You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/3-Data-Visualization/11-visualization-proportions/solution/notebook.ipynb

1300 lines
153 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"source": [
"# 🍄 Mushroom Proportions"
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"Import the mushroom dataset"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 4,
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"mushrooms = pd.read_csv('../../../data/mushrooms.csv')\n",
"mushrooms.head()"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" class cap-shape cap-surface cap-color bruises odor \\\n",
"0 Poisonous Convex Smooth Brown Bruises Pungent \n",
"1 Edible Convex Smooth Yellow Bruises Almond \n",
"2 Edible Bell Smooth White Bruises Anise \n",
"3 Poisonous Convex Scaly White Bruises Pungent \n",
"4 Edible Convex Smooth Green No Bruises None \n",
"\n",
" gill-attachment gill-spacing gill-size gill-color ... \\\n",
"0 Free Close Narrow Black ... \n",
"1 Free Close Broad Black ... \n",
"2 Free Close Broad Brown ... \n",
"3 Free Close Narrow Brown ... \n",
"4 Free Crowded Broad Black ... \n",
"\n",
" stalk-surface-below-ring stalk-color-above-ring stalk-color-below-ring \\\n",
"0 Smooth White White \n",
"1 Smooth White White \n",
"2 Smooth White White \n",
"3 Smooth White White \n",
"4 Smooth White White \n",
"\n",
" veil-type veil-color ring-number ring-type spore-print-color population \\\n",
"0 Partial White One Pendant Black Scattered \n",
"1 Partial White One Pendant Brown Numerous \n",
"2 Partial White One Pendant Brown Numerous \n",
"3 Partial White One Pendant Black Scattered \n",
"4 Partial White One Evanescent Brown Abundant \n",
"\n",
" habitat \n",
"0 Urban \n",
"1 Grasses \n",
"2 Meadows \n",
"3 Urban \n",
"4 Grasses \n",
"\n",
"[5 rows x 23 columns]"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>class</th>\n",
" <th>cap-shape</th>\n",
" <th>cap-surface</th>\n",
" <th>cap-color</th>\n",
" <th>bruises</th>\n",
" <th>odor</th>\n",
" <th>gill-attachment</th>\n",
" <th>gill-spacing</th>\n",
" <th>gill-size</th>\n",
" <th>gill-color</th>\n",
" <th>...</th>\n",
" <th>stalk-surface-below-ring</th>\n",
" <th>stalk-color-above-ring</th>\n",
" <th>stalk-color-below-ring</th>\n",
" <th>veil-type</th>\n",
" <th>veil-color</th>\n",
" <th>ring-number</th>\n",
" <th>ring-type</th>\n",
" <th>spore-print-color</th>\n",
" <th>population</th>\n",
" <th>habitat</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Poisonous</td>\n",
" <td>Convex</td>\n",
" <td>Smooth</td>\n",
" <td>Brown</td>\n",
" <td>Bruises</td>\n",
" <td>Pungent</td>\n",
" <td>Free</td>\n",
" <td>Close</td>\n",
" <td>Narrow</td>\n",
" <td>Black</td>\n",
" <td>...</td>\n",
" <td>Smooth</td>\n",
" <td>White</td>\n",
" <td>White</td>\n",
" <td>Partial</td>\n",
" <td>White</td>\n",
" <td>One</td>\n",
" <td>Pendant</td>\n",
" <td>Black</td>\n",
" <td>Scattered</td>\n",
" <td>Urban</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Edible</td>\n",
" <td>Convex</td>\n",
" <td>Smooth</td>\n",
" <td>Yellow</td>\n",
" <td>Bruises</td>\n",
" <td>Almond</td>\n",
" <td>Free</td>\n",
" <td>Close</td>\n",
" <td>Broad</td>\n",
" <td>Black</td>\n",
" <td>...</td>\n",
" <td>Smooth</td>\n",
" <td>White</td>\n",
" <td>White</td>\n",
" <td>Partial</td>\n",
" <td>White</td>\n",
" <td>One</td>\n",
" <td>Pendant</td>\n",
" <td>Brown</td>\n",
" <td>Numerous</td>\n",
" <td>Grasses</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Edible</td>\n",
" <td>Bell</td>\n",
" <td>Smooth</td>\n",
" <td>White</td>\n",
" <td>Bruises</td>\n",
" <td>Anise</td>\n",
" <td>Free</td>\n",
" <td>Close</td>\n",
" <td>Broad</td>\n",
" <td>Brown</td>\n",
" <td>...</td>\n",
" <td>Smooth</td>\n",
" <td>White</td>\n",
" <td>White</td>\n",
" <td>Partial</td>\n",
" <td>White</td>\n",
" <td>One</td>\n",
" <td>Pendant</td>\n",
" <td>Brown</td>\n",
" <td>Numerous</td>\n",
" <td>Meadows</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Poisonous</td>\n",
" <td>Convex</td>\n",
" <td>Scaly</td>\n",
" <td>White</td>\n",
" <td>Bruises</td>\n",
" <td>Pungent</td>\n",
" <td>Free</td>\n",
" <td>Close</td>\n",
" <td>Narrow</td>\n",
" <td>Brown</td>\n",
" <td>...</td>\n",
" <td>Smooth</td>\n",
" <td>White</td>\n",
" <td>White</td>\n",
" <td>Partial</td>\n",
" <td>White</td>\n",
" <td>One</td>\n",
" <td>Pendant</td>\n",
" <td>Black</td>\n",
" <td>Scattered</td>\n",
" <td>Urban</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Edible</td>\n",
" <td>Convex</td>\n",
" <td>Smooth</td>\n",
" <td>Green</td>\n",
" <td>No Bruises</td>\n",
" <td>None</td>\n",
" <td>Free</td>\n",
" <td>Crowded</td>\n",
" <td>Broad</td>\n",
" <td>Black</td>\n",
" <td>...</td>\n",
" <td>Smooth</td>\n",
" <td>White</td>\n",
" <td>White</td>\n",
" <td>Partial</td>\n",
" <td>White</td>\n",
" <td>One</td>\n",
" <td>Evanescent</td>\n",
" <td>Brown</td>\n",
" <td>Abundant</td>\n",
" <td>Grasses</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 23 columns</p>\n",
"</div>"
]
},
"metadata": {},
"execution_count": 4
}
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"# Pie chart\n",
"\n",
"Create a pie chart displaying the proportion of Poisonous vs. Edible mushrooms"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 5,
"source": [
"print(mushrooms.select_dtypes([\"object\"]).columns)"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Index(['class', 'cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor',\n",
" 'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color',\n",
" 'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',\n",
" 'stalk-surface-below-ring', 'stalk-color-above-ring',\n",
" 'stalk-color-below-ring', 'veil-type', 'veil-color', 'ring-number',\n",
" 'ring-type', 'spore-print-color', 'population', 'habitat'],\n",
" dtype='object')\n"
]
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 6,
"source": [
"cols = mushrooms.select_dtypes([\"object\"]).columns\n",
"mushrooms[cols] = mushrooms[cols].astype('category')"
],
"outputs": [],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 7,
"source": [
"edibleclass=mushrooms.groupby(['class']).count()\n",
"edibleclass"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" cap-shape cap-surface cap-color bruises odor gill-attachment \\\n",
"class \n",
"Edible 4208 4208 4208 4208 4208 4208 \n",
"Poisonous 3916 3916 3916 3916 3916 3916 \n",
"\n",
" gill-spacing gill-size gill-color stalk-shape ... \\\n",
"class ... \n",
"Edible 4208 4208 4208 4208 ... \n",
"Poisonous 3916 3916 3916 3916 ... \n",
"\n",
" stalk-surface-below-ring stalk-color-above-ring \\\n",
"class \n",
"Edible 4208 4208 \n",
"Poisonous 3916 3916 \n",
"\n",
" stalk-color-below-ring veil-type veil-color ring-number \\\n",
"class \n",
"Edible 4208 4208 4208 4208 \n",
"Poisonous 3916 3916 3916 3916 \n",
"\n",
" ring-type spore-print-color population habitat \n",
"class \n",
"Edible 4208 4208 4208 4208 \n",
"Poisonous 3916 3916 3916 3916 \n",
"\n",
"[2 rows x 22 columns]"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>cap-shape</th>\n",
" <th>cap-surface</th>\n",
" <th>cap-color</th>\n",
" <th>bruises</th>\n",
" <th>odor</th>\n",
" <th>gill-attachment</th>\n",
" <th>gill-spacing</th>\n",
" <th>gill-size</th>\n",
" <th>gill-color</th>\n",
" <th>stalk-shape</th>\n",
" <th>...</th>\n",
" <th>stalk-surface-below-ring</th>\n",
" <th>stalk-color-above-ring</th>\n",
" <th>stalk-color-below-ring</th>\n",
" <th>veil-type</th>\n",
" <th>veil-color</th>\n",
" <th>ring-number</th>\n",
" <th>ring-type</th>\n",
" <th>spore-print-color</th>\n",
" <th>population</th>\n",
" <th>habitat</th>\n",
" </tr>\n",
" <tr>\n",
" <th>class</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Edible</th>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>...</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" <td>4208</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Poisonous</th>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>...</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" <td>3916</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 22 columns</p>\n",
"</div>"
]
},
"metadata": {},
"execution_count": 7
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 8,
"source": [
"labels=['Edible','Poisonous']\n",
"plt.pie(edibleclass['population'],labels=labels,autopct='%.1f %%')\n",
"plt.title('Edible?')\n",
"plt.show()"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAAD3CAYAAADmIkO7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAaH0lEQVR4nO3deZhcVZnH8e9bvaU76XQSuhMSIKmQRZAtBJRBcERARYpIEFABEVmF8REZECkX9CpbuYwigoJxiQoIiMQApTABggkyELYAahZIUkK2zn6T3pc688ethk6n91TXOVX3/TxPPd1VfavOe5/uX5+7niPGGJRS7onYLkAp1T0Np1KO0nAq5SgNp1KO0nAq5SgNp1KO0nDmARGJiogRkeLM87+KyAWZ7z8vIs/08t6nReSSXNWqskfDaZGIpESkUUTqOj1u7+t9xpiPG2N+m+VaJonIPBHZLCKbRORr2fx8NXDFtgtQzDLGPGG7CGA8MB/4LLAfsEREnjTGLLFbVnhpz+kgESkSkR+KyBYRWQ3Euvy866aqiMjtIuKLyHIROamXz75IRJaJyHYReVxEJgEYY54zxsw1xtQbY1YCtcC4oVg/1T8aTjddCpwGHAkcDZzVx/LHAKuAauDbwEMiMqbrQiJyOvB14JNADbAY+EM3y10DlAELB78Kam9pOO37s4js6PS4FPgUcKsx5m1jzDbglj4+Y1Nm+VZjzP3ACrr0thmXA7cYY5YZY9qAm4EZHb0ngIh8GrgWOMUYU5eF9VODpOG0b7YxZlSnxxxgAvB2p2X+3cdnrDO738Hw78xndDUJ+EnHPwJgGyAE+5gdvgx81RizfMBrorJKw+mmDcABnZ5P7GP5/UREuiy/vpvl3ga+0OWfQbkx5tlOy4zv4b0qxzScbnoAuFJE9heR0UC8j+XHZpYvEZGzgYOBv3Sz3J3A10TkEAARqcos39n7gUV7V77KBj2VYt8jItLe6fkC4GxgOvAqsBP4IXBiL5/xPDAN2EJwlPUsY8zWrgsZY+aJyAjgvsx+pp9p74+dFnsa+GLmq7JI9GZrpdykm7VKOUrDqZSjNJxKOUrDqZSjNJxKOUrDqZSjNJxKOUrDqZSjNJxKOUrDqZSjNJxKOUrDqZSjNJxKOUrDmQUi0i4iSzs99rj/UkROEJFHM99/omMZEZkrInuMEdR5eRVOej9ndjQaY2b0d2FjzMPAw0NYjyoA2nMOIRE5JTNU5csEI951vP75LoNHnywiL4rIShE5rZvPGS4ivxaRJSLySmYUPVXgtOfMjnIRWdrp+S0EAzTPIRjB4E3g/l7eHyUYHmQKsFBEpnb5+TeAp4wxF4nIKIIBn58wxtRnawWUezSc2bHHZq2IzADWGGPeyDy/G7ish/c/YIxJA29kBpE+qMvPPwp8QkS+knk+jGAQr2XZWgHlHg2nG7qOFdP1uQBnGmNW5Kge5QDd5xw6y4GoiEzJPD+nl2XPFpFIZtkDCQaF7uxx4Esdw1+KyJFZr1Y5R3vO7Oi6z/mYMSYuIpcBSRFpIJj6oLKH978FLAFGApcbY5p2H4aWG4BbgddEJAKsIZiuQRUwHX1PKUfpZq1SjtJwKuUoDadSjtJwKuUoPVrruGg8OYHgooT3EMw0vU+nx0hgOFCReZQCjUAdUJ/52vX7rQRXLK0EVqYSsZ05XB01AHq01gHReDJCcH7z4C6Pg4CqIW6+liCob2S+rgReTCVib/f6LjXkNJyWROPJ6cDJmccJwGirBe1pFcG08wuBhalEbIPlekJHw5kj0XhyLO+G8ST6nhDXNSvYPaybLddT8DScQygaT+4LnA+cCxxBcI1sIUgTTLD7B+DBVCK2zXI9BUnDmWXReLIUmAVcCJwCFNmtaMi1EkzAOxeYn0rEWuyWUzg0nFkSjSdnEATyPIIjqWG0Fbgb+FUqEXvddjH5TsO5F6LxZAnwWeBKoN/DlITEk8ANqUTsb7YLyVcazkGIxpPDgEuAa8m/Azu5thi4KZWIPW67kHyj4RyATCivAK4juCBA9d8S4CbgkVQipn90/aDh7IdoPFkMXARcD+xvuZx89ypBSB/UkPZOw9mHaDz5ceA2oOugW2rvLAKuSCVi/7JdiKs0nD2IxpPjgJ8An7ZdSwFrBf4H+G4qEWu0XYxrNJzdiMaTFwM/wL1L6grVGuCLqUTsr7YLcYmGs5PM9a53EVzrqnLvT8CXU4nYOtuFuEDDyTvnK68DvgmUWS4n7HYB16YSsbtsF2Jb6MMZjScnEvzHPtp2LWo39wKXpRKx0I5qH+pwRuPJkwku3q62XYvq1r+AM1OJ2HLbhdgQ2mFKovFkHHgMDabL3gu8EI0nQ3nEPHQ9ZzSerCS4g+KTfSyq3HI7cE2Y7noJVTij8eRBwDz2nChI5YfngbPDMoRKaMIZjSdjBPuXPU2JoPLDeuBjqUTsH7YLGWqh2OeMxpNnEfSYGsz8NwFYFI0nj7NdyFAr+HBG48nzgPuAEtu1qKwZDSzIbA0VrIIOZ+YyvN9R+EOFhFE5MC8aT55pu5ChUrDhjMaT/0Uw7XvBrqOiBLgvGk9+xnYhQ6Eg/3Cj8eQ1wB0Uzmh3qmfFwN3RePJ824VkW8EdrY3Gk18DbrZdh8q5dmB2KhF71HYh2VJQ4YzGkxcCv7Zdh7KmHvjPVCL2su1CsqFgwhmNJz8KJNHJmcJuA3BMIVyoUBDhjMaThwPPoOcxVeB14LhUIrbLdiF7I+/DmZmD5EXgANu1DNban19EpLQcIhEkUsT4C24FoH75M/jP3Evr1rfZ93M/omz8tG7fv/OFP1P36v+CQElNlOpTr0KKS3dbZvvTv6Fx9UuUjp1M9WnXAFD3z4WkG3Yy8n2nD+0K2vE4cFoqEWuzXchg5fXR2szUB38ij4PZYdw5NzPhwp++E0yA0upJ1JzxdcoOOKTH97Xt2sLOlx5h3wt+zISLfwbpNPXLFu22TLq5npaNq5hw0e1IUQktm1OkW5upf30BlTML9jz+xwiO2OetvA4nwZ0Kx9suYqiUVB9AyT79GIkz3Y5pa8Gk2zFtzRSNGNNlAcGk2zDGkG5tRiJF7FzyEJUzZyFFBb2Lflk0nvyK7SIGK2/DGY0nLwEutV1HVoiw6YFvsWHul9m19LEBvbW4spqR7z+DdT+/kLW3n4+UVVA+eeZuy0TKKiifcjQb5l5J0YjRSNlwWjaspGL6sdlcC1fdEo0n32e7iMHIy33OaDx5IPAawZTrea9t1xaKK6tpr99B7f3fZMxHLmfYAYe+8/ON98YZ/eGLu93nbG+qY/O8m6k5/ToiZcPZPD9BxXuOY8QhH+6xva1/vY0RR55KS+0qmta8QsnYKKM+UJAX2XRYCRyZSsQabBcyEHnXc2amaP8tBRJMCHo/gKLho6iYfizN61f2+71NqaUUV42jqKIKKSoO3r9uWY/Lt9SuwhhDyZj9aVj+DDWz47Rt30jrtoIe8G468EPbRQxU3oUTuJoC2s9MtzSRbm545/umNa9QWjOp3+8vHllDy/oVpFubMMbQ9O9XKdmn5+NjOxbfzagPfhbSbWDSwYsimLbmvVqPPHBFNJ481XYRA5FXm7XRePK9wMsU0PCVrTs2svmhG4Mn6TTD3/shqj4QDJnTsPJZti24i/ZGn0jZCErHTmbcp2+gbddWtj52G+PO/g4AOxbfQ/3yxUgkQum4KexzypVI8Z53yDWs/D9aNq1m1PHnAbD9qV/RuOZlSsZGqZl1bW5W2K6NwGGpRGyL7UL6I2/CmZlM6DngKNu1qLz251QidobtIvojnzZrv4kGU+292Zn7fJ2XFz1nNJ6cSTC4U0GflFM5sx2YmkrEttkupDf50nPeigZTZc9ogrlWneZ8zxmNJ2cBD9uuQxWcFuC9qURsle1CeuJ0zxmNJ4uAhO06VEEqBb5nu4jeOB1O4PMEQ/IrNRTOdHmITWc3a6PxZDnwBrCf7VpUQXseODaViDkXBJd7zqvQYKqhdwzg5ERJTvac0XhyH2AVUGW7FhUKKWB6KhFrtV1IZ672nHE0mCp3osA5tovoyrlwRuPJCgrlPk2VT66xXUBXzoUTOA/tNVXuHR6NJz9iu4jOXAznF20XoELLqd7TqQNCmXNOz9iuQ4WWITgw9KbtQsC9nlN7TWWTAFfYLqKDMz1nNJ4cB7xFcFmVUrZsA/ZLJWJNtgtxqee8FA2msm8MjlyU4EQ4M4N2fcF2HUplaDg7OQ7ox+jJSuXESdF40vq8O66Es2CnDld5qRSwPlKfK+HMiwGXVKhY/5u0frQ2Gk8eDbxgtQil9rQTqEklYi22CnCh55xluwClujESOMlmAS6E8+O2C1CqB7NtNm51szYaT1YDtbjxT0KprmqBCalELG2jcduh+JgDNSjVk3HADFuN2w7GCZbbV6ov1ub2tB1OnV5BuS584YzGkyXAIbbaV6qfjrbVsM2e81D0QnflvkMyw7TmnM1wzrTYtlL9VQwcaaNhDadSfbOy32kznFb+Gyk1COEJZ+b+zSNstK3UIIQnnMB7gApLbSs1UJOj8aTkulFb4ZxsqV2lBqMEGJvrRm2Fc5yldpUarAm5blDDqVT/aDiVcpSGUylHhSac+1pqV6nBCk04tedU+UbDqZSjxue6wZyHM3N10Jhct6vUXsr5nSk2es4IwWxOSuWT4lw3aCOc7RbaVGpvleS6wZyHM5WIGYJJSpXKJznvOXPeYEa7xbbz2j74WybLxs1TI+t2TpN1TQfKenOAbC6tFn/ECBrHRDB6Q8EQSCM7YXtO29RwOqSSej8qtZumyHp/WmRt41RZ3z5RakvGyo6KShrGlNA+ToRqoNp2rWETwezMdZs2wxkq5TQ3TJTa2imyYfs0WdswNbKubZLUFu0r28tHUj+6jNaxIlQBVbZrVd1qy3WDtsJpZQTtoVJCW8v+smnjgbJh2zRZVz8tsq41Khsj42XrsFHUVQ2jZWxEGE1wq5zeLpefWnPdoPacfYiQbp8gW2sny4at02TdrmmytnVyZCMT2FI2RnaNLKe5JoKpFmEiMNF2vWrINOS6QVvhbLbUbhfGjGXHlui7B1iap8h69pctJfuIXzmcpuoi0mNFmICFy7eUUzbmukFb4dxMDu4sH8Wu7VGp3TQ1ss6fJmubpsj69AGyuWSs7Bg+gsYxxbTvK0INUDPUtai8F5pwbmAvR3sfTuOuScGRze3TI2sbp8j69klSWzxOtldU0jC6lLaxEuznjc5OySrkQhPOXle0jJam/WVz7RRZv226rG2YFlnXGhzZ3FY+irqqTkc2K3NUr1Ibct2glXBGZcPqqNS+Nk3W1U2VtS2TIxtlgmwdNppdI8tpqYmIqQYmZR5KuSAcPefTZddsBg630bZSg5TzntPW/ZxrLLWr1GDlvOfUcCrVtzSwPteN2gpnylK7Sg3GSjy/KdeN2gmn5zcAq620rdTAvWKjUZuzjC2x2LZSA/GyjUY1nEr1TXtOpRwVunC+jIV75JQaoLfw/G02GrYXTs9vBP5hrX2l+sfK/ibY7TlBN22V+1601bDtcD5vuX2l+vK4rYZth3Oh5faV6s1G4CVbjdsNp+evAV63WoNSPfsrnm9tjGXbPSfAn20XoFQPkjYbdyGc82wXoFQ3WoEFNguwH07PfwX4t+0ylOpiMZ6f84GkO7MfzsB82wUo1YXVTVpwJ5y636lc87DtAlwJ5yJgq+0ilMp4Gs9/03YRboTT89uBe2yXoVTGHNsFgCvhDPwMnbdT2bcV+JPtIsClcHr+CuAJ22Wo0Psdnu/EdCHuhDNwh+0CVOj9wnYBHVwL5yPoOU9lz2I8f7ntIjq4FU7PTwN32i5DhZYTB4I6uBXOwC9xZopAFSJvAffbLqIz98Lp+VvQ0yoq927E81tsF9GZe+EMfAftPVXurAZ+Y7uIrtwMp+e/RXDeU6lc+C6e79xgc26GM3ATYPWuABUKK4G7bRfRHXfD6flbgR/YLkMVvO9kLh91jrvhDPwYC1OvqdD4J3Cf7SJ64nY4Pb8euMF2GapgxTPn1p3kdjgDc4A3bBehCs6DeP6jtovojfvh9PxW4DL0jhWVPTuAL9kuoi/uhxPA858Gfm67DFUwvornO38sIz/CGbgOnRFb7b1FBJeIOk+MyaOtRa/qRIJ7PsV2KbnSnjYcPaee/SojPHpuBQBPrm7j2gVNpA2MKBXmzi5n6pjd/88uWNVG/MkmWtqhtAh+8JFhnDi5eI/PP++hBl6vTXPa9GJuPmkYADcuaubQsRFmH1Qy9CuYW83AEZl7h52XTz0neP5TOHS/XS785PkWDq7e/dd0RbKJez5ZztLLR3DuYSXcuGjPKx2rK4RHzqng9StG8NvZ5Zw/r3GPZV6rbae8WHjtihG8sL4dv8mwYVea59e1F2IwIbh+Ni+CCfkWzsC1hOSez7U70yTfaOOSmaW7vS4CO5uDLR6/yTChcs8NiSPHFzGhMvj1HlITobHV0Ny2+1ZSSQQa2wxpY2hth6IIfGthM985oWyI1siqJcD3bBcxEHtu57jO83fhVV1EMBp3Pv5z6berHmvi+ycPY1fL7qH65axhnHpvI+XFMLJMeO6S4b1+zp+WtTFzfBFlxbuH+OCaImoqIsy8q57zDy/hzW1p0gZmji/K+rpYthk4K3PkP2/k5x93sHn7NdtlDKVHV7Yydrhw1IQ9g/Lj51r4y7nlrL26kgtnlHD14009fs4/N7Vz3RNN3HVaebc/v/WUYSy9fATXfKCM6xc2c8OJZdy0qJlP/bGBOS85dQfVYLUD5+D5b9suZKDyM5wAnv994A+2yxgqf3+rnYdXtBG9dRefebCRp9a08dmHGtlcn+bV2naO2T/Y6Pn0oSU8+3b3l4au3ZnmjPsb+d3scqaM6f1XPX95K0eNj1DXYli1Pc0DZ1fw4LJWGlrz6IBh967H85+0XcRg5G84AxcDr9guYijccvIw1l5dSeqqSu47q5wTJxdz9yfLGV0u+E2wcmsQyAWr2ji4Zs9f444mQ+zeBhInl3HcxN73XlrbDbc+38JXjyujsfXdQ+HtaWhx8pLwfpsPJGwXMVj5HU7PbwRmE+xThEJxRJgzaxhnPtDIEXfW8fvXWvnBR4JTIA+vaOVbC4NN3NuXtPDmtjTf/VszM+6sY8addWyq7/4y0jteaOGCI0qoKBEOHxehoc1w2M/rOGp8EaOG5e1ZqzeBC2zOr7m38us8Z0+8qg8RnP/MvwNcaijUA8fi+Xk9MXN+95wdPP9vwFW2y1BOaAXOzPdgQqGEE8Dz7wButF2GssoAn8PzH7ddSDYUTjgBPP968uxEs8qqK/F8Z2+eHqjCCieA58cJRlBQ4RLH82+3XUQ2FV44ATz/aqCgflGqV9/G8wtui6kwwxm4ErjLdhFqyN2I53/XdhFDoTBOpfTEqxKCYU4utl2Kyro0cBWe/1PbhQyVQu45yZyAvhS42XYpKqsaCU6XFGwwodB7zs68qksJRpHXCxXy22ZgFp7/vO1Chlp4wgngVZ1CMJPUSNulqEFZCZyK56+yXUguhCucAF7VQcDDwDTbpagB+TtwemYmgFAo7H3O7gQzF78fKIirSELiF8DJYQomhLHn7OBVFQHfAK5H90NdtQ24BM+fZ7sQG8Ibzg5e1dHA74GDbJeidrMQOB/PX2e7EFvCt1nblee/CMwEbkNHlXdBG/B1gs3Y0AYTtOfcnVd1MsEMx/vbLiWkVgHn4vlLbBfiAu05O/P8J4DDgHtslxIyzQQXihyhwXyX9pw98apOAH4EHGm5kkI3H7gaz19tuxDXaDh741VFgPOBm4D9LFdTaJYBX8bzF9guxFUazv7wqiqArwBfBXofwVn1xQc84HY8v81yLU7TcA6EVzWeYCiUC4CCGxZ9iO0A7gB+gueHZrTEvaHhHAyvajLB/aIXA5WWq3HdWoKRKX6B59fZLiafaDj3hlc1kiCgVwJRu8U4ZxnwfeCefJujxBUazmwILgWcDfw3cJzlamxKE1zZ81Pg4Xwe0NkFGs5s86qOAs4BzgYmWq4mV14mODd8H56/3nYxhULDOZS8qmMIQlqIQV1NEMh7M3f6qCzTcOZCMJbR+4FPAacDU+wWNCgtBBPQPg0k8fzn7JZT+DScNnhV+wLHE+yfHg/MwL3b1lqBFwjCuBB4Fs9vsFpRyGg4XeBVDSfoWY8HjgamApOB7me8zb6twApgeebrUuDveH59jtpX3dBwuirYFB4PHEiwGdzxdSIwAqjo8hjGu1NrdmgmmHHLJwjgtszXt3k3iCvCNsJAvtBwFoogzOUEIW0FGvD8/J76NuQ0nEo5Su/nVMpRGk6lHKXhDAkRaReRpSLyDxH5o4hU9LH8s7mqTXVPwxkejcaYGcaYQwkuKLi8t4WNMR/ITVmqJxrOcFpMcC4VEbk605v+Q0Su6lhAROoyX8eLyKJOve4HM6+fIyKvZ177Xuf3ichNIvKqiDwnIuMyr0dF5CkReU1EnhSRiZnX54rIWf1tN0w0nCEjIsXAx4HXReQo4ELgGOA/gEtFpOuYSecCjxtjZgBHAEtFZALwPeBEgqub3iciszPLDweeM8YcASwimOUNgjtVfmuMOZzgmtzb+ih1j3YHu875SsMZHuUishR4EXgL+BXBFUnzjDH1xpg64CGgaw/1AnChiHjAYcaYXcD7gKeNMZuNMW0EYfvPzPItwKOZ71/i3ftcjwXuzXz/+0zbvemu3VDRcIZHxz7nDGPMl4wxLf15kzFmEUHw1gFzReRzfbyl1bx78rydvq8ZbiPzdygiEaB0kO0WHA1nuC0GZotIhYgMB87IvPYOEZkE1Bpj5gC/JBgdfwnwIRGpFpEigvtX/9ZHW88Cn8l8f16ndlLAUZnvPwGU9NJuqLh2J4TKIWPMyyIylyBsAL80xrzSZbETgGtFpBWoAz5njNkgInGCu1UESBpj5vfR3JeA34jItQQT4F6YeX0OMF9EXgUeI7gWuNt2B7eW+Usv31PKUbpZq5SjNJxKOUrDqZSjNJxKOUrDqZSjNJxKOUrDqZSjNJxKOUrDqZSjNJxKOUrDqZSjNJxKOUrDqZSjNJxKOUrDqZSjNJxKOer/AbeSyrO/nHtpAAAAAElFTkSuQmCC"
},
"metadata": {}
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 9,
"source": [
"capcolor=mushrooms.groupby(['cap-color']).count()\n",
"capcolor"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" class cap-shape cap-surface bruises odor gill-attachment \\\n",
"cap-color \n",
"Brown 2284 2284 2284 2284 2284 2284 \n",
"Buff 168 168 168 168 168 168 \n",
"Cinnamon 44 44 44 44 44 44 \n",
"Green 1856 1856 1856 1856 1856 1856 \n",
"Pink 144 144 144 144 144 144 \n",
"Purple 16 16 16 16 16 16 \n",
"Red 1500 1500 1500 1500 1500 1500 \n",
"White 1040 1040 1040 1040 1040 1040 \n",
"Yellow 1072 1072 1072 1072 1072 1072 \n",
"\n",
" gill-spacing gill-size gill-color stalk-shape ... \\\n",
"cap-color ... \n",
"Brown 2284 2284 2284 2284 ... \n",
"Buff 168 168 168 168 ... \n",
"Cinnamon 44 44 44 44 ... \n",
"Green 1856 1856 1856 1856 ... \n",
"Pink 144 144 144 144 ... \n",
"Purple 16 16 16 16 ... \n",
"Red 1500 1500 1500 1500 ... \n",
"White 1040 1040 1040 1040 ... \n",
"Yellow 1072 1072 1072 1072 ... \n",
"\n",
" stalk-surface-below-ring stalk-color-above-ring \\\n",
"cap-color \n",
"Brown 2284 2284 \n",
"Buff 168 168 \n",
"Cinnamon 44 44 \n",
"Green 1856 1856 \n",
"Pink 144 144 \n",
"Purple 16 16 \n",
"Red 1500 1500 \n",
"White 1040 1040 \n",
"Yellow 1072 1072 \n",
"\n",
" stalk-color-below-ring veil-type veil-color ring-number \\\n",
"cap-color \n",
"Brown 2284 2284 2284 2284 \n",
"Buff 168 168 168 168 \n",
"Cinnamon 44 44 44 44 \n",
"Green 1856 1856 1856 1856 \n",
"Pink 144 144 144 144 \n",
"Purple 16 16 16 16 \n",
"Red 1500 1500 1500 1500 \n",
"White 1040 1040 1040 1040 \n",
"Yellow 1072 1072 1072 1072 \n",
"\n",
" ring-type spore-print-color population habitat \n",
"cap-color \n",
"Brown 2284 2284 2284 2284 \n",
"Buff 168 168 168 168 \n",
"Cinnamon 44 44 44 44 \n",
"Green 1856 1856 1856 1856 \n",
"Pink 144 144 144 144 \n",
"Purple 16 16 16 16 \n",
"Red 1500 1500 1500 1500 \n",
"White 1040 1040 1040 1040 \n",
"Yellow 1072 1072 1072 1072 \n",
"\n",
"[9 rows x 22 columns]"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>class</th>\n",
" <th>cap-shape</th>\n",
" <th>cap-surface</th>\n",
" <th>bruises</th>\n",
" <th>odor</th>\n",
" <th>gill-attachment</th>\n",
" <th>gill-spacing</th>\n",
" <th>gill-size</th>\n",
" <th>gill-color</th>\n",
" <th>stalk-shape</th>\n",
" <th>...</th>\n",
" <th>stalk-surface-below-ring</th>\n",
" <th>stalk-color-above-ring</th>\n",
" <th>stalk-color-below-ring</th>\n",
" <th>veil-type</th>\n",
" <th>veil-color</th>\n",
" <th>ring-number</th>\n",
" <th>ring-type</th>\n",
" <th>spore-print-color</th>\n",
" <th>population</th>\n",
" <th>habitat</th>\n",
" </tr>\n",
" <tr>\n",
" <th>cap-color</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Brown</th>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>...</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" <td>2284</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Buff</th>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>...</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" <td>168</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Cinnamon</th>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>...</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" <td>44</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Green</th>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>...</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" <td>1856</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Pink</th>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>...</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" <td>144</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Purple</th>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>...</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" <td>16</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Red</th>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>...</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" <td>1500</td>\n",
" </tr>\n",
" <tr>\n",
" <th>White</th>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>...</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" <td>1040</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Yellow</th>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>...</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" <td>1072</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>9 rows × 22 columns</p>\n",
"</div>"
]
},
"metadata": {},
"execution_count": 9
}
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"# Donut chart"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 10,
"source": [
"habitat=mushrooms.groupby(['habitat']).count()\n",
"habitat"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" class cap-shape cap-surface cap-color bruises odor \\\n",
"habitat \n",
"Grasses 2148 2148 2148 2148 2148 2148 \n",
"Leaves 832 832 832 832 832 832 \n",
"Meadows 292 292 292 292 292 292 \n",
"Paths 1144 1144 1144 1144 1144 1144 \n",
"Urban 368 368 368 368 368 368 \n",
"Waste 192 192 192 192 192 192 \n",
"Wood 3148 3148 3148 3148 3148 3148 \n",
"\n",
" gill-attachment gill-spacing gill-size gill-color ... \\\n",
"habitat ... \n",
"Grasses 2148 2148 2148 2148 ... \n",
"Leaves 832 832 832 832 ... \n",
"Meadows 292 292 292 292 ... \n",
"Paths 1144 1144 1144 1144 ... \n",
"Urban 368 368 368 368 ... \n",
"Waste 192 192 192 192 ... \n",
"Wood 3148 3148 3148 3148 ... \n",
"\n",
" stalk-surface-above-ring stalk-surface-below-ring \\\n",
"habitat \n",
"Grasses 2148 2148 \n",
"Leaves 832 832 \n",
"Meadows 292 292 \n",
"Paths 1144 1144 \n",
"Urban 368 368 \n",
"Waste 192 192 \n",
"Wood 3148 3148 \n",
"\n",
" stalk-color-above-ring stalk-color-below-ring veil-type \\\n",
"habitat \n",
"Grasses 2148 2148 2148 \n",
"Leaves 832 832 832 \n",
"Meadows 292 292 292 \n",
"Paths 1144 1144 1144 \n",
"Urban 368 368 368 \n",
"Waste 192 192 192 \n",
"Wood 3148 3148 3148 \n",
"\n",
" veil-color ring-number ring-type spore-print-color population \n",
"habitat \n",
"Grasses 2148 2148 2148 2148 2148 \n",
"Leaves 832 832 832 832 832 \n",
"Meadows 292 292 292 292 292 \n",
"Paths 1144 1144 1144 1144 1144 \n",
"Urban 368 368 368 368 368 \n",
"Waste 192 192 192 192 192 \n",
"Wood 3148 3148 3148 3148 3148 \n",
"\n",
"[7 rows x 22 columns]"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>class</th>\n",
" <th>cap-shape</th>\n",
" <th>cap-surface</th>\n",
" <th>cap-color</th>\n",
" <th>bruises</th>\n",
" <th>odor</th>\n",
" <th>gill-attachment</th>\n",
" <th>gill-spacing</th>\n",
" <th>gill-size</th>\n",
" <th>gill-color</th>\n",
" <th>...</th>\n",
" <th>stalk-surface-above-ring</th>\n",
" <th>stalk-surface-below-ring</th>\n",
" <th>stalk-color-above-ring</th>\n",
" <th>stalk-color-below-ring</th>\n",
" <th>veil-type</th>\n",
" <th>veil-color</th>\n",
" <th>ring-number</th>\n",
" <th>ring-type</th>\n",
" <th>spore-print-color</th>\n",
" <th>population</th>\n",
" </tr>\n",
" <tr>\n",
" <th>habitat</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Grasses</th>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>...</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" <td>2148</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Leaves</th>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>...</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" <td>832</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Meadows</th>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>...</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" <td>292</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Paths</th>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>...</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" <td>1144</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Urban</th>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>...</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" <td>368</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Waste</th>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>...</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" <td>192</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Wood</th>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>...</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" <td>3148</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>7 rows × 22 columns</p>\n",
"</div>"
]
},
"metadata": {},
"execution_count": 10
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 11,
"source": [
" \n",
"labels=['Grasses','Leaves','Meadows','Paths','Urban','Waste','Wood']\n",
"\n",
"plt.pie(habitat['class'], labels=labels,\n",
" autopct='%1.1f%%', pctdistance=0.85)\n",
" \n",
"center_circle = plt.Circle((0, 0), 0.40, fc='white')\n",
"fig = plt.gcf()\n",
"\n",
"fig.gca().add_artist(center_circle)\n",
" \n",
"# Adding Title of chart\n",
"plt.title('Mushroom Habitats')\n",
" \n",
"plt.show()"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD3CAYAAADFeRJuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO2dd3xUZfb/32cmvUJCgIQAoRMgCChFIIBiDwq2Rdfedi1rXV3zdRuursZ1LT8V19XVlRV7V2IvSAcbHemhJYQQIKRnyvn9cW9gCOltSu779ZpXZp773OeeO5nPffo5oqpYWFgEDjZvG2BhYdG6WKK2sAgwLFFbWAQYlqgtLAIMS9QWFgGGJWoLiwDDErUXEZGXReRBb9vRHojI1SKyqJ7jn4rIVe1pU6BiiboeRCRHRKpEpEuN9J9FREUkxTuWtT/md3FajbR6hdoUVPVsVZ3TnHJFJMX8fwS1hi3+jiXqhtkOXFr9QUTSgIj2NsL6wVo0FkvUDfMKcKXH56uA/3lmEJH5InK9x+cjNY0YPCEi+0TksIisEZFhHqd3FpFsESkWkeUi0s+jHBWRW0RkM7DZTBsvIt+LSJH5d7xH/iQR+UhEDojIFhG5wePYLBF5W0TmmtdaIyIDReT/TNt2icgZLfmiRCRTRLaa5a8XkfOPzyLPmLb/IiJTa36HIpIKPAecLCIlInLIPJ5htpAOm7bO8ih3gfn3kHnOySLSX0S+M6+1X0TebMm9+ROWqBtmGRAjIqkiYgcuAeY24fwzgEnAQCAW+BVQ6HH8EuB+oDOwBfh7jfNnAGOBISISB2QDTwHxwONAtojEm3nfAHYDScBFwEMicqpHWediPKQ6Az8Dn2P8BnoAfwP+3YT7qo2tQLp5n/cDc0Uk0eP4WDNPF+CvwHvmPR1BVTcANwJLVTVKVTuZh0oxHq6dgAzgJhGZYR6bZP7tZJ6zFHgA+MK812Tg6Rbem99gibpxVNfWpwMbgD1NONcBRAODAVHVDaqa53H8fVVdoapO4FVgRI3zH1bVA6pajvFj3qyqr6iqU1VfB34BzhWRnsAE4F5VrVDVlcB/OLaVsVBVPzev9TaQAGSpqgPjgZAiIp2omw9E5FD1C3jW86Cqvq2quarqVtU3MVoXYzyy7AOeVFWHeXyjeU8NoqrzVXWNWfZq4HVgcj2nOIDeQJL5fbRK398fsETdOF4Bfg1cTY2md0Oo6jfAM8BsYJ+IPC8iMR5Z9nq8LwOiahSxy+N9ErCjxvEdGDVtEnBAVYtrOVZNvsf7cmC/qro8PlPL9T2Zoaqdql/AzZ4HReRKEVnpIfphGLVyNXv02B1EO0y7G0RExorItyJSICJFGLV5l3pO+QMgwAoRWSci1zbmOoGAJepGoKo7MAbMzgHeqyVLKccOnnWvcf5TqnoiMASjGX5PUy7v8T4Xo/bxpBdGyyEXiBOR6FqOtTki0ht4AfgdEG+Kfi2GsKrpISKen3th2F2T2rYOvgZ8BPRU1ViMfrfUlV9V96rqDaqaBPwWeFZE+jfxtvwSS9SN5zrgVFUtreXYSuACEYkwfzjXVR8QkdFmLROMIf4KwN1MGz4BBorIr0UkSERmYjwo5qnqLmAJ8LCIhInIcNOOpvT/W0IkhrgKAETkGoya2pOuwG0iEiwiFwOpGPdUk3wgWURCPNKiMVoiFSIyBqPlVE0BxnfatzpBRC4WkWTz40HTtuZ+736FJepGoqpbVfWHOg4/AVRh/BjnYPSNq4nBqMEOYjQ3C4FHm2lDITAN+L1Zzh+Aaaq638xyKZCCUfu9D/xVVb9qzrWaYdt64DFgKcb3kAYsrpFtOTAA2I8xIHiReU81+QZYB+wVkep7uxn4m4gUA38B3vK4dplZ3mKz6T8OGA0sF5ESjBr+dlXd1io36+OI5STBwiKwsGpqC4sAwxK1hUWAYYnawiLAsERtYRFgWKK2sAgwLFFbWAQYlqgtLAIMS9QWFgGGJWoLiwDDErWFRYBhidrCIsCwRG1hEWBYorawCDAsUVtYBBiWqC0sAgxL1BYWAYYlaguLAMMStYVFgGGJ2sIiwLBEbWERYFiitrAIMDqEqE03sRYWHYIOIWoLi45EhxW1iCSIyLtmONjvRWSCmT5GRJaaYVOXiMggM32ZiAz1OH++iJwkIpEi8pKIrDDPmW4eH2qmrRSR1SIywDt3atHR6BDO/EWkRFWjaqS9BjyrqotEpBfwuaqmmsHrylTVKSKnATep6oUicidGqNS/muFZ56vqIBF5CFivqnPNiJErgJFAFrBMVV81w8fYzciVFhZtSkcW9T6ODc6WAAzCiGf8FEZ4GAWCVXWwiPQAvlDVoSJyO9BVVf8oIj8AYYDTLCcOOBND2H/EiJL5nqpubrs7tLA4SpC3DfAiNmCcqlZ4JorIM8C3qnq+iKQA8wFUdY+IFJqB52ZihFIFI/Lihaq6sUb5G0RkOUb85U9E5LdmWNu2ZVasYEST7IMZ4vamqttDP3WPHYARqD4e48EThPEgcpkvZ42/DoyYVzs9XjuAnTlZGQVtfh8WzaYji/oL4FbMYHUiMsIM1B7L0fCvV9c4502MoHSxZuBzgM+BW0XkVlVVERmpqj+LSF9gm6o+ZTbvh2MEfms9ZsV2x4gs6fkaghEh8gj9JHcRMLG1LpuSmV2OETc7ByPi5xJgaU5Wxr7WuoZF8+kozW83xza1H8doFs/GCKcaBCxQ1RtF5GSMyJWlQDZwuaqmmOV0wxD8A6p6v5kWDjwJjMeo/ber6jQRyQSuwKjx9gK/VtUDLbqRWbE9gVPN1ylAz8ac9qZz8vx7nb+d0qJrN46tGFEvl5h/1+RkZbjqP8WitekQovZbZsXGAmcBUzGE3K85xSx2Df3uMscfJ7emaY2kBFgGfAy8n5OVscsLNnQ4LFH7GrNiI4DzgEswBB3a0iI3u5MWn171zwktLacV+AF4D3gzJyujQ8SK9gaWqH2BWbEhwNkYQj4XiGzN4vdrzE8nVT43qjXLbAWWAa9iCNwaeGtFLFF7k1mxfYCbgGsxRqXbhAoN3jy4co6vLn5xAh8Cj+ZkZSz3tjGBgCVqbzAr9hTgTozprjZf1edWKexb+WqbPTRakYUYsxHzcrIyrB9mM7FE3V7MirUBvwLuBk5sz0urov0rX3G5sPvLFOYG4DFgbk5WRqW3jfE3LFG3B7NizwMeAoY2lLWtGFfxTP5e4rp56/rNZC/G6r5/5WRlHPK2Mf6CJeq2ZFbsBOARwOsjz+dX3r/xZx0wyNt2NJMDwJ+Af+dkZbi9bYyv02F3abUps2KHMiv2I2ARPiBogJ6yz5/3lMcBzwI/pmRmt9rKuEDFEnVrMis2ilmxTwGrMaamfIZesi8QdoiNABamZGa/mpKZndTahYtINxF5TUS2iciP5hbc81v7Om2NJerWYlbsWcA6jPXkPve99pR9zoZz+Q2/BjamZGbfm5KZHdIaBYqIAB9gLBfuq6onYqwbSK6Rz+cHG33ux+d3zIqNZ1bsK8CnGLujfJIeUijetqGVicLYs742JTN7UiuUdypQparPVSeo6g5VfVpErhaRj0TkG+BrEYkSka9F5CcRWePhGCNSRLJFZJWIrBWRmWZ6loisN51l/NNMq8tJx2TTscZK0+lG9PGm1o/PP3V8mlmxl2CMziZ4Jl/7YTnzNjnpGimsvdnYxn2gXJn5Thk5h5SUTsJbF0XQOfxYna3c6+Km7AoOVyp2gT+mhzJzWDAAl71Xxpp8N9MGBvHQ1DAAHlxQybCuNmYMDm7Q1K5yMFD/1wOAb1Iysx8AHmjBQNpQ4Kd6jo8ChqvqAbO2Pl9VD4tIF2CZiHyEsaw3V1UzAEQkVkTigfOBweYuvk5mef8PeMLTSQfG5qK7gVtUdbGIRAEVNBGrpm4Os2IjmBU7B3idGoIGuHpEMJ9dHnFMWtaiSqb2CWLzrVFM7RNE1qLjp18jguF/M8JYd3MUn10ewR2fV3CoQlmd7yI8SFh9UxTf57ooqlDyit0s3+NqlKAB4qQ4ouFcfosdmAV8lZKZndgaBYrIbLPG/d5M+tJjl50AD4nIauArjH3r3YA1wOki8oiIpKtqEVCEIcwXReQCoMws4zTgGRFZCXwExJgiXgw8LiK3YXjaaXK3yRJ1U5kVOxBYDlxZV5ZJvYOIq1ELf7jRyVUnGAK86oRgPth4/P9qYLydAfF2AJKibXSNFApK3QTboNypuFVxuMBug798W8n9Uxq/1yOK8qiGc/k9pwCrUjKzz2rGueswamMAVPUWjN1x1Q/tUo+8l5npJ6rqCCAfCFPVTWYZa4AHReQvpijHAO8A04DPzDKqnXSMMF89VLVEVbOA64FwYLGIDG7qjViibgqzYn+FsdNoWFNPzS9xkxhtfN3do4T8kvpbiSv2uKhyQb84G6kJdhIibIz6dynnDgxiywE3boVRifZGXz8EZ+em2uynJACfpGRmP5qSmd24ZozBN0CYiNzkkVZX6yYW2KeqDhE5BegNICJJGP7t5mIsdx1l1r6xqvoJxtLgE8wyqp10YJ47wvzbT1XXqOojwPdAk0UdqP2s1mVWbDDGssVbG8raGEQEqWfYKq/YzRXvlzNnRhg2M+OTZ4UdOX7u62X8e1oYf19Qyap8F6f3DeKGE+sfBBY0zobb5cbW+CeB/yIYfdP0lMzsS3KyMnIaOsHs784AnhCRPwAFGLXzvRi1pievAh+LyBqMh/wvZnoa8KjplMOBsVknGvhQRMJMu+4y894GzDab8EHAAgwXWXeYDwo3Ruvh06befJNFLSIKvKqql5ufg4A8YLmqTmtqebWU/zIwT1XfaWlZrcKs2HiMqY4WLXroFmUjr9iorfOK3XSNrL2RdLhSyXitjL+fGsq45OP/PR/+4uDERBslVcrWg27eujiCM+eWctnwYCKC635SiGBL4NC+fOK6tuQ+/IyxwPKUzOxpOVkZ3zeUWVXzMKaxauNlj3z7gZNryZODMeBVkzG1XGs/hq+7muktrjia0/wuBYaZbnwATueoT6/AYlZsXwzXPC1exXTewCDmrHIAMGeVg+mDjhdslUs5/80yrjwhmIuGHN9ydLiUJ5dX8YcJoZQ7jMc+gMsNVY1wGpQkhQdbcg9+SldgfkpmdosrHH+huX3qTzC2DQJcijEKDByZq6vNuX2KiCw05/Z+EpHxZrqIyDMislFEvsL4J1SXNdUsY41ZZqiIjBaR98zj00WkXERCRCRMRLaZ6bd5zAu+0ZwbHPvfoSOLbLbPgYFNPffSd8s4+cVSNha6SX68mBd/qiJzYghfbnMy4OkSvtrmJHOiMcj1Q66L6z8yFnu9tc7Bgh0uXl7pYMRzJYx4roSVe4+qdfb3VVx1glEjD+9mo8yppP2rhBMT7XQKa3gaOlkKipt6LwFCBPBBSmb2b71tSHvQ5A0dYsSlGg/8Bbgcw4PFHcDdpsO9upzbK+BW1QoxolW8rqonmcP8N2HM8XUD1mOM/s0DNgNTVXWTiPwPYx7xGWCTqvY1J/Inm9cPAm5U1UtFJBfoo6qVItJJVZu0wydtTtok4ONYl2vbNzv3pIa0gkshX+BRx68WzXbN6Ohrp+/Lycp42NtGtCXNqqlN97gpGLX0JzUOnwFkmvNv8zEc3fcCgoEXzMGFtzFc2QJMwhC4S1VzOepGdxCGZ85N5uc5wCRzimCriKRi9FUeN8tIx9hkD8ba61dF5HKOOtlvFGlz0s7BmHaIKbLbR0xPTvzZbQxa+D29ZJ/l2RMeSsnMtkRdBx8B/8Sj6W1S7dy+ev6tl6puwBjOz8cY0j8JaMma3QUYPr0cGJP/E81XtagzMNz/jgK+b+x63bQ5aTMxBsWOjHbuDg4ed2Vit0UtsNVn6CH7vW2Cr5CZkpk9OyUzO9CWzgItE/VLwP2quqZGerVzewEQkZFmeiyQp6puDH/Y1VMrC4CZImIXI0bVKWb6RiBFRPqbn68AvjPfL8Roci9V1QIM/16DgLUiYgN6quq3GNMRsRjrhOslbU7adIypiuNGqFaFhU76Q0L8/IbK8HUCeKloc7gZY5oy4Gi2qFV1t6o+VcuhBzCEsVpE1pmfwdgPe5WIrMKYUK9eofM+Rt95PYaD/aVm+RXANcDbZpPdDVQvtl+O0f9eYH5eDaxRY4DADsw1z/kZeKqhPnXanLTJwBscfdAcx6dRkVOe6hy7sK7j/kCcFNecb+3o3JmSmX1Xw9n8iw7v+SRtTtoIjBZATIOZVV1/3X/gh4tKSse2uWFtQLmGbE6tfNlXvYoC4DxcwP7sx3GXHgKEqBFnEnPSdAAO//gxxT9lI2IjvN9JdD7l2lrLULeLvDl3EhQdT9eL/gpAwceP4ijYQXi/0XSefBUAh5a8QUiX3hox8ORLc7Iy3myXG2wHOnRzLG1OWh/MQbFGnSBiv79L3PDuLtfqieUVw9vUuDYgFIfvLxW12el8ynWEdu+Pu7KMvDl3EJYyEnfpIco3LyPpmqeRoGBcpXU3vop/+Ijg+J5olbF3omrfdmxBoSRd+wz5b/wJd2UpbkclVbkb6TT+EgHmpGRm5+dkZcxvn5tsWzrs2u+0OWmxGLGymuaMTyT85m4JvdaHBG9pE8PakOqlot62oz6CouII7W4Mo9hCIwiO74mruJDinz8hZtzFSJAx5GGP7FTr+c7D+ynf9j1RJ5xxJE1sQbidlai6UbcTxEbRwrnETrysOksoxjx2k9f0+yIdUtRpc9KCMHbNpDbnfBXpdGlS98jcIHte61rWtphLRQu9bUdjcRblU5W/jdCkQTgO7qFy1zry/ncXe1/LpDJvU63nHPz6eTpNuRbxWFwf3KUn9vBY8l6+nYj+Y3AezENVjzw8TGKBT1Mys5NrlulvdEhRYwzandaSAtwiief2SCorstn8ynVtohzwi6Wi7qpyCt5/iLipN2ALjQC3C3dFMd2veIzOU66h4MNHqDkeVLZlBbbITjXFCkDcab8h6ZqniRlzAYcWvkKn9MspWvImBR9kUbyyejckyRjCblx3zEfpcKJOm5N2E3BDa5RVZZN+Zycn7awQ8Runfv7gVVRdTgref4jIIVOIGDQeAHt0FyIGjkdECE0ahIjgLj98zHmVe9ZTvnk5u/91LQUf/YOKHavZ//E/j8lTtnkZId37o44KHIfySJiRSdnGxbgdRxyMDAP+1fZ32XZ0qIGytDlpaRgr0HBXudn+8HbUqahLiRkdQ7fzj+9eF60oYt8HRiz1sF5h9LyxJ5V5lex6bhfqUnpc3WP4eSmJKz7O2XNixqtl9o8ujah3t5S38XWvoqpK4af/j+D4nsSMOerIM2LAOCp2rias93AcB/agLie28GMr1M6Tr6bz5KsBqNi5msMr3qfLuXcfLdvl5PAPH9L1or/iPJjLkS0x6gaX03OFwq9TMrM/y8nKeKXNbrQN6TCiTpuTFoExFx0GIMFCyr0p2MPsqFPZ9tA2otOiieh/dF985d5KCuYV0PePfbFH2nEeNlacHph/gMTLEgnpEkLeq3lE3NprzImrgrfePTy4ny8LGnzfq2jlnvWUrvuW4IQUcv9r7ELsPOlKooafTuEn/4/cF29G7MHEZ9yJiOAsLqTws6fodvH9DZZd/FM2UcOmYgsOIzihD+qsJPfFWwjvdxK2sOPWJ81Oycxe7I8hdzuMqIEnObreHBHBHmasNVGXUVtTQ48HvztI3NQ47JFGvqAY4+sSu+CucuOuciN2wVXqYue2yn4/3Zg4/+r9hVPa5W6aia97FQ1LHkrve+fVesyz1q0mKDq+VkGH9RpOWK9jZx1jRk8/8l5ESDjvD/WZEg28lpKZPTEnK8OnH4Q16RB96jVDUs+7dL7rOLcw6la2/HkLv9z2C1FDo4jod6z3msq9lVTtrWLbg9vY+retFK82di7GTY2j4OMCdr+wm4RzE9j30T4SpiXwbXTklMc6d1pQ8zq+hLVUtEmMBRpuAvgYAb+ibMPg1HgMtzDd9sew4v+utvctipQunnlcpS52Pr2TxMsTCUs+6jZoxxM7wA69bu6F46CDbQ9vY8ADA47U3ACV+ZXkv5tP0mVJ5L2RhzpV70sPXXVvdOWI9rrHplCgsT+NrvyXrwWg92XcwKk5WRnfNZjTR+gINfWzmAtMuhxmzL+fdumU1e4VnhnskXYiUyMpWXPswHBQ5yBiRsYgQUJIQgih3UKpzD/WtW/+u/l0u6AbhV8WEjc5ju4zu8vDiyuHz48IX9nG99UsoihvsnP4Do4NeCUlM9v3V+OZBLSoNwxOvRgjJvQRbErCzdnuMXc9X77UdshZBsZIeMm6EkISj90NGjMqhtJfjH0nzmInlfmVhHQ9mqf0l1KCOwUT2j0Ud5Xb6JMLuB1qu7Vrlz5rQkJqXyHhRUJx1L4Uy6I+egL/8LYRjSVgm98bBqdGA1vwcI/kycaKCu7em1u1LwqtCpPQ2DGxdJ3elfz38gnvE07MyBhUlb1v7DVqcBskTEug0zhDE6pKzj9z6HlTT4KigqjIrWD3v3ejLiXpqiQiB0RiU82ftzvP0dPp9JlVSqq4+1XO1Q7iVbQ1cQMn5mRl+GQLzJNAFvUDGDGN60XBuXSwLH5qum2i2yat/kMPVt3+1c49MXFud3xrl91cxlQ8U7CPuOMii1g0yPycrIxTGs7mXQKy+b1hcGoiR/0r14tA0PhfdPKLT7o29NivO1rbFodIn3N6Ju0tFylrOHf7kCQHDjScy6IWpqRkZl/gbSMaIiBFDfyNuqMr1EpkJcMef8HV5ZLvXK3uCKHUZhs6LTlxnbOJ/tLaimQp8Pmloj7MoymZ2T7tiDLgRL1hcOoQDI8pTUYg8oIlmj57tnN5bKm2qkOvfUFBo2cmdV/WmmU2l16yr8mRFC2O0BfDlZbPEnCiBh6hHrdEjSHhMGP//bRLJ69xNxjVoSlsCg2ZeHO3hPmtWWZz6OXjS0X9gD+mZGY3bR9+OxJQot4wOHUyRmTBFmNTEm6Z5x799znOhSEObbX+8MKI8CkPxXf26kIGy6toi4kGHvS2EXURMKLeMDhVMCINtioDckn/7xOu/CE7dH1rlfl6dNSk/8VEL2mt8pqKtVS0Vbg6JTM7xdtG1EbAiBq4ABjdFgUHu+jz19dcA2//wPWdza0tdwckIo/GdTrpy4jwn1rBvCYTJ8VhDeeyaIAgGjnD0t4EkqjbdPBCIGjCBp384pOu9UmFrTD1JRJyV9cuA1aGhvzScObWxVoq2mpcl5KZ7TPrD6oJCFFvGJyaRitEpmwMkZWkPfG8K37md66WR+0Qib4ysVt8TlDQzlYwrdGE4ohrz+sFMBHA77xtRE0CYkXZhsGpz2IE2WtXCmJYft/V9n41d301lSDVHV/u2hPRxeVuu1VeIhA/AJJGoN1P0PdCpxMSZJewYBsgVDndVDhdlFW62JhfzNo9RWzIO0ylMyDCiLUl+4CeOVkZVd42pBq/F/WGwalRQC7GiGS74xYKns2w5SxIs7WoPx/hdm/4ZueenpGqDYYIalyBcdBvKiSNhKQR0H04hDbtK3K43GzOL2bNnsOs2VPE0q372VpQ2vCJHY/Lc7IyXvW2EdUEgqhvxAccxW3swYIHLrWfVBUsTVrJ5km80/Xjl7v2DA+uJZ5Xo0keDaOvh6EzIKj1x8OWbyvklWU7+GztXpxu//7ttCLLcrIyTva2EdUEgqhXAT4RLcNhZ/uDl9jLN/SSIQ3nrp2+VY7FH+zJGy/HOVeqh+BwSPsVjL4OEk9o7qWbxL7DFbzx/S5eW76TvYetBWrASTlZGT962wjwc1FvGJw6HljsbTs8UXAuHiKLnzm3+bu+xpVXfPfC3n2TG8xoC4L0u2DcLRDunW3STpebT9fu5W/z1lNQXNnwCYHLv3KyMm72thHg/6KeC1zWYEYvUBrKmvuussfmxUuv5px/4eGS72YVHqhb2N2Hw4xnoXtas21sTQ6VVTHro/V8sHKPt03xFnuBHjlZGV4fWfRbUW8YnNoJ44v02R0zCiXvTpCf35pkT2/6yap3HCxacl3R4QnHpNuCYNI9kP57sDe/691WfLl+L/e9t5aCkg5Za0/MycrwesvRn+epz8CHBQ0gEHXRYk1/5lnn8phSbVoMKxF5snPsmE8iI344ktZ9OPxmPkzJ9ElBA5w+pDtf3jWJGSN6eNsUb+ATe639WdTneNuAxtK1iLHPP+1ypa91/9Bwbg9Egu9NiE/9Pix0PcN/BTd87TPN7froFBHCk5eMIOvCNGw+7WW81fEJUftl89vcvJFHU8PQ+gDm1NfoqmAJb+w5V6ReXnLP6HuiRPzvGZy9Oo873vwZh8v/fmfN5MScrAyvrOmvxv9+JQaj8ENBAwzaw6T/PuHam7qzcbu+rhl6DX8Yc69fChogY3giL1x5EiF2/7S/GXi9tvbXb/psbxvQEoJd9Jn1qmvArR/Wv+tr5qCZ3HWST24EahJTBnXlqUtHdpSmuCXqZuI3/em6EAhOX2/s+kos1OM2dGT0yeC+sfd5w7Q24axh3fnHRT6xRqitSU3JzB7kTQP8TtQbBqfGYcQ4CggiK0l78nlX54sXHt31NaDTAP424W/Y/LTJXRcXndiTayakeNuM9qDhhUNtiD/+as7EP+2uE4HoixfpxKefdS7rXGYrfHDig4TYQxo+0Q+558xB9I5v9vJ4f2GMNy/eoDhExCUiK0VkrYi8LVL/hgURuc/jfYqIrG0NQz04q5XL8xm6FTHuHf1t2JD4Zi8d93kiQoI6QjPct0UNlKvqCFUdBlQBNzaQv607guPauHyvETpwAF2uvz7S23a0NWP7xAd6M3xISma21/6PTW3GLgT6A4jIByLyo4isE5HfmGlZQLhZs1fvL7WLyAtmvi9EjPlZEblNRNaLyGoReaMxFzf3Tvdvos3+gd1O4sMPYwsJzGZ3TQK8GW4HTvTWxRstahEJwphKWmMmXauqJwInAbeJSLyqZnK0Zq/eaDEAmK2qQ4FDwIVmeiYwUlWH03DtX83wptjsT8Rfew3hQ4d624x2IyIkiEcuDOhmuNea4I0RSLiIrAR+AHYCL5rpt4nIKmAZRqjPAXWcv11VqyMF/gikmO9XA6+KyOU0IhyNiLw0atPGz1GhIpcAABzkSURBVM/bvu24Y/89UMiQjb9w0Fl7Mb/ZtYuxmzdx0+5dx6Tfk5vLjO3beaKg4Ejac4X7+aq4uCFzWpfgYOKuvrp9r+kDjOsbz6heARtZ16dFXV3zjlDVW1W1SkSmAKcBJ6vqCcDPQF1uNjy367gwXKsCZACzMVaHfW+2BOrj5SeTenxRMzHP4WBJaRmJQXWffk1cHFmJicekbayoIMwmfNCnD2sryil2uShwOlldXs5p0e3rGSnmzDMJivc5p5TtwuXjenvbhLbCp0VdG7HAQVUtE5HBHDt45RCRercQibHmsaeqfgvca5ZXr28uVV3QIzj4uK0/j+zbx+8TEup1E3JyZCSRtmNvNUiECrfiVsWpik2Ep/cX8Lsu7R/htfOvL233a/oKGWmJdI7wzR1nLaS3t9wHN1fUnwFBIrIByMJoglfzPLDaY6CsNuzAXBFZg1HLP6Wqhxq6aLBIP8/PXxcX0zUoiMFhTffF1S80lLggOxfuyGFKVBQ7q6pwA0OaUVZLCB00iIhRo9r1mr5EaLCdmaN7etuMtsIrzZAGw69oLd4tVbWSOtZfq+q9GLVvNcM8jv3TI71Jfro3DE6NtQtHXPGWu908f6CQ/yQ3/wfxf12P7gm5efcuZnXvznOF+9lYWcn4iEgu7tT2/b2OXEtX8+sxvfn3gm344YbBhugBtPuOLX8aSR7o+WGXo4o9Dgfn52zntK1byHc6uXBHDgV1DJbVx9fFxQwJC6PMreyqcvBEUg++KC6m3N22nmlskZHETmuVeH5+Ta/4CKYM7OptM9qCJG9c1J9EneL5YWBoGIv6D+Crfv35ql9/ugUF8W7vFBLqGTCrDYcqrxw8yHVx8VS43YjZOXehONq46ogYOxZbZMCvNWkUpw4OSFF7xf2L34h6+vZt91y6Ywc5VVWcsnUL7x6quwu+tqKcP+/NO/L58p07uDM3l2VlZZyydQuLSkuOHHv94EGmx8YQbrMxKDSUCreb6du3MzQsjBh7i8JcN0hYB5qXboi05Fhvm9AWeEXUfhPS9MM+fd+inqiWX/U7utBsWFg4w7ofdSwyt1fd4xVXxh0NKyUi/DOp/f4PHWmxSUOkdo8myCaBFiDAqqkbIMbbBrQ2YUMDd+NGUwkNtjOwW8AF47T61A0QUO2zoG7dCEpo/zlxX2ZYj4D6F4NVUzdIQP3Hrf708aQFnqjjUjKz232HjiVqLxGWOtjbJvgcQ5MCrocFXvBNb4naS9hjA+p2WoXY8IBcLtruN2WJ2ktIqE8HF/EKocH+9HNsNO0+w+RP32JAtc0sUR9PaFDbrgvwEu1eU/vNPDXg9WiCrUvHcILdFOJsNl1A9EFv29GalEC7T7z7k6gPe9uA1kSrOmRUyHpRh0tsSFzDOf2HGC9URv7U/G5ndyRti1Zaoq6JOgKsMWZQZwSWtsKfRB1QNbW7pNTbJvgcWtnuv//2oKq9L+hPog6omrpi0yZvm+BzOPYG3IPOhRcqI38SdUDV1BXr1nnbBJ+jandJw5n8iwPJWentPlDmT6IOqJrasXMnrqIib5vhUzj2BJyo93vjov4k6oCqqQEq1jcqRHWHQF1KVV7ANb8LvXFRfxJ1QNXUABXrLFFX49hXBs6AG/32Sk3tT/PUXnnqtQUKWhTTd2O5o4c7HqxN1YBjT8A9s8FLv1l/ErVfDxdXBUcV5nUfu3Fvt7FaGpk4ELENDt8WzAlON/Ygf2owtQ0VWxr0EO2P7Go4S+vjT6LegLHkzi/WVyriOtB50IbcpImFBzqnJrjsoYMRGe+Zp7zYwfZVBfQ/sVtdxXQIXCVVlK/xSku1rfnFGxf1G1Gn/rKhdMPg1B3U8CrqS1SEds7LTRy/Nb/rSUHl4QmDERnW0DlrvtvT4UVd+kM+uALKN1k1G71xUb8Rtcl6fEjUbrFX7Y9PW5ebNOHwodj+SW57yAAgscETPcjddIgDuSXEJdUbdShgUbdSujyv4Yz+h+KlLqM/ivocbxpQFt51556kiTn7EkaGV4Z2HoLIyJaWuXbBHiZdMqg1zPM7KjYewHUwINfB70rOSi/zxoX9UdTtissWUrav68h1ud3Hlx+OSemttqDeQK/WvMYvy/YybkY/QsL87d/RckqXBWQtDV7qT4Ml6lo5HNVzS27SxD0FXYbHOIKjhyBSp7/x1sBR4WL94lxGTG3VZ4XP48gvpWJTQG2f9mSDty5siRpwBIUX5XcdvSEv8WRncVSPfoi9P9C/wRNbkRUfbafvCQnEdAlvOHMAoC7l4DubveBCoN1Y6q0Li/pZqMENg1N3Ai2Kfaqgh2L7b8hNmlhQGDc0zhkUPgQRr/rSUVXtnVqwZtptvxoutsCfty7+bhdFn+Z424y2JDk5K32PNy7sbzU1GLGwmyzqyuDogrzEkzft7TZGyiK6DURsPrOSy+3M31xV8k7FpqWVw1cNiWHEGV4dC2xzHPvKKPpyh7fNaEt2eEvQ4J+i/hq4uKFMbrE5D3ROXZebNPHQwU4Du7nsoYMQ8amQGKqOckfJvBVu5/bxmA7qFsx9iT4jRhHbtbuXrWsb1KUcfHsTOP2rhdhEFnvz4v4q6lopD4vLzU2cuDW/64khFWHxgxE5oT0Nawquyg0/OMo+7wbuyZ7pjsoKPn/uKS7+04MEYjO8ZNFuqnYF5DpvTxZ58+J+J+rUXzZsMfvVvdwSVFnQZfi63KQJxUWx/ZLdtuB+eCkoWWNRd8m+quK3t6r74Ml15dm1bjXrPv2yYFjGmT7VsmgpFVsPUfRFQDe7q7Fq6qayLeWcubmJE86oCokdgsgob9vTGFRVneULF7kqfxgO1ClogH7RI5bFLggfXhy7h+iJXomx1upU7SqmcM76QF0O6kkesMabBvilqHNSMn4G7vO2HY3F7dy7uarknQq0Kr2hvKO7nDW/T9TwySIiRfO2YQu1Eznav/vXjr2l7P/vWrQqIB0L1uRDb7gw8sQvRQ18ATjwQvSDpqDqKHOUfPy925kzgQa+a0GcU5OuWBofmjjFM/3gu5tRh5uo8T7dq6iTql3FFLy0Fi13etuU9uIDbxvgd/PU1cy+8ZuvgKmeaW63i3+8dzOxkfHcdPZDx+RftvEzPlj2PLGRXQCYPHQ641MzyD+0i5e//jsut5NL0u+kb/ehuNwunv0kk9+e+QAhwWHNss9jIKzB6bdgW2jROck3bA2zR9bZlYg5vTcxfrbirGLrIQrnrO8oNTRAEZCQnJXu8KYR/lpTA7xBDVF/u/Y9unXuRUVV7b6uRvWbwq8m3nZM2qL1H3PR+FuIi+7OO0tm07f7UBau/4jRA6Y2S9DmQNgWdR8c33BuiArqtPusHtdV2m1B9Y4NHP5yB468UjrN6Ic9qt1DHjcJdbkp/m43h7/e2RH60J584m1Bg3/5KKvJ28CR7T0HSwpYt2M54wc3beGG3RZElbOSKmcFdpudssoS1u5YypiBZzSpHFVVR9mChZVFz4c2VtDdwnqvPSf5hlC7LahfY/KXr91P/uM/UraqoEm2tSeOvaXse3YVh7/Y0dEEDT7Q9AY/rqlvee7Uotk3fjMPuBDg3SWzmTHuN1Q46t7ttnL7QrbkraZrbDIXjr+ZzlFdmTR0Ov/79hGcriounXQnn/30CmeM/DU2afzzrikDYdUMiDlx6ci4qSNFpEnNAXeZkwOv/0L5mv0+VWt34Nq5mhLgE28bAX4sapNXgAvX7FhKdHhneiUMZFPuylozDut9Mif2P5VgewiL1n/MK98+wm3nPkZcdDfuOO9xAAqK9nCoZD/dO/VizjcP43I5yRh9Nd061d4tbspAmCdjE6Z91ztyyCQRabZrpvK1+6ncdohO5/UjfHgCYvOel6eq3BIOvrs5EP12N4XXk7PSfeIL8HdRfwIUbtu7Ln7NjiWs27kch6uKCkcZc75+iKumHp31igo7GrN+/OBz+GD5C8cV9vGKl5g25hrmr32f8YPPIT66Ox+teJGrpx4/e1bXirD6EGyO05OuXN45tFujz6kPd5mTA29sxP7lDqLGJRIxqhv2yPaZEFCXm/J1hZQuy6NymxWUAHje2wZU49eivuW5Ux2zb/zm9eljr//d9LHXA7ApdyVfr3rrGEEDFJUWEhsZD8CaHUvp3unYkeTNuauIjYyna2wyDmclIoKIUOWsOCafMRD21lZ1H6p3AUlNQmxhh85JviEn1B4xsck32gCuwgqKsrdT9PkOIk5IIGpcIiE9o1v7MgA4iyopXbGX0hV5uIu9PibkK/yUnJX+g7eNqMavRW3yLHALtXgZnff9f+mVMIjhKeOZv/Z91uxYgl3sRIRFc/mUPxzJp6p89tNcrj3tzwBMSM3g5W8ewu12MTP9juo8jV4RVpPo4LgdZ/a4xm2XoBHNv81G4HRT9mM+ZT/mE5wcRXhqPCHJUQT3iGp239td5cKRW0LVnhIqtxVRsaHQCxGXfR6fqaXBj+epPZl94zdfAKe3VfkeA2FpTT23e3jf1ZO6XZQs4t1g6vbYEIJ7RBPSI4rgpEhsEcFIsA0JtoGIERva6TZEvLcUx54SqnaX4CwoC2RHBq1BCZCUnJXuM7tUmlxTi0gKME9Vh3mkzQJKVPWfNfK+bOZ9p0VWNsyTtIGomzsQVs3g2LGLh3eefJKIhLa2bU3FVVSFq6iQivUBE+jEV3jFlwQNbdj8FpH2bNp/iuHqqNUcHzRnIMyT8V2nz+8ZOXhKa9lj4ZM4gEe8bURNWnXxiYjMF5EnReQH4HYz+TQR+UFENonINDNfiogsFJGfzNd4M32KWcY7IvKLiLzamGmfW547VYF/NpSvMai7ZF9l0UtLHWWfntSYJZ41sWGvPKvHdYstQXcIXknOSve5vaRtUZuGqOpJcKT5nQKMAfoB34pIf2AfcLqqVojIAOB14CTz/JHAUCAXY1/qBBq36Xwu8GegT3OMbslAWDWhtojCc5Kv3xNiD5/QnPMt/AoX8FCDubxAc2rquoZNqtPfrJH+lqq6VXUzsA0YjLG76gURWYOx3NOz2bxCVXerqhtYSSMjctzy3KkO4K+Nu4VjcTvzNlUWzV7nqvwhHYht8IRaiA3usv28XjeXhNjDhzfnfAu/47XkrPSt3jaiNppTUxcCnWukxQHbzfc1d1PUfAgocCeQD5yA8WDxnAz2DNfgaqKNrwL3AMeNUh8s2cf/vs2iuOwgiDAhNYMpw86rdSBs54FDPPP1Ei4bN5ITeiay73AJry7/GbdbufDENFK6dMbldvOfBSu4ZuJoUmIGrZzY9YIUEenUBFst/Bc38HdvG1EXTa6pVbUEyBORUwHMqZqzqLuJfLGI2ESkH9AXI2hYLJBn1sZXAK3inveW5051A3+s7ZhN7Fww7kb+NPO/3D3jGb5Z9Xrl9pyHD7udOZPxELTbrWSv/oWB3bocOXfZtp3MGDGU69JH893GbQAs3bqDUb17MKJL+qKJXS8Yagm6QzE3OSvdK8HvGkNzB8quBP4sIiuBb4D7VbWupshOYAXGCPWNqlqBsWDkKhFZhdEcr32vZDO45blTPwaW1EyPjYynZ8JA1F2cL+VvLE2KDQktqSg/zqXIoi05DO/Rnaiwo7NQNhGqXC4cLhd2m1Be5WB97j5uG33r/LTO6RNFxKedNVi0KsVApreNqI9mDZSp6nrglFrSp9T4fHUd528GPPue95rp84H5Hvl+1xz7zPIW1rim21m+YJGr8scTDpSWnbznUBG94o+tXIvKKli7Zy83ThnHru9XH0mf0D+F11esxOV2c+GJaXy5fovz9nG/2dgretCUZtpn4b88kJyV7tMBwAJhmehx3PLcqYtm3/jNXOByMAbCqkrerUKrJlU6nMxZ8iPTRwwhLPjYCvbDlevIGD4YW41ZtM6R4dx8ijEgXlTqOmB3JthP7jlm6O3zHqTK5eCe9OvpG9eioCEW/sFGjIVOPk1AitrkblXHVEfJx5uqB8JcbjdzlvzIqF49SEs+Poz0roNFzF36MwClVVVsyNuH3SYM62G00juFdN36xU+bEu+felvESz++yyXDp9EztjuPLHiep8/9S3vem4V3uN0XPJs0RMCK+pbnTs1/bOaMv4DzBTA2bbz1/Wq6xUQxeVDfWs/5Y8apR96/sWIVqYldjwg6OWLQT1rec2DPTiURfeJ6Uu6owCaCTYRyR0DGV7Y4lo+Ss9I/97YRjSFgRW3gfBFjUC89Z/9Bftyxh8TYaB7/wuhun502iIOl5QCM79+7zlKGdUpfmBo77uTL37o7aPb0WQBcdsK53DbvAZxuFw+d8fs2vg8LL3MYuNXbRjSWgNilVR+PzZw2CGMRS3PcguqkbhcvSIzo2ypODSz8luuSs9Jf8rYRjSXgRQ3w2Mxpt9PEAQ67BJWf1eO6VVHBnca1kVkW/kF2clb6NG8b0RT82ZtoU3gK+KyxmcPsUfum9/rddkvQHZ59wHXeNqKpdIiaGuCxmdO6AauAbvXl6xzSffNpSVdE2MQWGEGsLFpCRnJWuk94CG0KbVJTi8gTInKHx+fPReQ/Hp8fE5G7mljmHSIS0Vybfv/mvHzgMupxxtM7csgPpydd2d0StAXwpD8KGtqu+b0YqN4jbQO6YGynrGY8tSzlbIA7gGaLGuD3b877GnigtmMnxJ2yYGzCtJEi0jYe+yz8iW8wNgb5JW0l6iUc3ZM8FFgLFItIZ9O1TyqwXkS+Np0krBGR6QAiEiki2SKySkTWishMEbkNI+70tyLyrZnvDBFZap7/tohENdK2vwHZHp/dU7pfsmBw7JhJItIqG0ss/JptwMXJWel+G9GvzfrUIrIdmAycjeHpswewFCOIWBbG2vEIVT0sIl2AZcAA4ALgLFW9wSwnVlWLRCQHOElV95v53wPOVtVSEbkXCFXVvzXGtsdmTosGltolOOXs5OvXRQbFjGnFW7fwX4qBk5Oz0td525CW0Jaj30swmtnjMcS81OPzYgyhPyQiq4GvMETfDSNg9+ki8oiIpKtqbZ7ix2E4Vlhs7hS7Cqh79UgNfv/mvGLg3HN73rTKErSFiQKX+7ugoW1FXd2vTsNofi/DaJJX96cvAxKAE1V1BIbThDBV3QSMwhD3gyJS26JqAb5U1RHma4iqNmnq4fdvztseag+/Cyhv3u1ZBBh/Ss5K/8jbRrQGbV1TTwMOqKpLVQ8AnTCEvQTDUcI+VXWIyCmYNa2IJAFlqjoXeBRD4GA0jaoHsZYBE0x/Z9X98IFNNTA5K3058Gss9/QdnceTs9J90t9Yc2hLUa/BGPVeViOtSFX3Y7geOsn0U3Yl8IuZJw1YYTar/wo8aKY/D3wmIt+qagFwNfC62XxfiuFsockkZ6V/AFyPJeyOyr+Ts9IDavF+h1l80hC7MxdeC/yHWsL3WAQsc4GrkrPSA+qBbonag92ZC68DXsASdkfgPeBXyVnpLm8b0tp0lLXfjSI5K/1F4DdY0aMCnY+ASwNR0GCJ+jiSs9L/A/wWq48dqLwIXJCclV7lbUPaCqv5XQe7MxfOwBjMa9HSVAuf4sHkrPQ/e9uItsYSdT3szlw4GviYBnZ2dSQqnJVc9NqtVDkduNwuzhk0hd+nX8uinB/5+/xncasSGRzOYxn/R5/Oycec+/66L3huxRtHPm/Yt5VPr/4P/eN7c91795FXXMCVI2dw1ajzAbj3s0e5fMR5pHUf1FKz3cCtyVnpz7a0IH/AEnUD7M5c2BtjrfjQhvJ2BFSVMkc5kSEROFxOLnj1Fu6feht3ZP+dFy94iAFdUpjz0/uszNvAExn31VnOhoKtXP/eH1n82zf4YvMiNhRs5daTr+D8ubfw4RX/Yv2+Lbz0wzv885wWu9iuwFgp9m5LC/IXrD51A5hRDSdgLGXt8IgIkSFGj8TpduJ0OxERRISSqjIAiitL6RbVpb5i+HD915yXOhWAYFsQ5Y5KHC4n1ZXMowv/w93p17fU3O3AhI4kaLBq6kazO3NhEEb8pHvo4FNeLreLc+bcQM7BPVw1agb3TbmJ5btWcf17fyQsKJTo0Ag+vOI5okMj6yxjwr8v4cULHmJwQl+cbid3zHuILYU7+O3YS4gMDmdt/ibumnhtS8zMBq5Izko/2JJC/BFL1E1kd+bCs4D/Yaxb79AUVRRzw/t/4m+n3c5ji17k5rGXMTJpCM8tf52tB3by6Nn31nrez7nruefTR/jqujnHHXO4nFz+1u958YKHeWzRS+QezufCYWdyxoCJjTXLDfwFeCg5K71D/rit5ncTSc5K/wwjWuc33rbF28SGRTO+10jmb1vO+n1bGZlkRCQ+N/VUftyzts7zPtzwNdOHnFbrsf/9/D4XDjuLn3LXERMaybPTZ/H89zWjI9dJAXBmclb63zuqoMESdbMwYymdjhHkPiAXMNRFYdkhiiqKASh3VLIg5wf6x/emuLKUbQd2AbBw+/f0j699J6xb3cz75dsj/WlPDlUU8/WWpVw07EzKnRWI2BARKpyNCpbwNjAsOSu9w499BLgz/7bDXC/84O7MhZ9ibDYZ1cApAcG+kkLuzH4Il7pwq3Lu4FM4rf94HjnrHn7z/p+wiY3YsOgjo9ZfbF7E6r0buTvd2Bm7fNcqkqK70rtT0nFlP7n4ZW4dfwU2sTG5zxjm/PQ+p7/4NZePnF6fSfnALR1tMKw+rD51K7A7c6EduA3D/1ndo0MWrc1cjPhWB7xtiC9hiboV2Z25sBfwDHCut20JcLYCdyRnpc/ztiG+iCXqNmB35sLzgX8A/b1tS4BxAKM19Gwgr91uKZao2whzXvs6jME0y494y6jEaAE9mJyVfsjbxvg6lqjbmN2ZC8OA3wGZQLyXzfE33MCbwB+Ts9K3e9sYf8ESdTuxO3NhDHAnhsDrX0NpUQ68DDyWnJW+1cu2+B2WqNsZs+a+FLgdYxGLxVEKgdnAM8lZ6QXeNsZfsUTtRXZnLpyEIe7pQEeODrIKY67/5eSs9DJvG+PvWKL2AcypsF8Dl9Bxau9C4A3gpeSs9J+8bUwgYYnax9iduTAVQ9yXAE32Ze7jHMbYPfUq8EVyVrrDy/YEJJaofZjdmQtHAucBZwJj8M8m+irgM+BTYIkl5LbHErWfsDtzYSdgivmaDAzH9zbkKLAF+B74GvgsOSs917smdTwsUfsp5hRZGkYffLj5SgMaG9K3pSiwA/jB4/WjtTjE+1iiDiB2Zy4UoC/QDyOedw/zb/UrEQgHQoEQ868nCpQCJRixy6pfe4CcGq8drb1UU0SeAHao6pPm58+BXap6vfn5MWCPqj7egmu8DMxT1XdawWSfxNp6GUCYjgG2mq9GsTtzYbW4FSj1snOBxcCvgCdFxIaxSCfG4/h4jAU8FvVgibqDY9a2vrI5YgnwhPl+KEYI5EQR6QyUAanAzyLyKHA2xoPoQVV9U0QEYxNNbelPYzi12IXv3GubYYnawmdQ1VwRcYpIL4xaeSlGF+JkoAgjauo0YATGWEIX4HsRWWDmry39ZGAQMATDf/t64KX2vK/2xhK1ha+xBEOg44HHMUQ9HkPUi4GJwOuq6gLyReQ7YHQ96ZM80nNFJOB9y/nalIiFxWIMEadhNL+XYdS24zEEb9EAlqgtfI0lGE3sA6rqUtUDQCcMYS8BFgIzRcQuIgkYNfGKetIXeKQnAqe0/y21L1bz28LXWIPRJ36tRlqUqu4XkfcxBL4KY0DsD6q6t4H0UzH60jsx+ukBjTVPbWERYFjNbwuLAMMStYVFgGGJ2sIiwLBEbWERYFiitrAIMCxRW1gEGJaoLSwCDEvUFhYBhiVqC4sAwxK1hUWAYYnawiLAsERtYRFgWKK2sAgwLFFbWAQYlqgtLAIMS9QWFgGGJWoLiwDDErWFRYBhidrCIsCwRG1hEWBYorawCDD+P1e3Qq55zpaSAAAAAElFTkSuQmCC"
},
"metadata": {}
}
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"# Waffle chart"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 12,
"source": [
"pip install pywaffle"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: pywaffle in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (0.6.3)\n",
"Requirement already satisfied: matplotlib in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from pywaffle) (3.1.0)\n",
"Requirement already satisfied: python-dateutil>=2.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib->pywaffle) (2.8.0)\n",
"Requirement already satisfied: numpy>=1.11 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib->pywaffle) (1.19.2)\n",
"Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib->pywaffle) (2.4.0)\n",
"Requirement already satisfied: cycler>=0.10 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib->pywaffle) (0.10.0)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from matplotlib->pywaffle) (1.1.0)\n",
"Requirement already satisfied: six>=1.5 in /Users/jenlooper/Library/Python/3.7/lib/python/site-packages (from python-dateutil>=2.1->matplotlib->pywaffle) (1.12.0)\n",
"Requirement already satisfied: setuptools in /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib->pywaffle) (45.1.0)\n",
"\u001b[33mWARNING: You are using pip version 20.2.3; however, version 21.2.3 is available.\n",
"You should consider upgrading via the '/Library/Frameworks/Python.framework/Versions/3.7/bin/python3.7 -m pip install --upgrade pip' command.\u001b[0m\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 13,
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"from pywaffle import Waffle\n",
" \n",
"# creation of a dataframe\n",
"\n",
"\n",
"data ={'color': ['brown', 'buff', 'cinnamon', 'green', 'pink', 'purple', 'red', 'white', 'yellow'],\n",
" 'amount': capcolor['class']\n",
" }\n",
" \n",
"df = pd.DataFrame(data)\n",
" \n",
"# To plot the waffle Chart\n",
"fig = plt.figure(\n",
" FigureClass = Waffle,\n",
" rows = 100,\n",
" values = df.amount,\n",
" labels = list(df.color),\n",
" figsize = (30,30),\n",
" colors=[\"brown\", \"tan\", \"maroon\", \"green\", \"pink\", \"purple\", \"red\", \"whitesmoke\", \"yellow\"],\n",
")\n",
"\n",
"\n"
],
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Waffle size 2160x2160 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABucAAAhoCAYAAADRSGMJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdfZiWdZ03/s8Fw9NIakJhGjKWhogwIGSaIJql7QFrZXhvoZm6lWlbrrrVvdXtyNYev0rt3ttW1822zIxy0X1IrezJRFI3h2QQxIcekNWERFTEEWWY6/cHywXXKQLq9zznnM7X66+Z6+F9vj8c3+OcPz7HdVGr1+sBAAAAAAAA5G9AXxcAAAAAAACAqrCcAwAAAAAAgIJYzgEAAAAAAEBBLOcAAAAAAACgIJZzAAAAAAAAUJCWHT05b/z4VRExKsF1Vs9ZtmzvxLl5ZDbllnz+plxdnStd+0dmXrm69p97wD03XZIsc8LM8xtd88itza0ly6x31Btd88gtedeqz9+UW/KuVZ+/KVdX5yqX3Fs7k2XGjKmNrnNrc5PldtQ7NufW0s0f9a3/roly88hszi33/M255e5a9fmbc3XtN+equ7s7WWZra2ujax65Je9a9fmbcnWNiEh0D4h66sxMbh6ZeeXq6lzllZuvnX1yLsVA28tJkZtHZjanzPNnc3R1rnTtH5l55erqHqBr+sxUuVWfP5tT5q5Vnz+bo6tzpWv6zFS5VZ8/m1PmrlWfP5ujq3NVta5Vnz+bo6tzpWv6zFS5VZ8/Zc4u8bWWAAAAAAAAUBDLOQAAAAAAACiI5RwAAAAAAAAUpKWvCwAAAAAAAFCMjRtfHQ8/fGFs2HBAbPkM1/PPd63Y8vzgwT9Mdq0tuXlk5pn7EvRGxNKenp4PTZky5Y+7+ibLOQAAAAAAgIp4+OEL41WvOiza2lqiVtvyaPuara/YOCbd1bbk5pGZZ+6u6e3trT322GMHr1q16usRccKuvs/XWgIAAAAAAFTEhg0HxIgR2y7meLkGDBhQf81rXvNURBzykt6XUx8AAAAAAABKZ4DFXEIDBgyox0vct1nOAQAAAAAAQEH8n3MAAAAAAAAV9W9HfTw2PL5uSqq8oSN2jxMXfHWHr1mx4g8xa9a5sXTptaku26/45BwAAAAAAEBFbXh8XSnzNm3alCSnjCznAAAAAAAAKFRPz6Y4+eTPxbhxJ8Xs2Z+O7u4N0dZ2Qnz601+NQw89JebP/1ksXnx/HH746TFx4vvjPe/5ZDzxxLp45JFHWsaPHz8uIqKr64Go1d4cK1euioiIN77x3dHdvSFOO+3C+MQnLo63vvWMeMMb3hXXXfezPp01y3IOAAAAAACAQt1//0Nx9tknxfLl82P33XeLyy+fHxERI0bsEb/+9TXxvvcdF6eeemF86Ut/FUuWfDcmTHhjzJ17Zey77749zz333IC1a9cOuO22xTF16ri47ba746GHHo3XvnavaG0dGhERjz66JhYu/HrceOP/jf/9v/+xL0d9Acs5AAAAAAAACjV69Kg48sj2iIg45ZQ/i4ULuyIi4i/+4h0REfHUU+vjySefjhkzNv93eB/84KxYsODuiIiYOnXq+p/+9KfDFyy4Oz7zmdNjwYK747bb7o7p0yc18t/97hkxYMCAOPjgN8Tq1WuLHG2nLOcAAAAAAAAoVK1W2+7vu+02bKfvnT59+tMLFix41UMPPRrveteM6Op6MBYu7Gpazg0ZMrjxc71eT9Q6Dcs5AAAAAAAACrVy5aq4444lERExb97NMW1ae9Pze+wxPF796t3jtts2f1ru29/+QcyYcWhERLz97W9ff/311+914IGjY8CAAbHXXrvHD37wy5g2bVL0B5ZzAAAAAAAAFTV0xO59kjd27Ji47LL5MW7cSfHEE+virLNmv+A13/pWR3zyk5fGxInvj8WLH4gLLvjQ/7x37PP1er121FGTIyJi2rRJseeer4pXvzrtLHlp2cnzqyNiVILrrM4hN4/MbG6Z58/m6upc6do/MvPK1dU9QNfydq36/NncMnet+vzZXF2dK13L27Xq82dzy9y16vNnc3V1rqrWterzZ3N1da50LWnXExf8U0/EpK6tjyxuj+jZ2f5oF7T0NP+8NbOtbZ+4777rXvCOFSu+3/T7pElj4847v7ndzFWrVi3Z0vUznzk9PvOZ0xuvuuqqC5ty1q9f8BK65q9Wtu/ZBAAAAAAAIB9dXV0r2tvb1/R1jz8lXV1dI9vb29t29fW+1hIAAAAAAAAKYjkHAAAAAAAABdnhd4bOGz9+VST6DtQ5y5btnTg3j8ym3JLP35Srq3Ola//IzCtX1/5zD7jnpkuSZU6YeX6jax65tbm1ZJn1jnqjax65Je9a9fmbckveterzN+Xq6lzlkntrZ7LMmDG10XVubW6y3I56x+bcWrr5o7713zVRbh6Zzbnlnr85t9xdqz5/c66u/eZcdXd3J8tsbW1tdM0jt+Rdqz5/U66uERGJ7gFRT52Zyc0jM69cXV9O7uDBP4yIjWO2PtKS4/85tyU3j8w8c/O1s0/OpTgo28tJkZtHZjanzPNnc3R1rnTtH5l55erqHqBr+sxUuVWfP5tT5q5Vnz+bo6tzpWv6zFS5VZ8/m1PmrlWfP5ujq3NVta5Vnz+bo6tzpWv6zES52eVWimVXNiePzDxz8+VrLQEAAAAAAKAghW4CAQAAAAAAKI/lP7k9ep6/dUqqvJbBg2LcO966w9esWPGHmDXr3Fi69Npdynzuuedj5sy/jjVrnoyPfeyTrx49evTGv/qrvxozfPiAuOOOb8SwYUNTVC+M5RwAAAAAAEBF9Ty/sdR5ERF3331/REQsXjwvIqY+MWfOnP3OO++8R88++7D9k1+sAL7WEgAAAAAAgEL19GyKk0/+XIwbd1LMnv3p6O7eEG1tJ8SaNU9GRERn571x9NFnxh//uDZOOeWCuOuue2PSpDlx0UUXjbzpppv2+vu///t9Tz75c308xctjOQcAAAAAAECh7r//oTj77JNi+fL5sfvuu8Xll8/f7ute+9q94utf/1xMnz45Fi+eF5/85CfXvP3tb3/yC1/4wsPf+c4XCm6dhuUcAAAAAAAAhRo9elQceWR7RESccsqfxcKFXX3cqDiWcwAAAAAAABSqVqu94PeWloHR29sbEREbNjzfF7UKYTkHAAAAAABAoVauXBV33LEkIiLmzbs5pk1rj7a218WiRcsjIuL663/el/VyZTkHAAAAAABQUS2DB/VJ3tixY+Kyy+bHuHEnxRNPrIuzzpodHR0fjnPO+UpMnXpqDBz4p7vCaunrAgAAAAAAAPSNce94a0RMXbT1kc4peV+zrW2fuO++617w+PTpk+OBB65/weNHHz0ljj56a63rr79+xeafOvOqmKs/3bUjAAAAAAAAlIzlHAAAAAAAABTEcg4AAAAAAAAKYjkHAAAAAAAABbGcAwAAAAAAgIJYzgEAAAAAAEBBWnby/OqIGJXgOqtzyM0jM5tb5vmzubo6V7r2j8y8cnV1D9C1vF2rPn82t8xdqz5/NldX50rX8nat+vzZ3DJ3rfr82Vxdnauqda36/NlcXZ0rXUva9eK9j49nVq+d8koytrXbqL3ib1bdHBEtPVsfbemJ6HnRndQVV1wfra1D49RTZ+4kfdvMnefuumxuvmr1er3I6wEAAAAAANBHurq6VrS3t6/Z8vvcWi3ZYm6Ljnp9UerMMuvq6hrZ3t7etquv97WWAAAAAAAAFOYf//EfR7zpTW86eOzYsQe/+93v3v+8887b54ILLhgVEXHYYYeNPeuss/adMGHCuLa2tkN+9KMfDY+IuPTSS0ccd9xxb5w+ffqBY8aMOeSjH/3o67fknXzyyfsdcsgh4w444IDx55577j5bHt93330nfOxjH9v3oIMOOviQQw4Zt3DhwtZp06YdOHr06EO+/OUvvyYiore3N84888zXH3jggePf9KY3HXzllVe+OiLixhtvfNVhhx029p3vfOcb9t9///EnnHDC/r29vUnm3+FH/eaNH78qEn3Mcs6yZXsnzs0jsym35PM35erqXOnaPzLzytW1/9wD7rnpkmSZE2ae3+iaR25tbi1ZZr2j3uiaR27Ju1Z9/qbcknet+vxNubo6V7nk3tqZLDNmTG10nVubmyy3o96xObeWbv6ob/13TZSbR2Zzbrnnb84td9eqz9+cq2u/OVfd3d3JMltbWxtd88gtedeqz9+Uq2tERKJ7QNRTZ2Zy88jMK1fXl5M7ePAPI2LjmARddqBzyuavipzUtfn3xe1bvn5y2bLfxqWXXhS33/4vMXLknrF27VPDLr302hg+fFNEdL6+tXVTtLauG37PPd+MH/zgl3HxxReMfec7R8buuz8ev/nNvXHXXV2Lhw0b1nvAAQcc8pnPvHvEfvuNbPnqV8+IvfbaIzZt2hTHHnv265Ys+e7rJk48MAYNqschh7xq78suuybOPfcrcfbZp4/75S+/Hhs2PB+HHPK+/T71qbft9+///vP47W8X15cvX/7rRx99tOWwww4bd9xxx62PiFi+fPmwxYsX/66trW3jlClTDvrJT34y/Pjjj1//Sv91dvY9nCkOyvZyUuTmkZnNKfP82RxdnStd+0dmXrm6ugfomj4zVW7V58/mlLlr1efP5ujqXOmaPjNVbtXnz+aUuWvV58/m6OpcVa1r1efP5ujqXOmaPjNlbg62/b/gtv788593xkknHRsjR+4ZERF77bXHC9554olvi4iIKVMOihUrHm08fuyxU2PEiBGbIiIOOOCADStXPrz7fvuNjH/915/G177279HTsykefXRN3Hvv72PixAMjIuKEE46KiIgJEw6I9eu741Wv2i1e9ardYsiQQfHkk0/HwoWLY86c42stLS0xevTonre85S3rFy5c2LrHHnv0Tpgw4Zk3vvGNGyMixo8f3/3b3/52cIp/mQT/SR4AAAAAAACkMWTIoIiIGDhwYPT0bNrm8a27sYEDB9Z7ejbF73//SFx88TVx113file/evc47bQLY8OG517wngEDak3vHzBgQFP29nsMqW9zvejp6am9wtE2XztFCAAAAAAAAOzM2942NebP/1k8/viTERGxdu1Tryhv3bpnYrfdhsUeewyP1asfjx/+8I6X9P7p0yfFtdf+JHp6euIPf/hDy69+9avh06dPf+YVldoJn5wDAAAAAACoqN1G7RXPrF6bNG9Hxo9/Y3z2s6fHjBlnxsCBA2Py5DdFW9s+L/t67e1vismT3xQHHXRSjB792jjyyIkv6f3vec8xcccd98S4cePG12q1+ty5cx/eb7/9epYsWfKyO+2M5RwAAAAAAEBF/c2qmyNi6qKtj3ROyfuaH/zgrPjgB2dt97lf/OKfGz+PHLlnrFjx/YiIOO20P4/TTvvzxnO33HLLb7Z0veqqC7ebteW923v/ts9ddNE5cdFF31627XtnzZr19KxZs57e8vvVV1+9chdG2yW+1hIAAAAAAAAKYjkHAAAAAAAABbGcAwAAAAAAgIJYzgEAAAAAAEBBLOcAAAAAAACgIJZzAAAAAAAAUJCWvi4AAAAAAABA39j74uNj9TNrp6TKG7XbXrHqb25OFfcnySfnAAAAAAAAKmr1M2tLl9fT05OgSXn55BwAAAAAAACF+fznvx7XXPPDeM1rXh2jR4+KKVMOihtvXBiTJr0pFi7sive//7g49dSZ8dGP/n+xcuWqiIj4h384P448sj3WrVs34C//8i/3u++++4a1tDwfF174kXjXu2bEVVfdEN///oLo7t4Qv/3tI/Ge9xwdX/7yJ/p40u2znAMAAAAAAKAQd921LK6//ufR1TUvNm7siUMP/UBMmXJQREQ8//zG6Oy8OiIi5sz5XJx77pyYNm1SrFy5Ko4//uOxfPn8+MxnPvO6Y445Zt38+fNXPPnkLVMOO+y0ePvbD4uIiMWLH4i77/5ODBkyKMaOnR0f//j/itGj9+6zWV+M5RwAAAAAAACF+OUvu+Jd75oRQ4cOiaFDh8Sf//n0xnN/8RfvaPz805/+Ku6993eN39eteybWr++OX/ziF7vffPPNe1566aV7Dx3aGxs2PNf4dN2xx7459thjeEREHHzw/vHQQ6ss5wAAAAAAAGB7dtttWOPn3t7euPPOb8bQoUOaXlOv1+O66677TXt7+3MRnVO2PP5f/7U0hgwZ3HjdwIEDo6dnUwGtX7oBO3l+daLrZHNS5OaRmc0p8/zZHF2dK137R2Zeubq6B+iaPjNVbtXnz+aUuWvV58/m6Opc6Zo+M1Vu1efP5pS5a9Xnz+bo6lxVrWvV58/m6Opc6Zo+M2VuDlp6tvfzkUe2xw033BYbNjwX69d3x403Ltzuu4877vD46lf/tfH74sX3R0RLzzHHHLPukksuGdXb2xsRLT13331/4q75q9Xr9SKvBwAAAAAAQB/p6upa0d7evmbL7yO/PLL98WcfT/ZNiyOGjehZ86k1XTt6zXnnnbfPv/3bv+01YsSIjSNHjuw57rjjnrr22mtHXHzxxf991FFHdUdEPProoy0f+tCH9nvwwQeHbtq0qfaWt7zl6Xnz5q1cv3597SMf+ch+nZ2du/X29tZGjx793C233PKbSy+9dERnZ+duV1999cqIiGOOOeaA888/f/WsWbOeTjXbi+nq6hrZ3t7etquvt5wDAAAAAACoiOxyri889dRTA/bYY4/ep59+esARRxwx9oorrnho2rRp3X3Z6ZV4qcs5/+ccAAAAAAAAhTnllFPGPPjgg8Oee+652vve977H+/Ni7uXY4XJu3vjxqyJiVILrrJ6zbNneiXPzyGzKLfn8Tbm6Ole69o/MvHJ17T/3gHtuuiRZ5oSZ5ze65pFbm1tLllnvqDe65pFb8q5Vn78pt+Rdqz5/U66uzlUuubd2JsuMGVMbXefW5ibL7ah3bM6tpZs/6lv/XRPl5pHZnFvu+Ztzy9216vM35+rab85Vd3d3sszW1tZG1zxyS9616vM35eoaEZHoHhD11JmZ3Dwy88rV9eXkDh78w4jYOGbrIy09EZO2+RrKxe0RPQk+3LVtbnPmDTd0bPvCfSM6933pmXl1zd+AnTyf4qBsLydFbh6Z2Zwyz5/N0dW50rV/ZOaVq6t7gK7pM1PlVn3+bE6Zu1Z9/myOrs6VrukzU+VWff5sTpm7Vn3+bI6uzlXVulZ9/myOrs6VrukzE+Vml1spll3ZnDwy88zN186WcwAAAAAAAEAilnMAAAAAAABQEMs5AAAAAAAAKEih36EJAAAAAABAidweERs7pyTLGxQRb315b/3Qh74Q5503Jw4++A0v+pr3vve9bbNmzXrq9NNPf+LlXaXvWc4BAAAAAABU1cby5H39659L16PEfK0lAAAAAAAAhVmx4g9x0EGz4+STPxfjxp0Us2d/Orq7N8TRR58ZnZ33RkTE8OFHxWc/e3m0t8+Jww8/PVavfvwFOf/n//xTnHbahbFp06aiR3hFLOcAAAAAAAAo1P33PxRnn31SLF8+P3bffbe4/PL5Tc8/88yzcfjhh0RX17w46qjJceWV/9H0/Jlnnvn6xx57Mr75zY4YOHBgkdVfMcs5AAAAAAAACjV69Kg48sj2iIg45ZQ/i4ULu5qeHzx4UMyaNT0iIqZMOShWrHi08dwXv/jF161bt27gFVf8bdRqteJKJ2I5BwAAAAAAQKGyS7Xs74MGtTQeGzhwYPT09DSemzRp0jNLlixpXbv2qfyL5sByDgAAAAAAgEKtXLkq7rhjSUREzJt3c0yb1r7L733nO9+57vzzz181c+a58fTTz+RVMTeWcwAAAAAAAFU1qG/yxo4dE5ddNj/GjTspnnhiXZx11uyXdJkzzjjjiQ9/+N1xwgnnx7PPbngZRftOS18XAAAAAAAAoI+8NSJi6qKtD3ROKeKyLS0D45prPt/02C9+8c+Nn9evX9D4efbsY2P27GMjIuL6669fseXxM844Ic4444Scm6bnk3MAAAAAAABQEMs5AAAAAAAACtPWtk8sXXptX9foM5ZzAAAAAAAAUBDLOQAAAAAAACjIzpZzqxNdJ5uTIjePzGxOmefP5ujqXOnaPzLzytXVPUDX9Jmpcqs+fzanzF2rPn82R1fnStf0malyqz5/NqfMXas+fzZHV+eqal2rPn82R1fnStf0mYlyW3p2/HuK3Dwy88zNV61erxd5PQAAAAAAAPpIV1fXivb29jV93eNPSVdX18j29va2XX19S45dAAAAAAAAKLEvj/xy+7OPP5tsXzRsxLCeT635VFeqvJeqtbV1cnd39919df1dscN/7Hnjx6+KiFEJrrN6zrJleyfOzSOzKbfk8zfl6upc6do/MvPK1bX/3APuuemSZJkTZp7f6JpH7txaLVlmR73e6Fqbmy633rE5N4/MhLl5ZDbllnz+ptySd636/E25ujpXueTe2pksM2ZMbXTNJTfh38HY5u9gotw8Mptzyz1/c265u1Z9/uZcXfvNueru7k6W2dra2uiaR27Ju1Z9/qZcXSMiEt0Dop46M5ObR2Zeubq+nNzBg38YERvHbPn92cefTVBrq82Lvs4pm78qctL/LOkWt0f0JFgAtvRs3Di+a9CgQfFiuQMGRGy+/kvL3do1fzv7P+dSHJTt5aTIzSMzm1Pm+bM5ujpXuvaPzLxydXUP0DV9Zqrcqs+fzSlz16rPn83R1bnSNX1mqtyqz5/NKXPXqs+fzdHVuapa16rPn83R1bnSNX1mytwcbLs0a16grVjxhzjooNlx8smfi3HjTorZsz8d3d0boq3thFiz5smIiOjsvDeOPvrMiIi48MKvxQc+cEEceeQHW0488cT9L7300hHHHnvsG48++i9bDjzwxJg798rtNrjoom/Hm998akyc+P7o6PjnXeyav50t5wAAAAAAACCp++9/KM4++6RYvnx+7L77bnH55fN3+Pp77/19/PSnl8UNN9zw+4iIJUuW7Hb99V+KJUvmxfz5P43OznubXv/jH98ZDz64Mn71q2/F4sXfiUWL7osFC36d30AvgeUcAAAAAAAAhRo9elQceWR7RESccsqfxcKFO/5WyRNOOCqGDRva+H3atGnrRozYM4YNGxonnnhMLFy4uOn1P/7xnfHjH/9XTJ58chx66Clx330r4sEH/zv9IC9DoR/TAwAAAAAAgFqt9oLfW1oGRm9vb0REbNjwfNPzu+029AWv39Hv9Xo9/vZvT4szzzwxVeVkfHIOAAAAAACAQq1cuSruuGNJRETMm3dzTJvWHm1tr4tFi5ZHRMT11/98h+9fuHDh7mvXPhXPPrsh/uM/bm18Cm+L448/Ir7xje/H+vXdERHxyCN/jD/+cW0Ok7x0lnMAAAAAAAAVtduowX2SN3bsmLjssvkxbtxJ8cQT6+Kss2ZHR8eH45xzvhJTp54aAwfueIU1ceLEZ9773k/HxIlz4r3vfVtMnXpw0/PHHXd4zJlzfBxxxBkxYcL7Yvbs/x1PP939sudKyddaAgAAAAAAVNTfrHpHRExdtPWRzilFXLelZWBcc83nmx6bPn1yPPDA9S947YUXfuQFj+2zzz4br776iy94fP36BY2fzznn/XHOOe9P0DYtn5wDAAAAAACAgvjkHAAAAAAAAIVpa9snli699mW//xOf+MTjEfF4ROdr0rUqjk/OAQAAAAAAQEEs5wAAAAAAAKAglnMAAAAAAABQEMs5AAAAAAAAKEhLXxcAAAAAAACgj+x9fMTqtVOS5Y3aK2LVzcnitvjFLxbFxRdfEzfeeFvy7KL55BwAAAAAAEBVrV7bp3n1ej16e3vTdig5n5wDAAAAAACgMCtW/CGOP/7j8Za3HBKLFi2PT33q1Ljiin+L5557Pt74xtfHN795QQwf3ho/+tHt8dd//ZVobR0a06ZN6uvayfjkHAAAAAAAAIV68MH/jrPPnh233vq1+Jd/+X789KeXxa9/fU1MnTouvvKV78SGDc/Fhz/893HDDV+JRYu+HatWPd7XlZPZ2XJudaLrZHNS5OaRmc0p8/zZHF2dK137R2Zeubq6B+iaPjNVbtXnz+aUuWvV58/m6Opc6Zo+M1Vu1efP5pS5a9Xnz+bo6lxVrWvV58/m6Opc6Zo+M2VuDlp6tv/zZmPGvC4OP3xC3HnnPXHvvb+LI4/8y5g0aU5861s3xUMPrYr77lsR+++/bxx44H5Rq9XilFPeGfV61F/8Gqm65q9Wr9d3/ioAAAAAAAD6va6urhXt7e1rGg/UalOSX6ReX7Sjp++///7Bs2bNOvDBBx9cNm/evD2++93v7nXDDTf8ftvX3H777cM+8YlP7NfZ2Xl/RMR3vvOdPb7+9a+/5pZbbvlN8r6vUFdX18j29va2XX29r7UEAAAAAACgTxx99NHPdHZ2Dl+6dOmQiIh169YNWLJkyZBJkyZteOSRRwYvW7ZsSETE9773vb36tmk6LTt6ct748asiYlSC66yes2zZ3olz88hsyi35/E25ujpXuvaPzLxyde0/94B7brokWeaEmec3uuaRO7dWS5bZUa83utbmpsutd2zOzSMzYW4emU25JZ+/KbfkXas+f1Ours5VLrm3dibLjBlTG11zyU34dzC2+TuYKDePzObccs/fnFvurlWfvzlX135zrrq7u5Nltra2NrrmkVvyrlWfvylX14iIRPeAqKfOzOTmkZlXrq4vJ3fw4B9GxMYxjQdG7RWxem2CatvkReeUzV8VOalr84OL2yN6GjupIUP+EEOG9EZE55R99on4zncuiNNP/1+HPPfcxoiI+MIXPhoTJz4f3/zm38Z73zvzkNbWoTF9+qT4zW+ezHwdZHPuy7dt1/ztrHCKg7K9nBS5eWRmc8o8fzZHV+dK1/6RmVeuru4BuqbPTJVb9fmzOWXuWvX5szm6Ole6ps9MlVv1+bM5Ze5a9fmzObo6V1XrWvX5szm6Ole6ps9Mk7vq5oiYus3XUHYm+prLbZdmzQu0trZ9YunSaxu/v+1tb4677rr6BQnvfOdb47773rrtQ7UXv8YrkSpn1/haSwAAAAAAACiI5RwAAAAAAAAUxHIOAAAAAAAACmI5BwAAAAAAAAWxnLH+wAIAACAASURBVAMAAAAAAICCWM4BAAAAAABAQVr6ugAAAAAAAAB9o7v7TRHRPWXrIwe/wsSeaG194GW/e/jwo2L9+gUvePyKK66P1tahceqpU+PSSy8dccIJJ6xra3sFNfuQ5RwAAAAAAEBlpV4V5bN6+uhH39v4+Zprrhk5adKkZ9vaWnO5Vt4s5wAAAAAAACjERRd9O4YMGRSf+MT74txzvxJdXQ/Gz3/+T/Hzn98V//Iv/xkREZ/97OVx440LY9iwIfGf/3lxjBo1Ii688GsxfPiwGDHinlcvXbq09dRTT33DnnsOjjvu+Ebce+/v47zz/m+sX/9sjBy5Z1x1VUe87nUj+3jSF+f/nAMAAAAAAKAQ06dPittuWxwREZ2dy2P9+u7YuLEnbrttcRx11KHxzDPPxuGHHxJdXfPiqKMmx5VX/kfT+08//fQnDjnkkO6rr776d4sXz4uWlpb4+Mcviuuu+1IsWvTtOOOMP4/Pfvbyvhhtl/nkHAAAAAAAAIWYMmVcLFq0PNatWx9DhgyKQw8dG52d98Ztt90dl176NzF48KCYNWv6/7z2oPjJT361w7z7718RS5f+Lt7xjo9FRMSmTb2l/tRchOUcAAAAAAAABRk0qCX233+fuOqqG+Otb50YEyceGLfcsih+85uHY9y4/WPQoJao1WoRETFw4MDo6enZYV69HjF+/Bvijju+UUT9JHytJQAAAAAAAIWZPn1yXHzxNXHUUZNj+vRJccUV18fkyWMbS7mdGT58+KannnpqYETE2LFj4rHHnog77lgSEREbN/bEsmW/za98ApZzAAAAAAAAlbXjT6blkTd9+qR49NE1ccQRE2PUqBExdOiQmD590i5f4dRTT13z8Y9/fMykSXNi06ZNcd11X4xPf/ofo719TkyaNCduv33JKxkgd77WEgAAAAAAoKJaWx+IiKmLtj7SOSXvax577GGxceOdjd8feOD6xs/r1y9o/Dx79rExe/axERFx4YUfaTx+2mmnPXnaaac9uaXrpEljY8GCr+VdOxmfnAMAAAAAAICC7Gw5tzrRdbI5KXLzyMzmlHn+bI6uzpWu/SMzr1xd3QN0TZ+ZKrfq82dzyty16vNnc3R1rnRNn5kqt+rzZ3PK3LXq82dzdHWuqta16vNnc3R1rnRNn5kot6Vnx7+nyM0jM8/cfNXq9XqR1wMAAAAAAKCPdHV1rWhvb1/T1z3+lHR1dY1sb29v29XX+1pLAAAAAAAAKIjlHAAAAAAAABSkZUdPzhs/flVEjEpwndVzli3bO3FuHplNuSWfvylXV+dK1/6RmVeurv3nHnDPTZcky5ww8/xG1zxy59ZqyTI76vVG19rcdLn1js25eWQmzM0jsym35PM35Za8a9Xnb8rV1bnKJffWzmSZMWNqo2suuQn/DsY2fwcT5eaR2Zxb7vmbc8vdterzN+fq2m/OVXd3d7LM1tbWRtc8ckveterzN+XqGhGR6B4Q9dSZmdw8MvPK1fXl5A4e/MOI2Dhm6yMtPRGTurb+vrg9omeH+6Nds21uHpl55uZrZ4VTHJTt5aTIzSMzm1Pm+bM5ujpXuvaPzLxydXUP0DV9Zqrcqs+fzSlz16rPn83R1bnSNX1mqtyqz5/NKXPXqs+fzdHVuapa16rPn83R1bnSNX1motxjWyLWTnnlOVvsFRE3R/PS7OUv0IYPPyrWr18QK1b8IWbNOrdl6dLfbvNsisVcypxd42stAQAAAAAAKmttyfP+9FjOAQAAAAAAUIgLLrgi/uEf5jV+/+xnL4//9/++Gxdd9O1485tPjYkT3x8dHf+8w4zu7u7a7Nmz2yZMeF9Mnnxy3HJLZ0REzJz517FkyYMRETF58snxd393ZeOaV1757zlN9NJZzgEAAAAAAFCIM844Ia6++gcREdHb2xvf+96PY++9R8SDD66MX/3qW7F48Xdi0aL7YsGCX79oxpe+9KXX1mq1uOee78V3v/v38cEPXhgbNjwX06dPittuuzueemp9tLQMjF/+cklERNx22+I46qjJhcy3KyznAAAAAAAAKERb2z4xYsQecffd98ePf3xnTJ48Nu6669748Y//KyZPPjkOPfSUuO++FfHgg//9ohm333778A984AOPR0QcdFBbjBnzunjggZUxffrkWLDg7vjlL7ti5sxpsX59d3R3b4jf//4PMXZsW1Ej7lSh/8EdAAAAAAAA1fahD70rrrrqhli16vE444wT4mc/+1X87d+eFmeeeeIryn3zmw+Ozs7l8YY37BvveMdbYs2aJ+PKK/89pkw5KFHzNHxyDgAAAAAAgMK85z3HxI9+dEfcdde9cfzxh8fxxx8R3/jG92P9+u6IiHjkkT/GH/+49kXff+SRR66/5ppr9oqIeOCBh2LlylUxduyYGDx4UIwePSrmz/9ZHHHEhJg+fVJcfPE1pfpKywifnAMAAAAAAKiwvSLixRdhLy9vxwYPHhTHHDM19txzeAwcODCOO+7wWL7893HEEWdERMTw4a1xzTV/F6997fazPvWpT/3x1FNPHTNhwvuipWVgXHVVRwwZMjgiIqZPnxQ/+9ldMWzY0Jg+fXI8/PAfY/p0yzkAAAAAAABK4eaImLpo6++dU/K+Ym9vb9x55z0xf/4XG4+dc87745xz3v+C165fvyAiNv9fdUuXXhsREa2trfXrrrtuRUTniOzrP//5s+Lznz8rIiL22ec1Ua/flccIr4ivtQQAAAAAAKAQ9977uzjggPfEsce+OQ48cL++rtMnfHIOAAAAAACAQhx88Bvid7/7z76u0ad8cg4AAAAAAKAyeqNe7+sOfzp6e3trEdH7Ut5jOQcAAAAAAFARQ4f+Jh5/vMeCLoHe3t7aY489tkdELH0p7/O1lgAAAAAAABXx+tdfGA8/fGE89tgBseUzXM8/3zVyy/ODB69Jdq0tuXlk5pn7EvRGxNKenp4PvZQ3Wc4BAAAAAABUxKBBT8T++5+TebTetvXnSQk/U7clN4/MPHPz5WstAQAAAAAAoCCWcwAAAAAAAFCQnS3nVie6TjYnRW4emdmcMs+fzdHVudK1f2Tmlaure4Cu6TNT5VZ9/mxOmbtWff5sjq7Ola7pM1PlVn3+bE6Zu1Z9/myOrs5V1bpWff5sjq7Ola7pM1PlVn3+lDm7pFavJ/w6TgAAAAAAAOBF+VpLAAAAAAAAKEjLjp6cN378qogYleA6q+csW7Z34tw8MptySz5/U66uzpWu/SMzr1xd+8894J6bLkmWOWHm+Y2ueeTOrdWSZXbU642utbnpcusdm3PzyEyYm0dmU27J52/KLXnXqs/flKurc5VL7q2dyTJjxtRG11xyE/4djG3+DibKzSOzObfc8zfnlrtr1edvztW135yr7u7uZJmtra2Nrnnklrxr1edvytU1IiLRPSDqqTMzuXlk5pWrq3OVV26+dvbJuRQDbS8nRW4emdmcMs+fzdHVudK1f2Tmlaure4Cu6TNT5VZ9/mxOmbtWff5sjq7Ola7pM1PlVn3+bE6Zu1Z9/myOrs5V1bpWff5sjq7Ola7pM1PlVn3+lDm7xNdaAgAAAAAAQEEs5wAAAAAAAKAglnMAAAAAAABQEMs5AAAAAAAAKIjlHAAAAAAAABTEcg4AAAAAAAAKYjkHAAAAAAAABbGcAwAAAAAAgIJYzgEAAAAAAEBBLOcAAAAAAACgIJZzAAAAAAAAUBDLOQAAAAAAACiI5RwAAAAAAAAUxHIOAAAAAAAACmI5BwAAAAAAAAWxnAMAAAAAAICC7Gw5tzrRdbI5KXLzyMzmlHn+bI6uzpWu/SMzr1xd3QN0TZ+ZKrfq82dzyty16vNnc3R1rnRNn5kqt+rzZ3PK3LXq82dzdHWuqta16vNnc3R1rnRNn5kqt+rzp8zZJbV6vV7k9QAAAAAAAKCyfK0lAAAAAAAAFMRyDgAAAAAAAArSsqMn540fvyoiRiW4zuo5y5btnTg3j8ym3JLP35Srq3Ola//IzCtX1/5zD7jnpkuSZU6YeX6jax65c2u1ZJkd9Xqja21uutx6x+bcPDIT5uaR2ZRb8vmbckveterzN+Xq6lzlkntrZ7LMmDG10TWX3IR/B2Obv4OJcvPIbM4t9/zNueXuWvX5m3N17Tfnqru7O1lma2tro2seuSXvWvX5m3J1jYhIdA+IeurMTG4emXnl6upc5ZWbr519ci7FQNvLSZGbR2Y2p8zzZ3N0da507R+ZeeXq6h6ga/rMVLlVnz+bU+auVZ8/m6Orc6Vr+sxUuVWfP5tT5q5Vnz+bo6tzVbWuVZ8/m6Orc6Vr+sxUuVWfP2XOLvG1lgAAAAAAAFAQyzkAAAAAAAAoiOUcAAAAAAAAFMRyDgAAAAAAAApiOQcAAAAAAAAFsZwDAAAAAACAgljOAQAAAAAAQEEs5wAAAAAAAKAglnMAAAAAAABQEMs5AAAAAAAAKIjlHAAAAAAAABTEcg4AAAAAAAAKYjkHAAAAAAAABbGcAwAAAAAAgIJYzgEAAAAAAEBBLOcAAAAAAACgIDtbzq1OdJ1sTorcPDKzOWWeP5ujq3Ola//IzCtXV/cAXdNnpsqt+vzZnDJ3rfr82RxdnStd02emyq36/NmcMnet+vzZHF2dq6p1rfr82RxdnStd02emyq36/ClzdkmtXq8XeT0AAAAAAACoLF9rCQAAAAAAAAVp2dGT88aPXxURoxJcZ/WcZcv2TpybR2ZTbsnnb8rV1bnStX9k5pWra/+5B9xz0yXJMifMPL/RNY/cubVassyOer3RtTY3XW69Y3NuHpkJc/PIbMot+fxNuSXvWvX5m3J1da5yyb21M1lmzJja6JpLbsK/g7HN38FEuXlkNueWe/7m3HJ3rfr8zbm69ptz1d3dnSyztbW10TWP3JJ3rfr8Tbm6RkQkugdEPXVmJjePzLxydXWu8srN184+OZdioO3lpMjNIzObU+b5szm6Ole69o/MvHJ1dQ/QNX1mqtyqz5/NKXPXqs+fzdHVudI1fWaq3KrPn80pc9eqz5/N0dW5qlrXqs+fzdHVudI1fWaq3KrPnzJnl/haSwAAAAAAACiI5RwAAAAAAAAUxHIOAAAAAAAACmI5BwAAAAAAAAWxnAMAAAAAAICCWM4BAAAAAABAQSznAAAAAAAAoCCWcwAAAAAAAFAQyzkAAAAAAAAoiOUcAAAAAAAAFMRyDgAAAAAAAApiOQcAAAAAAAAFsZwDAAAAAACAgljOAQAAAAAAQEEs5wAAAAAAAKAglnMAAAAAAABQkJ0t51Ynuk42J0VuHpnZnDLPn83R1bnStX9k5pWrq3uArukzU+VWff5sTpm7Vn3+bI6uzpWu6TNT5VZ9/mxOmbtWff5sjq7OVdW6Vn3+bI6uzpWu6TNT5VZ9/pQ5u6RWr9eLvB4AAAAAAABUlq+1BAAAAAAAgIJYzgEAAAAAAEBBWnb05Lzx41dFxKgE11k9Z9myvRPn5pHZlFvy+ZtydXWudO0fmXnl6tp/7gH33HRJsswJM89vdM0jd26tliyzo15vdK3NTZdb79icm0dmwtw8MptySz5/U27Ju1Z9/qZcXZ2rXHJv7UyWGTOmNrrmkpvw72Bs83cwUW4emc255Z6/ObfcXas+f3Ourv3mXHV3dyfLbG1tbXTNI7fkXas+f1OurhERie4BUU+dmcnNIzOvXF2dq7xy87WzT86lGGh7OSly88jM5pR5/myOrs6Vrv0jM69cXd0DdE2fmSq36vNnc8rcterzZ3N0da50TZ+ZKrfq82dzyty16vNnc3R1rqrWterzZ3N0da50TZ+ZKrfq86fM2SW+1hIAAAAAAAAKYjkHAAAAAAAABbGcAwAAAAAAgIJYzgEAAAAAAEBBLOcAAAAAAACgIJZzAAAAAAAAUBDLOQAAAAAAACiI5RwAAAAAAAAUxHIOAAAAAAAACmI5BwAAAAAAAAWxnAMAAAAAAICCWM4BAAAAAABAQSznAAAAAAAAoCCWcwAAAAAAAFAQyzkAAAAAAAAoyM6Wc6sTXSebkyI3j8xsTpnnz+bo6lzp2j8y88rV1T1A1/SZqXKrPn82p8xdqz5/NkdX50rX9Jmpcqs+fzanzF2rPn82R1fnqmpdqz5/NkdX50rX9Jmpcqs+f8qcXVKr1+tFXg8AAAAAAAAqy9daAgAAAAAAQEEs5wAAAAAAAKAgLTt6ct748asiYlSC66yes2zZ3olz88hsyi35/E25ujpXuvaPzLxyde0/94B7brokWeaEmec3uuaRO7dWS5bZUa83utbmpsutd2zOzSMzYW4emU25JZ+/KbfkXas+f1Ours5VLrm3dibLjBlTG11zyU34dzC2+TuYKDePzObccs/fnFvurlWfvzlX135zrrq7u5Nltra2NrrmkVvyrlWfvylX14iIRPeAqKfOzOTmkZlXrq7OVV65+drZJ+dSDLS9nBS5eWRmc8o8fzZHV+dK1/6RmVeuru4BuqbPTJVb9fmzOWXuWvX5szm6Ole6ps9MlVv1+bM5Ze5a9fmzObo6V1XrWvX5szm6Ole6ps9MlVv1+VPm7BJfawkAAAAAAAAFsZwDAAAAAACAgljOAQAAAAAAQEEs5wAAAAAAAKAglnMAAAAAAABQEMs5AAAAAAAAKIjlHAAAAAAAABTEcg4AAAAAAAAKYjkHAAAAAAAABbGcAwAAAAAAgIJYzgEAAAAAAEBBLOcAAAAAAACgIJZzAAAAAAAAUBDLOQAAAAAAACiI5RwAAAAAAAAUxHIOAAAAAAAACrKz5dzqRNfJ5qTIzSMzm1Pm+bM5ujpXuvaPzLxydXUP0DV9Zqrcqs+fzSlz16rPn83R1bnSNX1mqtyqz5/NKXPXqs+fzdHVuapa16rPn83R1bnSNX1mqtyqz58yZ5fU6vV6kdcDAAAAAACAyvK1lgAAAAAAAFCQlh09OW/8+FURMSrBdVbPWbZs78S5eWQ25ZZ8/qZcXZ0rXftHZl65uvafe8A9N12SLHPCzPMbXfPInVurJcvsqNcbXWtz0+XWOzbn5pGZMDePzKbcks/flFvyrlWfvylXV+cql9xbO5Nlxoypja655Cb8Oxjb/B1MlJtHZnNuuedvzi1316rP35yra785V93d3ckyW1tbG13zyC1516rP35Sra0REontA1FNnZnLzyMwrV1fnKq/cfO3sk3MpBtpeTorcPDKzOWWeP5ujq3Ola//IzCtXV/cAXdNnpsqt+vzZnDJ3rfr82RxdnStd02emyq36/NmcMnet+vzZHF2dq6p1rfr82RxdnStd02emyq36/ClzdomvtQQAAAAAAICCWM4BAAAAAABAQSznAAAAAAAAoCCWcwAAAAAAAFAQyzkAAAAAAAAoiOUcAAAAAAAAFMRyDgAAAAAAAApiOQcAAAAAAAAFsZwDAAAAAACAgljOAQAAAAAAQEEs5wAAAAAAAKAglnMAAAAAAABQEMs5AAAAAAAAKIjlHAAAAAAAABTEcg4AAAAAAAAKYjkHAAAAAAAABdnZcm51outkc1Lk5pGZzSnz/NkcXZ0rXftHZl65uroH6Jo+M1Vu1efP5pS5a9Xnz+bo6lzpmj4zVW7V58/mlLlr1efP5ujqXFWta9Xnz+bo6lzpmj4zVW7V50+Zs0tq9Xq9yOsBAAAAAABAZflaSwAAAAAAACiI5RwAAAAAAAAUpGVHT84bP35VRIxKcJ3Vc5Yt2ztxbh6ZTbkln78pV1fnStf+kZlXrq795x5wz02XJMucMPP8Rtc8cufWaskyO+r1Rtfa3HS59Y7NuXlkJszNI7Mpt+TzN+WWvGvV52/K1dW5yiX31s5kmTFjaqNrLrkJ/w7GNn8HE+XmkdmcW+75m3PL3bXq8zfn6tpvzlV3d3eyzNbW1kbXPHJL3rXq8zfl6hoRkegeEPXUmZncPDLzytXVucorN187++RcioG2l5MiN4/MbE6Z58/m6Opc6do/MvPK1dU9QNf0malyqz5/NqfMXas+fzZHV+dK1/SZqXKrPn82p8xdqz5/NkdX56pqXas+fzZHV+dK1/SZqXKrPn/KnF3iay0BAAAAAACgIJZzAAAAAAAAUBDLOQAAAAAAACiI5RwAAAAAAAAUxHIOAAAAAAAACmI5BwAAAAAAAAWxnAMAAAAAAICCWM4BAAAAAABAQSznAAAAAAAAoCCWcwAAAAAAAFAQyzkAAAAAAAAoiOUcAAAAAAAAFMRyDgAAAAAAAApiOQcAAAAAAAAFsZwDAAAAAACAgljOAQAAAAAAQEF2tpxbneg62ZwUuXlkZnPKPH82R1fnStf+kZlXrq7uAbqmz0yVW/X5szll7lr1+bM5ujpXuqbPTJVb9fmzOWXuWvX5szm6OldV61r1+bM5ujpXuqbPTJVb9flT5uySWr1eL/J6AAAAAAAAUFm+1hIAAAAAAAAK0rKjJ+eNH78qIkYluM7qOcuW7Z04N4/MptySz9+Uq6tzpWv/yMwrV9f+cw+456ZLkmVOmHl+o2seuXNrtWSZHfV6o2ttbrrcesfm3DwyE+bmkdmUW/L5m3JL3rXq8zfl6upc5ZJ7a2eyzJgxtdE1l9yEfwdjm7+DiXLzyGzOLff8zbnl7lr1+Ztzde0356q7uztZZmtra6NrHrkl71r1+ZtydY2ISHQPiHrqzExuHpl55erqXOWVm6+dfXIuxUDby0mRm0dmNqfM82dzdHWudO0fmXnl6uoeoGv6zFS5VZ8/m1PmrlWfP5ujq3Ola/rMVLlVnz+bU+auVZ8/m6Orc1W1rlWfP5ujq3Ola/rMVLlVnz9lzi7xtZYAAAAAAABQEMs5AAAAAAAAKIjlHAAAAAAAABTEcg4AAAAAAAAKYjkHAAAAAAAABbGcAwAAAAAAgIJYzgEAAAAAAEBBLOcAAAAAAACgIJZzAAAAAAAAUBDLOQAAAAAAACiI5RwAAAAAAAAUxHIOAAAAAAAACmI5BwAAAAAAAAWxnAMA4P9n545NIg3COA7PwkXbgPYgl11uAXZgGxYgFmAbdnAFXG4m9qANbPpdcLDcDKIG77zMx/s8qfDb/8CwBoMCAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJvnqcew/6nLET0Z3RHDsrn3/s2Ope2bqP5qyurb4DbI1vRnWrn3/srLy1+vnHjq3ula3xzahu9fOPnZW3Vj//2LHVvaq2tfr5x46t7pWt8c2obvXzR3a+5bBtW+bnAQAAAAAAQFn+rSUAAAAAAAAk8TgHAAAAAAAASX589sOnq6u31tpFwOe8376+XgZ3ZzS77uLn77q2ule27qM5q2vrfr4DXn4/hjV/3tydt87oPhwOYc37bTtvPTzEdbf7f90ZzcDujGbXXfz8XXfxrdXP33Vtda+mdP88hzXb9a/z1indwN+D7b/fg0HdGc2+u/b5++7aW6ufv+/aupt7dTqdwprH4/G8dUZ38a3Vz991bW2ttaDvgLZFN4fujOasrq3u1azuXF/95VzEgT7qRHRnNMfOyucfO7a6V7buozmra6vvAFvjm1Hd6ucfOytvrX7+sWOre2VrfDOqW/38Y2flrdXPP3Zsda+qba1+/rFjq3tla3wzqlv9/JGdb/FvLQEAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCRfPc69B33O2InozmiOnZXPP3Zsda9s3UdzVtdW3wG2xjejutXPP3ZW3lr9/GPHVvfK1vhmVLf6+cfOylurn3/s2OpeVdta/fxjx1b3ytb4ZlS3+vkjO99y2LYt8/MAAAAAAACgLP/WEgAAAAAAAJL8+OyHT1dXb621i4DPeb99fb0M7s5odt3Fz991bXWvbN1Hc1bXVt8BL78fw7o/b+4uW2vt4XAIa95v23nr4SGuu93/685oBnZnNLvu4ufvuotvrX7+rmurezWl++c5rNmuf523TukG/h5s//0eDOrOaPbdtc/fd9feWv38fdfW3dyr0+kU1jwej+etM7qLb61+/q5ra2utBX0HtC26OXRnNGd1bXWvZnXn+uov5yIO9FEnojujOXZWPv/YsdW9snUfzVldW30H2BrfjOpWP//YWXlr9fOPHVvdK1vjm1Hd6ucfOytvrX7+sWOre1Vta/Xzjx1b3Stb45tR3ernj+x8i39rCQAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPnqce496HPGTkR3RnPsrHz+sWOre2XrPpqzurb6DrA1vhnVrX7+sbPy1urnHzu2ule2xjejutXPP3ZW3lr9/GPHVveq2tbq5x87trpXtsY3o7rVzx/Z+ZbDtm2ZnwcAAAAAAABl+beWAAAAAAAAkMTjHAAAAAAAACT58dkPn66u3lprFwGf8377+noZ3J3R7LqLn7/r2upe2bqP5qyurb4DXn4/hnV/3txdttbaw+EQ1rzftvPWw0Ncd7v/153RDOzOaHbdxc/fdRffWv38XddW92pK989zWLNd/zpvndIN/D3Y/vs9GNSd0ey7a5+/7669tfr5+66tu7lXp9MprHk8Hs9bZ3QX31r9/F3X1tZaC/oOaFt0c+jOaM7q2upezerO9dVfzkUc6KNORHdGc+ysfP6xY6t7Zes+mrO6tvoOsDW+GdWtfv6xs/LW6ucfd+dBvgAAIABJREFUO7a6V7bGN6O61c8/dlbeWv38Y8dW96ra1urnHzu2ule2xjejutXPH9n5Fv/WEgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgyVePc+9BnzN2IrozmmNn5fOPHVvdK1v30ZzVtdV3gK3xzahu9fOPnZW3Vj//2LHVvbI1vhnVrX7+sbPy1urnHzu2ulfVtlY//9ix1b2yNb4Z1a1+/sjOtxy2bcv8PAAAAAAAACjLv7UEAAAAAACAJB7nAAAAAAAAIMmPz374dHX11lq7CPic99vX18vg7oxm1138/F3XVvfK1n00Z3Vt9R3w8vsxrPvz5u6ytdYeDoew5v22nbceHuK62/2/7oxmYHdGs+sufv6uu/jW6ufvura6V1O6f57Dmu3613nrlG7g78H23+/BoO6MZt9d+/x9d+2t1c/fd23dzb06nU5hzePxeN46o7v41urn77q2ttZa0HdA26KbQ3dGc1bXVvdqVneur/5yLuJAH3UiujOaY2fl848dW90rW/fRnNW11XeArfHNqG7184+dlbdWP//YsdW9sjW+GdWtfv6xs/LW6ucfO7a6V9W2Vj//2LHVvbI1vhnVrX7+yM63+LeWAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAkq8e596DPmfsRHRnNMfOyucfO7a6V7buozmra6vvAFvjm1Hd6ucfOytvrX7+sWOre2VrfDOqW/38Y2flrdXPP3Zsda+qba1+/rFjq3tla3wzqlv9/JGdbzls25b5eQAAAAAAAFCWf2sJAAAAAAAASX589sOnq6u31tpFwOe8376+XgZ3ZzS77uLn77q2ule27qM5q2ur74CX349h3Z83d5ettfZwOIQ177ftvPXwENfd7v91ZzQDuzOaXXfx83fdxbdWP3/XtdW9mtL98xzWbNe/zlundAN/D7b/fg8GdWc0++7a5++7a2+tfv6+a+tu7tXpdAprHo/H89YZ3cW3Vj9/17W1tdaCvgPaFt0cujOas7q2ulezunN99ZdzEQf6qBPRndEcOyuff+zY6l7Zuo/mrK6tvgNsjW9Gdauff+ysvLX6+ceOre6VrfHNqG7184+dlbdWP//YsdW9qra1+vnHjq3ula3xzahu9fNHdr7Fv7UEAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSfPU49x70OWMnojujOXZWPv/YsdW9snUfzVldW30H2BrfjOpWP//YWXlr9fOPHVvdK1vjm1Hd6ucfOytvrX7+sWOre1Vta/Xzjx1b3Stb45tR3ernj+x8y2HbtszPAwAAAAAAgLL8W0sAAAAAAABI4nEOAAAAAAAAkvz47IdPV1dvrbWLgM95v319vQzuzmh23cXP33Vtda9s3UdzVtdW3wEvvx/Duj9v7i5ba+3hcAhr3m/beevhIa673f/rzmgGdmc0u+7i5++6i2+tfv6ua6t7NaX75zms2a5/nbdO6Qb+Hmz//R4M6s5o9t21z993195a/fx919bd3KvT6RTWPB6P560zuotvrX7+rmtra60FfQe0Lbo5dGc0Z3Vtda9mdef66i/nIg70USeiO6M5dlY+/9ix1b2ydR/NWV1bfQfYGt+M6lY//9hZeWv1848dW90rW+ObUd3q5x87K2+tfv6xY6t7VW1r9fOPHVvdK1vjm1Hd6ueP7HyLf2sJAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk+epx7j3oc8ZORHdGc+ysfP6xY6t7Zes+mrO6tvoOsDW+GdWtfv6xs/LW6ucfO7a6V7bGN6O61c8/dlbeWv38Y8dW96ra1urnHzu2ule2xjejutXPH9n5lsO2bZmfBwAAAAAAAGX5t5YAAAAAAACQ5MdnP3y6unprrV0EfM777evrZXB3RrPrLn7+rmure2XrPpqzurb6Dnj5/RjW/Xlzd9laaw+HQ1jzftvOWw8Pcd3t/l93RjOwO6PZdRc/f9ddfGv183ddW92rKd0/z2HNdv3rvHVKN/D3YPvv92BQd0az7659/r679tbq5++7tu7mXp1Op7Dm8Xg8b53RXXxr9fN3XVtbay3oO6Bt0c2hO6M5q2urezWrO9dXfzkXcaCPOhHdGc2xs/L5x46t7pWt+2jO6trqO8DW+GZUt/r5x87KW6uff+zY6l7ZGt+M6lY//9hZeWv1848dW92ralurn3/s2Ope2RrfjOpWP39k51v8W0sAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACDJV49z70GfM3YiujOaY2fl848dW90rW/fRnNW11XeArfHNqG7184+dlbdWP//YsdW9sjW+GdWtfv6xs/LW6ucfO7a6V9W2Vj//2LHVvbI1vhnVrX7+yM63HLZty/w8AAAAAAAAKMu/tQQAAAAAAIAkHucAAAAAAAAgyY/Pfvh0dfXWWrsI+Jz329fXy+DujGbXXfz8XddW98rWfTRndW31HfDy+zGs+/Pm7rK11h4Oh7Dm/badtx4e4rrb/b/ujGZgd0az6y5+/q67+Nbq5++6trpXU7p/nsOa7frXeeuUbuDvwfbf78Gg7oxm3137/H137a3Vz993bd3NvTqdTmHN4/F43jqju/jW6ufvura21lrQd0DboptDd0ZzVtdW92pWd66v/nIu4kAfdSK6M5pjZ+Xzjx1b3Stb99Gc1bXVd4Ct8c2obvXzj52Vt1Y//9ix1b2yNb4Z1a1+/rGz8tbq5x87trpX1bZWP//YsdW9sjW+GdWtfv7Izrf4t5YAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEm+epx7D/qcsRPRndEcOyuff+zY6l7Zuo/mrK6tvgNsjW9Gdauff+ysvLX6+ceOre6VrfHNqG7184+dlbdWP//YsdW9qra1+vnHjq3ula3xzahu9fNHdr7lsG1b5ucBAAAAAABAWf6tJQAAAAAAACTxOAcAAAAAAABJfnz2w6erq7fW2kXA57zfvr5eBndnNLvu4ufvura6V7buozmra6vvgJffj2Hdnzd3l6219nA4hDXvt+289fAQ193u/3VnNAO7M5pdd/Hzd93Ft1Y/f9e11b2a0v3zHNZs17/OW6d0A38Ptv9+DwZ1ZzT77trn77trb61+/r5r627u1el0Cmsej8fz1hndxbdWP3/XtbW11oK+A9oW3Ry6M5qzura6V7O6c331l3MRB/qoE9Gd0Rw7K59/7NjqXtm6j+asrq2+A2yNb0Z1q59/7Ky8tfr5x46t7pWt8c2obvXzj52Vt1Y//9ix1b2qtrX6+ceOre6VrfHNqG7180d2vsW/tQQAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ89Tj3HvQ5YyeiO6M5dlY+/9ix1b2ydR/NWV1bfQfYGt+M6lY//9hZeWv1848dW90rW+ObUd3q5x87K2+tfv6xY6t7VW1r9fOPHVvdK1vjm1Hd6ueP7HzLYdu2zM8DAAAAAACAsvxbSwAAAAAAAEjy47MfPl1dvbXWLgI+5/329fUyuDuj2XUXP3/XtdW9snUfzVldW30HvPx+DOv+vLm7bK21h8MhrHm/beeth4e47nb/rzujGdid0ey6i5+/6y6+tfr5u66t7tWU7p/nsGa7/nXeOqUb+Huw/fd7MKg7o9l31z5/3117a/Xz911bd3OvTqdTWPN4PJ63zuguvrX6+buura21FvQd0Lbo5tCd0ZzVtdW9mtWd66u/nIs40EediO6M5thZ+fxjx1b3ytZ9NGd1bfUdYGt8M6pb/fxjZ+Wt1c8/dmx1r2yNb0Z1q59/7Ky8tfr5x46t7lW1rdXPP3Zsda9sjW9GdaufP7LzLf6tJQAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkOSrx7n3oM8ZOxHdGc2xs/L5x46t7pWt+2jO6trqO8DW+GZUt/r5x87KW6uff+zY6l7ZGt+M6lY//9hZeWv1848dW92ralurn3/s2Ope2RrfjOpWP39k51sO27Zlfh4AAAAAAACU5d9aAgAAAAAAQBKPcwAAAAAAAJDkx2c/fLq6emutXQR8zvvt6+tlcHdGs+sufv6ua6t7Zes+mrO6tvoOePn9GNb9eXN32VprD4dDWPN+285bDw9x3e3+X3dGM7A7o9l1Fz9/1118a/Xzd11b3asp3T/PYc12/eu8dUo38Pdg++/3YFB3RrPvrn3+vrv21urn77u27uZenU6nsObxeDxvndFdfGv183ddW1trLeg7oG3RzaE7ozmra6t7Nas711d/ORdxoI86Ed0ZzbGz8vnHjq3ula37aM7q2uo7wNb4ZlS3+vnHzspbq59/7NjqXtka34zqVj//2Fl5a/Xzjx1b3atqW6uff+zY6l7ZGt+M6lY/f2TnW/xbSwAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIMlXj3PvQZ8zdiK6M5pjZ+Xzjx1b3Stb99Gc1bXVd4Ct8c2obvXzj52Vt1Y//9ix1b2yNb4Z1a1+/rGz8tbq5x87trpX1bZWP//YsdW9sjW+GdWtfv7Izrcctm3L/DwAAAAAAAAoy7+1BAAAAAAAgCQ/Pvvh09XVW2vtIuBz3m9fXy+DuzOaXXfx83ddW90rW/fRnNW11XfAy+/HsO7Pm7vL1lp7OBzCmvfbdt56eIjrbvf/ujOagd0Zza67+Pm77uJbq5+/69rqXk3p/nkOa7brX+etU7qBvwfbf78Hg7ozmn137fP33bW3Vj9/37V1N/fqdDqFNY/H43nrjO7iW6ufv+va2lprQd8BbYtuDt0ZzVldW92rWd25vvrLuYgDfdSJ6M5ojp2Vzz92bHWvbN1Hc1bXVt8BtsY3o7rVzz92Vt5a/fxjx1b3ytb4ZlS3+vnHzspbq59/7NjqXlXbWv38Y8dW98rW+GZUt/r5Izvf4t9aAgAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASb56nHsP+pyxE9Gd0Rw7K59/7NjqXtm6j+asrq2+A2yNb0Z1q59/7Ky8tfr5x46t7pWt8c2obvXzj52Vt1Y//9ix1b2qtrX6+ceOre6VrfHNqG7180d2vuWwbVvm5wEAAAAAAEBZ/q0lAAAAAAAAJPE4BwAAAAAAAEl+fPbDp6urt9baRcDnvN++vl4Gd2c0u+7i5++6trpXtu6jOatrq++Al9+PYd2fN3eXrbX2cDiENe+37bz18BDX3e7/dWc0A7szml138fN33cW3Vj9/17XVvZrS/fMc1mzXv85bp3QDfw+2/34PBnVnNPvu2ufvu2tvrX7+vmvrbu7V6XQKax6Px/PWGd3Ft1Y/f9e1tbXWgr4D2hbdHLozmrO6trpXs7pzffWXcxEH+qgT0Z3RHDsrn3/s2Ope2bqP5qyurb4DbI1vRnWrn3/srLy1+vnHjq3ula3xzahu9fOPnZW3Vj//2LHVvaq2tfr5x46t7pWt8c2obvXzR3a+xb+1BAAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknz1OPce9DljJ6I7ozl2Vj7/2LHVvbJ1H81ZXVt9B9ga34zqVj//2Fl5a/Xzjx1b3Stb45tR3ernHzsrb61+/rFjq3tVbWv1848dW90rW+ObUd3q54/sfMth27bMzwMAAAAAAICy/FtLAAAAAAAASPLjsx8+XV29tdYuAj7n/fb19TK4O6PZdRc/f9e11b2ydR/NWV1bfQe8/H4M6/68ubtsrbWHwyGseb9t562Hh7judv+vO6MZ2J3R7LqLn7/rLr61+vm7rq3u1ZTun+ewZrv+dd46pRv4e7D993swqDuj2XfXPn/fXXtr9fP3XVt3c69Op1NY83g8nrfO6C6+tfr5u66trbUW9B3Qtujm0J3RnNW11b2a1Z3rq7+cizjQR52I7ozm2Fn5/GPHVvfK1n00Z3Vt9R1ga3wzqlv9/GNn5a3Vzz92bHWvbI1vRnWrn3/srLy1+vnHjq3uVbWt1c8/dmx1r2yNb0Z1q58/svMt/q0lAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQ5KvHufegzxk7Ed0ZzbGz8vnHjq3ula37aM7q2uo7wNb4ZlS3+vnHzspbq59/7NjqXtka34zqVj//2Fl5a/Xzjx1b3atqW6uff+zY6l7ZGt+M6lY/f2TnWw7btmV+HgAAAAAAAJTl31oCAAAAAABAEo9zAAAAAAAAkOTHZz98urp6a61dBHzO++3r62Vwd0az6y5+/q5rq3tl6z6as7q2+g54+f0Y1v15c3fZWmsPh0NY837bzlsPD3Hd7f5fd0YzsDuj2XUXP3/XXXxr9fN3XVvdqyndP89hzXb967x1Sjfw92D77/dgUHdGs++uff6+u/bW6ufvu7bu5l6dTqew5vF4PG+d0V18a/Xzd11bW2st6DugbdHNoTujOatrq3s1qzvXV385F3GgjzoR3RnNsbPy+ceOre6Vrftozura6jvA1vhmVLf6+cfOylurn3/s2Ope2RrfjOpWP//YWXlr9fOPHVvdq2pbq59/7NjqXtka34zqVj9/ZOdb/FtLAAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkXz3OvQd9ztiJ6M5ojp2Vzz92bHWvbN1Hc1bXVt8BtsY3o7rVzz92Vt5a/fxjx1b3ytb4ZlS3+vnHzspbq59/7NjqXlXbWv38Y8dW98rW+GZUt/r5Izvfcti2LfPzAAAAAAAAoCz/1hIAAAAAAACSeJwDAAAAAACAJD8+++HT1dVba+0i4HPeb19fL4O7M5pdd/Hzd11b3Stb99Gc1bXVd8DL78ew7s+bu8vWWns4HMKa99t23np4iOtu9/+6M5qB3RnNrrv4+bvu4lurn7/r2upeTen+eQ5rtutf561TuoG/B9t/vweDujOafXft8/fdtbdWP3/ftXU39+p0OoU1j8fjeeuM7uJbq5+/69raWmtB3wFti24O3RnNWV1b3atZ3bm++su5iAN91InozmiOnZXPP3Zsda9s3UdzVtdW3wG2xjejutXPP3ZW3lr9/GPHVvfK1vhmVLf6+cfOylurn3/s2OpeVdta/fxjx1b3ytb4ZlS3+vkjO9/i31oCAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJvnqcew/6nLET0Z3RHDsrn3/s2Ope2bqP5qyurb4DbI1vRnWrn3/srLy1+vnHjq3ula3xzahu9fOPnZW3Vj//2LHVvaq2tfr5x46t7pWt8c2obvXzR3a+5bBtW+bnAQAAAAAAQFn+rSUAAAAAAAAk+fHZD5+urt5aaxcBn/N++/p6Gdyd0ey6i5+/69rqXtm6j+asrq2+A15+P4Z1f97cXbbW2sPhENa837bz1sNDXHe7/9ed0Qzszmh23cXP33UX31r9/F3XVvdqSvfPc1izXf86b53SDfw92P77PRjUndHsu2ufv++uvbX6+fuurbu5V6fTKax5PB7PW2d0F99a/fxd19bWWgv6DmhbdHPozmjO6trqXs3qzvXVX85FHOijTkR3RnPsrHz+sWOre2XrPpqzurb6DrA1vhnVrX7+sbPy1urnHzu2ule2xjejutXPP3ZW3lr9/GPHVveq2tbq5x87trpXtsY3o7rVzx/Z+Rb/1hIAAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjy1ePce9DnjJ2I7ozm2Fn5/GPHVvfK1n00Z3Vt9R1ga3wzqlv9/GNn5a3Vzz92bHWvbI1vRnWrn3/srLy1+vnHjq3uVbWt1c8/dmx1r2yNb0Z1q58/svMth23bMj8PAAAAAAAAyvJvLQEAAAAAACCJxzkAAAAAAABI8uOzHz5dXb211i4CPuf99vX1Mrg7o9l1Fz9/17XVvbJ1H81ZXVt9B7z8fgzr/ry5u2yttYfDIax5v23nrYeHuO52/687oxnYndHsuoufv+suvrX6+buure7VlO6f57Bmu/513jqlG/h7sP33ezCoO6PZd9c+f99de2v18/ddW3dzr06nU1jzeDyet87oLr61+vm7rq2ttRb0HdC26ObQndGc1bXVvZrVneurv5yLONBHnYjujObYWfn8Y8dW98rWfTRndW31HWBrfDOqW/38Y2flrdXPP3Zsda9sjW9Gdauff+ysvLX6+ceOre5Vta3Vzz92bHWvbI1vRnWrnz+y8y3+rSUAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDkq8e596DPGTsR3RnNsbPy+ceOre6Vrftozura6jvA1vhmVLf6+cfOylurn3/s2Ope2RrfjOpWP//YWXlr9fOPHVvdq2rD8HE4AAAgAElEQVRbq59/7NjqXtka34zqVj9/ZOdbDtu2ZX4eAAAAAAAAlOXfWgIAAAAAAECSH5/98Onq6q21dhHwOe+3r6+Xwd0Zza67+Pm7rq3ula37aM7q2uo74OX3Y1j3583dZWutPRwOYc37bTtvPTzEdbf7f90ZzcDujGbXXfz8XXfxrdXP33Vtda+mdP88hzXb9a/z1indwN+D7b/fg0HdGc2+u/b5++7aW6ufv+/aupt7dTqdwprH4/G8dUZ38a3Vz991bW2ttaDvgLZFN4fujOasrq3u1azuXF/95VzEgT7qRHRnNMfOyucfO7a6V7buozmra6vvAFvjm1Hd6ucfOytvrX7+sWOre2VrfDOqW/38Y2flrdXPP3Zsda+qba1+/rFjq3tla3wzqlv9/JGdb/FvLQEAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCRfPc69B33O2InozmiOnZXPP3Zsda9s3UdzVtdW3wG2xjejutXPP3ZW3lr9/GPHVvfK1vhmVLf6+cfOylurn3/s2OpeVdta/fxjx1b3ytb4ZlS3+vkjO99y2LYt8/MAAAAAAACgLP/WEgAAAAAAAJJ4nAMAAAAAAIAkPz774dPV1Vtr7SLgc95vX18vg7szml138fN3XVvdK1v30ZzVtdV3wMvvx7Duz5u7y9Zaezgcwpr323beeniI6273/7ozmoHdGc2uu/j5u+7iW6ufv+va6l5N6f55Dmu261/nrVO6gb8H23+/B4O6M5p9d+3z9921t1Y/f9+1dTf36nQ6hTWPx+N564zu4lurn7/r2tpaa0HfAW2Lbg7dGc1ZXVvdq1ndub76y7mIA33UiejOaI6dlc8/dmx1r2zdR3NW11bfAbbGN6O61c8/dlbeWv38Y8dW98rW+GZUt/r5x87KW6uff+zY6l5V21r9/GPHVvfK1vhmVLf6+SM73+LfWgIAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEm+epx7D/qcsRPRndEcOyuff+zY6l7Zuo/mrK6tvgNsjW9Gdauff+ysvLX6+ceOre6VrfHNqG7184+dlbdWP//YsdW9qra1+vnHjq3ula3xzahu9fNHdr7lsG1b5ucBAAAAAABAWf6tJQAAAAAAACT58dkPn66u3lprFwGf8377+noZ3J3R7LqLn7/r2upe2bqP5qyurb4DXn4/hnV/3txdttbaw+EQ1rzftvPWw0Ncd7v/153RDOzOaHbdxc/fdRffWv38XddW92pK989zWLNd/zpvndIN/D3Y/vs9GNSd0ey7a5+/7669tfr5+66tu7lXp9MprHk8Hs9bZ3QX31r9/F3X1tZaC/oOaFt0c+jOaM7q2upezerO9dVfzkUc6KNORHdGc+ysfP6xY6t7Zes+mrO6tvoOsDW+GdWtfv6xs/LW6ucfO7a6V7bGN6O61c8/dlbeWv38Y8dW96ra1urnHzu2ule2xjejutXPH9n5Fv/WEgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASPLV49x70OeMnYjujObYWfn8Y8dW98rWfTRndW31HWBrfDOqW/38Y2flrdXPP3Zsda9sjW9Gdauff+ysvLX6+ceOre5Vta3Vzz92bHWvbI1vRnWrnz+y8y2HbdsyPw8AAAAAAADK8m8tAQAAAAAAIInHOQAAAAAAAEjy47MfPl1dvbXWLgI+5/329fUyuDuj2XUXP3/XtdW9snUfzVldW30HvPx+DOv+vLm7bK21h8MhrHm/beeth4e47nb/rzujGdid0ey6i5+/6y6+tfr5u66t7tWU7p/nsGa7/nXeOqUb+Huw/fd7MKg7o9l31z5/3117a/Xz911bd3OvTqdTWPN4PJ63zuguvrX6+buura21FvQd0Lbo5tCd0ZzVtdW9mtWd66u/nIs40EediO6M5thZ+fxjx1b3ytZ9NGd1bfUdYGt8M6pb/fxjZ+Wt1c8/dmx1r2yNb0Z1q59/7Ky8tfr5x46t7lW1rdXPP3Zsda9sjW9GdaufP7LzLf6tJQAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAkq8e596DPmfsRHRnNMfOyucfO7a6V7buozmra6vvAFvjm1Hd6ucfOytvrX7+sWOre2VrfDOqW/38Y2flrdXPP3Zsda+qba1+/rFjq3tla3wzqlv9/JGdbzls25b5eQAAAAAAAFCWf2sJAAAAAAAASTzOAQAAAAAAQJIfn/3w6erqrbV2EfA577evr5fB3RnNrrv4+buure6Vrftozura6jvg5fdjWPfnzd1la609HA5hzfttO289PMR1t/t/3RnNwO6MZtdd/Pxdd/Gt1c/fdW11r6Z0/zyHNdv1r/PWKd3A34Ptv9+DQd0Zzb679vn77tpbq5+/79q6m3t1Op3Cmsfj8bx1RnfxrdXP33Vtba21oO+AtkU3h+6M5qyure7VrO5cX/3lXMSBPupEdGc0x87K5x87trpXtu6jOatrq+8AW+ObUd3q5x87K2+tfv6xY6t7ZWt8M6pb/fxjZ+Wt1c8/dmx1r6ptrX7+sWOre2VrfDOqW/38kZ1v8W8tAQCAv+zcsWmcTRCA4T1wdA3oehDOlLsAdeA2XIBQAWpDHbgA5c6MevA1cOn3B+YX3kXoFMwO+zHPkwrem4HlHAw+AAAAIInjHAAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEmuHefOQZ8zdiK6M5pjZ+X9x45ZvSuz7qM5q2tW3wFmjW9GdavvP3ZWnrX6/mPHrN6VWeObUd3q+4+dlWetvv/YMat3VW3W6vuPHbN6V2aNb0Z1q+8f2fmUw7ZtmZ8HAAAAAAAAZflZSwAAAAAAAEjy5aM/Pt/e/mmt3QR8zvn76+spuDuj2XUX37/rmtW7Mus+mrO6ZvUd8PvnU1j36/2PU2utPR4OYc2HbXub9fAY190e/nZnNAO7M5pdd/H9u+7is1bfv+ua1bua0n35FdZs3+7eZp3SDfx3sP3z72BQd0az7669f99de9bq+/dds+7mXV0ul7Dm8Xh8m3VGd/FZq+/fdc3aWmtB3wFti24O3RnNWV2zelezunNd+59zEQu914nozmiOnZX3Hztm9a7Muo/mrK5ZfQeYNb4Z1a2+/9hZedbq+48ds3pXZo1vRnWr7z92Vp61+v5jx6zeVbVZq+8/dszqXZk1vhnVrb5/ZOdT/KwlAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIMm149w56HPGTkR3RnPsrLz/2DGrd2XWfTRndc3qO8Cs8c2obvX9x87Ks1bff+yY1bsya3wzqlt9/7Gz8qzV9x87ZvWuqs1aff+xY1bvyqzxzahu9f0jO59y2LYt8/MAAAAAAACgLD9rCQAAAAAAAEkc5wAAAAAAACDJl4/++Hx7+6e1dhPwOefvr6+n4O6MZtddfP+ua1bvyqz7aM7qmtV3wO+fT2Hdr/c/Tq219ng4hDUftu1t1sNjXHd7+Nud0Qzszmh23cX377qLz1p9/65rVu9qSvflV1izfbt7m3VKN/DfwfbPv4NB3RnNvrv2/n137Vmr7993zbqbd3W5XMKax+PxbdYZ3cVnrb5/1zVra60FfQe0Lbo5dGc0Z3XN6l3N6s517X/ORSz0XieiO6M5dlbef+yY1bsy6z6as7pm9R1g1vhmVLf6/mNn5Vmr7z92zOpdmTW+GdWtvv/YWXnW6vuPHbN6V9Vmrb7/2DGrd2XW+GZUt/r+kZ1P8bOWAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCTXjnPnoM8ZOxHdGc2xs/L+Y8es3pVZ99Gc1TWr7wCzxjejutX3Hzsrz1p9/7FjVu/KrPHNqG71/cfOyrNW33/smNW7qjZr9f3Hjlm9K7PGN6O61feP7HzKYdu2zM8DAAAAAACAsvysJQAAAAAAACT58tEfn29v/7TWbgI+5/z99fUU3J3R7LqL7991zepdmXUfzVlds/oO+P3zKaz79f7HqbXWHg+HsObDtr3NeniM624Pf7szmoHdGc2uu/j+XXfxWavv33XN6l1N6b78Cmu2b3dvs07pBv472P75dzCoO6PZd9fev++uPWv1/fuuWXfzri6XS1jzeDy+zTqju/is1ffvumZtrbWg74C2RTeH7ozmrK5ZvatZ3bmu/c+5iIXe60R0ZzTHzsr7jx2zeldm3UdzVtesvgPMGt+M6lbff+ysPGv1/ceOWb0rs8Y3o7rV9x87K89aff+xY1bvqtqs1fcfO2b1rswa34zqVt8/svMpftYSAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkOTace4c9DljJ6I7ozl2Vt5/7JjVuzLrPpqzumb1HWDW+GZUt/r+Y2flWavvP3bM6l2ZNb4Z1a2+/9hZedbq+48ds3pX1Watvv/YMat3Zdb4ZlS3+v6RnU85bNuW+XkAAAAAAABQlp+1BAAAAAAAgCSOcwAAAAAAAJDky0d/fL69/dNauwn4nPP319dTcHdGs+suvn/XNat3ZdZ9NGd1zeo74PfPp7Du1/sfp9ZaezwcwpoP2/Y26+Exrrs9/O3OaAZ2ZzS77uL7d93FZ62+f9c1q3c1pfvyK6zZvt29zTqlG/jvYPvn38Gg7oxm3117/7679qzV9++7Zt3Nu7pcLmHN4/H4NuuM7uKzVt+/65q1tdaCvgPaFt0cujOas7pm9a5mdee69j/nIhZ6rxPRndEcOyvvP3bM6l2ZdR/NWV2z+g4wa3wzqlt9/7Gz8qzV9x87ZvWuzBrfjOpW33/srDxr9f3Hjlm9q2qzVt9/7JjVuzJrfDOqW33/yM6n+FlLAAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAklw7zp2DPmfsRHRnNMfOyvuPHbN6V2bdR3NW16y+A8wa34zqVt9/7Kw8a/X9x45ZvSuzxjejutX3Hzsrz1p9/7FjVu+q2qzV9x87ZvWuzBrfjOpW3z+y8ymHbdsyPw8AAAAAAADK8rOWAAAAAAAAkMRxDgAAAAAAAJJ8+eiPz7e3f1prNwGfc/7++noK7s5odt3F9++6ZvWuzLqP5qyuWX0H/P75FNb9ev/j1Fprj4dDWPNh295mPTzGdbeHv90ZzcDujGbXXXz/rrv4rNX377pm9a6mdF9+hTXbt7u3Wad0A/8dbP/8OxjUndHsu2vv33fXnrX6/n3XrLt5V5fLJax5PB7fZp3RXXzW6vt3XbO21lrQd0DboptDd0ZzVtes3tWs7lzX/udcxELvdSK6M5pjZ+X9x45ZvSuz7qM5q2tW3wFmjW9GdavvP3ZWnrX6/mPHrN6VWeObUd3q+4+dlWetvv/YMat3VW3W6vuPHbN6V2aNb0Z1q+8f2fkUP2sJAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASHLtOHcO+pyxE9Gd0Rw7K+8/dszqXZl1H81ZXbP6DjBrfDOqW33/sbPyrNX3Hztm9a7MGt+M6lbff+ysPGv1/ceOWb2rarNW33/smNW7Mmt8M6pbff/Izqcctm3L/DwAAAAAAAAoy89aAgAAAAAAQJIvH/3x+fb2T2vtJuBzzt9fX0/B3RnNrrv4/l3XrN6VWffRnNU1q++A3z+fwrpf73+cWmvt8XAIaz5s29ush8e47vbwtzujGdid0ey6i+/fdReftfr+Xdes3tWU7suvsGb7dvc265Ru4L+D7Z9/B4O6M5p9d+39++7as1bfv++adTfv6nK5hDWPx+PbrDO6i89aff+ua9bWWgv6DmhbdHPozmjO6prVu5rVneva/5yLWOi9TkR3RnPsrLz/2DGrd2XWfTRndc3qO8Cs8c2obvX9x87Ks1bff+yY1bsya3wzqlt9/7Gz8qzV9x87ZvWuqs1aff+xY1bvyqzxzahu9f0jO5/iZy0BAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASa4d585BnzN2IrozmmNn5f3Hjlm9K7Puozmra1bfAWaNb0Z1q+8/dlaetfr+Y8es3pVZ45tR3er7j52VZ62+/9gxq3dVbdbq+48ds3pXZo1vRnWr7x/Z+ZTDtm2ZnwcAAAAAAABl+VlLAAAAAAAASOI4BwAAAAAAAEm+fPTH59vbP621m4DPOX9/fT0Fd2c0u+7i+3dds3pXZt1Hc1bXrL4Dfv98Cut+vf9xaq21x8MhrPmwbW+zHh7jutvD3+6MZmB3RrPrLr5/11181ur7d12zeldTui+/wprt293brFO6gf8Otn/+HQzqzmj23bX377trz1p9/75r1t28q8vlEtY8Ho9vs87oLj5r9f27rllbay3oO6Bt0c2hO6M5q2tW72pWd65r/3MuYqH3OhHdGc2xs/L+Y8es3pVZ99Gc1TWr7wCzxjejutX3Hzsrz1p9/7FjVu/KrPHNqG71/cfOyrNW33/smNW7qjZr9f3Hjlm9K7PGN6O61feP7HyKn7UEAAAAAACAJI5zAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJLl2nDsHfc7YiejOaI6dlfcfO2b1rsy6j+asrll9B5g1vhnVrb7/2Fl51ur7jx2zeldmjW9GdavvP3ZWnrX6/mPHrN5VtVmr7z92zOpdmTW+GdWtvn9k51MO27Zlfh4AAAAAAACU5WctAQAAAAAAIMmXj/74fHv7p7V2E/A55++vr6fg7oxm1118/65rVu/KrPtozuqa1XfA759PYd2v9z9OrbX2eDiENR+27W3Ww2Ncd3v4253RDOzOaHbdxffvuovPWn3/rmtW72pK9+VXWLN9u3ubdUo38N/B9s+/g0HdGc2+u/b+fXftWavv33fNupt3dblcwprH4/Ft1hndxWetvn/XNWtrrQV9B7Qtujl0ZzRndc3qXc3qznXtf85FLPReJ6I7ozl2Vt5/7JjVuzLrPpqzumb1HWDW+GZUt/r+Y2flWavvP3bM6l2ZNb4Z1a2+/9hZedbq+48ds3pX1Watvv/YMat3Zdb4ZlS3+v6RnU/xs5YAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJNeOc+egzxk7Ed0ZzbGz8v5jx6zelVn30ZzVNavvALPGN6O61fcfOyvPWn3/sWNW78qs8c2obvX9x87Ks1bff+yY1buqNmv1/ceOWb0rs8Y3o7rV94/sfMph27bMzwMAAAAAAICy/KwlAAAAAAAAJHGcAwAAAAAAgCRfPvrj8+3tn9baTcDnnL+/vp6CuzOaXXfx/buuWb0rs+6jOatrVt8Bv38+hXW/3v84tdba4+EQ1nzYtrdZD49x3e3hb3dGM7A7o9l1F9+/6y4+a/X9u65Zvasp3ZdfYc327e5t1indwH8H2z//DgZ1ZzT77tr79921Z62+f981627e1eVyCWsej8e3WWd0F5+1+v5d16yttRb0HdC26ObQndGc1TWrdzWrO9e1/zkXsdB7nYjujObYWXn/sWNW78qs+2jO6prVd4BZ45tR3er7j52VZ62+/9gxq3dl1vhmVLf6/mNn5Vmr7z92zOpdVZu1+v5jx6zelVnjm1Hd6vtHdj7Fz1oCAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAklw7zp2DPmfsRHRnNMfOyvuPHbN6V2bdR3NW16y+A8wa34zqVt9/7Kw8a/X9x45ZvSuzxjejutX3Hzsrz1p9/7FjVu+q2qzV9x87ZvWuzBrfjOpW3z+y8ymHbdsyPw8AAAAAAADK8rOWAAAAAAAAkOTLR398vr3901q7Cfic8/fX11Nwd0az6y6+f9c1q3dl1n00Z3XN6jvg98+nsO7X+x+n1lp7PBzCmg/b9jbr4TGuuz387c5oBnZnNLvu4vt33cVnrb5/1zWrdzWl+/IrrNm+3b3NOqUb+O9g++ffwaDujGbfXXv/vrv2rNX377tm3c27ulwuYc3j8fg264zu4rNW37/rmrW11oK+A9oW3Ry6M5qzumb1rmZ157r2P+ciFnqvE9Gd0Rw7K+8/dszqXZl1H81ZXbP6DjBrfDOqW33/sbPyrNX3Hztm9a7MGt+M6lbff+ysPGv1/ceOWb2rarNW33/smNW7Mmt8M6pbff/Izqf4WUsAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAkmvHuXPQ54ydiO6M5thZef+xY1bvyqz7aM7qmtV3gFnjm1Hd6vuPnZVnrb7/2DGrd2XW+GZUt/r+Y2flWavvP3bM6l1Vm7X6/mPHrN6VWeObUd3q+0d2PuWwbVvm5wEAAAAAAEBZftYSAAAAAAAAkjjOAQAAAAAAQJIvH/3x+fb2T2vtJuBzzt9fX0/B3RnNrrv4/l3XrN6VWffRnNU1q++A3z+fwrpf73+cZjVba+3weAjrbg/baVYzsDuj2XUX37/rLj5r9f27rlm9qz3N2l5+hXXbt7u/3UPcrG37Z9aY7oxm3117/7679qzV9++7Zt3Nu7pcLmHN4/H4NuuM7uKzVt+/65p1zrtqLfA7oP3/3eDL18kAACAASURBVDKjOatr1qBu9f3f6c517X/ORSz0XieiO6M5dlbef+yY1bsy6z6as7pm9R1g1vhmVLf6/mNn5Vmr7z92zOpdmTW+GdWtvv/YWXnW6vuPHbN6V9Vmrb7/2DGrd2XW+GZUt/r+kZ1P8bOWAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJLl2nDsHfc7YiejOaI6dlfcfO2b1rsy6j+asrll9B5g1vhnVrb7/2Fl51ur7jx2zeldmjW9GdavvP3ZWnrX6/mPHrN5VtVmr7z92zOpdmTW+GdWtvn9k51MO27Zlfh4AAAAAAACU5WctAQAAAAAAIInjHAAAAAAAACT58tEfn29v/7TWbgI+5/z99fUU3J3R7LqL7991zepdmXUfzVlds/oO+P3zKaz79f7HaVaztdYOj4ew7vawnWY1A7szml138f277uKzVt+/65rVu9rTrO3lV1i3fbv72z3Ezdq2f2aN6c5o9t219++7a89aff++a9bdvKvL5RLWPB6Pb7PO6C4+a/X9u65Z57yr1gK/A9r/3y0zmrO6Zg3qVt//ne5c1/7nXMRC73UiujOaY2fl/ceOWb0rs+6jOatrVt8BZo1vRnWr7z92Vp61+v5jx6zelVnjm1Hd6vuPnZVnrb7/2DGrd1Vt1ur7jx2zeldmjW9GdavvH9n5FD9rCQAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEhy7Th3DvqcsRPRndEcOyvvP3bM6l2ZdR/NWV2z+g4wa3wzqlt9/7Gz8qzV9x87ZvWuzBrfjOpW33/srDxr9f3Hjlm9q2qzVt9/7JjVuzJrfDOqW33/yM6nHLZty/w8AAAAAAAAKMvPWgIAAAAAAECSLx/98fn29k9r7Sbgc87fX19Pwd0Zza67+P5d16zelVn30ZzVNavvgN8/n8K6X+9/nGY1W2vt8HgI624P22lWM7A7o9l1F9+/6y4+a/X9u65Zvas9zdpefoV127e7v91D3Kxt+2fWmO6MZt9de/++u/as1ffvu2bdzbu6XC5hzePx+DbrjO7is1bfv+uadc67ai3wO6D9/90yozmra9agbvX93+nOde1/zkUs9F4nojujOXZW3n/smNW7Mus+mrO6ZvUdYNb4ZlS3+v5jZ+VZq+8/dszqXZk1vhnVrb7/2Fl51ur7jx2zelfVZq2+/9gxq3dl1vhmVLf6/pGdT/GzlgAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACRxnAMAAAAAAIAk145z56DPGTsR3RnNsbPy/mPHrN6VWffRnNU1q+8As8Y3o7rV9x87K89aff+xY1bvyqzxzahu9f3HzsqzVt9/7JjVu6o2a/X9x45ZvSuzxjejutX3j+x8ymHbtszPAwAAAAAAgLL8rCUAAAAAAAAkcZwDAAAAAACAJF8++uPz7e2f1tpNwOecv7++noK7M5pdd/H9u65ZvSuz7qM5q2tW3wG/fz6Fdb/e/zjNarbW2uHxENbdHrbTrGZgd0az6y6+f9ddfNbq+3dds3pXe5q1vfwK67Zvd3+7h7hZ2/bPrDHdGc2+u/b+fXftWavv33fNupt3dblcwprH4/Ft1hndxWetvn/XNeucd9Va4HdA+/+7ZUZzVtesQd3q+7/Tneva/5yLWOi9TkR3RnPsrLz/2DGrd2XWfTRndc3qO8Cs8c2obvX9x87Ks1bff+yY1bsya3wzqlt9/7Gz8qzV9x87ZvWuqs1aff+xY1bvyqzxzahu9f0jO5/iZy0BAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASa4d585BnzN2IrozmmNn5f3Hjlm9K7Puozmra1bfAWaNb0Z1q+8/dlaetfr+Y8es3pVZ45tR3er7j52VZ62+/9gxq3dVbdbq+48ds3pXZo1vRnWr7x/Z+ZTDtm2ZnwcAAAAAAABl+VlLAAAAAAAASPLloz8+397+aa3dBHzO+fvr6ym4O6PZdRffv+ua1bsy6z6as7pm9R3w++dTWPfr/Y/TrGZrrR0eD2Hd7WE7zWoGdmc0u+7i+3fdxWetvn/XNat3tadZ28uvsG77dve3e4ibtW3/zBrTndHsu2vv33fXnrX6/n3XrLt5V5fLJax5PB7fZp3RXXzW6vt3XbPOeVetBX4HtP+/W2Y0Z3XNGtStvv873bmu/c+5iIXe60R0ZzTHzsr7jx2zeldm3UdzVtesvgPMGt+M6lbff+ysPGv1/ceOWb0rs8Y3o7rV9x87K89aff+xY1bvqtqs1fcfO2b1rswa34zqVt8/svMpftYSAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkOTace4c9DljJ6I7ozl2Vt5/7JjVuzLrPpqzumb1HWDW+GZUt/r+Y2flWavvP3bM6l2ZNb4Z1a2+/9hZedbq+48ds3pX1Watvv/YMat3Zdb4ZlS3+v6RnU85bNuW+XkAAAAAAABQlp+1BAAAAAAAgCSOcwAAAAAAAJDky0d/fL69/dNauwn4nPP319dTcHdGs+suvn/XNat3ZdZ9NGd1zeo74PfPp7Du1/sfp1nN1lo7PB7CutvDdprVDOzOaHbdxffvuovPWn3/rmtW72pPs7aXX2Hd9u3ub/cQN2vb/pk1pjuj2XfX3r/vrj1r9f37rll3864ul0tY83g8vs06o7v4rNX377pmnfOuWgv8Dmj/f7fMaM7qmjWoW33/d7pzXfufcxELvdeJ6M5ojp2V9x87ZvWuzLqP5qyuWX0HmDW+GdWtvv/YWXnW6vuPHbN6V2aNb0Z1q+8/dlaetfr+Y8es3lW1WavvP3bM6l2ZNb4Z1a2+f2TnU/ysJQAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEmuHefOQZ8zdiK6M5pjZ+X9x45ZvSuz7qM5q2tW3wFmjW9GdavvP3ZWnrX6/mPHrN6VWeObUd3q+4+dlWetvv/YMat3VW3W6vuPHbN6V2aNb0Z1q+8f2fmUw7ZtmZ8HAAAAAAAAZflZSwAAAAAAAEjiOAcAAAAAAABJvnz0x+fb2z+ttZuAzzl/f309BXdnNLvu4vt3XbN6V2bdR3NW16y+A37/fArrfr3/cZrVbK21w+MhrLs9bKdZzcDujGbXXXz/rrv4rNX377pm9a72NGt7+RXWbd/u/nYPcbO27Z9ZY7ozmn137f377tqzVt+/75p1N+/qcrmENY/H49usM7qLz1p9/65r1jnvqrXA74D2/3fLjOasrlmDutX3f6c717X/ORex0HudiO6M5thZef+xY1bvyqz7aM7qmtV3gFnjm1Hd6vuPnZVnrb7/2DGrd2XW+GZUt/r+Y2flWavvP3bM6l1Vm7X6/mPHrN6VWeObUd3q+0d2PsXPWgIAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSXDvOnYM+Z+xEdGc0x87K+48ds3pXZt1Hc1bXrL4DzBrfjOpW33/srDxr9f3Hjlm9K7PGN6O61fcfOyvPWn3/sWNW76rarNX3Hztm9a7MGt+M6lbfP7LzKYdt2zI/DwAAAAAAAMrys5YAAAAAAACQ5MtHf3y+vf3TWrsJ+Jzz99fXU3B3RrPrLr5/1zWrd2XWfTRndc3qO+D3z6ew7tf7H6dZzdZaOzwewrrbw3aa1Qzszmh23cX377qLz1p9/65rVu9qT7O2l19h3fbt7m/3EDdr2/6ZNaY7o9l3196/7649a/X9+65Zd/OuLpdLWPN4PL7NOqO7+KzV9++6Zp3zrloL/A5o/3+3zGjO6po1qFt9/3e6c137n3MRC73XiejOaI6dlfcfO2b1rsy6j+asrll9B5g1vhnVrb7/2Fl51ur7jx2zeldmjW9GdavvP3ZWnrX6/mPHrN5VtVmr7z92zOpdmTW+GdWtvn9k51P8rCUAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgybXj3Dnoc8ZORHdGc+ysvP/YMat3ZdZ9NGd1zeo7wKzxzahu9f3HzsqzVt9/7JjVuzJrfDOqW33/sbPyrNX3Hztm9a6qzVp9/7FjVu/KrPHNqG71/SM7n3LYti3z8wAAAAAAAKAsP2sJAAAAAAAASRznAAAAAAAAIMmXj/74fHv7p7V2E/A55++vr6fg7oxm1118/65rVu/KrPtozuqa1XfA759PYd2v9z9Os5qttXZ4PIR1t4ftNKsZ2J3R7LqL7991F5+1+v5d16ze1Z5mbS+/wrrt293f7iFu1rb9M2tMd0az7669f99de9bq+/dds+7mXV0ul7Dm8Xh8m3VGd/FZq+/fdc065121Fvgd0P7/bpnRnNU1a1C3+v7vdOe69j/nIhZ6rxPRndEcOyvvP3bM6l2ZdR/NWV2z+g4wa3wzqlt9/7Gz8qzV9x87ZvWuzBrfjOpW33/srDxr9f3Hjlm9q2qzVt9/7JjVuzJrfDOqW33/yM6n+FlLAAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACRxnAMAAAAAAIAkjnMAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQJJrx7lz0OeMnYjujObYWXn/sWNW78qs+2jO6prVd4BZ45tR3er7j52VZ62+/9gxq3dl1vhmVLf6/mNn5Vmr7z92zOpdVZu1+v5jx6zelVnjm1Hd6vtHdj7lsG1b5ucBAAAAAABAWX7WEgAAAAAAAJJ8+eiPz7e3f1prNwGfc/7++noK7s5odt3F9++6ZvWuzLqP5qyuWX0H/P75FNb9ev/jNKvZWmuHx0NYd3vYTrOagd0Zza67+P5dd/FZq+/fdc3qXe1p1vbyK6zbvt397R7iZm3bP7PGdGc0++7a+/fdtWetvn/fNetu3tXlcglrHo/Ht1lndBeftfr+Xdesc95Va4HfAe3/75YZzVldswZ1q+//Tneua/9zLmKh9zoR3RnNsbPy/mPHrN6VWffRnNU1q+8As8Y3o7rV9x87K89aff+xY1bvyqzxzahu9f3HzsqzVt9/7JjVu6o2a/X9x45ZvSuzxjejutX3j+x8ip+1BAAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABI4jgHAAAAAAAASRznAAAAAAAAIInjHAAAAAAAACS5dpw7B33O2InozmiOnZX3Hztm9a7Muo/mrK5ZfQeYNb4Z1a2+/9hZedbq+48ds3pXZo1vRnWr7z92Vp61+v5jx6zeVbVZq+8/dszqXZk1vhnVrb5/ZOdTDtu2ZX4eAAAAAAAAlOVnLQEAAAAAACCJ4xwAAAAAAAAk+fLRH59vb/+01m4CPuf8/fX1FNyd0ey6i+/fdc3qXZl1H81ZXbP6Dvj98yms+/X+x2lWs7XWDo+HsO72sJ1mNQO7M5pdd/H9u+7is1bfv+ua1bva06zt5VdYt327+9s9xM3atn9mjenOaPbdtffvu2vPWn3/vmvW3byry+US1jwej2+zzuguPmv1/buuWee8q9YCvwPa/98tM5qzumYN6lbf/53uXNf+51zEQu91IrozmmNn5f3Hjlm9K7Puozmra1bfAWaNb0Z1q+8/dlaetfr+Y8es3pVZ45tR3er7j52VZ62+/9gxq3dVbdbq+48ds3pXZo1vRnWr7x/Z+RQ/awkAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJI5zAAAAAAAAkMRxDgAAAAAAAJI4zgEAAAAAAEASxzkAAAAAAABIcu04dw76nLET0Z3RHDsr7z92zOpdmXUfzVlds/oOMGt8M6pbff+xs/Ks1fcfO2b1rswa34zqVt9/7Kw8a/X9x45Zvatqs1bff+yY1bsya3wzqlt9/8jOpxy2bcv8PAAAAAAAACjLz1oCAAAAAABAki8f/fH59vZPa+0m4HPO319fT8HdGc2uu/j+Xdes3pVZ99Gc1TWr74DfP5/Cul/vf5xmNVtr7fB4COtuD9tpVjOwO6PZdRffv+suPmv1/buuWb2rPc3aXn6Fddu3u7/dQ9ysbftn1pjujGbfXXv/vrv2rNX377tm3c27ulwuYc3j8fg264zu4rNW37/rmnXOu2ot8Dug/f/dMqM5q2vWoG71/d/pznXtf85FLPReJ6I7ozl2Vt5/7JjVuzLrPpqzumb1HWDW+GZUt/r+Y2flWavvP3bM6l2ZNb4Z1a2+/9hZedbq+48ds3pX1Watvv/YMat3Zdb4ZlS3+v6RnU/xs5YAAAAAAACQxHEOAAAAAAAAkjjOAQAAAAAAQBLHOQAAAAAAAEjiOAcAAAAAAABJHOcAAAAAAAAgieMcAAAAAAAAJHGcAwAAAAAAgCSOcwAAAAAAAJDEcQ4AAAAAAACSOM4BAAAAAABAEsc5AAAAAAAASOI4BwAAAAAAAEkc5wAAAAAAACCJ4xwAAAAAAAAkcZwDAAAAAACAJNeOc+egz/mPnTu2jaqJwjA8V3K0DbA9rMjIXQAd0AYFIApwG3RAAeRkaHuwG9j0/oEFYkb+sYMzR3N1nidFevcbaXSTER47Ed0ZzbGz8vnHjq3ula3HaM7q2uobYGt8M6pb/fxjZ+Wt1c8/dmx1r2yNb0Z1q59/7Ky8tfr5x46t7lW1rdXPP3Zsda9sjW9GdaufP7LzJtu+75m/BwAAAAAAAGX5s5YAAAAAAACQxOMcAAAAAAAAJLn71z9+u1weW2vvAn7n6dP1eg7uzmh23cXP33Vtda9sPUZzVtdW34Bf3x/Cuu8/fj7ParbW2vZ1C+vuX/bzrGZgd0az6y5+/q67+Nbq5++6trpXR9rafvwM67b7D8/dLW5r2//aGtOd0ey7a5+/7669tfr5+66th7lXt9strHk6nf5sndFdfGv183ddW+fcq9YCvwHt97dlRnNW19agbvXzv9Cd67X/ORdxoJc6Ed0ZzbGz8vnHjq3ula3HaM7q2uobYGt8M6pb/fxjZ+Wt1c8/dmx1r2yNb0Z1q59/7Ky8tfr5x46t7lW1rdXPP3Zsda9sjW9GdaufP7LzJv6sJQAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAktce556CfmfsRHRnNMfOyucfO7a6V7Yeozmra6tvgK3xzahu9fOPnZW3Vj//2LHVvbI1vhnVrX7+sbPy1urnHzu2ulfVtlY//9ix1b2yNb4Z1a1+/sjOm2z7vmf+HgAAAAAAAJTlz1oCAAAAAABAEo9zAAAAAAAAkOTuX//47XJ5bK29C/idp0/X6zm4O6PZdRc/f9e11b2y9RjNWV1bfQN+fX8I677/+Pk8q9laa9vXLay7f9nPs5qB3RnNrrv4+bvu4lurn7/r2upeHWlr+/EzrNvuPzx3t7itbf9ra0x3RrPvrn3+vrv21urn77u2HuZe3W63sObpdPqzdUZ38a3Vz991bZ1zr1oL/Aa039+WGc1ZXVuDutXP/0J3rtf+51zEgV7qRHRnNMfOyucfO7a6V7Yeozmra6tvgK3xzahu9fOPnZW3Vj//2LHVvbI1vhnVrX7+sbPy1urnHzu2ulfVtlY//9ix1b2yNb4Z1a1+/sjOm/izlgAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQJLXHueegn5n7ER0ZzTHzsrnHzu2ule2HqM5q2urb4Ct8c2obvXzj52Vt1Y//9ix1b2yNb4Z1a1+/rGz8tbq5x87trpX1bZWP//YsdW9sjW+GdWtfv7Izpts+75n/h4AAAAAAACU5c9aAgAAAAAAQJK7f/3jt8vlsbX2LuB3nj5dr+fg7oxm1138/F3XVvfK1mM0Z3Vt9Q349f0hrPv+4+fzrGZrrW1ft7Du/mU/z2oGdmc0u+7i5++6i2+tfv6ua6t7daSt7cfPsG67//Dc3eK2tv2vrTHdGc2+u/b5++7aW6ufv+/aeph7dbvdwpqn0+nP1hndxbdWP3/XtXXOvWot8BvQfn9bZjRndW0N6lY//wvduV77n3MRB3qpE9Gd0Rw7K59/7NjqXtl6jOasrq2+AbbGN6O61c8/dlbeWv38Y8dW98rW+GZUt/r5x87KW6uff+zY6l5V21r9/GPHVvfK1vhmVLf6+SM7b+LPWgIAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAElee5x7CvqdsRPRndEcOyuff+zY6l7ZeozmrK6tvgG2xjejutXPP3ZW3lr9/GPHVvfK1vhmVLf6+cfOylurn3/s2OpeVdta/fxjx1b3ytb4ZlS3+vkjO2+y7fue+XsAAAAAAABQlj9rCQAAAAAAAEk8zgEAAAAAAECSu3/947fL5bG19i7gd54+Xa/n4O6MZtdd/Pxd11b3ytZjNGd1bfUN+PX9Iaz7/uPn86xma61tX7ew7v5lP89qBnZnNLvu4ufvuotvrX7+rmure3Wkre3Hz7Buu//w3N3itrb9r60x3RnNvrv2+fvu2lurn7/v2nqYe3W73cKap9Ppz9YZ3cW3Vj9/17V1zr1qLfAb0H5/W2Y0Z3VtDepWP/8L3ble+59zEQd6qRPRndEcOyuff+zY6l7ZeozmrK6tvgG2xjejutXPP3ZW3lr9/GPHVvfK1vhmVLf6+cfOylurn3/s2OpeVdta/fxjx1b3ytb4ZlS3+vkjO2/iz1oCAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJXnucewr6nbET0Z3RHDsrn3/s2Ope2XqMFjS9+wAAIABJREFU5qyurb4BtsY3o7rVzz92Vt5a/fxjx1b3ytb4ZlS3+vnHzspbq59/7NjqXlXbWv38Y8dW98rW+GZUt/r5Iztvsu37nvl7AAAAAAAAUJY/awkAAAAAAABJ7v71j98ul8fW2ruA33n6dL2eg7szml138fN3XVvdK1uP0ZzVtdU34Nf3h7Du+4+fz7OarbW2fd3CuvuX/TyrGdid0ey6i5+/6y6+tfr5u66t7tWRtrYfP8O67f7Dc3eL29r2v7bGdGc0++7a5++7a2+tfv6+a+th7tXtdgtrnk6nP1tndBffWv38XdfWOfeqtcBvQPv9bZnRnNW1Nahb/fwvdOd67X/ORRzopU5Ed0Zz7Kx8/rFjq3tl6zGas7q2+gbYGt+M6lY//9hZeWv1848dW90rW+ObUd3q5x87K2+tfv6xY6t7VW1r9fOPHVvdK1vjm1Hd6ueP7LyJP2sJAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAkee1x7inod8ZORHdGc+ysfP6xY6t7ZesxmrO6tvoG2BrfjOpWP//YWXlr9fOPHVvdK1vjm1Hd6ucfOytvrX7+sWOre1Vta/Xzjx1b3Stb45tR3ernj+y8ybbve+bvAQAAAAAAQFn+rCUAAAAAAAAk8TgHAAAAAAAASe7+9Y/fLpfH1tq7gN95+nS9noO7M5pdd/Hzd11b3Stbj9Gc1bXVN+DX94ew7vuPn8+zmq21tn3dwrr7l/08qxnYndHsuoufv+suvrX6+buure7Vkba2Hz/Duu3+w3N3i9va9r+2xnRnNPvu2ufvu2tvrX7+vmvrYe7V7XYLa55Opz9bZ3QX31r9/F3X1jn3qrXAb0D7/W2Z0ZzVtTWoW/38L3Tneu1/zkUc6KVORHdGc+ysfP6xY6t7ZesxmrO6tvoG2BrfjOpWP//YWXlr9fOPHVvdK1vjm1Hd6ucfOytvrX7+sWOre1Vta/Xzjx1b3Stb45tR3ernj+y8iT9rCQAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJHntce4p6HfGTkR3RnPsrHz+sWOre2XrMZqzurb6Btga34zqVj//2Fl5a/Xzjx1b3Stb45tR3ernHzsrb61+/rFjq3tVbWv1848dW90rW+ObUd3q54/svMm273vm7wEAAAAAAEBZ/qwlAAAAAAAAJLn71z9+u1weW2vvAn7n6dP1eg7uzmh23cXP33Vtda9sPUZzVtdW34Bf3x/Cuu8/fj7ParbW2vZ1C+vuX/bzrGZgd0az6y5+/q67+Nbq5++6trpXR9rafvwM67b7D8/dLW5r2//aGtOd0ey7a5+/7669tfr5+66th7lXt9strHk6nf5sndFdfGv183ddW+fcq9YCvwHt97dlRnNW19agbvXzv9Cd67X/ORdxoJc6Ed0ZzbGz8vnHjq3ula3HaM7q2uobYGt8M6pb/fxjZ+Wt1c8/dmx1r2yNb0Z1q59/7Ky8tfr5x46t7lW1rdXPP3Zsda9sjW9GdaufP7LzJv6sJQAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkOS1x7mnoN8ZOxHdGc2xs/L5x46t7pWtx2jO6trqG2BrfDOqW/38Y2flrdXPP3Zsda9sjW9Gdauff+ysvLX6+ceOre5Vta3Vzz92bHWvbI1vRnWrnz+y8ybbvu+ZvwcAAAAAAABl+bOWAAAAAAAAkMTjHAAAAAAAACS5+9c/frtcHltr7wJ+5+nT9XoO7s5odt3Fz991bXWvbD1Gc1bXVt+AX98fwrrvP34+z2q21tr2dQvr7l/286xmYHdGs+sufv6uu/jW6ufvura6V0fa2n78DOu2+w/P3S1ua9v/2hrTndHsu2ufv++uvbX6+fuurYe5V7fbLax5Op3+bJ3RXXxr9fN3XVvn3KvWAr8B7fe3ZUZzVtfWoG7187/Qneu1/zkXcaCXOhHdGc2xs/L5x46t7pWtx2jO6trqG2BrfDOqW/38Y2flrdXPP3Zsda9sjW9Gdauff+ysvLX6+ceOre5Vta3Vzz92bHWvbI1vRnWrnz+y8yb+rCUAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQJLXHueegn5n7ER0ZzTHzsrnHzu2ule2HqM5q2urb4Ct8c2obvXzj52Vt1Y//9ix1b2yNb4Z1a1+/rGz8tbq5x87trpX1bZWP//YsdW9sjW+GdWtfv7Izpts+75n/h4AAAAAAACU5c9aAgAAAAAAQBKPcwAAAAAAAJDk7l//+O1yeWytvQv4nadP1+s5uDuj2XUXP3/XtdW9svUYzVldW30Dfn1/COu+//j5PKvZWmvb1y2su3/Zz7Oagd0Zza67+Pm77uJbq5+/69rqXh1pa/vxM6zb7j88d7e4rW3/a2tMd0az7659/r679tbq5++7th7mXt1ut7Dm6XT6s3VGd/Gt1c/fdW2dc69aC/wGtN/flhnNWV1bg7rVz/9Cd67X/udcxIFe6kR0ZzTHzsrnHzu2ule2HqM5q2urb4Ct8c2obvXzj52Vt1Y//9ix1b2yNb4Z1a1+/rGz8tbq5x87trpX1bZWP//YsdW9sjW+GdWtfv7Izpv4s5YAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAECS1x7nnoJ+Z+xEdGc0x87K5x87trpXth6jOatrq2+ArfHNqG7184+dlbdWP//YsdW9sjW+GdWtfv6xs/LW6ucfO7a6V9W2Vj//2LHVvbI1vhnVrX7+yM6bbPu+Z/4eAAAAAAAAlOXPWgIAAAAAAECSu3/947fL5bG19i7gd54+Xa/n4O6MZtdd/Pxd11b3ytZjNGd1bfUN+PX9Iaz7/uPn86xma61tX7ew7v5lP89qBnZnNLvu4ufvuotvrX7+rmure3Wkre3Hz7Buu//w3N3itrb9r60x3RnNvrv2+fvu2lurn7/v2nqYe3W73cKap9Ppz9YZ3cW3Vj9/17V1zr1qLfAb0H5/W2Y0Z3VtDepWP/8L3ble+59zEQd6qRPRndEcOyuff+zY6l7ZeozmrK6tvgG2xjejutXPP3ZW3lr9/GPHVvfK1vhmVLf6+cfOylurn3/s2OpeVdta/fxjx1b3ytb4ZlS3+vkjO2/iz1oCAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJXnucewr6nbET0Z3RHDsrn3/s2Ope2XqM5qyurb4BtsY3o7rVzz92Vt5a/fxjx1b3ytb4ZlS3+vnHzspbq59/7NjqXlXbWv38Y8dW98rW+GZUt/r5Iztvsu37nvl7AAAAAAAAUJY/awkAAAAAAABJPM4BAAAAAABAkrt//eO3y+WxtfYu4HeePl2v5+DujGbXXfz8XddW98rWYzRndW31Dfj1/SGs+/7j5/OsZmutbV+3sO7+ZT/PagZ2ZzS77uLn77qLb61+/q5rq3t1pK3tx8+wbrv/8Nzd4ra2/a+tMd0Zzb679vn77tpbq5+/79p6mHt1u93CmqfT6c/WGd3Ft1Y/f9e1dc69ai3wG9B+f1tmNGd1bQ3qVj//C925XvufcxEHeqkT0Z3RHDsrn3/s2Ope2XqM5qyurb4BtsY3o7rVzz92Vt5a/fxjx1b3ytb4ZlS3+vnHzspbq59/7NjqXlXbWv38Y8dW98rW+GZUt/r5Iztv4s9aAgAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASV57nHsK+p2xE9Gd0Rw7K59/7NjqXtl6jOasrq2+AbbGN6O61c8/dlbeWv38Y8dW98rW+GZUt/r5x87KW6uff+zY6l5V21r9/GPHVvfK1vhmVLf6+SM7b7Lt+575ewAAAAAAAFCWP2sJAAAAAAAASe7+9Y/fLpfH1tq7gN95+nS9noO7M5pdd/Hzd11b3Stbj9Gc1bXVN+DX94ew7vuPn8+zmq21tn3dwrr7l/08qxnYndHsuoufv+suvrX6+buure7Vkba2Hz/Duu3+w3N3i9va9r+2xnRnNPvu2ufvu2tvrX7+vmvrYe7V7XYLa55Opz9bZ3QX31r9/F3X1jn3qrXAb0D7/W2Z0ZzVtTWoW/38L3Tneu1/zkUc6KVORHdGc+ysfP6xY6t7ZesxmrO6tvoG2BrfjOpWP//YWXlr9fOPHVvdK1vjm1Hd6ucfOytvrX7+sWOre1Vta/Xzjx1b3Stb45tR3ernj+y8iT9rCQAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJHntce4p6HfGTkR3RnPsrHz+sWOre2XrMZqzurb6Btga34zqVj//2Fl5a/Xzjx1b3Stb45tR3ernHzsrb61+/rFjq3tVbWv1848dW90rW+ObUd3q54/svMm273vm7wEAAAAAAEBZ/qwlAAAAAAAAJPE4BwAAAAAAAEnu/vWP3y6Xx9bau4Dfefp0vZ6DuzOaXXfx83ddW90rW4/RnNW11Tfg1/eHsO77j5/Ps5qttbZ93cK6+5f9PKsZ2J3R7LqLn7/rLr61+vm7rq3u1ZG2th8/w7rt/sNzd4vb2va/tsZ0ZzT77trn77trb61+/r5r62Hu1e12C2ueTqc/W2d0F99a/fxd19Y596q1wG9A+/1tmdGc1bU1qFv9/C9053rtf85FHOilTkR3RnPsrHz+sWOre2XrMZqzurb6Btga34zqVj//2Fl5a/Xzjx1b3Stb45tR3ernHzsrb61+/rFjq3tVbWv1848dW90rW+ObUd3q54/svIk/awkAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkOS1x7mnoN8ZOxHdGc2xs/L5x46t7pWtx2jO6trqG2BrfDOqW/38Y2flrdXPP3Zsda9sjW9Gdauff+ysvLX6+ceOre5Vta3Vzz92bHWvbI1vRnWrnz+y8ybbvu+ZvwcAAAAAAABl+bOWAAAAAAAAkMTjHAAAAAAAACS5+9c/frtcHltr7wJ+5+nT9XoO7s5odt3Fz991bXWvbD1Gc1bXVt+AX98fwrrvP34+z2q21tr2dQvr7l/286xmYHdGs+sufv6uu/jW6ufvura6V0fa2n78DOu2+w/P3S1ua9v/2hrTndHsu2ufv++uvbX6+fuurYe5V7fbLax5Op3+bJ3RXXxr9fN3XVvn3KvWAr8B7fe3ZUZzVtfWoG7187/Qneu1/zkXcaCXOhHdGc2xs/L5x46t7pWtx2jO6trqG2BrfDOqW/38Y2flrdXPP3Zsda9sjW9Gdauff+ysvLX6+ceOre5Vta3Vzz92bHWvbI1vRnWrnz+y8yb+rCUAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDktce5p6DfGTsR3RnNsbPy+ceOre6Vrcdozura6htga3wzqlv9/GNn5a3Vzz92bHWvbI1vRnWrn3/srLy1+vnHjq3uVbWt1c8/dmx1r2yNb0Z1q58/svMm277vmb8HAAAAAAAAZfmzlgAAAAAAAJDk7l//+O1yeWytvQv4nadP1+s5uDuj2XUXP3/XtdW9svUYzVldW30Dfn1/COu+//j5PKvZWmvb1y2su3/Zz7Oagd0Zza67+Pm77uJbq5+/69rqXh1pa/vxM6zb7j88d7e4rW3/a2tMd0az7659/r679tbq5++7th7mXt1ut7Dm6XT6s3VGd/Gt1c/fdW2dc69aC/wGtN/flhnNWV1bg7rVz/9Cd67X/udcxIFe6kR0ZzTHzsrnHzu2ule2HqM5q2urb4Ct8c2obvXzj52Vt1Y//9ix1b2yNb4Z1a1+/rGz8tbq5x87trpX1bZWP//YsdW9sjW+GdWtfv7Izpv4s5YAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAECS1x7nnoJ+Z+xEdGc0x87K5x87trpXth6jOatrq2+ArfHNqG7184+dlbdWP//YsdW9sjW+GdWtfv6xs/LW6ucfO7a6V9W2Vj//2LHVvbI1vhnVrX7+yM6bbPu+Z/4eAAAAAAAAlOXPWgIAAAAAAEASj3MAAAAAAACQ5O5f//jtcnlsrb0L+J2nT9frObg7o9l1Fz9/17XVvbL1GM1ZXVt9A359fwjrvv/4+Tyr2Vpr29ctrLt/2c+zmoHdGc2uu/j5u+7iW6ufv+va6l4daWv78TOs2+4/PHe3uK1t/2trTHdGs++uff6+u/bW6ufvu7Ye5l7dbrew5ul0+rN1RnfxrdXP33VtnXOvWgv8BrTf35YZzVldW4O61c//Qneu1/7nXMSBXupEdGc0x87K5x87trpXth6jOatrq2+ArfHNqG7184+dlbdWP//YsdW9sjW+GdWtfv6xs/LW6ucfO7a6V9W2Vj//2LHVvbI1vhnVrX7+yM6b+LOWAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAktce556CfmfsRHRnNMfOyucfO7a6V7Yeozmra6tvgK3xzahu9fOPnZW3Vj//2LHVvbI1vhnVrX7+sbPy1urnHzu2ulfVtlY//9ix1b2yNb4Z1a1+/sjOm2z7vmf+HgAAAAAAAJTlz1oCAAAAAABAkrt//eO3y+WxtfYu4HeePl2v5+DujGbXXfz8XddW98rWYzRndW31Dfj1/SGs+/7j5/OsZmutbV+3sO7+ZT/PagZ2ZzS77uLn77qLb61+/q5rq3t1pK3tx8+wbrv/8Nzd4ra2/a+tMd0Zzb679vn77tpbq5+/79p6mHt1u93CmqfT6c/WGd3Ft1Y/f9e1dc69ai3wG9B+f1tmNGd1bQ3qVj//0I1q7tv//ctr/3Mu4kAvdSK6M5pjZ+Xzjx1b3Stbj9Gc1bXVN8DW+GZUt/r5x87KW6uff+zY6l7ZGt+M6lY//9hZeWv1848dW92ralurn3/s2Ope2RrfjOpWP//YiWr+L3/WEgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASPLa49xT0O+MnYjujObYWfn8Y8dW98rWYzRndW31DbA1vhnVrX7+sbPy1urnHzu2ule2xjejutXPP3ZW3lr9/GPHVveq2tbq5x87trpXtsY3o7rVzz92opr/a9v3ffZvAAAAAAAAAM2ftQQAAAAAAIA0HucAAAAAAAAgyd2//vHb5fLYWnsX8DtPn67Xc3B3RrPrLn7+rmure2XrMZqzurb6Bvz6/hDWff/x83lWs7XWtq9bWHf/sp9nNQO7M5pdd/Hzd93Ft1Y/f9e11b060tb242dYt91/eO5ucVvb/tfWmO6MZt9d+/x9d+2t1c/fd209zL263W5hzdPp9GfrjO7iW6ufv+vaOudetRb4DWi/vy0zmrO6tgZ1q59/6EY19+3//uW1/zkXcaCXOhHdGc2xs/L5x46t7pWtx2jO6trqG2BrfDOqW/38Y2flrdXPP3Zsda9sjW9Gdauff+ysvLX6+ceOre5Vta3Vzz92bHWvbI1vRnWrn3/sRDX/lz9rCQAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJPE4BwAAAAAAAEk8zgEAAAAAAEASj3MAAAAAAACQxOMcAAAAAAAAJHntce4p6HfGTkR3RnPsrHz+sWOre2XrMZqzurb6Btga34zqVj//2Fl5a/Xzjx1b3Stb45tR3ernHzsrb61+/rFjq3tVbWv1848dW90rW+ObUd3q5x87Uc3/te37Pvs3AAAAAAAAgObPWgIAAAAAAECau3/947fL5bG19i7gd54+Xa/n4O6MZtdd/Pxd11b3ytZjNGd1bfUN+PX9Iaz7/uPn86xma61tX7ew7v5lP89qBnZnNLvu4ufvuotvrX7+rmure3Wkre3Hz7Buu//w3N3itrb9r60x3RnNvrv2+fvu2lurn7/v2nqYe3W73cKap9Ppz9YZ3cW3Vj9/17V1zr1qLfAb0H5/W2Y0Z3VtDepWP//QjWru2//9y2v/cy7iQC91IrozmmNn5fOPHVvdK1uP0ZzVtdU3wNb4ZlS3+vnHzspbq59/7NjqXtka34zqVj//2Fl5a/Xzjx1b3atqW6uff+zY6l7ZGt+M6lY//9iJav4vf9YSAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI4nEOAAAAAAAAknicAwAAAAAAgCQe5wAAAAAAACCJxzkAAAAAAABI8trj3FPQ74ydiO6M5thZ+fxjx1b3ytZjNGd1bfUNsDW+GdWtfv6xs/LW6ucfO7a6V7bGN6O61c8/dlbeWv38Y8dW96ra1urnHzu2ule2xjejutXPP3aimv9r2/d99m8AAAAAAAAAzZ+1BAAAAAAAgDQe5wAAAAAAACDJ3b/+8dvl8thaexfwO0+frtdzcHdGs+sufv6ua6t7ZesxmrO6tvoG/Pr+ENZ9//HzeVaztda2r1tYd/+yn2c1A7szml138fN33cW3Vj9/17XVvTrS1vbjZ1i33X947m5xW9v+19aY7oxm3137/H137a3Vz993bT3MvbrdbmHN0+n0Z+uM7uJbq5+/69o65161FvgNaL+/LTOas7q2BnWrn3/oRjX37f/+5bX/ORdxoJc6Ed0ZzbGz8vnHjq3ula3HaM7q2uobYGt8M6pb/fxjZ+Wt1c8/dmx1r2yNb0Z1q59exJzeAAAgAElEQVR/7Ky8tfr5x46t7lW1rdXPP3Zsda9sjW9Gdauff+xENf+XP2sJAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDE4xwAAAAAAAAk8TgHAAAAAAAASTzOAQAAAAAAQBKPcwAAAAAAAJDktce5p6DfGTsR3RnNsbPy+ceOre6Vrcdozura6htga3wzqlv9/GNn5a3Vzz92bHWvbI1vRnWrn3/srLy1+vnHjq3uVbWt1c8/dmx1r2yNb0Z1q59/7EQ1/9e27/vs3wAAAAAAAACaP2sJAAAAAAAAaTzOAQAAAAAAQJK7f/3jt8vlsbX2LuB3nj5dr+fg7oxm1138/F3XVvfK1mM0Z3Vt9Q349f0hrPv+4+fzrGZrrW1ft7Du/mU/z2oGdmc0u+7i5++6i2+tfv6ua6t7daSt7cfPsG67//Dc3eK2tv2vrTHdGc2+u/b5++7aW6ufv+/aeph7dbvdwpqn0+nP1hndxbdWP3/XtXXOvWot8BvQfn9bZjRndW0N6lY//9CNau7b//3La/9zLuJAL3UiujOaY2fl848dW90rW4/RnNW11TfA1vhmVLf6+cfOylurn3/s2Ope2RrfjOpWP//YWXlr9fOPHVvdq2pbq59/7NjqXtka34zqVj//2Ilq/i9/1hIAAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjicQ4AAAAAAACSeJwDAAAAAACAJB7nAAAAAAAAIInHOQAAAAAAAEjy2uPcU9DvjJ2I7ozm2Fn5/GPHVvfK1mM0Z3Vt9Q2wNb4Z1a1+/rGz8tbq5x87trpXtsY3o7rVzz92Vt5a/fxjx1b3qtrW6ucfO7a6V7bGN6O61c8/dqKa/2vb9332bwAAAAAAAADNn7UEAAAAAACANHf/+sdvl8tja+1dwO88fbpez8HdGc2uu/j5u66t7pWtx2jO6trqG/Dr+0NY9/3Hz+dZzdZa275uYd39y36e1Qzszmh23cXP33UX31r9/F3XVvfqSFvbj59h3Xb/4bm7xW1t+19bY7ozmn137fP33bW3Vj9/37X1MPfqdruFNU+n05+tM7qLb61+/q5r65x71VrgN6D9/rbMaM7q2hrUrX7+oRvV3Lf/+5fX/udcxIFe6kR0ZzTHzsrnHzu2ule2HqM5q2urb4Ct8c2obvXzj52Vt1Y//9ix1b2yNb4Z1a1+/rGz8tbq5x87trpX1bZWP//YsdW9sjW+GdWtfv6xE9X8X/6sJQAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkMTjHAAAAAAAACTxOAcAAAAAAABJPM4BAAAAAABAEo9zAAAAAAAAkOS1x7mnoN8ZOxHdGc2xs/L5x46t7pWtx2jO6trqG2BrfDOqW/38Y2flrdXPP3Zsda9sjW9Gdauff+ysvLX6+ceOre5Vta3Vzz92bHWvbI1vRnWrn3/sRDX/17bv++zfAAAAAAAAAJo/awkAAAAAAABpPM4BAAAAAABAkrt//eO3y+WxtfYu4HeePl2v5+DujGbXXfz8XddW98rWYzRndW31Dfj1/SGs+/7j5/OsZmutbV+3sO7+ZT/PagZ2ZzS77uLn77qLb61+/q5rq3t1pK3tx8+wbrv/8Nzd4ra2/a+tMd0Zzb679vn77tpbq5+/79p6mHt1u93CmqfT6c/WGd3Ft1Y/f9e1dc69ai3wG9B+f1tmNGd1bQ3qVj//0I1q7tv//ctr/3Mu4kAvdSK6M5pjZ+Xzjx1b3Stbj9Gc1bXVN8DW+GZUt/r5x87KW6uff+zY6l7ZGt+M6lY//9hZeWv1848dW92ralurn3/s2Ope2RrfjOpWP//YiWr+L3/WEgAAAAAAAJJ4nAMAAAAAAIAkHucAAAAAAAAgicc5AAAAAAAASOJxDgAAAAAAAJJ4nAMAAAAA+K+dO7aRKlgWMNxHwpoEmBxWePgEQAakQQCjCYA0yIAA8PHQ5sAmMO55xhWXe0oM61TX61F9n7vSP1VS7zilXQAo4jgHAAAAAAAARRznAAAAAAAAoIjjHAAAAAAAABRxnAMAAAAAAIAijnMAAAAAAABQxHEOAAAAAAAAijjOAQAAAAAAQBHHOQAAAAAAACjiOAcAAAAAAABFHOcAAAAAAACgyGvHuZekz4mdjO6MZuysvH/smNW7MutjNGd1zeo7wKz5zaxu9/1jZ+VZu+8fO2b1rsya38zqdt8/dlaetfv+sWNW76rbrN33jx2zeldmzW9mdbvvHztZzbu2fd9nfwYAAAAAAAAw/FtLAAAAAAAAKPPmXz/8+vT0a4zxNuFzXj49P5+TuzOah+7i+x+6ZvWuzPoYzVlds/oO+PntS1r33cfP51nNMcbYrltad7/s51nNxO6M5qG7+P6H7uKzdt//0DWrd/VIs47vP9K648P7/3S3vFnH/j+z5nRnNI/dtfc/dteetfv+x65ZH+Zd3W63tObpdPrvrDO6i8/aff9D16xz3tUYid8B4/d3y4zmrK5Zk7rd9w/drOa+3fvJa385l7HQ3zoZ3RnN2Fl5/9gxq3dl1sdozuqa1XeAWfObWd3u+8fOyrN23z92zOpdmTW/mdXtvn/srDxr9/1jx6zeVbdZu+8fO2b1rsya38zqdt8/drKad/m3lgAAAAAAAFDEcQ4AAAAAAACKOM4BAAAAAABAEcc5AAAAAAAAKOI4BwAAAAAAAEUc5wAAAAAAAKCI4xwAAAAAAAAUcZwDAAAAAACAIo5zAAAAAAAAUMRxDgAAAAAAAIo4zgEAAAAAAEARxzkAAAAAAAAo4jgHAAAAAAAARRznAAAAAAAAoIjjHAAAAAAAABRxnAMAAAAAAIAirx3nXpI+J3YyujOasbPy/rFjVu/KrI/RnNU1q+8As+Y3s7rd94+dlWftvn/smNW7Mmt+M6vbff/YWXnW7vvHjlm9q26zdt8/dszqXZk1v5nV7b5/7GQ179r2fZ/9GQAAAAAAAMDwby0BAAAAAACgjOMcAAAAAAAAFHnzrx9+fXr6NcZ4m/A5L5+en8/J3RnNQ3fx/Q9ds3pXZn2M5qyuWX0H/Pz2Ja377uPn86zmGGNs1y2tu1/286xmYndG89BdfP9Dd/FZu+9/6JrVu3qkWcf3H2nd8eH9f7pb3qxj/59Zc7ozmsfu2vsfu2vP2n3/Y9esD/OubrdbWvN0Ov131hndxWftvv+ha9Y572qMxO+A8fu7ZUZzVtesSd3u+4duVnPf7v3ktb+cy1job52M7oxm7Ky8f+yY1bsy62M0Z3XN6jvArPnNrG73/WNn5Vm77x87ZvWuzJrfzOp23z92Vp61+/6xY1bvqtus3fePHbN6V2bNb2Z1u+8fO1nNu/xbSwAAAAAAACjiOAcAAAAAAABFHOcAAAAAAACgiOMcAAAAAAAAFHGcAwAAAAAAgCKOcwAAAAAAAFDEcQ4AAAAAAACKOM4BAAAAAABAEcc5AAAAAAAAKOI4BwAAAAAAAEUc5wAAAAAAAKCI4xwAAAAAAAAUcZwDAAAAAACAIo5zAAAAAAAAUMRxDgAAAAAAAIo4zgEAAAAAAECR145zL0mfEzsZ3RnN2Fl5/9gxq3dl1sdozuqa1XeAWfObWd3u+8fOyrN23z92zOpdmTW/mdXtvn/srDxr9/1jx6zeVbdZu+8fO2b1rsya38zqdt8/drKad237vs/+DAAAAAAAAGD4t5YAAAAAAABQ5s2/fvj16enXGONtwue8fHp+Pid3ZzQP3cX3P3TN6l2Z9TGas7pm9R3w89uXtO67j5/Ps5pjjLFdt7TuftnPs5qJ3RnNQ3fx/Q/dxWftvv+ha1bv6pFmHd9/pHXHh/f/6W55s479f2bN6c5oHrtr73/srj1r9/2PXbM+zLu63W5pzdPp9N9ZZ3QXn7X7/oeuWee8qzESvwPG7++WGc1ZXbMmdbvvH7pZzX2795PX/nIuY6G/dTK6M5qxs/L+sWNW78qsj9Gc1TWr7wCz5jezut33j52VZ+2+f+yY1bsya34zq9t9/9hZedbu+8eOWb2rbrN23z92zOpdmTW/mdXtvn/sZDXv8m8tAQAAAAAAoIjjHAAAAAAAABRxnAMAAAAAAIAijnMAAAAAAABQxHEOAAAAAAAAijjOAQAAAAAAQBHHOQAAAAAAACjiOAcAAAAAAABFHOcAAAAAAACgiOMcAAAAAAAAFHGcAwAAAAAAgCKOcwAAAAAAAFDEcQ4AAAAAAACKOM4BAAAAAABAEcc5AAAAAAAAKOI4BwAAAAAAAEVeO869JH1O7GR0ZzRjZ+X9Y8es3pVZH6M5q2tW3wFmzW9mdbvvHzsrz9p9/9gxq3dl1vxmVrf7/rGz8qzd948ds3pX3Wbtvn/smNW7Mmt+M6vbff/YyWrete37PvszAAAAAAAAgOHfWgIAAAAAAECZN//64denp19jjLcJn/Py6fn5nNyd0Tx0F9//0DWrd2XWx2jO6prVd8DPb1/Suu8+fj7Pao4xxnbd0rr7ZT/PaiZ2ZzQP3cX3P3QXn7X7/oeuWb2rR5p1fP+R1h0f3v+nu+XNOvb/mTWnO6N57K69/7G79qzd9z92zfow7+p2u6U1T6fTf2ed0V181u77H7pmnfOuxkj8Dhi/v1tmNGd1zZrU7b5/6GY19+3eT177y7mMhf7WyejOaMbOyvvHjlm9K7M+RnNW16y+A8ya38zqdt8/dlaetfv+sWNW78qs+c2sbvf9Y2flWbvvHztm9a66zdp9/9gxq3dl1vxmVrf7/rGT1bzLv7UEAAAAAACAIo5zAAAAAAAAUMRxDgAAAAAAAIo4zgEAAAAAAEARxzkAAAAAAAAo4jgHAAAAAAAARRznAAAAAAAAoIjjHAAAAAAAABRxnAMAAAAAAIAijnMAAAAAAABQxHEOAAAAAAAAijjOAQAAAAAAQBHHOQAAAAAAACjiOAcAAAAAAABFHOcAAAAAAACgiOMcAAAAAAAAFHntOPeS9Dmxk9Gd0YydlfePHbN6V2Z9jOasrll9B5g1v5nV7b5/7Kw8a/f9Y8es3pVZ85tZ3e77x87Ks3bfP3bM6l11m7X7/rFjVu/KrPnNrG73/WMnq3nXtu/77M8AAAAAAAAAhn9rCQAAAAAAAGUc5wAAAAAAAKDIm3/98OvT068xxtuEz3n59Px8Tu7OaB66i+9/6JrVuzLrYzRndc3qO+Dnty9p3XcfP59nNccYY7tuad39sp9nNRO7M5qH7uL7H7qLz9p9/0PXrN7VI806vv9I644P7//T3fJmHfv/zJrTndE8dtfe/9hde9bu+x+7Zn2Yd3W73dKap9Ppv7PO6C4+a/f9D12zznlXYyR+B4zf3y0zmrO6Zk3qdt8/dLOa+3bvJ6/95VzGQn/rZHRnNGNn5f1jx6zelVkfozmra1bfAWbNb2Z1u+8fOyvP2n3/2DGrd2XW/GZWt/v+sbPyrN33jx2zelfdZu2+f+yY1bsya34zq9t9/9jJat7l31oCAAAAAABAEcc5AAAAAAAAKOI4BwAAAAAAAEUc5wAAAAAAAKCI4xwAAAAAAAAUcZwDAAAAAACAIo5zAAAAAAAAUMRxDgAAAAAAAIo4zgEAAAAAAEARxzkAAAAAAAAo4jgHAAAAAAAARRznAAAAAAAAoIjjHAAAAAAAABRxnAMAAAAAAIAijnMAAAAAAABQxHEOAAAAAAAAirx2nHtJ+pzYyejOaMbOyvvHjlm9K7M+RnNW16y+A8ya38zqdt8/dlaetfv+sWNW78qs+c2sbvf9Y2flWbvvHztm9a66zdp9/9gxq3dl1vxmVrf7/rGT1bxr2/d99mcAAAAAAAAAw7+1BAAAAAAAgDJv/vXDr09Pv8YYbxM+5+XT8/M5uTujeeguvv+ha1bvyqyP0ZzVNavvgJ/fvqR13338fJ7VHGOM7bqldffLfp7VTOzOaB66i+9/6C4+a/f9D12zelePNOv4/iOtOz68P48xxnW7pjUv++XPrFvOuxr7nt08dmc0Z3XXnrX7/seuWdu/q9vtltY9nU7nWc3E7ozmobv4/oeuWee8qzESf1/H79/XGc1ZXbMmdbvvH7pZzX2795PX/nIuY6G/dTK6M5qxs/L+sWNW78qsj9Gc1TWr7wCz5jezut33j52VZ+2+f+yY1bsya34zq9t9/9hZedbu+8eOWb2rbrN23z92zOpdmTW/mdXtvn/sZDXv8m8tAQAAAAAAoIjjHAAAAAAAABRxnAMAAAAAAIAijnMAAAAAAABQxHEOAAAAAAAAijjOAQAAAAAAQBHHOQAAAAAAACjiOAcAAAAAAABFHOcAAAAAAACgiOMcAAAAAAAAFHGcAwAAAAAAgCKOcwAAAAAAAFDEcQ4AAAAAAACKOM4BAAAAAABAEcc5AAAAAAAAKOI4BwAAAAAAAEVeO869JH1O7GR0ZzRjZ+X9Y8es3pVZH6M5q2tW3wFmzW9mdbvvHzsrz9p9/9gxq3dl1vxmVrf7/rGz8qzd948ds3pX3Wbtvn/smNW7Mmt+M6vbff/YyWrete37PvszAAAAAAAAgOHfWgIAAAAAAEAZxzkAAAAAAAAo8uZfP/z69PRrjPE24XNePj0/n5O7M5qH7uL7H7pm9a7M+hjNWV2z+g74+e1LWvfdx8/nWc0xxtiuW1p3v+znWc3E7ozmobv4/ofu4rN23//QNat39Uizju8/0rrjw/vzGGNct2ta87Jf/sy65byrse/ZzWN3RnNWd+1Zu+9/7Jq1/bu63W5p3dPpdJ7VTOzOaB66i+9/6Jp1zrsaI/H3dfz+fZ3RnNU1a1K3+/6hm9Xct3s/ee0v5zIW+lsnozujGTsr7x87ZvWuzPoYzVlds/oOMGt+M6vbff/YWXnW7vvHjlm9K7PmN7O63fePnZVn7b5/7JjVu+o2a/f9Y8es3pVZ85tZ3e77x05W8y7/1hIAAAAAAACKOM4BAAAAAABAEcc5AAAAAAAAKOI4BwAAAAAAAEUc5wAAAAAAAKCI4xwAAAAAAAAUcZwDAAAAAACAIo5zAAAAAAAAUMRxDgAAAAAAAIo4zgEAAAAAAEARxzkAAAAAAAAo4jgHAAAAAAAARRznAAAAAAAAoIjjHAAAAAAAABRxnAMAAAAAAIAijnMAAAAAAABQ5LXj3EvS58RORndGM3ZW3j92zOpdmfUxmrO6ZvUdYNb8Zla3+/6xs/Ks3fePHbN6V2bNb2Z1u+8fOyvP2n3/2DGrd9Vt1u77x45ZvSuz5jezut33j52s5l3bvu+zPwMAAAAAAAAY/q0lAAAAAAAAlHnzrx9+fXr6NcZ4m/A5L5+en8/J3RnNQ3fx/Q9ds3pXZn2M5qyuWX0H/Pz2Ja377uPn86zmGGNs1y2tu1/286xmYndG89BdfP9Dd/FZu+9/6JrVu3qkWcf3H2nd8eH9eYwxrts1rXnZL39m3XLe1dj37OaxO6M5q7v2rN33P3bN2v5d3W63tO7pdDrPaiZ2ZzQP3cX3P3TNOuddjZH4+zp+/77OaM7qmjWp233/0M1q7tu9n7z2l3MZC/2tk9Gd0YydlfePHbN6V2Z9jOasrll9B5g1v5nV7b5/7Kw8a/f9Y8es3pVZ85tZ3e77x87Ks3bfP3bM6l11m7X7/rFjVu/KrPnNrG73/WMnq3mXf2sJAAAAAAAARRznAAAAAAAAoIjjHAAAAAAAABRxnAMAAAAAAIAijnMAAAAAAABQxHEOAAAAAAAAijjOAQAAAAAAQBHHOQAAAAAAACjiOAcAAAAAAABFHOcAAAAAAACgiOMcAAAAAAAAFHGcAwAAAAAAgCKOcwAAAAAAAFDEcQ4AAAAAAACKOM4BAAAAAABAEcc5AAAAAAAAKPLace4l6XNiJ6M7oxk7K+8fO2b1rsz6GM1ZXbP6DjBrfjOr233/2Fl51u77x45ZvSuz5jezut33j52VZ+2+f+yY1bvqNmv3/WPHrN6VWfObWd3u+8dOVvOubd/32Z8BAAAAAAAADP/WEgAAAAAAAMo4zgEAAAAAAECRN//64denp19jjLcJn/Py6fn5nNyd0Tx0F9//0DWrd2XWx2jO6prVd8DPb1/Suu8+fj7Pao4xxnbd0rr7ZT/PaiZ2ZzQP3cX3P3QXn7X7/oeuWb2rR5p1fP+R1h0f3p/HGOO6XdOal/3yZ9Yt512Nfc9uHrszmrO6a8/aff9j16zt39Xtdkvrnk6n86xmYndG89BdfP9D16xz3tUYib+v4/fv64zmrK5Zk7rd9w/drOa+3fvJa385l7HQ3zoZ3RnN2Fl5/9gxq3dl1sdozuqa1XeAWfObWd3u+8fOyrN23z92zOpdmTW/mdXtvn/srDxr9/1jx6zeVbdZu+8fO2b1rsya38zqdt8/drKad/m3lgAAAAAAAFDEcQ4AAAAAAACKOM4BAAAAAABAEcc5AAAAAAAAKOI4BwAAAAAAAEUc5wAAAAAAAKCI4xwAAAAAAAAUcZwDAAAAAACAIo5zAAAAAAAAUMRxDgAAAAAAAIo4zgEAAAAAAEARxzkAAAAAAAAo4jgHAAAAAAAARRznAAAAAAAAoIjjHAAAAAAAABR57Tj3kvQ5sZPRndGMnZX3jx2zeldmfYzmrK5ZfQeYNb+Z1e2+f+ysPGv3/WPHrN6VWfObWd3u+8fOyrN23z92zOpddZu1+/6xY1bvyqz5zaxu9/1jJ6t517bv++zPAAAAAAAAAIZ/awkAAAAAAABlHOcAAAAAAACgyJt//fDr09OvMcbbhM95+fT8fE7uzmgeuovvf+ia1bsy62M0Z3XN6jvg57cvad13Hz+fZzXHGGO7bmnd/bKfZzUTuzOah+7i+x+6i8/aff9D16ze1SPNOr7/SOuOD+/PY4xx3a5pzct++TPrlvOuxr5nN4/dGc1Z3bVn7b7/sWvW9u/qdruldU+n03lWM7E7o3noLr7/oWvWOe9qjMTf1/H793VGc1bXrEnd7vuHblZz3+795LW/nMtY6G+djO6MZuysvH/smNW7MutjNGd1zeo7wKz5zaxu9/1jZ+VZu+8fO2b1rsya38zqdt8/dlaetfv+sWNW76rbrN33jx2zeldmzW9mdbvvHztZzbv8W0sAAAAAAAAo4jgHAAAAAAAARRznAAAAAAAAoIjjHAAAAAAAABRxnAMAAAAAAIAijnMAAAAAAABQxHEOAAAAAAAAijjOAQAAAAAAQBHHOQAAAAAAACjiOAcAAAAAAABFHOcAAAAAAACgiOMcAAAAAAAAFHGcAwAAAAAAgCKOcwAAAAAAAFDEcQ4AAAAAAACKOM4BAAAAAABAkdeOcy9JnxM7Gd0ZzdhZef/YMat3ZdbHaM7qmtV3gFnzm1nd7vvHzsqzdt8/dszqXZk1v5nV7b5/7Kw8a/f9Y8es3lW3WbvvHztm9a7Mmt/M6nbfP3aymndt+77P/gwAAAAAAABg+LeWAAAAAAAAUObNv3749enp1xjjbcLnvHx6fj4nd2c0D93F9z90zepdmfUxmrO6ZvUd8PPbl7Tuu4+fz7OaY4yxXbe07n7Zz7Oaid0ZzUN38f0P3cVn7b7/oWtW7+qRZh3ff6R1x4f35zHGuG7XtOZlv/yZdct5V2Pfs5vH7ozmrO7as3bf/9g1a/t3dbvd0rqn0+k8q5nYndE8dBff/9A165x3NUbi7+v4/fs6ozmra9akbvf9QzeruW/3fvLaX85lLPS3TkZ3RjN2Vt4/dszqXZn1MZqzumb1HWDW/GZWt/v+sbPyrN33jx2zeldmzW9mdbvvHzsrz9p9/9gxq3fVbdbu+8eOWb0rs+Y3s7rd94+drOZd/q0lAAAAAAAAFHGcAwAAAAAAgCKOcwAAAAAAAFDEcQ4AAAAAAACKOM4BAAAAAABAEcc5AAAAAAAAKOI4BwAAAAAAAEUc5wAAAAAAAKCI4xwAAAAAAAAUcZwDAAAAAACAIo5zAAAAAAAAUMRxDgAAAAAAAIo4zgEAAAAAAEARxzkAAAAAAAAo4jgHAAAAAAAARRznAAAAAAAAoMhrx7mXpM+JnYzujGbsrLx/7JjVuzLrYzRndc3qO8Cs+c2sbvf9Y2flWbvvHztm9a7Mmt/M6nbfP3ZWnrX7/rFjVu+q26zd948ds3pXZs1vZnW77x87Wc27tn3fZ38GAAAAAAAAMPxbSwAAAAAAACjjOAcAAAAAAABF3vzrh1+fnn6NMd4mfM7Lp+fnc3J3RvPQXXz/Q9es3pVZH6M5q2tW3wE/v31J6777+Pk8qznGGNt1S+vul/08q5nYndE8dBff/9BdfNbu+x+6ZvWuHmnW8f1HWnd8eH8eY4zrdk1rXvbLn1m3nHc19j27eezOaM7qrj1r9/2PXbO2f1e32y2tezqdzrOaid0ZzUN38f0PXbPOeVdjJP6+jt+/rzOas7pmTep23z90s5r7du8nr/3lXMZCf+tkdGc0Y2fl/WPHrN6VWR+jOatrVt8BZs1vZnW77x87K8/aff/YMat3Zdb8Zla3+/6xs/Ks3fePHbN6V91m7b5/7JjVuzJrfjOr233/2Mlq3uXfWgIAAAAAAEARxzkAAAAAAAAo4jgHAAAAAAAARRznAAAAAAAAoIjjHAAAAAAAABRxnAMAAAAAAIAijnMAAAAAAABQxHEOAAAAAAdDd+8AAAskSURBVAAAijjOAQAAAAAAQBHHOQAAAAAAACjiOAcAAAAAAABFHOcAAAAAAACgiOMcAAAAAAAAFHGcAwAAAAAAgCKOcwAAAAAAAFDEcQ4AAAAAAACKvHace0n6nNjJ6M5oxs7K+8eOWb0rsz5Gc1bXrL4DzJrfzOp23z92Vp61+/6xY1bvyqz5zaxu9/1jZ+VZu+8fO2b1rrrN2n3/2DGrd2XW/GZWt/v+sZPVvGvb9332ZwAAAAAAAADDv7UEAAAAAACAMm/+9cOvT0+/xhhvEz7n5dPz8zm5O6N56C6+/6FrVu/KrI/RnNU1q++An9++pHXfffx8ntUcY4ztuqV198t+ntVM7M5oHrqL73/oLj5r9/0PXbN6V4806/j+I607Prw/jzHGdbumNS/75c+sW867Gvue3Tx2ZzRnddeetfv+x65Z27+r2+2W1j2dTudZzcTujOahu/j+h65Z57yrMRJ/X8fv39cZzVldsyZ1u+8fulnNfbv3k9f+ci5job91MrozmrGz8v6xY1bvyqyP0ZzVNavvALPmN7O63fePnZVn7b5/7JjVuzJrfjOr233/2Fl51u77x45Zvatus3bfP3bM6l2ZNb+Z1e2+f+xkNe/yby0BAAAAAACgiOMcAAAAAAAAFHGcAwAAAAAAgCKOcwAAAAAAAFDEcQ4AAAAAAACKOM4BAAAAAABAEcc5AAAAAAAAKOI4BwAAAAAAAEUc5wAAAAAAAKCI4xwAAAAAAAAUcZwDAAAAAACAIo5zAAAAAAAAUMRxDgAAAAAAAIo4zgEAAAAAAEARxzkAAAAAAAAo4jgHAAAAAAAARV47zr0kfU7sZHRnNGNn5f1jx6zelVkfozmra1bfAWbNb2Z1u+8fOyvP2n3/2DGrd2XW/GZWt/v+sbPyrN33jx2zelfdZu2+f+yY1bsya34zq9t9/9jJat617fs++zMAAAAAAACA4d9aAgAAAAAAQBnHOQAAAAAAACjy5l8//Pr09GuM8Tbhc14+PT+fk7szmofu4vsfumb1rsz6GM1ZXbP6Dvj57Uta993Hz+dZzTHG2K5bWne/7OdZzcTujOahu/j+h+7is3bf/9A1q3f1SLOO7z/SuuPD+/MYY1y3a1rzsl/+zLrlvKux79nNY3dGc1Z37Vm773/smrX9u7rdbmnd0+l0ntVM7M5oHrqL73/omnXOuxoj8fd1/P59ndGc1TVrUrf7/qGb1dy3ez957S/nMhb6WyejO6MZOyvvHztm9a7M+hjNWV2z+g4wa34zq9t9/9hZedbu+8eOWb0rs+Y3s7rd94+dlWftvn/smNW76jZr9/1jx6zelVnzm1nd7vvHTlbzLv/WEgAAAAAAAIo4zgEAAAAAAEARxzkAAAAAAAAo4jgHAAAAAAAARRznAAAAAAAAoIjjHAAAAAAAABRxnAMAAAAAAIAijnMAAAAAAABQxHEOAAAAAAAAijjOAQAAAAAAQBHHOQAAAAAAACjiOAcAAAAAAABFHOcAAAAAAACgiOMcAAAAAAAAFHGcAwAAAAAAgCKOcwAAAAAAAFDktePcS9LnxE5Gd0YzdlbeP3bM6l2Z9TGas7pm9R1g1vxmVrf7/rGz8qzd948ds3pXZs1vZnW77x87K8/aff/YMat31W3W7vvHjlm9K7PmN7O63fePnazmXdu+77M/AwAAAAAAABj+rSUAAAAAAACUefOvH359evo1xnib8Dkvn56fz8ndGc1Dd/H9D12zeldmfYzmrK5ZfQf8/PYlrfvu4+fzrOYYY2zXLa27X/bzrGZid0bz0F18/0N38Vm773/omtW7eqRZx/cfad3x4f15jDGu2zWtedkvf2bdct7V2Pfs5rE7ozmru/as3fc/ds3a/l3dbre07ul0Os9qJnZnNA/dxfc/dM06512Nkfj7On7/vs5ozuqaNanbff/QzWru272fvPaXcxkL/a2T0Z3RjJ2V948ds3pXZn2M5qyuWX0HmDW/mdXtvn/srDxr9/1jx6zelVnzm1nd7vvHzsqzdt8/dszqXXWbtfv+sWNW78qs+c2sbvf9YyereZd/awkAAAAAAABFHOcAAAAAAACgiOMcAAAAAAAAFHGcAwAAAAAAgCKOcwAAAAAAAFDEcQ4AAAAAAACKOM4BAAAAAABAEcc5AAAAAAAAKOI4BwAAAAAAAEUc5wAAAAAAAKCI4xwAAAAAAAAUcZwDAAAAAACAIo5zAAAAAAAAUMRxDgAAAAAAAIo4zgEAAAAAAEARxzkAAAAAAAAo8tpx7iXpc2InozujGTsr7x87ZvWuzPoYzVlds/oOMGt+M6vbff/YWXnW7vvHjlm9K7PmN7O63fePnZVn7b5/7JjVu+o2a/f9Y8es3pVZ85tZ3e77x05W865t3/fZnwEAAAAAAAAM/9YSAAAAAAAAyjjOAQAAAAAAQJE3//rh16enX2OMtwmf8/Lp+fmc3J3RPHQX3//QNat3ZdbHaM7qmtV3wM9vX9K67z5+Ps9qjjHGdt3SuvtlP89qJnZnNA/dxfc/dBeftfv+h65ZvatHmnV8/5HWHR/en8cY47pd05qX/fJn1i3nXY19z24euzOas7prz9p9/2PXrO3f1e12S+ueTqfzrGZid0bz0F18/0PXrHPe1RiJv6/j9+/rjOasrlmTut33D92s5r7d+8lrfzmXsdDfOhndGc3YWXn/2DGrd2XWx2jO6prVd4BZ85tZ3e77x87Ks3bfP3bM6l2ZNb+Z1e2+f+ysPGv3/WPHrN5Vt1m77x87ZvWuzJrfzOp23z92spp3+beWAAAAAAAAUMRxDgAAAAAAAIo4zgEAAAAAAEARxzkAAAAAAAAo4jgHAAAAAAAARRznAAAAAAAAoIjjHAAAAAAAABRxnAMAAAAAAIAijnMAAAAAAABQxHEOAAAAAAAAijjOAQAAAAAAQBHHOQAAAAAAACjiOAcAAAAAAABFHOcAAAAAAACgiOMcAAAAAAAAFHntOPeS9Dmxk9Gd0YydlfePHbN6V2Z9jOasrll9B5g1v5nV7b5/7Kw8a/f9Y8es3pVZ85tZ3e77x87Ks3bfP3bM6l11m7X7/rFjVu/KrPnNrG73/WMnq3nXtu/77M8AAAAAAAAAhn9rCQAAAAAAAGUc5wAAAAAAAKDIm3/98OvT068xxtuEz3n59Px8Tu7OaB66i+9/6JrVuzLrYzRndc3qO+Dnty9p3XcfP59nNccYY7tuad39sp9nNRO7M5qH7uL7H7qLz9p9/0PXrN7VI806vv9I644P789jjHHdrmnNy375M+uW867Gvmc3j90ZzVndtWftvv+xa9b27+p2u6V1T6fTeVYzsTujeeguvv+ha9Y572qMxN/X8fv3dUZzVtesSd3u+4duVnPf7v3ktb+cy1job52M7oxm7Ky8f+yY1bsy62M0Z3XN6jvArPnNrG73/WNn5Vm77x87ZvWuzJrfzOp23z92Vp61+/6xY1bvqtus3fePHbN6V2bNb2Z1u+8fO1nNu/xbSwAAAAAAACjiOAcAAAAAAABFHOcAAAAAAACgiOMcAAAAAAAAFHGcAwAAAAAAgCKOcwAAAAAAAFDEcQ4AAAAAAACKOM4BAAAAAABAEcc5AAAAAAAAKOI4BwAAAAAAAEUc5wAAAAAAAKCI4xwAAAAAAAAUcZwDAAAAAACAIo5zAAAAAAAAUMRxDgAAAAAAAIo4zgEAAAAAAECRbd/3/+8ZAAAAAAAAoAV/OQcAAAAAAABFHOcAAAAAAACgiOMcAAAAAAAAFHGcAwAAAAAAgCKOcwAAAAAAAFDEcQ4AAAAAAACK/B8/HwUZu2fqiQAAAABJRU5ErkJggg=="
},
"metadata": {
"needs_background": "light"
}
}
],
"metadata": {}
}
],
"metadata": {
"orig_nbformat": 4,
"language_info": {
"name": "python",
"version": "3.7.0",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3.7.0 64-bit"
},
"interpreter": {
"hash": "70b38d7a306a849643e446cd70466270a13445e5987dfa1344ef2b127438fa4d"
}
},
"nbformat": 4,
"nbformat_minor": 2
}