# Data Science pro začátečníky - Kurikulum Azure Cloud Advocates v Microsoftu s potěšením nabízejí 10týdenní kurikulum s 20 lekcemi zaměřenými na datovou vědu. Každá lekce obsahuje kvízy před a po lekci, písemné pokyny k dokončení lekce, řešení a úkol. Náš přístup založený na projektech vám umožní učit se prostřednictvím tvorby, což je osvědčený způsob, jak si nové dovednosti lépe osvojit. **Velké díky našim autorům:** [Jasmine Greenaway](https://www.twitter.com/paladique), [Dmitry Soshnikov](http://soshnikov.com), [Nitya Narasimhan](https://twitter.com/nitya), [Jalen McGee](https://twitter.com/JalenMcG), [Jen Looper](https://twitter.com/jenlooper), [Maud Levy](https://twitter.com/maudstweets), [Tiffany Souterre](https://twitter.com/TiffanySouterre), [Christopher Harrison](https://www.twitter.com/geektrainer). **🙏 Speciální poděkování 🙏 našim [Microsoft Student Ambassador](https://studentambassadors.microsoft.com/) autorům, recenzentům a přispěvatelům obsahu,** zejména Aaryan Arora, [Aditya Garg](https://github.com/AdityaGarg00), [Alondra Sanchez](https://www.linkedin.com/in/alondra-sanchez-molina/), [Ankita Singh](https://www.linkedin.com/in/ankitasingh007), [Anupam Mishra](https://www.linkedin.com/in/anupam--mishra/), [Arpita Das](https://www.linkedin.com/in/arpitadas01/), ChhailBihari Dubey, [Dibri Nsofor](https://www.linkedin.com/in/dibrinsofor), [Dishita Bhasin](https://www.linkedin.com/in/dishita-bhasin-7065281bb), [Majd Safi](https://www.linkedin.com/in/majd-s/), [Max Blum](https://www.linkedin.com/in/max-blum-6036a1186/), [Miguel Correa](https://www.linkedin.com/in/miguelmque/), [Mohamma Iftekher (Iftu) Ebne Jalal](https://twitter.com/iftu119), [Nawrin Tabassum](https://www.linkedin.com/in/nawrin-tabassum), [Raymond Wangsa Putra](https://www.linkedin.com/in/raymond-wp/), [Rohit Yadav](https://www.linkedin.com/in/rty2423), Samridhi Sharma, [Sanya Sinha](https://www.linkedin.com/mwlite/in/sanya-sinha-13aab1200), [Sheena Narula](https://www.linkedin.com/in/sheena-narua-n/), [Tauqeer Ahmad](https://www.linkedin.com/in/tauqeerahmad5201/), Yogendrasingh Pawar , [Vidushi Gupta](https://www.linkedin.com/in/vidushi-gupta07/), [Jasleen Sondhi](https://www.linkedin.com/in/jasleen-sondhi/) |![Sketchnote by @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Title.8af36cd35da1ac555b678627fbdc6e320c75f0100876ea41d30ea205d3b08d22.cs.png)| |:---:| | Data Science pro začátečníky - _Sketchnote od [@nitya](https://twitter.com/nitya)_ | ### 🌐 Podpora více jazyků #### Podporováno prostřednictvím GitHub Action (Automatizované & vždy aktuální) [French](../fr/README.md) | [Spanish](../es/README.md) | [German](../de/README.md) | [Russian](../ru/README.md) | [Arabic](../ar/README.md) | [Persian (Farsi)](../fa/README.md) | [Urdu](../ur/README.md) | [Chinese (Simplified)](../zh/README.md) | [Chinese (Traditional, Macau)](../mo/README.md) | [Chinese (Traditional, Hong Kong)](../hk/README.md) | [Chinese (Traditional, Taiwan)](../tw/README.md) | [Japanese](../ja/README.md) | [Korean](../ko/README.md) | [Hindi](../hi/README.md) | [Bengali](../bn/README.md) | [Marathi](../mr/README.md) | [Nepali](../ne/README.md) | [Punjabi (Gurmukhi)](../pa/README.md) | [Portuguese (Portugal)](../pt/README.md) | [Portuguese (Brazil)](../br/README.md) | [Italian](../it/README.md) | [Polish](../pl/README.md) | [Turkish](../tr/README.md) | [Greek](../el/README.md) | [Thai](../th/README.md) | [Swedish](../sv/README.md) | [Danish](../da/README.md) | [Norwegian](../no/README.md) | [Finnish](../fi/README.md) | [Dutch](../nl/README.md) | [Hebrew](../he/README.md) | [Vietnamese](../vi/README.md) | [Indonesian](../id/README.md) | [Malay](../ms/README.md) | [Tagalog (Filipino)](../tl/README.md) | [Swahili](../sw/README.md) | [Hungarian](../hu/README.md) | [Czech](./README.md) | [Slovak](../sk/README.md) | [Romanian](../ro/README.md) | [Bulgarian](../bg/README.md) | [Serbian (Cyrillic)](../sr/README.md) | [Croatian](../hr/README.md) | [Slovenian](../sl/README.md) | [Ukrainian](../uk/README.md) | [Burmese (Myanmar)](../my/README.md) **Pokud si přejete přidat další překlady, seznam podporovaných jazyků najdete [zde](https://github.com/Azure/co-op-translator/blob/main/getting_started/supported-languages.md)** #### Připojte se k naší komunitě [![Azure AI Discord](https://dcbadge.limes.pink/api/server/kzRShWzttr)](https://discord.gg/kzRShWzttr) # Jste student? Začněte s následujícími zdroji: - [Stránka Student Hub](https://docs.microsoft.com/en-gb/learn/student-hub?WT.mc_id=academic-77958-bethanycheum) Na této stránce najdete zdroje pro začátečníky, studentské balíčky a dokonce způsoby, jak získat voucher na certifikaci zdarma. Tuto stránku si určitě uložte a pravidelně kontrolujte, protože obsah měníme alespoň jednou měsíčně. - [Microsoft Learn Student Ambassadors](https://studentambassadors.microsoft.com?WT.mc_id=academic-77958-bethanycheum) Připojte se ke globální komunitě studentských ambasadorů, což může být vaše cesta do Microsoftu. # Začínáme > **Učitelé**: [zahrnuli jsme několik návrhů](for-teachers.md), jak toto kurikulum využít. Budeme rádi za vaši zpětnou vazbu [v našem diskusním fóru](https://github.com/microsoft/Data-Science-For-Beginners/discussions)! > **[Studenti](https://aka.ms/student-page)**: pokud chcete toto kurikulum používat samostatně, vytvořte si vlastní kopii celého repozitáře a dokončete cvičení sami, začněte kvízem před lekcí. Poté si přečtěte lekci a dokončete zbytek aktivit. Snažte se vytvářet projekty pochopením lekcí, místo abyste kopírovali řešení kódu; tento kód je však dostupný ve složkách /solutions v každé lekci zaměřené na projekt. Další možností je vytvořit studijní skupinu s přáteli a projít obsah společně. Pro další studium doporučujeme [Microsoft Learn](https://docs.microsoft.com/en-us/users/jenlooper-2911/collections/qprpajyoy3x0g7?WT.mc_id=academic-77958-bethanycheum). ## Seznamte se s týmem [![Promo video](../../ds-for-beginners.gif)](https://youtu.be/8mzavjQSMM4 "Promo video") **Gif vytvořil** [Mohit Jaisal](https://www.linkedin.com/in/mohitjaisal) > 🎥 Klikněte na obrázek výše pro video o projektu a lidech, kteří ho vytvořili! ## Pedagogika Při tvorbě tohoto kurikula jsme se rozhodli pro dva pedagogické principy: zajistit, aby bylo založeno na projektech, a zahrnout časté kvízy. Na konci této série se studenti naučí základní principy datové vědy, včetně etických konceptů, přípravy dat, různých způsobů práce s daty, vizualizace dat, analýzy dat, reálných případů použití datové vědy a další. Navíc nízkostresový kvíz před hodinou nastaví záměr studenta na učení daného tématu, zatímco druhý kvíz po hodině zajistí lepší zapamatování. Toto kurikulum bylo navrženo tak, aby bylo flexibilní a zábavné, a lze ho absolvovat celé nebo jen jeho část. Projekty začínají jednoduše a postupně se stávají složitějšími na konci 10týdenního cyklu. > Najděte náš [Kodex chování](CODE_OF_CONDUCT.md), [Pokyny pro přispívání](CONTRIBUTING.md), [Pokyny pro překlad](TRANSLATIONS.md). Uvítáme vaši konstruktivní zpětnou vazbu! ## Každá lekce obsahuje: - Volitelný sketchnote - Volitelné doplňkové video - Kvíz na rozehřátí před lekcí - Psanou lekci - U lekcí založených na projektech, průvodce krok za krokem, jak projekt vytvořit - Kontrolní otázky - Výzvu - Doplňkové čtení - Zadání - [Kvíz po lekci](https://ff-quizzes.netlify.app/en/) > **Poznámka ke kvízům**: Všechny kvízy jsou obsaženy ve složce Quiz-App, celkem 40 kvízů, každý se třemi otázkami. Jsou propojeny přímo z lekcí, ale aplikaci kvízů lze spustit lokálně nebo nasadit na Azure; postupujte podle pokynů ve složce `quiz-app`. Postupně jsou lokalizovány. ## Lekce |![ Sketchnote od @sketchthedocs https://sketchthedocs.dev](../../translated_images/00-Roadmap.4905d6567dff47532b9bfb8e0b8980fc6b0b1292eebb24181c1a9753b33bc0f5.cs.png)| |:---:| | Data Science pro začátečníky: Plán - _Sketchnote od [@nitya](https://twitter.com/nitya)_ | | Číslo lekce | Téma | Skupina lekcí | Cíle učení | Odkaz na lekci | Autor | | :-----------: | :----------------------------------------: | :--------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------: | :----: | | 01 | Definování Data Science | [Úvod](1-Introduction/README.md) | Naučte se základní koncepty data science a jak souvisí s umělou inteligencí, strojovým učením a velkými daty. | [lekce](1-Introduction/01-defining-data-science/README.md) [video](https://youtu.be/beZ7Mb_oz9I) | [Dmitry](http://soshnikov.com) | | 02 | Etika Data Science | [Úvod](1-Introduction/README.md) | Koncepty etiky dat, výzvy a rámce. | [lekce](1-Introduction/02-ethics/README.md) | [Nitya](https://twitter.com/nitya) | | 03 | Definování dat | [Úvod](1-Introduction/README.md) | Jak jsou data klasifikována a jejich běžné zdroje. | [lekce](1-Introduction/03-defining-data/README.md) | [Jasmine](https://www.twitter.com/paladique) | | 04 | Úvod do statistiky a pravděpodobnosti | [Úvod](1-Introduction/README.md) | Matematické techniky pravděpodobnosti a statistiky pro pochopení dat. | [lekce](1-Introduction/04-stats-and-probability/README.md) [video](https://youtu.be/Z5Zy85g4Yjw) | [Dmitry](http://soshnikov.com) | | 05 | Práce s relačními daty | [Práce s daty](2-Working-With-Data/README.md) | Úvod do relačních dat a základy zkoumání a analýzy relačních dat pomocí Structured Query Language, známého jako SQL (vyslovováno „sí-kvel“). | [lekce](2-Working-With-Data/05-relational-databases/README.md) | [Christopher](https://www.twitter.com/geektrainer) | | | | 06 | Práce s NoSQL daty | [Práce s daty](2-Working-With-Data/README.md) | Úvod do nerelačních dat, jejich různých typů a základy zkoumání a analýzy dokumentových databází. | [lekce](2-Working-With-Data/06-non-relational/README.md) | [Jasmine](https://twitter.com/paladique)| | 07 | Práce s Pythonem | [Práce s daty](2-Working-With-Data/README.md) | Základy používání Pythonu pro zkoumání dat s knihovnami, jako je Pandas. Doporučuje se základní znalost programování v Pythonu. | [lekce](2-Working-With-Data/07-python/README.md) [video](https://youtu.be/dZjWOGbsN4Y) | [Dmitry](http://soshnikov.com) | | 08 | Příprava dat | [Práce s daty](2-Working-With-Data/README.md) | Témata o technikách čištění a transformace dat pro řešení problémů s chybějícími, nepřesnými nebo neúplnými daty. | [lekce](2-Working-With-Data/08-data-preparation/README.md) | [Jasmine](https://www.twitter.com/paladique) | | 09 | Vizualizace množství | [Vizualizace dat](3-Data-Visualization/README.md) | Naučte se používat Matplotlib k vizualizaci dat o ptácích 🦆 | [lekce](3-Data-Visualization/09-visualization-quantities/README.md) | [Jen](https://twitter.com/jenlooper) | | 10 | Vizualizace rozložení dat | [Vizualizace dat](3-Data-Visualization/README.md) | Vizualizace pozorování a trendů v rámci intervalu. | [lekce](3-Data-Visualization/10-visualization-distributions/README.md) | [Jen](https://twitter.com/jenlooper) | | 11 | Vizualizace proporcí | [Vizualizace dat](3-Data-Visualization/README.md) | Vizualizace diskrétních a seskupených procent. | [lekce](3-Data-Visualization/11-visualization-proportions/README.md) | [Jen](https://twitter.com/jenlooper) | | 12 | Vizualizace vztahů | [Vizualizace dat](3-Data-Visualization/README.md) | Vizualizace spojení a korelací mezi datovými sadami a jejich proměnnými. | [lekce](3-Data-Visualization/12-visualization-relationships/README.md) | [Jen](https://twitter.com/jenlooper) | | 13 | Smysluplné vizualizace | [Vizualizace dat](3-Data-Visualization/README.md) | Techniky a pokyny pro vytváření vizualizací, které jsou užitečné pro efektivní řešení problémů a získávání poznatků. | [lekce](3-Data-Visualization/13-meaningful-visualizations/README.md) | [Jen](https://twitter.com/jenlooper) | | 14 | Úvod do životního cyklu Data Science | [Životní cyklus](4-Data-Science-Lifecycle/README.md) | Úvod do životního cyklu data science a jeho první fáze získávání a extrakce dat. | [lekce](4-Data-Science-Lifecycle/14-Introduction/README.md) | [Jasmine](https://twitter.com/paladique) | | 15 | Analýza | [Životní cyklus](4-Data-Science-Lifecycle/README.md) | Tato fáze životního cyklu data science se zaměřuje na techniky analýzy dat. | [lekce](4-Data-Science-Lifecycle/15-analyzing/README.md) | [Jasmine](https://twitter.com/paladique) | | | | 16 | Komunikace | [Životní cyklus](4-Data-Science-Lifecycle/README.md) | Tato fáze životního cyklu data science se zaměřuje na prezentaci poznatků z dat způsobem, který usnadňuje jejich pochopení pro rozhodovací orgány. | [lekce](4-Data-Science-Lifecycle/16-communication/README.md) | [Jalen](https://twitter.com/JalenMcG) | | | | 17 | Data Science v cloudu | [Cloudová data](5-Data-Science-In-Cloud/README.md) | Tato série lekcí představuje data science v cloudu a jeho výhody. | [lekce](5-Data-Science-In-Cloud/17-Introduction/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) | | 18 | Data Science v cloudu | [Cloudová data](5-Data-Science-In-Cloud/README.md) | Trénování modelů pomocí nástrojů Low Code. |[lekce](5-Data-Science-In-Cloud/18-Low-Code/README.md) | [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) | | 19 | Data Science v cloudu | [Cloudová data](5-Data-Science-In-Cloud/README.md) | Nasazení modelů pomocí Azure Machine Learning Studio. | [lekce](5-Data-Science-In-Cloud/19-Azure/README.md)| [Tiffany](https://twitter.com/TiffanySouterre) a [Maud](https://twitter.com/maudstweets) | | 20 | Data Science v praxi | [V praxi](6-Data-Science-In-Wild/README.md) | Projekty řízené data science v reálném světě. | [lekce](6-Data-Science-In-Wild/20-Real-World-Examples/README.md) | [Nitya](https://twitter.com/nitya) | ## GitHub Codespaces Postupujte podle těchto kroků pro otevření tohoto vzorku v Codespace: 1. Klikněte na rozbalovací nabídku Code a vyberte možnost Open with Codespaces. 2. Vyberte + New codespace ve spodní části panelu. Pro více informací si přečtěte [dokumentaci GitHubu](https://docs.github.com/en/codespaces/developing-in-codespaces/creating-a-codespace-for-a-repository#creating-a-codespace). ## VSCode Remote - Containers Postupujte podle těchto kroků pro otevření tohoto repozitáře v kontejneru pomocí vašeho lokálního počítače a VSCode s rozšířením VS Code Remote - Containers: 1. Pokud používáte vývojový kontejner poprvé, ujistěte se, že váš systém splňuje předpoklady (např. máte nainstalovaný Docker) podle [dokumentace pro začátek](https://code.visualstudio.com/docs/devcontainers/containers#_getting-started). Pro použití tohoto repozitáře můžete buď otevřít repozitář v izolovaném Docker svazku: **Poznámka**: Na pozadí se použije příkaz Remote-Containers: **Clone Repository in Container Volume...** pro klonování zdrojového kódu do Docker svazku místo lokálního souborového systému. [Svazky](https://docs.docker.com/storage/volumes/) jsou preferovaným mechanismem pro uchovávání dat kontejneru. Nebo otevřete lokálně klonovanou nebo staženou verzi repozitáře: - Klonujte tento repozitář do svého lokálního souborového systému. - Stiskněte F1 a vyberte příkaz **Remote-Containers: Open Folder in Container...**. - Vyberte klonovanou kopii této složky, počkejte, až se kontejner spustí, a vyzkoušejte si věci. ## Offline přístup Tuto dokumentaci můžete spustit offline pomocí [Docsify](https://docsify.js.org/#/). Forkněte tento repozitář, [nainstalujte Docsify](https://docsify.js.org/#/quickstart) na svůj lokální počítač, poté v kořenové složce tohoto repozitáře zadejte `docsify serve`. Webová stránka bude spuštěna na portu 3000 na vašem localhostu: `localhost:3000`. > Poznámka: Notebooky nebudou přes Docsify vykresleny, takže pokud potřebujete spustit notebook, udělejte to samostatně ve VS Code s běžícím Python jádrem. ## Další kurikula Náš tým vytváří další kurikula! Podívejte se na: - [Generativní AI pro začátečníky](https://aka.ms/genai-beginners) - [Generativní AI pro začátečníky .NET](https://github.com/microsoft/Generative-AI-for-beginners-dotnet) - [Generativní AI s JavaScriptem](https://github.com/microsoft/generative-ai-with-javascript) - [Generativní AI s Javou](https://aka.ms/genaijava) - [AI pro začátečníky](https://aka.ms/ai-beginners) - [Data Science pro začátečníky](https://aka.ms/datascience-beginners) - [ML pro začátečníky](https://aka.ms/ml-beginners) - [Kybernetická bezpečnost pro začátečníky](https://github.com/microsoft/Security-101) - [Webový vývoj pro začátečníky](https://aka.ms/webdev-beginners) - [IoT pro začátečníky](https://aka.ms/iot-beginners) - [Vývoj XR pro začátečníky](https://github.com/microsoft/xr-development-for-beginners) - [Ovládnutí GitHub Copilot pro párové programování](https://github.com/microsoft/Mastering-GitHub-Copilot-for-Paired-Programming) - [Ovládnutí GitHub Copilot pro vývojáře C#/.NET](https://github.com/microsoft/mastering-github-copilot-for-dotnet-csharp-developers) - [Vyberte si vlastní dobrodružství s Copilotem](https://github.com/microsoft/CopilotAdventures) --- **Prohlášení**: Tento dokument byl přeložen pomocí služby pro automatický překlad [Co-op Translator](https://github.com/Azure/co-op-translator). I když se snažíme o co největší přesnost, mějte prosím na paměti, že automatické překlady mohou obsahovat chyby nebo nepřesnosti. Původní dokument v jeho původním jazyce by měl být považován za závazný zdroj. Pro důležité informace doporučujeme profesionální lidský překlad. Neodpovídáme za žádná nedorozumění nebo nesprávné výklady vyplývající z použití tohoto překladu.