|
2 weeks ago | |
---|---|---|
.. | ||
solution | 3 weeks ago | |
README.md | 2 weeks ago | |
assignment.md | 3 weeks ago | |
notebook.ipynb | 3 weeks ago |
README.md
視覺化比例
![]() |
---|
視覺化比例 - 由 @nitya 繪製的速記筆記 |
在這節課中,你將使用一個以自然為主題的不同數據集來視覺化比例,例如在一個關於蘑菇的數據集中有多少不同種類的真菌。我們將使用一個來自 Audubon 的數據集,該數據集列出了 Agaricus 和 Lepiota 家族中 23 種有鰓蘑菇的詳細信息,來探索這些迷人的真菌。你將嘗試一些有趣的視覺化方式,例如:
- 圓餅圖 🥧
- 甜甜圈圖 🍩
- 華夫圖 🧇
💡 微軟研究的一個非常有趣的項目 Charticulator 提供了一個免費的拖放界面來進行數據視覺化。在他們的一個教程中也使用了這個蘑菇數據集!因此,你可以同時探索數據並學習這個庫:Charticulator 教程。
課前測驗
認識你的蘑菇 🍄
蘑菇非常有趣。讓我們導入一個數據集來研究它們:
import pandas as pd
import matplotlib.pyplot as plt
mushrooms = pd.read_csv('../../data/mushrooms.csv')
mushrooms.head()
一個表格被打印出來,包含一些很棒的分析數據:
類別 | 帽型 | 帽表面 | 帽顏色 | 是否有瘀傷 | 氣味 | 鰓附著方式 | 鰓間距 | 鰓大小 | 鰓顏色 | 柄型 | 柄根 | 環上柄表面 | 環下柄表面 | 環上柄顏色 | 環下柄顏色 | 幔型 | 幔顏色 | 環數量 | 環型 | 孢子印顏色 | 群體 | 棲息地 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
有毒 | 凸形 | 光滑 | 棕色 | 有瘀傷 | 刺鼻 | 自由 | 緊密 | 狹窄 | 黑色 | 擴大 | 等長 | 光滑 | 光滑 | 白色 | 白色 | 部分 | 白色 | 一個 | 垂飾 | 黑色 | 分散 | 城市 |
可食用 | 凸形 | 光滑 | 黃色 | 有瘀傷 | 杏仁 | 自由 | 緊密 | 寬廣 | 黑色 | 擴大 | 棒型 | 光滑 | 光滑 | 白色 | 白色 | 部分 | 白色 | 一個 | 垂飾 | 棕色 | 多數 | 草地 |
可食用 | 鐘形 | 光滑 | 白色 | 有瘀傷 | 茴香 | 自由 | 緊密 | 寬廣 | 棕色 | 擴大 | 棒型 | 光滑 | 光滑 | 白色 | 白色 | 部分 | 白色 | 一個 | 垂飾 | 棕色 | 多數 | 草地 |
有毒 | 凸形 | 鱗片狀 | 白色 | 有瘀傷 | 刺鼻 | 自由 | 緊密 | 狹窄 | 棕色 | 擴大 | 等長 | 光滑 | 光滑 | 白色 | 白色 | 部分 | 白色 | 一個 | 垂飾 | 黑色 | 分散 | 城市 |
你會立刻注意到所有數據都是文本格式。你需要將這些數據轉換為可以用於圖表的格式。事實上,大部分數據是以對象形式表示的:
print(mushrooms.select_dtypes(["object"]).columns)
輸出為:
Index(['class', 'cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor',
'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color',
'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',
'stalk-surface-below-ring', 'stalk-color-above-ring',
'stalk-color-below-ring', 'veil-type', 'veil-color', 'ring-number',
'ring-type', 'spore-print-color', 'population', 'habitat'],
dtype='object')
將這些數據中的 "類別" 列轉換為分類:
cols = mushrooms.select_dtypes(["object"]).columns
mushrooms[cols] = mushrooms[cols].astype('category')
edibleclass=mushrooms.groupby(['class']).count()
edibleclass
現在,如果你打印出蘑菇數據,你會看到它已根據有毒/可食用類別分組:
帽型 | 帽表面 | 帽顏色 | 是否有瘀傷 | 氣味 | 鰓附著方式 | 鰓間距 | 鰓大小 | 鰓顏色 | 柄型 | ... | 環下柄表面 | 環上柄顏色 | 環下柄顏色 | 幔型 | 幔顏色 | 環數量 | 環型 | 孢子印顏色 | 群體 | 棲息地 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
類別 | |||||||||||||||||||||
可食用 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | ... | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 | 4208 |
有毒 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | ... | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 | 3916 |
如果你按照這個表格中呈現的順序來創建你的類別標籤,你就可以製作一個圓餅圖:
圓餅圖!
labels=['Edible','Poisonous']
plt.pie(edibleclass['population'],labels=labels,autopct='%.1f %%')
plt.title('Edible?')
plt.show()
完成了,一個圓餅圖展示了根據這兩個蘑菇類別的數據比例。在這裡,正確的標籤順序非常重要,因此請務必確認標籤數組的構建順序!
甜甜圈圖!
一個更具視覺吸引力的圓餅圖是甜甜圈圖,它是一個中間有洞的圓餅圖。讓我們用這種方法來查看我們的數據。
看看蘑菇生長的各種棲息地:
habitat=mushrooms.groupby(['habitat']).count()
habitat
在這裡,你將數據按棲息地分組。共有 7 個棲息地,因此使用它們作為甜甜圈圖的標籤:
labels=['Grasses','Leaves','Meadows','Paths','Urban','Waste','Wood']
plt.pie(habitat['class'], labels=labels,
autopct='%1.1f%%', pctdistance=0.85)
center_circle = plt.Circle((0, 0), 0.40, fc='white')
fig = plt.gcf()
fig.gca().add_artist(center_circle)
plt.title('Mushroom Habitats')
plt.show()
這段代碼繪製了一個圖表和一個中心圓,然後將該中心圓添加到圖表中。通過更改 0.40
的值來編輯中心圓的寬度。
甜甜圈圖可以通過多種方式進行調整以更改標籤。特別是標籤可以突出顯示以提高可讀性。更多信息請參閱 文檔。
現在你知道如何分組數據並將其顯示為圓餅圖或甜甜圈圖,你可以探索其他類型的圖表。試試華夫圖,這是一種不同的方式來探索數量。
華夫圖!
華夫圖是一種以 2D 方格陣列視覺化數量的方式。試著視覺化這個數據集中蘑菇帽顏色的不同數量。為此,你需要安裝一個名為 PyWaffle 的輔助庫並使用 Matplotlib:
pip install pywaffle
選擇一段數據進行分組:
capcolor=mushrooms.groupby(['cap-color']).count()
capcolor
通過創建標籤並分組數據來製作華夫圖:
import pandas as pd
import matplotlib.pyplot as plt
from pywaffle import Waffle
data ={'color': ['brown', 'buff', 'cinnamon', 'green', 'pink', 'purple', 'red', 'white', 'yellow'],
'amount': capcolor['class']
}
df = pd.DataFrame(data)
fig = plt.figure(
FigureClass = Waffle,
rows = 100,
values = df.amount,
labels = list(df.color),
figsize = (30,30),
colors=["brown", "tan", "maroon", "green", "pink", "purple", "red", "whitesmoke", "yellow"],
)
使用華夫圖,你可以清楚地看到這個蘑菇數據集中帽顏色的比例。有趣的是,有許多綠色帽子的蘑菇!
✅ PyWaffle 支持在圖表中使用任何 Font Awesome 中的圖標。嘗試進行一些實驗,用圖標代替方格來創建更有趣的華夫圖。
在這節課中,你學到了三種視覺化比例的方法。首先,你需要將數據分組到分類中,然後決定哪種方式最適合展示數據——圓餅圖、甜甜圈圖或華夫圖。這些方法都很有趣,並能讓用戶快速了解數據集。
🚀 挑戰
試著在 Charticulator 中重現這些有趣的圖表。
課後測驗
回顧與自學
有時候,什麼時候使用圓餅圖、甜甜圈圖或華夫圖並不明顯。以下是一些相關文章:
https://www.beautiful.ai/blog/battle-of-the-charts-pie-chart-vs-donut-chart
https://medium.com/@hypsypops/pie-chart-vs-donut-chart-showdown-in-the-ring-5d24fd86a9ce
https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c6.htm
進行一些研究以找到更多關於這個選擇的相關信息。
作業
免責聲明:
本文件已使用 AI 翻譯服務 Co-op Translator 進行翻譯。儘管我們努力確保翻譯的準確性,但請注意,自動翻譯可能包含錯誤或不準確之處。原始文件的母語版本應被視為權威來源。對於關鍵信息,建議使用專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或誤釋不承擔責任。