You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
6.9 KiB
154 lines
6.9 KiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# Datele taxiurilor din NYC iarna și vara\n",
|
|
"\n",
|
|
"Consultați [Dicționarul de date](https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_yellow.pdf) pentru a afla mai multe despre coloanele care au fost furnizate.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"#Install the pandas library\r\n",
|
|
"!pip install pandas"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {
|
|
"scrolled": true
|
|
}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"source": [
|
|
"import pandas as pd\r\n",
|
|
"\r\n",
|
|
"path = '../../data/taxi.csv'\r\n",
|
|
"\r\n",
|
|
"#Load the csv file into a dataframe\r\n",
|
|
"df = pd.read_csv(path)\r\n",
|
|
"\r\n",
|
|
"#Print the dataframe\r\n",
|
|
"print(df)\r\n"
|
|
],
|
|
"outputs": [
|
|
{
|
|
"output_type": "stream",
|
|
"name": "stdout",
|
|
"text": [
|
|
" VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count \\\n",
|
|
"0 2.0 2019-07-15 16:27:53 2019-07-15 16:44:21 3.0 \n",
|
|
"1 2.0 2019-07-17 20:26:35 2019-07-17 20:40:09 6.0 \n",
|
|
"2 2.0 2019-07-06 16:01:08 2019-07-06 16:10:25 1.0 \n",
|
|
"3 1.0 2019-07-18 22:32:23 2019-07-18 22:35:08 1.0 \n",
|
|
"4 2.0 2019-07-19 14:54:29 2019-07-19 15:19:08 1.0 \n",
|
|
".. ... ... ... ... \n",
|
|
"195 2.0 2019-01-18 08:42:15 2019-01-18 08:56:57 1.0 \n",
|
|
"196 1.0 2019-01-19 04:34:45 2019-01-19 04:43:44 1.0 \n",
|
|
"197 2.0 2019-01-05 10:37:39 2019-01-05 10:42:03 1.0 \n",
|
|
"198 2.0 2019-01-23 10:36:29 2019-01-23 10:44:34 2.0 \n",
|
|
"199 2.0 2019-01-30 06:55:58 2019-01-30 07:07:02 5.0 \n",
|
|
"\n",
|
|
" trip_distance RatecodeID store_and_fwd_flag PULocationID DOLocationID \\\n",
|
|
"0 2.02 1.0 N 186 233 \n",
|
|
"1 1.59 1.0 N 141 161 \n",
|
|
"2 1.69 1.0 N 246 249 \n",
|
|
"3 0.90 1.0 N 229 141 \n",
|
|
"4 4.79 1.0 N 237 107 \n",
|
|
".. ... ... ... ... ... \n",
|
|
"195 1.18 1.0 N 43 237 \n",
|
|
"196 2.30 1.0 N 148 234 \n",
|
|
"197 0.83 1.0 N 237 263 \n",
|
|
"198 1.12 1.0 N 144 113 \n",
|
|
"199 2.41 1.0 N 209 107 \n",
|
|
"\n",
|
|
" payment_type fare_amount extra mta_tax tip_amount tolls_amount \\\n",
|
|
"0 1.0 12.0 1.0 0.5 4.08 0.0 \n",
|
|
"1 2.0 10.0 0.5 0.5 0.00 0.0 \n",
|
|
"2 2.0 8.5 0.0 0.5 0.00 0.0 \n",
|
|
"3 1.0 4.5 3.0 0.5 1.65 0.0 \n",
|
|
"4 1.0 19.5 0.0 0.5 5.70 0.0 \n",
|
|
".. ... ... ... ... ... ... \n",
|
|
"195 1.0 10.0 0.0 0.5 2.16 0.0 \n",
|
|
"196 1.0 9.5 0.5 0.5 2.15 0.0 \n",
|
|
"197 1.0 5.0 0.0 0.5 1.16 0.0 \n",
|
|
"198 2.0 7.0 0.0 0.5 0.00 0.0 \n",
|
|
"199 1.0 10.5 0.0 0.5 1.00 0.0 \n",
|
|
"\n",
|
|
" improvement_surcharge total_amount congestion_surcharge \n",
|
|
"0 0.3 20.38 2.5 \n",
|
|
"1 0.3 13.80 2.5 \n",
|
|
"2 0.3 11.80 2.5 \n",
|
|
"3 0.3 9.95 2.5 \n",
|
|
"4 0.3 28.50 2.5 \n",
|
|
".. ... ... ... \n",
|
|
"195 0.3 12.96 0.0 \n",
|
|
"196 0.3 12.95 0.0 \n",
|
|
"197 0.3 6.96 0.0 \n",
|
|
"198 0.3 7.80 0.0 \n",
|
|
"199 0.3 12.30 0.0 \n",
|
|
"\n",
|
|
"[200 rows x 18 columns]\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# Utilizați celulele de mai jos pentru a realiza propria Analiză Exploratorie a Datelor\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n---\n\n**Declinarea responsabilității**: \nAcest document a fost tradus folosind serviciul de traducere AI [Co-op Translator](https://github.com/Azure/co-op-translator). Deși depunem eforturi pentru a asigura acuratețea, vă rugăm să rețineți că traducerile automate pot conține erori sau inexactități. Documentul original în limba sa nativă ar trebui considerat sursa autoritară. Pentru informații critice, se recomandă traducerea profesională realizată de un specialist. Nu ne asumăm răspunderea pentru eventualele neînțelegeri sau interpretări greșite care pot apărea din utilizarea acestei traduceri.\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"name": "python3",
|
|
"display_name": "Python 3.9.7 64-bit ('venv': venv)"
|
|
},
|
|
"language_info": {
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"version": "3.9.7",
|
|
"nbconvert_exporter": "python",
|
|
"file_extension": ".py"
|
|
},
|
|
"name": "04-nyc-taxi-join-weather-in-pandas",
|
|
"notebookId": 1709144033725344,
|
|
"interpreter": {
|
|
"hash": "6b9b57232c4b57163d057191678da2030059e733b8becc68f245de5a75abe84e"
|
|
},
|
|
"coopTranslator": {
|
|
"original_hash": "7bca1c1abc1e55842817b62e44e1a963",
|
|
"translation_date": "2025-09-02T08:32:26+00:00",
|
|
"source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb",
|
|
"language_code": "ro"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
} |