You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
167 lines
5.3 KiB
167 lines
5.3 KiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# أيام النمو الحراري\n",
|
|
"\n",
|
|
"يقوم هذا الدفتر بتحميل بيانات درجات الحرارة المحفوظة في ملف CSV، ويقوم بتحليلها. يعرض درجات الحرارة، ويظهر أعلى وأدنى قيمة لكل يوم، ويحسب أيام النمو الحراري (GDD).\n",
|
|
"\n",
|
|
"لاستخدام هذا الدفتر:\n",
|
|
"\n",
|
|
"* انسخ ملف `temperature.csv` إلى نفس المجلد الذي يحتوي على هذا الدفتر\n",
|
|
"* قم بتشغيل جميع الخلايا باستخدام زر **▶︎ تشغيل** الموجود أعلاه. سيقوم ذلك بتشغيل الخلية المحددة، ثم الانتقال إلى الخلية التالية.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"قم بتعيين `base_temperature` إلى درجة الحرارة الأساسية للنبات.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"base_temperature = 10"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"يجب الآن تحميل ملف CSV باستخدام pandas\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"\n",
|
|
"# Read the temperature CSV file\n",
|
|
"df = pd.read_csv('temperature.csv')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"plt.figure(figsize=(20, 10))\n",
|
|
"plt.plot(df['date'], df['temperature'])\n",
|
|
"plt.xticks(rotation='vertical');"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"بمجرد قراءة البيانات يمكن تجميعها حسب عمود `date`، واستخراج درجات الحرارة الدنيا والقصوى لكل تاريخ.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Convert datetimes to pure dates so we can group by the date\n",
|
|
"df['date'] = pd.to_datetime(df['date']).dt.date\n",
|
|
"\n",
|
|
"# Group the data by date so it can be analyzed by date\n",
|
|
"data_by_date = df.groupby('date')\n",
|
|
"\n",
|
|
"# Get the minimum and maximum temperatures for each date\n",
|
|
"min_by_date = data_by_date.min()\n",
|
|
"max_by_date = data_by_date.max()\n",
|
|
"\n",
|
|
"# Join the min and max temperatures into one dataframe and flatten it\n",
|
|
"min_max_by_date = min_by_date.join(max_by_date, on='date', lsuffix='_min', rsuffix='_max')\n",
|
|
"min_max_by_date = min_max_by_date.reset_index()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"يمكن حساب GDD باستخدام معادلة GDD القياسية\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def calculate_gdd(row):\n",
|
|
" return ((row['temperature_max'] + row['temperature_min']) / 2) - base_temperature\n",
|
|
"\n",
|
|
"# Calculate the GDD for each row\n",
|
|
"min_max_by_date['gdd'] = min_max_by_date.apply (lambda row: calculate_gdd(row), axis=1)\n",
|
|
"\n",
|
|
"# Print the results\n",
|
|
"print(min_max_by_date[['date', 'gdd']].to_string(index=False))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n---\n\n**إخلاء المسؤولية**: \nتم ترجمة هذا المستند باستخدام خدمة الترجمة بالذكاء الاصطناعي [Co-op Translator](https://github.com/Azure/co-op-translator). بينما نسعى لتحقيق الدقة، يرجى العلم أن الترجمات الآلية قد تحتوي على أخطاء أو معلومات غير دقيقة. يجب اعتبار المستند الأصلي بلغته الأصلية المصدر الموثوق. للحصول على معلومات حاسمة، يُوصى بالاستعانة بترجمة بشرية احترافية. نحن غير مسؤولين عن أي سوء فهم أو تفسيرات خاطئة تنشأ عن استخدام هذه الترجمة.\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.1"
|
|
},
|
|
"metadata": {
|
|
"interpreter": {
|
|
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
|
|
}
|
|
},
|
|
"coopTranslator": {
|
|
"original_hash": "8fcf954f6042f0bf3601a2c836a09574",
|
|
"translation_date": "2025-08-27T01:05:50+00:00",
|
|
"source_file": "2-farm/lessons/1-predict-plant-growth/code-notebook/gdd.ipynb",
|
|
"language_code": "ar"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
} |