Camera sensors, as the name suggests, are cameras that you can connect to your IoT device. They can take still images, or capture streaming video. Some will return raw image data, others will compress the image data into an image file such as a JPEG or PNG. Usually the cameras that work with IoT devices are much smaller and lower resolution that what you might be used to, but you can get high resolution cameras that will rival top end phones. You can get all manner of interchangeable lenses, multiple camera setups, infra-red thermal cameras, or UV cameras.
Camera sensors, as the name suggests, are cameras that you can connect to your IoT device. They can take still images, or capture streaming video. Some will return raw image data, others will compress the image data into an image file such as a JPEG or PNG. Usually the cameras that work with IoT devices are much smaller and lower resolution than what you might be used to, but you can get high resolution cameras that will rival top end phones. You can get all manner of interchangeable lenses, multiple camera setups, infra-red thermal cameras, or UV cameras.

@ -71,7 +71,7 @@ There are downsides to edge computing, where the cloud may be a preferred option
1. **Scale and flexibility** - cloud computing can adjust to network and data needs in real-time by adding or reducing servers and other resources. To add more edge computers requires manually adding more devices.
1. **Reliability and resiliency** - cloud computing provides multiple servers often in multiple locations for redundancy and disaster recovery. To have the same level of redundancy on the edge requires large investments and a lor of configuration work.
1. **Reliability and resiliency** - cloud computing provides multiple servers often in multiple locations for redundancy and disaster recovery. To have the same level of redundancy on the edge requires large investments and a lot of configuration work.
1. **Maintenance** - cloud service providers provide system maintenance and updates.
An IoT application is not just a single device capturing data and sending it to the cloud, it is more often that not multiple devices all working together to capture data from the physical world using sensors, make decisions based off that data, and interacting back with the physical world via actuators or visualizations.
An IoT application is not just a single device capturing data and sending it to the cloud, it is more often than not multiple devices all working together to capture data from the physical world using sensors, make decisions based off that data, and interacting back with the physical world via actuators or visualizations.
In this lesson you will learn more about architecting complex IoT applications, incorporating multiple sensors, multiple cloud services to analyze and store data, and showing a response via an actuator. You will learn how to architect a fruit quality control system prototype, including about using proximity sensors to trigger the IoT application, and what the architecture of this prototype would be.