You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
323 lines
9.7 KiB
323 lines
9.7 KiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"# 클라우드에서 데이터 과학: \"Azure ML SDK\" 방식\n",
|
|
"\n",
|
|
"## 소개\n",
|
|
"\n",
|
|
"이 노트북에서는 Azure ML SDK를 사용하여 모델을 학습, 배포 및 소비하는 방법을 배워보겠습니다.\n",
|
|
"\n",
|
|
"사전 준비 사항:\n",
|
|
"1. Azure ML 워크스페이스를 생성했습니다.\n",
|
|
"2. [Heart Failure 데이터셋](https://www.kaggle.com/andrewmvd/heart-failure-clinical-data)을 Azure ML에 로드했습니다.\n",
|
|
"3. 이 노트북을 Azure ML Studio에 업로드했습니다.\n",
|
|
"\n",
|
|
"다음 단계는 다음과 같습니다:\n",
|
|
"\n",
|
|
"1. 기존 워크스페이스에서 실험을 생성합니다.\n",
|
|
"2. 컴퓨팅 클러스터를 생성합니다.\n",
|
|
"3. 데이터셋을 로드합니다.\n",
|
|
"4. AutoMLConfig를 사용하여 AutoML을 구성합니다.\n",
|
|
"5. AutoML 실험을 실행합니다.\n",
|
|
"6. 결과를 탐색하고 최적의 모델을 확인합니다.\n",
|
|
"7. 최적의 모델을 등록합니다.\n",
|
|
"8. 최적의 모델을 배포합니다.\n",
|
|
"9. 엔드포인트를 소비합니다.\n",
|
|
"\n",
|
|
"## Azure Machine Learning SDK 관련 임포트\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"from azureml.core import Workspace, Experiment\n",
|
|
"from azureml.core.compute import AmlCompute\n",
|
|
"from azureml.train.automl import AutoMLConfig\n",
|
|
"from azureml.widgets import RunDetails\n",
|
|
"from azureml.core.model import InferenceConfig, Model\n",
|
|
"from azureml.core.webservice import AciWebservice"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## 작업 공간 초기화 \n",
|
|
"저장된 구성에서 작업 공간 객체를 초기화합니다. 구성 파일이 .\\config.json에 있는지 확인하세요. \n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"ws = Workspace.from_config()\n",
|
|
"print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Azure ML 실험 생성\n",
|
|
"\n",
|
|
"방금 초기화한 작업 영역에서 'aml-experiment'라는 이름의 실험을 만들어봅시다.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"experiment_name = 'aml-experiment'\n",
|
|
"experiment = Experiment(ws, experiment_name)\n",
|
|
"experiment"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## 컴퓨트 클러스터 생성\n",
|
|
"AutoML 실행을 위해 [컴퓨트 대상](https://docs.microsoft.com/azure/machine-learning/concept-azure-machine-learning-architecture#compute-target)을 생성해야 합니다.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"aml_name = \"heart-f-cluster\"\n",
|
|
"try:\n",
|
|
" aml_compute = AmlCompute(ws, aml_name)\n",
|
|
" print('Found existing AML compute context.')\n",
|
|
"except:\n",
|
|
" print('Creating new AML compute context.')\n",
|
|
" aml_config = AmlCompute.provisioning_configuration(vm_size = \"Standard_D2_v2\", min_nodes=1, max_nodes=3)\n",
|
|
" aml_compute = AmlCompute.create(ws, name = aml_name, provisioning_configuration = aml_config)\n",
|
|
" aml_compute.wait_for_completion(show_output = True)\n",
|
|
"\n",
|
|
"cts = ws.compute_targets\n",
|
|
"compute_target = cts[aml_name]"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## 데이터\n",
|
|
"데이터셋을 Azure ML에 업로드했으며, 키가 데이터셋과 동일한 이름인지 확인하세요.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"key = 'heart-failure-records'\n",
|
|
"dataset = ws.datasets[key]\n",
|
|
"df = dataset.to_pandas_dataframe()\n",
|
|
"df.describe()"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## AutoML 구성\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"automl_settings = {\n",
|
|
" \"experiment_timeout_minutes\": 20,\n",
|
|
" \"max_concurrent_iterations\": 3,\n",
|
|
" \"primary_metric\" : 'AUC_weighted'\n",
|
|
"}\n",
|
|
"\n",
|
|
"automl_config = AutoMLConfig(compute_target=compute_target,\n",
|
|
" task = \"classification\",\n",
|
|
" training_data=dataset,\n",
|
|
" label_column_name=\"DEATH_EVENT\",\n",
|
|
" enable_early_stopping= True,\n",
|
|
" featurization= 'auto',\n",
|
|
" debug_log = \"automl_errors.log\",\n",
|
|
" **automl_settings\n",
|
|
" )"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## AutoML 실행\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"remote_run = experiment.submit(automl_config)"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"RunDetails(remote_run).show()"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"best_run, fitted_model = remote_run.get_output()"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"best_run.get_properties()"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"model_name = best_run.properties['model_name']\n",
|
|
"script_file_name = 'inference/score.py'\n",
|
|
"best_run.download_file('outputs/scoring_file_v_1_0_0.py', 'inference/score.py')\n",
|
|
"description = \"aml heart failure project sdk\"\n",
|
|
"model = best_run.register_model(model_name = model_name,\n",
|
|
" description = description,\n",
|
|
" tags = None)"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## 최적의 모델 배포하기\n",
|
|
"\n",
|
|
"다음 코드를 실행하여 최적의 모델을 배포하세요. 배포 상태는 Azure ML 포털에서 확인할 수 있습니다. 이 단계는 몇 분 정도 소요될 수 있습니다.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"inference_config = InferenceConfig(entry_script=script_file_name, environment=best_run.get_environment())\n",
|
|
"\n",
|
|
"aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1,\n",
|
|
" memory_gb = 1,\n",
|
|
" tags = {'type': \"automl-heart-failure-prediction\"},\n",
|
|
" description = 'Sample service for AutoML Heart Failure Prediction')\n",
|
|
"\n",
|
|
"aci_service_name = 'automl-hf-sdk'\n",
|
|
"aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n",
|
|
"aci_service.wait_for_deployment(True)\n",
|
|
"print(aci_service.state)"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## 엔드포인트 사용하기\n",
|
|
"다음 입력 샘플에 입력값을 추가할 수 있습니다.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"data = {\n",
|
|
" \"data\":\n",
|
|
" [\n",
|
|
" {\n",
|
|
" 'age': \"60\",\n",
|
|
" 'anaemia': \"false\",\n",
|
|
" 'creatinine_phosphokinase': \"500\",\n",
|
|
" 'diabetes': \"false\",\n",
|
|
" 'ejection_fraction': \"38\",\n",
|
|
" 'high_blood_pressure': \"false\",\n",
|
|
" 'platelets': \"260000\",\n",
|
|
" 'serum_creatinine': \"1.40\",\n",
|
|
" 'serum_sodium': \"137\",\n",
|
|
" 'sex': \"false\",\n",
|
|
" 'smoking': \"false\",\n",
|
|
" 'time': \"130\",\n",
|
|
" },\n",
|
|
" ],\n",
|
|
"}\n",
|
|
"\n",
|
|
"test_sample = str.encode(json.dumps(data))"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [
|
|
"response = aci_service.run(input_data=test_sample)\n",
|
|
"response"
|
|
],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n---\n\n**면책 조항**: \n이 문서는 AI 번역 서비스 [Co-op Translator](https://github.com/Azure/co-op-translator)를 사용하여 번역되었습니다. 정확성을 위해 최선을 다하고 있으나, 자동 번역에는 오류나 부정확성이 포함될 수 있습니다. 원본 문서의 원어 버전을 신뢰할 수 있는 권위 있는 자료로 간주해야 합니다. 중요한 정보의 경우, 전문적인 인간 번역을 권장합니다. 이 번역 사용으로 인해 발생하는 오해나 잘못된 해석에 대해 책임을 지지 않습니다.\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"orig_nbformat": 4,
|
|
"language_info": {
|
|
"name": "python"
|
|
},
|
|
"coopTranslator": {
|
|
"original_hash": "af42669556d5dc19fc4cc3866f7d2597",
|
|
"translation_date": "2025-09-01T20:09:08+00:00",
|
|
"source_file": "5-Data-Science-In-Cloud/19-Azure/notebook.ipynb",
|
|
"language_code": "ko"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
} |