{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Contoh Dasar Pandas\n",
"\n",
"Notebook ini akan memandu Anda melalui beberapa konsep dasar Pandas. Kita akan mulai dengan mengimpor pustaka-pustaka ilmu data yang umum digunakan:\n"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Seri\n",
"\n",
"Seri mirip dengan daftar atau array 1D, tetapi memiliki indeks. Semua operasi diselaraskan berdasarkan indeks.\n"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 1\n",
"1 2\n",
"2 3\n",
"3 4\n",
"4 5\n",
"5 6\n",
"6 7\n",
"7 8\n",
"8 9\n",
"dtype: int64 0 I\n",
"1 like\n",
"2 to\n",
"3 use\n",
"4 Python\n",
"5 and\n",
"6 Pandas\n",
"7 very\n",
"8 much\n",
"dtype: object\n"
]
}
],
"source": [
"a = pd.Series(range(1,10))\n",
"b = pd.Series([\"I\",\"like\",\"to\",\"use\",\"Python\",\"and\",\"Pandas\",\"very\",\"much\"],index=range(0,9))\n",
"print(a,b)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Salah satu penggunaan umum dari series adalah **time series**. Dalam time series, indeks memiliki struktur khusus - biasanya berupa rentang tanggal atau waktu. Kita dapat membuat indeks seperti itu dengan `pd.date_range`.\n",
"\n",
"Misalkan kita memiliki sebuah series yang menunjukkan jumlah produk yang dibeli setiap hari, dan kita tahu bahwa setiap hari Minggu kita juga perlu mengambil satu item untuk diri kita sendiri. Berikut adalah cara memodelkannya menggunakan series:\n"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Length of index is 366\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAEmCAYAAACwBgXzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebglV3UfDK+qOsMdem6BZgkxyA4W+MVgxBAHm8GBjxC/xsnnxNgv2I7fODjPZ+L4BWMSBycYYYgd4hD7i7HB4Agz2sYgMwuJWSMakITmobulnm/3nc9QVe8fVWvvtddee9euc+rc7pZqPU8/fe+559TZVbVr77XW77d+K8rzPIfWWmuttdZaa6211lprrbUz2OJTPYDWWmuttdZaa6211lprrbVprQ1sWmuttdZaa6211lprrbUz3trAprXWWmuttdZaa6211lo7460NbFprrbXWWmuttdZaa621M97awKa11lprrbXWWmuttdZaO+OtDWxaa6211lprrbXWWmuttTPe2sCmtdZaa6211lprrbXWWjvjrQ1sWmuttdZaa6211lprrbUz3trAprXWWmuttdZaa6211lo7460NbFprrbXWWmuttdZaa621M95qBTZvf/vbIYoi498555yj/p7nObz97W+H8847D+bn5+HHf/zH4Y477mh80K211lprrbXWWmuttdZaa9Q6dT/wQz/0Q/DlL39Z/Z4kifr53e9+N/zhH/4h/MVf/AVceuml8I53vANe8YpXwN133w3bt28POn6WZfDoo4/C9u3bIYqiusNrrbXWWmuttdZaa6211h4nluc5rKyswHnnnQdx7Mdkagc2nU7HQGnol773ve+Ft73tbfDa174WAAA+9KEPwdlnnw0f+chH4F//638ddPxHH30ULrzwwrrDaq211lprrbXWWmuttdYep7Zv3z644IILvO+pHdjce++9cN5550G/34fLL78c3vnOd8JTn/pUePDBB+HgwYPwkz/5k+q9/X4fXvKSl8C3vvUtZ2AzGAxgMBio3/M8V4PfsWNH3eG11lprrbXWWmuttdZaa48TW15ehgsvvDCI/VUrsLn88svhwx/+MFx66aVw6NAheMc73gEvetGL4I477oCDBw8CAMDZZ59tfObss8+Ghx9+2HnMK664An73d3/Xen3Hjh1tYNNaa6211lprrbXWWmutBZWo1BIPeNWrXgU/8zM/A8961rPg5S9/OVx11VUAUFDOXF+a57l3IG9961vh5MmT6t++ffvqDKm11lprrbXWWmuttdZaa206uefFxUV41rOeBffee6+qu0HkBu3w4cMWikOt3+8rdKZFaVprrbXWWmuttdZaa621SWyqwGYwGMBdd90F5557LlxyySVwzjnnwJe+9CX19+FwCNdeey286EUvmnqgrbXWWmuttdZaa6211lprLqtVY/Obv/mb8JrXvAYuuugiOHz4MLzjHe+A5eVleP3rXw9RFMGb3vQmeOc73wnPeMYz4BnPeAa8853vhIWFBfi5n/u5WY2/tdZaa6211lprrbXWWmutXmCzf/9++Jf/8l/C0aNH4UlPehK84AUvgO985ztw8cUXAwDAm9/8ZtjY2IA3vvGNsLS0BJdffjl88YtfDO5h01prrbXWWmuttdZaa621NolFOeornya2vLwMO3fuhJMnT7b1Nq211lprrbXWWmuttfYEtjqxwVQ1Nk8kG6cZ/O13D8CBExvqtW/cexRu2XdiouN97vbH4L7Dqw2NrrXWZMvzHD53+2Nw/5HZzLW7D67AF+84WP3GBizPc/jsbY/CQ0fXan92ME7hr2/eD4dXNmcwstZae+LZN+49Cjc/snSqh9HaaW7fuu8o3PTw43ueHDixAZ++5QCk2exwAtz/Hpxg/wuxOx9dhq/cdWgmx95qawObQLvm7iPwpo/dAr/7d3cAAMDS2hDe8MHr4Zf/4obax7rrsWX4N1feDL/5iVubHmZrrRn2/YMr8G+uvBn+/cdnM9d+/aPfhf/7L2+Ch4/NZrGldvMjJ+DffuS78La/vb32Z//ulkfhNz5+K/y3L90zg5G11toTy1Y2R/CGD14Pv/Bn18HmKD3Vw2ntNLW1wRje8MEb4A0fuB6yGTr9p9p+9+/ugF//6C3wrfuPzuw7vruv2P/e8qnbZnL8X/3fN8Evf+hGI3l/plob2ATaI8fXAQBg31Jx0x89uQHjLIel9WHtYx1aLrLGR1cHzQ2wtdYEW1or5ueRldnMtaOrxfGPrdV/DuoansPxtVHtzyI6iuNtrbXWJre1QQrjLIe1YToxa6G1x7+tbI5hmGawMhjDxuM4AD6xXuxJx2e4D+4rfdClGXxHluWwf6k4/vHHwR7ZBjaBhgEMTqql0rnK8gIirGOY4RqMswZH2FprtqXl3ByMZ7OpjLNiDo+2YC7jOUyS+dtfJiRGafvMtdbatJaSPe/6B4+fwpG0djobXW8fz4ENPg+zpKJh0DSL7zi5MQI87Kx8ha20NrAJNMxIH18bQp7ncGxNZ8DrzjN8wAeP4we9tdPDcBHcHM3GoR+nxfHHW0AzwIRAOoHeyf4TbWDTWmtNGU0utIFNay6jyduN4ePX38F9disCm1HW/B5GGRePh4R7G9gEGsJzwzSD1cHYgByzmo7WevmAD1snq7UZmw5sZrOpYKCwFXMZg7NJEJsDiNiMH78879Za2yqjiYybHl5qEwatiTYcPzEQm3wLEBsMPtK0+e+g/uywDWyeOEZv/PG1ocFzrDuZMXMxGGe1aWyttVbHcG6OsxzGM3A+0KHZCirapIjN5ihV9WxtMqG11qY3uudtjFK4/cDJUzia1k5Xo+vt4xqxyWfPXFhSiM1sA5uWivYEsuPrZmBzbArEBh/wPAcYzSD6bq01NDo3NxsOPrIsVzTMraGiFeOvm0h4lKi8PB6yUa21dqqN73ktHa01yZ4oiA3Gb3V9wTp2bIY1NsdbKtoT0zhic3waxIY84I+H6Li109dowNE0HY1yfbeCirI5oXgAla9sKTOttTa9jdM2sGmt2oZPkBob3JP4c9Gkoc85C+bFcVIzPphRPe5WWhvYBFjKZJ2PscBmUvEAgFOTQT6xPoS3fPI2uPEh92b0t989AL931Z0TUeXe/7UH4E+/dv80Q3TaTQ8vwVs+edtMZRV99oU7DsLvfPp7tRzkP/rKvfDhbz80u0F5jAbdk2ZiRmkGv/Pp71mNOOkivhXzGAOzuugQ1tcATBbY3H9kFf6fT9w6UWPQ092WN0fw1r++Db59/7FTPZTWoJAlPxPmGs9Mf+v+o/D6D1wPv/Pp7zXqeN356DK8+ZO3GqjrVtinbzkA/+Wzd54xvVc2him87W9uh69+/3Cjx/3ja+6D13/genj9B66Hd3/++7X9gWGqfZ1pEJtTuYeGWLaFqmh19r+Hjq7Bmz95a2WDbkM8YIbJv8Mrm/CWT94Gt+0/MbPvAGgDmyA7uTEC+jxzxKbu4kczF6cC9vvMrY/Cx27cB3/29Qed73n3578P7//6g3DPoXod6zdHKbzzc3fBFZ/7PqwPx9MO1bI/+/oD8LEb98FVtz/W+LFD7L1fvhc+/O2H4ebATsrH14bwh1+6B/7zZ07NJmlQ0SbcWL77yAn48Lcfhv/25XuN12lgsxVUNHxW6sL9JmJTf5z/+zsPwydu2g+funl/7c+e7va1e47AX12/D/7bl9vGpaeDffjbD8EnbtoPn7zp9J5r6MCds2MOztrWg81RBtfecwQ+/O2H4db9zdXb/OV3HoaP37gfPnPro40dM8T+6xfvhj//xoNw18HlLf3eSe07Dx6DK697BN7+mTsaO+by5gje/fm74dp7jsC19xyBP77mfiWbH2pNIDa4h/6Xz9450ee3wpTc84yoaGmWw4n1+oHNp27eDx+/cT98/IZ93vfRmvFZqvV+7vaD8LEb98EHvuH2PZuwNrAJMArTARSTgCI4dSezSUXb+sAGm4z6aHA4rrWawck4yyHPi/qhWUDPa+UxZ9VwssrwmoVmnyjKcCruNU2+TBrY4Dnz+bLlVDQUD5gCsZlEPADn2uOBe8wNaQf7y+ZvrZ1awyZ8p3s9Au55vU4MH//XL4T/+s9/GM7ZMQcAzdKrT1XPN6znO1PoU5vlOB8+tg4HT242c0wyBxd7ifVaiNH7tj7l/jNK89MWQcNxzQqxoX1m6iCioc/PVsk947o26/WtDWwC7BjrxHpkdQBL67r7+aTiAQCnpsYGHT1f8lo1dqzJt2yC+uQzzCbwYHOrDBew0Mw/vR6zQLCqv1/fg0l72bg0+mkwsxUiGIMJxQP2TykeMMvGaKfa8Dk/uLzZ1h+dBnbgDOm3hM9CEkfw1Cdtg3/23Atg92IPAJqtMxir2oWtvR64zp8pYiNUKet6D8W81jFTHbzO9zoAUB+Zp9dvc8Igka67W8EMmMR00DGb8R1nfRNDA7yx8lf883irxAPSmv7TpNYGNgFG0RmAgrdIH7a6/ZJOdY0NOnqpZ+B4fnUDr2zGgQ1m3JfWRhXvnI3h6YU6Hqe68zId5qQQc+5YtOnvW4nY1N3bpq2xeTwHNvi8Zjk0lultbTLL81z3WzpDAps40q91yl+afE4woNlqh1Yl9k7z+4BGA7/rH2ymXg4l/PtJDN0kKr+n3n2gDuyk+x91U2apOjaNqeTfjMZ3nPk7oc9DaOPQpS3qY6PaQ8z4uWoDmwBDmA4X7nsPm3Untalop7jG5sBSQXfwTfZJM1b0WsziAcGs/bFThNikNa8LvcazapLp/X5D7nm6jJkXsdkK8YBxfSraOM3g4LJ22KcJbE7XTXUao/PjwBYXaLdm2on1kaLanu60R9wfEhLZ4M9NBiHoGG91UqHuOn+qbWQENs0gNphE7HZicm/rXY8h2XPWJ0Rs6HeevogNztPZzBfOUAl9HhTi6Xl/nueMijY7PwUD41mvb21gE2DHSyraU85aBACAlU2TUlSX90kf8K2W1iuaFVZnoFXGquYENBGb5h8QPOapUkXDBSy0VoNmrCZd2KexzAisJqSiOZqP0d9n0TSMm+pjUyPAOLQyMOb5KM1rKfvkuVZEfDwjNgAmstXa1tu0IhdbafgMJrF2ITCr36Rzh07tVju0ZxwVjcyXew6tNrI/4rl3kwi6SXGfa1PRyD45aWKPJpTS0/S5yBx7ZFN2jN3PUeAzlgYkBtaHqeHnzTLowHG3iM1pYNic8+lP2ib+vW4md/MU9rGhm6cXsSn/VHeSU6dzJjU25TE5NLtVpjmi9RGbU1GI2kQfG10YaZ6zWWOzhVS0GpsHFsXvXuiq1+oICCxvjpXT8LhEbGhg0yI2p9So4tRWIKDT2FghNvq1WSA2oVSapg33sTMlsOE1SE2gNrimdxOC2NQMLJpQRaOnNiuq17SmGnTOaJ4uscAmNMALQWx4EDzLZDuOuw1sTgPDG//0J8uBzTQNOrd64aRZ2RAqWt3AyxAPmMEDgtdraX14iuSTi/9DHQ+aWTkVNTZN1DzhIWwqGkFCtmAe4/jrbG7orCPaClAvG740RSPeM8HopWgRm1NrZ1IjWUVFizQVrVOiN00+JyNVY7PV4gHF/5OoKJ4K445rM4FNKR6QxIqGX5+KNr0qmikecHrej61GbEK/J4QixwObWc55JWYwbsUDTrnhjX/KWYsGpxitbiZ3/RTW2BiIjWfcPGP16VsOwEve81W467FC1//eQyvwkvd8FT5+o6mPTp8f2pyrKVPObZbD8ubWozacivaVuw7Bj737arjBoURzqhEbo8Zm0o3F0XyMZgmrFtoT60N4xR9eC//jK/d63+czHH+eh2fG0Fm/hAY2NZ65Y0ZgE/yxM8ay0xSxGacZ/LM/+Rb81qduO9VD2TKbVpZ8K02JBwg1Nk3S6ManqsYmn31m+R7HHjqJ4TVHWebrH5peQAD3/l4nhk4yGRpHxRf4/vdX1z8Cl/2nL8AP/IfPwfPe8WVnw3B6713z4Et3HoJ/9O6vws2PLNUan88eObYOP/Ffr4Err3u48r2zRhZ58BEa4GlVtDqIzez8lFY84DQylHveu60Huxd61t/rzuWNU0lFI5unC1bO81wpYWEg8fnvHYSHj63DN+87CgAA37zvKDx8bB3+9rsHjM8aVLQZIDb0ep2KOhsuV/jluw7DvuMb8OW7DonvHzegCjONmeIFEyI2DjibLpZVjtit+0/CvYdXp2qsSscfitogjfTsHXNKwanOomo04j1NaRDT2OkqHrB/aQNufHgJ/vaWA9VvfpzYgRO6l9DpToHCZ6ETU8Sm+RqbUYBj1rTleb4l4gHXPXBM3EMnMUwyXXrOdgAAePTE9AqHJhWtROOmoKLxxNrnv3cQVgdjGIwzOLo6gK/de1Q8Bl2jXIHDl+88BI8cX4ev3XOk1vh89p0Hj8GDR9fg8987WPnezJH8a8qswCa43UR1iwQrsJnhnG/FA04jw+LhPQs92LtoBzZ1JnOa5cbDfioRG5ejJtHJcFFS/5fj5s7QLPvY5LnZ5PJUBDYZQ7Lw/+Or8lhoZuVUiAc0ocrmWrTpuVWhIE00MKOZpNDj4DkvdBPodYrlrk42nKrRnK6KPNMYr7E5XRrgjWecAT0d7UyiouH9iaPZqqKhw76V84B+1Vb09GgioYDzZb6bGMeexpQqWhJBtwkqGuvjhvvKjrmiR45r7QlBbJDy3eT6hWMPeRZn3aDTRmwCa2zS8BobFP+YZbK9FQ84TYxK4e1Z7MHuxa71njqTmWftT8caG1MAAAOajP1fvP7YiU1jMcmEzzZlhaKV/p3zTrfCdIPOMrBJUczAFdhMH1hMY0ZgM6Xc8zgzFcVo1qhqoW1C55+OPxQ9wWByvpcoZZ86zxwVqThdnP4mjZ7TsMycng6WKSpQPRW7M9nMfkun9znTBp1onaT5PjZ07dkqS9kzMbPvKb+G76GTGCJb/TJ508RaJYoH1FVFo+IBjDGA17lfBmOuY9O13vUeJQve4FqhA5vqY7qUQ5sy7l+EoqKaIud+P/pRZ++YA4AZz/ma4kuTWhvYVNjaMFU3eu+2Huxd7FvvqfMscZ7pKa2xcTyE9Hzw3DfHDLEZacf+CHGGZrkp8Ez7KaGiMe416vQfX3cENpSKdirknhugBtJj0ClDF6cqFGTaDHya5cYGE3qcDRLY9MrApo7TSBGbxyN6wB2B/acJHc1ogPz4u+yWrQ/HsLSug+jTHbHBNcEIbEq6UpPd10cKsdm660HXu1nWOilJabaHTmKIbM0hYtOAg4/XvteJtdxzXSqaR+4Zn3Fcl13JKvqdroBNI3u1huc1HDtXnJMMhzWL5BfvMwMQvocpVTRvjU0x987dWQQ2W0FFm3Xipg1sKgxVkea6MSz0OrBHoqLVWESswGYLs/i8WaFr3BKdDJ1i9TvJnu93oEBNPyD8Wp0SKhqq5XAqmmMsdEOeVBVmGmtE7plME4N+RhGbisV/Wg4yH3uon4MI6XxXIzZ1nEZDPOBxiBzwjfh0UUY7E5SQmjR+3U/3Ght0UBKxxqZBKlqAY9a0bR1io79n/5TPHa7FiNg0QkVD8YApEBu61rqoaN0KpK8OYtNkHWQdxMZVh9qErZPkOtL2Qu9viKgBshLO3TkPADPuY5OaftOsrA1sKkzR0ErRgN0ksEkmWMg5FW0rEZuDy5smX9XxwIpUNAdiA+Cu22k8sGHHO6U1NqnOtgG4a2xGpxqxaSDQdHGcXUGO7xiTZrSsbF/gBobXfKE3aY0NEQ94HEIH/DqeLgICxjw7zWlZTRhHyk53VTSF2My8xma6hMgkRp+JraDlAEz/3OFaPNdojQ0GHrEKPkLQC+MYnj42CrGpCMZCamxUI9cG1woce0hixaUc2oThHtTvxLB9rluOKRSxwXOog9jMzk/BcQzTbKYU4zawqTC86Xu2FQENFQ/An+tkCU5lYMOzgi7nUHKGlYiA+l2fh6tup2k06nQIbDgVDfXYVwZjcUFoonh/GmtSPADAXCCNPjahiM2Eixm/98FUtPKc57qJ2pzrOCtLj3PEht+20waxCcjSPp4Mr/t5pXNxulPRcHixUGNT1/n1WYhj1rTxurOt+J5pn7sxR2yaoKKV597tTI7Y0HWbq3Li9tGtoKKFqKKNZ4HYpGHBElWRnUVgg8n1vYu92gGmrlFzvx/9KAxsZjnnx9nWrOtP2MDm5PoIvvvIEnz3kSWrqys1hOn2lLU1SEXrd2LYVqHmIRmHY7cysEG4+6wySAvJkLhV0UhgQ2RKQxCbPM/h0RMbtSN2/sBNG9jkeV4rU0YXMHQ8qE7/iXW7r44JxZ+hfWxovYORSaeIjX8ea0h8oiHYVDQ2dzZHqXqeHyX3tFEq2uPAwcZnDw2v4/Z+sZZNmzk+vLLZyMbommfT2uYo3VKBhEPLm0Hjx7UZG8me9uIBgtzzLBGbraQjGlS0GQaYptT6uued1YbjRMQmz2HqjLgWD4gmbr5K14JhmhnPAj7juC47/ZEAkRpdizUDKlrF3DOp2s0/t+if7l7sQQdrnWpS0fw1NsXxz9kCKlodn2Eae0IGNoNxCj/xB9fAT//xt+Cn//hb8JL3fNUKONAUYrNQQICI0uxd7CkYvk52hDtoW9nHBh2aC/csAICP06p/xgXTCmwoFc1AbPRnXQ/IX12/D170rqvhozfUa0zGr9W0gc2HvvUQvPhdV8Onbtof9H6pcJ4u3McEOprRoPOUIzaTigfonw3ExoHe+MYxaUaNj50v7D//Z9ep5/nFv3813HtoBQAoFa2jKA9P5D42f/b1B+FF77oaPnProwCg78sF5Zrw6BSBzYETG/CiK66GN15509TjDKGfTGL/1weuhxe/62pvMqspu/fQCrzgiq/Av//ErZXvxeuuApvTvMYmLZ+hWBAPaPJ+jQKz5k3aVlHRZonYAEx/H/Da90mDzrrOKA8M6R4YKh5A74frPSqwmQFig6wMl5lCJ7Ojou1Z7KlEQngfGz9FbpRmsLxZ+L6KijaD/oNodNxV13Uae0IGNifWR2qyxBHA8ubY2dBqY1jc5PlekdH8kYt3w4894yz4xRdfojT86yST8HhoW4nYYPH6rnk/T1OSbN7klDRKRXMorbnO7b7DqwAAcH/5f6g1TUW787HlYhxHwsYhFZUOKxqGPh7knjOHk0mdr2Aq2qQ1NmzsHCW9r7yHcVRkK+8t55ZCbHoxkXsOG8PmKDVQtscDYqOevfJ64TnhmjANqvjQ0TUYZ7n6jmksdQTQ09oDR1ZhMM62pJbo/iNrxVw8VH09MLF2Vpk4G8wwm9mEoX8y8xqbKdUUJ7FTg9g0U2OD0snFa9NdM9zjqNzzNIgNgBnYKPGAToV4QEC9nZonp6DGJkTcYBrDa7bQS8gzFjYvq54fen92lcn7rehjAwAwSGf3PU/IwIZmIs7bVcBvy5s2jQhATyDkNs51E/jLX74cfuUfPVVlq+pE6RYVbYbRMTderBfSEGswymCUZuo1LiIAUGSbEPYO6WOTTsibxmuFTcimDWyWN4p7EZrlMWVA8/J/ff8kyWcKvZ4KKlpmUNEmFA9wLNz1xAPK8TQlHsCOgxveU/YWGe+1QXFv8ZrPdancc9h1sHsHnPmBDd4/vA/auZg+247PexM0KoNX36CzMi1yWMfw+QhxFPC+zPWKtW004+LaaQ3nj9zHpsEam4AGg03blqmikUPTPXQSw2dujgQ2085xQzwgrkeBUsfggY2QKNJUNPkY9DvdyEPpwJ8CVTR6nWchS47n3IljTUWridi47hu9XvPl2pPlzdJ/pfEAzJZu+4QMbPREiWBHqTKxsilT0Uap+fBRw5emoaJtpfqNDmz8DbE46kLHLFHR1oYpnNwYiZ+VbDShczEsI/xzdxWQ6cYonUppbGVQjjnwAaPjHSnEhgQ2AnefXuNToYrWhJhD5nAy64gHKNWYScUDrMJT8zj4/TtK5GFtMIY0y9X9Weh1lPMe6qw8HgMbnlTgdJCpApsROgLTr2mzknsOkT9tylQdXsB8Q0dlgdRInM7zDZ8/Se65WcSm+dqJKqPTbaZUNLKG0T10EhuTZC1aU1S0bhJDktSjQKF5qWhK7tlPRTP2H2evm+J7mlSuVIhNYP0o/7kpw+cpiaPaz1gVYkOv1zwJimfFJDJ8hhk+W0/IwIZOlO2lAMCyY1HBSY3ZKGqailYHsSkebERNtrKPTSin1UAmxpkxyaU+NgC6+DWEn4zOcd1FAB2nPQs9dQ7H1iYvBK6L2JjZBiGwOQ2paI30sXE4meM6gc2UxZ12HxuG2JS/78TAZpgan5nvJtCryRPnTdFO83ruIFMbHUNYe5369YLclIpQA5u7Gdg0d+HxUFuB2CCHPMQ5xudqoaQ8A5zeAgJ4f0wqWrM1NlmWq/u1pYjNFjXo5Ndpml42vI+NdPz6xyzOvZdE0K1JgULzITYZ80dCEq0uRISva02YqrGpuI50SLMIbPCcOySwqdvHxnXf6HHo2jOrwKYVD5ihKcQmiVWG14XY4AODUCw1FdjUmMuYsdit+Ixbh9jg5K6jGz8Yp17EBh805AiH9E0ZTZiFw+PNdROlTre0NnmWa6WkH4YGpnRtEMUDhMCGnuMpoaIF3I8qSx0LtyvIEY+R25+vY5bcM9nA8jxXx92pakXGxvXuk+7ZoQsqLzB/PPSx4f2EzgjEZgZUtK0oRh8pKlo4YoN0EIDTu5cNXsdYQGyaCsgoH38WFB+XbR0VzbxO09TZKHo9ybo3Fth0YhW0TkpFw/jXoKKxBp0h1HjXcztqMKmCpqlop7bGZqz81UhLqgfX2CDq5Li25dijqEj0472YVZ0NvT6zXN+mCmyuuOIKiKII3vSmN6nX3vCGN0AURca/F7zgBdOOs1HDm9yhiI2jxmboQWymadC5a74sEt3CwAbnEWZ1slyWhKSnU1DR9BjxZ5z4F+0t1JRQ1cX4rAMhmJQOgt/Z78SqUepUiM1mTcRGkLKmD+eSUGNDF8VToopGTm2WfWyqFinlSE+siuausaFjUojNQAfk890E4jjS4gGBjhcGqnW7PZ/OpqkJYPxfJbkaYvh8NhE0mHOuQSralJTIOjZyoNuSqRob4pjOujv3NKYQG+JB6P2wmXHTebSVqmicsbAV3wMwnTLaWCUoIhVETDvHcY/rJvHEPYpwX0A5eUM8IHDtCVEdG82QilZFCzVU22aB2KT4rMVKeTC4xqaiRg3vASKv/bJMYVa139QfmuWzNXFgc8MNN8Cf/umfwrOf/Wzrb6985SvhscceU//+/u//fqpBNm1yjY2fiibV2GCyqlaDzjJjsbNEbIZbKPeMG04VXM170fgQm6c9aRsA6GxTSI3NpEo3+CD0OrGS3Z5UQCDPc3XPQ8dh1NikGWRZbjj3lXLPpxix2ZxwITGLI81rIP0sGS7+k/ZXsKlo+me6yKOyy9pgTBTRisW6rtwzSr0/aXvRw+rxIPeskwq4aZcOUSPiAU0iNvrnRqloCrFq7JBOw3EPxtVCAJpFENUWuTgVRgua0ZqusdmqZn7ctkwVrUHEhvopyQRqrZLR+uJJ7y3u2ejvSCqT3YqmoiHNescT0tt9Ngjc37IZz9Mx8Vc7NSmBKpHjChpzE3nFfWBW8/60Fg9YXV2F173udfD+978fdu/ebf293+/DOeeco/7t2bNn6oE2aTgpkiRS2Vist7Deqx5ud41N1cO0PhzDX9+8H5bWhsq5RXnVraWimU4MfY0ah+JpxhE3aXQ0VWCjEJvqbBcuwnUzSnit+p1YUdF8gc237j8KNz50XPzb5ijTSirBVDTzoeQPf1WNDW9QNgvDuXaiRI/GBp0jn8hZchVH0nOppKI5jkFt3/F1+LtbHxWzXjwoo3OHUlZ0jY2momFRpJZ7Dg1simuIgc2ZgNh8676jcPMjS86/q8CGIRfNIDaaDjKtolcdmmMd4+d9dHUAf/Pd/TOpf8P1Ic+rHR58LjuEDnJaBzboEAlyz009J3R9CTnmzY8swTfvOzr1924VFQ33SmyYPQ1ig3tZJ4mVk+pyfg8vb8Jf37y/8twQcex24tq1HQBF0gSfAWSoSOIBqubXiSpU7x2zbNAJ4H9+6Z+a+P6jqwP465v1mqT81TiqLaleVWOj1A0VYoO137NCbOTEaNM2UWDza7/2a/DqV78aXv7yl4t/v+aaa+DJT34yXHrppfArv/IrcPjwYeexBoMBLC8vG/9mbToCpjU2MmIzIu/llgTKPX/8hn3wGx+/Fd731fs0Fe0U1NjwYj0Aeex2jY05xrVhqq7hU8uGco8tb4qflaxKgtBlOrBJVI2SRP8CKDL8b/jgDfDzf34drA7soJXe79DnK2WIDX8wpbHwQGZS1CTUcK79/699AADsc5vEgXNlzGhRZSgVjR+P2n/42+/B/++vvgs3CMGoTUUjTg9ZLHcQKhomERRiU9NhPLqKgc2cd9yni60OxvD6D14Pv/QXNzjfoxEb8/cmERuA6TOXs6Ci5XkOeFicj//tS/fAv/vYrXDVbY818h3UaAO6qnVeU7uiiRrJbrVpuWf9WreiCLyuuaTlXeN5/Qeuhzd88HrnXh5qnLEwK8NTOn93Qed+7OQ0VLQyCCFZfdcle/cX7obf+Pit8NnbHvUek4oHdBSKGH5viwRH8TMmnDYNKpqZNHYiNgGBzUzEA4j/4ktIGtL0Dcz9P/rKvfAbH78V/q5sokwRm25NuecqdgxddwBIYDOzGhtCRTudApuPfvSjcNNNN8EVV1wh/v1Vr3oVXHnllXD11VfDH/zBH8ANN9wAL33pS2EwkGshrrjiCti5c6f6d+GFF9YdUm0bp/pm6hobF2KDEK+7xqYqsMHM732HVzVis1DW2Gxh3UUoYmNSrnKr6J3KUmpKXWZ91ikekCIdpGZgU16rfjdWRZKuB3x9mMKwrA+6+WE7g01rqkIpRnS4w3FmZbyW1kdOtS49LnmeNWXH14vzwsJ3fm6T9LKhh3AjNmFUNAD3hnu0lMuWAkQ+bvp1iNhEkeZyrw3GRo0NAEFsAhdU7AZ/we75ctyneWCzOYZRmsOJ9ZETMcGNhfexUeIBUzgGA8MRmO5aGVS0hhAbyUHCuXZUkGqf1ugmXrXOK5GapH4j2VNhkniAQmyaEg+ogdic2BjBSjn/XUJAoWag7DOkiuOzhmvWNEEURWww++56lpeIP+IzXCcL8YD69VN0f9wpNAAORYtDKImzoKKZ6IIHsQkIvOrYkZViLUK/UdXYJBMgNhU1NlQ8AIDU2MxMFY1c09Olxmbfvn3w67/+63DllVfC3Nyc+J6f/dmfhVe/+tVw2WWXwWte8xr43Oc+B/fccw9cddVV4vvf+ta3wsmTJ9W/ffv21T+LmibV2LjknumCwS1SVDT/9+GkOnBiQyE2+KCfmj42BLGpoKIB2NfmBHE8F0uJQK6yBOB+OCZGbFQGKa58wOk4rn/QRgBoIBs6Dnqthmmm7h3u7WmWW70IuFO2OZzt/caNB519fm4TITaOzCk9tyz3L+ohiA3OF+mR8IoHIF00jmERA5thqqloJWKDXO5RoMOInPeL9hQZ1a3k+U9inHYoGX/2FM+dOBeT0sgofWE0JcrStLMAwDKrjHs+i42cru1Vx6d0k7oB+KkwmkVGa7zGhooHVByT0oCnpY9xyvGsDL9nrjv9/VZUxiRSwaaTtlW+XiUvjdexCLbr97Gh92HHfCkeIMg91+pjI5wTpbw1WQdJx+9DT5uWpse9jq/VnTiq3QQXP5vnsq/HG+32avZ6q2tbhdh0qt+i7aabboLDhw/Dc5/7XPVamqbwta99Dd73vvfBYDCAJEmMz5x77rlw8cUXw7333ises9/vQ7/fn2DokxvdRLZXNujU3GduCOJUPUwqsFnagG2l40WpaHmeqyBpliYFNjJiY/7OFePQee9RtRRBwtmVpZxUwQQdp343rqxvovdEDGxIABI6Dl44jw//XDeBJI5gZXMMx9aGSrENwL6+s1ZG4xQjfm6TOHAuKgBfmEZpBklsPv/qcwFwPWb8pcCHQ+MGVUklHyJY7Bffvz4k4gFdpKKhA1F9D9YGYzhRol8Y2JzuiI3RTyHPxcUd52OmHPvidSPZkeu1rY4ZVLQpHcJZFI7T66MTMcXvs6Be0AC6ylGgwfkZQUXDBp1CjU1T1EGj43zFfDICmymv25aJB5TXsIp9EGJ0/lTVwyC6XiVWYDTonEDuGa9dEkfK7zGoaOWhqttP0J/9idgm6/HovfcdtyrwqmubTDafCnXUlVQ3fJYsgz7bn1P2HM+cirZFNTa1ApuXvexlcPvttxuv/eIv/iL84A/+ILzlLW+xghoAgGPHjsG+ffvg3HPPnW6kDZrZx8Yv96y4qwJio6hoFZMZb+bGKFX0Fiymy/NikmKDvFkaRariqFhYxCieOZYchcCgoN/VDxoexhAPcEzcJmps6jSeumXfCdgcpYaUKkVsgptdMYoeVWnbNd+Flc2xRaPiFK1ZU9FcneXRJkFsaAZ/7NlERmlmXGNzXPpn1/Oi6IzC33kxI1+wAYp5vUioaBvltVaBTQ3EBjf97XMdha6e7jU29Flw+ZZcaj1TdBC9/owzd4Dqs9AMZ4gZdV0NbYBSB3N8XmaRoTSoaJWIjc6cKvGAM0Du2ehjk/gd6rpGr18VAnicyP5Pey95EibNcrXXN2l4nfoNBLLKT+lUIza4bleJFaDz3KOIzQRUtF4SqzVYVEVTfWzk41QFDnRPmhli4znvxgObsQ+xqVcLWYXi8+e438XApvm1J89zs0Z3hlTbWoHN9u3b4bLLLjNeW1xchL1798Jll10Gq6ur8Pa3vx1+5md+Bs4991x46KGH4Ld/+7fhrLPOgp/+6Z9udODTGJ0o1YiNCZdSiyq4rPr79CQ5XPInsfgdoIiOacZ0VqY3z4LKlaW5GFzwB4AHNpjJniv7gxTHtmlELjSKZ41DjfaxGSrakivLYwZYt+47AZc/da96jRaYhgZYOVvAMLPSSwqVtoeOrVuSz3x8s0ZsVECDnGN2jSfJxBgbvUEP4YiN+zoaxf6VVDT775ts3BIC1EliRY1cG6TqWi8gFa2GeABu+ufvmifoYOXHTqkZyJqrxoZx0blzBTC5TCydW9MGNrOQUJXmDE7ZWWzk9BpUPXfUyZu15GoTJiM29Qqbq4wep8qRo82Rp72XfP4Px5nROLUpw2uIyaBpnhlFmY+J3HNFnd2hlU0YjjOn72EiNvWpaAOS+Jvv2X1seI2NK2iqoiTWqcWqY8NABLppaXqN2JjJlyQhcs8BcyXPc4N9I7JzysNsRR8b/v2nlXiAz5Ikgdtvvx1+6qd+Ci699FJ4/etfD5deeil8+9vfhu3btzf5VVMZVYJAuefVwVjOBvgadEYmWuEyaUKhehPA1jViw4WuQ2QDpXPmGXMrsNnAwMbWzDc7wsvOrkRbCzGKkCQVnF++qHM6GpX3Dg2w+HOIams9j/x0EzUudQzvnRuxmYSKpn92NegsfvfxkOnPjsCmHJvklPNxmzx4G7HZGKWwOiiu9VyvvnjAfiIcECoScqothO7nRmxIb6tJa2wapKK56rqmMaluB1+bxUY+rKGKNiK0ne4EClRbbUqAh+yLk0gC+4yuJ1UO41KDNTZ8/s9qf8brNNfBwGby60ZFjqrqT2ndxcGTm85j0v12kntLPz9fIgEboioaCpfIx6lqgGkEwA09MrRuB6Cijw0dXwN7xEDV2Jjsi6KPTTglkN8ric6pqGhYY1Pei8EMgg6J4TErq4XYSHbNNdeon+fn5+ELX/jCtIecuVFHCBEbgEJVaCdBUgCoWo1HFa1ikkkTaqGXQC+JYZhmWyb5jBMrjiNvVocv7LzHj0JsOonFq7ZrOmw0CscxDRWtSreev349kxA25Z5DAxvzfVJgY1HRmFPGFeaaNh3QyNdnWiqaz+EMXfyramzEPjYh4gFJrNAZAIBjpdIVV0Wrg9hcsHtBSdqe7n1sDDEH13PB+rhIdXeTqlqZcs/N1TnMUhUNxzkLTrlRKBso99yJqSra6YvYcG4+ANRuHlj5HeR+YfFz7KCEHWuwxsbaw9IUALrym6cwHCbSfxpBbJLYm7Sk7wUA2H9iHS7auyC+b0iCJXSoRzXWQC0XHSvEa0NQRcO1J6SPjYjYGHSrZuaeVD/qMpdS6KSGex3eJ63iS2uaq+8Df49PARe7mSgq2gwSsHxdmOX6Nnv+0wzsf371PvjgNx+c+PO8ZwCqkkh1NnjxpT42uKZXOTwSP3Oh1yGFWvrvn73tUfjdz9wxk0JlWmPjy+rwl7gq2smNYhPBovni2OZ3oEmTV1HRJg5sdDFjiPY9AMBNDy8Zi9Nkcs/m+9YwsEli2LNYCGBwKhp3yjY8gc2jJzbgzZ+8Fe581O7l9N4v3wN/+Z2HK8fIeblNyD27KE42YuO+jlW9CMZppuadNCd5YCP1OekkUTk3ijmJ9wKDnTqKL1hjc/6ueTXXpnkm7zu8Av/PJ26FR46tT3yMew6twJs/eSvsOy4fI0SdhyMVXBUNYHLEZmhQ0aZEbIS6rk/fcgD+y2fvnPg+pEJmFZfmWdAi6lDRqABGTwjA8zyHd3z2Tvjb7x5odIwfue4ReM8Xvl9bCY+rKQE0X2PD55DPmWtSFS1kD2vCFBWt0wAVjfSxqUKYqfPtq7OhVDSuxnXTw8fhtz51m4GUccNnqk+paOX+R3tK9SrqRgwRCcGXovOkqceY33N/g87qpF0d22SUbNFvC1hfLcTGw86xxQOauZA3P7IEb/nkbXB8bRiM2Hz8hn3w7s/XX5OonXGBzcn1EbznC3fDO666a+JJxKUqEbWRAhv13in62EjjnO8mpFBLb3rv/vzd8MFvPgR3CM7ttEZhRx/axF/j10XX2FCIukRsrJoOe/JOLB5A+thUSYviue5Z7MF8N4H1YWos4rSmKjQjzM8NEZt+J1Y1UycsxCYcMfm7Wx+Fj9+43wpgDq9swnu/fC/8l8/cWfmw88WwCcTGpDi54XlvVqsCrqfzRPo7D8gkSlwnjiCKIlgsAxnsTTLHVNFCnO4DS0XwcP7u+cq+ECH2gW8+BJ+4aT986ub9Ex/jyu88DB+/cb/Tua26xgA6COSBb3HtzPfUtdlR0Yqf3/OFu+HPv/Eg3PnYZGujoRrHqLMzp6JVHF8F50Q8gAZbdx9agT/7xoPwrs99v7HxrQ3G8Duf/h78z6/eX6mQxQ1vLw1sJlHO8hmfh779vtHAZqupaF29Lk3izBUS7cXP3SQ22g9IRu+P774r8YBOrBGb8rU//doD8NEb9sGX7jrk/LxJRSsRGyZljGMGCJV7Fs6HvNhUQpjfcz8bQf/chMAM+jlj5ScRmmqNfkI2YuP2xZR4QMN9bP702gfgYzfugy/ecdBK8A8de8Q7P3cX/PE198O+45M3rD3jApsBUYyYNLDRiE1x+lhnwylXAPqh6UmqaBVFevoY9t/nerGWnyWTCJ3lWahnKfGAKPJuQqHiAf1OYimw8M9KD4iSe665COgMEEGKHA8HReUwgKQPNkWhQhcjfm54j3od2j/FvG94fdFp9FHRMJu1wY6BvW+GaVbplKugkRWJI2oxyYJlUAFS+WeAisW/ArGh4/KJB0g0C0rjAQB1L446qGgh2XmK2CBYO002DlGWaWqsVsq1gQspoFWhYgD6edFyzzg/I6terq5R571JyV1cg/Ha4RpZ+5hb3McmVBUty3SRbyeR5Z5x3XCpd05iNz+ypNantUG9eZkSZwutUyObHGL8OL6A25R7no5GYyE2M6oFwGeQCndMEhTSedIhtDF3YBOI2BBVM77u4nz0rWdiYDO0Jf27FUifua75EZumaJD8nvvFA2aD2OC6ZyI24ZRAPhbpHDiltOk+NtqfTYP9BZwj3JeqY2dcYNOEtB+vm9HKaPam4WvQGTMalvv7zDckcUE3QP16uulhtD6LxZSqa/jqBuwaG7mPjYnY5OJnJQoGd75DDR0nWszo2gio2of0XorYhGZ5+NuwOL0IbIp7yR0EXJy29W1VGG54Xfi9Nxv9hXUw5wINCz27j0CoGRkpAynhWa2wxV9GbGwZUOPv5b3HAI0egzanA6CBjUlFC1VFG44zpV54fkPiARgoTfNc4zWo6r4NUJ2t5apgFMWdHLHR93BarrnkLOBm66Nz+ow+55yKN5M+NuQa+BwFej8N8QAqN1v+vD5MG8tKU0GVuuuCyvTOsI8Nf059+wUNbKaVkeXPzqxkaTVio+sCJwkK6fzpJnGw3DOAH7HBAvJuhzboLF7De+Ob1+jXdGmNzQjrKPX7sHFyCK1cWvsMmfuGbhW/5745bdKipxvAKM2sJLFmDRFKYMA84WP2qqIpxKbZPjaY/B2S80Jzydnj3Jom2XTmBTY1JCBdlhIFGgCtULYsSD5TigA3fKkuYjPfTSCKIj2JSKYTo/VZwN+4T3SIeECIKtoacyROqj42iZbCVZx1lu0SERszaxxqVO45roBkJdodvQ808xmK2FhUtE1dY6Nkhh2IzY4yePY5ZQjV8mtGf6+qkeGZaPwdAy9Xtj/kmADm4sgXylAqmvS2YQUVDe89XmdDqY0lH5CKhtki3FS7gdmox05uQJ4XgfvexZ56VibdtPI8V/2rpuHR4zUIUQJ0PVuWKppCNqkYymTjMxraTbnBS84CrhuTSqZLwRIPmpo0Guj7HAWTlhORRrKU9qnfs95QYe91JLCp60SkzCECaF4Vzco4O46b57kR2Eyr6MSfnWkRIJfh+SGjoPiu+mOnSYQiq18e37EGjAICmzzPSY2NXZOLz4svmYXnQvvYKCoaGRvOd6fgCX1uhXNqwifkxu95aNIORS4mNZpgGLE1qlBFK5NzAYt0SI0NXs+Yyz03tB5ujLRPw/c+aa6nBL2eZk0+8wKbbPrNk9fYaCqaUGPj6WMT3KCT/R0zNDw6ptH6bAKbMqCLIiXTKS0UrgURszYKsekkVsEon6tyjY0/8+wyKh5QWWOjuKMgQvMrkzTo5AHfwKairU+B2OBc49eMLghVmVXM5HCBBo3YTEdF8ynANEdFsz+P414oAzRTKafcgMs5geeKpp63QFU0pGect2seokg3vMtzmIgDf2xtqMY/zXONxwgrsvW/hzv2cdQAYkPm1tQNOoV5huOaFLERxQNy+ZlrwkzxAPfxqZPiknumjtb6hFQ8apujFG7Zd8L4vY6JVLTETW+exDjdxjWn14epcX2bFg+YlWopzr0eaWw+yXNDHcSEKp4GUNEeO7Epvo/W7fSS2NpDcW76rjWloi0wVTSpxsaJ2Dj6qKHNoo+Nbw/mxgPhaeps6P6s/CSlilavQWcIlZOLgGhVtGbmPK4rw3EWlAitI7jiszMwsCGb05SBDfIVfU06cdGQxAM4WuH+PvMGulSa6OYyCyoa7W7tRWwcp7NzvpA0xkw47WPjpKIJD8ikqmhDFdgkYq0FNV0UHVvZJgBWYxNKRWPvW1U1NokKbDj/H4+9fc5UhZEMHThf4WIoFY3D2IhiTCLj6ILaa6mikT+JiAyZJ7J4QDFuDBAlFIlT0dAWGGJTVae0n9TXAJiStpNsnJTHPo1amJYBdaCUmf8aFu8xn1PVaDFATanKZikeUGSQi9cmRSyk4HqWNTahgQ111jpxLPLcqRDBpDVG1G7bf5IhwTUDm3I4ktxzU84lT5y4Am7eO+xMUUWjdaDT1Cfp5GshnlLVxyY1AuYMjpS1iNToOkVV0XBO8/8lM2psCBUtz3PjWexW0Ksq5Z5ngdhwVTTPfeHTcpoxGIiNSlJq1lCdeRKE2KgEsNnHpin/k1LRLMRGoHgaa+YUwdWZF9gYzZgmm0AU2gMA2DFfIjaSKhoqg0g1NhWZEX4M3APmFWJjwn40Wp/FRpsRB7BOg060XazHz1xXiwdkZTZb6mPDTRW216ai6YWyqlGVzkTbG+44zQx6XXBgw96GiE030UpcXPQBx4eBjc8pUzC/B7KtQlzQKbUQm/7kNTZmc007K8/51/Ix/Fk1X43NONXZHgxSzIy+DmIBNO0OzRIPqHi2dA+bIrChvTMmWXMo3WOaDWNzbGc7qZn3ST4G7zelnCtSizbpEAeG3HOTiE1uOC+bDSA2PAEwk74NBhWtGrGJIo7YyAhYE72wrnvgmPH7Zs39RpJ7rnKo6xp33lzzvunAxqKizSqwweDQcc9DjbNKqpgkI4a27RcEBOg6JTXoHAYFNroGFVHzNCueZVM8ILzGRkq60H2nCVUygHqqaPw7pwlspH3QSEjXQNX5uEShKCUeUPzedB8bTOQOx0KNjYjYhK2ZVXbmBTY0KzkpYsO6Ju/wiAfQHhncEuLU+wxv6Dk75gBAc/45Fc1AbGai0oPOvj+wcT2Yu+Z5YBMbtUdpltuIjU/uua54AKmxqURshMUA38sznqEZan5uWGPTp6poFhUNA5vi2vmcMnyvvagSp65iwbGLw4v/t2GNzSRUtIoaG6R+BTcxq6SimX+nThfW2ISIB6DNdeuJBxzgiA2Z45OwtAzEpgEqmgv1qQoeAfT4eaPOOI5UomYSKlqe58Y9rNPITzIehNAxNVFjk7HnYxaJpFDRD55o63ZKuWd6Pcmx1hpAbHjD4onFA2ZYYxPSYBBACGymVkUzf5+ZKprao0CU+A61EcnoA1QzSXCfwcSNVGdD516HUKBw7VHiAb7ABlVMWePkDSKAEUdU6VI+TtXeMRKe62nNUkXzHJf7D9ME9psCnVetD0lEkojNIDYWFa3hGhs8n8HYVnSV9mEapE7zHJ+BgY1/kodYyhYCl9wzpT9IDTr5AvLuz38fXvner1kbDz54F5cdfhVio/rY4M2fbWCjN1DS4NITxXOzEBsi94yfCxIPcPS88Rl1nPqCGhs3XxDHKYe+otRf+PPr4Nc+cnMxXk5FG9jiAcM0M84ZHTJFRfM4EI2IB2RmJs1SRZuAt2oUpRtUtKw8djGfXbr0xTjk46ENfYENuWZzEmKTmc/oYs9EbBT1MxBmx0Dk/N0CFS1wzr73y/fAy//wWji6OvAiNmuDMbz6j74Ov3fVnZXHxOvgEswIq7EpPosbI93YOirTWzkU8bvppZlWFc2UGM8MlaJJEQujjw0T2ZiNeEAYrYIjjlKDTjo+lwzqx2/YBz/+nq/C/UdWveMapxnc9PASAAA89azFcnzmNf3ynYfgx959NdzIAiA0HowBaOdoWrROjTOwj82xpqloW9zHJo40YjMdFc1EbKTrlee5Wicu2lP4I5LkM97DXhJDZKC55vMSSkXrJnrP3hilck+9gBobKXDxITargzG88r1fg9//fL3+TzYVzX2efExNUdF4AjghfluI7xsir2yLBzSnijZOM7XfDceZdQ2l52oYuGZW2ZkX2DTAp+SOkKqxGZiIDVer4aZU0cr3ffa2x+D7B1esBnLoiPzDp58F3SSCH7l4FwCA1cdms8E+EJLRgnqfcoor67GDITZ9AbGxG3SyjvHEAaoTmFLHqd9JtPiBi5ZDFk7M5ONGyfvyuM732NoQvn7vUbjqtsdgnGbWua2RPjYLhP5E6WiaitYt/1aN2PgaX1aKB3DEpvxf19jUn1eujBmOFwN17+Kf+59bA4Jn1xnPuS9QIuj3dh2IzTyraatCTU6U82PPYh8ATMQmdM353O0H4b7Dq/DFOw4ZVA9+b2/ZdwLueHQZPnPrY5XHVIhNBf0SwP1c41tUHxuysWGSYhLEhmf4pq2x4QmsYY1nwGWSg4T/z6SPTSCtgovZ6H5LdhIBwN1z5rO3PwYPHVuH6x6QgxG0ExsjtQ4964KdAGAnTD5z26Ow7/gGXHvPEfEY3CEqxh9e2BxiIRleAIDja2aNyNRUtIDkXBNG69umoaJxxNoX2NDnChHpo2KNjbmm8j00SDyANPgEMJ1mGtTFnnpf/npljQ2bM3c9tgzfP7gCH79hn3Oc4th5cjFQFU36vY4ZdYpsD++S5r0h31GnxobLPTcx5zdYzTi/d5KP2xQVrVP9ltPLxgEFslVGoT0AUmOz4c7kS31s+ALioljh7z984S647T/9Y0JFM2E/g6O+VYiNp2kTt50WFS0xNrY0yy042VIXmZBKSI8ToopGM9E4Qjx/XkvllsU0M0G2KprmEHfLxnrDcVG/s6tIhhEqWnWNy9iB2IQWIQPYvFwV2PSbQWzMTaYYC87nUCqadN/pedl1WiVS17HFKopxmIvzIlNF4zU2VQX8NFtJj+sau2R4ba5/8JiB2PD+CJgtDQnyMate1ZSW/6xeE+4j7WMwjXgAz/iHyJH6jM85g4o2aY2NEPjRurYsyw0EeloL7WOTMrqz1KCTOlYuKhqqpVV1JafODKKZfF3CeelKsHGHCEBTu5ursQlDbI6vmev5tEnBEAesCaP1bYp+OE1gE1cjNvS1PYuFGJDcv68MbMq5yPfbkUJs3PdaITblOkr76+CubKw7rr28IinG92lquP8eWxvCxjBVe1WV2Q06fUk78/emEBuuBkmvVUgAHNTHJjef417HZBFNY0ZgM069CVs1xieqKlrV5h1i3BFyNeikk1vsY8NqbBTNwzGhOnFsPFi8UGvWiI2pila8JmZ2HZd1V6mKhjbXSaoRm5F7c6qzAVLHyeyE7N94Y0ElBqloKvvvWJxpgJplQh8bRUUr7qkSEBhQxCaciqZqbDyQbV3EBi+xy4EJMemeUZomBg6+rJaxOVWoormoaFSswqjBYFSMBS4e0GPiAWnmlW3GxbXXQc66/lsoFQ3P4boHj8OBpXX1Or+3qMAWgpLgZuNs0EmDR0nG3fi7+b4kkvs9hVrTiA0PoA0q2qSqaEIvJfpa02sufW59m/SIUE0AoFI8gPcV469XBe50H3Bx6jEYdzWn1A6Rfq3rcagnsfAamwJxwDVWUluqY1uF2ND6ti5SjKZo0InZfCX3LKwBdB5hYMMTugD6GmJQ0mGJUEUxCqSiFcfQ84N2vE8Ca4Lws9bfPbWF9HdfM1Ju1nrmmdOzk3s29/JOEtVCRa1rISWxy6+bRR8bmoAapXZiWFqnhoHJoCo74wKbRqhoKsNhigfwBp30u8Q+NmwBwXtiLcgOyeg+i45nLR7gK6iX3seN19j0u7FF0+HH4wvfyAgWagQ2JPsTE7lqJ2JDqWhsMUCp510LxcLuWojMhoOZXVTKFm5J8hm/U6mi+ahoDlqMIR5QkcXQqKEZZE/Vx4ZcHo4IAWjFNb8qmv+5HXiybjjmuW4i9mjgxbPbCBUtjvTmTJUNfRsVr6uLokgFN6FrDp7DYyc3jXWFZ6kwM17VSToldCxXEFTVK8ikd2XG++IYKh0Mn9VREQox+vFxalLRmkBs9JqtX2uajjYOPLaimiBig4XkVDyA1tg4EJs1hdhUzCU1vyOVXDNlZjM4tLypfpZszIKx4me9p0zS78n1HWrczsCmqLFBcZ5pA1Srxmbm4gHNUNF4jY20xtFrqhCbgY3YDB3HHGVFUkiponmpaCk7hlY/w3sZRcXaA+C+v9WIjTuhQ+9lncCmlipaQAARapLcM0186Aad1d8Rkhhw9rFpoMZmg/mzIdTSJ7Aqmj/zW+cYGrEpHKGVzZGxIKOjRpU7qHFnB9EDPrE5hxptq+We6TgmUkUT5J6502f3sTEfkIkRG0JHAgCrMSg3fGYSD2Kzuzwf15pFHzwJsUFTgU3PDl5UjU2/WhVNKc1Y4gH6M1WBCaegoQ+82J8csTELuXPjfwCAhW5NKpqI2OhxWVQ0hdjEpLZK/10VXyNiQ6hoC70ORJGpNgVQxQ03N3UAP71DMtfmxr/3wIkCzal6Fnxy2GhVPb5SI6lQ/i8U8U6SMPIF45MYRWK5KtqkNTZS4GcGH81KPgc36Ew11QRARmyoc+0SD8Davqq5RKktc+UeRBMmB09uqmSG65mmSB8aFdhpArWxmA+OOaUCm51lYDPlfbSSczOrsSn+j6ekovH1z0ftohRR3M8lxEbRcYX9tghcoXK8PPGHy+k4zcV1p6r3FoCc1KHzgs99uo5IIgku4/Pe28fGUkWbfL5sCus8FerQ+1/1dwTV2DjEAxqpsRmagQ2/LtJ3jAPXzCo78wIbmtmdcPHkii5YFD9Kc1NuLzMXDG4xeyDHarOU6VdcWY3zGWfdoFNSIhERmxo1Nng8PL6rPgLNgI1rBKb2IumH7jXMTxfl4hhYY7O7RGxc52sumLZ4AJpGbIrrQREbXmOzXjYo830fp0rVkXu2amzK4yCaNMliYdZmlJk6ch91jU3Y4i9NbUPumSM2Y01Fk1AFTsWgfWxwjgKYiI0vCONUNACoLHC1juF4n4XYBFLRJBlQblV0P4myQXn+0wU2XOZ82qw5OVaWM1W0yeSO5RojEtg01G0bwKRqAvidbb4fSeIBRmDjQGxw3am69vT78Pmg84uKXVTV2NAtLSGMhCbqbPh6UoXYnKsCm+nu45ZR0UiCtTMVFQ0TMSV1NiBp2U0ib5sLRGKUeECs6xPpnAhRRVPJSMKcoOfuaxZenJ9/76DrWp4DS07rn/cTSnCVWYiNZ33mfsGktd8AbJ1XpQ36WtWhLPLrKe0xmrJf/M5ZRNMYDWwGaWb1hJTWFlMV7QlUYxMiaRp6jITIw+KNpQ+5UltyFJRyKlrGnEo0RW1xUtHKGpstknsuAhuP3LPwWhTZqmhz5fhV/4vUXLAA/Nz7elQ0rYwFUN0zQTUjjTVdDr8bEZudZcbK5QjQh0wSD0DrJyYVzVRFK46BdVxpljsDADx+nptzqM7DTh3WnIx5sTd5g0562ip4J+dQVzxApKIZcs/m3xQVrZOI2Ui8f5J4wHzPRF0wwexLHEgS73UL6/n7ziudLt4l+7ETBeWnyhGUZEC5VdF0UyHw0Q6qLelax2yRkOkcW35/DSrahAGINAfpNWkSJef304/YmAk0Sb3PCOwEVbQ000m5asRG739zAhXNkCd3jBuvG31GKCOhicCGr8su5/LYrKlos1ZFiyJR4jvU9Hpl1thI2wyVFsf9nFPwAWzUmt5bmgBw1WDRY+hkpE5K0RpY3uSbWyYk1qj5AmD62amoaJ7z5Ldsuj42EmJTfAFl2oR8hxXYCBOCiwcoFlEDSR5ORcMx+/yFkSOZU9fOwMCmecQmiiLleFLFLC2j6EdseJbc5gbriUmNR8d0MjW9mFIn1xAP8DhAuCDhWJG2gIbZvg5x+vCzSE/iG7qLinZoedObadQ9bGyUSDLJYcOHGGtskIrmmkbUsSioaPL78Dphgf4qcTw4YgPgFhCgG7erOV9Vh3A6F+l4cWyTOG8ShQfHRGtYpqGiDY1rbf5dyT13Y7H5nEZszAATAGChq3+OoihIGU1t6mT+V2UVufGN5yllvxC6WB9e2SRiDP5jS9xrblXXWHLs8aWEOBgTBTZsI5wWsRlzKppRY2M7YvcdXoHvPrKk/t2674Q1HyVEi/pJTa65/Lt9joILsXGLB9jnvyYkU0K+T0ZsdGbb9UzrvUS/ZtRbTklFBBBoRcIxR2mmElVnzwqxmbEqWhxrmixe7+XNkaXe6TLup+gEheQ44nsjtSctb4ysgMIq/CdJ2fVAZglXRaOIsEFFY8qq3CSfYTjO4PCKXAfm6nWIVLSVzZHV1NUau3VMD2ITEECE2mBk+w6qhCCJa8k927Q897WNVWCjk+3T1slxVTRcw9EXkYJFg4o2RXB15sk9ewrFgo+hJop+oLbPdeDkxghObtBCX9Nh4hZHOtMAIPO26Zh5nQ466XgDZ4nY0CF1KGIjXEN8aaGXqHHMdROV3UPDQjPqEOFDPtdLYGUwtigqlrOR5XD/kVX4yfd+Df7pD58H//1fPEccP16jUMRGU2zsYkrcCJV4QAAEPs4yJ8LExQNQFY02Q5vvFQpy4yyHjWFq0foAzLk9HGdQtlEx1ZWqEJvcPAaaknueUhWNBzadUua6eM2T1RICEWp0nvC/G+IB5RSUGoXinDCoaEzes5cUkty+54v3xQGwaadVpkQj+h1YGYzhKWctwrfuP2bMf875HmcZJLEsRyqp5Vjf6aBgSK9ZVDQhAVDHeJfoaTP2Zg2VWXjKEwOfvGk//OYnbrWO8f951jnwx697rnhMja6TZ6vBGhv+LHhV0Sy5Z7veoqqPDUVxqq49vedzQrHwAaPvUkXiyKixoYjN9PtXiFztUumgxhHAk7YVC+aZ0qBTErhB9ahX/revQZYDfPO3XirW91LjFB+9HwvvJUkgpKKNS7SPKrZy34ciczSx4EtmDVhwRJkTyBCOo8igMKZ5bjmldBrgNfs3//smuPaeI3Dtm3/CSqK4xAYOnNiALMvhNf/jG7C0PoLrfvtlBlWZmi0e4H6mmqSimX1sip+NGpsacs88sJWeH0pFBtCITZYX75f6N4YarTUepplC8edVQ2934A3wBKuxMZ2sSY9hIyiopLQm1Ee4bi53slRvBEcGgQdInGs4S7lnuknEcaQL+TyTfZ489P1OrAIxNERwTBnH4m8uhMDmfebwwNE1yPOimZbL0HHqW4uknyoh1RPhJo6UpRBVtCxzv08hBeXxUHaVnmsnQPnGVSxsNuj0zwseHKFNhdgIGwXdTPH58CM25HgVVDS+MWBD1R1zXRFV8IkHzLNgXOoRYo5TI11dgWYT+lji+N70ikvhhU/dCz/zI+cDgHlP9vPAxrN5bnoCP/6dAAFyz2zNimPdKG+SoIRn16bOmrNAmKKZXBXt3sMrAFAEkRfsnoezSgf3/sNrxvt4gJ7nJqrZJBWNzy/fep6qxJcp90yvIf25ErGpIfesxAMcVDRnPRc5Blo0ZZ2WNc6AGpsNIgU/52AJ1DV+yjOvsYnMvWFtOIZHT27CweXNoHoyq0FngNwz9jDC+8XRId7LiyaBN4ZhzBKX3HNmsUf0saV42EBvyzlx7+FVGGc5PHR0zUtFoz8fWt6EOx9bhoeOrcPJjREcWbEbk6LhHMLp7VX8tMQDJp/7EhXNqLFJwuWefUIKaK4+NgDTz3uu8ovXEP1KSVGP1hU+ofrYUO72pFkh3jcAQK6P4Jk0bpQWk2VaKcSW2dOLCTXex2Ywmh1iw51szMCI6kkssgYoN46OOV184gHzXZmryRchushJ6ixoeJyeUIgoGc0ocqEBvD94LNcxRix7Ui0eYAbHdB4kcUS6N1cjRCYVTb8eKvcMADAgWXS8lymj9YQYdzKL//WzobONYXC9WGPjQSSwT8XebT1R5purDi6SebvAmnV2BSldavQcKBWtLk0Lx/TKy86Bv/q/XwDnlV2+DcTmBEdsPIGN0LjN+k4DkXGPif6sHNSpxQPCqRshxp0T+ixyxAYpDT//wovhG295Kbzv554jjoFSK1IW1ADMNrDx0SpU4itUFU0QD1gTJOZdRjPAWu5Znpeu54Qri6LVqQGoMr5XSHOK1pfgOjx1jU1msgMGDScZ9ffopAKidOM0866FktE+eXi84ljuvb0bRyUFXyvCUtM1NmawBMB8JG+tohkc0cSJpIoGICcP6WnoxBomg1NrXtBfzd5eAJ++5YD63ddTDs8fk5XePjZWADFNYGPv+7Q9iUZsqr9DSiLb7yn+x3tDA5tp10NLFa0cM15T6Tl9wqqipSyLPtExmCMEQHuQ2BzHbixfJqqUZNJAZMTGFg/gcs+zU0WjkzyJ/Xx6XHQWaGDTSSzYFmkMFGLG42mEwC33DFBmY8tzldRZ0LTcc3FcvCVhfWxYLRSiDRWBDW946KSiKcSmbNA5tPtJdBOtQe9EmWhg43BqKlXRaDE0WSRprUndBUOmounNFK+jL1MsFa5TM+SM2d+xs/juhZ5YxM/7RHWSWDkl82zO1kHN6Prgy4JKlrE1pkdqe9DBthGbaloHQBgVTXQQMvvvVD2wWVW06RxbjsjRjXyU5sZ9srLLjvOg1yTLbDGQaVR4uPHz9z1zPPElUTurqGhrBhWtAtUV5J7x/mWZFrQAcO9DPNOLNo0AhWucaNIx8T29jl6HpqailR9XlJkZyz0nkU4ODdPcS8uVjFNn1T0QERv0RYrvw8DmJEsqcrnnAtEt/rYRUO9XnAtLRhJ1Up14NOmMoj8irFuY2d8cZdazRucN37M/fcuj6mdfTzm85+gX+vwxPuSpAhsm95wRBoHpy1TPyRDEkzfaLVAhFH6abj1ct+SezYS5LB7wBA1sZtHHBsB2SgFsh4kbfp4X/vJ+EjhMLvdsN+gMg3gnMSOwifwKSBIVba4bC4FNoo4HwMQDMCqvyOSmxMFYG6ZO585WRQtEbAQlEfxbn2QnRM1/Mpax4Aih2Q06i7HShYUq0YVIAbua81VR0VzBEUXf6s4tOly8f5SmqVCQQMRGutY+8QCF2Cz2RNllnfHW9xOppXzO0gBDMvq61McmxNGgtVWqNwmZa/gdHLHxbYjU6XapQ6WeDR3A3vDzXK9N0yI2dTjpIWbeX7sHgtTM2OLyezKpaW6fZ5PJJH4sn5OgEm0JD4Jl1FakogkU6qrvS+JI0YtxXTmyOgiS8+XcfLQmEZuQBoNU5WsaZTFq6OzNB/TnmsbofaAJF99aKNmQBSu+Pjbcp3FJPuMY6BqIx98YhiVg3eIBcrNw15h9NZ6bo9SmonnqOQ8T+pmv0S+OHRO0oc2npd/rGG+US8+lE8fqHkwm9+wOGuk9aEoZjSfquXhAJqzBbYNOqCcXTC0VKGaaRmQ/tDwgQaOoh0uGmjohPEDSGabZyz1zWpSkLoWGb6VOYb+bGNE8AKl3IRQrJR7g4DtLzgZ9bdXRo0Fp4nOUKJO7XNONl2c5RoxqACBfhyHLkrvWkr4KbMrgWFHRzOw/XjvXouSqj6mD2IwdwVE30deh7oIh1dgMyQZJC19dVo3YuBEJVLDZsygjNpxjDgCwUN6LhZ6M2FRR0fiGW9Udmxp9Czp+Ug+dA6yvgp+KRq6Pa/441iDpNS5fLiGbdaxxKhpzTvj9ok6J7ryOGWs56ZFxxIbNwyb72FhUtHHmVBni8uLSHKXHk+SeTVU0//2jDAIu98xRRJfMLVdTQqtCpeuYxXxwqKIBFOfSVHNBntibWY0NqW/Te0PGCsirn0XelsK3t3ParlJG23QgNjSwKT+zLjx7klkJh0jvw7QxJJ1CVUizbhBdBjbjVBAkkj/LbWPkpr6rwKaPgY37OHaDzmkCG+Zz0DWa7OFB84IHNsK94g06AaAxSidH9vA+0YS5nRAjiM0Tqo9NWu+hl49hR6mI2IjiAR1HYFN+nDsJLgejltxzw1kiGpkXRZ72+NR7JSpaORmRutDvxKqju0JsMorYOAIbAR6lr7nqbAYs+0OvpTQNJA6vhdiQB0ymOZj30eWYaLlnRGzMGht9zXEc8r2lrzvFAyo2WXoatAAyiiKrb1KoSXNb0x9i9XyEZrVk8QA9Jr5RYJ+K3SSw8YkHAGge7zxXRasQD+AKa2h1qGh8MwIwM5/D0sm1amx84gEGYiO/T6JsGMcnf89z8/e4ItlRZVYfm2mz5uz+8qB5Q6Dt4jV20VRT5vBYVLQm+9ik5jrIr7c5LnPOSQjogCU6uENgUNEqrr3eC2Ii91x8HuckjqUKsbGekwpUuo652iZQo+pdjVHRcjM5NzMqGkm+0aasIbRTalycSFO+fIFN8V4XYiMpwqrAJrAW2IWkppmJVkUkuBERG5qQKH/G8W2ObDRXasQrGRVBsMau0IViH/H15bISKA0hNpSmD1DWRteQew4RNZARG6z9nm7ec6of/m6wR1L3vvEE62MTNml9lrKHG4AgNkI/gKoGnTkPbBgfXL3fCmxYjc0WIDY45pAGnbTwGoUDMBigaA4NHKpqbGQqmn7Npd3Pa2zMLtdCJiLTY3PV2BiIjXAd6EMmOUJoGGxtUwIUJRWNbf5ViiYu8YAhyZpWZTEM+dryvTjP+xOqBkmF/5T+1a1wglzHoObbzFHSda8R2Oi/8+sMoJ9nTkWros3h80ozlQD1xAOkZEZCOOqjNIPja0MiY43OoPv6BTXorAge+Wv0fiVRvU2Tm55r4cWtPuNS6/zabIwkxMZPUzWCJTGwaa7GRhUf96tr23gD56o+NgBgqWWtT4LYxKSPzRhRxCKwuWjPgnEe3KRMLx4ToJkaG+5MylQ0HRQ2lWlWAjgeWdomjNa30Xs+CHjWqXHEWqLrovF6HNW/jyUUFRWto+8vJo42QxEbR40NFeJJyPoI4GCQsOc2z3N17MFYoKIJsvaSZLZPPADPazGAisYv81SIDVsjqB9giAcEIOIpG7Po6wnP8aQJUG78+mJATBEbPn8MKtoUgdWZF9g02cdGcIQoYsM3HG4mFY0iSbKTxkUIuCqaxBtvyvgDHiT3LCE25ZhpTxvK6VX8ZFJ4+fCxNfjMrY9CluXW96W5mY11BjakSSMAQ2yES0W7OvMgbjwBFY3WD/E1kjfoxOCYbroA+jq5nD4XFa1OQZ1UY4PTblKqBr1lnOPcScxso3NcBhXN/rtB+yN/3xylSj57D1FFM5XabJQF74WLilaF2HCUlqKSVWZIqzsgfsyMP3l7XyUQvFQ0x3ygJokDmOPigQ1BbKLI6xBVGSpHbSupLTj3b35kCb5539Hax+NKfHzOmnSYMhi1MsP2WkOPb9XYNKmKVh5rGw1sHI4UT7T1FapIE2QMoWHZ0DVB9MZldC+YI2tCluVw4ERBj1QNZR3XBKe4JR5QofxYZfcdXoHPf+9gOU6NONNxU8Pgp5vERv0cfU6Prg7gz7/xIPzJNffDX3zzQTixbjdnvPaeI3D7/pPG9+AeFzovvnr3YfjegZNB7+X1bZSKRgOpMCqaia742BhcPGDHvKyKpqloev3E9ZVTjFxMBs6yMMSWylPE15RimqTkxhAYel6FeIAbscHrd96uOfXajnKNkhr98rEv9HE9c98H7oeGFPY7v5etEXS/T+JI+ZB5Xr0XhdSopcJzzBPuk9omW6OQPtztuOvhmhIPOPMadAq0mPrHKC4Yzfprp9RWl6lq0JnmbolBfOiiyOYj4waGTsss+9hw6oBP7pkXT9Kx6v/136iMo43YZPCmj90C333kBJyzc85aILg60cqmg4qWmsEIfRCL+2Q6sPg9sQDfcrlnALluwbyPeiOa6yaGY1Ul95yoa+53HF0PNd1YK1XRBNRHN9+akIomyT2TDbIZKlom/h3ra7pJBNv7HW8fG/qc7lksmq/yRqhVdBUnFc2TUeRG1wJ6nG4Sw+aoaDb52MlCeeq8XfPwaBnkhFLRqgQzXO/xOfJxPF22HbNri70OnFgfqczqGz5wPWyMUrj5P75CZYdDjJ8LTwZsDu0kUKUqGjsmd0gapaLhGlM63ENWOyG9lyM26MQlcWTVunDJ54lqbAhiA1CcPyqiXby3QGycQXSlKtpk1/I3Pn4r3Lb/JHzx3/0jdc9xvfUhNt0kMpIRwzSDubLZ7e9/7vvwiZv2q78dXB7Ab73qB9XvR1YG8IsfvB6evH0OvvPbL1PnVqfG5vDKJvzSX9wA5++ah2+85aWV7+f1bV0SlNFMdUjydsQSOz7aLE8CKcTGJR5AERuhxgbH3OuY84Aeg/exocEJ3RsHrjGn7rVgMEotZM/Ya8rjPfWsbbDv+Ab0khhe+LS98IU7DvnlnjEx4ZEmlr6v+N351krjawSu+4rOTnzWUZZB39HQWR6X29czAhuhae8kxucJrlndsqZsmNo1fKYPNPn3n3GBTZXyT4hpJRUbsVmXEBsXFa1cRwsVJJJlETIukmT09n6xqGAn9FkiNjgOdAx9zfh48SQARWxM5AaAcHrzXDl1+NmTGyM4tlookeD/fFwUVl3ecCE2fJH008j0xmufq0hFk6QxDRRBL8b9TuwNbNaZKhrnPrtgZIOK5qqx8SzGVBoSgNTYlPe8NyF3VqKRKWQjjoKoaK4aND1WWa4WA5vdC71iYSd1bWiSeMC//Ymnw4W7F+DVzz7X+J5qxMYOkgDqSSHT8dMNQzXkHWeKOrR9rkMKQn1UtOosblVgYyM2JhWtbq8eajjXUEBjVGaesSh5bZBOHNiMU7v3kq/GxlXLllUgNrOgonU7BUVKqotBw3OTFfQySOLERmx4YGP0salCdfX30TVwc5SqZrhn75grv9+eC5R67exjMyEV8dhq8bwfXh6o64LrbRUCQemjwzRTe9W37j8GAACXnLUIDx5dg31MtOPQ8iZkOcDxEsmpEsCR7MT6CPJcr1dVRtevyKixYeIBAdcRnUOtiuauc9IJqeI+7VB9bALEA5Qqmv3eHkO4KV1MI6k6YKeMCgA/1ZeL19D9c3NkK6marQCKn8/fPQ9/8M9/GHbMd+Grdx8uz8N9Xy3xAM8zZYsHTO678f0d1321NlT4PeY42Lg8fY0oswB9N0lWvo5ZVLQhBmllMnSYqsbr0hifUKpoo9S/eYeYtCirrvEDCrMGIjaZWzxAEipAQ9oGQAEFu7L0TZiF2CTurA4Ov9eJ1bg1BU2oscHrkGq61jyRe8bjDYUi4DTLDbSEq7OgWX1syOX0FsUJ0tb4fzeJvUWLrhobl4QwOnVrw7ER7Gr6X7mwVzgLAG4qmk/umQdneAw8/0khZqlBJ2bJgqloQhaNmpGlJMOjimgAJMAQ1gGagHjG2dvhN//xD6jiWLRexVh5/wY0SY3NZXqzACWwAWAGVXgf+x0i4elZz4zAzxGUVauimZ+jwTPtAD6ZeEAxvkVC3TCbzdWbc+Z6mgk1Jh5VNEetEA/8rMCmSVU0IpfLRWK42bV4es7oWgIe2MjZUHo8l9E9qUP6aw3Gmcrc7y2fNylTTQ/P5Z47U4oH4D3ZGGmEBh0tyTGjCIQR2JTXa//SOhw4sQGdOIJf+bGnAoCu2UPDc8bnCr93oUaNzYh9tsroo2g0b04zs6dXjUSKaqYZ43e4kxtcPIAnFIdCgseF2Ei+SoHYFj/3E2zkrf+m1sjyNd/6aq0FrP2B1cjV2Bv0/PiZ514Ar3jm2bBQzqd1nyqaqrEJoKIFICOhZgU2Y7N2kfqRVXWMfBxyLbJOAKNtE5rVT2JcThtRZcNnYIiN0b/PoyRZZWdcYFPFI69zDFM8wKyPAJApLtRcgQ1/EAHkOp0kjtQkWt4cW7rfk95UyXgw5+O0UqUM3JStGhtCRaM0HU5FozYcZ6KzQTcDV5NO3seGqox5i+JiW41MkvQVERsHdcUZ2JSLYJYXCy4NoAC0CIW0wPAN0ZR71n/bHKfOeeGiGiUqsJmQimZch3IDr6mKRocm3S+6oNF7wQObWLhfI+F5dhmOdeRwMl1UNP2sV36FGhsfD9I6hqlGZ/vdhEjkup/3TYOeUi0OUEXpANDnGpUBmAoIJsi2o+ON6xkvgq7r6KYs68oDUVE8oE4fGyGwaZL+S5H6queOq/rRrCzOUzxHXH95LxuDQh3o8OC8o8poWES+d1sZ2AjOBb1unF49bR8bXBs3SH8SHJ+0btLkI5VNxrXvugeOAwDAZefvhAt2zwOAjaogWoHPFadihyQZuQxxldH5nUSRUR9kCKmEUNGYn+JDP7h4ANbYuOSepV5ePBNf1WiRsyyyPLcoUIlnfTWfW9OhF+WehdYCNCDA+l9eA0KNIzZeNoLn+ahrPHE5YIgN3ZdqIzY+KhpJUCwIzeonMT5PVI1NEgXV2ABMviafcYGNqzC/3jHsyS6LB7iDEvp5TmuQUCUXnU3pyG+MrKxckxutxGkFcGRIiFKGFdig3HOFeIArsJH72FAqWkUfm479vZMiNp049gZ4BhWNnBsdQyfWFB5K3VsdjNU84MovPoqA+m4HFS3PPUpFPAON4gFYY6O4s3URG3ucNOivS0WTntvBSH6uj3HERijir2qkSw039JlS0VR9l/m6WszHGrGZ6ySVMuAAdlGpOIeYA8DNGfiyAt5JEkaqUzfKozLEpm5fE66ExD9vyF+XWb8+U0XjBbYWFW0L+th0O1GlGiGXe6YOOs5HPN6u+eI54NlUE7Hxnwff/1Qvm3GqEkt7F/vW+/V49e98X6Pd5Scx/K6N4Vgdo68CG2GNZtQq7jBd/2AR2Fx+yR61hhzjiA1BK0aZTkjN9WoENuVYXUkHbmZwaKo1mv3TQoIqc/1LIvdaxZNA251yzzZyLTXoxDFzo+dgNc5NCWITQEUzxQNM9LagornnJ1eDBdC+TEiNzWKAsAv/06R+aZ7nhjIugI3YFLL8UI7JPzf43JESVho509dnG+vHN6nx66sQmzh2tl3g93JSOtpUgc0VV1wBURTBm970JvVanufw9re/Hc477zyYn5+HH//xH4c77rhjmq8xjBeSTWI6ky5Q0YZ2ltHZoFMV6XGngjqlZjaOm9aRH1sw5LSSqdQ4LcrLaSXwJE5AG7mR5Z4l4QG04djmw4YjNrjQ2iotvgc2iXXBnXLK8b4mEfggcJuKVvxMz50u/HEcKXnI9eFYB1CsKFgMojhNyENLdNHR+OI7IIWHAHrTr7tYSEEJLVhVKEigKhq/1nmeO/vYUKlnABmxqUJWqdE6F8lURtOhihay5kiIMB1fkZUtzneuq6lovmPzDa9KHEAuHJaD55glO6arsUFHIDPGXDeDzwVYfFS0IbtnprCIHOylWW45oE3W2Bj9VaqawgrzhdeC4fF2LRT7Bc+mSvuWy3BuaBU2zanH4yBiQ8eAZqANDdfY4Oc2htphxcBLRiDMZ5+Lg1z/UBnYPHWPOqeltaGBQtH6ErrO4x4WQqOklJqQuU7nXiG1rlFvk3YakEgh6CCAX+hE1XOpGhu/3HOP+Eg+8QBu+Pk4EiSdM7tGyyd4YAuJmFQ07uAbzzwmFwWhKH4exvjL78D3uhB+ADuQnRStLFg65muYbKH+o6J7ViKz5u/BiI3gC09iG0PT/8Da44KKpgN5avz3SZNNEwc2N9xwA/zpn/4pPPvZzzZef/e73w1/+Id/CO973/vghhtugHPOOQde8YpXwMrKyqRfZdi4YvMOO4bp5AMQKprRoNOEbblJD2rxOdsRdCE2GgoeWYFNk3U2LuhXFA8wEBszkOmzWht6zAK5AuvvaMNUQGxy1qCzso+NhNjY14lS0ew+Ntop92Xi3VQ0PQZei7HQ17VaLrnnEMTGJR4A4HbAbEfNnOdN1Njoa6gdiqqCfD42m/ubO6lqGrEpMshSgMFVgXwWLPfMqWjlbQ5BM1yKUVruOSU9bOpT0QBkAYoqVIyvl+iMhRTwVhkG0dtIp26j2VxNR5cjNhYVTVBF4+IBAO5gL83t57BJVTRNaYwrVYZ4AgRAnwuOCc9x90KJ2LBs6rrQWNplvO4T17MjK1rchSI2XLnIQBtYjU03rg7SvWNTVLRMzfF+x+3I8fqSHqlnOry8CQ8eXYMoAnjuxXvUtRtnuUG9onvOKLWTc2MhCHaNAyAw+cGCQ4OKRtHrICoaQ2x86IcKgkwqmguxMWpsyuOvB1DRdCLS3q/T3BYP8I2Z7x0GFW1k97GRqGh0b5gn1EuXDVmiplaDzgn9UrrGzyuU10RsAPwNWM1xmfuihP5JiI3UrL6u5XmuEJtdpTIpRWy6jmQPv5dbSkVbXV2F173udfD+978fdu/erV7P8xze+973wtve9jZ47WtfC5dddhl86EMfgvX1dfjIRz4y0QC5NdGgU6ui6dPHKHV9mKoHCTdTZx+b8mVORRsLTpckHgCgoeBja0ML0mwysOGbmRIP8Cx+IhVNUdLogqU3Hlqfw53+4VjQnM/Muhun3DPrYwPgp9PhOIrgxSxo1YhN7EdsGNeZq+UA2I0ct5FGr5ryUXLnPTQNHpxRJ8sKbAIRG6vGhvVNCjVRPIBsplVdygEYnaBCZpfOh+NrhbO1Z7Grvo+PSXIMXaaDC3ntkIpmAUy6ZZVJ4iT0mMOxdvoLxMYd8KLxTbhKntyX3UajtWYAzSI2oywzxQNqUpO4xLhPFc0SD6CBjTBPip/ter9ZBDa9jl5Dnc+toL5JA3CqMLW7fA58qmhVGWNXjc2RUrVyvpvAXDcGjFm4c2GgDU3X2CjEZkwQm6Qct339Rmwvp72iEK35B+fsgJ3zXZjrJsppo3U2dM8Zp3pe+Dqku8YNEDbX8RpifRvW342YKlrIs6jXYjOwl1kIufFe9D/WhiabwicewGtTJD9FKaIJn6eomFJp9SSOeIsP3hbBQhSFdZAiEvMhiA3W2AQ06ORjnhStxH05ivQYeY0N/bkKScTrphIDoq9nHhNAblZf10aEbogtFzZH2meg7AVjzJavMxlqNFFg82u/9mvw6le/Gl7+8pcbrz/44INw8OBB+Mmf/En1Wr/fh5e85CXwrW99SzzWYDCA5eVl45/P6Ik3WWNDG6nhpjkWshbUYrKA8E7ZfIyuY6DcIs2W4QIQEtjkeQ7/9Qt3w0evf8T7Pr6Z+eSe8TlN4kg5w1YfG1pjU17GNM/F+hxahGnztc0H1IXY4ELZN0QLPA8sGYdaUHMW2MSRF7myqGiI2HRkKhoA6Yc0GAtqNbggVTudfiqaA7HhGXl0XFkfm7pZEJGKRqk2nowqgNmMDsAODvj5mVS0Yj4gYiM1kZQSFS7TmfAUfu+qO+ETN+4z/u6iotVpXulSQqT8f0VF61DExn1f+D2XNyn9+SpKB44DQCdopkFseIbThdh8676j8Na/vh1WK7KBnDbGO4FvCKpoPQmxcVCX00xCsJoMbPScrEJKpQazPVILRu/1zrLGxmrQaYgHhDk8CQ9sloseNtvnOpYEsfR5ALtZcWg2WbKc7KNUFQ3XW18fG15jMxxnqr7m+ZfsUe/fU9LRMGECYNbYUDo17/FDbWltCL/1qdvgpoeL7zD2igDHFk8F12Zcu1AmnY4HoGj++ba/uV1c+/HZ6rF9RkS4WBJgO1Fmpc+kUvUz6knLGhvOLPHU2FDqeEzGpVBtRGw86yuvjauqseFoL4D2FQC0P+KqsaGJhEXWoPMPv3g3XHndw+z95ucn9UtxjtE9gdfYAJh9rnymasVUYsB9bSXxgGkQG7o+b2e95OqIB2xZjc1HP/pRuOmmm+CKK66w/nbwYNEx+OyzzzZeP/vss9XfuF1xxRWwc+dO9e/CCy/0fn8TiI1ED5vraulf3mDRFZRQJQ9JOx3Azopyw4zJkZViU4ki/TBxjW/J9i9twPu+eh/83lV3ed9HHX2ACvEAAk+eu7NQkjm/VJQ5f1fx/3nl/wAmjEwRm3N2zEESR/APn3EWABTF7FIhahhiY9MCfRQemolQDluaG7LKtaloaqFwU9GobLiFknloGr7AxmpOGFxjY869ifvYkMNyOl+XIDahogb8bZyiY1LRELEx5Z5pUrRK5IMabv7fvO8ovP/rD8IVn/u+8XcXFa1Wg06B/gBAFNlSIvfcjYMkcvk9l+mX9O/+zCeOA8BGbCbJtuM9NFTRjH4cxc//85r74K+ufwS+ce8R7/F4dh7Pf0e5SfLu5wCkSJls0mNHsMcbA9NzaMIolafP6j64UQQZjRbX0s0ea2yo05HnOetjU+XwMCS3/C5EbPAaU7ELapTWHEXyc1JX3rs4rv55nSAIvhob/bwiYqOTaN9/rKC/P+eiXer9exYwsNHBDN1zRgSxobRnfu++dOch+OgN++D9X3sQAGxUocooVRqA1d+RuY17zv/4yr1w5XWPwHVlsEaN12j56lVGmbkndZNYOfq0zkbuY1NS0XiNjYTYCNRxmmDE88J4wyseYCE2+vfBOLMQMqNcQUDz54XkiHE+5PiqxibL4NETG/BHV98H7/is6WtZ+9vEVDSC4mNgw+pk6c9VNdgcsZHe7xUPmKLGZoOMG4+H5hMP4EyKLQls9u3bB7/+678OV155JczNzTnfxxe7PM+t19De+ta3wsmTJ9W/ffv2ie9DM7JuDdbYRFFkCQi4pF/RlHhAZtaJSMFXVY0NIjZzncTgCVcZZll8Ch90TPiAxx4nhmZT3vXaZ8Ff/coL4DkX7gIAgF944cXwl7/8fPilF1+i3m/UGqlND+ADb/hR+OSvvhCe/uRtABAm9+xq0In3jC60fi6xvsfUYaPf1Ylj0VFGs1XRip99VDQqG675zMV7Ool707fEA0hQywsZeSG5GqPFTzUXxUlqbFyFkXQzrapb4XPM6vjOnHaTisbkngXlrqoEBDV8zz2HVtXxqygYALIam8tUM1y25tEsvN7EEkJFc98X7nTLwTxx4isQHQB9riEFvFU2YNSNEUdsMBNfrq1V6xV/ppHXj8XOvhobqhzkqjui0vT8HJqwkcpYR2Q9d8k92/sRrbGhNS67FzR1CI3XLlb2sXEgNoeXiz0Is/guBUGJ3oM2DZ2Rfs/GiIoH6Dllf8bc1/AZG44z1WyU1gvhOmIgNoQlQBNtnZgIP7BrgDQdnMd07CENGjN2DfFaj3lCoHwfBvaSM85RK3+QgD6NXt9onS+abq5pO9R2g077e3hzTvp5SgO1Eq1szHlu1l/muRlkiqpowt4gNaB0rUH0XtM+NjifNkap1w+dNOFu1F3i8z+y71foM4b+QN9D5dS+nn4NyzKqUHWf4bVd6CaWj9SJbVl2NI42T4qi1wpsbrrpJjh8+DA897nPhU6nA51OB6699lr4oz/6I+h0Ogqp4ejM4cOHLRQHrd/vw44dO4x/PqsL+Urm4uQvMAEB3l+AG+WFumpseEDBTSM2ZWDTrVbRoYZRdVWBo1IHQSfbUzNAVdH2buvDC5+2VwWm/U4CP/aMJ4niAXRTiKMILtyzAM+5aLdxPtIiRCfzyuZY7NMi0Qd9fG7F4TX63ZiBVZJEXolbHqDie2gWqs+paATG5dkxXyDmQmzoNUWHw0VFczXojBkVrU5m2l60s3K8ejOtoqJVdWa2amzK96dZDic2kIpmIjZGHVsFKkqNU8wAAJbWCRXFQUWrg9go54E987RgUgU2ncnEA6oEKMQ5lvnnRzJF4TfeQ5yjYxK8Fd+dGWPgBenc+BCQ149OGG6clDZi1gPYKFhahdg0KfdMnOO6DToBWAafJDmQr07FAnizzioqml1jwxCbck/qOairOstrH3uaGht6PzZHqUr2+GpsNN3XrrHBgnicMwCa0nrMUWNDawOoKijfi/FectU6gLAaC16HR5scSzU2+vkRrgFLxuhGu/b36vfquYY+iBHYjN3PVIh4gFZVo5R1PTe4mJFrH5bWIrquFIFN8V0Yu0hCNYZ4QAViQ+81+oTjzERF6R7K/ZVJa2w2xyTZxahodG9TCdJAWXdfjY1GzihiU9abT9HHBuXo53qJxWrpEMEhvraECiVVWa3A5mUvexncfvvtcMstt6h/z3ve8+B1r3sd3HLLLfDUpz4VzjnnHPjSl76kPjMcDuHaa6+FF73oRRMNkFsziI3edKjxXjZq0XQ4TDTDybXW1XdV8P9xEzmsApukkrpAzejn4JnoPDLXiI07inehbNyoQ5SxBRvApFXw70szO9soZVKkINOXucgIckQRG/rgmFQ0AUWhQbRLPIA9tNuICAV3cLseyhG/LkO2cQLoDchFRePn4FJFq5MFsYOS3BhXl3QudwXXVVQ0q8am/PXE+lDxlzFTLXXV5siYz3j2CABgaV07OVVUtDDxAPMzaNR5oVQ0X60Ymk3Xs++hpAZkfsZ8jQeEeGmaqLEZZTlsCnRK/L+qzouPYcOB2NBrVoXmZmzvsBIBEyrwSGZS0SpqbIS1jTaSpVS7xb6dTeVc+HDEpvgOrGHB5JpGbGQKS+rYP+lrk8wh6hAW6ydmnD3rJnPUaSCCyme4bgJoGevjq/qZpw79OMsM2rYzsBmZ6zMNJmtR0colgqLeQzGwyY3zpcZVIX29hKT2E1jnyyl5dFz0+JYksYeKZiA2RLCIo36upJ+0jm0YgU2mkgjoN0koLXXcKxGbsb6e/UTv9ScJm8TVd8015hBTTZs7WlBGpuCH1tiY98BH86OIlqoTnkI8AM9lvpsYdVYApXiAo1G2RUWbMNnUqX6Ltu3bt8Nll11mvLa4uAh79+5Vr7/pTW+Cd77znfCMZzwDnvGMZ8A73/lOWFhYgJ/7uZ+baIDc6IMd4mRwyzJdyMzpYYvEKQXQcqhSlheAiAdkOUi9awAo9OtCbEwqWr8TOzNlknFKRp9NIj0OczPSQYH7vRLVQDIlHpCZ4gFoNFCTxAP4Yr2yOVZwKJokve2VeyYPrEuWuxNH3uvANxhejAcgyT1r1E8XEJeLN+unY56f7GSZgU1xTZyUFkcG2lJFq0VFM3/n4gG0jw1Ascn2Y3MO8mNU9Q/B70Aa2s75rtqIveIBIQ06hWf52OoQoASUXQ066xTWK6orp6LRGhshO1enxkYUoHA48dLfcRwAYU3yqgzvoS62zYxagbEKbGxHUDJnYIOIhUAB6nbo5m9fUy5IYCM2DdbYqOLrCPqZ/7mTssqUtjgi2W++R/GfAaoda153gFQV3IN4jQ136rlTTi1E4c9ldB1fH2oZXwy85Bob01HHMW+MUhX87SAF8ij5fHzdpYrGlD0d1wBpvipgN+ZZ9frKE4AmFU3fTzxn/F/yCXgQ4hM6kZK1CrHZMGWv6TEB3OuriNhIVDSC2PAaI5eSm3QpDcRmnEI/LQP0bgKbI5OVMQ1i0yMBBgDACYLsbxr3yPz8pM1pKRUN1woRsQlA+AECERuhNYHUrL6ubQyL8S/0bCpaN45VM+VKVbQJqWi1ApsQe/Ob3wwbGxvwxje+EZaWluDyyy+HL37xi7B9+/ZGjm8ojk0QGVNUI+FUtHLCrzLEpqrGhvdioQ8W5wBzw01EKcB0E2eWSDIKC/uKyTiVSwsf2N9BVdFCTCE2pI+NhNgMU1numT9wyxsjOHuHWcMlNbHz1tiQB5bSUuh3GcICFY4grbGhinBOuecBbdBZvKfrCcRciA2dA9WIjRwcTdOg05KyZNQI2oAQoFhs+2xVsegFVXLP5d+Pseac9FzoBjhiyJjPesJ7qPQr7RhPzaeex43TTNBUVnacMT61dmpchpt5FBXPp4hSVqDZ1vxgiN6k9RFFg9XiWDj/s9x0uBWVRqDuSMbHj04IOqlITaOUNjoP9XOtr6lLPKCbRAXlq0l5fYIipknxszshYc9fumZSOesFoccE58LXV0UzHR8bseGIqjy/6WuTOHf02aLnh4kkH9KNayteN/pMG4iNqrEp/p7nuaWKRp1u2nuKmg+xCWmszXtdmc17bfRHNZf2JMV4HyexbpRR0gG0D0J7+/iK/+1juhEbSezHYHZgUoUIMVGT1jGKBOdknSkC4JEo8U7n6kIXmwgXDA6exMJ7zQMbitjQPdiiok0Q1BfH1IgNrlVSjY0voUsNj9H3JAakJLaWe26AitaVqGhuxUVa1170L5tsDFMHNtdcc43xexRF8Pa3vx3e/va3T3to0eqqj3DjGXtqils4NGtsnKpoZAExVdFsmNJFRaNyiwBF9gwX6SAqmiB7KhnfjHTNgP1eCb71GaWwSBkAo8ZGQmzYA7osKKNJiI1PWpSeLw2AaM+IKIr8CjLsPuJ7uqXoQJrlgtyzXhTsBp3uzIndmMpGRuZLB8RZY+NyXLHGZoI+NpLYA4BJAaHPkTQH+TFciE2/E8NgnKm/LzHhAHouNJOJty6EiiY9y8cFKhp/Xn29Ibi5avhUYXNK5Z7jyoBiTIrDt/U6sDIYi9fZhU7wcaHxwNdXb+azUarvwQLp/bEqNI0MoaJR5UK0TYbYIIKD9SdR5MhqCtlbADCaBM53Exil40YDG1r3k4PppHDz9bEZjjPjWFKPCdyvFntJse5UUlTM7+PNlJHuh8G9VWMjrPFo0yjr0c9QFEWiGKHxHi5IezlWUs3murGxRu9hgU3Rud7cu1VyzqCiyckYHdjI88xlnAJEHT06TzKyzgHIzixXhdStHKS12A6itysqGkVsTBSo+Iy8vnprbIT2DDRJyBEba78RHBRXH52+oJ4n1ebO9fR5bIxSa08YEISU7iknjMCGIDboF5QJkkmYRPSYc91EPXObLPlUfE81dRlAz0meuKCWsvsAoCX1h2WPoBBRHm4bhIrG65ALlodGpKnh/rDY78DJjdHEVLT6Iz7FNi0VjWfsqS0o/jJTRXNkgqlT7Aq4qgqbd8yZGt9zdalo5AHzBUIWYuOpGeAa81VGFyyJs0lV3njGaSw0ypN62cjiAWHcUVMVjW0Cno3YRUWLY63qwR/6RUJF42PuegIxOygx52Cvo7n6rsDGoqKVx8C1eRJVNJ6NKgIJLbmJTU5dzfwA7GDAJXKATjFHbHYLiI3uSeRGYCWj9+tZ5+8EAJNvz6WD0VwZRclcVE7JeaEKOK6NimYo0bGtmkNBVLQxPiPF75M6pRSJ2N7X65lB8WHFzz4ahfT1vMZmXSlX6uQTrQmUHCUzk6vvJSYjmm2ITKholX1s7OQXzeBTaoymiehrjujGTob+O8fGVEHnGH25Su7Z1aepeC023lPHqBNL9wCkDvkSQryPzdFVrBcy99fdLLDhew11TA0qmqOoeSwE6iFS17hsiVQ0oV5H1za6n2veoDZUPGCHoqIRxEZKJDp8GKnZsdSgkyZAqUADgFuRUURsHPsfOtBm82bb/+qRxtwSHY0+bzFJjJ4kCTAjsCnPpRcYcLhM9bER5J6pD+rrU0RN1ahhHyhpb2b3AQCMMoBJBQRw3AtV4gFsbcFnB0GGLetjc6rN5E9O8HkyGXhWVul38z42jkww7qOcry1lb7ouKhpDbGpT0WoiNqpBpwfOlCa7zwzERghA6PlI0r/8AZUknyX0zOeI0V4itGiRizn41OG4opJuZmWr8KBRyXB9702KgCj37JA5pNnauYoaGVfjSzzXOqIUaLIwg0nTpM388Ppe98Ax+Efv/ipcc/dhJ+qDpqWCTaf9uI+KxpAjgEDxgPIabOt3VH8lKv3Ku9jr78VzD8/GWg06VcGklkLuk00MN543f/JW+Gd/8i01FrqJUpWeR09swEv/6zXwoW89ZHwvgIuKJm8iIckOn0kqQgCs4R+j0vjWKnoeuMbqGhtTGZDWn1CTULCcOTx4PTCgHqbZxNlWbirgoqpooxTe8MHr4Zf/4gZjLCIVjdDAVLCdxIacPB4DgxwMSKqLis29gFJrAfSe5BIPkJr6oU2D2FCaOA2KVcZZQimZA43PGPa/4vsrp6KtsMAmVDyAr8+1ERtWi+rqY4NzlKtRGmNme5rvOZYo3YjYLFciNub9xuVN2k8kKhtlLPA5FBMfghr+HkV6TXa1O1CURXovyh9pUBZFkRYQ8AU2iekjuKhoismBgVUDiA3eHy4ARMdTRffkNTah4gG9jqaXrwYICOR5Dr/4wevhX33oRrUmKXqgUGPTiasbdOrAZgtU0U4HGzk406FGF1yegFD63eXNrERsFD2Fw592xsWJ2LCurIbcc13ExvN+pefO+PTSs1FbFY3QgyS0h56PXWNjB1dSk05p8/f3sdHnS+sjXP18fDQHgCIgxvkWkweTw6yLgnhASA1DlXhAEdjURWwy4xyr+mlIJstgZ9bG12VB21fvPgKPHF+Hq79vBzauPjaYmcWNATPR20jRjrpfiNjQREUAYvMDZ2+HuW4Mr37WufCkbbb0axUVrQ7NhB+D1iwYcs+s4PrTtzwKNz68BPccKhoM4nvphjNOc7jhoePwwNE1uOq2x6yxTSIeEKLOJhmlblAHYpX1BwGQRTG40fmB54svKVW0UVoihzq7Si1h15SOAX/GIcwT+lxTymg0441ju3X/Cbjm7iPwle8fNuuPBASE9pCR1oA819+BtDQa2EiS+fz78FmaY9fOlnuWxT0kqvI0NTZS0XcUAfQSD2LDg7RyzEdXimeaIzZ7SlW09WEKm6MUTm7YinI0OYfH42uuRUUT9vyQc1WIDWFpiKponoSARUXz7jP2PopNt+87vEqOaTrFAIKKbE834+UmqaLRJCKfQ04qGkG/cZ3CwnRuiDxWITYAOgiSmlBy4QNctw0qGtlD8daHUsRcphAbsicoxIYGNmptCERsPFQ0qXQAQPsx6wECAiuDMXz17iPw5bsOKcl42seGs1q6CW3QaY4J5/m2uelQ9DMusHEFEHU/303srsmLTL9bylpQo7x7FxVNLyTyMfods/i6LmJDm2X5ekNwdTYfDxeHX5uKltMFS/+dno+9cGkUZ+e8racPACb1iRbReQq6x2RBpBkOLgiB67u4adINJjdpdnhOdoNOKh5gZv87jgxo8f2OjKByGqPKwMZZQ1GeY1U/Dckk/yjN9P1QgQ1bqLRcdW7TCxyUOcyiaZoZBqH2PcfLRRMdLqoEtaectQjf/Y8/Ce/6mWcpvr0h91w+Q24qWvWmNRaeAXrMQhWNUNEIfYf2ZTmwtAEA+n5RGdBxphv54TWoqj/kfHWeDZSktEOMjq9A74rjmYiNmdn2bcr0GvPEAXXeh2kmUmYAZElU6n9luZ5ntC6oqV42tB8SUkHuP7JG/m7fK7q2UTqyOsdOZKCSeAxEbHaSJJnPuaqqsbHEA8by8ys9b10hoAw1yUE2Jfl9jroDsWGJw+39jhrjsbWhjdikuVFDhHODSwPjnJfmcwgNjzuUSlgmlRt0+qho3E/xJtCEufa8p+wGAIDvHTipRG8424COFQ3RWU5VBJCpaJT2zROgLlo5FXLgvV246Robcr4O2qTrvgLYQRmuuabcs11jg+daV3wFTSM2OkGEc8Fs0Bn2PehT+MQDXOhrnSad9P7jnoV1UPMCFS2J3eIB+PviE42KZkK+E3zeEcED6KKpNUs8QHaY8BA+KprUfI1aFEWGgAANdIICm0DEhmeIfDxcn+qNZJXiAYFyz+hocsSGfkTKXPh6elDxgDGhounrYPNy0UwJT1PxzUVFWyByrByx8ffMMecJ72PT68QqsxqqiqblnhFdql9j49oceeYPryOOV8uhyvfcGOfYRGx0ltJ2WrkiDBeDCLH5XgJRFKn5dozW2GT2d+LxAcJQYk2D5Jmq4hi0R8dcNzbmJxVDOHCi3CQIRYHWMAyZc1VFRXMhNnp+6gRFHVPiD110rIr/zRobdNCqERs6zr6jsB0AYHOos9s8+STx0M1Mrs7M9zuJWssnpT5wk6hoxt+FDL9LPGBEzpFm2vHcUDzACGyCFDKL77DEA8rjqO7gFspuZtupqTk0SY2NsNZ0YrNPFje+R+P/SDXj4jxRFCnJ56W1oSVUM04zY4/ANclGbMqWECpgp/ezen3VSTIox437kL6f9H0+8QBO0/Y2nRYQmwt2L8D5u+ZhnOVw8yNLTELdTUVTPauEZ3ngQWwkyrpqGWHJPetnA99bVWMjKSFy/2vekyQcsaAM1zMjsCF7KI7R1y8mxKR1HgMoWj8aKqmua2wQsbHvk+tZ1kJa1eshDbZxz8LPzQuqaF2iisaDYk1Fq++rUDvzApvMnlC1Pi9k/tEWmH63xEelFqvssRnYSKocrmMAmFml+oiNfk+IsxDiZPs2Lskk8QAnFc3ToBObMPIaG6OpZmARHT0Hqp7GaUIubi//XkrviCO7IRyaKPccI6RdPd4FokhS/K83LXTyXM6Xq3YFfT50PCepsaGZtzTVCKW6DoQ6Q79jLNQtuBqJLvDARgiweRG/L1FRZVwhqRi//LzW6mPjyBLiYk4RSS73bGwSmP1SQgMxkQzPreC3iorGx25T0eT3VZnm0xf3ryMgNuM0M5DXkHpAABsRne/pvj8bI508CKmx4YEfnV+9CdBMn1HZcF7DQv8OIDubRsNG4mhRBw3n/upACGwCmjVrxMYcHwYDqGjF75VPXGaqGhthXewkukZS2qvw2uDzirQ1/HouzgOgn3sJsRllZv2Hi7LEkwomSyMg+cHWNhpAUGEILpIS0qDTV2PD1220yy/ZAwAA1z943AhkfeIBuNeJ4gFSg86Y7sPFa1YfG2uv0PeiOrCxkQmFnrO5OtdzU9F4UIZ728l1WRVN1dh4xIFCTDdtTtSxNGJj34dQWXcVcEl+R/mShdgQSn2V0fUB9yyliuYUD5CTJoqKhojNhL3FzrzAJjU3p9qf96ARSjwAu1oH19gwxIb22qlAbADMrJIR2ATV2Nja85JxxEYvMvZ7fcWhkpmITfEzDYp00bStipaS7L8LsaGbhiQeIEKsiK5EkZHl5rU6Phlfg4qWmc1HFWKTmNlO2rXX3nDcXFdcHBbVZmE6rWaNjXyf+XGHrLmX7mMTvljwRRu/h9eiOKlo5Lqh8fWVBzZZXtAPJcEIfr+qJNl9RqlouTqephBRSzxZUG5V4gFcypY6g/SZx+zXgNTjUMQK36uyxg4nHs1GbMyscR26HTVKRQPQ84yLB9Djeqlo5BpztKOb6Cz6+nAMLrqw1OuBHjfLeC3FdBlCbnRcUtNkSu+SarIoB52itlFkItAAmjoditikLPB2oWJdlqxA44pe1OrUolnjEj7TTai4hhux6TgSTVw8AABg7zZMaAwMJbDieJouHceEsjSUqWgj9gwCBNbYMPEA6h/QY6WlShseUqQxszVQ7ceeFgY8cfP8MrC57sHjxr7XFShQaDwJR80X2IjiAY71ldYG4/4p7X8GZZEcQj1bvGdhtw4Vrfj/hEM8AL+v13Hv7yFG+9jwIM4UDwj7Ho1Iu9/vYudoEaSagc0JFth0E9WME61LEkn0s1mmk03bSnXNSWsez7zApmLzrjJfoMF5hVVOE30YpSwBAKF7eAqbaVZpri4VLVAVjWfpghCbwCQ4Ljh0EhqIDW3QmdkLF34fUgR4jQ3NTND7xjd44xwUFc0MgHjPCFVrJGbCzLmWGo6QTEXDwGRzpCV98d77Mjp4DrhZDBRiox3tubp9bFhGvkpVTTIaqNLrqGtszI15pAIyHShY4gEWsoSLoHZCslxOQnBUQRKVCDUMbEZpDisDUzCkyya/el4CsrGuPh+4jmCWGGtS9EaVGc/wfkRsxpqigMdIM5uKZjSgFJwal2oep2XWFg8YcUegRGw2TUoNdcpCEJtCCYkHNrFWNBqlYodzek4uFCvNzUSFrj9rlorWiWNrbAAOKpqB2JQZzXGmgiBeQ4HXEMVuaILMdw859W3O6DWi60pc+5APJdVBen2HRMpAV9bYZCZtyAps5m3EBveZ42sjQRXNpFO7KEs458clkj8pFY036ORG61GkY+e5LYjjk9yWeiYB6MDmln0nlP/TTSIjQck/4xMP4HSuYlza53CJB/A1it4LLoFMrZNE4jH0dbaRXwC7Jw6AXR8k9cszEJvMfD4nSbgDAKu7NM/V8HsCGjoD6Ofc1+DWxc7RIkg1qWiI2HhqbDoJ9XHJnkDmtqKiPXH62NhoSK3PexblbTXFA2L1IDH4U5J7DkRs+gSxCXFAacbBG9g46z3cQUEwFa10nGmmx0BsEn0+otxz+ZoLsaEPjpS5kJw4Wuhv1Niw7KiuNTKPQRWX8LP4Fl+NzSKRu8UADbNePrlnnNe8p4beIHRWedMxL1xUNK0YVH+xkK+jVrfTNDszA0OLa/k+76oFokXcRSBpw/CU/ll8n53tDrW5bqLq6rCXzdCRzOBqbD6jwhXUeiqw0V2Zi7HrZ5E6kbrGBje8mMyhnASReK39a6OF6DmoaPXFA3SmsTgfO0AaZRlz5t1zkDreUnA4T7Louv7EEYg6EmF5ThD5WNPFmkZsep1IrrGRqGjGmqlpYFwggUuro3LRIimM9+2NXCmKUuW2z3VUrZou8HU7m9y00zXJ3mx/pkPWWn8fG3k95jU2AFTyeSAk0Uw69byDikYD4FGai3u+z/g1TOJITCRyNgjfOww2A+4znqbTkiALAMAlZy3CWdv6MBxncMNDS8XxOL3TIZRTVxUtzW06o4vqSwNAHxUNm2bTczQ+z9ZifV9tRIKPXWojIMo9Y2AzwdwvjknEAxITnUpi+zrWrrER7pOLnaMQm7pUNAGx8YkHmOugPp8nnngAy7rVNT9iY4oHjCqywe4Gnfpm6AJy96U2EJu6VDSy4PINaJxmcGh5sxxTeGBDHfgQ6wh8Sad4AMuw0kJ0bJ7Ga2zoPZOa8EmbqJTpofU8FhVNWFDp9KIbDO3bwh9ayoPH8wiSe2aIDac49AIQGzubV/yPm0a/xrxCk0QYDMSGIVe8YZ1MRZMdbBrYZHluSbniOOgxQqiePttN+PbF+P1UtBCnP3WgtF0W2KhAgDiqdKE/vjaE9eGY9TfQc9lXYyPtrdV9bCZEbFiNjSS2MmbOH+/kbo5TB9P8WN0kEhEbywmTEBtr3um5jWMPQck3RykcWx1430MDbjGwIecvIZPYmXs4tgUSOM0Os6qLvY43ecK/D9dAitjQvUhyPgA0fZnXLQD417gqE8UDktg6X2ocseW0F7nGppB5P742tKloDE2YLx08lyoaQCnJbQQfAWtE+XG6n0kJVEr7lY5tFvpjkIDf4Ua4uE8TRZGqs/n89x4Tx2MhNow2TU1u0KnXLt4rT1N9zeNINTYbEhUticSAzlV6oJIjwrFcqmjUqDKbXaQv3//DK5ve9cWQey7HiwG0WWPj/h7J5/OpolHaJTWl7hokHkACGwmxsVD3SMubs+cIDeWeB+NCaOfRMmAKtTMusDE27ymyQhI1bBsTD1BUNJd4AOGyGg+Tkb2RM4rULFW0OuIBFLFh73/rX98Ol7/zK3Dno8vBnNZizLnxnirD99GJ6aSiMX18yqvc46CiufoJ+TZRmumh2SCeHa3i9tLj0SwTnhN3WqIoUosCbpqarlU6CuKCVLyGn83KjDKVVZ5TiIu82LgUu/Be0AWuCsbmx6SITZrpWqUuC9o0hU43UKykorE+NvgdCmUUN0dEbCanogHo7O1SGdi4qGh1EBt8/LkjgHMGqR4cseFODADAoyc2dFEp63mjef65NbY6fWwsueeaCSMXJ9347tTsYRXSx4YG02gWYlNBRfNRl5V4QhwZqHKV/fyfXQcv/v2r4QSRCecm1dh04gjOKnsnGeiVgBJSwRV+jlxSGRNxC30tHe5HbMz1fY4hNmoMpDZS+rxMRZssOAZwyD0nJDEl0YWRpofiAQGIDfayObIiiAekup6lQGyK4/HAhjtkJlpaPYe0w65f4w4gvs9kg/DkhP6bZiG454DPp0E62pfvOlyMx/FMoS1OWmOTuvvYOMUDyFog7X+dJBZRH6WqxvaH+ZAam8S9nsniAW4Gyb7j6/DCK66Gf/uRm62/8WNSQRk8FTp+n9/z5k/eBi+44ivw/YPLOuDy9LFxCYHUEw/Qx10ZjOHkxkitSRJi04ljJchAg2L8OYpMSv7vXXUXvOhdV8N1DxyrHAvaGRXY5AwZmQaxkR7sBRalaphbdppwY8hzBqllWkHLJ1aAZqmiOTJlkvnknu87UjTcuv/IqiXx6W3QGTBmalqiWN8Penn7iW4qp2krmveJY8NNiBcHjh33LBacF+kcjBobBsW7kCtJ4jRXDhfA//d5F8Lzn7IHfqzsXk8NF/yTCrHhXF37oqOjQ1EL6tQEiQc4An0lHkAWmFCIl9ZbibVKDLmyVNGyzO5jwxt0lnPCoKLldvBEzyVjz9ck4gEAtjKai4qmm9BWH1NRfdhmwZMb6FDSYIUjGfuXNtT1KfobaHSHC0y4aFeu1/AeWQ06ayaMOFVKQs/GWW4E9F7VLuPZ5XQYE7Hh9SfqfVIfG3ZaqsYo0pt/iArPvYdXYXOUKdqFZJSK9oyzt8FLf/DJ8MafeDrsmC/pO0KvErreLigqCAnemPws3idXnyOXcToulXumCAdXOkTzBjZTKEOJ4gEOihEaZ1WE1Ng848nbAADgtv0nlNzzolJkzIzzw/vgEg8AMGmh+HuVSXQ+yc+gexaAnRSjgQ4+fyHiAdK9e/Wzz4UfuWgXXLB7Hi7cMw9veNFTjL/z9WthQrnnLLf72Oi+evJeEcd6zDIVLbLqL+nxeJJWi0LYjjutaQTQz4HxHioeoPYg9zx94OgapFluNEHlRq+Zte4J80Rap+86uAJ5XjRb1X1s3IGuSzxgm2pbUR3Y8GD7waNrcM+h4jwvOWtRRP40nVZO8CAVdzDO4KZHlgAAVMPqELPTGaexVWV+Q8z3YNMMRNF/w4+2UMfFUo7Jiw2TO4CSmapomrowrXiAogWRrDmnYMkNOuUo3mUYYFQhNgCaq2wgNkhF6mv40TyPKsTGPgcJwqZCBVWUPClLSalor372OfDqZ59rfS+ARl0wsLEQG09RpxHYEBpKL4lJ8X+YeACaK7ApGRleowpIWa4zP9yh4KpS2unOK59b1ceGOFgUyTPEA5hyl1b5mQyxCaaiIZoRsOa4khk8I2shNmlmPcMHCGIz1010PU1myz3XVUWjVCwAPzffZ64gl7+HPlP+ZsIksOFUtDg2lKqUpKlTFc2NYum9IIY6zWtxjnh7xRAqWjeJ4QNv+FEAAPjiHQfL77aDPLrPYAC0sjmygu0OCzjGJPAJ4d/zNZAGNnQvcjXR88k9+/aVKpOQ7AKxCUAglEplNRXt/7hwF/SSGA6vDNR+tHuxB2vDjWK9IjWmc05VNHPfpfczJKiTWBFScqYKsaFrTcTZGJ7khuTTnLWtD3/9xhc7x8zp9IuKNm1/j9igkwQvVh8bB1qs+9jouS2hLF0SDEgJHr4/zHkQG2yhgciwVL85MBCb4v9eRwfH3HCt9q0vQyOwMccr19jYx8JAZGOYKoSTJpHzPDfoj656at36pDrRw9eHv7/9MRiOM3jS9j5cctYiLBGZ7DgqvkvTXEnQTuYMXY+R3sZrr312RiE2rmi+jvmyTZidASgEBHw9bwDMyeDivkrN17iZqmh1+9gQxMbR7GiYZtZC6pN71g585dcXx4rM76PfA+AIbLBLcE4l/rRznOd0wptok/peH2JjdCzWCx53hF2BjUxFw/P1X5gFFtiE1DXhhtXvJOq6Y4ANUGxEVYiN63mg36/18cPUnygVzVBFYxQQriplIDYVzy2+d548f+NMlntWgh25KQntSxz4bC+RfAZohormoj/wYAmphbS2hW8SB5Y2jKJSTeegNTaFo0CH5qOYoo0sxGaybDt3zKW1bpSZPay8zYSJ42yKhRS0UuqUjByBqJT0cKGySQy1amxCevG4an/Uhk7HJaxv28s9YXnTlrTmxfS0gJ6jOZJxZ49S0SjCoXnwsrPpU0WbDLERqGixLW9NjTfxDaGizXUT+OELdwKApoUicktpUp04EilLWWYr/NG5HULDkxAbucbGFNxx+RlSHaKUhOFiC3WsToNOpCIbiE2ix4WnwdFil3hAHOn34v63SJKAnTgSaeUuf09LxguBTdlCAyWhJSTNaNAZ0MdGBzbufVddsyS2SiVMxMZNLUPq2MZIJ30oXZ5/hLbFoKaa1QdQ0fha87ffPQAABbUxikzxlI4jOUN/7iRazGVlYwRHy3rGlYCxoJ3Zgc0Ei6ckrYnWI1LLa8Ox3pyEDCSAKYfMN0QcW1UvHIDJ+9jkeQ7rhiqa7JyPSGATIvfsU72RDGsg6DWI2UKLx8KMgkRFw8Ayz+Xss6sbfBXEaqiisYXdlaW27mduZ5lcttgzN0Mcp27QaV9zOi8p318UD6iJ2NAgs44DB0CcTH4d0ZktC1axF4ZuLKqz2vZza34HpVrhUDPyHRJiUxwnd2bkQg0LiY+tYmBTzjWHo1wHseH0B+649DkVLc0spPDAiQ11v/udRAWSFLEBsDOBIYjNiDj2xf+TOaVcmU6usTGdwRAqGs3sFcctxrdAnBJdWM8znLYzzIM9DM6pfHsVYpPnOvj0rc9aJIWtWbihC1Q0Ooex/8rK5siqV+CiKaogvCIIQFPOniAeICE2LiUuSTUz8aDSVSY36Iy96zxvos2fMYmKBqDrSdBQAtoQD4gisY8Nv+8jPrcD+KpyYGNfzzQza4v4vRgJyR9vICgoTYaas0FncI2NXrtciI1PFQ2fHVwPtzOhCwlVd6HneF8lWhstfMdjc6OfwzHivi3O0zQAsSF7Pafd8wQPgDzPEGHZGKZWjQ0dBx+7VT+lyjLqqaIBABxeKQIRFKOgcwAThlK5BZ3L6Kc8cnxd/X2FiUr57MwKbBw3pY5J2TFqi6RoSmWDHIsAnQyuDqohjpdZY2PyC31WIBv6d9ekHY4zy0n0OTH4UnBgw8QDpM/hor0mUNFwDIskY29wmB1KLj4Vp1RAGgBop2rzOricPjTa36AKycJFAY3X88gbjn6oaWBLawiU3HNgHxs0SaEutMYmU5u8WSPEnVlefE1pUpYqGnNqFbc4iY1GmFJAS52plEhyTyoesGexePaOrw3UeIvvNNcHn9gGN9czX0lFcyA2Ayr3TPjV9L18ToT0sbHFA8LPkRqX5ZYdNFMVLYSKxuWe8Z7Q3iJSvwwAudbD6uOT6uZ3PYY4Vo0NwI+KuGTIJQqGpFSlEJuNETlHExHj3ei7SUyyxp6gi81PKp5g1NgITfQAKD2oacRGCGyIQ+uTyZcQmzgys/rUnn/JXuN3RG65sqdEWeJy+Vw8IASxwbdXU9EYGiQonxafFRAbSe7ZUUMYYjxhgY6/VxWNBjaEIkeRGPo3Vz0mFa/Bt2wjQXgniUTxAKllAAChoomIjVljI81zmlzUVDS3PxJCRcM1kTboRBNrbIQgEMe+PkzVtaMNgq3AkTWKRavTx8aV4MHkQc9ITpkJCBcVTbqWqy1iU30MV6CBqMHKYEwUKVyIjT4Gz7TiYoQZJZ/cM0dsaHM2n3FnxkVFG4wztZByPr2PhxuqisYVsSSqFm/21u/oiY3fR1WxKIfVpeRCoW1utDaEwroDhqK4YHur305m1+e4jG+mWu65OqPTIdljk4oWq8zL5sik6qG5ngc611VmOrCXDc2e00wx31B18TVms/PyvHKbisZ+x8/0u4mxOUkURHrts4wEhBP0sQEg0q8lD9hVs1MHzUgdzzzP3quN05B7Nten/ZSK1pHlngFsFE9GbExnA7+LU9HqigdwkRWJultI4tq0A8no+kMdNlxDaN2Ds++Q0HjXidhEkVUj5rLQJqMutB/PQaIu0bmtamwGY/V8WFQ0RomjTQp9iAnvYwOg1wVDFc2xD7mcIXrMphp0dhO5dgKNU6so7WX7XNeoJ6D23It3G4wLrLWj5+rqY2PXgHLEpvr5kdB/l9yzq5UEgEwt8+3tvuRjlXWMscrd49HUPu9QtOS1HVV9bKicMxqdq7QGR+xjw6lojv5E9LUFL2JDqGiZuQZJ/siAiOpIezeAGQxa+48RuMp0U1rovzmiNTZ6/JJfUxyTBTa9cMQGx0Fvz875Llz65O3qfNAUXbmKiiawpB6/NTbsRtYtcgXw19gAaHj1JIG9nH1sfIhNhoiNTJWgRrNkdeSe+UPpFw8Iz86GUq7QuHiA5GP2Ogn73abbUSogdTBcdD5vjQ2eA0NsVNPKhC+o5uftbtt5sKgCR2x8D7M6PtmgaBBoUtFI4CfMDVemMBYcmPAam+J/eh3TjPSYYQ6FrrFJy/MS5J7ZMGmDR6rWxwUvcBxozSA2ulkfgHYUQjrZu0yvMebrFhVNNbSkwVxxPhftWQAAgEMrm4pbXPSxkaloPPPoS1igszFkTk5T4gFiHxuO2HgcX1PuWaCidUvFnpFb7pkqMKnjOhCrOI6swNxlZnDmvk5SJp2eA967Qm2x+BsNznFPyHOAExsFTRKDJL6OjEjiJ0TumauiAWgqqVFj4xIPcMxver7TJB2pcQosdwp5IqJnBDZubaRt/Q5cdv5OACic3DmhQWscy5QlvvZS9UoAP1qm3iMEh9Jzk/HnxqKb26wSXodofK+AgoeaGdjofUpCX8UGnWRuZGR/pv/b6L5+H/dHthsKfrG4frn8PR8VDV/D4Ee6VgYVjck9+xAbAHfyhAoF8WQ6XRtcAiHUHzRrbKoRG/4sL7LWJz7DuX/ujjn12o8+ZY+ah5Lkd0+4ViYV7XEe2KRZDp++5QDsO75uZStcjtyJ9SF86qb94k2pUjpD/e6TRMnB2cfGo4qGYxun8oNFzZJ7DqyxsbT1rTFk6nWOVPkcNb3oer9emZJ7RkdJcPz5RFUZUuJIULTCCGwcGXBvHxtBJpIeFzd1nd2S0S60LNP9DSRuOTUe2HCJbV/9Q5fQYoZpZtQQUC685IC5FnF6P+rW2FDxAKpqw4vsnapoNCBk53/jQ8fhT665XymS9TsmFU1CT+gUoPSmSTKQACSwWWXiAS4qWoDD5pqv/JhK7plkufG+nLtrDvqdGPIc4JZHTqj3G9LQBhWNzVdP13GeOEk4YuM4xwMnNuBvvrtfQDfNuSBlOEfM+fNT0Yr/O3FkOVMAAPO9Erkcpgopt+S5BZqqJTNO1itcd77zwDH4s68/AIfLJnfWeTgaypnj12sF3zu480P3NJqV7ZMkD9Z/KVU0dp9ovZsveULHB2A+MzgXwxp02oGROocp+thIz1Y3MecAfwuf05T2IimiUXv+UwqqzI75jjoXuq4mcUQaOaYqSOCO6ShlBf7lz98/uAxfvvOQ+N1ScOhCbAz6YwBiQ6+XJRiS2e8PNZo8KmiPbsRGqv2h+wdHbFzMCcoY4Mmr7f1qKpqrxsbXx0ZR0Xomol6cQ/G/1McG56BPPADA7df5VdH07662EZSqtU5qbLqdSKEpfP5ooSiG2JTXdj2Aiob3/ylnLarXLic1bKbkNyZnMCgWEJs4UokWaiuDx1GNzXceOAa//tFb4D/93R125texeP6vrz0A//4Tt8JHb9hn/U07QvKpI2KzRJqvuYIgOve4coySBA2gymzrd9TN3z7XCZZ75llaV3A1HGcWChPS3DK4QSciNmNzsaLGM6p9QbqYct2HRmAjB6NeyWqy+VLHnnfydSFXkgJfFnhdaK0QgHb41MMsyj2XTlZiXgPNOy0oimphFRAXlZH3NFbrC5lJn0kbyyjVtV24cfE5q8UDNA2SZnPHaQZv+OAN8Puf/z6cKJMI2+e6xuYkOWD0XlJ64LR9bNaGKQzGqRhM0TGEoBnOGhuHKpoUrPSSGC7eW6A22C9lx3yXFI7mtaloqsiVUUiqnAu0//yZO+DffexW+PuyMzma1SPLIVsr0Q4kw+c5ZoENOq3UKdHXiyEjIt/e/B4V2CWRcoK//cAxeMdVd8F7vnC3OLYQKprZDV6mommpZn08ukdEUaQQBwz8VQNUEjzkOaUv+gvt0aRkwM4yuXZW2bySfh9fr+iawG2aGhtRPCA2FaLoWp/ntnhIKGIDAPCCpxZ1NnsW+4ROrZ+jONI1Nil5NiUqmtmgsxjTv/3Id+FfffhG2EcKoNFCVdHSLDfOmScEJDYDr0OU3u+qG/YZ9Zl6ndibgPX1sTHWdpSodjAn8DpR1TO0bUZgE4sUPJcQ0pxHFU1R0QTEBqnLEhWt50ErDcRGSEpSUZIe6Uelz48ENg7KMA1CCsRGI/Ku55IjZ2hKFW04dlLn0PC53butD7sXinUEny0AM9mA11KVWwh7Qq8jIzarNRCb076PDUq9HV0d2Aus44I/WjoCSC8xPuNwOtB2leooqOwA4M4GR1HhaGa5m4oW0qAziSP4g3/+w7C8OYJdCz0lHlAZ2LBsg73o6cCGj4PD1TRir6uKZiE2UmDjoOFQB5tCkGafAPmeeeuECMRKx4MLEu/nwxdUsY+NA7blhoV3apwBwSQNgA3xAMXVL/oUdJMYBmO73wk9Rq8TGwu2IR6Q2NfXZ5lxHYvPLpNu3ZjRpMXX4zRTmdUx6QvRTWLYHBUNOwfjTGWYXvuc8+EHztkOT3vSohFASM03E7ZpK2GJCREbujkWzRBN5199bw3ExuX42YiN2SdhTBr99Tox/O4/vaxASHKAvdt68PJ/cDbcXzZ4G2eZidiwDVoa5pidm+LbByI22MT0m/cdhX/y7PPIcc3Eg+Q0Fc5fdVAAYEqQGht6+fO8ah5H5J45YiM0sXOKJ0QR/NzlF8HJjRF878BJuPHhJXWu3IxGzA4qmhHYVFDR6LXm6+aO+S4cWxuqPVCJBxAVPTofu0nkTZ6gSXvgf/wnz4QbHjwOP3LRbvWaq1G0puTax560TqsYlz0nOgyxoedLz1HqoeRSREP7iR98Mvy7l18KP3rJbrh130kAMPejJI6MvmKbwwz6nUREbKSA91h535bWh3BhSS3l50GddVeDTuOcHYgNDYrN5A+QnzWSOAnC3WX7iK8WWJJ7pog99zGc4gHlobkIEIApHtCNdS1tCGLjpaIxVTSKTO5d7MHR1YGxf6YhiE3qrtEq/q6vYSVi40BFDcSG1oiXTW5HbA2mY7euT7kvZnnhM807RDgAKMshgvf+i+fAoyc24FkX7NTnI4gHVFHRpF5odahop31ggzdic5RaE8a1eC6X9THS36sCDVRHObxcLErdJHIWIAIUD1yW56IjXIzBzqhI9pof1o5CMBVt6Kei0S7wfDPjsrl0fHUXP1ycR4zaQs1CbIRi3TjSXG+zxqYce4DzgoaFc3FU3L8kjiDNcrWooJPuysTzZnGmkov/uiz0uCoac0iEDZzWihg1NoR3i/8XgY19zui4NYnYSH1sljeKBYZSB2mgamRhSB8bKodJnaX3/PMf1gE3CSAkuWeaTKD880kRm0L5qAi4VjfHTgRI97GpPqZLoMRWRbOpaJRa9cKn7YUXPs1Ub6I9DHyIjTTHUnYflHhAIGKD33fdg8eN1y3xAGGt431svI630IMKwFZF2xilCil31dgYfWwc9RlJHMHZO+bg7f/0h+BTN+2HGx9eEptF0s8AuNdnem5VVDS6p/H5sl1JPo+Nz1LxAOoYdJLYcB5dJjkzL3jqXiPLSr/H1crAh9hM1KCzvG4LvUQlZrqJqRDlKqSXVNGqEJskjuDXX/4MAAC489FlAGCBTRQp1HCcFYpTO6FrZdwLqreN2NA+U9wkNJqvD/g+45x5Hxsmu8+PWYxLt1ZAm4SKxqWpXYEvgNygkyZO+ByKHfOG7gGcZbOdqaLxOh3a24vTJucDVNHmhT42iPAPDMSm+H+aGhv6d6nGRlZFM49DxQNokJPEEXTjGDYhs8aGh7AadBIq2NpwHBTY9JIYXnLpk6y/02cIz6NDfIE0y8vAi1DRpCbPNVDg056Khjdvc2RnqV20ENwI5AXFn+HdrRCbzfJ9/kvEC+fR7Aad4ZdaZVRrIjYu1Mho0IlODHlYXQV7oVQ0XLCQsx5ERVPUJdzAIqOZE104XFS0kBobLpagEBvmSFsbhiAegJepkorGEBvFK/VkxGnwRh0KzlVGaouvF06fCTVIfWzCqWj6GHgNMXGw0EtU0K8C0pGp1kVV75RqDIHd44hRzWL8XhK0ODT9mxAPANCoDRZpS8fDcYX0sXGJb/D5i4gN3fAVYuRwPHRGnKmi8Rob4fZyVTR9zOL/qq71OGceOLKm1kd63Kb62FA5YVHuuayx2fAhNsK5WHLPrEFpMXZ9fSWrQ0VL4khA7cwk0Jg8B/y9vEaE19iMMnNP7MRaRS6kT1AVyinRRYpjuz9fhfr5DMdFHVZ0ytR3OyTDuew8QHWNDTVFRSv31IjcD93MsfArKlXRyvPA16S5JAnRBNXYOASCqH/BlSP1sdxIYojR59qssXE78n2BipbludUYUiPi5nFMIRHzb1Q8gAb1+JxTv4YnW5UqGqmdQltniA2dU3tKqqYp92zub5U1NgGBjVUna4gH6MQGtTUSpFF0o2OgWSxJ4RBEiglaWSUgwBNbkikaLaOiFZ/PjP+piBS+ty7CeNoHNnjRJMTGlZVCqoy0uFchNjhxD5XFo1UOE04Il3JMKGJDTdF6aiI21Bmn/OMQxAaNbv51qWic2kLNoqIx5ECpZSi0ypZ75hkbbx8bFpxxSWotTetAbATxgCpFPTReY6PrecqFz4MkdmKzxob3A+C0P2qpw3EV5Z5rIjaUp4uKgZTG1ScoI12kKdKFWcWUOPCWQ2ogNvL1psFo6D3xGSJsJ4hgCJ+vrs7YkrnGncSRIYnZF+SeXR3r0Vw9b2qpojlodhqVciA25PtueHBJ/aydq3LTEu6FJR6Q2gpX6ngkCUM3QPx5vlRF2yCqaK6GqkaNDW/CK1BcuZSydB5qnBXvkRx/XnCtG/Pa95sjDiqwIUi1gQ4lMbikYKmNU3PNdVmXURbRfKqZUv+gUEP0wWy8WASHUvHzSEJsjMAmnJCCTaallgW80Fxqq2DOi8yomZD3p+J/GsxSHwG/k1JyAWwmgdjHhilH6nHagWAdM+rdPDU2lIosUdGKv+McKo/taN2Ah04YegtgigfQYEBCQxPmf2HQkufmXphlufpdQmyQ0UMTdrx2UaaiVSA2ZM3g6x6+zn/m84oGIFSmme7drpYp0nTQymh+2roruUSN1wfS9/JEQDeJjST3ebvmDV8jxE77wAYf3E1SDIXmWjv9iI0/W4UT9+DJIrCporjgYezFzpz0dWoAKBXJV7hl1djQxZVcnIFRY2NSsOgYAcyFMHTIuDjjR8UamwpVNMzKeRGbWH7YRclqJ2Jjige49POtDSQjSi415Z47QqaVG+0ITYMEvmj4smR4+7njGrMNCcDsE+Qz2qBTITZl4mBBCGwG49RauAdjTSspxplbFDs+VleDTgCTPjhtHxsAfb9OEIl3Z8AVJB4gO7ZRFBnnOyfIPSsVvI48x4wgyCceIPU5YlxwNLzmWmrbEdiQ77v+wWPqZ+6c02s3T4qvLVTU4XzrwmIzmaERG9LHRs0jOcMp9bRQ34+IjeA0uOSo61DRJNRNPb8q8eXeHzji0GfOQSGhbSKfXcd6Rs2nakbNJefrWwdd2eQQw4SPURTuUZSk1y4iwTm+t6rGhhpet4EwJ+ZZPYYk90zPl/eekeaJhNjQ+YLZci5MYDFDhHtpiAc40J5JahJ9qmjUT+H1ImhiHxu8b471lRa323LPdJ5Exr6A30P/Tm2eUK1oUoiuo3KNTV+/t5wPShXNS0Uj/piw93J5bDuJG1k/+wIbitgYkumOmkMpGU0FBHzmapJMraf2BkRs9HtxHXZJt5+/a1719Qq10z6wUYjNOLMWSxfcjlQZX4G1i2OKVLRlxWv2LwC4iDgRmwkyynQx8HHR7T429qJfvG5nSJyBDfm5StYYjS8ach8bmYqmal6w0aNAlXJBnWqhDOAw24hNuYA4FlRORctynWGu8qGd4gGebCatFZFU0TiHXKI3oENtZ+T1z3URG7oB8Rob2oiUBqT8uRuwIIbW2Lj6xWTkPS75anqcaahoeB4nSyXEKBK+swYVDadjlYhGn2UEaeYXBUS4SUEQgERFE54JJR7A5idzLlw0Ivp9tM6GZ43p2ooFvuMst4IF1/otoYTF8cvARlBFs6loxf/0WeOxnjS/fBK2xevmuiq/R0aRAMi9VuIBbvSEb+Y2YpNZ8r14HF+fILUnVTwzrgaMPsQmpManaly8doIeVxKg4M8+VRgNNbx+SI2WEBvcb/naWdQ6mUheFbIn1SkZiE25JqW5v8bGxQgRA0GSpArd281j6vncSzRdKM/NNYPTqtAohZjPIdf6StFbO7AxqWhckp+OiQfhtF8cTRBTnwpVKw1VNKIaqAMbKN8Xl7/XR2z4fsh9KjoGl9wzRVaogljRg85GkwyqnjAfQnvZ1KKikcQ6fiVXiMR1E33B83fN16KVApwJgQ32YhEKpkUeeZoprqFYh+ChCQAU6kPUqrJaaiMR4Njif+2whhp1TH0CAvhg4QJu1DaQizMkQaFCbBxUNPpMVjWiROOLRhAVjTnYeD8kVTS9eMt0E+6I5TnpOaMUn0ykosODDSubbDrjBu1p0gadsUZbnI3mKsQDfFQ0V42NIR5Qu8ZGb0B4HKSiLRqIjT4uHxt+F97bNCfIhKM2wqCwOVCdLJ9ePABAI09IRZOOVeX0U5M6u6NRZ3eOLfY0UHMjNnq9MfvYVCM2SjXPcc1Nbr5/c7770AqcKANBnTXGbJw+DmbfR6mdmHL1sqHJIDNLXPy8QBAbd4AsbOTsnKS+W1VUtHGFwwrgp6JZcs+OOQ5gOm7Fe8rrKyA2Xb6eBSE2/nXMJR7gS9ZR6fK6hsEBdWLUOi3cTxdai3OhjjOE15ZTowFMhLB4D6ttHaeGb8KTDnISykw0FmPQvyCd2VJFc9Ty+pBvNY6KpG6VGQmATmSsUQaSqWrXzO+i95D3sXEhNrQGhM83QxWN1GHgUHyIDYAWb6GBDd7juW6skWxyDtv7HXWtN0mTXQB/0nFI5oy09/Lkn62KZl9H7g9T8QAexIo1h5SdIwU2RH3SZ7WoaIm91uL+wecy+gvn756vlaQAOAMCG7p5cEhMWrypGoSkbFNZY7NoBjZViA1uipbUssoauJ0cl9EJ4pN8xocQexAMHZvuMM3UAkEpWLif14niJeOReh3xAN4wE2tvzD428kasFzI3RZFnhPj3uRZUnDs4niy3lVxcxmtsOGrExwhAz9HkLg+Z4+6jouFChWPW309QgsAeSWiUXmhR0XoyFY0fG51uldHKwOnAUwTN1XyTbmCjCZ4vbttKhA2paBKkLqnn5XkOv3fVnfC33z1gvNdX90PXkzmG2ISIB+Ac4jRUTm+oU2PDVdFwLNzwvs53E8hzgBsfWireyxIPNBmEgQ3PYgMU83vf8XV48ydvhXsPrajXaTZXQmzmDFU0eVOVkh5WjY3gxFY1uJT6LnBz1Y/R1zgVTURseI0Ncw6ozDC/9i6kPycIQBWl1iUe4Co4Lr5fXpNDTBIP4EiUiV44EJsEEZs64gHmfkRvR1WNzSb7nScd8F7fuu8EvOWTt8GRlUGleAAGU5zWxp9LJ5sB5ZOF6zVJD5tifOZYTTqR/p6B45nEZaEQRDDH6UL61FqQ2HLPJhUttvwBPBYVgqDGA1YAvVdRqhr93sV+R+2vCrFhlOlpxAOkAICPwZW8WBWQFR+Vkz6iIhWt3Bf5cTdHKbztb26Hr959GAACAxshYFNrIfa+YwkhvM6PS8SGRr8IiSlKi5CVpNxCX6bE2cdmvmsU+FZlN5DbayvH8Ixc+GJCnUifA4qRNN50s8bGfJBE3Xwhq2NQ0WaK2GCNDcovR8b7BmJgI2eaXQVxdCx849IUh+J9Vo+L8n20QZty8qvknl2qaIISCJokHjAYa/lffM2ripbKjiu99D0BEfOZ3hw0nI2BzTZynjQg5XOWb3Rp7hEPUFQ0s+6IGqUcpAEweJVx8QDpWFIt1t2HVuD9X38Q3v357xvv9a0x9Hx1H5tyHqeZ0ylAw3vAs2g80JEQF96lHY07FwAOOkU5tudctAsAivMHsM+3IyA2NGjT48ngr28+AB+/cT9ced0j6nW6VnElJgAwpEdxvXehUNTBdvaxMTZbP+IwYgkjyfDZlHoxcCqaQiWFucIdc+4cUEl0jQr7Awt6WlWIjbOPjZeK5ke8fIbXdjvrT0LHSp+/IQuo0c7dNQ8AABfumQ/+bqXsyfYjABMhBLAz7vxZTNlcx/nwwW8+CB+7cR987nuPiUky6iOgU1mI1ujvS7NcDFasVgjC9eJBcF3j0tQdkhx1NVqkhmtXntuotpQ4ouNH6W1qVDyg26Fyz/ZnJds1XySxHzupFR5Vc06StKPnsdhL1LrtqrGR/FKTilZdY+PydYq/6f2CmoSs8OtrNJKtSGLjNeDCNN9+4Bhced0j8Edfubc8ZrWPq+oDjfXcTCJxKtq5O+cAAOAfnLujVpICAE7/PjYUdcHApt+JDQljaidJAbC/j43DcUhi2Dnf1U5OxeKP98mSB1ZSj/7vc1kviWEjs7Pf1NCZQS62i9c7HGdWgTAAOohmUS9dNEMTO75mUmh8kesxxAYnuUSVkpRf6PdYWR76wDKONt+4nIhNioGNAJ9XUdFcfWzIHOBjptlH2qDVEg9wUB/pMXkNxVRyz6QZn5Z7Lp7DBUOVhlDReGCDiA1RjXGKByACmmllHRcFsSnxAHS+T5Zyz1JQITXoRB4zDyp8GXH6HODcMuWeKwKbci7xTQxrbLpJ0YhNFA9wUNGktcHud6Cv9a4FM5HCHSZ6fF1jk1kb8Wicw+qgWGcpj5uiy1KmkmZTcb2vg9gkcWTMQVM8wO+Yh1DReOaRGg8WFOIoOAW8+L3HnINRmqtMOU+eVAkzuL5T+r4sLz7HE0n+Pjb1AxuN2Ji1EwAy5VvLwZvj+F8//1w4cGIDLt67GPzdPiraHENseB8bTgMdZWZfOxwnfn5jmIqolym6oRMCUu+aflyMCe9z3xHYSH1/Jm1mTMfX7cSqYTTdpwD0/Pf1U+NS67w+Bo2i33zcc71E9TTrxrbccxVb5jkX7YK7D63AjQ8dh1c882wA0PdojrAe6L690O+ov+GaG9Sgs6qPDaNh8XM118FyjWLfI9XC8L4xLjEV317F93Pc99bLmp4qJU96LI76Aeg5zKlo7/3Z58CDR9fgsvN3Pg7FA8hFXcHApuueQBSxkSVxqzO8lI4mZd2oVco9T7iYSLLH3HBBRSqaSzxgmGYGpKvGLmRJJqGiueR4qdHrGEf6+iueO4MfKbXGBbe7OvDKiI25cXWYM8ePgb9jASFV6aryoZM4Ygujncm2i0A1giHLPUfq7wBaqtY4b6Si8UwZ+V59fUOpaPbGsrIpyD0T+W4uU675wxF5ze5Mjd8DYC6mbipaM+IBmJFdWq9HRcONjTuRvjXGUEXrYnGqnseubCcfx8bQpgfQ44sCFSguwaiKeHnpc+uqRwHQmTxdJ8JQA3Le2ykVTTgmXkO62bucmR5xcvH6IHoYkvTgKntSjQ1fl7g1TUXTiI393mq558xq0FglS15VdyB9X3FONvLl62Mzkdxz+R20dk/3vbDPS8079qycs3MOnnvx7lrfrcQDUtPhBpDEA8w9ed2iyMuOPnXgJNSLXm9ck9LMTuDyvZ1/lh6Xrldjxz4aahyxof9LVCsXigqgrwVHFPgjRZOJfB/oJbFB5+WoOgJdrnn+/Ev2AIAphKKacxJU2ESgE+UT4DzgDTorA5sAVTQXAkfPx+5jYwc2iUqq2s9lVWuPHnsm0LQ6YPF/CBVN9+CyEXjVSJ4lhJ60va/uUV3E5rQPbKjDyaloEt0CNzoAB2Lj4TSj7SWBTdXi76Ki8Y2r7mLCEQ3JcEFFKppXPECAZcWCMsJLjSqQCX4c1+8ApqPWKWFsAF3DgZNc1WoItDoXPGst/DQTEZvv5XLPPMuDhtcSF85xmlsS0j4zJEvRISPXkytCjUgA3FNZV7MTPUAFFS2TAxsTsZEXK5fh26KIymkWry2Iqmg2yijRqzTCIKMH9BjcacV7SutwphEPUHLPZTG8SEUTMoq4sLuSGlKAb1DROmaDThPJkudYFRXNlzV0ITY8+Jc+T89RCwLkxv9Sg85FQzyAodpZpq4hdRbp9UsSeyME0M4mziNX7yZpbeOZQrmPjT9o4T8b56Xqx+w5yaloLuU/AKlBZ+nkG+IBZmBURaWj607VOkavtxF4+uSe1feHrS/U9PyMiLS1uU4bPV08Utl1rcv2I4mKtumoseHP4jjNRcaBcuDGmVpXq6hoaWYnBCRlOF6rKK1XkzQLp9Y1nNLI+F8SD/D1U9PIWPG7RsTltbQTRxalrEsCmy7xKXhS2VUTi07z9w6cVL4l0q4WuqYwAdpCr2MlB/F50Kpotj9B54O09/JgkD+bdE/Sz4J5HKnfjO/5qWrt4fJB8XcccwgVTVJ7482EORWNWp2eVABnQGBDHxiEwFAmVVq8jRobYXHFB8dXQIeSzwDVfNSELYj8eyZdfKVMCLeN8sGSxANMBywDqbeG5NTjj6GKaPQ4aKJ4gKGOEtl1OeVndJ8VGtjI19CFtkj67IqKxuSenX1symtJG6XhW0JqjyhHlwo24Cm4IPeOhdiYi6aXiqZqbAJU0QL72FDKBHf4Fw3xAA8VjfWxAaCCAmweRPgZD2IT0MSzjim5ZwetCUBvLPS2oVNtO+xuB8IUD8B7qt+3MbKvlTGO8jxdVDRKH+LKe1y9By0m85O/F43eU8xmam606ZzTtRUDG3qv0EbjXI2bHt8l99wxHAxzjlsZa8yepvZG3mfBn+lcYmDjD1oAAuSehTlJ0Tk6Bmn+csSGOz00WLRlkeWxmYiNf2+TuoMXxwDnmPGYknNXZZTSuMB6iPj62EyT1EDzJefmKmpseA0CRV7xdwCamc4rxQMWqCqalTS1gwgXFdO8XiayWtco24OL2QwDAhuTilZcs5jtz/yxy8gzSr8/jkpmBHGYOa28qp76gt0LcP6ueRhnOdz8yBIAEFU0itiQ52Sx31EJKavGhpyv3QyYIjZCYMOQetvXsYPKECoab1Au1RzGjiS2i4rG+zkFUdEY2lz8jMc3nw/pODMVD/iTP/kTePaznw07duyAHTt2wAtf+EL43Oc+p/7+hje8AaIoMv694AUvqDUgbnSDWS0jUioby22Z1NhIGbWR2kjcp04lnytV0RwLot2gs97ii+fo62OzyVTRRo5NdzhOxU1cFA/I7fdVmS0eYL/HQGxi20nGSS7X2OTGe9T3oLPJgwSBToffZyE2Dm6vQj+62hHxZeK5LRgLo/0wu7JwVDyANujUHFX3vFCOG1dFo03gavaxoVQ0PtcpZURJXWa5xTmX0JlNIdjB7ynGp4/BaTo0GJ2WNw5QT+6ZzhPax0CC+KuQS5zrdMPGgKW6xsbcxCRqH51iWaYDc5/DQeuXqNGMIq8T4RQvQx6V9LHhG2RBRbOdxSoqGoBZZyOek1A7xykj6r3k1zoNOt3KaW6H25J79rzXVWND1Zd4g0bJoaVm9vYQ36KsqKGwEyk+OXP6WkgzW2r0uPMqE88zzjYrYRoaKpqP+qOoaIyC40oycKEMjmyOUirmoz8nUdG4KhqAjNi4xTPscUyaBDKexXIu9gQ/ZZA6AhuyD7moaK4+Nkks76OaihZb56xr6ty+1+UlanN9SUdTVDSyhxpIGhUPGKeQ51pUiN4DX2LIK/fsUEWj98wl0CGJB4QgNq754JJ7x7Hi//Xknm0EXtdquhNCM62xueCCC+Bd73oX3HjjjXDjjTfCS1/6Uvipn/opuOOOO9R7XvnKV8Jjjz2m/v393/99rQFxoxsMFpqi0y9lhCoRmwCe6R6Diua/RNzH5dnASeSeAdzRMrX1UUlFw8BGCAYAwBBasMUDzPfSTr+hFiIeQOlRtJkWP4avjw0PMqsQG0qn453IeVGqSwpWU9HCKRwAcvdsOmZX3xzex4ZvXN2OuRhQc8n5moiNfX19RiUz+ZygjUjpd0rykADmRoeZMRdtDq+/JNVJpUybyNpS5a7iWG6HzQhsyDWUMrTSPKHjxACUPj94XSQ4vnivzohTw8+5Nlc6vy1Ej9zX2PFM0SyscnZVps18pqQ+NgD2nBunmZLKdQY2QpYYwOTA878ByA4+p4ygJQLv2y0MYDuK3EKoaIrG4Zkr26x+WKZzMEpza22kf5OM7gMhVGMViBE5Xz9iQwKbmogNff4wY26t09RRZ9L905iNHOvfFRWNITaY2LEQm9SsseFUtFGaiQlEOgac31mWW9fRDK5dKGzxv6R4OulaKSUZJOU8pzBMbKuoKfEAR0BOkS0jQYeJ0HJ/7iWRSlAo30sFT+5z4nU2G4IqGqXJd5LYEA+g46V0QN8986qiCbUoAAzpcFwr3HfpPFI1NoJEdFWi1lXnzWts6lDRusYcMpMVqjZRWDdnqor2mte8xvj9937v9+BP/uRP4Dvf+Q780A/9EAAA9Pt9OOecc2oNwmd0g8GIVPHIJcSmqsYmgLqyZ7Gvfg7tY4PW78SwPkynatAJECYe4O1jk5mLn3TeUnZWyiRVGb+WPlgTv9dVLyP1WeFZSf4Zi5crwPz8NvJMhmshwsCGOgoh14YqhiXComR3YdfzpCfQuuqpolUHNqF9bKiTyTNfi0IfGwAzuYDnwd/De9vwsaq6HMFpocFok+IBaKGqaJsj+oxlhjQ4gIwi4cYVRWDVEQCQWpkKxIabhIBJzzWAm4oGYAaN1ChVQhfAo3NuZtqMRoPkOeAO4CjNrU2SjpV2zAYwz50jNi7xAEkFyOfE0p5CeZ5ba1nTVDQfPSiJI9je7yjRHF2Aqx0Cni2tknuuS93sdmKAYWrsLRKNio4ZjT4TIUYVRPGZ5Ii71NPF9azUMb630GeC97FBKtG2fgdObowsVcQ0y0WRCYrYSK0DpAadEmIjCRNY66jwHE+LcElCB1JW30VFw3GNiRCPQmxcDToJwyYR6FgYZBSIjZlUDmHLYGBzy74TsDlKiSoaFQ8oPo9rWZ/IPdNbQ+ehKzHEf+av1eljwxP3iOLvXezDweXN8nOYGLATHvhx11rg8hVwzR6lhfR4CGKDxzIajTqoaNK+uWV9bNI0hY9+9KOwtrYGL3zhC9Xr11xzDTz5yU+GSy+9FH7lV34FDh8+7D3OYDCA5eVl4x81o8ZGyT0XEyvP7Q14hQQ2sipaNXVlz6K+iFUBCZ8UODbcGCetAeA1Njc+dBx+7N1Xw9XfP6TewwMb2tGed0KWilSl7OwkVDRXDYR0PgAlH5ZdVlyoeh65Z1cTsnGWw+HlTXjpH1wD7//aAw7anZwBkdRjiu8sfp8TEJKQa0N7vEgQeprl8L+/8zD8+Hu+Co8cWzceatprhqMIXiqaQmyY3DMNbLr15J6pE8OvP+3XQ6kAHLHh1A0At3gAV0WTnhtKC3PVX9UxnhmXjiVlQDcF5T4cF4AfsemXcqn8fQp56cjn4zpPvJ40eJQKhwFsYQL6qwsFpRlFPgc5VZSOkV5b7gCOskzVetHNk1IkpMJ+ABuxsQqVVYayOC7dJ3xUNBpIi1TmKaloVu+Giv1h+5xdxExRJa4YqRp0kvM9eLJYG//s6w8opDg4sBEcV2l9RZsGsdEKcRIVzUbSmkhqoPmC3XnWgR39CpzbnBY6SjMxMYfjHYwzta5K9V3Fd+okiU8cx1VjIwX2mu48mdtX9DIz5yCiFDc9vAQvftfV8He3PkqcdDuodVH3cfgWrZxS0YT6DKx3oeICeG2rqFYAAJectQhnbevDcJzBbftPEiqaHjsmKDDY1jU2meE3UKTBJUYEIO+9nHJus2Co/2QmR4pjpmotoKUUvO7R6InkSVAAuOu8aUJPaiLuO5Yp92yuhT5FUF5vWGW1Z/jtt98O27Ztg36/D7/6q78Kf/M3fwPPfOYzAQDgVa96FVx55ZVw9dVXwx/8wR/ADTfcAC996UthMBg4j3fFFVfAzp071b8LL7zQ+DvdXJR4gKdIC3tsADSD2FSJB3AYj0pRGzDllKpo19x9BPYd34Av3kECG9bHBsCu7UHDRVlEbALrA1wWoopGJ32S2Aon+OD22XkDeMQDCLx648NL8MCRNfjs7Y/pTISgAKc+W/4u0fEAbMSGBskhND1JPID+PEoz+PvbH4OHjq3Dt+4/amSXnry9mH/3HlpVn+OZHMmpUnK+Hm6z1ADVZzg1qCoaGg8I8Ng0uQCgM5xJoqkI1YiNHQzx99A+NtPQURZY3yEx0yg8K6YkuUyl4oabH80IUoehSjzA9VxuMDQbgNFQyPz2IXouSgjlgGsqmuyc07HTDWmDFc2OxrLcM12D6PrrrbFxOXap6eTgOVCLBcSmOC/JAbEdRW44L3itG4AdKFTRg5Bm3E0iKxAepRmR2jbXB3q/b3joODxwZA2uuv2xIGePmkQ18iGS9Lh1e9mMCG37uRfvgV4nhn9w7g4AkB0zV+3lJOYTwLEQm3Jtwh5NHImkicRinJyKlot0PkkcI839iI3Olst7sNTMc1LxAHpcVWNTXvuPXPcIHDixAZ//3mOkJ4s/8AWwpeZdiE0hvGPvY8+9eDf0khieed4OnXxiiI1vrkdRBJedX8yxB4+uEiqaXl+efvY22NbvwPNKCXFNRUtNH4/sQVZiyKCiuREbqZElALAEj7n+AuieMgAAZ23rW5/zIdiuRK1UPwVgJvQGI1vARLLnXLQbkjiCZ1+wi5wHBmiMihZQb1hltRt0/sAP/ADccsstcOLECfjUpz4Fr3/96+Haa6+FZz7zmfCzP/uz6n2XXXYZPO95z4OLL74YrrrqKnjta18rHu+tb30r/MZv/Ib6fXl52Qhu6Oai5J5ZVpLucSsDSkVz03V8GV4q9+xTTwOwe5rQon86ieoiNtzBx8V0jSyiKrAhMN0ozaDXiS3HVxfN6wFLiA3+2LgqGrln3Ti2HgK8zlIfG6d4AMniYeA2Gmv+sktRiX7WWSytApviffTPdWtspGAyzTQNZ2VzbPQYeM5FuyCOQMHJADb0LwU2+Kj4ZDZ1v5l6NTa8eBPADgj63Rg2RiksO6hoyJMe5zmRJ5YzpbjQi9LL6hq60bw6RmuFACqoaBSxGdsOBoC/rq7HMo3q+HEE4yzXNTYOZ831uqQ8Zzg1ZB31UdFc/G2dGY6sDcmu86DZ7gSiqHh+NiUqGso9CyqIcexWRatbY2MmmWR0h/+tCrFxSaaj7Opi395eORXNJ/cMoANDGrgZ4gFMdVNC3PDeDR3qmD6TxQPcDhEG6VRsJdRokPdbr/pB+PWXPUPdZxGBCFA4DTUfijffK35RqmjlXMX7u86RyDRnwYeJbI7GmSVeA2DeY6SipaSOCk0UD3AE63S9GgU4+lXWTWIYjDMLPcS9amVz7M288znDVdFcQkC8WS9+/2/+4x+AX/uJp8N8L1ECAHaNjf9895aJ7GNrQ3WP6fry5O1zcON/eLnyyeYI64H6DXG5R/K5n2WmmIRYY8NqaX11yxJrA3vY9DuxCrjp56Qam6r2FS6hoU0DfUqdAhbU/s/nnA//+IfOMa6rOo8AKlpdxKZ2YNPr9eDpT386AAA873nPgxtuuAH++3//7/C//tf/st577rnnwsUXXwz33nuv83j9fh/6/b7z7/QhVg06DeUfN2LDlacA7OJxyXZT8YDaNTa6sdbYs5lWGVcHw//Xy2uQZVoqlUazXG1Hv64dVDQJsamK4iWz0Bfho3SRS2K33DOet1Qv5BIPSDPtKBuKM+QcLMSmPJYrQ62oaAJHPCTm03KlZpFuohwFff9WNkcG/3n7XBd+6LydcPuBk+pzOH+U+piIRsqIjUFFE+S0fUaz57Yqmnlt8Ni8xgYDuCQum6iRuSsVmALQPgf2c0Pve5N9bPjxpXEZMuoOKhq+RayxKQO5OZbNR4dhUsRG6uciZucioVZNEA9w9bHpdRKNOqCjxlAzevy5TgLdOIZhmllUtHGWqXlIN3sqYCJt6ABSjY0j6VEey6CMsHWErkX0b1JiLISKhtSkxZ69dvBAoSrRhkkrSnOhdDOe9JHUw/DeDWg/s0CEkyo0olVRWDBIr43YMEdUapJI5+WQJIOmNRfNGQBgvuxpohEbpKKZjTvR0iw3xBbwXuhGnRn0suK6GkkFgYomBYjGvS2/J0QVLWXo3iRmITZsr1neHDvFAwDcDrtad5g/51oLpGulxANy85mvCuKRunV8dSjW2PDfcZ/bHKVAQd0k0vsbPQ+eAAmqsXH4KwAE9U0zVQdIkyl0bdSIje03VIoHJPazj+eNNhhnlniMy+xkVGQc3xcQd4loQ4hNjeHmee6kmh07dgz27dsH55577sTHp5uHhNjwxXNl04/Y8J4LkhkNOquoaOw4ePFHaW7QAWojNl2TsoD/Y/0CVWTa1u9otRFFD5E3XbqhKRqWFMXXQWw80oRodoNO27EDkB1v3gCQf0+R6R6X781AgqBdPXB0Jt4cL6eiGd8bcG3QWbaRqeIc0kxnq5fWR7pRafl3lKHE81CZl9hcDKjhefMxm+IBduDoM5wacRRZ15AHBHhsi4pWzsmYKNs45Z4ZYiMWVRMu9ahmBlqyRYY8SaosUjEu5RqPhUBcSg7oee6+R8XfXYiNfJ4bCpHVdD8TsdHPkA9hdSE2I7Lx8iaTHLGhY+x39ft5YDMcZ2oeOGtsyLF6gjOD5kt68PNx0R8BTMql5JiHUNFwjeaIJv1u1aCzgkqpqWh0/SzHZ1DRwhCbcRrm7FnjlZQzHVujS/mxynxokuSYabR2eiqaVzyA9bEZqsCmY/xO542RmFOIjQ5wdHCov9OUFS4RG4GKNiRBk6twW3qOm2hoypEa/r0rGyNLupgaD6gVYuOghFP01pXk4MfSirR+xx0NVXCPrw9VkMoFZahpxCa1WktIc5/vtT65Zy0Cwu+n/l3yfxGxWewnxti53yCrosnnqZV5zXV7YCA2VMCk3rzizZB9VDQAgO0CAu6yWivCb//2b8PXv/51eOihh+D222+Ht73tbXDNNdfA6173OlhdXYXf/M3fhG9/+9vw0EMPwTXXXAOvec1r4KyzzoKf/umfrvM1hkk0KeoUcOiS0mB8NTa+h3uuqydHleIKf2ho528aXEzaoFN35i4Rm/LBo7ze+W5iRdeubJnUoFOShKwzXO7oSwtJv0I8gGeCJJUkV3CS5TlsDCl/2V7Q7BqbMsPJiozRhr7AJuDiLCrExhWM6Wz18bLjPYB2Wp5PApuukK0RVdGERmEA5nWoi9jQLuN8U1royojNqkVF04iNqqFBZMJR7zFgzoJxPuVHaOf1abK2c93YmO/SMy89KzS5YGS0PQ4E3j8bsYnE99njkF+Xer9Iz7WEvBmIjYPrjufXT3QfG0VF89TYzHUT9bpfFc2mohXnYjv0ACZi00tiS72MByf08fbVoAGYdXDcwhCbsgbDQ0XDgAabL/LkEJpEResQJ58Xj3eYswCgHe8B6Wc2jXhAFeqjaoAcyTWX+WpmfA06m1FFk+cAgKfGpm/y/vF948wUDxgyx204zsRaVnoeKMwiiwfY95avoxLy2kRNEn/G+bplIDZiYCMfzyXiY8g9G9dKCn7N5FNKWBA+21M2ZD++NlTrEUeEqbnkniOSuJPuEVpIg05fspjOE1yDMOm/2DMRG359xSR2BRXNpYoGEE5Fk4wnTXxUNACA7TXqbGpR0Q4dOgS/8Au/AI899hjs3LkTnv3sZ8PnP/95eMUrXgEbGxtw++23w4c//GE4ceIEnHvuufATP/ET8LGPfQy2b99e52sMkzYPl/JPnudGg05fVrtqYd+z2IP14UZlQOKioo2yzNigQ3oGGMdRtSYmVQMn8DrpAxLHRe8TCgu6solidpbCk02oolUiNrbcs93HxnYgXE2rxoTmMkwz8sDS47PvQ7UdleUxx6upaPbDGnIvUe7ZpsBppwTv6dIaCWzKcf7oU3RgQxcMLxWNONRJHIkBIe1jI8nZcssEhxmguC58g8Sx2apoOkjBQ7goV5qK5qZk0Q2sCfGAKIpgsadldb2CBWSeOFXRPBsGXqO+B1UDcGe/qtajTow9onIxO0fVg6Tv5mpiaGYfG0yimGsNL2AHKFQF8XXOLR+lWjygCFIz6CQxEw+Qs7SGalGIk0McJleygX4PXUv5mNFcqKdCbPq2c+RSRXPViSAVja+fxWcza/5LAYBERQtNBEjiAdL6So0qP9Yxn7CP5Jg1gdai8etBk0ELDLHhVDS0uW4Cq4MxpCkXDygDGkK5EZU7aWBDVNG4DyQ36JSTFTRQaKKZMc4zTUUzr8Hy5ojUi9jz3/XsSdQ5+nuS8Ho7974wVoFN8XowYrM2JImnasRmc5QaDaxxnADmdbcbXHr62LioaAZapX8ejXOAnlnXNycENgrJlWrlKvvY8MCMJPRqUNG4qbUw088FgMyYAJATRS6rFdj8+Z//ufNv8/Pz8IUvfKHO4YJM2lw6SawKUnlfCUnnnlqoI7RnsQf7lzYCqGjm7+gIp47eMaFm1diUDgBCjuhU4QLY7cQAA1s6j5vRoFPI7PIHNcTqigcUjjcbV4KBTUmVEpqN2kohegNFKlpRIKuzPK4xcrUQjvwpKloFZchl+BD6KDLo1B1fsxGb3Ys9+IGzt8Pdh1asawdQHbTTwEaiomV58SxUwccZQWzofeX0reLYxTh5jQ1Or5hk3XSNDd+Qi/+D5Z4bknxd6Ce6X4hHFc2Ue5apaCFyz3zjdFEzuVWdJ6Vs0NjERenA19BcgT7deC0qGsuMcsQG5ywmY+a6MWyOMisAHpaBDXVIQuSeffcLx0b3CV9Xb/p3mcpsZ8C5YY2NF7GxFOUc9Is5ex3pqsAmrEHnkOwhtRGbjhmIAVQ7RDrhVC+wcfUZAqAUu+p9YRLz0RPnCGKT57nVoFO/D9E41qCTiWyM0lykfHeNhICe33wvl1BDl9KhKPc8xfXCZ6OnnnXzXg3HmULsfeqSaJZ4AJsySj2O7T/eZAbKPQcGcnvKGptjq0NF/fRS0To6sOH1Zj4qKJpPFS1EPKBIlBf76iBNAaCrEt4LPZOKphIeiT2uSsRGQGuL826Wiob1aFUIbB0BgelXhBmbtLl0E5luscy4/Wmm+7rQ1wDCEBv8Lp9Zcs+kj43adCYKbMxJhY4sRuZcb10VYrENk5tUd2KKB5Tvq1NjY4kHVAU2sbWRK7lnpdplbwz8OlJKkiEeIKBOLiqai3rjqrEJvS68wZz6XpKxxeDUCGzI+5GORjddbx8b2nOGBrCUikYQqBseOg7ffWQJvvvIEuxfWhfPQ1PRzLFJik8497nDSs8N7/OmUkVzITbuTYkGGbSx6TRGz0daWGkwhWsKRWxMsQs3FQ0dgjl23tzZdtXYVK1bFJGRqGgFDdT9vNLM6dpgDCdKmuSA0A0oFS3PqTKXvSnPdbXYAF+zLGSv3DBp0S8N+KTO7MXr1dSljMzjqkSM7xmTGi9ywzXaW2PDan9c+4xYY0Oa7dl9bOzMN455SGpyQtcxybmpSti56rQAip46LiTHpxBHke4DJzaMpMY08sV8zGh0DHSubY40zWzbHA9sNMoyNFCVAj3F06bJN6mPTb9jqoZyR9hwmh11CRIC0oSKHKei4fw4f9e8qu07ulrUXIcENko8gNXHHDy5CeNUq/hxxkBIE2Xly1T5eiUVbWmdUNE8gU1foKLhuUvtI/g64RMP0I0s5YRo8V2RtUbRZMq8WGNjo6hV18dJRRtTKloG01PRTB+3SkglxGqrom21SQ56QWmJgNMtsGiZZqtHaW5IyoY29NOBjf9muYp+x4yKVtd4rQlFbPJcyxvPIWITWGMj8enraJtLFpMMAoCDgsOKX/nGqhp0CrQVF9RpIDYjjVRJ/GVXgCGp7dDv5FS0UMaTzrTKlDtKC1kqnUeuoPb8S/bAX37nYVMqW1HR3IhNJ+EKMvpneh9+7v3XGZ//zL/9h/CsC3Yar7lU0aSMltS3g1pMkDoXFY1eHz52NFrIX8XLDbVFR98h9Z3ktSwvkCVT7tl+hqQsPN5LvnFKdCjJuuyY893EKMqnyJrk1HAHoXjNHkea5fBP3/cNOLY2hO+89WUmFY1I2ku9umiPC0onw/VhodeBpfWRJTKh167i/zgOo6L5aqI0LYXM44pETFd91n7GwuSe3apovA9Vldyzl4pGAhWemTXGSXrm+JBQyfi+AqDXBNcz5+qMfsu+E/B//s9vwusuvwh+76efZX3O19MHv+ub9x2F//zZO+HnX3CRqnGZhoaK5kISAMy5tjFKSY2N6T7h+0ak9gmguE8cZcHlgs499B36HVPgg9dkmPfW3w+MUqJ4EDyJ4bPGVdFe+LS98IU7DsLK5hiOrQ6N85HGpX5niE2a5XD7/pPwmvd9A/7Fj16orhNF+wEc4gFs3fPJ7lNDxGZ9mKq92F9jUyI249TyeaT2ETwwFREbhrxR2XTpHPpJXNDAxugX6mSKrIrm8fUcl8eN2JCWI8NUq4DOmor2eEJspKxYN9EPPl07T5ZSz7sXdGTHF1eVAah4uP/Zcy+A5168G17xzLO977MRG+1sTyNFa8s9F5Mpz4tMAcK9qBShmikxpSJu9LxxgaMPIc1s1jEpYKJmyT2zS4L3kyI2eW46Ja6smqmKRiiAtPGeIwPCM0VoLsSmiq+Ldtn5O+Ellz4JfuEFF4tjXiPZateG89IffDL82DPOgtddfpF6DZ0usUFnqh1qF2ITxxH80osvgQt2z6t/OGfvO7JiHVPRgphDLCE2lnQzu1RJpO/JpqNfiy0e4NnA8pzMjWkRmwpqE7mG+J1mryWBiibMlZf9g7PheRfvhtf+yAXG6zxgcS3ufN3ikttYXwVgPtcGYuMR+8Cfh2kK9x9ZgxPrIziyMjCpaOXxh2OT+ovfe/6ueXj1s86FX/qHlxivo2FQxymL6MBR1NgVoNPAWsoM8wwlpU9ZiJWV9HAjNmFUNHcfG3xGkEZdJff84qfvhcsv2QP/8vl6DaCdx7WSkOlYGYgNbeRXji3Uue2yfQXAFBSRTMoOAwDce2il/H/V+gyAP8jD16695wgAANx9cKVRxIY2yeVjSOJIzbG1wVhdc07HpUkwXn/HA2Ip+fbUJ22DVzzzbPjFF19iBjZWbZodrFi1igKltAkq2usuvwhe9LS98CMX7QYAgH/y7PPgORftgl94wcUqCEfExkcpVOMsh0Jrgu49XMyT7x9c0UF0wgMb97HrNOgEKHwoPN6J9SLZ4kNsdI2NTXtPVFBvI6ZoUo2NRCmkKCyvhdXJJWTyaFU0GbHBa0MSFKHiASkPbPTv1I+p+xyqdTaQinb29rnwY9caySkwyYGjWTcauGAGcM9iD46WWQMsrkJTwUaFI/Sip50FL/o3Z1WOz4qkSdYmNGMgmd2gU5/n6mCsGpFux4we24xdm67k8NbRNndZYmQX7L9zKppb7rm4fnmu0TaXeAA9F0prkRS1XBC4q2gRz6VKQcll/U4CH/ql51uv43lKdC1+TRb7HfjLX75c/PxQuL+mgowZSFL7ndc8E37nNc9Uv/+rD90IX77rkLFg8WNyCo9IRWNBIC3Ix3GgU4lohx0MaacZQKZNmIjN9FlIHCuanA3UP2cCFc3k1Jf3QRjT0560DT75b15kvR4qHsDXrcV+R611+J1SsE7H5HoWAPR1XCWdrDdGqaG+RRt0Sr26oiiC//m6H3GOWVHRHOp51Jmhn6VzZS5QPID3sRERGweaK+09IVS0VeJkcKNO5SitLrzdtdCDj/3rF4rjG2eU3440QB30qDGPbUckuI+NEORJTjk1KTsMoNflTcGxAyCIjad3FR5zeWPcGA1VfUei9zC+/y30EhiOM+X4AripaACmAiC9z/i7q9fa+/+v5wGA+exaVDSpxsaBfFNHtgnxgF944VPgF174FPX78y/ZA3/zxhcDgGYpKCqah9KLpqho5Vtp7en6cGz4I1XiAZxWXpU0QIuiCPYs9uDQsm5b4kNsqAAPp71zOhyAWS+aZrmoiqYkshOKtsQAkDlqNc0EoLOPDYokeRGbisDGg9isGoHNdFQ0l5+H9qs//jR4S+CxT3vERnLQO3Ekqk+g1PPuBR3JcMnJaehhkvHDUMTGB61XmVZFs+VQ14dj1Yh0x7xJeVKTxCG1SSexKAs7gXgAf38lFc2H2JBAgtPqLEUV8gDQBww3FameCA2vl7QQAeiHuei5YyIe0xiOSQxsApxzHxWNzm3q7FUFY1q+0nY4aLBExyfRbHgQyIMfWrjuqrHBvw/H9j1U7yH0QVfz1rpGxyoGU+Q1hdgYkq6241fHgbDkniukdNF41rgIas1x0p+L+jbzmHRO4/pAg471YQrDVKswUn43nYdV1CQ0RFtWHOp5hsR4kCqa4AgziinNrFYhNnjtpb2HB7C8hhOANOgUxQP0dw1JDUGtuULGZzXoFGhgNBij/Y6CvgtrN6XA3XW/0Yli108FNsI6A6DrjqSEAP+ulc1RpSNU17pGMsj8G863Exs6ieCiogGYPZvGGUNsxplVdM6Nni4PbGjjcZd4gKZl6deaUJD0GSI2y0o8wE3FRLPFA7QE/NogNeZa4khyoHEWTx2hDOozAgT2sRlp5A2/QkqUoi+Bgd9ASpgIEtm8bo4a9/co/dVEbDDhISSxQ8UDyHipeAbAdIFNj61VVX1s6thpH9hIWTGjQJb8GRGbnfNd5+JK6xCaMBcVjWZpJqqxYZNqyBGb8lxVZ2q2AYUgNtJDOIkqGn9/FRVNkntGZ5I6xxjUuSgHBmJDHDFcGM0+NrIDTQvRqVGlD9Pxs06tluF5rwUgNpL5qGiuGpsq2mW/o6F11zFjtrHI4gHm+PnmkBCd/02X3HNkZqK8RaI5lbieLRWNzqVUQGzGguNXB/XkNAtXAG03SbVrdaRgPXU4CAAyZXN1oDPTG8NUrWWF3LOegzQT7XR0E3le2IiNrgUpjmcGmSYVzY+wqQxleV/wUnBKpTRupQQmJIf4usrpakVfh9waozo2ufZjofg/xDSiRAJ7Rjmh4zQRG3fCQLIeo7wAVDuMOjtsXr+hCmzkpJsvw85fW94cT0X1lozeA4s+iYHNuq7j5TRl6lBusLXBrLHJK5uc0kaxPGMu9Sjie6MkINIkdU8yTLKi1REPoGsWInprwzFjIejPhSjn1Uli791mBjZ+uWedCMR1xVekLzV05QkRMbBhPgo1jqSukWSKXGNjI7lVvh4XsAKwg2wMbDijI8RwX8CGs8rnaiDwPu0DG1E8IInFAllEMbbPdZ10gmnoYZLZ4gF2Y61JoN8+yQoAmLzM9WGqsiKqgRubhCGqaBJlJVT73XfcEMTGpoNoGosWEDAjeR+FhmYO0OF08fPp7zrLI1PRegyxmXbeaMfRzlqGbDg+KpoLtp8OsdHHMGpshIwW38h4H4841g47HtfakGMzsPHx7VNCxZn2voQ6ygB6rlAHDcdB51Gd5546/z5HLY4jI7jmASZFs12qaD4qFt4fGnRsjEjTvSQ2soX0uK6eSPw6qBqbgSkegGscncd0bHQNme+R7K1YY2POM4OKxtcRNu5OIGIj/b5OnmvpGaGoJb1+odQwACr3bFPZJCoaR/uL94XNTalBpyRVTM2liob3V1pn8ty/X/LrszoYq+M10ceGfwff/3DOnij75FF1QDQq0WxS0XIjAB5S5U7P2qzXQvN6jdmxADziAQa602xSl9t2plolBjYO4Q5cd8aEirY2GDsTMiIVjTzzeZ4TdcXqZ2vPYl/9HEVuVUoAJvfMklj0PNDwHtHrwwOEoRB0qmBJOFeecDAadJJ1B8cl9Ser8vXwO7JcB8WcRoffO0lywUVF63amn5+nf2AjbC5dR1ZSoRjzHQ3Xs8XV1xV8ErMQG9SyT6frsUF5nADmhJIRG3OSSFSlODKbS0qKYHX7HKBViQd0Et3dvZPEFopArxGvL3JR+uiCtSIhNp6ABD+raDscsSFUtKpzq2N4niJiMyUVzXBeDWfVf0yq8sJNQe2xWXTuk3tG4xlritigcXREbeYK0bGvCS2MnYbuSc2gonmU2IrvLShI9HqpZpXkWapDW6ySMjXf60bOKGJDnRqaveTzQaKnrhjUzkxzwBkVLYQOZAU23WLMlngAo6J14sgZ8M1VqKJpxUdzDYkjWzzBVd8kPWM8ocD3J8ycFpK98n2k0vxVDTolQwcvTaU+NvaaTqkktREbtq/QYztRxUTee6V6UTT6XskRlZ7JpRI9aaKPDf8Oe84W8+1kqZrV78bWnO92dNIBA0iA4trxupiqOiUAveYMWDbfrPPKjb+pzwoOtk7qzoqKxhCbigQRgJ5DtPUErv2jVLdxSBjSKh6bPNcZQfND1uE9RHBqoZt4G1fr/TKDjAWoUgsNTkUDEAIbJvdcHAt9FHssXK1wjQiWLHRthU+pv06Vr0fnFH4P9xEwATbJ/kupaLRtwOOeipbnuUgHoFk3qY8NRWz45tR4jY2F2CAUSeWe619mn3jA+iAl6FSJ2PDARkBs+IYhITYTq6IFoBq0q66dJSWBTZejT7LzRL+GXh8sTKdvt75PITbaSaBGMyg0CJs6sFGITfNUNFPSl/DFAxEbqaiRZhar+9iY4+cZayoegOYUD/AqJBX/Z6SPzfTiAf6aDZQ0ByiuyTDNgMbCuM4YjSBngNgU7yX3wXONzYSFPDfwNf4zDbypeAClotGu6D76AD8fRFssKhr2sSFrtFkwrH82ETYpkWJeA0pv89UYAejncCSsoXw/4YpBtIjXZV3i+OPxquii5vjKNYAiNsyBkSSBAQr0jb6vyqSePlVMBJcgC95fCbHxNVClx6SG/b+aolbR7+VzQiE2ZTBFa83U52MdzK4TxGac5axOQe9XPqebqg8C6OAKHXbKCuHrqITYpBME0XWMIzYS6uGi+9HCfzo/MPnBE2tiwoscry5jhiI2PkU0ANKEPcstZoEUUOL9W+wlag/h9EKNiNuF/3KNjTk3MJBe6CcwR9DsJDHHJfl6Lv+Azm9NI2WBjUJs6s8pSkUzRGge71S0IjNqv07lnk3Epiyon+voi8Y2nqbkYdHo/YwitmlNUdiM2W/kY5pZt7EK4ngDN8woutTkqEmUgWlU0Vzfg6a66lYoM2mpa525KcZr3jPKQ6YmiQe4zl3iIgPohanLEJtpA2IMpOTApvrYGrGxHwzMAXC6TdVcn2PX2zhmThxCh9wuGu9jsyCgCfwc7UwjlGPJnGPndDWA6RdDE7GRj6WRELtOAJ83Oo/qzBUzG+n/HD0uR8VcDTrHhM7JT4/+LolbbAzHus9CEhsoW4h8MP8bCh7w5AsXC4ljDxWtQjyAOxh0E7cDGTnpMRKQhSoqmua6u50jicpXZ/6qPYYgZl2VNNJOlx6j/nldWBtDvovuP1IDZGpSdrg4hhbC4TUG9DpKY8NjnrtzDp60vXBCdWDTEGLjSQZp8QAMbBJrX6dS6Fwx0a7FwuSb+z7E7FjoUOtia7L+cfEAYQ2oUuCb1kJqbIy6V2FfzTJzXVe9CZl4jXQO9DlOs7yWENIeUmPjq6/hf0dfQ8lWK5+K1KUQgQepTx+A3ceGno8PsdFUtDKh4uhj40NsXEtPhyTzXPVxqw1R0cy5PH3gfVoHNr46ESmwWd7Q9CzVZM0q9pycHiYZp3HQDsnUmahrPYLYcNhybTgmNTZlYMP6DUjdnV0wMF38qrTNXVYlHgCgVVIKZSbzPfTB6DG0ylf0KI0T4VKJYqN/L76DykyicUW7OrSuKsNz4NlqgLANR3I00Kicp5l99B+T6vJzy0igW43YmBvCNk5FExAbixte3jOcktJzqgQGiPMwNWJDxQMcx9L86cz4bgDtNFDkr84zZDjwHn53MT79d67MRIMBCnb7+thEgrOxsskRG61iRx1AXc/mHjMPTl0ZUbymCrGJig7bvU4MUWR+jvYMkcQe8DvzvDieIYLBzp9fDypnzY07qBYVjXDdXUazrUoJrBa6p52UMQuM6N/QmhAPoGiuSqA41nlVQ8QbE5Jj8D3NbPRq309Mklx+yR5FecLApilauU88ANe7Q8ubAOBCbPSzZyA2TD0QQE6+WeNhCZw50koCwNwDXMI6huT7jMUDQmpsOo69lDJwaFCIPh1P1lXVQdIeZyEtGvYu6sDGp4gGYCJRmMjg6m70do8U2p1YTBw0WTyg+Fk6V1eNzUIvMQIbhSQlpn8IUO3rSfXOHLGZrsZG76fYy2bSY3E7rQMbV5+AbqK5rCJiM9/RmW2rQWfDNTYMFaALCt906hitseEPwfowJTU2JhUNFzupuVwIYtNEYOOal3hOSRxZVDcTsTE3Ux99ULqP+DljTI6FXzmBRmbL3DCM40xJRVNUn6Ed2IRsOBLVBACLJfV31BE88IkHuDo/S45bpXhAFAE/RVs8wE2T4q+dLDe9OPL3HQixKvEAgDDEhq43deYKvQ5VC7uB2AgNOqVsrSmbyq45rSHD+clqbCQqGoBWf/LNXVe9AjdeY4Njfc8/eza867XPMhynKIrUcfoVTs44y/3iAVawjc+YvYby525aKlrqoNn6jF5PfGY5bUVSzgKg4gFhexL2aqEqeVUCPOgYrrP1xKALOxIDADIN+md+5AJ4448/DX7jFT+g5sGGQ1lxUjPEA9ggnnnuDgAAuPGhJQAwa83QOkRYw5R7zuwmh0LyzR6PDoABKBWt3OM9iLVER50kiK5jO3hgIz6XMipGafF0bV1RfZfMhISEahvKlRlJLAc8W1TuuWoviSLdsFUFqKzGRpJb7yWxJQql3uORe5bulyo9KAMCGvx2iLAFjmee1AWhhbBzeF1Xk1S0LjkHKkPfxPN8WjfodEkWJ6TBo9nHhtTYxPLm1HSNTcKynZT/PM13qbqHcWbBlquDsaEABwDQQ4lShnIYY3Vs6I2rolWobHSSSNHINDJiBzZIXfA1YhMRG0kVjfwcRaShlgDR8qaDUmf2SQ3PQRIPCJkneA1dMuZ4HKPGpuK4faLyws2sd9DHlKg2do2NUNjOxmJzw81jSkkBvAdLZSHv9rnu1P2FtoVQ0UhWkT9fnIoWR7Zz5DO64VeLB+jjcsQmIWioxK+X0FLpOaFUtPWRpqL1O8Xno6hAQyahorkyorbcc/G5n/o/zhffP99LYGOUyn1saPY2y9W6lkjiAVb9HT5jE1DRSObUZSYFoz41miK7yiFIdNIIQFZlAtBFxqF7EibOKIKnrqXjGBjUrVt9ivT6whMDdB+QCreftL0Pb37lDxZjmjcd6Mb62Hh6f13+1D0AoK93nwX4AKWoUXlNfKpoAPIexY3fS3SK8XdaX2X3Zir+lxCbWVHRtjPxAHm/1j+7xH1oUIjuXVEbR9apAOVKKkJSZXtrUNEAAOY6MQzHmVr/uD8hyT33OjHxbWjNVW4EP2icRkYNry3S3PDZwuPPdWMYppnaV1RgQ+ZliFBUvxPDCuh1bpMl2RuhomWZuufTJijRTm/ExtFkkj7Ico1N1+AhU2u6xsZCbEjR6iTZODRaY8MLzdapKpqjQScufgs9G5bkvxuITaYdszpGNwKXogjPIpgcW30/VI3NKKuUAZVekzYNw3EUskZ5rnXdjUxYEoOvqLSuSTUM0rhc5qKijVlgUwdl6ivERqCiEUfdQGxC+thYPVbctB80a4P20A+xkJdvqJMYfU5czytFifm1ogW9dIyhRgt6JWoVNVcRffG9crbWh9jEAmJj9IUaavGAbhJDFEVqrqp+RLXEA+T7xeWeq64hboISJ9tEbMxO79Y6KDioxefsxBrfT/jviIjwgNM4PqnhmYRBQN+LDjSOWdr36P6xUVPuWTdd1IhNFaqPCY21oZkoGXoRGz8KRI0/703t5T6U+5nn7jCEOvqdQjnLFLeIxbnDVdEA9FrrO10+hjnmFLuacwIQdFmQfJ+VeAAPOGUqmpxwo3vUusBmiFmNjSjwQk6LoqEhycg9NahoADr4wbHi+H2BTZ8ENoORGfii0WumaGRSYENKD2jTTNzLcV9QiE3PRhKrxAMACBPISUUzEyt1jLZkwXVsLuDah9hpHdjg4sx7iRTF58XPUo3N9rmOvmiZGRk3ropGDtNJYuVA0yzNJLQ3X43N8fWRem37nF88wHDYHBQUA7FphIrmCGxYgasLUaHnTh96OUtjv6YkIh01Nq6xppl57dCZ56jcNIbzUgoiQgJgFxWNbmCFOk/1/UDzyT1Th9DsY1NdY8Pfw+lsAIJ4AA98PMEsBjacAjGJUUdUolAAmLRFfq14Y9xpnp8q8QDqHGyzgsdY0f3GQsKiqo+NKPdMVdES5H0X7wtCbNi1cGXlhg7ExmVYcxOC2JiN/uR1UH1WUAJTY8Ssd3kMi4pWXg+pOSeazlROpupHz3fTgdjQNZ3uH3VrbDBxZiI2fgoLJj04Kk3H4aqxCQlS+PPenCoaoaIJc+K5T9mjfkcHkt4LrqCJRkUeuIWooqHNMSqaq4cNgN4XzQAL59ps3D4u9yypormCGXrb14Qeb504rqSiUTEhQzEzYK7vIkFZlSoagL4XOFYcmkTvp8IAPSXUY1PVAJjcM0sEU6NNksdEZAv3YDwHvB4osU+DRsXO8Vwf3h9RqvcGqN6zxGMbVLRqpLuOndaBDS30n2MFUUqmt5xA4zRTm8qO+a6W7DSKpfSxm2vqRR7OKFKOWJpN1nwNTctG50bTNwCAQyeLAsYoAtjeNxt0KkqMQmz0YmP3byi/Q8jqzEIVTfVaEDIRch+b1OCqhiI2G5gNc4zJhcDgdRhl5gZAPztlXGONd9FACqrniYuKZvZP0WOOIjeChjbn4P0CgNMhDKGi8UVKQgtcjeX070JmrnyPpqI1gNjUoaJluTPjXKcpHDV676vEA3wiDp1YUwYzR42Ni7YCoJ0N6pSuD1OVMMGxYcZQF0G7x8yddtpckxpumiGZRAAdIFX1y6BiIBJiw4dOnQZu+Bo6Di4qmk8VTQVOY53JrxMIIxUQwK5xkhJ6Q6O589h4X5Vh4gyThgDVgSeuaTzz7quxqRPgcQe6qRobM/ll//3yS3RgQxU+6Tgk5HKUZWJDZQD/HOfPqVJFQ/GAsS+wKf43e1mdevEAw19y7M9S/Snd0wDceyVN1ioadUjCMIlhV9nLJoiKVt4LhdiUY5PqG2lSSBIPGDKGiBqTB7HpE3+PHktT0Vhg07MFgtIQxIYFNvy5xdOcmoo2NOvIprXTPLDREbehgpPorCTeHErt2T7XIYoL9oMNEDbZQ4wrbylerNA8rY7R7DelAQAAPLa8AQCF6hQuDrxDNF47H8VGQr0mFQ8w1E4qa2z8iA3tY2M0bgtVRatAbFw/K8SGZadDgrZQ4w7vk3fMqZ9DKAJUttGooaDIVqwRzpAAHikOYoPO8rCWeMD/296bx9lRlenjT92993Sn0+ksnQVCIjEkIWQHgQBhVzZBh0UQUREMKm6AIgGRiOM2DjriCIGvsqhsgwtxGDTMj2HPGGAwgksiIAmEbJ2kO919763fH3XPqfecOrXeukunz/P55NPpvlV1T1Wd7X3f533eAFQ02fOlym9wq2PD4FUsk0dsGmKI2BAHgDsVjRo2aioalyoO2U3CFOgUxAPkqFjCLsDpXsdG2tirZFfJPmyfpIpmtVekNniLB4hebQf9sHSqLBbiR/tk/Uu1gTIMUWDGjkQ7F3JnTS22gXRGFdhzYfOqUxXNXzyAFqbzyh/0AnuHnIqWFN8LU4MDRI9wWLlnFh3ZvS/Pqbp+9DnmJNgjOeTEHBvZsBEjYZ5tqlCODd0sqwz1hcSwySqMalUZA6BUt0aRv2h9T/CIDdv0Mccbp6J51HRRyX5XSjxAdjD5ORxoM+gcpIrYWPnL4h5QBTr3cWdOQG8ko6OFo6KJ40lVIJcWWM1KhgL9v+z4S0ljmoIydGjfYs+80RGxsX4XqGgBIuOcPcNyeVjxc+mUKGNQoKJxSfMRYNiwyc7qEHLEprQAl14OC5U3pJOW50TKOQHERSiOIkCAc1NAqy6XQ3uji/VuybB5a9cAAHGCz0heRvbs6ALr9FQ6B2Ex4KZChuh9UR9jyz0rIjaqHJt80fedqZ7tgCLHJqGYMACnkgpgP0O2WYvXsBHPH9NsFwYLcm2af0G9stRDlDCcHiQveEVsQlHRiPPBqukgbWBVERspP8IrsZ1eB7A3bHFEbKgR5kZF41WlTWfEZlCKlIale/jxxym85J6pcyV4xMa7f1sRG5HPz+YbtrH22pAK9ScSTjUp5ullG99iwA0Jz7FxfV/2XEyv6XX/9HpygU66lrD+7xqx8dgcsXYNEudXeEdSyRkxJBoE9Fmzdz6ooIAF3eyxsZUv2spFfnVsGD1SFg8QcmzyasdAkEhnkCT1KEj7rGGzJ7bxjSn7KVDRSIFOGf0uho23KpraUcRV0aQaRhScEqVgY8SVkyQjl04K+xY/uWc3x6MqxyaVNITIqpsjhdZxCpu/xiSfg0QNWO03Fl1irAhOAVTkuGVSRBWNGPkyzde+F+eYZqCO7AFyPhuT7B7YNRoVUdRCgL2eM8dGTIGQ2xMGlIrGC4yOBCoaneyEiE3CVqpik/eufjGRmNaT2b1vCFc/8CIef3Urv0ZcXguBxpGQ5J4L0bxx8rV6pZonqg2dnFSeV0RsnJ5Jp2HDxmPYXBKVdKMMOXwvbKiUVDSbqpEw1ANQLR7gpKK5RWlEJRXrp8xFFqlo5fUbOVLIis0BwfoJnfzo5EnpIYZhKNvuBruOjU+BTm4siXVEGKjzIZt0qgbRTTeDn3iA6v3KfTOOHBtaPM3dG0gjNi51bCI6M8QCnWEiNk66H40sMdBF3quOi6rdyhybFKNi+CePCvSKpOHoF20lBw3PsWF9zscL6GfYUOqgWMfGPiZhOMc0j/Z7KKC5UtF4gU6PHBuS+Bu1/ACbQ3nOj4KPny9a86dCAyEwPboxk+TPkTkP/QxPFkWUBVKCUNGCjBt5vFekjo3i3rKpJA6dNKr0fycVLZV0RkMZ+gbDR2zkbs3mV9bnBvN2DrLjXMUcUOk6NoD4bpQFOl2cjfQ5qJ5VImjEpnQZoY5NwL7OJJ+DGDbMicfSBNgjZT9/+szfcelP1uHVt3YLuVByXRjAVn+Vn1fQAp1UnIBBpqLRWnVs/NqUX/f7lJlAbNy2yUIRZVDR8sUiv25cVLS6lnv2yrFhEwp7OXYNm1IyPafsFPH//fkd3PPs6/jdn97m16hEHRtaGJEldbH2RkE2lUB+sMD5zUxilYFOInZHZ5QYJ2fRLWk2FlW0AFGN8aMs2tXYEv2KLh40GmMXhSs48l28vpfBFg9QH+e2gLENFZX0dNxbmd1GjjpRwyaMeAAgRSOlvqZSnnMDu08vwyZhGOhoyiCdNDCurUFp4MneOvmdycURDcM5Dt0SuYVjpD/JnPuomNjRgL9v6xOkP8XvJYaNw+MsJb6HzlET6VpekGmbyYQhfK8qgTxPFnmvqJhyPBFVNL6hKx1H6w8EaS+NpjOwRdKWewa/Fy9MaG8AYFWj9/peoY6NRKlU3a89h0t5bOR3TguKUKCTUtHYPYd1fsnHq6LL+aIJA+rcjqDUEcMw0JJLYWffEHr7hzC2NUeogupzWBRR3qDSiLA81xRC5H9UKmIjRPJd+vNR07vw9N+2o7u0holUNOfYYnA3bNzbI2/I5QKdQwX3vqNiYzCHn18OXzlozaXwzp4B5dwOuDsVDcNw7G8oZJqWnzODFuUN2j0OGNMM4C0+r3iBGZl9EjtkbGku+tvWvfjb1r3obMkINF5mEFH6GKWqUci1qShoTrXq/Imle2B7LeoAG8gX0ZBJhqtjwwybPMtjl5gCZVDRqGx2XKpodW7Y2BEPathYBTrFgWvXsGERG+bRMrl06Vu9FoWL1jEpFw4qmhAKLc9Dkk0nsXewwCM2oxrS2NFn09Jo57I7YKn2S+nZUc+hM8fGpmow+NEM3BDEsPn8CTNwwru7sfiA0Z7n8IhNochzR9w2Tl45NqLRmVD+P5GwJ1RmDO4oVbRmnNukj0c7DOTzBcMmgGcpSdpLufOyF5V9T5BcMlsVzYOKZhgY1ZjBg5cd7hohyUqGjaP4puFcnGQDSV6EvKhoDHHk2ADAnR9eiB19g+gk9EChLWTOkTnzssx62H5Cn5WveACNbiaTSCcNQoGzjUeV1KsqauZr2NCIjUTBkVW5lO0V3rkzx4bNY7bcczB61meWT8eyGV1YXKoxIoP1fUvIxfqblYPkY9gk7E0DBZUktjeZLqpoXuIBhIomO+SCQp4P2TOljpN8wYTpUjIhTP9szaUtw2bfkJDX5zZfsU2UnARO6Tcy7TVM/of8rCoiHuCy2bv4iCmYOb6VCwmIVDRnNJJB5TQCvDeVTlU028MNEPGAgHLP20tiK7QYZdxoKb2bjGJuB2QnoXN9yLtYNnKOp9tGmu5p8iEjNlccOw2HTxvN9yde4OIBAyIV7VPHHoRDJrRh7Stbcd+6N7B19wDv29mkuo6NOxWNOVad7aepB3INGwD43AkzcNzBY/ncSPfPfYN5y7AJsNeT28uMY6cyYRlUtIJNc20cCREbXlAqIYoHUOuddV4W1WAPnBZZM6XBEle0BnBuelm7aPG1ciI2gJ1j096UEQwbynPMSBEbFunwoqKplFOie5zt490m65ZcGodP61SeIxbotHM+hnySSlUTnEo8wGvzxiZUtgfYLhk2iQD3FhTywtfZnOGGShAD2DCsjeGglH8kS1uGidiwsVUoWrKkdJJiz4Q9s1kT2lyvQ6loqsrccn6HX2VqwFs8gCGOHBsA6OloRE9Ho+vn3AtK6gakk4Yg7U4NjDAI4o1kSEnRzXQigX1glE1a48s+h1bh9qSiKfpLvyrHhlPRSgXavCI2gtKP0+BtzckRm2DzZnM2hSMO6nT9nEZsaOFUP/l2m4omrhtU6plG5in6QlLRZIdcUDgNG+t32VHjzFZQn+8F1rbefXkhZ8NtbnGTexZzfeSITfQcm9jEAySHlwrZVBJHTR+j/O60Z8RG/SY8qWjS85WjhF7iAUmpD5umyR12bhHpOMCi527OGVHiWZqHEgaUvEk4hRncJfmtn4IqWsA9d2MmhfccNMb/QCjEA0r31ZhJ4dTZ42HAwH3r3sD2vYN8XaS54tSwV1HJAOdaTsELdJIcmywxCuS5MZkwkCkVFWVGRJBcRjdVtNipaKXnGERqOwgqF5OMAZSGlCObJqppLosHOKhoBdPhHYpTFUT2/qW5l9AMNVmrkOGGjXVvHZKnhVJwWBI29xwX/MUDVHLPphnNGIuSYO8bsSGbd/fQs/PvLPIgJi2r/w+IG1YA2CYZNkEU34LCmRCa4tSNoM+N9W26qeJebk5Jsb4nSOSNenMc9SUIFc0PQsQmmXA+Z0PMb1AaLY6Ijcr4UW+MKw17zrEneOZckGXWwzoGxHoYwSM2mVRC8NjSHBohcZhU4Y4iHjAkjUObiuYca17tVUVs5BwbtreJKzqaL5iCApAbz99ub8nwkKIdtK6aTP1l4KponnVsrO8cLBR5HkrYPixHyIT8A5LALBd3ZggbsQEs5yGlNrkta2zNkcsUiDk26mhYMLlnyVscUzI8nY8Cz8WO/DGxLWwacKOieYsHyBEbdR0brwKdbNz39ue586uSERv2blwND488Jq8501JF83f+0EhV2IhNGDBnYL9CqAgA2pus57Bt76AoHqCSe3Z5j16sCzr/uBlGMhq55DOLjFt/DyIeMCRFbGTDpjxVNJNHukeE3HOeeCSo4hK13vnAlTxfVCNbDgPHqQoiK3vwiE3R9I02+IF1VBaNam8SJ6QWRY4N6+RsEaYdRb5v6t1gCNLZVQgSxpfhpopmF+gs+C54qmfLnoHgiZaSPFXXYLQ3Vh+FGZKxqqJJ351LJfhiEDScyz2+gmFTap8henmC9D06IcpjpUg83b7XkVTR/CI26urRak+01zGyQkulQA1g9pyYUSqrEZbjGAhax4ZFiGXeOp8bVYavol/4US1pErhMReOV7L3EAygNNECODXuG5ToRaD0fSqn0qjAPEE+iZLRQFSp5wWcIUseGPY8dfYM8pyB0xEaewxSb8kLR3bCJErHZvS8vrBVu62gToaIxR1m+IEr3O3NsgosoVCxi4yMeoEJGckjI/YnL7EYQD3DUf2KGDVfvdHf60VwTwKahNWWSsUnqqtDiE7ERnIQeDhYZsqKmqyQ/6fvUmRM3uCpaabzL9zK6yaIz79g7yKWSxTo2dn8YcjFsPAt0kqjvgCTF74YGKcpEJfDdkJEMMfZdsmFTTh0bwGYljYyIDVGnEiM27nLPTiqas0p4XBMhIGmxJ2yPTaFo8o1y1Jo5LGzJjbZsSujkNMdGlre25Z7t5yavQ3KRUyBY0SYVEh4hZjcIRqFCFY3WsXFbRL1VZdwiNtKGW/JubdtTMmyanYZNublZqmrSPC8spJdwSKCiiRtXW8HM/5qGYbgKCATRumegi7wlHiAvXOI79yvg5va98nXlRMZKgVI3bdlLZtiUlGYk6l5QyHko3seW6GAKFTfBsCH7UeQglgAAZDtJREFUcpmqKEYtIJzvBfk7g4gHyOPQ+f5kuedgbfEDuy9KRZOTkL2qeueliE0QKloQ8QAWXd9emmcyqUTozaYcpZAjB1b7TYHLTxHGi83eT+++IVFW3idiUzRtD6/cDnlNzhN2hh+aMilh3a0mFc1xjsQKkNcWeTMpw3MzL83dtL4b/enlIGJzwPa9Vn5xRwVpaIDdV4JQ0eRmez1yOT/TT5Kf7r/iyqemkKlo8lcwtsfO/iFOs3KN2PjJPSsGWpbs9xgjyS9iIxvZ0ahopRybGAybjGDY2OVa4kBdGza0aBflD6aStl63nGNjR2xKnxeKjrB3nBa8rIpGvWXcwxcxQmTn2FgvPZtOCtSyFoW0Ipd75jk2RDzAsaEHbytDVFU00WMY7By3DYat9V7knmbXZEEPb7Nb7oArFY15t0qLwGiFeEC5XUdFL5CNcT+oqWguOTYBG0zlICnCiElQVSCLiibej5wA6iVTyqAaO7WK2FDxgLgjNqLcs/fkzhwlcr4L+17Z6QPAscgHzT+TYRs21nF2HRuPiI1EnZPfOzdshkQ6X7nzNBVyEerY+EjT2+IBalU0sU6aOHcylSTPHJvSuSyXLwqVUn5PKqptnkjByogasaF9ym1DRDcnLNont8OtwG2QcZNIGEL9prioaGIUM9g5okGZkMax7dxxi9iEEw+QIzbqDbHVFjZXWcdwZ12TWhglLrSU3ot7DgyZqxw5v97OEUFF1eX6dC2XnTlxglHRmECGfC+jGq0xbZrA27v3ARDr2KhqS8n35KWKxpwjg0QVjea4qsCiIUHrUQH2WsT2lQNcFU02bMI/Y7qn6x1ZERv7hTvEAyRVNDnHhirPyF7oOHNs5KR5OsnyYmgRv0/OscmmEkLht1aVeECehf6ZKpqH3LO0oQeiq6L5bRZUEEPL9nOjXg0etXNpDx0csuyv24bNGUkobQRNFra3BhlbBLyUXMJCnrxy6QSPOASO2CipaOJ7C1PHhrUDUEVsrJ9B32mWbLblxS0QFS1AxMaZY1OtiA3zgtpyz3bEprxNeZJSWlLe57Jrs/lBjkYmpAgk4IzYuIl9ePXvdNJ+fzYVrcA/c22vIB7gnmPDxQNC5HV5gebY0HnNz5Bzi8ZQyoiqAHT/UIFTyzypaKVz3+GGTfj+Kz/vtGDcltgKHlS0MPM7zbGhdDK3uSWRMPg6xZLm5dw9Zx0bW4wjUJvIxkqlChYFtJ8mgzqZpPwxOf+N7UPcCnQGZRwAhIomF+j0oOuy+YjRq0c31ThiQ/4chorG1g42Jfg5OgsmkXivgGHDjAg23uV7SScTfF5jgk/ppE/Exq2OjUeOzWBeXcdGhXgiNiXDJgbJdbpu9faPoIiNTUUzHHLPtAo4YFt8rR4Rm6mdTdb1YsyxkUPitBNS5aQo4Dk2pXvLphJSxMadisZ+NqT9xQPyiohNOapoUcQDBE8XqWPjLx5ADBvJi+BmzDhzjewNEEDC9qUEwDipaPKzyaaSPOIQlFKh8haXG7Hhai15dY5N0P7ADZukk4pmiQeQjYBiA++sY+N/TNUiNiQSIosHsL4TpJqzClRVzE9hxouKlki45c6JibRu49WLNivnEwB2HQdP8QDJgSEf6yjQWWb9L/l7w0Zs3FTRqJNFVcTTrkLuvUCzc9k80xJBrlyO7lKHGm1/pSI2CcO7WHEjV0az+ocs4OMesQm2NlOnXlweeUE8IOB8J4t+OKXNrd9dVdEiiAewfugpHsD7vvU7E8SppHAA4J9jEzRioyo8DBCnjs9+oFgk0vtlOkhUkAtUq7qgbERmU+ocG7f36JljQ6loQXNs5IhNgHnWjYrWkpPpoOH31JbCq3WRXf0jKGKT5wuJmGNDPb9s4Mo5NraUnJ1jc+KsbrTkUpg9sS22Nop1bMSJ7Z091sLlRUvwAs+x6bcNm0ZyLcFrRZR2ALvTekdsrJ9U6z6qlyNKVMPN8GD3PVggcs8BxAPkhDb53ai+l7aXR2yksL3o3fa8JV/IRm4uncCCKR1IJgwc4iGlTMHu2atAJ/8Z8F3YERuJiuZTjE8GpUepEpx9qWgOio13VCeXTlS04JzwvcQbaBs21niUx13oiI1PJItCjtiIqmgJwQBj8IrYeMkfM0oF/T6rjdZxwaho4nkydYg5o+w6Nv5JrUHAHRbForCI+yUhq6Ix9HdKRRskxk8fUUTz2vRzKtqe6BEbuX+pxAPyxSJPXJYRShVNkWPjd36TVMtGdpi4yT17yYZTqJx65SIlrBHBzpH7tlho1+4nrlQ0j+9xGjZsT1NyXuYDiAdIa1olpZ4BYPbEUcikEji0p135uad4ABkzcjvZ3HtoTzvGt+WE+m/CNYQxH1xpLyyyabXhRdEhGTaZVII4bf0jNnMmtiGZMDB74ijHtWl5j4GQERtZPMCbimYIbWTrXi6VFAtyR3zGrO9yKtqIqGNTZC9crGOTJnLPrPO6Fei0kquslzGpoxHPfem4SJrbbhA3COLA/fu2PgDAhFH+lWxVYMmCbH+STScFKhqd3GklWvpTzLHxj9hEVUXz0qd3PcfFa5wlg9/Pk0fPkw0b+pq9krMpJW/fUIFLD/ICnRGiUW5QVZM+d9EknHHohMDeCvau8xK/n7ZPlSTuBTvHxk0VLVzkh9VXoVAV6JQRjIpm/79aUs+0LYWivZg4c2yiOQaiyD3ziI3UP1VUNFkVzU3sQ+7rrOo8IBs2IqUiuHiAlR+ZShj8WclUtGLRe8wHhRCxIZQR+nhVhn9KMS8Coiqayvhh+SSyt1kGO5fNM1H6sIOPrxhX+aKJodIzZbVtVMf7gbWPqqL5zQdyLRsnFU0yGkPmpjFjyzDioxrRDXDQ+U5mAojUtAT3ZLPIpvwevNouvyM2t9oRG0YDVRg2Btvgi6po8mY7bkzrasYLXzneEdFgEOYauZ4W+ay9MYM3dvTzZ8WexT0fW4x8seiaT0INurgivyrIYh+q/iKr2FqqaGLOCkDq2Ejv8cRZ4/B/K7uU+wK63wubY8PWePZsA1HRmNwzKwaaTiKbSvJxHNW5YJ1XsMUDRkLEZohGbEodyTBKixNPjrOOddSxIapo7MXn0tZ14lTJkKMCdBD9Y2c/AGBCezTDRjbAZCqaKseGyz0rCnQ6N43WT+rZDSPvSxFFKlNM6LfvlYZr2YbMzZNHz5M3CIELdLINkGlyLnIqYXBPqigeUF7fke+DRSLDDGjbW6yK2JSoRryeTbBr5jgVTdxwhK0p4klFk7zlqkiLW+FB4TrkHcRVnDMIBMPGhYoWR8QzqNyzLL3MrhMsYuP8Xvn3hnQSjWmn8wRwUg885Z6lPATreNsAZ3OanGNTLoXE9t4Svr3hr+CoopkBRF7XhYrGPKHNPhF6uU9H6cMyjddQzHX5gq2K1pxxzz/0A5sHaR0b/4iNREWT5hXXAp0BPb9cJChGWrmfDLgKdI12RKRTtqHD+oaslue1nsjCRHLuF+uPXlQ0Lve8VyxhUEk0ZJKuEUuvZ0x/z6WTQhV6LnqSMDw38HZuUfSaYkGQk5656j3KVDRBFS1AxAZw3xfQHBu7QKf3WGB7QRY9DEKblveVzJDJpRNChCgKFQ2w50LWlhGRY8MWjVTSlqNlExlNEjNN06GKxuk6pI6Nn0UbBfLkY5A6CexlTRzlXs3cC3JHlcUD1Dk2knhAoIiNMwm9HLnnSDk2lIpGVNFonpXfNZw5NpSiQ79LiiSQ98XUY9qbMnxyjjdiI3nhfCYjFVRUNPccm2DXz7qIBwT10MrXUdaxkfIbgtSx8RMPkN95JUETcmW5Z65GGDJXgEG1+XcD679qKpo6YuOM6InzKINg2GSSwsIqyHnLyeueOTbOSA/7mSUiE4WiKdQ7KXfPSlXR6CLuR5tNSXMpgx8VjUUnGj2EA2i7GKL0Yfq83epy5Yt2YnFzGbVfWPtoxMbXsMl6U9Ec4gHEiRmoTSHzEoMgJTkIgkCOtKaFMWJT09l7cMsdUbZHWndo4VV6TRUDxan0WZ2IjR+88lXpWMxJCrBh9xSFYjFy9DwI5IhNUCoaWx+D5Nh4gaYe8BwbH+OCS1RLqmjeERsxwsSpaOmkWLeuTCoawwiJ2NhyyeylyDkErKYE68SydO5QwRSszLihigrQTt6cTUWusyEbYhkSsZFrH6SlkCEzVmQ1OVXbabmGqKpoXtxZN7iKBxAvga2Wo353bnV9rOv7fxdgR6cKRVOpHiPm2JQ3SdKF2DD8ebEqqKhosveFR24CNtdV7jnk4iBQ0aR3JtOAVJth+Xu8aBZA9YQDAJHmwELyDlW0iEXhqCHkLx5gCMfJVDQaqWBw1rGB8JOez9CQTgoeNC+6nNeGVKDrSIaNvEAOForcCCtX5IU6LOgi7ueoUMmp099TRP1KJR7Q6FHDBnCqeLVEyMFUGYv8M1rHRlLvYwhjeLNze/cNBY5INoakotHSDkFgiwTFt6bT+SgaFU2i2qYMhxPNYdh4igdIRlPKNlgB0dB2tEsybOTabLWCTN2nEHInJXZK2LzdQtF25lQixyYIFU2ZY5N0MiO8DFQ3COIBrI6Nz/7WVRXN4zRZPMBmPyWF/Wl5VDQblCFQDkK15t/+7d8we/ZstLa2orW1FUuWLMEjjzzCPzdNEytXrsT48ePR0NCAo48+Gi+//HLkxomqaFZT+cJMOKQsvyaZMPjEIaqi2QlPcUO1eaYva8KoBs9EUi/Im95syvZiyLSrNAlTFwmnPJW0E9bcvLNKz27YiI2PF1QFmXvPYHs1/OWevXJsEi7Xd1NFKxZNpWcrVsNGotxF6RteVLQU74NOI9sLbjk2ZkhqIpucMymLlklvL5kQVdEyivEoz4++EZsqUtEozUGuY+NQRQv5XlNCxMZ7Wmb370ZFS5H+zCAbqOw9OCJk5PeGtBix8aIeeKuikQ2a1D9z6aSwoA8MFYlzxfWSgUANGxqx8qp9Bdj3JufYsHecSSZI8i4xbEqbeD8qmuzdjBKx8eovPFJFqGiyAyBKjk3fYMEuYeDTvxn1jVGwnHVs3Ap0BjRsOOU8vk1rlMi8oBQoCaakk07Je9no9XICynsLWl/JNG2jVaUuKUdtmcOuGlQ0L3hSwqWIDTUCA0dsyH3nI87FQSA7yVVTtsOwSSYcRVYB21gIE7Fhc7EoHuC9v22UcmwCUdGIYVMkjhIaaQeiU9Hk8Z7LxOOoCHWViRMn4utf/zqef/55PP/88zjmmGNw2mmncePlG9/4Br797W/jlltuwXPPPYfu7m4sX74cu3fvjtQ46q1n9CTOzU7a3tPdRDiAbRQpNYsmPMUNujFVKQ5Fza8BnB3doqIxw0acILNJW1edVnVOJQ2elOZWv0WQe44lYhPsHLcoiphjU4Z4gKFukxslr2CKVDTVd8Sl1AQ4vT5B4UVFk6OGYevPyBXBw9YUYRM363OUA5805Do27guy1zH0GVY3YmP9tFTRRPGAfNHabEQtCqeSO3c9VqKiyYpYsmIka5/1eYIfB4Skonmo4HjdrxixEefnbDohFDbcly8ESmoNAjq/UVEULzqM1TZ1xGZQQUUbEqho1tjxEw+QHStRcmxUBTnl3ykVTf6OMJs9SmPbVRKS8FsfGB1Pjti4zTNhKZw25TzGiA25VtDnI0QxE7LcszPPsDkEvUp0xhnCXJgnBcC91CWZIA4zMGsdsRH2CR7iAbl0oiwqWpHQT+PsIwyyEREoYpNU17Hxiry5gc8/IerYcCraYAgqGnGi0jbLkfaoDga579Ykx+a9730vTj75ZEyfPh3Tp0/H1772NTQ3N+Ppp5+GaZr47ne/iy996Us488wzMWvWLNx5553o6+vD3XffHalxdg0Tg0db2MRH+e67SsV96ORNJ/dqUdHs4nXEsImoiAY4B082neDcZbn2AfXa9BFpyXTCjtjIg0/t2bV+huWlJjwmLDfYXmPx/CxJZM/zQe8fsXGIB7hFbBwGnvUzTyI2laKi0ckragQxraKiSZMUz7UJOOG4yz1bP0OLByg23YmEOF6CyD2rNjq0r0SleUYB60OqOjaAtcnlkYGQE72fWpzYDjFiI3jOSESCyrjLOVjc8HU8bylik1YbNk76k3ubxXwQiYpGqIuAOHeVy4236ThFYXyI0WVVe53jC1BT0ajxw2qV+IoHSBuQKKpo9Hk7ctmIQTeQLz9ik04muLHGig36nW+LB5QMm9J44Qp4DiqavdYHQWVybNyNxUDnJA1hnbFybKSNG41C+KwlcnSDvvN8wbTFLJTzqPWzaJq8hk06aUSiPcYJbxEf+/85SQE2aHcVnRmVzLERn7nK0B/dZEtSp0oOJ1W9OC/xADewOWSgjDo2ct6lClkSsaFR1lxKFA+IqjTsyLGptXhAoVDAvffei71792LJkiXYuHEjtmzZguOPP54fk81mcdRRR+HJJ590vc7AwAB6e3uFfww2FS3BXwrzFHLvadGO2NAFgi5ONOEpbqiiDnFFbGQLPJNM8kXTq/Irq6cAWJOtqkI5YA9GujhHVkWLEMZnmz958meeANO0NzpuGycxx8arjo37omXnGplKWcwoUtZuoO2IIhwAQEmDkTX7eXJ4QG8VV0VzpaIFNZCs67AJXOgXjoiNwmhxMb4p6PuoptxzQrlhtMfhEEl8DxttEJKOFdQS1bFcUIWcmzBoxMbemLPFU47keaqiZSTDxoN6EFQ8wC4qah3PNgjsXvpjNGwEVTQXKprKm2vnqEibb0JFU8s9s4hNOCpalIiNl3gAXfu4eIC0oQ1reLM2bisVFQ0s9zwoqqIxw8YpHhBN7jnO0g3ligekCA0UEFXRGGhdOb8pQl6z6LWHikWfAp12H9hB6NVRafFxwVM8QKJpsz6UMLyLwaquX6y4YeOfK9Xe5KwBxiOWVBWtECziQkGjyuxaoaloTAI/iNxzvsijrKmSkU2/Lw4qmqWkWgMqGgC89NJLaG5uRjabxaWXXooHH3wQM2fOxJYtWwAAY8eOFY4fO3Ys/0yFVatWoa2tjf/r6enhn9niAQZmjmvF0TPG4IIlUwAQLmXRRO8+RcRGqGNjJzzFDTmHABAXy7IiNrIqWjqBI6ePwYIp7fjggknCZ3TiYzlH7O88x0ZaxBslCx6IniMQRRKZRxfkyT+T4s+VRVDc5J7ZPaWThqfijGh4qb0thaJpFzKjhk0EKWs30IUuasSGK+0Iho31k93zEQd1YuGUDpx92MRA12RjQ07ytQvyBWvbGYdOwPzJ7Tjm4C4A4qKblBZnr8JyDCqPbK1ybFhT6KZMNmwKIZOg+bVDRGyOO7gL8ye344xDJ1jfJW1yKc8csIzTDZsth9Hk0Y3C93mp0DVkRJ67qkCn6jwZKk84FQ8A7EU51ogNkRKllEpxc6U4L2Ev5hSUikYL5DHYEZvKq6LJNCUKatCxNufS4iY7bP9kDoRn/rYdgN2P3NAkUdEGZcNGnmeK7tEHFeZNascR0zpx/uLJgY4PgrTHptsNrB8wRVS6VqSTKvGA4PQqIbqRNIRnY0Vs3ClMNGrLIjbtNc6vAZyOLgo6pVgRm/B0Q5pbVFFVNAcVzXkMjdiwuZNR3PcM5Pl8ESViw/qdaQL9Q9Z1whboDBKxofm8+6R9tNd6EBQCgyVGRlXoXcGMGTOwfv167Ny5E/fffz8uvPBCPP744/xz2bI2TdPT2r766qtx5ZVX8t97e3u5ccOVUkoJ8Hd8eCE/juZFqCI2bDAM5G3Phqw9HgdUoVW6kE8sJ8dGmrCyqQTGj2rALy5d6jjWMKx6ELv6h7j0dbI02bLryPMfLbzGELSytAy3In9eUEW42O/tjRls3zuIt3r3eV4zxT2/SaUKF7+mh5wuVZBhhlS7W8SmzDlSzLGJGL5VqqKJSb1jW3P4+aVLAl8zF5Pc89EzunD0jC7+e4pTR60+Su/fq/6Cfb7ze8U6NtWP2LDNGmB5pg3DWmCGCmZkKifl9/tt7g4a24L7PmHPAYJ4gGErz7GF669b92Db3kFkUwlexVquZ8NAn3dDOik4g6jYg/zuvOqJiDTQhPCTGzal/seUxYDyaZ/Ua00VgPyk6bnwjEuBTjcqGi/QGZKKFinHxkM8gArn0E1TNpXEUMFqY9j+ydr4+KtbAQCLpo72PJ5T0aSIDTPiWDKyzRoIt+40ZJL46SWLwtyCL5Iem243yDm/8jh2RGzCUNGkyGIyYSBhWLXF6LtV5ioSRsv2UpRtdI3zawCphpTUbDn/lEdsQiyTlMkj02/jhOx0VhnCLOLdP1Tge7C2hjRasinsHsjjzZ39mNbVEkkVjc6/LFLsq4pWGpOh6tgoqGhylD1s24Xrk/P8It1hELo1mUwG06ZNw/z587Fq1SrMmTMH//Iv/4Lu7m4AcERn3n77bUcUhyKbzXKVNfaPwauGCV28e3mODaWiWef0kYWyIlQ0H7nnsqhoUnv9Qo1s0tzVL/Kg3SI2LaTwGqMcBbHiVfDyxLiBDSjVxNPeaL3Lt3qtSdktRMna2ZhJOgaXuDC4b2aol0dFRYsiZe0GUf0tYo6NgkJYrnfKXRXN+hl1k8nGripCoNK+d1LRvI2faubYsP7EPF7JhOVFZZsZGrEJ+x78DD4vyFExmYr2zEbLyz5vUrudb8fmKjmB10MVTczlEdvoqYqmcCpkuEMiIVx7H4nYlLshoQ4L1zo2Siqa03FAfxfFA0iOzQArwug9ruWNaLSIjbthQyM2NMFcKLAaMqGatZEZbwundngeL0dsWB4AFXih0eGokc44IVA6Az4euS6TMI7J3MBAjV6/tUTFOOBlLHzEA1LE8bt9r7Uf6CARhFpBzLl0n3ssKloprzrE2qOqXVWJiI2laGr/7tZGto+gY4/tCd/YYRVwj1bHxj6WOfb9jIuGtExFCy4eMJB31oOMm4oWVw0bIIY6NqZpYmBgAFOnTkV3dzceffRR/tng4CAef/xxLF3qjDAEQd5j4FK+O4/YkE0Oe/F7SDQiSs0QP6hU0dhklkkl0FnGZOKUe/ZuP5s0mWHDnoFbjg1brPKk4GAxZE4FgyAeEPAx21Q05wksjPv2biti4xbqZPfUkE46chNkuUx+jstGgEZsaBg5ipS1G+hAjmpoq+Sey9Xsz/JJr7w6NjJYW1U5HV71FxjUcs/2/2tRx4Zt1lgEmPKdoxqYtH+H9X6JClkJBxXt2ZJhQzejXLjD43k3hqCieYoHKKTWZfEA5m2Mk4rGx7XpUcdG8RX8fUo5NkNkA6KiorFoU5NfxIY8K8OwpZHDgD5vR4HOpL25o97grGQAh4HsNDx00ijP4xtl8QAWsSHRKepEsdUE41+jg0JQFww4z2ckwyYtRdKcNOvgEsYqZxx3auWLvDisl3gAjdh0NFZvrnQDdSR4KTLSiE2YvkqdOpWkohmGIYwnNyNVadiU0hP+sdMybKLIPdO+wfa4fo5Sdyqa+zl2xKZg5/KwiE0MqmgiFS0+wybUjHrNNdfgpJNOQk9PD3bv3o17770Xa9euxZo1a2AYBj796U/jpptuwkEHHYSDDjoIN910ExobG3HuuedGatyQRyiRJnz3qqhopQe9uzSxsoSnuKFKhmN/mzCqoSwPv0M8wKfjN0mGTYp7R0UvLT8+k+Sh7d59Q2jIJG1Z1LB1OCJQ0WzxAOfxbEJ4e3cpYuMj99yQSSk8l2oPpdvmeahgF+ikiX9+dS/CgH53VGqkiopWrma/r9xzxPv2UuGSKTn0OH6Mj8BALcQD2MLAJuJ0KgEMFgRVtErm2MiQPc3UUDdNk+dFLCKGjTxXqdqRk6lonrVTgkVsbOqOuDjyHJvSZtcwgicMu34veQ6CeIDPXMUMMdO0zmXHMEeCtZbYxiwD28T7Fugkz645m4o0tmg+iBwVoHLwIhXNfQ70AzVI5kwc5bsJYWuRXMemIZNCKmFYzjQy1+Q92BnVAl0jAtOppTVMKLRbquVF0UD6ht9cLdRhE8ZNAfliEUMeG2KqGmvXZqt9xMZrLZXnHjMCLZ51n6JpcidtpaKAuXSSb/bd3iU3bMiYd0RsIlDRWIrBYKHIo6i+OTZSTjVb273mWbFejlgPUqjhFFkVTXSkxYVQhs1bb72FCy64AJs3b0ZbWxtmz56NNWvWYPny5QCAL3zhC+jv78dll12GHTt2YNGiRfjP//xPtLS0RGpcnnOa3TdAVo6NUzyAR2yYd7UCNDSrHfb/5eKI5QgHAAq5Zz/DxoeKJg9wwzDQkktjV/8Qdu8bwtjWHKksHa6tAm+9TPEAwM5xYe/WVe7ZYBEbZ6V7+iu9dbd6Ptv3DnDqFU20pPk5ZW+2YvBQqKho5fKJ3ahoUQu2MrD7ZefT6yiNlkARG/tvUfITooK1nXnms3xc2bSkfDGaISjUwwi5uZMpRtSweWNHP7b07it52dvJcc73AYjP1qGK5iX37GXYSPQc66f1N5vWUIrYlObrciOjAInqFyTxAB+hEzo/DBWKSCaS/DqABxVtUCza6gZByTGiYe4VsaHvf6BADZvwBQ8ZaMTGj4YGuFPRsqkEcukk9gzkBcnnqPWf4gQdd0HHr0xFk3Of5MuIERvva6sEb2j9pEEv8YCE7fhltdlqXcMGUDuC+e9kLObSCRgoM2JTej7l0sfdIEZA1ccwEaKsKmIjGzYRKMiDhSKfdwIbNlKOjScVjUVsCs6yKWLEJqphY58Xl9QzENKwue222zw/NwwDK1euxMqVK8tpE8cQqWMjg07ebPKkXGU2KbCNaiVq2AByImpCaFu5ho2jQGdAL9lObtiwTYTYLoqWnCU4wGoBRa6c7jFhuUGlIscwWipu5Ta5MaOjIaMQDyD3wBLXC0XTVe75ndIC0NaQdiRk2+3wvic/CBGbqOIBik2VXyFTP7DokUxFiyr/zcA2sHaEgHymitgEkXumG8MI+QlRwb6X5VJwdRjivY9qYAoRm5ALnBwt5Zsa0+T5NbMnjhJraCgiaHI7wlDRvBY21SacjXlZYYd5E+Ogjwh1bEgkWijWq1hb6L0MFYq8jZSKpirQaYsHeM/T9DlGNczFKJj47FkEJ0+paKmEIxcrDCjNO5Bhw8UDWB0bm8aSSyewZ0CMDucj5qbFiSjiAWkeSREjNwCQThmOdZTm2ISpYyM7TakqmkoenuZZMRZCRz2oonnQ/YSITSpJhGeC94kUue9KigcAomPS7V22K6hoE9stRUFGRYuSYwM452DfOjal9g4WrPqAxQARMbZ3LBRNnq8uK1mq2hIUdUFFqza4Co1HAjGVe25VRGwY/BLvo0IVqWDtLUc4AAifY+OI2DAqGhcPcHY+y2PYz/OUgnR2FaIsCrZh4zxertrrV8emIZ1yDGxVqNsybCQDqHTc1hLtzcuoKjvHhlwrap9Mp5ybKptPHK1dqoiNaZpgwlCRqWiSUe0rHiC130vuOWH4J2rHiYQcsaFUNDBVtGgGpiqqERSCEZ4wBBrKsxu3AXBuRhOKCJr8e04u0JmkC5kUsQkoHsALdKaYYcOoaCXDZjA+w4Zu7iifXPAaqyI25HNK96RUNKo8xhA0YkOfXVTDXOwv0jskm1+3HJuocs8JAzhscrvv8czJtm/I2kSxPIJsKsnnvX1DRfz3q1vRkkuRAp2VcUAGgTyOwpwjJ/cD1jOXryIUnfT5Di/F1SFCRfOM2BC5Z3lNrQW8FAkT0txjIrxhQiNVhYj5wkFBJZ/dmBzsmdN3xPaFLGLjJQLhhbB7XOqk2pcvIowqGmCzZ2zDZj+holUbXrxbatgo5Z6lcyoVsRGT0q3/szC8n9a/H2ibDcN/gPMcmz5RPIA9F9UmkCujlTptdMMmAj+Ze/H9DRu3Ojbsntsa0p6qaOz7BqFIti1dm0lLt3sYNuVS0eKQe6YceoayIzbMm0OUiqjabWQqmmTQ+OWSON+Z8xjmDR7dnK1qwTnWbxhnnU3E9H1ENTAbMkkYhkhzCgqBQmPQuRF44fVdAIAFU8TNKH8v0rhKSQtNg2vERqaiubdZkMAtfZ9daNiam+Q6NnFQ0QRVNJIr5pczR/9GBQRUVLRBVcTGZ4EWqWgRIzYu+YOAvUEaLBTEHJt0+DmagTl7Zk1oCyTYQQtR9g3Z7bCoaFY73tzZjxX3/AFNmSQWHzA6UrvihBBNCNgO1o+bS8/Er05XmDo2oihIKWLDaK9EPMAr8j1UMPF2SVm0sw6oaAKzwxGxsf+fTSe4UyWMWhZVOOURmwrlbeUCjKfu1hwAMTLLmDxv7d6HwXyRl+cIG7FwGjbe6wZTcrMKn+fBprYgVDQAPPLXEKthUwdUtGqDhadVliwtQKWWexbPqVSOjcoDceXyGZg1oQ0nvLu7rGtTC9zqlAENG1LHBgA+dtQBGNOSxXvnjHecwzyGbHBFLtBJHndQ7z6Xe1ZMPEEjNqceMh6bd+7D6YdOcIRD3Wg2Dk9R6ffXd/QBAMa15cTvVnjOooJS4qL2STbZiHVsys2xYVQ0O2LDjFwgutdL9mj6GjYeG22Gno5GXHvqTEwp03EQFuwZbN5lGcAzx1nS9LTSe1QDsyWXxqozDkFjNhW6j9FnbJAckiKRL+9uFaPHKmog4CP37KmKFi5i87EjD8DopgwvMsoWSRYNi4MXnySULJor5qdySBNz6RjjBRFTzhwbmqjf5CMeQJ9j1Bwbodimi3z0zr4hoaq5IM8asn8ue1cXrjhmGo492L10A0UmmeAiAXsH8jzHJlPKsQGAP23u5YyLLb3e6pfVQBTxgPlTOnDl8ulKwyyTSghzKCAafP5UNGd72LumUt5euYpsL9CUSWJqZ1Oge6okxCiU+Bl9/rlUEu8e34ovnDgDh0xoC3x9lcR7pYxlmhrg9h0nHdKNv2/bixNnjeN/62zOIJtKYCBfxNN/24YdfUPIJBOY1tUc6vudqQreY9owDDSkk+gbLGDfYDFQ8W1rTbGMode2WfujrlZLhCLrsR4EhWDYjJSIjV3Hxn3guso9J6pl2Nj/ZxPVIRPbcMjE4IPRDbTjBqEtNbqIBxw4phmfO2GG8hzmSWBhxiLhoodBFPEAHr5XLLKOiI3LwGlrTPN7s4rB2nlVbvkact9gx72501pcZQphlOKjXkiVadio5J7LncQ5FS3vvCYQrkgahVzHRl74ZTgiCC7385EjpkZrUBmQp6FFB1j0LrrJDVIbwA0fXDgpUru4pLYUhSkUTe6wkOv9qMQcAHEsNshUNEpliigewMbx1M4mYU5i12aGdRy8eFXEJhkgYgNY/XawAMmwKUVsFFQ0lncFhJN7jp5j4+4tZdGV7XsHxRwbSrUKuRHJpZO48nj1GqKCYRhozCTRuy+PvQMFQkWzDZu/bt3Lj9/0jvX/qBHnOOAVTXBDMmHgimMP4r/Lcs/FomjYNIaiotn/l0UKBMU7xf5IHj+HTemoiCpsWHiKB0hsBsMwcNnR00Jdn+4Liy77gLhA12+3r2jMpBzjxjAMTBjVgL+9sxcP/uEfAIA5PW2h9wPOAu7+5zPDpn+oEMiJbRhWrbbBfBF/K41RFnEScmwiKrzWbR2bSoJFbJRUNB5qLfLqxi01pqLF7RnICoaNf/ubXerYeIF5DJlkdhArXgWx8Fawc9iAUm1i5CrJQZ4tG4Ru58jiDvJxbKBPlEQfaPvimCPZ9aLWVVJR0cou0Ml57+qITdTr2pvu0nWEHBtvKlqyFIGoF8gL5MIpzLCx/j5YKKJQA9lap+Ss9fd9Q/aGUqYPuYkH0LHbIFHRslL+AIXXXMOilF7HyVS0eCI2bJNTFBbxII4KPsYIFY16yGXxABZpSicN3yRe2jei5tioEssZOlSGTTIpeHSroT7WzCWf80KODVuL/7p1Dz+WUaFrqYoWhYomQ5B7ThqOeUCgokWK2NjRYc+IjXTtRQEEH6oBr0Le9FFFdfrxfSFx0FWqNhIt1xDWeGLO0zX/ZxW0XzR1dOjvT0uiEUH2E+y59g3mA6cdsHl/Y8mwmVhqu6CKFvEZ03UkTipaXRs2Q3nmIVN4JEqjYGcpnwQQvV/yhFIx8QBFjk1cEKhoAQwzNmkyIyVIe1p5xKY8KlpZERuV3HNjMCqaDLr5cvP+u8mjMjDVEn6dCPfmBXYvcVLRytXszxIqGqsfQJ2N0aloYmRAqGPjQ0WrJd9eBdr2qZ1N6CrxpykVrZJF4dwgqx6yd8UcHIYBtEhRBB5B84rYeMk9S4uq31xjR2fVx8kFOuPNsRFzB4MoOKqUB5VUtGIRpmkrBvlFawBxMY8asRGpaOI4ooYNVXIrp0BnFDAFsD0DeTvHJm1T4pgHmKKWdWzclDBDXUOa3+Q5jo4nP+NdnWNjO7VswQWF41e6dhAlu2rAa36nzyPIfsfr+pTNEDY6GRS5AFQ0N7CoB1OBjPJ+5L4VRHyARQyFiI1P29m8z9aTCaOs/VHsVLQRY9h4RGzY4s0Mm4a0KPfrpKJVKGLjUxOhHNCNRJBOy/i7zNEeZJNr59iUJx4QhZ/Mc2wUhmsunRTEDtzEA2TQkKhbIU75++RFTKaixb3ZZu2Kk4rGjJyonm4WsSmathdaoKJFFg8QaVJiHRvvBTnoO68WaNtZtAYQN8HFMqhoUZGWDBv2kyV7NmecRSDd5Z7t/8tUNDq/ymPIb66RqTQy2PzGDIRYVNGSzLARFYCCqBzyXAaqPKigorEinntKVDS//BpAUkWLWsdGigxQUMNmgCtnGVKOTeX7Jy/SOVCw69gkbfEAKlRSzXa5QTR4o11DziGkc1wmKUtue19LFVlk/ZI5AAA1pVdQzUslMDsGanwc8FIklBUZy7k+rZFUqbmYbuzDMgtoKZBkwsC8AEqDMug8kkkmAq39LAK/jxg2fs9H7l9sf8T+bhjR5+uRSUULUMeGLd4yh1zm/OWqIPcc96RMvYtBIk7yohokBMsWVlnuOewGOYp4gDxZy6AFxYJGbESFKBfDxkdkQK4/5CcPGxbs++NVRSsKn4UF9ZCx+hKUH17uxMVzOujC71PHpp4jNtTDRqlotYjYyFQ09nPHXpZf49w8u8k9C+IBmSRSSTs3w8vR4jfX+I11R8QmDsOmdC9WTQv7b16SswyqiM2ggopmHWPywqJBJEstiqX1/yAKY+r2uUdsWI7Njr5BIWmfvr9KFS2kYI6pvZSKlk54rsWVog0FAX2O0ec7MkZSCeF+0kkjVFRIGbGRHAD0bxT0/R7aM6pijJWw8HISynVsyrk+HbeVmovFOjbhzqXO01njW30l4lWgc3BQWrtNRSsEdmLTeaMhnUR7o6hkmU74C1u5XnskRmzyATikfYr8GsC5wfMrbhkVdB6uxABiHTZIaFamQQQJ68tyz3QDEAYCHzi0eICLYUPoaEE37F45Nm7fR7vXqMa04zmKhk2gZniCFycss46NoIoWMdLGwKQgAdvbVRBU0SJdlkdOVRECVRRSpHbW1/REn61o2Njvo+ARZa4U3KhobCOuojuxR+scI86Fhhng5VDR2EbcL8emEnVsCkWTLOLBIrD8nRLjntdVk3InhopFLvUchIpGry875IJCkHuWnj2Tqy+atjR5NlVeHZsoYM9i70DBLtCZSnquxZWiDQWBV/5HlGukkwmHIqDgePN5B2I/FSOee0nExk82v17yawBvZgcXPzGiU5vY3DdQoDk2lTJsohvC1HkalSYoOJoCGjacijZYsGvU+UVsSP+a2N7AjRg2n5SjZEj7bpx1bOpr5yBhiEvYeodaAWc9AKfcc4WoaBXOCWCLQBCLvEmqeB1IPKBBitjEIPccmIrGxQPU7aTKaEE3ioLyj3RZOQGTX5t8vxytsT6P9x2ze4nKI2b3qKxjE3FBNgyD9zEmIMA2g4YRvX4Pu1dVhMBtMrYpg/UVsWFtnzCqAT0ddh6WoIoWcfyUA2boqqJigJrulJQoggyCeIBUR4KOLXnM+s01qYT3Isj63jt7rJob8TgQ7IhNkRTro9f2FQ9Q0D0zyYRAdR7KF7mDTZ6D3cCeZdSIDTUAZNp1OpngxizbvGSSScFrX42IIo/YDOQF2WmvtThqEnIcSIUwOoJcI5MSIzTpZIJLiQMBxAMUbBD2k0Y2Ve+Stn/RAeET0ysF+nrdqGi5dDLyesNzbAjNsVLRyVyIfCkZNGKzMIJwACDOpUEjNmxO3zdUIEWLg0dsaLt5xCaiCBIgjpfciDFsCjY/WIb8MlSqP3RsVLOOTZxgHTYTSO5ZpqKFiNiUcmzsQnahmilEbIJu6saWkq/HlnTRZXQ02X8PSlEQ6BZSO7rb1N9Hj1MZNvTzOCbJsS1WO8YrvisI2HulOTZsoYtqLAH2GBngVDTr7+VwlOX8D/oa3TbDSUNcxOsFTL//yOmdwt/Z/EQNm2q2nfUnJmYg91HPiI3UzFGNVo2Fsa1Z7gBgY4LWd3JS0bzvl429rpac8vPxo6y/s/wuNjeUg2SpjYWCWNPCIMaNu9wzM1bVdWwShCY8VDDtiE2AHBvAmoOSCYPfd1ikPSI2gE1HY5ALdFaD8sXr6fQPYmDIWccGcDoka0k/TScS6GjKoDGTjEQNAsTnKlMWMzxq6Yxeq5AUoj3W/5mTYWeJgu+We9uQtu6hJZvCoZNGhbyLykGM2IifsXcfVS0UsB3YzFFbyXlYMGxCrpHdrTmMacmiJZtyFE8OCtq3gjKSWP/pGywEVsAVDBuyZxnbmkXCsIuQRsHILNAZoI4Ng4pHnk4k+OavOjk28S8WrFOFkXvm7QmkiqaO2ISmokUw8E6c1Y27LlnkmthIJZ+Dhju9qGjfPmcuNr6zF+/qbhX+TruXLBwASJ68GDzxt5x7KF7b3ocDx4QryMWgoqL9Y0c/AGBcWzRjCWBjZAj7JCpaOcacvIj7iQdYxwIo1B8V7dTZ49HRlMHcnlHC36n0by1ybCaNbsT9n1jKFx157KrmRrfoTnM2hQcuWyps0H9w3mH4x84+TCEF/hxUNJ+574fnH4Y3d/ULkS6Ko6d34Y4PL8A7ewaRMIAjDupUHhcGqogNFVgoFkzXeU6uUwPYjgSqrsgKJYZRRQOAOz68ENv3Droaen6gc5LKQdDRlMGmUkE9wFnHphrdk81Fb+7cJ8o9k7X4gDHNeGNHH97ZY23Ua1mgM5Ew8ItLl2CoUIzsCJXfC6UysvksnUoAg4VIOTbMQfD30rt1e16ZVAL3f2IpEobT4VlLeOWrJkjEJiq6S33u9e39ju+LG4LKYMh9QSqZwH2XLsFQwcQoSQE2KKLk2DDjIWgdG/l76P6oqzWHBy47HGNa1I7pIKD9N04qWv30eAWGCu4J0XJHUnklWZE1oFpUtPivnw1h2DRKNIgghhZ7bnsHC8jTAoMhJwQxxBzsnGTCwOHT3DcwVPI5DvGAMS1Z5SBM+lDR4pZ77mrNce96FKioaP/YaU3kExWGWVBQyWeA0hIjX5K/N5XUtpu3sV4jNsmEgfccNMbx9xR5H5Wudu2Gw4iqjjOarYrYlKhoiv787vGio6G7Lcc3VAwOVTSfDanqGhSJhIGjZ3R5XiMs7BwbJ0XQ+mm6Gu00GsNgi9nY+Q77hooYKhRtVbSAVLSejkZXIy8IxEKQznug0W5AjNikEtWpD8U2Qa9t7+Mb/KwUOZrQ3gDTNLlhU2vBkKjOJgZZjYw6n+Q8M797FZ2F1jmsFMGmbXv5d7hhRndLmKZXBV7UfVtUJ/oGl61/b+6qvGFTDhUNACaPbvI/yANRcmyoYROJiibtj2QnX1iMSLlnNhmqXloQHjl9aJWjotE2xf84GY8xkipaIPEA+7ntGchHVkXjsr5G9HwMGZROEYd4gBvo/lplGNBNXDXUhPyQItQn9vOt3n0A1BGnoLCLdFrXjUO6mEk2J4UNpQW3yTihMILqGRkFFa2WGzTZWFHn2KiPDQp5M12P74rXsTEJrZJEbAD3vm2LBzjr2LB+myGRur6QVLRyQdcalQOro0l855mkXT+mWn2TbYI2kno1lioaSUYe1SDMWbVURYsD9NlmJPEA1qdYvwkjHsCuw4pHv76dRWyG1/Pyyldlc1E5VDT2fJjuTdUMmxpMf+kIERsqHlAww0dsynGcqlCpPXrdjgrTND356kG8klGSq8KiknLPQDhVtGTCECJTQRIxMySZs7c/zzcAUcUD4kya7ohg2Ih1AgIaNkKOjdOLGiUaVUnIVc+37NqHomnde2dT9LBwTorYBC3g5YUUX8St3+U6DyrYm8+6nZ4E0PdR8BA8qRaCzI0JaYMfFoYhFrqsZdK3G4SIjbSI+8lPU6U7BhUVDbAMHqZSVS3aj6i+5R+xserYiNHTSoNtgpgyG2BtkugGZkJ7g+AFrkcDOQxksYC0yrDhYh/e16LPgvVXZgQyhttwM2w869iUbqWcDW5nc1YSOakSFa0GGwPRsAn2zHLUsJGcPW4QIzbRo8wqVIqKVrejglIAVDQk+U8qHjndXFQqYiMM1Ap0btk76AeaZxNUOpN5dHv3DUVW13JTWSoH7U3hqWiZCBEb2mZVxKPeaqvIVLQ3Svk1E0Y1lPX8s1w8gEVsrL+XY6zyOjZMPMBwLvSOcxKMslH7Zx0Eaipa7doTZG7kEbSy8qesLzKM+ohkymB9Li+JB9Cfbn1bjoqy6wDOYqNDhSL2crnn6tQLEYqlKjobjXZnUiU1rlT8c7QXxkibzGTCQEo2bEZJhk0d9qMwSEoGp2joiPOa31qicprKVKCgFKR6gddaaquiRb+nhCTIUb2ITQ0MG5LnGDbHpm8ofB2bdNJAVxn5NCoIVLSRYdjYC4paFU1suqyuAkhSclXIsal1xAYQPYZBK7fbtWyGoquiuRT8Kwd0cY4kHhCyng4tPiV8HrN4QLmQN10sv0aVHxQGOSIFCSDwxOcFTrtQFeh0Ew9wSWyvVzAqWl4o0FnLiI08N6qcPmy8Rv8evlGrw2gNQKhoUh0bgIonuJ0rRkWt/3tQ0UKKB5QLoT6KYpzQaHc2KeZpVst4SCQMjCObTPb9OSnHZkK77QWuN8GQsEhLqmiyShr96UfZVtV8acqmMIqsUcMtYpNI2Gq1juLACWbYlLfBpc7Jyho2tY3YUKdB2Do2+wbDiweMayvPcaqCQEWLUeCrbkcFpQCoaB0O5R+fHJtKFeikzajEpjdMjg0ghvOCLhLMo2tR0aJtZmVPaBzoIKpoQa+bjhAeZoN1Aik+JXxeZxEbSn0yTZMropVt2LA6NnmJilZOxEbOaSDRGLeFvV7r2LiBvY/Bgr2BrmXbgwir8GJ4MURs6pU+xAy8fNF0igf4RGy4KlqJm2uatuKdTEXLF8IX6CwXdAOt2tRQw4bNiXaOTfWWfTon2U66/ThiI9SxUVPRuHiAXx0bF6cpfV6ZOh17XmD3Ld8+j9iUucEV+1Pl+nqtc2yiqKLlyhAPKHd/oQIbH7l0IlajqX4Nm6J3xEbur6oKznQyqJTcs1BEqwKTDIvUBO24lIoWtD0tRPK5EDFh3KZ2hDrNu13ZlG/FchlhKjsz0MKLKgjiAXWwjtBNTb5o4h87rUTScoQDABqxKck9x6iKJosHeFEr/Qq31hsoFY05ZGpJzXLOjR5yzzHUKKrXzSiN2DioaD7Ke3IdGxq5SafEDepggRTojJFO4QWhxolSPIBQ0VjEJl399yUaNtazYWtxay6FllxaFA8Yhht1CkEVLZkQnItsbeIFOkOJB9A8B/t5DbeIDeDuBLUjNuXdE80DqeQSQveUtaGihc+x4VQ0WsfGL2LDDJuYhQMAu//GqYgG1LNhU7C9YyrPrl+BTkBWXKg8Fa0S3vx5k9qRShiutV5kNGYpFS1gxIZT0eyITdiN2cT2BnQ2ZzB3Unuo87xgGAYWHzAanc3ZwN4CgdMdcLKZNaENqYSB97jUzvCqllwLUG7tUKEYGxWN8Wf/tnUPgHiUZWZNaEM6aXBZyAmjGtDVksWhHv3EL7G73kBrntSiQKeMIOIBh0xsQzJhYE4Zcp2sH9YrfYjn2FAqmkRzdOvbch0bJq/bkE6isbQIs+e6q3+oBhEbb4dah5RjAwAHdjajrSFdtkRrGNDNEGvHQWOb0ZJN4T3TLen0toY05vSMwoRRDRhdhvhJPSCbSuDgca04YEwTWhvSksiDKB4QShXNJQ90OBo2chSf4ZDSOuy1NgRBtVT2ak1FExlJwe6T1czZvneQiAN5nzO3Z5RVW8yjNEdUTB7dhPbGtFCuIA7UbR0bXsPGZXMjbxzUVDQSsakYFY0YNhXY9F64dArOmd8TOLGqmSSvBh1sNGITNWG8KZvCE188JrDIQVDc+eGFGAxRMI3SMoLOaYdP68RLK09wfcYqrnMtQSe0oQKhopXpUVkwtQM/fmIjnt24HQACy0F6YW7PKLx4nf1sGzJJ/PcXlnn2k+FKRRsqmJHrQMWJIDTdo2d04f88+nwQMMdJvb4nO2JjG5wGp6Kh9NPFsCE0NgB4pjQm5k0exQ258SVHwhs7+tHH6thUSxVNEQmgUBk2bY1pPHPNsRVTCFVBRUXrbM7iuS8fJ7TjgU8sRb5YHHbJ8DIMw8DDnzwcpmnNAfR+bCoaixp6X8tNGlmgog3D5+VGAz1y+hjPdTgo6PPZn8UDKA0x6L6L7RE27+rnjku/tp82dwKOn9kda3I/Q1tDGk9dfWzs+8a6NWzypafuFnWQX4a6QCeN2FReFa1SgyhMhxLEA4KqopVofL39+ciqaEBlnnEiYSCXCH7dKOIBgPczpmOuHiI2dMEbzBfx5s5SDZsyIzYLp3QAAP789h5s2zMQ2KPjB/nZ+vUTdnvDTe55sF7q2ASI2ADlq9DIOQP1BhqxkaOPflQ8WaDjmb9tAwAsmjqaH8NqZvxjZz/2lsQD5CLJlULKh4rWmEkim0pgIF8UNg2VWgfdMJEIA1CvstyOZMJAMsQ8X88QFOsUYins86gRm4n7acQGiEcZiz6fSjibGWh/rgX1mBq1QSM2Y1uySCYMgVobZK2qhFHDUJF9Y+xXjAl5n4iNbFCoNLCFHJtKUdEqnGMTFmKOTVAqmjPHZpjsKR2IUqDTD3SDXQ+ytoZh8EVy865+DBaKSBjwrOweBO1NGcwYa1Wrfm7TDpgxFOiMAiowMBxAaUssN7BeIjZWnarKLEo2Fa0+3xNrV1HIsbE+86vjQ6WcTdPkUcyFUzv4MWzT/o8d/VzuubkG4gGq528YBleVrKVXn24yg+YB7E8QI2slRwCvYxPcsKFrEM0hyaTqc+x5gZeGqNC60t2WI86xCho2pD9Xe40EotWxSSUT6G4V9wn14KyNG3W7fbWpaP4Rm5ZcSpmHE+XFhwX92lp0bhmCKlrAQd1K5J6jqqLVCzIRxAP8kKww3TAKWN9mVb27W3OxeO/Yxu3ZjdtjKdAZBcNN7plS0XiF+xr2E/rcVDL4cSFV51Q0L1U0L68x/TxfMPH3bX14e/cAMsmEkJ/CaB1/3bqHU3jjLDLnBbnCvQpMVbKWhg3dZFaTAlcvoM4ZtpeJJB6wH+XYcMn1Cs0b6WQCY0ub92rJPddiChT3t8H7gUxZHy7rbBjU7ajgxdBcVWvo4u3kkMvHDFfxgLCgyauBDZsGFrHJO5JshxuiUtG8QBWI6uAVA7Df7d+3xaOIxsAMm2c2bouskFcuUhJlo95BqWj1ELFJJPznxjjANmj1ql7H+q1Yx0bk97saNsRYZdGaOT1tjuKSgF0gFxCpwJWEasMso72UKFxLg4JuModjPki5oGMjI6mihaGi0f+3N6a5ilTcuQnVAHsmlWw6G5uVnIczyQR3bNeCyUHXxzBja6JEWR+uez0v1O2oYBuEtMsLS0oRGxUqVfzHrR31sMA3RahjQwt0Ms+jX/GwegUd4LFR0cizqAcqGmDf56ZSxCYujXlm2Pxxcy96+4cAVD9ULStX1TuUqmg1pGdRh4bb3BgH6p2KRnNs5IiNbODI4EVXi0UuHEBpaACE4pOApZhWrT5rGIavyAanotV488vmppEesbGpaN75XQz0vdIxZhgGd2S57Y/qGX5jLw6w51PJaLJhGHxfWZMCnYSGGIaRJDtB62DbGjvq9pZe22Z5wdw6ZhCvJNWNr9SGlF63HjqIIPccVDyg9Py27h7gfxsum0oZlcixoe+1Xp4Lu88NW3YDiC9iM7Y1hymjG2GathJU1alow1kVrQzxjbhANwyqGjZxgVPR6tRrzDaDqoiNn1EgRGw2WcIBC4lwAGBtJphEOgA0VUk4gIG13S2y2VGSTq51pITNTSMxx8YwDFLQVRTb8FtL6LwrO02ZsVhrozUKKlHMWwZ7PpVeuxgTqDaqaPZ4CkVFkyM2w2SdDYO6HRW/enEzAPdJO0jEhk0GQRUjosJvgakmBPGAoHVsSpuft3r3A8OGRmximmzEAp318VzYZmXD5l4AYkJpuWCe6af+am3oqt2tefHEOo0EyKCJ5oP52lPR6HdXNGLDNmp1Olew5zCYd6rV+ebYlPre69v78Pr2fiQMKGstUIdCtWrYMGT4RtklYtNceyoaMLIjNoDdlzgVLRXMsHGTewbsfldrozUK/MZeHOARrQqvIYwSWJs6NiRiE2KP64jY1MmeJk7U7ahY99oOAB6qaDTHxsUryc6ttMTlxUdMxfvmjBe8d7WCIB4QcFAfOKYZx88ci4ntDZjY3oCzD5uItgp6eiuJSosH1Mse7oLFk9HTYb2vuT2jcNzBXbFdm3mm/1SKBlV74rMjNnU7PQlgC8xr2/uwd7CAdNLgNU5qAdpfK5pjk6r8BqUcjG9rQCphYM9AHjslWuUHF07CoqkdDnoZA1Mde26TFbWcNaFNqXhGvZ/Vyq9huOjwKTjx3d2YMrpJ+fmJs7oxf3I7Tj90QlXbJeO0uRNwWB20o1ZgfYk5Ak45ZBwOm9yOkw8Z53mem3gAALz/sImYN2kUTprVHXNrK4/zF0/GEdM6K1oodvnMsVgwpR3nzO+p2HcAVp3Bo6aPwcHjWir6PSpQJ26YyN1IiNjUbR2bwXwRiaT75iZQjk3p3EoJBzBcc/LBFb1+GESJ2CQTBn70ofmValJVETTMHwbUiK6XSeCS9xyAS95zQEWuvUja7NUqx2a4UNEYxaRv0CrSOGfiqKrXC6Ggw76SEZuUtGGrNzRkkpg9sQ3/+9pORx2bc+b3eG56mFNooBSBk8cEA/V+NleZivbZ42d4fn7gmGbc94mlVWqNO2Z0t+D+OmhHrcD6EpsnZk8cFeh5CGqckpNy3qR2PHDZ4TG2snq4cOkUXLh0SkW/o6slh19cWvk+9/GjDsTHjzqw4t+jAjVmsiHWG9nppsUDagA3S1SUNHXJsSl5FCslHFCPoF7D4ULliROZgDUCwkCM2Oz/z3RiewPGk5o41TbmOAd7mPRfeY5yiwJUC0HmxjjADJp6nmfkvJig84JsrMnXYZhYw4iNxvBAyocy6AaviI2GRlS551w6ic5mm11UL4JIcaLuDZsgBTr9cmxq6T2tNpojiAfsT7CrOsd3TdrXRoJhYxiGsDmv9rzHJtr0cKGiSUXyam3YyDW+KgVGRatnyqAj+hiwqfLcuWCKM78GkCM22rDRcCKTjBbZpMp39cIU0Kgf0PyqsPlrbN7aX/tV/a5IJbgp7iQDKP+wxWkkJS02ZmmBzpFz3wy8+FmcEZs6q1VUDVAPdfWpaKWfw+RZi+IS6iTzakKI2FRBFa2eHSiHTWkXDPOgfYq+03d1t2BUqSaMDCraUa3inBrDC+XU5WLrWL3SPTVqBzrvhhWRYJHm/ZGGBoQ0bFatWoUFCxagpaUFXV1dOP300/HKK68Ix1x00UUwDEP4t3jx4sgNdFPcEeWeXSI2yZEXsWnKhC/QuT/BjtjEd+/ixii2y9Y1aNShVlS0et4wU1Aq2rvHt6GlgvSvIBDzDytPRatnA7Q1l8bM8a3896ALOWUKeEXgaqmKpjE8kCpjPtMRGw03CDk2IdMt2Ly1v/q+Q93W448/jssvvxxPP/00Hn30UeTzeRx//PHYu3evcNyJJ56IzZs383+/+c1vQjeMWaBe/G022F1zbBJMFW0/fXsK5NIJvhGv1/oSlQRbPOI06iglYCRQ0QDgwDFNvMBfzXJshsmsG3QTXC0kEgaviO3m9IkD6TI80dXEwikk+hiwL9N78nqnzdkURjVa60+169hoDA+kI1LRAHsdG4lOSg1vRM2xAWxltP01YhNq1VuzZo3w++rVq9HV1YV169bhyCOP5H/PZrPo7i5PhnDuxFF4fvM+z815MmGgUDQ95J5ZHZuRs+AYhoGmTAq7B/J1ndRbKQStERAWScNAAeaIMWxYns0j/7cFRrWpaMNsMQ+6Ca4mkoaBvOk+N8YBLh5Q5+9p4dQO3P4/GwGEiNiQe1o4xfudThjVgJ19Q1o8QEOJcqhoCR2x0XCBkGMT0nlfrQKmtUJZrrZdu3YBADo6xIl/7dq16OrqwvTp0/HRj34Ub7/9tus1BgYG0NvbK/wDgAWlxaTZY7FoKnGaO5rU/GeWzFlJZaB6RHvpeYzEZFaWLN0QM9+deWNHEo9+8QGWp7uxyo4BtkEcLtSehkwSCcOiLC7w2QRXC6yfjnaZG+NAc254vKeFUzv4+wm6AWD3dkBnE7pac57Hsjoy7S55OBojG2wdbo4QPWXnNmmjWUNCJpVAOmkgYYRXZJzSaeUG7q/7mcijxTRNXHnllTjiiCMwa9Ys/veTTjoJZ599NiZPnoyNGzfi2muvxTHHHIN169Yhm3UWsFy1ahWuv/56x9/PXTQJyDbg/YdNdG3DqjNn463efa7F8E4/dAK27x3EWR7X2B9x4+mz8MfNvTioq7nWTak6DhzTjGtOfhemj423YNbXz7L6mt8mZ3/COfN78FbvPpwy27uQXNy49KgDMa4th1N8CtjVC5qzKdx0xiHIpZOuTpZq4+azZuOdvYMV7a/vP2widu8bwgfmT6rYd8SBjqYMvnXOHAwMFQNvABZM6cBnjpuOpdPUMs8Unz7uIEztbKr6ONEYHvjiie/C2le2YskB/n1Jxo2nz8Jft+7BlE51EVaNkYt0MoF/fv8cDOaLoZ3Y07pacO2pMzG5o9H/4GEIwzRZ6bJwuPzyy/HrX/8aTzzxBCZOdDccNm/ejMmTJ+Pee+/FmWee6fh8YGAAAwMD/Pfe3l709PRg165daG1tdRyvoaGhoaGhoaGhoTEy0Nvbi7a2tkC2QaSIzYoVK/Dwww/jv//7vz2NGgAYN24cJk+ejD//+c/Kz7PZrDKSo6GhoaGhoaGhoaGhERShDBvTNLFixQo8+OCDWLt2LaZOnep7zrZt2/D6669j3DgdptfQ0NDQ0NDQ0NDQqAxCiQdcfvnl+OlPf4q7774bLS0t2LJlC7Zs2YL+/n4AwJ49e/C5z30OTz31FDZt2oS1a9five99Lzo7O3HGGWdU5AY0NDQ0NDQ0NDQ0NDRC5di4yb6uXr0aF110Efr7+3H66afjD3/4A3bu3Ilx48Zh2bJl+OpXv4qenp5A3xGGR6ehoaGhoaGhoaGhsf+iYjk2fjZQQ0MDfvvb34a5pIaGhoaGhoaGhoaGRtmo75LRGhoaGhoaGhoaGhoaAaANGw0NDQ0NDQ0NDQ2NYY+6K2fL6G69vb01bomGhoaGhoaGhoaGRi3BbIIgsgB1Z9hs27YNAAKLDWhoaGhoaGhoaGho7N/Ytm0b2traPI+pO8Omo6MDAPDaa6/5Nh4AFixYgOeeey7Sd9Xzub29vejp6cHrr78uKEBE/d56vlcKet/HHnvssGhzHOfK57m9/zi/s17P9bv3eng/1Tg3TB+I83vr5dyw9z+c3m2Yc1XPod7bHOe57Lwo42G43avbuUHvfX+fG0fq/oCd+9hjj0VaE4bDu/U7d9euXZg0aRK3EbxQd4ZNImGl/bS1tQV6cclkMrIs9HA4t7W1VTg26vcOh3ulaG1tHXZtLudct/Pk9x/nd9b7uW73Xk/vp9LnAsH6QNzfW0/nBr3/4fZuw55Ln8NwaXMc58rnhRkPw+1e/c71u/d6eD/VOHek7Q/kc8OuCcPp3fqdy2wELwx78YDLL79cn1un36nPre/v1OfW93eWi+H2jGt17nBr70g7d7i1d6SdO9zaq8+t7+8s91wgZIHOakAX6LQwUp/DSL1vGSP5OYzke6cY6c9hpN8/g34OFkbycxjJ904x0p/DSL7/MPdedxGbbDaL6667DtlsttZNqSlG6nMYqfctYyQ/h5F87xQj/TmM9Ptn0M/Bwkh+DiP53ilG+nMYyfcf5t7rLmKjoaGhoaGhoaGhoaERFnUXsdHQ0NDQ0NDQ0NDQ0AgLbdhoaGhoaGhoaGhoaAx7aMNGQ0NDQ0NDQ0NDQ2PYQxs2wwiGYeChhx6qdTM0NDQ0agY9D2poaGhouKHqhs1FF12E008/vdpfWze46KKLYBiG499f/vKXWjetYmD3fOmllzo+u+yyy2AYBi666KLqN6yGePLJJ5FMJnHiiSfWuikVh37/aoz0uZBhpD6HkTQHuOHtt9/Gxz/+cUyaNAnZbBbd3d044YQT8NRTT9W6aVXF66+/jo985CMYP348MpkMJk+ejE996lPYtm1boPPXrl0LwzCwc+fOyja0AmDrw9e//nXh7w899BAMw6hRq6oHuidMp9MYO3Ysli9fjttvvx3FYrHWzRuW0BGbGuDEE0/E5s2bhX9Tp06tdbMqip6eHtx7773o7+/nf9u3bx/uueceTJo0qaxrDw0Nldu8quP222/HihUr8MQTT+C1114r61qFQqHuJ8BKvn8NjeGIOOeA4YqzzjoLL7zwAu688068+uqrePjhh3H00Udj+/bttW5a1fC3v/0N8+fPx6uvvop77rkHf/nLX/DDH/4Qjz32GJYsWTIinkUul8PNN9+MHTt21LopNQHbE27atAmPPPIIli1bhk996lM49dRTkc/na928YYeaGjZr1qzBEUccgVGjRmH06NE49dRT8de//pV/vmnTJhiGgQceeADLli1DY2Mj5syZM+y9OcwzRf8lk0n88pe/xGGHHYZcLocDDjgA119/vaNTb968GSeddBIaGhowdepU/OIXv6jRXYTDvHnzMGnSJDzwwAP8bw888AB6enpw6KGH8r8F7RM///nPcfTRRyOXy+GnP/1pVe+lXOzduxc///nP8YlPfAKnnnoq7rjjDv4Z87z9+te/xpw5c5DL5bBo0SK89NJL/Jg77rgDo0aNwq9+9SvMnDkT2WwWf//732twJ8ER1/s/5phj8MlPflK49rZt25DNZvG73/2u8jdSIUyZMgXf/e53hb/NnTsXK1eu5L8bhoEf//jHOOOMM9DY2IiDDjoIDz/8cHUbWmEEeQ77A7zmADa+KVTe6xtvvBFdXV1oaWnBJZdcgquuugpz586tfONjws6dO/HEE0/g5ptvxrJlyzB58mQsXLgQV199NU455RQAwK5du/Cxj30MXV1daG1txTHHHIMXXniBX2PlypWYO3cubr31VvT09KCxsRFnn332sIpcXH755chkMvjP//xPHHXUUZg0aRJOOukk/Nd//Rf+8Y9/4Etf+hIAYGBgAF/4whfQ09ODbDaLgw46CLfddhs2bdqEZcuWAQDa29uHZQT8uOOOQ3d3N1atWuV6zP333493v/vdyGazmDJlCr71rW/xz66++mosXrzYcc7s2bNx3XXXVaTNcYLtCSdMmIB58+bhmmuuwX/8x3/gkUce4XOD31gAgIcffhjz589HLpdDZ2cnzjzzzBrcTe1RU8Nm7969uPLKK/Hcc8/hscceQyKRwBlnnOHwPn/pS1/C5z73Oaxfvx7Tp0/HP/3TP+13Vuxvf/tbnH/++bjiiivwxz/+EbfeeivuuOMOfO1rXxOOu/baa7mX6/zzz8c//dM/YcOGDTVqdTh8+MMfxurVq/nvt99+Oy6++GLhmKB94otf/CKuuOIKbNiwASeccEJV2h8Xfvazn2HGjBmYMWMGzj//fKxevRpyOanPf/7z+OY3v4nnnnsOXV1deN/73idEpvr6+rBq1Sr8+Mc/xssvv4yurq5q30ZoxPH+L7nkEtx9990YGBjg59x1110YP348X9z3Z1x//fU455xz8OKLL+Lkk0/GeeedNyI8uvsbgswBXrjrrrvwta99DTfffDPWrVuHSZMm4d/+7d8q2OL40dzcjObmZjz00EPCeGYwTROnnHIKtmzZgt/85jdYt24d5s2bh2OPPVbo83/5y1/w85//HL/85S+xZs0arF+/Hpdffnk1byUytm/fjt/+9re47LLL0NDQIHzW3d2N8847Dz/72c9gmiY+9KEP4d5778X3vvc9bNiwAT/84Q/R3NyMnp4e3H///QCAV155BZs3b8a//Mu/1OJ2IiOZTOKmm27Cv/7rv+KNN95wfL5u3Tqcc845+OAHP4iXXnoJK1euxLXXXss3/eeddx6eeeYZwQn28ssv46WXXsJ5551XrduIFccccwzmzJmDBx54INBY+PWvf40zzzwTp5xyCv7whz/gsccew/z582t8FzWCWWVceOGF5mmnnab87O233zYBmC+99JJpmqa5ceNGE4D54x//mB/z8ssvmwDMDRs2VKO5sePCCy80k8mk2dTUxP+9//3vN9/znveYN910k3DsT37yE3PcuHH8dwDmpZdeKhyzaNEi8xOf+ERV2h4V7J1v3brVzGaz5saNG81NmzaZuVzO3Lp1q3naaaeZF154ofJctz7x3e9+t4p3EC+WLl3K2z80NGR2dnaajz76qGmapvn73//eBGDee++9/Pht27aZDQ0N5s9+9jPTNE1z9erVJgBz/fr11W98BMT5/vft22d2dHTwZ2Gapjl37lxz5cqV1biVWEHnwsmTJ5vf+c53hM/nzJljXnfddfx3AOaXv/xl/vuePXtMwzDMRx55pAqtrRyiPIcHH3ywau2rBLzmgNWrV5ttbW3C8Q8++KBJl+tFixaZl19+uXDM4Ycfbs6ZM6ei7Y4b9913n9ne3m7mcjlz6dKl5tVXX22+8MILpmma5mOPPWa2traa+/btE8458MADzVtvvdU0TdO87rrrzGQyab7++uv880ceecRMJBLm5s2bq3cjEfH000979udvf/vbJgDzmWeeMQHwPiKDrRs7duyoXGMrBDr+Fy9ebF588cWmaYp9/txzzzWXL18unPf5z3/enDlzJv999uzZ5g033MB/v/rqq80FCxZUuPXlw2tP/IEPfMA8+OCDA42FJUuWmOedd16lmzssUNOIzV//+lece+65OOCAA9Da2srzTGS+8ezZs/n/x40bB8BKOhyuWLZsGdavX8//fe9738O6detwww03cC9Wc3MzPvrRj2Lz5s3o6+vj5y5ZskS41pIlS4ZNxKazsxOnnHIK7rzzTqxevRqnnHIKOjs7hWOC9onh6ol45ZVX8Oyzz+KDH/wgACCVSuEDH/gAbr/9duE4+p47OjowY8YM4T1nMhlhXAwHxPH+s9kszj//fP681q9fjxdeeGHYUS+igr7zpqYmtLS0DOu5cCQi6Bzgd42FCxcKf5N/Hw4466yz8Oabb+Lhhx/GCSecgLVr12LevHm44447sG7dOuzZswejR48W1sWNGzcKnvlJkyZh4sSJ/PclS5agWCzilVdeqcUtxQqzFMXbuHEjkskkjjrqqBq3qLK4+eabceedd+KPf/yj8PcNGzbg8MMPF/52+OGH489//jMKhQIAK2pz1113AbCe2z333DNsozUMpmnCMIxAY2H9+vU49thja9zi+kCqll/+3ve+Fz09Pfj3f/93jB8/HsViEbNmzcLg4KBwXDqd5v9nPON6T5b2QlNTE6ZNmyb8rVgs4vrrr1dyInO5nOf1hpNyyMUXX8xzJL7//e87Pg/aJ5qamqrS3rhx2223IZ/PY8KECfxvpmkinU77Jk7S99zQ0DCs3jtDHO//kksuwdy5c/HGG2/g9ttvx7HHHovJkydX7R4qgUQi4aAiqUQx6FwIWH1iOM+FMoI+h+EMvzkg6DOQx798znBBLpfD8uXLsXz5cnzlK1/BJZdcguuuuw6XXXYZxo0bh7Vr1zrOkXOQKNhzGQ7z47Rp02AYBv74xz8qlQH/9Kc/ob29HY2NjdVvXA1w5JFH4oQTTsA111wjOKvYBp9C7u/nnnsurrrqKvzv//4v+vv78frrr3PnwXDFhg0bMHXqVBSLRd+xIFMZRzJqZths27YNGzZswK233or3vOc9AIAnnniiVs2pOebNm4dXXnnFYfDIePrpp/GhD31I+J0mX9c7TjzxRL5JlXNj9vc+kc/n8f/+3//Dt771LRx//PHCZ2eddRbuuusuzJo1C4D1Xpla2I4dO/Dqq6/iXe96V9XbHDfieP+HHHII5s+fj3//93/H3XffjX/913+tfMMrjDFjxmDz5s38997eXmzcuLGGLaoN9vfnEGQOOPDAA7F7927s3buXO3DWr18vHDtjxgw8++yzuOCCC/jfnn/++Yq3vxqYOXMmHnroIcybNw9btmxBKpXClClTXI9/7bXX8Oabb2L8+PEAgKeeegqJRALTp0+vUoujY/To0Vi+fDl+8IMf4DOf+YywOd2yZQvuuusufOhDH8IhhxyCYrGIxx9/HMcdd5zjOplMBgB49GI4Y9WqVTj00EOF9zdz5kzHWvDkk09i+vTpSCaTAICJEyfiyCOPxF133YX+/n4cd9xxGDt2bFXbHid+97vf4aWXXsJnPvMZTJw40XcszJ49G4899hg+/OEPV7ehdYiaGTbt7e0YPXo0fvSjH2HcuHF47bXXcNVVV9WqOTXHV77yFZx66qno6enB2WefjUQigRdffBEvvfQSbrzxRn7cL37xC8yfPx9HHHEE7rrrLjz77LO47bbbatjycEgmk5xSxSYkhv29T/zqV7/Cjh078JGPfARtbW3CZ+9///tx22234Tvf+Q4A4IYbbsDo0aMxduxYfOlLX0JnZ+d+Uesjrvd/ySWX4JOf/CQaGxtxxhlnVLzdlcYxxxyDO+64A+9973vR3t6Oa6+91vF8RgL29+cQZA547LHH0NjYiGuuuQYrVqzAs88+K6imAcCKFSvw0Y9+FPPnz8fSpUvxs5/9DC+++CIOOOCAKt5Nedi2bRvOPvtsXHzxxZg9ezZaWlrw/PPP4xvf+AZOO+00HHfccViyZAlOP/103HzzzZgxYwbefPNN/OY3v8Hpp5/O6ci5XA4XXnghvvnNb6K3txdXXHEFzjnnHHR3d9f4DoPhlltuwdKlS3HCCSfgxhtvxNSpU/Hyyy/j85//PCZMmICvfe1r6OjowIUXXoiLL74Y3/ve9zBnzhz8/e9/x9tvv41zzjkHkydPhmEY+NWvfoWTTz4ZDQ0NaG5urvWtRcLs2bNx3nnnCQ6rz372s1iwYAG++tWv4gMf+ACeeuop3HLLLfjBD34gnHveeedh5cqVGBwc5GvpcMDAwAC2bNmCQqGAt956C2vWrMGqVatw6qmn4kMf+hASiYTvWLjuuutw7LHH4sADD8QHP/hB5PN5PPLII/jCF75Q69urPqqd1HPBBReYZ511lmmapvnoo4+aBx98sJnNZs3Zs2eba9euFRLpWKL4H/7wB37+jh07TADm73//+2o3PRZ4JYqtWbPGXLp0qdnQ0GC2traaCxcuNH/0ox/xzwGY3//+983ly5eb2WzWnDx5snnPPfdUqeXR4XXPpmkKyeNR+sRwwamnnmqefPLJys/WrVtnAjC/9a1vmQDMX/7yl+a73/1uM5PJmAsWLBCEAlTJxfWMON8/w+7du83Gxkbzsssuq1zDKww6F+7atcs855xzzNbWVrOnp8e84447AiXNt7W1matXr65eoyuAOJ7DcEGQOWDdunXmgw8+aE6bNs3M5XLmqaeeav7oRz8y5eX6hhtuMDs7O83m5mbz4osvNq+44gpz8eLF1biNWLBv3z7zqquuMufNm2e2tbWZjY2N5owZM8wvf/nLZl9fn2maptnb22uuWLHCHD9+vJlOp82enh7zvPPOM1977TXTNC3xgDlz5pg/+MEPzPHjx5u5XM4888wzze3bt9fy1kJj06ZN5kUXXWR2d3fz+1yxYoX5zjvv8GP6+/vNz3zmM+a4cePMTCZjTps2zbz99tv55zfccIPZ3d1tGobhKsZSj1CtD5s2bTKz2azQ5++77z5z5syZZjqdNidNmmT+8z//s+NaO3bsMLPZrNnY2Gju3r270k2PBRdeeKEJwARgplIpc8yYMeZxxx1n3n777WahUODH+Y0F0zTN+++/35w7d66ZyWTMzs5O88wzz6zFLdUchmlWl5h74oknYtq0abjllluq+bUaGsMCa9euxbJly7Bjxw5PHvlIx+uvv44pU6bgueeew7x582rdnEjQc6EF/RziwfLly9Hd3Y2f/OQntW5K1bBy5Uo89NBDDqqehobGyEXVqGg7duzAk08+ibVr1+LSSy+t1tdqaGjsRxgaGsLmzZtx1VVXYfHixcPSqNFzoQX9HKKjr68PP/zhD3HCCScgmUzinnvuwX/913/h0UcfrXXTNDQ0NGqKqhk2F198MZ577jl89rOfxWmnnVatr9XQ0NiP8D//8z9YtmwZpk+fjvvuu6/WzYkEPRda0M8hOgzDwG9+8xvceOONGBgYwIwZM3D//fcrE8s1NDQ0RhKqTkXT0NDQ0NDQ0NDQ0NCIGzUt0KmhoaGhoaGhoaGhoREHtGGjoaGhoaGhoaGhoTHsoQ0bDQ0NDQ0NDQ0NDY1hj4oYNqtWrcKCBQvQ0tKCrq4unH766XjllVeEY0zTxMqVKzF+/Hg0NDTg6KOPxssvv8w/3759O1asWIEZM2agsbERkyZNwhVXXIFdu3YJ19mxYwcuuOACtLW1oa2tDRdccAF27txZidvS0NDQ0NDQ0NDQ0KhTVMSwefzxx3H55Zfj6aefxqOPPop8Po/jjz8ee/fu5cd84xvfwLe//W3ccssteO6559Dd3Y3ly5dj9+7dAIA333wTb775Jr75zW/ipZdewh133IE1a9bgIx/5iPBd5557LtavX481a9ZgzZo1WL9+PS644IJK3JaGhoaGhoaGhoaGRp2iKqpoW7duRVdXFx5//HEceeSRME0T48ePx6c//Wl88YtfBAAMDAxg7NixuPnmm/Hxj39ceZ1f/OIXOP/887F3716kUils2LABM2fOxNNPP41FixYBAJ5++mksWbIEf/rTnzBjxoxK35qGhoaGhoaGhoaGRh2gKjk2jD7W0dEBANi4cSO2bNmC448/nh+TzWZx1FFH4cknn/S8TmtrK1Ipq/zOU089hba2Nm7UAMDixYvR1tbmeR0NDQ0NDQ0NDQ0Njf0LFTdsTNPElVdeiSOOOAKzZs0CAGzZsgUAMHbsWOHYsWPH8s9kbNu2DV/96leFaM6WLVvQ1dXlOLarq8v1OhoaGhoaGhoaGhoa+x9Slf6CT37yk3jxxRfxxBNPOD4zDEP43TRNx98AoLe3F6eccgpmzpyJ6667zvMaXtfR0NDQ0NDQ0NDQ0Ng/UdGIzYoVK/Dwww/j97//PSZOnMj/3t3dDQCOqMrbb7/tiOLs3r0bJ554Ipqbm/Hggw8inU4L13nrrbcc37t161bHdTQ0NDQ0NDQ0NDQ09l9UxLAxTROf/OQn8cADD+B3v/sdpk6dKnw+depUdHd349FHH+V/GxwcxOOPP46lS5fyv/X29uL4449HJpPBww8/jFwuJ1xnyZIl2LVrF5599ln+t2eeeQa7du0SrqOhoaGhoaGhoaGhsX+jIqpol112Ge6++278x3/8h6BM1tbWhoaGBgDAzTffjFWrVmH16tU46KCDcNNNN2Ht2rV45ZVX0NLSgt27d2P58uXo6+vDgw8+iKamJn6dMWPGIJlMAgBOOukkvPnmm7j11lsBAB/72McwefJk/PKXv4z7tjQ0NDQ0NDQ0NDQ06hQVMWzc8ltWr16Niy66CIAV1bn++utx6623YseOHVi0aBG+//3vc4GBtWvXYtmyZcrrbNy4EVOmTAFgFfK84oor8PDDDwMA3ve+9+GWW27BqFGjYr0nDQ0NDQ0NDQ0NDY36RVXq2GhoaGhoaGhoaGhoaFQSValjo6GhoaGhoaGhoaGhUUlow0ZDQ0NDQ0NDQ0NDY9hDGzYaGhoaGhoaGhoaGsMe2rDR0NDQ0NDQ0NDQ0Bj20IaNhoaGhoaGhoaGhsawhzZsNDQ0NDQ0NDQ0NDSGPbRho6GhoaGhoaGhoaEx7KENGw0NDQ0NDQ0NDQ2NYQ9t2GhoaGhoaGhoaGhoDHtow0ZDQ0NDQ0NDQ0NDY9hDGzYaGhoaGhoaGhoaGsMe/z+IOZvvS0MTwAAAAABJRU5ErkJggg==",
"image/svg+xml": "\r\n\r\n\r\n",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"monthly = total_items.resample(\"1M\").mean()\n",
"ax = monthly.plot(kind='bar',figsize=(10,3))\n",
"ax.set_xticklabels([x.strftime(\"%b-%Y\") for x in monthly.index], rotation=45)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## DataFrame\n",
"\n",
"Dataframe pada dasarnya adalah kumpulan series dengan indeks yang sama. Kita dapat menggabungkan beberapa series menjadi sebuah dataframe. Dengan series `a` dan `b` yang telah didefinisikan di atas:\n"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
0
\n",
"
1
\n",
"
2
\n",
"
3
\n",
"
4
\n",
"
5
\n",
"
6
\n",
"
7
\n",
"
8
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1
\n",
"
2
\n",
"
3
\n",
"
4
\n",
"
5
\n",
"
6
\n",
"
7
\n",
"
8
\n",
"
9
\n",
"
\n",
"
\n",
"
1
\n",
"
I
\n",
"
like
\n",
"
to
\n",
"
use
\n",
"
Python
\n",
"
and
\n",
"
Pandas
\n",
"
very
\n",
"
much
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" 0 1 2 3 4 5 6 7 8\n",
"0 1 2 3 4 5 6 7 8 9\n",
"1 I like to use Python and Pandas very much"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame([a,b])\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Kita juga dapat menggunakan Series sebagai kolom, dan menentukan nama kolom menggunakan kamus:\n"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
A
\n",
"
B
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1
\n",
"
I
\n",
"
\n",
"
\n",
"
1
\n",
"
2
\n",
"
like
\n",
"
\n",
"
\n",
"
2
\n",
"
3
\n",
"
to
\n",
"
\n",
"
\n",
"
3
\n",
"
4
\n",
"
use
\n",
"
\n",
"
\n",
"
4
\n",
"
5
\n",
"
Python
\n",
"
\n",
"
\n",
"
5
\n",
"
6
\n",
"
and
\n",
"
\n",
"
\n",
"
6
\n",
"
7
\n",
"
Pandas
\n",
"
\n",
"
\n",
"
7
\n",
"
8
\n",
"
very
\n",
"
\n",
"
\n",
"
8
\n",
"
9
\n",
"
much
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B\n",
"0 1 I\n",
"1 2 like\n",
"2 3 to\n",
"3 4 use\n",
"4 5 Python\n",
"5 6 and\n",
"6 7 Pandas\n",
"7 8 very\n",
"8 9 much"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = pd.DataFrame({ 'A' : a, 'B' : b })\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hasil yang sama dapat dicapai dengan mentransposisi (dan kemudian mengganti nama kolom, untuk mencocokkan contoh sebelumnya):\n"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
A
\n",
"
B
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1
\n",
"
I
\n",
"
\n",
"
\n",
"
1
\n",
"
2
\n",
"
like
\n",
"
\n",
"
\n",
"
2
\n",
"
3
\n",
"
to
\n",
"
\n",
"
\n",
"
3
\n",
"
4
\n",
"
use
\n",
"
\n",
"
\n",
"
4
\n",
"
5
\n",
"
Python
\n",
"
\n",
"
\n",
"
5
\n",
"
6
\n",
"
and
\n",
"
\n",
"
\n",
"
6
\n",
"
7
\n",
"
Pandas
\n",
"
\n",
"
\n",
"
7
\n",
"
8
\n",
"
very
\n",
"
\n",
"
\n",
"
8
\n",
"
9
\n",
"
much
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B\n",
"0 1 I\n",
"1 2 like\n",
"2 3 to\n",
"3 4 use\n",
"4 5 Python\n",
"5 6 and\n",
"6 7 Pandas\n",
"7 8 very\n",
"8 9 much"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame([a,b]).T.rename(columns={ 0 : 'A', 1 : 'B' })"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Memilih kolom** dari DataFrame dapat dilakukan seperti ini:\n"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Column A (series):\n",
"0 1\n",
"1 2\n",
"2 3\n",
"3 4\n",
"4 5\n",
"5 6\n",
"6 7\n",
"7 8\n",
"8 9\n",
"Name: A, dtype: int64\n",
"Columns B and A (DataFrame):\n",
" B A\n",
"0 I 1\n",
"1 like 2\n",
"2 to 3\n",
"3 use 4\n",
"4 Python 5\n",
"5 and 6\n",
"6 Pandas 7\n",
"7 very 8\n",
"8 much 9\n"
]
}
],
"source": [
"print(f\"Column A (series):\\n{df['A']}\")\n",
"print(f\"Columns B and A (DataFrame):\\n{df[['B','A']]}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Memilih baris** berdasarkan ekspresi filter:\n"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
A
\n",
"
B
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1
\n",
"
I
\n",
"
\n",
"
\n",
"
1
\n",
"
2
\n",
"
like
\n",
"
\n",
"
\n",
"
2
\n",
"
3
\n",
"
to
\n",
"
\n",
"
\n",
"
3
\n",
"
4
\n",
"
use
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B\n",
"0 1 I\n",
"1 2 like\n",
"2 3 to\n",
"3 4 use"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df['A']<5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cara kerjanya adalah bahwa ekspresi `df['A']<5` mengembalikan seri boolean, yang menunjukkan apakah ekspresi tersebut `True` atau `False` untuk setiap elemen dalam seri. Ketika seri digunakan sebagai indeks, ini mengembalikan subset baris dalam DataFrame. Oleh karena itu, tidak memungkinkan untuk menggunakan ekspresi boolean Python sembarang, misalnya, menulis `df[df['A']>5 and df['A']<7]` akan salah. Sebagai gantinya, Anda harus menggunakan operasi khusus `&` pada seri boolean:\n"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
A
\n",
"
B
\n",
"
\n",
" \n",
" \n",
"
\n",
"
5
\n",
"
6
\n",
"
and
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B\n",
"5 6 and"
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[(df['A']>5) & (df['A']<7)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Membuat kolom komputasi baru**. Kita dapat dengan mudah membuat kolom komputasi baru untuk DataFrame kita dengan menggunakan ekspresi yang intuitif. Kode di bawah ini menghitung divergensi A dari nilai rata-ratanya.\n"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
A
\n",
"
B
\n",
"
DivA
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1
\n",
"
I
\n",
"
-4.0
\n",
"
\n",
"
\n",
"
1
\n",
"
2
\n",
"
like
\n",
"
-3.0
\n",
"
\n",
"
\n",
"
2
\n",
"
3
\n",
"
to
\n",
"
-2.0
\n",
"
\n",
"
\n",
"
3
\n",
"
4
\n",
"
use
\n",
"
-1.0
\n",
"
\n",
"
\n",
"
4
\n",
"
5
\n",
"
Python
\n",
"
0.0
\n",
"
\n",
"
\n",
"
5
\n",
"
6
\n",
"
and
\n",
"
1.0
\n",
"
\n",
"
\n",
"
6
\n",
"
7
\n",
"
Pandas
\n",
"
2.0
\n",
"
\n",
"
\n",
"
7
\n",
"
8
\n",
"
very
\n",
"
3.0
\n",
"
\n",
"
\n",
"
8
\n",
"
9
\n",
"
much
\n",
"
4.0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B DivA\n",
"0 1 I -4.0\n",
"1 2 like -3.0\n",
"2 3 to -2.0\n",
"3 4 use -1.0\n",
"4 5 Python 0.0\n",
"5 6 and 1.0\n",
"6 7 Pandas 2.0\n",
"7 8 very 3.0\n",
"8 9 much 4.0"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['DivA'] = df['A']-df['A'].mean()\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Yang sebenarnya terjadi adalah kita menghitung sebuah deret, lalu menetapkan deret ini ke sisi kiri, menciptakan kolom lain.\n"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"# WRONG: df['ADescr'] = \"Low\" if df['A'] < 5 else \"Hi\"\n",
"df['LenB'] = len(df['B']) # Wrong result"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
A
\n",
"
B
\n",
"
DivA
\n",
"
LenB
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1
\n",
"
I
\n",
"
-4.0
\n",
"
1
\n",
"
\n",
"
\n",
"
1
\n",
"
2
\n",
"
like
\n",
"
-3.0
\n",
"
4
\n",
"
\n",
"
\n",
"
2
\n",
"
3
\n",
"
to
\n",
"
-2.0
\n",
"
2
\n",
"
\n",
"
\n",
"
3
\n",
"
4
\n",
"
use
\n",
"
-1.0
\n",
"
3
\n",
"
\n",
"
\n",
"
4
\n",
"
5
\n",
"
Python
\n",
"
0.0
\n",
"
6
\n",
"
\n",
"
\n",
"
5
\n",
"
6
\n",
"
and
\n",
"
1.0
\n",
"
3
\n",
"
\n",
"
\n",
"
6
\n",
"
7
\n",
"
Pandas
\n",
"
2.0
\n",
"
6
\n",
"
\n",
"
\n",
"
7
\n",
"
8
\n",
"
very
\n",
"
3.0
\n",
"
4
\n",
"
\n",
"
\n",
"
8
\n",
"
9
\n",
"
much
\n",
"
4.0
\n",
"
4
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B DivA LenB\n",
"0 1 I -4.0 1\n",
"1 2 like -3.0 4\n",
"2 3 to -2.0 2\n",
"3 4 use -1.0 3\n",
"4 5 Python 0.0 6\n",
"5 6 and 1.0 3\n",
"6 7 Pandas 2.0 6\n",
"7 8 very 3.0 4\n",
"8 9 much 4.0 4"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['LenB'] = df['B'].apply(lambda x: len(x))\n",
"# or\n",
"df['LenB'] = df['B'].apply(len)\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Memilih baris berdasarkan angka** dapat dilakukan menggunakan konstruk `iloc`. Sebagai contoh, untuk memilih 5 baris pertama dari DataFrame:\n"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
A
\n",
"
B
\n",
"
DivA
\n",
"
LenB
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1
\n",
"
I
\n",
"
-4.0
\n",
"
1
\n",
"
\n",
"
\n",
"
1
\n",
"
2
\n",
"
like
\n",
"
-3.0
\n",
"
4
\n",
"
\n",
"
\n",
"
2
\n",
"
3
\n",
"
to
\n",
"
-2.0
\n",
"
2
\n",
"
\n",
"
\n",
"
3
\n",
"
4
\n",
"
use
\n",
"
-1.0
\n",
"
3
\n",
"
\n",
"
\n",
"
4
\n",
"
5
\n",
"
Python
\n",
"
0.0
\n",
"
6
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B DivA LenB\n",
"0 1 I -4.0 1\n",
"1 2 like -3.0 4\n",
"2 3 to -2.0 2\n",
"3 4 use -1.0 3\n",
"4 5 Python 0.0 6"
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.iloc[:5]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Pengelompokan** sering digunakan untuk mendapatkan hasil yang mirip dengan *pivot tables* di Excel. Misalkan kita ingin menghitung nilai rata-rata dari kolom `A` untuk setiap angka yang diberikan pada `LenB`. Maka kita dapat mengelompokkan DataFrame kita berdasarkan `LenB`, dan memanggil `mean`:\n"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
A
\n",
"
DivA
\n",
"
\n",
"
\n",
"
LenB
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
1
\n",
"
1.000000
\n",
"
-4.000000
\n",
"
\n",
"
\n",
"
2
\n",
"
3.000000
\n",
"
-2.000000
\n",
"
\n",
"
\n",
"
3
\n",
"
5.000000
\n",
"
0.000000
\n",
"
\n",
"
\n",
"
4
\n",
"
6.333333
\n",
"
1.333333
\n",
"
\n",
"
\n",
"
6
\n",
"
6.000000
\n",
"
1.000000
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A DivA\n",
"LenB \n",
"1 1.000000 -4.000000\n",
"2 3.000000 -2.000000\n",
"3 5.000000 0.000000\n",
"4 6.333333 1.333333\n",
"6 6.000000 1.000000"
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.groupby(by='LenB').mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Jika kita perlu menghitung rata-rata dan jumlah elemen dalam grup, maka kita dapat menggunakan fungsi `aggregate` yang lebih kompleks:\n"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Count
\n",
"
Mean
\n",
"
\n",
"
\n",
"
LenB
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
1
\n",
"
1
\n",
"
1.000000
\n",
"
\n",
"
\n",
"
2
\n",
"
1
\n",
"
3.000000
\n",
"
\n",
"
\n",
"
3
\n",
"
2
\n",
"
5.000000
\n",
"
\n",
"
\n",
"
4
\n",
"
3
\n",
"
6.333333
\n",
"
\n",
"
\n",
"
6
\n",
"
2
\n",
"
6.000000
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Count Mean\n",
"LenB \n",
"1 1 1.000000\n",
"2 1 3.000000\n",
"3 2 5.000000\n",
"4 3 6.333333\n",
"6 2 6.000000"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.groupby(by='LenB') \\\n",
" .aggregate({ 'DivA' : len, 'A' : lambda x: x.mean() }) \\\n",
" .rename(columns={ 'DivA' : 'Count', 'A' : 'Mean'})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Mencetak dan Memplot\n",
"\n",
"Seorang Data Scientist sering kali harus mengeksplorasi data, sehingga penting untuk dapat memvisualisasikannya. Ketika DataFrame berukuran besar, sering kali kita hanya ingin memastikan bahwa semuanya berjalan dengan benar dengan mencetak beberapa baris pertama. Hal ini dapat dilakukan dengan memanggil `df.head()`. Jika Anda menjalankannya dari Jupyter Notebook, itu akan mencetak DataFrame dalam bentuk tabel yang rapi.\n"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
A
\n",
"
B
\n",
"
DivA
\n",
"
LenB
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
1
\n",
"
I
\n",
"
-4.0
\n",
"
1
\n",
"
\n",
"
\n",
"
1
\n",
"
2
\n",
"
like
\n",
"
-3.0
\n",
"
4
\n",
"
\n",
"
\n",
"
2
\n",
"
3
\n",
"
to
\n",
"
-2.0
\n",
"
2
\n",
"
\n",
"
\n",
"
3
\n",
"
4
\n",
"
use
\n",
"
-1.0
\n",
"
3
\n",
"
\n",
"
\n",
"
4
\n",
"
5
\n",
"
Python
\n",
"
0.0
\n",
"
6
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B DivA LenB\n",
"0 1 I -4.0 1\n",
"1 2 like -3.0 4\n",
"2 3 to -2.0 2\n",
"3 4 use -1.0 3\n",
"4 5 Python 0.0 6"
]
},
"execution_count": 59,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Kami juga telah melihat penggunaan fungsi `plot` untuk memvisualisasikan beberapa kolom. Meskipun `plot` sangat berguna untuk banyak tugas dan mendukung berbagai jenis grafik melalui parameter `kind=`, Anda selalu dapat menggunakan pustaka `matplotlib` secara langsung untuk membuat grafik yang lebih kompleks. Kami akan membahas visualisasi data secara mendetail dalam pelajaran kursus terpisah.\n"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGdCAYAAABO2DpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+SUlEQVR4nO3dd3zUheH/8dcne5CEGSEQtjLCJsnlEFdFWqTUVQcVCCNWKyKIA3HVqhhXbatUkGEIoGKtglgHglaQClkQluwZRoAAyWWQC7n7/P7wW35FQTm4yye5vJ+Pxz0eTbzLva6Me/P5XC6GaZomIiIiIl4QYHWAiIiI+A8NCxEREfEaDQsRERHxGg0LERER8RoNCxEREfEaDQsRERHxGg0LERER8RoNCxEREfGaoJq+Q7fbzcGDB4mKisIwjJq+exEREbkApmlSWlpKXFwcAQHnPi5R48Pi4MGDxMfH1/TdioiIiBcUFBTQqlWrc/73Gh8WUVFRwPdh0dHRNX33IiIicgEcDgfx8fGnn8fPpcaHxX9Pf0RHR2tYiIiI1DE/9zIGvXhTREREvEbDQkRERLxGw0JERES8RsNCREREvEbDQkRERLxGw0JERES8RsNCREREvEbDQkRERLxGw0JERES8xuNhUVpayoQJE2jTpg3h4eH069ePnJwcX7SJiIhIHePxsEhLS2Pp0qXMmzePDRs2MHDgQAYMGMCBAwd80SciIiJ1iGGapnm+Vz558iRRUVF89NFHDB48+PTne/Xqxa9//Wuee+65n/0aDoeDmJgYSkpK9LNCRERE6ojzff726IeQVVdX43K5CAsLO+Pz4eHhrFy58qy3cTqdOJ3OM8JERETEu0y3m+z3X4Yjm7CNm2tZh0enQqKiorDb7Tz77LMcPHgQl8vF/PnzycrK4tChQ2e9TXp6OjExMacv8fHxXgkXERGR7zmKj7H21RuwbX4e27GP2LBioWUtHr/GYt68eZimScuWLQkNDeW1117jd7/7HYGBgWe9/uTJkykpKTl9KSgouOhoERER+d72tSso+5udPmUrqDIDWX3pg3Trf4NlPR6dCgHo0KEDy5cvp7y8HIfDQYsWLbj99ttp167dWa8fGhpKaGjoRYeKiIjI/2e63WQteJ4+W18lxHBx0Iil7DczSelztaVdHg+L/4qMjCQyMpITJ06wZMkSXnrpJW92iYiIyDmUHDvMrtkjSan4FgxYE3kFHdLmENeoqdVpng+LJUuWYJomnTp1YseOHTz88MN06tSJUaNG+aJPRERE/seW3C9p+K+76c1Rqswg1nZ5iOTbJmEE1I73vPR4WJSUlDB58mT2799P48aNueWWW5gyZQrBwcG+6BMRERHA7XKR/e4z9N3+OsGGi/1Gcypvmo2tZ3+r087g0ftYeIPex0JERMQzJ44eYt9bqfQ8mQVAXtQ1XJb2FlExjWuswSfvYyEiIiI1a3PWEhp/9gd6cgynGUx+t0dJvmVirTn18UMaFiIiIrWQ2+Uia/6TJO2aRpDhpsCIo+qWDGzdU6xO+0kaFiIiIrXMscP7OZAxAntlHhiQG30dXe6aRWRUQ6vTfpaGhYiISC2y6T+fELt0LD04wUkzhI09nyDxxnG19tTHD2lYiIiI1AKu6mqy5z5G8t4ZBBomewLi4dY5JHVJtDrNIxoWIiIiFisq3EdhxnDsznwwILvh9XRLm05Egxir0zymYSEiImKhDSs+Iu6rcXSjhAozlE19nib5hnutzrpgGhYiIiIWqD5VRU7mJGwFGQQYJrsD2hJweyZJnXpZnXZRNCxERERq2JEDuynKHI69agMYkNX4N/RMm0ZYRAOr0y6ahoWIiEgNWv/vfxK//AG64qDcDGNz8nPYBt9ldZbXaFiIiIjUgFNVTnIzHsJ+aC4AOwI7EDo0k8SO3S0u8y4NCxERER8rLNhB8dzh2E99B0BW05vpOWYqYeGRFpd5n4aFiIiID+Uve5e2Kx+iM2WUmuFsT0nHNmiU1Vk+o2EhIiLiA1XOSta8NYGUw+8CsD3oUiJ+N48+7btYXOZbGhYiIiJednD3FsreHk5K9TYAVsfeTp8xrxESGmZxme9pWIiIiHjRmiXz6LjqEeKowEEkO/u9RMrAYVZn1RgNCxERES9wVlaQP3sctqP/BGBrUGeih8+ld5tOFpfVLA0LERGRi3Rg1yYq3h6BzbUDgNXN76Tv6L8QHBJqcVnN07AQERG5CHmfzqZT1uO0NE5ygij2XfkKKb+4w+osy2hYiIiIXIDKijLWzR6L7dgiMGBzcAKNU+fRs1UHq9MspWEhIiLioX3b8qlekIrNvQe3aZDVKpWkkS8TFBxidZrlNCxEREQ8kLt4Ol3zniLCcHKcaA784m/Yr7rZ6qxaQ8NCRETkPJwsL2XDrLtJPvEJGLAppAexI+fRPa6t1Wm1ioaFiIjIz9i7OQ/z/ZEku/d9f+qjdRrJqS8QGKSn0R/S/yMiIiI/IXvh63TLf5YIw0kRDSm87nXs/X9jdVatpWEhIiJyFuWlxXw36/cklywBAzaE9qbFqHl0ax5vdVqtpmEhIiLyA7s3ZRHwwWiS3PtxmQbZ7e7BNnwKAYGBVqfVehoWIiIi/8d0u8lZ+Dd6rJ9CmHGKIzSm6FdvYLcPsjqtztCwEBERAcocJ9gycwzJpV+CAevDkmg1OpOusS2tTqtTNCxERKTe27HuP4QtGkOieYhqM4DcDveRfOfTOvVxATQsRESk3jLdbrLff5le371MqHGKQppSPHg6KcnXWZ1WZwV4cuXq6mqeeOIJ2rVrR3h4OO3bt+eZZ57B7Xb7qk9ERMQnHMXHWPvqDdg2P0+ocYr8CDth9/2HzhoVF8WjIxYvvvgi06dPJzMzk4SEBHJzcxk1ahQxMTGMHz/eV40iIiJetX3tCiIWp9HHPMwpM5C8yyZgG/oERoBH/96Ws/BoWKxatYobbriBwYMHA9C2bVveffddcnNzfRInIiLiTabbTdaC5+mz9VVCDBcHjVjKfjOTlD5XW53mNzyaZv379+fLL79k27ZtAKxbt46VK1dy/fXXn/M2TqcTh8NxxkVERKSmlRw/Sv4rvyZl28uEGC7WRF5B5P2ruEyjwqs8OmIxadIkSkpK6Ny5M4GBgbhcLqZMmcLQoUPPeZv09HT+9Kc/XXSoiIjIhdqS+yUx/7qb3hylygxibZeHSL5tkk59+IBH/4++9957zJ8/n3feeYc1a9aQmZnJK6+8QmZm5jlvM3nyZEpKSk5fCgoKLjpaRETkfLhdLlbP/yMdPr6VFhxlv9GcvTctwnbHZI0KHzFM0zTP98rx8fE8+uijjB079vTnnnvuOebPn8+WLVvO62s4HA5iYmIoKSkhOjra82IREZHzUFxUyN7ZI+h5MguAvAZXc9ldGUTFNLa4rG463+dvj06FVFRUEPCDhRcYGKhvNxURkVplc9YSGn/2B3pyDKcZTH63R0m+ZaKOUtQAj4bFkCFDmDJlCq1btyYhIYG1a9fy6quvMnr0aF/1iYiInDe3y0XW/CdJ2jWNIMNNgRFH1S0Z2LqnWJ1Wb3h0KqS0tJQnn3yShQsXcuTIEeLi4hg6dChPPfUUISEh5/U1dCpERER84djh/RzISKVH5fdvgZAbPYDOabNoEN3I4jL/cL7P3x4NC2/QsBAREW/b9O2nxH5xL804wUkzhI09nyDxxnE69eFFPnmNhYiISG3iqq4me+5jJO+dQaBhsjcgHvdvM0jqmmR1Wr2lYSEiInVSUeE+CjOGY3fmgwHZDa+nW9p0IhrEWJ1Wr2lYiIhInbPxm49o/uX9dKOYCjOUTX2eJvmGe63OEjQsRESkDqk+VUVu5qMkF7xFgGGyO6AtAbdnktSpl9Vp8n80LEREpE44cmA3RZnDSana8P2pj8ZD6JE2nbCIBlanyf/QsBARkVpv/b//SfzyB+iKg3IzjM1Jz5L8699bnSVnoWEhIiK11qkqJ7lzHsJ+cC4AOwPbEzJ0Lokdu1tcJueiYSEiIrVSYcEOiucOx37qOwCymt5MzzFTCQuPtLhMfoqGhYiI1Dr5Xy6g7TcP0pkySs1wtqekYxs0yuosOQ8aFiIiUmtUOStZ89YEUg6/C8D2oEuJ+N08+rTvYnGZnC8NCxERqRUO7tlK6fzhpFRvBWB17G30Hv03QsMiLC4TT2hYiIiI5dZ+MZ8O3z5CHOU4iGRnv5dIGTjM6iy5ABoWIiJiGWdlBWtn30/K0fcB2BrUmejhc+ndppPFZXKhNCxERMQSB3ZtouLtEaS4dgCwuvmd9B39F4JDQi0uk4uhYSEiIjUu79MMLsuaTEvjJCeIYt+Vr5DyizuszhIv0LAQEZEaU3mynHWz7sV2bBEYsDm4K41T59OzVQer08RLNCxERKRGFGxfR9WCVGyu3QCsiksladQrBAWHWFwm3qRhISIiPpf78Zt0yX2KSKOS40Sz/+q/Yr/6FquzxAc0LERExGdOlpeyYdY9JJ/4FxiwKaQHsSPn0SOurdVp4iMaFiIi4hN7t6zB/Y+RJLv34jYNslqPITn1RQKD9NTjz/SrKyIiXpezaCoJa58hwnBSREMKB7yG/YobrM6SGqBhISIiXlNRVsKmmb8nqeRzMGBjaC+aj5pHt+atrU6TGqJhISIiXrH7uxwC/jmSJPd+XKZBdtu7SR4+Rac+6hn9aouIyEUx3W5yFv6NHuunEGac4giNOfrLv2Pvd73VaWIBDQsREblgZY4TbJmVRrJjGRiwPiyJVqMzSYhtaXWaWETDQkRELsjO9d8SsnAMieZBqs0Acjrch+3OpwkIDLQ6TSykYSEiIh4x3W6y//kKvTa9RKhxisM04cT107HbBlqdJrWAhoWIiJw3R/Exdswaha1sORiQH55C2zGZdG7a3Oo0qSU0LERE5LxsX7uCiMVp9DEPc8oMJO+y8diGPokREGB1mtQiGhYiIvKTTLebrPfS6bPlz4QYLg7RDMeQGaQk/sLqNKmFNCxEROScSo4fZdfskaSUrwQD1kZcTvu0TFo0bmZ1mtRSHh2/atu2LYZh/OgyduxYX/WJiIhFtuZ+RcVrdnqXr6TKDGJ1p0n0euhfxGhUyE/w6IhFTk4OLpfr9McbN27kuuuu49Zbb/V6mIiIWMN0u8l65xn6bn+NYMPFAeMSKm6cTUqvK6xOkzrAo2HRrNmZK/WFF16gQ4cOXHXVVV6NEhERaxQXFbJndiopJ1eDAWsaXEXHtAxaNmxidZrUERf8Gouqqirmz5/PxIkTMQzjnNdzOp04nc7THzscjgu9SxER8aEtWV/Q8LM/0IsinGYw+QmTSP7tg/quD/HIBf9uWbRoEcXFxYwcOfInr5eenk5MTMzpS3x8/IXepYiI+IDb5WJV5uN0/PR2mlNEgRHH/lsWY7vtYY0K8ZhhmqZ5ITf85S9/SUhICB9//PFPXu9sRyzi4+MpKSkhOjr6Qu5aRES85PiRA+x/K5UelTkA5EYPoHPaLBpEN7K4TGobh8NBTEzMzz5/X9CpkL1797Js2TI+/PDDn71uaGgooaGhF3I3IiLiQ5u+/ZRmX4ylB8epNINZ3+MJkm66X0cp5KJc0LDIyMggNjaWwYMHe7tHRER8zFVdTfa8x0ne8yaBhsnegHjcv80guWuS1WniBzweFm63m4yMDFJTUwkK0vtriYjUJUWF+yjMGI7dmQ8G5MT8ioS7ZhDRIMbqNPETHi+DZcuWsW/fPkaPHu2LHhER8ZGN33xE8y/vpxvFVJihbOr9FEk33md1lvgZj4fFwIEDucDXe4qIiAVc1dVkZ07Ctm82AYbJ7oA2BNw2h6TOfaxOEz+kcxkiIn7s6ME9HJkzDHvVBjAgu9Gv6Z42nfDIKKvTxE9pWIiI+Kn1X39Aq68nkICDcjOMzYnPkDzkbquzxM9pWIiI+JnqU1XkZDyI/eBcAHYGtiPkjkwSL+1pcZnUBxoWIiJ+pLBgByfmDsd+6jsAspreTM8xUwkLj7S4TOoLDQsRET+x7qsFtFnxIF0oo9QMZ5stHdv1o6zOknpGw0JEpI47VeUkb/Z4Ug6/C8D2wI5E3DmXvu0TLC6T+kjDQkSkDju4Zyul84eTUr0VgNXNbqX3mNcIDYuwuEzqKw0LEZE6au0X8+nw7SPEUY6DSHb2e4mUgcOszpJ6TsNCRKSOcVZWsPat8aQc+QcAW4M6ETVsHr3bdrK4TETDQkSkTjmwazMVbw8jxbUDgNWXDKXP6L8SEhpmcZnI9zQsRETqiDWfZXDp6sm0NE5STAP2XPFnUq69w+oskTNoWIiI1HKVJ8tZN/s+bEUfggGbg7vSaMQ8esV3tDpN5Ec0LEREarGCHRuoencENtcuAFbFpZI48mWCQ0ItLhM5Ow0LEZFaKvdfM+iS8ySRRiUniKbg6r9iv/oWq7NEfpKGhYhILVNZUcb6WfeQfPxjMGBTSHdiR86nR1xbq9NEfpaGhYhILbJ3yxrc/xhJsnsvbtMgO340iakvEBQcYnWayHnRsBARqSVyFv2dhLV/IsJwUkRDDl37GilX3mB1lohHNCxERCxWUVbCpll3k1T8GRiwMbQXzUfNo3vz1laniXhMw0JExEK7v8sh4J+jSHIX4DINstveTfLwKQQG6a9nqZv0O1dExAKm203Owtfovn4K4UYVR2nEkV++gb3f9VaniVwUDQsRkRpW5jjBlllpJDuWgQHrwxJpOSqThEtaWZ0mctE0LEREatDODasJ+XAUieZBqs0Actrfi23YMwQEBlqdJuIVGhYiIjXAdLvJ/uef6bXpRUKNUxymCcevn4bd9kur00S8SsNCRMTHSkuOs23mKGxlX4MB+eEptB2TSZemza1OE/E6DQsRER/anv8N4R+l0dcs5JQZSN6l92P73VMYAQFWp4n4hIaFiIgPmG43We+9QJ8tfybEqOYQzSgZ8iYpiddanSbiUxoWIiJeVnL8KLtmjySlfCUYsDbictqnZdKicTOr00R8TsNCRMSLtq35mgYf30Vv8whVZiBrOj+I7fbJOvUh9YaGhYiIF5huN1nvPkvfbX8j2HBxwLiEihtmkdL7SqvTRGqUhoWIyEUqOXaY3bNTSalYBQasaXAlHdPm0LJhE6vTRGqchoWIyEXYkr2Uhp/eQy+KcJrB5Cc8QvJvH9KpD6m3PP6df+DAAYYNG0aTJk2IiIigV69e5OXl+aJNRKTWcrtcrJr7JB0/uY3mFFFgxLH/lsXYbntEo0LqNY+OWJw4cYLLL7+ca665hs8++4zY2Fh27txJw4YNfZQnIlL7HD9ygIK3UrFX5oABuVHX0vmu2TSIbmR1mojlPBoWL774IvHx8WRkZJz+XNu2bb3dJCJSa3236jOaLrmXnhyn0gxmfY/HSbppvI5SiPwfj/4kLF68mMTERG699VZiY2Pp3bs3M2fO/MnbOJ1OHA7HGRcRkbrGVV3NqjmP0unzocRynL0BrTh02yck3/KARoXI//DoT8OuXbuYNm0al156KUuWLOGee+7h/vvvZ+7cuee8TXp6OjExMacv8fHxFx0tIlKTigoL+O7lAdj3TCPQMMmJ+RXNJn5LuwSb1WkitY5hmqZ5vlcOCQkhMTGRb7/99vTn7r//fnJycli1atVZb+N0OnE6nac/djgcxMfHU1JSQnR09EWki4j43saVi2m+bBxNKabCDGVjrydJvmmc1VkiNc7hcBATE/Ozz98evcaiRYsWdO3a9YzPdenShQ8++OCctwkNDSU0NNSTuxERsZyruprszEnY9s0mwDDZE9Aa49Y5JHfpa3WaSK3m0bC4/PLL2bp16xmf27ZtG23atPFqlIiIlY4e3MOROcOxV60HA7Ib/ZruadMJj4yyOk2k1vNoWDzwwAP069eP559/nttuu43s7GxmzJjBjBkzfNUnIlKjNiz/kJb/Hk8CDsrNMDYnPkPykLutzhKpMzx6jQXAv/71LyZPnsz27dtp164dEydO5K677jrv25/vORoRkZpUfaqKnIyHsB/MBGBnYDtC7sgk/tKeFpeJ1A7n+/zt8bC4WBoWIlLbHN6/k+OZw+lyahMAWU1upGfaG4SFR1pcJlJ7+OTFmyIi/mbdV/+g9YqJdKGUMjOcrbYp2K4fY3WWSJ2lYSEi9dKpKid5bz1ASuHbAGwP7EjEnXPp2z7B4jKRuk3DQkTqnUN7t+KYN4KU6i0AZDX7Lb3GvE5oWITFZSJ1n4aFiNQra7+YT/tvH6EF5TiIZIf9RWy/HG51lojf0LAQkXqhylnJmtnjSDnyDwC2BV1Gg2Hz6dO2k8VlIv5Fw0JE/N6BXZupeGc4KdXbAVh9yVD6jP4rIaFhFpeJ+B8NCxHxa2s+y+DS1ZNpaZykmAbs6f8KKQOGWp0l4rc0LETEL1WeLGfd7PuwFX0IBmwJ7krD4XPp1fpSq9NE/JqGhYj4nYIdG3C+m4rNtROAVS1GkDjqFYJD9AMRRXxNw0JE/EruJzPpkv0EkUYlJ4im4Kq/YL/mt1ZnidQbGhYi4hcqK8pYN+sP2I4vBgO+C+lO09R59GjZzuo0kXpFw0JE6ry9W/Nxv5eKzb0Ht2mQFT+KpNQXCQoOsTpNpN7RsBCROi3nozdIWPM0EYaTIhpy6NrXsF95g9VZIvWWhoWI1EkVZSVsnHUPycWfggEbQ3vRfNQ8ujdvbXWaSL2mYSEidc6ezbnw/kiS3QW4TIPsNr8necTzBAbprzQRq+lPoYjUGabbTe6i1+m27jnCjSqO0ogjA/+O/fLBVqeJyP/RsBCROqG8tJjNM8eQ5FgGBqwP60vLUXNJuKSV1Wki8j80LESk1tu5YTUhH44i0TxItRlATvs/YBv2LAGBgVanicgPaFiISK1lut1kf/AqvTa+QKhxiiM05tj107Hbfml1moicg4aFiNRKpSXH2TZrNLbSf4MB68JttB6dSZdmLaxOE5GfoGEhIrXOjnUrCVs0hr5mIafMQPIuHUfy0Kd06kOkDtCwEJFaw3S7yf7Hi/Te/AohRjWFNKN4yJukJF5rdZqInCcNCxGpFUpOFLFz1khs5d+AAWsj+tF+zByaN7nE6jQR8YCGhYhYbtuar2nw8V30MY9QZQayptNEbHc8hhEQYHWaiHhIw0JELGO63WS9+xx9tv2VEMPFQeMSyn4zk5Q+V1mdJiIXSMNCRCxRcuwwu2aPJKXiWzBgTYMr6Zg2h7iGTaxOE5GLoGEhIjVuS/ZSGn56D70posoMYm3XR0i+9WGd+hDxAxoWIlJj3C4X2W8/TeLOqQQZbvYbLai8aTa2npdbnSYiXqJhISI14viRAxS8lUpKZQ4YkBt1LZ3vmk2D6EZWp4mIF2lYiIjPfbf6c5p+/gd6cpxKM5j13R8j6eYJOvUh4oc0LETEZ9wuF1nzHid593QCDZN9AS2pvjmD5G42q9NExEc8+ufC008/jWEYZ1yaN2/uqzYRqcOKCgvY9NIA7HumEWiY5MQMpMkD39Jeo0LEr3l8xCIhIYFly5ad/jhQ790vIj+wceVimi8bR3eKOWmGsKHXUyTfNM7qLBGpAR4Pi6CgIB2lEJGzclVXk535KLZ9swgwTPYEtMa4dQ7JXfpanSYiNcTjYbF9+3bi4uIIDQ3FZrPx/PPP0759+3Ne3+l04nQ6T3/scDgurFREarWig3s5PGc49qp1YEB2o8F0T3uT8Mgoq9NEpAZ59BoLm83G3LlzWbJkCTNnzqSwsJB+/fpx7Nixc94mPT2dmJiY05f4+PiLjhaR2mXD8g8JmNGfhKp1VJih5PZ5keTx72hUiNRDhmma5oXeuLy8nA4dOvDII48wceLEs17nbEcs4uPjKSkpITo6+kLvWkRqgepTVeTMeRjb/kwCDJNdAW0JuiOT1pf1sjpNRLzM4XAQExPzs8/fF/XtppGRkXTv3p3t27ef8zqhoaGEhoZezN2ISC10eP9OjmWOwH5qIxiQ1eRGeo75O2ERDaxOExELXdS70zidTjZv3kyLFi281SMidcC6r/5ByKyr6HpqI2VmOHlJf8Y2LlOjQkQ8O2Lx0EMPMWTIEFq3bs2RI0d47rnncDgcpKam+qpPRGqRU1VO8t56gJTCtwHYEdiBsKFz6duxm8VlIlJbeDQs9u/fz9ChQykqKqJZs2akpKSwevVq2rRp46s+EaklCvdtp3jucFKqNwOQ1ey39BrzOqFhERaXiUht4tGwWLBgga86RKQWy1/6Du3+8xDNKcdBBDvtL2D7pY5UisiP6WeFiMg5VTkrWTP7flKOvAfAtqDLaHDnPHq362xxmYjUVhoWInJWB3dvoezt4aRUbwNg9SVD6TP6r4SEhllcJiK1mYaFiPzIms/n0HH1ZOKooIRIdvf/MykDhlqdJSJ1gIaFiJxWebKcdbPvw1b0IQBbgrrQcMQ8erW+1OIyEakrNCxEBID9OzZS+e4IbK6dAKxqMYzEUa8SHKI3uBOR86dhISLkfjKTztlP0sA4yQmi2XfVq9ivudXqLBGpgzQsROqxyooy1s36A7bji8GA74K70XTkfHq2bGd1mojUURoWIvXU3q35uN9Lxebeg9s0yIofRVLqiwQFh1idJiJ1mIaFSD2U89EbJKx5mgjDyTFiOHjt37BfeZPVWSLiBzQsROqRirISNs66h+TiT8GATSE9uWTkPLrH6W35RcQ7NCxE6ok9m3Ph/ZEkuwu+P/XR5i6SR6QTGKS/BkTEe/Q3ioifM91ucj6aSvf8Zwk3qiiiIYUDp2K/fIjVaSLihzQsRPxYeWkxm2emkexYCgasD+tLy1Fz6XZJK6vTRMRPaViI+KldG7MI+nAUie4DuEyDnHb3kjz8WQICA61OExE/pmEh4mdMt5vsD16l18YXCDVOcYTGFA2aRkrKr6xOE5F6QMNCxI+Ulhxn26zR2Er/DQasC0+m9ei5dG3Wwuo0EaknNCxE/MSOdSsJW5RGX/MQp8xA8jreR/Lv/qhTHyJSozQsROo40+0m+x8v0nvzK4QY1RTSjOJfTyclaYDVaSJSD2lYiNRhJSeK2DlrFLbyFWDA2oh+tB8zh+ZNLrE6TUTqKQ0LkTpq25rlNPj4LvqYh6kyA1nT6QFsdzyOERBgdZqI1GMaFiJ1jOl2k7VgCn22/oUQw8VB4xLKfjOTlD5XWZ0mIqJhIVKXlBw7zK7ZI0mp+BYMWBN5JR3SMohr1NTqNBERQMNCpM7YkrOMhp/cTW+KqDKDWNv1YZJvfUSnPkSkVtGwEKnl3C4X2W8/TeLOqQQZbvYbLai8aTa2npdbnSYi8iMaFiK12Imjh9g3ezgplTlgQF7UL7gsbTatYhpbnSYiclYaFiK11HerP6fp53+gJ8epNINZ120yybc8oFMfIlKraViI1DJul4useY+TvHs6gYbJvoCWVN+cga2bzeo0EZGfpWEhUosUFRZwKGMEducaMCAnZiBd02YSGdXQ6jQRkfOiYSFSS2xcuZjmy8bRnWJOmiFs6PUkSTfcp1MfIlKnaFiIWMxVXU125qPY9s0iwDDZExAPt84huUui1WkiIh7TsBCxUNHBvRyeMxx71TowILvh9XS/awbhkVFWp4mIXJCLOsaanp6OYRhMmDDBSzki9ceGFQsxZlxBQtU6KsxQcnqnkzzhXY0KEanTLviIRU5ODjNmzKBHjx7e7BHxe9WnqsiZ8wi2/XMIMEx2B7Ql4PZMkjr1sjpNROSiXdARi7KyMu68805mzpxJo0aNvN0k4rcO79/JtpeuwX4ggwDDJKvJDbR46D+00agQET9xQcNi7NixDB48mAEDBvzsdZ1OJw6H44yLSH207t/vEzLrKrqe2kiZGU5u0ivYxs0lLKKB1WkiIl7j8amQBQsWkJeXR25u7nldPz09nT/96U8eh4n4i1NVTvLeeoCUwrcB2BHYgbChc0ns2M3iMhER7/PoiEVBQQHjx4/n7bffJiws7LxuM3nyZEpKSk5fCgoKLihUpC4q3LednS9ddXpUZDW9mVYPfUMrjQoR8VOGaZrm+V550aJF3HTTTQQGBp7+nMvlwjAMAgICcDqdZ/y3s3E4HMTExFBSUkJ0dPSFl4vUcvlL36Hdfx4ihnIcRLAjJZ0+vxppdZaIyAU53+dvj06FXHvttWzYsOGMz40aNYrOnTszadKknx0VIvVBlbOSNbPvJ+XIewBsC7qMyN/NpU/7LhaXiYj4nkfDIioqim7dzjyEGxkZSZMmTX70eZH66ODuLZS9PZyU6m0ArI69nT5jXiMk9PxOHYqI1HV6500RL1m7JJMOqx4ljgpKiGT35a+Qct3vrM4SEalRFz0svv76ay9kiNRdlSfLWTd7HLaiDwDYGtSZ6OFz6dWmk8VlIiI1T0csRC7C/h0bqXx3BDbXTgBWtRhG4qhXCQ4JtbhMRMQaGhYiFyjvk1l0yn6CBsZJThDFvitfxf6L26zOEhGxlIaFiIcqK8pYN/tebMc+AgM2ByfQOHUePVt1sDpNRMRyGhYiHti3LZ/qBanY3HtwmwZZrUaSNPIlgoJDrE4TEakVNCxEzlPu4ml0zfsjEYaT40Rz4NrXsF95k9VZIiK1ioaFyM84WV7Khpm/J7n4UzBgU0hPLhk5j+5xbaxOExGpdTQsRH7Cns258P5Ikt0F35/6aJ1GcuoLBAbpj46IyNnob0eRszDdbnI+mkr3/GcJN6oooiGF172Ovf9vrE4TEanVNCxEfqC8tJjvZt1FcskXYMCG0D60GDWXbs3jrU4TEan1NCxE/seujVkEfTiKJPcBXKZBdrt7sA2fQoB+wJ6IyHnRsBDh+1Mf2R/8hZ4b0wkzTnGExhT96g3s9kFWp4mI1CkaFlLvlZYcZ9usMdhKvwID1oUlET86k66xLa1OExGpczQspF7bse4/hC0aQ1/zENVmALkdx5H8uz/q1IeIyAXSsJB6yXS7yX7/JXp/9zIhRjWFNKX412+SkjTA6jQRkTpNw0LqnZITReycPQpb2QowYG1EP9qPmUPzJpdYnSYiUudpWEi9sm3Nchp8fBd9zMNUmYGsuWwCtqFPYAQEWJ0mIuIXNCykXjDdbrIWTKHP1r8QYrg4aMRS9puZpPS52uo0ERG/omEhfq/k2GF2zR5JSsW3YMCayCvokDaHuEZNrU4TEfE7Ghbi17bkLKPhJ/fQm6NUmUGs7fIQybdN0qkPEREf0bAQv+R2uch+50/03TGVYMPFfqM5lTfNxtazv9VpIiJ+TcNC/M6Jo4fY99YIUk5mgwF5UddwWdpbtIppbHWaiIjf07AQv/Ld6s9p+vkf6MlxnGYw+d0eJfmWiTr1ISJSQzQsxC+4XS6y5z1J4u5pBBluCow4qm7JwNY9xeo0EZF6RcNC6rxjh/dzIGMEKZV5YEBu9HV0uWsWkVENrU4TEal3NCykTtv0n0+IXTqWHpzgpBnCxp5PkHjjOJ36EBGxiIaF1Emu6mqy504mee9MAg2TPQHxcOsckrokWp0mIlKvaVhInVN0cC+FmSOwO/PBgOyG19MtbToRDWKsThMRqfc0LKRO2bBiIXFfjacbJVSYoWzq8zTJN9xrdZaIiPwfDQupE6pPVZEz5xFs++cQYJjsDmhLwO2ZJHXqZXWaiIj8Dw0LqfWOHNhN0Zxh2E9tBAOyGv+GnmnTCItoYHWaiIj8gIaF1Grr/v0+rZdPpCsOys0wNic/h23wXVZniYjIOXj0PXnTpk2jR48eREdHEx0djd1u57PPPvNVm9Rjp6qcrHpzLD2Xp9EIBzsD23N8+DISNSpERGo1j45YtGrVihdeeIGOHTsCkJmZyQ033MDatWtJSEjwSaDUP4X7tlM8bwT2U98BkNX0ZnqOmUpYeKTFZSIi8nMM0zTNi/kCjRs35uWXX2bMmDHndX2Hw0FMTAwlJSVER0dfzF2LH8pf9i7tVj5IDOWUmuFsT0mnz6BRVmeJiNR75/v8fcGvsXC5XLz//vuUl5djt9vPeT2n04nT6TwjTOSHqpyVrHlrAimH3wVge9ClRPxuHn3ad7G4TEREPOHxsNiwYQN2u53KykoaNGjAwoUL6dq16zmvn56ezp/+9KeLihT/dnD3FsreHk5K9TYAVsfeTp8xrxESGmZxmYiIeMrjUyFVVVXs27eP4uJiPvjgA2bNmsXy5cvPOS7OdsQiPj5ep0IEgLVLMumw6lGiqcBBJDv7vUTvgcOszhIRkR8431MhF/0aiwEDBtChQwfefPNNr4aJf3NWVpA/6z5sRR8AsDWoM9HD59KiTSeLy0RE5Gx8/hqL/zJN84wjEiI/Z/+OjVS+OwKbaycAq5vfSd/RfyE4JNTiMhERuVgeDYvHHnuMQYMGER8fT2lpKQsWLODrr7/m888/91Wf+Jm8T2fTKetxGhgnOUEU+658hZRf3GF1loiIeIlHw+Lw4cMMHz6cQ4cOERMTQ48ePfj888+57rrrfNUnfqKyoox1s+/FduwjMGBzcAKNU+fRs1UHq9NERMSLPBoWs2fP9lWH+LF92/KpXpCKzb0HgFVxqSSNeoWg4BBrw0RExOv0s0LEp3IXT6dr3lNEGE6OE83+q/+K/epbrM4SEREf0bAQnzhZXsqGWXeTfOITMGBTSA9iR86jR1xbq9NERMSHNCzE6/ZuzsN8fyTJ7n24TYOs1mkkp75AYJB+u4mI+Dv9TS9elb3wdbrlP0uE4aSIhhRe9zr2/r+xOktERGqIhoV4RXlpMd/N+j3JJUvAgA2hvWkxah7dmsdbnSYiIjVIw0Iu2u5NWQR8MJok935cpkF2u3tIHvacTn2IiNRD+ptfLpjpdpPz4V/pseF5woxTHKExRb96A7t9kNVpIiJiEQ0LuSClJcfZNmsMyaVfgQHrw5JoNTqTrrEtrU4TERELaViIx3as+w9hi8bQ1zxEtRlATof7sN35NAGBgVaniYiIxTQs5LyZbjfZ779M7+9eIsSoppCmFA+ejj1Zb+kuIiLf07CQ8+IoPsaOWSOxla0AA/Ij7LQdPYfOTZtbnSYiIrWIhoX8rO1rVxC5OI0+5mFOmYHkXTYe29AnMQICrE4TEZFaRsNCzsl0u8la8Dx9tr5KiOHioBFL2W9mktLnaqvTRESkltKwkLMqOX6UXbNSSan4DxiwNrI/7dMyiWvU1Oo0ERGpxTQs5Ee25H5JzL/upjdHqTKDWNvlIZJvm6RTHyIi8rM0LOQ0t8tF9rvP0Hf76wQbLvYbzTl54yxsva6wOk1EROoIDQsB4MTRQ+x7K5WUk1lgQF6Dq7k07S1aNWxidZqIiNQhGhbC5qwlNP7sD/TkGE4zmPyESST/9kGd+hAREY9pWNRjbpeLrPlPkrRrGkGGmwIjjqpbMrB1T7E6TURE6igNi3rq2OH9HMgYgb0yDwzIjR5A57RZNIhuZHWaiIjUYRoW9dCm/3xC7NKx9OAEJ80QNvR4nKSb7tepDxERuWgaFvWIq7qa7LmPkbx3BoGGyd6AeNy/zSC5a5LVaSIi4ic0LOqJosJ9FGYMx+7MBwNyGg4iIe1NIhrEWJ0mIiJ+RMOiHtiw4iNafHU/3SimwgxlU+8/knTjWKuzRETED2lY+LHqU1XkZE7CVpBBgGGyO6ANAbfPJalTL6vTRETET2lY+KkjB3ZTlDkce9UGMCC78RB6pE0nLKKB1WkiIuLHNCz80Pp//5P45Q/QFQflZhibk54l+de/tzpLRETqAQ0LP3KqykluxkPYD80FYGdge0LumEPipT0tLhMRkfpCw8JPFBbsoHjucOynvgMgq+nN9BwzlbDwSIvLRESkPtGw8AP5y96l7cqH6EwZpWY422zp2K4fZXWWiIjUQxoWdViVs5I1b00g5fC7AGwP7EjEnXPp2z7B4jIREamvPHoP5/T0dJKSkoiKiiI2NpYbb7yRrVu3+qpNfsLBPVvZ8/IVp0fF6tjbaP3wN7TUqBAREQt5NCyWL1/O2LFjWb16NUuXLqW6upqBAwdSXl7uqz45izVL5tFgzjVcVr0NB5Gs7fd3Uu6dSWhYhNVpIiJSzxmmaZoXeuOjR48SGxvL8uXLufLKK8/rNg6Hg5iYGEpKSoiOjr7Qu66XnJUV5M8eh+3oPwHYGtSJqGHziGvbyeIyERHxd+f7/H1Rr7EoKSkBoHHjxue8jtPpxOl0nhEmnjuwaxMVb4/A5toBwOrmd9J39F8IDgm1uExEROT/u+Cfk22aJhMnTqR///5069btnNdLT08nJibm9CU+Pv5C77Leyvs0g+jMa7nUtYNiGrDuyjdJuecNjQoREal1LvhUyNixY/nkk09YuXIlrVq1Ouf1znbEIj4+XqdCzkPlyXLWzboX27FFAGwO7kqjEfNoHt/R2jAREal3fHoqZNy4cSxevJgVK1b85KgACA0NJTRU/7L2VMH2dVQtSMXm2g3AqrhUkka9QlBwiMVlIiIi5+bRsDBNk3HjxrFw4UK+/vpr2rVr56uuei138XS65j1FhOHkONHsv/qv2K++xeosERGRn+XRsBg7dizvvPMOH330EVFRURQWFgIQExNDeHi4TwLrk5PlpWyYdTfJJz4BAzaFdCd25Hx6xLW1Ok1EROS8ePQaC8Mwzvr5jIwMRo4ceV5fQ99uenZ7t6zB/Y+RtHPvxW0aZLUeQ9KIdJ36EBGRWsEnr7G4iLe8kJ+Qs2gqCWufIcJwUkRDCge8hv2KG6zOEhER8Zh+VoiFKspK2DTzLpJKloABG0N70XzUPLo1b211moiIyAXRsLDI7k1ZBHwwmiT3flymQXbbu0kePoXAIP2SiIhI3aVnsRpmut3kLPwbPdZPIcw4xREac/SXf8fe73qr00RERC6ahkUNKnOcYMusNJIdy8CA9WFJtBqdSUJsS6vTREREvELDoobsXP8tIQvHkGgepNoMIKfDfdjufJqAwECr00RERLxGw8LHTLeb7H++Qq9NLxFqnOIwTThx/XTstoFWp4mIiHidhoUPOYqPsWPWKGxly8GA/PAU2o7JpHPT5laniYiI+ISGhY9sX7uCiMVp9DEPc8oMJO+y8diGPokRcME/UFZERKTW07DwMtPtJuu9dPps+TMhhotDNMMxZAYpib+wOk1ERMTnNCy8qOT4UXbNHklK+UowYG3E5bRPy6RF42ZWp4mIiNQIDQsv2Zr7FdH/+j29OUqVGcSazg9iu/1RnfoQEZF6RcPiIpluN1nvPEPf7a8RbLg4YFxCxY2zSel1hdVpIiIiNU7D4iIUFxWyZ3YqKSdXgwFrGlxFx7QMWjZsYnWaiIiIJTQsLtCWrC9o9Nk99OIYTjOY/IRJJP/2QZ36EBGRek3DwkNul4us+U+RtOsNggw3BUYcVTfPxtajn9VpIiIiltOw8MDxIwfY/1Yq9socMCA3egCd02bRILqR1WkiIiK1gobFedr07ac0+2IsPThOpRnM+h5PkHTT/Tr1ISIi8j80LH6Gq7qa7HmPk7znTQINk70B8bh/m0Fy1ySr00RERGodDYufUFS4j8KM4did+WBATsyvSLhrBhENYqxOExERqZU0LM5h4zcf0fzL++lGMRVmKJt6P0XSjfdZnSUiIlKraVj8gKu6muzMSdj2zSbAMNkd0IaA2+aQ1LmP1WkiIiK1nobF/zh6cA9H5gzDXrUBDMhu9Gu6p00nPDLK6jQREZE6QcPi/6z/+gNafT2BBByUm2FsTnyG5CF3W50lIiJSp9T7YVF9qoqcjAexH5wLwM7AdoTckUnipT0tLhMREal76vWwKCzYwYm5w7Gf+g6ArKY303PMVMLCIy0uExERqZvq7bBY99UC2qx4kC6UUWqGs82Wju36UVZniYiI1Gn1blicqnKS99YDpBS+DcD2wI5E3DmXvu0TLC4TERGp++rVsDi4Zyul84eTUr0VgNXNbqX3mNcIDYuwuExERMQ/1JthsfaL+XT49hHiKMdBJDv7vUTKwGFWZ4mIiPgVvx8WzsoK1r41npQj/wBga1AnoobNo3fbThaXiYiI+B+/HhYHdm2m4u1hpLh2ALD6kqH0Gf1XQkLDLC4TERHxTx7/zO8VK1YwZMgQ4uLiMAyDRYsW+SDr4q35LIPozGu41LWDYhqQf8WbpPxhukaFiIiID3k8LMrLy+nZsydTp071Rc9FqzxZTtbUUfTJmkCUcZLNwV2pHLOcXtfeYXWaiIiI3/P4VMigQYMYNGiQL1ouWsGODVS9OwKbaxcAq+JSSRz5MsEhoRaXiYiI1A8+f42F0+nE6XSe/tjhcPjkfnL/NYMuOU8SaVRygmgKrv4r9qtv8cl9iYiIyNl5fCrEU+np6cTExJy+xMfHe/0+jhzYTbecx4g0KtkU0p3q339DD40KERGRGufzYTF58mRKSkpOXwoKCrx+H7Et27G+x+OsbjWGTg9/RbO4tl6/DxEREfl5Pj8VEhoaSmio71/jkHzLAz6/DxEREflpPj9iISIiIvWHx0csysrK2LFjx+mPd+/eTX5+Po0bN6Z169ZejRMREZG6xeNhkZubyzXXXHP644kTJwKQmprKnDlzvBYmIiIidY/Hw+Lqq6/GNE1ftIiIiEgdp9dYiIiIiNdoWIiIiIjXaFiIiIiI12hYiIiIiNdoWIiIiIjXaFiIiIiI12hYiIiIiNdoWIiIiIjXaFiIiIiI1/j8p5v+0H/ftdPhcNT0XYuIiMgF+u/z9s+9+3aND4vS0lIA4uPja/quRURE5CKVlpYSExNzzv9umDX8gz/cbjcHDx4kKioKwzC89nUdDgfx8fEUFBQQHR3tta9bm/j7Y9Tjq/v8/THq8dV9/v4Yffn4TNOktLSUuLg4AgLO/UqKGj9iERAQQKtWrXz29aOjo/3yN8v/8vfHqMdX9/n7Y9Tjq/v8/TH66vH91JGK/9KLN0VERMRrNCxERETEa/xmWISGhvLHP/6R0NBQq1N8xt8fox5f3efvj1GPr+7z98dYGx5fjb94U0RERPyX3xyxEBEREetpWIiIiIjXaFiIiIiI12hYiIiIiNf4zbB44403aNeuHWFhYfTt25dvvvnG6iSvWbFiBUOGDCEuLg7DMFi0aJHVSV6Tnp5OUlISUVFRxMbGcuONN7J161ars7xq2rRp9OjR4/Qb1tjtdj777DOrs3wmPT0dwzCYMGGC1Sle8/TTT2MYxhmX5s2bW53lVQcOHGDYsGE0adKEiIgIevXqRV5entVZXtG2bdsf/foZhsHYsWOtTvOa6upqnnjiCdq1a0d4eDjt27fnmWeewe1213iLXwyL9957jwkTJvD444+zdu1arrjiCgYNGsS+ffusTvOK8vJyevbsydSpU61O8brly5czduxYVq9ezdKlS6murmbgwIGUl5dbneY1rVq14oUXXiA3N5fc3Fx+8YtfcMMNN7Bp0yar07wuJyeHGTNm0KNHD6tTvC4hIYFDhw6dvmzYsMHqJK85ceIEl19+OcHBwXz22Wd89913/PnPf6Zhw4ZWp3lFTk7OGb92S5cuBeDWW2+1uMx7XnzxRaZPn87UqVPZvHkzL730Ei+//DKvv/56zceYfiA5Odm85557zvhc586dzUcffdSiIt8BzIULF1qd4TNHjhwxAXP58uVWp/hUo0aNzFmzZlmd4VWlpaXmpZdeai5dutS86qqrzPHjx1ud5DV//OMfzZ49e1qd4TOTJk0y+/fvb3VGjRk/frzZoUMH0+12W53iNYMHDzZHjx59xuduvvlmc9iwYTXeUuePWFRVVZGXl8fAgQPP+PzAgQP59ttvLaqSC1VSUgJA48aNLS7xDZfLxYIFCygvL8dut1ud41Vjx45l8ODBDBgwwOoUn9i+fTtxcXG0a9eOO+64g127dlmd5DWLFy8mMTGRW2+9ldjYWHr37s3MmTOtzvKJqqoq5s+fz+jRo736gzCt1r9/f7788ku2bdsGwLp161i5ciXXX399jbfU+A8h87aioiJcLheXXHLJGZ+/5JJLKCwstKhKLoRpmkycOJH+/fvTrVs3q3O8asOGDdjtdiorK2nQoAELFy6ka9euVmd5zYIFC8jLyyM3N9fqFJ+w2WzMnTuXyy67jMOHD/Pcc8/Rr18/Nm3aRJMmTazOu2i7du1i2rRpTJw4kccee4zs7Gzuv/9+QkNDGTFihNV5XrVo0SKKi4sZOXKk1SleNWnSJEpKSujcuTOBgYG4XC6mTJnC0KFDa7ylzg+L//rh8jRN06/WaH1w3333sX79elauXGl1itd16tSJ/Px8iouL+eCDD0hNTWX58uV+MS4KCgoYP348X3zxBWFhYVbn+MSgQYNO/+/u3btjt9vp0KEDmZmZTJw40cIy73C73SQmJvL8888D0Lt3bzZt2sS0adP8bljMnj2bQYMGERcXZ3WKV7333nvMnz+fd955h4SEBPLz85kwYQJxcXGkpqbWaEudHxZNmzYlMDDwR0cnjhw58qOjGFJ7jRs3jsWLF7NixQpatWpldY7XhYSE0LFjRwASExPJycnhb3/7G2+++abFZRcvLy+PI0eO0Ldv39Ofc7lcrFixgqlTp+J0OgkMDLSw0PsiIyPp3r0727dvtzrFK1q0aPGjkdulSxc++OADi4p8Y+/evSxbtowPP/zQ6hSve/jhh3n00Ue54447gO8H8N69e0lPT6/xYVHnX2MREhJC3759T7/K97+WLl1Kv379LKqS82WaJvfddx8ffvghX331Fe3atbM6qUaYponT6bQ6wyuuvfZaNmzYQH5+/ulLYmIid955J/n5+X43KgCcTiebN2+mRYsWVqd4xeWXX/6jb/Petm0bbdq0sajINzIyMoiNjWXw4MFWp3hdRUUFAQFnPqUHBgZa8u2mdf6IBcDEiRMZPnw4iYmJ2O12ZsyYwb59+7jnnnusTvOKsrIyduzYcfrj3bt3k5+fT+PGjWndurWFZRdv7NixvPPOO3z00UdERUWdPvIUExNDeHi4xXXe8dhjjzFo0CDi4+MpLS1lwYIFfP3113z++edWp3lFVFTUj14TExkZSZMmTfzmtTIPPfQQQ4YMoXXr1hw5coTnnnsOh8NR4/8S9JUHHniAfv368fzzz3PbbbeRnZ3NjBkzmDFjhtVpXuN2u8nIyCA1NZWgIL946jvDkCFDmDJlCq1btyYhIYG1a9fy6quvMnr06JqPqfHvQ/GRv//972abNm3MkJAQs0+fPn717Yr//ve/TeBHl9TUVKvTLtrZHhdgZmRkWJ3mNaNHjz79e7NZs2bmtddea37xxRdWZ/mUv3276e233262aNHCDA4ONuPi4sybb77Z3LRpk9VZXvXxxx+b3bp1M0NDQ83OnTubM2bMsDrJq5YsWWIC5tatW61O8QmHw2GOHz/ebN26tRkWFma2b9/efPzxx02n01njLfqx6SIiIuI1df41FiIiIlJ7aFiIiIiI12hYiIiIiNdoWIiIiIjXaFiIiIiI12hYiIiIiNdoWIiIiIjXaFiIiIiI12hYiIiIiNdoWIiIiIjXaFiIiIiI12hYiIiIiNf8P4tge+AeWnaNAAAAAElFTkSuQmCC",
"image/svg+xml": "\r\n\r\n\r\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df['A'].plot()\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGYCAYAAAAeFavmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAXCklEQVR4nO3de5Cd8/3A8c8myyapXAiJpCJZg7qEkUkyxp2fS0cTqjfScRstIySItEgoJpTEPxpDu8qUoYiYYjAabap1b6rZJqTqEkxqizS0ZqMui+z390fHTrdEezaf3ZOzfb1mnj+eW57PMyT7znPOyakrpZQAAEjQp9oDAAC9h7AAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANLU9/QF29vb47XXXouBAwdGXV1dT18eAOiCUkq8/fbbMXLkyOjTZ/3PJXo8LF577bUYNWpUT18WAEjQ0tIS22yzzXr393hYDBw4MCL+OdigQYN6+vIAQBesXbs2Ro0a1fFzfH16PCw+fvlj0KBBwgIAasx/ehuDN28CAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQRlgAAGmEBQCQpse/Nh0A6GzMrPt79Hqr5k3qtl/bEwsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSVBQWH330UXzve9+LxsbG6N+/f2y33XZxySWXRHt7e3fNBwDUkPpKDr7iiivi2muvjZtuuil23XXXWLp0aZx00kkxePDgOOuss7prRgCgRlQUFr/97W/jy1/+ckyaNCkiIsaMGRMLFiyIpUuXdstwAEBtqeilkH333TcefPDBeOGFFyIi4qmnnorHHnssvvSlL3XLcABAbanoicV5550Xra2tsdNOO0Xfvn1j3bp1cdlll8U3v/nN9Z7T1tYWbW1tHetr167t+rQAwEatorBYuHBh3HLLLXHbbbfFrrvuGsuXL48ZM2bEyJEj48QTT/zUc+bOnRtz5sxJGRaA/11jZt3fo9dbNW9Sj16vt6jopZBzzjknZs2aFVOmTInddtstjj/++Dj77LNj7ty56z1n9uzZ0dra2rG0tLRs8NAAwMapoicW7777bvTp07lF+vbt+5kfN21oaIiGhoauTQcA1JSKwuKII46Iyy67LLbddtvYddddY9myZXHllVfGt771re6aDwCoIRWFxdVXXx0XXnhhnH766bFmzZoYOXJknHrqqXHRRRd113wAQA2pKCwGDhwY8+fPj/nz53fTOABALfNdIQBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAGmEBAKQRFgBAmvpqDwBAnjGz7u/R662aN6lHr8fGzxMLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACBNxWHx6quvxnHHHRdDhw6NAQMGxB577BHNzc3dMRsAUGPqKzn4rbfein322ScOOuigWLRoUQwbNixeeumlGDJkSDeNBwDUkorC4oorrohRo0bFjTfe2LFtzJgx2TMBADWqopdC7r333pgwYUJ84xvfiGHDhsW4cePi+uuv767ZAIAaU1FYvPzyy9HU1BQ77LBD/OIXv4ipU6fGmWeeGTfffPN6z2lra4u1a9d2WgCA3qmil0La29tjwoQJcfnll0dExLhx4+KZZ56JpqamOOGEEz71nLlz58acOXM2fFKAJGNm3d9j11o1b1KPXQs2BhU9sRgxYkTssssunbbtvPPO8corr6z3nNmzZ0dra2vH0tLS0rVJAYCNXkVPLPbZZ594/vnnO2174YUXYvTo0es9p6GhIRoaGro2HQBQUyp6YnH22WfHkiVL4vLLL48XX3wxbrvttrjuuuti2rRp3TUfAFBDKgqLiRMnxt133x0LFiyIsWPHxqWXXhrz58+PY489trvmAwBqSEUvhURETJ48OSZPntwdswAANc53hQAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaYQFAJBGWAAAaeqrPQCwcRoz6/4eu9aqeZN67FpA9/LEAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDQbFBZz586Nurq6mDFjRtI4AEAt63JY/P73v4/rrrsudt9998x5AIAa1qWw+Mc//hHHHntsXH/99bH55ptnzwQA1KguhcW0adNi0qRJccghh/zHY9va2mLt2rWdFgCgd6qv9ITbb789mpubY+nSpf/V8XPnzo05c+ZUPBjUgjGz7u+xa62aN6nHrgXQVRU9sWhpaYmzzjorbr311ujXr99/dc7s2bOjtbW1Y2lpaenSoADAxq+iJxbNzc2xZs2aGD9+fMe2devWxSOPPBLXXHNNtLW1Rd++fTud09DQEA0NDTnTAgAbtYrC4uCDD44VK1Z02nbSSSfFTjvtFOedd94nogIA+N9SUVgMHDgwxo4d22nb5z73uRg6dOgntgMA/3v8y5sAQJqKPxXy7x566KGEMQCA3sATCwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANIICwAgjbAAANLUV3sAer8xs+7vsWutmjepx64FwCd5YgEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAEAaYQEApBEWAECaisJi7ty5MXHixBg4cGAMGzYsjjrqqHj++ee7azYAoMZUFBYPP/xwTJs2LZYsWRKLFy+Ojz76KA477LB45513ums+AKCG1Fdy8AMPPNBp/cYbb4xhw4ZFc3Nz7L///qmDAQC1p6Kw+Hetra0REbHFFlus95i2trZoa2vrWF+7du2GXBIA2Ih1OSxKKTFz5szYd999Y+zYses9bu7cuTFnzpyuXuZ/wphZ9/fo9VbNm9Sj1wPgf0eXPxUyffr0ePrpp2PBggWfedzs2bOjtbW1Y2lpaenqJQGAjVyXnlicccYZce+998YjjzwS22yzzWce29DQEA0NDV0aDgCoLRWFRSklzjjjjLj77rvjoYceisbGxu6aCwCoQRWFxbRp0+K2226Le+65JwYOHBirV6+OiIjBgwdH//79u2VAAKB2VPQei6ampmhtbY0DDzwwRowY0bEsXLiwu+YDAGpIxS+FAACsj+8KAQDSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAII2wAADSCAsAIE19tQf4b42ZdX+PXm/VvEk9ej0A6A08sQAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACCNsAAA0ggLACBNl8LiRz/6UTQ2Nka/fv1i/Pjx8eijj2bPBQDUoIrDYuHChTFjxoy44IILYtmyZbHffvvF4YcfHq+88kp3zAcA1JCKw+LKK6+Mb3/723HyySfHzjvvHPPnz49Ro0ZFU1NTd8wHANSQ+koO/uCDD6K5uTlmzZrVafthhx0WTzzxxKee09bWFm1tbR3rra2tERGxdu3aigZtb3u3ouM3VKXzbYjefG8RPXt/7i2Pe8vRm+8twp+VWWrh3j4+p5Ty2QeWCrz66qslIsrjjz/eaftll11Wdtxxx0895+KLLy4RYbFYLBaLpRcsLS0tn9kKFT2x+FhdXV2n9VLKJ7Z9bPbs2TFz5syO9fb29vj73/8eQ4cOXe85WdauXRujRo2KlpaWGDRoULdeq6e5t9rUm+8tonffn3urTe4tTykl3n777Rg5cuRnHldRWGy55ZbRt2/fWL16dafta9asieHDh3/qOQ0NDdHQ0NBp25AhQyq57AYbNGhQr/sf6mPurTb15nuL6N33595qk3vLMXjw4P94TEVv3tx0001j/PjxsXjx4k7bFy9eHHvvvXdl0wEAvU7FL4XMnDkzjj/++JgwYULstddecd1118Urr7wSU6dO7Y75AIAaUnFYHHPMMfG3v/0tLrnkknj99ddj7Nix8fOf/zxGjx7dHfNtkIaGhrj44os/8VJMb+DealNvvreI3n1/7q02ubeeV1f+4+dGAAD+O74rBABIIywAgDTCAgBIIywAgDTCAkjjveBAl/5J743VX/7yl2hqaoonnngiVq9eHXV1dTF8+PDYe++9Y+rUqTFq1Khqjwi9WkNDQzz11FOx8847V3sUoEp6zcdNH3vssTj88MNj1KhRcdhhh8Xw4cOjlBJr1qyJxYsXR0tLSyxatCj22Wefao/aLVpaWuLiiy+OG264odqjVOy9996L5ubm2GKLLWKXXXbptO/999+PO+64I0444YQqTbfhnn322ViyZEnstddesdNOO8Vzzz0XV111VbS1tcVxxx0X//d//1ftESv2r9//86+uuuqqOO6442Lo0KEREXHllVf25Fjd5q233oqbbropVq5cGSNGjIgTTzyxZv+ismzZshgyZEg0NjZGRMQtt9wSTU1N8corr8To0aNj+vTpMWXKlCpP2TVnnHFGHH300bHffvtVe5RucfXVV8fSpUtj0qRJcfTRR8dPf/rTmDt3brS3t8dXv/rVuOSSS6K+fiN4XlDJt5tuzCZMmFBmzJix3v0zZswoEyZM6MGJetby5ctLnz59qj1GxZ5//vkyevToUldXV/r06VMOOOCA8tprr3XsX716dU3e18cWLVpUNt1007LFFluUfv36lUWLFpWtttqqHHLIIeXggw8u9fX15cEHH6z2mBWrq6sre+yxRznwwAM7LXV1dWXixInlwAMPLAcddFC1x+yyESNGlDfffLOUUsrLL79ctt5667L11luXQw89tGyzzTZl8ODB5dlnn63ylF0zbty48utf/7qUUsr1119f+vfvX84888zS1NRUZsyYUTbbbLPyk5/8pMpTds3Hf47ssMMOZd68eeX111+v9khpLrnkkjJw4MDyta99rWy99dZl3rx5ZejQoeX73/9+ufzyy8tWW21VLrroomqPWUoppdeERb9+/cpzzz233v3PPvts6devXw9OlOuee+75zOUHP/hBTf4APuqoo8rkyZPLG2+8UVauXFmOOOKI0tjYWP785z+XUmo/LPbaa69ywQUXlFJKWbBgQdl8883L+eef37H//PPPL4ceemi1xuuyyy+/vDQ2Nn4iiurr68szzzxTpany1NXVlb/+9a+llFKmTJlSDjzwwPLOO++UUkp5//33y+TJk8vXv/71ao7YZQMGDOj4/TVu3Ljy4x//uNP+W2+9teyyyy7VGG2D1dXVlV/96lflrLPOKltuuWXZZJNNypFHHlnuu+++sm7dumqPt0G22267cuedd5ZS/vkXyb59+5ZbbrmlY/9dd91Vtt9++2qN10mvCYvGxsZyww03rHf/DTfcUBobG3twolwfl3hdXd16l1r8ATxs2LDy9NNPd9p2+umnl2233ba89NJLNR8WgwYNKitXriyllLJu3bpSX19fmpubO/avWLGiDB8+vFrjbZAnn3yy7LjjjuU73/lO+eCDD0opvTMsPi2glixZUrbZZptqjLbBhg4dWpYuXVpK+efvv+XLl3fa/+KLL5b+/ftXY7QN9q//3T744IOycOHC8sUvfrH07du3jBw5spx//vkdvx9rTf/+/TuCsJRSNtlkk/LHP/6xY33VqlVlwIAB1RjtE3rNp0K++93vxtSpU2P69Olxzz33xJIlS+J3v/td3HPPPTF9+vQ47bTT4txzz632mF02YsSIuPPOO6O9vf1Tlz/84Q/VHrFL3nvvvU+8JvjDH/4wjjzyyDjggAPihRdeqNJk+fr06RP9+vWLIUOGdGwbOHBgtLa2Vm+oDTBx4sRobm6ON954I8aPHx8rVqyIurq6ao+V5uN7aWtri+HDh3faN3z48HjjjTeqMdYGO/zww6OpqSkiIg444ID42c9+1mn/HXfcEdtvv301Rku1ySabxNFHHx0PPPBAvPzyy3HKKafErbfeGl/4wheqPVqXbL311vGnP/0pIiJWrlwZ69at61iPiHjmmWdi2LBh1Rqvs2qXTabbb7+97LnnnqW+vr7jb/H19fVlzz33LAsXLqz2eBvkiCOOKBdeeOF69y9fvrzU1dX14EQ5Jk6cWG6++eZP3Tdt2rQyZMiQmn5isfvuu5dFixZ1rK9YsaJ8+OGHHeuPPvpoTT9J+9iCBQvK8OHDS58+fXrNE4vddtutjBs3rmy22Wblrrvu6rT/4YcfLp///OerNN2GefXVV8uYMWPK/vvvX2bOnFn69+9f9t1333LKKaeU/fffv2y66abl/vvvr/aYXfKvTyw+TXt7e/nlL3/ZgxPlueCCC8pWW21VTj755NLY2Fhmz55dtt1229LU1FSuvfbaMmrUqHL22WdXe8xSSikbwdtH8xxzzDFxzDHHxIcffhhvvvlmRERsueWWsckmm1R5sg13zjnnxDvvvLPe/dtvv3385je/6cGJcnzlK1+JBQsWxPHHH/+Jfddcc020t7fHtddeW4XJcpx22mmxbt26jvWxY8d22r9o0aKa/FTIv5syZUrsu+++0dzcvFF+03GlLr744k7rAwYM6LR+33331ewnD0aOHBnLli2LefPmxX333RellHjyySejpaUl9tlnn3j88cdjwoQJ1R6zS0aPHh19+/Zd7/66uro49NBDe3CiPHPmzIn+/fvHkiVL4tRTT43zzjsvdt999zj33HPj3XffjSOOOCIuvfTSao8ZEb3o46YAQPX1mvdYAADVJywAgDTCAgBIIywAgDTCAgBIIywAgDTCAgBIIywAgDT/D6tS1QuDYN07AAAAAElFTkSuQmCC",
"image/svg+xml": "\r\n\r\n\r\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df['A'].plot(kind='bar')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ikhtisar ini mencakup konsep-konsep paling penting dari Pandas, namun perpustakaan ini sangat kaya, dan tidak ada batasan untuk apa yang dapat Anda lakukan dengannya! Sekarang, mari kita terapkan pengetahuan ini untuk menyelesaikan masalah tertentu.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n---\n\n**Penafian**: \nDokumen ini telah diterjemahkan menggunakan layanan penerjemahan AI [Co-op Translator](https://github.com/Azure/co-op-translator). Meskipun kami berusaha untuk memberikan hasil yang akurat, harap diingat bahwa terjemahan otomatis mungkin mengandung kesalahan atau ketidakakuratan. Dokumen asli dalam bahasa aslinya harus dianggap sebagai sumber yang otoritatif. Untuk informasi yang bersifat kritis, disarankan menggunakan jasa penerjemahan profesional oleh manusia. Kami tidak bertanggung jawab atas kesalahpahaman atau penafsiran yang keliru yang timbul dari penggunaan terjemahan ini.\n"
]
}
],
"metadata": {
"interpreter": {
"hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5"
},
"kernelspec": {
"display_name": "Python 3.8.8 64-bit (conda)",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
},
"orig_nbformat": 4,
"coopTranslator": {
"original_hash": "1eee5e4aa24fb5c945b43cbcda282de8",
"translation_date": "2025-09-01T20:38:10+00:00",
"source_file": "2-Working-With-Data/07-python/notebook.ipynb",
"language_code": "id"
}
},
"nbformat": 4,
"nbformat_minor": 2
}