diff --git a/2-farm/README.md b/2-farm/README.md index e974f528..779b7acf 100644 --- a/2-farm/README.md +++ b/2-farm/README.md @@ -4,7 +4,7 @@ As the population grows, so does the demand on agriculture. The amount of land a In these 6 lessons you'll learn how to apply the Internet of Things to improve and automate farming. -> 💁 These lessons will use some cloud resources. If you don't complete all the lessons in this project, make sure you follow the [Clean up your project](lessons/6-keep-your-plant-secure/README.md#clean-up-your-project) step in [lesson 6](lessons/6-keep-your-plant-secure/README.md). +> 💁 These lessons will use some cloud resources. If you don't complete all the lessons in this project, make sure you [Clean up your project](../clean-up.md). **Add video of automated plant** diff --git a/4-manufacturing/lessons/1-train-fruit-detector/README.md b/4-manufacturing/lessons/1-train-fruit-detector/README.md index 938ff3a4..7be9143a 100644 --- a/4-manufacturing/lessons/1-train-fruit-detector/README.md +++ b/4-manufacturing/lessons/1-train-fruit-detector/README.md @@ -144,7 +144,7 @@ To use Custom Vision, you first need to create two cognitive services resources 1. Launch the Custom Vision portal at [CustomVision.ai](https://customvision.ai), and sign in with the Microsoft account you used for your Azure account. -1. Follow the [Create a new Project section of the Build a classifier quickstart on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#create-a-new-project) to create a new Custom Vision project. The UI may change and these docs are always the most up to date reference. +1. Follow the [create a new Project section of the build a classifier quickstart on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#create-a-new-project) to create a new Custom Vision project. The UI may change and these docs are always the most up to date reference. Call your project `fruit-quality-detector`. @@ -178,11 +178,11 @@ Image classifiers run at very low resolution. For example Custom Vision can take If you don't have both ripe and unripe fruit, you can use different fruits, or any two objects you have available. You can also find some example images in the [images](./images) folder of ripe and unripe bananas that you can use. -1. Follow the [Upload and tag images section of the Build a classifier quickstart on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#upload-and-tag-images) to upload your training images. Tag the ripe fruit as `ripe`, and the unripe fruit as `unripe`. +1. Follow the [upload and tag images section of the build a classifier quickstart on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#upload-and-tag-images) to upload your training images. Tag the ripe fruit as `ripe`, and the unripe fruit as `unripe`. ![The upload dialogs showing the upload of ripe and unripe banana pictures](../../../images/image-upload-bananas.png) -1. Follow the [Train the classifier section of the Build a classifier quickstart on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#train-the-classifier) to train the image classifier on your uploaded images. +1. Follow the [train the classifier section of the build a classifier quickstart on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#train-the-classifier) to train the image classifier on your uploaded images. You will be given a choice of training type. Select **Quick Training**. @@ -196,7 +196,7 @@ Once your classifier is trained, you can test it by giving it a new image to cla ### Task - test your image classifier -1. Follow the [Test your model documentation on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/test-your-model?WT.mc_id=academic-17441-jabenn#test-your-model) to test your image classifier. Use the testing images you created earlier, not any of the images you used for training. +1. Follow the [test your model documentation on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/test-your-model?WT.mc_id=academic-17441-jabenn#test-your-model) to test your image classifier. Use the testing images you created earlier, not any of the images you used for training. ![A unripe banana predicted as unripe with a 98.9% probability, ripe with a 1.1% probability](../../../images/banana-unripe-quick-test-prediction.png) @@ -210,7 +210,7 @@ Every time you make a prediction using the quick test option, the image and resu ### Task - retrain your image classifier -1. Follow the [Use the predicted image for training documentation on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/test-your-model?WT.mc_id=academic-17441-jabenn#use-the-predicted-image-for-training) to retrain your model, using the correct tag for each image. +1. Follow the [use the predicted image for training documentation on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/test-your-model?WT.mc_id=academic-17441-jabenn#use-the-predicted-image-for-training) to retrain your model, using the correct tag for each image. 1. Once you model has been retrained, test on new images. @@ -228,8 +228,8 @@ Try it out and see what the predictions are. You can find images to try with usi ## Review & Self Study -* When you trained your classifier, you would have seen values for *Precision*, *Recall*, and *AP* that rate the model that was created. Read up on what these values are using [the Evaluate the classifier section of the Build a classifier quickstart on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#evaluate-the-classifier) -* Read up on how to improve your classifier from the [How to improve your Custom Vision model on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-improving-your-classifier?WT.mc_id=academic-17441-jabenn) +* When you trained your classifier, you would have seen values for *Precision*, *Recall*, and *AP* that rate the model that was created. Read up on what these values are using [the evaluate the classifier section of the build a classifier quickstart on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-build-a-classifier?WT.mc_id=academic-17441-jabenn#evaluate-the-classifier) +* Read up on how to improve your classifier from the [how to improve your Custom Vision model on the Microsoft docs](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/getting-started-improving-your-classifier?WT.mc_id=academic-17441-jabenn) ## Assignment diff --git a/4-manufacturing/lessons/2-check-fruit-from-device/README.md b/4-manufacturing/lessons/2-check-fruit-from-device/README.md index fe522c07..35ee1d0b 100644 --- a/4-manufacturing/lessons/2-check-fruit-from-device/README.md +++ b/4-manufacturing/lessons/2-check-fruit-from-device/README.md @@ -149,7 +149,7 @@ If you were to create a production device to sell to farms or factories, how wou You trained your custom vision model using the portal. This relies on having images available - and in the real world you may not be able to get training data that matches what the camera on your device captures. You can work round this by training directly from your device using the training API, to train a model using images captured from your IoT device. -* Read up on the training API in the [Using the Custom Vision SDK quick start](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/quickstarts/image-classification?tabs=visual-studio&pivots=programming-language-python&WT.mc_id=academic-17441-jabenn) +* Read up on the training API in the [using the Custom Vision SDK quick start](https://docs.microsoft.com/azure/cognitive-services/custom-vision-service/quickstarts/image-classification?tabs=visual-studio&pivots=programming-language-python&WT.mc_id=academic-17441-jabenn) ## Assignment diff --git a/4-manufacturing/lessons/2-check-fruit-from-device/single-board-computer-classify-image.md b/4-manufacturing/lessons/2-check-fruit-from-device/single-board-computer-classify-image.md index 41b6994c..109f1e4e 100644 --- a/4-manufacturing/lessons/2-check-fruit-from-device/single-board-computer-classify-image.md +++ b/4-manufacturing/lessons/2-check-fruit-from-device/single-board-computer-classify-image.md @@ -1,6 +1,6 @@ # Classify an image - Virtual IoT Hardware and Raspberry Pi -In this part of the lesson, you will add send the image captured by the camera to the Custom Vision service to classify it. +In this part of the lesson, you will send the image captured by the camera to the Custom Vision service to classify it. ## Send images to Custom Vision @@ -25,7 +25,7 @@ The Custom Vision service has a Python SDK you can use to classify images. This brings in some modules from the Custom Vision libraries, one to authenticate with the prediction key, and one to provide a prediction client class that can call Custom Vision. -1. Add the following code to to the end of the file: +1. Add the following code to the end of the file: ```python prediction_url = '' @@ -86,6 +86,6 @@ The Custom Vision service has a Python SDK you can use to classify images. ![A banana in custom vision predicted ripe at 56.8% and unripe at 43.1%](../../../images/custom-vision-banana-prediction.png) -> 💁 You can find this code in the [code-classify/pi](code-classify/pi) or [code-classify/virtual-device](code-classify/virtual-device) folder. +> 💁 You can find this code in the [code-classify/pi](code-classify/pi) or [code-classify/virtual-iot-device](code-classify/virtual-iot-device) folder. 😀 Your fruit quality classifier program was a success! diff --git a/4-manufacturing/lessons/2-check-fruit-from-device/virtual-device-camera.md b/4-manufacturing/lessons/2-check-fruit-from-device/virtual-device-camera.md index 806b942f..a6802ce3 100644 --- a/4-manufacturing/lessons/2-check-fruit-from-device/virtual-device-camera.md +++ b/4-manufacturing/lessons/2-check-fruit-from-device/virtual-device-camera.md @@ -101,7 +101,7 @@ Program the device. > 💁 You can capture the image directly to a file instead of a `BytesIO` object by passing the file name to the `camera.capture` call. The reason for using the `BytesIO` object is so that later in this lesson you can send the image to your image classifier. -1. Configure the image that the camera in CounterFit will capture. You can either set the *Source* to *File*, then upload an image file, or set the *Source* to *WebCam*, and images will be captures from your web cam. Make sure you select the **Set** button after selecting a picture or selecting your webcam. +1. Configure the image that the camera in CounterFit will capture. You can either set the *Source* to *File*, then upload an image file, or set the *Source* to *WebCam*, and images will be captured from your web cam. Make sure you select the **Set** button after selecting a picture or selecting your webcam. ![CounterFit with a file set as the image source, and a web cam set showing a person holding a banana in a preview of the webcam](../../../images/counterfit-camera-options.png) diff --git a/4-manufacturing/lessons/2-check-fruit-from-device/wio-terminal-camera.md b/4-manufacturing/lessons/2-check-fruit-from-device/wio-terminal-camera.md index 8323de3b..877603a1 100644 --- a/4-manufacturing/lessons/2-check-fruit-from-device/wio-terminal-camera.md +++ b/4-manufacturing/lessons/2-check-fruit-from-device/wio-terminal-camera.md @@ -10,7 +10,7 @@ The camera you'll use is an [ArduCam Mini 2MP Plus](https://www.arducam.com/prod ## Connect the camera -The ArduCam doesn't have a Grove socket, instead it connects to both the SPI and I2C busses via the GPIO pins on the Wio Terminal. +The ArduCam doesn't have a Grove socket, instead it connects to both the SPI and I2C buses via the GPIO pins on the Wio Terminal. ### Task - connect the camera diff --git a/4-manufacturing/lessons/2-check-fruit-from-device/wio-terminal-classify-image.md b/4-manufacturing/lessons/2-check-fruit-from-device/wio-terminal-classify-image.md index 6a646ef4..36de4315 100644 --- a/4-manufacturing/lessons/2-check-fruit-from-device/wio-terminal-classify-image.md +++ b/4-manufacturing/lessons/2-check-fruit-from-device/wio-terminal-classify-image.md @@ -1,10 +1,10 @@ # Classify an image - Wio Terminal -In this part of the lesson, you will add send the image captured by the camera to the Custom Vision service to classify it. +In this part of the lesson, you will send the image captured by the camera to the Custom Vision service to classify it. ## Classify an image -The Custom Vision service has a REST API you can call from the Wio Terminal use to classify images. THis REST API is accessed over an HTTPS connection - a secure HTTP connection. +The Custom Vision service has a REST API you can call from the Wio Terminal use to classify images. This REST API is accessed over an HTTPS connection - a secure HTTP connection. When interacting with HTTPS endpoints, the client code needs to request the public key certificate from the server being accessed, and use that to encrypt the traffic it sends. Your web browser does this automatically, but microcontrollers do not. You will need to request this certificate manually and use it to create a secure connection to the REST API. These certificates don't change, so once you have a certificate, it can be hard coded in your application. diff --git a/4-manufacturing/lessons/4-trigger-fruit-detector/README.md b/4-manufacturing/lessons/4-trigger-fruit-detector/README.md index b358d2b2..7fdef5e3 100644 --- a/4-manufacturing/lessons/4-trigger-fruit-detector/README.md +++ b/4-manufacturing/lessons/4-trigger-fruit-detector/README.md @@ -74,7 +74,7 @@ As you define the architecture of your system, you need to constantly consider d ## Design a fruit quality control system -Lets now take this idea of things, insights, and actions and apply it to our fruit quality detector to design a larger end-to-end application. +Let's now take this idea of things, insights, and actions and apply it to our fruit quality detector to design a larger end-to-end application. Imagine you have been given the task of building a fruit quality detector to be used in a processing plant. Fruit travels on a conveyer belt system where currently employees spend time checking the fruit by hand and removing any unripe fruit as it arrives. To reduce costs, the plant owner wants an automated system. @@ -205,7 +205,7 @@ The prototype will form the basis of a final production system. Some of the diff ## 🚀 Challenge -In this lesson you have learned some of the concepts you need to know to architect an IoT system. Think back to the previous projects. How would do they fit into the reference architecture shown above? +In this lesson you have learned some of the concepts you need to know on how to architect an IoT system. Think back to the previous projects. How would do they fit into the reference architecture shown above? Pick one of the projects so far and think of the design of a more complicated solution bringing together multiple capabilities beyond what was covered in the projects. Draw the architecture and think of all the devices and services you would need. @@ -218,7 +218,7 @@ For example - a vehicle tracking device that combines GPS with sensors to monito ## Review & Self Study * Read more about IoT architecture on the [Azure IoT reference architecture documentation on Microsoft docs](https://docs.microsoft.com/azure/architecture/reference-architectures/iot?WT.mc_id=academic-17441-jabenn) -* Read more about device twins in the [Understand and use device twins in IoT Hub documentation on Microsoft docs](https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-device-twins?WT.mc_id=academic-17441-jabenn) +* Read more about device twins in the [understand and use device twins in IoT Hub documentation on Microsoft docs](https://docs.microsoft.com/azure/iot-hub/iot-hub-devguide-device-twins?WT.mc_id=academic-17441-jabenn) * Read about OPC-UA, a machine to machine communication protocol used in industrial automation on the [OPC-UA page on Wikipedia](https://wikipedia.org/wiki/OPC_Unified_Architecture) ## Assignment diff --git a/4-manufacturing/lessons/4-trigger-fruit-detector/pi-proximity.md b/4-manufacturing/lessons/4-trigger-fruit-detector/pi-proximity.md index 254f23e9..35c7740a 100644 --- a/4-manufacturing/lessons/4-trigger-fruit-detector/pi-proximity.md +++ b/4-manufacturing/lessons/4-trigger-fruit-detector/pi-proximity.md @@ -40,6 +40,12 @@ Program the device. 1. Open the `fruit-quality-detector` code in VS Code, either directly on the Pi, or connect via the Remote SSH extension. +1. Install the rpi-vl53l0x Pip package, a Python package that interacts with a VL53L0X time-of-flight distance sensor. Install it using this pip command + + ```sh + pip install rpi-vl53l0x + ``` + 1. Create a new file in this project called `distance-sensor.py`. > 💁 An easy way to simulate multiple IoT devices is to do each in a different Python file, then run them at the same time. @@ -95,4 +101,4 @@ Program the device. > 💁 You can find this code in the [code-proximity/pi](code-proximity/pi) folder. -😀 Your proximity sensor program was a success! \ No newline at end of file +😀 Your proximity sensor program was a success! diff --git a/hardware.md b/hardware.md index 896ff745..f8f9df06 100644 --- a/hardware.md +++ b/hardware.md @@ -16,7 +16,7 @@ You will also need a few non-technical items, such as soil or a pot plant, and f Seeed Studios have very kindly made all the hardware available as easy to purchase kits: -* [IoT for beginners with Seeed and Microsoft - Wio Terminal Starter Kit]() +* [IoT for beginners with Seeed and Microsoft - Wio Terminal Starter Kit](https://www.seeedstudio.com/IoT-for-beginners-with-Seeed-and-Microsoft-Wio-Terminal-Starter-Kit-p-5006.html) * [IoT for beginners with Seeed and Microsoft - Raspberry Pi 4 Starter Kit](https://www.seeedstudio.com/IoT-for-beginners-with-Seeed-and-Microsoft-Raspberry-Pi-Starter-Kit.html) ## Arduino diff --git a/images/seeed-logo.png b/images/seeed-logo.png index 53526172..68348445 100644 Binary files a/images/seeed-logo.png and b/images/seeed-logo.png differ diff --git a/quiz-app/src/assets/translations/bn.json b/quiz-app/src/assets/translations/bn.json new file mode 100644 index 00000000..737d911f --- /dev/null +++ b/quiz-app/src/assets/translations/bn.json @@ -0,0 +1,1017 @@ +[ + { + "title": "āĻŦāĻŋāĻ—āĻŋāύāĻžāϰāĻĻ⧇āϰ āϜāĻ¨ā§āϝ āφāχāĻ“āϟāĻŋ: āϕ⧁āχāϜ", + "complete": "āĻ…āĻ­āĻŋāύāĻ¨ā§āĻĻāύ, āϕ⧁āχāϜ āϏāĻĢāϞāĻ­āĻžāĻŦ⧇ āϏāĻŽā§āĻĒā§‚āĻ°ā§āĻŖ āĻšā§Ÿā§‡āϛ⧇ !", + "error": "āĻĻ⧁āσāĻ–āĻŋāϤ, āφāĻŦāĻžāϰ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰ⧁āύ", + "quizzes": [ + { + "id": 1, + "title": "āϞ⧇āϏāύ:ā§§ - āφāχāĻ“āϟāĻŋ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ: āϞ⧇āĻ•āϚāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "IoT āĻļāĻŦā§āĻĻ⧇ I āĻĻā§āĻŦāĻžāϰāĻž āĻŦā§‹āĻāĻžāύ⧋ āĻšā§Ÿ :", + "answerOptions": [ + { + "answerText": "Internet(āχāĻ¨ā§āϟāĻžāϰāύ⧇āϟ)", + "isCorrect": "true" + }, + { + "answerText": "Iridium(āχāϰāĻŋāĻĄāĻŋ⧟āĻžāĻŽ)", + "isCorrect": "false" + }, + { + "answerText": "Ironing(āĻ†ā§ŸāϰāύāĻŋāĻ‚)", + "isCorrect": "false" + } + ] + }, + { + "questionText": "⧍ā§Ļ⧍ā§Ļ āĻāϰ āĻļ⧇āώ⧇ āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏ⧇āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ⧇āϰ āφāύ⧁āĻŽāĻžāύāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āĻ•āϤ?", + "answerOptions": [ + { + "answerText": "ā§Šā§Ļ", + "isCorrect": "false" + }, + { + "answerText": "ā§Šā§Ļ āĻŽāĻŋāϞāĻŋ⧟āύ", + "isCorrect": "false" + }, + { + "answerText": "ā§Šā§Ļ āĻŦāĻŋāϞāĻŋ⧟āύ", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āĻ¸ā§āĻŽāĻžāĻ°ā§āϟāĻĢā§‹āύ āĻšāϞ⧋ āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏ", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "true" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "false" + } + ] + } + ] + }, + { + "id": 2, + "title": "āϞ⧇āϏāύ:ā§§ - āφāχāĻ“āϟāĻŋ āĻĒāϰāĻŋāϚāĻŋāϤāĻŋ : āϞ⧇āĻ•āϚāĻžāϰ āĻĒāϰāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏāϗ⧁āϞāĻŋāϕ⧇ āϏāĻ°ā§āĻŦāĻĻāĻž āχāĻ¨ā§āϟāĻžāϰāύ⧇āĻŸā§‡ āϏāĻ‚āϝ⧁āĻ•ā§āϤ āĻĨāĻžāĻ•āĻž āĻĻāϰāĻ•āĻžāϰ", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏ āϏāĻ°ā§āĻŦāĻžāĻŦāĻ¸ā§āĻĨāĻžā§Ÿ āϏ⧁āϰāĻ•ā§āώāĻŋāϤ", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āĻ•āĻŽ āĻĒāĻžāĻ“ā§ŸāĻžāϰ⧇ āϚāĻžāϞāĻŋāϤ āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏ⧇ āφāĻ°ā§āϟāĻŋāĻĢāĻŋāĻļāĻŋ⧟āĻžāϞ āχāĻ¨ā§āĻŸā§‡āϞāĻŋāĻœā§‡āĻ¨ā§āϏ āϚāĻžāϞāĻžāύ⧋ āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "true" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "false" + } + ] + } + ] + }, + { + "id": 3, + "title": "āϞ⧇āϏāύ ⧍ - IoT āĻāϰ āφāϰ⧋ āĻ—āĻ­ā§€āϰ⧇ : āϞ⧇āĻ•āϚāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "IoT āĻļāĻŦā§āĻĻ⧇ T āĻŦāϞāϤ⧇ āĻŦā§‹āĻāĻžāύ⧋ āĻšā§Ÿ:", + "answerOptions": [ + { + "answerText": "Transistors(āĻŸā§āϰāĻžāύāϜāĻŋāĻ¸ā§āϟāϰ)", + "isCorrect": "false" + }, + { + "answerText": "Things(āĻĨāĻŋāĻ‚āϏ)", + "isCorrect": "true" + }, + { + "answerText": "Turkeys(āϟāĻžāĻ°ā§āĻ•āĻŋāϏ)", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏāϗ⧁āϞāĻŋ āϤāĻžāĻĻ⧇āϰ āϚāĻžāϰāĻĒāĻžāĻļ⧇āϰ āĻŦāĻŋāĻļā§āĻŦ āĻĨ⧇āϕ⧇ āϤāĻĨā§āϝ āϏāĻ‚āĻ—ā§āϰāĻš āĻ•āϰāϤ⧇ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ :", + "answerOptions": [ + { + "answerText": "āϏ⧇āĻ¨ā§āϏāϰ", + "isCorrect": "true" + }, + { + "answerText": "āĻ…ā§āϝāĻžāĻ•āĻšā§ā§Ÿā§‡āϟāϰ", + "isCorrect": "false" + }, + { + "answerText": "āĻŦāĻžāĻ°ā§āϤāĻžāĻŦāĻžāĻšā§€ āĻ•āĻŦ⧁āϤāϰ", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏāϗ⧁āϞāĻŋ āĻ—āĻĄāĻŧāĻĒ⧜āϤāĻž āĻĄā§‡āĻ¸ā§āĻ•āϟāĻĒ āĻŦāĻž āĻ˛ā§āϝāĻžāĻĒāϟāĻĒ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ⧇āϰ āĻšā§‡āϝāĻŧ⧇ āĻŦ⧇āĻļāĻŋ āĻĒāĻžāĻ“ā§ŸāĻžāϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + } + ] + }, + { + "id": 4, + "title": "āϞ⧇āϏāύ ⧍ - IoT āĻāϰ āφāϰ⧋ āĻ—āĻ­ā§€āϰ⧇ : āϞ⧇āĻ•āϚāĻžāϰ āĻĒāϰāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āϏāĻŋāĻĒāĻŋāχāω āύāĻŋāĻ°ā§āĻĻ⧇āĻļāϚāĻ•ā§āϰ⧇āϰ (instruction cycle) āϤāĻŋāύāϟāĻŋ āϧāĻžāĻĒ āĻšāϞ:", + "answerOptions": [ + { + "answerText": "āĻĄāĻŋāϕ⧋āĻĄ, āĻāĻ•ā§āϏāĻŋāĻ•āĻŋāωāϟ, āĻĢ⧇āϚ", + "isCorrect": "false" + }, + { + "answerText": " āĻĢ⧇āϚ, āĻĄāĻŋāϕ⧋āĻĄ, āĻāĻ•ā§āϏāĻŋāĻ•āĻŋāωāϟ", + "isCorrect": "true" + }, + { + "answerText": "āĻĨāĻžāĻŽāĻž, āϕ⧋āϞāĻžāĻŦā§‹āϰ⧇āϟ āĻ•āϰāĻž, āĻļā§‹āύāĻž", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āϰāĻžāĻ¸ā§āĻĒāĻŦ⧇āϰāĻŋ āĻĒāĻžāχ āϕ⧋āύ āĻ…āĻĒāĻžāϰ⧇āϟāĻŋāĻ‚ āϏāĻŋāĻ¸ā§āĻŸā§‡āĻŽ āϰāĻžāύ āĻ•āϰ⧇?", + "answerOptions": [ + { + "answerText": "āϕ⧋āύ āĻ…āĻĒāĻžāϰ⧇āϟāĻŋāĻ‚ āϏāĻŋāĻ¸ā§āĻŸā§‡āĻŽ āϰāĻžāύ āĻ•āϰ⧇āύāĻž ", + "isCorrect": "false" + }, + { + "answerText": "āωāχāĻ¨ā§āĻĄā§‹āϜ ⧝ā§Ģ", + "isCorrect": "false" + }, + { + "answerText": "āϰāĻžāĻ¸ā§āĻĒāĻŦ⧇āϰāĻŋ āĻĒāĻžāχ āĻ“āĻāϏ", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏāϗ⧁āϞāĻŋ āϏāĻžāϧāĻžāϰāĻŖāϤ āĻĻā§āϰ⧁āϤ āϚāϞ⧇ āĻāĻŦāĻ‚ āϏāĻžāϧāĻžāϰāĻŖ āĻĄā§‡āĻ¸ā§āĻ•āϟāĻĒ āĻŦāĻž āĻ˛ā§āϝāĻžāĻĒāϟāĻĒ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ⧇āϰ āĻšā§‡āϝāĻŧ⧇ āĻŦ⧇āĻļāĻŋ āĻŽā§‡āĻŽā§‹āϰāĻŋ āĻĨāĻžāϕ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + } + ] + }, + { + "id": 5, + "title": "āϞ⧇āϏāύ ā§Š - āϏ⧇āĻ¨ā§āϏāϰ āĻāĻŦāĻ‚ āĻ…ā§āϝāĻžāĻ•āĻšā§ā§Ÿā§‡āϟāϰ⧇āϰ āϏāĻžāĻšāĻžāĻ¯ā§āϝ⧇ āĻŦāĻžāĻšā§āϝāĻŋāĻ• āϜāĻ—āϤ⧇āϰ āϏāĻžāĻĨ⧇ āϝ⧋āĻ—āĻžāϝ⧋āĻ—: āϞ⧇āĻ•āϚāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āĻāϞāχāĻĄāĻŋ āĻāĻ•āϧāϰāϪ⧇āϰ āϏ⧇āĻ¨ā§āϏāϰ:", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āϏ⧇āĻ¨ā§āϏāϰ āĻŦā§āϝāĻŦāĻšā§ƒāϤ āĻšā§Ÿ:", + "answerOptions": [ + { + "answerText": "āĻŦāĻžāĻšā§āϝāĻŋāĻ• āϜāĻ—āϤ⧇āϰ āĻĄā§‡āϟāĻž āϏāĻ‚āĻ—ā§āϰāĻš āĻ•āϰāϤ⧇ ", + "isCorrect": "true" + }, + { + "answerText": "āĻŦāĻžāĻšā§āϝāĻŋāĻ• āϜāĻ—āϤāϕ⧇ āύāĻŋ⧟āĻ¨ā§āĻ¤ā§āϰāĻŖ āĻ•āϰāϤ⧇", + "isCorrect": "false" + }, + { + "answerText": "āĻļ⧁āϧ⧁ āϤāĻžāĻĒāĻŽāĻžāĻ¤ā§āϰāĻž āĻŽāĻžāĻĒāϤ⧇", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āĻ…ā§āϝāĻžāĻ•āĻšā§ā§Ÿā§‡āϟāϰ āĻŦā§āϝāĻŦāĻšā§ƒāϤ āĻšā§Ÿ:", + "answerOptions": [ + { + "answerText": "āĻŦāĻžāĻšā§āϝāĻŋāĻ• āϜāĻ—āϤ⧇āϰ āĻĄā§‡āϟāĻž āϏāĻ‚āĻ—ā§āϰāĻš āĻ•āϰāϤ⧇ ", + "isCorrect": "false" + }, + { + "answerText": "āĻŦāĻžāĻšā§āϝāĻŋāĻ• āϜāĻ—āϤāϕ⧇ āύāĻŋ⧟āĻ¨ā§āĻ¤ā§āϰāĻŖ āĻ•āϰāϤ⧇", + "isCorrect": "true" + }, + { + "answerText": "āχāύāĻĒā§āĻ¸ā§āϝ⧁āϰ⧇āĻ¨ā§āϏ āϰāĻŋāĻ¸ā§āĻ• āĻšāĻŋāϏāĻžāĻŦ āĻ•āϰāϤ⧇", + "isCorrect": "false" + } + ] + } + ] + }, + { + "id": 6, + "title": "āϞ⧇āϏāύ ā§Š - āϏ⧇āĻ¨ā§āϏāϰ āĻāĻŦāĻ‚ āĻ…ā§āϝāĻžāĻ•āĻšā§ā§Ÿā§‡āϟāϰ⧇āϰ āϏāĻžāĻšāĻžāĻ¯ā§āϝ⧇ āĻŦāĻžāĻšā§āϝāĻŋāĻ• āϜāĻ—āϤ⧇āϰ āϏāĻžāĻĨ⧇ āϝ⧋āĻ—āĻžāϝ⧋āĻ—: āϞ⧇āĻ•āϚāĻžāϰ āĻĒāϰāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āĻĄāĻŋāϜāĻŋāϟāĻžāϞ āϏ⧇āĻ¨ā§āϏāϰāϗ⧁āϞāĻŋ āĻĄā§‡āϟāĻž āĻĒā§āϰ⧇āϰāĻŖ āĻ•āϰ⧇:", + "answerOptions": [ + { + "answerText": "āĻ­ā§‹āĻ˛ā§āĻŸā§‡āϜ āϰ⧇āĻ¨ā§āϜ āĻ…āύ⧁āϏāĻžāϰ⧇", + "isCorrect": "false" + }, + { + "answerText": "āĻšāĻžāχ(High) āĻāĻŦāĻ‚ āϞ⧋(low) āĻ­ā§‹āĻ˛ā§āĻŸā§‡āϜ āĻšāĻŋāϏ⧇āĻŦ⧇", + "isCorrect": "true" + }, + { + "answerText": "āχāĻŽā§‡āχāϞ⧇", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āĻāĻ•āϟāĻŋ āĻŦāĻžāϟāύ⧇ āĻĒā§āϰ⧇āϏ āĻ•āϰāϞ⧇ āϕ⧋āύ āĻĄāĻŋāϜāĻŋāϟāĻžāϞ āϏāĻŋāĻ—āĻ¨ā§āϝāĻžāϞ āĻĒā§āϰ⧇āϰāĻŖ āĻ•āϰāĻž āĻšāϝāĻŧ?", + "answerOptions": [ + { + "answerText": "0", + "isCorrect": "false" + }, + { + "answerText": "1", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āĻĒāĻžāϞāϏ-āωāχāĻĨ āĻŽāĻĄā§āϞ⧇āĻļāύ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āĻĄāĻŋāϜāĻŋāϟāĻžāϞ āĻĄāĻŋāĻ­āĻžāχāϏ āĻĨ⧇āϕ⧇ āĻ…ā§āϝāĻžāύāĻžāϞāĻ— āĻ…ā§āϝāĻžāĻ•āĻŋāωāϟāϰ⧇āϟāϰāϗ⧁āϞāĻŋ āύāĻŋāϝāĻŧāĻ¨ā§āĻ¤ā§āϰāĻŖ āĻ•āϰāĻž āϝāĻžāĻŦ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "true" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "false" + } + ] + } + ] + }, + { + "id": 7, + "title": "āϞ⧇āϏāύ ā§Ē - āĻĄāĻŋāĻ­āĻžāχāϏāϕ⧇ āχāĻ¨ā§āϟāĻžāϰāύ⧇āĻŸā§‡āϰ āϏāĻžāĻĨ⧇ āϝ⧁āĻ•ā§āϤ āĻ•āϰāĻž: āϞ⧇āĻ•āϚāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏāϗ⧁āϞāĻŋ āϏāĻ°ā§āĻŦāĻĻāĻž āĻ•āĻžāϜ āĻ•āϰāĻžāϰ āϜāĻ¨ā§āϝ āχāĻ¨ā§āϟāĻžāϰāύ⧇āĻŸā§‡ āϏāĻ‚āϝ⧁āĻ•ā§āϤ āĻĨāĻžāĻ•āĻž āĻĒā§āϰāϝāĻŧā§‹āϜāύ", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āĻ“āϝāĻŧ⧇āĻŦ āĻ…ā§āϝāĻžāĻĒā§āϞāĻŋāϕ⧇āĻļāύ āĻŦāĻž āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āĻ“āϝāĻŧ⧇āĻŦ APIāϗ⧁āϞāĻŋāϰ āĻŽāϤ āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏāϗ⧁āϞāĻŋ āϏāĻ°ā§āĻŦāĻĻāĻž HTTP āĻāϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āϝ⧋āĻ—āĻžāϝ⧋āĻ— āĻ•āϰ⧇", + "answerOptions": [ + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + }, + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏāϗ⧁āϞāĻŋ āϤāĻžāĻĻ⧇āϰ āϏāĻ•āϞ āϏāĻŋāĻĻā§āϧāĻžāĻ¨ā§āϤ āύ⧇āĻ“āϝāĻŧāĻžāϰ āϜāĻ¨ā§āϝ āĻ•ā§āϞāĻžāωāĻĄā§‡āϰ āωāĻĒāϰ āύāĻŋāĻ°ā§āĻ­āϰ āĻ•āϰ⧇:", + "answerOptions": [ + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + }, + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + } + ] + } + ] + }, + { + "id": 8, + "title": "āϞ⧇āϏāύ ā§Ē - āĻĄāĻŋāĻ­āĻžāχāϏāϕ⧇ āχāĻ¨ā§āϟāĻžāϰāύ⧇āĻŸā§‡āϰ āϏāĻžāĻĨ⧇ āϝ⧁āĻ•ā§āϤ āĻ•āϰāĻž: āϞ⧇āĻ•āϚāĻžāϰ āĻĒāϰāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āϏ⧇āĻ¨ā§āϏāϰ āĻĨ⧇āϕ⧇ āϏāĻ‚āĻ—ā§āϰāĻš āĻ•āϰāĻž āĻāĻŦāĻ‚ āĻ•ā§āϞāĻžāωāĻĄā§‡ āĻĒā§āϰ⧇āϰāĻŖ āĻ•āϰāĻž āĻĄā§‡āϟāĻžāϕ⧇ āĻŦāϞāĻž āĻšāϝāĻŧ:", + "answerOptions": [ + { + "answerText": "āĻŸā§‡āϞāĻŋāĻŽā§‡āĻŸā§āϰāĻŋ", + "isCorrect": "true" + }, + { + "answerText": "āĻ•āĻŽāĻžāĻ¨ā§āĻĄ", + "isCorrect": "false" + }, + { + "answerText": "āĻĒāϰāĻŋāĻŽāĻžāĻĒ", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏ āĻ…āĻĢāϞāĻžāχāύ⧇ āĻĨāĻžāĻ•āϞ⧇ āϕ⧋āύ āĻ•āĻŽāĻžāĻ¨ā§āĻĄā§‡āϰ āϕ⧀ āĻšāĻŦ⧇:", + "answerOptions": [ + { + "answerText": "āĻĄāĻŋāĻ­āĻžāχāϏāϟāĻŋ āĻ…āύāϞāĻžāχāύ⧇ āĻĒ⧁āύāϰāĻžā§Ÿ āϝ⧁āĻ•ā§āϤ āĻšāϞ⧇, āĻ•āĻŽāĻžāĻ¨ā§āĻĄ āφāĻŦāĻžāϰ⧋ āĻĒāĻžāĻ āĻžāϤ⧇ āĻšāĻŦ⧇", + "isCorrect": "false" + }, + { + "answerText": "āĻĄāĻŋāĻ­āĻžāχāϏāϟāĻŋ āĻ…āύāϞāĻžāχāύ⧇ āĻĒ⧁āύāϰāĻžā§Ÿ āϝ⧁āĻ•ā§āϤ āĻšāϞāϓ⧇, āĻ•āĻŽāĻžāĻ¨ā§āĻĄ āφāĻŦāĻžāϰ⧋ āĻĒāĻžāĻ āĻžāύ⧋ āωāϚāĻŋāϤ āĻšāĻŦ⧇āύāĻž", + "isCorrect": "false" + }, + { + "answerText": "āĻāϟāĻŋ āĻ•āĻŽāĻžāĻ¨ā§āĻĄ, āĻĄāĻŋāĻ­āĻžāχāϏāϟāĻŋ āĻāĻŦāĻ‚ āφāχāĻ“āϟāĻŋ āĻ…ā§āϝāĻžāĻĒā§āϞāĻŋāϕ⧇āĻļāύāϟāĻŋāϰ āĻĒā§āϰāϝāĻŧā§‹āϜāύ⧀āϝāĻŧāϤāĻžāϰ āωāĻĒāϰ āύāĻŋāĻ°ā§āĻ­āϰ āĻ•āϰ⧇", + "isCorrect": "true" + } + ] + }, + { + "questionText": "MQTT āĻ…āĻ°ā§āĻĨāĻžā§Ž Message Queueing Telemetry Transport āĻ āĻŽā§āϝāĻžāϏ⧇āĻœā§‡āϰ āϏāĻžāϰāĻŋ āĻĨāĻžāϕ⧇:", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + } + ] + }, + { + "id": 9, + "title": "āϞ⧇āϏāύ ā§Ģ - āĻ—āĻžāϛ⧇āϰ āĻŦ⧃āĻĻā§āϧāĻŋ āĻ…āύ⧁āĻŽāĻžāύ āĻ•āϰāĻž: āϞ⧇āĻ•āϚāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āφāχāϟ āĻĄāĻŋāĻ­āĻžāχāϏāϗ⧁āϞāĻŋ āĻ•ā§ƒāώāĻŋāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āϏāĻšāĻžāϝāĻŧāϤāĻž āĻ•āϰāϤ⧇ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "true" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āωāĻĻā§āĻ­āĻŋāĻĻ⧇āϰ āĻĒā§āϰāϝāĻŧā§‹āϜāύ⧀āϝāĻŧāϤāĻžāϰ āĻŽāĻ§ā§āϝ⧇ āϰāϝāĻŧ⧇āϛ⧇: (āϏ⧇āϰāĻž āωāĻ¤ā§āϤāϰāϟāĻŋ āĻŦ⧇āϛ⧇ āύāĻŋāϤ⧇ āĻšāĻŦ⧇)", + "answerOptions": [ + { + "answerText": "āĻ•āĻžāĻ°ā§āĻŦāύ āĻĄāĻžāχāĻ…āĻ•ā§āϏāĻžāχāĻĄ, āĻĒāĻžāύāĻŋ, āĻĒ⧁āĻˇā§āϟāĻŋ āωāĻĒāĻžāĻĻāĻžāύ", + "isCorrect": "false" + }, + { + "answerText": "āĻ•āĻžāĻ°ā§āĻŦāύ āĻĄāĻžāχāĻ…āĻ•ā§āϏāĻžāχāĻĄ, āĻĒāĻžāύāĻŋ, āĻĒ⧁āĻˇā§āϟāĻŋ āωāĻĒāĻžāĻĻāĻžāύ, āφāϞ⧋", + "isCorrect": "false" + }, + { + "answerText": "āĻ•āĻžāĻ°ā§āĻŦāύ āĻĄāĻžāχāĻ…āĻ•ā§āϏāĻžāχāĻĄ, āĻĒāĻžāύāĻŋ, āĻĒ⧁āĻˇā§āϟāĻŋ āωāĻĒāĻžāĻĻāĻžāύ, āφāϞ⧋, āωāĻˇā§āĻŖāϤāĻž", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āωāĻ¨ā§āύāϤ āĻĻ⧇āĻļāϗ⧁āϞāĻŋāϰ āĻ•ā§ƒāώāĻ•āĻĻ⧇āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ⧇āϰ āϜāĻ¨ā§āϝ āϏ⧇āĻ¨ā§āϏāϰāϗ⧁āϞāĻŋ āĻ…āĻ¤ā§āϝāĻ¨ā§āϤ āĻŦā§āϝāϝāĻŧāĻŦāĻšā§āϞ:", + "answerOptions": [ + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + }, + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + } + ] + } + ] + }, + { + "id": 10, + "title": "āϞ⧇āϏāύ ā§Ģ - āĻ—āĻžāϛ⧇āϰ āĻŦ⧃āĻĻā§āϧāĻŋ āĻ…āύ⧁āĻŽāĻžāύ āĻ•āϰāĻž: āϞ⧇āĻ•āϚāĻžāϰ āĻĒāϰāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āωāĻĻā§āĻ­āĻŋāĻĻ⧇āϰ āĻŦ⧃āĻĻā§āϧāĻŋ āϤāĻžāĻĒāĻŽāĻžāĻ¤ā§āϰāĻžāϰ āωāĻĒāϰ āύāĻŋāĻ°ā§āĻ­āϰāĻļā§€āϞ", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "true" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āωāĻĻā§āĻ­āĻŋāĻĻ āĻŦ⧃āĻĻā§āϧāĻŋāϰ āϜāĻ¨ā§āϝ āϕ⧋āύ āϤāĻžāĻĒāĻŽāĻžāĻ¤ā§āϰāĻžāϗ⧁āϞ⧋ āĻŦāĻŋāĻŦ⧇āϚāύāĻž āĻ•āϰāϤ⧇ āĻšāĻŦ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ°ā§āĻŦāύāĻŋāĻŽā§āύ, āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ", + "isCorrect": "false" + }, + { + "answerText": "āύāĻŋāĻŽā§āύāĻŽāĻžāύ, āĻĒāϰāĻŋāĻŽāĻŋāϤ, āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ", + "isCorrect": "true" + }, + { + "answerText": "āĻļ⧁āϧ⧁āĻŽāĻžāĻ¤ā§āϰ āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āĻ•ā§āϰāĻŽāĻŦāĻ°ā§āϧāĻŽāĻžāύ āĻŦ⧃āĻĻā§āϧāĻŋāϰ āĻĄāĻŋāĻ—ā§āϰāĻŋ (Growing Degree Days) āĻĻāĻŋāύāϗ⧁āϞāĻŋ āϕ⧋āύ āϏ⧂āĻ¤ā§āϰāϟāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āĻ—āĻŖāύāĻž āĻ•āϰāĻž āĻšāϝāĻŧ:", + "answerOptions": [ + { + "answerText": "(day max + day min) - plant base", + "isCorrect": "false" + }, + { + "answerText": "((day max + day min) / 2) - plant base", + "isCorrect": "true" + }, + { + "answerText": "((day min + plant base) / 2)", + "isCorrect": "false" + } + ] + } + ] + }, + { + "id": 11, + "title": "āϞ⧇āϏāύ ā§Ŧ - āĻŽāĻžāϟāĻŋāϰ āφāĻ°ā§āĻĻā§āϰāϤāĻž āĻĒāϰāĻŋāĻŽāĻžāĻĒ: āϞ⧇āĻ•āϚāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏāϗ⧁āϞāĻŋ āĻŽāĻžāϟāĻŋāϰ āφāĻ°ā§āĻĻā§āϰāϤāĻžāϰ āĻŽāϤ⧋ āϚāĻžāϰāĻŋāĻĒāĻžāĻ°ā§āĻļā§āĻŦāĻŋāĻ• āĻŦ⧈āĻļāĻŋāĻˇā§āĻŸā§āϝāϗ⧁āϞāĻŋ āϏāύāĻžāĻ•ā§āϤ āĻ•āϰāϤ⧇ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "true" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āĻāϰ āĻŽāĻ§ā§āϝ⧇ āϕ⧋āύāϟāĻŋ āĻ—āĻžāϛ⧇āϰ āĻŦ⧃āĻĻā§āϧāĻŋāϰ āϜāĻ¨ā§āϝ āϏāĻŽāĻ¸ā§āϝāĻž āϏ⧃āĻˇā§āϟāĻŋ āĻ•āϰāϤ⧇ āĻĒāĻžāϰ⧇ (āĻāĻ•āϟāĻŋ āĻŦāĻžāĻ›āĻžāχ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇)?", + "answerOptions": [ + { + "answerText": "āϖ⧁āĻŦ āĻ…āĻ˛ā§āĻĒ āĻĒāĻžāύāĻŋ", + "isCorrect": "false" + }, + { + "answerText": "āϖ⧁āĻŦ āĻŦ⧇āĻļāĻŋ āĻĒāĻžāύāĻŋ", + "isCorrect": "false" + }, + { + "answerText": "āϖ⧁āĻŦ āĻ…āĻ˛ā§āĻĒ āĻŦāĻž āϖ⧁āĻŦ āĻŦ⧇āĻļāĻŋ āĻĒāĻžāύ", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āϏāĻŽāĻ¸ā§āϤ āϏ⧇āĻ¨ā§āϏāϰ⧇ āĻ¸ā§āĻŸā§āϝāĻžāĻ¨ā§āĻĄāĻžāĻ°ā§āĻĄ āχāωāύāĻŋāϟāϗ⧁āϞāĻŋāϰ āϜāĻ¨ā§āϝ āφāϗ⧇ āĻĨ⧇āϕ⧇āχ āĻ•ā§āϝāĻžāϞāĻŋāĻŦā§āϰ⧇āĻŸā§‡āĻĄ āĻĨāĻžāϕ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + } + ] + }, + { + "id": 12, + "title": "āϞ⧇āϏāύ ā§Ŧ - āĻŽāĻžāϟāĻŋāϰ āφāĻ°ā§āĻĻā§āϰāϤāĻž āĻĒāϰāĻŋāĻŽāĻžāĻĒ: āϞ⧇āĻ•āϚāĻžāϰ āĻĒāϰāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āĻŽāĻžāϟāĻŋāϰ āφāĻ°ā§āĻĻā§āϰāϤāĻž āĻĒāϰāĻŋāĻŽāĻžāĻĒ āĻ•āϰāĻžāϰ āϏāĻŽāϝāĻŧ, āϰ⧋āϧāĻ• (resistive) āĻāĻŦāĻ‚ āĻ•ā§āϝāĻžāĻĒāĻžāϏāĻŋāϟāĻŋāĻ­ āφāĻ°ā§āĻĻā§āϰāϤāĻž āϏ⧇āĻ¨ā§āϏāϰ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āĻāĻ•āϟāĻŋ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ:", + "answerOptions": [ + { + "answerText": "āφāĻ°ā§āĻĻā§āϰāϤāĻž āĻ¸ā§āϤāϰ āĻŦāĻžāĻĄāĻŧāĻžāϰ āϏāĻžāĻĨ⧇ āϏāĻžāĻĨ⧇ āϰ⧋āϧāĻ• āϏ⧇āĻ¨ā§āϏāϰāϗ⧁āϞāĻŋāϰ āĻ­ā§‹āĻ˛ā§āĻŸā§‡āϜ āĻŽāĻžāύ āĻŦāĻžā§œā§‡ āĻāĻŦāĻ‚ āĻ•ā§āϝāĻžāĻĒāĻžāϏāĻŋāϟāĻŋāĻ­ āϏ⧇āĻ¨ā§āϏāϰāϗ⧁āϞāĻŋāϰ āϜāĻ¨ā§āϝ āύāĻŋāĻšā§‡ āύ⧇āĻŽā§‡ āϝāĻžāϝāĻŧ", + "isCorrect": "true" + }, + { + "answerText": "āφāĻ°ā§āĻĻā§āϰāϤāĻž āĻ¸ā§āϤāϰ āĻŦāĻžāĻĄāĻŧāĻžāϰ āϏāĻžāĻĨ⧇ āϏāĻžāĻĨ⧇ āĻ­ā§‹āĻ˛ā§āĻŸā§‡āϜ āϰ⧋āϧāĻ• āϏ⧇āĻ¨ā§āϏāϰāϗ⧁āϞāĻŋāϰ āĻ­ā§‹āĻ˛ā§āĻŸā§‡āϜ āĻŽāĻžāύ āĻ•āĻŽā§‡ āĻāĻŦāĻ‚ āĻ•ā§āϝāĻžāĻĒāĻžāϏāĻŋāϟāĻŋāĻ­ āϏ⧇āĻ¨ā§āϏāϰāϗ⧁āϞāĻŋāϰ āϜāĻ¨ā§āϝ āĻŦā§‡ā§œā§‡ āϝāĻžāϝāĻŧ", + "isCorrect": "false" + }, + { + "answerText": "āφāĻ°ā§āĻĻā§āϰāϤāĻž āĻ¸ā§āϤāϰ āĻŦāĻžāĻĄāĻŧāĻžāϰ āϏāĻžāĻĨ⧇ āϏāĻžāĻĨ⧇ āϰ⧋āϧāĻ• āϏ⧇āĻ¨ā§āϏāϰ āĻāĻŦāĻ‚ āĻ•ā§āϝāĻžāĻĒāĻžāϏāĻŋāϟāĻŋāĻ­ āϏ⧇āĻ¨ā§āϏāϰ āωāĻ­ā§Ÿā§‡āϰ āĻ­ā§‹āĻ˛ā§āĻŸā§‡āϜ āĻŦā§‡ā§œā§‡ āϝāĻžāϝāĻŧ", + "isCorrect": "false" + } + ] + }, + { + "questionText": "SPI āĻĒā§āϰāĻŸā§‹āĻ•āϞ āϏāĻžāĻĒā§‹āĻ°ā§āϟ āĻ•āϰ⧇:", + "answerOptions": [ + { + "answerText": "āĻļ⧁āϧ⧁ ā§§āϟāĻŋ āĻ•āĻ¨ā§āĻŸā§āϰ⧋āϞāĻžāϰ āĻāĻŦāĻ‚ ā§§āϟāĻŋ āĻĒ⧇āϰāĻŋāĻĢ⧇āϰāĻžāϞ", + "isCorrect": "false" + }, + { + "answerText": "āĻļ⧁āϧ⧁ ā§§āϟāĻŋ āĻ•āĻ¨ā§āĻŸā§āϰ⧋āϞāĻžāϰ āĻāĻŦāĻ‚ āĻāĻ•āĻžāϧāĻŋāĻ• āĻĒ⧇āϰāĻŋāĻĢ⧇āϰāĻžāϞ", + "isCorrect": "true" + }, + { + "answerText": "āĻāĻ•āĻžāϧāĻŋāĻ• āĻ•āĻ¨ā§āĻŸā§āϰ⧋āϞāĻžāϰ āĻāĻŦāĻ‚ āĻāĻ•āĻžāϧāĻŋāĻ• āĻĒ⧇āϰāĻŋāĻĢ⧇āϰāĻžāϞ", + "isCorrect": "false" + } + ] + }, + { + "questionText": "I2C āĻĒā§āϰāĻŸā§‹āĻ•āϞ āϏāĻžāĻĒā§‹āĻ°ā§āϟ āĻ•āϰ⧇:", + "answerOptions": [ + { + "answerText": "āĻļ⧁āϧ⧁ ā§§āϟāĻŋ āĻ•āĻ¨ā§āĻŸā§āϰ⧋āϞāĻžāϰ āĻāĻŦāĻ‚ ā§§āϟāĻŋ āĻĒ⧇āϰāĻŋāĻĢ⧇āϰāĻžāϞ", + "isCorrect": "false" + }, + { + "answerText": "āĻļ⧁āϧ⧁ ā§§āϟāĻŋ āĻ•āĻ¨ā§āĻŸā§āϰ⧋āϞāĻžāϰ āĻāĻŦāĻ‚ āĻāĻ•āĻžāϧāĻŋāĻ• āĻĒ⧇āϰāĻŋāĻĢ⧇āϰāĻžāϞ", + "isCorrect": "false" + }, + { + "answerText": "āĻāĻ•āĻžāϧāĻŋāĻ• āĻ•āĻ¨ā§āĻŸā§āϰ⧋āϞāĻžāϰ āĻāĻŦāĻ‚ āĻāĻ•āĻžāϧāĻŋāĻ• āĻĒ⧇āϰāĻŋāĻĢ⧇āϰāĻžāϞ", + "isCorrect": "true" + } + ] + } + ] + }, + { + "id": 13, + "title": "āϞ⧇āϏāύ ā§­ - āĻ…āĻŸā§‹āĻŽā§‡āϟāĻŋāĻ• āĻ—āĻžāϛ⧇ āĻĒāĻžāύāĻŋ āĻĻā§‡ā§ŸāĻž: āϞ⧇āĻ•āϚāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏāϗ⧁āϞāĻŋ āĻĒāĻžāύāĻŋāϰ āĻĒāĻžāĻŽā§āĻĒāϗ⧁āϞāĻŋ āύāĻŋāϝāĻŧāĻ¨ā§āĻ¤ā§āϰāĻŖ āĻ•āϰāϤ⧇ āϝāĻĨ⧇āĻˇā§āϟ āĻļāĻ•ā§āϤāĻŋāĻļāĻžāϞ⧀", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āĻ…āϤāĻŋāϰāĻŋāĻ•ā§āϤ āĻĄāĻŋāĻ­āĻžāχāϏ⧇ āĻĒāĻžāĻ“ā§ŸāĻžāϰ āύāĻŋāϝāĻŧāĻ¨ā§āĻ¤ā§āϰāĻŖ āĻ•āϰāϤ⧇ āĻāĻ•āĻšā§ā§Ÿā§‡āϟāϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "true" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āϏ⧇āĻ¨ā§āϏāϰāϗ⧁āϞāĻŋ āϤāĻžāĻ¤ā§āĻ•ā§āώāĻŖāĻŋāĻ•āĻ­āĻžāĻŦ⧇ āĻāĻ•āĻšā§ā§Ÿā§‡āϟāϰāϗ⧁āϞāĻŋāϰ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāύāϗ⧁āϞāĻŋ āϏāύāĻžāĻ•ā§āϤ āĻ•āϰ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + } + ] + }, + { + "id": 14, + "title": "āϞ⧇āϏāύ ā§­ - āĻ…āĻŸā§‹āĻŽā§‡āϟāĻŋāĻ• āĻ—āĻžāϛ⧇ āĻĒāĻžāύāĻŋ āĻĻā§‡ā§ŸāĻž: āϞ⧇āĻ•āϚāĻžāϰ āĻĒāϰāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āϰāĻŋāϞ⧇ āϕ⧋āύ āϧāϰāϪ⧇āϰ āϏ⧁āχāϚ?", + "answerOptions": [ + { + "answerText": "āχāϞ⧇āĻ•ā§āĻŸā§āϰāĻŋāĻ•āĻžāϞ", + "isCorrect": "false" + }, + { + "answerText": "āχāϞ⧇āĻ•ā§āĻŸā§āϰ⧋āĻŽā§‡āĻ•āĻžāύāĻŋāĻ•ā§āϝāĻžāϞ", + "isCorrect": "true" + }, + { + "answerText": "āĻŽā§‡āĻ•āĻžāύāĻŋāĻ•ā§āϝāĻžāϞ", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āϰāĻŋāϞ⧇ āĻāϰ āĻŽāĻžāĻ§ā§āϝāĻŽ āϝāĻž āĻ•āϰāĻž āϝāĻžā§Ÿ-", + "answerOptions": [ + { + "answerText": "āĻ•āĻŽ āĻĒāĻžāĻ“ā§ŸāĻžāϰ⧇āϰ āĻĄāĻŋāĻ­āĻžāχāϏ āĻĻāĻŋā§Ÿā§‡ āĻšāĻžāχ-āĻĒāĻžāĻ“ā§ŸāĻžāϰ āĻĄāĻŋāĻ­āĻžāχāϏ āύāĻŋ⧟āĻ¨ā§āĻ¤ā§āϰāĻŖ", + "isCorrect": "true" + }, + { + "answerText": "āĻšāĻžāχ-āĻĒāĻžāĻ“ā§ŸāĻžāϰ āĻĄāĻŋāĻ­āĻžāχāϏ āĻĻāĻŋā§Ÿā§‡ āĻ•āĻŽ āĻĒāĻžāĻ“ā§ŸāĻžāϰ⧇āϰ āĻĄāĻŋāĻ­āĻžāχāϏ āύāĻŋ⧟āĻ¨ā§āĻ¤ā§āϰāĻŖ", + "isCorrect": "false" + }, + { + "answerText": "āĻĻ⧌⧜āĻŦāĻŋāĻĻāĻĻ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āĻŦā§āϝāĻžāϟāύ āĻĒāϰāĻŋāĻŦāĻ°ā§āϤāύ", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āĻ…ā§āϝāĻžāĻ•āĻšā§ā§Ÿā§‡āϟāϰāϕ⧇ āϏāĻ°ā§āĻŦāĻĻāĻž āϏ⧇āĻ¨ā§āϏāϰ āϰāĻŋāĻĄāĻŋāĻ‚āϝāĻŧ⧇āϰ āϏāĻžāĻĨ⧇ āϤāĻžāĻ¤ā§āĻ•ā§āώāĻŖāĻŋāĻ•āĻ­āĻžāĻŦ⧇ āĻĒā§āϰāϤāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻž āϜāĻžāύāĻžāύ⧋ āωāϚāĻŋāϤ:", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + } + ] + }, + { + "id": 15, + "title": "āϞ⧇āϏāύ ā§Ž - āĻ—āĻžāĻ›āϕ⧇ āĻ•ā§āϞāĻžāωāĻĄ āĻĨ⧇āϕ⧇ āύāĻŋ⧟āĻ¨ā§āĻ¤ā§āϰāĻŖ: āϞ⧇āĻ•āϚāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": " āĻāĻ•āϟāĻŋ āĻĒāĻžāĻŦāϞāĻŋāĻ• MQTT broker āĻĻāĻŋā§Ÿā§‡ āĻ•āĻŽāĻžāĻ°ā§āĻļāĻŋ⧟āĻžāϞ āφāχāĻ“āϟāĻŋ āĻĒā§āϰāĻœā§‡āĻ•ā§āϟ āĻ•āϰāĻž āϝāĻžā§Ÿ", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āĻ•ā§āϞāĻžāωāĻĄ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻŋāĻ‚ āĻĻā§āĻŦāĻžāϰāĻž āϝāĻž āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻŋ -", + "answerOptions": [ + { + "answerText": "āϕ⧇āĻŦāϞ āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ āĻ­āĻžāĻĄāĻŧāĻž āĻ¨ā§‡ā§ŸāĻž", + "isCorrect": "false" + }, + { + "answerText": "āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ āĻāĻŦāĻ‚ āĻāĻĒā§āϞāĻŋāϕ⧇āĻļāύ āĻĒā§āϞāĻžāϟāĻĢāĻ°ā§āĻŽ āĻ­āĻžāĻĄāĻŧāĻž āĻ¨ā§‡ā§ŸāĻž", + "isCorrect": "false" + }, + { + "answerText": "āĻ•āĻŽā§āĻĒāĻŋāωāϟāĻžāϰ, āĻ…ā§āϝāĻžāĻĒā§āϞāĻŋāϕ⧇āĻļāύ āĻĒā§āĻ˛ā§āϝāĻžāϟāĻĢāĻ°ā§āĻŽ, āϏāĻĢā§āϟāĻ“āϝāĻŧā§āϝāĻžāϰ, āϏāĻžāĻ°ā§āĻ­āĻžāϰāϞ⧇āϏ āĻĒā§āĻ˛ā§āϝāĻžāϟāĻĢāĻ°ā§āĻŽ āĻāĻŦāĻ‚ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āĻĒāϰāĻŋāώ⧇āĻŦāĻžāϗ⧁āϞāĻŋ āĻ­āĻžāĻĄāĻŧāĻž āĻ•āϰāĻž", + "isCorrect": "true" + } + ] + }, + { + "questionText": "6 āϟāĻŋ āĻŽāĻšāĻžāĻĻ⧇āĻļ⧇ āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āĻĻ⧇āĻļ⧇ āĻĄā§‡āϟāĻž āϏ⧇āĻ¨ā§āϟāĻžāϰ āϏāĻš āĻāĻ•āĻžāϧāĻŋāĻ• āĻ•ā§āϞāĻžāωāĻĄ āϏ⧇āĻŦāĻžāĻĻāĻžāύāĻ•āĻžāϰ ā§€āϰāϝāĻŧ⧇āϛ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "true" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "false" + } + ] + } + ] + }, + { + "id": 16, + "title": "āϞ⧇āϏāύ ā§Ž - āĻ—āĻžāĻ›āϕ⧇ āĻ•ā§āϞāĻžāωāĻĄ āĻĨ⧇āϕ⧇ āύāĻŋ⧟āĻ¨ā§āĻ¤ā§āϰāĻŖ: āϞ⧇āĻ•āϚāĻžāϰ āĻĒāϰāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āĻāĻ•āϟāĻŋ Actuator āύāĻŋ⧟āĻ¨ā§āĻ¤ā§āϰāĻŖ āĻ•āϰāϤ⧇ āĻāĻŦāĻ‚ IOT āĻĄāĻŋāĻ­āĻžāχāϏ āĻĨ⧇āϕ⧇ āĻāĻ•āϟāĻŋ āĻĒā§āϰāϤāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻž āĻĒ⧇āϤ⧇, āĻ…ā§āϝāĻžāĻĒā§āϞāĻŋāϕ⧇āĻļāύ āϕ⧋āĻĄ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇:", + "answerOptions": [ + { + "answerText": "āĻĄāĻŋāĻ­āĻžāχāϏ āĻĨ⧇āϕ⧇ āĻ•ā§āϞāĻžāωāĻĄā§‡ āĻŽā§āϝāĻžāϏ⧇āϜ", + "isCorrect": "false" + }, + { + "answerText": "āĻĄāĻŋāĻ­āĻžāχāϏ āϟ⧁āχāύ", + "isCorrect": "false" + }, + { + "answerText": "āϏāϰāĻžāϏāϰāĻŋ āϰāĻŋāĻ•ā§ā§Ÿā§‡āĻ¸ā§āϟ", + "isCorrect": "true" + } + ] + }, + { + "questionText": "IoT Hub āϏāĻŋāĻ•ā§āϝ⧁āϰāĻŋāϟāĻŋ āĻ›āĻžā§œāĻžāχ āϝ⧇āϕ⧋āύ āĻĄāĻŋāĻ­āĻžāχāϏ āĻ•āĻžāύ⧇āĻ•ā§āϟ āĻ•āϰāϤ⧇ āĻĻā§‡ā§Ÿ", + "answerOptions": [ + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž"", + "isCorrect": "true" + }, + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + } + ] + }, + { + "questionText": "IoT Hub āĻāϰ āύāĻžāĻŽ āχāωāύāĻŋāĻ• āĻšāϤ⧇ āĻšāĻŦ⧇:", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "true" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "false" + } + ] + } + ] + }, + { + "id": 17, + "title": "āϞ⧇āϏāύ ⧝ - āĻ•ā§āϞāĻžāωāĻĄ āĻĨ⧇āϕ⧇ āĻāĻĒā§āϞāĻŋāϕ⧇āĻļāύ āϞāϜāĻŋāĻ• āύāĻŋ⧟āĻ¨ā§āĻ¤ā§āϰāĻŖ: āϞ⧇āĻ•āϚāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āφāχāĻ“āϟāĻŋ āχāϭ⧇āĻ¨ā§āĻŸā§‡āϰ āĻĒā§āϰāϤāĻŋāĻ•ā§āϰāĻŋāϝāĻŧāĻž āϜāĻžāύāĻžāϤ⧇ āφāĻĒāύāĻŋ āϏāĻžāĻ°ā§āĻ­āĻžāϰāϞ⧇āϏ āϕ⧋āĻĄ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻž āϝāĻžāĻŦ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "true" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "false" + } + ] + }, + { + "questionText": "IoT Hub āĻ āφāχāĻ“āϟāĻŋ āχāϭ⧇āĻ¨ā§āϟ āĻĒāĻžāĻ āĻžāύ⧋ āĻšāϞ⧇:", + "answerOptions": [ + { + "answerText": "āĻļ⧁āϧ⧁āĻŽāĻžāĻ¤ā§āϰ āĻāĻ•āϟāĻŋ āϏāĻžāĻ°ā§āĻ­āĻŋāϏ IoT Hub āĻāϰ āχāϭ⧇āĻ¨ā§āϟāϗ⧁āϞāĻŋ āĻĒāĻĄāĻŧāϤ⧇ āĻĒāĻžāϰ⧇", + "isCorrect": "false" + }, + { + "answerText": "āύāĻŋāĻ°ā§āĻĻāĻŋāĻˇā§āϟ āϏāĻ‚āĻ–ā§āϝāĻ• āϏāĻžāĻ°ā§āĻ­āĻŋāϏ IoT Hub āĻāϰ āχāϭ⧇āĻ¨ā§āϟāϗ⧁āϞāĻŋ āĻĒāĻĄāĻŧāϤ⧇ āĻĒāĻžāϰ⧇", + "isCorrect": "true" + }, + { + "answerText": "āϕ⧋āύ āϏāĻžāĻ°ā§āĻ­āĻŋāϏāχ IoT Hub āĻāϰ āχāϭ⧇āĻ¨ā§āϟāϗ⧁āϞāĻŋ āĻĒāĻĄāĻŧāϤ⧇ āĻĒāĻžāϰ⧇āύāĻž, āĻāϜāĻ¨ā§āϝ āϏāĻžāĻ°ā§āĻ­āĻŋāϏāϕ⧇ āĻĄāĻŋāĻ­āĻžāχāϏ⧇ āĻ•āĻžāύ⧇āĻ•ā§āϟ āĻĨāĻžāĻ•āϤ⧇ āĻšāĻŦ⧇", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻšāĻžāĻŦ⧇ āχāϭ⧇āĻ¨ā§āϟāϗ⧁āϞāĻŋ āĻĒāĻĄāĻŧāĻžāϰ āϏāĻŽāϝāĻŧ, āϕ⧇āĻŦāϞ āĻ•ā§āϞāĻžāωāĻĄā§‡ āϚāĻžāϞāĻŋāϤ āϕ⧋āĻĄāϟāĻŋ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻž āϝāĻžāĻŦ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + } + ] + }, + { + "id": 18, + "title": "āϞ⧇āϏāύ ⧝ - āĻ•ā§āϞāĻžāωāĻĄ āĻĨ⧇āϕ⧇ āĻāĻĒā§āϞāĻŋāϕ⧇āĻļāύ āϞāϜāĻŋāĻ• āύāĻŋ⧟āĻ¨ā§āĻ¤ā§āϰāĻŖ: āϞ⧇āĻ•āϚāĻžāϰ āĻĒāϰāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "Azure āĻĢāĻžāĻ‚āĻļāύ āϞ⧋āĻ•āĻžāϞāĻŋ āϚāĻžāϞāĻžāύ⧋ āĻāĻŦāĻ‚ āĻĄāĻŋāĻŦāĻžāĻ— āĻ•āϰāĻž āϝāĻžāĻŦ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "true" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āϏāĻžāĻ°ā§āĻ­āĻžāϰāϞ⧇āϏ āϕ⧋āĻĄ āϕ⧇āĻŦāϞ āϜāĻžāĻ­āĻžāĻ¸ā§āĻ•ā§āϰāĻŋāĻĒā§āϟ āĻāĻŦāĻ‚ COBOL-āĻ āϞ⧇āĻ–āĻž āϝ⧇āϤ⧇ āĻĒāĻžāϰ⧇:", + "answerOptions": [ + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + }, + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + } + ] + }, + { + "questionText": "āĻ•ā§āϞāĻžāωāĻĄā§‡ āϕ⧋āύ āĻĢāĻžāĻ‚āĻļāύ āĻ…ā§āϝāĻžāĻĒ āĻŦā§āϝāĻŦāĻšāĻžāϰ⧇āϰ āϏāĻŽāϝāĻŧ, āχāωāϜāĻžāϰāϕ⧇ āϤ⧈āϰāĻŋ āĻāĻŦāĻ‚ āĻĄā§‡āĻĒāϞ⧟ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇:", + "answerOptions": [ + { + "answerText": "āĻļ⧁āϧ⧁ ā§§āϟāĻŋ āĻĢāĻžāĻ‚āĻļāύ āĻ…ā§āϝāĻžāĻĒ", + "isCorrect": "false" + }, + { + "answerText": "ā§§āϟāĻŋ āĻĢāĻžāĻ‚āĻļāύ āĻ…ā§āϝāĻžāĻĒ āĻāĻŦāĻ‚ āĻāĻ•āϟāĻŋ āĻ¸ā§āĻŸā§‹āϰ⧇āϜ āĻāĻ•āĻžāωāĻ¨ā§āϟ", + "isCorrect": "false" + }, + { + "answerText": "ā§§āϟāĻŋ āĻĢāĻžāĻ‚āĻļāύ āĻ…ā§āϝāĻžāĻĒ āĻāĻŦāĻ‚ āĻāĻ•āϟāĻŋ āĻ¸ā§āĻŸā§‹āϰ⧇āϜ āĻāĻ•āĻžāωāĻ¨ā§āϟ āĻāĻŦāĻ‚ āĻāĻĒā§āϞāĻŋāϕ⧇āĻļāύ āϏ⧇āϟāĻŋāĻ‚", + "isCorrect": "true" + } + ] + } + ] + }, + { + "id": 19, + "title": "āϞ⧇āϏāύ ā§§ā§Ļ - āĻ—āĻžāĻ›āϗ⧁āϞ⧋āϰ āύāĻŋāϰāĻžāĻĒāĻ¤ā§āϤāĻž āύāĻŋāĻļā§āϚāĻŋāϤāĻ•āϰāĻŖ: āϞ⧇āĻ•āϚāĻžāϰ āĻĒā§‚āĻ°ā§āĻŦāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏ āϏāĻ°ā§āĻŦāĻĻāĻž āϏ⧁āϰāĻ•ā§āώāĻŋāϤ āĻĨāĻžāϕ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āϕ⧋āύāĻ“ āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏ āĻĻāĻŋā§Ÿā§‡ āĻšā§āϝāĻžāĻ• āĻ•āϰāĻžāϰ āĻŽāϤ⧋ āύāϜāĻŋāϰ āύ⧇āχ:", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + }, + { + "questionText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏ āϏāĻ‚āϝ⧋āϗ⧇āϰ āĻ¸ā§āĻŸā§āϰāĻŋāĻ‚ āϝ⧇ āĻ•āĻžāϰāĻ“ āϏāĻžāĻĨ⧇ āĻ­āĻžāĻ— āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻž āϝāĻžāĻŦ⧇", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + } + ] + }, + { + "id": 20, + "title": "āϞ⧇āϏāύ ā§§ā§Ļ - āĻ—āĻžāĻ›āϗ⧁āϞ⧋āϰ āύāĻŋāϰāĻžāĻĒāĻ¤ā§āϤāĻž āύāĻŋāĻļā§āϚāĻŋāϤāĻ•āϰāĻŖ: āϞ⧇āĻ•āϚāĻžāϰ āĻĒāϰāĻŦāĻ°ā§āϤ⧀ āϕ⧁āχāϜ", + "quiz": [ + { + "questionText": "Symmetric key encryption āĻāĻŦāĻ‚ asymmetric key encryption āĻāϰ āĻĒāĻžāĻ°ā§āĻĨāĻ•ā§āϝ:", + "answerOptions": [ + { + "answerText": "Symmetric key encryption āĻāϰ āĻ¸ā§āĻĒā§€āĻĄ asymmetric āĻāϰ āĻšā§‡ā§Ÿā§‡ āĻ•āĻŽ", + "isCorrect": "false" + }, + { + "answerText": "Symmetric key encryption āĻāĻ–āĻžāύ⧇ asymmetric āĻāϰ āϤ⧁āϞāύāĻžā§Ÿ āĻŦ⧇āĻļāĻŋ āύāĻŋāϰāĻžāĻĒāĻĻ", + "isCorrect": "false" + }, + { + "answerText": "Symmetric key encryption āϟāĻŋ asymmetric āĻāϰ āϤ⧁āϞāύāĻžā§Ÿ āĻŦ⧇āĻļāĻŋ āĻĻā§āϰ⧁āϤ āĻ•āĻžāϜ āĻ•āϰāϞ⧇āĻ“, āύāĻŋāϰāĻžāĻĒāĻ¤ā§āϤāĻž āĻ•āĻŽ", + "isCorrect": "true" + }, + { + "answerText": "Symmetric key encryption āϟāĻŋ asymmetric āĻāϰ āϤ⧁āϞāύāĻžā§Ÿ āϧ⧀āϰ⧇ āĻ•āĻžāϜ āĻ•āϰāϞ⧇āĻ“, āύāĻŋāϰāĻžāĻĒāĻ¤ā§āϤāĻž āĻŦ⧇āĻļāĻŋ", + "isCorrect": "false" + } + ] + }, + { + "questionText": "Self-signed X.509 āϏāĻžāĻ°ā§āϟāĻŋāĻĢāĻŋāϕ⧇āϟāϗ⧁āϞ⧋ Production Environment āĻāϰ āϜāĻ¨ā§āϝ āφāĻĻāĻ°ā§āĻļ", + "answerOptions": [ + { + "answerText": "āϏāĻ¤ā§āϝ", + "isCorrect": "false" + }, + { + "answerText": "āĻŽāĻŋāĻĨā§āϝāĻž", + "isCorrect": "true" + } + ] + }, + { + "questionText": "X.509 certificates:", + "answerOptions": [ + { + "answerText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏāϗ⧁āϞ⧋āϰ āĻŽāĻžāĻā§‡ āĻļā§‡ā§ŸāĻžāϰ āĻ•āϰāĻž āωāϚāĻŋāϤ āύ⧟", + "isCorrect": "false" + }, + { + "answerText": "āφāχāĻ“āϟāĻŋ āĻĄāĻŋāĻ­āĻžāχāϏāϗ⧁āϞ⧋āϰ āĻŽāĻžāĻā§‡ āĻļā§‡ā§ŸāĻžāϰ āĻ•āϰāĻž āϝāĻžāĻŦ⧇", + "isCorrect": "true" + }, + { + "answerText": "āĻ—ā§‹āĻĒāύ āϰāĻžāĻ–āĻž āωāϚāĻŋāϤ āĻāĻŦāĻ‚ āϕ⧋āύ āĻĄāĻŋāĻ­āĻžāχāϏ⧇āϰ āϏāĻžāĻĨ⧇ āĻļā§‡ā§ŸāĻžāϰ āĻ•āϰāĻž āφāĻŦ⧇āύāĻž", + "isCorrect": "false" + } + ] + } + ] + } + ] + } +]