머신러닝 모델로 웹 앱을 만드는 여러 방식이 존재합니다. 웹 구조는 모델을 훈련하는 방식에 영향을 줄 수 있습니다. 데이터 사이언스 그룹이 앱에서 사용하고 싶은 훈련된 모델을 가지고 비지니스에서 일한다고 상상해봅니다.
### 고려할 사항
많은 질문들을 물어볼 필요가 있습니다:
- **웹 앱 혹은 모바일 앱인가요?** 만약 모바일 앱을 만들거나 IoT 컨텍스트에서 모델을 사용해야 되는 경우, [TensorFlow Lite](https://www.tensorflow.org/lite/)로 Android 또는 iOS 앱에서 모델을 사용할 수 있습니다.
- **Tensor flow 사용합니다.** 만약 TensorFlow로 모델을 훈련한다면, 예시로, 에코 시스템은 [TensorFlow.js](https://www.tensorflow.org/js/)로 웹 앱에서 사용할 TensorFlow 모델을 변환해주는 기능을 제공합니다.
- **PyTorch 사용합니다.** 만약 [PyTorch](https://pytorch.org/) 같은 라이브러리로 모델을 만들면, [Onnx Runtime](https://www.onnxruntime.ai/)으로 할 수 있는 JavaScript 웹 앱에서 사용하기 위한 [ONNX](https://onnx.ai/) (Open Neural Network Exchange) 포맷으로 내보낼 옵션이 존재합니다. 이 옵션은 Scikit-learn-trained 모델로 이후 강의에서 알아볼 예정입니다.
- **Lobe.ai 또는 Azure Custom vision 사용합니다.** 만약 [Lobe.ai](https://lobe.ai/) 또는 [Azure Custom Vision](https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-15963-cxa) 같은 ML SaaS (Software as a Service) 시스템으로 모델을 훈련하게 된다면, 이 소프트웨어 타입은 온라인 애플리케이션이 클라우드에서 쿼리된 bespoke API를 만드는 것도 포함해서 많은 플랫폼의 모델들을 내보낼 방식을 제공합니다.
또 웹 브라우저에서 모델로만 훈련할 수 있는 모든 Flask 웹 앱을 만들 수 있습니다. JavaScript 컨텍스트에서 TensorFlow.js로 마무리 지을 수 있습니다.
목적을 위해서, Python-기반의 노트북으로 작성했기 때문에, 노트북에서 훈련된 모델을 Python-제작한 웹 앱에서 읽을 수 있는 포맷으로 내보낼 때 필요한 단계를 알아봅니다.
## 도구
작업에서, 2가지 도구가 필요합니다: Flask 와 Pickle은, 둘 다 Python에서 작동합니다.
✅ [Flask](https://palletsprojects.com/p/flask/)는 무엇일까요? 작성자가 'micro-framework'로 정의한, Flask는 Python으로 웹 프레임워크의 기본적인 기능과 웹 페이지를 만드는 템플릿 엔진을 제공합니다. [this Learn module](https://docs.microsoft.com/learn/modules/python-flask-build-ai-web-app?WT.mc_id=academic-15963-cxa)을 보고 Flask로 만드는 것을 연습합니다.
✅ [Pickle](https://docs.python.org/3/library/pickle.html)은 무엇일까요? Pickle 🥒은 Python 객체 구조를 serializes와 de-serializes하는 Python 모듈입니다. 모델을 'pickle'하게 되면, 웹에서 쓰기 위해서 serialize 또는 flatten합니다. 주의합시다: pickle은 원래 안전하지 않아서, 파일을 'un-pickle'한다고 나오면 조심합니다. pickled 파일은 접미사 `.pkl`로 있습니다.
## 연습 - 데이터 정리하기
[NUFORC](https://nuforc.org) (The National UFO Reporting Center)에서 모아둔, 80,000 UFO 목격 데이터를 이 강의에서 사용합니다. 데이터에 UFO 목격 관련한 몇 흥미로운 설명이 있습니다, 예시로 들어봅니다:
> 💡 팁: [`debug=True`](https://www.askpython.com/python-modules/flask/flask-debug-mode)를 추가하면 Flask 사용해서 웹 앱을 실행하는 도중에, 서버를 다시 시작할 필요없이 애플리케이션에 변경점이 바로 반영됩니다. 조심하세요! 프로덕션 앱에서 이 모드를 활성화하지 맙시다.
만약 `python app.py` 또는 `python3 app.py`를 실행하면 - 웹 서버가 로컬에서 시작하고, 짧은 폼을 작성하면 UFOs가 목격된 장소에 대해 주목받을 질문의 답을 얻을 수 있습니다!
하기 전, `app.py`의 일부분을 봅니다:
1. 먼저, 의존성을 불러오고 앱이 시작합니다.
1. 그 다음, 모델을 가져옵니다.
1. 그 다음, index.html을 홈 라우터에 랜더링합니다.
`/predict` 라우터에서, 폼이 보내질 때 몇가지 해프닝이 생깁니다:
1. 폼 변수를 모아서 numpy 배열로 변환합니다. 그러면 모델로 보내지고 예측이 반환됩니다.
2. 국가를 보여줄 때는 예상된 국가 코드에서 읽을 수 있는 텍스트로 다시 랜더링하고, 이 값을 템플릿에서 랜더링할 수 있게 index.html로 보냅니다.
Flask와 pickled 모델과 같이, 모델을 사용하는 이 방식은, 비교적으로 간단합니다. 어려운 것은 예측을 받기 위해서 모델에 줄 데이터의 모양을 이해해야 한다는 것입니다. 모든 모델이 어떻게 훈련받았는 지에 따릅니다. 예측을 받기 위해서 3개 데이터 포인트를 넣어야 합니다.
전문 세팅에서, 모델을 훈련하는 사람과 웹 또는 모바일 앱에서 사용하는 사람 사이 얼마나 좋은 소통이 필요한 지 알 수 있습니다. 이 케이스는, 오직 한 사람, 당신입니다!
노트북에서 작성하고 Flask 앱에서 모델을 가져오는 대신, Flask 앱에서 바로 모델을 훈련할 수 있습니다! 어쩌면 데이터를 정리하고, 노트북에서 Python 코드로 변환해서, `train`이라고 불리는 라우터로 앱에서 모델을 훈련합니다. 이러한 방식을 추구했을 때 장점과 단점은 무엇인가요?
ML 모델로 웹 앱을 만드는 방식은 많습니다. JavaScript 또는 Python으로 머신러닝을 활용하는 웹 앱의 제작 방식에 대한 목록을 만듭니다. 구조를 고려합니다: 모델이 앱이나 클라우드에 있나요? 만약 후자의 경우, 어떻게 접근하나요? 적용한 ML 웹 솔루션에 대해 아키텍쳐 모델을 그립니다.