diff --git a/1-Introduction/03-defining-data/translations/README.hi.md b/1-Introduction/03-defining-data/translations/README.hi.md new file mode 100644 index 0000000..ef6b293 --- /dev/null +++ b/1-Introduction/03-defining-data/translations/README.hi.md @@ -0,0 +1,18 @@ +# डेटा का अवलोकन +|![ Sketchnote by [(@sketchthedocs)](https://sketchthedocs।dev) ](../../sketchnotes/03-DefiningData.png)| +|:---:| +|Defining Data - _Sketchnote by [@nitya](https://twitter।com/nitya)_ | + +डेटा मतलब तथ्य, माहिती और अनुभव है जिनका इस्तमाल करके नए खोज और सूचित निर्णयोंका समर्थन किया जाता है। + +डेटा पॉइंट यह डेटासेट का सबसे छोटा प्रमाण है। डेटासेट यह एक डेटा पॉइंट्स का बड़ा संग्रह होता है। डेटासेट बोहोत सारे अलगअलग प्रकार और स्ट्रक्चर का होता है, और बोहोत बार किसी स्त्रोतपे आधारित होता है। उदाहरण के लिए, किसी कम्पनी की कमाई स्प्रेडशीट मैं सेव्ह की हो सकती है मगर प्रति घंटे के दिल की धकड़न की गति [JSON](https://stackoverflow।com/questions/383692/what-is-json-and-what-is-it-used-for/383699#383699) रूप मैं हो सकती है। डेटा वैज्ञानिकोकेलिए अलग अलग प्रकार के डेटा और डेटासेट के साथ काम करना आम बात होती है। + +यह पाठ डेटा को उसके स्त्रोत के हिसाब से पहचानने और वर्गीकृत करने पे केंद्रित है। + +## [पाठ के पाहिले की परीक्षा](https://red-water-0103e7a0f.azurestaticapps.net/quiz/4) + +## डेटा का वर्णन कैसे किया जाता है +**अपक्व डेटा** ऐसे प्रकार का डेटा होता जो उसके स्त्रोत से आते वक्त जिस अवस्था मैं था वैसे ही है और उसका विश्लेषण या वर्गीकरण नहीं किया गया है। ऐसे डेटासेट से जरूरी जानकारी निकलने के लिए उसे ऐसे प्रकार मे लाना आवश्यक है जो इंसान समज सके और जिस टैकनोलजीका उपयोग डेटा के विश्लेषण मे किया जाएगा उसको भी समज आये। डेटाबेस का स्ट्रक्चर हमे बताती है की डेटा किस प्रकार से वर्गीकृत किया गया है और उसका वर्गीकरण कैसे किया जाता है। डेटा का वर्गीकरण संरचित, मिश्र संरचित और असंरचित प्रकार मै किया जा सकता है। संरचना के प्रकार डेटा के स्त्रोत के अनुसार बदल सकते है मगर आखिर मै इन तीनो मैं से एक प्रकार के हो सकते है। + +### परिमाणात्मक डेटा +परिमाणात्मक डेटा मतलब डेटासेट मे उपलब्ध होने वाला ऐसा संख्यात्मक डेटा जिसका इस्तमाल विश्लेषण,मापन और गणितीय चीजोंकेलिए हो सकता है। परिमाणात्मक डेटा के यह कुछ उदाहरण है: देश की जनसंख्या, इंसान की ऊंचाई या कंपनी की तिमाही कमाई। थोड़े अधिक विश्लेषण के बाद परिणामात्मक डेटा से मौसम के अनुसार वायु गुणवत्ता सूचकांक(Air Quality Index) के बदलाव पता करना या फिर किसी सामान्य कार्यदिवस पर भीड़भाड़ वाले घंटे के ट्रैफिक की संभावना का अनुमान लगना मुमकिन है