You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/translations/th
leestott 57edd69619
🌐 Update translations via Co-op Translator
3 months ago
..
1-Introduction 🌐 Update translations via Co-op Translator 4 months ago
2-Working-With-Data 🌐 Update translations via Co-op Translator 4 months ago
3-Data-Visualization 🌐 Update translations via Co-op Translator 4 months ago
4-Data-Science-Lifecycle 🌐 Update translations via Co-op Translator 4 months ago
5-Data-Science-In-Cloud 🌐 Update translations via Co-op Translator 4 months ago
6-Data-Science-In-Wild 🌐 Update translations via Co-op Translator 4 months ago
docs 🌐 Update translations via Co-op Translator 4 months ago
examples 🌐 Update translations via Co-op Translator 3 months ago
quiz-app 🌐 Update translations via Co-op Translator 4 months ago
sketchnotes 🌐 Update translations via Co-op Translator 4 months ago
AGENTS.md 🌐 Update translations via Co-op Translator 3 months ago
CODE_OF_CONDUCT.md 🌐 Update translations via Co-op Translator 4 months ago
CONTRIBUTING.md 🌐 Update translations via Co-op Translator 4 months ago
README.md 🌐 Update translations via Co-op Translator 3 months ago
SECURITY.md 🌐 Update translations via Co-op Translator 4 months ago
SUPPORT.md 🌐 Update translations via Co-op Translator 4 months ago
for-teachers.md 🌐 Update translations via Co-op Translator 4 months ago

README.md

วิทยาศาสตร์ข้อมูลสำหรับผู้เริ่มต้น - หลักสูตร

Open in GitHub Codespaces

GitHub license GitHub contributors GitHub issues GitHub pull-requests PRs Welcome

GitHub watchers GitHub forks GitHub stars

Azure AI Foundry Developer Forum

ทีม Azure Cloud Advocates ที่ Microsoft ยินดีนำเสนอหลักสูตร 10 สัปดาห์ 20 บทเรียนเกี่ยวกับวิทยาศาสตร์ข้อมูล แต่ละบทเรียนประกอบด้วยแบบทดสอบก่อนและหลังบทเรียน คำแนะนำที่เขียนไว้สำหรับการทำบทเรียน โซลูชัน และงานมอบหมาย วิธีการเรียนรู้แบบเน้นโครงการช่วยให้คุณเรียนรู้ผ่านการลงมือทำ ซึ่งเป็นวิธีที่พิสูจน์แล้วว่าทำให้ทักษะใหม่ๆ ติดตัวได้ดี

ขอขอบคุณผู้เขียนของเรา: Jasmine Greenaway, Dmitry Soshnikov, Nitya Narasimhan, Jalen McGee, Jen Looper, Maud Levy, Tiffany Souterre, Christopher Harrison.

🙏 ขอบคุณพิเศษ 🙏 สำหรับ Microsoft Student Ambassador ผู้เขียน ผู้ตรวจสอบ และผู้มีส่วนร่วมในเนื้อหา, โดยเฉพาะ Aaryan Arora, Aditya Garg, Alondra Sanchez, Ankita Singh, Anupam Mishra, Arpita Das, ChhailBihari Dubey, Dibri Nsofor, Dishita Bhasin, Majd Safi, Max Blum, Miguel Correa, Mohamma Iftekher (Iftu) Ebne Jalal, Nawrin Tabassum, Raymond Wangsa Putra, Rohit Yadav, Samridhi Sharma, Sanya Sinha, Sheena Narula, Tauqeer Ahmad, Yogendrasingh Pawar , Vidushi Gupta, Jasleen Sondhi

ภาพสเก็ตช์โดย @sketchthedocs https://sketchthedocs.dev
วิทยาศาสตร์ข้อมูลสำหรับผู้เริ่มต้น - ภาพสเก็ตช์โดย @nitya

🌐 การสนับสนุนหลายภาษา

รองรับผ่าน GitHub Action (อัตโนมัติและอัปเดตเสมอ)

French | Spanish | German | Russian | Arabic | Persian (Farsi) | Urdu | Chinese (Simplified) | Chinese (Traditional, Macau) | Chinese (Traditional, Hong Kong) | Chinese (Traditional, Taiwan) | Japanese | Korean | Hindi | Bengali | Marathi | Nepali | Punjabi (Gurmukhi) | Portuguese (Portugal) | Portuguese (Brazil) | Italian | Polish | Turkish | Greek | Thai | Swedish | Danish | Norwegian | Finnish | Dutch | Hebrew | Vietnamese | Indonesian | Malay | Tagalog (Filipino) | Swahili | Hungarian | Czech | Slovak | Romanian | Bulgarian | Serbian (Cyrillic) | Croatian | Slovenian | Ukrainian | Burmese (Myanmar)

หากคุณต้องการให้มีการสนับสนุนภาษาเพิ่มเติม รายการภาษาที่รองรับอยู่ ที่นี่

เข้าร่วมชุมชนของเรา

Azure AI Discord

เรามีซีรีส์การเรียนรู้กับ AI ที่กำลังดำเนินอยู่ เรียนรู้เพิ่มเติมและเข้าร่วมกับเราได้ที่ Learn with AI Series ตั้งแต่วันที่ 18 - 30 กันยายน 2025 คุณจะได้รับเคล็ดลับและเทคนิคในการใช้ GitHub Copilot สำหรับวิทยาศาสตร์ข้อมูล

Learn with AI series

คุณเป็นนักเรียนหรือไม่?

เริ่มต้นด้วยทรัพยากรต่อไปนี้:

  • หน้าศูนย์นักเรียน ในหน้านี้ คุณจะพบทรัพยากรสำหรับผู้เริ่มต้น ชุดเครื่องมือสำหรับนักเรียน และแม้กระทั่งวิธีการรับบัตรกำนัลการรับรองฟรี นี่คือหน้าที่คุณควรบุ๊กมาร์กและตรวจสอบเป็นระยะๆ เนื่องจากเรามีการเปลี่ยนแปลงเนื้อหาอย่างน้อยเดือนละครั้ง
  • Microsoft Learn Student Ambassadors เข้าร่วมชุมชนระดับโลกของนักเรียนแอมบาสเดอร์ นี่อาจเป็นทางเข้าสู่ Microsoft ของคุณ

เริ่มต้นใช้งาน

ผู้เริ่มต้นอย่างสมบูรณ์: ใหม่กับวิทยาศาสตร์ข้อมูล? เริ่มต้นด้วย ตัวอย่างที่เหมาะสำหรับผู้เริ่มต้น! ตัวอย่างที่เรียบง่ายและมีคำอธิบายชัดเจนเหล่านี้จะช่วยให้คุณเข้าใจพื้นฐานก่อนที่จะดำดิ่งสู่หลักสูตรเต็มรูปแบบ

ครู: เราได้ รวมคำแนะนำบางส่วน เกี่ยวกับวิธีการใช้หลักสูตรนี้ เราอยากได้ความคิดเห็นของคุณ ในฟอรัมการสนทนาของเรา!

นักเรียน: หากต้องการใช้หลักสูตรนี้ด้วยตัวเอง ให้ fork repo ทั้งหมดและทำแบบฝึกหัดด้วยตัวเอง โดยเริ่มต้นด้วยแบบทดสอบก่อนการบรรยาย จากนั้นอ่านการบรรยายและทำกิจกรรมที่เหลือ พยายามสร้างโครงการโดยการทำความเข้าใจบทเรียนแทนที่จะคัดลอกรหัสโซลูชัน อย่างไรก็ตาม รหัสนั้นมีอยู่ในโฟลเดอร์ /solutions ในแต่ละบทเรียนที่เน้นโครงการ อีกแนวคิดหนึ่งคือการสร้างกลุ่มการศึกษาและเรียนรู้เนื้อหาด้วยกัน สำหรับการศึกษาต่อ เราแนะนำ Microsoft Learn

พบกับทีมงาน

วิดีโอโปรโมต

Gif โดย Mohit Jaisal

🎥 คลิกที่ภาพด้านบนเพื่อดูวิดีโอเกี่ยวกับโครงการและผู้ที่สร้างมันขึ้นมา!

วิธีการสอน

เราเลือกใช้หลักการสอนสองข้อในการสร้างหลักสูตรนี้: การเน้นโครงการและการรวมแบบทดสอบบ่อยๆ เมื่อจบซีรีส์นี้ นักเรียนจะได้เรียนรู้หลักการพื้นฐานของวิทยาศาสตร์ข้อมูล รวมถึงแนวคิดด้านจริยธรรม การเตรียมข้อมูล วิธีการทำงานกับข้อมูล การสร้างภาพข้อมูล การวิเคราะห์ข้อมูล กรณีการใช้งานจริงของวิทยาศาสตร์ข้อมูล และอื่นๆ

นอกจากนี้ แบบทดสอบที่มีความเสี่ยงต่ำก่อนชั้นเรียนจะช่วยตั้งเจตนาของนักเรียนในการเรียนรู้หัวข้อ ในขณะที่แบบทดสอบที่สองหลังชั้นเรียนช่วยเพิ่มการจดจำ หลักสูตรนี้ออกแบบมาให้ยืดหยุ่นและสนุกสนาน และสามารถเรียนได้ทั้งแบบเต็มหรือบางส่วน โครงการเริ่มต้นจากขนาดเล็กและมีความซับซ้อนมากขึ้นเมื่อจบวงจร 10 สัปดาห์

ดู Code of Conduct, Contributing, Translation แนวทาง เรายินดีรับความคิดเห็นที่สร้างสรรค์ของคุณ!

แต่ละบทเรียนประกอบด้วย:

  • ภาพสเก็ตช์ (ไม่บังคับ)
  • วิดีโอเสริม (ไม่บังคับ)
  • แบบทดสอบอุ่นเครื่องก่อนบทเรียน
  • บทเรียนที่เขียนไว้
  • สำหรับบทเรียนที่เน้นโครงการ มีคำแนะนำทีละขั้นตอนเกี่ยวกับวิธีการสร้างโครงการ
  • การตรวจสอบความรู้
  • ความท้าทาย
  • การอ่านเสริม
  • งานมอบหมาย
  • แบบทดสอบหลังบทเรียน

หมายเหตุเกี่ยวกับแบบทดสอบ: แบบทดสอบทั้งหมดอยู่ในโฟลเดอร์ Quiz-App ซึ่งมีทั้งหมด 40 แบบทดสอบ โดยแต่ละแบบทดสอบมี 3 คำถาม แบบทดสอบเหล่านี้ถูกเชื่อมโยงจากบทเรียน แต่แอปแบบทดสอบสามารถรันได้ในเครื่องหรือเผยแพร่ไปยัง Azure ให้ทำตามคำแนะนำในโฟลเดอร์ quiz-app แบบทดสอบกำลังถูกแปลเป็นภาษาต่างๆ อย่างต่อเนื่อง

🎓 ตัวอย่างที่เหมาะสำหรับผู้เริ่มต้น

ใหม่กับ Data Science? เราได้สร้าง โฟลเดอร์ตัวอย่าง ที่มีโค้ดง่ายๆ พร้อมคำอธิบายเพื่อช่วยให้คุณเริ่มต้นได้:

  • 🌟 Hello World - โปรแกรม Data Science แรกของคุณ
  • 📂 การโหลดข้อมูล - เรียนรู้วิธีอ่านและสำรวจชุดข้อมูล
  • 📊 การวิเคราะห์ง่ายๆ - คำนวณสถิติและค้นหารูปแบบ
  • 📈 การสร้างภาพพื้นฐาน - สร้างแผนภูมิและกราฟ
  • 🔬 โครงการในโลกจริง - กระบวนการทำงานตั้งแต่ต้นจนจบ

แต่ละตัวอย่างมีคำอธิบายละเอียดในทุกขั้นตอน เหมาะสำหรับผู้เริ่มต้นอย่างแท้จริง!

👉 เริ่มต้นด้วยตัวอย่าง 👈

บทเรียน

 Sketchnote โดย @sketchthedocs https://sketchthedocs.dev
Data Science สำหรับผู้เริ่มต้น: แผนที่นำทาง - Sketchnote โดย @nitya
หมายเลขบทเรียน หัวข้อ กลุ่มบทเรียน วัตถุประสงค์การเรียนรู้ ลิงก์บทเรียน ผู้เขียน
01 การนิยาม Data Science บทนำ เรียนรู้แนวคิดพื้นฐานเกี่ยวกับ Data Science และความสัมพันธ์กับปัญญาประดิษฐ์ การเรียนรู้ของเครื่อง และ Big Data บทเรียน วิดีโอ Dmitry
02 จริยธรรมใน Data Science บทนำ แนวคิดเกี่ยวกับจริยธรรมในข้อมูล ความท้าทาย และกรอบการทำงาน บทเรียน Nitya
03 การนิยามข้อมูล บทนำ วิธีการจัดประเภทข้อมูลและแหล่งข้อมูลทั่วไป บทเรียน Jasmine
04 บทนำสู่สถิติและความน่าจะเป็น บทนำ เทคนิคทางคณิตศาสตร์ของความน่าจะเป็นและสถิติเพื่อทำความเข้าใจข้อมูล บทเรียน วิดีโอ Dmitry
05 การทำงานกับข้อมูลเชิงสัมพันธ์ การทำงานกับข้อมูล บทนำเกี่ยวกับข้อมูลเชิงสัมพันธ์และพื้นฐานการสำรวจและวิเคราะห์ข้อมูลเชิงสัมพันธ์ด้วย Structured Query Language หรือ SQL (ออกเสียงว่า "ซีเควล") บทเรียน Christopher
06 การทำงานกับข้อมูล NoSQL การทำงานกับข้อมูล บทนำเกี่ยวกับข้อมูลที่ไม่ใช่เชิงสัมพันธ์ ประเภทต่างๆ และพื้นฐานการสำรวจและวิเคราะห์ฐานข้อมูลเอกสาร บทเรียน Jasmine
07 การทำงานกับ Python การทำงานกับข้อมูล พื้นฐานการใช้ Python เพื่อสำรวจข้อมูลด้วยไลบรารี เช่น Pandas แนะนำให้มีความเข้าใจพื้นฐานเกี่ยวกับการเขียนโปรแกรม Python บทเรียน วิดีโอ Dmitry
08 การเตรียมข้อมูล การทำงานกับข้อมูล หัวข้อเกี่ยวกับเทคนิคการทำความสะอาดและแปลงข้อมูลเพื่อจัดการกับปัญหาข้อมูลที่ขาดหาย ไม่ถูกต้อง หรือไม่สมบูรณ์ บทเรียน Jasmine
09 การสร้างภาพปริมาณข้อมูล การสร้างภาพข้อมูล เรียนรู้วิธีใช้ Matplotlib เพื่อสร้างภาพข้อมูลนก 🦆 บทเรียน Jen
10 การสร้างภาพการกระจายของข้อมูล การสร้างภาพข้อมูล การสร้างภาพการสังเกตและแนวโน้มภายในช่วงเวลา บทเรียน Jen
11 การสร้างภาพสัดส่วน การสร้างภาพข้อมูล การสร้างภาพเปอร์เซ็นต์แบบแยกและแบบกลุ่ม บทเรียน Jen
12 การสร้างภาพความสัมพันธ์ การสร้างภาพข้อมูล การสร้างภาพการเชื่อมโยงและความสัมพันธ์ระหว่างชุดข้อมูลและตัวแปร บทเรียน Jen
13 การสร้างภาพที่มีความหมาย การสร้างภาพข้อมูล เทคนิคและคำแนะนำในการทำให้การสร้างภาพของคุณมีคุณค่าเพื่อการแก้ปัญหาและการให้ข้อมูลเชิงลึกที่มีประสิทธิภาพ บทเรียน Jen
14 บทนำสู่วงจรชีวิตของ Data Science วงจรชีวิต บทนำเกี่ยวกับวงจรชีวิตของ Data Science และขั้นตอนแรกในการรวบรวมและดึงข้อมูล บทเรียน Jasmine
15 การวิเคราะห์ วงจรชีวิต ขั้นตอนนี้ของวงจรชีวิต Data Science มุ่งเน้นไปที่เทคนิคการวิเคราะห์ข้อมูล บทเรียน Jasmine
16 การสื่อสาร วงจรชีวิต ขั้นตอนนี้ของวงจรชีวิต Data Science มุ่งเน้นไปที่การนำเสนอข้อมูลเชิงลึกจากข้อมูลในรูปแบบที่ทำให้ผู้ตัดสินใจเข้าใจได้ง่ายขึ้น บทเรียน Jalen
17 Data Science ในระบบคลาวด์ ข้อมูลในระบบคลาวด์ ชุดบทเรียนนี้แนะนำ Data Science ในระบบคลาวด์และประโยชน์ของมัน บทเรียน Tiffany และ Maud
18 Data Science ในระบบคลาวด์ ข้อมูลในระบบคลาวด์ การฝึกอบรมโมเดลโดยใช้เครื่องมือ Low Code บทเรียน Tiffany และ Maud
19 Data Science ในระบบคลาวด์ ข้อมูลในระบบคลาวด์ การเผยแพร่โมเดลด้วย Azure Machine Learning Studio บทเรียน Tiffany และ Maud
20 Data Science ในโลกจริง ในโลกจริง โครงการที่ขับเคลื่อนด้วย Data Science ในโลกจริง บทเรียน Nitya

GitHub Codespaces

ทำตามขั้นตอนเหล่านี้เพื่อเปิดตัวอย่างนี้ใน Codespace:

  1. คลิกเมนูแบบเลื่อนลง Code และเลือกตัวเลือก Open with Codespaces
  2. เลือก + New codespace ที่ด้านล่างของแผง สำหรับข้อมูลเพิ่มเติม ดู เอกสาร GitHub.

VSCode Remote - Containers

ทำตามขั้นตอนเหล่านี้เพื่อเปิด repo นี้ใน container โดยใช้เครื่องของคุณและ VSCode ด้วยส่วนขยาย VS Code Remote - Containers:

  1. หากนี่เป็นครั้งแรกที่คุณใช้ container สำหรับการพัฒนา โปรดตรวจสอบให้แน่ใจว่าระบบของคุณตรงตามข้อกำหนดเบื้องต้น (เช่น ติดตั้ง Docker) ใน เอกสารการเริ่มต้นใช้งาน.

ในการใช้ repo นี้ คุณสามารถเปิด repo ใน Docker volume ที่แยกออกมา:

หมายเหตุ: เบื้องหลังจะใช้คำสั่ง Remote-Containers: Clone Repository in Container Volume... เพื่อโคลนซอร์สโค้ดใน Docker volume แทนที่จะเป็นระบบไฟล์ในเครื่อง Volumes เป็นกลไกที่แนะนำสำหรับการเก็บข้อมูล container

หรือเปิด repo ที่โคลนหรือดาวน์โหลดไว้ในเครื่อง:

  • โคลน repo นี้ไปยังระบบไฟล์ในเครื่องของคุณ
  • กด F1 และเลือกคำสั่ง Remote-Containers: Open Folder in Container...
  • เลือกสำเนาที่โคลนของโฟลเดอร์นี้ รอให้ container เริ่มต้น และลองใช้งาน

การเข้าถึงแบบออฟไลน์

คุณสามารถรันเอกสารนี้แบบออฟไลน์โดยใช้ Docsify. Fork repo นี้, ติดตั้ง Docsify บนเครื่องของคุณ จากนั้นในโฟลเดอร์ root ของ repo นี้ ให้พิมพ์ docsify serve. เว็บไซต์จะถูกให้บริการบนพอร์ต 3000 บน localhost ของคุณ: localhost:3000.

หมายเหตุ โน้ตบุ๊กจะไม่ถูกแสดงผลผ่าน Docsify ดังนั้นเมื่อคุณต้องการรันโน้ตบุ๊ก ให้ทำแยกต่างหากใน VS Code โดยใช้ Python kernel

หลักสูตรอื่นๆ

ทีมของเราผลิตหลักสูตรอื่นๆ! ลองดู:

การขอความช่วยเหลือ

หากคุณติดขัดหรือมีคำถามเกี่ยวกับการสร้างแอป AI เข้าร่วม:

Azure AI Foundry Discord

หากคุณมีข้อเสนอแนะเกี่ยวกับผลิตภัณฑ์หรือพบข้อผิดพลาดขณะสร้าง โปรดเยี่ยมชม: Azure AI Foundry Developer Forum


ข้อจำกัดความรับผิดชอบ:
เอกสารนี้ได้รับการแปลโดยใช้บริการแปลภาษา AI Co-op Translator แม้ว่าเราจะพยายามให้การแปลมีความถูกต้อง แต่โปรดทราบว่าการแปลอัตโนมัติอาจมีข้อผิดพลาดหรือความไม่ถูกต้อง เอกสารต้นฉบับในภาษาดั้งเดิมควรถือเป็นแหล่งข้อมูลที่เชื่อถือได้ สำหรับข้อมูลที่สำคัญ ขอแนะนำให้ใช้บริการแปลภาษามนุษย์ที่มีความเชี่ยวชาญ เราไม่รับผิดชอบต่อความเข้าใจผิดหรือการตีความผิดที่เกิดจากการใช้การแปลนี้