from counterfit_connection import CounterFitConnection CounterFitConnection.init('127.0.0.1', 5000) import io from counterfit_shims_picamera import PiCamera from azure.cognitiveservices.vision.customvision.prediction import CustomVisionPredictionClient from msrest.authentication import ApiKeyCredentials from PIL import Image, ImageDraw, ImageColor from shapely.geometry import Polygon camera = PiCamera() camera.resolution = (640, 480) camera.rotation = 0 image = io.BytesIO() camera.capture(image, 'jpeg') image.seek(0) with open('image.jpg', 'wb') as image_file: image_file.write(image.read()) prediction_url = '' prediction_key = '' parts = prediction_url.split('/') endpoint = 'https://' + parts[2] project_id = parts[6] iteration_name = parts[9] prediction_credentials = ApiKeyCredentials(in_headers={"Prediction-key": prediction_key}) predictor = CustomVisionPredictionClient(endpoint, prediction_credentials) image.seek(0) results = predictor.detect_image(project_id, iteration_name, image) threshold = 0.3 predictions = list(prediction for prediction in results.predictions if prediction.probability > threshold) for prediction in predictions: print(f'{prediction.tag_name}:\t{prediction.probability * 100:.2f}%') overlap_threshold = 0.002 def create_polygon(prediction): scale_left = prediction.bounding_box.left scale_top = prediction.bounding_box.top scale_right = prediction.bounding_box.left + prediction.bounding_box.width scale_bottom = prediction.bounding_box.top + prediction.bounding_box.height return Polygon([(scale_left, scale_top), (scale_right, scale_top), (scale_right, scale_bottom), (scale_left, scale_bottom)]) to_delete = [] for i in range(0, len(predictions)): polygon_1 = create_polygon(predictions[i]) for j in range(i+1, len(predictions)): polygon_2 = create_polygon(predictions[j]) overlap = polygon_1.intersection(polygon_2).area smallest_area = min(polygon_1.area, polygon_2.area) if overlap > (overlap_threshold * smallest_area): to_delete.append(predictions[i]) break for d in to_delete: predictions.remove(d) print(f'Counted {len(predictions)} stock items') with Image.open('image.jpg') as im: draw = ImageDraw.Draw(im) for prediction in predictions: scale_left = prediction.bounding_box.left scale_top = prediction.bounding_box.top scale_right = prediction.bounding_box.left + prediction.bounding_box.width scale_bottom = prediction.bounding_box.top + prediction.bounding_box.height left = scale_left * im.width top = scale_top * im.height right = scale_right * im.width bottom = scale_bottom * im.height draw.rectangle([left, top, right, bottom], outline=ImageColor.getrgb('red'), width=2) im.save('image.jpg')