You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/translations/fa
BethanyJep c664b0f05d
🌐 Update translations via Co-op Translator
4 months ago
..
1-Introduction 🌐 Update translations via Co-op Translator 5 months ago
2-Working-With-Data 🌐 Update translations via Co-op Translator 5 months ago
3-Data-Visualization 🌐 Update translations via Co-op Translator 5 months ago
4-Data-Science-Lifecycle 🌐 Update translations via Co-op Translator 5 months ago
5-Data-Science-In-Cloud 🌐 Update translations via Co-op Translator 5 months ago
6-Data-Science-In-Wild 🌐 Update translations via Co-op Translator 5 months ago
docs 🌐 Update translations via Co-op Translator 6 months ago
quiz-app 🌐 Update translations via Co-op Translator 6 months ago
sketchnotes 🌐 Update translations via Co-op Translator 6 months ago
AGENTS.md 🌐 Update translations via Co-op Translator 4 months ago
CODE_OF_CONDUCT.md 🌐 Update translations via Co-op Translator 6 months ago
CONTRIBUTING.md 🌐 Update translations via Co-op Translator 6 months ago
README.md 🌐 Update translations via Co-op Translator 4 months ago
SECURITY.md 🌐 Update translations via Co-op Translator 6 months ago
SUPPORT.md 🌐 Update translations via Co-op Translator 6 months ago
for-teachers.md 🌐 Update translations via Co-op Translator 5 months ago

README.md

علم داده برای مبتدیان - یک برنامه آموزشی

Azure Cloud Advocates در مایکروسافت با افتخار یک برنامه آموزشی ۱۰ هفته‌ای و ۲۰ درس درباره علم داده ارائه می‌دهند. هر درس شامل آزمون‌های قبل و بعد از درس، دستورالعمل‌های نوشتاری برای تکمیل درس، راه‌حل و تکلیف است. روش آموزشی مبتنی بر پروژه ما به شما امکان می‌دهد در حین ساختن یاد بگیرید، روشی اثبات‌شده برای تثبیت مهارت‌های جدید.

تشکر ویژه از نویسندگان ما: جاسمین گرین‌اوی، دمیتری سوشنیکوف، نیتیا ناراسیمهان، جالن مک‌گی، جن لوپر، مود لوی، تیفانی سوتر، کریستوفر هریسون.

🙏 تشکر ویژه 🙏 از Microsoft Student Ambassador نویسندگان، بازبینان و مشارکت‌کنندگان محتوا، به‌ویژه آریان آرورا، آدیتیا گارگ، آلوندرا سانچز، آنکیتا سینگ، انوپام میشرا، آرپیتا داس، چهل‌بیهاری دوبی، دیبری نسوفور، دیشیتا باسین، مجد صافی، مکس بلوم، میگل کوریا، محمد افتخار (ایفتو) ابن جلال، ناورین تبسم، ریموند وانگسا پوترا، روهیت یاداو، سامریدی شارما، سانیا سینها، شینا نارولا، توقیر احمد، یوگندرا سینگ پاوار، ویدوشی گوپتا، جسلین سوندی

اسکچ‌نوت توسط @sketchthedocs https://sketchthedocs.dev
علم داده برای مبتدیان - اسکچ‌نوت توسط @nitya

🌐 پشتیبانی چندزبانه

پشتیبانی از طریق GitHub Action (خودکار و همیشه به‌روز)

فرانسوی | اسپانیایی | آلمانی | روسی | عربی | فارسی | اردو | چینی (ساده‌شده) | چینی (سنتی، ماکائو) | چینی (سنتی، هنگ‌کنگ) | چینی (سنتی، تایوان) | ژاپنی | کره‌ای | هندی | بنگالی | مراتی | نپالی | پنجابی (گرمکی) | پرتغالی (پرتغال) | پرتغالی (برزیل) | ایتالیایی | لهستانی | ترکی | یونانی | تایلندی | سوئدی | دانمارکی | نروژی | فنلاندی | هلندی | عبری | ویتنامی | اندونزیایی | مالایی | تاگالوگ (فیلیپینی) | سواحیلی | مجاری | چکی | اسلواکی | رومانیایی | بلغاری | صربی (سیریلیک) | کرواتی | اسلوونیایی | اوکراینی | برمه‌ای (میانمار)

اگر مایل به داشتن ترجمه‌های اضافی هستید، زبان‌های پشتیبانی‌شده اینجا فهرست شده‌اند

به جامعه ما بپیوندید

Azure AI Discord

ما یک سری یادگیری با AI در Discord داریم، بیشتر بدانید و به ما بپیوندید در Learn with AI Series از ۱۸ تا ۳۰ سپتامبر ۲۰۲۵. شما نکات و ترفندهای استفاده از GitHub Copilot برای علم داده را دریافت خواهید کرد.

سری یادگیری با AI

آیا شما دانشجو هستید؟

با منابع زیر شروع کنید:

  • صفحه مرکز دانشجویی در این صفحه، منابع مبتدی، بسته‌های دانشجویی و حتی راه‌هایی برای دریافت یک کوپن گواهی رایگان را خواهید یافت. این صفحه‌ای است که می‌خواهید نشانک‌گذاری کنید و هر از گاهی بررسی کنید زیرا ما حداقل ماهانه محتوا را تغییر می‌دهیم.
  • Microsoft Learn Student Ambassadors به یک جامعه جهانی از سفیران دانشجویی بپیوندید، این می‌تواند راه شما به مایکروسافت باشد.

شروع به کار

معلمان: ما برخی پیشنهادات در مورد نحوه استفاده از این برنامه آموزشی را گنجانده‌ایم. ما مشتاقانه منتظر بازخورد شما در انجمن بحث ما هستیم!

دانشجویان: برای استفاده از این برنامه آموزشی به‌صورت مستقل، کل مخزن را فورک کنید و تمرین‌ها را به‌صورت مستقل انجام دهید، با آزمون قبل از درس شروع کنید. سپس درس را بخوانید و بقیه فعالیت‌ها را تکمیل کنید. سعی کنید پروژه‌ها را با درک درس‌ها ایجاد کنید نه با کپی کردن کد راه‌حل؛ با این حال، آن کد در پوشه‌های /solutions در هر درس مبتنی بر پروژه موجود است. ایده دیگر این است که یک گروه مطالعه با دوستان تشکیل دهید و با هم محتوا را مرور کنید. برای مطالعه بیشتر، ما Microsoft Learn را توصیه می‌کنیم.

تیم را بشناسید

ویدیو تبلیغاتی

Gif توسط موهیت جایسال

🎥 روی تصویر بالا کلیک کنید تا ویدیویی درباره پروژه و افرادی که آن را ایجاد کرده‌اند ببینید!

روش آموزشی

ما دو اصل آموزشی را هنگام ساخت این برنامه آموزشی انتخاب کرده‌ایم: اطمینان از اینکه مبتنی بر پروژه است و شامل آزمون‌های مکرر می‌شود. تا پایان این سری، دانشجویان اصول اولیه علم داده را یاد خواهند گرفت، از جمله مفاهیم اخلاقی، آماده‌سازی داده‌ها، روش‌های مختلف کار با داده‌ها، مصورسازی داده‌ها، تحلیل داده‌ها، موارد استفاده واقعی از علم داده و موارد دیگر.

علاوه بر این، یک آزمون کم‌فشار قبل از کلاس، قصد دانشجو را برای یادگیری یک موضوع تعیین می‌کند، در حالی که یک آزمون دوم بعد از کلاس، حفظ بیشتر را تضمین می‌کند. این برنامه آموزشی به‌گونه‌ای طراحی شده است که انعطاف‌پذیر و سرگرم‌کننده باشد و می‌توان آن را به‌صورت کامل یا جزئی گذراند. پروژه‌ها کوچک شروع می‌شوند و تا پایان چرخه ۱۰ هفته‌ای به‌تدریج پیچیده‌تر می‌شوند.

دستورالعمل‌های Code of Conduct، Contributing، Translation ما را پیدا کنید. ما از بازخورد سازنده شما استقبال می‌کنیم!

هر درس شامل موارد زیر است:

  • اسکچ‌نوت اختیاری
  • ویدیوی تکمیلی اختیاری
  • آزمون گرم‌آپ قبل از درس
  • درس نوشتاری
  • برای درس‌های مبتنی بر پروژه، راهنمای گام‌به‌گام برای ساخت پروژه
  • بررسی دانش
  • یک چالش
  • مطالعه تکمیلی
  • تکلیف
  • آزمون بعد از درس

یادداشتی درباره آزمون‌ها: تمام آزمون‌ها در پوشه Quiz-App قرار دارند، برای مجموع ۴۰ آزمون هر کدام شامل سه سؤال. آن‌ها از داخل درس‌ها لینک شده‌اند، اما اپلیکیشن آزمون می‌تواند به‌صورت محلی اجرا شود یا در Azure مستقر شود؛ دستورالعمل‌ها را در پوشه quiz-app دنبال کنید. آن‌ها به‌تدریج در حال بومی‌سازی هستند.

درس‌ها

 Sketchnote by @sketchthedocs https://sketchthedocs.dev
علوم داده برای مبتدیان: نقشه راه - طرح‌نگاری توسط @nitya
شماره درس موضوع گروه‌بندی درس اهداف یادگیری درس مرتبط نویسنده
01 تعریف علوم داده مقدمه یادگیری مفاهیم پایه‌ای علوم داده و ارتباط آن با هوش مصنوعی، یادگیری ماشین و داده‌های کلان. درس ویدئو Dmitry
02 اخلاق در علوم داده مقدمه مفاهیم اخلاق داده، چالش‌ها و چارچوب‌ها. درس Nitya
03 تعریف داده مقدمه نحوه طبقه‌بندی داده‌ها و منابع رایج آن‌ها. درس Jasmine
04 مقدمه‌ای بر آمار و احتمال مقدمه تکنیک‌های ریاضی احتمال و آمار برای درک داده‌ها. درس ویدئو Dmitry
05 کار با داده‌های رابطه‌ای کار با داده‌ها مقدمه‌ای بر داده‌های رابطه‌ای و اصول بررسی و تحلیل داده‌های رابطه‌ای با زبان پرس‌وجوی ساختاریافته، معروف به SQL (تلفظ "سی‌کوئل"). درس Christopher
06 کار با داده‌های NoSQL کار با داده‌ها مقدمه‌ای بر داده‌های غیررابطه‌ای، انواع مختلف آن و اصول بررسی و تحلیل پایگاه‌های داده سندی. درس Jasmine
07 کار با پایتون کار با داده‌ها اصول استفاده از پایتون برای بررسی داده‌ها با کتابخانه‌هایی مانند Pandas. توصیه می‌شود که درک پایه‌ای از برنامه‌نویسی پایتون داشته باشید. درس ویدئو Dmitry
08 آماده‌سازی داده‌ها کار با داده‌ها موضوعاتی درباره تکنیک‌های داده برای پاکسازی و تبدیل داده‌ها به منظور مدیریت چالش‌های داده‌های ناقص، نادرست یا ناکامل. درس Jasmine
09 مصورسازی مقادیر مصورسازی داده‌ها یادگیری نحوه استفاده از Matplotlib برای مصورسازی داده‌های پرندگان 🦆 درس Jen
10 مصورسازی توزیع داده‌ها مصورسازی داده‌ها مصورسازی مشاهدات و روندها در یک بازه. درس Jen
11 مصورسازی نسبت‌ها مصورسازی داده‌ها مصورسازی درصدهای گسسته و گروه‌بندی‌شده. درس Jen
12 مصورسازی روابط مصورسازی داده‌ها مصورسازی ارتباطات و همبستگی‌ها بین مجموعه‌های داده و متغیرهای آن‌ها. درس Jen
13 مصورسازی‌های معنادار مصورسازی داده‌ها تکنیک‌ها و راهنمایی‌هایی برای ارزشمند کردن مصورسازی‌ها به منظور حل مؤثر مشکلات و ارائه بینش‌ها. درس Jen
14 مقدمه‌ای بر چرخه عمر علوم داده چرخه عمر مقدمه‌ای بر چرخه عمر علوم داده و اولین مرحله آن یعنی جمع‌آوری و استخراج داده‌ها. درس Jasmine
15 تحلیل چرخه عمر این مرحله از چرخه عمر علوم داده بر تکنیک‌های تحلیل داده تمرکز دارد. درس Jasmine
16 ارتباط چرخه عمر این مرحله از چرخه عمر علوم داده بر ارائه بینش‌های حاصل از داده‌ها به گونه‌ای که تصمیم‌گیرندگان بتوانند آن را بهتر درک کنند، تمرکز دارد. درس Jalen
17 علوم داده در فضای ابری داده‌های ابری این مجموعه درس‌ها علوم داده در فضای ابری و مزایای آن را معرفی می‌کند. درس Tiffany و Maud
18 علوم داده در فضای ابری داده‌های ابری آموزش مدل‌ها با استفاده از ابزارهای کم‌کد. درس Tiffany و Maud
19 علوم داده در فضای ابری داده‌های ابری استقرار مدل‌ها با Azure Machine Learning Studio. درس Tiffany و Maud
20 علوم داده در دنیای واقعی در دنیای واقعی پروژه‌های مبتنی بر علوم داده در دنیای واقعی. درس Nitya

GitHub Codespaces

برای باز کردن این نمونه در یک Codespace مراحل زیر را دنبال کنید:

  1. روی منوی کشویی Code کلیک کنید و گزینه Open with Codespaces را انتخاب کنید.
  2. در پایین پنل، گزینه + New codespace را انتخاب کنید. برای اطلاعات بیشتر، به مستندات GitHub مراجعه کنید.

VSCode Remote - Containers

برای باز کردن این مخزن در یک کانتینر با استفاده از ماشین محلی و VSCode با استفاده از افزونه VS Code Remote - Containers مراحل زیر را دنبال کنید:

  1. اگر اولین بار است که از کانتینر توسعه استفاده می‌کنید، لطفاً مطمئن شوید که سیستم شما پیش‌نیازها را دارد (مانند نصب Docker) در مستندات شروع به کار.

برای استفاده از این مخزن، می‌توانید مخزن را در یک حجم ایزوله Docker باز کنید:

توجه: در پشت صحنه، این از دستور Remote-Containers: Clone Repository in Container Volume... برای کلون کردن کد منبع در یک حجم Docker به جای سیستم فایل محلی استفاده می‌کند. Volumes مکانیزم ترجیحی برای حفظ داده‌های کانتینر هستند.

یا نسخه‌ای که به صورت محلی کلون شده یا دانلود شده است را باز کنید:

  • این مخزن را به سیستم فایل محلی خود کلون کنید.
  • کلید F1 را فشار دهید و دستور Remote-Containers: Open Folder in Container... را انتخاب کنید.
  • نسخه کلون شده این پوشه را انتخاب کنید، منتظر بمانید تا کانتینر شروع شود و موارد را امتحان کنید.

دسترسی آفلاین

می‌توانید این مستندات را به صورت آفلاین با استفاده از Docsify اجرا کنید. این مخزن را فورک کنید، Docsify را نصب کنید روی ماشین محلی خود، سپس در پوشه اصلی این مخزن، دستور docsify serve را تایپ کنید. وب‌سایت روی پورت 3000 در localhost شما اجرا خواهد شد: localhost:3000.

توجه داشته باشید، نوت‌بوک‌ها از طریق Docsify رندر نمی‌شوند، بنابراین زمانی که نیاز به اجرای یک نوت‌بوک دارید، آن را جداگانه در VS Code با اجرای یک کرنل پایتون انجام دهید.

سایر برنامه‌های آموزشی

تیم ما برنامه‌های آموزشی دیگری تولید می‌کند! بررسی کنید:

دریافت کمک

اگر گیر کردید یا سوالی درباره ساخت اپلیکیشن‌های AI دارید، به اینجا بپیوندید:

Azure AI Foundry Discord

اگر بازخورد محصول دارید یا در هنگام ساخت خطاهایی دارید، به اینجا مراجعه کنید:

Azure AI Foundry Developer Forum


سلب مسئولیت:
این سند با استفاده از سرویس ترجمه هوش مصنوعی Co-op Translator ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، ترجمه حرفه‌ای انسانی توصیه می‌شود. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.