{ "cells": [ { "cell_type": "markdown", "source": [ "# NYC Taxi data in Winter and Summer\r\n", "\r\n", "Refer to the [Data dictionary](https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_yellow.pdf) to learn more about the columns that have been provided.\r\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "#Install the pandas library\r\n", "!pip install pandas" ], "outputs": [], "metadata": { "scrolled": true } }, { "cell_type": "code", "execution_count": 7, "source": [ "import pandas as pd\r\n", "\r\n", "path = '../../data/taxi.csv'\r\n", "\r\n", "#Load the csv file into a dataframe\r\n", "df = pd.read_csv(path)\r\n", "\r\n", "#Print the dataframe\r\n", "print(df)\r\n" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count \\\n", "0 2.0 2019-07-15 16:27:53 2019-07-15 16:44:21 3.0 \n", "1 2.0 2019-07-17 20:26:35 2019-07-17 20:40:09 6.0 \n", "2 2.0 2019-07-06 16:01:08 2019-07-06 16:10:25 1.0 \n", "3 1.0 2019-07-18 22:32:23 2019-07-18 22:35:08 1.0 \n", "4 2.0 2019-07-19 14:54:29 2019-07-19 15:19:08 1.0 \n", ".. ... ... ... ... \n", "195 2.0 2019-01-18 08:42:15 2019-01-18 08:56:57 1.0 \n", "196 1.0 2019-01-19 04:34:45 2019-01-19 04:43:44 1.0 \n", "197 2.0 2019-01-05 10:37:39 2019-01-05 10:42:03 1.0 \n", "198 2.0 2019-01-23 10:36:29 2019-01-23 10:44:34 2.0 \n", "199 2.0 2019-01-30 06:55:58 2019-01-30 07:07:02 5.0 \n", "\n", " trip_distance RatecodeID store_and_fwd_flag PULocationID DOLocationID \\\n", "0 2.02 1.0 N 186 233 \n", "1 1.59 1.0 N 141 161 \n", "2 1.69 1.0 N 246 249 \n", "3 0.90 1.0 N 229 141 \n", "4 4.79 1.0 N 237 107 \n", ".. ... ... ... ... ... \n", "195 1.18 1.0 N 43 237 \n", "196 2.30 1.0 N 148 234 \n", "197 0.83 1.0 N 237 263 \n", "198 1.12 1.0 N 144 113 \n", "199 2.41 1.0 N 209 107 \n", "\n", " payment_type fare_amount extra mta_tax tip_amount tolls_amount \\\n", "0 1.0 12.0 1.0 0.5 4.08 0.0 \n", "1 2.0 10.0 0.5 0.5 0.00 0.0 \n", "2 2.0 8.5 0.0 0.5 0.00 0.0 \n", "3 1.0 4.5 3.0 0.5 1.65 0.0 \n", "4 1.0 19.5 0.0 0.5 5.70 0.0 \n", ".. ... ... ... ... ... ... \n", "195 1.0 10.0 0.0 0.5 2.16 0.0 \n", "196 1.0 9.5 0.5 0.5 2.15 0.0 \n", "197 1.0 5.0 0.0 0.5 1.16 0.0 \n", "198 2.0 7.0 0.0 0.5 0.00 0.0 \n", "199 1.0 10.5 0.0 0.5 1.00 0.0 \n", "\n", " improvement_surcharge total_amount congestion_surcharge \n", "0 0.3 20.38 2.5 \n", "1 0.3 13.80 2.5 \n", "2 0.3 11.80 2.5 \n", "3 0.3 9.95 2.5 \n", "4 0.3 28.50 2.5 \n", ".. ... ... ... \n", "195 0.3 12.96 0.0 \n", "196 0.3 12.95 0.0 \n", "197 0.3 6.96 0.0 \n", "198 0.3 7.80 0.0 \n", "199 0.3 12.30 0.0 \n", "\n", "[200 rows x 18 columns]\n" ] } ], "metadata": {} } ], "metadata": { "kernelspec": { "name": "python3", "display_name": "Python 3.9.7 64-bit ('venv': venv)" }, "language_info": { "mimetype": "text/x-python", "name": "python", "pygments_lexer": "ipython3", "codemirror_mode": { "name": "ipython", "version": 3 }, "version": "3.9.7", "nbconvert_exporter": "python", "file_extension": ".py" }, "name": "04-nyc-taxi-join-weather-in-pandas", "notebookId": 1709144033725344, "interpreter": { "hash": "6b9b57232c4b57163d057191678da2030059e733b8becc68f245de5a75abe84e" } }, "nbformat": 4, "nbformat_minor": 2 }