{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Augimo laipsnių dienos\n", "\n", "Šiame užrašų knygelėje įkeliami temperatūros duomenys, išsaugoti CSV faile, ir jie analizuojami. Jame pateikiami temperatūrų grafikai, rodomos aukščiausios ir žemiausios dienos vertės, taip pat apskaičiuojamos GDD.\n", "\n", "Norėdami naudoti šią užrašų knygelę:\n", "\n", "* Nukopijuokite `temperature.csv` failą į tą patį aplanką kaip ir ši užrašų knygelė\n", "* Paleiskite visas langelius naudodami mygtuką **▶︎ Run** viršuje. Tai paleis pasirinktą langelį, o tada pereis prie kito.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ląstelėje žemiau nustatykite `base_temperature` kaip augalo bazinę temperatūrą.\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "base_temperature = 10" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "CSV failą dabar reikia įkelti, naudojant pandas\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "\n", "# Read the temperature CSV file\n", "df = pd.read_csv('temperature.csv')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.figure(figsize=(20, 10))\n", "plt.plot(df['date'], df['temperature'])\n", "plt.xticks(rotation='vertical');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Kai duomenys yra nuskaityti, juos galima grupuoti pagal `date` stulpelį, o minimali ir maksimali temperatūros išskirti kiekvienai datai.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Convert datetimes to pure dates so we can group by the date\n", "df['date'] = pd.to_datetime(df['date']).dt.date\n", "\n", "# Group the data by date so it can be analyzed by date\n", "data_by_date = df.groupby('date')\n", "\n", "# Get the minimum and maximum temperatures for each date\n", "min_by_date = data_by_date.min()\n", "max_by_date = data_by_date.max()\n", "\n", "# Join the min and max temperatures into one dataframe and flatten it\n", "min_max_by_date = min_by_date.join(max_by_date, on='date', lsuffix='_min', rsuffix='_max')\n", "min_max_by_date = min_max_by_date.reset_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "GDD galima apskaičiuoti naudojant standartinę GDD lygtį\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def calculate_gdd(row):\n", " return ((row['temperature_max'] + row['temperature_min']) / 2) - base_temperature\n", "\n", "# Calculate the GDD for each row\n", "min_max_by_date['gdd'] = min_max_by_date.apply (lambda row: calculate_gdd(row), axis=1)\n", "\n", "# Print the results\n", "print(min_max_by_date[['date', 'gdd']].to_string(index=False))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**Atsakomybės apribojimas**: \nŠis dokumentas buvo išverstas naudojant dirbtinio intelekto vertimo paslaugą [Co-op Translator](https://github.com/Azure/co-op-translator). Nors siekiame tikslumo, atkreipiame dėmesį, kad automatiniai vertimai gali turėti klaidų ar netikslumų. Originalus dokumentas jo gimtąja kalba turėtų būti laikomas autoritetingu šaltiniu. Dėl svarbios informacijos rekomenduojama naudotis profesionalių vertėjų paslaugomis. Mes neprisiimame atsakomybės už nesusipratimus ar klaidingus aiškinimus, kylančius dėl šio vertimo naudojimo.\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.1" }, "metadata": { "interpreter": { "hash": "aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49" } }, "coopTranslator": { "original_hash": "8fcf954f6042f0bf3601a2c836a09574", "translation_date": "2025-08-28T20:47:09+00:00", "source_file": "2-farm/lessons/1-predict-plant-growth/code-notebook/gdd.ipynb", "language_code": "lt" } }, "nbformat": 4, "nbformat_minor": 2 }