# โครงการ Data Science แบบ Low code/No code บน Azure ML ## คำแนะนำ เราได้เรียนรู้วิธีการใช้แพลตฟอร์ม Azure ML เพื่อฝึกอบรม, นำไปใช้งาน และใช้งานโมเดลในรูปแบบ Low code/No code แล้ว ตอนนี้ลองค้นหาข้อมูลที่คุณสามารถใช้เพื่อฝึกอบรมโมเดลอื่น, นำไปใช้งาน และใช้งานได้ คุณสามารถค้นหาชุดข้อมูลได้ที่ [Kaggle](https://kaggle.com) และ [Azure Open Datasets](https://azure.microsoft.com/services/open-datasets/catalog?WT.mc_id=academic-77958-bethanycheum&ocid=AID3041109) ## เกณฑ์การประเมิน | ยอดเยี่ยม | เพียงพอ | ต้องปรับปรุง | |-----------|----------|-------------------| |เมื่ออัปโหลดข้อมูล คุณได้ตรวจสอบและเปลี่ยนประเภทของฟีเจอร์หากจำเป็น คุณยังได้ทำความสะอาดข้อมูลหากจำเป็น คุณได้ฝึกอบรมชุดข้อมูลผ่าน AutoML และตรวจสอบคำอธิบายของโมเดล คุณได้นำโมเดลที่ดีที่สุดไปใช้งานและสามารถใช้งานได้ | เมื่ออัปโหลดข้อมูล คุณได้ตรวจสอบและเปลี่ยนประเภทของฟีเจอร์หากจำเป็น คุณได้ฝึกอบรมชุดข้อมูลผ่าน AutoML คุณได้นำโมเดลที่ดีที่สุดไปใช้งานและสามารถใช้งานได้ | คุณได้นำโมเดลที่ดีที่สุดที่ฝึกอบรมโดย AutoML ไปใช้งานและสามารถใช้งานได้ | --- **ข้อจำกัดความรับผิดชอบ**: เอกสารนี้ได้รับการแปลโดยใช้บริการแปลภาษา AI [Co-op Translator](https://github.com/Azure/co-op-translator) แม้ว่าเราจะพยายามให้การแปลมีความถูกต้องมากที่สุด แต่โปรดทราบว่าการแปลอัตโนมัติอาจมีข้อผิดพลาดหรือความไม่ถูกต้อง เอกสารต้นฉบับในภาษาดั้งเดิมควรถือเป็นแหล่งข้อมูลที่เชื่อถือได้ สำหรับข้อมูลที่สำคัญ ขอแนะนำให้ใช้บริการแปลภาษามืออาชีพ เราไม่รับผิดชอบต่อความเข้าใจผิดหรือการตีความผิดที่เกิดจากการใช้การแปลนี้