{ "cells": [ { "cell_type": "markdown", "source": [ "# 雲端中的數據科學:「Azure ML SDK」方法\n", "\n", "## 簡介\n", "\n", "在這份筆記中,我們將學習如何使用 Azure ML SDK 來訓練、部署及使用模型,通過 Azure ML 平台完成。\n", "\n", "前置條件:\n", "1. 你已建立 Azure ML 工作區。\n", "2. 你已將 [心臟衰竭數據集](https://www.kaggle.com/andrewmvd/heart-failure-clinical-data) 加載到 Azure ML。\n", "3. 你已將這份筆記上傳到 Azure ML Studio。\n", "\n", "接下來的步驟是:\n", "\n", "1. 在現有的工作區中建立一個實驗。\n", "2. 建立一個計算叢集。\n", "3. 加載數據集。\n", "4. 使用 AutoMLConfig 配置 AutoML。\n", "5. 執行 AutoML 實驗。\n", "6. 探索結果並獲取最佳模型。\n", "7. 註冊最佳模型。\n", "8. 部署最佳模型。\n", "9. 使用端點。\n", "\n", "## Azure Machine Learning SDK 特定的導入\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "from azureml.core import Workspace, Experiment\n", "from azureml.core.compute import AmlCompute\n", "from azureml.train.automl import AutoMLConfig\n", "from azureml.widgets import RunDetails\n", "from azureml.core.model import InferenceConfig, Model\n", "from azureml.core.webservice import AciWebservice" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 初始化工作區\n", "從已保存的配置中初始化一個工作區物件。請確保配置文件存在於 .\\config.json\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "ws = Workspace.from_config()\n", "print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\\n')" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 建立 Azure ML 實驗\n", "\n", "讓我們在剛剛初始化的工作區中建立一個名為「aml-experiment」的實驗。\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "experiment_name = 'aml-experiment'\n", "experiment = Experiment(ws, experiment_name)\n", "experiment" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 建立計算叢集 \n", "你需要為你的 AutoML 執行建立一個[計算目標](https://docs.microsoft.com/azure/machine-learning/concept-azure-machine-learning-architecture#compute-target)。 \n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "aml_name = \"heart-f-cluster\"\n", "try:\n", " aml_compute = AmlCompute(ws, aml_name)\n", " print('Found existing AML compute context.')\n", "except:\n", " print('Creating new AML compute context.')\n", " aml_config = AmlCompute.provisioning_configuration(vm_size = \"Standard_D2_v2\", min_nodes=1, max_nodes=3)\n", " aml_compute = AmlCompute.create(ws, name = aml_name, provisioning_configuration = aml_config)\n", " aml_compute.wait_for_completion(show_output = True)\n", "\n", "cts = ws.compute_targets\n", "compute_target = cts[aml_name]" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 數據\n", "請確保你已將數據集上載到 Azure ML,並且鍵的名稱與數據集的名稱相同。\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "key = 'heart-failure-records'\n", "dataset = ws.datasets[key]\n", "df = dataset.to_pandas_dataframe()\n", "df.describe()" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 自動機器學習配置\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "automl_settings = {\n", " \"experiment_timeout_minutes\": 20,\n", " \"max_concurrent_iterations\": 3,\n", " \"primary_metric\" : 'AUC_weighted'\n", "}\n", "\n", "automl_config = AutoMLConfig(compute_target=compute_target,\n", " task = \"classification\",\n", " training_data=dataset,\n", " label_column_name=\"DEATH_EVENT\",\n", " enable_early_stopping= True,\n", " featurization= 'auto',\n", " debug_log = \"automl_errors.log\",\n", " **automl_settings\n", " )" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 自動機器學習運行\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "remote_run = experiment.submit(automl_config)" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "RunDetails(remote_run).show()" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "best_run, fitted_model = remote_run.get_output()" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "best_run.get_properties()" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "model_name = best_run.properties['model_name']\n", "script_file_name = 'inference/score.py'\n", "best_run.download_file('outputs/scoring_file_v_1_0_0.py', 'inference/score.py')\n", "description = \"aml heart failure project sdk\"\n", "model = best_run.register_model(model_name = model_name,\n", " description = description,\n", " tags = None)" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 部署最佳模型\n", "\n", "執行以下程式碼以部署最佳模型。你可以在 Azure ML 入口網站中查看部署的狀態。此步驟可能需要幾分鐘時間。\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "inference_config = InferenceConfig(entry_script=script_file_name, environment=best_run.get_environment())\n", "\n", "aciconfig = AciWebservice.deploy_configuration(cpu_cores = 1,\n", " memory_gb = 1,\n", " tags = {'type': \"automl-heart-failure-prediction\"},\n", " description = 'Sample service for AutoML Heart Failure Prediction')\n", "\n", "aci_service_name = 'automl-hf-sdk'\n", "aci_service = Model.deploy(ws, aci_service_name, [model], inference_config, aciconfig)\n", "aci_service.wait_for_deployment(True)\n", "print(aci_service.state)" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "## 使用端點\n", "你可以為以下的輸入範例添加輸入內容。\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "data = {\n", " \"data\":\n", " [\n", " {\n", " 'age': \"60\",\n", " 'anaemia': \"false\",\n", " 'creatinine_phosphokinase': \"500\",\n", " 'diabetes': \"false\",\n", " 'ejection_fraction': \"38\",\n", " 'high_blood_pressure': \"false\",\n", " 'platelets': \"260000\",\n", " 'serum_creatinine': \"1.40\",\n", " 'serum_sodium': \"137\",\n", " 'sex': \"false\",\n", " 'smoking': \"false\",\n", " 'time': \"130\",\n", " },\n", " ],\n", "}\n", "\n", "test_sample = str.encode(json.dumps(data))" ], "outputs": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [ "response = aci_service.run(input_data=test_sample)\n", "response" ], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**免責聲明**: \n此文件已使用人工智能翻譯服務 [Co-op Translator](https://github.com/Azure/co-op-translator) 翻譯。我們致力於提供準確的翻譯,但請注意,自動翻譯可能包含錯誤或不準確之處。應以原始語言的文件作為權威來源。對於關鍵資訊,建議使用專業的人工作業翻譯。我們對因使用此翻譯而引起的任何誤解或誤釋不承擔責任。\n" ] } ], "metadata": { "orig_nbformat": 4, "language_info": { "name": "python" }, "coopTranslator": { "original_hash": "af42669556d5dc19fc4cc3866f7d2597", "translation_date": "2025-09-02T05:44:56+00:00", "source_file": "5-Data-Science-In-Cloud/19-Azure/notebook.ipynb", "language_code": "hk" } }, "nbformat": 4, "nbformat_minor": 2 }