{ "cells": [ { "cell_type": "markdown", "source": [ "# 冬季和夏季的纽约出租车数据\n", "\n", "请参考 [数据字典](https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_yellow.pdf) 了解提供的列的详细信息。\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "#Install the pandas library\r\n", "!pip install pandas" ], "outputs": [], "metadata": { "scrolled": true } }, { "cell_type": "code", "execution_count": 7, "source": [ "import pandas as pd\r\n", "\r\n", "path = '../../data/taxi.csv'\r\n", "\r\n", "#Load the csv file into a dataframe\r\n", "df = pd.read_csv(path)\r\n", "\r\n", "#Print the dataframe\r\n", "print(df)\r\n" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count \\\n", "0 2.0 2019-07-15 16:27:53 2019-07-15 16:44:21 3.0 \n", "1 2.0 2019-07-17 20:26:35 2019-07-17 20:40:09 6.0 \n", "2 2.0 2019-07-06 16:01:08 2019-07-06 16:10:25 1.0 \n", "3 1.0 2019-07-18 22:32:23 2019-07-18 22:35:08 1.0 \n", "4 2.0 2019-07-19 14:54:29 2019-07-19 15:19:08 1.0 \n", ".. ... ... ... ... \n", "195 2.0 2019-01-18 08:42:15 2019-01-18 08:56:57 1.0 \n", "196 1.0 2019-01-19 04:34:45 2019-01-19 04:43:44 1.0 \n", "197 2.0 2019-01-05 10:37:39 2019-01-05 10:42:03 1.0 \n", "198 2.0 2019-01-23 10:36:29 2019-01-23 10:44:34 2.0 \n", "199 2.0 2019-01-30 06:55:58 2019-01-30 07:07:02 5.0 \n", "\n", " trip_distance RatecodeID store_and_fwd_flag PULocationID DOLocationID \\\n", "0 2.02 1.0 N 186 233 \n", "1 1.59 1.0 N 141 161 \n", "2 1.69 1.0 N 246 249 \n", "3 0.90 1.0 N 229 141 \n", "4 4.79 1.0 N 237 107 \n", ".. ... ... ... ... ... \n", "195 1.18 1.0 N 43 237 \n", "196 2.30 1.0 N 148 234 \n", "197 0.83 1.0 N 237 263 \n", "198 1.12 1.0 N 144 113 \n", "199 2.41 1.0 N 209 107 \n", "\n", " payment_type fare_amount extra mta_tax tip_amount tolls_amount \\\n", "0 1.0 12.0 1.0 0.5 4.08 0.0 \n", "1 2.0 10.0 0.5 0.5 0.00 0.0 \n", "2 2.0 8.5 0.0 0.5 0.00 0.0 \n", "3 1.0 4.5 3.0 0.5 1.65 0.0 \n", "4 1.0 19.5 0.0 0.5 5.70 0.0 \n", ".. ... ... ... ... ... ... \n", "195 1.0 10.0 0.0 0.5 2.16 0.0 \n", "196 1.0 9.5 0.5 0.5 2.15 0.0 \n", "197 1.0 5.0 0.0 0.5 1.16 0.0 \n", "198 2.0 7.0 0.0 0.5 0.00 0.0 \n", "199 1.0 10.5 0.0 0.5 1.00 0.0 \n", "\n", " improvement_surcharge total_amount congestion_surcharge \n", "0 0.3 20.38 2.5 \n", "1 0.3 13.80 2.5 \n", "2 0.3 11.80 2.5 \n", "3 0.3 9.95 2.5 \n", "4 0.3 28.50 2.5 \n", ".. ... ... ... \n", "195 0.3 12.96 0.0 \n", "196 0.3 12.95 0.0 \n", "197 0.3 6.96 0.0 \n", "198 0.3 7.80 0.0 \n", "199 0.3 12.30 0.0 \n", "\n", "[200 rows x 18 columns]\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "# 使用以下单元格进行自己的探索性数据分析\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**免责声明**: \n本文档使用AI翻译服务[Co-op Translator](https://github.com/Azure/co-op-translator)进行翻译。尽管我们努力确保准确性,但请注意,自动翻译可能包含错误或不准确之处。应以原始语言的文档作为权威来源。对于关键信息,建议使用专业人工翻译。因使用本翻译而引起的任何误解或误读,我们概不负责。\n" ] } ], "metadata": { "kernelspec": { "name": "python3", "display_name": "Python 3.9.7 64-bit ('venv': venv)" }, "language_info": { "mimetype": "text/x-python", "name": "python", "pygments_lexer": "ipython3", "codemirror_mode": { "name": "ipython", "version": 3 }, "version": "3.9.7", "nbconvert_exporter": "python", "file_extension": ".py" }, "name": "04-nyc-taxi-join-weather-in-pandas", "notebookId": 1709144033725344, "interpreter": { "hash": "6b9b57232c4b57163d057191678da2030059e733b8becc68f245de5a75abe84e" }, "coopTranslator": { "original_hash": "7bca1c1abc1e55842817b62e44e1a963", "translation_date": "2025-09-02T08:33:58+00:00", "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb", "language_code": "zh" } }, "nbformat": 4, "nbformat_minor": 2 }