✅ Can you think of software that you use every day that probably has some NLP embedded? What about your word processing programs or mobile apps that you use regularly?
You will learn about how the ideas about languages developed and what the major areas of study have been. You will also learn definitions and concepts about how computers process text, including parsing, grammar, and identifying nouns and verbs. There are some coding tasks in this lesson, and several important concepts are introduced that you will learn to code later on in the next lessons.
Computational linguistics is an area of research and development over many decades that studies how computers can work with, and even understand, translate, and communicate with languages. Natural Language Processing (NLP) is a related field focused on how computers can process 'natural', or human, languages. If you have ever dictated to your phone instead of typing or asked a virtual assistant a question, your speech was converted into a text form and then processed or *parsed* from the language you spoke. The detected keywords were then processed into a format that the phone or assistant could understand and act on.
This is possible because someone wrote a computer program to do this. A few decades ago, some science fiction writers predicted that people would mostly speak to their computers, and the computers would always understand exactly what they meant. Sadly, it turned out to be a harder problem that many imagined, and while it is a much better understood problem today, there are significant challenges in achieving 'perfect' natural language processing when it comes to understanding the meaning of a sentence. This is a particularly hard problem when it comes to understanding humour or detecting emotions such as sarcasm in a sentence.
At this point, you may be remembering school classes where the teacher covered the parts of grammar in a sentence. In some countries, students are taught grammar and linguistics as a dedicated subject, but in many, these topics are included as part of learning a language: either your first language in primary school (learning to read and write) and perhaps a second language in post-primary, or high school. Don't worry if you are not an expert at differentiating nouns from verbs or adverbs from adjectives!
If you struggle with the difference between the *simple present* and *present progressive*, you are not alone. This is a challenging thing for many people, even native speakers of a language. The good news is that computers are really good at applying formal rules, and you will learn to write code that can *parse* a sentence as well as a human. The greater challenge you will examine later is understanding the *meaning*, and *sentiment*, of a sentence.
For this lesson, the main prerequisite is being able to read and understand the language of this lesson. There are no math problems or equations to solve. While the original author wrote this lesson in English, it is also translated into other languages, so you could be reading a translation. There are examples where a number of different languages are used (to compare the different grammar rules of different languages). These are *not* translated, but the explanatory text is, so the meaning should be clear.
For the coding tasks, you will use Python and the examples are using Python 3.8.
In this section, you will need:
* Python 3 programming language comprehension
* this lesson uses input, loops, file reading, arrays
* Visual Studio Code with its Python extension
* (*or the Python IDE of your choice*)
* [TextBlob](https://github.com/sloria/TextBlob) a simplified text processing library for Python
* Follow the instructions on the TextBlob site to install it on your system (install the corpora as well, as shown below)
```bash
pip install -U textblob
python -m textblob.download_corpora
```
> 💡 Tip: You can run Python directly in VS Code environments. Check the [docs](https://code.visualstudio.com/docs/languages/python?WT.mc_id=academic-15963-cxa) for more information.
The history of trying to make computers understand human language goes back decades, and one of the earliest scientists to consider natural language processing was *Alan Turing*. When Turing was researching *Artificial Intelligence* in the 1950's, he considered if a conversational test could be given to a human and computer (via typed correspondence) where the human in the conversation was not sure if they were conversing with another human or a computer. If, after a certain length of conversation, the human could not determine that the answers were from a computer or not, then could the computer be said to be *thinking*?
[![Chatting with Eliza](https://img.youtube.com/vi/QD8mQXaUFG4/0.jpg)](https://youtu.be/QD8mQXaUFG4 "Chatting with Eliza")
The idea for this came from a party game called *The Imitation Game* where an interrogator is alone in a room and tasked with determining which of two people (in another room) are male and female respectively. The interrogator can send notes, and must try to think of questions where the written answers reveal the gender of the mystery person. Of course, the players in the other room are trying to trick the interrogator by answering questions in such as way as to mislead or confuse the interrogator, whilst also giving the appearance of answering honestly.
In the 1960's an MIT scientist called *Joseph Weizenbaum* developed [*Eliza*](https:/wikipedia.org/wiki/ELIZA), a computer 'therapist' that would ask the human questions and give the appearance of understanding their answers. However, while Eliza could parse a sentence and identify certain grammatical constructs and keywords so as to give a reasonable answer, it could not be said to *understand* the sentence. If Eliza was presented with a sentence following the format "**I am** <u>sad</u>" it might rearrange and substitute words in the sentence to form the response "How long have **you been**<u>sad</u>". This gave the impression that Eliza understood the statement and was asking a follow-on question, whereas in reality, it was changing the tense and adding some words. If Eliza could not identify a keyword that it had a response for, it would instead give a random response that could be applicable to many different statements. Eliza could be easily tricked, for instance if a user wrote "**You are** a <u>bicycle</u>" it might respond with "How long have **I been** a <u>bicycle</u>?", instead of a more reasoned response.
> Note: You can read the original description of [Eliza](https://cacm.acm.org/magazines/1966/1/13317-elizaa-computer-program-for-the-study-of-natural-language-communication-between-man-and-machine/abstract) published in 1966 if you have an ACM account. Alternately, read about Eliza on [wikipedia](https://wikipedia.org/wiki/ELIZA)
A conversational bot, like Eliza, is a program that elicits user input and seems to understand and respond intelligently. Unlike Eliza, our bot will not have several rules giving it the appearance of having an intelligent conversation. Instead, out bot will have one ability only, to keep the conversation going with random responses that might work in almost any trivial conversation.