From ffb330ff4f754cf5f94fe2ba3209e2753aa0a920 Mon Sep 17 00:00:00 2001 From: Subh Chaturvedi Date: Tue, 5 Oct 2021 00:13:11 +0530 Subject: [PATCH] Update README.hi.md --- 1-Introduction/02-ethics/translations/README.hi.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/1-Introduction/02-ethics/translations/README.hi.md b/1-Introduction/02-ethics/translations/README.hi.md index a48e733c..48121f42 100644 --- a/1-Introduction/02-ethics/translations/README.hi.md +++ b/1-Introduction/02-ethics/translations/README.hi.md @@ -36,7 +36,7 @@ **नैतिकता संस्कृति** यह सुनिश्चित करने के लिए [_operationalizing_ एप्लाइड नैतिकता](https://hbr.org/2019/05/how-to-design-an-ethical-organization) के बारे में है कि हमारे नैतिक सिद्धांतों और प्रथाओं को पूरे संगठन में एक सुसंगत और मापनीय तरीके से अपनाया जाए । सफल नैतिक संस्कृतियाँ संगठन-व्यापी नैतिक सिद्धांतों को परिभाषित करती हैं, अनुपालन के लिए सार्थक प्रोत्साहन प्रदान करती हैं, और संगठन के हर स्तर पर वांछित व्यवहारों को प्रोत्साहित और प्रवर्धित करके नैतिक मानदंडों को सुदृढ़ करती हैं । -## नैतिकता अवधारणाएं +## नैतिकता की अवधारणाएं इस खंड में, हम डेटा नैतिकता के लिए साझा मूल्यों (सिद्धांतों) और नैतिक चुनौतियों (समस्याओं) जैसी अवधारणाओं पर चर्चा करेंगे - और मामले के अध्ययन का पता लगाएंगे जो आपको वास्तविक दुनिया के संदर्भों में इन अवधारणाओं को समझने में मदद करते हैं । @@ -59,9 +59,9 @@ > 🚨 अपने डेटा नैतिकता मिशन वक्तव्य के बारे में सोचें | अन्य संगठनों से नैतिक AI ढांचों का अन्वेषण करें - ये हैं कुछ उदाहरण [IBM](https://www.ibm.com/cloud/learn/ai-ethics), [Google](https://ai.google/principles) ,एवं [Facebook](https://ai.facebook.com/blog/facebooks-five-pillars-of-responsible-ai/) | इनके बीच क्या साझा मूल्य हैं? ये सिद्धांत उनके द्वारा संचालित AI उत्पाद या उद्योग से कैसे संबंधित हैं ? -### 2. Ethics Challenges +### 2. नैतिकता से जुडी चुनौतियां -Once we have ethical principles defined, the next step is to evaluate our data and AI actions to see if they align with those shared values. Think about your actions in two categories: _data collection_ and _algorithm design_. +एक बार जब हमारे पास नैतिक सिद्धांत परिभाषित हो जाते हैं, तो अगला कदम यह देखने के लिए हमारे डेटा और एआई कार्यों का मूल्यांकन करना है कि क्या वे उन साझा मूल्यों के साथ संरेखित हैं । Think about your actions in two categories: _data collection_ and _algorithm design_. With data collection, actions will likely involve **personal data** or personally identifiable information (PII) for identifiable living individuals. This includes [diverse items of non-personal data](https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_en) that _collectively_ identify an individual. Ethical challenges can relate to _data privacy_, _data ownership_, and related topics like _informed consent_ and _intellectual property rights_ for users.