{ "cells": [ { "cell_type": "markdown", "source": [ "# 冬季與夏季的紐約計程車數據\n", "\n", "請參考[數據字典](https://www1.nyc.gov/assets/tlc/downloads/pdf/data_dictionary_trip_records_yellow.pdf)以了解提供的欄位詳細資訊。\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "#Install the pandas library\r\n", "!pip install pandas" ], "outputs": [], "metadata": { "scrolled": true } }, { "cell_type": "code", "execution_count": 7, "source": [ "import pandas as pd\r\n", "\r\n", "path = '../../data/taxi.csv'\r\n", "\r\n", "#Load the csv file into a dataframe\r\n", "df = pd.read_csv(path)\r\n", "\r\n", "#Print the dataframe\r\n", "print(df)\r\n" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ " VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count \\\n", "0 2.0 2019-07-15 16:27:53 2019-07-15 16:44:21 3.0 \n", "1 2.0 2019-07-17 20:26:35 2019-07-17 20:40:09 6.0 \n", "2 2.0 2019-07-06 16:01:08 2019-07-06 16:10:25 1.0 \n", "3 1.0 2019-07-18 22:32:23 2019-07-18 22:35:08 1.0 \n", "4 2.0 2019-07-19 14:54:29 2019-07-19 15:19:08 1.0 \n", ".. ... ... ... ... \n", "195 2.0 2019-01-18 08:42:15 2019-01-18 08:56:57 1.0 \n", "196 1.0 2019-01-19 04:34:45 2019-01-19 04:43:44 1.0 \n", "197 2.0 2019-01-05 10:37:39 2019-01-05 10:42:03 1.0 \n", "198 2.0 2019-01-23 10:36:29 2019-01-23 10:44:34 2.0 \n", "199 2.0 2019-01-30 06:55:58 2019-01-30 07:07:02 5.0 \n", "\n", " trip_distance RatecodeID store_and_fwd_flag PULocationID DOLocationID \\\n", "0 2.02 1.0 N 186 233 \n", "1 1.59 1.0 N 141 161 \n", "2 1.69 1.0 N 246 249 \n", "3 0.90 1.0 N 229 141 \n", "4 4.79 1.0 N 237 107 \n", ".. ... ... ... ... ... \n", "195 1.18 1.0 N 43 237 \n", "196 2.30 1.0 N 148 234 \n", "197 0.83 1.0 N 237 263 \n", "198 1.12 1.0 N 144 113 \n", "199 2.41 1.0 N 209 107 \n", "\n", " payment_type fare_amount extra mta_tax tip_amount tolls_amount \\\n", "0 1.0 12.0 1.0 0.5 4.08 0.0 \n", "1 2.0 10.0 0.5 0.5 0.00 0.0 \n", "2 2.0 8.5 0.0 0.5 0.00 0.0 \n", "3 1.0 4.5 3.0 0.5 1.65 0.0 \n", "4 1.0 19.5 0.0 0.5 5.70 0.0 \n", ".. ... ... ... ... ... ... \n", "195 1.0 10.0 0.0 0.5 2.16 0.0 \n", "196 1.0 9.5 0.5 0.5 2.15 0.0 \n", "197 1.0 5.0 0.0 0.5 1.16 0.0 \n", "198 2.0 7.0 0.0 0.5 0.00 0.0 \n", "199 1.0 10.5 0.0 0.5 1.00 0.0 \n", "\n", " improvement_surcharge total_amount congestion_surcharge \n", "0 0.3 20.38 2.5 \n", "1 0.3 13.80 2.5 \n", "2 0.3 11.80 2.5 \n", "3 0.3 9.95 2.5 \n", "4 0.3 28.50 2.5 \n", ".. ... ... ... \n", "195 0.3 12.96 0.0 \n", "196 0.3 12.95 0.0 \n", "197 0.3 6.96 0.0 \n", "198 0.3 7.80 0.0 \n", "199 0.3 12.30 0.0 \n", "\n", "[200 rows x 18 columns]\n" ] } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "# 使用以下單元格進行自己的探索性數據分析\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**免責聲明**: \n本文件使用 AI 翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 進行翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議尋求專業人工翻譯。我們對因使用此翻譯而引起的任何誤解或錯誤解讀概不負責。\n" ] } ], "metadata": { "kernelspec": { "name": "python3", "display_name": "Python 3.9.7 64-bit ('venv': venv)" }, "language_info": { "mimetype": "text/x-python", "name": "python", "pygments_lexer": "ipython3", "codemirror_mode": { "name": "ipython", "version": 3 }, "version": "3.9.7", "nbconvert_exporter": "python", "file_extension": ".py" }, "name": "04-nyc-taxi-join-weather-in-pandas", "notebookId": 1709144033725344, "interpreter": { "hash": "6b9b57232c4b57163d057191678da2030059e733b8becc68f245de5a75abe84e" }, "coopTranslator": { "original_hash": "7bca1c1abc1e55842817b62e44e1a963", "translation_date": "2025-09-02T08:31:08+00:00", "source_file": "4-Data-Science-Lifecycle/15-analyzing/assignment.ipynb", "language_code": "mo" } }, "nbformat": 4, "nbformat_minor": 2 }