
Introduction to IoT

Sketchnote by Nitya Narasimhan. Click the image for a larger version.

Pre-lecture quiz

Pre-lecture quiz

Introduction

This lesson covers some of the introductory topics around the Internet of Things, and gets you going

setting up your hardware.

In this lesson we'll cover:

What is the 'Internet of Things'?

IoT devices

Set up your device

https://github.com/nitya
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/1
https://github.com/microsoft/IoT-For-Beginners

Applications of IoT

Examples of IoT devices you may have around you

What is the 'Internet of Things'?

The term 'Internet of Things' was coined by Kevin Ashton in 1999, to refer to connecting the Internet

to the physical world via sensors. Since then, the term has been used to describe any device that

interacts with the physical world around it, either by gathering data from sensors, or providing real-

world interactions via actuators (devices that do something like turn on a switch or light an LED),

generally connected to other devices or the Internet.

Sensors gather information from the world, such as measuring speed, temperature or

location.

Actuators convert electrical signals into real-world interactions such as triggering a switch,

turning on lights, making sounds, or sending control signals to other hardware, for example, to

turn on a power socket.

IoT as a technology area is more than just devices - it includes cloud-based services that can process

the sensor data, or send requests to actuators connected to IoT devices. It also includes devices that

don't have or don't need Internet connectivity, often referred to as edge devices. These are devices

that can process and respond to sensor data themselves, usually using AI models trained in the

cloud.

IoT is a fast growing technology field. It is estimated that by the end of 2020, 30 billion IoT devices

were deployed and connected to the Internet. Looking to the future, it is estimated that by 2025, IoT

devices will be gathering almost 80 zettabytes of data or 80 trillion gigabytes. That's a lot of data!

https://wikipedia.org/wiki/Kevin_Ashton

0

5

10

15

20

25

30

35

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Active devices (billions)

✅ Do a little research: How much of the data generated by IoT devices is actually used, and how

much is wasted? Why is so much data ignored?

This data is the key to IoT's success. To be a successful IoT developer, you need to understand the

data you need to gather, how to gather it, how to make decisions based on it, and how to use those

decisions to interact with the physical world if needed.

IoT devices

The T in IoT stands for Things - devices that interact with the physical world around them either by

gathering data from sensors or providing real-world interactions via actuators.

Devices for production or commercial use, such as consumer fitness trackers, or industrial machine

controllers, are usually custom-made. They use custom circuit boards, maybe even custom

processors, designed to meet the needs of a particular task, whether that's being small enough to fit

on a wrist, or rugged enough to work in a high temperature, high stress or high vibration factory

environment.

As a developer either learning about IoT or creating a device prototype, you'll need to start with a

developer kit. These are general-purpose IoT devices designed for developers to use, often with

features that you wouldn't have on a production device, such as a set of external pins to connect

sensors or actuators to, hardware to support debugging, or additional resources that would add

unnecessary cost when doing a large manufacturing run.

These developer kits usually fall into two categories - microcontrollers and single-board computers.

These will be introduced here, and we'll go into more detail in the next lesson.

💁 Your phone can also be considered to be a general-purpose IoT device, with sensors and

actuators built-in, with different apps using the sensors and actuators in different ways with

different cloud services. You can even find some IoT tutorials that use a phone app as an IoT

device.

Microcontrollers

A microcontroller (also referred to as an MCU, short for microcontroller unit) is a small computer

consisting of:

🧠 One or more central processing units (CPUs) - the 'brain' of the microcontroller that runs your

program

💾 Memory (RAM and program memory) - where your program, data and variables are stored

🔌 Programmable input/output (I/O) connections - to talk to external peripherals (connected devices)

such as sensors and actuators

Microcontrollers are typically low cost computing devices, with average prices for the ones used in

custom hardware dropping to around US$0.50, and some devices as cheap as US$0.03. Developer

kits can start as low as US$4, with costs rising as you add more features. The Wio Terminal, a

microcontroller developer kit from Seeed studios that has sensors, actuators, WiFi and a screen costs

around US$30.

https://www.seeedstudio.com/Wio-Terminal-p-4509.html
https://www.seeedstudio.com/

💁 When searching the Internet for microcontrollers, be wary of searching for the term MCU

as this will bring back a lot of results for the Marvel Cinematic Universe, not microcontrollers.

Microcontrollers are designed to be programmed to do a limited number of very specific tasks, rather

than being general-purpose computers like PCs or Macs. Except for very specific scenarios, you

can't connect a monitor, keyboard and mouse and use them for general purpose tasks.

Microcontroller developer kits usually come with additional sensors and actuators on board. Most

boards will have one or more LEDs you can program, along with other devices such as standard plugs

for adding more sensors or actuators using various manufacturers' ecosystems or built-in sensors

(usually the most popular ones such as temperature sensors). Some microcontrollers have built-in

wireless connectivity such as Bluetooth or WiFi or have additional microcontrollers on the board to

add this connectivity.

💁 Microcontrollers are usually programmed in C/C++.

Single-board computers

A single-board computer is a small computing device that has all the elements of a complete

computer contained on a single small board. These are devices that have specifications close to a

desktop or laptop PC or Mac, run a full operating system, but are small, use less power, and are

substantially cheaper.

Raspberry Pi 4. Michael Henzler / Wikimedia Commons / CC BY-SA 4.0

The Raspberry Pi is one of the most popular single-board computers.

Like a microcontroller, single-board computers have a CPU, memory and input/output pins, but they

have additional features such as a graphics chip to allow you to connect monitors, audio outputs, and

USB ports to connect keyboards mice and other standard USB devices like webcams or external

storage. Programs are stored on SD cards or hard drives along with an operating system, instead of a

memory chip built into the board.

🎓 You can think of a single-board computer as a smaller, cheaper version of the PC or Mac

you are reading this on, with the addition of GPIO (general-purpose input/output) pins to

interact with sensors and actuators.

Single-board computers are fully-featured computers, so can be programmed in any language. IoT

devices are typically programmed in Python.

Hardware choices for the rest of the lessons

All the subsequent lessons include assignments using an IoT device to interact with the physical

world and communicate with the cloud. Each lesson supports 3 device choices - Arduino (using a

https://commons.wikimedia.org/wiki/Main_Page
https://creativecommons.org/licenses/by-sa/4.0/

Seeed Studios Wio Terminal), or a single-board computer, either a physical device (a Raspberry Pi 4)

or a virtual single-board computer running on your PC or Mac.

You can read about the hardware needed to complete all the assignments in the hardware guide.

💁 You don't need to purchase any IoT hardware to complete the assignments, you can do

everything using a virtual single-board computer.

Which hardware you choose is up to you - it depends on what you have available either at home on in

your school, and what programming language you know or plan to learn. Both hardware variants will

use the same sensor ecosystem, so if you start down one path, you can change to the other without

having to replace most of the kit. The virtual single-board computer will be the equivalent of learning

on a Raspberry Pi, with most of the code transferrable to the Pi if you eventually get a device and

sensors.

Arduino developer kit

If you are interested in learning microcontroller development, you can complete the assignments

using an Arduino device. You will need a basic understanding of C/C++ programming, as the lessons

will only teach code that is relevant to the Arduino framework, the sensors and actuators being used,

and the libraries that interact with the cloud.

The assignments will use Visual Studio Code with the PlatformIO extension for microcontroller

development. You can also use the Arduino IDE if you are experienced with this tool, as instructions

will not be provided.

Single-board computer developer kit

If you are interested in learning IoT development using single-board computers, you can complete the

assignments using a Raspberry Pi, or a virtual device running on your PC or Mac.

You will need a basic understanding of Python programming, as the lessons will only teach code that

is relevant to the sensors and actuators being used, and the libraries that interact with the cloud.

💁 If you want to learn to code in Python, check out the following two video series:

Python for beginners

More Python for beginners

https://code.visualstudio.com/?WT.mc_id=academic-17441-jabenn
https://platformio.org/
https://channel9.msdn.com/Series/Intro-to-Python-Development?WT.mc_id=academic-17441-jabenn
https://channel9.msdn.com/Series/More-Python-for-Beginners?WT.mc_id=academic-7372-jabenn

The assignments will use Visual Studio Code.

If you are using a Raspberry Pi, you can either run your Pi using the full desktop version of Raspberry

Pi OS, and do all the coding directly on the Pi using the Raspberry Pi OS version of VS Code, or run

your Pi as a headless device and code from your PC or Mac using VS Code with the Remote SSH

extension that allows you to connect to your Pi and edit, debug and run code as if you were coding on

it directly.

If you use the virtual device option, you will code directly on your computer. Instead of accessing

sensors and actuators, you will use a tool to simulate this hardware providing sensor values that you

can define, and showing the results of actuators on screen.

Set up your device

Before you can get started with programming your IoT device, you will need to do a small amount of

setup. Follow the relevant instructions below depending on which device you will be using.

💁 If you don't have a device yet, refer to the hardware guide to help decide which device you

are going to use, and what additional hardware you need to purchase. You don't need to

purchase hardware, as all the projects can be run on virtual hardware.

These instructions do include links to third-party websites from the creators of the hardware or tools

you will be using. This is to ensure you are always using the most up-to-date instructions for the

various tools and hardware.

Work through the relevant guide to set your device up and complete a 'Hello World' project. This will

be the first step in creating an IoT nightlight over the 4 lessons in this getting started part.

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

Single-board computer - Virtual device

Applications of IoT

IoT covers a huge range of use cases, across a few broad groups:

https://code.visualstudio.com/?WT.mc_id=academic-17441-jabenn
https://code.visualstudio.com/docs/setup/raspberry-pi?WT.mc_id=academic-17441-jabenn
https://code.visualstudio.com/docs/remote/ssh?WT.mc_id=academic-17441-jabenn

Consumer IoT

Commercial IoT

Industrial IoT

Infrastructure IoT

✅ Do a little research: For each of the areas described below, find one concrete example that's not

given in the text.

Consumer IoT

Consumer IoT refers to IoT devices that consumers will buy and use around the home. Some of these

devices are incredibly useful, such as smart speakers, smart heating systems and robotic vacuum

cleaners. Others are questionable in their usefulness, such as voice-controlled taps that then mean

you cannot turn them off as the voice control cannot hear you over the sound of running water.

Consumer IoT devices are empowering people to achieve more in their surroundings, especially the 1

billion who have a disability. Robotic vacuum cleaners can provide clean floors to people with mobility

issues who cannot vacuum themselves, voice-controlled ovens allow people with limited vision or

motor control to heat their ovens with only their voice, health monitors can allow patients to monitor

chronic conditions themselves with more regular and more detailed updates on their conditions.

These devices are becoming so ubiquitous that even young children are using them as part of their

daily lives, for example, students doing virtual schooling during the COVID pandemic setting timers

on smart home devices to track their schoolwork or alarms to remind them of upcoming class

meetings.

✅ What consumer IoT devices do you have on your person or in your home?

Commercial IoT

Commercial IoT covers the use of IoT in the workplace. In an office setting, there may be occupancy

sensors and motion detectors to manage lighting and heating to only keep the lights and heat off

when not needed, reducing cost and carbon emissions. In a factory, IoT devices can monitor for

safety hazards such as workers not wearing hard hats or noise that has reached dangerous levels. In

retail, IoT devices can measure the temperature of cold storage, alerting the shop owner if a fridge or

freezer is outside the required temperature range, or they can monitor items on shelves to direct

employees to refill produce that has been sold. The transport industry is relying more and more on

IoT to monitor vehicle locations, track on-road mileage for road user charging, track driver hours and

break compliance, or notify staff when a vehicle is approaching a depot to prepare for loading or

unloading.

✅ What commercial IoT devices do you have in your school or workplace?

Industrial IoT (IIoT)

Industrial IoT, or IIoT, is the use of IoT devices to control and manage machinery on a large scale. This

covers a wide range of use cases, from factories to digital agriculture.

Factories use IoT devices in many different ways. Machinery can be monitored with multiple sensors

to track things like temperature, vibration and rotation speed. This data can then be monitored to

allow the machine to be stopped if it goes outside of certain tolerances - it runs too hot and gets shut

down for example. This data can also be gathered and analyzed over time to do predictive

maintenance, where AI models will look at the data leading up to a failure, and use that to predict

other failures before they happen.

Digital agriculture is important if the planet is to feed the growing population, especially for the 2

billion people in 500 million households that survive on subsistence farming. Digital agriculture can

range from a few single digit dollar sensors to massive commercial setups. A farmer can start by

monitoring temperatures and using growing degree days to predict when a crop will be ready for

harvest. They can connect soil moisture monitoring to automated watering systems to give their

plants as much water as is needed, but no more to ensure their crops don't dry out without wasting

water. Farmers are even taking it further and using drones, satellite data and AI to monitor crop

growth, disease and soil quality over huge areas of farmland.

✅ What other IoT devices could help farmers?

Infrastructure IoT

Infrastructure IoT is monitoring and controlling the local and global infrastructure that people use

every day.

Smart Cities are urban areas that use IoT devices to gather data about the city and use that to

improve how the city runs. These cities are usually run with collaborations between local

governments, academia and local businesses, tracking and managing things varying from transport

to parking and pollution. For example, in Copenhagen, Denmark, air pollution is important to the local

residents, so it is measured and the data is used to provide information on the cleanest cycling and

jogging routes.

Smart power grids allow better analytics of power demand by gathering usage data at the level of

individual homes. This data can guide decisions at a country level including where to build new power

stations, and at a personal level by giving users insights into how much power they are using, when

they are using it, and even suggestions on how to reduce costs, such as charging electric cars at

night.

✅ If you could add IoT devices to measure anything where you live, what would it be?

https://wikipedia.org/wiki/Subsistence_agriculture
https://wikipedia.org/wiki/Growing_degree-day
https://wikipedia.org/wiki/Smart_city
https://wikipedia.org/wiki/Smart_grid

Examples of IoT devices you may have around you

You'd be amazed by just how many IoT devices you have around you. I'm writing this from home and I

have the following devices connected to the Internet with smart features such as app control, voice

control, or the ability to send data to me via my phone:

Multiple smart speakers

Fridge, dishwasher, oven and microwave

Electricity monitor for solar panels

Smart plugs

Video doorbell and security cameras

Smart thermostat with multiple smart room sensors

Garage door opener

Home entertainment systems and voice-controlled TVs

Lights

Fitness and health trackers

All these types of devices have sensors and/or actuators and talk to the Internet. I can tell from my

phone if my garage door is open, and ask my smart speaker to close it for me. I can even set it to a

timer so if it's still open at night, it will close automatically. When my doorbell rings, I can see from my

phone who is there wherever I am in the world, and talk to them via a speaker and microphone built

into the doorbell. I can monitor my blood glucose, heart rate and sleep patterns, looking for patterns

in the data to improve my health. I can control my lights via the cloud, and sit in the dark when my

Internet connection goes down.

🚀 Challenge

List as many IoT devices as you can that are in your home, school or workplace - there may be more

than you think!

Post-lecture quiz

Post-lecture quiz

Review & Self Study

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/2

Read up on the benefits and failures of consumer IoT projects. Check news sites for articles on when

it has gone wrong, such as privacy issues, hardware problems or problems caused by lack of

connectivity.

Some examples:

Check out the Twitter account Internet of Sh*t (profanity warning) for some good examples of

failures with consumer IoT.

c|net - My Apple Watch saved my life: 5 people share their stories

c|net - ADT technician pleads guilty to spying on customer camera feeds for years (trigger

warning - non-consensual voyeurism)

Assignment

Investigate an IoT project

A deeper dive into IoT

Sketchnote by Nitya Narasimhan. Click the image for a larger version.

https://twitter.com/internetofshit
https://www.cnet.com/news/apple-watch-lifesaving-health-features-read-5-peoples-stories/
https://www.cnet.com/news/adt-home-security-technician-pleads-guilty-to-spying-on-customer-camera-feeds-for-years/
https://github.com/nitya

Pre-lecture quiz

Pre-lecture quiz

Introduction

This lesson dives deeper into some of the concepts covered in the last lesson.

In this lesson we'll cover:

Components of an IoT application

Deeper dive into microcontrollers

Deeper dive into single-board computers

Components of an IoT application

The two components of an IoT application are the Internet and the thing. Let's look at these two

components in a bit more detail.

The Thing

Raspberry Pi 4. Michael Henzler / Wikimedia Commons / CC BY-SA 4.0

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/3
https://commons.wikimedia.org/wiki/Main_Page
https://creativecommons.org/licenses/by-sa/4.0/

The Thing part of IoT refers to a device that can interact with the physical world. These devices are

usually small, low-priced computers, running at low speeds and using low power - for example,

simple microcontrollers with kilobytes of RAM (as opposed to gigabytes in a PC) running at only a few

hundred megahertz (as opposed to gigahertz in a PC), but consuming sometimes so little power they

can run for weeks, months or even years on batteries.

These devices interact with the physical world, either by using sensors to gather data from their

surroundings or by controlling outputs or actuators to make physical changes. The typical example of

this is a smart thermostat - a device that has a temperature sensor, a means to set a desired

temperature such as a dial or touchscreen, and a connection to a heating or cooling system that can

be turned on when the temperature detected is outside the desired range. The temperature sensor

detects that the room is too cold and an actuator turns the heating on.

A simple thermostat. Temperature by Vectors Market / Microcontroller by Template / dial by

Jamie Dickinson / heater by Pascal Heß - all from the Noun Project

There are a huge range of different things that can act as IoT devices, from dedicated hardware that

senses one thing, to general purpose devices, even your smartphone! A smartphone can use sensors

to detect the world around it, and actuators to interact with the world - for example using a GPS

sensor to detect your location and a speaker to give you navigation instructions to a destination.

✅ Think of other systems you have around you that read data from a sensor and use that to make

decisions. One example would be the thermostat on an oven. Can you find more?

The Internet

The Internet side of an IoT application consists of applications that the IoT device can connect to

send and receive data, as well as other applications that can process the data from the IoT device and

help make decisions on what requests to send to the IoT devices actuators.

https://thenounproject.com/

One typical setup would be having some kind of cloud service that the IoT device connects to, and

this cloud service handles things like security, as well as receiving messages from the IoT device, and

sending messages back to the device. This cloud service would then connect to other applications

that can process or store sensor data, or use the sensor data with data from other systems to make

decisions.

Devices also don't always connect directly to the Internet themselves via WiFi or wired connections.

Some devices use mesh networking to talk to each other over technologies such as Bluetooth,

connecting via a hub device that has an Internet connection.

With the example of a smart thermostat, the thermostat would connect using home WiFi to a cloud

service running in the cloud. It would send the temperature data to this cloud service, and from there

it will be written to a database of some kind allowing the homeowner to check the current and past

temperatures using a phone app. Another service in the cloud would know what temperature the

homeowner wants, and send messages back to the IoT device via the cloud service to tell the heating

system to turn on or off.

An Internet connected thermostat with mobile app control. Temperature by Vectors Market /

Microcontroller by Template / dial by Jamie Dickinson / heater by Pascal Heß / mobile phone by

Alice-vector / Cloud by Debi Alpa Nugraha - all from the Noun Project

An even smarter version could use AI in the cloud with data from other sensors connected to other

IoT devices such as occupancy sensors that detect what rooms are in use, as well as data such as

weather and even your calendar, to make decisions on how to set the temperature in a smart fashion.

For example, it could turn your heating off if it reads from your calendar you are on vacation, or turn

off the heating on a room by room basis depending on what rooms you use, learning from the data to

be more and more accurate over time.

https://thenounproject.com/

An Internet connected thermostat using multiple room sensors, with mobile app control, as well

as intelligence from weather and calendar data. Temperature by Vectors Market /

Microcontroller by Template / dial by Jamie Dickinson / heater by Pascal Heß / mobile phone and

Calendar by Alice-vector / Cloud by Debi Alpa Nugraha / smart sensor by Andrei Yushchenko /

weather by Adrien Coquet - all from the Noun Project

✅ What other data could help make an Internet connected thermostat smarter?

IoT on the Edge

Although the I in IoT stands for Internet, these devices don't have to connect to the Internet. In some

cases, devices can connect to 'edge' devices - gateway devices that run on your local network

meaning you can process data without making a call over the Internet. This can be faster when you

have a lot of data or a slow Internet connection, it allows you to run offline where Internet connectivity

is not possible such as on a ship or in a disaster area when responding to a humanitarian crisis, and

allows you to keep data private. Some devices will contain processing code created using cloud tools

and run this locally to gather and respond to data without using an Internet connection to make a

decision.

One example of this is a smart home device such as an Apple HomePod, Amazon Alexa, or Google

Home, which will listen to your voice using AI models trained in the cloud, but running locally on the

device. These devices will 'wake up' when a certain word or phrase is spoken, and only then send

your speech over the Internet for processing. The device will stop sending speech at an appropriate

point such as when it detects a pause in your speech. Everything you say before waking up the

device with the wake word, and everything you say after the device has stopped listening will not be

sent over the internet to the device provider, and therefore will be private.

✅ Think of other scenarios where privacy is important so processing of data would be better done

on the edge rather than in the cloud. As a hint - think about IoT devices with cameras or other

https://thenounproject.com/

imaging devices on them.

IoT Security

With any Internet connection, security is an important consideration. There is an old joke that 'the S in

IoT stands for Security' - there is no 'S' in IoT, implying it is not secure.

IoT devices connect to a cloud service, and therefore are only as secure as that cloud service - if your

cloud service allows any device to connect then malicious data can be sent, or virus attacks can take

place. This can have very real world consequences as IoT devices interact and control other devices.

For example, the Stuxnet worm manipulated valves in centrifuges to damage them. Hackers have

also taken advantage of poor security to access baby monitors and other home surveillance devices.

💁 Sometimes IoT devices and edge devices run on a network completely isolated from the

Internet to keep the data private and secure. This is known as air-gapping.

Deeper dive into microcontrollers

In the last lesson, we introduced microcontrollers. Let's now look deeper into them.

CPU

The CPU is the 'brain' of the microcontroller. It is the processor that runs your code and can send

data to and receive data from any connected devices. CPUs can contain one or more cores -

essentially one or more CPUs that can work together to run your code.

CPUs rely on a clock to tick many millions or billions of times a second. Each tick, or cycle,

synchronizes the actions that the CPU can take. With each tick, the CPU can execute an instruction

from a program, such as to retrieve data from an external device or perform a mathematical

calculation. This regular cycle allows for all actions to be completed before the next instruction is

processed.

The faster the clock cycle, the more instructions that can be processed each second, and therefore

the faster the CPU. CPU speeds are measured in Hertz (Hz), a standard unit where 1 Hz means one

cycle or clock tick per second.

🎓 CPU speeds are often given in MHz or GHz. 1MHz is 1 million Hz, 1GHz is 1 billion Hz.

https://wikipedia.org/wiki/Stuxnet
https://www.npr.org/sections/thetwo-way/2018/06/05/617196788/s-c-mom-says-baby-monitor-was-hacked-experts-say-many-devices-are-vulnerable
https://wikipedia.org/wiki/Air_gap_(networking)
https://wikipedia.org/wiki/Hertz

💁 CPUs execute programs using the fetch-decode-execute cycle. For every clock tick, the

CPU will fetch the next instruction from memory, decode it, then execute it such as using an

arithmetic logic unit (ALU) to add 2 numbers. Some executions will take multiple ticks to run,

so the next cycle will run at the next tick after the instruction has completed.

CPU by Icon Lauk / ram by Atif Arshad - all from the Noun Project

Microcontrollers have much lower clock speeds than desktop or laptop computers, or even most

smartphones. The Wio Terminal for example has a CPU that runs at 120MHz or 120,000,000 cycles

per second.

✅ An average PC or Mac has a CPU with multiple cores running at multiple GigaHertz, meaning the

clock ticks billions of times a second. Research the clock speed of your computer and compare how

many times faster it is than the Wio terminal.

Each clock cycle draws power and generates heat. The faster the ticks, the more power consumed

and more heat generated. PC's have heat sinks and fans to remove heat, without which they would

overheat and shut down within seconds. Microcontrollers often have neither as they run much cooler

and therefore much slower. PC's run off mains power or large batteries for a few hours,

microcontrollers can run for days, months, or even years off small batteries. Microcontrollers can also

have cores that run at different speeds, switching to slower low power cores when the demand on the

CPU is low to reduce power consumption.

https://wikipedia.org/wiki/Instruction_cycle
https://thenounproject.com/

💁 Some PCs and Macs are adopting the same mix of fast high power cores and slower low

power cores, switching to save battery. For example, the M1 chip in the latest Apple laptops

can switch between 4 performance cores and 4 efficiency cores to optimize battery life or

speed depending on the task being run.

✅ Do a little research: Read up on CPUs on the Wikipedia CPU article

Task

Investigate the Wio Terminal.

If you are using a Wio Terminal for these lessons, try to find the CPU. Find the Hardware Overview

section of the Wio Terminal product page for a picture of the internals, and try to find the CPU

through the clear plastic window on the back.

Memory

Microcontrollers usually have two types of memory - program memory and random-access memory

(RAM).

Program memory is non-volatile, which means whatever is written to it stays when there is no power

to the device. This is the memory that stores your program code.

RAM is the memory used by the program to run, containing variables allocated by your program and

data gathered from peripherals. RAM is volatile, when the power goes out the contents are lost,

effectively resetting your program.

🎓 Program memory stores your code and stays when there is no power.

🎓 RAM is used to run your program and is reset when there is no power

Like with the CPU, the memory on a microcontroller is orders of magnitude smaller than a PC or Mac.

A typical PC might have 8 Gigabytes (GB) of RAM, or 8,000,0000,000 bytes, with each byte enough

space to store a single letter or a number from 0-255. A microcontroller would have only Kilobytes

(KB) of RAM, with a kilobyte being 1,000 bytes. The Wio terminal mentioned above has 192KB of

RAM, or 192,000 bytes - more than 40,000 times less than an average PC!

https://wikipedia.org/wiki/Central_processing_unit
https://www.seeedstudio.com/Wio-Terminal-p-4509.html

The diagram below shows the relative size difference between 192KB and 8GB - the small dot in the

center represents 192KB.

Program storage is also smaller than a PC. A typical PC might have a 500GB hard drive for program

storage, whereas a microcontroller might have only kilobytes or maybe a few megabytes (MB) of

storage (1MB is 1,000KB, or 1,000,000 bytes). The Wio terminal has 4MB of program storage.

✅ Do a little research: How much RAM and storage does the computer you are using to read this

have? How does this compare to a microcontroller?

Input/Output

Microcontrollers need input and output (I/O) connections to read data from sensors and send control

signals to actuators. They usually contain a number of general-purpose input/output (GPIO) pins.

These pins can be configured in software to be input (that is they receive a signal), or output (they

send a signal).

🧠 ⬅ Input pins are used to read values from sensors

🧠 ➡ Output pins send instructions to actuators

✅ You'll learn more about this in a subsequent lesson.

Task

Investigate the Wio Terminal.

If you are using a Wio Terminal for these lessons, find the GPIO pins. Find the Pinout diagram section

of the Wio Terminal product page to learn which pins are which. The Wio Terminal comes with a

sticker you can mount on the back with pin numbers, so add this now if you haven't already.

https://www.seeedstudio.com/Wio-Terminal-p-4509.html

Physical size

Microcontrollers are typically small in size, with the smallest, a Freescale Kinetis KL03 MCU is small

enough to fit in the dimple of a golf ball. Just the CPU in a PC can measure 40mm x 40mm, and that's

not including the heat sinks and fans needed to ensure the CPU can run for more than a few seconds

without overheating, substantially larger than a complete microcontroller. The Wio terminal developer

kit with a microcontroller, case, screen and a range of connections and components isn't much

bigger than a bare Intel i9 CPU, and substantially smaller than the CPU with a heat sink and fan!

Device Size

Freescale Kinetis KL03 1.6mm x 2mm x 1mm

Wio terminal 72mm x 57mm x 12mm

Intel i9 CPU, Heat sink and fan 136mm x 145mm x 103mm

Frameworks and operating systems

Due to their low speed and memory size, microcontrollers don't run an operating system (OS) in the

desktop sense of the word. The operating system that makes your computer run (Windows, Linux or

macOS) needs a lot of memory and processing power to run tasks that are completely unnecessary

for a microcontroller. Remember that microcontrollers are usually programmed to perform one or

more very specific tasks, unlike a general purpose computer like a PC or Mac that needs to support a

user interface, play music or movies, provide tools to write documents or code, play games, or

browse the Internet.

To program a microcontroller without an OS you do need some tooling to allow you to build your code

in a way that the microcontroller can run, using APIs that can talk to any peripherals. Each

microcontroller is different, so manufacturers normally support standard frameworks which allow you

to follow a standard 'recipe' to build your code and have it run on any microcontroller that supports

that framework.

You can program microcontrollers using an OS - often referred to as a real-time operating system

(RTOS), as these are designed to handle sending data to and from peripherals in real time. These

operating systems are very lightweight and provide features such as:

Multi-threading, allowing your code to run more than one block of code at the same time, either

on multiple cores or by taking turns on one core

Networking to allow communicating over the Internet securely

Graphical user interface (GUI) components for building user interfaces (UI) on devices that have

screens.

https://www.edn.com/tiny-arm-cortex-m0-based-mcu-shrinks-package/

✅ Read up on some different RTOSes: Azure RTOS, FreeRTOS, Zephyr

Arduino

Arduino is probably the most popular microcontroller framework, especially among students,

hobbyists and makers. Arduino is an open source electronics platform combining software and

hardware. You can buy Arduino compatible boards from Arduino themselves or from other

manufacturers, then code using the Arduino framework.

Arduino boards are coded in C or C++. Using C/C++ allows your code to be compiled very small and

run fast, something needed on a constrained device such as a microcontroller. The core of an

Arduino application is referred to as a sketch and is C/C++ code with 2 functions - setup and

loop . When the board starts up, the Arduino framework code will run the setup function once,

then it will run the loop function again and again, running it continuously until the power is

powered off.

You would write your setup code in the setup function, such as connecting to WiFi and cloud

services or initializing pins for input and output. Your loop code would then contain processing code,

such as reading from a sensor and sending the value to the cloud. You would normally include a delay

in each loop, for example, if you only want sensor data to be sent every 10 seconds you would add a

delay of 10 seconds at the end of the loop so the microcontroller can sleep, saving power, then run

the loop again when needed 10 seconds later.

https://azure.microsoft.com/services/rtos/?WT.mc_id=academic-17441-jabenn
https://www.freertos.org/
https://www.zephyrproject.org/
https://www.arduino.cc/

✅ This program architecture is known as an event loop or message loop. Many applications use this

under the hood and is the standard for most desktop applications that run on OSes like Windows,

macOS or Linux. The loop listens for messages from user interface components such as buttons,

or devices like the keyboard, and responds to them. You can read more in this article on the event

loop.

Arduino provides standard libraries for interacting with microcontrollers and the I/O pins, with

different implementations under the hood to run on different microcontrollers. For example, the

delay function will pause the program for a given period of time, the digitalRead function will

read a value of HIGH or LOW from the given pin, regardless of which board the code is run on.

These standard libraries mean that Arduino code written for one board can be recompiled for any

other Arduino board and will run, assuming that the pins are the same and the boards support the

same features.

There is a large ecosystem of third-party Arduino libraries that allow you to add extra features to your

Arduino projects, such as using sensors and actuators or connecting to cloud IoT services.

Task

Investigate the Wio Terminal.

If you are using a Wio Terminal for these lessons, re-read the code you wrote in the last lesson. Find

the setup and loop function. Monitor the serial output for the loop function being called

repeatedly. Try adding code to the setup function to write to the serial port and observe that this

code is only called once each time you reboot. Try rebooting your device with the power switch on

the side to show this is called each time the device reboots.

Deeper dive into single-board computers

https://wikipedia.org/wiki/Event_loop
https://www.arduino.cc/reference/en/language/functions/time/delay/
https://www.arduino.cc/reference/en/language/functions/digital-io/digitalread/

In the last lesson, we introduced single-board computers. Let's now look deeper into them.

Raspberry Pi

The Raspberry Pi Foundation is a charity from the UK founded in 2009 to promote the study of

computer science, especially at school level. As part of this mission, they developed a single-board

computer, called the Raspberry Pi. Raspberry Pis are currently available in 3 variants - a full size

version, the smaller Pi Zero, and a compute module that can be built into your final IoT device.

Raspberry Pi 4. Michael Henzler / Wikimedia Commons / CC BY-SA 4.0

The latest iteration of the full size Raspberry Pi is the Raspberry Pi 4B. This has a quad-core (4 core)

CPU running at 1.5GHz, 2, 4, or 8GB of RAM, gigabit ethernet, WiFi, 2 HDMI ports supporting 4k

https://www.raspberrypi.org/
https://commons.wikimedia.org/wiki/Main_Page
https://creativecommons.org/licenses/by-sa/4.0/

screens, an audio and composite video output port, USB ports (2 USB 2.0, 2 USB 3.0), 40 GPIO pins,

a camera connector for a Raspberry Pi camera module, and an SD card slot. All this on a board that is

88mm x 58mm x 19.5mm and is powered by a 3A USB-C power supply. These start at US$35, much

cheaper than a PC or Mac.

💁 There is also a Pi400 all in one computer with a Pi4 built into a keyboard.

The Pi Zero is much smaller, with lower power. It has a single core 1GHz CPU, 512MB of RAM, WiFi (in

the Zero W model), a single HDMI port, a micro-USB port, 40 GPIO pins, a camera connector for a

Raspberry Pi camera module, and an SD card slot. It measures 65mm x 30mm x 5mm, and draws

very little power. The Zero is US$5, with the W version with WiFi US$10.

🎓 The CPUs in both of these are ARM processors, as opposed to the Intel/AMD x86 or x64

processors you find in most PCs and Macs. These are similar to the CPUs you find in some

microcontrollers, as well as nearly all mobile phones, the Microsoft Surface X, and the new

Apple Silicon based Apple Macs.

All variants of the Raspberry Pi run a version of Debian Linux called Raspberry Pi OS. This is available

as a lite version with no desktop, which is perfect for 'headless' projects where you don't need a

screen, or a full version with a full desktop environment, with web browser, office applications, coding

tools and games. As the OS is a version of Debian Linux, you can install any application or tool that

runs on Debian and is built for the ARM processor inside the Pi.

Task

Investigate the Raspberry Pi.

If you are using a Raspberry Pi for these lessons, read up about the different hardware components

on the board.

You can find details on the processors used on the Raspberry Pi hardware documentation page.

Read up on the processor used in the Pi you are using.

Locate the GPIO pins. Read more about them on the Raspberry Pi GPIO documentation. Use the

GPIO Pin Usage guide to identify the different pins on your Pi.

Programming single-board computers

Single-board computers are full computers, running a full OS. This means there is a wide range of

programming languages, frameworks and tools you can use to code them, unlike microcontrollers

which rely on support for the board in frameworks like Arduino. Most programming languages have

libraries that can access the GPIO pins to send and receive data from sensors and actuators.

✅ What programming languages are you familiar with? Are they supported on Linux?

The most common programming language for building IoT applications on a Raspberry Pi is Python.

There is a huge ecosystem of hardware designed for the Pi, and nearly all of these include the

relevant code needed to use them as Python libraries. Some of these ecosystems are based off 'hats'

- so called because they sit on top of the Pi like a hat and connect with a large socket to the 40 GPIO

pins. These hats provide additional capabilities, such as screens, sensors, remote controlled cars, or

adapters to allow you to plug in sensors with standardized cables

Use of single-board computers in professional IoT deployments

Single-board computers are used for professional IoT deployments, not just as developer kits. They

can provide a powerful way to control hardware and run complex tasks such as running machine

learning models. For example, there is a Raspberry Pi 4 compute module that provides all the power

of a Raspberry Pi 4 but in a compact and cheaper form factor without most of the ports, designed to

be installed into custom hardware.

https://www.raspberrypi.org/documentation/hardware/raspberrypi/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/gpio/README.md
https://www.raspberrypi.org/documentation/usage/gpio/README.md
https://www.raspberrypi.org/blog/raspberry-pi-compute-module-4/

🚀 Challenge

The challenge in the last lesson was to list as many IoT devices as you can that are in your home,

school or workplace. For every device in this list, do you think they are built around microcontrollers

or single-board computers, or even a mixture of both?

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Read the Arduino getting started guide to understand more about the Arduino platform.

Read the introduction to the Raspberry Pi 4 to learn more about Raspberry Pis.

✅ Use these guides, along with the costs shown by following the links in the hardware guide to

decide on what hardware platform you want to use, or if you would rather use a virtual device.

Assignment

Compare and contrast microcontrollers and single-board computers

Interact with the physical world with

sensors and actuators
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/4
https://www.arduino.cc/en/Guide/Introduction
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

Pre-lecture quiz

Introduction

This lesson introduces two of the important concepts for your IoT device - sensors and actuators.

You will also get hands on with them both, adding a light sensor to your IoT project, then adding an

LED controlled by light levels, effectively building a nightlight.

In this lesson we'll cover:

What are sensors?

Use a sensor

Sensor types

What are actuators?

Use an actuator

Actuator types

What are sensors?

Sensors are hardware devices that sense the physical world - that is they measure one or more

properties around them and send the information to an IoT device. Sensors cover a huge range of

devices as there are so many things that can be measured, from natural properties such as air

temperature to physical interactions such as movement.

Some common sensors include:

Temperature sensors - these sense the air temperature or the temperature of what they are

immersed in. For hobbyists and developer, these are often combined with air pressure and

humidity in a single sensor.

Buttons - they sense when they have been pressed.

Light sensors - these detect light levels and can be for specific colors, UV light, IR light, or general

visible light.

Cameras - these sense a visual representation of the world by taking a photograph or streaming

video.

Accelerometers - these sense movement in multiple directions.

Microphones - these sense sound, either general sound levels or directional sound.

✅ Do some research. What sensors does your phone have?

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/5

All sensors have one thing in common - they convert whatever they sense into an electrical signal

that can be interpreted by an IoT device. How this electrical signal is interpreted depends on the

sensor, as well as the communication protocol used to communicate with the IoT device.

Use a sensor

Follow the relevant guide below to add a sensor to your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

Single-board computer - Virtual device

Sensor types

Sensors are either analog or digital.

Analog sensors

Some of the most basic sensors are analog sensors. These sensors receive a voltage from the IoT

device, the sensor components adjust this voltage, and the voltage that is returned from the sensor is

measured to give the sensor value.

🎓 Voltage is a measure of how much push there is to move electricity from one place to

another, such as from a positive terminal of a battery to the negative terminal. For example, a

standard AA battery is 1.5V (V is the symbol for volts) and can push electricity with the force

of 1.5V from it's positive terminal to its negative terminal. Different electrical hardware requires

different voltages to work, for example, an LED can light with between 2-3V, but a 100W

filament lightbulb would need 240V. You can read more about voltage on the Voltage page on

Wikipedia.

One example of this is a potentiometer. This is a dial that you can rotate between two positions and

the sensor measures the rotation.

https://wikipedia.org/wiki/Voltage

A potentiometer. Microcontroller by Template / dial by Jamie Dickinson - all from the Noun

Project

The IoT device will send an electrical signal to the potentiometer at a voltage, such as 5 volts (5V). As

the potentiometer is adjusted it changes the voltage that comes out of the other side. Imagine you

have a potentiometer labelled as a dial that goes from 0 to 11, such as a volume knob on an amplifier.

When the potentiometer is in the full off position (0) then 0V (0 volts) will come out. When it is in the

full on position (11), 5V (5 volts) will come out.

🎓 This is an oversimplification, and you can read more on potentiometers and variable

resistors on the potentiometer Wikipedia page.

The voltage that comes out of the sensor is then read by the IoT device, and the device can respond

to it. Depending on the sensor, this voltage can be an arbitrary value or can map to a standard unit.

For example, an analog temperature sensor based on a thermistor changes it's resistance depending

on the temperature. The output voltage can then be converted to a temperature in Kelvin, and

correspondingly into °C or °F, by calculations in code.

✅ What do you think happens if the sensor returns a higher voltage than was sent (for example

coming from an external power supply)? ⛔ DO NOT test this out.

Analog to digital conversion

IoT devices are digital - they can't work with analog values, they only work with 0s and 1s. This means

that analog sensor values need to be converted to a digital signal before they can be processed.

Many IoT devices have analog-to-digital converters (ADCs) to convert analog inputs to digital

representations of their value. Sensors can also work with ADCs via a connector board. For example,

in the Seeed Grove ecosystem with a Raspberry Pi, analog sensors connect to specific ports on a

'hat' that sits on the Pi connected to the Pi's GPIO pins, and this hat has an ADC to convert the

voltage into a digital signal that can be sent off the Pi's GPIO pins.

https://thenounproject.com/
https://wikipedia.org/wiki/Up_to_eleven
https://wikipedia.org/wiki/Potentiometer
https://wikipedia.org/wiki/Thermistor

Imagine you have an analog light sensor connected to an IoT device that uses 3.3V and is returning a

value of 1V. This 1V doesn't mean anything in the digital world, so needs to be converted. The voltage

will be converted to an analog value using a scale depending on the device and sensor. One example

is the Seeed Grove light sensor which outputs values from 0 to 1,023. For this sensor running at 3.3V,

a 1V output would be a value of 300. An IoT device can't handle 300 as an analog value, so the value

would be converted to 0000000100101100 , the binary representation of 300 by the Grove hat.

This would then be processed by the IoT device.

✅ If you don't know binary, then do a small amount of research to learn how numbers are

represented by 0s and 1s. The BBC Bitesize introduction to binary lesson is a great place to start.

From a coding perspective, all this is usually handled by libraries that come with the sensors, so you

don't need to worry about this conversion yourself. For the Grove light sensor you would use the

Python library and call the light property, or use the Arduino library and call analogRead to

get a value of 300.

Digital sensors

Digital sensors, like analog sensors, detect the world around them using changes in electrical voltage.

The difference is they output a digital signal, either by only measuring two states or by using a built-in

ADC. Digital sensors are becoming more and more common to avoid the need to use an ADC either in

a connector board or on the IoT device itself.

The simplest digital sensor is a button or switch. This is a sensor with two states, on or off.

A button. Microcontroller by Template / Button by Dan Hetteix - all from the Noun Project

Pins on IoT devices such as GPIO pins can measure this signal directly as a 0 or 1. If the voltage sent

is the same as the voltage returned, the value read is 1, otherwise the value read is 0. There is no

https://www.bbc.co.uk/bitesize/guides/zwsbwmn/revision/1
https://thenounproject.com/

need to convert the signal, it can only be 1 or 0.

💁 Voltages are never exact especially as the components in a sensor will have some

resistance, so there is usually a tolerance. For example, the GPIO pins on a Raspberry Pi work

on 3.3V, and read a return signal above 1.8V as a 1, below 1.8V as 0.

3.3V goes into the button. The button is off so 0V comes out, giving a value of 0

3.3V goes into the button. The button is on so 3.3V comes out, giving a value of 1

More advanced digital sensors read analog values, then convert them using on-board ADCs to digital

signals. For example, a digital temperature sensor will still use a thermocouple in the same way as an

analog sensor, and will still measure the change in voltage caused by the resistance of the

thermocouple at the current temperature. Instead of returning an analog value and relying on the

device or connector board to convert to a digital signal, an ADC built into the sensor will convert the

value and send it as a series of 0s and 1s to the IoT device. These 0s and 1s are sent in the same way

as the digital signal for a button with 1 being full voltage and 0 being 0v.

A digital temperature sensor. Temperature by Vectors Market / Microcontroller by Template - all

from the Noun Project

Sending digital data allows sensors to become more complex and send more detailed data, even

encrypted data for secure sensors. One example is a camera. This is a sensor that captures an image

and sends it as digital data containing that image, usually in a compressed format such as JPEG, to

be read by the IoT device. It can even stream video by capturing images and sending either the

complete image frame by frame or a compressed video stream.

What are actuators?

https://thenounproject.com/

Actuators are the opposite of sensors - they convert an electrical signal from your IoT device into an

interaction with the physical world such as emitting light or sound, or moving a motor.

Some common actuators include:

LED - these emit light when turned on

Speaker - these emit sound based on the signal sent to them, from a basic buzzer to an audio

speaker that can play music

Stepper motor - these convert a signal into a defined amount of rotation, such as turning a dial

90°

Relay - these are switches that can be turned on or off by an electrical signal. They allow a small

voltage from an IoT device to turn on larger voltages.

Screens - these are more complex actuators and show information on a multi-segment display.

Screens vary from simple LED displays to high-resolution video monitors.

✅ Do some research. What actuators does your phone have?

Use an actuator

Follow the relevant guide below to add an actuator to your IoT device, controlled by the sensor, to

build an IoT nightlight. It will gather light levels from the light sensor, and use an actuator in the form

of an LED to emit light when the detected light level is too low.

A flow chart of the assignment showing light levels being read and checked, and the LED begin

controlled. ldr by Eucalyp / LED by abderraouf omara - all from the Noun Project

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

https://thenounproject.com/

Single-board computer - Virtual device

Actuator types

Like sensors, actuators are either analog or digital.

Analog actuators

Analog actuators take an analog signal and convert it into some kind of interaction, where the

interaction changes based off the voltage supplied.

One example is a dimmable light, such as the ones you might have in your house. The amount of

voltage supplied to the light determines how bright it is.

A light controlled by the voltage output of an IoT device. Idea by Pause08 / Microcontroller by

Template - all from the Noun Project

Like with sensors, the actual IoT device works on digital signals, not analog. This means to send an

analog signal, the IoT device needs a digital to analog converter (DAC), either on the IoT device

directly, or on a connector board. This will convert the 0s and 1s from the IoT device to an analog

voltage that the actuator can use.

✅ What do you think happens if the IoT device sends a higher voltage than the actuator can handle?

⛔ DO NOT test this out.

Pulse-Width Modulation

https://thenounproject.com/

Another option for converting digital signals from an IoT device to an analog signal is pulse-width

modulation. This involves sending lots of short digital pulses that act as if it was an analog signal.

For example, you can use PWM to control the speed of a motor.

Imagine you are controlling a motor with a 5V supply. You send a short pulse to your motor, switching

the voltage to high (5V) for two hundredths of a second (0.02s). In that time your motor can rotate

one tenth of a rotation, or 36°. The signal then pauses for two hundredths of a second (0.02s),

sending a low signal (0V). Each cycle of on then off lasts 0.04s. The cycle then repeats.

PWM rotation of a motor at 150RPM. motor by Bakunetsu Kaito / Microcontroller by Template -

all from the Noun Project

This means in one second you have 25 5V pulses of 0.02s that rotate the motor, each followed by

0.02s pause of 0V not rotating the motor. Each pulse rotates the motor one tenth of a rotation,

meaning the motor completes 2.5 rotations per second. You've used a digital signal to rotate the

motor at 2.5 rotations per second, or 150 (revolutions per minute, a non-standard measure of

rotational velocity).

🎓 When a PWM signal is on for half the time, and off for half it is referred to as a 50% duty

cycle. Duty cycles are measured as the percentage time the signal is in the on state compared

to the off state.

25 pulses per second x 0.1 rotations per pulse = 2.5 rotations per second
2.5 rotations per second x 60 seconds in a minute = 150rpm

output

https://thenounproject.com/
https://wikipedia.org/wiki/Revolutions_per_minute
https://wikipedia.org/wiki/Duty_cycle

PWM rotation of a motor at 75RPM. motor by Bakunetsu Kaito / Microcontroller by Template - all

from the Noun Project

You can change the motor speed by changing the size of the pulses. For example, with the same

motor you can keep the same cycle time of 0.04s, with the on pulse halved to 0.01s, and the off pulse

increasing to 0.03s. You have the same number of pulses per second (25), but each on pulse is half

the length. A half length pulse only turns the motor one twentieth of a rotation, and at 25 pulses a

second will complete 1.25 rotations per second or 75rpm. By changing the pulse speed of a digital

signal you've halved the speed of an analog motor.

✅ How would you keep the motor rotation smooth, especially at low speeds? Would you use a small

number of long pulses with long pauses or lots of very short pulses with very short pauses?

💁 Some sensors also use PWM to convert analog signals to digital signals.

🎓 You can read more on pulse-width modulation on the pulse-width modulation page on

Wikipedia.

Digital actuators

Digital actuators, like digital sensors, either have two states controlled by a high or low voltage or

have a DAC built in so can convert a digital signal to an analog one.

25 pulses per second x 0.05 rotations per pulse = 1.25 rotations per second
1.25 rotations per second x 60 seconds in a minute = 75rpm

output

https://thenounproject.com/
https://wikipedia.org/wiki/Pulse-width_modulation

One simple digital actuator is an LED. When a device sends a digital signal of 1, a high voltage is sent

that lights the LED. When a digital signal of 0 is sent, the voltage drops to 0V and the LED turns off.

An LED turning on and off depending on voltage. LED by abderraouf omara / Microcontroller by

Template - all from the Noun Project

✅ What other simple 2-state actuators can you think of? One example is a solenoid, which is an

electromagnet that can be activated to do things like move a door bolt locking/unlocking a door.

More advanced digital actuators, such as screens require the digital data to be sent in certain

formats. They usually come with libraries that make it easier to send the correct data to control them.

🚀 Challenge

The challenge in the last two lessons was to list as many IoT devices as you can that are in your

home, school or workplace and decide if they are built around microcontrollers or single-board

computers, or even a mixture of both.

For every device you listed, what sensors and actuators are they connected to? What is the purpose

of each sensor and actuator connected to these devices?

Post-lecture quiz

Post-lecture quiz

https://thenounproject.com/
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/6

Review & Self Study

Read up on electricity and circuits on ThingLearn.

Read about the different types of temperature sensors on the Seeed Studios Temperature

Sensors guide

Read about LEDs on the Wikipedia LED page

Assignment

Research sensors and actuators

Connect your device to the Internet
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

Introduction

The I in IoT stands for Internet - the cloud connectivity and services that enable a lot of the features

of IoT devices, from gathering measurements from the sensors connected to the device, to sending

messages to control the actuators. IoT devices typically connect to a single cloud IoT service using a

standard communication protocol, and that service is connected to the rest of your IoT application,

from AI services to make smart decisions around your data, to web apps for control or reporting.

🎓 Data gathered from sensors and sent to the cloud is called telemetry.

http://www.thinglearn.com/essentials/
https://www.seeedstudio.com/blog/2019/10/14/temperature-sensors-for-arduino-projects/
https://wikipedia.org/wiki/Light-emitting_diode
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/7

IoT devices can receive messages from the cloud. Often the messages contain commands - that is

instructions to perform an action either internally (such as reboot or update firmware), or using an

actuator (such as turning on a light).

This lesson introduces some of the communication protocols IoT devices can use to connect to the

cloud, and the types of data they might send or receive. You will also get hands-on with them both,

adding internet control to your nightlight, moving the LED control logic to 'server' code running

locally.

In this lesson we'll cover:

Communication protocols

Message Queueing Telemetry Transport (MQTT)

Telemetry

Commands

Communication protocols

There are a number of popular communication protocols used by IoT devices to communicate with

the Internet. The most popular are based around publish/subscribe messaging via some kind of

broker. The IoT devices connect to the broker and publish telemetry and subscribe to commands.

The cloud services also connect to the broker and subscribe to all the telemetry messages and

publish commands either to specific devices, or to groups of devices.

IoT devices connect to a broker and publish telemetry and subscribe to commands. Cloud

services connect to the broker and subscribe to all telemetry and send commands to specific

devices. Broadcast by RomStu / Microcontroller by Template / Cloud by Debi Alpa Nugraha - all

from the Noun Project

https://thenounproject.com/

MQTT is the most popular communication protocol for IoT devices and is covered in this lesson.

Others protocols include AMQP and HTTP/HTTPS.

Message Queueing Telemetry Transport (MQTT)

MQTT is a lightweight, open standard messaging protocol that can send messages between devices.

It was designed in 1999 to monitor oil pipelines, before being released as an open standard 15 years

later by IBM.

MQTT has a single broker and multiple clients. All clients connect to the broker, and the broker routes

messages to the relevant clients. Messages are routed using named topics, rather than being sent

directly to an individual client. A client can publish to a topic, and any clients that subscribe to that

topic will receive the message.

IoT device publishing telemetry on the /telemetry topic, and the cloud service subscribing to that

topic. Microcontroller by Template / Cloud by Debi Alpa Nugraha - all from the Noun Project

✅ Do some research. If you have a lot of IoT devices, how can you ensure your MQTT broker can

handle all the messages?

Connect your IoT device to MQTT

The first part of adding Internet control to your nightlight is connecting it to an MQTT broker.

Task

Connect your device to an MQTT broker.

In this part of the lesson, you will connect your IoT nightlight to the internet to allow it to be remotely

controlled. Later in this lesson, your IoT device will send a telemetry message over MQTT to a public

MQTT broker with the light level, where it will be picked up by some server code that you will write.

This code will check the light level and send a command message back to the device telling it to turn

the LED on or off.

http://mqtt.org/
https://thenounproject.com/

The real-world use case for such a setup could be to gather data from multiple light sensors before

deciding to turn on lights, in a location that has a lot of lights, such as a stadium. This could stop the

lights from being turned on if only one sensor was covered by clouds or a bird, but the other sensors

detected enough light.

✅ What other situations would require data from multiple sensors to be evaluated before sending

commands?

Rather than dealing with the complexities of setting up an MQTT broker as part of this assignment,

you can use a public test server that runs Eclipse Mosquitto, an open-source MQTT broker. This test

broker is publicly available at test.mosquitto.org, and doesn't require an account to be set up, making

it a great tool for testing MQTT clients and servers.

💁 This test broker is public and not secure. Anyone could be listening to what you publish,

so it should not be used with any data that needs to be kept private

A flow chart of the assignment showing light levels being read and checked, and the LED begin

controlled. ldr by Eucalyp / LED by abderraouf omara - all from the Noun Project

Follow the relevant step below to connect your device to the MQTT broker:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi/Virtual IoT device

A deeper dive into MQTT

https://www.mosquitto.org/
https://test.mosquitto.org/
https://thenounproject.com/

Topics can have a hierarchy, and clients can subscribe to different levels of the hierarchy using

wildcards. For example, you can send temperature telemetry messages to the

/telemetry/temperature topic and humidity messages to the /telemetry/humidity

topic, then in your cloud app subscribe to the /telemetry/* topic to receive both the

temperature and humidity telemetry messages.

Messages can be sent with a quality of service (QoS), which determines the guarantee of the

message being received.

At most once - the message is sent only once and the client and broker take no additional steps to

acknowledge delivery (fire and forget).

At least once - the message is re-tried by the sender multiple times until acknowledgement is

received (acknowledged delivery).

Exactly once - the sender and receiver engage in a two-level handshake to ensure only one copy

of the message is received (assured delivery).

✅ What situations might require an assured delivery message over a fire and forget message?

Although the name is Message Queueing (initials in MQTT), it doesn't actually support message

queues. This means that if a client disconnects, then reconnects it won't receive messages sent

during the disconnection, except for those messages that it had already started to process using the

QoS process. Messages can have a retained flag set on them. If this is set, the MQTT broker will store

the last message sent on a topic with this flag, and send this to any clients who later subscribe to the

topic. This way, the clients will always get the latest message.

MQTT also supports a keep alive function that checks if the connection is still alive during long gaps

between messages.

🦟 Mosquitto from the Eclipse Foundation has a free MQTT broker you can run yourself to

experiment with MQTT, along with a public MQTT broker you can use to test your code,

hosted at test.mosquitto.org.

MQTT connections can be public and open, or encrypted and secured using usernames and

passwords, or certificates.

💁 MQTT communicates over TCP/IP, the same underlying network protocol as HTTP, but on

a different port. You can also use MQTT over websockets to communicate with web apps

running in a browser, or in situations where firewalls or other networking rules block standard

MQTT connections.

https://mosquitto.org/
https://test.mosquitto.org/

Telemetry

The word telemetry is derived from Greek roots meaning to measure remotely. Telemetry is the act of

gathering data from sensors and sending it to the cloud.

💁 One of the earliest telemetry devices was invented in France in 1874 and sent real-time

weather and snow depths from Mont Blanc to Paris. It used physical wires as wireless

technologies were not available at the time.

Let's look back at the example of the smart thermostat from Lesson 1.

An Internet connected thermostat using multiple room sensors. Temperature by Vectors Market

/ Microcontroller by Template / dial by Jamie Dickinson / heater by Pascal Heß / mobile phone

and Calendar by Alice-vector / Cloud by Debi Alpa Nugraha / smart sensor by Andrei

Yushchenko / weather by Adrien Coquet - all from the Noun Project

The thermostat has temperature sensors to gather telemetry. It would most likely have one

temperature sensor built in, and it might connect to multiple external temperature sensors over a

wireless protocol such as Bluetooth Low Energy (BLE).

An example of the telemetry data it would send could be:

Name Value Description

https://thenounproject.com/
https://wikipedia.org/wiki/Bluetooth_Low_Energy

Name Value Description

thermostat_temperature 18°C
The temperature measured by the thermostat's built-in

temperature sensor

livingroom_temperature 19°C

The temperature measured by a remote temperature

sensor that has been named livingroom to identify

the room it is in

bedroom_temperature 21°C

The temperature measured by a remote temperature

sensor that has been named bedroom to identify the

room it is in

The cloud service can then use this telemetry data to make decisions around what commands to

send to control the heating.

Send telemetry from your IoT device

The next part in adding Internet control to your nightlight is sending the light level telemetry to the

MQTT broker on a telemetry topic.

Task

Send light level telemetry to the MQTT broker.

Data is sent encoded as JSON - short for JavaScript Object Notation, a standard for encoding data in

text using key/value pairs.

✅ If you've not come across JSON before, you can learn more about it on the JSON.org

documentation.

Follow the relevant step below to send telemetry from your device to the MQTT broker:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi/Virtual IoT device

Receive telemetry from the MQTT broker

There's no point in sending telemetry if there's nothing on the other end to listen for it. The light level

telemetry needs something listening to it to process the data. This 'server' code is the kind of code

you will deploy to a cloud service as part of a larger IoT application, but here you are going to run this

code locally on your computer (or on your Pi if you are coding directly on there). The server code

https://www.json.org/

consists of a Python app that listens to telemetry messages over MQTT with light levels. Later in this

lesson you will make it reply with a command message with instructions to turn the LED on or off.

✅ Do some research: What happens to MQTT messages if there is no listener?

Install Python and VS Code

If you don't have Python and VS Code installed locally, you will need to install them both to code the

server. If you are using a virtual device, or are working on your Raspberry Pi you can skip this step.

Task

Install Python and VS Code.

1. Install Python. Refer to the Python downloads page for instructions on install the latest version of

Python.

2. Install Visual Studio Code (VS Code). This is the editor you will be using to write your virtual

device code in Python. Refer to the VS Code documentation for instructions on installing VS

Code.

💁 You are free to use any Python IDE or editor for these lessons if you have a preferred

tool, but the lessons will give instructions based off using VS Code.

3. Install the VS Code Pylance extension. This is an extension for VS Code that provides Python

language support. Refer to the Pylance extension documentation for instructions on installing this

extension in VS Code.

Configure a Python virtual environment

One of the powerful features of Python is the ability to install pip packages - these are packages of

code written by other people and published to the Internet. You can install a pip package onto your

computer with one command, then use that package in your code. You'll be using pip to install a

package to communicate over MQTT.

By default when you install a package it is available everywhere on your computer, and this can lead

to problems with package versions - such as one application depending on one version of a package

that breaks when you install a new version for a different application. To work around this problem,

you can use a Python virtual environment, essentially a copy of Python in a dedicated folder, and

when you install pip packages they get installed just to that folder.

https://www.python.org/downloads/
https://code.visualstudio.com/?WT.mc_id=academic-17441-jabenn
https://marketplace.visualstudio.com/items?itemName=ms-python.vscode-pylance&WT.mc_id=academic-17441-jabenn
https://pypi.org/
https://docs.python.org/3/library/venv.html

Task

Configure a Python virtual environment and install the MQTT pip packages.

1. From your terminal or command line, run the following at a location of your choice to create and

navigate to a new directory:

2. Now run the following to create a virtual environment in the .venv folder

💁 You need to explicitly call python3 to create the virtual environment just in case you

have Python 2 installed in addition to Python 3 (the latest version). If you have Python2

installed then calling python will use Python 2 instead of Python 3

3. Activate the virtual environment:

On Windows run:

On macOS or Linux, run:

4. Once the virtual environment has been activated, the default python command will run the

version of Python that was used to create the virtual environment. Run the following to get the

version:

The output will be similar to the following:

mkdir nightlight-server
cd nightlight-server

sh

python3 -m venv .venv
sh

.venv\Scripts\activate.bat
cmd

source ./.venv/bin/activate
cmd

python --version
sh

💁 Your Python version may be different - as long as it's version 3.6 or higher you are

good. If not, delete this folder, install a newer version of Python and try again.

5. Run the following commands to install the pip package for Paho-MQTT, a popular MQTT library.

This pip package will only be installed in the virtual environment, and will not be available outside

of this.

Write the server code

The server code can now be written in Python.

Task

Write the server code.

1. From your terminal or command line, run the following inside the virtual environment to create a

Python file called app.py :

From Windows run:

On macOS or Linux, run:

2. Open the current folder in VS Code:

(.venv) ➜ nightlight-server python --version
Python 3.9.1

output

pip install paho-mqtt
sh

type nul > app.py
cmd

touch app.py
cmd

code .
sh

https://pypi.org/project/paho-mqtt/

3. When VS Code launches, it will activate the Python virtual environment. This will be reported in

the bottom status bar:

4. If the VS Code Terminal is already running when VS Code starts up, it won't have the virtual

environment activated in it. The easiest thing to do is kill the terminal using the Kill the active

terminal instance button:

5. Launch a new VS Code Terminal by selecting *Terminal -> New Terminal, or pressing CTRL+` .

The new terminal will load the virtual environment, with the call to activate this appearing in the

terminal. The name of the virtual environment (.venv) will also be in the prompt:

6. Open the app.py file from the VS Code explorer and add the following code:

➜ nightlight source .venv/bin/activate
(.venv) ➜ nightlight

output

import json
import time

import paho.mqtt.client as mqtt

id = '<ID>'

client_telemetry_topic = id + '/telemetry'
client_name = id + 'nightlight_server'

mqtt_client = mqtt.Client(client_name)
mqtt_client.connect('test.mosquitto.org')

mqtt_client.loop_start()

def handle_telemetry(client, userdata, message):
 payload = json.loads(message.payload.decode())
 print("Message received:", payload)

mqtt_client.subscribe(client_telemetry_topic)
mqtt_client.on_message = handle_telemetry

python

Replace <ID> on line 6 with the unique ID you used when creating your device code.

⚠ This must be the same ID that you used on your device, or the server code won't subscribe or

publish to the right topic.

This code creates an MQTT client with a unique name, and connects to the test.mosquitto.org

broker. It then starts a processing loop that runs in on a background thread listening for messages

on any subscribed topics.

The client then subscribes to messages on the telemetry topic, and defines a function that is

called when a message is received. When a telemetry message is received, the

handle_telemetry function is called, printing the message received to the console.

Finally an infinite loop keeps the application running. The MQTT client is listening to messages on

a background thread and runs all the time the main application is running.

7. From the VS Code terminal, run the following to run your Python app:

The app will start listening to messages from the IoT device.

8. Make sure your device is running and sending telemetry messages. Adjust the light levels

detected by your physical or virtual device. Messages being received will be printed to the

terminal.

The app.py file in the nightlight virtual environment has to be running for the app.py file in the

nightlight-server virtual environment to receive the messages being sent.

💁 You can find this code in the code-server/server folder.

while True:
 time.sleep(2)

python app.py
sh

(.venv) ➜ nightlight-server python app.py
Message received: {'light': 0}
Message received: {'light': 400}

output

How often should telemetry be sent?

One important consideration with telemetry is how often to measure and send the data? The answer

is - it depends. If you measure often you can respond faster to changes in measurements, but you

use more power, more bandwidth, generate more data and need more cloud resources to process.

You need to measure often enough, but not too often.

For a thermostat, measuring every few minutes is probably more than enough as temperatures don't

change that often. If you only measure once a day then you could end up heating your house for

nighttime temperatures in the middle of a sunny day, whereas if you measure every second you will

have thousands of unnecessarily duplicated temperature measurements that will eat into the users'

Internet speed and bandwidth (a problem for people with limited bandwidth plans), use more power

which can be a problem for battery powered devices like remote sensors, and increase the cost of

the providers cloud computing resources processing and storing them.

If you are monitoring data around a piece of machinery in a factory that if it fails could cause

catastrophic damage and millions of dollars in lost revenue, then measuring multiple times a second

might be necessary. It's better to waste bandwidth than miss telemetry that indicates that a machine

needs to be stopped and fixed before it breaks.

💁 In this situation, you might consider having an edge device to process the telemetry first

to reduce reliance on the Internet.

Loss of connectivity

Internet connections can be unreliable, with outages common. What should an IoT device do under

these circumstances - should it lose the data, or should it store it until connectivity is restored? Again,

the answer is it depends.

For a thermostat the data can probably be lost as soon as a new temperature measurement has been

taken. The heating system doesn't care that 20 minutes ago it was 20.5°C if the temperature is now

19°C, it's the temperature now that determines if the heating should be on or off.

For machinery you might want to keep the data, especially if it is used to look for trends. There are

machine learning models that can detect anomalies in streams of data by looking over data from

defined period of time (such as the last hour) and spotting anomalous data. This is often used for

predictive maintenance, looking for indications that something might break soon so you can repair or

replace it before that happens. You might want every bit of telemetry for a machine sent so it can be

processed for anomaly detection, so once the IoT device can reconnect it will send all the telemetry

generated during the Internet outage.

IoT device designers should also consider if the IoT device can be used during an Internet outage or

loss of signal caused by location. A smart thermostat should be able to make some limited decisions

to control heating if it can't send telemetry to the cloud due to an outage.

For MQTT to handle a loss of connectivity, the device and server code will need to be responsible for

ensuring message delivery if it is needed, for example by requiring that all messages sent are replied

to by additional messages on a reply topic, and if not they are queued manually to be replayed later.

Commands

Commands are messages sent by the cloud to a device, instructing it to do something. Most of the

time this involves giving some kind of output via an actuator, but it can be an instruction for the

device itself, such as to reboot, or gather extra telemetry and return it as a response to the command.

https://twitter.com/internetofshit/status/1315736960082808832

An Internet connected thermostat receiving a command to turn on the heating. Temperature by

Vectors Market / Microcontroller by Template / dial by Jamie Dickinson / heater by Pascal Heß /

mobile phone and Calendar by Alice-vector / Cloud by Debi Alpa Nugraha / smart sensor by

Andrei Yushchenko / weather by Adrien Coquet - all from the Noun Project

A thermostat could receive a command from the cloud to turn the heating on. Based on the telemetry

data from all the sensors, if the cloud service has decided that the heating should be on, so it sends

the relevant command.

Send commands to the MQTT broker

The next step for our Internet controlled nightlight is for the server code to send a command back to

the IoT device to control the light based on the light levels it senses.

1. Open the server code in VS Code

2. Add the following line after the declaration of the client_telemetry_topic to define which

topic to send commands to:

3. Add the following code to the end of the handle_telemetry function:

server_command_topic = id + '/commands'
python

command = { 'led_on' : payload['light'] < 300 }
print("Sending message:", command)

client.publish(server_command_topic, json.dumps(command))

python

https://thenounproject.com/

This sends a JSON message to the command topic with the value of led_on set to true or false

depending on if the light is less than 300 or not. If the light is less than 300, true is sent to instruct

the device to turn the LED on.

4. Run the code as before

5. Adjust the light levels detected by your physical or virtual device. Messages being received and

commands being sent will be written to the terminal:

💁 The telemetry and commands are being sent on a single topic each. This means telemetry

from multiple devices will appear on the same telemetry topic, and commands to multiple

devices will appear on the same commands topic. If you wanted to send a command to a

specific device, you could use multiple topics, named with a unique device id, such as

/commands/device1 , /commands/device2 . That way a device can listen on

messages just meant for that one device.

💁 You can find this code in the code-commands/server folder.

Handle commands on the IoT device

Now that commands are being sent from the server, you can now add code to the IoT device to

handle them and control the LED.

Follow the relevant step below to listen to commands from the MQTT broker:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi/Virtual IoT device

Once this code is written and running, experiment with changing light levels. Watch the output from

the server and device, and watch the LED as you change light levels.

(.venv) ➜ nightlight-server python app.py
Message received: {'light': 0}
Sending message: {'led_on': True}
Message received: {'light': 400}
Sending message: {'led_on': False}

output

Loss of connectivity

What should a cloud service do if it needs to send a command to an IoT device that is offline? Again,

the answer is it depends.

If the latest command overrides an earlier one then the earlier ones can probably be ignored. If a

cloud service sends a command to turn the heating on, then sends a command to turn it off, then the

on command can be ignored and not resent.

If the commands need to be processed in sequence, such as move a robot arm up, then close a

grabber then they need to be sent in order once connectivity is restored.

✅ How could the device or server code ensure commands are always sent and handled in order

over MQTT if needed?

🚀 Challenge

The challenge in the last three lessons was to list as many IoT devices as you can that are in your

home, school or workplace and decide if they are built around microcontrollers or single-board

computers, or even a mixture of both, and think about what sensors and actuators they are using.

For these devices, think about what messages they might be sending or receiving. What telemetry do

they send? What messages or commands might they receive? Do you think they are secure?

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Read more on MQTT on the MQTT Wikipedia page.

Try running an MQTT broker yourself using Mosquitto and connect to it from your IoT device and

server code.

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/8
https://wikipedia.org/wiki/MQTT
https://www.mosquitto.org/

💁 Tip - by default Mosquitto doesn't allow anonymous connections (that is connecting

without a username and password), and doesn't allow connections from outside of the

computer it's running on. You can fix this with a mosquitto.conf config file with the

following:

Assignment

Compare and contrast MQTT with other communication protocols

Predict plant growth with IoT
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

Introduction

Plants need certain things to grow - water, carbon dioxide, nutrients, light, and heat. In this lesson,

you'll learn how to calculate the growth and maturity rates of plants by measuring the air

temperature.

In this lesson we'll cover:

Digital agriculture

Why is temperature important when farming?

listener 1883 0.0.0.0
allow_anonymous true

sh

https://www.mosquitto.org/man/mosquitto-conf-5.html
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/9

Measure ambient temperature

Growing degree days (GDD)

Calculate GDD using temperature sensor data

Digital agriculture

Digital Agriculture is transforming how we farm, using tools to collect, store and analyze data from

farming. We are currently in a period described as the 'Fourth Industrial Revolution' by the World

Economic Forum, and the rise of digital agriculture has been labelled as the 'Fourth Agricultural

Revolution', or 'Agriculture 4.0'.

🎓 The term Digital Agriculture also includes the whole 'agriculture value chain', that is the

entire journey from farm to table. It includes tracking produce quality as food is shipped and

processed, warehouse and e-commerce systems, even tractor rental apps!

These changes allow farmers to increase yields, use less fertilizers and pesticides, and water more

efficiently. Although primarily used in richer nations, sensors and other devices are slowly reducing in

price, making them more accessible in developing nations.

Some techniques enabled by digital agriculture are:

Temperature measurement - measuring temperature allows farmers to predict plant growth and

maturity.

Automated watering - measuring soil moisture and turning on irrigation systems when the soil is

too dry, rather than timed watering. Timed watering can lead to crops being under-watered during

a hot, dry spell, or over-watered during rain. By watering only when the soil needs it farmers can

optimize their water use.

Pest control - farmers can use cameras on automated robots or drones to check for pests, then

apply pesticides only where needed, reducing the amount of pesticides used and reducing

pesticide run-off into local water supplies.

✅ Do some research. What other techniques are used to improve farming yields?

🎓 The term 'Precision Agriculture' is used to define observing, measuring and responding to

crops on a per-field basis, or even on parts of a field. This includes measuring water, nutrient

and pest levels and responding accurately, such as watering only a small part of a field.

Why is temperature important when farming?

When learning about plants, most students are taught about the necessity of water, light, carbon

dioxide (CO) and nutrients. Plants also need warmth to grow - this is why plants bloom in spring as

the temperature rises, why snowdrops or daffodils can sprout early due to a short warm spell, and

why hothouses and greenhouses are so good at making plants grow.

🎓 Hothouses and greenhouses do a similar job, but with an important difference. Hothouses

are heated artificially and allow farmers to control temperatures more accurately,

greenhouses rely on the sun for warmth and usually the only control is windows or other

openings to let heat out.

Plants have a base or minimum temperature, optimal temperature, and maximum temperature, all

based on daily average temperatures.

Base temperature - this is the minimum daily average temperature needed for a plant to grow.

Optimum temperature - this is the best daily average temperature to get the most growth.

Maximum temperature - The is the maximum temperature a plant can withstand. Above this the

plant will shut down it's growth in an attempt to conserve water and stay alive.

💁 These are average temperatures, averaged over the daily and nightly temperatures. Plants

also need different temperatures day and night to help them photosynthesize more efficiently

and save energy at night.

Each species of plant has different values for their base, optimal and maximum. This is why some

plants thrive in hot countries, and others in colder countries.

✅ Do some research. For any plants you have in your garden, school, or local park see if you can find

the base temperature.

2

The graph above shows an example growth rate to temperature graph. Up to the base temperature

there is no growth. The growth rate increases up to the optimum temperature, then falls after

reaching this peak. At the maximum temperature growth stops.

The shape of this graph varies from plant species to plant species. Some have sharper drop offs

above the optimum, some have slower increases from tbe base to the optimum.

💁 For a farmer to get the best growth, they will need to know the three temperature values

and understand the shape of the graphs for the plants they are growing.

If a farmer has control of temperature, for example in a commercial hothouse, then they can optimise

for their plants. A commercial hothouse growing tomatoes for example will have the temperature set

to around 25°C during the day and 20°C at night to get the fastest growth.

🍅 Combining these temperatures with artificial lights, fertilizers and controlled CO levels

means commercial growers can grow and harvest all year round.

Measure ambient temperature

Temperature sensors can be used with IoT devices to measure ambient temperature.

Task - measure temperature

2

Work through the relevant guide to monitor temperatures using your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

Single-board computer - Virtual device

Growing degree days

Growing degree days (also know as growing degree units) are a way of measuring the growth of

plants based off the temperature. Assuming a plant has enough water, nutrients and CO , the

temperature determines the growth rate.

Growing degree days, or GDD are calculated per day as the average temperature in Celsius for a day

above the plants base temperature. Each plant needs a certain number of GDD to grow, flower or

produce and mature a crop. The more GDD each day, the faster the plant will grow.

� For Americans, growing degree days can also be calculated using Fahrenheit. 5 GDD

(growing degree days in Celsius) is the equivalent of 9 GDD (growing degree days in

Fahrenheit).

The full formula for GDD is a little complicated, but there is a simplified equation that is often used as

a good approximation:

GDD - this is the number of growing degree days

T - this is the daily maximum temperature in degrees Celsius

T - this is the daily minimum temperature in degrees Celsius

T - this is the plants base temperature in degrees Celsius

💁 There are variations that deal with T above 30°C or T below T , but we'll ignore

these for now.

2

C

F

max

min

base

max min base

Example - Corn/Maize 🌽

Depending on the variety, corn (or maize) needs between 800 and 2,700 GDD to mature, with a base

temperature of 10°C.

On the first day above the base temperature, the following temperatures were measured:

Measurement Temp °C

Maximum 16

Minimum 12

Plugging these numbers in to our calculation:

T = 16

T = 12

T = 10

This gives a calculation of:

The corn received 4 GDD on that day. Assuming a corn variety that needs 800 GDD days to mature, it

will need another 796 GDD to reach maturity.

✅ Do some research. For any plants you have in your garden, school, or local park see if you can find

the number of GDD required to reach maturity or produce crops.

Calculate GDD using temperature sensor data

Plants don't grow on fixed dates - for example you can't plant a seed and know that the plant will bear

fruit exactly 100 days later. Instead as a farmer you can have a rough idea how long a plant takes to

grow, then you would check daily to see when the crops were ready.

This has a huge labour impact on a large farm, and risks the farmer missing crops that are ready

unexpectedly early. By measuring temperatures, the farmer can calculate the GDD a plant has

received, allowing them to only check close to the expected maturity.

max

min

base

By gathering temperature data using an IoT device, a farmer can automatically be notified when

plants are close to maturity. A typical architecture for this is to have the IoT devices measure

temperature, then publish this telemetry data over the Internet using something like MQTT. Server

code then listens to this data and saves it somewhere, such as to a database. This means the data

can then be analyzed later, such as a nightly job to calculate the GDD for the day, total up the GDD for

each crop so far and alert if a plant is close to maturity.

Telemetry data is sent to a server and then saved to a database. database by Icons Bazaar - from

the Noun Project

The server code can also augment the data by adding extra information. For example, the IoT device

can publish an identifier to indicate which device it is, and the sever code can use this to look up the

location of the device, and what crops it is monitoring. It can also add basic data like the current time

as some IoT devices don't have the necessary hardware to keep track of an accurate time, or require

additional code to read the current time over the Internet.

✅ Why do you think different fields might have different temperatures?

Task - publish temperature information

Work through the relevant guide to publish temperature data over MQTT using your IoT device so it

can be analyzed later:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi/Virtual IoT device

Task - capture and store the temperature information

Once the IoT device is publishing telemetry, the server code can be written to subscribe to this data

and store it. Rather than save it to a database, the server code will save it to a Comma Separated

Values (CSV) file. CSV files store data as rows of values as text, with each value separated by a

comma, and each record on a new line. They are a convenient, human-readable and well supported

way to save data as a file.

The CSV file will have two columns - date and temperature. The date column is set as the current

date and time that the message was received by the server, the temperature comes from the

telemetry message.

https://thenounproject.com/

1. Repeat the steps in lesson 4 to create server code to subscribe to telemetry. You don't need to

add code to publish commands.

The steps for this are:

Configure and activate a Python Virtual Environment

Install the paho-mqtt pip package

Write the code to listen for MQTT messages published on the telemetry topic

⚠ You can refer to the instructions in lesson 4 for creating a Python app to receive

telemetry if needed.

Name the folder for this project temperature-sensor-server .

2. Make sure the client_name reflects this project:

3. Add the following imports to the top of the file, below the existing imports:

This imports a library for reading files, a library to interact with CSV files, and a library to help with

dates and times.

4. Add the following code before the handle_telemetry function:

client_name = id + 'temperature_sensor_server'
cpp

from os import path
import csv
from datetime import datetime

python

temperature_file_name = 'temperature.csv'
fieldnames = ['date', 'temperature']

if not path.exists(temperature_file_name):
 with open(temperature_file_name, mode='w') as csv_file:
 writer = csv.DictWriter(csv_file, fieldnames=fieldnames)
 writer.writeheader()

python

This code declares some constants for the name of the file to write to, and the name of the

column headers for the CSV file. The first row of a CSV file traditionally contains column headers

separated by commas.

The code then checks to see if the CSV file already exists. If it doesn't exist, it is created with the

column headers on the first row.

5. Add the following code to the end of the handle_telemetry function:

This code opens the CSV file, then appends a new row on the end. The row has the current data

and time formatted into a human-readable format, followed by the temperature received from the

IoT device. The data is stored in ISO 8601 format with the timezone, but without microseconds.

6. Run this code in the same way as before, making sure your IoT device is sending data. A CSV file

called temperature.csv will be created in the same folder. If you view it you will see

date/times and temperature measurements:

7. Run this code for a while to capture data. Ideally you should run this for an entire day to gather

enough data for GDD calculations.

💁 If you are using Virtual IoT Device, select the random checkbox and set a range to

avoid getting the same temperature everytime the temperature value is returned.

with open(temperature_file_name, mode='a') as temperature_file:
 temperature_writer = csv.DictWriter(temperature_file, fieldnames=fie
 temperature_writer.writerow({'date' : datetime.now().astimezone().re

python

date,temperature
2021-04-19T17:21:36-07:00,25
2021-04-19T17:31:36-07:00,24
2021-04-19T17:41:36-07:00,25

output

https://wikipedia.org/wiki/ISO_8601

💁 If you want to run this for an entire day, then you need to make sure the computer your

server code is running on won't go to sleep, either by changing your power settings, or

running something like this keep system active Python script.

https://github.com/jaqsparow/keep-system-active

💁 You can find this code in the code-server/temperature-sensor-server folder.

Task - calculate GDD using the stored data

Once the server has captured temperature data, the GDD for a plant can be calculated.

The steps to do this manually are:

1. Find the base temperature for the plant. For example, for strawberries the base temperature is

10°C.

2. From the temperature.csv , find the highest and lowest temperatures for the day

3. Use the GDD calculation given earlier to calculate GDD

For example, if the highest temperature for the day is 25°C, and the lowest is 12°C:

25 + 12 = 37

37 / 2 = 18.5

18.5 - 10 = 8.5

Therefore the strawberries have received 8.5 GDD. Strawberries need about 250 GDD to bear fruit,

so still a while to go.

🚀 Challenge

Plants need more than heat to grow. What other things are needed?

For these, find if there are sensors that can measure them. What about actuators to control these

levels? How would you put together one or more IoT devices to optimize plant growth?

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Read more on digital agriculture on the Digital Agriculture Wikipedia page. Also read more about

precision agriculture the Precision Agriculture Wikipedia page.

The full growing degree days calculation is more complicated than the simplified one given here.

Read more about the more complicated equation and how to deal with temperatures below the

baseline on the Growing Degree Day Wikipedia page.

Assignment

Visualize GDD data using a Jupyter Notebook

Detect soil moisture
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

Introduction

In the last lesson we looked at measuring an ambient property and using it to predict plant growth.

Temperature can be controlled, but it is expensive to do so, requiring controlled environments. The

easiest ambient property to control for plants is water - something that is controlled everyday from

large-scale irrigation systems to young kids with watering cans watering their gardens.

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/10
https://wikipedia.org/wiki/Digital_agriculture
https://wikipedia.org/wiki/Precision_agriculture
https://wikipedia.org/wiki/Growing_degree-day
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/11

In this lesson you will learn about measuring soil moisture, and in the next lesson you will learn how to

control an automated watering system. This lesson introduces a third sensor, you've already used a

light sensor, a temperature sensor, so in this lesson you will also learn more about how sensors and

actuators communicate with IoT devices to understand more about how a soil moisture sensor can

send data to an IoT device.

In this lesson we'll cover:

Soil moisture

How sensors communicate with IoT devices

Measure the moisture levels in soil

Sensor calibration

Soil moisture

Plants require water to grow. They absorb water throughout the entire plant, with the majority being

absorbed by the root system. Water is used by the plant for three things:

Photosynthesis - plants creates a chemical reaction with water, carbon dioxide and light to

produce carbohydrates and oxygen.

Transpiration - plants use water for diffusion of carbon dioxide from the air into the plant via pores

in the leaves. This process also carries nutrients around the plant, and cools the plant, similar to

how humans sweat.

Structure - plants also need water to maintain their structure - they are 90% water (as opposed to

humans at only 60%), and this water keeps the cells rigid. If a plant doesn't have enough water it

https://wikipedia.org/wiki/Photosynthesis
https://wikipedia.org/wiki/Transpiration

will wilt and eventually die.

Water is absorbed through plant roots then carried around the plant, being used for

photosynthesis and plant structure. Plant by Alex Muravev / Plant Cell by Léa Lortal - all from the

Noun Project

✅ Do some research: how much water is lost through transpiration?

The root system provides water from moisture in the soil where the plant grows. Too little water in the

soil and the plant cannot absorb enough to grow, too much water and roots cannot absorb enough

oxygen needed to function. This leads to roots dying and the plant unable to get enough nutrients to

survive.

For a farmer to get the best plant growth, the soil needs to be not too wet and not too dry. IoT devices

can help with this by measuring soil moisture, allowing a farmer to only water when needed.

Ways to measure soil moisture

There are a range of different types of sensor you can use to measure soil moisture:

Resistive - a resistive sensor has 2 probes that go into the soil. An electric current is sent to one

probe, and received by the other. The sensor then measures the resistance of the soil - measuring

how much the current drops at the second probe. Water is a good conductor of electricity, so the

higher the water content of the soil, the lower the resistance.

https://thenounproject.com/

💁 You can build a resistive soil moisture sensor using two pieces of metal, such as nails,

separated by a couple of centimeters, and measuring the resistance between them using

a multimeter.

Capacitive - a capacitive moisture sensor measures the amount of electric charge that can be

stored across a positive and a negative electrical plate, or capacitance. The capacitance of soil

changes as the moisture level changes, and this can be converted to a voltage that can be

measured by an IoT device. The wetter the soil, the lower the voltage that comes out.

These are both analog sensors, returning a voltage to indicate soil moisture. So how does this voltage

get to your code? Before going any further with these sensors, let's look at how sensors and

actuators communicate with IoT devices.

How sensors communicate with IoT devices

So far in these lessons you've learned about a number of sensors and actuators, and these have

been communicating with your IoT dev kit if you've been doing the physical hardware labs. But how

https://wikipedia.org/wiki/Capacitance

does this communication work? How does a resistance measurement from a soil moisture sensor

become a number you can use from code?

To communicate with most sensors and actuators you need some hardware, and a communication

protocol - that is a well defined way for data to be sent and received. Take for example a capacitive

soil moisture sensor:

How is this sensor connected to the IoT device?

If it measures a voltage that is an analog signal, it will need an ADC to create a digital

representation of the value, and this value is sent as an alternating voltage to send 0s and 1s - but

how long is each bit sent for?

If the sensor returns a digital value, that will be a stream of 0s and 1s, again how long is each bit

sent for?

If the voltage is high for 0.1s is that a single 1 bit, or 2 consecutive 1 bits, or 10?

At what point does the number start? Is 00001101 25, or are the first 5 bits the end of the

previous value?

The hardware provides the physical connectivity over which the data is sent, the different

communication protocols ensure that the data is sent or received in the correct way so it can be

interpreted.

General Purpose Input Output (GPIO) pins

GPIO is a set of pins you can use to connect hardware to your IoT device, and are often available on

IoT developer kits such as the Raspberry Pi or Wio Terminal. You can use the various communication

protocols covered in this section over the GPIO pins. Some GPIO pins provide a voltage, usually 3.3V

or 5V, some pins are ground, and others can be programmatically set to either send a voltage

(output), or receive a voltage (input).

💁 An electrical circuit needs to connect a voltage to ground via whatever circuitry you are

using. You can think of voltage as the positive (+ve) terminal of a battery and ground as the

negative (-ve) terminal.

You can use GPIO pins directly with some digital sensors and actuators when you only care about on

or off values - on referred to as high, off as low. Some examples are:

Button. You can connect a button between a 5V pin and a pin set to input. When you press the

button it completes a circuit between the 5V pin, through the button to the input pin. From code

you can read the voltage at the input pin, and if it is high (5V) then the button is pressed, if it is low

(0v) then the button is not pressed. Remember the actual voltage itself is not read, instead you

get a digital signal of 1 or 0 depending on if the voltage is above a threshold or not.

A button is sent 5 volts. When not pressed it returns 0 volts, or 0, when pressed it returns 5

volts, or 1. Microcontroller by Template / Button by Dan Hetteix - all from the Noun Project

LED. You can connect an LED between an output pin and a ground pin (using a resistor otherwise

you'll burn out the LED). From code you can set the output pin to high and it will send 3.3V,

making a circuit from the 3.3V pin, through the LED, to the ground pin. This will light the LED.

An LED is sent a signal of 0 (3.3V), which lights the LED. If it is sent 0 (0v), the LED is not lit.

LED by abderraouf omara / Microcontroller by Template - all from the Noun Project

For more advanced sensors, you can use GPIO pins to send and receive digital data directly with

digital sensors and actuators, or via controller boards with ADCs and DACs to talk to analog sensors

and actuators.

https://thenounproject.com/
https://thenounproject.com/

💁 if you are using a Raspberry Pi for these labs, the Grove Base Hat has hardware to convert

analog sensor signals to digital to send over GPIO.

✅ If you have an IoT device with GPIO pins, locate these pins and find a diagram indicating which

pins are voltage, ground or programmable.

Analog pins

Some devices, such as Arduino devices, provide analog pins. These are the same as GPIO pins, but

instead of only supporting a digital signal, they have an ADC to convert voltage ranges to numerical

values. Usually the ADC has a 10-bit resolution, meaning it converts voltages to a value of 0-1,023.

For example, on a 3.3V board, if the sensor returns 3.3V, the value returned would be 1,023. If the

voltage returned was 1.65v, the value returned will be 511.

A soil moisture sensor sent 3.3V and returning 1.65v, or a reading of 511. probe by Adnen Kadri /

Microcontroller by Template - all from the Noun Project

💁 Back in nightlight - lesson 3, the light sensor returned a value from 0-1,023. If you are

using a Wio Terminal, the sensor was connected to an analog pin. If you are using a Raspberry

Pi, then the sensor was connected to an analog pin on the base hat that has an integrated

ADC to communicate over the GPIO pins. The virtual device was set to send a value from 0-

1,023 to simulate an analog pin.

Soil moisture sensors rely on voltages, so will use analog pins and give values from 0-1,023.

Inter Integrated Circuit (I C)2

https://thenounproject.com/

I C, pronounced I-squared-C, is a multi-controller, multi-peripheral protocol, with any connected

device able to act as a controller or peripheral communicating over the I C bus (the name for a

communication system that transfers data). Data is sent as addressed packets, with each packet

containing the address of the connected device it is intended for.

💁 This model used to be referred to as master/slave, but this terminology is being dropped

due to its association with slavery. The Open Source Hardware Association has adopted

controller/peripheral, but you may still see references to the old terminology.

Devices have an address that is used when they connect to the I C bus, and is usually hard coded on

the device. For example, each type of Grove sensor from Seeed has the same address, so all the light

sensors have the same address, all the buttons have the same address that is different from the light

sensor address. Some devices have ways to change the address, by changing jumper settings or

soldering pins together.

I C has a bus made of 2 main wires, along with 2 power wires:

Wire Name Description

SDA
Serial

Data
This wire is for sending data between devices.

SCL
Serial

Clock
This wire sends a clock signal at a rate set by the controller.

VCC

Voltage

common

collector

The power supply for the devices. This is connected to the SDA and SCL wires

to provide their power via a pull-up resistor that switches the signal off when

no device is the controller.

GND Ground This provides a common ground for the electrical circuit.

2

2

2

2

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/

I C bus with 3 devices connected to the SDA and SCL wires, sharing a common ground wire.

Microcontroller by Template / LED by abderraouf omara / ldr by Eucalyp - all from the Noun

Project

To send data, one device will issue a start condition to show it is ready to send data. It will then

become the controller. The controller then sends the address of the device that it wants to

communicate with, along with if it wants to read or write data. After the data has been transmitted,

the controller sends a stop condition to indicate that it has finished. After this another device can

become the controller and send or receive data.

I C has speed limits, with 3 different modes running at fixed speeds. The fastest is High Speed mode

with a maximum speed of 3.4Mbps (megabits per second), though very few devices support that

speed. The Raspberry Pi for example, is limited to fast mode at 400Kbps (kilobits per second).

Standard mode runs at 100Kbps.

💁 If you are using a Raspberry Pi with a Grove Base hat as your IoT hardware, you will be able

to see a number of I C sockets on the board you can use to communicate with I C sensors.

Analog Grove sensors also use I C with an ADC to send analog values as digital data, so the

light sensor you used simulated an analog pin, with the value sent over I C as the Raspberry

Pi only supports digital pins.

Universal asynchronous receiver-transmitter (UART)

UART involves physical circuitry that allows two devices to communicate. Each device has 2

communication pins - transmit (Tx) and receive (Rx), with the Tx pin of the first device connected to

2

2

2 2

2

2

https://thenounproject.com/

the Rx pin of the second, and with the Tx pin of the second device connected to the Rx pin of the

first. This allows data to be sent in both directions.

Device 1 transmits data from its Tx pin, which is received by device 2 on it's Rx pin

Device 1 receives data on its Rx pin that is transmitted by device 2 from its Tx pin

UART with the Tx pin on one chip connected to the Rx pin on another, and vice versa. chip by

Astatine Lab - all from the Noun Project

🎓 The data is sent one bit at a time, and this is known as serial communication. Most

operating systems and microcontrollers have serial ports, that is connections that can send

and receive serial data that are available to your code.

UART devices have a baud rate (also known as Symbol rate), which is the speed that data will be sent

and received in bits per second. A common baud rate is 9,600, meaning 9,600 bits (0s and 1s) of

data are sent each second.

UART uses start and stop bits - that is it sends a start bit to indicate that it's about to send a byte (8

bits) of data, then a stop bit after it sends the 8 bits.

UART speed is dependent on hardware, but even the fastest implementations don't exceed 6.5 Mbps

(megabits per second, or millions of bits, 0 or 1, sent per second).

You can use UART over GPIO pins - you can set one pin as Tx and another as Rx, then connect these

to another device.

💁 If you are using a Raspberry Pi with a Grove Base hat as your IoT hardware, you will be able

to see a UART socket on the board you can use to communicate with sensors that use the

UART protocol.

https://thenounproject.com/
https://wikipedia.org/wiki/Symbol_rate

Serial Peripheral Interface (SPI)

SPI is designed for communicating over short distances, such as on a microcontroller to talk to a

storage device such as flash memory. It is based on a controller/peripheral model with a single

controller (usually the processor of the IoT device) interacting with multiple peripherals. The

controller controls everything by selecting a peripheral and sending or requesting data.

💁 Like I C, the terms controller and peripheral are recent changes, so you may see the older

terms still used.

SPI controllers use 3 wires, along with 1 extra wire per peripheral. Peripherals use 4 wires. These

wires are:

Wire Name Description

COPI
Controller Output,

Peripheral Input
This wire is for sending data from the controller to the peripheral.

CIPO
Controller Input,

peripheral Output
This wire is for sending data from the peripheral to the controller.

SCLK Serial Clock This wire sends a clock signal at a rate set by the controller.

CS Chip Select
The controller has multiple wires, one per peripheral, and each wire

connects to the CS wire on the corresponding peripheral.

2

SPI with on controller and two peripherals. chip by Astatine Lab - all from the Noun Project

The CS wire is used to activate one peripheral at a time, communicating over the COPI and CIPO

wires. When the controller needs to change peripheral, it deactivates the CS wire connected to the

currently active peripheral, then activates the wire connected to the peripheral it wants to

communicate with next.

SPI is full-duplex, meaning the controller can send and receive data at the same time from the same

peripheral using the COPI and CIPO wires. SPI uses a clock signal on the SCLK wire to keep the

devices in sync, so unlike sending directly over UART it doesn't need start and stop bits.

There are no defined speed limits for SPI, with implementations often able to transmit multiple

megabytes of data per second.

IoT developer kits often support SPI over some of the GPIO pins. For example, on a Raspberry Pi you

can use GPIO pins 19, 21, 23, 24 and 26 for SPI.

Wireless

Some sensors can communicate over standard wireless protocols, such as Bluetooth (mainly

Bluetooth Low Energy, or BLE), LoRaWAN (a Long Range low power networking protocol), or WiFi.

These allow for remote sensors not physically connected to an IoT device.

One such example is in commercial soil moisture sensors. These will measure soil moisture in a field,

then send the data over LoRaWan to a hub device, which will process the data or send it over the

Internet. This allows the sensor to be away from the IoT device that manages the data, reducing

power consumption and the need for large WiFi networks or long cables.

BLE is popular for advanced sensors such as fitness trackers work on the wrist. These combine

multiple sensors and send the sensor data to an IoT device in the form of your phone via BLE.

✅ Do you have any bluetooth sensors on your person, in your house or in your school? These might

include temperature sensors, occupancy sensors, device trackers and fitness devices.

One popular way for commercial devices to connect is Zigbee. Zigbee uses WiFi to form mesh

networks between devices, where each device connects to as many nearby devices as possible,

forming a large number of connections like a spiders web. When one device wants to send a

message to the Internet it can send it to the nearest devices, which then forward it on to other nearby

devices and so on, until it reaches a coordinator and can be sent to the Internet.

🐝 The name Zigbee refers to the waggle dance of honey bees after their return to the

beehive.

https://thenounproject.com/

Measure the moisture levels in soil

You can measure the moisture level in soil using a soil moisture sensor, an IoT device, and a house

plant or nearby patch of soil.

Task - measure soil moisture

Work through the relevant guide to measure soil moisture using your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

Single-board computer - Virtual device

Sensor calibration

Sensors rely on measuring electrical properties such as resistance or capacitance.

🎓 Resistance, measured in ohms (Ω) is how much opposition there is to the electric current

travelling through something. When a voltage is applied to a material, the amount of current

that passes through it is dependant on the resistance of the material. You can read more on

the electrical resistance page on Wikipedia.

🎓 Capacitance, measured in farads (F), is the ability of a component or circuit to collect and

store electrical energy. You can read more on capacitance on the capacitance page on

Wikipedia.

These measurements are not always useful - imagine a temperature sensor that gave you a

measurement of 22.5KΩ! Instead the value measured needs to be converted into a useful unit by

being calibrated - that is matching the values measured to the quantity measured to allow new

measurements to be converted to the right unit.

Some sensors come pre-calibrated. For example the temperature sensor you used in the last lesson

was already calibrated so that it can return a temperature measurement in °C. In the factory the first

sensor created would be exposed to a range of known temperatures and the resistance measured.

https://wikipedia.org/wiki/Electrical_resistance_and_conductance
https://wikipedia.org/wiki/Capacitance

This would then be used to build a calculation that can convert from the value measured in Ω (the unit

of resistance) to °C.

💁 The formula to calculate resistance from temperature is called the Steinhart–Hart

equation.

Soil moisture sensor calibration

Soil moisture is measured using gravimetric or volumetric water content.

Gravimetric is the weight of water in a unit weight of soil measured, as the number of kilograms of

water per kilogram of dry soil

Volumetric is the volume of water in a unit volume of soil measured, as the number of cubic

metres of water per cubic metres of dry soil

� For Americans, because of the consistency of the units, these can be measured in pounds

instead of kilograms or cubic feet instead of cubic metres.

Soil moisture sensors measure electrical resistance or capacitance - this not only varies by soil

moisture, but also soil type as the components in the soil can change its electrical characteristics.

Ideally sensors should be calibrated - that is taking readings from the sensor and comparing them to

measurements found using a more scientific approach. For example a lab can calculate the

gravimetric soil moisture using samples of a specific field taken a few times a year, and these

numbers used to calibrate the sensor, matching the sensor reading to the gravimetric soil moisture.

https://wikipedia.org/wiki/Steinhart%E2%80%93Hart_equation

The graph above shows how to calibrate a sensor . The voltage is captured for a soil sample that is

then measured in a lab by comparing the moist weight to the dry weight (by measuring the weight

wet, then drying in an oven and measuring dry). Once a few readings have been taken, this can be

plotted on a graph and a line fitted to the points. This line can then be used to convert soil moisture

sensor readings taken by an IoT device into actual soil moisture measurements.

💁 For resistive soil moisture sensors, the voltage increases as soil moisture increases. For capacitive

soil moisture sensors, the voltage decreases as soil moisture increases, so the graphs for these

would slope downwards, not upwards.

The graph above shows a voltage reading from a soil moisture sensor, and by following that to the

line on the graph, the actual soil moisture can be calculated.

This approach means the farmer only needs to get a few lab measurements for a field, then they can

use IoT devices to measure soil moisture - drastically speeding up the time to take measurements.

🚀 Challenge

Resistive and capacitive soil moisture sensors have a number of differences. What are these

differences, and which type (if any) is the best for a farmer to use? Does this answer change between

developing and developed countries?

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Read up on the hardware and protocols used by sensors and actuators:

GPIO Wikipedia page

UART Wikipedia page

SPI Wikipedia page

I C Wikipedia page

Zigbee Wikipedia page

Assignment

Calibrate your sensor

Automated plant watering
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

Introduction

In the last lesson, you learned how to monitor soil moisture. In this lesson you will learn how to build

the core components of an automated watering system that responds to soil moisture. You'll also

learn about timing - how sensors can take a while to respond to changes, and how actuators can take

time to change the properties being measured by sensors.

In this lesson we'll cover:

2

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/12
https://wikipedia.org/wiki/General-purpose_input/output
https://wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://wikipedia.org/wiki/Serial_Peripheral_Interface
https://wikipedia.org/wiki/I%C2%B2C
https://wikipedia.org/wiki/Zigbee
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/13

Control high power devices from a low power IoT device

Control a relay

Control your plant over MQTT

Sensor and actuator timing

Add timing to your plant control

Control high power devices from a low power IoT device

IoT devices use a low voltage. While this is enough for sensors and low-power actuators like LEDs,

this is too low to control larger hardware, such as a water pump used for irrigation. Even small pumps

you could use for houseplants draw too much current for an IoT dev kit and would burn out the board.

🎓 Current, measured in Amps (A), is the amount of electricity moving through a circuit.

Voltage provides the push, current is how much is pushed. You can read more about current

on the electric current page on Wikipedia.

The solution to this is to have a pump connected to an external power supply, and use an actuator to

switch on the pump, similar to how you would switch on a light. It takes a tiny amount of power (in the

form of energy in your body) for your finger to flip a switch, and this connects the light to mains

electricity running at 110v/240v.

A light switch turns power on to a light. switch by Chattapat / lightbulb by Maxim Kulikov - all

from the Noun Project

https://wikipedia.org/wiki/Electric_current
https://thenounproject.com/

🎓 Mains electricity refers to the electricity delivered to homes and businesses through

national infrastructure in many parts of the world.

✅ IoT devices can usually provide 3.3V or 5V, at less than 1 amp (1A) of current. Compare this to

mains electricity which is most often at 230V (120V in North America and 100V in Japan), and can

provide power for devices that draw 30A.

There are a number of actuators that can do this, including mechanical devices you can attach to

existing switches that mimic a finger turning them on. The most popular is a relay.

Relays

A relay is an electromechanical switch that converts an electrical signal into a mechanical movement

that turns on a switch. The core of a relay is an electromagnet.

🎓 Electromagnets are magnets that are created by passing electricity through a coil of wire.

When the electricity is turned on, the coil becomes magnetized. When the electricity is turned

off, the coil loses it magnetism.

When on, the electromagnet creates a magnetic field, turning on the switch for the output

circuit. lightbulb by Maxim Kulikov - from the Noun Project

In a relay, a control circuit powers the electromagnet. When the electromagnet is on, it pulls a lever

that moves a switch, closing a pair of contacts and completing an output circuit.

https://wikipedia.org/wiki/Mains_electricity
https://wikipedia.org/wiki/Electromagnet
https://thenounproject.com/

When off, the electromagnet doesn't create a magnetic field, turning off the switch for the

output circuit. lightbulb by Maxim Kulikov - from the Noun Project

When the control circuit is off, the electromagnet turns off, releasing the lever and opening the

contacts, turning off the output circuit. Relays are digital actuators - a high signal to the relay turns it

on, a low signal turns it off.

The output circuit can be used to power additional hardware, like an irrigation system. The IoT device

can turn the relay on, completing the output circuit that powers the irrigation system, and plants get

watered. The IoT device can then turn the relay off, cutting the power to the irrigation system, turning

the water off.

In the video above, a relay is turned on. An LED on the relay lights up to indicate it is on (some relay

boards have LEDs to indicate if the relay is on or off), and power is sent to the pump, turning it on and

pumping water into a plant.

https://thenounproject.com/

💁 Relays can also be used to switch between two output circuits instead of turning one on

and off. As the lever moves, it moves a switch from completing one output circuit to

completing a different output circuit, usually sharing a common power connection, or

common ground connection.

✅ Do some research: There are multiple types of relays, with differences such as if the control

circuit turns the relay on or off when power is applied, or multiple output circuits. Find out about these

different types.

When the lever moves, you can usually hear it make contact with the electromagnet with a well

defined click noise.

💁 A relay can be wired so that making the connection actually breaks power to the relay,

turning the relay off, which then sends power to the relay turning it back on again, and so on.

This means the relay will click incredibly fast making a buzzing noise. This is how some of the

first buzzers used in electric doorbells worked.

Relay power

The electromagnet doesn't need a lot of power to activate and pull the lever, it can be controlled

using the 3.3V or 5V output from an IoT dev kit. The output circuit can carry a lot more power,

depending on the relay, including mains voltage or even higher power levels for industrial use. This

way an IoT Dev kit can control an irrigation system, from a small pump for a single plant, up to a

massive industrial system for an entire commercial farm.

The image above shows a Grove relay. The control circuit connects to an IoT device and turns the

relay on or off using 3.3V or 5V. The output circuit has two terminals, either one can be power or

ground. The output circuit can handle up to 250V at 10A, enough for a range of mains-powered

devices. You can get relays that can handle even high power levels.

In the image above, power is supplied to a pump via a relay. There is a red wire connecting the +5V

terminal of a USB power supply to one terminal of the output circuit of the relay, and another red wire

connecting the other terminal of the output circuit to the pump. A black wire connects the pump to

the ground on the USB power supply. When the relay turns on, it completes the circuit, sending 5V to

the pump, turning the pump on.

Control a relay

You can control a relay from your IoT Dev kit.

Task - control a relay

Work through the relevant guide to control a relay using your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

Single-board computer - Virtual device

Control your plant over MQTT

So far your relay is controlled by the IoT device directly based off a single soil moisture reading. In a

commercial irrigation system, the control logic will be centralized, allowing it to make decisions on

watering using data from multiple sensors, and allowing any configuration to be changed in one

single place. To simulate this, you can control the relay over MQTT.

Task - control the relay over MQTT

1. Add the relevant MQTT libraries/pip packages and code to your soil-moisture-sensor

project to connect to MQTT. Name the client ID as soilmoisturesensor_client prefixed by

your ID.

⚠ You can refer to the instructions for connecting to MQTT in project 1, lesson 4 if

needed.

2. Add the relevant device code to send telemetry with the soil moisture settings. For the telemetry

message, name the property soil_moisture .

⚠ You can refer to the instructions for sending telemetry to MQTT in project 1, lesson 4 if

needed.

3. Create some local server code to subscribe to telemetry and send a command to control the relay

in a folder called soil-moisture-sensor-server . Name the property in the command

message relay_on , and set the client ID as soilmoisturesensor_server prefixed by

your ID. Keep the same structure as the server code you wrote for project 1, lesson 4 as you will

be adding to this code later in this lesson.

⚠ You can refer to the instructions for sending telemetry to MQTT and sending

commands over MQTT in project 1, lesson 4 if needed.

4. Add the relevant device code to control the relay from received commands, using the

relay_on property from the message. Send true for relay_on if the soil_moisture is

greater than 450, otherwise send false, the same as the logic you added for the IoT device earlier.

⚠ You can refer to the instructions for responding to commands from MQTT in project 1,

lesson 4 if needed.

💁 You can find this code in the code-mqtt folder.

Make sure the code is running on your device and local server, and test it out by changing soil

moisture levels, either by changing the values sent by the virtual sensor, or by changing the moisture

levels of the soil by adding water or removing the sensor from the soil.

Sensor and actuator timing

Back in lesson 3 you built a nightlight - an LED that turns on as soon as a low level of light was

detected by a light sensor. The light sensor detected a change in light levels instantly, and the device

was able to respond quickly, only limited by the length of the delay in the loop function or

while True: loop. As an IoT developer, you can't always rely on such a fast feedback loop.

Timing for soil moisture

If you did the last lesson on soil moisture using a physical sensor, you would have noticed that it took

a few seconds for the soil moisture reading to drop after you watered your plant. This is not because

the sensor is slow, but because it takes time for water to soak through the soil.

💁 If you watered too close to the sensor you may have seen the reading drop quickly, then

come back up - this is caused by water near the sensor spreading throughout the rest of the

soil, reducing the soil moisture by the sensor.

A soil moisture measurement of 658 doesn't change during watering, it only drops to 320 after

watering when water has soaked through the soil. Plant by Alex Muravev / Watering Can by Daria

Moskvina - all from the Noun Project

In the diagram above, a soil moisture reading shows 658. The plant is watered, but this reading

doesn't change immediately, as the water has yet to reach the sensor. Watering can even finish

before the water reaches the sensor and the value drops to reflect the new moisture level.

If you were writing code to control an irrigation system via a relay based off soil moisture levels, you

would need to take this delay into consideration and build smarter timing into your IoT device.

✅ Take a moment to think about how you might do this.

Control sensor and actuator timing

Imagine you have been tasked with building an irrigation system for a farm. Based on the soil type,

the ideal soil moisture level for the plants grown has been found to match an analog voltage reading

of 400-450.

You could program the device in the same way as the nightlight - all the time the sensor reads above

450, turn on a relay to turn on a pump. The problem is that water takes a while to get from the pump,

through the soil to the sensor. The sensor will stop the water when it detects a level of 450, but the

water level will continue dropping as the pumped water keeps soaking through the soil. The end

result is wasted water, and the risk of root damage.

✅ Remember - too much water can be as bad for plants as too little, and wastes a precious

resource.

The better solution is to understand that there is a delay between the actuator turning on and the

property that the sensor reads changing. This means not only should the sensor wait for a while

before measuring the value again, but the actuator needs to turn off for a while before the next

sensor measurement is taken.

How long should the relay be on each time? It's better to err on the side of caution and only turn the

relay on for a short time, then wait for the water to soak through, then re-check the moisture levels.

After all, you can always turn it on again to add more water, you can't remove water from the soil.

https://thenounproject.com/

💁 This kind of timing control is very specific to the IoT device you are building, the property

you are measuring and the sensors and actuators used.

For example, I have a strawberry plant with a soil moisture sensor and a pump controlled by a relay.

I've observed that when I add water it takes about 20 seconds for the soil moisture reading to

stabilize. This means I need to turn the relay off and wait 20 seconds before checking the moisture

levels. I'd rather have too little water than too much - I can always turn the pump on again, but I can't

take water out of the plant.

Measure, add water, wait, remeasure. Plant by Alex Muravev / Watering Can by Daria Moskvina -

all from the Noun Project

This means the best process would be a watering cycle that is something like:

Turn on the pump for 5 seconds

Wait 20 seconds

Check the soil moisture

If the level is still above what I need, repeat the above steps

5 seconds could be too long for the pump, especially if the moisture levels are only slightly above the

required level. The best way to know what timing to use is to try it, then adjust when you have sensor

data, with a constant feedback loop. This can even lead to more granular timing, such as turning the

pump on for 1s for every 100 above the required soil moisture, instead of a fixed 5 seconds.

✅ Do some research: Are there other timing considerations? Can the plant be watered any time that

the soil moisture is too low, or are there specific times of day that are good and bad times to water

https://thenounproject.com/

plants?

💁 Weather predictions can also be taken into consideration when controlling automated

watering systems for outdoor growing. If rain is expected, then the watering can be put on

hold till after the rain finishes. At that point the soil may be moist enough that it doesn't need

watering, much more efficient that wasting water by watering just before rain.

Add timing to your plant control server

The server code can be modified to add control around the timing of the watering cycle, and waiting

for the soil moisture levels to change. The server logic for controlling the relay timing is:

1. Telemetry message received

2. Check the soil moisture level

3. If it's ok, do nothing. If the reading is too high (meaning the soil moisture is too low) then:

1. Send a command to turn the relay on

2. Wait for 5 seconds

3. Send a command to turn the relay off

4. Wait for 20 seconds for the soil moisture levels to stabilize

The watering cycle, the process from receiving the telemetry message to being ready to process soil

moisture levels again, takes about 25 seconds. We're sending soil moisture levels every 10 seconds,

so there is an overlap where a message is received whilst the server is waiting for soil moisture levels

to stabilize, which could start another watering cycle.

There are two options to work around this:

Change the IoT device code to only send telemetry every minute, this way the watering cycle will

be completed before the next message is sent

Unsubscribe from the telemetry during the watering cycle

The first option is not always a good solution for large farms. The farmer might want to capture the

soil moisture levels as the soil is being watered for later analysis, for example to be aware of water

flow in different areas on the farm to guide more targeted watering. The second option is better - the

code is just ignoring telemetry when it can't use it, but the telemetry is still there for other services

that might subscribe to it.

💁 IoT data is not sent from only one device to only one service, instead many devices can

send data to a broker, and many services can listen to the data off the broker. For example,

one service could listen to soil moisture data and store it in a database for analysis at a later

date. Another service can also listen to the same telemetry to control an irrigation system.

Task - add timing to your plant control server

Update your server code to run the relay for 5 seconds, then wait 20 seconds.

1. Open the soil-moisture-sensor-server folder in VS Code if it isn't already open. Make

sure the virtual environment is activated.

2. Open the app.py file

3. Add the following code to the app.py file below the existing imports:

This statement imports threading from Python libraries, threading allows python to execute

other code while waiting.

4. Add the following code before the handle_telemetry function that handles telemetry

messages received by the server code:

This defines how long to run the relay for (water_time), and how long to wait afterwards to

check the soil moisture (wait_time).

5. Below this code, add the following:

import threading
python

water_time = 5
wait_time = 20

python

def send_relay_command(client, state):
 command = { 'relay_on' : state }
 print("Sending message:", command)
 client.publish(server_command_topic, json.dumps(command))

python

This code defines a function called send_relay_command that sends a command over MQTT

to control the relay. The telemetry is created as a dictionary, then converted to a JSON string. The

value passed in to state determines if the relay should be on or off.

6. After the send_relay_code function, add the following code:

This defines a function to control the relay based off the required timing. It starts by

unsubscribing from telemetry so that soil moisture messages are not processed whilst the

watering is happening. Next it sends a command to turn the relay on. It then waits for the

water_time before sending a command to turn the relay off. Finally it waits for the soil

moisture levels to stabilize for wait_time seconds. It then re-subscribes to telemetry.

7. Change the handle_telemetry function to the following:

This code checks the soil moisture level. If it is greater than 450, the soil needs watering, so it

calls the control_relay function. This function is run on a separate thread, running in the

background.

8. Make sure your IoT device is running, then run this code. Change the soil moisture levels and

observe what happens to the relay - it should turn on for 5 seconds then remain off for at least 20

seconds, only turning on if the soil moisture levels are not sufficient.

def control_relay(client):
 print("Unsubscribing from telemetry")
 mqtt_client.unsubscribe(client_telemetry_topic)

 send_relay_command(client, True)
 time.sleep(water_time)
 send_relay_command(client, False)

 time.sleep(wait_time)

 print("Subscribing to telemetry")
 mqtt_client.subscribe(client_telemetry_topic)

python

def handle_telemetry(client, userdata, message):
 payload = json.loads(message.payload.decode())
 print("Message received:", payload)

 if payload['soil_moisture'] > 450:
 threading.Thread(target=control_relay, args=(client,)).start()

python

A good way to test this in a simulated irrigation system is to use dry soil, then pour water in

manually whilst the relay is on, stopping pouring when the relay turns off.

💁 You can find this code in the code-timing folder.

💁 If you want to use a pump to build a real irrigation system, then you can use a 6V water

pump with a USB terminal power supply. Make sure the power to or from the pump is

connected via the relay.

🚀 Challenge

Can you think of any other IoT or other electrical devices that have a similar problem where it takes a

while for the results of the actuator to reach the sensor. You probably have a couple in your house or

school.

What properties do they measure?

How long does it take for the property to change after an actuator is used?

Is it ok for the property to change past the required value?

How can it be returned back to the required value if needed?

Post-lecture quiz

Post-lecture quiz

(.venv) ➜ soil-moisture-sensor-server ✗ python app.py
Message received: {'soil_moisture': 457}
Unsubscribing from telemetry
Sending message: {'relay_on': True}
Sending message: {'relay_on': False}
Subscribing to telemetry
Message received: {'soil_moisture': 302}

output

https://www.seeedstudio.com/6V-Mini-Water-Pump-p-1945.html
https://www.adafruit.com/product/3628
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/14

Review & Self Study

Read more on relays including their historical use in telephone exchanges on the relay Wikipedia

page.

Assignment

Build a more efficient watering cycle

Migrate your plant to the cloud
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

Introduction

In the last lesson, you learned how to connect your plant to an MQTT broker and controlled a relay

from some server code running locally. This forms the core of the kind of internet-connected

automated watering system that is used from individual plants at home up to commercial farms.

The IoT device communicated with a public MQTT broker as a way to demonstrate the principles, but

this is not the most reliable or secure way. In this lesson you will learn about the cloud, and the IoT

capabilities provided by public cloud services. You will also learn how to migrate your plant to one of

these cloud services from the public MQTT broker.

In this lesson we'll cover:

What is the cloud?

Create a cloud subscription

Cloud IoT services

https://wikipedia.org/wiki/Relay
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/15

Create an IoT service in the cloud

Communicate with IoT Hub

Connect your device to the IoT service

What is the cloud?

Before the cloud, when a company wanted to provide services to their employees (such as databases

or file storage), or to the public (such as websites), they would build and run a data center. This

ranged from a room with a small number of computers, to a building with many computers. The

company would manage everything, including:

Buying computers

Hardware maintenance

Power and cooling

Networking

Security, including securing the building and securing the software on the computers

Software installation and updates

This could be very expensive, require a wide range of skilled employees, and be very slow to change

when needed. For example, if an online store needed to plan for a busy holiday season, they would

need to plan months in advance to buy more hardware, configure it, install it and install the software

to run their sales process. After the holiday season was over and sales dropped back down, they

would be left with computers they've paid for sitting idle till the next busy season.

✅ Do you think this would allow companies to move quickly? If an online clothing retailer suddenly

got popular due to a celebrity being seen in their clothes, would they be able to increase their

computing power quickly enough to support the sudden influx of orders?

Someone else's computer

The cloud is often jokingly referred to as 'someone else's computer'. The initial idea was simple -

instead of buying computers, you rent someone else's computer. Someone else, a cloud computing

provider, would manage huge data centers. They would be responsible for buying and installing the

hardware, managing power and cooling, networking, building security, hardware and software

updates, everything. As a customer, you would rent the computers you need, renting more as

demand spikes, then reducing the number you rent if demand drops. These cloud data centers are all

around the world.

These data centers can be multiple square kilometers in size. The images above were taken a few

years ago at a Microsoft cloud data center, and show the initial size, along with a planned expansion.

The area cleared for the expansion is over 5 square kilometers.

💁 These data centers require such large amounts of power that some have their own power

stations. Because of their size and the level of investment from the cloud providers, they are

usually very environmentally friendly. They are more efficient than huge numbers of small data

centers, they run mostly on renewable energy, and cloud providers work hard to reduce

waste, cut water usage, and replant forests to make up for those cut down to provide space to

build data centers. You can read more about how one cloud provider is working on

sustainability on the Azure sustainability site.

✅ Do some research: Read up on the major clouds such as Azure from Microsoft or GCP from

Google. How many data centers do they have, and where are they in the world?

Using the cloud keeps costs down for companies, and allows them to focus on what they do best,

leaving the cloud computing expertise in the hands of the provider. Companies no longer need to rent

or buy data center space, pay different providers for connectivity and power, or employ experts.

Instead, they can pay one monthly bill to the cloud provider to have everything taken care off.

https://azure.microsoft.com/global-infrastructure/sustainability/?WT.mc_id=academic-17441-jabenn
https://azure.microsoft.com/?WT.mc_id=academic-17441-jabenn
https://cloud.google.com/

The cloud provider can then use economies of scale to drive costs down, buying computers in bulk at

lower costs, investing in tooling to reduce their workload for maintenance, even designing and

building their own hardware to improve their cloud offering.

Microsoft Azure

Azure is the developer cloud from Microsoft, and this is the cloud you will be using for these lessons.

The video below gives a short overview of Azure:

Create a cloud subscription

To use services in the cloud, you will need to sign up for a subscription with a cloud provider. For this

lesson, you will be signing up for a Microsoft Azure subscription. If you already have an Azure

subscription you can skip this task. The subscription details described here are correct at the time of

writing, but may change.

💁 If you are accessing these lessons through your school, you may already have an Azure

subscription available to you. Check with your teacher.

There are two different types of free Azure subscription you can sign up for:

Azure for Students - This is a subscription designed for students 18+. You don't need a credit

card to sign up, and you use your school email address to validate that you are a student. When

you sign up you get US$100 to spend on cloud resources, along with free services including a

https://www.microsoft.com/videoplayer/embed/RE4Ibng?WT.mc_id=academic-17441-jabenn

free version of an IoT service. This lasts 12 months, and you can renew every year that you remain

a student.

Azure free subscription - This is a subscription for anyone who is not a student. You will need a

credit card to sign up to for the subscription, but your card will not be billed, this is just used to

verify you are a real human, not a bot. You get $200 of credit to use in the first 30 days on any

service, along with free tiers of Azure services. Once your credit has been used up, your card will

not be charged unless you convert to a pay as you go subscription.

💁 Microsoft does offer an Azure for Students Starter subscription for students under 18, but

at the time of writing this doesn't support any IoT services.

Task - sign up for a free cloud subscription

If you are a student aged 18+, then you can sign up for an Azure for Students subscription. You will

need to validate with a school email address. You can do this in one of two ways:

Sign up for a GitHub student developer pack at education.github.com/pack. This gives you access

to a range of tools and offers, including GitHub and Microsoft Azure. Once you sign up for the

developer pack, you can then activate the Azure for Students offer.

Sign up directly for an Azure for Students account at azure.microsoft.com/free/students.

⚠ If your school email address is not recognized, raise an issue in this repo and we'll see if it

can be added to the Azure for Students allow list.

If you are not a student, or you don't have a valid school email address, then you can sign up for an

Azure Free subscription.

Sign up for an Azure Free Subscription at azure.microsoft.com/free

Cloud IoT services

The public test MQTT broker you have been using is a great tool when learning, but has a number of

drawbacks as a tool to use in a commercial setting:

Reliability - it's a free service with no guarantees, and can be turned off at any time

https://education.github.com/pack
https://azure.microsoft.com/free/students/?WT.mc_id=academic-17441-jabenn
https://github.com/Microsoft/IoT-For-Beginners/issues
https://azure.microsoft.com/free/?WT.mc_id=academic-17441-jabenn

Security - it is public, so anyone could listen to your telemetry or send commands to control your

hardware

Performance - it is designed for only a few test messages, so wouldn't cope with a large amount

of messages being sent

Discovery - there is no way to know what devices are connected

IoT services in the cloud solve these problems. They are maintained by large cloud providers who

invest heavily in reliability and are on hand to fix any issues that might arise. They have security baked

in to stop hackers reading your data or sending rogue commands. They are also high performance,

being able to handle many millions of messages every day, taking advantage of the cloud to scale as

needed.

💁 Although you pay for these upsides with a monthly fee, most cloud providers offer a free

version of their IoT service with a limited amount of messages per day or devices that can

connect. This free version is usually more than enough for a developer to learn about the

service. In this lesson you will be using a free version.

IoT devices connect to a cloud service either using a device SDK (a library that provides code to work

with the features of the service), or directly via a communication protocol such as MQTT or HTTP.

The device SDK is usually the easiest route to take as it handles everything for you, such as knowing

what topics to publish or subscribe to, and how to handle security.

Devices connect to a service using a device SDK. Server code also connects to the service via an

SDK. Microcontroller by Template / Cloud by Debi Alpa Nugraha / IoT by Adrien Coquet - all from

the Noun Project

Your device then communicates with other parts of your application over this service - similar to how

you sent telemetry and received commands over MQTT. This is usually using a service SDK or a

similar library. Messages come from your device to the service where other components of your

application can then read them, and messages can then be sent back to your device.

https://thenounproject.com/

Devices without a valid secret key cannot connect to the IoT service. Microcontroller by Template

/ Cloud by Debi Alpa Nugraha / IoT by Adrien Coquet - all from the Noun Project

These services implement security by knowing about all the devices that can connect and send data,

either by having the devices pre-registered with the service, or by giving the devices secret keys or

certificates they can use to register themselves with the service the first time they connect. Unknown

devices are unable to connect, if they try the service rejects the connection and ignores messages

sent by them.

✅ Do some research: What is the downside of having an open IoT service where any device or code

can connect? Can you find specific examples of hackers taking advantage of this?

Other components of your application can connect to the IoT service and learn about all the devices

that are connected or registered, and communicate with them directly in bulk or individually.

💁 IoT services also implement additional capabilities, and the cloud providers have additional

services and applications that can be connected to the service. For example, if you want to

store all the telemetry messages sent by all the devices in a database, it's usually only a few

clicks in the cloud provider's configuration tool to connect the service to a database and

stream the data in.

Create an IoT service in the cloud

Now that you have an Azure subscription, you can sign up for an IoT service. The IoT service from

Microsoft is called Azure IoT Hub.

https://thenounproject.com/

The video below gives a short overview of Azure IoT Hub:

🎥 Click the image above to watch a video

✅ Take a moment to do some research and read the overview of IoT hub in the Microsoft IoT Hub

documentation.

The cloud services available in Azure can be configured through a web-based portal, or via a

command-line interface (CLI). For this task, you will use the CLI.

Task - install the Azure CLI

To use the Azure CLI, first it must be installed on your PC or Mac.

1. Follow the instructions in the Azure CLI documentation to install the CLI.

2. The Azure CLI supports a number of extensions that add capabilities to manage a wide range of

Azure services. Install the IoT extension by running the following command from your command

https://www.youtube.com/watch?v=smuZaZZXKsU
https://docs.microsoft.com/azure/iot-hub/about-iot-hub?WT.mc_id=academic-17441-jabenn
https://docs.microsoft.com/cli/azure/install-azure-cli?WT.mc_id=academic-17441-jabenn

line or terminal:

3. From your command line or terminal, run the following command to log in to your Azure

subscription from the Azure CLI.

A web page will be launched in your default browser. Log in using the account you used to sign up

for your Azure subscription. Once you are logged in, you can close the browser tab.

4. If you have multiple Azure subscriptions, such as a school provided one, and your own Azure for

Students subscription, you will need to select the one you want to use. Run the following

command to list all the subscriptions you have access to:

In the output, you will see the name of each subscription along with its SubscriptionId .

To select the subscription you want to use, use the following command:

Replace <SubscriptionId> with the Id of the subscription you want to use. After running this

command, re-run the command to list your accounts. You will see the IsDefault column will

be marked as True for the subscription you have just set.

Task - create a resource group

az extension add --name azure-iot
sh

az login
sh

az account list --output table
sh

➜ ~ az account list --output table
Name CloudName SubscriptionId
---------------------- ----------- -----------------------------------
School-subscription AzureCloud cb30cde9-814a-42f0-a111-754cb788e4e
Azure for Students AzureCloud fa51c31b-162c-4599-add6-781def2e1fb

output

az account set --subscription <SubscriptionId>
sh

Azure services, such as IoT Hub instances, virtual machines, databases, or AI services, are referred to

as resources. Every resource has to live inside a Resource Group, a logical grouping of one or more

resources.

💁 Using resource groups means you can manage multiple services at once. For example,

once you have finished all the lessons for this project you can delete the resource group, and

all the resources in it will be deleted automatically.

1. There are multiple Azure data centers around the world, divided up into regions. When you create

an Azure resource or resource group, you have to specify where you want it created. Run the

following command to get the list of locations:

You will see a list of locations. This list will be long.

💁 At the time of writing, there are 65 locations you can deploy to.

Note down the value from the Name column of the region closest to you. You can find the

regions on a map on the Azure geographies page.

2. Run the following command to create a resource group called soil-moisture-sensor .

Resource group names have to be unique in your subscription.

az account list-locations --output table
sh

 ➜ ~ az account list-locations --output table
DisplayName Name RegionalDisplayName
------------------------ ------------------- -------------------------
East US eastus (US) East US
East US 2 eastus2 (US) East US 2
South Central US southcentralus (US) South Central US
...

output

az group create --name soil-moisture-sensor \
 --location <location>

sh

https://azure.microsoft.com/global-infrastructure/geographies/?WT.mc_id=academic-17441-jabenn

Replace <location> with the location you selected in the previous step.

Task - create an IoT Hub

You can now create an IoT Hub resource in your resource group.

1. Use the following command to create your IoT hub resource:

Replace <hub_name> with a name for your hub. This name needs to be globally unique - that is

no other IoT Hub created by anyone can have the same name. This name is used in a URL that

points to the hub, so needs to be unique. Use something like soil-moisture-sensor- and

add a unique identifier on the end, like some random words or your name.

The --sku F1 option tells it to use a free tier. The free tier supports 8,000 messages a day

along with most of the features of the full-price tiers.

🎓 Different pricing levels of Azure services are referred to as tiers. Each tier has a

different cost and provides different features or data volumes.

💁 If you want to learn more about pricing, you can check out the Azure IoT Hub pricing

guide.

The --partition-count 2 option defines how many streams of data the IoT Hub supports,

more partitions reduce data blocking when multiple things read and write from the IoT Hub.

Partitions are outside the scope of these lessons, but this value needs to be set to create a free

tier IoT Hub.

💁 You can only have one free tier IoT Hub per subscription.

az iot hub create --resource-group soil-moisture-sensor \
 --sku F1 \
 --partition-count 2 \
 --name <hub_name>

sh

https://azure.microsoft.com/pricing/details/iot-hub/?WT.mc_id=academic-17441-jabenn

The IoT Hub will be created. It make take a minute or so for this to complete.

Communicate with IoT Hub

In the previous lesson, you used MQTT and sent messages back and forward on different topics, with

the different topics having different purposes. Rather than send messages over different topics, IoT

Hub has a number of defined ways for the device to communicate with the Hub, or for the Hub to

communicate with the device.

💁 Under the hood this communication between IoT Hub and your device can use MQTT,

HTTPS or AMQP.

Device to cloud (D2C) messages - these are messages sent from a device to IoT Hub, such as

telemetry. They can then be read off the IoT Hub by your application code.

🎓 Under the hood, IoT Hub uses an Azure service called Event Hubs. When you write

code to read messages sent to the hub, these are often called events.

Cloud to device (C2D) messages - these are messages sent from application code, via an IoT Hub

to an IoT device

Direct method requests - these are messages sent from application code via an IoT Hub to an IoT

device to request that the device does something, such as control an actuator. These messages

require a response so your application code can tell if it was successfully processed.

Device twins - these are JSON documents kept synchronized between the device and IoT Hub,

and are used to store settings or other properties either reported by the device, or should be set

on the device (known as desired) by the IoT Hub.

IoT Hub can store messages and direct method requests for a configurable period of time (defaulting

to one day), so if a device or application code loses connection, it can still retrieve messages sent

whilst it was offline after it reconnects. Device twins are kept permanently in the IoT Hub, so at any

time a device can reconnect and get the latest device twin.

✅ Do some research: Read more on these message types on the Device-to-cloud communications

guidance, and the Cloud-to-device communications guidance in the IoT Hub documentation.

https://docs.microsoft.com/azure/event-hubs/?WT.mc_id=academic-17441-jabenn
https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-d2c-guidance?WT.mc_id=academic-17441-jabenn
https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-c2d-guidance?WT.mc_id=academic-17441-jabenn

Connect your device to the IoT service

Once the hub is created, your IoT device can connect to it. Only registered devices can connect to a

service, so you will need to register your device first. When you register you can get back a

connection string that the device can use to connect. This connection string is device specific, and

contains information about the IoT Hub, the device, and a secret key that will allow this device to

connect.

🎓 A connection string is a generic term for a piece of text that contains connection details.

These are used when connecting to IoT Hubs, databases and many other services. They

usually consist of an identifier for the service, such as a URL, and security information such as

a secret key. These are passed to SDKs to connect to the service.

⚠ Connection strings should be kept secure! Security will be covered in more detail in a future

lesson.

Task - register your IoT device

The IoT device can be registered with your IoT Hub using the Azure CLI.

1. Run the following command to register a device:

Replace <hub_name> with the name you used for your IoT Hub.

This will create a device with an ID of soil-moisture-sensor .

2. When your IoT device connects to your IoT Hub using the SDK, it needs to use a connection string

that gives the URL of the hub, along with a secret key. Run the following command to get the

connection string:

az iot hub device-identity create --device-id soil-moisture-sensor \
 --hub-name <hub_name>

sh

az iot hub device-identity connection-string show --device-id soil-moist
 --output table \

sh

Replace <hub_name> with the name you used for your IoT Hub.

3. Store the connection string that is shown in the output as you will need it later.

Task - connect your IoT device to the cloud

Work through the relevant guide to connect your IoT device to the cloud:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi/Virtual IoT device

Task - monitor events

For now, you won't be updating your server code. Instead you can use the Azure CLI to monitor

events from your IoT device.

1. Make sure your IoT device is running and sending soil moisture telemetry values

2. Run the following command in your command prompt or terminal to monitor messages sent to

your IoT Hub:

Replace <hub_name> with the name you used for your IoT Hub.

You will see messages appear in the console output as they are sent by your IoT device.

 --hub-name <hub_name>

az iot hub monitor-events --hub-name <hub_name>
sh

Starting event monitor, use ctrl-c to stop...
{
 "event": {
 "origin": "soil-moisture-sensor",
 "module": "",
 "interface": "",
 "component": "",
 "payload": "{\"soil_moisture\": 376}"
 }
},
{
 "event": {

output

The contents of the payload will match the message sent by your IoT device.

3. These messages have a number of properties attached to them automatically, such as the

timestamp they were sent. These are known as annotations. To view all the message annotations,

use the following command:

Replace <hub_name> with the name you used for your IoT Hub.

You will see messages appear in the console output as they are sent by your IoT device.

 "origin": "soil-moisture-sensor",
 "module": "",
 "interface": "",
 "component": "",
 "payload": "{\"soil_moisture\": 381}"
 }
}

az iot hub monitor-events --properties anno --hub-name <hub_name>
sh

Starting event monitor, use ctrl-c to stop...
{
 "event": {
 "origin": "soil-moisture-sensor",
 "module": "",
 "interface": "",
 "component": "",
 "properties": {},
 "annotations": {
 "iothub-connection-device-id": "soil-moisture-sensor",
 "iothub-connection-auth-method": "{\"scope\":\"device\",\"ty
 "iothub-connection-auth-generation-id": "637553997165220462"
 "iothub-enqueuedtime": 1619976150288,
 "iothub-message-source": "Telemetry",
 "x-opt-sequence-number": 1379,
 "x-opt-offset": "550576",
 "x-opt-enqueued-time": 1619976150277
 },
 "payload": "{\"soil_moisture\": 381}"
 }
}

output

The time values in the annotations are in UNIX time, representing the number of seconds since

midnight on 1 January 1970.

Task - control your IoT device

You can also use the Azure CLI to call direct methods on your IoT device.

1. Run the following command in your command prompt or terminal to invoke the relay_on

method on the IoT device:

Replace <hub_name> with the name you used for your IoT Hub.

This sends a direct method request for the method specified by method-name . Direct methods

can take a payload containing data for the method, and this can be specified in the

method-payload parameter as JSON.

You will see the relay turn on, and the corresponding output from your IoT device:

2. Repeat the above step, but set the --method-name to relay_off . You will see the relay

turn off and the corresponding output from the IoT device.

🚀 Challenge

The free tier of IoT Hub allows 8,000 messages a day. The code you wrote sends telemetry messages

every 10 seconds. How many messages a day is one message every 10 seconds?

Think about how often soil moisture measurements should be sent? How can you change your code

to stay within the free tier and check as often as needed but not too often? What if you wanted to add

a second device?

st

az iot hub invoke-device-method --device-id soil-moisture-sensor \
 --method-name relay_on \
 --method-payload '{}' \
 --hub-name <hub_name>

sh

Direct method received - relay_on
output

https://wikipedia.org/wiki/Unix_time

Post-lecture quiz

Post-lecture quiz

Review & Self Study

The IoT Hub SDK is open source for both Arduino and Python. In the code repos on GitHub there are

a number of samples showing how work with different IoT Hub features.

If you are using a Wio Terminal, check out the Arduino samples on GitHub

If you are using a Raspberry Pi or Virtual device, check out the Python samples on GitHub

Assignment

Learn about cloud services

Migrate your application logic to the cloud
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

Introduction

In the last lesson, you learned how to connect your plant soil moisture monitoring and relay control to

a cloud-based IoT service. The next step is to move the server code that controls the timing of the

relay to the cloud. In this lesson you will learn how to do this using serverless functions.

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/16
https://github.com/Azure/azure-iot-pal-arduino/tree/master/pal/samples
https://github.com/Azure/azure-iot-sdk-python/tree/master/azure-iot-hub/samples
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/17

In this lesson we'll cover:

What is serverless?

Create a serverless application

Create an IoT Hub event trigger

Send direct method requests from serverless code

Deploy your serverless code to the cloud

What is serverless?

Serverless, or serverless computing, involves creating small blocks of code that are run in the cloud in

response to different kinds of events. When the event happens your code is run, and it is passed data

about the event. These events can be from many different things, including web requests, messages

put on a queue, changes to data in a database, or messages sent to an IoT service by IoT devices.

Events being sent from an IoT service to a serverless service, all being processed at the same

time by multiple functions being run. IoT by Adrien Coquet from the Noun Project

💁 If you've used database triggers before, you can think of this as the same thing, code

being triggered by an event such as inserting a row.

https://thenounproject.com/

When many events are sent at the same time, the serverless service scales up to run them all at

the same time. IoT by Adrien Coquet from the Noun Project

Your code is only run when the event happens, there is nothing keeping your code alive at other

times. The event happens, your code is loaded and run. This makes serverless very scalable - if many

events happen at the same time, the cloud provider can run your function as many times as you need

at the same time across whatever servers they have available. The downside to this is if you need to

share information between events, you need to save it somewhere like a database rather than storing

it in memory.

Your code is written as a function that takes details about the event as a parameter. You can use a

wide range of programming languages to write these serverless functions.

🎓 Serverless is also referred to as Functions as a service (FaaS) as each event trigger is

implemented as a function in code.

Despite the name, serverless does actually use servers. The naming is because you as a developer

don't care about the servers needed to run your code, all you care about is that your code is run in

https://thenounproject.com/

response to an event. The cloud provider has a serverless runtime that manages allocating servers,

networking, storage, CPU, memory and everything else needed to run your code. This model means

you can't pay per server for the service, as there is no server. Instead you pay for the time your code

is running, and the amount of memory used.

💰 Serverless is one of the cheapest ways to run code in the cloud. For example, at the time

of writing, one cloud provider allows all of your serverless functions to execute a combined

1,000,000 times a month before they start charging you, and after that they charge US$0.20

for each 1,000,000 executions. When your code is not running, you don't pay.

As an IoT developer, the serverless model is ideal. You can write a function that is called in response

to messages sent from any IoT device that is connected to your cloud-hosted IoT service. Your code

will handle all messages sent, but only be running when needed.

✅ Look back at the code you wrote as server code listening to messages over MQTT. How might

this run in the cloud using serverless? How do you think the code might be changed to support

serverless computing?

💁 The serverless model is moving to other cloud services in addition to running code. For

example, serverless databases are available in the cloud using a serverless pricing model

where you pay per request made against the database, such as a query or insert, usually

using pricing based on how much work is done to service the request. For example a single

select of one row against a primary key will cost less than a complicated operation joining

many tables and returning thousands of rows.

Create a serverless application

The serverless computing service from Microsoft is called Azure Functions.

The short video below has an overview of Azure Functions

🎥 Click the image above to watch a video

✅ Take a moment to do some research and read the overview of Azure Functions in the Microsoft

Azure Functions documentation.

To write Azure Functions, you start with an Azure Functions app in the language of your choice. Out

of the box Azure Functions supports Python, JavaScript, TypeScript, C#, F#, Java, and Powershell. In

this lesson you will learn how to write an Azure Functions app in Python.

💁 Azure Functions also supports custom handlers so you can write your functions in any

language that supports HTTP requests, including older languages such as COBOL.

Functions apps consist of one or more triggers - functions that respond to events. You can have

multiple triggers inside one function app, all sharing common configuration. For example, in the

configuration file for your Functions app you can have the connection details of your IoT Hub, and all

the functions in the app can use this to connect and listen for events.

Task - install the Azure Functions tooling

One great feature of Azure Functions is that you can run them locally. The same runtime that is used

in the cloud can be run on your computer, allowing you to write code that responds to IoT messages

https://www.youtube.com/watch?v=8-jz5f_JyEQ
https://docs.microsoft.com/azure/azure-functions/functions-overview?WT.mc_id=academic-17441-jabenn

and run it locally. You can even debug your code as events are handled. Once you are happy with

your code, it can be deployed to the cloud.

The Azure Functions tooling is available as a CLI, known as the Azure Functions Core Tools.

1. Install the Azure Functions core tools by following the instructions on the Azure Functions Core

Tools documentation

2. Install the Azure Functions extension for VS Code. This extension provides support for creating,

debugging and deploying Azure functions. Refer to the Azure Functions extension documentation

for instructions on installing this extension in VS Code.

When you deploy your Azure Functions app to the cloud, it needs to use a small amount of cloud

storage to store things like the application files and log files. When you run your Functions app locally,

you still need to connect to cloud storage, but instead of using actual cloud storage, you can use a

storage emulator called Azurite. This runs locally but acts like cloud storage.

🎓 In Azure, the storage that Azure Functions uses is an Azure Storage Account. These

accounts can store files, blobs, data in tables or data in queues. You can share one storage

account between many apps, such as a Functions app and a web app.

1. Azurite is a Node.js app, so you will need to install Node.js. You can find the download and

installation instructions on the Node.js website. If you are using a Mac, you can also install it from

Homebrew.

2. Install Azurite using the following command (npm is a tool that is installed when you install

Node.js):

3. Create a folder called azurite for Azurite to use to store data:

4. Run Azurite, passing it this new folder:

npm install -g azurite
sh

mkdir azurite
sh

azurite --location azurite
sh

https://docs.microsoft.com/azure/azure-functions/functions-run-local?WT.mc_id=academic-17441-jabenn
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-azurefunctions&WT.mc_id=academic-17441-jabenn
https://github.com/Azure/Azurite
https://nodejs.org/
https://formulae.brew.sh/formula/node

The Azurite storage emulator will launch and be ready for the local Functions runtime to connect.

Task - create an Azure Functions project

The Azure Functions CLI can be used to create a new Functions app.

1. Create a folder for your Functions app and navigate to it. Call it soil-moisture-trigger

2. Create a Python virtual environment inside this folder:

3. Activate the virtual environment:

On Windows run:

On macOS or Linux, run:

4. Run the following command to create a Functions app in this folder:

➜ ~ azurite --location azurite
Azurite Blob service is starting at http://127.0.0.1:10000
Azurite Blob service is successfully listening at http://127.0.0.1:10000
Azurite Queue service is starting at http://127.0.0.1:10001
Azurite Queue service is successfully listening at http://127.0.0.1:1000
Azurite Table service is starting at http://127.0.0.1:10002
Azurite Table service is successfully listening at http://127.0.0.1:1000

output

mkdir soil-moisture-trigger
cd soil-moisture-trigger

sh

python3 -m venv .venv
sh

.venv\Scripts\activate.bat
cmd

source ./.venv/bin/activate
cmd

func init --worker-runtime python soil-moisture-trigger
sh

This will create three files inside the current folder:

host.json - this JSON document contains settings for your Functions app. You won't

need to modify these settings.

local.settings.json - this JSON document contains settings your app would use when

running locally, such as connection strings for your IoT Hub. These settings are local only, and

should not be added to source code control. When you deploy the app to the cloud, these

settings are not deployed, instead your settings are loaded from application settings. This will

be covered later in this lesson.

requirements.txt - this is a Pip requirements file that contains the Pip packages needed

to run your Functions app.

5. The local.settings.json file has a setting for the storage account that the Functions app

will use. This defaults to an empty setting, so needs to be set. To connect to the Azurite local

storage emulator, set this value to the following:

6. Install the necessary Pip packages using the requirements file:

💁 The required Pip packages need to be in this file, so that when the Functions app is

deployed to the cloud, the runtime can ensure it installs the correct packages.

7. To test everything is working correctly, you can start the Functions runtime. Run the following

command to do this:

You will see the runtime start up and report that it hasn't found any job functions (triggers).

"AzureWebJobsStorage": "UseDevelopmentStorage=true",
json

pip install -r requirements.txt
sh

func start
sh

(.venv) ➜ soil-moisture-trigger func start
Found Python version 3.9.1 (python3).

Azure Functions Core Tools

output

https://pip.pypa.io/en/stable/user_guide/#requirements-files

⚠ If you get a firewall notification, grant access as the func application needs to be

able to read and write to your network.

⚠ If you are using macOS, there may be warnings in the output:

You can ignore these as long as the Functions app starts correctly and lists the running

functions. As mentioned in this question on the Microsoft Docs Q&A it can be ignored.

8. Stop the Functions app by pressing ctrl+c .

9. Open the current folder in VS Code, either by opening VS Code, then opening this folder, or by

running the following:

VS Code will detect your Functions project and show a notification saying:

Core Tools Version: 3.0.3442 Commit hash: 6bfab24b2743f8421475d996
Function Runtime Version: 3.0.15417.0

[2021-05-05T01:24:46.795Z] No job functions found.

(.venv) ➜ soil-moisture-trigger func start
Found Python version 3.9.1 (python3).

Azure Functions Core Tools
Core Tools Version: 3.0.3442 Commit hash: 6bfab24b2743f84214
Function Runtime Version: 3.0.15417.0

[2021-06-16T08:18:28.315Z] Cannot create directory for shared memo
[2021-06-16T08:18:28.316Z] System.IO.FileSystem: Access to the pat
[2021-06-16T08:18:30.361Z] No job functions found.

output

code .
sh

Detected an Azure Functions Project in folder "soil-moisture-trigger" th
VS Code. Initialize for optimal use with VS Code?

output

https://docs.microsoft.com/answers/questions/396617/azure-functions-core-tools-error-osx-devshmazurefu.html?WT.mc_id=academic-17441-jabenn

Select Yes from this notification.

10. Make sure the Python virtual environment is running in the VS Code terminal. Terminate it and

restart it if necessary.

Create an IoT Hub event trigger

The Functions app is the shell of your serverless code. To respond to IoT hub events, you can add an

IoT Hub trigger to this app. This trigger needs to connect to the stream of messages that are sent to

the IoT Hub and respond to them. To get this stream of messages, your trigger needs to connect to

the IoT Hubs event hub compatible endpoint.

IoT Hub is based upon another Azure service called Azure Event Hubs. Event Hubs is a service that

allows you to send and receive messages, IoT Hub extends this to add features for IoT devices. The

way you connect to read messages off the IoT Hub is the same as you would if you were using Event

Hubs.

✅ Do some research: Read the overview of Event Hubs in the Azure Event Hubs documentation.

How do the basic features compare to IoT Hub?

For an IoT device to connect to the IoT Hub, it has to use a secret key that ensures only allowed

devices can connect. The same applies when connecting to read off messages, your code will need a

connection string that contains a secret key, along with details of the IoT Hub.

💁 The default connection string you get has iothubowner permissions, which gives any

code that uses it full permissions on the IoT Hub. Ideally you should connect with the lowest

level of permissions needed. This will be covered in the next lesson.

Once your trigger has connected, the code inside the function will be called for every message sent

to the IoT Hub, regardless of which device sent it. The trigger will be passed the message as a

parameter.

https://docs.microsoft.com/azure/event-hubs/event-hubs-about?WT.mc_id=academic-17441-jabenn

Task - get the Event Hub compatible endpoint connection string

1. From the VS Code terminal run the following command to get the connection string for the IoT

Hubs Event Hub compatible endpoint:

Replace <hub_name> with the name you used for your IoT Hub.

2. In VS Code, open the local.settings.json file. Add the following additional value inside the

Values section:

Replace <connection string> with the value from the previous step. You will need to add a

comma after the line above to make this valid JSON.

Task - create an event trigger

You are now ready to create the event trigger.

1. From the VS Code terminal run the following command from inside the

soil-moisture-trigger folder:

This creates a new Function called iot-hub-trigger . The trigger will connect to the Event

Hub compatible endpoint on the IoT Hub, so you can use an event hub trigger. There is no specific

IoT Hub trigger.

This will create a folder inside the soil-moisture-trigger folder called iot-hub-trigger

that contains this function. This folder will have the following files inside it:

__init__.py - this is the Python code file that contains the trigger, using the standard Python

file name convention to turn this folder into a Python module.

This file will contain the following code:

az iot hub connection-string show --default-eventhub \
 --output table \
 --hub-name <hub_name>

sh

"IOT_HUB_CONNECTION_STRING": "<connection string>"
json

func new --name iot-hub-trigger --template "Azure Event Hub trigger"
sh

The core of the trigger is the main function. It is this function that is called with the events from

the IoT Hub. This function has a parameter called events that contains a list of

EventHubEvent . Each event in this list is a message sent to IoT Hub, along with properties that

are the same as the annotations you saw in the last lesson.

This trigger processes a list of events, rather than individual events. When you first run the trigger

it wil process any unprocessed events on the IoT Hub (remember that messages are stored for a

while so they are not lost if your application code is offline). After this it will generally process a list

containing only one event, unless a lot of events are sent to the Hub in a short space of time.

The core of this function loops through the list and logs the events.

function.json - this contains configuration for the trigger. The main configuration is in a

section called bindings . A binding is the term for a connection between Azure Functions and

other Azure services. This function has an input binding to an event hub - it connects to an event

hub and receives data.

💁 You can also have output bindings so that the output of a function is sent to another

service. For example you could add an output binding to a database and return the IoT

Hub event from the function, and it will automatically be inserted into the database.

✅ Do some research: Read up on bindings in the Azure Functions triggers and bindings

concepts documentation.

The bindings section includes configuration for the binding. The values of interest are:

"type": "eventHubTrigger" - this tells the function it needs to listen to events from an

Event Hub

"name": "events" - this is the parameter name to use for the Event Hub events. This

matches the parameter name in the main function in the Python code.

from typing import List
import logging
import azure.functions as func

def main(events: List[func.EventHubEvent]):
 for event in events:
 logging.info('Python EventHub trigger processed an event: %s',
 event.get_body().decode('utf-8'))

python

https://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings?tabs=python&WT.mc_id=academic-17441-jabenn

"direction": "in", - this is an input binding, the data from the event hub comes into

the function

"connection": "" - this defines the name of the setting to read the connection string

from. When running locally, this will read this setting from the local.settings.json file.

💁 The connection string cannot be stored in the function.json file, it has to be

read from the settings. This is to stop you accidentally exposing your connection

string.

1. Update the value of "connection" in the function.json file to point to the new value you

added to the local.settings.json file:

💁 Remember - this needs to point to the setting, not contain the actual connection

string.

Task - run the event trigger

1. To run the Functions app, run the following command from the VS Code terminal

The Functions app will start up, and will discover the iot-hub-trigger function. It will then

process any events that have already been sent to the IoT Hub in the past day.

"connection": "IOT_HUB_CONNECTION_STRING",
json

func start
sh

(.venv) ➜ soil-moisture-trigger func start
Found Python version 3.9.1 (python3).

Azure Functions Core Tools
Core Tools Version: 3.0.3442 Commit hash: 6bfab24b2743f8421475d996
Function Runtime Version: 3.0.15417.0

Functions:

output

Each call to the function will be surrounded by a

Executing 'Functions.iot-hub-trigger' / Executed 'Functions.iot-hub-trigger'

block in the output, so you can how many messages were processed in each function call.

If you get the following error:

Then check Azurite is running and you have set the AzureWebJobsStorage in the

local.settings.json file to UseDevelopmentStorage=true .

2. Make sure your IoT device is running, You will see new soil moisture messages appearing in the

Functions app.

3. Stop and restart the Functions app. You will see that it won't process messages previous

messages again, it will only process new messages.

💁 VS Code also supports debugging your Functions. You can set break points by clicking on

the border by the start of each line of code, or putting the cursor on a line of code and

selecting Run -> Toggle breakpoint, or pressing F9 . You can launch the debugger by

selecting Run -> Start debugging, pressing F5 , or selecting the Run and debug pane and

selecting the Start debugging button. By doing this you can see the details of the events

being processed.

 iot-hub-trigger: eventHubTrigger

For detailed output, run func with --verbose flag.
[2021-05-05T02:44:07.517Z] Worker process started and initialized.
[2021-05-05T02:44:09.202Z] Executing 'Functions.iot-hub-trigger' (Reason
[2021-05-05T02:44:09.205Z] Trigger Details: PartionId: 0, Offset: 101124
[2021-05-05T02:44:09.352Z] Python EventHub trigger processed an event: {
[2021-05-05T02:44:09.354Z] Python EventHub trigger processed an event: {
[2021-05-05T02:44:09.395Z] Executed 'Functions.iot-hub-trigger' (Succeed

The listener for function 'Functions.iot-hub-trigger' was unable to star
output

Send direct method requests from serverless code

So far your Functions app is listening to messages from the IoT Hub using the Event Hub compatible

end point. You now need to send commands to the IoT device. This is done by using a different

connection to the IoT Hub via the Registry Manager. The Registry Manager is a tool that allows you to

see what devices are registered with the IoT Hub, and communicate with those devices by sending

cloud to device messages, direct method requests or updating the device twin. You can also use it to

register, update or delete IoT devices from the IoT Hub.

To connect to the Registry Manager, you need a connection string.

Task - get the Registry Manager connection string

1. To get the connection string, run the following command:

Replace <hub_name> with the name you used for your IoT Hub.

The connection string is requested for the ServiceConnect policy using the

--policy-name service parameter. When you request a connection string, you can specify

what permissions that connection string will allow. The ServiceConnect policy allows your code to

connect and send messages to IoT devices.

✅ Do some research: Read up on the different policies in the IoT Hub permissions

documentation

2. In VS Code, open the local.settings.json file. Add the following additional value inside the

Values section:

Replace <connection string> with the value from the previous step. You will need to add a

comma after the line above to make this valid JSON.

Task - send a direct method request to a device

az iot hub connection-string show --policy-name service \
 --output table \
 --hub-name <hub_name>

sh

"REGISTRY_MANAGER_CONNECTION_STRING": "<connection string>"
json

https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-security#iot-hub-permissions?WT.mc_id=academic-17441-jabenn

1. The SDK for the Registry Manager is available via a Pip package. Add the following line to the

requirements.txt file to add the dependency on this package:

2. Make sure the VS Code terminal has the virtual environment activated, and run the following

command to install the Pip packages:

3. Add the following imports to the __init__.py file:

This imports some system libraries, as well as the libraries to interact with the Registry Manager

and send direct method requests.

4. Remove the code from inside the main method, but keep the method itself.

5. When multiple messages are received, it only makes sense to process the last one as this is the

current soil moisture. It makes no sense to process messages from before. Add the following code

to get the last message from the events parameter:

6. Below this, add the following code:

This code extracts the body of the event which contains the JSON message sent by the IoT

device.

azure-iot-hub
sh

pip install -r requirements.txt
sh

import json
import os
from azure.iot.hub import IoTHubRegistryManager
from azure.iot.hub.models import CloudToDeviceMethod

python

event = events[-1]
python

body = json.loads(event.get_body().decode('utf-8'))
device_id = event.iothub_metadata['connection-device-id']

logging.info(f'Received message: {body} from {device_id}')

python

It then gets the device ID from the annotations passed with the message. The body of the event

contains the message sent as telemetry, the iothub_metadata dictionary contains properties

set by the IoT Hub such as the device ID of the sender, and the time that the message was sent.

This information is then logged. You will see this logging in the terminal when you run the Function

app locally.

7. Below this, add the following code:

This code gets the soil moisture from the message. It then checks the soil moisture, and

depending on the value, creates a helper class for the direct method request for the relay_on

or relay_off direct method. The method request doesn't need a payload, so an empty JSON

document is sent.

8. Below this add the following code:

This code loads the REGISTRY_MANAGER_CONNECTION_STRING from the

local.settings.json file. The values in this file are made available as environment

variables, and these can be read using the os.environ function, a function that returns a

dictionary of all the environment variables.

💁 When this code is deployed to the cloud, the values in the local.settings.json

file will be set as Application Settings, and these can be read from environment variables.

The code then creates an instance of the Registry Manager helper class using the connection

string.

soil_moisture = body['soil_moisture']

if soil_moisture > 450:
 direct_method = CloudToDeviceMethod(method_name='relay_on', payload=
else:
 direct_method = CloudToDeviceMethod(method_name='relay_off', payload

python

logging.info(f'Sending direct method request for {direct_method.method_n

registry_manager_connection_string = os.environ['REGISTRY_MANAGER_CONNEC
registry_manager = IoTHubRegistryManager(registry_manager_connection_str

python

9. Below this add the following code:

This code tells the registry manager to send the direct method request to the device that sent the

telemetry.

💁 In the versions of the app you created in earlier lessons using MQTT, the relay control

commands were sent to all devices. The code assumed you would only have one device.

This version of the code sends the method request to a single device, so would work if you

had multiple setups of moisture sensors and relays, sending the right direct method

request to the right device.

10. Run the Functions app, and make sure your IoT device is sending data. You will see the messages

being processed and the direct method requests being sent. Move the soil moisture sensor in and

out of the soil to see the values change and the relay turn on and off

💁 You can find this code in the code/functions folder.

Deploy your serverless code to the cloud

Your code is now working locally, so the next step is to deploy the Functions App to the cloud.

Task - create the cloud resources

Your Functions app needs to be deployed to a Functions App resource in Azure, living inside the

Resource Group you created for your IoT Hub. You will also need a Storage Account created in Azure

to replace the emulated one you have running locally.

1. Run the following command to create a storage account:

registry_manager.invoke_device_method(device_id, direct_method)

logging.info('Direct method request sent!')

python

Replace <storage_name> with a name for your storage account. This will need to be globally

unique as it forms part of the URL used to access the storage account. You can only use lower

case letters and numbers for this name, no other characters, and it's limited to 24 characters. Use

something like sms and add a unique identifier on the end, like some random words or your

name.

The --sku Standard_LRS selects the pricing tier, selecting the lowest cost general-purpose

account. There isn't a free tier of storage, and you pay for what you use. The costs are relatively

low, with the most expensive storage at less than US$0.05 per month per gigabyte stored.

✅ Read up on pricing on the Azure Storage Account pricing page

2. Run the following command to create a Function App:

Replace <location> with the location you used when creating the Resource Group in the

previous lesson.

Replace <storage_name> with the name of the storage account you created in the previous

step.

Replace <functions_app_name> with a unique name for your Functions App. This will need

to be globally unique as it forms part of a URL that can be used to access the Functions App. Use

something like soil-moisture-sensor- and add a unique identifier on the end, like some

random words or your name.

The --functions-version 3 option sets the version of Azure Functions to use. Version 3 is

the latest version.

The --os-type Linux tells the Functions runtime to use Linux as the OS to host these

functions. Functions can be hosted on Linux or Windows, depending on the programming

az storage account create --resource-group soil-moisture-sensor \
 --sku Standard_LRS \
 --name <storage_name>

sh

az functionapp create --resource-group soil-moisture-sensor \
 --runtime python \
 --functions-version 3 \
 --os-type Linux \
 --consumption-plan-location <location> \
 --storage-account <storage_name> \
 --name <functions_app_name>

sh

https://azure.microsoft.com/pricing/details/storage/?WT.mc_id=academic-17441-jabenn

language used. Python apps are only supported on Linux.

Task - upload your application settings

When you developed your Functions App, you stored some settings in the

local.settings.json file for the connection strings for your IoT Hub. These need to be written

to Application Settings in your Function App in Azure so that they can be used by your code.

🎓 The local.settings.json file is for local development settings only, and these

should not be checked into source code control, such as GitHub. When deployed to the

cloud, Application Settings are used. Application Settings are key/value pairs hosted in the

cloud and are read from environment variables either in your code or by the runtime when

connecting your code to IoT Hub.

1. Run the following command to set the IOT_HUB_CONNECTION_STRING setting in the Functions

App Application Settings:

Replace <functions_app_name> with the name you used for your Functions App.

Replace <connection string> with the value of IOT_HUB_CONNECTION_STRING from

your local.settings.json file.

2. Repeat the step above, but set the value of REGISTRY_MANAGER_CONNECTION_STRING to the

corresponding value from your local.settings.json file.

When you run these commands, they will also output a list of all the Application Settings for the

function app. You can use this to check that your values are set correctly.

💁 You will see a value already set for AzureWebJobsStorage . In your

local.settings.json file, this was set to a value to use the local storage emulator.

When you created the Functions App, you pass the storage account as a parameter, and this

gets set automatically in this setting.

az functionapp config appsettings set --resource-group soil-moisture-sen
 --name <functions_app_name> \
 --settings "IOT_HUB_CONNECTION_STR

sh

Task - deploy your Functions App to the cloud

Now that the Functions App is ready, your code can be deployed.

1. Run the following command from the VS Code terminal to publish your Functions App:

Replace <functions_app_name> with the name you used for your Functions App.

The code will be packaged up and sent to the Functions App, where it will be deployed and started.

There will be a lot of console output, ending in confirmation of the deployment and a list of the

functions deployed. In this case the list will only contain the trigger.

Make sure your IoT device is running. Change the moisture levels by adjusting the soil moisture, or

moving the sensor in and out of the soil. You will see the relay turn on and off as the soil moisture

changes.

🚀 Challenge

In the previous lesson, you managed timing for the relay by unsubscribing from MQTT messages

whilst the relay was on, and for a short while after it was turned off. You can't use this method here -

you cannot unsubscribe your IoT Hub trigger.

Think about different ways you could handle this in your Functions App.

Post-lecture quiz

Post-lecture quiz

func azure functionapp publish <functions_app_name>
sh

Deployment successful.
Remote build succeeded!
Syncing triggers...
Functions in soil-moisture-sensor:
 iot-hub-trigger - [eventHubTrigger]

output

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/18

Review & Self Study

Read up on serverless computing on the Serverless Computing page on Wikipedia

Read about using serverless in Azure including some more examples on the Go serverless for your

IoT needs Azure blog post

Learn more about Azure Functions on the Azure Functions YouTube channel

Assignment

Add manual relay control

Keep your plant secure
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

Introduction

In the last few lessons you've created a soil monitoring IoT device and connected it to the cloud. But

what if hackers working for a rival farmer managed to seize control of your IoT devices? What if they

sent high soil moisture readings so your plants never got watered, or turned on your watering system

to run all the time killing your plants from over-watering and costing you a small fortune in water?

In this lesson you will learn about securing IoT devices. As this is the last lesson for this project, you

will also learn how to clean up your cloud resources, reducing any potential costs.

In this lesson we'll cover:

Why do you need to secure IoT devices?

Cryptography

https://wikipedia.org/wiki/Serverless_computing
https://azure.microsoft.com/blog/go-serverless-for-your-iot-needs/?WT.mc_id=academic-17441-jabenn
https://www.youtube.com/c/AzureFunctions
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/19

Secure your IoT devices

Generate and use an X.509 certificate

🗑 This is the last lesson in this project, so after completing this lesson and the assignment,

don't forget to clean up your cloud services. You will need the services to complete the

assignment, so make sure to complete that first.

Refer to the clean up your project guide if necessary for instructions on how to do this.

Why do you need to secure IoT devices?

IoT security involves ensuring that only expected devices can connect to your cloud IoT service and

send them telemetry, and only your cloud service can send commands to your devices. IoT data can

also be personal, including medical or intimate data, so your entire application needs to consider

security to stop this data being leaked.

If your IoT application is not secure, there are a number of risks:

A fake device could send incorrect data, causing your application to respond incorrectly. For

example, they could send constant high soil moisture readings, meaning your irrigation system

never turns on and your plants die from lack of water

Unauthorized users could read data from IoT devices including personal or business critical data

Hackers could send commands to control a device in a way that could cause damage to the

device or connected hardware

By connecting to an IoT device, hackers can use this to access additional networks to get access

to private systems

Malicious users could access personal data and use this for blackmail

These are real world scenarios, and happen all the time. Some examples were given in earlier lessons,

but here are some more:

In 2018, hackers used an open WiFi access point on a fish tank thermostat to gain access to a

casino's network to steal data. The Hacker News - Casino Gets Hacked Through Its Internet-

Connected Fish Tank Thermometer

In 2016, the Mirai Botnet launched a denial of service attack against Dyn, an Internet service

provider, taking down large portions of the Internet. This botnet used malware to connect to IoT

devices such as DVRs and cameras that used default usernames and passwords, and from there

launched the attack. The Guardian - DDoS attack that disrupted internet was largest of its kind in

history, experts say

https://thehackernews.com/2018/04/iot-hacking-thermometer.html
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

Spiral Toys had a database of users of their CloudPets connected toys publicly available over the

Internet. Troy Hunt - Data from connected CloudPets teddy bears leaked and ransomed, exposing

kids' voice messages.

Strava tagged runners that you ran past and showed their routes, allowing strangers to effectively

see where you live. Kim Komndo - Fitness app could lead a stranger right to your home — change

this setting.

✅ Do some research: Search for more examples IoT Hacks and breaches of IoT data, especially with

personal items such as Internet connected toothbrushes or scales. Think about the impact these

hacks could have on the victims or customers.

💁 Security is a massive topic, and this lesson will only touch on some of the basics around

connecting your device to the cloud. Other topics that won't be covered include monitoring

for data changes in transit, hacking devices directly, or changes to device configurations. IoT

hacking is such a threat, tools like Azure Defender for IoT have been developed. These tools

are similar to the anti-virus and security tools you might have on your computer, just designed

for small, low powered IoT devices.

Cryptography

When a device connects to an IoT service, it uses an ID to identify itself. The problem is this ID can be

cloned - a hacker could set up a malicious device that uses the same ID as a real device but sends

bogus data.

Both valid and malicious devices could use the same ID to send telemetry. Microcontroller by

Template / IoT by Adrien Coquet - all from the Noun Project

The way round this is to convert the data being sent into a scrambled format, using some kind of

value to scramble the data known to the device and the cloud only. This process is called encryption,

and the value used to encrypt the data is called an encryption key.

https://www.troyhunt.com/data-from-connected-cloudpets-teddy-bears-leaked-and-ransomed-exposing-kids-voice-messages/
https://www.komando.com/security-privacy/strava-fitness-app-privacy/755349/
https://azure.microsoft.com/services/azure-defender-for-iot/?WT.mc_id=academic-17441-jabenn
https://thenounproject.com/

If encryption is used, then only encrypted messages will be accepted, others will be rejected.

Microcontroller by Template / IoT by Adrien Coquet - all from the Noun Project

The cloud service can then convert the data back to a readable format, using a process called

decryption, using either the same encryption key, or a decryption key. If the encrypted message

cannot be decrypted by the key, the device has been hacked and the message is rejected.

The technique for doing encryption and decryption is called cryptography.

Early cryptography

The earliest types of cryptography were substitution ciphers, dating back 3,500 years. Substitution

ciphers involve substituting one letter for another. For example, the Caesar cipher involves shifting

the alphabet by a defined amount, with only the sender of the encrypted message, and the intended

recipient knowing how many letters to shift.

The Vigenère cipher took this further by using words to encrypt text, so that each letter in the original

text was shifted by a different amount, rather than always shifting by the same number of letters.

Cryptography was used for a wide range of purposes, such as protecting a potters glaze recipe in

ancient Mesopotamia, writing secret love notes in India, or keeping ancient Egyptian magical spells

secret.

Modern cryptography

Modern cryptography is much more advanced, making it harder to crack than early methods. Modern

cryptography uses complicated mathematics to encrypt data with far too many possible keys to

make brute force attacks possible.

Cryptography is used in a lot of different ways for secure communications. If you are reading this

page on GitHub, you may notice the web site address starts with HTTPS, meaning that the

communication between your browser and the web servers of GitHub is encrypted. If someone was

able to read the internet traffic flowing between your browser and GitHub, they wouldn't be able to

read the data as it is encrypted. Your computer might even encrypt all the data on your hard drive so

if someone steals it, they won't be able to read any of your data without your password.

https://thenounproject.com/
https://wikipedia.org/wiki/Caesar_cipher
https://wikipedia.org/wiki/Vigen%C3%A8re_cipher

🎓 HTTPS stands for HyperText Transfer Protocol Secure

Unfortunately, not everything is secure. Some devices have no security, others are secured using

easy to crack keys, or sometimes even all the devices of the same type using the same key. There

have been accounts of very personal IoT devices that all have the same password to connect to them

over WiFi or Bluetooth. If you can connect to your own device, you can connect to someone else's.

Once connected you could access some very private data, or have control over their device.

💁 Despite the complexities of modern cryptography and the claims that breaking encryption

can take billions of years, the rise of quantum computing has led to the possibility of breaking

all know encryption in a very short space of time!

Symmetric and asymmetric keys

Encryption comes in two types - symmetric and asymmetric.

Symmetric encryption uses the same key to encrypt and decrypt the data. Both the sender and

receiver need to know the same key. This is the least secure type, as the key needs to be shared

somehow. For a sender to send an encrypted message to a recipient, the sender first might have to

send the recipient the key.

If the key gets stolen in transit, or the sender or recipient get hacked and the key is found, the

encryption can be cracked.

Asymmetric encryption uses 2 keys - an encryption key and a decryption key, referred to as a

public/private key pair. The public key is used to encrypt the message, but cannot be used to decrypt

it, the private key is used to decrypt the message but cannot be used to encrypt it.

The recipient shares their public key, and the sender uses this to encrypt the message. Once the

message is sent, the recipient decrypts it with their private key. Asymmetric encryption is more

secure as the private key is kept private by the recipient and never shared. Anyone can have the

public key as it can only be used to encrypt messages.

Symmetric encryption is faster than asymmetric encryption, asymmetric is more secure. Some

systems will use both - using asymmetric encryption to encrypt and share the symmetric key, then

using the symmetric key to encrypt all data. This makes it more secure to share the symmetric key

between sender and recipient, and faster when encrypting and decrypting data.

Secure your IoT devices

IoT devices can be secured using symmetric or asymmetric encryption. Symmetric is easier, but less

secure.

Symmetric keys

When you set up your IoT device to interact with IoT Hub, you used a connection string. An example

connection string is:

This connection string is made of three parts separated by semi-colons, with each part a key and a

value:

Key Value Description

HostName soil-moisture-sensor.azure-devices.net
The URL of the

IoT Hub

DeviceId soil-moisture-sensor
The unique ID

of the device

SharedAccessKey Bhry+ind7kKEIDxubK61RiEHHRTrPl7HUow8cEm/mU0=

A symmetric

key known by

the device and

the IoT Hub

The last part of this connection string, the SharedAccessKey , is the symmetric key known by

both the device and the IoT Hub. This key is never sent from the device to the cloud, or the cloud to

the device. Instead it is used to encrypt data that is sent or received.

✅ Do an experiment. What do you think will happen if you change the SharedAccessKey part of

the connection string when connecting your IoT device? Try it out.

When the device first tries to connect it sends a shared access signature (SAS) token consisting of

the URL of the IoT Hub, a timestamp that the access signature will expire (usually 1 day from the

current time), and a signature. This signature consists of the URL and the expiry time encrypted with

the shared access key from the connection string.

The IoT Hub decrypts this signature with the shared access key, and if the decrypted value matches

the URL and expiry, the device is allowed to connect. It also verifies that the current time is before the

expiry, to stop a malicious device capturing the SAS token of a real device and using it.

HostName=soil-moisture-sensor.azure-devices.net;DeviceId=soil-moisture-sens
output

This is an elegant way to verify that the sender is the correct device. By sending some known data in

both a decrypted and encrypted form, the server can verify the device by ensuring when it decrypts

the encrypted data, the result matches the decrypted version that was sent. If it matches, then both

the sender and recipient have the same symmetric encryption key.

💁 Because of the expiry time, your IoT device needs to know the accurate time, usually read

from an NTP server. If the time is not accurate, the connection will fail.

After the connection, all data sent to the IoT Hub from the device, or to the device from the IoT Hub

will be encrypted with the shared access key.

✅ What do you think will happen if multiple devices share the same connection string?

💁 It is bad security practice to store this key in code. If a hacker gets your source code, they

can get your key. It is also harder when releasing code as you would need to recompile with an

updated key for every device. It is better to load this key from a hardware security module - a

chip on the IoT device that stores encrypted values that can be read by your code.

When learning IoT it is often easier to put the key in code, as you did in an earlier lesson, but

you must ensure this key is not checked into public source code control.

X.509 certificates

When you are using asymmetric encryption with a public/private key pair, you need to provide your

public key to anyone who wants to send you data. The problem is, how can the recipient of your key

be sure it's actually your public key, not someone else pretending to be you? Instead of providing a

key, you can instead provide your public key inside a certificate that has been verified by a trusted

third party, called an X.509 certificate.

X.509 certificates are digital documents that contain the public key part of the public/private key pair.

They are usually issued by one of a number of trusted organizations called Certification authorities

(CAs), and digitally signed by the CA to indicate the key is valid and comes from you. You trust the

certificate and that the public key is from who the certificate says it is from, because you trust the CA,

similar to how you would trust a passport or driving license because you trust the country issuing it.

Certificates cost money, so you can also 'self-sign', that is create a certificate yourself that is signed

by you, for testing purposes.

https://wikipedia.org/wiki/Network_Time_Protocol
https://wikipedia.org/wiki/Certificate_authority

💁 You should never use a self-signed certificate for a production release.

These certificates have a number of fields in them, including who the public key is from, the details of

the CA who issued it, how long it is valid for, and the public key itself. Before using a certificate, it is

good practice to verify it by checking that is was signed by the original CA.

✅ You can read a full list of the fields in the certificate in the Microsoft Understanding X.509 Public

Key Certificates tutorial

When using X.509 certificates, both the sender and the recipient will have their own public and

private keys, as well as both having X.509 certificates that contain the public key. They then

exchange X.509 certificates somehow, using each others public keys to encrypt the data they send,

and their own private key to decrypt the data they receive.

Instead of sharing a public key, you can share a certificate. The user of the certificate can verify

that it comes from you by checking with the certificate authority who signed it. Certificate by

alimasykurm from the Noun Project

One big advantage of using X.509 certificates is that they can be shared between devices. You can

create one certificate, upload it to IoT Hub, and use this for all your devices. Each device then just

needs to know the private key to decrypt the messages it receives from IoT Hub.

The certificate used by your device to encrypt messages it sends to the IoT Hub is published by

Microsoft. It is the same certificate that a lot of Azure services use, and is sometimes built into the

SDKs

💁 Remember, a public key is just that - public. The Azure public key can only be used to

encrypt data sent to Azure, not to decrypt it, so it can be shared everywhere, including in

source code. For example, you can see it in the Azure IoT C SDK source code.

https://docs.microsoft.com/azure/iot-hub/tutorial-x509-certificates?WT.mc_id=academic-17441-jabenn#certificate-fields
https://thenounproject.com/
https://github.com/Azure/azure-iot-sdk-c/blob/master/certs/certs.c

✅ There is a lot of jargon with X.509 certificates. You can read the definitions of some of the terms

you might come across in The layman s̓ guide to X.509 certificate jargon

Generate and use an X.509 certificate

The steps to generate an X.509 certificate are:

1. Create a public/private key pair. One of the most widely used algorithm to generate a

public/private key pair is called Rivest–Shamir–Adleman(RSA).

2. Submit the public key with associated data for signing, either by a CA, or by self-signing

The Azure CLI has commands to create a new device identity in IoT Hub, and automatically generate

the public/private key pair and create a self-signed certificate.

💁 If you want to see the steps in detail, rather than using the Azure CLI, you can find it in the

Using OpenSSL to create self-signed certificates tutorial in the Microsoft IoT Hub

documentation

Task - create a device identity using an X.509 certificate

1. Run the following command to register the new device identity, automatically generating the keys

and certificates:

Replace <hub_name> with the name you used for your IoT Hub.

This will create a device with an ID of soil-moisture-sensor-x509 to distinguish from the

device identity you created in the last lesson. This command will also create 2 files in the current

directory:

soil-moisture-sensor-x509-key.pem - this file contains the private key for the device.

soil-moisture-sensor-x509-cert.pem - this is the X.509 certificate file for the

device.

az iot hub device-identity create --device-id soil-moisture-sensor-x509
 --am x509_thumbprint \
 --output-dir . \
 --hub-name <hub_name>

sh

https://techcommunity.microsoft.com/t5/internet-of-things/the-layman-s-guide-to-x-509-certificate-jargon/ba-p/2203540?WT.mc_id=academic-17441-jabenn
https://wikipedia.org/wiki/RSA_(cryptosystem)
https://docs.microsoft.com/azure/iot-hub/tutorial-x509-self-sign?WT.mc_id=academic-17441-jabenn

Keep these files safe! The private key file should not be checked into public source code

control.

Task - use the X.509 certificate in your device code

Work through the relevant guide to connect your IoT device to the cloud using the X.509 certificate:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi/Virtual IoT device

🚀 Challenge

There are multiple ways to create, manage and delete Azure services such as Resource Groups and

IoT Hubs. One way is the Azure Portal - a web-based interface that gives you a GUI to manage your

Azure services.

Head to portal.azure.com and investigate the portal. See if you can create an IoT Hub using the

portal, then delete it.

Hint - when creating services through the portal, you don't need to create a Resource Group up

front, one can be created when you are creating the service. Make sure you delete it when you are

finished!

You can find plenty of documentation, tutorials and guides on the Azure Portal in the Azure portal

documentation.

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Read up on the history of cryptography on the History of cryptography page on Wikipedia.

Read up on X.509 certificates on the X.509 page on Wikipedia.

https://portal.azure.com/?WT.mc_id=academic-17441-jabenn
https://portal.azure.com/?WT.mc_id=academic-17441-jabenn
https://docs.microsoft.com/azure/azure-portal/?WT.mc_id=academic-17441-jabenn
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/20
https://wikipedia.org/wiki/History_of_cryptography
https://wikipedia.org/wiki/X.509

Assignment

Build a new IoT device

Location tracking
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

Introduction

The main process for getting food from a farmer to a consumer involves loading boxes of produce on

to trucks, ships, airplanes, or other commercial transport vehicles, and delivering the food

somewhere - either directly to a customer, or to a central hub or warehouse for processing. The

whole end-to-end process from farm to consumer is part of a process called the supply chain. The

video below from Arizona State University's W. P. Carey School of Business talks about the idea of the

supply chain and how it is managed in more detail.

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/21

🎥 Click the image above to watch a video

Adding IoT devices can drastically improve your supply chain, allowing you to manage where items

are, plan transport and goods handling better, and respond quicker to problems.

When managing a fleet of vehicles such as trucks, it is helpful to know where each vehicle is at a

given time. Vehicles can be fitted with GPS sensors that send their location to IoT systems, allowing

the owners to pinpoint their location, see the route they have taken, and know when they will arrive at

their destination. Most vehicles operate outside of WiFi coverage, so they use cellular networks to

send this kind of data. Sometimes the GPS sensor is built into more complex IoT devices such as

electronic log books. These devices track how long a truck has been in transit to ensure drivers are in

compliance with local laws on working hours.

In this lesson you will learn how to track a vehicles location using a Global Positioning System (GPS)

sensor.

In this lesson we'll cover:

Connected vehicles

Geospatial coordinates

Global Positioning Systems (GPS)

Read GPS sensor data

NMEA GPS data

Decode GPS sensor data

https://www.youtube.com/watch?v=Mi1QBxVjZAw

Connected vehicles

IoT is transforming the way goods are transported by creating fleets of connected vehicles. These

vehicles are connected to central IT systems reporting information on their location, and other sensor

data. Having a fleet of connected vehicles has a wide range of benefits:

Location tracking - you can pinpoint where a vehicle is at any time, allowing you to:

Get alerts when a vehicle is about to arrive at a destination to prepare a crew for unloading

Locate stolen vehicles

Combine location and route data with traffic problems to allow you to re-route vehicles mid-

journey

Be compliant with tax. Some countries charge vehicles for the amount of mileage driven on

public roads (such as New Zealand's RUC), so knowing when a vehicle is on public roads vs

private roads makes it easier to calculate tax owed.

Know where to send maintenance crews in the event of a breakdown

Driver telemetry - being able to ensure drivers are adhering to speed limits, cornering at

appropriate speeds, braking early and efficiently, and driving safely. Connected vehicles can also

have cameras to record incidents. This can be linked to insurance, giving reduced rates for good

drivers.

Driver hours compliance - ensuring drivers only drive for their legally allowed hours based on the

times they turn the engine on and off.

These benefits can be combined - for example, combining driver hours compliance with location

tracking to re-route drivers if they cannot reach their destination within their allowed driving hours.

These can also be combined with other vehicle-specific telemetry, such as temperature data from

temperature-controlled trucks, allow vehicles to be re-routed if their current route would mean goods

cannot be kept at temperature.

🎓 Logistics is the process of transporting goods from one place to another, such as from a

farm to a supermarket via one or more warehouses. A farmer packs boxes of tomatoes that

are loaded onto a truck, delivered to a central warehouse, and put onto a second truck that

may contain a mixture of different types of produce which are then delivered to a

supermarket.

The core component of vehicle tracking is GPS - sensors that can pinpoint their location anywhere on

Earth. In this lesson you will learn how to use a GPS sensor, starting with learning about how to define

a location on Earth.

https://www.nzta.govt.nz/vehicles/licensing-rego/road-user-charges/

Geospatial coordinates

Geospatial coordinates are used to define points on the Earth's surface, similar to how coordinates

can be used to draw to a pixel on a computer screen or position stitches in cross stitch. For a single

point, you have a pair of coordinates. For example, the Microsoft Campus in Redmond, Washington,

USA is located at 47.6423109, -122.1390293.

Latitude and longitude

The Earth is a sphere - a three-dimensional circle. Because of this, points are defined by dividing it

into 360 degrees, the same as the geometry of circles. Latitude measures the number of degrees

north to south, longitude measures the number of degrees east to west.

💁 No-one really knows the original reason why circles are divided into 360 degrees. The

degree (angle) page on Wikipedia covers some of the possible reasons.

Latitude is measured using lines that circle the Earth and run parallel to the equator, dividing the

Northern and Southern Hemispheres into 90° each. The equator is at 0°, the North Pole is 90°, also

known as 90° North, and the South Pole is at -90°, or 90° South.

Longitude is measured as the number of degrees measured east and west. The 0° origin of longitude

is called the Prime Meridian, and was defined in 1884 to be a line from the North to the South Pole

that goes through the British Royal Observatory in Greenwich, England.

https://wikipedia.org/wiki/Degree_(angle)
https://wikipedia.org/wiki/Royal_Observatory,_Greenwich

🎓 A meridian is an imaginary straight line that goes from the North Pole to the South Pole,

forming a semicircle.

To measure the longitude of a point, you measure the number of degrees round the equator from the

Prime Meridian to a meridian that passes through that point. Longitude goes from -180°, or 180°

West, through 0° at the Prime Meridian, to 180°, or 180° East. 180° and -180° refer to the same point,

the antimeridian or 180th meridian. This is a meridian on the opposite side of the Earth from the Prime

Meridian.

💁 The antimeridian is not to be confused with the International Date Line, which is in

approximately the same position, but is not a straight line and varies to fit around geo-political

boundaries.

✅ Do some research: Try to find the latitude and longitude of your current location.

Degrees, minutes and seconds vs decimal degrees

Traditionally, measurements of degrees of latitude and longitude were done using sexagesimal

numbering, or base-60, a numbering system used by the Ancient Babylonians who did the first

measurements and recordings of time and distance. You use sexagesimal every day probably without

even realising it - dividing hours into 60 minutes and minutes into 60 seconds.

Longitude and latitude are measured in degrees, minutes and seconds, with one minute being 1/60 of

a degree, and 1 second being 1/60 minute.

For example, at the equator:

1° of latitude is 111.3 kilometers

1 minute of latitude is 111.3/60 = 1.855 kilometers

1 second of latitude is 1.855/60 = 0.031 kilometers

The symbol for a minute is a single quote, for a second it is a double quote. 2 degrees, 17 minutes,

and 43 seconds for example, would be written as 2°17'43". Parts of seconds are given as decimals,

for example half a second is 0°0'0.5".

Computers don't work in base-60, so these coordinates are given as decimal degrees when using

GPS data in most computer systems. For example, 2°17'43" is 2.295277. The degree symbol is

usually omitted.

Coordinates for a point are always given as latitude, longitude , so the example earlier of the

Microsoft Campus at 47.6423109,-122.117198 has:

A latitude of 47.6423109 (47.6423109 degrees north of the equator)

A longitude of -122.1390293 (122.1390293 degrees west of the Prime Meridian).

Global Positioning Systems (GPS)

GPS systems use multiple satellites orbiting the Earth to locate your position. You've probably used

GPS systems without even knowing it - to find your location on a mapping app on your phone such as

Apple Maps or Google Maps, or to see where your ride is in a ride hailing app such as Uber or Lyft, or

when using satellite navigation (sat-nav) in your car.

🎓 The satellites in 'satellite navigation' are GPS satellites!

GPS systems work by having a number of satellites that send a signal with each satellites current

position, and an accurate timestamp. These signals are sent over radio waves and are detected by an

antenna in the GPS sensor. A GPS sensor will detect these signals, and using the current time

measure how long it took for the signal to reach the sensor from the satellite. Because the speed of

radio waves is constant, the GPS sensor can use the time stamp that was sent to work out how far

away the sensor is from the satellite. By combining the data from at least 3 satellites with the

positions sent, the GPS sensor is able to pinpoint its location on Earth.

💁 GPS sensors need antennas to detect radio waves. The antennas built into trucks and cars

with on-board GPS are positioned to get a good signal, usually on the windshield or roof. If

you are using a separate GPS system, such as a smartphone or an IoT device, then you need

to ensure that the antenna built into the GPS system or phone has a clear view of the sky,

such as being mounted on your windshield.

By knowing the distance from the sensor to multiple satellites, the location be calculated.

Satellite by Noura Mbarki from the Noun Project

https://thenounproject.com/

GPS satellites are circling the Earth, not at a fixed point above the sensor, so location data includes

altitude above sea level as well as latitude and longitude.

GPS used to have limitations on accuracy enforced by the US military, limiting accuracy to around 5

meters. This limitation was removed in 2000, allowing an accuracy of 30 centimeters. Getting this

accuracy is not always possible due to interference with the signals.

✅ If you have a smart phone, launch the mapping app and see how accurate your location is. It may

take a short period of time for your phone to detect multiple satellites to get a more accurate location.

💁 The satellites contain atomic clocks that are incredibly accurate, but they drift by 38

microseconds (0.0000038 seconds) a day compared to atomic clocks, due to time slowing

down as speed increases as predicted by Einstein's theories of special and general relativity -

the satellites travel faster than the Earth's rotation. This drift has been used to prove the

predictions of special and general relativity, and has to be adjusted for in the design of GPS

systems. Literally time runs slower on a GPS satellite.

GPS systems have been developed and deployed by a number of countries and political unions

including the US, Russia, Japan, India, the EU, and China. Modern GPS sensor can connect to most of

these systems to get faster and more accurate fixes.

🎓 The groups of satellites in each deployment are referred to as constellations.

Read GPS sensor data

Most GPS sensors send GPS data over UART.

⚠ UART was covered in project 2, lesson 2. Refer back to that lesson if needed.

You can use a GPS sensor on your IoT device to get GPS data.

Task - connect a GPS sensor and read GPS data

Work through the relevant guide to measure soil moisture using your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

Single-board computer - Virtual device

NMEA GPS data

When you ran your code, you would have seen what might appear to be gibberish in the output. This

is actually standard GPS data, and it all has meaning.

GPS sensors output data using NMEA messages, using the NMEA 0183 standard. NMEA is an

acronym for the National Marine Electronics Association, a US-based trade organization that sets

standard for communication between marine electronics.

💁 This standard is proprietary and sells for at least US$2,000, but enough information about

it is in the public domain that most of the standard has been reverse engineered and can be

used in open source and other non-commercial code.

These messages are text-based. Each message consists of a sentence that starts with a $

character, followed by 2 characters to indicate the source of the message (e.g GP for the US GPS

system, GN for GLONASS, the Russian GPS system), and 3 characters to indicate the type of

message. The rest of the message is fields separated by commas, ending in a new line character.

Some of the types of messages that can be received are:

Type Description

GGA
GPS Fix Data, including the latitude, longitude, and altitude of the GPS sensor, along with

the number of satellites in view to calculate this fix.

ZDA The current date and time, including the local time zone

GSV
Details of the satellites in view - defined as the satellited that GPS sensor can detect

signals from

https://www.nmea.org/

💁 GPS data includes time stamps, so your IoT device can get the time if needed from a GPS

sensor, rather than relying on an NTP server or internal real-time clock.

The GGA message includes the current location using the (dd)dmm.mmmm format, along with a

single character to indicate direction. The d in the format is degrees, the m is minutes, with

seconds as decimals of minutes. For example, 2°17'43" would be 217.716666667 - 2 degrees,

17.716666667 minutes.

The direction character can be N or S for latitude to indicate north or south, and E or W for

longitude to indicate east or west. For example, a latitude of 2°17'43" would have a direction

character of N , -2°17'43" would have a direction character of S .

For example - the NMEA sentence

$GNGGA,020604.001,4738.538654,N,12208.341758,W,1,3,,164.7,M,-17.1,M,,*67

The latitude part is 4738.538654,N , which converts to 47.6423109 in decimal degrees.

4738.538654 is 47.6423109, and the direction is N (north), so it is a positive latitude.

The longitude part is 12208.341758,W , which converts to -122.1390293 in decimal degrees.

12208.341758 is 122.1390293°, and the direction is W (west), so it is a negative longitude.

Decode GPS sensor data

Rather than use the raw NMEA data, it is better to decode it into a more useful format. There are

multiple open-source libraries you can use to help extract useful data from the raw NMEA messages.

Task - decode GPS sensor data

Work through the relevant guide to decode GPS sensor data using your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi/Virtual IoT device

🚀 Challenge

Write your own NMEA decoder! Rather than relying on third party libraries to decode NMEA

sentences, can you write your own decoder to extract latitude and longitude from NMEA sentences?

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Read more on Geospatial Coordinates on the Geographic coordinate system page on Wikipedia.

Read up on the Prime Meridians on other celestial bodies besides the Earth on the Prime Meridian

page on Wikipedia

Research the various different GPS systems from various world governments and political unions

such as the EU, Japan, Russia, India and the US.

Assignment

Investigate other GPS data

Store location data
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

Introduction

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/22
https://wikipedia.org/wiki/Geographic_coordinate_system
https://wikipedia.org/wiki/Prime_meridian#Prime_meridian_on_other_planetary_bodies
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/23

In the last lesson, you learned how to use a GPS sensor to capture location data. To use this data to

visualize the both the location of a truck laden with food, but also it's journey, it needs to be sent to

an IoT service in the cloud, and then stored somewhere.

In this lesson you will learn about the different ways to store IoT data, and learn how to store data

from your IoT service using serverless code.

In this lesson we'll cover:

Structured and unstructured data

Send GPS data to an IoT Hub

Handle GPS events using serverless code

Azure Storage Accounts

Connect your serverless code to storage

Structured and unstructured data

Computer systems deal with data, and this data comes in all manner of different shapes and sizes. It

can vary from single numbers, to large amounts of text, to videos and images, and to IoT data. Data

can usually be divided into one of two categories - structured data and unstructured data.

Structured data is data with a well-defined, rigid structure that doesn't change and usually maps

to tables of data with relationships. One example is a persons details including their name, date of

birth and address.

Unstructured data is data without a well-defined, rigid structure, including data that can change

structure frequently. One example is documents such as written documents or spreadsheets.

✅ Do some research: Can you think of some other examples of structured and unstructured data?

💁 There is also semi-structured data that is structured but doesn't fit into fixed tables of

data

IoT data is usually considered to be unstructured data.

Imagine you were adding IoT devices to a fleet of vehicles for a large commercial farm. You might

want to use different devices for different types of vehicle. For example:

For farm vehicles like tractors you want GPS data to ensure they are working on the correct fields

For delivery trucks transporting food to warehouses you want GPS data as well as speed and

acceleration data to ensure the driver is driving safely, and drive identity and start/stop data to

ensure drive compliance with local laws on working hours

For refrigerated trucks you also want temperature data to ensure the food doesn't get too hot or

cold and spoil in transit

This data can change constantly. For example, if the IoT device is in a truck cab, then the data it

sends may change as the trailer changes, for example only sending temperature data when a

refrigerated trailer is used.

This data varies from vehicle to vehicle, but it all gets sent to the same IoT service for processing. The

IoT service needs to be able to process this unstructured data, storing it in a way that allows it to be

searched or analyzed, but works with different structures to this data.

SQL vs NoSQL storage

Databases are services that allow you to store and query data. Database come in two types - SQL

and NoSQL

SQL databases

The first databases were Relational Database Management Systems (RDBMS), or relational database.

These are also known as SQL databases after the Structured Query Language (SQL) used to interact

with them to add, remove, update or query data. These database consist of a schema - a well-

defined set of tables of data, similar to a spreadsheet. Each table has multiple named columns. When

you insert data, you add a row to the table, putting values into each of the columns. This keeps the

data in a very rigid structure - although you can leave columns empty, if you want to add a new

column you have to do this on the database, populating values for the existing rows. These databases

are relational - in that one table can have a relationship to another.

For example, if you stored a users personal details in a table, you would have some kind of internal

unique ID per user that is used in a row in a table that contains the users name and address. If you

then wanted to store other details about that user, such as their purchases, in another table, you

would have one column in the new table for that users ID. When you look up a user, you can use their

ID to get their personal details from one table, and their purchases from another.

SQL databases are ideal for storing structured data, and for when you want to ensure the data

matches your schema. Some well known SQL databases are Microsoft SQL Server, MySQL, and

PostgreSQL.

✅ If you haven't used SQL before, take a moment to read up on it on the SQL page on Wikipedia.

NoSQL database

NoSQL databases are so called because they don't have the same rigid structure of SQL databases.

There are also known as document databases as they can store unstructured data such as

documents.

💁 Despite their name, some NoSQL databases allow you to use SQL to query the data.

NoSQL database do not have a pre-defined schema that limits how data is stored, instead you can

insert any unstructured data, usually using JSON documents. These documents can be organized

into folders, similar to files on your computer. Each document can have different fields from other

documents - for example if you were storing IoT data from your farm vehicles, some may have fields

for accelerometer and speed data, others may have fields for the temperature in the trailer. If you

were to add a new truck type, such as one with built in scales to track the weight of produce carried,

then your IoT device could add this new field and it could be stored without any changes to the

database.

Some well known NoSQL databases include Azure CosmosDB, MongoDB, and CouchDB.

In this lesson, you will be using NoSQL storage to store IoT data.

Send GPS data to an IoT Hub

https://wikipedia.org/wiki/SQL

In the last lesson you captured GPS data from a GPS sensor connected to your IoT device. To store

this IoT data in the cloud, you need to send it to an IoT service. Once again, you will be using Azure

IoT Hub, the same IoT cloud service you used in the previous project.

Sending GPS telemetry from an IoT device to IoT Hub. GPS by mim studio / Microcontroller by

Template - all from the Noun Project

Task - send GPS data to an IoT Hub

1. Create a new IoT Hub using the free tier.

⚠ You can refer to the instructions for creating an IoT Hub from project 2, lesson 4 if

needed.

Remember to create a new Resource Group. Name the new Resource Group gps-sensor , and

the new IoT Hub a unique name based on gps-sensor , such as

gps-sensor-<your name> .

💁 If you still have your IoT Hub from the previous project, you can re-use it. Remember to

use the name of this IoT Hub and the Resource Group it is in when creating other services.

2. Add a new device to the IoT Hub. Call this device gps-sensor . Grab the connection string for

the device.

3. Update your device code to send the GPS data to the new IoT Hub using the device connection

string from the previous step.

⚠ You can refer to the instructions for connecting your device to an IoT from project 2,

lesson 4 if needed.

https://thenounproject.com/

4. When you send the GPS data, do it as JSON in the following format:

5. Send GPS data every minute so you don't use up your daily message allocation.

If you are using the Wio Terminal, remember to add all the necessary libraries, and set the time using

an NTP server. Your code will also need to ensure that it has read all the data from the serial port

before sending the GPS location, using the existing code from the last lesson. Use the following code

to construct the JSON document:

If you are using a Virtual IoT device, remember to install all the needed libraries using a virtual

environment.

For both the Raspberry Pi and Virtual IoT device, use the existing code from the last lesson to get the

latitude and longitude values, then send them in the correct JSON format with the following code:

💁 You can find this code in the code/wio-terminal, code/pi or code/virtual-device folder.

Run your device code and ensure messages are flowing into IoT Hub using the

az iot hub monitor-events CLI command.

{
 "gps" :
 {
 "lat" : <latitude>,
 "lon" : <longitude>
 }
}

json

DynamicJsonDocument doc(1024);
doc["gps"]["lat"] = gps.location.lat();
doc["gps"]["lon"] = gps.location.lng();

cpp

message_json = { "gps" : { "lat":lat, "lon":lon } }
print("Sending telemetry", message_json)
message = Message(json.dumps(message_json))

python

Handle GPS events using serverless code

Once data is flowing into your IoT Hub, you can write some serverless code to listen for events

published to the Event-Hub compatible endpoint.

Sending GPS telemetry from an IoT device to IoT Hub, then to Azure Functions via an event hub

trigger. GPS by mim studio / Microcontroller by Template - all from the Noun Project

Task - handle GPS events using serverless code

1. Create an Azure Functions app using the Azure Functions CLI. Use the Python runtime, and

create it in a folder called gps-trigger , and use the same name for the Functions App project

name. Make sure you create a virtual environment to use for this.

⚠ You can refer to the instructions for creating an Azure Functions Project from project 2,

lesson 5 if needed.

2. Add an IoT Hub event trigger that uses the IoT Hub's Event Hub compatible endpoint.

⚠ You can refer to the instructions for creating an IoT Hub event trigger from project 2,

lesson 5 if needed.

3. Set the Event Hub compatible endpoint connection string in the local.settings.json file,

and use the key for that entry in the function.json file.

4. Use the Azurite app as a local storage emulator

5. Run your functions app to ensure it is receiving events from your GPS device. Make sure your IoT

device is also running and sending GPS data.

https://thenounproject.com/

Azure Storage Accounts

Azure Storage Accounts is a general purpose storage service that can store data in a variety of

different ways. You can store data as blobs, in queues, in tables, or as files, and all at the same time.

Blob storage

The word Blob means binary large objects, but has become the term for any unstructured data. You

can store any data in blob storage, from JSON documents containing IoT data, to image and movie

files. Blob storage has the concept of containers, named buckets that you can store data in, similar to

tables in a relational database. These containers can have one or more folders to store blobs, and

each folder can contain other folders, similar to how files are stored on your computer hard disk.

You will use blob storage in this lesson to store IoT data.

✅ Do some research: Read up on Azure Blob Storage

Table storage

Table storage allows you to store semi-structured data. Table storage is actually a NoSQL database,

so doesn't require a defined set of tables up front, but is designed to store data in one or more tables,

with unique keys to define each row.

✅ Do some research: Read up on Azure Table Storage

Queue storage

Queue storage allows you to store messages of up to 64KB in size in a queue. You can add messages

to the back of the queue, and read them off the front. Queues store messages indefinitely as long as

Python EventHub trigger processed an event: {"gps": {"lat": 47.73481, "l
output

https://docs.microsoft.com/azure/storage/blobs/storage-blobs-overview?WT.mc_id=academic-17441-jabenn
https://docs.microsoft.com/azure/storage/tables/table-storage-overview?WT.mc_id=academic-17441-jabenn

there is still storage space, so allows messages to be stored long term. then read off when needed.

For example, if you wanted to run a monthly job to process GPS data you could add it to a queue

every day for a month, then at the end of the month process all the messages off the queue.

✅ Do some research: Read up on Azure Queue Storage

File storage

File storage is storage of files in the cloud, and any apps or devices can connect using industry

standard protocols. You can write files to file storage, then mount it as a drive on your PC or Mac.

✅ Do some research: Read up on Azure File Storage

Connect your serverless code to storage

Your function app now needs to connect to blob storage to store the messages from the IoT Hub.

There's 2 ways to do this:

Inside the function code, connect to blob storage using the blob storage Python SDK and write

the data as blobs

Use an output function binding to bind the return value of the function to blob storage and have

the blob saved automatically

In this lesson, you will use the Python SDK to see how to interact with blob storage.

Sending GPS telemetry from an IoT device to IoT Hub, then to Azure Functions via an event hub

trigger, then saving it to blob storage. GPS by mim studio / Microcontroller by Template - all from

the Noun Project

The data will be saved as a JSON blob with the following format:

{
 "device_id": <device_id>,
 "timestamp" : <time>,

json

https://docs.microsoft.com/azure/storage/queues/storage-queues-introduction?WT.mc_id=academic-17441-jabenn
https://docs.microsoft.com/azure/storage/files/storage-files-introduction?WT.mc_id=academic-17441-jabenn
https://thenounproject.com/

Task - connect your serverless code to storage

1. Create an Azure Storage account. Name it something like gps<your name> .

⚠ You can refer to the instructions for creating a storage account from project 2, lesson 5

if needed.

If you still have a storage account from the previous project, you can re-use this.

💁 You will be able to use the same storage account to deploy your Azure Functions app

later in this lesson.

2. Run the following command to get the connection string for the storage account:

Replace <storage_name> with the name of the storage account you created in the previous

step.

3. Add a new entry to the local.settings.json file for your storage account connection

string, using the value from the previous step. Name it STORAGE_CONNECTION_STRING

4. Add the following to the requirements.txt file to install the Azure storage Pip packages:

Install the packages from this file in your virtual environment.

 "gps" :
 {
 "lat" : <latitude>,
 "lon" : <longitude>
 }
}

az storage account show-connection-string --output table \
 --name <storage_name>

sh

azure-storage-blob
sh

If you get an error, then upgrade your Pip version in your virtual environment to the latest

version with the following command, then try again:

5. In the __init__.py file for the iot-hub-trigger , add the following import statements:

The json system module will be used to read and write JSON, the os system module will be

used to read the connection string, the uuid system module will be used to generate a unique

ID for the GPS reading.

The azure.storage.blob package contains the Python SDK to work with blob storage.

6. Before the main method, add the following helper function:

The Python blob SDK doesn't have a helper method to create a container if it doesn't exist. This

code will load the connection string from the local.settings.json file (or the Application

Settings once deployed to the cloud), then create a BlobServiceClient class from this to

interact with the blob storage account. It then loops through all the containers for the blob storage

account, looking for one with the provided name - if it finds one it will return a

ContainerClient class that can interact with the container to create blobs. If it doesn't find

one, then the container is created and the client for the new container is returned.

pip install --upgrade pip
sh

import json
import os
import uuid
from azure.storage.blob import BlobServiceClient, PublicAccess

python

def get_or_create_container(name):
 connection_str = os.environ['STORAGE_CONNECTION_STRING']
 blob_service_client = BlobServiceClient.from_connection_string(conne

 for container in blob_service_client.list_containers():
 if container.name == name:
 return blob_service_client.get_container_client(container.na

 return blob_service_client.create_container(name, public_access=Publ

python

When the new container is created, public access is granted to query the blobs in the container.

This will be used in the next lesson to visualize the GPS data on a map.

7. Unlike with soil moisture, with this code we want to store every event, so add the following code

inside the for event in events: loop in the main function, below the logging

statement:

This code gets the device ID from the event metadata, then uses it to create a blob name. Blobs

can be stored in folders, and device ID will be used for the folder name, so each device will have

all its GPS events in one folder. The blob name is this folder, followed by a document name,

separated with forward slashes, similar to Linux and macOS paths (similar to Windows as well, but

Windows uses back slashes). The document name is a unique ID generated using the Python

uuid module, with the file type of json .

For example, for the gps-sensor device ID, the blob name might be

gps-sensor/a9487ac2-b9cf-11eb-b5cd-1e00621e3648.json .

8. Add the following code below this:

This code gets the container client using the get_or_create_container helper class, and

then gets a blob client object using the blob name. These blob clients can refer to existing blobs,

or as in this case, to new blob.

9. Add the following code after this:

This builds the body of the blob that will be written to blob storage. It is a JSON document

containing the device ID, the time the telemetry was sent to IoT Hub, and the GPS coordinates

device_id = event.iothub_metadata['connection-device-id']
blob_name = f'{device_id}/{str(uuid.uuid1())}.json'

python

container_client = get_or_create_container('gps-data')
blob = container_client.get_blob_client(blob_name)

python

event_body = json.loads(event.get_body().decode('utf-8'))
blob_body = {
 'device_id' : device_id,
 'timestamp' : event.iothub_metadata['enqueuedtime'],
 'gps': event_body['gps']
}

python

from the telemetry.

💁 It is important to use the enqueued time of the message as opposed to the current

time to get the time that the message was sent. It could be sitting on the hub for a while

before being picked up if the Functions App is not running.

10. Add the following below this code:

This code logs that a blob is about to be written with it's details, then uploads the blob body as

the content of the new blob.

11. Run the Functions app. You will see blobs being written for all the GPS events in the output:

💁 You can find this code in the code/functions folder.

Task - verify the uploaded blobs

1. To view the blobs created, you can either use the Azure Storage Explorer, a free tool that allows

you to view and manage your storage accounts, or from the CLI.

1. To use the CLI, first you will need an account key. Run the following command to get this key:

Replace <storage_name> with the name of the storage account.

Copy the value of key1 .

logging.info(f'Writing blob to {blob_name} - {blob_body}')
blob.upload_blob(json.dumps(blob_body).encode('utf-8'))

python

[2021-05-21T01:31:14.325Z] Python EventHub trigger processed an event: {
...
[2021-05-21T01:31:14.351Z] Writing blob to gps-sensor/4b6089fe-ba8d-11eb

output

az storage account keys list --output table \
 --account-name <storage_name>

sh

https://azure.microsoft.com/features/storage-explorer/?WT.mc_id=academic-17441-jabenn

2. Run the following command to list the blobs in the container:

Replace <storage_name> with the name of the storage account, and <key1> with the

value of key1 you copied in the last step.

This will list out all the blobs in the container:

3. Download one of the blobs using the following command:

Replace <storage_name> with the name of the storage account, and <key1> with the

value of key1 you copied in the earlier step.

Replace <blob_name> with the full name from the Name column of the output of the last

step, including the folder name. Replace <file_name> with the name of a local file to save

the blob to.

Once downloaded, you can open the JSON file in VS Code, and you will see the blob

containing the GPS location details:

az storage blob list --container-name gps-data \
 --output table \
 --account-name <storage_name> \
 --account-key <key1>

sh

Name Blob Type Bl
-- ----------- ---
gps-sensor/1810d55e-b9cf-11eb-9f5b-1e00621e3648.json BlockBlob Ho
gps-sensor/18293e46-b9cf-11eb-9f5b-1e00621e3648.json BlockBlob Ho
gps-sensor/1844549c-b9cf-11eb-9f5b-1e00621e3648.json BlockBlob Ho
gps-sensor/1894d714-b9cf-11eb-9f5b-1e00621e3648.json BlockBlob Ho

output

az storage blob download --container-name gps-data \
 --account-name <storage_name> \
 --account-key <key1> \
 --name <blob_name> \
 --file <file_name>

sh

{"device_id": "gps-sensor", "timestamp": "2021-05-21T00:57:53.878Z",
json

Task - deploy your Functions App to the cloud

Now that your Function app is working, you can deploy it to the cloud.

1. Create a new Azure Functions app, using the storage account you created earlier. Name this

something like gps-sensor- and add a unique identifier on the end, like some random words

or your name.

⚠ You can refer to the instructions for creating a Functions app from project 2, lesson 5 if

needed.

2. Upload the IOT_HUB_CONNECTION_STRING and STORAGE_CONNECTION_STRING values to

the Application Settings

⚠ You can refer to the instructions for uploading Application Settings from project 2,

lesson 5 if needed.

3. Deploy your local Functions app to the cloud.

⚠ You can refer to the instructions for deploying your Functions app from project 2, lesson

5 if needed.

🚀 Challenge

GPS data is not perfectly accurate, and the locations being detected can be out by a few meters, if

not more especially in tunnels and areas of tall buildings.

Think about how satellite navigation could overcome this? What data does your sat-nav have that

would allow it to make better predictions on your location?

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Read about structured data on the Data model page on Wikipedia

Read about semi-structured data on the Semi-structured data page on Wikipedia

Read about unstructured data on the Unstructured data page on Wikipedia

Read more on Azure Storage and the different storage types in the Azure Storage documentation

Assignment

Investigate function bindings

Visualize location data
Add a sketchnote if possible/appropriate

Pre-lecture quiz

Pre-lecture quiz

Introduction

In the last lesson you learned how to get GPS data from your sensors to save to the cloud in a storage

container using serverless code. Now you will discover how to visualize those points on an Azure

map.

In this lesson we'll cover:

What is Azure maps?

Create an Azure Maps resource

Show a map on a web page

The GeoJSON format

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/24
https://wikipedia.org/wiki/Data_model
https://wikipedia.org/wiki/Semi-structured_data
https://wikipedia.org/wiki/Unstructured_data
https://docs.microsoft.com/azure/storage/?WT.mc_id=academic-17441-jabenn
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/25

Plot GPS data on a Map using GeoJSON

What is Azure maps?

Working with maps is an interesting exercise, and there are many to choose from such as Bing Maps,

Leaflet, Open Street Maps, and Google Maps. In this lesson, you will learn about Azure Maps and how

they can display your GPS data.

✅ Check out this video on using Azure Maps with IoT.

Azure Maps is "a collection of geospatial services and SDKs that use fresh mapping data to provide

geographic context to web and mobile applications." Developers are provided with tools to create

beautiful, interactive maps that can do things like provide recommended traffic routes, give

information about traffic incidents, indoor navigation, search capabilities, elevation information,

weather services and more.

✅ Experiment with some mapping code samples

You can display the maps as a blank canvas, tiles, satellite images, satellite images with roads

superimposed, various types of grayscale maps, maps with shaded relief to show elevation, night

view maps, and a high contrast map. You can get real-time updates on your maps by integrating

them with Azure Event Grid. You can control the behavior and look of your maps by enabling various

controls to allow the map to react to events like pinch, drag, and click. To control the look of your

map, you can add layers that include bubbles, lines, polygons, heat maps, and more. Which style of

map you implement depends on your choice of SDK.

You can access Azure Maps APIs by leveraging its REST API, its Web SDK, or, if you are building a

mobile app, its Android SDK.

In this lesson, you will use the web SDK to draw a map and display your sensor's GPS location's path.

Create an Azure Maps resource

Your first step is to create an Azure Maps account. The easiest way to do this is in the Azure portal.

1. After logging in to the portal, click the "Create a resource" button and in the search box that

appears, type "Azure Maps".

https://azure.microsoft.com/services/azure-maps/#azuremaps-overview?WT.mc_id=academic-17441-jabenn
https://sec.ch9.ms/ch9/d498/3d435d2c-ac85-421b-b3a7-5e0c7630d498/IoT_AzureMaps_high.mp4
https://docs.microsoft.com/samples/browse/?products=azure-maps?WT.mc_id=academic-17441-jabenn
https://azure.microsoft.com/services/event-grid/?WT.mc_id=academic-17441-jabenn
https://docs.microsoft.com/javascript/api/azure-maps-rest/?view=azure-maps-typescript-latest?WT.mc_id=academic-17441-jabenn
https://docs.microsoft.com/azure/azure-maps/how-to-use-map-control?WT.mc_id=academic-17441-jabenn
https://docs.microsoft.com/azure/azure-maps/how-to-use-android-map-control-library?pivots=programming-language-java-android?WT.mc_id=academic-17441-jabenn
https://portal.azure.com/?WT.mc_id=academic-17441-jabenn

2. Select "Azure Maps" and click 'Create'.

3. On the Create Azure Maps Account page, enter:

Your subscription in the dropdown box.

A Resource group to use (use 'gps-sensor' as you have done throughout these lessons)

Add a name for your account

Choose a Pricing tier. The Pricing tier for this account. S0 will work for this small project.

4. Read and accept the terms of service, and click the 'Create' button.

5. The service will deploy and you can visit it by clicking 'Go to resource' in the next screen.

6. Navigate to your new Azure Maps Account Authentication screen. Here, you discover that you

have two ways to authenticate your maps in a web app: using Active Directory (AD) or 'Shared

Key Authentication', also known as Subscription Key. We'll use the latter, for simplicity. Copy the

Primary Key value and make a note of it!

✅ You will be able to rotate and swap keys at will using the Shared Keys; switch your app to use the

Secondary Key while rotating the Primary Key if needed.

Show a map on a web page

Now you can take the next step which is to display your map on a web page. We will use just one

.html file for your small web app; keep in mind that in a production or team environment, your web

app will most likely have more moving parts!

1. Create a file called index.html in a folder somewhere on your local computer. Add HTML markup

to hold a map:

<html>
<head>
 <style>
 #myMap {
 width:100%;
 height:100%;
 }
 </style>
</head>

<body onload="init()">
 <div id="myMap"></div>

html

The map will load in the 'myMap' div . A few styles allow it so span the width and height of the

page.

2. Under the opening <head> tag, add an external style sheet to control the map display, and an

external script from the Web SDK to manage its behavior:

3. Under that script, add a script block to launch the map. Add your own subscriptionKey in the init()

function:

If you open your index.html page in a web browser, you should see a map loaded, and focused on

Seattle:

</body>
</html>

<link rel="stylesheet" href="https://atlas.microsoft.com/sdk/javascript/map
<script src="https://atlas.microsoft.com/sdk/javascript/mapcontrol/2/atlas.

 <script type='text/javascript'>

 function init() {
 var map = new atlas.Map('myMap', {
 center: [-122.33, 47.6],
 zoom: 12,
 authOptions: {
 authType: "subscriptionKey",
 subscriptionKey: "<your-key-here>",

 }
 });
 }
 </script>

javascript

✅ Experiment with the zoom and center parameters to change your map display.

A better way to work with web apps locally is to install http-server. You will need node.js and

npm installed before using this tool. Once those tools are installed, you can navigate to the

location of your index.html file and type http-server . The web app will open on a

local webserver http://127.0.0.1�8080/.

The GeoJSON format

Now that you have your web app in place with the map displaying, you need to extract GPS data from

your storage and display it in a layer of markers on top of the map. Before we do that, let's look at the

GeoJSON format that is required by Azure Maps.

GeoJSON is an open standard JSON specification with special formatting designed to handle

geographic-specific data. You can learn about it by testing sample data using geojson.io, which is

also a useful tool to debug GeoJSON files.

Sample GeoJSON data looks like this:

{
 "type": "FeatureCollection",

json

https://www.npmjs.com/package/http-server
https://nodejs.org/
https://www.npmjs.com/
http://127.0.0.1:8080/
https://wikipedia.org/wiki/GeoJSON
https://geojson.org/

Of particular interest is the way the data is nested as a 'FeatureCollection'. Within that object can be

found 'geometry' with the 'coordinates' indicating latitude and longitude. Geometry can have

different 'types' designated to that a polygon could be drawn to a map; in this case, a point is drawn

with two coordinates designated.

✅ Azure Maps supports standard GeoJSON plus some enhanced features including the ability to

draw circles and other geometries.

Plot GPS data on a Map using GeoJSON

Now you are ready to consume data from the storage that you built in the previous lesson. As a

reminder, it is stored as a number of files in blob storage so you will need to retrieve the files and

parse them so that Azure Maps can use the data.

If you make a call to your storage to fetch the data you might be surprised to see errors occurring in

your browser's console. That's because you need to set permissions for CORS on this storage to

allow external web apps to read its data. CORS stands for "Cross-Origin Resource Sharing" and

usually needs to be set explicitly in Azure for security reasons. Do this using the Azure CLI, adding the

name of your storage container and its key. We only need to 'GET' data from this container:

 "features": [
 {
 "type": "Feature",
 "geometry": {
 "type": "Point",
 "coordinates": [
 -2.10237979888916,
 57.164918677004714
]
 }
 }
]
}

az storage cors add --methods GET \
 --origins "*" \
 --services b \
 --account-name <storage_name> \
 --account-key <key1>

dotnetcli

https://docs.microsoft.com/azure/azure-maps/extend-geojson?WT.mc_id=academic-17441-jabenn
https://developer.mozilla.org/docs/Web/HTTP/CORS

TODO - fetch call explanation

🚀 Challenge

It's nice to be able to display static data on a map as markers. Can you enhance this web app to add

animation and show the path of the markers over time, using the timestamped json files? Here are

some samples of using animation

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Assignment

Deploy your app

Geofences
Add a sketchnote if possible/appropriate

This video gives an overview of geofences and how to use them in Azure Maps, topics that will be

covered in this lesson:

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/26

🎥 Click the image above to watch a video

Pre-lecture quiz

Pre-lecture quiz

Introduction

In the last 3 lessons, you have used IoT to locate the trucks carrying your produce from your farm to a

processing hub. You've captured GPS data, sent it to the cloud to store, and visualized it on a map.

The next step in increasing the efficiency of your supply chain is to get an alert when a truck is about

to arrive at the processing hub, so that the crew needed to unload can be ready with forklifts and

other equipment as soon as the vehicle arrives. This way they can unload quickly, and you are not

paying for a truck and driver to wait.

In this lesson you will learn about geofences - defined geospatial regions such as an area within a

2km minute drive of a processing hub, and how to test if GPS coordinates are inside or outside a

geofence, so you can see if your GPS sensor has arrived or left an area.

In this lesson we'll cover:

What are geofences

https://www.youtube.com/watch?v=nsrgYhaYNVY
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/27

Define a geofence

Test points against a geofence

Use geofences from serverless code

🗑 This is the last lesson in this project, so after completing this lesson and the assignment,

don't forget to clean up your cloud services. You will need the services to complete the

assignment, so make sure to complete that first.

Refer to the clean up your project guide if necessary for instructions on how to do this.

What are Geofences

A geofence is a virtual perimeter for a real-world geographic region. Geofences can be circles

defined as a point and a radius (for example a circle 100m wide around a building), or a polygon

covering an area such as a school zone, city limits, or university or office campus.

💁 You may have already used geofences without knowing. If you've set a reminder using the

iOS reminders app or Google Keep based off a location, you have used a geofence. These

apps will set up a geofence based off the location given and alert you when your phone enters

the geofence.

There are many reasons why you would want to know that a vehicle is inside or outside a geofence:

Preparation for unloading - getting a notification that a vehicle has arrived on-site allows a crew to

be prepared to unload the vehicle, reducing vehicle waiting time. This can allow a driver to make

more deliveries in a day with less waiting time.

Tax compliance - some countries, such as New Zealand, charge road taxes for diesel vehicles

based on the vehicle weight when driving on public roads only. Using geofences allows you to

track the mileage driven on public roads as opposed to private roads on sites such as farms or

logging areas.

Monitoring theft - if a vehicle should only remain in a certain area such as on a farm, and it leaves

the geofence, it might be being stolen.

Location compliance - some parts of a work site, farm or factory may be off-limits to certain

vehicles, such as keeping vehicles that carry artificial fertilizers and pesticides away from fields

growing organic produce. If a geofence is entered, then a vehicle is outside of compliance and the

driver can be notified.

✅ Can you think of other uses for geofences?

Azure Maps, the service you used in the last lesson to visualize GPS data, allows you to define

geofences, then test to see if a point is inside or outside of the geofence.

Define a geofence

Geofences are defined using GeoJSON, the same as the points that were added to the map in the

previous lesson. In this case, instead of being a FeatureCollection of Point values, it is a

FeatureCollection containing a Polygon .

{
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "geometry": {
 "type": "Polygon",
 "coordinates": [
 [
 [

json

Each point on the polygon is defined as a longitude, latitude pair in an array, and these points are in

an array that is set as the coordinates . In a Point in the last lesson, the coordinates was

an array containing 2 values, latitude and longitude, for a Polygon it is an array of arrays

containing 2 values, longitude, latitude.

💁 Remember, GeoJSON uses longitude, latitude for points, not

latitude, longitude

The polygon coordinates array always has 1 more entry than the number of points on the polygon,

with the last entry being the same as the first, closing the polygon. For example, for a rectangle there

would be 5 points.

 -122.13393688201903,
 47.63829579223815
],
 [
 -122.13389128446579,
 47.63782047131512
],
 [
 -122.13240802288054,
 47.63783312249837
],
 [
 -122.13238388299942,
 47.63829037035086
],
 [
 -122.13393688201903,
 47.63829579223815
]
]
]
 },
 "properties": {
 "geometryId": "1"
 }
 }
]
}

In the image above, there is a rectangle. The polygon coordinates starts at the top-left at 47,-122,

then moves right to 47,-121, then down to 46,-121, then right to 46, -122, then back up to the start

point at 47, -122. This gives the polygon 5 points - top-left, top-right, bottom-right, bottom-left, then

top-left to close it out.

✅ Try creating a GeoJSON polygon around your home or school. Use a tool like GeoJSON.io.

Task - define a geofence

To use a geofence in Azure maps, first it has to be uploaded to your Azure Maps account. Once

uploaded, you will get a unique ID that you can use to test a point against the geofence. To upload

geofences to Azure Maps, you need to use the maps web API. You can call the Azure Maps web API

using a tool called curl.

🎓 Curl is a command line tool to make requests against web endpoints

1. If you are using Linux, macOS, or a recent version of Windows 10 you probably have curl installed

already. Run the following from your terminal or command line to check:

If you don't see version information for curl, you will need to install it from the curl downloads

page.

curl --version
sh

https://geojson.io/
https://curl.se/
https://curl.se/download.html

💁 If you are experienced with Postman, then you can use that instead if you prefer.

2. Create a GeoJSON file containing a polygon. You will be testing this using your GPS sensor, so

create a polygon around your current location. You can either create one manually by editing the

GeoJSON example given above, or use a tool like GeoJSON.io.

The GeoJSON will need to contain a FeatureCollection , containing a Feature with a

geometry of type Polygon .

You MUST also add a properties element at the same level as the geometry element, and

this has to contain a geometryId :

If you use GeoJSON.io, then you will manually have to add this item to the empty properties

element, either after downloading the JSON file, or in the JSON editor in the app.

This geometryId must be unique in this file. You can upload multiple geofences as multiple

Features in the FeatureCollection in the same GeoJSON file, as long as each one has a

different geometryId . Polygons can have the same geometryId if they are uploaded from a

different file at a different time.

3. Save this file as geofence.json , and navigate to where it is saved in your terminal or console.

4. Run the following curl command to create the GeoFence:

Replace <subscription_key> in the URL with the API key for your Azure Maps account.

The URL is used to upload map data via the

https://atlas.microsoft.com/mapData/upload API. The call includes an

api-version parameter to specify which Azure Maps API to use, this is to allow the API to

change over time but maintain backwards compatibility. The data format that is uploaded is set to

geojson .

"properties": {
 "geometryId": "1"
}

json

curl --request POST 'https://atlas.microsoft.com/mapData/upload?api-vers
 --header 'Content-Type: application/json' \
 --include \
 --data @geofence.json

sh

https://geojson.io/
https://geojson.io/

This will run the POST request to the upload API and return a list of response headers which

includes a header called location

🎓 When calling a web endpoint, you can pass parameters to the call by adding a ?

followed by key value pairs as key=value , separating the key value pairs by a & .

5. Azure Maps doesn't process this immediately, so you will need to check to see if the upload

request has finished by using the URL given in the location header. Make a GET request to

this location to see the status. You will need to add your subscription key to the end of the

location URL by adding &subscription-key=<subscription_key> to the end,

replacing <subscription_key> with the API key for your Azure Maps account. Run the

following command:

Replace <location> with the value of the location header, and <subscription_key>

with the API key for your Azure Maps account.

6. Check the value of status in the response. If it is not Succeeded , then wait a minute and try

again.

7. Once the status comes back as Succeeded , look at the resourceLocation from the

response. This contains details on the unique ID (known as a UDID) for the GeoJSON object. The

UDID is the value after metadata/ , and not including the api-version . For example, if the

resourceLocation was:

content-type: application/json
location: https://us.atlas.microsoft.com/mapData/operations/1560ced6-3a8
x-ms-azuremaps-region: West US 2
x-content-type-options: nosniff
strict-transport-security: max-age=31536000; includeSubDomains
x-cache: CONFIG_NOCACHE
date: Sat, 22 May 2021 21:34:57 GMT
content-length: 0

output

curl --request GET '<location>&subscription-key=<subscription_key>'
sh

{
 "resourceLocation": "https://us.atlas.microsoft.com/mapData/metadata/7
}

json

Then the UDID would be 7c3776eb-da87-4c52-ae83-caadf980323a .

Keep a copy of this UDID as you will need it to test the geofence.

Test points against a geofence

Once the polygon has been uploaded to Azure Maps, you can test a point to see if it is inside or

outside the geofence. You do this by making a web API request, passing in the UDID of the geofence,

and the latitude and longitude of the point to test.

When you make this request, you can also pass a value called the searchBuffer . This tells the

Maps API how accurate to be when returning results. The reason for this is GPS is not perfectly

accurate, and sometimes locations can be out by meters if not more. The default for the search

buffer is 50m, but you can set values from 0m to 500m.

When results are returned from the API call, one of the parts of the result is a distance measured

to the closest point on the edge of the geofence, with a positive value if the point is outside the

geofence, negative if it is inside the geofence. If this distance is less than the search buffer, the actual

distance is returned in meters, otherwise the value is 999 or -999. 999 means that the point is

outside the geofence by more than the search buffer, -999 means it is inside the geofence by more

than the search buffer.

In the image above, the geofence has a 50m search buffer.

A point in the center of the geofence, well inside the search buffer has a distance of -999

A point well outside the search buffer has a distance of 999

A point inside the geofence and inside the search buffer, 6m from the geofence, has a distance of

6m

A point outside the geofence and inside the search buffer, 39m from the geofence, has a distance

of 39m

It is important to know the distance to the edge of the geofence, and combine this with other

information such as other GPS readings, speed and road data when making decisions based off a

vehicle location.

For example, imagine GPS readings showing a vehicle was driving along a road that ends up running

next to a geofence. If a single GPS value is inaccurate and places the vehicle inside the geofence,

despite there being no vehicular access, then it can be ignored.

In the above image, there is a geofence over part of the Microsoft campus. The red line shows a truck

driving along the 520, with circles to show the GPS readings. Most of these are accurate and along

the 520, with one inaccurate reading inside the geofence. The is no way that reading can be correct -

there are no roads for the truck to suddenly divert from the 520 onto campus, then back onto the

520. The code that checks this geofence will need to take the previous readings into consideration

before acting on the results of the geofence test.

✅ What additional data would you need to check to see if a GPS reading could be considered

correct?

Task - test points against a geofence

1. Start by building the URL for the web API query. The format is:

Replace <subscription_key> with the API key for your Azure Maps account.

https://atlas.microsoft.com/spatial/geofence/json?api-version=1.0&device
output

Replace <UDID> with the UDID of the geofence from the previous task.

Replace <lat> and <lon> with the latitude and longitude that you want to test.

This URL uses the https://atlas.microsoft.com/spatial/geofence/json API to

query a geofence defined using GeoJSON. It targets the 1.0 api version. The deviceId

parameter is required and should be the name of the device the latitude and longitude comes

from.

The default search buffer is 50m, and you can change this by passing an additional parameter of

searchBuffer=<distance> , setting <distance> to the search buffer distance in meters,

form 0 to 500.

2. Use curl to make a GET request to this URL:

💁 If you get a response code of BadRequest , with an error of:

then your GeoJSON is missing the properties section with the geometryId . You

will need to fix up your GeoJSON, then repeat the steps above to re-upload and get a new

UDID.

3. The response will contain a list of geometries , one for each polygon defined in the GeoJSON

used to create the geofence. Each geometry has 3 fields of interest, distance ,

nearestLat and nearestLon .

curl --request GET <URL>
sh

Invalid GeoJSON: All feature properties should contain a geometryI
output

{
 "geometries": [
 {
 "deviceId": "gps-sensor",
 "udId": "1ffb2047-6757-8c29-2c3d-da44cec55ff9",
 "geometryId": "1",
 "distance": 999.0,
 "nearestLat": 47.645875,
 "nearestLon": -122.142713

output

nearestLat and nearestLon are the latitude and longitude of a point on the edge of

the geofence that is closest to the location being tested.

distance is the distance from the location being tested to the closest point on the edge of

the geofence. Negative numbers mean inside the geofence, positive outside. This value will be

less than 50 (the default search buffer), or 999.

4. Repeat this multiple times with locations inside and outside the geofence.

Use geofences from serverless code

You can now add a new trigger to your Functions app to test the IoT Hub GPS event data against the

geofence.

Consumer groups

As you will remember from previous lessons, the IoT Hub will allow you to replay events that have

been received by the hub but not processed. But what would happen if multiple triggers connected?

How will it know which one has processed which events.

The answer is it can't! Instead you can define multiple separate connections to read off events, and

each one can manage the replay of unread messages. These are called consumer groups. When you

connect to the endpoint, you can specify which consumer group you want to connect to. Each

component of your application will connect to a different consumer group

 }
],
 "expiredGeofenceGeometryId": [],
 "invalidPeriodGeofenceGeometryId": []
}

In theory up to 5 applications can connect to each consumer group, and they will all receive

messages when they arrive. It's best practice to have only one application access each consumer

group to avoid duplicate message processing, and ensure when restarting all queued messages are

processed correctly. For example, if you launched your Functions app locally as well as running it in

the cloud, they would both process messages, leading to duplicate blobs stored in the storage

account.

If you review the function.json file for the IoT Hub trigger you created in an earlier lesson, you

will see the consumer group in the event hub trigger binding section:

When you create an IoT Hub, you get the $Default consumer group created by default. If you

want to add an additional trigger, you can add this using a new consumer group.

💁 In this lesson, you will use a different function to test the geofence to the one used to

store the GPS data. This is to show how to use consumer groups and separate the code to

make it easier to read and understand. In a production application there are many ways you

might architect this - putting both on one function, using a trigger on the storage account to

run a function to check the geofence, or using multiple functions. There is no 'right way', it

depends on the rest of your application and your needs.

Task - create a new consumer group

1. Run the following command to create a new consumer group called geofence for your IoT

Hub:

"consumerGroup": "$Default"
json

Replace <hub_name> with the name you used for your IoT Hub.

2. If you want to see all the consumer groups for an IoT Hub, run the following command:

Replace <hub_name> with the name you used for your IoT Hub. This will list all the consumer

groups.

Task - create a new IoT Hub trigger

1. Add a new IoT Hub event trigger to your gps-trigger function app that you created in an

earlier lesson. Call this function geofence-trigger .

⚠ You can refer to the instructions for creating an IoT Hub event trigger from project 2,

lesson 5 if needed.

2. Configure the IoT Hub connection string in the function.json file. The

local.settings.json is shared between all triggers in the Function App.

3. Update the value of the consumerGroup in the function.json file to reference the new

geofence consumer group:

az iot hub consumer-group create --name geofence \
 --hub-name <hub_name>

sh

az iot hub consumer-group list --output table \
 --hub-name <hub_name>

sh

Name ResourceGroup
-------- ---------------
$Default gps-sensor
geofence gps-sensor

output

"consumerGroup": "geofence"
json

4. You will need to use the subscription key for your Azure Maps account in this trigger, so add a

new entry to the local.settings.json file called MAPS_KEY .

5. Run the Functions App to ensure it is connecting and processing messages. The

iot-hub-trigger from the earlier lesson will also run and upload blobs to storage.

To avoid duplicate GPS readings in blob storage, you can stop the Functions App you have

running in the cloud. To do this, use the following command:

Replace <functions_app_name> with the name you used for your Functions App.

You can restart it later with the following command:

Replace <functions_app_name> with the name you used for your Functions App.

Task - test the geofence from the trigger

Earlier in this lesson you used curl to query a geofence to see if a point was located inside or outside.

You can make a similar web request from inside your trigger.

1. To query the geofence, you need its UDID. Add a new entry to the local.settings.json file

called GEOFENCE_UDID with this value.

2. Open the __init__.py file from the new geofence-trigger trigger.

3. Add the following import to the top of the file:

az functionapp stop --resource-group gps-sensor \
 --name <functions_app_name>

sh

az functionapp start --resource-group gps-sensor \
 --name <functions_app_name>

sh

import json
import os
import requests

python

The requests package allows you to make web API calls. Azure Maps doesn't have a Python

SDK, you need to make web API calls to use it from Python code.

4. Add the following 2 lines to the start of the main method to get the Maps subscription key:

5. Inside the for event in events loop, add the following to get the latitude and longitude

from each event:

This code converts the JSON from the event body to a dictionary, then extracts the lat and

lon from the gps field.

6. When using requests , rather than building up a long URL as you did with curl, you can use just

the URL part and pass the parameters as a dictionary. Add the following code to define the URL to

call and configure the parameters:

The items in the params dictionary will match the key value pairs you used when calling the

web API via curl.

7. Add the following line of code to call the web API:

maps_key = os.environ['MAPS_KEY']
geofence_udid = os.environ['GEOFENCE_UDID']

python

event_body = json.loads(event.get_body().decode('utf-8'))
lat = event_body['gps']['lat']
lon = event_body['gps']['lon']

python

url = 'https://atlas.microsoft.com/spatial/geofence/json'

params = {
 'api-version': 1.0,
 'deviceId': 'gps-sensor',
 'subscription-key': maps_key,
 'udid' : geofence_udid,
 'lat' : lat,
 'lon' : lon
}

python

response = requests.get(url, params=params)
python

This calls the URL with the parameters, and gets back a response object.

8. Add the following code below this:

This code assumes 1 geometry, and extracts the distance from that single geometry. It then logs

different messages based off the distance.

9. Run this code. You will see in the logging output if the GPS coordinates are inside or outside the

geofence, with a distance if the point is within 50m. Try this code with different geofences based

off the location of your GPS sensor, try moving the sensor (for example tethered to WiFi from a

mobile phone, or with different coordinates on the virtual IoT device) to see this change.

10. When you are ready, deploy this code to your Functions app in the cloud. Don't forget to deploy

the new Application Settings.

⚠ You can refer to the instructions for uploading Application Settings from project 2,

lesson 5 if needed.

⚠ You can refer to the instructions for deploying your Functions app from project 2, lesson

5 if needed.

💁 You can find this code in the code/functions folder.

distance = response_body['geometries'][0]['distance']

if distance == 999:
 logging.info('Point is outside geofence')
elif distance > 0:
 logging.info(f'Point is just outside geofence by a distance of {dist
elif distance == -999:
 logging.info(f'Point is inside geofence')
else:
 logging.info(f'Point is just inside geofence by a distance of {dista

python

🚀 Challenge

In this lesson you added one geofence using a GeoJSON file with a single polygon. You can upload

multiple polygons at the same time, as long as they have different geometryId values in the

properties section.

Try uploading a GeoJSON file with multiple polygons and adjust your code to find which polygon the

GPS coordinates are closest to or in.

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Read more on geofences and some of their use cases on the Geofencing page on Wikipedia.

Read more on Azure Maps geofencing API on the Microsoft Azure Maps Spatial - Get Geofence

documentation.

Read more on consumer groups in the Features and terminology in Azure Event Hubs - Event

consumers documentation on Microsoft docs

Assignment

Send notifications using Twilio

Train a fruit quality detector
Add a sketchnote if possible/appropriate

This video gives an overview of the Azure Custom Vision service, a service that will be covered in this

lesson.

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/28
https://en.wikipedia.org/wiki/Geo-fence
https://docs.microsoft.com/rest/api/maps/spatial/getgeofence?WT.mc_id=academic-17441-jabenn
https://docs.microsoft.com/azure/event-hubs/event-hubs-features?WT.mc_id=academic-17441-jabenn#event-consumers

🎥 Click the image above to watch a video

Pre-lecture quiz

Pre-lecture quiz

Introduction

The recent rise in Artificial Intelligence (AI) and Machine Learning (ML) is providing a wide range of

capabilities to todays developers. ML models can be trained to recognize different things in images,

including unripe fruit, and this can be used in IoT devices to help sort produce either as it is being

harvested, or during processing in factories or warehouses.

In this lesson you will learn about image classification - using ML models to distinguish between

images of different things. You will learn how to train an image classifier to distinguish between fruit

that is good, and fruit that is bad, either under or over ripe, bruised, or rotten.

In this lesson we'll cover:

Using AI and ML to sort food

Image classification via Machine Learning

Train an image classifier

https://www.youtube.com/watch?v=TETcDLJlWR4
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/29

Test your image classifier

Retrain your image classifier

Using AI and ML to sort food

Feeding the global population is hard, especially at a price that makes food affordable for all. One of

the largest costs is labor, so farmers are increasingly turning to automation and tools like IoT to

reduce their labor costs. Harvesting by hand is labor intensive (and often backbreaking work), and is

being replaced by machinery, especially in richer nations. Despite the savings in cost of using

machinery to harvest, there is a downside - the ability to sort food as it is being harvested.

Not all crops ripen evenly. Tomatoes, for example, can still have some green fruits on the vine when

the majority is ready for harvest. Although it is a waste to harvest these early, it is cheaper and easier

for the farmer to harvest everything using machinery and dispose of the unripe produce later.

✅ Have a look at different fruits or vegetables, either growing near you in farms or in your garden, or

in shops, Are they all the same ripeness, or do you see variation?

The rise of automated harvesting moved the sorting of produce from the harvest to the factory. Food

would travel on long conveyer belts with teams of people picking over the produce removing anything

that wasn't up to the required quality standard. Harvesting was cheaper thanks to machinery, but

there was still a cost to manually sort food.

If a red tomato is detected it continues its journey uninterrupted. If a green tomato is detected it

is flicked into a waste bin by a lever. tomato by parkjisun from the Noun Project - from the Noun

Project

The next evolution was to use machines to sort, either built into the harvester, or in the processing

plants. The first generation of these machines used optical sensors to detect colors, controlling

https://thenounproject.com/

actuators to push green tomatoes into a waste bin using levers or puffs of air, leaving red tomatoes to

continue on a network of conveyor belts.

The video below shows one of these machines in action.

🎥 Click the image above to watch a video

In this video, as tomatoes fall from one conveyer belt to another, green tomatoes are detected and

flicked into a bin using levers.

✅ What conditions would you need in a factory or in a field for these optical sensors to work

correctly?

The latest evolutions of these sorting machines take advantage of AI and ML, using models trained to

distinguish good produce from bad, not just by obvious color differences such as green tomatoes vs

red, but by more subtle differences in appearance that can indicate disease or bruising.

Image classification via Machine Learning

Traditional programming is where you take data, apply an algorithm to the data, and get output. For

example, in the last project you took GPS coordinates and a geofence, applied an algorithm that was

provided by Azure Maps, and got back a result of if the point was inside or outside the geofence. You

input more data, you get more output.

https://www.youtube.com/watch?v=AcRL91DouAU

Machine learning turns this around - you start with data and known outputs, and the machine

learning tools work out the algorithm. You can then take that algorithm, called a machine learning

model, and input new data and get new output.

🎓 The process of a machine learning tool generating a model is called training. The inputs

and known outputs are called training data.

For example, you could give a model millions of pictures of unripe bananas as input training data, with

the training output set as unripe , and millions of ripe banana pictures as training data with the

output set as ripe . The ML tools will then generate a model. You then give this model a new

picture of a banana and it will predict if the new picture is a ripe or an unripe banana.

🎓 The results of ML models are called predictions

ML models don't give a binary answer, instead they give probabilities. For example, a model may be

given a picture of a banana and predict ripe at 99.7% and unripe at 0.3%. Your code would

then pick the best prediction and decide the banana is ripe.

The ML model used to detect images like this is called an image classifier - it is given labelled images,

and then classifies new images based off these labels.

Train an image classifier

To successfully train an image classifier you need millions of images. As it turns out, once you have an

image classifier trained on millions or billions of assorted images, you can re-use it and re-train it

using a small set of images and get great results, using a process called transfer learning.

🎓 Transfer learning is where you transfer the learning from an existing ML model to a new

model based off new data.

Once an image classifier has been trained for a wide variety of images, it's internals are great at

recognizing shapes, colors and patterns. Transfer learning allows the model to take what it has

already learned in recognizing image parts, and use that to recognize new images.

You can think of this as a bit like children's shape books, where once you can recognize a semi-circle,

a rectangle and a triangle, you can recognize a sailboat or a cat depending on the configuration of

these shapes. The image classifier can recognize the shapes, and the transfer learning teaches it

what combination makes a boat or a cat - or a ripe banana.

There are a wide range of tools that can help you do this, including cloud-based services that can

help you train your model, then use it via web APIs.

💁 Training these models takes a lot of computer power, usually via Graphics Processing

Units, or GPUs. The same specialized hardware that makes games on your Xbox look

amazing can also be used to train machine learning models. By using the cloud you can rent

time on powerful computers with GPUs to train these models, getting access to the

computing power you need, just for the time you need it.

Custom Vision

Custom Vision is a cloud based tool for training image classifiers. It allows you to train a classifier

using only a small number of images. You can upload images through a web portal, web API or an

SDK, giving each image a tag that has the classification of that image. You then train the model, and

test it out to see how well it performs. Once you are happy with the model, you can publish versions

of it that can be accessed through a web API or an SDK.

💁 You can train a custom vision model with as little as 5 images per classification, but more

is better. You can get better results with at least 30 images.

Custom Vision is part of a range of AI tools from Microsoft called Cognitive Services. These are AI

tools that can be used either without any training, or with a small amount of training. They include

speech recognition and translation, language understanding and image analysis. These are available

with a free tier as services in Azure.

💁 The free tier is more than enough to create a model, train it, then use it for development

work. You can read about the limits of the free tier on the Custom Vision Limits and quotas

page on Microsoft docs.

Task - create a cognitive services resource

To use Custom Vision, you first need to create two cognitive services resources in Azure using the

Azure CLI, one for Custom Vision training and one for Custom Vision prediction.

1. Create a Resource Group for this project called fruit-quality-detector

2. Use the following command to create a free Custom Vision training resource:

Replace <location> with the location you used when creating the Resource Group.

az cognitiveservices account create --name fruit-quality-detector-traini
 --resource-group fruit-quality-detec
 --kind CustomVision.Training \
 --sku F0 \
 --yes \
 --location <location>

sh

https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/limits-and-quotas?WT.mc_id=academic-17441-jabenn

This will create a Custom Vision training resource in your Resource Group. It will be called

fruit-quality-detector-training and use the F0 sku, which is the free tier. The

--yes option means you agree to the terms and conditions of the cognitive services.

3. Use the following command to create a free Custom Vision prediction resource:

Replace <location> with the location you used when creating the Resource Group.

This will create a Custom Vision prediction resource in your Resource Group. It will be called

fruit-quality-detector-prediction and use the F0 sku, which is the free tier. The

--yes option means you agree to the terms and conditions of the cognitive services.

Task - create an image classifier project

1. Launch the Custom Vision portal at CustomVision.ai, and sign in with the Microsoft account you

used for your Azure account.

2. Follow the Create a new Project section of the Build a classifier quickstart on the Microsoft docs

to create a new Custom Vision project. The UI may change and these docs are always the most

up to date reference.

Call your project fruit-quality-detector .

When you create your project, make sure to use the fruit-quality-detector-training

resource you created earlier. Use a Classification project type, a Multiclass classification type, and

the Food domain.

az cognitiveservices account create --name fruit-quality-detector-predic
 --resource-group fruit-quality-detec
 --kind CustomVision.Prediction \
 --sku F0 \
 --yes \
 --location <location>

sh

https://customvision.ai/
https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#create-a-new-project

Task - train your image classifier project

To train an image classifier, you will need multiple pictures of fruit, both good and bad quality to tag

as good and bad, such as an ripe and an overripe banana.

💁 These classifiers can classify images of anything, so if you don't have fruit to hand of

differing quality, you can use two different types of fruit, or cats and dogs!

Ideally each picture should be just the fruit, with either a consistent background, or a wide variety of

backgrounds. Ensure there's nothing in the background that is specific to ripe vs unripe fruit.

💁 It's important not to have specific backgrounds, or specific items that are not related to

the thing being classified for each tag, otherwise the classifier may just classify based on the

background. There was a classifier for skin cancer that was trained on moles both normal and

cancerous, and the cancerous ones all had rulers against them to measure the size. It turned

out the classifier was almost 100% accurate at identifying rulers in pictures, not cancerous

moles.

Image classifiers run at very low resolution. For example Custom Vision can take training and

prediction images up to 10240x10240, but trains and runs the model on images at 227x227. Larger

images are shrunk to this size, so ensure the thing you are classifying takes up a large part of the

image otherwise it may be too small in the smaller image used by the classifier.

1. Gather pictures for your classifier. You will need at least 5 pictures for each label to train the

classifier, but the more the better. You will also need a few additional images to test the classifier.

These images should all be different images of the same thing. For example:

Using 2 ripe bananas, take some pictures of each one from a few different angles, taking at

least 7 pictures (5 to train, 2 to test), but ideally more.

Repeat the same process using 2 unripe bananas

You should have at least 10 training images, with at least 5 ripe and 5 unripe, and 4 testing

images, 2 ripe, 2 unripe. You're images should be png or jpegs, small than 6MB. If you create

them with an iPhone for example they may be high-resolution HEIC images, so will need to be

converted and possibly shrunk. The more images the better, and you should have a similar

number of ripe and unripe.

If you don't have both ripe and unripe fruit, you can use different fruits, or any two objects you

have available. You can also find some example images in the images folder of ripe and unripe

bananas that you can use.

2. Follow the Upload and tag images section of the Build a classifier quickstart on the Microsoft docs

to upload your training images. Tag the ripe fruit as ripe , and the unripe fruit as unripe .

3. Follow the Train the classifier section of the Build a classifier quickstart on the Microsoft docs to

train the image classifier on your uploaded images.

You will be given a choice of training type. Select Quick Training.

The classifier will then train. It will take a few minutes for the training to complete.

🍌 If you decide to eat your fruit whilst the classifier is training, make sure you have enough

images to test with first!

Test your image classifier

Once your classifier is trained, you can test it by giving it a new image to classify.

https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#upload-and-tag-images
https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#train-the-classifier

Task - test your image classifier

1. Follow the Test your model documentation on the Microsoft docs to test your image classifier. Use

the testing images you created earlier, not any of the images you used for training.

2. Try all the testing images you have access to and observe the probabilities.

Retrain your image classifier

When you test you classifier, it may not give the results you expect. Image classifiers use machine

learning to make predictions about what is in an image, based of probabilities that particular features

of an image mean that it matches a particular label. It doesn't understand what is in the image - it

doesn't know what a banana is or understand what makes a banana a banana instead of a boat. You

can improve your classifier by retraining it with images it gets wrong.

Every time you make a prediction using the quick test option, the image and results are stored. You

can use these images to retrain your model.

Task - retrain your image classifier

1. Follow the Use the predicted image for training documentation on the Microsoft docs to retrain

your model, using the correct tag for each image.

2. Once you model has been retrained, test on new images.

https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/test-your-model?WT.mc_id=academic-17441-jabenn#test-your-model
https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/test-your-model?WT.mc_id=academic-17441-jabenn#use-the-predicted-image-for-training

🚀 Challenge

What do you think would happen if you used a picture of a strawberry with a model trained on

bananas, or a picture of an inflatable banana, or a person in a banana suit, or even a yellow cartoon

character like someone from the Simpsons?

Try it out and see what the predictions are. You can find images to try with using Bing Image search.

Post-lecture quiz

Post-lecture quiz

Review & Self Study

When you trained your classifier, you would have seen values for Precision, Recall, and AP that

rate the model that was created. Read up on what these values are using the Evaluate the

classifier section of the Build a classifier quickstart on the Microsoft docs

Read up on how to improve your classifier from the How to improve your Custom Vision model on

the Microsoft docs

Assignment

Train your classifier for multiple fruits and vegetables

Check fruit quality from an IoT device
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

https://www.bing.com/images/trending
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/30
https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#evaluate-the-classifier
https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-improving-your-classifier?WT.mc_id=academic-17441-jabenn

Pre-lecture quiz

Introduction

In the last lesson you learned about image classifiers, and how to train them to detect good and bad

fruit. To use this image classifier in an IoT application, you need to be able to capture an image using

some kind of camera, and send this image to the cloud to be classified.

In this lesson you will learn about camera sensors, and how to use them with an IoT device to capture

an image. You will also learn how to call the image classifier from your IoT device.

In this lesson we'll cover:

Camera sensors

Capture an image using an IoT device

Publish your image classifier

Classify images from your IoT device

Improve the model

Camera sensors

Camera sensors, as the name suggests, are cameras that you can connect to your IoT device. They

can take still images, or capture streaming video. Some will return raw image data, others will

compress the image data into an image file such as a JPEG or PNG. Usually the cameras that work

with IoT devices are much smaller and lower resolution that what you might be used to, but you can

get high resolution cameras that will rival top end phones. You can get all manner of interchangeable

lenses, multiple camera setups, infra-red thermal cameras, or UV cameras.

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/31

Most camera sensors use image sensors where each pixel is a photodiode. A lens focuses the image

onto the image sensor, and thousands or millions of photodiodes detect the light falling on each one,

and record that as pixel data.

💁 Lenses invert images, the camera sensor then flips the image back the right way round.

This is the same in your eyes - what you see is detected upside down on the back of your eye

and your brain corrects it.

🎓 The image sensor is known as an Active-Pixel Sensor (APS), and the most popular type of

APS is a complementary metal-oxide semiconductor sensor, or CMOS. You may have heard

the term CMOS sensor used for camera sensors.

Camera sensors are digital sensors, sending image data as digital data, usually with the help of a

library that provides the communication. Cameras connect using protocols like SPI to allow them to

send large quantities of data - images are substantially larger than single numbers from a sensor

such as a temperature sensor.

✅ What are the limitations around image size with IoT devices? Think about the constraints

especially on microcontroller hardware.

Capture an image using an IoT device

You can use your IoT device to capture and image to be classified.

Task - capture an image using an IoT device

Work through the relevant guide to capture an image using your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

Single-board computer - Virtual device

Publish your image classifier

You trained your image classifier in the last lesson. Before you can use it from your IoT device, you

need to publish the model.

Model iterations

When your model was training in the last lesson, you may notice that the Performance tab shows

iterations on the side. When you first trained the model you would have seen Iteration 1 in training.

When you improved the model using the prediction images, you would have seen Iteration 2 in

training.

Every time you train the model, you get a new iteration. This is a way to keep track of the different

versions of your model trained on different data sets. When you do a Quick Test, there is a drop-

down you can use to select the iteration, so you can compare the results across multiple iterations.

When you are happy with an iteration, you can publish it to make it available to be used from external

applications. This way you can have a published version that is used by your devices, then work on a

new version over multiple iterations, then publish that once you are happy with it.

Task - publish an iteration

Iterations are published from the Custom Vision portal.

1. Launch the Custom Vision portal at CustomVision.ai and sign in if you don't have it open already.

2. Select the Performance tab from the options at the top

3. Select the latest iteration from the Iterations list on the side

4. Select the Publish button for the iteration

https://customvision.ai/

5. In the Publish Model dialog, set the Prediction resource to the

fruit-quality-detector-prediction resource you created in the last lesson. Leave the

name as Iteration2 , and select the Publish button.

6. Once published, select the Prediction URL button. This will show details of the prediction API,

and you will need these to call the model from your IoT device. The lower section is labelled If you

have an image file, and this is the details you want. Take a copy of the URL that is shown which

will be something like:

Where <location> will be the location you used when creating your custom vision resource,

and <id> will be a long ID made up of letters and numbers.

Also take a copy of the Prediction-Key value. This is a secure key that you have to pass when you

call the model. Only applications that pass this key are allowed to use the model, any other

applications are rejected.

https://<location>.api.cognitive.microsoft.com/customvision/v3.0/Predict
output

✅ When a new iteration is published, it will have a different name. How do you think you would

change the iteration an IoT device is using?

Classify images from your IoT device

You can now use these connection details to call the image classifier from your IoT device.

Task - classify images from your IoT device

Work through the relevant guide to classify images using your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi/Virtual IoT device

Improve the model

You may find that the results you get when using the camera connected to your IoT device don't

match what you would expect. The predictions are not always as accurate as using images uploaded

from your computer. This is because the model was trained on different data to what is being used

for predictions.

To get the best results for an image classifier, you want to train the model with images that are as

similar to the images used for predictions as possible. If you used your phone camera to capture

images for training, for example, the image quality, sharpness, and color will be different to a camera

connected to an IoT device.

In the image above, the banana picture on the left was taken using a Raspberry Pi Camera, the one on

the right was taken of the same banana in the same location using an iPhone. There is a noticeable

difference in quality - the iPhone picture is sharper, with brighter colors and more contrast.

✅ What else might cause the images captured by your IoT device to have incorrect predictions?

Think about the environment an IoT device might be used in, what factors can affect the image being

captured?

To improve the model, you can retrain it using the images captured from the IoT device.

Task - improve the model

1. Classify multiple images of both ripe and unripe fruit using your IoT device.

2. In the Custom Vision portal, retrain the model using the images on the Predictions tab.

⚠ You can refer to the instructions for retraining your classifier in lesson 1 if needed.

3. If your images look very different to the original ones used to train, you can delete all the original

images by selecting them in the Training Images tab and selecting the Delete button. To select an

image, move your cursor over it and a tick will appear, select that tick to select or deselect the

image.

4. Train a new iteration of the model and publish it using the steps above.

5. Update the endpoint URL in your code, and re-run the app.

6. Repeat these steps until you are happy with the results of the predictions.

🚀 Challenge

How much does image resolution or lighting affect the prediction?

Try changing the resolution of the images in your device code and see if it makes a difference to the

quality of the images. Also try changing lighting.

If you were to create a production device to sell to farms or factories, how would you ensure it gives

consistent results all the time?

Post-lecture quiz

Post-lecture quiz

Review & Self Study

You trained your custom vision model using the portal. This relies on having images available - and in

the real world you may not be able to get training data that matches what the camera on your device

captures. You can work round this by training directly from your device using the training API, to train

a model using images captured from your IoT device.

Read up on the training API in the Using the Custom Vision SDK quick start

Assignment

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/32
https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/quickstarts/image-classification?tabs=visual-studio&pivots=programming-language-python&WT.mc_id=academic-17441-jabenn

Respond to classification results

Run your fruit detector on the edge
Add a sketchnote if possible/appropriate

This video gives an overview of running image classifiers on IoT devices, the topic that is covered in

this lesson.

🎥 Click the image above to watch a video

Pre-lecture quiz

Pre-lecture quiz

Introduction

In this lesson you will learn about

In this lesson we'll cover:

https://www.youtube.com/watch?v=_K5fqGLO8us
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/33

Thing 1

Thing 1

🚀 Challenge

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Assignment

Trigger fruit quality detection from a

sensor
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/34
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/35

Introduction

An IoT application is not just a single device capturing data and sending it to the cloud, it is more

often that not multiple devices all working together to capture data from the physical world using

sensors, make decisions based off that data, and interacting back with the physical world via

actuators or visualizations.

In this lesson you will learn more about architecting complex IoT applications, incorporating multiple

sensors, multiple cloud services to analyze and store data, and showing a response via an actuator.

You will learn how to architect a fruit quality control system prototype, including about using proximity

sensors to trigger the IoT application, and what the architecture of this prototype would be.

In this lesson we'll cover:

Architect complex IoT applications

Design a fruit quality control system

Trigger fruit quality checking from a sensor

Data used for a fruit quality detector

Using developer devices to simulate multiple IoT devices

Moving to production

🗑 This is the last lesson in this project, so after completing this lesson and the assignment,

don't forget to clean up your cloud services. You will need the services to complete the

assignment, so make sure to complete that first.

Refer to the clean up your project guide if necessary for instructions on how to do this.

Architect complex IoT applications

IoT applications are made up of many components. This includes a variety of things, and a variety of

internet services.

IoT applications can be described as things (devices) sending data that generates insights. These

insights generate actions to improve a business or process. An example is an engine (the thing)

sending temperature data. This data is used to evaluate whether the engine is performing as

expected (the insight). The insight is used to proactively prioritize the maintenance schedule for the

engine (the action).

Different things gather different pieces of data.

IoT services give insights over that data, sometimes augmenting it with data from additional

sources.

These insights drive actions, including controlling actuators in devices, or visualizing data.

Reference IoT architecture

A reference iot architecture. Microcontroller by Template / IoT by Adrien Coquet / Brain by Icon

Market - all from the Noun Project

The diagram above shows a reference IoT architecture.

🎓 A reference architecture is an example architecture you can use as a reference when

designing new systems. In this case, if you were building a new IoT system you can follow the

reference architecture, substituting your own devices and services where appropriate.

Things are devices that gather data from sensors, maybe interacting with edge services to

interpret that data, such as image classifiers to interpret image data. The data from the devices is

sent to an IoT service.

https://thenounproject.com/

Insights come from serverless applications, or from analytics run on stored data.

Actions can be commands sent to devices, or visualization of data allowing humans to make

decisions.

A reference iot architecture. Microcontroller by Template - all from the Noun Project

The diagram above shows some of the components and services covered so far in these lessons and

how the link together in a reference IoT architecture.

Things - you've written device code to capture data from sensors, and analyse images using

Custom Vision running both in the cloud and on an edge device. This data was sent to IoT Hub.

Insights - you've used Azure Functions to respond to messages sent to an IoT Hub, and stored

data for later analysis in Azure Storage.

Actions - you've controlled actuators based on decisions made in the cloud and commands sent

to the devices, and you've visualized data using Azure Maps.

✅ Think about other IoT devices you have used, such as smart home appliances. What are the

things, insights and actions involved in that device and it's software?

This pattern can be scaled out as large or small as you need, adding more devices and more services.

Data and security

https://thenounproject.com/

As you define the architecture of your system, you need to constantly consider data and security.

What data does your device send and receive?

How should that data be secured and protected?

How should access to the device and cloud service be controlled?

✅ Think about the data security of any IoT devices you own. How much of that data is personal and

should be kept private, both in transit or when stored? What data should not be stored?

Design a fruit quality control system

Lets now take this idea of things, insights, and actions and apply it to our fruit quality detector to

design a larger end-to-end application.

Imagine you have been given the task of building a fruit quality detector to be used in a processing

plant. Fruit travels on a conveyer belt system where currently employees spend time checking the

fruit by hand and removing any unripe fruit as it arrives. To reduce costs, the plant owner wants an

automated system.

✅ One of the trends with the rise of IoT (and technology in general) is that manual jobs are being

replaced by machines. Do some research: How many jobs are estimated to be lost to IoT? How many

new jobs will be created building IoT devices?

You need to build a system where fruit is detected as it arrives on the conveyer belt, it is then

photographed and checked using an AI model running on the edge. The results are then sent to the

cloud to be stored, and if the fruit is unripe a notification is given so the unripe fruit can be removed.

Things

Detector for fruit arriving on the conveyor belt

Camera to photograph and classify the fruit

Edge device running the classifier

Device to notify of unripe fruit

Insights

Decide to check the ripeness of the fruit

Store the results of the ripeness classification

Determine if there is a need to alert about unripe fruit

Actions

Send a command to a device to photograph the fruit and check it with an image

classifier

Send a command to a device to alert that the fruit is unripe

Prototyping your application

A reference iot architecture for fruit quality checking. LED by abderraouf omara / Microcontroller

by Template - all from the Noun Project

The diagram above shows a reference architecture for this prototype application.

An IoT device with a proximity sensor detects the arrival of fruit. This sends a message to the

cloud to say fruit has been detected.

A serverless application in the cloud sends a command to another device to take a photograph

and classify the image.

An IoT device with a camera takes a picture and sends it to an image classifier running on the

edge. The results are then sent to the cloud.

A serverless application in the cloud stores this information to be analyzed later to see what

percentage of fruit is unripe. If the fruit is unripe it sends a command to another iot device to alert

factory workers there is unripe fruit via an LED.

https://thenounproject.com/

💁 This entire IoT application could be implemented as a single device, with all the logic to

start the image classification and control the LED built in. It could use an IoT Hub just to track

the number of unripe fruits detected and configure the device. In this lesson it is expanded to

demonstrate the concepts for large scale IoT applications.

For the prototype, you will implement all of this on a single device. If you are using a microcontroller

then you will use a separate edge device to run the image classifier. You have already learned most of

the things you will need to be able to build this.

Trigger fruit quality checking from a sensor

The IoT device needs some kind of trigger to indicate when fruit is ready to be classified. One trigger

for this would be to measure when the fruit is at the right location on the conveyor belt my measuring

the distance to a sensor.

Proximity sensors send laser beams to objects like bananas and time how long till the beam is

bounced back. Bananas by abderraouf omara / Microcontroller by Template - all from the Noun

Project

Proximity sensors can be used to measure the distance from the sensor to an object. They usually

transmit a beam of electromagnetic radiation such as a laser beam or infra-red light, then detect the

radiation bouncing off an object. The time between the laser beam being sent and the signal

bouncing back can be used to calculate the distance to the sensor.

💁 You have probably used proximity sensors without even knowing about it. Most

smartphone will turn the screen off when you hold them to your ear to stop you accidentally

https://thenounproject.com/

ending a call with your earlobe, and this works using a proximity sensor, detecting an object

close to the screen during a call and disabling the touch capabilities until the phone is a

certain distance away.

Task - trigger fruit quality detection from a distance sensor

Work through the relevant guide to use a proximity sensor to detect an object using your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

Single-board computer - Virtual device

Data used for a fruit quality detector

The prototype fruit detector has multiple components communicating with each other.

A proximity sensor measuring the distance to a piece of fruit and sending this to IoT Hub

The command to control the camera coming from IoT Hub to the camera device

The results of the image classification being sent to IoT Hub

The command to control an LED to alert when the fruit is unripe being sent from IoT Hub to the

device with the LED

It is good to define the structure of these messages up front, before you build out the application.

💁 Pretty much every experienced developer has at some point in their career spent hours,

days or even weeks chasing down bugs caused by differences in the data being sent

compared to what is expected.

For example - if you are sending temperature information, how would you define the JSON? You

could have a field called temperature , or you could use the common abbreviation temp .

compared to:

You also have to consider units - is the temperature in °C or °F? If you are measuring temperature

using a consumer device and they change the display units, you need to make sure the units sent to

the cloud remain consistent.

✅ Do some research: How did unit problems cause the $125 million Mars Climate Orbiter to crash?

Think about the data being sent for the fruit quality detector. How would you define each message?

Where would you analyze the data and make decisions about what data to send?

For example - triggering the image classification using the proximity sensor. The IoT device measures

the distance, but where is the decision made? Does the device decide that the fruit is close enough

and sends a message to tell the IoT Hub to trigger the classification? Or does it send proximity

measurements and let the IoT Hub decide?

The answer to questions like this is - it depends. Each use case is different, which is why as an IoT

developer you need to understand the system you are building, how it is used, and the data being

detected.

{
 "temperature": 20.7
}

json

{
 "temp": 20.7
}

json

If the decision is made by the IoT Hub, you need to send multiple distance measurements.

If you send too many messages, it increases the cost of the IoT Hub, and the amount of

bandwidth needed by your IoT devices (especially in a factory with millions of devices). It can also

slow down your device.

If you make the decision on the device, you will need to provide a way to configure the device to

fine tune the machine.

Using developer devices to simulate multiple IoT

devices

To build your prototype, you will need your IoT dev kit to act like multiple devices, sending telemetry

and responding to commands.

Simulating multiple IoT devices on a Raspberry Pi or virtual IoT hardware

When using a single board computer like a Raspberry Pi, you are able to run multiple applications at

once. This means you can simulate multiple IoT devices by creating multiple applications, one per 'IoT

device'. For example, you can implement each device as a separate Python file and run them in

different terminal sessions.

💁 Be aware that some hardware won't work when being accessed by multiple applications

running simultaneously.

Simulating multiple devices on a microcontroller

Microcontrollers are more complicated to simulate multiple devices. Unlike single board computers

you cannot run multiple applications at once, you have to include all the logic for all the separate IoT

devices in a single application.

Some suggestions to make this process easier are:

Create one or more classes per IoT device - for example classes called DistanceSensor ,

ClassifierCamera , LEDController . Each one can have it's own setup and loop

methods called by the main setup and loop functions.

Handle commands in a single place, and direct them to the relevant device class as required.

In the main loop function, you will need to consider the timing for each different device. For

example, if you have one device class that needs to process every 10 seconds, and another that

needs to process every 1 second, then in your main loop function use a 1 second delay. Every

loop call triggers the relevant code for the device that needs to process every second, and use

a counter to count each loop, processing the other device when the counter reaches 10 (resetting

the counter afterwards).

Moving to production

The prototype will form the basis of a final production system. Some of the differences when you

move to production would be:

Ruggedized components - using hardware designed to withstand the noise, heat, vibration and

stress of a factory.

Using internal communications - some of the components would communicate directly avoiding

the hop to the cloud, only sending data to the cloud to be stored. How this is done depends on

the factory setup, with either direct communications, or by running part of the IoT service on the

edge using a gateway device.

Configuration options - each factory and use case is different, so the hardware would need to be

configurable. For example, the proximity sensor may need to detect different fruit at different

distances. Rather than hard code the distance to trigger the classification, you would want this to

be configurable via the could, for example using a device twin

Automated fruit removal - instead of an LED to alert that fruit is unripe, automated devices would

remove it.

✅ Do some research: In what other ways would production devices differ from developer kits?

🚀 Challenge

In this lesson you have learned some of the concepts you need to know to architect an IoT system.

Think back to the previous projects. How would do they fit into the reference architecture shown

above?

Pick one of the projects so far and think of the design of a more complicated solution bringing

together multiple capabilities beyond what was covered in the projects. Draw the architecture and

think of all the devices and services you would need.

For example - a vehicle tracking device that combines GPS with sensors to monitor things like

temperatures in a refrigerated truck, the engine on and off times, and the identity of the driver. What

are the devices involved, the services involved, the data being transmitted and the security and

privacy considerations?

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Read more about IoT architecture on the Azure IoT reference architecture documentation on

Microsoft docs

Read more about device twins in the Understand and use device twins in IoT Hub documentation

on Microsoft docs

Read about OPC-UA, a machine to machine communication protocol used in industrial

automation on the OPC-UA page on Wikipedia

Assignment

Build a fruit quality detector

Train a stock detector
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

Introduction

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/36
https://docs.microsoft.com/azure/architecture/reference-architectures/iot?WT.mc_id=academic-17441-jabenn
https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-device-twins?WT.mc_id=academic-17441-jabenn
https://wikipedia.org/wiki/OPC_Unified_Architecture
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/37

In this lesson you will learn about

In this lesson we'll cover:

Thing 1

Thing 1

🚀 Challenge

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Assignment

Check stock from an IoT device
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/38
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/39

Introduction

In this lesson you will learn about

In this lesson we'll cover:

Thing 1

Thing 1

🚀 Challenge

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Assignment

Recognize speech with an IoT device
Add a sketchnote if possible/appropriate

This video gives an overview of the Azure speech service, a topic that will be covered in this lesson:

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/40

🎥 Click the image above to watch a video

Pre-lecture quiz

Pre-lecture quiz

Introduction

'Alexa, set a 12 minute timer'

'Alexa, timer status'

'Alexa set a 8 minute timer called steam broccoli'

Smart devices are becoming more and more pervasive. Not just as smart speakers like HomePods,

Echos and Google Homes, but embedded in our phones, watches, and even light fittings and

thermostats.

💁 I have at least 19 devices in my home that have voice assistants, and that's just the ones I

know about!

https://www.youtube.com/watch?v=iW0Fw0l3mrA
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/41

Voice control increases accessibility by allowing folks with limited movement to interact with devices.

Whether it is a permanent disability such as being born without arms, to temporary disabilities such

as broken arms, or having your hands full of shopping or young children, being able to control our

houses from our voice instead of our hands opens up a world of access. Shouting 'Hey Siri, close my

garage door' whilst dealing with a baby change and an unruly toddler can be a small but effective

improvement on life.

One of the more popular uses for voice assistants is setting timers, especially kitchen timers. Being

able to set multiple timers with just your voice is a great help in the kitchen - no need to stop

kneading dough, stirring soup, or clean dumpling filling off your hands to use a physical timer.

In this lesson you will learn about building voice recognition into IoT devices. You'll learn about

microphones as sensors, how to capture audio from a microphone attached to an IoT device, and

how to use AI to convert what is heard into text. Throughout the rest of this project you will build a

smart kitchen timer, able to set timers using your voice with multiple languages.

In this lesson we'll cover:

Microphones

Capture audio from your IoT device

Speech to text

Convert speech to text

Microphones

Microphones are analog sensors that convert sound waves into electrical signals. Vibrations in air

cause components in the microphone to move tiny amounts, and these cause tiny changes in

electrical signals. These changes are then amplified to generate an electrical output.

Microphone types

Microphones come in a variety of types:

Dynamic - Dynamic microphones have magnet attached to a moving diaphragm that moves in a

coil of wire creating an electrical current. This is the opposite of most loudspeakers, that use an

electrical current to move a magnet in a coil of wire, moving a diaphragm to create sound. This

means speakers can be used a dynamic microphones, and dynamic microphones can be used as

speakers. In devices such as intercoms where a user is either listening or speaking, but not both,

one device can act as both a speaker and a microphone.

Dynamic microphones don't need power to work, the electrical signal is created entirely from the

microphone.

Beni Köhler / Creative Commons Attribution-Share Alike 3.0 Unported

Ribbon - Ribbon microphones are similar to dynamic microphones, except they have a metal

ribbon instead of a diaphragm. This ribbon moves in a magnetic field generating an electrical

current. Like dynamic microphones, ribbon microphones don't need power to work.

https://creativecommons.org/licenses/by-sa/3.0/deed.en

Condenser - Condenser microphones have a thin metal diaphragm and a fixed metal backplate.

Electricity is applied to both of these and as the diaphragm vibrates the static charge between the

plates changes generating a signal. Condenser microphones need power to work - called

Phantom power.

Harumphy at en.wikipedia / Creative Commons Attribution-Share Alike 3.0 Unported

MEMS - Microelectromechanical systems microphones, or MEMS, are microphones on a chip.

They have a pressure sensitive diaphragm etched onto a silicon chip, and work similar to a

condenser microphone. These microphones can be tiny, and integrated into circuitry.

https://en.wikipedia.org/wiki/User:Harumphy
https://en.wikipedia.org/
https://creativecommons.org/licenses/by-sa/3.0/deed.en

In the image above, the chip labelled LEFT is a MEMS microphone, with a tiny diaphragm less than

a millimeter wide.

✅ Do some research: What microphones do you have around you - either in your computer, your

phone, your headset or in other devices. What type of microphones are they?

Digital audio

Audio is an analog signal carrying very fine-grained information. To convert this signal to digital, the

audio needs to be sampled many thousands of times a second.

🎓 Sampling is converting the audio signal into a digital value that represents the signal at

that point in time.

Digital audio is sampled using Pulse Code Modulation, or PCM. PCM involves reading the voltage of

the signal, and selecting the closest discrete value to that voltage using a defined size.

💁 You can think of PCM as the sensor version of pulse width modulation, or PWM (PWM was

covered back in lesson 3 of the getting started project). PCM involves converting an analog

signal to digital, PWM involves converting a digital signal to analog.

For example most streaming music services offer 16-bit or 24-bit audio. This means they convert the

voltage into a value that fits into a 16-bit integer, or 24-bit integer. 16-bit audio fits the value into a

number ranging from -32,768 to 32,767, 24-bit is in the range −8,388,608 to 8,388,607. The more

bits, the closer the sample is to what our ears actually hear.

💁 You may have hard of 8-bit audio, often referred to as LoFi. This is audio sampled using

only 8-bits, so -128 to 127. The first computer audio was limited to 8 bits due to hardware

limitations, so this is often seen in retro gaming.

These samples are taken many thousands of times per second, using well-defined sample rates

measured in KHz (thousands of readings per second). Streaming music services use 48KHz for most

audio, but some 'loseless' audio uses up to 96KHz or even 192KHz. The higher the sample rate, the

closer to the original the audio will be, up to a point. There is debate whether humans can tell the

difference above 48KHz.

✅ Do some research: If you use a streaming music service, what sample rate and size does it use? If

you use CDs, what is the sample rate and size of CD audio?

Capture audio from your IoT device

Your IoT device can be connected to a microphone to capture audio, ready for conversion to text. It

can also be connected to speakers to output audio. In later lessons this will be used to give audio

feedback, but it is useful to set up speakers now to test the microphone.

Task - configure your microphone and speakers

Work through the relevant guide to configure the microphone and speakers for your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

Single-board computer - Virtual device

Task - capture audio

Work through the relevant guide to capture audio on your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

Single-board computer - Virtual device

Speech to text

Speech to text, or speech recognition, involves using AI to convert words in an audio signal to text.

Speech recognition models

To convert speech to text, samples from the audio signal are grouped together and fed into a

machine learning model based around a Recurrent Neural network (RNN). This is a type of machine

learning model that can use previous data to make a decision about incoming data. For example, the

RNN could detect one block of audio samples as the sound 'Hel', and when it receives another that it

thinks is the sound 'lo', it can combine this with the previous sound, find that 'Hello' is a valid word

and select that as the outcome.

ML models always accept data of the same size every time. The image classifier you built in an earlier

lesson resizes images to a fixed size and processes them. The same with speech models, they have

to process fixed sized audio chunks. The speech models need to be able to combine the outputs of

multiple predictions to get the answer, to allow it to distinguish between 'Hi' and 'Highway', or 'flock'

and 'floccinaucinihilipilification'.

Speech models are also advanced enough to understand context, and can correct the words they

detect as more sounds are processed. For example, if you say "I went to the shops to get two

bananas and an apple too", you would use three words that sound the same, but are spelled

differently - to, two and too. Speech models are able to understand the context and use the

appropriate spelling of the word.

💁 Some speech services allow customization to make them work better in noisy

environments such as factories, or with industry-specific words such as chemical names.

These customizations are trained by providing sample audio and a transcription, and work

using transfer learning, the same as how you trained an image classifier using only a few

images in an earlier lesson.

Privacy

When using speech to text in a consumer IoT device, privacy is incredibly important. These devices

listen to audio continuously, so as a consumer you don't want everything you say being sent to the

cloud and converted to text. Not only will this use a lot of Internet bandwidth, it also has massive

privacy implications, especially when some smart device makers randomly select audio for humans

to validate against the text generated to help improve their model.

You only want your smart device to send audio to the cloud for processing when you are using it, not

when it hears audio in your home, audio that could include private meetings or intimate interactions.

The way most smart devices work is with a wake word, a key phrase such as "Alexa", "Hey Siri", or

https://www.theverge.com/2019/4/10/18305378/amazon-alexa-ai-voice-assistant-annotation-listen-private-recordings

"OK Google" that causes the device to 'wake up' and listen to what you are saying up until it detects

a break in your speech, indicating you have finished talking to the device.

🎓 Wake word detection is also referred to as Keyword spotting or Keyword recognition.

These wake words are detected on the device, not in the cloud. These smart devices have small AI

models that run on the device that listen for the wake work, and when it is detected, start streaming

the audio to the cloud for recognition. These models are very specialized, and just listen for the wake

word.

💁 Some tech companies are adding more privacy to their devices and doing some of the

speech to text conversion on the device. Apple have announced that as part of their 2021 iOS

and macOS updates they will support the speech to text conversion on device, and be able to

handle many requests without needing to use the cloud. This is thanks to having powerful

processors in their devices that can run ML models.

✅ What do you think are the privacy and ethical implications of storing the audio sent to the cloud?

Should this audio be stored, and if so, how? Do you thing the use of recordings for law enforcement is

a good trade off for the loss of privacy?

Wake word detection usually uses a technique know an TinyML, that is converting ML models to be

able to run on microcontrollers. These models are small in size, and consume very little power to run.

To avoid the complexity of training and using a wake word model, the smart timer you are building in

this lesson will use a button to turn on the speech recognition.

💁 If you want to try creating a wake word detection model to run on the Wio Terminal or

Raspberry Pi, check out this Responding to your voice tutorial by Edge Impulse. If you want to

use your computer to do this, you can try the Get started with Custom Keyword quickstart on

the Microsoft docs.

Convert speech to text

https://docs.edgeimpulse.com/docs/responding-to-your-voice
https://docs.microsoft.com/azure/cognitive-services/speech-service/keyword-recognition-overview?WT.mc_id=academic-17441-jabenn

Just like with image classification in an earlier project, there are pre-built AI services that can take

speech as an audio file and convert it to text. Once such service is the Speech Service, part of the

Cognitive Services, pre-built AI services you can use in your apps.

Task - configure a speech AI resource

1. Create a Resource Group for this project called smart-timer

2. Use the following command to create a free speech resource:

Replace <location> with the location you used when creating the Resource Group.

3. You will need an API key to access the speech resource from your code. Run the following

command to get the key:

Take a copy of one of the keys.

Task - convert speech to text

Work through the relevant guide to convert speech to text on your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

az cognitiveservices account create --name smart-timer \
 --resource-group smart-timer \
 --kind SpeechServices \
 --sku F0 \
 --yes \
 --location <location>

sh

az cognitiveservices account keys list --name smart-timer \
 --resource-group smart-timer \
 --output table

sh

Single-board computer - Virtual device

Task - send converted speech to an IoT services

To use the results of the speech to text conversion, you need to send it to the cloud. There it will be

interpreted and responses sent back to the IoT device as commands.

1. Create a new IoT Hub in the smart-timer resource group, and register a new device called

smart-timer .

2. Connect your IoT device to this IoT Hub using what you have learned in previous lessons, and

send the speech as telemetry. Use a JSON document in this format:

Where <converted speech> is the output from the speech to text call. You only need to send

speech that has content, if the call returns an empty string it can be ignored.

3. Verify that messages are being sent by monitoring the Event Hub compatible endpoint using the

az iot hub monitor-events command.

💁 You can find this code in the code-iot-hub/virtual-iot-device, code-iot-hub/pi, or code-iot-

hub/wio-terminal folder.

🚀 Challenge

Speech recognition has been around for a long time, and is continuously improving. Research the

current capabilities and compare how these have evolved over time, including how accurate machine

transcriptions are compared to human.

What do you think the future holds for speech recognition?

Post-lecture quiz

{
 "speech" : "<converted speech>"
}

json

Post-lecture quiz

Review & Self Study

Read about the different microphone types and how they work on the What's the difference

between dynamic and condenser microphones article on Musician's HQ.

Read more on the Cognitive Services speech service on the Speech service documentation on

Microsoft Docs

Read about keyword spotting on the Keyword recognition documentation on Microsoft Docs

Assignment

Understand language
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

Introduction

In the last lesson you converted speech to text. For this to be used to program a smart timer, your

code will need to have an understanding of what was said. You could assume the user will speak a

fixed phrase, such as "Set a 3 minute timer", and parse that expression to get how long the timer

should be, but this isn't very user-friendly. If a user were to say "Set a timer for 3 minutes", you or I

would understand what they mean, but your code would not, it would be expecting a fixed phrase.

This is where language understanding comes in, using AI models to interpret text and return the

details that are needed, for example being able to take both "Set a 3 minute timer" and "Set a timer

for 3 minutes", and understand that a timer is required for 3 minutes.

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/42
https://musicianshq.com/whats-the-difference-between-dynamic-and-condenser-microphones/
https://docs.microsoft.com/azure/cognitive-services/speech-service/?WT.mc_id=academic-17441-jabenn
https://docs.microsoft.com/azure/cognitive-services/speech-service/keyword-recognition-overview?WT.mc_id=academic-17441-jabenn
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/43

In this lesson you will learn about language understanding models, how to create them, train them,

and use them from your code.

In this lesson we'll cover:

Language understanding

Create a language understanding model

Intents and entities

Use the language understanding model

Language understanding

Humans have used language to communicate for hundreds of thousands of years. We communicate

with words, sounds, or actions and understand what is said, both the meaning of the words, sounds

or actions, but also their context. We understand sincerity and sarcasm, allowing the same words to

mean different things depending on the tone of our voice.

✅ Think about some of the conversations you have had recently. How much of the conversation

would be hard for a computer to understand because it needs context?

Language understanding, also called natural-language understanding is part of a field of artificial

intelligence called natural-language processing (or NLP), and deals with reading comprehension,

trying to understand the details of words or sentences. If you use a voice assistant such as Alexa or

Siri, you have used language understanding services. These are the behind-the-scenes AI services

that convert "Alexa, play the latest album by Taylor Swift" into my daughter dancing around the living

room to her favorite tunes.

💁 Computers, despite all their advances, still have a long way to go to truly understand text.

When we refer to language understanding with computers, we don't mean anything anywhere

near as advanced as human communication, instead we mean taking some words and

extracting key details.

As humans, we understand language without really thinking about it. If I asked another human to

"play the latest album by Taylor Swift" then they would instinctively know what I meant. For a

computer, this is harder. It would have to take the words, converted from speech to text, and work out

the following pieces of information:

Music needs to be played

The music is by the artist Taylor Swift

The specific music is a whole album of multiple tracks in order

Taylor Swift has many albums, so they need to be sorted by chronological order and the most

recently published is the one required

✅ Think of some other sentences you have spoken when making requests, such as ordering coffee

or asking a family member to pass you something. Try to break then down into the pieces of

information a computer would need to extract to understand the sentence.

Language understanding models are AI models that are trained to extract certain details from

language, and then are trained for specific tasks using transfer learning, in the same way you trained

a Custom Vision model using a small set of images. You can take a model, then train it using the text

you want it to understand.

Create a language understanding model

You can create language understanding models using LUIS, a language understanding service from

Microsoft that is part of Cognitive Services.

Task - create an authoring resource

To use LUIS, you need to create an authoring resource.

1. Use the following command to create an authoring resource in your smart-timer resource

group:

az cognitiveservices account create --name smart-timer-luis-authoring \
 --resource-group smart-timer \
 --kind LUIS.Authoring \
 --sku F0 \
 --yes \
 --location <location>

python

Replace <location> with the location you used when creating the Resource Group.

⚠ LUIS isn't available in all regions, so if you get the following error:

pick a different region.

This will create a free-tier LUIS authoring resource.

Task - create a language understanding app

1. Open the LUIS portal at luis.ai in your browser, and sign in with the same account you have been

using for Azure.

2. Follow the instructions on the dialog to select your Azure subscription, then select the

smart-timer-luis-authoring resource you have just created.

3. From the Conversation apps list, select the New app button to create a new application. Name the

new app smart-timer , and set the Culture to your language.

💁 There is a field for a prediction resource. You can create a second resource just for

prediction, but the free authoring resource allows 1,000 predictions a month which should

be enough for development, so you can leave this blank.

4. Read through the guide that appears once you cerate the app to get an understanding of the

steps you need to take to train the language understanding model. Close this guide when you are

done.

Intents and entities

Language understanding is based around intents and entities. Intents are what the intent of the words

are, for example playing music, setting a timer, or ordering food. Entities are what the intent is

InvalidApiSetId: The account type 'LUIS.Authoring' is either inval
output

https://luis.ai/?WT.mc_id=academic-17441-jabenn

referring to, such as the album, the length of the timer, or the type of food. Each sentence that the

model interprets should have at least one intent, and optionally one or more entities.

Some examples:

Sentence Intent Entities

"Play the latest album by Taylor Swift" play music the latest album by Taylor Swift

"Set a 3 minute timer" set a timer 3 minutes

"Cancel my timer"
cancel a

timer
None

"Order 3 large pineapple pizzas and a caesar

salad"
order food

3 large pineapple pizzas, caesar

salad

✅ With the sentences you though about earlier, what would be the intent and any entities in that

sentence?

To train LUIS, first you set the entities. These can be a fixed list of terms, or learned from the text. For

example, you could provide a fixed list of food available from your menu, with variations (or

synonyms) of each word, such as egg plant and aubergine as variations of aubergine. LUIS also has

pre-built entities that can be used, such as numbers and locations.

For setting a timer, you could have one entity using the pre-built number entities for the time, and

another for the units, such as minutes and seconds. Each unit would have multiple variations to cover

the singular and plural forms - such as minute and minutes.

Once the entities are defined, you create intents. These are learned by the model based on example

sentences that you provide (known as utterances). For example, for a set timer intent, you might

provide the following sentences:

set a 1 second timer

set a timer for 1 minute and 12 seconds

set a timer for 3 minutes

set a 9 minute 30 second timer

You then tell LUIS what parts of these sentences map to the entities:

The sentence set a timer for 1 minute and 12 seconds has the intent of set timer .

It also has 2 entities with 2 values each:

time unit

1 minute 1 minute

12 seconds 12 second

To train a good model, you need a range of different example sentences to cover the many different

ways someone might ask for the same thing.

💁 As with any AI model, the more data and the more accurate the data you use to train, the

better the model.

✅ Think about the different ways you might ask the same thing and expect a human to understand.

Task - add entities to the language understanding models

For the timer, you need to add 2 entities - one for the unit of time (minutes or seconds), and one for

the number of minutes or seconds.

You can find instructions for using the LUIS portal in the Quickstart: Build your app in LUIS portal

documentation on Microsoft docs.

1. From the LUIS portal, select the Entities tab and add the number prebuilt entity by selecting the

Add prebuilt entity button, then selecting number from the list.

2. Create a new entity for the time unit using the Create button. Name the entity time unit and

set the type to List. Add values for minute and second to the Normalized values list, adding

https://docs.microsoft.com/azure/cognitive-services/luis/luis-get-started-create-app?WT.mc_id=academic-17441-jabenn

the singular and plural forms to the synonyms list. Press return after adding each synonym to

add it to the list.

Normalized value Synonyms

minute minute, minutes

second second, seconds

Task - add intents to the language understanding models

1. From the Intents tab, select the Create button to create a new intent. Name this intent

set timer .

2. In the examples, enter different ways to set a timer using both minutes, seconds and minutes and

seconds combined. Examples could be:

set a 1 second timer

set a 4 minute timer

set a four minute six second timer

set a 9 minute 30 second timer

set a timer for 1 minute and 12 seconds

set a timer for 3 minutes

set a timer for 3 minutes and 1 second

set a timer for three minutes and one second

set a timer for 1 minute and 1 second

set a timer for 30 seconds

set a timer for 1 second

Mix up numbers as words and numerics so the model learns to handle both.

3. As you enter each example, LUIS will start detecting entities, and will underline and label any it

finds.

Task - train and test the model

1. Once the entities and intents are configured, you can train the model using the Train button on

the top menu. Select this button, and the model should train in a few seconds. The button will be

greyed out whilst training, and be re-enabled once done.

2. Select the Test button from the top menu to test the language understanding model. Enter text

such as set a timer for 5 minutes and 4 seconds and press return. The sentence will

appear in a box under the text box that you typed it in to, and blow that will be the top intent, or

the intent that was detected with the highest probability. This should be set timer . The intent

name will be followed by the probability that the intent detected was the right one.

3. Select the Inspect option to see a breakdown of the results. You will see the top-scoring intent

with it's percentage probability, along with lists of the entities detected.

4. Close the Test pane when you are done testing.

Task - publish the model

To use this model from code, you need to publish it. When publishing from LUIS, you can publish to

either a staging environment for testing, or a product environment for a full release. In this lesson, a

staging environment is fine.

1. From the LUIS portal, select the Publish button from the top menu.

2. Make sure Staging slot is selected, then select Done. You will see a notification when the app is

published.

3. You can test this using curl. To build the curl command, you need three values - the endpoint, the

application ID (App ID) and an API key. These can be accessed from the MANAGE tab that can be

selected from the top menu.

1. From the Settings section, copy the App ID

2. From the Azure Resources section, select Authoring Resource, and copy the Primary Key and

Endpoint URL

4. Run the following curl command in your command prompt or terminal:

Replace <endpoint url> with the Endpoint URL from the Azure Resources section.

Replace <app id> with the App ID from the Settings section.

Replace <primary key> with the Primary Key from the Azure Resources section.

Replace <sentence> with the sentence you want to test with.

5. The output of this call will be a JSON document that details the query, the top intent, and a list of

entities broken down by type.

curl "<endpoint url>/luis/prediction/v3.0/apps/<app id>/slots/staging/pr
 --request GET \
 --get \
 --data "subscription-key=<primary key>" \
 --data "verbose=false" \
 --data "show-all-intents=true" \
 --data-urlencode "query=<sentence>"

sh

{
 "query": "set a timer for 45 minutes and 12 seconds",
 "prediction": {
 "topIntent": "set timer",
 "intents": {
 "set timer": {
 "score": 0.97031575
 },
 "None": {
 "score": 0.02205793
 }
 },
 "entities": {
 "number": [

JSON

The JSON above came from querying with

set a timer for 45 minutes and 12 seconds :

The set timer was the top intent with a probability of 97%.

Two number entities were detected, 45 and 12 .

Two time-unit entities were detected, minute and second .

Use the language understanding model

Once published, the LUIS model can be called from code. In the last lesson you sent the recognized

speech to an IoT Hub, and you can use serverless code to respond to this and understand what was

sent.

Task - create a serverless functions app

1. Create an Azure Functions app called smart-timer-trigger .

2. Add an IoT Hub event trigger to this app called speech-trigger .

3. Set the Event Hub compatible endpoint connection string for your IoT Hub in the

local.settings.json file, and use the key for that entry in the function.json file.

4. Use the Azurite app as a local storage emulator.

5. Run your functions app and your IoT device to ensure speech is arriving at the IoT Hub.

 45,
 12
],
 "time-unit": [
 [
 "minute"
],
 [
 "second"
]
]
 }
 }
}

Task - use the language understanding model

1. The SDK for LUIS is available via a Pip package. Add the following line to the

requirements.txt file to add the dependency on this package:

2. Make sure the VS Code terminal has the virtual environment activated, and run the following

command to install the Pip packages:

3. Add new entries to the local.settings.json file for your LUIS API Key, Endpoint URL, and

App ID from the MANAGE tab of the LUIS portal:

Replace <endpoint url> with the Endpoint URL from the Azure Resources section of the

MANAGE tab. This will be https://<location>.api.cognitive.microsoft.com/ .

Replace <app id> with the App ID from the Settings section of the MANAGE tab.

Replace <primary key> with the Primary Key from the Azure Resources section of the

MANAGE tab.

4. Add the following imports to the __init__.py file:

This imports some system libraries, as well as the libraries to interact with LUIS.

Python EventHub trigger processed an event: {"speech": "Set a 3 minute t
output

azure-cognitiveservices-language-luis
sh

pip install -r requirements.txt
sh

"LUIS_KEY": "<primary key>",
"LUIS_ENDPOINT_URL": "<endpoint url>",
"LUIS_APP_ID": "<app id>"

JSON

import json
import os
from azure.cognitiveservices.language.luis.runtime import LUISRuntimeCli
from msrest.authentication import CognitiveServicesCredentials

python

5. In the main method, before it loops through all the events, add the following code:

This loads the values you added to the local.settings.json file for your LUIS app, creates

a credentials object with your API key, then creates a LUIS client object to interact with your LUIS

app.

6. Predictions are requested from LUIS by sending a prediction request - a JSON document

containing the text to predict. Create this with the following code inside the

for event in events loop:

This code extracts the speech that was sent to the IoT Hub and uses it to build the prediction

request.

7. This request can then be sent to LUIS, using the staging slot that your app was published to:

8. The prediction response contains the top intent - the intent with the highest prediction score,

along with the entities. If the top intent is set timer , then the entities can be read to get the

time needed for the timer:

The number entities wil be an array of numbers. For example, if you said "Set a four minute 17

second timer.", then the number array will contain 2 integers - 4 and 17.

luis_key = os.environ['LUIS_KEY']
endpoint_url = os.environ['LUIS_ENDPOINT_URL']
app_id = os.environ['LUIS_APP_ID']

credentials = CognitiveServicesCredentials(luis_key)
client = LUISRuntimeClient(endpoint=endpoint_url, credentials=credential

python

event_body = json.loads(event.get_body().decode('utf-8'))
prediction_request = { 'query' : event_body['speech'] }

python

prediction_response = client.prediction.get_slot_prediction(app_id, 'Sta
python

if prediction_response.prediction.top_intent == 'set timer':
 numbers = prediction_response.prediction.entities['number']
 time_units = prediction_response.prediction.entities['time unit']
 total_seconds = 0

python

The time unit entities will be an array of arrays of strings, with each time unit as an array of

strings inside the array. For example, if you said "Set a four minute 17 second timer.", then the

time unit array will contain 2 arrays with single values each - ['minute'] and

['second'] .

The JSON version of these entities for "Set a four minute 17 second timer." is:

This code also defines a count for the total time for the timer in seconds. This will be populated by

the values from the entities.

9. The entities aren't linked, but we can make some assumptions about them. They will be in the

order spoken, so the position in the array can be used to determine which number matches to

which time unit. For example:

"Set a 30 second timer" - this will have one number, 30 , and one time unit, second so the

single number will match the single time unit.

"Set a 2 minute and 30 second timer" - this will have two numbers, 2 and 30 , and two

time units, minute and second so the first number will be for the first time unit (2

minutes), and the second number for the second time unit (30 seconds).

The following code gets the count of items in the number entities, and uses that to extract the

first item from each array, then the second and so on:

For "Set a four minute 17 second timer.", this will loop twice, giving the following values:

loop count number time_unit

0 4 minute

{
 "number": [4, 17],
 "time unit": [
 ["minute"],
 ["second"]
]
}

json

for i in range(0, len(numbers)):
 number = numbers[i]
 time_unit = time_units[i][0]

python

loop count number time_unit

1 17 second

10. Inside this loop, use the number and time unit to calculate the total time for the timer, adding 60

seconds for each minute, and the number of seconds for any seconds.

11. Finally, outside this loop through the entities, log the total time for the timer:

12. Run the function app and speak into your IoT device. You will see the total time for the timer in the

function app output:

💁 You can find this code in the code/functions folder.

🚀 Challenge

There are many ways to request the same thing, such as setting a timer. Think of different ways to do

this, and use them as examples in your LUIS app. Test these out, to see how well your model can

cope with multiple ways to request a timer.

if time_unit == 'minute':
 total_seconds += number * 60
else:
 total_seconds += number

python

logging.info(f'Timer required for {total_seconds} seconds')
python

[2021-06-16T01:38:33.316Z] Executing 'Functions.speech-trigger' (Reason=
[2021-06-16T01:38:33.329Z] Trigger Details: PartionId: 0, Offset: 3144-3
[2021-06-16T01:38:33.605Z] Python EventHub trigger processed an event: {
[2021-06-16T01:38:35.076Z] Timer required for 257 seconds
[2021-06-16T01:38:35.128Z] Executed 'Functions.speech-trigger' (Succeede

output

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Read more about LUIS and it's capabilities on the Language Understanding (LUIS) documentation

page on Microsoft docs

Read more about language understanding on the Natural-language understanding page on

Wikipedia

Assignment

Cancel the timer

Set a timer and provide spoken feedback
Add a sketchnote if possible/appropriate

Embed a video here if available

Pre-lecture quiz

Pre-lecture quiz

Introduction

Smart assistants are not one-way communication devices. You speak to them, and they respond:

"Alexa, set a 3 minute timer"

"Ok, your timer is set for 3 minutes"

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/44
https://docs.microsoft.com/azure/cognitive-services/luis/?WT.mc_id=academic-17441-jabenn
https://wikipedia.org/wiki/Natural-language_understanding
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/45

In the last 2 lessons you learned how to take speech and create text, then extract a set timer request

from that text. In this lesson you will learn how to set the timer on the IoT device, responding to the

user with spoken words confirming their timer, and alerting them when their timer is finished.

In this lesson we'll cover:

Text to speech

Set the timer

Convert text to speech

Text to speech

Text to speech, as the name suggests, is the process of converting text into audio that contains the

text as spoken words. The basic principle is to break down the words in the text into their constituent

sounds (known as phonemes), and stitch together audio for those sounds, either using pre-recorded

audio or using audio generated by AI models.

Text to speech systems typically have 3 stages:

Text analysis

Linguistic analysis

Wave-form generation

Text analysis

Text analysis involves taking the text provided, and converting into words that can be used to

generate speech. For example, if you convert "Hello world", there there is no text analysis needed,

the two words can be converted to speech. If you have "1234" however, then this might need to be

converted either into the words "One thousand, two hundred thirty four" or "One, two, three, four"

depending on the context. For "I have 1234 apples", then it would be "One thousand, two hundred

thirty four", but for "The child counted 1234" then it would be "One, two, three, four".

The words created vary not only for the language, but the locale of that language. For example, in

American English, 120 would be "One hundred twenty", in British English it would be "One hundred

and twenty", with the use of "and" after the hundreds.

✅ Some other examples that require text analysis include "in" as a short form of inch, and "st" as a

short form of saint and street. Can you think of other examples in your language of words that are

ambiguous without context.

Once the words have been defined, they are sent for linguistic analysis.

Linguistic analysis

Linguistic analysis breaks the words down into phonemes. Phonemes are based not just on the

letters used, but the other letters in the word. For example, in English the 'a' sound in 'car' and 'care'

is different. The English language has 44 different phonemes for the 26 letters in the alphabet, some

shared by different letters, such as the same phoneme used at the start of 'circle' and 'serpent'.

✅ Do some research: What are the phonemes for you language?

Once the words have been converted to phonemes, these phonemes need additional data to support

intonation, adjusting the tone or duration depending on the context. One example is in English pitch

increases can be used to convert a sentence into a question, having a raised pitch for the last word

implies a question.

For example - the sentence "You have an apple" is a statement saying that you have an apple. If the

pitch goes up at the end, increasing for the word apple, it becomes the question "You have an

apple?", asking if you have an apple. The linguistic analysis needs to use the question mark at the end

to decide to increase pitch.

Once the phonemes have been generated, they can be sent for wave-form generation to produce the

audio output.

Wave-form generation

The first electronic text to speech systems used single audio recordings for each phoneme, leading

to very monotonous, robotic sounding voices. The linguistic analysis would produce phonemes, these

would be loaded from a database of sounds and stitched together to make the audio.

✅ Do some research: Find some audio recordings from early speech synthesis systems. Compare it

to modern speech synthesis, such as that used in smart assistants.

More modern wave-form generation uses ML models built using deep learning (very large neural

networks that act in a similar way to neurons in the brain) to produce more natural sounding voices

that can be indistinguishable from humans.

💁 Some of these ML models can be re-trained using transfer learning to sound like real

people. This means using voice as a security system, something banks are increasingly trying

to do, is no longer a good idea as anyone with a recording of a few minutes of your voice can

impersonate you.

These large ML models are being trained to combine all three steps into end-to-end speech

synthesizers.

Set the timer

The timer can be set by sending a command from the serverless code, instructing the IoT device to

set the timer. This command will contain the time in seconds till the timer needs to go off.

Task - set the timer using a command

1. In your serverless code, add code to send a direct method request to your IoT device

⚠ You can refer to the instructions for sending direct method requests in lesson 5 of the

farm project if needed.

You will need to set up the connection string for the IoT Hub with the service policy (NOT the

device) in your local.settings.json file and add the azure-iot-hub pip package to

your requirements.txt file. The device ID can be extracted from the event.

2. The direct method you send needs to be called set-timer , and will need to send the length of

the timer as a JSON property called seconds . Use the following code to build the

CloudToDeviceMethod using the total_seconds calculated from the data extracted by

LUIS:

payload = {
 'seconds': total_seconds
}
direct_method = CloudToDeviceMethod(method_name='set-timer', payload=jso

python

💁 You can find this code in the code-command/functions folder.

Task - respond to the command on the IoT device

1. On your IoT device, respond to the command.

⚠ You can refer to the instructions for handling direct method requests from IoT devices in

lesson 4 of the farm project if needed.

2. Work through the relevant guide to set a timer for the required time:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi/Virtual IoT device

Convert text to speech

The same speech service you used to convert speech to text can be used to convert text back into

speech, and this can be played through a speaker on your IoT device. The text to convert is sent to

the speech service, along with the type of audio required (such as the sample rate), and binary data

containing the audio is returned.

When you send this request, you send it using Speech Synthesis Markup Language (SSML), an XML-

based markup language for speech synthesis applications. This defines not only the text to be

converted, but the language of the text, the voice to use, and can even be used to define speed,

volume, and pitch for some or all of the words in the text.

For example, this SSML defines a request to convert the text "Your 3 minute 5 second time has been

set" to speech using a British English voice called en-GB-MiaNeural

<speak version='1.0' lang='en-GB'>
 <voice lang='en-GB' name='en-GB-MiaNeural'>
 Your 3 minute 5 second time has been set
 </voice>
</speak>

xml:
xml:

xml

💁 Most text to speech systems have multiple voices for different languages, with relevant

accents such as a British English voice with an English accent and a New Zealand English

voice with a New Zealand accent.

Task - convert text to speech

Work through the relevant guide to convert text to speech using your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

Single-board computer - Virtual device

🚀 Challenge

SSML has ways to change how words are spoken, such as adding emphasis to certain words, adding

pauses, or changing pitch. Try some of these out, sending different SSML from your IoT device and

comparing the output. You can read more about SSML, including how to change the way words are

spoken in the Speech Synthesis Markup Language (SSML) Version 1.1 specification from the World

Wide Web consortium.

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Read more on speech synthesis on the Speech synthesis page on Wikipedia

Read more on ways criminals are using speech synthesis to steal on the Fake voices 'help cyber

crooks steal cash' story on BBC news

Assignment

https://www.w3.org/TR/speech-synthesis11/
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/46
https://wikipedia.org/wiki/Speech_synthesis
https://www.bbc.com/news/technology-48908736

Cancel the timer

Support multiple languages
Add a sketchnote if possible/appropriate

This video gives an overview of the Azure speech services, covering speech to text and text to

speech from earlier lessons, as well as translating speech, a topic covered in this lesson:

🎥 Click the image above to watch the video

Pre-lecture quiz

Pre-lecture quiz

Introduction

In the last 3 lessons you learned about converting speech to text, language understanding, and

converting text to speech, all powered by AI. One other area of human communication that AI can

https://www.youtube.com/watch?v=h6xbpMPSGEA
https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/47

help with is language translation - converting from one language to another, such as from English to

French.

In this lesson you will learn about using AI to translate text, allowing your smart timer to interact with

users in multiple languages.

In this lesson we'll cover:

Translate text

Translation services

Create a translator resource

Support multiple languages in applications with translations

Translate text using an AI service

Translate text

Text translation has been a computer science problem that has been researched for over 70 years,

and only now thanks to advances in AI and computer power is close to being solved to a point where

it is almost as good as human translators.

💁 The origins can be traced back even further, to Al-Kindi, a 9th century Arabic

cryptographer who developed techniques for language translation

Machine translations

Text translation started out as a technology known as Machine Translation (MT), that can translate

between different language pairs. MT works by substituting words in one language with another,

adding techniques to select the correct ways of translating phrases or parts of sentences when a

simple word-for-word translation doesn't make sense.

🎓 When translators support translating between one language and another, these are know

as language pairs. Different tools support different language pairs, and these may not be

complete. For example, a translator may support English to Spanish as a language pair, and

Spanish to Italian as a language pair, but not English to Italian.

https://wikipedia.org/wiki/Al-Kindi

For example, translating "Hello world" from English into French can be performed with a substitution

- "Bonjour" for "Hello", and "le monde" for "world", leading to the correct translation of "Bonjour le

monde".

Substitutions don't work when different languages use different ways of saying the same thing. For

example, the English sentence "My name is Jim", translates into "Je m'appelle Jim" in French -

literally "I call myself Jim". "Je" is French for "I", "moi" is me, but is concatenated with the verb as it

starts with a vowel, so becomes "m'", "appelle" is to call, and "Jim" isn't translated as it's a name, and

not a word that can be translated. Word ordering also becomes an issue - a simple substitution of "Je

m'appelle Jim" becomes "I myself call Jim", with a different word order to English.

💁 Some words are never translated - my name is Jim regardless of which language is used

to introduce me.

Idioms are also a problem for translation. These are phrases that have an understood meaning that is

different from a direct interpretation of the words. For example, in English the idiom "I've got ants in

my pants" does not literally refer to having ants in your clothing, but to being restless. If you

translated this to German, you would end up confusing the listener, as the German version is "I have

bumble bees in the bottom".

💁 Different locales add different complexities. With the idiom "ants in your pants", in

American English "pants" refers to outerwear, in British English, "pants" is underwear.

✅ If you speak multiple languages, think of some phrases that don't directly translate

Machine translation systems rely on large databases of rules that describe how to translate certain

phrases and idioms, along with statistical methods to pick the appropriate translations from possible

options. These statistical methods use huge databases of works translated by humans into multiple

languages to pick the most likely translation, a technique called statistical machine translation. A

number of these use intermediate representations of the language, allowing one language to be

translated to the intermediate, then from the intermediate to another language. This way adding more

languages involves translations to and from the intermediate, not to and from all other languages.

Neural translations

Neural translations involve using the power of AI to translate, typically translating entire sentences

using one model. These models are trained on huge data sets that have been human translated, such

as web pages, books and United Nations documentation.

Neural translation models are usually smaller than machine translation models due to not needing

huge databases of phrases and idioms. Modern AI services that provide translations often mix

multiple techniques, mixing statistical machine translation and neural translation

There is no 1�1 translation for any language pair. Different translation models will produce slightly

different results depending on the data used to train the model. Translations are not always

symmetrical - in that if you translate a sentence from one language to another, then back to the first

language you may see a slightly different sentence as the result.

✅ Try out different online translators such as Bing Translate, Google Translate, or the Apple translate

app. Compare the translated versions of a few sentences. Also try translating in one, then translating

back in another.

Translation services

There are a number of AI services that can be used from your applications to translate speech and

text.

Cognitive services Speech service

The speech service you've been using over the past few lessons has translation capabilities for

speech recognition. When you recognize speech, you can request not only the text of the speech in

the same language, but also in other languages.

💁 This is only available from the speech SDK, the REST API doesn't have translations built in.

Cognitive services Translator service

https://www.bing.com/translator
https://translate.google.com/

The Translator service is a dedicated translation service that can translate text from one language, to

one or more target languages. As well as translating, it supports a wide range of extra features

including masking profanity. It also allows you to provide a specific translation for a particular word or

sentence, to work with terms you don't want translated, or have a specific well-known translation.

For example, when translating the sentence "I have a Raspberry Pi", referring to the single-board

computer, into another language such as French, you would want to keep the name "Raspberry Pi" as

is, and not translate it, giving "J a̓i un Raspberry Pi" instead of "J a̓i une pi aux framboises".

Create a translator resource

For this lesson you will need a Translator resource. You will use the REST API to translate text.

Task - create a translator resource

1. From your terminal or command prompt, run the following command to create a translator

resource in your smart-timer resource group.

Replace <location> with the location you used when creating the Resource Group.

2. Get the key for the translator service:

az cognitiveservices account create --name smart-timer-translator \
 --resource-group smart-timer \
 --kind TextTranslation \
 --sku F0 \
 --yes \
 --location <location>

sh

az cognitiveservices account keys list --name smart-timer-translator \
 --resource-group smart-timer \
 --output table

sh

Take a copy of one of the keys.

Support multiple languages in applications with

translations

In an ideal world, your whole application should understand as many different languages as possible,

from listening for speech, to language understanding, to responding with speech. This is a lot of

work, so translation services can speed up the time to delivery of your application.

A smart timer architecture translating Japanese to English, processing in English then translating

back to Japanese. Microcontroller by Template / recording by Aybige Speaker / Speaker by

Gregor Cresnar - all from the Noun Project

Imagine you are building a smart timer that uses English end-to-end, understanding spoken English

and converting that to text, running the language understanding in English, building up responses in

English and replying with English speech. If you wanted to add support for Japanese, you could start

with translating spoken Japanese to English text, then keep the core of the application the same, then

translate the response text to Japanese before speaking the response. This would allow you to

quickly add Japanese support, and you can expand to providing full end-to-end Japanese support

later.

💁 The downside to relying on machine translation is that different languages and cultures

have different ways of saying the same things, so the translation may not match the

expression you are expecting.

Machine translations also open up possibilities for apps and devices that can translate user-created

content as it is created. Science fiction regularly features 'universal translators', devices that can

https://thenounproject.com/

translate from alien languages into (typically) American English. These devices are less science

fiction, more science fact, if you ignore the alien part. There are already apps and devices that

provide real-time translation of speech and written text, using combinations of speech and translation

services.

One example is the Microsoft Translator mobile phone app, demonstrated in this video:

🎥 Click the image above to watch the video

Imagine having such a device available to you, especially when travelling or interacting with folks

whose language you don't know. Having automatic translation devices in airports or hospitals would

provide much needed accessibility improvements.

✅ Do some research: Are there any translation IoT devices commercially available? What about

translation capabilities built into smart devices?

👽 Although there are no true universal translators that allow us to talk to aliens, the Microsoft

translator does support Klingon. Qaplaʼ!

Translate text using an AI service

You can use an AI service to add this translation capability to your smart timer.

https://www.microsoft.com/translator/apps/?WT.mc_id=academic-17441-jabenn
https://www.youtube.com/watch?v=16yAGeP2FuM
https://www.microsoft.com/translator/blog/2013/05/14/announcing-klingon-for-bing-translator/?WT.mc_id=academic-17441-jabenn

Task - translate text using an AI service

Work through the relevant guide to convert translate text on your IoT device:

Arduino - Wio Terminal

Single-board computer - Raspberry Pi

Single-board computer - Virtual device

🚀 Challenge

How can machine translations benefit other IoT applications beyond smart devices? Think of different

ways translations can help, not just with spoken words but with text.

Post-lecture quiz

Post-lecture quiz

Review & Self Study

Read more on machine translation on the Machine translation page on Wikipedia

Read more on neural machine translation on the Neural machine translation page on Wikipedia

Check out the list of supported languages for the Microsoft speech services in the Language and

voice support for the Speech service documentation on Microsoft Docs

Assignment

Build a universal translator

https://brave-island-0b7c7f50f.azurestaticapps.net/quiz/48
https://wikipedia.org/wiki/Machine_translation
https://wikipedia.org/wiki/Neural_machine_translation
https://docs.microsoft.com/azure/cognitive-services/speech-service/language-support?WT.mc_id=academic-17441-jabenn

