[![ML, AI, deep learning - What's the difference?](https://img.youtube.com/vi/lTd9RSxS9ZE/0.jpg)](https://youtu.be/lTd9RSxS9ZE "ML, AI, deep learning - What's the difference?")
> 🎥 머신러닝, AI 그리고 딥러닝의 차이를 설명하는 영상을 보려면 위 이미지를 클릭합니다.
입문자를 위한 classical 머신러닝 코스에 오신 것을 환영합니다! 이 토픽에 완벽하게 새로 접해보거나, 한 분야에 완벽해지고 싶어하는 ML 실무자도 저희와 함께하게 되면 좋습니다! ML 연구를 위한 친숙한 시작점을 만들고 싶고, 당신의 [feedback](https://github.com/microsoft/ML-For-Beginners/discussions)을 평가, 응답하고 반영하겠습니다.
[![Introduction to ML](https://img.youtube.com/vi/h0e2HAPTGF4/0.jpg)](https://youtu.be/h0e2HAPTGF4 "Introduction to ML")
> 🎥 동영상을 보려면 위 이미지 클릭: MIT의 John Guttag가 머신러닝을 소개합니다.
### 머신러닝 시작하기
이 커리큘럼을 시작하기 전, 컴퓨터를 세팅하고 노트북을 로컬에서 실행할 수 있게 준비해야 합니다.
- **Python 배우기**. 이 코스에서 사용할 데이터 사이언티스트에게 유용한 프로그래밍 언어인 [Python](https://docs.microsoft.com/learn/paths/python-language/?WT.mc_id=academic-15963-cxa)에 대한 기본적인 이해를 해야 좋습니다.
- **Node.js 와 JavaScript 배우기**. 이 코스에서 웹앱을 빌드할 때 JavaScript를 사용하므로, [node](https://nodejs.org) 와 [npm](https://www.npmjs.com/)을 설치해야 합니다. Python 과 JavaScript의 개발환경 모두 쓸 수 있는 [Visual Studio Code](https://code.visualstudio.com/)도 있습니다.
- **GitHub 계정 만들기**. [GitHub](https://github.com) 계정이 혹시 없다면, 계정을 만든 뒤에 이 커리큘럼을 포크해서 개인에 맞게 쓸 수 있습니다. (star 하셔도 됩니다 😊)
'머신러닝'은 최근 가장 인기있고 자주 언급되는 용어입니다. 어떤 분야든 기술에 어느 정도 익숙해지면 이러한 용어를 한 번즈음 들어본 적이 있었을 것입니다. 그러나, 머신러닝의 구조는 대부분의 사람들에겐 미스테리입니다. 머신러닝 입문자에겐 주제가 때때로 숨막힐 수 있습니다. 때문에 머신러닝이 실제로 어떤지 이해하고 실제 적용된 예시로 단계별 학습을 진행하는 것이 중요합니다.
우리는 매우 신비한 우주에 살고 있습니다. Stephen Hawking, Albert Einstein과 같은 위대한 과학자들은 주변 세계의 신비를 밝혀낼 의미있는 정보를 찾는 데 일생을 바쳤습니다. 이건 사람의 학습 조건이죠. 아이는 성인이 되면서 해마다 새로운 것을 배우고 세계의 구조들을 발견합니다.
아이의 뇌와 감각은 주변 환경의 사실들을 인지하고 학습된 패턴을 식별하기 위한 논리적인 규칙을 만드는 패턴을 점차적으로 배웁니다. 인간의 두뇌의 학습 과정은 인간을 세상에서 가장 정교한 생명체로 만듭니다. 숨겨진 패턴을 발견하고 그 패턴을 혁신함으로써 지속적으로 학습하는 것은 우리가 일생 동안 점점 더 나은 자신을 만들 수 있게 해줍니다. 이러한 학습 능력과 발전하는 능력은 [brain plasticity 뇌의 가소성](https://www.simplypsychology.org/brain-plasticity.html)이라고 불리는 개념과 관련이 있습니다. 피상적으로, 우리는 인간의 두뇌의 학습 과정과 기계 학습의 개념 사이에 동기부여의 유사성을 끌어낼 수 있습니다.
[인간의 뇌](https://www.livescience.com/29365-human-brain.html)는 현실 세계의 것들을 인식하고, 인식된 정보를 처리하고, 합리적인 결정을 내리고, 상황에 따라 특정한 행동을 합니다. 이것이 우리가 지적 행동이라고 부르는 것입니다. 우리가 지능적인 행동 과정의 팩시밀리를 기계에 프로그래밍 할 때, 그것은 인공지능(AI)이라고 불립니다.
> AI, ML, 딥러닝, 그리고 데이터 사이언티스 간의 관계를 보여주는 다이어그램. [이곳](https://softwareengineering.stackexchange.com/questions/366996/distinction-between-ai-ml-neural-networks-deep-learning-and-data-mining)에서 영감을 받은 [Jen Looper](https://twitter.com/jenlooper)의 인포그래픽
이 커리큘럼에서는 입문자가 반드시 알아야 할 머신러닝의 핵심적인 개념만 다룰 것입니다. 많은 학생들이 기초를 배우기 위해 사용하는 훌륭한 라이브러리인, Scikit-learn으로 'classical machine learning'이라고 부르는 것을 다룹니다. 인공 지능 또는 딥러닝의 대략적인 개념을 이해하려면 머신러닝에 대한 강력한 기초 지식이 꼭 필요하므로, 해당 내용을 본 강의에서 제공하고자 합니다.
머신러닝의 응용은 이제 거의 모든 곳에 있으며, 우리의 스마트폰, 연결된 기기, 그리고 다른 시스템들에 의해 생성된 우리 사회의 방대한 데이터만큼 어디에나 존재합니다. 최첨단 머신러닝 알고리즘의 엄청난 잠재력을 고려하여 연구원들은 다차원적이고 다분야적인 실제 문제를 큰 긍정적인 결과로 해결할 수 있는 능력을 탐구하고 있습니다.
클라우드에서 ML 알고리즘을 어떻게 사용하는 지 자세히 알아보려면, [학습 경로](https://docs.microsoft.com/learn/paths/create-no-code-predictive-models-azure-machine-learning/?WT.mc_id=academic-15963-cxa)를 따릅니다.