You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
IoT-For-Beginners/4-manufacturing/lessons/3-run-fruit-detector-edge/wio-terminal.md

53 lines
2.0 KiB

Edge lesson (#154) * Adding content * Update en.json * Update README.md * Update TRANSLATIONS.md * Adding lesson tempolates * Fixing code files with each others code in * Update README.md * Adding lesson 16 * Adding virtual camera * Adding Wio Terminal camera capture * Adding wio terminal code * Adding SBC classification to lesson 16 * Adding challenge, review and assignment * Adding images and using new Azure icons * Update README.md * Update iot-reference-architecture.png * Adding structure for JulyOT links * Removing icons * Sketchnotes! * Create lesson-1.png * Starting on lesson 18 * Updated sketch * Adding virtual distance sensor * Adding Wio Terminal image classification * Update README.md * Adding structure for project 6 and wio terminal distance sensor * Adding some of the smart timer stuff * Updating sketchnotes * Adding virtual device speech to text * Adding chapter 21 * Language tweaks * Lesson 22 stuff * Update en.json * Bumping seeed libraries * Adding functions lab to lesson 22 * Almost done with LUIS * Update README.md * Reverting sunlight sensor change Fixes #88 * Structure * Adding speech to text lab for Pi * Adding virtual device text to speech lab * Finishing lesson 23 * Clarifying privacy Fixes #99 * Update README.md * Update hardware.md * Update README.md * Fixing some code samples that were wrong * Adding more on translation * Adding more on translator * Update README.md * Update README.md * Adding public access to the container * First part of retail object detection * More on stock lesson * Tweaks to maps lesson * Update README.md * Update pi-sensor.md * IoT Edge install stuffs * Notes on consumer groups and not running the event monitor at the same time * Assignment for object detector * Memory notes for speech to text * Migrating LUIS to an HTTP trigger * Adding Wio Terminal speech to text * Changing smart timer to functions from hub * Changing a param to body to avoid URL encoding * Update README.md * Tweaks before IoT Show * Adding sketchnote links * Adding object detection labs * Adding more on object detection * More on stock detection * Finishing stock counting * Tidying stuff * Adding wio purchase link * Updating Seeed logo * Update pi-proximity.md * Fix clean up link Fixes #145 * Moving attributions to a separate file * First draft of edge classifier * Adding extras
3 years ago
# Classify an image using an IoT Edge based image classifier - Wio Terminal
In this part of the lesson, you will use the Image Classifier running on the IoT Edge device.
## Use the IoT Edge classifier
The IoT device can be re-directed to use the IoT Edge image classifier. The URL for the Image Classifier is `http://<IP address or name>/image`, replacing `<IP address or name>` with the IP address or host name of the computer running IoT Edge.
### Task - use the IoT Edge classifier
1. Open the `fruit-quality-detector` app project if it's not already open.
1. The image classifier is running as a REST API using HTTP, not HTTPS, so the call needs to use a WiFi client that works with HTTP calls only. This means the certificate is not needed. Delete the `CERTIFICATE` from the `config.h` file.
1. The prediction URL in the `config.h` file needs to be updated to the new URL. You can also delete the `PREDICTION_KEY` as this is not needed.
```cpp
const char *PREDICTION_URL = "<URL>";
```
Replace `<URL>` with the URL for your classifier.
1. In `main.cpp`, change the include directive for the WiFi Client Secure to import the standard HTTP version:
```cpp
#include <WiFiClient.h>
```
1. Change the declaration of `WiFiClient` to be the HTTP version:
```cpp
WiFiClient client;
```
1. Select the line that sets the certificate on the WiFi client. Remove the line `client.setCACert(CERTIFICATE);` from the `connectWiFi` function.
1. In the `classifyImage` function, remove the `httpClient.addHeader("Prediction-Key", PREDICTION_KEY);` line that sets the prediction key in the header.
1. Upload and run your code. Point the camera at some fruit and press the C button. You will see the output in the serial monitor:
```output
Connecting to WiFi..
Connected!
Image captured
Image read to buffer with length 8200
ripe: 56.84%
unripe: 43.16%
```
> 💁 You can find this code in the [code-classify/wio-terminal](code-classify/wio-terminal) folder.
😀 Your fruit quality classifier program was a success!