diff --git a/2-Regression/1-Tools/README.md b/2-Regression/1-Tools/README.md index dd8fa409..62994409 100644 --- a/2-Regression/1-Tools/README.md +++ b/2-Regression/1-Tools/README.md @@ -149,10 +149,11 @@ In a new code cell, load the diabetes dataset by calling `load_diabetes()`. The ✅ Think a bit about the relationship between the data and the regression target. Linear regression predicts relationships between feature X and target variable y. Can you find the [target](https://scikit-learn.org/stable/datasets/toy_dataset.html#diabetes-dataset) for the diabetes dataset in the documentation? What is this dataset demonstrating, given that target? -2. Next, select a portion of this dataset to plot by arranging it into a new array using numpy's `newaxis` function. We are going to use linear regression to generate a line between values in this data, according to a pattern it determines. +2. Next, select a portion of this dataset to plot by selecting the 3rd column of the dataset. You can do this by using the `:` operator to select all rows, and then selecting the 3rd column using the index (2). You can also reshape the data to be a 2D array - as required for plotting - by using `reshape(n_rows, n_columns)`. If one of the parameter is -1, the corresponding dimension is calculated automatically. ```python - X = X[:, np.newaxis, 2] + X = X[:, 2] + X = X.reshape((-1,1)) ``` ✅ At any time, print out the data to check its shape. diff --git a/2-Regression/1-Tools/solution/notebook.ipynb b/2-Regression/1-Tools/solution/notebook.ipynb index ceb81b9c..7b32a8f5 100644 --- a/2-Regression/1-Tools/solution/notebook.ipynb +++ b/2-Regression/1-Tools/solution/notebook.ipynb @@ -1,44 +1,18 @@ { - "metadata": { - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.0" - }, - "orig_nbformat": 2, - "kernelspec": { - "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", - "display_name": "Python 3.7.0 64-bit ('3.7')" - }, - "metadata": { - "interpreter": { - "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2, "cells": [ { + "cell_type": "markdown", + "metadata": {}, "source": [ "## Linear Regression for Diabetes dataset - Lesson 1" - ], - "cell_type": "markdown", - "metadata": {} + ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Import needed libraries" - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", @@ -52,11 +26,11 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Load the diabetes dataset, divided into `X` data and `y` features" - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", @@ -64,10 +38,12 @@ "metadata": {}, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "(442, 10)\n[ 0.03807591 0.05068012 0.06169621 0.02187235 -0.0442235 -0.03482076\n -0.04340085 -0.00259226 0.01990842 -0.01764613]\n" + "(442, 10)\n", + "[ 0.03807591 0.05068012 0.06169621 0.02187239 -0.0442235 -0.03482076\n", + " -0.04340085 -0.00259226 0.01990749 -0.01764613]\n" ] } ], @@ -78,31 +54,503 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Select just one feature to target for this exercise" - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442,)\n" + ] + } + ], "source": [ - "X = X[:, np.newaxis, 2]\n" + "# Selecting the 3rd feature\n", + "X = X[:, 2]\n", + "print(X.shape)\n" ] }, { - "source": [ - "Split the training and test data for both `X` and `y`" + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(442, 1)\n", + "[[ 0.06169621]\n", + " [-0.05147406]\n", + " [ 0.04445121]\n", + " [-0.01159501]\n", + " [-0.03638469]\n", + " [-0.04069594]\n", + " [-0.04716281]\n", + " [-0.00189471]\n", + " [ 0.06169621]\n", + " [ 0.03906215]\n", + " [-0.08380842]\n", + " [ 0.01750591]\n", + " [-0.02884001]\n", + " [-0.00189471]\n", + " [-0.02560657]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [ 0.01211685]\n", + " [-0.0105172 ]\n", + " [-0.01806189]\n", + " [-0.05686312]\n", + " [-0.02237314]\n", + " [-0.00405033]\n", + " [ 0.06061839]\n", + " [ 0.03582872]\n", + " [-0.01267283]\n", + " [-0.07734155]\n", + " [ 0.05954058]\n", + " [-0.02129532]\n", + " [-0.00620595]\n", + " [ 0.04445121]\n", + " [-0.06548562]\n", + " [ 0.12528712]\n", + " [-0.05039625]\n", + " [-0.06332999]\n", + " [-0.03099563]\n", + " [ 0.02289497]\n", + " [ 0.01103904]\n", + " [ 0.07139652]\n", + " [ 0.01427248]\n", + " [-0.00836158]\n", + " [-0.06764124]\n", + " [-0.0105172 ]\n", + " [-0.02345095]\n", + " [ 0.06816308]\n", + " [-0.03530688]\n", + " [-0.01159501]\n", + " [-0.0730303 ]\n", + " [-0.04177375]\n", + " [ 0.01427248]\n", + " [-0.00728377]\n", + " [ 0.0164281 ]\n", + " [-0.00943939]\n", + " [-0.01590626]\n", + " [ 0.0250506 ]\n", + " [-0.04931844]\n", + " [ 0.04121778]\n", + " [-0.06332999]\n", + " [-0.06440781]\n", + " [-0.02560657]\n", + " [-0.00405033]\n", + " [ 0.00457217]\n", + " [-0.00728377]\n", + " [-0.0374625 ]\n", + " [-0.02560657]\n", + " [-0.02452876]\n", + " [-0.01806189]\n", + " [-0.01482845]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [-0.06979687]\n", + " [ 0.03367309]\n", + " [-0.00405033]\n", + " [-0.02021751]\n", + " [ 0.00241654]\n", + " [-0.03099563]\n", + " [ 0.02828403]\n", + " [-0.03638469]\n", + " [-0.05794093]\n", + " [-0.0374625 ]\n", + " [ 0.01211685]\n", + " [-0.02237314]\n", + " [-0.03530688]\n", + " [ 0.00996123]\n", + " [-0.03961813]\n", + " [ 0.07139652]\n", + " [-0.07518593]\n", + " [-0.00620595]\n", + " [-0.04069594]\n", + " [-0.04824063]\n", + " [-0.02560657]\n", + " [ 0.0519959 ]\n", + " [ 0.00457217]\n", + " [-0.06440781]\n", + " [-0.01698407]\n", + " [-0.05794093]\n", + " [ 0.00996123]\n", + " [ 0.08864151]\n", + " [-0.00512814]\n", + " [-0.06440781]\n", + " [ 0.01750591]\n", + " [-0.04500719]\n", + " [ 0.02828403]\n", + " [ 0.04121778]\n", + " [ 0.06492964]\n", + " [-0.03207344]\n", + " [-0.07626374]\n", + " [ 0.04984027]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03207344]\n", + " [ 0.00457217]\n", + " [ 0.02073935]\n", + " [ 0.01427248]\n", + " [ 0.11019775]\n", + " [ 0.00133873]\n", + " [ 0.05846277]\n", + " [-0.02129532]\n", + " [-0.0105172 ]\n", + " [-0.04716281]\n", + " [ 0.00457217]\n", + " [ 0.01750591]\n", + " [ 0.08109682]\n", + " [ 0.0347509 ]\n", + " [ 0.02397278]\n", + " [-0.00836158]\n", + " [-0.06117437]\n", + " [-0.00189471]\n", + " [-0.06225218]\n", + " [ 0.0164281 ]\n", + " [ 0.09618619]\n", + " [-0.06979687]\n", + " [-0.02129532]\n", + " [-0.05362969]\n", + " [ 0.0433734 ]\n", + " [ 0.05630715]\n", + " [-0.0816528 ]\n", + " [ 0.04984027]\n", + " [ 0.11127556]\n", + " [ 0.06169621]\n", + " [ 0.01427248]\n", + " [ 0.04768465]\n", + " [ 0.01211685]\n", + " [ 0.00564998]\n", + " [ 0.04660684]\n", + " [ 0.12852056]\n", + " [ 0.05954058]\n", + " [ 0.09295276]\n", + " [ 0.01535029]\n", + " [-0.00512814]\n", + " [ 0.0703187 ]\n", + " [-0.00405033]\n", + " [-0.00081689]\n", + " [-0.04392938]\n", + " [ 0.02073935]\n", + " [ 0.06061839]\n", + " [-0.0105172 ]\n", + " [-0.03315126]\n", + " [-0.06548562]\n", + " [ 0.0433734 ]\n", + " [-0.06225218]\n", + " [ 0.06385183]\n", + " [ 0.03043966]\n", + " [ 0.07247433]\n", + " [-0.0191397 ]\n", + " [-0.06656343]\n", + " [-0.06009656]\n", + " [ 0.06924089]\n", + " [ 0.05954058]\n", + " [-0.02668438]\n", + " [-0.02021751]\n", + " [-0.046085 ]\n", + " [ 0.07139652]\n", + " [-0.07949718]\n", + " [ 0.00996123]\n", + " [-0.03854032]\n", + " [ 0.01966154]\n", + " [ 0.02720622]\n", + " [-0.00836158]\n", + " [-0.01590626]\n", + " [ 0.00457217]\n", + " [-0.04285156]\n", + " [ 0.00564998]\n", + " [-0.03530688]\n", + " [ 0.02397278]\n", + " [-0.01806189]\n", + " [ 0.04229559]\n", + " [-0.0547075 ]\n", + " [-0.00297252]\n", + " [-0.06656343]\n", + " [-0.01267283]\n", + " [-0.04177375]\n", + " [-0.03099563]\n", + " [-0.00512814]\n", + " [-0.05901875]\n", + " [ 0.0250506 ]\n", + " [-0.046085 ]\n", + " [ 0.00349435]\n", + " [ 0.05415152]\n", + " [-0.04500719]\n", + " [-0.05794093]\n", + " [-0.05578531]\n", + " [ 0.00133873]\n", + " [ 0.03043966]\n", + " [ 0.00672779]\n", + " [ 0.04660684]\n", + " [ 0.02612841]\n", + " [ 0.04552903]\n", + " [ 0.04013997]\n", + " [-0.01806189]\n", + " [ 0.01427248]\n", + " [ 0.03690653]\n", + " [ 0.00349435]\n", + " [-0.07087468]\n", + " [-0.03315126]\n", + " [ 0.09403057]\n", + " [ 0.03582872]\n", + " [ 0.03151747]\n", + " [-0.06548562]\n", + " [-0.04177375]\n", + " [-0.03961813]\n", + " [-0.03854032]\n", + " [-0.02560657]\n", + " [-0.02345095]\n", + " [-0.06656343]\n", + " [ 0.03259528]\n", + " [-0.046085 ]\n", + " [-0.02991782]\n", + " [-0.01267283]\n", + " [-0.01590626]\n", + " [ 0.07139652]\n", + " [-0.03099563]\n", + " [ 0.00026092]\n", + " [ 0.03690653]\n", + " [ 0.03906215]\n", + " [-0.01482845]\n", + " [ 0.00672779]\n", + " [-0.06871905]\n", + " [-0.00943939]\n", + " [ 0.01966154]\n", + " [ 0.07462995]\n", + " [-0.00836158]\n", + " [-0.02345095]\n", + " [-0.046085 ]\n", + " [ 0.05415152]\n", + " [-0.03530688]\n", + " [-0.03207344]\n", + " [-0.0816528 ]\n", + " [ 0.04768465]\n", + " [ 0.06061839]\n", + " [ 0.05630715]\n", + " [ 0.09834182]\n", + " [ 0.05954058]\n", + " [ 0.03367309]\n", + " [ 0.05630715]\n", + " [-0.06548562]\n", + " [ 0.16085492]\n", + " [-0.05578531]\n", + " [-0.02452876]\n", + " [-0.03638469]\n", + " [-0.00836158]\n", + " [-0.04177375]\n", + " [ 0.12744274]\n", + " [-0.07734155]\n", + " [ 0.02828403]\n", + " [-0.02560657]\n", + " [-0.06225218]\n", + " [-0.00081689]\n", + " [ 0.08864151]\n", + " [-0.03207344]\n", + " [ 0.03043966]\n", + " [ 0.00888341]\n", + " [ 0.00672779]\n", + " [-0.02021751]\n", + " [-0.02452876]\n", + " [-0.01159501]\n", + " [ 0.02612841]\n", + " [-0.05901875]\n", + " [-0.03638469]\n", + " [-0.02452876]\n", + " [ 0.01858372]\n", + " [-0.0902753 ]\n", + " [-0.00512814]\n", + " [-0.05255187]\n", + " [-0.02237314]\n", + " [-0.02021751]\n", + " [-0.0547075 ]\n", + " [-0.00620595]\n", + " [-0.01698407]\n", + " [ 0.05522933]\n", + " [ 0.07678558]\n", + " [ 0.01858372]\n", + " [-0.02237314]\n", + " [ 0.09295276]\n", + " [-0.03099563]\n", + " [ 0.03906215]\n", + " [-0.06117437]\n", + " [-0.00836158]\n", + " [-0.0374625 ]\n", + " [-0.01375064]\n", + " [ 0.07355214]\n", + " [-0.02452876]\n", + " [ 0.03367309]\n", + " [ 0.0347509 ]\n", + " [-0.03854032]\n", + " [-0.03961813]\n", + " [-0.00189471]\n", + " [-0.03099563]\n", + " [-0.046085 ]\n", + " [ 0.00133873]\n", + " [ 0.06492964]\n", + " [ 0.04013997]\n", + " [-0.02345095]\n", + " [ 0.05307371]\n", + " [ 0.04013997]\n", + " [-0.02021751]\n", + " [ 0.01427248]\n", + " [-0.03422907]\n", + " [ 0.00672779]\n", + " [ 0.00457217]\n", + " [ 0.03043966]\n", + " [ 0.0519959 ]\n", + " [ 0.06169621]\n", + " [-0.00728377]\n", + " [ 0.00564998]\n", + " [ 0.05415152]\n", + " [-0.00836158]\n", + " [ 0.114509 ]\n", + " [ 0.06708527]\n", + " [-0.05578531]\n", + " [ 0.03043966]\n", + " [-0.02560657]\n", + " [ 0.10480869]\n", + " [-0.00620595]\n", + " [-0.04716281]\n", + " [-0.04824063]\n", + " [ 0.08540807]\n", + " [-0.01267283]\n", + " [-0.03315126]\n", + " [-0.00728377]\n", + " [-0.01375064]\n", + " [ 0.05954058]\n", + " [ 0.02181716]\n", + " [ 0.01858372]\n", + " [-0.01159501]\n", + " [-0.00297252]\n", + " [ 0.01750591]\n", + " [-0.02991782]\n", + " [-0.02021751]\n", + " [-0.05794093]\n", + " [ 0.06061839]\n", + " [-0.04069594]\n", + " [-0.07195249]\n", + " [-0.05578531]\n", + " [ 0.04552903]\n", + " [-0.00943939]\n", + " [-0.03315126]\n", + " [ 0.04984027]\n", + " [-0.08488624]\n", + " [ 0.00564998]\n", + " [ 0.02073935]\n", + " [-0.00728377]\n", + " [ 0.10480869]\n", + " [-0.02452876]\n", + " [-0.00620595]\n", + " [-0.03854032]\n", + " [ 0.13714305]\n", + " [ 0.17055523]\n", + " [ 0.00241654]\n", + " [ 0.03798434]\n", + " [-0.05794093]\n", + " [-0.00943939]\n", + " [-0.02345095]\n", + " [-0.0105172 ]\n", + " [-0.03422907]\n", + " [-0.00297252]\n", + " [ 0.06816308]\n", + " [ 0.00996123]\n", + " [ 0.00241654]\n", + " [-0.03854032]\n", + " [ 0.02612841]\n", + " [-0.08919748]\n", + " [ 0.06061839]\n", + " [-0.02884001]\n", + " [-0.02991782]\n", + " [-0.0191397 ]\n", + " [-0.04069594]\n", + " [ 0.01535029]\n", + " [-0.02452876]\n", + " [ 0.00133873]\n", + " [ 0.06924089]\n", + " [-0.06979687]\n", + " [-0.02991782]\n", + " [-0.046085 ]\n", + " [ 0.01858372]\n", + " [ 0.00133873]\n", + " [-0.03099563]\n", + " [-0.00405033]\n", + " [ 0.01535029]\n", + " [ 0.02289497]\n", + " [ 0.04552903]\n", + " [-0.04500719]\n", + " [-0.03315126]\n", + " [ 0.097264 ]\n", + " [ 0.05415152]\n", + " [ 0.12313149]\n", + " [-0.08057499]\n", + " [ 0.09295276]\n", + " [-0.05039625]\n", + " [-0.01159501]\n", + " [-0.0277622 ]\n", + " [ 0.05846277]\n", + " [ 0.08540807]\n", + " [-0.00081689]\n", + " [ 0.00672779]\n", + " [ 0.00888341]\n", + " [ 0.08001901]\n", + " [ 0.07139652]\n", + " [-0.02452876]\n", + " [-0.0547075 ]\n", + " [-0.03638469]\n", + " [ 0.0164281 ]\n", + " [ 0.07786339]\n", + " [-0.03961813]\n", + " [ 0.01103904]\n", + " [-0.04069594]\n", + " [-0.03422907]\n", + " [ 0.00564998]\n", + " [ 0.08864151]\n", + " [-0.03315126]\n", + " [-0.05686312]\n", + " [-0.03099563]\n", + " [ 0.05522933]\n", + " [-0.06009656]\n", + " [ 0.00133873]\n", + " [-0.02345095]\n", + " [-0.07410811]\n", + " [ 0.01966154]\n", + " [-0.01590626]\n", + " [-0.01590626]\n", + " [ 0.03906215]\n", + " [-0.0730303 ]]\n" + ] + } ], + "source": [ + "#Reshaping to get a 2D array\n", + "X = X.reshape(-1, 1)\n", + "print(X.shape)\n", + "print(X)" + ] + }, + { "cell_type": "markdown", - "metadata": {} + "metadata": {}, + "source": [ + "Split the training and test data for both `X` and `y`" + ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -110,26 +558,29 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Select the model and fit it with the training data" - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ], "text/plain": [ - "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)" + "LinearRegression()" ] }, + "execution_count": 6, "metadata": {}, - "execution_count": 5 + "output_type": "execute_result" } ], "source": [ @@ -138,15 +589,15 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Use test data to predict a line" - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -154,27 +605,26 @@ ] }, { + "cell_type": "markdown", + "metadata": {}, "source": [ "Display the results in a plot" - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2de5RcVZ3vv7+udAMNqKQSIDy6ipc64B0wtixcg+AAIi8FB67CFKLAorVhHITF4gZrnPFBzxKYQS9zBW0FFth1BUfHCzIqQzAogwJ2FAJRYxrsDgmPhBAM0BCS1O/+cU5LdfV5vx/fz1pn9el9Xr99Tp3v/u3f3mdvUVUQQggpFj1pG0AIISR6KO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJA5qVtAAAsWLBA6/V62mYQQkiuWL58+fOqutBqWybEvV6vY3x8PG0zCCEkV4jIlN02hmUIIaSAUNwJIaSAUNwJIaSAUNwJIaSAUNwJIaSAUNwJIaFotVqo1+vo6elBvV5Hq9VK2ySCjHSFJITkk1arhaGhIUxPTwMApqamMDQ0BABoNBppmlZ66LkTQgLTbDb/LOwzTE9Po9lspmQRmYHiTggJzJo1a3ylk+SguBNCAjMwMOArnSQHxZ0QEpiRkRH09/fPSuvv78fIyEhKFpEZKO6EkMA0Gg2Mjo6iVqtBRFCr1TA6OsrG1AwgWZhDdXBwUDlwGCGE+ENElqvqoNU2eu6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAKO6EEFJAXMVdRHYUkYdF5FERWSkiXzDT9xORh0RkQkRuF5E+M30H8/8Jc3s93iwQQgjpxovnvgXAMap6KIDDAJwgIkcAuArAV1T1QACbAJxv7n8+gE1m+lfM/QghhCSIq7irwcvmv73mogCOAfA9M/0WAKeZ66ea/8PcfqyISGQWE5ITWq0W6vU6enp6UK/X0Wq10jaJlAhPMXcRqYjIIwDWA7gHwBMAXlTVbeYuawHsba7vDeApADC3/wlA1eKcQyIyLiLjGzZsCJcLQjJGq9XC0NAQpqamoKqYmprC0NBQbgWeBVX+8CTuqrpdVQ8DsA+AwwG8PeyFVXVUVQdVdXDhwoVhT0dIpmg2m5ienp6VNj09jWazGet14xDhohVUZcFXbxlVfRHAMgDvAfAWEZlnbtoHwDpzfR2AfQHA3P5mABsjsZaQnLBmzRpf6VEQlwinVVCRcHjpLbNQRN5iru8E4P0AfgdD5M8wd/s4gDvM9TvN/2Fu/6lmYaJWQhJkYGDAV3oUxCXCaRRUJDxePPdFAJaJyAoAvwJwj6reBeB/AbhURCZgxNRvNPe/EUDVTL8UwJLozSYk24yMjKC/v39WWn9/P0ZGRmK7ZlwinEZBRcLjpbfMClV9p6r+paq+Q1W/aKY/qaqHq+qBqvo/VXWLmf6a+f+B5vYn484EIVmj0WhgdHQUtVoNIoJarYbR0VE0Go3YrhmXCKdRUJHw8AtVQmKi0WhgcnIS7XYbk5OTsQo7EJ8Ip1FQkfBIFsLhg4ODOj4+nrYZhOSeVquFZrOJNWvWYGBgACMjIxThAiMiy1V10GobPXeSSfLSrzprdiZdWyDZheJOIiMqoctLv+q82NlN1gokEhOqmvryrne9S0m+GRsb0/7+foUxNIUC0P7+fh0bG/N9rlqtNus8M0utVove8BCkaefY2JjWajUVEa3Vap7vc5TPKQqC5oMYABhXG11NXdiV4l4IohQ6EbE8l4hEb3gI0rIzjEBnqeDMWkGTRyjuJHaiFLosCZATadkZ5rp+nlPcXnVennOWcRJ3xtxJJETZxzov/arTstPvx0qdMfaeHutXvvs5JdGeULQvX7/0JUAEeOc7gV/+Mm1rQM+dREPUVey8xGLTsNOPx2v1XLoXq+eUhFddBM+93Va97DIjBtK5/O3fJnN9MCxDkiAvgpx3/BSkdgJaqVQcn1MS7Ql5jrlv3676yU/OFfWZ5c47k7GD4k5IwfBakAYV6aS86jgcgjidjK1bDa/cTtQB1bvvjuxyrlDcCfFAEWseQUU6r151XHZv2aJ6yinOon7//RFlwgcUd0JcyKuYuREmX3ks7KKucbzyiurRRzuL+vh4pFnwBcWdEBfsRGFGGDqFLW+ilzd7wxBVW8HmzaqLFzuL+mOPxZQJH1DcCXHBThS6vd2ievhpEXXBE9Zz37hR9aCDnEV99epQJkYKxZ0QF5w8906ByHP3vax58HEUlEHP+eyzqnvuaS/oO++sOjUV2KzYoLgT4oKX/uAikpuhEbrJYo0jroLSTyG2Zo0h3HaivueehvBnFYo7IR6YEYUieu5+7U7Cy0+zoJyYsBd0wAjNbNzo75xp1Iwo7qSwxNVP2s7LzaIH7AW/Y8okkcc0Csovf/mHjqK+eLHRmOqXtH4XFHeSeYKIdJwvlJM9WYtde8GPkCb5AVNSgrh8ubOnfvTRRrfHoKRVo6O4k0wT9CXPa4gkDfzc4yTDJXEXlPff7yzqwJ06MHBg6OukFWKiuJNME1Sk89q4mRZehbQIheZ//ZebqI8pUIns95JFz51D/maMMk6BFnTo1yiHGS4DXudXtRrKuK+vDy+//HLmf5d33GEMu3v88XZ7fB3G7KJnA9gOIJrfSyaHqbZT/ZkFwL4AlgH4LYCVAC420z8PYB2AR8zlpI5jrgAwAWAVgA+4XYOeu0FeG+vCUrbxT/JAp5dfrVa1t7c30/e51XL21C+7TPXb347395K73jIAFgFYbK7vCuAPAA42xf0yi/0PBvAogB0A7AfgCQAVp2tQ3A2KUB0OQtnGP8kbWf5djo46i/oXvzh7/6L9XkKJ+5wDgDsAvN9B3K8AcEXH/3cDeI/TOSnuBmWOIRftpSsSWfxdXnuts6hfe21qpiWKk7j7irmLSB3AOwE8ZCb9nYisEJGbRGQ3M21vAE91HLbWTOs+15CIjIvI+IYNG/yYUVjKHEP2Gg8m4QjSppOV36Uq8IUvGDH1Sy+13ucb3zD2u+SSRE3LJnaq370A2AXAcgB/Y/6/B4AKjNaJEQA3men/B8DZHcfdCOAMp3PTczdgDJnESdDfV9q/S7up7DqXVisRUzIHwoZlAPTCCK9carO9DuBxZVgmNAxPpEMZ7nuY2Hka92f7dtWhIWdRv+SS+2K3I8uEEncAAuBWAF/tSl/UsX4JgNvM9UMwu0H1SbBBlWSYtD3TpMhi7NyKrVtVzzrLWdSB4wr7nPzgJO5ibLdHRI4EcD+AxwC0zeTPAjgLwGHmD2QSwCdV9RnzmCaA8wBsA/AZVf2x0zUGBwd1fHzc0Q5C4qJer2NqampOeq1Ww+TkZPIGxUTW8/n668DppwN33eW015EAHpiVkhX700BElqvqoOVGO9VPcqHnTtLEaaKOIoVqslpDeeUV1aOOcvbUx8fjq3nkOSQHDj9AiD12sehuMcmCEIYlS0LmZSq7xx9/Y/84+ttntcDzCsWdEAesXnA7LzELH+7knY0bVQ880FnUraayi0OIs/yBlhecxJ1jy5DS02g0MDo6ilqtBhFBrVYzPB8L3Ma7IfY89xyw555AtQpMTMzdvssuwJo1hrwfeODc7VbPaXR0NNQ3EUHHNcoDrg2qScAGVZI17BofK5UK2u02BgYGMDIywo+tPPDUU8Db3w5MT1tvX7QI+M1vgD32SNYuIPuNzG44NajScyfEAqtR/gBg+/btUFVMTU1haGgos6MjZoGJCeNr0oEBa2F/61uBjRuBp59OR9iBjI7mGBEUd0Is6A4BVCqVOftMT0+j2WymYF22efxxQ9QPOsh6++AgsHkzsGoVMH9+srZ1E0eoJyswLEOIB3p6eizj8CKCdrttcUT5WL7cEG473vc+4Ec/AnbaKTGTCg/DMoR4wGlQLafBs8o4wUon999veOp2wv6hDwFbtgDLllHYE8WuG02SC7tCkrRx62Znt314eDjX/aTDcPfdzt0ZGw1jKAESH2A/d0Kc8dLf2eoDoLz3kw7CD37gLOqf+pQx6BeJHydxZ1iGEHjr72w15nxa/aSTCAV1X+Oiix6ACPDhD1vvf/nlQLsN3HAD0ENlSR871U9yoedeLKL4xD3pz+SDeuBpeO5JfDI/+xoXOHrq3VPZkeQAwzIkKaIQnjTG+8jTRBZJFCjGNS5xFPWyTGWXZSjuJDHchMeLR55WHDtobSHpWkac47K326qf/7y9oAOq3/xmBJkgkUBxJ56IQqSchMerl5uXSSXSIo7Cr91WvfRSZ1EHzix0Q3EeobgTV6IKLzgJj1dRKmMPFD9EGQravl31ggvcRP2DiYSbiH8o7sSVqATVSXi8euR5H2M7CcLWsrZuVT3zTGdRX7JkaWbGfifWUNyJK1GGQuyEx08BkqVJJYrEa6+pnnyys6j/93+nbSXxipO4c2wZAiCZoU9brRaGhoYw3TFEYH9/f2EGasoy09PAiScCP/+5/T7LlwOLFydnEwkPx5YhriQx9Gn3CHzVahU77bQTPvaxj5VyTJYk2LzZEOydd7YX9pUrDZ+dwl4w7Fz6JBeGZbJBkqEQxtXjZeNG1QMOcA6/TEykbSUJCxiWIVkj7zPgZJVnnwUOPRRYv956+667Gp76vvsmaxeJB4ZlSOawEnagGHNXpjEE8Jo1QH+/MWWdlbDvtZcxh+nmzRT2suAq7iKyr4gsE5HfishKEbnYTJ8vIveIyGrz725muojIdSIyISIrRISRvJjJ23jirVYLImK5zW7c9Lww02g8NTUF1fin45uZyq5WA159de72t70NeOEFYN06YPfdYzGBZBW7eM3MAmARgMXm+q4A/gDgYABXA1hipi8BcJW5fhKAHwMQAEcAeMjtGoy5ByePsWu7LpEzX7HmmaQ+wHrsMed4+uCg6ubNkV6SZBBE2c8dwB0A3g9gFYBF+kYBsMpc/waAszr2//N+dgvFPTh5/JrTrk+94WvkmzDfC3hp0P7Vr5xF/a//WnV6Oo6ckSziJO6+Yu4iUgfwTgAPAdhDVZ8xNz0LYGb+8r0BPNVx2FozrftcQyIyLiLjGzZs8GMG6SCt8cTDYBd6qdVqCVsSnu6Q2HybGZ/dwk1u4ZyZqeze/W7r40891ZjK7qc/5VR2xMRO9bsXALsAWA7gb8z/X+zavsn8exeAIzvS7wUw6HRueu7ByaPnnsdQkhVW+ejr69Pe3l7febN7jrvvfrajp3722arbtiWUYZI5EDYsA6AXwN0ALu1IY1gmA+RVKIswvICdIFerVd95mxvOOdVR1IeHOZUdCSnuMBpGbwXw1a70azC7QfVqc/1kzG5QfdjtGhT3cBRBKKMiyXsR5Xg8bxQUDUdRv/xyY3heQlTDi/uR5o92BYBHzOUkAFUz5LIawFIA8/WNwuBrAJ4A8JhbSEYp7r4piphHnY+kazFRhsTOPfdBR1H/0peit5/kn9BhmbgXirt38hqG6SaOfCTd/hBFHv7lX+wFHVD9yldiMZ0UBIp7gchjA6oVceQjjRmcgtQ+2m3Vf/onZ1EPOpVdUWp1xBsU9wJRlCno4shH1gs+L1PZfec7wc9flFod8Y6TuHNsmZxh1186b5/tx5GPJIYtDkK7DVxwAdDTA1x7rfU+d9xhyPuZZwa/TrPZnDVWPgBMT0+j2WwGPynJLRT3nDDzsczU1NSccVmyIGB+iUOIu8eLr9VqqU4Esm0bcNZZQKUCfOtb1vssXWqI+oc+FP56efygjcSInUuf5MKwjDNW1e2ZsEae46pFjQ+/9prqSSc5h18eeGD2MVHci6yHpUj0gDH3fOP1pY1LLIsqwlHzyiuq732vs6gvXz73uKhi5Yy5lw+Ke87x0vgY14tNwXDnT39SPewwZ1FfudL++Cg9bhbE5YLinnO8vPxxVclZ1bfn+edV99/fWdS9TGXnVnhTsIkdTuLOBtUc4KXxMa7GNDbSzeXZZ42JLxYsAJ58cu72N70JeOopQ94POMD9fE49h5Ke/IMUCDvVT3Kh5+6Om/dGzz067O711JTqjjvae+l77aX63HPBrmcX+gpy/+nplwcwLFN8GHOPBqv87rjj/3AMvbz97aovvBD+ulaC7Pdjr7I9r7JDcc8IcXtUSfWWGR4eLqxnONtTPsRR1A8/XPWll5K0x91zL2NNq8xQ3DNAUTwqP/nwUthkLYRgeMqDjqJ+zDHRTGXn9f74+d0UZXgK4g2KewYoikflp8+9myhlrcD72c/sBR1QPe001S1borlW1IXkDEX5nRFvUNwzQFE8Kq/5SLP7pl9+8hNnUa9UWnrrra1IrxlX3/ZqtRpomj+STyjuGSArQhYWr/nwUgikXeD9x384izrwNR0YqMcijFHl3W4e12q1mplQF4kPinsGyFoIIihe85Flz/3b33YW9SVL4p/KLqq8F8VpIMGguGeErDUeBiWKhsCxsTGtVqtzRCnOAu+GG5xF/corY7msJVEV9mnXfki6UNwTJKyAF6UAULXPi5WwAdBqtRpLfq+5xlnUv/rVyC/pCY4EScJCcU+IsN5YUUI3biQhSO226j/+o7Oo33hjZJdLjbL8Zog1FPeECCtaefXC/HqgcQ6U1W6rfuYzzqJ+222hsps5ilTbI/6guCdE2PhnHuOnQTxHp0IsqCe6fbvq+ec7i/oPfxh17glJF4p7QpTRcw9ic5QDZW3dqvqRjziL+tKl8eSdkLQJJe4AbgKwHsDjHWmfB7AOwCPmclLHtisATABYBeADbufXAol7GWPuVkI8U9twCheEHSjrtddUTzzRWdR/8YvZtjJ8QYpGWHE/CsBiC3G/zGLfgwE8CmAHAPsBeAJAxe0aRRF31XL1lhkbG7MV42q1GqigcvPcX3lF9cgjnUX917+2tjVvBSchboQOywCoexT3KwBc0fH/3QDe43b+Iol7mbAT4pnP4IOEmOxEeHT0Nj30UGdR/+1v/dua5ZAXIW44iXuYmZj+TkRWiMhNIrKbmbY3gKc69llrps1BRIZEZFxExjds2BDCDJIWdrMxqSpeeOEFX8fM0Gg0MDo6ilqtBhHBPvscil12eRZDQx/Fo4/O3b+nB3jiCUPe/+Iv/Nta5hmlSLEJKu43ADgAwGEAngHwr35PoKqjqjqoqoMLFy4MaAZJE7vp4Wq1muPUcW40Gg08+OAkqtU21q59BOvX7zpnnze/2ZjKbvt2YP/9g9vqxR5C8kggcVfV51R1u6q2AXwTwOHmpnUA9u3YdR8zjRQQp7ldvcz7asWaNcBOOwGLFgHPPz93+z77AM89B7z4orEexlYRwdTUFOr1OuckJcXDLl7TuWBuzH1Rx/olAG4z1w/B7AbVJ1GyBtWyEaRHjBV/+INzPP3gg1U3bYrGVpjtArBoBM57A2tSs3Hl/T4VBYTsLfMdGKGXrTBi6OcD+DaAxwCsAHBnl9g3YfSSWQXgRLfzK8U9E6T18q5Y4SzqcUxlZ9e4ipz3oCnSPLosTLwRStyTWCju4Yii+2XSL+/DDzuL+nHHqb766mwbo3rZ7bpvzix57UETV4+gpHsasduqdyjuBSaKFyHJl9dtKrsPf1j19ddnHxP1y+7kuc+EbPKIU6EVpmBMelgMdlv1DsU9h3j1VKN4EZJ4ed2msjvnHNVt26yPjfpltxtyOO8i4vTdQV4Kf9V8jrGUFhT3nOHHU43iRYjz5f3+951F/aKLjEG/nIjjZU9jspC4sfrd2N07P8826TAJPXfvUNxzhp8fdxQvQhwv7623Oov6Bz/4uOep7OJ82YvWcNedn6hCT0neJ8bcvUNxzxl+PNWoXoSoXl63qeyAK3zbyJc9OFEWjEkLfJEK3biguOcMvy9kFl6Eq692E/VPh65dpJ3HpIkiz1EW/ixgswfFPWck8SJFIRztturnPucs6jfeyAayIET5G+BcrcWF4p5D4vRUwwqHl6nsbr/9jf0pDP7J2j1jAZ1NKO5kFkGFY/t21fPOcxZ1q6nsWKX3T9bENGuFDTFwEvcwQ/6SnOJ3+Ntt24CPfhSoVICbbrI+5733GvJ+yilzt3UP41ur1TA6OopGoxE0C4Una6NYBh0IjqSIneonudBzTxavXthrr6mecIKzp949lR2JhizWdsrYqJ11wLAM6cRNOF5+WfWv/spZ1H/zm5QzUQIopsQNJ3FnWKaE2IVJTjmlgUMPBXbZBXjgAetjr7rqhxgba+G00+ro6enhWOgx0mg0MDk5iXa7jcnJSYaxiD/sVD/JJS+ee1E9qeefV63XnTz1rQrUFYD29fVpb29vIuGCot5vQqICDMuEJ4sx0LA8/bTqggX2ot7T86ICe1nG57uXqHtNFPF+ExI1TuLOsIxHms0mpqenZ6VNT0+j2WymZFFw1q8HdtwR2Gsv66ns9t3X2Ed1NwBPezpn1BNNp32/W60W6nWGnkh+obh7xG/3wSyycSPwuc8BBx4IbNkyd/vBBwObNhnzmC5c6K/bXdRd9NK8361WC0NDQ5iamoKqYmpqCkNDQxR4kiso7h7JWr9jPzz3HHD55UCtBlx5JfDSS7O3H3GEkbZyJfCWt7yRbtW3ua+vD729vbPS4ujvnOb9TrvWEDeslZQEu3hNkgtj7tbXC9uYuHat6sUXq+6009x4+gEHqJ588uyp7LzakURDZxT3O6idWfs6NErYllEswAbVaEiq90bYF3ByUvVTn1Lt65sr6u94h+ptt9nPepQlwtzvMPewyJ/aFzlvZYTinjOCvoCrV6uee67qvHlzRX3xYtUf/MB91qOiEEbEiuzdFrlWUkacxJ0x9wzitzHxd78Dzj4beNvbgJtvNsaCmeGII4D//E9gfBw47TSgpyRPPEyDbJHHwslz2xHxR0le9Xzh9QVstYDTTwcOOcRYb7ff2Hb00cDSpcBFF7Vw4YV1VCrlajwLK2JF/TqUA4CVCDuXfmYBcBOA9QAe70ibD+AeAKvNv7uZ6QLgOgATAFYAWOx2fmVYZg5uYYGvfW1u2GVmOf541Z//3Nt5ikyZ8+4Gv/wtDggTcwdwFIDFXeJ+NYAl5voSAFeZ6ycB+LEp8kcAeMjt/FpicXd6yay2XXWVvaifcorqgw/OPn/ZG88oYqTohBJ343jUu8R9FYBF5voiAKvM9W8AOMtqP6eljOLu1bNst1X/4R/sRR1Qve8+62uw8YyQYuMk7kFj7nuo6jPm+rMA9jDX9wbwVMd+a8200tNqtbBgwQKICEQE55xzjuOHMqrAxRcbDaBXXml9zttvN/Y7+mjr7Ww8I6S8hG5QNUsP9XuciAyJyLiIjG/YsCGsGa6k+VVeq9XCueeei40bN/45rd3Z+tnB1NRanHeeIerXXWd9vrvuMkT9Ix9xvq7fxjN+uUhIgbBz6TsX5Dwsk3bjml3se/YyT4HvOoZf7r3X/Vrdcebh4WFPcee07xEhxD+IIeZ+DWY3qF5trp+M2Q2qD3s5f9zinnbDol3s21h2UOAnjqL+y196u46bQDs1MKZ9j0j8sIG5eIQSdwDfAfAMgK0wYujnA6gCuBdGV8ilAOab+wqArwF4AsBjAAbdzq8JiHvaDYvWwtmvwAOOou53KjsngXYT/rTvUVqURfBYMysmoT33uJeie+5jY2Mdsxe9SYEVjqK+117HBBIbJ4F2uwd226vVqlar1Vn/F0UQyiR4ab8DJB5KL+5ZeIlvuOHftadnykHUX9d58w7Svr4+VzvtvE2nF9jNM7e6R3ZLb29vIQSwTIJX1ppZ0Sm9uKumV/1++mnV+fPtvXTgBXWbyq5TbJwKKqdtXoRsbGxslpfu1aa8UibBK1NBViYo7inwxz+q9vY6ifqkAgs8CWmn2Li9pHaFmNfai7eePcUQwDIJ3vDwsGVeh4eH0zaNhIDiniC//72ToKsecojqpk3eRbRbbMJ4m15qL849e4olgFkI1yVFmQqyMkFxT4BHH3UW9SOOUH3ppTf2txKW3t5e15h73C+pl0LHT8w9671Rsm5fVJQpBFUmKO4x8tBDzqJ+/PH2U9kFmcIubm/TrWHVT2+ZMnnGWYeeezGhuMfAsmXOon766aqvvx6PZ+gUV4/iWlGdx65xloKSPF4L2rLUZIoCxT1CfvQjZ1H/xCfemJ80Sc81a17y2NiYrffPUEA6pF0rJNFDcY+A733PWdQ//WljeN5OkqwKZ63a7RS7p+eeTbL2GyLuOIk7p9lz4ZZbABHgjDOst3/2s8b0dtddZ+zXSZh5PP2S5LW84HRdTumWTbL2GyLhoLjbcP31hlh/4hPW2//5nw2ffWRkrqjPkNR46q1WCz02M1+rKur1Oo477jjMmzcPIoJ58+bhwgsvjOzaVsME2+WxWq0WZj7SosHx/wuGnUuf5JKlsMyXv+wcfvm3f/N+riRimH6GDehewn7AEvRrWZJN+MzyBxhzd8bLVHY33xzs3HH3PvDzMVT3UqlUQtkf9GtZvyTdgyPvPUbC2J/3vJcNirsN7bbq3/+9s6h/97upmOYZr1+U2i1OZGGY4KS9ybx7r3m3n/iD4t7Ftm2q557rLOp33ZWoSYGJ03N38sztxirp9NzjzF9cPTjy3mMk7/YTf1DcTV5/XfWMM5xFfdmycNcIWq3tHLmxUqn8+YV0O97rMAZBYu5BagVRe4lONsQRNsj7Z/p5t5/4g+KuquvXO4u616nsnAhaJXZqFPV6vNswBscee+yfC41KpeKpMTVIrSDpNoWoC5O8e755t5/4g+KuqtdcYy3qjzwS3TWCvlhuAlapVFJp4LIrrJxsDXINpxqLl95AUQpX3mPWebef+IPirsZ8pJ2TZvz+99FfI2iV2E/4I+kX1apWMCPCVoWQ33N7qbE4TTYSR8gh7z1G8m4/8Q7F3WT79njPH5fnnrUqdlQTP7jluzufDDkQMhsncS/VF6o2H3FGxsjICPr7+2el9ff3u35ub3WcE2l/Dn799ddjeHgYlUoFAFCpVDA8PIzrr7/e13nc8tG9Pej9JaSU2Kl+kkvaHzFFSZS9ZezCH0XxVP167qoMORDSCRiWyR5eRKrojWNhewkRUnYo7j6J2zv0I9pJeKppesNWNZZqtarVapXeOdGE6yAAAAdWSURBVCEuxCbuACYBPAbgkZmLAJgP4B4Aq82/u7mdJ0vinoS3nKWGwazVDrJmDyFZJm5xX9CVdjWAJeb6EgBXuZ0nS+LuR3iDzIGqmq2vCLNU0GTRHkKyTNLivgrAInN9EYBVbufJkrh7FV6vn/1beZ1xCViQ8ErUBU3YEE+WCj5Csk6c4v5HAL8GsBzAkJn2Ysd26fy/69ghAOMAxgcGBhK5EV7wKrx++qZ3Hzs2Nqa9vb1zCoYwoYeg4YwoC5ooQir03AnxTpzivrf5d3cAjwI4qlvMAWxyO0+WPHevAuXnq1Irr7/bw+/r6wsl7kFFMcoYdxTCzJg7Id6JTdxnnQj4PIDL8h6WUfUWWgjjuYeN61sRJpwRVW+ZqEIq7MtOiDdiEXcAOwPYtWP9FwBOAHANZjeoXu12rqyJuxfCxNzDxPXtvFivBUacwsmQCiHJEpe472+GYh4FsBJA00yvArgXRlfIpQDmu50rj+KuGry3TNi4vp2H71YQxB3yCHt+euyE+CORsEyYJa/iHpSwcX27MIebOCbhWYcZfoGxdkL84STuYmxPl8HBQR0fH0/bjERptVpoNptYs2YNBgYGMDIygkajMWufer2OqampOcfWajVMTk76vmZPTw+snreIoN1u+z5flESdV0LKgIgsV9VBq22lGhUySzQaDUxOTqLdbmNycnKOsAPRj4I4MDDgKz1J7EaITHsETELyCsU9wzQaDYyOjqJWq0FEUKvVMDo6alkQeCHLQ+ZmueAhJI9Q3DOOFw/fz7miLCyiZGRkBH19fbPS+vr6MlHwEJJH5qVtAEmWRqORCTG3ors9IAvtQYTkFXruJBM0m01s3bp1VtrWrVvRbDZTsoiQfENxJ5mADaqERAvFnaRKq9VCvV63DcGwQZWQYDDmTlKj1WphaGgI09PTltuz0pOHkDxCz52kRrPZtBX2LPXkISSP0HMnqWEXTxcRfpVKSEjouZPU4IdLhMQHxZ2kRpa/mCUk71DcSWpk+YtZQvIOR4UkhJCcwlEhCSGkZFDcCSGkgFDcCSGkgFDcCSGkgFDcCSGkgGSit4yIbAAwdwJNdxYAeD5ic/JG2e8B81/u/APlvgc1VV1otSET4h4UERm36wZUFsp+D5j/cucf4D2wg2EZQggpIBR3QggpIHkX99G0DcgAZb8HzD/hPbAg1zF3Qggh1uTdcyeEEGIBxZ0QQgpI5sVdROaLyD0istr8u5vNfj8RkRdF5K6u9P1E5CERmRCR20WkLxnLo8PHPfi4uc9qEfl4R/p9IrJKRB4xl92Tsz44InKCafeEiCyx2L6D+UwnzGdc79h2hZm+SkQ+kKTdURE0/yJSF5FXO57315O2PQo85P8oEfm1iGwTkTO6tlm+C6VCVTO9ALgawBJzfQmAq2z2OxbABwHc1ZX+XQBnmutfBzCcdp7iuAcA5gN40vy7m7m+m7ntPgCDaefDZ54rAJ4AsD+APgCPAji4a58LAXzdXD8TwO3m+sHm/jsA2M88TyXtPCWY/zqAx9POQwL5rwP4SwC3AjijI932XSjTknnPHcCpAG4x128BcJrVTqp6L4CXOtNERAAcA+B7bsdnHC/34AMA7lHVF1R1E4B7AJyQkH1xcDiACVV9UlVfB3AbjPvQSed9+R6AY81nfiqA21R1i6r+EcCEeb48ESb/RcA1/6o6qaorALS7ji3auxCIPIj7Hqr6jLn+LIA9fBxbBfCiqm4z/18LYO8ojUsIL/dgbwBPdfzfndebzSr653IiAG75mbWP+Yz/BOOZezk264TJPwDsJyK/EZGfich74zY2BsI8wyI8/9DMS9sAABCRpQD2tNjU7PxHVVVECtl3M+Z70FDVdSKyK4DvA/gYjKosKSbPABhQ1Y0i8i4A/09EDlHVzWkbRpIjE+KuqsfZbROR50Rkkao+IyKLAKz3ceqNAN4iIvNMz2YfAOtCmhsLEdyDdQDe1/H/PjBi7VDVdebfl0Tk/8Ko8mZd3NcB2Lfjf6tnN7PPWhGZB+DNMJ65l2OzTuD8qxF43gIAqrpcRJ4A8FYAeZrLMswztH0XykQewjJ3Aphp7f44gDu8Hmj+yJcBmGlJ93V8hvByD+4GcLyI7Gb2pjkewN0iMk9EFgCAiPQCOAXA4wnYHJZfATjI7O3UB6PB8M6ufTrvyxkAfmo+8zsBnGn2JtkPwEEAHk7I7qgInH8RWSgiFQAQkf1h5P/JhOyOCi/5t8PyXYjJzuySdouu2wIjhngvgNUAlgKYb6YPAvhWx373A9gA4FUYMbYPmOn7w3ixJwD8O4Ad0s5TjPfgPDOfEwDONdN2BrAcwAoAKwH8b+Sk5wiAkwD8AUaviaaZ9kUAHzLXdzSf6YT5jPfvOLZpHrcKwIlp5yXJ/AM43XzWjwD4NYAPpp2XmPL/bvNdfwVGjW1lx7Fz3oWyLRx+gBBCCkgewjKEEEJ8QnEnhJACQnEnhJACQnEnhJACQnEnhJACQnEnhJACQnEnhJAC8v8BRev9G9OETLIAAAAASUVORK5CYII=\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABbmUlEQVR4nO3de3wU1f0//tcQIHIxiQmBALsQUdSigNYLxn6iSaECaj/5NKTawAfRWi2IbUBRS71gtIrKp5rUj5dqK7ZfXfwAWcVS8ALuYtCIQEERvAC/cAtJoCBJQAhkc35/rLtmk92dmd2Z2ZnZ1/Px2Edl92Tm7CTd894z7/M+khBCgIiIiMhEuiW6A0RERESdMUAhIiIi02GAQkRERKbDAIWIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHS6J7oDsWhvb8f+/ftx+umnQ5KkRHeHiIiIFBBCoKWlBYMGDUK3btHnSCwZoOzfvx9OpzPR3SAiIqIY7N27Fw6HI2obSwYop59+OgD/G0xLS0twb4iIiEiJ5uZmOJ3O4DgejSUDlMBtnbS0NAYoREREFqMkPYNJskRERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpqMqQHn++ecxatSo4OqZvLw8rFy5Mvh6QUEBJEkKeUyfPj3kGHv27MG1116L3r17o3///rj77rvR1tamzbshIiIiW1C1zNjhcODxxx/H8OHDIYTA3/72NxQVFWHTpk04//zzAQC33norHn744eDP9O7dO/jfPp8P1157LXJycvDRRx+hvr4eN954I3r06IHHHntMo7dEREREVicJIUQ8B8jMzMSCBQtwyy23oKCgABdeeCEqKirCtl25ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5m5ubkZ6ejqamJtZBISIisgg143fMOSg+nw+vv/46jh07hry8vODzr732Gvr164cLLrgAc+fOxbfffht8raamBiNHjgwGJwAwfvx4NDc3Y+vWrRHP1draiubm5pAHERERac/n88Hr9WLRokXwer3w+XwJ6YfqSrJbtmxBXl4eTpw4gb59++KNN97AiBEjAACTJ0/G0KFDMWjQIHz22We499578dVXX8HtdgMAGhoaQoITAMF/NzQ0RDzn/PnzUV5errarREREpILb7UZZWRn27dsXfM7hcKCyshLFxcWG9kX1LZ6TJ09iz549aGpqwtKlS/GXv/wFa9asCQYpHb3//vsYO3YsduzYgbPOOgu33XYbdu/ejXfeeSfY5ttvv0WfPn2wYsUKTJw4Mew5W1tb0draGvx3oJY/b/EQERFpw+12o6SkBJ3DgkBZ+qVLl8YdpOh6i6dnz544++yzcfHFF2P+/PkYPXo0Kisrw7YdM2YMAGDHjh0AgJycHDQ2Noa0Cfw7Jycn4jlTU1ODK4e4/w4REZG2fD4fysrKugQnAILPzZo1y9DbPXHXQWlvbw+Z3eho8+bNAICBAwcCAPLy8rBlyxYcOHAg2Oa9995DWlpa2BkYIiIi0l91dXXIbZ3OhBDYu3cvqqurDeuTqhyUuXPnYuLEiRgyZAhaWlrgcrng9XrxzjvvYOfOnXC5XLjmmmuQlZWFzz77DLNnz8aVV16JUaNGAQCuvvpqjBgxAlOnTsWTTz6JhoYG3H///Zg5cyZSU1N1eYNEREQUXX19vabttKAqQDlw4ABuvPFG1NfXIz09HaNGjcI777yDn/zkJ9i7dy9WrVqFiooKHDt2DE6nE5MmTcL9998f/PmUlBQsX74cM2bMQF5eHvr06YNp06aF1E0hIiIiYwXudGjVTgtx10FJBNZBISIi0o7P50Nubi7q6urC5qFIkgSHw4Ha2lqkpKTEfB5D6qAQERGRPaSkpAQXvARW7QQE/l1RURFXcKIWAxQiIiJCcXExli5disGDB4c873A4NFlirBZv8RAREVGQz+dDdXU16uvrMXDgQOTn52s2c6Jm/FZdSZaIiIjsKyUlBQUFBYnuBm/xEBERkfkwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREpsMAhYiIiEyHAQoRERGZDgMUIiIiMh0GKERERGQ6DFCIiIjIdBigEBERkekwQCEiIiLTYYBCREREptM90R0gIjIzn8+H6upq1NfXY+DAgcjPz0dKSkqiu6W5ZHmfZB0MUIiIInC73SgrK8O+ffuCzzkcDlRWVqK4uDiBPdNWsrxPshbe4iEiCsPtdqOkpCRk0AaAuro6lJSUwO12J6hn2kqW90nWIwkhRKI7oVZzczPS09PR1NSEtLS0RHeHiGzG5/MhNze3y6AdIEkSHA4HamtrLX0bJFneJ5mHmvGbMyhERJ1UV1dHHLQBQAiBvXv3orq62sBeaS9Z3idZEwMUIqJO6uvrNW1nVsnyPsmaGKAQEXUycOBATduZVbK8T7ImBihERJ3k5+fD4XBAkqSwr0uSBKfTifz8fIN7pq1keZ+kzokTwMaNwPHjie0HAxQiok5SUlJQWVkJAF0G78C/KyoqLJ84mizvk5Q5dgzIzQV69QIuucT/37t2Ja4/DFCIiMIoLi7G0qVLMXjw4JDnHQ4Hli5dapv6IMnyPikyIYCbbgL69gV27/7++QMHgBdeSFi3uMyYiCiaZKmwmizvk0L95S/ArbdGfv2ZZ4A77tDufLotM37++ecxatQopKWlIS0tDXl5eVi5cmXw9RMnTmDmzJnIyspC3759MWnSJDQ2NoYcY8+ePbj22mvRu3dv9O/fH3fffTfa2trUdIOIyDApKSkoKChAaWkpCgoKbDtoJ8v7JL9PPgEkKXpw0rcvMGOGcX3qTFWA4nA48Pjjj2Pjxo3YsGEDfvzjH6OoqAhbt24FAMyePRv/+Mc/sGTJEqxZswb79+8PmR70+Xy49tprcfLkSXz00Uf429/+hldeeQUPPvigtu+KiIiIujh40B+YjBkTvd0f/wi0tACJjFPjvsWTmZmJBQsWoKSkBNnZ2XC5XCgpKQEAfPnll/jBD36AmpoaXH755Vi5ciWuu+467N+/HwMGDAAAvPDCC7j33ntx8OBB9OzZU9E5eYuHiIhIubY24OqrAY8neruiIsDtBrrplKFqSCVZn8+H119/HceOHUNeXh42btyIU6dOYdy4ccE25513HoYMGYKamhoAQE1NDUaOHBkMTgBg/PjxaG5uDs7CEBERkXbKy4EePaIHJ+npwOHDwJtv6hecqKV6N+MtW7YgLy8PJ06cQN++ffHGG29gxIgR2Lx5M3r27ImMjIyQ9gMGDEBDQwMAoKGhISQ4CbweeC2S1tZWtLa2Bv/d3NystttEZAJMxCQyzooVwLXXyrf79FNg1Cj9+6OW6gDl3HPPxebNm9HU1ISlS5di2rRpWLNmjR59C5o/fz7Ky8t1PQcR6cvtdqOsrCxk7xeHw4HKykouZf0OAzjSwv/3/wFnnSXfzuUCSkv170+sVE/k9OzZE2effTYuvvhizJ8/H6NHj0ZlZSVycnJw8uRJHDlyJKR9Y2MjcnJyAAA5OTldVvUE/h1oE87cuXPR1NQUfOzdu1dtt4kogdxuN0pKSrpsTFdXV4eSkhK43e4E9cw83G43cnNzUVhYiMmTJ6OwsBC5ubm8NqTYt98CZ58tH5z85jdAe7u5gxNAg0Jt7e3taG1txcUXX4wePXpg9erVwde++uor7NmzB3l5eQCAvLw8bNmyBQcOHAi2ee+995CWloYRI0ZEPEdqampwaXPgQUTW4PP5UFZWhnD5+IHnZs2aBZ/PZ3TXTIMBHMVDCOBXvwL69AF27ozcbuRIf/n6P/3Jv5LH7FSt4pk7dy4mTpyIIUOGoKWlBS6XC0888QTeeecd/OQnP8GMGTOwYsUKvPLKK0hLS8NvfvMbAMBHH30EwP9BdeGFF2LQoEF48skn0dDQgKlTp+JXv/oVHnvsMcWd5ioeSiROw6vj9XpRWFgo287j8aCgoED/DpmMz+dDbm5ul+AkQJIkOBwO1NbW8u+Muli4EPjlL+Xb7d4NDBmif3/kqBm/VeWgHDhwADfeeCPq6+uRnp6OUaNGBYMTAHj66afRrVs3TJo0Ca2trRg/fjyee+654M+npKRg+fLlmDFjBvLy8tCnTx9MmzYNDz/8cAxvk8h4zKNQr76+XtN2dlNdXR0xOAH8s0x79+5FdXV1UgZwFN7Gjf79cuSsWgWMHat/f/SgKkD561//GvX10047Dc8++yyeffbZiG2GDh2KFStWqDktkSkEpuE7TzoGpuG5b0l4AwcO1LSd3TCAIzX+/W9g4EB/XZNonngCuOceY/qkF5OsdiYyN+ZRxC4/Px8Oh6PLbrkBkiTB6XQiPz/f4J6ZAwM4UiJQaC07O3pwcu21/tetHpwADFCIFFEzDU+hUlJSUFlZCQBdgpTAvysqKpI2vyI/P7/LTsIdJXsAR8Cjj/oLrb33XuQ2ffoAhw4By5cntjy9lhigECnAafj4FBcXY+nSpV0GYofDkfS3xpYtW4YTJ06EfY0BXHJ75x3/apv774/ebtMm4OhRIDPTmH4ZRXWhNqJkxGn4+BUXF6OoqIgroDqIlNcUkJmZiRdffDGpA7hkVFsLDBsm3+7//T/gv/9b//4kStybBSYClxmT0QJLQevq6sIOJlwKSmrJLS8G/DNMu3bt4t9Ukvj2W+DCC4Ht26O3mzEDePZZa9Qy6cyQzQKJkgnzKEhrcnlNALBv3z7mNSUBIYDp0/15JNGCkx/8wB/EPPecNYMTtRigECnEPArSEvOaCAD+/nf/7sF//nP0drW1wLZtQK9exvTLDJiDQqSC2jwKVp2lSJjXlNw2bQJ++EP5du++C3xXCzXpMAeFSCesOkvRMK8pOR06BAweDLS2Rm/36KPA739vTJ+MxBwUogSz0+ZvPp8PXq8XixYtgtfrZTE6jTCvKbn4fMCECUC/ftGDk/Hj/YXW7BicqMUAhUhjdqo663a7kZubi8LCQkyePBmFhYXIzc21VIBlZsxrSg7z5wPdu/vrmkSSmuovY//22/YptBYv3uIh0phddu+NVKMj8O2eA6h2zJCrZIY+2M2qVcryRzZuVJaPYge67WZMRPLssDpDbhZIkiTMmjULRUVFHMQ0kJKSktBglflS2tq9G8jNlW+3cCFw001698a6eIuHSGNGrs7QKz+Eew8lDzvlSyXa8ePAiBHywcmttwLt7QxO5DBAIdKYUbv36pkfYodZIJJnp3ypRBICuP12oHdv4IsvIrcbPhw4dgx48cXkKLQWLwYoRBozYnWG3t96WaMjMjutauJMWfxcLn+hteefj95u507g66/9QQwpwwCFSAd6rs4w4luvUbNAVmO3VU1azJTZKWBT49NP/bMgU6ZEb7dypX+GRcnmfxSKAQqRToqLi7Fr1y54PB64XC54PB7U1tbGnXSo97fewGqOwAoe1ujws2OuRrwzZXYL2JQ4fBjo29e/qV80jzziD0wmTDCkW/YkLKipqUkAEE1NTYnuCpHhXC6XACD7cLlcqo9dVVUlHA5HyHFSUlJC/u10OkVVVZUO78y82traulyXjg9JkoTT6RRtbW2J7qoqgfclSZLq91VVVRX25yRJEpIk2e5vpK1NiGuvFcIfdkR+/OQnQpw6lejempea8ZszKEQWo1d+SKQZgsCU/axZszSbBbIau+ZqxJovlWzJtQsW+Aut/fOfkdukpAAHDvj3zunOAh6aYIBCZDF65IdEG3ACx6yqqkra4l12XtUUS76UXQO2zt5/359ncs890dutX+8vT5+dbUy/kgXjPCKLCXzrLSkpgSRJIUFFrPkhagYcM1e/1YvdVzWp3aVbq4DNrNVr9+wBhg6Vb/fXvwK//KX+/UlWnEEhsiCtVwnZeYZAC8mwqilQzba0tBQFBQVRAwUtAjYzJtieOAGMGiUfnNxyi7/QGoMTfTFAIbIoLVcJ2X2GIF7RcjUA/wzTH//4R1N8+zdCvAGb2VZECQH89rdAr17Ali2R2511FnD0KPCXv7DQmhG4WSARwefzITc3F3V1dWHzUCRJgsPhQG1tbdIMwuGE27MmINn2rgkEGQDC3maMNJMX+FuLdEvR6L+1118HSkvl2+3Y4Q9QKD5qxm/OoBCRIdVv7aC4uBhPP/102NesXA8lFrHeZjRLgu2WLf5ZELngZPly/wwLgxPjMUAhIgDfDziDBg0KeX7w4MEhA06yVg4F/O999uzZYV+z4/JaObHcZkx0vtORI0BGhj/XJJp58/yBybXX6tINUoCreIgoRKS8AiD8LY5kurXB1U5dBZJrlUpUvlN7O1BcDCxbFr1dYSFrmZgFZ1CICIB84uI999xjqsTGREj0t38ziHcGLRErop5+2l9ITS44aWz01z5hcGIODFCISLYyqBACTz31VNJUDo0k2Vc7abE02Mh8J6/Xn2dy553R261b57+d079/3KckDTFAISLZWxcAogYfdqkcKicZ6qFEouXSYD13+waAffv8gUlhYfR2L77oD0wuuyyu05FOGKAQkWa3JOx8awNI3tVOeuy9o8du362twA9/CDid0dtNm+bPSbn11phPRQbgnTYiE0lU6W+tbknY9dZGR4Fv/+GShSsqKmyZLKxXcrDaBNto7rzTn2sSzdChwOefA337qj++Wcvy2xkDFCKTCLdCJjMzE2VlZbjvvvt0/TAM3LqQu80TSaC4lh1vbYSjdu8aqzNzcvCSJcD118u3+/prYPjw2M6R7KvXEkZYUFNTkwAgmpqaEt0VIiGEEG1tbcLj8QiXyyU8Ho9oa2tT9fNVVVVCkiQBIOwjKytLVFVV6dT77/sQ6fzRHpIkCUmSdO8fyYv37zASj8ej6G/B4/Focj4lPv9cCH8GSfTHW2/Fd55I/9/k331s1IzfDFCI4lRVVSUcDkfIh5fD4VD8wdXW1tbl5yM99P4wLC8vVx2gOJ1OfkibQLx/h9EE/kYjBdGSJAmn06lZQBTNN98IccYZ8oHJ/ffHfy65/28a+b7tggEKkUG0+Hal9NtpIBjQ88NQyQeyw+EQq1at0vxbOsXOiG/5gXN0Po9RMwk+nxCTJskHJvn5Qpw8qc05zThzZHVqxm+u4iGKkVYrG9Tct9d7KW9glYokSRFXqVRWVmLs2LEoLS1FQUGBbfMurEKPFTbh6L00OJo//clfaK2qKnq7hgbggw+AHj20Oa+Zc2+SAQMUohhptemZ2pUven8YJnIgIvWM3HxPj6XB0VRX++uZlJVFb/fRR/75kwEDtD1/shfmSzSu4iGKkVbfrtSuoDHiwzDZVqlYmdHf8rVcGhxJXR3gcMi3e/55YPp0/foR+P9mXV1d2BmqZFu9ZjTOoBDFSKtvVx1vq0RjdJXSwEDEWznmZqdv+SdPApdeKh+cTJniL7SmZ3ACJG9hPrNggEIUIy3Lngduq2RlZUU8FsAPQ+rKLuX3Z80CUlOBDRsitxk8GGhuBl591X/rxwi85Zk4DFCIYqT1t6vi4mI0NjaivLwcmZmZIa/xw5Aisfq3/D/8wR9sfPcWIvryS/8eO6efbky/OjI694a+o2Z50GOPPSYuueQS0bdvX5GdnS2KiorEl19+GdLmqquu6rIE69e//nVIm927d4trrrlG9OrVS2RnZ4s5c+aIU6dOKe4HlxmTmYSrPxFvbRC9Cm6Rfenxd6inNWuUFVp7881E95S0pGb8loQIk/kTwYQJE/CLX/wCl156Kdra2vD73/8en3/+ObZt24Y+ffoAAAoKCnDOOefg4YcfDv5c7969kZaWBsC/JO7CCy9ETk4OFixYgPr6etx444249dZb8dhjjynqR3NzM9LT09HU1BQ8LlEicZ8OMgMr/B0ePAj07y/fbu5cQOGQQBaiZvxWFaB0dvDgQfTv3x9r1qzBlVdeCcAfoFx44YWoqKgI+zMrV67Eddddh/3792PAd2vCXnjhBdx77704ePAgevbsKXteBihERNbS3u6vT9LeHr3doEFAbS2gYCggC1IzfseVg9LU1AQAXe6Xv/baa+jXrx8uuOACzJ07F99++23wtZqaGowcOTIYnADA+PHj0dzcjK1bt4Y9T2trK5qbm0MeRERkDTfd5C+0JhecfP21f4kxgxMC4qiD0t7ejlmzZuFHP/oRLrjgguDzkydPxtChQzFo0CB89tlnuPfee/HVV1/B7XYDABoaGkKCEwDBfzc0NIQ91/z581FeXh5rV4mIKAFefx0oLVXW7oYb9O8PWUvMAcrMmTPx+eefY+3atSHP33bbbcH/HjlyJAYOHIixY8di586dOOuss2I619y5c3HnnXcG/93c3Ayn0xlbx4mISFdffw2ce658u5tuAhYu1L07ZFExBSh33HEHli9fjg8++AAOmYo6Y8aMAQDs2LEDZ511FnJycvDJJ5+EtGlsbAQA5OTkhD1GamoqUlNTY+kqEZGurJCYapQTJ4BeveTb9ejhb9uNhS4oClV/HkII3HHHHXjjjTfw/vvv48wzz5T9mc2bNwP4vophXl4etmzZggMHDgTbvPfee0hLS8OIESPUdIeIKKHcbjdyc3NRWFiIyZMno7CwEP3798fDDz8c9+Z8VnPZZcqCk4MH/RVjGZyQHFV/IjNnzsSrr74Kl8uF008/HQ0NDWhoaMDx48cBADt37sQjjzyCjRs3YteuXXjrrbdw44034sorr8SoUaMAAFdffTVGjBiBqVOn4tNPP8U777yD+++/HzNnzuQsCRFZhtvtRklJSZc9lA4fPox58+ZhwIABwdw7O3v8cX+htfXro7d75JE1EALo18+YfpENqCmwgk4F2AKPhQsXCiGE2LNnj7jyyitFZmamSE1NFWeffba4++67uxRk2bVrl5g4caLo1auX6Nevn7jrrrtYqI2ILKOtra1LUbRwD0mSTFsoLV5r1yortAb8XkiSJJxOJwsOkn6F2syCdVCIKJG8Xi8KCwsVtXU6naitrbVNXsqhQ0pnQf4F4OKQZzwej+47IZO5GVYHhYgoGdXX1ytuu3fvXlRXV+vYG2O0t/s381MWnPRC5+AEUHfdiBigEBGpFEj6V8rqA/Mtt/gLrZ08KdfyXAASgBNhX1V73Si5MUAhIlIpPz9ftsRCR1YdmBcv9ifAvvxy9HZ//3s7HA4nJGl72NclSYLT6UR+fr4OvSS7YoBCRKRSSkoKKisrZdtZdWDeudMfmMhVd50yxZ8GO3Vqt+D1kCQppE3g3xUVFbbJwyFjMEAhshmfzwev14tFixbB6/UmXT0OoxQXF6OqqgpZWVlhX7fiwNza6g9Mzj5bvq3PB7z66vf/Li4uxtKlSzF48OCQdg6HA0uXLkVxcbHGvSW74yoeIhtxu90oKysLqc3hcDhQWVnJAUInPp8Pjz76KCorK3H48OHg806nExUVFZa57ldcAdTUyLdrbAT694/8OivrUjRqxm8GKEQ2ESgc1vn/0oFv8vwWqy+rDswLFgD33CPfzuMBuEI4dlb9+9AaAxSiJOPz+ZCbm9ulqmmAJElwOBy2qscRDQcDeR9/DOTlybd76CFg3jzdu2NrnNn8HuugECWZ6urqiMEJ4N9Hyy71OOSE2x8nNzc3KcrOK3H4sD/PRC44ueACfwIsg5P4RNoSoa6uDiUlJfy7jIIBCpENKK2zYfV6HHJiGQySJalYCOD004EIOb0hjh0DtmzRv0925/P5UFZW1uW2K4Dgc7NmzbLt31y8GKAQmZDaQVNpnQ2r1uNQIpbBIFlmW6ZP9+8efPRo9HZbt/oDmd69jemX3XFmMz4MUIhMJpZBM1A4rHMNigCr1uNQQ+1gkAxT7263/3bOn/8cvd0rr/gDkxEjDOlW0uDMZnwYoBCZSKyDZsfCYclaKEvNYGD3qffaWn9gMmlS9HbXX+8PTKZNM6ZfyYYzm/FhgEJkEvEOmsleKEvNYGDXqfeTJ/2BybBh8m3b2oD/+z/9+5TMOLMZHwYoRCahxaBZXFyMXbt2wePxwOVywePxoLa21vbBCaBuMLDj1PtVV/l3G5ZTX++fNbHxZJppcGYzPgxQiExCq0EzJSUFBQUFKC0tRUFBQdJ8+KkZDOw09V5R4Z81+eCD6O1Wr/YHJjk5hnSLvpPsM5vxYIBCZBJ2GjQTRelgYIep9/Xr/YHJ7NnR2z3wgD8w+fGPjekXdZXMM5vxYCVZIpMIVIOtq6sLm4eSbNVg46GkkmwgIRlAyPU2+9YAR44AZ5wh3+7cc4Evv9S9O0SqsJIskQXxfrV2lNzmstrUuxD+ImtKgpOjRxmckPVxBoXIZMLt22G1nXGtxAr79vzmN8D//q98uy1b/CXqicyKmwUSWZwVBk0jJev1eOstoKhIvt3LLwM336x/f4jipWb87m5Qn4hIhcAtCkrOnWB37wZyc+XbFRcDVVW6d4coIRigEJFpBRJZO0/0BirrmjFXJB4nTyqrZQL4C60lwSQSJTEmyRKRKdm9HH1nP/mJsuCkro6F1ig5MEAhIlOyazn6zv73f/31TFatit7u3Xf9gcmgQcb0iyjReIuHiEzJKuXoY03g3bgRuOQS+ePPnQs89pgGHSWyGAYoFpSsKxoouVihsm4sCbxNTUBGhvyxhw0Dduzwz64QJSMuM7aYZFzRQMnJ7JV1IyXwRqpEG9gH58AB+WO3tAB9+2raXSJTYCVZmwp8IHa+Lx9Y0eB2uxPUM7Iyn88Hr9eLRYsWwev1mibp1MyVddUm8N55J9Ctm3xw8umn/kCGwQkRAxTLSLYVDWQMt9uN3NxcFBYWYvLkySgsLERubq5pgl2zlqNXmsD75JNbIUnA009HP96LL/oDk1GjNO4okYXxFo9FeL1eFBYWyrbzeDws8EWKqL1FkUhmy7tatGgRJk+eHKWFA8Be2eP89Kf+arFEyYKVZG3IKisaKPGUDOZyM3KSJGHWrFkoKioyRQK22SrrRk7M7Q7glKJjnDoFdOcnMFFEvMVjEVZY0UCJp/SWTbLUGNFLfn4+HA5Hp9yYf0JJcLJ3r/92DoMTougYoFhE+A/E70mSBKfTifz8fIN7RmahJok60TNyZk3MVapjAi8wHYAAcE3Un1m50h+YOBx6947IHhigWISZVzRQ4qlNok7kjJzZE3OVGjasGEK0A3g+ars5c/yByYQJxvSLyC6YJGsx4eqgOJ1OVFRUmCahUQmzJT3GwkzvQW0SdaJqjFgpMTeS5mYgPV2+3ZAhwK5dLLRG1JGq8VtYUFNTkwAgmpqaEt2VhGhraxMej0e4XC7h8XhEW1tborukSlVVlXA4HAL+eXEBQDgcDlFVVZXorilmtvfgcrlC+hLp4XK5Qt6DJElCkqSQNoHntH4vbW1tXa5Z5/M6nU7T/j23twsxeLAQ/vmQ6I8k/WgikqVm/GaAQoYKDIrhBic9BkU9mPE9eDweRQGKx+Pp8l46Bw1Op1OX9xBrH81gzhxlgcm//pXonhKZm5rxm7d4yDCB2wqRVo8kunS5EmZ9D/HcsjHqVpV87RA/l8uF0tJSzc8fi7ffBiZOlG/33HPAjBn694fI6ljqnkzJDktbzfoe4kmiDtQYKS0tRUFBgS7Bic/nQ2Njo6K2ZlgqX1fnzx2RC04mTPDPnTA4IdIeAxQyTKKXtmph2bJlitol4j2YtSx8YNXO7Nmzo7Yzw1L5tjZ/YKJkKfDJk/6lw0SkD5YKIsMYvbRV61sXbrcbFRUVitomahaguLgYRUVFplldFGnVTmdmWCpfVKSs7PyePYDTqX9/zMZMq9YoSahJbnnsscfEJZdcIvr27Suys7NFUVGR+PLLL0PaHD9+XNx+++0iMzNT9OnTRxQXF4uGhoaQNrt37xbXXHON6NWrl8jOzhZz5swRp06dUtwPJslaU2AVR7gEU2i4iqOtrU2Ul5eLzMxMzVbZyK1A0fo92IHSawYdE3OVeOklZQmwy5cnpHumYLZVa2Rduq3iGT9+vFi4cKH4/PPPxebNm8U111wjhgwZIo4ePRpsM336dOF0OsXq1avFhg0bxOWXXy6uuOKK4OttbW3iggsuEOPGjRObNm0SK1asEP369RNz587V5Q2Suei9tLWqqkpkZWVFDB5iPYfSFSgA+KH9HaXX7Omnn1Yd0Gmx1P7TT5UFJrNmqT60rZhx1RpZl2HLjA8cOCAAiDVr1gghhDhy5Ijo0aOHWLJkSbDNF198IQCImpoaIYQQK1asEN26dQuZVXn++edFWlqaaG1tVXReBijWptfS1qqqKt1mOJTWGZmV7KNZB7HUZlEi3m/zLS3KApOcHH/tk2Rm9do1ZD5qxu+4kmSbmpoAAJmZmQCAjRs34tSpUxg3blywzXnnnYchQ4agpqYGAFBTU4ORI0diwIABwTbjx49Hc3Mztm7dGvY8ra2taG5uDnmQdRUXF2PXrl3weDxwuVzweDyora2NK4kzUOpdjohxlY3SnJKioiJVx7UzPXKO1Ow31JkQwLBhwOmny5/nyBGgvp5VYM26ao2SQ8wBSnt7O2bNmoUf/ehHuOCCCwAADQ0N6NmzJzIyMkLaDhgwAA0NDcE2HYOTwOuB18KZP38+0tPTgw9nMmao2YzWS1vlPkg7U7vKhps1qqf1NVO731BHc+cC3boBtbXRz7Fhgz+QUVLKPhnYYeUdWVfMAcrMmTPx+eef4/XXX9eyP2HNnTsXTU1NwcfevXt1PydZi9oPSLWrbLhZo3paXzOl3+afeeaZYJDy7rv+WZDHH49+7Gee8QcmF1+sqCtJI5GbShLFFKDccccdWL58OTweDxwdCgbk5OTg5MmTOHLkSEj7xsZG5OTkBNt0LtgU+HegTWepqalIS0sLeRB1pOYDMtaZDrPWGTEzLa+Z0iB09uzZcDovgyQB48dHbzt2rD8wueMOxd1IKpw5pIRSk9zS3t4uZs6cKQYNGiS+/vrrLq8HkmSXLl0afO7LL78MmyTb2NgYbPPnP/9ZpKWliRMnTijqB5NkqTO5JczokNQXbzKu1TdrTAQtrpmyVUHdFCXAAkIozMlPekZvKkn2ptsqnhkzZoj09HTh9XpFfX198PHtt98G20yfPl0MGTJEvP/++2LDhg0iLy9P5OXlBV8PLDO++uqrxebNm8Xbb78tsrOzucyY4hbpgzTwyMrK4oephckHoUsVBSa7diX6nViPkZtKkr3pFqBE+taycOHCYJtAobYzzjhD9O7dW/zsZz8T9fX1IcfZtWuXmDhxoujVq5fo16+fuOuuu1iojTQR7oM0MzNTlJeX22KmI9lnb8IHoTcrCkyWLUt0760t2f/2SBvczZiSml1LcrvdbpSVlYUkijocDlRWViZV/sv31wEA5BPmf/KTr/Huu+fo3i8ikqdm/GaAQmQBkfa0CSQvJlOSbmsrMGaMwKefyhUpOQSgHzweDwoKCgzoGRHJUTN+czdjIpOLp/6H3cyaBZx2GhQEJxmQpGyuMCGyMAYoRCbHap7A//2fv57Jd2VVorgUgARJ8lebZm0aIutigEJkcslczXPLFn9g8otfRG+XlTUNgARgAwDWpiGyg+6J7gBRR3ZNcI1HMlbzPHIEyM0FvtvuK6J584CHHgJ8vpdRXX0z/26IbIRJsmQaXKUSns/nQ25uLurq6sLmoUiSBIfDgdraWssPyu3twKRJwJtvRm931VXAe+8BPXoY0i0i0giTZMly4tml1u6SZR+gigogJUU+OGlsBLxeBidEdscAhRKOq1TkmXkfIJ/PB6/Xi0WLFsHr9ar+Pa1Z488zmT07ert16/wl1/r3j6OzRGQZvMVDCef1elFYWCjbjvUszJejE89tuX37AKdT/hwvvgjcemu8PSUiM1AzfjNJlhIumVepqJWSkmKaIC1S8bjAbblIMzutrcAVVwD/+lf040+dCvztb/7ZFSJKPrzFQwmXjKtUrC7W23Jz5vgLrUULTpxOoKUF+PvfGZwQJTPOoFDC5efnw+FwyK5S6VwR1Cy3O8zSDyOpKR5XUFCApUuBn/9c/rhffQWcw21ziAicQSETiGWVitvtRm5uLgoLCzF58mQUFhYiNzfX8NU+ZumH0ZTeblu//hgkST44eestfwKslYKTeJODiUiGxjspG0LNds1kHVVVVcLhcAgAwYfT6RRVVVVd2kmSFNIOgJAkSUiS1KW9nv01Qz8SwePxdHnfoY80ARwU/rAj8uO++xL9TmIT7m/V4XDY+ndOpAU14zdX8ZCpyN0uCRQti3R7waiiZWbpR6JELh4nAXgdwPVRfz4/H1i92pq1TLizNFHs1IzfDFDIUsyyJNks/UikwEANBBJj7wDwjOzPNTQAAwbo2ze98oKSPTAlihcryZJtmWVJsln6kUiB4nH9+v0X/Hc5ogcnH33kv7Gjd3CiZ14Qd5YmMg4DFLIUsyxJNks/Emn/fmDSpGIcPBh94H/+eX9gkpenf5/03jKBgSmRcRigkKVcccUV6NevX8TXJUmC0+nssiRZa4Gl0Z1XHRndj0Q4eRK47DKgU9X9LqZM8W/+N326MStejNgygYEpkXEYoJBluN1unHXWWfj3v/8d9vV4N85TM4gmywZ+nd1zD5CaCqxfH7nN4MFAczPw6qv+QmtGLcU24vZLMgemRIbTaymRnrjM2K+trU14PB7hcrmEx+MRbW1tie6SbiIt6e34CCxJjuW6xLpsVOnSaKurqoq+XDjw+PLLzj9n3FJsl8sls/TZ/3C5XHGdJ/CeOr+vZFheThQvNeM3AxSLSqY6DG1tbV3ea+dHdna2aG1tjem6xDuI2jlQ/OILZYHJG290/Vm535skScLpdGp2veRrs/gfHo8n7nMlS2BKpDUGKDaXbAXClA485eXlqq+LFoOoHQOUpiYhBgyQD0x+97vIxzAyYBDi+99lpJk2rQMiO/7eifTGAMXGjP5WagZKp+4zMzNVX5d4B1G7zWS1twtxww3ygUlenhCtrdGPZdQtl454+4XI3NSM30yStZhkrMOgdEXE4cOHI74W6brEs2xU7yWtRnv2WaBbN+D//i96u/37/TVNevaM3i4RK14CtVkGd1pi5HA4WOGVyGIYoFhMMtZhULJyIisrS9GxOl+X/v37K/q5zu2MWNJqlA8/9K+2ueOO6O3WrvXPnyiNJxK14qW4uBi7du2Cx+OBy+WCx+NBbW0tgxMii2GAYjHJWIdByZLe3/72t4qOpdV1scNMVkODPzD5j/+I3u6ZZ/yByY9+pO74iVyKnZKSgoKCApSWlqKgoMB2y72JkgEDFItJ1joMclP39913X0zX5cCBA4rO37mdlWeyTp0CrrhCfibkhhsAn09+ZiUa3nIholh1T3QHSJ3At9KSkhJIkhRyi8HOBcIA/2BXVFQUcRO4WK5LrDNSVp3J+v3vgfnzo7cZMAD4+mtAq3045X5vZqHXBoNEFCM9s3X1ksyreAJiqcOQDMsi1V6XWJemGr2kNV5vvqmsnsm2bYnuaWLYbTUWkVlxmXGSUBNwJNMHsNpALNalqVZY0vrVV8oCk6VLE93TxEm2ukJEicQAhULwA1herJVBzVpRtLlZiMGD5QOTOXMS2s2ES8a6QkSJpGb8loQIs07S5Jqbm5Geno6mpiakaXWj3KZ8Ph9yc3MjrjiRJAkOhwO1tbVJf7891hwEM+UuCAFMnQq89lr0dpde6l82LFfLxO68Xi8KCwtl23k8HhQUFOjfISKbUzN+M0nWpLQa9NQsh032D+DA0lSjfk5rf/4zMH26fLu6OmDQIP37YwVWXo1FZHcMUEzI7XajrKwsJLBwOByorKxUvSyTH8D29/HHQF6efLsPPgBstvo8blZdjUWUDFgHxWS0Lp/OD2D7amz0F1qTC04qKvy3fhicdJWsdYWIrIABionoUT6dH8D2c+oUcOWVQE5O9HaTJvkLrZWVGdMvK0pktVsiio4BionoUT6dH8D28sAD/sTWaH8CWVnAkSPA0qX+zf8oOla7JTIn5qCYiNI8kLq6Oni9XsUJtIEP4HB5LRUVFfwAtoDly4Gf/lS+3eefA+efr39/7MYq1W6JkgmXGZuI0iWP2dnZOHjwYPDfShNozbQcVg92fH/btwPnnCPfbvFi4Oc/178/RETxUDN+M0AxkUDNkrq6urB5KJEEbtUk83S0liufzODoUeCCC4Ddu6O3u/NO4I9/DH3OjoGaFfC6E8lTNX7rVS1OT3auJBupfLrcI5krXtqpUm57uxDTpslXgL34YiFOnOj688m0pYGZ8LoTKaNrqfs1a9aI6667TgwcOFAAEG+88UbI69OmTesyUIwfPz6kzaFDh8TkyZPF6aefLtLT08Uvf/lL0dLSorgPdg5QhAj/YZedna0oUPF4PInuvqGUlCp3OBxi1apVsnvzJHozxZdeUrZvzt694X/eioFaoq+5Fqx43YkSRdcAZcWKFeK+++4Tbrc7YoAyYcIEUV9fH3wcPnw4pM2ECRPE6NGjxccffyyqq6vF2WefLUpLSxX3we4BihBdP7hfffVVRQGKy+VKdNcN5fF4VM00Rfpmm8hvwOvWKQtMvN7Ix7DinjJ2mHWw4nUnSiTDNguMFKAUFRVF/Jlt27YJAGL9+vXB51auXCkkSRJ1dXWKzpsMAUpnSgfiZJtBcblcqgOUzt9sE/UNuLFRWWDy1FPyx7La34ddZh2sdt2JEk3N+K1LlQSv14v+/fvj3HPPxYwZM3Do0KHgazU1NcjIyMAll1wSfG7cuHHo1q0b1q1bp0d3bIEF18KLpQKu6FD07uTJk5oXx5PT1gYUFAADBkRv97Of+QutzZ4tf0wrbWmgR0HCRLHSdSeyGs0DlAkTJuDvf/87Vq9ejSeeeAJr1qzBxIkTgx82DQ0N6N+/f8jPdO/eHZmZmWhoaAh7zNbWVjQ3N4c8kg0LroUnF7hFIr4revfcc89pXhwvmoceAnr0ANasidwmIwP45hvA7VZeaM1KWxroUZAwUax03YmsRvMA5Re/+AX+8z//EyNHjsR//dd/Yfny5Vi/fj28Xm/Mx5w/fz7S09ODD6fTqV2HLYQVL7uKFrgpsXPnTkXt4v0GvGKFf9+c8vLo7T77zB+cZGSoO76VZtjsNOtgpetOZDW6F8IeNmwY+vXrhx07dgAAcnJycODAgZA2bW1tOHz4MHIibC4yd+5cNDU1BR979+7Vu9umVVxcjF27dsHj8cDlcsHj8aC2tjYpg5OASIGbEmeddZaidrF+A9650x+YXHtt9HaLFvkzTkaOjOk0lpphs9Osg5WuO5HlxJPsgjBJsp3t3btXSJIkli1bJoT4Pkl2w4YNwTbvvPMOk2Qpbh1XPq1atSrq6goAwul0itbWVuFwOCLWnYl1FcbRo0KceaZ8AmxZmbbXINLKmPLyctMs5Q2sfNH6midSuOvudDotk+xLZBRdV/G0tLSITZs2iU2bNgkA4qmnnhKbNm0Su3fvFi0tLWLOnDmipqZG1NbWilWrVokf/vCHYvjw4eJEh6pSEyZMEBdddJFYt26dWLt2rRg+fDiXGZPm7r777qgByt133y2EiFwcL5YVJe3tQtx8s3xgMnq0EMeP6/O+OwZq5eXlYvDgwSHva/DgwQkPWLS85mZhh5ouRHrTNUCJtKxu2rRp4ttvvxVXX321yM7OFj169BBDhw4Vt956q2hoaAg5xqFDh0Rpaano27evSEtLEzfffDMLtZGm5OpTBL7hBgYRLb4Bv/yysmXDe/bo9a5DRVrK2/mRqNojesw6MEggMjc14zf34iFTindfE6UbL3o8HhQUFMR1zg0bgEsvle/T6tXAj38s304LgX2doq2WCUjkXk5a7l9jt/2YiOyIe/GQpWlRYVRpAbd4Ku8eOCBESor8jMmCBTGfImZqK+xaMe+jI7sUfiOyu4QXaiP78/l88Hq9WLRoEbxer2ZFtdxuN0pKSrp886+rq0NJSQncbrei4+i5UqStDRg3Dujf319ILZKf/tTfds4c1aeQJXf91S7RFRaqPdKZnQq/EVEHekdLeuAMSmLptYeKlvua6LVS5JFH5GdMTj9diE7bT2lKyfWPZY8ixDmjlCgsN09kHZxBId1oNcMRjpYVRrWuT/HOO/56Jg88EL3d5s1AczNwxhmKDqua0usfa4VdK9Qe6czowm96zR4SUSgGKKSY3lPpWg80WlTera31ByYTJkRv9+qr/vmT0aMVdS0maq6/2gq7Vq54amThN7fbjdzcXBQWFmLy5MkoLCxEbm5uXIE5EUWg72SOPniLRxtql2TqPZWu1/FjWXp67JgQw4fL386ZOdNf+8QIsVyfcLeDOj+snkhqVOE3JuISxU/XOihmwAAlfrHkkei9MsYMFUbb24W47Tb5wOT884X49lvduhFWrNe/c+E2O1Y81bvwm5b5UUTJjAEKRRXrN0EjkhETWWH0b39TVmht1y7duhCVVtffrsXM9Cw3z0RcIm0wQKGI4vkmaORUupHf8v/1L2WBybvv6nJ6xcwww2R2egVfRtTVIUoGasbv7qCkomalTKDCakAg8bKkpASSJIUka2q5c2txcTGKioo0qzDaWaB66ddfH8Idd/wMp05FzxWfPx/43e80OXVcjLr+VpaSktLl71YLRu/ArGWFXSLL0jta0gNnUGKnxTdBK+/cWlVVJQYPHiKAlbIzJhMnCmHGyQgrX3+rMnL2Sq86Q0RmwL14KKJY9qgJx4rf8NxuNyZN2gDgsajtevUC9u4FsrKM6VcsrHj9jaDndQnUoAEQdvZKi72MAufo/LGcyP2SiLTEvXgoomTNY1i5sk1Rnsn69fZ638nEiJkHPWevuFKIkgEryVJEWldYNbtdu/yF1iZOlHs/UwFIOHrUenvRdJSsVU71rHDcUXFxMXbt2gWPxwOXywWPx4Pa2lpNZjW0rKRMZAcMUJKQFhVWze74cWDECODMM+VaPgdAAvAqAO3KoSdCslY5NXqzwEAibmlpKQoKCjQL5o0u2U9kdgxQkpSe3wQTSQjg9tuB3r2BL76I1vJLAL0AzAx51op70QDGzSCYkV1mHoxeKURkdlxmnMT0WpKZKK++CkydqqTlmQB2hTwjSRIcDocl96KRm0GQJAmzZs1CUVGRbW7ddWSXmYfABo91dXVhf5dW/hsligVnUMjyNm/255nIBScPPLAWktQNkrQ75Hmr597YZQYhVnaZeUi2/DAiOQxQyLIOH/bfyrnooujtHn3Uf+vn4Yf/w5a5N4meQUh0Ym5g5iHSrs1W2qk5GfLDiJTiLR6yHJ8PKCoC/vnP6O2uvhpYsQLo+IVT7yq1iZDIGQS3242ysrKQGRyHw4HKykrDBlO7Vdi1498oUSxYqI0sZcEC4J57orfp0QPYvx/o18+YPiWaz+dDbm6ubO5CbW2tpoOc2YqKhQuWnE4nKioqOPNAZBJqxm8GKGQJq1cD48bJt9uwAbj4Yv37YzZGVDntKBAURcp90SsoUtIvzjwQmZea8Zs5KGRqe/b4E2DlgpOFC/15JskYnADG5y6YNTFXrxolRGQ85qCQKZ04AVx6KfD559HbFRbuwAMP7MOVV+YDSO7ByMjchUQn5hKR/TFAIVMRAigrA555Jnq77t1r0dZ2Pjye4/B4jE/MNCujatvYZWkvEZkXc1DINBYtAiZPVtLybAA7Q54x+26vdsuNSFRiLhFZG3NQyFI++8yfZyIXnPzjHz44HE50Dk4AffZc0Yod98hhUTEi0hsDFEqYI0eA9HRg9Ojo7crL/bd++vY1Z2JmNHbeI4dFxYhIT8xBIcO1twPFxcCyZdHbjR0LvP020P27v1KrJWaq2SMHgCVvAbGoGBHphQEKGeqpp4C77oreRpKAhgagf//Q562WmKl0Ke6jjz6Kl156KaHVWONht00nicgceIuHDOH1+gMPueDkk0/8MyydgxPAenuuKJ3JmTdvni1vARERxYMBCulq3z5/YFJYGL3dX/7izzO59NLIbayWmBnPTI6Zk34pvERvmkhkNwxQSBetrcAPfwg4ndHb3Xyzf8bklluUHddKiZlyMz5yzJj0S+HZcaUWUaIxQCHN3XkncNppwKZNkduceSZw9Cjw8sv+GRY1iouLsWvXLng8HrhcLng8HtTW1poqOAGUzfgoYZakXwrPziu1iBKJhdpIM4sXAzfcIN9u+3bg7LP1749ZhNtlNysrC4cOHVL08x6PJ5iEareCb1Zn1k0TicyKhdrIUFu3+mdB5IKTf/zDn2eSTMEJ0HXGZ9WqVejVq5fsz3VO+uVtBPMx66aJRHbAAIViduQIkJkJXHBB9HYPPugPTK67zpBumVLHXXZTUlKiDmoBQohg0i9vI5iT1WrzEFkJAxRSLVBo7YwzgG++idzuqquAkyf9lWDpe0oHq1mzZqG4uFi24FugLVeNGM9qtXmIrISF2jrg/X15FRXA7Nny7RoagAEDdO+OrvT6e1A6WHWsMKv0NgILphkrsFJLbtNEs9TmIbISzqB8h/f3o/vgA3+eiVxw8vHH/ts5geDEqrUh9Px7UFtwjrcRzMtqtXmILEVYUFNTkwAgmpqaNDleVVWVkCRJAAh5SJIkJEkSVVVVmpzHivbtE8IfckR/vPhi15+tqqoSDocj5Jo6HI6w17OtrU14PB7hcrmEx+MRbW1tBry78Iz4ewico/N5wp3D4/F06Uu4h8fjibtfFJtwf+tOpzOpPzuIwlEzfid9gNLW1tblg6XzgOF0OoMDppkGUj2dOCHExRfLByZTpwrR3t7159UM8moCGb2p/XuIh9JBLdCncNdT6z5R7JLls4EoHgxQVFDz7dRMA6me7rpLPjBxOoVoaQn/82oGebPNXhk9W6F0UFMz40JEZFZqxm/VOSgffPABfvrTn2LQoEGQJAlvvvlmyOtCCDz44IMYOHAgevXqhXHjxmH79u0hbQ4fPowpU6YgLS0NGRkZuOWWW3D06FG1XdGE0vv2y5Yts/0yz6VL/Xkmf/xj9HZffQXs2QP07Rv+daVJnV6v13SrU4zO9+i4/LigoCBiroKVSvybiVVzoIgohiTZY8eOYfTo0Xj22WfDvv7kk0/iT3/6E1544QWsW7cOffr0wfjx43HixIlgmylTpmDr1q147733sHz5cnzwwQe47bbbYn8XcVC6ouLVV1811UCqpS++8AcmP/959HbLlvnnT845J3o7pYO31+s1XZErMy8btUqJf7Ng4juRxcUzVQNAvPHGG8F/t7e3i5ycHLFgwYLgc0eOHBGpqali0aJFQgghtm3bJgCI9evXB9usXLlSSJIk6urqFJ1XjxyUaPf3s7OzbZmk2NQkRHa2/O2c++5Td1ylt0nuv/9+Re1cLpc+FyAMub8HfHdbr+OtGOYemI/Zbh0SkZ+ut3iiqa2tRUNDA8aNGxd8Lj09HWPGjEFNTQ0AoKamBhkZGbjkkkuCbcaNG4du3bph3bp1YY/b2tqK5ubmkIdWlCwTnDJliqJjGbXMMzBt/dprr6GiogKvvfaaqunr9nbg+uuB9HTg4MHI7X70I3+htT/8QV3/lC6jVVqzw8jZimh/DwHHjx/HsmXLAFj7W7pdb3+wsB2RTcQTCaHTDMqHH34oAIj9+/eHtPv5z38urr/+eiGEEI8++qg455xzuhwrOztbPPfcc2HPM2/evLDfZLVaZixE9BUVZlrmGa6f6PDNXu6b4TPPKFs2XF8ffz/lkjrNvDqlqqpKZGVlReyXJEni7rvvtuy3dDsnfJvp/69EFMqwVTxGBSgnTpwQTU1NwcfevXs1D1CEiDxVb5aBNNK0dee+hBtk1q5VFph89JG2/ZVbRmvW1SlKViKlpKREfd2sS3/tfvvD5XIpClCMvHVIRH4Ju8WTk5MDAGhsbAx5vrGxMfhaTk4ODhw4EPJ6W1sbDh8+HGzTWWpqKtLS0kIeeoi0osIM1SKjTVt31nH6ur7enwD7H/8R/Weef94fouTladFbv2hJnYHbC62trXjooYdMtzpFyUqkaLcIhEl3sU2G2x9mTnQmIhXiiYSA8Emy//M//xMSLYVLkt2wYUOwzTvvvJOwJFk1ElktUum0deDx7rteMWaM/IzJ5MnhC63pKdx1HDx4sCgvL9cl0TSWJFal38LlHoFv6WZJpE2G2x9mmfEkoq50vcXT0tIiNm3aJDZt2iQAiKeeekps2rRJ7N69WwghxOOPPy4yMjLEsmXLxGeffSaKiorEmWeeKY4fPx48xoQJE8RFF10k1q1bJ9auXSuGDx8uSktLdXmDWkvUQKNuwJwvG5gMHChEc7MhXQ9h9O2FWHMt1AaE0QZ6M+V7JMvtDyNuHZol6CSyEl0DlEgf3NOmTRNC+GdRHnjgATFgwACRmpoqxo4dK7766quQYxw6dEiUlpaKvn37irS0NHHzzTeLlkhlScNIZICSKMoGzP+SDUwAIb74IjHvwcgy8kLEFwwp+RauJAdlyZIlpsr3SIYZlAA9ZzzNFHQSWQlL3dtQ9MH9HEWBSYe7cbr0T+7bpJGDoxbBkNy38MAqnkivL1682NCATM11SZbbH3rMctg9yZhITwxQbKrrB2NfAdTJBia/+53+/VLybdLI2wtaBUNy38Ktsjy983sy48opKzB6FpDIbhig2FhVVZUYPNghgNdkA5MxY4Robf3+ZxP9bVLrATva+9EyGJK7bpFeN3O+RyITvq3MrEEnkVWoGb+7gyylsbEYdXXyS2/r6oBBg77/t9vtRllZWcjSWYfDgcrKypiX8sotWZUkCbNmzUJRURFSUlKCFWbr6urC/owkSXA4HMjPzw97rurqatTX12PgwIE4ePAg7rzzzojvR8ulpoHl52pfV9qHzptpGqG4uBhFRUUh1zQ/P1/XpfJ2YPRmkkRJTe9oSQ/JOIPy0UfKCq2tXdv1ZxcvXhxxOjqeKf1Yvk3GcnshWvXcSMcwQ66Fkn19Ag/OXFgDZ1CI4sNbPDZSX68sMHnmmfA/v2TJEt0qnsZ6C0PN7QUl1XMjvR8z5Foorf7LvAVrMEPgS2RlDFBs4ORJIX70I/nA5IYbhPD5wh+jqqpK8cAeyze+eL5NKsmHkUtIlDtnW1ubKC8vF5mZmYqCIb2Ul5fzW7eNmCHwJbIq5qBY3H33AY89Fr1Ndjawfbt/R+JwAvkhSsVyzzyenBK5vA5Avtx8NMuWLcPUqVNDfj4zMxNlZWW47777DM21GD58uKJ2zFuwhuLiYixdujRsTldFRUXCtmcgshsGKCby1ltAUZF8u61bgREjordRO7jHsi9JYI+ikpISSJIUEqRosUdRPAN2RUVFl+e++eYbPPTQQ7jgggsMHUS4N4z9MMmYSH+abhZIsfn6a/+GfnLBydKl/hs7csEJoG5wdzqdYWc5lAh8m9Rjs79YBmxJkiIOEoEAyujN8AIzTZ03mgyQJCmu3wElRqTNRYlIGwxQEujoUcDhAM49N3q7OXP8gcmkScqPrWZwj3cn5mi7FsdDbmDvLDCLY7Zdhs2wGzYRkdUwQEkAIYD//m/g9NP99UoiufRS4MQJYMEC9edQMrinpKRg8eLFmtzu0OPbZLSBPRyHw4FZs2YpOrbR+R56zjQREdmRJMJlN5pcc3Mz0tPT0dTUhLS0tER3R5UXXwR+/Wv5dvv2AZ3GMtXcbjdKSkoAIGwS65IlS4Kvm1mkInNPP/00+vXrF5IDUF1djcLCQtljejwe2SRdPXQuOMe8BSJKJmrGbybJGmTdOuDyy+XbffABoFUqQqTVBk6n03KrDToHWEIIdOvWrUuQEc/KIiMoWb1EREScQdFdYyOQkyPfrqICULEqWBUrf2sPzAJ1/jMN3PIJd3sk0sxRtJ8hIiL9qRm/GaDo5NQpYOxYQC4Xc9IkYPFioBuzgbrw+XzIzc2NuFw6MBtSW1vbJeAKd1vIijNHRER2wgAlwebNAx5+OHqbrCxg587IhdbsIp7ZG6/XG1c+iZVnjoiI7Ig5KAnyz38C110n3+7zz4Hzz9e/P0aIFgTEu4NyrDvHdu7T9ddfz8CEiMhiGKBoYMcOQEk188WLgZ//XP/+GCVaAAIgbO5IXV0dSkpKFOWBxFKBNd6giIiIzIG3eOJw7Jh/JmT37ujtZs8GnnrKmD51pOctjmjJq0IIZGVl4dChQ2F/NlruSOf+5+bmyq7ICRwnloRaIiIyjprxm6mZMRACuPlmoG/f6MHJRRf5C60lIjhxu93Izc1FYWEhJk+ejMLCQuTm5sLtdsd97MBGhOGChsBzkYKTQBsl1VzVVGCV65MQArfddhtWr15taJl7IiKKDQMUlf76V/+Km1deid5u717gX/8CUlMN6VaIwExC59Uvgdsr8QYp8ewy3JGSHBOlFViV9OnQoUMYN26cZoEa6cfn88Hr9WLRokXwer0MKomSEAMUhdav92/o96tfRW/n8fhnWBwOY/rVmZLZjXg3y9OqTLzSHBMle/2o6ZNWgRrpQ8/ZPyKyDibJyjh4EBgwwB90RPPHPwJ33mlMn6KRm0noeHsl1oqmsewy3FEs1VzlKrCq6ZMQApIkYdasWSgqKjJ0hQ+XPkcXKY9ITXK1Vvi7IkowYUFNTU0CgGhqatLtHKdOCfHjHwvhD00iP4qKhPD5dOuGai6XSwCQfbhcrpjP0dbWJhwOh5AkKeyxJUkSWVlZQpKkLm0Cz1VVVWn4ruX7FOnh8Xg07Uc0VVVVwuFwhJzf4XBofi2sKvA7jPS7kiRJOJ1O0dbWpntf+Lsi0oea8Zu3eMJ45BGgRw/g/fcjt0lPBw4fBt5801xVYGNZmquWkuTVF1980dDde9XufBxg1K7GeucF2YGa2T898XdFZBL6x0va02sGZe1a+RkTQIjPPtP0tJpSMruh1bfQcN8ynU5nyLfMtrY24fF4hMvlEh6PR7S2tob8W+tvw+H6FO1hxAyKmWYGzMyI2T85/F0R6UvN+M0A5Tv79wvRq1f0wGTRIs1Op6uqqqqwt1cCjyVLlmh2rs4BSOCDO9zzRk2bt7W1iVWrVonMzExTDDQej8c0wZKZmeE6maEPRHbGACUGr78eOTD5zW+EaG/X7FSKRBr4lYo2k5CZmSnKy8t1G5zDnTsrKytioKBHTkqgH0bmwURihpkBKzBy9i8S/q6I9MUAJQbbtgmRkhIamIwcKcTx45qdQjGtZhoWL14c9UM2KytL80E6EBQovcWi98Cj5DaU3vitXLlEB5X8XRHpiwFKjN59V4gbbxRi6lQhdu/W9NCKRRrg1X5Ay91L7/jQ6kNfzTmN/NCPdzZKi/MnembAShIZVPJ3RaQvNeM39+IxkcDeM5FWMijdwwYAvF4vCgsLFZ3X6XQqOqYcNecMx+VyobS0NK4+mFVgZQiAkBof3CcovETWIOHvikg/3IvHorRcZqlm+axWSzfjXbIbbwG4RJIrza60ZL9W57O6QGG+0tJSFBQUGFogTevfFRHFhpVkTUTpAF9XVwev1xv126XawV6LeiCxBhixVJY1E7fbjbKyspDg0uFwoLKyMmQwKy4uRlFRUVwzAz6fD48++igqKytx+PDhqOej2GnxuyKiOOl7t0kfRlSSTQSlCXr9+vWTTaBVmw+iRf5HLNVcjV5Ro7WqqipD8nsC50rEaigiIq0wB8WiAjkodXV1YTf7iyTSvfFI+5p0/lmleS1KRLt/L4RAVlYWDh06FHze6XSioqLCkt/8fT4fBgwYEPJ+OsvKykJjY2Pc19btdmPSpElR22j9uyQi0hpzUCxKSQn5cAKBQOddigP30rOyssL+XOCYFRUVmg1o0e7fV1VVobGxMequxFbi9XqjBicAcOjQIXi93rjOE9ihWo4wqBQ8EZERGKCYTKQBPlKQERBpcCouLkZjYyPKy8uRmZkZ8ppeSX/FxcXYtWtX2EAkkcmPWlMaeMQboMglT3dm1P5CRER6YpKsCXVO0Nu+fXtwZkVOuMEpJSUFDz74IO677z7Dkv4CgUi8uOW9+oDDyquhiIgCGKCYVGCAd7vdeOihhxTnpEQbnLQKGowSbnVMZmYmysrKcN999+keqMgFRwUFBfjDH/4ge5x4r7magMPpdFp2NRQRUUdMkjUxucJtHdklQTIQFCxbtgwVFRUR22VlZeHFF1/ULX9FydJho5JklSZPS5KU0DodnO0iIjmqxm99FhLpy0zLjPUso6502TG+W2Zq9SWm0TY4jPTQc5PBcNe483U2apmx3A7VeuyrpLZ/RuxUTUTWxr14DKL3h7LSnVUzMzMtPxDEsskgAM33RZGrHxNuL5aqqioxePBg3QfncH9veu9MrbRfWuwfRUT2l9AAZd68eV0+qM4999zg68ePHxe33367yMzMFH369BHFxcWioaFB1TnMEKAY8aGsdAZl1apVGryjxDHTJoOx7mZr1IaEid74MFx/1AZ0RJS81IzfuiwzPv/881FfXx98rF27Nvja7Nmz8Y9//ANLlizBmjVrsH//fsvVwQjUpRBh8gFEhJokscjPz4fD4YhYA0WSJDidTkslvoajdhltZ1ouq1V6rM7t7LR8Wg0t948iIupIl1U83bt3R05OTpfnm5qa8Ne//hUulws//vGPAQALFy7ED37wA3z88ce4/PLL9eiO5tR8KMcTPAQKt5WUlAQrsQboUWQtFlokRpppk0Glx0rEUl6le/4YKdaAjohIji4zKNu3b8egQYMwbNgwTJkyBXv27AEAbNy4EadOncK4ceOCbc877zwMGTIENTU1EY/X2tqK5ubmkEciGfmhbOadVd1uN3Jzc1FYWIjJkyejsLAQubm5cLvdqo4TzyaDWi+rVTprZfRS3sAWAp0D47q6OpSUlKi+5loxc0BHRBan9f2lFStWiMWLF4tPP/1UvP322yIvL08MGTJENDc3i9dee0307Nmzy89ceuml4p577ol4zHB5LUhgDkqseQrxMFvugZY5OGbbZDDSiplEJX2aOc9D7nfHHBQi6shUq3i++eYbkZaWJv7yl7/EHKCcOHFCNDU1BR979+5NaIBi1g9lIxM1tR4w5ZbR9u3bN+TfTqdT10Ah3IoZvc8ZSSICYjXMFtARkXklPEm2o4yMDJxzzjnYsWMHcnJycPLkSRw5ciSkTWNjY9iclYDU1FSkpaWFPBJJyaZ+RueGaHW7RQk9EiMj3cpyOp2oqqrCkSNHDN1kMNp+QkYze56HmW9DEpGF6R0ttbS0iDPOOENUVlaKI0eOiB49eoilS5cGX//yyy8FAFFTU6P4mGZYZiyEeb5lG12HQml9FpfLpfrYZruVZQZmn0EJ4O+OiOSoGb81L3U/Z84c/PSnP8XQoUOxf/9+zJs3D5s3b8a2bduQnZ2NGTNmYMWKFXjllVeQlpaG3/zmNwCAjz76SPE5zFTqPtHlveXK4Sspga/2PXi9XhQWFsr2zePxBFcxJfo6WZlcqXu7bHNARPaX0FL3N9xwgxg4cKDo2bOnGDx4sLjhhhvEjh07gq8HCrWdccYZonfv3uJnP/uZqK+vV3UOs8ygmEG8365jqYarNgeHZdDjxzwPIrIDUyXJ6oEByvfiud0Sz60hpQMmy6Brxyy3FImIYpXQWzxGMNMtnkSL5XYLoM2toXCFw5xOJyoqKlBcXKzJOSgUb5URkZWpGb8ZoFhcrPkJsQY24c4facDU6hxERGQPasZvXUrdk3FiLYev1dLVwB40sfys2nZERJQ8dK+DQvqLpQ6FESXKWQadiIhixVs8NqImP8GIpatcHktERB2pGb85g2IjgdstpaWlKCgoiDroG1EN14wVd4mIyBoYoCQxI0qUsww6ERHFgrd4yJClq1weS0REXGZMlCAMxIiIIuMyY6IECFe4zuFwoLKykreyiIhUYg4KkQbcbjdKSkq6VM2tq6tDSUkJ3G53gnpGRGRNDFCI4uTz+VBWVhZ2KXXguVmzZsHn8xndNSIiy2KAQhSn6urqiPsNAf4gZe/evaiurjawV0RE1sYAhShOLOlPRKQ9BihEcWJJfyIi7TFAIYpTfn4+HA5Hl2q5AZIkwel0Ij8/3+CeERFZFwMUojixpD8RkfYYoBBpgCX9iYi0xUqyRBpiJVkioshYSZYoQQI7ShMRUXx4i4eIiIhMhwEKERERmQ4DFCIiIjIdBihERERkOgxQiIiIyHQYoBAREZHpMEAhIiIi02GAQkRERKbDAIWIiIhMx5KVZAPV+ZubmxPcEyIiIlIqMG4r2WXHkgFKS0sLAMDpdCa4J0RERKRWS0sL0tPTo7ax5GaB7e3t2L9/P04//XS0tLTA6XRi79693DhQR83NzbzOBuB1Ng6vtTF4nY1hlesshEBLSwsGDRqEbt2iZ5lYcgalW7ducDgcAABJkgAAaWlppv6l2AWvszF4nY3Da20MXmdjWOE6y82cBDBJloiIiEyHAQoRERGZjuUDlNTUVMybNw+pqamJ7oqt8Tobg9fZOLzWxuB1NoYdr7Mlk2SJiIjI3iw/g0JERET2wwCFiIiITIcBChEREZkOAxQiIiIyHdMHKIcPH8aUKVOQlpaGjIwM3HLLLTh69GjUn3nxxRdRUFCAtLQ0SJKEI0eOaHJcu4vlmpw4cQIzZ85EVlYW+vbti0mTJqGxsTGkjSRJXR6vv/66nm/FVJ599lnk5ubitNNOw5gxY/DJJ59Ebb9kyRKcd955OO200zBy5EisWLEi5HUhBB588EEMHDgQvXr1wrhx47B9+3Y934IlaH2db7rppi5/txMmTNDzLViCmuu8detWTJo0Cbm5uZAkCRUVFXEfM1lofZ0feuihLn/P5513no7vQAPC5CZMmCBGjx4tPv74Y1FdXS3OPvtsUVpaGvVnnn76aTF//nwxf/58AUB88803mhzX7mK5JtOnTxdOp1OsXr1abNiwQVx++eXiiiuuCGkDQCxcuFDU19cHH8ePH9fzrZjG66+/Lnr27ClefvllsXXrVnHrrbeKjIwM0djYGLb9hx9+KFJSUsSTTz4ptm3bJu6//37Ro0cPsWXLlmCbxx9/XKSnp4s333xTfPrpp+I///M/xZlnnpk01zQcPa7ztGnTxIQJE0L+bg8fPmzUWzIltdf5k08+EXPmzBGLFi0SOTk54umnn477mMlAj+s8b948cf7554f8PR88eFDndxIfUwco27ZtEwDE+vXrg8+tXLlSSJIk6urqZH/e4/GEDVDiPa4dxXJNjhw5Inr06CGWLFkSfO6LL74QAERNTU3wOQDijTfe0K3vZnbZZZeJmTNnBv/t8/nEoEGDxPz588O2v/7668W1114b8tyYMWPEr3/9ayGEEO3t7SInJ0csWLAg+PqRI0dEamqqWLRokQ7vwBq0vs5C+AOUoqIiXfprVWqvc0dDhw4NO3DGc0y70uM6z5s3T4wePVrDXurP1Ld4ampqkJGRgUsuuST43Lhx49CtWzesW7fOdMe1sliuycaNG3Hq1CmMGzcu+Nx5552HIUOGoKamJqTtzJkz0a9fP1x22WV4+eWXFW21bXUnT57Exo0bQ65Pt27dMG7cuC7XJ6CmpiakPQCMHz8+2L62thYNDQ0hbdLT0zFmzJiIx7Q7Pa5zgNfrRf/+/XHuuedixowZOHTokPZvwCJiuc6JOKbV6XlNtm/fjkGDBmHYsGGYMmUK9uzZE293dWXqAKWhoQH9+/cPea579+7IzMxEQ0OD6Y5rZbFck4aGBvTs2RMZGRkhzw8YMCDkZx5++GEsXrwY7733HiZNmoTbb78dzzzzjObvwWz+/e9/w+fzYcCAASHPd74+HTU0NERtH/hfNce0Oz2uMwBMmDABf//737F69Wo88cQTWLNmDSZOnAifz6f9m7CAWK5zIo5pdXpdkzFjxuCVV17B22+/jeeffx61tbXIz89HS0tLvF3WTUJ2M/7d736HJ554ImqbL774wqDe2JsZrvUDDzwQ/O+LLroIx44dw4IFC/Db3/5W1/MSxeMXv/hF8L9HjhyJUaNG4ayzzoLX68XYsWMT2DMi9SZOnBj871GjRmHMmDEYOnQoFi9ejFtuuSWBPYssIQHKXXfdhZtuuilqm2HDhiEnJwcHDhwIeb6trQ2HDx9GTk5OzOfX67hmpOe1zsnJwcmTJ3HkyJGQWZTGxsao13HMmDF45JFH0Nraaqt9Izrr168fUlJSuqxqinZ9cnJyorYP/G9jYyMGDhwY0ubCCy/UsPfWocd1DmfYsGHo168fduzYkZQBSizXORHHtDqjrklGRgbOOecc7NixQ7Njai0ht3iys7Nx3nnnRX307NkTeXl5OHLkCDZu3Bj82ffffx/t7e0YM2ZMzOfX67hmpOe1vvjii9GjRw+sXr06+NxXX32FPXv2IC8vL2KfNm/ejDPOOMPWwQkA9OzZExdffHHI9Wlvb8fq1asjXp+8vLyQ9gDw3nvvBdufeeaZyMnJCWnT3NyMdevWRb3mdqbHdQ5n3759OHToUEhgmExiuc6JOKbVGXVNjh49ip07d5r77znRWbpyJkyYIC666CKxbt06sXbtWjF8+PCQpa/79u0T5557rli3bl3wufr6erFp0ybx0ksvCQDigw8+EJs2bRKHDh1SfNxkFMu1nj59uhgyZIh4//33xYYNG0ReXp7Iy8sLvv7WW2+Jl156SWzZskVs375dPPfcc6J3797iwQcfNPS9Jcrrr78uUlNTxSuvvCK2bdsmbrvtNpGRkSEaGhqEEEJMnTpV/O53vwu2//DDD0X37t3F//zP/4gvvvhCzJs3L+wy44yMDLFs2TLx2WefiaKiIi4z1vg6t7S0iDlz5oiamhpRW1srVq1aJX74wx+K4cOHixMnTiTkPZqB2uvc2toqNm3aJDZt2iQGDhwo5syZIzZt2iS2b9+u+JjJSI/rfNdddwmv1ytqa2vFhx9+KMaNGyf69esnDhw4YPj7U8r0AcqhQ4dEaWmp6Nu3r0hLSxM333yzaGlpCb5eW1srAAiPxxN8bt68eQJAl8fChQsVHzcZxXKtjx8/Lm6//XZxxhlniN69e4uf/exnor6+Pvj6ypUrxYUXXij69u0r+vTpI0aPHi1eeOEF4fP5jHxrCfXMM8+IIUOGiJ49e4rLLrtMfPzxx8HXrrrqKjFt2rSQ9osXLxbnnHOO6Nmzpzj//PPFP//5z5DX29vbxQMPPCAGDBggUlNTxdixY8VXX31lxFsxNS2v87fffiuuvvpqkZ2dLXr06CGGDh0qbr311qQeNAPUXOfAZ0bnx1VXXaX4mMlK6+t8ww03iIEDB4qePXuKwYMHixtuuEHs2LHDwHekniREEqz3JCIiIksx9TJjIiIiSk4MUIiIiMh0GKAQERGR6TBAISIiItNhgEJERESmwwCFiIiITIcBChEREZkOAxQiIiIyHQYoREREZDoMUIiIiMh0GKAQERGR6TBAISIiItP5/wEp1b8yUKjSwAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] }, - "metadata": { - "needs_background": "light" - } + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -183,5 +633,32 @@ "plt.show()" ] } - ] + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2 + }, + "nbformat": 4, + "nbformat_minor": 2 } diff --git a/2-Regression/2-Data/README.md b/2-Regression/2-Data/README.md index 8427313e..298f552e 100644 --- a/2-Regression/2-Data/README.md +++ b/2-Regression/2-Data/README.md @@ -73,11 +73,11 @@ Open the _notebook.ipynb_ file in Visual Studio Code and import the spreadsheet There is missing data, but maybe it won't matter for the task at hand. -1. To make your dataframe easier to work with, drop several of its columns, using `drop()`, keeping only the columns you need: +1. To make your dataframe easier to work with, select only the columns you need, using the `loc` function which extracts from the original dataframe a group of rows (passed as first parameter) and columns (passed as second parameter). The expression `:` in the case below means "all rows". ```python - new_columns = ['Package', 'Month', 'Low Price', 'High Price', 'Date'] - pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1) + columns_to_select = ['Package', 'Low Price', 'High Price', 'Date'] + pumpkins = pumpkins.loc[:, columns_to_select] ``` ### Second, determine average price of pumpkin diff --git a/2-Regression/2-Data/solution/notebook.ipynb b/2-Regression/2-Data/solution/notebook.ipynb index 7c8ec0b6..3595485d 100644 --- a/2-Regression/2-Data/solution/notebook.ipynb +++ b/2-Regression/2-Data/solution/notebook.ipynb @@ -304,8 +304,8 @@ "source": [ "\n", "# A set of new columns for a new dataframe. Filter out nonmatching columns\n", - "new_columns = ['Package', 'Month', 'Low Price', 'High Price', 'Date']\n", - "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", + "columns_to_select = ['Package', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", "\n", "# Get an average between low and high price for the base pumpkin price\n", "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", @@ -412,7 +412,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.9" + "version": "3.11.1" }, "metadata": { "interpreter": { diff --git a/2-Regression/3-Linear/notebook.ipynb b/2-Regression/3-Linear/notebook.ipynb index b01f1ee8..2902cce8 100644 --- a/2-Regression/3-Linear/notebook.ipynb +++ b/2-Regression/3-Linear/notebook.ipynb @@ -38,8 +38,8 @@ "source": [ "pumpkins = pumpkins[pumpkins['Package'].str.contains('bushel', case=True, regex=True)]\n", "\n", - "new_columns = ['Package', 'Variety', 'City Name', 'Month', 'Low Price', 'High Price', 'Date']\n", - "pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", + "columns_to_select = ['Package', 'Variety', 'City Name', 'Low Price', 'High Price', 'Date']\n", + "pumpkins = pumpkins.loc[:, columns_to_select]\n", "\n", "price = (pumpkins['Low Price'] + pumpkins['High Price']) / 2\n", "\n", diff --git a/2-Regression/4-Logistic/README.md b/2-Regression/4-Logistic/README.md index 2385269f..01790853 100644 --- a/2-Regression/4-Logistic/README.md +++ b/2-Regression/4-Logistic/README.md @@ -1,7 +1,7 @@ # Logistic regression to predict categories -![Logistic vs. linear regression infographic](./images/logistic-linear.png) -> Infographic by [Dasani Madipalli](https://twitter.com/dasani_decoded) +![Logistic vs. linear regression infographic](./images/linear-vs-logistic.png) + ## [Pre-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/) > ### [This lesson is available in R!](./solution/R/lesson_4-R.ipynb) @@ -26,9 +26,9 @@ Let's build a logistic regression model to predict that, given some variables, _ ## Define the question -For our purposes, we will express this as a binary: 'Orange' or 'Not Orange'. There is also a 'striped' category in our dataset but there are few instances of it, so we will not use it. It disappears once we remove null values from the dataset, anyway. +For our purposes, we will express this as a binary: 'White' or 'Not White'. There is also a 'striped' category in our dataset but there are few instances of it, so we will not use it. It disappears once we remove null values from the dataset, anyway. -> 🎃 Fun fact, we sometimes call white pumpkins 'ghost' pumpkins. They aren't very easy to carve, so they aren't as popular as the orange ones but they are cool looking! +> 🎃 Fun fact, we sometimes call white pumpkins 'ghost' pumpkins. They aren't very easy to carve, so they aren't as popular as the orange ones but they are cool looking! So we could also reformulate our question as: 'Ghost' or 'Not Ghost'. 👻 ## About logistic regression @@ -47,12 +47,7 @@ There are other types of logistic regression, including multinomial and ordinal: - **Multinomial**, which involves having more than one category - "Orange, White, and Striped". - **Ordinal**, which involves ordered categories, useful if we wanted to order our outcomes logically, like our pumpkins that are ordered by a finite number of sizes (mini,sm,med,lg,xl,xxl). -![Multinomial vs ordinal regression](./images/multinomial-ordinal.png) -> Infographic by [Dasani Madipalli](https://twitter.com/dasani_decoded) - -### It's still linear - -Even though this type of Regression is all about 'category predictions', it still works best when there is a clear linear relationship between the dependent variable (color) and the other independent variables (the rest of the dataset, like city name and size). It's good to get an idea of whether there is any linearity dividing these variables or not. +![Multinomial vs ordinal regression](./images/multinomial-vs-ordinal.png) ### Variables DO NOT have to correlate @@ -71,78 +66,146 @@ First, clean the data a bit, dropping null values and selecting only some of the 1. Add the following code: ```python - from sklearn.preprocessing import LabelEncoder - - new_columns = ['Color','Origin','Item Size','Variety','City Name','Package'] - - new_pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1) - - new_pumpkins.dropna(inplace=True) - - new_pumpkins = new_pumpkins.apply(LabelEncoder().fit_transform) + + columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color'] + pumpkins = full_pumpkins.loc[:, columns_to_select] + + pumpkins.dropna(inplace=True) ``` You can always take a peek at your new dataframe: ```python - new_pumpkins.info + pumpkins.info ``` -### Visualization - side-by-side grid +### Visualization - categorical plot By now you have loaded up the [starter notebook](./notebook.ipynb) with pumpkin data once again and cleaned it so as to preserve a dataset containing a few variables, including `Color`. Let's visualize the dataframe in the notebook using a different library: [Seaborn](https://seaborn.pydata.org/index.html), which is built on Matplotlib which we used earlier. -Seaborn offers some neat ways to visualize your data. For example, you can compare distributions of the data for each point in a side-by-side grid. +Seaborn offers some neat ways to visualize your data. For example, you can compare distributions of the data for each `Variety` and `Color` in a categorical plot. -1. Create such a grid by instantiating a `PairGrid`, using our pumpkin data `new_pumpkins`, followed by calling `map()`: +1. Create such a plot by using the `catplot` function, using our pumpkin data `pumpkins`, and specifying a color mapping for each pumpkin category (orange or white): ```python import seaborn as sns - g = sns.PairGrid(new_pumpkins) - g.map(sns.scatterplot) + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + + sns.catplot( + data=pumpkins, y="Variety", hue="Color", kind="count", + palette=palette, + ) ``` - ![A grid of visualized data](images/grid.png) + ![A grid of visualized data](images/pumpkins_catplot_1.png) - By observing data side-by-side, you can see how the Color data relates to the other columns. + By observing the data, you can see how the Color data relates to Variety. - ✅ Given this scatterplot grid, what are some interesting explorations you can envision? + ✅ Given this categorical plot, what are some interesting explorations you can envision? -### Use a swarm plot +### Data pre-processing: feature and label encoding +Our pumpkins dataset contains string values for all its columns. Working with categorical data is intuitive for humans but not for machines. Machine learning algorithms work well with numbers. There's why encoding is a very important step in the data pre-processing phase, since it enables to turn categorical data into numerical data, without losing any information. A good encoding leads to build a good model. -Since Color is a binary category (Orange or Not), it's called 'categorical data' and needs 'a more [specialized approach](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar) to visualization'. There are other ways to visualize the relationship of this category with other variables. +For feature encoding there are two main types of encoders: -You can visualize variables side-by-side with Seaborn plots. +1. Ordinal encoder: it suits well for ordinal variables, which are categorical variables where their data follows a logical ordering, like the `Item Size` column in our dataset. It creates a mapping such that each category is represented by a number, which is the order of the category in the column. -1. Try a 'swarm' plot to show the distribution of values: + ```python + from sklearn.preprocessing import OrdinalEncoder + + item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']] + ordinal_features = ['Item Size'] + ordinal_encoder = OrdinalEncoder(categories=item_size_categories) + ``` + +2. Categorical encoder: it suits well for nominal variables, which are categorical variables where their data does not follow a logical ordering, like all the features different from `Item Size` in our dataset. It is a one-hot encoding, which means that each category is represented by a binary column: the encoded variable is equal to 1 if the pumpkin belongs to that Variety and 0 otherwise. ```python - sns.swarmplot(x="Color", y="Item Size", data=new_pumpkins) + from sklearn.preprocessing import OneHotEncoder + + categorical_features = ['City Name', 'Package', 'Variety', 'Origin'] + categorical_encoder = OneHotEncoder(sparse_output=False) ``` +Then, `ColumnTransformer` is used to combine multiple encoders into a single step and apply them to the appropriate columns. + +```python + from sklearn.compose import ColumnTransformer + + ct = ColumnTransformer(transformers=[ + ('ord', ordinal_encoder, ordinal_features), + ('cat', categorical_encoder, categorical_features) + ]) + + ct.set_output(transform='pandas') + encoded_features = ct.fit_transform(pumpkins) +``` +On the other hand, to encode the label, we use the scikit-learn `LabelEncoder` class, which is a utility class to help normalize labels such that they contain only values between 0 and n_classes-1 (here, 0 and 1). + +```python + from sklearn.preprocessing import LabelEncoder - ![A swarm of visualized data](images/swarm.png) + label_encoder = LabelEncoder() + encoded_label = label_encoder.fit_transform(pumpkins['Color']) +``` +Once we have encoded the features and the label, we can merge them into a new dataframe `encoded_pumpkins`. -### Violin plot +```python + encoded_pumpkins = encoded_features.assign(Color=encoded_label) +``` +✅ What are the advantages of using an ordinal encoder for the `Item Size` column? + +### Analyse relationships between variables -A 'violin' type plot is useful as you can easily visualize the way that data in the two categories is distributed. Violin plots don't work so well with smaller datasets as the distribution is displayed more 'smoothly'. +Now that we have pre-processed our data, we can analyse the relationships between the features and the label to grasp an idea of how well the model will be able to predict the label given the features. +The best way to perform this kind of analysis is plotting the data. We'll be using again the Seaborn `catplot` function, to visualize the relationships between `Item Size`, `Variety` and `Color` in a categorical plot. To better plot the data we'll be using the encoded `Item Size` column and the unencoded `Variety` column. -1. As parameters `x=Color`, `kind="violin"` and call `catplot()`: +```python + palette = { + 'ORANGE': 'orange', + 'WHITE': 'wheat', + } + pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size'] + + g = sns.catplot( + data=pumpkins, + x="Item Size", y="Color", row='Variety', + kind="box", orient="h", + sharex=False, margin_titles=True, + height=1.8, aspect=4, palette=palette, + ) + g.set(xlabel="Item Size", ylabel="").set(xlim=(0,6)) + g.set_titles(row_template="{row_name}") +``` +![A catplot of visualized data](images/pumpkins_catplot_2.png) + +### Use a swarm plot + +Since Color is a binary category (White or Not), it needs 'a [specialized approach](https://seaborn.pydata.org/tutorial/categorical.html?highlight=bar) to visualization'. There are other ways to visualize the relationship of this category with other variables. + +You can visualize variables side-by-side with Seaborn plots. + +1. Try a 'swarm' plot to show the distribution of values: ```python - sns.catplot(x="Color", y="Item Size", - kind="violin", data=new_pumpkins) + palette = { + 0: 'orange', + 1: 'wheat' + } + sns.swarmplot(x="Color", y="ord__Item Size", data=encoded_pumpkins, palette=palette) ``` - ![a violin type chart](images/violin.png) + ![A swarm of visualized data](images/swarm_2.png) - ✅ Try creating this plot, and other Seaborn plots, using other variables. +**Watch Out**: the code above might generate a warning, since seaborn fails to represent such amount of datapoints into a swam plot. A possible solution is decreasing the size of the marker, by using the 'size' parameter. However, be aware that this affects the readability of the plot. -Now that we have an idea of the relationship between the binary categories of color and the larger group of sizes, let's explore logistic regression to determine a given pumpkin's likely color. > **🧮 Show Me The Math** > -> Remember how linear regression often used ordinary least squares to arrive at a value? Logistic regression relies on the concept of 'maximum likelihood' using [sigmoid functions](https://wikipedia.org/wiki/Sigmoid_function). A 'Sigmoid Function' on a plot looks like an 'S' shape. It takes a value and maps it to somewhere between 0 and 1. Its curve is also called a 'logistic curve'. Its formula looks like this: +> Logistic regression relies on the concept of 'maximum likelihood' using [sigmoid functions](https://wikipedia.org/wiki/Sigmoid_function). A 'Sigmoid Function' on a plot looks like an 'S' shape. It takes a value and maps it to somewhere between 0 and 1. Its curve is also called a 'logistic curve'. Its formula looks like this: > > ![logistic function](images/sigmoid.png) > @@ -157,49 +220,47 @@ Building a model to find these binary classification is surprisingly straightfor ```python from sklearn.model_selection import train_test_split - Selected_features = ['Origin','Item Size','Variety','City Name','Package'] - - X = new_pumpkins[Selected_features] - y = new_pumpkins['Color'] - + X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])] + y = encoded_pumpkins['Color'] + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) ``` -1. Now you can train your model, by calling `fit()` with your training data, and print out its result: +2. Now you can train your model, by calling `fit()` with your training data, and print out its result: ```python - from sklearn.model_selection import train_test_split - from sklearn.metrics import accuracy_score, classification_report + from sklearn.metrics import f1_score, classification_report from sklearn.linear_model import LogisticRegression - + model = LogisticRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) - + print(classification_report(y_test, predictions)) print('Predicted labels: ', predictions) - print('Accuracy: ', accuracy_score(y_test, predictions)) + print('F1-score: ', f1_score(y_test, predictions)) ``` - Take a look at your model's scoreboard. It's not too bad, considering you have only about 1000 rows of data: + Take a look at your model's scoreboard. It's not bad, considering you have only about 1000 rows of data: ```output precision recall f1-score support - 0 0.85 0.95 0.90 166 - 1 0.38 0.15 0.22 33 + 0 0.94 0.98 0.96 166 + 1 0.85 0.67 0.75 33 - accuracy 0.82 199 - macro avg 0.62 0.55 0.56 199 - weighted avg 0.77 0.82 0.78 199 + accuracy 0.92 199 + macro avg 0.89 0.82 0.85 199 + weighted avg 0.92 0.92 0.92 199 - Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 - 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 1 0 1 0 0 1 0 0 0 1 0] + Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 + 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 + 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 + 0 0 0 1 0 0 0 0 0 0 0 0 1 1] + F1-score: 0.7457627118644068 ``` ## Better comprehension via a confusion matrix @@ -219,7 +280,7 @@ While you can get a scoreboard report [terms](https://scikit-learn.org/stable/mo ```output array([[162, 4], - [ 33, 0]]) + [ 11, 22]]) ``` In Scikit-learn, confusion matrices Rows (axis 0) are actual labels and columns (axis 1) are predicted labels. @@ -229,22 +290,22 @@ In Scikit-learn, confusion matrices Rows (axis 0) are actual labels and columns | 0 | TN | FP | | 1 | FN | TP | -What's going on here? Let's say our model is asked to classify pumpkins between two binary categories, category 'orange' and category 'not-orange'. +What's going on here? Let's say our model is asked to classify pumpkins between two binary categories, category 'white' and category 'not-white'. -- If your model predicts a pumpkin as not orange and it belongs to category 'not-orange' in reality we call it a true negative, shown by the top left number. -- If your model predicts a pumpkin as orange and it belongs to category 'not-orange' in reality we call it a false negative, shown by the bottom left number. -- If your model predicts a pumpkin as not orange and it belongs to category 'orange' in reality we call it a false positive, shown by the top right number. -- If your model predicts a pumpkin as orange and it belongs to category 'orange' in reality we call it a true positive, shown by the bottom right number. +- If your model predicts a pumpkin as not white and it belongs to category 'not-white' in reality we call it a true negative, shown by the top left number. +- If your model predicts a pumpkin as white and it belongs to category 'not-white' in reality we call it a false negative, shown by the bottom left number. +- If your model predicts a pumpkin as not white and it belongs to category 'white' in reality we call it a false positive, shown by the top right number. +- If your model predicts a pumpkin as white and it belongs to category 'white' in reality we call it a true positive, shown by the bottom right number. As you might have guessed it's preferable to have a larger number of true positives and true negatives and a lower number of false positives and false negatives, which implies that the model performs better. -How does the confusion matrix relate to precision and recall? Remember, the classification report printed above showed precision (0.83) and recall (0.98). +How does the confusion matrix relate to precision and recall? Remember, the classification report printed above showed precision (0.85) and recall (0.67). -Precision = tp / (tp + fp) = 162 / (162 + 33) = 0.8307692307692308 +Precision = tp / (tp + fp) = 22 / (22 + 4) = 0.8461538461538461 -Recall = tp / (tp + fn) = 162 / (162 + 4) = 0.9759036144578314 +Recall = tp / (tp + fn) = 22 / (22 + 11) = 0.6666666666666666 -✅ Q: According to the confusion matrix, how did the model do? A: Not too bad; there are a good number of true negatives but also several false negatives. +✅ Q: According to the confusion matrix, how did the model do? A: Not bad; there are a good number of true negatives but also a few false negatives. Let's revisit the terms we saw earlier with the help of the confusion matrix's mapping of TP/TN and FP/FN: @@ -266,22 +327,28 @@ Let's revisit the terms we saw earlier with the help of the confusion matrix's m ## Visualize the ROC curve of this model -This is not a bad model; its accuracy is in the 80% range so ideally you could use it to predict the color of a pumpkin given a set of variables. - -Let's do one more visualization to see the so-called 'ROC' score: +Let's do one more visualization to see the so-called 'ROC' curve: ```python from sklearn.metrics import roc_curve, roc_auc_score +import matplotlib +import matplotlib.pyplot as plt +%matplotlib inline y_scores = model.predict_proba(X_test) -# calculate ROC curve fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1]) -sns.lineplot(([0, 1], [0, 1])) -sns.lineplot((fpr, tpr)) + +fig = plt.figure(figsize=(6, 6)) +plt.plot([0, 1], [0, 1], 'k--') +plt.plot(fpr, tpr) +plt.xlabel('False Positive Rate') +plt.ylabel('True Positive Rate') +plt.title('ROC Curve') +plt.show() ``` -Using Seaborn again, plot the model's [Receiving Operating Characteristic](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc) or ROC. ROC curves are often used to get a view of the output of a classifier in terms of its true vs. false positives. "ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis." Thus, the steepness of the curve and the space between the midpoint line and the curve matter: you want a curve that quickly heads up and over the line. In our case, there are false positives to start with, and then the line heads up and over properly: +Using Matplotlib, plot the model's [Receiving Operating Characteristic](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html?highlight=roc) or ROC. ROC curves are often used to get a view of the output of a classifier in terms of its true vs. false positives. "ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis." Thus, the steepness of the curve and the space between the midpoint line and the curve matter: you want a curve that quickly heads up and over the line. In our case, there are false positives to start with, and then the line heads up and over properly: -![ROC](./images/ROC.png) +![ROC](./images/ROC_2.png) Finally, use Scikit-learn's [`roc_auc_score` API](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html?highlight=roc_auc#sklearn.metrics.roc_auc_score) to compute the actual 'Area Under the Curve' (AUC): @@ -289,7 +356,7 @@ Finally, use Scikit-learn's [`roc_auc_score` API](https://scikit-learn.org/stabl auc = roc_auc_score(y_test,y_scores[:,1]) print(auc) ``` -The result is `0.6976998904709748`. Given that the AUC ranges from 0 to 1, you want a big score, since a model that is 100% correct in its predictions will have an AUC of 1; in this case, the model is _pretty good_. +The result is `0.9749908725812341`. Given that the AUC ranges from 0 to 1, you want a big score, since a model that is 100% correct in its predictions will have an AUC of 1; in this case, the model is _pretty good_. In future lessons on classifications, you will learn how to iterate to improve your model's scores. But for now, congratulations! You've completed these regression lessons! diff --git a/2-Regression/4-Logistic/images/ROC_2.png b/2-Regression/4-Logistic/images/ROC_2.png new file mode 100644 index 00000000..aa629fb1 Binary files /dev/null and b/2-Regression/4-Logistic/images/ROC_2.png differ diff --git a/2-Regression/4-Logistic/images/linear-vs-logistic.png b/2-Regression/4-Logistic/images/linear-vs-logistic.png new file mode 100644 index 00000000..0cfe2209 Binary files /dev/null and b/2-Regression/4-Logistic/images/linear-vs-logistic.png differ diff --git a/2-Regression/4-Logistic/images/multinomial-vs-ordinal.png b/2-Regression/4-Logistic/images/multinomial-vs-ordinal.png new file mode 100644 index 00000000..1d4fb16f Binary files /dev/null and b/2-Regression/4-Logistic/images/multinomial-vs-ordinal.png differ diff --git a/2-Regression/4-Logistic/images/pumpkins_catplot_1.png b/2-Regression/4-Logistic/images/pumpkins_catplot_1.png new file mode 100644 index 00000000..1c646732 Binary files /dev/null and b/2-Regression/4-Logistic/images/pumpkins_catplot_1.png differ diff --git a/2-Regression/4-Logistic/images/pumpkins_catplot_2.png b/2-Regression/4-Logistic/images/pumpkins_catplot_2.png new file mode 100644 index 00000000..fd4112bc Binary files /dev/null and b/2-Regression/4-Logistic/images/pumpkins_catplot_2.png differ diff --git a/2-Regression/4-Logistic/images/swarm_2.png b/2-Regression/4-Logistic/images/swarm_2.png new file mode 100644 index 00000000..b44e7c71 Binary files /dev/null and b/2-Regression/4-Logistic/images/swarm_2.png differ diff --git a/2-Regression/4-Logistic/notebook.ipynb b/2-Regression/4-Logistic/notebook.ipynb index c151ea78..7c212763 100644 --- a/2-Regression/4-Logistic/notebook.ipynb +++ b/2-Regression/4-Logistic/notebook.ipynb @@ -1,41 +1,15 @@ { - "metadata": { - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.0" - }, - "orig_nbformat": 2, - "kernelspec": { - "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", - "display_name": "Python 3.7.0 64-bit ('3.7')" - }, - "metadata": { - "interpreter": { - "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" - } - } - }, - "nbformat": 4, - "nbformat_minor": 2, "cells": [ { + "cell_type": "markdown", + "metadata": {}, "source": [ "## Pumpkin Varieties and Color\n", "\n", "Load up required libraries and dataset. Convert the data to a dataframe containing a subset of the data: \n", "\n", "Let's look at the relationship between color and variety" - ], - "cell_type": "markdown", - "metadata": {} + ] }, { "cell_type": "code", @@ -43,8 +17,175 @@ "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", + "

5 rows × 26 columns

\n", + "
" + ], "text/plain": [ " City Name Type Package Variety Sub Variety Grade Date \\\n", "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", @@ -68,28 +209,48 @@ "4 NaN NaN NaN N NaN NaN NaN \n", "\n", "[5 rows x 26 columns]" - ], - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n

5 rows × 26 columns

\n
" + ] }, + "execution_count": 1, "metadata": {}, - "execution_count": 1 + "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", - "pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", + "full_pumpkins = pd.read_csv('../data/US-pumpkins.csv')\n", "\n", - "pumpkins.head()\n" + "full_pumpkins.head()\n" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } - ] -} \ No newline at end of file + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + }, + "metadata": { + "interpreter": { + "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" + } + }, + "orig_nbformat": 2 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/2-Regression/4-Logistic/solution/notebook.ipynb b/2-Regression/4-Logistic/solution/notebook.ipynb index be24dd5a..0fdceae9 100644 --- a/2-Regression/4-Logistic/solution/notebook.ipynb +++ b/2-Regression/4-Logistic/solution/notebook.ipynb @@ -6,27 +6,194 @@ "source": [ "## Logistic Regression - Lesson 4\n", "\n", - "Load up required libraries and dataset. Convert the data to a dataframe containing a subset of the data" + "Load up required libraries and dataset. Convert the data to a dataframe containing a subset of the data:" ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 63, "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n", + "

5 rows × 26 columns

\n", + "
" + ], "text/plain": [ - " City Name Type Package Variety Sub Variety Grade Date \\\n", - "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \n", + " City Name Type Package Variety Sub Variety Grade Date \n", + "0 BALTIMORE NaN 24 inch bins NaN NaN NaN 4/29/17 \\\n", "1 BALTIMORE NaN 24 inch bins NaN NaN NaN 5/6/17 \n", "2 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", "3 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 9/24/16 \n", "4 BALTIMORE NaN 24 inch bins HOWDEN TYPE NaN NaN 11/5/16 \n", "\n", - " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \\\n", - "0 270.0 280.0 270.0 ... NaN NaN NaN \n", + " Low Price High Price Mostly Low ... Unit of Sale Quality Condition \n", + "0 270.0 280.0 270.0 ... NaN NaN NaN \\\n", "1 270.0 280.0 270.0 ... NaN NaN NaN \n", "2 160.0 160.0 160.0 ... NaN NaN NaN \n", "3 160.0 160.0 160.0 ... NaN NaN NaN \n", @@ -40,266 +207,947 @@ "4 NaN NaN NaN N NaN NaN NaN \n", "\n", "[5 rows x 26 columns]" - ], - "text/html": "
\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n
City NameTypePackageVarietySub VarietyGradeDateLow PriceHigh PriceMostly Low...Unit of SaleQualityConditionAppearanceStorageCropRepackTrans ModeUnnamed: 24Unnamed: 25
0BALTIMORENaN24 inch binsNaNNaNNaN4/29/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
1BALTIMORENaN24 inch binsNaNNaNNaN5/6/17270.0280.0270.0...NaNNaNNaNNaNNaNNaNENaNNaNNaN
2BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
3BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN9/24/16160.0160.0160.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
4BALTIMORENaN24 inch binsHOWDEN TYPENaNNaN11/5/1690.0100.090.0...NaNNaNNaNNaNNaNNaNNNaNNaNNaN
\n

5 rows × 26 columns

\n
" + ] }, + "execution_count": 63, "metadata": {}, - "execution_count": 1 + "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", - "pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", + "full_pumpkins = pd.read_csv('../../data/US-pumpkins.csv')\n", "\n", - "pumpkins.head()\n" + "full_pumpkins.head()\n" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 64, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
City NamePackageVarietyOriginItem SizeColor
2BALTIMORE24 inch binsHOWDEN TYPEDELAWAREmedORANGE
3BALTIMORE24 inch binsHOWDEN TYPEVIRGINIAmedORANGE
4BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
5BALTIMORE24 inch binsHOWDEN TYPEMARYLANDlgeORANGE
6BALTIMORE36 inch binsHOWDEN TYPEMARYLANDmedORANGE
\n", + "
" + ], + "text/plain": [ + " City Name Package Variety Origin Item Size Color\n", + "2 BALTIMORE 24 inch bins HOWDEN TYPE DELAWARE med ORANGE\n", + "3 BALTIMORE 24 inch bins HOWDEN TYPE VIRGINIA med ORANGE\n", + "4 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "5 BALTIMORE 24 inch bins HOWDEN TYPE MARYLAND lge ORANGE\n", + "6 BALTIMORE 36 inch bins HOWDEN TYPE MARYLAND med ORANGE" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "from sklearn.preprocessing import LabelEncoder\n", - "\n", - "new_columns = ['Color','Origin','Item Size','Variety','City Name','Package']\n", + "# Select the columns we want to use\n", + "columns_to_select = ['City Name','Package','Variety', 'Origin','Item Size', 'Color']\n", + "pumpkins = full_pumpkins.loc[:, columns_to_select]\n", "\n", - "new_pumpkins = pumpkins.drop([c for c in pumpkins.columns if c not in new_columns], axis=1)\n", + "# Drop rows with missing values\n", + "pumpkins.dropna(inplace=True)\n", "\n", - "new_pumpkins.dropna(inplace=True)\n", - "\n", - "new_pumpkins = new_pumpkins.apply(LabelEncoder().fit_transform)" + "pumpkins.head()" ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "Check the data shape, size, and quality" + "# Let's have a look to our data!\n", + "\n", + "By visualising it with Seaborn" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 65, "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, + "execution_count": 65, "metadata": {}, - "execution_count": 3 + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHpCAYAAACVw6ZvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3klEQVR4nO3deVRU5f8H8PeFkQFZZXNQ2RQBwy3NNRVGMTCz3JW0JJcyjdwXLJcwBSszTcU0wKxccl9KyoVxS0VTEhXXRM1A+7qwmOz394eH+/M6A7IKV9+vc+7Jee6zfO7IkXfP3JkRRFEUQURERKRgRlVdABEREVF5MdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdDQc0sURaSnp4MfxUREpHwMNPTcysjIgLW1NTIyMqq6FCIiKicGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8VVUXQFTVrq5qAkszZnsipXIbdqWqS6BqgP+KExERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdCUU3BwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp8PPz8/g/MWHo0bN4ZGo8HcuXP1xvbv3x9t27ZFfn4+Zs2aJY1RqVRwc3PDuHHjkJmZKavP0PH4c0dERM8+BpqnRBRFDBw4EGFhYRgzZgySkpKg0+ng7OwMPz8/bNmyBQDg7e0NjUYDnU4njc3IyMCJEyfg4OAg+2V9+PBhZGdno3PnzlJbYGAgUlJSkJycjJ07d0Kr1WLMmDF47bXXkJeXJ6spLCwMKSkpsiMkJETWJyMjA1988UWJr3PTpk3SXPHx8QCA3bt3S2379+/H8uXL8cknnyAxMVEat379euzYsQPfffcdjI2NAQA+Pj7StcybNw/Lly/HhAkTZOs9Onfh0bJlyxLXS0REzwZVVRfwvPjpp5+wYcMGbNu2DT169JDaly9fjtu3b2P48OHo2rUrzM3NodVqodPpMHXqVADAwYMH4enpiU6dOkGn08HPzw/Aw10gV1dXuLu7S/Op1WpoNBoAQN26ddGiRQu0bdsWXbp0wcqVKzF8+HCpr6WlpdS3KCEhIfjyyy8xevRoODo6PvE6bW1tpT8X7ibZ2dnJ1nn99dfx5ptvYsiQITh69Cju3buH0aNHIyIiAl5eXlI/lUoljRswYAD27NmDbdu24ZtvvpH6PD43ERE9n7hD85SsXr0anp6esjBTaMKECbh9+zZ27doFANBqtTh48KC0oxIXFwc/Pz/4+voiLi5OGhcXFwetVvvEtTt37oxmzZph06ZNpa47KCgIHh4eCAsLK/XY4ixcuBC3b9/G7NmzMWrUKDRu3Fhvd+hxZmZmyMnJKfOa2dnZSE9Plx1ERPRs4A5NBdixYwcsLCxkbfn5+bLHFy5cQKNGjQyOL2y/cOECgIeB5v79+zh27BjatWsHnU6HSZMmoUOHDhgyZAiysrIgiiLi4+NlOy7F8fb2xqlTp2RtU6ZMwccffyxr27lzJzp27Cg9LryvpkePHhg3bhwaNGhQovWexMrKCjExMXjllVdgbm6OU6dOQRCEIvv/8ccfWL16tezlNQBo3749jIzkubzwPpvHhYeH45NPPtFrd307EVZWVmW4CiIiqi4YaCqAVqtFZGSkrO3o0aMYPHiwrE0UxRLN5+HhgXr16kGn08HHxwcnT56Er68vHB0d4eLigsOHD0MURWRnZ5doh6Zw7ccDw6RJkxAcHCxrq1u3rt7YgIAAdOjQAdOnT8fq1atLtF5JdO7cGW3btkXz5s3h6uqqdz4xMREWFhbIz89HTk4OunfvjsWLF8v6rFu3rsig+LjQ0FCMHz9eepyeng5nZ+fyXQQREVULDDQVwNzcHB4eHrK2v//+W/bY09MTSUlJBscXtnt6ekptfn5+iIuLQ9OmTdGwYUPp/pXCl51EUYSHh0eJfyEnJSXJ7rUBAHt7e726ixIREYF27dph0qRJJepfUiqVCiqV4R9DLy8vbNu2DSqVCnXq1IGJiYleH2dn5xJfg1qthlqtLle9RERUPfEemqdk4MCBuHjxIrZv3653bv78+bCzs0PXrl2lNq1Wi99//x27du2SbgIGIN0YrNPpSrw7s3fvXiQmJqJPnz5lrr9169bo3bu3dKPy02BiYgIPDw+4ubkZDDNERESFuEPzlAwcOBDr16/HkCFD8Pnnn6NLly5IT0/HkiVLsG3bNqxfvx7m5uZS/8L7aKKjo7FixQqp3dfXV7pvZtSoUXrrZGdnIzU1Ffn5+bh58yZiY2MRHh6O1157DW+//basb0ZGBlJTU2VtNWvWLPJ+kjlz5sDHx6fIHZWqcPv2bb1rsLGxgampaRVVREREVYE7NE+JIAj46aefMG3aNCxYsABeXl7o2LEjrl69Cp1Op/fhfO7u7nB1dUVGRgZ8fX2ldhcXF9SpUwc5OTmynZtCsbGxcHJygpubGwIDAxEXF4dFixZh69at0ue7FJoxYwacnJxkx+TJk4u8Bk9PTwwdOlT24X5Vzd/fX+8aCj/Th4iInh+CWNI7VYmeMenp6bC2tkZaWhrf5UREpHDcoSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVTVXUBRFXt6qomsDRjtq8obsOuVHUJRPQc4r/iREREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0z5ng4GAIggBBEGBiYgIPDw+EhYUhLy8PAKDT6SAIAu7duyd7bOhITU3Vm3/WrFlF9i88/P39ERAQoDd26dKlsLGxwd9//623bu3atdGnTx/89ddfUn83NzeD80dERFTOk0dERNWWqqoLoKcvMDAQMTExyM7Oxi+//ILRo0ejRo0aCA0NLXLM+fPnYWVlJWtzdHTU6zdx4kSMHDlSetyqVSu8++67GDFihNSWm5uLJk2a4JtvvsF7770HALhy5QomT56MyMhI1KtXD5cuXZLWtbS0xMWLF/Huu++iR48eOHXqFIyNjQEAYWFhsrkBwNLSspTPCBERKR0DzXNIrVZDo9EAAN5//31s3rwZ27ZtKzbQODo6wsbG5olzW1hYwMLCQnpsbGwMS0tLab1CCxcuxAcffIBXXnkFbm5uGDZsGF555RW89dZbBtd1cnLCjBkzMGjQIFy6dAleXl4AYHDuomRnZyM7O1t6nJ6eXqJxRERU/THQEMzMzHD79u2nuuaQIUOwefNmDB06FL1798bp06dx5syZYseYmZkBAHJycsq0Znh4OD755BO9dssOi2BlaQ7bBv5lmpeIiKoe76F5jomiiN27d+PXX39F586di+1br149affFwsICPj4+5V5/+fLlOH36NMaOHYvly5fDwcGhyL4pKSn44osvULduXWl3BgCmTJkiq8vCwgIHDhwwOEdoaCjS0tKk4/r16+W+BiIiqh64Q/Mc2rFjBywsLJCbm4uCggK8+eabmDVrVrFjDhw4ILs3pUaNGuWuw9HREe+99x62bNmCnj17GuxTr149iKKI//77D82aNcPGjRthYmIinZ80aRKCg4NlY+rWrWtwLrVaDbVaXe66iYio+mGgeQ5ptVpERkbCxMQEderUgUr15B8Dd3f3Et1DU1oqlarY9Q8cOAArKys4OjoavNnX3t4eHh4eFV4XEREpCwPNc8jc3FwxIaCyghQRET1bGGioRG7duoWsrCxZm52dXYW89FQeGRkZep+HU7NmTb23mBMR0bONNwVTiXh5ecHJyUl2/PHHH1VdFmbMmKFX1+TJk6u6LCIiesoEURTFqi6CqCqkp6fD2toaV05u4du2iYgUjjs0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/LZteu7Z1tfy27mJiBSOOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmYlz/Zuw65UYjVERFQW3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCml4OBgCIIgHXZ2dggMDMSpU6dk/QRBwJYtW2RtcXFxeO211+Dg4ABTU1M0aNAAAwYMwP79+4td083NDYIgYO3atXrnfHx8IAgCVq5cqXcuPDwcxsbG+Pzzzw3Om5qaipCQENSvXx9qtRrOzs7o0aMH9uzZI1v7q6++kh6LooiJEyfCysoKOp2uyFqLOt58803UrFkTq1evlo0rKChA+/bt0bdvXwDy59nExAQeHh4ICwtDXl4eAECn0xW5RmpqarHPJxERPXsYaMogMDAQKSkpSElJwZ49e6BSqfDaa68VO2bp0qXo0qUL7OzssG7dOpw/fx6bN29G+/btMW7cuCeu6ezsjJiYGFnbkSNHkJqaCnNzc4NjoqOjMXnyZERHR+udS05ORsuWLbF37158/vnnSExMRGxsLLRaLUaPHm1wvvz8fAwbNgyrVq1CXFwc/Pz89PocO3ZMem42btwIADh//rzUFhkZiYiICISEhCAlJUUaN3/+fPz1119YtmyZ1Fb4PF+8eBETJkzArFmz9MLZo3MXHo6OjoafRCIiemapqroAJVKr1dBoNAAAjUaDqVOnomPHjvj333/h4OCg1//atWsYO3Ysxo4diy+//FJ2rmnTpvjwww+fuOagQYOwYMECXL9+Hc7OzgAeBpZBgwZh1apVev337duHBw8eICwsDKtWrcLvv/+O9u3bS+dHjRoFQRAQHx8vC0Q+Pj4YOnSo3nzZ2dkICgrC8ePHceDAAXh5eRms89Hrt7W1BQA4OjrCxsZGag8JCcGWLVswYsQI7NixA+fOncOMGTOwbt062NvbS/0efZ7ff/99bN68Gdu2bUNoaKjU5/G5iYjo+cQdmnLKzMzEDz/8AA8PD9jZ2Rnss3HjRuTm5mLy5MkGzwuC8MR1ateujYCAAHz33XcAgP/++w/r1q0zGD4AICoqCkFBQahRowaCgoIQFRUlnbtz5w5iY2MxevRog7s7jweEzMxMdO/eHWfPnsWhQ4eKDDMlJQgCYmJicODAAaxYsQLBwcEYOHAgXn/99WLHmZmZIScnp8zrZmdnIz09XXYQEdGzgTs0ZbBjxw5YWFgAAO7fvw8nJyfs2LEDRkaG8+GFCxdgZWUl7TYAD0POkCFDpMeHDx9GkyZNil136NChmDBhAj766CNs2LABDRo0QPPmzfX6paenY8OGDTh8+DAAYPDgwejYsSMWLlwICwsLXLp0CaIowtvbu0TXO3v2bFhaWiIpKcngDlRZuLq64quvvsLw4cNRr149/Pbbb0X2FUURe/bswa+//oqQkBDZuXr16unNe+bMGYPzhIeH45NPPtFrt+ywCFaW+sHOtoF/SS6FiIiqAe7QlIFWq0VCQgISEhIQHx+PgIAAdOvWDVevXi1yzOO7MAEBAUhISMDPP/+M+/fvIz8//4nrdu/eHZmZmdi/fz+io6OL3J1Zs2YNGjRogGbNmgEAmjdvDldXV6xbtw7Aw4BQGq+88gru37+PuXPnlmrck7zzzjtwcnJCSEgIrKys9M4XBkdTU1N069YNAwYMwKxZs2R9Dhw4IP1dJCQk4JdffilyvdDQUKSlpUnH9evXK/R6iIio6nCHpgzMzc3h4eEhPf72229hbW2NFStW4NNPP9Xr37BhQ6SlpSE1NVXapbGwsICHhwdUqpL/FahUKrz11luYOXMmjh49is2bNxvsFxUVhTNnzsjmLigoQHR0NIYNG4aGDRtCEAScO3euROt26dIFISEheOONN1BQUICFCxeWuOYnUalURT4HWq0WkZGRMDExQZ06dQz2c3d3L/E9NGq1Gmq1ujzlEhFRNcUdmgogCAKMjIzw4MEDg+f79u2LGjVqYN68eeVea+jQodi3bx/eeOMN1KpVS+98YmIijh8/Dp1OJ9u50Ol0OHz4MM6dOwdbW1sEBARgyZIluH//vt4c9+7d02t75ZVXsH37dqxYsaJENzFXhMLg6OLiUqrgR0REzx/+liiD7Oxs6bNO7t69i8WLFyMzMxM9evQw2N/FxQXz58/HmDFjcOfOHQQHB8Pd3R137tzBDz/8AAAwNjYu0dqNGjXC//73P9SsWdPg+aioKLRu3RqdOnXSO9eqVStERUXh888/x5IlS/Dyyy+jdevWCAsLQ9OmTZGXl4ddu3YhMjISSUlJeuP9/f2xY8cO9OjRAwUFBVi8eHGJaq5Mt27dQlZWlqzNzs4ONWrUqKKKiIioKnCHpgxiY2Ph5OQEJycntGnTBseOHcP69esNfi5LoZCQEPz222/4999/0bdvXzRs2BCvvvoqrly5gtjY2CfeEPwoOzs7mJmZ6bXn5OTghx9+QJ8+fQyO69OnD1atWoXc3FzUr18fJ06cgFarxYQJE9C4cWN07doVe/bsQWRkZJFrd+7cGT///DNWrlyJ0aNHl/p+nIrm5eUl/V0UHn/88UeV1kRERE+fIFb1bySiKpKeng5ra2tcObmF73IiIlI47tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeLx27bpuWdbXwsrK6uqLoOIiMqBOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/KRgeu5dXdUElmaVl+3dhl2ptLmJiOgh7tAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0ChMcHAwBEHAyJEj9c6NHj0agiAgODhY6tuzZ0+9sREREbJxW7ZsgSAI0mOdTgdBEHDv3j29Nby9vaFWq5GamirrW9yh0+kwa9YsNG/eXG++5ORkCIKAhIQEg/M5ODjg1VdfRWJiosHn4fEjMDCwBM8iERE9axhoFMjZ2Rlr167FgwcPpLasrCysXr0aLi4uxY41NTXFvHnzcPfu3VKve/DgQTx48AB9+/bFd999BwBo3749UlJSpKN///4IDAyUtbVv377Ua50/fx4pKSn49ddfkZ2dje7duyMnJ0fW5/F1UlJSsGbNmlKvRUREysdAo0AtWrSAs7MzNm3aJLVt2rQJLi4uePHFF4sd6+/vD41Gg/Dw8FKvGxUVhTfffBNvvfUWoqOjAQAmJibQaDTSYWZmBrVaLWszMTEp9VqOjo7QaDRo0aIFxo4di+vXr+PcuXOyPo+vo9FoUKtWrVKvRUREysdAo1BDhw5FTEyM9Dg6OhrvvPPOE8cZGxtj7ty5+Prrr/H333+XeL2MjAysX78egwcPRteuXZGWloYDBw6UqfbSSEtLw9q1awGgTMHoUdnZ2UhPT5cdRET0bFBVdQFUNoMHD0ZoaCiuXr0KADh06BDWrl0LnU73xLG9evVC8+bNMXPmTERFRZVovbVr16Jhw4bw8fEBAAwcOBBRUVHo2LFjma+hOPXq1QMA3L9/HwDw+uuvw9vbW9Znx44dsLCwkLVNmzYN06ZNMzhneHg4PvnkE712yw6LYGVpXhFlG3Tn8u4n9rFt4F9p6xMRPQ8YaBTKwcEB3bt3x8qVKyGKIrp37w57e/sSj583bx46d+6MiRMnlqh/dHQ0Bg8eLD0ePHgwfH198fXXX8PS0rLU9T/JgQMHULNmTRw5cgRz587FsmXL9PpotVpERkbK2mxtbYucMzQ0FOPHj5cep6enw9nZueKKJiKiKsNAo2BDhw7FBx98AABYsmRJqcZ26tQJAQEBCA0Nld4VVZSzZ8/iyJEjiI+Px5QpU6T2/Px8rF27FiNGjHjielZWVkhLS9NrL3wnlbW1tazd3d0dNjY28PLywq1btzBgwADs379f1sfc3BweHh5PXLuQWq2GWq0ucX8iIlIO3kOjYIGBgcjJyUFubi4CAgJKPT4iIgLbt2/H4cOHi+0XFRWFTp064c8//0RCQoJ0jB8/vsQvWXl5eeHvv//GzZs3Ze0nTpyAqalpse/OGj16NE6fPo3NmzeXaC0iInr+cIdGwYyNjZGUlCT9ubSaNGmCQYMGYdGiRUX2yc3Nxffff4+wsDA0btxYdm748OH48ssvcebMGenemqIEBATAy8sLQUFB+PTTT6HRaHDixAl8/PHHGDNmTLH116xZEyNGjMDMmTPRs2dP6TNzsrOzpc/DKaRSqUr10hsRET0buEOjcFZWVrCysirz+LCwMBQUFBR5ftu2bbh9+zZ69eqld65Ro0Zo1KhRiXZpVCoVfvvtN7i4uCAoKAiNGzfGzJkzMWbMGMyePfuJ4z/44AMkJSVh/fr1UltsbCycnJxkR4cOHZ44FxERPXsEURTFqi6CqCqkp6fD2toaV05uqdR3OZUE3+VERFQ+3KEhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFU1V1AURVzba+tlzfWE5ERFWPOzRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4pQ40cXFxlVEHERERUZmVOtAEBgaiQYMG+PTTT3H9+vXKqImIiIioVEodaG7cuIEPPvgAGzZsQP369REQEICffvoJOTk5lVEfUaW7uqoJkqPcq7oMIiIqh1IHGnt7e4wbNw4JCQk4evQoPD09MWrUKNSpUwcffvgh/vzzz8qok4iIiKhI5bopuEWLFggNDcUHH3yAzMxMREdHo2XLlujYsSPOnDlTUTUSERERFatMgSY3NxcbNmzAq6++CldXV/z6669YvHgxbt68iUuXLsHV1RX9+vWr6FqJiIiIDCr1l1OGhIRgzZo1EEURb731Fj777DM0btxYOm9ubo4vvvgCderUqdBCiYiIiIpS6kBz9uxZfP311+jduzfUarXBPvb29nx7NxERET01pX7JaebMmejXr59emMnLy8P+/fsBACqVCr6+vhVTIREREdETlDrQaLVa3LlzR689LS0NWq22QooiIiIiKo1SBxpRFCEIgl777du3YW5uXiFFEREREZVGie+h6d27NwBAEAQEBwfLXnLKz8/HqVOn0L59+4qvkIiIiOgJShxorK2tATzcobG0tISZmZl0zsTEBG3btsWIESMqvkIiIiKiJyhxoImJiQEAuLm5YeLEiXx5iYiIiKqNMr3LSa1WY/fu3fjmm2+QkZEBAPjnn3+QmZlZ4QUSERERPUmpP4fm6tWrCAwMxLVr15CdnY2uXbvC0tIS8+bNQ3Z2NpYtW1YZdRIREREVqdQ7NGPGjMFLL72Eu3fvyu6j6dWrF/bs2VOhxREREVHpzZo1C82bN6/qMp6qUgeaAwcO4OOPP4aJiYms3c3NDTdu3KiwwoiIiJ5XqampCAkJQf369aFWq+Hs7IwePXpw46AYpQ40BQUFyM/P12v/+++/YWlpWSFFPY+e9MPr5uaGr776Surv5uYGQRBw5MgR2Txjx46Fn5+f9HjWrFkQBAGCIEClUsHe3h6dOnXCV199hezsbNlYPz8/qe+jx8iRI6U+j7ZbWVmhVatW2Lp1q2yelStXGpzH1NRU6hMcHIyePXsW+Xw8fr1FWbNmDYyNjTF69Ogn9iUiUoLk5GS0bNkSe/fuxeeff47ExETExsZCq9U+1X/rcnNzn9paFaHUgeaVV16R/aIRBAGZmZmYOXMmXn311Yqs7blR1h9eU1NTTJky5Ynz+/j4ICUlBdeuXUNcXBz69euH8PBwtG/fXrqpu9CIESOQkpIiOz777DNZn5iYGKSkpOD48eN4+eWX0bdvXyQmJsr6WFlZ6c1z9erVUjwrJRMVFYXJkydjzZo1yMrKqvD5iYietlGjRkEQBMTHx6NPnz7w9PSEj48Pxo8fL/1P7LVr1/DGG2/AwsICVlZW6N+/P27evFnknAUFBQgLC0O9evWgVqvRvHlzxMbGSueTk5MhCALWrVsHX19fmJqa4scff6z0a61IpQ408+fPx6FDh/DCCy8gKysLb775pvRy07x58yqjxmdeSX54DXn33Xdx5MgR/PLLL8XOr1KpoNFoUKdOHTRp0gQhISHYt28fTp8+rfd3VrNmTWg0GtlhZWUl62NjYwONRgNPT0/Mnj0beXl5el9GKgiC3jy1a9cu5TNTvCtXruD333/H1KlT4enpiU2bNhXbPzs7G+np6bKDiKg6uXPnDmJjYzF69GiDH49iY2ODgoICvPHGG7hz5w727duHXbt24a+//sKAAQOKnHfhwoWYP38+vvjiC5w6dQoBAQF4/fXXcfHiRVm/qVOnYsyYMUhKSkJAQECFX19lKnWgqVevHv78809MmzYN48aNw4svvoiIiAicPHkSjo6OlVHjM60kP7xFcXd3x8iRIxEaGoqCgoJSrevt7Y1u3bo9MQQUJy8vD1FRUQCgd0/V0xATE4Pu3bvD2toagwcPlmopSnh4OKytraXD2dkZAGDZYRGs/FY8jZKJiIp16dIliKIIb2/vIvvs2bMHiYmJWL16NVq2bIk2bdpg1apV2LdvH44dO2ZwzBdffIEpU6Zg4MCB8PLywrx589C8eXO9l/bHjh2L3r17w93dHU5OThV5aZWu1IEGePh//IMHD8Znn32GpUuXYvjw4bJ3PFHJleSHtzgff/wxrly5UqatQW9vbyQnJ8vali5dCgsLC9nx+NxBQUGwsLCAWq3GuHHj4Obmhv79+8v6pKWl6c3TrVu3UtdYlIKCAqxcuRKDBw8GAAwcOBAHDx7ElStXihwTGhqKtLQ06bh+/XqF1UNEVBFEUXxin6SkJDg7O0v/UwYAL7zwAmxsbJCUlKTXPz09Hf/88w9efvllWfvLL7+s1/+ll14qY+VVr0SfQ7Nt2zZ069YNNWrUwLZt24rt+/rrr1dIYc+LkvzwFsfBwQETJ07EjBkzit1uLGrtx79odNCgQfjoo49kbY+/VLRgwQL4+/vjr7/+wrhx47Bo0SLY2trK+lhaWuLEiROytooMvbt27cL9+/el+7bs7e3RtWtXREdHY/bs2QbHqNVq2XeQERFVNw0bNoQgCDh37lyVrK/kbwEoUaDp2bMnUlNT4ejoWOw7UwRBMPgOKCpaRfzwjh8/HkuXLsXSpUtLNS4pKQnu7u6yNmtra3h4eBQ7TqPRwMPDAx4eHoiJicGrr76Ks2fPyl5yNDIyeuI85REVFYU7d+7IQlJBQQFOnTqFTz75BEZGZdp8JCKqUra2tggICMCSJUvw4Ycf6gWMe/fuoVGjRrh+/TquX78u7dKcPXsW9+7dwwsvvKA3p5WVFerUqYNDhw7B19dXaj906BBat25duRf0FJXoX/2CggLpl1VBQUGRB8NM6T36w3v//n298/fu3XviHBYWFpg+fTrmzJmj966lopw7dw6xsbHo06dPaUuWad26NVq2bIk5c+aUa57SuH37NrZu3Yq1a9ciISFBOk6ePIm7d+/it99+e2q1EBFVtCVLliA/Px+tW7fGxo0bcfHiRSQlJWHRokVo164d/P390aRJEwwaNAgnTpxAfHw83n77bfj6+hb5ktGkSZMwb948rFu3DufPn8fUqVORkJCAMWPGPOWrqzyl+uqD3NxcBAYGYtmyZWjYsGFl1fTcWbJkCV5++WW0bt0aYWFhaNq0KfLy8rBr1y5ERkYafE30ce+++y4WLFiA1atXo02bNrJzeXl5SE1NRUFBAW7fvg2dTodPP/0UzZs3x6RJk2R9//vvP6Smpsra1Go1atWqVeTaY8eORa9evTB58mTUrVsXwMOXsx6fBwAcHR2l3ZO0tDQkJCTIztvZ2Un/x3Hjxg29866urvj+++9hZ2eH/v37671k9uqrryIqKgqBgYFF1ktEVJ3Vr18fJ06cwJw5czBhwgSkpKTAwcEBLVu2RGRkJARBwNatWxESEoJOnTrByMgIgYGB+Prrr4uc88MPP0RaWhomTJiAW7du4YUXXsC2bduerd/lYinZ29uLFy5cKO0weoJ//vlHHD16tOjq6iqamJiIdevWFV9//XUxLi5OFEVRdHV1FRcsWCD1f/yxKIri6tWrRQCir6+v1DZz5kwRgAhANDY2Fm1tbcUOHTqICxYsELOysmTjfX19pb6PHgEBAVIfAOLmzZtl4woKCkRvb2/x/fffF0VRFGNiYgzOA0BMSUkRRVEUhwwZYvD8sGHDpOszdP77778XmzRpIo4aNcrg87hu3TrRxMRE/Pfff5/4nKelpYkAxCsnt4i3L+16Yn8iIqq+BFEs3V2p48aNg1qtRkRERPmSFFEVS09Ph7W1Na6c3AIrS3PYNvCv6pKIiKiMSv1t23l5eYiOjsbu3bvRsmVLvRuWvvzyyworjoiIiKgkSh1oTp8+jRYtWgAALly4IDv3+P0MRERERE9DqQPN4x9xT0RERFTV+GEdREREpHil3qEBgOPHj+Onn37CtWvXkJOTIztXnu8GIiIiIiqLUu/QrF27Fu3bt0dSUhI2b96M3NxcnDlzBnv37oW1tXVl1EhERERUrFIHmrlz52LBggXYvn07TExMsHDhQpw7dw79+/eHi4tLZdRIREREVKxSB5rLly+je/fuAAATExPcv38fgiBg3LhxWL58eYUXSERERPQkpb6HplatWtL3BdWtWxenT59GkyZNcO/ePfz3338VXiAREdHTlBzl/uROFcRt2JWnttazrsQ7NKdPnwYAdOrUCbt27QIA9OvXD2PGjMGIESMQFBSELl26VE6VREREJLl+/TqGDh2KOnXqwMTEBK6urhgzZgxu374t9fHz84MgCBAEAaampvD09ER4eDgMfUHA4cOHYWxsLL0C86jk5GQIggBHR0e9L0Bu3rw5Zs2aJWu7dOkShg4dChcXF6jVatStWxddunTBjz/+iLy8PKlfYW2PH2vXri3Tc1LiQNO0aVO0adMGTZo0Qb9+/QAAH330EcaPH4+bN2+iT58+iIqKKlMRREREVDJ//fUXXnrpJVy8eBFr1qzBpUuXsGzZMuzZswft2rXDnTt3pL4jRoxASkoKzp8/j9DQUMyYMQPLli3TmzMqKgohISHYv38//vnnH4PrZmRk4Isvvii2tvj4eLRo0QJJSUlYsmQJTp8+DZ1Oh+HDhyMyMhJnzpyR9Y+JiUFKSors6NmzZ+mfFAAl/i6nAwcOICYmBhs2bEBBQQH69OmD4cOHo2PHjmVamKiqFX6XU1paGqysrKq6HCKqJqr7S07dunXD6dOnceHCBZiZmUntqampaNCgAd5++21ERkbCz88PzZs3x1dffSX1admyJVxdXWUfsZKZmQknJyccP34cM2fORNOmTTFt2jTpfHJyMtzd3TFp0iRERkbi8uXLcHR0BPBwh6Znz56YNWsWRFGEj48Patasifj4eBgZ6e+ZiKIofauAIAjYvHlzmQPM40q8Q9OxY0dER0cjJSUFX3/9NZKTk+Hr6wtPT0/MmzcPqampFVIQERERGXbnzh38+uuvGDVqlCzMAIBGo8GgQYOwbt06vZeVRFHEgQMHcO7cOZiYmMjO/fTTT/D29oaXlxcGDx6M6Ohogy9LBQUFwcPDA2FhYQZrS0hIQFJSEiZOnGgwzACV+xVJpX6Xk7m5Od555x3s27cPFy5cQL9+/bBkyRK4uLjg9ddfr4waiYiICMDFixchiiIaNWpk8HyjRo1w9+5d/PvvvwCApUuXwsLCAmq1Gp06dUJBQQE+/PBD2ZioqCgMHjwYABAYGIi0tDTs27dPb25BEBAREYHly5fj8uXLeucLv9/Ry8tLart16xYsLCykY+nSpbIxQUFBsvMWFha4du1aKZ6R/1eurz7w8PDAtGnT8PHHH8PS0hI///xzeaYjIiKiEijh3SIYNGgQEhIScOjQIXTr1g0fffQR2rdvL50/f/484uPjERQUBABQqVQYMGBAkffEBgQEoEOHDpg+fXqJ1rezs0NCQgISEhJgY2Oj9+0CCxYskM4XHnXq1CnR3I8r01cfAMD+/fsRHR2NjRs3wsjICP3798ewYcPKOh0RERE9gYeHBwRBQFJSEnr16qV3PikpCbVq1YKDgwMAwNraGh4eHgAevrTk4eGBtm3bwt/fH8DD3Zm8vDxZiBBFEWq1GosXLzb4DQARERFo164dJk2aJGtv2LAhgIch6cUXXwQAGBsbS+urVPqRQ6PRSOfLq1Q7NP/88w/mzp0LT09P+Pn54dKlS1i0aBH++ecfrFixAm3btq2QooiIiEifnZ0dunbtiqVLl+LBgweyc6mpqfjxxx8xYMAAg/eqWFhYYMyYMZg4cSJEUUReXh5WrVqF+fPny3ZI/vzzT9SpUwdr1qwxWEPr1q3Ru3dvTJ06Vdb+4osvwtvbG1988QUKCgoq7qJLqMQ7NN26dcPu3bthb2+Pt99+G0OHDpW9TkZERESVb/HixWjfvj0CAgLw6aefwt3dHWfOnMGkSZNQt25dzJkzp8ix7733HmbPno2NGzdCpVLh7t27GDZsmN5OTOFHsYwcOdLgPHPmzIGPj49s10UQBMTExKBr1654+eWXERoaikaNGiE3Nxf79+/Hv//+C2NjY9k89+7d03tTkaWlJczNzUv7tABiCfXo0UPcsmWLmJeXV9IhRNVaWlqaCEBMS0ur6lKIiEolOTlZHDJkiFi7dm2xRo0aorOzsxgSEiL+73//k/r4+vqKY8aM0Rv73nvviT4+PuJrr70mvvrqqwbnP3r0qAhA/PPPP8UrV66IAMSTJ0/K+rz77rsiAHHmzJmy9vPnz4tDhgwR69WrJ6pUKtHa2lrs1KmT+M0334i5ublSPwAGj/Dw8DI9JyX+HBqiZw0/h4aI6NlRrnc5EREREVUHZX6XE9Gz4uqqJrA008/2/NI4IiLl4A4NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4/h4aIiOgRdy7vfmpr2Tbwf2prPeu4Q0NERKQQy5Ytg6WlJfLy8qS2zMxM1KhRA35+frK+Op0OgiDg8uXLcHNzw1dffaU336xZs9C8eXODj93c3CAIQpFHcHAwABR5fu3atRV89cXjDg0REZFCaLVaZGZm4vjx42jbti0A4MCBA9BoNDh69CiysrJgamoKAIiLi4OLiwsaNGhQprWOHTuG/Px8AMDvv/+OPn364Pz589J335mZmUl9Y2JiEBgYKBtvY2NTpnXLioGGiIhIIby8vODk5ASdTicFGp1OhzfeeAN79+7FkSNHpJ0anU4HrVZb5rUcHBykP9va2gIAHB0dDQYVGxsbaDSaMq9VEfiSExERkYJotVrExcVJj+Pi4uDn5wdfX1+p/cGDBzh69Gi5Ao3SMNAQEREpiFarxaFDh5CXl4eMjAycPHkSvr6+6NSpE3Q6HQDg8OHDyM7OlgWaKVOmwMLCQnbMnTu3QmoKCgrSm/vatWsVMndJ8SUnIiIiBfHz88P9+/dx7Ngx3L17F56ennBwcICvry/eeecdZGVlQafToX79+nBxcZHGTZo0SbqRt9CiRYuwf//+cte0YMEC+PvL37FVp06dcs9bGtyheQYEBwcbvMP80qVLAIDw8HAYGxvj888/1xu7cuVK2euhK1eulMYbGRnByckJAwYMwLVr1yCKIvz9/REQEKA3z9KlS2FjYwN/f/9i74p3c3OTxpSmrpJe8+M3pRERPWs8PDxQr149xMXFIS4uDr6+vgAeBghnZ2f8/vvviIuLQ+fOnWXj7O3t4eHhITsK740pL41Goze3SvV090wYaJ4RgYGBSElJkR3u7u4AgOjoaEyePBnR0dElmsvKygopKSm4ceMGNm7ciPPnz6Nfv34QBAExMTE4evQovvnmG6n/lStXMHnyZHz99dfYuHGjrAbg4d3vhY+PHTsmjSttXSW55jVr1pRpLiIiJdFqtdDpdNDpdLK3a3fq1Ak7d+5EfHz8c3X/DMBA88xQq9XQaDSyw9jYGPv27cODBw8QFhaG9PR0/P7770+cSxAEaDQaODk5oX379hg2bBji4+ORnp4OZ2dnLFy4EBMnTsSVK1cgiiKGDRuGV155BW+99Rasra1lNQD/f/e7RqOR7povS10lueZatWqVeh4iIqXRarU4ePAgEhISpB0aAPD19cU333yDnJycpxpo7t27h9TUVNlx//79p7Y+wHtonnlRUVEICgpCjRo1EBQUhKioKLRv377E42/duoXNmzfD2NgYxsbGAIAhQ4Zg8+bNGDp0KHr37o3Tp0/jzJkzT7WussjOzkZ2drb0OD09vVLXIyJlUsKn92q1Wjx48ADe3t6oXbu21O7r64uMjAzp7d1PyzvvvKPXFh4ejqlTpz61GiCS4g0ZMkQ0NjYWzc3NpaNv375iWlqaaGZmJiYkJIiiKIonT54ULSwsxIyMDGlsTEyMaG1tLXsMQDQ3Nxdr1qwpAhABiB9++KFszZs3b4r29vaikZGRuHnz5iJrA6B3vix1leSazc3NxTlz5hQ5ZubMmdL1PHpcOblFvH1pV5HjiIio+uMOzTNCq9UiMjJSemxubo41a9agQYMGaNasGQCgefPmcHV1xbp16zBs2LAi57K0tMSJEyeQm5uLnTt34scff8ScOXNkfRwdHfHee+9hy5Yt6NmzZ6lqLWtdj3v8mgEUe4NbaGgoxo8fLz0ufAmNiIiUj4HmGWFubg4PDw9ZW1RUFM6cOSO707ygoADR0dHFBgcjIyNprkaNGuHy5ct4//338f3338v6qVSqMt3FXta6HmfomoujVquhVqtLVSsRESkDA80zKjExEcePH4dOp5PtWty5cwd+fn44d+4cvL29SzTX1KlT0aBBA4wbNw4tWrSoNnUREREVYqB5RkVFRaF169bo1KmT3rlWrVohKirK4Oe/GOLs7IxevXphxowZ2LFjx1OrKz8/HwkJCbI+arUajRo1AvDwJt/U1FTZeZVKBXt7+3LVSEREysO3bT+DcnJy8MMPP6BPnz4Gz/fp0werVq1Cbm5uieccN24cfv75Z8THxz+1ujIzM/Hiiy/Kjh49ekj9Y2Nj4eTkJDs6dOhQ5vqIiEi5BFEUxaougqgqpKenw9raGldOboGVpbki3qpJRESGcYeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUT1XVBRBVNdv6WlhZWVV1GUREVA7coSEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgISIiIsVjoCEiIiLFY6AhIiIixWOgoefe1VVNkBzlXtVlEBFROTDQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQEBERkeIx0BAREZHiMdAQERGR4jHQKFRwcDAEQZAOOzs7BAYG4tSpU7J+giBgy5YteuOTk5MhCAISEhL0zvn5+WHs2LHSYzc3N9lahUdERESR8xZ3zJ49G+bm5rh06ZJs7D///INatWph8eLFeuuam5ujRYsWWL9+vdR/1qxZBuf39vYuxTNJRETPAgYaBQsMDERKSgpSUlKwZ88eqFQqvPbaa5WyVlhYmLRW4RESEqLXz9nZWdZnwoQJ8PHxkbVNnDgRAQEBCA4ORkFBgTR2xIgRaNmyJUaPHq237smTJ9GqVSsMGDAAv//+u3T+8blTUlJw8ODBSnkOiIio+lJVdQFUdmq1GhqNBgCg0WgwdepUdOzYEf/++y8cHBwqdC1LS0tpreIYGxvL+llYWEClUumN/eabb+Dj44Mvv/wSEydOxMqVK3Ho0CEkJiZCEAS9dTUaDZYsWYIffvgB27dvR/v27QHA4NxFyc7ORnZ2tvQ4PT29ROOIiKj6Y6B5RmRmZuKHH36Ah4cH7OzsqrqcJ3JwcMDy5csRFBSEZs2aYdy4cVi4cCGcnZ2LHKNSqVCjRg3k5OSUac3w8HB88skneu2ubyfCysqqTHMSEVH1wJecFGzHjh2wsLCAhYUFLC0tsW3bNqxbtw5GRhX/1zplyhRprcLjwIED5ZqzZ8+e6N+/PwIDA+Hr64shQ4YU2TcnJwfh4eFIS0tD586dpfbExES9ukaOHGlwjtDQUKSlpUnH9evXy1U/ERFVH9yhUTCtVovIyEgAwN27d7F06VJ069YN8fHxcHV1rdC1Jk2ahODgYFlb3bp1yz3v9OnTsWrVKnz88ccGz0+ZMgUff/wxsrKyYGFhgYiICHTv3l067+XlhW3btsnGFLXbolaroVary10zERFVPww0CmZubg4PDw/p8bfffgtra2usWLECn376abFjC3/pp6Wl6Z27d+8erK2tZW329vaytSqKSqWS/fdxhUHKwsICtWvXlt1fAwAmJiaVUhcRESkLX3J6hgiCACMjIzx48OCJfW1tbWFvb48//vhD1p6eno5Lly7B09OzssoslcIgpdFo9MIMERFRIe7QKFh2djZSU1MBPHzJafHixcjMzESPHj1k/a5cuaL3eTMNGzbE+PHjMXfuXNSuXRtt27bF7du3MXv2bDg4OKB3796y/hkZGdJahWrWrFnlN9Pm5eXp1SUIAmrXrl1FFRERUVVgoFGw2NhYODk5AXj49mZvb2+sX78efn5+sn7jx4/XG3vgwAFMnjwZFhYWmDdvHi5fvgxbW1u8/PLLiIuLg5mZmaz/jBkzMGPGDFnbe++9h2XLllXsRZXSmTNnpOegkFqtRlZWVhVVREREVUEQRVGs6iKIqkJ6ejqsra2RlpZW5TtNRERUPryHhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+Bhp57V1c1QXKUe1WXQURE5cBAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BDREREisdAQ0RERIrHQENERESKx0BTCsHBwejZs6esbcOGDTA1NcX8+fOlPoIgICIiQtZvy5YtEARBerxy5UrY2NgYXEcQBGzZskXWtnHjRvj5+cHa2hoWFhZo2rQpwsLCcOfOnSLnS0pKgrOzM/r164ecnJxi13y09sePwMDAIsfMmjULzZs312tPTk6GIAhISEiQPTZ0HDlyRDb2wYMHsLW1hb29PbKzs/XmdnNzk8aamZnBzc0N/fv3x969e4usk4iInm0MNOXw7bffYtCgQYiMjMSECROkdlNTU8ybNw93796tkHU++ugjDBgwAK1atcLOnTtx+vRpzJ8/H3/++Se+//57g2OOHTuGjh07IjAwEOvWrYOJiUmJ1goMDERKSorsWLNmTYVcBwDs3r1bb/6WLVvK+mzcuBE+Pj7w9vbWC3aFwsLCkJKSgvPnz2PVqlWwsbGBv78/5syZU2G1EhGRcqiqugCl+uyzzzBz5kysXbsWvXr1kp3z9/fHpUuXEB4ejs8++6xc68THx2Pu3Ln46quvMGbMGKndzc0NXbt2xb179/TG7N27F2+88QZGjRqFefPmlWo9tVoNjUZTrpqLY2dn98T5o6KiMHjwYIiiiKioKAwYMECvj6WlpTSPi4sLOnXqBCcnJ8yYMQN9+/aFl5dXpdRPRETVE3doymDKlCmYPXs2duzYoRdmAMDY2Bhz587F119/jb///rtca/3444+wsLDAqFGjDJ5//CWkzZs3o3v37vj4449LHWaqg8uXL+Pw4cPo378/+vfvjwMHDuDq1aslGjtmzBiIooitW7caPJ+dnY309HTZQUREzwYGmlLauXMnPvvsM2zduhVdunQpsl+vXr3QvHlzzJw5s1zrXbx4EfXr10eNGjWe2DczMxP9+vXDpEmTMGXKlDKtt2PHDlhYWMiOuXPnFjsmMTFRb4yPj4/Bvu3bt9fr+6jo6Gh069YNtWrVgq2tLQICAhATE1Oi2m1tbeHo6Ijk5GSD58PDw2FtbS0dzs7OAADXtxPhNuxKidYgIqLqiS85lVLTpk3xv//9DzNnzkTr1q31fiE/at68eejcuTMmTpxY5vVEUSxxXzMzM3To0AErVqxAUFAQGjVqVOr1tFotIiMjZW22trbFjvHy8sK2bdtkbTdu3ICfn59e33Xr1hVZV35+Pr777jssXLhQahs8eDAmTpyIGTNmwMjoyflbFEXZzdePCg0Nxfjx46XH6enpUqghIiJlY6Appbp162LDhg3QarUIDAzEzp07YWlpabBvp06dEBAQgNDQUAQHB8vOWVlZ4f79+ygoKJD9oi68J8ba2hoA4OnpiYMHDyI3N/eJuzTGxsbYsmULevfuDa1Wi7i4uFKHGnNzc3h4eJRqjImJid4Ylcrwj5azs3OR8//666+4ceOG3j0z+fn52LNnD7p27VpsHbdv38a///4Ld3d3g+fVajXUanWxcxARkTLxJacycHV1xb59+5CamorAwEBkZGQU2TciIgLbt2/H4cOHZe1eXl7Iy8uT3tZc6MSJEwAeBhkAePPNN5GZmYmlS5canP/xm4LVajU2bdqEVq1aQavV4uzZs6W8uqoTFRWFgQMHIiEhQXYMHDgQUVFRTxy/cOFCGBkZ6b21noiInn3coSkjZ2dn6HQ6aLVaBAQEIDY2FlZWVnr9mjRpgkGDBmHRokWydh8fH7zyyisYOnQo5s+fj/r16+P8+fMYO3YsBgwYgLp16wIA2rRpg8mTJ2PChAm4ceMGevXqhTp16uDSpUtYtmwZOnToIHv3E/Aw1GzcuBH9+vWDVqvF3r17pXta8vPz9UKUWq2WdnKys7ORmpoqO69SqWBvb1+u56vQ7du39ea3sbFBRkYGtm/fjm3btqFx48ay82+//TZ69eqFO3fuSC9/ZWRkIDU1Fbm5ubhy5Qp++OEHfPvttwgPDy/1DhMRESkfA0051KtXTxZqfv31V4P9wsLCsG7dOr32devWYebMmXjvvffwzz//oF69eujVqxemT58u6zdv3jy0bNkSS5YswbJly1BQUIAGDRqgb9++GDJkiME1TUxMsGHDBvTv318KNcDDG4dffPFFWd8GDRrg0qVLAIDY2Fg4OTnJznt5eeHcuXMle1KewN/fX69tzZo1uHHjBszNzQ3eaN2lSxeYmZnhhx9+wIcffggAmDFjBmbMmAETExNoNBq0bdsWe/bsgVarrZA6iYhIWQSxNHedEj1D0tPTYW1tjbS0NIO7a0REpBy8h4aIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUr0oDTXBwMHr27KnXrtPpIAgC7t27J7Xl5+djwYIFaNKkCUxNTVGrVi1069YNhw4dkvqcO3cOgiDgyJEjsvnatm0LU1NTZGVlSW1ZWVkwNTVFVFSUVIsgCBAEATVq1EDt2rXRtWtXREdHo6CgQDafm5ub1PfRIyIiAgCQnJwMQRDg6OiIjIwM2djmzZtj1qxZBp+P8tZfkufy0cePXrOhw83NDQDg5+dn8PzIkSMNXkdxcwqCAK1Wixo1auDgwYOycffv30f9+vUxceJEvXVNTU3xwgsvYOnSpVL/lStXGpzf1NTUYF1ERPTsUsQOjSiKGDhwIMLCwjBmzBgkJSVBp9PB2dkZfn5+2LJlCwDA29sbGo0GOp1OGpuRkYETJ07AwcFBFhQOHz6M7OxsdO7cWWoLDAxESkoKkpOTsXPnTmi1WowZMwavvfYa8vLyZDWFhYUhJSVFdoSEhMj6ZGRk4IsvvijxdZa3/tJauHChrH4AiImJkR4fO3ZM6jtixAi96/3ss88Mzvton6+++gpWVlaytu3btyMkJATBwcG4f/++NG7y5MkwMzPDp59+qrfu2bNn0b9/f4wePRpr1qyRzj8+d0pKCq5evVrm54SIiJRJEYHmp59+woYNG7Bq1SoMHz4c7u7uaNasGZYvX47XX38dw4cPl34xarVaWSA4ePAgPD090aNHD1m7TqeDq6sr3N3dpTa1Wg2NRoO6deuiRYsWmDZtGrZu3YqdO3di5cqVsposLS2h0Whkh7m5uaxPSEgIvvzyS9y6davE11qe+kvL2tpaVj8A2NjYSI8dHBykvjVr1tS7XisrK4PzPtrH2toagiDI2iwsLDB37lyYmJhgypQpAIC4uDh8++23WLVqlWyHpXDd+vXrY9asWWjYsCG2bdsmnX98bo1Gg9q1axusKzs7G+np6bKDiIieDYoINKtXr5Z+qT9uwoQJuH37Nnbt2gXgYSA4ePCgtKMSFxcHPz8/+Pr6Ii4uThoXFxcHrVb7xLU7d+6MZs2aYdOmTaWuOygoCB4eHggLCyvxmIquv7oyNTXFqlWrsHz5cmzduhVDhw7FtGnT0LJly2LHmZmZIScnp0xrhoeHw9raWjqcnZ0BAHf+isOdy7sr9CAioqerygPNjh07YGFhITu6desm63PhwgU0atTI4PjC9gsXLgB4GAju378vvVyi0+ng6+uLTp064ejRo8jKysKDBw8QHx9f4kDg7e2N5ORkWduUKVP06j5w4ICsT+F9NcuXL8fly5dLtFZ56i/Jc1lWS5cu1Zv7xx9/LNecL730EkJDQ9G7d2/Y2dnho48+KrJvfn4+fvjhB5w6dUr2MltaWlqJrzk0NBRpaWnScf369XLVT0RE1YeqqgvQarWIjIyUtR09ehSDBw+WtYmiWKL5PDw8UK9ePeh0Ovj4+ODkyZPw9fWFo6MjXFxccPjwYYiiiOzs7BIHGlEUIQiCrG3SpEkIDg6WtdWtW1dvbEBAADp06IDp06dj9erVlVp/SZ/Lshg0aJBe4CjqpZ3SmD59OsLCwjB16lSoVPo/jkuXLsW3336LnJwcGBsbY9y4cXj//fel85aWljhx4oRsjJmZmcG11Go11Gp1uWsmIqLqp8oDjbm5OTw8PGRtf//9t+yxp6cnkpKSDI4vbPf09JTa/Pz8EBcXh6ZNm6Jhw4ZwdHQEAOllG1EU4eHhIb3k8CRJSUl696rY29vr1V2UiIgItGvXDpMmTSpR/7LWX5Lnsqysra1LfL2lURhiDIUZ4P+DlJmZGZycnGBkJN9UNDIyqpS6iIhIWar8JaeSGDhwIC5evIjt27frnZs/fz7s7OzQtWtXqU2r1eL333/Hrl274OfnJ7V36tQJOp0OOp2uxLsze/fuRWJiIvr06VPm+lu3bo3evXtj6tSpJepfkfUrXWGQqlu3rl6YISIiKlTlOzQlMXDgQKxfvx5DhgzB559/ji5duiA9PR1LlizBtm3bsH79etk7jArvQ4mOjsaKFSukdl9fXwwfPhwAMGrUKL11srOzkZqaivz8fNy8eROxsbEIDw/Ha6+9hrffflvWNyMjA6mpqbK2mjVrFvnOnzlz5sDHx6fInYhHlbX+yvTff//pXa9arUatWrWeah2PE0VRry4AcHR0ZAAiInqOKOJffEEQ8NNPP2HatGlYsGABvLy80LFjR1y9ehU6nU7vA+Xc3d3h6uqKjIwM+Pr6Su0uLi6oU6cOcnJyZDsfhWJjY+Hk5AQ3NzcEBgYiLi4OixYtwtatW2FsbCzrO2PGDDg5OcmOyZMnF3kNnp6eGDp0qOzD8YpS1vor04oVK/SuNygo6KnWYEh6erpeXU5OTqV6qzwRESmfIJb0bluiZ0x6ejqsra1x5eQWWFmaP3lAKdg28K/Q+YiIqHiK2KEhIiIiKg4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESkeAw0REREpHgMNERERKR4DDRERESmeIr5tm6gy2dbXFvkt6UREpAzcoSEiIiLFY6AhIiIixWOgISIiIsXjPTT03BJFEQCQnp5exZUQ0dNmaWkJQRCqugyqQAw09Ny6ffs2AMDZ2bmKKyGipy0tLY1vBnjGMNDQc8vW1hYAcO3aNVhbW1dxNSWXnp4OZ2dnXL9+XTH/ICuxZkCZdSuxZuDp121paVnpa9DTxUBDzy0jo4e3kFlbWyvqH/5CVlZWiqtbiTUDyqxbiTUDyq2bqh5vCiYiIiLFY6AhIiIixWOgoeeWWq3GzJkzoVarq7qUUlFi3UqsGVBm3UqsGVBu3VR9CGLhe1eJiIiIFIo7NERERKR4DDRERESkeAw0REREpHgMNERERKR4DDT03FqyZAnc3NxgamqKNm3aID4+vspq2b9/P3r06IE6depAEARs2bJFdl4URcyYMQNOTk4wMzODv78/Ll68KOtz584dDBo0CFZWVrCxscGwYcOQmZlZaTWHh4ejVatWsLS0hKOjI3r27Inz58/L+mRlZWH06NGws7ODhYUF+vTpg5s3b8r6XLt2Dd27d0fNmjXh6OiISZMmIS8vr9LqjoyMRNOmTaUPcGvXrh127txZrWt+XEREBARBwNixY6t13bNmzYIgCLLD29u7WtdMCiYSPYfWrl0rmpiYiNHR0eKZM2fEESNGiDY2NuLNmzerpJ5ffvlF/Oijj8RNmzaJAMTNmzfLzkdERIjW1tbili1bxD///FN8/fXXRXd3d/HBgwdSn8DAQLFZs2bikSNHxAMHDogeHh5iUFBQpdUcEBAgxsTEiKdPnxYTEhLEV199VXRxcREzMzOlPiNHjhSdnZ3FPXv2iMePHxfbtm0rtm/fXjqfl5cnNm7cWPT39xdPnjwp/vLLL6K9vb0YGhpaaXVv27ZN/Pnnn8ULFy6I58+fF6dNmybWqFFDPH36dLWt+VHx8fGim5ub2LRpU3HMmDFSe3Wse+bMmaKPj4+YkpIiHf/++2+1rpmUi4GGnkutW7cWR48eLT3Oz88X69SpI4aHh1dhVQ89HmgKCgpEjUYjfv7551LbvXv3RLVaLa5Zs0YURVE8e/asCEA8duyY1Gfnzp2iIAjijRs3nkrdt27dEgGI+/btk2qsUaOGuH79eqlPUlKSCEA8fPiwKIoPg5yRkZGYmpoq9YmMjBStrKzE7Ozsp1K3KIpirVq1xG+//bba15yRkSE2bNhQ3LVrl+jr6ysFmupa98yZM8VmzZoZPFddaybl4ktO9NzJycnBH3/8AX9/f6nNyMgI/v7+OHz4cBVWZtiVK1eQmpoqq9fa2hpt2rSR6j18+DBsbGzw0ksvSX38/f1hZGSEo0ePPpU609LSAPz/l37+8ccfyM3NldXt7e0NFxcXWd1NmjRB7dq1pT4BAQFIT0/HmTNnKr3m/Px8rF27Fvfv30e7du2qfc2jR49G9+7dZfUB1fu5vnjxIurUqYP69etj0KBBuHbtWrWvmZSJX05Jz53//e9/yM/Pl/0jCQC1a9fGuXPnqqiqoqWmpgKAwXoLz6WmpsLR0VF2XqVSwdbWVupTmQoKCjB27Fi8/PLLaNy4sVSTiYkJbGxsiq3b0HUVnqssiYmJaNeuHbKysmBhYYHNmzfjhRdeQEJCQrWtee3atThx4gSOHTumd666Ptdt2rTBypUr4eXlhZSUFHzyySfo2LEjTp8+XW1rJuVioCGichs9ejROnz6NgwcPVnUpJeLl5YWEhASkpaVhw4YNGDJkCPbt21fVZRXp+vXrGDNmDHbt2gVTU9OqLqfEunXrJv25adOmaNOmDVxdXfHTTz/BzMysCiujZxFfcqLnjr29PYyNjfXeTXHz5k1oNJoqqqpohTUVV69Go8GtW7dk5/Py8nDnzp1Kv6YPPvgAO3bsQFxcHOrVqyerOycnB/fu3Su2bkPXVXiuspiYmMDDwwMtW7ZEeHg4mjVrhoULF1bbmv/44w/cunULLVq0gEqlgkqlwr59+7Bo0SKoVCrUrl27Wtb9OBsbG3h6euLSpUvV9rkm5WKgoeeOiYkJWrZsiT179khtBQUF2LNnD9q1a1eFlRnm7u4OjUYjqzc9PR1Hjx6V6m3Xrh3u3buHP/74Q+qzd+9eFBQUoE2bNpVSlyiK+OCDD7B582bs3bsX7u7usvMtW7ZEjRo1ZHWfP38e165dk9WdmJgoC2O7du2ClZUVXnjhhUqp25CCggJkZ2dX25q7dOmCxMREJCQkSMdLL72EQYMGSX+ujnU/LjMzE5cvX4aTk1O1fa5Jwar6rmSiqrB27VpRrVaLK1euFM+ePSu+++67oo2NjezdFE9TRkaGePLkSfHkyZMiAPHLL78UT548KV69elUUxYdv27axsRG3bt0qnjp1SnzjjTcMvm37xRdfFI8ePSoePHhQbNiwYaW+bfv9998Xra2tRZ1OJ3tb7n///Sf1GTlypOji4iLu3btXPH78uNiuXTuxXbt20vnCt+W+8sorYkJCghgbGys6ODhU6ttyp06dKu7bt0+8cuWKeOrUKXHq1KmiIAjib7/9Vm1rNuTRdzlV17onTJgg6nQ68cqVK+KhQ4dEf39/0d7eXrx161a1rZmUi4GGnltff/216OLiIpqYmIitW7cWjxw5UmW1xMXFiQD0jiFDhoii+PCt29OnTxdr164tqtVqsUuXLuL58+dlc9y+fVsMCgoSLSwsRCsrK/Gdd94RMzIyKq1mQ/UCEGNiYqQ+Dx48EEeNGiXWqlVLrFmzptirVy8xJSVFNk9ycrLYrVs30czMTLS3txcnTJgg5ubmVlrdQ4cOFV1dXUUTExPRwcFB7NKlixRmqmvNhjweaKpj3QMGDBCdnJxEExMTsW7duuKAAQPES5cuVeuaSbkEURTFqtkbIiIiIqoYvIeGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiIiIFI+BhoiIiBSPgYaIiIgUj4GGiKgUkpOTIQgCEhISqroUInoEAw0REREpHgMNESlKQUEBPvvsM3h4eECtVsPFxQVz5swBACQmJqJz584wMzODnZ0d3n33XWRmZkpj/fz8MHbsWNl8PXv2RHBwsPTYzc0Nc+fOxdChQ2FpaQkXFxcsX75cOu/u7g4AePHFFyEIAvz8/CrtWomo5BhoiEhRQkNDERERgenTp+Ps2bNYvXo1ateujfv37yMgIAC1atXCsWPHsH79euzevRsffPBBqdeYP38+XnrpJZw8eRKjRo3C+++/j/PnzwMA4uPjAQC7d+9GSkoKNm3aVKHXR0Rlo6rqAoiISiojIwMLFy7E4sWLMWTIEABAgwYN0KFDB6xYsQJZWVlYtWoVzM3NAQCLFy9Gjx49MG/ePNSuXbvE67z66qsYNWoUAGDKlClYsGAB4uLi4OXlBQcHBwCAnZ0dNBpNBV8hEZUVd2iISDGSkpKQnZ2NLl26GDzXrFkzKcwAwMsvv4yCggJpd6WkmjZtKv1ZEARoNBrcunWr7IUTUaVjoCEixTAzMyvXeCMjI4iiKGvLzc3V61ejRg3ZY0EQUFBQUK61iahyMdAQkWI0bNgQZmZm2LNnj965Ro0a4c8//8T9+/eltkOHDsHIyAheXl4AAAcHB6SkpEjn8/Pzcfr06VLVYGJiIo0louqDgYaIFMPU1BRTpkzB5MmTsWrVKly+fBlHjhxBVFQUBg0aBFNTUwwZMgSnT59GXFwcQkJC8NZbb0n3z3Tu3Bk///wzfv75Z5w7dw7vv/8+7t27V6oaHB0dYWZmhtjYWNy8eRNpaWmVcKVEVFoMNESkKNOnT8eECRMwY8YMNGrUCAMGDMCtW7dQs2ZN/Prrr7hz5w5atWqFvn37okuXLli8eLE0dujQoRgyZAjefvtt+Pr6on79+tBqtaVaX6VSYdGiRfjmm29Qp04dvPHGGxV9iURUBoL4+AvKRERERArDHRoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUjwGGiIiIlI8BhoiIiJSPAYaIiIiUrz/A+sUfVTiRBWAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "new_pumpkins.info" + "import seaborn as sns\n", + "# Specify colors for each values of the hue variable\n", + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# Plot a bar plot to visualize how many pumpkins of each variety are orange or white\n", + "sns.catplot(\n", + " data=pumpkins, y=\"Variety\", hue=\"Color\", kind=\"count\",\n", + " palette=palette, \n", + ")" ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "Working with Item Size to Color, create a scatterplot using Seaborn" + "# Data pre-processing\n", + "\n", + "Let's encode features and labels to better plot the data and train the model" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 66, "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ - "" + "array(['med', 'lge', 'sml', 'xlge', 'med-lge', 'jbo', 'exjbo'],\n", + " dtype=object)" ] }, + "execution_count": 66, "metadata": {}, - "execution_count": 4 - }, + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the different values of the 'Item Size' column\n", + "pumpkins['Item Size'].unique()" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OrdinalEncoder\n", + "# Encode the 'Item Size' column using ordinal encoding\n", + "item_size_categories = [['sml', 'med', 'med-lge', 'lge', 'xlge', 'jbo', 'exjbo']]\n", + "ordinal_features = ['Item Size']\n", + "ordinal_encoder = OrdinalEncoder(categories=item_size_categories)" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import OneHotEncoder\n", + "# Encode all the other features using one-hot encoding\n", + "categorical_features = ['City Name', 'Package', 'Variety', 'Origin']\n", + "categorical_encoder = OneHotEncoder(sparse_output=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAABB4AAAQiCAYAAAAMHj7lAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdfXBcV3rf+d+BCLIhEA3NcEA0KI+X0maoFzQojgurStYvNbZjDWVpSLjKYdmV7G7stZXUZuNxaK/tSVSchKutWideru3NVmJ5/DJev4VljynOizgab/ya2JNgxhTRECVWdkI7I6JBDG12g1BfEFCf/QNAEyC6ge6+5/S9p/v7qUKJRN9+7nPPec69l0fd9xhrrQAAAAAAAHzoSzoBAAAAAADQvZh4AAAAAAAA3jDxAAAAAAAAvGHiAQAAAAAAeMPEAwAAAAAA8Ca4iYfjx49bSfzw4/rHOWqVH08/zlGr/Hj4cY465cfTj3PUKj+efpyjVvnx9FNXcBMPX/va15JOAWgKtYpQUKsIAXWKUFCrCAW1ik4KbuIBAAAAAACEg4kHAAAAAADgDRMPAAAAAADAGyYeAAAAAACAN0w8AAAAAAAAbzoy8WCM+UVjzE1jTGHT7/6FMeZNY8wVY8zvGGMe6kQuAAAAAACgc/Z0aD+/LOlfSvqVTb/7gqSPWWtXjTE/Keljkn68Q/mgy92uRLpWXNJ8eVmj2X06khvUQwOZpNPCfXz0E30PH+LWVaWyopliufb+iVxWAwP9HjNGJyV13uF8B9981Vi5EunNTXEfzw0q22O1G8L4DSFH+OfqHqYjEw/W2j80xhy+73evbfrrn0r67k7kgu53uxLptcKCzlwsKFqpKtPfp7Mn8nomP8LJMkV89BN9Dx/i1lWlsqJPF4rb3v+RfI7Jhy6Q1HmH8x1881Vj5UqkS3XiHs+P9MzkQwjjN4Qc4Z/Le5i0POPh+yW9mnQS6A7Xiku1wSFJ0UpVZy4WdK24lHBm2MxHP9H38CFuXc0Uy3XfP1Mse8sZnZPUeYfzHXzzVWNvNoj7Zg/VbgjjN4Qc4Z/Le5jEJx6MMf9E0qqkX9thmxeMMdPGmOmFhYXOJYcgzZeXa4NjQ7RS1Xx52fu+qdXm+einJPs+NNRq8+LWFXXZvhDqNKn+pa7SJYRabZWvGqN2w7hXpZ8gua2DRCcejDF/V9Lzkv62tdY22s5a+7K1dtJaOzkyMtKx/BCm0ew+Zfq3lnamv0+j2X3e902tNs9HPyXZ96GhVpsXt66oy/aFUKdJ9S91lS4h1GqrfNUYtRvGvSr9BMltHSQ28WCMOS7pxySdsNa+k1Qe6D5HcoM6eyJfGyQb30U6khtMODNs5qOf6Hv4ELeuJnLZuu+fyGW95YzOSeq8w/kOvvmqsccbxH28h2o3hPEbQo7wz+U9jNnhgwbOGGN+Q9KHJL1P0rykj2ttFYt9km6tb/an1tq/v1usyclJOz097SlTdIs2nsJrXOdAre6OVS3aQq0mgFUtWtZTdcqqFkHrqVptFata+BPCvSrnGEht3cPUrdVOrWrxvXV+/Qud2Dd600MDGT39CCfGtPPRT/Q9fIhbVwMD/Xr6kQMOM0KaJHXe4XwH33zVWJbaDWL8hpAj/HN1D5P4wyUBAAAAAED3YuIBAAAAAAB4w8QDAAAAAADwpiPPeABc4AE33YeHSyIU1FX46EN0u9XVqmbnSporRRobHtD4WFZ79sT7f4y+HgIZ0sMlFyuRrm7K9YncoIYc5Hr37ru6cqOkYjnSWDajiUPD2rv3AQcZu8N5Ey4x8YAg3K5Eeq2woDMXC4pWqrWlXJ7Jj3ACDJSPPqVO4AN1FT76EN1udbWqC6+/rRcv3Kvxl6bymnrq4bYnH8qVSJfqjJvj+ZFYkwS+4vqwWIn0ap1cn82PxJp8uHv3XV24ckNnXtkU92ReU0cPpWbygfMmXOOrFgjCteJS7cQnSdFKVWcuFnStuJRwZmiXjz6lTuADdRU++hDdbnauVJt0kNZq/MULBc3OldqO+WaDcfNmzHHjK64PVxvkejVmrldulGqTDrW4rxR05Ub7/eUa5024xsQDgjBfXq6d+DZEK1XNl5cTyghx+ehT6gQ+UFfhow/R7eZKUd0aL5aitmP6GjchjUdfuRbL9ftrvtx+f7kWUj8hDEw8IAij2X3K9G8t10x/n0az+xLKCHH56FPqBD5QV+GjD9HtxoYH6tZ4brj9j8T7GjchjUdfuY5lMw3ipucrDCH1E8LAxAOCcCQ3qLMn8rUT4Mb3zI7kBhPODO3y0afUCXygrsJHH6LbjY9l9dLU1hp/aSqv8bHhtmM+3mDcPB5z3PiK68MTDXJ9ImauE4eGdfbkfXFP5nX0UPv95RrnTbjGwyURhIcGMnomP6LD73uaJ+t2CR99Sp3AB+oqfPQhut2ePX2aeuphfeDgfhVLkXLDGY2PDcda1SI7kNHx+8aNi9UnfMX1YWggo2fvy9XFqhZ79z6gqaOH9Oj7BjVfjjSazehoyla14LwJ15h4QDAeGsjo6Uc42XUTH31KncAH6ip89CG63Z49fXrq/e/RU+93FzPradz4iuvDkKdc9+59QJOH3+s8rkucN+ESX7UAAAAAAADeMPEAAAAAAAC8YeIBAAAAAAB407FnPBhjflHS85JuWmvz6797r6R/I+mwpOuSTllr/6pTOSF5tyuRrhWXeGhNj6pWra7fWqo9WOnwgUH19ZlYMakp+EBd9bYoWtXMXEnF8rJy2X2aGBtWJpP+x2RVKiuaKZZrdTuRy2pgoL/2+t277+rKjZKK5Uhj2YwmHD7cjjHTHcqVSG9u6kdXD4FcrES6uimuiwc2StJSZVmzxTu1uOO5/RociLf8o497FZ9xXWIcw6VOXjV/WdK/lPQrm373E5L+X2vt/26M+Yn1v/94B3NCgm5XIr1WWNCZiwVFK9XaMj3P5Ec4qfWAatXq0mxRp89frvX/uVPHdHw81/aFl5qCD9RVb4uiVV2cmdvW/ycmxlI9+VCprOjTheK2vD+Sz2lgoF93776rC1du6Mwrm14/mdfU0UOxJx8YM92hXIl0qU4/Hs+PxJp8WKxEerVO3GfzI7EmH5Yqy/ps4ea2uM/lD7Y9+eDjXsVnXJcYx3CtY1+1sNb+oaS/vO/XJyV9cv3Pn5Q01al8kLxrxaXayUySopWqzlws6FpxKeHM0AnXby3VLrjSWv+fPn9Z12+13//UFHygrnrbzFypbv/PzJUSzmxnM8Vy/byLZUnSlRul2qRD7fVXCrpyI/5xMWa6w5sN+vHNmP14tUHcqzHjzhbv1I07W7zTdkwf9yo+47rEOIZrST/jYdRaO7f+56Kk0XobGWNeMMZMG2OmFxYWOpcdvJovL9dOZhuilarmy8sJZRQftdq8+XJUt/9vLkYxYnZfTflCrTaPukpOGuq0GGj/71a3xQbn4Ply++fgZvfdjdJQq6756seQ4vq4V/EZtxnN1movjmP4lfTEQ4211kqyDV572Vo7aa2dHBkZ6XBm8GU0u0+Z/q0lmOnv02g23nfxkkStNm80m6nb/weH2v/4XjfWlC/UavOoq+SkoU5zgfb/bnU71uAcPJqN/xHqXhwzaahV13z1Y0hxfdyr+IzbjGZrtRfHMfxKeuJh3hgzJknr/72ZcD7ooCO5QZ09ka+d1Da+O3YkN5hwZuiEwwcGde7UsS39f+7UMR0+0H7/U1PwgbrqbRNjw3X7f2JsOOHMdjaRy9bPO5dde/3QsM6evO/1k3kdPRT/uBgz3eHxBv34eMx+fKJB3Cdixh3P7a8bdzy3v+2YPu5VfMZ1iXEM18zaBw06tDNjDkv6zKZVLf6FpFubHi75Xmvtj+0UY3Jy0k5PT3vPFZ2RoqflOn+SD7W6u40nOt9cjHRwiFUtmkStJqAH6sq1rqrTjVUtaqtDdNmqFhtP1T/am6tadFWtusaqFn7uVdqM2/FaDWgcI13q1mrHJh6MMb8h6UOS3idpXtLHJV2QdF7S10v6c60tp3n/Ayi36KaTOVKFGw+EglpFCKhThIJaRSioVYSibq12bLreWvu9DV769k7lAAAAAAAAOivpZzwAAAAAAIAuxsQDAAAAAADwhokHAAAAAADgTfofyYwg8RTc7hLS06epPfgQel25GMO+nm6P9r1TuatCcbHWJ/nckB4c2Ft7fbe6jVMXu9VD6GMGa3z148aKDhsrqrhaKWJ1tarZuZLmSpHGhgc0PpbVnj3x/j+rr3ugEMZICDnCP1djgIkHOHe7Eum1woLOXCwoWqnW1v19Jj/CySpAi5VIr9bpz2fzI7EuvEuVZX22cHNb3OfyB9uefKD24EPodeViDJcrkS7ViXE8P8LkQ0LeqdzVZwrz2/rk+fyoHhzYu2vdxqmL3eoh9DGDNb76sVq1ujRb1Onzl2txz506puPjuViTD6urVV14/W29eOFevi9N5TX11MNtTz74ugcKYYyEkCP8czkG+KoFnLtWXKoVpyRFK1WduVjQteJSwpmhHVcb9OfVmP05W7xTN+5s8U7bMak9+BB6XbkYw282iPFmIG3QjQrFxbp9UiguStq9buPUxW71EPqYwRpf/Xj91lJt0mEj7unzl3X9Vsz7irlSbdJhI+6LFwqanSu1HdPXPVAIYySEHOGfyzHAxAOcmy8v14pzQ7RS1Xx5OaGMEIev/vQRl9qDD6HXlYv8Q2+DbrRbn8R93ee+EQZ/1/+obtybi1GsuHOl+nGLpfbjhnQP5FoIOcI/l3XAxAOcG83uU6Z/a2ll+vs0mo333X0kw1d/+ohL7cGH0OvKRf6ht0E32q1P4r7uc98Ig7/rf6Zu3IND8T6+PzY8UDdubrj9uCHdA7kWQo7wz2UdMPEA547kBnX2RL5WpBvfBTqSG0w4M7TjiQb9+UTM/hzP7a8bdzy3v+2Y1B58CL2uXIzhxxvEeDyQNuhG+dxQ3T7J54Yk7V63cepit3oIfcxgja9+PHxgUOdOHdsS99ypYzp8IOZ9xVhWL01tzfelqbzGx4bbjunrHiiEMRJCjvDP5Rgw1lrX+Xk1OTlpp6enk04DuwjwKbjxH6V8n26qVVa1SBVqNQGh11UCq1pQpx3AqhZOUKs78L2qxc3FSAeH3K9qUSxFyg1nND423E2rWnS8VgMax/CojTFQt1aZeADWcOOBUFCrCAF1ilBQqwgFtYpQ1K1VvmoBAAAAAAC8YeIBAAAAAAB4w8QDAAAAAADwZk/SCRhj/pGkH5BkJc1I+j5rbbyFfOHFxgN75kqRxoYHND6Wjf3AHsA16hQ+UFdII+oSm208sHG+HGk06+aBjT5iIhycY+BSyxMPxphvkvQBa+0vGWNGJO231v7ndnZujHlY0g9JetJaWzHGnJf0PZJ+uZ148Gd1taoLr7+tFy8UFK1Ua0sUTT31MCcgpAZ1Ch+oK6QRdYnNqlWrS7NFnT5/uVYP504d0/HxXNsTBT5iIhycY+BaS1VjjPm4pB+X9LH1X/VL+tWYOeyRNGCM2SPpQUk3YsaDB7NzpdqJR5KilapevFDQ7Fwp4cyAe6hT+EBdIY2oS2x2/dZSbYJAWquH0+cv6/qtpVTFRDg4x8C1VqervkvSCUlLkmStvSFpqN2dW2vflvRTkv5C0pykkrX2tfu3M8a8YIyZNsZMLywstLs7xDBXimonng3RSlXFEt+K2YxaTRZ12jxqtXnUVXKo08aoy3RJulbny/Xr4eZi+/XgIyaS12ytco6Ba61OPNy11lqtPY9BxpjBODs3xrxH0klJj0g6JGnQGPN37t/OWvuytXbSWjs5MjISZ5do09jwgDL9W8sl09+n3HAmoYzSiVpNFnXaPGq1edRVcqjTxqjLdEm6Vkezmbr1cHCo/XrwERPJa7ZWOcfAtVYnHs4bY35O0kPGmB+U9LuSfj7G/v+mpP9srV2w1q5I+pSk/zZGPHgyPpbVS1P52glo43te42PDCWcG3EOdwgfqCmlEXWKzwwcGde7UsS31cO7UMR0+0P7/I/QRE+HgHAPXWnq4pLX2p4wx3yGpLOkxSWestV+Isf+/kPTXjTEPSqpI+nZJ0zHiwZM9e/o09dTD+sDB/SqWIuWGMxofG+bhMkgV6hQ+UFdII+oSm/X1GR0fz+nxH/pm3VyMdHAo/goUPmIiHJxj4FrLq1pYa79gjPnixnuNMe+11v5lOzu31n7RGPNbkr4saVXSn0l6uZ1Y8G/Pnj499f736Kn3J50J0Bh1Ch+oK6QRdYnN+vqMHh3Zr0dH9qc6JsLBOQYutTTxYIz5e5L+maRIUlWS0drzHh5tNwFr7cclfbzd9wMAAAAAgPRq9RMPPyopb639mo9kAAAAAABAd2n1Szr/n6R3fCQCAAAAAAC6T6ufePiYpH+//oyH5Y1fWmt/yGlW6JjblUjXikuaLy9rNLtPR3KDemiAZXLQGT7qr1SJ9NammI/lBjXsoKarVavrt5Y0X440muUBW70mbq1WKiuaKZZr75/IZTUw0O8xY9yP6x3QunIl0pubxs3juUFlHYwbX+PRx7W6l6//nDchubuHaXXi4eck/VtJM1p7xgMCdrsS6bXCgs5cLChaqSrT36ezJ/J6Jj/CSQXe+ai/UiXS5+vE/HB+JNbkQ7VqdWm2qNPnL9finjt1TMfHcz1z89HL4tZqpbKiTxeK297/kXyOyYcO4XoHtK5ciXSpzrg5nh+JNfngazz6uFb38vWf8yYkt/cwrX7Vot9ae9pa+0vW2k9u/LQYAylxrbhUKyJJilaqOnOxoGvFpYQzQy/wUX9vNYj5Vsyavn5rqXbTsRH39PnLun6LsdIL4tbqTLFc9/0zxbK3nLEV1zugdW82GDdvxhw3vsajj2t1L1//OW9CcnsP0+rEw6vGmBeMMWPGmPdu/LS8V6TCfHm5VkQbopWq5svLDd4BuOOj/nzV9Hw5qhv35mIUKy7CELeuONcmjz4AWufvmhrOtbqXr/+cNyG5rYNWJx6+V+vPeZD0pfWf6Zb3ilQYze5Tpn9rCWT6+zSa3ZdQRuglPurPV02PZjN14x4c4qOGvSBuXXGuTR59ALTO3zU1nGt1L1//OW9CclsHLU08WGsfqfPzaMt7RSocyQ3q7Il8rZg2vrNzJDeYcGboBT7q77EGMR+LWdOHDwzq3KljW+KeO3VMhw8wVnpB3FqdyGXrvn8il/WWM7biege07vEG4+bxmOPG13j0ca3u5es/501Ibu9hjLW2tTcYk5f0pKTaVJ+19lda3nObJicn7fQ0H7JwhafV1jh/QhC1ursQV7W4uRjp4FCiT7WmVhPAqhYtS12dcr1DA6mr1TQJdVULl9fqXr7+c96E1NY9TN1abWlVC2PMxyV9SGsTD5+T9KykP5bUsYkHuPXQQEZPP8IJBMnwUX/Dnmq6r8/o0ZH9enRkv/PYSL+4tTow0K+nHzngMCO0iusd0Lqsp3Hjazz6uFb38vWf8yYkd/cwrT7j4bslfbukorX2+yQ9JWk4dhYAAAAAAKArtTrxULHWViWtGmOykm5Ker/7tAAAAAAAQDdo6asWkqaNMQ9J+nmtrWhxR9KfOM8KAAAAAAB0hZYmHqy1/9P6H/+1MeaSpKy19kqcBNYnMj4hKS/JSvp+ay2TGQAAAAAAdIGmJh6MMV9f59dVSbeNMV9vrf2LGDn8jKRL1trvNsbslfRgjFgQT6ANxd277+rKjZKK5Uhj2YwmDg1r794Hkk6ro6hV9IrV1apm50qaK0UaGx7Q+FhWe/a0+m3HZDFe04c+gW++VuTxdQ/k41zbg6sS1XCOgeRuXDX7iYfPau3TCJuXxrCSRiQdlNTWmcIYMyzpWyT9XUmy1t6VdLedWFhzuxLptcKCzlwsKFqp1tZafSY/wokiRe7efVcXrtzQmVc29dPJvKaOHuqZyQdqFb1idbWqC6+/rRcv3Kv1l6bymnrq4WAmHxiv6UOfwLdKZUWfLhS31dhH8rlY//D2dQ/k41zrqw1CwDkGkttx1dTW1toJa+3R9f9OSPqIpH+ntWc8/HDLR3DPI5IWJP2SMebPjDGfMMYMxojX864Vl2onCEmKVqo6c7Gga8WlhDPDZldulGoXXGm9n14p6MqNUsKZdQ61il4xO1eqXbCltVp/8UJBs3PhjHfGa/rQJ/BtpliuW2MzxXKsuL7ugXyca321QQg4x0ByO65amqYwxnzAGPPLkl7V2sMln7TW/l8t7/WePZK+QdK/stZ+UNKSpJ+os98XjDHTxpjphYWFGLvrfvPl5VphbIhWqpovLyeUUW9ptlaL5ahBP0W+U0wNajVZnFc7Z65Uf7wXS+GM96TGK3XaGOfQdOnGWvVVY77ugXyca7txnDVbq9147Gidy3HV1MSDMSZvjPkNSb8t6Xcl5a21n7DWrrS8x62+Kumr1tovrv/9t7Q2EbGFtfZla+2ktXZyZGQk5i6722h2nzL9W7s109+n0ey+hDLqLc3W6lg206Cfeueja9Rqsjivds7Y8EDdWs8NhzPekxqv1GljnEPTpRtr1VeN+boH8nGu7cZx1mytduOxo3Uux1Wzn3h4XdLfkPRHkp6W9H8aY35246flva6z1hYl/RdjzGPrv/p2SW+0Gw/Skdygzp7I1wpk4/tYR3J8gyVNJg4N6+zJ+/rpZF5HDw0nnFnnUKvoFeNjWb00tbXWX5rKa3wsnPHOeE0f+gS+TeSydWtsIpeNF9fTPZCPc62vNggB5xhIbsdVsw+X/P6WIzfvH0r6tfUVLb4i6fs87qvrPTSQ0TP5ER1+39M8gTbF9u59QFNHD+nR9w1qvhxpNJvR0R5b1YJaRa/Ys6dPU089rA8c3K9iKVJuOKPxseFgHiwpMV7TiD6BbwMD/fpIPqfD73vQ6YoOvu6BfJxrfbVBCDjHQHI7rpqaeLDWfrLlyE2y1l6WNOkrfi96aCCjpx/hpJB2e/c+oMnD7006jURRq+gVe/b06an3v0dPvT/pTNrHeE0f+gS+DQz06+lHDjiP6+seyMe51lcbhIBzDCR34yqc/90CAAAAAACCw8QDAAAAAADwptXlNHvzc0YAAAAAAKAtzT5ccsOfGmMuS/olSa9aa62HnFDH7Uqka8UlHu6CruKjrhkr8CFuXVGXaNc7lbsqFBdrtZPPDenBgb1Jp+UV46U9PtrNV/2VK5He3JTr47lBZR30sY98lyrLmi3eqcUcz+3X4ED8JSWrVavrt5ZqD9g8fGBQfX0mdlyXGIuQ3NVBqxMPRyT9Ta2tcvGzxpjzkn7ZWnut5T2jabcrkV4rLOjMxYKilWptOZtn8iMMfgTLR10zVuBD3LqiLtGudyp39ZnC/LbaeT4/2rWTD4yX9vhoN1/1V65EulQn1+P5kViTDz7yXaos67OFm9tiPpc/GGvyoVq1ujRb1Onzl2txz506puPjudRMPjAWIbmtg5a+amHXfMFa+72SflDS/yDpPxhj/sAY8zda2jOadq24VOtsSYpWqjpzsaBrxaWEMwPa56OuGSvwIW5dUZdoV6G4WLd2CsXFhDPzh/HSHh/t5qv+3myQ65sx+9hHvrPFO3VjzhbvxMr1+q2l2qTDRtzT5y/r+q301DljEZLbOmj5GQ/GmI8aY6Yl/aikfyjpfZJ+RNKvt7x3NGW+vFzr7A3RSlXz5eWEMgLi81HXjBX4ELeuqEu0qxdrpxeP2YWQrqkhxfWXa1Q37s3FKFZclxiLkNzWQaurWvyJpKykKWvtc9baT1lrV62105L+dct7R1NGs/uU6d/aVZn+Po1m43+/DEiKj7pmrMCHuHVFXaJdvVg7vXjMLoR0TQ0prr9cM3XjHhxKz1cYGIuQ3NZBqxMPL1pr/1dr7Vc3fmGM+VuSZK39yZb3jqYcyQ3q7Il8rdM3vltzJDeYcGZA+3zUNWMFPsStK+oS7crnhurWTj43lHBm/jBe2uOj3XzV3+MNcn08Zh/7yHc8t79uzPHc/li5Hj4wqHOnjm2Je+7UMR0+kJ46ZyxCclsHppWFKYwxX7bWfsNuv/NpcnLSTk9Pd2p3qcFTZb1z/iSfXq3VVrCqRVuo1QSwqkXLqFNHWNXC+3jpmlplVYswV7W4uRjp4FBTq1p0vFZ78NqFOtqog7q12tSqFsaYZyV9p6SHjTE/u+mlrKTVZpNG+x4ayOjpRxjo6C4+6pqxAh/i1hV1iXY9OLBXTz9yIOk0Oorx0h4f7ear/rKe+thHvoMD+/T0I+6/XtDXZ/ToyH49OhLv0xM+MRYhuauDZpfTvCFpWtIJSV/a9PtFSf8odhYAAAAAAKArNTXxYK19XdLrxphfs9byCQcAAAAAANCUZr9qcd5ae0rSnxljNj8Uwkiy1tqjXrIDAAAAAABBa/arFh9d/+/zPpIwxjygta9yvG2t9bKPNOKBLQiFr1rl4ZLh5dur4vbTnUqkNza9/8ncoPZ3sJ9d1Bm12p7V1apm50qaK0UaGx7Q+FhWe/a0uqhYfT77JNQHqoZQp74e2BjSNTWkuL5yXaxEurop7hO5QQ2lrFZDGE/wz1UdNDvxMGiM+UZr7b/b/EtjzDdKKra81+0+Kumq1h5W2RNuVyK9VljQmYsFRSvV2tIkz+RHGNBIFV+16iNuaOMqtHx7Vdx+ulOJ9Lk67//O/EhHJh9c1Bm12p7V1aouvP62Xrxwr91emspr6qmHY08++OyTuLGTqpcQ6vSdyl19pjC/Lcfn86OxJh9CuqaGFNdXrouVSK/WiftsfiQ1kw8hjCf457IOmr3q/bSkcp3fl9dfa5sx5uskPSfpE3HihOZacanWgZIUrVR15mJB14pLCWcGbOWrVn3EDW1chZZvr4rbT280eP8bHepnF3VGrbZndq5Um3SQ1trtxQsFzc6VYsf22SdxYydVLyHUaaG4WDfHQnExVtyQrqkhxfWV69UGca+mqFZDGE/wz2UdNDvxMGqtnbn/l+u/O9zyXrf6aUk/JqnaaANjzAvGmGljzPTCwkLM3aXDfHm51oEbopWq5svLCWUEF6jVZOOGNq6SzLcba9WXuP2UdF262H9SxxB6nc6VorrtVixFsWP77JNQaz6EcyrX1LDihpRrs5KuVYTFZR00O/Hw0A6vDbS813Qd9a4AACAASURBVHXGmOcl3bTWfmmn7ay1L1trJ621kyMjI+3uLlVGs/uU6d/a/Jn+Po1m3a8TjM6hVpONG9q4SjLfbqxVX+L2U9J16WL/SR1D6HU6NjxQt91yw/E/puyzT0Kt+RDOqVxTw4obUq7NSrpWERaXddDsxMO0MeYH7/+lMeYHJO04abCLb5R0whhzXdJvSvo2Y8yvxogXjCO5QZ09ka915Mb3ZY7kBhPODNjKV636iBvauAot314Vt5+ebPD+JzvUzy7qjFptz/hYVi9NbW23l6byGh8bjh3bZ5/EjZ1UvYRQp/ncUN0c87mhWHFDuqaGFNdXrk80iPtEimo1hPEE/1zWgbHW7r6RMaOSfkfSXd2baJiUtFfSd1lrYz9g0hjzIUk/utuqFpOTk3Z6ejru7lKBJ8WminEdkFpNJm5o46qNfKnVBLCqRcsxqNN1G6taFEuRcsMZjY8Ns6qFRyGcU1nVIqy4KVrVouO1Gto9FfxwdV5tauKhtrEx3yopv/7XWWvtv236zbvH/pB6bOIBqcJNMkJBrSIE1ClCQa0iFNQqQlG3VptdTlOSZK39PUm/5ySd7bF/X9Lv+4gNAAAAAACS4eazfgAAAAAAAHUw8QAAAAAAALxh4gEAAAAAAHjT0jMesDue/opu5KuuS5VIb22K+1huUMMpffo0eluoT/hPy/7T7u7dd3XlRknFcqSxbEYTh4a1d+8DTb8/oBUcumLf6JzQ+rlSWdFMsVzLdyKX1cBAf6yYvtog6dWOmhFa/8MPV3XAxINDtyuRXiss6MzFgqKVam2d02fyIwxSBMtXXZcqkT5fJ+6H8yNtTz4wBuFD3LpKui6T3n/a3b37ri5cuaEzr2xqn5N5TR091NTkQ1Ltm2S/UlO9IbR+rlRW9OlCcVu+H8nn2p588NUGdyqRPlcn7nfmR1Iz+RBa/8MPl3XAVy0culZcqnWKJEUrVZ25WNC14lLCmQHt81XXbzWI+1aMuIxB+BC3rpKuy6T3n3ZXbpRqkw7Sevu8UtCVG6Wm3p9U+ybZr9RUbwitn2eK5br5zhTLbcf01QZvNIj7RoraNrT+hx8u64CJB4fmy8u1TtkQrVQ1X15OKCMgPl917SMuYxA+xK2rpOsy6f2nXbEcNWifqKn3J9W+SfYrNdUbQuvnkO4rQmjbEHKEfy7rgIkHh0az+5Tp39qkmf4+jWb3JZQREJ+vuvYRlzEIH+LWVdJ1mfT+024sm2nQPs19hDSp9k2yX6mp3hBaP4d0XxFC24aQI/xzWQdMPDh0JDeosyfytc7Z+A7MkdxgwpkB7fNV1481iPtYjLiMQfgQt66Srsuk9592E4eGdfbkfe1zMq+jh4aben9S7Ztkv1JTvSG0fp7IZevmO5HLth3TVxs82SDukylq29D6H364rANjrXWdn1eTk5N2eno66TQa4umvwTKuA6a9VlvBqhapQq0mgFUtWhZUnW6sajFfjjSazegoq1qket+OBVWrnRZaP3f5qhYdr9XQ+h9+tFEHdWuViQdgDTceCAW1ihBQpwgFtYpQUKsIRd1a5asWAAAAAADAGyYeAAAAAACAN0w8AAAAAAAAb/YkuXNjzPsl/YqkUUlW0svW2p9JMqdGeLgKXPNRUz4e1ugrV19xQxurq6tVzc6VNFeKNDY8oPGxrPbsSc+csIv2XKosa7Z4pxZjPLdfgwPNL8OUhgc7Jl1XSbehqxhpFepDGuPmHUWrmpkrqVheVi67TxNjw8pk3Nwa+mzTdyp3VSgu1mLnc0N6cGCvk9id4Cv/kK6pIcUNKVfXQsgR/rmqg0QnHiStSvoRa+2XjTFDkr5kjPmCtfaNhPPa4nYl0muFBZ25WFC0Uq0tI/JMfoTBh7b4qKlSJdLn68T8cH4k1uSDr/r3ETe0sbq6WtWF19/Wixfu5fvSVF5TTz2ciskHF+25VFnWZws3t8V4Ln+wqX84x83BxTEkXVdJt6GrGGmV5LHF2XfcvKNoVRdn5ra9/8TEWOzJB59t+k7lrj5TmN8W+/n8aBCTD77yD+maGlLckHJ1LYQc4Z/LOkj0ztZaO2et/fL6nxclXZX0cJI51XOtuFRrbEmKVqo6c7Gga8WlhDNDqHzU1FsNYr4Vs0591b+PuKGN1dm5Um3SQVrL98ULBc3OlRLObI2L9pwt3qkbY7Z4pyM5uDiGpOsq6TZ0FSOtkjy2OPuOm/fMXKnu+2ccnH98tmmhuFg3dqG4GDt2J/jKP6RrakhxQ8rVtRByhH8u6yD5/6W2zhhzWNIHJX2xzmsvGGOmjTHTCwsLnU5N8+XlWmNviFaqmi8vdzwXpFuzteqjpnzVaUhxQxurc6Wobr7FUuR9383Uqov2jBsj6fe7ihFHL7dBJ67/SfZvnH3Hzbvo8bh9tmnS47GRJK//vuKGlKuvuCHl2qykaxVhcVkHqZh4MMbsl/Tbkn7YWlu+/3Vr7cvW2klr7eTIyEjH8xvN7lOmf2tTZfr7NJpt/vu16A3N1qqPmvJVpyHFDW2sjg0P1M03N+z/I4zN1KqL9owbI+n3u4oRRy+3QSeu/0n2b5x9x8075/G4fbZp0uOxkSSv/77ihpSrr7gh5dqspGsVYXFZB4lPPBhj+rU26fBr1tpPJZ1PPUdygzp7Il9r9I3vthzJDSacGULlo6YeaxDzsZh16qv+fcQNbayOj2X10tTWfF+aymt8bDjhzNa4aM/x3P66McZz+zuSg4tjSLqukm5DVzHSKslji7PvuHlPjA3Xff+Eg/OPzzbN54bqxs7nhmLH7gRf+Yd0TQ0pbki5uhZCjvDPZR0Ya63r/JrfuTFG0icl/aW19oebec/k5KSdnp72m1gdPNW16xnXAXerVVa1COvp075srGpRLEXKDWc0Pja824MlO1qrrGrhLkYcSbdhGzE6fk6No9dXtdh4f4+uatHxWmVVi7DipijXrrhXRXhc1WrSEw/fJOmPJM1I2vjyyD+21n6u0XuSmnhA1wvqJhk9jVpFCKhThIJaRSioVYSibq0mupymtfaP5WEQAQAAAACAdEj8GQ8AAAAAAKB7MfEAAAAAAAC8SfSrFknjgSlIUkj1l6IHKyWWa6+iPdeE3g7d8IDNJMV5uGe3tttuDzOuVFY0Uyzfe3BlLquBgX7veZUrkd7clNfjuUFlu6C9m+Hj2EO6/kvS3bvv6sqNkorlSGPZjCYODWvv3gdSmWu1anX91pLmy5FGsxkdPjCovr50fQO9W89faI2rOujZiYfblUivFRZ05mJB0Uq1tjTIM/kRBhS8C6n+fOXqI25I7RoC2nNN6O3gIv/Q2yCOpcqyPlu4ue3Yn8sf3HXyoVvbrVSJ9Pk6x/Xh/IiGBzKqVFb06UJx2+sfyee8Tj6UK5Eu1cnreH6k6ycffBx7SNd/aW3S4cKVGzrzyqa4J/OaOnqo7ckHX7lWq1aXZos6ff5yLe65U8d0fDyXmsmHbj1/oTUu66Bnv2pxrbhUa0BJilaqOnOxoGvFpYQzQy8Iqf585eojbkjtGgLac03o7eAi/9DbII7Z4p26xz5bvLPre7u13d5qcFxvrR/XTLFc9/WZYtlrXm82yOvNwNu7GT6OPaTrvyRduVGqTTrU4r5S0JUbpdTlev3WUm3SYSPu6fOXdf1Wemq1W89faI3LOujZiYf58nKtATdEK1XNl5cTygi9JKT685Wrj7ghtWsIaM81obeDi/xDb4M44hx7t7bbbseV1HF3a3s3I6Rrqq+4xXLUIG7Udkx/bVA/15uL7efqWi+PJ9zjsg56duJhNLtPmf6th5/p79NotrnvbAJxhFR/vnL1ETekdg0B7bkm9HZwkX/obRBHnGPv1nbb7biSOu5ube9mhHRN9RV3LJtpELf9rwX4a4P6uR4cSs9XGHp5POEel3XQsxMPR3KDOnsiX2vIje+rHMkNJpwZekFI9ecrVx9xQ2rXENCea0JvBxf5h94GcYzn9tc99vHc/l3f263t9liD43ps/bgmctm6r0/ksl7zerxBXo8H3t7N8HHsIV3/JWni0LDOnrwv7sm8jh4aTl2uhw8M6typY1vinjt1TIcPpKdWu/X8hda4rANjrXWdn1eTk5N2enraSSye1IpNnD/JZ7daDan+QnqqdUjt2qaO1moPtGdTQm+HBFa16Pg51SdWtdiui1a16JpaZVWLe6tabKwUcTSAVS1uLkY6ONTUqhbcqyIRbdRB3Vrt6YkHYJOuufFA16NWEQLqFKGgVhEKahWhqFurPftVCwAAAAAA4B8TDwAAAAAAwBsmHgAAAAAAgDeJTzwYY44bY94yxvwnY8xPJJ0PAAAAAABwZ0+SOzfGPCDp/5b0HZK+Kuk/GmMuWmvfaDcmT18FwuFjvG480bpYjjSWzWjCwROtAa4t6RdFq5qZK6lYXlYuu08TY8PKZJq7zdl4uvzGk/CbeLp8KoRal6G2d9rFWX2lkdXVqmbnSporRRobHtD4WFZ79sT//5a+Vj3x0QY+YvqM61Ko5xikU6ITD5KelvSfrLVfkSRjzG9KOimprYmH25VIrxUWdOZiQdFKtbbO6DP5EQYJkDI+xuvdu+/qwpUbOvPKppgn85o6eojJB7SNa0v6RdGqLs7MbeujExNju04+VKtWl2aLOn3+cu29504d0/HxXKr/MRxqXYba3mm3VFnWZws3t9XDc/mDbf9jdnW1qguvv60XL9yL+dJUXlNPPRxr8qFSWdGnC8VtuX4kn4s1+eCjDXzE9BnXpVDPMUivpL9q8bCk/7Lp719d/11brhWXaoNDkqKVqs5cLOhacSlelgCc8zFer9wo1SYdajFfKejKjZKTnNGbuLak38xcqW4fzcztPvav31qq/SN4472nz1/W9Vvp7t9Q6zLU9k672eKduvUwW7zTfsy5Um3SYSPmixcKmm1iXO1kpliuP16L5VhxvbSBh5g+47oU6jkG6ZX0xENTjDEvGGOmjTHTCwsLDbebLy/XBseGaKWq+fKy7xQBSc3XKvyM12I5ahAzajtmt6JWm8e1JTnN1mkxRh/NNzhv3FxM93kj1LoMtb13k/Q51Uc9zJXq91WxFK+vfNWuj7gh5dos/l2FpCQ98fC2pPdv+vvXrf9uC2vty9baSWvt5MjISMNgo9l9yvRvPaRMf59Gs+n4yBK6X7O1Cj/jdSybaRCTjwTej1ptHteW5DRbp7kYfTTa4LxxcCjd541Q6zLU9t5N0udUL9fU4YG6MXPD8frKV+36iBtSrs3i31VIStITD/9R0geMMY8YY/ZK+h5JF9sNdiQ3qLMn8rVBsvFdpCO5QTfZAnDGx3idODSssyfvi3kyr6OHhp3kjN7EtSX9JsaG6/bRxNjuY//wgUGdO3Vsy3vPnTqmwwfS3b+h1mWo7Z1247n9dethPLe//ZhjWb00tTXmS1N5jTcxrnYykcvWH6+5bKy4XtrAQ0yfcV0K9RyD9DLW2mQTMOY7Jf20pAck/aK19n/bafvJyUk7PT3d8HWevoo2OX+i1W61Cr+rWmw8Lf1o961qQa0mgGtLyzpepxurWtSekt/GqhY3FyMdHApnlYVQ6zJl7d0151Sfq1oUS5FywxmNjw2zqkVyq1p0vFZDPccgcXVrNfGJh1ZxgwxPuubGA12PWkUIqFOEglpFKKhVhKJurSb9VQsAAAAAANDFmHgAAAAAAADeMPEAAAAAAAC8YeIBAAAAAAB4w8QDAAAAAADwJrhVLYwxC5L+vIlN3yfpa57TSQLH5cfXrLXHXQbs0lolV3+azTepWg2hPcnRDRc5ck7dLq15SenNrRN5UavNCSlXKax80379l8JqT19og5i1GtzEQ7OMMdPW2smk83CN4+o+IR07ufqT9nzTnp9Ejq6EkONO0pp/WvOS0ptbWvNyJaTjCylXKax8Q8g1hBx9ow3itwFftQAAAAAAAN4w8QAAAAAAALzp5omHl5NOwBOOq/uEdOzk6k/a8017fhI5uhJCjjtJa/5pzUtKb25pzcuVkI4vpFylsPINIdcQcvSNNojZBl37jAcAAAAAAJC8bv7EAwAAAAAASBgTDwAAAAAAwBsmHgAAAAAAgDdMPAAAAAAAAG+YeAAAAAAAAN4w8QAAAAAAALxh4gEAAAAAAHjDxAMAAAAAAPCGiQcAAAAAAOBNcBMPx48ft5L44cf1j3PUKj+efpyjVvnx8OMcdcqPpx/nqFV+PP04R63y4+mnruAmHr72ta8lnQLQFGoVoaBWEQLqFKGgVhEKahWdFNzEAwAAAAAACAcTDwAAAAAAwBsmHgAAAAAAgDdMPAAAAAAAAG+YeAAAAAAAAN7sSToBY8xDkj4hKa+15Te+31r7J8lmtd3qalWzcyXNlSKNDQ9ofCyrPXvizdvcrkS6VlzSfHlZo9l9OpIb1EMDGUcZAwgB5wF0gos6W6xEuropxhO5QQ1Rq7HFub9Yqixrtnin1ifjuf0aHNjnOePmcG7rDpXKimaK5Vo/TuSyGhjojx23WrW6fmtJ8+VIo9mMDh8YVF+fiR33TiXSG5vq7sncoPbHrLteruVePnbc807lrgrFxVod5HNDenBgb8txEp94kPQzki5Za7/bGLNX0oNJJ3S/1dWqLrz+tl68UFC0UlWmv08vTeU19dTDbU8+3K5Eeq2woDMX78U8eyKvZ/IjDGigR3AeQCe4qLPFSqRX68R4Nj/C5EMMce4vlirL+mzh5rY+eS5/MPHJB85t3aFSWdGnC8Vt/fiRfC7W5EO1anVptqjT5y/X4p47dUzHx3OxJh/uVCJ9rk7dfWd+pO3Jh16u5V4+dtzzTuWuPlOY31YHz+dHW558SPSrFsaYYUnfIukXJMlae9daezvJnOqZnSvVbgokKVqp6sULBc3OldqOea24VOvAjZhnLhZ0rbjkJGcA6cd5AJ3gos6uNohxlVqNJc79xWzxTt0+mS3e8ZpzMzi3dYeZYrluP84Uy7HiXr+1VJt02Ih7+vxlXb8Vrz7eaFB3b8Sou16u5V4+dtxTKC7WrYNCcbHlWEk/4+ERSQuSfskY82fGmE8YYwbv38gY84IxZtoYM72wsNDxJOdKUa2xN0QrVRVLUdsx58vLdWPOl5fbjonkJV2rCEuS5wFqtXe4qLOkarXb6zTO/UWa7yPSnJsv3Virvvpxvly/7m8utn9fvRbXfb7dWMvN1mo3Hjta57IOkp542CPpGyT9K2vtByUtSfqJ+zey1r5srZ201k6OjIx0OkeNDQ8o07+1qTL9fcoNt/8xo9HsvroxR7Pp+G4m2pN0rSIsSZ4HqNXe4aLOkqrVbq/TOPcXab6PSHNuvnRjrfrqx9Fspm7cg0PxPr7vI99urOVma7Ubjx2tc1kHSU88fFXSV621X1z/+29pbSIiVcbHsnppKl9r9I3vYI6PDbcd80huUGdPbI159kReR3LbPvABoEtxHkAnuKizJxrEeIJajSXO/cV4bn/dPhnP7feaczM4t3WHiVy2bj9O5LKx4h4+MKhzp45tiXvu1DEdPhCvPp5sUHdPxqi7Xq7lXj523JPPDdWtg3xuqOVYxlrrOr/WEjDmjyT9gLX2LWPMP5U0aK39XxptPzk5aaenpzuW34aNp04XS5FywxmNjw2zqkV3if8o5fskVasISxvnAWoVLUtgVQvqtElx7i9Y1cIJanUHvle1uLkY6eAQq1o0qeO1mqJjR4LaWNWibq2mYeLhmNaW09wr6SuSvs9a+1eNtu+mkzlShRsPhIJaRQioU4SCWkUoqFWEom6tJr6cprX2sqTJpPMAAAAAAADuJf2MBwAAAAAA0MWYeAAAAAAAAN4w8QAAAAAAALxh4gEAAAAAAHjDxAMAAAAAAPCGiQcAAAAAAOANEw8AAAAAAMAbJh4AAAAAAIA3TDwAAAAAAABvmHgAAAAAAADeMPEAAAAAAAC8YeIBAAAAAAB4w8QDAAAAAADwZk/SCUiSMea6pEVJ70patdZOJpsRAAAAAABwIRUTD+u+1Vr7taST6DXVqtX1W0uaL0cazWZ0+MCg+vpM0mkBqcNY6W30f/joQyA9GI9hoJ/gUpomHtBh1arVpdmiTp+/rGilqkx/n86dOqbj4zlOKsAmjJXeRv+Hjz4E0oPxGAb6Ca6l5RkPVtJrxpgvGWNeSDqZXnH91lLtZCJJ0UpVp89f1vVbSwlnBqQLY6W30f/how+B9GA8hoF+gmtpmXj4JmvtN0h6VtI/MMZ8y+YXjTEvGGOmjTHTCwsLyWTYhebLUe1ksiFaqermYpRQRuGjVrtTN44VarV53dj/oXBVp/QhfOOc2jzGY7KarVX6Ca6lYuLBWvv2+n9vSvodSU/f9/rL1tpJa+3kyMhIEil2pdFsRpn+rSWQ6e/TwaFMQhmFj1rtTt04VqjV5nVj/4fCVZ3Sh/CNc2rzGI/JarZW6Se4lvjEgzFm0BgztPFnSc9IKiSbVW84fGBQ504dq51UNr67dfjAYMKZAenCWOlt9H/46EMgPRiPYaCf4FoaHi45Kul3jDHSWj6/bq29lGxKvaGvz+j4eE6P/9A36+ZipINDPK0WqIex0tvo//DRh0B6MB7DQD/BtcQnHqy1X5H0VNJ59Kq+PqNHR/br0ZH9SacCpBpjpbfR/+GjD4H0YDyGgX6CS4l/1QIAAAAAAHQvJh4AAAAAAIA3TDwAAAAAAABvmHgAAAAAAADeMPEAAAAAAAC8YeIBAAAAAAB4w8QDAAAAAADwhokHAAAAAADgDRMPAAAAAADAGyYeAAAAAACAN0w8AAAAAAAAb5h4AAAAAAAA3jDxAAAAAAAAvGHiAQAAAAAAeLMn6QQkyRjzgKRpSW9ba5+PE+vu3Xd15UZJxXKksWxGE4eGtXfvA3W3vV2JdK24pPnyskaz+3QkN6iHBjKxtvURs9VtW1GqRHprU9zHcoMabhB3dbWq2bmS5kqRxoYHND6W1Z499eeuurW9kH70vVu055q47dAN7Rj6MeyU/27HFkWrmpkrqVheVi67TxNjw8pk9jiJvdvr71TuqlBcrL2ezw3pwYG9TmLHyXupsqzZ4p3a6+O5/Roc2NdU7GrV6vqtJc2XI41mMzp8YFB9fabpvHe61wuhTn3l6CNuSLn6ihtSrq6FkCP8c1UHqZh4kPRRSVclZeMEuXv3XV24ckNnXikoWqkq09+nsyfzmjp6aNvkw+1KpNcKCzpzcdO2J/J6Jj+yrSGb3dZHzFa3bUWpEunzdeJ+OD+ybfJhdbWqC6+/rRcv3Nv2pam8pp56eNvkQ7e2F9KPvneL9lwTtx26oR1DP4ad8pe047FF0aouzsxte/3ExJgymT2xYu/Wru9U7uozhfltrz+fH9VdVWPFjpP3UmVZny3c3Pb6c/mDGhzYt2Ps7L59ujRb1Onzl2uvnTt1TMfHc+rrM7vmvdO93jvvrqS+Tn2NJR9xQ8rVV9yQcnUthBzhn8s6SPyrFsaYr5P0nKRPxI115UapdiGSpGilqjOvFHTlRmnbtteKS7UGrG17saBrxaW2t/URs9VtW/FWg7hv1Yk7O1eqTTpsbPvihYJm59pv29DaC+lH37tFe66J2w7d0I6hH8NO+e92bDNzpbqvz6xf/+LE3u31QnGx7uuF4mLs2HHyni3eqfv6bPHOrrGv31qqTTpsvHb6/GVdv9Vc3jvd64VQp75y9BE3pFx9xQ0pV9dCyBH+uayDxCceJP20pB+TVG20gTHmBWPMtDFmemFhoWGgYjmqNcqGaKWq+XK0bdv58nKDbZfb3tZHzFa3bUUrcedK9du2WGq/bUNrr2Y0W6vwI8m+D00ztUp7ronbDt3Qjkkdg6tz6k7573ZsxV1ejxM7zuvhxq5/P3FzMWoq9k73eiFc/9NwT5dkzNDihpRrs5KuVYTFZR0kOvFgjHle0k1r7Zd22s5a+7K1dtJaOzkyMtJwu7FsRpn+rYeU6e/TaHb7x0BGs/sabLuv7W19xGx121a0EndseKDutrnh9ts2tPZqRrO1Cj+S7PvQNFOrtOeauO3QDe2Y1DG4OqfulP9ux5bb5fU4seO8Hm7s+vdqB4cyTcXe6V4vhOt/Gu7pkowZWtyQcm1W0rWKsLisg6Q/8fCNkk4YY65L+k1J32aM+dV2g00cGtbZk/la42x87+/ooeFt2x7JDersifu2PZHXkdxg29v6iNnqtq14rEHcx+rEHR/L6qWprdu+NJXX+Fj7bRtaeyH96Hu3aM81cduhG9ox9GPYKf/djm1ibLju6xPr1784sXd7PZ8bqvt6PjcUO3acvMdz++u+Pp7bv2vswwcGde7UsS2vnTt1TIcPNJf3Tvd6IdSprxx9xA0pV19xQ8rVtRByhH8u68BYa13n1xZjzIck/ehuq1pMTk7a6enphq9vPOl440nJR1nVYkftrGpRLEXKDWc0PjbcTatamJ1ebMdutQo/euAJzB2t1R5oz6awqkXLx5C6c6qLVS02XmdVCzerWtxcjHRwqP1VLerd64Vw/Q9plYSQcvUVN0W5dk2tIiyuarXrJh6ANqXuJhlogFpFCKhThIJaRSioVYSibq06/6qFMeabjDHft/7nEWPMI828z1r7+7tNOgAAAAAAgLA4nXgwxnxc0o9L+tj6r/oltf3MBgAAAAAAEDbXn3j4LkknJC1JkrX2hqQhx/sAAAAAAACBcD3xcNeuPTTCSpIxhseeAgAAAADQw1xPPJw3xvycpIeMMT8o6Xcl/bzjfQAAAAAAgEDs2X2T5llrf8oY8x2SypIek3TGWvsFl/sAAAAAAADhcDrxIEnrEw1MNgAAAAAAALcTD8aYRa0/32GTkqRpST9irf2Ky/0BAAAAAIB0c/2Jh5+W9FVJvy7JSPoeSf+1pC9L+kVJH3K8PwAAAAAAkGKuHy55wlr7c9baRWtt2Vr7sqQPW2v/jaT3ON4XAAAAAABIOdcTD+8YY04ZY/rWf05JitZfu/8rGAAAAAAAEEyZsgAAIABJREFUoMu5nnj425L+O0k3Jc2v//nvGGMGJP3PjvcFAAAAAABSzvVyml+R9JEGL/+xy30BAAAAAID0c72qRUbS/yhpXFJm4/fW2u93uR8AAAAAABAG11+1+H8k5SR9WNIfSPo6SYuO9wEAAAAAAALhejnNv2at/VvGmJPW2k8aY35d0h/t9Ib1T0n8oaR96/n8lrX24+0mcLsS6VpxSfPlZY1m9+lIblAPDWQ6tm2pEumtTds9lhvUcAf373PbVixVljVbvFOLO57br8GBfdu2q1atrt9a0nw50mg2o8MHBtXXZ1J7XHCLfko/F33U7PnAVw4ujiHpHOK2oQtpH69RtKqZuZKK5WXlsvs0MTasTObebc5O+S9WIl3d9NoTuUENbTq23a5VO8Xerd3itOtu7717911duVFSsRxpLJvRxKFh7d37QFPHtVubxM3N13GlvU598nHsvtozpLgh5epaCDnCP1d14HriYWX9v7eNMXlJRUkHd3nPsqRvs9beMcb0S/pjY8yr1to/bXXntyuRXiss6MzFgqKVqjL9fTp7Iq9n8iPbGsfHtqVKpM/X2e7D+ZFtkw9J59rqtq1Yqizrs4Wb2+I+lz+45Ua5WrW6NFvU6fOXa9udO3VMx8dz2yYf0nBccIt+Sj8XfdTs+cBXDi6OIekc4rahC2kfr1G0qoszc9vyOzExpkxmz475PyDp1TqvPZsf0dBAZtdr1U6xJe3YbnHadbf33r37ri5cuaEzr2x6/WReU0cPae/eB3Y8rqXl5R3bZDdJHdc7766kuk598jFGfY37kOKGlKtrIeQI/1zWgeuvWrxsjHmPpBclXZT0hqR/vtMb7Jo763/tX/9pa+nNa8WlWqNIUrRS1ZmLBV0rLnVk27cabPdWh/bvc9tWzBbv1I07W7yzZbvrt5ZqNzwb250+f1nXb6XzuOAW/ZR+Lvqo2fOBrxxcHEPSOcRtQxfSPl5n5kp185uZK0naOf+rDV67un5su12rdoq9W7vFadfd3nvlRqn2j/Pa668UdOVGadfj2q1N4ubm67jSXqc++Th2X+0ZUtyQcnUthBzhn8s6cP6MB2vtX1lr/9Ba+6i19qCk87u9yRjzgDHmstaW4fyCtfaL973+gjFm2hgzvbCw0DDOfHm51igbopWq5svLHdk26f373LYVzbdXVHe7m4tRrFx9HVczmq1VJNtPaK5WXfRR3BhJvz8NOaRhrCSVQ7Pn1OIu+e2U/27Httu1Kl7s9tt1t/cWG+Q9X97Iu/FxJVmzcY6rl6//Po496fvENMQNKddm+fh3FbqXyzpwPfHwqfWvS0iSjDE5SV/Y7U3W2nettce09jDKp9e/prH59ZettZPW2smRkZGGcUaz+5Tp33pImf4+jWa3fxTVx7ZJ79/ntq1ovr0ydbc7OLT9YztpOK5mNFurSLaf0FytuuijuDGSfn8ackjDWEkqh2bPqbld8tsp/92ObbdrVbzY7bfrbu8da5D3aHYj78bHlWTNxjmuXr7++zj2pO8T0xA3pFyb5ePfVeheLuvA9cTDBUnn1z/BcFjSa5I+1uybrbW3Jf2epOPt7PxIblBnT+RrjbPxHZQjucGObPtYg+0e69D+fW7bivHc/rpxx3P7t2x3+MCgzp06tmW7c6eO6fCBdB4X3KKf0s9FHzV7PvCVg4tjSDqHuG3oQtrH68TYcN38JsaGJe2c/xMNXnti/dh2u1btFHu3dovTrru9d+LQsM6evO/1k3kdPTS863Ht1iZxc/N1XGmvU598HLuv9gwpbki5uhZCjvDPZR0Ya9t6nELjgMb8A61NHByW9Pestf9+l+1HJK1Ya28bYwa0Nlnxk9baz9TbfnJy0k5PTzeMl/TqD6xqsabVVS1uLkY6OJToqhb1dxrDbrUKnpbcpo7WKqtapCOHAFe16Pg5dWNVi438fKxq0ehalfZVLTZWrTjaYFWLescVwqoW9Y6rl6//rOjQ9W3Q8VrlPg2Su1p1MvFgjDl9347+e0lXJP2ZJFlrz+3w3qOSPinpAa19AuO8tfZso+35xxw86ZobD3Q9ahUhoE4RCmoVoaBWEYq6tepqOc2h+/7+qQa/38Zae0XSBx3lAQAAAAAAUsTJxIO19p+5iAMAAAAAALqL04dLGmO+YIx5aNPf32OM+bzLfQAAAAAAgHC4XtViZH1lCkmStfavJB10vA8AAAAAABAI1xMP7xpjvn7jL8aY/0qS22UzAAAAAABAMFw9XHLDP5H0x8aYP9Da0yy/WdILjvcBAAAAAAAC4XTiwVp7yRjzDZL++vqvftha+zWX+wAAAAAAAOFw/YkHSXpX0k1JGUlPGmNkrf1DD/sBAAAAAAAp53TiwRjzA5I+KunrJF3W2icf/kTSt7ncDwAAAAAACIPrh0t+VNJ/I+nPrbXfKumDkm7v/BYAAAAAANCtXE88RNbaSJKMMfustW9KeszxPgAAAAAAQCBcP+Phq8aYhyRdkPQFY8xfSfpzx/sAAAAAAACBcL2qxXet//GfGmN+T9KwpEsu9wEAAAAAAMLhZOLBGJOR9Pcl/TVJM5J+wVr7By5iAwAAAACAcLl6xsMnJU1qbdLhWUn/RzNvMsa83xjze8aYN4wxs8aYjzrKBwAAAAAApICrr1o8aa2dkCRjzC9I+g9Nvm9V0o9Ya79sjBmS9CVjzBestW84ymtHtyuRrhWXNF9e1mh2n47kBvXQQCbWtj5ihmixEunqpmN7IjeooS45tl7UzbWK7rdUWdZs8U6tfsdz+zU4sC/ptDqKMZyc3do+Tt8k2a8+jyuOKFrVzFxJxfKyctl9mhgbVibj+pFm6CW9fP7s5WPHPa7qwNWZeGXjD9baVWNMU2+y1s5Jmlv/86Ix5qqkhyV5n3i4XYn0WmFBZy4WFK1Ulenv09kTeT2TH9nWkM1u6yNmiBYrkV6tc2zP5keYfAhQN9cqut9SZVmfLdzcVr/P5Q/2zOQDYzg5u7V9nL5Jsl99HlccUbSqizNz2/Z7YmKMyQe0pZfPn7187LjHZR24+qrFU8aY8vrPoqSjG382xpSbCWCMOSzpg5K+6CinHV0rLtUaUJKilarOXCzoWnGp7W19xAzR1QbHdrULjq0XdXOtovvNFu/Urd/Z4p2EM+scxnBydmv7OH2TZL/6PK44ZuZKdfc7M1fyul90r14+f/byseMel3XgZOLBWvuAtTa7/jNkrd2z6c/Z3d5vjNkv6bcl/bC1dttEhTHmBWPMtDFmemFhwUXKmi8v1xpwQ7RS1Xx5ue1tfcQMUTcf22581GrSerk/u1k31mo91G/YbRB6ne7W9nH6Jsl+9XlccRQTbJPQaxX1hXz+bKTZWu3GY0frXNaBq088tM0Y06+1SYdfs9Z+qt421tqXrbWT1trJkZERJ/sdze5Tpn/r4Wf6+zSa3f7R22a39REzRN18bLvxUatJ6+X+7GbdWKv1UL9ht0Hodbpb28fpmyT71edxxZFLsE1Cr1XUF/L5s5Fma7Ubjx2tc1kHiU48mLWHQfyCpKvW2nOd3PeR3KDOnsjXGnLj+ypHcoNtb+sjZoieaHBsT3TBsfWibq5VdL/x3P669Tue259wZp3DGE7Obm0fp2+S7FefxxXHxNhw3f1OjA173S+6Vy+fP3v52HGPyzow1lrX+TW/c2O+SdIfaW0Zzo3PcPxja+3nGr1ncnLSTk9PO9k/q1r4E+CqFs09EbUFLms1ad1cqwGiVlvEqhaJjGHqdB2rWiSzqsXGfptY1YJaxY5SdA/U8VpN0bEjQW3UQd1aTXTioR2czOEJNx4IBbWKEFCnCAW1ilBQqwhF3VpN/BkPAAAAAACgezHxAAAAAAAAvGHiAQAAAAAAeMPEAwAAAAAA8IaJBwAAAAAA4A0TDwAAAAAAwBsmHgAAAAAAgDdMPAAAAAAAAG+YeAAAAAAAAN4w8QAAAAAAALxh4gEAAAAAgP+fvfuPjvPK7/v+uRRBzAjEQF4JxIDr3VKbc0jJGHBlB6bbJs1xvLWkjbQk7fbIP+rmxG6snjaJ7WxT13YVumWV1I1tNdvY9TnKemO79dpVU4firna1cp22btomx1h7lxisRCaxtfGKeECuHM6A0AwACrd/EBiBxAznx3Pv3OfO836dg6Ml8cx9vs+93+99Ht6dmQtvWHgAAAAAAADesPAAAAAAAAC8YeEBAAAAAAB4czB0AMaYT0l6WtI1a20ldDyd1BpNXU7WtVrf0ExpXCfKE5oqFkKHBdyBPAXgC/OLH/QrkG15rtE8XzvcC77wIOlXJP2CpF8LHEdHtUZTX6he17mLVTW3tlUYO6Dzpyt6ojJN8SEzyFMAvjC/+EG/AtmW5xrN87XDj+AftbDW/q6kPwkdx71cTtZbRSdJza1tnbtY1eVkPXBkwHvIUwC+ML/4Qb8C2ZbnGs3ztcOP4AsPvTDGPGuMWTTGLF6/fn3o51+tb7SKbldza1ur9Y2hx4JsC5mr5Cn6EXpeRVxCzS+jnqfM26Nj1HM1r0axRnvN1VG8doQVxcKDtfZFa+2CtXZhenp66OefKY2rMHZnVxXGDmimND70WJBtIXOVPEU/Qs+riEuo+WXU85R5e3SMeq7m1SjWaK+5OorXjrCiWHgI7UR5QudPV1rFt/sZpxPlicCRAe8hTwH4wvziB/0KZFueazTP1w4/svDlkpk3VSzoicq0jj10im91RWaRpwB8YX7xg34Fsi3PNZrna4cfwRcejDG/IenbJT1kjPmapJ+21v5y2Kj2myoWdOphCg3ZRp4C8IX5xQ/6Fci2PNdonq8d7gVfeLDWfl/oGAAAAAAAgB98xwMAAAAAAPCGhQcAAAAAAOANCw8AAAAAAMAbFh4AAAAAAIA3LDwAAAAAAABvWHgAAAAAAADesPAAAAAAAAC8YeEBAAAAAAB4w8IDAAAAAADwhoUHAAAAAADgDQsPAAAAAADAGxYeAAAAAACANyw8AAAAAAAAb1h4AAAAAAAA3hwMHYAx5klJn5B0n6RPWmt/ZljnvtFo6kqyrtX6hmZK4zpentADxULqY0Pb3HxXl67WlNSbmi0VNH90SocO3Rc6LNwlppwCgDzPWe80NlVN1lrXXilP6v7ioZ5ee+vWtpZXalqpNTU7VdTcbEkHD773//uk6deQ9/tGY0tLSb0V93y5pGJxrPX7bteNfItpPokpVtfyfO1wL+jCgzHmPkm/KOk7JX1N0u8ZYy5aa7/i+9w3Gk29Vr2ucxeram5tqzB2QOdPV/R4ZXpfQfVzbGibm+/qwqWrOvfynljPVHT25FEWHzIkppwCgDzPWe80NvXZ6uq+a3+6MtN18eHWrW1d+PJbeu7Ce699/mxFZz/8fh08eCBVv4a83zcaW/pMNdkX98cqZRWLY12vG/kW03wSU6yu5fna4Ufo2f+UpH9hrf1Da+2mpN+UdGYYJ76SrLcKSZKaW9s6d7GqK8l6qmNDu3S11noIkXZifbmqS1drgSPDXjHlFADkec6qJmttr72arHV97fJKrfWP793XPnehquWV2/fkNP0a8n6/lNTbxr2U1CV1v27kW0zzSUyxupbna4cfoRce3i/pj/f8+Ws7f3cHY8yzxphFY8zi9evXnZx4tb7RKqRdza1trdY3Uh0bWlJvdoi1GSiifOk1V2PKKYwmH/MqRleoOSsLeZrm2ldq7e/JSa2Zuu2Q9/tucXe77lGUhVyNRUzPQDHF2iueVRFK6IWHnlhrX7TWLlhrF6anp520OVMaV2HszssvjB3QTGk81bGhzZYKHWLlLVHD0GuuxpRTGE0+5lWMrlBzVhbyNM21z04V2762PFVI33bA+323uLtd9yjKQq7GIqZnoJhi7RXPqggl9MLDW5I+sOfP37jzd94dL0/o/OlKq6B2P7d0vDyR6tjQ5o9O6fyZu2I9U9HJo1OBI8NeMeUUAOR5zqqUJ9tee6U82fW1c7MlPX/2ztc+f7aiudnb9+Q0/Rryfj9fLrWNe75cktT9upFvMc0nMcXqWp6vHX4Ya224kxtzUNIVSR/R7QWH35P0/dba5U6vWVhYsIuLi07OP+q7WqzWm5opFXSSXS16YVw32C1XY8opZMrQcxWQ+p6zRipPXexqkdSaKk8VNDc75XxXixD3+153teh03RkyUrkai5iegTIUK8+qiEXbXA26q4W19pYx5q9K+oJub6f5qXstOrj2QLGgUw/3Vjz9HBvaoUP3aeHY+0KHgS5iyikAyPOcdX/xkE49/OBArz148IA+/IFv0Ic/0P73afo15P2+WBy7Z590u27kW0zzSUyxupbna4d7QRceJMla+zlJnwsdBwAAAAAAcC+T73kDAAAAAACjgYUHAAAAAADgDQsPAAAAAADAGxYeAAAAAACAN0G30xyEMea6pK/2cOhDkr7uOZwQuC4/vm6tfdJlgyOaq8TqT6/xhsrVGPqTGN1wESNz6n5ZjUvKbmzDiItc7U1MsUpxxZv1+78UV3/6Qh+kzNXoFh56ZYxZtNYuhI7DNa5r9MR07cTqT9bjzXp8EjG6EkOM95LV+LMal5Td2LIalysxXV9MsUpxxRtDrDHE6Bt9kL4P+KgFAAAAAADwhoUHAAAAAADgzSgvPLwYOgBPuK7RE9O1E6s/WY836/FJxOhKDDHeS1bjz2pcUnZjy2pcrsR0fTHFKsUVbwyxxhCjb/RByj4Y2e94AAAAAAAA4Y3yOx4AAAAAAEBgLDwAAAAAAABvWHgAAAAAAADesPAAAAAAAAC8YeEBAAAAAAB4w8IDAAAAAADwhoUHAAAAAADgDQsPAAAAAADAGxYeAAAAAACAN9EtPDz55JNWEj/8uP5xjlzlx9OPc+QqPx5+nCNP+fH04xy5yo+nH+fIVX48/bQV3cLD17/+9dAhAD0hVxELchUxIE8RC3IVsSBXMUzRLTwAAAAAAIB4sPAAAAAAAAC8YeEBAAAAAAB4w8IDAAAAAADwhoUHAAAAAADgzcHQARhj/rqkv6zbW28sSfpBa21zGOe+0WjqSrKu1fqGZkrjOl6e0APFQupjfZw/C+32o95o6o09MTxSnlBpyDFknY9xqjWaurynzRPlCU1luN9jqitf1hpNvb4n3kfLE5rMcLzIr9hqqx/dru2dxqaqyVrr95XypO4vHuqp7WbzlpZWakrqGyqXxjU/O6VC4b3HrzT92u21m5vv6tLVmpJ6U7OlguaPTunQoftav280trSU1Fuvny+XVCyO9XTN93pt2uvq5l6xrTc2tJzcbP1urnxYE8VxJ+fNo9ieVWN6ruhWn1kwyvM+etdtvu9V0IUHY8z7Jf2IpG+y1jaMMS9J+l5Jv+L73DcaTb1Wva5zF6tqbm2rMHZA509X9Hhlel9B9XOsj/Nnod1+1BtNvdomhicr0yw+7PAxTrVGU19o0+YTlelMLj7EVFe+rDWa+nybeD9amWbxAZkSW231o9u1vdPY1Gerq/t+/3RlpuviQ7N5SxeXVva99vT8rAqFg6n6tdtrNzff1YVLV3Xu5T2/P1PR2ZNHdejQfWo0tvSZarLv9R+rlGVl73nN93ptsTjmNV/uNR5WVq9Ur+373VOVIyw+DCC2Z9WYniu61WcWjPK8j951m+/7kYWPWhyUVDTGHJR0v6SrwzjplWS91YGS1Nza1rmLVV1J1lMd6+P8WWi3H290iOGNIcaQdT7G6XKHNi9ntN9jqitfXu8Q7+sZjRf5FVtt9aPbtVWTtba/ryZrXdteWqm1fe3SSq2nc6eJ+9LVWusfNa3fv1zVpau3z72U1NvHltS7XvO9Xpv2urq5V2zLyc22v1tObqY+bx7F9qwa03NFt/rMglGe99G7bvN9P4IuPFhr35L0c5L+laQVSTVr7Wt3H2eMedYYs2iMWbx+/bqTc6/WN1oduKu5ta3V+kaqY32cPwvtxhZDKL3makw55Qt9EDZeH/MqRleoXB1Gnna7tjTXnnhsu9trk3qzw++bXV+ftk985kuauH0axTk1tmfVmJ4rutWnTyGfVREfl3kQdOHBGPMNks5IeljSUUkTxpgfuPs4a+2L1toFa+3C9PS0k3PPlMZVGLvz8gtjBzRT2v9WvH6O9XH+LLQbWwyh9JqrMeWUL/RB2Hh9zKsYXaFydRh52u3a0lx72WPb3V47Wyp0+H2h6+vT9onPfEkTt0+jOKfG9qwa03NFt/r0KeSzKuLjMg9Cf9Ti35X0R9ba69baLUm/JenfHsaJj5cndP50pdWRu59XOV6eSHWsj/Nnod1+PNIhhkeGGEPW+RinEx3aPJHRfo+prnx5tEO8j2Y0XuRXbLXVj27XVilPtv19pTzZte352am2r52fnerp3Gninj86pfNn7vr9mYpOHr197vlyqX1s5VLXa77Xa9NeVzf3im2ufLjt7+bKh1OfN49ie1aN6bmiW31mwSjP++hdt/m+H8Za6zq+3k9uzLdJ+pSkb5XU0O0vlVy01v69Tq9ZWFiwi4uLTs7Prhb+RLirhXHdYLdcZVeLuOrKlwF2tRh6rgJS37UVVZ4OY1eL1reBB9jVYrXe1EypoJPsatFOVLk6bLE9q8b0XNGtPtsYiWdVxGeAXS3a5mrQhQdJMsb815K+R9ItSX8g6S9bazt+aGSUJnNkCg8eiAW5ihiQp4gFuYpYkKuIRdtcDbqdpiRZa39a0k+HjgMAAAAAALgX+jseAAAAAADACGPhAQAAAAAAeMPCAwAAAAAA8IaFBwAAAAAA4A0LDwAAAAAAwBsWHgAAAAAAgDcsPAAAAAAAAG9YeAAAAAAAAN4cDB1ASDcaTV1J1rVa39BMaVzHyxN6oFhIdayPNmO01mjq9T3X9mh5QpMjcm15NMq5Ghp9i2Egz8Lp1vdpxibkuPq8rjSazVtaWqkpqW+oXBrX/OyUCoVcP+6m0mhsaSmpt8ZxvlxSsTgWOqyhyvP8medrx3tc5UFuZ+IbjaZeq17XuYtVNbe2VRg7oPOnK3q8Mr2vI3s91kebMVprNPX5Ntf20co0iw8RGuVcDY2+xTCQZ+F06/s0YxNyXH1eVxrN5i1dXFrZd97T87MsPgyg0djSZ6rJvv78WKWcm8WHPM+feb52vMdlHuT2oxZXkvVWB0pSc2tb5y5WdSVZH/hYH23G6PUO1/b6CFxbHo1yroZG32IYyLNwuvV9mrEJOa4+ryuNpZVa2/MurdS8nndULSX19v2Z1ANHNjx5nj/zfO14j8s8yO3Cw2p9o9WBu5pb21qtbwx8rI82YzTK15ZHjKc/9C2GgTwLp1vfpxmbkOPq87rSSMh1p5g78t0Heb52vMdlHuR24WGmNK7C2J2XXxg7oJnS+MDH+mgzRqN8bXnEePpD32IYyLNwuvV9mrEJOa4+ryuNMrnuFHNHvvsgz9eO97jMg9wuPBwvT+j86UqrI3c/r3K8PDHwsT7ajNGjHa7t0RG4tjwa5VwNjb7FMJBn4XTr+zRjE3JcfV5XGvOzU23POz875fW8o2q+XGrfn+VS4MiGJ8/zZ56vHe9xmQfGWus6Pq8WFhbs4uKik7bY1cKfCHe1MK4bdJmroY1yroY2QN+Sq+hbgBomT3ewq0WYXS1auzB039WCXL0HdrXI1DPQ0HM1Q9eOgFw9q+Z64QHYgwcPxIJcRQzIU8SCXEUsyFXEom2u5vajFgAAAAAAwD8WHgAAAAAAgDcsPAAAAAAAAG9YeAAAAAAAAN6w8AAAAAAAALxh4QEAAAAAAHjDwgMAAAAAAPCGhQcAAAAAAOANCw8AAAAAAMCbg6EDMMY8IOmTkiqSrKQfstb+f2Gj2m+9saHl5KZW6xuaKY1rrnxYE8Xx0GEBUaOugN5QK6OLsQXyKYbajyFGxCP4woOkT0h61Vr77xtjDkm6P3RAd1tvbOiV6jWdu1hVc2tbhbEDOn+6oqcqRyg+YEDUFdAbamV0MbZAPsVQ+zHEiLgE/aiFMWZK0p+T9MuSZK3dtNbeCBlTO8vJzVbRSVJza1vnLla1nNwMHBkQL+oK6A21MroYWyCfYqj9GGJEXEJ/x8PDkq5L+gfGmD8wxnzSGDNx90HGmGeNMYvGmMXr168PPcjV+kar6HY1t7a1Wt8YeizIttC5GhPqKixyNR55rpVRz9M8j+2oGfVchVsha7/XXGV+gmuhFx4OSvoWSb9krf1mSeuSfuLug6y1L1prF6y1C9PT08OOUTOlcRXG7uyqwtgBzZR4mxHuFDpXY0JdhUWuxiPPtTLqeZrnsR01o56rcCtk7feaq8xPcC30wsPXJH3NWvvPdv78D3V7ISJT5sqHdf50pVV8u59xmisfDhwZEC/qCugNtTK6GFsgn2Ko/RhiRFyCfrmktTYxxvyxMeaEtfaypI9I+krImNqZKI7rqcoRHXvoFN/qCjhCXQG9oVZGF2ML5FMMtR9DjIhLFna1+GuSfn1nR4s/lPSDgeNpa6I4rlMPU2iAS9QV0BtqZXQxtkA+xVD7McSIeARfeLDWfknSQug4AAAAAACAe6G/4wEAAAAAAIwwFh4AAAAAAIA3LDwAAAAAAABvWHgAAAAAAADesPAAAAAAAAC8YeEBAAAAAAB4w8IDAAAAAADwhoUHAAAAAADgzcHQAYyaG42mriTrWq1vaKY0ruPlCT1QLLQ99majqa/sOfabyhM63OHYftq9dWtbyys1rdSamp0qam62pIMH268xNRpbWkrqrXbnyyUVi2ODXXyGjOp1jZp+8jpkm0Ba5GV4Pu8Loca3n/v9sKXp7zT9ubn5ri5drSmpNzVbKmj+6JQOHbovzaVEw0ce9vOs2g9f9bje2NBycrPV7lz5sCaK46najK0PANdczS0sPDh0o9HUa9XrOnexqubWtgpjB3T+dEWPV6b3Dc7NRlOfa3PsX6hM75vM+mn31q1tXfjyW3ruwnvHPn+2orMffv++h5FGY0ufqSb72v1YpRz1xDeq1zVq+snrkG0CaZEz0rQkAAAgAElEQVSX4fm8L4Qa337u98OWpr/T9Ofm5ru6cOmqzr2857VnKjp78ujILz74yMN+nlX74ase1xsbeqV6bV+7T1WODLz4EFsfAK65nFuysSw+Iq4k661BkaTm1rbOXazqSrK+79ivdDj2K22O7afd5ZVa6yFk99jnLlS1vFLbd+xSUm/b7lJSH7AHsmFUr2vU9JPXIdsE0iIvw/N5Xwg1vv3c74ctTX+n6c9LV2utRYfWa1+u6tLV8H3im4887OdZtR++6nE5udm23eXk5sBtxtYHgGsu5xYWHhxarW+0BmVXc2tbq/WNoR27Umu2PTapNVO1G5NRva5R42OcGHtkEXkZns8xCDW+/dzvhy1Nn6R5bVJv3yer9fB94ltM99SY2o0pVsAHl7nKwoNDM6VxFcbu7NLC2AHNlPa/vcvXsbNTxbbHlqf2vxWmn3ZjMqrXNWp8jBNjjywiL8PzOQahxref+/2wpemTNK+dLRU6vDZ8n/gW0z01pnZjihXwwWWuOlt4MMb8NWPMN7hqL0bHyxM6f7rSGpzdz8AcL0/sO/abOhz7TW2O7afdudmSnj9757HPn61obnZq37Hz5VLbdufLpQF7IBtG9bpGTT95HbJNIC3yMjyf94VQ49vP/X7Y0vR3mv6cPzql82fueu2Zik4eDd8nvvnIw36eVfvhqx7nyofbtjtXPjxwm7H1AeCay7nFWGudBGWMeV7S90r6fUmfkvQF66rxPRYWFuzi4qLrZp3J0q4WSa2p8lRBc7NT7GrR/bqM6xiynqtZwK4WAyFXI5SDvLxb5vJ0lHe16OV+P2yhd7VYrTc1UyroZPddLTKXq4NiV4uR39ViZHIVcRlgbmmbq84WHiTJGGMkPS7pByUtSHpJ0i9ba/+lq3NQIPCEyRyxIFcRA/IUsSBXEQtyFbFom6tOl8V33uGQ7PzckvQNkv6hMebvuDwPAAAAAACIw0FXDRljflTSX5T0dUmflPSfW2u3jDEHJP1zST/u6lwAAAAAACAOzhYeJL1P0ndba7+69y+ttdvGmKcdngcAAAAAAETC5UctPnT3ooMx5n+SJGvt6w7PAwAAAAAAIuFy4WFu7x+MMfdJ+tMO2wcAAAAAAJFJvfBgjPlJY8yapJPGmLoxZm3nz9ckvZw6QgAAAAAAEK3UCw/W2v/WWjsp6WettSVr7eTOz4PW2p90ECMAAAAAAIiUy49a/JfGmB8wxvxNSTLGfMAYc8ph+wAAAAAAIDIuFx5+UdK/Jen7d/58c+fvAAAAAABATrncTvPbrLXfYoz5A0my1v5rY8yhXl6480WUi5Lestam2nrzRqOpK8m6VusbmimN63h5Qg8UC0M7NvT5+9VPu7dubWt5paaVWlOzU0XNzZZ08GD7tatR7S+45WOcfI399rbVm2+va7Xe1EypoGMPTujAAZO6XcSBOSX7ms1bWlqpKalvqFwa1/zslAqF9x5z7jWG3ca30djSUlJv/X6+XFKxOOak7W6/f6exqWqy1vp9pTyp+4uHnLRdazR1ec/vT5QnNNVj3OuNDS0nN1u/nysf1kRxvKdzd5tP09RbDLWahWe6UYzVV7sxxepaDDEiHi4XHrZ2FhCsJBljpiVt9/jaH5X0uqRSmgBuNJp6rXpd5y5W1dzaVmHsgM6frujxyvS+IvFxbOjz++yvW7e2deHLb+m5C+8d+/zZis5++P37Fh9Gtb/glo9x8jX229tWry4n+vhLX2q1+8Izj+nJuTKLDznAnJJ9zeYtXVxa2TdGp+dnVSgcvOcYSrrn+DYaW/pMNdn3+49VyioWx1K13S233mls6rPV1X2/f7oyo01tp2q71mjqC21+/0RlWrZL3OuNDb1Svbbv909VjmiiOH7Pc5fGx+85n6aptxhqNQvPdKMYq692Y4rVtRhiRFxcftTif5D0jyQdMcb8LUn/RNLf7vYiY8w3SnpK0ifTBnAlWW8VhyQ1t7Z17mJVV5L1oRwb+vz96qfd5ZVaa9Fh99jnLlS1vFIbuN3Y+gtu+RgnX2P/5tvrrYfk3XY//tKX9Obb5FQeMKdk39JKre0YLe3co+41ht3Gdympt287qaduu9vvq8la299Xk7XUbV/u8PvLPcS9nNxs+/vl5GbXc3ebT9PUWwy1moVnulGM1Ve7McXqWgwxIi7O3vFgrf11Y8wXJX1EkpF01lr7eg8v/buSflzSZKcDjDHPSnpWkj74wQ92bGi1vtEqjl3NrW2t1jeGcmzo8/ern3ZXas22xya1pj78gcHaja2/etFrrsLPOPmrlfb5f22tqQ9NH07Vdijkau9Czil512ueJl3GqNsYpnktbff3+3e37T3n0zT1FsP9PwvPdCHbjK3dmGLtVehcRX6lfseDMaa089/3Sbom6TckfVrS6s7f3eu1T0u6Zq394r2Os9a+aK1dsNYuTE9PdzxupjSuwtidl1QYO6CZ0vhQjg19/n710+7sVLHtseWp/W+1GtX+6kWvuQo/4+SvVgpt2z0yGe9bDcnV3oWcU/Ku1zwtdxmje41ht/FN83vabtf2vefTNPUWw/0/C890IduMrd2YYu1V6FxFfrn4qMWnd/77Rd3+gsjdn90/38ufkXTaGPOmpN+U9B3GmP950ECOlyd0/nSlVSS7n0U6Xp4YyrGhz9+vftqdmy3p+bN3Hvv82YrmZqcGbje2/oJbPsbJ19gfe3BCLzzz2B3tvvDMYzr2IDmVB8wp2Tc/O9V2jOZ37lH3GsNu4ztfLrVvu1xK3Xa331fKk21/XylPpm77RIffn+gh7rny4ba/nysf7nrubvNpmnqLoVaz8Ew3irH6ajemWF2LIUbExVhr0zdijJH0AWvtv0rRxrdL+hvddrVYWFiwi4ud1zNC75IQ+vz9GmRXi6TWVHmqoLnZqVHa1cL5NwR2y1XE9e3Tu9/Cfm2tqSOTQXe1IFcD4Ju9+zb0PN3d1aK18wS7WmR+V4tO8+mQd7UYeq5m4ZkuZJuxtZuhWEcmVzHy2uaqk4UHSTLGLFlr51O8/tvlYOEBGBD/mEMsyFXEgDxFLMhVxIJcRSza5qrLXS1+3xjzrYO+2Fr7f3ZbdAAAAAAAAHFxtquFpG+T9B8YY74qaV23Vzqstfakw3MAAAAAAICIuFx4eMJhWwAAAAAAYAQ4W3iw1n5VkowxRyTxrSMAAAAAAMDddzwYY04bY/65pD+S9H9JelPS5121DwAAAAAA4uPyyyX/G0n/pqQr1tqHJX1E0j912D4AAAAAAIiMy4WHLWvt25IOGGMOWGv/D0kLDtsHAAAAAACRcfnlkjeMMYcl/d+Sft0Yc023d7cAAAAAAAA5lfodD8aYXzTG/FlJZyS9I+nHJL0q6V9K+lja9gEAAAAAQLxcvOPhiqSflTQr6SVJv2Gt/VUH7WbKjUZTV5J1rdY3NFMa1/HyhB4osnkH8mG9saHl5GYr/+fKhzVRHE/dLnWFYSDPkGXkJ5BteX4GiiFG+OeqBlIvPFhrPyHpE8aYf0PS90r6lDGmKOnTkn7TWnsl7TlCu9Fo6rXqdZ27WFVza1uFsQM6f7qixyvTFB9G3npjQ69Ur+3L/6cqR1LdeKkrDAN5hiwjP4Fsy/MzUAwxwj+XNeDsyyWttV+11v531tpvlvR9kr5L0uuu2g/pSrLe6mxJam5t69zFqq4kfIUFRt9ycrNt/i8nN1O1S11hGMgzZBn5CWRbnp+BYogR/rmsAWcLD8aYg8aYjxljfl3S5yVdlvTdrtoPabW+0ersXc2tba3WNwJFBAyPr/ynrjAM5BmyjPwEsi3Pz0AxxAj/XOaBiy+X/E5jzKckfU3SD0t6RdKfstZ+r7X25bTtZ8FMaVyFsTu7qjB2QDOl9J/vArLOV/5TVxgG8gxZRn4C2ZbnZ6AYYoR/LvPAxTseflLS/yvpUWvtaWvtp621I/UenOPlCZ0/XWl1+u5nW46XJwJHBvg3Vz7cNv/nyodTtUtdYRjIM2QZ+QlkW56fgWKIEf65rAEXXy75HWnbyLoHigU9XpnWsYdO8a2uyJ2J4rieqhy5I/9dfKMzdYVhIM+QZeQnkG15fgaKIUb457IGXGynmQsPFAs69TCFhnyaKI7r1MPu31pHXWEYyDNkGfkJZFuen4FiiBH+uaoBZ18uCQAAAAAAcDcWHgAAAAAAgDcsPAAAAAAAAG9YeAAAAAAAAN6w8AAAAAAAALxh4QEAAAAAAHjDwgMAAAAAAPCGhQcAAAAAAOANCw8AAAAAAMCbgyFPboz5gKRfkzQjyUp60Vr7iZAxdXKj0dSVZF2r9Q3NlMZ1vDyhB4qF0GEBUaOu0AvyBKOM/AbyKYbaX29saDm52YpxrnxYE8Xx0GFhyFzlQdCFB0m3JP1n1trfN8ZMSvqiMea3rbVfCRzXHW40mnqtel3nLlbV3NpWYeyAzp+u6PHKdOYmCCAW1BV6QZ5glJHfQD7FUPvrjQ29Ur22L8anKkdYfMgRl3kQ9KMW1toVa+3v7/zvNUmvS3p/yJjauZKstzpbkppb2zp3saoryXrgyIB4UVfoBXmCUUZ+A/kUQ+0vJzfbxric3AwcGYbJZR5k5jsejDHHJH2zpH/W5nfPGmMWjTGL169fH3ZoWq1vtDp7V3NrW6v1jaHHgmwLnasxoa7CiiVXyZN8iyVPB0V+j45Rz1W4FbL2e81V5idIbvMgEwsPxpjDkv43ST9mra3f/Xtr7YvW2gVr7cL09PTQ45spjaswdmdXFcYOaKbE24xwp9C5GhPqKqxYcpU8ybdY8nRQ5PfoGPVchVsha7/XXGV+guQ2D4IvPBhjxnR70eHXrbW/FTqedo6XJ3T+dKXV6bufbTlenggcGRAv6gq9IE8wyshvIJ9iqP258uG2Mc6VDweODMPkMg9C72phJP2ypNettS+EjOVeHigW9HhlWsceOpXpb54FYkJdoRfkCUYZ+Q3kUwy1P1Ec11OVI3fEyK4W+eMyD0LvavFnJP2HkpaMMV/a+bufstZ+LmBMbT1QLOjUw9mZDIBRQF2hF+QJRhn5DeRTDLU/URzXqYdZaMg7V3kQdOHBWvtPJJmQMQAAAAAAAH+Cf8cDAAAAAAAYXSw8AAAAAAAAb1h4AAAAAAAA3rDwAAAAAAAAvGHhAQAAAAAAeMPCAwAAAAAA8IaFBwAAAAAA4A0LDwAAAAAAwJuDoQOIxXpjQ8vJTa3WNzRTGtdc+bAmiuOhwwKiRl3lA+MMdEZ9APkUQ+3HECPiwcJDD9YbG3qlek3nLlbV3NpWYeyAzp+u6KnKEYoPGBB1lQ+MM9AZ9QHkUwy1H0OMiAsftejBcnKzVXSS1Nza1rmLVS0nNwNHBsSLusoHxhnojPoA8imG2o8hRsSFhYcerNY3WkW3q7m1rdX6RqCIgPhRV/nAOAOdUR9APsVQ+zHEiLiw8NCDmdK4CmN3dlVh7IBmSrzNCBgUdZUPjDPQGfUB5FMMtR9DjIgLCw89mCsf1vnTlVbx7X7Gaa58OHBkQLyoq3xgnIHOqA8gn2Ko/RhiRFz4cskeTBTH9VTliI49dIpvdQUcoa7ygXEGOqM+gHyKofZjiBFxYeGhRxPFcZ16mEIDXKKu8oFxBjqjPoB8iqH2Y4gR8eCjFgAAAAAAwBsWHgAAAAAAgDcsPAAAAAAAAG9YeAAAAAAAAN6w8AAAAAAAALxh4QEAAAAAAHjDwgMAAAAAAPCGhQcAAAAAAOANCw8AAAAAAMCbg6EDMMY8KekTku6T9Elr7c8M69w3Gk1dSda1Wt/QTGlcx8sTeqBYSH0sgN74qCtq1S36E0in1mjq8p4aOlGe0NSeGhrVGnunsalqsta6rkp5UvcXD3k/b7N5S0srNSX1DZVL45qfnVKhEPxxdyh85JKvcWw0trSU1FvtzpdLKhbHUrfrw+bmu7p0taak3tRsqaD5o1M6dOi+1O3GUPsxxAj/XOVB0JnYGHOfpF+U9J2Svibp94wxF621X/F97huNpl6rXte5i1U1t7ZVGDug86crerwyva8j+zkWQG981BW16hb9CaRTazT1hTY19ERlWlPFwsjW2DuNTX22urrvup6uzHhdfGg2b+ni0sq+856enx35xQcfueRrHBuNLX2mmuxr92OVcuYWHzY339WFS1d17uU9sZ6p6OzJo6kWH2Ko/RhihH8u8yD0Ry1OSfoX1to/tNZuSvpNSWeGceIryXqrAyWpubWtcxerupKspzoWQG981BW16hb9CaRzuUMNXd6poVGtsWqy1va6qsma1/MurdTanndppeb1vFngI5d8jeNSUm8/Tkk9Vbs+XLpaay06SDuxvlzVpavpciqG2o8hRvjnMg9CLzy8X9If7/nz13b+7g7GmGeNMYvGmMXr1687OfFqfaPVgbuaW9tarW+kOhb55iNXR5WPuqJWe9dLrtKfCC32ObVbDY1qjYW6riRgf4bO1ZjuqTHlfVJvdoi1mardkH3Qa67GNE7wx2UehF546Im19kVr7YK1dmF6etpJmzOlcRXG7rz8wtgBzZTGUx2LfPORq6PKR11Rq73rJVfpT4QW+5zarYZGtcZCXVc5YH+GztWY7qkx5f1sqdAh1nQfNQjZB73makzjBH9c5kHohYe3JH1gz5+/cefvvDtentD505VWR+5+XuV4eSLVsQB646OuqFW36E8gnRMdaujETg2Nao1VypNtr6tSnvR63vnZqbbnnZ+d8nreLPCRS77Gcb5caj9O5VKqdn2YPzql82fuivVMRSePpsupGGo/hhjhn8s8MNZa1/H1fnJjDkq6Iukjur3g8HuSvt9au9zpNQsLC3ZxcdHJ+dnVAnsY1w26zNVRxa4WAxlqruagP+EHc+oOdrUIs6tFa7eE7rtajEyusquFH7u7WqzWm5opFXQy3K4WQ8/VUZ2f0B9XuRp04UGSjDF/QdLf1e3tND9lrf1b9zo+1gcPZN7IPHhg5JGriAF5iliQq4gFuYpYtM3V4HsLWWs/J+lzoeMAAAAAAADuhf6OBwAAAAAAMMJYeAAAAAAAAN6w8AAAAAAAALxh4QEAAAAAAHjDwgMAAAAAAPAm+Haa/TLGXJf01R4OfUjS1z2HEwLX5cfXrbVPumxwRHOVWP3pNd5QuRpDfxKjGy5iZE7dL6txSdmNbRhxkau9iSlWKa54s37/l+LqT1/og5S5Gt3CQ6+MMYvW2oXQcbjGdY2emK6dWP3JerxZj08iRldiiPFeshp/VuOSshtbVuNyJabriylWKa54Y4g1hhh9ow/S9wEftQAAAAAAAN6w8AAAAAAAALwZ5YWHF0MH4AnXNXpiunZi9Sfr8WY9PokYXYkhxnvJavxZjUvKbmxZjcuVmK4vpliluOKNIdYYYvSNPkjZByP7HQ8AAAAAACC8UX7HAwAAAAAACIyFBwAAAAAA4A0LDwAAAAAAwBsWHgAAAAAAgDcsPAAAAAAAAG9YeAAAAAAAAN6w8AAAAAAAALxh4QEAAAAAAHjDwgMAAAAAAPAmuoWHJ5980krihx/XP86Rq/x4+nGOXOXHw49z5Ck/nn6cI1f58fTjHLnKj6eftqJbePj6178eOgSgJ+QqYkGuIgbkKWJBriIW5CqGKbqFBwAAAAAAEA8WHgAAAAAAgDcsPAAAAAAAAG9YeAAAAAAAAN6w8AAAAAAAALw5GDqAkOqNpt5I1rVa39BMaVyPlCdUKhaGdv4bjaau7Dn/8fKEHhji+YFeNZu3tLRSU1LfULk0rvnZKRUK6acPHzVAXbnla+xjkzavNjff1aWrNSX1pmZLBc0fndKhQ/d5jPhOLsZxvbGh5eRmqw/myoc1URz3FDEwmDzfA3zU6Fqjqdf39Oej5QlNOujPmMap1mjq8p5YT5QnNOUg1tD3hV7ENE7wx1UN5O/pcUe90dSr1es6d7Gq5ta2CmMHdP50RU9Wpoey+HCj0dRrbc7/eGWagkamNJu3dHFpZV+unp6fTfUPUB81QF255WvsY5M2rzY339WFS1d17uU9rz9T0dmTR4fykOliHNcbG3qlem1fG09VjrD4gMzI8z3AR42uNZr6fJv+/GhlOtXiQ0zjVGs09YU2sT5RmU61+BD6vtCLmMYJ/risgdx+1OKNZL3VgZLU3NrWuYtVvZGsD+X8Vzqc/8qQzg/0amml1jZXl1Zqqdr1UQPUlVu+xj42afPq0tVa6+Gy9fqXq7p0dTj96GIcl5ObbdtYTm56iRkYRJ7vAT5q9PUO/fl6yv6MaZwud4j1cspYQ98XehHTOMEflzWQ24WH1fpGqwN3Nbe2tVrfyMX5gV4lnnLVRw1QV275GvvYpM2rpN7s8Pqmsxjvff7040htIQZ5ztOY7qkxjZOvWEPfF3oR0zjBH5d5kNuFh5nSuApjd15+YeyAZkrDecto6PMDvSp7ylUfNUBdueVr7GOTNq9mS4UOrx/OW1VdjCO1hRjkOU9juqfGNE6+Yg19X+hFTOMEf1zmQW4XHh4pT+j86UqrI3c/r/JIeWIo5z/e4fzHh3R+oFfzs1Ntc3V+dipVuz5qgLpyy9fYxyZtXs0fndL5M3e9/kxFJ48Opx9djONc+XDbNubKh73EDAwiz/cAHzX6aIf+fDRlf8Y0Tic6xHoiZayh7wu9iGmc4I/LGjDWWtfxebWwsGAXFxedtMWuFtjDuG7QZa6GtvuN+Lu5yq4WQQ01V32NfWxc7WqxWm9qplTQyUC7WqQZxz6/MZ85FUEMUKsjk6vsauGH710t+rgvDD1XYxon+DNADbTN1VwvPAB7jMyDB0YeuYoYkKeIBbmKWJCriEXbXM3f/201oHcam6oma62Vnkp5UvcXD4UOC4iajz2sY9gXG4gR90FkBbmIYcpzvuX52uEeCw89eKexqc9WV/ftX/p0ZYbiAwbkYw/rGPbFBmLEfRBZQS5imPKcb3m+dviR2y+X7Ec1WWu7f2k1WQscGRAvH3tYx7AvNhAj7oPICnIRw5TnfMvztcMPFh56wD62gHs+9rCOYV9sIEbcB5EV5CKGKc/5ludrhx8sPPSAfWwB93zsYR3DvthAjLgPIivIRQxTnvMtz9cOP1h46EGlPNl2/9JKeTJwZEC8fOxhHcO+2ECMuA8iK8hFDFOe8y3P1w4/+HLJHtxfPKSnKzM69tD9fKsr4MihQ/fp7Mmj+tBDE/3sYT30NgFwH0R2kIsYpjznW56vHX6w8NCj+4uHdOrhB0OHAYyUQ4fu08Kx92W+TQDcB5Ed5CKGKc/5ludrh3tDWXgwxnxK0tOSrllrKzt/919J+mFJ13cO+ylr7eeGEU+MbjSaupKst1Ycj5cn9ECRz60jbj7ymlqBD2nzirwEeke9DMZHv21uvqtLV2tK6k3Nlgqad/QuwnqjqTf2xPpIeUIlB2PsI971xoaWk5utWOfKhzVRTP89B9vbVm++vd56h+axByd04IBJ3a5L1CIkd3kwrHc8/IqkX5D0a3f9/X9vrf25IcUQrRuNpl6rXt+3j+7jlWmKH9HykdfUCnxIm1fkJdA76mUwPvptc/NdXbh0tbVN9e73Jp09eTTVP+brjaZebRPrk5XpVIsPPuJdb2zoleq1fbE+VTmSavFhe9vq1eVEH3/pS612X3jmMT05V87M4gO1CMltHgzlyyWttb8r6U+Gca5RdCVZb7uP7pVkPXBkwOB85DW1Ah/S5hV5CfSOehmMj367dLXW+kd8q82Xq7p0tZYq1jc6xPpGyjH2Ee9ycrNtrMvJzVSxvvn2emvRYbfdj7/0Jb35dnbynFqE5DYPQu9q8VeNMZeMMZ8yxnxDp4OMMc8aYxaNMYvXr1/vdNjIYh/deOQ9V/vhI6+pld6Rq71Lm1fk5eDI0/yJtV5C56qPfkvqzQ5tNgduU/I3xj7i9RXraodYr62l69te9JqrsdYi3HKZByEXHn5J0p+S9JikFUk/3+lAa+2L1toFa+3C9PT0sOLLDPbRjUfec7UfPvKaWukdudq7tHlFXg6OPM2fWOsldK766LfZUqFDm+neZu9rjH3E6yvWmQ6xHpn0/xGGXnM11lqEWy7zINjCg7V21Vr7rrV2W9Lfl3QqVCxZd7w80XYf3ePlicCRAYPzkdfUCnxIm1fkJdA76mUwPvpt/uiUzp+5q80zFZ08OpUq1kc6xPpIyjH2Ee9c+XDbWOfKh1PFeuzBCb3wzGN3tPvCM4/p2IPZyXNqEZLbPDDWWtfxtT+RMcckfXbPrhaz1tqVnf/91yV9m7X2e7u1s7CwYBcXF32Gmkl8q6x3zr/JJ6+52g92tRgIuRoAu1r0jTzFwIZcLyOTqz53tdjdeeFkJLtauIzX964W19aaOjLZ064WQ8/VHN670MYAedA2V4e1neZvSPp2SQ8ZY74m6aclfbsx5jFJVtKbkv7jYcQSqweKBZ16mELHaPGR19QKfEibV+Ql0DvqZTA++u3Qofu0cOx9TtuUpJKnMfYR70RxXKcedv/xggMHjD40fVgfmk737gmfqEVI7vJgKAsP1trva/PXv+zjXDHsiQvAH+YA+EBeAe5QT/FgrPKN8YdLQ1l4GJYY9sQF4A9zAHwgrwB3qKd4MFb5xvjDtdDbaToVw564APxhDoAP5BXgDvUUD8Yq3xh/uDZSCw8h98QFEB5zAHwgrwB3qKd4MFb5xvjDtZFaeAi5Jy6A8JgD4AN5BbhDPcWDsco3xh+ujdTCQwx74gLwhzkAPpBXgDvUUzwYq3xj/OHaSH255IEDRk/OlfXIj/w7/eyJC2BEMAfAB/IKcId6igdjlW+MP1wbqYUHKY49cQH4wxwAH8grwB3qKR6MVb4x/nBp5BYe+tFobGkpqWu1vqGZ0rjmyyUVi2Ntj73RaOpKst469nh5Qg8U033GyUebWdHrtY1yH3Rz69a2lldqWqk1NTtV1NxsSQcPZvPTT77GibrKfrzvNDZVTdZa8VXKk7q/eCh0WEOXdpz6ud/44CLPsjESQSEAACAASURBVJ6ryBbypTNf82pM99SY2o0pVtdiiBH+ucqD3C48NBpb+kw10bmL1dbetOdPV/SxSnnfw+CNRlOvVa/vO/bxyvTAxeejzazo9dpGuQ+6uXVrWxe+/Jaeu/DetT9/tqKzH35/5hYffI0TdZX9eN9pbOqz1dV98T1dmcnV4kPacernfpPF+F21gfwgXzrzNa/GdE+Nqd2YYnUthhjhn8s8yNa/cIZoKam3OlC6vT3MuYtVLSX1fcdeSdbbHnslGXwfWx9tZkWv1zbKfdDN8kqttegg3b725y5UtbxSCxzZfr7GibrKfrzVZK1tfNVkLXBkw5V2nPq53/jgIs+ynqvIFvKlM1/zakz31JjajSlW12KIEf65zIPcLjys1jfa7k27Wt9IdayP88em12sb5T7oZqXWfm/kpJa9vZF9jRN1lf14sx7fsKTth9D96OL8oa8BcSFfOuOeGle7McXqWgwxwj+XeZDbhYeZ0njbvWlnSuOpjvVx/tj0em2j3AfdzE4V2157eSp7b13zNU7UVfbjzXp8w5K2H0L3o4vzh74GxIV86Yx7alztxhSrazHECP9c5kFuFx7myyWdP125Y2/a86crmi+X9h17vDzR9tjj5cH3sfXRZlb0em2j3AfdzM2W9PzZO6/9+bMVzc1OBY5sP1/jRF1lP95KebJtfJXyZODIhivtOPVzv/HBRZ5lPVeRLeRLZ77m1ZjuqTG1G1OsrsUQI/xzmQfGWus6Pq8WFhbs4uKik7bY1cKfCHe1cL4pcbdc3d3VIqk1VZ4qaG52KnNfLLkrpm90zlBO9WSAeIeaq+xqcRu7WvTdxtDnVGRLRHPx0HOVXS3iajdDsQ49VyOqY3jkKldzvfAA7MFDMmJBriIG5CliQa4iFuQqYtE2V3O7naYk1RpNXd6zenOiPKGpjK6KxqbeaOqNPf3wSHlCpRz2w72E/n9A+xFTXq83NrSc3GzFOlc+rIkin0dEOrHnlYsajmnOgn8x3ReQPTHNJ75yPYb7CnUOyV0e5HbhodZo6gtt9iR9ojI98OID+93eVm809WqbfniyMs3iw45GY0ufqSb7+uhjlXLmbrwx5fV6Y0OvVK/ti/WpypHM3cwRj9jzykUNxzRnwb+Y7gvInpjmE1+5HsN9hTqH5DYPsvmB8iG43GFP0ssZ3Os3Nm906Ic3ctYP97KU1Nv20VJSDxzZfjHl9XJys22sy8nNwJEhZrHnlYsajmnOgn8x3ReQPTHNJ75yPYb7CnUOyW0e5HbhIaa9fmNDP3QXUx8RK/Iu9rxyEX/sfQC3yAekEVP++Io1hj6IIUb45zIPcrvwENNev7GhH7qLqY+IFXkXe165iD/2PoBb5APSiCl/fMUaQx/EECP8c5kHuV14ONFhT9ITGdzrNzaPdOiHR3LWD/cyXy617aP5cilwZPvFlNdz5cNtY50rHw4cGWIWe165qOGY5iz4F9N9AdkT03ziK9djuK9Q55Dc5kGut9NkVwt/ItzVYuhbFPGNzn7E8C3RKbGdVgCx51WAXS3I0xEX032hC3I1AJ6BBrqvDD1XR6jOkcIAedA2V3O98ADswYMHYkGuIgbkKWJBriIW5Cpi0TZXc7udZhawioi8W2s09fqeGni0PKFJ3nWEDCKvpHcam6oma60+qJQndX/xUOiw4Ak5Hx8fNeqr7smvODBOcImFh0DYGxd5t9Zo6vNtauCjlemBFx+oK/hAXt3+x8dnq6v7+uDpygyLDyOInI+Pjxr1VffkVxwYJ7iW2y+XDI29cZF3r3eogddT1AB1BR/IK6marLXtg2qyFjgy+EDOx8dHjfqqe/IrDowTXGPhIRD2xkXe+agB6go+kFf0Qd4w3vGJ6Z5KfsWBcYJrLDwEwt64yDsfNUBdwQfyij7IG8Y7PjHdU8mvODBOcI2Fh0DYGxd592iHGng0RQ1QV/CBvJIq5cm2fVApTwaODD6Q8/HxUaO+6p78igPjBNf4cslAHigW9HhlWsceOsU3xSKXJosFffSuGki7qwV1BR/IK+n+4iE9XZnRsYfuZ1eLHCDn4+OjRn3VPfkVB8YJrrHwENADxYJOPUzxIr8mPdQAdQUfyKvb/wg59fCDocPAkJDz8fFRo77qnvyKA+MEl4a28GCM+ZSkpyVds9ZWdv7ufZL+F0nHJL0p6Rlr7b8eVkz9aDZvaWmlpqS+oXJpXPOzUyoUWLfpZK3R1Ot79v3t9P9kb26+q0tXa0rqTc2WCpo/OqVDh+4LEDFC2N62evPtda3Wm5opFXTswQkdOGBStcme0/Ch1mjq8p68OlGe0FTO8qrR2NJSUm/1wXy5pGJxLHRYSIH5Et34qnsf939JWm9saDm52Yp3rnxYE8VsfidBDM/AzBFwaZj/cv4VSb8g6df2/N1PSPoda+3PGGN+YufP/8UQY+pJs3lLF5dW9u1je3p+lsWHNtYaTX2+zb6/H61M37H4sLn5ri5cuqpzL+857kxFZ08ezdzEC/e2t61eXU708Ze+1Br/F555TE/OlQd++GDPafhQazT1hTZ59URlOjeLD43Glj5TTfb1wccqZRYfIsV8iW581b2P+790e9Hhleq1ffE+VTmSucWHGJ6BmSPg2tC+XNJa+7uS/uSuvz4j6Vd3/vevSjo7rHj6sbRSa7uP7dJKLXBk2fR6h31/X79r399LV2utCbd13MtVXbpKv+bBm2+vtx46pNvj//GXvqQ33x58f2j2nIYPlzvk1eUc5dVSUm9/H0zqgSPDoJgv0Y2vuvdx/5ek5eRm23iXk5up2vUhhmdg5gi41vf/XW+MGZf07+n2xyNar7fWnh/g/DPW2pWd/51ImulwzmclPStJH/zgBwc4TToJ+9j2pdd9f5N6s8NxTe8x+hI6V2Oy2mH8r6019aHpwwO2Sa32ilztHXkVrg/IU3/Ia7dGMVd95YiP+//tduPJ6ZDPwL3makz9iTgM8o6Hl3X7nQq3JK3v+UnFWmsl2Q6/e9Fau2CtXZienk57qr6V2ce2L73u+ztbKnQ4Lt63b4XO1ZjMdBj/I5ODjz97TveOXO0deRWuD8hTf8hrt0YxV33liI/7/+1248npkM/AveZqTP2JOAyy8PCN1trvsdb+HWvtz+/+DHj+VWPMrCTt/PfagO14NT871XYf2/nZqcCRZdOjHfb9ffSufX/nj07p/Jm7jjtT0cmj9GseHHtwQi8889gd4//CM4/p2IOD7w/NntPw4USHvDqRo7yaL5fa3wfLpcCRYVDMl+jGV937uP9L0lz5cNt458qDv4vClxiegZkj4Jq5/UaDPl5gzIuS/p61dqnvkxlzTNJn9+xq8bOS3t7z5ZLvs9b++L3aWFhYsIuLi/2eOrXdXS1a3+rLrhb31O+uFrvfanwy3Df6pv8q5buEytWY7H6r9bW1po5MsqtFj8jVANjVou9vtydPI5CD+bIX5Oo9+N7VwuX9X4pzV4s+noGHnqvMERhQ21wd5F/Of1bSXzLG/JGkjZ2GrbX25D3PbsxvSPp2SQ8ZY74m6acl/Yykl4wx/5Gkr0p6ZoB4hqJQOKhvZf/ynk32uO/voUP3aeHY+4YQEbLowAGjD00fTvWZzrux5zR8mCKvVCyO6RT3wZHCfIlufNW9j/u/JE0Ux3Xq4WwuNNwthmdg5gi4NMjCw0cHOZG19vs6/Oojg7SHbOt1hZR94fPNxx7WrM7DB/Iqjj3ncSfyFmn5fsfD7v/b7+odDz7mKV+x1htNvbGnPh8pT6iUsfpkDoFLPS88GGNK1tq6pDWP8WAE9LrvL/vC55uPPazZcxo+kFdx7DmPO5G3SMvXc9r2ttWry0lrS83d73h4cq6c6h/0PuYpX7HWG0292qY+n6xMZ2bxgTkErvXz5ZKf3vnvFyUt7vz3i3v+DEjqfd9f9oXPNx97WLPnNHwgr+LYcx53Im+Rlq/ntDffXm/9Q3633Y+/9CW9+Xa63PQxT/mK9Y0O9flGhuqTOQSu9fyOB2vt0zv/fdhfOBgFve77y/7A+eZjD2tyCj6QV2H3nMdgyFuk5SuHVjvMJ9fWmqm+88HPc4WfWGOozxhiRFz6/o4HY8y3tPnrmqSvWmtvpQ8Jsdvd93fvZNVu399ej8No2t3Dev/4D/72PXIKPpBXfuoVfpG3SMtXDs10mE+OTKabT/w8V/iJNYb6jCFGxKWfj1rs+h8l/VNJL0r6+zv/+3+VdNkY87jD2BCpXvf9ZV/4fPOxhzV7TsMH8iqOPedxJ/IWafl6Tjv24IReeOaxO9p94ZnHdOzBdLnpY57yFesjHerzkQzVJ3MIXDPW2v5eYMxvSfqb1trlnT9/k6Tzkn5c0m9Zax9zHuUeo7Q38iiLcFcL9vEOYIA9rLvKwTcwk6sB5CCvuuqzXsnTDCBve0Ku3oPvXS2urTV1ZNL9rhYunyt8xTrArhZDz1XmEAyoba4Osp3m8d1FB0my1n7FGPOItfYPjXFeD4hUr/v+si98vvnYw5o9p+EDeRXHnvO4E3mLtHw9px04YPSh6cOpviehHR/zlK9YSxHUJ3MIXBpk4WHZGPNLkn5z58/fI+krxphxSVvOIhuQr5W5Xtvt5/yhY+3XrVvbWl6paaXW1OxUUXOzJR082P7TOu80NlVN1loxVMqTur94KHUMvYphhdbHXtO+xJSrMYz9XuuNDS0nN1vxzpUPa6LI5yezJm1e9TN/+uCiLmKrrTxgTLBXTPfUtUZTr+9p99HyhCZz9lwRQ/3GECP8qzWaurwnD06UJzQ1QB4MsvDwlyT9p5J+bOfP/4+kv6Hbiw5/foD2nPG132yv7fZz/tCx9uvWrW1d+PJbeu7Ce+0+f7aisx9+/76H53cam/psdXVfDE9XZoay+BDDvsM+9pr2JaZcjWHs91pvbOiV6rV98T5VOcLiQ4akzat+5s8sxu+qDbjFmGCvmO6pa42mPt+m3Y9WplMtPsTUBzHUbwwxwr9ao6kvtMmDJyrTfS8+9P3EY61tWGt/3lr7XTs/P2etfcdau22tvdlvey752m+213b7OX/oWPu1vFJrPTTvtvvchaqWV/bvjVxN1trGUE3WUsXQqxj2Hfax17QvMeVqDGO/13Jys228y0nQqRR3SZtX/cyfPrioi9hqKw8YE+wV0z319Q7tvp6j54oY6jeGGOHf5Q55cHmAPOh54cEY89LOf5eMMZfu/un7zB7422+4t3b7OX/oWPu1Umu/j3FS2783cuh9f0Ofvxc+9pr2JaZcjWHs94ot3rxKO079zJ8+uMgzcjV7GBPsFdM9NaZ2Y4rVtRhihH8u86Cfdzz86M5/n5b0sTY/we3uN7uXm/2Ge2u3n/OHjrVfs1PFtu2Wp/a/xcZXDL0Kff5e7O41vVfavaZ9iSlXYxj7vWKLN6/SjlM/86cPLvKMXM0exgR7xXRPjandmGJ1LYYY4Z/LPOh54cFau2KMuU/Sr1hrv3r3T99n9sDXfrO9ttvP+UPH2q+52ZKeP3tnu8+frWhudv/eyJXyZNsYKuXJVDH0KoZ9h33sNe1LTLkaw9jvNVc+3DbeubLbb85GOmnzqp/50wcXdRFbbeUBY4K9YrqnPtqh3Udz9FwRQ/3GECP8O9EhD04MkAfGWtvfC4z5HUnfba0N8mH0UPvNsqvFe9/KntSaKk8VNDc7NUq7Wgx9b2Qfe037ElOuxvYNzAPsasGe8wG42tWil/nThwC7WpCnQxDbfJdRI5OrMd1T2dUijmdV5hhIA+1q0TZXB1l4eFnSN0v6bUmtb5Ww1v5IXw0NiAcPeDIyDx4YeeQqYkCeIhbkKmJBriIWbXN1kO00X5X0v0uykm5JaqQICj0K/Q4CIBbUCnwgrxAKuYeQdt+dmdSbmi0VNJ/hd2dK8cWbdcw/cKnnhQdjzEFJf1vSD0n6qm6vZHxQ0j+Q9FNeooOk20X/2erqvv1Tn67MUPzAHtQKfCCvEAq5h5A2N9/VhUtXW9t/734f1dmTRzP5j/nY4s065h+41s8HTH9W0vskPWyt/dPW2m+R9CFJUzu/gyfVZK3t/qnVZC1wZEC2UCvwgbxCKOQeQrp0tdb6R7y0k38vV3XpapCveesqtnizjvkHrvWz8PC0pB+21rayzVpbl/SfSHrKdWB4D/voAr2hVuADeYVQyD2ElNSbHfKvGSiie4st3qxj/oFr/Sw8WNvmmyitte/q9vc9wBP20QV6Q63AB/IKoZB7CGm2VOiQf9nc1SC2eLOO+Qeu9bPw8BVjzF+8+y+NMT8g6Q13IeFulfJk2/1TK+XJwJEB2UKtwAfyCqGQewhp/uiUzp+5K//OVHTy6FTgyNqLLd6sY/6Ba/3savFXJP2WMeaHJH1x5+8WJBUlfZfrwPCe+4uH9HRlRsceup9vlQXugVqBD+QVQiH3ENKhQ/fp7Mmj+tBDE1qtNzVTKuhkhneJiC3erGP+gWs9LzxYa9+S9G3GmO+QNLfz15+z1v6Ol8hwh/uLh3Tq4QdDhwFkHrUCH8grhELuIaRDh+7TwrH3hQ6jZ7HFm3XMP3Cpn3c8SJKstf9Y0j/2EEum3Wg0dSVZb634HS9P6IEinxnD4HzkVK3R1OU9bZ4oT2jKQZ76yn8f7cZWq7dubWt5paaVWlOzU0XNzZZ08GA/n4Lzy0V/rjc2tJzcbLUxVz6siWLvnxFNG4OLawidV6H70FUb2I9+hSsx3VPrjabe2NPuI+UJlXL2XBFD7ccQI/xzlQd9Lzzk0Y1GU69Vr+/bx/bxyjTFh4H4yKlao6kvtGnzicp0qsUHX/nvo93YavXWrW1d+PJbeu7Ce/E+f7aisx9+fyYWH1z053pjQ69Ur+1r46nKkZ7+4Zw2BhfXEDqvQvehqzawH/0KV2K6p9YbTb3apt0nK9OpFh9i6oMYaj+GGOGfyzwI/2QbgSvJett9bK8k64EjQ6x85NTlDm1eTpmnvvLfR7ux1erySq216CDdjve5C1Utr2Rjz3EX/bmc3GzbxnJycygxuLiG0HkVug9dtYH96Fe4EtM99Y0O7b6Ro+eKGGo/hhjhn8s8YOGhB+xjC9d85JSvPI2p3dhqdaXWfs/xpJaNPcdd9GfaNkK/3lUbadAHo4t+hSsx3VNjajemWF2LIUb45zIPWHjoAfvYwjUfOeUrT2NqN7ZanZ0qto23PJWNtzC66M+0bYR+vas20qAPRhf9CldiuqfG1G5MsboWQ4zwz2UesPDQg+Plibb72B4vTwSODLHykVMnOrR5ImWe+sp/H+3GVqtzsyU9f/bOeJ8/W9HcbDb2HHfRn3Plw23bmCsfHkoMLq4hdF6F7kNXbWA/+hWuxHRPfaRDu4/k6LkihtqPIUb45zIPjLXWdXxeLSws2MXFxaGfl291HXnGdYPdcpVdLeL69mlfdne1SGpNlacKmpud6vbFkkPNVXa1cNdGGqH7cIA2hj6nxip0bmF0cjWmeyq7WgzU7kg8qyI+rnKVhQfgtpF58MDII1cRA/IUsSBXEQtyFbFom6uZ2E7TGPOmpDVJ70q6Za1dGMZ5Q6/i7f4/nSu1pmanipqbLWViCz0MR0zjn6HV/mCx5pWvd9HEJva8chF/s3lLSys1JfUNlUvjmp+dUqGQiceITIs9dxCPdxqbqiZrrVyrlCd1f/FQqjZ95a+ve8vm5ru6dLWmpN7UbKmg+aNTOnTovlRt+uqD7W2rN99e12q9qZlSQccenNCBA87XFlJh/oLkLg+y9MTw5621Xx/WyULvTXvr1rYufPmt1lZ6u5/tPvvh92f2H59wJ6bxj2kP69B1PWpqjaa+0KY/n6hM52rxIfa8chF/s3lLF5dW9rVxen6WxYd7iD13EI93Gpv6bHV1X649XZkZePHBV/76urdsbr6rC5eu6tzLe9o9U9HZk0cHXnzw1Qfb21avLif6+EtfarX7wjOP6cm5cmYWH5i/ILnNg2z9C2eIQu9Nu7xSa/2jc/f8z12oanmlNpTzI6yYxj+mPaxD1/WoudyhPy/nrD9jzysX8S+t1Nq2sZTBOStLYs8dxKOarLXNtWqyNnCbvvLX173l0tVaa9Gh1e7LVV26Ovg85asP3nx7vbXosNvux1/6kt58OztzA/MXJLd5kJWFByvpNWPMF40xz979S2PMs8aYRWPM4vXr152cMPTetCu1ZtvzJ7XmUM4PP3rN1ZjGP6Y9rEPXdUx6yVX687bY+8FF/EmgPvBx/x+m2HMHvQudqzHdU321m9TbP1ut1gd/tvLXB+1jvbbm/zmw11xl/oLkNg+ysvDwZ6213yLpo5L+ijHmz+39pbX2RWvtgrV2YXp62skJQ+9NOztVbHv+8hRvXYpZr7ka0/jHtId16LqOSS+5Sn/eFns/uIi/HKgPfNz/hyn23EHvQudqTPdUX+3Olgod2h382cpfH7SP9cik/+fAXnOV+QuS2zzIxMKDtfatnf9ek/SPJJ3yfc7Qe9POzZb0/Nk7z//82YrmZqeGcn6EFdP4x7SHdei6HjUnOvTniZz1Z+x55SL++dmptm3MZ3DOypLYcwfxqJQn2+ZapTw5cJu+8tfXvWX+6JTOn7mr3TMVnTw6+Dzlqw+OPTihF5557I52X3jmMR17MDtzA/MXJLd5EHw7TWPMhKQD1tq1nf/925LOW2tfbXe8y21fQn9T6+6uBkmtqfJUQXOzU5n7YsEcGfoWRTGNP7taZMpQc5VdLW6LPa9c7mqx20aXXS3Y9m1H7LmTAyOTq+xq8d6uFrs7RZyMYFeLa2tNHZnsaVeLoecq8xekgfKgba5mYeHhQ7r9Lgfp9i4bn7b2/2fv/qPjOvP7vn8e/hwIxEAtBWJASQ21p6J+YEBxt7Di1G6ycbJaalci2TZhdh23ieOsmh6vYx+5btexyk1Y+RynTXjiNJvUytqxnR/ew7gOxdVqJdnN+kda/1h4rSUHpMjqbLlZiRgQYiwMCM0AoPD0DwAjAHNn5t6595l7n5n365w5K2Ce+9zvfe73Pvfyu4N57E83a+/rgwcyr2cePNDzyFX4gDyFL8hV+IJchS8CczX1NbCstd+S9FjacSSFymA2cB78wCce4Iu4eUVe9jbOL3qVq9yuVld0qVz54BNUhbwGBnZntl8XfJg3fIgR7iWVB6kXHnoJ691mA+fBDy7OE+ceLsTNK/Kyt3F+0atc5Xa1uqIvl8oN/T5dLMQqErjq1wUf5g0fYoR7SeZBNv+g3FOsd5sNnAc/uDhPnHu4EDevyMvexvlFr3KV25fKlcB+L5UrmezXBR/mDR9ihHtJ5gGFhwSx3m02cB784NOa4+hvcfOKvOxtnF/0Kle57Vu/LvgQqw8xwr0k84DCQ4JY7zYbOA9+8GnNcfS3uHlFXvY2zi96lavc9q1fF3yI1YcY4V6SeUDhIUGsd5sNnAc/uDhPnHu4EDevyMvexvlFr3KV2xOFfGC/E4V8Jvt1wYd5w4cY4V6SeZD6cppRZX3ZF779NRuSWm82jqznahawqkVHyNUUsKpFZH2Vp314fntJX+VqVKxq4Y4Pz6rMbZCSy1VWtUjY3QM5Pf4AF2TaOA9+cHGeOPdwIW5ekZe9jfOLXuUqtwcGduvxB/Z7068LPswbPsQI95LKg74uPCxWlzRdvl2v3owX9mlwgL9b6qZa7Y4uzcyrXFlSIb9XE2PDyuX6Iy3fqy6rVF6o51+xMKS7BvakHVZXra5aXb+1qNlKTaP5nA7tH9SOHfEK+v2cU3DHp/8XzZV+nrPmqzVd3fT/9jxUGNQw/68f+sCdO6uanpnXzHxNY8MDGh/La9eu+H+p7dN8srz8vi7emFe5UtNYPqeJg8Pas2dn2mF1BXMfktS3T+OL1SV9pXSzYU3STxYPUHzoklrtji5cmmk4B8cnxnr+H4rvVZf1Umm24difKo5m9sabtNVVq1emy3r23Ov1MTh76qiOjRc6Lj70c07BHZ/Whneln+es+WpNrwasYf7x4ggP4Ohpd+6s6vw339Zz5z/I/edPFnXysXtjFR98mk+Wl9/X+Ys3dPrFTbGeKOrkkYM9X3xg7kPS+vbLJafLtwPXJJ0u3045sv5xaWY+eL3lmfmUI3OvVF4IPPZSeSHlyLrn+q3FetFBWhuDZ8+9ruu3Ol8fup9zCu74tDa8K/08Z11tsob5VdayR4+bnpmvFx2ktdx/7nxJ0zHvqT7NJxdvzNeLDtJ6rC+WdPFG7z9XMPchaX1beGBt2vSV+/gckH/SbKUWOAY3F2od99nPOQV3uF77ewz6+djR32bmg+/T5fnO79OSX9dUucmzymwl3hj4wKfzBD/0beGBtWnTV+jjc0D+SaP5XOAYHBjq/ON7/ZxTcIfrtb/HoJ+PHf1tbHggMPcLw/E+Zu/TNTXW5FllNN/7f2rg03mCH/q28DBe2Be4Jul4YV/KkfWPibHh4PWWx4ZTjsy9YmEo8NiLhaGUI+ueQ/sHdfbU0S1jcPbUUR3a3/n60P2cU3DHp7XhXennOeuhJmuYP8Ra9uhx42N5PX9ya+4/f7Ko8Zj3VJ/mk4mDwzpzYlusJ4o6crD3nyuY+5C0vv22tcGBvfpk8YAO3fM4q1qkJJfbpeMTY3rgnrs++Kb4PlmB4K6BPXqqOKpDm449y9/o7MKOHUbHxgt6+G/+F7q5UNOBofirWvRzTsGdgYHderpY2HK99tuqFv08Zw0P5PTx4siW5wW+2R39YNeuHTr52L168MA+ledrKgznND42HHtVC5/mkz17durkkYP60D2D9RW4jvTJqhbMfUhaXz+NDw7s1eMPUGhIUy63S9/lyXrLSbtrYI83a027smOH0YdG9ulDI8l90qifcwru+LQ2vCv9PGcNs5Y9+tSuXTv02P3/kR67P9l+fZpP9uzZqclD/3HaYaSCuQ9J6rnCw+qq1fVbi/WqZNz/B3XDu9Warm1ax/ZwYVB3B1T8+nmtXyCqhWpNVzZdV48UBjUUs5IeNQ0zqgAAIABJREFU9loFoiCvensMevnYkD3vVZdVKi8k/v/2u+jX1bWxWF3SdPl24p869mkMfJh3fIgR/uipwsPqqtUr0+X6En0bfzN+bLwQq/jwbrWm1wLWsX2iOLLl4uvntX6BqBaqNX014Lp6sjjScfEh7LUKREFe9fYY9PKxIXveqy7rpdJsQ749VRyN9Q9kF/26ujYWq0v6SulmQ7+fLB6IVXzwaQx8mHd8iBF+6akvl7x+a7FedJDWlnx59tzrun4r3nqz15qsY3tt2zq2/bzWLxDVlSbX1ZUY60OHvVaBKMir3h6DXj42ZE+pvBCYb6XyQub6dXVtTJdvB/Y7Xb4dq1+fxsCHeceHGOGXnio8zDZZa/fmQnfWG+7ntX6BqFysD82a03CBvOrtMejlY0P2uMo3n+6pPvXrU6xJ8yFG+KWnCg+jTdbaPTDUnfWG+3mtXyAqF+tDs+Y0XCCvensMevnYkD2u8s2ne6pP/foUa9J8iBF+6anCw6H9gzp76uiW9WbPnjqqQ/vjrTd7uMk6toe3rWPbz2v9AlE90uS6eiTG+tBhr1UgCvKqt8egl48N2VMsDAXmW7EwlLl+XV0b44V9gf2OF+KtcOXTGPgw7/gQI/xirLVpxxDJ5OSknZqaavr+xqoWNxdqOjCU3qoW/bbWbw+InyTbtMtVsKpFh8jVFPRBXrUVcQy8ylPOb1/req6yqgWrWnTYb9dzlbkRHQrM1Z4rPAAd8uohGX2NXIUPyFP4glyFL8hV+CIwV3tqOU1E51Ml06dYEY6Lc+oqTzY+TbXxaaakPk0FP8TNq2p1RZfKlfr2E4W8BgZ2O4wY23EPQa+7c2dV0zPzmpmvaWx4QONjee3aFe+vqjP0//aH4uJeXanW9MamWB8uDCqfQKwbn5IuV2oay+c0kcFPSTNvQkruGYbCQx/zaX1en2JFOC7Oqas8WV21emW6XF+ud+P7Y46NFyg+9IG4eVWtrujLpXLD9k8XCxQfuoR7CHrdnTurOv/Nt/Xc+Q9y/PmTRZ187N6Oiw+urhuf7tWVak2vBMR6rDgSq/iwvPy+zl+8odMvbur3RFEnjxzMTPGBeRNSss8wPfXlkojGp/V5fYoV4bg4p67y5PqtxfqDzEa/z557XddvkX/9IG5eXSpXAre/VK44ixlbcQ9Br5uema8XHaS1HH/ufEnTM/Md9+nquvHpXv1Gk1jfiBnrxRvz9aJDvd8XS7p4o/PzlTTmTUjJPsNQeOhjPq3P61OsCMev9bZrgf3eXKjF6hd+iJtXzF/p4xyg183MB9+nyvOd36fc3VP9uVe7irXcJNbZSnaeK5g3ISWbBxQe+phP6/P6FCvC8Wu97VxgvweG+KhhP4ibV8xf6eMcoNeNDQ8E5nhhuPP7lLt7qj/3alexjjWJdTSfnecK5k1IyeYBhYc+5tP6vD7FinBcnFNXeXJo/6DOnjq6pd+zp47q0H7yrx/EzauJQj5w+4lC3lnM2Ip7CHrd+Fhez5/cmuPPnyxqfGy44z5dXTc+3asfbhLrwzFjnTg4rDMntvV7oqgjBzs/X0lj3oSU7DMMy2n2OZ++rdZxrCxRlAIfV7W4uVDTgaFUV7UgV1PAqhaRZS5Pfbrfoasyl6ud2ljVojxfU2E4p/Gx4b5d1SLJe7XrVS02VuA40n5Vi67nKvMmpI6eYQJzlcIDsKZnHjzQ88hV+IA8hS/IVfiCXIUvAnM19eU0jTHHJP2spJ2Svmit/Zk4/dVqd3RpZl7lypIK+b2aGBtWLpf6YQIIwPUKX5Cr2cc5AvzB9eoHzhOSlGrmGGN2SvqCpI9JekvS140xF6y1lzvpr1a7owuXZhrWGT0+McZFAmQM1yt8Qa5mH+cI8AfXqx84T0ha2l8u+bikN62137LWLkv6kqQTnXZ2aWY+eJ3RGGsYA3CD6xW+IFezj3ME+IPr1Q+cJyQt7cLDvZK+s+nnt9Z/t4Ux5hljzJQxZmpubq5pZ2XWm0XKwuYquF7TRq6GR66mh/s/fMGcGh7Xa7qYV5GWtAsPoVhrX7DWTlprJ0dGRpq2K7DeLFIWNlfB9Zo2cjU8cjU93P/hC+bU8Lhe08W8irSkXXh4W9L9m36+b/13HZkYGw5eZzTGGsYA3OB6hS/I1ezjHAH+4Hr1A+cJSUv7m0G+LulBY8wDWis4fErS93faWS63S8cnxvTAPXd9sM4o374KZBLXK3xBrmYf5wjwB9erHzhPSFqqmWOtvWOM+aykV7W2nOYvWGun4/SZy+3Sdz2wP5H4ALjF9QpfkKvZxzkC/MH16gfOE5KUesnKWvuypJfTjgMAAAAAACQv7e94AAAAAAAAPYzCAwAAAAAAcIbCAwAAAAAAcIbCAwAAAAAAcMZYa9OOIRJjzJykb4doeo+kdxyHkwaOy413rLXHkuywR3OVWN0JG29auerDeBJjMpKIkTm1UVbjkrIbWzfiIlfD8SlWya94s37/l/waT1cYg5i56l3hISxjzJS1djLtOJLGcfUen46dWN3JerxZj08ixqT4EGMrWY0/q3FJ2Y0tq3Elxafj8ylWya94fYjVhxhdYwzijwF/agEAAAAAAJyh8AAAAAAAAJzp5cLDC2kH4AjH1Xt8OnZidSfr8WY9PokYk+JDjK1kNf6sxiVlN7asxpUUn47Pp1glv+L1IVYfYnSNMYg5Bj37HQ8AAAAAACB9vfyJBwAAAAAAkDIKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBnvCg/Hjh2zknjxSvqVOHKVl6NX4shVXg5eiSNPeTl6JY5c5eXolThylZejVyDvCg/vvPNO2iEAoZCr8AW5Ch+Qp/AFuQpfkKvoJu8KDwAAAAAAwB8UHgAAAAAAgDMUHgAAAAAAgDMUHgAAAAAAgDMUHgAAAAAAgDO70g7AGHO3pC9KKmpt+Y2/Zq393U77W6wuabp8W7OVJY3m92q8sE+DA3sD266uWl2/tajZSk2j+ZwO7R/Ujh0msO271ZqulRfr/R4uDOrugVxDu9vVmi5vavdoYVD7AtpJ0kK1piub2j5SGNRQk7ZRYs2CsOMV5biWl9/XxRvzKldqGsvnNHFwWHv27Iy1f6TLxXni3CcrifGMMi+7iCGJY4jbR7W6okvlSn37iUJeAwO7Q28fdwyTEGUOzqJW8bvMsXb3uTj7brdtpVrTG5vef7gwqPym9+Oc03Y5Gee44jzz+J6n6B8+PK/4ECPcSyoPUi88SPpZSa9Ya/+CMWaPpLs67WixuqSvlG7q9IWSaiuryu3eoTPHi/pk8UDDA9rqqtUr02U9e+71etuzp47q2Hih4eb2brWm10pzDf0+URzZMui3qzW9HNDuE8WRhuLDQrWmrwa0fbI40lB8iBJrFoQdryjHtbz8vs5fvKHTL27q80RRJ48cbHigCLt/pMvFeeLcJyuJ8YwyL7uIIYljiNtHtbqiL5fKDds/XSyEKj7EHcMkRJmDs6hV/O+9v+Isx/J797a8z8XJrXbbVqo1vRLw/rHiiPIDuVjntF1OxjmuOM88vucp+ocPzys+xAj3ksyDVP/UwhgzLOlPS/p5SbLWLltr3+20v+ny7fqgSFJtZVWnL5Q0Xb7d0Pb6rcX6TW2j7bPnXtf1W4sNba+VFwP7vVbe2vZyk3aXy419XmnS9kpA2yixZkHY8YpyXBdvzNcfJOp9vljSxRvzHe8f6XJxnjj3yUpiPKPMyy5iSOIY4vZxqVwJ3P5SuRJq+7hjmIQoc3AWtYrfZY61u8/F2Xe7bd9o8v4b6+/HOaftcjLOccV55vE9T9E/fHhe8SFGuJdkHqT9HQ8PSJqT9M+MMX9kjPmiMWZweyNjzDPGmCljzNTc3FzTzmYrS/VB2VBbWdVsZSmgbS2w7c2FWsf9Rtu/m1izIPx4hT+ucpO2s5XOz5cLYXMVbs5TmufeN2FyNYnxjNtH2ttnIYYs5HWUOThJSc2preJ3eX7a3efi7Lvdtu3ej3NO4+67dd+dP/OklacS939E48OzahbuPUhfknmQduFhl6SPSPon1toPS1qU9Lntjay1L1hrJ621kyMjI007G83vVW731kPK7d6h0XzjR1FH87nAtgeGGj8yErbfaPt3E2sWhB+v8Mc11qTtaL7z8+VC2FyFm/OU5rn3TZhcTWI84/aR9vZZiCELeR1lDk5SUnNqq/hdnp9297k4+263bbv345zTuPtu3Xfnzzxp5anE/R/R+PCsmoV7D9KXZB6kXXh4S9Jb1trfX//5V7VWiOjIeGGfzhwv1gdn429Qxgv7Gtoe2j+os6eObml79tRRHdrf8IELHS4MBvZ7uLC17aNN2j1aaOzzkSZtHwloGyXWLAg7XlGOa+LgsM6c2NbniaKOHBzueP9Il4vzxLlPVhLjGWVedhFDEscQt4+JQj5w+4lCPtT2cccwCVHm4CxqFb/LHGt3n4uz73bbPtzk/YfX349zTtvlZJzjivPM43ueon/48LziQ4xwL8k8MNbapOOLFoAxvyPpr1trrxpj/rakQWvtTzRrPzk5aaemppr218mqFjcXajow5MeqFmFizYKoq1qEOa6Nb6re+JbrI8muapH4YLbLVbCqRYe6mqusapFMH720qkWYOVgZnFNbxd+NVS2a3eeysKpFyHO6RTdWtejkmaeDY8pcrqI/+PCs2gfPVAghqVzNQuHhqNaW09wj6VuSftBa+8fN2jOZwxEePOALchU+IE/hC3IVviBX4YvAXE19OU1r7euSJtOOAwAAAAAAJC/t73gAAAAAAAA9jMIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwZlfaAUiSMea6pAVJ70u6Y62d7LSvxeqSpsu3NVtZ0mh+r8YL+zQ4sDew7bvVmq6VF+ttDxcGdfdALlZbF31GPa5qdUWXypV624lCXgMDuwPbrq5aXb+1qNlKTaP5nA7tH9SOHSawbRQL1ZqubDq2RwqDGgo4tij7D9unL6Kc/7DmqzVd3dTnQ4VBDScwRi5iddWvq1hdyXq8y8vv6+KNeZUrNY3lc5o4OKw9e3amHVYkUebPZuKep9vVmi5v2v7RwqD2dfE8J5FnWc/VdirVmt7YFP/DhUHl1+Nvd2xxroN2fccZ13bburrHuz6udtfse9VllcoL9feLhSHdNbBHkrv7IPqX73NfHP187PhAUnmQicLDuj9rrX0nTgeL1SV9pXRTpy+UVFtZVW73Dp05XtQniwcaHjLfrdb0Wmmuoe0TxZGGgQzb1kWfUY+rWl3Rl0vlhrZPFwsNxYfVVatXpst69tzr9bZnTx3VsfFCrAeThWpNXw04tieLI1sKBVH2H7ZPX0Q5/2HNV2t6NaDPjxdHYj10uYjVVb+uYnUl6/EuL7+v8xdv6PSLm+I7UdTJIwe9KT5EmT+biXuebldrejlg+08UR7pSfEgiz7Keq+1UqjW9EhD/seKIVqWWxxbnOmg3bnHGtd22ru7xro+r3TX7XnVZL5VmG95/qjiqFa06uQ+if/k+98XRz8eODySZBz31pxbT5dv1QZGk2sqqTl8oabp8u6HttfJiYNtr5cWO27roM+pxXSpXAtteKlca2l6/tVh/INlo++y513X9VmMMUVxpcmxXth1blP2H7dMXUc5/WFeb9Hk15hi5iNVVv65idSXr8V68MV//x5a0Ht+LJV28MZ9yZOFFmT+biXueLjfZ/nKXznMSeZb1XG3njSbxv1FebHtsca6Ddn3HGdd227q6x7s+rnbXbKm8EPh+qbzg7D6I/uX73BdHPx87PpBkHmSl8GAlvWaM+UNjzDPb3zTGPGOMmTLGTM3NzTXtZLayVB+UDbWVVc1WlrrSNu39R29bC2x7c6HW0DaK8OMVfv9RjitNLnI1LFdj5FO/vuTJhjTjDZOr5SbX6Gwl3hzRTUmMcdw+0s7LLIxBp8LOqe20ir/dscW5Dtr1HWdc2/ft5h4fbt8uj6vzc+lSUrmKbEl7/nYhzWdV+CfJPMhK4eF7rbUfkfSkpB82xvzpzW9aa1+w1k5aaydHRkaadjKa36vc7q2HlNu9Q6P5xo/Tumib9v6jt80Ftj0wFO/jU+HHK/z+oxxXmlzkaliuxsinfn3Jkw1pxhsmV8eaXKOjeX8+YpnEGMftI+28zMIYdCrsnNpOq/jbHVuc66Bd33HGtX3fbu7x4fbt8rg6P5cuJZWryJa0528X0nxWhX+SzINMFB6stW+v/+9NSf9G0uOd9DNe2Kczx4v1wdn4G5Txwr6GtocLg4FtDxcGO27ros+oxzVRyAe2nSjkG9oe2j+os6eObml79tRRHdrfGEMUjzQ5tke2HVuU/Yft0xdRzn9YDzXp86GYY+QiVlf9uorVlazHO3FwWGdObIvvRFFHDg6nHFl4UebPZuKep0ebbP9ol85zEnmW9Vxt5+Em8T9cGGx7bHGug3Z9xxnXdtu6use7Pq5212yxMBT4frEw5Ow+iP7l+9wXRz8fOz6QZB4Ya23S8UULwJhBSTustQvr//3rks5Ya18Jaj85OWmnpqaa9seqFp2tanFzoaYDQ+mtahFm/45XtUjma743aZerrGrBqhZSR/F2NVc3vs1/41vxj7CqBatahOuj63NqO0msatHJdZCFVS2Svse7Pq4ur2qRuVxFtmTouaInnlXhn6SeVbNQePiQ1j7lIK2tsvGvrLU/3aw9kzkc4cEDviBX4QPyFL4gV+ELchW+CMzV1JfTtNZ+S9JjaccBAAAAAACSl4nveAAAAAAAAL2JwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHAmE4UHY8xOY8wfGWNeSjsWAAAAAACQnF1pB7DuRyVdkZSP29FidUnT5duarSxpNL9X44V9GhzYG9h2efl9Xbwxr3KlprF8ThMHh7Vnz87Atu9Wa7pWXqz3e7gwqLsHcg3tqtUVXSpX6u0mCnkNDOyO1ackvVddVqm8UG9bLAzproE9gW3v3FnV9My8ZuZrGhse0PhYXrt2BdeYVletrt9a1GylptF8Tof2D2rHDhPYNoqwMUQ5X+g9Ua6BNPt06Xa1psub4n20MKh9GY63X8XNq16Y63y7trZrdb+Lco8N0ure3+5Zo924tto+zraS27yMky9Rns+AzXyfp7KG8YSUXB6kXngwxtwn6ZOSflrSs3H6Wqwu6Sulmzp9oaTayqpyu3fozPGiPlk80HAjXV5+X+cv3tDpFze1PVHUySMHG25u71Zreq0019DvE8WRLYNera7oy6VyQ7uni4WG4kPYPqW1B6KXSrMNbZ8qjjY8GN25s6rz33xbz53/oO3zJ4s6+di9Df/wX121emW6rGfPvV5ve/bUUR0bL8QqPoSNIcr5Qu+Jcg2k2adLt6s1vRwQ7yeKIxQfMiRuXvXCXOfbtbVdq/tdbWkl9D02SKt7/86dO1o+a7Qb11bPKu+9v9Lxtnv27HSal3HyJcrzGbCZ7/NU1jCekJLNgyz8qcU/kPQ/SlqN29F0+XZ9UCSptrKq0xdKmi7fbmh78cZ8/aZWb/tiSRdvzDe0vVZeDOz3WnlxS7tL5Upgu0vlSsd9SlKpvBDYtlReaByDmfn6P/g32j53vqTpmcbjun5rsf4QttH22XOv6/qtxhiiCBtDlPOF3hPlGkizT5cuN4n3ckbj7Vdx86oX5jrfrq3tWt3votxjg7S697d71mg3rq22j7Ot5DYv4+RLlOczYDPf56msYTwhJZsHqRYejDFPSbpprf3DNu2eMcZMGWOm5ubmmrabrSzVB2VDbWVVs5WlhrblSq1J21rH/UbZv6u2M/PBx1WeDzqu4LY3FxrbRhE2hijH5YuwuQo359+3nEozXnI1vLjnybe8DJLWMSSVp63udy7Pb7tnjXb7brV9nG3D7DuOOH1HeT7LEubU9PXCXNsNLv5dhd6VZB4kWngwxnyvMeYH1/97xBjzQJtNvkfScWPMdUlfkvR9xph/sb2RtfYFa+2ktXZyZGSkaWej+b3K7d56SLndOzSab/zI4Fg+16Rt40dGwvYbZf+u2o4NDwS2LQwHHVfwGBwYivfxqbAxRDkuX4TNVbg5/77lVJrxkqvhxT1PvuVlkLSOIak8bXW/c3l+2z1rtNt3q+3jbBtm33HE6TvK81mWMKemrxfm2m5w8e8q9K4k8yCxwoMx5vOS/idJP7n+q92SGooIm1lrf9Jae5+19pCkT0n6t9baH+g0hvHCPp05XqwPzsbfoIwX9jW0nTg4rDMntrU9UdSRg8MNbQ8XBgP7PVwY3NpnIR/YbqLQ+J2ZYfuUpGJhKLBtsTDUOAZjeT1/cmvb508WNT7WeFyH9g/q7KmjW9qePXVUh/Y3xhBF2BiinC/0nijXQJp9uvRok3gfzWi8/SpuXvXCXOfbtbVdq/tdlHtskFb3/nbPGu3GtdX2cbaV3OZlnHyJ8nwGbOb7PJU1jCekZPPAWGsTCcoY87qkD0v6hrX2w+u/u2itPRJy+49K+h+stU+1ajc5OWmnpqaavt/JqhYb33B9pMdWtSjP11QYzml8bLjtqhY3F2o6MJT8qhbtYsjQN73HP+ht2uUqWNVC6mhVC3I1BaxqEXkMMpenre533VjVotmzRtiVKYK2j7OtlP1VLcI8nyUgc7mKzvn2DBBR13O1x8cTIXWQB4G5mmTh4Q+stY8bY75hrf2IMWZQ0u+GLTyExWQOR3jwgC/IVfiAPIUvyFX4glyFLwJzNcnveDhnjPk5SXcbYz4j6TckfTHB/gEAAAAAgGd2JdWRtfbvGWM+Jqki6SFJp621v55U/wAAAAAAwD+JFR6MMf+zpF/cXGwwxjxjrX0hqX0AAAAAAAC/JPmnFj8i6RVjzJ/d9Lu/kWD/AAAAAADAM0kWHt6W9KSknzHG/MT67xL/EhQAAAAAAOCPJAsPstb+e0l/RtKjxph/LWkgyf4BAAAAAIBfkiw8TEmStbZmrf1BSb8pKfwi2AAAAAAAoOckVniw1n5m289fsNZ+KKn+AQAAAACAf2KvamGMOWetPWWMuSTJbn/fWnsk7j4AAAAAAICfklhO80fX//epBPoCAAAAAAA9JPafWlhrZ9b/99vW2m9Lui3pI5LuWf8ZAAAAAAD0qdiFB2PMS8aY4vp/j0kqSfprkv65MebH4vYPAAAAAAD8lcSXSz5grS2t//cPSvp1a+3Tkv6k1goQAAAAAACgTyVReFjZ9N9/TtLLkmStXZC0mkD/AAAAAADAU0l8ueR3jDE/IuktrX23wyuSZIwZkLS73cbGmJyk35a0dz2eX7XWfr7TYKrVFV0qVzRbWdJofq8mCnkNDASH8W61pmvlxXrbw4VB3T2Qi902rCh9Vqo1vbGp7cOFQeWbtF1efl8Xb8yrXKlpLJ/TxMFh7dmzs2vHJUmrq1bXby1qtlLTaD6nQ/sHtWOHaWi3UK3pyqb9P1IY1FACYxClbVpcjb1P0r6uogib01npNylR5tReFjevemEcsz5n1Wp3dGlmXuXKkgr5vZoYG1Yu98FjTqv4F6tLmi7frr83XtinwYG99W3fqy6rVF6ov18sDOmugT3191ud3/lqTVc37fehwqCGN41bnPtVu3tou/ml1fvtzne7nI6TL3HGJOt5ijWcJz9wniC1v0eGlUTh4YcknZH05yX9JWvtu+u//25J/yzE9kuSvs9ae9sYs1vSvzPGfNVa+3tRA6lWV/TlUlmnL5RUW1lVbvcOnTle1NPFQsMD3rvVml4rzTW0faI40nBBRWkbVpQ+K9WaXgloe6w40nAjXl5+X+cv3tDpFze1PVHUySMHG4oPLo5LWnuQeWW6rGfPvV7v9+ypozo2XtjywLNQremrAft/sjjSUHyIMgZR2qbF1dj7JO3rKoqwOZ2VfpMSZU7tZXHzqhfGMetzVq12RxcuzTTEd3xiTLncrpbx75bRV0o3G977ZPGABgf26r3qsl4qzTa8/1RxVHcN7Gl5fpf1vl4N2O/HiyMaHsjFul+1u4e2m19avV9ZWmp5vtvldJx8iTMmWc9TrOE8+YHzBGmt6NDqHhlFEqta3LTW/g1r7Qlr7Wubfv81a+3fC7G9tdbeXv9x9/rLdhLLpXKlPiiSVFtZ1ekLJV0qVxraXisvBra9Vl6M1TasKH2+0aTtGwFtL96Yrxcd6m1fLOnijfmuHJckXb+1WH+Q2ej32XOv6/qtrf1eabL/KzHHIErbtLgae5+kfV1FETans9JvUqLMqb0sbl71wjhmfc66NDMfPMYza/e+VvFPl28HvjddXns0KZUXAt8vlRfW9t3i/F5tst+r6+MW537V7h7abn5p9X67890up+PkS5wxyXqeYg3nyQ+cJ0hqe4+MIonveIjNGLPTGPO6pJta+3LK39/2/jPGmCljzNTc3FzTfmYrS/VB2VBbWdVsZalrbcNytf9ypdakbS1Wv1HMNonh5kJtWzt/zldYLnK1V6V9XUXrN1xOZ6XfMMLkKnm6Ju449MI4pnUMYefUcpv4WsXf7tjivB+371ba9916fmn1vssxiXtcrraNK2yuojfmRJ/xrIooksyDTBQerLXvW2uPSrpP0uMby3Nuev8Fa+2ktXZyZGSkaT+j+b3K7d56SLndOzSab/wYiKu2Ybna/1g+16Rt40eiXBzXWr/BMRwYym1r58/5CstFrvaqtK+raP3LpIfJAAAgAElEQVSGy+ms9BtGmFwlT9fEHYdeGMe0jiHsnFpoE1+r+NsdW5z34/bdSvu+W88vrd53OSZxj8vVtnGFzVX0xpzoM55VEUWSeZCJwsOG9e+H+JqkY51sP1HI68zxYn1wNv4GZaKQb2h7uDAY2PZwYTBW27Ci9Plwk7YPB7SdODisMye2tT1R1JGDw105Lkk6tH9QZ08d3dLv2VNHdWj/1n4fabL/R2KOQZS2aXE19j5J+7qKImxOZ6XfpESZU3tZ3LzqhXHM+pw1MTYcPMZja/e+VvGPF/YFvjde2CdJKhaGAt8vFobW9t3i/D7UZL8PrY9bnPtVu3tou/ml1fvtzne7nI6TL3HGJOt5ijWcJz9wniCp7T0yCmNtR1+n0NiRMQ9I+hFJh7TpSyuttcfbbDciacVa++76ShivSfq71tqXgtpPTk7aqamppv2xqsUHq1psfEv1kRRXtbi5UNOBIS9WtUj8m/za5SrfFJz+dRVF2JzuQr9dzdVeWI0hCaxqEXkMuj6nbqxqUR9jVrVoO7+0er+PVrXoeq6CZ6AO8ayKVHSwqkVgriZZePimpJ+XdElS/Q9BrLW/1Wa7I5J+SdJOrX0C45y19kyz9kzmcIQHD/iCXIUPyFP4glyFL8hV+CIwV5NYTnNDzVr7D6NuZK29KOnDCcYBAAAAAAAyIsnCw88aYz6vtT+VqH/NpbX2GwnuAwAAAAAAeCTJwsOEpP9G0vfpgz+1sOs/AwAAAACAPpRk4eEvSvqQtXY5wT4BAAAAAIDHklxOsyTp7gT7AwAAAAAAnkvyEw93S3rDGPN1bf2Oh5bLaQIAAAAAgN6VZOHh8wn2BQAAAAAAekBihQdr7W8ZY/6EpAettb9hjLlL0s6k+gcAAAAAAP5J7DsejDGfkfSrkn5u/Vf3SjqfVP8AAAAAAMA/SX655A9L+h5JFUmy1v6/kg4k2D8AAAAAAPBMkoWHpc1LaRpjdkmyCfYPAAAAAAA8k2Th4beMMX9L0oAx5mOS/rWkLyfYPwAAAAAA8EyShYfPSZqTdEnSfyfpZWvtTyXYPwAAAAAA8EySy2n+iLX2ZyX9041fGGN+dP13AAAAAACgDyX5iYe/EvC7v5pg/wAAAAAAwDOxP/FgjPm0pO+X9IAx5sKmt4Yk/Yc2294v6ZcljWrtiyhfiPsJiTt3VjU9M6+Z+ZrGhgc0PpbXrl3B9ZV3qzVdKy9qtrKk0fxeHS4M6u6BXKy2LvqUpPeqyyqVF+pti4Uh3TWwJ7BttbqiS+VKve1EIa+Bgd2BbSvVmt7YFMPDhUHlm8Swump1/daiZis1jeZzOrR/UDt2mFjHFmX/UdpGGVukx8V58u3cR7le0xBl7ullcfPqdrWmy5u2f7QwqH1dzMsk8sy3a2u7VvG3O7Z2zxZx+m73/vLy+7p4Y17lSk1j+ZwmDg5rz56dobZtd95bvR/32m8VW7vniVbH3M5CtaYrm/b7SGFQQx7ladb4ft0jHs4/JGm+WtPVTXnwUGFQwx3kQRJ/avH/SJqRdI+kv7/p9wuSLrbZ9o6kH7fWfsMYMyTpD40xv26tvdxJIHfurOr8N9/Wc+dLqq2sKrd7h54/WdTJx+5tKD68W63ptdKcTl/4oO2Z40U9URxpuKDCtnXRp7R283+pNNvQ9qniaMNDQLW6oi+Xyg1tny4WGh4yK9WaXgmI4VhxpOEf9KurVq9Ml/Xsudfrbc+eOqpj44WG4kPYY4uy/yhto4wt0uPiPPl27qNcr2mIMvf0srh5dbta08sB23+iONKV4kMSeebbtbVdq/gltTy2ds8WcfpuN67Ly+/r/MUbOv3ipvdPFHXyyEG99/5Ky23bnfdW71vZWNd+q+PK793b8nmi1TG3Kz4sVGv6asB+nyyOUHzogO/XPeLh/ENaKzq8GpAHHy+ORC4+xP5TC2vtt621v2mt/VPW2t/a9PqGtfZOm21nrLXfWP/vBUlXJN3baSzTM/P1BwNJqq2s6rnzJU3PzDe0vVZerA/gRtvTF0q6Vl7suK2LPiWpVF4IbFsqLzS0vVSuBLa9VK40tH2jSQxvBMRw/dZi/SFho+2z517X9VudH1uU/UdpG2VskR4X58m3cx/lek1DlLmnl8XNq8tNtr/cpbxMIs98u7a2axV/u2Nr92wRp+9271+8MV//B3j9/RdLunhjvu227c57q/fjXvutYmv3PNHqmNu50mS/VzzJ06zx/bpHPJx/SNLVJnlwtYM8iF14MMYsGGMqAa8FY0zopxpjzCFJH5b0+wHvPWOMmTLGTM3NzTXtY2a+Vh+UDbWVVZXnaw1tZytLgW1nK0sdt3XRZ3baBo/tzYXOxzYLx5W0sLkKN+cpzXPfiaznqm/j6UrccUh7HJPYf1rHkNSc2ir+dsfW7tkiTt/t3i83uffOVmqx+44Tdzut+279PNHqmOPs17VevP+nPXfBjbC5yvmHlGweJPGJhyFrbT7gNWStzYfpwxizT9L/KenHrLUNxQpr7QvW2klr7eTIyEjTfsaGB5TbvfWQcrt3qDDc+DGQ0fzewLaj+b0dt3XRZ3ba5gLbHhjqfGyzcFxJC5urcHOe0jz3nch6rvo2nq7EHYe0xzGJ/ad1DEnNqa3ib3ds7Z4t4vTddt9N7r2j+VzsvuPE3U7rvls/T7Q65jj7da0X7/9pz11wI2yucv4hJZsHSa5q0RFjzG6tFR3+pbX21+L0NT6W1/Mni/XB2fg7zPGx4Ya2hwuDOnN8a9szx4s6XBjsuK2LPiWpWBgKbFssDDW0nSjkA9tOFBprQA83ieHhgBgO7R/U2VNHt7Q9e+qoDu3v/Nii7D9K2yhji/S4OE++nfso12saosw9vSxuXj3aZPtHu5SXSeSZb9fWdq3ib3ds7Z4t4vTd7v2Jg8M6c2Lb+yeKOnJwuP22bc57q/fjXvutYmv3PNHqmNt5pMl+H/EkT7PG9+se8XD+IUkPNcmDhzrIA2OtTTq+8Ds3xkj6JUn/wVr7Y2G2mZyctFNTU03f3/jm6fJ8TYXhnMbHhlnVIuFVLW4u1HRgqOdWtQg+kBja5SpY1ULqaLWBruYqq1qsYVWLyGOQuTk1iVUtmj1bdGNVi40VII700KoWzZ4nWh1zOx2sapG5XM0S3+6pPa7rucr5h9TRqhaBuZp24eF7Jf2OpEuSNv545G9Za19utk0vTebIFB484AtyFT4gT+ELchW+IFfhi8BcTWI5zY5Za/+dHFxEAAAAAAAgG1L/jgcAAAAAANC7KDwAAAAAAABnKDwAAAAAAABnKDwAAAAAAABnKDwAAAAAAABnKDwAAAAAAABnKDwAAAAAAABnKDwAAAAAAABnKDwAAAAAAABnKDwAAAAAAABnKDwAAAAAAABnKDwAAAAAAABnKDwAAAAAAABnUi88GGN+wRhz0xhTSjsWAAAAAACQrF1pByDpFyX9I0m/nERni9UlTZdva7aypNH8Xo0X9mlwYG9g20q1pjfKi/W2DxcGlR/IBbZ9t1rTtU1tDxcGdXeTtmFF6dPF/qNaXbW6fmtRs5WaRvM5Hdo/qB07TNf2f+fOqqZn5jUzX9PY8IDGx/LatSv12hliSPu6QnuM55q448A4pq/VPeS96rJK5YX6+SkWhnTXwJ5E9tuu7zi54TKv4o5JWscV5Tmw1zDPIGnkFKTk8iD1woO19reNMYeS6GuxuqSvlG7q9IWSaiuryu3eoTPHi/pk8UDDTadSremV0lxD22PFkYbiw7vVml4LaPtEcaTjiy9Kny72H9XqqtUr02U9e+71egxnTx3VsfFCV4oPd+6s6vw339Zz5z8Yg+dPFnXysXspPngq7esK7TGea+KOA+OYvlb3kOWVO3qpNNtwfp4qjsYuPrxXXW7Zd5zccJlX7eJuJ63jivIc2GuYZ5A0cgpSsnnQU/9imy7frg+KJNVWVnX6QknT5dsNbd8oLwa2faO82ND2WpO21wLahhWlTxf7j+r6rcV60WEjhmfPva7rt7oTw/TMfP2BcWP/z50vaXpmviv7R/LSvq7QHuO5Ju44MI7pa3UPKZUXAs9PqbwQe7/t+o6TGy7zKu6YpHVcUZ4Dew3zDJJGTkFKNg+8KDwYY54xxkwZY6bm5uaatputLNUHZUNtZVWzlaWutQ0r7f1HNVupBcZwc6HWlf3PzAfvvzzfnf2HFTZXkf511e/C5CrjuSbuODCOnUtqTm11D3F5ftr1HWffacbtcvusjkk7ad//mWcQlot/V6F3JZkHXhQerLUvWGsnrbWTIyMjTduN5vcqt3vrIeV279BovvHjda7ahpX2/qMazecCYzgw1J2PWo0NDwTuvzCcrY96hc1VpH9d9bswucp4rok7Doxj55KaU1vdQ1yen3Z9x9l3mnG73D6rY9JO2vd/5hmE5eLfVehdSeaBF4WHsMYL+3TmeLE+OBt/gzJe2NfQ9uHCYGDbhwuDDW0PN2l7OKBtWFH6dLH/qA7tH9TZU0e3xHD21FEd2t+dGMbH8nr+5NYxeP5kUeNjw13ZP5KX9nWF9hjPNXHHgXFMX6t7SLEwFHh+ioWh2Ptt13ec3HCZV3HHJK3jivIc2GuYZ5A0cgpSsnlgrLVJxxctAGN+RdJHJd0jaVbS5621P9+s/eTkpJ2ammraH6tauLOxqsXNhZoODKW3qkV5vqbCcE7jY8NJfrFk4gfSLleR/nXlqa7mah+MZyisahFZ5ubUVvcQVrWIHrfL2Lq8qkXmcrVTfTjP9Juu5yo5BamjPAjM1dQLD1Hxjzk40jMPHuh55Cp8QJ7CF+QqfEGuwheBudpTf2oBAAAAAACyhcIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwZlfaARhjjkn6WUk7JX3RWvszKYcU6L3qskrlBc1WljSa36tiYUh3DezJXJ9Av3u3WtO18mL9ujpcGNTdA7m0w4LnyKvexv04eYxpc8wn8AW5iiSlWngwxuyU9AVJH5P0lqSvG2MuWGsvpxnXdu9Vl/VSaVanL5RUW1lVbvcOnTle1FPF0Y5voi76BPrdu9WaXivNNVxXTxRHuFGiY+RVb+N+nDzGtDnmE/iCXEXS0v5Ti8clvWmt/Za1dlnSlySdSDmmBqXyQv2ik6TayqpOXyipVF7IVJ9Av7tWXgy8rq6VF1OODD4jr3ob9+PkMabNMZ/AF+QqkpZ24eFeSd/Z9PNb67/bwhjzjDFmyhgzNTc317XgNsxWluoX3YbayqpmK0uZ6hPpSztX+x3XVXjkanjkVXq6kaec3+T145iGzdV+HBtkC7mKtKRdeAjFWvuCtXbSWjs5MjLS9f2P5vcqt3vrUOV279Bofm+m+kT60s7Vfsd1FR65Gh55lZ5u5CnnN3n9OKZhc7UfxwbZQq4iLWkXHt6WdP+mn+9b/12mFAtDOnO8WL/4Nv7GqVgYylSfQL87XBgMvK4OFwZTjgw+I696G/fj5DGmzTGfwBfkKpKW9qoWX5f0oDHmAa0VHD4l6fvTDanRXQN79FRxVIfuuSuxb2d20SfQ7+4eyOmJ4ogO3fM438CMxJBXvY37cfIY0+aYT+ALchVJS7XwYK29Y4z5rKRXtbac5i9Ya6fTjKmZuwb26PEH9me+T6Df3T2Q0+MPcFNEssir3sb9OHmMaXPMJ/AFuYokpf2JB1lrX5b0ctpxAAAAAACA5KX9HQ8AAAAAAKCHUXgAAAAAAADOUHgAAAAAAADOUHgAAAAAAADOGGtt2jFEYoyZk/TtEE3vkfSO43DSwHG58Y619liSHfZorhKrO2HjTStXfRhPYkxGEjEypzbKalxSdmPrRlzkajg+xSr5FW/W7/+SX+PpCmMQM1e9KzyEZYyZstZOph1H0jiu3uPTsROrO1mPN+vxScSYFB9ibCWr8Wc1Lim7sWU1rqT4dHw+xSr5Fa8PsfoQo2uMQfwx4E8tAAAAAACAMxQeAAAAAACAM71ceHgh7QAc4bh6j0/HTqzuZD3erMcnEWNSfIixlazGn9W4pOzGltW4kuLT8fkUq+RXvD7E6kOMrjEGMcegZ7/jAQAAAAAApK+XP/EAAAAAAABSRuEBAAAAAAA4Q+EBAAAAAAA4Q+EBAAAAAAA4Q+EBAAAAAAA4Q+EBAAAAAAA4Q+EBAAAAAAA4Q+EBAAAAAAA4Q+EBAAAAAAA4413h4dixY1YSL15JvxJHrvJy9EocucrLwStx5CkvR6/Ekau8HL0SR67ycvQK5F3h4Z133kk7BCAUchW+IFfhA/IUviBX4QtyFd3kXeEBAAAAAAD4g8IDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwhsIDAAAAAABwxlnhwRjzC8aYm8aYUpP3jTHmHxpj3jTGXDTGfMRVLAAAAAAAIB27HPb9i5L+kaRfbvL+k5IeXH/9SUn/ZP1/u+bdak3XyouarSxpNL9XhwuDunsgF6utiz6jtr1zZ1XTM/Oama9pbHhA42N57doVXGOqVld0qVyp9ztRyGtgYHdg2ygWqjVd2RTvI4VBDTWJ1wVXx9WvouRf2v26itWV96rLKpUX6vEWC0O6a2BP2mHVZWE8F6tLmi7frscwXtinwYG9Xds+CWmPYxL7931edRl/q/FtN/Zxzs18taarm7Z9qDCo4S7llcvj8nVM0uZinnE1nq7mZZ+eK9K+LwBhJZWrzgoP1trfNsYcatHkhKRfttZaSb9njLnbGDNmrZ1xFdNm71Zreq00p9MXSqqtrCq3e4fOHC/qieJIw0CGbeuiz6ht79xZ1flvvq3nzn/Q9vmTRZ187N6G4kO1uqIvl8oN/T5dLMR6GFuo1vTVgHifLI50pfjg6rj6VZT8S7tfV7G68l51WS+VZhvifao4moniQxbGc7G6pK+UbjbE8MnigVAPqXG3T0La45jE/n2fV13G32p8JbUc+zjnZr5a06sB2368OOL8H9rt4o5zXL6OSdpczDOuxtPVvOzTc0Xa9wUgrCRzNc3veLhX0nc2/fzW+u+64lp5sT6AklRbWdXpCyVdKy923NZFn1HbTs/M14sOG22fO1/S9Mx8Q9tL5Upgv5fKlSajFs6VJvFeCYjXBVfH1a+i5F/a/bqK1ZVSeSEw3lJ5IeXI1mRhPKfLtwNjmC7f7sr2SUh7HJPYv+/zqsv4W41vu7GPc26uNtn2ahfyyuVx+TomaXMxz7gaT1fzsk/PFWnfF4CwksxVL75c0hjzjDFmyhgzNTc3l0ifs5Wl+gBuqK2saray1HFbF31GbTszXwtsW56vxeo3Clf9+rB/F7maNp/yJO3ciyrruZqF8YwbQy8cQxb2n9YxJDWnuoy/Vd/t9hsnrjTzKqvHlfU51SWf7qk+9etTrGGlnavwS5K5mmbh4W1J92/6+b713zWw1r5grZ201k6OjIwksvPR/F7ldm89/NzuHRrNN37EK2xbF31GbTs2PBDYtjDc+FGYKP1G4apfH/bvIlfT5lOepJ17UWU9V7MwnnFj6IVjyML+0zqGpOZUl/G36rvdfuPElWZeZfW4sj6nuuTTPdWnfn2KNay0cxV+STJX0yw8XJD0366vbvHdkua79f0OknS4MKgzx4v1gdz4e5XDhcGO27roM2rb8bG8nj+5te3zJ4saHxtuaDtRyAf2O1HINxm1cB5pEu8jAfG64Oq4+lWU/Eu7X1exulIsDAXGWywMpRzZmiyM53hhX2AM44V9Xdk+CWmPYxL7931edRl/q/FtN/Zxzs1DTbZ9qAt55fK4fB2TtLmYZ1yNp6t52afnirTvC0BYSeaqWftux+QZY35F0kcl3SNpVtLnJe2WJGvt/2GMMVpb9eKYpPck/aC1dqpdv5OTk3Zqqm2zUHp9VYvyfE2F4ZzGx4ZZ1aL9cZmkY0gyV9Pm0zc6+/Yt0R2satHVXM3CeLKqRTb2H3FezdycyqoWyeqhVS0yl6udYlULv54rOui3Z3IVfkkqV50VHlzhAoEjTObwBbkKH5Cn8AW5Cl+Qq/BFYK568eWSAAAAAADATxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAMxQeAAAAAACAM04LD8aYY8aYq8aYN40xnwt4/z8xxnzNGPNHxpiLxphPuIwHAAAAAAB0l7PCgzFmp6QvSHpS0qOSPm2MeXRbs+cknbPWfljSpyT9Y1fxAAAAAACA7nP5iYfHJb1prf2WtXZZ0pckndjWxkrKr//3sKQbDuMBAAAAAABd5rLwcK+k72z6+a313232tyX9gDHmLUkvS/qRoI6MMc8YY6aMMVNzc3MuYgUSQa7CF+QqfECewhfkKnxBriItaX+55Kcl/aK19j5Jn5D0z40xDTFZa1+w1k5aaydHRka6HiQQFrkKX5Cr8AF5Cl+Qq/AFuYq0uCw8vC3p/k0/37f+u81+SNI5SbLW/q6knKR7HMYEAAAAAAC6yGXh4euSHjTGPGCM2aO1L4+8sK3Nv5f05yTJGPOI1goPfOYHAAAAAIAe4azwYK29I+mzkl6VdEVrq1dMG2POGGOOrzf7cUmfMcZ8U9KvSPqr1lrrKiYAAAAAANBdu1x2bq19WWtfGrn5d6c3/fdlSd/jMgYAAAAAAJCetL9cEgAAAAAA9DAKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBkKDwAAAAAAwBmnhQdjzDFjzFVjzJvGmM81aXPKGHPZGDNtjPlXLuMBAAAAAADdtctVx8aYnZK+IOljkt6S9HVjzAVr7eVNbR6U9JOSvsda+8fGmAOu4gEAAAAAAN3n8hMPj0t601r7LWvtsqQvSTqxrc1nJH3BWvvHkmStvekwHgAAAAAA0GUuCw/3SvrOpp/fWv/dZoclHTbG/N/GmN8zxhwL6sgY84wxZsoYMzU3N+coXCA+chW+IFfhA/IUviBX4QtyFWlJ+8sld0l6UNJHJX1a0j81xty9vZG19gVr7aS1dnJkZKTLIQLhkavwBbkKH5Cn8AW5Cl+Qq0iLy8LD25Lu3/Tzfeu/2+wtSRestSvW2v9P0jWtFSIAAAAAAEAPaFt4MMbsNMZ8rYO+vy7pQWPMA8aYPZI+JenCtjbntfZpBxlj7tHan158q4N9AQAAAACADGpbeLDWvi9p1RgzHKVja+0dSZ+V9KqkK5LOWWunjTFnjDHH15u9KumWMeaypK9J+glr7a1IRwAAAAAAADIr7HKatyVdMsb8uqTFjV9aa/9mq42stS9Lennb705v+m8r6dn1FwAAAAAA6DFhCw+/tv4CAAAAAAAILVThwVr7S+vf03B4/VdXrbUr7sICAAAAAAC9IFThwRjzUUm/JOm6JCPpfmPMX7HW/ra70AAAAAAAgO/C/qnF35f0hLX2qiQZYw5L+hVJ/5mrwAAAAAAAgP/armqxbvdG0UGSrLXXJO12ExIAAAAAAOgVYT/xMGWM+aKkf7H+81+WNOUmJAAAAAAA0CvCFh7+e0k/LGlj+czfkfSPnUQEAAAAAAB6RthVLZYknV1/AQAAAAAAhNKy8GCMuSTJNnvfWnsk8YgAAAAAAEDPaPeJh6e6EgUAAAAAAOhJLQsP1tpvb/y3MWZU0net//gH1tqbLgMDAAAAAAD+C7WcpjHmlKQ/kPQXJZ2S9PvGmL/gMjAAAAAAAOC/sKta/JSk79r4lIMxZkTSb0j6VVeBAQAAAAAA/4X6xIOkHdv+tOJWhG0BAAAAAECfCvuJh1eMMa9K+pX1n/+SpJfdhAQAAAAAAHpFu+U0/1NJo9banzDG/FeSvnf9rd+V9C9dBwcAAAAAAPzW7hMP/0DST0qStfbXJP2aJBljJtbfe9ppdAAAAAAAwGvtvqdh1Fp7afsv1393yElEAAAAAACgZ7QrPNzd4r2Bdp0bY44ZY64aY940xnyuRbv/2hhjjTGT7foEAAAAAAD+aFd4mDLGfGb7L40xf13SH7ba0BizU9IXJD0p6VFJnzbGPBrQbkjSj0r6/bBBAwAAAAAAP7T7jocfk/RvjDF/WR8UGiYl7ZH0X7bZ9nFJb1prvyVJxpgvSToh6fK2dv+LpL8r6ScixA0AAAAAADzQ8hMP1tpZa+1/LunvSLq+/vo71to/Za0tt+n7Xknf2fTzW+u/qzPGfETS/dbar7TqyBjzjDFmyhgzNTc312a3QHrIVfiCXIUPyFP4glyFL8hVpKXdn1pIkqy1X7PW/u/rr3+bxI6NMTsknZX04yH2/4K1dtJaOzkyMpLE7gEnyFX4glyFD8hT+IJchS/IVaQlVOGhQ29Lun/Tz/et/27DkKSipN80xlyX9N2SLvAFkwAAAAAA9A6XhYevS3rQGPOAMWaPpE9JurDxprV23lp7j7X2kLX2kKTfk3TcWjvlMCYAAAAAANBFzgoP1to7kj4r6VVJVySds9ZOG2POGGOOu9ovAAAAAADIjnarWsRirX1Z0svbfne6SduPuowFAAAAAAB0n8s/tQAAAAAAAH2OwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwukCDqMAABmPSURBVAMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHCGwgMAAAAAAHDGaeHBGHPMGHPVGPOmMeZzAe8/a4y5bIy5aIz5v4wxf8JlPAAAAAAAoLucFR6MMTslfUHSk5IelfRpY8yj25r9kaRJa+0RSb8q6X91FQ8AAAAAAOg+l594eFzSm9bab1lrlyV9SdKJzQ2stV+z1r63/uPvSbrPYTwAAAAAAKDLXBYe7pX0nU0/v7X+u2Z+SNJXg94wxjxjjJkyxkzNzc0lGCKQLHIVviBX4QPyFL4gV+ELchVpycSXSxpjfkDSpKT/Leh9a+0L1tpJa+3kyMhId4MDIiBX4QtyFT4gT+ELchW+IFeRll0O+35b0v2bfr5v/XdbGGP+vKSfkvRnrLVLDuMBAAAAAABd5vITD1+X9KAx5gFjzB5Jn5J0YXMDY8yHJf2cpOPW2psOYwEAAAAAAClwVniw1t6R9FlJr0q6IumctXbamP+/vbuPtqOqzzj+fSCQhJCECiE3AhpFoCVBIkQWLpWiWER0AVaEWFqkvr8XXdbiG7UsrFiXWlvfRcRWQF4qmFIUEGlLXYIESEgCgqihQnNDRLmBkJsQ8usfs09ycnLe7r1nzsycPJ+1snLuzD77/Gbffffes8+eGZ0n6aSU7DPAnsCVkpZKWtwiOzMzMzMzMzOroDwvtSAirgOua9h2bt3rV+T5+WZmZmZmZmZWrFLcXNLMzMzMzMzMBpMnHszMzMzMzMwsN554MDMzMzMzM7PceOLBzMzMzMzMzHLjiQczMzMzMzMzy40nHszMzMzMzMwsN554MDMzMzMzM7PceOLBzMzMzMzMzHLjiQczMzMzMzMzy40nHszMzMzMzMwsN554MDMzMzMzM7PceOLBzMzMzMzMzHLjiQczMzMzMzMzy40nHszMzMzMzMwsN554MDMzMzMzM7PceOLBzMzMzMzMzHLjiQczMzMzMzMzy40nHszMzMzMzMwsN7lOPEg6QdJ9kh6QdE6T/ZMlXZ723yZpbp7xmJmZmZmZmVl/TcorY0m7Al8C/gR4CLhd0uKIuKcu2ZuB30fE8yQtAj4NnD6Rz31swyj3D69nzbqNzJ4xmYOHprHX1Cl9S1v05+eZdvPmLaxcPcLqkVHmzJzKvDkzmDSp+dxVlcqrKHnEOLJhlPvq8jxkaBoze3DceZVnHvnmFeuWLcGqR9ezZt0os2dMYe7e09hlF00437LX1V7Et37DRlYOP7E1j3lDezJt6uS+vb8Xx1D078ll0Nno6GaWrx5heN1GhmZM5rA5M5kyZdswp138nY6tU9s6kbw77X9ywyZWDD++df/8oensMXX3nuSdZ9zt9ndqT/MskzJwn1qtfKsUa69VIUarjtwmHoCjgAci4lcAkr4LnAzUTzycDHwivb4K+KIkRUSM5wMf2zDKDSvWcu7iFYw+tYUpu+3CeSfN5/j5s3b4I8kjbdGfn2fazZu3cM2yh/nYNdvSnn/KfE45fL8dJh+qVF5FySPGkQ2jXN8kz1fOnzWhyYe8yjOPfPOKdcuW4Icrh/nAFUu35vu50xZwwryhCU0+lL2u9iK+9Rs28h8rHtkhj1fP37erE+eJvr8Xx1D078ll0Nno6GYWL1+9Q3wnHTaHKVMmtY0faHtsndrWieTdqVyf3LCJa1es2WH/a+bPZhNbJpR3nnG32z9j8uS27WmeZVIG7lOrlW+VYu21KsRo1ZLnpRb7Ab+p+/mhtK1pmojYDIwAe4/3A+8fXr/1jwNg9KktnLt4BfcPr+9L2qI/P8+0K1ePbJ10qKX92DUrWLl6pNLlVZQ8YryvRZ73TfC48yrPPPLNK9ZVj67fOkiu5fuBK5ay6tHylUEv9SK+lcNPNM1j5fATfXl/L46h6N+Ty6Cz5atHmsa3PPVR7eLvdGyd2taJ5N1p/4rhx5vuXzH8+ITzzjPudvs7tad5lkkZuE+tVr5VirXXqhCjVUslbi4p6W2Slkhasnbt2pbp1qzbuPWPo2b0qS2sWbexL2mL/vw8064eGW2adnhkdNz5luG4ei2PutqtvI67SvnmF2vz+v/I4zvW/7HlW+662ov4JppH0e/vVR4TsTOXQbdt6nCH+NrF3+nYJrLfeTfLu317mmfceSqy/88r3yrFmle+VYq1W0XXVdt55Tnx8DBwQN3P+6dtTdNImgTMBB5tzCgivh4RCyNi4axZs1p+4OwZk5my2/aHNGW3XZg9Y8elqHmkLfrz80w7Z+bUpmmHZu641KpK5dVredTVbuV13FXKN79YpzTNd9/pE1tqWPa62ov4JppH0e/vVR4TsTOXQbdt6lCH+NrF3+nYJrLfeTfLu317mmfceSqy/88r3yrFmle+VYq1W0XXVdt55TnxcDtwkKTnSNodWAQsbkizGHhjen0q8OPx3t8B4OChaZx30vytfyS1a5EOHprWl7RFf36eaefNmcH5p2yf9vxT5jNvzsxKl1dR8ojxkBZ5HjLB486rPPPIN69Y5+49jc+dtmC7fD932gLm7l2+MuilXsQ3b2jPpnnMG9qzL+/vxTEU/XtyGXR22JyZTeM7LPVR7eLvdGyd2taJ5N1p//yh6U33zx+aPuG884y73f5O7WmeZVIG7lOrlW+VYu21KsRo1aIJnOd3zlw6EfhHYFfgooj4pKTzgCURsVjSFOBfgRcAvwMW1W5G2crChQtjyZIlLfcX/ZSEoj8/z7S1p1oMj4wyNHMK8+bMHKSnWkz88QQNellXu+WnWuT/VItHHh9l3+mFPtWir3XVT7XoXR4TUcEy6HubWnuqRS0+P9Wi/E+1aNWe9vmpFgPR/+eVb5VizSvfEsU6MHXVBl7TuprrxEMeOv2BmI1T3xtzs3FyXbUqcD21qnBdtapwXbWqaFpXK3FzSTMzMzMzMzOrJk88mJmZmZmZmVluPPFgZmZmZmZmZrnxxIOZmZmZmZmZ5cYTD2ZmZmZmZmaWm8o91ULSWuDBLpLuA/w253CK4OPKx28j4oReZjigddWx5qfbeIuqq1UoT8fYG72I0W3qjsoaF5Q3tn7E5branSrFCtWKt+z9P1SrPPPiMphgXa3cxEO3JC2JiIVFx9FrPq7BU6Vjd6z5KXu8ZY8PHGOvVCHGdsoaf1njgvLGVta4eqVKx1elWKFa8VYh1irEmDeXwcTLwJdamJmZmZmZmVluPPFgZmZmZmZmZrkZ5ImHrxcdQE58XIOnSsfuWPNT9njLHh84xl6pQoztlDX+ssYF5Y2trHH1SpWOr0qxQrXirUKsVYgxby6DCZbBwN7jwczMzMzMzMyKN8grHszMzMzMzMysYJ54MDMzMzMzM7PcDNzEg6QTJN0n6QFJ5xQdTy9JWiVpuaSlkpYUHc94SbpI0iOSVtRte4akGyX9Iv3/B0XG2A9VqquSDpB0s6R7JK2U9FdFx9SJpF0l3SXp2qJjaUfSXpKukvRzSfdKelHB8bStl5ImS7o87b9N0tw+x9exLko6VtJIaiuXSjq3nzGmGNq218r8UyrHuyUd0cfYDqkrm6WS1kk6uyFN4WU4HmVtV8vUf5e1D24R1yckPVxXD0/sd1x5KGs9bcb9f77KNAYoe//fD12UwVmS1ta1SW8pIs48NWuLG/aPf/wSEQPzD9gV+CXwXGB3YBlwaNFx9fD4VgH7FB1HD47jGOAIYEXdtn8AzkmvzwE+XXScOZdBpeoqMAc4Ir2eDtxf5nhTnB8ALgWuLTqWDnF+G3hLer07sFeBsXSsl8C7gK+m14uAy/scY8e6CBxb9O+9U3sNnAj8ABBwNHBbgb/zYeDZZSvDcR5LKdvVMvXfZe2DW8T1CeCDRZdZj4+ztPW0Rbzu//ONtRRjgCr0/yUpg7OALxYda87lsENb3LB/3OOXQVvxcBTwQET8KiI2Ad8FTi44JmsQEf8N/K5h88lkjS/p/1P6GlT/VaquRsTqiLgzvX4cuBfYr9ioWpO0P/Bq4MKiY2lH0kyyBv6bABGxKSIeKzCkbupl/d/qVcBxktSvAKtWF9s4GfiXyNwK7CVpTgFxHAf8MiIeLOCze61S7WpRytoHt4hrEFWqnlatza1K/w+lGwOUvv/vg0r9beali7Z43OOXQZt42A/4Td3PD1HixnEcArhB0h2S3lZ0MD02OyJWp9fDwOwig+mDytbVtLTuBcBtxUbS1j8CHwK2FB1IB88B1gLfSstCL5Q0rcB4uqmXW9NExGZgBNi7L9E16FAXXyRpmaQfSJrX18AyndrrsrQBi4DLWuwrugzHqixl2kzZ++8y98HvSct5LyriEpAclLmetuX+v+fKNAaoVP+fk27/Nl+X2qSrJB3Qn9BKZdxt2KBNPAy6l0TEEcCrgHdLOqbogPIQ2ToeP+e1hCTtCfwbcHZErCs6nmYkvQZ4JCLuKDqWLkwiW872lYh4AbCebJmzddChLt5JdunA4cA/A9f0Oz4q0F5L2h04Cbiyye4ylOEgKX19qClZH/wV4EBgAbAa+Gyx4ey83P/nwmOA6vl3YG5EPB+4kW0rQKwLgzbx8DBQP/O0f9o2ECLi4fT/I8DVZEuCBsWa2jKd9P8jBceTt8rVVUm7kQ06LomI7xUdTxsvBk6StIpsmdzLJX2n2JBaegh4KCJq3x5dRTYIKUo39XJrGkmTgJnAo32JLulUFyNiXUQ8kV5fB+wmaZ9+xthFe12GNuBVwJ0RsaZxRxnKcBzKUKZNVaD/LmUfHBFrIuLpiNgCfIPyldt4lLaetuL+PzdlGgNUov/PWccyiIhHI2Jj+vFC4Mg+xVYm427DBm3i4XbgIEnPSd/kLAIWFxxTT0iaJml67TVwPND0bqMVtRh4Y3r9RuD7BcbSD5Wqq+kavm8C90bE54qOp52I+HBE7B8Rc8nK9ccR8ecFh9VURAwDv5F0SNp0HHBPgSF1Uy/r/1ZPJSvfvn072k1dlDRUu+5U0lFkfV3fBkddtteLgTPT3aGPBkbqlrr3yxtocZlF0WU4TqVsVyvSf5eyD264bvi1lK/cxqOU9bQV9//5KdkYoPT9fx90LIOGNukksnue7GzGPX6ZlG9c/RURmyW9B7ie7M6kF0XEyoLD6pXZwNVpHDgJuDQiflhsSOMj6TKyO6bvI+kh4G+BC4ArJL0ZeBA4rbgI81fBuvpi4C+A5ZKWpm0fSd+E2sS8F7gkdXK/Av6yqEBa1UtJ5wFLImIx2QD0XyU9QHbzoUV9DrNpXQSelY7hq2QDondK2gxsABb1eXDUtL2W9I66GK8juzP0A8CT9Pn3nk6A/wR4e922+viKLsMxK3G7Wqr+u6x9cIu4jpW0gOzSj1XU1deqKnE9bcX9f75KMQaoSP+fqy7L4H2STgI2k5XBWYUFnJMWbfFuMPHxi0o+jjAzMzMzMzOzChu0Sy3MzMzMzMzMrEQ88WBmZmZmZmZmufHEg5mZmZmZmZnlxhMPZmZmZmZmZpYbTzyYmZmZmZmZWW488VCQ9Iz070r6paQ7JF0n6WBJz5R0VUqzQNKJY8z3LElbJD2/btsKSXN7ewS2M5P0tKSlqW5dKWmPceTxCUkfzCM+s0aSbpb0yoZtZ0v6yhjyuE7SXh3SfGS8MZo1I2l/Sd+X9Is0ZvhCevReY7qt44cO+XWsx2aNJD2R/p8r6c9y+ozZkq6VtEzSPZKuS9u7qttmY9HqXKxF2rmSVvQ7xkHjiYcCKHuY99XAf0bEgRFxJPBhYHZE/F9EnJqSLiB7TupYPQR8tDfRmjW1ISIWRMR8YBPwjqIDMuvgMnZ85viitL0tZXaJiBMj4rEOyT3xYD2TxgvfA66JiIOAg4E9gU82pJvUMH5oqct6bNbKXCCXiQfgPODGiDg8Ig4FzgHotm6bdavduViP8p/Ui3wGjSceivEy4KmI+GptQ0Qsi4hbajNq6duM84DT0zfLp6dvO2YBSNpF0gO1nxtcC8yTdEjjDklfkbRE0kpJf1e3fZWkT6XPWiLpCEnXp1nAd9Sl+2tJt0u6u/79tlO7BXgegKRr0qzxSklvqyWQdIKkO9O3GDc1ZiDprZJ+IGlqen17SvtvtdUUkg6UdKuk5ZLOr337kva5XlonVwGvrn1TnFaBPRO4S9JNqX4ul3Rybb+k+yT9C7ACOCC1k/uk/X8u6WepzfyapF0lXQBMTdsukXSepLNrAUj6pKS/6u9hW8W9HBiNiG8BRMTTwPuBN0l6l6TFkn4M3FT/jZykPSRdkb41vlrSbZIWpn2rJO2T0t8r6Rupzb5B0tSiDtQq4wLgpamde39q+z5T1we/HUDSsZL+S9lqnV9JukDSGandXC7pwCZ5zyH78gyAiLg75VVfty9Mn71U0lpJf5u2exxgY9H0XAz4n1SfV6R6enrjGyVNkfSttP8uSS9L28+qb5P7diQV4omHYswH7miXICI2AecCl6dvli8HvgOckZK8AlgWEWubvH0L8A80/+btoxGxEHg+8MequyQD+N+IWEB2InkxcCpwNPB3AJKOBw4CjiJbjXGkpGM6H64NKmUzuq8ClqdNb0qzxguB90naW9nk2DeA10XE4cDrG/J4D/Aa4JSI2AB8LyJemNLeC7w5Jf0C8IWIOIy6gYnrpXUjIn4H/IysvkK22uEKYAPw2og4gmwg8llJSmkOAr4cEfMi4sFaXpL+CDgdeHFqM58GzoiIc9i2GugM4CLgzPSeXdJnfifnQ7XBMo+G8UJErAP+F5gEHAGcGhF/3PC+dwG/T98afxw4skX+BwFfioh5wGPA63oYuw2mc4BbUjv3ebI+eiQiXgi8EHirpOektIeTrYj8I+AvgIMj4ijgQuC9TfL+EvBNZZfGfVTSMxsTRMRbUrt7MvBb4GKPA2wcWp2L/SlZHTqc7FzrM5LmNKR5NxBpPPoG4NuSpqR9rdpkwxMPVbN1EAu8CfhWm7SXAkfXNf41p0m6E7iLbEBzaN2+xen/5cBtEfF4mtjYqOx60OPTv7uAO4E/JGvobeczVdJSYAnZAPibafv7JC0DbgUOIKsfRwP/HRG/hq0ngDVnkp0InhoRG9O2+ZJukbScbKJtXtr+IuDK9PrSujxcL61b9Zdb1C6zEPD3ku4GfgTsx7allg9GxK1N8jmO7ETu9vR3cBzw3MZEEbEKeFTSC0h1NCIe7d3hmHFjQ5ta8xLguwARsQK4u8X7fx0RS9PrO8iW0ZuNxfHAmaktvA3Ym2198O0RsTr1778Ebkjbl9OkrkXE9WRt6TfI+vK71GRlbzrJuxJ4b5oU9jjAeuUlwGUR8XRErAH+i2xCrTHNdwAi4ufAg2SXwUHrNtnIZsut/1aSrSYYk4j4jaQ1kl5ONqt7Rpu0myV9Fvib2rY0CfFB4IUR8XtJFwNT6t5WO/HbUve69vMksgH6pyLia2ON3QbOhvSNw1aSjiWbHX5RRDwp6T/Zvn41s5xsZnl/4Ndp28Vkqx+WSToLOLZDHq6X1q3vA5+XdASwR0TckerYLODIiHhK0iq21dv1LfIR8O2I+HAXn3khcBYwRDZ5bDYW99AwXpA0A3gWsJnWdbRb9X3904AvtbCxEtkEwPXbbczGBI1jyfpxZtNzkHTSdilwqaRrgWPY8Zvpr5KtjvxRXQweB9hYjOtcrAsTbZMHmlc8FOPHwGRtfw388yW9tCHd48D0hm0Xks2yXZmu9WznYrITwdps8QyyP4gRSbPZtuS4W9eTXVe6Z4p5P0n7jjEPG1wzyZb2PinpD8lWOkC2+uGY2uobSc+oe89dwNuBxXVLKqcDqyXtxvaTa7eybRlw/U0CXS+tKxHxBHAz2QRA7aaSM4FH0qTDy4Bnd5HVTcCptXom6RmSau97KtXdmquBE8i+Mbkes7G5CdhDUu2SnV2Bz5L170+2ed9PgNPSew4FDss3TNuJNI5NrwfeWWv3lD2hbdp4Mpb0cm27r9N04ECyVZX1ad4NTI+ICxpi8DjAxqLpuRjZJWenp3uXzCKb+PpZw3tvIY1PlT0F41nAfX2JuuI88VCAiAjgtcArlN28cSXwKWC4IenNwKHpBjq1m5ssJrujdbvLLGqfswn4J2Df9PMyshO9n5PNJv9kjHHfkN7307QM/ip2nBixndcPgUmS7iW7+dStAOlynbcB30uXYVxe/6aI+B+ylTj/oezGfR8nW675E7K6WnM28IG0JP55wEh6v+uljcVlZNdu1iYeLgEWprpzJtvXuaYi4h7gY8ANqT7eSHZTNICvA3dLuiSl3UTWll/RxWSx2Xbqxguvl/QL4H5glM5PT/kyMEvSPcD5ZN/ujeQZq+007gaeVnYD6PeTfSF2D3BnugHk1xj/iuojgSWpXf0pcGFE3N6Q5oPAYXU3mHyHxwE2Vm3OxS4lq+PLyCYnPhQRjednXwZ2SXXtcuCsusuFrQ1l5W5Voeyu1J+PiMbVEWYDLX0LsiEiQtIi4A0RcXLRcZm1k24qeSfw+oj4RdHx2M4hrYzYLSJGlT094EfAIWkizMzMrO98j4cKkXQO8E7a3NvBbIAdCXwxPXHgMbIbrJqVVlrifi1wtScdrM/2AG5Oy98FvMuTDmZmViSveDAzMzMzMzOz3PgeD2ZmZmZmZmaWG088mJmZmZmZmVluPPFgZmZmZmZmZrnxxIOZmZmZmZmZ5cYTD2ZmZmZmZmaWm/8HG8aupkTiaNgAAAAASUVORK5CYII=\n" + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_MICHIGANcat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIA
21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.01.0
43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00.0
\n", + "

5 rows × 48 columns

\n", + "
" + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_MICHIGAN cat__Origin_NEW JERSEY \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NEW YORK cat__Origin_NORTH CAROLINA cat__Origin_OHIO \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_PENNSYLVANIA cat__Origin_TENNESSEE cat__Origin_TEXAS \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VERMONT cat__Origin_VIRGINIA \n", + "2 0.0 0.0 \n", + "3 0.0 1.0 \n", + "4 0.0 0.0 \n", + "5 0.0 0.0 \n", + "6 0.0 0.0 \n", + "\n", + "[5 rows x 48 columns]" + ] }, - "metadata": { - "needs_background": "light" - } + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "import seaborn as sns\n", - "\n", - "g = sns.PairGrid(new_pumpkins)\n", - "g.map(sns.scatterplot)\n" + "from sklearn.compose import ColumnTransformer\n", + "ct = ColumnTransformer(transformers=[\n", + " ('ord', ordinal_encoder, ordinal_features),\n", + " ('cat', categorical_encoder, categorical_features)\n", + " ])\n", + "# Get the encoded features as a pandas DataFrame\n", + "ct.set_output(transform='pandas')\n", + "encoded_features = ct.fit_transform(pumpkins)\n", + "encoded_features.head()" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 70, "metadata": {}, "outputs": [ { - "output_type": "stream", - "name": "stderr", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 80.6% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n warnings.warn(msg, UserWarning)\n/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 37.2% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot.\n warnings.warn(msg, UserWarning)\n" - ] - }, + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
ord__Item Sizecat__City Name_ATLANTAcat__City Name_BALTIMOREcat__City Name_BOSTONcat__City Name_CHICAGOcat__City Name_COLUMBIAcat__City Name_DALLAScat__City Name_DETROITcat__City Name_LOS ANGELEScat__City Name_MIAMI...cat__Origin_NEW JERSEYcat__Origin_NEW YORKcat__Origin_NORTH CAROLINAcat__Origin_OHIOcat__Origin_PENNSYLVANIAcat__Origin_TENNESSEEcat__Origin_TEXAScat__Origin_VERMONTcat__Origin_VIRGINIAColor
21.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
31.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.01.00
43.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
53.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
61.00.01.00.00.00.00.00.00.00.0...0.00.00.00.00.00.00.00.00.00
\n", + "

5 rows × 49 columns

\n", + "
" + ], + "text/plain": [ + " ord__Item Size cat__City Name_ATLANTA cat__City Name_BALTIMORE \n", + "2 1.0 0.0 1.0 \\\n", + "3 1.0 0.0 1.0 \n", + "4 3.0 0.0 1.0 \n", + "5 3.0 0.0 1.0 \n", + "6 1.0 0.0 1.0 \n", + "\n", + " cat__City Name_BOSTON cat__City Name_CHICAGO cat__City Name_COLUMBIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_DALLAS cat__City Name_DETROIT cat__City Name_LOS ANGELES \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__City Name_MIAMI ... cat__Origin_NEW JERSEY cat__Origin_NEW YORK \n", + "2 0.0 ... 0.0 0.0 \\\n", + "3 0.0 ... 0.0 0.0 \n", + "4 0.0 ... 0.0 0.0 \n", + "5 0.0 ... 0.0 0.0 \n", + "6 0.0 ... 0.0 0.0 \n", + "\n", + " cat__Origin_NORTH CAROLINA cat__Origin_OHIO cat__Origin_PENNSYLVANIA \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_TENNESSEE cat__Origin_TEXAS cat__Origin_VERMONT \n", + "2 0.0 0.0 0.0 \\\n", + "3 0.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + "5 0.0 0.0 0.0 \n", + "6 0.0 0.0 0.0 \n", + "\n", + " cat__Origin_VIRGINIA Color \n", + "2 0.0 0 \n", + "3 1.0 0 \n", + "4 0.0 0 \n", + "5 0.0 0 \n", + "6 0.0 0 \n", + "\n", + "[5 rows x 49 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.preprocessing import LabelEncoder\n", + "# Encode the 'Color' column using label encoding\n", + "label_encoder = LabelEncoder()\n", + "encoded_label = label_encoder.fit_transform(pumpkins['Color'])\n", + "encoded_pumpkins = encoded_features.assign(Color=encoded_label)\n", + "encoded_pumpkins.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ - "" + "['ORANGE', 'WHITE']" ] }, + "execution_count": 71, "metadata": {}, - "execution_count": 5 + "output_type": "execute_result" + } + ], + "source": [ + "# Let's look at the mapping between the encoded values and the original values\n", + "list(label_encoder.inverse_transform([0, 1]))" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Analysing relationships between features and label" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" }, { - "output_type": "display_data", "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXyU9bn38c+VnT0IYREJAQQRWSXgvtu64FKt1eKpFotirWufnlbbp62hPbVq69Pt6Klo61K3o10sinVfwLpAUFYFZJWwJkQCCWS/nj8mJJnMZIFkSObO9/165UXua373df9I7nznnt9MJubuiIhI8CS09wRERCQ2FPAiIgGlgBcRCSgFvIhIQCngRUQCKqm9J1Bf3759PSsrq72nISISNxYtWlTg7hnRbutQAZ+VlUVubm57T0NEJG6Y2cbGbtMSjYhIQCngRUQCSgEvIhJQCngRkYBSwIuIBJQCXkQkoBTwIiIBpYAXEQmomP6ik5mlAw8DYwAHvuXu77f1cbLumBu2fe0JSXxRNoC8L/Zy/tiBXH3CEEorqvnDm5+xYH0hEzPTufXskXRPTeKZBZ/z/OLNDOiZxi1njWBYRnc+WLeTh+ato9qda04ayqkjM9hUuJffvv6ZesZRzzvnrAg7LzbcPbWtT71Db28hvHMPbF0CQ0+DU74HCUnwwQOwci70PRJO/yH0PBxW/QsWPATJXeCk22DwZNj+Ccz7FewtgAnfgPFXqGdrenZwFss/+GFmjwHz3f1hM0sBurr7rsbGZ2dn+4H+Juv8+fO5au7uJsf8/OJjWJpXxHOL8mprU8cO5MxR/fjec0tqawN6pvH4jClc8Pt3Ka+qBiAxwZhz40nc+NRHbNi5N9g9vzWFC/4Q3vOfN57ETXHaM5q4D/m/XApr36jbPu7b0L0/vDGrrtZ/LEy9D/58DqHrKiC5K1w/L1Tbu7Nu7BVPQO4j6nkwPW9eFAr+dmZmi9w9O9ptiTk5ObE6aC/gl8D0nJwccnJyqnJyckqb2mf27Nk5M2fOPKDjnPY/y5sdU1pRzb/X7qwNBIB1BSVUVFWxvqAuEIrLKgH4eFPdfZA7mMH8zwoC1rOa9QUlzfYEmL8mPntGc9vZI5sd02GVFcOcm8JruzdDUR4Ub6urlewIfVG2La2rVVeEsmnju+H7u8Pql9qvJ8C2ujtwqisAhw1x0LPvSDh8Au1t1qxZW3NycmZHuy2Wa/BDgXzgETP72MweNrNuDQeZ2UwzyzWz3Pz8/JhMZPBhXRh8WNew2qD0LmT2CZ9OgsHRA3tE7D+yfw+SEy1gPcNrjfU8akD3uO0ZOMldQleX9fXOCn2EjesK/UZF7j9wXGStz7D27ZkRpeeAOOnZcFwHFMuATwKOBf7H3ScCJcAdDQe5+2x3z3b37IyMqG+I1qTGHnLv/2EfltGNW84aQc6Fo0nvmgxAj7Qkfv6VMdxw+nBGDQiFRVKC8d2zR3LF5EwuGDewts/ZR/dn2pRMbj93VCftOSRuewZOQmJoqSCle2i7Wz845xdw5k8gfUiolpgK59wFk6+FYafX7Ggw8Ruhj5O/C1bzY3/4RDjhpnbuOSNKz6vio+fQ01r4jWtH7h6TD2AAsKHe9inA3Kb2mTRpkh+sIbe/6ENuf9G/98w8d3cv2FPqyzfv8qqq6tox+8orfemmXV5SVlFbq66u9k+2FPmO3aVh/TYWlPi6/OKwmnrGX8/958W8efM8MEp3u2/+2L2irK5WVem+ZbF7yc7wsfmr3b/YGF4r2uK+bYV6tlXPdgbkeiOZGusnWecD17r7KjPLAbq5+/cbG38wT7KKiHRmTT3JGuv3g78ZeLLmFTTrgGtifDwREakR04B398VA1HsWERGJLf0mq4hIQCngRUQCSgEvIhJQCngRkYBSwIuIBJQCXkQkoBTwIiIBpYAXEQkoBbyISEAp4EVEAkoBLyISUAp4EZGAUsCLiASUAl5EJKAU8CIiAaWAFxEJKAW8iEhAKeBFRAJKAS8iElAKeBGRgFLAi4gElAJeRCSgFPAiIgEV04A3sw1mtszMFptZbiyPlXXH3NoPgLX5xby9agf7yqtqx+wsLuPNldvZsbu0tlZaUcW81fms3r6ntubuLNpYyIL1hVRXe21dPeOvZ8Pzol08eink9Ap9AJTtgc9eg51r68ZUV8H6+ZC3KHzfbctg7VtQWV5XK9oMq1+BvYV1NfWMv56/mRh+XsSAuXvzow62udkGINvdC1oyPjs723NzD/x+oKkf3r7dU3hm5vFsKNjLd576iPLKapITjfsun8CEI9K5Yvb7bC0Khcn0E7P40flHc/WfP+SDdaFvzITB6Tx93fH84c3PeODtteoZRz0Liuv9wNXYcPfUlp1UbSXaD2+X3rDvC8DgzB/DlOvgkamwfVno9hFfhmnPwJybYfGToVrvLLjmX7DmdXjhNvAqSO4K054O9Xv8YvWMp55Eyd2copacURHMbJG7Z0e7LTEnJ+egmrbErFmzbgNm5+Tk7G3J+NmzZ+fMnDnzgI7R3JXZ3vIqdu+r4K8f5dX+wFc7fPz5LnbuLef9tTtrxy7etIteXZN56sNNtbVtu0vpmZbE7974rPZbEtSe6QHrGc1tZ4+MWo+Zt++OrFXWPTrh8w8gKQ2W/7WuVrg2FAjv/qauVroLMHjv91BR8+NUXQH5q2DL4rrgCWxPgtUzms/mw6T/aHpMFLNmzdqak5MzO9ptSQfc7cA48KqZOfCgu0dMwsxmAjMBMjMzYzKJguJyCvaUhdUKS8rJr7cMsF9e4b6I2uZd+6hucIcb7z0b1oLYMy5UlcPuzZH1XZ9H1vZsg9IGV3nF+WCJnaDn9mD1jGbroubHHKBYP8l6srsfC5wH3GhmpzYc4O6z3T3b3bMzMjIO+AAtecj91UmD+OqkI8Jql0wcxGXZg8NqwzK6MePkoXRLqftmpCYlMP3ELEYP7Bmong1rwzK68a2A9YwLmSfC5BmQkFxXS0uHE26CXvW/7wYTvwGjLw7ff8K00Eeget4c/J7R/HR782MOUEzX4MMOZJYDFLv7rxsb01Zr8It+fDYPv7ueTYV7mTp2IOeNHUhlVTV/+WAjCzcUMmFwOtNPHEpKUgJvfLqd5xdvYUDPVK47ZRj9eqaxcttuHntvA1XVzlXHZzH2iF7sLC5TzzjrecOTH4WdF4d8/X2/+uvwqb1h6q9g1Vzoc2QoILukw6YFkPsIJKfBcTdAxkjYtQk+eABK8mHClTD8TKjYF6ptXQJDT4NJ10BCAix9Tj3jrec9Q+rOi77j4Kb5B3V6NbUGH7OAN7NuQIK776n5/DXgZ+7+cmP7HGzAi4h0Vk0FfCzX4PsD/zCz/cd5qqlwFxGRthWzgHf3dcD4WPUXEZGm6TdZRUQCSgEvIhJQCngRkYBSwIuIBJQCXkQkoBTwIiIBpYAXEQkoBbyISEAp4EVEAkoBLyISUAp4EZGAUsCLiASUAl5EJKAU8CIiAaWAFxEJKAW8iEhAKeBFRAJKAS8iElAKeBGRgFLAi4gElAJeRCSgFPAiIgGlgBcRCaiYB7yZJZrZx2b2YqyPJSIidZIOwTFuBT4FesbqAFl3zA3bvv74TNbvLiPvi32cP3YA3zn9SErKK7n35VUsWF/IxMx0bj93FOldk3l4/nqeX7yZAT3T+N6Xj2L04T15c+V2/vj2OqrdmXHyUM4bO5A1O/Zw78ur1DOOev761dVh58U7N4xhyJAhsToN40PeInj7LigpgInfgCnXwZ7t8HoObF0Cw06DM38CiSkw715YORf6HAln3wmHDYOlz8KC2ZCUBqd8D4afET89OyFz99g1NzsCeAz4BfB/3P2CpsZnZ2d7bm7uAR3j7c82MP1PK5oc8+OpR7M0r4g5S7bU1s4+uh9njurPj/6xrLbWt3sKj14zmYvvf4+qaq/5P8Dfv30iNz71EVuKSgPecwoX3//v8J43nMiNT8Znz2g23D21ydsDrbQIfjMWyorqal/9E+Q+AhvfratNmg7dB8A7d9fV+o6E8++Dxy+sqyWmwHVvwSPnH3zPqffBY4eg50250DuYd+5mtsjds6PdFusr+N8CPwB6xOoAzYU7wGufbGf55qKw2hsrd1BdHX7nVlBczjMLNtUGB4A7PJu7KSI44r5ng/v1guJynl7weUTP/10Yvz2lgY3vhYcmwKdzwkMTYNXL0KN/eK1gNSx9JrxWVQ6LHmldzyUt7PlJK3uufROyr6GzidkavJldAOxw90XNjJtpZrlmlpufn3/Axxl+WGqzY47s153h/bqH1Yb17caR/cPvdxITjImZ6RH7jx+cTkpS+Jcq7ns2qCUmGMdm9o7oOSGOe0oDfUYAFl7LGA09jwiv9R0RuhKuL6UHDBwf2fOI41rZc0KUnlMie/ZrZc+G4zqJWP5EnARcZGYbgGeAM83siYaD3H22u2e7e3ZGRsYBH+SNH5wdtd4tJRGAsYN6cevZI/j5xWMY2CsNgIweqfzy0nHccNpwJg0JhUVacgI/nno0lx57BNOmZJJgoYf+l04cxNeyB/Ozi47pBD0HBapnxDmR3MKTKqj6Hgln/QQSay6Khp4GJ3wHLvo9dO0TqqUPgfPugbN+Cv2OCdVSe8IFv4FJ18DRF4VqCUlw/I0w/vJW9pwepecVbd8z66S2/mrGB3eP+QdwOvBic+MmTZrkB+uy/57nQ25/sXa7uLTCP99ZEjamsqra1+cXe3llVVh9U2GJ7ymtCKsV7Cn1HbtLw2rqGX89z7739bDzQtx93y73XZvCaxWl7jvXuleFf9195zr3svDvke/e6l6yMz57BhCQ641kakyfZN3PzE4H/tNj8CSriEhn1p5PsgLg7m8Dbx+KY4mISIielRIRCSgFvIhIQCngRUQCSgEvIhJQCngRkYBqUcCb2clmdk3N5xlmNjS20xIRkdZqNuDN7E7gduCHNaVkIOI3UkVEpGNpyRX8JcBFQAmAu28hhm8eJiIibaMlAV9e8+uwDmBm3WI7JRERaQstCfhnzexBIN3MrgNeBx6O7bRERKS1mn2rAnf/tZl9CdgNHAX81N1fi/nMRESkVZoNeDP7CfBo/VA3s5nuPjumMxMRkVZpyRLNzcDLZlb/jxp+O0bzERGRNtKSgN8MnAfcbWbfr6lZE+NFRKQDaNEvOrn758BpwGgzew7oEtNZiYhIq7Uk4HMB3L3U3a8h9L7uKbGclIiItF6zAe/u1zXYvt/dh8VuSiIi0hYafRWNmT3r7peb2TJqfsmpPncfF9OZiYhIqzT1Mslba/5t8u+oiohIx9ToEo27b635d6O7bwSKgWOBvjXbIiLSgTUa8Gb2opmNqfl8ILAc+BbwFzO77RDNT0REDlJTT7IOdfflNZ9fA7zm7hcCxxEKehER6cCaCviKep+fBbwE4O57gOpYTkpERFqvqSdZN5nZzUAeobX3lwHMrAuhP/ohIiIdWFNX8DOAY4DpwBXuvqumfjzwSHONzSzNzBaY2RIzW2Fms1o92yZk3TG39gNg8aZdvLBkC7v2lteO2VS4l38u3syGgpLa2u7SCuYu3cqijYW1tcqqat5atYM3Pt1OeWXdgxX1jL+eDc8LaaXKMlg5F9a+CdU1X3d32PBv+OSfUFZcNzZ/FSx9Doo219VKCmDZX2HrkrbrKY2y0N/yiEFjMwO6uXuxmSUD7wK3uvsHje2TnZ3tubm5B3yspn54e6Ql8czM41mXX8Jt/7uYqmrHDO65dBzHDunN5Q++T2FJKAy+euwR/OKSMVz+4PsszSsC4Kj+Pfjbd07k3pdX8vj7G9UzjnruKa2MOB823D21ZSeVRNpbCA+fDYVrQ9uZJ8I3X4C/TodPXwjVug+AGa/Cqn/By7eHagnJcMUT0PUwePwrUFFz533yd+HEW1rX86hzD8X/vEMzs0Xunh3ttmbfLvhg1fwVqP13vck1H21+b9Lcldme0koeeHstyzcXUVXtNXODe19ZxVmj+tUGB8DfPspjRP9utcEBsGr7Hh7993r+8sHG4PfsF9nzkTjuKW3so8frghjg8/fggwfqghigeBt8cD8sfrquVl0Bb/1XKKgr6h6Z8d4fICElSs/7I3u+fz8sidJTAd+kFr3Z2MEys0QzWwzsIPQqnA+jjJlpZrlmlpufnx+TeezeV8HufRVhtT2lFRTtK48YW7AnsrazuJyGD3TivmdpeA0gvzhYPaWNlRZF1op3RNb27YLykvBaaVHk/tWVsG9n5P4lUXKgtJGe0qSYBry7V7n7BOAIYMr+19U3GDPb3bPdPTsjI+OAj9GSh9xXTslk2pTMsNq0KZl8fUomVu+Nj48e2JNrTx1Kry51zyF3T03iWycP5djM9GD1nDw4oufMU4ZF9JwRxz2ljY3/OiTVeyPZbv3gpFvhsOF1NUuESdNh3BXh+06aHvqob/iZMGVmZM8Tb2l5T2lSs2vwZjaU0B/9yKLeko67X3RABzL7KbDX3X/d2JiDXYMfccfcsNd0Lsv5Mn/5YCObCvdx/tgBnDIiA3fnbx9tZuH6QiZkpnN59mASE4wP1u1kzpItDOiZxtUnDCG9awobd5bw5IefU1XtTJuSyZH9urOntEI946znVX9aEHaeaP29DWxfEVqqSUqDyddC+mAozoeFD4euvMdPg8GToaoCFj0aejJ12Okw9rLQ/qtfCT2h2udImDwDUrq1vmcn19QafEsCfgnwJ2AZ9V7/7u7vNLNfBlDh7rtqXlr5KnCPu7/Y2D4HG/AiIp1Va59kLXX33x/EcQcCj5lZIqGloGebCncREWlbLQn435nZnYSuwMv2F939o6Z2cvelwMTWTU9ERA5WSwJ+LHAVcCZ1SzResy0iIh1USwL+a8Awd498bZqIiHRYLXmZ5HJArz8TEYkzLbmCTwdWmtlCwtfgD+hlkiIicmi1JODvjPksRESkzTUb8O7+jpkNAUa4++tm1hVIjP3URESkNZpdgzez64C/Ag/WlAYBz8dyUiIi0noteZL1RuAkYDeAu38G9IvlpEREpPVaEvBl9V8iaWZJxOBtf0VEpG21JODfMbMfAV3M7EvAc8ALzewjIiLtrCUBfweQT+jNxq4HXnL3/xvTWYmISKu15GWSN7v774CH9hfM7NaamoiIdFAtuYL/ZpTa9Daeh4iItLFGr+DNbBpwJTDUzObUu6kHUBh9LxER6SiaWqJ5D9gK9AXuq1ffAyyN5aRERKT1Gg14d98IbAROOHTTERGRttLUEs0eor/e3QB3954xm5WIiLRaU1fwPQ7lREREpG215FU0IiIShxTwIiIBpYAXEQkoBbyISEAp4EVEAipmAW9mg83sLTP7xMxWmNmtsTqWiIhEasmbjR2sSuB77v6RmfUAFpnZa+7+SVsfKOuOuWHbBhw/rA95u/Zy/piB/Oc5R7GntJKfvbCCBesLmZjZmzsvHE3f7qn89vXVPL94CwN6pnH7eaOYNKQ3c5Zs4YG31uAOM04ZyuXZg1m+uYhfzP1UPeOo54Pz1oWdF2dkwiPfmdrWp1/82/U5vPxD2LoEhp4G594Fianweg6snAt9j4Rz7oJ+R8PCh+HD2ZCcBqf+AI6+ANbPgzd+DnsLYMJ/wCnfg6JNHa9nJ2Tuh+Zvd5jZP4H/dvfXGhuTnZ3tubm5B9R3+v1zeXtT02O+f85RLM3bxSsrttfWThnRlzNH9WPWC3X3N726JPPn6dlc9sf3qf9lefq647nlmY/J31PWCXsexy3PLI7LntFsuFsBH+Ghs2BzvZ+78dOge3/492/raulD4Pxfw1Nfq6tZIlz7Ojx6AVSU1NUvvh9yHzn4njNeg8cubNueNy2EPsNb/jWJI2a2yN2zo90Wyyv4+hPIAiYCH7Z17+bCHeCd1fks31wUVpv/WQFJCRZWK9pXwd8+yqPhfd4/F2+OCI5g9twc0fP5xVvitqe0QOnu8NAEWPtmKDjr27URVvwjvOZV8PET4UEMsPqV1vVc/GTb91z/TmADvikxf5LVzLoDfwNuc/fdUW6faWa5Zpabn58fkzmMHtiToweGv7PCqAE9GH14eC050ThxeN+I/ScPPYwuyYnB7zmsT0TP44b2jtue0gKpPaB3Vnit/xgYMDa8ltYLMo+L3H/Y6WANYuTwiW3fc+CE1vXsPzay1gnENODNLJlQuD/p7n+PNsbdZ7t7trtnZ2RkHPAxGnvIfVi3FABOHN6HW88awV2XjGV4RjcAhvTpyr2XjePbpw3njKNCx+zVJZlfXDKWC8YdzvWnDiMlKYHkROObJwzh0omDuOeyccHvOT6y5yUTj4jbntICZvCVP0KvzNB2/zFw/q/grJ/C4ONDtW79QmMmfAMmfiO05JHUBU7/IYy+CM67F1J7AgZHXwjHfbvtex5/Q+t6Dp58qL6iHUrM1uDNzIDHgEJ3v60l+xzMGvx+U++Zy4ov6gK/oqqakrJK0rumhI3bWVzGYd1SCE0vpGhvBV1SEklJqru/21teiTt0S61bxVLP+Ot57B1zKURr782qroZ9X0C3BneMewtDQZtYbzW3bA8kJEFyl7paZRlU7IMu6R27ZwA1tQYfy4A/GZhP6G+5VteUf+TuLzW2T2sCXkSkM2qXJ1nd/V1Cr1gUEZF2oN9kFREJKAW8iEhAKeBFRAJKAS8iElAKeBGRgFLAi4gElAJeRCSgFPAiIgGlgBcRCSgFvIhIQCngRUQCSgEvIhJQCngRkYBSwIuIBJQCXkQkoBTwIiIBpYAXEQkoBbyISEAp4EVEAkoBLyISUAp4EZGAUsCLiASUAl5EJKAU8CIiAZUUq8Zm9mfgAmCHu4+J1XH2y7pjLgCpibDyv87n3TUFbCrcx5mj+jGgVxoAK7ftZuGGL5g4OJ0xg3oBsGNPKW9+uoP+vdI4bUQGCQlGaUUVr36ynepq50uj+9MtNQl3V88467lt9y6+cv8iANLTElicc16sTr8Ds+tzWPM69DkShp4aqpXuhpVzIbkLHHUeJKVCVSWseQ1KCuCo86Fbn9DYvFzYuhiyToWMkeoZLz3bgbl7bBqbnQoUA4+3NOCzs7M9Nzf3gI+1P9yj6ZKcyFPXHcdn24u5/e9L2f/fzblwNFOG9uGKB99nT1klAOceM4D7Lh/PJQ/8m9XbiwEY0qcrc248mVkvruDvH21Wzzjqua+iKuJ82HD31EbPlUNi/Tx44jKoKgttT5kJp34fZp8Bu/NCtYETYMar8PTXYe2boVqX3jDjdfjkeXjz56GaJcBX/wTd+qpnR+855tLmz42DZGaL3D072m2JOTk5MTloTk7OxlmzZqUCV+bk5DzQkn1mz56dM3PmzAM6zrg7/0VZVeN3UpXVTtHeCuYs2cLu0sra+pK8XXyxt5wleUW1tTX5xaQmJzB36bbaWtG+ClKTEnj0vQ2B75mWnMCLET2NR9/bGJc9o7nt7Pa7mgLghVuhcE3d9paPISEJPnulrla8DZLS4KPH6mqVpVBdBQseguqKmqJDwWewbZl6dvSek68lVmbNmrU1JydndrTb2n0N3sxmmlmumeXm5+cf8P6lFdXNj6msorTB1VxZZTWl5ZFXeHvLKiNqJVFqcd8zytVtcVlkrSRKLV56dkiVpeHbXg3lJZHjyosjaxX7oKo8shbPPSui9CyL1nNvfPdsJ+0e8O4+292z3T07IyPjgPdffVfTD7kTDK4+YQjTT8wKq191whCuOiGLpASrrU3MTGfmqcPp2z21tpbeNZlrTxnGSUf2CVbP4yN7Xn/qsED17JCmXBe+PeoCOP7bkNKjrtZrMJx0G/Q7pq6WmBK6Cjz26vD9j7s+vnseF6XnydF6XhffPdtJzNbgAcwsC3gx1mvw9760nAfm1T08X/nzc3luUR55hXs5Z8wAjs3sDcArK7axcH0hEzLTmTp2IGbG8s1FvLB0CwN6pnF59mC6pSaxfXcpzy7cRJU7X8sezKD0LpRWVKlnnPX83auf8s6aL2rPi3Zff99v43uw6qXQE3jjp4WerCtcB4ufhuQ0mHg1dM+A0iL4+AkoyYexX4P+x0B1NSz/K2xdAkNPg5FfVs946RkjTa3BByLgRUQ6q6YCPmZLNGb2NPA+cJSZ5ZnZjFgdS0REIsXsdfDuPi1WvUVEpHnt/iSriIjEhgJeRCSgFPAiIgGlgBcRCSgFvIhIQCngRUQCSgEvIhJQCngRkYBSwIuIBJQCXkQkoBTwIiIBpYAXEQkoBbyISEAp4EVEAkoBLyISUAp4EZGAUsCLiASUAl5EJKAU8CIiAaWAFxEJKAW8iEhAKeBFRAJKAS8iElAxDXgzO9fMVpnZGjO7I5bHEhGRcEmxamxmicD9wJeAPGChmc1x909idcyOoKKqml/M/ZR/Lt5M/55p/HjqaE4e0ZenPvyc+99ag7tz7SnD+NbJQ1m4oZBZL6wg74t9nDdmIHdeOJqifRX86O/LWLC+kAmZ6dx1yVgG9EqLi56DD+va3l9+EanH3D02jc1OAHLc/Zya7R8CuPsvG9snOzvbc3NzYzKfQ+XBd9byy3+trN3ulpLIQ9/M5sqHPgwb9+g1k/nu/y7mi70VtbVbzhrBsrxdvLUqv7Y2ZehhnDWq36HpeXU2Vz588D2fvf6E5r9AItKmzGyRu2dHuy1mV/DAIGBTve084LgYHq9D+GDdzrDtkvIqXlyyJWLcv5ZtCwvN/fsuyysKqy1YX0jX5PCVtDbpmZIY0fOFpVF6Lm95z+pqJyHBInqISPto9ydZzWymmeWaWW5+fn7zO3Rw4wenh22nJiVw+qh+EeNOGdmX7qnh96/jj+jF+MG9wmpjB/ViQmbvtu8ZZZ5nRus5ouU9Fe4iHUssA34zMLje9hE1tTDuPtvds909OyMjI4bTOTSuP3U4F44/nMQEo3/PVP7f5RP48ugB/OeXR9I9NYmuKYnceMZwLhh3OL/7+gQGpXchweCcY/pzy1kjuPvScbV3EqMH9uS+y8cfsp5famVPEelYYrkGnwSsBs4iFOwLgSvdfUVj+wRhDX6/iqpqkhIMs7qr2qrq0Nc6sd6VrrtTWe0kJ4bf15ZXVpOSFF6Ll54icui0yxq8u1ea2U3AK0Ai8Oemwj1oGgYhhAfmfmZGcmJkPSi3NYsAAALRSURBVFpoxktPEekYYvkkK+7+EvBSLI8hIiLR6fJLRCSgFPAiIgGlgBcRCSgFvIhIQCngRUQCKmavgz8YZpYPbGzveQREX6CgvSch0gidn21niLtH/S3RDhXw0nbMLLexX34QaW86Pw8NLdGIiASUAl5EJKAU8ME1u70nINIEnZ+HgNbgRUQCSlfwIiIBpYAXEQkoBXwAmdm5ZrbKzNaY2R3tPR+R/czsz2a2w8yWt/dcOgMFfMCYWSJwP3AeMBqYZmaj23dWIrUeBc5t70l0Fgr44JkCrHH3de5eDjwDXNzOcxIBwN3nAYXtPY/OQgEfPIOATfW282pqItLJKOBFRAJKAR88m4HB9baPqKmJSCejgA+ehcAIMxtqZinA14E57TwnEWkHCviAcfdK4CbgFeBT4Fl3X9G+sxIJMbOngfeBo8wsz8xmtPecgkxvVSAiElC6ghcRCSgFvIhIQCngRUQCSgEvIhJQCngRkYBSwEunZWYDzOwZM1trZovM7CUzG9nI2Cy9A6LEGwW8dEpmZsA/gLfdfbi7TwJ+CPRvo/5JbdFHpDUU8NJZnQFUuPsf9xfcfQnwrpn9ysyWm9kyM7ui4Y5mlmZmj9Tc/rGZnVFTn25mc8zsTeCNQ/Y/EWmErjKksxoDLIpSvxSYAIwH+gILzWxegzE3Au7uY81sFPBqvaWdY4Fx7q63xJV2pyt4kXAnA0+7e5W7bwfeASZHGfMEgLuvBDYC+wP+NYW7dBQKeOmsVgCTYtC3JAY9RQ6KAl46qzeBVDObub9gZuOAXcAVZpZoZhnAqcCCBvvOB/6jZp+RQCaw6pDMWuQAaA1eOiV3dzO7BPitmd0OlAIbgNuA7sASwIEfuPs2M8uqt/sDwP+Y2TKgEpju7mWhF+aIdBx6N0kRkYDSEo2ISEAp4EVEAkoBLyISUAp4EZGAUsCLiASUAl5EJKAU8CIiAfX/AeblvLyBYeGOAAAAAElFTkSuQmCC\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAYpCAYAAABBoEQQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxVdf7H8ff1IuAI4oqAIqiIuORS5lqCpqnTkE2NOo6ZYlk5uOVYaf1m1MbCpkUrNbMhW8a0Tdtm1FwAzTRFpVxJDVMTRBNZHEGB8/vDh3e8gXpZT6f7ej4e5zH3nu853/vhjMGbL9/zPTbDMAwBAAAAFlLD7AIAAACAsiLEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcD7MLAAAAwK9fTEyMS8ctWbLEpeMIsQAAAKhy2dnZTu/PnTunDRs2KDo6ulz92QzDMCqjMAAAAMBVaWlp6tChg3Jzc8t1PnNiAQAAUO0qOo5KiAUAAIDlEGIBAABgOdzYBQAAgCqXlJTk9P7HH39UUVGREhMTZbPZHPsjIyNd6o8buwAAAFDl7Ha7DMNwCqw/ZxiGiouLXeqPkVgAAABUuaysrErtj5FYAAAAWA43dgEAAKDaLF++XHfddZfatm2rtm3b6q677tJ7771X5n4YiQUAAECVKy4u1pAhQ/Txxx+rVatWatOmjWw2m/bv36/U1FTdc889eu+991SjhmtjrMyJBQAAQJWbN2+ekpKS9Omnn+qOO+5wavvPf/6jkSNH6qWXXtIjjzziUn+MxAIAAKDKdejQQZMnT9aYMWNKbV+yZInmzp2rb7/91qX+CLEAAACocrVq1dKBAwcUEhJSavsPP/ygiIgInT9/3qX+uLELAAAAVc7b21vZ2dlXbc/JyVGtWrVc7o8QCwAAgCrXo0cPLViw4Krt8+fPV/fu3V3ujxu7AAAAUOX+9re/KTIyUqdPn9Zf/vIXtW3bVpK0f/9+vfDCC/r000+VmJjocn/MiQUAAEC1+Oyzz3T//ffr9OnTTvsbNmyof/7zn7rzzjtd7osQCwAAgGpz/vx5rV27Vt99950kKTw8XP379y/TfFiJEAsAAIBfiNTUVLVu3dqlY5kTCwAAAFMcPnxYCQkJji0jI0PFxcUunUuIBQAAQLU4cuSII7AmJibq+PHj8vHx0S233KLJkycrKirK5b6YTgAAAIAq17x5c/3www+qXbu2evXqpT59+igqKko333yzatQo+6qvhFgAAABUOQ8PD/n4+CgmJkb9+/fXrbfeKl9f33L3R4gFAABAlcvMzFRSUpKSkpKUmJio7777Tp07d1ZUVJT69OmjW265RT4+Pi73R4gtJ8MwlJubK19fX9lsNrPLAQAAsJSffvpJiYmJjlCbmpqqzp07a+vWrS6dz41d5ZSbmys/Pz9lZ2erTp06ZpfjVgzDUEFBgdllAKa48t+/l5cXv0SbhGsPVFyDBg3Uq1cvFRcXq7i4WNnZ2frmm29cPp8QC8spKCjQkCFDzC4DgBv74IMP5O3tbXYZgOUcO3ZMSUlJ2rhxozZu3KgffvhB3bp1U9++ffXOO++oe/fuLvdFiAUAAECVa9GihU6cOKFu3bopKipKr732mnr06CFPT89y9UeIhaU9M2i/PO2uLYoM/BoUFNr05Oq2kqSnB+6Tlwe3NVSXC0U19MSqNmaXAVjW0aNHVbNmTRmGIcMwHNMIyosQC0vztBfzQxxuy8vD4N9/teIXZqAifvzxRyUmJiohIUHvvfeenn76aXl6eqpr167q06ePIiMj1bNnT3l5ebnUHyG2gljcAQAA/Npdvqm0InPBGzdurGHDhmnYsGGSLoXay0/vevvtt/X3v/9dnp6eOn/+vEv9EWIriLvkAQDAr93lm6o/++yzSuuzSZMmuvfee3XvvfdKujTdYP369S6fX/ZnfOnSnWVjxoxRUFCQPD09FRISokmTJumnn35yHBMVFSWbzSabzSZvb2+Fh4crLi6u1JHLLVu2yG6364477ijRduTIEdlsNvn7+ys3N9eprVOnTpo5c6bTvkOHDmnMmDFq1qyZvLy81KRJE912221aunSpCgsLHcddru3n2/Lly8tzSQAAAFABzZo1U0xMjMvHl3kk9vvvv1ePHj0UHh6uZcuWqXnz5tq7d68effRRrVq1Slu3blX9+vUlSWPHjtVTTz2lgoICbdiwQQ8++KDq1q2rcePGOfUZHx+vCRMmKD4+XidOnFBQUFCJz83NzdXzzz+vWbNmXbW2bdu2qV+/fmrXrp0WLFigiIgISVJycrIWLFig9u3bq2PHjo7jlyxZooEDBzr1Ubdu3bJeEgAAAFyHKwHVMAy9+eabLvVX5hAbGxsrT09PffHFF6pVq5akS8m5c+fOatmypZ588km9+uqrkqTf/OY3CggIcBQ+f/58rV271inE5uXl6b333lNycrIyMjL05ptv6oknnijxuRMmTNCLL76o2NhY+fv7l/pFjx49WuHh4dq8ebNq1PjfIHOrVq00fPjwEqPAdevWddRXXvn5+crPz69QHyibK683U5IBVJcrv9/wfR/upjL+zb/99tsaOHDgVW/cKigo0KpVq6omxJ45c0Zr1qzR008/7QiwlwUEBGjEiBF67733tHDhQqc2wzD05Zdf6sCBA2rVqpVT2/vvv6+IiAi1bt1a9957ryZPnqzp06eXeBLK8OHDtXbtWj311FOaP39+idpSUlK0f/9+LVu2zCnAXqkiT1cpKChwmv+ak5MjSXrwwQdVs2bNcveLirlQZJN3TZIsgKp3oeh/P0NGjhxpYiWAdb3xxhtq3LhxqW2nTp0q0+BimebEHjx4UIZhqE2b0tfJa9OmjbKysnTq1ClJ0sKFC+Xj4yMvLy/17t1bxcXFmjhxotM58fHxjgm9AwcOVHZ2tpKSkkr0bbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAAA/4+HhoaKioqu2FxYWym63u95feYpwdVmpESNG6Mknn1RWVpZmzJihnj17qmfPno721NRUbdu2TStXrrxUjIeHhg0bpvj4eEVFRZXob8CAAbrlllv017/+Ve++++51P79BgwZKSUmRdOlGswsXLji1z507V/369XPaV9p8XEmaPn26pkyZ4nifk5Oj4OBgLV68uNTpDag6+fn5jlEQTzujsACqx5Xfb9555x0eOwu3cuXP3vKqV6+eTp48edWsdfLkScd9Va4oU4gNCwuTzWbT/v379fvf/75E+/79+1WvXj01atRIkuTn56ewsDBJl6YNhIWFqXv37o7gGB8fr8LCQqcvxjAMeXl5af78+fLz8yvxGXPmzFGPHj306KOPOu2/PE0hNTVVnTt3liTZ7XbH53t4lPxSAwICHO3X4+XlVeocDm9vb76RmagCM0QAoEyu/H7D936g7Dp27KhVq1Y5ctrPrV69Wh06dHC5vzJNJ2jQoIH69++vhQsXlliINiMjQ0uXLtWwYcNKnXvq4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/++Qo9wgwAAACVb8SIEZozZ442bNhQoi0hIUHPPPOMhg8f7nJ/ZZ5OMH/+fPXs2VMDBgzQ7NmznZbYatKkiZ5++umrnvvQQw/p73//uz766CN5eHgoKytL999/f4kR13vuuUfx8fF6+OGHS+3n6aefVrt27ZxGV202m5YsWaL+/furV69emj59utq0aaOLFy9q48aNOnXqVIl5FmfPnlVGRobTPl9fX9WuXbuslwUAAADXcN9992nFihXq16+fbrjhBrVp00Y2m00HDhzQN998o9/+9rcaPXq0y/2V+WEHrVq1UnJyslq0aKGhQ4eqZcuWevDBB9WnTx9t2bLlmnMZ6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMKbHcQ/fu3bVjxw61bt1asbGxatu2rXr27Klly5Zp7ty5JdanjYmJUWBgoNP2yiuvlPWSAAAAwAUrV67Um2++qZCQEO3du1e7d+9WkyZN9M9//lOffvppmVaSshmu3qUFJzk5OfLz89PZs2dLDeKoOvn5+RoyZIgk6fnf7ZWXB/+E4T4KCm2a+nk7Sfz7r25XXvsPPviAObFwK4ZhqKCg4Bf1775cqxPgfyqy9iwq7kJRDUnMgYb7KCi0lfoaVe/S9xvAPdlstl9UgJUIsbC4J1aVvmYx4A6eXN3W7BIAwGXNmze/7jGGYejIkSMu9UeIBQAAQJU7evSonnrqKfn6+kqSTp8+reeee07PPvusJCkvL0//93//53J/zIktp8tzYrOzs1WnTh2zy3Erl+flAO7oyn//Xl5eTGkyCdceKDu73a4TJ044Hjv7/fffq2PHjsrNzZV06UmrAQEBLi+VykgsLOeXOC8HqE61atUyuwQAMB2z1AEAAGA5hFgAAACY4ufTcsoyTYcQCwAAgCr30EMP6Te/+Y3jfZMmTbRq1SrHe19fX8XFxbncHzd2lRM3dgEAAJiHG7sAAABQ5X744QeXjgsJCXHpOEIsAAAAqlyLFi1kGIZsNpuunAjw8/euLrFV5XNiFy1aJF9fXxUWFjr25eXlqWbNmoqKinI6NjExUTabTYcPH1ZoaKjmzZtXor+ZM2eqU6dOpb4PDQ2VzWa76jZ69GhJumr78uXLK/mrBwAAgCTt2rVLKSkpjv+9vO3cuVOPPfaYatWqJX9/f5f7q/KR2D59+igvL0/Jycnq3r27JGnTpk0KCAjQ119/rfz8fMeanwkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjrmrF65tuKSJUs0cOBAp/Pr1q1brs8FAADAtXXo0KHEvi+++ELTp0/XoUOH9Nhjj2nq1Kku91flIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFA+27dv17Rp0/Tll1/qwQcf1Jo1a9SwYcMy9VEtS2z16dNHCQkJjvcJCQmKiopSZGSkY//58+f19ddfVyjEAgAA4Jfr4MGDGjZsmHr27KnAwEAdOHBAr7zySpkDrFSNIXbz5s0qLCxUbm6udu3apcjISPXu3VuJiYmSpC1btqigoMApxD7++OPy8fFx2p555plKqWn48OEl+j569OhVjy8oKFBOTo7TBgAAANc8/PDDateunbKzs7V9+3b961//UvPmzcvdX7WsThAVFaVz585p+/btysrKUnh4uBo1aqTIyEjFxMQoPz9fiYmJatGihZo1a+Y479FHH3XcjHXZyy+/rI0bN1a4prlz56pfv35O+4KCgq56fFxcnGbNmlXhzwUAAHBHr7/+ury9vZWZmamYmJirHrdr1y6X+quWEBsWFqamTZsqISFBWVlZioyMlHQpNAYHB+urr75SQkKC+vbt63Rew4YNFRYW5rTv8lzXigoICCjR97VMnz5dU6ZMcbzPyclRcHBwpdQCAADwazdjxoxK7a/a1ont06ePEhMTlZWVpUcffdSxv3fv3lq1apW2bdumcePGVVc5Zebl5SUvLy+zywAAALCkv/3tb5XaX7WG2NjYWF28eNExEitJkZGRGj9+vC5cuFCtN3WdPXtWGRkZTvt8fX1Vu3btaqsBAAAA5VMtN3ZJl0Ls+fPnFRYWpsaNGzv2R0ZGKjc317EUV3WJiYlRYGCg0/bKK69U2+cDAACg/GzGlc/5gstycnLk5+en7Oxsx8MUAAAAUD2qbSQWAAAAqCyEWAAAAJju7NmzZbo/ihALAAAA0124cEFJSUkuH0+IBQAAgOVU2xJbvzaX74fj8bMAAMCd+Pr6ymazlfm8H3744Zrtp06dKlN/rE5QTt9//71atmxpdhkAAADVKjMzU40aNSrzeXa7XYZhyGazqbT4eXl/cXGxS/0xEltOlx9/e/ToUfn5+Zlcjfu5/NjfY8eOscSZCbj+5uL6m4drby6uv7kuX39PT89ynb9r165rtp85c0Z9+/Z1uT9CbDnVqHFpOrGfnx//IZmoTp06XH8Tcf3NxfU3D9feXFx/c5VnKoEkdejQ4ZrtmZmZZeqPG7sAAADwi1CWgEyIBQAAgOk8PT3Vtm1bl48nxJaTl5eXZsyYIS8vL7NLcUtcf3Nx/c3F9TcP195cXH9zVfX137Rpk06fPu3y8axOAAAAANPk5uZq0qRJevfddzVjxgxNnz7dpfO4sQsAAACmSEhI0JgxY1S/fn3t2LFD7dq1c/lcQiwAAACqXN++fZ3Why0sLNTWrVv1xBNP6G9/+5vsdnuZ+iPEAgAAoMp16tTJ6X1hYaH27Nmj/fv368yZM2V+gAJzYgEAAGCK48ePKyYmRt9++63mz5+vIUOGuHwuqxOU04IFCxQaGipvb29169ZN27ZtM7skt7Bx40ZFR0crKChINptNH3/8sdkluY24uDjdfPPN8vX1lb+/v+666y6lpqaaXZbbePXVV9WhQwfHIu89evTQqlWrzC7Lbc2ZM0c2m02TJ082uxS3MHPmTNlsNqctIiLC7LLcyo8//qh7771XDRo0UK1atXTDDTcoOTm5wv02bdpUa9eu1d/+9jfFxMRo6NChLp9LiC2H9957T1OmTNGMGTO0c+dOdezYUQMGDCjzkyZQdufOnVPHjh21YMECs0txO0lJSYqNjdXWrVu1du1aXbx4UbfffrvOnTtndmluoWnTppozZ4527Nih5ORk9e3bV4MHD9bevXvNLs3tbN++Xa+99tp1nz6EytWuXTulp6c7ti+//NLsktxGVlaWevXqpZo1a2rVqlXat2+fXnjhBdWrV6/SPiM2NlYpKSk6fvy4y+cwnaAcunXrpptvvlnz58+XJBUXFys4OFgTJkzQtGnTTK7OfdhsNq1cuVJ33XWX2aW4pVOnTsnf319JSUnq3bu32eW4pfr16+u5557T/fffb3YpbiMvL0833nijFi5cqNmzZ6tTp06aN2+e2WX96s2cOVMff/yxUlJSzC7FLU2bNk2bN2/Wpk2bqvyzDMNw+ald3NhVRhcuXNCOHTuc1jCrUaOG+vXrpy1btphYGVC9srOzJV0KUqheRUVF+uCDD3Tu3Dn16NHD7HLcSmxsrO644w7169dPs2fPNrsct3Lw4EEFBQXJ29tbPXr0UFxcnJo1a2Z2WW7h008/1YABAzRkyBAlJSWpSZMm+vOf/6yxY8eWqZ9Zs2Zd9xjDMDRz5kyX+iPEltHp06dVVFSkxo0bO+1v3LixDhw4YFJVQPUqLi7W5MmT1atXL7Vv397sctzG7t271aNHD+Xn58vHx0crV64s0yMaUTHLly/Xzp07tX37drNLcTvdunXTm2++qdatWys9PV2zZs3Srbfeqj179sjX19fs8n71vv/+e7366quaMmWKnnjiCW3fvl0TJ06Up6enRo0a5XI/n3zyieP1hQsXdODAAadpOZdXKyDEAqgysbGx2rNnD3PSqlnr1q2VkpKi7Oxsffjhhxo1apSSkpIIstXg2LFjmjRpktauXStvb2+zy3E7gwYNcrzu0KGDunXrppCQEL3//vtMp6kGxcXF6tKli5555hlJUufOnbVnzx4tWrSoTCF2586djtdpaWnq2LGj075Tp04pICDA5f64sauMGjZsKLvdrpMnTzrtP3nyZJkuPGBV48eP1+eff66EhAQ1bdrU7HLciqenp8LCwnTTTTcpLi5OHTt21EsvvWR2WW5hx44dyszM1I033igPDw95eHgoKSlJL7/8sjw8PFRUVGR2iW6lbt26Cg8P16FDh8wuxS0EBgaW+GW5TZs2Onr0aLn7tNvtKiwsdNp38eJF1ajhejQlxJaRp6enbrrpJq1fv96xr7i4WOvXr2duGn7VDMPQ+PHjtXLlSm3YsEHNmzc3uyS3V1xcrIKCArPLcAu33Xabdu/erZSUFMfWpUsXjRgxQikpKWV+0hAqJi8vT4cPH1ZgYKDZpbiFXr16lVhS8bvvvlNISEi5+wwKCtLFixe1Y8cOx77NmzeXaXCE6QTlMGXKFI0aNUpdunRR165dNW/ePJ07d04xMTFml/arl5eX5/Sbd1pamlJSUlS/fn0m+Fex2NhYvfvuu/rkk0/k6+urjIwMSZKfn59q1aplcnW/ftOnT9egQYPUrFkz5ebm6t1331ViYqLWrFljdmluwdfXt8T879q1a6tBgwbMC68GU6dOVXR0tEJCQnTixAnNmDFDdrtdw4cPN7s0t/DII4+oZ8+eeuaZZzR06FBt27ZNixcv1uLFi8vdp4eHh373u99p0KBBGj58uPLz87V06VI9+OCDrndioFxeeeUVo1mzZoanp6fRtWtXY+vWrWaX5BYSEhIMSSW2UaNGmV3ar15p112SsWTJErNLcwtjxowxQkJCDE9PT6NRo0bGbbfdZnzxxRdml+XWIiMjjUmTJpldhlsYNmyYERgYaHh6ehpNmjQxhg0bZhw6dMjsstzKZ599ZrRv397w8vIyIiIijMWLF1e4z8zMTGPYsGFGw4YNjaCgIOPhhx828vLyXD6fdWIBAABgOUwnAAAAQJX74YcfXDrO1bm2jMQCAACgytntdscTuUqLn5f3FxcXu9QfI7EAAACoFuvWrVPDhg0lScePH9fQoUP11VdfSZLOnDmjvn37utwXIRYAAADVol27do6nnvr4+Mhmszme2pWZmVmmvlgnFgAAAJZDiAUAAECVq+zbsAixAAAAqHI2m+26+0o75moIsQDgBo4cOSKbzaaUlBSzSwHgppYtW6a6des63rdo0UI5OTmO9w0aNNCWLVtc7o8QCwDlMHr0aN11112O91FRUZo8ebJp9aSlpelPf/qTgoKC5O3traZNm2rw4ME6cOCAJCk4OFjp6ek8IhWAaYYOHSovL6+rttvtdnXt2tXl/lidAAAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZd+OAQEBJhbKABUIkZiAaCCRo8eraSkJL300kuy2Wyy2Ww6cuSIJGnPnj0aNGiQfHx81LhxY40cOVKnT592nBsVFaUJEyZo8uTJqlevnho3bqzXX39d586dU0xMjHx9fRUWFqZVq1Zd9fP37t2rw4cPa+HCherevbtCQkLUq1cvzZ49W927d5dUcjrB6NGjHbVeuSUmJkqSCgoKNHXqVDVp0kS1a9dWt27dHG0A8EtAiAWACnrppZfUo0cPjR07Vunp6UpPT1dwcLDOnj2rvn37qnPnzkpOTtbq1at18uRJDR061On8t956Sw0bNtS2bds0YcIEjRs3TkOGDFHPnj21c+dO3X777Ro5cqT++9//lvr5jRo1Uo0aNfThhx+qqKjI5Zov15qenq5JkybJ399fERERkqTx48dry5YtWr58ub799lsNGTJEAwcO1MGDByt2sQCgkvDYWQAoh9GjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxl59WI12au9qgQQPdcMMNjn2Xn25zrafZxMbGKiMjQ0uXLlWPHj30wQcfqF27dlq7du01a9y1a5dGjhyp+fPnq1evXpKk3bt3q6ioSOHh4U61JyUlOdUNAGbixi4AqCJ5eXmKjo7Ws88+W6ItMDDQ8bpmzZpObTabzWnf5XUTi4uLr/l5vr6+io6OVnR0tGbPnq0BAwZo9uzZ6t+/f6nHZ2Rk6M4779QDDzyg+++/36luu92uHTt2yG63O53j4+NzzRoAoLoQYgGgEnh6epaYj3rjjTfqo48+UmhoqDw8qvfbrc1mU0REhL766qtS2/Pz8zV48GBFREToxRdfdGrr3LmzioqKlJmZqVtvvbU6ygWAMmM6AQBUgtDQUH399dc6cuSITp8+reLiYsXGxurMmTMaPny4tm/frsOHD2vNmjWKiYlx+QYsV6SkpGjw4MH68MMPtW/fPh06dEjx8fF64403NHjw4FLPeeihh3Ts2DG9/PLLOnXqlDIyMpSRkaELFy4oPDxcI0aM0H333acVK1YoLS1N27ZtU1xcnP79739XWt0AUBGMxAJAJZg6dapGjRqltm3b6vz580pLS1NoaKg2b96sxx9/XLfffrsKCgoUEhKigQMHqkaNyhtDaNq0qUJDQzVr1izHUlqX3z/yyCOlnpOUlKT09HS1bdvWaX9CQoKioqK0ZMkSzZ49W3/5y1/0448/qmHDhurevbt+97vfVVrdAFARrE4AAAAAy2E6AQAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBxCLAAAACyHEAsAAADLIcQCAADAcgixAAAAsBwPswsAAADAr19MTIxLxy1ZssSl42yGYRgVKQgAAAC4nrvvvtvx+ty5c9qwYYOio6Md+woKCrRq1SoVFxe71B8hFgAAANUqLS1NHTp0UG5urmPfqVOnFBAQoKKiIpf6YE4sAAAAqlXNmjV18eJFp335+fny8HB9pishtpwMw1BOTo4YyAYAACiboKAgGYahdevWOfb95z//UbNmzVzugxu7yik3N1d+fn46efKk6tSpY3Y5bsUwDBUUFEiSvLy8ZLPZTK7IfXH9AQDlUaNGDY0YMULR0dEaMGCAzp8/r3Xr1mnmzJku98Gc2HLKycmRn5+fBgwYoJo1a5pdDmCKDz74QN7e3maXAQCwoPPnz2vWrFlav369PD09deedd+rRRx9VjRquTRRgJBYAAADVrlatWpozZ065zyfEVtCM/t+pvo/ZVbiXgkKbnlzdVpL09MB98vLgjwnV6UJRDT2xqo3ZZQAALCYpKcml4yIjI106jhBbQTVrFMvLgzmBZvHyMAix1c619fuAXxvm4wMV07dvXxmGcc3/dgzDcHmdWEJsBV0o4psYALiDgoICDRkyRBLzwYHyyMrKqtT+CLEAAACocpW9mlO51ok9duyYxowZo6CgIHl6eiokJESTJk3STz/95DgmKipKNptNNptN3t7eCg8PV1xcXKnrqm7ZskV2u1133HFHibYjR47IZrPJ39/f6akOktSpU6cSSzEcOnRIY8aMUbNmzeTl5aUmTZrotttu09KlS1VYWOg47nJtP9+WL19enksCAACAa0hKSnJpc1WZR2K///579ejRQ+Hh4Vq2bJmaN2+uvXv36tFHH9WqVau0detW1a9fX5I0duxYPfXUUyooKNCGDRv04IMPqm7duho3bpxTn/Hx8ZowYYLi4+N14sQJBQUFlfjc3NxcPf/885o1a9ZVa9u2bZv69eundu3aacGCBYqIiJAkJScna8GCBWrfvr06duzoOH7JkiUaOHCgUx9169Yt6yUBAADAdZQ2J7a091U2JzY2Nlaenp764osvVKtWLUlSs2bN1LlzZ7Vs2VJPPvmkXn31VUnSb37zGwUEBEiSYmJiNH/+fK1du9YpxObl5em9995TcnKyMjIy9Oabb+qJJ54o8bkTJkzQiy++qNjYWPn7+5doNwxDo0ePVnh4uDZv3uy0xlirVq00fPjwEqPAdevWddQHwDVX/meUn59vXiFANbvy3ztLrAPlk5qaqsaNG0u69Nf2W265RceOHZPNZtOpU6cUHh7ucl9lCrFnzpzRmjVr9PTTTzsC7GUBAQEaMWKE3nvvPS1cuNCpzTAMffnllzpw4IBatWrl1Pb+++8rIiJCrVu31r333qvJkydr+vTpJe5cGz58uNauXaunnnpK8+fPL1FbSkqK9u/fr2XLll11kdyK3ElaUFDguCtVuvSwA8AdXXkz48iRI02sBDBPQUFBiZ+DAK6vTp06jrmxPj4+MgxDfn5+ki79oliWXxDLNCf24MGDMgxDbdqUvkZkmzZtlJWVpVOnTkmSFi5cKB8fH3l5eal3794qLi7WxIkTnc6Jj4/XvffeK0kaOHCgsrOzS50PYbPZNGfOHC1evFiHDx8u0f7dd99Jklq3bu3Yl5mZKR8fH8f283A9fPhwp3YfHx8dPXq01K8tLi5Ofn5+ji04OPhqlwkAAABVrFyrE7iakkeMGKEnn3xSWVlZmjFjhnr27KmePXs62lNTU7Vt2zatXLnyUjEeHho2bJji4+MVFRVVor8BAwbolltu0V//+le9++671/38Bg0aKCUlRdKlG80uXLjg1D537lz169fPaV9p83Elafr06ZoyZYrjfU5ODkEWbsnT/r///t955x2WGYLbyM/Pd/z1wcvLy+RqAOup7Gk4ZQqxYWFhstls2r9/v37/+9+XaN+/f7/q1aunRo0aSZL8/PwUFhYm6dK0gbCwMHXv3t0RHOPj41VYWOgUHA3DkJeXl+bPn+8YXr7SnDlz1KNHDz366KNO+y9PU0hNTVXnzp0lSXa73fH5Hh4lv9SAgABH+/V4eXnxTQuQdOWsHG9vb0Is3BIPOgDK7uf/3dSsWVOhoaHXPOZayjSdoEGDBurfv78WLlyo8+fPO7VlZGRo6dKlGjZsWKkF+Pj4aNKkSZo6daoMw1BhYaHefvttvfDCC0pJSXFs33zzjYKCgrRs2bJSa+jatavuvvtuTZs2zWl/586dFRERoeeff97lu9oAAABQPbZs2aIGDRo43gcHB2v37t2O9/7+/kpPT3e5vzJPJ5g/f7569uypAQMGaPbs2U5LbDVp0kRPP/30Vc996KGH9Pe//10fffSRPDw8lJWVpfvvv7/EiOs999yj+Ph4Pfzww6X28/TTT6tdu3ZOo6s2m01LlixR//791atXL02fPl1t2rTRxYsXtXHjRp06dUp2u92pn7NnzyojI8Npn6+vr2rXrl3WywIAAIBr6Nq163WPKW0Fqqsp88MOWrVqpeTkZLVo0UJDhw5Vy5Yt9eCDD6pPnz7asmWLY43Y0tSvX1/33XefZs6cqfj4ePXr16/UKQP33HOPkpOT9e2335baT3h4uMaMGVNieZ/u3btrx44dat26tWJjY9W2bVv17NlTy5Yt09y5c0usTxsTE6PAwECn7ZVXXinT9bhyfiAA4NfLy8tLH3zwgT744AOmlwG/ADaDxe7KJScnR35+fkqeG6IGvsyNqk4FhTZN/bydJOn53+2Vlwf/hKvTldef58cDAMxSrtUJ8D8XimqooPD6x6HyFBTaSn2N6nGhqFxPqwYAoFIRYito1tpw1axZ0+wy3NaTq9uaXQIAAKgE//3vf/Xcc89pxowZLh3PkAoAAABMl5eXp1mzZrl8PCOxFfT22287Hp+G6mEYhuMRwF5eXqzXaCJubgEAVKay/EwnxFYQi72bg2eWm+fKXyIAAKhMZVlvgBALoEwKCgo0ZMgQSaxOAABwXYsWLa4ZUouKisrUHyEWQJlcuT5zfn4+IRYA4JLJkydfsz0vL0//93//53J/hFgAAABUuYkTJ16zPTMzs0whltUJAAAAYDmEWABlUlxcXOprAAAqqiyrExBiAZRJbm5uqa8BAKiICxcuqG/fvi4fX+UhdtGiRfL19VVh4f+ezZqXl6eaNWsqKirK6djExETZbDYdPnxYoaGhmjdvXon+Zs6cqU6dOpX6PjQ0VDab7arb6NGjJemq7cuXL6/krx4AAADX8/bbb6tDhw6y2+0un1PlN3b16dNHeXl5Sk5OVvfu3SVJmzZtUkBAgL7++munu5sTEhLUrFkztWzZslyftX37dsfyDF999ZXuuecepaamOh5GcOXaokuWLNHAgQOdzq9bt265PhcAAABld+rUKT300ENat26dXnjhBY0dO9blc6s8xLZu3VqBgYFKTEx0hNjExEQNHjxYGzZs0NatWx0jsomJierTp0+5P6tRo0aO1/Xr15ck+fv7lxpO69atq4CAgHJ/FgAAAFz380fKFhYW6rXXXlP79u21e/duhYSElKm/alliq0+fPkpISNC0adMkXRpxfeyxx1RUVKSEhARFRUXp/Pnz+vrrrzVmzJjqKKnMCgoKnJ5SlJOTY2I1AAAA1vLJJ584vS8sLFRWVpbuvvvuMgdYqRpD7OTJk1VYWKjz589r165dioyM1MWLF7Vo0SJJ0pYtW1RQUOA0Evv444+XWC/swoULatu2bYVrGj58eIl5F/v27VOzZs1KPT4uLq7EbxAAAABwzc6dO0vs++yzzzR27FitWLFC8fHxat68ucv9VcvqBFFRUTp37py2b9+uTZs2KTw8XI0aNVJkZKRjXmxiYqJatGjhFCIfffRRpaSkOG0PP/xwpdQ0d+7cEn0HBQVd9fjp06crOzvbsR07dqxS6gAAAHBX0dHR2rt3rxo0aKAOHTpo4cKFLp9bLSOxYWFhatq0qRISEpSVlaXIyEhJUlBQkIKDg/XVV18pISGhxLIKDRs2VFhYmNO+y3NdKyogIKBE39fi5eUlLy+vSvlsAAAAXNKgQQN98MEHevfddxUbG6s///nPLp1XbevE9unTR4mJiUpMTHRaWqt3795atWqVtm3bVqGbugAAAGBdf/rTn7R3716Xj6+WkVjpUoiNjY3VxYsXHSOxkhQZGanx48frwoUL1Rpiz549q4yMDKd9vr6+ql27drXVAAAA4C6SkpJcOu5a0zuvVK0h9vz584qIiFDjxo0d+yMjI5Wbm+tYiqu6xMTElNgXFxfnWEEBAAAAladv374yDMPxaNkrX19mGIbLjzS3GYZhVHqVbiAnJ0d+fn7Kzs52PEwBcAdnzpzRqFGjJElvvfVWpc1TBwD8ul25POmRI0d0yy236Pjx4459p06dUnh4uOPBVddTbSOxAH4datSoUeprAACu5cpBP19fXxUXFzvtO3/+vMoytspPIAAAAFQrf39/nT9/Xunp6Y59Bw8elL+/v8t9MBILoEy8vb1LfQ0AgKtq166tTp066Q9/+IOmTp2q/Px8PfXUU7rllltc7oM5seXEnFi4K8MwHI9g9vLyKjEpHwAAV2zfvl333HOPfvzxR0lS27Zt9emnn7r81C5CbDllZ2erbt26OnbsGCEWAAC4DV9f30obwCgsLFRqaqo8PT0VFhZWpn4JseX0/fffq2XLlmaXAQAAUK0yMzPVqFEjs8tgTmx5XV5W6OjRo/Lz8zO5GveTk5Oj4OBgRsJNwvU3F9ffPFx7c3H9zXX5+nt6epbrfFemCRiGoSNHjrjUHyG2nC4vLeTn58d/SCaqU6cO199EXH9zcf3Nw7U3F9ffXOWdSnD06FE99dRT8vX1lSSdPn1azz33nJ599llJUl5env7v//7P5f4IsQAAAKgWDzzwgOPJrd9//73mzp2riRMnSro0TaEsIZZ1YgEAAGA5hNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrl/a9Wd1AgAAAFQ5u92uEydOOE0n6NSpk3JyciRdmk4QGBiooqIil/pjJBYAAABV7qGHHtJvfvMbx/smTZpo1apVjve+vr6Ki4tzuT9GYgEAAGA5jMQCAADAcgix5bRgwQKFhobK29tb3bp107Zt28wuyS1s3LhR0dHRCgoKks1m08cff2x2SW4jLi5ON998s3x9feXv76+77rpLqampZpflNl599VV16NDBsT5mjx49nP4Mh+o1Z84c2Ww2TZ482exS3MLMmTNls9mctoiICLPLcis//vij7r33XjVo0EC1atXSDTfcoOTkZFNrIsSWw3vvvacpU6ZoxowZ2rlzpzp27KgBAwYoMzPT7NJ+9c6dO6eOHTtqwYIFZpfidpKSkhQbG6utW7dq7dq1unjxom6//XadO3fO7NLcQtOmTTVnzhzt2LFDycnJ6tu3rwYPHqy9e/eaXZrb2b59u1577TV16NDB7FLcSrt27ZSenu7YvvzyS7NLchtZWVnq1auXatasqVWrVmnfvn164YUXVK9ePVPrYk5sOXTr1k0333yz5s+fL0kqLi5WcHCwJkyYoGnTpplcnfuw2WxauXKl7rrrLrNLcUunTp2Sv7+/kpKS1Lt3b7PLcUv169fXc889p/vvv9/sUtxGXl6ebrzxRi1cuFCzZ89Wp06dNG/ePLPL+tWbOXOmPv74Y6WkpJhdiluaNm2aNm/erE2bNpldihNGYsvowoUL2rFjh/r16+fYV6NGDfXr109btmwxsTKgemVnZ0u6FKRQvYqKirR8+XKdO3dOPXr0MLsctxIbG6s77rjD6WcAqsfBgwcVFBSkFi1aaMSIETp69KjZJbmNTz/9VF26dNGQIUPk7++vzp076/XXXze7LEJsWZ0+fVpFRUWONc4ua9y4sTIyMkyqCqhexcXFmjx5snr16qX27dubXY7b2L17t3x8fOTl5aWHH35YK1euVNu2bc0uy20sX75cO3fuLNMSQKgc3bp105tvvqnVq1fr1VdfVVpamm699Vbl5uaaXZpb+P777/Xqq6+qVatWWrNmjcaNG6eJEyfqrbfeMrUuD1M/HYAlxcbGas+ePcxJq2atW7dWSkqKsrOz9eGHH2rUqFFKSkoiyFaDY8eOadKkSVq7dq28vb3NLsftDBo0yPG6Q4cO6tatm0JCQvT+++8znaYaFBcXq0uXLnrmmWckSZ07d9aePXu0aNEijRo1yrS6GIkto4YNG8put+vkyZNO+0+ePKmAgACTqgKqz/jx4/X5558rISFBTZs2Nbsct+Lp6amwsDDddNNNiouLU8eOHfXSSy+ZXZZb2LFjhzIzM3XjjTfKw8NDHh4eSkpK0ssvvywPDw+XnzCEylG3bl2Fh4fr0KFDZpfiFgIDA0v8stymTRvTp3QQYsvI09NTN910k9avX+/YV1xcrPXr1zM3Db9qhmFo/PjxWrlypTZs2KDmzZubXZLbKy4uVkFBgdlluIXbbrtNu3fvVkpKimPr0qWLRowYoZSUFNntdrNLdCt5eXk6fPiwAgMDzS7FLfTq1avEkorfffedQkJCTKroEqYTlMOUKVM0atQodenSRV27dtW8efN07tw5xcTEmF3ar15eXp7Tb95paWlKSUlR/fr11axZMxMr+/WLjY3Vu+++q08++US+vr6OOeB+fn6qVauWydX9+k2fPl2DBg1Ss2bNlJubq3fffVeJiYlas2aN2aW5BV9f3xLzv2vXrq0GDRowL7waTJ06VdHR0QoJCdGJEyc0Y8YM2e12DR8+3OzS3MIjjzyinj176plnntHQoUO1bds2LV68WIsXLza3MAPl8sorrxjNmjUzPD09ja5duxpbt241uyS3kJCQYEgqsY0aNcrs0n71SrvukowlS5aYXZpbGDNmjBESEmJ4enoajRo1Mm677Tbjiy++MLsstxYZGWlMmjTJ7DLcwrBhw4zAwEDD09PTaNKkiTFs2DDj0KFDZpflVj777DOjffv2hpeXlxEREWEsXrzY7JIM1okFAACA5TAnFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgDcwJEjR2Sz2ZSSkmJ2KQBQKQixAFAOo0eP1l133eV4HxUVpcmTJ5tWT1pamv70pz8pKChI3t7eatq0qQYPHqwDBw5IkoKDg5Wenq727dubViMAVCYPswsAAFTMxYsX1b9/f7Vu3VorVqxQYGCgjh8/rlWrVuns2bOSJLvdroCAAHMLBYBKxEgsAFTQ6NGjlZSUpJdeekk2m002m01HjhyRJO3Zs0eDBg2Sj4+PGjdurJEjR+r06dOOc6OiojRhwgRNnjxZ9erVU+PGjfX666/r3LlziomJka+vr8LCwrRq1aqrfv7evXt1+PBhLVy4UN27d1dISIh69eql2bNnq3v37pJKTicYPXq0o9Yrt8TERElSQUGBpk6dqiZNmqh27drq1q2bow0AfgkIsQBQQS+99JJ69OihsWPHKj09Xenp6QoODtbZs2fVt29fde7cWcnJyVq9erVOnjypoUOHOp3/1ltvqWHDhtq2bZsmTJigcePGaciQIerZs6d27typ22+/XSNHjtR///vfUj+/UaNGqlGjhj788EMVFRW5XPPlWtPT0zVp0iT5+/srIiJCkjR+/Hht2bJFy5cv17fffqshQ4Zo4MCBOnjwYMUuFgBUEpthGIbZRQCA1YwePVpnz57Vxx9/LOnSiGqnTp00b948xzGzZ8/Wpk2btGbNGse+48ePKzg4WKmpqQoPD1dUVJSKioq0adMmSVJRUZH8/Px099136+2335YkZWRkKDAwUFu2bHGMrP7cggUL9Nhjj8lut6tLly7q06ePRowYoRYtWki6NBLbvHlz7dq1S506dXI6d8WKFRoxYoTWrVunXr166ejRo2rRooWOHj2qoKAgx3H9+vVT165d9cwzz1T08gFAhTESCwBV5JtvvlFCQoJ8fHwc2+WRzsOHDzuO69Chg+O13W5XgwYNdMMNNzj2NW7cWJKUmZl51c+KjY1VRkaGli5dqh49euiDDz5Qu3bttHbt2mvWuGvXLo0cOVLz589Xr169JEm7d+9WUVGRwsPDnWpPSkpyqhsAzMSNXQBQRfLy8hQdHa1nn322RFtgYKDjdc2aNZ3abDab0z6bzSZJKi4uvubn+fr6Kjo6WtHR0Zo9e7YGDBig2bNnq3///qUen5GRoTvvvFMPPPCA7r//fqe67Xa7duzYIbvd7nSOj4/PNWsAgOpCiAWASuDp6VliPuqNN96ojz76SKGhofLwqN5vtzabTREREfrqq69Kbc/Pz9fgwYMVERGhF1980amtc+fOKioqUmZmpm699dbqKBcAyozpBABQCUJDQ/X111/ryJEjOn36tIqLixUbG6szZ85o+PDh2r59uw4fPqw1a9YoJibG5RuwXJGSkqLBgwfrww8/1L59+3To0CHFx8frjTfe0ODBg0s956GHHtKxY8f08ssv69SpU8rIyFBGRoYuXLig8PBwjRgxQvfdd59WrFihtLQ0bdu2TXFxcfr3v/9daXUDQEUwEgsAlWDq1KkaNWqU2rZtq/PnzystLU2hoaHavHmzHn/8cd1+++0qKChQSEiIBg4cqBo1Km8MoWnTpgoNDdWsWbMcS2ldfv/II4+Uek5SUpLS09PVtm1bp/0JCQmKiorSkiVLNHv2bP3lL3/Rjz/+qIYNG6p79+763e9+V2l1A0BFsDoBAAAALIfpBAAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAyyHEAgAAwHIIsQAAALAcQiwAAAAshxALAAAAy/EwuwAAAAD8+sXExLh03JIlS1w6zmYYhlGRggAAAIDrsdvtGjhwoLy8vCRJ586d04YNGxQdHS1JKigo0KpVq1RcXOxSf4RYAAAAVDm73a4TJ06ocePGkqS0tDR16NBBubm5kqRTp06pcePGLodY5sQCAACg2v18HLWs46qEWAAAAFQ5X19fZWVlOd5nZWXp3LlzysvLkyRlZGSofv36LvdHiAUAAECVi4iI0CuvvKLi4mIVFxdr4cKFCgoK0tSpU7V582Y9+eSTuvnmm13ujzmxAAAAqHIff/yx/vCHP6h27doqLi5W7dq1tXr1av3xj3/UwYMHFRwcrM8++0w33HCDS/0RYgEAAFAtNm7cqM8++0y1atXS2LFjFRwcLEn66aef1KBBgzL1RYgFAACA5TAnFgAAAJbDE7sAAABQ5ex2u0vLaLm6TiwhFgAAAFVu5cqVldofc2IBAABgOYzEAgAAoNocO3ZMH374oQ4ePChJatWqlf7whz84VipwFSOxAAAAqBbz58/XX/7yFxUWFsrPz0+GYSgnJ0ceHh6aO3eu/vznP7vcF6sTAAAAoMpt2LBBkydP1vjx45Wenq4zZ84oKytL6enpmjhxoiZMmKCEhASX+2MkFgAAAFXud7/7nRo2bKg333yz1PYxY8bo1KlT+uyzz1zqj5FYAAAAVLmvv/5ao0ePvmr7fffdp6+//trl/gixAAAAqHI5OTlq3ry54/1///tfrVixwvG+ZcuWys3Ndbk/QiwAAACqXIMGDXTmzBnH+4yMDI0aNcrxPjs7W02bNnW5P5bYAgAAQJXr0aOH3nnnHdWrV082m03Hjx93at+wYYO6dOnicn/c2AUAAIAqt27dOg0YMMDx6Fmbzabf/OY3jikEN998s1588UXdeuutLvVHiAUAAEC12Lt3r4qKihzv7Xa72rVrV66+CLEAAACwHG7sAgAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOILSfDMJSTkyPuiwMAAKh+POygnHJzc+Xn56fs7GzVqVPH7HIAAAB+0Vq0aHHdwT/DMHTkyBGX+iPEAoCFGIahgoICs8twS1de+zp16qhGDf6YCZTF5MmTr9p28uRJLV26VEePHnW5P0IsAFhIQUGBhgwZYnYZbu+dd95R3bp1zS4DsJSJEyc6vS8qKtK///1vLVmyRGvWrFFkZKT+8Y9/uNwfIRYAAADV5sCBA3rjjTf0r3/9S7Vr11ZMTIzmz5+vJk2alKkfQiwAWNQzg/bL015sdhluI6/ArplrI8wuA7C0rKwstWvXTr1799by5cvVu3fvcvdFiAUAC7nypoiaNYrl5cEKKdWloJBfGMx05ZxkLy8v2Ww2kytCefzmN7/RH//4R3388ceaMWOGYmJiNGTIENWqVavMfTErHQAs5Mqbui4U8UMc7uPyfPAhQ4Zwc6OFeXl5aenSpUpPT9fQoUP18ssvKzAwUA899JC+/vrrMvVVrhB77NgxjRkzRkFBQfL09FRISIgmTZqkn376yXFMVFSUbDabbDabvL29FR4erri4uFKXVtiyZYvsdrvuuOOOEm1HjhyRzWaTv7+/cnNzndo6deqkmTNnOu07dOiQxowZo2bNmsnLy0tNmjTRbbfdpqVLl6qwsNBx3OXafr4tX768TNdi7ty5ZToelePZZ59VdHS0nn32WbNLAQAAZVSnTh2NGzdOycnJ2rhxo2rVqqU77rhD7dq1c7mPMofY77//Xl26dNHBgwe1bNkyHTp0SIsWLdL69evVo0cPnTlzxnHs2LFjlZ6ertTUVE2fPl1/+9vftGjRohJ9xsfHa8KECdq4caNOnDhR6ufm5ubq+eefv2Zt27Zt04033qj9+/drwYIF2rNnjxITE/XAAw/o1Vdf1d69e52OX7JkidLT0522u+66q0zXY8uWLcrMzCzTOaiYzMxMffnll5KkL7/8kusPAIAF1K9fX/Xq1SuxRUZG6u2339aFCxe0f/9+l/sr85zY2NhYeXp66osvvnDMX2jWrJk6d+6sli1b6sknn9Srr74q6dK8h4CAAEly3Hm2du1ajRs3ztFfXl6e3nvvPSUnJysjI0NvvvmmnnjiiRKfO2HCBL344ouKjY2Vv79/iXbDMDR69GiFh4dr8+bNTuv3tWrVSsOHDy8xCly3bl1HfRXx+OOPa8mSJRXuB655/PHHS7zn+gMA8Mv20ksvVeqTTssUYs+cOaM1a9bo6aefLjEBNyAgQCNGjNB7772nhQsXOrUZhqEvv/xSBw4cUKtWrZza3n//fUVERKh169a69957NXnyZE2fPr3EhO3hw4dr7dq1euqppzR//vwStaWkpGj//v1atmzZVRegrqpJ4KdPn9b69et12223VUn/+J/169fr9OnTTvu4/gCqxRU/e/Pz85Wfn29eLW7oyuvNI9+t6Y9//KNq1qxZaf2VKcQePHhQhmGoTZs2pba3adNGWVlZOnXqlCRp4cKF+uc//6kLFy7o4sWL8vb2LrHQbXx8vO69915J0sCBA5Wdna2kpCRFRUU5HWez2TRnzhxFR0frkUceUcuWLZ3av/vuO0lS69atHfsyMzPVokULx/t//OMf+vOf/+x4P3z4cNntdqd+9u3bp2bNmpX42goKCpwmkufk5Di1v/LKK4qKiirRHypPUVGRXnnllVLbuP4AqtqVN9KNHTvWxEpQUFBQrrvZYa4mTZroT3/6k+6//37dcMMNFe6vXDd2ufob0IgRI5SSkqLNmzdr0KBBevLJJ9WzZ09He2pqqrZt26bhw4dLkjw8PDRs2DDFx8eX2t+AAQN0yy236K9//atLn9+gQQOlpKQoJSVFdevW1YULF5za586d62i/vAUFBZXaV1xcnPz8/BxbcHCwU3tRUZFWr17tUl0on9WrV6uoqKjUNq4/AAC/bNOmTdO2bdvUuXNndevWTa+99lqJm/bLokwjsWFhYbLZbNq/f79+//vfl2jfv3+/6tWrp0aNGkmS/Pz8FBYWJunStIGwsDB1795d/fr1k3RpFLawsNApOBqGIS8vL82fP19+fn4lPmPOnDnq0aOHHn30Uaf9l6cppKamqnPnzpIku93u+HwPj5JfakBAgKP9eqZPn64pU6Y43ufk5DgFWbvdroEDB7rUF8pn4MCBev3110sNslx/AFXN0/6/AZzXX3+dx85Ws/z8fI0cOVLSpWWaYD1TpkzRlClTtHnzZkVGRio/P19TpkzRH/7wB40ZM0aRkZFl6q9MIbZBgwbq37+/Fi5cqEceecRpKD8jI0NLly7VfffdV+rcUx8fH02aNElTp07Vrl27VFRUpLffflsvvPCCbr/9dqdj77rrLi1btkwPP/xwiX66du2qu+++W9OmTXPa37lzZ0VEROj555/X0KFDrzovtry8vLyu+R/NxIkT+VN2FbPb7ZowYYLmzZtXoo3rD6DKXfGjzdvbW97e3ubV4uZ40IG11atXTzabTd9884327Nmjd955RyNHjpS3t7diYmI0ffp0l/opc9KbP3++CgoKNGDAAG3cuFHHjh3T6tWr1b9/fzVp0kRPP/30Vc996KGH9N133+mjjz7S559/rqysLN1///1q376903bPPfdcdUqBJD399NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJkHP27FllZGQ4befOnSvrJVHDhg3Vt2/fMp+HsrvtttvUsGFDp31cfwAArKl9+/Z69tlnlZaWpiFDhrg8ZVQqR4ht1aqVkpOT1aJFCw0dOlQtW7bUgw8+qD59+mjLli2qX7/+Vc+tX7++7rvvPs2cOVPx8fHq169fqVMG7rnnHiUnJ+vbb78ttZ/w8HCNGTOmxJ2h3bt3144dO9S6dWvFxsaqbdu26tmzp5YtW6a5c+c6Le0lXVr2KzAw0Gm72o1D18KC+9Xr59eb6w8AgDV98803evTRRxUSEqKPP/64TD/Ty7xOrCSFhITozTffvOYxiYmJpe4v7WEHP9e1a1enm8dKu5Hstdde02uvvVZif3h4+HVru1qf5dGjR49S161F1fH399ctt9yiL7/8UrfccgvXH27lymlNV87RBH7tvLy89MEHHzhew7p++uknGYahG264QUePHtWQIUP04Ycfqnv37mXqp1whFv/zyCOPmF2CW3r88cdLPPQAcAdXzgVkWiDcyeXH2MO6nnvuOX300UdKTk5Wjx49NGbMGA0bNky/+c1vytUfIRYALOpCUQ1JxWaX4TYuFlXuDcOAu3nxxRc1cuRIvf322woPD69wf4RYALCoJ1aV/uAZAPglOn78uOMm+6ysLB08eFA2m01hYWGqV69emfvj10oAAABUObvdrrS0NP32t79Vw4YN1b17d3Xr1k0NGzbUb3/7W/3www9l6s9m8ADicsnJyZGfn5+ys7NVp04ds8sB4CYMw3B6BDaqz5XXvk6dOpW+Hjnwa3fy5EndeOONstvtio2NVUREhKRLD6qaP3++ioqKtHPnTjVu3Nil/gix5USIBWAGQizcFb9EWN/EiROVkJCgbdu2OT0wS7r0RLabb75ZUVFRLi93SogtJ0IsADPk5+dryJAhZpcBmOqdd97hsb8W1KJFCz3//PO6++67S23/+OOP9Ze//EWHDx92qT9+jQEAAECVS09PV4cOHa7a3r59e/34448u98fqBABgUa/8fay8PGuaXQZQLXLy/qupf3/T7DJQAY0aNVJhYeFV2y9evOjyfFiJEAsLunJelJeXl9Pi74A78fKsKS8vQizcg2fB/yILMyGt6aabbtIXX3zhuKHr51avXq2OHTu63B/TCWA5BQUFGjJkiIYMGcINLgDgJi5c/N8IHt/7remRRx7Ra6+9puzs7BJtOTk5ev311zV58mSX+2MkFgAAAFWud+/e2rt3b6ltderU0b59+8rUX5WPxC5atEi+vr5OcyDy8vJUs2ZNRUVFOR2bmJgom82mw4cPKzQ0VPPmzSvR38yZM9WpU6dS34eGhspms111Gz16tCRdtX358uWV/NUDAACgKlT5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr68vb0lSQkJCWrWrJlatmxZrs/avn27ioqKJElfffWV7rnnHqWmpjqWwLpyTbIlS5Zo4MCBTuezXAcAAEDVaNGihUvzmdPS0lzqr8pDbOvWrRUYGKjExERHiE1MTNTgwYO1YcMGbd261TEim5iYqD59+pT7sxo1auR4Xb9+fUmSv79/qeG0bt26CggIKPdnwTxX/geQn59vYiVA9bvy3zw3twCwkp/Pd12/fr3WrFmjv/71r/L19S1zf9UyJ7ZPnz5KSEjQtGnTJF0acX3sscdUVFSkhIQERUVF6fz58/r66681ZsyY6iipzAoKCpwmkufk5JhYjXu78v+HkSNHmlgJYK4LFwvl7e1pdhkA4JKJEyc6Xq9bt07Tp09XnTp1lJiYqH//+9/y9Czb97NqWZ2gT58+2rx5swoLC5Wbm6tdu3YpMjJSvXv3VmJioiRpy5YtKigocBqJffzxx+Xj4+O0PfPMM5VS0/Dhw0v0ffTo0aseHxcXJz8/P8cWHBxcKXUAAAC4k/Xr1+vOO+/UQw89pP379+vHH3/UH//4RxUXF5epn2oZiY2KitK5c+e0fft2ZWVlKTw8XI0aNVJkZKRiYmKUn5+vxMREtWjRQs2aNXOc9+ijjzpuxrrs5Zdf1saNGytc09y5c9WvXz+nfUFBQVc9fvr06ZoyZYrjfU5ODkHWJF5eXo7X77zzjmNONeAO8vPzHX+B8KzJAjMArCUhIUF33nmnHnzwQb344ouSLo3K9uzZUw888IDeeOMNl/uqlu+AYWFhatq0qRISEpSVlaXIyEhJl0JjcHCwvvrqKyUkJKhv375O5zVs2FBhYWFO+y7Pda2ogICAEn1fi5eXl1N4gnmufLiBt7c3IRZuiwd9ALCSpKQkRUdH64EHHnBagSooKEjr1q3TLbfcoqlTp+r55593qb9qe9hBnz59lJiYqMTERKeltXr37q1Vq1Zp27ZtFbqpCwAAAL9c0dHRiomJ0UsvvVSiLSwsTKtXr9Y///lPl/urtr9F9enTR7Gxsbp48aJjJFaSIiMjNX78eF24cKFaQ+zZs2eVkZHhtM/X11e1a9euthoAAADcxahRo/TKK69ctb1Tp0769NNPXe6vWkPs+fPnFRERocaNGzv2R0ZGKjc317EUV3WJiYkpsS8uLs6xggJ+uby8vPTBBx84XgMAfv2unAPO935rulaAvax3794u92czWGiwXHJycuTn56fs7GzHwxQAoKrl5+dryJAhkqTFz/5ZXl41Ta4IqB45uf/VhL++LunSTb08oAjc2goAFlVw4aLZJQDVhn/v+DlCLABY1OVRKQBwR9W2OgEAAABwNT/99JOaN2/u8vHMiS2n7Oxs1a1bV8eOHWNOLIBqYxiG06OXAXdx5b/9OnXqqEYNxuHM4uvrWyXrVGdmZiogIMDlJ3cxnaCcfvrpJ0niqV0AAMCtZGZmqlGjRmaXQYgtr8tPDjt69Kj8/PxMrsb9XH7sLyPh5uD6m4vrbx6uvbm4/ua6fP09PT3LdX5SUtI128+cOVOm/gix5XT5zxh+fn78h2SiOnXqcP1NxPU3F9ffPFx7c3H9zVXeqQR9+/aVYRiVNhWBEAsAAIAql5WVdc32U6dOqVWrVi73R4gFAABAlbve6Hl+fn6Z+uPWvnLy8vLSjBkzePSdSbj+5uL6m4vrbx6uvbm4/uaqjutflqkGLLEFAAAA0+Xm5urhhx/W0qVLXTqekVgAAACY7q233tLHH3/s8vHMiQUAAIBpjh49qjFjxiglJUXx8fEun8dILAAAAEzx1ltvqWPHjqpVq5b27t2rP/7xjy6fy0gsAAAAqlyLFi105a1YhYWFSk9P16JFi/TAAw+UuT9GYstpwYIFCg0Nlbe3t7p166Zt27aZXZJb2Lhxo6KjoxUUFCSbzVamuTOomLi4ON18883y9fWVv7+/7rrrLqWmpppdltt49dVX1aFDB8ci7z169NCqVavMLsttzZkzRzabTZMnTza7FLcwc+ZM2Ww2py0iIsLsstzKjz/+qHvvvVcNGjRQrVq1dMMNNyg5OblMfUyePFmPPPKI0xYcHKz4+HgdOHCgzDUxElsO7733nqZMmaJFixapW7dumjdvngYMGKDU1FT5+/ubXd6v2rlz59SxY0eNGTNGd999t9nluJWkpCTFxsbq5ptvVmFhoZ544gndfvvt2rdvn2rXrm12eb96TZs21Zw5c9SqVSsZhqG33npLgwcP1q5du9SuXTuzy3Mr27dv12uvvaYOHTqYXYpbadeundatW+d47+FBhKkuWVlZ6tWrl/r06aNVq1apUaNGOnjwoOrVq1emfiZOnFhi34MPPqjJkyfrxhtv1KxZszR16lSXl9liia1y6Natm26++WbNnz9fklRcXKzg4GBNmDBB06ZNM7k692Gz2bRy5UrdddddZpfilk6dOiV/f38lJSWpd+/eZpfjlurXr6/nnntO999/v9mluI28vDzdeOONWrhwoWbPnq1OnTpp3rx5Zpf1qzdz5kx9/PHHSklJMbsUtzRt2jRt3rxZmzZtqrLP+Pe//62xY8cqNDRUX331lUvnMJ2gjC5cuKAdO3aoX79+jn01atRQv379tGXLFhMrA6pXdna2pEtBCtWrqKhIy5cv17lz59SjRw+zy3ErsbGxuuOOO5x+BqB6HDx4UEFBQWrRooVGjBiho0ePml2S2/j000/VpUsXDRkyRP7+/urcubNef/31Sv2MO+64Q3v37lXTpk1dPocQW0anT59WUVGRGjdu7LS/cePGysjIMKkqoHoVFxdr8uTJ6tWrl9q3b292OW5j9+7d8vHxkZeXlx5++GGtXLlSbdu2Nbsst7F8+XLt3LlTcXFxZpfidrp166Y333xTq1ev1quvvqq0tDTdeuutys3NNbs0t/D999/r1VdfVatWrbRmzRqNGzdOEydO1FtvvVWpn1OvXj29//77Lh/PhBIAZRYbG6s9e/boyy+/NLsUt9K6dWulpKQoOztbH374oUaNGqWkpCSCbDU4duyYJk2apLVr18rb29vsctzOoEGDHK87dOigbt26KSQkRO+//z7TaapBcXGxunTpomeeeUaS1LlzZ+3Zs0eLFi3SqFGjXO4nJibmuscYhqE333zTpf4YiS2jhg0bym636+TJk077T548qYCAAJOqAqrP+PHj9fnnnyshIaFMf/ZBxXl6eiosLEw33XST4uLi1LFjR7300ktml+UWduzYoczMTN14443y8PCQh4eHkpKS9PLLL8vDw0NFRUVml+hW6tatq/DwcB06dMjsUtxCYGBgiV+W27RpU+YpHdnZ2Y7txIkT+te//uW0LzMzU2+//bbL/TESW0aenp666aabtH79escNRcXFxVq/fr3Gjx9vbnFAFTIMQxMmTNDKlSuVmJio5s2bm12S2ysuLlZBQYHZZbiF2267Tbt373baFxMTo4iICD3++OOy2+0mVeae8vLydPjwYY0cOdLsUtxCr169Siyp+N133ykkJKRM/axYscLxOi0tTR06dHDad+rUqTINCBJiy2HKlCkaNWqUunTpoq5du2revHk6d+6cS8PkqJi8vDyn37zT0tKUkpKi+vXrq1mzZiZW9usXGxurd999V5988ol8fX0dc8D9/PxUq1Ytk6v79Zs+fboGDRqkZs2aKTc3V++++64SExO1Zs0as0tzC76+viXmf9euXVsNGjRgXng1mDp1qqKjoxUSEqITJ05oxowZstvtGj58uNmluYVHHnlEPXv21DPPPKOhQ4dq27ZtWrx4sRYvXlzuPmvWrKmLFy867cvPzy/b0mkGyuWVV14xmjVrZnh6ehpdu3Y1tm7danZJbiEhIcGQVGIbNWqU2aX96pV23SUZS5YsMbs0tzBmzBgjJCTE8PT0NBo1amTcdtttxhdffGF2WW4tMjLSmDRpktlluIVhw4YZgYGBhqenp9GkSRNj2LBhxqFDh8wuy6189tlnRvv27Q0vLy8jIiLCWLx4cYX6KyoqMjw9PY21a9c69i1atMgICwtzuQ/WiQUAAEC1GzNmjJYtW6YBAwbo/PnzWrdunWbOnKm//vWvLp1PiAUAAEC1O3/+vGbNmqX169fL09NTd955px599FHVqOHaugOEWAAAAFgON3YBAACgyiUlJbl0XGRkpEvHMRILAACAKme322UYhmw2m2Nfae+Li4td6o+HHQAAAKBapKamKisrS1lZWdq1a5d8fHx05swZZWVl6bvvvnMKtNfDdAIAAABUizp16qhOnTqSJB8fHxmGIT8/P0mX1oktywQBRmIBAABgOYRYAAAAVLnKvg2LEAsAbuDIkSOy2WxKSUkxuxQAburn811r1qyp0NDQax5zLYRYACiH0aNH66677nK8j4qK0uTJk02rJy0tTX/6058UFBQkb29vNW3aVIMHD9aBAwckScHBwUpPT1f79u1NqxGAe9uyZYsaNGjgeB8cHKzdu3c73vv7+ys9Pd3l/rixCwAs7uLFi+rfv79at26tFStWKDAwUMePH9eqVat09uxZSZeWtgkICDC3UABurWvXrtc9xt/f3+X+GIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKwhO7AKAcRo8erbNnz+rjjz+WdGlEtVOnTpo3b57jmNmzZ2vTpk1as2aNY9/x48cVHBys1NRUhYeHKyoqSkVFRdq0aZMkqaioSH5+frr77rv19ttvS5IyMjIUGBioLVu2OEZWf27BggV67LHHZLfb1aVLF/Xp00cjRoxQixYtJF0aiW3evLl27dqlTp06OZ27YsUKjRgxQuvWrVOvXr109OhRtWjRQkePHlVQUJDjuH79+qlr16565plnKnr5AKDCGIkFgCryzTffKCEhQT4+Po7t8kjn4cOHHcd16NDB8dput6tBgwa64YYbHPsaN24sScrMzLzqZ8XGxiojI0NLly5Vjx499MEHH6hdu3Zau3btNWvctWuXRo4cqfnz56tXr16SpN27d6uoqEjh4eFOtSclJTnVDQBm4sYuAKgieXl5io6O1rPPPluiLTAw0PG6Zs2aTm02m81p3+UlZ673PHFfX19FR0crOjpas2fP1oABAzR79mz179+/1OMzMjJ055136oEHHtD999/vVLfdbteOHTtkt9udzvHx8blmDQBQXQixAFAJPD09S8xHvfHGG/XRRx8pNDRUHh7V++3WZrMpIiJCX331Vant+fn5Gjx4sCIiIvTiiy86tXXu3FlFRUXKzMzUrbfeWh3lAkCZMZ0AACpBaGiovv76ax05ckSnT59WcXGxYmNjdebMGQ0fPlzbt2/X4cOHtWbNGsXExLh8A5YrUlJSNHjwYH344Yfat2+fDh06pPj4eL3xxhsaPHhwqec89NBDOnbsmF5++WWdOnVKGRkZysjI0IULFxQeHq4RI0bovvvu04oVK5SWlqZt27YpLi5O//73vyutbgCoCEZiAaASTJ06VaNGjVLbtm11/vx5paWlKTQ0VJs3b9bjjz+u22+/XQUFBQoJCdHAgQNVo0bljSE0bdpUoaGhmjVrlmMprcvvH3nkkVLPSUpKUnp6utq2beu0PyEhQVFRUVqyZIlmz56tv/zlL/rxxx/VsGFDde/eXb/73e8qrW4AqAhWJwAAAIDlMJ0AAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOUQYgEAAGA5hFgAAABYDiEWAAAAlkOIBQAAgOV4mF0AAAAA3EdMTMx1jzEMQ2+++eY1j7EZhmFUUk0AAADANd19991XbTMMQ7t27dLRo0dVXFx8zX4YiQUAAEC1WbFiRYl9p0+f1tKlS/XGG28oJydHDz/88HX7YSQWAAAA1a64uFirV6/WkiVL9Pnnn+uWW27RmDFjdPfdd8vLy+u65xNiAQAAUK3y8vIUEREhT09PjR49WjExMQoODi5TH6xOAAAAgGpnt9tls9lkGMZ157+WhhALAACAauXj46MjR45o4cKF2rt3r9q2bav+/ftr2bJlKigocKkPphMAAADAVGfOnNG//vUvLVmyRD/88IOGDx+uBQsWXPMcQiwAAACqze9///urttlsNu3atUs//PADS2wBAADgl6N+/fq61hhqnz59XOqHkVgAAABYDiOxAAAAqDauPHZWkpYsWXLNdkIsAAAAqk12dnal9MN0gnIyDEO5ubny9fWVzWYzuxwAAAC3wjqx5ZSbmys/Pz/l5OSYXQoAAIDbYTpBBbm6IC8AAABcmxNrGIbefPPNax5DiK2g/Px8s0sAAACwjGvNiS0qKtK6det0/vx5QiwAAAB+OVasWFHq/k8++URPPPGEvL29NWPGjOv2w5xYAAAAmGbTpk3q2bOnhg8frt/97nf6/vvv9dhjj133PEJsBV3vkWgAAAAoac+ePYqOjtZtt92mdu3a6dChQ3r22Wfl5+fn0vmE2ArKy8szuwQAbmbcuHGKjo7WuHHjzC4FAMrshx9+0KhRo9SpUyd5eHho9+7dev311xUUFFSmfsoVYo8dO6YxY8YoKChInp6eCgkJ0aRJk/TTTz85jomKipLNZpPNZpO3t7fCw8MVFxdX6rNyt2zZIrvdrjvuuKNE25EjR2Sz2eTv76/c3Fyntk6dOmnmzJlO+w4dOqQxY8aoWbNm8vLyUpMmTXTbbbdp6dKlKiwsdBx3ubafb8uXLy/PJQGAanH48GEdP35cknT8+HEdPnzY5IoAoGxat26tDz74QFOnTtXo0aN14MABffLJJyW26ynzjV3ff/+9evToofDwcC1btkzNmzfX3r179eijj2rVqlXaunWr6tevL0kaO3asnnrqKRUUFGjDhg168MEHVbdu3RKjB/Hx8ZowYYLi4+N14sSJUpN4bm6unn/+ec2aNeuqtW3btk39+vVTu3bttGDBAkVEREiSkpOTtWDBArVv314dO3Z0HL9kyRINHDjQqY+6deuW9ZIAQLWZOnVqifcrV640qRoAKLvCwkIZhqHnnnvuqscYhnHdKZtlHomNjY2Vp6envvjiC0VGRqpZs2YaNGiQ1q1bpx9//FFPPvmk49jf/OY3CggIUEhIiGJiYtShQwetXbvWqb+8vDy99957GjdunO64446rLqcwYcIEvfjii8rMzCy13TAMjR49WuHh4dq8ebOio6PVqlUrtWrVSsOHD9eXX36pDh06OJ1Tt25dBQQEOG3e3t5lvSQAUC2WLFni9Bcl6dIPg+s9XxwAfkkKCwtVVFR0zc2Ve47KFGLPnDmjNWvW6M9//rNq1arl1BYQEKARI0bovffeKzFlwDAMbdq0SQcOHJCnp6dT2/vvv6+IiAi1bt1a9957r954441SpxwMHz5cYWFheuqpp0qtLSUlRfv379fUqVNVo0bpX1ZFHg9bUFCgnJwcpw0AqsvFixevuizNihUrdPHixWquCADMVabpBAcPHpRhGGrTpk2p7W3atFFWVpZOnTolSVq4cKH++c9/6sKFC7p48aK8vb01ceJEp3Pi4+N17733SpIGDhyo7OxsJSUlKSoqyuk4m82mOXPmKDo6Wo888ohatmzp1P7dd99JujTP4rLMzEy1aNHC8f4f//iH/vznPzveDx8+XHa73amfffv2qVmzZiW+tri4uGtOZQCAqvT6669ft/3K728A8EuVlJTk0nGRkZHXbC/Xww5KGyktzYgRI/Tkk08qKytLM2bMUM+ePdWzZ09He2pqqrZt2+aYz+Xh4aFhw4YpPj6+RIiVpAEDBuiWW27RX//6V7377rvX/fwGDRooJSVF0qUbzS5cuODUPnfuXPXr189p39XujJs+fbqmTJnieJ+Tk6Pg4ODr1gAAlWHs2LFatWrVNdsBwAr69u0rwzCu+RdyV+bElinEhoWFyWazaf/+/fr9739fon3//v2qV6+eGjVqJEny8/NTWFiYpEvTBsLCwtS9e3dHcIyPj1dhYaFTcDQMQ15eXpo/f36p64TNmTNHPXr00KOPPuq0v1WrVpIuBePOnTtLkux2u+PzPTxKfqkBAQGO9uvx8vKSl5eXS8cCQGWrWbOm7r777lKnFNxzzz2qWbOmCVUBQNllZWVVSj9lmhPboEED9e/fXwsXLtT58+ed2jIyMrR06VINGzas1GTt4+OjSZMmaerUqTIMQ4WFhXr77bf1wgsvKCUlxbF98803CgoK0rJly0qtoWvXrrr77rs1bdo0p/2dO3dWRESEnn/+eR5AAOBXKSYmpsQv5B4eHho9erQ5BQFAOaxbt061atVSnTp1rrldT5lXJ5g/f74KCgo0YMAAbdy4UceOHdPq1avVv39/NWnSRE8//fRVz33ooYf03Xff6aOPPtLnn3+urKws3X///Wrfvr3Tds899yg+Pv6q/Tz99NPasGGDUlNTHftsNpuWLFmi1NRU9erVS59++qkOHjyoffv2adGiRTp16lSJ+a9nz55VRkaG03bu3LmyXhIAqDbPP//8Nd8DwC/dsGHD1LRpU02dOlX79+8vdz9lDrGtWrVScnKyWrRooaFDh6ply5Z68MEH1adPH23ZssWxRmxp6tevr/vuu08zZ85UfHy8+vXrV+qUgXvuuUfJycn69ttvS+0nPDxcY8aMUX5+vtP+7t27a8eOHWrdurViY2PVtm1b9ezZU8uWLdPcuXNLrE8bExOjwMBAp+2VV14p6yUBgGrTsmVLNW3aVJLUtGnTEje5AsAv3YkTJzR79mzt2LFD7dq1U8+ePfX666+X+SmoNsPVu7TgJCcnR35+fkpLS1NoaKjZ5QAAAFjK/v371aFDB/3jH//Qv/71L3333XcaMmSI7r//fvXq1eu655frsbP4n6utSQsAAICruzyO+sgjj2jHjh3avn27AgMDde+99zqeunotJDAAAACYLjw8XL1799Ytt9yiH3744brHE2IriMfUAgAAlF9ycrKmTJmiJk2aaNKkSbrhhhtcCrHletgB/oe1YwEAAMrmwIEDeuONN1RcXKyoqCgNHTpUH374oUtzYS8jxFbQtZ42AQAAAGft27fXvn371L17dy1evFh//OMfVbt2bUd7YWGhNm/eXDWPncX/sLgDAACA6wYOHKgPPvhAbdq0KbX9zJkz6tOnT+U+dhYlFRQUmF0CAACAZbjykBZX/tLNjV0V9PMHLgAAAKBiXPlLNyOxAAAAqDYxMTHXbD9//rxL/RBiK+h68zUAAADwP9nZ2ddsd3WqJiG2gsr6nF8AAAB3tmLFimu2nzp1So0bN75uP1U+J3bRokXy9fVVYWGhY19eXp5q1qypqKgop2MTExNls9l0+PBhhYaGat68eSX6mzlzpjp16lTq+9DQUNlstqtuo0ePlqSrti9fvrySv3oAAACUhasrP1X5SGyfPn2Ul5en5ORkde/eXZK0adMmBQQE6Ouvv1Z+fr7jqVcJCQlq1qyZWrZsWa7P2r59u4qKiiRJX331le655x6lpqaqTp06kqRatWo5jl2yZIkGDhzodH7dunXL9bkAAACoPK6sTlDlIbZ169YKDAxUYmKiI8QmJiZq8ODB2rBhg7Zu3eoYkU1MTFSfPn3K/VmNGjVyvK5fv74kyd/fv9RwWrduXQUEBJT7swAAAFD56tevr4SEhOseVy1zYvv06aOEhARNmzZN0qUR18cee0xFRUVKSEhQVFSUzp8/r6+//lpjxoypjpIAAABgkqKiIq1Zs0apqanKyckp9ZjevXtfs49qC7GTJ09WYWGhzp8/r127dikyMlIXL17UokWLJElbtmxRQUGB00js448/rv/7v/9z6uvChQtq27ZthWsaPny47Ha70759+/apWbNmpR5fUFDgdLfc1S44AAAAri4jI0O33367UlNT1bRpU/n5+ZU4xjAMzZgx45r9VEuIjYqK0rlz57R9+3ZlZWUpPDxcjRo1UmRkpGJiYpSfn6/ExES1aNHCKUQ++uijjpuxLnv55Ze1cePGCtc0d+5c9evXz2lfUFDQVY+Pi4vTrFmzKvy5AAAA7uyJJ56Qv7+/1q9f7zQVtKyqJcSGhYWpadOmSkhIUFZWliIjIyVdCo3BwcH66quvlJCQoL59+zqd17BhQ4WFhTntuzzXtaICAgJK9H0t06dP15QpUxzvc3JyFBwcXCm1AAAAuIuEhAS9++67FQqwUjWuE9unTx8lJiYqKytLjz76qGN/7969tWrVKm3btk3jxo2rrnLKzMvLS15eXmaXAQAAYGmnTp2qlJvrqzXExsbG6uLFi46RWEmKjIzU+PHjdeHChQqtTFBWZ8+eVUZGhtM+X19f1a5du9pqAAAAcDfNmzfXjh071Lx58wr1U60h9vz584qIiHB6CkNkZKRyc3MdS3FVl9Ke2xsXF+dYQQEAAACVb9SoUZo0aZJycnJ00003XXWd/pCQkGv2YzNcfSwCnOTk5MjPz09paWkKDQ01uxwAAABLKCoq0t/+9jfNmzdP+fn5JZ7QZbPZZBiGiouLr9kPIbacLofYH3744arLcgEAAKB0hmHo6NGjys7OLrW9Q4cO1zy/2qYTAAAAAJfZbLbrThm4FkIsAAAAqk1SUpJLx125EEBpCLEV5O3tbXYJAAAAltG3b18ZhiGbzebYV9r7682JJcSW0+WpxAUFBTyCFgAAuA1fX1+nwFlWWVlZTu+PHDmiW265RceOHZPNZtOpU6cUHh5+3X4IseX0008/SRI3dQEAALeSmZlZoadt1alTx+l9rVq1ZBiG/Pz8JKnUFQtKQ4gtp8uPvz169KjjoqP6XH7s77Fjx0r8x4Cqx/U3F9ffPFx7c3H9zXX5+nt6elZqv1u3btW5c+eUnZ0tPz8/nThxQg0bNrzueYTYcqpRo4Ykyc/Pj/+QTFSnTh2uv4m4/ubi+puHa28urr+5KjKV4Ernz5/XggULFB8fL0n685//rOHDh2vevHm6+eabr3t+jUqpAgAAAHDB8ePHNW3aNDVt2lSfffaZEhMTddddd2n58uUaPHiwDh06pGefffa6/TASCwAAgGrTsmVLRURE6I033tDgwYMlSStWrNB3332nCxcuKCIiQh4e14+ohNhy8vLy0owZM+Tl5WV2KW6J628urr+5uP7m4dqbi+tvrsq6/kuXLtUf/vCHEvtdWZHgSjx2FgAAAJbDSCwAAACqTUxMjEvHLVmy5JrtjMQCAACg2tjtdg0cONAxLeHcuXPasGGDoqOjJV16kNSqVauu+8QuQiwAAACqjd1u14kTJ9S4cWNJUlpamjp06KDc3FxJ0qlTpxQQEKCioqJr9sMSWwAAADDNz8dTDcNw6YldhNhyWrBggUJDQ+Xt7a1u3bpp27ZtZpfkFjZu3Kjo6GgFBQXJZrPp448/NrsktxEXF6ebb75Zvr6+8vf311133aXU1FSzy3Ibr776qjp06OBY5L1Hjx5atWqV2WW5rTlz5shms2ny5Mlml+IWZs6cKZvN5rRFRESYXZZb+fHHH3XvvfeqQYMGqlWrlm644QYlJyebWhMhthzee+89TZkyRTNmzNDOnTvVsWNHDRgwQJmZmWaX9qt37tw5dezYUQsWLDC7FLeTlJSk2NhYbd26VWvXrtXFixd1++2369y5c2aX5haaNm2qOXPmaMeOHUpOTlbfvn01ePBg7d271+zS3M727dv12muvqUOHDmaX4lbatWun9PR0x/bll1+aXZLbyMrKUq9evVSzZk2tWrVK+/bt0wsvvKB69epV2mf8/ClgLj0VzECZde3a1YiNjXW8LyoqMoKCgoy4uDgTq3I/koyVK1eaXYbbyszMNCQZSUlJZpfiturVq2f885//NLsMt5Kbm2u0atXKWLt2rREZGWlMmjTJ7JLcwowZM4yOHTuaXYbbevzxx41bbrml0vpr06aNcfr0acf7rKwspwx19uxZY9CgQdfth5HYMrpw4YJ27Nihfv36OfbVqFFD/fr105YtW0ysDKhe2dnZkqT69eubXIn7KSoq0vLly3Xu3Dn16NHD7HLcSmxsrO644w6nnwGoHgcPHlRQUJBatGihESNG6OjRo2aX5DY+/fRTdenSRUOGDJG/v786d+6s119/vdz97du3Tw0aNHC8r1u3rqZNm+Z47+fnp//85z/X7YcQW0anT59WUVGR4466yxo3bqyMjAyTqgKqV3FxsSZPnqxevXqpffv2ZpfjNnbv3i0fHx95eXnp4Ycf1sqVK9W2bVuzy3Iby5cv186dOxUXF2d2KW6nW7duevPNN7V69Wq9+uqrSktL06233uq4mx1V6/vvv9err76qVq1aac2aNRo3bpwmTpyot956y9S6eNgBgDKLjY3Vnj17mJNWzVq3bq2UlBRlZ2frww8/1KhRo5SUlESQrQbHjh3TpEmTtHbtWnl7e5tdjtsZNGiQ43WHDh3UrVs3hYSE6P3339f9999vYmXuobi4WF26dNEzzzwjSercubP27NmjRYsWadSoUabVxUhsGTVs2FB2u10nT5502n/y5EkFBASYVBVQfcaPH6/PP/9cCQkJatq0qdnluBVPT0+FhYXppptuUlxcnDp27KiXXnrJ7LLcwo4dO5SZmakbb7xRHh4e8vDwUFJSkl5++WV5eHhcdz1LVK66desqPDxchw4dMrsUtxAYGFjil+U2bdqYPqWDEFtGnp6euummm7R+/XrHvuLiYq1fv565afhVMwxD48eP18qVK7VhwwY1b97c7JLcXnFxsQoKCswuwy3cdttt2r17t1JSUhxbly5dNGLECKWkpMhut5tdolvJy8vT4cOHFRgYaHYpbqFXr14lllT87rvvFBISYlJFlzCdoBymTJmiUaNGqUuXLuratavmzZunc+fOufwsYJRfXl6e02/eaWlpSklJUf369dWsWTMTK/v1i42N1bvvvqtPPvlEvr6+jjngfn5+qlWrlsnV/fpNnz5dgwYNUrNmzZSbm6t3331XiYmJWrNmjdmluQVfX98S879r166tBg0aMC+8GkydOlXR0dEKCQnRiRMnNGPGDNntdg0fPtzs0tzCI488op49e+qZZ57R0KFDtW3bNi1evFiLFy82t7BKWy/BzbzyyitGs2bNDE9PT6Nr167G1q1bzS7JLSQkJBiSSmyjRo0yu7RfvdKuuyRjyZIlZpfmFsaMGWOEhIQYnp6eRqNGjYzbbrvN+OKLL8wuy62xxFb1GTZsmBEYGGh4enoaTZo0MYYNG2YcOnTI7LLcymeffWa0b9/e8PLyMiIiIozFixebXZJhMwwXnusFAAAA/IIwJxYAAACWQ4gFAACA5RBiAQAAYDmEWAAAAFgOIRYAAACWQ4gFAACA5RBiAQAAYDmEWABwA0eOHJHNZlNKSorZpQBApSDEAkA5jB49WnfddZfjfVRUlCZPnmxaPWlpafrTn/6koKAgeXt7q2nTpho8eLAOHDggSQoODlZ6ejqPSAXwq+FhdgEAgIq5ePGi+vfvr9atW2vFihUKDAzU8ePHtWrVKp09e1aSZLfbFRAQYG6hAFCJGIkFgAoaPXq0kpKS9NJLL8lms8lms+nIkSOSpD179mjQoEHy8fFR48aNNXLkSJ0+fdpxblRUlCZMmKDJkyerXr16aty4sV5//XWdO3dOMTEx8vX1VVhYmFatWnXVz9+7d68OHz6shQsXqnv37goJCVGvXr00e/Zsde/eXVLJ6QSjR4921HrllpiYKEkqKCjQ1KlT1aRJE9WuXVvdunVztAHALwEhFgAq6KWXXlKPHj00duxYpaenKz09XcHBwTp79qz69u2rzp07Kzk5WatXr9bJkyc1dOhQp/PfeustNWzYUNu2bdOECRM0btw4DRkyRD179tTOnTt1++23a+TIkfrvf/9b6uc3atRINWrU0IcffqiioiKXa75ca3p6uiZNmiR/f39FRERIksaPH68tW7Zo+fLl+vbbbzVkyBANHDhQBw8erNjFAoBKYjMMwzC7CACwmtGjR+vs2bP6+OOPJV0aUe3UqZPmzZvnOGb27NnatGmT1qxZ49h3/PhxBQcHKzU1VeHh4YqKilJRUZE2bdokSSoqKpKfn5/uvvtuvf3225KkjIwMBQYGasuWLY6R1Z9bsGCBHnvsMdntdnXp0kV9+vTRiBEj1KJFC0mXRmKbN2+uXbt2qVOnTk7nrlixQiNGjNC6devUq1cvHT16VC1atNDRo0cVFBTkOK5fv37q2rWrnnnmmYpePgCoMEZiAaCKfPPNN0pISJCPj49juzzSefjwYcdxHTp0cLy22+1q0KCBbrjhBse+xo0bS5IyMzOv+lmxsbHKyMjQ0qVL1aNHD33wwQdq166d1q5de80ad+3apZEjR2r+/Pnq1auXJGn37t0qKipSeHi4U+1JSUlOdQOAmbixCwCqSF5enqKjo/Xss8+WaAsMDHS8rlmzplObzWZz2mez2SRJxcXF1/w8X19fRUdHKzo6WrNnz9aAAQM0e/Zs9e/fv9TjMzIydOedd+qBBx7Q/fff71S33W7Xjh07ZLfbnc7x8fG5Zg0AUF0IsQBQCTw9PUvMR73xxhv10UcfKTQ0VB4e1fvt1mazKSIiQl999VWp7fn5+Ro8eLAiIiL04osvOrV17txZRUVFyszM1K233lod5QJAmTGdAAAqQWhoqL7++msdOXJEp0+fVnFxsWJjY3XmzBkNHz5c27dv1+HDh7VmzRrFxMS4fAOWK1JSUjR48GB9+OGH2rdvnw4dOqT4+Hi98cYbGjx4cKnnPPTQQzp27JhefvllnTp1ShkZGcrIyNCFCxcUHh6uESNG6L777tOKFSuUlpambdu2KS4uTv/+978rrW4AqAhGYgGgEkydOlWjRo1S27Ztdf78eaWlpSk0NFSbN2/W448/rttvv10FBQUKCQnRwIEDVaNG5Y0hNG3aVKGhoZo1a5ZjKa3L7x955JFSz0lKSlJ6erratm3rtD8hIUFRUVFasmSJZs+erb/85S/68ccf1bBhQ3Xv3l2/+93vKq1uAKgIVicAAACA5TCdAAAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWA4hFgAAAJZDiAUAAIDlEGIBAABgOYRYAAAAWI6H2QUAAADA/WRlZengwYOy2WwKCwtTvXr1ynQ+I7EAAACoNmlpafrtb3+rhg0bqnv37urWrZsaNmyo3/72t/rhhx9c7sdmGIZRhXUCAAAAkqSTJ0/qxhtvlN1uV2xsrCIiIiRJqampmj9/voqKirRz5041btz4un0RYgEAAFAtJk6cqISEBG3btk21atVyasvPz9fNN9+sqKgovfLKK9fti+kEAAAAqBaff/65Zs2aVSLASpK3t7f+/ve/6z//+Y9LfRFiAQAAUC3S09PVoUOHq7a3b99eP/74o0t9EWIBAABQLRo1aqTCwsKrtl+8eNGl+bASIRYAAADV5KabbtIXX3xx1fbVq1erY8eOLvVFiAUAAEC1mDJlil577TVlZ2eXaMvJydHrr7+uyZMnu9QXqxMAAADAcnhiFwAAAKpFixYt5Mr4aVpa2nWPIcQCAACgWrg6VcAVTCcAAACA5XBjFwAAACyH6QQAAACoFq7MiTUMQ0eOHLluX4RYAAAAVItrzYlNS0vT4sWLdf78eZf6Yk4sAAAATHP69Gk9/fTTWrRokbp3765nn31WXbt2ve55jMQCAACg2p07d04vvviinn/+eTVv3lwrV67UwIEDXT6fEAsAAIBqU1hYqMWLF2v27NmqVauWFi5cqBEjRpS5H0IsAAAAqsXy5cv117/+VdnZ2XryyScVGxsrD4/yxVHmxJaTYRjKzc2Vr6+vbDab2eUAAAD84tntdnl5eelPf/qTfH19r3rc3Llzr9sXI7HllJubKz8/P2VnZ6tOnTpmlwMAqGKGYaigoECS5OXlxQAGUA5RUVEyDEPff//9VY9xdXyVkdhyysnJIcQCgBvJz8/XkCFDJEkffPCBvL29Ta4IcG88sQsAABfk5+eX+hqAOZhOAAAAgGoxa9Ysl46bMWPGdY8hxAIA4ILi4uJSXwNw3VNPPaV27dpddUWCwsJC7dmzhxALAEBlyc3NdXpdv359E6sBrGvt2rVq3LhxqW2nTp1SQECAS/2Ua07ssWPHNGbMGAUFBcnT01MhISGaNGmSfvrpJ8cxUVFRstlsstls8vb2Vnh4uOLi4kq942zLli2y2+264447SrQdOXJENptN/v7+Tt9AJKlTp06aOXOm075Dhw5pzJgxatasmby8vNSkSRPddtttWrp0qQoLCx3HXa7t59vy5cvLc0kAAABwHXa7/Zp/ySgqKlKNGq7F0zKH2O+//15dunTRwYMHtWzZMh06dEiLFi3S+vXr1aNHD505c8Zx7NixY5Wenq7U1FRNnz5df/vb37Ro0aISfcbHx2vChAnauHGjTpw4Uern5ubm/j979x5WVZX/cfxzPAiaECpeAC8gIuAlFTMVKQHT1CnTLHMYNEQrc9DUxkprJq1UbKaL5TUbMptKLc2aZgbNFNBMRUzM+y1MTRCvXBxFgf37w8fz6wTqAYEzp/N+Pc9+Ovu2zpf9mH5crr2WXn/99RvWlpaWpk6dOmnv3r2aO3eudu3apZSUFD3++OOaP3++du/ebXX9okWLlJWVZbUNHDiwvI8EAAAANvD09LTq9Py1M2fOqG7duja1Ve7hBPHx8XJ1ddXXX3+t2rVrS5KaN2+u0NBQtWzZUi+++KLmz58vSbrtttssXcJxcXGaM2eO1qxZo9GjR1vaKygo0LJly5Senq7s7Gx98MEHeuGFF0p979ixY/Xmm28qPj5ejRo1KnXeMAwNHz5cQUFB2rhxo1WKb9WqlaKjo0v1AtetW9fmLmsAAADcmjZt2ig5OVnt2rUr83xKSoratGljU1vl6ok9e/asVq9erT/+8Y+WAHuNt7e3YmJitGzZslJh0TAMbdiwQfv27ZOrq6vVuU8//VQhISEKDg7W0KFD9f7775c55CA6OlqBgYF65ZVXyqwtIyNDe/fu1cSJE6/bDc3E1AAAAPbzyCOPaPr06dq3b1+pc/v379err76qQYMG2dRWuULswYMHZRiGWrduXeb51q1b69y5czp16pQkad68eXJ3d5ebm5t69OihkpISPf3001b3JCYmaujQoZKkvn37Kjc3V6mpqaXaNplMmjlzphYuXKjDhw+XOn/gwAFJUnBwsOVYTk6O3N3dLdu8efOs7omOjrY67+7urqNHj5b5sxUWFiovL89qAwAAgO2eeuoptWjRQh06dNCAAQM0adIkTZ48WQ899JA6dOigpk2bWv2L/Y1U6MUuWxf5iomJUUZGhjZu3Kh+/frpxRdfVPfu3S3n9+/fr7S0NEVHR0uSXFxcNGTIECUmJpbZXp8+fXT33XfrL3/5i03f7+XlpYyMDGVkZKhu3bq6fPmy1fm33nrLcv7a5uvrW2ZbCQkJ8vT0tGzNmjWzqQYAAABcVbNmTa1du1YvvviiMjMzNXfuXM2ePVsHDx7Uc889p9TU1FL/an895RoTGxgYKJPJpL179+qhhx4qdX7v3r2qV6+eGjZsKOnq4N3AwEBJV4cNBAYGqlu3burVq5ekq72wRUVFVsHRMAy5ublpzpw58vT0LPUdM2fOVFhYmJ599lmr461atZJ0NRiHhoZKuvoG3LXvL2s+Mm9vb8v5m5k8ebKeeeYZy35eXh5BFgAAoJxuu+02vfTSS3rppZduqZ1y9cR6eXmpd+/emjdvni5evGh1Ljs7Wx9//LGGDBlS5thTd3d3jRs3ThMnTpRhGCoqKtKHH36oN954w6ondMeOHfL19dWSJUvKrKFLly4aNGiQJk2aZHU8NDRUISEhev3116tkEmo3NzfdfvvtVhsAAADso9yzE8yZM0fdu3dXnz59NG3aNLVo0UK7d+/Ws88+qyZNmmj69OnXvXfUqFF69dVXtWLFCrm4uOjcuXMaOXJkqR7Xhx9+WImJiXrqqafKbGf69OmlVnswmUxatGiRevfurfDwcE2ePFmtW7fWlStXtH79ep06dUpms9mqnfPnzys7O9vqmIeHh+rUqVPexwIAAICbiIqKuuk1hmEoJSXlpteVe0xsq1atlJ6eroCAAD366KNq2bKlnnzySUVFRWnTpk03XMGkfv36euyxxzR16lQlJiaqV69eZQ4ZePjhh5Wenq4ffvihzHaCgoI0YsQIXbp0yep4t27dtG3bNgUHBys+Pl5t2rRR9+7dtWTJEr311lulBgrHxcXJx8fHaps9e3Z5HwkAAABssH79egUHBys0NFShoaEKCAjQd999Z9kPDg7W+vXrbWrLZNj6lhas5OXlydPTU7m5uQwtAAAncPbsWcXGxkqSFi9ezLKzQAWYzWadOHHCsuzsjz/+qA4dOlhWZc3JyZG3t7dNQ0MrNDsBAADO5pdzkNu6LCaAqsP/hQAAAHA4hFgAAADYza9ntbJ1hVVCLAAANqhVq1aZnwHYrk+fPnJzc7PsN27cWO+++65l/7bbbtOoUaNsaosXuyqIF7sAwLkYhqHCwkJJV+cOt7W3CEDVoCcWAAAADqfcix0AAOCMCgsLNXjwYEnSZ599xpACoALMZrNsGQRgyxRbhFgAAGzwywV2Ll26RIgFKmDlypVW+ydPntT48eO1ZMkSSVJubq5lPuabIcQCAACgWjz44INW+z/++KNq1KhhOZ6Tk2NzW4yJBQAAgF38+OOPunjxooqLiyVdfXHew8PDpnsJsQAA2OCXY/RsGa8H4Ma2bt2qCRMmqKSkRLNnz1ZBQYHmzp2r4OBgm+4nxAIAYINra7v/+jOA8lm1apX69u2r3/3ud3rnnXcUEBCgZ555Rrfffrvmzp2rP//5zza1U+UhdsGCBfLw8FBRUZHlWEFBgWrWrKnIyEira1NSUmQymXT48GH5+/tr1qxZpdqbOnWqOnbsWOa+v7+/TCbTdbfhw4dL0nXPL126tJJ/egAAAFzTtm1bPfTQQ2rdurX27t2rqKgopaena8GCBXrnnXe0ffv2UuNmr6fKX+yKiopSQUGB0tPT1a1bN0nShg0b5O3trS1btli94ZmcnKzmzZurZcuWFfqurVu3WsZUfPfdd3r44Ye1f/9+y2IEtWvXtly7aNEi9e3b1+r+unXrVuh7AQAAcHNRUVH65ptv5OPjYzlWt25dPfnkk+Vuq8pDbHBwsHx8fJSSkmIJsSkpKRowYIDWrVunzZs3W3pkU1JSFBUVVeHvatiwoeVz/fr1JUmNGjUqM5zWrVtX3t7eFf4uAAAAlM+cOXMqra1qmWIrKipKycnJmjRpkqSrPa7PPfeciouLlZycrMjISF28eFFbtmzRiBEjqqOkcissLLQsNyhdfXsOAAAAtlu8eLFN19kyV2y1hdjx48erqKhIFy9e1Pbt2xUREaErV65owYIFkqRNmzapsLDQqif2+eefLzW49/Lly2rTps0t1xQdHS2z2Wx1bM+ePWrevHmZ1yckJOjll1++5e8FAABwViNGjNDtt98uk8kk6epMH3l5eZZ/NTcMw+YFD6olxEZGRurChQvaunWrzp07p6CgIDVs2FARERGKi4vTpUuXlJKSooCAAKsQ+eyzz1pexrrmnXfe0fr162+5prfeeku9evWyOubr63vd6ydPnqxnnnnGsp+Xl6dmzZrdch0AAADOZN++fWrcuLEkKTMzUx06dNDZs2clSadOnbJ5uGe1hNjAwEA1bdpUycnJOnfunCIiIiRdDY3NmjXTd999p+TkZPXs2dPqvgYNGigwMNDq2LWxrrfK29u7VNs34ubmJjc3t0r5bgAAAFzteTUM47r7N1Jt88RGRUUpJSVFKSkpVlNr9ejRQ0lJSUpLS7ull7oAAADgPKqlJ1a6GmLj4+N15coVS0+sJEVERGjMmDG6fPlytYbY8+fPKzs72+qYh4eH6tSpU201AAAAOBNbe1ltUa09sRcvXlRgYKBlHIR0NcTm5+dbpuKqLnFxcfLx8bHaZs+eXW3fDwAA4GyuvdB1Te3atdWjRw+r89fWD7hpW0ZlRmInkpeXJ09PT+Xm5loWUwAA/HadPXvW8sb04sWLK+0dDcCZ5OTkqFGjRpXSVrX1xAIA4Mhq1KhR5mcAtqusACtV45hYAAAAOLe4uDibrlu0aNFNryHEAgBgg1+O07N1zB4Aax9++KEiIiIsixvcCsbEVlBubq7q1q2rY8eOMSYWAJyAYRiW5cfd3NxKvaACOAsPD48K//o3m836/vvv1aFDh1uug57YCjpz5owksWoXAABwKjk5OWrYsKG9yyDEVtS1t1KPHj0qT09PO1fjfK4t+0tPuH3w/O2L528/PHv74vnb17Xn7+rqau9SJBFiK+zam6menp78j2RHt99+O8/fjnj+9sXztx+evX3x/O3rf2UoDXOEAAAAoFqMHDlSXl5eldIWPbEAAACoFgsXLqy0tgixFeTm5qYpU6bIzc3N3qU4JZ6/ffH87Yvnbz88e/vi+dtXZTz/Fi1a2HRdZmbmTa9hii0AAABUC7PZrIkTJ6pJkyY3vO7pp5++aVuEWAAAAFSLypwnlhe7AAAA4HAIsQAAAHA4hFgAAAA4HEJsBc2dO1f+/v6qVauWunbtqrS0NHuX5BTWr1+v/v37y9fXVyaTSV988YW9S3IaCQkJuuuuu+Th4aFGjRpp4MCB2r9/v73Lchrz589X+/btLZO8h4WFKSkpyd5lOa2ZM2fKZDJp/Pjx9i7FKUydOlUmk8lqCwkJsXdZTuXnn3/W0KFD5eXlpdq1a+uOO+5Qenp6udv5xz/+IT8/v0qpiRBbAcuWLdMzzzyjKVOmWAYn9+nTRzk5OfYu7TfvwoUL6tChg+bOnWvvUpxOamqq4uPjtXnzZq1Zs0ZXrlzRfffdpwsXLti7NKfQtGlTzZw5U9u2bVN6erp69uypAQMGaPfu3fYuzels3bpV7777rtq3b2/vUpxK27ZtlZWVZdm+/fZbe5fkNM6dO6fw8HDVrFlTSUlJ2rNnj9544w3Vq1ev3G399a9/1QcffKCzZ8/eemEGyq1Lly5GfHy8Zb+4uNjw9fU1EhIS7FiV85FkrFy50t5lOK2cnBxDkpGammrvUpxWvXr1jL///e/2LsOp5OfnG61atTLWrFljREREGOPGjbN3SU5hypQpRocOHexdhtN6/vnnjbvvvrtS2ho7dqzRpEkTw83NzRg8eLCxatUqo6SkpEJt0RNbTpcvX9a2bdvUq1cvy7EaNWqoV69e2rRpkx0rA6pXbm6uJKl+/fp2rsT5FBcXa+nSpbpw4YLCwsLsXY5TiY+P1/3332/1ZwCqx8GDB+Xr66uAgADFxMTo6NGj9i7Jafzzn/9U586dNXjwYDVq1EihoaF67733KtTWO++8o+PHj+ujjz7SihUrNHToUPn7+2vKlCk2LXDwS4TYcjp9+rSKi4vVuHFjq+ONGzdWdna2naoCqldJSYnGjx+v8PBwtWvXzt7lOI2dO3fK3d1dbm5ueuqpp7Ry5Uq1adPG3mU5jaVLl+r7779XQkKCvUtxOl27dtUHH3ygVatWaf78+crMzNQ999yj/Px8e5fmFH788UfNnz9frVq10urVqzV69Gg9/fTTWrx4cYXbbNOmjWrUqKHs7GzNnTtX+/bt0x133KHevXtryZIlNrXBsrMAyi0+Pl67du1iTFo1Cw4OVkZGhnJzc7V8+XLFxsYqNTWVIFsNjh07pnHjxmnNmjWqVauWvctxOv369bN8bt++vbp27So/Pz99+umnGjlypB0rcw4lJSXq3LmzZsyYIUkKDQ3Vrl27tGDBAsXGxt5S22azWQ888IAeeOAB5efna+bMmRo2bJiio6Nvei8htpwaNGggs9mskydPWh0/efKkvL297VQVUH3GjBmjf/3rX1q/fr2aNm1q73KciqurqwIDAyVJd955p7Zu3aq3335b7777rp0r++3btm2bcnJy1KlTJ8ux4uJirV+/XnPmzFFhYaHMZrMdK3QudevWVVBQkA4dOmTvUpyCj49Pqb8st27dWitWrKiU9s+cOaOlS5fqo48+0sGDBzV69Gib7mM4QTm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIIMBWs4KCAh0+fFg+Pj72LsUphIeHl5pS8cCBA7c0VVZxcbEMw1D//v3VtGlTrVy5UuPGjdOJEyc0e/Zsm9qgJ7YCnnnmGcXGxqpz587q0qWLZs2apQsXLiguLs7epf3mFRQUWP3NOzMzUxkZGapfv76aN29ux8p+++Lj4/XJJ5/oyy+/lIeHh2UMuKenp2rXrm3n6n77Jk+erH79+ql58+bKz8/XJ598opSUFK1evdrepTkFDw+PUuO/69SpIy8vL8aFV4OJEyeqf//+8vPz04kTJzRlyhSZzWab/skZt27ChAnq3r27ZsyYoUcffVRpaWlauHChFi5cWO62PvvsM61YsUJJSUlq2rSpOnXqpDlz5lQsEFfKfAlOaPbs2Ubz5s0NV1dXo0uXLsbmzZvtXZJTSE5ONiSV2mJjY+1d2m9eWc9dkrFo0SJ7l+YURowYYfj5+Rmurq5Gw4YNjXvvvdf4+uuv7V2WU2OKreozZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXFihdmrVqmUMHjzYWL169S3XZDIMwyh/9AUAAADK5+zZs5U2NSMhFgAAAA6HF7sAAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCgBM4cuSITCaTMjIy7F0KAFQKQiwAVMDw4cM1cOBAy35kZKTGjx9vt3oyMzP1hz/8Qb6+vqpVq5aaNm2qAQMGaN++fZKkZs2aKSsrS+3atbNbjQBQmVzsXQAA4NZcuXJFvXv3VnBwsD7//HP5+Pjo+PHjSkpK0vnz5yVJZrNZ3t7e9i0UACoRPbEAcIuGDx+u1NRUvf322zKZTDKZTDpy5IgkadeuXerXr5/c3d3VuHFjDRs2TKdPn7bcGxkZqbFjx2r8+PGqV6+eGjdurPfee08XLlxQXFycPDw8FBgYqKSkpOt+/+7du3X48GHNmzdP3bp1k5+fn8LDwzVt2jR169ZNUunhBMOHD7fU+sstJSVFklRYWKiJEyeqSZMmqlOnjrp27Wo5BwD/CwixAHCL3n77bYWFhemJJ55QVlaWsrKy1KxZM50/f149e/ZUaGio0tPTtWrVKp08eVKPPvqo1f2LFy9WgwYNlJaWprFjx2r06NEaPHiwunfvru+//1733Xefhg0bpv/+979lfn/Dhg1Vo0YNLV++XMXFxTbXfK3WrKwsjRs3To0aNVJISIgkacyYMdq0aZOWLl2qH374QYMHD1bfvn118ODBW3tYAFBJTIZhGPYuAgAczfDhw3X+/Hl98cUXkq72qHbs2FGzZs2yXDNt2jRt2LBBq1evthw7fvy4mjVrpv379ysoKEiRkZEqLi7Whg0bJEnFxcXy9PTUoEGD9OGHH0qSsrOz5ePjo02bNll6Vn9t7ty5eu6552Q2m9W5c2dFRUUpJiZGAQEBkq72xLZo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYflWOPGjSVJOTk51/2u+Ph4ZWdn6+OPP1ZYWJg+++wztW3bVmvWrLlhjdu3b9ewYcM0Z84chYeHS5J27typ4uJiBQUFWdWemppqVTcA2BMvdgFAFSkoKFD//v312muvlTrn4+Nj+VyzZk2rcyaTyeqYyWSSJJWUlNzw+zw8PNS/f3/1799f06ZNU58+fTRt2jT17t27zOuzs7P14IMP6vHHH9fIkSOt6jabzdq2bZvMZrPVPe7u7jesAQCqCyEWACqBq6trqfGonTp10ooVK+Tv7y8Xl+r97dZkMikkJETfffddmecvXbqkAQMGKCQkRG+++abVudDQUBUXFysnJ0f33HNPdZQLAOXGcAIAqAT+/v7asmWLjhw5otOnT6ukpETx8fE6e/asoqOjtXXrVh0+fFirV69WXFyczS9g2SIjI0MDBgzQ8uXLtWfPHh06dEiJiYl6//33NWDAgDLvGTVqlI4dO6Z33nlHp06dUnZ2trKzs3X58mUFBQUpJiZGjz32mD7//HNlZmYqLS1NCQkJ+ve//11pdQPAraAnFgAqwcSJExUbG6s2bdro4sWLyszMlL+/vzZu3Kjnn39e9913nwoLC+Xn56e+ffuqRo3K60No2rSp/P399fLLL1um0rq2P2HChDLvSU1NVVZWltq0aWN1PDk5WZGRkVq0aJGmTZumP/3pT/r555/VoEEDdevWTQ888ECl1Q0At4LZCQAAAOBwGE4AAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADsfF3gUAAADAecTFxdl03aJFi2543mQYhlEZBQEAAAA3M2jQIKv9CxcuaN26derfv78kqbCwUElJSSopKblhO4RYAAAA2E1mZqbat2+v/Px8SdKpU6fk7e2t4uLiG97HmFgAAADYza/7Uw3DKHWsLIRYAAAAVJsrV65USjuEWAAAAFSbJk2aaPz48dq5c6ckqU6dOvrd735ndY3JZLppO4RYAAAAVJtJkyYpLS1NoaGh6tq1q7744gv9/e9/t5xv2LChDh48eNN2eLELAAAA1W7jxo2KiIhQ27ZtdejQIT3yyCMaMWKEIiIibLqfnlgAAABUu3r16slkMmnHjh3asmWLvL29NWzYMAUFBSkhIeGm99MTCwAAgGq3Z88edejQwepFr+LiYr300kt67bXXVFRUdMP7WbELAAAAdrVjxw599NFHWrJkiTw9PfXaa6/d9B5CbAUZhqH8/Hx5eHjY9AYdAAAA/t+ZM2dkGIbuuOMOHT16VIMHD9by5cvVrVs3m+4nxFZQfn6+PD09dfLkSd1+++32LgeoNoZhqLCwUJLk5ubGX+LglPi1D1Tc3/72N61YsULp6ekKCwvTiBEjNGTIEN12223laocxsRWUl5cnT09P9enTRzVr1rR3OQCAavTZZ5+pVq1a9i4DcEg+Pj567LHHNHLkSAUFBVW4HXpiAQAAUG2OHz8us9l8y+0QYm/RlN4HVN/d3lUA1aewyKQXV7WRJE3vu0duLvxjDpzD5eIaeiGptb3LABzeRx99ZNN1sbGxNzxPiL1FruYSubkwLgrOyc3FIMTCiZTYuwDgN2HChAk3vcYwDEJsVWNEMQA4h1/+fs/rJEDFnT17tlLaYcWuW3S5mF5YAHAGv/z9/toMHQDsp0Ih9tixYxoxYoR8fX3l6uoqPz8/jRs3TmfOnLFcExkZKZPJJJPJpFq1almWECvrb6+bNm2S2WzW/fffX+rckSNHZDKZ1KhRI+Xn51ud69ixo6ZOnWp17NChQxoxYoSaN28uNzc3NWnSRPfee68+/vhjq5UfrtX2623p0qUVeSQAAACwweLFi23abqbcwwl+/PFHhYWFKSgoSEuWLFGLFi20e/duPfvss0pKStLmzZtVv359SdITTzyhV155RYWFhVq3bp2efPJJ1a1bV6NHj7ZqMzExUWPHjlViYqJOnDghX1/fUt+bn5+v119/XS+//PJ1a0tLS1OvXr3Utm1bzZ07VyEhIZKk9PR0zZ07V+3atVOHDh0s1y9atEh9+/a1aqNu3brlfSQAAACw0a/HxJaUlCgvL8+SwQzDUG5ubuWPiY2Pj5erq6u+/vpr1a5dW5LUvHlzhYaGqmXLlnrxxRc1f/58SdJtt90mb29vSVJcXJzmzJmjNWvWWIXYgoICLVu2TOnp6crOztYHH3ygF154odT3jh07Vm+++abi4+PVqFGjUucNw9Dw4cMVFBSkjRs3qkaN/+9kbtWqlaKjo0v1AtetW9dSHwAAAKrer8fEZmZmqkOHDpbjp06dsimflWs4wdmzZ7V69Wr98Y9/tATYa7y9vRUTE6Nly5aVCouGYWjDhg3at2+fXF1drc59+umnCgkJUXBwsIYOHar333+/zCEH0dHRCgwM1CuvvFJmbRkZGdq7d68mTpxoFWB/6VZWVyksLFReXp7VBgAAgFtz+fJllZT8/+wfv/x8I+UKsQcPHpRhGGrduux58lq3bq1z587p1KlTkqR58+bJ3d1dbm5u6tGjh0pKSvT0009b3ZOYmKihQ4dKkvr27avc3FylpqaWattkMmnmzJlauHChDh8+XOr8gQMHJEnBwcGWYzk5OXJ3d7ds8+bNs7onOjra6ry7u7uOHj1a5s+WkJAgT09Py9asWbPrPSYAAADYKCkpSf/973+Vk5Mj6WrPbOPGjW96X4Ve7LJ1apGYmBhlZGRo48aN6tevn1588UV1797dcn7//v1KS0tTdHS0JMnFxUVDhgxRYmJime316dNHd999t/7yl7/Y9P1eXl7KyMhQRkaG6tatq8uXL1udf+uttyznr21ljceVpMmTJys3N9eyHTt2zKYaAAAAUNrx48c1ZswYffzxxzKZTPr973+vOXPmaPTo0erRo8dN7y9XiA0MDJTJZNLevXvLPL93717Vq1dPDRs2lCR5enoqMDBQd911lz799FPNmTNH33zzjeX6xMREFRUVydfXVy4uLnJxcdH8+fO1YsUK5ebmlvkdM2fO1LJly7R9+3ar461atZJ0NRhfYzabFRgYqMDAQLm4lB7+6+3tbTl/o+skyc3NTbfffrvVBgAAgPLZsmWLfv/736tly5bKy8tTamqqxo0bp2+//Vbjxo1TrVq19Prrr9+0nXKFWC8vL/Xu3Vvz5s3TxYsXrc5lZ2fr448/1pAhQ8oce+ru7q5x48Zp4sSJMgxDRUVF+vDDD/XGG29Y9YTu2LFDvr6+WrJkSZk1dOnSRYMGDdKkSZOsjoeGhiokJESvv/66zWMpAAAAUL26d++uCxcuaMuWLfrwww9122236c0337T8a/emTZvUtGnTm7ZT7tkJ5syZo+7du6tPnz6aNm2a1RRbTZo00fTp069776hRo/Tqq69qxYoVcnFx0blz5zRy5Eh5enpaXffwww8rMTFRTz31VJntTJ8+XW3btrXqNTWZTFq0aJF69+6t8PBwTZ48Wa1bt9aVK1e0fv16nTp1Smaz2aqd8+fPKzs72+qYh4eH6tSpU97HAgAAABts2bJFnTt3LnX82qQBx48fV1xcnNasWXPDdso9JrZVq1ZKT09XQECAHn30UbVs2VJPPvmkoqKitGnTJsscsWWpX7++HnvsMU2dOlWJiYnq1atXqQArXQ2x6enp+uGHH8psJygoSCNGjNClS5esjnfr1k3btm1TcHCw4uPj1aZNG3Xv3l1LlizRW2+9VWp+2ri4OPn4+Fhts2fPLu8jAQAAgI3KCrDXfPjhh2rfvn2pjseymAwWgK6QvLw8eXp6auubfmpwO0vPwnkUFpk08V9tJUmvP7Bbbi78FgLncOmKSc/+++qv/U8//bTUVJMAKu7UqVMaNWqUvvnmG73xxht64oknbnpPuYcTwNqVkhoqLLr5dcBvRWGRqczPwG/dlZL//8fLW5l3HHB2v159taioSO+++67atWunnTt3ys/Pz6Z2CLG36OU1QapZs6a9ywDs4sVVbexdAgDAwXz55ZdW+0VFRTp37pwGDRpkc4CVCLEAAACoRt9//32pY1999ZWeeOIJff7550pMTFSLFi1u2g5jYivo2pjYkydPMmcsnIphGCosLJR0df5k/lkVzohf+0DlO3v2rEaNGqVVq1bptdde0x//+McbXk+IraBrITY3N5cQCwAAUEk++eQTxcfH69y5cze8rkLLzgIA4GwMw9ClS5d06dIlm5dfB1B+/fv3v+E0XNcQYgEAsEFhYaEGDx6swYMHW4bUAKh8Fy9e1Nq1a296HSEWAAAb/HKBnV8vtgOg+hFiAQAA4HCYYgsAABuUlJSU+RlA+ZjN5koZV06IBQDABvn5+Vaf69evb8dqAMe1cuXKG57Pzc1VbGzsTdup8uEECxYskIeHh4qK/n9t1oKCAtWsWVORkZFW16akpMhkMunw4cPy9/fXrFmzSrU3depUdezYscx9f39/mUym627Dhw+XpOueX7p0aSX/9AAAAPilBx988IZbnz59bGqnyntio6KiVFBQoPT0dHXr1k2StGHDBnl7e2vLli26dOmSatWqJUlKTk5W8+bN1bJlywp919atW1VcXCxJ+u677/Twww9r//79lnlca9eubbl20aJF6tu3r9X9devWrdD3AgAAwDZXrlxRzZo1b7mdKu+JDQ4Olo+Pj1JSUizHUlJSNGDAALVo0UKbN2+2Oh4VFVXh72rYsKG8vb3l7e1t+WeeRo0aWY55enparq1bt67l+LXtWpgGAABA1WjSpInGjx+vnTt3lnnebDbL39//pu1Uy+wEUVFRSk5OtuwnJycrMjJSERERluMXL17Uli1bbinEAgAA4H/bpEmTlJaWptDQUHXt2lXvvvuu1ZhzLy8v/fjjjzdtp9pC7MaNG1VUVKT8/Hxt375dERER6tGjh6WHdtOmTSosLLQKsc8//7zc3d2tthkzZlRKTdHR0aXaPnr06HWvLywsVF5entUGAACA8nnmmWf03XffKTU1Vdu2bdO8efPk7e2t2NhYpaam2txOtYTYyMhIXbhwQVu3btWGDRsUFBSkhg0bKiIiwjIuNiUlRQEBAWrevLnlvmeffVYZGRlW21NPPVUpNb311lul2vb19b3u9QkJCfL09LRszZo1q5Q6AAAAnFG9evVkMpm0Y8cObdmyRd7e3ho2bJiCgoKUkJBw0/urJcQGBgaqadOmSk5OVnJysiIiIiRJvr6+atasmb777jslJyerZ8+eVvc1aNBAgYGBVltlTWni7e1dqm0Xl+u/5zZ58mTl5uZatmPHjlVKHQAAAM6uXbt2eu2115SZmanBgwfrL3/5y03vqbZ5YqOiopSSkqJz587p2WeftRzv0aOHkpKSlJaWptGjR1dXOeXm5uYmNzc3e5cBAADwm7Njxw599NFHWrJkiTw9PfXaa6/d9J5qDbHx8fG6cuWKpSdWkiIiIjRmzBhdvny5Wl/qOn/+vLKzs62OeXh4qE6dOtVWAwAAgLM6c+aMDMPQHXfcoaNHj2rw4MFavny5ZUrWm6nWEHvx4kWFhISocePGluMRERHKz8+3TMVVXeLi4kodS0hI0KRJk6qtBgAAAGfzt7/9TStWrFB6errCwsI0YsQIDRkyRLfddlu52jEZlbF4rRPKy8uTp6encnNzLYspAAB+u86ePWtZCnPx4sUsOwtUkI+Pjx577DGNHDlSQUFBFW6n2npiAQBwZDVq1CjzM4DyOX78uMxm8y23Q4gFAABAtfnoo49suu7av3xcDyEWAAAA1WbEiBGqU6fODac2NQyDEAsAQGWoVatWmZ8BlN+GDRvUoUOHW2qDEFtB196HY/lZAHAOhmEoMTFR0tWlyC9fvmznigD78PDwkMlksncZhNiKOnPmjCSx/CwAAHAqOTk5atiwob3LIMRW1LWpVY4ePSpPT087V+N88vLy1KxZMx07dowpzuyA529fPH/74dnbF8/fvq49f1dXV3uXIokQW2HXplfx9PTkfyQ7uv3223n+dsTzty+ev/3w7O2L529ftzqUoGXLlnJzc7vlOgixAAAAqDYHDhyolHYIsQAAAKg2cXFxNl23aNGiG55nyZEKcnNz05QpUyqlOxzlx/O3L56/ffH87Ydnb188f/uqrOf/4YcfKicnR7m5ucrNzdWJEyf00UcfWfZzcnK0ePHim7ZjMq7NFQUAAABUMbPZrBMnTqhx48aSpMzMTLVv3175+fmSpFOnTsnb21vFxcU3bIeeWAAAANjNr/tTDcModawshFgAAAA4HEIsAAAA7OrX03bZMo0XIRYAAADVJjg4WC4u/z9BVv369fXCCy9Y9t3c3NSnT5+btkOIraC5c+fK399ftWrVUteuXZWWlmbvkpzC+vXr1b9/f/n6+spkMumLL76wd0lOIyEhQXfddZc8PDzUqFEjDRw4UPv377d3WU5j/vz5at++vWWS97CwMCUlJdm7LKc1c+ZMmUwmjR8/3t6lOIWpU6fKZDJZbSEhIfYuy6n8/PPPGjp0qLy8vFS7dm3dcccdSk9Pr1Bbe/bskZeXl2W/bt26mjRpkmXf09NT//nPf27aDiG2ApYtW6ZnnnlGU6ZM0ffff68OHTqoT58+ysnJsXdpv3kXLlxQhw4dNHfuXHuX4nRSU1MVHx+vzZs3a82aNbpy5Yruu+8+Xbhwwd6lOYWmTZtq5syZ2rZtm9LT09WzZ08NGDBAu3fvtndpTmfr1q1699131b59e3uX4lTatm2rrKwsy/btt9/auySnce7cOYWHh6tmzZpKSkrSnj179MYbb6hevXp2rYsptiqga9euuuuuuzRnzhxJUklJiZo1a6axY8da/U0CVctkMmnlypUaOHCgvUtxSqdOnVKjRo2UmpqqHj162Lscp1S/fn397W9/08iRI+1ditMoKChQp06dNG/ePE2bNk0dO3bUrFmz7F3Wb97UqVP1xRdfKCMjw96lOKVJkyZp48aN2rBhg71LsUJPbDldvnxZ27ZtU69evSzHatSooV69emnTpk12rAyoXrm5uZKuBilUr+LiYi1dulQXLlxQWFiYvctxKvHx8br//vut/gxA9Th48KB8fX0VEBCgmJgYHT161N4lOY1//vOf6ty5swYPHqxGjRopNDRU7733nr3LIsSW1+nTp1VcXGyZoPeaxo0bKzs7205VAdWrpKRE48ePV3h4uNq1a2fvcpzGzp075e7uLjc3Nz311FNauXKl2rRpY++ynMbSpUv1/fffKyEhwd6lOJ2uXbvqgw8+0KpVqzR//nxlZmbqnnvusUyOj6r1448/av78+WrVqpVWr16t0aNH6+mnn7ZpVa2q5HLzSwDAWnx8vHbt2sWYtGoWHBysjIwM5ebmavny5YqNjVVqaipBthocO3ZM48aN05o1a1SrVi17l+N0+vXrZ/ncvn17de3aVX5+fvr0008ZTlMNSkpK1LlzZ82YMUOSFBoaql27dmnBggWKjY21W130xJZTgwYNZDabdfLkSavjJ0+elLe3t52qAqrPmDFj9K9//UvJyclq2rSpvctxKq6urgoMDNSdd96phIQEdejQQW+//ba9y3IK27ZtU05Ojjp16iQXFxe5uLgoNTVV77zzjlxcXG66PCYqV926dRUUFKRDhw7ZuxSn4OPjU+ovy61bt7b7kA5CbDm5urrqzjvv1Nq1ay3HSkpKtHbtWsam4TfNMAyNGTNGK1eu1Lp169SiRQt7l+T0SkpKVFhYaO8ynMK9996rnTt3KiMjw7J17txZMTExysjIkNlstneJTqWgoECHDx+Wj4+PvUtxCuHh4aWmVDxw4ID8/PzsVNFVDCeogGeeeUaxsbHq3LmzunTpolmzZunChQuKi4uzd2m/eQUFBVZ/887MzFRGRobq16+v5s2b27Gy3774+Hh98skn+vLLL+Xh4WEZA+7p6anatWvbubrfvsmTJ6tfv35q3ry58vPz9cknnyglJUWrV6+2d2lOwcPDo9T47zp16sjLy4tx4dVg4sSJ6t+/v/z8/HTixAlNmTJFZrNZ0dHR9i7NKUyYMEHdu3fXjBkz9OijjyotLU0LFy7UwoUL7VuYgQqZPXu20bx5c8PV1dXo0qWLsXnzZnuX5BSSk5MNSaW22NhYe5f2m1fWc5dkLFq0yN6lOYURI0YYfn5+hqurq9GwYUPj3nvvNb7++mt7l+XUIiIijHHjxtm7DKcwZMgQw8fHx3B1dTWaNGliDBkyxDh06JC9y3IqX331ldGuXTvDzc3NCAkJMRYuXGjvkgzmiQUAAIDDYUwsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAHACR44ckclkUkZGhr1LAYBKQYgFgAoYPny4Bg4caNmPjIzU+PHj7VZPZmam/vCHP8jX11e1atVS06ZNNWDAAO3bt0+S1KxZM2VlZbFEKoDfDBd7FwAAuDVXrlxR7969FRwcrM8//1w+Pj46fvy4kpKSdP78eUmS2WyWt7e3fQsFgEpETywA3KLhw4crNTVVb7/9tkwmk0wmk44cOSJJ2rVrl/r16yd3d3c1btxYw4YN0+nTpy33RkZGauzYsRo/frzq1aunxo0b67333tOFCxcUFxcnDw8PBQYGKikp6brfv3v3bh0+fFjz5s1Tt27d5Ofnp/DwcE2bNk3dunWTVHo4wfDhwy21/nJLSUmRJBUWFmrixIlq0qSJ6tSpo65du1rOAcD/AkIsANyit99+W2FhYXriiSeUlZWlrKwsNWvWTOfPn1fPnj0VGhqq9PR0rVq1SidPntSjjz5qdf/ixYvVoEEDpaWlaezYsRo9erQGDx6s7t276/vvv9d9992nYcOG6b///W+Z39+wYUPVqFFDy5cvV3Fxsc01X6s1KytL48aNU6NGjRQSEiJJGjNmjDZt2qSlS5fqhx9+0ODBg9W3b18dPHjw1h4WAFQSk2EYhr2LAABHM3z4cJ0/f15ffPGFpKs9qh07dtSsWbMs10ybNk0bNmzQ6tWrLceOHz+uZs2aaf/+/QoKClJkZKSKi4u1YcMGSVJxcbE8PT01aNAgffjhh5Kk7Oxs+fj4aNOmTZae1V+bO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKs9sS1atND27dvVsWNHq3s///xzxcTE6JtvvlF4eLiOHj2qgIAAHT16VL6+vpbrevXqpS5dumjGjBm3+vgA4JbREwsAVWTHjh1KTk6Wu7u7ZbvW03n48GHLde3bt7d8NpvN8vLy0h133GE51rhxY0lSTk7Odb8rPj5e2dnZ+vjjjxUWFqbPPvtMbdu21Zo1a25Y4/bt2zVs2DDNmTNH4eHhkqSdO3equLhYQUFBVrWnpqZa1Q0A9sSLXQBQRQoKCtS/f3+99tprpc75+PhYPtesWdPqnMlksjpmMpkkSSUlJTf8Pg8PD/Xv31/9+/fXtGnT1KdPH02bNk29e/cu8/rs7Gw9+OCDevzxxzVy5Eirus1ms7Zt2yaz2Wx1j7u7+w1rAIDqQogFgErg6upaajxqp06dtGLFCvn7+8vFpXp/uzWZTAoJCdF3331X5vlLly5pwIABCgkJ0Ztvvml1LjQ0VMXFxcrJydE999xTHeUCQLkxnAAAKoG/v7+2bNmiI0eO6PTp0yopKVF8fLzOnj2r6Ohobd26VYcPH9bq1asVFxdn8wtYtsjIyNCAAQO0fPly7dmzR4cOHVJiYqLef/99DRgwoMx7Ro0apWPHjumdd97RqVOnlJ2drezsbF2+fFlBQUGKiYnRY489ps8//1yZmZlKS0tTQkKC/v3vf1da3QBwK+iJBYBKMHHiRMXGxqpNmza6ePGiMjMz5e/vr40bN+r555/Xfffdp8LCQvn5+alv376qUaPy+hCaNm0qf39/vfzyy5aptK7tT5gwocx7UlNTlZWVpTZt2lgdT05OVmRkpBYtWqRp06bpT3/6k37++Wc1aNBA3bp10wMPPFBpdQPArWB2AgAAADgchhMAAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAw3GxdwEAAAD47YuLi7PpukWLFtl0nckwDONWCgIAAABuxmw2q2/fvnJzc5MkXbhwQevWrVP//v0lSYWFhUpKSlJJSYlN7RFiAQAAUOXMZrNOnDihxo0bS5IyMzPVvn175efnS5JOnTqlxo0b2xxiGRMLAACAavfrftTy9qsSYgEAAFDlPDw8dO7cOcv+uXPndOHCBRUUFEiSsrOzVb9+fZvbI8QCAACgyoWEhGj27NkqKSlRSUmJ5s2bJ19fX02cOFEbN27Uiy++qLvuusvm9hgTCwAAgCr3xRdf6JFHHlGdOnVUUlKiOnXqaNWqVfr973+vgwcPqlmzZvrqq690xx132NQeIRYAAADVYv369frqq69Uu3ZtPfHEE2rWrJkk6cyZM/Ly8ipXW4RYAAAAOBzGxAIAAMDhsGIXAAAAqpzZbLZpGi1b54klxAIAAKBavPXWW2rRokWltMWY2AoyDEP5+fny8PCQyWSydzkAAAD/08xms77//nt16NChUtpjTGwF5efny9PT07JUGgDgt80wDF26dEmXLl0q98pCACofIRYAABsUFhZq8ODBGjx4sAoLC+1dDuD0CLEAANjg0qVLZX4GYB+82AUAAIAqt2HDBrVq1UqSdO7cOeXl5ZV5nZ+fn03tEWIBAABQ5cLCwvTaa6/pzTff1OnTp0udN5lMMgyDKbYAAKhMv/yD1dY/ZAH8v3nz5unNN9/UCy+8oDvvvFOenp631B4hFgAAG/xyNpr8/HzVr1/fjtUAjue9997TrFmz9Ic//KFS2qvQi13Hjh3TiBEj5OvrK1dXV/n5+WncuHE6c+aM5ZrIyEiZTCaZTCbVqlVLQUFBSkhIKHNakk2bNslsNuv+++8vde7IkSMymUxq1KhRqemsOnbsqKlTp1odO3TokEaMGKHmzZvLzc1NTZo00b333quPP/5YRUVFluuu1fbrbenSpRV5JAAAALiBw4cPq1u3bpXWXrlD7I8//qjOnTvr4MGDWrJkiQ4dOqQFCxZo7dq1CgsL09mzZy3XPvHEE8rKytL+/fs1efJkvfTSS1qwYEGpNhMTEzV27FitX79eJ06cKPN78/Pz9frrr9+wtrS0NHXq1El79+7V3LlztWvXLqWkpOjxxx/X/PnztXv3bqvrFy1apKysLKtt4MCB5X0kAAAAuIn69euXORa2osodYuPj4+Xq6qqvv/5aERERat68ufr166dvvvlGP//8s1588UXLtbfddpu8vb3l5+enuLg4tW/fXmvWrLFqr6CgQMuWLdPo0aN1//3364MPPijze8eOHas333xTOTk5ZZ43DEPDhw9XUFCQNm7cqP79+6tVq1Zq1aqVoqOj9e2336p9+/ZW99StW1fe3t5WW61atcr7SAAAAHAT4eHhevXVV687K0F5lSvEnj17VqtXr9Yf//hH1a5d2+qct7e3YmJitGzZslJDBgzD0IYNG7Rv3z65urpanfv0008VEhKi4OBgDR06VO+//36ZQw6io6MVGBioV155pczaMjIytHfvXk2cOFE1apT9Y93K8rCFhYXKy8uz2gAAAGCbmTNnau/evWrSpIlCQ0MVFRVV5marcoXYgwcPyjAMtW7duszzrVu31rlz53Tq1ClJV99Cc3d3l5ubm3r06KGSkhI9/fTTVvckJiZq6NChkqS+ffsqNzdXqamppdo2mUyaOXOmFi5cqMOHD5c6f+DAAUlScHCw5VhOTo7c3d0t27x586zuiY6Otjrv7u6uo0ePlvmzJSQkyNPT07I1a9bseo8JAAAAv9K8eXPt3r1bCxcu1MCBAxUaGlrmZqsKzU5g65rRMTExevHFF3Xu3DlNmTJF3bt3V/fu3S3n9+/fr7S0NK1cufJqMS4uGjJkiBITExUZGVmqvT59+ujuu+/WX/7yF33yySc3/X4vLy9lZGRIuvqi2eXLl63Ov/XWW+rVq5fVMV9f3zLbmjx5sp555hnLfl5eHkEWAACgHNzc3BQdHV0pbZUrxAYGBspkMmnv3r166KGHSp3fu3ev6tWrp4YNG0qSPD09FRgYKOnqsIHAwEB169bNEhwTExNVVFRkFRwNw5Cbm5vmzJlT5vxhM2fOVFhYmJ599lmr49dWgNi/f78lxZvNZsv3u7iU/lG9vb0t52/Gzc1Nbm5uNl0LAACAqlWu4QReXl7q3bu35s2bp4sXL1qdy87O1scff6whQ4aUOfbU3d1d48aN08SJE2UYhoqKivThhx/qjTfeUEZGhmXbsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/11JqEGAAD4H9OiRYubbv7+/ja3V+7hBHPmzFH37t3Vp08fTZs2TS1atNDu3bv17LPPqkmTJpo+ffp17x01apReffVVrVixQi4uLjp37pxGjhxZqsf14YcfVmJiop566qky25k+fbratm1r1btqMpm0aNEi9e7dW+Hh4Zo8ebJat26tK1euaP369Tp16pTMZrNVO+fPn1d2drbVMQ8PD9WpU6e8jwUAAAA3cPToUb3yyivy8PCQJJ0+fVp/+9vf9Nprr0m6OmPVn//8Z9sbNCrgyJEjRmxsrNG4cWOjZs2aRrNmzYyxY8cap0+ftlwTERFhjBs3rtS9o0aNMtq2bWs88MADxu9+97sy29+yZYshydixY4eRmZlpSDK2b99udc2TTz5pSDKmTJlidXz//v1GbGys0bRpU8PFxcXw9PQ0evToYbz77rvGlStXLNdJKnNLSEiw6Rnk5uYakozc3FybrgcAOLYjR44YDzzwgPHAAw8YR44csXc5gMOpUaOGkZ2dbdk/fPiw4e7ubtk/efKkYTKZbG7PZBg2vqUFK3l5efL09FRubq5uv/12e5cDAKhiZ8+eVWxsrCRp8eLFLDsLlJPZbNaJEyfUuHFjSVcX0OrQoYNlRdacnBx5e3vbPCy0QsvOAgDgbH45B/n15iMHUH34vxAAAAB28evJAMqzMBUhFgAAG/xyWXKWKAfKb9SoUbrtttss+02aNFFSUpJl38PDQwkJCTa3x5jYCmJMLAA4F8MwVFhYKOnq3OG3spQ5gFtXoRW7AABwNiaTiR5Y4H8IwwkAAADgcAixAAAAcDiEWAAAANidYRj66aefbL6eEAsAAAC7O3XqlFq0aGHz9YRYAAAA/E9gnlgAAAA4nPLM/FrlU2wtWLBAzz77rM6dOycXl6tfV1BQoHr16ik8PFwpKSmWa1NSUhQVFaVDhw7p3nvv1fjx4zV+/Hir9qZOnaovvvhCGRkZpfb9/f1vOJYiNjZWH3zwwXVT/pIlS/T73//+ln5eAAAAlPbyyy/f8HxBQUG52qvyEBsVFaWCggKlp6erW7dukqQNGzbI29tbW7Zs0aVLlyzz7iUnJ6t58+Zq2bJlhb5r69atKi4uliR99913evjhh7V//37LYgS1a9e2XLto0SL17dvX6v66detW6HsBAABwY19++eUNzxcVFZWrvSoPscHBwfLx8VFKSoolxKakpGjAgAFat26dNm/erMjISMvxqKioCn9Xw4YNLZ/r168vSWrUqFGZ4bRu3bry9vau8HcBAADAdt9///0Nz586dUqNGze2ub1qGRMbFRWl5ORky35ycrIiIyMVERFhOX7x4kVt2bLllkJsVSosLFReXp7VBgAAgMpRnvGwUjWG2I0bN6qoqEj5+fnavn27IiIi1KNHD8uY2E2bNqmwsNAqxD7//PNyd3e32mbMmFEpNUVHR5dq++jRo9e9PiEhQZ6enpatWbNmlVIHAAAArirP7ARVPpxAkiIjI3XhwgVt3bpV586dU1BQkBo2bKiIiAjFxcXp0qVLSklJUUBAgJo3b26579lnn9Xw4cOt2nrnnXe0fv36W67prbfeUq9evayO+fr6Xvf6yZMn65lnnrHs5+XlEWQBAAAqiaen501f/vqlagmxgYGBatq0qZKTk3Xu3DlFRERIuhoamzVrpu+++07Jycnq2bOn1X0NGjRQYGCg1bFrY11vlbe3d6m2b8TNzU1ubm6V8t0AAAD4f6dPn9ZTTz2lVatW6c9//rNN91TbPLFRUVFKSUlRSkqK5UUuSerRo4eSkpKUlpb2PzseFgAAAFXjyy+/VLt27XTy5En98MMPNt9XLT2x0tUQGx8frytXrlh6YiUpIiJCY8aM0eXLl6s1xJ4/f17Z2dlWxzw8PFSnTp1qqwEAAMBZ/Hou/6KiIr366qv67LPP9Oqrr1oN27RFtYbYixcvKiQkxGr6hIiICOXn51um4qoucXFxpY4lJCRo0qRJ1VYDAACAswgICJBhGDKZTJb/mkwmrVq1qtR7SrYwGeWdzwCSrr7Y5enpqdzcXMtiCgAAACjbr4cKFBUVafr06UpOTtabb75Z6mX+myHEVhAhFgAA4NZ99NFHevrppxUWFqb33nvvhrNF/VK1vdgFAAAA/NrQoUO1a9cuFRUVqV27djbfV21jYgEAAICy+Pr6avXq1Zo3b57N9zCcoIIYTgAAAGA/9MRW0LXsn5eXZ+dKAAAAqo+Hh0e5loe95trsBDdiGIaOHDliU3uE2Ao6c+aMJLH0LAAAcCo5OTlq2LBhue8bP3685fPp06f1t7/9Ta+99prlWEFBgc2rdUkMJ6iw8+fPq169ejp69Kg8PT3tXY7TycvLU7NmzXTs2DGGc9gBz9++eP72w7O3L56/fV17/ufPn7/l7PPjjz+qQ4cOys/PtxzLycmRt7e3SkpKbGqDntgKqlHj6sQOnp6e/I9kR7fffjvP3454/vbF87cfnr198fztqyJDCX7N3d1dly5d0uXLl+Xq6irpaki+7bbbbG6DKbYAAABQrRo1aiQPDw+98cYbkqTi4mK9/vrrCg4OtrkNemIBAABQ7V544QU9//zz+utf/6orV67o4sWLWrZsmc33E2IryM3NTVOmTJGbm5u9S3FKPH/74vnbF8/ffnj29sXzt6/Kfv4TJ05Uu3bttHbtWrm6uqp///7q1q2bzffzYhcAAAAcDj2xAAAAqHIvv/yyTddNmTLFpuvoiQUAAECVM5vNatu2rVxcrvahXr58Wfv27VP79u0lSUVFRdq1a5fNU2wRYgEAAFDlzGazTpw4ocaNG0uSMjMz1b59e8tcsadOnZK3t7eKi4ttao8ptgAAAFDtft2PahjGTZel/SVCbAXNnTtX/v7+qlWrlrp27aq0tDR7l+QU1q9fr/79+8vX11cmk0lffPGFvUtyGgkJCbrrrrvk4eGhRo0aaeDAgdq/f7+9y3Ia8+fPV/v27S2TvIeFhSkpKcneZTmtmTNnymQyWS2jiaozdepUmUwmqy0kJMTeZTmVn3/+WUOHDpWXl5dq166tO+64Q+np6XatiRBbAcuWLdMzzzyjKVOm6Pvvv1eHDh3Up08f5eTk2Lu037wLFy6oQ4cOmjt3rr1LcTqpqamKj4/X5s2btWbNGl25ckX33XefLly4YO/SnELTpk01c+ZMbdu2Tenp6erZs6cGDBig3bt327s0p7N161a9++67lnF8qB5t27ZVVlaWZfv222/tXZLTOHfunMLDw1WzZk0lJSVpz549euONN1SvXr1ytVNWL+strf5loNy6dOlixMfHW/aLi4sNX19fIyEhwY5VOR9JxsqVK+1dhtPKyckxJBmpqan2LsVp1atXz/j73/9u7zKcSn5+vtGqVStjzZo1RkREhDFu3Dh7l+QUpkyZYnTo0MHeZTit559/3rj77rtvuZ3atWsbJ0+etOyfOnXKGD16tGX/zJkzRuvWrW1uj57Ycrp8+bK2bdumXr16WY7VqFFDvXr10qZNm+xYGVC9cnNzJUn169e3cyXOp7i4WEuXLtWFCxcUFhZm73KcSnx8vO6//36rPwNQPQ4ePChfX18FBAQoJiZGR48etXdJTuOf//ynOnfurMGDB6tRo0YKDQ3Ve++9V+52/vvf/6pRo0aW/QYNGmjevHmW/fr162vPnj02t0eILafTp0+ruLjY8mbdNY0bN1Z2dradqgKqV0lJicaPH6/w8HC1a9fO3uU4jZ07d8rd3V1ubm566qmntHLlSrVp08beZTmNpUuX6vvvv1dCQoK9S3E6Xbt21QcffKBVq1Zp/vz5yszM1D333GN5qx1V68cff9T8+fPVqlUrrV69WqNHj9bTTz+txYsX27UuFjsAUG7x8fHatWsXY9KqWXBwsDIyMpSbm6vly5crNjZWqampBNlqcOzYMY0bN05r1qxRrVq17F2O0+nXr5/lc/v27dW1a1f5+fnp008/1ciRI+1YmXMoKSlR586dNWPGDElSaGiodu3apQULFig2NtZuddETW04NGjSQ2WzWyZMnrY6fPHlS3t7edqoKqD5jxozRv/71LyUnJ6tp06b2LsepuLq6KjAwUHfeeacSEhLUoUMHvf322/Yuyyls27ZNOTk56tSpk1xcXOTi4qLU1FS98847cnFxsXleS1SOunXrKigoSIcOHbJ3KU7Bx8en1F+WW7dubfchHYTYcnJ1ddWdd96ptWvXWo6VlJRo7dq1jE3Db5phGBozZoxWrlypdevWqUWLFvYuyemVlJSosLDQ3mU4hXvvvVc7d+5URkaGZevcubNiYmKUkZEhs9ls7xKdSkFBgQ4fPiwfHx97l+IUwsPDS02peODAAfn5+dmpoqsYTlABzzzzjGJjY9W5c2d16dJFs2bN0oULFxQXF2fv0n7zCgoKrP7mnZmZqYyMDNWvX1/Nmze3Y2W/ffHx8frkk0/05ZdfysPDwzIG3NPTU7Vr17Zzdb99kydPVr9+/dS8eXPl5+frk08+UUpKilavXm3v0pyCh4dHqfHfderUkZeXF+PCq8HEiRPVv39/+fn56cSJE5oyZYrMZrOio6PtXZpTmDBhgrp3764ZM2bo0UcfVVpamhYuXKiFCxfat7Bbni/BSc2ePdto3ry54erqanTp0sXYvHmzvUtyCsnJyYakUltsbKy9S/vNK+u5SzIWLVpk79KcwogRIww/Pz/D1dXVaNiwoXHvvfcaX3/9tb3LcmpMsVV9hgwZYvj4+Biurq5GkyZNjCFDhhiHDh2yd1lO5auvvjLatWtnuLm5GSEhIcbChQvtXZJhMoxyrO8FAAAA/A9gTCwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAcAJHjhyRyWRSRkaGvUsBgEpBiAWAChg+fLgGDhxo2Y+MjNT48ePtVk9mZqb+8Ic/yNfXV7Vq1VLTpk01YMAA7du3T5LUrFkzZWVlsUQqgN8MF3sXAAC4NVeuXFHv3r0VHByszz//XD4+Pjp+/LiSkpJ0/vx5SZLZbJa3t7d9CwWASkRPLADcouHDhys1NVVvv/22TCaTTCaTjhw5IknatWuX+vXrJ3d3dzVu3FjDhg3T6dOnLfdGRkZq7NixGj9+vOrVq6fGjRvrvffe04ULFxQXFycPDw8FBgYqKSnput+/e/duHT58WPPmzVO3bt3k5+en8PBwTZs2Td26dZNUejjB8OHDLbX+cktJSZEkFRYWauLEiWrSpInq1Kmjrl27Ws4BwP8CQiwA3KK3335bYWFheuKJJ5SVlaWsrCw1a9ZM58+fV8+ePRUaGqr09HStWrVKJ0+e1KOPPmp1/+LFi9WgQQOlpaVp7NixGj16tAYPHqzu3bvr+++/13333adhw4bpv//9b5nf37BhQ9WoUUPLly9XcXGxzTVfqzUrK0vjxo1To0aNFBISIkkaM2aMNm3apKVLl+qHH37Q4MGD1bdvXx08ePDWHhYAVBKTYRiGvYsAAEczfPhwnT9/Xl988YWkqz2qHTt21KxZsyzXTJs2TRs2bNDq1astx44fP65mzZpp//79CgoKUmRkpIqLi7VhwwZJUnFxsTw9PTVo0CB9+OGHkqTs7Gz5+Pho06ZNlp7VX5s7d66ee+45mc1mde7cWVFRUYqJiVFAQICkqz2xLVq00Pbt29WxY0erez///HPFxMTom2++UXh4uI4ePaqAgAAdPXpUvr6+lut69eqlLl26aMaMGbf6+ADgltETCwBVZMeOHUpOTpa7u7tlu9bTefjwYct17du3t3w2m83y8vLSHXfcYTnWuHFjSVJOTs51vys+Pl7Z2dn6+OOPFRYWps8++0xt27bVmjVrbljj9u3bNWzYMM2ZM0fh4eGSpJ07d6q4uFhBQUFWtaemplrVDQD2xItdAFBFCgoK1L9/f7322mulzvn4+Fg+16xZ0+qcyWSyOmYymSRJJSUlN/w+Dw8P9e/fX/3799e0adPUp08fTZs2Tb179y7z+uzsbD344IN6/PHHNXLkSKu6zWaztm3bJrPZbHWPu7v7DWsAgOpCiAWASuDq6lpqPGqnTp20YsUK+fv7y8Wlen+7NZlMCgkJ0XfffVfm+UuXLmnAgAEKCQnRm2++aXUuNDRUxcXFysnJ0T333FMd5QJAuTGcAAAqgb+/v7Zs2aIjR47o9OnTKikpUXx8vM6ePavo6Ght3bpVhw8f1urVqxUXF2fzC1i2yMjI0IABA7R8+XLt2bNHhw4dUmJiot5//30NGDCgzHtGjRqlY8eO6Z133tGpU6eUnZ2t7OxsXb58WUFBQYqJidFjjz2mzz//XJmZmUpLS1NCQoL+/e9/V1rdAHAr6IkFgEowceJExcbGqk2bNrp48aIyMzPl7++vjRs36vnnn9d9992nwsJC+fn5qW/fvqpRo/L6EJo2bSp/f3+9/PLLlqm0ru1PmDChzHtSU1OVlZWlNm3aWB1PTk5WZGSkFi1apGnTpulPf/qTfv75ZzVo0EDdunXTAw88UGl1A8CtYHYCAAAAOByGEwAAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACH42LvAgAAAPDbFxcXZ9N1ixYtsuk6QiwAAACqXG5urtX+zz//rB07duh3v/tdhdojxAIAAKDKff7555bPx44dU2RkpK5cuaKgoCDNnDmz3O0xJhYAAADV5vjx44qMjFSTJk20du1azZ8/X3/961/L3Q49sQAAAKgWJ06cUFRUlHx9fZWUlKQ6deroyy+/1P3336/69evr8ccft7ktQiwAAACqXFZWliIjI9W4cWOtWrVKderUkSRFRkZqyZIlGjJkiOrWratHHnnEpvZMhmEYVVkwAAAAEBISIi8vL61evVru7u6lzn/44YcaNWqULl68aFN79MQCAACgynl5eWnVqlVlBlhJeuyxx3TmzBmb26MnFgAAAFWuoKDgugG2IgixAAAAqHK2LHZgGIY++OADm9ojxAIAAKDKDRo06LrniouL9c033+jixYsqKSmxqT3GxAIAAKDK/XKxg1/68ssv9cILL6hWrVqaMmWKze2x2AEAAACq3YYNG9S9e3dFR0frgQce0I8//qjnnnvO5vsJsQAAAKg2u3btUv/+/XXvvfeqbdu2OnTokF577TV5enqWqx1CLAAAAKrcTz/9pNjYWHXs2FEuLi7auXOn3nvvPfn6+laoPV7sAgAAQJWrVauWatSooaefflphYWHXvW7AgAE2tUeIBQAAQJVzcXHRzWKnYRg2z05AiAUAAIDDYUwsAAAAHA7zxAIAAKDa7NmzR/v371deXl6Z52NjY21qh+EEAAAAqHJ5eXl69NFHtWbNGrm4uKhOnTqlrjEMQ+fOnbOpPXpiAQAAUOWmTJminJwcbdu2TR07drzl9uiJBQAAQJULCgrSggUL1LNnz0ppjxe7AAAAUOVOnDihgICASmuPEAsAAIAq17RpU+3bt6/S2mNMLAAAAKrcoEGDNGHCBLm6uurOO++Up6fnLbXHmFgAAABUuf/+97964okntHTp0huu3MWKXQAAAPifk5WVpQMHDig3N7fM8w8++KBN7RBiK8gwDOXn58vDw0Mmk8ne5QAAADgVxsRWUH5+vjw9PZWbm6vbb7/d3uUAAAA4hLS0NH3yySc6cOCATCaTAgMDFRMToy5dupSrHWYnAADABoZh6NKlS7p06dINx/MBuL5JkyYpLCxMixYtUlZWlk6cOKEPPvhA3bp104svvliutgixAADYoLCwUIMHD9bgwYNVWFho73IAh7N8+XK9+eabmjVrls6ePavt27dr+/btOnv2rN555x399a9/1YoVK2xujxALAIANLl26VOZnALaZO3euJkyYoLFjx8psNluOm81mjRkzRn/60580Z84cm9sjxAIAAKDKbd++XQ899NB1zw8cOFDbt2+3uT1CLAAANvjl3JW2zmMJ4P+VlJTI19f3uud9fX1VXFxsc3uEWAAAbJCfn1/mZwC2admypQ4ePHjd8wcPHlTLli1tbq9CIfbYsWMaMWKEfH195erqKj8/P40bN05nzpyxXBMZGSmTySSTyaRatWopKChICQkJZb7RuWnTJpnNZt1///2lzh05ckQmk0mNGjUq9ZtGx44dNXXqVKtjhw4d0ogRI9S8eXO5ubmpSZMmuvfee/Xxxx+rqKjIct212n69LV26tCKPBAAAADfwyCOP6N13373u+QULFujhhx+2ub1yh9gff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W11+b3uGX28CBA8v7SAAAAHATY8eO1T333FPmSl15eXnq0aOHxowZY3N75V7sID4+Xq6urvr6669Vu3ZtSVLz5s0VGhqqli1b6sUXX9T8+fMlSbfddpu8vb0lSXFxcZozZ47WrFmj0aNHW9orKCjQsmXLlJ6eruzsbH3wwQd64YUXSn3v2LFj9eabbyo+Pl6NGjUqdd4wDA0fPlxBQUHauHGjatT4/3zeqlUrRUdHl+oFrlu3rqU+AAAAVJ3bb79dY8eOLfe56ylXiD179qxWr16t6dOnWwLsNd7e3oqJidGyZcs0b948q3OGYejbb7/Vvn371KpVK6tzn376qUJCQhQcHKyhQ4dq/Pjxmjx5cqmlXKOjo7VmzRq98sorZU6/kJGRob1792rJkiVWAfaXWB4WAADAPhYvXmzTdbGxsTZdV64Qe/DgQRmGodatW5d5vnXr1jp37pxOnTolSZo3b57+/ve/6/Lly7py5Ypq1aqlp59+2uqexMREDR06VJLUt29f5ebmKjU1VZGRkVbXmUwmzZw5U/3799eECRNKDfw9cOCAJCk4ONhyLCcnRwEBAZb9v/71r/rjH/9o2Y+Ojraap0yS9uzZo+bNm5f62QoLC60mt87LyyvzGQAAAKC0CRMmWO0XFRXp4sWL8vDwsBwzDMPmEFuhF7tsXW4vJiZGGRkZ2rhxo/r166cXX3xR3bt3t5zfv3+/0tLSFB0dLUlycXHRkCFDlJiYWGZ7ffr00d13362//OUvNn2/l5eXMjIylJGRobp16+ry5ctW59966y3L+Wvb9aZ+SEhIkKenp2Vr1qyZTTUAAADg6r/oX9tOnjype+65R5L0/vvvW46fO3fO5vbKFWIDAwNlMpm0d+/eMs/v3btX9erVU8OGDSVJnp6eCgwM1F133aVPP/1Uc+bM0TfffGO5PjExUUVFRfL19ZWLi4tcXFw0f/58rVixosxBv5I0c+ZMLVu2rNRkuNeGKezfv99yzGw2KzAwUIGBgXJxKd3p7O3tbTl/o+skafLkycrNzbVsx44du8GTAgAAQFkuX76shx56SBkZGXrxxRf1hz/8QevWrSt3O+UKsV5eXurdu7fmzZunixcvWp3Lzs7Wxx9/rCFDhpQ59tTd3V3jxo3TxIkTZRiGioqK9OGHH+qNN96w6gndsWOHfH19tWTJkjJr6NKliwYNGqRJkyZZHQ8NDVVISIhef/31KpmE2s3NTbfffrvVBgAAANsVFRXpkUce0bZt27R27VpNnTpVr7zyigYOHKitW7eWq61yz04wZ84cde/eXX369NG0adPUokUL7d69W88++6yaNGmi6dOnX/feUaNG6dVXX9WKFSvk4uKic+fOaeTIkfL09LS67uGHH1ZiYqKeeuqpMtuZPn262rZta9VrajKZtGjRIvXu3Vvh4eGaPHmyWrdurStXrmj9+vU6depUqfGv58+fV3Z2ttUxDw8P1alTp7yPBQAAADdQXFysRx55RFu3blVycrJCQkIkSRMnTtTZs2f1u9/9TuvXr7/uu1e/Vu4xsa1atVJ6eroCAgL06KOPqmXLlnryyScVFRWlTZs2qX79+te9t379+nrsscc0depUJSYmqlevXqUCrHQ1xKanp+uHH34os52goCCNGDFCly5dsjrerVs3bdu2TcHBwYqPj1ebNm3UvXt3LVmyRG+99ZbV1F7S1Wm/fHx8rLbZs2eX95EAAADgJgYPHqzNmzdr3bp1lgB7zYwZM/Twww+rT58+NrdnMmx9SwtW8vLy5OnpqdzcXIYWAIATOHv2rOWt6cWLF9+w0wZAad7e3lq3bp3atGlz3WuGDBmiZcuW2dRehWYnAADA2fxyDvLrzUcO4PpuFmAl6eOPP7a5vXKPiQUAAADKa+vWrTd9eevaCqy2IMQCAACgyo0YMUJ16tS57nSmEiEWAIBKV6tWrTI/A7Ddhg0b1KFDh0ppixALAIAN3Nzc9Nlnn1k+A7AvQiwAADYwmUz0wAL/Q3i9EgAAAA6HEAsAAIAq17Jly0odisNwAgAAAFS5AwcOVGp7hFgAAABUubi4OJuuW7RokU3XsexsBbHsLAAAgO3MZrP69u1rGVJw4cIFrVu3Tv3795ckFRYWKikpSSUlJTa1R4itIEIsAACA7cxms06cOKHGjRtLkjIzM9W+fXvl5+dLkk6dOiVvb28VFxfb1F6Vv9i1YMECeXh4qKioyHKsoKBANWvWVGRkpNW1KSkpMplMOnz4sPz9/TVr1qxS7U2dOlUdO3Ysc9/f318mk+m627UVIK53funSpZX80wMAAKAsv+5HNQyj1LEbqfIxsVFRUSooKFB6erq6desm6epqDd7e3tqyZYsuXbpkmXcvOTlZzZs3V8uWLSv0XVu3brWk9++++04PP/yw9u/fb+kprV27tuXaRYsWqW/fvlb3161bt0LfCwAAgOpV5SE2ODhYPj4+SklJsYTYlJQUDRgwQOvWrdPmzZstPbIpKSmKioqq8Hc1bNjQ8rl+/fqSpEaNGpUZTuvWrStvb+8KfxcAAABujclkuuH+jVTLPLFRUVFKTk627CcnJysyMlIRERGW4xcvXtSWLVtuKcRWpcLCQuXl5VltAAAAsE1wcLBcXP6//7R+/fp64YUXLPtubm7q06ePze1VW4jduHGjioqKlJ+fr+3btysiIkI9evRQSkqKJGnTpk0qLCy0CrHPP/+83N3drbYZM2ZUSk3R0dGl2j569Oh1r09ISJCnp6dla9asWaXUAQAA4Az27NkjLy8vy37dunU1adIky76np6f+85//2NxetcwTGxkZqQsXLmjr1q06d+6cgoKC1LBhQ0VERCguLk6XLl1SSkqKAgIC1Lx5c8t9zz77rOVlrGveeecdrV+//pZreuutt9SrVy+rY76+vte9fvLkyXrmmWcs+3l5eQRZAAAAO6mWEBsYGKimTZsqOTlZ586dU0REhKSrobFZs2b67rvvlJycrJ49e1rd16BBAwUGBloduzbW9VZ5e3uXavtG3NzcKnWpNAAAAFRctQwnkK4OKUhJSVFKSorV1Fo9evRQUlKS0tLS/mfHwwIAAOB/S7UtOxsVFaX4+HhduXLF0hMrSRERERozZowuX75crSH2/Pnzys7Otjrm4eGhOnXqVFsNAAAAqJhq7Ym9ePGiAgMDLSs1SFdDbH5+vmUqruoSFxcnHx8fq2327NnV9v0AAACoOJadrSCWnQUAALDdyy+/bNN1U6ZMsek6QmwFEWIBAABs16lTJ6v9y5cva9++fWrfvr3lmGEY2r59u03tEWIriBALAABQcZmZmWrfvr3y8/MrdH+1jYkFAAAArrnVftRqm53gt+bag2f5WQAA4Ew8PDxkMpnsXQYhtqLOnDkjSazaBQAAnEpOTo4aNmxo7zIIsRV1beWwo0ePytPT087VOJ9ry/4eO3aMMcl2wPO3L56//fDs7Yvnb1/Xnr+rq2uF7v/pp5+s9o8fPy7DMHTkyBGrnl0/Pz+b2iPEVlCNGleHE3t6evI/kh3dfvvtPH874vnbF8/ffnj29sXzt6+KDiUICAiwGgd7rZ2AgADLvmEYKikpsak9QiwAAACqnK1TZ9mKEAsAAIAq98v5YCsDIbaC3NzcNGXKFLm5udm7FKfE87cvnr998fzth2dvXzx/+7rV5//rMbHXY+uYWBY7AAAAQJUzm80yDMMy9vXXGBMLAACA/0nffPONGjRoIOnq7ASPPvqovvvuO0nS2bNn1bNnT5vbIsQCAACgWrRt21aNGzeWJLm7u8tkMlnGyubk5JSrLZadBQAAgMMhxAIAAKDKVfZrWITYCpo7d678/f1Vq1Ytde3aVWlpafYuySmsX79e/fv3l6+vr0wmk7744gt7l+Q0EhISdNddd8nDw0ONGjXSwIEDtX//fnuX5TTmz5+v9u3bWyZ5DwsLU1JSkr3LclozZ86UyWTS+PHj7V2KU5g6dapMJpPVFhISYu+ynMrPP/+soUOHysvLS7Vr19Ydd9yh9PT0crVR1iIJvz5WnoUUCLEVsGzZMj3zzDOaMmWKvv/+e3Xo0EF9+vQp91gOlN+FCxfUoUMHzZ07196lOJ3U1FTFx8dr8+bNWrNmja5cuaL77rtPFy5csHdpTqFp06aaOXOmtm3bpvT0dPXs2VMDBgzQ7t277V2a09m6davefffdSp/zEjfWtm1bZWVlWbZvv/3W3iU5jXPnzik8PFw1a9ZUUlKS9uzZozfeeEP16tUrVztLlixR3bp1LfsBAQHKy8uz7Ht5eWnTpk02t8cUWxXQtWtX3XXXXZozZ44kqaSkRM2aNdPYsWM1adIkO1fnPEwmk1auXKmBAwfauxSndOrUKTVq1Eipqanq0aOHvctxSvXr19ff/vY3jRw50t6lOI2CggJ16tRJ8+bN07Rp09SxY0fNmjXL3mX95k2dOlVffPGFMjIy7F2KU5o0aZI2btyoDRs23FI7b775poYNG6aGDRtWSl30xJbT5cuXtW3bNvXq1ctyrEaNGurVq1e5/vYAOLrc3FxJV4MUqldxcbGWLl2qCxcuKCwszN7lOJX4+Hjdf//9Vn8GoHocPHhQvr6+CggIUExMjI4ePWrvkpzGP//5T3Xu3FmDBw9Wo0aNFBoaqvfee6/c7UyfPl1NmzbVI488oqSkJJvng70eQmw5nT59WsXFxZbpIa5p3LixsrOz7VQVUL1KSko0fvx4hYeHq127dvYux2ns3LlT7u7ucnNz01NPPaWVK1eqTZs29i7LaSxdulTff/+9EhIS7F2K0+natas++OADrVq1SvPnz1dmZqbuuece5efn27s0p/Djjz9q/vz5atWqlVavXq3Ro0fr6aef1uLFi8vVTk5Ojv71r3/Jzc1N999/v/z8/PTnP/9Zhw8frlBdzBMLoNzi4+O1a9cuxqRVs+DgYGVkZCg3N1fLly9XbGysUlNTCbLV4NixYxo3bpzWrFmjWrVq2bscp9OvXz/L5/bt26tr167y8/PTp59+ynCaalBSUqLOnTtrxowZkqTQ0FDt2rVLCxYsUGxsrM3tmM1m9e7dW02aNNFnn32md955Rx999JHuuOMOdevWTSNHjtTDDz9s8/9j9MSWU4MGDWQ2m3Xy5Emr4ydPnpS3t7edqgKqz5gxY/Svf/1LycnJatq0qb3LcSqurq4KDAzUnXfeqYSEBHXo0EFvv/22vctyCtu2bVNOTo46deokFxcXubi4KDU1Ve+8845cXFxUXFxs7xKdSt26dRUUFKRDhw7ZuxSn4OPjU+ovy61bt76lIR2GYeihhx7SihUrlJ2drejoaC1cuFC+vr42t0GILSdXV1fdeeedWrt2reVYSUmJ1q5dy9g0/KYZhqExY8Zo5cqVWrdunVq0aGHvkpxeSUmJCgsL7V2GU7j33nu1c+dOZWRkWLbOnTsrJiZGGRkZMpvN9i7RqRQUFOjw4cPy8fGxdylOITw8vNSUigcOHJCfn1+ltF9cXCzDMGQYhlxcbB8kwHCCCnjmmWcUGxurzp07q0uXLpo1a5YuXLiguLg4e5f2m1dQUGD1N+/MzExlZGSofv36at68uR0r++2Lj4/XJ598oi+//FIeHh6WMeCenp6qXbu2nav77Zs8ebL69eun5s2bKz8/X5988olSUlK0evVqe5fmFDw8PEqN/65Tp468vLwYF14NJk6cqP79+8vPz08nTpzQlClTZDabFR0dbe/SnMKECRPUvXt3zZgxQ48++qjS0tK0cOFCLVy48JbaXb58uT755BOtWrVK99xzj8aOHVu+GYcMVMjs2bON5s2bG66urkaXLl2MzZs327skp5CcnGxIKrXFxsbau7TfvLKeuyRj0aJF9i7NKYwYMcLw8/MzXF1djYYNGxr33nuv8fXXX9u7LKcWERFhjBs3zt5lOIUhQ4YYPj4+hqurq9GkSRNjyJAhxqFDh+xdllP56quvjHbt2hlubm5GSEiIsXDhwnK3cfnyZSMpKcn4wx/+YNSoUcPw9/c3Xn75ZePo0aMVqol5YgEAAFDlvLy89N///lcPPfSQRo4cqXvvvfeW2iPEAgAAoMrNmTNHQ4cOtVq161YQYgEAAOBweLELAAAAVc6WWW0Mw9CRI0dsao+eWAAAAFQ5s9msV155RR4eHmWeLygo0J///Gebl6MlxAIAAKDKmc1mnThxQo0bNy7zfE5Ojry9vW0OsSx2AAAAgCrn6uqqK1euXPf85cuXy7WsMyEWAAAAVc7b21uZmZnXPX/kyJHr9tKWhRALAACAKtetWzf94x//uO75f/zjH+rSpYvN7RFiAcAJHDlyRCaTSRkZGfYuBYCTGj16tN5//3299NJLOnv2rOX4uXPnNHXqVP3973/XU089ZXN7hFgAqIDhw4dbrfEdGRmp8ePH262ezMxM/eEPf5Cvr69q1aqlpk2basCAAdq3b58kqVmzZsrKylK7du3sViMA59ajRw/NnDlTM2fOVMOGDeXt7S0fHx81aNBA06dP17Rp0xQVFWVze8wTCwAO7sqVK+rdu7eCg4P1+eefy8fHR8ePH1dSUpLOnz8v6epbwd7e3vYtFIDTmzhxogYNGqQvvvhCmZmZMgxD/v7+GjBggFq1alW+xgwAQLnFxsYaAwYMsHyWZLVlZmYahmEYO3fuNPr27WvUqVPHaNSokTF06FDj1KlTlnYiIiKMMWPGGOPGjTPq1q1rNGrUyFi4cKFRUFBgDB8+3HB3dzdatmxp/Oc//7luLdu3bzckGUeOHLnuNZmZmYYkY/v27detWZKRnJxsGIZhXLp0yfjTn/5k+Pr6GrfddpvRpUsXyzkA+F/AcAIAuEVvv/22wsLC9MQTTygrK0tZWVlq1qyZzp8/r549eyo0NFTp6elatWqVTp48qUcffdTq/sWLF6tBgwZKS0vT2LFjNXr0aA0ePFjdu3fX999/r/vuu0/Dhg3Tf//73zK/v2HDhqpRo4aWL1+u4uJim2u+VmtWVpbGjRunRo0aKSQkRJI0ZswYbdq0SUuXLtUPP/ygwYMHq2/fvjp48OCtPSwAqCQsdgAAFTB8+HCdP39eX3zxhaSrY2I7duyoWbNmWa6ZNm2aNmzYoNWrV1uOHT9+XM2aNdP+/fsVFBSkyMhIFRcXa8OGDZKk4uJieXp6atCgQfrwww8lSdnZ2fLx8dGmTZvUrVu3MuuZO3eunnvuOZnNZnXu3FlRUVGKiYlRQECApKsvdrVo0ULbt29Xx44dre79/PPPFRMTo2+++Ubh4eE6evSoAgICdPToUfn6+lqu69Wrl7p06aIZM2bc6uMDgFtGTywAVJEdO3YoOTlZ7u7ulu1aT+fhw4ct17Vv397y2Ww2y8vLS3fccYfl2LV5E3Nycq77XfHx8crOztbHH3+ssLAwffbZZ2rbtq3WrFlzwxq3b9+uYcOGac6cOQoPD5ck7dy5U8XFxQoKCrKqPTU11apuALAnXuwCgCpSUFCg/v3767XXXit1zsfHx/K5Zs2aVudMJpPVMZPJJEk3XYrRw8ND/fv3V//+/TVt2jT16dNH06ZNU+/evcu8Pjs7Ww8++KAef/xxjRw50qpus9msbdu2yWw2W93j7u5+wxoAoLoQYgGgEri6upYaj9qpUyetWLFC/v7+cnGp3t9uTSaTQkJC9N1335V5/tKlSxowYIBCQkL05ptvWp0LDQ1VcXGxcnJydM8991RHuQBQbgwnAIBK4O/vry1btujIkSM6ffq0SkpKFB8fr7Nnzyo6Olpbt27V4cOHtXr1asXFxdn8ApYtMjIyNGDAAC1fvlx79uzRoUOHlJiYqPfff18DBgwo855Ro0bp2LFjeuedd3Tq1CllZ2crOztbly9fVlBQkGJiYvTYY4/p888/V2ZmptLS0pSQkKB///vflVY3ANwKemIBoBJMnDhRsbGxatOmjS5evKjMzEz5+/tr48aNev7553XfffepsLBQfn5+6tu3r2rUqLw+hKZNm8rf318vv/yyZWWua/sTJkwo857U1FRlZWWpTZs2VseTk5MVGRmpRYsWadq0afrTn/6kn3/+WQ0aNFC3bt30wAMPVFrdAHArmJ0AAAAADofhBAAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcAixAAAAcDiEWAAAADgcQiwAAAAcDiEWAAAADocQCwAAAIdDiAUAAIDDIcQCAADA4RBiAQAA4HAIsQAAAHA4hFgAAAA4HEIsAAAAHA4hFgAAAA6HEAsAAACHQ4gFAACAwyHEAgAAwOEQYgEAAOBwCLEAAABwOIRYAAAAOBxCLAAAABwOIRYAAAAOhxALAAAAh0OIBQAAgMMhxAIAAMDhEGIBAADgcFzsXQAAAAB+++Li4my6btGiRTZdR4gFAABAlcvNzbXav3DhgtatW6f+/ftXqD2TYRhGZRQGAAAA2CozM1Pt27dXfn5+he5nTCwAAACq3a32oxJiAQAA4HAIsQAAAHA4vNgFAACAKpeammq1//PPP6u4uFgpKSkymUyW4xERETa1x4tdAAAAqHJms1mGYVgF1l8zDEMlJSU2tUdPLAAAAKrcuXPnKrU9emIBAADgcHixCwAAANVm6dKlGjhwoNq0aaM2bdpo4MCBWrZsWbnboScWAAAAVa6kpESDBw/WF198oVatWql169YymUzau3ev9u/fr4cffljLli1TjRq29bEyJhYAAABVbtasWUpNTdU///lP3X///Vbn/vOf/2jYsGF6++23NWHCBJvaoycWAAAAVa59+/YaP368RowYUeb5RYsW6a233tIPP/xgU3uEWAAAAFS52rVra9++ffLz8yvz/E8//aSQkBBdvHjRpvZ4sQsAAABVrlatWsrNzb3u+by8PNWuXdvm9gixAAAAqHJhYWGaO3fudc/PmTNH3bp1s7k9XuwCAABAlXvppZcUERGh06dP609/+pPatGkjSdq7d6/eeOMN/fOf/1RKSorN7TEmFgAAANXiq6++0siRI3X69Gmr4w0aNNDf//53Pfjggza3RYgFAABAtbl48aLWrFmjAwcOSJKCgoLUu3fvco2HlQixAAAA+B+xf/9+BQcH23QtY2IBAABgF4cPH1ZycrJly87OVklJiU33EmIBAABQLY4cOWIJrCkpKTp+/Ljc3d119913a/z48YqMjLS5LYYTAAAAoMq1aNFCP/30k+rUqaPw8HBFRUUpMjJSd911l2rUKP+sr4RYAAAAVDkXFxe5u7srLi5OvXv31j333CMPD48Kt0eIBQAAQJXLyclRamqqUlNTlZKSogMHDig0NFSRkZGKiorS3XffLXd3d5vbI8QCAACg2p05c0YpKSmWULt//36FhoZq8+bNNt3Pi10AAACodl5eXgoPD1dJSYlKSkqUm5urHTt22Hw/PbEAAACoFseOHVNqaqrWr1+v9evX66efflLXrl3Vs2dPRUZGqlu3bnJ1dbWpLUIsAAAAqlxAQIBOnDihrl27KjIyUj179lRYWJjNofXXyj+fAQAAAFBOR48elclkkmEYMgzDMoygouiJBQAAQJU7efKkUlJSLIsdHDp0SK6ururSpYuioqIUERGh7t27y83Nzab2CLEAAACodj///LPVkrM//fSTXF1ddfHiRZvuJ8QCAADA7o4ePaq1a9cqLi7OpusJsQAAAHA4zBMLAACAKmdLD6thGPrggw9sao+eWAAAAFQ5s9msvn37XvfFrcLCQiUlJdk8YwEhFgAAAFXObDbrxIkTaty4cZnnT506JW9vbxUXF9vUHvPEAgAAoMq5uLjcMKAWFRXJbDbb3B4hFgAAAFWuXr16Onny5HXPnzx5UvXr17e5PUIsAAAAqlyHDh2UlJR03fOrVq1S+/btbW6PEAsAAIAqFxMTo5kzZ2rdunWlziUnJ2vGjBmKjo62uT1e7AIAAEC1GDhwoP75z3/qjjvuUOvWrWUymbRv3z7t2LFDv/vd7/TVV1/JZDLZ1BYhFgAAANXCMAz94x//0PLly5WZmSnDMOTv769BgwZp+PDhqlHD9kEChFgAAAA4HMbEAgAAwOGw7CwAAACqXIsWLW56jWEYOnLkiE3tMZwAAAAAVc5sNuuVV16Rh4eHJOn06dP629/+ptdee02SVFBQoD//+c8sOwsAAID/Hb9edvbHH39Uhw4dlJ+fL0nKycmRt7e3zSGWMbEAAABwOIRYAAAAOBxCbAUZhqG8vDwxGgMAAKBifr2wga0LHUiE2ArLz8+Xp6enZRwHAAAArm/UqFG67bbbLPtNmjRRUlKSZd/Dw0MJCQk2t8eLXRWUl5cnT09P5ebm6vbbb7d3OQAAAE6FeWIBAABQ5X766SebrvPz87PpOkIsAAAAqlxAQIAMw5DJZLJ6p+jX+7ZOsUWIBQAAQJXbvn17mccNw9CSJUs0e/Zsy0IItiDEAgAAoMq1b9++1LGvv/5akydP1qFDh/Tcc89p4sSJNrdHiAUAAEC12rp1qyZNmqRvv/1WTz75pFavXq0GDRqUq40KTbF17NgxjRgxQr6+vnJ1dZWfn5/GjRunM2fOWK6JjIyUyWSSyWRSrVq1FBQUpISEhDLnVd20aZPMZrPuv//+UueOHDkik8mkRo0alZrOqmPHjpo6darVsUOHDmnEiBFq3ry53Nzc1KRJE9177736+OOPVVRUZLnuWm2/3pYuXVqRRwIAAICbOHjwoIYMGaLu3bvLx8dH+/bt0+zZs8sdYKUKhNgff/xRnTt31sGDB7VkyRIdOnRICxYs0Nq1axUWFqazZ89arn3iiSeUlZWl/fv3a/LkyXrppZe0YMGCUm0mJiZq7NixWr9+vU6cOFHm9+bn5+v111+/YW1paWnq1KmT9u7dq7lz52rXrl1KSUnR448/rvnz52v37t1W1y9atEhZWVlW28CBA8v7SAAAAHATTz31lNq2bavc3Fxt3bpVH330kVq0aFHh9so9T2y/fv20a9cuHThwQLVr17Ycz87OVsuWLfXYY49p/vz5ioyMVMeOHTVr1izLNXfeeaf8/Pz0+eefW44VFBTIx8dH6enpmjJlitq3b68XXnjBcv7IkSNq0aKFnn32Wc2fP1+HDx9Wo0aNJF3tiR04cKCmTp0qwzDUtm1b3XbbbUpLS1ONGqXz+bU34qSrPbErV66scGhlnlgAAADbmc1m1apVS8HBwTdc8fR6L4D9WrnGxJ49e1arV6/W9OnTrQKsJHl7eysmJkbLli3TvHnzrM4ZhqFvv/1W+/btU6tWrazOffrppwoJCVFwcLCGDh2q8ePHa/LkyaWWHYuOjtaaNWv0yiuvaM6cOaVqy8jI0N69e7VkyZIyA6xUvqXMfq2wsFCFhYWW/by8vAq3BQAA4GymTJlSqe2VK8QePHhQhmGodevWZZ5v3bq1zp07p1OnTkmS5s2bp7///e+6fPmyrly5olq1aunpp5+2uicxMVFDhw6VJPXt21e5ublKTU1VZGSk1XUmk0kzZ85U//79NWHCBLVs2dLq/IEDByRJwcHBlmM5OTkKCAiw7P/1r3/VH//4R8t+dHS0zGazVTt79uxR8+bNS/1sCQkJevnll8v8uQEAAHBjL730UqW2V6EXu2wdgRATE6OMjAxt3LhR/fr104svvqju3btbzu/fv19paWmKjo6WJLm4uGjIkCFKTEwss70+ffro7rvv1l/+8hebvt/Ly0sZGRnKyMhQ3bp1dfnyZavzb731luX8tc3X17fMtiZPnqzc3FzLduzYMZtqAAAAQOUrV09sYGCgTCaT9u7dq4ceeqjU+b1796pevXpq2LChJMnT01OBgYGSrg4bCAwMVLdu3dSrVy9JV3thi4qKrIKjYRhyc3PTnDlz5OnpWeo7Zs6cqbCwMD377LNWx68NU9i/f79CQ0MlXR17ce37XVxK/6je3t6W8zfj5uYmNzc3m64FAABA1SpXT6yXl5d69+6tefPm6eLFi1bnsrOz9fHHH2vIkCFljj11d3fXuHHjNHHiRBmGoaKiIn344Yd64403rHpCd+zYIV9fXy1ZsqTMGrp06aJBgwZp0qRJVsdDQ0MVEhKi119/3eblygAAAOCYyr3YwZw5c9S9e3f16dNH06ZNU4sWLbR79249++yzatKkiaZPn37de0eNGqVXX31VK1askIuLi86dO6eRI0eW6nF9+OGHlZiYqKeeeqrMdqZPn662bdta9a6aTCYtWrRIvXv3Vnh4uCZPnqzWrVvrypUrWr9+vU6dOlVq/Ov58+eVnZ1tdczDw0N16tQp72MBAABANSr3mNhWrVopPT1dAQEBevTRR9WyZUs9+eSTioqK0qZNm1S/fv3r3lu/fn099thjmjp1qhITE9WrV68yhww8/PDDSk9P1w8//FBmO0FBQRoxYoQuXbpkdbxbt27atm2bgoODFR8frzZt2qh79+5asmSJ3nrrLY0ePdrq+ri4OPn4+Fhts2fPLu8jAQAAQCXYv3+/zdeWe55YXMU8sQAAALfm8OHDSk5OtmzZ2dk2Dwst93ACAAAAoCKOHDliCawpKSk6fvy43N3ddffdd2v8+PGlpli9EUIsAAAAqlyLFi30008/qU6dOgoPD1d8fLwiIyN11113XXehqhshxAIAAKDKHTt2TLfffrvi4uLUu3dv3XPPPfLw8KhwexVa7AAAAAAojxMnTui9997TlStX9Nxzz8nLy0tdu3bV888/r1WrVqmgoKBc7fFiVwXxYhcAAEDFnTlzRikpKUpNTVVKSoplwarNmzfbdD/DCeBwDMNQYWGhvcsA7OKXv/7d3NzKXFwG+K3j1/5vg5eXl8LDw1VSUqKSkhLl5uZqx44dNt9PiIXDKSws1ODBg+1dBgDATj777DPVqlXL3mWgAo4dO6bU1FStX79e69ev108//aSuXbuqZ8+e+sc//qFu3brZ3BYhFgAAAFUuICBAJ06cUNeuXRUZGal3331XYWFhcnV1rVB7hFg4tNmvPiE315r2LgOoNoWXr2jsX96TxK9/OJdf/tqHYzp69Khq1qwpwzBkGIZlGEFFEWJvEe/F2Zeba025ufGHOJwTv/7hTH755y1/9jqmn3/+WSkpKUpOTtayZcs0ffp0ubq6qkuXLoqKilJERIS6d+8uNzc3m9ojxN4iXjACAKDqXb5SZPlcWFio2rVr27EaVETjxo01ZMgQ/V97dx7U1PX2AfwbAgEUBBcIIEtcitQqoKKojLKIWyvitKOORQxorbVxQes6OhV/MmBra9W64liq4zhWrVq7oLWa4C6KUrepVcBxA8EphkUIGPL+4ZDXFNSwJLeY72cmM7kn9548nkmbJ4fnnjN+/HgAz5Pa2t27duzYgRUrVkAikaCiosKo/ky+TuzmzZvh6OiIZ8/+/8NXVlYGGxubOluLqVQqiEQi5OTkQCaTYc2aNXX6S0xMRGBgYL3HMpkMIpHopY+4uDgAeOnru3fvbuZ/PRERERHVp2PHjpg4cSK2bduG3Nxc5OXlYePGjUZfb/KZ2PDwcJSVleHixYv6O85OnjwJNzc3nD9/HpWVlfo7DJVKJby9vdGlS5dGvdeFCxeg1WoBAGfOnMEHH3yAmzdv6tdxffFXW1paGkaMGGFwvbOzc6Pel4iIiIiaxtvbG/Hx8Uafb/Iktlu3bnB3d4dKpdInsSqVCtHR0Th+/DjOnTunn5FVqVQIDw9v9Hu5uLjon7dr1w4A4OrqWm9y6uzsDDc3t0a/B2svWgAAEfNJREFUFxEREREZz9gENS0tzajzzFITGx4eDqVSiUWLFgF4PuO6YMECaLVaKJVKhIWFoaKiAufPn8fkyZPNEVKzqaysRGVlpdBhWJQXx5vF/URERC2DWq02OC4vL8fx48cRFRXVqP7MlsQmJCTg2bNnqKiowOXLlxEaGorq6mps3rwZAHD27FloNBqDmdiFCxdi6dKlBn1VVVWhe/fuTY5pwoQJEIvFBm03btyAt7d3vedrNBqDm7hKSkoAAB9//DFsbHh3sFCqqp/Bzq5x68sRERGR+ezfv9/gOC8vD/7+/nXajWWWJDYsLAzl5eW4cOECiouL4evrCxcXF4SGhiI+Ph6VlZVQqVTo3LmzQRI5f/58/c1YtdatW4cTJ040OaZvvvkGkZGRBm0eHh4vPT8lJQXLly9v8vsSERERUdP/mmqWJLZr167w9PSEUqlEcXExQkNDATxPGr28vHDmzBkolUpEREQYXNehQwd07drVoK221rWp3Nzc6vT9KosXL8bcuXP1xyUlJfDy8kJqaipcXV2bJSYyTmVlJWJjYwEAEhuuEkdERGSJzJYBhIeHQ6VSobi4GPPnz9e3Dx48GOnp6cjMzMT06dPNFU6D2dra1rv4rp2dHfdvFpBIJBI6BCIiIhKAWZNYhUKB6upq/UwsAISGhmLGjBmoqqpq0soEDfXkyRMUFBQYtDk6OqJ169Zmi4GIiIjIUmRkZBgcP3jwAFqtVr9PQK0X88RXMWsSW1FRAT8/P0ilUn17aGgoSktL9UtxmUt9yzykpKToV1AgIiIiouYTEREBnU5X56+oQ4YM0T/X6XSoqakxqj+zJbEymazeAl4fH5962+/cuVNvP4mJiUhMTHzpca2wsLCXFgw357JMxu7vS0RERI334j0Q/O5tmYqLi5u1P94V00SsySQiIjK9F79v+d3bMtXuoNpcmMRSi6apqhY6BCKzevEzz88/WRJ+3lu+f9fEvoyxNbEiHbc8apSSkhI4OTlBrVY3+y8LerXKykqMHTtW6DCIiEgge/fu5cpALZBYLK63JvZF/8maWCIiIiKyXM1dE8uZ2EZSq9VwdnbGvXv3OBNrZjqdzmALYCJL8uLn39bWlrWBZJH42ReWo6OjSca/tLQUs2bNQlpamlHnM4ltpNzcXHTp0kXoMIiIiIjMqrCwEC4uLibp183NjeUEpla7/e3du3fh5OQkcDSWp3bbX86EC4PjLyyOv3A49sLi+AurdvwlEonJ3qMhM7xMYhvJysoKAODk5MT/kATUpk0bjr+AOP7C4vgLh2MvLI6/sExZytGQAgEmsURERERkcrWrEzQXJrFEREREZHIHDhx45etqtRpyudzo/pjENpKtrS2WLVvGre8EwvEXFsdfWBx/4XDshcXxF1ZTx3/06NGvfL2wsLBB/XF1AiIiIiISXENXJ7AycTxERERERK8lFoshk8mMPp8zsURERETU4rAmloiIiIhMLjw8/LXn6HQ6qFQqo/rjTCwRERERmZxYLMbUqVPRqlUrAM9XI9i5cycUCgUA4OnTp0hNTWVNrKlt2LABMpkMdnZ2CA4ORmZmptAhWYQTJ04gKioKHh4eEIlEOHjwoNAhWYyUlBT07dsXjo6OcHV1xZgxY3Dz5k2hw7IYmzZtgr+/v36R9wEDBiA9PV3osCzWypUrIRKJkJCQIHQoFiExMREikcjg4efnJ3RYFuXBgweYOHEi2rdvD3t7e/Ts2RMXL15scD/Lly/H6tWrsXr1aixZsgQSiUR//L///a9BfTGJbYQffvgBc+fOxbJly3Dp0iUEBARg+PDhDV4aghquvLwcAQEB2LBhg9ChWJyMjAwoFAqcO3cOR48eRXV1NYYNG4by8nKhQ7MInp6eWLlyJbKysnDx4kVEREQgOjoa169fFzo0i3PhwgVs2bIF/v7+QodiUd555x3k5+frH6dOnRI6JItRXFyMkJAQ2NjYID09HTdu3MDXX3+Ntm3bChoXywkaITg4GH379sX69esBADU1NfDy8sLMmTOxaNEigaOzHCKRCAcOHMCYMWOEDsUiFRUVwdXVFRkZGRg8eLDQ4Vikdu3aYdWqVZgyZYrQoViMsrIy9O7dGxs3bkRSUhICAwOxZs0aocN64yUmJuLgwYPIzs4WOhSLtGjRIpw+fRonT55sUj9isRgPHz6EVCoFAOTm5iIgIAClpaUAuMSWyVVVVSErKwuRkZH6NisrK0RGRuLs2bMCRkZkXmq1GsDzRIrMS6vVYvfu3SgvL8eAAQOEDseiKBQKvPfeewbfAWQet27dgoeHBzp37oyYmBjcvXtX6JAsxqFDhxAUFISxY8fC1dUVvXr1wtatW5ulb5FI9MrjV2ES20CPHz+GVqvV/4qoJZVKUVBQIFBUROZVU1ODhIQEhISEoEePHkKHYzGuXr0KBwcH2Nra4pNPPsGBAwfQvXt3ocOyGLt378alS5eQkpIidCgWJzg4GN9//z0OHz6MTZs2IS8vD4MGDdLP4JFp5ebmYtOmTXjrrbdw5MgRTJ8+HbNmzcL27dsb1M/w4cMNdvuSSqXYsmWL/rhVq1aYNm2a0f1xiS0iajCFQoFr166xJs3MunXrhuzsbKjVauzbtw9yuRwZGRlMZM3g3r17mD17No4ePQo7Ozuhw7E4I0eO1D/39/dHcHAwfHx8sGfPHpbTmEFNTQ2CgoKQnJwMAOjVqxeuXbuGzZs3Qy6XG93Pb7/9ZnDcunVrTJgwQX/s4OCAjRs3Gt0fZ2IbqEOHDhCLxXj06JFB+6NHj+Dm5iZQVETmM2PGDPzyyy9QKpXw9PQUOhyLIpFI0LVrV/Tp0wcpKSkICAjA2rVrhQ7LImRlZaGwsBC9e/eGtbU1rK2tkZGRgXXr1sHa2hparVboEC2Ks7MzfH19cfv2baFDsQju7u51fiy//fbbgpd0MIltIIlEgj59+uDYsWP6tpqaGhw7doy1afRG0+l0mDFjBg4cOIDjx4+jU6dOQodk8WpqaqDRaIQOwyIMGTIEV69eRXZ2tv4RFBSEmJgYZGdnQywWCx2iRSkrK0NOTg7c3d2FDsUihISE1FlS8e+//4aPj49AET3HcoJGmDt3LuRyOYKCgtCvXz+sWbMG5eXliI+PFzq0N15ZWZnBL++8vDxkZ2ejXbt28Pb2FjCyN59CocCuXbvw008/wdHRUV8D7uTkBHt7e4Gje/MtXrwYI0eOhLe3N0pLS7Fr1y6oVCocOXJE6NAsgqOjY53679atW6N9+/asCzeDefPmISoqCj4+Pnj48CGWLVsGsVhs8KdoMp05c+Zg4MCBSE5Oxrhx45CZmYnU1FSkpqYKG5iOGuXbb7/VeXt76yQSia5fv366c+fOCR2SRVAqlToAdR5yuVzo0N549Y07AF1aWprQoVmEyZMn63x8fHQSiUTn4uKiGzJkiO73338XOiyLFhoaqps9e7bQYViE8ePH69zd3XUSiUTXsWNH3fjx43W3b98WOiyL8vPPP+t69Oihs7W11fn5+elSU1OFDknHdWKJiIiISHBcJ5aIiIiIWiSuE0tERERELU5DCgR4YxcRERERmdzrNkeo3QnSWKyJJSIiIiKTe9025TqdDmq12uiaWCaxRERERCS4oqIiSKVS3thFRERERC1HQ+dVmcQSERER0X8CVycgIiIDd+7cgUgkQnZ2ttChEBHVy8HBAaGhoUafzySWiKgR4uLiMGbMGP1xWFgYEhISBIsnLy8PH374ITw8PGBnZwdPT09ER0fjr7/+AgB4eXkhPz+fW6QS0X+SRqPB559/jlOnThl9DZfYIiJq4aqrqzF06FB069YN+/fvh7u7O+7fv4/09HQ8efIEACAWi+Hm5iZsoERE9cjKyoJcLodGo4FKpTL6Os7EEhE1UVxcHDIyMrB27VqIRCKIRCLcuXMHAHDt2jWMHDkSDg4OkEqliI2NxePHj/XXhoWFYebMmUhISEDbtm0hlUqxdetWlJeXIz4+Ho6OjujatSvS09Nf+v7Xr19HTk4ONm7ciP79+8PHxwchISFISkpC//79AdQtJ4iLi9PH+uKj9gtEo9Fg3rx56NixI1q3bo3g4OAGfbkQEb2OVqvF8uXLERISgoiICFy5cgUDBw40+nomsURETbR27VoMGDAAU6dORX5+PvLz8+Hl5YUnT54gIiICvXr1wsWLF3H48GE8evQI48aNM7h++/bt6NChAzIzMzFz5kxMnz4dY8eOxcCBA3Hp0iUMGzYMsbGxePr0ab3v7+LiAisrK+zbtw9ardbomGtjzc/Px+zZs+Hq6go/Pz8AwIwZM3D27Fns3r0bV65cwdixYzFixAjcunWraYNFRBZLLBbDyspK/7CxscGKFSuwZ88erFu3Dvb29g3qj+vEEhE1QlxcHJ48eYKDBw8CeD6jGhgYiDVr1ujPSUpKwsmTJ3HkyBF92/379+Hl5YWbN2/C19cXYWFh0Gq1OHnyJIDnMxNOTk54//33sWPHDgBAQUEB3N3dcfbsWf3M6r9t2LABCxYsgFgsRlBQEMLDwxETE4POnTsDeD4T26lTJ1y+fBmBgYEG1+7fvx8xMTH4448/EBISgrt376Jz5864e/cuPDw89OdFRkaiX79+SE5OburwEZEFOnTokMGxVqvFypUrUVRUhG3btiE8PLxB/bEmlojIRP78808olUo4ODjUeS0nJwe+vr4AAH9/f327WCxG+/bt0bNnT32bVCoFABQWFr70vRQKBSZNmgSVSoVz585h7969SE5OxqFDhzB06NCXXnf58mXExsZi/fr1CAkJAQBcvXoVWq1WH18tjUaD9u3bG/EvJyKqa/To0XXaoqOjkZycjHfffReTJ0/GqlWr0KpVK6P6YxJLRGQiZWVliIqKwhdffFHnNXd3d/1zGxsbg9dEIpFBW+26ia/bxcbR0RFRUVGIiopCUlIShg8fjqSkpJcmsQUFBRg9ejQ++ugjTJkyxSBusViMrKwsiMVig2vqS8iJiBrLysoKS5cuxahRoxAbG4sePXogNzfXqGuZxBIRNQOJRFKnHrV379748ccfIZPJYG1t3v/dikQi+Pn54cyZM/W+XllZiejoaPj5+WH16tUGr/Xq1QtarRaFhYUYNGiQOcIlIgsXGBiIS5cuYcmSJUZfwxu7iIiagUwmw/nz53Hnzh08fvwYNTU1UCgU+OeffzBhwgRcuHABOTk5OHLkCOLj442+AcsY2dnZiI6Oxr59+3Djxg3cvn0b27Ztw3fffYfo6Oh6r5k2bRru3buHdevWoaioCAUFBSgoKEBVVRV8fX0RExODSZMmYf/+/cjLy0NmZiZSUlLw66+/NlvcREQvsrGxwZdffmn0+ZyJJSJqBvPmzYNcLkf37t1RUVGBvLw8yGQynD59GgsXLsSwYcOg0Wjg4+ODESNGwMqq+eYQPD09IZPJsHz5cv1SWrXHc+bMqfeajIwM5Ofno3v37gbtSqUSYWFhSEtLQ1JSEj777DM8ePAAHTp0QP/+/TFq1Khmi5uILEtERARet56ATqczejk/rk5ARERERCY3d+5c/XO1Wo2dO3dCoVDo254+fYrU1NTX1v/XYhJLRERERGaVm5uLgIAAlJaW6tuKiooglUqNTmJZE0tEREREZmVvb4+qqiqDhLW8vBy2trZG98EkloiIiIjMyt3dHdbW1ti1a5e+bfv27foNWozBG7uIiIiIyOw+/fRTyOVyfPXVV6ioqMCtW7ewYcMGo69nTSwRERERCWLz5s04duwYJBIJRo8ejfHjxxt9LZNYIiIiImpxWE5ARERERCa3fft2o86Ty+VGnceZWCIiIiIyObFYjDZt2kAkEgEAampqUFJSAmdnZwDPNzpQq9VcJ5aIiIiI/jvEYjEePnwIqVQKAMjLy0NAQABKSkoAPF8n1s3NzehtubnEFhERERGZnU6nM9iG9t/Hr8MkloiIiIhaHCaxRERERGRyzV3ByiSWiIiIiEyu9oauWvb29hg8eLDB63Z2dsb3xxu7iIiIiMjUCgsL4eLiUieZbSwmsURERETU4rCcgIiIiIhaHCaxRERERNTiMIklIiIiohaHSSwRERERtThMYomIiIioxWESS0REREQtDpNYIiIiImpxmMQSERERUYvzf6ZZxmSdoxyiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] }, - "metadata": { - "needs_background": "light" - } + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "sns.swarmplot(x=\"Color\", y=\"Item Size\", data=new_pumpkins)" + "palette = {\n", + " 'ORANGE': 'orange',\n", + " 'WHITE': 'wheat',\n", + "}\n", + "# We need the encoded Item Size column to use it as the x-axis values in the plot\n", + "pumpkins['Item Size'] = encoded_pumpkins['ord__Item Size']\n", + "\n", + "g = sns.catplot(\n", + " data=pumpkins,\n", + " x=\"Item Size\", y=\"Color\", row='Variety',\n", + " kind=\"box\", orient=\"h\",\n", + " sharex=False, margin_titles=True,\n", + " height=1.8, aspect=4, palette=palette,\n", + ")\n", + "# Defining axis labels \n", + "g.set(xlabel=\"Item Size\", ylabel=\"\").set(xlim=(0,6))\n", + "g.set_titles(row_template=\"{row_name}\")\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's now focus on a specific relationship: Item Size and Color!" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ - "" + "" ] }, + "execution_count": 37, "metadata": {}, - "execution_count": 6 + "output_type": "execute_result" }, { - "output_type": "display_data", "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFuCAYAAAChovKPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3xUVcL/8c+Znt4JJUCAQOhNrKgoYEGwu/Z1H3VFXQtgWVGxrFjW7q7rumtZ19+jz9rbiqKugoKKFOkdAiGN9D595vz+SOJaKAmZmXNn5rxfL15KEu79AuE7d8499xwhpUTTNE2LHibVATRN07Su0cWtaZoWZXRxa5qmRRld3JqmaVFGF7emaVqUsagO0BWnnnqqXLhwoeoYmqZpkSL29cGouuKuqalRHUHTNE25qCpuTdM0TRe3pmla1NHFrWmaFmV0cWuapkUZXdyapmlRRhe3pmlalNHFrWmaFmV0cWuapkUZXdyapmlRRhe3pmlalNHFrWmaFmV0cWuapkWZqFodUNO06NDc3ExRUdEPPxdCUFhYiN1uV5gqduji1jQt5B577DG+/PLLn3zsoosu4uqrr1aUKLbo4tY0LeQ2bVjPqEwv0/u5APi/Hcls3LBBcarYoce4NU0Lqfr6eqpr6xiZ6WN4pp/hmX6GpPnYvn0bwWBQdbyYoItb07SQ2rJlCwD5Kf4fPjYg1Y/L7aG4uFhVrJiirLiFEIVCiDU/+tEkhJitKo+maaGxbt06zCYYmPrf4h6S5gNg/fr1qmLFFGXFLaXcKqUcK6UcCxwGOIF3VeXRNC001q1bS35KALv5vx/rkRAkzd5W6lr3GWWoZAqwU0qp30dpWhRraWlhy5YtDEv3/uTjQsCwNA+rVq7Q49whYJTivhD4174+IYSYKYRYKYRYWV1dHeFYmqZ1xerVqwkEgozO9P7ic6OyfNQ3NLJz504FyWKL8uIWQtiAM4A39/V5KeVzUsoJUsoJOTk5kQ2naVqXfPfddyRYoCDN/4vPjWov8++++y7SsWKO8uIGpgHfSykrVQfRNO3Q+f1+ln71JWMyPVj20SzpdsmgtABffbk44tlijRGK+yL2M0yiaVr0WL9+PQ1NzRze45fDJB0Oz3GzbfsOKioqIpgs9ih9clIIkQScBOjnYEPs888/57PPPtvv5wsLC7n88ssjmEiLdf/5z3+wm2F01oGK28trO5L4/PPPufTSSyOYLrYoLW4pZSuQpTJDLGppaeHxJ56g1SuRtqRffF4EvCxbtowjjzyS4cOHK0ioxRqXy8WiLz7n8Bz3T6YB/lxOQpDCdD8ff7SASy65BCFE5ELGEL1WSQx6++23cba24hx+BsGk7F9+QcBH6vo3eemlf/Loo49EPqAWc5YsWYLT5eb4oZ6Dfu3xvdw8v7mC9evXM3r06Aikiz1GGOPWQqihoYHX33gDf3q/fZc2gNmKO3ckK1Ys1w9EaCHx3rvv0DNJMiT9l7NJfu7wHA+JVnjvvfcikCw26eKOMc8++yxOpwtP3mEH/Dpvj2FgT+axxx/H5/NFKJ0WizZv3symzVuY2tuJqRMjHw4LHNfTxZdfLkY/m3FodHHHkFWrVvHJJ5/g6TmSYELGgb/YbMXZ7yj2FBfz2muvRSagFpPefPNNEixwXK+DD5N0mNrHTTAQ1Ffdh0gXd4xoaWnhkUcfhYRUvL3HdurXBNL74cvI5+WX/59+mk07JKWlpSxetIgTertIsMhO/7rcxCATcjy8+87bNDc3hzFhbNLFHQOklDz88MNUVlbi7H8cmDp/z9nT/2gCJivz7rqb1tbWMKbUYtErr7yC2SSZ1tfV5V97Rr4Lp8vNu+/qteW6Shd3DHjrrbdYsmQJ7rwJBFJyu/RrpTWB1oEnUFFRzqOPPoqUnb9q0uJbSUkJn332KSf2cpFu7/r3Tf+UAOOyvbzx+ms0NTWFIWHs0sUd5VauXMmzz/4Nf3o/fLkjD+kYgZSeePqMZ/Hixfzf//1fiBNqser555/HKiSn53f9arvDuQOdtLY6efXVV0OYLPbp4o5iO3bsYN5ddxFwpOEacHzb2pmHyNtzNL7MgTz//PP85z//CWFKLRZt3LiRr776iml9W0mzHfq7tH7JASb2dPPOO2+zd+/eECaMbbq4o1RVVRW/v+023EETrYNPAoutewcUAveA4wik9OShhx5i9erVoQmqxZxAIMCf//QU6Q4OaWz7584d6EIE/Tz77F9DkC4+6OKOQrW1tcyeM4f6xmZaC07a52Pth8RkxlkwBb89ldtvv4NNmzaF5rhaTFmwYAFbt23nooHNOELw7HWWI8gZ/Z18+eVXrFixovsHjAO6uKNMQ0MDs+fcRMXeKloLTiKYmBnaE1jstA4+GTdWbr7lFrZt2xba42tRrb6+nuef+ztD0/0clbv/xaS6alo/Fz2TJE89+QQeT+fng8crXdxRpKmpiZtuvpnS0jJaC6Z2eQZJZ0lbEi1DTsUVNDPnppv1HG/tB0899SQuZyu/KWzpzi2VX7Ca4DeDmygrr+Cll14K3YFjlC7uKNF2pT2Hol27aS2YTCC1V1jPJ+3JtAw+hVZfkFmzZ7Njx46wnk8zvsWLF/Pll19xdn4rfZICIT/+iEw/J/R288brr+thuoPQxR0FGhoamD27rbSdBVMIpOVF5LzSkUrLkGm0eCWzZs/RwyZxrLa2liefeJwBqQFO6+cO23kuKnCS4ZA8+MD9uFzdv/EZq3RxG1xdXR2zZs+muKQEZ8HUiJV2B+lIpaVwGq1+mD1nDlu2bIno+TX1gsEgDz7wAK7WZmYOa8YcxtZIsEiuGtpIWVk5Tz/9dPhOFOV0cRtYbW0tN86axZ6SMloLTiKQ1kdJDmlPoWXINJwBM3Nuukm/jY0zr7/+Oqu+/55LB7eEZYjk54Zn+JnR38lHH33EokWLwn6+aKSL26Cqq6u54cYbKSvfS+vgk8I+pn0w0p7cfsPSwk0338yGDRuU5tEiY/Xq1Tz//PMc0cPDpC6s/tddZw9wUZAW4JGH/0hxcXHEzhstdHEbUNuV9uy2KX+DTyKQ0lN1JKC9vAun4cbGzbfcwsaNG1VH0sKoqqqKP9xzNz0TAlw5tDWks0gOxmKC60c0YZUe7pp3p14A7Wd0cRtMxzztvZVVtAw+2TCl3aFtquA0PMLGLbfeyvbt21VH0sLA4/Fw99134Xa2cOPIhi4t2RoqmY4g1w1vpLS0lIcefJBgMBjxDEali9tAmpubufmWW36Ypx0M0zzt7pK2RFoGn4orYOKmm25m9+7dqiNpIRQMBnnwwQfZumUrM4c10TtJXWEOy/BzUUErS7/+mueee05ZDqPRxW0QXq+X2++4g51FRbQOOlH5mPbBdIx5N3v8zLnpJqqqqlRH0kLkxRdf5Msvv+T8Qa1MyAnd05GH6uQ8N5P7uHnttdf48MMPVccxBF3cBiCl5PHHH2fD+vW48o8jkN5XdaROkY5UWgefTENTC7fffoeedxsD3n//fV599VVO6O0O63ztrhACfj24ldFZPp544gm+/fZb1ZGU08VtAP/617/a9orsPRZ/1iDVcbokmJhJ64BJ7CzayQMPPKDHIaPYF198wVNPPcmYLC+XDYnszciDMZvguhHN9E/2cc/dd7Nu3TrVkZTSxa3YmjVreO755/FlDsDbe5zqOIckkN4Xd94RLF26lNdff111HO0QLF++nAcfeIAhaX5uGNmMxYDNkGCR3Dy6kSybl7m33RbXN8YN+NcTP1pbW3nwwYfAkYo7/9hubYSgmi93OP6MfF548UWKiopUx9G6YOXKlcy78076JPqYM7oJm1l1ov1LtUl+P6aBBFzcfNOcuF0ATRe3Qs888wxV1VW05h8HZqvqON0jBO7+RxM0WZl///34fD7VibROWLlyJXfcfju5dg+/H9NAooJpf12V5Qgyd0w9Fl8Lc2bPisvyVlrcQoh0IcRbQogtQojNQoijVeaJpM2bN/PRRx/hyR1JMLmH6jghIa0JOPsdw66iIj744APVcbSDWLFixQ+lPXdsAynd2IIs0nITg9w+9r/lHW/DJqqvuP8ELJRSDgXGAJsV54mYf/zjJYTVgbf3WNVRQsqf0Z9ASk/+95VX9IL4BrZ48WJunzuXno7oK+0OHeVt9bcw68Yb4+qGpbLiFkKkAccDLwJIKb1SygZVeSJp48aNrFixHHfuyOgfItkHT+9xNNTX66tug1qwYAH3/eEPDEjxcHuUlnaH3MQg88bVk2ZycustN7Ns2TLVkSJC5RX3AKAaeEkIsVoI8YIQIkSbJxrbBx98gLDa8fYYFpHz2fcsw74nct/QgdReBFJyeefd95Ayeksh1kgpeeWVV3j00UcZmenl92MaSbKG7+/nlW2JvLItMWzH75DlCHLnuHp6OTzceecdfPLJJ2E/p2oqi9sCjAeelVKOA1qBuT//IiHETCHESiHEyurq6khnDDmv18tXS5bgTesXsattk7MOk7MuIufq4MscREV5WVzeODIiv9/PY489xgsvvMDRuR5mj2rCHubZI3taLOxpCcFuwp2QapPMHdtAYZqXhx56iJdffjmmLxpUFncpUCql/K7952/RVuQ/IaV8Tko5QUo5IScnJ6IBw2HlypW4nE58Gfmqo4SVP6M/CMHixYtVR4l7TqeTO26/nQULFnBGfyfXDG8x5Dzt7kq0SG4Z3cjEnm5eeuklHn74Yfx+v+pYYaHsr09KuRcoEUIUtn9oChDzK/SvW7cOTGYCqb1VRwkraU0gkJTDmjVrVEeJaxUVFVz3u2tZuXIFVwxt4bxBrmh+XOCgLCaYOayVs/KdLFy4kJtvuomGhti7dab6dfcG4FUhxDpgLPCg4jxht237dmRCBpgM/JRDiAQSs9i+Y4d+DF6RNWvWcPXMq6gsK+aWMU2c0Ds+ZvkIAecMdHHN8GY2bVjHtVfPjLmHwpQWt5RyTfswyGgp5VlSynqVeSJh+7bt+BIyVceIiGBiFh63m/LyctVR4oqUkvfff5+bb76J5GAz9x5Wz8jM+Hsg6pieXu4Y14irsYrrfnctS5cuVR0pZFRfcccVl8tFc3MT0pGiOkpEBO1tv8+9e/cqThI/PB4PjzzyCE8++SQj0j3cfVg9PRPj9x3PoDQ/9x5WT0+bk3nz5vHiiy8SCIR/38xw08UdQbW1tQAEreGfImUEQVvb77OuLrIzWuLV3r17ueH66/j44485M9/JTaObouIR9nDLtAe5c1wDx/dy87//+7/MnXsbTU1NqmN1iy7uCOooMBknxd3x++x4wdLCZ8WKFcy86reU7N7B7FFNnDvQhSmGb0J2lc0MVw5t5fLCFlavWsnMq37L1q1bVcc6ZLq4I6ixsREAabErThIhJgsIU9Rf3RhZIBDgpZde4ve/v5U02cS9h9UzPif+xrM7Qwg4sY+HO8c14muq4vrrfsf7778flfO9dXFHUHNzMxBHxS0Ewur44fethVZ9fT2/v/VWXn75ZY7NdXP3YfX0iuPx7M4alObnvgl1DEtz8+STT3L//ffjdDpVx+oSXdwR1HHlKc1xUty0vUjpK+7QW7t2Lb+98grWrf2eK4e2cNXw1rA/CRlLUqySm0Y3cd5AJ1988TnXRNmUQV3cEVRXV4cwWWJyYan98Zvt1Nbqm5OhEgwGefXVV5kzezZWTx33jG9gUpzMzw41k4Az8l3cNqaRxqpSrr3maj7++GPVsTpFF3cE1dXVgT0xqne66SppTaS6JvrXmDGChoYG5t52G88//zyH57j5w2H19EuJ/qltqg3P9DN/Qh0Dk1w8/PDDPPTQQ4bf+FoXdwTt3bsXvyVBdYyICtqSqK2tjdk1IyJl48aNXPXbK/h+1Qp+M6SF341oIUFP9QuZdLvktrGNnJnv5NNPPuHaa66muLhYdaz90sUdIVJKdhYVEXBkqI4SUcGEdAJ+P2VlZaqjRCUpJW+++SY33ngDwlnL3Yc1MCXPE09v2iLGJODcgS5uGdNEbcUerrl6Jp9//rnqWPukiztCqqqqcDmdBBPjrLgT2x7vj6YbP0bR2trK3XffzTPPPMPYzLahkXw9NBJ2o7J8zD+8njxHK/Pnz+fJJ5803B6qurgjZOPGjUDbwkvxJOhIR5gsbNiwQXWUqFJcXMw1V8/k66VLuKiglRtHNod10wPtpzLtQW4f28i0fi7ef/99Zs26kZqaGtWxfqCLO0JWrFiBsNoJJmWrjhJZJjO+5Fy++2656iRR46uvvuKaq2fSWF3G3LGNTOvn1kMjClhMcFGBk+tHNrNz22ZmXnWlYfa11MUdAVJKln33Hd7k3iDi74/cn9aH0tISvdjUQUgpeemll7j77rvpbXdy32H1DM3QN3VVO6KHl3vGN2DzNjBnzmw+/PBD1ZF0cUfC+vXrqa+rw5/eV3UUJfzp/QBYtGiR4iTG5fF4mD//Pl5++WWO6+nmjnENZDr0U5BGkZcc4N7D6hmR7uGxxx7jr3/9q9JVBnVxR8DChQsRZmvbdl5xSDpSCab04KOPPo7KdSHCrb6+njmzZ/HFF4v41cBWfjusFav+l2k4iRbJnFFNTM1z8cYbb3DXXXcpm++tvz3CzOl08vkXX+DNyI+rJyZ/zps1mJKSPWzZskV1FEOpqqrihuuvY8e2rdwwspnT8/V4tpGZTXDZECe/HtLKt99+wy0336xkLR5d3GH22Wef4XG78WYPUR1FKV/mAITZyrvvvqs6imGUlZVxw/XXUVtVzq1jGji8h1d1JK2TTspzc92IZrZs2cScObMjvq+lLu4wklLy5ltvEUzKJpjcQ3Uctcw2PFkFfP7FF3pjBaC0tJQbr7+O1oZq5o5poDBd34SMNkf08DJ7ZBPFu3Yy68YbIlreurjDaNWqVZSWlODpMSyu1ifZH2+P4QT8fkPclVepvr6eW2+5GW9rA3eMbWBAqn6oJlqNyfZx8+hGystKmDv3Ntxud0TOq4s7jN555x2E1YE/c4DqKIYgE9Lwp/Xh3ffei9u1S1wuF3Pn3kZtdSU3jWokL1mXdrQbnuHn2uHNbN2ylfnz74vIbBNd3GFSUVHBt99+izt7SNtOMBoA3h7DqK+rY8mSJaqjRJyUkkceeYRt27Zx7fAmBqXF54tXLJqQ4+WSwa18/fU3vPDCC2E/ny7uMFmwYAES8OUMVR3FUAJpeeBI5b333lMdJeIWLVrEokWLOHeAk8P09mIx5+S+bib1cvPaa/8K+xIPurjDQErJp5/9B39Kb6Q9WXUcYxEmPJkDWbdunaHWfgi3uro6nnryCQamBpjez9hrPWuH7uLBTjId8MeHHsTjCd8GF7q4w2Dz5s1UVe7FlzVQdRRD8mcORErJ4sWLVUeJmH/+8584W1u4algzZv2vLmYlWCS/LWyktKyct99+O2zn0d9CYfDNN9+AEPjT4/NJyYMJJqQjEzP5+ptvVEeJiObmZj5Z+DHH5Lrpk6RvRsa6EZl+hmX4efedt8N2E14Xdxhs3boVmZABFpvqKIblS8pp+3OKg0fgFyxYgMfr4+S8yEwV09Q7Oc9JdU0tS5cuDcvxlRa3EGK3EGK9EGKNEGKlyiyhIqVky5at+ONs3e2uCiZm4Wxtpby8XHWUsFu27FvyUwJ6f8g4Mi7bR6odli1bFpbjG+GK+0Qp5Vgp5QTVQULB7XbT3NxE0JGqOoqhBR1pQNu0yVgmpaRo507yU/QsknhiEtA30ceuXeHZ+ckIxR2TpEH+aO17lmF21mJ21pKw5SPse8JzBdBlcfIkaUNDA03NLXE3tv3KtkSKmszsaDRz1/I0XtmWqDpSxPVJ8rN79+6wDAeqbhcJfCqEWCWEmKk4S0wyOesQAR8i4MPSvBeTU68TooIpPl6nfrC1wYrJlshZ555PpT+ZrQ3xtzJmOP/OVT/Sd6yUskwI0QP4TAixRUr51Y+/oL3QZwL069dPRcYusdls2O0OvN5W1VEMTbT/+aSlpSlOEl5paWlYzGYaPPHV3E6/YMaMGVx//fVIKflqwRuqI0Vcg8dEdmYmIgzvLpUWt5SyrP2/VUKId4EjgK9+9jXPAc8BTJgwwfBTEMxmM8OGDeX77aWEb/p99DO3VGG3OxgwILbXcTGZTGRnZVLhdKqOElGJFsmHH36IlJIFCxaQazH8P92Q2+uykDMoNyzHVjZUIoRIEkKkdPw/cDIQE1uBjxw5sm1IIqBvSO2PpbWKYcOGYrGoftMXfkcdM5G1dXZaffFz1Z1gkbjdbt5++23cbjcJcVbc5a0mdjebOfroY8JyfJVj3LnAUiHEWmA5sEBKuVBhnpA5+uijQQax1mxXHcWQTK01mFprmThxouooEXHqqafiC8B3VXpef7xYuteByWRi6tSpYTm+sssdKWURMEbV+cNpxIgRFA4dytbizfj0Wty/YKvciN3hYNq0aaqjRERhYSEFgwayYM9OJvb0YDerTqSFU71H8Hl5AsccfTRZWeF5nkP1rJKYdf6vfgWuRiz1u1VHMRThbsJav4sZ06eTnBwfC3AJIbhx1myqXYJ3iuJvWly8+d9tyQSwcs2114btHLq4w2TSpEnkDxhIQukKPdbdQUoce5Zht9m44IILVKeJqNGjRzNjxgwWliawozH2x/Xj1fIqGyurbfzmf/6HvLy8sJ1HF3eYWCwWbr5pDnhasJevVh3HECz1xVgaS/ntlVfSo0f87cF59dVXk9ujB09tSKPapf/pxZqiJjPPbU5haOGQsF+Y6O+eMBo1ahTTp0/HVrkRU0uV6jhKCZ+bxJJlDBg4kLPPPlt1HCVSUlJ4+JFHCVoSeXxdelzNMol11S4TT65PJzO7Bw8+9Mewz5bSxR1m11xzDTk5OSTt+gr8XtVx1JASx+4lmIJe7rj99riYArg//fv3Z/79D1DltvDEujRd3jGg1m3i0XXp+M0J/PHhR8jMzAz7OXVxh1lKSgr33nMPJm8LjuKvIQ6WMf05a9VmLA0lXPe73zF48GDVcZQbN24cd919N7tabPxxTTpNXl3e0Wqv08T9qzNoCraVdn5+fkTOq4s7AkaMGMEVV1yBtW4X1uqtquNElKmlmoTSFRx11FFxO0SyL5MmTeKBBx9kr8fOA6szqHXrf4rRZk+LmQdWZ+C3pvDUn/7MqFGjInZu/d0SIRdffDGHH34EjpLvMLXGyV6LfjdJRYvIzs7ijjvuCMuaDdHsyCOP5NHHHqcxmMAfVmXo2SZRZHWNlfu/T8eanMmfn/4LQ4YMiej5dXFHiMlkYt68O8nOyiSpaBH4Y3wlEylJLPoKc8DN/PvuIzVVr0++L6NHj+aZvz5LQkYuD65OY0mFXXUk7QCkhA92J/DUulT6DxzMs3/7O/37R36LQl3cEZSWlsb8++7D7HOSsGtJTI932yrWYW4s5cYbbmDo0KGq4xjagAED+Nvfn2PUmLE8vzmZV7cn4g+qTqX9nNsPf92YzFtFiUyeMoU/P/0XcnJylGTRxR1hw4YN49prr8XSsAdr5SbVccLC3LwXe/n3nHjiiZxxxhmq40SFtLQ0Hn30Mc455xw+KUnggdXp1Ohxb8PY02LmnlWZrKh2MHPmTObNm4fdru7dkf7OUODcc8/lmIkTcZStiL3xbr+HxF1f0bNnT2655RY9rt0FFouFG2+8kXvvvZcKbxJ3rchgdU38bUBgJFLC4nI7f1iVjseWweNPPMHFF1+s/PtaF7cCQghunzuXrIxMEncvgaBfdaSQcexZhsnn4g/33ktSUpLqOFHphBNO4LnnX6BX/0E8uS6VV7cn4tNDJxHn9Aue3ZTMP7YkM3rMeF548R+MGzdOdSxAF7cyKSkp/P73tyKc9djK16iOExLm+j1Ya3fy619fSmFhoeo4US0vL49nnvkrZ599Np+UtM06KWvVywpGyrYGC/NWZLC8OoErrriCRx59NCIP1nSWLm6FjjzySE499VTse9djaq1VHad7Al6S9nxD/oCBXHrpparTxAS73c6sWbN48MEHaRRp3L0ynf+U2mP5nrZygSC8U5TAA6vTsKbm8vTTT3PZZZdhNhvrRVMXt2LXXXcdKckpOEqXR/UsE1vFeqTXyW2/vxWrVY/LhtIxxxzDP176J2PHT+D/bUvmyfUp+mnLMKh0mrh/dTrv7U5k6tSTeOEfLzFixAjVsfZJF7diKSkpXH75/2BuqsDcWKo6ziER3lYcVRuZPHkyw4YNUx0nJmVlZfHww49w/fXXs7ExkTtWZLJG37gMCSnhq3I7d63MpNKfwl133cWdd95p6Hs0urgN4PTTT6dnr14klH8flVfdtvI1mJBcddVVqqPENJPJxHnnncff//4c2b3zeWJdKv/cmoQnoDpZ9Gr2Cf6yIYUXtiQzdMRo/vHSP5kyZYrqWAeli9sArFYrl/3614jWWszNe1XH6Rq/B3vdTk499VR69eqlOk1cGDhwIH/7+3Ocf/75fFHm4J6VmexpNtYYbDTYVGdh3opMVtclcM011/DEk09GzTrxurgNYsqUKSQlp2Ct2qw6SpdYq7chA369gFSE2Ww2fve73/HYY4/hsWVw76p0Fu5xEIy+N2wR5w/C6zsSeXhNGsnZfXj2b3/jwgsvxGSKnjqMnqQxzm63c8bpM7A2FCN8LtVxOkdKHLXbGDFyJAUFBarTxKUJEybw4kv/5IijjuH/diTx+NpUfePyACqdJuZ/n86CPQlMnzGD555/ISqXGtbFbSCTJ08GKbE0lKiO0ikmdwO4Gjn5pJNUR4lr6enpPPDAA8yZM4etzYnMW5HJpnq90uDPLau0cffKDGoCqcyfP59bbrmFhIQE1bEOiS5uAykoKCCnRw8sDcWqo3SKpX4P0DZdTVNLCMGZZ57Js3/7G6k98nh4dRrvFCXooRPAG4CXtiTx140pDBgyjBf+8Q+OO+441bG6RRe3gQghOHbiRKzNFRA0/jPOlqZSBg8erGyFNO2XBg0axN/+/hwnn3IK7+1O5JE1aXE9dFLlMnHf9xksKndw8cUX8+c/P01ubq7qWN2mi9tgRo8ejQz4MbnqVEc5sGAQi7OWMWPGqE6i/UxiYiK33347t912G9tbHNyzKpOipvibdbKu1so9KzOoCybzxz/+kZkzZ8bMftkqO2wAACAASURBVKe6uA2m4wEWs8F3hTe56pABv37gxsCmTZvGX/7yDObkbB74Pp2vyuNjk4aOzQ4eX5tKbl4+f3/ueY466ijVsUJKF7fB5ObmkpKahslp7LVLzM62dwR6MSljKyws5LnnX2DU2HG8sCWZ13ckxvS4ty8If9/0380O/vrs3+jTp4/qWCGni9tghBDk9++H2d2kOsoBmdwNWKxW/dBNFEhPT+eRRx7ljDPOYMGeBJ7ZkByTT1s2ewUPr0njm0o7v/3tb5k3bx4Oh0N1rLBQXtxCCLMQYrUQ4kPVWYyiX79+WLzGLm7hbqJ3796GWzVN2zeLxcKcOXO47rrrWFlj56HV6TTH0E3LjpuQu1od3H333Vx66aXKNzsIJ+XFDcwCoutxwTDr06cP0uuCgE91lP2y+lrom5enOobWBUIIfvWrXzF//v2Uuhw8uCadek/0l1tZq5n7V2fgNCXz1FN/anseIsYpLW4hRB4wHXhBZQ6j6ZheJ7zO7h8s4MXhcHDeeee1vW0MeLt/TNpWBNTTAKPTsccey8OPPEKdP4EHVmdQ7TLC9duh2d1s5oHV6ZgS0vnTn5827DKsoab6b+wp4PfAfictCyFmCiFWCiFWVldXRy6ZQh2FaPK2dPtYwu9lxowZXH/99UyfPh3hD0FxB3xIn0cXdxQbN24cTzz5FC6RHLXlvavJzENr0klKz+HPT/+FgQMHqo4UMcr+toQQM4AqKeWqA32dlPI5KeUEKeWEeCmKjIwMAITf3e1jSYuNDz/8kKeffpoFCxYgLbZuH7Mjl5G2ctK6btiwYTz5pz/hNSfy8Np0GqJo2KSs1cyj69JJzcjh6b88Q16cDdupfJmdCJwhhNgNvAZMFkK8ojCPYaSlpQEg/J7uH8xsw+128/bbb+N2u8EciuJuy5WamtrtY2lqFRQU8PAjj9IUsPPI2nSafcYv72qXiUfWpmNLSufxJ6JnKdZQUlbcUsrbpZR5Usp84ELgCyml3qwQSE5OBkJzxR0OHbl0cceGESNG8OBDf6TSY+PP61PxG3i1hVaf4LF16fgtSTz2+BNxd6XdIfoGtuKAxWLBZrMjgn7VUfZJBNpyJSYmKk6ihcr48eO57ba5bG2w8P+2JRlyI6ZAEP66MYUqt5n59z8QV2PaP2eI4pZSLpZSzlCdw0hsdhsYtLg7ctnt8fEIdbyYOnUql1xyCYvLHfynzHgPrryxM5H1dVbmzLmJsWPHqo6jlCGKW/slq9WGCBrz8TYh23LZbN0fL9eM5corr+Too47iXzuSKDbQdmhraqx8XJLAWWedxYwZ+hpPF7dRSYnEqDeKjJpL6y6TycRtc+eSlpbOs5vSDPFofINH8MLWVAYOyOfaa69VHccQdHEbVCAYAIM+sivbcwUCBvhXrYVceno6t985j/JWwes71d7HkBJe3JKCO2jl7nvu1cNz7TpV3EKIY4UQl7f/f44QYkB4Y2lerw+Ecd6q/oRo+7bxekPzFKZmPBMmTOCcc87h89IEpWt5r6y2sbbWym+vuor8/HxlOYzmoMUthLgHuA24vf1DVkDPtw4jn8+H2+VEWo13gwhAWtpyNTQ0KE6ihdMVV1xBRkY6L29LUbIUrNsPr+5IYdDAAZxzzjmRD2BgnbniPhs4A2gFkFKWAynhDBXv6uvrgf8WpNFIa9sGqx05tdiUnJzMddffwK4mM0sqIj9E8eGeBOrccNPNt8TMzjWh0pni9kopJSABhBBJ4Y2kVVW17X4TtBlznnRHrsrKSsVJtHCbPHkyhYVDeL84OaIP5jR7BZ+WJnHCCSfEzcJRXdGZ4n5DCPF3IF0IcRXwH/RqfmG1c+dOAIIJBl0LxOJA2JMoKipSnUQLMyEEV175W2pcsDiCW58t2JOANwCXX355xM4ZTQ5a3FLKx4C3gLeBQuBuKeWfwx0snu3atQthsSFtxn1z47Ons2PHTtUxtAg4/PDDGTFiOB+XJEVkrNvpF3xensCJkyfTv3//8J8wCnXm5uRdwBYp5a1SyluklJ8JIWZGIFvcWrNmLf7ELMNOBwQIJGWza1cRLS3dX3pWMzYhBOeffwHVLsGaGmvYz7ekwo7HD+eff37YzxWtOjNUcgOwUAhx4o8+dk2Y8sS92tpadu/ehT/V2BucBtL6EAwGWb16teooWgRMnDiRnOwsPitLCOt5pIT/lCUycsRwvRH1AXSmuMuAacAfhRC3tn/MuJeCUW758uUA+NMMXtxJPRBm6w95tdhmsViYcfoZbKqzUucO33N7O5osVDoFZ5x5VtjOEQs69TcgpdwDTAKGCyHeBML7shvHPv/iC7AnG/fGZAeTCW9aHosWL8bnM+7emFroTJkyBQksqwrfGjXf7LVjt1k59thjw3aOWNCZ4l4JIKV0SykvBxYDenWhMKipqWHVypV4MgcZeny7gy+rgJbmZr777jvVUbQIyMvLo7BwCN9Vhef5gqCEFTUOjj5mol4y+CA6M6vkqp/9/BkpZfwuhBtGn376KVJKfNkFqqN0SiCtD8KWwMcff6w6ihYhxx13PLuazGHZ5mxXk4UmDxx33HEhP3as2W9xCyHeaP/veiHEup//iFzE+OD3+3nn3XcJpPREOtJUx+kcYcKdOZhvvvmGiooK1Wm0CDjyyCMBWF8X+jfda2utmIRgwoQJIT92rDnQFfes9v/OAE7fxw8thJYuXUpNdTXe3Oh6SsyXOwwJvPvuu6qjaBFQUFBARnoaG+tCPy1wY72NwsLCH/Zc1fZvv8Utpaxo/2+xlLIYaAHGA9ntP9dC6I033wRHCv70vqqjdIm0JeHLyOffH36I0+lUHUcLMyEEo0aPYXtzaJ+i9AVhV7OF0WPGhPS4sepAQyUfCiFGtv9/L2ADcAXwv0KI2RHKFxfWr1/Ppo0bcfcY/sOSqdHEmzsSl9PJv//9b9VRtAgYOXIk1U5COs69u9mCP9h2bO3gDtQSA6SUG9r//3LgMynl6cCRtBW4FiL/eu01hNWBL3uI6iiHJJicQyC1F6+/8YaeGhgHhg4dCrSVbah0HEs/dNM5ByruH/8LnAJ8BCClbAYiuE5YbNuzZw/ffP017pyhYA7/48Th4uk5irraWj7//HPVUbQw69hdvaQldBsslLaYSUlOIicnJ2THjGUHKu4SIcQNQoizaRvbXggghEigbTMFLQTeeusthMmMr8cw1VG6JZDaB5mYwetvvEHbKsBarEpOTqZHTjalraG74i5ttTBw0CBEFDy/YAQHKu4rgRHA/wAXSCk7tjs5CngpzLniQkNDAx8vXIgnc9APmxNELSHw9BjBrqIivX5JHOjbrz9V7tAVd6XbSt++/UJ2vFh3oFklVVLKa6SUZ0opP/3Rxxe1L/WqddMnn3yCz+vFF2VTAPfHlzUQYXXw3nvvqY6ihVnv3r2pDlFxu/3Q5JH07t07JMeLB9E3hSFGSCn58MMFBJN7EEzMUB0nNEwWPJmD+Prrr/V+lDGuZ8+eNHkknkD3j1XjNv9wTK1zdHErsmnTJkpK9uDNHqw6Skj5socQCAT47LPPVEfRwig7OxuABk/3K6TBa/rJMbWD08WtyJdffgkmM77MAaqjhFQwMQOZlM2iRYtVR9HCKDOzbfXKjtLtjsb2+eAdx9QO7qCDVEKIAbRtppD/46+XUp7RnRMLIRzAV4C9/bhvSSnv6c4xo8k333xLIDkXzLG30KI3LY/Nm9fS2NioH1+OUenp6QA0+7pf3E3tx9DfK53XmT/194DdwNPA4z/60V0eYLKUcgwwFjhVCHFUCI5reBUVFZSWluBLi67H2zvLn9YXKaXeZCGGJScnA+Dyd3/6nssvEEKQlGTcPVaNpjO3hd3h2BxYtk327diw0Nr+Iy4mAG/Y0PZAaiC1l+Ik4RFMykaYrWzatImTTjpJdRwtDDpKtjUExe30CxIcdkwmPXLbWZ0p7j8JIe4BPqXtKhkAKeX33T25EMIMrAIKgGeklL9Ykb99Y+KZAP36xcY8z+3bt4PJTNCRrjpKeAiBPyGTbdu2q06ihYnD0baZgjfQ/eL2BMQPx9M6pzPFPQr4NTCZ/z7qLtt/3i1SygAwVgiRDrwrhBj5o/VROr7mOeA5gAkTJsTEFfmOnTsJJmRADF9hBBIz2bFjB1JK/TRcDLJa2x6e9odg8Qu/FNis+mHsruhMcf8KGCil9IYrhJSyQQixCDiVtlUIY1pFRQUBe4rqGGEVtKfi8bhpamrSN51ikBACq8WML7jvF+V+yX6Km9vmZ/dPCdAv2b/fY/mCYLXp4u6KzhT3BiAdqArliYUQOYCvvbQTgJOAh0N5DiOSUlJXW4dMH6Q6SlhJW9sj/LW1tbq4Y5Q4wBLElw5xsqelrV7uGN/UrWNpv9SZ4k4HtgghVvDTMe5uTQcEegEvt49zm4A3pJQfdvOYhudyufB43NG/NslBSGvbZq+1tbU/rCanaVpodKa4wzK3Wkq5DhgXjmMbWWtrKwAyBudv/1jH70/vihO7ZAgngUmpV4ruioMWt5TySyFEf2CwlPI/QohEIHQL8cYZt9sNgIzitbc7Q5ravrVcLpfiJFo4SCnx+wNYTN0vb4to2yxb67yDDiwJIa4C3gL+3v6hPrQ9lKMdgo7ixhS6JTENqf2F6YffrxZTAoEAUkrMIZgwZDZJfF69c1JXdOaOwHXARKAJQEq5HegRzlCx7Icr7hgvbmlqe1Pm8XgO8pVaNPJ62yaZWUNwxW0zgVdvedclnSluz4+nAgohLMTJE47h8EORmWJ8tEm0vTDp4o5NHUNgCZbuV4HDLHHpd2Zd0pni/lIIcQeQIIQ4CXgT0Nt5H6KOb3hpiu0xbkwmMJn1zckY1fF9bDeHprh9Pr8e5+6CzhT3XKAaWA9cDXwkpbwzrKliWGNjIwDSYlecJPyE1UFT08Hn8GrRp7m5GYCkEFxxJ1rbjtHS0nKQr9Q6dGag9QYp5Z+A5zs+IISY1f4xrYv+W9yxvzZD0OL44ferxZaOF+Qka/eLO8kS/OGYHcvFagfWmSvu3+zjY/8T4hxxo7KyEmG1gzm2b04CBCwJlFdUqI6hhUFHcSdbuj//Orm9/PWLfOfttz2EEBcBFwMDhBAf/OhTKUBduIPFql27d+O3x8cj4EFHOqUlWwkEApjNMX4zNs7U19cDkGrr/hV3qq2t/PU+pZ13oMu+b4AKIJufbpzQDKwLZ6hYJaVk165dBByxuQ73zwUS0vH5fFRUVJCXl6c6jhZC9fX1WEyQGIIx7o7yr6vT14Odtd/illIWA8XA0ZGLE9v27NlDS3MzwcxRqqNERDCpbfPX9evX6+KOMbW1taTZIRQr9qZag4j2Y2qds98xbiFEsxCiaR8/moUQeqrAIVi1ahUA/tTeipNERjAhA2FLZOXKlaqjaCFWXV1Fpi000/csJkhzCGpqakJyvHhwoCvu2F4wWoHly5eDIxXpSFUdJTKEwJvci+UrVuL3+7FYYv+GbLyoqqykjz0QsuNl2vxUVYV05eiYphfBjZCGhgaWr1iBNy02tl/rLH9Gf5qbGvn++27vdKcZRDAYpKqqimxH6Fb0y7L72VtRHrLjxTpd3BHyxRdfEAwE8GUXqI4SUf70vgirnYULF6qOooVIXV0dPn+AHEforrhzEoJUVlURDOrlXTtDF3cESCn5cMECZFIWwcRM1XEiy2TGkz6AJUuW6KcoY0R5eduVcU5C6Eo2xxHA5/PrG5SdpIs7AtavX0/Rzp14sgtVR1HC12MoPp+PBQsWqI6ihUBZWRkAuQmhu+LOTWx7ESgtLQ3ZMWOZLu4IeOuttxFWO76s+Bom6RBMzCSQ2ou333lHLyQUA0pLSzELQjrG3bP9RaDjRUE7MF3cYVZZWcnSpUtwZw2Ji8fc98fbYxg11dUsXbpUdRStm0pKSuiRKDGHsD0yHUGs5rZnHbSD08UdZu+88w5BKfH1GKY6ilL+9H7gSOHNN99SHUXrpt1FO+md6D34F3aBSUDvxCDFxcUhPW6s0sUdRk6nkw/+/W986flIe7LqOGoJE+6cYWzcuIEtW7aoTqMdIp/PR1lFBb0TQze+3aFXoo/du3aG/LixSBd3GC1atAiX04k3d7jqKIbgyxmCMFv54IMPDv7FmiGVlJQQCATpkxT64s5LClBZVaM33+gEXdxh9PHChZCQTjBZb9EJgNmGN70/XyxapDcRjlJFRUUA9EsOfXH3TW67cb1r166QHzvW6OIOk/LycjasX48nc1BoVuKJEb7swbhdLn2TMkrt3LkTswl6hmGopG/7VfyOHTtCfuxYo4s7TL777jsAfJkDFCcxlkBKT4QtkWXLlqmOoh2C7du20Tc5iCUMzZHlCJJkE7q4O0EXd5isX78eYU9G2vVaXT8hBN6kHqxdt151Eq2LpJRs27aV/kmhnVHSQQjon+Rl21Z98/pgdHGHydp16/Em5ehhkn0IJOdSXVVJdXW16ihaF1RWVtLU3EL/lPA9RJWf4qeoqAifzxe2c8QCZcUthOgrhFgkhNgkhNgohJilKkuoSSmprakm6IiPLcq6Kti+rK0u7ujSMY1zYGr4intAih+fP/DDTVBt31RecfuBm6WUw4GjgOuEEDExb87rbX8radL7LO6Tqe0JUo/HoziI1hVbtmzBbIK+YZhR0qHjRUHP9T8wZcUtpayQUn7f/v/NwGagj6o8odRR3FLo4t4X2f6CpqcERpdNmzbSPzmANYytke0IkmqHTZs2he8kMcAQY9xCiHxgHPDdPj43UwixUgixMlreWicmJmKz2TF5W1RHMSSTp+3PJTs7W3ESrbP8fj9bt2yhIDU8NyY7CAGDUrxs3KBvXh+I8uIWQiQDbwOzpZS/WLBZSvmclHKClHJCTk5O5AMeArPZzKCCQZidetfqfTE5azGbzeTn56uOonXSzp078Xh9FKSFf3XHglQfpWXlNDQ0hP1c0UppcQshrLSV9qtSyndUZgm1wiFDsLjqIKh2GdNgYibSbEWarfhTehpiIwdLaxX98/OxWq2qo2idtGHDBgCGRKC4h6S3nUMPl+yfylklAngR2CylfEJVjnCZNGkS0u/FUqf28V1Pv6MIJGYRSMzCNfQ0PP2OUprH5GrA3FzJlMmTlebQumbdunVkJ7QtvxpuA1L8WExtz0Jo+6byinsi8GtgshBiTfuP0xTmCamxY8fSt28/7FWbVUcxFGvVFswWC6edFjN/1TFPSsmGdWsZnBqZWUA2c1t5r1u7JiLni0YqZ5UslVIKKeVoKeXY9h8fqcoTakIIzjnnbEytNZgbSlTHMQThbcVeu50TTziBjIwM1XG0TiorK6O2voGh6ZF7KKYw3cfWrdv0zKP9UH5zMpZNnz6dPnl5JJZ8p3ys2wgce77DYoIrr7xSdRStC9auXQu0lWmkFKb78AcCbNy4MWLnjCa6uMPIZrNx8003gbsJW8U61XGUMjeUYKnfzWWXXUavXr1Ux9G6YO3ataTaoVdi+Me3OwxJ8yNE29i69ku6uMNs/PjxTJ06FXvFOkwtVarjKCF8LpKKvyavb18uuOAC1XG0LpBSsvr7VQxN80R02Z0Ei2RASoDVq7+P3EmjiC7uCJg1axY9evQgqWgx+ONszE4GSSj6Eov0ce8992Cz2VQn0rqgoqKC6ppahkVwmKTD0HQvmzdt0ksj7IMu7ghISUlh/n1/wBxwk1D0FUipOlLE2MrXYm4qZ9asWRQUFKiOo3XR6tWrARiaEfl7NMPSffj8epx7X3RxR0hhYSE3XH89lsZSbGWrVMeJCEt9Mfby1UydehLTp09XHUc7BGvWrCHNTlg2Bz6YIel+TKItg/ZTurgj6Mwzz2T69OnYK9ZhqY3t3axNzjoSd33FkMJCbr31FoRelzzqSClZ8/0qCiM8vt0hwSLJTwmw+ns9zv1zurgjSAjB7NmzGTVqNIm7v8bUEh2LZnWV8LlJ2vkFaakpPHD//djtdtWRtENQXl5OdW2dkvHtDkPTvWzZslmPc/+MLu4Is1qtzJ9/HznZWSQXfYHwOlVHCq1ggISdX2Dxu3jowQeIloXBtF/qmL+tYny7w9D2cW69bslP6eJWID09nT/+8SFsIkDizs9j5+EcKbEXf4u5eS9z597GsGHDVCfSumHdunWk2NSMb3cYku5H8N8XEa2NLm5FBg4cyF3z5mFqrcGx++uYmGlirdqMrWYbl1xyCVOnTlUdR+um9WvXMCTVq3Tb1ESLpG9KkA16wamf0MWt0LHHHssVl1+OtXYn1uro3qrJ1FKFo3Q5Rxx5pH6kPQbU1tZSVrGXIQrHtzsMSfWyceMG/P4YeWcaArq4Fbv00ks54ogjSChZHrU3K4XPTVLRYnpk5zDvzjsxmfS3VbTbvLltVctIbJxwMAVpPlxuD8XFxaqjGIb+F6aYyWRi3rx5ZGdnkbRrMQTCuzVUyEmJY/cSLAEP8+ffR2pqqupEWghs3rwZs4D+yeqLe1D7BsIdLyaaLm5DSE1N5d577kF4WrCXLFcdp0ssNduxNJRw9dUzKSwsVB1HC5EtWzaTlxzEZoD9rnskBEm2CV3cP6KL2yBGjBjBBRdcgK16G+bGUtVxOkV4WkgsXc7o0WM499xzVcfRQkRKyY7t28hPNsa7PyGgX5KXnTt3qI5iGLq4DeTyyy+nb7/+JO75NiqmCDpKlmEzm5g79zY9rh1D6urqaGxqoW+yummAP9c32c+uXbsIBIyTSSX9r81A7HY7N82ZDe5mbHuNvbCOuakCS/0eLrvs1/Tu3Vt1HC2Edu/eDUBeknEuHvKSAng8Xvbu3as6iiHo4jaYcePGcczEiTj2rkP4DPpUpQySULqc7JwczjvvPNVptBArKysDIDeCGyccTG5C25V2eXm54iTGoIvbgH537bUIGcBWYcyHDiz1xYjWWq65+mq9DkkMKi8vx2qCDLtxirtH+4tIx4tKvNPFbUB5eXlMnjwZe8028BtscR0pse9dT6/efTjxxBNVp9HCoLq6mkwHmAy0oGO6LYhZQE1NjeoohqCL26AuvPBCZMCHrcpYU6DMzXsxtdZw8UUXYjYbYK6YFnL19fWkWI0zvg1tLyIpdkF9fb3qKIagi9ugCgoKGH/YYW1X3dI4b1mtVZtJSUnl5JNPVh1FC5PGhnpSrMb5nuuQYg3Q0NCgOoYh6OI2sNNnzABPC+YmY9yQET4X1sY9nHrqKXpsO4a53W7sZuMtemYzBfF6jTG3XDVd3AY2ceJEklNSsFZvUx0FAEttEQSDnHbaaaqjaGHk83mxCOMVt0VIXdztdHEbmM1m4+STTsLWWGqINUxsdUUMHjyYAQMGqI6ihVEwEFS6lOv+mEA/gNNOF7fBTZ48GRn0Y6nfozSHcDdiaq3W62zHAbvDgS9gvOb2SkFCQoLqGIagtLiFEP8QQlQJITaozGFkw4cPJzsnB2vdLqU5Os6vpwDGvoTERNwGLG5PwKyLu53qK+5/AqcqzmBoJpOJKZMnY2kuUzqn21a/m+HDR9CjRw9lGbTISElJpdmvuhp+qcVvIjk5WXUMQ1D6tyOl/AqoU5khGpxwwgkQDGJpUDNcIlyNCGcdkyfrq+14kJubS53HojrGT3gD0OCW5Obmqo5iCMZ7Wf0ZIcRMIcRKIcTK6uro3CGmu4YOHUpOjx7Khkus9W3nPf7445WcX4us3NxcGtzg6+ZU7n7JfvqFaCOGOk9bVel3fG0MX9xSyueklBOklBNycnJUx1FCCMHUKVOwNJUhfK7InlxK7HVFjBo9Wv+jiRP9+/dHAmWt3Xsy9tIhTi4dEpqF0kpa2t4B5Ofnh+R40c7wxa21mTp1KkiJpX53RM9rctaBq4GT9GySuDFkyBAAipuNM1xS3GLGZDIxcOBA1VEMQRd3lBg4cCD9+vfHVrszoue11u7AbDYzadKkiJ5XU6d3794kJjgoajJOcRc1Wcnv11c/sdtO9XTAfwHfAoVCiFIhxJUq8xiZEILTpk3D1FKFyRWh9RqCAex1O5k4cSJpaWmROaemnMlkYszYsWxuNEZJ+oKwvdHG2PGHqY5iGKpnlVwkpewlpbRKKfOklC+qzGN0p5xyCiazOWKPwFsaSpA+N9OnT4/I+TTjmDDhcPa2Cmpc6t+U72y04AlIJkyYoDqKYaj/W9E6LSMjg4nHHIO9bkdE9qS0VW8hKytb/4OJQx1/52tqrYqTwOoaGxazmTFjxqiOYhi6uKPM2WefjfS5sYR5aqDJ1YC5qZyzzjpTr7sdh/r3709+/34sr3IozSElLK9JYMLhE0hKSlKaxUh0cUeZcePG0bdfP+xVm9u+q8PEWrUZs8XCjBkzwnYOzdhOOHEyWxss1HvUPf6+s8lCrQtOPHGysgxGpIs7ygghOO/cczG11mBuqQzPSfwe7LU7mHziiWRkZITnHJrhTZkyBQl8vVfdTcolFXbsNisTJ05UlsGIdHFHoVNOOYXklBRse8OzNpeteisy4OOCCy4Iy/G16NC3b19Gjx7FlxWJ4Xxzt1+eACyrcnDCiZP1GiU/o4s7CjkcDs4+6ywsDXsQrsbQHjwYwF69mfHjx1NQUBDaY2tRZ8aM06l0CjbVR35O97JKOy4/elbTPujijlJnn302FosVW2Vor7otdUXgaeXCCy8M6XG16DRp0iTSUlP4tDSyy6lKCZ+WJjJwQD6jRo2K6LmjgS7uKJWZmcm0aadir90RuvVLpMRRuYH8AQM5/PDDQ3NMLarZ7XbOPOts1tTYqHRGri4211soaTHxq/MvQBhxOx7FdHFHsQsuuAApg1grN4bkeObGEoSznksuvkj/Y9F+cOaZZ2KxmFlYErmr7o9KEklPTWHyZD2bZF90cUexvLw8jp14LI6arRDwdft49r0byMrK1rvcaD+RlZXFyaecyld7HTR6w/+CXtxsZl2tlfPOv0CvTbIfurij3AUXnI/0ebDWbO/WcUytNZibrlfDDAAAC+RJREFU9/KrX52HxWKcxYU0Y7jwwgvxB+GTCFx1f1icQGKCgzPPPDPs54pWurij3MiRIxk6bBiOqk3deiDHtncDjoQE/cCNtk99+/bl+OMn8XlZAi2+8F11V7SaWF7VNq6ekpIStvNEO13cUU4Iwa/OOw/cTZgbSw/tGD4X1obdTD/tND1fVtuvyy67DJcfPi0J32PwHxQnYLNZOf/888N2jligizsGHH/88aSlp2Or2nJIv95avRWCQf3WVDugQYMGcdyxx/JpWSJOf+ivuiudJr6tdHDmWWfrJ3YPQhd3DLBarZx5xhlYGksQnpau/WIZxF6zjfGHHUa/fv3CE1CLGZf95jc4feG56v6gOAGLxaqf2O0EXdwxYtq0aUDbjjVdYW6qAE8Lp+uxba0TBg8ezDFHH80npYm4QnjVXeUy8fVeB6efcQZZWVkhO26s0sUdI3r16sXYsWOx1+7o0k1Ka80OEpOSOOaYY8KYTosll/3mN7T64LPS0F11/3t3AmaLhYsuuihkx4xlurhjyCmnnALuJkyt1Z37BQE/tsZipkyerOfLap02dOhQjjziCBaWJuIJdP94NW4TSysdTJ8+g+zs7O4fMA7o4o4hxx57LCazGUt9cae+3tJUhgz4OeGEE8IbTIs5l/3mN7R44Yuy7l91f1ScgBBmfbXdBbq4Y0hKSgrjx4/H3lDcqeESS/1ukpJT9JZQWpeNGDGCcePG8nFpEr7goR+n0Sv4cq+Dk085hdzc3NAFjHG6uGPMccceC+4mhKfpwF8oJbamMiYec7R+UlI7JJdccikN7u5ttPBpiQN/EH213UW6uGNMxyavlsayA36dyVmL9Ln1RsDaITvssMMYXFDARyVJBA/hoV2XHz4vT+S4446nb9++oQ8Yw3Rxx5g+ffrQI7cn5qbyA36dpf3zhx12WCRiaTFICMGFF13E3lbB2kPYDX5JhQOnD732+yHQxR2DDhs/Dltr9QHHuc0tlfTJy9NzZrVumTRpEjnZmXxSmtilXxeU8GlZIsOHD2P48OFhShe7dHHHoOHDhyN9LoSned9fICXW1hpGjRwZ2WBazLFYLJx9znlsqrNQ2mLu9K9bV2ulyik477xfhTFd7NLFHYOGDRsGgHk/87mFpxnpc/3wdZrWHaeddhpWi5nF5Z2/Sbmo3EFmRjrHH398GJPFLl3cMSg/Px+zxYLZWbvPz5uddQAUFhZGMpYWo9LT0znu+EksrUzA24kHcmrdJtbU2jht+gw9o+kQKS1uIcSpQoitQogdQoi5KrPEEovFQn7/fEzO+n1+3uSqQwhBfn5+ZINpMev000/H6YOV1baDfu3Xe+1I2Xalrh0aZcUthDADzwDTgOHARUIIfZciRAoKBmH1NOzzcyZXAz179cbhCN+6ylp8GTNmDD1ysvmm8sDfU1LCN5UJjB41kt69e0coXexRecV9BLBDSlkkpfQCrwF6QegQ6devH9LTus+9KK2eJgbk91eQSotVJpOJk04+hQ111gPuS7m72Ux5q+DkU06NYLrYo7K4+wAlP/p5afvHfkIIMVMIsVIIsbK6upOLJ2k/PNBgcjcSTMwkmJjZ9gkpwd2oH3jQ/n979xIb11mGcfz/jB1PYnvsxPE1DVGbqIE0iRNRJ0okUtSISO0KpRJqEZtKSN3QBSsuYsOGFRvEpUAWwAKpVTcRkagULhUUJCSSgKokpJEKompKgVxIkR07YzsvC3scOxco9YyPv+88v419vjNz5rU0evT5PZev6Q4fPsytgD/8l3bJqctVKpWKT0ou06o/ORkRxyJiLCLGBgYGii4nGZs3bwagMvVvbm45wM0tBwBQfQJuzS7sN2uWrVu3MjI8xJkr97+65MyVtezdu4eenp4VrCw/RQb3O8Diad/m+TFrguHhYQAqd1zL3dgeGRlZ8Zosb5I49NjHOf+vNUzO3L3/3YkK706IQ4c8216uIoP7FPCwpIckdQDPACcKrCcrnZ2ddNd6UH3pUmZycFsLHTx4kNlb8Mb1u2+BP3ttroVy4MCBlS4rO4UFd0TMAM8DJ4ELwMsRcb6oenK0adPI3TPu+jiSGBwcLKgqy9nOnTupVjs4e+1ewb2GBzaNeNLQBIX2uCPilYjYHhHbIuJrRdaSo+GhIdpnbiwZq9QnWL9hA2vW/P8PBTL7Xzo6Oti7Zy9/ur70ssDZW3DxvSpj+/YXVFleVv3JSfvghoaG0M2JJQ+bUn2cYT+w3lpo9+gofxsX49O3Lwt8e6KNqZlgdHS0wMry4ftNMzY4OEjMTsNsHdrnzvS3T08yOLi94MosZ7vmH172wrluujvmJg1XJitL9tnyOLgz1rh8slKf4FZ7FSJQfdz9bWupHTt2MLp7F1evXmXhoQvdcGjPNi9P1iQO7ow1glv1Cejsg9k6MTuDr4e3VqpWq3zzW98uuoysucedsf7+fgAq03MnKCv1G0vGzSxNDu6MNVa30Xxga9rBbZYDB3fG2tvb6entRdMTgIPbLBcO7sz1b+ynUp8EbrdKvM6kWdoc3JkbGOinMjMX3Jq+QWdnF9Xq+19iysxWHwd35jZu3EjbouDu82zbLHkO7sz19fUR9RsQQWV6koF+B7dZ6hzcmevr65u78WZmivbZKfe3zTLg4M7chg0bAND0JNQnF7bNLF0O7swtBHd9nJidZv369QVXZGbL5eDOXCO42yavL9k2s3Q5uDPX29sLQGU+uBvbZpYuB3fmarUakqhMvQc4uM1y4ODOXFtbG+s6uxaC26trm6XPwV0CtVoNzdYBB7dZDhzcJdDTU1v4vbu7u8BKzKwZHNwl0FObC+5qdS3t7V47wyx1Du4S6OrqAqCzs7PgSsysGRzcJbAQ3PM/zSxtDu4SaMy0u7o84zbLgYO7BNatWwdAl1slZllwcJdAY+EEn5g0y4ODuwQaPW6vfGOWh0KmYJI+BXwV2AHsj4jTRdRRFkeOHEES+/btK7oUM2uCov53Pgc8BXy/oM8vlVqtxtGjR4suw8yapJDgjogLAJKK+Hgzs6St+h63pOcknZZ0+vLly0WXY2ZWuJbNuCX9Ahi+x66vRMRP3u9xIuIYcAxgbGwsmlSemVmyWhbcEfGJVh3bzKzMVn2rxMzMliokuCUdlXQJOAj8VNLJIuowM0tRUVeVHAeOF/HZZmapc6vEzCwxDm4zs8Q4uM3MEuPgNjNLjIPbzCwxikjnZkRJl4G3iq4jUf3AlaKLsNLx9255rkTEE3cOJhXc9sFJOh0RY0XXYeXi711ruFViZpYYB7eZWWIc3OVxrOgCrJT8vWsB97jNzBLjGbeZWWIc3GZmiXFwl4CkJyRdlPSmpC8VXY/lT9IPJP1T0rmia8mRgztzktqA7wBPAo8An5b0SLFVWQn8CLjrxhFrDgd3/vYDb0bEXyKiDrwEfLLgmixzEfEacK3oOnLl4M7fA8Dbi7YvzY+ZWaIc3GZmiXFw5+8d4EOLtjfPj5lZohzc+TsFPCzpIUkdwDPAiYJrMrNlcHBnLiJmgOeBk8AF4OWIOF9sVZY7SS8CvwM+LOmSpM8WXVNOfMu7mVliPOM2M0uMg9vMLDEObjOzxDi4zcwS4+A2M0uMg9tKSdKwpJck/VnSGUmvSNp+n9c+6Kfc2Wri4LbSkSTgOPCriNgWEY8CXwaGmnT89mYcx+x+HNxWRo8D0xHxvcZARLwO/FbS1yWdk3RW0tN3vlHSWkk/nN//R0mPz48/K+mEpFeBX67YX2Kl5JmBldEu4Mw9xp8C9gJ7gH7glKTX7njN54CIiN2SPgL8bFGL5aPAaET4cabWUp5xm932MeDFiJiNiH8Avwb23eM1PwaIiDeAt4BGcP/coW0rwcFtZXQeeLQFx51owTHN7uLgtjJ6FahKeq4xIGkUuA48LalN0gDwGPD7O977G+Az8+/ZDmwBLq5I1Wbz3OO20omIkHQU+IakLwJTwF+BzwPdwOtAAF+IiL9LenDR218AvivpLDADPBsRN+cuVDFbGX46oJlZYtwqMTNLjIPbzCwxDm4zs8Q4uM3MEuPgNjNLjIPbzCwxDm4zs8T8By+pko/zBz/oAAAAAElFTkSuQmCC\n" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGwCAYAAACHJU4LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9+0lEQVR4nO3deXQc1Z33/3dV9aatZcnaF1tesTEYL3gLdmzAxDAOkEDCPgES8jwTiJMZMkxgzu8MhFmAMUlIgkOWYSDJQIAwLE54MAEvbLHBbGFzAjZeZFuLV+1qqZffH1dSd6m7Zcu2UBs+r3N0wP3tunVv1e263666V7JisVgMERERkQxkD3cFRERERNJRoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLM9wV+BoRKNRdu/eTV5eHpZlDXd1RERE5DDEYjFaWlqoqKjAtge+Z3JcJyq7d++murp6uKshIiIiR6C2tpaqqqoB33NcJyp5eXmAaWgwGBzm2oiIiMjhaG5uprq6um8cH8hxnaj0Pu4JBoNKVERERI4zhzNtQ5NpRUREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0J/165dfPe73+Xpp5+mvb2d8ePHc99993HqqacOd9U+2SIhqP1fOPg25E2E0ZeAJzseb3wR6laBNwg1l0N2wh+Nat0G238L4Tao/DwUzY3HultNrHULFMyA6i+C7TWxWBR2r4I9L0KgDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHoKMOihdAxdlg9eTZ0W6ofRwOvAG542D0peDNjW+7dwPs+gN4ckwstyYea99pyu1uhvKzoWRBPBZuh+0PQ8tfYcRUqL4QHH9PW2JQ/xw0rAF/sWlLoGSwZ0FERA7BisViseHa+YEDB5g+fTqnn3463/jGNyguLubDDz9k3LhxjBs37pDbNzc3k5+fT1NTk/7Wz2B07oXVi6DpvfhrOTWweB1kj4JXroGP/jses31w2sNQ/QXY9hCs/1uIhePxCdfBrLuhZTM8twg6dsVjBdPhzNXg5MAL55vkp5c3HxY9DcXzYNOd8OYN7npO+0848QaTaKw9G7qb4rHyJfDZlRBph9VnmiSlV1YlnLkWghPgtWXwwd3xmOWBeb+Gmkth55Pw0kUQ7YrHx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kUpD7mIiMQNZvwe1kTlxhtv5OWXX+bFF188ou2VqByhjd+ED1ckvz7qyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4dzM8f647qep16gqTSGxanhyrWGr2u3pRcsyTB+dtgacmmzs1/S18CrbeDzt+lxybcB2MnAUbrkqO5Y6Fcz+M3+kREZGUBjN+D+sVdeXKlZx66ql8+ctfpqSkhOnTp/PLX/4y7ftDoRDNzc2uHzkCiXcCXK8/CbueTB0L7YMP70mdpIB5jFT3dPr97UxTbtN7sOW/k5MUMK9tvjd1knKocuuehh3/mzoWbjFtSZWk9JW7Mk3s8fT7bP0IDr6TOiYiIkdkWBOVjz76iHvuuYcJEybwzDPP8I1vfINvfetb/OpXv0r5/ttuu438/Py+n+rq6o+5xp8QvfMs+rP95iftdtkDxAJgedPH0u0TwMlKH/McYp/pyrW84AkMsO0hyrV9g4/BwMdPREQGbVgTlWg0yowZM/iP//gPpk+fzv/5P/+Hr3/96/zsZz9L+f6bbrqJpqamvp/a2tqPucafEDWXp3n9MvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7rJgHoz/abWPGC5Nihyh11EdRcYerWX6DMtCWnJvW2NQOUW3N5+ljBDMiflDomIiJHZFgTlfLyck488UTXa5MnT2bHjh0p3+/3+wkGg64fOQJT/hkqPu9+rXgBTLvDrOCZdkd8pQ6YgX3+I+YOxYJHwV8Uj9k+mHkXFJwCM38II+e4y62+ECZdD6MvhonLcCUOeRNg3v0QKIbPPGAmpPby5JjXAsXmPXkTEwq1TKJRc4kpu/pL7n2OnGPqUjAVZv7IfQfEXwTzf2faMv937sTL8sC023uOwe3JCVLFUnPsqs6Fyf/knouSU2PqKyIix9SwTqa97LLLqK2tdU2m/Yd/+AdeeeUV/vSnPx1ye02mPUr73+hZnnyCWXmTqKPOLL/1BqH8HHASBvtIJ+x+2ixPLv9c8rLcxpegdbO5w1Aw1R1r2QJ7XoKscihb7B7su5tNuQAV55h994pFTX066qB4PuT1WxV24O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrHL3tnvWx5cnF85wx1q3QePzpv1lZ4E97Kv9RUSOC8fNqp+NGzfymc98hu9973tcdNFFvPrqq3z961/nF7/4BZdfnub2egIlKiIiIsef42bVz6xZs3j88cf57W9/y0knncS//uu/ctdddx1WkiIiIiKffMN6R+Vo6Y6KiIjI8ee4uaMiIiIiMhAlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3Du/JZbbuF73/ue67UTTjiBv/zlL8NUo34e9ANd8X9f3AHbH4Gm9yB/Coy+CJxAPN6wFuqeBX8h1FwOWeXxWMsW2P4QRDqh+gtQODMe626GbQ9C2zYYORsqzwO759TEorDrKdj7MmRVwZjLwVcQ3/bAn6H2MbAcGH0xBE+IxzobYev/QGgPlJ4OZWeBZZlYJAS1/wsH34a8iTD6EvBkx7dtfBHqVoE3aNqSXRWPtW6D7b+FcBtUfh6K5ia0pdXEWrdAwQyo/iLY3nhbdq+CPS9CoAzGXAH+kfFtD74HtY+a/6/+EoyYEo+F9sG2B6CjDooXQMXZYPXk2dFuqH0cDrwBueNg9KXgzY1vu3cD7PoDeHJMLLcmHmvfacrtbobys6FkQTwWboftD0PLX2HEVKi+EBx/T1tiUP8cNKwBf7FpS6Akvm3zX822sQhUXwAFp8RjXQdg6wPQsROKPmOOYV9bwrBrJex7FXJqoOYycw567X8dap8w9Rh9KeSNi8c66kxbQvuh/CxzzntFOo9d3930X7D9Z/H4uO/AnDv5pIt07CXSsRfL8eLJqcTyxI9ftLuNSNtuYrEonuxSbP+Ivlgs2k24dTexcDu2fwROdilWz/mOxWJEOhqJdu7H8gRMuY4vXm6omXB7HRYWTk4Fti/er2OREOHWXcQiIZxAEXZWEVbP5zsWixBpqyfa1YztzcHJqcSynXhbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7bUEe1uwfbm4eSUu8738c6KxWKx4dr5LbfcwqOPPspzzz3X95rH46GoqGiAreKam5vJz8+nqamJYDB46A0G40Hr0O/JmwBnroOsMvjTFWaA7uVkwYLHzIC65T549etm0Oo1+Z9g+h1mcF5zJnQ2xGMj58IZfwTLA+v+BhrXxWP+kXD6H6FwBrxzK7xzc0KFLDj1JzDxOmhYB8+fC+HWeLjqfJj/KHQdhNWLzKDVK6cGFq+D7FHwyjXw0X/HY7YPTnvYDFLbHoL1fwuxcDw+4TqYdTe0bIbnFkHHrnisYDqcuRqcHHjhfJP89PLmw6KnoXgebLoT3rzBfXyn/SeceINJNNaeDd1N8Vj5EvjsSoi0w+ozTZLSK6sSzlwLwQnw2jL44O6EQ+SBeb+Gmkth55Pw0kUQTUhGx14Nc+6F9h2mLW3b4rH8KaZcXwG89GXY+UQ85smBhX+A0kXwwU/htW8CCR+tk2+Bk2+G/W/C2rNM4tWrZKE5DrEIrDkL9m2IxwIlcMYak7S9dSO8f0dCW2yY/UsY91XY/Qy8+EWIdMTjoy+Bzzxg+tZzC6Hlw3jsaPpuKp6RcNHegd9znIrFYnTteZNI2+74i5aNv+RUnOwSwi21dO19m8Tz7ckfh69wMtGuFjrrN5gvBj1s/wj8ZXMBi1DDq0Q7E/qC7SVQNhfbn0/3gQ/oPviBqy7ekSfhDdYQ6dhLqGGj67w42aX4SmZCNExn3Xpi3S3x6nqy8JfNw/Jk0bX3bSKttQml2vhKZuDJKSPcuouuPW+525I3Gl/RyUS72wjVrScW6YyX6wsSKJsLtodQw0aiHXsSivXgL52DEyigu2kL3fs3udtSMBnviHFEOg8QanjFJOm9m2YV4y+dBdEInfUbiHXFP/uWE8BfPhfbm0vXvncJN29LKNXCVzwNT24l4bZ6uhrfAKLxY5Rbja9oKrFwB6H69cTC8c+L5c0jUD4XbC9dja8TaU+4JlsO/tJZOFlFdDdvo3vfu+62jJiIt2Ai0VCTOd/R7nhbAoX4S+cAMUL1G4iGDiYcIx+B8nnYvjy69m8i3LTFVa6vaCqevFFE2hsJNb5mvuz1tiWnAl/xdIiEzPkOt8Wr68nBXz4POyGZzjSDGb+HPVF54okneOutt45o+yFLVH4/HVoOs05jr4KKpWbg6i+rAs5+E1aONt9G+1uy0QzOiYlIr5NvMYNf/8EboHAWzLsfnpqSHLO9cN5WeO6z0PpRcnzu/bBvI3y4Ijk26ssw5ip4fmlyzD8Slm6CleMg3JIcP3MdbFoOu59Kjk2+wSRCr12XHMufAgt/D78f7/oQAmYgPnezSbgSk6pep64wicSm5cmxiqVmv6sXJcc8eXDeFnhqsjth6LXwKdh6P+z4XXJswnUwchZsuCo5ljsWFr8AK8e4LlR9lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpnLZsF1KhlS4bXfPgOdmOX78FQvo3Lkmue8C/or5dO/f5E5EenhHTATbSRq8AWxfPr7iaXTuej5FbSwCVWf0DLLtSVFf0SnmW3nL9qSYk1OOJ7fKJDhJO/USqFpEZ+1a95eQ3raUzaO7aQvRjsakmCd/LJYnO2nwBjP4+0tnmWOUQqDqDEING11JVS/vyJOIhdsJNyVfx+ysErz54wjVr08u1PIQqDqdzl3rUn4O/aWzCLfu7Lu742pL3mhs/wi69v45RbHZ+Mvm9bQlua8HKhfStectoglJVV9bCidDNJKUeALYgZF4CycT2v1SirbY5hjtfpFYQrLby1cyg0h7I5HWnUkxJ7cKf/G05DIzxGDG72F99APw4YcfUlFRQSAQYN68edx2222MGjUq5XtDoRChUPxkNTc3D02lDjdJAXMbPtWgBGbg+PCe9Bf67b9NnaSA+bbuyUkd278Rtv4mdSzaDZt/kTpJ6S13X4oLFZg7DImPlRKF9pm2pEpSwDxGqns6/T5zxqSONb0HW+5NeaEnFoXN96ZOUnrLbUu+IAOmLjljU8fCLaYtqZKU3nJ3rkwTezx1QgDmmG/+Rfr+sPXXqZMUMI+uEu+GJGpcZx69pBLphM33pK9T7ePpz8vR9N1PkUhbQ8rXY5GQSQhS9V0g0ro7ZZICEG6v73vM0F+0q4lwioGnZ6+EW7anTFIAIu31REPJAyWYdiQ+ZnDvtNvcmUiRpACE2+pSJil95SY8bnHVtruFcMuO1PsEwi07UiYpptx6Ymk+E9GORsKe1PskFibcsi1t3w63N7jvliTus70+ZUJgim0n3LqDVEkKQLh1Z8okBXrakuauZLRzH+HWXSljxKLmGKWpU6StnkjiXazEWJo2Ho+GdTLtnDlzuP/++1m1ahX33HMPW7duZcGCBbS0pO64t912G/n5+X0/1dXVH3ONU3D8YPvTx9MlGwBOtplbkoo9ULmW2TbtPgeI2f74PItB7ZOB9+kEwEpzEXQC6fd5qHIHastA5VpeGOi256HaYvsGH4ND1DcHSPNIcaByLcc8jkm7z4H62EBtOcT59g5Q7qeJlf4yaVkDfNezbNKdb8uyByw37XXhkPt00pd7iH0esi0DlGsdYVsYYB6FmWNxpG0Z6PjZA5Q7wPEDLAZoy0DtHPAYWQPWd+ByD3G+PyGGtSXnnHMOX/7yl5k6dSpLlizh//2//8fBgwd55JFHUr7/pptuoqmpqe+ntrY25fuO2ui/O/z31lxuflIJTjLzRXyFyTHLhjFfMfNGBltu+edg3NVmvkV/nlwY/3dmIutgy625zPykklMDE79pJsEmsUyZoy5Kve3oy9Lvs3gBjP+6e2JnL9tvYsULkmOHKnfURVBzBSkHikCZaUtOTeptawYod6DjVzDDHHtPbnLM8phzVr5k8OVWnQ9jr0x94fEVwIRrITh58OUequ9OSNN3P2U8uZUpX7e8uXiCNfHJ4v23y6vCyS5NGXNyKtOWa2cV48mrJmXftRw8+aOxfPmpy82txElTrie3AicnTVs8WTjBmrSJvze3CienPGXMk1uZtlzbX4g3OCp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntTJ/UDHfqDjZ/ny8eSPTpM4WHjyqrGzilNuO9AxcrJLe853CrYXb7AGy5vimtJTridNuelePx5lVMo1YsQIJk6cyObNm1PG/X4/wWDQ9TMkTrvn8N5Xthim3gplZ5g5JYkdOLsKTnsIPFkw/xH3IxXbD7N+biZ7nrrCTDhNVHO5GXzGXg3jrsF1wcqfYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt3hvvgGykwbPAFY8Cj4EyY72z6YeZdZ1TLzhzByjrvc6gth0vVmRdLEZe625E0wc20Cxaa+iXcGPDnmtUCxeU/exIRCLZNo1Fxiyq7+knufI+eYuhRMhZk/ct9R8BeZeRuegPlvYuJleWDa7T3H4PbkBKliqTl2VeeaydCJF9+cGlNfX76ZeJy4UsfJgrn3mXM2+xfmHCa2Zdw15lxPuLYnuUpQMM30kbzxps8k3gHxFfS0Jduc98SVWZYDJ91s+ubUW01fTXSkfTfdHaHyNEnqJ4CTVWTmlCS03XIC+ItnYNkO/pKZ7s+LZeMrmortzcU38iQsn/s65eRU4gnW4ORW4+S6ByjLm2e29WThKz7F3ccsD/6SGVi2F3/xdKx+d+88+WPxZJfizR+PnVXiitn+QryFk3ECBXgLJrnaguPHVzITu68tiXfgbLyFU7D9QXyFU1yrmQCc7DKz39wKk7QltsWTg6/4FCzHbyZ9JvYxy8FXPL0ndgpWv7t3nmCNGYTzx+JkuxMk2z/C1MUXxFs4BdcwZvvw97TFVzKzX+Jl4S2YZI5B4aSkBMnMexmPJ7sUT/44V8zyZJljbnvxl8xwf0m0bHzFp5hzVjQVy5vn2rb3PHuCNUnJiuUL4ht5ErY3B1/RVPf5tr34S2b29LEZWK4vcxaeERNM3yyYiB1wL0CxA+b1T4phnUzbX2trK6NGjeKWW27hW9/61iHfP6SrfgBeuBJ2/tr8f9YY+OJHsPdVaH4fgidC0Wz3+9t3Qv0as8SzfIn74hVuh91Pm2f+FWe7l+XGYtD4vJkYWjjLvSwXzFLXvRvMAFJ6RnyJMZilrrtXmeXM5ee4l+VGw1D/rFmmXLLQvSwXYP8bPcuTTzArbxJ11Jnlt96gKTdhmSGRTtOWcJu5uxNwXxRpfAlaN5s7DAVT3bGWLbDnJbP8tWyx+4PZ3WzKBag4xz3Yx6KmPh11UDzfvSwX4MDb8eXJJf0SjM5GqPujSX4qznHfvYl0mZVI3U2mPln9vjXuWR9fnlzY7y5V6zZz3gIlZul3wpJJulvN3JBo2JzvxME+FjPLmttroWiee0k5QNP78eXJJQvd5zu0z5xvJ2DakjhYRbuh7hmzPLnsDHfiAse27yauivuETqLtLxruINqxD8vxYmcVu27lx6IRIh2NEIvgZJW4luWapa77iIU7sP0jXMtywSx1jYYOYHmysAMj+5ayglnqGunYA5Zlyk3oY7FYlGjHXmKREHZgpGtZLkA01ES0qxnLm+taYgxmqWukYy/YHpzskgHaUuxalgsQ6dxPrLsN25+P3S8Ji3a3maXWTsC1XNqU202k3cyncLKLXfNlzNLmvcQindiBQteyXHOMmomGmrC82a4lxuYYhXqOkdNzjJyEcqNE2hshGsbJKnItKTdtOUCsZ3my7XffpYp2txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHiIQOEOtqxfLl4vjTzDXMIMfNqp9//Md/5Nxzz2X06NHs3r2bm2++mbfeeov333+f4uLUt9ASDXmiIiIiIsfccbPqZ+fOnVx66aXs27eP4uJi5s+fz4YNGw4rSREREZFPvmFNVB56KM2SSxEREREybDKtiIiISCIlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsz3BXINHtt9/OTTfdxLe//W3uuuuu4a4OPGi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qolwL54nHK4bDcyeLFYjEhHI9HO/VieAJ6cSizH1xePhpoJt9dhYeHkVGD74v06FgkRbt1FLBLCCRRhZxVh9Xy+Y7EIkbZ6ol3N2N4cnJxKLNvp2zbSuY9I+x4s24OTW4ntyYrvs7udSNtuYtEwTnYpTiB+vYlFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW+VuS1cLkbY6AJyccmxfXkJbunra0okTKMTOKkloS7SnLU3Ynmyc3EosOz50RToPEGlvMG3JqcD2xq9j0XAHkdZdPW0pxgnErzexaIRI226i3a3YvmBPW5x4Wzr3EunY29OWSqzezz4Q7Wo1x4gYnuxybH/8MxqLdBFu20Us3IntL8DJLnW3pb2BaOgglicbT24FVu/1EYiGDhJub8DCxsmtwPbmpOw3nzZWLBaLDXclADZu3MhFF11EMBjk9NNPP6xEpbm5mfz8fJqamggGg4d8/6D0T1JSyZsAZ66DrDL40xVmgO7lZMGCx8yAuuU+ePXrZtDqNfmfYPodZnBecyZ0NsRjI+fCGX8EywPr/gYa18Vj/pFw+h+hcAa8cyu8c3NChSw49Scw8TpoWAfPnwvh1ni46nyY/yh0HYTVi8yg1SunBhavg+xR8Mo18NF/x2O2D0572AxS2x6C9X8LsXA8PuE6mHU3tGyG5xZBx654rGA6nLkanBx44XyT/PTy5sOip6F4Hmy6E968wX18p/0nnHiDSTTWng3dTfFY+RL47EqItMPqM02S0iurEs5cC8EJ8Noy+ODuhEPkgXm/hppLYeeT8NJFEO2Kx8deDXPuhfYdpi1t2+Kx/CmmXF8BvPRl2PlEPObJgYV/gNJF8MFP4bVvAgkfrZNvgZNvhv1vwtqzTOLVq2ShOQ6xCKw5C/ZtiMcCJXDGGpO0vXUjvH9HQltsmP1LGPdV2P0MvPhFiHTE46Mvgc88YPrWcwuh5cN47Gj6bjqXZcSl5LgRi0YINbxKtDOhL9heAmVzsf35dB/4gO6DH7i28Y48CW+whkjHXkING13nxckuxVcyE6JhOuvWE+tu6YtZniz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPWyT2XU/eaHxFJxPtbiNUt55YpDNeri9IoGwu2B5CDRuJduxJKNaDv3QOTqCA7qYtdO/f5G5LwWS8I8YR6TxAqOEVk6T3bppVjL90FkQjdNZvINYV/+xbTgB/+Vxsby5d+94l3LwtoVQLX/E0PLmVhNvq6Wp8A4jGj1FuNb6iqcTCHYTq1xMLxz8vljePQPlcsL10Nb5OpD3hmmw5+Etn4WQV0d28je5977rbMmIi3oKJRENNdNZvMF+eetsSKMRfOgeIEarfQDR0MOEY+QiUz8P25dG1fxPhpi2ucn1FU/HkjeKTaDDjd0YkKq2trcyYMYOf/vSn/Nu//RvTpk0b3kTlcJKUXmOvgoqlZuDqL6sCzn4TVo4230b7W7LRDM6JiUivk28xg1//wRugcBbMux+empIcs71w3lZ47rPQ+lFyfO79sG8jfLgiOTbqyzDmKnh+aXLMPxKWboKV4yDckhw/cx1sWg67n0qOTb7BJEKvXZccy58CC38Pvx9v7rgksmw4d7NJuBKTql6nrjCJxKblybGKpWa/qxclxzx5cN4WeGqyO2HotfAp2Ho/7PhdcmzCdTByFmy4KjmWOxYWvwArx7guVH2Wvgfrr4L9G5Nj05ebO1Tv3JIcK1lk4s/MSo45AThvO6yaDh0p7mrM/505Jx/dnxw7mr6bihKVQUk1eAPYvnx8xdPo3PV8iq0sAlVn9Ayy7UlRX9Ep5lt5y/akmJNTjie3yiQ4STv1EqhaRGftWveXkB7+snl0N20h2tGYFPPkj8XyZCcN3mAGf3/pLDp3rknRFkxbGja6kqpe3pEnEQu3E25Kvo7ZWSV488cRql+fXKjlIVB1Op271qX8HPpLZxFu3dl3d8fVlrzR2P4RdO39c4pis/GXzetpS3JfD1QupGvPW0QTkqq+thROhmgkKfEEsAMj8RZOJrT7pRRtscmqXuy6M/VJMZjxOyMe/Vx33XUsXbqUxYsX82//9m9p3xcKhQiFQn3/bm5u/jiqN7DaJ1IPSmAGjg/vSX+h3/7b1EkKmG/rnjS3/fZvhK2/SR2LdsPmX6ROUnrL3ZfiQgXmDkPiY6VEoX2mLamSFDCPkeqeTr/PnDGpY03vwZZ7k5MUMK9tvjd1ktJbblvyBRkwdckZmzoWbjFtSZWk9Ja7c2Wa2OOpEwIwx3zzL9L3h62/SZ2kgHl0lXg3JFHjOvPoJZVIp2lLujrVPp7+vBxN35WjFmmrT/l6tKuJcOvONFvFCLfuSJmkAETa64mGkgdKs78G12MG9067zZ2JFEkKQLitLmWS0lduwuMWV227Wwi37Ei9TyDcsiNlkmLKrSeW5jMR7Wgk7Em9T2Jhwi3b0vbtcHuD+25J4j7b64lFQiljsXB7T1tSJ+Th1p0pkxToaUuau5LRzn1EWtN8fmNRIh178ORWpo5/Sgx7ovLQQw/xxhtvsHFjmgt4gttuu43vfe97H0OtBsHxg+1PH0+XbAA42WZuSaoObA9UrmW2HajcdGx/fJ7FoPZ5iHKdAFheiKX4kDuB9Ps8VLnpLkaHKtfygieQOnaofToB87grmqYt9gDfbg55XixSXuicQPrHK5YD9gBtGbCPDVDfo+m7cvSsAdYyWE760AAxLCd9uZY94D4ta4DhoHfbVF8oLLtvnkraOqVjD9BO2yEWOdK2DHT8bMw6klRtGeD49dQpfXCgmI1FLE2KYx2iL2jNy7AegdraWr797W/zwAMPEAgMcCHucdNNN9HU1NT3U1tbe8htjszIQ7+lV83l5ieV4CQzX8RXmByzbBjzFTNvZLDlln8Oxl1t5lv058mFCX9nJrIOttyay8xPKjk1MPGbZhJsEsuUOeqi1NuOviz9PosXwPivuyd29rL9Jla8IDl2qHJHXQQ1V5i69RcoM23JqUm9bc0A5Q50/ApmmGPvyU2OWR5zzsqXDL7cqvNh3FWpL1i+Aph4LQQnD77cI+27ckyk+5ZsZxXjyasmZd+1HDzB0Vi+/JTbOrmVOGnK9eRW4OSkjlmeLJxgTdrE35tbhZNTnjLmya1MW67tL8QbHJW671o23rxR2P7UfczJqUh7jJyccrx5VSljOH6c4BishAnC7m0r05c7wPGzfPl4gqPTJCQWnrxq7KzilNsOdIyc7NKe852C7cXJKkkd+xQZ1kTl9ddfp7GxkRkzZuDxePB4PDz//PP8+Mc/xuPxEIm4v2H6/X6CwaDrZ0hctvfw3le2GKbeCmVnmDkliR04uwpOewg8WTD/EfcjFdsPs35uJnueusJMOE1UczlMuNZM7Bx3Da4LVv4UM4Eyu8rMN3ESPozeoNmnL99Mokx83GLZZs5G1bkw5Z+h4vPufRYvgGl3mBU80+6Ir9QBM7DPf8TcoVjwKPiLEtrig5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVSY+SP3HQV/kZm34QmY/yYmXpYHpt3ecwxuT06QKpaaY1d1rpkMnXjxzakx9fXlm4nHiSt1nCyYe585Z7N/Yc5hYlvGXWPO9YRre5KrBAXTTB/JG2/6TOIdEF9BT1uyzXlPXJllOXDSzaZvTr3V9NVER9p300o9KEh6Tm41Tq57gLK8efiKpmJ7svAVn+LuY5YHf8kMLNuLv3g6Vr+7jZ78sXiyS/Hmj8fuN7jZ/kK8hZNxAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPcbcguM/vNrcATrHG3xZODr/gULMePr3i6u49ZDr7i6T2xU7D6rW7xBGvw5FbiyR+Lk+1OkGz/CFMXXxBv4RRcw5jtw9/TFl/JzH6Jl4W3YJI5BoWTkhIkM+9lPJ7sUjz541wxy5NljrntxV8yw/0l0bLxFZ9izlnRVCxvnmvb3vPsCdYkJSuWL4hv5EnY3hx8RVPd59v24i+ZOfBdnE+JYZ1M29LSwvbt7jkGV199NZMmTeK73/0uJ5100oDbD+mqH4AHg0DC89PLYrD3VWh+H4InQtFs9/vbd0L9GrPEs3yJe7APt8Pup80z/4qz3ctyYzFofN5MDC2c5V6WC2ap694NZgApPSO+xBjMUtfdq8xy5vJz3Mtyo2Gof9YsUy5Z6F6WC7D/jZ7lySeYlTeJOurM8ltv0JSbOJkr0mnaEm4zd3cC/TL+xpegdbO5w1Aw1R1r2QJ7XjLLX8sWuz+Y3c2mXICKc9yDfSxq6tNRB8Xz3ctyAQ68HV+eXNIvwehshLo/muSn4hz33ZtIl1mJ1N1k6pPV71vjnvXx5cmF/e5StW4z5y1QYpZ+JyyZpLvVzA2Jhs35ThzsYzGzrLm9FormuZeUAzS9H1+eXLLQfb5D+8z5dgKmLYmDVbQb6p4xy5PLznAnLnBs+27ihHNNoj0q0a5WoqEDWJ4s7MDIvqWsYJa6Rjr2gGXhZJW4luXGYlGiHXuJRULYgZGuZbkA0VAT0a5mLG+ua4kxQCzcSaRjL9genOwS16ObWDRCpKMRYhGcrGLXslyASOd+Yt1t2P58bJ/7uhvtbjNLrZ2Aa7m0KbebSLtZFeRkF7vmy5ilzXuJRTqxA4VJy3KjXc1EQ01Y3mzXEmNzjEI9x8jpOUZOQrlRIu2NEA3jZBVh9XscHOk8QKxnebLtd9+lina3E+3ch+X4e9qSeIzCPcco1nOM4tdHs7R5H7FwB7a/wLWk3LSlpWd5crrz3ZiyLZ80x92qn0SLFi0a/lU/IiIiMmQGM35rlo6IiIhkrGFf9dPfunXrhrsKIiIikiGO6I7KwYMH+a//+i9uuukm9u/fD8Abb7zBrl27DrGliIiIyOEb9B2Vt99+m8WLF5Ofn8+2bdv4+te/TmFhIY899hg7duzg17/+9VDUU0RERD6FBn1H5frrr+eqq67iww8/dP3uk7/5m7/hhRdeOKaVExERkU+3QScqGzdu5P/+3/+b9HplZSX19al/JbSIiIjIkRh0ouL3+1P+jZ0PPviA4uLUv5VPRERE5EgMOlE577zzuPXWW+nuNn/wybIsduzYwXe/+10uvPDCY15BERER+fQadKLy/e9/n9bWVkpKSujo6GDhwoWMHz+evLw8/v3f/30o6igiIiKfUoNe9ZOfn8+zzz7LSy+9xNtvv01rayszZsxg8eLFh95YREREZBAGnajs2LGD0tJS5s+fz/z58/tej8Vi1NbWMmrUqGNaQREREfn0GvSjn5qaGmbMmMGWLVtcrzc2NjJmzJg0W4mIiIgM3hH9ZtrJkycze/ZsVq9e7Xo9w/6+oYiIiBznBp2oWJbFT3/6U/6//+//Y+nSpfz4xz92xURERESOlUHPUem9a/IP//APTJo0iUsvvZR33nmHf/mXfznmlRMREZFPt6P668nnnHMOf/rTnzjvvPN49dVXj1WdRERERIAjSFQWLlyIz+fr+/eJJ57IK6+8wgUXXKA5KiIiIocpEon0/fLUTyKfz4dtH9FUWBcrdhxnF83NzeTn59PU1EQwGBzu6oiIiBxSLBajvr6egwcPDndVhpRt24wZM8Z1c6PXYMbvw7qj0tzc3FdQqr/zk0gJg4iISHq9SUpJSQnZ2dmfyIUo0WiU3bt3U1dXx6hRo46qjYeVqBQUFFBXV0dJSQkjRoxIucNYLIZlWUQikSOujIiIyCdZJBLpS1JGjhw53NUZUsXFxezevZtwOIzX6z3icg4rUVmzZg2FhYUArF279oh3JiIi8mnWOyclOzt7mGsy9Hof+UQikaFPVBYuXJjy/0VERGTwPomPe/o7Vm087Om4e/fuZfv27a7X3nvvPa6++mouuugiHnzwwWNSIREREZFeh52oLFu2zPVbaBsbG1mwYAEbN24kFApx1VVX8Zvf/GZIKikiIiKfToedqGzYsIHzzjuv79+//vWvKSws5K233uLJJ5/kP/7jP1ixYsWQVFJERESOzi233MK0adOGuxqDdtiJSn19PTU1NX3/XrNmDRdccAEej5nmct555/Hhhx8e8wqKiIiIGYeXLVvG2LFj8fv9VFdXc+655yb9geBPmsNOVILBoOuX07z66qvMmTOn79+WZREKhY5p5URERAS2bdvGzJkzWbNmDcuXL+edd95h1apVnH766Vx33XUfWz2G4zfpHnaiMnfuXH784x8TjUZ59NFHaWlp4YwzzuiLf/DBB1RXVw9JJUVERD7Nrr32WizL4tVXX+XCCy9k4sSJTJkyheuvv54NGzYAsGPHDs4//3xyc3MJBoNcdNFFNDQ0pC0zGo1y6623UlVVhd/vZ9q0aaxataovvm3bNizL4uGHH2bhwoUEAgEeeOCBIW9rf4edqPzrv/4rK1euJCsri4svvph/+qd/oqCgoC/+0EMPaemyiIjIMbZ//35WrVrFddddR05OTlJ8xIgRRKNRzj//fPbv38/zzz/Ps88+y0cffcTFF1+cttwf/ehHfP/73+fOO+/k7bffZsmSJSmncdx44418+9vfZtOmTSxZsuSYt+9QDvuPEk6dOpVNmzbx8ssvU1ZW5nrsA3DJJZdw4oknHvMKioiIfJpt3ryZWCzGpEmT0r5n9erVvPPOO2zdurXv6cavf/1rpkyZwsaNG5k1a1bSNnfeeSff/e53ueSSSwC44447WLt2LXfddZdrcczf//3fc8EFFxzjVh2+Qf315KKiIs4///yUsaVLlx6TComIiEjc4fzt4E2bNlFdXe2agnHiiScyYsQINm3alJSoNDc3s3v3bk477TTX66eddhp//vOfXa+deuqpR1H7o3f0f39ZREREhsyECROwLIu//OUvw7L/VI+bPk5KVERERDJYYWEhS5YsYcWKFbS1tSXFDx48yOTJk6mtraW2trbv9ffff5+DBw+mnJYRDAapqKjg5Zdfdr3+8ssvZ9w0jkE9+hEREZGP34oVKzjttNOYPXs2t956K1OnTiUcDvPss89yzz338P7773PyySdz+eWXc9dddxEOh7n22mtZuHBh2kc3N9xwAzfffDPjxo1j2rRp3Hfffbz11lvDsrJnIEpUREREMtzYsWN54403+Pd//3e+853vUFdXR3FxMTNnzuSee+7BsiyefPJJli1bxmc/+1ls2+bss8/mJz/5Sdoyv/Wtb9HU1MR3vvMdGhsbOfHEE1m5ciUTJkz4GFt2aFbscGbppNDY2EhjYyPRaNT1+tSpU49JxQ5Hc3Mz+fn5NDU1EQwGP7b9ioiIHInOzk62bt3KmDFjCAQCw12dITVQWwczfg/6jsrrr7/OlVdeyaZNm/pmIluWRSwWw7IsIpHIYIsUERERSWnQicpXv/pVJk6cyL333ktpaSmWZQ1FvUREREQGn6h89NFH/O///i/jx48fivqIiIiI9Bn08uQzzzwz6ZfBiIiIiAyFQd9R+a//+i+uvPJK3n33XU466SS8Xq8rft555x2zyomIiMin26ATlfXr1/Pyyy/z9NNPJ8U0mVZERESOpUE/+lm2bBlXXHEFdXV1RKNR14+SFBERETmWBp2o7Nu3j3/4h3+gtLR0KOojIiIi0mfQicoFF1zA2rVrh6IuIiIiIi6DnqMyceJEbrrpJl566SVOPvnkpMm03/rWt45Z5UREROTT7YhW/eTm5vL888/z/PPPu2KWZSlRERER+ThEI7DnReiog6xyKF4AtjPku12xYgXLly+nvr6eU045hZ/85CfMnj17yPY36ERl69atx2zn99xzD/fccw/btm0DYMqUKfzLv/wL55xzzjHbx1F5sN9v3b24A7Y/Ak3vQf4UGH0ROAl/v6BhLdQ9C/5CqLncdJxeLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQW9v0k4EoLa/4WDb0PeRBh9CXiy49s2vgh1q8AbNG3JrorHWrfB9t9CuA0qPw9FcxPa0mpirVugYAZUfxFsb7wtu1eZD1agDMZcAf6R8W0Pvge1j5r/r/4SjJgSj4X2wbYHzAeyeAFUnA1Wz5PLaDfUPg4H3oDccTD6UvDmxrfduwF2/QE8OSaWWxOPte805XY3Q/nZULIgHgu3w/aHoeWvMGIqVF8Ijr+nLTGofw4a1oC/2LQlUBLftvmvZttYBKovgIJT4rGuA7D1AejYCUWfMcewry1h2LUS9r0KOTVQc5k5B732vw61T5h6jL4U8sbFYx11pi2h/VB+ljnnvSKdx67vrur/l1i9cFkXcvyIdO4j0r4Hy/bg5FZie7L6YtHudiJtu4lFwzjZpTiB+PUmFg0Tad1FNNyO7cvHySnD6um7sViMaEcjkc79WI4fT24VluOLl9vVQqStDgAnpxzblxcvN9JFuHUXsUgnTqAQO6uk77eex2JRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3mDaklOB7Y1fx6LhDiKtu3raUowTiF9vYtEIkbbdRLtbsX3BnrY48bZ07iXSsbenLZVYvZ/9TFH7GLz+bXMN65VdBTN/ZK45Q+Thhx/m+uuv52c/+xlz5szhrrvuYsmSJfz1r3+lpKTk0AUcgSP+o4RdXV1s3bqVcePG4fEc2R9h/v3vf4/jOEyYMIFYLMavfvUrli9fzptvvsmUKVMOuf2Q/lHC/klKKnkT4Mx1kFUGf7rCDNC9nCxY8JgZULfcB69+3QxavSb/E0y/wwzOa86EzoZ4bORcOOOPYHlg3d9A47p4zD8STv8jFM6Ad26Fd25OqJAFp/4EJl4HDevg+XMh3BoPV50P8x+FroOwepEZtHrl1MDidZA9Cl65Bj7673jM9sFpD5tBattDsP5vIRaOxydcB7PuhpbN8Nwi6NgVjxVMhzNXg5MDL5xvkp9e3nxY9DQUz4NNd8KbN7iP77T/hBNvMInG2rOhuykeK18Cn10JkXZYfaZJUnplVcKZayE4AV5bBh/cnXCIPDDv11BzKex8El66CKIJg+zYq2HOvdC+w7SlbVs8lj/FlOsrgJe+DDufiMc8ObDwD1C6CD74Kbz2TSDho3XyLXDyzbD/TVh7lkm8epUsNMchFoE1Z8G+DfFYoATOWGOStrduhPfvSGiLDbN/CeO+CrufgRe/CJGOeHz0JfCZB0zfem4htHwYjx1N303nsiO6lMjHKBaL0bX3bSKttQmv2vhKZuDJKSPcuouuPW+R2Hc9eaPxFZ1MtLuNUN16YpHOvpjlCxIomwu2h1DDRqIdexKK9eAvnYMTKKC7aQvd+ze56uItmIx3xDginQcINbxikvTeTbOK8ZfOgmiEzvoNxLrin33LCeAvn4vtzaVr37uEm7cllGrhK56GJ7eScFs9XY1vAPE/nOvkVuMrmkos3EGofj2xcPzzYnnzCJTPBdtLV+PrRNoTrsmWg790Fk5W0WEe6fSOyR8lrH0MXvwSrmsMAD3j1oJHhyxZmTNnDrNmzeLuu811NRqNUl1dzbJly7jxxhtd7z1Wf5Rw0IlKe3s7y5Yt41e/+hUAH3zwAWPHjmXZsmVUVlYmVXSwCgsLWb58OV/72tcO+d4hS1QOJ0npNfYqqFhqBq7+sirg7Ddh5WjzbbS/JRvN4JyYiPQ6+RYz+PUfvAEKZ8G8++GpFMmc7YXztsJzn4XWj5Ljc++HfRvhwxXJsVFfhjFXwfNLk2P+kbB0E6wcB+GW5PiZ62DTctj9VHJs8g0mEXrtuuRY/hRY+Hv4/XhzxyWRZcO5m03ClZhU9Tp1hUkkNi1PjlUsNftdvSg55smD87bAU5PdCUOvhU/B1vthx++SYxOug5GzYMNVybHcsbD4BVg5xtzl6W/pe7D+Kti/MTk2fbm5Q/XOLcmxkkUm/sys5JgTgPO2w6rp0LE7OT7/d+acfHR/cuxo+m4qSlQyXqS9gVBDiv5newlULaKzdq37S0gPf9k8upu2EO1oTIp58sdiebLp3vduUszy5uEvnUXnzjUp6xOoOoNQw0Zi3cnXFO/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoOp3OXetSfg79pbMIt+7su7vjakveaGz/CLr2Jv/2dcuTTaDq9KP++3ZHnahEI7Cyxn0nxcUyd1bO23rMHwN1dXWRnZ3No48+yhe+8IW+16+88koOHjzIk08+6Xr/sP315Jtuuok///nPrFu3jrPPPrvv9cWLF3PLLbcccaISiUT43e9+R1tbG/PmzUv5nlAoRCgU6vt3c3PzEe3rmKp9IvWgBGbg+PCe9Bf67Q+lTlLAfFv35KSO7d8IW3+TOhbths2/SJ2k9Ja7L8WFCswdhsTHSolC+0xbUiUpYB4j1SX/EsC+feaMSR1reg+23JucpIB5bfO9qZOU3nLbtqeO1T1tHgOlEm4xbUmVpPSWu3NlmtjjqRMCMMd88y/S94etv06dpIB5dJV4NyRR4zrTV1KJdJq2pKtT7ePpz8vR9F05LrnuEiSKdps7EymSFIBwe13KJAUg0taAlfC4JVGsu4Vwy4609Qm37EiZpJhy64ml+UxEOxoJe1Lvk1iYcMu2tH073N6Q9jhE2uuJRUIpY7FwO7GuFiz/Mb57P1h7XhwgSQGIQXuteV/pomO667179xKJRJJ+PUlpaSl/+ctfjum+Eg06UXniiSd4+OGHmTt3riuznDJlClu2bBl0Bd555x3mzZtHZ2cnubm5PP7445x44okp33vbbbfxve99b9D7GFKOH+wBnl160yQbYG6xW07q2+r2QOVa4KT5kMLAMdsfn2cxqH0eolwnAJYXYik+5E4g/T4PVW66i9GhyrW8R75PJ2Aed0XTtMX2Jb/ea8D65mBuzaa48+AE0j9esRzTV9Luc6A+NkB9D9V3BypXjk9W+t9IYVnphwML22yb6guFZffNU0m98QDf6geIWbZDLJKmXMs+RFsGKNeyMb+ZI1VbnAHLHTD2celIvhN0VO87Dgz6qO/ZsyflhJm2trYjuiV2wgkn8NZbb/HKK6/wjW98gyuvvJL3338/5Xtvuukmmpqa+n5qa2tTvu9jVXO5+UklOMk8KvAVJscsG8Z8xcwbGWy55Z+DcVeb+Rb9eXJhwt+ZiayDLbfmMvOTSk4NTPymmQSbxDJljroo9bajL0u/z+IFMP7r7omdvWy/iRUvSI4dqtxRF0HNFfQ9s00UKDNtyalJvW3NAOUOdPwKZsD4vzPnoD/LY85Z+ZLBl1t1Poy9MvVF0lcAE6+F4OTBl3uovjsxTd+V45aTU5nydcuThROsSZvce3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV4clOX6+SU482rShnD8eMEx2B5Uif3Tk5l+nJzK3HSxCxfPrYvxWf745aV+jwc8fsGoaioCMdxaGhw35FqaGigrCzV2HBsDDpROfXUU3nqqfg8hN7k5L/+67/SPrIZiM/nY/z48cycOZPbbruNU045hR/96Ecp3+v3+wkGg66fIXG4z9rLFsPUW6HsDDOnJDGLz66C0x4CTxbMf8T9SMX2w6yfm8mep64wE04T1VwOE641EzvHXYNrsM2fYiZQZleZ+SaJ37S9QbNPX76ZRJn4uMWyzZyNqnNhyj9Dxefd+yxeANPuMCt4pt0RX6kDZmCf/wh4AmaSlj9hQpntg5l3mVUtM38II+e4y62+ECZdb1YkTVzmbkveBDPXJlBs6pv4Dd6TY14LFJv35E1MKNQyiUbNJabs6i+59zlyjqlLwVQzAz7xjoK/yMzb8ATMfxMTL8sD027vOQa3JydIFUvNsas610yGTrz45tSY+vryzcTjxJU6ThbMvc+cs9m/MOcwsS3jrjHnesK1PclVgoJppo/kjTd9JvEOiK+gpy3Z5rwnrsyyHDjpZtM3p95q+mqiI+27clxzAgV4Cybh+hw6fnwlM7FtB3/JzH534Gy8hVOw/UF8hVOw/SPc5WWX4ckfiye3Ak+wxhWzPDn4ik/Bcvz4iqe7+5jl4Cue3hM7BavfnWdPsAZPbiWe/LE42e4B1/aPMHXxBfEWTsE1jNk+/D1t8ZXM7Jd4WXgLJpljUDgpKUEy817G48kuxZPvfmxsebLwF/e7Tg+X4gU9n/V0NwYsyK5O/wXvKPh8PmbOnMnq1av7XotGo6xevfqIxv/DNejJtC+99BLnnHMOV1xxBffffz//9//+X95//33+9Kc/8fzzzzNz5sxDFzKAM844g1GjRnH//fcf8r1DuuoHkifVXhaDva9C8/sQPBGK+q0bb98J9WvMEs/yJe7BPtwOu582z/wrznYvy43FoPF5MzG0cJZ7WS6Ypa57N5jOWXpGfIkxmKWuu1eZ5czl57iX5UbDUP+sWaZcstC9LBdg/xs9y5NPMCtvEnXUmeW33qApN2GZIZFO05Zwm7m7E+h3h63xJWjdbO4wFEx1x1q2wJ6XTLZfttg92Hc3m3IBKs5xD/axqKlPRx0Uz3cvywU48HZ8eXJJvw9oZyPU/dEkPxXnuO/eRLrMSqTuJlOf/t9C9qyPL08u7HeXqnWbOW+BErP0O2HJJN2tZm5INGzOd+JgH4uZZc3ttVA0z72kHKDp/fjy5JKF7vMd2mfOtxMwbUl81BTthrpnzPLksjPciQsc276b+NnQJNrjTizcSaRjL9genOwS16ObWDRCpKMRYhGcrOKkZbmRzv3Eutuw/fnYPvd1N9rdRrRzP5YTwM4qct1lj0W7ibSbVUFOdjFWQh8zS5v3Eot0YgcKsfslLtGuZqKhJixvtmuJMUAsEiLSsQcsByerBCthAmksFiXS3gjRME5WEZbHfec20nmAWM/yZNuf368t7UQ792E5/p62HJvHPsd21Q+4HyUP/aqfhx9+mCuvvJKf//znzJ49m7vuuotHHnmEv/zlL0lzV4Zt1Q/Ali1buP322/nzn/9Ma2srM2bM4Lvf/S4nn3zyoMq56aabOOeccxg1ahQtLS08+OCD3HHHHTzzzDOcddZZh9x+yBMVERGRY+iYJCqQ5veoVJs73EP4e1QA7r777r5f+DZt2jR+/OMfM2fOnKT3DWuicqx87WtfY/Xq1dTV1ZGfn8/UqVP57ne/e1hJCihRERGR48sxS1Rg2H4z7eEatuXJjuNQV1eXNKF23759lJSUEIkcxi+G6nHvvfcOdvciIiICJik5xkuQM9GgH7qluwETCoXw+QZYtikiIiIySId9R+XHP/4xYFb59P5hwl6RSIQXXniBSZMmHfsaioiIyKfWYScqP/zhDwFzR+VnP/sZjhN/Dubz+aipqeFnP/vZsa+hiIiIfGoddqLS+1eTTz/9dB577DEKCvS7FURERGRoDXoy7dq1a4eiHiIiIiJJDjtRuf766w/rfT/4wQ+OuDIiIiIiiQ47UXnzzTcP+Z6j/fPXIiIiIokOO1HRIx8RERH5uA3Z36wOBoN89NFHQ1W8iIiIfAoMWaIyjL+ZX0RE5BMvFosR6dhLuHUXkY69Qz7uvvDCC5x77rlUVFRgWRZPPPHEkO6v16BX/YiIiMjwCrfV0b3vPWKRzr7XLCeAd+QUPDnlA2x55Nra2jjllFP46le/ygUXDO0fPkykREVEROQ4Em6ro6vx9aTXY5FO83rJzCFJVs455xzOOeecY17uoQzZox8RERE5tmKxGN373hvwPd373vtETb9QoiIiInKciHbucz3uSSUW6STaue9jqtHQU6IiIiJynIhFQsf0fceDIUtUOjo66OjoGKriRUREPnUsx39M33c8GLJEJSsri6ysrKEqXkRE5FPHDozEcgIDvsdyAtiBkR9TjYaeVv2IiIgcJyzLwjtySspVP728I6cMyZ+0aW1tZfPmzX3/3rp1K2+99RaFhYWMGjXqmO+vlxIVERGR44gnpxxKZn7sv0fltdde4/TTT+/7d+8fK77yyiu5//77h2SfoERFRETkuOPJKcfJLutZBRTCcvzmsdAQ/nHgRYsWDcuy5yFLVPSXlEVERIaOZVk4WUXDXY0hp7/1IyIiIhlryBKVp59+msrKyqEqXkRERD4FDuvRT++EmcPxgx/8AID58+cfWY1EREREehxWovLmm2+6/v3GG28QDoc54YQTAPjggw9wHIeZM2ce+xqKiIh8wkSj0eGuwpA7VlNADitRWbt2bd///+AHPyAvL49f/epXFBQUAHDgwAGuvvpqFixYcEwqJSIi8knk8/mwbZvdu3dTXFyMz+f7RC4+icVi7Nmzx/zeF6/3qMqyYoNMeSorK/njH//IlClTXK+/++67fO5zn2P37t1HVaHBaG5uJj8/n6amJoLB4Me2XxERkSPV1dVFXV0d7e3tw12VIWVZFlVVVeTm5ibFBjN+D3p5cnNzM3v27El6fc+ePbS0tAy2OBERkU8Vn8/HqFGjCIfDRCKR4a7OkPF6vTiOc9TlDDpR+eIXv8jVV1/N97//fWbPng3AK6+8wg033MAFF1xw1BUSERH5pOt9JHK0j0U+DQadqPzsZz/jH//xH7nsssvo7u42hXg8fO1rX2P58uXHvIIiIiLy6TWoOSqRSISXX36Zk08+GZ/Px5YtWwAYN24cOTk5Q1bJdDRHRURE5PgzZHNUHMfhc5/7HJs2bWLMmDFMnTr1qCoqIiIiMpBB/2bak046iY8++mgo6iIiIiLiMuhE5d/+7d/4x3/8R/7whz9QV1dHc3Oz60dERETkWBn071Gx7Xhuk/hLamKxGJZlfaxLrTRHRURE5PgzpL9HJfG31IqIiIgMpUEnKgsXLhyKeoiIiIgkGXSiAnDw4EHuvfdeNm3aBMCUKVP46le/Sn5+/jGtnIiIiHy6DXoy7Wuvvca4ceP44Q9/yP79+9m/fz8/+MEPGDduHG+88cZQ1FFEREQ+pQY9mXbBggWMHz+eX/7yl3g85oZMOBzmmmuu4aOPPuKFF14Ykoqmosm0IiIix5/BjN+DTlSysrJ48803mTRpkuv1999/n1NPPfVj/WuQSlRERESOP4MZvwf96CcYDLJjx46k12tra8nLyxtscSIiIiJpDTpRufjii/na177Gww8/TG1tLbW1tTz00ENcc801XHrppUNRRxEREfmUGvSqnzvvvBPLsvjKV75COBwGwOv18o1vfIPbb7/9mFdQREREPr0GPUelV3t7u+uvJ2dnZx/Tih0OzVERERE5/gzpb6btlZ2dzcknn3ykmwNw22238dhjj/GXv/yFrKwsPvOZz3DHHXdwwgknHFW5x8yDlvvfF3fA9keg6T3InwKjLwInEI83rIW6Z8FfCDWXQ1Z5PNayBbY/BJFOqP4CFM6Mx7qbYduD0LYNRs6GyvPA7jk1sSjsegr2vgxZVTDmcvAVxLc98GeofQwsB0ZfDMGEY9fZCFv/B0J7oPR0KDsLev/sQSQEtf8LB9+GvIkw+hLwJCSbjS9C3SrwBk1bsqvisdZtsP23EG6Dys9D0dyEtrSaWOsWKJgB1V8E2xtvy+5VsOdFCJTBmCvAPzK+7cH3oPZR8//VX4IRU+Kx0D7Y9gB01EHxAqg4G6yeJ5fRbqh9HA68AbnjYPSl4M2Nb7t3A+z6A3hyTCy3Jh5r32nK7W6G8rOhZEE8Fm6H7Q9Dy19hxFSovhAcf09bYlD/HDSsAX+xaUugJL5t81/NtrEIVF8ABafEY10HYOsD0LETij5jjmFfW8KwayXsexVyaqDmMnMOeu1/HWqfMPUYfSnkjYvHOupMW0L7ofwsc857RTqPXd9941ZoXBmPV1wKix5EMkcsFiHSVk+0qxnbm4OTU4llO33xSOc+Iu17sGwPTm4ltierLxbtbifStptYNIyTXYoTiF9vYtEwkdZdRMPt2L58nJwyrJ6+G4vFiHY0Euncj+X48eRWYTm+eLldLUTa6gBwcsqxffE5jbFIF+HWXcQinTiBQuyskr4/0RKLRXva0oTtycbJrcSy40NXpPMAkfYG05acCmxv/DoWDXcQad3V05ZinED8ehOLRoi07Sba3YrtC/a0xYm3pXMvkY69PW2pxOr97MvH7ojvqBwLZ599NpdccgmzZs0iHA7zz//8z7z77ru8//775OTkHHL7Ib2j0j9JSSVvApy5DrLK4E9XmAG6l5MFCx4zA+qW++DVr5tBq9fkf4Lpd5jBec2Z0NkQj42cC2f8ESwPrPsbaFwXj/lHwul/hMIZ8M6t8M7NCRWy4NSfwMTroGEdPH8uhFvj4arzYf6j0HUQVi8yg1avnBpYvA6yR8Er18BH/x2P2T447WEzSG17CNb/LcTC8fiE62DW3dCyGZ5bBB274rGC6XDmanBy4IXzTfLTy5sPi56G4nmw6U548wb38Z32n3DiDSbRWHs2dDfFY+VL4LMrIdIOq880SUqvrEo4cy0EJ8Bry+CDuxMOkQfm/RpqLoWdT8JLF0G0Kx4fezXMuRfad5i2tG2Lx/KnmHJ9BfDSl2HnE/GYJwcW/gFKF8EHP4XXvgkkfLROvgVOvhn2vwlrzzKJV6+SheY4xCKw5izYtyEeC5TAGWtM0vbWjfD+HQltsWH2L2HcV2H3M/DiFyHSEY+PvgQ+84DpW88thJYP47Gj6bsp+eGyzkO8Rz4OsUgXnXXriXW39L1mebLwl83D8mTRtfdtIq21CVvY+Epm4MkpI9y6i649b5HYdz15o/EVnUy0u41Q3Xpikfh5tnxBAmVzwfYQathItGNPQrEe/KVzcAIFdDdtoXv/Jlc9vQWT8Y4YR6TzAKGGV0yS3rtpVjH+0lkQjdBZv4FYV/yzbzkB/OVzsb25dO17l3DztoRSLXzF0/DkVhJuq6er8Q0g2hd1cqvxFU0lFu4gVL+eWDj+ebG8eQTK54LtpavxdSLtCddky8FfOgsnq+hQh18O05AuTx5Ke/bsoaSkhOeff57Pfvazh3z/kCUqv6uA7rrDe+/Yq6BiqRm4+suqgLPfhJWjzbfR/pZsNINzYiLS6+RbzODXf/AGKJwF8+6Hp6Ykx2wvnLcVnvsstH6UHJ97P+zbCB+uSI6N+jKMuQqeX5oc84+EpZtg5TgItyTHz1wHm5bD7qeSY5NvMInQa9clx/KnwMLfw+/HmzsuiSwbzt1sEq7EpKrXqStMIrFpeXKsYqnZ7+pFyTFPHpy3BZ6a7E4Yei18CrbeDzt+lxybcB2MnAUbrkqO5Y6FxS/AyjHmLk9/S9+D9VfB/o3JsenLzR2qd25JjpUsMvFnZiXHnACctx1WTYeO3cnx+b8z5+Sj+5NjR9N3U7ksYy4ln2pde98h3LI96XUnpxxPbhWhhhT9z/YSqFxE58617i8hPfxl8+hu2kK0ozEp5skfi+XJpnvfu0kxy5uHv3QWnTvXpKxroOoMQg0bXUlVL+/Ik4iF2wk3JV/H7KwSvPnjCNWvTy7U8hCoPp3OnetSfg79pbMIt+7su7vjakveaGz/CLr2/jlFsdkEqk53/TFeOXIfy6OfodDUZLLmwsLClPFQKEQoFOr7d3Nz89BU5HCTFDC34VMNSmAGjg/vSX+h3/5Q6iQFzLd1T5q7Svs3wtbfpI5Fu2HzL1InKb3l7ktxoQJzhyHxsVKi0D7TllRJCpjHSHVPp99nzpjUsab3YMt/JycpYF7bcm/qJKW33LbkCzJg6pIzNnUs3GLakipJ6S1358o0scdTJwRgjvnmX6TvD1t/kzpJAfPoKvFuSKLGdaavpBLpNG1JV6fax9Ofl6Ppu5KxXHcCEl9va8DqfQzbX7TbJDcpkhSAcHtdyiSlr1xv6jmKse4Wwi3Jv86ir9yWHSmTFFNuPbE0n4loRyPhNPskFibcvD1t3w63N6Q/Ru31xCKhlLFYuJ1YVwuWX/MhP26DXp48VKLRKH//93/PaaedxkknnZTyPbfddhv5+fl9P9XV1R9zLVNw/GAP8OwyXbIB5ha75aSO2QOVa4EzwORlzwAx2x+fZzGofTLwPp0AWGkugk4g/T7BHIcj3We6ci0veAKpY4dTru0bfOyQ5WYDab6NDVSu5YA9QFsG7GMDteUo+q5kLivNZd2y08egb65JyhgDbGvZA26b9hp3iJiZUzPAPgcYvqyByrXsAcp1BjxGA8ZkyGTMUb/uuut49913eeihNN8cgZtuuommpqa+n9ra2rTvPSrFKR59pFNzuflJJTjJzBfxpbhDZNkw5itm3shgyy3/HIy72sy36M+TC+P/zkxkHWy5NZeZn1RyamDiN80k2CSWKXPURam3HX1Z+n0WL4DxX3dP7Oxl+02seEFy7FDljroIaq4gZWIQKDNtyalJvW3NAOUOdPwKZsCEvzPnoD/LY85Z+ZLBl1t1Poy7KvVF0lcAE6+F4OTBl3ukfVcympNbmfJ1T24FTk7qmOXJwgmOSZv4e3KrcHLK08Qq05Zr+wvxBkel7ruWjTc4Ctufuo85ORV40rTFySnHk1eVMobjxwnWYHlSfwFycirTl5tbmfb4Wb58bF+Kz7YMuYxIVL75zW/yhz/8gbVr11JVlabzAX6/n2Aw6PoZEmf94fDeV7YYpt4KZWeYOSWJWXx2FZz2EHiyYP4j7kcqth9m/dxM9jx1hZlwmqjmcphwrZnYOe4aXINt/hQzgTK7ysw3Sbwb4Q2affryzSTKxMctlm3mbFSdC1P+GSo+795n8QKYdodZwTPtjvhKHTAD+/xHzB2KBY+CP2FCme2DmXeZVS0zfwgj57jLrb4QJl1vViRNXOZuS94EM9cmUGzqm/gN3pNjXgsUm/fkTUwo1DKJRs0lpuzqL7n3OXKOqUvBVJj5I/cdBX+RmbfhCZj/JiZelgem3d5zDG5PTpAqlppjV3WumQydePHNqTH19eWbiceJK3WcLJh7nzlns39hzmFiW8ZdY871hGt7kqsEBdNMH8kbb/pM4h0QX0FPW7LNeU9cmWU5cNLNpm9OvdX01URH2nfTKZh/6PfIx8KbPx47q8T1mu0vxFs4GSdQgLdgEq7PoePHVzIT23bwl8zsdwfOxls4BdsfxFc4Bds/wlWuk12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wULK/77p0nWIMntxJP/licbHeCZPtHmLr4gngLp+Aaxmwf/p62+Epm9ku8LLwFk8wxKJyUlCCZeS/j8WSX4skf54pZniz8xf2u0/KxGdbJtLFYjGXLlvH444+zbt06JkyYMKjth/z3qKw6A/avNf9vBeHSJtj7KjS/D8EToWi2+/3tO6F+jVniWb7EPdiH22H30+aZf8XZ7mW5sRg0Pm8mhhbOci/LBbPUde8GM4CUnhFfYgxmqevuVWY5c/k57mW50TDUP2uWKZcsdC/LBdj/Rs/y5BPMyptEHXVm+a03aMpNWGZIpNO0Jdxm7u4E3BdFGl+C1s3mDkPBVHesZQvsecksfy1b7B7su5tNuQAV57gH+1jU1KejDornu5flAhx4O748uaRfgtHZCHV/NMlPxTnuuzeRLrMSqbvJ1Cer37fGPevjy5ML+92lat1mzlugxCz9TlgySXermRsSDZvznTjYx2JmWXN7LRTNcy8pB2h6P748uWSh+3yH9pnz7QRMWxIf80W7oe4Zszy57Ax34gLHtu8mrorTJNqMFA01Ee1qxvLmupYYA8TCnUQ69oLtwckucT26iUUjRDoaIRbBySpOWpYb6dxPrLsN25+P7XNfd6PdbUQ792M5AeysItfE01i0m0i7WRXkZBe75suYpc17iUU6sQOF2P0Sl2hXM9FQE5Y327XEGCAWCRHp2AOWg5NV4lqGHYtFibQ3QjSMk1WE1e9xcKTzALGe5cm2P79fW9qJdu7Dcvw9bcmI7/WfGMfNqp9rr72WBx98kCeffNL1u1Py8/PJyhpg3kIP/cI3ERGR489xk6ikW+Z13333cdVVVx1yeyUqIiIix5/jZnlyBv0KFxEREclAeugmIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMZSoiIiIiIZS4mKiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhnLM5w7f+GFF1i+fDmvv/46dXV1PP7443zhC18Yziq5PWi5/31xB2x/BJreg/wpMPoicALxeMNaqHsW/IVQczlklcdjLVtg+0MQ6YTqL0DhzHisuxm2PQht22DkbKg8D+yeUxOLwq6nYO/LkFUFYy4HX0F82wN/htrHwHJg9MUQPCEe62yErf8DoT1QejqUnQVWT5siIaj9Xzj4NuRNhNGXgCc7vm3ji1C3CrxB05bsqnisdRts/y2E26Dy81A0N6EtrSbWugUKZkD1F8H2xtuyexXseRECZTDmCvCPjG978D2ofdT8f/WXYMSUeCy0D7Y9AB11ULwAKs4GqyfPjnZD7eNw4A3IHQejLwVvbnzbvRtg1x/Ak2NiuTXxWPtOU253M5SfDSUL4rFwO2x/GFr+CiOmQvWF4Ph72hKD+uegYQ34i01bAiXxbZv/araNRaD6Aig4JR7rOgBbH4COnVD0GXMM+9oShl0rYd+rkFMDNZeZc9Br/+tQ+4Spx+hLIW9cPNZRZ9oS2g/lZ5lz3ivSeez67qqlQEM8TjVctgP55ItFw0RadxENt2P78nFyyrB6+m4sFiPa0Uikcz+W48eTW4Xl+Pq2jXa1EGmrA8DJKcf25cXLjXQRbt1FLNKJEyjEzirB6rlWxWJRIm31RLuasD3ZOLmVWHZ86Ip0HiDS3oBle3ByKrC98etYNNxBpHUXsWgYJ7sYJ5BwvZHjhhWLxWLDtfOnn36al19+mZkzZ3LBBRcMOlFpbm4mPz+fpqYmgsHgoTcYjP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6EC//IuXDGH8HywLq/gcZ18Zh/JJz+RyicAe/cCu/cnFAhC079CUy8DhrWwfPnQrg1Hq46H+Y/Cl0HYfUiM2j1yqmBxesgexS8cg189N/xmO2D0x42g9S2h2D930IsHI9PuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDdimRj0G0u41Q3Xpikc6+1yxfkEDZXLA9hBo2Eu3YE9/A9uAvnYMTKKC7aQvd+ze5yvMWTMY7YhyRzgOEGl4xSXrvplnF+EtnQTRCZ/0GYl3xz77lBPCXz8X25tK1713CzdsSSrXwFU/Dk1tJuK2ersY3gGhf1Mmtxlc0tS8JkuEzmPF7WBOVRJZlZU6icjhJSq+xV0HFUjNw9ZdVAWe/CStHm2+j/S3ZaAbnxESk18m3mMGv/+ANUDgL5t0PT01JjtleOG8rPPdZaP0oOT73fti3ET5ckRwb9WUYcxU8vzQ55h8JSzfBynEQbkmOn7kONi2H3U8lxybfYBKh165LjuVPgYW/h9+PN3dcElk2nLvZJFyJSVWvU1eYRGLT8uRYxVKz39WLkmOePDhvCzw12Z0w9Fr4FGy9H3b8Ljk24ToYOQs2XJUcyx0Li1+AlWPMXZ7+lr4H66+C/RuTY9OXmztU79ySHCtZZOLPzEqOOQE4bzusmg4du5Pj839nzslH9yfHjqbvpqJE5ROts/5Voh2NSa978sdiebLp3vduUszy5uEvnUXnzjUpywxUnUGoYSOx7uRrinfkScTC7YSbkq9jdlYJ3vxxhOrXJxdqeQhUnU7nrnUpP4f+0lk42aUp6yMfn8GM38P66GewQqEQoVCo79/Nzc3DWJsetU+kHpTADBwf3pP+Qr/9odRJCphv656c1LH9G2Hrb1LHot2w+Repk5TecvelGCjB3GFIfKyUKLTPtCVVkgLmMVLd0+n3mTMmdazpPdhyb3KSAua1zfemTlJ6y23bnjpW97R5DJRKuMW0JVWS0lvuzpVpYo+nTgjAHPPNv0jfH7b+JnWSAubRVeLdkESN60xfSSXSCZvvSV+n2sfTn5ej6bvyqRKLRVMmKQCRtgashMctru26Wwi3pH8sGG7ZkTJJMeXWE0vzmYh2NBJOs09iYcIt29L27XB7gxKV48xxNZn2tttuIz8/v++nurp6uKtk5grY/vRxb5pkA8wtdstJHbMHKtcCJ82HFAaO2f74PItB7fMQ5ToBsLzpY+n2eahyPYfYZ7pyLe+R79MJmMddg40dstxsIM3duoHKtRywA6ljkD6hPVS5h+q7A5Urnz5WmuHCsvvmqaSOp7nGAdjpY5btkHaIsmysAYYva4B9DlhXyUjH1Rm76aabaGpq6vupra0doj0NItuuudz8pBKcZB4V+AqTY5YNY75i5o0Mttzyz8G4q818i/48uTDh78xE1sGWW3OZ+UklpwYmftNMgk1imTJHXZR629GXpd9n8QIY/3X3xM5ett/Eihckxw5V7qiLoOYKUiYGgTLTlpya1NvWDFDuQMevYIY59p7c5JjlMeesfMngy606H8ZdlXqg8BXAhGshOHnw5R6q705M03flU8eybJyc8pQxT24lTk5lypjtL8QbHJW671o23rxR2P7UfczJqcCTm7pcJ6ccT15VyhiOHyc4BsuTlWbb1GVK5jquEhW/308wGHT9DInL6g/vfWWLYeqtUHaGmVOSmMVnV8FpD4EnC+Y/4n6kYvth1s/NZM9TV5gJp4lqLjeDz9irYdw1uAbb/ClmAmV2lZlv4iR8GL1Bs09fvplEmfi4xbLNnI2qc2HKP0PF5937LF4A0+4wK3im3RFfqQNmYJ//CHgCsOBR8BcltMUHM+8yq1pm/hBGznGXW30hTLrerEiauMzdlrwJZq5NoNjUN/EbvCfHvBYoNu/Jm5hQqGUSjZpLTNnVX3Lvc+QcU5eCqTDzR+47Cv4iM2/DEzD/TUy8LA9Mu73nGNyenCBVLDXHrupcMxk68eKbU2Pq68s3E48TV+o4WTD3PnPOZv/CnMPEtoy7xpzrCdf2JFcJCqaZPpI33vSZxDsgvoKetmSb8564Msty4KSbTd+ceqvpq4mOtO+mlXfot8hxzVc4Bds/wvWak12GJ38sntwKPMEaV8zy5OArPgXL8eMrnu7uY5aDr3h6T+wUrH53nj3BGjy5lXjyx+JkuxMk2z/C1MUXxFs4BdcwZvvwl8zEth18JTP73VW18BZMwgkcTn+WTKLJtAN5sBA4EP/3ZTHY+yo0vw/BE6Fotvv97Tuhfo1Z4lm+xD3Yh9th99PmmX/F2e5lubEYND5vJoYWznIvywWz1HXvBjOAlJ4RX2IMZqnr7lVmOXP5Oe5ludEw1D9rlimXLHQvywXY/0bP8uQTzMqbRB11ZvmtN2jKTVhmSKTTtCXcZu7uJC7LBWh8CVo3mzsMBVPdsZYtsOcls/y1bLF7sO9uNuUCVJzjHuxjUVOfjjoonu9elgtw4O348uSSfglGZyPU/dEkPxXnuO/eRLrMSqTuJlOfrH7fGvesjy9PLux3l6p1mzlvgRKz9DthySTdrWZuSDRsznfiYB+LmWXN7bVQNM+9pByg6f348uSShe7zHdpnzrcTMG1JfDQW7Ya6Z8zy5LIz3IkLHNu+mzjhXJNoP1UinfuJdbdh+/Oxfe7rbrS7jWjnfiwngJ1V5FpdE4t2E2k3q4Kc7GKshD5mljbvJRbpxA4UYvdLXKJdzURDTVje7KQlxrFIiEjHHrAcnKySnkdGveVGibQ3QjSMk1WE5RngEap8rI6bVT+tra1s3rwZgOnTp/ODH/yA008/ncLCQkaNGnXI7Yc8UREREZFj7rhZ9fPaa69x+unxX0p1/fXXA3DllVdy//33D1OtREREJFMMa6KyaNEiMuTJk4iIiGSg42oyrYiIiHy6KFERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjKVERURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkY3mGuwIAK1asYPny5dTX13PKKafwk5/8hNmzZw93teBBy/3viztg+yPQ9B7kT4HRF4ETiMcb1kLds+AvhJrLIas8HmvZAtsfgkgnVH8BCmfGY93NsO1BaNsGI2dD5Xlg95yaWBR2PQV7X4asKhhzOfgK4tse+DPUPgaWA6MvhuAJ8VhnI2z9HwjtgdLToewssHraFAlB7f/CwbchbyKMvgQ82fFtG1+EulXgDZq2ZFfFY63bYPtvIdwGlZ+HorkJbWk1sdYtUDADqr8Itjfelt2rYM+LECiDMVeAf2R824PvQe2j5v+rvwQjpsRjoX2w7QHoqIPiBVBxNlg9eXa0G2ofhwNvQO44GH0peHPj2+7dALv+AJ4cE8uticfad5pyu5uh/GwoWRCPhdth+8PQ8lcYMRWqLwTH39OWGNQ/Bw1rwF9s2hIoiW/b/FezbSwC1RdAwSnxWNcB2PoAdOyEos+YY9jXljDsWgn7XoWcGqi5zJyDXvtfh9onTD1GXwp54+KxjjrTltB+KD/LnPNekc5j13dXnYqbA5eFOd60b/2D699Zo88h0lZHtLsF25uHk1OOZTt98UjHXiIde7EcL56cSixP/PhFu9uItO0mFoviyS7F9o/oi8Wi3YRbdxMLt2P7R+Bkl2L1nO9YLEako5Fo534sT8CU6/ji5YaaCbfXYWHh5FRg++L9OhYJEW7dRSwSwgkUYWcVYfV8vmOxCJG2eqJdzdjeHJycSndbOvcRad+DZXtwciuxPVkJbWk3bYmGcbJLcQLx600sGibSuotouB3bl4+TU+ZqS7SjkUjnfizHjye3yt2WrhYibXUAODnl2L68hLZ09bSlEydQiJ1VktCWaE9bmrA92Ti5lVh2fOiKdB4g0t5g2pJTge2NX8ei4Q4irbt62lKME4hfb2LRCJG23US7W7F9wZ62OPG2dPaebz+e3Eqs3s8+EO1qNceIGJ7scmx//DMai3QRbttFLNyJ7S/oOd8JbWlvIBo6iOXJxpNbgdV7fQSioYOE2xuwsHFyK7C9OfFyw52m3Eg3TlYRTlZRv7Ycm77bWf8XiO7ti+MpJbt6FsPJisViseGswMMPP8xXvvIVfvaznzFnzhzuuusufve73/HXv/6VkpKSAbdtbm4mPz+fpqYmgsHggO8dtP5JSip5E+DMdZBVBn+6wgzQvZwsWPCYGVC33Aevft0MWr0m/xNMv8MMzmvOhM6GeGzkXDjjj2B5YN3fQOO6eMw/Ek7/IxTOgHduhXduTqiQBaf+BCZeBw3r4PlzIdwaD1edD/Mfha6DsHqRGbR65dTA4nWQPQpeuQY++u94zPbBaQ+bQWrbQ7D+byGWMDBNuA5m3Q0tm+G5RdCxKx4rmA5nrgYnB1443yQ/vbz5sOhpKJ4Hm+6EN29wH99p/wkn3mASjbVnQ3dTPFa+BD67EiLtsPpMk6T0yqqEM9dCcAK8tgw+uDvhEHlg3q+h5lLY+SS8dBFEu+LxsVfDnHuhfYdpS9u2eCx/iinXVwAvfRl2PhGPeXJg4R+gdBF88FN47ZtAwkfr5Fvg5Jth/5uw9iyTePUqWWiOQywCa86CfRvisUAJnLHGJG1v3Qjv35HQFhtm/xLGfRV2PwMvfhEiHfH46EvgMw+YvvXcQmj5MB47mr6bzmXDeikZlP5JSiqWJwd/+Twsx0/XnjeJtO1OCNr4S07FyS4h3FJL1963STzfnvxx+AonE+1qobN+g/li0MP2j8BfNhewCDW8SrQzoS/YXgJlc7H9+XQf+IDugx+46uQdeRLeYA2Rjr2EGja6zouTXYqvZCZEw3TWrSfW3ZLQliz8ZfOwPFl07X2bSGttQqk2vpIZeHLKCLfuomvPW+625I3GV3Qy0e42QnXriUU64+X6ggTK5oLtIdSwkWjHnoRiPfhL5+AECuhu2kL3/k3uthRMxjtiHJHOA4QaXjFJeu+mWcX4S2dBNEJn/QZiXfHPvuUE8JfPxfbm0rXvXcLN2xLPGr7iaXhyKwm31dPV+AYQjR+j3Gp8RVOJhTsI1a8nFo5/XixvHoHyuWB76Wp8nUh7wjXZcvCXzsLJKqK7eRvd+951t2XERLwFE4mGmsz5jnbH2xIoxF86B4gRqt9ANHQw4Rj5CJTPw/bl0bV/E+GmLa5yfUVT8eSNItLeSKjxNfNlr7ctORX4iqdDJGTOd7gtXt2j6LvpZI/5/CHfMxiDGb+HPVGZM2cOs2bN4u67zWASjUaprq5m2bJl3HjjjQNuO2SJyuEkKb3GXgUVS83A1V9WBZz9Jqwcbb6N9rdkoxmcExORXiffYga//oM3QOEsmHc/PDUlOWZ74byt8NxnofWj5Pjc+2HfRvhwRXJs1JdhzFXw/NLkmH8kLN0EK8dBuCU5fuY62LQcdj+VHJt8g0mEXrsuOZY/BRb+Hn4/3vUhBMxAfO5mk3AlJlW9Tl1hEolNy5NjFUvNflcvSo558uC8LfDUZHfC0GvhU7D1ftjxu+TYhOtg5CzYcFVyLHcsLH4BVo5xXaj6LH0P1l8F+zcmx6YvN3eo3rklOVayyMSfSfGtxgnAedth1XTo2J0cn/87c04+uj85djR9N5XjJFFp3/pHoOuQ7wNwcqtwskt6Bjw3y/Hjr1hA5841yX0X8FfMp3v/Jnci0sM7YiLYTtLgDWD78vEVT6Nz1/MpamQRqDqjZ5BtT4r6ik4x38pbtie3JaccT26VSXCSduolULmIzp1r3V9CettSNo/upi1EOxqTYp78sVie7KTBG8zg7y+dZY5RCoGqMwg1bHQlVb28I08iFm4n3JR8HbOzSvDmjyNUvz65UMtDoOp0OnetS/k59JfOIty6s+/ujqsteaOx/SPo2vvnFMVm4y+b19OW5L4eqFxI1563iCYkVX1tKZwM0UhS4glgB0biLZxMaPdLKdpim2O0+0ViCcluL1/JDCLtjURadybFjqbvpjKcicqwPvrp6uri9ddf56abbup7zbZtFi9ezPr1yR0wFAoRCsVPVnNz88dSzwHVPpF6UAIzcHx4T/oL/fbfpk5SwHxb9+Skju3fCFt/kzoW7YbNv0idpPSWuy/FhQrMHYbEx0qJQvtMW1IlKWAeI9U9nX6fOWNSx5regy3/nfrDEovClntTJym95bYlX5ABU5ecsalj4RbTllRJSm+5O1emiT2eOiEAc8w3/yJ9f9j6m9RJCphHV4l3QxI1rjOPXlKJdJq2pKtT7ePpz8vR9N3j2uElKYD5Vp3mu1wsEjIJQZoLfbh1V8okBSDcXt/3mKG/aFcT4RQDT89eCbfuSJmkmPrWEw0lD5QAkbYG12MG9067e9qS+hFeuL0uZZLSV27C4xZXbbtbCLfsSL1PINyyI2WSYsqtJ5bmMxHtaCTsSb1PYmHCLdvS9u1we4P7bkniPtvrUyYEpth2wq07SHf3Idy6M2WSAj1tSXNXMtq5j3DrrpQxYlFzjNLUKdJWTyTxLlZi7Cj6bqYZ1sm0e/fuJRKJUFpa6nq9tLSU+vr6pPffdttt5Ofn9/1UV1d/XFVNz/GD7U8fT5dsADjZZm5JKvZA5Vpm27T7HCBm++PzLAa1TwbepxMAK81F0Amk3yeYRw1Hus905VpeSHgOO+hybd/gYzDwsXeygTR36wYq13LAHqAtA/axgdpyiPPtHaDcTwvLjs8fShlP/13PJCKpz7d1yHLTXBf6yh1gu3TlHmKf1kAxBtjWsgfcFnuA+g4QM3MsjrQtAx0/e4ByBzh+gMUhjn3a2EDHyDpEfYfqfGfEFNXDclyt+rnppptoamrq+6mtrT30RkOt5nLzk0pwkpkv4itMjlk2jPmKmTcy2HLLPwfjrk59kfTkwvi/MxNZB1tuzWXmJ5WcGpj4TTMJNollyhx1UeptR1+Wfp/FC2D8190TO3vZfhMrXpAcO1S5oy6CmitIOVAEykxbcmpSb1szQLkDHb+CGebYe3KTY5bHnLPyJYMvt+p8GHdV6ouOrwAmXgvByYMv91B9d0Kavnu8s4sO/Z4enpxKPLmVKWOWNxdvsCY+Wbz/tnlVONmlKWPOAOXaWcV48qpJ2XctB09wNJYvP3W5uZU4acr15Fbg5KRpiycLJzgmbeLvya3CySlPE6tMW67tL8SbNyp137VsvHmjsP2p+5iTU5H2GDk55XjzqlLGcPw4wTFYntRfgAY69gMdP8uXjyd/dJqExMKTV42dVZxy24GOkZNd2nO+U7C9eII1WN4U15Secj1pyj1U3/UM0HczzbAmKkVFRTiOQ0OD+zZcQ0MDZWXJA6Lf7ycYDLp+hsThPmsvWwxTb4WyM8ycksQOnF0Fpz0EniyY/4j7kYrth1k/N5M9T11hJpwmqrkcJlxrJnaOuwbXBSt/iplAmV1l5psk3o3wBs0+fflmEmXi4xbLNnM2qs6FKf8MFf2eNxYvgGl3mBU80+5wd+BAmWmDJwALHgV/woXe9sHMu8yqlpk/hJFz3OVWXwiTrjcrkiYuc7clb4KZaxMoNvVNvDPgyTGvBYrNe/ImJhRqmUSj5hJTdvWX3PscOcfUpWAqzPyR+46Cv8jM2/AEzH8TEy/LA9Nu7zkGtycnSBVLzbGrOtdMhk68+ObUmPr68s3E48SVOk4WzL3PnLPZvzDnMLEt464x53rCtT3JVYKCaaaP5I03fSbxDoivoKct2ea8J67Mshw46WbTN6feavpqoiPtu58A2aPnHvpNgB0owlswESeryMwpSei7lhPAXzwDy3bwl8x0f14sG1/RVGxvLr6RJ2H53NcpJ6cST7AGJ7caJ9c9QFnePLOtJwtf8SnuPmZ58JfMwLK9+IunY/W7e+fJH4snuxRv/njsLPdCBNtfiLdwMk6gAG/BJFdbcPz4SmZi97Ul8Q6cjbdwCrY/iK9wims1E4CTXWb2m1thBr7Etnhy8BWfguX4zaTPxD5mOfiKp/fETsHqd/fOE6wxg3D+WJxsd4Jk+0eYuviCeAun4BrGbB/+nrb4Smb2S7wsvAWTzDEonJSUIJl5L+PxZJfiyR/nilmeLHPMbS/+khnuL4mWja/4FHPOiqZiefNc2/aeZ0+wJilZsXxBfCNPwvbm4Cua6j7fthd/ycyePjYDy/VlzsIzYoLpmwUTsQPu5PuI+25aqRPjj0tGTKadPXs2P/nJTwAzmXbUqFF885vfHL7JtL36T6q9LAZ7X4Xm9yF4IhT1W0LdvhPq15glnuVL3B0g3A67nzbP/CvOdi/LjcWg8XkzMbRwlntZLpilrns3mAGk9Iz4EmMwS113rzLLmcvPcS/LjYah/lmzTLlkoXtZLsD+N3qWJ59gVt4k6qgzy2+9QVNuwjJDIp2mLeE2c3cn4L4o0vgStG42dxgKprpjLVtgz0tm+WvZYvcHs7vZlAtQcY57sI9FTX066qB4vntZLsCBt+PLk0v6JRidjVD3R5P8VJzjvnsT6TIrkbqbTH2y+n1r3LM+vjy5sN9dqtZt5rwFSszS74Qlk3S3mrkh0bA534mDfSxmljW310LRPPeScoCm9+PLk0sWus93aJ85307AtCVxsIp2Q90zZnly2RnuxAWObd9N/GwcJ5No+2vf9ieI7e/5l032mL8hEjpArKsVy5eL43cnaNFwB9GOfViOFzur2HUrPxaNEOlohFgEJ6vEtSzXLHXdRyzcge0f4VqWC2apazR0AMuThR0Y2beUFcxS10jHHrAsU25CH4vFokQ79hKLhLADI13LcgGioSaiXc1Y3lzXEmMwS10jHXvB9uBklwzQlmLXslyASOd+Yt1t2P587H5JWLS7zSy1dgKu5dKm3G4i7WY+hZNd7JovY5Y27yUW6cQOFLqW5Zpj1Ew01ITlzXYtMTbHKNRzjJyeY+QklBsl0t4I0TBOVpFrWa5pywFiPcuTbb97MI52txPt3Ifl+HvakniMwj3HKNZzjNKd7wLXknLTlpae5cnpzndj2rZEO/YQi3RjZ410LSkHjmnfTVwVd6wn0fY6rlb9PPzww1x55ZX8/Oc/Z/bs2dx111088sgj/OUvf0mau9LfkCcqIiIicswdN6t+AC6++GL27NnDv/zLv1BfX8+0adNYtWrVIZMUERER+eQb9jsqR0N3VERERI4/gxm/j6tVPyIiIvLpokRFREREMpYSFREREclYSlREREQkYylRERERkYylREVEREQylhIVERERyVhKVERERCRjKVERERGRjDXsv0L/aPT+Ut3m5uZhromIiIgcrt5x+3B+Of5xnai0tLQAUF1dfYh3ioiISKZpaWkhPz9/wPcc13/rJxqNsnv3bvLy8lx/Kls+mZqbm6murqa2tlZ/20nkE0af70+XWCxGS0sLFRUV2PbAs1CO6zsqtm1TVVU13NWQj1kwGNSFTOQTSp/vT49D3Unppcm0IiIikrGUqIiIiEjGUqIixw2/38/NN9+M3+8f7qqIyDGmz7ekc1xPphUREZFPNt1RERERkYylREVEREQylhIVERERyVhKVERERCRjKVGR48aKFSuoqakhEAgwZ84cXn311eGukogcpRdeeIFzzz2XiooKLMviiSeeGO4qSYZRoiLHhYcffpjrr7+em2++mTfeeINTTjmFJUuW0NjYONxVE5Gj0NbWximnnMKKFSuGuyqSobQ8WY4Lc+bMYdasWdx9992A+TtP1dXVLFu2jBtvvHGYaycix4JlWTz++ON84QtfGO6qSAbRHRXJeF1dXbz++ussXry47zXbtlm8eDHr168fxpqJiMhQU6IiGW/v3r1EIhFKS0tdr5eWllJfXz9MtRIRkY+DEhURERHJWEpUJOMVFRXhOA4NDQ2u1xsaGigrKxumWomIyMdBiYpkPJ/Px8yZM1m9enXfa9FolNWrVzNv3rxhrJmIiAw1z3BXQORwXH/99Vx55ZWceuqpzJ49m7vuuou2tjauvvrq4a6aiByF1tZWNm/e3PfvrVu38tZbb1FYWMioUaOGsWaSKbQ8WY4bd999N8uXL6e+vp5p06bx4x//mDlz5gx3tUTkKKxbt47TTz896fUrr7yS+++//+OvkGQcJSoiIiKSsTRHRURERDKWEhURERHJWEpUREREJGMpUREREZGMpURFREREMpYSFREREclYSlREREQkYylRERERkYylREVEMtott9zCtGnThrsaIjJMlKiIyJCqr69n2bJljB07Fr/fT3V1Neeee67rj0yKiKSjP0ooIkNm27ZtnHbaaYwYMYLly5dz8skn093dzTPPPMN1113HX/7yl4+lHt3d3Xi93o9lXyJybOmOiogMmWuvvRbLsnj11Ve58MILmThxIlOmTOH6669nw4YNAOzYsYPzzz+f3NxcgsEgF110EQ0NDWnLjEaj3HrrrVRVVeH3+5k2bRqrVq3qi2/btg3Lsnj44YdZuHAhgUCABx54YMjbKiJDQ4mKiAyJ/fv3s2rVKq677jpycnKS4iNGjCAajXL++eezf/9+nn/+eZ599lk++ugjLr744rTl/uhHP+L73/8+d955J2+//TZLlizhvPPO48MPP3S978Ybb+Tb3/42mzZtYsmSJce8fSLy8dCjHxEZEps3byYWizFp0qS071m9ejXvvPMOW7dupbq6GoBf//rXTJkyhY0bNzJr1qykbe68806++93vcskllwBwxx13sHbtWu666y5WrFjR976///u/54ILLjjGrRKRj5vuqIjIkIjFYod8z6ZNm6iuru5LUgBOPPFERowYwaZNm5Le39zczO7duznttNNcr5922mlJ7z/11FOPsOYikkmUqIjIkJgwYQKWZX1sE2b7S/W4SUSOP0pURGRIFBYWsmTJElasWEFbW1tS/ODBg0yePJna2lpqa2v7Xn///fc5ePAgJ554YtI2wWCQiooKXn75ZdfrL7/8csr3i8jxT3NURGTIrFixgtNOO43Zs2dz6623MnXqVMLhMM8++yz33HMP77//PieffDKXX345d911F+FwmGuvvZaFCxemfXRzww03cPPNNzNu3DimTZvGfffdx1tvvaWVPSKfUEpURGTIjB07ljfeeIN///d/5zvf+Q51dXUUFxczc+ZM7rnnHizL4sknn2TZsmV89rOfxbZtzj77bH7yk5+kLfNb3/oWTU1NfOc736GxsZETTzyRlStXMmHChI+xZSLycbFihzPjTURERGQYaI6KiIiIZCwlKiIiIpKxlKiIiIhIxlKiIiIiIhlLiYqIiIhkLCUqIiIikrGUqIiIiEjGUqIiIiIiGUuJioiIiGQsJSoiIiKSsZSoiIiISMb6/wHCnL2DXQSZ/gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] }, - "metadata": { - "needs_background": "light" - } + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "sns.catplot(x=\"Color\", y=\"Item Size\",\n", - " kind=\"violin\", data=new_pumpkins)" + "# Suppressing warning message claiming that a portion of points cannot be placed into the plot due to the high number of data points\n", + "import warnings\n", + "warnings.filterwarnings(action='ignore', category=UserWarning, module='seaborn')\n", + "\n", + "palette = {\n", + " 0: 'orange',\n", + " 1: 'wheat'\n", + "}\n", + "sns.swarmplot(x=\"Color\", y=\"ord__Item Size\", hue=\"Color\", data=encoded_pumpkins, palette=palette)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Watch out**: Ignoring warnings is NOT a best practice and should be avoid, whenever possible. Warnings often contain useful messages that let us improve our code and solve an issue.\n", + "The reason why we are ignoring this specific warning is to guarantee the readability of the plot. Plotting all the data points with a reduced marker size, while keeping consistency with the palette color, generates an unclear visualization." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Build your model" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 74, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", + "# X is the encoded features\n", + "X = encoded_pumpkins[encoded_pumpkins.columns.difference(['Color'])]\n", + "# y is the encoded label\n", + "y = encoded_pumpkins['Color']\n", "\n", - "Selected_features = ['Origin','Item Size','Variety','City Name','Package']\n", - "\n", - "X = new_pumpkins[Selected_features]\n", - "y = new_pumpkins['Color']\n", - "\n", - "\n", - "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n" + "# Split the data into training and test sets\n", + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 75, "metadata": {}, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ " precision recall f1-score support\n", "\n", - " 0 0.83 0.98 0.90 166\n", - " 1 0.00 0.00 0.00 33\n", + " 0 0.94 0.98 0.96 166\n", + " 1 0.85 0.67 0.75 33\n", "\n", - " accuracy 0.81 199\n", - " macro avg 0.42 0.49 0.45 199\n", - "weighted avg 0.69 0.81 0.75 199\n", + " accuracy 0.92 199\n", + " macro avg 0.89 0.82 0.85 199\n", + "weighted avg 0.92 0.92 0.92 199\n", "\n", - "Predicted labels: [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 1 0 0 0 0 0 0 0 0]\n", - "Accuracy: 0.8140703517587939\n", - "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/linear_model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", - " FutureWarning)\n" + "Predicted labels: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0\n", + " 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0\n", + " 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1\n", + " 0 0 0 1 0 0 0 0 0 0 0 0 1 1]\n", + "F1-score: 0.7457627118644068\n" ] } ], "source": [ - "from sklearn.model_selection import train_test_split\n", - "from sklearn.metrics import accuracy_score, classification_report \n", + "from sklearn.metrics import f1_score, classification_report \n", "from sklearn.linear_model import LogisticRegression\n", + "\n", + "# Train a logistic regression model on the pumpkin dataset\n", "model = LogisticRegression()\n", "model.fit(X_train, y_train)\n", "predictions = model.predict(X_test)\n", "\n", + "# Evaluate the model and print the results\n", "print(classification_report(y_test, predictions))\n", "print('Predicted labels: ', predictions)\n", - "print('Accuracy: ', accuracy_score(y_test, predictions))\n" + "print('F1-score: ', f1_score(y_test, predictions))" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 76, "metadata": {}, "outputs": [ { - "output_type": "execute_result", "data": { "text/plain": [ "array([[162, 4],\n", - " [ 33, 0]])" + " [ 11, 22]])" ] }, + "execution_count": 76, "metadata": {}, - "execution_count": 9 + "output_type": "execute_result" } ], "source": [ @@ -309,76 +1157,67 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 77, "metadata": {}, "outputs": [ { - "output_type": "stream", - "name": "stderr", - "text": [ - "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.\n FutureWarning\n" - ] - }, - { - "output_type": "execute_result", "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAIjCAYAAABBOWJ+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgUElEQVR4nO3dd1gUV8MF8LOUZelqsItBjTV2jcYKKgoWFDWKJUKIvUc0tqjYoibWxKDGFqwRNGqMjQiC3WhE7CX2BiixgHR27/eHL/tJBGVxl9lyfs/DE3aY2T07ETjcuTMjE0IIEBEREWmRmdQBiIiIyPiwYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBCZgODgYMhkMvWHhYUFypYtiy+++AIPHz7MdRshBDZs2ICWLVuiSJEisLGxQa1atTBz5kwkJyfn+Vo7duxA+/bt4eTkBLlcjjJlyqBnz544ePBgvrKmpaVh8eLFaNy4MRwdHaFQKFClShWMGDEC169fL9D7J6LCJ+O9SIiMX3BwMPz9/TFz5kxUqFABaWlpOHnyJIKDg+Hi4oKLFy9CoVCo11cqlejTpw9CQ0PRokULdOvWDTY2Njhy5Ag2b96MGjVqIDw8HCVLllRvI4TAl19+ieDgYNSrVw+fffYZSpUqhdjYWOzYsQNnzpzBsWPH0LRp0zxzJiQkwNPTE2fOnEGnTp3g7u4OOzs7XLt2DVu2bEFcXBwyMjJ0uq+ISEsEERm9X375RQAQp0+fzrF8woQJAoAICQnJsXzOnDkCgBg3btwbz7Vr1y5hZmYmPD09cyyfP3++ACC++uoroVKp3thu/fr14q+//nprzo4dOwozMzOxbdu2N76WlpYmxo4d+9bt8yszM1Okp6dr5bmIKHcsGEQmIK+CsXv3bgFAzJkzR70sJSVFFC1aVFSpUkVkZmbm+nz+/v4CgDhx4oR6m2LFiolq1aqJrKysAmU8efKkACAGDhyYr/VdXV2Fq6vrG8v9/PzEhx9+qH58+/ZtAUDMnz9fLF68WFSsWFGYmZmJkydPCnNzczF9+vQ3nuPq1asCgFi6dKl62bNnz8To0aNFuXLlhFwuF5UqVRLz5s0TSqVS4/dKZAo4B4PIhN25cwcAULRoUfWyo0eP4tmzZ+jTpw8sLCxy3c7X1xcAsHv3bvU2T58+RZ8+fWBubl6gLLt27QIA9OvXr0Dbv8svv/yCpUuXYtCgQVi4cCFKly4NV1dXhIaGvrFuSEgIzM3N0aNHDwBASkoKXF1dsXHjRvj6+uLHH39Es2bNMGnSJAQEBOgkL5Ghy/2nBxEZpRcvXiAhIQFpaWn466+/MGPGDFhZWaFTp07qdS5fvgwAqFOnTp7Pk/21K1eu5PhvrVq1CpxNG8/xNg8ePMCNGzdQvHhx9TIfHx8MHjwYFy9eRM2aNdXLQ0JC4Orqqp5jsmjRIty8eRNnz55F5cqVAQCDBw9GmTJlMH/+fIwdOxbOzs46yU1kqDiCQWRC3N3dUbx4cTg7O+Ozzz6Dra0tdu3ahXLlyqnXSUpKAgDY29vn+TzZX0tMTMzx37dt8y7aeI636d69e45yAQDdunWDhYUFQkJC1MsuXryIy5cvw8fHR71s69ataNGiBYoWLYqEhAT1h7u7O5RKJQ4fPqyTzESGjCMYRCYkKCgIVapUwYsXL7B27VocPnwYVlZWOdbJ/gWfXTRy898S4uDg8M5t3uX15yhSpEiBnycvFSpUeGOZk5MT2rRpg9DQUMyaNQvAq9ELCwsLdOvWTb3eP//8g/Pnz79RULI9fvxY63mJDB0LBpEJadSoERo2bAgA8Pb2RvPmzdGnTx9cu3YNdnZ2AIDq1asDAM6fPw9vb+9cn+f8+fMAgBo1agAAqlWrBgC4cOFCntu8y+vP0aJFi3euL5PJIHI5y16pVOa6vrW1da7Le/XqBX9/f8TExKBu3boIDQ1FmzZt4OTkpF5HpVKhbdu2GD9+fK7PUaVKlXfmJTI1PERCZKLMzc0xd+5cPHr0CD/99JN6efPmzVGkSBFs3rw5z1/W69evBwD13I3mzZujaNGi+PXXX/Pc5l28vLwAABs3bszX+kWLFsXz58/fWH737l2NXtfb2xtyuRwhISGIiYnB9evX0atXrxzrVKpUCS9fvoS7u3uuH+XLl9foNYlMAQsGkQlzc3NDo0aNsGTJEqSlpQEAbGxsMG7cOFy7dg3ffPPNG9vs2bMHwcHB8PDwwKeffqreZsKECbhy5QomTJiQ68jCxo0bcerUqTyzNGnSBJ6enli9ejV27tz5xtczMjIwbtw49eNKlSrh6tWrePLkiXrZuXPncOzYsXy/fwAoUqQIPDw8EBoaii1btkAul78xCtOzZ0+cOHECYWFhb2z//PlzZGVlafSaRKaAV/IkMgHZV/I8ffq0+hBJtm3btqFHjx5Yvnw5hgwZAuDVYQYfHx/89ttvaNmyJbp37w5ra2scPXoUGzduRPXq1REREZHjSp4qlQpffPEFNmzYgPr166uv5BkXF4edO3fi1KlTOH78OJo0aZJnzidPnqBdu3Y4d+4cvLy80KZNG9ja2uKff/7Bli1bEBsbi/T0dACvzjqpWbMm6tSpg/79++Px48dYsWIFSpYsicTERPUpuHfu3EGFChUwf/78HAXldZs2bcLnn38Oe3t7uLm5qU+ZzZaSkoIWLVrg/Pnz+OKLL9CgQQMkJyfjwoUL2LZtG+7cuZPjkAoRgVfyJDIFeV1oSwghlEqlqFSpkqhUqVKOi2QplUrxyy+/iGbNmgkHBwehUCjExx9/LGbMmCFevnyZ52tt27ZNtGvXThQrVkxYWFiI0qVLCx8fHxEVFZWvrCkpKWLBggXik08+EXZ2dkIul4vKlSuLkSNHihs3buRYd+PGjaJixYpCLpeLunXrirCwsLdeaCsviYmJwtraWgAQGzduzHWdpKQkMWnSJPHRRx8JuVwunJycRNOmTcWCBQtERkZGvt4bkSnhCAYRERFpHedgEBERkdaxYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWAQERGR1pncvUhUKhUePXoEe3t7yGQyqeMQEREZDCEEkpKSUKZMGZiZvX2MwuQKxqNHj+Ds7Cx1DCIiIoN1//59lCtX7q3rmFzByL699P3799W3hyYiIqJ3S0xMhLOzs/p36duYXMHIPizi4ODAgkFERFQA+ZliwEmeREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1khaMw4cPw8vLC2XKlIFMJsPOnTvfuU1UVBTq168PKysrfPTRRwgODtZ5TiIiItKMpAUjOTkZderUQVBQUL7Wv337Njp27IhWrVohJiYGX331FQYMGICwsDAdJyUiIiJNWEj54u3bt0f79u3zvf6KFStQoUIFLFy4EABQvXp1HD16FIsXL4aHh4euYhoVIQSi7z3Dk6R0qaMQEVEhaFLJCY7WloX+upIWDE2dOHEC7u7uOZZ5eHjgq6++ynOb9PR0pKf//y/TxMREXcUzCCdvPUXvVSeljkFERIVk76gWLBjvEhcXh5IlS+ZYVrJkSSQmJiI1NRXW1tZvbDN37lzMmDGjsCLqvQsPnwMAnOys4PKBjbRhiIhI52zk5pK8rkEVjIKYNGkSAgIC1I8TExPh7OwsYSJp3XuaAgDo9YkzxnlUlTgNERFp05kzZ/DTTz9h5cqVsLQs/FGL1xlUwShVqhTi4+NzLIuPj4eDg0OuoxcAYGVlBSsrq8KIZxDuPU0FAJQvxtELIiJjcvr0abRr1w7Pnz9H+fLlJR+9N6jrYDRp0gQRERE5lh04cABNmjSRKJHhuf+/EQxnFgwiIqNx6tQptG3bFs+fP0ezZs0wbtw4qSNJWzBevnyJmJgYxMTEAHh1GmpMTAzu3bsH4NXhDV9fX/X6Q4YMwa1btzB+/HhcvXoVy5YtQ2hoKMaMGSNFfIOjVAk8ePaqYJTn/AsiIqPw119/oW3btnjx4gWaN2+Offv2wd7eXupY0haMv//+G/Xq1UO9evUAAAEBAahXrx6mTZsGAIiNjVWXDQCoUKEC9uzZgwMHDqBOnTpYuHAhVq9ezVNU8yn2RSoylQKW5jKUclBIHYeIiN7TyZMn0a5dOyQmJqJFixZ6Uy4AQCaEEFKHKEyJiYlwdHTEixcv4ODgIHWcQnX8ZgL6rPoLFZxsETnOTeo4RET0HlJTU1GpUiXExsbC1dUVu3fvhp2dnU5fU5PfoQY1B4PeD+dfEBEZD2tra2zevBkdO3bEnj17dF4uNGVQZ5HQ+8k+RfVDFgwiIoOVmZmpPgXVzc0Nbm5u0gbKA0cwTAhPUSUiMmxHjx5FtWrVcPHiRamjvBMLhgm5x0MkREQG68iRI/D09MStW7fw7bffSh3nnVgwTEj2HAyOYBARGZbDhw+jffv2SE5Ohru7O9auXSt1pHdiwTARSWmZeJqcAQBwLpb7VU+JiEj/HDp0SF0u2rZti127duV59Wp9woJhIrIPjxSzlcNeIe316YmIKH8iIyPRoUMHpKSkwMPDA7///rtBlAuABcNk8BRVIiLDIoTA3LlzkZKSAk9PT+zcudNgygXAgmEyeIoqEZFhkclk2LZtGyZMmIAdO3ZAoTCsKzCzYJiIe5zgSURkEO7evav+3MHBAfPmzTO4cgGwYJgMXgODiEj/HThwANWqVcO8efOkjvLeWDBMBOdgEBHptz///BNeXl5IS0vD8ePHoVQqpY70XlgwTABv005EpN/CwsLQuXNnpKeno0uXLti2bRvMzc2ljvVeWDBMAG/TTkSkv/bt24cuXbogPT0d3t7eCA0NhVwulzrWe2PBMAHZEzzLFbWBuZlM4jRERJRt79698Pb2Rnp6Orp27YqQkBCjKBcAC4ZJ4CXCiYj0040bN5CRkYHu3bsbVbkAeLt2k8BTVImI9NOoUaNQoUIFeHp6qm/Bbiw4gmECeIoqEZH+OHjwIJ49e6Z+7OXlZXTlAmDBMAn3/k0GwFNUiYik9vvvv8PT0xPt2rVDYmKi1HF0igXDBPAQCRGR9Hbs2IHPPvsMmZmZqFy5MmxsjPtnMguGkUtMy8SzlEwAvAYGEZFUtm/fjp49eyIrKwt9+vTB+vXrYWFh3NMgWTCMXPYZJB/YymFnZdz/mImI9NFvv/0GHx8fZGVloW/fviZRLgAWDKPHS4QTEUln586d6nLRr18/rFu3zuCv0Jlfxl+hTBznXxARSad69eooUaIE2rZti7Vr15pMuQBYMIweCwYRkXSqVq2KU6dOoXTp0iZVLgAeIjF6d/9lwSAiKky//vor/vzzT/XjcuXKmVy5ADiCYfQ4B4OIqPBs2rQJvr6+kMvlOHXqFGrVqiV1JMlwBMOIvbpN+/+u4slTVImIdGrjxo3w9fWFSqXC559/jo8//ljqSJJiwTBisS9SkaUSkJub8TbtREQ6tGHDBnW5GDhwIH7++WeYmZn2r1geIjEiT5LSkZKRpX4cc/85AKBcUWvepp2ISEfWrVsHf39/CCEwaNAgLF++3OTLBcCCYTR2n3+EEZvP5vo1zr8gItKNqKgodbkYMmQIgoKCWC7+hwXDSFx+9OqmOZbmMlhZ/P9sZbmFGbrVLytVLCIio9a8eXP4+PigaNGiCAoKgkzG0eJsLBhG5vNPP0Sgl2lPLCIiKiwWFhbYsGEDzM3NWS7+g+M4REREGli9ejUGDBgAlUoF4FXJYLl4E0cwiIiI8mnlypUYPHgwAMDd3R29evWSOJH+4ggGERFRPvz888/qcjF69Gj4+PhInEi/sWAQERG9w/LlyzFkyBAAwJgxY7B48WIeFnkHFgwiIqK3CAoKwrBhwwAAY8eOxcKFC1ku8oEFg4iIKA93795FQEAAAGDcuHGYP38+y0U+cZInERFRHj788EOEhobi1KlTmD17NsuFBlgwiIiI/iMpKQn29vYAgC5duqBLly4SJzI8PERCRET0msWLF6NmzZq4ffu21FEMGgsGERHR/yxatAgBAQG4d+8efvvtN6njGDQWDCIiIgALFy7E2LFjAQBTp05Vf04Fw4JBREQmb/78+Rg3bhwAYNq0aZgxYwYndL4nFgwiIjJp33//PcaPHw8AmD59OsuFlvAsEiIiMllpaWnYtGkTAGDGjBmYNm2axImMBwsGERGZLIVCgfDwcGzfvl19nxHSDh4iISIik3P27Fn158WLF2e50AEWDCIiMimzZs1C/fr1sXLlSqmjGDUWDCIiMhmvz7N4+vSpxGmMG+dgEBGRScg+QwQA5s2bhwkTJkicyLixYBARkVETQmD69OmYOXMmgFenpX799dcSpzJ+LBhERGS0hBCYNm0aZs+eDQBYsGABr9BZSFgwiIjIJCxatAhjxoyROobJYMEgIiKjJZPJMHPmTLRv3x5NmzaVOo5J4VkkRERkVIQQWLVqFVJSUgC8KhksF4WPBYOIiIyGEAITJkzAoEGD0LlzZyiVSqkjmSweIiEiIqMghMD48eOxYMECAEDXrl1hbm4ucSrTxYJBREQGTwiBcePGYdGiRQCAoKAgDBs2TOJUpo0Fg4iIDJoQAgEBAViyZAkAYPny5RgyZIi0oYgFg4iIDNvUqVPV5WLFihW8cZme4CRPIiIyaN26dUOxYsXw888/s1zoEY5gEBGRQatfvz7++ecfFCtWTOoo9BqOYBARkUHJPlvk5MmT6mUsF/qHBYOIiAyGSqXC8OHDMX/+fLRv3563XNdjPERCREQGQaVSYdiwYfj5558hk8mwZMkSjlzoMRYMIiLSeyqVCkOHDsXKlSshk8kQHBwMX19fqWPRW7BgGAkhdQAiIh1RqVQYPHgwVq9eDTMzM6xbtw6ff/651LHoHVgwjMSp26+OQ5Z2VEichIhIu4KCgtTlYv369ejbt6/UkSgfWDCMwLW4JJy5+wwWZjJ41ysrdRwiIq0aOHAgwsLC0KdPH/Tp00fqOJRPLBhG4NdT9wAA7tVLooQ9RzCIyPCpVCrIZDLIZDIoFAr88ccfkMlkUsciDfA0VQOXmqHEb9EPAAC9G5eXOA0R0ftTKpXw9/fH119/DSFezTBjuTA8kheMoKAguLi4QKFQoHHjxjh16tRb11+yZAmqVq0Ka2trODs7Y8yYMUhLSyuktPpnz4VYJKVloVxRa7T4yEnqOERE7yW7XKxfvx5LlizB+fPnpY5EBSRpwQgJCUFAQAACAwMRHR2NOnXqwMPDA48fP851/c2bN2PixIkIDAzElStXsGbNGoSEhGDy5MmFnFx/ZB8e6d2oPMzM2PCJyHAplUr4+flhw4YNMDc3x5YtW1CnTh2pY1EBSVowFi1ahIEDB8Lf3x81atTAihUrYGNjg7Vr1+a6/vHjx9GsWTP06dMHLi4uaNeuHXr37v3OUQ9j9frkzh4Ny0kdh4iowLKysuDr64tNmzbBwsICISEh+Oyzz6SORe9BsoKRkZGBM2fOwN3d/f/DmJnB3d0dJ06cyHWbpk2b4syZM+pCcevWLezduxcdOnTI83XS09ORmJiY48NYcHInERmD7HKxefNmWFhYIDQ0FN27d5c6Fr0nyc4iSUhIgFKpRMmSJXMsL1myJK5evZrrNn369EFCQgKaN28OIQSysrIwZMiQtx4imTt3LmbMmKHV7Prg9cmdfTi5k4gM2LFjx7BlyxZYWFhg69at8Pb2ljoSaYHkkzw1ERUVhTlz5mDZsmWIjo7G9u3bsWfPHsyaNSvPbSZNmoQXL16oP+7fv1+IiXUne3KnczFrNOfkTiIyYK6urggODsa2bdtYLoyIZCMYTk5OMDc3R3x8fI7l8fHxKFWqVK7bTJ06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZmb/YlKysrWFlZaf8NSCz78EivTzi5k4gMT2ZmJp4/f47ixYsDAO8rYoQkG8GQy+Vo0KABIiIi1MtUKhUiIiLQpEmTXLdJSUl5o0SYm5sDgPpcaVPAyZ1EZMgyMzPRu3dvtGzZEnFxcVLHIR2R9EqeAQEB8PPzQ8OGDdGoUSMsWbIEycnJ8Pf3B/Cq0ZYtWxZz584FAHh5eWHRokWoV68eGjdujBs3bmDq1Knw8vJSFw1TsO3Mq8M8bWtwcicRGZbMzEz06tUL27dvh1wux8WLF/MctSbDJmnB8PHxwZMnTzBt2jTExcWhbt262L9/v3ri571793KMWEyZMgUymQxTpkzBw4cPUbx4cXh5eeHbb7+V6i1I4u+7zwAAHh/zm5KIDEdGRgZ69eqFHTt2QC6XY8eOHTnOJCTjIhOmdGwBQGJiIhwdHfHixQs4ODhIHUdjWUoVak4PQ1qmChFjXVGpuJ3UkYiI3ikjIwM9e/bE77//DisrK+zcuROenp5SxyINafI7lDc7MzA3nrxEWqYKdlYWqPCBrdRxiIjeKSMjAz169MCuXbtgZWWF33//HR4eHlLHIh0zqNNUCbjw4AUA4OMyDjx7hIgMwtOnT3Hp0iUoFArs2rWL5cJEcATDwFx8+Kpg1CrrKHESIqL8KVWqFCIjI3Hjxg20atVK6jhUSDiCYWDOZxeMciwYRKS/0tPTERUVpX7s7OzMcmFiWDAMSJZShSuxr+6lUpMjGESkp9LS0tCtWze4u7tj69atUschibBgGBBO8CQifZeWloauXbti7969kMvl+OCDD6SORBLhHAwDwgmeRKTPUlNT4e3tjT///BM2NjbYs2cP3NzcpI5FEmHBMCAXOMGTiPRUamoqunTpggMHDsDGxgZ79+6Fq6ur1LFIQiwYBuQCJ3gSkR5KT09H586dER4eDltbW+zduxctW7aUOhZJjHMwDAQneBKRvpLL5ahcuTJsbW2xb98+lgsCwIJhMDjBk4j0lUwmw08//YTo6Gi0aNFC6jikJ1gwDAQneBKRPklOTsbMmTORmZkJADAzM0OVKlUkTkX6hHMwDAQneBKRvkhOTkbHjh1x6NAh3Lp1C8HBwVJHIj3EEQwDwQmeRKQPXr58iQ4dOuDQoUNwcHDAkCFDpI5EeoojGAbg9QmeHMEgIqlkl4sjR47AwcEBf/75Jxo3bix1LNJTHMEwAK9P8HThBE8ikkBSUhLat2+PI0eOwNHREQcOHGC5oLfiCIYBOM8JnkQkISEEevTogaNHj6JIkSI4cOAAGjZsKHUs0nMcwTAAvEU7EUlJJpNh0qRJKFu2LMLDw1kuKF84gmEAOMGTiKTm6uqKGzduQKFQSB2FDARHMPQcJ3gSkRRevHgBLy8vXLx4Ub2M5YI0wREMPccJnkRU2J4/fw4PDw+cOnUKN27cwMWLF2Fubi51LDIwLBh6jhM8iagwPX/+HO3atcPp06fxwQcfYMuWLSwXVCA8RKLnOMGTiArLs2fP0LZtW5w+fRpOTk44ePAg6tSpI3UsMlAcwdBjSpVAxJXHAIB65YtKnIaIjNnTp0/Rtm1bREdHq8tFrVq1pI5FBowjGHrs8D9P8PB5KhytLdGmegmp4xCREZs8eTKio6NRvHhxREZGslzQe2PB0GO//nUPANCtflkoLHkMlIh0Z/78+fD29sbBgwdRs2ZNqeOQEeAhEj0Vn5iGiKuvDo/0aVRe4jREZIxSU1NhbW0NALC3t8eOHTskTkTGhCMYeir09H0oVQKfuBRF5ZL2UschIiOTkJCATz/9FHPnzpU6ChkpFgw9pFQJbDl9HwDQpzFHL4hIu548eYLWrVvj/Pnz+OGHH/D06VOpI5ERYsHQQ69P7mxfs7TUcYjIiDx+/BitW7fGhQsXUKpUKURFRaFYsWJSxyIjxDkYeoiTO4lIF7LLxaVLl1C6dGlERkaiatWqUsciI8URDD3DyZ1EpAvx8fFo1aoVLl26hDJlyiAqKorlgnSKIxh6hpM7iUgXwsLCcPnyZXW5qFy5stSRyMixYOgRTu4kIl3x9fVFWloaWrVqxXJBhYIFQ49wcicRaVNcXBysrKxQtOirWw0MGjRI4kRkSjgHQ49s/t/kzu71y3FyJxG9l9jYWLi5uaFdu3Z4/vy51HHIBLFg6Im4F2k4mD25s7GzxGmIyJA9evQIbm5uuHbtGuLj4/Hs2TOpI5EJYsHQE6F/v5rc2cilGD4qwcmdRFQwDx8+hJubG65fv44PP/wQhw4dQoUKFaSORSaIczD0gFIlEPK/yZ29OXpBRAX04MEDtGrVCjdu3MCHH36IqKgouLi4SB2LTBRHMPTA4euc3ElE7+f+/ftwc3PDjRs34OLiwnJBkmPB0AObT3FyJxG9n9TUVKSkpKBChQosF6QXeIhEYpzcSUTaUKVKFURGRsLa2hrly/M6OiQ9jmBIjJM7iaig7t69i4iICPXjqlWrslyQ3mDBkNDrkzt55U4i0sSdO3fg5uaGjh074uDBg1LHIXoDC4aEXp/c6VmzlNRxiMhAZJeLO3fuwNnZmTctI73EgiEhTu4kIk3dvn0brq6uuHv3LipXroyoqCiULVtW6lhEb2DBkAgndxKRpm7dugU3Nzfcu3cPVapUYbkgvcazSAqRSiVw/Oa/eJmeicirTzi5k4jyLfvy3/fv30fVqlURGRmJ0qV53RzSXywYhWjTX3cx9fdLOZZxcicR5UeJEiXQrFkzxMTE4ODBgywXpPdYMAqJEALrTtwFAFQpaQcHhSVcnGzRoRZ/SBDRu1lYWGDDhg14/vw5nJycpI5D9E4sGIXk77vPcOPxS1hbmuO3oU1hr7CUOhIR6bnr169j1apV+O6772BmZgYLCwuWCzIYLBiFZPNfr84Y6VynDMsFEb3TtWvX0KpVK8TGxsLOzg6BgYFSRyLSCM8iKQTPUzKw50IsAKA351wQ0TtcvXpVXS5q1qyJoUOHSh2JSGMcwSgEv0U/REaWCjVKO6BOOUep4xCRHssuF3FxcahVqxYiIiJQvHhxqWMRaYwjGDomhMCv/7ugVu/G5SGTySRORET66sqVK3Bzc0NcXBxq166NgwcPslyQwWLB0LHTd/5/cqd33TJSxyEiPZWWlgYPDw/Ex8ejbt26OHjwICd0kkFjwdCx7NELTu4kordRKBQICgpC48aNER4ejg8++EDqSETvhQVDh54lc3InEb2dEEL9uZeXF44fP85yQUbhvQpGWlqatnIYpe1nObmTiPJ2/vx5NGzYELdu3VIvMzPj331kHDT+l6xSqTBr1iyULVsWdnZ26m+MqVOnYs2aNVoPaKiEENj816srd3JyJxH917lz59C6dWtER0dj3LhxUsch0jqNC8bs2bMRHByM77//HnK5XL28Zs2aWL16tVbDGbLTd57h5pNkTu4kojfExMSgTZs2+Pfff9GwYUP+cUZGSeOCsX79eqxcuRJ9+/aFubm5enmdOnVw9epVrYYzZNmjF5zcSUSvO3v2rLpcfPLJJzhw4ACKFi0qdSwirdO4YDx8+BAfffTRG8tVKhUyMzO1EsrQPUvOwN6LcQB4t1Qi+n/R0dFo06YNnj59ikaNGuHAgQMoUqSI1LGIdELjglGjRg0cOXLkjeXbtm1DvXr1tBLK0L0+ubM2J3cSEV7Nyxo7diyePXuGxo0b488//4SjI38+kPHS+FLh06ZNg5+fHx4+fAiVSoXt27fj2rVrWL9+PXbv3q2LjAaFkzuJKDcymQxbt27FhAkTsHjxYjg4OEgdiUinNB7B6NKlC/744w+Eh4fD1tYW06ZNw5UrV/DHH3+gbdu2ushoUDi5k4he9++//6o/d3Jywpo1a1guyCQU6GZnLVq0wIEDB7SdxShwcicRZTt9+jQ8PDwwb948DBo0SOo4RIVK4xGMihUr5mjk2Z4/f46KFStqJZSh4uROIsp26tQpuLu749mzZ9i0aROUSqXUkYgKlcYF486dO7l+o6Snp+Phw4daCWWofot+wMmdRIS//voLbdu2RWJiIlq0aIE9e/bkOK2fyBTk+xDJrl271J+HhYXlmP2sVCoREREBFxcXrYYzJK/flr0PJ3cSmawTJ07Aw8MDSUlJaNmyJfbs2QM7OzupYxEVunwXDG9vbwCvZkL7+fnl+JqlpSVcXFywcOFCrYYzJKduP1VP7uzCyZ1EJun48ePw9PREUlIS3NzcsHv3btja2kodi0gS+S4YKpUKAFChQgWcPn0aTk5OOgtliHhbdiKKjIxEUlISWrVqhT/++IPlgkyaxmeR3L59Wxc5DBondxIRAEyePBllypSBj48PbGxspI5DJKkC3Rc4OTkZe/fuxYoVK/Djjz/m+NBUUFAQXFxcoFAo0LhxY5w6deqt6z9//hzDhw9H6dKlYWVlhSpVqmDv3r0FeRtawyt3Epmu6OhoJCcnA3h1CNnf35/lgggFGME4e/YsOnTogJSUFCQnJ6NYsWJISEiAjY0NSpQogVGjRuX7uUJCQhAQEIAVK1agcePGWLJkCTw8PHDt2jWUKFHijfUzMjLQtm1blChRAtu2bUPZsmVx9+5dya/lf+nRCwCAZ81SnNxJZEIOHz6MDh06oFGjRti9ezeLBdFrNB7BGDNmDLy8vPDs2TNYW1vj5MmTuHv3Lho0aIAFCxZo9FyLFi3CwIED4e/vjxo1amDFihWwsbHB2rVrc11/7dq1ePr0KXbu3IlmzZrBxcUFrq6uqFOnjqZvQyesLAo0IEREBujQoUNo3749kpOTYWlpyT8uiP5D49+IMTExGDt2LMzMzGBubo709HQ4Ozvj+++/x+TJk/P9PBkZGThz5gzc3d3/P4yZGdzd3XHixIlct9m1axeaNGmC4cOHo2TJkqhZsybmzJnz1gvYpKenIzExMccHEdH7iIqKUo/kenh4YOfOnbC2tpY6FpFe0bhgWFpawszs1WYlSpTAvXuvzp5wdHTE/fv38/08CQkJUCqVKFmyZI7lJUuWRFxcXK7b3Lp1C9u2bYNSqcTevXsxdepULFy4ELNnz87zdebOnQtHR0f1h7Ozc74zEhH918GDB9XlwtPTk+WCKA8az8GoV68eTp8+jcqVK8PV1RXTpk1DQkICNmzYgJo1a+oio5pKpUKJEiWwcuVKmJubo0GDBnj48CHmz5+PwMDAXLeZNGkSAgIC1I8TExNZMoioQA4ePIhOnTohNTUV7du3x/bt26FQKKSORaSXNC4Yc+bMQVJSEgDg22+/ha+vL4YOHYrKlStjzZo1+X4eJycnmJubIz4+Psfy+Ph4lCpVKtdtSpcuDUtLyxyX3K1evTri4uKQkZEBuVz+xjZWVlawsrLKdy4iorwUKVIECoUCrVu3xm+//cafLURvoXHBaNiwofrzEiVKYP/+/QV6YblcjgYNGiAiIkJ9lVCVSoWIiAiMGDEi122aNWuGzZs3Q6VSqQ/TXL9+HaVLl861XBARaVP9+vVx/PhxVKhQgeWC6B20dtpDdHQ0OnXqpNE2AQEBWLVqFdatW4crV65g6NChSE5Ohr+/PwDA19cXkyZNUq8/dOhQPH36FKNHj8b169exZ88ezJkzB8OHD9fW2yAiyuHPP//E8ePH1Y+rVavGckGUDxqNYISFheHAgQOQy+UYMGAAKlasiKtXr2LixIn4448/4OHhodGL+/j44MmTJ5g2bRri4uJQt25d7N+/Xz3x8969e+qRCgBwdnZGWFgYxowZg9q1a6Ns2bIYPXo0JkyYoNHrEhHlx/79++Ht7Q25XI4TJ07g448/ljoSkcHId8FYs2YNBg4ciGLFiuHZs2dYvXo1Fi1ahJEjR8LHxwcXL15E9erVNQ4wYsSIPA+JREVFvbGsSZMmOHnypMavQ0SkiX379qFr165IT09H+/btUblyZakjERmUfB8i+eGHH/Ddd98hISEBoaGhSEhIwLJly3DhwgWsWLGiQOWCiEgf7d27F97e3khPT0fXrl0RGhrKeV5EGsp3wbh58yZ69OgBAOjWrRssLCwwf/58lCtXTmfhiIgK2+7du9G1a1dkZGSge/fuCAkJgaUl75BMpKl8F4zU1FT1dfZlMhmsrKxQunRpnQUjIipsx48fR7du3ZCRkYHPPvsMv/76K8sFUQFpNMlz9erVsLOzAwBkZWUhODgYTk5OOdbR5GZnRET6pH79+nB3d4ednR02bdrEckH0HvJdMMqXL49Vq1apH5cqVQobNmzIsY5MJmPBICKDpVAosH37dlhYWMDCQuPLBBHRa/L9HXTnzh0dxiAiksaOHTtw8uRJzJs3DzKZjJf+JtISVnQiMlnbt2+Hj48PsrKyULduXfTu3VvqSERGQ2tX8iQiMiTbtm1Dz549kZWVhb59+6rPkiMi7WDBICKTs3XrVvTq1QtKpRL9+vXDunXrOOeCSMtYMIjIpISEhKB3795QKpXw9fXFL7/8kuMOzUSkHSwYRGQy7t+/j379+kGpVMLPzw9r165luSDSkQIVjJs3b2LKlCno3bs3Hj9+DODVdfsvXbqk1XBERNrk7OyM1atXo3///lizZg3LBZEOaVwwDh06hFq1auGvv/7C9u3b8fLlSwDAuXPnEBgYqPWARETvKzMzU/25r68vVq9ezXJBpGMaF4yJEydi9uzZ6tu2Z2vdujXvckpEemfjxo2oV68e4uLipI5CZFI0LhgXLlxA165d31heokQJJCQkaCUUEZE2bNiwAX5+frh06RJWrlwpdRwik6JxwShSpAhiY2PfWH727FmULVtWK6GIiN7XunXr4OfnB5VKhcGDB2PKlClSRyIyKRoXjF69emHChAmIi4uDTCaDSqXCsWPHMG7cOPj6+uoiIxGRRoKDg+Hv7w8hBIYMGYJly5bBzIwnzREVJo2/4+bMmYNq1arB2dkZL1++RI0aNdCyZUs0bdqUfyEQkeR++eUXfPnllxBCYNiwYSwXRBLR+NJ1crkcq1atwtSpU3Hx4kW8fPkS9erVQ+XKlXWRj4go39LS0jB37lwIITB8+HAsXboUMplM6lhEJknjgnH06FE0b94c5cuXR/ny5XWRiYioQBQKBSIiIrBu3Tp88803LBdEEtJ43LB169aoUKECJk+ejMuXL+siExGRRm7fvq3+3NnZGVOmTGG5IJKYxgXj0aNHGDt2LA4dOoSaNWuibt26mD9/Ph48eKCLfEREb/Xzzz+jSpUqCA0NlToKEb1G44Lh5OSEESNG4NixY7h58yZ69OiBdevWwcXFBa1bt9ZFRiKiXC1fvhxDhgxBVlYWTp8+LXUcInrNe02trlChAiZOnIh58+ahVq1aOHTokLZyERG91bJlyzBs2DAAwNixY/H9999LnIiIXlfggnHs2DEMGzYMpUuXRp8+fVCzZk3s2bNHm9mIiHL1008/Yfjw4QCAr7/+GvPnz+ecCyI9o/FZJJMmTcKWLVvw6NEjtG3bFj/88AO6dOkCGxsbXeQjIsph6dKlGDVqFABg/PjxmDdvHssFkR7SuGAcPnwYX3/9NXr27AknJyddZCIiytO1a9cAvLrx4pw5c1guiPSUxgXj2LFjushBRJQvS5cuRbt27eDl5cVyQaTH8lUwdu3ahfbt28PS0hK7du1667qdO3fWSjAiomy///472rdvD7lcDplMxp8zRAYgXwXD29sbcXFxKFGiBLy9vfNcTyaTQalUaisbEREWLlyIcePGwdvbG9u2bYO5ubnUkYgoH/JVMFQqVa6fExHp0vz58zF+/HgAQO3atXnTMiIDovF36/r165Genv7G8oyMDKxfv14roYiIvvvuO3W5CAwMxIwZMzjngsiAaFww/P398eLFizeWJyUlwd/fXyuhiMi0zZs3DxMnTgQATJ8+HdOnT5c2EBFpTOOzSIQQuf4V8eDBAzg6OmolFBGZrvnz52PSpEkAgJkzZ2Lq1KkSJyKigsh3wahXrx5kMhlkMhnatGkDC4v/31SpVOL27dvw9PTUSUgiMh2NGjWCjY0NJk2ahClTpkgdh4gKKN8FI/vskZiYGHh4eMDOzk79NblcDhcXF3Tv3l3rAYnItLi6uuLKlSsoX7681FGI6D3ku2AEBgYCAFxcXODj4wOFQqGzUERkWhYsWABPT0/UrFkTAFguiIyAxpM8/fz8WC6ISGumT5+Or7/+Gq1bt8a///4rdRwi0pJ8jWAUK1YM169fh5OTE4oWLfrWU8WePn2qtXBEZLyEEJg+fTpmzpwJ4NWNyz744AOJUxGRtuSrYCxevBj29vbqz3kuOhG9DyEEpk2bhtmzZwN4dYhk7NixEqciIm3KV8Hw8/NTf/7FF1/oKgsRmQAhBKZOnYpvv/0WALBo0SKMGTNG4lREpG0az8GIjo7GhQsX1I9///13eHt7Y/LkycjIyNBqOCIyPqtXr1aXi8WLF7NcEBkpjQvG4MGDcf36dQDArVu34OPjAxsbG2zdulV9WV8iorz06tULzZo1w5IlS/DVV19JHYeIdETjK3lev34ddevWBQBs3boVrq6u2Lx5M44dO4ZevXphyZIlWo5IRIbu9SsA29vbIyoqKsfF+ojI+Gg8giGEUN9RNTw8HB06dAAAODs7IyEhQbvpiMjgCSHw9ddfY+7cueplLBdExk/j7/KGDRti9uzZcHd3x6FDh7B8+XIAwO3bt1GyZEmtByQiwyWEwLhx47Bo0SIAgKenJ+rVqydxKiIqDBqPYCxZsgTR0dEYMWIEvvnmG3z00UcAgG3btqFp06ZaD0hEhkkIgYCAAHW5WL58OcsFkQnReASjdu3aOc4iyTZ//nyYm5trJRQRGTYhBMaMGYMffvgBAPDzzz9j0KBBEqciosJU4AOhZ86cwZUrVwAANWrUQP369bUWiogMlxACo0ePxtKlSwEAK1euxMCBAyVORUSFTeOC8fjxY/j4+ODQoUMoUqQIAOD58+do1aoVtmzZguLFi2s7IxEZkEOHDmHp0qWQyWRYtWoV+vfvL3UkIpKAxnMwRo4ciZcvX+LSpUt4+vQpnj59iosXLyIxMRGjRo3SRUYiMiBubm5YsmQJVq9ezXJBZMI0HsHYv38/wsPDUb16dfWyGjVqICgoCO3atdNqOCIyDCqVCsnJyep7Fo0ePVriREQkNY1HMFQqFSwtLd9Ybmlpqb4+BhGZDpVKhWHDhqFVq1Z4/vy51HGISE9oXDBat26N0aNH49GjR+plDx8+xJgxY9CmTRuthiMi/aZSqTBkyBD8/PPPiI6OxuHDh6WORER6QuOC8dNPPyExMREuLi6oVKkSKlWqhAoVKiAxMVE9a5yIjJ9KpcLgwYOxatUqmJmZYf369ejcubPUsYhIT2g8B8PZ2RnR0dGIiIhQn6ZavXp1uLu7az0cEeknlUqFgQMHYu3atepy0bdvX6ljEZEe0ahghISEYNeuXcjIyECbNm0wcuRIXeUiIj2lUqkwYMAA/PLLLzAzM8OGDRvQp08fqWMRkZ7Jd8FYvnw5hg8fjsqVK8Pa2hrbt2/HzZs3MX/+fF3mIyI9Exsbi/3798PMzAybNm1Cr169pI5ERHoo33MwfvrpJwQGBuLatWuIiYnBunXrsGzZMl1mIyI9VLZsWURGRmLr1q0sF0SUp3wXjFu3bsHPz0/9uE+fPsjKykJsbKxOghGR/lAqlYiJiVE/rlq1Krp16yZdICLSe/kuGOnp6bC1tf3/Dc3MIJfLkZqaqpNgRKQflEolvvjiC3z66acICwuTOg4RGQiNJnlOnToVNjY26scZGRn49ttv4ejoqF6WfWtmIjJ8WVlZ8PPzw+bNm2FhYYGXL19KHYmIDES+C0bLli1x7dq1HMuaNm2KW7duqR/LZDLtJSMiSWVlZcHX1xe//vorLCwsEBISwsMiRJRv+S4YUVFROoxBRPokKysLn3/+OUJCQmBhYYHQ0FB07dpV6lhEZEA0vtAWERm3rKws9O3bF6GhobC0tMTWrVvRpUsXqWMRkYFhwSCiN5ibm8PS0hLbtm3j5b+JqEA0vhcJERk3CwsLrF+/HseOHWO5IKICY8EgImRmZmLZsmVQKpUAXpWMTz75ROJURGTIWDCITFxGRgZ8fHwwfPhwDB8+XOo4RGQkClQwjhw5gs8//xxNmjTBw4cPAQAbNmzA0aNHtRqOiHQru1zs2LEDVlZWnMxJRFqjccH47bff4OHhAWtra5w9exbp6ekAgBcvXmDOnDlaD0hEupGRkYEePXpg586dsLKyws6dO9G+fXupYxGRkdC4YMyePRsrVqzAqlWrYGlpqV7erFkzREdHazUcEelGeno6PvvsM+zatQsKhQK7du2Cp6en1LGIyIhofJrqtWvX0LJlyzeWOzo64vnz59rIREQ61rdvX/zxxx/qctG2bVupIxGRkdF4BKNUqVK4cePGG8uPHj2KihUrFihEUFAQXFxcoFAo0LhxY5w6dSpf223ZsgUymQze3t4Fel0iU+Xn5wdHR0f88ccfLBdEpBMaF4yBAwdi9OjR+OuvvyCTyfDo0SNs2rQJ48aNw9ChQzUOEBISgoCAAAQGBiI6Ohp16tSBh4cHHj9+/Nbt7ty5g3HjxqFFixYavyaRqfPy8sKdO3fg7u4udRQiMlIaF4yJEyeiT58+aNOmDV6+fImWLVtiwIABGDx4MEaOHKlxgEWLFmHgwIHw9/dHjRo1sGLFCtjY2GDt2rV5bqNUKtG3b1/MmDGjwKMmRKYkLS0N/fv3z3FzwiJFikgXiIiMnsYFQyaT4ZtvvsHTp09x8eJFnDx5Ek+ePMGsWbM0fvGMjAycOXMmx19RZmZmcHd3x4kTJ/LcbubMmShRogT69+//ztdIT09HYmJijg8iU5KamoouXbpg7dq16NSpk/piWkREulTge5HI5XLUqFHjvV48ISEBSqUSJUuWzLG8ZMmSuHr1aq7bHD16FGvWrEFMTEy+XmPu3LmYMWPGe+UkMlTZ5eLAgQOwtbXFihUrYG5uLnUsIjIBGheMVq1aQSaT5fn1gwcPvlegt0lKSkK/fv2watUqODk55WubSZMmISAgQP04MTERzs7OuopIpDdSUlLQpUsXhIeHw9bWFvv27eOcJSIqNBoXjLp16+Z4nJmZiZiYGFy8eBF+fn4aPZeTkxPMzc0RHx+fY3l8fDxKlSr1xvo3b97EnTt34OXlpV6mUqkAvLp3wrVr11CpUqUc21hZWcHKykqjXESGLiUlBZ07d0ZERATs7Oywb98+NG/eXOpYRGRCNC4YixcvznX59OnT8fLlS42eSy6Xo0GDBoiIiFCfaqpSqRAREYERI0a8sX61atVw4cKFHMumTJmCpKQk/PDDDxyZIPqf8ePHq8vF/v370axZM6kjEZGJKfAcjP/6/PPP0ahRIyxYsECj7QICAuDn54eGDRuiUaNGWLJkCZKTk+Hv7w8A8PX1RdmyZTF37lwoFArUrFkzx/bZM+H/u5zIlE2fPh3nzp3Dd999h6ZNm0odh4hMkNYKxokTJ6BQKDTezsfHB0+ePMG0adMQFxeHunXrYv/+/eqJn/fu3YOZGW/6SvQuSqVSPYHTyckJhw8ffut8KSIiXdK4YHTr1i3HYyEEYmNj8ffff2Pq1KkFCjFixIhcD4kAQFRU1Fu3DQ4OLtBrEhmTly9folOnTujduzcGDx4MACwXRCQpjQuGo6NjjsdmZmaoWrUqZs6ciXbt2mktGBHlT1JSEjp06ICjR4/i3Llz6N69e77PsiIi0hWNCoZSqYS/vz9q1aqFokWL6ioTEeVTUlIS2rdvj2PHjsHR0RFhYWEsF0SkFzSa3GBubo527drxrqlEeiAxMRGenp7qcnHgwAE0atRI6lhERAAKcKnwmjVr5rifAREVvuxycfz4cRQpUgTh4eH45JNPpI5FRKSmccGYPXs2xo0bh927dyM2Npb3+SCSQGhoKE6cOIGiRYsiPDwcDRs2lDoSEVEO+Z6DMXPmTIwdOxYdOnQAAHTu3DnHLHUhBGQyGW+kRFQI+vfvjydPnsDDwwP169eXOg4R0RvyXTBmzJiBIUOGIDIyUpd5iCgPL168gIWFBWxtbSGTyTBp0iSpIxER5SnfBUMIAQBwdXXVWRgiyt3z58/Rrl072NnZYffu3bCxsZE6EhHRW2k0B4MX7iEqfM+ePUPbtm1x+vRpnD9/Hvfu3ZM6EhHRO2l0HYwqVaq8s2Q8ffr0vQIR0f97+vQp2rZti+joaDg5OSEiIgLVqlWTOhYR0TtpVDBmzJjxxpU8iUg3nj59Cnd3d5w9exZOTk44ePAgatWqJXUsIqJ80ahg9OrVCyVKlNBVFiL6n3///Rfu7u6IiYlB8eLFcfDgQd4xmIgMSr7nYHD+BVHhefToEe7evYsSJUogMjKS5YKIDI7GZ5EQke7VqlUL4eHhUCgUqFGjhtRxiIg0lu+CoVKpdJmDyOQlJCTg9u3b6kt+8wJaRGTINL5UOBFp35MnT9C6dWu0adMGJ0+elDoOEdF7Y8Egktjjx4/RunVrXLhwAXZ2dihatKjUkYiI3ptGZ5EQkXZll4tLly6hTJkyiIyMRJUqVaSORUT03jiCQSSR+Ph4tGrVCpcuXULZsmURFRXFckFERoMjGEQSePLkCVq1aoUrV66oy8VHH30kdSwiIq1hwSCSgL29PVxcXJCUlITIyEiWCyIyOiwYRBJQKBTYvn07Hj9+jPLly0sdh4hI6zgHg6iQPHr0CN999536onUKhYLlgoiMFkcwiArBw4cP0apVK/zzzz9QqVSYNGmS1JGIiHSKIxhEOvbgwQO4ubnhn3/+wYcffojevXtLHYmISOdYMIh06P79+3Bzc8ONGzfg4uKCQ4cOwcXFRepYREQ6x4JBpCPZ5eLmzZuoUKECoqKi8OGHH0odi4ioULBgEOlAeno62rRpg1u3bqFixYosF0RkclgwiHTAysoK06ZNQ5UqVRAVFcWzRYjI5LBgEOnI559/jvPnz8PZ2VnqKEREhY4Fg0hLbt++DU9PT8TGxqqXWVlZSZiIiEg6LBhEWnDr1i24ubkhLCwMQ4YMkToOEZHkWDCI3tPNmzfh5uaGe/fuoUqVKli+fLnUkYiIJMcreRK9h+xy8eDBA1StWhWRkZEoXbq01LGIiCTHEQyiArpx4wZcXV3x4MEDVKtWDVFRUSwXRET/w4JBVEADBgzAw4cPUb16dURGRqJUqVJSRyIi0hssGEQFtGHDBnh5ebFcEBHlgnMwiDSQmpoKa2trAICzszN27dolcSIiIv3EEQyifLp27RqqVq2K0NBQqaMQEek9FgyifLh69Src3Nxw//59zJs3D1lZWVJHIiLSaywYRO9w5coVuLm5IS4uDrVr18aff/4JCwseXSQiehsWDKK3uHz5Mtzc3BAfH486deogIiICTk5OUsciItJ7LBhEebh06RJatWqFx48fo27duiwXREQaYMEgysPmzZvx+PFj1KtXDxEREfjggw+kjkREZDB4IJkoD7Nnz0aRIkXQv39/FCtWTOo4REQGhSMYRK+5ceMGMjIyAAAymQxff/01ywURUQGwYBD9z7lz5/Dpp5+iZ8+e6pJBREQFw4JBBCAmJgatW7fGv//+i0ePHiE1NVXqSEREBo0Fg0ze2bNn0aZNGzx9+hSNGzfGgQMH4OjoKHUsIiKDxoJBJi06OlpdLj799FOEhYWxXBARaQELBpmsM2fOoE2bNnj27BmaNGnCckFEpEUsGGSykpOTkZGRgaZNm2L//v1wcHCQOhIRkdHgdTDIZLVs2RKRkZGoXr067O3tpY5DRGRUWDDIpJw6dQoKhQK1a9cGADRq1EjiRERExomHSMhknDx5Em3btkWbNm1w9epVqeMQERk1FgwyCSdOnEC7du2QmJiIGjVqoFy5clJHIiIyaiwYZPSOHz8ODw8PJCUlwdXVFXv37oWdnZ3UsYiIjBoLBhm1Y8eOqcuFm5sb9uzZA1tbW6ljEREZPRYMMlpnzpyBp6cnXr58idatW7NcEBEVIp5FQkarSpUqqFOnDhQKBXbt2gUbGxupIxERmQwWDDJa9vb22LdvH8zNzVkuiIgKGQ+RkFE5dOgQ5s+fr35sb2/PckFEJAGOYJDRiIyMRKdOnZCSkoLy5cvDx8dH6khERCaLIxhkFA4ePIiOHTsiJSUFnp6e6NKli9SRiIhMGgsGGbyIiAh06tQJqamp6NChA3bs2AGFQiF1LCIik8ZDJGTQwsPD4eXlhbS0NHTo0AHbt2+HlZWV1LGIiEweRzDIYD18+BCdO3dGWloaOnbsyHJBRKRHOIJBBqts2bKYN28ewsPDsXXrVpYLIiI9whEMMjhCCPXno0aNws6dO1kuiIj0DAsGGZR9+/ahRYsWePbsmXqZmRn/GRMR6Rv+ZCaDsXfvXnh7e+PYsWM5LqZFRET6hwWDDMLu3bvRtWtXZGRkoHv37pgxY4bUkYiI6C1YMEjv/fHHH+jWrRsyMjLw2Wef4ddff4WlpaXUsYiI6C30omAEBQXBxcUFCoUCjRs3xqlTp/Jcd9WqVWjRogWKFi2KokWLwt3d/a3rk2HbtWsXunfvjszMTPTo0QObN29muSAiMgCSF4yQkBAEBAQgMDAQ0dHRqFOnDjw8PPD48eNc14+KikLv3r0RGRmJEydOwNnZGe3atcPDhw8LOTnpWnp6OkaPHo3MzEz4+PiwXBARGRDJC8aiRYswcOBA+Pv7o0aNGlixYgVsbGywdu3aXNfftGkThg0bhrp166JatWpYvXo1VCoVIiIiCjk56ZqVlRXCwsIwcuRIbNy4ERYWvGwLEZGhkLRgZGRk4MyZM3B3d1cvMzMzg7u7O06cOJGv50hJSUFmZiaKFSuW69fT09ORmJiY44P0W0JCgvrzKlWq4Mcff2S5ICIyMJIWjISEBCiVSpQsWTLH8pIlSyIuLi5fzzFhwgSUKVMmR0l53dy5c+Ho6Kj+cHZ2fu/cpDvbtm1DhQoVEBYWJnUUIiJ6D5IfInkf8+bNw5YtW95698xJkybhxYsX6o/79+8XckrKr61bt6JXr154+fIltm3bJnUcIiJ6D5KOOzs5OcHc3Bzx8fE5lsfHx6NUqVJv3XbBggXq+1DUrl07z/WsrKx4GWkDEBoaij59+kCpVMLX1xcrVqyQOhIREb0HSUcw5HI5GjRokGOCZvaEzSZNmuS53ffff49Zs2Zh//79aNiwYWFEJR3asmWLulz4+flh7dq1MDc3lzoWERG9B8lnzgUEBMDPzw8NGzZEo0aNsGTJEiQnJ8Pf3x8A4Ovri7Jly2Lu3LkAgO+++w7Tpk3D5s2b4eLiop6rYWdnBzs7O8neBxXMr7/+is8//xwqlQr+/v5YtWoVywURkRGQvGD4+PjgyZMnmDZtGuLi4lC3bl3s379fPfHz3r17OW5mtXz5cvUVHV8XGBiI6dOnF2Z00oJ9+/ZBpVLhyy+/xKpVq3jjMiIiIyF5wQCAESNGYMSIEbl+LSoqKsfjO3fu6D4QFZq1a9fC1dUV/v7+LBdEREaEP9Gp0B09ehRKpRIAYGFhgf79+7NcEBEZGf5Up0K1bt06tGzZEv3791eXDCIiMj4sGFRogoOD4e/vDyEErK2tIZPJpI5EREQ6woJBhWLt2rX48ssvIYTA0KFDERQUxMMiRERGjD/hSefWrFmDAQMGQAiBYcOGsVwQEZkA/pQnnXq9XIwYMQI//fQTD40QEZkAvThNlYxXiRIlYGlpiaFDh2LJkiUsF0REJoIFg3TKy8sLZ86cQc2aNVkuiIhMCA+RkNatW7cON2/eVD+uVasWywURkYlhwSCtWrZsGb744gu0atUKCQkJUschIiKJsGCQ1gQFBWH48OEAXt1j5oMPPpA4ERERSYUFg7Ri6dKl6vvJjB8/Ht9//z0PixARmTAWDHpvP/74I0aNGgUAmDBhAubNm8dyQURk4lgw6L1s3LgRo0ePBgBMmjQJc+fOZbkgIiKepkrvx9PTE7Vr14aXlxdmzZrFckFERABYMOg9OTk54fjx47CxsWG5ICIiNR4iIY3Nnz8fK1asUD+2tbVluSAiohw4gkEa+e677zBx4kQAwCeffIIGDRpInIiIiPQRRzAo3+bNm6cuFzNmzGC5ICKiPLFgUL7MmTMHkyZNAgDMmjUL06ZNkzgRERHpMx4ioXf69ttvMWXKFPXnkydPljgRERHpOxYMeqvDhw+ry8XroxhERERvw4JBb9WyZUtMmzYNNjY2mDBhgtRxiIjIQLBg0BuEEMjMzIRcLgfwakInERGRJjjJk3IQQiAwMBAeHh5ISUmROg4RERkoFgxSE0Jg2rRpmDVrFqKiorB7926pIxERkYHiIRIC8KpcTJkyBXPmzAEALFq0CD179pQ4FRERGSoWDIIQApMnT8a8efMAAIsXL8ZXX30lbSgiIjJoLBgmTgiBSZMm4bvvvgMA/PDDDxg1apTEqYiIyNCxYJi4R48eYeXKlQCApUuXYsSIERInIiIiY8CCYeLKli2LiIgI/P333xg4cKDUcYiIyEiwYJggIQTu3LmDChUqAADq1auHevXqSZyKiIiMCU9TNTFCCIwdOxZ16tTBiRMnpI5DRERGigXDhAghMGbMGCxevBhJSUm4dOmS1JGIiMhI8RCJiRBCYPTo0Vi6dCkAYOXKlRgwYIDEqYiIyFixYJgAIQRGjhyJoKAgAMCqVatYLoiISKdYMIycEAIjRozAsmXLIJPJsHr1anz55ZdSxyIiIiPHgmHkMjMzcefOHchkMqxZswb+/v5SRyIiIhPAgmHk5HI5fvvtNxw6dAgeHh5SxyEiIhPBs0iMkEqlwtatWyGEAAAoFAqWCyIiKlQsGEZGpVJhyJAh6NmzJ8aPHy91HCIiMlE8RGJEVCoVBg0ahDVr1sDMzAx169aVOhIREZkoFgwjoVKpMHDgQKxduxZmZmbYsGED+vTpI3UsIiIyUSwYRkCpVGLAgAEIDg6GmZkZNm3ahF69ekkdi4iITBjnYBiBQYMGITg4GObm5ti8eTPLBRERSY4Fwwi0atUKcrkcmzdvho+Pj9RxiIiIeIjEGHz++edwdXWFs7Oz1FGIiIgAcATDIGVlZWHixImIjY1VL2O5ICIifcKCYWCysrLg6+uL7777Dh4eHsjKypI6EhER0Rt4iMSAZGVloV+/ftiyZQssLCwwc+ZMWFjwfyEREekf/nYyEFlZWejbty9CQ0NhaWmJrVu3okuXLlLHIiIiyhULhgHIzMxE3759sXXrVlhaWuK3336Dl5eX1LGIiIjyxDkYBmDChAnYunUr5HI5tm/fznJBRER6jwXDAAQEBODjjz/G9u3b0alTJ6njEBERvRMPkegpIQRkMhkAoFy5coiJieGETiIiMhgcwdBDGRkZ6NGjB0JCQtTLWC6IiMiQsGDomfT0dHz22Wf47bff0L9/fzx58kTqSERERBrjn8V6JLtc7N69GwqFAtu3b0fx4sWljkVERKQxFgw9kZ6eju7du2PPnj1QKBTYtWsX2rZtK3UsIiKiAmHB0ANpaWno3r079u7dC4VCgT/++APu7u5SxyIiIiowzsHQA+vWrcPevXthbW2N3bt3s1wQEZHB4wiGHhg0aBCuX7+Ojh07onXr1lLHISIiem8sGBJJTU2Fubk55HI5ZDIZFi5cKHUkIiIireEhEgmkpqaiS5cu6NmzJzIyMqSOQ0REpHUcwShkKSkp6NKlC8LDw2Fra4urV6+idu3aUsciIiLSKhaMQpSSkgIvLy8cPHgQtra22LdvH8sFEREZJR4iKSTJycno1KkTDh48CDs7O+zfvx8tWrSQOhYREZFOcASjEGSXi6ioKNjb22P//v1o2rSp1LGIiIh0hgWjEFy9ehWnT5+Gvb09wsLC0KRJE6kjERER6RQLRiFo0KAB9uzZA7lcznJBREQmgQVDR16+fIkHDx6gWrVqAABXV1eJExERERUeTvLUgaSkJLRv3x4tWrTAhQsXpI5DRERU6FgwtCwxMRGenp44evQoMjMzkZaWJnUkIiKiQqcXBSMoKAguLi5QKBRo3LgxTp069db1t27dimrVqkGhUKBWrVrYu3dvISV9u7T0dHh6euL48eMoUqQIwsPD8cknn0gdi4iIqNBJXjBCQkIQEBCAwMBAREdHo06dOvDw8MDjx49zXf/48ePo3bs3+vfvj7Nnz8Lb2xve3t64ePFiISd/0+pVq3DixAkULVoU4eHhaNiwodSRiIiIJCETQggpAzRu3BiffPIJfvrpJwCASqWCs7MzRo4ciYkTJ76xvo+PD5KTk7F79271sk8//RR169bFihUr3vl6iYmJcHR0xIsXL+Dg4KCV9zBy42n8cfExnkWuhfk/kQgPD0f9+vW18txERET6QpPfoZKOYGRkZODMmTNwd3dXLzMzM4O7uztOnDiR6zYnTpzIsT4AeHh45Ll+eno6EhMTc3xom0z26r/WNjaIiIhguSAiIpMnacFISEiAUqlEyZIlcywvWbIk4uLict0mLi5Oo/Xnzp0LR0dH9Yezs7N2wr+mcqkiqFfOAVPHjkS9evW0/vxERESGxuivgzFp0iQEBASoHycmJmq9ZIxsUxkj21TW6nMSEREZMkkLhpOTE8zNzREfH59jeXx8PEqVKpXrNqVKldJofSsrK1hZWWknMBEREeWLpIdI5HI5GjRogIiICPUylUqFiIiIPC+p3aRJkxzrA8CBAwd4CW4iIiI9IvkhkoCAAPj5+aFhw4Zo1KgRlixZguTkZPj7+wMAfH19UbZsWcydOxcAMHr0aLi6umLhwoXo2LEjtmzZgr///hsrV66U8m0QERHRayQvGD4+Pnjy5AmmTZuGuLg41K1bF/v371dP5Lx37x7MzP5/oKVp06bYvHkzpkyZgsmTJ6Ny5crYuXMnatasKdVbICIiov+Q/DoYhU0X18EgIiIyBQZzHQwiIiIyTiwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdSwYREREpHUsGERERKR1LBhERESkdZLfrr2wZd88NjExUeIkREREhiX7d2d+bsRucgUjKSkJAODs7CxxEiIiIsOUlJQER0fHt64jE/mpIUZEpVLh0aNHsLe3h0wm08pzJiYmwtnZGffv34eDg4NWntPUcZ9qH/epdnF/ah/3qXbpYn8KIZCUlIQyZcrAzOztsyxMbgTDzMwM5cqV08lzOzg48JtCy7hPtY/7VLu4P7WP+1S7tL0/3zVykY2TPImIiEjrWDCIiIhI61gwtMDKygqBgYGwsrKSOorR4D7VPu5T7eL+1D7uU+2Sen+a3CRPIiIi0j2OYBAREZHWsWAQERGR1rFgEBERkdaxYBAREZHWsWDkU1BQEFxcXKBQKNC4cWOcOnXqretv3boV1apVg0KhQK1atbB3795CSmo4NNmnq1atQosWLVC0aFEULVoU7u7u7/x/YGo0/TeabcuWLZDJZPD29tZtQAOk6T59/vw5hg8fjtKlS8PKygpVqlTh9/5rNN2fS5YsQdWqVWFtbQ1nZ2eMGTMGaWlphZRW/x0+fBheXl4oU6YMZDIZdu7c+c5toqKiUL9+fVhZWeGjjz5CcHCw7gIKeqctW7YIuVwu1q5dKy5duiQGDhwoihQpIuLj43Nd/9ixY8Lc3Fx8//334vLly2LKlCnC0tJSXLhwoZCT6y9N92mfPn1EUFCQOHv2rLhy5Yr44osvhKOjo3jw4EEhJ9dPmu7PbLdv3xZly5YVLVq0EF26dCmcsAZC032anp4uGjZsKDp06CCOHj0qbt++LaKiokRMTEwhJ9dPmu7PTZs2CSsrK7Fp0yZx+/ZtERYWJkqXLi3GjBlTyMn11969e8U333wjtm/fLgCIHTt2vHX9W7duCRsbGxEQECAuX74sli5dKszNzcX+/ft1ko8FIx8aNWokhg8frn6sVCpFmTJlxNy5c3Ndv2fPnqJjx445ljVu3FgMHjxYpzkNiab79L+ysrKEvb29WLduna4iGpSC7M+srCzRtGlTsXr1auHn58eC8R+a7tPly5eLihUrioyMjMKKaFA03Z/Dhw8XrVu3zrEsICBANGvWTKc5DVV+Csb48ePFxx9/nGOZj4+P8PDw0EkmHiJ5h4yMDJw5cwbu7u7qZWZmZnB3d8eJEydy3ebEiRM51gcADw+PPNc3NQXZp/+VkpKCzMxMFCtWTFcxDUZB9+fMmTNRokQJ9O/fvzBiGpSC7NNdu3ahSZMmGD58OEqWLImaNWtizpw5UCqVhRVbbxVkfzZt2hRnzpxRH0a5desW9u7diw4dOhRKZmNU2L+bTO5mZ5pKSEiAUqlEyZIlcywvWbIkrl69mus2cXFxua4fFxens5yGpCD79L8mTJiAMmXKvPHNYooKsj+PHj2KNWvWICYmphASGp6C7NNbt27h4MGD6Nu3L/bu3YsbN25g2LBhyMzMRGBgYGHE1lsF2Z99+vRBQkICmjdvDiEEsrKyMGTIEEyePLkwIhulvH43JSYmIjU1FdbW1lp9PY5gkMGZN28etmzZgh07dkChUEgdx+AkJSWhX79+WLVqFZycnKSOYzRUKhVKlCiBlStXokGDBvDx8cE333yDFStWSB3NIEVFRWHOnDlYtmwZoqOjsX37duzZswezZs2SOhrlE0cw3sHJyQnm5uaIj4/PsTw+Ph6lSpXKdZtSpUpptL6pKcg+zbZgwQLMmzcP4eHhqF27ti5jGgxN9+fNmzdx584deHl5qZepVCoAgIWFBa5du4ZKlSrpNrSeK8i/0dKlS8PS0hLm5ubqZdWrV0dcXBwyMjIgl8t1mlmfFWR/Tp06Ff369cOAAQMAALVq1UJycjIGDRqEb775BmZm/PtYU3n9bnJwcND66AXAEYx3ksvlaNCgASIiItTLVCoVIiIi0KRJk1y3adKkSY71AeDAgQN5rm9qCrJPAeD777/HrFmzsH//fjRs2LAwohoETfdntWrVcOHCBcTExKg/OnfujFatWiEmJgbOzs6FGV8vFeTfaLNmzXDjxg11WQOA69evo3Tp0iZdLoCC7c+UlJQ3SkR2eRO8hVaBFPrvJp1MHTUyW7ZsEVZWViI4OFhcvnxZDBo0SBQpUkTExcUJIYTo16+fmDhxonr9Y8eOCQsLC7FgwQJx5coVERgYyNNU/0PTfTpv3jwhl8vFtm3bRGxsrPojKSlJqregVzTdn//Fs0jepOk+vXfvnrC3txcjRowQ165dE7t37xYlSpQQs2fPluot6BVN92dgYKCwt7cXv/76q7h165b4888/RaVKlUTPnj2legt6JykpSZw9e1acPXtWABCLFi0SZ8+eFXfv3hVCCDFx4kTRr18/9frZp6l+/fXX4sqVKyIoKIinqeqDpUuXivLlywu5XC4aNWokTp48qf6aq6ur8PPzy7F+aGioqFKlipDL5eLjjz8We/bsKeTE+k+Tffrhhx8KAG98BAYGFn5wPaXpv9HXsWDkTtN9evz4cdG4cWNhZWUlKlasKL799luRlZVVyKn1lyb7MzMzU0yfPl1UqlRJKBQK4ezsLIYNGyaePXtW+MH1VGRkZK4/F7P3o5+fn3B1dX1jm7p16wq5XC4qVqwofvnlF53l4+3aiYiISOs4B4OIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg8jIBAcHo0iRIlLHKDCZTIadO3e+dZ0vvvgC3t7ehZKHiAqGBYNID33xxReQyWRvfNy4cUPqaAgODlbnMTMzQ7ly5eDv74/Hjx9r5fljY2PRvn17AMCdO3cgk8kQExOTY50ffvgBwcHBWnm9vEyfPl39Ps3NzeHs7IxBgwbh6dOnGj0PyxCZKt6unUhPeXp64pdffsmxrHjx4hKlycnBwQHXrl2DSqXCuXPn4O/vj0ePHiEsLOy9nzuv23e/ztHR8b1fJz8+/vhjhIeHQ6lU4sqVK/jyyy/x4sULhISEFMrrExkyjmAQ6SkrKyuUKlUqx4e5uTkWLVqEWrVqwdbWFs7Ozhg2bBhevnyZ5/OcO3cOrVq1gr29PRwcHNCgQQP8/fff6q8fPXoULVq0gLW1NZydnTFq1CgkJye/NZtMJkOpUqVQpkwZtG/fHqNGjUJ4eDhSU1OhUqkwc+ZMlCtXDlZWVqhbty7279+v3jYjIwMjRoxA6dKloVAo8OGHH2Lu3Lk5njv7EEmFChUAAPXq1YNMJoObmxuAnKMCK1euRJkyZXLcJh0AunTpgi+//FL9+Pfff0f9+vWhUChQsWJFzJgxA1lZWW99nxYWFihVqhTKli0Ld3d39OjRAwcOHFB/XalUon///qhQoQKsra1RtWpV/PDDD+qvT58+HevWrcPvv/+uHg2JiooCANy/fx89e/ZEkSJFUKxYMXTp0gV37tx5ax4iQ8KCQWRgzMzM8OOPP+LSpUtYt24dDh48iPHjx+e5ft++fVGuXDmcPn0aZ86cwcSJE2FpaQkAuHnzJjw9PdG9e3ecP38eISEhOHr0KEaMGKFRJmtra6hUKmRlZeGHH37AwoULsWDBApw/fx4eHh7o3Lkz/vnnHwDAjz/+iF27diE0NBTXrl3Dpk2b4OLikuvznjp1CgAQHh6O2NhYbN++/Y11evTogX///ReRkZHqZU+fPsX+/fvRt29fAMCRI0fg6+uL0aNH4/Lly/j5558RHByMb7/9Nt/v8c6dOwgLC4NcLlcvU6lUKFeuHLZu3YrLly9j2rRpmDx5MkJDQwEA48aNQ8+ePeHp6YnY2FjExsaiadOmyMzMhIeHB+zt7XHkyBEcO3YMdnZ28PT0REZGRr4zEek1nd2nlYgKzM/PT5ibmwtbW1v1x2effZbrulu3bhUffPCB+vEvv/wiHB0d1Y/t7e1FcHBwrtv2799fDBo0KMeyI0eOCDMzM5GamprrNv99/uvXr4sqVaqIhg0bCiGEKFOmjPj2229zbPPJJ5+IYcOGCSGEGDlypGjdurVQqVS5Pj8AsWPHDiGEELdv3xYAxNmzZ3Os89/by3fp0kV8+eWX6sc///yzKFOmjFAqlUIIIdq0aSPmzJmT4zk2bNggSpcunWsGIYQIDAwUZmZmwtbWVigUCvWtsBctWpTnNkIIMXz4cNG9e/c8s2a/dtWqVXPsg/T0dGFtbS3CwsLe+vxEhoJzMIj0VKtWrbB8+XL1Y1tbWwCv/pqfO3curl69isTERGRlZSEtLQ0pKSmwsbF543kCAgIwYMAAbNiwQT3MX6lSJQCvDp+cP38emzZtUq8vhIBKpcLt27dRvXr1XLO9ePECdnZ2UKlUSEtLQ/PmzbF69WokJibi0aNHaNasWY71mzVrhnPnzgF4dXijbdu2qFq1Kjw9PdGpUye0a9fuvfZV3759MXDgQCxbtgxWVlbYtGkTevXqBTMzM/X7PHbsWI4RC6VS+db9BgBVq1bFrl27kJaWho0bNyImJgYjR47MsU5QUBDWrl2Le/fuITU1FRkZGahbt+5b8547dw43btyAvb19juVpaWm4efNmAfYAkf5hwSDSU7a2tvjoo49yLLtz5w46deqEoUOH4ttvv0WxYsVw9OhR9O/fHxkZGbn+opw+fTr69OmDPXv2YN++fQgMDMSWLVvQtWtXvHz5EoMHD8aoUaPe2K58+fJ5ZrO3t0d0dDTMzMxQunRpWFtbAwASExPf+b7q16+P27dvY9++fQgPD0fPnj3h7u6Obdu2vXPbvHh5eUEIgT179uCTTz7BkSNHsHjxYvXXX758iRkzZqBbt25vbKtQKPJ8Xrlcrv5/MG/ePHTs2BEzZszArFmzAABbtmzBuHHjsHDhQjRp0gT29vaYP38+/vrrr7fmffnyJRo0aJCj2GXTl4m8RO+LBYPIgJw5cwYqlQoLFy5U/3Wefbz/bapUqYIqVapgzJgx6N27N3755Rd07doV9evXx+XLl98oMu9iZmaW6zYODg4oU6YMjh07BldXV/XyY8eOoVGjRjnW8/HxgY+PDz777DN4enri6dOnKFasWI7ny57voFQq35pHoVCgW7du2LRpE27cuIGqVauifv366q/Xr18f165d0/h9/teUKVPQunVrDB06VP0+mzZtimHDhqnX+e8IhFwufyN//fr1ERISghIlSsDBweG9MhHpK07yJDIgH330ETIzM7F06VLcunULGzZswIoVK/JcPzU1FSNGjEBUVBTu3r2LY8eO4fTp0+pDHxMmTMDx48cxYsQIxMTE4J9//sHvv/+u8STP13399df47rvvEBISgmvXrmHixImIiYnB6NGjAQCLFi3Cr7/+iqtXr+L69evYunUrSpUqlevFwUqUKAFra2vs378f8fHxePHiRZ6v27dvX+zZswdr165VT+7MNm3aNKxfvx4zZszApUuXcOXKFWzZsgVTpkzR6L01adIEtWvXxpw5cwAAlStXxt9//42wsDBcv34dU6dOxenTp3Ns4+LigvPnz+PatWtISEhAZmYm+vbtCycnJ3Tp0gVHjhzB7du3ERUVhVGjRuHBgwcaZSLSW1JPAiGiN+U2MTDbokWLROnSpYW1tbXw8PAQ69evFwDEs2fPhBA5J2Gmp6eLXr16CWdnZyGXy0WZMmXEiBEjckzgPHXqlGjbtq2ws7MTtra2onbt2m9M0nzdfyd5/pdSqRTTp08XZcuWFZaWlqJOnTpi37596q+vXLlS1K1bV9ja2goHBwfRpk0bER0drf46XpvkKYQQq1atEs7OzsLMzEy4urrmuX+USqUoXbq0ACBu3rz5Rq79+/eLpk2bCmtra+Hg4CAaNWokVq5cmef7CAwMFHXq1Hlj+a+//iqsrKzEvXv3RFpamvjiiy+Eo6OjKFKkiBg6dKiYOHFiju0eP36s3r8ARGRkpBBCiNjYWOHr6yucnJyElZWVqFixohg4cKB48eJFnpmIDIlMCCGkrThERERkbHiIhIiIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi0jgWDiIiItI4Fg4iIiLSOBYOIiIi07v8A1k+hWenkwRsAAAAASUVORK5CYII=", "text/plain": [ - "" + "
" ] }, "metadata": {}, - "execution_count": 10 - }, - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3dd3xUVf7/8ddJJyEJJaGlEDoEAgqRLqKiIhZEdMXesazr96e7CooiigV1XddddV10LexaVmlGDKAgioJUkTQIJJCQkJBKep2Z8/vjht0sghmSSe6Uz/Px4MGUC/O5Jnl7Ofecz1Faa4QQQrg+L7MLEEII4RgS6EII4SYk0IUQwk1IoAshhJuQQBdCCDfhY9YHh4WF6ZiYGLM+XgghXNLu3buLtdbhp3rPtECPiYlh165dZn28EEK4JKVU9unekyEXIYRwExLoQgjhJiTQhRDCTUigCyGEm5BAF0IIN9FioCul3lVKFSqlUk7zvlJK/UUplaGUSlJKjXZ8mUIIIVpizxX6+8D0X3n/UmBQ06+5wN/aXpYQQogz1eI8dK31ZqVUzK8cMhNYpo0+vNuUUl2UUr211vkOqlEIIZyXzQZ7/gnluS0e2mi1sT2rlEGTr6XnsIkOL8URC4sigJxmz3ObXvtFoCul5mJcxRMdHe2AjxZCCJP9/CF88WDTE3XawzTgDUzUsCO5j9MGut201kuBpQDx8fGys4YQwrXVlMLXCyF6ItyeCOqXgV5R18gLifv4eEcOMd0DWTJ7JOP7d2+XchwR6EeBqGbPI5teE0II9/b1QqivgMteOWWYf51WwBOrkymqrOee8/rz0LTBBPh6t1s5jgj0BOABpdQnwDigXMbPhRBu78g2Y+x84oPQM/Z/3iquqmdRQiprkvIZ2iuYt2+JZ2Rkl3YvqcVAV0p9DEwFwpRSucBTgC+A1votIBGYAWQANcDt7VWsEEI4BasF1jwMIZFw3rz/vKy15vOf83j6i1Sq6638/qLB3HPeAPx8OmbJjz2zXK5v4X0N/NZhFQkhhLPb8XcoTIXr/gX+nQHIK6vlidUpfLO/kLOju/DS7JEM6hncoWWZ1j5XCCFcUnkebHsL+k2BoZdjs2k+2nGEJWv3Y7VpFl4ey60TY/D2Ov2Ml/YigS6EEGfiyBYoPwLnPcLhkhrmrUhix+FSJg8M44Wr44jqFmhaaRLoQghxJrK2oFEsKxnK8ys34+fjxUuzR3JtfCTqFDNdOpIEuhBCnIHazB/I8hnCUxuLuDi2J4uvGkHPkACzywIk0IUQwi71Fivvr93CPWUH2eB1I2/cMJoZcb1MvypvTgJdCCFasDv7OPNWJHFuyWfgC7fcdj+h0b3NLusXJNCFEOI0ahosvLw+nfe3ZnFv0Pc84vcxhA0lNGq42aWdkgS6EEKcwg8Hi5m/Moljxyv5JHI144pXwsBpMOn/TrnM3xlIoAshRDPlNY08l5jGp7tyOau7lcSYNwk5ts1Y4j9tERxLMrvE05JAF0KIJutSjvHk5ymUVjfw5FjN7dkL8CoqgFlLYdR1ZpfXIgl0IYTHK6o0mml9mZxPbO8QVpxXTPR3D0NACNy+FiLHmF2iXSTQhRCe6ehP6H1fcCC/jK2ZJYyy2rhzUDfO6mbBa8OHEBEPcz6E4F5mV2o3CXQhhGeoyIeQ3lB6GL5ZDCkrsOFFX+1NjFL4+nnhlQ/kKxh9C1z6MvieYsFQZ+cNeAl0IYRnKN4PW/6M3vkPrHjzDz2Ld/SVPDB9NDeP74uXvc20Qpxv/vkJEuhCCPdWVQi73oMtr6EttWwMuJjHj1/BkEGDWDnL3GZajiaBLoRwP1pD1g+w613Y9wXYGjkcOo77S64lj748eW0ss0dHONWyfUeQQBdCuI/aMtj7sRHkxQcgoAvFsbfyeE48XxWEcOmIXnwwczg9gp2jmZajSaAL4SoOboBDm8yuwnlVFRpX45ZaiIin8fLXeb0wjtd/yKNroB9/mxHIpVNcY/pha0mgC+EKyo9CwgNQXQTe/mZX45x8/I3FP/F3sKs+ikdXJHGo6CjXjolkwWXD6GIpMbvCdieBLoQryNoMlflw1Vtw1q9u8+vRquotvLxuP8u2/Uif0E4su2MsUwaHN73rvLNTHEUCXQhXkLUFlBcMvsTsSpzWdweKeHxlMnnltdw6IYZHLhlCkL9nRZxnna0Qrip7K0RPgMBuZlfidMpqGli8Zh8rfsplQHgQn90zgfgYz/zvJIEuhLM7ng2lmRB/u9mVOJ21yfk8+Xkqx2saeOD8gTxwwUACfL3NLss0EuhCOLv0tcbvQ2aYW4cTKayoY+HnqaxLPcaIiBA+uOMchvcJNbss00mgC+Hs0hOhSzR0H2B2JabTWrN8dy6L16RRZ7Exb/pQ7j63Hz7eXmaX5hQk0IVwZrVlkL0F4q41uxLT5ZTW8PiqZL4/WMzYmG4smR1H//DOZpflVCTQhXBmGRvAZoGYyWZXYhqrTbPsxyxeXp+OAhbPHM6N486gmZYHkUAXwpmlJ0JQOIQPNbsSU2QUVjJvRTK7s49z3uBwnr86joguncwuy2lJoAvhrCwNcPBriJ0JXp41c6PRauPv32Xyl40ZBPp786ffjGLW2e7XTMvRJNCF5yhIg58/NIYwXEFNCdRXeNzsluTcch5dkcS+/AouG9mbRVcMJzxY2h3YQwJduL+KfMjdCavuBVsj+LrQP9l7xEL/qVBXbnYl7a6u0cqfNxzk7e8P0T3Ij7/fPIZLhjvv7kDOyK5AV0pNB14DvIF3tNZLTno/GvgA6NJ0zHytdaKDaxXizNls8N0S2P2+sUfkdf9y6h1nTsvPfTZhOJXth0qYvzKZw8XVXBcfxeOXDSO0k6/ZZbmcFgNdKeUNvAFcBOQCO5VSCVrrtGaHPQF8qrX+m1IqFkgEYtqhXiHsV18Fq++DfQkw6ga4/NVT7xEpTFNZ18hL69L557Zsorp14sO7xjFpYJjZZbkse67QxwIZWutDAEqpT4CZQPNA10BI0+NQIM+RRQpxxo5nwyc3QGEajP8tXPIcyA01p7IpvZAFK5PJr6jjjkn9+MMlgwn0k1HgtrDnv14EkNPseS4w7qRjFgFfKaV+BwQB0071Fyml5gJzAaKjo8+0ViHsk/UDfHqLcfPzxs8gsLuEuRM5Xt3A4jVprNxzlEE9OrPivomMju5qdlluwVHrZa8H3tdaRwIzgH8qpX7xd2utl2qt47XW8eHh4b/4S4RoE0sDbP0rLJtphPjdm2DgKa8thAm01qxJymPan74jYW8eD144iDUPTpYwdyB7rtCPAlHNnkc2vdbcncB0AK31j0qpACAMKHREkUKcUkW+cYNTa0hdBRufgeOHjWl+s96CgKZmTZ1lpoTZCirqeGJ1Cl+nFTAyMpR/3TWOYb1DWv6D4ozYE+g7gUFKqX4YQT4HuOGkY44AFwLvK6WGAQFAkSMLFeIXqo5BSQZ8vRDyfoIew+HG5cZVefMhFlec1eImtNZ8uiuHZ7/cR4PFxuMzhnLHJGmm1V5aDHSttUUp9QCwHmNK4rta61Sl1DPALq11AvB74G2l1EMYN0hv01rr9ixceLDGOsj8Bra8BjnbICQCZr4Jo+Z43IpKZ3akpIb5K5PYmlnCuH7deHH2SGLCgswuy63ZdUu5aU554kmvLWz2OA2Y5NjShGimodpoVJX2ORxYDw1V4B8C0xbBuHtda7GQm7PaNO9vzeKP69Px9lI8N2sE158TLc20OoDMERLOq77SCO+0z42eJpZa42bniNkQe6UR6FFjza5SNHOgoJJHlyfxc04ZFwztwXOzRtA7VP5n21Ek0EXb2azGFEGfZv02Gutgy5+hqpX3xSuOQuYmsNZD555w9o1Gk6roieDd9G2bt6fttQuHaLDY+Nu3mby+6SCd/X14bc5ZXDmqjzTT6mAS6KLtqgqhsRa69zeeWy2w4k7YvwYCW7nqzz8Y4u8wQjxq7KnHxmX2ilPYm1PGvBVJ7D9WyZWj+vDUFbF07yzNtMwggS7ariLPCGAwphCu+X9GmF/6Eoy7p/0+V2avmKq2wcqrGw7wzveH6BEcwDu3xDMttqfZZXk0CXTRNpYGqC76b6BvfBr2/BOmPNq+YS5M9WNmCY+tTCKrpIbrx0bz2IyhhARIMy2zSaCLtqmvgMYa4/HW1+GHV42hkvMfN7cu0S4q6hpZsnY/H20/Qt/ugXx09zgmDpBmWs5CAl20TeUx8PaF/V/CxkXGmPeMP0rvFDe0cV8BC1alUFhZx93n9uPhi4bQyU/m/TsTCXTRejarcUO06ABses7YiOHqt2Vxj5spqarn6S/SSNibx5Cewbx18xjOiupidlniFCTQRevVVxjTFX/6ALpEGZtH+MjsBnehtSZhbx5Pf5FGZV0jD00bzH1TB+DnI8v2nZUEumi96hIoyYSybJj62H9vjAqXl19eyxOrUti4v5BRUV14afZIhvSSr6+zk0AXraM1VOZD5gZj2f2g6WZXJBzAZtN8sjOHFxL30Wiz8cRlw7h9Uj+8Zdm+S5BAF63TUGVMVzz8ndHd0M33vPQEWcXVzF+ZxLZDpUzo350ls+Po212aabkSCXTROrXH4dC3YG2EwXJ17sosVhvvbcnila/T8fXyYsnVcVx3TpQs23dBEuiidcpzIeNr6DkCusaYXY1opf3HKpi3PIm9ueVMG9aTZ68aQa9Q2UjbVUmgizNns0H2j8aS/zG3g7VBboi6mHqLlTc2ZfLmpgxCO/ny1+vP5vKRveWq3MVJoIvWObjeaF8bMQb8OhsdEYVL2HPkOPNWJHGgoIpZZ0fw5OWxdAvyM7ss4QAS6OLMHd0NuTsh7lrQVugxDLxkbrKzq2mw8MpXB3h3y2F6hQTw7m3xXDBU/kfsTiTQhf2OZ8HGxZCy3Lg6738+dImBANns19ltzShm/spkjpTWcNP4aOZNH0qwNNNyOxLoomU1pbD5ZdjxNnj5wOSHofcoCOgC3fqZXZ34FeW1jbyQuI9PdubQLyyIT+aOZ3z/7maXJdqJBLqnsjTA1tegNOvXj7NZID3RmHd+1o1GF8XOvSDrewgfajTmEk7pq9RjPLE6heKqeu45rz8PTRtMgK/02XFnEuiepiLfCOFPb4HsLRASAbQws6HfFLjgCWOs/ITwIdC5R7uWKlqnuKqeRQmprEnKZ2ivYN65NZ6RkdJMyxNIoHuarO9h4zPGKs+r34GR17bu7wmW7d+cjdaa1T8f5ekv0qipt/L7iwZz79QB+HrLDWtPIYHuSTI3QcLvoFM3uH0tRIw2uyLhIHlltSxYlcym9CLOjjaaaQ3qKWsDPI0EuifZ/ndjAdDcbyFYpqu5A5tN8+GOI7y4dj9Wm2bh5bHcOjFGmml5KAl0T1KYaizVlzB3C4eKqpi/IpkdWaVMHhjGC1fHEdVNmqR5Mgl0T1FfCWVHYOBFZlci2shitfHOD4d59esD+Pt48dI1I7l2TKQs2xcS6B6jcJ/xe8QYc+sQbZKWV8GjK/aScrSCS4b3ZPHMEfQIkWZawiCB7ikK04zfYyaZW4dolXqLlde/yeBv32bSJdCXN28czaUjeslVufgfEuieoiANfIMgNNrsSsQZ2p1dyrwVyWQUVnH16AievCyWrtJMS5yCBLqnKEyTJlouprrewsvr0/ngxyz6hHbi/dvPYeoQWcwlTs+un26l1HSlVLpSKkMpNf80x/xGKZWmlEpVSn3k2DJFm2gNBanQM9bsSoSdvj9YxCV/3sz7W7O4ZXxf1j80RcJctKjFK3SllDfwBnARkAvsVEolaK3Tmh0zCHgMmKS1Pq6Uku88Z1JVALWl0GO42ZWIFpTXNPLsl2l8tjuX/uFBfHbvBM6J6WZ2WcJF2DPkMhbI0FofAlBKfQLMBNKaHXM38IbW+jiA1rrQ0YWKNjhxQ7R5LxbhdNalHOPJz1MorW7g/qkDePDCQdJMS5wRewI9Ashp9jwXGHfSMYMBlFJbAG9gkdZ63cl/kVJqLjAXIDpabs51mIKmQO8pV+jOqLCyjkUJqSQmHyO2dwjv3XYOIyJCzS5LuCBH3RT1AQYBU4FIYLNSKk5rXdb8IK31UmApQHx8vHbQZ4uWFKZBUA8ICjO7EtGM1poVPx1l8Zo0ahutPHLJEOZO6S/NtESr2RPoR4GoZs8jm15rLhfYrrVuBA4rpQ5gBPxOh1Qp2kZuiDqd3OM1PL4qhc0Hiojv25Uls0cysEdns8sSLs6eQN8JDFJK9cMI8jnADScdsxq4HnhPKRWGMQRzyJGFilayWaEoHeJvN7sSgdFM65/bsnlx3X4Anr5yODeP74uXNNMSDtBioGutLUqpB4D1GOPj72qtU5VSzwC7tNYJTe9drJRKA6zAI1rrkvYsXNjpeBZYaqGHXKGbLbOoinnLk9iVfZwpg8N5ftYIIrtKMy3hOHaNoWutE4HEk15b2OyxBh5u+iWcSUGq8bsMuZim0Wpj6eZDvLbxIJ18vfnjtaOYPTpClu0Lh5OVou6uMA1Qxv6fosOlHC3n0eVJpOVXMCOuF4uuHE6PYGmmJdqHBLq7K0iFrjHgF2R2JR6lrtHKaxsPsnTzIboG+vHWTaOZPqK32WUJNyeB7u4K98n88w62M6uUecuTOFRczbVjInnislhCA33NLkt4AAl0d9ZYC6WZMHyW2ZV4hKp6Cy+t28+yH7OJ7NqJf945lnMHhZtdlvAgEujuqLEOvlkMxQdB2+SGaAf47kARj69MJq+8ltsmxvDIJUMI8pcfL9Gx5DvOHW35M/z4OnQfCH3Ohr6yqUV7Katp4Jk1aaz86SgDwoNYfu8ExvSVZlrCHBLo7qYkE77/E4yYDde8a3Y1bktrzdqUYyz8PIWymkYeOH8gD1wwUJppCVNJoLsTrSHxEfDxh0ueN7sat1VYUceTn6ewPrWAEREhfHDHWIb3kWZawnwS6O4kbTVkboRLX4LgXmZX43a01ny2O5dn16RRb7Ex/9Kh3DW5Hz7STEs4CQl0d1FXAeseg14jIf5Os6txOzmlNTy2MpkfMooZG9ONJbPj6B8uzbSEc5FAdxffvgCVx+C6D8FbvqyOYrVplv2YxUvr0vFSsPiqEdw4NlqaaQmnJD/57iA/Cba/ZXRUjBxjdjVuI6OwkkeXJ/HTkTKmDgnnuVlxRHTpZHZZQpyWBLqrs9ngy4ehUze4cGHLx4sWNVptvPVtJn/9JoNAf29evW4UV50lzbSE85NAd3V7lkHuTrjqLejU1exqXF5ybjmPLN/L/mOVXD6yN4uuHE5YZ3+zyxLCLhLorqy6GL5+CvpOhlFzzK7GpdU1Wnl1wwHe3nyIsM7+LL15DBcPl5lCwrVIoLuyrxdCQxVc9grIcECrbT9UwvyVyRwurmbOOVE8NmMYoZ2kmZZwPRLozuB4Fny7xAhne9mskJ4Ikx+CHtLrvDUq6xp5cd1+/rXtCFHdOvHhXeOYNFA20hauSwLdDBX5ENLUG7uqEJZdBdVF0CX6zP6eIZfBlEccX58H2LS/kMdXJXOsoo47J/fj9xcPJtBPfhyEa5PvYDNUHTMCva4c/nU1VBXALQkQdY7Zlbm90uoGnvkildU/5zGoR2dW3DeR0dFyM1m4Bwl0szTWwcc3QOF+uOETCfN2prVmTVI+ixJSKa9t5MELB/Hb8wfg7yPNtIT7kEA3g80Cy++A7C0w+x0YOM3sitxaQUUdC1alsGFfASMjQ/nw7nEM7RVidllCOJwEekfT2mhvm54IM/4IcdeYXZHb0lrz7505PJe4jwaLjQUzhnH7pBhppiXclgR6R9v0nBHm582HsXebXY3bOlJSw/yVSWzNLGFcv268OHskMWGyUbZwbxLoHSlvD3z/Cgy+FKbON7sat2S1ad7bcpg/fpWOj5cXz8+KY845UdJMS3gECfSOYrPCmochMAwm3C8LgdpB+rFKHl2RxN6cMi4Y2oPnZo2gd6g00xKeQwK9o+x+D/J+gqvfAf9gs6txKw0WG29+m8EbmzIIDvDltTlnceWoPtJMS3gcCfSOUFUIG56BflOMm6D5P5tdkdvYm1PGo8uTSC+oZOZZfVh4eSzdpZmW8FAS6B3hqyehsQZmSM8VR6ltsPKnr9P5xw+H6REcwDu3xDMttqfZZQlhKgn09lJZAOvmQX0VZHwN5/4BwgebXZVb2JpZzGMrk8kuqeGGcdHMv3QoIQHSTEsICfT2svdjSF0FveIg9io49/f/fa+ztGVtjYq6Rl5I3M/HO47Qt3sgH909jokDpJmWECdIoLeX9LXGhs33fv/L90405hJ225BWwILVyRRV1jN3Sn8emjaYTn6ybF+I5uxaMqeUmq6USldKZSilTjuBWik1WymllVLxjivRBVUXQ852GDLD7EpcXklVPQ9+vIe7lu2ia6Afq+6fxOMzhkmYC3EKLV6hK6W8gTeAi4BcYKdSKkFrnXbSccHA/wHb26NQl3JgHaBhyKVmV+KytNYk7M1jUUIqVfUWHpo2mPumDsDPR5btC3E69gy5jAUytNaHAJRSnwAzgbSTjlsMvAhIg+70tRASAb1HmV2JS8ovr+WJVSls3F/IWVFdeOmakQzuKXP3hWiJPYEeAeQ0e54LjGt+gFJqNBCltf5SKXXaQFdKzQXmAkRHn+FmDq6isRYyv4GzbpApimfIZtN8vPMILyTux2Kz8cRlw7h9Uj+8Zdm+EHZp801RpZQX8CfgtpaO1VovBZYCxMfH67Z+tlM69J0x51zGz8/I4eJq5q9IYvvhUiYO6M6Sq0cS3T3Q7LKEcCn2BPpRIKrZ88im104IBkYA3zYtte4FJCilrtRa73JUoS4jPRH8giFmstmVuASL1ca7Ww7zylcH8PPx4sXZcfwmPkqW7QvRCvYE+k5gkFKqH0aQzwFuOPGm1roc+M9kYKXUt8AfPDLMbTbjhujAC8FHlp+3ZF9+BfNWJJGUW85FsT159qoR9AwJMLssIVxWi4GutbYopR4A1gPewLta61Sl1DPALq11QnsX6TLyfjL2Bx16mdmVOLV6i5U3NmXy5qYMQjv58voNZ3NZXG+5KheijewaQ9daJwKJJ7228DTHTm17WS4qPRGUt2wp9yt+OnKcecuTOFhYxayzI1h4eSxdg/zMLksItyArRVvjWDJ886yxN2hzR3+CvhMhsJs5dTmxmgYLf1x/gPe2HqZXSADv3XYO5w/tYXZZQrgVCfTW2LfGGCuPGPO/r3frDxMeMKcmJ7Ylo5j5K5PIKa3lpvHRzJs+lGBppiWEw0mgt0bVMQgKh7u/MbsSp1Ze28jzX+7j37ty6BcWxL/njmdc/+5mlyWE25JAb42qQugsvbd/zVepx3hidQol1Q3ce94A/t+0QQT4Sv8VIdqTBHprVBVAZxn/PZWiynoWfZHKl0n5DOsdwj9uPYe4yFCzyxLCI0igt0ZVIYTJZhXNaa1Ztecoz6xJo6beyh8uHsw95w3A11uaaQnRUSTQz1TNcblCP8nRsloWrErm2/QiRkcbzbQG9pBmWkJ0NAn0M9FYa2zwbG2QMXSMZlofbs9mydr92DQ8dUUst0yIkWZaQphEAv1MNFRDRb7x2MMD/VBRFfNXJLMjq5RzB4Xx/Kw4orpJMy0hzCSBfiZqSqC6yHjsoUMuFquNt78/zKsbDhDg48XL14zkmjGRsmxfCCcggX4mqoqg9rjx2AM3ek7Lq+DRFXtJOVrBJcN7snjmCHpIMy0hnIYEur0a64w+57VlxnMPukKva7Ty+jcZvPVdJl0C/fjbjaO5NE42uhbC2Uig26uhGhRQdxy8/SHAM+ZW784u5dHlSWQWVTN7dCRPXj6MLoHSTEsIZySBbq+aUvDyMa7QO/d0++3lqustvLw+nQ9+zKJPaCc+uGMs5w0ON7ssIcSvkEC3V00R+AYaV+huPtyy+UARj61MJq+8llvG9+WR6UPp7C/fKkI4O/kptYel3hhyCexmXKH3HGF2Re2ivKaRxV+msXx3Lv3Dg/j0ngmcEyOtgIVwFRLo9mio/u/jWve8Ql+Xks+Tn6dSWt3A/VMH8OCF0kxLCFcjgW6P2uPG+LnNAvUVbrWoqLCyjqc+T2VtyjFie4fw3m3nMCLCM274CuFuJNDtUVUIvp2azUF3/St0rTXLd+fy7Jf7qG208sglQ5g7pb800xLChUmgt8TSAA1VEBRmNOYCCHbtRUU5pTU8viqZ7w8WE9+3K0tmj2Rgj85mlyWEaCMJ9JY0VP33cUWu8Xuway6qsdk0y37M4qX16SjgmZnDuWlcX7ykmZYQbkECvSW15eDVdHMwawv4h0LvUebW1AoZhVXMX5HEruzjTBkczvOzRhDZVZppCeFOJNBbUt00fm6ph5xt0Pfc/wa8C2i02li6+RCvbThIJz9vXrl2FFePjpBmWkK4IQn0X2NtNGa1BHaH7C1GP/ToCWZXZbeUo+U8ujyJtPwKZsT14ukrRxAe7G92WUKIdiKB/mtOjJ8rBYc3g38w9IoztyY71DVaeW3jQZZuPkS3ID/eumk000e45ri/EMJ+Eui/pq4ClJexQ1H2Fog515iP7sR2ZpUyb3kSh4qr+U18JAtmxBIa6Gt2WUKIDuDc6WS2qgJj/PzoT8Zq0X5TzK7otKrqLby0bj/Lfswmsmsn/nXnOCYPCjO7LCFEB5JAPx2rxbhCD+xmDLf4BkHEaGioM7uyX9iUXsiClcnkV9Rx+6QY/nDxEIKkmZYQHkd+6k+noQrQoK2Q9QP0nQDefoDzBPrx6gYWr0lj5Z6jDOzRmeX3TmRM365mlyWEMIkE+unUlRvj53k/GzNd+p9ndkX/obUmMfkYTyWkUFbTyO8uGMgDFwzE38d1plMKIRzPrkBXSk0HXgO8gXe01ktOev9h4C7AAhQBd2itsx1ca8eqLgLfADj8HfgEQORYsysCoLCijidWp/BVWgFxEaEsu2McsX1CzC5LCOEEWgx0pZQ38AZwEZAL7FRKJWit05odtgeI11rXKKXuA14CrmuPgjuEzQp1Zcaq0KwfjLnnPv6gbaaVpLXms125LP4yjQaLjccuHcqdk/vhI820hBBN7LlCHwtkaK0PASilPgFmAv8JdK31pmbHbwNucmSRHa6hCrSGgrsGKZEAAAziSURBVBSjw+KJ4RabFbw7fpQqp7SGx1Ym80NGMWP7dWPJ1XH0D5dmWkKI/2VPOkUAOc2e5wLjfuX4O4G1p3pDKTUXmAsQHR1tZ4kmqKs0xs8Pf2fcCI1qGm6pr4CwwR1WhtWm+WBrFi+vT8fbS/HsVSO4YWy0NNMSQpySQy83lVI3AfHAKe8gaq2XAksB4uPjtSM/26GqC40gP/w9RI0z9hI9MdzSuWNa5x4sqOTRFUnsOVLG1CHhPD8rjj5dOnXIZwshXJM9gX4UiGr2PLLptf+hlJoGLADO01rXO6Y8E9hsxjBLRS7UFP93MVFdOYRGgY9fu358g8XGW99l8vo3GQT5e/Pn685i5ll9pJmWEKJF9gT6TmCQUqofRpDPAW5ofoBS6mzg78B0rXWhw6vsSA1VxtX44R/Ay9eYf661sf1caGS7fnRSbhmPLk9i/7FKrhjVh6euiCWsszTTEkLYp8VA11pblFIPAOsxpi2+q7VOVUo9A+zSWicALwOdgc+ariSPaK2vbMe6209dGaCM8fPIePDrDPWVENQD/ILa5yMbrbz69QHe/v4Q4cH+vH1LPBfFus++pUKIjmHXGLrWOhFIPOm1hc0eT3NwXeapyIPKPKOPy5jbjNca69qty+K2QyXMX5FEVkkN14+NYv6lwwjtJM20hBBnTlaKNtdYa1yNZ28F5Q19JxmvBQRDQBeHflRlXSNL1u7nw+1HiO4WyEd3jWPiQGmmJYRoPQn05urKjfHyw98ZjbgCQqC62NhyzoE3Jb/ZX8CCVSkUVNRx1+R+PHzxYAL95EshhGgbSZHmKvOh6pgx7DLqBmPHIm8/Y8ciByitbuCZL1JZ/XMeg3p05s37JnJ2tDTTEkI4hgT6CdZG42o8Z4exqChmstE+N3xwm/cQ1VrzRVI+ixJSqaxr5P8uHMT95w+QZlpCCIeSQD+hrgJQxs5EveKM7ebqytq8kOhYudFMa8O+AkZFhvLiNeMY2kuaaQkhHE8C/YSqAqgpgdJDMP63xs3R0OhWLyTSWvPJzhye/3IfjTYbC2YM447J/fCWZftCiHYigQ7G6tCqAsj/2Xjed4IxBBMa0aq/LrukmvkrkvnxUAnj+3djydUjiQlrnznsQghxggQ6GE23bBY4sg26xkBAqPHrDBcSWW2a97Yc5o9fpePr5cXzs+KYc06UNNMSQnQICXQwhloaa40r9FHXt2ohUfoxo5nW3pwyLhzag2dnjaB3qDTTEkJ0HAl0raEiHwrTjB4uEWOM+ed2LiRqsNh489sM3tiUQXCAL3+5/myuGNlbmmkJITqcBHpDNVhqjeGWTl2NBlxd+tq1kOjnnDLmLU8ivaCSmWf14akrhtMtqH27MQohxOlIoNeWGTsR5eyAAVONOeidfv3qvLbByitfpfPulsP0CA7gH7fGc+EwaaYlhDCXBHpFHpRmQmO1sRG0XxD4nn7se2tmMfNXJHOktIYbxkUz/9KhhARIMy0hhPk8O9Ab64z+LTk7wNvf2F4u5NRTFSvqGnkhcR8f78ihb/dAPr57PBMGOKYlgBBCOIJnB3pdOaCN7oqR8eDtC4HdfnHYhrQCFqxOpqiynrlT+vPQtMF08pNl+0II5+LZgV6Zb/yqLoTRNxuNuPw6/+ftkqp6Fn2Rxhd78xjaK5ilN8czKsqxbXSFEMJRPDfQrRajGdfR3YAy5p0H9wGl0Frz+c95PP1FKlX1Fh6+aDD3njcAPx8vs6sWQojT8txAr68ANBz5EXoON67MO4eRV1bLE6tT+GZ/IWdFdeGla0YyuGew2dUKIUSLPDfQqwqNMfTiAzB2Lja8+OjnMpasO4DVpnny8lhumxgjzbSEEC7DMwPdZjPGzpuaceUGj+L36zTbj6YxaWB3Xpg1kujugSYXKYQQZ8YzA72hEmwWbEe2UeHfhwvXdcHPx8KLs+P4TXyULNsXQrgkzwz0muOkF9TQP/cn/m2ZzpQIL56dM5Ge3WTjCSGE6/K4QK+3WHnju1wO79rFX32txI2ZyNz4MJSEuRDCxXlUoO/OPs68FUlkFFaxvNsebNYQJsYONBpyCSGEi/OIidU1DRae/iKVa97aSk29hfev6E68ZQ9efScYG0Db2SpXCCGcmdtfof9wsJj5K5PIPV7LzeP78uj0IQSnfgwNVUYzLt9A8JMZLUII1+e2gV5e28hzX6bx6a5c+oUF8e+54xnXv6mZVvYP4OUL4UNP24xLCCFcjVsG+vrUYzy5OoWS6gbumzqA/7twEAG+Tc20rBY4vBn6jAIf/1M24xJCCFfkVoFeVFnPooRUvkzOZ1jvEP5x6znERYb+70E7lhqLisbcZnRX9Jdl/UII9+AWga61ZuVPR3lmTRq1DVYeuWQIc6f0x9f7pHu+FXmw6TmIngA9R0Bwb7u2mhNCCFfg8oF+tKyWx1cm892BIkZHG820BvY4zVX3usfAZoHJD0FjLQSFd2yxQgjRjuwKdKXUdOA1wBt4R2u95KT3/YFlwBigBLhOa53l2FL/l82m+df2bF5cux8NLLoilpsn/EozrYwNkLYazn/CuBFamQ/+sphICOE+Wgx0pZQ38AZwEZAL7FRKJWit05oddidwXGs9UCk1B3gRuK49CgbILKpi/ookdmYd59xBYTw/K46obr8y9bCxDhIfge4DYdKDUHwQOvcEb5f/B4oQQvyHPYk2FsjQWh8CUEp9AswEmgf6TGBR0+PlwOtKKaW11g6sFYCdK1+jy96lvKAgPMyfkDpf1Mct/KGGGig/Ard8bsxs8fKR2S1CCLdjT6BHADnNnucC4053jNbaopQqB7oDxc0PUkrNBeYCREdHt6rgLmE9qejcn+ERoQScyQ5CE34L/ac2/SVR4BPQqs8XQghn1aFjDlrrpcBSgPj4+FZdvQ+aMgemzGlbIX5BbfvzQgjhhOy5xD0KRDV7Htn02imPUUr5AKEYN0eFEEJ0EHsCfScwSCnVTynlB8wBEk46JgG4tenxNcA37TF+LoQQ4vRaHHJpGhN/AFiPMW3xXa11qlLqGWCX1joB+AfwT6VUBlCKEfpCCCE6kF1j6FrrRCDxpNcWNntcB1zr2NKEEEKcCY/ohy6EEJ5AAl0IIdyEBLoQQrgJCXQhhHATyqzZhUqpIiC7lX88jJNWoXoAOWfPIOfsGdpyzn211qdsFWtaoLeFUmqX1jre7Do6kpyzZ5Bz9gztdc4y5CKEEG5CAl0IIdyEqwb6UrMLMIGcs2eQc/YM7XLOLjmGLoQQ4pdc9QpdCCHESSTQhRDCTTh1oCulpiul0pVSGUqp+ad4318p9e+m97crpWI6vkrHsuOcH1ZKpSmlkpRSG5VSfc2o05FaOudmx81WSmmllMtPcbPnnJVSv2n6WqcqpT7q6BodzY7v7Wil1Cal1J6m7+8ZZtTpKEqpd5VShUqplNO8r5RSf2n675GklBrd5g/VWjvlL4xWvZlAf8AP2AvEnnTM/cBbTY/nAP82u+4OOOfzgcCmx/d5wjk3HRcMbAa2AfFm190BX+dBwB6ga9PzHmbX3QHnvBS4r+lxLJBldt1tPOcpwGgg5TTvzwDWAgoYD2xv62c68xX6fzan1lo3ACc2p25uJvBB0+PlwIVKKdWBNTpai+estd6kta5peroNYwcpV2bP1xlgMfAiUNeRxbUTe875buANrfVxAK11YQfX6Gj2nLMGQpoehwJ5HVifw2mtN2PsD3E6M4Fl2rAN6KKU6t2Wz3TmQD/V5tQRpztGa20BTmxO7arsOefm7sT4P7wra/Gcm/4pGqW1/rIjC2tH9nydBwODlVJblFLblFLTO6y69mHPOS8CblJK5WLsv/C7jinNNGf6896iDt0kWjiOUuomIB44z+xa2pNSygv4E3CbyaV0NB+MYZepGP8K26yUitNal5laVfu6Hnhfa/2KUmoCxi5oI7TWNrMLcxXOfIXuiZtT23POKKWmAQuAK7XW9R1UW3tp6ZyDgRHAt0qpLIyxxgQXvzFqz9c5F0jQWjdqrQ8DBzAC3lXZc853Ap8CaK1/BAIwmli5K7t+3s+EMwe6J25O3eI5K6XOBv6OEeauPq4KLZyz1rpcax2mtY7RWsdg3De4Umu9y5xyHcKe7+3VGFfnKKXCMIZgDnVkkQ5mzzkfAS4EUEoNwwj0og6tsmMlALc0zXYZD5RrrfPb9DeafSe4hbvEMzCuTDKBBU2vPYPxAw3GF/wzIAPYAfQ3u+YOOOcNQAHwc9OvBLNrbu9zPunYb3HxWS52fp0VxlBTGpAMzDG75g4451hgC8YMmJ+Bi82uuY3n+zGQDzRi/IvrTuBe4N5mX+M3mv57JDvi+1qW/gshhJtw5iEXIYQQZ0ACXQgh3IQEuhBCuAkJdCGEcBMS6EII4SYk0IUQwk1IoAshhJv4/wJEAsUGWcIHAAAAAElFTkSuQmCC\n" - }, - "metadata": { - "needs_background": "light" - } + "output_type": "display_data" } ], "source": [ "from sklearn.metrics import roc_curve, roc_auc_score\n", + "import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", "\n", "y_scores = model.predict_proba(X_test)\n", "# calculate ROC curve\n", "fpr, tpr, thresholds = roc_curve(y_test, y_scores[:,1])\n", - "sns.lineplot([0, 1], [0, 1])\n", - "sns.lineplot(fpr, tpr)" + "\n", + "# plot ROC curve\n", + "fig = plt.figure(figsize=(6, 6))\n", + "# Plot the diagonal 50% line\n", + "plt.plot([0, 1], [0, 1], 'k--')\n", + "# Plot the FPR and TPR achieved by our model\n", + "plt.plot(fpr, tpr)\n", + "plt.xlabel('False Positive Rate')\n", + "plt.ylabel('True Positive Rate')\n", + "plt.title('ROC Curve')\n", + "plt.show()" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 78, "metadata": {}, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "0.6997079225994889\n" + "0.9749908725812341\n" ] } ], "source": [ + "# Calculate AUC score\n", "auc = roc_auc_score(y_test,y_scores[:,1])\n", "print(auc)" ] } ], "metadata": { - "environment": { - "name": "tf2-gpu.2-4.m65", - "type": "gcloud", - "uri": "gcr.io/deeplearning-platform-release/tf2-gpu.2-4:m65" - }, "kernelspec": { - "name": "python37364bit8d3b438fb5fc4430a93ac2cb74d693a7", - "display_name": "Python 3.7.0 64-bit ('3.7')" + "display_name": "Python 3", + "language": "python", + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -390,14 +1229,20 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.0" + "version": "3.8.16" }, "metadata": { "interpreter": { "hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d" } + }, + "orig_nbformat": 2, + "vscode": { + "interpreter": { + "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1" + } } }, "nbformat": 4, - "nbformat_minor": 4 -} \ No newline at end of file + "nbformat_minor": 2 +}