You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Data-Science-For-Beginners/translations/it/4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb

154 lines
6.9 KiB

{
"cells": [
{
"cell_type": "markdown",
"source": [
"# Dati dei taxi di New York in inverno e estate\n",
"\n",
"Consulta il [Data dictionary](https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_yellow.pdf) per saperne di più sulle colonne fornite.\n"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [
"#Install the pandas library\r\n",
"!pip install pandas"
],
"outputs": [],
"metadata": {
"scrolled": true
}
},
{
"cell_type": "code",
"execution_count": 7,
"source": [
"import pandas as pd\r\n",
"\r\n",
"path = '../../data/taxi.csv'\r\n",
"\r\n",
"#Load the csv file into a dataframe\r\n",
"df = pd.read_csv(path)\r\n",
"\r\n",
"#Print the dataframe\r\n",
"print(df)\r\n"
],
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count \\\n",
"0 2.0 2019-07-15 16:27:53 2019-07-15 16:44:21 3.0 \n",
"1 2.0 2019-07-17 20:26:35 2019-07-17 20:40:09 6.0 \n",
"2 2.0 2019-07-06 16:01:08 2019-07-06 16:10:25 1.0 \n",
"3 1.0 2019-07-18 22:32:23 2019-07-18 22:35:08 1.0 \n",
"4 2.0 2019-07-19 14:54:29 2019-07-19 15:19:08 1.0 \n",
".. ... ... ... ... \n",
"195 2.0 2019-01-18 08:42:15 2019-01-18 08:56:57 1.0 \n",
"196 1.0 2019-01-19 04:34:45 2019-01-19 04:43:44 1.0 \n",
"197 2.0 2019-01-05 10:37:39 2019-01-05 10:42:03 1.0 \n",
"198 2.0 2019-01-23 10:36:29 2019-01-23 10:44:34 2.0 \n",
"199 2.0 2019-01-30 06:55:58 2019-01-30 07:07:02 5.0 \n",
"\n",
" trip_distance RatecodeID store_and_fwd_flag PULocationID DOLocationID \\\n",
"0 2.02 1.0 N 186 233 \n",
"1 1.59 1.0 N 141 161 \n",
"2 1.69 1.0 N 246 249 \n",
"3 0.90 1.0 N 229 141 \n",
"4 4.79 1.0 N 237 107 \n",
".. ... ... ... ... ... \n",
"195 1.18 1.0 N 43 237 \n",
"196 2.30 1.0 N 148 234 \n",
"197 0.83 1.0 N 237 263 \n",
"198 1.12 1.0 N 144 113 \n",
"199 2.41 1.0 N 209 107 \n",
"\n",
" payment_type fare_amount extra mta_tax tip_amount tolls_amount \\\n",
"0 1.0 12.0 1.0 0.5 4.08 0.0 \n",
"1 2.0 10.0 0.5 0.5 0.00 0.0 \n",
"2 2.0 8.5 0.0 0.5 0.00 0.0 \n",
"3 1.0 4.5 3.0 0.5 1.65 0.0 \n",
"4 1.0 19.5 0.0 0.5 5.70 0.0 \n",
".. ... ... ... ... ... ... \n",
"195 1.0 10.0 0.0 0.5 2.16 0.0 \n",
"196 1.0 9.5 0.5 0.5 2.15 0.0 \n",
"197 1.0 5.0 0.0 0.5 1.16 0.0 \n",
"198 2.0 7.0 0.0 0.5 0.00 0.0 \n",
"199 1.0 10.5 0.0 0.5 1.00 0.0 \n",
"\n",
" improvement_surcharge total_amount congestion_surcharge \n",
"0 0.3 20.38 2.5 \n",
"1 0.3 13.80 2.5 \n",
"2 0.3 11.80 2.5 \n",
"3 0.3 9.95 2.5 \n",
"4 0.3 28.50 2.5 \n",
".. ... ... ... \n",
"195 0.3 12.96 0.0 \n",
"196 0.3 12.95 0.0 \n",
"197 0.3 6.96 0.0 \n",
"198 0.3 7.80 0.0 \n",
"199 0.3 12.30 0.0 \n",
"\n",
"[200 rows x 18 columns]\n"
]
}
],
"metadata": {}
},
{
"cell_type": "markdown",
"source": [
"# Utilizza le celle sottostanti per effettuare la tua Analisi Esplorativa dei Dati\n"
],
"metadata": {}
},
{
"cell_type": "code",
"execution_count": null,
"source": [],
"outputs": [],
"metadata": {}
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**Disclaimer**: \nQuesto documento è stato tradotto utilizzando il servizio di traduzione automatica [Co-op Translator](https://github.com/Azure/co-op-translator). Sebbene ci impegniamo per garantire l'accuratezza, si prega di notare che le traduzioni automatiche possono contenere errori o imprecisioni. Il documento originale nella sua lingua nativa dovrebbe essere considerato la fonte autorevole. Per informazioni critiche, si raccomanda una traduzione professionale effettuata da un traduttore umano. Non siamo responsabili per eventuali incomprensioni o interpretazioni errate derivanti dall'uso di questa traduzione.\n"
]
}
],
"metadata": {
"kernelspec": {
"name": "python3",
"display_name": "Python 3.9.7 64-bit ('venv': venv)"
},
"language_info": {
"mimetype": "text/x-python",
"name": "python",
"pygments_lexer": "ipython3",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"version": "3.9.7",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"name": "04-nyc-taxi-join-weather-in-pandas",
"notebookId": 1709144033725344,
"interpreter": {
"hash": "6b9b57232c4b57163d057191678da2030059e733b8becc68f245de5a75abe84e"
},
"coopTranslator": {
"original_hash": "7bca1c1abc1e55842817b62e44e1a963",
"translation_date": "2025-09-01T22:22:45+00:00",
"source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb",
"language_code": "it"
}
},
"nbformat": 4,
"nbformat_minor": 2
}