You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
IoT-For-Beginners/4-manufacturing/README.md

25 lines
2.4 KiB

# Manufacturing and processing - using IoT to improve the processing of food
Once food reaches a central hub or processing plant, it isn't always just shipped out to supermarkets. A lot of the time the food goes through a number of processing steps, such as sorting by quality. This is a process that used to be manual - it would start in the field when pickers would only pick ripe fruit, then at the factory the fruit would ride a conveyer belt and employees would manually remove any bruised or rotten fruit. Having picked and sorted strawberries myself as a summer job during school, I can testify that this isn't a fun job.
More modern setups rely on IoT for sorting. Some of the earliest devices like the sorters from [Weco](https://wecotek.com) use optical sensors to detect the quality of produce, rejecting green tomatoes for example. These can be deployed in harvesters on the farm itself, or in processing plants.
As advances happen in Artificial Intelligence (AI) and Machine Learning (ML), these machines can become more advanced, using ML models trained to distinguish between fruit and foreign objects such as rocks, dirt or insects. These models can also be trained to detect fruit quality, not just bruised fruit but early detection of disease or other crop problems.
> 🎓 The term *ML model* refers to the output of training machine learning software on a set of data. For example, you can train a ML model to distinguish between ripe and unripe tomatoes, then use the model on new images to see if the tomatoes are ripe or not.
In these 4 lessons you'll learn how to train image-based AI models to detect fruit quality, how to use these from an IoT device, and how to run these on the edge - that is on an IoT device rather than in the cloud.
> 💁 These lessons will use some cloud resources. If you don't complete all the lessons in this project, make sure you [clean up your project](../clean-up.md).
## Topics
1. [Train a fruit quality detector](./lessons/1-train-fruit-detector/README.md)
1. [Check fruit quality from an IoT device](./lessons/2-check-fruit-from-device/README.md)
1. [Run your fruit detector on the edge](./lessons/3-run-fruit-detector-edge/README.md)
1. [Trigger fruit quality detection from a sensor](./lessons/4-trigger-fruit-detector/README.md)
## Credits
Sketchnotes (#171) * Adding content * Update en.json * Update README.md * Update TRANSLATIONS.md * Adding lesson tempolates * Fixing code files with each others code in * Update README.md * Adding lesson 16 * Adding virtual camera * Adding Wio Terminal camera capture * Adding wio terminal code * Adding SBC classification to lesson 16 * Adding challenge, review and assignment * Adding images and using new Azure icons * Update README.md * Update iot-reference-architecture.png * Adding structure for JulyOT links * Removing icons * Sketchnotes! * Create lesson-1.png * Starting on lesson 18 * Updated sketch * Adding virtual distance sensor * Adding Wio Terminal image classification * Update README.md * Adding structure for project 6 and wio terminal distance sensor * Adding some of the smart timer stuff * Updating sketchnotes * Adding virtual device speech to text * Adding chapter 21 * Language tweaks * Lesson 22 stuff * Update en.json * Bumping seeed libraries * Adding functions lab to lesson 22 * Almost done with LUIS * Update README.md * Reverting sunlight sensor change Fixes #88 * Structure * Adding speech to text lab for Pi * Adding virtual device text to speech lab * Finishing lesson 23 * Clarifying privacy Fixes #99 * Update README.md * Update hardware.md * Update README.md * Fixing some code samples that were wrong * Adding more on translation * Adding more on translator * Update README.md * Update README.md * Adding public access to the container * First part of retail object detection * More on stock lesson * Tweaks to maps lesson * Update README.md * Update pi-sensor.md * IoT Edge install stuffs * Notes on consumer groups and not running the event monitor at the same time * Assignment for object detector * Memory notes for speech to text * Migrating LUIS to an HTTP trigger * Adding Wio Terminal speech to text * Changing smart timer to functions from hub * Changing a param to body to avoid URL encoding * Update README.md * Tweaks before IoT Show * Adding sketchnote links * Adding object detection labs * Adding more on object detection * More on stock detection * Finishing stock counting * Tidying stuff * Adding wio purchase link * Updating Seeed logo * Update pi-proximity.md * Fix clean up link Fixes #145 * Moving attributions to a separate file * First draft of edge classifier * Adding extras * Moving folder * Adding lesson 11 questions * Image improvements * More image tweaks * Adding lesson 12 quiz * Quiz for lesson 13 * Adding quiz for lesson 14 * Lesson 15 and 16 quiz * Update README.md * Adding sketchnotes * Adding quiz for 17 * Update en.json * Adding lesson 18 quiz questions * Quiz for 19 and 20 * Lesson 21 and 22 quiz * Lesson 23 quiz * Lesson 24 quiz * Update README.md * Moar sketchnotes
3 years ago
All the lessons were written with ♥️ by [Jen Fox](https://github.com/jenfoxbot) and [Jim Bennett](https://GitHub.com/JimBobBennett)