
Defining Data Science

Defining Data Science - Sketchnote by @nitya

Pre-lecture quiz

https://twitter.com/nitya
https://youtu.be/beZ7Mb_oz9I
https://red-water-0103e7a0f.azurestaticapps.net/quiz/0
https://github.com/Microsoft/Data-Science-For-Beginners

What is Data?

In our everyday life, we are constantly surrounded by data. The text you are reading now is data. The

list of phone numbers of your friends in your smartphone is data, as well as the current time displayed

on your watch. As human beings, we naturally operate with data by counting the money we have or

by writing letters to our friends.

However, data became much more critical with the creation of computers. The primary role of

computers is to perform computations, but they need data to operate on. Thus, we need to

understand how computers store and process data.

With the emergence of the Internet, the role of computers as data handling devices increased. If you

think about it, we now use computers more and more for data processing and communication, rather

than actual computations. When we write an e-mail to a friend or search for some information on the

Internet - we are essentially creating, storing, transmitting, and manipulating data.

Can you remember the last time you have used computers to actually compute something?

What is Data Science?

In Wikipedia, Data Science is defined as a scientific field that uses scientific methods to extract

knowledge and insights from structured and unstructured data, and apply knowledge and actionable

insights from data across a broad range of application domains.

This definition highlights the following important aspects of data science:

The main goal of data science is to extract knowledge from data, in other words - to understand

data, find some hidden relationships and build a model.

Data science uses scientific methods, such as probability and statistics. In fact, when the term

data science was first introduced, some people argued that data science was just a new fancy

name for statistics. Nowadays it has become evident that the field is much broader.

Obtained knowledge should be applied to produce some actionable insights, i.e. practical

insights that you can apply to real business situations.

We should be able to operate on both structured and unstructured data. We will come back to

discuss different types of data later in the course.

https://en.wikipedia.org/wiki/Data_science

Application domain is an important concept, and data scientists often need at least some degree

of expertise in the problem domain, for example: finance, medicine, marketing, etc.

Another important aspect of Data Science is that it studies how data can be gathered, stored

and operated upon using computers. While statistics gives us mathematical foundations, data

science applies mathematical concepts to actually draw insights from data.

One of the ways (attributed to Jim Gray) to look at the data science is to consider it to be a separate

paradigm of science:

Empirical, in which we rely mostly on observations and results of experiments

Theoretical, where new concepts emerge from existing scientific knowledge

Computational, where we discover new principles based on some computational experiments

Data-Driven, based on discovering relationships and patterns in the data

Other Related Fields

Since data is pervasive, data science itself is also a broad field, touching many other disciplines.

Databases

A critical consideration is **how to store** the data, i.e. how to structure it in a way that allows

faster processing. There are different types of databases that store structured and

unstructured data, which we will consider in our course.

Big Data

Often we need to store and process very large quantities of data with a relatively simple

structure. There are special approaches and tools to store that data in a distributed manner on

a computer cluster, and process it efficiently.

Machine Learning

One way to understand data is to **build a model** that will be able to predict a desired

outcome. Developing models from data is called **machine learning**. You may want to have a

look at our Machine Learning for Beginners Curriculum to learn more about it.

Artificial Intelligence

An area of machine learning known as artificial intelligence (AI) also relies on data, and it

involves building high complexity models that mimic human thought processes. AI methods

often allow us to turn unstructured data (e.g. natural language) into structured insights.

Visualization

Vast amounts of data are incomprehensible for a human being, but once we create useful

visualizations using that data, we can make more sense of the data, and draw some

https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
http://localhost:3000/2-Working-With-Data/README.md
https://aka.ms/ml-beginners

conclusions. Thus, it is important to know many ways to visualize information - something that

we will cover in Section 3 of our course. Related fields also include **Infographics**, and

Human-Computer Interaction in general.

Types of Data

As we have already mentioned, data is everywhere. We just need to capture it in the right way! It is

useful to distinguish between structured and unstructured data. The former is typically represented

in some well-structured form, often as a table or number of tables, while the latter is just a collection

of files. Sometimes we can also talk about semi-structured data, that have some sort of a structure

that may vary greatly.

Structured Semi-structured Unstructured

List of people with their phone

numbers
Wikipedia pages with links

Text of

Encyclopedia

Britannica

Temperature in all rooms of a

building at every minute for the

last 20 years

Collection of scientific papers in JSON

format with authors, data of publication,

and abstract

File share with

corporate

documents

Data for age and gender of all

people entering the building
Internet pages

Raw video feed

from surveillance

camera

Where to get Data

There are many possible sources of data, and it will be impossible to list all of them! However, let's

mention some of the typical places where you can get data:

Structured

Internet of Things (IoT), including data from different sensors, such as temperature or

pressure sensors, provides a lot of useful data. For example, if an office building is equipped

with IoT sensors, we can automatically control heating and lighting in order to minimize costs.

Surveys that we ask users to complete after a purchase, or after visiting a web site.

Analysis of behavior can, for example, help us understand how deeply a user goes into a site,

and what is the typical reason for leaving the site.

http://localhost:3000/3-Data-Visualization/README.md

Unstructured

Texts can be a rich source of insights, such as an overall sentiment score, or extracting

keywords and semantic meaning.

Images or Video. A video from a surveillance camera can be used to estimate traffic on the

road, and inform people about potential traffic jams.

Web server Logs can be used to understand which pages of our site are most often visited,

and for how long.

Semi-structured

Social Network graphs can be great sources of data about user personalities and potential

effectiveness in spreading information around.

When we have a bunch of photographs from a party, we can try to extract Group Dynamics

data by building a graph of people taking pictures with each other.

By knowing different possible sources of data, you can try to think about different scenarios where

data science techniques can be applied to know the situation better, and to improve business

processes.

What you can do with Data

In Data Science, we focus on the following steps of data journey:

1) Data Acquisition

The first step is to collect the data. While in many cases it can be a straightforward process, like

data coming to a database from a web application, sometimes we need to use special

techniques. For example, data from IoT sensors can be overwhelming, and it is a good practice

to use buffering endpoints such as IoT Hub to collect all the data before further processing.

2) Data Storage

Storing data can be challenging, especially if we are talking about big data. When deciding how

to store data, it makes sense to anticipate the way you would to query the data in the future.

There are several ways data can be stored:

A relational database stores a collection of tables, and uses a special language called SQL to

query them. Typically, tables are organized into different groups called schemas. In many

cases we need to convert the data from original form to fit the schema.

A NoSQL database, such as CosmosDB, does not enforce schemas on data, and allows

storing more complex data, for example, hierarchical JSON documents or graphs. However,

NoSQL databases do not have the rich querying capabilities of SQL, and cannot enforce

referential integrity, i.e. rules on how the data is structured in tables and governing the

relationships between tables.

https://en.wikipedia.org/wiki/NoSQL
https://azure.microsoft.com/services/cosmos-db/?WT.mc_id=academic-31812-dmitryso

Data Lake storage is used for large collections of data in raw, unstructured form. Data lakes

are often used with big data, where all data cannot fit on one machine, and has to be stored

and processed by a cluster of servers. Parquet is the data format that is often used in

conjunction with big data.

3) Data Processing

This is the most exciting part of the data journey, which involves converting the data from its

original form into a form that can be used for visualization/model training. When dealing with

unstructured data such as text or images, we may need to use some AI techniques to extract

features from the data, thus converting it to structured form.

4) Visualization / Human Insights

Oftentimes, in order to understand the data, we need to visualize it. Having many different

visualization techniques in our toolbox, we can find the right view to make an insight. Often, a

data scientist needs to "play with data", visualizing it many times and looking for some

relationships. Also, we may use statistical techniques to test a hypotheses or prove a correlation

between different pieces of data.

5) Training a predictive model

Because the ultimate goal of data science is to be able to make decisions based on data, we

may want to use the techniques of Machine Learning to build a predictive model. We can then

use this to make predictions using new data sets with similar structures.

Of course, depending on the actual data, some steps might be missing (e.g., when we already have

the data in the database, or when we do not need model training), or some steps might be repeated

several times (such as data processing).

Digitalization and Digital Transformation

In the last decade, many businesses started to understand the importance of data when making

business decisions. To apply data science principles to running a business, one first needs to collect

some data, i.e. translate business processes into digital form. This is known as digitalization.

Applying data science techniques to this data to guide decisions can lead to significant increases in

productivity (or even business pivot), called digital transformation.

Let's consider an example. Suppose we have a data science course (like this one) which we deliver

online to students, and we want to use data science to improve it. How can we do it?

We can start by asking "What can be digitized?" The simplest way would be to measure the time it

takes each student to complete each module, and to measure the obtained knowledge by giving a

multiple-choice test at the end of each module. By averaging time-to-complete across all students,

we can find out which modules cause the most difficulties for students, and work on simplifying

them.

https://en.wikipedia.org/wiki/Data_lake
https://en.wikipedia.org/wiki/Apache_Parquet
http://github.com/microsoft/ml-for-beginners

You may argue that this approach is not ideal, because modules can be of different lengths. It

is probably more fair to divide the time by the length of the module (in number of characters),

and compare those values instead.

When we start analyzing results of multiple-choice tests, we can try to determine which concepts

that students have difficulty understanding, and and use that information to improve the content. To

do that, we need to design tests in such a way that each question maps to a certain concept or chunk

of knowledge.

If we want to get even more complicated, we can plot the time taken for each module against the age

category of students. We might find out that for some age categories it takes an inappropriately long

time to complete the module, or that students drop out before completing it. This can help us provide

age recommendations for the module, and minimize people's dissatisfaction from wrong

expectations.

🚀 Challenge

In this challenge, we will try to find concepts relevant to the field of Data Science by looking at texts.

We will take a Wikipedia article on Data Science, download and process the text, and then build a

word cloud like this one:

Visit notebook.ipynb to read through the code. You can also run the code, and see how it

performs all data transformations in real time.

If you do not know how to run code in a Jupyter Notebook, have a look at this article.

Post-lecture quiz

Assignments

Task 1: Modify the code above to find out related concepts for the fields of Big Data and Machine

Learning

Task 2: Think About Data Science Scenarios

Credits

http://localhost:3000/1-Introduction/01-defining-data-science/notebook.ipynb
https://soshnikov.com/education/how-to-execute-notebooks-from-github/
https://red-water-0103e7a0f.azurestaticapps.net/quiz/1

This lesson has been authored with ♥ by Dmitry Soshnikov

Introduction to Data Ethics

Data Science Ethics - Sketchnote by @nitya

We are all data citizens living in a datafied world.

Market trends tell us that by 2022, 1-in-3 large organizations will buy and sell their data through

online Marketplaces and Exchanges. As App Developers, we'll find it easier and cheaper to integrate

data-driven insights and algorithm-driven automation into daily user experiences. But as AI becomes

pervasive, we'll also need to understand the potential harms caused by the weaponization of such

algorithms at scale.

Trends also indicate that we will create and consume over 180 zettabytes of data by 2025. As Data

Scientists, this gives us unprecedented levels of access to personal data. This means we can build

behavioral profiles of users and influence decision-making in ways that create an illusion of free

choice while potentially nudging users towards outcomes we prefer. It also raises broader questions

on data privacy and user protections.

Data ethics are now necessary guardrails for data science and engineering, helping us minimize

potential harms and unintended consequences from our data-driven actions. The Gartner Hype

http://soshnikov.com/
https://twitter.com/nitya
https://www.gartner.com/smarterwithgartner/gartner-top-10-trends-in-data-and-analytics-for-2020/
https://www.youtube.com/watch?v=TQHs8SA1qpk
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.datasciencecentral.com/profiles/blogs/the-illusion-of-choice
https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/

Cycle for AI identifies relevant trends in digital ethics, responsible AI ,and AI governance as key

drivers for larger megatrends around democratization and industrialization of AI.

In this lesson, we'll explore the fascinating area of data ethics - from core concepts and challenges,

to case studies and applied AI concepts like governance - that help establish an ethics culture in

teams and organizations that work with data and AI.

Pre-lecture quiz 🎯

Basic Definitions

Let's start by understanding the basic terminology.

https://www.gartner.com/smarterwithgartner/2-megatrends-dominate-the-gartner-hype-cycle-for-artificial-intelligence-2020/
https://red-water-0103e7a0f.azurestaticapps.net/quiz/2

The word "ethics" comes from the Greek word "ethikos" (and its root "ethos") meaning character or

moral nature.

Ethics is about the shared values and moral principles that govern our behavior in society. Ethics is

based not on laws but on widely accepted norms of what is "right vs. wrong". However, ethical

considerations can influence corporate governance initiatives and government regulations that create

more incentives for compliance.

Data Ethics is a new branch of ethics that "studies and evaluates moral problems related to data,

algorithms and corresponding practices". Here, "data" focuses on actions related to generation,

recording, curation, processing dissemination, sharing ,and usage, "algorithms" focuses on AI,

agents, machine learning ,and robots, and "practices" focuses on topics like responsible innovation,

programming, hacking and ethics codes.

Applied Ethics is the practical application of moral considerations. It's the process of actively

investigating ethical issues in the context of real-world actions, products and processes, and taking

corrective measures to make that these remain aligned with our defined ethical values.

Ethics Culture is about operationalizing applied ethics to make sure that our ethical principles and

practices are adopted in a consistent and scalable manner across the entire organization. Successful

ethics cultures define organization-wide ethical principles, provide meaningful incentives for

compliance, and reinforce ethics norms by encouraging and amplifying desired behaviors at every

level of the organization.

Ethics Concepts

In this section, we'll discuss concepts like shared values (principles) and ethical challenges

(problems) for data ethics - and explore case studies that help you understand these concepts in

real-world contexts.

1. Ethics Principles

Every data ethics strategy begins by defining ethical principles - the "shared values" that describe

acceptable behaviors, and guide compliant actions, in our data & AI projects. You can define these at

an individual or team level. However, most large organizations outline these in an ethical AI mission

statement or framework that is defined at corporate levels and enforced consistently across all

teams.

Example: Microsoft's Responsible AI mission statement reads: "We are committed to the

advancement of AI-driven by ethical principles that put people first" - identifying 6 ethical principles

in the framework below:

https://en.wikipedia.org/wiki/Ethics
https://royalsocietypublishing.org/doi/full/10.1098/rsta.2016.0360#sec-1
https://en.wikipedia.org/wiki/Applied_ethics
https://hbr.org/2019/05/how-to-design-an-ethical-organization
https://www.microsoft.com/en-us/ai/responsible-ai

Let's briefly explore these principles. Transparency and accountability are foundational values that

other principles built upon - so let's begin there:

Accountability makes practitioners responsible for their data & AI operations, and compliance

with these ethical principles.

Transparency ensures that data and AI actions are understandable (interpretable) to users,

explaining the what and why behind decisions.

Fairness - focuses on ensuring AI treats all people fairly, addressing any systemic or implicit

socio-technical biases in data and systems.

Reliability & Safety - ensures that AI behaves consistently with defined values, minimizing

potential harms or unintended consequences.

Privacy & Security - is about understanding data lineage, and providing data privacy and related

protections to users.

Inclusiveness - is about designing AI solutions with intention, adapting them to meet a broad

range of human needs & capabilities.

🚨 Think about what your data ethics mission statement could be. Explore ethical AI

frameworks from other organizations - here are examples from IBM, Google ,and Facebook.

What shared values do they have in common? How do these principles relate to the AI

product or industry they operate in?

2. Ethics Challenges

Once we have ethical principles defined, the next step is to evaluate our data and AI actions to see if

they align with those shared values. Think about your actions in two categories: data collection and

https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6
https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6
https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1%3aprimaryr6
https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6
https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6
https://www.microsoft.com/en-us/ai/responsible-ai?activetab=pivot1:primaryr6
https://www.ibm.com/cloud/learn/ai-ethics
https://ai.google/principles
https://ai.facebook.com/blog/facebooks-five-pillars-of-responsible-ai/

algorithm design.

With data collection, actions will likely involve personal data or personally identifiable information

(PII) for identifiable living individuals. This includes diverse items of non-personal data that

collectively identify an individual. Ethical challenges can relate to data privacy, data ownership, and

related topics like informed consent and intellectual property rights for users.

With algorithm design, actions will involve collecting & curating datasets, then using them to train &

deploy data models that predict outcomes or automate decisions in real-world contexts. Ethical

challenges can arise from dataset bias, data quality issues, unfairness ,and misrepresentation in

algorithms - including some issues that are systemic in nature.

In both cases, ethics challenges highlight areas where our actions may encounter conflict with our

shared values. To detect, mitigate, minimize, or eliminate, these concerns - we need to ask moral

"yes/no" questions related to our actions, then take corrective actions as needed. Let's take a look at

some ethical challenges and the moral questions they raise:

2.1 Data Ownership

Data collection often involves personal data that can identify the data subjects. Data ownership is

about control and user rights related to the creation, processing ,and dissemination of data.

The moral questions we need to ask are:

Who owns the data? (user or organization)

What rights do data subjects have? (ex: access, erasure, portability)

What rights do organizations have? (ex: rectify malicious user reviews)

2.2 Informed Consent

Informed consent defines the act of users agreeing to an action (like data collection) with a full

understanding of relevant facts including the purpose, potential risks ,and alternatives.

Questions to explore here are:

Did the user (data subject) give permission for data capture and usage?

Did the user understand the purpose for which that data was captured?

Did the user understand the potential risks from their participation?

2.3 Intellectual Property

Intellectual property refers to intangible creations resulting from the human initiative, that may have

economic value to individuals or businesses.

https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en
https://permission.io/blog/data-ownership
https://permission.io/blog/data-ownership
https://legaldictionary.net/informed-consent/
https://en.wikipedia.org/wiki/Intellectual_property

Questions to explore here are:

Did the collected data have economic value to a user or business?

Does the user have intellectual property here?

Does the organization have intellectual property here?

If these rights exist, how are we protecting them?

2.4 Data Privacy

Data privacy or information privacy refers to the preservation of user privacy and protection of user

identity with respect to personally identifiable information.

Questions to explore here are:

Is users' (personal) data secured against hacks and leaks?

Is users' data accessible only to authorized users and contexts?

Is users' anonymity preserved when data is shared or disseminated?

Can a user be de-identified from anonymized datasets?

2.5 Right To Be Forgotten

The Right To Be Forgotten or Right to Erasure provides additional personal data protection to users.

Specifically, it gives users the right to request deletion or removal of personal data from Internet

searches and other locations, under specific circumstances - allowing them a fresh start online

without past actions being held against them.

Questions to explore here are:

Does the system allow data subjects to request erasure?

Should the withdrawal of user consent trigger automated erasure?

Was data collected without consent or by unlawful means?

Are we compliant with government regulations for data privacy?

2.6 Dataset Bias

Dataset or Collection Bias is about selecting a non-representative subset of data for algorithm

development, creating potential unfairness in result outcomes for diverse groups. Types of bias

include selection or sampling bias, volunteer bias, and instrument bias.

Questions to explore here are:

Did we recruit a representative set of data subjects?

Did we test our collected or curated dataset for various biases?

Can we mitigate or remove any discovered biases?

https://www.northeastern.edu/graduate/blog/what-is-data-privacy/
https://en.wikipedia.org/wiki/Right_to_be_forgotten
https://www.gdpreu.org/right-to-be-forgotten/
http://researcharticles.com/index.php/bias-in-data-collection-in-research/

2.7 Data Quality

Data Quality looks at the validity of the curated dataset used to develop our algorithms, checking to

see if features and records meet requirements for the level of accuracy and consistency needed for

our AI purpose.

Questions to explore here are:

Did we capture valid features for our use case?

Was data captured consistently across diverse data sources?

Is the dataset complete for diverse conditions or scenarios?

Is information captured accurately in reflecting reality?

2.8 Algorithm Fairness

Algorithm Fairness checks to see if the algorithm design systematically discriminates against specific

subgroups of data subjects leading to potential harms in allocation (where resources are denied or

withheld from that group) and quality of service (where AI is not as accurate for some subgroups as it

is for others).

Questions to explore here are:

Did we evaluate model accuracy for diverse subgroups and conditions?

Did we scrutinize the system for potential harms (e.g., stereotyping)?

Can we revise data or retrain models to mitigate identified harms?

Explore resources like AI Fairness checklists to learn more.

2.9 Misrepresentation

Data Misrepresentation is about asking whether we are communicating insights from honestly

reported data in a deceptive manner to support a desired narrative.

Questions to explore here are:

Are we reporting incomplete or inaccurate data?

Are we visualizing data in a manner that drives misleading conclusions?

Are we using selective statistical techniques to manipulate outcomes?

Are there alternative explanations that may offer a different conclusion?

2.10 Free Choice

The Illusion of Free Choice occurs when system "choice architectures" use decision-making

algorithms to nudge people towards taking a preferred outcome while seeming to give them options

https://lakefs.io/data-quality-testing/
https://towardsdatascience.com/what-is-algorithm-fairness-3182e161cf9f
https://docs.microsoft.com/en-us/azure/machine-learning/concept-fairness-ml
https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4t6dA
https://www.sciencedirect.com/topics/computer-science/misrepresentation
https://www.datasciencecentral.com/profiles/blogs/the-illusion-of-choice

and control. These dark patterns can cause social and economic harm to users. Because user

decisions impact behavior profiles, these actions potentially drive future choices that can amplify or

extend the impact of these harms.

Questions to explore here are:

Did the user understand the implications of making that choice?

Was the user aware of (alternative) choices and the pros & cons of each?

Can the user reverse an automated or influenced choice later?

3. Case Studies

To put these ethical challenges in real-world contexts, it helps to look at case studies that highlight

the potential harms and consequences to individuals and society, when such ethics violations are

overlooked.

Here are a few examples:

Ethics Challenge Case Study

Informed Consent

1972 - Tuskegee Syphilis Study - African American men who participated in

the study were promised free medical care but deceived by researchers who

failed to inform subjects of their diagnosis or about availability of treatment.

Many subjects died & partners or children were affected; the study lasted 40

years.

Data Privacy

2007 - The Netflix data prize provided researchers with 10M anonymized

movie rankings from 50K customers to help improve recommendation

algorithms. However, researchers were able to correlate anonymized data

with personally-identifiable data in external datasets (e.g., IMDb comments) -

effectively "de-anonymizing" some Netflix subscribers.

Collection Bias

2013 - The City of Boston developed Street Bump, an app that let citizens

report potholes, giving the city better roadway data to find and fix issues.

However, people in lower income groups had less access to cars and phones,

making their roadway issues invisible in this app. Developers worked with

academics to equitable access and digital divides issues for fairness.

Algorithmic

Fairness

2018 - The MIT Gender Shades Study evaluated the accuracy of gender

classification AI products, exposing gaps in accuracy for women and persons

of color. A 2019 Apple Card seemed to offer less credit to women than men.

Both illustrated issues in algorithmic bias leading to socio-economic harms.

https://www.darkpatterns.org/
https://en.wikipedia.org/wiki/Tuskegee_Syphilis_Study
https://www.wired.com/2007/12/why-anonymous-data-sometimes-isnt/
https://www.boston.gov/transportation/street-bump
https://hbr.org/2013/04/the-hidden-biases-in-big-data
http://gendershades.org/overview.html
https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/

Ethics Challenge Case Study

Data

Misrepresentation

2020 - The Georgia Department of Public Health released COVID-19 charts

that appeared to mislead citizens about trends in confirmed cases with non-

chronological ordering on the x-axis. This illustrates misrepresentation

through visualization tricks.

Illusion of free

choice

2020 - Learning app ABCmouse paid $10M to settle an FTC complaint where

parents were trapped into paying for subscriptions they couldn't cancel. This

illustrates dark patterns in choice architectures, where users were nudged

towards potentially harmful choices.

Data Privacy &

User Rights

2021 - Facebook Data Breach exposed data from 530M users, resulting in a

$5B settlement to the FTC. It however refused to notify users of the breach

violating user rights around data transparency and access.

Want to explore more case studies? Check out these resources:

Ethics Unwrapped - ethics dilemmas across diverse industries.

Data Science Ethics course - landmark case studies explored.

Where things have gone wrong - deon checklist with examples

🚨 Think about the case studies you've seen - have you experienced, or been affected by, a

similar ethical challenge in your life? Can you think of at least one other case study that

illustrates one of the ethical challenges we've discussed in this section?

Applied Ethics

We've talked about ethics concepts, challenges ,and case studies in real-world contexts. But how do

we get started applying ethical principles and practices in our projects? And how do we

operationalize these practices for better governance? Let's explore some real-world solutions:

1. Professional Codes

Professional Codes offer one option for organizations to "incentivize" members to support their

ethical principles and mission statement. Codes are moral guidelines for professional behavior,

helping employees or members make decisions that align with their organization's principles. They

https://www.vox.com/covid-19-coronavirus-us-response-trump/2020/5/18/21262265/georgia-covid-19-cases-declining-reopening
https://www.washingtonpost.com/business/2020/09/04/abcmouse-10-million-ftc-settlement/
https://www.npr.org/2021/04/09/986005820/after-data-breach-exposes-530-million-facebook-says-it-will-not-notify-users
https://ethicsunwrapped.utexas.edu/case-studies
https://www.coursera.org/learn/data-science-ethics#syllabus
https://deon.drivendata.org/examples/

are only as good as the voluntary compliance from members; however, many organizations offer

additional rewards and penalties to motivate compliance from members.

Examples include:

Oxford Munich Code of Ethics

Data Science Association Code of Conduct (created 2013)

ACM Code of Ethics and Professional Conduct (since 1993)

🚨 Do you belong to a professional engineering or data science organization? Explore their

site to see if they define a professional code of ethics. What does this say about their ethical

principles? How are they "incentivizing" members to follow the code?

2. Ethics Checklists

While professional codes define required ethical behavior from practitioners, they have known

limitations in enforcement, particularly in large-scale projects. Instead, many data Science experts

advocate for checklists, that can connect principles to practices in more deterministic and

actionable ways.

Checklists convert questions into "yes/no" tasks that can be operationalized, allowing them to be

tracked as part of standard product release workflows.

Examples include:

Deon - a general-purpose data ethics checklist created from industry recommendations with a

command-line tool for easy integration.

Privacy Audit Checklist - provides general guidance for information handling practices from legal

and social exposure perspectives.

AI Fairness Checklist - created by AI practitioners to support the adoption and integration of

fairness checks into AI development cycles.

22 questions for ethics in data and AI - more open-ended framework, structured for initial

exploration of ethical issues in design, implementation, and organizational, contexts.

3. Ethics Regulations

Ethics is about defining shared values and doing the right thing voluntarily. Compliance is about

following the law if and where defined. Governance broadly covers all the ways in which

organizations operate to enforce ethical principles and comply with established laws.

http://www.code-of-ethics.org/code-of-conduct/
http://datascienceassn.org/code-of-conduct.html
https://www.acm.org/code-of-ethics
https://resources.oreilly.com/examples/0636920203964/blob/master/of_oaths_and_checklists.md
https://resources.oreilly.com/examples/0636920203964/blob/master/of_oaths_and_checklists.md
https://deon.drivendata.org/
https://deon.drivendata.org/#checklist-citations
https://cyber.harvard.edu/ecommerce/privacyaudit.html
https://www.microsoft.com/en-us/research/project/ai-fairness-checklist/
https://medium.com/the-organization/22-questions-for-ethics-in-data-and-ai-efb68fd19429

Today, governance takes two forms within organizations. First, it's about defining ethical AI principles

and establishing practices to operationalize adoption across all AI-related projects in the

organization. Second, it's about complying with all government-mandated data protection

regulations for regions it operates in.

Examples of data protection and privacy regulations:

1974 , US Privacy Act - regulates federal govt. collection, use ,and disclosure of personal

information.

1996 , US Health Insurance Portability & Accountability Act (HIPAA) - protects personal health

data.

1998 , US Children's Online Privacy Protection Act (COPPA) - protects data privacy of children

under 13.

2018 , General Data Protection Regulation (GDPR) - provides user rights, data protection ,and

privacy.

2018 , California Consumer Privacy Act (CCPA) gives consumers more rights over their

(personal) data.

2021 , China's Personal Information Protection Law just passed, creating one of the strongest

online data privacy regulations worldwide.

🚨 The European Union defined GDPR (General Data Protection Regulation) remains one of

the most influential data privacy regulations today. Did you know it also defines 8 user rights

to protect citizens' digital privacy and personal data? Learn about what these are, and why

they matter.

4. Ethics Culture

Note that there remains an intangible gap between compliance (doing enough to meet "the letter of

the law") and addressing systemic issues (like ossification, information asymmetry ,and distributional

unfairness) that can speed up the weaponization of AI.

The latter requires collaborative approaches to defining ethics cultures that build emotional

connections and consistent shared values across organizations in the industry. This calls for more

formalized data ethics cultures in organizations - allowing anyone to pull the Andon cord (to raise

ethics concerns early in the process) and making ethical assessments (e.g., in hiring) a core criteria

team formation in AI projects.

https://www.justice.gov/opcl/privacy-act-1974
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/childrens-online-privacy-protection-rule
https://gdpr-info.eu/
https://www.oag.ca.gov/privacy/ccpa
https://www.reuters.com/world/china/china-passes-new-personal-data-privacy-law-take-effect-nov-1-2021-08-20/
https://www.freeprivacypolicy.com/blog/8-user-rights-gdpr
https://www.coursera.org/learn/data-science-ethics/home/week/4
https://towardsdatascience.com/why-ai-ethics-requires-a-culture-driven-approach-26f451afa29f
https://www.codeforamerica.org/news/formalizing-an-ethical-data-culture/
https://en.wikipedia.org/wiki/Andon_(manufacturing)

Post-lecture quiz 🎯

Review & Self Study

Courses and books help with understanding core ethics concepts and challenges, while case studies

and tools help with applied ethics practices in real-world contexts. Here are a few resources to start

with.

Machine Learning For Beginners - lesson on Fairness, from Microsoft.

Principles of Responsible AI - free learning path from Microsoft Learn.

Ethics and Data Science - O'Reilly EBook (M. Loukides, H. Mason et. al)

Data Science Ethics - online course from the University of Michigan.

Ethics Unwrapped - case studies from the University of Texas.

Assignment
Write A Data Ethics Case Study

Defining Data

https://red-water-0103e7a0f.azurestaticapps.net/quiz/3
https://github.com/microsoft/ML-For-Beginners/blob/main/1-Introduction/3-fairness/README.md
https://docs.microsoft.com/en-us/learn/modules/responsible-ai-principles/
https://resources.oreilly.com/examples/0636920203964
https://www.coursera.org/learn/data-science-ethics#syllabus
https://ethicsunwrapped.utexas.edu/case-studies

Defining Data - Sketchnote by @nitya

Data is facts, information, observations and measurements that are used to make discoveries and to

support informed decisions. A data point is a single unit of data with in a dataset, which is collection

of data points. Datasets may come in different formats and structures, and will usually be based on

its source, or where the data came from. For example, a company's monthly earnings might be in a

spreadsheet but hourly heart rate data from a smartwatch may be in JSON format. It's common for

data scientists to work with different types of data within a dataset.

This lesson focuses on identifying and classifying data by its characteristics and its sources.

Pre-Lecture Quiz

How Data is Described

Raw data is data that has come from its source in its initial state and has not been analyzed or

organized. In order to make sense of what is happening with a dataset, it needs to be organized into a

format that can be understood by humans as well as the technology they may use to analyze it

further. The structure of a dataset describes how it's organized and can be classified at structured,

unstructured and semi-structured. These types of structure will vary, depending on the source but

will ultimately fit in these three categories.

Quantitative Data

Quantitative data is numerical observations within a dataset and can typically be analyzed, measured

and used mathematically. Some examples of quantitative data are: a country's population, a person's

height or a company's quarterly earnings. With some additional analysis, quantitative data could be

used to discover seasonal trends of the Air Quality Index (AQI) or estimate the probability of rush hour

traffic on a typical work day.

Qualitative Data

Qualitative data, also known as categorical data is data that cannot be measured objectively like

observations of quantitative data. It's generally various formats of subjective data that captures the

quality of something, such as a product or process. Sometimes, qualitative data is numerical and

wouldn't be typically used mathematically, like phone numbers or timestamps. Some examples of

https://twitter.com/nitya
https://stackoverflow.com/a/383699
https://red-water-0103e7a0f.azurestaticapps.net/quiz/4

qualitative data are: video comments, the make and model of a car or your closest friends' favorite

color. Qualitative data could be used to understand which products consumers like best or identifying

popular keywords in job application resumes.

Structured Data

Structured data is data that is organized into rows and columns, where each row will have the same

set of columns. Columns represent a value of a particular type and will be identified with a name

describing what the value represents, while rows contain the actual values. Columns will often have a

specific set of rules or restrictions on the values, to ensure that the values accurately represent the

column. For example imagine a spreadsheet of customers where each row must have a phone

number and the phone numbers never contain alphabetical characters. There may be rules applied

on the phone number column to make sure it's never empty and only contains numbers.

A benefit of structured data is that it can be organized in such a way that it can be related to other

structured data. However, because the data is designed to be organized in a specific way, making

changes to its overall structure can take a lot of effort to do. For example, adding an email column to

the customer spreadsheet that cannot be empty means you'll need figure out how you'll add these

values to the existing rows of customers in the dataset.

Examples of structured data: spreadsheets, relational databases, phone numbers, bank statements

Unstructured Data

Unstructured data typically cannot be categorized into rows or columns and doesn't contain a format

or set of rules to follow. Because unstructured data has less restrictions on its structure it's easier to

add new information in comparison to a structured dataset. If a sensor capturing data on barometric

pressure every 2 minutes has received an update that now allows it to measure and record

temperature, it doesn't require altering the existing data if it's unstructured. However, this may make

analyzing or investigating this type of data take longer. For example, a scientist who wants to find the

average temperature of the previous month from the sensors data, but discovers that the sensor

recorded an "e" in some of its recorded data to note that it was broken instead of a typical number,

which means the data is incomplete.

Examples of unstructured data: text files, text messages, video files

Semi-structured

Semi-structured data has features that make it a combination of structured and unstructured data. It

doesn't typically conform to a format of rows and columns but is organized in a way that is

considered structured and may follow a fixed format or set of rules. The structure will vary between

sources, such as a well defined hierarchy to something more flexible that allows for easy integration

of new information. Metadata are indicators that help decide how the data is organized and stored

and will have various names, based on the type of data. Some common names for metadata are tags,

elements, entities and attributes. For example, a typical email message will have a subject, body and

a set of recipients and can be organized by whom or when it was sent.

Examples of semi-structured data: HTML, CSV files, JavaScript Object Notation (JSON)

Sources of Data

A data source is the initial location of where the data was generated, or where it "lives" and will vary

based on how and when it was collected. Data generated by its user(s) are known as primary data

while secondary data comes from a source that has collected data for general use. For example, a

group of scientists collecting observations in a rainforest would be considered primary and if they

decide to share it with other scientists it would be considered secondary to those that use it.

Databases are a common source and rely on a database management system to host and maintain

the data where users use commands called queries to explore the data. Files as data sources can be

audio, image, and video files as well as spreadsheets like Excel. Internet sources are a common

location for hosting data, where databases as well as files can be found. Application programming

interfaces, also known as APIs allow programmers to create ways to share data with external users

through the internet, while the process of web scraping extracts data from a web page. The lessons

in Working with Data focus on how to use various data sources.

Conclusion

In this lesson we have learned:

What data is

How data is described

How data is classified and categorized

Where data can be found

🚀 Challenge

Kaggle is an excellent source of open datasets. Use the dataset search tool to find some interesting

datasets and classify 3-5 datasets with this criteria:

https://www.kaggle.com/datasets

Is the data quantitative or qualitative?

Is the data structured, unstructured, or semi-structured?

Post-Lecture Quiz

Review & Self Study

This Microsoft Learn unit, titled Classify your Data has a detailed breakdown of structured, semi-

structured, and unstructured data.

Assignment

Classifying Datasets

A Brief Introduction to Statistics and

Probability

Statistics and Probability - Sketchnote by @nitya

https://red-water-0103e7a0f.azurestaticapps.net/quiz/5
https://docs.microsoft.com/en-us/learn/modules/choose-storage-approach-in-azure/2-classify-data
https://twitter.com/nitya

Statistics and Probability Theory are two highly related areas of Mathematics that are highly relevant

to Data Science. It is possible to operate with data without deep knowledge of mathematics, but it is

still better to know at least some basic concepts. Here we will present a short introduction that will

help you get started.

Pre-lecture quiz

Probability and Random Variables

Probability is a number between 0 and 1 that expresses how probable an event is. It is defined as a

number of positive outcomes (that lead to the event), divided by total number of outcomes, given

that all outcomes are equally probable. For example, when we roll a dice, the probability that we get

an even number is 3/6 = 0.5.

When we talk about events, we use random variables. For example, the random variable that

represents a number obtained when rolling a dice would take values from 1 to 6. Set of numbers from

1 to 6 is called sample space. We can talk about the probability of a random variable taking a certain

value, for example P(X=3)=1/6.

The random variable in previous example is called discrete, because it has a countable sample

space, i.e. there are separate values that can be enumerated. There are cases when sample space is

https://youtu.be/Z5Zy85g4Yjw
https://red-water-0103e7a0f.azurestaticapps.net/quiz/6

a range of real numbers, or the whole set of real numbers. Such variables are called continuous. A

good example is the time when the bus arrives.

Probability Distribution

In the case of discrete random variables, it is easy to describe the probability of each event by a

function P(X). For each value s from sample space S it will give a number from 0 to 1, such that the

sum of all values of P(X=s) for all events would be 1.

The most well-known discrete distribution is uniform distribution, in which there is a sample space

of N elements, with equal probability of 1/N for each of them.

It is more difficult to describe the probability distribution of a continuous variable, with values drawn

from some interval [a,b], or the whole set of real numbers ℝ. Consider the case of bus arrival time. In
fact, for each exact arrival time t, the probability of a bus arriving at exactly that time is 0!

Now you know that events with 0 probability happen, and very often! At least each time when

the bus arrives!

We can only talk about the probability of a variable falling in a given interval of values, eg. P(t ≤X<t).

In this case, probability distribution is described by a probability density function p(x), such that

A continuous analog of uniform distribution is called continuous uniform, which is defined on a finite

interval. A probability that the value X falls into an interval of length l is proportional to l, and rises up

to 1.

Another important distribution is normal distribution, which we will talk about in more detail below.

Mean, Variance and Standard Deviation

Suppose we draw a sequence of n samples of a random variable X: x , x , ..., x . We can define mean

(or arithmetic average) value of the sequence in the traditional way as (x +x +x)/n. As we grow the

size of the sample (i.e. take the limit with n→∞), we will obtain the mean (also called expectation) of

the distribution. We will denote expectation by E(x).

1 2

1 2 n

1 2 n

It can be demonstrated that for any discrete distribution with values {x , x , ..., x } and

corresponding probabilities p , p , ..., p , the expectation would equal to

E(X)=x p +x p +...+x p .

To identify how far the values are spread, we can compute the variance σ = ∑(x - µ) /n, where µ is

the mean of the sequence. The value σ is called standard deviation, and σ is called a variance.

Mode, Median and Quartiles

Sometimes, mean does not adequately represent the "typical" value for data. For example, when

there are a few extreme values that are completely out of range, they can affect the mean. Another

good indication is a median, a value such that half of data points are lower than it, and another half -

higher.

To help us understand the distribution of data, it is helpful to talk about quartiles:

First quartile, or Q1, is a value, such that 25% of the data fall below it

Third quartile, or Q3, is a value that 75% of the data fall below it

Graphically we can represent relationship between median and quartiles in a diagram called the box

plot:

Here we also compute inter-quartile range IQR=Q3-Q1, and so-called outliers - values, that lie

outside the boundaries [Q1-1.5IQR,Q3+1.5IQR].

For finite distribution that contains a small number of possible values, a good "typical" value is the

one that appears the most frequently, which is called mode. It is often applied to categorical data,

such as colors. Consider a situation when we have two groups of people - some that strongly prefer

red, and others who prefer blue. If we code colors by numbers, the mean value for a favorite color

would be somewhere in the orange-green spectrum, which does not indicate the actual preference

on neither group. However, the mode would be either one of the colors, or both colors, if the number

of people voting for them is equal (in this case we call the sample multimodal).

Real-world Data

1 2 N

1 2 N

1 1 2 2 N N

2
i

2

2

When we analyze data from real life, they often are not random variables as such, in a sense that we

do not perform experiments with unknown result. For example, consider a team of baseball players,

and their body data, such as height, weight and age. Those numbers are not exactly random, but we

can still apply the same mathematical concepts. For example, a sequence of people's weights can be

considered to be a sequence of values drawn from some random variable. Below is the sequence of

weights of actual baseball players from Major League Baseball, taken from this dataset (for your

convenience, only first 20 values are shown):

Note: To see the example of working with this dataset, have a look at the accompanying

notebook. There are also a number of challenges throughout this lesson, and you may

complete them by adding some code to that notebook. If you are not sure how to operate on

data, do not worry - we will come back to working with data using Python at a later time. If you

do not know how to run code in Jupyter Notebook, have a look at this article.

Here is the box plot showing mean, median and quartiles for our data:

Since our data contains information about different player roles, we can also do the box plot by role -

it will allow us to get the idea on how parameters values differ across roles. This time we will consider

height:

[180.0, 215.0, 210.0, 210.0, 188.0, 176.0, 209.0, 200.0, 231.0, 180.0, 188.

http://mlb.mlb.com/index.jsp
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights
https://soshnikov.com/education/how-to-execute-notebooks-from-github/

This diagram suggests that, on average, height of first basemen is higher that height of second

basemen. Later in this lesson we will learn how we can test this hypothesis more formally, and how to

demonstrate that our data is statistically significant to show that.

When working with real-world data, we assume that all data points are samples drawn from

some probability distribution. This assumption allows us to apply machine learning techniques

and build working predictive models.

To see what the distribution of our data is, we can plot a graph called a histogram. X-axis would

contain a number of different weight intervals (so-called bins), and the vertical axis would show the

number of times our random variable sample was inside a given interval.

From this histogram you can see that all values are centered around certain mean weight, and the

further we go from that weight - the fewer weights of that value are encountered. I.e., it is very

improbable that the weight of a baseball player would be very different from the mean weight.

Variance of weights show the extent to which weights are likely to differ from the mean.

If we take weights of other people, not from the baseball league, the distribution is likely to be

different. However, the shape of the distribution will be the same, but mean and variance

would change. So, if we train our model on baseball players, it is likely to give wrong results

when applied to students of a university, because the underlying distribution is different.

Normal Distribution

The distribution of weights that we have seen above is very typical, and many measurements from

real world follow the same type of distribution, but with different mean and variance. This distribution

is called normal distribution, and it plays a very important role in statistics.

Using normal distribution is a correct way to generate random weights of potential baseball players.

Once we know mean weight mean and standard deviation std , we can generate 1000 weight

samples in the following way:

If we plot the histogram of the generated samples we will see the picture very similar to the one

shown above. And if we increase the number of samples and the number of bins, we can generate a

picture of a normal distribution that is more close to ideal:

Normal Distribution with mean=0 and std.dev=1

Confidence Intervals

When we talk about weights of baseball players, we assume that there is certain random variable W

that corresponds to ideal probability distribution of weights of all baseball players (so-called

population). Our sequence of weights corresponds to a subset of all baseball players that we call

sample. An interesting question is, can we know the parameters of distribution of W, i.e. mean and

variance of the population?

The easiest answer would be to calculate mean and variance of our sample. However, it could happen

that our random sample does not accurately represent complete population. Thus it makes sense to

talk about confidence interval.

Confidence interval is the estimation of true mean of the population given our sample, which

is accurate is a certain probability (or level of confidence).

samples = np.random.normal(mean,std,1000)
python

Suppose we have a sample X , ..., X from our distribution. Each time we draw a sample from our

distribution, we would end up with different mean value µ. Thus µ can be considered to be a random

variable. A confidence interval with confidence p is a pair of values (L ,R), such that P(L ≤µ≤R) =

p, i.e. a probability of measured mean value falling within the interval equals to p.

It does beyond our short intro to discuss in detail how those confidence intervals are calculated.

Some more details can be found on Wikipedia. In short, we define the distribution of computed

sample mean relative to the true mean of the population, which is called student distribution.

Interesting fact: Student distribution is named after mathematician William Sealy Gosset,

who published his paper under the pseudonym "Student". He worked in the Guinness

brewery, and, according to one of the versions, his employer did not want general public to

know that they were using statistical tests to determine the quality of raw materials.

If we want to estimate the mean µ of our population with confidence p, we need to take (1-p)/2-th

percentile of a Student distribution A, which can either be taken from tables, or computer using some

built-in functions of statistical software (eg. Python, R, etc.). Then the interval for µ would be given by

X±A*D/√n, where X is the obtained mean of the sample, D is the standard deviation.

Note: We also omit the discussion of an important concept of degrees of freedom, which is

important in relation to Student distribution. You can refer to more complete books on

statistics to understand this concept deeper.

An example of calculating confidence interval for weights and heights is given in the accompanying

notebooks.

p Weight mean

0.85 201.73±0.94

0.90 201.73±1.08

0.95 201.73±1.28

Notice that the higher is the confidence probability, the wider is the confidence interval.

1 n

p p p p

https://en.wikipedia.org/wiki/Confidence_interval
https://en.wikipedia.org/wiki/Degrees_of_freedom_(statistics)

Hypothesis Testing

In our baseball players dataset, there are different player roles, that can be summarized below (look

at the accompanying notebook to see how this table can be calculated):

Role Height Weight Count

Catcher 72.723684 204.328947 76

Designated_Hitter 74.222222 220.888889 18

First_Baseman 74.000000 213.109091 55

Outfielder 73.010309 199.113402 194

Relief_Pitcher 74.374603 203.517460 315

Second_Baseman 71.362069 184.344828 58

Shortstop 71.903846 182.923077 52

Starting_Pitcher 74.719457 205.163636 221

Third_Baseman 73.044444 200.955556 45

We can notice that the mean heights of first basemen is higher than that of second basemen. Thus,

we may be tempted to conclude that first basemen are higher than second basemen.

This statement is called a hypothesis, because we do not know whether the fact is actually

true or not.

However, it is not always obvious whether we can make this conclusion. From the discussion above

we know that each mean has an associated confidence interval, and thus this difference can just be a

statistical error. We need some more formal way to test our hypothesis.

Let's compute confidence intervals separately for heights of first and second basemen:

Confidence First Basemen Second Basemen

Confidence First Basemen Second Basemen

0.85 73.62..74.38 71.04..71.69

0.90 73.56..74.44 70.99..71.73

0.95 73.47..74.53 70.92..71.81

We can see that under no confidence the intervals overlap. That proves our hypothesis that first

basemen are higher than second basemen.

More formally, the problem we are solving is to see if two probability distributions are the same, or

at least have the same parameters. Depending on the distribution, we need to use different tests for

that. If we know that our distributions are normal, we can apply Student t-test.

In Student t-test, we compute so-called t-value, which indicates the difference between means,

taking into account the variance. It is demonstrated that t-value follows student distribution, which

allows us to get the threshold value for a given confidence level p (this can be computed, or looked

up in the numerical tables). We then compare t-value to this threshold to approve or reject the

hypothesis.

In Python, we can use the SciPy package, which includes ttest_ind function (in addition to many

other useful statistical functions!). It computes the t-value for us, and also does the reverse lookup of

confidence p-value, so that we can just look at the confidence to draw the conclusion.

For example, our comparison between heights of first and second basemen give us the following

results:

In our case, p-value is very low, meaning that there is strong evidence supporting that first basemen

are taller.

There are also different other types of hypothesis that we might want to test, for example:

from scipy.stats import ttest_ind

tval, pval = ttest_ind(df.loc[df['Role']=='First_Baseman',['Height']], df.l
print(f"T-value = {tval[0]:.2f}\nP-value: {pval[0]}")

python

T-value = 7.65
P-value: 9.137321189738925e-12

https://en.wikipedia.org/wiki/Student%27s_t-test

To prove that a given sample follows some distribution. In our case we have assumed that heights

are normally distributed, but that needs formal statistical verification.

To prove that a mean value of a sample corresponds to some predefined value

To compare means of a number of samples (eg. what is the difference in happiness levels among

different age groups)

Law of Large Numbers and Central Limit Theorem

One of the reasons why normal distribution is so important is so-called central limit theorem.

Suppose we have a large sample of independent N values X , ..., X , sampled from any distribution

with mean µ and variance σ . Then, for sufficiently large N (in other words, when N→∞), the mean

ƩX would be normally distributed, with mean µ and variance σ /N.

Another way to interpret the central limit theorem is to say that regardless of distribution,

when you compute the mean of a sum of any random variable values you end up with normal

distribution.

From the central limit theorem it also follows that, when N→∞, the probability of the sample mean to

be equal to µ becomes 1. This is known as the law of large numbers.

Covariance and Correlation

One of the things Data Science does is finding relations between data. We say that two sequences

correlate when they exhibit the similar behavior at the same time, i.e. they either rise/fall

simultaneously, or one sequence rises when another one falls and vice versa. In other words, there

seems to be some relation between two sequences.

Correlation does not necessarily indicate causal relationship between two sequences;

sometimes both variables can depend on some external cause, or it can be purely by chance

the two sequences correlate. However, strong mathematical correlation is a good indication

that two variables are somehow connected.

1 N

2

i i
2

Mathematically, the main concept that shows the relation between two random variables is

covariance, that is computed like this: Cov(X,Y) = E[(X-E(X))(Y-E(Y))]. We compute the deviation of

both variables from their mean values, and then product of those deviations. If both variables deviate

together, the product would always be a positive value, that would add up to positive covariance. If

both variables deviate out-of-sync (i.e. one falls below average when another one rises above

average), we will always get negative numbers, that will add up to negative covariance. If the

deviations are not dependent, they will add up to roughly zero.

The absolute value of covariance does not tell us much on how large the correlation is, because it

depends on the magnitude of actual values. To normalize it, we can divide covariance by standard

deviation of both variables, to get correlation. The good thing is that correlation is always in the

range of [-1,1], where 1 indicates strong positive correlation between values, -1 - strong negative

correlation, and 0 - no correlation at all (variables are independent).

Example: We can compute correlation between weights and heights of baseball players from the

dataset mentioned above:

As a result, we get correlation matrix like this one:

Correlation matrix C can be computed for any number of input sequences S , ..., S . The value

of C is the correlation between S and S , and diagonal elements are always 1 (which is also

self-correlation of S).

In our case, the value 0.53 indicates that there is some correlation between weight and height of a

person. We can also make the scatter plot of one value against the other to see the relationship

visually:

print(np.corrcoef(weights,heights))
python

array([[1. , 0.52959196],
 [0.52959196, 1.]])

1 n

ij i j

i

More examples of correlation and covariance can be found in accompanying notebook.

Conclusion

In this section, we have learnt:

basic statistical properties of data, such as mean, variance, mode and quartiles

different distributions of random variables, including normal distribution

how to find correlation between different properties

how to use sound apparatus of math and statistics in order to prove some hypotheses,

how to compute confidence intervals for random variable given data sample

While this is definitely not exhaustive list of topics that exist within probability and statistics, it should

be enough to give you a good start into this course.

🚀 Challenge

Use the sample code in the notebook to test other hypothesis that:

1. First basemen are older than second basemen

2. First basemen are taller than third basemen

3. Shortstops are taller than second basemen

Post-lecture quiz

Review & Self Study

Probability and statistics is such a broad topic that it deserves its own course. If you are interested to

go deeper into theory, you may want to continue reading some of the following books:

1. Carlos Fernandez-Granda from New York University has great lecture notes Probability and

Statistics for Data Science (available online)

2. Peter and Andrew Bruce. Practical Statistics for Data Scientists. [sample code in R].

3. James D. Miller. Statistics for Data Science [sample code in R]

Assignment

Small Diabetes Study

Credits

This lesson has been authored with ♥ by Dmitry Soshnikov

Working with Data: Relational Databases

https://red-water-0103e7a0f.azurestaticapps.net/quiz/7
https://cims.nyu.edu/~cfgranda/
https://cims.nyu.edu/~cfgranda/pages/stuff/probability_stats_for_DS.pdf
https://www.oreilly.com/library/view/practical-statistics-for/9781491952955/
https://github.com/andrewgbruce/statistics-for-data-scientists
https://www.packtpub.com/product/statistics-for-data-science/9781788290678
https://github.com/PacktPublishing/Statistics-for-Data-Science
http://soshnikov.com/

Working With Data: Relational Databases - Sketchnote by @nitya

Chances are you have used a spreadsheet in the past to store information. You had a set of rows and

columns, where the rows contained the information (or data), and the columns described the

information (sometimes called metadata). A relational database is built upon this core principle of

columns and rows in tables, allowing you to have information spread across multiple tables. This

allows you to work with more complex data, avoid duplication, and have flexibility in the way you

explore the data. Let's explore the concepts of a relational database.

Pre-lecture quiz

It all starts with tables

A relational database has at its core tables. Just as with the spreadsheet, a table is a collection of

columns and rows. The row contains the data or information we wish to work with, such as the name

of a city or the amount of rainfall. The columns describe the data they store.

Let's begin our exploration by starting a table to store information about cities. We might start with

their name and country. You could store this in a table as follows:

City Country

https://twitter.com/nitya
https://red-water-0103e7a0f.azurestaticapps.net/quiz/8

City Country

Tokyo Japan

Atlanta United States

Auckland New Zealand

Notice the column names of city, country and population describe the data being stored, and each

row has information about one city.

The shortcomings of a single table approach

Chances are, the table above seems relatively familiar to you. Let's start to add some additional data

to our burgeoning database - annual rainfall (in millimeters). We'll focus on the years 2018, 2019 and

2020. If we were to add it for Tokyo, it might look something like this:

City Country Year Amount

Tokyo Japan 2020 1690

Tokyo Japan 2019 1874

Tokyo Japan 2018 1445

What do you notice about our table? You might notice we're duplicating the name and country of the

city over and over. That could take up quite a bit of storage, and is largely unnecessary to have

multiple copies of. After all, Tokyo has just the one name we're interested in.

OK, let's try something else. Let's add new columns for each year:

City Country 2018 2019 2020

Tokyo Japan 1445 1874 1690

Atlanta United States 1779 1111 1683

Auckland New Zealand 1386 942 1176

While this avoids the row duplication, it adds a couple of other challenges. We would need to modify

the structure of our table each time there's a new year. Additionally, as our data grows having our

years as columns will make it trickier to retrieve and calculate values.

This is why we need multiple tables and relationships. By breaking apart our data we can avoid

duplication and have more flexibility in how we work with our data.

The concepts of relationships

Let's return to our data and determine how we want to split things up. We know we want to store the

name and country for our cities, so this will probably work best in one table.

City Country

Tokyo Japan

Atlanta United States

Auckland New Zealand

But before we create the next table, we need to figure out how to reference each city. We need some

form of an identifier, ID or (in technical database terms) a primary key. A primary key is a value used

to identify one specific row in a table. While this could be based on a value itself (we could use the

name of the city, for example), it should almost always be a number or other identifier. We don't want

the id to ever change as it would break the relationship. You will find in most cases the primary key or

id will be an auto-generated number.

✅ Primary key is frequently abbreviated as PK

cities

city_id City Country

1 Tokyo Japan

2 Atlanta United States

city_id City Country

3 Auckland New Zealand

✅ You will notice we use the terms "id" and "primary key" interchangeably during this

lesson. The concepts here apply to DataFrames, which you will explore later. DataFrames

don't use the terminology of "primary key", however you will notice they behave much in the

same way.

With our cities table created, let's store the rainfall. Rather than duplicating the full information about

the city, we can use the id. We should also ensure the newly created table has an id column as well,

as all tables should have an id or primary key.

rainfall

rainfall_id city_id Year Amount

1 1 2018 1445

2 1 2019 1874

3 1 2020 1690

4 2 2018 1779

5 2 2019 1111

6 2 2020 1683

7 3 2018 1386

8 3 2019 942

9 3 2020 1176

Notice the city_id column inside the newly created rainfall table. This column contains values which

reference the IDs in the cities table. In technical relational data terms, this is called a foreign key; it's

a primary key from another table. You can just think of it as a reference or a pointer. city_id 1

references Tokyo.

[!NOTE] Foreign key is frequently abbreviated as FK

Retrieving the data

With our data separated into two tables, you may be wondering how we retrieve it. If we are using a

relational database such as MySQL, SQL Server or Oracle, we can use a language called Structured

Query Language or SQL. SQL (sometimes pronounced sequel) is a standard language used to

retrieve and modify data in a relational database.

To retrieve data you use the command SELECT . At its core, you select the columns you want to see

from the table they're contained in. If you wanted to display just the names of the cities, you could

use the following:

SELECT is where you list the columns, and FROM is where you list the tables.

[NOTE] SQL syntax is case-insensitive, meaning select and SELECT mean the same

thing. However, depending on the type of database you are using the columns and tables

might be case sensitive. As a result, it's a best practice to always treat everything in

programming like it's case sensitive. When writing SQL queries common convention is to put

the keywords in all upper-case letters.

The query above will display all cities. Let's imagine we only wanted to display cities in New Zealand.

We need some form of a filter. The SQL keyword for this is WHERE , or "where something is true".

SELECT city
FROM cities;

-- Output:
-- Tokyo
-- Atlanta
-- Auckland

sql

Joining data

Until now we've retrieved data from a single table. Now we want to bring the data together from both

cities and rainfall. This is done by joining them together. You will effectively create a seam between

the two tables, and match up the values from a column from each table.

In our example, we will match the city_id column in rainfall with the city_id column in cities. This will

match the rainfall value with its respective city. The type of join we will perform is what's called an

inner join, meaning if any rows don't match with anything from the other table they won't be

displayed. In our case every city has rainfall, so everything will be displayed.

Let's retrieve the rainfall for 2019 for all our cities.

We're going to do this in steps. The first step is to join the data together by indicating the columns for

the seam - city_id as highlighted before.

We have highlighted the two columns we want, and the fact we want to join the tables together by the

city_id. Now we can add the WHERE statement to filter out only year 2019.

SELECT city
FROM cities
WHERE country = 'New Zealand';

-- Output:
-- Auckland

sql

SELECT cities.city
 rainfall.amount
FROM cities
 INNER JOIN rainfall ON cities.city_id = rainfall.city_id

sql

SELECT cities.city
 rainfall.amount
FROM cities
 INNER JOIN rainfall ON cities.city_id = rainfall.city_id
WHERE rainfall.year = 2019

-- Output

sql

Summary

Relational databases are centered around dividing information between multiple tables which is then

brought back together for display and analysis. This provides a high degree of flexibility to perform

calculations and otherwise manipulate data. You have seen the core concepts of a relational

database, and how to perform a join between two tables.

🚀 Challenge

There are numerous relational databases available on the internet. You can explore the data by using

the skills you've learned above.

Post-Lecture Quiz

Post-lecture quiz

Review & Self Study

There are several resources available on Microsoft Learn for you to continue your exploration of SQL

and relational database concepts

Describe concepts of relational data

Get Started Querying with Transact-SQL (Transact-SQL is a version of SQL)

SQL content on Microsoft Learn

-- city | amount
-- -------- | ------
-- Tokyo | 1874
-- Atlanta | 1111
-- Auckland | 942

https://red-water-0103e7a0f.azurestaticapps.net/quiz/9
https://docs.microsoft.com/learn?WT.mc_id=academic-40229-cxa
https://docs.microsoft.com//learn/modules/describe-concepts-of-relational-data?WT.mc_id=academic-40229-cxa
https://docs.microsoft.com//learn/paths/get-started-querying-with-transact-sql?WT.mc_id=academic-40229-cxa
https://docs.microsoft.com/learn/browse/?products=azure-sql-database%2Csql-server&expanded=azure&WT.mc_id=academic-40229-cxa

Assignment

Assignment Title

Working with Data: Non-Relational Data

Working with NoSQL Data - Sketchnote by @nitya

Pre-Lecture Quiz

Data is not limited to relational databases. This lesson focuses on non-relational data and will cover

the basics of spreadsheets and NoSQL.

Spreadsheets

Spreadsheets are a popular way to store and explore data because it requires less work to setup and

get started. In this lesson you'll learn the basic components of a spreadsheet, as well as formulas and

functions. The examples will be illustrated with Microsoft Excel, but most of the parts and topics will

have similar names and steps in comparison to other spreadsheet software.

https://twitter.com/nitya
https://red-water-0103e7a0f.azurestaticapps.net/quiz/10

A spreadsheet is a file and will be accessible in the file system of a computer, device, or cloud based

file system. The software itself may be browser based or an application that must be installed on a

computer or downloaded as an app. In Excel these files are also defined as workbooks and this

terminology will be used the remainder of this lesson.

A workbook contains one or more worksheets, where each worksheet are labeled by tabs. Within a

worksheet are rectangles called cells, which will contain the actual data. A cell is the intersection of a

row and column, where the columns are labeled with alphabetical characters and rows labeled

numerically. Some spreadsheets will contain headers in the first few rows to describe the data in a

cell.

With these basic elements of an Excel workbook, we'll use and an example from Microsoft Templates

focused on an inventory to walk through some additional parts of a spreadsheet.

Managing an Inventory

The spreadsheet file named "InventoryExample" is a formatted spreadsheet of items within an

inventory that contains three worksheets, where the tabs are labeled "Inventory List", "Inventory Pick

List" and "Bin Lookup". Row 4 of the Inventory List worksheet is the header, which describes the

value of each cell in the header column.

There are instances where a cell is dependent on the values of other cells to generate its value. The

Inventory List spreadsheet keeps track of the cost of every item in its inventory, but what if we need

to know the value of everything in the inventory? Formulas perform actions on cell data and is used

to calculate the cost of the inventory in this example. This spreadsheet used a formula in the

Inventory Value column to calculate the value of each item by multiplying the quantity under the QTY

header and its costs by the cells under the COST header. Double clicking or highlighting a cell will

show the formula. You'll notice that formulas start with an equals sign, followed by the calculation or

operation.

https://templates.office.com/
https://support.microsoft.com/en-us/office/overview-of-formulas-34519a4e-1e8d-4f4b-84d4-d642c4f63263

We can use another formula to add all the values of Inventory Value together to get its total value.

This could be calculated by adding each cell to generate the sum, but that can be a tedious task.

Excel has functions, or predefined formulas to perform calculations on cell values. Functions require

arguments, which are the required values used to perform these calculations. When functions require

more than one argument, they will need to be listed in a particular order or the function may not

calculate the correct value. This example uses the SUM function, and uses the values of on Inventory

Value as the argument to add generate the total listed under row 3, column B (also referred to as B3).

NoSQL

NoSQL is an umbrella term for the different ways to store non-relational data and can be interpreted

as "non-SQL", "non-relational" or "not only SQL". These type of database systems can be

categorized into 4 types.

https://support.microsoft.com/en-us/office/sum-function-043e1c7d-7726-4e80-8f32-07b23e057f89

Source from Michał Białecki Blog

Key-value databases pair unique keys, which are a unique identifier associated with a value. These

pairs are stored using a hash table with an appropriate hashing function.

https://www.michalbialecki.com/2018/03/18/azure-cosmos-db-key-value-database-cloud/
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data#keyvalue-data-stores
https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/tutorial/

Source from Microsoft

Graph databases describe relationships in data and are represented as a collection of nodes and

edges. A node represents an entity, something that exists in the real world such as a student or bank

statement. Edges represent the relationship between two entities Each node and edge have

properties that provides additional information about each node and edges.

https://docs.microsoft.com/en-us/azure/cosmos-db/graph/graph-introduction#graph-database-by-example
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data#graph-data-stores

Columnar data stores organizes data into columns and rows like a relational data structure but each

column is divided into groups called a column family, where all the data under one column is related

and can be retrieved and changed in one unit.

Document Data Stores with the Azure Cosmos DB

Document data stores build on the concept of a key-value data store and is made up of a series of

fields and objects. This section will explore document databases with the Cosmos DB emulator.

A Cosmos DB database fits the definition of "Not Only SQL", where Cosmos DB's document

database relies on SQL to query the data. The previous lesson on SQL covers the basics of the

language, and we'll be able to apply some of the same queries to a document database here. We'll be

using the Cosmos DB Emulator, which allows us to create and explore a document database locally

on a computer. Read more about the Emulator here.

A document is a collection of fields and object values, where the fields describe what the object value

represents. Below is an example of a document.

The fields of interest in this document are: firstname , id , and age . The rest of the fields

with the underscores were generated by Cosmos DB.

Exploring Data with the Cosmos DB Emulator

You can download and install the emulator for Windows here. Refer to this documentation for options

on how to run the Emulator for macOS and Linux.

The Emulator launches a browser window, where the Explorer view allows you to explore documents.

{
 "firstname": "Eva",
 "age": 44,
 "id": "8c74a315-aebf-4a16-bb38-2430a9896ce5",
 "_rid": "bHwDAPQz8s0BAAAAAAAAAA==",
 "_self": "dbs/bHwDAA==/colls/bHwDAPQz8s0=/docs/bHwDAPQz8s0BAAAAAAAAAA==
 "_etag": "\"00000000-0000-0000-9f95-010a691e01d7\"",
 "_attachments": "attachments/",
 "_ts": 1630544034
}

json

https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data#columnar-data-stores
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data#document-data-stores
https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator?tabs=ssl-netstd21
https://aka.ms/cosmosdb-emulator
https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator?tabs=ssl-netstd21#run-on-linux-macos

If you're following along, click on "Start with Sample" to generate a sample database called

SampleDB. If you expand Sample DB by clicking on the arrow you'll find a container called

Persons , a container holds a collection of items, which are the documents within the container.

You can explore the four individual documents under Items .

Querying Document Data with the Cosmos DB Emulator

We can also query the sample data by clicking on the new SQL Query button (second button from

the left).

SELECT * FROM c returns all the documents in the container. Let's add a where clause and find

everyone younger than 40.

SELECT * FROM c where c.age < 40

The query returns two documents, notice the age value for each document is less than 40.

JSON and Documents

If you're familiar with JavaScript Object Notation (JSON) you'll notice that documents look similar to

JSON. There is a PersonsData.json file in this directory with more data that you may upload to

the Persons container in the Emulator via the Upload Item button.

In most instances, APIs that return JSON data can be directly transferred and stored in document

databases. Below is another document, it represents tweets from the Microsoft Twitter account that

was retrieved using the Twitter API, then inserted into Cosmos DB.

{
 "created_at": "2021-08-31T19:03:01.000Z",
 "id": "1432780985872142341",
 "text": "Blank slate. Like this tweet if you’ve ever painted in Microso
 "_rid": "dhAmAIUsA4oHAAAAAAAAAA==",
 "_self": "dbs/dhAmAA==/colls/dhAmAIUsA4o=/docs/dhAmAIUsA4oHAAAAAAAAAA==
 "_etag": "\"00000000-0000-0000-9f84-a0958ad901d7\"",

json

The fields of interest in this document are: created_at , id , and text .

🚀 Challenge

There is a TwitterData.json file that you can upload to the SampleDB database. It's

recommended that you add it to a separate container. This can be done by:

1. Clicking the new container button in the top right

2. Selecting the existing database (SampleDB) creating a container id for the container

3. Setting the partition key to /id

4. Clicking OK (you can ignore rest of the information in this view as this is a small dataset running

locally on your machine)

5. Open your new container and upload the Twitter Data file with Upload Item button

Try to run a few select queries to find the documents that have Microsoft in the text field. Hint: try to

use the LIKE keyword

Post-Lecture Quiz

Review & Self Study

There are some additional formatting and features added to this spreadsheet that this lesson

does not cover. Microsoft has a large library of documentation and videos on Excel if you're

interested in learning more.

This architectural documentation details the characteristics in the different types of non-relational

data: Non-relational Data and NoSQL

Cosmos DB is a cloud based non-relational database that can also store the different NoSQL

types mentioned in this lesson. Learn more about these types in this Cosmos DB Microsoft Learn

Module

Assignment

 "_attachments": "attachments/",
 "_ts": 1630537000

https://docs.microsoft.com/en-us/azure/cosmos-db/sql/sql-query-keywords#using-like-with-the--wildcard-character
https://red-water-0103e7a0f.azurestaticapps.net/quiz/11
https://support.microsoft.com/excel
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/non-relational-data
https://docs.microsoft.com/en-us/learn/paths/work-with-nosql-data-in-azure-cosmos-db/

Soda Profits

Working with Data: Python and the Pandas

Library

Working With Python - Sketchnote by @nitya

https://twitter.com/nitya
https://youtu.be/dZjWOGbsN4Y

While databases offer very efficient ways to store data and query them using query languages, the

most flexible way of data processing is writing your own program to manipulate data. In many cases,

doing a database query would be a more effective way. However in some cases when more complex

data processing is needed, it cannot be done easily using SQL. Data processing can be programmed

in any programming language, but there are certain languages that are higher level with respect to

working with data. Data scientists typically prefer one of the following languages:

Python, a general-purpose programming language, which is often considered one of the best

options for beginners due to its simplicity. Python has a lot of additional libraries that can help you

solve many practical problems, such as extracting your data from ZIP archive, or converting

picture to grayscale. In addition to data science, Python is also often used for web development.

R is a traditional toolbox developed with statistical data processing in mind. It also contains large

repository of libraries (CRAN), making it a good choice for data processing. However, R is not a

general-purpose programming language, and is rarely used outside of data science domain.

Julia is another language developed specifically for data science. It is intended to give better

performance than Python, making it a great tool for scientific experimentation.

In this lesson, we will focus on using Python for simple data processing. We will assume basic

familiarity with the language. If you want a deeper tour of Python, you can refer to one of the following

resources:

Learn Python in a Fun Way with Turtle Graphics and Fractals - GitHub-based quick intro course

into Python Programming

Take your First Steps with Python Learning Path on Microsoft Learn

Data can come in many forms. In this lesson, we will consider three forms of data - tabular data, text

and images.

We will focus on a few examples of data processing, instead of giving you full overview of all related

libraries. This would allow you to get the main idea of what's possible, and leave you with

understanding on where to find solutions to your problems when you need them.

Most useful advice. When you need to perform certain operation on data that you do not

know how to do, try searching for it in the internet. Stackoverflow usually contains a lot of

useful code sample in Python for many typical tasks.

Pre-lecture quiz

https://www.python.org/
https://www.r-project.org/
https://julialang.org/
https://github.com/shwars/pycourse
https://docs.microsoft.com/en-us/learn/paths/python-first-steps/?WT.mc_id=academic-31812-dmitryso
http://learn.microsoft.com/?WT.mc_id=academic-31812-dmitryso
https://stackoverflow.com/
https://red-water-0103e7a0f.azurestaticapps.net/quiz/12

Tabular Data and Dataframes

You have already met tabular data when we talked about relational databases. When you have a lot of

data, and it is contained in many different linked tables, it definitely makes sense to use SQL for

working with it. However, there are many cases when we have a table of data, and we need to gain

some understanding or insights about this data, such as the distribution, correlation between

values, etc. In data science, there are a lot of cases when we need to perform some transformations

of the original data, followed by visualization. Both those steps can be easily done using Python.

There are two most useful libraries in Python that can help you deal with tabular data:

Pandas allows you to manipulate so-called Dataframes, which are analogous to relational tables.

You can have named columns, and perform different operations on row, columns and dataframes

in general.

Numpy is a library for working with tensors, i.e. multi-dimensional arrays. Array has values of the

same underlying type, and it is simpler than dataframe, but it offers more mathematical

operations, and creates less overhead.

There are also a couple of other libraries you should know about:

Matplotlib is a library used for data visualization and plotting graphs

SciPy is a library with some additional scientific functions. We have already come across this

library when talking about probability and statistics

Here is a piece of code that you would typically use to import those libraries in the beginning of your

Python program:

Pandas is centered around a few basic concepts.

Series

Series is a sequence of values, similar to a list or numpy array. The main difference is that series also

has an index, and when we operate on series (eg., add them), the index is taken into account. Index

can be as simple as integer row number (it is the index used by default when creating a series from

list or array), or it can have a complex structure, such as date interval.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import ... # you need to specify exact sub-packages that you nee

python

https://pandas.pydata.org/
https://numpy.org/
https://matplotlib.org/
https://www.scipy.org/

Note: There is some introductory Pandas code in the accompanying notebook

notebook.ipynb . We only outline some the examples here, and you are definitely

welcome to check out the full notebook.

Consider an example: we want to analyze sales of our ice-cream spot. Let's generate a series of sales

numbers (number of items sold each day) for some time period:

Now suppose that each week we are organizing a party for friends, and we take additional 10 packs

of ice-cream for a party. We can create another series, indexed by week, to demonstrate that:

When we add two series together, we get total number:

start_date = "Jan 1, 2020"
end_date = "Mar 31, 2020"
idx = pd.date_range(start_date,end_date)
print(f"Length of index is {len(idx)}")
items_sold = pd.Series(np.random.randint(25,50,size=len(idx)),index=idx)
items_sold.plot()

python

additional_items = pd.Series(10,index=pd.date_range(start_date,end_date,fre
python

total_items = items_sold.add(additional_items,fill_value=0)
total_items.plot()

python

Note that we are not using simple syntax total_items+additional_items . If we did,

we would have received a lot of NaN (Not a Number) values in the resulting series. This is

because there are missing values for some of the index point in the additional_items

series, and adding Nan to anything results in NaN . Thus we need to specify

fill_value parameter during addition.

With time series, we can also resample the series with different time intervals. For example, suppose

we want to compute mean sales volume monthly. We can use the following code:

DataFrame

A DataFrame is essentially a collection of series with the same index. We can combine several series

together into a DataFrame:

monthly = total_items.resample("1M").mean()
ax = monthly.plot(kind='bar')

python

This will create a horizontal table like this: | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | --- | --- | ---- | --- | --- | ------

| --- | ------ | ---- | ---- | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 1 | I | like | to | use | Python | and | Pandas |

very | much |

We can also use Series as columns, and specify column names using dictionary:

This will give us a table like this:

A B

0 1 I

1 2 like

2 3 to

3 4 use

4 5 Python

5 6 and

6 7 Pandas

7 8 very

8 9 much

Note that we can also get this table layout by transposing the previous table, eg. by writing

a = pd.Series(range(1,10))
b = pd.Series(["I","like","to","play","games","and","will","not","change"],
df = pd.DataFrame([a,b])

python

df = pd.DataFrame({ 'A' : a, 'B' : b })
python

df = pd.DataFrame([a,b]).T..rename(columns={ 0 : 'A', 1 : 'B' })
python

Here .T means the operation of transposing the DataFrame, i.e. changing rows and columns, and

rename operation allows us to rename columns to match the previous example.

Here are a few most important operations we can perform on DataFrames:

Column selection. We can select individual columns by writing df['A'] - this operation returns a

Series. We can also select a subset of columns into another DataFrame by writing

df[['B','A']] - this return another DataFrame.

Filtering only certain rows by criteria. For example, to leave only rows with column A greater than 5,

we can write df[df['A']>5] .

Note: The way filtering works is the following. The expression df['A']<5 returns a

boolean series, which indicates whether expression is True or False for each element

of the original series df['A'] . When boolean series is used as an index, it returns subset

of rows in the DataFrame. Thus it is not possible to use arbitrary Python boolean expression,

for example, writing df[df['A']>5 and df['A']<7] would be wrong. Instead, you

should use special & operation on boolean series, writing

df[(df['A']>5) & (df['A']<7)] (brackets are important here).

Creating new computable columns. We can easily create new computable columns for our

DataFrame by using intuitive expression like this:

This example calculates divergence of A from its mean value. What actually happens here is we are

computing a series, and then assigning this series to the left-hand-side, creating another column.

Thus, we cannot use any operations that are not compatible with series, for example, the code below

is wrong:

The latter example, while being syntactically correct, gives us wrong result, because it assigns the

length of series B to all values in the column, and not the length of individual elements as we

intended.

If we need to compute complex expressions like this, we can use apply function. The last example

can be written as follows:

df['DivA'] = df['A']-df['A'].mean()
python

Wrong code -> df['ADescr'] = "Low" if df['A'] < 5 else "Hi"
df['LenB'] = len(df['B']) # <- Wrong result

python

After operations above, we will end up with the following DataFrame:

A B DivA LenB

0 1 I -4.0 1

1 2 like -3.0 4

2 3 to -2.0 2

3 4 use -1.0 3

4 5 Python 0.0 6

5 6 and 1.0 3

6 7 Pandas 2.0 6

7 8 very 3.0 4

8 9 much 4.0 4

Selecting rows based on numbers can be done using iloc construct. For example, to select first

5 rows from the DataFrame:

Grouping is often used to get a result similar to pivot tables in Excel. Suppose that we want to

compute mean value of column A for each given number of LenB . Then we can group our

DataFrame by LenB , and call mean :

If we need to compute mean and the number of elements in the group, then we can use more

complex aggregate function:

df['LenB'] = df['B'].apply(lambda x : len(x))
or
df['LenB'] = df['B'].apply(len)

python

df.iloc[:5]
python

df.groupby(by='LenB').mean()
python

This gives us the following table:

LenB Count Mean

1 1 1.000000

2 1 3.000000

3 2 5.000000

4 3 6.333333

6 2 6.000000

Getting Data

We have seen how easy it is to construct Series and DataFrames from Python objects. However, data

usually comes in the form of a text file, or an Excel table. Luckily, Pandas offers us a simple way to

load data from disk. For example, reading CSV file is as simple as this:

We will see more examples of loading data, including fetching it from external web sites, in the

"Challenge" section

Printing and Plotting

A Data Scientist often has to explore the data, thus it is important to be able to visualize it. When

DataFrame is big, many times we want just to make sure we are doing everything correctly by printing

out the first few rows. This can be done by calling df.head() . If you are running it from Jupyter

Notebook, it will print out the DataFrame in a nice tabular form.

We have also seen the usage of plot function to visualize some columns. While plot is very

useful for many tasks, and supports many different graph types via kind= parameter, you can

df.groupby(by='LenB') \
 .aggregate({ 'DivA' : len, 'A' : lambda x: x.mean() }) \
 .rename(columns={ 'DivA' : 'Count', 'A' : 'Mean'})

python

df = pd.read_csv('file.csv')
python

always use raw matplotlib library to plot something more complex. We will cover data

visualization in detail in separate course lessons.

This overview covers most important concepts of Pandas, however, the library is very rich, and there

is no limit to what you can do with it! Let's now apply this knowledge for solving specific problem.

🚀 Challenge 1: Analyzing COVID Spread

First problem we will focus on is modelling of epidemic spread of COVID-19. In order to do that, we

will use the data on the number of infected individuals in different countries, provided by the Center

for Systems Science and Engineering (CSSE) at Johns Hopkins University. Dataset is available in this

GitHub Repository.

Since we want to demonstrate how to deal with data, we invite you to open

notebook-covidspread.ipynb and read it from top to bottom. You can also execute cells, and

do some challenges that we have left for you at the end.

If you do not know how to run code in Jupyter Notebook, have a look at this article.

Working with Unstructured Data

While data very often comes in tabular form, in some cases we need to deal with less structured data,

for example, text or images. In this case, to apply data processing techniques we have seen above,

we need to somehow extract structured data. Here are a few examples:

Extracting keywords from text, and seeing how often those keywords appear

Using neural networks to extract information about objects on the picture

https://systems.jhu.edu/
https://jhu.edu/
https://github.com/CSSEGISandData/COVID-19
https://soshnikov.com/education/how-to-execute-notebooks-from-github/

Getting information on emotions of people on video camera feed

🚀 Challenge 2: Analyzing COVID Papers

In this challenge, we will continue with the topic of COVID pandemic, and focus on processing

scientific papers on the subject. There is CORD-19 Dataset with more than 7000 (at the time of

writing) papers on COVID, available with metadata and abstracts (and for about half of them there is

also full text provided).

A full example of analyzing this dataset using Text Analytics for Health cognitive service is described

in this blog post. We will discuss simplified version of this analysis.

NOTE: We do not provide a copy of the dataset as part of this repository. You may first need

to download the metadata.csv file from this dataset on Kaggle. Registration with Kaggle

may be required. You may also download the dataset without registration from here, but it will

include all full texts in addition to metadata file.

Open notebook-papers.ipynb and read it from top to bottom. You can also execute cells, and

do some challenges that we have left for you at the end.

https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://docs.microsoft.com/azure/cognitive-services/text-analytics/how-tos/text-analytics-for-health/?WT.mc_id=academic-31812-dmitryso
https://soshnikov.com/science/analyzing-medical-papers-with-azure-and-text-analytics-for-health/
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge?select=metadata.csv
https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases.html

Processing Image Data

Recently, very powerful AI models have been developed that allow us to understand images. There

are many tasks that can be solved using pre-trained neural networks, or cloud services. Some

examples include:

Image Classification, which can help you categorize the image into one of the pre-defined

classes. You can easily train your own image classifiers using services such as Custom Vision

Object Detection to detect different objects in the image. Services such as computer vision can

detect a number of common objects, and you can train Custom Vision model to detect some

specific objects of interest.

Face Detection, including Age, Gender and Emotion detection. This can be done via Face API.

All those cloud services can be called using Python SDKs, and thus can be easily incorporated into

your data exploration workflow.

Here are some examples of exploring data from Image data sources:

In the blog post How to Learn Data Science without Coding we explore Instagram photos, trying

to understand what makes people give more likes to a photo. We first extract as much information

from pictures as possible using computer vision, and then use Azure Machine Learning AutoML to

build interpretable model.

In Facial Studies Workshop we use Face API to extract emotions on people on photographs from

events, in order to try to understand what makes people happy.

Conclusion

Whether you already have structured or unstructured data, using Python you can perform all steps

related to data processing and understanding. It is probably the most flexible way of data processing,

and that is the reason the majority of data scientists use Python as their primary tool. Learning

Python in depth is probably a good idea if you are serious about your data science journey!

Post-lecture quiz

Review & Self Study

https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-31812-dmitryso
https://azure.microsoft.com/services/cognitive-services/computer-vision/?WT.mc_id=academic-31812-dmitryso
https://azure.microsoft.com/services/cognitive-services/custom-vision-service/?WT.mc_id=academic-31812-dmitryso
https://azure.microsoft.com/services/cognitive-services/face/?WT.mc_id=academic-31812-dmitryso
https://docs.microsoft.com/samples/azure-samples/cognitive-services-python-sdk-samples/cognitive-services-python-sdk-samples/?WT.mc_id=academic-31812-dmitryso
https://soshnikov.com/azure/how-to-learn-data-science-without-coding/
https://azure.microsoft.com/services/cognitive-services/computer-vision/?WT.mc_id=academic-31812-dmitryso
https://docs.microsoft.com/azure/machine-learning/concept-automated-ml/?WT.mc_id=academic-31812-dmitryso
https://github.com/CloudAdvocacy/FaceStudies
https://azure.microsoft.com/services/cognitive-services/face/?WT.mc_id=academic-31812-dmitryso
https://red-water-0103e7a0f.azurestaticapps.net/quiz/13

Books

Wes McKinney. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython

Online Resources

Official 10 minutes to Pandas tutorial

Documentation on Pandas Visualization

Learning Python

Learn Python in a Fun Way with Turtle Graphics and Fractals

Take your First Steps with Python Learning Path on Microsoft Learn

Assignment

Perform more detailed data study for the challenges above

Credits

This lesson has been authored with ♥ by Dmitry Soshnikov

Working with Data: Data Preparation

https://www.amazon.com/gp/product/1491957662
https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html
https://github.com/shwars/pycourse
https://docs.microsoft.com/learn/paths/python-first-steps/?WT.mc_id=academic-31812-dmitryso
http://learn.microsoft.com/?WT.mc_id=academic-31812-dmitryso
http://soshnikov.com/

Data Preparation - Sketchnote by @nitya

Pre-Lecture Quiz

Depending on its source, raw data may contain some inconsistencies that will cause challenges in

analysis and modeling. In other words, this data can be categorized as “dirty” and will need to be

cleaned up. This lesson focuses on techniques for cleaning and transforming the data to handle

challenges of missing, inaccurate, or incomplete data. Topics covered in this lesson will utilize Python

and the Pandas library and will be demonstrated in the notebook within this directory.

The importance of cleaning data

Ease of use and reuse: When data is properly organized and normalized it s̓ easier to search, use,

and share with others.

Consistency: Data science often requires working with more than one dataset, where datasets

from different sources need to be joined together. Making sure that each individual data set has

common standardization will ensure that the data is still useful when they are all merged into one

dataset.

Model accuracy: Data that has been cleaned improves the accuracy of models that rely on it.

Common cleaning goals and strategies

Exploring a dataset: Data exploration, which is covered in a later lesson can help you discover

data that needs to be cleaned up. Visually observing values within a dataset can set expectations

of what that rest of it will look like, or provide an idea of the problems that can be resolved.

Exploration can involve basic querying, visualizations, and sampling.

Formatting: Depending on the source, data can have inconsistencies in how it s̓ presented. This

can cause problems in searching for and representing the value, where it s̓ seen within the dataset

but is not properly represented in visualizations or query results. Common formatting problems

involve resolving whitespace, dates, and data types. Resolving formatting issues is typically up to

the people who are using the data. For example, standards on how dates and numbers are

presented can differ by country.

https://twitter.com/nitya
https://red-water-0103e7a0f.azurestaticapps.net/quiz/14
https://github.com/microsoft/Data-Science-For-Beginners/tree/main/4-Data-Science-Lifecycle/15-analyzing

Duplications: Data that has more than one occurrence can produce inaccurate results and usually

should be removed. This can be a common occurrence when joining two or more datasets

together. However, there are instances where duplication in joined datasets contain pieces that

can provide additional information and may need to be preserved.

Missing Data: Missing data can cause inaccuracies as well as weak or biased results. Sometimes

these can be resolved by a "reload" of the data, filling in the missing values with computation and

code like Python, or simply just removing the value and corresponding data. There are numerous

reasons for why data may be missing and the actions that are taken to resolve these missing

values can be dependent on how and why they went missing in the first place.

Exploring DataFrame information

Learning goal: By the end of this subsection, you should be comfortable finding general

information about the data stored in pandas DataFrames.

Once you have loaded your data into pandas, it will more likely than not be in a DataFrame(refer to the

previous lesson for detailed overview). However, if the data set in your DataFrame has 60,000 rows

and 400 columns, how do you even begin to get a sense of what you're working with? Fortunately,

pandas provides some convenient tools to quickly look at overall information about a DataFrame in

addition to the first few and last few rows.

In order to explore this functionality, we will import the Python scikit-learn library and use an iconic

dataset: the Iris data set.

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

0 5.1 3.5 1.4 0.2

1 4.9 3.0 1.4 0.2

import pandas as pd
from sklearn.datasets import load_iris

iris = load_iris()
iris_df = pd.DataFrame(data=iris['data'], columns=iris['feature_names'])

python

https://github.com/microsoft/Data-Science-For-Beginners/tree/main/2-Working-With-Data/07-python#dataframe
https://pandas.pydata.org/

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

2 4.7 3.2 1.3 0.2

3 4.6 3.1 1.5 0.2

4 5.0 3.6 1.4 0.2

DataFrame.info: To start off, the info() method is used to print a summary of the content

present in a DataFrame . Let's take a look at this dataset to see what we have:

0 sepal length (cm) 150 non-null float64 1 sepal width (cm) 150 non-null float64 2 petal length (cm)

150 non-null float64 3 petal width (cm) 150 non-null float64 dtypes: float64(4) memory usage: 4.8

KB

iris_df.info()
python

RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):
Column Non-Null Count Dtype

From this, we know that the *Iris* dataset has 150 entries in four columns

- **DataFrame.head()**: Next, to check the actual content of the `DataFrame
```python 
iris_df.head()

   sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
3                4.6               3.1                1.5               0.2
4                5.0               3.6                1.4               0.2



DataFrame.tail(): Conversely, to check the last few rows of the DataFrame , we use the

tail()  method:

Takeaway: Even just by looking at the metadata about the information in a DataFrame or

the first and last few values in one, you can get an immediate idea about the size, shape,

and content of the data you are dealing with.

Dealing with Missing Data

Learning goal: By the end of this subsection, you should know how to replace or remove null

values from DataFrames.

Most of the time the datasets you want to use (of have to use) have missing values in them. How

missing data is handled carries with it subtle tradeoffs that can affect your final analysis and real-

world outcomes.

Pandas handles missing values in two ways. The first you've seen before in previous sections: NaN ,

or Not a Number. This is a actually a special value that is part of the IEEE floating-point specification

and it is only used to indicate missing floating-point values.

For missing values apart from floats, pandas uses the Python None  object. While it might seem

confusing that you will encounter two different kinds of values that say essentially the same thing,

there are sound programmatic reasons for this design choice and, in practice, going this route

enables pandas to deliver a good compromise for the vast majority of cases. Notwithstanding this,

iris_df.tail()
python

   sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (
145                6.7               3.0                5.2             
146                6.3               2.5                5.0             
147                6.5               3.0                5.2             
148                6.2               3.4                5.4             
149                5.9               3.0                5.1             



both None  and NaN  carry restrictions that you need to be mindful of with regards to how they

can be used.

Check out more about NaN  and None  from the notebook!

Detecting null values: In pandas , the isnull()  and notnull()  methods are your

primary methods for detecting null data. Both return Boolean masks over your data. We will be

using numpy  for NaN  values:

example1 = pd.Series([0, np.nan, '', None]) example1.isnull()

0 False 1 True 2 False 3 True dtype: bool

Note that this should look like your output from example3[example3.notnull()] . The

difference here is that, rather than just indexing on the masked values, dropna  has removed those

missing values from the Series  example1 .

Because DataFrame s have two dimensions, they afford more options for dropping data.

import numpy as np 
python

Look closely at the output. Does any of it surprise you? While `0` is an ar
 
Now, let's turn this around and use these methods in a manner more like you
 
> **Takeaway**: Both the `isnull()` and `notnull()` methods produce similar
 
- **Dropping null values**: Beyond identifying missing values, pandas provi
```python 
example1 = example1.dropna()
example1

0 0
2
dtype: object

https://github.com/microsoft/Data-Science-For-Beginners/blob/main/4-Data-Science-Lifecycle/15-analyzing/notebook.ipynb

0 1 2

0 1.0 NaN 7

1 2.0 5.0 8

2 NaN 6.0 9

(Did you notice that pandas upcast two of the columns to floats to accommodate the NaN s?)

You cannot drop a single value from a DataFrame , so you have to drop full rows or columns.

Depending on what you are doing, you might want to do one or the other, and so pandas gives you

options for both. Because in data science, columns generally represent variables and rows represent

observations, you are more likely to drop rows of data; the default setting for dropna() is to drop

all rows that contain any null values:

If necessary, you can drop NA values from columns. Use axis=1 to do so:

example2 = pd.DataFrame([[1, np.nan, 7],
 [2, 5, 8],
 [np.nan, 6, 9]])
example2

python

example2.dropna()
python

 0 1 2
1 2.0 5.0 8

example2.dropna(axis='columns')
python

 2
0 7
1 8
2 9

Notice that this can drop a lot of data that you might want to keep, particularly in smaller datasets.

What if you just want to drop rows or columns that contain several or even just all null values? You

specify those setting in dropna with the how and thresh parameters.

By default, how='any' (if you would like to check for yourself or see what other parameters the

method has, run example4.dropna? in a code cell). You could alternatively specify how='all'

so as to drop only rows or columns that contain all null values. Let's expand our example

DataFrame to see this in action.

0 1 2 3

0 1.0 NaN 7 NaN

1 2.0 5.0 8 NaN

2 NaN 6.0 9 NaN

The thresh parameter gives you finer-grained control: you set the number of non-null values that

a row or column needs to have in order to be kept:

Here, the first and last row have been dropped, because they contain only two non-null values.

Filling null values: Depending on your dataset, it can sometimes make more sense to fill null

values with valid ones rather than drop them. You could use isnull to do this in place, but that

can be laborious, particularly if you have a lot of values to fill. Because this is such a common task

in data science, pandas provides fillna , which returns a copy of the Series or

DataFrame with the missing values replaced with one of your choosing. Let's create another

example Series to see how this works in practice.

example2[3] = np.nan
example2

python

example2.dropna(axis='rows', thresh=3)
python

 0 1 2 3
1 2.0 5.0 8 NaN

You can fill all of the null entries with a single value, such as 0 :

You can forward-fill null values, which is to use the last valid value to fill a null:

You can also back-fill to propagate the next valid value backward to fill a null:

example3 = pd.Series([1, np.nan, 2, None, 3], index=list('abcde'))
example3

python

a 1.0
b NaN
c 2.0
d NaN
e 3.0
dtype: float64

example3.fillna(0)
python

a 1.0
b 0.0
c 2.0
d 0.0
e 3.0
dtype: float64

example3.fillna(method='ffill')
python

a 1.0
b 1.0
c 2.0
d 2.0
e 3.0
dtype: float64

example3.fillna(method='bfill')
python

As you might guess, this works the same with DataFrame s, but you can also specify an

axis along which to fill null values. taking the previously used example2 again:

Notice that when a previous value is not available for forward-filling, the null value remains.

Takeaway: There are multiple ways to deal with missing values in your datasets. The specific

strategy you use (removing them, replacing them, or even how you replace them) should be

dictated by the particulars of that data. You will develop a better sense of how to deal with

missing values the more you handle and interact with datasets.

Removing duplicate data

Learning goal: By the end of this subsection, you should be comfortable identifying and

removing duplicate values from DataFrames.

In addition to missing data, you will often encounter duplicated data in real-world datasets.

Fortunately, pandas provides an easy means of detecting and removing duplicate entries.

a 1.0
b 2.0
c 2.0
d 3.0
e 3.0
dtype: float64

example2.fillna(method='ffill', axis=1)
python

 0 1 2 3
0 1.0 1.0 7.0 7.0
1 2.0 5.0 8.0 8.0
2 NaN 6.0 9.0 9.0

Identifying duplicates: duplicated : You can easily spot duplicate values using the

duplicated method in pandas, which returns a Boolean mask indicating whether an entry in a

DataFrame is a duplicate of an earlier one. Let's create another example DataFrame to see

this in action.

letters numbers

0 A 1

1 B 2

2 A 1

3 B 3

4 B 3

Dropping duplicates: drop_duplicates : simply returns a copy of the data for which all of the

duplicated values are False :

example4 = pd.DataFrame({'letters': ['A','B'] * 2 + ['B'],
 'numbers': [1, 2, 1, 3, 3]})
example4

python

example4.duplicated()
python

0 False
1 False
2 True
3 False
4 True
dtype: bool

example4.drop_duplicates()
python

Both duplicated and drop_duplicates default to consider all columns but you can

specify that they examine only a subset of columns in your DataFrame :

Takeaway: Removing duplicate data is an essential part of almost every data-science project.

Duplicate data can change the results of your analyses and give you inaccurate results!

🚀 Challenge

All of the discussed materials are provided as a Jupyter Notebook. Additionally, there are exercises

present after each section, give them a try!

Post-Lecture Quiz

Review & Self Study

There are many ways to discover and approach preparing your data for analysis and modeling and

cleaning the data is an important step that is a "hands on" experience. Try these challenges from

Kaggle to explore techniques that this lesson didn't cover.

 letters numbers
0 A 1
1 B 2
3 B 3

example4.drop_duplicates(['letters'])
python

letters numbers
0 A 1
1 B 2

https://github.com/microsoft/Data-Science-For-Beginners/blob/main/2-Working-With-Data/08-data-preparation/notebook.ipynb
https://red-water-0103e7a0f.azurestaticapps.net/quiz/15

Data Cleaning Challenge: Parsing Dates

Data Cleaning Challenge: Scale and Normalize Data

Assignment

Evaluating Data from a Form

Visualizing Quantities

Visualizing Quantities - Sketchnote by @nitya

In this lesson you will explore how to use one of the many available Python libraries to learn how to

create interesting visualizations all around the concept of quantity. Using a cleaned dataset about the

birds of Minnesota, you can learn many interesting facts about local wildlife.

Pre-lecture quiz

Observe wingspan with Matplotlib

https://www.kaggle.com/rtatman/data-cleaning-challenge-parsing-dates/
https://www.kaggle.com/rtatman/data-cleaning-challenge-scale-and-normalize-data
https://twitter.com/nitya
https://red-water-0103e7a0f.azurestaticapps.net/quiz/16

An excellent library to create both simple and sophisticated plots and charts of various kinds is

Matplotlib. In general terms, the process of plotting data using these libraries includes identifying the

parts of your dataframe that you want to target, performing any transforms on that data necessary,

assigning its x and y axis values, deciding what kind of plot to show, and then showing the plot.

Matplotlib offers a large variety of visualizations, but for this lesson, let's focus on the ones most

appropriate for visualizing quantity: line charts, scatterplots, and bar plots.

✅ Use the best chart to suit your data's structure and the story you want to tell.

To analyze trends over time: line

To compare values: bar, column, pie, scatterplot

To show how parts relate to a whole: pie

To show distribution of data: scatterplot, bar

To show trends: line, column

To show relationships between values: line, scatterplot, bubble

If you have a dataset and need to discover how much of a given item is included, one of the first tasks

you have at hand will be to inspect its values.

✅ There are very good 'cheat sheets' available for Matplotlib here.

Build a line plot about bird wingspan values

Open the notebook.ipynb file at the root of this lesson folder and add a cell.

Note: the data is stored in the root of this repo in the /data folder.

This data is a mix of text and numbers:

import pandas as pd
import matplotlib.pyplot as plt
birds = pd.read_csv('../../data/birds.csv')
birds.head()

python

https://matplotlib.org/stable/index.html
https://matplotlib.org/cheatsheets/cheatsheets.pdf

Let's start by plotting some of the numeric data using a basic line plot. Suppose you wanted a view of

the maximum wingspan for these interesting birds.

What do you notice immediately? There seems to be at least one outlier - that's quite a wingspan! A

2300 centimeter wingspan equals 23 meters - are there Pterodactyls roaming Minnesota? Let's

Name ScientificName Category Order Family GenusName ScientificName Category Order Family Genus

0

Black-

bellied

whistling-

duck

Dendrocygna

autumnalis
Ducks/Geese/Waterfowl Anseriformes Anatidae Dendrocygna

1

Fulvous

whistling-

duck

Dendrocygna

bicolor
Ducks/Geese/Waterfowl Anseriformes Anatidae Dendrocygna

2
Snow

goose

Anser

caerulescens
Ducks/Geese/Waterfowl Anseriformes Anatidae Anser

3
Ross's

goose
Anser rossii Ducks/Geese/Waterfowl Anseriformes Anatidae Anser

4

Greater

white-

fronted

goose

Anser albifrons Ducks/Geese/Waterfowl Anseriformes Anatidae Anser

wingspan = birds['MaxWingspan']
wingspan.plot()

python

investigate.

While you could do a quick sort in Excel to find those outliers, which are probably typos, continue the

visualization process by working from within the plot.

Add labels to the x-axis to show what kind of birds are in question:

Even with the rotation of the labels set to 45 degrees, there are too many to read. Let's try a different

strategy: label only those outliers and set the labels within the chart. You can use a scatter chart to

make more room for the labeling:

plt.title('Max Wingspan in Centimeters')
plt.ylabel('Wingspan (CM)')
plt.xlabel('Birds')
plt.xticks(rotation=45)
x = birds['Name']
y = birds['MaxWingspan']

plt.plot(x, y)

plt.show()

plt.title('Max Wingspan in Centimeters')
plt.ylabel('Wingspan (CM)')
plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)

python

What's going on here? You used tick_params to hide the bottom labels and then created a loop

over your birds dataset. Plotting the chart with small round blue dots by using bo , you checked for

any bird with a maximum wingspan over 500 and displayed their label next to the dot if so. You offset

the labels a little on the y axis (y * (1 - 0.05)) and used the bird name as a label.

What did you discover?

Filter your data

Both the Bald Eagle and the Prairie Falcon, while probably very large birds, appear to be mislabeled,

with an extra 0 added to their maximum wingspan. It's unlikely that you'll meet a Bald Eagle with a

25 meter wingspan, but if so, please let us know! Let's create a new dataframe without those two

outliers:

for i in range(len(birds)):
 x = birds['Name'][i]
 y = birds['MaxWingspan'][i]
 plt.plot(x, y, 'bo')
 if birds['MaxWingspan'][i] > 500:
 plt.text(x, y * (1 - 0.05), birds['Name'][i], fontsize=12)

plt.show()

plt.title('Max Wingspan in Centimeters')
plt.ylabel('Wingspan (CM)')
plt.xlabel('Birds')
plt.tick_params(axis='both',which='both',labelbottom=False,bottom=False)
for i in range(len(birds)):
 x = birds['Name'][i]
 y = birds['MaxWingspan'][i]

python

By filtering out outliers, your data is now more cohesive and understandable.

Now that we have a cleaner dataset at least in terms of wingspan, let's discover more about these

birds.

While line and scatter plots can display information about data values and their distributions, we want

to think about the values inherent in this dataset. You could create visualizations to answer the

following questions about quantity:

How many categories of birds are there, and what are their numbers? How many birds are

extinct, endangered, rare, or common? How many are there of the various genus and orders

in Linnaeus's terminology?

Explore bar charts

Bar charts are practical when you need to show groupings of data. Let's explore the categories of

birds that exist in this dataset to see which is the most common by number.

In the notebook file, create a basic bar chart

✅ Note, you can either filter out the two outlier birds we identified in the previous section, edit the

typo in their wingspan, or leave them in for these exercises which do not depend on wingspan values.

If you want to create a bar chart, you can select the data you want to focus on. Bar charts can be

created from raw data:

 if birds['Name'][i] not in ['Bald eagle', 'Prairie falcon']:
 plt.plot(x, y, 'bo')
plt.show()

This bar chart, however, is unreadable because there is too much non-grouped data. You need to

select only the data that you want to plot, so let's look at the length of birds based on their category.

Filter your data to include only the bird's category.

✅ Notice that you use Pandas to manage the data, and then let Matplotlib do the charting.

Since there are many categories, you can display this chart vertically and tweak its height to account

for all the data:

birds.plot(x='Category',
 kind='bar',
 stacked=True,
 title='Birds of Minnesota')

python

category_count = birds.value_counts(birds['Category'].values, sort=True)
plt.rcParams['figure.figsize'] = [6, 12]
category_count.plot.barh()

python

This bar chart shows a good view of the number of birds in each category. In a blink of an eye, you

see that the largest number of birds in this region are in the Ducks/Geese/Waterfowl category.

Minnesota is the 'land of 10,000 lakes' so this isn't surprising!

✅ Try some other counts on this dataset. Does anything surprise you?

Comparing data

You can try different comparisons of grouped data by creating new axes. Try a comparison of the

MaxLength of a bird, based on its category:

maxlength = birds['MaxLength']
plt.barh(y=birds['Category'], width=maxlength)

python

Nothing is surprising here: hummingbirds have the least MaxLength compared to Pelicans or Geese.

It's good when data makes logical sense!

You can create more interesting visualizations of bar charts by superimposing data. Let's

superimpose Minimum and Maximum Length on a given bird category:

plt.rcParams['figure.figsize'] = [6, 12]
plt.show()

minLength = birds['MinLength']
maxLength = birds['MaxLength']
category = birds['Category']

plt.barh(category, maxLength)
plt.barh(category, minLength)

python

In this plot, you can see the range per bird category of the Minimum Length and Maximum length.

You can safely say that, given this data, the bigger the bird, the larger its length range. Fascinating!

🚀 Challenge

This bird dataset offers a wealth of information about different types of birds within a particular

ecosystem. Search around the internet and see if you can find other bird-oriented datasets. Practice

building charts and graphs around these birds to discover facts you didn't realize.

plt.show()

Post-lecture quiz

Review & Self Study

This first lesson has given you some information about how to use Matplotlib to visualize quantities.

Do some research around other ways to work with datasets for visualization. Plotly is one that we

won't cover in these lessons, so take a look at what it can offer.

Assignment

Lines, Scatters, and Bars

Visualizing Distributions

Visualizing Distributions - Sketchnote by @nitya

In the previous lesson, you learned some interesting facts about a dataset about the birds of

Minnesota. You found some erroneous data by visualizing outliers and looked at the differences

between bird categories by their maximum length.

https://red-water-0103e7a0f.azurestaticapps.net/quiz/17
https://github.com/plotly/plotly.py
https://twitter.com/nitya

Pre-lecture quiz

Explore the birds dataset

Another way to dig into data is by looking at its distribution, or how the data is organized along an

axis. Perhaps, for example, you'd like to learn about the general distribution, for this dataset, of the

maximum wingspan or maximum body mass for the birds of Minnesota.

Let's discover some facts about the distributions of data in this dataset. In the notebook.ipynb file at

the root of this lesson folder, import Pandas, Matplotlib, and your data:

Name ScientificName Category Order Family Genus

0

Black-

bellied

whistling-

duck

Dendrocygna

autumnalis
Ducks/Geese/Waterfowl Anseriformes Anatidae Dendrocygna

1

Fulvous

whistling-

duck

Dendrocygna

bicolor
Ducks/Geese/Waterfowl Anseriformes Anatidae Dendrocygna

2
Snow

goose

Anser

caerulescens
Ducks/Geese/Waterfowl Anseriformes Anatidae Anser

3
Ross's

goose
Anser rossii Ducks/Geese/Waterfowl Anseriformes Anatidae Anser

4

Greater

white-

fronted

goose

Anser albifrons Ducks/Geese/Waterfowl Anseriformes Anatidae Anser

import pandas as pd
import matplotlib.pyplot as plt
birds = pd.read_csv('../../data/birds.csv')
birds.head()

python

https://red-water-0103e7a0f.azurestaticapps.net/quiz/18

In general, you can quickly look at the way data is distributed by using a scatter plot as we did in the

previous lesson:

This gives an overview of the general distribution of body length per bird Order, but it is not the

optimal way to display true distributions. That task is usually handled by creating a Histogram.

Working with histograms

Matplotlib offers very good ways to visualize data distribution using Histograms. This type of chart is

like a bar chart where the distribution can be seen via a rise and fall of the bars. To build a histogram,

you need numeric data. To build a Histogram, you can plot a chart defining the kind as 'hist' for

Histogram. This chart shows the distribution of MaxBodyMass for the entire dataset's range of

numeric data. By dividing the array of data it is given into smaller bins, it can display the distribution of

the data's values:

birds.plot(kind='scatter',x='MaxLength',y='Order',figsize=(12,8))

plt.title('Max Length per Order')
plt.ylabel('Order')
plt.xlabel('Max Length')

plt.show()

python

As you can see, most of the 400+ birds in this dataset fall in the range of under 2000 for their Max

Body Mass. Gain more insight into the data by changing the bins parameter to a higher number,

something like 30:

birds['MaxBodyMass'].plot(kind = 'hist', bins = 10, figsize = (12,12))
plt.show()

python

birds['MaxBodyMass'].plot(kind = 'hist', bins = 30, figsize = (12,12))
plt.show()

python

This chart shows the distribution in a bit more granular fashion. A chart less skewed to the left could

be created by ensuring that you only select data within a given range:

Filter your data to get only those birds whose body mass is under 60, and show 40 bins :

filteredBirds = birds[(birds['MaxBodyMass'] > 1) & (birds['MaxBodyMass'] <
filteredBirds['MaxBodyMass'].plot(kind = 'hist',bins = 40,figsize = (12,12)
plt.show()

python

✅ Try some other filters and data points. To see the full distribution of the data, remove the

['MaxBodyMass'] filter to show labeled distributions.

The histogram offers some nice color and labeling enhancements to try as well:

Create a 2D histogram to compare the relationship between two distributions. Let's compare

MaxBodyMass vs. MaxLength . Matplotlib offers a built-in way to show convergence using

brighter colors:

x = filteredBirds['MaxBodyMass']
y = filteredBirds['MaxLength']

fig, ax = plt.subplots(tight_layout=True)
hist = ax.hist2d(x, y)

python

There appears to be an expected correlation between these two elements along an expected axis,

with one particularly strong point of convergence:

Histograms work well by default for numeric data. What if you need to see distributions according to

text data?

Explore the dataset for distributions using text data

This dataset also includes good information about the bird category and its genus, species, and

family as well as its conservation status. Let's dig into this conservation information. What is the

distribution of the birds according to their conservation status?

✅ In the dataset, several acronyms are used to describe conservation status. These

acronyms come from the IUCN Red List Categories, an organization that catalogs species'

status.

CR: Critically Endangered

EN: Endangered

EX: Extinct

LC: Least Concern

NT: Near Threatened

VU: Vulnerable

These are text-based values so you will need to do a transform to create a histogram. Using the

filteredBirds dataframe, display its conservation status alongside its Minimum Wingspan. What do

you see?

https://www.iucnredlist.org/

There doesn't seem to be a good correlation between minimum wingspan and conservation status.

Test other elements of the dataset using this method. You can try different filters as well. Do you find

any correlation?

Density plots

You may have noticed that the histograms we have looked at so far are 'stepped' and do not flow

smoothly in an arc. To show a smoother density chart, you can try a density plot.

To work with density plots, familiarize yourself with a new plotting library, Seaborn.

x1 = filteredBirds.loc[filteredBirds.ConservationStatus=='EX', 'MinWingspan
x2 = filteredBirds.loc[filteredBirds.ConservationStatus=='CR', 'MinWingspan
x3 = filteredBirds.loc[filteredBirds.ConservationStatus=='EN', 'MinWingspan
x4 = filteredBirds.loc[filteredBirds.ConservationStatus=='NT', 'MinWingspan
x5 = filteredBirds.loc[filteredBirds.ConservationStatus=='VU', 'MinWingspan
x6 = filteredBirds.loc[filteredBirds.ConservationStatus=='LC', 'MinWingspan

kwargs = dict(alpha=0.5, bins=20)

plt.hist(x1, **kwargs, color='red', label='Extinct')
plt.hist(x2, **kwargs, color='orange', label='Critically Endangered')
plt.hist(x3, **kwargs, color='yellow', label='Endangered')
plt.hist(x4, **kwargs, color='green', label='Near Threatened')
plt.hist(x5, **kwargs, color='blue', label='Vulnerable')
plt.hist(x6, **kwargs, color='gray', label='Least Concern')

plt.gca().set(title='Conservation Status', ylabel='Min Wingspan')
plt.legend();

python

https://seaborn.pydata.org/generated/seaborn.kdeplot.html

Loading Seaborn, try a basic density plot:

You can see how the plot echoes the previous one for Minimum Wingspan data; it's just a bit

smoother. According to Seaborn's documentation, "Relative to a histogram, KDE can produce a plot

that is less cluttered and more interpretable, especially when drawing multiple distributions. But it has

the potential to introduce distortions if the underlying distribution is bounded or not smooth. Like a

histogram, the quality of the representation also depends on the selection of good smoothing

parameters." source In other words, outliers as always will make your charts behave badly.

If you wanted to revisit that jagged MaxBodyMass line in the second chart you built, you could

smooth it out very well by recreating it using this method:

import seaborn as sns
import matplotlib.pyplot as plt
sns.kdeplot(filteredBirds['MinWingspan'])
plt.show()

python

sns.kdeplot(filteredBirds['MaxBodyMass'])
plt.show()

python

https://seaborn.pydata.org/generated/seaborn.kdeplot.html

If you wanted a smooth, but not too smooth line, edit the bw_adjust parameter:

✅ Read about the parameters available for this type of plot and experiment!

This type of chart offers beautifully explanatory visualizations. With a few lines of code, for example,

you can show the max body mass density per bird Order:

sns.kdeplot(filteredBirds['MaxBodyMass'], bw_adjust=.2)
plt.show()

python

sns.kdeplot(
 data=filteredBirds, x="MaxBodyMass", hue="Order",
 fill=True, common_norm=False, palette="crest",
 alpha=.5, linewidth=0,
)

python

You can also map the density of several variables in one chart. Text the MaxLength and MinLength of

a bird compared to their conservation status:

Perhaps it's worth researching whether the cluster of 'Vulnerable' birds according to their lengths is

meaningful or not.

🚀 Challenge

Histograms are a more sophisticated type of chart than basic scatterplots, bar charts, or line charts.

Go on a search on the internet to find good examples of the use of histograms. How are they used,

what do they demonstrate, and in what fields or areas of inquiry do they tend to be used?

Post-lecture quiz

sns.kdeplot(data=filteredBirds, x="MinLength", y="MaxLength", hue="Conserva
python

https://red-water-0103e7a0f.azurestaticapps.net/quiz/19

Review & Self Study

In this lesson, you used Matplotlib and started working with Seaborn to show more sophisticated

charts. Do some research on kdeplot in Seaborn, a "continuous probability density curve in one

or more dimensions". Read through the documentation to understand how it works.

Assignment

Apply your skills

Visualizing Proportions

Visualizing Proportions - Sketchnote by @nitya

In this lesson, you will use a different nature-focused dataset to visualize proportions, such as how

many different types of fungi populate a given dataset about mushrooms. Let's explore these

fascinating fungi using a dataset sourced from Audubon listing details about 23 species of gilled

mushrooms in the Agaricus and Lepiota families. You will experiment with tasty visualizations such as:

Pie charts 🥧

Donut charts 🍩

Waffle charts 🧇

https://seaborn.pydata.org/generated/seaborn.kdeplot.html
https://twitter.com/nitya

💡 A very interesting project called Charticulator by Microsoft Research offers a free drag and

drop interface for data visualizations. In one of their tutorials they also use this mushroom

dataset! So you can explore the data and learn the library at the same time: Charticulator

tutorial.

Pre-lecture quiz

Get to know your mushrooms 🍄

Mushrooms are very interesting. Let's import a dataset to study them:

A table is printed out with some great data for analysis:

Right away, you notice that all the data is textual. You will have to convert this data to be able to use it

in a chart. Most of the data, in fact, is represented as an object:

class
cap-

shape

cap-

surface

cap-

color
bruises odor

gill-

attachment

gill-

spacing

gill-

size

gil

co

Poisonous Convex Smooth Brown Bruises Pungent Free Close Narrow Bla

Edible Convex Smooth Yellow Bruises Almond Free Close Broad Bla

Edible Bell Smooth White Bruises Anise Free Close Broad Bro

Poisonous Convex Scaly White Bruises Pungent Free Close Narrow Bro

import pandas as pd
import matplotlib.pyplot as plt
mushrooms = pd.read_csv('../../data/mushrooms.csv')
mushrooms.head()

python

print(mushrooms.select_dtypes(["object"]).columns)
python

https://charticulator.com/
https://charticulator.com/tutorials/tutorial4.html
https://red-water-0103e7a0f.azurestaticapps.net/quiz/20

The output is:

Take this data and convert the 'class' column to a category:

Now, if you print out the mushrooms data, you can see that it has been grouped into categories

according to the poisonous/edible class:

If you follow the order presented in this table to create your class category labels, you can build a pie

chart:

Pie!

cap-

shape

cap-

surface

cap-

color
bruises odor

gill-

attachment

gill-

spacing

gill-

size

gill-

color

st

sh

class

Edible 4208 4208 4208 4208 4208 4208 4208 4208 4208 42

Poisonous 3916 3916 3916 3916 3916 3916 3916 3916 3916 39

Index(['class', 'cap-shape', 'cap-surface', 'cap-color', 'bruises', 'odor',
 'gill-attachment', 'gill-spacing', 'gill-size', 'gill-color',
 'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',
 'stalk-surface-below-ring', 'stalk-color-above-ring',
 'stalk-color-below-ring', 'veil-type', 'veil-color', 'ring-number',
 'ring-type', 'spore-print-color', 'population', 'habitat'],
 dtype='object')

output

cols = mushrooms.select_dtypes(["object"]).columns
mushrooms[cols] = mushrooms[cols].astype('category')

python

edibleclass=mushrooms.groupby(['class']).count()
edibleclass

python

Voila, a pie chart showing the proportions of this data according to these two classes of mushrooms.

It's quite important to get the order of the labels correct, especially here, so be sure to verify the

order with which the label array is built!

Donuts!

A somewhat more visually interesting pie chart is a donut chart, which is a pie chart with a hole in the

middle. Let's look at our data using this method.

Take a look at the various habitats where mushrooms grow:

Here, you are grouping your data by habitat. There are 7 listed, so use those as labels for your donut

chart:

labels=['Edible','Poisonous']
plt.pie(edibleclass['population'],labels=labels,autopct='%.1f %%')
plt.title('Edible?')
plt.show()

python

habitat=mushrooms.groupby(['habitat']).count()
habitat

python

labels=['Grasses','Leaves','Meadows','Paths','Urban','Waste','Wood']

plt.pie(habitat['class'], labels=labels,
 autopct='%1.1f%%', pctdistance=0.85)

python

This code draws a chart and a center circle, then adds that center circle in the chart. Edit the width of

the center circle by changing 0.40 to another value.

Donut charts can be tweaked in several ways to change the labels. The labels in particular can be

highlighted for readability. Learn more in the docs.

Now that you know how to group your data and then display it as a pie or donut, you can explore

other types of charts. Try a waffle chart, which is just a different way of exploring quantity.

Waffles!

A 'waffle' type chart is a different way to visualize quantities as a 2D array of squares. Try visualizing

the different quantities of mushroom cap colors in this dataset. To do this, you need to install a helper

library called PyWaffle and use Matplotlib:

Select a segment of your data to group:

center_circle = plt.Circle((0, 0), 0.40, fc='white')
fig = plt.gcf()

fig.gca().add_artist(center_circle)

plt.title('Mushroom Habitats')

plt.show()

pip install pywaffle
python

https://matplotlib.org/stable/gallery/pie_and_polar_charts/pie_and_donut_labels.html?highlight=donut
https://pypi.org/project/pywaffle/

Create a waffle chart by creating labels and then grouping your data:

Using a waffle chart, you can plainly see the proportions of cap colors of this mushrooms dataset.

Interestingly, there are many green-capped mushrooms!

capcolor=mushrooms.groupby(['cap-color']).count()
capcolor

python

import pandas as pd
import matplotlib.pyplot as plt
from pywaffle import Waffle

data ={'color': ['brown', 'buff', 'cinnamon', 'green', 'pink', 'purple', 'r
 'amount': capcolor['class']
 }

df = pd.DataFrame(data)

fig = plt.figure(
 FigureClass = Waffle,
 rows = 100,
 values = df.amount,
 labels = list(df.color),
 figsize = (30,30),
 colors=["brown", "tan", "maroon", "green", "pink", "purple", "red", "wh
)

python

✅ Pywaffle supports icons within the charts that use any icon available in Font Awesome. Do some

experiments to create an even more interesting waffle chart using icons instead of squares.

In this lesson, you learned three ways to visualize proportions. First, you need to group your data into

categories and then decide which is the best way to display the data - pie, donut, or waffle. All are

delicious and gratify the user with an instant snapshot of a dataset.

🚀 Challenge

https://fontawesome.com/

Try recreating these tasty charts in Charticulator.

Post-lecture quiz

Review & Self Study

Sometimes it's not obvious when to use a pie, donut, or waffle chart. Here are some articles to read

on this topic:

https://www.beautiful.ai/blog/battle-of-the-charts-pie-chart-vs-donut-chart

https://medium.com/@hypsypops/pie-chart-vs-donut-chart-showdown-in-the-ring-5d24fd86a9ce

https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c6.htm

https://medium.datadriveninvestor.com/data-visualization-done-the-right-way-with-tableau-waffle-

chart-fdf2a19be402

Do some research to find more information on this sticky decision.

Assignment

Try it in Excel

Visualizing Relationships: All About Honey

🍯

https://charticulator.com/
https://red-water-0103e7a0f.azurestaticapps.net/quiz/21
https://www.beautiful.ai/blog/battle-of-the-charts-pie-chart-vs-donut-chart
https://medium.com/@hypsypops/pie-chart-vs-donut-chart-showdown-in-the-ring-5d24fd86a9ce
https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c6.htm
https://medium.datadriveninvestor.com/data-visualization-done-the-right-way-with-tableau-waffle-chart-fdf2a19be402

Visualizing Relationships - Sketchnote by @nitya

Continuing with the nature focus of our research, let's discover interesting visualizations to show the

relationships between various types of honey, according to a dataset derived from the United States

Department of Agriculture.

This dataset of about 600 items displays honey production in many U.S. states. So, for example, you

can look at the number of colonies, yield per colony, total production, stocks, price per pound, and

value of the honey produced in a given state from 1998-2012, with one row per year for each state.

It will be interesting to visualize the relationship between a given state's production per year and, for

example, the price of honey in that state. Alternately, you could visualize the relationship between

states' honey yield per colony. This year span covers the devastating 'CCD' or 'Colony Collapse

Disorder' first seen in 2006 (http://npic.orst.edu/envir/ccd.html), so it is a poignant dataset to study.

🐝

Pre-lecture quiz

In this lesson, you can use Seaborn, which you have used before, as a good library to visualize

relationships between variables. Particularly interesting is the use of Seaborn's relplot function

that allows scatter plots and line plots to quickly visualize 'statistical relationships', which allow the

data scientist to better understand how variables relate to each other.

Scatterplots

https://twitter.com/nitya
https://www.nass.usda.gov/About_NASS/index.php
http://npic.orst.edu/envir/ccd.html
https://red-water-0103e7a0f.azurestaticapps.net/quiz/22
https://seaborn.pydata.org/tutorial/relational.html?highlight=relationships

Use a scatterplot to show how the price of honey has evolved, year over year, per state. Seaborn,

using relplot , conveniently groups the state data and displays data points for both categorical

and numeric data.

Let's start by importing the data and Seaborn:

You notice that the honey data has several interesting columns, including year and price per pound.

Let's explore this data, grouped by U.S. state:

state numcol yieldpercol totalprod stocks priceperlb prodvalue year

AL 16000 71 1136000 159000 0.72 818000 1998

AZ 55000 60 3300000 1485000 0.64 2112000 1998

AR 53000 65 3445000 1688000 0.59 2033000 1998

CA 450000 83 37350000 12326000 0.62 23157000 1998

CO 27000 72 1944000 1594000 0.7 1361000 1998

Create a basic scatterplot to show the relationship between the price per pound of honey and its U.S.

state of origin. Make the y axis tall enough to display all the states:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
honey = pd.read_csv('../../data/honey.csv')
honey.head()

python

sns.relplot(x="priceperlb", y="state", data=honey, height=15, aspect=.5);
python

Now, show the same data with a honey color scheme to show how the price evolves over the years.

You can do this by adding a 'hue' parameter to show the change, year over year:

✅ Learn more about the color palettes you can use in Seaborn - try a beautiful rainbow color

scheme!

sns.relplot(x="priceperlb", y="state", hue="year", palette="YlOrBr", data=h
python

https://seaborn.pydata.org/tutorial/color_palettes.html

With this color scheme change, you can see that there's obviously a strong progression over the

years in terms of honey price per pound. Indeed, if you look at a sample set in the data to verify (pick

a given state, Arizona for example) you can see a pattern of price increases year over year, with few

exceptions:

state numcol yieldpercol totalprod stocks priceperlb prodvalue year

AZ 55000 60 3300000 1485000 0.64 2112000 1998

AZ 52000 62 3224000 1548000 0.62 1999000 1999

AZ 40000 59 2360000 1322000 0.73 1723000 2000

AZ 43000 59 2537000 1142000 0.72 1827000 2001

AZ 38000 63 2394000 1197000 1.08 2586000 2002

AZ 35000 72 2520000 983000 1.34 3377000 2003

AZ 32000 55 1760000 774000 1.11 1954000 2004

AZ 36000 50 1800000 720000 1.04 1872000 2005

AZ 30000 65 1950000 839000 0.91 1775000 2006

AZ 30000 64 1920000 902000 1.26 2419000 2007

AZ 25000 64 1600000 336000 1.26 2016000 2008

AZ 20000 52 1040000 562000 1.45 1508000 2009

AZ 24000 77 1848000 665000 1.52 2809000 2010

AZ 23000 53 1219000 427000 1.55 1889000 2011

AZ 22000 46 1012000 253000 1.79 1811000 2012

Another way to visualize this progression is to use size, rather than color. For colorblind users, this

might be a better option. Edit your visualization to show an increase of price by an increase in dot

circumference:

sns.relplot(x="priceperlb", y="state", size="year", data=honey, height=15,
python

You can see the size of the dots gradually increasing.

Is this a simple case of supply and demand? Due to factors such as climate change and colony

collapse, is there less honey available for purchase year over year, and thus the price increases?

To discover a correlation between some of the variables in this dataset, let's explore some line charts.

Line charts

Question: Is there a clear rise in price of honey per pound year over year? You can most easily

discover that by creating a single line chart:

Answer: Yes, with some exceptions around the year 2003:

✅ Because Seaborn is aggregating data around one line, it displays "the multiple measurements at

each x value by plotting the mean and the 95% confidence interval around the mean". Source. This

time-consuming behavior can be disabled by adding ci=None .

Question: Well, in 2003 can we also see a spike in the honey supply? What if you look at total

production year over year?

sns.relplot(x="year", y="priceperlb", kind="line", data=honey);
python

sns.relplot(x="year", y="totalprod", kind="line", data=honey);
python

https://seaborn.pydata.org/tutorial/relational.html

Answer: Not really. If you look at total production, it actually seems to have increased in that particular

year, even though generally speaking the amount of honey being produced is in decline during these

years.

Question: In that case, what could have caused that spike in the price of honey around 2003?

To discover this, you can explore a facet grid.

Facet grids

Facet grids take one facet of your dataset (in our case, you can choose 'year' to avoid having too

many facets produced). Seaborn can then make a plot for each of those facets of your chosen x and

y coordinates for more easy visual comparison. Does 2003 stand out in this type of comparison?

Create a facet grid by continuing to use relplot as recommended by Seaborn's documentation.

In this visualization, you can compare the yield per colony and number of colonies year over year, side

by side with a wrap set at 3 for the columns:

sns.relplot(
 data=honey,
 x="yieldpercol", y="numcol",
 col="year",
 col_wrap=3,
 kind="line"

python

https://seaborn.pydata.org/generated/seaborn.FacetGrid.html?highlight=facetgrid#seaborn.FacetGrid

For this dataset, nothing particularly stands out with regards to the number of colonies and their

yield, year over year and state over state. Is there a different way to look at finding a correlation

between these two variables?

Dual-line Plots

Try a multiline plot by superimposing two lineplots on top of each other, using Seaborn's 'despine' to

remove their top and right spines, and using ax.twinx derived from Matplotlib. Twinx allows a

chart to share the x axis and display two y axes. So, display the yield per colony and number of

colonies, superimposed:

fig, ax = plt.subplots(figsize=(12,6))
lineplot = sns.lineplot(x=honey['year'], y=honey['numcol'], data=honey,
 label = 'Number of bee colonies', legend=False)
sns.despine()
plt.ylabel('# colonies')
plt.title('Honey Production Year over Year');

ax2 = ax.twinx()
lineplot2 = sns.lineplot(x=honey['year'], y=honey['yieldpercol'], ax=ax2, c
 label ='Yield per colony', legend=False)
sns.despine(right=False)
plt.ylabel('colony yield')
ax.figure.legend();

python

https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.twinx.html

While nothing jumps out to the eye around the year 2003, it does allow us to end this lesson on a little

happier note: while there are overall a declining number of colonies, the number of colonies is

stabilizing even if their yield per colony is decreasing.

Go, bees, go!

🐝 ❤

🚀 Challenge

In this lesson, you learned a bit more about other uses of scatterplots and line grids, including facet

grids. Challenge yourself to create a facet grid using a different dataset, maybe one you used prior to

these lessons. Note how long they take to create and how you need to be careful about how many

grids you need to draw using these techniques.

Post-lecture quiz

Review & Self Study

Line plots can be simple or quite complex. Do a bit of reading in the Seaborn documentation on the

various ways you can build them. Try to enhance the line charts you built in this lesson with other

methods listed in the docs.

https://red-water-0103e7a0f.azurestaticapps.net/quiz/23
https://seaborn.pydata.org/generated/seaborn.lineplot.html

Assignment

Dive into the beehive

Making Meaningful Visualizations

Meaningful Visualizations - Sketchnote by @nitya

"If you torture the data long enough, it will confess to anything" -- Ronald Coase

One of the basic skills of a data scientist is the ability to create a meaningful data visualization that

helps answer questions you might have. Prior to visualizing your data, you need to ensure that it has

been cleaned and prepared, as you did in prior lessons. After that, you can start deciding how best to

present the data.

In this lesson, you will review:

1. How to choose the right chart type

2. How to avoid deceptive charting

3. How to work with color

4. How to style your charts for readability

5. How to build animated or 3D charting solutions

https://twitter.com/nitya
https://en.wikiquote.org/wiki/Ronald_Coase

6. How to build a creative visualization

Pre-Lecture Quiz

Choose the right chart type

In previous lessons, you experimented with building all kinds of interesting data visualizations using

Matplotlib and Seaborn for charting. In general, you can select the right kind of chart for the question

you are asking using this table:

You need to: You should use:

Show data trends over time Line

Compare categories Bar, Pie

Compare totals Pie, Stacked Bar

Show relationships Scatter, Line, Facet, Dual Line

Show distributions Scatter, Histogram, Box

Show proportions Pie, Donut, Waffle

✅ Depending on the makeup of your data, you might need to convert it from text to numeric

to get a given chart to support it.

Avoid deception

Even if a data scientist is careful to choose the right chart for the right data, there are plenty of ways

that data can be displayed in a way to prove a point, often at the cost of undermining the data itself.

There are many examples of deceptive charts and infographics!

https://red-water-0103e7a0f.azurestaticapps.net/quiz/24
https://chartio.com/learn/charts/how-to-select-a-data-vizualization/

🎥 Click the image above for a conference talk about deceptive charts

This chart reverses the X axis to show the opposite of the truth, based on date:

This chart is even more deceptive, as the eye is drawn to the right to conclude that, over time, COVID

cases have declined in the various counties. In fact, if you look closely at the dates, you find that they

have been rearranged to give that deceptive downward trend.

https://www.youtube.com/watch?v=oX74Nge8Wkw
https://media.firstcoastnews.com/assets/WTLV/images/170ae16f-4643-438f-b689-50d66ca6a8d8/170ae16f-4643-438f-b689-50d66ca6a8d8_1140x641.jpg

This notorious example uses color AND a flipped Y axis to deceive: instead of concluding that gun

deaths spiked after the passage of gun-friendly legislation, in fact the eye is fooled to think that the

opposite is true:

This strange chart shows how proportion can be manipulated, to hilarious effect:

Comparing the incomparable is yet another shady trick. There is a wonderful web site all about

'spurious correlations' displaying 'facts' correlating things like the divorce rate in Maine and the

consumption of margarine. A Reddit group also collects the ugly uses of data.

https://tylervigen.com/spurious-correlations
https://www.reddit.com/r/dataisugly/top/?t=all

It's important to understand how easily the eye can be fooled by deceptive charts. Even if the data

scientist's intention is good, the choice of a bad type of chart, such as a pie chart showing too many

categories, can be deceptive.

Color

You saw in the 'Florida gun violence' chart above how color can provide an additional layer of

meaning to charts, especially ones not designed using libraries such as Matplotlib and Seaborn which

come with various vetted color libraries and palettes. If you are making a chart by hand, do a little

study of color theory

✅ Be aware, when designing charts, that accessibility is an important aspect of visualization.

Some of your users might be color blind - does your chart display well for users with visual

impairments?

Be careful when choosing colors for your chart, as color can convey meaning you might not intend.

The 'pink ladies' in the 'height' chart above convey a distinctly 'feminine' ascribed meaning that adds

to the bizarreness of the chart itself.

While color meaning might be different in different parts of the world, and tend to change in meaning

according to their shade. Generally speaking, color meanings include:

Color Meaning

red power

blue trust, loyalty

yellow happiness, caution

green ecology, luck, envy

purple happiness

orange vibrance

If you are tasked with building a chart with custom colors, ensure that your charts are both accessible

and the color you choose coincides with the meaning you are trying to convey.

https://colormatters.com/color-and-design/basic-color-theory
https://colormatters.com/color-symbolism/the-meanings-of-colors

Styling your charts for readability

Charts are not meaningful if they are not readable! Take a moment to consider styling the width and

height of your chart to scale well with your data. If one variable (such as all 50 states) need to be

displayed, show them vertically on the Y axis if possible so as to avoid a horizontally-scrolling chart.

Label your axes, provide a legend if necessary, and offer tooltips for better comprehension of data.

If your data is textual and verbose on the X axis, you can angle the text for better readability.

Matplotlib offers 3d plotting, if you data supports it. Sophisticated data visualizations can be

produced using mpl_toolkits.mplot3d .

Animation and 3D chart display

Some of the best data visualizations today are animated. Shirley Wu has amazing ones done with D3,

such as 'film flowers', where each flower is a visualization of a movie. Another example for the

Guardian is 'bussed out', an interactive experience combining visualizations with Greensock and D3

plus a scrollytelling article format to show how NYC handles its homeless problem by bussing people

out of the city.

https://matplotlib.org/stable/tutorials/toolkits/mplot3d.html
http://bl.ocks.org/sxywu/raw/d612c6c653fb8b4d7ff3d422be164a5d/

"Bussed Out: How America Moves its Homeless" from the Guardian. Visualizations by Nadieh

Bremer & Shirley Wu

While this lesson is insufficient to go into depth to teach these powerful visualization libraries, try your

hand at D3 in a Vue.js app using a library to display a visualization of the book "Dangerous Liaisons"

as an animated social network.

"Les Liaisons Dangereuses" is an epistolary novel, or a novel presented as a series of letters.

Written in 1782 by Choderlos de Laclos, it tells the story of the vicious, morally-bankrupt

social maneuvers of two dueling protagonists of the French aristocracy in the late 18th

century, the Vicomte de Valmont and the Marquise de Merteuil. Both meet their demise in the

end but not without inflicting a great deal of social damage. The novel unfolds as a series of

letters written to various people in their circles, plotting for revenge or simply to make trouble.

Create a visualization of these letters to discover the major kingpins of the narrative, visually.

You will complete a web app that will display an animated view of this social network. It uses a library

that was built to create a visual of a network using Vue.js and D3. When the app is running, you can

https://www.theguardian.com/us-news/ng-interactive/2017/dec/20/bussed-out-america-moves-homeless-people-country-study
https://github.com/emiliorizzo/vue-d3-network

pull the nodes around on the screen to shuffle the data around.

Project: Build a chart to show a network using D3.js

This lesson folder includes a solution folder where you can find the completed project,

for your reference.

1. Follow the instructions in the README.md file in the starter folder's root. Make sure you have NPM

and Node.js running on your machine before installing your project's dependencies.

2. Open the starter/src folder. You'll discover an assets folder where you can find a .json

file with all the letters from the novel, numbered, with a 'to' and 'from' annotation.

3. Complete the code in components/Nodes.vue to enable the visualization. Look for the

method called createLinks() and add the following nested loop.

Loop through the .json object to capture the 'to' and 'from' data for the letters and build up the

links object so that the visualization library can consume it:

Run your app from the terminal (npm run serve) and enjoy the visualization!

🚀 Challenge

Take a tour of the internet to discover deceptive visualizations. How does the author fool the user,

and is it intentional? Try correcting the visualizations to show how they should look.

Post-lecture quiz

Review & Self Study

Here are some articles to read about deceptive data visualization:

https://gizmodo.com/how-to-lie-with-data-visualization-1563576606

http://ixd.prattsi.org/2017/12/visual-lies-usability-in-deceptive-data-visualizations/

Take a look at these interest visualizations for historical assets and artifacts:

https://handbook.pubpub.org/

//loop through letters
 let f = 0;
 let t = 0;
 for (var i = 0; i < letters.length; i++) {
 for (var j = 0; j < characters.length; j++) {

 if (characters[j] == letters[i].from) {
 f = j;
 }
 if (characters[j] == letters[i].to) {
 t = j;
 }
 }
 this.links.push({ sid: f, tid: t });
 }

javascript

https://red-water-0103e7a0f.azurestaticapps.net/quiz/25
https://gizmodo.com/how-to-lie-with-data-visualization-1563576606
http://ixd.prattsi.org/2017/12/visual-lies-usability-in-deceptive-data-visualizations/
https://handbook.pubpub.org/

Look through this article on how animation can enhance your visualizations:

https://medium.com/@EvanSinar/use-animation-to-supercharge-data-visualization-cd905a882ad4

Assignment

Build your own custom visualization

Introduction to the Data Science Lifecycle

Introduction to the Data Science Lifecycle - Sketchnote by @nitya

Pre-Lecture Quiz

At this point you've probably come to the realization that data science is a process. This process can

be broken down into 5 stages:

Capturing

Processing

Analysis

Communication

Maintenance

https://medium.com/@EvanSinar/use-animation-to-supercharge-data-visualization-cd905a882ad4
https://twitter.com/nitya
https://red-water-0103e7a0f.azurestaticapps.net/quiz/26

This lesson focuses on 3 parts of the life cycle: capturing, processing and maintenance.

Photo by Berkeley School of Information

Capturing

The first stage of the lifecycle is very important as the next stages are dependent on it. It s̓ practically

two stages combined into one: acquiring the data and defining the purpose and problems that need

to be addressed. Defining the goals of the project will require deeper context into the problem or

question. First, we need to identify and acquire those who need their problem solved. These may be

stakeholders in a business or sponsors of the project, who can help identify who or what will benefit

from this project as well as what, and why they need it. A well-defined goal should be measurable

and quantifiable to define an acceptable result.

Questions a data scientist may ask:

Has this problem been approached before? What was discovered?

Is the purpose and goal understood by all involved?

Is there ambiguity and how to reduce it?

What are the constraints?

What will the end result potentially look like?

How much resources (time, people, computational) are available?

Next is identifying, collecting, then finally exploring the data needed to achieve these defined goals.

At this step of acquisition, data scientists must also evaluate the quantity and quality of the data. This

https://ischoolonline.berkeley.edu/data-science/what-is-data-science/

requires some data exploration to confirm what has been acquired will support reaching the desired

result.

Questions a data scientist may ask about the data:

What data is already available to me?

Who owns this data?

What are the privacy concerns?

Do I have enough to solve this problem?

Is the data of acceptable quality for this problem?

If I discover additional information through this data, should we consider changing or redefining

the goals?

Processing

The processing stage of the lifecycle focuses on discovering patterns in the data as well as modeling.

Some techniques used in the processing stage require statistical methods to uncover the patterns.

Typically, this would be a tedious task for a human to do with a large data set and will rely on

computers to do the heavy lifting to speed up the process. This stage is also where data science and

machine learning will intersect. As you learned in the first lesson, machine learning is the process of

building models to understand the data. Models are a representation of the relationship between

variables in the data that help predict outcomes.

Common techniques used in this stage are covered in the ML for Beginners curriculum. Follow the

links to learn more about them:

Classification: Organizing data into categories for more efficient use.

Clustering: Grouping data into similar groups.

Regression: Determine the relationships between variables to predict or forecast values.

Maintaining

In the diagram of lifecycle, you may have noticed that maintenance sits between capturing and

processing. Maintenance is an ongoing process of managing, storing and securing the data

throughout the process of a project and should be taken into consideration throughout the entirety of

the project.

Storing Data

https://github.com/microsoft/ML-For-Beginners/tree/main/4-Classification
https://github.com/microsoft/ML-For-Beginners/tree/main/5-Clustering
https://github.com/microsoft/ML-For-Beginners/tree/main/2-Regression

Considerations of how and where the data is stored can influence the cost of its storage as well as

performance of how fast the data can be accessed. Decisions like these are not likely to made by a

data scientist alone but they may find themselves making choices on how to work with the data

based on how it s̓ stored.

Here s̓ some aspects of modern data storage systems that can affect these choices:

On premise vs off premise vs public or private cloud

On premise refers to hosting managing the data on your own equipment, like owning a server with

hard drives that store the data, while off premise relies on equipment that you donʼt own, such as a

data center. The public cloud is a popular choice for storing data that requires no knowledge of how

or where exactly the data is stored, where public refers to a unified underlying infrastructure that is

shared by all who use the cloud. Some organizations have strict security policies that require that

they have complete access to the equipment where the data is hosted and will rely on a private cloud

that provides its own cloud services. You l̓l learn more about data in the cloud in later lessons.

Cold vs hot data

When training your models, you may require more training data. If youʼre content with your model,

more data will arrive for a model to serve its purpose. In any case the cost of storing and accessing

data will increase as you accumulate more of it. Separating rarely used data, known as cold data from

frequently accessed hot data can be a cheaper data storage option through hardware or software

services. If cold data needs to be accessed, it may take a little longer to retrieve in comparison to hot

data.

Managing Data

As you work with data you may discover that some of the data needs to be cleaned using some of the

techniques covered in the lesson focused on data preparation to build accurate models. When new

data arrives, it will need some of the same applications to maintain consistency in quality. Some

projects will involve use of an automated tool for cleansing, aggregation, and compression before the

data is moved to its final location. Azure Data Factory is an example of one of these tools.

Securing the Data

One of the main goals of securing data is ensuring that those working it are in control of what is

collected and in what context it is being used. Keeping data secure involves limiting access to only

those who need it, adhering to local laws and regulations, as well as maintaining ethical standards, as

covered in the ethics lesson.

Here s̓ some things that a team may do with security in mind:

https://github.com/microsoft/Data-Science-For-Beginners/tree/main/5-Data-Science-In-Cloud
https://github.com/microsoft/Data-Science-For-Beginners/tree/main/2-Working-With-Data/08-data-preparation
https://github.com/microsoft/Data-Science-For-Beginners/tree/main/1-Introduction/02-ethics

Confirm that all data is encrypted

Provide customers information on how their data is used

Remove data access from those who have left the project

Let only certain project members alter the data

🚀 Challenge

There are many versions of the Data Science Lifecycle, where each step may have different names

and number of stages but will contain the same processes mentioned within this lesson.

Explore the Team Data Science Process lifecycle and the Cross-industry standard process for data

mining. Name 3 similarities and differences between the two.

Team Data Science Process (TDSP)
Cross-industry standard process for data

mining (CRISP-DM)

Image by Microsoft Image by Data Science Process Alliance

Post-Lecture Quiz

Review & Self Study

Applying the Data Science Lifecycle involves multiple roles and tasks, where some may focus on

particular parts of each stage. The Team Data Science Process provides a few resources that explain

https://docs.microsoft.com/en-us/azure/architecture/data-science-process/lifecycle
https://www.datascience-pm.com/crisp-dm-2/
https://docs.microsoft.comazure/architecture/data-science-process/lifecycle
https://www.datascience-pm.com/crisp-dm-2/
https://red-water-0103e7a0f.azurestaticapps.net/quiz/27

the types of roles and tasks that someone may have in a project.

Team Data Science Process roles and tasks

Execute data science tasks: exploration, modeling, and deployment

Assignment

Assessing a Dataset

The Data Science Lifecycle: Analyzing

Data Science Lifecycle: Analyzing - Sketchnote by @nitya

Pre-Lecture Quiz

Pre-Lecture Quiz

Analyzing in the data lifecycle confirms that the data can answer the questions that are proposed or

solving a particular problem. This step can also focus on confirming a model is correctly addressing

https://docs.microsoft.com/en-us/azure/architecture/data-science-process/roles-tasks
https://docs.microsoft.com/en-us/azure/architecture/data-science-process/execute-data-science-tasks
https://twitter.com/nitya
https://red-water-0103e7a0f.azurestaticapps.net/quiz/28

these questions and problems. This lesson is focused on Exploratory Data Analysis or EDA, which are

techniques for defining features and relationships within the data and can be used to prepare the

data for modeling.

We'll be using an example dataset from Kaggle to show how this can be applied with Python and the

Pandas library. This dataset contains a count of some common words found in emails, the sources of

these emails are anonymous. Use the notebook in this directory to follow along.

Exploratory Data Analysis

The capture phase of the lifecycle is where the data is acquired as well as the problems and

questions at hand, but how do we know the data can help support the end result? Recall that a data

scientist may ask the following questions when they acquire the data:

Do I have enough data to solve this problem?

Is the data of acceptable quality for this problem?

If I discover additional information through this data, should we consider changing or redefining

the goals? Exploratory Data Analysis is the process of getting to know that data and can be used

to answer these questions, as well identify the challenges of working with the dataset. Let s̓ focus

on some of the techniques used to achieve this.

Data Profiling, Descriptive Statistics, and Pandas

How do we evaluate if we have enough data to solve this problem? Data profiling can summarize and

gather some general overall information about our dataset through techniques of descriptive

statistics. Data profiling helps us understand what is available to us, and descriptive statistics helps

us understand how many things are available to us.

In a few of the previous lessons, we have used Pandas to provide some descriptive statistics with the

describe() function. It provides the count, max and min values, mean, standard deviation and

quantiles on the numerical data. Using descriptive statistics like the describe() function can help

you assess how much you have and if you need more.

Sampling and Querying

Exploring everything in a large dataset can be very time consuming and a task that s̓ usually left up to

a computer to do. However, sampling is a helpful tool in understanding of the data and allows us to

https://www.kaggle.com/balaka18/email-spam-classification-dataset-csv/version/1
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.describe.html

have a better understanding of what s̓ in the dataset and what it represents. With a sample, you can

apply probability and statistics to come to some general conclusions about your data. While there s̓

no defined rule on how much data you should sample it s̓ important to note that the more data you

sample, the more precise of a generalization you can make of about data. Pandas has the

sample() function in its library where you can pass an argument of how many random samples

you d̓ like to receive and use.

General querying of the data can help you answer some general questions and theories you may

have. In contrast to sampling, queries allow you to have control and focus on specific parts of the

data you have questions about. The query() function in the Pandas library allows you to select

columns and receive simple answers about the data through the rows retrieved.

Exploring with Visualizations

You donʼt have to wait until the data is thoroughly cleaned and analyzed to start creating

visualizations. In fact, having a visual representation while exploring can help identify patterns,

relationships, and problems in the data. Furthermore, visualizations provide a means of

communication with those who are not involved with managing the data and can be an opportunity to

share and clarify additional questions that were not addressed in the capture stage. Refer to the

section on Visualizations to learn more about some popular ways to explore visually.

Exploring to identify inconsistencies

All the topics in this lesson can help identify missing or inconsistent values, but Pandas provides

functions to check for some of these. isna() or isnull() can check for missing values. One important

piece of exploring for these values within your data is to explore why they ended up that way in the

first place. This can help you decide on what actions to take to resolve them.

Pre-Lecture Quiz

Assignment

Exploring for answers

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.sample.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.query.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.isna.html
https://red-water-0103e7a0f.azurestaticapps.net/quiz/27

The Data Science Lifecycle:

Communication

Data Science Lifecycle: Communication - Sketchnote by @nitya

Pre-Lecture Quiz

Test your knowledge of what's to come with the Pre-Lecture Quiz above!

Introduction

What is Communication?

Let s̓ start this lesson by defining what is means to communicate. To communicate is to convey or

exchange information. Information can be ideas, thoughts, feelings, messages, covert signals, data

– anything that a sender (someone sending information) wants a receiver (someone receiving

information) to understand. In this lesson, we will refer to senders as communicators, and receivers

as the audience.

https://twitter.com/nitya
https://red-water-0103e7a0f.azurestaticapps.net/quiz/30

Data Communication & Storytelling

We understand that when communicating, the aim is to convey or exchange information. But when

communicating data, your aim shouldn't be to simply pass along numbers to your audience. Your aim

should be to communicate a story that is informed by your data - effective data communication and

storytelling go hand-in-hand. Your audience is more likely to remember a story you tell, than a

number you give. Later in this lesson, we will go over a few ways that you can use storytelling to

communicate your data more effectively.

Types of Communication

Throughout this lesson two different types of communication will be discussed, One-Way

Communication and Two-Way Communication.

One way communication happens when a sender sends information to a receiver, without any

feedback or response. We see examples of one-way communication every day – in bulk/mass emails,

when the news delivers the most recent stories, or even when a television commercial comes on and

informs you about why their product is great. In each of these instances, the sender is not seeking an

exchange of information. They are only seeking to convey or deliver information.

Two-way communication happens when all involved parties act as both senders and receivers. A

sender will begin by communicating to a receiver, and the receiver will provide feedback or a

response. Two-way communication is what we traditionally think of when we talk about

communication. We usually think of people engaged in a conversation - either in person, or over a

phone call, social media, or text message.

When communicating data, there will be cases where you will be using one-way communication

(think about presenting at a conference, or to a large group where questions wonʼt be asked directly

after) and there will be cases where you will use two-way communication (think about using data to

persuade a few stakeholders for buy-in, or to convince a teammate that time and effort should be

spent building something new).

Effective Communication

Your Responsibilities as a communicator

When communicating, it is your job to make sure that your receiver(s) are taking away the information

that you want them to take away. When youʼre communicating data, you donʼt just want your

receivers to takeaway numbers, you want your receivers to takeaway a story that s̓ informed by your

data. A good data communicator is a good storyteller.

How do you tell a story with data? There are infinite ways – but below are 6 that we will talk about in

this lesson.

1. Understand Your Audience, Your Medium, & Your Communication Method

2. Begin with the End in Mind

3. Approach it Like an Actual Story

4. Use Meaningful Words & Phrases

5. Use Emotion

Each of these strategies is explained in greater detail below.

1. Understand Your Audience, Your Channel & Your Communication

Method

The way you communicate with family members is likely different than the way you communicate with

your friends. You probably use different words and phrases that the people youʼre speaking to are

more likely to understand. You should take the same approach when communicating data. Think

about who youʼre communicating to. Think about their goals and the context that they have around

the situation that youʼre explaining to them.

You can likely group the majority of your audience them within a category. In a Harvard Business

Review article, “How to Tell a Story with Data,” Dell Executive Strategist Jim Stikeleather identifies five

categories of audiences.

Novice: first exposure to the subject, but doesnʼt want oversimplification

Generalist: aware of the topic, but looking for an overview understanding and major themes

Managerial: in-depth, actionable understanding of intricacies and interrelationships with access

to detail

Expert: more exploration and discovery and less storytelling with great detail

Executive: only has time to glean the significance and conclusions of weighted probabilities

These categories can inform the way you present data to your audience.

In addition to thinking about your audience's category, you should also consider the channel you're

using to communicate with your audience. Your approach should be slightly different if you're writing

a memo or email vs having a meeting or presenting at a conference.

On top of understanding your audience, knowing how you will be communicating with them (using

one-way communication or two-way) is also critical.

If you are communicating with a majority Novice audience and youʼre using one-way communication,

you must first educate the audience and give them proper context. Then you must present your data

to them and tell them what your data means and why your data matters. In this instance, you may

http://blogs.hbr.org/2013/04/how-to-tell-a-story-with-data/

want to be laser focused on driving clarity, because your audience will not be able to ask you any

direct questions.

If you are communicating with a majority Managerial audience and youʼre using two-way

communication, you likely wonʼt need to educate your audience or provide them with much context.

You may be able to jump straight into discussing the data that youʼve collected and why it matters. In

this scenario though, you should be focused on timing and controlling your presentation. When using

two-way communication (especially with a Managerial audience who is seeking an “actionable

understanding of intricacies and interrelationships with access to detail”) questions may pop up

during your interaction that may take the discussion in a direction that doesnʼt relate to the story that

youʼre trying to tell. When this happens, you can take action and move the discussion back on track

with your story.

2. Begin With The End In Mind

Beginning with the end in mind means understanding your intended takeaways for your audience

before you start communicating with them. Being thoughtful about what you want your audience to

takeaway ahead of time can help you craft a story that your audience can follow. Beginning with the

end in mind is appropriate for both one-way communication and two-way communication.

How do you begin with the end in mind? Before communicating your data, write down your key

takeaways. Then, every step of the way as you're preparing the story that you want to tell with your

data, ask yourself, "How does this integrate into the story I'm telling?"

Be Aware – While starting with the end in mind is ideal, you donʼt want to communicate only the data

that supports your intended takeaways. Doing this is called Cherry-Picking, which happens when a

communicator only communicates data that supports the point they are tying to make and ignores all

other data.

If all the data that you collected clearly supports your intended takeaways, great. But if there is data

that you collected that doesnʼt support your takeaways, or even supports an argument against your

key takeaways, you should communicate that data as well. If this happens, be upfront with your

audience and let them know why you're choosing to stick with your story even though all the data

doesn't necessarily support it.

3. Approach it Like an Actual Story

A traditional story happens in 5 Phases. You may have heard these phases expressed as Exposition,

Rising Action, Climax, Falling Action, and Denouncement. Or the easier to remember Context,

Conflict, Climax, Closure, Conclusion. When communicating your data and your story, you can take a

similar approach.

You can begin with context, set the stage and make sure your audience is all on the same page. Then

introduce the conflict. Why did you need to collect this data? What problems were you seeking to

solve? After that, the climax. What is the data? What does the data mean? What solutions does the

data tell us we need? Then you get to the closure, where you can reiterate the problem, and the

proposed solution(s). Lastly, we come to the conclusion, where you can summarize your key

takeaways and the next steps you recommend the team takes.

4. Use Meaningful Words & Phrases

If you and I were working together on a product, and I said to you "Our users take a long time to

onboard onto our platform," how long would you estimate that "long time" to be? An hour? A week?

It's hard to know. What if I said that to an entire audience? Everyone in the audience may end up with

a different idea of how long users take to onboard onto our platform.

Instead, what if I said "Out users take, on average, 3 minutes to sign up and onboard onto our

platform."

That messaging is more clear. When communicating data, it can be easy to think that everyone in

your audience is thinking just like you. But that is not always the case. Driving clarity around your data

and what it means is one of your responsibilities as a communicator. If the data or your story is not

clear, your audience will have a hard time following, and it is less likely that they will understand your

key takeaways.

You can communicate data more clearly when you use meaningful words and phrases, instead of

vague ones. Below are a few examples.

We had an impressive year!

One person could think a impressive means a 2% - 3% increase in revenue, and one person

could think it means a 50% - 60% increase.

Our users' success rates increased dramatically.

How large of an increase is a dramatic increase?

This undertaking will require significant effort.

How much effort is significant?

Using vague words could be useful as an introduction to more data that's coming, or as a summary of

the story that you've just told. But consider ensuring that every part of your presentation is clear for

your audience.

5. Use Emotion

Emotion is key in storytelling. It's even more important when you're telling a story with data. When

you're communicating data, everything is focused on the takeaways you want your audience to have.

When you evoke an emotion for an audience it helps them empathize, and makes them more likely to

take action. Emotion also increases the likelihood that an audience will remember your message.

You may have encountered this before with TV commercials. Some commercials are very somber,

and use a sad emotion to connect with their audience and make the data that they're presenting

really stand out. Or, some commercials are very upbeat and happy may make you associate their data

with a happy feeling.

How do you use emotion when communicating data? Below are a couple of ways.

Use Testimonials and Personal Stories

When collecting data, try to collect both quantitative and qualitative data, and integrate both

types of data when you're communicating. If your data is primarily quantitative, seek stories

from individuals to learn more about their experience with whatever your data is telling you.

Use Imagery

Images help an audience see themselves in a situation. When you use images, you can push

an audience toward the emotion that you feel they should have about your data.

Use Color

Different colors evoke different emotions. Popular colors and the emotions they evoke are

below. Be aware, that colors could have different meanings in different cultures.

Blue usually evokes emotions of peace and trust

Green is usually related to the nature and the environment

Red is usually passion and excitement

Yellow is usually optimism and happiness

Communication Case Study
Emerson is a Product Manager for a mobile app. Emerson has noticed that customers submit 42%

more complaints and bug reports on the weekends. Emerson also noticed that customers who

submit a complaint that goes unanswered after 48 hours are more 32% more likely to give the app a

rating of 1 or 2 in the app store.

After doing research, Emerson has a couple of solutions that will address the issue. Emerson sets up

a 30-minute meeting with the 3 company leads to communicate the data and the proposed solutions.

During this meeting, Emerson s̓ goal is to have the company leads understand that the 2 solutions

below can improve the app s̓ rating, which will likely translate into higher revenue.

Solution 1. Hire customer service reps to work on weekends

Solution 2. Purchase a new customer service ticketing system where customer service reps can

easily identify which complaints have been in the queue the longest – so they can tell which to

address most immediately.

In the meeting, Emerson spends 5 minutes explaining why having a low rating on the app store is bad,

10 minutes explaining the research process and how the trends were identified, 10 minutes going

through some of the recent customer complaints, and the last 5 minutes glossing over the 2 potential

solutions.

Was this an effective way for Emerson to communicate during this meeting?

During the meeting, one company lead fixated on the 10 minutes of customer complaints that

Emerson went through. After the meeting, these complaints were the only thing that this team lead

remembered. Another company lead primarily focused on Emerson describing the research process.

The third company lead did remember the solutions proposed by Emerson but wasnʼt sure how those

solutions could be implemented.

In the situation above, you can see that there was a significant gap between what Emerson wanted

the team leads to take away, and what they ended up taking away from the meeting. Below is another

approach that Emerson could consider.

How could Emerson improve this approach? Context, Conflict, Climax, Closure, Conclusion Context -

Emerson could spend the first 5 minutes introducing the entire situation and making sure that the

team leads understand how the problems affect metrics that are critical to the company, like revenue.

It could be laid out this way: "Currently, our app's rating in the app store is a 2.5. Ratings in the app

store are critical to App Store Optimization, which impacts how many users see our app in search,

and how our app is viewed to perspective users. And ofcourse, the number of users we have is tied

directly to revenue."

Conflict Emerson could then move to talk for the next 5 minutes or so on the conflict.

It could go like this: “Users submit 42% more complaints and bug reports on the weekends.

Customers who submit a complaint that goes unanswered after 48 hours are more 32% less likely to

give our app a rating over a 2 in the app store. Improving our app's rating in the app store to a 4

would improve our visibility by 20-30%, which I project would increase revenue by 10%." Of course,

Emerson should be prepared to justify these numbers.

Climax After laying the groundwork, Emerson could then move to the Climax for 5 or so minutes.

Emerson could introduce the proposed solutions, lay out how those solutions will address the issues

outlined, how those solutions could be implemented into existing workflows, how much the solutions

cost, what the ROI of the solutions would be, and maybe even show some screenshots or wireframes

of how the solutions would look if implemented. Emerson could also share testimonials from users

who took over 48 hours to have their complaint addressed, and even a testimonial from a current

customer service representative within the company who has comments on the current ticketing

system.

Closure Now Emerson can spend 5 minutes restating the problems faced by the company, revisit the

proposed solutions, and review why those solutions are the right ones.

Conclusion Because this is a meeting with a few stakeholders where two-way communication will be

used, Emerson could then plan to leave 10 minutes for questions, to make sure that anything that was

confusing to the team leads could be clarified before the meeting is over.

If Emerson took approach #2, it is much more likely that the team leads will take away from the

meeting exactly what Emerson intended for them to take away – that the way complaints and bugs

are handled could be improved, and there are 2 solutions that could be put in place to make that

improvement happen. This approach would be a much more effective approach to communicating

the data, and the story, that Emerson wants to communicate.

Conclusion

Summary of main points

To communicate is to convey or exchange information.

When communicating data, your aim shouldn't be to simply pass along numbers to your

audience. Your aim should be to communicate a story that is informed by your data.

There are 2 types of communication, One-Way Communication (information is communicated

with no intention of a response) and Two-Way Communication (information is communicated

back and forth.)

There are many strategies you can use to telling a story with your data, 5 strategies we went over

are:

Understand Your Audience, Your Medium, & Your Communication Method

Begin with the End in Mind

Approach it Like an Actual Story

Use Meaningful Words & Phrases

Use Emotion

Recommended Resources for Self Study

The Five C's of Storytelling - Articulate Persuasion

1.4 Your Responsibilities as a Communicator – Business Communication for Success (umn.edu)

How to Tell a Story with Data (hbr.org)

Two-Way Communication: 4 Tips for a More Engaged Workplace (yourthoughtpartner.com)

6 succinct steps to great data storytelling - BarnRaisers, LLC (barnraisersllc.com)

http://articulatepersuasion.com/the-five-cs-of-storytelling/
https://open.lib.umn.edu/businesscommunication/chapter/1-4-your-responsibilities-as-a-communicator/
https://hbr.org/2013/04/how-to-tell-a-story-with-data
https://www.yourthoughtpartner.com/blog/bid/59576/4-steps-to-increase-employee-engagement-through-two-way-communication
https://barnraisersllc.com/2021/05/02/6-succinct-steps-to-great-data-storytelling/

How to Tell a Story With Data | Lucidchart Blog

6 Cs of Effective Storytelling on Social Media | Cooler Insights

The Importance of Emotions In Presentations | Ethos3 - A Presentation Training and Design Agency

Data storytelling: linking emotions and rational decisions (toucantoco.com)

Emotional Advertising: How Brands Use Feelings to Get People to Buy (hubspot.com)

Choosing Colors for Your Presentation Slides | Think Outside The Slide

How To Present Data [10 Expert Tips] | ObservePoint

Microsoft Word - Persuasive Instructions.doc (tpsnva.org)

The Power of Story for Your Data (thinkhdi.com)

Common Mistakes in Data Presentation (perceptualedge.com)

Infographic: Here are 15 Common Data Fallacies to Avoid (visualcapitalist.com)

Cherry Picking: When People Ignore Evidence that They Dislike – Effectiviology

Tell Stories with Data: Communication in Data Science | by Sonali Verghese | Towards Data Science

1. Communicating Data - Communicating Data with Tableau [Book] (oreilly.com)

Post-Lecture Quiz

Review what you've just learned with the Post-Lecture Quiz above!

Assignment

Market Research

Introduction to Data Science in the Cloud

https://www.lucidchart.com/blog/how-to-tell-a-story-with-data
https://coolerinsights.com/2018/06/effective-storytelling-social-media/
https://ethos3.com/2015/02/the-importance-of-emotions-in-presentations/
https://www.toucantoco.com/en/blog/data-storytelling-dataviz
https://blog.hubspot.com/marketing/emotions-in-advertising-examples
https://www.thinkoutsidetheslide.com/choosing-colors-for-your-presentation-slides/
https://resources.observepoint.com/blog/10-tips-for-presenting-data
https://www.tpsnva.org/teach/lq/016/persinstr.pdf
https://www.thinkhdi.com/library/supportworld/2019/power-story-your-data.aspx
https://www.perceptualedge.com/articles/ie/data_presentation.pdf
https://www.visualcapitalist.com/here-are-15-common-data-fallacies-to-avoid/
https://effectiviology.com/cherry-picking/#How_to_avoid_cherry_picking
https://towardsdatascience.com/tell-stories-with-data-communication-in-data-science-5266f7671d7
https://www.oreilly.com/library/view/communicating-data-with/9781449372019/ch01.html
https://red-water-0103e7a0f.azurestaticapps.net/quiz/31

Data Science In The Cloud: Introduction - Sketchnote by @nitya

In this lesson, you will learn the fundamental principles of the Cloud, then you will see why it can be

interesting for you to use Cloud services to run your data science projects and we'll look at some

examples of data science projects run in the Cloud.

Pre-Lecture Quiz

What is the Cloud?

The Cloud, or Cloud Computing, is the delivery of a wide range of pay-as-you-go computing services

hosted on an infrastructure over the internet. Services include solutions such as storage, databases,

networking, software, analytics, and intelligent services.

We usually differentiate the Public, Private and Hybrid clouds as follows:

Public cloud: a public cloud is owned and operated by a third-party cloud service provider which

delivers its computing resources over the Internet to the public.

Private cloud: refers to cloud computing resources used exclusively by a single business or

organization, with services and an infrastructure maintained on a private network.

Hybrid cloud: the hybrid cloud is a system that combines public and private clouds. Users opt for

an on-premises datacenter, while allowing data and applications to be run on one or more public

clouds.

https://twitter.com/nitya
https://red-water-0103e7a0f.azurestaticapps.net/quiz/32

Most cloud computing services fall into three categories: Infrastructure as a Service (IaaS), Platform

as a Service (PaaS) and Software as a Service (SaaS).

Infrastructure as a Service (IaaS): users rent an IT infrastructure such as servers and virtual

machines (VMs), storage, networks, operating systems

Platform as a Service (PaaS): users rent an environment for developing, testing, delivering, and

managing software applications. Users donʼt need to worry about setting up or managing the

underlying infrastructure of servers, storage, network, and databases needed for development.

Software as a Service (SaaS): users get access to software applications over the Internet, on

demand and typically on a subscription basis. Users donʼt need to worry about hosting and

managing the software application, the underlying infrastructure or the maintenance, like software

upgrades and security patching.

Some of the largest Cloud providers are Amazon Web Services, Google Cloud Platform and Microsoft

Azure.

Why Choose the Cloud for Data Science?

Developers and IT professionals chose to work with the Cloud for many reasons, including the

following:

Innovation: you can power your applications by integrating innovative services created by Cloud

providers directly into your apps.

Flexibility: you only pay for the services that you need and can choose from a wide range of

services. You typically pay as you go and adapt your services according to your evolving needs.

Budget: you donʼt need to make initial investments to purchase hardware and software, set up

and run on-site datacenters and you can just pay for what you use.

Scalability: your resources can scale according to the needs of your project, which means that

your apps can use more or less computing power, storage and bandwidth, by adapting to external

factors at any given time.

Productivity: you can focus on your business rather than spending time on tasks that can be

managed by someone else, such as managing datacenters.

Reliability: Cloud Computing offers several ways to continuously back up your data and you can

set up disaster recovery plans to keep your business and services going, even in times of crisis.

Security: you can benefit from policies, technologies and controls that strengthen the security of

your project.

These are some of the most common reasons why people choose to use Cloud services. Now

that we have a better understanding of what the Cloud is and what its main benefits are, let's look

more specifically into the jobs of Data scientists and developers working with data, and how the

Cloud can help them with several challenges they might face:

Storing large amounts of data: instead of buying, managing and protecting big servers, you can

store your data directly in the cloud, with solutions such as Azure Cosmos DB, Azure SQL

Database and Azure Data Lake Storage.

Performing Data Integration: data integration is an essential part of Data Science, that lets you

make a transition from data collection to taking actions. With data integration services offered in

the cloud, you can collect, transform and integrate data from various sources into a single data

warehouse, with Data Factory.

Processing data: processing vast amounts of data requires a lot of computing power, and not

everyone has access to machines powerful enough for that, which is why many people choose to

directly harness the cloud s̓ huge computing power to run and deploy their solutions.

Using data analytics services: cloud services like Azure Synapse Analytics, Azure Stream

Analytics and Azure Databricks to help you turn your data into actionable insights.

Using Machine Learning and data intelligence services: Instead of starting from scratch, you can

use machine learning algorithms offered by the cloud provider, with services such as AzureML.

You can also use cognitive services such as speech-to-text, text to speech, computer vision and

more.

Examples of Data Science in the Cloud

Let s̓ make this more tangible by looking at a couple of scenarios.

Real-time social media sentiment analysis

We l̓l start with a scenario commonly studied by people who start with machine learning: social media

sentiment analysis in real time.

Let's say you run a news media website and you want to leverage live data to understand what

content your readers could be interested in. To know more about that, you can build a program that

performs real-time sentiment analysis of data from Twitter publications, on topics that are relevant to

your readers.

The key indicators you will look at is the volume of tweets on specific topics (hashtags) and

sentiment, which is established using analytics tools that perform sentiment analysis around the

specified topics.

The steps necessary to create this project are as follows:

Create an event hub for streaming input, which will collect data from Twitter

Configure and start a Twitter client application, which will call the Twitter Streaming APIs

Create a Stream Analytics job

Specify the job input and query

Create an output sink and specify the job output

Start the job

To view the full process, check out the documentation.

Scientific papers analysis

Let s̓ take another example of a project created by Dmitry Soshnikov, one of the authors of this

curriculum.

Dmitry created a tool that analyses COVID papers. By reviewing this project, you will see how you can

create a tool that extracts knowledge from scientific papers, gains insights and helps researchers

navigate through large collections of papers in an efficient way.

Let's see the different steps used for this:

Extracting and pre-processing information with Text Analytics for Health

Using Azure ML to parallelize the processing

Storing and querying information with Cosmos DB

Create an interactive dashboard for data exploration and visualization using Power BI

To see the full process, visit Dmitry s̓ blog.

As you can see, we can leverage Cloud services in many ways to perform Data Science.

Footnote

Sources:

https://azure.microsoft.com/overview/what-is-cloud-computing?ocid=AID3041109

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-twitter-sentiment-analysis-

trends?ocid=AID3041109

https://soshnikov.com/science/analyzing-medical-papers-with-azure-and-text-analytics-for-

health/

https://docs.microsoft.com/azure/stream-analytics/stream-analytics-twitter-sentiment-analysis-trends?WT.mc_id=academic-40229-cxa&ocid=AID30411099
http://soshnikov.com/
https://docs.microsoft.com/azure/cognitive-services/text-analytics/how-tos/text-analytics-for-health?WT.mc_id=academic-40229-cxa&ocid=AID3041109
https://azure.microsoft.com/services/machine-learning?WT.mc_id=academic-40229-cxa&ocid=AID3041109
https://azure.microsoft.com/services/cosmos-db?WT.mc_id=academic-40229-cxa&ocid=AID3041109
https://soshnikov.com/science/analyzing-medical-papers-with-azure-and-text-analytics-for-health/
https://azure.microsoft.com/overview/what-is-cloud-computing?ocid=AID3041109
https://docs.microsoft.com/azure/stream-analytics/stream-analytics-twitter-sentiment-analysis-trends?ocid=AID3041109
https://soshnikov.com/science/analyzing-medical-papers-with-azure-and-text-analytics-for-health/

Post-Lecture Quiz

Post-lecture quiz

Assignment

Market Research

Data Science in the Cloud: The "Low

code/No code" way

Data Science In The Cloud: Low Code - Sketchnote by @nitya

Table of contents:

Data Science in the Cloud: The "Low code/No code" way

Pre-Lecture quiz

1. Introduction

1.1 What is Azure Machine Learning?

1.2 The Heart Failure Prediction Project:

https://red-water-0103e7a0f.azurestaticapps.net/quiz/33
https://twitter.com/nitya

1.3 The Heart Failure Dataset:

2. Low code/No code training of a model in Azure ML Studio

2.1 Create an Azure ML workspace

2.2 Compute Resources

2.2.1 Choosing the right options for your compute resources

2.2.2 Creating a compute cluster

2.3 Loading the Dataset

2.4 Low code/No Code training with AutoML

3. Low code/No Code model deployment and endpoint consumption

3.1 Model deployment

3.2 Endpoint consumption

🚀 Challenge

Post-Lecture Quiz

Review & Self Study

Assignment

Pre-Lecture quiz

1. Introduction

1.1 What is Azure Machine Learning?

The Azure cloud platform is more than 200 products and cloud services designed to help you bring

new solutions to life. Data scientists expend a lot of effort exploring and pre-processing data, and

trying various types of model-training algorithms to produce accurate models. These tasks are time

consuming, and often make inefficient use of expensive compute hardware.

Azure ML is a cloud-based platform for building and operating machine learning solutions in Azure. It

includes a wide range of features and capabilities that help data scientists prepare data, train models,

publish predictive services, and monitor their usage. Most importantly, it helps them to increase their

efficiency by automating many of the time-consuming tasks associated with training models; and it

enables them to use cloud-based compute resources that scale effectively, to handle large volumes

of data while incurring costs only when actually used.

Azure ML provides all the tools developers and data scientists need for their machine learning

workflows. These include:

https://red-water-0103e7a0f.azurestaticapps.net/quiz/34
https://docs.microsoft.com/azure/machine-learning/overview-what-is-azure-machine-learning?WT.mc_id=academic-40229-cxa&ocid=AID3041109

Azure Machine Learning Studio: it is a web portal in Azure Machine Learning for low-code and

no-code options for model training, deployment, automation, tracking and asset management.

The studio integrates with the Azure Machine Learning SDK for a seamless experience.

Jupyter Notebooks: quickly prototype and test ML models.

Azure Machine Learning Designer: allows to drag-n-drop modules to build experiments and then

deploy pipelines in a low-code environment.

Automated machine learning UI (AutoML) : automates iterative tasks of machine learning model

development, allowing to build ML models with high scale, efficiency, and productivity, all while

sustaining model quality.

Data Labelling: an assisted ML tool to automatically label data.

Machine learning extension for Visual Studio Code: provides a full-featured development

environment for building and managing ML projects.

Machine learning CLI: provides commands for managing Azure ML resources from the command

line.

Integration with open-source frameworks such as PyTorch, TensorFlow, Scikit-learn and many

more for training, deploying, and managing the end-to-end machine learning process.

MLflow: It is an open-source library for managing the life cycle of your machine learning

experiments. MLFlow Tracking is a component of MLflow that logs and tracks your training run

metrics and model artifacts, irrespective of your experiment's environment.

1.2 The Heart Failure Prediction Project:

There is no doubt that making and building projects is the best way to put your skills and knowledge

to the test. In this lesson, we are going to explore two different ways of building a data science project

for the prediction of heart failure attacks in Azure ML Studio, through Low code/No code and through

the Azure ML SDK as shown in the following schema:

project-schema

Each way has its own pros and cons. The Low code/No code way is easier to start with as it involves

interacting with a GUI (Graphical User Interface), with no prior knowledge of code required. This

method enables quick testing of the project's viability and to create POC (Proof Of Concept).

However, as the project grows and things need to be production ready, it is not feasible to create

resources through GUI. We need to programmatically automate everything, from the creation of

resources, to the deployment of a model. This is where knowing how to use the Azure ML SDK

becomes crucial.

Low code/No code Azure ML SDK

Expertise in code Not required Required

Low code/No code Azure ML SDK

Time to develop Fast and easy Depends on code expertise

Production ready No Yes

1.3 The Heart Failure Dataset:

Cardiovascular diseases (CVDs) are the number 1 cause of death globally, accounting for 31% of all

deaths worldwide. Environmental and behavioral risk factors such as use of tobacco, unhealthy diet

and obesity, physical inactivity and harmful use of alcohol could be used as features for estimation

models. Being able to estimate the probability of the development of a CVD could be of great use to

prevent attacks in high risk people.

Kaggle has made a Heart Failure dataset publicly available, that we are going to use for this project.

You can download the dataset now. This is a tabular dataset with 13 columns (12 features and 1 target

variable) and 299 rows.

Variable name Type Description Example

1 age numerical age of the patient 25

2 anaemia boolean
Decrease of red blood cells or

haemoglobin
0 or 1

3 creatinine_phosphokinase numerical Level of CPK enzyme in the blood 542

4 diabetes boolean If the patient has diabetes 0 or 1

5 ejection_fraction numerical
Percentage of blood leaving the heart

on each contraction
45

6 high_blood_pressure boolean If the patient has hypertension 0 or 1

7 platelets numerical Platelets in the blood 149000

8 serum_creatinine numerical Level of serum creatinine in the blood 0.5

9 serum_sodium numerical Level of serum sodium in the blood jun

10 sex boolean woman or man 0 or 1

https://www.kaggle.com/andrewmvd/heart-failure-clinical-data

Variable name Type Description Example

11 smoking boolean If the patient smokes 0 or 1

12 time numerical follow-up period (days) 4

--

--

-

21 DEATH_EVENT [Target] boolean
if the patient dies during the follow-up

period
0 or 1

Once you have the dataset, we can start the project in Azure.

2. Low code/No code training of a model in Azure ML

Studio

2.1 Create an Azure ML workspace

To train a model in Azure ML you first need to create an Azure ML workspace. The workspace is the

top-level resource for Azure Machine Learning, providing a centralized place to work with all the

artifacts you create when you use Azure Machine Learning. The workspace keeps a history of all

training runs, including logs, metrics, output, and a snapshot of your scripts. You use this information

to determine which training run produces the best model. Learn more

It is recommended to use the most up-to-date browser that's compatible with your operating system.

The following browsers are supported:

Microsoft Edge (The new Microsoft Edge, latest version. Not Microsoft Edge legacy)

Safari (latest version, Mac only)

Chrome (latest version)

Firefox (latest version)

To use Azure Machine Learning, create a workspace in your Azure subscription. You can then use this

workspace to manage data, compute resources, code, models, and other artifacts related to your

machine learning workloads.

NOTE: Your Azure subscription will be charged a small amount for data storage as long as the

Azure Machine Learning workspace exists in your subscription, so we recommend you to

https://docs.microsoft.com/azure/machine-learning/concept-workspace?WT.mc_id=academic-40229-cxa&ocid=AID3041109

delete the Azure Machine Learning workspace when you are no longer using it.

1. Sign into the Azure portal using the Microsoft credentials associated with your Azure subscription.

2. Select ＋Create a resource

workspace-1

Search for Machine Learning and select the Machine Learning tile

workspace-2

Click the create button

workspace-3

Fill in the settings as follows:

Subscription: Your Azure subscription

Resource group: Create or select a resource group

Workspace name: Enter a unique name for your workspace

Region: Select the geographical region closest to you

Storage account: Note the default new storage account that will be created for your

workspace

Key vault: Note the default new key vault that will be created for your workspace

Application insights: Note the default new application insights resource that will be created for

your workspace

Container registry: None (one will be created automatically the first time you deploy a model to

a container)

workspace-4

Click the create + review and then on the create button

3. Wait for your workspace to be created (this can take a few minutes). Then go to it in the portal.

You can find it through the Machine Learning Azure service.

4. On the Overview page for your workspace, launch Azure Machine Learning studio (or open a new

browser tab and navigate to https://ml.azure.com), and sign into Azure Machine Learning studio

using your Microsoft account. If prompted, select your Azure directory and subscription, and your

Azure Machine Learning workspace.

https://ms.portal.azure.com/
https://ml.azure.com/

workspace-5

5. In Azure Machine Learning studio, toggle the ☰ icon at the top left to view the various pages in

the interface. You can use these pages to manage the resources in your workspace.

workspace-6

You can manage your workspace using the Azure portal, but for data scientists and Machine Learning

operations engineers, Azure Machine Learning Studio provides a more focused user interface for

managing workspace resources.

2.2 Compute Resources

Compute Resources are cloud-based resources on which you can run model training and data

exploration processes. There are four kinds of compute resource you can create:

Compute Instances: Development workstations that data scientists can use to work with data

and models. This involves the creation of a Virtual Machine (VM) and launch a notebook instance.

You can then train a model by calling a computer cluster from the notebook.

Compute Clusters: Scalable clusters of VMs for on-demand processing of experiment code. You

will need it when training a model. Compute clusters can also employ specialized GPU or CPU

resources.

Inference Clusters: Deployment targets for predictive services that use your trained models.

Attached Compute: Links to existing Azure compute resources, such as Virtual Machines or

Azure Databricks clusters.

2.2.1 Choosing the right options for your compute resources

Some key factors are to consider when creating a compute resource and those choices can be

critical decisions to make.

Do you need CPU or GPU ?

A CPU (Central Processing Unit) is the electronic circuitry that executes instructions comprising a

computer program. A GPU (Graphics Processing Unit) is a specialized electronic circuit that can

execute graphics-related code at a very high rate.

The main difference between CPU and GPU architecture is that a CPU is designed to handle a wide-

range of tasks quickly (as measured by CPU clock speed), but are limited in the concurrency of tasks

that can be running. GPUs are designed for parallel computing and therefore are much better at deep

learning tasks.

CPU GPU

CPU GPU

Less expensive More expensive

Lower level of concurrency Higher level of concurrency

Slower in training deep learning models Optimal for deep learning

Cluster Size

Larger clusters are more expensive but will result in better responsiveness. Therefore, if you have

time but not enough money, you should start with a small cluster. Conversely, if you have money but

not much time, you should start with a larger cluster.

VM Size

Depending on your time and budgetary constraints, you can vary the size of your RAM, disk, number

of cores and clock speed. Increasing all those parameters will be costlier, but will result in better

performance.

Dedicated or Low-Priority Instances ?

A low-priority instance means that it is interruptible: essentially, Microsoft Azure can take those

resources and assign them to another task, thus interrupting a job. A dedicated instance, or non-

interruptible, means that the job will never be terminated without your permission. This is another

consideration of time vs money, since interruptible instances are less expensive than dedicated ones.

2.2.2 Creating a compute cluster

In the Azure ML workspace that we created earlier, go to compute and you will be able to see the

different compute resources we just discussed (i.e compute instances, compute clusters, inference

clusters and attached compute). For this project, we are going to need a compute cluster for model

training. In the Studio, Click on the "Compute" menu, then the "Compute cluster" tab and click on the

"+ New" button to create a compute cluster.

22

1. Choose your options: Dedicated vs Low priority, CPU or GPU, VM size and core number (you can

keep the default settings for this project).

2. Click on the Next button.

23

3. Give the cluster a compute name

https://ml.azure.com/

4. Choose your options: Minimum/Maximum number of nodes, Idle seconds before scale down, SSH

access. Note that if the minimum number of nodes is 0, you will save money when the cluster is

idle. Note that the higher the number of maximum nodes, the shorter the training will be. The

maximum number of nodes recommended is 3.

5. Click on the "Create" button. This step may take a few minutes.

29

Awesome! Now that we have a Compute cluster, we need to load the data to Azure ML Studio.

2.3 Loading the Dataset

1. In the Azure ML workspace that we created earlier, click on "Datasets" in the left menu and click

on the "+ Create dataset" button to create a dataset. Choose the "From local files" option and

select the Kaggle dataset we downloaded earlier.

24

2. Give your dataset a name, a type and a description. Click Next. Upload the data from files. Click

Next.

25

3. In the Schema, change the data type to Boolean for the following features: anaemia, diabetes,

high blood pressure, sex, smoking, and DEATH_EVENT. Click Next and Click Create.

26

Great! Now that the dataset is in place and the compute cluster is created, we can start the training of

the model!

2.4 Low code/No Code training with AutoML

Traditional machine learning model development is resource-intensive, requires significant domain

knowledge and time to produce and compare dozens of models. Automated machine learning

(AutoML), is the process of automating the time-consuming, iterative tasks of machine learning

model development. It allows data scientists, analysts, and developers to build ML models with high

scale, efficiency, and productivity, all while sustaining model quality. It reduces the time it takes to get

production-ready ML models, with great ease and efficiency. Learn more

1. In the Azure ML workspace that we created earlier click on "Automated ML" in the left menu and

select the dataset you just uploaded. Click Next.

27

https://ml.azure.com/
https://docs.microsoft.com/azure/machine-learning/concept-automated-ml?WT.mc_id=academic-40229-cxa&ocid=AID3041109
https://ml.azure.com/

2. Enter a new experiment name, the target column (DEATH_EVENT) and the compute cluster we

created. Click Next.

28

3. Choose "Classification" and Click Finish. This step might take between 30 minutes to 1 hour,

depending upon your compute cluster size.

30

4. Once the run is complete, click on the "Automated ML" tab, click on your run, and click on the

Algorithm in the "Best model summary" card.

31

Here you can see a detailed description of the best model that AutoML generated. You can also

explore other modes generated in the Models tab. Take a few minutes to explore the models in the

Explanations (preview button). Once you have chosen the model you want to use (here we will chose

the best model selected by autoML), we will see how we can deploy it.

3. Low code/No Code model deployment and endpoint

consumption

3.1 Model deployment

The automated machine learning interface allows you to deploy the best model as a web service in a

few steps. Deployment is the integration of the model so that it can make predictions based on new

data and identify potential areas of opportunity. For this project, deployment to a web service means

that medical applications will be able to consume the model to be able to make live predictions of

their patients risk to get a heart attack.

In the best model description, click on the "Deploy" button.

deploy-1

15. Give it a name, a description, compute type (Azure Container Instance), enable authentication and

click on Deploy. This step might take about 20 minutes to complete. The deployment process

entails several steps including registering the model, generating resources, and configuring them

for the web service. A status message appears under Deploy status. Select Refresh periodically to

check the deployment status. It is deployed and running when the status is "Healthy".

deploy-2

16. Once it has been deployed, click on the Endpoint tab and click on the endpoint you just deployed.

You can find here all the details you need to know about the endpoint.

deploy-3

Amazing! Now that we have a model deployed, we can start the consumption of the endpoint.

3.2 Endpoint consumption

Click on the "Consume" tab. Here you can find the REST endpoint and a python script in the

consumption option. Take some time to read the python code.

This script can be run directly from your local machine and will consume your endpoint.

35

Take a moment to check those 2 lines of code:

The url variable is the REST endpoint found in the consume tab and the api_key variable is the

primary key also found in the consume tab (only in the case you have enabled authentication). This is

how the script can consume the endpoint.

18. Running the script, you should see the following output:

This means that the prediction of heart failure for the data given is true. This makes sense

because if you look more closely at the data automatically generated in the script, everything is at

0 and false by default. You can change the data with the following input sample:

url = 'http://98e3715f-xxxx-xxxx-xxxx-9ec22d57b796.centralus.azurecontainer
api_key = '' # Replace this with the API key for the web service

python

b'"{\\"result\\": [true]}"'
python

data = {
 "data":
 [
 {
 'age': "0",
 'anaemia': "false",
 'creatinine_phosphokinase': "0",
 'diabetes': "false",

python

The script should return : python b'"{\\"result\\": [true, false]}"'

Congratulations! You just consumed the model deployed and trained it on Azure ML !

NOTE: Once you are done with the project, don't forget to delete all the resources.

🚀 Challenge

Look closely at the model explanations and details that AutoML generated for the top models. Try to

understand why the best model is better than the other ones. What algorithms were compared? What

are the differences between them? Why is the best one performing better in this case?

 'ejection_fraction': "0",
 'high_blood_pressure': "false",
 'platelets': "0",
 'serum_creatinine': "0",
 'serum_sodium': "0",
 'sex': "false",
 'smoking': "false",
 'time': "0",
 },
 {
 'age': "60",
 'anaemia': "false",
 'creatinine_phosphokinase': "500",
 'diabetes': "false",
 'ejection_fraction': "38",
 'high_blood_pressure': "false",
 'platelets': "260000",
 'serum_creatinine': "1.40",
 'serum_sodium': "137",
 'sex': "false",
 'smoking': "false",
 'time': "130",
 },
],
}

Post-Lecture Quiz

Review & Self Study

In this lesson, you learned how to train, deploy and consume a model to predict heart failure risk in a

Low code/No code fashion in the cloud. If you have not done it yet, dive deeper into the model

explanations that AutoML generated for the top models and try to understand why the best model is

better than others.

You can go further into Low code/No code AutoML by reading this documentation.

Assignment

Low code/No code Data Science project on Azure ML

Data Science in the Cloud: The "Azure ML

SDK" way

https://red-water-0103e7a0f.azurestaticapps.net/quiz/35
https://docs.microsoft.com/azure/machine-learning/tutorial-first-experiment-automated-ml?WT.mc_id=academic-40229-cxa&ocid=AID3041109

Data Science In The Cloud: Azure ML SDK - Sketchnote by @nitya

Table of contents:

Data Science in the Cloud: The "Azure ML SDK" way

Pre-Lecture Quiz

1. Introduction

1.1 What is Azure ML SDK?

1.2 Heart failure prediction project and dataset introduction

2. Training a model with the Azure ML SDK

2.1 Create an Azure ML workspace

2.2 Create a compute instance

2.3 Loading the Dataset

2.4 Creating Notebooks

2.5 Training a model

2.5.1 Setup Workspace, experiment, compute cluster and dataset

2.5.2 AutoML Configuration and training

3. Model deployment and endpoint consumption with the Azure ML SDK

3.1 Saving the best model

3.2 Model Deployment

3.3 Endpoint consumption

🚀 Challenge

Post-lecture quiz

Review & Self Study

Assignment

Pre-Lecture Quiz

1. Introduction

1.1 What is Azure ML SDK?

Data scientists and AI developers use the Azure Machine Learning SDK to build and run machine

learning workflows with the Azure Machine Learning service. You can interact with the service in any

Python environment, including Jupyter Notebooks, Visual Studio Code, or your favorite Python IDE.

Key areas of the SDK include:

https://twitter.com/nitya
https://red-water-0103e7a0f.azurestaticapps.net/quiz/36

Explore, prepare and manage the lifecycle of your datasets used in machine learning experiments.

Manage cloud resources for monitoring, logging, and organizing your machine learning

experiments.

Train models either locally or by using cloud resources, including GPU-accelerated model training.

Use automated machine learning, which accepts configuration parameters and training data. It

automatically iterates through algorithms and hyperparameter settings to find the best model for

running predictions.

Deploy web services to convert your trained models into RESTful services that can be consumed

in any application.

Learn more about the Azure Machine Learning SDK

In the previous lesson, we saw how to train, deploy and consume a model in a Low code/No code

fashion. We used the Heart Failure dataset to generate and Heart failure prediction model. In this

lesson, we are going to do the exact same thing but using the Azure Machine Learning SDK.

project-schema

1.2 Heart failure prediction project and dataset introduction

Check here the Heart failure prediction project and dataset introduction.

2. Training a model with the Azure ML SDK

2.1 Create an Azure ML workspace

For simplicity, we are going to work on a jupyter notebook. This implies that you already have a

Workspace and a compute instance. If you already have a Workspace, you can directly jump to the

section 2.3 Notebook creation.

If not, please follow the instructions in the section 2.1 Create an Azure ML workspace in the previous

lesson to create a workspace.

2.2 Create a compute instance

In the Azure ML workspace that we created earlier, go to the compute menu and you will see the

different compute resources available

compute-instance-1

Let's create a compute instance to provision a jupyter notebook.

https://docs.microsoft.com/python/api/overview/azure/ml?WT.mc_id=academic-40229-cxa&ocid=AID3041109
https://ml.azure.com/

1. Click on the + New button.

2. Give a name to your compute instance.

3. Choose your options: CPU or GPU, VM size and core number.

4. Click in the Create button.

Congratulations, you have just created a compute instance! We will use this compute instance to

create a Notebook the Creating Notebooks section.

2.3 Loading the Dataset

Refer the previous lesson in the section 2.3 Loading the Dataset if you have not uploaded the

dataset yet.

2.4 Creating Notebooks

NOTE: For the next step you can either create a new notebook from scratch, or you can

upload the notebook we created in you Azure ML Studio. To upload it, simply click on the

"Notebook" menu and upload the notebook.

Notebook are a really important part of the data science process. They can be used to Conduct

Exploratory Data Analysis (EDA), call out to a computer cluster to train a model, call out to an

inference cluster to deploy an endpoint.

To create a Notebook, we need a compute node that is serving out the jupyter notebook instance. Go

back to the Azure ML workspace and click on Compute instances. In the list of compute instances

you should see the compute instance we created earlier.

1. In the Applications section, click on the Jupyter option.

2. Tick the "Yes, I understand" box and click on the Continue button. notebook-1

3. This should open a new browser tab with your jupyter notebook instance as follow. Click on the

"New" button to create a notebook.

notebook-2

Now that we have a Notebook, we can start training the model with Azure ML SDK.

2.5 Training a model

https://ml.azure.com/

First of all, if you ever have a doubt, refer to the Azure ML SDK documentation. It contains all the

necessary information to understand the modules we are going to see in this lesson.

2.5.1 Setup Workspace, experiment, compute cluster and dataset

You need to load the workspace from the configuration file using the following code:

This returns an object of type Workspace that represents the workspace. The you need to create

an experiment using the following code:

To get or create an experiment from a workspace, you request the experiment using the experiment

name. Experiment name must be 3-36 characters, start with a letter or a number, and can only

contain letters, numbers, underscores, and dashes. If the experiment is not found in the workspace, a

new experiment is created.

Now you need to create a compute cluster for the training using the following code. Note that this

step can take a few minutes.

from azureml.core import Workspace
ws = Workspace.from_config()

python

from azureml.core import Experiment
experiment_name = 'aml-experiment'
experiment = Experiment(ws, experiment_name)

python

from azureml.core.compute import AmlCompute

aml_name = "heart-f-cluster"
try:
 aml_compute = AmlCompute(ws, aml_name)
 print('Found existing AML compute context.')
except:
 print('Creating new AML compute context.')
 aml_config = AmlCompute.provisioning_configuration(vm_size = "Standard_
 aml_compute = AmlCompute.create(ws, name = aml_name, provisioning_confi
 aml_compute.wait_for_completion(show_output = True)

cts = ws.compute_targets
compute_target = cts[aml_name]

python

https://docs.microsoft.com/python/api/overview/azure/ml?WT.mc_id=academic-40229-cxa&ocid=AID3041109

You can get the dataset from the workspace using the dataset name in the following way:

2.5.2 AutoML Configuration and training

To set the AutoML configuration, use the AutoMLConfig class.

As described in the doc, there are a lot of parameters with which you can play with. For this project,

we will use the following parameters:

experiment_timeout_minutes : The maximum amount of time (in minutes) that the

experiment is allowed to run before it is automatically stopped and results are automatically made

available

max_concurrent_iterations : The maximum number of concurrent training iterations

allowed for the experiment.

primary_metric : The primary metric used to determine the experiment's status.

compute_target : The Azure Machine Learning compute target to run the Automated Machine

Learning experiment on.

task : The type of task to run. Values can be 'classification', 'regression', or 'forecasting'

depending on the type of automated ML problem to solve.

training_data : The training data to be used within the experiment. It should contain both

training features and a label column (optionally a sample weights column).

label_column_name : The name of the label column.

path : The full path to the Azure Machine Learning project folder.

enable_early_stopping : Whether to enable early termination if the score is not improving in

the short term.

featurization : Indicator for whether featurization step should be done automatically or not,

or whether customized featurization should be used.

debug_log : The log file to write debug information to.

dataset = ws.datasets['heart-failure-records']
df = dataset.to_pandas_dataframe()
df.describe()

python

from azureml.train.automl import AutoMLConfig

project_folder = './aml-project'

automl_settings = {
 "experiment_timeout_minutes": 20,
 "max_concurrent_iterations": 3,
 "primary_metric" : 'AUC_weighted'

python

https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.automlconfig(class)?WT.mc_id=academic-40229-cxa&ocid=AID3041109

Now that you have your configuration set, you can train the model using the following code. This step

can take up to an hour depending on your cluster size.

You can run the RunDetails widget to show the different experiments.

3. Model deployment and endpoint consumption with

the Azure ML SDK

3.1 Saving the best model

The remote_run an object of type AutoMLRun. This object contains the method

get_output() which returns the best run and the corresponding fitted model.

You can see the parameters used for the best model by just printing the fitted_model and see the

properties of the best model by using the get_properties() method.

}

automl_config = AutoMLConfig(compute_target=compute_target,
 task = "classification",
 training_data=dataset,
 label_column_name="DEATH_EVENT",
 path = project_folder,
 enable_early_stopping= True,
 featurization= 'auto',
 debug_log = "automl_errors.log",
 **automl_settings
)

remote_run = experiment.submit(automl_config)
python

from azureml.widgets import RunDetails
RunDetails(remote_run).show()

python

best_run, fitted_model = remote_run.get_output()
python

https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.run.automlrun?WT.mc_id=academic-40229-cxa&ocid=AID3041109
https://docs.microsoft.com/python/api/azureml-core/azureml.core.run(class)?view=azure-ml-py#azureml_core_Run_get_properties?WT.mc_id=academic-40229-cxa&ocid=AID3041109

Now register the model with the register_model method.

3.2 Model Deployment

Once the best model is saved, we can deploy it with the InferenceConfig class. InferenceConfig

represents the configuration settings for a custom environment used for deployment. The

AciWebservice class represents a machine learning model deployed as a web service endpoint on

Azure Container Instances. A deployed service is created from a model, script, and associated files.

The resulting web service is a load-balanced, HTTP endpoint with a REST API. You can send data to

this API and receive the prediction returned by the model.

The model is deployed using the deploy method.

best_run.get_properties()
python

model_name = best_run.properties['model_name']
script_file_name = 'inference/score.py'
best_run.download_file('outputs/scoring_file_v_1_0_0.py', 'inference/score.
description = "aml heart failure project sdk"
model = best_run.register_model(model_name = model_name,
 model_path = './outputs/',
 description = description,
 tags = None)

python

from azureml.core.model import InferenceConfig, Model
from azureml.core.webservice import AciWebservice

inference_config = InferenceConfig(entry_script=script_file_name, environme

aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1,
 memory_gb = 1,
 tags = {'type': "automl-hear
 description = 'Sample servic

aci_service_name = 'automl-hf-sdk'
aci_service = Model.deploy(ws, aci_service_name, [model], inference_config,
aci_service.wait_for_deployment(True)
print(aci_service.state)

python

https://docs.microsoft.com/python/api/azureml-train-automl-client/azureml.train.automl.run.automlrun?view=azure-ml-py#register-model-model-name-none--description-none--tags-none--iteration-none--metric-none-?WT.mc_id=academic-40229-cxa&ocid=AID3041109
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model.inferenceconfig?view=azure-ml-py?ocid=AID3041109
https://docs.microsoft.com/python/api/azureml-core/azureml.core.webservice.aciwebservice?view=azure-ml-py
https://docs.microsoft.com/python/api/azureml-core/azureml.core.model(class)?view=azure-ml-py#deploy-workspace--name--models--inference-config-none--deployment-config-none--deployment-target-none--overwrite-false--show-output-false-?WT.mc_id=academic-40229-cxa&ocid=AID3041109

This step should take a few minutes.

3.3 Endpoint consumption

You consume your endpoint by creating a sample input:

And then you can send this input to your model for prediction :

This should output '{"result": [false]}' . This means that the patient input we sent to the

endpoint generated the prediction false which means this person is not likely to have a heart

attack.

Congratulations! You just consumed the model deployed and trained on Azure ML with the Azure ML

SDK!

data = {
 "data":
 [
 {
 'age': "60",
 'anaemia': "false",
 'creatinine_phosphokinase': "500",
 'diabetes': "false",
 'ejection_fraction': "38",
 'high_blood_pressure': "false",
 'platelets': "260000",
 'serum_creatinine': "1.40",
 'serum_sodium': "137",
 'sex': "false",
 'smoking': "false",
 'time': "130",
 },
],
}

test_sample = str.encode(json.dumps(data))

python

response = aci_service.run(input_data=test_sample)
response

python

NOTE: Once you are done with the project, don't forget to delete all the resources.

🚀 Challenge

There are many other things you can do through the SDK, unfortunately, we can not view them all in

this lesson. But good news, learning how to skim through the SDK documentation can take you a long

way on your own. Have a look at the Azure ML SDK documentation and find the Pipeline class

that allows you to create pipelines. A Pipeline is a collection of steps which can be executed as a

workflow.

HINT: Go to the SDK documentation and type keywords in the search bar like "Pipeline". You should

have the azureml.pipeline.core.Pipeline class in the search results.

Post-lecture quiz

Review & Self Study

In this lesson, you learned how to train, deploy and consume a model to predict heart failure risk with

the Azure ML SDK in the cloud. Check this documentation for further information about the Azure ML

SDK. Try to create your own model with the Azure ML SDK.

Assignment

Data Science project using Azure ML SDK

Data Science in the Wild
Real-world applications of data science across industries.

Topics

https://docs.microsoft.com/python/api/overview/azure/ml/?view=azure-ml-py?WT.mc_id=academic-40229-cxa&ocid=AID3041109
https://red-water-0103e7a0f.azurestaticapps.net/quiz/37
https://docs.microsoft.com/python/api/overview/azure/ml/?view=azure-ml-py?WT.mc_id=academic-40229-cxa&ocid=AID3041109

1. Data Science in the Real World

Credits

Written with ❤ by Nitya Narasimhan

https://twitter.com/nitya

