diff --git a/4-manufacturing/translations/README.hi.md b/4-manufacturing/translations/README.hi.md new file mode 100644 index 00000000..fd62a834 --- /dev/null +++ b/4-manufacturing/translations/README.hi.md @@ -0,0 +1,24 @@ +# निर्माण और प्रसंस्करण - भोजन के प्रसंस्करण में सुधार के लिए IoT का उपयोग करना। + +एक बार जब भोजन एक केंद्रीय केंद्र या प्रसंस्करण संयंत्र में पहुंच जाता है, तो इसे हमेशा सुपरमार्केट में नहीं भेजा जाता है। भोजन को कई बार प्रसंस्करण के कई चरणों से गुजरना पड़ता है, जैसे गुणवत्ता के आधार पर छाँटना। यह एक प्रक्रिया है जो मैनुअल हुआ करती थी - यह खेत में शुरू होती थी जब बीनने वाले केवल पके फल चुनते थे, फिर कारखाने में फलों को एक कन्वेयर बेल्ट पर चलाया जाता था और कर्मचारी किसी भी टूटे या सड़े हुए फल को मैन्युअल रूप से हटा देते थे। स्कूल के दौरान ग्रीष्मकालीन नौकरी के रूप में स्वयं स्ट्रॉबेरी को चुनने और सॉर्ट करने के बाद, मैं प्रमाणित कर सकता हूं कि यह एक मजेदार काम नहीं है। + +अधिक आधुनिक सेटअप छँटाई के लिए IoT पर निर्भर करते हैं। [वीको](https://wecotek.com) के सॉर्टर्स जैसे कुछ शुरुआती उपकरण उत्पाद की गुणवत्ता का पता लगाने के लिए ऑप्टिकल सेंसर का उपयोग करते हैं, उदाहरण के लिए हरे टमाटर को अस्वीकार करते हैं। इन्हें खेत में ही हार्वेस्टर में या प्रसंस्करण संयंत्रों में लगाया जा सकता है। + +जैसे-जैसे आर्टिफिशियल इंटेलिजेंस (एआई) और मशीन लर्निंग (एमएल) में प्रगति होती है, फल और विदेशी वस्तुओं जैसे चट्टानों, गंदगी या कीड़ों के बीच अंतर करने के लिए प्रशिक्षित एमएल मॉडल का उपयोग करके ये मशीनें और अधिक उन्नत हो सकती हैं। इन मॉडलों को फलों की गुणवत्ता का पता लगाने के लिए भी प्रशिक्षित किया जा सकता है, न केवल टूटे हुए फल बल्कि बीमारी या अन्य फसल समस्याओं का जल्द पता लगाना। + +>🎓शब्द *एमएल मॉडल* डेटा के एक सेट पर प्रशिक्षण मशीन लर्निंग सॉफ्टवेयर के आउटपुट को संदर्भित करता है। उदाहरण के लिए, आप पके और कच्चे टमाटर के बीच अंतर करने के लिए एमएल मॉडल को प्रशिक्षित कर सकते हैं, फिर नई छवियों पर मॉडल का उपयोग करके देखें कि टमाटर पके हैं या नहीं। + +इन 4 पाठों में आप सीखेंगे कि फलों की गुणवत्ता का पता लगाने के लिए छवि-आधारित AI मॉडल को कैसे प्रशिक्षित किया जाए, IoT डिवाइस से इनका उपयोग कैसे किया जाए, और इन्हें किनारे पर कैसे चलाया जाए - जो कि क्लाउड के बजाय IoT डिवाइस पर है। . + +> 💁 ये पाठ कुछ क्लाउड संसाधनों का उपयोग करेंगे। यदि आप इस परियोजना के सभी पाठों को पूरा नहीं करते हैं, तो सुनिश्चित करें कि आप [अपना प्रोजेक्ट साफ़ करें](../clean-up.md)। + +## विषय + +1. [फल गुणवत्ता संसूचक को प्रशिक्षित करें](./lessons/1-train-fruit-detector/README.md) +1. [IoT डिवाइस से फलों की गुणवत्ता जांचें](./lessons/2-check-fruit-from-device/README.md) +1. [अपना फ्रूट डिटेक्टर किनारे पर चलाएं](./lessons/3-run-fruit-detector-edge/README.md) +1. [एक सेंसर से फलों की गुणवत्ता का पता लगाना](./lessons/4-trigger-fruit-detector/README.md) + +## क्रेडिट + +सभी पाठ [जिम बेनेट](https://GitHub.com/JimBobBennett) द्वारा ️♥️ के साथ लिखे गए थे