You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
IoT-For-Beginners/2-farm/lessons/1-predict-plant-growth/code-notebook/gdd.ipynb

157 lines
3.9 KiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Growing Degree Days\n",
"\n",
"This notebook loads temperature data saved in a CSV file, and analyzes it. It plots the temperatures, shows the highest and lowest value for each day, and calculates the GDD.\n",
"\n",
"To use this notebook:\n",
"\n",
"* Copy the `temperature.csv` file into the same folder as this notebook\n",
"* Run all the cells using the **▶︎ Run** button above. This will run the selected cell, then move to the next one."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the cell below, set `base_temperature` to the base temperature of the plant."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"base_temperature = 10"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The CSV file now needs to be loaded, using pandas"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Read the temperature CSV file\n",
"df = pd.read_csv('temperature.csv')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The temperature can now be plotted on a graph."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure(figsize=(20, 10))\n",
"plt.plot(df['date'], df['temperature'])\n",
"plt.xticks(rotation='vertical');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once the data has been read it can be grouped by the `date` column, and the minimum and maximum temperatures extracted for each date."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Convert datetimes to pure dates so we can group by the date\n",
"df['date'] = pd.to_datetime(df['date']).dt.date\n",
"\n",
"# Group the data by date so it can be analyzed by date\n",
"data_by_date = df.groupby('date')\n",
"\n",
"# Get the minimum and maximum temperatures for each date\n",
"min_by_date = data_by_date.min()\n",
"max_by_date = data_by_date.max()\n",
"\n",
"# Join the min and max temperatures into one dataframe and flatten it\n",
"min_max_by_date = min_by_date.join(max_by_date, on='date', lsuffix='_min', rsuffix='_max')\n",
"min_max_by_date = min_max_by_date.reset_index()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The GDD can be calculated using the standard GDD equation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def calculate_gdd(row):\n",
" return ((row['temperature_max'] + row['temperature_min']) / 2) - base_temperature\n",
"\n",
"# Calculate the GDD for each row\n",
"min_max_by_date['gdd'] = min_max_by_date.apply (lambda row: calculate_gdd(row), axis=1)\n",
"\n",
"# Print the results\n",
"print(min_max_by_date[['date', 'gdd']].to_string(index=False))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
},
"metadata": {
"interpreter": {
"hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}