{ "cells": [ { "cell_type": "markdown", "source": [ "## Introduktion till sannolikhet och statistik\n", "## Uppgift\n", "\n", "I den här uppgiften kommer vi att använda datasetet med diabetespatienter som hämtats [härifrån](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": 13, "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "df = pd.read_csv(\"../../data/diabetes.tsv\",sep='\\t')\n", "df.head()" ], "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n", "0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n", "1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n", "2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n", "3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n", "4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135" ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AGESEXBMIBPS1S2S3S4S5S6Y
059232.1101.015793.238.04.04.859887151
148121.687.0183103.270.03.03.89186975
272230.593.015693.641.04.04.672885141
324125.384.0198131.440.05.04.890389206
450123.0101.0192125.452.04.04.290580135
\n", "
" ] }, "metadata": {}, "execution_count": 13 } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "I det här datasetet är kolumnerna följande:\n", "* Ålder och kön är självförklarande\n", "* BMI är kroppsmassaindex\n", "* BP är genomsnittligt blodtryck\n", "* S1 till S6 är olika blodmätningar\n", "* Y är det kvalitativa måttet på sjukdomsprogression under ett år\n", "\n", "Låt oss studera detta dataset med hjälp av sannolikhets- och statistiska metoder.\n", "\n", "### Uppgift 1: Beräkna medelvärden och varians för alla värden\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Uppgift 2: Rita lådagram för BMI, BP och Y beroende på kön\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Uppgift 3: Vad är fördelningen av Ålder, Kön, BMI och Y-variabler?\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Uppgift 4: Testa korrelationen mellan olika variabler och sjukdomsprogression (Y)\n", "\n", "> **Tips** En korrelationsmatris ger dig den mest användbara informationen om vilka värden som är beroende av varandra.\n" ], "metadata": {} }, { "cell_type": "markdown", "source": [], "metadata": {} }, { "cell_type": "markdown", "source": [], "metadata": {} }, { "cell_type": "markdown", "source": [], "metadata": {} }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**Ansvarsfriskrivning**: \nDetta dokument har översatts med hjälp av AI-översättningstjänsten [Co-op Translator](https://github.com/Azure/co-op-translator). Även om vi strävar efter noggrannhet, vänligen notera att automatiska översättningar kan innehålla fel eller felaktigheter. Det ursprungliga dokumentet på dess originalspråk bör betraktas som den auktoritativa källan. För kritisk information rekommenderas professionell mänsklig översättning. Vi ansvarar inte för eventuella missförstånd eller feltolkningar som uppstår vid användning av denna översättning.\n" ] } ], "metadata": { "orig_nbformat": 4, "language_info": { "name": "python", "version": "3.8.8", "mimetype": "text/x-python", "codemirror_mode": { "name": "ipython", "version": 3 }, "pygments_lexer": "ipython3", "nbconvert_exporter": "python", "file_extension": ".py" }, "kernelspec": { "name": "python3", "display_name": "Python 3.8.8 64-bit (conda)" }, "interpreter": { "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" }, "coopTranslator": { "original_hash": "6d945fd15163f60cb473dbfe04b2d100", "translation_date": "2025-09-06T17:34:38+00:00", "source_file": "1-Introduction/04-stats-and-probability/assignment.ipynb", "language_code": "sv" } }, "nbformat": 4, "nbformat_minor": 2 }