{ "cells": [ { "cell_type": "markdown", "source": [ "## संभावना और सांख्यिकी का परिचय \n", "## असाइनमेंट \n", "\n", "इस असाइनमेंट में, हम मधुमेह रोगियों के डेटा सेट का उपयोग करेंगे, जो [यहां से लिया गया है](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html)। \n" ], "metadata": {} }, { "cell_type": "code", "execution_count": 13, "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "df = pd.read_csv(\"../../data/diabetes.tsv\",sep='\\t')\n", "df.head()" ], "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n", "0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n", "1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n", "2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n", "3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n", "4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135" ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AGESEXBMIBPS1S2S3S4S5S6Y
059232.1101.015793.238.04.04.859887151
148121.687.0183103.270.03.03.89186975
272230.593.015693.641.04.04.672885141
324125.384.0198131.440.05.04.890389206
450123.0101.0192125.452.04.04.290580135
\n", "
" ] }, "metadata": {}, "execution_count": 13 } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "इस डेटा सेट में, कॉलम निम्नलिखित हैं:\n", "* Age और sex स्वयं स्पष्ट हैं\n", "* BMI शरीर द्रव्यमान सूचकांक है\n", "* BP औसत रक्तचाप है\n", "* S1 से S6 विभिन्न रक्त माप हैं\n", "* Y एक वर्ष में बीमारी की प्रगति का गुणात्मक माप है\n", "\n", "आइए इस डेटा सेट का अध्ययन संभावना और सांख्यिकी के तरीकों का उपयोग करके करें।\n", "\n", "### कार्य 1: सभी मानों के लिए औसत और विचरण की गणना करें\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### कार्य 2: लिंग के अनुसार BMI, BP और Y के लिए बॉक्सप्लॉट बनाएं\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### कार्य 4: विभिन्न चर और रोग की प्रगति (Y) के बीच सहसंबंध का परीक्षण करें\n", "\n", "> **संकेत** सहसंबंध मैट्रिक्स आपको यह समझने में सबसे अधिक सहायक होगा कि कौन से मान एक-दूसरे पर निर्भर हैं।\n" ], "metadata": {} }, { "cell_type": "markdown", "source": [], "metadata": {} }, { "cell_type": "markdown", "source": [], "metadata": {} }, { "cell_type": "markdown", "source": [], "metadata": {} }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**अस्वीकरण**: \nयह दस्तावेज़ AI अनुवाद सेवा [Co-op Translator](https://github.com/Azure/co-op-translator) का उपयोग करके अनुवादित किया गया है। जबकि हम सटीकता के लिए प्रयासरत हैं, कृपया ध्यान दें कि स्वचालित अनुवाद में त्रुटियां या अशुद्धियां हो सकती हैं। मूल भाषा में उपलब्ध मूल दस्तावेज़ को आधिकारिक स्रोत माना जाना चाहिए। महत्वपूर्ण जानकारी के लिए, पेशेवर मानव अनुवाद की सिफारिश की जाती है। इस अनुवाद के उपयोग से उत्पन्न किसी भी गलतफहमी या गलत व्याख्या के लिए हम उत्तरदायी नहीं हैं।\n" ] } ], "metadata": { "orig_nbformat": 4, "language_info": { "name": "python", "version": "3.8.8", "mimetype": "text/x-python", "codemirror_mode": { "name": "ipython", "version": 3 }, "pygments_lexer": "ipython3", "nbconvert_exporter": "python", "file_extension": ".py" }, "kernelspec": { "name": "python3", "display_name": "Python 3.8.8 64-bit (conda)" }, "interpreter": { "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" }, "coopTranslator": { "original_hash": "6d945fd15163f60cb473dbfe04b2d100", "translation_date": "2025-09-06T17:18:25+00:00", "source_file": "1-Introduction/04-stats-and-probability/assignment.ipynb", "language_code": "hi" } }, "nbformat": 4, "nbformat_minor": 2 }