{ "cells": [ { "cell_type": "markdown", "source": [ "## Johdanto todennäköisyyteen ja tilastotieteeseen\n", "## Tehtävä\n", "\n", "Tässä tehtävässä käytämme diabetesta sairastavien potilaiden aineistoa, joka on otettu [täältä](https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html).\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": 13, "source": [ "import pandas as pd\n", "import numpy as np\n", "\n", "df = pd.read_csv(\"../../data/diabetes.tsv\",sep='\\t')\n", "df.head()" ], "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " AGE SEX BMI BP S1 S2 S3 S4 S5 S6 Y\n", "0 59 2 32.1 101.0 157 93.2 38.0 4.0 4.8598 87 151\n", "1 48 1 21.6 87.0 183 103.2 70.0 3.0 3.8918 69 75\n", "2 72 2 30.5 93.0 156 93.6 41.0 4.0 4.6728 85 141\n", "3 24 1 25.3 84.0 198 131.4 40.0 5.0 4.8903 89 206\n", "4 50 1 23.0 101.0 192 125.4 52.0 4.0 4.2905 80 135" ], "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AGESEXBMIBPS1S2S3S4S5S6Y
059232.1101.015793.238.04.04.859887151
148121.687.0183103.270.03.03.89186975
272230.593.015693.641.04.04.672885141
324125.384.0198131.440.05.04.890389206
450123.0101.0192125.452.04.04.290580135
\n", "
" ] }, "metadata": {}, "execution_count": 13 } ], "metadata": {} }, { "cell_type": "markdown", "source": [ "Tässä aineistossa sarakkeet ovat seuraavat:\n", "* Ikä ja sukupuoli ovat itsestään selviä\n", "* BMI on kehon massan indeksi\n", "* BP on keskimääräinen verenpaine\n", "* S1–S6 ovat erilaisia verimittauksia\n", "* Y on taudin etenemisen laadullinen mittari yhden vuoden aikana\n", "\n", "Tutkitaan tätä aineistoa todennäköisyyden ja tilastotieteen menetelmillä.\n", "\n", "### Tehtävä 1: Laske kaikkien arvojen keskiarvot ja varianssit\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Tehtävä 2: Piirrä laatikkokaaviot BMI:lle, BP:lle ja Y:lle sukupuolen mukaan\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Tehtävä 3: Mikä on ikä-, sukupuoli-, BMI- ja Y-muuttujien jakauma?\n" ], "metadata": {} }, { "cell_type": "code", "execution_count": null, "source": [], "outputs": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Tehtävä 4: Testaa eri muuttujien ja sairauden etenemisen (Y) välistä korrelaatiota\n", "\n", "> **Vinkki** Korrelaatiomatriisi antaa sinulle hyödyllisintä tietoa siitä, mitkä arvot ovat riippuvaisia toisistaan.\n" ], "metadata": {} }, { "cell_type": "markdown", "source": [], "metadata": {} }, { "cell_type": "markdown", "source": [ "### Tehtävä 5: Testaa hypoteesi, että diabeteksen etenemisaste on erilainen miesten ja naisten välillä\n" ], "metadata": {} }, { "cell_type": "markdown", "source": [], "metadata": {} }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n---\n\n**Vastuuvapauslauseke**: \nTämä asiakirja on käännetty käyttämällä tekoälypohjaista käännöspalvelua [Co-op Translator](https://github.com/Azure/co-op-translator). Vaikka pyrimme tarkkuuteen, huomioithan, että automaattiset käännökset voivat sisältää virheitä tai epätarkkuuksia. Alkuperäistä asiakirjaa sen alkuperäisellä kielellä tulee pitää ensisijaisena lähteenä. Kriittisen tiedon osalta suositellaan ammattimaista ihmiskääntämistä. Emme ole vastuussa tämän käännöksen käytöstä aiheutuvista väärinkäsityksistä tai virhetulkinnoista.\n" ] } ], "metadata": { "orig_nbformat": 4, "language_info": { "name": "python", "version": "3.8.8", "mimetype": "text/x-python", "codemirror_mode": { "name": "ipython", "version": 3 }, "pygments_lexer": "ipython3", "nbconvert_exporter": "python", "file_extension": ".py" }, "kernelspec": { "name": "python3", "display_name": "Python 3.8.8 64-bit (conda)" }, "interpreter": { "hash": "86193a1ab0ba47eac1c69c1756090baa3b420b3eea7d4aafab8b85f8b312f0c5" }, "coopTranslator": { "original_hash": "6d945fd15163f60cb473dbfe04b2d100", "translation_date": "2025-09-06T17:38:38+00:00", "source_file": "1-Introduction/04-stats-and-probability/assignment.ipynb", "language_code": "fi" } }, "nbformat": 4, "nbformat_minor": 2 }