You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/translations/fa
leestott 57edd69619
🌐 Update translations via Co-op Translator
4 months ago
..
1-Introduction 🌐 Update translations via Co-op Translator 5 months ago
2-Working-With-Data 🌐 Update translations via Co-op Translator 5 months ago
3-Data-Visualization 🌐 Update translations via Co-op Translator 5 months ago
4-Data-Science-Lifecycle 🌐 Update translations via Co-op Translator 5 months ago
5-Data-Science-In-Cloud 🌐 Update translations via Co-op Translator 5 months ago
6-Data-Science-In-Wild 🌐 Update translations via Co-op Translator 5 months ago
docs 🌐 Update translations via Co-op Translator 5 months ago
examples 🌐 Update translations via Co-op Translator 4 months ago
quiz-app 🌐 Update translations via Co-op Translator 5 months ago
sketchnotes 🌐 Update translations via Co-op Translator 5 months ago
AGENTS.md 🌐 Update translations via Co-op Translator 4 months ago
CODE_OF_CONDUCT.md 🌐 Update translations via Co-op Translator 5 months ago
CONTRIBUTING.md 🌐 Update translations via Co-op Translator 5 months ago
README.md 🌐 Update translations via Co-op Translator 4 months ago
SECURITY.md 🌐 Update translations via Co-op Translator 5 months ago
SUPPORT.md 🌐 Update translations via Co-op Translator 5 months ago
for-teachers.md 🌐 Update translations via Co-op Translator 5 months ago

README.md

علم داده برای مبتدیان - یک برنامه آموزشی

Azure Cloud Advocates در مایکروسافت با افتخار یک برنامه آموزشی ۱۰ هفته‌ای و ۲۰ درس درباره علم داده ارائه می‌دهند. هر درس شامل آزمون‌های پیش از درس و پس از درس، دستورالعمل‌های نوشتاری برای تکمیل درس، یک راه‌حل و یک تکلیف است. روش آموزشی مبتنی بر پروژه ما به شما امکان می‌دهد در حین ساختن یاد بگیرید، که یک روش اثبات‌شده برای تثبیت مهارت‌های جدید است.

تشکر ویژه از نویسندگان ما: جاسمین گرین‌اوی، دمیتری سوشنیکوف، نیتیا ناراسیمهان، جالن مک‌گی، جن لوپر، مود لوی، تیفانی سوتر، کریستوفر هریسون.

🙏 تشکر ویژه 🙏 از سفیران دانشجویی مایکروسافت نویسندگان، بازبینان و مشارکت‌کنندگان محتوا، به‌ویژه آریان آرورا، آدیتیا گارگ، آلوندرا سانچز، آنکیتا سینگ، انوپام میشرا، آرپیتا داس، چهل‌بیهاری دوبی، دیبری نسوفور، دیشیتا باسین، مجید صافی، مکس بلوم، میگل کوریا، محمد افتخار (ایفتو) ابن جلال، ناورین تبسم، ریموند وانگسا پوترا، روهیت یاداو، سامریدی شارما، سانیا سینها، شینا نارولا، توقیر احمد، یوگندرا سینگ پاوار، ویدوشی گوپتا، جسلین سوندی

اسکچ‌نوت توسط @sketchthedocs https://sketchthedocs.dev
علم داده برای مبتدیان - اسکچ‌نوت توسط @nitya

🌐 پشتیبانی چندزبانه

پشتیبانی شده از طریق GitHub Action (خودکار و همیشه به‌روز)

فرانسوی | اسپانیایی | آلمانی | روسی | عربی | فارسی | اردو | چینی (ساده‌شده) | چینی (سنتی، ماکائو) | چینی (سنتی، هنگ‌کنگ) | چینی (سنتی، تایوان) | ژاپنی | کره‌ای | هندی | بنگالی | مراتی | نپالی | پنجابی (گرمکی) | پرتغالی (پرتغال) | پرتغالی (برزیل) | ایتالیایی | لهستانی | ترکی | یونانی | تایلندی | سوئدی | دانمارکی | نروژی | فنلاندی | هلندی | عبری | ویتنامی | اندونزیایی | مالایی | تاگالوگ (فیلیپینی) | سواحیلی | مجاری | چکی | اسلواکی | رومانیایی | بلغاری | صربی (سیریلیک) | کرواتی | اسلوونیایی | اوکراینی | برمه‌ای (میانمار)

اگر می‌خواهید زبان‌های ترجمه اضافی پشتیبانی شوند، لیست زبان‌های موجود اینجا قرار دارد.

به جامعه ما بپیوندید

Azure AI Discord

ما یک سری یادگیری با AI در Discord داریم، بیشتر بدانید و به ما بپیوندید در Learn with AI Series از ۱۸ تا ۳۰ سپتامبر ۲۰۲۵. شما نکات و ترفندهای استفاده از GitHub Copilot برای علم داده را دریافت خواهید کرد.

سری یادگیری با AI

آیا دانشجو هستید؟

با منابع زیر شروع کنید:

  • صفحه مرکز دانشجویی در این صفحه، منابع مبتدی، بسته‌های دانشجویی و حتی راه‌هایی برای دریافت یک کوپن گواهی رایگان را خواهید یافت. این صفحه‌ای است که می‌خواهید نشانک‌گذاری کنید و هر از گاهی بررسی کنید زیرا ما حداقل ماهانه محتوا را تغییر می‌دهیم.
  • سفیران دانشجویی مایکروسافت به یک جامعه جهانی از سفیران دانشجویی بپیوندید، این می‌تواند راه شما به مایکروسافت باشد.

شروع به کار

مبتدیان کامل: تازه وارد علم داده شده‌اید؟ با نمونه‌های مبتدی دوستانه ما شروع کنید! این نمونه‌های ساده و دارای توضیحات به شما کمک می‌کنند تا اصول اولیه را قبل از ورود به برنامه کامل درک کنید.

معلمان: ما برخی پیشنهادات در مورد نحوه استفاده از این برنامه آموزشی را گنجانده‌ایم. ما مشتاقانه منتظر بازخورد شما در انجمن بحث ما هستیم!

دانشجویان: برای استفاده از این برنامه آموزشی به‌صورت مستقل، کل مخزن را فورک کنید و تمرین‌ها را به‌صورت مستقل انجام دهید، با آزمون پیش از درس شروع کنید. سپس درس را بخوانید و بقیه فعالیت‌ها را تکمیل کنید. سعی کنید پروژه‌ها را با درک درس‌ها ایجاد کنید نه با کپی کردن کد راه‌حل؛ با این حال، آن کد در پوشه‌های /solutions در هر درس مبتنی بر پروژه موجود است. ایده دیگر این است که یک گروه مطالعه با دوستان تشکیل دهید و محتوا را با هم مرور کنید. برای مطالعه بیشتر، ما Microsoft Learn را توصیه می‌کنیم.

تیم را بشناسید

ویدئوی تبلیغاتی

گیف توسط موهیت جایسال

🎥 روی تصویر بالا کلیک کنید تا ویدئویی درباره پروژه و افرادی که آن را ایجاد کرده‌اند ببینید!

روش آموزشی

ما دو اصل آموزشی را هنگام ساخت این برنامه آموزشی انتخاب کرده‌ایم: اطمینان از اینکه مبتنی بر پروژه است و شامل آزمون‌های مکرر می‌شود. تا پایان این سری، دانشجویان اصول اولیه علم داده را یاد خواهند گرفت، از جمله مفاهیم اخلاقی، آماده‌سازی داده‌ها، روش‌های مختلف کار با داده‌ها، مصورسازی داده‌ها، تحلیل داده‌ها، موارد استفاده واقعی از علم داده و موارد دیگر.

علاوه بر این، یک آزمون کم‌فشار قبل از کلاس، قصد دانشجو را به سمت یادگیری یک موضوع هدایت می‌کند، در حالی که یک آزمون دوم پس از کلاس، حفظ بیشتر را تضمین می‌کند. این برنامه آموزشی به‌گونه‌ای طراحی شده است که انعطاف‌پذیر و سرگرم‌کننده باشد و می‌توان آن را به‌صورت کامل یا جزئی گذراند. پروژه‌ها کوچک شروع می‌شوند و تا پایان چرخه ۱۰ هفته‌ای به‌طور فزاینده‌ای پیچیده می‌شوند.

قوانین رفتاری، مشارکت، راهنمای ترجمه ما را پیدا کنید. ما از بازخورد سازنده شما استقبال می‌کنیم!

هر درس شامل موارد زیر است:

  • اسکچ‌نوت اختیاری
  • ویدئوی تکمیلی اختیاری
  • آزمون گرم‌آپ پیش از درس
  • درس نوشتاری
  • برای درس‌های مبتنی بر پروژه، راهنمای گام‌به‌گام برای ساخت پروژه
  • بررسی دانش
  • یک چالش
  • مطالعه تکمیلی
  • تکلیف
  • آزمون پس از درس

نکته‌ای درباره آزمون‌ها: تمامی آزمون‌ها در پوشه Quiz-App قرار دارند و شامل ۴۰ آزمون با سه سؤال در هر آزمون هستند. این آزمون‌ها از داخل درس‌ها لینک شده‌اند، اما اپلیکیشن آزمون می‌تواند به صورت محلی اجرا شود یا در Azure مستقر شود؛ دستورالعمل‌ها را در پوشه quiz-app دنبال کنید. این آزمون‌ها به تدریج بومی‌سازی می‌شوند.

🎓 مثال‌های مناسب برای مبتدیان

تازه وارد علم داده شده‌اید؟ ما یک پوشه مثال‌ها با کدهای ساده و توضیحات کامل ایجاد کرده‌ایم تا به شما در شروع کمک کند:

  • 🌟 سلام دنیا - اولین برنامه علم داده شما
  • 📂 بارگذاری داده‌ها - یادگیری خواندن و بررسی مجموعه داده‌ها
  • 📊 تحلیل ساده - محاسبه آمار و یافتن الگوها
  • 📈 بصری‌سازی پایه - ایجاد نمودارها و گراف‌ها
  • 🔬 پروژه واقعی - جریان کاری کامل از ابتدا تا انتها

هر مثال شامل توضیحات دقیق درباره هر مرحله است که آن را برای مبتدیان کاملاً مناسب می‌کند!

👉 با مثال‌ها شروع کنید 👈

درس‌ها

 اسکتچ‌نوت توسط @sketchthedocs https://sketchthedocs.dev
علم داده برای مبتدیان: نقشه راه - اسکتچ‌نوت توسط @nitya
شماره درس موضوع گروه‌بندی درس اهداف یادگیری درس مرتبط نویسنده
01 تعریف علم داده مقدمه یادگیری مفاهیم پایه علم داده و ارتباط آن با هوش مصنوعی، یادگیری ماشین و داده‌های کلان. درس ویدیو Dmitry
02 اخلاق علم داده مقدمه مفاهیم اخلاق داده، چالش‌ها و چارچوب‌ها. درس Nitya
03 تعریف داده مقدمه نحوه طبقه‌بندی داده‌ها و منابع رایج آن‌ها. درس Jasmine
04 مقدمه‌ای بر آمار و احتمال مقدمه تکنیک‌های ریاضی احتمال و آمار برای درک داده‌ها. درس ویدیو Dmitry
05 کار با داده‌های رابطه‌ای کار با داده‌ها مقدمه‌ای بر داده‌های رابطه‌ای و اصول بررسی و تحلیل داده‌های رابطه‌ای با زبان Structured Query Language، معروف به SQL (تلفظ "سی‌کوئل"). درس Christopher
06 کار با داده‌های NoSQL کار با داده‌ها مقدمه‌ای بر داده‌های غیررابطه‌ای، انواع مختلف آن و اصول بررسی و تحلیل پایگاه‌های داده سندی. درس Jasmine
07 کار با پایتون کار با داده‌ها اصول استفاده از پایتون برای بررسی داده‌ها با کتابخانه‌هایی مانند Pandas. درک پایه‌ای از برنامه‌نویسی پایتون توصیه می‌شود. درس ویدیو Dmitry
08 آماده‌سازی داده‌ها کار با داده‌ها موضوعاتی درباره تکنیک‌های داده برای پاکسازی و تبدیل داده‌ها جهت مقابله با چالش‌های داده‌های ناقص، نادرست یا ناکامل. درس Jasmine
09 بصری‌سازی مقادیر بصری‌سازی داده‌ها یادگیری نحوه استفاده از Matplotlib برای بصری‌سازی داده‌های پرندگان 🦆 درس Jen
10 بصری‌سازی توزیع داده‌ها بصری‌سازی داده‌ها بصری‌سازی مشاهدات و روندها در یک بازه. درس Jen
11 بصری‌سازی نسبت‌ها بصری‌سازی داده‌ها بصری‌سازی درصدهای گسسته و گروه‌بندی شده. درس Jen
12 بصری‌سازی روابط بصری‌سازی داده‌ها بصری‌سازی ارتباطات و همبستگی‌ها بین مجموعه‌های داده و متغیرهای آن‌ها. درس Jen
13 بصری‌سازی‌های معنادار بصری‌سازی داده‌ها تکنیک‌ها و راهنمایی‌هایی برای ارزشمند کردن بصری‌سازی‌ها جهت حل مؤثر مشکلات و دستیابی به بینش‌ها. درس Jen
14 مقدمه‌ای بر چرخه عمر علم داده چرخه عمر مقدمه‌ای بر چرخه عمر علم داده و اولین مرحله آن یعنی جمع‌آوری و استخراج داده‌ها. درس Jasmine
15 تحلیل چرخه عمر این مرحله از چرخه عمر علم داده بر تکنیک‌های تحلیل داده تمرکز دارد. درس Jasmine
16 ارتباط چرخه عمر این مرحله از چرخه عمر علم داده بر ارائه بینش‌های حاصل از داده‌ها به گونه‌ای که تصمیم‌گیرندگان بتوانند آن را بهتر درک کنند، تمرکز دارد. درس Jalen
17 علم داده در فضای ابری داده‌های ابری این مجموعه درس‌ها علم داده در فضای ابری و مزایای آن را معرفی می‌کند. درس Tiffany و Maud
18 علم داده در فضای ابری داده‌های ابری آموزش مدل‌ها با ابزارهای Low Code. درس Tiffany و Maud
19 علم داده در فضای ابری داده‌های ابری استقرار مدل‌ها با Azure Machine Learning Studio. درس Tiffany و Maud
20 علم داده در دنیای واقعی در دنیای واقعی پروژه‌های مبتنی بر علم داده در دنیای واقعی. درس Nitya

GitHub Codespaces

برای باز کردن این نمونه در یک Codespace مراحل زیر را دنبال کنید:

  1. روی منوی کشویی Code کلیک کنید و گزینه Open with Codespaces را انتخاب کنید.
  2. در پایین پنل، گزینه + New codespace را انتخاب کنید. برای اطلاعات بیشتر، به مستندات GitHub مراجعه کنید.

VSCode Remote - Containers

برای باز کردن این مخزن در یک کانتینر با استفاده از ماشین محلی و VSCode با استفاده از افزونه VS Code Remote - Containers مراحل زیر را دنبال کنید:

  1. اگر اولین بار است که از کانتینر توسعه استفاده می‌کنید، لطفاً مطمئن شوید که سیستم شما پیش‌نیازها (مانند نصب Docker) را دارد، در مستندات شروع به کار.

برای استفاده از این مخزن، می‌توانید مخزن را در یک حجم ایزوله Docker باز کنید:

توجه: در پشت صحنه، این از دستور Remote-Containers: Clone Repository in Container Volume... برای کلون کردن کد منبع در یک حجم Docker به جای سیستم فایل محلی استفاده می‌کند. Volumes مکانیزم ترجیحی برای حفظ داده‌های کانتینر هستند.

یا نسخه کلون شده یا دانلود شده محلی مخزن را باز کنید:

  • این مخزن را به سیستم فایل محلی خود کلون کنید.
  • کلید F1 را فشار دهید و دستور Remote-Containers: Open Folder in Container... را انتخاب کنید.
  • نسخه کلون شده این پوشه را انتخاب کنید، منتظر شروع کانتینر باشید و موارد را امتحان کنید.

دسترسی آفلاین

می‌توانید این مستندات را به صورت آفلاین با استفاده از Docsify اجرا کنید. این مخزن را فورک کنید، Docsify را نصب کنید روی ماشین محلی خود، سپس در پوشه اصلی این مخزن، دستور docsify serve را تایپ کنید. وب‌سایت روی پورت 3000 در localhost شما اجرا خواهد شد: localhost:3000.

توجه داشته باشید، نوت‌بوک‌ها از طریق Docsify رندر نمی‌شوند، بنابراین زمانی که نیاز به اجرای یک نوت‌بوک دارید، آن را جداگانه در VS Code با اجرای کرنل پایتون انجام دهید.

سایر برنامه‌های آموزشی

تیم ما برنامه‌های آموزشی دیگری تولید می‌کند! بررسی کنید:

دریافت کمک

اگر گیر کردید یا سؤالی درباره ساخت اپلیکیشن‌های هوش مصنوعی دارید، به اینجا بپیوندید:

Azure AI Foundry Discord

اگر بازخورد محصول دارید یا در هنگام ساخت خطاهایی مشاهده کردید، به اینجا مراجعه کنید: انجمن توسعه‌دهندگان Azure AI Foundry


سلب مسئولیت:
این سند با استفاده از سرویس ترجمه هوش مصنوعی Co-op Translator ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوء تفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.