|
|
6 months ago | |
|---|---|---|
| .. | ||
| 1-Introduction | 6 months ago | |
| 2-Working-With-Data | 6 months ago | |
| 3-Data-Visualization | 6 months ago | |
| 4-Data-Science-Lifecycle | 6 months ago | |
| 5-Data-Science-In-Cloud | 6 months ago | |
| 6-Data-Science-In-Wild | 6 months ago | |
| docs | 6 months ago | |
| quiz-app | 6 months ago | |
| sketchnotes | 6 months ago | |
| CODE_OF_CONDUCT.md | 6 months ago | |
| CONTRIBUTING.md | 6 months ago | |
| README.md | 6 months ago | |
| SECURITY.md | 6 months ago | |
| SUPPORT.md | 6 months ago | |
| for-teachers.md | 6 months ago | |
README.md
วิทยาศาสตร์ข้อมูลสำหรับผู้เริ่มต้น - หลักสูตร
Azure Cloud Advocates ที่ Microsoft ยินดีนำเสนอหลักสูตร 10 สัปดาห์ 20 บทเรียนเกี่ยวกับวิทยาศาสตร์ข้อมูล แต่ละบทเรียนประกอบด้วยแบบทดสอบก่อนและหลังบทเรียน คำแนะนำที่เขียนไว้เพื่อทำบทเรียนให้สำเร็จ โซลูชัน และงานมอบหมาย วิธีการเรียนรู้แบบเน้นโครงการช่วยให้คุณเรียนรู้ผ่านการลงมือทำ ซึ่งเป็นวิธีที่พิสูจน์แล้วว่าทำให้ทักษะใหม่ๆ ติดตัวได้อย่างมีประสิทธิภาพ
ขอขอบคุณผู้เขียนของเรา: Jasmine Greenaway, Dmitry Soshnikov, Nitya Narasimhan, Jalen McGee, Jen Looper, Maud Levy, Tiffany Souterre, Christopher Harrison.
🙏 ขอบคุณพิเศษ 🙏 สำหรับ Microsoft Student Ambassador ผู้เขียน ผู้ตรวจสอบ และผู้มีส่วนร่วมในเนื้อหา โดยเฉพาะ Aaryan Arora, Aditya Garg, Alondra Sanchez, Ankita Singh, Anupam Mishra, Arpita Das, ChhailBihari Dubey, Dibri Nsofor, Dishita Bhasin, Majd Safi, Max Blum, Miguel Correa, Mohamma Iftekher (Iftu) Ebne Jalal, Nawrin Tabassum, Raymond Wangsa Putra, Rohit Yadav, Samridhi Sharma, Sanya Sinha, Sheena Narula, Tauqeer Ahmad, Yogendrasingh Pawar, Vidushi Gupta, Jasleen Sondhi
![]() |
|---|
| วิทยาศาสตร์ข้อมูลสำหรับผู้เริ่มต้น - ภาพสเก็ตช์โดย @nitya |
ประกาศ - หลักสูตรใหม่เกี่ยวกับ Generative AI เพิ่งเปิดตัว!
เราเพิ่งเปิดตัวหลักสูตร 12 บทเรียนเกี่ยวกับ Generative AI มาเรียนรู้สิ่งต่างๆ เช่น:
- การตั้งคำถามและการออกแบบคำถาม
- การสร้างแอปข้อความและภาพ
- แอปค้นหา
เช่นเคย มีบทเรียน งานมอบหมายให้ทำ แบบทดสอบความรู้ และความท้าทาย
ดูเพิ่มเติมได้ที่:
คุณเป็นนักเรียนหรือเปล่า?
เริ่มต้นด้วยทรัพยากรต่อไปนี้:
- หน้าศูนย์นักเรียน ในหน้านี้ คุณจะพบทรัพยากรสำหรับผู้เริ่มต้น ชุดเครื่องมือสำหรับนักเรียน และแม้กระทั่งวิธีการรับบัตรรับรองฟรี หน้านี้เป็นหน้าที่คุณควรบันทึกไว้และกลับมาดูเป็นระยะๆ เพราะเราจะเปลี่ยนเนื้อหาอย่างน้อยเดือนละครั้ง
- Microsoft Learn Student Ambassadors เข้าร่วมชุมชนระดับโลกของนักเรียนที่เป็นทูต นี่อาจเป็นทางเข้าสู่ Microsoft ของคุณ
เริ่มต้นใช้งาน
ครู: เราได้ รวมคำแนะนำบางส่วน เกี่ยวกับวิธีการใช้หลักสูตรนี้ เราอยากได้ความคิดเห็นของคุณ ในฟอรัมการสนทนา!
นักเรียน: หากต้องการใช้หลักสูตรนี้ด้วยตัวเอง ให้ fork repo ทั้งหมดและทำแบบฝึกหัดด้วยตัวเอง โดยเริ่มต้นด้วยแบบทดสอบก่อนการบรรยาย จากนั้นอ่านการบรรยายและทำกิจกรรมที่เหลือให้เสร็จ ลองสร้างโครงการโดยทำความเข้าใจบทเรียนแทนที่จะคัดลอกรหัสโซลูชัน อย่างไรก็ตาม รหัสนั้นมีอยู่ในโฟลเดอร์ /solutions ในแต่ละบทเรียนที่เน้นโครงการ อีกแนวคิดหนึ่งคือการสร้างกลุ่มเรียนกับเพื่อนๆ และเรียนรู้เนื้อหาด้วยกัน สำหรับการศึกษาต่อ เราแนะนำ Microsoft Learn
พบกับทีมงาน
Gif โดย Mohit Jaisal
🎥 คลิกที่ภาพด้านบนเพื่อดูวิดีโอเกี่ยวกับโครงการและผู้ที่สร้างมันขึ้นมา!
วิธีการสอน
เราเลือกใช้หลักการสอนสองข้อในการสร้างหลักสูตรนี้: การเน้นโครงการและการมีแบบทดสอบบ่อยครั้ง เมื่อจบซีรีส์นี้ นักเรียนจะได้เรียนรู้หลักการพื้นฐานของวิทยาศาสตร์ข้อมูล รวมถึงแนวคิดด้านจริยธรรม การเตรียมข้อมูล วิธีการทำงานกับข้อมูลในรูปแบบต่างๆ การสร้างภาพข้อมูล การวิเคราะห์ข้อมูล กรณีศึกษาในโลกจริงของวิทยาศาสตร์ข้อมูล และอื่นๆ
นอกจากนี้ แบบทดสอบที่มีความเสี่ยงต่ำก่อนชั้นเรียนจะช่วยตั้งเป้าหมายของนักเรียนในการเรียนรู้หัวข้อหนึ่งๆ ในขณะที่แบบทดสอบที่สองหลังชั้นเรียนช่วยเพิ่มการจดจำ หลักสูตรนี้ออกแบบมาให้ยืดหยุ่นและสนุกสนาน และสามารถเรียนได้ทั้งแบบเต็มหรือบางส่วน โครงการเริ่มต้นจากขนาดเล็กและมีความซับซ้อนมากขึ้นเมื่อจบวงจร 10 สัปดาห์
ดู Code of Conduct, Contributing, Translation เรายินดีรับความคิดเห็นที่สร้างสรรค์ของคุณ!
แต่ละบทเรียนประกอบด้วย:
- ภาพสเก็ตช์ (ตัวเลือก)
- วิดีโอเสริม (ตัวเลือก)
- แบบทดสอบอุ่นเครื่องก่อนบทเรียน
- บทเรียนที่เขียนไว้
- สำหรับบทเรียนที่เน้นโครงการ คู่มือทีละขั้นตอนเกี่ยวกับวิธีการสร้างโครงการ
- การตรวจสอบความรู้
- ความท้าทาย
- การอ่านเสริม
- งานมอบหมาย
- แบบทดสอบหลังบทเรียน
หมายเหตุเกี่ยวกับแบบทดสอบ: แบบทดสอบทั้งหมดอยู่ในโฟลเดอร์ Quiz-App รวมทั้งหมด 40 แบบทดสอบ แต่ละแบบมีสามคำถาม แบบทดสอบเหล่านี้เชื่อมโยงจากภายในบทเรียน แต่แอปแบบทดสอบสามารถรันได้ในเครื่องหรือปรับใช้ใน Azure; ทำตามคำแนะนำในโฟลเดอร์
quiz-appแบบทดสอบกำลังถูกแปลทีละน้อย
บทเรียน
![]() |
|---|
| วิทยาศาสตร์ข้อมูลสำหรับผู้เริ่มต้น: แผนที่เส้นทาง - ภาพสเก็ตช์โดย @nitya |
| หมายเลขบทเรียน | หัวข้อ | กลุ่มบทเรียน | วัตถุประสงค์การเรียนรู้ | บทเรียนที่เชื่อมโยง | ผู้เขียน |
|---|---|---|---|---|---|
| 01 | การนิยามวิทยาศาสตร์ข้อมูล | บทนำ | เรียนรู้แนวคิดพื้นฐานเกี่ยวกับวิทยาศาสตร์ข้อมูลและความสัมพันธ์กับปัญญาประดิษฐ์ การเรียนรู้ของเครื่อง และข้อมูลขนาดใหญ่ | บทเรียน วิดีโอ | Dmitry |
| 02 | จริยธรรมในวิทยาศาสตร์ข้อมูล | บทนำ | แนวคิดเกี่ยวกับจริยธรรมในข้อมูล ความท้าทาย และกรอบการทำงาน | บทเรียน | Nitya |
| 03 | การนิยามข้อมูล | บทนำ | วิธีการจัดประเภทข้อมูลและแหล่งข้อมูลทั่วไป | บทเรียน | Jasmine |
| 04 | บทนำสู่สถิติและความน่าจะเป็น | บทนำ | เทคนิคทางคณิตศาสตร์ของความน่าจะเป็นและสถิติเพื่อทำความเข้าใจข้อมูล | บทเรียน วิดีโอ | Dmitry |
| 05 | การทำงานกับข้อมูลเชิงสัมพันธ์ | การทำงานกับข้อมูล | บทนำสู่ข้อมูลเชิงสัมพันธ์และพื้นฐานของการสำรวจและวิเคราะห์ข้อมูลเชิงสัมพันธ์ด้วย Structured Query Language หรือ SQL (ออกเสียงว่า “ซีเควล”) | บทเรียน | Christopher |
| 06 | การทำงานกับข้อมูล NoSQL | การทำงานกับข้อมูล | บทนำสู่ข้อมูลที่ไม่ใช่เชิงสัมพันธ์ ประเภทต่างๆ และพื้นฐานของการสำรวจและวิเคราะห์ฐานข้อมูลเอกสาร | บทเรียน | Jasmine |
| 07 | การทำงานกับ Python | การทำงานกับข้อมูล | พื้นฐานการใช้ Python เพื่อสำรวจข้อมูลด้วยไลบรารี เช่น Pandas แนะนำให้มีความเข้าใจพื้นฐานเกี่ยวกับการเขียนโปรแกรม Python | บทเรียน วิดีโอ | Dmitry |
| 08 | การเตรียมข้อมูล | การทำงานกับข้อมูล | หัวข้อเกี่ยวกับเทคนิคการทำความสะอาดและแปลงข้อมูลเพื่อจัดการกับปัญหาข้อมูลที่ขาดหาย ไม่ถูกต้อง หรือไม่สมบูรณ์ | บทเรียน | Jasmine |
| 09 | การแสดงผลปริมาณข้อมูล | การแสดงผลข้อมูล | เรียนรู้วิธีใช้ Matplotlib เพื่อแสดงผลข้อมูลนก 🦆 | บทเรียน | Jen |
| 10 | การแสดงผลการกระจายของข้อมูล | การแสดงผลข้อมูล | การแสดงผลการสังเกตและแนวโน้มภายในช่วงเวลา | บทเรียน | Jen |
| 11 | การแสดงผลสัดส่วน | การแสดงผลข้อมูล | การแสดงผลเปอร์เซ็นต์แบบแยกและแบบกลุ่ม | บทเรียน | Jen |
| 12 | การแสดงผลความสัมพันธ์ | การแสดงผลข้อมูล | การแสดงผลการเชื่อมโยงและความสัมพันธ์ระหว่างชุดข้อมูลและตัวแปร | บทเรียน | Jen |
| 13 | การแสดงผลที่มีความหมาย | การแสดงผลข้อมูล | เทคนิคและคำแนะนำในการทำให้การแสดงผลข้อมูลมีคุณค่าเพื่อการแก้ปัญหาและการวิเคราะห์ที่มีประสิทธิภาพ | บทเรียน | Jen |
| 14 | บทนำสู่วงจรชีวิตของวิทยาศาสตร์ข้อมูล | วงจรชีวิต | บทนำสู่วงจรชีวิตของวิทยาศาสตร์ข้อมูลและขั้นตอนแรกในการรวบรวมและดึงข้อมูล | บทเรียน | Jasmine |
| 15 | การวิเคราะห์ | วงจรชีวิต | ขั้นตอนนี้ในวงจรชีวิตของวิทยาศาสตร์ข้อมูลเน้นเทคนิคในการวิเคราะห์ข้อมูล | บทเรียน | Jasmine |
| 16 | การสื่อสาร | วงจรชีวิต | ขั้นตอนนี้ในวงจรชีวิตของวิทยาศาสตร์ข้อมูลเน้นการนำเสนอข้อมูลเชิงลึกในรูปแบบที่ช่วยให้ผู้ตัดสินใจเข้าใจได้ง่ายขึ้น | บทเรียน | Jalen |
| 17 | วิทยาศาสตร์ข้อมูลในระบบคลาวด์ | ข้อมูลคลาวด์ | ชุดบทเรียนนี้แนะนำวิทยาศาสตร์ข้อมูลในระบบคลาวด์และประโยชน์ของมัน | บทเรียน | Tiffany และ Maud |
| 18 | วิทยาศาสตร์ข้อมูลในระบบคลาวด์ | ข้อมูลคลาวด์ | การฝึกอบรมโมเดลโดยใช้เครื่องมือ Low Code | บทเรียน | Tiffany และ Maud |
| 19 | วิทยาศาสตร์ข้อมูลในระบบคลาวด์ | ข้อมูลคลาวด์ | การปรับใช้โมเดลด้วย Azure Machine Learning Studio | บทเรียน | Tiffany และ Maud |
| 20 | วิทยาศาสตร์ข้อมูลในโลกจริง | ในโลกจริง | โครงการที่ขับเคลื่อนด้วยวิทยาศาสตร์ข้อมูลในโลกจริง | บทเรียน | Nitya |
GitHub Codespaces
ทำตามขั้นตอนเหล่านี้เพื่อเปิดตัวอย่างนี้ใน Codespace:
- คลิกเมนูแบบเลื่อนลง Code และเลือกตัวเลือก Open with Codespaces
- เลือก + New codespace ที่ด้านล่างของแผง สำหรับข้อมูลเพิ่มเติม ดู เอกสาร GitHub.
VSCode Remote - Containers
ทำตามขั้นตอนเหล่านี้เพื่อเปิด repo นี้ใน container โดยใช้เครื่องของคุณและ VSCode ผ่านส่วนขยาย VS Code Remote - Containers:
- หากนี่เป็นครั้งแรกที่คุณใช้ development container โปรดตรวจสอบให้แน่ใจว่าระบบของคุณมีข้อกำหนดเบื้องต้น (เช่น ติดตั้ง Docker) ใน เอกสารเริ่มต้นใช้งาน.
ในการใช้ repository นี้ คุณสามารถเปิด repository ใน Docker volume ที่แยกออกมา:
หมายเหตุ: เบื้องหลังจะใช้คำสั่ง Remote-Containers: Clone Repository in Container Volume... เพื่อโคลนซอร์สโค้ดใน Docker volume แทนที่จะเป็นระบบไฟล์ในเครื่อง Volumes เป็นกลไกที่แนะนำสำหรับการเก็บข้อมูล container
หรือเปิดเวอร์ชันที่โคลนหรือดาวน์โหลดไว้ในเครื่อง:
- โคลน repository นี้ไปยังระบบไฟล์ในเครื่องของคุณ
- กด F1 และเลือกคำสั่ง Remote-Containers: Open Folder in Container...
- เลือกสำเนาที่โคลนของโฟลเดอร์นี้ รอให้ container เริ่มต้น และลองใช้งาน
การเข้าถึงแบบออฟไลน์
คุณสามารถเรียกใช้เอกสารนี้แบบออฟไลน์โดยใช้ Docsify. Fork repo นี้, ติดตั้ง Docsify บนเครื่องของคุณ, จากนั้นในโฟลเดอร์ root ของ repo นี้ พิมพ์ docsify serve. เว็บไซต์จะถูกให้บริการบนพอร์ต 3000 บน localhost ของคุณ: localhost:3000.
หมายเหตุ, notebooks จะไม่ถูกแสดงผลผ่าน Docsify ดังนั้นเมื่อคุณต้องการเรียกใช้ notebook ให้ทำสิ่งนั้นแยกต่างหากใน VS Code โดยใช้ kernel Python
ต้องการความช่วยเหลือ!
หากคุณต้องการแปลหลักสูตรทั้งหมดหรือบางส่วน โปรดทำตาม คำแนะนำการแปล ของเรา
หลักสูตรอื่น ๆ
ทีมของเราผลิตหลักสูตรอื่น ๆ! ลองดู:
- Generative AI for Beginners
- Generative AI for Beginners .NET
- Generative AI with JavaScript
- Generative AI with Java
- AI for Beginners
- Data Science for Beginners
- ML for Beginners
- Cybersecurity for Beginners
- Web Dev for Beginners
- IoT for Beginners
- XR Development for Beginners
- Mastering GitHub Copilot for Paired Programming
- Mastering GitHub Copilot for C#/.NET Developers
- Choose Your Own Copilot Adventure
ข้อจำกัดความรับผิดชอบ:
เอกสารนี้ได้รับการแปลโดยใช้บริการแปลภาษา AI Co-op Translator แม้ว่าเราจะพยายามให้การแปลมีความถูกต้องมากที่สุด แต่โปรดทราบว่าการแปลโดยอัตโนมัติอาจมีข้อผิดพลาดหรือความไม่ถูกต้อง เอกสารต้นฉบับในภาษาดั้งเดิมควรถือเป็นแหล่งข้อมูลที่เชื่อถือได้ สำหรับข้อมูลที่สำคัญ ขอแนะนำให้ใช้บริการแปลภาษามืออาชีพ เราไม่รับผิดชอบต่อความเข้าใจผิดหรือการตีความผิดที่เกิดจากการใช้การแปลนี้


