{ "cells": [ { "cell_type": "markdown", "source": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "# Assignment: Evaluating Data from a Form\r\n", "\r\n", "A client has been testing a [small form](index.html) to gather some basic data about their client-base. They have brought their findings to you to validate the data they have gathered. You can open the `index.html` page in a browser to take a look at the form.\r\n", "\r\n", "You have been provided a [dataset of csv records](../../data/form.csv) that contain entries from the form as well as some basic visualizations.The client pointed out that some of the visualizations look incorrect but they're unsure about how to resolve them. You can explore it in the [assignment notebook](assignment.ipynb).\r\n", "\r\n", "## Instructions\r\n", "\r\n", "Use the techniques in this lesson to make recommendations about the form so it captures accurate and consistent information. " ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "!pip install pandas\r\n", "!pip install matplotlib" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": 4, "source": [ "import pandas as pd\r\n", "import matplotlib.pyplot as plt\r\n", "\r\n", "#Loading the dataset\r\n", "path = '../../data/form.csv'\r\n", "form_df = pd.read_csv(path)\r\n", "print(form_df)" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " birth_month state pet\n", "0 January NaN Cats\n", "1 JAN CA Cats\n", "2 Sept Hawaii Dog\n", "3 january AK Dog\n", "4 July RI Cats\n", "5 September California Cats\n", "6 April CA Dog\n", "7 January California Cats\n", "8 November FL Dog\n", "9 December Florida Cats\n" ] } ], "metadata": {} }, { "cell_type": "code", "execution_count": 7, "source": [ "form_df['state'].value_counts().plot(kind='bar');\r\n", "plt.show()" ], "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEeCAYAAACExd7cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYU0lEQVR4nO3df7RdZX3n8feHAGoBBc2VKuSSWOlUlF/2FunAFCg1BHVAbR2JiNRKs9olU7ROu2B+QA2dDrWzqm3BYqwp4FjwB2DTZRAzA4pIsUkwJfI7BoRk6BAJBQQEA5/5Y+8Lh8v9se+95559zsPntdZZ5+zn2fuc783K/Zx9n/3svWWbiIgo105tFxAREXMrQR8RUbgEfURE4RL0ERGFS9BHRBQuQR8RUbid2y5gPPPnz/fChQvbLiMiYmCsX7/+R7aHxuvry6BfuHAh69ata7uMiIiBIemHE/Vl6CYionAJ+oiIwiXoIyIKl6CPiChcgj4ionBTBr2kBZKulXSrpFsknTHOOpL0l5I2SbpZ0ps7+k6VdFf9OLXbP0BEREyuyfTKHcDHbN8kaQ9gvaQ1tm/tWOd4YP/68Rbgr4G3SHolcA4wArjedpXth7r6U0RExISm3KO3fb/tm+rXjwK3AfuMWe1E4BJXbgT2lPQa4Dhgje3tdbivAZZ09SeIiIhJTeuEKUkLgUOB747p2ge4r2N5S902Uft4770MWAYwPDw8nbJYeObXprX+dNxz3tvn7L1hbmuHua8/Ivpf44OxknYHLgc+YvuRbhdie4XtEdsjQ0PjnsUbEREz0CjoJe1CFfJfsH3FOKtsBRZ0LO9bt03UHhERPdJk1o2AzwG32f7zCVZbBXygnn1zOPCw7fuBq4HFkvaStBewuG6LiIgeaTJGfwRwCrBR0oa67T8DwwC2LwRWA28DNgGPAx+s+7ZLOhdYW2+33Pb2rlUfERFTmjLobV8PaIp1DHx4gr6VwMoZVRcREbOWM2MjIgqXoI+IKFyCPiKicAn6iIjCJegjIgqXoI+IKFyCPiKicAn6iIjCJegjIgqXoI+IKFyCPiKicAn6iIjCJegjIgqXoI+IKFyCPiKicAn6iIjCTXnjEUkrgXcAD9h+0zj9fwCc3PF+bwCG6rtL3QM8CjwN7LA90q3CIyKimSZ79BcBSybqtP1ntg+xfQhwFvCtMbcLPKbuT8hHRLRgyqC3fR3Q9D6vS4FLZ1VRRER0VdfG6CX9DNWe/+UdzQa+IWm9pGXd+qyIiGhuyjH6afj3wHfGDNscaXurpFcDayTdXv+F8AL1F8EygOHh4S6WFRHx4tbNWTcnMWbYxvbW+vkB4ErgsIk2tr3C9ojtkaGhoS6WFRHx4taVoJf0CuAo4O872naTtMfoa2Ax8P1ufF5ERDTXZHrlpcDRwHxJW4BzgF0AbF9Yr/Yu4Bu2H+vYdG/gSkmjn/N3tr/evdIjIqKJKYPe9tIG61xENQ2zs20zcPBMC4uIiO7ImbEREYVL0EdEFC5BHxFRuAR9REThEvQREYVL0EdEFC5BHxFRuAR9REThEvQREYVL0EdEFC5BHxFRuAR9REThEvQREYVL0EdEFC5BHxFRuAR9REThEvQREYWbMuglrZT0gKRx7/cq6WhJD0vaUD/O7uhbIukOSZskndnNwiMiopkme/QXAUumWOfbtg+pH8sBJM0DLgCOBw4Alko6YDbFRkTE9E0Z9LavA7bP4L0PAzbZ3mz7KeAy4MQZvE9ERMxCt8bof1nSP0u6StIb67Z9gPs61tlSt0VERA/t3IX3uAnYz/aPJb0N+Cqw/3TfRNIyYBnA8PBwF8qKiAjowh697Uds/7h+vRrYRdJ8YCuwoGPVfeu2id5nhe0R2yNDQ0OzLSsiImqzDnpJPytJ9evD6vd8EFgL7C9pkaRdgZOAVbP9vIiImJ4ph24kXQocDcyXtAU4B9gFwPaFwG8AvytpB/AEcJJtAzsknQ5cDcwDVtq+ZU5+ioiImNCUQW976RT95wPnT9C3Glg9s9IiIqIbcmZsREThEvQREYVL0EdEFC5BHxFRuAR9REThEvQREYVL0EdEFC5BHxFRuAR9REThEvQREYVL0EdEFC5BHxFRuAR9REThEvQREYVL0EdEFC5BHxFRuAR9REThpgx6SSslPSDp+xP0nyzpZkkbJd0g6eCOvnvq9g2S1nWz8IiIaKbJHv1FwJJJ+u8GjrJ9IHAusGJM/zG2D7E9MrMSIyJiNprcM/Y6SQsn6b+hY/FGYN8u1BUREV3S7TH6DwFXdSwb+Iak9ZKWdfmzIiKigSn36JuSdAxV0B/Z0Xyk7a2SXg2skXS77esm2H4ZsAxgeHi4W2VFRLzodWWPXtJBwN8AJ9p+cLTd9tb6+QHgSuCwid7D9grbI7ZHhoaGulFWRETQhaCXNAxcAZxi+86O9t0k7TH6GlgMjDtzJyIi5s6UQzeSLgWOBuZL2gKcA+wCYPtC4GzgVcCnJQHsqGfY7A1cWbftDPyd7a/Pwc8QERGTaDLrZukU/acBp43Tvhk4+IVbREREL+XM2IiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwjUKekkrJT0gadx7vqryl5I2SbpZ0ps7+k6VdFf9OLVbhUdERDNN9+gvApZM0n88sH/9WAb8NYCkV1LdY/YtwGHAOZL2mmmxERExfY2C3vZ1wPZJVjkRuMSVG4E9Jb0GOA5YY3u77YeANUz+hREREV3WrTH6fYD7Opa31G0TtUdERI/s3HYBoyQtoxr2YXh4uOVqoqmFZ35tTt//nvPePqfvn/onl/onN5f1d7P2bu3RbwUWdCzvW7dN1P4CtlfYHrE9MjQ01KWyIiKiW0G/CvhAPfvmcOBh2/cDVwOLJe1VH4RdXLdFRESPNBq6kXQpcDQwX9IWqpk0uwDYvhBYDbwN2AQ8Dnyw7tsu6Vxgbf1Wy21PdlA3IiK6rFHQ2146Rb+BD0/QtxJYOf3SIiKiG3JmbERE4RL0ERGFS9BHRBQuQR8RUbgEfURE4RL0ERGFS9BHRBQuQR8RUbgEfURE4RL0ERGFS9BHRBQuQR8RUbgEfURE4RL0ERGFS9BHRBQuQR8RUbgEfURE4RoFvaQlku6QtEnSmeP0f1LShvpxp6R/7eh7uqNvVRdrj4iIBqa8laCkecAFwFuBLcBaSats3zq6ju2Pdqz/H4FDO97iCduHdK3iiIiYliZ79IcBm2xvtv0UcBlw4iTrLwUu7UZxERExe02Cfh/gvo7lLXXbC0jaD1gEXNPR/FJJ6yTdKOmdE32IpGX1euu2bdvWoKyIiGii2wdjTwK+Yvvpjrb9bI8A7wM+JennxtvQ9grbI7ZHhoaGulxWRMSLV5Og3wos6Fjet24bz0mMGbaxvbV+3gx8k+eP30dExBxrEvRrgf0lLZK0K1WYv2D2jKRfAPYC/rGjbS9JL6lfzweOAG4du21ERMydKWfd2N4h6XTgamAesNL2LZKWA+tsj4b+ScBltt2x+RuAz0h6hupL5bzO2ToRETH3pgx6ANurgdVj2s4es/xH42x3A3DgLOqLiIhZypmxERGFS9BHRBQuQR8RUbgEfURE4RL0ERGFS9BHRBQuQR8RUbgEfURE4RL0ERGFS9BHRBQuQR8RUbgEfURE4RL0ERGFS9BHRBQuQR8RUbgEfURE4RL0ERGFaxT0kpZIukPSJklnjtP/m5K2SdpQP07r6DtV0l3149RuFh8REVOb8laCkuYBFwBvBbYAayWtGufer1+0ffqYbV8JnAOMAAbW19s+1JXqIyJiSk326A8DNtnebPsp4DLgxIbvfxywxvb2OtzXAEtmVmpERMxEk6DfB7ivY3lL3TbWr0u6WdJXJC2Y5rZIWiZpnaR127Zta1BWREQ00a2Dsf8ALLR9ENVe+8XTfQPbK2yP2B4ZGhrqUlkREdEk6LcCCzqW963bnmX7QdtP1ot/A/xi020jImJuNQn6tcD+khZJ2hU4CVjVuYKk13QsngDcVr++GlgsaS9JewGL67aIiOiRKWfd2N4h6XSqgJ4HrLR9i6TlwDrbq4Dfk3QCsAPYDvxmve12SedSfVkALLe9fQ5+joiImMCUQQ9gezWwekzb2R2vzwLOmmDblcDKWdQYERGzkDNjIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIK1yjoJS2RdIekTZLOHKf/9yXdKulmSf9H0n4dfU9L2lA/Vo3dNiIi5taUtxKUNA+4AHgrsAVYK2mV7Vs7VvseMGL7cUm/C3wCeG/d94TtQ7pbdkRENNVkj/4wYJPtzbafAi4DTuxcwfa1th+vF28E9u1umRERMVNNgn4f4L6O5S1120Q+BFzVsfxSSesk3SjpnRNtJGlZvd66bdu2NSgrIiKamHLoZjokvR8YAY7qaN7P9lZJrwOukbTR9g/Gbmt7BbACYGRkxN2sKyLixazJHv1WYEHH8r512/NI+jXgvwAn2H5ytN321vp5M/BN4NBZ1BsREdPUJOjXAvtLWiRpV+Ak4HmzZyQdCnyGKuQf6GjfS9JL6tfzgSOAzoO4ERExx6YcurG9Q9LpwNXAPGCl7VskLQfW2V4F/BmwO/BlSQD32j4BeAPwGUnPUH2pnDdmtk5ERMyxRmP0tlcDq8e0nd3x+tcm2O4G4MDZFBgREbOTM2MjIgqXoI+IKFyCPiKicAn6iIjCJegjIgqXoI+IKFyCPiKicAn6iIjCJegjIgqXoI+IKFyCPiKicAn6iIjCJegjIgqXoI+IKFyCPiKicAn6iIjCJegjIgrXKOglLZF0h6RNks4cp/8lkr5Y939X0sKOvrPq9jskHdfF2iMiooEpg17SPOAC4HjgAGCppAPGrPYh4CHbrwc+Cfxpve0BVDcTfyOwBPh0/X4REdEjTfboDwM22d5s+yngMuDEMeucCFxcv/4KcKyqu4SfCFxm+0nbdwOb6veLiIgeaXJz8H2A+zqWtwBvmWgd2zskPQy8qm6/ccy2+4z3IZKWAcvqxR9LuqNBbTMxH/hR05X1p3NUxcyl/nal/nYNcv1zXft+E3U0CfqesL0CWDHXnyNpne2Ruf6cuZL625X62zXI9bdZe5Ohm63Ago7lfeu2cdeRtDPwCuDBhttGRMQcahL0a4H9JS2StCvVwdVVY9ZZBZxav/4N4BrbrttPqmflLAL2B/6pO6VHREQTUw7d1GPupwNXA/OAlbZvkbQcWGd7FfA54POSNgHbqb4MqNf7EnArsAP4sO2n5+hnaWrOh4fmWOpvV+pv1yDX31rtqna8IyKiVDkzNiKicAn6iIjCJegjIgr3ogx6SQsk/UHbdUT/kvSKSfoGch53SSSNPWkzJtE3J0zNNUlDwHuApcBrgSvbrag5SfsD/4PqWkMvHW23/brWimpA0qdsf0TSPwAvOOpv+4QWymrqf0tabPuhzkZJi6lmmS0Yf7P+IWkj4/y7AwJs+6Ael9RNXwaG2y6iCUl7UU0t7/zdva6XNRQd9JL2AN4NvA/4eeAKYJHtfVstbPr+FjiH6oJxxwAfZDD+Gvt8/fw/W61iZlYA10p6q+1tAJLeB/x34O2tVtbcO9ouYA6p7QKakHQacAbVyaIbgMOBfwR+tad1lDy9UtITVCdo/VfgetuWtLnf94THkrTe9i9K2mj7wM62tmsrmaRTgD8EFgPvBX4HWGL7njbrmi1JOwFLbX+h7VpmStK9tvt+j77+q+qXgBttHyLpF4A/sf3uXtZR9B49cBbVyVufBi6V9MWW65mpJ+tfzrvqk9e2Aru3XNOUJH3J9n+YaAih34cObH9e0k+A7wH3AkfabnxRqrZJejnwYaoLCa4C1gCnAx8D/hno66CfaMiPam/+VT0uZ6Z+YvsnkpD0Etu3S/o3vS6i6D36UZJeRxX4S6nGys4Gvmr7zlYLa0jSLwG3AXsC51JdS+gTtm+cbLu2SXqN7fsljXtVPds/7HVNTXV8OYnqqoDbgMfq5WdsH9xieY1I+nvgIaqhgmOBV1PVf4btDS2W1oikoybrt/2tXtUyU5KupBpq/QjVcM1DwC6239bTOkoOekmvB/a2/Z2OtgOBvwCOsp2boMS4JvhyEtVB2LN6/Ys6E2OG+uYB9wPDtn/SbmXNSBq2fW/bdXRL/cX1CuDr9b09eqb0oZtPUQ3fPMv2RkkfAf6kjYKmY8BnrTxL0uHAXwFvAHalumbSY7Zf3mphk+j8a0PSoVQH9N8D3A1c3lZd0/TT0Re2n5a0ZVBCvvZV4M0Aki63/evtltOcpFeO07yxft6d6ppgPVN60O9te+PYRts3TzSc0GcGedZKp/Ophs6+DIwAH6CaBdW3JP081VDfUqqbRXyR6i/gY1otbHoOlvRI/VrAy+rl0emVfftFW+ucWTNQEyiA9Tw39DdMNWQjquHXe4FFvSym9KDfc5K+l/WqiJmyvb5+7vuxyKnY3iRpXn310r+V9D3G/LXVZ24Hvg28w/YmAEkfbbek6SlgaNITvO57thcBSPoscKXt1fXy8cA7e13PIMzFno11kn57bGM9t3V9C/XMiKQjJK2RdKekzZLulrS57bqm4fH6XgYbJH2iDsx+/7/3bqox7WslfVbSsQzI3O2CHCzpEUmPAgfVrx+R9GjHXyr97vDRkAewfRXwb3tdROkHY/emOgP2KZ4L9hGqceJ32f6XtmqbDkm3Ax+l+hmevZ6/7QdbK2oa6mGy/0f17/5RqgNSnx7dU+5nknajusn9UqpZE5dQ7aF9o9XCYiBIuprqL8P/VTedDPyK7eN6WkfJQT9K0jHAm+rFW2xf02Y90yXpu7YH9toe9d7wDbafaLuW2ahPZX8P8F7bx7ZdT/S/+qDsOcCv1E3XAR+33dODsS+KoB90ks6jmqlyBfDkaLvtm1orahokXQz8MtVMg29T/We/fux1ZCJibiToB4Cka8dptu2eXi9jtiS9luqewv8JeK3t0icDxItUv02Nzi9an6tPdFll+5Nt1zJTkt4P/DvgQKqpiudT7dlHlKqvpkZnj34ASPon24e1XcdMSfoR8APgQuDaQb8oWEQT9U7aJbZPbr2WBH3/k/RJYBeqk3YeG20flDF6AElvpDogdSTV9YbusH1Ku1VFzC1J1wO/2utLHoyVoZvBcEj9vLyjzfT4mtYzVV9FcZjq4mALqaZXPtNmTRE9shn4jqRVPH8n7c97WUSCfgAM2Gn347m+43G+7S0t1xPRKz+oHzsBe7RVRIZuBkB9/9LOubjfApbbfri9qiKiKUm7A9j+cSufn6Dvf5IuB74PXFw3nQIc3Ou71MxUfb/ePwTeyPPvmzkQQ08RMyXpTVQzcEavZvkj4AO2b+llHf1+vZGo/Jztc2xvrh8fZ7Cu5vcFqouELQI+DtwDrG2zoIgeWQH8vu39bO9HdXevz/a6iAT9YHhC0pGjC5KOAAbpcgKvsv054Ke2v2X7txiQA8kRs7Sb7WdPeLT9TWC3XheRg7GD4XeAS+qxeqiubX1qi/VM1+gNMO6X9Hbg//Lcn7IRJdss6b/x3AlU76eaidNTCfo+JukM238B7G774HqaIrYH5RKto/64/pL6GNWdpl5OdRXLiNL9FtVw5RX18rfrtp7Kwdg+JmmD7UMk3WT7zW3XExGDKXv0/e02SXcBr5V0c0f76K3gDmqprkYk/RWT3BnI9u/1sJyInpnoYmajclGzeJbtpZJ+FrgaGIgbgY+xruP1x6nOBYh4MeiLi5mNytBN9ISk79k+tO06InpB0rDte9uuY1SmV/YxSV+qnzdKurnjsXHMUM4gyB5FvJh8dfRFfcJjqzJ009/OqJ/f0WoVETFdnTeSb/3kxgR9H7N9f/38w7ZrmQlJj/LcnvzPSBqdFjp6MPnl7VQWMec8wetWZIy+j40Jyud1kaCM6FuSnqa6LLGAlwGPj3bRwu9ugj4ionAZuhkgkl7N86/+2DdH9SOif2XWzQCQdEJ94tTdVNeivwe4qtWiImJgJOgHw7nA4cCdthcBxwI3tltSRAyKBP1g+KntB4GdJO1UX/Z0pO2iImIwZIx+MPxrfSuy64AvSHqAjhsNR0RMJrNu+pik1wN7AxuobjSyE3AysB/wNdvr26suIgZFhm7626eAR2w/ZvsZ2ztsXwxcCfxRq5VFxMBI0Pe3vW1vHNtYty3sfTkRMYgS9P1tz0n6XtarIiJisCXo+9s6Sb89tlHSaUDG5yOikRyM7WOS9qYaj3+K54J9BNgVeJftf2mrtogYHAn6ASDpGOBN9eIttq9ps56IGCwJ+oiIwmWMPiKicAn6iIjCJegjIgqXoI+IKFyCPiKicP8fHliO4fK4M/cAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" } } ], "metadata": {} }, { "cell_type": "code", "execution_count": 8, "source": [ "form_df['birth_month'].value_counts().plot(kind='bar');\r\n", "plt.show()" ], "outputs": [ { "output_type": "display_data", "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAElCAYAAADqeCmyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAd3ElEQVR4nO3de7QcZZ3u8e9DCCACGsyGQSAEFRWU62y5nwN4ifFGvDCLMF4YByfOKF7P8Yg6C1zomuV4PYqo5EhEZxREFI1jEBgvoCKahDsoEgFNsvQkEAYQPGDCc/6o2lDZ9M7uJL27er95Pmv1Svdb1d2/vWvn6eq33npLtomIiHJt1XYBERExsRL0ERGFS9BHRBQuQR8RUbgEfURE4RL0ERGF27rtAjqZPn26Z86c2XYZERGTxtKlS++yPdRp2UAG/cyZM1myZEnbZURETBqSfjfWsnTdREQULkEfEVG4BH1EROES9BERhUvQR0QUbtygl7SnpB9JukXSzZLe0WEdSfqMpGWSbpB0SGPZyZJuq28n9/oHiIiIDetmeOVa4H/YvkbSjsBSSZfbvqWxzkuAferbYcDngcMk7QycAQwDrp+70PY9Pf0pIiJiTOPu0dv+g+1r6vv3A78Cdh+12hzgK65cDTxZ0m7Ai4HLba+pw/1yYHZPf4KIiNigjTphStJM4GDgF6MW7Q4sbzxeUbeN1d7ptecB8wBmzJgxbi0zT/tel1Vv2J0feVlPXiciYlB1fTBW0g7AN4F32r6v14XYnm972Pbw0FDHs3gjImITdBX0kqZShfxXbX+rwyorgT0bj/eo28Zqj4iIPulm1I2Ac4Ff2f7kGKstBN5Qj745HLjX9h+AS4FZkqZJmgbMqtsiIqJPuumjPwp4PXCjpOvqtvcDMwBsfwFYBLwUWAY8CLyxXrZG0oeAxfXzzrS9pmfVR0TEuMYNets/BTTOOgbeOsayBcCCTaouIiI2W86MjYgoXII+IqJwCfqIiMIl6CMiCpegj4goXII+IqJwCfqIiMIl6CMiCpegj4goXII+IqJwCfqIiMIl6CMiCpegj4goXII+IqJwCfqIiMIl6CMiCjfuhUckLQBeDqyy/dwOy98DvLbxevsCQ/XVpe4E7gfWAWttD/eq8IiI6E43e/TnAbPHWmj7Y7YPsn0Q8D7gilGXCzyuXp6Qj4howbhBb/tKoNvrvJ4EnL9ZFUVERE/1rI9e0vZUe/7fbDQbuEzSUknzevVeERHRvXH76DfCK4Cfjeq2Odr2Skm7AJdL+nX9DeFx6g+CeQAzZszoYVkREVu2Xo66mcuobhvbK+t/VwEXA4eO9WTb820P2x4eGhrqYVkREVu2ngS9pCcBxwDfabQ9UdKOI/eBWcBNvXi/iIjoXjfDK88HjgWmS1oBnAFMBbD9hXq1VwGX2X6g8dRdgYsljbzP12x/v3elR0REN8YNetsndbHOeVTDMJtttwMHbmphERHRGzkzNiKicAn6iIjCJegjIgqXoI+IKFyCPiKicAn6iIjCJegjIgqXoI+IKFyCPiKicAn6iIjCJegjIgqXoI+IKFyCPiKicAn6iIjCJegjIgqXoI+IKFyCPiKicOMGvaQFklZJ6ni9V0nHSrpX0nX17fTGstmSbpW0TNJpvSw8IiK6080e/XnA7HHW+Yntg+rbmQCSpgBnAy8B9gNOkrTf5hQbEREbb9ygt30lsGYTXvtQYJnt220/DFwAzNmE14mIiM3Qqz76IyRdL+kSSc+p23YHljfWWVG3RUREH23dg9e4BtjL9p8kvRT4NrDPxr6IpHnAPIAZM2b0oKyIiIAe7NHbvs/2n+r7i4CpkqYDK4E9G6vuUbeN9TrzbQ/bHh4aGtrcsiIiorbZQS/prySpvn9o/Zp3A4uBfSTtLWkbYC6wcHPfLyIiNs64XTeSzgeOBaZLWgGcAUwFsP0F4ATgnyStBf4MzLVtYK2kU4FLgSnAAts3T8hPERERYxo36G2fNM7yzwKfHWPZImDRppUWERG9kDNjIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKN27QS1ogaZWkm8ZY/lpJN0i6UdJVkg5sLLuzbr9O0pJeFh4REd3pZo/+PGD2BpbfARxje3/gQ8D8UcuPs32Q7eFNKzEiIjZHN9eMvVLSzA0sv6rx8Gpgjx7UFRERPdLrPvpTgEsajw1cJmmppHk9fq+IiOjCuHv03ZJ0HFXQH91oPtr2Skm7AJdL+rXtK8d4/jxgHsCMGTN6VVZExBavJ3v0kg4AvgjMsX33SLvtlfW/q4CLgUPHeg3b820P2x4eGhrqRVkREUEPgl7SDOBbwOtt/6bR/kRJO47cB2YBHUfuRETExBm360bS+cCxwHRJK4AzgKkAtr8AnA48BficJIC19QibXYGL67atga/Z/v4E/AwREbEB3Yy6OWmc5W8C3tSh/XbgwMc/IyIi+ilnxkZEFC5BHxFRuAR9REThEvQREYVL0EdEFC5BHxFRuAR9REThEvQREYVL0EdEFC5BHxFRuAR9REThEvQREYVL0EdEFC5BHxFRuAR9REThEvQREYVL0EdEFK6roJe0QNIqSR2v+arKZyQtk3SDpEMay06WdFt9O7lXhUdERHe63aM/D5i9geUvAfapb/OAzwNI2pnqGrOHAYcCZ0iatqnFRkTExusq6G1fCazZwCpzgK+4cjXwZEm7AS8GLre9xvY9wOVs+AMjIiJ6rFd99LsDyxuPV9RtY7VHRESfbN12ASMkzaPq9mHGjBktV7NpZp72vZ691p0feVlPXic1da9XdaWm7pX8NzVINfVqj34lsGfj8R5121jtj2N7vu1h28NDQ0M9KisiInoV9AuBN9Sjbw4H7rX9B+BSYJakafVB2Fl1W0RE9ElXXTeSzgeOBaZLWkE1kmYqgO0vAIuAlwLLgAeBN9bL1kj6ELC4fqkzbW/ooG5ERPRYV0Fv+6Rxlht46xjLFgALNr60iIjohZwZGxFRuAR9REThEvQREYVL0EdEFC5BHxFRuAR9REThEvQREYVL0EdEFC5BHxFRuAR9REThEvQREYVL0EdEFC5BHxFRuAR9REThEvQREYVL0EdEFC5BHxFRuK6CXtJsSbdKWibptA7LPyXpuvr2G0n/1Vi2rrFsYQ9rj4iILox7KUFJU4CzgRcBK4DFkhbavmVkHdvvaqz/NuDgxkv82fZBPas4IiI2Sjd79IcCy2zfbvth4AJgzgbWPwk4vxfFRUTE5usm6HcHljcer6jbHkfSXsDewA8bzdtJWiLpakmvHOtNJM2r11uyevXqLsqKiIhu9Ppg7FzgItvrGm172R4G/hb435Ke3umJtufbHrY9PDQ01OOyIiK2XN0E/Upgz8bjPeq2TuYyqtvG9sr639uBH7N+/31EREywboJ+MbCPpL0lbUMV5o8bPSPp2cA04OeNtmmStq3vTweOAm4Z/dyIiJg44466sb1W0qnApcAUYIHtmyWdCSyxPRL6c4ELbLvx9H2BcyQ9QvWh8pHmaJ2IiJh44wY9gO1FwKJRbaePevzBDs+7Cth/M+qLiIjNlDNjIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIK11XQS5ot6VZJyySd1mH530laLem6+vamxrKTJd1W307uZfERETG+cS8lKGkKcDbwImAFsFjSwg7Xfv267VNHPXdn4AxgGDCwtH7uPT2pPiIixtXNHv2hwDLbt9t+GLgAmNPl678YuNz2mjrcLwdmb1qpERGxKboJ+t2B5Y3HK+q20V4j6QZJF0nacyOfi6R5kpZIWrJ69eouyoqIiG706mDsd4GZtg+g2mv/8sa+gO35todtDw8NDfWorIiI6CboVwJ7Nh7vUbc9yvbdth+qH34R+OtunxsREROrm6BfDOwjaW9J2wBzgYXNFSTt1nh4PPCr+v6lwCxJ0yRNA2bVbRER0SfjjrqxvVbSqVQBPQVYYPtmSWcCS2wvBN4u6XhgLbAG+Lv6uWskfYjqwwLgTNtrJuDniIiIMYwb9AC2FwGLRrWd3rj/PuB9Yzx3AbBgM2qMiIjNkDNjIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIKl6CPiChcgj4ionAJ+oiIwiXoIyIK11XQS5ot6VZJyySd1mH5uyXdIukGST+QtFdj2TpJ19W3haOfGxERE2vcSwlKmgKcDbwIWAEslrTQ9i2N1a4Fhm0/KOmfgI8CJ9bL/mz7oN6WHRER3epmj/5QYJnt220/DFwAzGmuYPtHth+sH14N7NHbMiMiYlN1E/S7A8sbj1fUbWM5Bbik8Xg7SUskXS3plWM9SdK8er0lq1ev7qKsiIjoxrhdNxtD0uuAYeCYRvNetldKehrwQ0k32v7t6Ofang/MBxgeHnYv64qI2JJ1s0e/Etiz8XiPum09kl4IfAA43vZDI+22V9b/3g78GDh4M+qNiIiN1E3QLwb2kbS3pG2AucB6o2ckHQycQxXyqxrt0yRtW9+fDhwFNA/iRkTEBBu368b2WkmnApcCU4AFtm+WdCawxPZC4GPADsA3JAH83vbxwL7AOZIeofpQ+cio0ToRETHBuuqjt70IWDSq7fTG/ReO8byrgP03p8CIiNg8OTM2IqJwCfqIiMIl6CMiCpegj4goXII+IqJwCfqIiMIl6CMiCpegj4goXII+IqJwCfqIiMIl6CMiCpegj4goXII+IqJwCfqIiMIl6CMiCpegj4goXII+IqJwXQW9pNmSbpW0TNJpHZZvK+nr9fJfSJrZWPa+uv1WSS/uYe0REdGFcYNe0hTgbOAlwH7ASZL2G7XaKcA9tp8BfAr41/q5+1FdTPw5wGzgc/XrRUREn3SzR38osMz27bYfBi4A5oxaZw7w5fr+RcALVF0lfA5wge2HbN8BLKtfLyIi+kS2N7yCdAIw2/ab6sevBw6zfWpjnZvqdVbUj38LHAZ8ELja9r/X7ecCl9i+qMP7zAPm1Q+fBdy6eT8aANOBu3rwOr00iDXBYNaVmrqTmro3iHX1qqa9bA91WrB1D168J2zPB+b38jUlLbE93MvX3FyDWBMMZl2pqTupqXuDWFc/auqm62YlsGfj8R51W8d1JG0NPAm4u8vnRkTEBOom6BcD+0jaW9I2VAdXF45aZyFwcn3/BOCHrvqEFgJz61E5ewP7AL/sTekREdGNcbtubK+VdCpwKTAFWGD7ZklnAktsLwTOBf5N0jJgDdWHAfV6FwK3AGuBt9peN0E/Syc97QrqkUGsCQazrtTUndTUvUGsa8JrGvdgbERETG45MzYionAJ+oiIwiXoIyIKV1TQS3qbpGlt1wEgacaGbgNQ31HdtPXTIG0/AEmfkPSctusYTdIUSV9tu47JoP5dfbztOpraqGlgTpjqkV2BxZKuARYAl7q9o83fAwyo0WZgCNiFagRTm84CDumirZ8GafsB/AqYX58b8iXgfNv3tlgPALbXSdpL0jb1tCStkbTzhpbbXtOvWsZ4/3WSjm6zhtHaqKm4UTf1HDuzgDcCw8CFwLm2f9tyXTOB9wIvBD5j+6yW6jgCOBJ4J9UEdCN2Al5l+8A26hoxiNtP0rPqek4Cfgb8H9s/aqueuqavAPtSnavywEi77U/2uY47ePwOTaMcP62f9XQi6fPA7sA3WP939a0tpabS9uixbUl/BP5INXZ/GnCRpMtt/69+1yNpH+ADVHP/fAJ4u+2/9LuOhm2AHai2/Y6N9vuoTnZr1QBuvynAs+vbXcD1wLslvdn23H7X0/Db+rYV62/HvrK9d1vvvRG2ozpT//mNNgOtBT19rqmoPXpJ7wDeQPUf8ovAt23/RdJWwG22n97HWp5LFfDPAT5K9bW/nyeLbZCkvWz/TtJOVPl6/wDUNDDbr67nU8ArgB9Qfav4ZWPZrbaf1c96OpG0ve0HW3z/Z9v+taSOXX62r+l3TfF4pe3RTwNebft3zUbbj0h6eZ9ruR5YTtVXfyhwaNUr8WhNb+9zPaMNSfoP6r1BSfcCf297aYs1DdL2A7gB+GfbD3RY1up023UX3LlU385mSDoQeLPtt/S5lHdTzTr7iQ7LzPp7rK2Q9Ezg88Cutp8r6QDgeNsf3lJqKmaPvv6KfbPtZ7ddC4Ckkze03PaXN7R8okm6gWpKip/Uj48GPmf7gJbqGZjtN9be6YhB2EuV9AuqrraFtg+u226y/dwWatkKOML2z/r93t2QdAXwHuCctn9XbdVUzB59fST7VkkzbP9+AOrpGOSStqPqDmjbupGQB7D9U0lr2ypmwLZfp73TEQOxlwpge3nzWyLQStdg/Y3rs8DBbbx/F7a3/ctRv6vW/tZrfa2pmKCvTQNulvRL1j+SfXx7JT26t/piqlEbs4CfUB1tb9MVks4BzqcKrxOBH4/szba01zoQ28/2cf18v020XNKRgCVNBd5BNRy0LT+Q9BrgWy0Pie3kLklPp/o7H7mY0h/aLam/NRXTdQMg6ZhO7bav6Hct8Gg9fwu8lGp65qOAp7V58GyEpA0ND7Ttvu+1DuD2e0Ondttf6Xcto0maDnyaarjuVlSzy77D9t0t1XM/8ESqbxV/phpuads7tVFPk6SnUc0QeSRwD3AH8NrRx4JKrqmooB8kklYAv6c64PJt2/dLumOSDEcLQFLzXIftgBcA19hufRhqbDxJTwS2GoQRZiP6VVNpUyAcLmmxpD9JeljSOkn3tVTORcBTqbpEXlFv0IH5VJW0q6RzJV1SP95P0ikt1zRI2w/bb2vc/oHqrOEd2qqnSdLTJH1X0mpJqyR9p95LbLOmV0v6pKqpI17ZZi1Nkp4i6TNUXaY/lvRpSU/ZkmoqKuiBz1L1g98GPAF4E3B2G4XYfiewN9WBvWOpLna+i6QTJQ1CWJxH9XX/qfXj31CdLdumgdl+Y3iAapsOgq9RnTW8G9U2/AbV8ZZWSPoc8I/AjcBNwD9KGpRtdwGwGngN1Uil1cDXW62ozzUV1XWj+iK7km4YGSYo6dqR4Ust1zaVxgFZj3G19j7Ws9j285q/H0nX2T6oxZoGavtJ+i6PfQubAuwHXGj7vW3U09T8HTXarm9rCgtJvwb2HTkQWw+5vNn2vm3U09Rp2KKkG23vv6XUVNqomwdVXdf2OkkfpTqK3cq3lvrg1OhP0ZGxVH+RdDXwAds/6G9lj3qg/qo48h/zcKDtCbsGZvvVPs5j23At8DvbrV7cXo9NInaJpNOo9gxHRk0taq0wWAbMAEYOJu5Ztw2CyyTNpfoGBNUe9KUt1gN9rqm0Pfq9gFXAVOBdwJOoTgIalD844NHhls8FvtrWSRv1MMqz6jpuoppV8wTbN7RRT13TQGy/xof06Im6DDxENcdMKx/SGtBJxOoTgJ5HNbqM+v5iqjmUWhniPGo7PhF4pF60FfCnNkYEtVVTUUE/2aiaGOucPr/n84Dltv+oavrdN1P1E94CnO6Wp5UddIPwIT2IRg2NFfDfgLnAW6C9IbJRKSroG3s762lrL2cQqZrr/YW210j671Rf/d8GHETVx9ra0MHJtP3a+JAe9f5TgJcBM2l0wbrP0xSPqulgqvNG/oZqXPi33NJ03KOpmktmJuv/rtqcvbKvNZXWRz/cuL8d1R/cBi+MsAWa0thrPxGYb/ubwDclXddeWcAk2n5thnztu8D/oxrl8sg4604YVZNznVTf7qIaOaJBOrtY0gLgAOBmHvtdtTpNcb9rKmqPvhNJS23/ddt1DApJNwEH2V5bj5SYZ/vKkWWD1h2R7ddZp1E3LdXxCNVY8FNGjqVIun2QvoVJusX2fm3X0dTvmorao9f6sw5uRbWHWNTP2APnU81zcxfVqeojs1c+g5ZH3WT7bZRLJM2yfVnLdbyaqi/+R5K+T9UV2OlAcZt+Lmk/27e0XUhDX2sqao9e68/fsha4E/i47VvbqWgw1UMpdwMucz3Xev0VfIc2p+DN9uuepFcB/071gfgXWp5bpj7zew5VF87zga8AFw/AB9HIgeKFVFcte4jHfletfSPqd01FBX3ElqI+cD0HuHHQZouUNI3q+MqJtl8wAPUso7pAynrHM1qe1KyvNRUV9JK2pRoqOJP1j2Sf2VZN0b1sv+5JuhI41nZrB2InC0k/t31E23U09bum0vo/v0PVz7yU6utQTC7Zft27nWoyrEto/K7aHF45wK6V9DWqkUrN31Wbwyv7WlNpQb+H7dltFxGbLNuve3fUt23qW4ztCVRhOqvR1urwSvpcU2ldN/OBs2zf2HYtsfGy/TaepO0H4UI2MdhKm6b4aGCpqmuP3iDpRlUXwY7JIduvS5KOkHQL8Ov68YH1VMExiqRnSvpBfQ4Jkg6Q9M9bUk2l7dHv1am9zaPr0b1sv+5J+gXVjIcLG9NMD9wJb4OgnnDtPcA5g/K76ndNRfXRjwSCpF2oTqGPSSTbb+PYXi6td27SurZqGXDb2/7lqN/V2raKqfW1pqK6biQdL+k2qoNUV1CdcHNJq0VF17L9NspySUcCljRV0v8EftV2UQPqLklP57FrL5xAda2DNvW1ptK6bq6nOivvP20fLOk44HW2W70WanQn2697kqYDnwZeSHVW5WXA2zPN9OOpupbufOBI4B6qHYnXtnzCVKeaXmf7zgl5v8KCfuRSdNcDB9t+RC1eXi02TrZf9yQdZftn47VFNaWz7XX1NA1b2b6/7ZpG9KumorpugP9SdeHtnwBflfRpqgs6x+SQ7de9TvO8D8Tc7wPojnro7uHAn9ouBkDSv0h6su0HbN8vaZqkD0/Y+xW2R7891RzdAl4H7ER1JaB8nZ0Esv3GJ+kIqq/77wQ+1Vi0E/CqfPt5vPrv6uVUs2weAvwHcIHtn7ZY07UeddF7SdfYPmSs52yOIkbdaMMX4j5dUmvX+IzxSfqp7aOB/8tj23Fk+31Y0hrgY7YzTrw6C3YHqv+7Ozba76Mabhmj1CeUXQhcWE+49mmqg/1TWixriqRtbT8EIOkJwLYT9WZF7dF3olzjc9KT9BTgKtvParuWQSFpL9u/k7QT1fS2A9PvPIjqaYFPBGYDS4Cv11dWa6ue9wKvAL5UN72R6pyIj07I+5Ue9CPU8jU+Y/NI2s1220PiBoakYaqQGNmrvxf4e9tL26tqMEm6E7iWaq9+4cg1GNomaTbVqCmAy21fOmHvtaUEfURJ6qkh3mp75AphRwOfG4TLCw4aSTvZvq/tOkarzwTfx/Z/1scRpkzUN7PSRt1EbCnWjYQ8QH1gse2zPQfVTpIulrSqvn1T0h5tFiTpH4CLgJFeht2Bb0/U+yXoIyanKySdI+lYScfUE5r9WNIhWv/au1F1cS0EnlrfvstjfeNteStwFNVBdGzfBuwyUW9WxKibiC3QyDDKM0a1H0w1cun5/S1noA3Zbgb7eZLe2VYxtYdsPzwy142krXn8yMGeSdBHTEK2j2u7hknkbkmvA86vH58E3N1iPVB9I3s/8ARJLwLeQvVNY0LkYGzEJCRpV+BfgKfafomk/YAjbJ/bcmkDpz7oeRZwBNVe81VU8wL9vsWatgJOobrClIBLgS9O1IXeE/QRk5Cqa8V+iepEwAPrr/7X2t6/5dKiS5KGAGyvnuj3StdNxOQ03faFkt4HYHutpMxH3yDp9A0stu0P9a2YmqpO+TOAU6kHw9Tb7SzbZ07U+2bUTcTk9EB9xvDIfOaHU500FY95oMMNqi6T97ZU07uoRts8z/bOtncGDgOOkvSuiXrTdN1ETEL1EMqzqKb3uAkYAk6wnWvsdiBpR+AdVCF/IfAJ26taqONa4EW27xrVPgRcNnqis17JHn3EJCLpeZL+yvY1wDHA+4GHqC48sqLV4gaQpJ3r6X9voOqqPsT2e9sI+drU0SEPj/bTT52oN03QR0wu5wAP1/ePBD4AnE11laL5bRU1iCR9DFgM3A/sb/uDtu9puayHN3HZZknXTcQk0rzilqSzgdW2P1g/vs72QS2WN1AkPUL1bWct65+MJKqDsTu1UNM6Ol9MR8B2tidkrz6jbiImlymStra9FngBMK+xLP+fG2wPXI+F7VbmwM8fRsTkcj7VWZV3AX+muuwikp5BRt3EGNJ1EzHJ1EMpd6MapfFA3fZMYIf6IG3EehL0ERGFG7g+rIiI6K0EfURE4RL0ERGFS9BHRBQuQR8RUbj/D2N5LVp4WgrKAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" } } ], "metadata": {} }, { "cell_type": "markdown", "source": [], "metadata": {} } ], "metadata": { "orig_nbformat": 4, "language_info": { "name": "python", "version": "3.9.7", "mimetype": "text/x-python", "codemirror_mode": { "name": "ipython", "version": 3 }, "pygments_lexer": "ipython3", "nbconvert_exporter": "python", "file_extension": ".py" }, "kernelspec": { "name": "python3", "display_name": "Python 3.9.7 64-bit ('venv': venv)" }, "interpreter": { "hash": "6b9b57232c4b57163d057191678da2030059e733b8becc68f245de5a75abe84e" } }, "nbformat": 4, "nbformat_minor": 2 }