You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
IoT-For-Beginners/translations/ne/2-farm/lessons/1-predict-plant-growth/code-notebook/gdd.ipynb

165 lines
6.1 KiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# बढ्दो डिग्री दिनहरू\n",
"\n",
"यो नोटबुकले CSV फाइलमा सुरक्षित गरिएको तापक्रम डाटा लोड गर्छ र यसको विश्लेषण गर्छ। यसले तापक्रमको ग्राफ बनाउँछ, प्रत्येक दिनको उच्चतम र न्यूनतम मान देखाउँछ, र GDD गणना गर्छ।\n",
"\n",
"यो नोटबुक प्रयोग गर्न:\n",
"\n",
"* `temperature.csv` फाइललाई यो नोटबुक रहेको फोल्डरमा प्रतिलिपि गर्नुहोस्\n",
"* माथिको **▶︎ Run** बटन प्रयोग गरेर सबै सेलहरू चलाउनुहोस्। यसले चयन गरिएको सेल चलाउँछ, त्यसपछि अर्कोमा जान्छ।\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"कोषको तल, `base_temperature` लाई बोटको आधार तापक्रममा सेट गर्नुहोस्।\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"base_temperature = 10"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"CSV फाइल अब pandas प्रयोग गरेर लोड गर्न आवश्यक छ।\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Read the temperature CSV file\n",
"df = pd.read_csv('temperature.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(20, 10))\n",
"plt.plot(df['date'], df['temperature'])\n",
"plt.xticks(rotation='vertical');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"डेटा पढिसकेपछि यसलाई `date` स्तम्भद्वारा समूहबद्ध गर्न सकिन्छ, र प्रत्येक मितिका लागि न्यूनतम र अधिकतम तापक्रम निकाल्न सकिन्छ।\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Convert datetimes to pure dates so we can group by the date\n",
"df['date'] = pd.to_datetime(df['date']).dt.date\n",
"\n",
"# Group the data by date so it can be analyzed by date\n",
"data_by_date = df.groupby('date')\n",
"\n",
"# Get the minimum and maximum temperatures for each date\n",
"min_by_date = data_by_date.min()\n",
"max_by_date = data_by_date.max()\n",
"\n",
"# Join the min and max temperatures into one dataframe and flatten it\n",
"min_max_by_date = min_by_date.join(max_by_date, on='date', lsuffix='_min', rsuffix='_max')\n",
"min_max_by_date = min_max_by_date.reset_index()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def calculate_gdd(row):\n",
" return ((row['temperature_max'] + row['temperature_min']) / 2) - base_temperature\n",
"\n",
"# Calculate the GDD for each row\n",
"min_max_by_date['gdd'] = min_max_by_date.apply (lambda row: calculate_gdd(row), axis=1)\n",
"\n",
"# Print the results\n",
"print(min_max_by_date[['date', 'gdd']].to_string(index=False))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**अस्वीकरण**: \nयो दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) प्रयोग गरेर अनुवाद गरिएको छ। हामी शुद्धताको लागि प्रयास गर्छौं, तर कृपया ध्यान दिनुहोस् कि स्वचालित अनुवादमा त्रुटि वा अशुद्धता हुन सक्छ। यसको मूल भाषा मा रहेको मूल दस्तावेज़लाई आधिकारिक स्रोत मानिनुपर्छ। महत्वपूर्ण जानकारीको लागि, व्यावसायिक मानव अनुवाद सिफारिस गरिन्छ। यस अनुवादको प्रयोगबाट उत्पन्न हुने कुनै पनि गलतफहमी वा गलत व्याख्याको लागि हामी जिम्मेवार हुने छैनौं।\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
},
"metadata": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
},
"coopTranslator": {
"original_hash": "8fcf954f6042f0bf3601a2c836a09574",
"translation_date": "2025-08-27T15:08:02+00:00",
"source_file": "2-farm/lessons/1-predict-plant-growth/code-notebook/gdd.ipynb",
"language_code": "ne"
}
},
"nbformat": 4,
"nbformat_minor": 2
}