You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/translations/hr/examples
leestott 57edd69619
🌐 Update translations via Co-op Translator
4 months ago
..
README.md 🌐 Update translations via Co-op Translator 4 months ago

README.md

Primjeri za početnike u znanosti o podacima

Dobrodošli u direktorij s primjerima! Ova zbirka jednostavnih, dobro komentiranih primjera osmišljena je kako bi vam pomogla započeti sa znanošću o podacima, čak i ako ste potpuni početnik.

📚 Što ćete ovdje pronaći

Svaki primjer je samostalan i uključuje:

  • Jasne komentare koji objašnjavaju svaki korak
  • Jednostavan, čitljiv kod koji demonstrira jedan koncept odjednom
  • Kontekst iz stvarnog svijeta kako biste razumjeli kada i zašto koristiti ove tehnike
  • Očekivani izlaz kako biste znali što tražiti

🚀 Početak rada

Preduvjeti

Prije nego pokrenete ove primjere, provjerite imate li:

  • Instaliran Python 3.7 ili noviji
  • Osnovno razumijevanje kako pokrenuti Python skripte

Instalacija potrebnih biblioteka

pip install pandas numpy matplotlib

📖 Pregled primjera

1. Hello World - Stil znanosti o podacima

Datoteka: 01_hello_world_data_science.py

Vaš prvi program za znanost o podacima! Naučite kako:

  • Učitati jednostavan skup podataka
  • Prikazati osnovne informacije o vašim podacima
  • Ispisati svoj prvi izlaz u znanosti o podacima

Savršeno za apsolutne početnike koji žele vidjeti svoj prvi program u akciji.


2. Učitavanje i istraživanje podataka

Datoteka: 02_loading_data.py

Naučite osnove rada s podacima:

  • Čitanje podataka iz CSV datoteka
  • Pregled prvih nekoliko redaka vašeg skupa podataka
  • Dobivanje osnovnih statistika o podacima
  • Razumijevanje tipova podataka

Ovo je često prvi korak u svakom projektu znanosti o podacima!


3. Jednostavna analiza podataka

Datoteka: 03_simple_analysis.py

Provedite svoju prvu analizu podataka:

  • Izračunajte osnovne statistike (srednja vrijednost, medijan, modus)
  • Pronađite maksimalne i minimalne vrijednosti
  • Brojite pojavljivanja vrijednosti
  • Filtrirajte podatke na temelju uvjeta

Pogledajte kako odgovoriti na jednostavna pitanja o vašim podacima.


4. Osnove vizualizacije podataka

Datoteka: 04_basic_visualization.py

Izradite svoje prve vizualizacije:

  • Napravite jednostavan stupčasti grafikon
  • Kreirajte linijski grafikon
  • Generirajte tortni grafikon
  • Spremite svoje vizualizacije kao slike

Naučite kako vizualno prenijeti svoje zaključke!


5. Rad s pravim podacima

Datoteka: 05_real_world_example.py

Spojite sve u cjelovit primjer:

  • Učitajte stvarne podatke iz repozitorija
  • Očistite i pripremite podatke
  • Provedite analizu
  • Kreirajte značajne vizualizacije
  • Izvedite zaključke

Ovaj primjer prikazuje cjelokupan tijek rada od početka do kraja.


🎯 Kako koristiti ove primjere

  1. Počnite od početka: Primjeri su numerirani prema težini. Započnite s 01_hello_world_data_science.py i nastavite redom.

  2. Čitajte komentare: Svaka datoteka ima detaljne komentare koji objašnjavaju što kod radi i zašto. Pažljivo ih pročitajte!

  3. Eksperimentirajte: Pokušajte mijenjati kod. Što se događa ako promijenite vrijednost? Razbijte stvari i popravite ih - tako se uči!

  4. Pokrenite kod: Izvršite svaki primjer i promatrajte izlaz. Usporedite ga s onim što ste očekivali.

  5. Nadogradite: Kada razumijete primjer, pokušajte ga proširiti vlastitim idejama.

💡 Savjeti za početnike

  • Ne žurite: Odvojite vrijeme da razumijete svaki primjer prije nego prijeđete na sljedeći
  • Upišite kod sami: Nemojte samo kopirati i zalijepiti. Pisanje koda pomaže vam da učite i zapamtite
  • Istražite nepoznate pojmove: Ako vidite nešto što ne razumijete, potražite to online ili u glavnim lekcijama
  • Postavljajte pitanja: Pridružite se forumu za raspravu ako trebate pomoć
  • Redovito vježbajte: Pokušajte kodirati malo svaki dan, umjesto dugih sesija jednom tjedno

🔗 Sljedeći koraci

Nakon što završite ove primjere, spremni ste za:

  • Rad kroz glavne lekcije kurikuluma
  • Pokušaj rješavanja zadataka u svakoj mapi lekcija
  • Istraživanje Jupyter bilježnica za detaljnije učenje
  • Kreiranje vlastitih projekata iz znanosti o podacima

📚 Dodatni resursi

🤝 Doprinos

Pronašli ste grešku ili imate ideju za novi primjer? Pozdravljamo doprinose! Pogledajte naš Vodič za doprinos.


Sretno u učenju! 🎉

Zapamtite: Svaki stručnjak je jednom bio početnik. Idite korak po korak i ne bojte se pogrešaka - one su dio procesa učenja!


Odricanje od odgovornosti:
Ovaj dokument je preveden koristeći AI uslugu za prevođenje Co-op Translator. Iako nastojimo osigurati točnost, imajte na umu da automatski prijevodi mogu sadržavati pogreške ili netočnosti. Izvorni dokument na izvornom jeziku treba smatrati mjerodavnim izvorom. Za ključne informacije preporučuje se profesionalni prijevod od strane stručnjaka. Ne preuzimamo odgovornost za bilo kakve nesporazume ili pogrešne interpretacije proizašle iz korištenja ovog prijevoda.