You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/translations/fa
BethanyJep ac29db69b0
🌐 Update translations via Co-op Translator
3 days ago
..
1-Introduction 🌐 Update translations via Co-op Translator 2 weeks ago
2-Working-With-Data 🌐 Update translations via Co-op Translator 2 weeks ago
3-Data-Visualization 🌐 Update translations via Co-op Translator 2 weeks ago
4-Data-Science-Lifecycle 🌐 Update translations via Co-op Translator 2 weeks ago
5-Data-Science-In-Cloud 🌐 Update translations via Co-op Translator 2 weeks ago
6-Data-Science-In-Wild 🌐 Update translations via Co-op Translator 2 weeks ago
docs 🌐 Update translations via Co-op Translator 4 weeks ago
quiz-app 🌐 Update translations via Co-op Translator 4 weeks ago
sketchnotes 🌐 Update translations via Co-op Translator 4 weeks ago
CODE_OF_CONDUCT.md 🌐 Update translations via Co-op Translator 4 weeks ago
CONTRIBUTING.md 🌐 Update translations via Co-op Translator 4 weeks ago
README.md 🌐 Update translations via Co-op Translator 3 days ago
SECURITY.md 🌐 Update translations via Co-op Translator 4 weeks ago
SUPPORT.md 🌐 Update translations via Co-op Translator 4 weeks ago
for-teachers.md 🌐 Update translations via Co-op Translator 2 weeks ago

README.md

علم داده برای مبتدیان - یک برنامه آموزشی

Azure Cloud Advocates در مایکروسافت با افتخار یک برنامه آموزشی ۱۰ هفته‌ای و ۲۰ درس درباره علم داده ارائه می‌دهند. هر درس شامل آزمون‌های پیش از درس و پس از درس، دستورالعمل‌های نوشتاری برای تکمیل درس، یک راه‌حل و یک تکلیف است. روش آموزشی مبتنی بر پروژه ما به شما امکان می‌دهد در حین ساختن یاد بگیرید، که یک روش اثبات‌شده برای تثبیت مهارت‌های جدید است.

تشکر ویژه از نویسندگان ما: جاسمین گرین‌اوی، دمیتری سوشنیکوف، نیتیا ناراسیمهان، جالن مک‌گی، جن لوپر، مود لوی، تیفانی سوتر، کریستوفر هریسون.

🙏 تشکر ویژه 🙏 از Microsoft Student Ambassador نویسندگان، بازبینان و مشارکت‌کنندگان محتوا، به‌ویژه آریان آرورا، آدیتیا گارگ، آلوندرا سانچز، آنکیتا سینگ، انوپام میشرا، آرپیتا داس، چهل‌بیهاری دوبی، دیبری نسوفور، دیشیتا باسین، مجید صافی، مکس بلوم، میگل کوریا، محمد افتخار (ایفتو) ابن جلال، ناورین تبسم، ریموند وانگسا پوترا، روهیت یاداو، سامریدی شارما، سانیا سینها، شینا نارولا، توقیر احمد، یوگندرا سینگ پاوار، ویدوشی گوپتا، جسلین سوندی

Sketchnote by @sketchthedocs https://sketchthedocs.dev
علم داده برای مبتدیان - اسکچ‌نوت توسط @nitya

🌐 پشتیبانی چندزبانه

پشتیبانی شده از طریق GitHub Action (خودکار و همیشه به‌روز)

فرانسوی | اسپانیایی | آلمانی | روسی | عربی | فارسی | اردو | چینی (ساده‌شده) | چینی (سنتی، ماکائو) | چینی (سنتی، هنگ‌کنگ) | چینی (سنتی، تایوان) | ژاپنی | کره‌ای | هندی | بنگالی | مراتی | نپالی | پنجابی (گرمکی) | پرتغالی (پرتغال) | پرتغالی (برزیل) | ایتالیایی | لهستانی | ترکی | یونانی | تایلندی | سوئدی | دانمارکی | نروژی | فنلاندی | هلندی | عبری | ویتنامی | اندونزیایی | مالایی | تاگالوگ (فیلیپینی) | سواحیلی | مجاری | چکی | اسلواکی | رومانیایی | بلغاری | صربی (سیریلیک) | کرواتی | اسلوونیایی | اوکراینی | برمه‌ای (میانمار)

اگر می‌خواهید زبان‌های ترجمه اضافی پشتیبانی شوند، لیست زبان‌های موجود اینجا قرار دارد.

به جامعه ما بپیوندید

ما یک سری یادگیری با هوش مصنوعی در Discord داریم، بیشتر بدانید و به ما بپیوندید در Learn with AI Series از ۱۸ تا ۲۵ سپتامبر ۲۰۲۵. شما نکات و ترفندهای استفاده از GitHub Copilot برای علم داده را دریافت خواهید کرد.

سری یادگیری با هوش مصنوعی

آیا دانشجو هستید؟

با منابع زیر شروع کنید:

  • صفحه مرکز دانشجویی در این صفحه، منابع مبتدی، بسته‌های دانشجویی و حتی راه‌هایی برای دریافت یک کوپن گواهی رایگان را خواهید یافت. این صفحه‌ای است که می‌خواهید نشانک‌گذاری کنید و هر از گاهی بررسی کنید زیرا ما حداقل ماهانه محتوا را تغییر می‌دهیم.
  • Microsoft Learn Student Ambassadors به یک جامعه جهانی از سفیران دانشجویی بپیوندید، این می‌تواند راه شما به مایکروسافت باشد.

شروع به کار

معلمان: ما برخی پیشنهادات در مورد نحوه استفاده از این برنامه آموزشی را گنجانده‌ایم. ما مشتاقانه منتظر بازخورد شما در انجمن بحث ما هستیم!

دانشجویان: برای استفاده از این برنامه آموزشی به‌صورت مستقل، کل مخزن را فورک کنید و تمرین‌ها را به‌صورت مستقل انجام دهید، با آزمون پیش از درس شروع کنید. سپس درس را بخوانید و بقیه فعالیت‌ها را تکمیل کنید. سعی کنید پروژه‌ها را با درک درس‌ها ایجاد کنید، نه با کپی کردن کد راه‌حل؛ با این حال، آن کد در پوشه‌های /solutions در هر درس مبتنی بر پروژه موجود است. ایده دیگر این است که یک گروه مطالعه با دوستان تشکیل دهید و با هم محتوا را مرور کنید. برای مطالعه بیشتر، ما Microsoft Learn را توصیه می‌کنیم.

آشنایی با تیم

ویدئوی تبلیغاتی

Gif توسط موهیت جایسال

🎥 روی تصویر بالا کلیک کنید تا ویدئویی درباره پروژه و افرادی که آن را ایجاد کرده‌اند مشاهده کنید!

روش آموزشی

ما دو اصل آموزشی را هنگام ساخت این برنامه آموزشی انتخاب کرده‌ایم: اطمینان از اینکه مبتنی بر پروژه است و شامل آزمون‌های مکرر می‌شود. تا پایان این سری، دانشجویان اصول اولیه علم داده را یاد خواهند گرفت، از جمله مفاهیم اخلاقی، آماده‌سازی داده‌ها، روش‌های مختلف کار با داده‌ها، مصورسازی داده‌ها، تحلیل داده‌ها، موارد استفاده واقعی از علم داده و موارد دیگر.

علاوه بر این، یک آزمون کم‌فشار قبل از کلاس، توجه دانشجو را به یادگیری یک موضوع جلب می‌کند، در حالی که یک آزمون دوم بعد از کلاس، حفظ بیشتر را تضمین می‌کند. این برنامه آموزشی به‌گونه‌ای طراحی شده است که انعطاف‌پذیر و سرگرم‌کننده باشد و می‌توان آن را به‌صورت کامل یا جزئی گذراند. پروژه‌ها کوچک شروع می‌شوند و تا پایان چرخه ۱۰ هفته‌ای به‌تدریج پیچیده‌تر می‌شوند. راهنمای قوانین رفتاری، مشارکت، ترجمه ما را پیدا کنید. ما از بازخورد سازنده شما استقبال می‌کنیم!

هر درس شامل موارد زیر است:

  • یادداشت تصویری اختیاری
  • ویدیوی تکمیلی اختیاری
  • آزمون گرم‌آپ قبل از درس
  • درس نوشتاری
  • برای درس‌های پروژه‌محور، راهنمای گام‌به‌گام برای ساخت پروژه
  • بررسی دانش
  • یک چالش
  • مطالعه تکمیلی
  • تکلیف
  • آزمون پس از درس

یادداشتی درباره آزمون‌ها: تمام آزمون‌ها در پوشه Quiz-App قرار دارند و شامل ۴۰ آزمون با سه سؤال در هر آزمون هستند. این آزمون‌ها از داخل درس‌ها لینک شده‌اند، اما اپلیکیشن آزمون می‌تواند به صورت محلی اجرا شود یا در Azure مستقر شود؛ دستورالعمل‌های موجود در پوشه quiz-app را دنبال کنید. این آزمون‌ها به تدریج بومی‌سازی می‌شوند.

درس‌ها

یادداشت تصویری از @sketchthedocs https://sketchthedocs.dev
علم داده برای مبتدیان: نقشه راه - یادداشت تصویری از @nitya
شماره درس موضوع گروه‌بندی درس اهداف یادگیری لینک درس نویسنده
01 تعریف علم داده مقدمه آشنایی با مفاهیم پایه علم داده و ارتباط آن با هوش مصنوعی، یادگیری ماشین و داده‌های کلان. درس ویدیو Dmitry
02 اخلاق در علم داده مقدمه مفاهیم، چالش‌ها و چارچوب‌های اخلاق داده. درس Nitya
03 تعریف داده مقدمه نحوه طبقه‌بندی داده‌ها و منابع رایج آن‌ها. درس Jasmine
04 مقدمه‌ای بر آمار و احتمال مقدمه تکنیک‌های ریاضی احتمال و آمار برای درک داده‌ها. درس ویدیو Dmitry
05 کار با داده‌های رابطه‌ای کار با داده‌ها مقدمه‌ای بر داده‌های رابطه‌ای و اصول کاوش و تحلیل داده‌های رابطه‌ای با زبان Structured Query Language که به SQL (سی‌کوئل) معروف است. درس Christopher
06 کار با داده‌های NoSQL کار با داده‌ها مقدمه‌ای بر داده‌های غیررابطه‌ای، انواع مختلف آن و اصول کاوش و تحلیل پایگاه‌های داده مستند. درس Jasmine
07 کار با پایتون کار با داده‌ها اصول استفاده از پایتون برای کاوش داده‌ها با کتابخانه‌هایی مانند Pandas. توصیه می‌شود که درک پایه‌ای از برنامه‌نویسی پایتون داشته باشید. درس ویدیو Dmitry
08 آماده‌سازی داده‌ها کار با داده‌ها موضوعاتی درباره تکنیک‌های پاکسازی و تبدیل داده‌ها برای مقابله با چالش‌های داده‌های ناقص، نادرست یا ناکامل. درس Jasmine
09 مصورسازی مقادیر مصورسازی داده‌ها یادگیری نحوه استفاده از Matplotlib برای مصورسازی داده‌های پرندگان 🦆 درس Jen
10 مصورسازی توزیع داده‌ها مصورسازی داده‌ها مصورسازی مشاهدات و روندها در یک بازه. درس Jen
11 مصورسازی نسبت‌ها مصورسازی داده‌ها مصورسازی درصدهای گسسته و گروه‌بندی‌شده. درس Jen
12 مصورسازی روابط مصورسازی داده‌ها مصورسازی ارتباطات و همبستگی‌ها بین مجموعه‌های داده و متغیرهای آن‌ها. درس Jen
13 مصورسازی‌های معنادار مصورسازی داده‌ها تکنیک‌ها و راهنمایی‌هایی برای ارزشمند کردن مصورسازی‌ها جهت حل مؤثر مسائل و کسب بینش. درس Jen
14 مقدمه‌ای بر چرخه عمر علم داده چرخه عمر مقدمه‌ای بر چرخه عمر علم داده و اولین مرحله آن یعنی جمع‌آوری و استخراج داده‌ها. درس Jasmine
15 تحلیل چرخه عمر این مرحله از چرخه عمر علم داده بر تکنیک‌های تحلیل داده تمرکز دارد. درس Jasmine
16 ارتباط چرخه عمر این مرحله از چرخه عمر علم داده بر ارائه بینش‌های حاصل از داده‌ها به گونه‌ای که تصمیم‌گیرندگان بتوانند آن را بهتر درک کنند، تمرکز دارد. درس Jalen
17 علم داده در فضای ابری داده‌های ابری این مجموعه درس‌ها علم داده در فضای ابری و مزایای آن را معرفی می‌کند. درس Tiffany و Maud
18 علم داده در فضای ابری داده‌های ابری آموزش مدل‌ها با استفاده از ابزارهای کم‌کد. درس Tiffany و Maud
19 علم داده در فضای ابری داده‌های ابری استقرار مدل‌ها با Azure Machine Learning Studio. درس Tiffany و Maud
20 علم داده در دنیای واقعی در دنیای واقعی پروژه‌های مبتنی بر علم داده در دنیای واقعی. درس Nitya

GitHub Codespaces

برای باز کردن این نمونه در Codespace مراحل زیر را دنبال کنید:

  1. روی منوی کشویی Code کلیک کنید و گزینه Open with Codespaces را انتخاب کنید.
  2. در پایین پنل، گزینه + New codespace را انتخاب کنید. برای اطلاعات بیشتر، به مستندات GitHub مراجعه کنید.

VSCode Remote - Containers

برای باز کردن این مخزن در یک کانتینر با استفاده از ماشین محلی و VSCode با استفاده از افزونه VS Code Remote - Containers مراحل زیر را دنبال کنید:

  1. اگر این اولین بار است که از یک کانتینر توسعه استفاده می‌کنید، لطفاً مطمئن شوید که سیستم شما پیش‌نیازها (مانند نصب Docker) را دارد. به مستندات شروع به کار مراجعه کنید.

برای استفاده از این مخزن، می‌توانید آن را در یک حجم ایزوله Docker باز کنید:

توجه: در پشت صحنه، این کار از دستور Remote-Containers: Clone Repository in Container Volume... برای کلون کردن کد منبع در یک حجم Docker به جای سیستم فایل محلی استفاده می‌کند. Volumes مکانیزم ترجیحی برای ذخیره داده‌های کانتینر هستند.

یا یک نسخه کلون‌شده یا دانلودشده محلی از مخزن را باز کنید:

  • این مخزن را به سیستم فایل محلی خود کلون کنید.
  • کلید F1 را فشار دهید و دستور Remote-Containers: Open Folder in Container... را انتخاب کنید.
  • نسخه کلون‌شده این پوشه را انتخاب کنید، منتظر بمانید تا کانتینر شروع شود و موارد را امتحان کنید.

دسترسی آفلاین

می‌توانید این مستندات را به صورت آفلاین با استفاده از Docsify اجرا کنید. این مخزن را فورک کنید، Docsify را نصب کنید روی ماشین محلی خود، سپس در پوشه اصلی این مخزن، دستور docsify serve را تایپ کنید. وب‌سایت روی پورت 3000 در localhost شما ارائه خواهد شد: localhost:3000.

توجه داشته باشید که نوت‌بوک‌ها از طریق Docsify رندر نمی‌شوند، بنابراین وقتی نیاز به اجرای یک نوت‌بوک دارید، آن را جداگانه در VS Code با اجرای یک کرنل پایتون اجرا کنید.

سایر برنامه‌های درسی

تیم ما برنامه‌های درسی دیگری نیز تولید می‌کند! بررسی کنید:


سلب مسئولیت:
این سند با استفاده از سرویس ترجمه هوش مصنوعی Co-op Translator ترجمه شده است. در حالی که ما تلاش می‌کنیم دقت را حفظ کنیم، لطفاً توجه داشته باشید که ترجمه‌های خودکار ممکن است شامل خطاها یا نادرستی‌ها باشند. سند اصلی به زبان اصلی آن باید به عنوان منبع معتبر در نظر گرفته شود. برای اطلاعات حساس، توصیه می‌شود از ترجمه حرفه‌ای انسانی استفاده کنید. ما مسئولیتی در قبال سوءتفاهم‌ها یا تفسیرهای نادرست ناشی از استفاده از این ترجمه نداریم.