# शुरुआती लोगों के लिए डेटा साइंस - एक पाठ्यक्रम Azure Cloud Advocates, Microsoft में, आपके लिए डेटा साइंस पर आधारित 10 सप्ताह का, 20 पाठों वाला पाठ्यक्रम प्रस्तुत करते हैं। प्रत्येक पाठ में प्री-लेसन और पोस्ट-लेसन क्विज़, पाठ को पूरा करने के लिए लिखित निर्देश, समाधान और असाइनमेंट शामिल हैं। हमारा प्रोजेक्ट-आधारित शिक्षण दृष्टिकोण आपको सीखते हुए निर्माण करने की अनुमति देता है, जो नई कौशल को स्थायी रूप से सीखने का एक सिद्ध तरीका है। **हमारे लेखकों को हार्दिक धन्यवाद:** [जैस्मिन ग्रीनवे](https://www.twitter.com/paladique), [दिमित्री सोश्निकोव](http://soshnikov.com), [नित्या नरसिम्हन](https://twitter.com/nitya), [जालेन मैक्गी](https://twitter.com/JalenMcG), [जेन लूपर](https://twitter.com/jenlooper), [मॉड लेवी](https://twitter.com/maudstweets), [टिफ़नी सॉटर](https://twitter.com/TiffanySouterre), [क्रिस्टोफर हैरिसन](https://www.twitter.com/geektrainer)। **🙏 विशेष धन्यवाद 🙏 हमारे [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) लेखकों, समीक्षकों और सामग्री योगदानकर्ताओं को,** विशेष रूप से आर्यन अरोरा, [आदित्य गर्ग](https://github.com/AdityaGarg00), [अलोंड्रा सांचेज़](https://www.linkedin.com/in/alondra-sanchez-molina/), [अंकिता सिंह](https://www.linkedin.com/in/ankitasingh007), [अनुपम मिश्रा](https://www.linkedin.com/in/anupam--mishra/), [अर्पिता दास](https://www.linkedin.com/in/arpitadas01/), छैल बिहारी दुबे, [डिब्री नसोफर](https://www.linkedin.com/in/dibrinsofor), [दिशिता भसीन](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [मज्द साफी](https://www.linkedin.com/in/majd-s/), [मैक्स ब्लम](https://www.linkedin.com/in/max-blum-6036a1186/), [मिगुएल कोरेया](https://www.linkedin.com/in/miguelmque/), [मोहम्मा इफ्तेखर (इफ्तु) इब्ने जलाल](https://twitter.com/iftu119), [नवरिन तबस्सुम](https://www.linkedin.com/in/nawrin-tabassum), [रेमंड वांगसा पुत्रा](https://www.linkedin.com/in/raymond-wp/), [रोहित यादव](https://www.linkedin.com/in/rty2423), समृद्धि शर्मा, [सान्या सिन्हा](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [शीना नरूला](https://www.linkedin.com/in/sheena-narua-n/), [तौकीर अहमद](https://www.linkedin.com/in/tauqeerahmad5201/), योगेंद्रसिंह पवार, [विदुषी गुप्ता](https://www.linkedin.com/in/vidushi-gupta07/), [जसलीन सोनधी](https://www.linkedin.com/in/jasleen-sondhi/)। |![@sketchthedocs द्वारा स्केच नोट https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.hi.png)| |:---:| | शुरुआती लोगों के लिए डेटा साइंस - _[@nitya](https://twitter.com/nitya) द्वारा स्केच नोट_ | ### 🌐 बहुभाषी समर्थन #### GitHub Action के माध्यम से समर्थित (स्वचालित और हमेशा अद्यतन) [French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](./README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](../cs/README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md) **यदि आप अतिरिक्त भाषाओं में अनुवाद चाहते हैं, तो समर्थित भाषाओं की सूची [यहां](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md) उपलब्ध है।** #### हमारे समुदाय में शामिल हों [![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr) # क्या आप छात्र हैं? निम्नलिखित संसाधनों के साथ शुरुआत करें: - [स्टूडेंट हब पेज](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) इस पेज पर आपको शुरुआती संसाधन, स्टूडेंट पैक्स और यहां तक कि मुफ्त प्रमाणपत्र वाउचर प्राप्त करने के तरीके मिलेंगे। यह एक ऐसा पेज है जिसे आप बुकमार्क करना चाहेंगे और समय-समय पर देखना चाहेंगे क्योंकि हम कम से कम मासिक रूप से सामग्री बदलते हैं। - [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) एक वैश्विक छात्र एंबेसडर समुदाय में शामिल हों, यह Microsoft में आपका प्रवेश द्वार हो सकता है। # शुरुआत करना > **शिक्षक**: हमने [कुछ सुझाव शामिल किए हैं](for-teachers.md) कि इस पाठ्यक्रम का उपयोग कैसे करें। हमें आपके फीडबैक की आवश्यकता है [हमारे चर्चा मंच में](https://github.com/microsoft/Data-Science-For-Beginners/discussions)! > **[छात्र](https://aka.ms/student-page)**: इस पाठ्यक्रम का उपयोग अपने आप करने के लिए, पूरे रिपॉजिटरी को फोर्क करें और अपने आप अभ्यास करें, प्री-लेक्चर क्विज़ से शुरुआत करें। फिर लेक्चर पढ़ें और बाकी गतिविधियों को पूरा करें। कोशिश करें कि प्रोजेक्ट्स को पाठों को समझकर बनाएं, बजाय समाधान कोड की नकल करने के; हालांकि, वह कोड प्रत्येक प्रोजेक्ट-उन्मुख पाठ के /solutions फोल्डर में उपलब्ध है। एक और विचार यह हो सकता है कि दोस्तों के साथ एक अध्ययन समूह बनाएं और सामग्री को एक साथ पढ़ें। आगे की पढ़ाई के लिए, हम [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum) की सिफारिश करते हैं। ## टीम से मिलें [![प्रोमो वीडियो](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "प्रोमो वीडियो") **Gif द्वारा** [मोहित जैसल](https://www.linkedin.com/in/mohitjaisal) > 🎥 ऊपर दी गई छवि पर क्लिक करें इस प्रोजेक्ट और इसे बनाने वाले लोगों के बारे में वीडियो देखने के लिए! ## शिक्षण दृष्टिकोण हमने इस पाठ्यक्रम को बनाते समय दो शिक्षण दृष्टिकोण चुने हैं: यह सुनिश्चित करना कि यह प्रोजेक्ट-आधारित है और इसमें बार-बार क्विज़ शामिल हैं। इस श्रृंखला के अंत तक, छात्र डेटा साइंस के बुनियादी सिद्धांतों को सीख चुके होंगे, जिनमें नैतिक अवधारणाएं, डेटा तैयारी, डेटा के साथ काम करने के विभिन्न तरीके, डेटा विज़ुअलाइज़ेशन, डेटा विश्लेषण, डेटा साइंस के वास्तविक जीवन के उपयोग के मामले और अधिक शामिल हैं। इसके अलावा, कक्षा से पहले एक कम दबाव वाला क्विज़ छात्र को किसी विषय को सीखने की ओर प्रेरित करता है, जबकि कक्षा के बाद दूसरा क्विज़ आगे की जानकारी को बनाए रखने में मदद करता है। यह पाठ्यक्रम लचीला और मजेदार बनाया गया है और इसे पूरे या आंशिक रूप से लिया जा सकता है। प्रोजेक्ट छोटे से शुरू होते हैं और 10 सप्ताह के चक्र के अंत तक धीरे-धीरे जटिल हो जाते हैं। हमारे [आचार संहिता](CODE_OF_CONDUCT.md), [योगदान](CONTRIBUTING.md), [अनुवाद](TRANSLATIONS.md) दिशानिर्देश देखें। हम आपके रचनात्मक सुझावों का स्वागत करते हैं! ## प्रत्येक पाठ में शामिल हैं: - वैकल्पिक स्केच नोट - वैकल्पिक पूरक वीडियो - पाठ से पहले का वार्मअप क्विज़ - लिखित पाठ - प्रोजेक्ट-आधारित पाठों के लिए, प्रोजेक्ट बनाने के चरण-दर-चरण गाइड - ज्ञान जांच - एक चुनौती - पूरक पठन सामग्री - असाइनमेंट - [पाठ के बाद का क्विज़](https://ff-quizzes.netlify.app/en/) > **क्विज़ के बारे में एक नोट**: सभी क्विज़ Quiz-App फ़ोल्डर में संग्रहीत हैं, जिनमें कुल 40 क्विज़ हैं, प्रत्येक में तीन प्रश्न हैं। ये पाठों के भीतर लिंक किए गए हैं, लेकिन क्विज़ ऐप को स्थानीय रूप से चलाया जा सकता है या Azure पर डिप्लॉय किया जा सकता है; `quiz-app` फ़ोल्डर में दिए गए निर्देशों का पालन करें। इन्हें धीरे-धीरे स्थानीयकृत किया जा रहा है। ## पाठ |![ @sketchthedocs द्वारा स्केच नोट https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.hi.png)| |:---:| | डेटा साइंस फॉर बिगिनर्स: रोडमैप - _[@nitya](https://twitter.com/nitya) द्वारा स्केच नोट_ | | पाठ संख्या | विषय | पाठ समूह | सीखने के उद्देश्य | लिंक किया गया पाठ | लेखक | | :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: | | 01 | डेटा साइंस की परिभाषा | [परिचय](1-Introduction/README.md) | डेटा साइंस के मूलभूत सिद्धांतों को समझें और यह कृत्रिम बुद्धिमत्ता, मशीन लर्निंग और बिग डेटा से कैसे संबंधित है। | [पाठ](1-Introduction/01-defining-data-science/README.md) [वीडियो](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) | | 02 | डेटा साइंस नैतिकता | [परिचय](1-Introduction/README.md) | डेटा नैतिकता के सिद्धांत, चुनौतियाँ और ढांचे। | [पाठ](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) | | 03 | डेटा की परिभाषा | [परिचय](1-Introduction/README.md) | डेटा को कैसे वर्गीकृत किया जाता है और इसके सामान्य स्रोत। | [पाठ](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) | | 04 | सांख्यिकी और संभावना का परिचय | [परिचय](1-Introduction/README.md) | डेटा को समझने के लिए संभावना और सांख्यिकी की गणितीय तकनीकें। | [पाठ](1-Introduction/04-stats-and-probability/README.md) [वीडियो](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) | | 05 | रिलेशनल डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | रिलेशनल डेटा का परिचय और SQL (जिसे "सी-क्वेल" कहा जाता है) के साथ रिलेशनल डेटा का अन्वेषण और विश्लेषण करने की मूल बातें। | [पाठ](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | | | 06 | NoSQL डेटा के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | गैर-रिलेशनल डेटा का परिचय, इसके विभिन्न प्रकार और डॉक्यूमेंट डेटाबेस का अन्वेषण और विश्लेषण करने की मूल बातें। | [पाठ](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)| | 07 | पायथन के साथ काम करना | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | Pandas जैसी लाइब्रेरी का उपयोग करके डेटा अन्वेषण के लिए पायथन का उपयोग करने की मूल बातें। पायथन प्रोग्रामिंग की बुनियादी समझ की सिफारिश की जाती है। | [पाठ](2-Working-With-Data/07-python/README.md) [वीडियो](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) | | 08 | डेटा तैयारी | [डेटा के साथ काम करना](2-Working-With-Data/README.md) | डेटा को साफ और बदलने के लिए तकनीकों पर चर्चा, ताकि गायब, गलत या अधूरी जानकारी की चुनौतियों को संभाला जा सके। | [पाठ](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) | | 09 | मात्राओं का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | Matplotlib का उपयोग करके पक्षी डेटा 🦆 को विज़ुअलाइज़ करना सीखें। | [पाठ](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) | | 10 | डेटा वितरण का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | एक अंतराल के भीतर अवलोकन और रुझानों का विज़ुअलाइज़ेशन। | [पाठ](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) | | 11 | अनुपात का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | अलग-अलग और समूहित प्रतिशत का विज़ुअलाइज़ेशन। | [पाठ](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) | | 12 | संबंधों का विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | डेटा सेट और उनके वेरिएबल्स के बीच कनेक्शन और सहसंबंध का विज़ुअलाइज़ेशन। | [पाठ](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) | | 13 | सार्थक विज़ुअलाइज़ेशन | [डेटा विज़ुअलाइज़ेशन](3-Data-Visualization/README.md) | प्रभावी समस्या समाधान और अंतर्दृष्टि के लिए अपने विज़ुअलाइज़ेशन को मूल्यवान बनाने के लिए तकनीक और मार्गदर्शन। | [पाठ](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) | | 14 | डेटा साइंस जीवनचक्र का परिचय | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र और डेटा प्राप्त करने और निकालने के पहले चरण का परिचय। | [पाठ](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) | | 15 | विश्लेषण | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र के इस चरण में डेटा का विश्लेषण करने की तकनीकों पर ध्यान केंद्रित किया गया है। | [पाठ](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | | | 16 | संचार | [जीवनचक्र](4-Data-Science-Lifecycle/README.md) | डेटा साइंस जीवनचक्र के इस चरण में डेटा से प्राप्त अंतर्दृष्टि को इस तरह प्रस्तुत करना शामिल है, जिससे निर्णय लेने वालों के लिए इसे समझना आसान हो। | [पाठ](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | | | 17 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | इस पाठ श्रृंखला में क्लाउड में डेटा साइंस और इसके लाभों का परिचय दिया गया है। | [पाठ](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) और [Maud](https://twitter.com/maudstweets) | | 18 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | लो कोड टूल्स का उपयोग करके मॉडल को प्रशिक्षित करना। |[पाठ](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) और [Maud](https://twitter.com/maudstweets) | | 19 | क्लाउड में डेटा साइंस | [क्लाउड डेटा](5-Data-Science-In-Cloud/README.md) | Azure Machine Learning Studio का उपयोग करके मॉडल को डिप्लॉय करना। | [पाठ](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) और [Maud](https://twitter.com/maudstweets) | | 20 | वास्तविक दुनिया में डेटा साइंस | [वाइल्ड में](6-Data-Science-In-Wild/README.md) | वास्तविक दुनिया में डेटा साइंस संचालित प्रोजेक्ट। | [पाठ](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) | ## GitHub Codespaces Codespace में इस सैंपल को खोलने के लिए इन चरणों का पालन करें: 1. Code ड्रॉप-डाउन मेनू पर क्लिक करें और Open with Codespaces विकल्प चुनें। 2. पैन के नीचे + New codespace चुनें। अधिक जानकारी के लिए, [GitHub दस्तावेज़](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace) देखें। ## VSCode Remote - Containers अपने स्थानीय मशीन और VSCode का उपयोग करके इस रिपॉजिटरी को कंटेनर में खोलने के लिए इन चरणों का पालन करें: 1. यदि यह पहली बार है जब आप डेवलपमेंट कंटेनर का उपयोग कर रहे हैं, तो कृपया सुनिश्चित करें कि आपका सिस्टम [शुरुआती दस्तावेज़](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started) में प्री-रिक्वायरमेंट्स को पूरा करता है (जैसे Docker इंस्टॉल हो)। इस रिपॉजिटरी का उपयोग करने के लिए, आप या तो इसे एक अलग Docker वॉल्यूम में खोल सकते हैं: **नोट**: आंतरिक रूप से, यह Remote-Containers: **Clone Repository in Container Volume...** कमांड का उपयोग करेगा ताकि स्रोत कोड को स्थानीय फाइल सिस्टम के बजाय Docker वॉल्यूम में क्लोन किया जा सके। [वॉल्यूम](https://docs.docker.com/storage/volumes/) कंटेनर डेटा को बनाए रखने के लिए पसंदीदा तंत्र हैं। या स्थानीय रूप से क्लोन की गई या डाउनलोड की गई रिपॉजिटरी का संस्करण खोलें: - इस रिपॉजिटरी को अपने स्थानीय फाइल सिस्टम पर क्लोन करें। - F1 दबाएं और **Remote-Containers: Open Folder in Container...** कमांड चुनें। - इस फ़ोल्डर की क्लोन की गई प्रति चुनें, कंटेनर के शुरू होने की प्रतीक्षा करें, और चीजों को आज़माएं। ## ऑफलाइन एक्सेस आप इस दस्तावेज़ को [Docsify](https://docsify.js.org/#/) का उपयोग करके ऑफलाइन चला सकते हैं। इस रिपॉजिटरी को फोर्क करें, अपने स्थानीय मशीन पर [Docsify इंस्टॉल करें](https://docsify.js.org/#/quickstart), फिर इस रिपॉजिटरी के रूट फ़ोल्डर में `docsify serve` टाइप करें। वेबसाइट आपके localhost पर पोर्ट 3000 पर सर्व होगी: `localhost:3000`। > नोट, नोटबुक Docsify के माध्यम से रेंडर नहीं होंगे, इसलिए जब आपको नोटबुक चलाने की आवश्यकता हो, तो इसे अलग से VS Code में Python कर्नेल चलाकर करें। ## अन्य पाठ्यक्रम हमारी टीम अन्य पाठ्यक्रम भी तैयार करती है! देखें: - [Generative AI for Beginners](https://aka.ms/genai-beginners) - [Generative AI for Beginners .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet) - [Generative AI with JavaScript](https://github.com/microsoft/generative-ai-with-javascript) - [Generative AI with Java](https://aka.ms/genaijava) - [AI for Beginners](https://aka.ms/ai-beginners) - [Data Science for Beginners](https://aka.ms/datascience-beginners) - [Bash for Beginners](https://github.com/microsoft/bash-for-beginners) - [ML for Beginners](https://aka.ms/ml-beginners) - [Cybersecurity for Beginners](https://github.com/microsoft/Security-101) - [Web Dev for Beginners](https://aka.ms/webdev-beginners) - [IoT for Beginners](https://aka.ms/iot-beginners) - [Machine Learning for Beginners](https://aka.ms/ml-beginners) - [XR Development for Beginners](https://aka.ms/xr-dev-for-beginners) - [Mastering GitHub Copilot for AI Paired Programming](https://aka.ms/GitHubCopilotAI) - [XR Development for Beginners](https://github.com/microsoft/xr-development-for-beginners) - [Mastering GitHub Copilot for C#/.NET Developers](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers) - [Choose Your Own Copilot Adventure](https://github.com/microsoft/CopilotAdventures) --- **अस्वीकरण**: यह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता सुनिश्चित करने का प्रयास करते हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को प्रामाणिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।