|
|
2 weeks ago | |
|---|---|---|
| .. | ||
| solution | 1 month ago | |
| README.md | 2 weeks ago | |
| assignment.md | 1 month ago | |
| notebook.ipynb | 1 month ago | |
README.md
ಸಂಬಂಧಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು: ಜೇನುತುಪ್ಪ ಬಗ್ಗೆ ಎಲ್ಲವೂ 🍯
![]() |
|---|
| ಸಂಬಂಧಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು - @nitya ಅವರ ಸ್ಕೆಚ್ ನೋಟ್ |
ನಮ್ಮ ಸಂಶೋಧನೆಯ ಪ್ರಕೃತಿ ಕೇಂದ್ರೀಕೃತ ವಿಷಯವನ್ನು ಮುಂದುವರೆಸುತ್ತಾ, ಯುನೈಟೆಡ್ ಸ್ಟೇಟ್ಸ್ ಡಿಪಾರ್ಟ್ಮೆಂಟ್ ಆಫ್ ಅಗ್ರಿಕಲ್ಚರ್ ನಿಂದ ಪಡೆದ ಡೇಟಾಸೆಟ್ ಪ್ರಕಾರ ವಿವಿಧ ರೀತಿಯ ಜೇನುತುಪ್ಪಗಳ ನಡುವಿನ ಸಂಬಂಧಗಳನ್ನು ತೋರಿಸಲು ಆಸಕ್ತಿದಾಯಕ ದೃಶ್ಯೀಕರಣಗಳನ್ನು ಕಂಡುಹಿಡಿಯೋಣ.
ಈ ಸುಮಾರು 600 ಐಟಂಗಳ ಡೇಟಾಸೆಟ್ ಅಮೆರಿಕದ ಹಲವಾರು ರಾಜ್ಯಗಳಲ್ಲಿ ಜೇನುತುಪ್ಪ ಉತ್ಪಾದನೆಯನ್ನು ಪ್ರದರ್ಶಿಸುತ್ತದೆ. ಉದಾಹರಣೆಗೆ, ನೀವು ಪ್ರತಿ ರಾಜ್ಯದ ಪ್ರತಿ ವರ್ಷದ ಕಾಲೋನಿಗಳ ಸಂಖ್ಯೆ, ಪ್ರತಿ ಕಾಲೋನಿಯ ಉತ್ಪಾದನೆ, ಒಟ್ಟು ಉತ್ಪಾದನೆ, ಸ್ಟಾಕ್ಗಳು, ಪೌಂಡ್ ಪ್ರತಿ ಬೆಲೆ ಮತ್ತು ಉತ್ಪಾದನೆಯ ಮೌಲ್ಯವನ್ನು 1998-2012 ರವರೆಗೆ ನೋಡಬಹುದು.
ನೀವು ಒಂದು ರಾಜ್ಯದ ಪ್ರತಿ ವರ್ಷದ ಉತ್ಪಾದನೆ ಮತ್ತು ಆ ರಾಜ್ಯದ ಜೇನುತುಪ್ಪ ಬೆಲೆಯ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ದೃಶ್ಯೀಕರಿಸುವುದು ಆಸಕ್ತಿದಾಯಕವಾಗಿರುತ್ತದೆ. ಬದಲಾಗಿ, ರಾಜ್ಯಗಳ ಜೇನುತುಪ್ಪ ಉತ್ಪಾದನೆ ಪ್ರತಿ ಕಾಲೋನಿಯ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ದೃಶ್ಯೀಕರಿಸಬಹುದು. ಈ ವರ್ಷಾವಧಿ 2006 ರಲ್ಲಿ ಮೊದಲ ಬಾರಿಗೆ ಕಂಡುಬಂದ 'CCD' ಅಥವಾ 'ಕಾಲೋನಿ ಕಾಲಾಪ್ಸ್ ಡಿಸಾರ್ಡರ್' (http://npic.orst.edu/envir/ccd.html) ನಾಶಕಾರಿ ಪರಿಣಾಮಗಳನ್ನು ಒಳಗೊಂಡಿದೆ, ಆದ್ದರಿಂದ ಇದು ಅಧ್ಯಯನಕ್ಕೆ ಸೂಕ್ತವಾದ ಡೇಟಾಸೆಟ್ ಆಗಿದೆ. 🐝
ಪೂರ್ವ-ಪಾಠ ಪ್ರಶ್ನೋತ್ತರ
ಈ ಪಾಠದಲ್ಲಿ, ನೀವು ಮುಂಚೆ ಬಳಸಿದ Seaborn ಅನ್ನು ವ್ಯತ್ಯಾಸಗಳ ನಡುವಿನ ಸಂಬಂಧಗಳನ್ನು ದೃಶ್ಯೀಕರಿಸಲು ಉತ್ತಮ ಗ್ರಂಥಾಲಯವಾಗಿ ಬಳಸಬಹುದು. ವಿಶೇಷವಾಗಿ, Seaborn ನ relplot ಫಂಕ್ಷನ್ ಅನ್ನು ಬಳಸುವುದು ಆಸಕ್ತಿದಾಯಕ, ಇದು ಸ್ಕ್ಯಾಟರ್ ಪ್ಲಾಟ್ಗಳು ಮತ್ತು ಲೈನ್ ಪ್ಲಾಟ್ಗಳನ್ನು ತ್ವರಿತವಾಗಿ 'ಸಾಂಖ್ಯಿಕ ಸಂಬಂಧಗಳು' ಎಂದು ದೃಶ್ಯೀಕರಿಸಲು ಅನುಮತಿಸುತ್ತದೆ, ಇದು ಡೇಟಾ ವಿಜ್ಞಾನಿಗೆ ವ್ಯತ್ಯಾಸಗಳು ಪರಸ್ಪರ ಹೇಗೆ ಸಂಬಂಧ ಹೊಂದಿವೆ ಎಂಬುದನ್ನು ಉತ್ತಮವಾಗಿ ಅರ್ಥಮಾಡಿಕೊಳ್ಳಲು ಸಹಾಯ ಮಾಡುತ್ತದೆ.
ಸ್ಕ್ಯಾಟರ್ ಪ್ಲಾಟ್ಗಳು
ಪ್ರತಿ ರಾಜ್ಯದ ಪ್ರತಿ ವರ್ಷದ ಜೇನುತುಪ್ಪ ಬೆಲೆ ಹೇಗೆ ಬದಲಾಗಿದೆ ಎಂಬುದನ್ನು ತೋರಿಸಲು ಸ್ಕ್ಯಾಟರ್ ಪ್ಲಾಟ್ ಅನ್ನು ಬಳಸಿ. Seaborn, relplot ಬಳಸಿ, ರಾಜ್ಯದ ಡೇಟಾವನ್ನು ಗುಂಪುಮಾಡಿ ವರ್ಗೀಕೃತ ಮತ್ತು ಸಂಖ್ಯಾತ್ಮಕ ಡೇಟಾ ಎರಡಕ್ಕೂ ಡೇಟಾ ಪಾಯಿಂಟ್ಗಳನ್ನು ಪ್ರದರ್ಶಿಸುತ್ತದೆ.
ಡೇಟಾ ಮತ್ತು Seaborn ಅನ್ನು ಆಮದು ಮಾಡುವುದರಿಂದ ಪ್ರಾರಂಭಿಸೋಣ:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
honey = pd.read_csv('../../data/honey.csv')
honey.head()
ನೀವು ಗಮನಿಸುವಿರಿ ಜೇನುತುಪ್ಪ ಡೇಟಾದಲ್ಲಿ ವರ್ಷ ಮತ್ತು ಪೌಂಡ್ ಪ್ರತಿ ಬೆಲೆ ಸೇರಿದಂತೆ ಹಲವಾರು ಆಸಕ್ತಿದಾಯಕ ಕಾಲಮ್ಗಳಿವೆ. ಅಮೆರಿಕದ ರಾಜ್ಯಗಳ ಪ್ರಕಾರ ಈ ಡೇಟಾವನ್ನು ಗುಂಪುಮಾಡಿ ಅನ್ವೇಷಿಸೋಣ:
| state | numcol | yieldpercol | totalprod | stocks | priceperlb | prodvalue | year |
|---|---|---|---|---|---|---|---|
| AL | 16000 | 71 | 1136000 | 159000 | 0.72 | 818000 | 1998 |
| AZ | 55000 | 60 | 3300000 | 1485000 | 0.64 | 2112000 | 1998 |
| AR | 53000 | 65 | 3445000 | 1688000 | 0.59 | 2033000 | 1998 |
| CA | 450000 | 83 | 37350000 | 12326000 | 0.62 | 23157000 | 1998 |
| CO | 27000 | 72 | 1944000 | 1594000 | 0.7 | 1361000 | 1998 |
ಜೇನುತುಪ್ಪ ಬೆಲೆ ಮತ್ತು ಅದರ ಅಮೆರಿಕದ ಮೂಲ ರಾಜ್ಯದ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ತೋರಿಸಲು ಮೂಲಭೂತ ಸ್ಕ್ಯಾಟರ್ ಪ್ಲಾಟ್ ರಚಿಸಿ. ಎಲ್ಲಾ ರಾಜ್ಯಗಳನ್ನು ಪ್ರದರ್ಶಿಸಲು y ಅಕ್ಷವನ್ನು ಎತ್ತರವಾಗಿರಿಸಿ:
sns.relplot(x="priceperlb", y="state", data=honey, height=15, aspect=.5);
ಈಗ, ವರ್ಷಗಳ ಪ್ರಗತಿಯನ್ನು ತೋರಿಸಲು ಜೇನುತುಪ್ಪ ಬಣ್ಣದ ಯೋಜನೆಯನ್ನು ಬಳಸಿ ಅದೇ ಡೇಟಾವನ್ನು ತೋರಿಸಿ. ವರ್ಷದಿಂದ ವರ್ಷಕ್ಕೆ ಬದಲಾವಣೆಯನ್ನು ತೋರಿಸಲು 'hue' ಪರಿಮಾಣವನ್ನು ಸೇರಿಸಬಹುದು:
✅ Seaborn ನಲ್ಲಿ ನೀವು ಬಳಸಬಹುದಾದ ಬಣ್ಣ ಪ್ಯಾಲೆಟ್ಗಳ ಬಗ್ಗೆ ಇನ್ನಷ್ಟು ತಿಳಿಯಿರಿ - ಸುಂದರವಾದ ರೇನ್ಬೋ ಬಣ್ಣ ಯೋಜನೆಯನ್ನು ಪ್ರಯತ್ನಿಸಿ!
sns.relplot(x="priceperlb", y="state", hue="year", palette="YlOrBr", data=honey, height=15, aspect=.5);
ಈ ಬಣ್ಣ ಯೋಜನೆಯ ಬದಲಾವಣೆಯಿಂದ, ಜೇನುತುಪ್ಪ ಬೆಲೆ ಪ್ರತಿ ಪೌಂಡ್ ವರ್ಷದಿಂದ ವರ್ಷಕ್ಕೆ ಸ್ಪಷ್ಟವಾಗಿ ಹೆಚ್ಚುತ್ತಿರುವುದು ಕಾಣುತ್ತದೆ. ನಿಜವಾಗಿಯೂ, ಡೇಟಾದ ಒಂದು ಮಾದರಿ ಸೆಟ್ (ಉದಾಹರಣೆಗೆ, ಅರಿಜೋನಾ ರಾಜ್ಯ) ನೋಡಿದರೆ, ವರ್ಷದಿಂದ ವರ್ಷಕ್ಕೆ ಬೆಲೆ ಏರಿಕೆಯ ಮಾದರಿಯನ್ನು ಕೆಲವು ಅಪವಾದಗಳೊಂದಿಗೆ ಕಾಣಬಹುದು:
| state | numcol | yieldpercol | totalprod | stocks | priceperlb | prodvalue | year |
|---|---|---|---|---|---|---|---|
| AZ | 55000 | 60 | 3300000 | 1485000 | 0.64 | 2112000 | 1998 |
| AZ | 52000 | 62 | 3224000 | 1548000 | 0.62 | 1999000 | 1999 |
| AZ | 40000 | 59 | 2360000 | 1322000 | 0.73 | 1723000 | 2000 |
| AZ | 43000 | 59 | 2537000 | 1142000 | 0.72 | 1827000 | 2001 |
| AZ | 38000 | 63 | 2394000 | 1197000 | 1.08 | 2586000 | 2002 |
| AZ | 35000 | 72 | 2520000 | 983000 | 1.34 | 3377000 | 2003 |
| AZ | 32000 | 55 | 1760000 | 774000 | 1.11 | 1954000 | 2004 |
| AZ | 36000 | 50 | 1800000 | 720000 | 1.04 | 1872000 | 2005 |
| AZ | 30000 | 65 | 1950000 | 839000 | 0.91 | 1775000 | 2006 |
| AZ | 30000 | 64 | 1920000 | 902000 | 1.26 | 2419000 | 2007 |
| AZ | 25000 | 64 | 1600000 | 336000 | 1.26 | 2016000 | 2008 |
| AZ | 20000 | 52 | 1040000 | 562000 | 1.45 | 1508000 | 2009 |
| AZ | 24000 | 77 | 1848000 | 665000 | 1.52 | 2809000 | 2010 |
| AZ | 23000 | 53 | 1219000 | 427000 | 1.55 | 1889000 | 2011 |
| AZ | 22000 | 46 | 1012000 | 253000 | 1.79 | 1811000 | 2012 |
ಬಣ್ಣದ ಬದಲು ಗಾತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು ಈ ಪ್ರಗತಿಯನ್ನು ದೃಶ್ಯೀಕರಿಸುವ ಮತ್ತೊಂದು ವಿಧಾನ ಇದೆ. ಬಣ್ಣದ ದೃಷ್ಟಿ ಸಮಸ್ಯೆ ಇರುವ ಬಳಕೆದಾರರಿಗೆ ಇದು ಉತ್ತಮ ಆಯ್ಕೆಯಾಗಬಹುದು. ಬೆಲೆಯ ಏರಿಕೆಯನ್ನು ಬಿಂದುಗಳ ವೃತ್ತಾಕಾರದ ವಿಸ್ತಾರದಲ್ಲಿ ತೋರಿಸಲು ನಿಮ್ಮ ದೃಶ್ಯೀಕರಣವನ್ನು ಸಂಪಾದಿಸಿ:
sns.relplot(x="priceperlb", y="state", size="year", data=honey, height=15, aspect=.5);
ನೀವು ಬಿಂದುಗಳ ಗಾತ್ರ ಕ್ರಮೇಣ ಹೆಚ್ಚುತ್ತಿರುವುದನ್ನು ಕಾಣಬಹುದು.
ಇದು ಸರಳ ಸರಬರಾಜು ಮತ್ತು ಬೇಡಿಕೆ ಪ್ರಕರಣವೇ? ಹವಾಮಾನ ಬದಲಾವಣೆ ಮತ್ತು ಕಾಲೋನಿ ಕಾಲಾಪ್ಸ್ ಮುಂತಾದ ಕಾರಣಗಳಿಂದ, ವರ್ಷದಿಂದ ವರ್ಷಕ್ಕೆ ಕಡಿಮೆ ಜೇನುತುಪ್ಪ ಲಭ್ಯವಿದೆಯೇ, ಆದ್ದರಿಂದ ಬೆಲೆ ಏರಿಕೆಯಾಗುತ್ತಿದೆಯೇ?
ಈ ಡೇಟಾಸೆಟ್ನ ಕೆಲವು ವ್ಯತ್ಯಾಸಗಳ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ಕಂಡುಹಿಡಿಯಲು, ಕೆಲವು ಲೈನ್ ಚಾರ್ಟ್ಗಳನ್ನು ಅನ್ವೇಷಿಸೋಣ.
ಲೈನ್ ಚಾರ್ಟ್ಗಳು
ಪ್ರಶ್ನೆ: ಜೇನುತುಪ್ಪ ಬೆಲೆ ಪ್ರತಿ ಪೌಂಡ್ ವರ್ಷದಿಂದ ವರ್ಷಕ್ಕೆ ಸ್ಪಷ್ಟವಾಗಿ ಏರಿದೆಯೇ? ನೀವು ಇದನ್ನು ಸುಲಭವಾಗಿ ಕಂಡುಹಿಡಿಯಲು ಒಂದು ಲೈನ್ ಚಾರ್ಟ್ ರಚಿಸಬಹುದು:
sns.relplot(x="year", y="priceperlb", kind="line", data=honey);
ಉತ್ತರ: ಹೌದು, 2003 ರ ಸುತ್ತಲೂ ಕೆಲವು ಅಪವಾದಗಳೊಂದಿಗೆ:
✅ Seaborn ಒಂದು ಲೈನ್ ಸುತ್ತಲೂ ಡೇಟಾವನ್ನು ಸಂಗ್ರಹಿಸುವುದರಿಂದ, "ಪ್ರತಿ x ಮೌಲ್ಯದ ಮೇಲೆ ಹಲವಾರು ಅಳೆಯುವಿಕೆಗಳನ್ನು ಸರಾಸರಿ ಮತ್ತು ಸರಾಸರಿಯ ಸುತ್ತಲೂ 95% ವಿಶ್ವಾಸಾಂಶವನ್ನು ಪ್ಲಾಟ್ ಮಾಡುತ್ತದೆ". ಮೂಲ. ಈ ಸಮಯ ತೆಗೆದುಕೊಳ್ಳುವ ವರ್ತನೆಯನ್ನು ci=None ಸೇರಿಸುವ ಮೂಲಕ ನಿಷ್ಕ್ರಿಯಗೊಳಿಸಬಹುದು.
ಪ್ರಶ್ನೆ: 2003 ರಲ್ಲಿ ಜೇನುತುಪ್ಪ ಸರಬರಾಜಿನಲ್ಲಿ ಏರಿಕೆ ಕಾಣಬಹುದೇ? ಒಟ್ಟು ಉತ್ಪಾದನೆ ವರ್ಷದಿಂದ ವರ್ಷಕ್ಕೆ ಹೇಗಿದೆ?
sns.relplot(x="year", y="totalprod", kind="line", data=honey);
ಉತ್ತರ: ಅಲ್ಲ. ಒಟ್ಟು ಉತ್ಪಾದನೆ ನೋಡಿದರೆ, ಆ ವಿಶೇಷ ವರ್ಷದಲ್ಲಿ ಅದು ಹೆಚ್ಚಿದಂತೆ ತೋರುತ್ತದೆ, ಆದರೂ ಸಾಮಾನ್ಯವಾಗಿ ಈ ವರ್ಷಗಳಲ್ಲಿ ಜೇನುತುಪ್ಪ ಉತ್ಪಾದನೆ ಕಡಿಮೆಯಾಗುತ್ತಿದೆ.
ಪ್ರಶ್ನೆ: ಆ ಸಂದರ್ಭದಲ್ಲಿ, 2003 ರ ಸುತ್ತಲೂ ಜೇನುತುಪ್ಪ ಬೆಲೆಯ ಏರಿಕೆಗೆ ಕಾರಣವೇನು?
ಇದನ್ನು ಕಂಡುಹಿಡಿಯಲು, ನೀವು ಫೇಸಟ್ ಗ್ರಿಡ್ ಅನ್ನು ಅನ್ವೇಷಿಸಬಹುದು.
ಫೇಸಟ್ ಗ್ರಿಡ್ಗಳು
ಫೇಸಟ್ ಗ್ರಿಡ್ ನಿಮ್ಮ ಡೇಟಾಸೆಟ್ನ ಒಂದು ಭಾಗವನ್ನು ತೆಗೆದುಕೊಳ್ಳುತ್ತದೆ (ನಮ್ಮ ಪ್ರಕರಣದಲ್ಲಿ, ನೀವು 'ವರ್ಷ' ಆಯ್ಕೆಮಾಡಬಹುದು, ಹೆಚ್ಚು ಫೇಸಟ್ಗಳು ಉತ್ಪಾದನೆಯಾಗದಂತೆ). ನಂತರ Seaborn ಆಯ್ಕೆಮಾಡಿದ x ಮತ್ತು y ಸಂಯೋಜನೆಗಳ ಪ್ರತಿಯೊಂದು ಫೇಸಟ್ಗೆ ಪ್ಲಾಟ್ ರಚಿಸುತ್ತದೆ, ಸುಲಭ ದೃಶ್ಯಾತ್ಮಕ ಹೋಲಿಕೆಗೆ. 2003 ಈ ರೀತಿಯ ಹೋಲಿಕೆಯಲ್ಲಿ ಹೊರಹೊಮ್ಮುತ್ತದೆಯೇ?
Seaborn ನ ಡಾಕ್ಯುಮೆಂಟೇಶನ್ ಪ್ರಕಾರ relplot ಬಳಸಿ ಫೇಸಟ್ ಗ್ರಿಡ್ ರಚಿಸಿ.
sns.relplot(
data=honey,
x="yieldpercol", y="numcol",
col="year",
col_wrap=3,
kind="line"
)
ಈ ದೃಶ್ಯೀಕರಣದಲ್ಲಿ, ನೀವು ವರ್ಷದಿಂದ ವರ್ಷಕ್ಕೆ ಕಾಲೋನಿಗಳ ಸಂಖ್ಯೆ ಮತ್ತು ಪ್ರತಿ ಕಾಲೋನಿಯ ಉತ್ಪಾದನೆಯನ್ನು ಹೋಲಿಸಬಹುದು, ಕಾಲಮ್ಗಳಿಗೆ 3 ರಲ್ಲಿ ರ್ಯಾಪ್ ಹೊಂದಿಸಿ:
ಈ ಡೇಟಾಸೆಟ್ಗೆ, ಕಾಲೋನಿಗಳ ಸಂಖ್ಯೆ ಮತ್ತು ಅವರ ಉತ್ಪಾದನೆ ವರ್ಷದಿಂದ ವರ್ಷಕ್ಕೆ ಮತ್ತು ರಾಜ್ಯದಿಂದ ರಾಜ್ಯಕ್ಕೆ ವಿಶೇಷವಾಗಿ ಹೊರಹೊಮ್ಮುವುದಿಲ್ಲ. ಈ ಎರಡು ವ್ಯತ್ಯಾಸಗಳ ನಡುವಿನ ಸಂಬಂಧವನ್ನು ಕಂಡುಹಿಡಿಯಲು ಬೇರೆ ವಿಧಾನವಿದೆಯೇ?
ಡ್ಯುಯಲ್-ಲೈನ್ ಪ್ಲಾಟ್ಗಳು
Seaborn ನ 'despine' ಬಳಸಿ ಎರಡು ಲೈನ್ ಪ್ಲಾಟ್ಗಳನ್ನು ಒಟ್ಟಿಗೆ ಮ-superimpose ಮಾಡಿ, ಮೇಲ್ಭಾಗ ಮತ್ತು ಬಲಭಾಗದ ಸ್ಪೈನ್ಗಳನ್ನು ತೆಗೆದುಹಾಕಿ, ಮತ್ತು ax.twinx Matplotlib ನಿಂದ ಪಡೆದ ವಿಧಾನವನ್ನು ಬಳಸಿ. Twinx ಒಂದು ಚಾರ್ಟ್ಗೆ x ಅಕ್ಷವನ್ನು ಹಂಚಿಕೊಳ್ಳಲು ಮತ್ತು ಎರಡು y ಅಕ್ಷಗಳನ್ನು ಪ್ರದರ್ಶಿಸಲು ಅನುಮತಿಸುತ್ತದೆ. ಆದ್ದರಿಂದ, ಪ್ರತಿ ಕಾಲೋನಿಯ ಉತ್ಪಾದನೆ ಮತ್ತು ಕಾಲೋನಿಗಳ ಸಂಖ್ಯೆಯನ್ನು ಒಟ್ಟಿಗೆ ಪ್ರದರ್ಶಿಸಿ:
fig, ax = plt.subplots(figsize=(12,6))
lineplot = sns.lineplot(x=honey['year'], y=honey['numcol'], data=honey,
label = 'Number of bee colonies', legend=False)
sns.despine()
plt.ylabel('# colonies')
plt.title('Honey Production Year over Year');
ax2 = ax.twinx()
lineplot2 = sns.lineplot(x=honey['year'], y=honey['yieldpercol'], ax=ax2, color="r",
label ='Yield per colony', legend=False)
sns.despine(right=False)
plt.ylabel('colony yield')
ax.figure.legend();
2003 ರ ಸುತ್ತಲೂ ಯಾವುದೇ ಸ್ಪಷ್ಟ ಬದಲಾವಣೆ ಕಾಣಿಸದಿದ್ದರೂ, ಈ ಪಾಠವನ್ನು ಸ್ವಲ್ಪ ಸಂತೋಷಕರವಾಗಿ ಮುಗಿಸಲು ಇದು ಸಹಾಯ ಮಾಡುತ್ತದೆ: ಒಟ್ಟು ಕಾಲೋನಿಗಳ ಸಂಖ್ಯೆ ಕಡಿಮೆಯಾಗುತ್ತಿದೆಯಾದರೂ, ಕಾಲೋನಿಗಳ ಸಂಖ್ಯೆ ಸ್ಥಿರವಾಗುತ್ತಿದೆ ಮತ್ತು ಅವರ ಉತ್ಪಾದನೆ ಪ್ರತಿ ಕಾಲೋನಿಗೂ ಕಡಿಮೆಯಾಗುತ್ತಿದೆ.
ಹೋಗಿ, ಜೇನುಗಳು, ಹೋಗಿ!
🐝❤️
🚀 ಸವಾಲು
ಈ ಪಾಠದಲ್ಲಿ, ನೀವು ಸ್ಕ್ಯಾಟರ್ ಪ್ಲಾಟ್ಗಳು ಮತ್ತು ಲೈನ್ ಗ್ರಿಡ್ಗಳ ಇತರ ಬಳಕೆಗಳ ಬಗ್ಗೆ ಸ್ವಲ್ಪ ತಿಳಿದುಕೊಂಡಿದ್ದೀರಿ, ಫೇಸಟ್ ಗ್ರಿಡ್ಗಳ ಸಹಿತ. ಬೇರೆ ಡೇಟಾಸೆಟ್ ಬಳಸಿ ಫೇಸಟ್ ಗ್ರಿಡ್ ರಚಿಸುವ ಸವಾಲು ಸ್ವೀಕರಿಸಿ, ಬಹುಶಃ ನೀವು ಈ ಪಾಠಗಳ ಮೊದಲು ಬಳಸಿದ ಡೇಟಾಸೆಟ್. ಅವು ರಚಿಸಲು ಎಷ್ಟು ಸಮಯ ಬೇಕಾಗುತ್ತದೆ ಮತ್ತು ಈ ತಂತ್ರಗಳನ್ನು ಬಳಸಿ ಎಷ್ಟು ಗ್ರಿಡ್ಗಳನ್ನು ರಚಿಸಬೇಕೆಂದು ಎಚ್ಚರಿಕೆಯಿಂದ ಇರಬೇಕಾಗುತ್ತದೆ ಎಂಬುದನ್ನು ಗಮನಿಸಿ.
ಪೋಸ್ಟ್-ಪಾಠ ಪ್ರಶ್ನೋತ್ತರ
ವಿಮರ್ಶೆ ಮತ್ತು ಸ್ವಯಂ ಅಧ್ಯಯನ
ಲೈನ್ ಪ್ಲಾಟ್ಗಳು ಸರಳವಾಗಿರಬಹುದು ಅಥವಾ ಬಹಳ ಸಂಕೀರ್ಣವಾಗಿರಬಹುದು. Seaborn ಡಾಕ್ಯುಮೆಂಟೇಶನ್ ನಲ್ಲಿ ಅವುಗಳನ್ನು ರಚಿಸುವ ವಿವಿಧ ವಿಧಾನಗಳ ಬಗ್ಗೆ ಸ್ವಲ್ಪ ಓದಿಕೊಳ್ಳಿ. ಈ ಪಾಠದಲ್ಲಿ ನೀವು ರಚಿಸಿದ ಲೈನ್ ಚಾರ್ಟ್ಗಳನ್ನು ಡಾಕ್ಯುಮೆಂಟ್ನಲ್ಲಿ ನೀಡಲಾದ ಇತರ ವಿಧಾನಗಳೊಂದಿಗೆ ಸುಧಾರಿಸಲು ಪ್ರಯತ್ನಿಸಿ.
ನಿಯೋಜನೆ
ಅಸ್ವೀಕರಣ:
ಈ ದಸ್ತಾವೇಜು AI ಅನುವಾದ ಸೇವೆ Co-op Translator ಬಳಸಿ ಅನುವಾದಿಸಲಾಗಿದೆ. ನಾವು ನಿಖರತೆಯಿಗಾಗಿ ಪ್ರಯತ್ನಿಸುತ್ತಿದ್ದರೂ, ಸ್ವಯಂಚಾಲಿತ ಅನುವಾದಗಳಲ್ಲಿ ದೋಷಗಳು ಅಥವಾ ಅಸತ್ಯತೆಗಳು ಇರಬಹುದು ಎಂದು ದಯವಿಟ್ಟು ಗಮನಿಸಿ. ಮೂಲ ಭಾಷೆಯಲ್ಲಿರುವ ಮೂಲ ದಸ್ತಾವೇಜನ್ನು ಅಧಿಕೃತ ಮೂಲವಾಗಿ ಪರಿಗಣಿಸಬೇಕು. ಮಹತ್ವದ ಮಾಹಿತಿಗಾಗಿ, ವೃತ್ತಿಪರ ಮಾನವ ಅನುವಾದವನ್ನು ಶಿಫಾರಸು ಮಾಡಲಾಗುತ್ತದೆ. ಈ ಅನುವಾದ ಬಳಕೆಯಿಂದ ಉಂಟಾಗುವ ಯಾವುದೇ ತಪ್ಪು ಅರ್ಥಮಾಡಿಕೊಳ್ಳುವಿಕೆ ಅಥವಾ ತಪ್ಪು ವಿವರಣೆಗಳಿಗೆ ನಾವು ಹೊಣೆಗಾರರಾಗುವುದಿಲ್ಲ.







