You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
258 lines
7.3 KiB
258 lines
7.3 KiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"## Introduzione alla Probabilità e Statistica\n",
|
|
"## Compito\n",
|
|
"\n",
|
|
"In questo compito, utilizzeremo il dataset dei pazienti diabetici preso [da qui](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"df = pd.read_csv(\"../../data/diabetes.tsv\",sep='\\t')\n",
|
|
"df.head()"
|
|
],
|
|
"outputs": [
|
|
{
|
|
"output_type": "execute_result",
|
|
"data": {
|
|
"text/plain": [
|
|
" AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n",
|
|
"0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n",
|
|
"1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n",
|
|
"2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n",
|
|
"3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n",
|
|
"4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135"
|
|
],
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>AGE</th>\n",
|
|
" <th>SEX</th>\n",
|
|
" <th>BMI</th>\n",
|
|
" <th>BP</th>\n",
|
|
" <th>S1</th>\n",
|
|
" <th>S2</th>\n",
|
|
" <th>S3</th>\n",
|
|
" <th>S4</th>\n",
|
|
" <th>S5</th>\n",
|
|
" <th>S6</th>\n",
|
|
" <th>Y</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>59</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>32.1</td>\n",
|
|
" <td>101.0</td>\n",
|
|
" <td>157</td>\n",
|
|
" <td>93.2</td>\n",
|
|
" <td>38.0</td>\n",
|
|
" <td>4.0</td>\n",
|
|
" <td>4.8598</td>\n",
|
|
" <td>87</td>\n",
|
|
" <td>151</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>48</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>21.6</td>\n",
|
|
" <td>87.0</td>\n",
|
|
" <td>183</td>\n",
|
|
" <td>103.2</td>\n",
|
|
" <td>70.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>3.8918</td>\n",
|
|
" <td>69</td>\n",
|
|
" <td>75</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>72</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>30.5</td>\n",
|
|
" <td>93.0</td>\n",
|
|
" <td>156</td>\n",
|
|
" <td>93.6</td>\n",
|
|
" <td>41.0</td>\n",
|
|
" <td>4.0</td>\n",
|
|
" <td>4.6728</td>\n",
|
|
" <td>85</td>\n",
|
|
" <td>141</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>24</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>25.3</td>\n",
|
|
" <td>84.0</td>\n",
|
|
" <td>198</td>\n",
|
|
" <td>131.4</td>\n",
|
|
" <td>40.0</td>\n",
|
|
" <td>5.0</td>\n",
|
|
" <td>4.8903</td>\n",
|
|
" <td>89</td>\n",
|
|
" <td>206</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>50</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>23.0</td>\n",
|
|
" <td>101.0</td>\n",
|
|
" <td>192</td>\n",
|
|
" <td>125.4</td>\n",
|
|
" <td>52.0</td>\n",
|
|
" <td>4.0</td>\n",
|
|
" <td>4.2905</td>\n",
|
|
" <td>80</td>\n",
|
|
" <td>135</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"execution_count": 13
|
|
}
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"In questo dataset, le colonne sono le seguenti:\n",
|
|
"* Età e sesso sono autoesplicativi\n",
|
|
"* BMI è l'indice di massa corporea\n",
|
|
"* BP è la pressione sanguigna media\n",
|
|
"* S1 fino a S6 sono diverse misurazioni del sangue\n",
|
|
"* Y è la misura qualitativa della progressione della malattia nell'arco di un anno\n",
|
|
"\n",
|
|
"Studiamo questo dataset utilizzando metodi di probabilità e statistica.\n",
|
|
"\n",
|
|
"### Compito 1: Calcolare i valori medi e la varianza per tutti i valori\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"source": [],
|
|
"outputs": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [
|
|
"### Attività 4: Testare la correlazione tra diverse variabili e la progressione della malattia (Y)\n",
|
|
"\n",
|
|
"> **Suggerimento** La matrice di correlazione ti fornirà le informazioni più utili su quali valori sono dipendenti.\n"
|
|
],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"source": [],
|
|
"metadata": {}
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"\n---\n\n**Disclaimer**: \nQuesto documento è stato tradotto utilizzando il servizio di traduzione automatica [Co-op Translator](https://github.com/Azure/co-op-translator). Sebbene ci impegniamo per garantire l'accuratezza, si prega di notare che le traduzioni automatiche possono contenere errori o imprecisioni. Il documento originale nella sua lingua nativa dovrebbe essere considerato la fonte autorevole. Per informazioni critiche, si consiglia una traduzione professionale eseguita da un traduttore umano. Non siamo responsabili per eventuali fraintendimenti o interpretazioni errate derivanti dall'uso di questa traduzione.\n"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"orig_nbformat": 4,
|
|
"language_info": {
|
|
"name": "python",
|
|
"version": "3.8.8",
|
|
"mimetype": "text/x-python",
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"pygments_lexer": "ipython3",
|
|
"nbconvert_exporter": "python",
|
|
"file_extension": ".py"
|
|
},
|
|
"kernelspec": {
|
|
"name": "python3",
|
|
"display_name": "Python 3.8.8 64-bit (conda)"
|
|
},
|
|
"interpreter": {
|
|
"hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5"
|
|
},
|
|
"coopTranslator": {
|
|
"original_hash": "6d945fd15163f60cb473dbfe04b2d100",
|
|
"translation_date": "2025-09-06T17:27:46+00:00",
|
|
"source_file": "1-Introduction/04-stats-and-probability/assignment.ipynb",
|
|
"language_code": "it"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
} |