$r z5!wj93m49to|iV7LS&WeZJ;v!!hn<&p+X)50)~i;t9d3F_s8hLJ;MPKsy{)(x_&{Z z@o_F(SAQsBC}%?e4B>!d`{w zi`tcMI^4u~W;4>Cbje)v7f14sU$HFuOi|;%8-&^C*EGv%au@=7`O5gqoPf%4+_@7L zJ&e@DHN5iorWuQ6zYLsG&3q5!m}lDtf@(vbssu75^yG1~rY~!9(3!%t$qXG`2C#!f z%zChG52qvsody(_Sc<+D%J1k(c8r@WMR3UK_9+ba&6O+%ocjrxM{F|11AK5VN_SV1 zddV@}yV|@_M494Rb06Y@N=d(M6a!g^Xwq&vz6KtT#8K|mr&pNrUiS;JK*EQAucPpIW3Z?6KjFuvHtc2;N zk6r7tW7uykS4+K?j6;%aGnYTxsNz%q=Psa7x>q;(lYL{vb=QhqJ6lDfof#umDDokL;Hp z$o6Jk#(D~LE>jmE==<#7MFT?gH&=HP8a673o|2d*9f(u9Q<)$b(Wn4^uNh+;;@fBY2XBx$824_}=q4^+Dg^Ws(Q( z+y)%UA=KK&n*~Fznv~ZN&DvQEL3|PpJjhPiU5ckJ{S=0{F7ns^{a8e$fgQ+Ya)@G= z{cE1Rtb|hE{vS*WmIbQen!=1Y@3Y!l(8>2DusuNxq~C~OF+j-?#Ld`3|6H4W0j1&k zFh!lm89cko7PD~eaJ{QMlk{)W9g?W!A&@|;?ca1K#Fy3AkP27$b8 zQ5ts1#ID8`@LAcFU8R&};p4W1Z_WUB@1G?u;6Ht?c|y!5tfZ0%6z4YYO+<9Vl(Xz~ zwlKUSe)<`!%1>W?R>UJjf$OXB0EnLUuPo#T@jXN(4LaS!fTvY0@=bRNx1*K_RVR+| zW>04eb+XYkX1hL*kwvam2`cIL4u0qI-iEoFxH~223JQkDGEZ${+8}qGcjq6Y=ex|= zt=t-q3F6^>UZsCboVrC>PIGSw`-~2^I&_$F?~8a8HekroLQoRfXv+s+5G(cU$iUJ( ze)|4E!E$kRH*RqQfX!B(nl%H0-XCoyVI_+s3eTP4WeMa6d3%bCK-~8p&H|13)clt> zH7XF5;BlgAnzth%J#Nx+-^bvPa#h6(sN{D~X)+jUe4o`i0sHXyI@l#dC->B{7Zoxv zVN5fi1(dLo0Cpp5<&+ZtFZL)A3+Wt}P{vX9kLWxPJIqL|sioij5$)f1E8*kp{avk> zM`3U?=mMG|kx7MAJuzIFz8oI!ZU4xBtnm zA;Z7f9N9{8t}iX+)-pJEe4@#dkkuO?7}Td$bA2PKdRchlViKIu4)tkrv-B3Q3;lOR zbBNi;n3+&wlr9zMqK8C7iRN!k=`%e0h){(ytkp5*L@74?u$HOv`-T>p=b>E!{X2g- zYW`^#jtHv8orHgXC5G;s^av#+F-yu@?7@@ukqx{V)W+!}4p{Wv?J6XJG2E)M>BNg@m+=y2P(yVT|G9GUQ^tg|&ga z0(Krh|5fjS#zd%{=gL*VPKHY6HSAEtnV|>(1GN);4j>(%^*x}Bhe3^~l{t$QG-aL| zEe}23`EzLlV0$+0e>RaQtAva%xNf8e!PDgBs?ecUhnvkO;BWvFrs39($xW|x^`G2r zNP%93I7tj)QA?jl@W1&@zs|I%_uhzA%0POA$UJU@@3IJ=8k$J;2ZqvTvVUh@JeO9X zZt(SSgi<57|6ht)oY2H6m{HUw1nkdYo-Fz}QiJwALZuPdFo51`J5YM6cmV*Tbjmj) z^ld>{MFUDql1WW)K2BJG?GsRwkRSYa4&yj{5CmxP&g}^gnf!YRs&jcEpF^iIt+Yq_ zy+n*8y#1Kh3Yv=5&vK@T%WTganE&_z(8yvZwqRQKKQ0O1B6ej>T7iH zKn(NK0>`5+HrmbaJv$;r0}sV#je}zK08|SbM$)KWJCSY%nryy7GNhmQA@Pqy0?G!e zbJidlA6F~udLeLE$E!cIGUb(4D9ZhP($~t|5X$)lDgpG@AQeBWm!X_$ebVx#;lm@# zK4Cf~YLY3|EU|a5Q>X@;M-rD3?Z8&-?ORf#r?2ST0`Tb<-gi;pQcMJ}Wr7pjR_^ypnN4H)i{uwHhrV^NLT&-g2Clx zelz?`sjMV@Ryw1^)XI1@YllTU!yuT1^29vEIOJFMEphG$r}IaK8SZ(WM$_Uw2>S%) zJ7A#~NeGl2!B_cAnB~DQI}l~m*gC(US%4!p z%-%lsDGGt}aOZ9bonfyn%sZni9sVZIEW4n*w;Yfko!EM1=jCB(;{5$@ql}qFNdv<^ z^om;>Dt52Dr?Gd3G31M#t^J3(iEZ%U0(ngxg5tWfx9E(yK~$hy{aQCZn7Q_(M97CP zykI9(hFs`L<#?Pg%$ZnX#CFa81{cdp5%6ZDWH-{yDn0pwkUyvi&|D)FU?O(f#{sc9 zQxFs%8Gx+=EuZ|Hzem~ZlawHfaM~s^=_bYk4MvdsoW;A%iD|mQjb@+9_r*6`wblNP z?k!&weojQmB!}a=a$+-d zj3IP_mIcyRDozZ5IKpYZQ=r{*9~ZDL)s7zGb|NMZ4BYn2k$*?&1Mo`N$@$k}weLl3 z^^~2)%>&_e@E^j>QiXX{>Y^ZPty#WmA*SnZdnlNC1c#t03*Ejuy=%cc*CC-!bw0XO zAHBM7YUTQfy2LWr4B=*TVKb~{Id{gPV|@waF2Y!1xqjK^Wx+hkMmnCY1~vs0aNb9 zXSHMf+hSe@$KT7-hqG$4m|S!wLZaXyne?m7OwP2WsqP=8`-f!j;MyMMD3J>ppA8tz zu!58qYQsT*Ml>Xj=3e1UMwHqjhO6?-$HX$IeC?FYW)L0)|Kmnxr#;1;jak5E({?&c(sWI4a3K$}8!j$zRLjQtMpBCVeD1~QRBBz2I2Yv^h0_fD9zWqt z6jD&+v2X*yjX0m-o%Qm{>u&50rxgYGDLNpU2puk^@uq_J|3KYawlyx8M}yf|idprp zKN%h!mR%=(Dec~o-xZdzy;Nd(E7ZOXe}tQ;1xI(iEq?yMrPsBHy&M@R?br^z)Cp~K zfRiUaNO2r_hx9uFTTG`w00009r#wlk+icFn*lYA!rjjkK2rdSs4Q8P|fs7u?X?~f> z*vbElBp@?N?zl?}3zTvc-f~CGiyN%%>um#gEX9Bdc$9|^Nu&U!3z*=`^XAEUx3zZ2 zYNx@D?4rUkm9Wz^B`77=bg6QMLG@Z7fpvfFzVPriu%Kh*BvD^mQOE>|xaxEN8-N0a z!A@R$LQo-MyBQ1=1*8)p0j_OBFT9w(58bc2eNI)y8-rEvK*Q})FiGWi+1F)$)}2*- z6y%lX@yDtSiNpz49N;m@8075=S@%zrqj7Ek&G#wyvljA88oNLU1(2v4_0ph&$?tdS zqPdkw(-nM+pFNd-H$;c7frSKpHq$FiO|XuFb8w_bT@qAg{L%OAgeyY2mEYRAL#;A|~Q6q0GP;jzQ(WhASki~|@G%c0fMR4I4G+p1 z1SlH3KlS<3Fd3d0s-c4~+p;9Vde$Cnx@^T<)BpI{6>Tr3=Das12tw0yiC}_fK>;%v zNQ-j%_#+EaqEH}s{-c&W@+_XQYuT$>NikZeT0ep?GN8zQ_HHW%cK>bradj~jqRQ73 zH*-o;)tZ#hAern#P|E$WPP6&H4^vOMyp=c$Is3 zxg_pUZds{^p+p_Y#43ZB^ovTfAxS)K&K!V#tETtGWkcweA`#5$iSPu8^#Bpto@QjO zdw%@h#&dp5eK+9 z8#JLI{2RI4#+*~tvTBmq>E8AY@PwU5H@h z-F3=nEqp#kjsTTNRg_Nm78Ts%h9G-1z)9p1;x5qvMQeY}=JRj!O<|iP(an)nv}s)` zhtzG{>KHx>)93y#(*XpR&tQHn2px47d5I@fp)ZhAW zk>%VjUkHTyK}6|kA%w-Kkq4W7p7YGp2WAC`K2fk8*FK2_i2kukw&JqR{iolTF)&518ES4$8BiX$uJZ(_+_2IpMHL&H~CiV>>`;r!OcyBC3wZ>akUwN#1w)q82({gCn}w#;w39m z*X7AwP{1~Og!s%+-tzdf53M77%t5n9VXa?cW&GggOtT#-b`AlXZvL86K3PqLl#2n% z!~;yDE@f0a>~}`BDafF|mbt@l@_}UfFnna5u+BLXn$-ioOPyKhnUXR%$~~j#z@Yi& zcYZZAhzqC1t~`B)4q##Cz69fFir%HDlY|X>EV?$@)xoW2Ki@jp9{V?YO*b<$9Ackk z#y9-So+-&T7eIA9($IATKW4&uv=Grz!}@}_m{dfnC*}cidEqAUbLFM;xMFmDPum^Z zx!7w{@zEk4qJo(F4V#OGn%+@>o#^SEU0fIktt)u#7O|(jGLNcOWm+8l%caWrTA03Y zq26GmxkvF44?sEaUJmPo-!cp!P3tseO9h+4J?gZcr26*OLawp!yTN}N&xgvNuvXbJ zs)#G=qv-BY;wZJ|qhJHX?XS2P{nVA9Xq-o{_qaNg3d|f1OQvnTIL)Ym@+T`K0v|0w4Ge#05PkHhcVE1R8o|CPcs$gUQ(9=<9P|**v#uwbPaTl@>l~w+`9naSZRuEe-foXQ$EFzb+DfnH#v)n=p$23#0AzGUi zL?sb{3o~)~uZe(gDrUmzSz*ZZZdUDVpMdTrU#g4B7d-O*U^vA9bPu&$S}@`JIq>V` z2F-lX&}-PQo}=w$T41nyPe~mQn#y4=${%U9{pYKxAShZVGf?$qYxy=ma+mF+YsYe0 zb1UYQo06Y2RuDTqbOrdkFuYdED+rx!FT|g{@n07y;VKkP2iDS%Qttq}Y7s_Ppa2^t z(K%x+WafkvI$Z;Wxiu#TJT5e72{#a~hJ9{}N=r%+f4^kl+eDCbhxEIPM$(1>0{*KtkI z(m0=cHkY0C*x56Z)qzmYq`(`Q$W}u{+bfq;oCo~+>SR`rm+4SzX{JhpSPqB{yl|z@ z>D2CbsDhNXw~6*M_;NR=O1R%-lV$+f%2!E+x?*A{zhN zDi@m!=mBXc-!tWhGT`B^#0Fu9AXUrmDAmHCdCA#nINm%QF&t*)wgOW=bug@pgz>FS zeNF1(?XO~`)#@-v67prLLYsv8cQuD%IOt#Ow#;L?db-tjG}^7ag_8pv-=lx>S%_9* z+}P${s@&bZnNfoW&Ys87W6jfi{m^R(S?`W=Ug*x(qwin!@$BBeO}^(10cq1F(|+|c zV4XUlejw<)dMxVOYG?UA!0i{~JqSXJ>4+K87x?0QyIIHEb3}0nekN@hUdh#vB@z=5 z(IcbPHcGPto*wxx9pzCo?)#?1*o1XA^rCEuuXkvh{?$zeu3AbRLL^4NThMO>8k3z` z6OP!ulwny}-K~4)-bmp6q?hZPeAyd6>MAlcZx~#!9T(bMNvy&cgch$6?YDNX5Vg=u zm;^_iqH!%7cskC-&@TF?Av^xn+U;&mIcMiglB+^>{@e)n5dw$h^}7Iw23 zTwQ$xI1<~SahyNYEMi&evh`ZB?(B1Z2tbBS&=2)n;Ob&W^$&r_@LIqiJjfUbK?|85_u!tN92I z#u8^wM=&xceK4-c;S8zZ&6J_-Mf`|n^qI>{bx-{t2$OQbj6>CSAh}Y@Ya=J>mo?pdBnhGkPbo{i(>eH$^4xwPr=;zi=fGr( zwK6cFiSr&;#>fyuh*V312!7z$?d;1-P}2e<5)Y`uXg663-!6tna&%_~7~xQ2dzepX zL{BJ*!@C0?QVhv}fLN>4z-semd+x$Wbml7Qk*z-beHsLjTB7LJe?u*1`w{NUg5B}v z&{3KOYfbCOjr2TM>+1@D&HfyDHG!^0c6ACj=Puu9>h;c&-8Ev^7qof$(M8ly0T0*v zW~J}pFBP+_=y`GNM$ z1gE8S)#I-4V;ZJB=3{Mu`u2Fmla;)N?>gV-cT0EIik^FOWO2H<*=-v1|3;DCRPnn> zbs;%y6x1x@Oyo3?1kPZqeW-vI5l){$`*qJazGuH6GMoAV^WCduZ1X+q?=5m4RyvxK zTPQRaL933A+1vY3HUfKcM;)c!&bH`r5>VCsux>2qgf*=Op+5_Me5tDPU5feeK%xBF#w;$mlgQ%1x|208ZOrPX zC=@m{S!u+Bz}(m9m5F#5^;Q#9LKb`LNjgTrJBY2|$G{Q{M!|A*s4+W~3Bd-ST@?0Z z{UoWN=Rpy`iA4^Gy?hbXYfTAzP|~83yRsg?(v|i$XMtKAff6JxG@D6fvb~^eZA%U# z))Bt|!hDBbs$ek^&UEKzt(`#5W+sE8Q`jEWc1y-cgk^?#4URQFh2HNRS))1TG!EMY zwYLDgHdPiPf%P<%HMb3_pA2NmE)-n@6zzk!CAS9zle*bldv< z35ns|D`d8mPy>@q7EYk`m4@_iUr6vn#3>q!cm^!5gZjgmATQ!SDbinFwZrn|0h<+5 zq5k9)dv;Nd@ttG}S<}bVvM1<*pmLg}1Na(_CnGJdg)uHrG2 z0P~uFFHJ!zHM)8XnmCn>5T2fML<1N0u0C^x>it1gVaqq~p-Zjju-^JW*&-5oay-*W z1e~x+rDJSLdrR&2&dREW*)^~PevyupL3eDLrUd^F=tQ7RdWt3GjWdOQUU2Lcij@G0 zV6Zbq_x)fX6n1Z`SJz3Fcso&@z1cA8jm9qJ7L=K0*_%y-)bmvduv%`A3+tolI?SIq zhw7!Rr@n?5fY?YK;S(Ap?C4bhVTM&PenDUjb@jXKp%R_ESo@H&%i|VBh4hZ5gVeYc zq%B?=CbJnS*9Guy%E4`V7##nQViPP`s9EWo>lb%*;p)mUPvYlf3b_;^WwDfulLPs$ z=w)b+W@Jo6s#ud8h7h*V^3|AB7I^`SuSYX4R^RFiR0OtiBW~>MnxMTzPEa$NIjbL1 z66?E2pPWVuZYsZG_jho8>+Zch*Ff3T*nJ^mZ4`nZ9dyAB`wgshzEira^ju-FwSXbk ze=ZM7;>+;%t*{USVn-v!7q-!m*>l)mXKmI#5zo|d9WxO8wacae)cL5cZASCs+CKZ8 z^Kg3wLpcb%UFa{7-v>ds_bByeBM)P!N9&b1#mzg52P6QYa^;otP8cw&ct_n}XNBGE zxs?eSMnHzRIrq^#gr1`^-4aG3%u$s(CeehQ_QVV^DIrTCS^?6p{4hnug*MV&K#2N? zHEHa)Dq=!QxeH@D{)w|TMEjJ>bk5*30Z{IKQ5xOi@$8hCSb_X2KMr^*6rI<=UB5^M zdbsqmMVe6S>=hguaeU1@paKv-*<0lC#L&#)EOQ;isj7*(I}tf8@P2}G^ON8g;#bYW zGh%D&JP_ehImgRn9k2^KS0nY}^~4}^+_yd~h#C{T3aI`bbT{Yf$Md_9`0-wAqO|*; z_BxyPVh7YXzwx--rP3FLdX5#%^Iv3pLSN9`3pDTls>)>n>I}=;R^MT@3HNftyC@ub zA>7hB6|*9E(NOWsKh0mujP_;XQM8#uq#|2TsZ9Xxwkc7 z$72zzNhgr7dS#q@O|f_Gr%I?bEYn*6V+WoZkVt=+DD1|XUCS!b6iDrrcy6-Rzh%Ub zA{|{Z^)PR*6K#%Jl}wF}>7c*#^KK?WtSi*}3Hx~uDn`_tclFFb#ph1~MiZczVMm#a z=Th^*cY(B9@=-%o_2D*R9ZBz-lYqgZ4=n5bhuOn3C>5u;WooKUbo*U3BL&^FbTml? ztqGdt?@X}%S?rSJx0myOK`%tePfszWO7{&<1 zB{Mnsa`IYMb4^D#YcM6cD}Tjx(9t^S!?xNJ;BX=H>Zdm!PBG&6^jlz=U`a5{(UqQ! zsVpfk3m*7#4%mjxZI+|Kle7wWCeR-=g0X1!dPIk+g*XN+ptPx$J{2-VuNUji9MY@} z9ikTtd&9n^f85|M2Fi_UE8RJhpnNN{2HL4oa&E_qxO*i>3|uojsGMvR98EGl{&D60x|ks^q~!r_^f^fz8V+9%e?&@%Gd3yX+>7`J-i{Vbx%RIzKZB+Co=7)>mv~`b^Ll1*Ih0HKawF9z6>+26#s~fZT2&LLf3q#$3}CIntcbx3AW2Y z(fXX^ad~!d%0lF9p2n53A~~0Mb5qxEYBR3ct_gH++9nol#0CG=@6l$aXb|mgS&~2# z@_?>23SJYmUurJtUKGk~JPY;hrGO0o6pdL%4OF*@QTMjONTj&UlV>4l@xm5`C5`^Y zh-XaHuHf*#-fy`oRl=)(Zlh{;1Y(@MV7KyWKF3qU3MN~7=IBrN#$1K-c|$zE6sy9Xqp-wF%eqUhmXWFNQRQxX&S z;^Ze4DU5lS!iEuKB;aIhFFswKPcLvBknwbXv+=;EjNT68ABxqla1cWF=$dd&j=|)- z7KQ8%zvk`XF-=8;!j4Wj)?Y)aOPsH5@gPgMQ1;LeMG{ z#YtUcDx&)gs={Iet_%RIyp$67*zB#F8@l?SDJdpEi%ES+Yf)UQng#OhiU?cFsobqK zs@$ZZRu%U3ce$rD~$6h?EeDo0$QjyA$W~9`t(3B)%KU)vulU9&*B1lpr_bVxQNXY zM%Oep9(v-bWU=j%s_J(JSy#GH^eb%f_;ziJCA2fSgKyesc2>Zv^4-L#qo)xnjPK8k z8}lD{r3{q~C%-oLikD$uTlKX<^I-w+<=g-Y{C4^RB*@j)Cg2a^-eT+&TR1~-FfPmg znZhr`al{N_>{$_3!eRodfkS0=4q*n+V?HczvtYA)O)>xtI7>m*aFKO~k-KAK$q9ES5j;qb@)G_iw@x{!eH>?YDXRDDenPo* zH}xs}Axr1<80a6QQhy);!>&h0q`dUn1HQjhBp_CER=X)}L3}f^c z;%T3G3Gf@acXSVDK`hbHTAdQ$caBF`ZB+wJLjW&FHcG-3^59*Q$QBgxFZE6wI8Psl zE4uS2+?XWM_GX!IEFhY%Rc>Ynu1l;E2o`VOlJHZz{N+`Jhbb_S*Yy1KFCsPOkMD0M z|D44d><*dV737<~gNiky+awpojXZFZ6X?Q%a4&7w=e39k?x#q*H3u@xmRC?|i5>Bh zlrleo@GY}P5ONzjCQnnB;xQ@t^$vbbLi3KiahfKKYN^0G0RCyZLRb!A1OS^|_^MJl znCEyTJb&m)bvT3rQ)OX?fg=ZqoG;OE%jHGO9>&uKiltvZTiuPI<+Hfd&M$*R$1sO$XOW0O5i=6J!ok@ z`1n~b9}^|&FO6;Fe31x?cz~w~sK!Gzo$IBrO7x&Tr`7ss_7A%v2Tn*()e_OOA2T@p zcrK_f9~)?PXJ742A!?a9W(5H9jS*LlKpHYtf_^>P>8^EO4X4$Gh%gL(%e+7BIqzjg zZV)I+G7P?=hHz28+^G5o34288Sp&TO)ra)pvNrp1|yK5=sevLgyZWY^tmhk z4-!0W;pZ;;g4EFk-j5>YVOj$2=N}I9?hcbQ;>Dc?%JLaFO&SSVSPMYX1OU|b0#Zh20q#it8+ZHSXs#vz21nYo6)c)T2+@ZALqID(hy-Y@AjPJngSoT7qpoJVvp?-Y; z06p=bPsnE-oXN;KC-mWYPv8Im00006e%Eo2Hu>%>pM zR8q_mDe(%W^cb2yDhi$1k}TM`gUDM|3c-Pz*n)7QWtxv$@_RK$zsa-*OcHhSgH%m2 zd*d~+YFKrgpm%_SG3KSdK}!~hJ%1afNKP0Xnwy$(fT*u? zn|=}$v=XwWlY`rtN~KT!Nu!Xjrj3FX&+$RhJM)8NAAnzEkGL~kT3Y9wjkJ+s0sgjs zq#|It*gpGA2zMtANiQpP2xjk;f=^}m?$BRVYau2%-_adQ%dsU9hJ@uBT6U>u$dFkW zYCjT(j5l>AdpC1>oC{CPIa)9NA|FA5L(Hw8LB}q?g7Zr6=A=(@1VCXpW&1>)6$_jAa`>)Ki8=g>>3OLRnY*T&ih~qLsJI z{af06@?CQ9tgofXXSi#U6Hlhj`$b7%tdTCaET&2))EJIrac2P;OhT#!sSgF~&u~ve z9{7}2#9T|!d7ObYVfwHN`;wXa!>UBem&%L)0Sii+772?Pqfu!uITAIW<`c1k-=~mo;CPBm5*V!=8@ib_YFU}^0hQ}NnH*rR{{qO) z3t26ZJQqYOLJ&{pZ))@XcP?SXFbaa!EAt=*)8Gum0TY%B&s@`Ijbc--Vn9z+#m5i>MGWAbHtOB} ze`}v0R#)Ag(6{Y-2v$q^%$ws|bYBRn?J73<{gT)Bg0wUpWK(eWYFjT^1A&+za}MlK zAV9tJeE*+e1}r2}4{VvfvXFN-(eALAkz^17vG{35ZMT}hd1Db zx$a7EH1Oz0dJG8DTQ1n2onA>DMn?M!Zy@8a=5>ZVWQPJ za`=fO88MD-AC$NBqi6qqt0zrbaQ-l$iA#f!616|nj1zfWrwI zJ8|}St^Gk^9?jh0`LsLsVAlwGgOi!i!_tPn?SlJZKkkjKFdZ^}*&<`KS+R_%=9V%y z>EapXFoo_hhg2kz%`7QfutHbF`fLT`T__oZL8^HNwi8Bxu(aGJA0sy;dwBby>vI(D zzwPTB%{MNyxdR&VV$6t~hJ9qmt@>gb<5PQK^z$)Fk{H(j%`_1ZAr(4pz(`lTgeN+G z@sHe@4Ha21@bP|@62^7B=>ux>>3NvOQ(o0aIEtCj_)G$U)c2`3)2?q`FDH_YoQSq(`N95Q^0gv1$=fm_9#4buq00sGn-P;Rm5e1LPG>>q&-iM)r>tGH z4TgJ%Iu7|!^z(Y(RT&cX{KB-A5TXQ7JJ0xAH=tieBM7@HNMl-9G)J z7^X;ZM_UmvA+(jaK))^0OjbD~8wMR)?=@am_B-2_tr0xzW|@D)G*kzZ!P(HQ3Dyvg zjx(qRVbZ6Hm$F^7^xQRW0``s_HvaS#(7k+0DZpL^veb&_B$R9*EsHAeEO?+a-0uKj zbgUk18p1HoLwECd-H8VHgoYA~^jc8>eJwV? z7ubU_Rn6z;xDToEHhG@FqQKASctwz1chpPQPmIkieCPTGs(?dUfz#Lkt64nPTLNAmFy^uS1S{ojP1B5bo_=u|4%G_%* zvLPj$WekvSlgI3>58x_XJhb+E-qkQ=Dhq6as*T@Dac1*W2i5;NILn+74?f`Qz=G#I zyk5Vben6CywX}__C|%@K4L$`Sy_KgB>I~ZVfF7ZJLLn!9ZXN5Ft6tP?S#WrExF+*} z16o&W(0XDR=s&KpqGp)9MiD0XY4YL8zD?KzB>bCN+N;}#S~O~X6Q!%H<9k(h15hb9h;&JR z&eLnLvCNw$dxXu3M>Bypua>vyOs{ZmQg$w94}o@1_#xsRvwVQYBk zdl!)UNQb)d4f;F1J;E6T_o)}w{lUGWJ%){w~tfr7^cncUx;ucXpuS{%YOZT=Dp z1EsRloj|xhbjv90m8MiQpn`yGq({c=x9ae2oPs%jE|3s&GAdWdCy0OE0sUud=~J4u;%crzFd?X1XdOs=eW~Y z^N444auSOVmtNl`5ZTUnYyRO3u(H)e&!5}|fy_}%XAtSTUO3b|8t?WvzkXc1w|Ns7 zps;lP5rNugr(R85_3=BuZQZ+fFbG$?u&_)gYofXQfGo(O%YsZM*_E&=)@G+q`}JZ8 zx7jVoX_ym!$#+Qx6Ra4Rm<*P4SimE44+R%&oOY>Y#^>FA7)sEtE~*ttZ6os45{-1a z^Y7sD!@CeuJ-z(0QW+KIbg$iqw8GgT$}UjEFfs?Yj<6TPxj)^g5Rn{FIs9&do)G(r z&GvBC)dRjKKW5+S5o+PhIvM+Fc8lo^EOWvGEurOCC{Wb$0r6Yq>Ba~IzaCy?hZO_V z{M(V`ozl7&s!73l8ns!BZyp#?0ySqX1s(MX#uZ4Jdqh*J&m_GF&&X>_j;C^Qg-&I7 z#vw45-m|t620~v$1Df9K9+e0Y+N$}3X4nF~|Kg)J^y4aRihLlAzLEf1hOa9G&oUT%uW(uohHy9#2F%t7X z0X5H+)c$1})7=G78a{m6#fZ0%3d+U2m^ zXfGM8B&=kS66)bm`FWl@PYI7IXgz`7ptTUuPv7k1*^>TDn}Cb%PxsIki&U^yxWf)= zANG_-Oz@2HDG0B+VL&}H2WpKq#&d6wjFbX*t!0A>I-pnN`3m_=^-iIC4k5)}7UO){ z#l^>GKXBOSt0YUJ%;t}`i|#oUiI63l0Mk5XzG^n@we?gVB~<25wd^D;@oJaDe}iVG zauu6JyE(}xBA~A0mD}Zeh$rI4^OAt>7zB$BU|?hf?*0F;bN=@)7*$ZN&Za3t2Qt}0 z)=~Te1VAQpEo8Cp8);9kE9{XMj?dB?`3dt%5wt-w{y-;Rn+qf_U{B&|h{hV_WgDq> zU3gp1@=CpNX}fREt|)Wtz2a|8CgJqD<)PSq>1zn1jZ)Xs7E1{E2Pl~Vc_u$&L4wZ| z-;O~JX>^Mi0)M;+L^tm7t`_rIuP$p-TbPL(JM&Es?(@(GFsYpB19`*gwe4MXHYO{~ zrs7Hr_;_n$GQ6bm3y2>QU^g*e9Jc^fR^85j?r!w%qo4+1*NVqB+Xl38qj0#TbX^N4 z#0E>@VD5R8zL%0>@p}{|tyvW>AYWgbop0hR87^^k*VIrxWCO)Kyu+VhBtYjFP_i-EJap8S;;KCHn5%oy|cV;zS_-!<`G!L*>Fq) zltz*%yp{)zlf3ln`TNTp=Nvdq!vDM{i$@sMBM>YN+%WLiVzX5YVxE2sb)V*K2g#^F zS8+04*&TLGl;8j)1EE;oGtC>;Jx%A@l5Vv zUKyP>P=(JOqfNyHHbFLSi-U`}1y||`W2%zQm@N?z;D0+~_WGnjkAfkuB345m(noa* zgVqjnchgTU)|rpI@5hBW*95QEWW;iViChROTXaqMEv<8<>o>a?Pjhb5pWw{u8)lld z>q5bLCaxJPaB=X$?=ZUYUwFrvttU^x7-ge1oiG`;I}KKt`hUs|egjD0^O8Nbd)lI< z3@G{#>pr14Rf7>))fm)aLX;ue0_Qgxk7VPqK?oo@U@z4kZ7#vy2A+eRJ&exjk{r(F zEq_A^YWkrLy+<05cSA&b#C}9v5`k}S0SK%{c5m5Fg2cEySy3!oW5;Q24OeFa)d!RT zgd;aGTI<{P1vl*`1{?S3YUi3waweNR00O>zq+;TaQY`nz%MoyW)XN!h zrdSsEXE#H+AzOWc=1!#(X}gTzP#lcX3@$C**voMeYSOXCsatXy5obzT=5$SkAf@CH zLBew3D++5Q(Wt~CLac(r8q$GWE^Meb8ouIOo5&O`mT5tI@+ zRvlwxR;8Frkk*o_31r&W#lvxU{k<*sWyj1=El;hZlp+q#6YLu|NS5RqIcRzZ1Yab6 zM}X=%CGK@xpF>H2+@_C|u4EfyB#-(M2nUTZ1yn`3e@N!c3e6 zoKS2lR_J*ViI70s@tx8Ja_*t817V*uj#g!|S3@2({U@E)JOvJP37&_Vc+GcukaRzVpmUeAR|}clLtD>MVR_xk>XumK>dd zVxJZg8$Ys&JR%B-wb)xQ92qMRe1mK80|NU@Kp^^g9-vkA46j|&b>Q4^hjjf~Fs2fp z)Jdh~liZ^>3{0MbV>(QIqox~DJcvQfOOvJt4-jJWVHFOwZ+CBxEG-MJgiLR_nR}ju z2?o9Ue}EFz@YKvX%H6z_C?Uz9T{huhZEM@AL5IB9$==a!U&V%CpTAjiM{Hdy7o;UQPi&4cdAr ze6}6%Z*AcqVJHlA%ua_$by>R84yGg}EPuB|L54*JmJickNim~XO!B zlVT;Rj!u3&73W&cBJ1&{ZGhj7txQ%uN)^rlIP2On&OK@zlNvb;t7tNa4>_MIyM>rL zx5WOtjZc(C`>R_C0I!oiRg5r}gm5_cga9{NzNREZE)moZ?@kxT+2UfWc6M>6HKG}XN#`XWY|5-YgFLfvnA7z*K>i0BxoTrf5L zL?$guSra1$9vqndiWzI4>#4cRH6f>xjNh<;PCDN4c^d5Xa9G9gty2@P^>$sXaX{zQ zEg4Ws(fcV^6Tcs75mEs!dfe>n|})G$La_ z*_pDau;v*@X{MvFRFPE^zT{{|(A%c!of)>&qrbxqfT0AM3&^g^P7BCDRyiaWqXHBD zwoP^E#R4VpF9@Nw=WTo-DZWQN=(0N8uE>v287 zj`soJxy<*sj|U{CZP7*9`bGc8tIPWZ!*fvOoP~fDD)&H&b9z~tdj3cr-P(8fZg_^S zqW!RZ?_gRiAVvqSIA)%@aY%f!MD`WBtG36y2L(vEK4v`+Y#^0o&Zg}_iinsygRj8S zXOgcV8)4M^fD>C8^YlLFpZw0~9RY41%YJZ9PRS9EcL=AdgWN2_*r>99;$8Zzim&_7&+qW= zu1g}~J|!7BPMRd22b9_Vf3TMHLk5O6qvy;xR1L#g!n_I05|#~W9TATKVbLl%GE5&= zXqAOJW&k0HF`$`&2l=27ca6X!226)BTRxE3WOlMWKfmSCQV=p z_KB5-GnLXPD=?ZVViL$e$og1^vXn@$76#aZIIceYtJ6}t{oh~J3Dhc;e7UYu`H}5J zaVN4?QQD*i6PuTbTMC4(w$C9qJh&xe9P|z{Lg>(;;x&f>MSOCL_8%%wU(7!YLx!56 zVgTXZ(=@|3v^nuiiqgMLr*YVN{b$cKOvDfiO-`}eYJ^pxb|y2A!AXS%UABk1Ybo2R zh{Sv9#8ixM000UJ@?*vU9UfW>|5540H+DK3Uvc2*mO&!lrdSh{ykpI1$8~l3`ku|h9Kn1yS&v;*^WX+L33a`W3$!9(< z!vz_GFTT{EvX9`#(@Mn*opGE%xK>wY;UV@akzT8j2Xe$)9{|1vB<(H~?;O~)vNXxz zGpH0vWoHs5P>x?klO7RhmyGG0h#FP|$mAgAMqufrSna3t10@oE${&9W_JMi?ZFc*q z?w)pg%a;p|&YxCrrf%Tw6a0ue2Q z=}BVY^j1ln7?JUH1WxPF_+2X*jSdEQ)3AM-Y9P67djHx*H7qf)2)S%z&iVk2^0Vt7 zWa17&6TxCQ8=Mc0ekm56fwTrESfqBtP=y^mPJq=skb27O!4EaC@(UFEk$_hcCCuSOPg=XEa+#8!9zjnWr^IYh_q7C{ zD_Ne2r{9vABX1_-T$Ru=6#-yiTFGpQ-{SDqpuk*(WVmb=UNO+RB8y+IE*gBbP~Q&~ z-EJxTFud(07)TIJ!ExC_u z0%bLYmFr-LT!n~54Swzk*S{&5<4`KPHKt`571#H%aNP~~3Q;ux00Z$vlqj3rK|$sP zx`<;E^$e{A362y^b(l9wa2tod$P4z#KKvw0$p_mP1zHfwq;l?-%ljbHOdXq*=9I@b z(1;X00%!>GkqJOPZyYn-ct}v7yx=-XG2c)uAh?R7PR&dM;!i!4&Zkj^uuIAmUa+DN z2FsO-bS#4Urcabt>ZLdLX?`&`KE0kCZ23ejU>s2?wmjjWKH)|NRWii^XtE;u9mcUK zN<#V@b_@sZ*foh;RvupmyPkW!-W3NhRGqVZivA`Tgu6q!5_?*Tc3o!5ii`Y<+=+Vm zZ6V>z`Yh*bC-&RN+4u;)h39x>f}aN6j%C3LX!BAAzC?(@QVbOU03Pge;PW;~X{6kg zLQNhfk%NiE)xgJF?31cO12#8{POnC&fT`1}iOUS+iG}%0k!Yf8)Rb<=Rkv61o zp)*W}U{q`{N^I;2gQ}sVouki!WoP`eWz$1EsW@uNvTGE<4_;zV9@yrl z#6+g)P}m^!vh5!LfgtTfygg;{hhA)K-*{!p!6?VTy3u&R7VNF(%0&WK82icYBj%hMiuGImIxavv!-(dG}h zWUhM4DFORUB?;9p#M-SyrV!DecaJd(6m}mg8N+L| z%XtwZ>1Mv=ScC^Z1A~GIYI|3IT(uZ54vK&2r`X%r6+S*iBKTSSMW8a#^5o2!rRoYM zF*!bht<~!y(dnE~O1QbNQd#g!mMu&x&!`${l#6gY%m34XiA24k?c zLJ)Yhhi=nOxX|?aDzRTeOL$RA##aP{-(V!s9Ou;7b9?Fj800uB#8?z}sV)z4Za;aUF=lH7y3dD>L9Pvc0G3+w=8rIV zo(a>G*&}@CB9;zb;P}UPi>yS$TWEEu z-l}WN!=@1ZovIL{p|CTCz^42EzF}c94kY z&0#4BW{YxCY}0Ry1}p25dpq9yF#oh2u3R9fr1i(I^ZPj8%p6IB^^Z{?2~Pxm2p;;( zem4bFUm#vc7bZrbL9_xYMM%jKQ%j%B(TSrmpxnoFh2JLb`E1^=FW+bcE~ z=JU|i^HqptQf?O;VfWIIlz1l^9vtJx9wR&FUI2u)Lch${EKuHBc!#nb9|tz>kRbSo z2`zp=x zfUO7E6C5_k4fuw>=c%+I`+%IG;ikiqM&V)K_jDO=K2m!`^L&g$%?r};Usft_KX-F2 z^($U@p?I^M1-q9R01hm1uY{=_a=2YJXBfJDps%ED(9I_cSMQk&j7_X}xRilip**1A1M^nzttj=nKyr8{{8#C(tHmCbgrw+T0iF@ z2?n2FYN9`X!zQo1j~U+mwd zxtIC@Q&Nm=(-qb!NBY?Y0gV82u|8Pmtt}t!uy8QO6O8th?t6Lr#sqmtV zgFGIl$&xN$W&sZc$!HHOz_DDIQ3bvyAB$2qQ=|mQ=l=#GJO9DLUf!5Vv$vx))M^i^ zW*+BC2z_{`C!g8aASzT_%?Qe z^n+G?-5&u%mQ*+xboCP~&pB>m8*vXv(Pn6f=Ai^(wYd(D!0hI{OQW%iut&S0&OF0+ z*_Q8~m6cCi`SEAo`3hw=TXc_12`&Y~jDm@i_yNbLenbl5C|uBZf_)x#>D5gA_oqki zwDab4;Xe0&wwF)HH5M>44u6f+b*|k*)FfYF|JA|`wxIR&SJtv~ZIo8vD=Zen%(zyL z8nYOZ{mGxhFbWr4at!6;XuF!1LvS1oj@grwBm^h|y?75#ggyv&nB&HgW>y4d8Czb( z!>P==V?i~!6=DX_T|u_?*o)TRlz2zB;{S3<;P6cO%%`=$N|_OJ)v|wIsg5dNU4Iu)pQ)jkt*9qO6v~VvLX44tQ_XGP+7VvZF3ljHB1) z%ftA6wE=}2RV@%PGuE=` z!%G%8N#ht^^&jeo{f$Z$mC<`O?eA#lEFlP<;~pIey!6Oq*VPhlQ?kWZ0N;cjJQlSGt%2LWpmxu|A0C%p z2bJAmPg#JFaj%2XXdqUSP$a3Af-Lv!^MgGD&yVjB5);@I56i;-PzeJ${5R#=SnkrV zNT^qn;%R3PKrW?~s21!fN~NfkhDJoF%_=6X<5 zLF>ejC$YI+Y`~+R=s>Q<-61pFsP6w0*ptsJ!xL2mlwPeSuTBdh>|9S25PYfW_`jXC zMHBS&fK)@lwl-lNO3k$9(DbX@fxuZeOzuH;6#dtd;uf9%ed7H3CX#A}GuXYpkeMK? z#9)$)Y|G(+tM=n$mV1}77HA+r@VHDZ(+d2S-2=q=J5x(NHjhf*d{WrcN)AnrX;U~8*6Q}wcAq!Pe=cuV7Npm3Smn7h1sPhJFjISa8WYTmS%lZ~z?hy#>MMNBb?S=U*}2 z_CnVanh!CZP_0SR#eNxS4V; zSI2W2F3qZv5d6N7P=cDGI;B>8e+hjX%)0_OKQTbV)m`)+=uRP%U5oNBo*EOy-an_Z z%?RwW;kjaFo5EBD-xA@nhSO?+xq(L^uFdK&rnN0GY_%qzr}{;y_3!@8xYV#-Mr>XZ{o){%2!zR8NSGTmufE)KOuHjeGID1{?{k+{RLzrnGa#Og3*oU<;g5)b?ppbN8AV@(ltH-jS> zFSvM$Q`b2FX$5$AjyL%?`rhe`93^KnN%gM%I9Bv*_`i!NtdEoc13i$MLCk7ztgug9HI2vKw5epF=VmZ7RQpvf%NFW2xn zpU-g5(ih1Q(#?tpsW(j*#jcd3e0``CjVpYc9ivvsXrtmVvFA^=Ox)yysZ2*|i#f&6 zA03lk7hsMvcAvPbocFR*Hy4<2A#c$58RW$&|8T>V?3Kt-;o4Pyg-ilQy#0yRyr)d09w-gk)8%iI6bogw0~qEx4x=B!s+k z@0}9ECcOW6y|*aq=+qX+0=YS$SY}=n3FpNdjI1g{gB?a()BehT%0a!fLqeAUEIx#p zc)9{7Gcrm>liEg5YRadSV`=hUm7DR5uj*FQ+`s8aZ6=LOR6va4ZiEB6Id?U8L12TG z`_+9$0lQ0G6Nxe4S6_7Q=Q+wDmEyfFn^1`MCm;bT=gO%mLM}STbEGN=&P$ma|5OTd z@V&SUoRlTsw>ukt%Ny5n4w>TJDL{jKExeihog<=6iY>7@p@Ft}Ut%y{o+M@5zU@!z zX7bQf^&-Qb(;|mxTLuomv&Y>qT?qp@W(K4TGKx;eq%L(qS;Mi`-ro0kql~#_iJZPv107sgx7{xPjQjYfq;aODXHCOng_x0^p`AH!%D-}Z+gwwP=5}#f36g; zBdTj#9u9aC0);V-qNbJxXx89Xu@M(;HHP^V`AtW4jV)D7|xh2^Re7fr^4IAhM% z&H>DSdz{!h1t%q=dB0=g|1IAmir}q7O`AbGQ5qI$fmC+H4jM2s`$2^l==9bR`Uh9& zL}7CIH)6-Tf~qv$?I#S3!goQ3nQUZ!H+nE-*i)_m^l*NRTWkNciw~N5L!Ra#j$7B} zX}KckK?!CD=9%HI5!Uj(~uqv*u$b+;00m3wnl;Se+x(8-2XBWlVT~(#850K zHDNwh&<@?|fCJ%1G~VIO_8qpu@pi-gJyjmtZgu{%r!#JvWBEuQHXYy%|F z7YgO>LW`w|oKj61&W8{p=??90e?~Lx!Km+H>N@ij5(d9CxOy$UNmsCp^6a$1bnuRV zwm}|j1+Wx&`2kf(*C4Eek4o7mCNf;CU|+{CTg^MoVB5S;kVk5b7}+C_TlSe$oo6S% zv$s4AUZC3>-U0%dUazQ~v7}G!kdEN>2$;%bCif2TzNX~($TQ+mX-joj7j(>K_$jAF zw%nUxWJaLQcUnfZ;4=3C7ZaF(yb2dewX+Pf`EWTiU^$N>L3;(uGb|56fxfDQ%s_sa zxD4mF13hjZWo@yRBjxt`RdoYfMpf^F zFgk!>8J!sZAa;HQ!LAbl&-gy?RZqk955RAlbx}g2H_}_y=_zU+o!a)GPIJ7XXk*>V zC(OA>_3W~lWrpvkGB6I{xh@s|L2y?FP#cJaKa=PD&v$TnGEV9!n5K!z7?<_vxuIT) z0v$rSQE|o9dH2YBP0{Q;m20-(Eh}cLgNon>`nN!N zun0#2Yc=9r1gR24wMys$Ju!U&r6ant6H6bx449coUbDGpcRBqaRpTjZ_(e&)>7W_b zO8XWI8(NVF>LOH+1$s}HW5S<&*&G&bLaAo)K`3*EVP*=NuP4l)c8{}yoo=`Pb;T#O%ov0-=h2Oxb@?E;|nkMX){}XWS`x7w!l#n2Z-RN`$dWNb*=ze%C z8yO+G9|v-ybJ~7UJ;fWV%{pYF%B4mPg&DJl zxhf%uxHP8m&i)QnS=8zp<|3ZJi_2Mj@DlefxP;vvn=I{~PCkK_4l5*L!9%C7eTz9@ zkW*i*y%dGr1Y9k{T$a`Pw2W%}v00nKdh-V2O5O}(oTqfNeno2R1guxU4R!i((!jl&rArjOfwYZNWh+e2<~J6~CfB+ZD#9_%iTC2Xwh;^@K?;=1>tY{5TMN+;8}7(&K@jR&Y$@3-igK zznqMSoFhr#KkQd|^KK-|77Fb6PuIipqF_L)V}6hjm#z0LswU2mH=-?vbf~|^T!l%i zXUi>%-V}(~6m{%!$}Vzb-U)ZATi!f#TcbQuKBbi&p-9Ch8cBt61)9#Pw>n=Or)d@`Rwp%R9Tppm8shQ!wL|Q;*nSxIcSOa4JE8=J6 zrs>*BO%VjFbpm%;c8Z?N)F`1rjj4m5PeYDS_A+891KsZb#jU4*{UUFPjFZrHCHL$$ zmY?4|@{m8-r-j~(2gc#J=T?$9@?~3DIu*@?fA+5zo6=y*O&2L0Bu|PFC8b1^Zh7!U zv+da)Z4nKXs&3Ogfm!6|_?TG6R_M zprgotvQ?=ITsV_)%^c*ssaST(+(U!unJ8I>T$gqP>WBB7(xbw!hvkIs%};|EOo5eJ zY{Wjx*T(Xz(%oTW~ zH8l185gc>i$P=$}*FFV^WgF}-WO<-=4s;d8uO__AoC?FXm@aaTT*#e4S{>yLA1flo z@`Jdc^eoh{UfSAWxS+NjyP*Co5N5HBl)KBV6byzou8B|!X#KsNkNg|Jhx|7b;I~!91 zh%_GtKGwoC*=lEq`HhLaF`SqxK7Rb`&Lnx5k_S?snsjqA;qy`LJvZ*q0WDrm*&&}0GvPFR~Dy3rlmh^35S?iH2iFr7di?!kU45P z5{8UD@s+;r9+@0})q|;|x@`}jy_>G+ShC!rgOo)<+jr`4o1uW?jI_s-_4g00j!PXHPVMf};L2Z!~JF533G2 zLIKTVYmWQQ;*mp?A!Npbx^La-4IN?3e*iRUhG+teUzjRq7uGj!Zjs(-cHu&SzKfI=^ygZd5-MPU_ElQl`(ZckIH55v;SR?C2TnW zG)mnD{C$C!8pZ_bH6KDVLSz)8bejj~Bz|!=ZHgIRnq%fRnbKhF6uUUJt)?nS_@1sA z8&k%2g zWaKSAtm_mbplXzR2MY$p84SwuJ3o$$3IVc6}8ocmh)J0={unltIPK9W%wG-e=EQ!3 z-hj!||6LwCYaB4bE~}m24B=D{iWiE5yZ{0EK~%{=WIF-%zhdI@ zbCE(zyoI4m`@2uqS+6mWOj&#uSIoP2JW56!nkV7?2nm@n^B5UD{s;qQ_0`=cT>9@glYL$H+ zS5bIx4emzss42WI$-Evd$>Y6h@B)=op*g_c9B9Md3k-0S+e159!abScVj3b2^n1j? z`PL3`h+5a6K%>A1s;DB;s0sYqZiMt~Icxhvc?plWtWrzEURw0{5(`|oHHZ)!B5ih# zqR*hFJ3!r+pEyBvuS-z?@vf|0CHnY5;*>-c6D-4k2}**b*inR7rEB;06j7Vlg1 z{yDBFZVH~fCz2TzaU1`@K80)=!q4z{$&C??N@O!%FvoiFB<<*9krS9;B<=_fmwZRy zi%se~gqmk}v&AA9+<|)3=EM|FJTZw0jO&kS`Oc%JzKWdP*ujrmA$xvBL8;vI90N+S zlC$e=^F7L)Go|Y6f^KLTAeyt;~PE1MRY0>;`Z)$TX{*#7JKyViAC=NRaOQ)Yre{m3_B^~UNSH7|b&&k7(uR$N;GRzKWW0eh za`3AX9rTyzzj@319oHNDrS@sTr9B#UZxs6_qxu~g)Cusu265`Pz~hWf^Ai_ltZV<>vK=HV zO4Zq@;hQ6sRVdT7Fw1&N4+-!X=c&A`xcF^HHm{YCC2Q_pSY6A0{7q4iZN3r4?MmL( zOk=Z2;nPaVlm2m+USbtGzCbiOTnoJ|_uSM@<=9#M3q9$F3Lmjsjw|4R22yjPZ&HdDfLFA`kMv|#@{KSe7^_Q$|S>5Bw^>U#?bBmSUFsHhc`MB zc`CfXa%~Kru2AgIqx-ixsNd7Kf^b{{h)$>1@i?ux^4&TloR!OG&5gq@fP9S@)ze7IW4^lN(9zH!q7LW_F_sJ z_YsN>c7vV2thjT0Rs%4~2`}%8`GPjTOH<|LD;2(x6k+q^2XhLY=%vT!%w+h#}PZ<+(kp@ErMUJVF^2xuye>>4|U z3_siLLH%_XJ-Wh=3+DEYM3GeW0pBO{$1~0$CoakA%Y5rLm%IEC8N1ESLrQ4mYu8lB z?p?~JRb66EsXib8PsKj^1%6VcD(^X$T%s1RVdmmE6Qt+2Kt*yCXDg7e2JR`U>Xh4y z9eoJrHCv0162-e)6elV4Pul+q65F<3 zcTMj}Z{G2kA?eTgfu&*EjNG7803wd+@w0VoIW9a19{FRL*H;Sbqdm&J*>kQT3woi0Mn&p#7jqu52B3FVXA{Sld z@oE5?GeiJR<}s`#&y?mFL$C>Z9P%@D@On{2YUJq{&)DKj@XtFxr}%KN?W70 zkdq~098sDfx(6D@OZ%VN;tmD-ug-Af+`e_yVg~Q)q4Ww4W^7i`0P&Q<;|{u!U5kA9 z;?i}Ug2q?2tY@c~-&cnw09zT)R21hCysx++yrz$zd(3I}zbdscU#%JH@<3Q|B6R8F z3UL8XRYV0%4ri|H1MCtAwKcab zhh9=`+?HrBh!5l3577s<$3v}E?Q|9YcqJgJpp&s>m5gKAS}x-8EfEwn>8^fV=QJ!# zyjgdz8DAXsuqh;v#9~vA3~p&p0q(ax?a_@4RHDNZlG0Nghc9~GL5Tcuh+Ut`}gx`j)Ybo$5wfSJ-#vQ2xZON&9hmIEahF{8=q_zz^g#oEPprTB&a?Y z?BZC1M{#m!5mmIjwz{?|$#%6Wp#$I5vb%sQx#&~Zw61c@g^N{i7tMOTiTE4B)+h4N z1CT;6wRryWFxB482=r9gK%(5Jbw#`U=?A2l?D^jT2PH6=e{#_Sq$tCg`I0+sfnq~= zVbOoYMbh$IQe6x-NRqvw)fLGWm5^N=M3cdFh)*T<6kGM@|Ac*;25aQZ7k{h4BDUgN z=~EG>)(wh1Y$wG>8vX!ugqjdv2YuH7P+jo-fdZ0kBTIHyzDEY%;v-I84Y5gxyE=Nv z$rOoU!jq4d-T=-h1N!dA9}aEs!QcnhE@b-iKSQqQO8bXJW(J8!L#SfLY6Rzp+`ta# zXzQJ>fmvq;J&jLY#VgdM%tV;`x?6Gc)85-ukHs3>%R&9`{< zFP&aiyt_TeeJIUi4x&YxQL#JnW83)C+sy41ehTBZjJ-4kb2zgK6$HZl-`h;&_Nr+?u6)znR~HQgTxdEI+A1*cCAY8EUs&SI)Mm*n6U{ zqcD!}!%A^9L@2W+@jCt5m^w&WclCw3rgL^`!1t_u)`XD^NZ%Cn-`2AS;IIqlGw>=! zp8M*|4bmB)7KATht;+elGJNA({8Ymwvk`fUl2c5-EYmrMlpsP;i|>!CQl0NJc1{@| z(X@|gHlc6F;-YaR>6Tg(;`KR07T8LU_tthit6?#{^!oOFT|g|;n{1QfQ#H#Po21GZ z^+rybMNzU2zH6XwAiGC#?-w*T>`6LN!{w&j<$li|)GkEt_;#WL!XCd*FR5T`ci3pz zpoG#*I*Z!c8_$Nr0?b11cXJw*gcL;!BIcgHp52Ux_!$c-|QA z8yS^G7T16={9PHAo6)b`&V5nkit1pQl@eW2(7cx0oq|F90Q{Ap<|LGTAuSMfb`KtGBOc9yg-k0Qd-GNb+){*|SfArZ40V;#cp4LIo3xNGhPL}oR&S3aCk(qDZ42j%maqHYt#TRT>BL{r@=Fan`gOfh!O*<-n|>|?)WXLf2roI*k? zemA+68e)))`o&G|Qt*qBuMZ%sTC8YFY4O-s&2Z(feBp2Fh3MS)pe^wA=*p8I4KlS9 zLjCX=L0YAlFkqu}Y$zdM1&>o5@tT~GH9#}97=p-Q@Q3ptjMYJ`iQ66Yf<3W?H54x_ z%9Ypn$5_*hMmfj_y#KGr0ryeX0*C}xYa0E1sXt6|m_6;CL(JXCu#7w@kXrv(Q$!7x zHqerLcg*^<{uY0+GQ42j$*sn@KMvpUTp$N4MZ~-Y3EOJ#sf}mq7p^x_wse=rca($2 z{VNd?z)n0au4evV&p3f3JlaHT1%`JUh;)&C7sVm@R@4+-FgoUh1p&=h>2*i~4rKeU z_ydhtmT;a*VEMMRLO|4>Dg7-J_{IMYTf}2mgi9&uSeH5FGDA5GvmgKg1idUzIk3$W zNLpXMxs=wUf>sPD5LwxY8~M)s{MTRS>?_MkXsV0e<^5rawqK!q$HDVKmUvO&QcudP zYqnw&b#?u;=|w+!g~538zG@t9EBkg@pi3~uK1GIuLfKf$@J0#F*Ks+|tX3-FPVz;2 zrsbj89==fLpM5&)kR-i8kl$I85)cO-${ve z{nZu?;E^#FUgXwfJlZ>VSe5TFrP#W;ZV6Q$O*3hI zY?a>O$#}kfw&qwQo>`-tT&;@OMOicn4RG?T&7Z}G2JxNh9P6{qseuYBYNKN?`X2cN zjxkDhhv}%Jo_oD=w;D^GA+j=LA-+BiyHn)xP&^aw8=!TB171*rg_IEZwycSE^o4TQ{XD z(XDY2VQpobBF)g)?b540G--8evw_6t+$3Bv1yjeKQh>qcxd3DdYKz;lE>6Q^A>F=k zo4hMH=cOu$qx9OJ?*Nz$HY)d))}3z4VS2zURCZFf z(gEfRt7(~f=hC>ptFE!81FXYGoyAr+iMUWzZsK)YqKJv^(?I86aaH_Dt%MJKyGfd< zL)aLhyW-Eyj%70V?Wt9EK35+-f%FSzWE#4!k{WCjK05upkg~z-gYoM^Wid5bnYgaZ zkk$yVN!NKjxl7)+Q%n2b`vaFuYh_iGV38>a)1W-kD92#f#@Pq#3kZV3I4lnjh;9u3 zZ!wE5zaV2>N7$R~iE8NSnpDkRH}sa^ox7XqSe6a^uu|3jvUnOJq8YRV`}Zk1^CaZi ziRxbBdD%zi*^PzGJ>9AAJVJ{f$aCXzNp5Jm=#^(n-(sI zGWCX;Q%pulIpd)0G2<_FlmN~~94l~4C7!GRqGa2o3Y~&Cn!ZjVI)CK7xU80DqV69@sLd@?e@XrgC&e~{A4k!?VE(g@^DoU!D~MumOXW0Zo+ zkNtv^DbgX;q<00X!X>-9VAS4qq!&b=rW?#-4Hh8(U_2cDhg&Cf1cFq=0000000CJ; zy6%_7`ke9KiU>qx4>1M3EnIY#nF#&Opx!s^K(1<(y+04>`4$K#F(#sZRN-(e5vSa} zCLUj^hh2ZdoNA71JJ_6Vn`Tj2VC_cu6(^@0BF`YtyicQVvedX@_#R`oGl?x**va<$ zd}UmKmFILJ??fQ4kio70g0`ItThZ@Xl~JP>2#n8h;tZt1gn!*T2|{ZTdMdDr6ZG#A2fA)ty;KyJ9A8F3*1AaPC@02 zvO}dF`M`b$ak6j#0G`;5BuUWa;3IH|4g9>d0en-8bBqF62tON7%Hxx)FMSE^>BOvx z5j)l7cNp>Kwc;5f)~j*Q>+45c+kV3Za1%f7FtW+65_reupBsf)rYej}tzaQ14HlRDvYLOs+n-`1>)&OdMUCN#O40Au`No&}9~}9)q4W;m&JABX9zl$lpsUKPsTY z`1Q!%kJm2OHth z_TrGa?84OYa))niIh1@VESMhso%B1U%nID-vHqg*5g3SeaPw$P#36~YI~NR8!B38| z$M$a0r)pie=v1s)PSJ%a{?f5hLOulU8mY6V*II0nMn_{x^v+Q%+TQzG9813UpG-`m ztdyvakE`s#E3(J#d^Qt-Wyvz1nD}G*ObKxO-cZ&6o7Pf?)vZ^MrM7*01z2E$Ydl9! zLLZ-g{6<;a5356AqTB#6vg(EC@^b(HS`P(JxkoSQ7jiQ*hrA2rk4os`tD8FavyPIa zw#r@Cf9gnK-k6FfcYs>5T-Gfyc9{ztEx zQw5pxQ_xGFB_*YaxhjSi8{?7b5^7x~Sc{XgUhzxMA#xf5S zFBKGOCq5#-pq46*?QOo6rzM5l6iB<_qa79QEZ18?N^l9Q^F5+&pfkKfi|57BAzMXO z%~fp$&wI_rlU)&jS}*D2PR-dG3{$23*@*ov^Zt=7TrL*43#+TzJT*I}t7puBc|aZ* z^`T#-d6oj|`rQvGW#0=b5FnN(cKp#2|JeiT^*MOdmyd7p!9<%-f@?GPQ&3FCzMk>PBl^!S9wz3_V_x`ItzzeRThrNI6c=+&~RJc}p_iE`O{!!$%AoOv%b z6Q>GWXzeouj=I0l0@O8F4ML3S6i3=-QP}Kcy>u;QAJt~lQ&YpHWEviRq>#u%LE>^D zGP-7BnP!gluxYm_#{AX>g38q%PiOC7&u1h4lkWQgRXd6L5Xf1bhQ?a3FX05PM+jB- zlR5M$?cEtZ$t4kh4;peerL=G?uCl&9;GYW^Hvm8>xYqtR_99b1sfM35F0@x;!KtQd zI}w7u+c>-Z6=&B0E^yO=V+nNiz4q|xFcH{#0{{aT1Bc#JF4PnvJz69$$u;gZx%7XJh3aJH*j+*Y zif4ryLm4%MDqHS76M3?t*6~>2Lk%=W4sBMm5(-yx;Y~MEL0bgvoWSGlJeUB>m z$x~)Yj8)i|K65Up2ZOxAXfhd?yFW-$IyFt=>Zdd4L7Q=Uvq#S1;Xx>ukJyS)&zA`f z*^Lba>K6MdU258{#!1y#fW^@e;X(=o5d4d3l7~Uum*r8 z`<$g!H+)A|)~oVT!Csp_NWsUgIN0HC^^@!lt?QoXnP|(^bI955S8ofvsNYT|7+uI< zran%UvvZh_dGMeF`>E0>FeflRHuPe2sEtdjfd?)=95q`wCSX)0t3d1DHA4acnIx7t z?{$(uNP)(%hK;WLdmMb^`J-d-_ET7SuW^BZ01Y)D$;H=MD2yH}^XsAif%bBU?8))( z1BzMDfBa2W-3m213BYGUGqm`vlvUM3p;Z5UQD2Qh!7@ua7=!UFFIKn6w*lua0DIHA z*yzfbpN2$qj}7`vWi+)3hsWYUhxuz?w-X}5JoRn}j`*0L2T zBF5R}q1#%#y#3nh=%bUr@uj;^(IG+7F^;_iwL~)mg?#xF$w#aN;IJM%x{VQnHh;)$ z8gBcaN_i@#T-Uvu%!I(K*JuO}$VF|JIfiDZGN}+2JucFL97VJed#QY8O~et?fA%Ml zbapLYR5&T%YtAD}EUnd_QlBXoP*;G*x=#xEn$0E-t;ivO7iSS;basic6K?rj)!e zY4Fog_;Bdu-EbP{k)Rb`pE4V%)ms8NV3V|NZeXseaCYJ93puYNZylSQ-#0Tko;`ZWH+7Gf&s z@<>gV^Y85~KtZ*UR5)Z^0MPNq^~7?&w4CckC56Wzj?KF^b<4`Z80&plppyEjo`4>3 z?mYTr!z)hrMy@R-$E@@gZXS#@GT75Fo5u0I-2xYw>yJJytg76 zwSeyAQs6?0;knT;^<+{PN34T#=Z|J67MFi8TRlTeg~Z-HHY8Fh6prpgt$Dm1)e*p> z=M(rn)qpW%!_3NuH+RWDl=Oq8$}wFu1QYeE@{SX0I`&9L2GDD2O4N;=bb zNf<>$?;&)Fbz~T4?(0Lu(_}Caiw+E#PCm90Z?C`r-!f&Yc_^-mVVR|U7va(>_Mj_v zqfx#FoNim(z^;1qDQ9vlNkq(FuU<>R&wBhh_+x>WDe5=`bWI?I=V(iTo}V9GB9k{j z09PD+vOcl}Y4ar$se$rdc$WRZNxD7vY*_@)5GWL!Kly5rHW^p_J+#Z&KP>c=wf+04 zo1iuNnF~FWBUx1(KYE|wGpvrQTXZY|{tt~v5ZDE$c9D($VdO+aq1@sDHR}Vj!aQ46 zDEC3eGn`Ixs}>S;9sTgfg_eu8#M%BzFUR8%H@G`IzKe%OxDt%8WtH7GrsBx(8|Ab1 zxF)j`8W?h?1%ZqRCCzL}=E-Esu$BXJH^IS*@0Mv=i<6doPl2bk`dgM_-eu~x3vd}q zAGeO0DW7&o`_444PN$MlINX3O_l;vm5*Qxp+~{^~O+{H}StRs$0rn@(EaU(H2>wW=PR%Ix z46Tv~R_yn&xO>AjmqHs1h(U#=A6M^ zwP%*zP3eQY5zhSO(}~ab0cIuf-bn#~J6SR)iV|`kE0>#2c|8g)AOnn!rX2Jx`h?N& z1I-Tx6Odk3Y|_u5PSSuWwsID1V@lTQ;m_QDkYTcWpZsKit_%Sz;H|K1gHg9~BO(2Z zZfd5;M^+_UN1IZx_&|`f5)yRF#-H} zNI@na_Q!%hB88kotqqyd^G?P=MxL!Urig^yOfIu^>cST%uE1x~zNO(S-f0)2V5L-3 zcN4R%ksW$bf%Tir2)vRR27g7Q{QWaM_>X+=-71TX3w|p!4rPtsG2IO80q8##&R`qF zYSr*pVCLtSMKJeJTk(8`000MDE58l@dvX|<1x*lnc7h*;=H>~DgyN*pKB*3vRMfmz zg*i^);tWt?S3(e}$K856I%7Sn9?tY5rZdY@@Do`^OzI%hJp+qjnD~jIDTLb|U2jj! zf+v9yOs4+N`}$s`p{$ZOC2qjO3yHj3+i~>~t2lp=8t?AR+RNrK@+V5SvuzapIR+MJ zreY=I?Wuw$8Ao&Dt z&=8m~@Usg9Gy^ynN@SQiAM&~hok-5n_jlw=&Vv`L>HU=VnNN9?_m$fGo$VGUw`6Kh zRq9xD#{rmEKeRLc9sn;`)$`}FU{UKid`6dmP^)n7y1k8355%^$GG(3Hdj0^nJ9@r* zxY?M(&I;7IRc%0WH>^Qac&WN$4e>Oai8kTu2;%lcmXZK*>x+_-a|f0-XXI)KyKS#j z2PF`%ldP7=nU5B~8Iu{dHDcYz=_fC3%`b4Jw1UV001a|uq$}x1BKr#~MvSQ6H!>(U z_U$Y~tj%VE z@@_EA=28A2p@C#%%=(s|@oixxq9S3nr(r?gVfPQVza@zu5tC=)o^7~l;FjDTxZ!&b zYOWgZ2f@ZWWH_)4JNROTG5k+ktK>Q#sQW{~X;zrb6enGe6-gMWhWyHC3) zTCUs76(-3|`>COKmWZkgtDba?rca;bXbhHw<#rVuGQX(*@(yc$PA`?HX~**`Zs+tw z1dVv+YZDJ+p-uxDH_!u5%3tEfgIhJad8V=*m0m~b-m>E+esp-iAoxp0r8QzjV8_~L z(F$Ec1|hS;0wm1eQF#5ffTp`?x!eIWX04Le#48XhX7lUEQW-kTELs+H28why#t#)9 z21JcjT8Al@laF}@jQ((3;1$gp%@uuqX8-9i&x0SzKuitfrGIj)=^R^H7YnT?9SCa}qO;;?-^5lSGG{Xv~Q5~$JEc@UAwaUlh-?5Pjla0wn4 zOkra6!N;UHeAVpv|Iah(5}co;NB*yqxE_1kNVRPi3V;AM=)WjQR)mruuECor#>&zn z=%1J}It83F5&+O>ddv;7jY5)`ky_x1IhQLhq8KmQuYaHc^gQ|^Q^qqTdPdXL-T#nG zrIcAU8cH}@*)prUx_&lhS`W;+>nDw#%{44$4<=AXREW;q~CqCRk3bQZj-Z#MDzcdnO^L)fST%P5%l^$j_LH=q~g;0!-+A^q%J?? zO_+ssJPr2bx;j{=43Fi%=Q-m0fQGB6rIKv(CAqnc*`c-g0exx*_R}vzzq4w|((Eld z#XtDhKah=07zckvS$uy!MTa;oC;*F}WNzyR=Gd$$sJfFvGUQNO-#ml_a&%E3o1@sK zblHpEd^=NrIo{7{J7R+&HyX*HhNtb%zqmtzs6ISehsoGTB*bfYABnaM|4`==W`-yLVJH$LAvBdhs zKzX+`9jFD5wSKD90sk>*qbgwfMg*nkHNkf900000043w0@1y-#^2=X}sFLJ&d7~Vb znP5UI2W$;`)~Vl;#U6MrUcC4o>~=JfTc|X9m@&D9nV)?{{gkiTzW_nRuV=2W5`?{2 zwNyQN-+%xZSypzE)Iew$%`urUgQaTe0$6-K)z_(V$B;L%vTmkk0nYqW7ngTWTP3LQ zQov=$+%zWF%zRnfi7<9{19gIjusQ3<2Yx1CGvW^dPsy59-TlL)u0b8d3jNA3NF6%VPEhr^xuA5jvY2}24TeA@Pkp{i{hH&c4&2?X4q45g$WE?D` zt^%A)5f7!k5{+Ts#t{VIOGnjK7Jjn!V2{ImYLkgsM(i^E4tdS4P5$+*2yg~q9FYO7^|>mehq6R+YQx`z!TvdU`D#k_4`ahGZSkm7O{oi1tiYvOo{QA(}{V90HYF z_o?*noyPVnM~{AV8_nR%bNfG-vt@wX#t5s>)`Hwscs)?+lC>Ql&pN#HoWuXip=)9=-5@V_=eG zJn4Mv>Py54n#@?$Ztehub~q3$BV%FI58~Qvevf8%+ybh7zfd5NbUy!8D zFjI6ua_Th~4Y=x$QlB-_;8mJzSZ7AN#cFIlD;%GYv4(W;&gr|6qz$EvH9dWr=2rYn zN(^|UK?Y1SL>$hf{rz5zItM@ScS66}@g>U+ zf%+%Eo)~cLarN42TSf<4Y#JE8&cX7k9;a77mHkwDtR@PTJ!a;q*3oJXiX8@-qx!7& z015%8NMB=JY@ivuH7;GHoaBG6ah&&NLIh`9`Wjz5Hsux+J@W6gki_fYch6WF@JYw2 zEtMz2sbPnb1`%?0U~r0JX~5f~1=y3ZcGn=PJO2RO8396#Hn@Vr@qyl>+Xh+W6EUGLx{7wlhuAK4}ufF_^=Er=me`8 zX#@QqULurbM}Q#$M7^O|$9g|q(`3c`UlCjQ!zgrs*@!4&Zd#G39eFNVJ3k1r#$2JL zIO1{*n4AT}uL*ze$njt$PL{p#KLBhCG@$I`-Iv1>6wR=_%QE9Tsx!AjnK84kH*7R&Zr6A>`vh!s!pXIO~Qz`m`XaN** z4oPYayHhEoQdApbd4)@9pxdP~YxyaeyV*IjdYW>1-ssFTPYIwNJ!|qhg$F59DUme> z-KmAt=dp?nx>)@g=*;66eQh1o%4*Nd;!*G-ptZJ)qy(h`j#1_7|38Vhk_BK5CcYk~ z-LBG(O0~dhOj`CtW)k!!&wH+aPW(?(IE2uhbw^zQ(<4}=`id(S?FTu;h%ZJ!01I<~ zixrtZ78cVd4sxbZ9Lzd-2^Ytqh?21+!Wp^_N**;OS~wFjsUH{53BB}qX5DEhD3LvD z0vy{Q+o2Lmn`;eaptnI&GFo;SyvpQ+>T}@Ab!Wo_MQtYx*&)VsOpz2C+y=m%I<8jB z8!-Q}*rdK-ag&*sS^DIn9mN$&#lWo8npm(=9{ek`fBR5~_}bEIw`wULDxHd!Ej=2` zy_j02Ta+Ijg~+t}mM1UU>}x9?~tg94YkN-}B#G`64iT z8E$j+?kR{eRVkvIQso-eoJtZdu&d->{mN8ZT|O$N%s;)s>T7u=)o-fVTxlbw>5-#u zhIK@54_rI|4EfSWYRdcqof;_umeyTmIm1=7&cc%Z(`u;U%NQP^I8*5F*GgGyoUmVd8Q;}4Dtb;441J^T9k)DT) z_BYN%e*KMAc9jk@N06Gy3WD>)ZehA@ZCJD82U!)R8?(W;@I1WVX8D5^uXd#cN z`$;rI}ObUTD&u*#edbJ8&Ag?5z$P7?aOr&E|00eT$#v@Z5+o8!B z>;M8^)CdFJHm|mn65_X>i(44&ppP{&>$NVAxFcB^(tQG@1i9q5TjEyX-QGq>%cF_ne8sX~u;}s|Eh$@;v02I0?YDDOMctv@k^w2f!GQ`7E>j4+)vHK{f zbTn^+E&reRJEILPk6||OJjrc1%G90N#V+BQ?BGzj|AJfNTjbiUGEfsww2Nx+hUv(W zHU)Dbi_t;R?-m?~e4r630h(6qt#{$6BmHZUx+Wj*w|xZ|YC{jUezZ&7LQ9!(83ZgU z!W&{JISNwyO-kO5Cz5fEA&MDW0(6PW_=5-$_gA8Ut^atZllOS^W9a|tr>4h?Lv$DW zssI>ND9g1W7YN_kXtnOC0MdyZw=mFdVNTmtYi4&*nd-bnbmQZm!4!<@fU%q-`e0o` zTO!40nmm+brStS`t?`46VD=KJ>0=l^9h?$ zX2y|*AnIP=s{NB(+_-JjD5xZZV8Qn62V3aa$y!68jxj+UA4M~xB`|um!||3QwnS6F znyo_XWtM9-*5K)Ygb}5d#N|O!@5!qGCnDQ$gO1mMm*c!?0FF+y^5STCZj^48d;rtU z99|&^>^4!MSM98OuTvH&Ze9q8|r`n0000000au!AEey#81ecI6qnl$9>R^m}4r+UDk!4ptQ-?=hmk=yjyhnL?N zB)U!Ch}(&{-cZ=oT5sSS{4zlzc_9Y&GGd7Aiuc9g6~T6pFV)oiu*vjvyw$~ z_uzDb=7Gd><6e-BSoIX~{Otd^3l+YT%?493c;D)uG4~E`;pLtx5LtwQ!MV<7D8?H2 z9Vu8Kt-e`h)FQyK^HoqZF)9CnTSHWA#yHFDOx80OUQ;A!1>ZcIGb6wM*>6Z{;!@Tu zXM)B3EP|_l2J35AyAb?#F*o|p(Dj1;OL(WQ>zhZJ;1Mw`@2CdFdH;P`rIg-b!l(Xm zw!LfUows{m%&*xJ3hsX%4vMD7_QAD1JN6@FIaWi~sih^ug^XmL9%?h;nuL0LRn_;0t!A)2V;Yr?BPT*pDSJfxD8Fx?n^Tw+|E#PS}w;ld@zze}Em3ZTbpXJZQZMRETEQqvP zSyNcn7sqkrVs92XAw)Y0u|;`|q~qX`Q9JJln#xMlpu!~46W;u56R^|t4inAK3(s%Rj~4?q&^9266=_UTO&I+J2TA{#d6YAqt9%X*GCT0u86h%QqdltADPhX z{BtZt=59d|A)T~7TW8%j{n+!^lrC^AcKYcjc0I z&qQ$Jz>1{21=zufT{dkqBj8;{D+MOytEI}HE&l1CT&qb&Y+D||UeH8uAl0Y82&5r( z@NV_PwoQha{$Sw`P9^-gA48auvTC`l%g8{vEiz?ZAv-dYXa%6IlG8v0F+rG2xnG;0 zZ3WiU2Yg`eT>(dGoWLqG!LTp=Ad^at@q)W%<9aEKvqBSRk4$frr~)0K-y2A4RO&fQ zwVhZfCGPm8C7^5?*Atld)&Q(nVfERZ>6n)C_DtHa@hI_hGj&H{!v6&H&$oEgX3mwN zGQHf6@5cyL0qheQp0_Re@|_Adk^Su=jv z;Py__J@OE#0dOBQ5Z0?;jE!O-))v8;+_hd1f9|gkGC<{d{d#D1#h~|THW|=th^_T6 z$^qFB9S93YOV6z6rCnim0Y^h%f}})T;FtsfE$KLG12qsZLjmR=4~YY?2qL+3^$-FG zc~In%Py53&)i`N|dwI+fOJaeQEtCJwSd~0xY*ft8val-!2%Z7di-eGgIHtR3@yfnJ zWr6cRn=xDF2>WZU>PMgWItrECd-};KlLFOv`&iP1qX}Xr=X_gMXHds3(d-2j$iiN) z^1E+p`{m;%S0%Y_VlFUXf#975N+s*|#%fw5Lh46QibxLuMv`W;nVO=bvA3Cd^rq9u z35}b(ByH*#TrGolnUJ!TyDMG!Ms0j?+OiU40kaUhPxu?tyrdY~|BcEMK&EpA0LMHF zK%a;flM106hUI)uY_R6!VXzNn!9ki?!sAc6cmprOWlM6JJ>)gFW9nNNI-@H~J2^Da z+RLj|8)Fk0319&Ga6va@=j0@=@(SlnNID`y1fJ&$B|StIg|0~J*8E`H-~ZY)5&rpN zr_~?o(TT~ojJKm9@nH2J9+L!7aXRF{%Yt8y6IFl!WkvDN!y_xOwZHlkMlp$RZ;`W;#kuC?W{B_<}kN21jioMfRah zw7P)^mo~5ihYh;aDHKql89IZjgts{`^x6YmzyJe5$Y!bPolu{nQFsM*Rp*?55L2ep zHHwBw!_opVWo12qzyNtZX>P9>c(>hk)0y&aD4m%7bF^286TCss4f!s`Ap8MG8q*Co z7bRRR&fC)Q3-1<-Z%q4@VQ*paVunmDbJkPg57TRc}#tLhG%|^5T8`$q;;0LUDuZ` zTo#Xg#H>?>2BywM`} z_B;bwB4cDaRlSM&^@nucd0XmXON~A|j+l42h_E{1ca<#drYux?al|WNty@$9Sz8m% zjyLU&pif%6g&TK=;^p=BWsj2(&pUcHfoLHz&!jU_5N_U_Y+wO+yL*|Mv?lVFO)jl5 z>rH5$fesUf34lauR+eXpC*Fv8C_i%HY0qA`gU<9lnB|J>EiNN2pIVfebSqdl?3Kz)@N-DqMNU5RIqv83KXt)z<%3DbCsSF@sdH{ zJ1?+G_eukDkt?$?yr=kx==6mNM4>}ggTV!U-wPMIa;Xy9@$NB_5Fb9#tr%NOtlWp< z95eju1O~i1qCpo-%k%U}k$;`@w)(%au*)!{4BtU3$u{sJ6jVe{do`Hs-CneO!=J|) zx$`_y7cB#ILTT_U*z>!r@tOT3Qg2rp6oL5^aJ$PK6;LZwg*}F<{75Rl9k=}n#n$9} zUB9OV)yq<|^*-hrb8ZZG0(lrCCpD5dr)HHh)$3ksL_C8!H-;xSZGDhkziJ={xZed| zd>qD#?kjUq%6<*9frI7c13nrZtw%z;*vAfC^^a9gsG?7PtG|Ne4Kelh;E<(?tX?3kx> z^HWZ=DGgG?lF`cqEBlK7a_lu zfMcc8o3)2rdtIq9@M!UZ^_5F8^9%*pRxJ?k=sCJa%u~Tvl9A2M*}%e_2OT-uI6?F9$y(!J;ik;l}Hr zNFpC*mZ|FtPtG7k`F_r=NRBfk3IH83`qrJiPXjyV1qgoeXS+0J{E_)W&Epx~y-wiT zdqi62V(Usb}}-R#$)7WFsTV&w}_&=kzyHA|dI0=gkw(VZd1LTRDbI=IKmZhv?Lgh{FZkJjnbLTGO0AeDD3P47xgsDn zFi$Ly1gKs>wLQfk{>xQ(UOQU?>c)&Q&p^7sJPJe1M{m+gL_@;TGFNccEd-Fd&|xZE zTf94eDqvwu!H<18r%=mJXBe_ZLkuKBAF+faCMhvVeG4YY5h8%IaU>`lM1EGUVqkSi zUbmJB9K&hU(!gPX6Kogurd&+yPPfLO5G6=7V0U+}moA<9l`@#XLTdTE_CRMs2I-eG z94w2FrXkGq5+wTu3DaiO!!uJgvLZJFM=jn4Ju=KKO=TegtE*oM?*RXmK8i=A(JtX4 zEtK7jUeM?f_+;EL5+i{&Kwd7&IHpc@eLNNS*qzzScxF-uVz}0T;x3Qn4=ZRxH*SK# zLSzKs3tu+z0y$;3Ky!?a8{Skd*XTS25uW1Z%Rk0}#U(n6Xc_9D%)32{fn{3rW&x!z zio3%KVxfw;ov12oyNQi0pmQi`0Q|eSQ_PDon;UTlJ}M&K*}B-ZoRab`TS{5$frSD3 zw4L_~tnuMfINej+8~^}_x0$-+!SNBw*B~Z&aP32NmA47vJs}x{^7jJolC^P&63e-q zSnv64%r;H+dwEb#II`V|L3BD7&f$$+F-k3a4?Opp3)@~pK#8E!m43s{IcI6<#6 zO2YbzN3!obW4i^UZ91ehq}s^;5pN9AMu)%RVrS!w;*(3|6ZT$o@9aN{&|Jvfpv?nz zI@78ieJBY%;AC|sIQjS+e}8C^%qj^RR69uKS~FRmdvMiKmEMlZ{SO4rDrflghl~6_ z<DP?6a*YCxXT_i~vZ`+X!h(Si=1Z<%^ZvU1-7{uC^v$ zoX*JMUDK!`%*AYPQ=G>BhiDG;h^X@f$^47sj5eyrz-Zz0SFj_*wn>>-JRLpA>TKIU zl_P-eJ=K@()V(}5{(SltEPiQQWdnKrAREJu4NZ{-`S^)cAqoha?%bL4*?uh;$cC9gi?i z4;*FIqD-~7tD1@vt#d-pK|0`)-t!LqY2~PC6#?QI3J4^MNTgw*%O6TYe}9kRuLVtG zO){fy&LB6taYc>%W5qt@z()o{2TGH$4G2sj|DVeb+WBCLNZZ~smS zHIpr0)SBFD*Ug?kOIXA&Xn3*R!;V5b83e!pLHP=}2L}KD{xNFx!X{(;G_ftWIH;*{)O z^)D~$gHJjDr1Pb`jSS9^-ijilPC-aVMFfiFY@LIQ^Y?k|YoRGRqO0Zr4+sE!$q_UT zEGeEOT2|Eb*|N!4MgGO;N8Y@~X9pR(tuB0+J`+mlp~uu66i<6o4!8)g&D%9WF$Mx6 zX8$A;bevz~;F2|JQ-!vs$k?SkhQL$hx)(p(N}Tq&>P>lTdP%U6>@T_Krrukuub+f$vAf0U@vQ>`$FK?w3cV~;xRVQ^8btA9 z!}k~40%a?0`fS7@y#t6zcg32)3Ijg}{`wWiL68n)r!Dmjq6PW2(XVjnL^D93GH6|y zVsnM}<_A(Fa=0?%$YwjOw_Lcy+C1H7yTDR2k$tnLeH1x-RzN=)vNOdfAi*-ay6yOc zAZdsl76rAcrw{)IekP6M`pa4`tLWc#Gt5U$d|HrG3K^x_vSPTb1NEghc;ds!oT|C33Ho>+(CfwlMsjOHH!Z(ri#oVnN zI=eiRuzN>Q>f9w#*7A9=zm$*w0$0M4rFNceQi^Z@I|J=@gsFNbo>~_YML8c2t3Z#| z8G;vLOMGzuTFdFd3kObpD(NqdvG?(I2LaaW2J~KTdq*6tr;MLNG>r6x-kKrBr@me? zkec^C-x^Tbr68Cb^eAFMzc`!ep7^g@x&QVIz@sd33c{%O0P$Kuqd0^*OfIQfjqMB# z+L?o-`2~{tggXhu$GUNv#<-$gwlQP-RS}1uwc)k70dv31Mh=k+=3u>WojbArqLIus zCbbL68Q~V9_GDnvC_j$^Q>w0H$olqHg+Aya8t%Q@JfU7=@jpV-8L#^0{Poz)Mkumb zuNmVUKo}md`)<1nY+Tvoki2!v05{Z6Puqt<4!mnoz!Zm-u4WoBYU-5`&=}9J-kGu( z1P-UmM42?^04#iPME|UW=-SSHKG1(iVfbBv@SpN@k3dRXKC~1Nc{ceU-7_UD?o^4d zwTJV$^me;Hs#u_J5iYKW@eX60cm@&1?g8 z->^E36}@cE>=UEUu!+aQhmcm;*igoqW8293^6Y55_AHElC}fF}tdGwo(n<_~6~ZF^5Rj_w-;IlCsbPRlVqrL~(ow z_%n^sD#SC5gm-b*8GBF%D89K&Rb;d{gzLObTCCXmc*30-YXWS+*z($Fl4$H)R^bh_ zo5?3qX~_T{37%maTi1tt|Gt6HKQBNf0MhfNeg$xq)C?4JJ20lK#37c~y|g$Dcn8_( zuNXN|8P-jQ-pQcT$I;nTTLQY%ICH8^+)XrWWJ#xH2by1!PybdYElFkP_Gs%vtn9$> zwa;uUEj|n!`alq*2BUpgg%Dru;9H0mE7M&779>G{0h#1MNw)#V=PocI$fkWcOMWhK z%uWKR@@W)yY8v~u0q%J>+*nh&MW6rxP*2;&Wxl>7cx_qJ`I4^T*Z={3&{${0KKO98 zKQ}t~>KN)dNyq1vkQX3bOG9zgn>DAIooZ3jlnb>wY>Y!OP=iUp**sumJD*<`e7|}n zu%{H(699!dv;+04@Q?dpHKGFsC8m>z#Otgy=SR0vhQ`lwyXkP#Y{!&qK2R+pTBj5;@0>K$OU7O%bpFtA%a zZOGIc2*RZBt5}nqPBHt?2JU666ZW$>{3Bt1aBV&zzO;2xtk6-DTr;Y*P7HobC*`b- zPL>UjAe7%z>FaIjw6UJ{qGtn<^{DVcO9>+vOpgz$TRwA_$h1X-h%HzQp!Yf+1F=K1 zl^3(4rjWYkY|H>dI$m4w_wSX`V(e zGEm?&_Vwv+C}^)ngS!{3v0mEGC7Rc{EMY4;r;BK-_na^e?a69R{L59K z_A;CuryA^iNZmqKk}#;t0|cig|8@R-7+V-DV8r-DGm@RFHdl7C8bCFM^qPFw2I6f7 zDzxT<#>&!RH>|OO&VM9nz?WelSY<^GRDm*gqW?jA7<-5kxxaM#@u~$(hQ~L7-soKj@h@o9w9tHsOF?J zo^+40KuB9i=T{gP<*Yn3W92 zt3GD);LKGUr}GwmpR=Wl@`#JPsGgm?$!;P z=ugRHGE0Kl-&QmT*xGzs9=H(2!uwPgZ$yz@oS|oc<#6juUlha(MV5T?H7QK>cPOJO z*9PlRcB8>M7PKTs!e!%a7x$8_Dg1T?iGWxfZ@`C2H1=TS8ba-C$wKh8YiiVWSP%AO zvwZZ~YpAQH zmYY{CFz`d%WXoPHoHtsw!<=zn@!uZw01akeaLt%Vu3M>~Z@D93PTW?yI{}LOgD#L< z5x_@yc@-^$HZMmBqpls)D088oSSwGHH<1QaMFG{aiB|$ozX_tRJ7Y#R1i1&1>lG`A zmJg0OoW2UxmX23}ke=iF|7))L!h3En0@9uo`lK96WOosRqi@KMYZx8_Tq$WzFJbM_ z<^ogeJ$4$K);`uw^oGs@4a*V~Kt$|8m>aO5u(hvp`3jf~P88P8==?qCXC{#E|Esa- z%mzhx;n7X=qCr%U;tI+rBOBxU85_?C`|z)n-K?I05htDqA9uLgku!$^pT;g!4a$C- zm+(+@d`OnvL2N<&)bq zCxCXK04tWp$c3xy)x>0<1;l)cFf?rLfg#XOjWgTF#SA`i90!h2Y)%-9-U`@a z(U~#_?>pYYjQyY-U~@bQ%rGl0>n%&eAivPNEPw!r7p7vqwz8rHy!vZcl=YF~G+=G5 zXe)E(BH~XjqWD#04NvHBH-8>B1UloBysk0D+AcOJ3UpweJa~Ly6Mz5!T9Js?G})7x z_g|7`c0t(;Rk9*b{=NSO3R3XPVFzfWcF!PZQ7>PwFjfTMW4f`x>?Txr)ad7Cd}>3? zEZfbwBFcLce;{A7QOrQg^8Upo-uR{!5ev|e-oTAVPuIAu8})ybU9tMrac*b0w)?1S zw^f^btfGN3hzH^ovjtupFbiTPF?D0FpWepLbJZHjH=Fb|3Hc}K(Y!T;2)iq9RA{Ov z_*)B~InwV-?&i@eSib8~=ALIePJhtG`(SvZC0Rgt)G7~|o?hD7 zG=GJ68YFehJu#T&i{S7DD~dAO`iA*4%|SnL(xY4& ze>uK&9c1?(OkIPHnMDkK6XmYI~P)%&WnCecICIF6Fw;0`ZU| z|3hzpYj$5(n4Pb>9t(5@tLn?eJyqTz70X4uypv@^39iK3VfFXu#Ny1riP>JmnvH)K z;@V`&1~>CzVxXpxqUXKWiOz`y+$=TswjK!_s!T&)@>a6!yBi#g+^8F7GxX>O#Yi+t zxDXg$+Fq4PVV8ryKa@+bSJ^Afg2Dr-a`hKi-{W?hW9@%ZOPf;f9D_SD*s{nP;r&Xk zp_R)4B~0HEjPjRHa00%BN8?5Yh=jbPzDmlxmlJ+c3RRVetedb-21|lx-DmSX>V5}S zyi-;*z3oSq$sX5ZJ;iJxr_cvxgI9ZAp$^j>X@>cjL3-x!;tt4zc8JXI{EBH<{k>9` z&gvSteO1uXW|TYpN0&?QVj4!lH{Ci^CW?KV^gTaGKS3XqwZ9o&s41UG!VM2h8kR+T zxZ%AgV??D-YsP3xB_Ugpj8lclrx z%ioL*772mG!0Im!f?ZTx#M`By!b`j%5t`nR4VC@1;NHzOn#F0e$ z25Q#)tR?xwCH49n(k7U|000BTa#dmnf@Ef@ z6Br$K000|HTTr-Xz^bB2c;Hn-gFz^a4$C{(Z5tfoB?m1DJz&B{QmFAYWd!Do1!rLQ;aSx#wl^IRosGd4KMQ0( zzmJ=)wzfmhg!AE&RiMZ3v2V2hr6n`>oE%Er^3BFoUj`auE$WV}GlrPHb~tU8+0PEp zw)XKklZ{BKedh(il8!QVr215dD30$`&XiCUB%(2IdW~XdzM7JFnpC}v>=0hUp&w2o zV^K+EyTN$n5VWV|yi*ZkZ5BF$wj{7D4kVgL&)}~|6rB|_Pt*?mdH$=PXDFP9==pcL;)zT`5T!&Ob^nD5;2vC!cw= zY-fO!81^Um z&8$4@Sv*Tg4=_%JlL16j*XY}3SJ=TgOfG$GLI1jv2#}KuCu@rpa!Tv?5J@nFS1W)+ z839xZ;|Q*%lEmxgfxuU@5sUhKK8H##g(Xga*(S3S<0iOy-2~xZ4|8)1-fcNOU!!;g zo4y#^Pdk;COQZ?GSHze4JC)}N}QsHYI+u3^{=|25v}VRq5ZdY2IalGl@(gHNEusap1(O>G9+)Ordb!9 z4eQBaACmOyxx-2oZ=dgjuZ!bATv?drS(+)#oRA3n=8;qS-4Xi}oT>4oUl~HZmL|(n z7_PiN1UvA_8HT0R?6xe@Y9txb@hVq_262Xb2{S#B=tOo9EM1z`iJx+all2C3^>5hv zOVWpatS$p0gUbFyT{FF5c&uCwz|3ML2nf!>)BcrqFsov^*|1; zaGt?~H~Ci!I!DBmV;p{2i@8pf5yQO4hn!9yaET6xjI+d!1W)CO+&{M!)<<*E8C*5T z*(fViLAvr)_`(|wr*V|Xld;zs#J7HFvD>c5J)HQ(AAgp2%YxrMk#SDaCgpG65HR(N zj;5RO4C@=vUhCzuo}9VLTBCjnb0vHTdU#yMTy(YZ#|~b`?V4`AWfB;5>SBU7C32At z4ly9+ki6h&N~YPvUjB`0bb<%~@^8}7sxJ3R=j78Ol=9}QWv?pz!#u<6x^{;NgfYBf z?Vs>0#~GPij(-Z=rjd}I-vQ>O9|hF}Gg`r_y-NZ)0xN$ZR9h2w94zSo+vUmI#>N{u z%i+69NGXZtO<<#2RGYgv3Z{4(b&U3O0VdgpM`=_C`Uw<2isgeD)Xl2G4Twb90ZNtma<$-NKJ^fJvWq zp8wWiuBi`w-NlK%(}tbNn%N}vc{>7o<7Y_py+tv05{HZHsG|Hx>IQiE$9?KvzE9hx&2D$0u`oP7iYO zp0AHf+0KntqCy3R-f;$2cT4si{=eDthxiVPGAEebU0wgyPw+?3Ez7Tbgq~nIi-o|B zy1yELaJzH$7fXZ)@m78JYgN%XwhcU^?`-Gl8J?kt^|!ax)~E6z@-r+`IR9#)U;zwp zMlB6VkzclE<qmZ9hN2e$!M zQw~~6^NTzRL*O$--&e@eA%YnhU&3kTu{HhC;ltHjrQ8^qDmYT*MMp)MK}h_L4l}h5 zA9^Ml>U*+p!7*-h6=!jRiVZK2E?u@5z%YI0G`e~P*}&SamZbu%x<87pei4fTJdb9!` zXKn!SC>sn`8gXX2E@kjfK@uWoryG|_T7@`xWabh8&G*wxZ}6^JhVP@C!vEO)(`%)! z6f(VUTg1hbyc)xgLiG_#9QG3Ria=$PZHCU^{+KdUrM>k35t!_j1EzGkg!sK5cVe)R z9R{QuvCym>yVZ3FE6aZcCru@ON6dYoNETg56w_uI&pG?jt#z~o#ne1F6VU(y(}JC1P82q> zFBTs|U_T72^E!pcW<7yoNVx98sY7OO`ZJNMirW|MHG-uzwH^!z-)qEi{A+!*brjfj zmfW!61$HV&i!i$)gGqC8ZMXDc^3((SDaqOofCA0;FwDxw9L?CFRNeP&exE$#r!K!H zt?nDW2rHObttQo{%ODM-!Gi%C3qVC?pdh~cy?b5uWKq@7*G5Yhx!P#F3zXxVUAKt@DTBN*Z^vTGI?KgJe95sJZ|nJqy!;b8y*p8@NN`n*80XwwXrhyeC5 zLPsaSr~n4i)~DUIvunFceV~)zSr;jpM)m4P7^*d+yNtJUZ$8AclS732#oJcPOvVF97^BB$_N#v?W@tUmI-17j z2Ny)D@WE7Lc3S_6^5rNW7Ia+ROv*VLL1yjJ6J?>|t-rTg#HfzJ%SV)E%tUymmp@ZG zFU<1w)cVyq;y6%nc5=QuKcNkgR*R%jXvhQ}o}$v;1MOg&A90XcGzb z&|ZyP^Yi=6tgZ4&)Nh2*b=qI*9~!*GcO+!vqV$tq(>oHCa^UY9JLoHW`C{xWl&k1c zR0P)cHMJj_0%r@FAZP1w7Eu{=+!>Pc6b~(fGEikHuMqqcT_=tlPLO z@vwRp*rM#eC52_rgs*5| z#2d$ibl~$hxjBe-*aQFv#UR9ry-Y^Y2MJO}x3OM-e!AjehqWsVkJikHg!9@PiABPS zCBF=LWafz0z8r=ASI=xQ+5KC^E*=S6qoy-JzSaoatPXVqh`P2Jfq z3~YflDKD>{WqQg??$%paH^FFxW20b=Gs{0$>XJ4 z*|v(8fVVua;)veEj6nHa8z{zAZ7%k0V7+|E z&UjFdo!xfcu3t*6ZDt6Rl}_+UcW=#_CCa~(U{Ks<48~FrEm*>LAuy|$=Gy#D(>=1dwGzUk6<6WYQBpo`UmhmF)YJblw> z=%n?%pn*L8i3(oOXI?CGw5-~^U`!nad(*AKc2DirPI}UTYbDGq;vbX(X}oL}H{Wvw z%m4tCKy|NG0P-!yd&ZU|huTN1=ihb0P%e$UJs5d>t`;mYV*`?+m3`LhkQT~iBnL{D zE%Vfm0McTWDaY4ZgnPdL=s^qH8pIBv4NU^j8_@f5T=?XbmcSAB7Df=Y?%gF-EQB_I z%Ft24Rwmfin685RcUF=BYxh2jCsPQ{C|Cm2d6`|RW)J`X6EZkwAR#;sGG-`MjEN^TRGvmd=x1r$wj@4H*&oxa8$Zs1@>7m;_XGES)Kjc-6*HASvnbR{jXv? z@8IuDuQeYWA{8oaSP%W$=X3hz_~=TzMEPnhI?v!iF`uS9VNo;8i9J zT(~uV@M}v(f}ik)IDrX-ff*!)!aW_Z#cFl<+!Ro~O-|GMZq-}F1VeP`>tJU=KA94H z@tYL@xJz#B&7a$P2us4tt5<}8`k1b?F7N}ciC9#Nk|-Sg&|Tl>PfH6R$Mqh6zlCH0 zonJ@+n8t4A$aPT=Av{tFRH|xh=(S)}64YD>npHtau~?BH*6;`=rf4Mx1Nof|E3x%} z5&Cy%vjHlz*v0&_W(iyYmou2^F!Kik}L7lO^tczn)f*VSiq-(;elw zz+fVihbqW*(nU;^uJKrd(-^=sln#C#g-xMrQM-6B2TO_Iai!U5QNNNOM>1qKqOXG> z{!N&*xDmxWK#A%GAUzrrVR<0;f^P#if? z77*4lyZp>VF&aK85~djxJb20^Vx;;=v#LBZL76h(vp%j`wpnlZl)=8*7k`x%6v0BI z8Hm-tO`-NKZw+;;uRJALdvq0`INdPCKo^UD=pO#PFT*55L)l@A6OfsQG$Yn`M34?q z>Hj*4v@U`d|jb`;O^XVAxtRr5DS` z)MAwYW7>WKv+Oln4O`NFX2|r%{)>yV?5U;@bn_V`=FYsno31O+sMy}HRbi6i=rx{$mU!8ESW&YD3iECfA3O<1+0i-YM>;R zD9=XAAepGUMh+{**E-A4}Tz`9FVgQUR<*&bfqy~`99DXL|^wSbwMwqCqMHBpL z`qDl&{duLMvG`WmsnYmt@}$lyGayxdwS*ob61b)Hu;s$5Q_A6V%_Q?6_*U4|$5c3Des8Rg~nky4TGy-2>d;$z2X< zYST%fGB_pgGZ`wds{b1GYtscE;u`4?Ty9+8X8KIsEo|Q46hJS=gD2zbz6jM5Ygv`- zPHsJK5%rflBn7FjRZe;iC4*`sOw*LUlkcng2C8#wZnQ({=ZK4_fS7Ffo4`*_g-y!! zXRD9U;m&y_s8j%2WWQSvshKbWAi##=FwGZPQg5|*czBv}zW@MoK#jjj${QLPM3MuO z(Iw9_Vk?x-7i)JG;CI)|`kaqc#rOjGVFxx7|w9C#9VSz@?l($~Fah3k<+K(&v>ri=15= zj9*V{ADD&&LXTS(!k<=!{p%d^BOLKi<&WEAeetoQU~?f}Eev~??c_piICX#HMOdic z5uk|$F6|2TVshR;b$dFSt5XPGzu`H6dxoO6HipF2&hRf-BrYQNpV9>N(N*O-%-?7L z0Tm-n4HCs6Cc%uL0vCukBeNyc;PY_fOnKtwy)##jyCm;x@I`W%sB9Qo3JM?q(fa%H z@W=s5xIPTQJFm~nj$}KXz|+uI;H39IA=q^1@O-z^GC4Bfq?aS8kpQv>|Jytr!(LuY z+R0y-^^W<=uGT=Ldx1T_x$<1930VUKh#Z5e10NP`lV3Uwgm9xK6+E%BJh|LQ5re2D zu9yo}q5$LF=QRe0vj$X$y7MpWZ-~_aQ>P-WcO6zy>g%(wQHXgvX*D@P7`Ii{dX^!5 zC8;Z_$k@Z=O*M#GK-kwzrxf#QjU0HOXAIa}i?WD+YvVou{dXi=mMDPmH(zF!)kBY{ z-DGeDy+KSA+6~DY2QS!3bhGZH#To6V7p9VF)3`BKfVosZKutBCNxvL2oW0 zfx%2k)g@COCZ-2ApeY&^|A-xIMamD(4&f;Mi-XIq;bS`905?f*V-Na>lp%;>Qlz+G z38<_L$9%~uM~Jk{t%1fD5>_W27*A*Xmi_R_&s2#%s{l8DW;DZ80ykakMMUo|@jnW_ zVs>d@So-?lPML`n@ufq2%T=Wnhh4c>%HwS6y4U-D|Xy^z?R)YWH6fd#P;0y#eTKsB?V z0NP&ahFtSxler6#)JWe`FJ0oGsY@snl1k=@?Wo$H0dY@3B{<)+l)00}2`du}N;sb~ z*?pG2e94cL=wpO#mmB!@>Q8)LGi=;mf=(!q2WErejjwtE@Lq~!=*1`|)&KwlA=vYm5l26hl1|kVTB&yADF3^Z(gM;FZcl2t-ZV;Z*bJ!d;fm{{j{ghl5iVB zy&MzQSzuL#NoiaUjPMXTeApM&Sps7E5av>A*&K0i*5mDIK9{o@i!Jn_Pd0YsobaW3+oR2tbp!ZW`fBM4NE%o z1ECtV=~Sfh@xRcGNp<=x4k)t^e1G7}0dvv02PEo|df?CuS3X^{w-PT)vVXU1LmYU4#K zKJTf-*urUy70wqxn6lX+9ch8hg{fOX2b^o{YJJiOyH1sFX4*DcY+whE zdP>gsvBKuv_cX?|@4^`_75qW7U+#O-u3H!uO60a0qsvxGyBsUeuJ&r|GzJGAWW z=)gxy3VQYLPXXiIL8YIWDK7nS_HmF7vs;6t@YXK>d|Z} zzIu7qOH6x3E(o0fTh~r6I?7if=6pUgdr_<~QK2(Jr*r?5nX3_cwtgwbq(E`iSXJ(` z2ajLzQcqsQtEQn!Sj9)}i2K%>^Y=9*H@rFgCN`ejbt%VjZW2kqs$M@^Oi_AY7V>(~ zQfraq_b5@R?^c7M%G)|WN?z=oeDX6Dy$2ibf{j`^L7_iv07=6s5;1)>u%5;!;l&mf zrS+dU+AhO=pt?$03m$&74&Xt-TUeP4FOcG7WL>QoY`8r{iF}-|G`fP?Slz>RfFTOk zTn_#QQA+|oEql9d54kuVzOttH{N{C;4=cmPu z)F3RUbIW;&jM~GqR36;_Il$NHgC605)^RGM1o`POAxv|3394mCkpYtV(+s73vVXKEE z69F*BK%x)$gutUE2HPoC8mj=s!YT)p9S=N#jxMOwCtD}E4CAHg`Ea@S@@!vpr7T7i zicqR7`!Ff#g1&oT2pGv#DnV1h0V9t%cvN=wh_F(q#K)@*(gZ!2@tWc=V5DLH#-3?k z=Y{KEm-BzFIboD(g8OqCnh@>0jAWWPk7I!ND%5iZb}N>HM<*wbH+~C8*3ffc2wL%l z1GT|XWeyoep|Mf3x+2B{Eou{l8mMRXitv&i5U>c6Pih+NN)A6M6|TdSnfYaEym~VypdO{!jHq3c5vf71!l-t0hGmf`gWs4wIxJNF@DPVq1;W zNGl-ET6OvV=hR^HC%<2s*nFY1;dyD&Zk;i29GI3*jMXxz52?28+vRX*DXw_LIs|a^ zYEU@=p2>Z&!V&ilqIGCe?rF{RJwQ3kL>f4LRz8Hw9krNYAIN=isr_0vr#ba zSz$-5zqS2sh+&SlCxx@2%ranqzA*$zO0VL6iYiu2i{n{3I(K^%mkGJ9_5mBk&ttAC zhO5X4c$$AsRaS~%^p4HMo~XGv{1&G@7cPZ77s7ulU7rJ@Up2rEY(Jm*D3vBA+1C+Q z{UO|wPb&{CI={r~WN-b}-X4fm?PWB8)@n@n00009K%yw}xq<)j3KE26hg@$@A?JWd z3W=08xk)vqtKi>-SQ0{Pc0t@GWwWzqxk0`}&x_8jkIuNH!YIH9P-+2Hj1(OHI!!C6 zKMse8{eFGtEtKz;jjibmu5<%@0Rs%ts-+hzT0$4$BqF^z09PP+R}w%8-WuNg6SR{Jv9S)c^=C&s68`S2I^#yB*J4Zo^G# zhTq@DsYBUBl(4k+t1oN4gv^Ee*@0{}u2)gPUct^m?gXj>0TJX608sMTRfxqGvd3m` z8p^#AQy3@3GlQ(U&JEp)00000_NxY@oc>DQQ>ZKbIk>ep7j^!)W8Jak}QUyifG^ZoaAW zJBQc)fslI7fL@T3PzwlJlp;&x+}`E_4GF%XJuTaQiLxC(%@m@6nOUKj#uhG8oq~-%Bvu=4>mEF@wc(Otgs^g<=e`^6;bn7&;X>gHckLq66)zzc8x%4xPcK#U*^P}d`i-#|1~Bsz zeK=}-O}?iPQX?LJscaZjt8W%G&@&LLig~aBmqBk>4i#i>GMLmBm_#8PkaeTl9^P2? zAWg`-$75j)N{vf=?Dzf|$%KpZbn4O;^)$M#0wb6lrPJiJktyzNS!GMx5h@~} zGZdVeuvEfYgw2o7e>sq2D2iL|l@51>WACH@06bb%Ero+L?0ua_!U0ovh`jg{!8~=e zR0E9ni!jJ(C$`G>$2=juw&xU8`9If(aA{vs;qSb7K*mE==i+X@4U?2V{M8FzHKVO8 zk3&k5`>Pm9)m6Fn2c<@1B-|zC1n6mNcO9p<1ghZ%7 z`4!DaWtQ=%YPR^-d|zb;M*VgnO^0=^`rW{9ehc?kC%0nYR0=C-CIw&i=%6FpH%bCa z*MV$;c!jZ!wHpg>w)8Oe+8Wfcrg7=`la^FDZ+@_m#$&?yzZ&or=umGYQEl%ha?SV!#zp_ z-2T8Oh<%>}yEk}NN`z8jjeqVY7z;dkTE<8|tF;dn=ciwu4x`dLtZlq@6pnQQVIGA< zZt`_b)pX^R8oA1p<1jce)t(%Gd`1r}~Cv9>Yk*I_;bbVhh-u>WgvxDCTpK)Z%YC!kowz6QGBruH=@> zXu@Q9f&5CU^$-9zvfhkSE*NW{en;&`?X(D(F(@v@w+ z0Bo$99T|^N(vA5^JFm3Q6r-?b4|7|P4)0_54^w!A(38vs;INey?1YfP+YW4XZ}yx! zryPxIWYof3o7@ay7iC+(Z!DVdhG;Wv(-p@?2d}GdFDHd%2Z*Ta1dg-BMPsWxT9?66 zXC1*EYyX?EY1aAcp1;o7lLq@(M^KfeQ7r2G+F+IOyo1!XR1lh*y~YORG`(%U#6kv+ z45Wvs$(Hs`*`IkeuPZ2;{dSoS%~`p;9$9a!r|t_;eak2ukeQ-mE!a?JnX*8dkR+P& zPQ2WH)t!p>9!$AGqHlyuWgYDyeJ{6gr-5`T3I|Jb+>sVCn<5E2OsL$&8kz^RJI6Iy z)CharrBA3iN~r|H5*Tj_U&D^&m5y|>Bj-VQMPRXQ`~Uy~aIS1-h71DB`gD~Y|7-)c zK((%0d zbTKE&NP=A}Q0lVqy6>}tRB}(P^jy;%a?--93AewA7o(;eB4_%rR_wfW1t7K@nJ ze8{q!m>4FcfaF#oToz8v=18HcT9oZmbDn4tX+bt-_UZjfU+Q-`Zz5(ogQS}(U+|0G zoMySEw*lRh5eXvdFlYs5TZNv_E3dZI7X#VnX#iJUtzR6C@aY*0Ay!Wxs!pu zAATQPxnh`{KpudKb#dt2uOt|MZZfFjii2|BoxbD~4Y>S6uhhsD<#ws*B8%zo2od#b z682J|*4YtHGY}YwPiW6xhw2X~fM;kap_*DZu-r?5U`zkPz%c_);z6i%Ly99n*DpSV ziz_Q?u!Z6xsE-xH1ozhhgycWzm3x|@Dvl>=^kC|`5lkJT4ci8Duq1b6JkHqXNoZTp zc=Tf$^Dz+}XoP3CBD!^bewPcTK??cr=e{#UFQYmgGCn_)Tsk^tt-)eNxDqsf`$p)f z>uQWP1D$GuEdmPT95iW8*)+zB-twm7Lm&gdzHpTQm;Cl{ABiioyD67$slDnRmj@qwS#Xzm^u zDb1tx_gQWc7$!_@Px)+t>*7M3;gptD7ONeU6z{ z49M_T$%6IdVMK{R2)D#OCz7q>lgq4 z0Q)B^AZiK_*YX5oXP3$XV4}?^^XE(j|9kmF+Oqj@zjVh`SuC^=)OnG7!!0amM32ID zI#+nbrTWW-T=Kp|%^q94GinN`nuUH+QoMU_6ObR~t=gCQv<*$I7)%AW%sxf3P#2ir zSTKLMA~giLnRnOJ%G5+FH}v***E;Ji%eggJdTbXtfR9ADjEv8QCRnh2Z5DsGTMuz? z!Wm9kUQCUpGMqIxy<|)QRXEX$F!dF@eW@`G&l;R+hrt1)jleM5Smp^K#Gs)?n4d@` z>sTqQJt>=0W~xJxhqY281n-c9KM{Q&OSCy2YM5^-U5ASWiGLMuKS1@ztwt{q`tsSW zP+LIiL?G(w3qp~<68}JuJnBq?LGEvCT1e_}yYH5%668CBL&B4FiMS<47AY2D%FCNRxI~**7NZLN2(MHdCX|r!!@|LH;Cui84sqEz^F5j_x#4Tr zc%)u^aLlh$c0@1n-eAWFnu zr?^1Aag13F7U%MG7ve#Hya+KXiQq%AE7B6CmNspdPRKY)T z$R0hqA*1qM9_!ua3MmWJE4}p&e@33|6>G*G(5=9E5O_hST6y2wR-}O(D$UMtqJodA zv=`7CQ1j^tAy0>jw5X*$)@y{s@*%K5h)*H9W**Ott=vwN=ZH0 z@i?(>se`vJ*oU~ZCX_1v1Ab5FJM@0a-d&w<n*=F98xdm=D->P; z7G1yo(9C=QAXXm5=&FzE{$xOt(P!5eeSS-KZD~6i)h{?8yPWxa{_XtyyqzKbwzyu+ z)hD%6(-F|K*-QyfbVsa{muTx*Fh4HP8@U!H^hQA!^yXPqZ>=O&c3%DC#>~;Ns}+GO zjAQXtx+6_&2riGZiuSsfE8-!xKv<7u)>eBPui$6~GP5LS(RbtJ1(H@aRR$6nq1x{K z?X_p;Vc^h7V6*16t0fKb60pCDKGBbI8_&ZNO8Vp@)vsXh zq@1d;^sK@@O1iv8fx(k9nB2?s0=V`o258|M4bTc(QxFOOud432&25L2J*(l=23K@ZJ&+K@R62n0$m3{oOfooEiG3A7hh>6Gxnyf=nUmV355T+J3{ zw1VeDQ5zZ(gR%9z9jq6lSj=3K`@Th1M;op=d+$eqFbG? zF)(?^|L4@hyVEB@ky+T<6aQo-BO=1}bEQ(l1aJeLI1}ec3%XrTNvSL{F2>M2NLtsY=m)D$MWT2H z=_@Sm?Bv(WDnTBt@xMPH~0sa`xKIY)a zoyx7loPJ;*EZIuQuPE7EU<#kFOx^dh7faW1kt)WX6F(SwO!1_+AjjT>=n7l^3trPR zZ1lTy|P)j)-1-UZSJ-~d9X*KE5g!7%ykULkK=z-Rk8F{30U8DnXjPUNyb$jm6 z_#9oPSqtg+B1yiUCi2-{@_l@B6XErcwvO06g-0YfXT!g)qhYhIEEV(7Zdd=qhq% zgnt#`<)Uy-XEn@B0SAhed+2DW_UxX7?;{7@jG5j15`KgV8K)a8If@=;OvDe*ZV)%} z{kr5460FKAUAgm(@2CSe(rDi{Va8)q014$UIs^g`WF2hmIjm+hDr@CZ#+i|OeWDn zg_4(i*KaQm`w!P?{HezT$)y7~gc;4m`p;jI2&9o2;E*wicIMv(ctjNn0|&LN)0EkY zJe0UI4A!dV%r8Zn&abSAjmD=0Q@MvYBd}#1L)g;^z{US7u3X{&(6Qu#)Oa4 zDL!%|Bby#vANGuuD18iw%4r!n&>>-|=1x`wVYp8Fj;H#yJ!&HH9Y{=U$G<}&9vrvm zyO4!IaIhSM?Wzwxk$ElHwhK$w>)CR0U`jCtR=RXI?HC=#Rqe*|24yLQcZ;`Lw^E&E zh)yD8DEfw@vPv_D`vL7j{lV|nR1}hBt~mj$LSwwEC}NvJxf;J@000iYf0afobD|0d zXgLY>3+70GNk2r{)bX=2ZBKU>aU<@&MubkJTpeFfY2V5&eHVK!A;0fFVI~&a4CmGJES;!kK{#9Hhy8;jN zLdhbtI9>e1pwmFUUxXr#NAj0?^AjHN)p%T8LsoIr%vI3xd^UF;pKj?5EQrYc)`I$a z>7x%;;zVO>w7<5uTgW+wqOT>>a~gJvCj+il`~zHEC99N?!E$+JVSI6gCVH!SLd{at zEY6aQ(lR`K=s(Xa#cF`Hdid`qEduKtjFB1Te&>y_^x-S!hZrGXM}RM((HVFW;z%2# zbFz71!}Zz(4baj{Xw5W|XUN0?4bSE(Yr{6-xz+2tA4rdhP<&;Q78LQlGSPu}YkRG3t7Bzxp0c?QQMY zcR^)h{lkRrc1BT&;}iaLLWw3ZcExf%`Y#Y?b2k`p51Q0$LQ8`i5lK#aju>)?zYnzm zv~WVZoruE_U#%UE$A)0={pH3Sb!g3P8d&Fv;s3Ct_|9$K;LIa#qoj7}kc zd6H9BJETIR0&nBZ{+u^CWC)H|-x5~1-@(ei5^EGcJL2cS`<+kojV6b-hiF50Qo@<@ zXB5kvZF-`y<{ z7^ygp2=!E5f!v~7q3>nW&R2nMFrz29T+BE7LAZcbRTDTULXRr7@=I3#8e{1141$Y} zNG6UdnCEPx^x&7Z9Ys_AjYOY5BYlm7?Abas17QK#uV&BaQX_)q!juj^7;RtArOy%s zfc)qTe0hg_@j|vp7i_~Rl?Gqz0cg3h&eM7Z*^Aavh%n!oKe&^pfIRaY(rD=1Oga># z!44?qq5H*EZ#d!+bfidx<>i0}vWpaK^ahYY?K z`OM@~hoDyO98v5m0uqF9xcrOo5F5QS@<3ROS>cusL#LCgZq)%G7ZE%v0d{Xy(V*-8`BYO51PHU)V30pM+O?F<6rTE9Xf_8 zXF2}6LC(t|874$+baBE}A-<2Ne3VgdOXacfUSp=x%*M=bSE?^Hg=xip3EzSOseueB z=EKel$&c9AH%t*k=(^FJf`~4NL;rKSdi4i9m3z5eCid8vD*x42hJ(h1I(WKS*j8vz z)(lOy-5k4{V->{wYWnMlnXIFjwy3x~*1rZ(fP*>Ue_yGfWsJ1p^J?!}`r^HT9aK2K`fscybbX+@HytKT9mU zUn9S3Ee1XyyeYNrP$K>ax>0M|M6`H^1+x%?T#Dw3e*_;dsCKLixb>{_irD%?{2-VE zAPjDDWEtFt=;VlpW;~s?OfpL~16WQLrVSh9Y4nNv^4+GUK4B}!LMVT}<<9S19C}`% zY%fxZ=}pSE9Bu6FpEr&0pFH|7lK)COcqJd+1@+&L>4nedT_0VOudNU^%d{}zH&M(C zdJDH(WSUcY!=k2u8cIa(tIZewO7sx|hWNEl>{_<86E=~9!yf{krwCW>muVzy@|8oGo$rw*44}LN5>UYhM z4KXlg{+w8cp6&hzW%J2rXZF68Vzfz%pG>+d@_(02YS1*8zn=tgr(~b2#qwu{rLuOq ze#{DA>1IV;#v6rzjNwTVQ60kFQqTR_c$?I?+z!Q&Hb_v`DINFZEl3e*8)^Z?{PwL8 z+xcDnt)tnG3IN(GG{tDjrB3NR+VanhlJq&P%RK}Ph@#Rbm~dp{0m7;0{5h-KTNBes z*|TP$6+4{L9HDfgnQO8AR5fotDr|lpp2(ONe1NQewmuSjgMJ~mziKDG_MI@-QcCGT zV|8e|zS$~)KfeM*kQ8dat_kPC*u+(n8}8RWMxoU=Qtk}f!r%9!0ZaGr=a=U;pgzSLaeFfJ);+bv>udI){lC%mg#FP zA|h4|jc|1Y$E>>1ZrMfZk^4i`_6^e`;W3s@tYakQ&#!Z=m>~_RM&$4=ad1fs$R~y`zJiWPVvR7N=yKV|&~Z zmo=?XNRl^8*|{K)+hzOe=>a2ig&}Y@g!=RdFKibV1W4`zb0=FJ-fipGVyA_GB~;l4 z&>Jj2@(x)&6j&4~$fq;zFO!1A^PW%FWjAH!E`d<6!r4VRG8+0c=-xgTdqPN+*plY# z`vkE+UjSR(o_&W@q(L(92(4Rq`dIiH?~v2+un=uTlcs|2hTwa%q9U1BA3h2o0A{`?8o?P#|)rW6_V@-|9h0)M4->Q-*Gy16ug;MFg1=t(J9 z(B`N|Fb+|=F3uyGCS$t2^|VyL#)r0Mman+KsXzW{rJXlVa5+_rgj<>&8vm?t_g!EY zW{CS5?qDViR;%wgvq=8arz5a3EEtfxmJqZ7#V&>%0A%ORz^HC-K~XgMUb(}c1ZHpO z%<)Rd>n{e6Qqf8lw`B_K4(ZVyz?j>`Ba-Z)`e%*nYFyt>lyejm$s&YrxVT(49ICv} zUO!@>M#=u=!OSaTlkSRzm&pczIl)X73trvL)k}p=G@VZrnNR#AYJKur(yM5*P+g`b#`jdCgOz^u5;WXUv?yBHMmnf5%O*IJ_hlC!5BPgz= zfqBt1ab0-duJFvQMFwM#(&n~+!a|4ITblrLfEnKUGt`QhWBxo4d&!!F09_DIzO zE++QH8dTUiAaXX?fAa7QhwvSY2QFlf_uBA07SWxQofo%ZlKZW6g0)X{Z3U{W?JiXP7pY&+hLcaJ-Lyd@6D144_^>c19Dt`YyvqRNIl ziXA1(7TYayBaAIAAlHx8=~9ralUfcWn+a2N-IHrx;lntW={nsa!OVDtA{aoU%r`1e zq#Ow+s7=ht7Mn7#a5Z28s3?R>4M=--w3~u%0BmDp2$S%sY$Mg#l%lN{We&Yn1zB@M zW${&yK-^ezeCb6vcOny7>3f?Gh&hVjc1c2jnP z1pqt0T0w^lcUc|GqDhdVHIAar=!uTEJ%H&)NG;s7nL=)|ykeaHR)y)q=V{6KWEhP* zDyHL#k~fy&^XBRb=&ciN*r_^2EXcIcPNEawIyzfdUk52Ib~HjcR%2ro`+{tM zwKh+0-*bxLPhzjVzK6!^JywDy!ly@c&xa)jI;^xw$zh@xrCx{b8n0OoW81RlFv=`Etl|LDKJl_HuRI(gyMkm#k7v9*m!8wf~jR^jFZ z#G54wmV}S(*ieV7Pq8XA&jBhDmo(qHtqbLJBLD|Xd=`Fhy^`i+&pzQ;*$mk05!TjN zBz=Cq?f_Y^LpRa8d{9eVLEl`ecSbY%ieLy@69tGMq=ViTWhYA#5tsxm<4&q zzV6Y<6e?MkR=$vRBE=d=5nu0Wl4r4OMT|u;GgdTD0Cn*E$fP_ZQ+H9d^MZ>Z(tD`% zc6Vp}U+ZCG`CS&L=4(!v)o#!FxQ2UrDR47!HKlx85OTwOp0fN5CCFRw50{ah zI`q3E!9Pnd1HTAl-Qr~TvXKhNdaI)(IvGfjA8FQj@IKo)^r|c8KG_6WUvG+E)2OEJ=2wex4QDCi8RV~cJ8U?NSyn#BGG>x@Ebd;e? zHo-{$Q=TP?`po-ip&|L1w6w-2zpcfdP^dmvc$MqWX6?4;S-;?Ai0*ix6`kb8uzvyO zVORP{wd0B@2;F}F^ESBam-QuX>p#!}KM!7visk=fJnWmi@NwO}JH?4WqDqe%**;}JjWQhA|wqtefq@=%O+8}Q{^ zC>l(3O~ul#ms95_%Ym<085QCko+f8qUGvyu{x*U7*0Q^Lzvdx!5?r}Q7Rmf&RhCoV zv3r`M2JkKjUzLiET`HbxW@&4QSPa3#Uk_sDRyU#bK-AgCJmd)Ti5U5>3EMgBNW#j| zLRB+LLsA4-VW#z!+^$q9FG6QmLmjoD0!?63j$l)Xo8n`bD0~r|ZMwjdE73ayVUv9& z8?U&$SX6raR1?1H9D<$oNoVE#0f>ZfE-jH{-2bTF z%$Lq>uZi3FxgIqCcFvb~GdUpT=JiJLs8U5@!M43|@;@+tP!-Z(o{UC@g00W%z98z0 zB!)(lZ5}UhkLtk!>*xjh0{E7$VMjI^?t1&>VcYfR06(-8Aaqdy;2Fn+B`_x1HShMN zZ9>qy3m#5Y_=syRU|}D<%+dPaBV#XE!e;Eg?fI685;u{BtuJLwMUTa~io3Z)_DtLc zN0h|7RLEOSbD^@!=Hs!oH5-EdxAl>TsgVjxi`HNWMlCZ(RAy46)^EF))Ml#E zIEWn!&Wd<33U_=eFc_?~U*nTdhyVqFV1aBQN=m!L*rZ+(xlgo`wRd#ER)IlHD8hhO zYRREsXSsJe_J9BY0000000000Y}OjWnWF?U9S*9ekqg$DqoTrGl&5Nc6)dd13`Asi zC=9gc0J@fRJ7f{|NHs3&U8zt200001;*R6wyU^^sG^My}#`Pos1A;zg;)&4s?6u39 zY2&QFPv)sXLw@^b6$LqhEfzc_@iw}2SVD&7M=8{&)n?r19t^0$hV^z5{D4yPl4b-- zGbD9h)baqWR%>U{N3G%u4FMQ=MFAbG6MuHwGZbjP*1wFK6Iy!5+!0KGX^JLJ_%dMz zAyCjAt*r?drZh`cM8^!o%TAnh(kLR@G>D5eyy-XK&-Pbkau) z#+sY-E(EXU)q}A^iA-k`bvR2IIJV9zieA=K${t5EZ1iv0rMZXAUuh1xD#=Wg zkJokeOL0eM6ATaUXXS^`VqG4U+ItIJ^6WE(Z+B|M1tYb5!-rZm|KLDP5H?ycQk+@YdX4JCWN*?-T%xP;x%@`p@cNl8%y27l50P*eJynRQ<@sv8JeI%+7m`VZ4Pf9sRudZA^aZ^Ej$jx1b?~d&T7# z0&L$|4O5Ks&_c3?vCdPKx#Uul2SV$0;MK4vLn_D3M@0dVkOn93>ACpi3qhfP*}GJP z?AGIpF*8APumKG-Ba}^)pU>rOxa=?=2mi52+&l&w9ZQbp7Ae}orXYZE6AqvTjIE%# zWGgFvhBP1UQHtg-&CYZH!uyeF)SoJ2mpuPFN7TdH9q|#<`mtp!G6r4HC$hlLvZErG zkTLxIa=}I#Bpf=$!Bfrg&Eg5_B5BV+)+qt_Fi9{+k1TEL^TsAr4Cwio4#`XpQL5WG zNY80F9d{nJ2)o_6ymRDs>!mUR%M-xPoc_^MZfUs3#o&HlxdW&70je@PZOyFTc-0Ar zw}bgY+>b50lA1n;I-C;MR>jMhiKg|HJ zV%%jYto}&-H83&*!X6vKE+ZLACKO$D=8`xa_?oFHEAd*+{!l*2-wVM1PERZ5`|(bl z_G+X2gCi4Ia`8X3N&??^1w{V>szutY*Gf0#^uX?Z%5*V+7yAoo(dk8sVj@UmIM15hu;t_C7K;^>6#C3g5j743W)JX}=_sc*53e19v1J z?=M=yQqcZ>K21`hjD!NY;ys?h2tr(y&6SF=wKF@43s@XorZ`F$o{QRW(PRbb|BaTw^Ff zR}#5_6U#XdmRsWLkPo)!Eg!wtpf}(Kn=49wV0$lKYS}wirotXW=={X}I4JR)-|gs8 z0`MF@Amab}%1QfeR!$PiP`7;T`H3x0+c{rT4yb7GBj)9PeRi78Tu)P5A@D*;m%tC8U#ehGmbvO^5#1eE~pF z4mMQuv~k8T%5cJAl=`Qj_j=Ri{CWV5^^ScVk3v8yFVaLlKO?|^RCLfmu^7!{6pGv^ z@Rtu&YjFQg$>G(8_?-~36H(L??g7Sl!liW{xsk@3T|>0ZV%YeLvNcQQOj)y|yNiLR zZkIIEdlpY=-cH2O7SGKaxsyUx`LFX%6qh67+1L%ggX_%4I^p%`PjI@96rX>PqFEw$ z5F;?nZcWvZ6%I8r2@l*pH2NdHNIr+;%;7jA6~J#_E;t+qIWv<1%=(uw>%8`Y&mYPm zTF*>B6iN^8TOCy)?m>(rt~+$4a#`=J&XmYVJC!?uRq!*XgOBLGO{EgvE7Z z(=2eG?df#E`%_nSmFZzn*dCyHDu09vf>@trv!W+ zoMuC*-bKzD2B8XHtr`KRk*>i&E)3|Y`HVbdlGL0d8Pj43u0h`=hL6GGo&WuUF61!) z9x?LnQdNt=TQ$A)6mYrJy0!V;eeS|xo5Q=hRoeh2?Y>CjBJ7PyI*2k;82dv)-(Nq} zJc^-GpdX8ml@-`u@nHLM>Ykbhqc4)!x}b5G7}V6_bLh5JfBQah3}#i5bH%mMG-)_x zbdHeA5$Akq%|%sZ?89&4QJ%eM@FHO11z5ZnnC0ghvfa|o8r)4mfX0h|!JoZu+z?-- zbmGD+BiTRzi(v+pMmG?XU#I_pt%=KVrM(VgYnFhq8E$i*jTiFR2sbo?Pqf=OZj3T2 zl6!vx!kk9BSxU@i*7&S9r!Eqf8S-HC4ee$oUQoQN{nBvq#*1?)Z8Yx!D8IXPyIEM zcghV432%I&QHhd~t3&9b-`gmux0D)gW45Xydthw`4EQ2*Jj?yS3PCE@E|rdZ)svDh z{kjQZ;{bC&jK4_`9H@!T+%zl){&Okk(-XJzR{EN56?J3f0SF|KEODkci4WYFISpKd zGTWRnUu>(*T14I+FRVi0e#;`8-$dip^x_Fet=#KW$>|p>O%X;y0a;)p|D~8HE1AM# zi{KlbW}B`kNIlfXV<{gWEX)<6#8GK5Wm!iIp51+wzJ`{I0vB)BYiQ|6ZW3CJ<$qJ zMlLap85Ys&l=)cmD23CK)(X||1&?&|gf4}v&(JtqAHzQ0HdXK4f{PZPfcl<6pc zK@rzNnpN$FMAd_=tIG_6?uzT+{5uAG$yK&{Y}4~Pl?{f0(!Rpea(ndL%pMFv#d?$A zSp-AES^t{NJ(aSJL?s?i7QKe&l?Qm-P~#iCUG1X(#TBEdHZ|<0@V9d_IPLI*tS0ow zcCKoAFifrf3?6t%$BxgQayhLz?)W(l47p%2mE5SUJH$et-5N{hjKcf8|9pus&JdNC zFtWt7(z)liF+rXSRq=$5z8QdC{YZJ^G-?pfae3|b(f^~rO&0D?4@5&ER}_nXk;=Q8 zMzhq-A=|OY%X@%L0C}khAUu}CUog-3%{O|EoHCD;9Z1bfBVnK$ZScn;FQ*`Ak-+yk z8LFV$8W~`wjtmPp2XP~^rdBN+i)pE8zKvqDzV0wG8c*HdmG^#xE$naPlpcBnKo8dt`Ws}J5njvqswD7Oc6%t_;m6nK zS&rFm-9y18^|V&>iEFCo`vH|R001GSfsh#FFV*SM8h&FXvn}6UqGI z6{gaSJ-giK>Wi0Afw$wiDfvui6Im+kvH5LO;665;CBc%glZ zxld=n&4x^8>E6;E{=-d-Xw%k*{Cj!eu2hYj9PuEUr57|pE-O^1iJMX!F|w<{1=6Oyh%aS&V(<7cZbWM|9iZTL;BJfeImx^gDJdmK=rHWX zzguF4FqAZ>6aNJUFJWqz-G5~_0tqPsA5U9}Mr*(|!f_4#XmF}9TQpHxBjcQf5)IC=La4~O# zizJN>>UpDN*&V47Hc;fI5dvD)5Hnq{I^&M~*uTUh(!8R(Zle1Llyt37%CZ>QhHs8Y zYBco<&kn}kA0;3DD-Z^`^zPCj37BO#5t9Hxtj-TjYYV9=VeX&+ewwc;${fCw`U4Vx zp)AF)Qa{8KjFM(l98U=HNrAy*hG02 zPCH)_LG!?kTf5ELo$G0KY8 zu>x+vUW9<O81$b$9F|E8jvLvG6b~kbd z>{#ej-dsQF(<7PC4z;L3PFZ5Rg%K@?sT3{W%6@M~llJSjw$=~XBFxc*GdA~AG1JjI z08oH}ywc`keo^He)Xd5E4YOa{qFP~jqVm`KhZS0%L2&nWl}J4)?0p#K?MXh4 zA%`%S7);t;f*rpWL95TAwt5uF^;V}WBGK_)?jh^0a4D@ zg9*WJDwS~4g2fe0tss5n(ilUY#v`TlJ~^Bj`Cdz-OJ@#|&jgpPo}=Nd>y?to_L0~Y z?bB*ziMx9yUtl~ZM0}sGs#g=WDK9%^P8ry;!Mbrd%%%e+hORr}*gc;OnGNeC5|Q_e zS+mh3DXI+D!}Tho9r4|`;(pou8|LIMM@6n`Nw2cMZPyE6t4SL8 z4uc~1)iHGT>ijyzpR7qNX_{U6u@3rG9KzDt%Z=4SE&`k;DXKtV@Xo0@s@%|(6Ba&7 zwrglYgWCKvWpk@}6~@3I8xP(pWlT65V@#m&LA3lbqfeNE99j3ju%ly`fln0!iCz z_cY8ThX9P)KlIaPF(cg^A2W^bjV~|uab|Vl=<@z;b3O~Bp!T9O>2_pko zN3b{70jFYAR)G)caZRotSlRC`&fh((l((S3tZ1AbH?u$khKjtyORvKY6v>2#DoNsPGvQHWL>M$&V)qw@9JU3 zt=exA^0{aM%Ia~eby;>dOAu}M7o7ixV3l0Rz!yDkRgfm=5tX+Q8`bBxe>qCbi^wI( zghY;#-iq+cI1mOmS@D0gXM5@Jb@uF1)!YAqXg0-&FxA7Uf!>w4+*UbpWMS((3NmIQ zOqPj6)`@6;nWu(=>C1$Jd)KnGc18I+le{`_;(GxV|`|Dor;~ za>5XNj04Jb|EmUcaHCNSQ_t9J`ajBIxfp1p&-D84_N=a5JvsmQce2LU_JS6PJNBmI zvT1zB3f!U~MSc>~vjv`Ay~DY5mfd&O1rZu@E1zKRY{wQZOVLvUS7xjne4rX4pe}Zt z?G6Y>zBZE`d!06fzH=9vU2fCNow95ir zc9Qxv@PHI%?0zf^fL0Cq9aU&y^CvQ@de7>YR8b3Z2sU8zKU!8f&Ms!DvZ?@Yzz#fI2wVi0(siQamtif=@$ zPQSX3aMHB~q}b*MXY*Vs5ft#Qlt}MA^pl7Z)fU8$7f@&`hYplK%p_E=xjD1Hq5{h< z9X4hIO#K+e^mScmRSji3^{_2j&#R+vCD}h)L$qv@0EkH=yA}~P^9e5B0oe3h$uJh| zoMvZ6c-V^cz7MvQ{wG+{*T4gJblFD|`tpCZ{2*APR-!Z9zskR=5;qo?gEUDQSpxy43DeHv-c0h06vNP3Dnz}H2T6-~CI03Gr0001pbR#os-Id>7iG%;|xJ`ks0)ORi4#sG-jg(GD7 zLM*S!m9KeV2Fcq-9DI0GzhzInexK*f*^&D7!H4Z8$*IJVgU3>5;l(tv?y_d{sOf_= z7Ip>MuIncS7Pe#O4q-}#>FQEMSPXRp*kW+uenBme*a01Kth^DlCD{Xjyqpnv)%8p=TwwGIP6B+C;+ z5)C164MZtY%G27w5jTayWUjP^LT49ztww=Cpk-e^wNl%b&0xgUqShr>nMU;t*0nu- z1|fBObnSo18t!krCW;@l>#hG?k+29Av>%#LP1me`_5ob$Ar}hP< z=6^$_JK;jE2sA}v99@+@BJ?Dj105+83OMpPNSCT4X@+KLh}>Hjue~eS=U|XDVBOk$ zjE(dVZX1ORFXHf~PI@Oj5N-3cP{Q)72~&yskT-X~pYdkzoa3uB6K@dh^jc}AcS)a0 z%ZP0{Pncyq(^X#30JnAU;lfUyPT>T+tC{c9R~kPlTeOi*G6B92h;xT6wpJ*kWUe2b z9hTDtT^Jx8ChAo%m)LLJ1*q%@%^e1LA>j#YK-Vk~V;i=OtO_9+T$CJz3hMXVI>Bz! z97*6{LXiL2#NKi`4f{d(dhKH6hGF_(I5Y#q#$#n+ zrSk)^;lVZUa)lWxO053u+Iy7=4l|neSkv6>#>t5+dI0QN=H(*md~Y;f*@IR^ZJv~L z)*tJ3cZZH0QpgWcFK&Pp4geJ!3x7=IaH_tgBohJo6O9FTVkm?0Hx*PrM6>u|)St6v6Yp>8<@Z zS!(ghB(77Kf0>mjF!{B`)dWpg!azD(vZCQD=)iw@npN5Xy9s?iOmgn(3z2p1P>Ph; z=e~np^v#I6b`}`!IHF2{SuDHVXSe^Wf{1!&(hN>R^jVBKnUSMD<}4K3hks2!bJy(^O4KP$SQz@KgLXpa%yfMBN4QJ@WK~Xbv6jeiJ$x)NI+LjMNB^S)50RXh zJ3(it>3E8|Yih6fM4G;MekO!+Pjeea#a$7Eo@G(K00Yx{Ka`Kca^4qaYV@*m52$&> zZi`T2RDs=#?glk?+_{PoNY(Z|$*edHu4hpWyW9$yFo8yAqC^tn(40g&HAh?T0h_Nf zsbv#)swAy~<}lv#XyO}(alB;V-P zjR^@PTJX0|sD5Q@KpITsiqtOYSrc*!5t8@b@jeX@>o>c-3Qju$zU&agnfLfUH#P}` z$LZD{BdZ8!DgwBWYjOD@Vb-v#k9mI8gF_*7wIE9>?CMwde#_%}#qC~L5l^aZoe;;y zhgBcnE%uvW3GGA^6Q>mt^bN>2qU?#lIQ>3|{sE7lMpm$m831x#HNs(~m7otq>P*Co z{s4O7xF3tV>rs11KN6G6WIu$Q0AXu_%A6#N|48n;>?YO`a@>+VrTUcy-Z8^;fn3}* zaN9FUN@{px(#?Tf$vK{FN_7AEuSwf}ej1H#;gR}IK6gf_$Z}}C5~KJ^ z0WVwWY6n3%v>LsRgA7GF5Bn)6!-gIyAVK^gZDrS!vN-WM4q`RdK2W4c-2BGv=Y@1a z@R^7M!3bRGl>ATMAjP?I)@2}q3BCQTvd{o|SLGgUmxQIawF-qQYBqd-s@*zr6q<2{ z-xGCFDCSm^C$hWMt`hLg{;!r4?%crD*9WcHJfAP!CuWosX>20r1%B<9U>){gI!_RV zEFnJF3XfILxFhkMotumw_(qLnpKshGTP8ovx3%}}19y;y11bEW*Q#NJ=KN%0&QISR z34-ls`=LYA3_-9dKCH;5I&{3LQGC|xYY`LDjZQ{#^ZzP(D8I;NkH{dHrLv>NHdCdD zC};6l3s>Dc!Y~?6Aq6#xhJnHj@4YSGQ@75XkVGQiDTA))VN>z$xWk6vdZJ&J} zp9Yvw&c8BG8{ibGOuM7K444i$5dyR~fql7E!b_v=HqP$XUAg)9p)&03tp|T3`QMYB z$y?;sCunui45g?tbe%< zoyNq3ZtH13>d}~Eq#D}im+`<%=_nytbFD3!4VpRU3*xnS!jGWc?z2jZ}z}wYWW%5dNhY02v$v zP5%vCfAX^O&Krfz*WS_V55w6YSDN)&reAVBlo(lR$kxA(nN)?EY%KDTG)wav?`c*>e5I6 z+W1f1BygDLAG|>RzevRJc0s|QSB_*c$(Kkwk6E0Z)X)P6;n6jod+YS0kLD~Ev0*>0 zjZutvlG4>AgS5;9j)XC|2jErz8i+&NN zF*~rwwq%P;df5iY>Z*FxW;84=2RVuOJW`7Eu1+|(ks2+H?o2BOXW?S%VonB|!Xuoc zg;W=I!$8w$MK%X%;InJHx?T|Rtp3?)4wXz31QtS8%tXhT4n2Cjgse5LB=<_UW{U;+ zsi`{Y%2<^2%hm3Y+b!OG*uY}LVaL$SX@w*RpNDC{6jCc{YYZ?DyEx@=IJ}1lh>SaE~eDJ~qg_lOTVm#at(|RWlfK`xlwKLL36Ko<96vs~WGH*GMs#cFc z>dycjP!Aryw(AER000000000000000H2Ge2cl|8^L3oC$Hh0pf$pfDB(cKGjzS%3S z;zz^s%upmiJHWHz71*#3Z14Hh$*+?RvX>G3-B@B=aLq|M8sL14yayx{9Y zg18_e?>DK{Mya4+W zvfq~uUIu&@tTQZcN69|y3T}Xmfo98|?gz$Y9x$Ys3Z1;b&EB!AhAU2)6hXeG4<3M9 zYaO~DoL2$;1`3dUwzv&q7r$j0rv*JXZ&AZ1@#JS=7bQKD_t*f@d|p>hO&Bl{Oyj}i zwCJ(UaY6}FHJhWKOH{hi(0rF-8=|fYc=7?%G27~jewvpZIkUZ_?R42F^lZNneH;D3 zIjb(t$Q+wlNG&)s+5bxxavBM-`CI8AtHc@G?Y}7QYOXP@WogU=yY)r~lY%}=T)vZh zZbb)ZlGo}r>8wpdaz@8RU_eJS?`3?^2sG)qzne^Q%Q>w6_5#($X+-gYV0HHx%Ozxd zHu+I{5HxrH4dHKaE#;mvJFIzacVF=_TM#uSLDC?h=N3>!O35u+ng7U~!eyNRW~Xq@ zn>Sv}b*)5W8*e%EtzFJlBNgW@N^Rvpe3>>^gX(S@ws2A7nBbJ{;o0Y!K!)3>OBp_! zJ?fxH?#da@OH}iukAV5~B*9C$yS(h?#*Lrh`-Yew@s_?!v0h4YGfE8narTD#rPvty zrH>R^9fF@7$$cNG6T`SAh5-S3gwDSh$x@o!rfukh2<&GWr}r$7sBy`o%3ce+uSo_Y zn7a9S34PnMBNhC0<%``R1B+$fWerGf8}$xq!$LU`)6QRh@@fxTEcrWQzRwZTz%6zy z;GFxVR!T4HH_N(p_lX7SOs%$9F$u~{n1_9&J(xhF))KzsfsBSjsM{NZ5iE0>{rfaF+iYN3%5~oOU@<)pTuK2p=(lOPMG*zdCvpR z!L3zYY%B6e#4#iHD)`uF<0c#@X)MS~W`-szB<6^>`;h{$J3my=C$Tf;MXhJufDCMl z*UtO(5xN6{!99I@(&7d$Y@I{G&C@FCPzaGYzp~e#nR}Axu?N4;^gENalfMX@lj2C; z?pwo)gkn8gLArfoMJCP+U=a*WCZyDqAJAZ1O^N3;UDlz=T|{Z8x~L->Vrqj<@!K00 zGRw>PKoe!gS%Fp(xfZAt#$N1Fn^eaL|C?R$j|sRFq|oY{FT*CV*kRNXcK6HdT7Nb2SlgGj?b`(ZweGu@R%DFS^Cub-r3wep%A3 zZ>2X`5aKF)G}DqjwK5l-J#oB z$U%Al%vBq_BXNblUyVPdyqsvh=+cQApLHCdKg|1>>w>T?$dlkI2Akn515`PRI#EDf zg?1{E3_R9RDeZ%?0AjANzztfZ)AFvUSDZBGJ|m*k1Ux0CrklEe)*%gFNG_f4gLriB z|F_u$kN*i)nSYZ$n)r@qsUC|eJCBVci*BW_G%W58;baH4}Kd4a)D{ZgU4&1G=>~q7d9}JM18f{AT(7 zK<{eYgH`P*b)7XN5_{!b00}mF<8Nbw-;1`H?3b5~zppp@npXV+VYXksFa;ufI|D+I z=ObON?mSPwCRl$$oaa=Z_;?vfgnq>Z+2}qr z1-nIehBLk9^>TT%x<0BrjK#WG)0%>P2MN67xHA&9?bwxhJ~94e zy;&@p$j7I_iEqf=%pKkiyRy`i1&;pPM1*w$SBbE8W2TFmBr z`CB5g!7{DM?MZM$JEWsyhZkiRUuiFEChx^(h~XdIo?F%Wo)cc93o5{wohqQOz*l;n zrAVW84zI*8%h70z=DLs-{QD+vsm9h+pIq~+twS=lp8UKPnYiMZF3Lu4P2JfLONZX^ zV-sW$s9NpKH>8N{qjWtw9p>PzrDu_zs*@m^J#p^~G6ghcXLGmHcxD#}e^VrDgf&x2 znj&l&>=nq0kocC^ZhDmBlsq#5KeG8&2uXyYegV974K5Cc)JA=M5)NOMPKiAve5nT1 z!sLhU!296wIMVp6nuM00#Jje$@S83~`~zb%}3DeQ%*!!{cAa%E+6eZ)S$r)#Pgfgd_1xAgCNLfJ%4UaWd2$ zJ8|JbWvoUpnu*swPbbox{boY_$B9ZUBtEsQ0bBEyJqn9=rod8z^_YU9RZ)uCa zU%k2V|E5k~FsyNh)LXAkZJ!(XBh9K+4f(Wi;RFv>bC8fZHFP>*XN_*jLkb4+C2^j{ zk=i=YkFo5(-RT@+@!ziPP9_AEM!gECOshKO-RQ2*PmCRDMvOO~YzzeB(xNd%E27A_n)wVf=1;6eEk1lwJ6XOi%jK{bZ zI=s8Q%(6-h1Mw~<9 zH5T@4|1jZf?#a*gHbK6i%&rfkQ3v8ugB8;0_Qz-38^hl2iVc&&Szf2Yt4cUXtc7ZY z`kxj;CiJN?)rik3VsUsAD zJHg*|4|yuCO##%=Q<~>4wq*5-fU|c{xq_SJZRe9sIK62iNvBHhebW&|4q8{sq11oT z_MBRCPFv0-UJ2_uiDAn4FLAB}<@DhhKRZVzlE~irY+S%UMR6)VMvqu)9;_=>u({BE zPr@KyDV3)=b6%7DXu|PpgpBQO?FH8Cir9bboh0FX3^X}9t*CM+3_i%D07Kt%>_4T$&O5tpEL(3oOfEMdPzy+Q&G_L+l- zRlL6s=18PVt#>6LAI{glb%H{;EIB7jA22~|JoZDvEHKF)yqdae|MQ|!^*c`ncFNz- zcQyx%uy)j+M?Che6sJPR!dXB;DAf`!J z>GzUMKN#C)fPeZii!^%e%nPIStEECp@IQi9@_&A_na$D zDOT_p=SSY2>8{h4lH@Y6f-i0ueU?^Q%aMVjOYS7QCAfAfP_F zJ-l19aPes|?dD%QJQ%?f-|Cpy+49s3>a{8uy}Md>jBf^TK}Yc53FHl_@N*aNZyxmD z&Y{G=7BJNbFS+9XP@DI1#)|gMxILh}19-G5T%sdU!$u5>2v{+KRL=LZGU2_jY zWsB+l-+X<5lLKwE9c9`;8PF-anAYr-WQu>QX+$w7hoV6ek_?B@&M9D?z-QA@z;1tz z5-UPFpLHFkBIK{#S|%E~5D$WyMGzZ3@JZj}{GQAXz>u<@;9tS1Un`+4NPks&2ECK8 zn=W)(<$@OQg>X)l>XsC(-s9CUG#Ka;*;JcvldQK##Nt+KwA~*NV_*iR5Rgj$EL)cz zUj@`>E5_m3cw8k$xlcDbS8Ph}YF|1P-#cgzVMv8j1MyI=q#+=X`X=e$-s>Fo znqSF`w5sLCT~_^LktlXPc2|^K6JJY)dl1!&-ykKr`V|`+RSG4@^1Hm#AGd<{0Eo^y z?`@0a+DKA@r*5$p4Y;%d{#y8vV^2Mlgl$qq+)v$YSdbSO4zKJ~=^}MIHYniU;TH5q z{CWF~ctg)yh`N}=d$*AjU)GGe!>om3Xk4MakG;kx?+4iq+#WkdVeIF)VBCGzc3i&T zCDcM@`q|!E+b)a}LH=TAf?=&Opvow7@y z`JcLu?%$&-PyKAxkNOvpk2F>f5Nn|mK|^QQ#=8{D=`=5}!##2*8w$Xfd;v)c&+l_>Mln|(|E(QQKytGi*kK>-{A_@ z3)nt=J=U(peZxWr13sebnNoKU6J-PdSzT?B5zFXv!2i(k$(6rx#pSLS=@)SiG;k9Hq|08YbC2CUm@@?RmujiNeB zJxtRwk;=VKu1Sm%*SL^=bm(d_K?*h&vo}WsJJMR+_ib>%)s|T4YFLiS+*o zsfGSzUW%EqFkZA?ccsS9b5dZ^o*Z4O3_G)E@A?LA7K^m5BFDYIV1D1g-mhfj(^-+t z3y$hh<><$M@A{>2#Z@RLAMzwJUGfr!EvQelll-j61AUEhF|@N^G9$TJAg_F0>9TMa z(s$FzseccvH_9)CQg}0kanwo)1H|8Ly?@ViH>wFV_0-Z^Qt>esPg$Igu zxH4a-*#os84st6cpLE;ISP64~@MSdJpdG4 z>r_|gwz1e>@!=XfTFZ8+^P59O!939B+`I(m=|o9dLJ2bbWi=du1V8xG3NXlH^~sf- zyGO2jBa8242qz1{zei7> zU-FGH8Ut_fy{G!}agD1M;0YQjDh6cTo?G@_AxTIP)^-D;%GJ%46o_e+JUI;SY}CL4 z2k}zOV1_=GJD-7Ru8dz*9@a`AdHNYSglliS&l$&)#vdw|0|(fe)5Lg6e-s1Um+sZu zP+;YZoYQ*AviajxAr}venq}z_{i2YkmCwvFfO2jTlu|z9fd=^(7M{u-6$X$$#95Jz zQQ`T`9rWvojKv7@zU|NK~DWteYn|4LcGB6=_>W1a@e{^-FL|;QqY+ z30;**Ss%EZxdfd&U~rONXb{}-AVc( zPVoDnTKvb7OujkeF@#-w;Yh>Sgh%zfhkX?MR7QR07vrf0+a6+Ox57rPOm$ih28B?V zp7nrbzayl7d_vf#Wh0jk>-;NDyijHFkLcs+#CXH?ft?sEV;>w zQ#ZRapyXNL_@CSE;;UTNQOzg7CgJG|9A*Mr0`+;Gv@Y($6`rfEZ4I36=!tHNt!t3M z(P{QG8#W!gTgG$jMfQ~JB_~~YK0vFF9499YLfR_F(5uri)^L&wmNvq=$d#no4}e3cpv-RQa2aLSBWm zUl1ZBLIK2IkRp%A)!xB#uQ79_=#HH#J4r|xSir``tFf4JZLXNZMaU40lnmD+^mQGI zqh)=e6&7SS1-EG&q~~Y8(hmAins6T8Bf%rxp=SFZWd0Q1@W0>(=toaQ77hw4t_ZdE zL?&e#+|nve5t3Y~|Ds&+J2?)PX9qCHfNw12IZ@NG$u3#tBBjEi=pw{BD3^yESH{{B}xmikEv}q62{>)px~8<*P3tqc|ODQbF-+x&@`ROsY&$Pbejh7G{yJO2TBy%Uw1w zS=#)-ObG%|Gi|u9OQqqqKRQ=ir}+wAyEr@6}RUv^F?n=2=}`$ zrDI4_Bc{|Mb>j!wse!sSl&d+GyNI#g>xJr*07FpJFMgs6KWKnobT$*uxf;rC3u4q8 zgIHI7S#04ehq(-iW)V6r`QM${+jLn+jHfZ;g#FXbT^Qm@9275!B;HhfMf&JUHf~{X z+@;zf9at_8rEJ2B#2qFjM?QGnn0j0l2a9+1lDt}p^-ax=* z`i8WOQuurh5Cka!#T2Z^PB$s1K`ac9kvA-#og0|j_?LCzzCNiC^fpD~`Zy)F&oJ(V z7{f`z2;E2PFvz~(F`m|WR1-lahD^6lzzQ*TtMKj9>~lpvQ!3xZ|__$!o9fR-^&;;ocTrUzb-*PvmvcnqS5C%Y*hXOlW5s;5uKc7S{wfJ(aFsYUk`g-1w>%*ZaaCb=+{ zkLr>B3hHgQYX|;X8~sjxP#Qu&D2rYmKeKAr7ZWxfu&RBvdqHo!Uz8sP$h)QQUGZa%s&{Ke&M>O5`spt+2%6XrPmaY+OahU^o~@B28j@R~klMA1Kh z3;iv|uP2K7Driqdy4u7cMaq!_l{-wAWyBuRqO>v> zY9Q_RTFG|F-m~i6gv8v~;s=~nB6(FENK0E6N`tXNWmFkYHB4Tj&ylR2?1W!8((4Wbo;G>jh zf;B#p5RX*5Oz2g^{pDs2IeH4q8_rVdP0M?ieOU=T5G1%a<3lY50@%wuDWC^QvDJqy zH?2rmN+(!$YYE$s%&+vRxRYqkhOAVFFw+0%Ix8Tv@xi{=pBUs9>Q}0hax|JMfwl1* z2KX;~vxUh}41Q0FM?&-U_6y;K73U@QfshcZ)%qz*J(wWFO1D;mJk8`Vk+%eb>3M*t z(fI_d|0L3R-V{Vsu~8_@+qeIy%93{jUAAoD^Uh{0eT(2$!?%Kzkbhy|$U!tOT9&7A z79w)D(Jy@q_o80J-lKp>K#91SL$7W>;HV$@+}fg^%l?VFDJBI@psRVBKZ=q-QVVbraV>4Ya@)=enPWA)Ci#%%WIzGY7Zv5(xiA%S_$)tm zP!^a$LnysnK^*$*zc@@`NYwQ$6kC8xqnZKtNb7Uw3SB9`$X}l?r)wyEMrX*_bNLg_ z#}Nx<>7pP3A7UWTN?;RwD1|ID8SZ2_kJ9%ut5`-=5+k`J#79BbhP-^I7voeH%(xdF zdDj#3^189{=mp88F3WNsQtxB8Gv9FC{9vnjXv!=n3)n0Po0v@Cj|P$GQ;+A1<`o(qH;H^6Us94FjtdkuNxwFpAqAr=YZC4z%Z z+QOm3B)AhE$lMUb3Gi?G9tvAD;t$+Rlu$jtDs5}^*AcL;7xh+d&IlX2FNRLzV_2_ydNdp2Edcx>!_+$3;aTRKwg0g1c+u`{$+4J%iS9A=FTS#xgUM2?YPyqnivdQjA`r% zvXPoA)`nxrsGK*eN`Km>wH`&+G?(g|)G>*oN5ho)4(IvNYpH@s;S+W4nzgft1^qr^ zHKs1JFkVx|Y>3`R_c2E|40BmJ3;kEXO?OK-TLmBt))(gVdiLub`oM*?sr+n=q%FGl z(25%l`CE2%mL<8O`USm0){KZpId)>x|Dp!wrh5g>M295o>R#E(x!1Vxlux5~)Ho>^ z(HUUA=E%bj{<=W1eT{B}9v8|Nd1_%Kzv4uc76dKgU<{1?RlztGS>YfG^VPMOh$*8r zICcZA$17E@J!HgwRNAQm54fOE+IU|0t?p1e>7S14Ad|pM@ZPL7+Ss-LJ*!Um$~L?) z==y9MC4<1CMOIh9NxU)dtcBHru71jV7p9_shf&RDHLj1z_d+}IWMFkro{&L4%HU__ z@9A>ajSzB+x2#L)T)FCL<^EpZ9S{I*yD0ud4}D4%voadZl;Qt#d7D(v#Rb4vfaSNk zYvxX0SAsZcZVKd28fu%<5!nMT(>{pz-&{}2M8~zt{EszY4dxE;VTM4L;_KpB?0d2< znbU4DQ4#9}ZGMn>txx0({n2q1rJN|+z)r2b=HUDxM2YGFbg{|2a!f!SeyGp(yre6j|;h2PnVww&oUo* zX#0ys-TLRtFdjhNz80}u@`@DJ4qMyN#@mqbxu7T6AL_JLxkL=xQ^1>;eoy&%fg?jm z&KmbLNvtshqSJ+^7KNfR?m1!F8NS_8wGoST(Au+btBn&p8L$>L*czP)6RGN(6W26M z7a?y2DNV1PI3mR}M`Rg^-bEBdaru`wBMy0gSZRPO5j&HyW2Y#UXZ+bOvgR{aI`Jar zKmY&$00000000005Z^GXIa<}DcXK9RT{n3etEIeBr(<*PJAY#&r(8h#Qb!HU=rEg; zoQKbrjTn;UAM5?CJZQNkkiF!SXp++~1^{wEjla)zUCV0lL~T1i9!WUaU#yQVm&#vg z1{26MbqLSD0eEC#MDFxJjj$1`0!1;#G@x;WAwM{=(-ohps(Ie9id-C!E{p&#s#$|{ zg?W*b9E{s(_(=_-bk|d@#`^h*9S6Zv2zTJ;g0RZln$3G+aG1{fvdD#OIc6X2MH+k; z;DFH5_LX2cCWF218R@B=aB9YsjSa^GsZ4LSdt5#3)oDd1AI;`3D%u#5_chN^kc0$R znmA&#4?JXKulPIX^5=P9U?_G1jH&*uI$BNS_1>0FtLrWec)=(A#=@-q zkCu@{00000001wX`i|*+KsQG-3ny?n_s?H!LGeQ<&Ud(`KABlzp z7S>4}qVce(v+^sLt17cBQU;s)2 zF$jeSeGH0LsoLjn^BiG(l*D>I`uCfAZW*SFdqEE>-&EOf>kGO=BzpLZ`V)afsFBD*uu9r4I?GyWf(WP8u4qD1cQ4enVeI-XtEP=qt9EIe| zQbid?AZVsNnex|=D9 zD`rt9w^>4f%c*4-Mj0Dkf{wy1dV3+bOvyO+v&W*RNqtomlE-z$j>Uhch342SW-0Ou z3HKCHL$l(EC_a_EdsF?BLj&hi$hntA!c+e$L&NY=hpEDoI6y1^Z-^-DbzxP?@Q_?m z5}lh^d7p?s_3aZWazZS35WVx<+$rlC+pW}m{kZbs&2R(W(&v@5?bInjnslNL_HRlT z{J2+JM0i;@y;s<=I@ZyOdU4_V0(@uWYeS;r!nP<=F@#-DSS~S9-6{qPED`>GV#i~{ z2CC_sopZnh@@9`Tb-HB9EywXrvlMJV2Sc3V!CpF1auD1ZVdDvdEXt~!W`h!uRtzgM z;n{R>n%2VfCccv#VT!aj`L@TjnDQnHwh*R3di%4PuVLQCwGb7&z4tKrpy)8a51lBd zGK&>ZJ56!Nxt^l&sZ~dLnU`+6x1*4e(u`FN)}{vJ@lVG`p43;R3f4E2fpw!+=#~VG zd?5@B0hRLfKY_58t!eDpwVVIU6n0>i&RjUzb7wQc88`4oA)mM6NpC=t5pzs9uf)T! zK|d$Oz-C%eDV|okjLYa}J*Mw?i2K-=W)ezEbl+}{5 zrk}UZ_;|itWJ}WYYX*~qryH)OOzsL&;ZM&ER516@w_x6&qQw{pikUU9@(>vf@lKHZ zk64}qVJ;MSvaVCQ4bTqoFRGiD+n?+MLqrdM+@zlC{{6ICLFZ{f-GfweXic>n(!8|e zhIug^k$&IGk6x}!{FiEuYtL#^WnDOE3HCaU|&CfzP%=8CoBwM z=!4)=V^PbQ%Q0;fEx{4Jt8MnqRxffj@WyB~ZlFs)#1rN{$Pw%kQ_WkrN=}wrN?fnsS`IxzMeE1$Z05v zBWg?}qbn&dDW?EG>9pr9Cg7o${}a)1E0zOA>16wEe%VOO9GAVlR($nY4}1#u^EwbO zWCE65{{fFl2?y?sCXRU&r};r^14|6KDuur1wsZ&hlW_*6s-T2pS)7Qdg_EEOFWVr@ z9%h7G3m}i4$olb_e%#mLD_uw@wLOluL@i}anL`Hg&-~PG4d7ebg!E~uVMKJ^G$1W| z+}_r(QgJv6*|lY}bB$>&c-zV{)X)=+zBxW`z91Fuow3ycbI|IXA0w_LzZyg`9w(U5 zz)0zk*hjK@E8>6v6@XGh7dgZmobwB$?RM@Z(SimSc!^_G&Rb3h&eRU2c>U>LgYs6! z>lxyMB-~WOiKe;3*V@s;ne(Le_N(({H07ZnuqgiuubE@)>b9nzs*#06A9E(?h#pw` z&WgsAUdS?Qp0WuW9bl6N0qcl&FSlQow-{suNvf)Ey*c`+CMN--mA39Z<{ZN+u0KI& zFh;yuMNs#1+gFr1H|&+W)NSM3q(%wlH!ip6Z{~M9!ghkM!sDpts22wOReh!jbn6!o zXhvUmq26ZsG$m?I2*cgGp*+z>0tACZq}?=%Q>fv+~mI**Lf$sRm)z0a#j=c7GMb-y;{^6tEXwa)vKf zr{o3>i{pItBaK%&~l35y{1L!ecr#K@vwbbMPtad&c4&jjhd zIII;j({YMhAIaJ!Ehy{+W7?`<6a6#z)D#sSiV?mXboj>24#vg7jeAbQGW<{^U{91r ztHvH%YUK1;zAH35ZOvG;2kcrru~A(L(dh6brk8#7bEj*e|9ubMH4{xJ6W2;PZc0FI z@<%hfl~k%Zras2^_+mAO{Q2QIjvx}}Q37*xH&Q^_q_b-Z^(NzJcUF`bCbT^bYGsyC zPI&{y09g~rBTnV4LdZMWnl9x;-PMa^#VE6Ja*k{J`hqfjFyxeV7+~d3d)N2Gbgy#p z-|M(NpxW&Kgco=u+h>3(K|WuR8q-5sN5; zdwGDBhbWY%&fB&&*DReJGN-T=DFE^oYJOc5zr&-=sIs^_B%fgINw41THu_w02ZzQz z+W0ZTx7c?tP7I6^O6dMvddUwFW6Y7L7{u>w%AFX2nw2Q7T_yU~A$n`%>; z=|c~PY3JZ<)k;pU6+sL zQ)qjoPw)H76u=nta@woW*rLhCr1K%Rz00hMZ z0ZS@9C#cf?D|_5y3O%YOh5=l`nei*gi*PY!_kdS&w}WoXQD_0D?*l{FDE0_Yi*xm;mh&s=~X!?3lBkhi<$c5YL$qd zRimDEjL1A=e*2f2*v(@8C^i-d!DITe5DR7_WVrA*_2T*G*WPsOAbx5@2_mudWQBxS z!m&u7EHC*grUP>1!xnuBGLOx;7c;0kJ?~)jzqSllRrNO-3(QD_nv?P@JG?Obz7AM@ zCveJm3GU#LgdoZgp zB=0cz+Ts2_zzgS8XPuth;=6>uW<0l|3^6iaARmKYxL@>k{-#ng9ej7Dd;*~#RH=&F zpc~z*Jv5+rTQ}%Irh2i>uu(p6t5!0D(i00fPOcU0Nst!EbdcvCAUgdC^ z7jGiHyqmIdaq|eJXIihbpT)e1$_`8Pj}is1z^UO;JZ-wo5O5iLojo@lYN>8$>RmZx ztZidcHZrCWKH+2k7HpONfGc{Z3b?-9Nlcm38x+Ev^&L=&iUNiqJ<}@8x&}KmG!aCC zBV3|z>I4YjO#v4?Klmmkp;$;cOJltv(&Y)R4oR*vdc!|Z8Ui9H>W7JF2~elTk7ep& zb3_R&OdMze`T9*LNOLp#nmnEFPBpXe;Du6#^1mHMqJ{T8_(HG)W6qA z({FYclR^8e66MQ{$y=v>Tm!A)(Q;;y&H!o3 zD8KIbSh$bN(}2Z;3*b1av*O{RhP6ll06ak-zYMKB#ieoE3ZE#Z`R`~Ie)Ss8V1&^S z1L?ebxuuh}=cMO0n$8&FTZSLWgLuuam50*C`jIZ%*BR`gNsE~>$6&(s+j4un_5n`; zATgxF_q33HexrVv=xWWU5m5$!>l))cb&E09HO6@B8up0BJNGO) z#<=Sm>*l6>K56pS|L-0){e1*5Ua1HdEBiI` zoYezO-Ls~6s@!U!<{dIg-m=q{_{>yfA0J##Wn&JkuPD4PVg0G6hnVz72~X|{sPt4X zqfHM##caWl;MVq+6PHX5^GYv`NDz>p!=jX8r#B{-e;@97iEVqXMc3`0O;NElz3il> z`KGq>nWf+(=Y{aSn^llFEA-t%(l1!A zO}$MvHAT!2N)!Z{(5!p zYqAhi#*Jm!`HcM6-mv{TpIhu(>Re!_4IpU*NvUvL#!nluFrxE$09;pNK_MG)uP~Qj zWcq+!ALU^ebJoOyWn{Vm+LL|^!n0MbDL$6x=NZkCVijkNr? z=hx+kAW=zE3mfoFC4URLsv3<;w(ImyGkBy5kSSS6tvNA(y|L4A%Nc^wIPMOi%O*)t zZ<0}~540oaos8hAj(nADZ4ddEOCIAG%a?Tl&k7&OklNLiaLL_VyK2h|-X>8+IhAxP z+eJI z`gp@M_Di(`HacWkTY9JOUTx@B%v23(CfiZ}`33{6Jv<70rbmUre#4mV&PvhF@7QfN zyOiplK1Us1O9oAZj>Z_Cv*h3|wfB%%jcgzApF&Qa!YB#RS?QkiE^kRAoq{+d!!-m2 zOxTLr0#~*Aua}~&_bLgCuA^2hVI|T8>&Z~Fq!8bv0XbZE&I(!`W`15ezNRa*`mjFL zfoCf;7>vw&ZHmo&Pm;SYGo_}nS_|+3GiMc*`YW>oi7XkbMa7VuMeMn)q+dm467LR9aqOuHW#?YRSB<0=nf*GwncxXmn0Z=J1$QO)xQCBPj9n> z$BYzqZ57vMusV~^{J^mEe{7su3d$kThic6f;LqI9%Bqb6eOV4aP}a{mkG;iSl;33P zv{3$OVV(xDR|5bBdO%fZ;I`l}*&yQhuQES=t9qQ;NTQbz7?T}bMZe^rVwlbEB$RRb zn!_f^e1zlVXhe|D7|Jqm8vCp&KAq__rab>}ckLSXwiVJq3I;B=C)MLQsFC>X8VfLe zR>o;e${~H8GG``hFmwWHLomAppLo2yl`yFj!&75qYlB6U)?7?>jpt8;)uN`3PEhnW z=%|dPmp2NKCg$2`Z2hszJr&8~>FlPI@H3mbf6&=_PNZXH4=B^bzSN}6pSdQF$MZq5 zICO*#4r2Q)EB_-|I}T__nX4?;aKg3qEHTEr7wIxR&WSE}+A<7S! zp)Q5>%&~dp?`KOR)0-LQmt(pCAaLZ zjqDD9N~ECghifYEp3coF<NH98>L48<7;iS)k(*I^;XY(Hj~>*2 zd>VT4Hc(hP@H#I7w*7>64=$SHCJ}-Ll?|wGKCG>D+B@N+3``i&hXzFILHo z&Gw&7NpX|Y8eN~}lkJ%@M$a2TZeac${(Tv>wfng)y9I50-EI0~sTJn_>I#xj?h88j zVQ19IW;*FF)tHN(x=Z#dGDsQjZR~s9zDFHr*~3U~0O%6`R7MBS*((By}n7(G3{DykkDX3xL~Y8C`9KP)-zYevEFG_PwJ152amfFx$@`%YwrB z9f*Icy8k<6k}rTWS5Az|SEVS_ssc;wDj+_xAMO?;I^gAL?h;)$6FMBu%Knf|7tZJ# zNsiam{5SVWRKM2qV5-jj1%~N``nU|_tuN=H|PVt zBh`nD(DqaMSVk(XM2^jcDmPDI9&;R7`c*42da4`Whw|iY_NX@+YL&L-dn zk~%tv#GOXE;Z%&XfbW7mq)SvMw~Mb zHsNPmB$JgEy--vM2bJ^FMz^aw+-V1^7B2GTUW03iqF%BQAdQ>)UpEb#pKw#cgi#G* zG{;T=F^mR`5asSvweOik0FXG7GyJ_DmOdK5CxK{IBLgFGPp?TALWq>NUtsxqW~2BM z4Gf)m%tCwjYOZlLH~<{++|m*p;cf!!G*iEXP%)6w9qMmccktqpn+;B_Lst&F7S#<= zh5H?)F2$WX!(2z9VN0}cfukVs7$m80+v80J`D?%^c3}tsJlI4ZrS3YA=04 z4Y!s!ADpP`3t-ZOF{vj_Y6}^Qs;xXpnOdiudEPE^7oCH(fS;I4>BAxbdjWs16MDyK zMuIO!nw+BJ<5nxKC&61EWrNq1>n4#yJ!|yJ?aEN<9|`nRT*iT{Fxh~rE(3^dy+6L} zQ{L+&l@w)@+{z}KZ1b_qJ#liTS%e93V^RaP>lZua+2RB1t?P6R50X829+L-D`v2Z` znSps(B%^K`rkLQWOwV&u3W$Yu?9ut=JOIHM9OQ%g|4{Pg|HrcodZOI`ZOxHM4<(OJ zKqfk2%*%|*64pS1sykYkxkO9P2(xnn5qv2Qj!8Svldh6tm`k8Eq`m>iFi;4x+!V~0 zHCy(7nFfdmW|Sih1oE17jkgmGg z5Q_`ygQ!8N1^#~k4t|{#WEQ{0hrTq038Qsg!qOFlT%7xO;>iW$1dSzhLYho!0S#YO zkI|ltoX&fOjWw8Hhh&^|SyYJueyO-^+p!jdqD8co^d%Ums#JJI4$5XNi?43?kV?mP zY*Mc{yZFyBF!(eX7IhsUhb*eCgcvKzep-Aww$*oE-opz#>9iA>njARS+o71rSVF#h zprLHSR@~mbO5a=5QW zYXP)*Z}uWn88o38DNhA;N2?S`BT|0&2WcSjFupx-89vy5s@e_^bxAM4sq%J%Fho2B zb$$Hw#{~Vi!*SyvD*e(mq`@|Q(NRQ6G!u?PB-LTq!*?>papnj&5omIlH1+WrT|N#^ z_5nZqiRPB{WFtk!r12@+GjZ?{$c~mAJUYWdgvh#!E4e$E;Wn&~9fLQHwBTl!@K9N8 z>#Wln4SBfdHVc`ORVX0SbUh}InY(lHLD+464k6e9W6*I+7RHcT%j*&vLudH)>Grzk zeqCha_izfOrBH%^amGP8J7Yo+iLXUTlgAh{>plm_1>Pxl(j4GetTg91!8V7HIF7Q@ zS*)9XZ|b*s2_W&4&PA{Hd)5gYOk`v0&Uszk>ws0%c@UB)qKPY^&MW7vP0vj)%EWZT z%+v>pja7lgMS%uL=g;@VNxedDA4lJrgX(_k)q^{O^+yYg18s7x$<>3uF;d?u2P!p`v> zMN{!~K6o~ga@o4H+|n&;E-%RP0z@54+xP$gM^E0KFn1o^cW$PFhPx+)zsU2eQjW=E z6AG2E4dU9rCp*l^UytJ!Am2=u$b2c7WcU-0i^sZkl_bVTKU=sjb@<`BtYt!&?-)F5 zR->mj&~bsq{``_kh2!A4V#BdC^+5WdT8KF(gYOFBvz6sJT$7GHI7)N$m7Ah!RQHqy zqMbr(WesKd{4=4hC8A1y!N0|ukQBq#Y8iOn<}2@m$Aed2&}o8|$kRF6zaRStLFIn_r`M&@K|LZ8ZEsnPW;l_=HOb{2p^O_*^QrBX1%_u@CB`@}i2QB|O?nqQtu#I-5%l3fH=I2zS zL>_b8F#n>s{1)*c{}Akk&t9Y#m!n6kJj$u39MAC&#*E8OG3ByQPti?t!0F~7?Szt6 zIs+Cx0#12!XmJjjUnd5wjlL!3h4aPzc(s>yD@Qra6q^s7i=R{A_N%@l#C^fkBsWa2 zqC)p6!VH$#wq8e{zV3qJb5fFlul52Gl3?vlHW&$=EVHeuW*7T9{yC_1O)o!T0I%CZV3OVYw68{gx6nvEY?)5E$C6vbp7f|1nW z+X4Q|9BUNonbdl~j3`sN5wCEo`7x^){+dC)_`O$$)YM!XgC&R&XrV?~+zOB=q^qu8 z)o;YPQ5X9!_DuH5mKA&g9ifpPs&R(GJ-Y@RiDo?+MTBRba&w+D$cXLs>X$fdVv@+8 z<2fPuAf6qdH(g{ioOqpX+0>}71%do@;OiBM+{5na$(Vco=05zoMP?^_Su-<0!3>58 zmC^5TWxd4+zSZruWp7VTl2>hQI981W_vLYnHQ9Mgw`Z&*pF!&~Xb8&9HhafpaF@Hn zOZvQ8C3!zxufTkU&J@=h0kW0`bpoYJKYTKhK`0Vd9HL(bu_f)UV(>n7V0fGsw`jEc zkU^;?uiX63{`UwTpmG>UFL!*(BYx?vUSN!6iw1b z{KDNYbG8w_|Kk^g1+D3K893^9Mn1b(U+)ZNZ1K3mM!K3~`}MIXoY1ugwwJIF$v|Ih{ValMVnGw{Bn z(RjB{AMBAgIqr@UMA*1pH#2J%StfZqW^XK*Yb}X$JHUinr_z(tVE1)Yono-sIi507 zJ%JFqv&gHI6AZVt9=l~9IgFP5oy=2O(MlnvNe9BFwH}PwYOGcL*omMe&^v6dzu&PC zuajGyK(3t&;Uj;oXiyQ8l(_qp>Y?O3Xp-t!#L{1C*T3753`QjP3Tz!_4n94=%&P+k zLR6^gk#*14I0jL!=2~fV^+AJB(Z=BTZ^{MJgqlV~3`HYkSfmiMT~j~hhV6FT@J#yp zTPaY$T9>Y;O5PgsRG->5sTT=}RCD(`hJ?0nO=Q0FQhn_uk+*$d{e@k# z>me}PxrY7xFu)OC*ITzPAhd=}mTe7IfRT6u%g5-JDku4x5r9G)?3*hQ$^+WteD4-6 z{gk2HRA63>eIJCTkW>;g2O)|;svImkBx&u92nLO`beWt6Me_Kf1rok*Q^!9LC}k%t zGyXNe;qjMMfFGrEA{LImPHL-Ei33SiE(s8Cc0*l=b0d>HcXIm-h;#dU(*bGLLXKTI zmrixd76)$rRZj#I&!bFvnwbgkh%S5p7(&gPZp8xjL^H+(CIjr?%SZqK09t~!Eg{44tS?0O;^_kRI1H`c%TTv+cVZ7Fc=P!wf!CoCAjL#eU_ieLaEv z480F&+BHNA7oN&#Q6XYO-!rz+jMb?o^rRIdcyRw|!4ZKewrs;T8V7}Q3yI|DYp@|c ztUMkSn1B-%a3%sWa3lXvUos!@`hi^5J0*Z|JH4y-kXuUGLg{N$mvbO8xQdyx6%SO< z0NweiMA|INPO)$qebbsW3mpm7@YV{qpncFm-+(f%>uku~n-krEYze=+op7T%`kIZi zb1-O|mZ8^c2%&w2Z?(;MTf0@Z{}hFWzX`~z`VGhjk5`~U(h(cqp9G+oL~1wOq+w9S z)F}gN%qfrz5nos;8bWkDl?#Ua{2`#%kawi*z5=xYah}0xh(TYFQoDZr%K@$1;)p2wqLjYjAJh%^U{~}xf-3zV7tp^`On}+vfDS46WeDO|X3&|*HWG?14`Yc1 z+@<%mr1n9ERr4ZoVwo~WaF;+?1R`I#-Lw-TsZz=oInlM{KbAv=3GMJn)$pXMG4_Hu z?)(h(I%AWvCX!@HozhQ74*&p;16D%0+t|oXcCo+(m&RssYyX2%H0k71F;=^RiTf@z z<$|jeJ*>sVS3TS7hhX_t(8e9+j6A+L?iz2frMyJ~MtM`PR8|Hxf-`ghS`9Yu;IaBX zL@M-2t#(Wo*j2r^7IvKn)rEwtR4F7eC5bDt=ak}JTTzl+fWwph)ucAQ~ z$L)goZZs8?UO_!9zG;7+MJH?F%pM)b{9OOx4dNfxlNU60u&*-((0Q2&xxFbhuWPKV zxFS9CVC8V<^y5g0$)pgrSWvHp1uLH0Umb75WMVrc9Ggq3VnF@kCh)b0YlMsF8ifez zJOV76Tj9dacs2Q%PlWCBOBfEdt9bdJ&3&^nb(5Hz5_(+0#GI}?xCLiXAT}I_qV~vB_m z$)W0`UG2jx_v$4Oz)!)7;qAEtz@zIZZ!a42SDxXh%&Q!Oxv+Z?aUOc&614{Q_I~Hr z3$A*F9Sbv9ZOzJ1WoN2_Rzm@F>FSi-%x`2&nHN}S+*r})(voah%AREDK`*nMM+ zA;EEuTD0wtBiQXQupUY3FhZvmyyU;VrFk-1_N3FMgm6?N%cTB+tz0=1tPB&^rdiSr zz{o}2jQn-EyJdxS(n{W}dxAtnvpBNhOcBty+HTZ_sa7mjNeg;Rl0Nm|-_-VSMt2ABn!+3nz0LHPt@mcln^7TRd^u(do}OU7 zXp8lB-0C)f8Dp-0xlk=aSYAQxXT_YnPC>#!4q6iQ?)GXLyfx~MI1vdJ;e|648BaLj z!CSFIqt~QyPgj`$v$}lu7*}qQgVmS~}DHbFV|AP@e z$+tY?dXPon%-T;Qr#z0+bTZI)C=e`)=^wxV00000000000000000Y%DWM4aJq1~Q4 zSyw=NrV6%>I%Jg#cxc2Nd23v91?4U{|G_5#m$^QSvlU!UK`w`P5z$uu82vwQEA*Sn zBbGTaGyNl2)t_}ZS#&4o{=4g>V07grsa_D~ zPUsl&8$nv(?Q$CZwM&NN+$cuCRt_WaJQPX`MmBkf1x)Du_05(gE7MiR1-$DRd(+`- z3jojO0t6mjs*xQh(d=QywU27vpC}A3JT;9QNl@{a&fodcPMDs7Q))jo&1qFYNjLxm zbD=P9gjh6^oG#*F_Ms`-(64pwwqVB}1( zGg^P`9a|M89V-g?6~#mzxPvzfs@{Q7SpF}y)*`KWtzzmgu|LcSrO3dd-v&@G|)Ad`!Su%1A>+KHX_9{EYbE3RdHukrG%*{ zwi3*yyK&Y9q#Tezuw63K5VFTl0T*;)_<}FSMb^ALx?NN*h|;K^{Vp)y8AFL>Z!$3FTU+EpnQnm|?P> z^=|k|h{_&P{(f^y&VqK7-xRMWku0X2zieYMBIX&zJfR zQI6#H#SS-nG`QcfKbixiifXGVa)BCo`ZuVfc0uN|)!4N71{og44)X(?YoU&Hk>Qpg zhqTscImOAZ+(&Q;Aa7@!hmq2$*Cqr16OWc88i0QD>N1Zm3uTx=Zu3-SBtVmi1h^?? zb}%{~7T+cOIIQS;$`)x5iFPl);65Al4_0B1vEt{?RbS6l%s1)C}uOvipcBaElQ&7fMv)zQ?Sa0cI??x)`kDl zLG<{;7oZadN|@-a8F>k)0AdG&>r~Ep-VW}zVoz!gowEB#hM~@9@=yw$?>n=59FLuQ zHWa6BnGMPl8Fgg=YNA-dzw?NC`$-K%Qg^GV&CrbOZSM5uNq4DS3)>!yR-~=8IN5lc zwD1H<4Pvti;Jn4$S(lsmifcU8qh96q*+Q!HK9{#MC&kFP!r4?Gmu*`Oqn+yn=^f)? zynhP>bCg-h>T469?KlMQ^2GM1bg?0;o?4T)G{fxW<8QqU5243P)KKvxmB9H=;PS(m zNASznz4EQKj!JQRFzP?CA_C4)WymvmXGmI$aci(Ek(MoKLQb|U-kJk9s9UT7MZzJ| zNcNeRK|5P@W503H#-t+EDGT~_;+&Qm;-eQZ^`26s`<{RF|KuGJozH9DNz3{i>Wt7A z4vaU)U>#n3NuaM&y}p5Bg)1hzsp+-NiDt}Ecaey?8bPMV``%B~`HERVi8EhcP|O}Q zkt2Q70N(wZ4J5&(sXJPIGXi!gq3STV$B}8|U3AbEQNl*m_o`;XP&ccC27OT3me|%WnbjXyC2I0&(GgqAVaRM zfxxBq-OQcV8q*#@aCq-0uyEvs&>P-B!i{&em&@Pc&RIcSOj|E=m&0L)6K!XHk5wgKYx7 zH>BKn0R4}9uHPx@N8y9$s(E_8#}OczM!bXGT$b;i8ot2%A*zUiBM5$w>Dsi&@a{lO z$5$%J2Yr&?rVBdh3_d9t{3N)j`v(Frl0LpGGVCGo27RD*8$A(&8_F_K-NT;(i@Cvf z1-625VXsq+M}?;76<-UlaWw35;Ad>)CROQjd%nJD?;jfsviFhwa^ZfsYdwTZeY@3+UJ&yr2zU}g-@pGi zxvjekxyebX7Qf#5oeYY11y{{l_&j!CLdmWdj8W*Vk>3k7^|kc&uby;^SHt?_+hKmm zFu>??#A6|h5;P)V9xMq*hQW7#6+qruTR?G1QusoK%R?qf^)2oOcd}F;-B9ASlT3+7 zF{}QZUB5Wb&dT4_+B;h{EanVu4-USj&IV+O?-hwgc%A7Ja>vCq9CL@S3T|F{LNH!( zRbNxZKmfay7gOT#w&b5}MnbG?{v_*nViIhgl)AXi)c&wI2i*s34P7YkVWf;u#0aPi zO=5=b?yyi>2Yzey^uMP>lI(S!K?!BvqUOsqBClRckmK^H6-X~vNpI>9@NsWrFB{*W z>H&%a1+T*y^v(-)?b`^hbr!@=I9*e}k!6}`qB81bP>rY<*>Lb(I1eya$)%TZA*ttn zvL8m0XTh#B0GeSPzJ|-6;5Po!3}$XS$6+@aMPzCFPAr^Sp4W3EI}L@Ihm$ZeNe{&ts1n*^(a}V^+bdoL;CK5_ULtQuU<|#X zO`k3tX*8Xn7N?TPqhHs!x3acv^mDAj11oPMVikc9&s&3WXP1(zSE1s?5sMLDc5(Jl z?ESXBT5I$=x#w;A1)*milq|HCWhUXu+HKc&RJCO_Zj1r+`g`H7BFUJFnZ zY0gX9Io<`pi<1K_sGvp-u#CJHM}3Oq*=3A%X$@?r)CxZO>~Nk0>x?31pEnibxP}L~ zO+~ig3rm1{ZcKAW4pKZ5Ej9MH?|IpT_2D69yN$n1ZZ|ch5^_910#UJ+CmcwQK8i(T z$xY?fgIk}?)F>shgNwUt8&yhj1@=V@p_)%*5a!t<#K{+W&k@5JU&p4lLlb2G`B8gy zlm{Qe(Rs6=_=myLF9l8iQ)pOJZZBevbdpbdmCnzmv61|oqr3EzWA;N8h~{}n8hgQi ziNLtO_86z(QTBSSa`BUxc~ioCY9@2@A9EwY+)cT#i9-@lA}^xQRNJryAO$5lY;Zcg zZPTMGF-rjxyq%t}eOG2~9m&A`lBxQ$U1BGW^HI^)LLZ@5n4#z0gdV^@Kf-B0gA-&*K$FGWe((qH7X+?bfGu`q}2P8TeGtA6D z6x!ii@qXWl$cQ@l25V{+YcVWKuZ6Cuiv@}&F+~h>U=V*)T;BU-aOr|y{7%ECuFi~2 zcEF!YlsrE8vB}q4u1VuB`m4@5XfH_F8|#?6DgNC*sT^M*i|93@jaKL5mK$|D0TE6Y z7ro2AH-GP6`rJ6eokfvl-Y47{RQ4YvQ8HKfDwcgs_#}m>fT>olsS^!BNR|%!)TpPlW{N)Crc=`;s8`*vA0Y$=g3lL*< zj7GC%qiZ3&;nY+@qWfPVXD3F;;nrts7O$9{55EFm5_!uieEeN{(mKui zZ+k)iA&81`OMuo*#W49YloT9#uXhm0Vh7Cw7m?M*aR5I&v-TejQHV}?4~L_2^^Z=`XMzM z0ZI@fSE0;$sAgN8cMoU7cz|UL_|D)e7~iK$=KqQ8r`$q5OJ;6s^UrGL8Z2{{gtw(C z0a9gi>Hx}|Qi07*$C}VU5?}E!G!t-s64(R=YKNY<8+yHP>Hs?-Y<4N8BT^(54D@AS zX<2;Ga?yVO%ra#;aW&TJGP55syP(}A{Yn8_#MbbB9Pa3ki}6Z2{&kQI^(JVa@j-z~ zcz;3hDVY%L6$N}S5{#`;MfQJ4>7wkx%}$8RYJSt>I}J18rjX*B0rqzxXY0IYa^m@S zPHJQ0B~OxwhzfSJ%Bg#O4sHyDit79uAjTX#nMBYe zs5y~@X`;S8HXCEcsIKicbzDl8dk-z?d&rGk(Ipy#Audh(Fxa>xvNnN~m!a0f8G&%p z=0Q0OuRZo8K1C+i;8qPx<-HXyB(9f67Iee()y{

    Xro^%hq}Hcho1$q|DlHDK#P|~@WM=q zjZgpusO=DEN|thsMY&MheEAw{MZrKopN0#I3iTeJ-NQ|xp&Z8Oyk-d2LDcs|@-rH)xg11>$dr-AGa9M!?GpKG zk0tgp=r=cs1W`QjPGxm3N%aRnqclU?gFR|f1}d=`Cv~0j4mjo3OWzM=_XMZ zA*~UL?@P7a<65^Bvt-j}e0+3y>KjH1G!UUq4~^Z_5sYJx@Dsi7E2siV^ZQtSiqMqh z<6l7V1R>=Y$^@f2yNcv2N+*K=$pVO0X)(_MYp&(-$`EMoGv>yH# zXnK=d;X#!VC=j&65EcO1#AmdWCpbjIR5{V}ols_^9m!$QcvAiqh}S3RHl?*Kyc{kE z5G!vOZ#2L>zYKG_kdsMoZ}JM?Q;(J!s0xgEEJx-TQPr}20ly-3L#`yfA>Jd!%R<-t zF9{UXIyJ&F+_IBG^E+?UsVUE#B~nWwx0sUAt>}w9E9pKNGNK-ukA;YRY{okpk8oD~ z;~E}N+aZNd{u7%I{%$&~I?5S|ptULXl8GRXpjHcr6``IXFW5vCBg%7;gOzLsKc_Dd z*nSu&G+Ve21M7PX+vv@}eBEZkby@sDFMJ^uqK}9qB zfV6E;Dapb4SjNu?yIU8{3^&#>r^sgo(7f!x~EN~7^9GweWRWNp}=7k z=gl2|y`(@jcQl?^+nB5E&=2v03kKEi>lQ8`I;CtQH8)k}Q51kKah5a@?bPP_>ZXiq zu?Si@lTG5YCLjL%8!hk)Ruz|;vyy?09`hEnaC%K8_1rke#3GcBy~FXa9Tg8HqiVAZ zjhzQRP%XsDxrhYiNT1$RV>;7%I5{a}zusu=#vp)26~!cG(6LCxlFfp*Oo00|UU69W zKBsvft_($HQGcO!A2Y<%xys21Sf=u;c0t+DyHa(#-#Xy{HQNfaRiT{cU#DOHyuu`) z7ng!4Gdi^EFp%d#&1EAjXC!X zHxqw~-V&$U4T;iJY+!;}A-i2kr{{B)+)&Rd3nD$j+1FCT=6>XK!t zJ;~^6OvNY0GT$iW*%z^fnO?&ZCeb89kG^CeY;qcHi=y(gy3?BOJ7iUQ0dN%kYUeUn1a~@ruA?9ez{+b`lK5FH}@C zrV@3bl(R{nmETFgcEoT@3k7!rr*8L$DIwkHXG_w{v}Uy~Q~G}KQIoW7)LeCJ^_rg% z^d{|cUel$Z7^b#eu$c8YOd(&x?jINsRO=xc4TGZiEMk&ZpF zsdL(%frGzR01QGP5^#)W2ee?G(Yeb^C6oR0T$!A=9W2hinLq^4dAUl;Q%#=!bp}s$ zDgN?DH;TFPENK5;`%GR8nszuC56>OKrgqlv8VhormGjh5nCOQzgH9(b2N@)l>OIwZ zF=jX&>Mu%8ur}_Fn0c?^-bI#QIVUb&c0HA6OgOU}0kC$JfB^sa9)GsCr{|e}26CX{ zCmyTc$?xaPc+_0=CW9jy@%ID%SM2mJ2`2in_iZvmovVz1m`V2IY|^KwJN|qzg^N{A zHMotXPzOT2o(Q?V5NDh(Ya8Q22$?w+Wj!i}7S0ba2(q}FWk)J+sEToc2nL(>KHAtc zp+O6bB*NvuOJ9_|UEN|`hM+(zuCK^Vx8tM73sr@S!&ZFcLQFJ}ghSeugiDi$zPE|0lZ#}}m<8ev!V;nOCT?Xd`IMy28$)ixH)^m2Ht(m=%xpR2w3VM0LI5sc^ zzxRXWWre+SF`Y~g$5ZoSH!+(649N12`J7O9r_#HD&n;f3f9_{49g<`KI;|zRRbey) zHz#!VKJ}K7K=dmZz)1xi#q#3R)9w+9sK_`zgrwuMSxoxcikM=1bLIZYQklOZdpd04 zWBZ^KwpXwec%ytgZxpk5;HDU`+Pv>FoJ4{9-`2xFsyhfG0u*X%P?>2hl4RQX9r)MF<04Di!WADL&WUE~ zYB#>0aQ57NRyvDTNimL1nkqq6SNXcwP@)~wQ5qk)ngP*=2-KY|aaOR0uwq}s>^6=R z@fv!L)aJ9#6M_mtpbS6#ye=msaAn!ekKvAJF;dvd=rM#S?+AjC?e~j9{d+|5w_)Nt zQU{ykc93<>jCUrlfIFlt4y3N!4dT>!j@Z1xbE47-Sb8gt?qKqC7xZZ{8hIZ?e>+@a zdr}PAq6NR){$qB%;RX)}tdvPjl88ME57ulxZtqMdcj>z3ou@h-P!4x^+5sz#9(c!z zFJk<%5|3^Sss0y~h@Ga5P**1WbMKM-O>@Yh+=9XaCwJaD`w(M?XcyMR7%O1^ekcG@ zeIC3=$r?{nAju3zk6o4n4Xgw30MHajVe8&T2`CY= zz`LN1voc5c6)ue%hBs8Y`7LY_Z!wO}S+Di7lkY`No2knoT3+2Ndz&hfhOGb)b1V$q zM%y*7x&G(Lll~(E?}Nw03hPEn+Gq|@-V3NVgu2nIPdq;zAI`O<`g>fD(0#}!5}Ah~ z2xOi#JxmFG2jntVM5$D9unhmDY;=vqS5-%Nf_?GHpa=M~Z(#bi9dDynGtaItH3-Ci z8`T1EA{;7Xs``V!P!T+lcCrbckjnv7Q*~oiS3uzu_?az6-Nph;>iS z9rt#~1$Jm%LpBm=QA$c0q*FSiOS-$e8@@%j_dfe~&innh zyySvsJ@>q4j5+3*s5jKzZGA?!tfWo9T|-w4ja=VYEX;SE)3ETP-@7{pf0g=zWBpSLVm`i{@jVzW@ltib>fMQ-&yX2fh?{on?C9j zK|sT33Kj0En8fHR8u9J20RSp8yFn+5qK!?^qPVN&|P&8446ktC{wU} zJ@R!~3-+!P#xnSAU8_PN1S-LSFgw8HnhcsA5MyQA@m{Nj>;N2EwUQsIL4UJ-p1mZa zkRqUuzjq?xaJv?U^(S6nVw9pqWcH#PB18ILb=gvr zU7DG50c#Vkzn8+E`8-j_NRAx(G3x9_<-j*1BwXsrFZ)h&j)>=lHLS`Vo+%{%X+{5t z+9W5!9gLcRldwGW$VY&39~v0fV`x7%8!Y)W9rOvW2lNKJQ>str*Roee=XDVn zjmE)-X9G<8fMGY;KFu8iuk+)W2W{(~K%H0-pUzv^WDj#;Q$#S)?n0g1sOf>!gD;?J zD~}z|J;`T-BWi)c?!y8Q7617nUzCvb2+*=603 z6S(#A?*uh$MGFiUuzN+WI9PxMu2_Q16#U>%#ynmZVKF#c?EXF>iFC~nz)1QGp%D0| z{*=oRBSLSWY0&~Ah*8cL3@cG-Pz`bYKj46;Y+YP$?Y)>Vrgx{&s{X3&-&OJQ;O>Irdur7g0XXsCWF_VsMKNkXfs?;x-ol?&L2a(KOvH~99|(R zkxB@6_AQ)O`;ZUzNT-oEeJ*UGe9H|7CXb5mp4`lGd7fNNxsakf-Sm|VIrdTl*icI) zt<@m+O1 zRf7S9>Cg8<+X!@L5qp<5jiSqY|OUd}KDYEzczSZPk*P02N zu4fZOMJdclAnsl8Q1HKd1wc6YrJLi@2r`;C92MCTCcSG_JE`I)4JO&cjq(9gfIOc| zBYRA5EfJKjIl^ocXPBn3PD_*CH#=fr(#1Bp32Vr)bF&B34 z*-{At=C-3qD6tPTv;4}ycgYhw)MW#(DY}0@U8Mij^LX-JOsviHHc^aSVM|044iNud z(nkVS-p=J*kuFLLGk1~}>!B?7@g8}o%vgpX&_(MCQ6=OF1NW2=s#x!j+kKwEiEOj> zXcq_@U6stsS_lMv$SKv1k2>SZXbVYQdt*CGt1|p!ZOptbtA9U>0Q5~TkGANK#?Bp~ zOlB)rkR%q8$ldoNL%KD3bxH(O1v*z7Yhl=h2IcX5{N%2QGgX2}9s5xV9XfAGeu$Z^ z@hfd{ukpeN6X3<_4LS6(^?gAz`UMg`u_%uFk*{D6;$$3Y z`?|9eo0q4+#6>G`zw{8NYJwniyOg3r_@m!ng#x8?!lEzW-4!Dk(=PPe=3WtVV57w+ zxgU~1e)BkBwID7MQe#=mG@6J>jGwz^7U6;K++L38$p`#-7yt25fM=62vSwX&qlOO+ z;80)kqSv3m&_7@XLGG06Zh({fnE?-BD^Y=i;juM?{_EMmNT#^fZ{7-FzZj55F-W@t z&1ZbV-ClH>76S&D^AhAROH_lgIGR{7C#5XEBu-GmJ;pDGUhlOgdHM0{lYs z7BZY*3YRz+C;Wc=p)LsU8lPx*8@~P57?}YEPCyTUV(s1jSig-f5B)3i`sqelT$nfs zNk?ZSCsBukGL;^CW6TOMFL{1YvegIj6z9(rHy1dlMtDbux$FbY9IS8hxi@f4qATBl zYdIR;jZmGRpUT$xoFXoV?l>E9AyWsb?*PmT&Fgy-STzMakrE?#Q#~_MX({=+l47Yx z=f|x4FOLsjJq3n{hEIpCM!RxVHxDt&e{IMlZwk7UB@F1vM{5(=w9PxZ*aSwpe!e`lH8GcoqCnM8c znrk(|)3Y5-6J8l>h4FsOWP(hh&M$63x{6}5EVYp)__#g}2AiHW{fGo6?7CnL`~9{= z4r-vx!>&u;DLp}Sqe@BMD*uZg_eLq+N6EZ_%r6!;P#eOWcY6@@<|luT^?JJWx5@wK zA_jnXLV%GC7{DXY(^6O5I4dGPF)4uA{VvrMZiBh{V;sm-R5-oOA5u=g*eOV$>C-9M zjNiZImv7DXcA4Bz((eu+Tp>5Z~AphPWccct3Zir3sZv=itu^SaJ@>eSr@3*Vq` z^uOVn_d-Ms8cm{&I?QhXyS%jR`k(^HIC%%uAg$l~+MCwVqi>!b4^)+G%$FwUDMW4M z!j&t(ax4DVRR(sjJ!SAuA_n(SsJ9^%-sK0Q7#mZBIS~1&Q2O_7=*Twoul2Zd6AlD~ z>zpaN79)cI8=|btN)pZJt3l*_m50UMbSVOX&|vBEsHS17(CBn~WbFPx-o(GX`JKJV zk^e9XOHnoqSqRnFqwU@7tS0~O0Q473#P(ZcP;qP3`eK2USiPf5Hr?HD%%4;Wpz=_@ z@#pUSu|XXcQC@)6Aw?%fvgXQDVM^^hMPLVT6E8CC^TkZd=_@+)EpL)lZUFsiq$|PB&)woT3oRB!boX2**4?TSv1*&qQ8Yx=AFlu%?Z~zaL@ayQK7T0s z_OEg$dA)SP`kkNiyZVB)JVhsvUFri(w}<409bMHfa`9vvgKy4&c@!0yGL9J! zvAt)J1@Cr8b#Z>z;-7_Y+R9f8iq@z3;doP~M^|F657S0@Q{&aCVxfoIHL+Vt*icDF&(-3050ZJ5F&vPzh6abfh%qOZmnn-Y}&nS z$2(Pb1&tiyDkOhM$sCD*+FBX<<2+3;+;|bmPi=l!H?2~RIB%+s}t8~elu8b-J!*BKe&3MOtD-R9) zILG-s%*}o1H+0x??YlvwN$AV(^M>8u+QOI3t&l*Ts7z2KRkqsN0c<`~veohGdL;Z~ z3}$n`bbfh%4WP98Sh{$qIaR(d=kP_?yJ)Rt|IM#y6UV&Bu_;Oh<+Qj-2f=ctDObZ)0M|ug;z zi_PRFwK`7-^tF)Q9!9k!QCX$hTAw7So|}fPX#H zCdtYm?(@ToKy!IaU90fZ2mS7;XvGfP2#n7j5|L#M&D{YhGS%}Z6jpdBgDMY?LGLeY z)NKNi$K9-V@S{HNrgr58h66E7t}Etcu_vRB$n6+k5nDK*B7 zrZ=uyI|Y9TT@+sEm#LiI7`RI<^~pk+xQAR4^I8e8pI-x~$g*Y;C+KRA|5cJjhus*_*I ze9TlFgm_b|lFN}!ENZl3X9f#qgMQ3V>#QE*4$P;H{w5Ci%S8Zv&Y|)8<}Oy@V8TaZ z6AUwrg(@s}Bw$fZF#d^w?2SI^L2Uj46rf$030go^V_CeFBGSQw^dbWa)iq|Huhh^Y zWkL0l>JX@b{bvgMPw3)rr^lwJxwHEvI=;@k@qQlhLxDl+^k^g=RH`0y?Q)dF>FOwD z35*=e2b4u)O;nMT6>eM~g8BB~w^Z>ws|Hc02(R~86-K;H=YWL-YLIn|KM4{%YOd8X z2pEzFm~cfh06`3(3YXv~Y7)>!p3!xR~|vor;`zQi6heT!8z>PE!B zF)RN}j+IykYM^-o64W?8LtxSDUaMlviWFuSt5bO_O5B?GFR13P>IRVEwZ4QnMn=MK z?T-u)vR|7UF6gAMC!uISkG5UkwLWz5+B9E5N5nq(8fP?%Zy^(u9wQdSJG7pQsHS(e z4_pG}LJNI55?IFQa)^nPGOO+ago>7-m}D`6hsdJDYID&cT#%Ot?L&w`-TrB~aK1j_ zr)=!KXpQE`K$t}TW$lP`jJx2;Ue4McS_~(siZ~9A2&czygjS!E%{Vx=pS}+s7Pm+p zp$Sn)sLCyT>zWCdh*FmYs&OO5l@SO}1D{V36GKWWELJo3Ys;j1PR9hP9Cva!PTHQu zSKXUvO`9346RLjQl^zg5Cc9aF`_vYpZR$R$A5xJ7X&Ob>{yz2~c-a41cMABGf8PuO z-|P()q+($D5FxWUx?j`%>tD~O!Au)UCSl)d5f0WMNTC?2rwLzM z4u8((YC))_HCQFyRdD(}d7>U#CXhdTc@Ik1L$^IHW-l`HcOs8@hD=IH!#-g5b4>&oSmNN$xC{-d`&wGT@&|PMsqCAbELC z33Q2RF#w5GAFv{p z&yuPqgxNEP=B^P8H<}r~()Ug7VU>9ScO0pZby2d$ zE{rZ{3LNHE$fLUDxGl@f_oup0tJ{XGJg%oxbMxzPi+`mBAgz+AHV+>@!>}z#! z9kjhy6-e#}w_eVBpO(^Dk=Fy#)W=)eS7{aYQ;Uk?mNJ+>@Ma!lu zJbG=~H^E8{AF20XrpdqNj6Ry^2K{!$_5y-Zm2ZoS&waxTDlgA3W3)-|EQ(D3*&$^K zE$#4fo3DsA`T62Q-A@{tioyzsK7G<`8u`xyW&>QC7OD*lv)2 zPt0P6wp07OcX|Dx7(K!*-8$ zx!2uInnrHpZ$yV)y!4vu5sR7E2hERU%HIU`m2&PAhrF5FJd*XpL@Q9QX)qmNVf!kU zzt@d6%GH;Q&*ALh;K-lNauQijE+fL+So?lvTf3?akdmw?{%5W7x1S;;eHJ0RVkWJ+ zx|a5kDXP$;6cHVfiksTY?2zzV4(1Ft6gL+nmncF*wKRTrcS4X3RIBK6g()F^)m4Ot zVowsRcO>*8$#~wnbIL=@4=6D9;ns2t>sCnCHtd}@|6RUXz&kTPnFr> zCI}y-BOXYEi!ZO|zG-AEiQbO7?E^Gj1JkT`!4PWx>|5r^taGtu?_venn8QCcaSfl=S$`O5@B7X0UZC#=yQy~P3s6&{648BmF)C-0POq6A zjk=$#VO4aPTx|Y*R+-#DI6~Yv@4hUg^m46gR8I7dQUnHi6&FZ1#FWQ{{h$pJs~n(d zjCxA0LBPAl>`pH;Ah65iYjI<2a#j8S3y=`!>2xk}vq(0zMhqIc^bbjeT;pQzr9X5Ak@oUIE z+&(2xn7Mm_m~eHz4N)|i+jSr z7l(&bhg2EfwMHKG3)p&Iv)KZxk z-|n**8!-EkJ0Q4IBn;Q>kh1(}T+h0BC-TD>T?11us$EV~`gM*5F!Bf*>gX2O4p2_M z+2+S@#o-rd4h9~(RGBgOf8e9Yk%jd!1R19tcVDwNaR|r&TkGxlHEyRMs=r-ds9qar5{^G|z1T50}02Yq8cI>|`Raf5FcyyBZ;p&?{ zC=D*pMW2^+kN$SV+4i^R<{{Kw$z5tZvg4`U(HvsinP>nvh1W?TlZf_|H=z@yS-4;> zVozV@WfKIcya|TovKaXO8ow7?hlQLsN@F6ZT-717 zKTV4^BX|f&pOk&o17nu@a2VBp#d(oJAZ@ERBiKKvc$>_AB<10PL#gM#FXZa2HOY<* z+@vy%<}t59?{e84!FvCxOkTS+P59wz4)+}woKK9ZF7J4JXAq{iuvtLM+}vB`X&%3c zvmrj><4=#Yw!SoY)C7G6WXd`1XOBPb>Jrtp@4t+=>VR%0uJis9V&VtTRn0IwoyiAmPtXe(cMO zeEOH(^uQ4`X>*P2IPD1m3AyN4%-dUs?LeozTcNId*3`LfkY6*z_zk?o?942E9IBHK;D40Kb88@xMX0?g!yIBw_Km%A%4V7e)<@9xxN2}3RJQ*mOVD| zrco|%pV?#rqIPJX{h^vP&$7j|HqB6ys{psc3!tq`2?TWZ8+o@A6xuqlJi0kWGu5TV4O7X?{$u3}Yp>$voCI0}6Sc=T~)boA#Y zWaK#1dko7Dz>z7)5X-egAX1p{3C$kC=_P^Ur;G?^r@4_-q(Vn%XR)3jB zGss`Sd^16E?<%y7q2GM2Yp`JsMpSCXLKTSiW(U@?`n>p}+ZUbM1HJOt7R@KvUld9V zA%FILGzkZz!0x8dYJmG!`^UYQtxmS@(aMk2IYxxePu?u57ZW`(P*T@53jPWv5Gd4w zv-Brzyjy+QMn-VOzJ|mhZ8cl&BGy#1qs`h+#5-Vo3h-&k8CFMYHH~7H4)96G)EQIF zG7wnmnEG(yHJ9H4+m3GmoGCNUCx+aU1pgPb{26eIox$e#vdVJ(y}~yWr+}*s7&3qN z8ruJY4ZI`Bp{A}{6KSOvjkTEm<)HqQ%>v>Hms0~|l&ic`rwB3HF(PRgq-hojs)5TE zf=aG)i(Q09NSu6Gj&oMoi+CjBI$YW3U~dn$)OHp(+D4cCRL&;r(#{Ke-W8sg8J4Sd z&r?#$#;$II@^}8wFk5qV7`5?wr;V`T52&QNNysHvr7W>wCsMjiVA+3=cKo8k3Ufz5 zqCQQfP&tEt_tJOq7?75G9diK`cF~Z$TThzy^DY9@fe?99@Ua z%gkn44l{>-8-m`LOkk-?^V_9_UtnfVT}fb(^C4IC^8gj*kqW&HVraqE)gN)5 za5Xsa_>8d4r1t9LaztD)#wqvBq@*QQ-aZLCI?Y>Ar27n@vIo<%D6VrfM9QAE7`>T7 zB`wz?p$0KpXs``qlIxv0Vf+>_#Xj~G0h7Z}@Wx|tP_9HMkpTqMQs zP+nGPeIKh!+b}e;eNqf1*O6N;=9m^$S18NSC1!)=NX?D)@kTptdg-D^(jiw1g;=n| z7bi=|{~E;j&n!rQDtaF7YtWu2+NOQ5xtK4+Fv->=CrWC#i_ENWWup_C4>rzRc%XBB zhb=xdkA$)rrMQn&z$SVm2VkqDBpe&m+Z@`EzZ>OMvW#h1BQW02MS#ON zM(*si$kF9I(U5LAZS&F0eP7bp3Qc|%N6b1fE*=cUA{nrwg}mqYlMa7B4rTxIgQy#$ zAE8ICcY!^Pk)PU4vIv496)mdNA0MdAHsF320DQ^cq4mk+xbMB;2=KelYZ@A*32r;3 zw?UgC)H#$_#N@7m5v63G)L>USv|tS!CL8n2W_#g0%6ARp0xk| zyoVQS#&VUc+w7wHb7B9q8~-|6P>|8Q5ppFwkl#&JnON0r6cJ8yf-RT6j+b~HHaNCn z5-O!&IJ5&v{$V3C#3O5{QabiBJxn9xjIIn^Jn#657)*66W)c#XVpga&g1Gjxo-}&_ z*$;j=Zx@0elg{FjDKyU08-+K4L{&flLVAi^M&8C2fSnv>dRWoacoMi>eLr`Jh;jkT ze|Z!7Hl%mlP|WtXgT#;b0^e3#PxFJwNo@AXgv1lo-Q;2k8zTk#_AT-V8T6c?C4c|U zAFN2OMhBgeE(}f2*LFTDGC#<()O@H8=C-Xx+w=`Kk_bx@*qw*#D=p=)?{~4>??AEO zb5x#kKLx>4sEB^V+F}fddYYcecoZ@-oc6%lb$$a0OA}w#$=r91NELzGM;FlcS$_O1 z5P~q;yl_{=uqGkMg#`6Cmk}w1#T0Qp3PqjUb6e!ME;Z{<>2PRjakVNg`sCG(qnS&s zak%7nuWe@xHi6lP9salrt_`eKCqiXT{pUs))ZK3I4s32-I?9U#!b|e_*9ko#c)(6` z@9U+#8*RPSFBZaf&UpGB@Aj?D=)?JfCWYFXl4z?2z*;V1t8A^j2XNR&LuF`@$8ffA zBaH?amE&YGa_1GLZG^P|S|37%IeBaVOU@7@u5|Y$(qVfR|ESoxQ6_+F!a==w)x*Q^ z{{YK)bKl>eNfA8o(UC{{4eU(yMfuYv6*HYyt1{fC-ms?>Bpw}w)DCUY^LqRd#YE|Q z{z^c#m*Bd}!;Zl(nGSN52xYpGng9S6?06^J0c$u#$xjl?3^!yWreS5z=}a(b125;h zOK*E+XBAZ6dXc8>)ZGi$imA(0N{a+GSms2RQ_?_wZ2NiCD5eMriyPi;7;?$}AUPqI z)19z3*>+fYN_rQ!eGMQ)kI=U*3@DUtU zi587e<=vyLz#gz>ojca7vEvjRuDGv}Gy$|WqS?D|A*k?!mb`P+JL`{@tV4TL-$Hhi zJOcweH%spoe7w>R=4Xl8k!5rAJ?#F&eEy>@q94da%aS;AvUBG7H3@vnI{AYZYtk4| zmQA7Z+U^*tt$B2NRNE1#*E_3TL;DNj2hNtrpduVqsP{`glr>k;HnEIxwdVWE-O zV9->wGjmb=G*_9iV8(@$ct<9;#u11K3C$-q#S1VQ?id;|n!xxXh6$5wk~>+_n}6s# zB&e7oZ|IT1ocep{XAv1#f0*&Q3RsS&r+?5V?JJzmzEx!#U?aeLvWX~nwi2$P&F{Dm zUR=vlixjSGcX0BUFjF7Uj)rV8@U{y#^1M#gkLRBEJ;v{_OD}|el>PWMGSch@I)8K~ z>J-tNLC!Z9)R0S?oKF!jsxxlg?d1og0h`jHZm{=UEg!@fUS`KtJzE-Ek~h|M zcMsP3q+_uuE9NUc-=h@pBQUUW2$mN-~R*9|Hmmuj>Jw) zi?5oe=CU|`347~zlCX|tJjLKRIDK;%D(Fb;Sj_;-KD0j$hY^&pGor@7qgOSP=z>&h zdGrzYqiqAcKOhX70#0#enlV35)EkHDYttx)KQ%;e}=?6qzmBj1UcU2FA^!^^W_{2K0Ozk{Mwth@%j8rA}as1v+C= z)8gV`%CYH_>>_y$x`(f-(F4KZcZoUP;;VlW3H^YYta#%<#xjTqYpje@$fiFr zi{jkd10-R4N+2KIWajYIn`b44N-?jHJj{s643WgwfNyuYj3)Q)E#2!tAz;smw=Vo& ztWKos$=yxxV+xHm(EtZ!w_64rVOR=qAzaNQOfz{h>8z@nrL&CDBB*=fvR<*NSdP4n z^{-Z>UX?wXKpqL|n2`#nO@4Y1+q-*QKQLcLx}fgpnz-kj!cYV$SN&IftmJ-nMrcsi zH2Qm9uyS6HDPX&X(tiIh&iwf{;x$1SU0ga;)b&qP+G?@Z_wJVZNW2m7q?PeNB+$uh zb~&glLlrKM`VWQZdT^)o}pAEkV?-IS>2y+plO2 zR(XHTn_)=un&e0Qrlt5S^&t(+=ef}V6Cnt`_x7X!lay3&sOf7io$AFI2^o^Y=KPSy?>N`mv-AZ@x zyWwLSOVT%VbF_<)nZ7RD^ifKp2>@7i@i5rID>iZP>72n7CKDfadX z{h6|wYfMB_evp1sNQ%|?g-QaM5IxsNRpsoeAzq8WDW#TX|4Fozq6nqE zpxl0BR0=@Qc&5vrb0Fa%Ev|-K|4K97Sh7{}grW`D%sU|YmJ*WPYS!I|c)9WRn^kST z_(lm3SAZWADaJ&PhdyG6Ddwl|dqt29(U2zthJN9AX==zC&oe3i?U)5%SPdRGrLR5$ zv%m$Vk{&oTSq5>y@@2t?l)255jt!_+;_MksX*~uMI+rjj`Q{7?A|&DfW8aK#waEeh zgJs1;)9Z~v@ab)EVcTD>3R94PuSR8;bN2aUR(FUY_&@9zrJ)k^a)m1Qp8bIR=xi#@i29-;JNw=4 zl)_;~s9Kn57)^h+F|GRT0s%e6VbO0(kZMzoB|VjYjRcTD2!zq`{iWJyBE{4wqY|JG z(m%z8;!VwuKD!pn0(HXiQPew(%_hYxpN>To%_^!d_7h`%j^$~sv}IuVz5+uli(235 zVqP@NCntIP&;a&*ir<0IUgs>he^?h43mFJ!}NgCxdvf>|c7_{iz1SS5-FJnrqDg>UTwHGj zb;b&o^pB+gI|+D*BxGkiu{i(-g5=lx?KDVrFr9R??h@hg&BwBvvl2(esBT1EZR&6^ zx?L;OHs}MO8%vGXR313UK&q>|=U2!RrANcVRyMF&LJHVyHToTe_sZ%VUgo=BV_|Bm z2>Emp3uR;>3Vp9cChy4Bkw^a*Zvc2KiIw5x+HhT4T7DT?S9WPE_B7n~GHGbBnu%30 zBFFSmGT99HmIZA;i(^*3UM}0alQe|p&|j-wKXxQV`m(Ns&-bMqfqxzvnhgN9tDYAmM;;b1ApYvRe2= zXGRz@jBmO368OCRZbMXc7_{jhQll-liecmW5rjPU-~V?eKi2KPRRfFlV$Szv)1=nw_>o!)E72m0}mi#6n%br(BjQ{;`W zk4R$#2a`&FnQrG;?~;zvN%F~y9f=Fd$IMlgD@g#xjsQGrH`Ol{h!O6?yD5Dv3k508 zv2znc)V-{z-?C4k7c7;S|D>0ZZ8^>N=JbC(41{uQ`%0nq-I7T1&YR&9pz;YQ@U3K; zVhxueUR~@42j)bO%Y9&M%nv>zjAvx#D2La%jR;Iwee zm|4GzD_F%2=J0@b15>kHxmu@j9=<=MY;ytab5)V~Pc`~%vJ%uhzcz5Pf9!_#*7jd5 z?LNM81OJ%sYf1@)Ath?7E4x5Z(MB#pE`%8Oo6xt_A${j0hGHt@-YquZI9=784>%$l zw{k_3dhcVmC-y$?m*qcP5diuZ9#WR!P-}nL9`h&>_4={_5iQmk7+nr6$KjQT3z2Tm zQ5?3`hqO@1wdnKs&D*O2-`}OwAY7KLVWUW-?4!YAx8HCi-rFi;Df=Ra?$*3PyO$%7 zSeGvwG50vQkbQccQ(W$@S}jRJ1L5f|hib>ixu4NVw#06c3#ROZR0Bj2$9vG$7m zP%4{K!#sR#t<&d&18vIHHikfaVzTkWi6NluizID91aPts-S> ze8HlU$J|`L>6Mh%*D-{C*E zGt*&FW`*n~V?Js*gnWbz736uY@LwnOYLFhHgx^oQ%;U1sBNVC{wQt|RC{g@ zX}Xic^z7`|9dBbQ`1^w~LE>l62lK&F{v!4O4$IIHu~V%N6o{Xd5%Dz^L3Lvhehfez zUj6o}=Lga4ho2ACq-~dDf4S>9t;%CKIm=d1yZ?Aoppgsv2xPI(iHIQmrUW+Q@s-wt zh0T&8+fv>b{~HwGkyt`)23eDl4(XYUN47*wFLe~UEad-kE( znhUR$*)s1BzkjZIqVN7O1>i6^;Lb?hY+8#ZB)0yi$nl(ZK@bC5k4UqCKXZvAvl71} zNJ*80k~H3#LU!7&x#$`1>{{z4lqK|&tIZiTH&b33p4$lIon!trw{4m7axm9xmlxBi~$5K4To#E zQV;{OJL7kT@r-)PzTBi(^z$%~XjFooxVw5d{M4T##>RJUJ6ZVKrXAobLG3K-2al&{ z-TLAOYol+&e}n&PvBN*AFde?3PrG17jw$C*hf`z5ttdf{*~LEv%nJ2%`!$A5GMXy?yLcfiB7plKCmd$s)l{4!07kVS z$p~xqIBxfb<2s)9Bj)HEQ23v>9{RzImq>PdA%hOC;%W9oP(m~gbLExv!5C>%Ed|>;E{&<#1XZaZ`s|>&U4k7rKQoT z5sR2G=Y2x8;@I@H2Ib=47f1;}ptaSJB{03Lg?kzxeIm|N{(=dGks!JOeZ6kbz?ici zynnFpg1$uLC|K?hSp&Au_mv-6x;fd174-AUE)I2$24_34FFE!hDg)<@YR7c@Sy|A^ zxC?%BO-Pc3&q?+?KQSgRvGq5tifDo6CkG{&yL(8|9;uM%zOUcp0>*RE;K}QOh`skY zZ7$+uSY6z}#gstkNVzPH$k)odNJZBZwjqAx&0?&hwqNvx8af=v0dGbf887t^{oaK& z#(o}5lImNB-4}K&lJ6&A#=5^+cqAvhw)9~7*3|_w^9sU9G9wtt50{)qKylf@&TU)F z{&=u7duSvt-gb|DIj|Rs63RFcgerC2RpuHB(f8k#FV}$wXPrs zB{V)@1rwrAm8Csaupy=MmR(As_jrkMJ(wO1qpTpsnb+Sd8es_%xk@F5G}YQx3m(@p zyvYmpV@88*>UB}TthudQeqa*0#QOek9Q^f^1ys#54`7%ovx3LkF~1%}@P|X7rUTEv zlZ;&bc)YX-Dbq&E(0u6V6#i+6t65G<*!_!_#)*ehsQ)M=-@dfq8Vp4`2geq_x_hYGah2@Q@@a~K{H5~0Y4pzX(E-$s7$0-P)xgofFh@DVV zo-bGgy;-RBm~x#ciHhEd*;dflc_F4O#}p{UcBPwCpcQ>?Z&fXXsudAQiBIpyKDc>P zTpd1!ocnc!Q2Qo%I=SFe$?^1P;QOEd)>~pe-3Y4K_skqE4rHJV77F-!91=`AnJb}v z@cw??6P~9qZr+E3$fpGjO3p#iil5%pD_{Nkem#CcCGNwq{RQ~=0W;Cd)HEjZF=y?- zOfaCSsHP1QbhUl0m8B|{_!d}=1>cCYODUwsj;es9N2$oB4s zJn(FJi7ZA+E=k%7s%-JDpNBV3fA|CA+k*ZQ{J!_>*+8*Rd!#*1T4Ixz90q|?6+hxf z_L66M!+Act*T3A~KVli+BU87eZwGHL9M$%n5K6G`QsR|zi+0XFv7KwFxqc+e4F#;4 zhHT5E1K3mZ z&V?9%A^hMU-B?n!5MxXW#l0R%W>t^WhhA9hioCE@x&u}??W@QPFr!az2I>xld#Kc4 zr8eVvPtJ->;GH9D_r(2`%XISKkMlR=R1&zFiVbSpxs8Ji_C*n~jb9ftCBVWZQYDaH zJPx2$hJ{SO-Z}ecVhN}>#>GQ%|9%qS~~v*;Y#2^SZ) zk(?g)^#c}uPK@mOe`%2X9e|!rfZjnOlgNnTaoVc=hJmlxpmL@S4GgJgg^mJ&P#@j7 zWe`dn4ZaiIMDi(RkQ5FuN>8Z8L+;<35Rq{?qGxq%sq9&gd$nkZb!S69Sp3^}+xCC; zmoUw(C+1mR%?pELIk@F2nV$Z#4fu|2mJmcCWg$~Lc?K7ur=k%o86=KcKci3n1`#z} ztSe7X#gu!O`jqQ7M|fPPv<=GV1j?t0sE|*i{pip`4;?6!af|gfmGMt|O6VoP7D2G0wN+b}X_Er$ZHNiSEH}5V;a;e6 z0E5IP1jf1CkP(RgEk<<$SpWFq|HAFRYF)9mye#lSintmhOO3PgtZ7lr+%uTlglIQ5 zK2n*HNUn;McMU%eIO6lVtri zgxguH(}|0iC@kf@YF+OfPucL-uaS_D{h|@6)xLlGZvY^u-A!gaqu}4Ab=~~{Q%-ap zyjLM-Tag*mHZ(5f3wFtJ*{y z`IIC3yVQb;pS$QEKB>JZ^gUe?SY$Jv6&XaknQCKV4d?hoc3K(CdfDE=Z3<6#+Pr`? zi?nXoymU~V1%PA(fc)~GSM2YiDEL$;+bnEo!w5{AHguhewzc2Q_x&9i4`*=xwd3ue zgG)-$drRH0)qRK)_v4QhI}F$29PKr*BcWEQPlZ6_;H_%O0UGNB+*MZ+qQ>!nzRk+< zQPS?`CcoFeNODrkODqw<`86MHXchBMmhUN%h_$k!{}=WR!E?RK)c0U0ss8S!OHJLe zpjV7asKquon%@!!G8Nz6xV(v;uI8hzQv!m6h-l|)69!gVBGenxT+#m72d+VNp{s=m zC2Un^D%==VybmW!5GKjMgnmJ`c84P;btxP0m47id^V~109|k&%I~{JQ4II! zQ5VDECpw^ek}Sgch6nq;?D%6fk^xQ7FY%wJejMG3$rJoElY;;3Al4;nB4-}>ARv13 zmJtS%7@vkcr^%M!E;+&XPX-+YXtnGCnSr5l#n(_V`FDR^XVU)7a0O9TT*zmR*Nh!c zX$BKbu^w2CyY5qfKH9iKonp%&yL<`+7e%*(DJ+za4#sJIP&RD`dM^F|k8 z8V+{VT&;h^U$rqazAZ4Z(t9YrtC3wNO64aq)WE|SX2IeJYn#7RL&sx4<RfO zo4Qp+0kYjAj56d6U&$lC*Q;sth5JM3!^kWhacqwX#(pet6CVL~3HeL(<(~I}UBQLR zE6*-_)}{b>M&J;aZ8ONc0M_dpY?Hq*Fi<#!w$-V(e>zo>J(6@oZsDiVusD6kDW#GU z{El%E=rSE|48Zpou6}NS5|ytj1-nHzi7+$rmx1|O^eMgW0wsvRi-r(lG<`|Zq3)Q^ zGMP`%)bu@ES!X}XYF3#Uz?-u;k@R>J=EksKDy~}n5CX>VATXJ0@;1N!>@CA__py7pBBzmM8#jERR?K(iQ*j{u@Aqd!wc`^=Qv`{Ckkp3aM3qs$RonM)I95_+BbdFu_`(u$|4D_)=&c~hNh>> zb>fv_=2%46EOxne`T3`Brk{~I(z!{xR9JB;L&z3Ac-kX2q&+X2oBo;`_-cFh5d^ zQ8GeC#zFfmOo4e%p5Nu!^aR~%g=1Ty+0D!`qj1vQ^(rKA78KT`YK-*VmIW7Vb)<*a z3a*HWYj{u`+vPOX1UO3PUy|7~0OKNuFL+l*Z2br6@D?(Oa8`xslLBpIHlzMKmtUlD$ zip0;~JBECQ>$>OTbNsln9uaUbMV7&*bl==01=>F`+p@Rx2U6THQ6&f>gl2$ zU6^atbLBcN#pM&@ABrQ8_$3r~2nDysMPiRYf`{gwQnGE!d!aV&DA^|1AIzb1p%x=` zY(};|`Uw*+saV!WWvLyp5*6p2_61l`nDrF|>$hf0Fzx)Uf#g%T1kmd}-VleECSp&_ zi}B{#M=GM7n2g~v*{!DcVeqzq#$g$I2XV2v?%+!V@SJ+fvf~FYO7KK`BbMKRxOlu@ z$pzp@-Mcxr?ckzQYP*3SZzBNP{(+=RgB}whZdFw0YMuwiT?oj5E%c(&P_7UUyCP_% z!424bv9lEA+!|nv@3#^Nz{xJKnwfo!Aq8GdpC~M;`1ox&ovVA;+e_Fa6AA_f>0fmq zE;F#9&>i+g=f#SCs`E@-qO)YemyF`c`Q_x<1?#!zNQg02kI8K-I8J_)2vLU3_vo@N zQ%xEQcal7`UjPp7lbJ=h=h!|N{l7Vj_n+bgzxZh!fyehhzmvvmQo;Q-R;9+rXN1w{ zM#mjym_UXh*012#!z$_Bh=K(Ve<=MFpTt>!{Y{&Ev{c~@vhla&WxxB5SK-?hm66Ru zVD26nkuul@zXxd0<8yf#Qe)h^3V;PC+I0oEExTo0H~MzX($qg_7Ia%I^PWHOgWTTKV~>9Hd8}3k4%m>J z{;EYs*>j||Rg+ZLR^w6uP5ku$?a1s8x%GFEfq5>Vc$4z}2a2^Ah+=-z z7hd#Ihbjq42wNDaZ0a8SMLwH_cF1@h*(azO@vAd3^`ZW_CK`?@+z3xgMG8*rJ zA`@mgfUS@sz~nLimF%&hBl4Lpw4UI@bnAP8eb(j_hS@RsVb9dy1Gbs`k9;T~&F3S3 zd{&}818HKslKxjk_aY4#Z0jqFc6iQbvXq+~#tN)wQpQ%IpliQ9w-|EU+mbIxOrB6l zfA;`JW%lNPCWyoJz?V++K`XjNVf7X`P-D%eAbHnNiA}sbulxEm!XW8p^Feu>bt8eysAkg(AcW;M$HuIs* z8kr>;jZTz^clxI2jV#b>_W?dDx)2uNYf8+XB~xl(NpWOA|D9kF= zgo72gj=dM3$bVAS@a6Kaeyqk1fZY-E4>71%p>2im4d>TGVsxFQjJsI@e)J^6yN*@J zpx|g49*F&S`vLwvhIBbe*Hv1Dluk<8Wl4HDc*20g*&=B8F^LZN8dn3tHS|lfT_U40 zSqEH!L7&?Q3j+S#^MZiu($9gUF$l!w8I-$K&Hl^8q1rHzw;9yaQ<=GDsi`aZ2So*p zjlKS!^g|=g?Von6$Atn9M_2}McYOr6)oPajqz5w9nj>M~NyyK!@f}XHty;e!q15ftnC3GUvH(cxxrEUcml7> z18Mi91>-(4C_i4I5QxYcV#bSfp`K;C`>GQFH+qUr8t5x<>#rjcvV2IR&v@xqB1=jW z+9JBL5>rWQxax;%qgsLydf53q-==m&I$=hiFM_Ch?NtuoEc4PkgCe8%Y9LKs0?LcRRZ>H(ldHT$lSaY7OxibdYxxeiy>ev96z z`)vP;90+qae@{z^kU7Ranvilavm-$yr4JJ3{Cdv>N#-@$n8`I3%+|+k{hwi1R?)9G zX=h7h^zxeN=V&<3`{4uvf24*CAB4Vhuk|PfkTm2u-Ifc7j25_HN`=NHNn}}PPpR*K zQE=i1&X7m*ZdF$54j_%+^o!<{>}B03b%u`M7q!&8EulYHYqKhDGX){pgzjRF!Z)uDx1gu@KxTnY*&s9rFEvU z`A;w|t(b%(34g8_cXh^@?f_P&gr#4H)2yb&Y1ZNIuT2rtG|M=q_LAv&4JeVMx8ZN)Tm6=k#Tr$29Yc%e|YhL@-@H5Y| zvw)giDAu{yV^zptXm_p*OqcO-Frc>#UM;|k1fE_ErWYip;t#ya^eZ4Cg7&JHoDjRF zQ1jf*?`X(xR2Ec7;cbvXFMa7xm@DTK$L^mv&>dI^8LE7xCiN5Oz3m35XgZ3`&(L_+Hx_?WVTgsEvVH!Esa z@NXY&%pDMd|11?nY)}0V&@2EK@_n})+`|xAA==daK%TL6IUkotDE84exmVS-0fuQZwk|iW&KbnUBYselLj{=iO?#MPT#p&VA?4CCb4$4rZ>;Z`%8qm z@e+y>%p(g6t9wGCGDI95owN%o>aJDWWA4KZZEtpw1ga6w28nm@t?yTF4I(3|&d1Q? z?sXt2$`-p)Fi2J6jD8qCS0LI4xKL0nvufW^Kxq9|7omE7^+ft3IaZvV-;=N&e(a{m zc#>4E3c%}-rK(oN9z1m{qZe=)aGKR6fIavNYX3x8;iXyM+Z~$FC)xTgitj4yA zR|vlB;%aLfabO*}xe1uE)kN=yd+RQj2GsTm#5V-bC)al6^GDY0fhpr6j>iIgIwE=e zhBWoRm97ZRr5$*pq*}ZR)~A1Fq5u~G$#BNzl12-ua|T5J=-1!AE^||hyYPo=L>|RE z9XR&MdBj5i`4MrsKkEQ15~6Bb;7R6JNIeASWliD#ICLcVt=TWdCr15W&w8BjU{CdN zamoMk?~zlGOiR5TIZN=RUxHV~=mWIe8!8zKMr4MjBnJdUhs$->wnQ&*U4$$$+S=U z-Y~!DFflX^2e&PB2CAnh*7xi^k)O`^wie6vpu`-@i^q=o$fv*5J5#0#e*C@vt#+t& z^O1;x;y2XUAGo!@7$zMBBXOuY8ST%3_xj(TTG7;hC`(n<;d`pgLVPY*o`tppW-|bE z1Dv9Gdlm6z_r*O1@<-knQZZ^jD4VL%BZ}03r#yTf^7UBH`4QCr9n$^z5nz_Lny{|1 zvFR*hDcM6b@h=hyoW94p6FDT6Llwzu-xYh5ib?mu8&x=%p{;;{nz_NadEpvuAHz^{ zuXS!h63*$HF;{bmUL7f{3^??ex>8}$PFu9a0-*Ct=MPJ7?*pX1F!Re3{uj`308%=) znlERR)eKw~E=q$dO^oaU-?b@d|BqgDmlLZ^AC%Zu!4>M{(L}oO zw&-l-wJN}dXKU7#7)NW-UTs{&Tz@(cW$AsX{23~4(hGGD=@l{3H<{yPR`$N4^HW%e zw*EA*$apZa8-8ee7dq4z-816Q?CQRSo(T>jg?@HKv{ON*&$l+17tFb&u4C7|xk_f1bME znQAGzo=9yIgobGc6q`QjPfSgO)u_}A)=GZn@dEB4VEwI!?=~jhN-d;&Ac9gS(SVg` zfNOs79AiR5)+*G}s);6(**^vUmkoLTHujt+GkrWs@mNRL;V=gwU#q9=;#_a$(u1rxf|3Ls<e@YpyCox0$_$B*M2 z?)(%y!W#0J_KSZ>TtN+j)HjCv|8cRn1cUQB5ORKt z{XYfsFUv2$CS2h|Jy=ThKh?**1FIyn3EIOiEl)GIE{L(v_xj7iA{vZ~q5AbXTG%R; z-gVIwjD`2vw24Vurabfh6~9~_M%`THE9k7h&fk1;UXX7LaA`bO0WN;HZ(4#L3@ZCR zF<228kvul*0RFeajW-#a{gV|D8f~@!d#>_bJV++ca`BX&6GFC#pJ^+RT`W9ln!%Nd|>*o zm;@0{Y%xT&5%=ikmj|fjJ@wQP{y_E<=Ka5z`ajzQcv-<^rMW%n9()|IJAL_{e^OwJ z{Y{uaUhKS-bMM|f+X);wKAR}v<)k+{>Gy$s#8NzK_l-G)KS1T*R_tGINGrtPzjXq0 z5qw(&!%Zs(sDF;@VhL$G-XM}iulEFOzAokK7H_xIK^2q|OLcO5|4BJ$oAlYN<-C&E zW)4Cur{MIivKZ&@S_2*GT&C|?TS_22(uKvCji(*hpr9nBb;y|i^&H>UZApLqz5xUR zCzm+~OsO#P6QJafOI37_lIUc`8ZXk~Z=8AlRrvnngkud+B+5{IZH1!ca{|aQaNWz& zLo$);{}pCE_4FRK=U;t<5Lc@`dS=|w%FOCsW0>)f`@hoZx4l*m_`Z{~l4Z=b-JU}E zNtqpsmQzB^)72O-TlXz6dkD%eRg@lvW(>EDTG-8L{ku-u22=za2MMy6M9~x-r ztW1Mhk4LIKC8@n@UpMk!&N=|4qs;fYK;1KC z>I0IWW1tlB{9zQ@O5l>(L)3HCdS<)H7K!s5hT#)9_tXE2d>Mp{k3?!em6QBcps5-P zwKHNXBw1IAI@z4^hET0nU#jKSp+bWx8+c6I{p-!S=_NYkWIRF)bNcGCkLUp#&+o@g834JfQvg_kr_{^RtwztHL-_@Gwvf9GRK5YH_2_Q_;w?bK6=E>o*dp7HZY;>j|8i!YJ_i&5q-H+o_$}+?KiogS`49*u zpTDIYlgNhd)nD*~{4O6PN)(3w{Zptbl7Ve#c+UNY(Ob$uhr<_XYS}!#nlG#T;%EFe zR{XC{@EbX=eIyPWlLo8|u{zRo87lF+L(+@*j4O1GjN(^}c=x8Qhp&Kmj8?k~i@X^H zJI5_CKHIeTLcJ%lY(MZ@)-d0);~cutC&byfrcfl>!;nmAi!%TIq!#Y!>-|j#K#{`y z!P6Mo)in>9yVzke6IS8KZWdr&K5LMTRUOiHTDhbZM;q+^iQ2+Jtx^d4g(Wy1B-uAL{6sOerpxwSR>ct=!7mU;fS?FWz@9jh{04lRV zrim`&(!(aO#gx>)h1oM2^Rvr`Jp43Elwe(>j$=5xi9xdx0gv{$&8Hex&`mUDS95rP zlVLGA7#`#7>`0R%0m{82aQkk_odldu`ADgz=pqI;sogk>$_P^B{>+H5z43$EaiE&A7Xpfn zx1$Fh**X9A07PudBwx#KN^r}5Hv$MBRxeg1Mk_?2yCKn9rD5HRvVR>~oC&uqt@ZZg z*t=f7`=TR?X2rK@ewqjKWx)05d36}b!)XK>WCRhL%n=egl2n*W;IN!X`0^4#lD>T` zIXNNgY!LQ!8Nx>^tof!!n|icY0{YM-H$}@NHq-~9wLiIG7e>hRn%7ns6xLL$<12PU z8&=#;D#Qz8CE0hKfr%)D8@#+$>@I)TQ~gyC0WSv}2YaW9f}T$wIc8YW;zwsZZ4dZ_K^I*IM0mtNSQXdc29Am)=U^3g^sZ;`X8vtTjQIfW@vvR;C zZEs*DcX+LaC~&qR)eF~=8TP<0R}H-q7N@l|H*I3ZAN-%wU4Xx(gk#Ypr1oqdEU*C)Vid&dVC0-VTY6$fZj>0)X_@ZT)}0U?SbEtvO~-05{sIKl#?WYh zgqtN0y<%B!%n+4~taU!ir)CQhuY1e6yzkV=Odpy&^(JIaUhDYttnFrOtqwv}-MDh?4-=piL4rSHSI?z195hHLX zqBxSfSB*UzkBTdgG9;GcRYv5%oozQbln#AeX{ zMkk!>+N|`PTDLm;24uXaG>qR9b$+Urz5WLrm+t*SGarzM$gz;PZG4&^NzOVwjSu51 z0a0-2Xs^hug-v5Vv#9(4Wo(Ch?A!-8n020RJ}J|;D4qj>){cOxof9r6X&zLT?diBS zBpnF*{;HA|%dN6b0@Wjz&sRq`1?v8D$A>8E*Sl^OC@7>#+qd<1E}H&SLxVx{z;+= zc6l?u%LD&$ra%~?!KYV)$l3GwM7-b{8Ll#zrF!6=W3eYq4yvtDFY^zqNb3hOHR~Vn zfv|(W^MNL~K7^CRatSLqQ;F-Z;lZ=1!m`EwcA9UmN3@z#eF$j~u>lIY))8I6`z#WW z^j{3I`S}aeS!6aq_+WY4Q2MQ+z_rTm5Wilgy}4~GD{@L$->#%W!!M&fLb>Qq6UKu< zy90LdG^lF9$dYrV@d*hVJF7`Yzw-Htm=G3vVA{VEIqVjCV%l4c91JI*&ap7sAmP4- zq+znihf{M@A@ZWEwyaw3I?onn{Jh37n6ES*!?`_S8Nn-3|N-o>N$G)#;Q~*J{-pIfkD?+ zz^vf|j#syAi!ab~p=)P`6yy6zOo|g?=M%l_M}OB=0QQid{iTVRk33@>Pl#>n!Nr<_ z{6rVU!mt#HKU3lxlc-igzw!02U}DJK{rupsrcB&Q46B$t&STk^m`|2&z+N8eg`lXM zL#v~@tGi?b0xS|8CE9dm+9F2S5W_{N&a&#n7GG6eJAM=kG!-g-gEu>n}GzF zU!sE!vPeKp#XnUr;HCCj0p6St_}p8kGI!dcB_lQ(T=TEkyI6|W(P5pcseVsOIm!8Ij~P_`pJVg~(qTbdGFK(%yni}ZTpyN4P+^4k79EnaOw zsFpJQDNsVAsdGR>x!=J#z8+q`a*!vob|hB1mSlX+D_MBfsL%aY z0_ED{c@oWO)l2E{ys$|kTz2oSVrI`e?I+9sc8EgI!#NwH)F`$8)Efh_<15(327WSK zpg==-Z@mV9UY@)^(LRA*Bn*xxGaA);ki*jFmdg)GJ>IQ~ytRY7hFhgeU}r9#{d>KM zHwB$LPZ+?-8oJUm89fTBp`-Vtc&Mw+I9Gp^(#gG|K-Y%(y8W;|%qIM%wftiMSXWeS zOO^UGEBV9?6~p0M*jLeW8II!dcw4S@aHnWJ~Z1J zEF4cO{MU(eW~6wR1l6}yDRV!dI6?(OJda<4zQ_yimoRJC9NSQSGdahaI)i&#PT=Nf z$CCVSUdgQ^hsbRJiLO2R#i&^nS1;a8{zm+C&6MB_q)rv3X+N`LJ!EJO>2(~q-79r1 z{i%?>xth7FQ20~+mfn$?z#W*;H3s*}05+($_v-EiL6BDk5ct4!PdWi2pT7Na@_G)| z`j7j~mfTO0HNKqrdG&W47~m19&`+=eP~1Pb>Qj74L-ET=hwowROP{6IxUk^cGH+fb zr@q3l}zO$0z^Z`Aef2_8oX}z z&zOTGbH3l+sCIof~RK`XljlWedQ#==)!8_IaR@bFJ7&E{k@3s>KhI|cX zmQRc$t(W!j6|?h*)(T zCVVp7@G&jQ&HnuY<*hY4qr^B(zf{{F=M5D5EEHGpMJG&S#ZMqAWdPR^{F}IpkS`Bd zQG3J-tgsAW5F1tmn&r2PgMw1z2B)8O+hS^I@<2Is!OKdD;$F}=cRg2=>g5?f_C>Iv z*E+rq#EWk9xis0U;phup+_SOeECcGb35suy&*p-ANXgvlDMT-i#vQv)T8as;#Sp!e zx=Qc#C7NZu$<bQXDhQl@H>gW?#J&~h>Iv$N>Z@0kmy`My9jhmVN^}e)V69$;y9KL z>1akvnwEqWdbz$Vhz2^YM`4wua7lL5MToel6_~A2jgB81TTH|@cVj>(W&t=R4IaKr zU>f}_g%X~Y4T0VNWP1layUauD?PQ!1DW?+OfKYx4<`oPPJ_$HDUS+1Zd{-1)$K8Xt zMZ-l*a5NL-O`U}f(I0pI8p?(XJ0(2uir!w+1eE$kN{nD4$4hjp%rSqKx5g4FH|?ey z&zkH&fhdoAbZ3CpEA~4w;rX|pHV=UNjG7|IT^aXFCC!ffi<78?gg*N5`t(#Y3a1#U zBp2)R`Xac+aylhF0m;BNgLzrlPRh*}u!S~-%+YFdA2w4_>5yu~4%XvBZ8K?bbk)P= z!hR(&Oc*!$Z%56-4ComudUJZqJb|H^+nX@AmnR!Pq4!yR@X6(urzg1uFQl#)awnrp zo#D2ml!7QSjIaTOw7RgPEjQ<46oo^5^MO51W~=^f9+-`j3wC#*%jTM;5f%nlKw}!H zEBty>{A*s7V(MC=AJYHy4c$;vRyR2~+eT9`My8+P;$r^YE~oh z9qbc)m~y0nJ$}%?-B!!+B>C=DqZ+DQr@;B-XijG4pa%M-#iM#!$G7~^7Q`mS1^UUBo zX*_xI;d^o2Ijx0|N6RQzF@~WLZMU7;6H+AQtlaeVtSAq|0`vO3SfV$r7G6`X9Wc|%eyYoPM91R6kw%j+JyI*9yG>*!VMm$)RgTOuNa)i7_gg}iLqLbsINZy=M zE%XPz=IM5m+VW;+8Cb09NZOpnS7IT}TuigEZxx?hm7kHEB#u&3YR95W&o%`P_C>QM zEPw(ELS3^)1o4J0zeRsV%!Att>ND&d^-wnXpuQZ`x7D~x&vL?U|6KJ+Ug61RgXw~C zq&x-ZLc~E);i4y8deJ9zt-3wg2y;Kv6->5^ZQ%^ya~&`}&(*LIc}8SC@3fjv3f@G~ zoFvrB+TOheHUud1)IQ;LCJQ(Cm`y06nW7QH=Rx`ArP6nEGrfxWD5o1)e1@dz52GXy zKbqoD!RXUi%sWf84su@Z1X&k-QlraylJTxp21M%jy9CC!<>oHFwVx31^ognc=3LiLO%mICfCsoaW7Ux8%L?1Fy4_~wq= zT^ zOc3l_L2vlqGeNXsgnN?(+}@&tWF;?}} z#XEk~AKJx+0S~@C7f?0kb6Ji>Xt;u$_=^bKb|K*ONCM3-Smp0dce$Di-ldX52ci_F zepVehc>6{lB;NcwKLp0?LXfaEB|$R932w}1ByJmg$x+BuDS$K2aC?4jsCVs#>X65t zoaLv}P?PDUkOKMxi+t3O13IGvZcgqIpRtgcw-cyVcr4d+nZ~RKyCJ(XISIF0YB6n*o<+)8)HlGRe{)ICqz}6OEG-3 z%25{?GcXSOwt~PUqBtiJaj$%boqTk|P0FaD+=?K=jA$rU`M#r0$N`9uQZ94{iQx7T zvA=|TFiP#4o^mrmZl+BBiAlcda+C*X5J?cM+$UfPZ5q6iS|M-;8$1b#u5cuPmgkiS zw92&m-X{+V4yf*8*#c+(Z8VlQHh6tXSGbae!b&S9uzs`~U;uaU!Voxt*%ul_I?12* zl0pzGUZ{=`3W^(XueK8UlGTk3!-AA;vf{><%CdgGT;+Zi|7=RVv&rBK0zutC-tY=( z#}0IO@|Tls<0)kF%onGtj(e={WTilL{c+?LE=4&W%&e)+$CyQZ)P^$TOGlihoLCbB z))c4DT64RVbTk~ss$BEEkEEiIe(*g4k$08-`kF?d^DkDyqv!CdJxs3rePu3W`;+jN zbt;w*L{atn6YA=vR@sAQRLb$d$p%Lt>kn}&bbQw@bZ`!8gtUPe9qiZ7CYrQSWhEG1 z@%Ie=iJ%FlQy&o$yppsCl9v#NXQr9PJq2~X)fWLfj521}e(}Xh1*_ELr1lAb0?YG^ z%2Mw2K%Sqlm-gP zb%3dhSSR%^v!}hI#+w;Q2Wjo~P=+(<>!6ynPiSbUrDUCZq5->+{#>@AEtoo&=UZL} zhwTaL3==2KP^vS9xxy?+N3&?jCf=#oIX8A9;%#TH#_$ueKbjAa1Z$?3XRP)H#u&mT z)`#;<^?TPaf&CEjo+tS^h0MJGj6$I&`At$6zx=so#q2p1Ao@bWZiGV>%N! zZQxZQ#;5f}7uZNi^*!O5+xtYh6c9tTuAXi6r)6j&Ef@z{4DaAF=ouG<2ZNiLF^7O)tVi#)&L}(39Ushvxj|0= zb5NmR95uGaVmp?t+KL7){~UH^4yP)y;Vibi)V(3wo_jKc#)lm!`Z*t3> zV|$5~#FWo}=3Qe%Zmh`5|2CWCBR6-HDDQWn)<^^O$gA~M0L{a8O11*tyr;|N=E|iA zpU-Ef9B=!g86}&&`<*Ri>aPf$<01}r4;s!^cKJX2ROGhDCQ^cH?Ph0ztjO`8;{j2h zDgN}X`yDC$aq#Y(Uh1+A+h&k_Py_m7yOU$ap8SM7mlr*dew)^-@Mw8_7Vb=Xre=FH6&z~9eb%d-iABuBrsU_ z)}Op3k#p>7ug{+3t-d5f(P#)p-Ti>tp8Q-e8>jvU)g=xOaU_O%(@WWCt{9-VS3u>U zskK$4LC`}LA`tQ-qjqu|*dSF5mpy)>>4Z4^xH6ksABpmdHC&Z-v190Asl8@>{5!cw zjsp%D$7!RK#4TDDa^C{wl4(8$!_4&402)s*Z{eihH~5-PJSXIm$O8En= z9gHxrTmyPej=YnN9lw3<^t9(`S=fCU%hN~-8_a5h?l)~6a?JC)2u=tZVRP%jLPM;B z>jAA|zhl+rrX?wNp1`BwpQLRTX@^gGX?@p8$R$h%S@u%v&JF?~wqM#k3M*RL^1Ox* zh9*P_fmT@eOKQpcJnz7a=ES7d{)0=9gR?q!TOkLQ-IFYPyCEttQ2EAXP*Wd?vO948 zVJ{Zn700&8fkSl7y);&}uta&AWT6W$8;1>U4@1E#3Oso4uHVT#asq7xrjAD~T(QR& zHdRDy2ZTF^2CCPv82RQ@QFrnMD9Ews33*ITlYhy{!7|Z?hb^dQR>XF*@%eg~hbV4q z9UhT4528>2h})Nr?>&{V4qZ|{s_p8*op9y;OUJP}b``SL06Bty^eh~S0wM~WzIra0 zXIe$*knN7?cn7)Mt(bgJ143tQfG@sC`Td}bcoNCb51stDxqPF8Gz2G+a2=5Ud}==pXiyN2@n)}VuR{jmQ2b-xT<)pOxJ?xT92|%7Du^5?HDv({Vk`oUAx(TF9bOmO!lI2fkr|1s8FDPAW9fDjivtH`%;%^7wj}Mqr(-I_^5G+^a`` z7rwXa3mkNIbw_sr)$+*+OszoJIEohG9HSSUB&L*}#!FZXB{A8y%sx6BI)P%x!!jS$ z!$4<(^(g+#rPPp(_`w^j(k?C>*T+aUXslDKbaXfpG)W52VN&C>Bp0A9aLi-wZGWlpE51 zD{co%yNsn86V1rsv621|C(sy<-y_$O_YI+R&iN{u?rYGruHgx%EUG)4gZ0ML{`qOY zjg1bhpS;;C9?ht{`9q&qo3d!4`2iVlcc|jMXOBYatTm%p{)}M)6pZxcY!dGjW$|_B zV%tT_c2w-ki#S)K>;x-&@qiE2nR%{MJs~ln(uY(|3#n|N5@$ixdYc@tfAR(-Hrat& z4}Y;Yu_GhM#jL?Dp0p^G&;IIdvpmIp$SzHgd+_Bszl$aZ$L{w;DE7?CMX{fLpvg$Y zi>nO_ekoPy<`6Ze8mOwCCDBRL-wGD{dZX-d<35u%_RB*9M_BG81gfy9gXr43G7KhF z_BWH1e(%~-GW&WZNFBXlVrg{dCMVt)%$MZO`tE}2-Md50S3Hx}Z6hCYoKJpAT)v)v zHR{@5`6ia<7im82Oay8sd6_Ct@EY}svz?$Nfh1y?<6)_9>?PWFcOF0gAByMviPOF1 z5W(8BtKS({6MD(pZZ1@S#v1a$|Xrw%z$=_kJS|ruQ1`!%KV5)YSYmd#@J)luc~7) z4a5tmQmu_Ry{b)UY=+zE%kjuI@MRJ5@imz+rdy^-m7Ua-{qW;s zO)!CQ-7CG(L!X~mMZm$(YGyLb!{MCjMVXQIr3ZI5>&yJ+i3?}9@%U)** zxjZ~1<6C8h!(-Mez9Y36FJdAS5ydEV)z_4U+$E>kQ&3JjLE@j|)+)b1jspvwHQYq} zx@NWOCNI00Vf6v|bXFwyhm!%f4mHASFWkRPgYR$mrPP)_2nA04^k zP#PWD>lr5W*ZT#KtGgErdwuSZ_2@xca#}m7r94`>dUD|3C;Z(QT6|T05){FhA-wO0 zyue9-8=DuWBP*(WE)t0TN;5ig-A!7?$j^Q(%urYmS=e>!M>yJKPIo;%chZzu1w6>(8RBIX^hhf0#VQxpJ2clg!n15gskWq{ooIr4I7h%5 ztcCmjB;GOdbe?;I7>#j@F5lQud`4*PEFUq^qd?S^cJUR63e;|*1D}1lH&&HL8ty!> zUA_u|ER3&eAB`{-q`SP#5vbpf8_!QLjxc9 zvZ6Ava8Y^G1(u&J^IPg(u=v7slh&O~q*rh7#)vfLO_ zBnd-hVKUJ(l5A*$4ELaul#xZ*1K7n+M}fTL%2Ff66Rgl}daPtJg8B3z-LcbmFJ-BX ziW|%QOj=%RDpk^9pop>xlhz6_ZHW1khii^f*IqJ4kdO*Hp^-SYeSi(Hz3>A@TM^}- zzF6d$i*!s!WqQo8i5OR~nNj z^l5Z*zeK5TNvK6FubC9?w_-}BjJejrn&(#g5Eu*^v3%Fv)RS$-=fk-!e3u1UhSnP8 z0*}r3od6QZ0b*rqGwMcedc&g5D)IaKY_ZLDpW!)HDoZ2akG_vU?Sp>PHd(4wrT(3{ z74WJq|q^RPC|q>C`kZo-@C zD_)!u{6v{y99>bL-hZL|KDnK;Qvr6mkA54h-N#MH5w)_%x=bpD%m61eJebSx*F}xc z$t`Y%Ri>!XHwzYAHT-V1vQoMZYoWFPMbiJ5QEJjdq5zbwo+fl8Gn2(_KJ@jYgO1^VQ-U{5OgSF^^(iIv@f< zuhDrEmbjr2NLA_C(u@}apj04x4`rP&TPN&_G-g-wZp}It`fhWAJGYFHH0!YEZJm_x zg;4&RK7a=573mw+>?8J-YP|3dPK%7);gd=g>q-h}c=6JVf0?Me;f8H$Nzo6Uyoi*o zw{*sw7k+4FqJBQShzDoY@_-G%>M>rVxTi;)m;YPM_9Nu*I6S1qrB)#{ zrjUFk(X)f9q9#wS{SM7R8na#O0eU5VT&CL-A&oz2qpnDT|c*V zVO^+y5b}gP@#K<;{ZLn4g2Cz4%S*m$>)A;27_oU<#6i7_iLe4T3CMkf~~1TpXoN@KTa8-cN-c0xG@Ee^CFIY^xp4(@M2PX$7g z!q9k`Npi15ieT;D>aSe1ycql}dAL~dBdWz!udUxj;biAy+t(Xt7VE6aSJYVSUTV$| zzRtT>=z($C46I0D?_QA;Sg1mMGmsGv|8NzzhM|7hb}4$09GiIfOjTyO4=UHz9{@35 z+8FWK!ss2SR#xVKVxqhg`)*!u0}U~hw4H(a*^Xv_9+hM(d~c>n0U9+MThmIBI_7A* zA*{mzgN99=Z7N2eDp6%qweAJ!$nFqOyYPm+arq`XAyiH-7!|t}%tsmdmf>-G;mEMS z?oaQ!b#x`IcBuqmyRUXrJNuQSr)0^n@Pg%fG9nLKCZ*nVd6g))SZQ`rVEIJ=h00TA z6#i;=_9@qYwCO%p4>`0<%t=Ul`Km}lU1B&wC;#vYgvk60@gXJ+uk zj@Wk*Y3a)YC176ObJ{e5jRtZS5Zo^dMpb*E5quo>?Jwte9{}Ck%QTl?B!!zc3d=Iu ztpV|wg5g<~YQzOfFdMiaR^^nh-@~jBXdXIyk*rsOJ-V9yl6pw4TgsL%zlmUeTUm_% zJ{HtnTbTJdbyl{VCiflB-o=G>zLczU`cR)t5gu=Dh#ET%IH_znT*I3>t0iZF*GdZn zNYPp9v9*@@S=p~~ld2c^*eINJ;rL{_X0H+uvOv$HWSJ7m;ojgUqEY>o4u*VoH$VHq z-r{xR|4M_2E5`F1e`aJ(YSg|7{-=hKiq^zl8j19|^dqTLrvz^78G|M72;@2B; z5}*CmE0AOd80Yf1dA~D)d=Qv6c%9n#UIX|e7Z#&WpO{LbM4n0i7~}Bw!p?1b4U0{# zq_0{Ak~G+PEoIxqx|OJO{{DY7SR%6@?0zTB3r~=+LEMVa_$64;SlL z0ylTvt)rOu1kchQQapR2AI3i)J|n0Qxekn+QDxOXx^butf!Y&7LyVWL`B%QqOQ&v! ziZ@D0z$&|NeO+l>70JXQ&=Yz$uk5L)UegZric<4l-%hLt*(*8<=PicGj?j|D5`Bc( zJZEUr3PMVRf`b62?`wgt^YHhPtwY@B(C>eT7626HG0OOT8K`_p>yy7`{jw>3!oUla znKGS;w>`qdAN4t-l_Wx(*yEhA2)GSG+IcSz3T^qv)H*ru$M@EuWWZgr_?lMY2&Q4d zGz+;H$ldG=wb)K2Ps#v+rs#*#dkLq8#iUFI%fMNbK0?+vf9zTGh%1r9=wHwlnDa%G z<@FA|IPx3I)3p3LOQ^i)@1hHAd60D+h()`i#l5|{hWvrh6PmBVq@A)hPb+PbjXiL} z8;Br;2s4}Ojlj3$|7=F~#6kbh%j;#+p&j{0oE_h(?}4RW*a_Q54?GKO(S*TErYUSW z3jq`^4PY0zV1b+=+jU%rx_!iXElgj|iGKfEsH^WVJE zDnGU)pU|5gZ;91L4o2NyfF-Cs%PjfYBlc(R)C;s6e4Ory!#z%}i?d%GSWi-a@J`fN z!s`Wr!3z*MR8ldin{m!uYJNrmX&epu!h}GbFsFyDC|y*cd5c&5O^7S(hgM_2jYnF< zo5U-4@d+8@QUifQ?%5nC(zGVV9??GGmNu3Hu9N-^C7Oox2w`V(A3bp}4@0Ob0}R3S zH}E)uDGOOg1)d)`UTTy?6@C!&6yRZG@>8@t75f!j?@X*K?Td79B3KofA#XI2Y+GOA z?Ao3}Ul*+k^SS3Hc%#GK#zv8g>rBo6GPB0l2*@>%&40ql0_|BceyCc9nXWA9|oOiWDA{u;b}IrZ%8c4>v;t6$XYZ&$vMm?)v)t$c~i z+!dd~;A0_#RMBN$o;~gR2t;#_RmE7K^@%~Ww*dwm)0YqJ_W$jc ze?qSR+mbUm-ICYg80yxkIMG`WZ48VNrsm&*>cTnuxo6ea?AJ7_LMg9$(*Hm9-Z5CS zbz2i$wsYCGZQHhO=CW}?34 zl=0i;@yVF5fppof)`00M#eqPCD}+~m!&rxtg{Ju{MX3n{~$R2A1doV-Kdb?Us}t^(@!LD^SkwUTDzuDU%b({Ce;H17?%>l z_;Rz7>GOnkMy<4d@VV?^icy80KZtrh;NS+Af=o|m$9|-k7x@%J`WvD*ledQ|!PQS}NWCY^c z2)#FA-P=T`%3T~`cHyS!rJ*&9G>W-#mvdm+%q-zOQ1vFJXYUX>xD$3jV=H4YC2|aW z>#5Vu4g;vJ+Oy=tfR?M9yBju3R>2FZ$(`GAp_=tiD)qlfm~@p=X9|0*P+qUHId1bMoLep8G5CQqFq_whU_qDoN6BUgq@G7!rK&_Cw; zu$S+Y0mirA-7KFxo@5+w&xjf|9kIhavq|1?=-|MV0nJYewANhaM};-BhGvWy54I>( zlD2Rgx+SoPLAj5tn;?sjNR_>_yR`X(j91|`mWNRvto9KA5yVdWGn6zK`J~sa{cpLZ zd7KF!C4|J%S-4l0im<9Xz^GNBO(}%#o_`&=AAMaFIaZvGZ(aiWg=!h_NN^(Y$Nrh= z>nQ7!#zcx)i5=2mS&p_Re~qX8UoAov$s50Y$PxypQB+pncBTV zHmW`Rgg;j}0~89bTWVFN;WMH;8tI+YK1I2CnGA-HtGoJB8d1OA_&Pw`n#(#-9FahQ@c>xZ?KP|`wU?MXFZZ2bqvGIRY!hhm{O^W4U_2)gG znSpJQx_!!YQ?XEb#ScJ9LP~02I?SgInjp5zl~~*>%5ccUcg>Hao6)Dw=hv}& zD1?lCrtLp`4m>om-``{%ym_bc{(!{CrGH0G{nO$6X;|KgZ}D=t14({V|1~N3w^Zpr zBW(Qn5&)}|A1;3~8T8&JEZHY94|Zo=%|^wrpelhL-&r0}>KcYnc7gEktvD_y^P34@QIb#6ywj9Fef*c-=bqgE?eO+L`@MgYZ+anslBBO+yuD(eZ&4AjqN}3mH+#q1I9mN zFtns4PSJVpm|M~@v~K6>TsQ}F&Owr#op+NnjC`m+J`8(@HS05cij$YvuZUDny{o$z z&ErX55F>;Cs6M4QvN&C~J?b7;*I0A(J3B@6=c$fSfJ=!VbUuA&bu}V9`6p!npwH&u z@^kGg&wWvr#h6@u#}gppl{++aY@u*n%Cul>Vc;Hi2Kv`;+}=scO9I>s3lrI667f($ z=t*fN-_-qS*;^x5(tUFjk-v31|MNxiZ=T}c@r;-Wo0wIo-Lx6M2gq-qW`<`vS7!9+ zL(5*-Ynxrqk~hnt8ACMKaKQAfSPS_9txlTaJZ{_XkL+aOp%7gki~$(pF>_45s&K`I}^HuQ|@4 zi+%hpOZ+c#gb;Q9pR&IFJBsvg()lm)hX1&b{O>i@zh3BH-|c^`wEcfSfc;Or^}mel zKPk=pm-+w8_x&ek;Qw+8|G#8n|B6}vidp|Mz5m*#rwst`_4OIlM8KfpedJP-#;Ke&t_yJ_B`EnNtWwQQ4_5~Cme3!ks<_^uK~@bLd8CW;XG#^x zQ4+}o#+nn<=NQYQDn@Q7D-zF7_V2u-W>RxJ=d{r^llA$loeBD02l;@bzH8#KX8%h1 z#l8m8Z=ZA}kC+la>bgdXzG*}e86TU_e4OmGGmu94%T+TLdUNbBOJZVnT1u2r=lfkVkoyb2x?}bS=Fg_Ase~&L8%m2|xPT#>Ff)#Xb=IOj$;o z^Y}MHd9eyR~w(GHv|>x2^1wGNqUN z>QWJeKKU>`0^$R0k`C ztaXJ%0~|aUW7xPtm^LCR0(PVt)%oA_3Ry3yC0C)q4d*C0mnME{T5Bz`H_^ zZG=)6P75#ta^ZN|8$mD#ajNB97kW(QT%hBkz=o4-3Au(i&UiY$JYLR59o)=HgAc(_ z>4~m=6M4P?X~d1>pcr!{o>^z7AuYRhb{~$*TjiQhDs=@#E+%)bPCu2*A`(q9p9VXWkLmd?8rztjzOm%_}M5QeMnXt2Aq zMe>W}qF8}ID`dAP8zr`P0NV#mH`}l%1%{mk*#Pz))lEwtYP6p^b`b`vt3MAkRi|~9 zfAo8wf#>&78_A4HchcaM#K8_QO}zw0aH5q(r>!x#ZE!+Lf4Ion0_$*RUB9<3t_Ipp z^(qT--Ce1{h5)!>6-J92_d6@f^5e!;qJq+C^Mg~f@r)WFNRts+ugu_HesT}TLMCg( zMSTFjIIrS^2IkG(`G*Umoiho{@!StngL3esA%gg^82(6#K|owsb*>>BBnlJcAp*W+zU0^x5>6+sUZAg$Q$fW{bOQG%6Z-&Q0F<1{3XwWlO;nGVj+PmhtMeH z_A4UiZy^n}l*C0X6>Up?LYyHY2i=uMKV=$h3RMhXyRjbdU?Uasi5G_2_L=Fa^=7#J z06kKW$`|1#I?swuvJfrF^QjAcOK@%XGG2TsYG*Rpwv#xjZTJN+D={Sa2w<>8_mL%z zHzf4~J9}3GQ za(=v9hN*r2x_%5I^smPaK6gdI+OE?potCJ8-NHE=4K~^l^qYQuUZurwXxD`)AQhs< zyqwHJE=gneQX<(PbjMR~UAj*y@5J3u4&GA1Ecqaf907%&{4+afy^`#? z6Iu#c0QwV47Hm7HX|jsbCQ@`tWQ%AEzKpxCg3Uyq9fiHwZW&)VU_(-Qjg555$hbF! z2qrSdLlK_wl@_2n-ii`vf9xd>A7uGP#Hx?55$w*353dcO**vNR^HiVNjHTch%7O!r zXyuYy^59~D-}O7|$SL|_+1@w~W<~ z7Vg5`ukl7Eb~a??3gePYqI0=L9OHe6u}V|n<+Z`15=YF*h9_97>{3JyHcooyGB&g< zJ(m{9!JhNkz5|tf-PYVc zEIaw)JILZL70pJSlAu9UB?doPBC+-;;tnjn?{3x5I>I1FP4QoT-|n^6<(U{WH)f&A z1M1|O@p9UCR@v~+!ZQU&exeJ{yi1%N3?PMl6(uCV>GLX$-LFAJr|KKqH!nOWVCh15 zsQ!H2Ifv@#I;5Ik&t}g3h%1E&f!PVsZHhGc0|J;E;kz3;W@W3-xEHl|<^sv7Eq296 zZM$9bOl<9O=x}2S6oS7&hvyyrAtlE6Rjx;FJDTs51?C_L+P6J8n0L_eGepo2Oq0!v zTW49;Sxe5U_b0qCHz`SDTA}#id!)y#OvQv>d`%`OJM`$+`jpfBnlWV8+<{)HVCx%b zlZ>;-POvB*X#Bd%(w$kbd)Cg2a{39gf1ImV>W_gGh0A@b_2m7jH}zePX-#rB z+wz;Rx^lqth^?BfDS0_;_fQIA2fsdTKeidqspnPg(i7A?YNxI`Nf2i=?iIpNKzQo= ztsO~cxb0PEFE?FZKl$U9C})h2(eUVyQjbdQ=ppX_QJkkq75>RQ6g+5}Q9-JyU3*o3 zCABI`3hG2_n&%D&s}aRf+HRluv_0OTv-2dTUr2C1OY3{8?653kGg5>}l+1EC0+o%u z0;jLJ_s6W~R{=loQsI97N zS^Za1C%W#7obA1)zBtqoN&xf}E8Sl}vciG0P(A9m+{5U*>$KV&F`wO`q<~VICT}d1{B|RnV}lw@9jU?FmmfVVY>Nl&u&&YI~x5 zNueNxDf*<027`GZ(moWYp@~Z9v(X#%@_|Cc6L%GUe?c3G6wPVtY(9B-vT~P8QW-3B z5W)GrdqkJIC`JRFxhZ%QoBa1_zW)3Kk=l z>Y3R|K)Hv+Lp>{amYHOUT$QK2Gct&GCSy6sgV{YS}D2gmqm}Dm$o%j-!6F zI-J`30s7#7d&qvR7fyx!2~1L4WikRr#LY^AJbfn!qA6^>BVN~HPPNRxO)OyahZA_^ z_4XNdxMX$`4=TYh>9Da#=;|{F^65dJm0{{Q44}t}?H9U+bEcAb2$j(|48q(;QiYl8 zU>F_CW978z>?zCw0CmV6n|ZCQI_RQCqat7AZ8+|!BKVZ_c0U?5VXnO|N%m!oLDh@s z{e6&SCth9a^ulk*E$ZG21V?pYlfD7IVa(`dgY>lF)2u-_vWUR0hz}OYGAarsLZX#9 zv)_ccS&T5$v{ev_ODqQz8Vx$zylvF@M=P|hOeM<@np}cko_kZ;Kt}PunMN`4-)yHB z^apNe+ZRnXg&A?P{O=|ecQ%02c)a zf)r&>JMee{;Vvwe!-SnYaa_7<@V+!iooMKq}?sA{(iS*yZkBvfj_UIn?9l$yX zb7VIvv#R_4kr@OWi{nSEqX@_`KR3mVXfjK|i_KbXI+NRASfUuE?*0JC@(+c#o|1IHWmk?E`DByT_E$5vO_E~b<> z#fv3qlXCnhA^IU-T0@2SHhQrb7LsDPp_ynQ#N&K@>P%9>p8!#DQ=@q0B9fj+I##$3 z%7pub5TLXnU1$MHr|4exfc~19^y|JGf?5m9N0=2MT&QjbdBok7S?S7*J(^KK_2)C- zF{XHF8oMjMf4h~F2EW$hx3%y$5CDR9ad65^)m)ne-6pDr()w;1`}$7SN;fS;#I26Z z__L&fQ)C1#qtfx*K+@Yd0|qYIGk6}fvWtW(wrsmlrJPll>4xfX8Nl{fn6&?qixg!F zGdGm+uzdj^446=si6<<+AEpQ_NR&hY&gg(W@~#3Zic~yZu)y(VX*Gfd!WaS)CFDyb zF7|eou4L#cal%}RnGzL%wxMu{eME7j>r*4ZOgYNoMhahzVS2{qxjz=|T!Qc;BLJ=c z!}l8c@}Ay}Ho~+FHqV*>r{ttKY!wq-(%3ydl5z z=h$Eql2VNp-Mj@vxAC~=wo5f+T}`AA$1N$R+YIuIw=}#YA1i@c#Bg0VsU#6LF53su*Bky`yJ0a&oa7gkhi_EN~46nEDJQ=CmkcPV^DgQ@Ip#fiRiUzPFlETtb041YyDC`%Twlg1m^oGbKyjsFTT^K)RdY%AH+M7pM0pjb!cPX_L zMu3CFLEaYh9d50Yw@vZvLo2`mtL6((2{Qna4(1677P|XgF zUlmgUVT5Pp{xRbq&>f!F=cH7^h7=lJl?2&X-RVAUx7i1Z{Omxe6JA!fMzIcM-DG+o z(>FIdb=pvwoEIpku=Kq{bbwr;+I0<}Q_||xjVdJ^-{{q7p1In%co(M^^$h(WYPY`# zW_qqCx)%n6!(m}wAY+&@@uzlvzWi(}2NTScuu`{HI)b)o1uqJd7Y>|GB2_dG%>uF~ zvHjv_(Dn%%-OHbLEkX$PIme+>y#Qa?R2nmO723E{O_b;MmJPmPXLoj%Pdka5v^!#P zU7sP9=*?e5*P$Nx0Y2l!9CJJ&{i9xb^pdvbdK3{qCE&3O^PB`Mux|S4QyT;bTz9n- z!v4w~JDwIb3EepZYY@8&eLJ6WFQ`xiEJ@lOpwu0BR~qQ|Z$Vap75wz*q3#<-yjLs- z>5YqX$pDd?pliN>QhWElnDKbO8yskn;D)WZu3K6ko>2vy1Xw<#o*x)MzAOG|<@^*_ z>GKonaLOpdCAa;(v*qXnoq828VnldD)g;6CmR&|IJ{*`=LA%%~Uz6V_jIJSt_m>Ib zkG4m5D~C0Y_lBq>!QhO$d|g;6QA0YIl%V00iaNj-;;?nc9l?$K^>{G;U!}~OC!J(3 zOB-8Hc>aq>HiQwk=vc~h%MXDKjTwUx7fUVdZ{}}3W16y36fVZl^@^{@H1kV*Y;C)C zqeyJ-7wNgV(8e_|CEBHILtR6(C9V)0TdnV3s;$lKqP=0kl}#6SPzTwyX+A#QqtBu8 z=EHWh?2s8VeQ=a`7ilfV-%#b>;p5RFz?-zX1hfTvJ#(XsOzCUimMllmeBxMkAGRsk zRsBtZFiD{49W?_6F)@x4C+l(JVv!bJF1d%V&XBqmbjU>}5Z*N`2{CNVO->+lZ!N7+ zGA1u;mRj;3-c2T_JbBChAsK*v29R8}p%P@qUz3#U>nIUBAd8BLK{8#0t%{I^V%ac5 z$UZI~1;f=|Xim2-+)TT@cKQdY1ev)i#If3Qt3!T1hVI;q+}V-Wj!%&0ij!U{ClQSe zTapU$3;IMCxMjC6L*A+|+mjMM?Y+5i8g3)fDiPYtI&ftU5!izdocF*E2E5$l3sjnw{SJofKm=jb20j_OR$j8v7YBvSQ+k9W4r`h zQZQ6M)=KLsN#i0t_)5j;y{Qf`qABVeQS5}|Q8miF)q2WnNzk}Z_rVol6M(hbVpA;& zObP~#GBVg;93sI?B0FIycDO4|25Z`KxwXXt`yyL^Fgm9e!(^jA%@=<-qqO>-6LEP# z+2%0~>*=Wo_sODp?Y-g>qRZV07So6j7A(lCY8)GIWVN=>2+xg1Ltasu#?X592zCY6 z{)F5WJGoTI`sH&)rb~!9fbVZcUBm4^>;GC(;b=iZt8&PKpZdo5Zp1jUNcaI>lun%&5pP=SmsIUQa@W&tDV@(jG#U=F7(J*%Mo|!DR%~K zBuhoD3rR`#lJJKB3i!!e+!ES64E!aX)t<~5Ytjyc#MzU@&WRJszDz534Gaiq?oE`Z z!S+20-RQY5+|j|NQevcl35&8>Lt@Fu-xzx1MR0WvIK`@7I|p1x_9U`FI7q2vJPUH* zoryhrG;bTl#r=e^m@G|CcMLhk>8Ah6LKhy~a^DCq?^B*yg0 z^NDj2BUU3qBoV}%AM~(eXc@J;E(KMj23l}3cglb5?~Fb>PQtjUPBE7%ow@4%Oh=)-9I zxrVy%Vr#+^mnuRd);rqC2l3d*12Cwpul0)5c(;#CyDrTOU602-{94Wm$W~NR}N6o zpi&0vTr@2qEa6%e8*e5BWyMXD5QVR?E0P-odue_dtEPi_BJj#d79Zl`fi|LSsV~9~ z&49$GXnln3N#xzo(`4B&D${PG>Q0YR79@D4Mxy*` z*&j@tnD8A8@C4%GnLd4WqjTYj`vtkP`!IzNN1ASFwEuQ<}n~t zHZwh&IV7cGH!SPV%a&64kFO8^hWH|kT7c@Sq_iaR3)59(st8lekp`yYW#a(OVBgod z@awEyg$nPVmS21iw>Zhw1|LujUkgsT+eD;JPG~{r-V8soRMn02IIXpuDw={(_udZQgew@yGPlawK%6&gab_D<)tK1xg zxMX@+i;@s9mPg+FBLZ`cRc33@LY1ltn(>~4kN9H;I@xb@IR@M_Zq&>jlm?@zbwV9A zZ03Y~TSKJpSD#y9oH7o=rKI#c20D2#j$+0?OojI~kQCLjfN>J%%qVd9KK;uY_$d3* zs>VtA{&5+KO)T06yvwVN=j85KI&AT)HA_KcvO;|eDYEkYi?YzVGLeiQ@F(y~z;4Ek zH4Ng)gksAtU;~I)e#5y$Mq}P&}`kZ7p z(yw46?W3Fs>I=eBp%FC%G~@oWBtJ;1hF|qnqABr&X@!j&>8!2uavj0bUqt*9j2PT0 z34Exj;}L{YL_1Q8la_{YD9~p*SMwT*Ne1JFNsbgy0+C_D+!$!h_%51>L^_Q}G93jX zUlAo}`Em+(KW5KLYKYyS;pEqbQSJ5Tk$Qv5%DNE&7ToQ_KsLNCaArz(aNGOIG+O?_p^W!LH1cVqjDp z^t8Gc65UBGid7k>c2Lkc9V+(b1H0;>MvD~Thy;ejj-99XJ?6tPKd$K0->9y%IDs@1 z+$R-gBhsx_@EG>HP^k;Yvl_GBFEd3YHX1j=n($*D@)ICwPfS(j_t@_>mB>`Gng)i> zxVt%jhG6A0f#$XgS?4bonNjsG1=vEYvOYx!KIDpVZe2gl=%i^)0goen=X5L~MTW+B zuolTr8SN2v`XepdTW&Zes6P`pSSf;>q(_^|o0mqV)U-tnT!8}5;^JQWi2Li(#g{S~ z44Z8?`8&W~cTfrwBLu&+UcI^0gxd`Z)0ivQw|R(&5LuvO@F-1?P1^OAZ~V?>Pj)#9vRS2p<+TXVp8 z?1kA-ZJ$1OYA#T_nN(NRm#4sb3&+~HFNa?uE*gZ6u)A~mGjWvSy~x7~^#`w4SQTWc zgjq_InIgscsmUqR7e1P*lvRH#c6WkTqzx2%KR?0#PX(AlZs2@`^oYdO7NN^n!_I7x zitH>0qX49bl=`tr0eaJ3lxnt_dPinHf+)|l0dT}o^QT6w4g|vrudaT0BQiiSo4Q7^ z_fZbBed-#1@@q8A6h$na;Llk!iPmr8GLZnTm&WCx`Q{6w^#baQ1h4ef+^MxY@nT%E zZRCUSt0Gd#WSq98y=E}~Xv!z<95t9-Zi-CPhYx`>$Y7?h>Jvf%W~A{M24v+zG#6tY zbb%Gu)$*@j@Sf->gll9b?R(g$qe(=81}(_0I+|IVvfA$&C)RM|CAN#;eW2+qI$4~B z=d%S(Z_smzMwbE;C_Pfp_weuh6YfNq4?}sfrP&OF zcf$G}?YH$%F_h!C9M!EEhO$RybN^ok)`RMaKa!W zH*)uaMh^i`0xDM$)$`&(N=uFPeKDDs14M(1mOb*sAre^%I46g^2G%NyA+@TP1%>yz z&x6kBeP8O*SnVgCUfsyJeo?4Ls&T2b?i_#!l?-v3LcsypL zrPYTj&%JbtfyoNQGs=Zxg^F5z^NU5Ux@FY4k#ftn{H4S4Yav5eEi?Yts%_SXu3xMN zA9k+qD7+h%<`IW_%lO2I@`VEczXfneem0WfyWrvm=N94C1nod?bm?ixZ_M95z#hn& zX(txk%#=v_O~LK5_+zG;RNX}*;7Mb7O?PSc<3j>b1Tr9YTJ+GRZ9G)Hc{NY;bggW{ zH64s?43tzA7InSTH1y}q+xySIDCOUNOS^+UXbv0C(uJkVr=1Q}!WPSqH^pK-uo!7h z@j*q2;OzDw%K|1Q@;q!UHhHsM2zL(iA7kwzYHJ%#;wK>W$ntDM&Y|S6FD4rOb~BHG z>Q}KFgoAytI9rftr-Js~y!p5a^U>LLH@+XeWR?E#!rH04&d`|;Y$?UXfN)LB+vj~( zhj;ZM>M4b9i$E9sl6vF?{vFY;M?=q~#{cL_zf0cf#qWbOs`GO&s>xrsX%c6Oo{GyY zpPU;a7_*kdhz{!ArcC!c&ktInvVB6G9QrMQOIvg-Uh%DpEt`F8zYJ!$^PsyscqJZ$Ivw?{4AaV$=PpE zc-!TNZAF7y7RLrUXl8^T5W5@w?H6s{(_q9#6QPp3%*?C;;GCNu4uc3}^Q}V(OFYLM z3g7zY&fCTn5A74Vq&X@f>02x+*-&r=%H%`e44Udx5Fb#{3C1ALmp^-}X7MVs2nOj4j>*st3 z!A5g}4)zxB$%wsoR6{9Q_|E|YU4?o0vgXCr2Audh(3ULM#E-Sdj$X*&MC1Y~`4HNx z^Xx27Gr5Pu4M@B!ecO|m{=lt(LM@ZFsJQMkVJkTCege;d1Dz`k-m8zsh?twjzpR@bz_1)p0{D$LfY$Mw>;M=}^auBq z*rlys$7b4Gl{6!PR?^n0iUgA*P)uW`VSCfBOJ`EUH;kn*m6S}`(v|qW)q4X)4~T%b zJI4gFpCi_-@oD7`%Bd@*WS_{qTmc5rF3km@x+rX(2{#W72@iF-L$jL}Pane@<3=gi z${XtP#O?c#GcSNvI@+7Y>`5*P$1Usph~RWDq77u`_vfq?8nB$tSnAQ!04_=EiH4Z2 zVuH++zJFHVAY&i<-7=Zq!{Z#KG_*|90DnK0ArL~s^v6?In@eovfyMWDSEuKd?OXFz zmUwmcR~VYPkDl7wzgu3~6{uBtj&LtY}X zk&HUtsU45C%b7-shauBIa;0Hriv4 zXiepMW9WyVnfRY_oj6s0u{r~Qic;4dmbR~Y3(=1P6Xw8a3BmZu62<*aZ20oM(OQW_ zBr}bo-u}`!Cis-C(quWeoHMt8E|EQTfV`W=Krx=k9Bsdw2ayRr6`oOIv;zlQQs_Br zTml=RrTGrCbN@hc+DCW_20VHte|esUs$Av`C4;2XT1_WZ);eaR|EnCsYGHx(&yRJ7 zU>ldtK&qy|kfzXAwYv`Q0^eb;a0n!nxi6^s-FIE$jDEUAw2$ywb7zq7Gwav^aVK^kX42QNju(85T{w$2 z(EtJgij-)JOCTZedj06++Ko<~aRxH(kqtP5*sd4Up<{Oh&FcUNjhZv|s&e+DKgDf< zU`5Y_BQQ@=*W}e5d@AoAOjR=Bmz6YT_%4DbU8=BBV&Q5f}G zDR);XpY9d_po`m?m6%u36c}gWykRpIql!7^Mig{msuS8a;h|_$9+wSzzd-`RL_m8O zW<4lO7X3tB8)Di0)@nQ|uUd`eWmJEX3U*3ERx>qrNAdUSS6pFWE$h-tkpKnYiG(ao zYTUo2zZWMOlX>jZSm);zE{Mz^UHqdqzR^EQJP7<~@+_9`0lm<9I(q$i6a#7N_%>XZs6wYv$3)DndX`d9W<9K`7YFv> z>NOzK>gB0BkG=#~FOnK-`!r}>MCrXgkzQUgnX^Jpb|}I(A%wHpi(fr*@#_1BXfSut zE&a=Gx3CG8-e`G6!dylj&1o z?626L5HVC=UAPo)seVsD$B18nEIO$arK9s^aacLtN$Im`(g=5F?(a8u=w^7ePqV3} zz@Le!%2L1Lkpy%F&Q*cMGRmd2=Xj*-?(yd;%* z-m8q0brv1up?E98s8wQN-8b2}L4dNN?+gSSt!+i@jly|(gP6ahcn5jXRY53(hUiBRwatTD>$l_h)O4NQp>HNkcF7B?T{-bGgHD|b$rFB@!{F5PUCp!C&jvjWy4 z{AihLnaS3Dp2vuIX$uFdQk=d^u_oPEQ*vQX3M z&xQvmGr{5j7E!aUIKV}lq~!k7R(0YIYG~O-!B|>a1!W%SJf|sy9{P3@%7rh64+%SB zpK^?E%C?<2yS>Vn4w3Ud){LQ;#djFeT!MD2{k8$GvdKVjD<2aj(j-dvIMHOTk&Ya+ zdVG5<#e!OxaHYJh?gUXbi*hTuwYvyU%Ja*eQt6`Pdg-7S)s|`$fLScbtrSD>L>3yt z;|`c?I{;)V^k1(ADwwaE66}W$jXOngLAi?LA5&MjMpnT?W-Y4k+MS4B-0PF$)vE1T<6xSvKb(AerE{i z_)|d9e-Zss#ta~<{Jj}v3{3La+n`Z!93YlSyzdJOtUmF+=3ev3J+-fQ#Zl^C-@_K( z5QlB9SVhW3wF+%J0k>jxXc5Ll;f^9=ZT>we3X;gd((HKXGc|;NA zl?27bH=RovWw-tvv=;;}r?cyGmvLDv{2i7Rl|-8Smuv`rx-TY8tUKtqphb7msFHG0 zY9i(Oq5hAv%3iWt1vnadA#w_K0>-ZsjMCfmTIFKTo7x~}u99)3ni&Im|v~h`LEL;w4FWIIYK#EsG}7?xptkGOhac916G?Djx-ZPY}kh^;?v=Qepx9g zzM$TMp8IL&6JcqA*uAhl@c3cd+YHP;2Ek9Xq9|&ySI`0y5sqDo?8HGeGjcW-+MV<$ z@9Tb6J$668Fc$6E98LVzG$LIMmHPy)Ic0Y1P#HB)3IgYRwLeAEYE9G==g;`lt;0}SqmxWu6E#Wy;nYE-~(OVpnmF7HGf%Jv;W7S-C zjAFQdwEVicBBohrLx@x_m0Gin_r#K&=IiNch~9;^BcS8w7~UV}zdLHI60%bCtP8Z6 zN2+(2a&FeWVLAI9bPT9CV423~_@E0kH~|D7zg4UDW*f{}_tZXPhdUtF5psVi>`lv@F(k%ufc!|(< zLB{!}co7+ZcLO!&djZ2Ny@1GqNMMLexi@e-tt}NCMmZ#@!xOMP37fC31LPO<&+?GY zBpZ%R%wzJNo1S~IiPzum#en<*qdP0vL%H4%38AA zw=N)&TGOr!EU1=yN#Rv;;5`xP++?TZ?jc>iK!4!8%>oZ<(czjKlDpNKNiT|Reqe@W z#e*GxkD&}ZKDhXYDLdHp^heCfx>_?J&qd@ED9c)C-{ie(zupu|;F>le;)KT%GquoD z`B7aCX)n|pN_HwcvW}>p@B_o_Rt$MwT!=PoXRMaa1$+l zadZ}iR@zqH+CKo}ejTSULBeX*u1&9DZ$B6n%{tvsCqTtMb*zy3$4hHzWIY}IGAj7f z(Z_JD)4qCfmeUX#(YhB*L;T${ki`nL%oMWm`EZbCK?Lyccs!g4{?WU>uQxkppL*#$+`IsDL2e~PVpoP6+~2hc_G39w!B&RZ>*0a1x1Hsm)s;aa$a7Lz*8 z$@+_(T_(&kUF-<>@)mdtcR9yS$V^x0e$|{I zf8=9V=9}aEPSelv<&PZIPCkVtq2&qcRh1zXN94ELe^AQ=LBU~xnA^08#ulMKYyNu>JVO+krWqt)y{Vc)3$sbL8UHiV3ZT_+v) zB9bib5XaIxk7lW0Ei7)Hs>`C{`j5{TrF-JBZW#lvtjsFnJcej7i*>r)$VMILa^br? zEVcW=q}n*gev%DcZozR(`|8D|gPrSa=FySGopi!CzY@m{RUUB+1LS(sBM;;6m`0Uu zAk3?a@{0+^c^;LK_2pL|-Y^Cxp!B_+uLqbmJepf!OqPX7C+V`}ffW zT|`p1(Qfp!6YE2i&XLPRFP+oks4LRlVsQg4yl|`3Umo<>J%Ciy4@aFkp}`T(%}V}+ zAm%+N*lq^~jLwUc<6HLS?UxJS}7AIj=;=OXX-z_?W?p-1EQNK6=1E%#0;C~&c zhqzw6>w=Yoe^3A25A2ENDawW@g&weBXX{#9BNDI_X28ozkAQa4797bF@ARk>W5s;O z=fbk>tb@TOxmhlzXJYh&1A4)2??ZTuK@PB720?(D0L?fd3q6%j@U9^@OcqJO?po00 zos^8`U3EXqHt^!aYI1Z->bSpDy#tQih+SK3x#Qmde2+RY_5?cm$`QeP94*prkWy2k z0$(mUmP8x7B!fPSGrm(O#uPa@{x%den2I14Y4YOQ2x}r)b(94ty>Qs+1U}JuaverP zG*ummZx|bgF!5^DBx$WtWJ%9Kj)DKd7xS86r!+*@8*z(b4et5ZQuo( z9H9TPU^W&*M>G%f^8+nNEcpFLVQ={a?Aw8-!l{|!iJ-7Wu_6Fu?_J#Tk>@`92?Iod z04-4J$W-FE|NhpDRa;Mg2=SP7+mY@o@<3&V@F-~ljt@yXD=K?kc{{A%G|^y~>od9n zL3~$uaAWPt7R3t@NIOJ?5WFF#X;rM`8W!JI zdnc18DWs(1RZnFlWcyNxExA=-z`+?q=WppU9)mX+Y(vHW+K1~c$uK|2r<7S7nu|FVzJl1zGQv=Ri<2Ep z<0nqXU?w1~#oOdKu^vH% zX!Bkq4T;&KxPg46_?3s`;s(IQ+#0cJ518z4ZgT!EQk=kt@*tRDOVHcMWA1*bgg#QS zOHwkU%0a=hN}VpolZr%hKrvPZP+(HtXuFo%UeK6;N<6s z=WCcot>rin{#-D1mekDrgop3_1+uCNkCG=P?FjAPiNZ1$=`n>umdlM5{n!h-^z(1}+ z>jv+Ig2^ImkTN>;SG_-spB+T|a_=|2m?WS3A)3e)P{^miDS!-Z0fGQ7Zz07q=8hrH zXl$<@9&|>=;Tgd(;nT*J74z!+QBe?_axdOdgG8ic%i3)p%1SHMhVl^skpdhx_&LqD zk#)pMqJK{~sF`H4y(X6;;*Mn)Mx?z(-9=!9&Vd7S!oof?&h0u4>Ahcq{nGUU-j>w& z#8SR^ZY+PhSoaZrW5ym}??N>bcH^NdMa%7L0RhOWpyvfJP7!+1eHWaSkVD|qI!L+$ zG}!i`iPT59RPg9F)n1>t$ZJLhew(sW6w3YV1OK4!B+yt0}}$9GYI+etT^Q zNL2DdcP9iih!P2y_qm#Et&WmV3!9tHZ4ea1)=`WSv?1e{Uocu4Yizm>czeDWk@vckfhplP-UjGT}b^?R|IBqR>s zkB^oQC$ByvdxA61r{Qxo09AT=g&C22Ic<2!gKS3?KC-{(1-kE{*BN@LyGe|fxA%y$ z9zutDo?@rN{g(i3BorHV{)&!}3Iyq8OSR5~0M>P?*YDjaSEx7rX-{BOUjkXLh^TU) zgu)FDLLr}PUn>xb;;tTuE2ncNuXN1S5J|GOQ%N-8z(8_OyY-K{mV%bN9?8*Qhjuy$ zPFVP<^Ms~!NkpJk=~tqo0<4&U6Fo%8y&{G=%KhM5sB($zKG-X*9{Y`~s}=Dk)P(-` z+it&=*xYtExxxiCoM=6C7D3^fVQ#ipBnj!E*Rb8&j@!rr>D{q>00fb>IplcS)x?wF zIaKD?QSetW)`noM3tKdSAJ@sXCGqA6sU#L!LY8L!8vsy1ufM%7T+x#C%j8qi8%E6L z6l<_owJ<_&{9|M@39SC?Ayyu89;0Ow;w;sRj!O|k2nnugIhu)cS3BrtGBtbsET?`4jsZG`LBcRxr>^Ibi zvkf!}7Fl>#+Zw?wq+sstT;(dSGsZLhc&2nK;*rzjF@2-F+%Cj$hwO$h>0oAxhxh$k z8e!jnNA~0x9IvMrPmV8?s0F8a`2%AHS#{Zt>0bQ(%!X+H}QvDhul-kzINMdNhgE)e}TxTorS|C$gkM zL%3QQC{+u$X|Tn2s3k32tdM`GLi^7YJ&tVc zAIjNtNx@zs%TFI{N*{KcZS@5ao6!0Ax@e}-K30ak7r+w?;YdWpB!qyO#%Mw&yS=DM zR;dhA9162`la>y-F#dg=Sghv=8)-*I{;=;^CA|r|8I?qe3BkzKr%Nbp;9HAEL2eD!e*;T{j9j0jFs$ zgHx<|a85-9y|J8FGa|#G}isi$s>DDw>ZV$qY6lV?n(P zp18@aCqUn39t5&cXZ_MT)s7{M#|-=lh*=jmdNg86Eh;%LmPm(MBCf&qSDUtZyN+$R z=6N_l$ckwNjnmwN@qdTuRO6B_%5mb5LyOYKExw|%R^cvC2zU>Sx0UiC1khB-bP-2w zVb9E#G48B*6nLxDT5(DqK$oZ_c$Uk!c!iKS1^>Dyo9rBFqqZPGw zYK?uZZ0b+%FY?dh(oPB#YFjP{bVm%&j9s`Qt|xOTjt@F-G=1lG&K@S%q$lpO%!a!~ zb_gI_&*!T?y}0m`D#0V}<68(#t+b|B+Y`Mo(byNIb_$8z^^sx7Gg`7f7}}6pv}CR| z%I5>}s3>?dPBux;W?lLVPb*Zc)y=Mx;1j%l*q&Xl@oRSBdZh*W5YJ{2!qHO-4J8CGr(`5AAtK-y zFOjAd!xN>Gu8YL<8Tg*m7hcf9{JY`zhs*xa<#Q z*od4R?!2Cm+)>vn)vqn=#*UP9d^{Ph20(xhJSu1tpXXKr?i1DJqUg=zq+Eey>Hpx< z+ytIz0*c}~knc5lFgs;C1^z#Px2J^KlPKv#Ap>WuV3ZQ!3-#@c!s>w7Z~VFZX-aFf z&NLaE_%HkfEZ)+H9BEf0^YSpFmf@!&i2O)|KHsg^7Lrz-5ljhB+A=@NIB+8> zfrciRa@W&wwdk~+>`MpkpVSu)JZ-5d2Sx%qFH4O1=(`8mJl4&IAV_4ci%iChB~rtTo11uNZZ96gtM>9jqFr&74)kT+$>K-67Fai~hVs(&NR^zw#Rh zF|zS_zOPD~bppK}B}fcDF_oZH$I*?Rv58TEpE0pX*i#s98P#|gR_9^RNFb0rn1T%l zP-Yd5p4-D&Q^^Y<_KI5?5PX0&L{W(gT#{1<`ak}_*9xd?#8l;0UI}6PgHL`$WDn4E z<;1&~SF6|I+Mr?&>CCR0tdBbHPa!KzHienO=ea#vDO%JrqV12Fh&|UoFg_dB;eW1N zS+0|EsA;{Z7ZJ^TsId>S|?DEP?P48s$;Is-$)ti{k&}Md~Up(dlj_Dd>T0VmfXW7 z`1|UD!P5b806wKKEzTHaAqs!*z+)rm<7V`fKorn-k}h|6_fS>hu~|5)j)`+4shzt$ z2oB4|1mLL7vfrVGfm54_NTkrZ4;uQ6nsu zbMVRUNR!53Vkeg?(d#s;#9RX~cgM3y+YgHNYzmj6X?I zN4HBEsp+|&Fw+140FI!_eb1Tvyk`yTc>h_we&Z$SNlRZ6en&CcAPwqyzo1W&DafqW z_d1+aI?1nnHwwC0v^8~N>0eQc8^>;wiCN(nQmxiND{cap5uXo;e**S|Bdc%T^X1?HPcD{i(yo1rT-M`ch#&wG*6P(h*Xtc)`VJlrC0mJO7jCQ1 zp~o#>VNG>1BJ{>O^&X5{Y#)zD8dNte+Ahz5@9*0%{f8%|i7th-&1lWG(9XV+5m@Cd z72j7Zi<`iI(*3^flg3w57A916l^-$!m+{j6uI4*rX5fcbKxOVRgF2m> zH-nEaTVjb31pBr_jsd(xSixbiBpTJ~w2-8Y-KNq{Jr6i-OF+Uiua^?)E@B?VxE_uq z)@#U9B(jrLf`2n|wH(?$37#9}2b?au+4p*BG%oT61Hc_-f)4lJ`F=_x%1(j|)cF79 z%aqu)@D?!iVd6$hm4VvcOXGm z$5UguMudlD{ib!8SUIdq5Wk}=B);y&m1CSO5ihe(B8`^kFfy}3;fdR;A~Z%>u2=i; zI~Pe=)Z6#U!Y6ypvt0$Y<R(0PHo8!YIq?i{mt>5;#L6clqN_S-Gi!KEut4ZOMLuEPLAG=KmA0000u zafaaOpXjjAk+WZKX)Lj*G9GDOv+#n!8gu*zrq~fpehF>7fA2<;Bp|V9i~vk2015QhAxG^ATLuV@>-I< z0!^H*pf3-bUTg1dT3Lz9N-FCvVogRqgB38psJ%xWO3G5A!#4rmt@R-~?HfMm=m&{R z>@IHwXGs;MC+rZ1a3_`*r)YuhE|4oYTQ>#ina2ZhB&y?Tq@z7MaxsW%@@Di5Fq_&R zOc_Xpr}*7VHPhJHQ)d$)iW0tQJ46UNk#2W1As3u-f3zPBNQ8PAD(PvmiHz%8lI%rB zf#A*Q6Z;Qv6(K~o+6i4yHMVxK5OhNve}ByF8cR2HA48>yA%hrt;EEL#OJA6QMaL@? z+I}#IB$%+;TQ#+)*S}P`;LE>eU)4O&UohY?nsXLyTb|}ek*%alDjZC@V7}+Ao^IzC ze+-2c1R`Z;jYudh_-x6s4k-Oto!mn`C3id2ELs)m+yeHT=ev#xn=MfX>6cm9om^vJ zM`h)wrV{ayp%r@*(w_4sqpesumKFw(%@P88IfMtnf>6}+IBeUadPBI z1`~%kQw%AKLokM2-7NUga|k4w+;>P9OmN{i;Hd+WdZWrjyu>VkdURk7gI%PXqNwcI zXm27npc5?q9^6~$ySSE*jVW^CD^POzsWpl04&AI(H@qMBc~e!B(AwY9y%L=Z%>6Gf z;<@<%2gCJP4($e5A%^U!fz{G=GMMG3a2gcrLYgR_#0@VYie@9OUf*^qk!ZxphdW=s zz`PZ*oy#n=@Zx9qJGI6s08Iagb8()Peqi39?J~%3CRCV*^)EKGG{ekiD;a zFizj7?NRLr)JM4`*f3;eV~e2=D2J;0Yga8%2TwOrQeT(DQMfy0FXH7I;~!&x7Az#A z+w8blItlr`c)04%DG+d1H=!5+01hX1X&2`3tB$74SrN;Vtt9TshGr>zsiN3o1}hZ1 zL><7AGswmn%1ADZsD6=jXDCl{t&KHF(WJdvwKW0PXr-@((_NdTeeUMAeLr@v(F?=$ z(QiN7;R=MNnbgSGX5A&-ptzk=!$eg+UA8i}aH4FZ1hQ6GnZp@X18) zI8kP4r%{DRQVE&+E$>d%{%l7VEhe!1_k}l-M8q7psBZ> zGm#{XJYbgdjTk3QHck}t9Jv~%zb4os7@Tmke9hwFf%TutAwovCVug*Gf&MDEZX5@O z%)G?v#N}(Bl72XC|KSt^FGRwNAB)<-gtlLqS0faqc+0GoYFOze#GB-iM^Vc6f}q0G z=k%jP!k9Y@O}4fN{h@$v=cPM*5o?aSg-i2`j&6wIC3B}1dUi>i**qG0%O5o8M#H@d zp-hXy2TfsO(|TAzmF1OqsJe_&38&mY1QFFq-%7W*cuxmPu5#kK8Bk`9`thQD=okoj zAq9NnjSA}S=%Y@#SJZI*m6UtC1r$?kuPS@icZS_2>WVAT;520v&j&QU1L2LJ00001 ztn_hkb=nKEy1%HIU;!okTO) z_)yz~?covk<~*Pqj}*&-c6Y@(Rf8yltUEZjk6(23Jd66pmNf~7?^8=cND3N5omWfi%|PpEzr)j z*9DYUYlo~@=XnYQyX;;S6v6Zvbha00000000000000000W*> zdcHB(8=@4KsswPKZS5tV4yF=zVV9%{db1O?-s%O@qtGac*%HpAnetW@{oeyK4zi)s& zXHe$zLmmc~oaW_cOOAEEDs0u%QClLe6Vo!VZw7QLr3e9bKux>^$-w?{|L(hfdR~9v z=rVhxg)j7)3XL8?(9yHh^%Com%6et4VMV;9fNqkqs8%(mx{!!FV@5NEQHjCEGYMZr zK7!5tmlx9TT+%?9og*y(ujvfTUr~$~z3*Mo_2ZGYSk`)_91S!f64u}>Ik4;!7^=vEir%S#q++y;y#u?=qr-&zUe1qiQfj2%#hRYiL1p?;!*ng6&+9$RpD2)O*_XRMVe|9!~#-~pZ>AFIRBaOtOAR8Gw zs1NY0x+E^q+TP%GE=}f2vLC+6{^{khVR%hlJ1(e+hq}bE&~j_uC`*4PBTyTnJKYb+ z!5BNFdw&|X_!Eeb^z_%MJYtuq3Cbl%uU$!B@AA(!zdCX3?8Nn;^f+dcxPHjhB3 z^WQi#+Pv~i61M!9h&%w?@Sz;j)ps-2pgy;0U@eQPBYfDqfL>V6ufQ`G#ex}e&Xuj8 zl4=!B>vixs{S~uYm{k=5moD(jADF+r*f`L05LsM2g`KetoF^}Cxv^{c@yf^6Na9pDMZXD2u-(Mfs zHvh`Q>AZ>G=3K4D5ZY>?p0F~R)IVkGb3Aao zofQ1U#+S~$@L|dHcwn6EY6*(Na3Pr|{Lc&zbSlPU^fuhsi8wK-n)*o@{K=IKyZR#!`Whc_7|h2NlyR0G?#MLe_MIspo6>vYbwqBH!vpbk-7ytyS((ngHz z`sL_b+|>0>#y73;byMMaH#=L_AaF!I!=f(FNkm=ZKvm< z&3$q2$0FH#aXJ9wn$=rRhHG|HQzgJkelSE=xxa#LeQMSThUi(}hFs)=lEO@j>HZ88&Wte)K$7+NYc)b$!}<^s}&5;-sU? z5dRj$6SdsNz?4kfhev9iO!^S zv4gc!m`ysY4EjM*v3<^U707rvcUu_dJf)}C$Mwz5yQ6Q&0`;hc#J@CEE2ht7KgHSZ z!Kd}nOb0%MUjFrC#Z*%$#o6Wu(G$s)XuvP7+Pxl9OY+A*lCtU%sL~YNHw^~UI`a*6 z3k)L(4vS)Rr4~X&$r1_+Y_JEf0>Twa#j*v z9HiqqW;{o6; zZ~l=)3sIf}XZuqR$o)iLDT4{ic?T@K%zpm9V;TCa0_E6yA2(t~4xw|5oen;AtGDB7 z@o%qnO3J?900E0|(zG$|+ns!E>^fL<6%$XD^n6{&Kr@Mrf5T`Ic(x8z zBvgYn4mRR;Qgg*rwKlI8(M6T~Rjm!+Xe}PJh#%X>`ZX$c+UM!Y*q(e>QxDy;)hF1XKa^Wglt6 zyV-rf7Bhggxz#Kicb^8MFnzv- zK~9$cK{0jfnjRCwVy7qe5Jo=6s}%{6gOmt691!~_MJ{_d6*;Tty4-2d5-NPAtyih$ zl3+t;LDaK*v~_#Cb6DwakmnNSo@WjU%d!G*c>~t6cB!1AXXTsE{2d1pvFi?9^;EAq zRlS>N&^fIq2?(QE+4(@GN|a$emQQ<*pepnayVuW6-{;XRx?c%FPOz8aBRa%VP*g?S z8a?d>VUUv=)XHNEOD}ak3br8L(2}kC0b!ym|DulkTR~C@o}bisjaXOqYpn0@?ln~f zr^<-8FEcW}fUG}PRSdRM*tiH;fvi~}Q2p(VHcwY7*CFg&jn z7kv6b9D~3SnvCE8M)aUvfOz*%wN#NuAD!0>pw*-*&o*W)LlLHUAnJK+r>DaK(6U7C z`cTBtB;FTTT-9VDTAsBM?$lu%E!~|KwjAIsA;rSSSvR>*Tm-~C{y(5Q^FP`Fm0+D9 z>OD=5Z()~QqnfXF*xk2mvqvv2Kg#xXo_4PuUwH9 zUy1&|9aZ7{-l} z)vX>oesH}l!}8yK!6&h#eOib+fiB5-`RV{*W@Qs|uCd3urGKZwrFry%0oZM4nB`P&{o~YcJh8uMOqVyQVS*<_ODegiYO3| z2{Ug{Mq2jID}~1y2uvp~O;5~a|H^gPACq`zaeV&Roj+?^acg)L=XZnKW4rL-w_Kv# z|JcPi_w!wJ;hC+em)WTiV-XJ$C9Zwjpc_enkq4CGO$o2|YOL^Lezp?1FE1l~-nszZ zq3C*q6_u6@pO5OVp~tUXwno^RlGbL#cDP&|hl}yRG$SNbXDRFARxUr^v!x-EOU!<3 z|8T`18-P||1!$96ENKt52OxRk&MX@JMrRV(%gYRKrl85Jb6h|QaNBgq*0p4CJC~;1 zWIzCEU^+?xVWHjg94d>g^%BgzH42v>b8dU` zGvn6ZluD8Je1aMYg1z$R)rDf~;-*C%pM?i_s_ysMf1#E?;KkP-E3)hiDe3Lp?u+Wh zu8I>sBs|vFsRuat`)RN2DAn`bX;Eq+ zM3$84s$f399H3h+jg{2{sy_}~d)my?XF-@lh|c}kdW!~Dsnm@s_d7cwR0E3AC72vh zEF-Ra#I10Um4bE+Vvi7S%oe%51g_GAO5QPYY7p`F=ZzO8Mi+A$6XtU2Z%+)+4ge>w z;07ix*n}}Gl8vUT<|;7Mmou_e_p=b44Nq4T0QSuPI!F2bEHb}sCPxIqS7BS0rtX7| zo7RF_iRz-FlZ)aX5&}~Xp~hh9a0@6cUE^$F&f3ury?1v(q(>h3{m$}Kecd^0&xB%zAZidctueR3>CbO5d?bs%il z3f8{^?Bl-Z9?Wz$cENkqN>8)nO_KCJJdMhLjsivhI~MwdTJ#LF70m}6%ZNAVZ`Eys znD@~d^!>Yzb5j#r&P`P~#q!(&QeSE3^^NgD`KE|OEk`KR}^9KU+Z z!kipr4!#^=%wU$yRT*M!OQa9Z<4J3z?#GJnE0rLyl0#X*Oo^cJvs!{vn?iKr|L~@E z-k$@eUD{R#Lb>`y%IYnjh`q~lL$8OV7&U_0(-Tdnx?i*ZBa#v6ft^E+@uT-B!( zW{DESj7M)iGM-F|2#J4bR}D8!Fo1&(t`zJvZO8y%iB|*v%e@zxvc3EoY6!D4-a@7$ zifsC;_gz5Z@EUx8^M&}v#H6iB8Z?*+oAim};<~HxShn}bR#q%_L}m@r(fZQIxPEmO zMe7#lKFh2-Kn>{?k#Mjpzj6I%9O51bKAc2#Fh_1X$z{8XbLl5&EQ7>R?6E&$=#-z8 zs}>-E2Z?%C6RkKvO7z?7iOZ! z&$r@so$@PRkvTX2JIkE5{c0yFpb>!vUj`XH|MU+V5_yzGqi%b+(!DYh*>g2`STCS@NHeu&r_ApQ#-+!Rm~kOWcjyb=KTLQqdy_G z`Zj}XdaS%X9V?{#dF}~@ZREqQodpD^el67Va3a|n3JF3IhKP6Xz(3&kx46L5>p_@> z%$O5()_rGyfbgF}W}utlHn8CVD*SEFKb_KuPL0>yB9Q9Krcdc~M(HVq3(dblvb|98 zyeF+nZxo9AqpEV8q9ls-?2AS%8z?=S#0_QG1U38YMwQvuLPqNZ=l{|(7onN$&wto+ zxj<&lgQ0+sAl8ql8WRe0!GP_yt9fJ`icz zqZGp$v2m?vcW?!q3q%oJ&!?c13(qbsJS5S^{f?6KDSLWU`;YO*(>&GGs(xhgUQM2( zUco5pPHP#PEcoO*`~JSB^%oQB?&A`czb{JQl*hxzM7?QDDuMLKj7%d0Fse z(C&*}Nw4A2x~I>kV&-fL)5*9@s8gi@W!Qr*F#~gYO>U%aLtiF1+!!M7J_r~Y$a_rM zlA!P0e!Gmi%P=CgS`<#D-Cp7I+q0O@7`#_F-9>7DX4ty=-EHG%R=|% zJ*0*BE!JMST}W%7CB1^`Xtm8^wT4vD9fDQ`v6Dua(g&7en&TXAp~JfHs$?SV{zN4Y zP7N36^wC0}Qd5GGBl>dICQ{yZ!xT3ryjzGAnZHMDpDfJMH+6gJQ>k_9?iX8?ArL69 zh*G5gbia&xCT|{^PF{v;fHnO{H<)U;AQDmZd{?K@2Eb2BP4JVm5<6K}?r|42`;->z zPA$4e7T~*CmDS1g@1A;SVVfdOLWCfm^2zZRimNDPAAS4IIkLX7sMg5>5BR|^2nsR} zVsQ^>u2tz{FT%QZHADGsxLn5@3B({lr(mn`qvh+|nU7F&|KomTUb5Gx^L!V2^H4|K zx=dT)Pb0^KZ&GKAY4c|aJ`JwLmz>P5)6+-)r!EJb|MFb>XROol@Zm?g+7FS0wp(6g zQerlZo%R(`N*d}(8e`?sO>V5-ei!@Qug*TaXRKKz)|e&8!Dezg-=@di z&Q2Djgp89J4hp7WKG%lNzFTy!r{$5d93D|>1z)j2=UKwU(j1ssfCk~$)r=$>w@UQl z^MPI6p4VTziD@SCv@ha$v}@aW^InK(x9+oQ-kP%O>ojQxDivCjK>;8$Z*|eJmZ`l@ zBwZ^+R4tuI>_(cu``Xf2T0~a8s#fKno*@vk8A9^8{<&+zV6tI-#I2~K{Mc|I+RBCY!HF0S^~VAx&QNDDwRm_ojZ*J>}Cp zSiq+0ae%q)EMMZ`A@6ZwB{q9CT|B>i7WI9>0Z9X9iOBUwVMb*QI>ooSLF*~%!Q14P z?xbg?XE0d;Us&v9d$M6fsf;W{Bq1Fkh%TnZIc@i!8p|GN0gX)zXk4G$lDw z|GiOPS0I@mx%Qs+Y4YY86L~vwJ0p%ZWpl2nK;k$vV3d(P3_)->$iZW!%zUyYy!nw< zPT=<&T=k8zWxb5)TNFXrQ~O>odTpt~2+cGgDZ5`PXq<6o)DSqLq_-!-rp>KaDIIl= zh0oQVPTjip@_Ne6SDBe#K__Vbl>@ICi-AgJE6)r8)rMhn#(@B%hdyxi1a+*r*5kr+ z^iJ=whK&yPQ0F&HYDABp_AUd{x& zj6>h;;SkwwILIAzpTc}MZ!hLZjMBzhfGxNtJ4AdKYu<{I0=$_*-+bJA{wnsD! z9FeOu+J~>{fDv$73-XtQxrgMvE2O~*hL`rAK*$glSfdSgLEt2R{Y8UU&^n^KnG9a4d+|IRMmVebF;Y$o=1*0DrcvxKYB5=B_KdPKIR~` zD;2|Z#9?SB`>PuW-J%&F5s^3=`+qY_Ez8@wKpJqHS3$U{9-2h@gK2q!4VlOe+m1Qo zv21pBZ%1AM^4ZJzh9F&0(Y{qz0H@gnj!I8KlbC)LYah^1ySJ)M%+3qe%!^lA(x@H* za}N!KxFJjFO{K07We0hnJyv~oglFf=t5bDwK!OyJkjygrWhxQ9_i1`@NQ*mGTGGjs z(eZFDN6ZpKnlbEl>zu+@Y9XJq-~u)-A!7%}qvZRI*Z|G&b-T>KSLd0dY1OJ@-x>4l z=e&BUDD<8gA0~_x%R4GVl0A&7~!Sxz^nIpGpj?Ix^YcNTxLmVAOH=n?v=k>-~Fq81iWjiD=q`{?b{N+N?SbjUNfwID}N+vAYRaUxr`tqP70Mn6@&%?x` zCrccnAL0O{_sk+Y6H~~cz@_gF%OPM@EKu|&r!Cd^#Lqf@95V2RCn-(Y6= z%U+vj!?#fn8ni##*Qfc?4pYPx&5x~T)9dGVF&{H;d1=un1b&RGzaJFJ%*$f>oi$CI zNsj_&)cSvBM=wKiqB8Y~ZRt!`r?IZgd1yEW-7+v?a$1S$Z6~9I_dd|tF=h>b2IjhX zl0Y7fCB6VN9s^5|}kT}E#Wq)OD z{dxjejkLw!w%52l)s!Z#m_yrdK~&49@EY&NGU?VfwE^n~&m+Mw z+H8nG^7Bi3iZscwGpCjRe)t{^j;ZPS;h1U0P~l{p+U-E-#s|`^4ms^LNuP8~C&c@T zHn@!2dPW24(`%g)dNyfrU^a+d0#e53`@gn?WLmtQAcoQz;~|A(Py*vBO-vj7s@WyN zYvIG8>|?~TG7DMyHh`2oUZbADwW2y}nNYImuWIL6wJvYDiy8czZd=swC&0<95~X^y`$hp@&Rgqt7r zT@L_E%GQ|x>l8r@B;_VpY(o}s^AMeKCqYOdFzN{`{YK>W&w-%mEgdU4cW|YQmIknY zk>!##0hEk$c}{-uVslzc7MmXq+78o;Lj|w_p2d5~P1ocQ55_3;85Cp!01R%ZT>acX z#Unr+C1|L!N$>UE|D!xBQ$3Gu%ov0CbNo}`O=4KUy~0BSU;?tDMa6%^K;)O1xvAa$ z6gwGMlB{a7dODUSjNbu?(=M;G-MXf&$;QP1VTnQ?%04H$+*k1cg21E4i&P6UA2; zf{*5rR{$zC!$QS zt8_xvwkOQ2#uUWd#u|-_YIc)vWPp!YK$N0>TccKjp5_w2%fv_(gP@9V8;{@X!EUr* zL>DJzo!)+Y6qJxuHasKgmp#t3anpwIbye-^Wr6;ttvsPX^t$Gsc;j;?5ql@lxxrqv zuJN#-(q9f(x;5dN)PYc&l;D>)X;cmo>HHvpF z=^KNJ1(o=qM24XsCr73xmi3-`4#2#~BQ4qy;wu#Uk}NfQf2=R%VjDg_k;*!(aN3YY z<{Id8xYU0)Kt7W)dVONW2=%^Wl)K5$oDonbz?wbQ4ZkEpX=c%K-G&(dxnh8C5pXFk zNYRiauPO|vJ&C9}#pC$IQX5I>l3a0klQuRnqos?J<8T4Yao4V!ivQ=G%USbseBcoj z*ROD)$mcH(arRshY0W<8p3YUuiGm)7xyRiWjFraat&Vezhvz^!+q5`$v*WUu_5uz6 zw=s*IzPT1!kEX~#BM|(