You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/1-Introduction/04-stats-and-probability/assignment.ipynb

252 lines
6.6 KiB

{
"cells": [
{
"cell_type": "markdown",
"source": [
"## Introduction to Probability and Statistics\r\n",
"## Assignment\r\n",
"\r\n",
"In this assignment, we will use the dataset of diabetes patients taken [from here](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)."
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 13,
"source": [
"import pandas as pd\r\n",
"import numpy as np\r\n",
"\r\n",
"df = pd.read_csv(\"../../data/diabetes.tsv\",sep='\\t')\r\n",
"df.head()"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n",
"0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n",
"1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n",
"2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n",
"3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n",
"4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>AGE</th>\n",
" <th>SEX</th>\n",
" <th>BMI</th>\n",
" <th>BP</th>\n",
" <th>S1</th>\n",
" <th>S2</th>\n",
" <th>S3</th>\n",
" <th>S4</th>\n",
" <th>S5</th>\n",
" <th>S6</th>\n",
" <th>Y</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>59</td>\n",
" <td>2</td>\n",
" <td>32.1</td>\n",
" <td>101.0</td>\n",
" <td>157</td>\n",
" <td>93.2</td>\n",
" <td>38.0</td>\n",
" <td>4.0</td>\n",
" <td>4.8598</td>\n",
" <td>87</td>\n",
" <td>151</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>48</td>\n",
" <td>1</td>\n",
" <td>21.6</td>\n",
" <td>87.0</td>\n",
" <td>183</td>\n",
" <td>103.2</td>\n",
" <td>70.0</td>\n",
" <td>3.0</td>\n",
" <td>3.8918</td>\n",
" <td>69</td>\n",
" <td>75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>72</td>\n",
" <td>2</td>\n",
" <td>30.5</td>\n",
" <td>93.0</td>\n",
" <td>156</td>\n",
" <td>93.6</td>\n",
" <td>41.0</td>\n",
" <td>4.0</td>\n",
" <td>4.6728</td>\n",
" <td>85</td>\n",
" <td>141</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>24</td>\n",
" <td>1</td>\n",
" <td>25.3</td>\n",
" <td>84.0</td>\n",
" <td>198</td>\n",
" <td>131.4</td>\n",
" <td>40.0</td>\n",
" <td>5.0</td>\n",
" <td>4.8903</td>\n",
" <td>89</td>\n",
" <td>206</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>50</td>\n",
" <td>1</td>\n",
" <td>23.0</td>\n",
" <td>101.0</td>\n",
" <td>192</td>\n",
" <td>125.4</td>\n",
" <td>52.0</td>\n",
" <td>4.0</td>\n",
" <td>4.2905</td>\n",
" <td>80</td>\n",
" <td>135</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"metadata": {},
"execution_count": 13
}
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"\r\n",
"In this dataset, columns as the following:\r\n",
"* Age and sex are self-explanatory\r\n",
"* BMI is body mass index\r\n",
"* BP is average blood pressure\r\n",
"* S1 through S6 are different blood measurements\r\n",
"* Y is the qualitative measure of disease progression over one year\r\n",
"\r\n",
"Let's study this dataset using methods of probability and statistics.\r\n",
"\r\n",
"### Task 1: Compute mean values and variance for all values"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [],
"outputs": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### Task 2: Plot boxplots for BMI, BP and Y depending on gender"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [],
"outputs": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### Task 3: What is the the distribution of Age, Sex, BMI and Y variables?"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [],
"outputs": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### Task 4: Test the correlation between different variables and disease progression (Y)\r\n",
"\r\n",
"> **Hint** Correlation matrix would give you the most useful information on which values are dependent."
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### Task 5: Test the hypothesis that the degree of diabetes progression is different between men and women"
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [],
"metadata": {}
}
],
"metadata": {
"orig_nbformat": 4,
"language_info": {
"name": "python",
"version": "3.8.8",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3.8.8 64-bit (conda)"
},
"interpreter": {
"hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}