You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
87 lines
2.1 KiB
87 lines
2.1 KiB
3 years ago
|
{
|
||
|
"metadata": {
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": 3
|
||
|
},
|
||
|
"orig_nbformat": 4
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2,
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from textblob import TextBlob\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# You should download the book text, clean it, and import it here\n",
|
||
|
"with open(\"pride.txt\", encoding=\"utf8\") as f:\n",
|
||
|
" file_contents = f.read()\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"book_pride = TextBlob(file_contents)\n",
|
||
|
"positive_sentiment_sentences = []\n",
|
||
|
"negative_sentiment_sentences = []"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"for sentence in book_pride.sentences:\n",
|
||
|
" if sentence.sentiment.polarity == 1:\n",
|
||
|
" positive_sentiment_sentences.append(sentence)\n",
|
||
|
" if sentence.sentiment.polarity == -1:\n",
|
||
|
" negative_sentiment_sentences.append(sentence)\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print(\"The \" + str(len(positive_sentiment_sentences)) + \" most positive sentences:\")\n",
|
||
|
"for sentence in positive_sentiment_sentences:\n",
|
||
|
" print(\"+ \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print(\"The \" + str(len(negative_sentiment_sentences)) + \" most negative sentences:\")\n",
|
||
|
"for sentence in negative_sentiment_sentences:\n",
|
||
|
" print(\"- \" + str(sentence.replace(\"\\n\", \"\").replace(\" \", \" \")))"
|
||
|
]
|
||
|
}
|
||
|
]
|
||
|
}
|