# Data Ethics > Summary Sketchnote from [Nitya Narasimhan](https://twitter.com/nitya) / [SketchTheDocs](https://twitter.com/sketchthedocs)
## Pre-Lecture Quiz [Pre-lecture quiz]() ## Introduction This lesson dives into a critical topic for the modern data scientist: _data ethics_. In this lesson we'll cover: 1. _[Fundamentals](#1-fundamentals)_ - Principles & History 2. _[Data Collection](#2-data-collection)_ - Ownership & Consent 3. _[Data Privacy](#3-data-privacy)_ - Protection & Anonymity 4. _[Algorithms & Fairness](#4-algorithms-and-fairness)_ - Unfairness, Harms & Bias 5. _[Tools & Frameworks](5-tools-and-frameworks)_ - Codes, Checklists & Frameworks 6. _[Summary](6-summary)_ - Related Work
## 1. Fundamentals | Topics| |--| | 1.1 What is Ethics and why do we care?| | 1.2 History and challenges | | 1.3 Concepts in Ethics| | 1.4 Ethical Principles and Responsible AI|
## 2. Data Collection | Topics| |--| | 2.1 Data Ownership & Intellectual Property | | 2.2 Ethics & Human Consent | | 2.3 Data Quality & Representation | | 2.4 The 5Cs Framework |
## 3. Data Privacy | Topics| |--| | 3.1 Data Privacy & Degrees of Privacy | | 3.2 Data Anonymity & De-Identification | | 3.3 Challenges & Frameworks | | 3.4 Case Studies |
## 4. Algorithms and Fairness | Topics| |--| | 4.1 Fairness, Unfairness & Harms | | 4.2 Data Validity & Misrepresentation | | 4.3 Algorithm Bias & Mitigation | | 4.4 Case Studies |
## 5. Tools and Frameworks | Topics| |--| | 5.1 Data Ethics & Culture | | 5.2 Codes of Conduct & Checklists | | 5.3 Industry Frameworks (Google, IBM, Microsoft, Facebook) | | 5.4 Government Frameworks (UK, US, India) |
## 6. Summary | Topics| |--| | 6.1 Understanding Ethics (History) | | 6.2 Applying Ethics (Principles) | | 6.3 Evolving Ethics (Research) | | 6.4 Further Reading (References) |
## 🚀 Challenge ## Post-Lecture Quiz [Post-lecture quiz]() ## Review & Self Study ## Assignment [Assignment Title](assignment.md)