You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/translations/ja/1-Introduction/04-stats-and-probability/assignment.ipynb

262 lines
7.5 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "markdown",
"source": [
"## 確率と統計の入門\n",
"## 課題\n",
"\n",
"この課題では、[こちら](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)から取得した糖尿病患者のデータセットを使用します。\n"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 13,
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"df = pd.read_csv(\"../../data/diabetes.tsv\",sep='\\t')\n",
"df.head()"
],
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n",
"0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n",
"1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n",
"2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n",
"3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n",
"4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135"
],
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>AGE</th>\n",
" <th>SEX</th>\n",
" <th>BMI</th>\n",
" <th>BP</th>\n",
" <th>S1</th>\n",
" <th>S2</th>\n",
" <th>S3</th>\n",
" <th>S4</th>\n",
" <th>S5</th>\n",
" <th>S6</th>\n",
" <th>Y</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>59</td>\n",
" <td>2</td>\n",
" <td>32.1</td>\n",
" <td>101.0</td>\n",
" <td>157</td>\n",
" <td>93.2</td>\n",
" <td>38.0</td>\n",
" <td>4.0</td>\n",
" <td>4.8598</td>\n",
" <td>87</td>\n",
" <td>151</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>48</td>\n",
" <td>1</td>\n",
" <td>21.6</td>\n",
" <td>87.0</td>\n",
" <td>183</td>\n",
" <td>103.2</td>\n",
" <td>70.0</td>\n",
" <td>3.0</td>\n",
" <td>3.8918</td>\n",
" <td>69</td>\n",
" <td>75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>72</td>\n",
" <td>2</td>\n",
" <td>30.5</td>\n",
" <td>93.0</td>\n",
" <td>156</td>\n",
" <td>93.6</td>\n",
" <td>41.0</td>\n",
" <td>4.0</td>\n",
" <td>4.6728</td>\n",
" <td>85</td>\n",
" <td>141</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>24</td>\n",
" <td>1</td>\n",
" <td>25.3</td>\n",
" <td>84.0</td>\n",
" <td>198</td>\n",
" <td>131.4</td>\n",
" <td>40.0</td>\n",
" <td>5.0</td>\n",
" <td>4.8903</td>\n",
" <td>89</td>\n",
" <td>206</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>50</td>\n",
" <td>1</td>\n",
" <td>23.0</td>\n",
" <td>101.0</td>\n",
" <td>192</td>\n",
" <td>125.4</td>\n",
" <td>52.0</td>\n",
" <td>4.0</td>\n",
" <td>4.2905</td>\n",
" <td>80</td>\n",
" <td>135</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
]
},
"metadata": {},
"execution_count": 13
}
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"このデータセットには以下の列があります:\n",
"* 年齢と性別はそのまま説明不要です\n",
"* BMIは体格指数を表します\n",
"* BPは平均血圧を示します\n",
"* S1からS6は異なる血液測定値です\n",
"* Yは1年間の疾患進行の定性的な指標です\n",
"\n",
"このデータセットを確率と統計の手法を用いて分析してみましょう。\n",
"\n",
"### タスク 1: 全ての値の平均値と分散を計算する\n"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [],
"outputs": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### タスク2: 性別に応じたBMI、BP、Yのボックスプロットを作成\n"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [],
"outputs": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### タスク3: 年齢、性別、BMI、およびY変数の分布はどうなっていますか\n"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [],
"outputs": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"### タスク 4: 異なる変数と病気の進行 (Y) の相関をテストする\n",
"\n",
"> **ヒント** 相関行列は、どの値が依存しているかについて最も有用な情報を提供します。\n"
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [],
"metadata": {}
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**免責事項**: \nこの文書は、AI翻訳サービス [Co-op Translator](https://github.com/Azure/co-op-translator) を使用して翻訳されています。正確性を期すよう努めておりますが、自動翻訳には誤りや不正確な表現が含まれる可能性があります。元の言語で記載された原文を公式な情報源としてご参照ください。重要な情報については、専門の人間による翻訳を推奨します。この翻訳の利用に起因する誤解や誤認について、当方は一切の責任を負いません。\n"
]
}
],
"metadata": {
"orig_nbformat": 4,
"language_info": {
"name": "python",
"version": "3.8.8",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3.8.8 64-bit (conda)"
},
"interpreter": {
"hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5"
},
"coopTranslator": {
"original_hash": "6d945fd15163f60cb473dbfe04b2d100",
"translation_date": "2025-09-06T17:15:31+00:00",
"source_file": "1-Introduction/04-stats-and-probability/assignment.ipynb",
"language_code": "ja"
}
},
"nbformat": 4,
"nbformat_minor": 2
}